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Abstract
How should we design the algorithms we run and the architectures we learn?

Several high-impact areas of computing have begun to automate these procedures
using machine learning (ML), reducing the need for human effort by using our ex-
panding amount of data and compute. This thesis uses ideas from ML, algorithm
design, and optimization to advance our understanding of these areas of data-driven
computing—meta-learning, algorithms with predictions, and architecture search—
and to translate the resulting methodologies into state-of-the-art implementations.

• In meta-learning, which uses ML itself to improve ML algorithms by learning
across many learning tasks, we introduce ARUBA, a framework for designing
and analyzing meta-learning methods. Our analysis yields the first guarantees
for gradient-based meta-learning, showing how such methods improve perfor-
mance based upon quantifiable measures of similarity between learning tasks.
We use ARUBA to extend the practical impact of meta-learning to new areas
of ML, including to learning with partial feedback and to federated learning;
in the latter case, we introduce FedEx, a new state-of-the-art method for tuning
federated optimizers, which train models on networks of distributed heteroge-
neous datasets such as mobile devices and hospital records.

• We build upon the success of ARUBA by taking its core approach—the op-
timization of surrogate loss functions approximating algorithmic objectives—
and extending it beyond learning algorithms to show learning guarantees for
algorithms with predictions, which are algorithms that take advantage of
ML predictions about their instances; in particular, we show the first learning-
theoretic guarantees for predictions that depend on the instance the algorithm
is run on, a crucial property for practical applications. Our framework again
serves as an algorithm design tool, which we use to build the first algorithms
with predictions for mechanisms that release (differentially) private statistics
about sensitive datasets and for linear system solvers; in the latter case, we de-
sign learning algorithms that, under natural structural assumptions, can learn
to make instance-optimal predictions.

• Lastly, this thesis addresses the problem of finding neural network architec-
tures to train on specific learning tasks, or architecture search, where we make
progress towards understanding the optimization and generalization properties
of weight-sharing, a dominant heuristic used throughout the field. We then
extend weight-sharing to design new search spaces based around neural oper-
ations that allow for the automated discovery of truly novel architectures from
data; the culmination of this effort is DASH, a method that efficiently finds ar-
chitectures that outperform human expert-designed neural architectures on the
majority of diverse tasks we test.
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Chapter 0

Introduction

Classically, algorithm design and machine learning (ML) are studied on individual, well-defined
tasks, such as a problem (e.g. a linear system) to be solved or a model class (e.g. a specific
neural architecture) to be learned. In the real world, computations and datasets do not exist in a
vacuum, with practitioners specifying algorithms and architectures via inductive biases, prior ex-
perience, and increasingly through learning from related tasks. This last approach automatically
improves the algorithms we run and the architectures we use by using experience on previous
instances to obtain better performance on future instances. It encompasses many of the most im-
portant paradigms in modern data-driven computing, including the meta-learning or large-scale
pretraining of gradient descent initializations on heterogeneous tasks or corpora, algorithms that
take advantage of learned predictions about their instances, and the automated discovery of neu-
ral architectures to train on specific tasks. The goal of this thesis is to establish learning from
multiple tasks, datasets, and computations on firm theoretical and practical foundations, allowing
scientists and engineers to confidently use the resulting algorithms to power new innovations.

At the technical level, we focus on the learning of two types of objects: algorithms—both
regular algorithms and learning algorithms—and neural network architectures. This is done
by “meta-learning” parameters encoding algorithmic or architectural settings while minimizing
appropriate cost measures across multiple learning tasks or problem instances. However, the-
matically the contributions in the thesis are split into the following three parts:

1. Meta-learning: In many applications, we want to learn a good learning algorithm—
e.g. find a good gradient descent initialization—from a large collection of heterogeneous
datasets or tasks; for example, large language models (LLMs) are pretrained on big, multi-
distribution corpora before fine-tuning on target data. Understanding such settings requires
going beyond the single-distribution paradigm of classical ML. We show some of the first
guarantees for gradient-based meta-learning, a major approach in this area numerous ap-
plications. Our theory describes task similarity conditions under which learning from mul-
tiple tasks is useful and prescribes algorithms that can exploit this similarity. Since the
publication of the initial results of the thesis, our framework has been directly built upon
theoretically by scientists in diverse areas such as algorithmic game theory and reinforce-
ment learning. Within the thesis itself, we use our framework to design a new state-of-the-
art method for tuning hyperparameters in federated learning (FL) that has been found to
consistently improve regular tuners in both our own and in recent independent evaluations.
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2. Algorithms with predictions: Also known as learning-augmented algorithms, this rapidly
growing subfield of theoretical CS designs algorithms whose performance can be improved
by learned predictions of their outputs. It is a leading way of analyzing algorithms beyond
worst-case instances and has had a significant practical impact in areas such as databases
and energy systems. Our work provides the first systematic understanding of the critical
learning aspect of learning-augmented algorithms, introducing a unified way to determine
learnability and in doing so dramatically improving several existing theoretical results
while proving many new ones. This thesis also expands the scope of learning-augmented
algorithms beyond online and graph algorithms, including to privacy-preserving statistics
and to scientific computing.

3. Architecture search: The third focus area of this thesis is on the automated discovery of
good neural architectures, with an emphasis on neural architecture search (NAS) methods
that employ the weight-sharing heuristic. We develop the first theoretical understanding
of the optimization and generalization properties of this technique by conducting a math-
ematical analysis of different NAS objectives. Then we deploy weight-sharing to design
novel search spaces, and associated search algorithms, for finding truly novel neural archi-
tectures that work for diverse data modalities beyond vision, text, and audio. This effort
culminates in a new NAS method whose discovered architectures tend to outperform hu-
man expert-designed architectures on the latest benchmark in the field.

In summary, this thesis advances our theoretical understanding of training on multi-distribution
data, which underlies everything from foundation models powering the latest breakthrough ar-
tificial intelligence (AI) systems to the go-to methods in distributed learning. It also provides
new frameworks that guide the design and analysis of state-of-the-art paradigms in algorithm
design (algorithms with predictions) and neural architecture search (weight-sharing). In applica-
tions, the thesis combines these insights with domain-specific knowledge to develop algorithms
for distributed (federated) learning on heterogeneous data, incorporating ML into statistics and
scientific computing, and automating the application of ML to understudied modalities.

In the rest of this chapter, we first detail the contributions we make towards the learning of
algorithms (Section 0.1) and architectures (Section 0.2), and how the individual results are con-
nected. We then conclude with an organizational overview of the rest of the thesis (Section 0.3).

0.1 Learning to parameterize algorithms
Learning to set algorithmic parameters is an important use-case of ML that encompasses many
overlapping areas such as multi-task and meta-learning, personalized federated learning, algo-
rithms with predictions, amortized optimization, and data-driven algorithm design. Here the
data is a collection of learning tasks or computational instances, and the goal is to reduce the
cost of running some parameterized algorithm on them by learning a good parameter to use.
Designing and analyzing algorithms that learn to set the parameters for other algorithms, or
meta-algorithms, is challenging because of the complicated way in which the performance being
optimized—e.g. an algorithm’s runtime or regret—depends on the parameter used.

A key insight that drives the first two parts of this thesis is that we often do not need to work
with the exact performance metric and can instead use a good approximation to achieve mean-
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ingful results. The closest analogy is that in (single-task) supervised classification we rarely
optimize the (nonconvex) classification loss and instead use surrogate loss functions. Similarly,
an algorithm’s performance can also often be approximated by a simple function of (a) the pa-
rameters to be set by the meta-algorithm and (b) the dataset or instance the algorithm will be
run on. For example, the popular stochastic gradient descent (SGD) algorithm provably per-
forms well on an optimization problem if the distance from the initialization (a parameter) to the
(instance-specific) optimum is small.

We now detail the consequences of this insight for two important areas at the intersection
of ML and algorithms: meta-learning and algorithms with predictions. The resulting methods,
which comprise the first two parts of the thesis, enjoy provable guarantees that show improved
performance as a function of similarity between problem instances. At the same time, they are
practical to apply in large-scale settings beyond the regimes in which we study them, such as
when the tasks involve tuning diverse hyperparameters or solving linear systems.

0.1.1 Meta-learning

In the first part of this thesis we develop the idea of optimizing such simple functions—i.e. using
them as surrogate algorithmic losses—into a framework called ARUBA for designing and ana-
lyzing meta-learning algorithms, i.e. meta-algorithms specifically for learning algorithms. Cru-
cially, the performance of learning algorithms run using the parameters set by our meta-learners
is provably better than comparable single-task learning methods if the tasks are similar in a nat-
ural, algorithm-specific way. For example, gradient descent with a meta-learned initialization
performs well if the tasks’ optima are close in terms of average Euclidean distance.

ARUBA is applicable in numerous settings where the goal is to alleviate the lack of data in
individual learning tasks using data from many related tasks. This collection or “meta-dataset”
of tasks is used by the meta-learner to set the parameters of a “within-task” or “base learner” al-
gorithm to be run on individual tasks; for example, a dataset of mobile device data can be used to
meta-learn an initialization for SGD that yields a personalized language model when fine-tuned
on the data of a new user. Such approaches have found important applications in areas such as
distributed (federated) learning, computer vision, reinforcement learning, and the pretraining and
fine-tuning of LLMs. In this thesis we show the utility of ARUBA in the following settings:

1. Gradient-based meta-learning: Many modern ML algorithms, including in deep learn-
ing, are adaptations of methods for online convex optimization (OCO), where the learner is
faced with sequentially choosing good parameters for a sequence of convex loss functions.
As a result, a popular paradigm for multi-task training of neural network initializations
known as gradient-based meta-learning is implicitly meta-learning variants of OCO algo-
rithms. Thus, by using ARUBA to study the meta-learning of online mirror descent family,
a large family of OCO algorithms, we show the first upper and lower bounds on the perfor-
mance of gradient-based meta-learning algorithms. As before, these guarantees improve
with a natural notion of task similarity between learning tasks; specifically, task-averaged
performance is good if the optimal parameters of different tasks are close together.

2. Meta-learning of online learners: Following the study of gradient-based meta-learning,
we proceed to show that ARUBA is applicable even when the assumptions of online convex
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optimization are relaxed. In particular, we use it to design meta-learning algorithms and
show guarantees in the non-adversarial (statistical) setting, the partial information (bandit)
setting, and the (nonconvex) piecewise-Lipschitz setting. As before, these results show im-
proved performance with setting-specific notions of task similarity, e.g. in the multi-armed
bandit setting we show that the average regret across tasks will have a logarithmic depen-
dence on the number of arms—unlike the square-root dependence that is minimax-optimal
in the single-task setting—so long as a constant number of unknown arms is ever optimal
on any task.

3. Federated learning: Lastly, we exploit the equivalence between popular methods for
gradient-based meta-learning and federated learning—training models across a heteroge-
neous network of devices—to design FedEx, an algorithm for tuning the hyperparameters
of a large class of federated learning methods. FedEx can tune all local hyperparameters,
enjoys ARUBA-based provable guarantees for the case of learning the local step-size, and
leads to significant improvement across three standard tasks in federated learning.

0.1.2 Algorithms with predictions

In the second part of the thesis, we extend the core idea of ARUBA—the optimizing of surro-
gate losses for algorithmic performance measures—beyond learning algorithms, demonstrating
its potential use in any setting where we might hope to use learning to speed up or otherwise im-
prove a computation. We work mainly in the paradigm of algorithms with predictions, a growing
area of algorithm design where the goal is to use possibly imperfect predictors of the outcomes
or optimal settings of an algorithm to reduce its cost. While standard analysis of algorithms char-
acterizes performance in the worst or average case, in domains ranging from database systems
to energy management we can realize substantial gains by augmenting methods with learned
predictions about their instances. This has inspired a large body of theoretical work focused
on quantifying improvement via prediction-dependent performance guarantees and designing
methods that are robust to poor predictions. Such results can have a direct impact on important
applications such as caching protocols, energy systems, and job scheduling.

This thesis makes two fundamental contributions to algorithms with predictions: (1) address-
ing the crucial question of learning and (2) extending the field’s scope beyond its origins in
online and graph problems. The first direction is important because, while the field had produced
many useful algorithms with predictions, the question of where the predictions themselves come
has not been systematically addressed. In practice, predictions often come from meta-algorithms
trained by applying ML to algorithmic data, and so the question becomes whether and how these
meta-algorithms can be efficiently learned. We observe that, just like for initialization-dependent
learning algorithms in ARUBA, existing performance guarantees for learning-augmented algo-
rithms can be also converted into surrogate losses. Distilling this approach into two steps—(1)
proving an optimizable prediction-dependent performance bound and (2) applying online learn-
ing to minimize it across instances—yields a powerful tool for showing end-to-end guarantees for
algorithms with predictions, i.e. results that address both how to use predictions and how to learn
them. Because it focuses on surrogate loss functions amenable to optimization, the framework
also leads to efficient and practical prediction-learning methods.
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As summarized below, we use the idea of proving learnable performance bounds both to
show learning-theoretic guarantees for existing algorithms with predictions and to expand the
scope of learning-augmented algorithms to two new areas:

1. Learning predictions: We start by using ARUBA to systematically integrate learning into
algorithms with predictions by taking advantage of existing bounds on the cost of param-
eterizable algorithms. Via a series of results on maximum-weight independent matching,
online page migration, job scheduling, and ski rental, we show the first online learning
results for this paradigm along with several new or improved sample complexity bounds.
Importantly, our guarantees are the first learning guarantees for instance-adaptive param-
eterizations of algorithms, i.e. where instead of learning one fixed parameter to use on all
instances we learn a policy mapping instances to customized parameters for them. This is
a practically critical but theoretically understudied aspect of data-driven algorithms.

2. Multi-dataset private statistics: The algorithms with predictions paradigm can be viewed
as a toolkit for deriving and analyzing data-driven methods, with our learning-theoretic
framework being an important new addition to existing capabilities such as robustness-
consistency analysis. We demonstrate how the utility of this view via the design and anal-
ysis of algorithms with predictions in an entirely new area: differentially private (DP)
statistics. In this field, the goal is to release information about sensitive datasets while
protecting the privacy of individuals appearing in it, generally by injecting noisy. Here we
study learning-augmented procedures for multiple quantile release, covariance estimation,
and data release, all of them endowed with both robustness guarantees and efficient learn-
ing procedures derived by optimizing well-chosen surrogate losses on external datasets.
Along the way, we introduce the first algorithm for DP quantile release that does not de-
pend on boundedness assumption and show the usefulness of both our robustness and
learning analysis in several multi-dataset settings. Our results yielded substantial reduc-
tions in the error of privately released statistics, especially at high privacy levels.

3. Learning to solve linear systems: Lastly, we study the data-driven solving of linear sys-
tems, which has important applications in scientific computing problems such as partial
differential equations (PDEs). We examine the problem from both the algorithms with
predictions perspective and from that of data-driven algorithm design, designing bandit
algorithms for setting good relaxation parameters and preconditioners. We also show un-
der natural structural and smoothness assumptions that we can learn an instance-optimal
policy for setting algorithmic parameters. When used to speed up a two-dimensional heat
simulation over a fine-grained mesh our algorithms lead to significant—up to almost three-
fold—wallclock improvements over strong baselines.

0.2 Discovering effective neural architectures

While large-scale neural networks have achieved incredible success in recent years, progress has
been distributed very unevenly among different domains. Methodological development has fo-
cused on a set of well-studied domains—vision, text, and audio—and data and compute demands
have made it difficult for academic and some industry researchers to apply state-of-the-art ML.
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This has led to important research directions aimed at making such models more efficient and
widely applicable, such as neural architecture search (NAS) and more broadly automated ma-
chine learning (AutoML). However, prior to the work in this thesis the design and evaluation of
NAS methods has itself focused on well-studied data modalities, especially natural images, and
the resulting algorithms depend on poorly understood heuristics such as weight-sharing.

This thesis introduces novel search spaces and parameterizations that (1) enable more ef-
fective gradient-based NAS algorithms, (2) expand our empirical understanding of the weight-
sharing and bilevel optimization approaches to NAS, and (3) yield effective architectures on di-
verse tasks in the natural sciences, healthcare, and beyond. Specifically, we study the following
search spaces and associated algorithms:

1. Operation simplices: Most differentiable NAS algorithms work by determining which of
a finite set of operations—e.g. identity, convolution, or pooling—to assign to an edge in
a computational graph. Usually this is done by continuously parameterizing each choice
using a real number and using a softmax selection, leading to poor optimization and non-
sparse discretization. We propose GAEA, a method that uses a simplex re-parameterization
of this search space and exponentiated gradient to traverse it, yielding provable conver-
gence guarantees, empirically faster recovery of sparse architecture parameters, and im-
proved performance on standard NAS benchmarks.

2. Feature map selection: Because they are entangled with optimization of deep neural
networks, aspects of NAS such as weight-sharing and bilevel optimization are poorly un-
derstood. We propose feature map selection as a simple setting for studying NAS and show
that empirically it also benefits from weight-sharing. We also provide theoretical evidence
that bilevel optimization helps in this setting.

3. Expressive diagonalization: NAS operation spaces, including the ones studied above, are
generally small sets of a few named operations, preventing the discovery of truly novel ar-
chitectures. We propose XD-operations, which dramatically expand the operation space
by parameterizing the discrete Fourier transforms (DFTs) of the convolution operations
diagonalization to take on continuous matrix values. The resulting search space provably
contains many important operations, including all kinds of convolutions, transposed con-
volutions, pooling operations, Fourier neural operators (FNOs), graph convolutions, and
many more. Empirically XD-operations outperform standard NAS operation spaces on
permuted image classification, PDE solving, protein folding, and music modeling tasks.

4. Efficient diagonalization: While XD-operations are both expressive and theoretically ef-
ficient, they face significant memory and computation challenges when applied to practical
tasks. We find that on tasks involving high-dimensional unstructured data such as images,
it is often sufficient to take a simple convolutional neural network (CNN) such as a Wide
ResNet (WRN) and search for better kernel sizes and dilation rates for its convolutional fil-
ters. The resulting method—DASH—outperforms expert-designed architectures on seven
out of ten evaluated tasks, spanning diverse applications and dimensionalities from cos-
mology to genomics.

These algorithms and search spaces point the way towards automated ML methods that can
truly be applied out-of-the-box on a wide array of applications, especially understudied ones
beyond vision and text.
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0.3 Organization and contributions
The thesis is organized into three parts: Part I introduces ARUBA and its applications in meta-
learning such as personalized federated learning, Part II deals with its extension to algorithms
with predictions and new directions of data-driven algorithms, and Part III covers architecture
search. Each part has an introductory chapter giving an overview of the topic, the contributions
to it in this thesis, and a discussion of recent related work and future directions. This is followed
by a chapter on the core theoretical contributions (often including empirical demonstrations) and
one or more chapters on (often theory-driven) applications. The appendix in the introductory
chapter of each part provides background information for it.

The work presented in this thesis is largely contained in existing publications, cited here as
well as in the first footnotes of the relevant chapters [Khodak et al., 2019b,a, Balcan et al., 2021b,
Khodak et al., 2023b, 2021, 2022, 2023a, Amin et al., 2023, Khodak et al., 2024, Li et al., 2021a,
Khodak et al., 2020, Roberts et al., 2021, Shen et al., 2022]. Significant content will be reused
from these publications, especially in chapters devoted to the main results. This thesis does
provide a unified overview of many of the theoretical results, corrects some minor errors in the
original works, and situates the contributions in the context of more recent developments.
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Part I

Meta-learning
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Chapter 1

Overview

Meta-learning, or learning-to-learn (LTL) [Thrun and Pratt, 1998], has re-emerged as an im-
portant direction for developing algorithms for multi-task learning, dynamic environments, and
federated settings. By using the data of numerous training tasks, meta-learning methods seek to
perform well on new, potentially related test tasks without using many samples. Successful mod-
ern approaches have also focused on exploiting the capabilities of deep neural networks, whether
by learning multi-task embeddings passed to simple classifiers [Snell et al., 2017] or by neural
control of optimization algorithms [Ravi and Larochelle, 2017]. Because of its simplicity and
flexibility, a common approach is parameter-transfer, where all tasks use the same class of Θ-
parameterized functions fθ : X ÞÑ Y; often a shared model ϕ P Θ is learned that is used to train
within-task models. In gradient-based meta-learning (GBML) algorithms such as MAML [Finn
et al., 2017], ϕ is a meta-initialization for a gradient descent method over samples from a new
task. GBML is used in a variety of LTL domains such as vision [Li et al., 2017, Nichol et al.,
2018, Kim et al., 2018], federated learning [Chen et al., 2018a], and robotics [Duan et al., 2017,
Al-Shedivat et al., 2018]. Its simplicity also raises many practical and theoretical questions about
the task similarity it can exploit and the settings in which it can succeed.

The first part of this thesis deals with theoretically understanding algorithms used in modern
meta-learning, especially GBML, and applying the resulting insights to improve these methods.
In this chapter we review existing theoretical analyses of meta-learning, describe the contribu-
tions of this thesis at a high level, and discuss recent developments and future work in the field In
Chapter 2 we introduce the core contribution: a theoretical framework called ARUBA that both
(a) provides insight into how meta-learning allows learning algorithms to take advantage of task
similarity and (b) guides the design of meta-learning algorithm via the idea of applying off-the-
shelf optimization techniques to surrogate bounds on performance. After introducing this frame-
work, we demonstrate it in a variety of learning-theoretic settings, showcasing its widespread
applicability. Chapter 3 is then dedicated to FedEx, a method for federated hyperparameter tun-
ing that can be understood in-part as an instantiation of ARUBA as well.
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1.1 Literature
The statistical analysis of LTL was formalized by Baxter [2000]. Several works have built upon
this theory for modern LTL, such as via a PAC-Bayesian perspective [Amit and Meir, 2018] or by
learning the kernel for ridge regression [Denevi et al., 2018]. However, much effort has also been
devoted to the online setting, often through the framework of lifelong learning [Pentina and Lam-
pert, 2014, Balcan et al., 2015, Alquier et al., 2017]. Alquier et al. [2017] consider a many-task
notion of regret similar to the one we study in order to learn a shared data representation, although
our algorithms are much more practical. Recently, Bullins et al. [2019] developed an efficient on-
line approach to learning a linear data embedding, but such a setting is distinct from GBML and
more closely related to popular shared-representation methods such as ProtoNets [Snell et al.,
2017]. Nevertheless, our approach does strongly rely on online learning through the study of
data-dependent regret-upper-bounds, which has a long history of use in deriving adaptive single-
task methods [McMahan and Streeter, 2010, Duchi et al., 2011]; however, in meta-learning there
is typically not enough data to adapt to without considering multi-task data.

The theoretical study of GBML was initiated with an expressivity result shown for MAML
by Finn and Levine [2018], proving that the meta-learner can approximate any permutation-
invariant learner given enough data and a specific neural architecture. Under strong-convexity
and (high-order) smoothness assumptions and using a fixed learning rate, Finn et al. [2019] show
that the MAML meta-initialization is learnable. In contrast to these efforts, Denevi et al. [2019]
focus on providing finite-sample meta-test-time performance guarantees in the convex setting.
Our work improves upon these analyses by considering the case when the learning rate, a proxy
for the task similarity, is not known beforehand as in Finn et al. [2019] and Denevi et al. [2019]
but must be learned online. Furthermore, ARUBA results in guarantees that can handle more
sophisticated and dynamic notions of task similarity and in certain settings can provide better
statistical guarantees.

1.2 Contributions
The meta-learning portion of the thesis consists of a theoretical chapter (2) on the ARUBA frame-
work and its applications to different settings learning-to-learn followed by an empirical chap-
ter (3) dedicated to the FedEx method for federated hyperparameter tuning. Chapter 2 is mainly
dedicated to learning-theoretic applications, with a few empirical demonstrations in simple set-
tings in support of them. In contrast, the contribution in Chapter 3 is a practical method that is
theoretically supported by an analysis enabled by the ARUBA framework. We now give some
additional details on the contributions in each chapter.

1.2.1 ARUBA
Chapter 2 begins with a theoretical framework for designing and understanding practical meta-
learning methods that integrates a mathematical understanding of task similarity with the exten-
sive literature on online convex optimization and sequential prediction algorithms. We call this
framework ARUBA, for Average Regret Upper Bound Analysis, and it is based around deriving
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nice but meaningful bounds on the performance of learning algorithms that can then be optimized
via off-the-shelf learning techniques; by analogy to supervised classification, these upper bounds
can be viewed as surrogate loss functions for algorithms, in the sense that they are nice functions
(e.g. the square or log loss) that we optimize instead of our actual objective (0-1 error).

Our first application of ARUBA is to the study of gradient-based meta-learning (GBML),
where we use ARUBA to meta-learn the initialization and other parameters of online convex
optimization algorithms such as online gradient descent, which form the basis of many modern
deep learning optimizers. We show that modern GBML approaches can be viewed as optimizing
a surrogate objective that automatically adapts to a natural notion of task similarity; specifically,
we call tasks similar if their optimal parameters are close in Euclidean distance. Using ARUBA,
we can generalize this simple setup to meta-learning other algorithms in the online mirror descent
family—which includes important methods such as exponentiated weights—while adapting to
algorithm-dependent notions of task similarity that generalize the Euclidean distance using Breg-
man divergences. Our approach also enables the task similarity to be learned adaptively, provides
sharper transfer risk bounds in the setting of statistical learning-to-learn, and leads to straight-
forward derivations of average-case regret bounds for efficient algorithms in settings where the
task environment changes dynamically or the tasks share a certain geometric structure. We also
use ARUBA as a guide for algorithm design, as we demonstrate by modifying several popular
meta-learning algorithms and improve their meta-test-time performance on standard problems in
few-shot learning and federated learning.

However, the original setup of ARUBA does suggest some limitations, specifically that per-
haps the nice but meaningful upper bounds it requires only arise in settings where (a) the loss
functions themselves are reasonably nice (e.g. convex and Lipschitz) and (b) where we have
full-information access to these losses. In the remainder of Chapter 2 we study two settings
that show that our framework can in-principle get around these limitations. Firstly, we study the
meta-learning of the initialization and step-size of learning algorithms for piecewise-Lipschitz
functions, a nonconvex setting with applications to both machine learning and algorithms. Start-
ing from recent regret bounds for the exponential forecaster on losses with dispersed disconti-
nuities, we generalize them to be initialization-dependent and then use this result to propose a
practical meta-learning procedure that learns both the initialization and the step-size of the algo-
rithm from multiple online learning tasks. Asymptotically, we guarantee that the average regret
across tasks scales with a natural notion of task similarity that measures the amount of overlap
between near-optimal regions of different tasks. Our approach relies on a careful analysis of ex-
ponentiated weights run on an evolving discretization of the action domain. We also instantiate
the method and its guarantee for several problems in multi-task data-driven algorithm design.

Lastly, we study meta-learning of online learning algorithms that use bandit feedback, with
the goal of improving performance across multiple tasks if they are similar according to some
natural similarity measure. As the first to target the adversarial online-within-online partial-
information setting, we use ARUBA to design meta-algorithms that combine outer learners to
simultaneously tune the initialization and other hyperparameters of an inner learner for two im-
portant cases: multi-armed bandits (MAB) and bandit linear optimization (BLO). For MAB, the
meta-learners initialize and set hyperparameters of the Tsallis-entropy generalization of Exp3,
with the task-averaged regret improving if the entropy of the optima-in-hindsight is small. For
BLO, we learn to initialize and tune online mirror descent (OMD) with self-concordant barrier

13



regularizers, showing that task-averaged regret varies directly with an action space-dependent
measure they induce. To apply ARUBA, we show that the regret of OMD in both settings can
be bounded by affine functions of non-Lipschitz (and sometimes nonconvex) Bregman diver-
gences, which we then show can be learned via unregularized follow-the-leader combined with
two levels of low-dimensional hyperparameter tuning.

1.2.2 FedEx

Meta-learning can be viewed as hyperparameter tuning across multiple tasks, with the initializa-
tions, step-sizes, and other settings being the meta-learnable parameters. In Chapter 3 we show
how in the setting of federated learning—where we use data from multiple devices to learn an
model parameter (that can then be fine-tuned on data from individual clients)—this perspective
allows us to design effective algorithms for hyperparameter tuning, which is a crucial but arduous
part of any machine learning pipeline. Hyperparameter optimization is even more challenging
in federated learning, where models are learned over a distributed network of heterogeneous
devices; here, the need to keep data on device and perform local training makes it difficult to
efficiently train and evaluate configurations.

In particular, we introduce FedEx, a new method for accelerating federated hyperparameter
tuning, specifically in the setting where there are many on-device hyperparameters to tune. FedEx
can be used with any federated optimization scheme involving a local fine-tuning step followed
by server-side aggregation, which describes a very large number of the most popular methods
including the most important, FedAvg. Our contribution makes connections to several different
parts of the thesis, starting with the ARUBA framework we develop in Chapter 2, which we
use to prove that a variant of FedEx correctly tunes the on-device learning rate in the setting
of online convex optimization across devices. The FedEx idea of tuning hyperparameters by
evaluating different optimizer settings using the same initialization is also closely connected
to the technique of weight-sharing from neural architecture search (NAS), which we analyze
more closely in Chapter 9. Notably, FedEx is the only method we are aware of that uses this
technique to tune non-architectural hyperparameters, which is usually not possible to do outside
of a multi-task setting. Empirically, we show that FedEx can outperform natural baselines for
federated hyperparameter tuning by several percentage points on the Shakespeare, FEMNIST,
and CIFAR-10 benchmarks—obtaining higher accuracy using the same training budget.

1.2.3 Contributions of independent interest

In addition to new results in the theory of meta-learning and its applications in federated learning,
our investigation also make contributions to the field of online learning via the introduction of the
strongly-convex coupling technique (c.f. Section 2.A.1). This is a proof approach for showing
regret guarantees for Follow-the-Leader (FTL), a simple online learning algorithm that on each
round takes the action that minimizes the sum of the losses seen so far. FTL is too unstable to
obtain good (sublinear) regret for general convex losses and is mainly applied when the losses
are strongly-convex [Kakade and Shalev-Shwartz, 2008]. However, in Theorem 2.A.1 we extend
old stability results for online convex optimization to show that if FTL run on a sequence of loss
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functions takes the same actions as FTL run on a different sequence of losses that is strongly-
convex, then FTL will have sublinear (indeed, logarithmic) regret on the original sequence.

While it can be challenging to apply, the technique is powerful because it does not even
require the original sequence of loss functions to be convex. Indeed, perhaps the most interesting
application of strongly-convex coupling is shown in Corollary 2.A.1, where we use it to show
that FTL obtains logarithmic regret when run on sequences of Bregman divergences of form
Bpx1||�q, . . . ,BpxT ||�q. This is notable because Bregman divergences can be nonconvex in their
second argument, e.g. when its regularizer is the Tsallis entropy with β   1, which arises in our
analysis of meta-learning in multi-armed bandits (c.f. Section 2.4.2).

1.3 Discussion

1.3.1 Recent developments

Interest in meta-learning theory has grown concurrently with the work in this thesis as the de-
sire to make use of multiple tasks in different learning settings has expanded. As part of this,
our ARUBA framework has been applied many times to derive new meta-learning algorithms
with provable guarantees, including for differentially private meta-learning [Li et al., 2020a],
distributed multi-agent meta-learning [Lin et al., 2021], constrained multi-task reinforcement
learning (RL) [Khattar et al., 2023], and meta-learning in games [Harris et al., 2023]. There
has also been significant related work looking at optimization in nonconvex meta-learning [Fal-
lah et al., 2020], learning good representation for few-shot learning [Du et al., 2021b, Tripu-
raneni et al., 2021], and specific aspects of meta-learning such as the train-validation split in
MAML [Saunshi et al., 2021]. The theory presented in this thesis stands out among these results
by studying the entire meta-learning pipeline—both optimization and learning—in sufficiently
tractable settings. At the same time, recent work has demonstrated that a complete understand-
ing of gradient-based meta-learning is unlikely without nonconvex analysis, i.e. that multi-layer
representation learning is necessary to learn initializations that can take advantage of even sim-
ple types of task similarity [Saunshi et al., 2020]. Nevertheless, ARUBA has helped develop an
understanding of meta-learning that accounts for task similarity, adapts classical learning via its
lifting of surrogate loss functions via performance upper bounds, unifies multi-task approaches
in disparate subfields, and continues to influence the design of meta-algorithms, especially in
learning-theoretic settings beyond standard supervised learning.

In a similar vein, the field of federated hyperparameter tuning has also grown significantly
since the release of FedEx, with the development of numerous methods such as FLoRA [Zhou
et al., 2023], pFedEx [Wang et al., 2023], HPN [Cheng et al., 2023], FEATHERS [Seng et al.,
2023], and FedPop [Chen et al., 2024]; many of these approaches adopt FedEx’s use of weight-
sharing for tuning non-architectural hyperparameters. Fedex has also been independently evalu-
ated on the recently released FedHPOBench benchmark for federated hyperparameter optimiza-
tion, where its use was found to improve the performance of standard hyperparameter tuners in
eleven of twelve cases [Wang et al., 2023, Table 2]. It was also the subject of a study by Nakka
et al. [2024], who observe that FedEx can sometimes perform insufficient exploration and note
that the configurations it determines to be good are often suboptimal, a concern similar to obser-
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vations of rank disorder in neural architecture search with weight-sharing [Yu et al., 2020a]; as
we argue in Chapter 9, methods can still perform well even in the face of rank disorder. Beyond
benchmarking and methods, recent work has also significantly expanded our understanding of
the evaluation issues that we identify in Chapter 3, showing the surprising result that simple ran-
dom search can outperform more sophisticated tuning schemes (e.g. successive halving) in the
presence of the types of noise (e.g. due to differential privacy, client sampling, etc.) present in
federated optimization [Kuo et al., 2023].

1.3.2 Looking forward
Approaches such as fine-tuning large-scale pretrained models [Devlin et al., 2019] and using
them to in-context learn [Brown et al., 2020] have become extremely popular approaches for
few-shot learning, the original motivation for GBML [Finn et al., 2017]. It is tempting to frame
these approaches as themselves variants of meta-learning: after all, language large-scale models
are often trained on vast, heterogeneous corpora to learn an initialization for gradient descent, and
individual collections can be viewed as their own task. However, meta-learning tools have found
more use in settings (e.g. federated learning) that are more similar to those analyzed in this thesis,
where we learn across numerous small tasks (e.g. clients) that are themselves similar to those
that on which we eventually fine-tune. Bridging this gap between large-scale pretraining and
what we classically understand as meta-learning is an interesting challenge for both theory and
practice. In particular, there is significant future work in understanding the properties (e.g. task
size and data heterogeneity) of pretraining corpora that delineate when if ever we can improve
our initializations using knowledge that they will be fine-tuned using SGD.

Beyond improved pretraining, the rise of large-scale pretraining and large language mod-
els (LLMs) yield many other interesting opportunities for multi-task techniques. For example,
inference costs with such models is incredibly high but done repeatedly: can meta-learning across
inferences be used to reduce such costs or to reduce the number of queries needed? In the other
direction, can the representation power of LLMs be exploited to induce useful embeddings of
tasks from their natural language descriptions? Such representations have been found to be prac-
tically useful ways of accessing task relatedness information [Achille et al., 2019], but the fact
that language models can now meaningfully encode natural language information raises exciting
new possibilities for generating them. Lastly, in the direction of theory and basic science, under-
standing the interplay between the heterogeneity in pretraining corpora and the “skills” learned
by the resulting models [Arora and Goyal, 2023, Chen et al., 2023] is another valuable direction
for future research.
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1.A Background

1.A.1 Online learning
Aspects of online learning appear throughout this thesis so we give a quick overview in this
section. There exist several excellent resources on this topic that we will draw from and that the
reader may find helpful [Shalev-Shwartz, 2011, Hazan, 2015, Orabona, 2022].

In the basic setup of online learning we are faced with an adversary over T rounds t �
1, . . . , T , on each of which we first take an action xt P X in some domain X and then suffer loss
ℓtpxtq according to some loss function ℓt : X ÞÑ R chosen by the adversary. The usual goal of
online learning is to minimize regret, defined as the difference between the loss we incur over T
rounds and the loss incurred by the best fixed action in hindsight:

Regret �
Ţ

t�1

ℓtpxtq �min
xPX

Ţ

t�1

ℓtpxq (1.1)

Specifically, the minimal goal of online learning is to obtain sublinear regret, i.e. Regret � opT q,
in which case the average loss (relative to the optimum) Regret{T approaches zero as T Ñ 8.
Starting from this basic setup, the field of online learning explores what happens under different
conditions of interest, such as via restrictions on the losses (e.g. convex or Lipschitz), restrictions
on the adversary (e.g. oblivious or stochastic), or different notions of regret (e.g. using dynamic
comparators).

To start off we will consider the well-studied setting where the domain X � Rd is con-
vex and the losses are convex and Lipschitz, a field commonly known as online convex opti-
mization (OCO). In this setting, sublinear regret is obtained via the (projected) online gradient
descent (OGD) algorithm [Zinkevich, 2003], which given a step-size η ¡ 0 plays

xt�1 � ProjX pxt � η∇ℓtpxtqq (1.2)

Here the first point x1 can be an arbitrary point in X and the projection is in terms of the Eu-
clidean norm. This algorithm has the following regret guarantee [Shalev-Shwartz, 2011, Theo-
rem 2.11]:

Theorem 1.A.1. If X � Rd is convex and the losses ℓt : X ÞÑ R are convex and Gt-Lipschitz
then OGD with step-size η ¡ 0 and initialization x1 P X has regret bounded as

Regret ¤ }x� � x1}22
2η

� ηG2T (1.3)

for G2 � 1
T

°T
t�1G

2
t and x� P argminxPX

°T
t�1 ℓtpxq. Assuming X has Euclidean radius at

most D and setting η � D
G
?
T

yields regret OpGD?T q .

Online gradient descent is just one of many algorithms for online learning and online convex
optimization; indeed the field has developed a deep understanding of the connections between
various algorithms culminating in the online mirror descent (OMD) meta-algorithm, which is
in some sense universal [Srebro et al., 2011]. OMD guarantees take a from similar to given in
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Theorem 1.A.1 for OGD, except the squared Euclidean distance is replaced by a generalized
measure called a Bregman divergence. In Chapter 2 will take advantage of this to induce many
interest notions of task similarity that meta-learners can adapt to.

Lastly, a crucial aspect of online learning is that regret guarantees proved for sequences of
adversarial losses can be converted into sample complexity or statistical risk bounds via results
known as online-to-batch conversions [Cesa-Bianchi et al., 2004]. These conversions run the
online algorithm on losses that are actually i.i.d., aggregate the resulting iterates (e.g. by aver-
aging), and then bound the excess risk by a quantity scaling in UpT q{T , where UpT q ¥ Regret
upper-bounds the regret. Since a typical rate for UpT q is Op?T q, it is easy to see that these
conversions can attain excess risk rates that are competitive with standard uniform convergence
guarantees; indeed it can require significant effort to show a learning-theoretic separation be-
tween adversarial and online analysis [Hazan and Kale, 2014]. As a result, we will be able to
use online-to-batch conversion to obtain compelling statistical guarantees, both for meta-learning
and later for algorithms with predictions.

1.A.2 Multi-task learning
The term meta-learning has been used to describe a variety of settings, including others addressed
in this thesis such as hyperparameter tuning. We will mainly use it to refer to a kind of multi-task
learning where the goal is to learn to parameterize a learning algorithm; this distinguishes it from
hyperparameter tuning, where usually the objective is to parameterize an algorithm on a single
task, although as shown in Chapter 3 even this distinction can be blurred. It also distinguishes it
from what we usually think of as multi-task learning [Caruana, 1997], in which a shared model
or representation is trained to solve multiple tasks [Evgeniou and Pontil, 2004], e.g. via different
output heads of a neural network [Caruana et al., 1995, Weinberger et al., 2009]. Note that we will
often consider an online setting of meta-learning, where the tasks are to be solved sequentially;
this and similar setups are sometimes referred to as lifelong learning and continual learning, but
here again terms can be defined in different ways by different authors [Alquier et al., 2017, Jerfel
et al., 2019]. Our online setting for meta-learning is distinct, however, from online multi-task
learning [Cavallanti et al., 2010], in which there is a fixed number of tasks and the examples
arrive sequentially (and with an associated task index).

A core empirical motivation of this thesis is gradient-based meta-learning, in which the goal
is to learn an initialization for methods in the gradient descent family. Prominent methods that
we will refer to here are Model-Agnostic Meta-Learning (MAML) [Finn et al., 2017], in which
gradient descent is used to optimize an objective averaging the loss one gradient step away from
the learned initialization, and a first-order variant called Reptile [Nichol et al., 2018] that simply
minimizes the average distance between the initialization and the last iterate. As we make exten-
sive use of in both chapters, the update rule of Reptile is a generalization of the popular federated
learning algorithm FedAvg [McMahan et al., 2017]: whereas the FedAvg update moves all the
way to the average of last iterates of local SGD applied to a batch of tasks (client devices), Reptile
moves to a convex combination of that average and the initialization used for local SGD.
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Chapter 2

ARUBA: Provable guarantees for
meta-learning

The first two parts of this thesis are concerned with the learning of algorithms, specifically with
optimizing their parameters over a sequence or distribution of tasks in order to improve some
relevant notion of cost. Target methods whose parameters we will consider learning include reg-
ular algorithms such as the linear system solvers and learning algorithms such as online gradient
descent. In the former case the tasks will be individual computational instances and the cost
measure will often be runtime, while in the latter case we will meta-learn using learning tasks to
minimize quantities such as regret or risk.

In this chapter we introduce the main theoretical tool we develop for this purpose—Average
Regret Upper Bound Analysis (ARUBA)—and discuss its advantages and disadvantages as a tool
for developing new methods for meta-learning, understanding existing ones, and learning predic-
tions. We will then demonstrate its application in a variety of learning-theoretic settings, while
in the next chapter we highlight an empirical application to federated hyperparameter tuning.

2.1 Framework
We introduce our main theoretical tool in the context in which it was originally developed: meta-
learning to initialize gradient descent. The empirical motivation to study this problem comes
from the empirical literature on meta-learning, also known as learning-to-learn, in which the
learner is in an environment with numerous learning tasks each having little data; the goal is to
use data from previously seen meta-training tasks in order to learn how to do well when faced
with a new meta-test task and given only a few examples from it. While this type of multi-task
learning has been studied both empirically and theoretically for many years [Thrun and Pratt,
1998, Baxter, 2000, Maurer, 2005], its widespread integration with modern applications (e.g.
both few-shot supervised learning and reinforcement learning) and modern models (deep neural
networks) came through the gradient-based meta-learning (GBML) approach [Finn et al., 2017].

0ARUBA was first introduced in Khodak et al. [2019a], building upon ideas in an earlier work [Khodak et al.,
2019b]; the original focus was to show guarantees for gradient-based meta-learning. Its subsequent applications to
nonconvex and bandit meta-learning first appeared in Balcan et al. [2021b] and Khodak et al. [2023b], respectively.
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There the authors introduced Model-Agnostic Meta-Learning (MAML), an approach in which
the meta-training tasks are used to meta-learn an initialization for a deep network; this initializa-
tion is then used to initialize gradient descent on samples from a meta-test task.

MAML and its variants became popular because they can be used with any system relying
on gradient-based methods for learning, covering much of modern deep learning. A particularly
simple and illustrative variant is Reptile [Nichol et al., 2018], which meta-learns an initialization
ϕ̂ by running stochastic gradient descent (SGD) starting from some initialization ϕt on each of
a sequence of tasks t � 1, . . . , T and setting the next initialization to

ϕt�1 � p1� αqϕt � αθ̂t (2.1)

where θ̂t is the last iterate of SGD on task t and α ¡ 0 is a meta-step-size. At meta-test time
Reptile runs SGD from the meta-learned initialization ϕ̂ � ϕT�1 on samples from unseen tasks.

We cover subsequent methods, other work on theoretical guarantees for GBML, and the
motivation for the online setting in subsequent chapters. For now, to introduce ARUBA, we
consider a multi-task extension of the online learning framework introduced in Section 1.A.1.
We consider a meta-learner faced with mT losses ℓt,i for t � 1, . . . , T and i � 1, . . . ,m; thus
each t corresponds to a task with m rounds each. The learner’s goal is to play actions xt,i P X
that minimize their task-averaged regret:

Regret � 1

T

Ţ

t�1

Regrett �
1

T

Ţ

t�1

m̧

i�1

ℓt,ipxt,iq �min
xPX

m̧

i�1

ℓt,ipxq � 1

T

Ţ

t�1

m̧

i�1

ℓt,ipxt,iq � ℓt,ipx�t q
(2.2)

Here we define Regrett to be the realized regret on task t and x�t to be the its minimum-
Euclidean-norm optimum-in-hindsight.

To minimize task-averaged regret we take the GBML approach of using the same algo-
rithm, e.g. OGD, on each task t in the sequence. This reduces the question to setting the pa-
rameters of this algorithm—e.g. the initialization x and step-size η in the case of OGD—for
each task. Focusing mainly on the initialization, we now introduce our key technique: ana-
lyzing the meta-learner’s performance by studying the online learning of a sequence of regret-
upper-bounds Utpxt,1q ¥ Regrett, specifically by bounding the average regret-upper-bound
U � 1

T

°T
t�1 Utpxt,1q. The following two observations highlight why we care about this quantity:

1. Generality: Many learning algorithms of interest have regret-upper-bounds Utpxq with
nice, e.g. convex, functional forms that depend strongly on both their parameterizations
x P X and the task data. This data-dependence lets us adaptively set xt,1 P X .

2. Consequences: By definition ofUt we have thatU bounds the task-averaged regret Regret.
Thus if the average regret-upper-bound is small then the meta-learner will perform well
on-average across tasks.

ARUBA’s applicability depends only on finding a low-regret algorithm for the functions Ut;
then by observation 2 we get a task-averaged regret bound where the first term vanishes as T Ñ
8 while by observation 1 the second term is small due to the data-dependent task similarity:

Regret ¤ U ¤ oT p1q �min
xPX

1

T

Ţ

t�1

Utpxq (2.3)
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As the first simple instantiation of ARUBA, suppose the meta-learner is indeed using OGD as
the within-task algorithm and the losses on all tasks are convex and G-Lipschitz. Then by The-
orem 1.A.1 we have an upper bound of Utpxq � 1

2η
}x�t � x}22 � ηG2m on the regret of OGD

with initialization x P X and step-size η ¡ 0. Note that Ut is convex in the initialization x and
depends strongly on the data via the optimal action x�t in hindsight. In-particular, this means
that OGD is also a low-regret algorithm on the sequence U1, . . . , UT ,1 and thus using it to set the
initializations xt,1 will result in a task-averaged regret bounded as

Regret ¤ U ¤ oT p1q �min
xPX

1

T

Ţ

t�1

}x�t � x}22
2η

� ηG2m � oT p1q �OpGV?mq (2.4)

Here we have introduced a task similarity notion V 2 � minxPX 1
T

°T
t�1 }x�t � x}22 measuring the

empirical variance between the optima in hindsight and then set η � O
�

V
G
?
m

	
.2 The key result

here is that in the case where tasks are similar according to this notion—i.e. when V ! D for
D the Euclidean radius of X—then as T Ñ 8 meta-learning improves dramatically upon the
OpGD?mq regret obtained by simply running OGD independently on each task.

As a final observation, note that if the meta-OGD procedure has step-size αη ¡ 0 then the
meta-update to set xt,1 has the form

xt�1,1 � ProjX pxt,1 � αη∇Utpxt,1qq � ProjX pxt,1 � αpxt,1 � x�t qq � p1� αqxt,1 � αx�t (2.5)

which, apart from the use of the optimum-in-hindsight x�t rather than the last-iterate is identical
to the Reptile update (2.1). Since Reptile uses a very similar method to OGD (SGD) on each
task, our result shows that it can be interpreted as meta-learning an initialization that performs
well on subsequent tasks so long as the optimal parameters of most tasks are close to each other.
This interpretation is the first formal justification for Reptile, which was originally introduced
without any formal optimization objective.

2.1.1 Advantages of learning algorithmic upper bounds
Having introduced ARUBA in the context of minimizing average regret across a a sequence of
online learning tasks, we now state it more generally and discuss several advantages of this ap-
proach. Broadly speaking, the idea of ARUBA is summarized in the following two-step process:

1. For a given algorithm, find or derive a convenient-to-optimize upper bound Utpxq on the
cost of running it on task or instance t using parameterization x.

2. Apply online learning tools to obtain both regret guarantees against adversarial sequences
and sample complexity bounds for instances drawn from a distribution.

We now discuss some factors behind the success of this approach.

Existence of meaningful upper bounds. To apply ARUBA we require algorithms to have up-
per bounds that (a) can be optimized and (b) provide some meaningful bound on the performance.
1In subsequent sections we use a better algorithm that uses the strong-convexity of Ut.
2In subsequent sections we also learn η rather than assume knowledge of V .
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For example, in the OGD example the quadratic upper bound was optimizable due to its (strong)
convexity and provided a meaningful performance bound via the task similarity notion of av-
erage squared distance from the best initialization. In fact guarantees that satisfy such notions
appear frequently throughout machine learning, especially online learning, in which the mirror
descent family of algorithms all have regret guarantees that depend on a Bregman divergence
between the optimal in hindsight and the initialization [Shalev-Shwartz, 2011]. This family in-
cludes well-known examples such as OGD and exponentiated gradient (EG). Beyond learning
algorithms, computational methods also exhibit such bounds; as a basic example, the error of
batch gradient descent can also be shown to depend on the initialization and step-size [Karimi
et al., 2016]. Moreover, the field of algorithms with predictions [Mitzenmacher and Vassilvitskii,
2021] is effectively dedicated devising algorithms whose runtime or other cost measure depends
directly on the error of a predictor or other measure of suboptimality of some tuneable parameter.

Depth of results and applications of online learning. The choice of online learning as a
source of both within-task and meta-learning algorithms is important to ARUBA, as it allows us
to obtain guarantees under general assumptions and draw upon a very large literature in sequen-
tial prediction. This is especially useful for showing learnability of the wide variety of upper
bounds we encounter and for converting the adversarial results to statistical learning guarantees.
Online learning is also notable as a major source of learning algorithms for modern neural net-
work optimization; in-particular, the most popular adaptive methods such as Adam [Kingma and
Ba, 2015] and AdaGrad [Duchi et al., 2011] were derived using online convex optimization. Thus
by using online algorithms we obtain methods that can often be applied with minimal changes to
deep neural networks, even if their guarantees are only for convex settings.

Ease of learning multiple parameters simultaneously. In both meta-learning and algorithms
with predictions we are often concerned with learning multiple types of parameters simultane-
ously; for example, in the former we are often interested in both the initialization and step-
size while in the latter we want to both find a good predictor and fix a good parameter for the
robustness-consistency tradeoff. By optimizing regret-upper-bounds using online learning we are
frequently able to obtain algorithms that can learn multiple parameters simultaneously so long
as we have separate no-regret algorithms for each. In the case of the OGD step-size, if we have
an algorithm that sets ηt that obtains sublinear regret on the sequence 1

2η
}xt � xt,1}22 � ηG2m

for arbitrary xt,1 then using it in-combination with OGD to set xt,1 as described above yields
task-averaged regret

Regret ¤ U � 1

T

Ţ

t�1

}x�t � xt,1}22
ηt

� ηtG
2m � oT p1q �min

η¡0

Ţ

t�1

}x�t � xt,1}22
η

� ηG2m

� oT p1q � min
η¡0,xPX

Ţ

t�1

}x�t � x}22
η

� ηG2m

(2.6)

which tends to OpGV?mq without needing to know η in advance. We discuss this in detail in
subsequent chapters.
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2.1.2 Challenges of applying ARUBA

Applying ARUBA on specific does lead to some challenges that we need to resolve on a case-
by-case basis.

Enforcing meaningful upper bounds. It can be sometimes difficult to obtain useful upper
bounds that meaningfully characterize the performance of a method. In-particular, we can of
course always construct trivially learnable upper bounds just from worst-case guarantees, or even
due to weakness in a data or hyperparameter-dependent upper bound. Arguing that a specific
bound is useful requires knowledge of the application domain and understanding useful notions
of task similarity.

Importance of within-algorithm dynamics. While upper bounds can be a useful starting
guide, for some applications meta-learning can only be understood fully by studying the per-
iteration behavior of the base learner. For example, showing that a linear model must be over-
parameterized as a two-layer linear network in order to meta-learn an initialization of SGD when
the optimal models of all tasks lie in a one-dimensional subspace required analyzing both within-
task and meta-training dynamics [Saunshi et al., 2020]. Upper bounds are not fully be able to
characterize the effect of the initialization on the trajectory of iterative algorithms.

Obtaining statistical results. In areas like statistical and bandit learning we generally have
access only to empirical measures of the relevant cost function (risk) and so cannot optimize it
directly. Thus, while in areas such as algorithms with predictions it is often possible to compare
directly with past statistical guarantees, in meta-learning this is sometimes not the case and the
online-to-batch conversion may be viewed as lossy.

2.2 Gradient-based meta-learning
In this section we discuss our application of ARUBA to minimizing task-averaged regret when
meta-learning to initialize and set the step-size of gradient-based methods across a sequence of
online learning tasks. We consider a meta-learner facing a sequence of online learning tasks
t � 1, . . . , T , each with mt loss functions ℓt,i : Θ ÞÑ R over action-space Θ � Rd. The
learner has access to a set of learning algorithms parameterized by x P X that can be used
to determine the action θt,i P Θ on each round i P rmts of task t. Thus on each task t the
meta-learner chooses xt P X , runs the corresponding algorithm, and suffers regret Regrett �°mt
i�1 ℓt,ipθt,iq � minθ

°mt
i�1 ℓt,ipθq. For example, we often use online gradient descent as the

within-task learning algorithm, as is done by Reptile [Nichol et al., 2018]. OGD can be parame-
terized by an initialization ϕ P Θ and a learning rate η ¡ 0, so that X � tpϕ, ηq : ϕ P Θ, η ¡ 0u.
Using the notation va:b �

°b
i�a vi and ∇t,j � ∇ℓt,jpθt,jq, at each round i of task t OGD plays

θt,i � argminθPΘ
1
2
}θ � ϕ}22 � ηx∇t,1:i�1,θy.

Our first result is a multi-task extension of Abernethy et al. [2008a, Theorem 4.2] that gives
a lower-bound on the task-averaged regret:
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Algorithm 1: Generic online algorithm for gradient-based parameter-transfer meta-
learning. To run OGD within-task setRp�q � 1

2
}�}22. To run FTRL within-task substitute

ℓt,jpθq for x∇t,j,θy.
Set meta-initialization ϕ1 P Θ and learning rate η1 ¡ 0.
for task t P rT s do

// run m steps of online mirror descent (OMD)
for round i P rmts do
θt,i Ð argminθPΘ BRpθ||ϕtq � ηtx∇t,1:i�1,θy Suffer loss ℓt,ipθt,iq

// meta-update OMD initialization and learning rate
Update ϕt�1, ηt�1

Corollary 2.2.1. Assume d ¥ 3 and that for each t P rT s an adversary must play a se-
quence of m convex G-Lipschitz functions ℓt,i : Θ ÞÑ R whose optimal actions in hindsight
argminθPΘ

°m
i�1 ℓt,ipθq are contained in some fixed ℓ2-ball Θ� � Θ with center ϕ� and diameter

D�. Then the adversary can force the agent to have task-averaged regret at least GD
�

4

?
m.

Since by definition D� ¥ V for V as defined in Section 2.1, this result shows that the ex-
ample guarantee for OGD discussed before—a simple case of the guarantees shown later in this
section—is asymptotically (as T Ñ 8) optimal up to a constant multiplicative factor.

2.2.1 Adapting to similar tasks and dynamic environments

We now demonstrate the effectiveness of ARUBA for analyzing GBML by using it to prove a
general bound for a class of algorithms that can adapt to both task similarity, i.e. when the opti-
mal actions θ�t for each task are close to some good initialization, and to changing environments,
i.e. when this initialization changes over time. The task similarity will be measured using the
Bregman divergence BRpθ||ϕq � Rpθq�Rpϕq�x∇Rpϕq,θ�ϕy of a 1-strongly-convex func-
tion R : Θ ÞÑ R [Bregman, 1967], a generalized notion of distance.3 Note that for Rp�q � 1

2
} � }22

we have BRpθ||ϕq � 1
2
}θ�ϕ}22. A changing environment will be studied by analyzing dynamic

regret, which for a sequence of actions tϕtut � Θ taken by some online algorithm over a se-
quence of loss functions tft : Θ ÞÑ Rut is defined w.r.t. a reference sequence Ψ � tψtut � Θ
as RegretΨ � °T

t�1 ftpϕtq � ftpψtq. Dynamic regret measures the performance of an online
algorithm taking actions ϕt relative to a potentially time-varying comparator taking actions ψt.
Note that when we fix ψt � ψ� P argminψPΘ

°T
t�1 ftpψq we recover the standard static regret,

in which the comparator always uses the same action.
Putting these together, we seek to define variants of Algorithm 1 for which as T Ñ 8 the

average regret scales with VΨ, where V 2
Ψ � 1

T

°T
t�1 BRpθ�t ||ψtq, without knowing this quantity

in advance. Note for fixed ψt � θ̄� � 1
T
θ�1:T this measures the empirical standard deviation of

the optimal task actions θ�t . Thus achieving our goal implies that average performance improves
with task similarity.

3See Appendix B.2 for more properties of Bregman divergences.
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Figure 2.1: Illustrations comparing different notions of task similarity. The left plot depicts
notions in the static setting, including the average deviation V on which Theorem 2.2.2 depends,
the maximal deviation D� from the meta-learning lower bound in Corollary 2.2.1, and the radius
D of the entire action space on which worst-case bounds depend. The right plot shows a setting
where Theorem 2.2.3 yields a strong task similarity-based guarantee via a dynamic comparator
Ψ, despite the average deviation V being large due to tasks being in far-away clusters.

On each task t Algorithm 1 runs online mirror descent with regularizer R, initialization ϕt P
Θ, and learning rate ηt ¡ 0. It is well-known that OMD and the related Follow-the-Regularized-
Leader (FTRL), for which our results also hold, generalize many important online methods,
e.g. OGD and multiplicative weights [Hazan, 2015]. For mt convex losses with mean squared
Lipschitz constant G2

t they also share a convenient, data-dependent regret-upper-bound for any
θ�t P Θ [Shalev-Shwartz, 2011, Theorem 2.15]:

Regrett ¤ Utpϕt, ηtq � 1

ηt
BRpθ�t ||ϕtq � ηtG

2
tmt (2.7)

All that remains is to come up with update rules for the meta-initialization ϕt P Θ and the
learning rate ηt ¡ 0 in Algorithm 1 so that the average over T of these upper-bounds Utpϕt, ηtq
is small. While this can be viewed as a single online learning problem to determine actions
xt � pϕt, ηtq P Θ � p0,8q, it is easier to decouple ϕ and η by first defining two function
sequences tf init

t ut and tf sim
t ut:

f init
t pϕq � BRpθ�t ||ϕqGt

?
mt f sim

t pvq �
�
BRpθ�t ||ϕtq

v
� v



Gt

?
mt (2.8)

We show in Theorem 2.2.1 that to get an adaptive algorithm it suffices to specify two algorithms,
INIT and SIM, such that the actions ϕt � INITptq achieve low (dynamic) regret over f init

t and
the actions vt � SIMptq achieve low (static) regret over f sim

t ; these actions then determine the
update rules of ϕt and ηt � vt{pGt

?
mtq. We will specialize Theorem 2.2.1 to derive algorithms

that adapt to task similarity (Theorem 2.2.2) and to dynamic environments (Theorem 2.2.3).
To understand the formulation of f init

t and f sim
t , first note that f sim

t pvq � Utpϕt, v{pGt
?
mtqq,

so the online algorithm SIM over f sim
t corresponds to an online algorithm over the regret-upper-

bounds Ut when the sequence of initializations ϕt is chosen adversarially. Once we have shown
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that SIM is low-regret we can compare its losses f sim
t pvtq to those of an arbitrary fixed v ¡

0; this is the first line in the proof of Theorem 2.2.1 (below). For fixed v, each f init
t pϕtq is

an affine transformation of f sim
t pvq, so the algorithm INIT with low dynamic regret over f init

t

corresponds to an algorithm with low dynamic regret over the regret-upper-bounds Ut when
ηt � v{pGt

?
mtq @ t. Thus once we have shown a dynamic regret guarantee for INIT we can

compare its losses f init
t pϕtq to those of an arbitrary comparator sequence tψtut � Θ; this is the

second line in the proof of Theorem 2.2.1.

Theorem 2.2.1. Assume Θ � Rd is convex, each task t P rT s is a sequence of mt convex losses
ℓt,i : Θ ÞÑ R with mean squared Lipschitz constant G2

t , and R : Θ ÞÑ R is 1-strongly-convex.
• Let INIT be an algorithm whose dynamic regret over functions tf init

t ut w.r.t. any reference
sequence Ψ � tψtuTt�1 � Θ is upper-bounded by U init

T pΨq.
• Let SIM be an algorithm whose static regret over functions tf sim

t ut w.r.t. any v ¡ 0 is
upper-bounded by a non-increasing function U sim

T pvq of v.

If Algorithm 1 sets ϕt � INITptq and ηt � SIMptq
Gt
?
mt

then for V 2
Ψ �

°T
t�1 BRpθ�t ||ψtqGt

?
mt°T

t�1Gt
?
mt

it achieves

Regret ¤ U ¤ U sim
T pVΨq
T

� 1

T
min

$&
%U init

T pΨq
VΨ

, 2

gffeU init
T pΨq

Ţ

t�1

Gt

?
mt

,.
-� 2VΨ

T

Ţ

t�1

Gt

?
mt

(2.9)

Proof. For σt � Gt
?
mt we have by the regret bound on OMD/FTRL (1.1) that

UT �
Ţ

t�1

�
BRpθ�t ||ϕtq

vt
� vt



σt ¤ min

v¡0
U sim
T pvq �

Ţ

t�1

�
BRpθ�t ||ϕtq

v
� v



σt

¤ min
v¡0

U sim
T pvq � U init

T pΨq
v

�
Ţ

t�1

�
BRpθ�t ||ψtq

v
� v



σt

¤ U sim
T pVΨq �min

"
U init
T pΨq
VΨ

, 2
b
U init
T pΨqσ1:T

*
� 2VΨσ1:T

(2.10)

where the last line follows by substituting v � max
!
VΨ,

a
U init
T pΨq{σ1:T

)
.

Similar tasks in static environments

By Theorem 2.2.1, if we can specify algorithms INIT and SIM with sublinear regret over f init
t

and f sim
t (2.8), respectively, then the average regret will converge to OpVΨ

?
mq as desired. We

first show an approach in the case when the optimal actions θ�t are close to a fixed point in Θ,
i.e. for fixed ψt � θ̄� � 1

T
θ�1:T . Henceforth we assume the Lipschitz constant G and number of

rounds m are the same across tasks; detailed statements are in the supplement.
Note that if Rp�q � 1

2
} � }22 then tf init

t ut are quadratic functions, so playing ϕt�1 � 1
t
θ�1:t

has logarithmic regret [Shalev-Shwartz, 2011, Corollary 2.2]. We use a novel strongly convex
coupling argument to show that this holds for any such sequence of Bregman divergences, even
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for nonconvex BRpθ�t ||�q. The second sequence tf sim
t ut is harder because it is not smooth near 0

and not strongly convex if θ�t � ϕt. We study a regularized sequence f̃ sim
t pvq � f sim

t pvq � ε2{v
for ε ¥ 0. Assuming a bound of D2 on the Bregman divergence and setting ε � 1{ 4

?
T , we

achieve Õp?T q regret on the original sequence by running the exponentially-weighted online-
optimization (EWOO) algorithm of Hazan et al. [2007] on the regularized sequence:

vt �
³?D2�ε2
0

v expp�γ°s t f̃
sim
s pvqqdv³?D2�ε2

0
expp�γ°s t f̃

sim
s pvqqdv

for γ � 2

DG
?
m

min

"
ε2

D2
, 1

*
(2.11)

Note that while EWOO is inefficient in high dimensions, we require only single-dimensional
integrals. In the supplement we also show that simply setting v2t�1 � ε2t�°

s¤t BRpθ�s ||ϕtq has
only a slightly worse regret of ÕpT 3{5q. These guarantees suffice to show the following:

Theorem 2.2.2. Under the assumptions of Theorem 2.2.1 and boundedness of BR over Θ, if
INIT plays ϕt�1 � 1

t
θ�1:t and SIM uses ε-EWOO (2.11) with ε � 1{ 4

?
T then Algorithm 1

achieves average regret

Regret ¤ U � Õ
�
min

"
1� 1

V?
T

,
1

4
?
T

*
� V


?
m for V 2 � min

ϕPΘ
1

T

Ţ

t�1

BRpθ�t ||ϕq
(2.12)

Observe that if V , the average deviation of θ�t , is ΩT p1q then the bound becomes OpV?mq
at rate Õp1{?T q, while if V � oT p1q the bound tends to zero.

Related tasks in changing environments

In many settings we have a changing environment and so it is natural to study dynamic regret.
This has been widely analyzed by the online learning community [Cesa-Bianchi et al., 2012,
Jadbabaie et al., 2015], often by showing a dynamic regret bound consisting of a sublinear term
plus a bound on the variation in the action or function space. Using Theorem 2.2.1 we can show
dynamic guarantees for GBML via reduction to such bounds. We provide an example in the
Euclidean geometry using the popular path-length-bound PΨ �

°T
t�2 }ψt�ψt�1}2 for reference

actions Ψ � tψtuTt�1 [Zinkevich, 2003]. We use a result showing that OGD with learning rate
η ¤ 1{β over α-strongly-convex, β-strongly-smooth, and L-Lipschitz functions has a bound of
OpLp1 � PΨqq on its dynamic regret [Mokhtari et al., 2016, Corollary 1]. Observe that in the
case ofRp�q � 1

2
} �}22 the sequence f init

t in Theorem 2.2.1 consists ofDG
?
m-Lipschitz quadratic

functions. Thus using Theorem 2.2.1 we achieve the following:

Theorem 2.2.3. Under the assumptions of Theorem 2.2.1, bounded Θ, and Rp�q � 1
2
} � }22, if

INIT is OGD with learning rate 1
G
?
m

, SIM uses ε-EWOO (2.11) with ε � 1{ 4
?
T , and Ψ �

tψtutPrT s � Θ is a comparator sequence, then by using OGD within-task Algorithm 1 achieves

Regret ¤ U � Õ

�
min

#
1� 1

VΨ?
T

,
1

4
?
T

+
�min

#
1� PΨ

VΨT
,

c
1� PΨ

T

+
� VΨ

�
?
m (2.13)

for V 2
Ψ � 1

2T

°T
t�1 }θ�t �ψt}22 and PΨ �

°T
t�2 }ψt �ψt�1}2.
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This bound controls task-averaged regret using the deviation VΦ of the optimal parameters θ�t
from some reference sequence Φ, which is assumed to vary slowly or sparsely so that the path
length PΦ is small. Figures 2.1 illustrates when such a guarantee improves over Theorem 2.2.2.
Note that Theorem 2.2.3 specifies OGD as the meta-update algorithm INIT, so under the ap-
proximation that each task t’s last iterate is close to θ�t it suggests that simple GBML methods
such as Reptile [Nichol et al., 2018] or FedAvg [McMahan et al., 2017] are adaptive. The gen-
erality of ARUBA also allows for incorporating other dynamic regret bounds [Hall and Willet,
2016, Zhang et al., 2017] and other non-static notions of regret [Hazan and Seshadri, 2009].

2.2.2 Adapting to the inter-task geometry
Previously we gave guarantees for learning OMD under a simple notion of task similarity: close-
ness of the optimal actions θ�t . We now turn to new algorithms that can adapt to a more sophisti-
cated task similarity structure. Specifically, we study a class of learning algorithms parameterized
by an initialization ϕ P Θ and a symmetric positive-definite matrix H P Sd� which plays

θt,i � argmin
θPΘ

1

2
}θ � ϕ}2H�1 � x∇t,1:i�1,θy (2.14)

This corresponds θt,i�1 � θt,i � H∇t,i, so if the optimal actions θ�t vary strongly in certain
directions, a matrix emphasizing those directions improves within-task performance. By strong-
convexity of 1

2
}θ�ϕ}2H�1 w.r.t. } � }H�1 , the regret-upper-bound is Utpϕ,Hq � 1

2
}θ�t �ϕ}2H�1 �°m

i�1 }∇t,i}2H [Shalev-Shwartz, 2011, Theorem 2.15]. We first study the diagonal case, i.e. learn-
ing a per-coordinate learning rate η P Rd to get iteration θt,i�1 � θt,i�ηtd∇t,i. We propose to
set ηt at each task t as follows:

ηt �
d°

s t ε
2
s � 1

2
pθ�s � ϕsq2°

s t ζ
2
s �

°ms
i�1∇2

s,i

for ε2t �
ε2

pt� 1qp , ζ
2
t �

ζ2

pt� 1qp @ t ¥ 0, where ε, ζ, p ¡ 0

(2.15)
Observe the similarity between this update AdaGrad [Duchi et al., 2011], which is also inversely
related to the sum of the element-wise squares of all gradients seen so far. Our method adds
multi-task information by setting the numerator to depend on the sum of squared distances be-
tween the initializations ϕt set by the algorithm and that task’s optimal action θ�t . This algorithm
has the following guarantee:

Theorem 2.2.4. Let Θ be a bounded convex subset of Rd, let Dd
� � Rd�d be the set of positive

definite diagonal matrices, and let each task t P rT s consist of a sequence of m convex Lipschitz
losses ℓt,i : Θ ÞÑ R. Suppose for each task t we run the iteration in Equation 2.14 with ϕ �
1
t�1
θ�1:t�1 and setting H � diagpηtq via Equation 2.15 for ε � 1, ζ � ?

m, and p � 2
5
. Then

Regret ¤ U

� min
ϕPΘ
HPDd�

Õ

�
ḑ

j�1

min

# 1
Hrj,js

�Hrj,js

T
2
5

,
1

5
?
T

+�
?
m� 1

T

Ţ

t�1

}θ�t � ϕ}2H�1

2
�

m̧

i�1

}∇t,i}2H

(2.16)
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Algorithm 2: Methods for modifying a generic GBML method to learn a per-
coordinate step-size, with two variants: (1) the “ARUBA++” variant starts with ηT,1 �
ηT and gT,1 � gT , adaptively resets the learning rate by setting ĝT,i�1 Ð ĝT,i�c∇2

i for
some c ¡ 0, and then updates ηT,i�1 Ð

a
bT {gT,i�1; (2) the “Isotropic” variant sets bt

and gt to be scalars multiples of 1d that track the sum of squared distances and sum of
squared gradient norms, respectively.

Input: T tasks, update method for meta-initialization, within-task descent method,
settings ε, ζ, p ¡ 0

Initialize b1 Ð ε21d, g1 Ð ζ21d
for task t � 1, 2, . . . , T do

Set ϕt according to update method, ηt Ð
a
bt{gt

Run descent method from ϕt with learning rate ηt:
observe gradients ∇t,1, . . . ,∇t,mt

obtain within-task parameter θ̂t
bt�1 Ð bt � ε21d

pt�1qp � 1
2
pϕt � θ̂tq2

gt�1 Ð gt � ζ21d
pt�1qp �

°mt
i�1∇2

t,i

Result: initialization ϕT , learning rate ηT �
a
bT {gT

As T Ñ 8 the bound converges to the minimum over ϕ,H of the last two terms, corre-
sponding to using the optimal initialization and per-coordinate learning rate on every task. The
OpT�2{5q convergence is slightly slower than the usual Op1{?T q rate achieved in the previous
section; this is due to the algorithm’s adaptivity to within-task gradients, whereas previously we
simply assumed a known Lipschitz bound Gt to set ηt. This adaptivity makes the algorithm
much more practical, leading to a method for adaptively learning a within-task learning rate
using multi-task information; this is outlined in Algorithm 2 and shown to improve GBML per-
formance in Section 2.2.4. Note also the per-coordinate separation of the left term, which shows
that the algorithm converges more quickly on non-degenerate coordinates. The per-coordinate
specification of ηt (2.15) can be further generalized to learning a full-matrix adaptive regularizer,
for which we show guarantees in Theorem 2.2.5. However, the rate is much slower, and without
further assumptions such methods will have Ωpd2q computation and memory requirements.

Theorem 2.2.5. Let Θ � Rd be bounded and convex, and let each task t P rT s be a sequence of
m convex Lipschitz losses ℓt,i : Θ ÞÑ R. Suppose for each t we run the iteration in Equation 2.14
with ϕ � 1

t�1
θ�1:t�1 and H the unique positive definite solution of B2

t � HG2
tH for

B2
t � tε2Id � 1

2

¸
s t
pθ�s � ϕsqpθ�s � ϕsqJ and G2

t � tζ2Id �
¸
s t

m̧

i�1

∇s,i∇J
s,i (2.17)

for ε � 1{ 8
?
T and ζ � ?

m{ 8
?
T . Then for λjpHq the jth largest eigenvalue of H we have

Regret ¤ U � Õ
�

1
8
?
T


?
m� min

ϕPΘ
H¡0

2λ21pHq
λdpHq

1� log T

T
�

Ţ

t�1

}θ�t � ϕ�}2H�1

2
�

m̧

i�1

}∇t,i}2H
(2.18)
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2.2.3 Fast rates and high probability bounds for statistical meta-learning

Transfer risk bounds in the distributional setting have been an important motivation for studying
LTL via online learning [Alquier et al., 2017, Denevi et al., 2019]. If the regret-upper-bounds are
convex, which is true for most practical variants of OMD/FTRL, ARUBA yields several new re-
sults in the classical distribution over task distributions setup of Baxter [2000]. In Theorem 2.2.6
we present bounds on the risk ℓPpθ̄q of the parameter θ̄ obtained by running OMD/FTRL on
i.i.d. samples from a new task distribution P and averaging the iterates.

Theorem 2.2.6. Assume Θ,X are convex subsets of a Euclidean vector space. Let convex losses
ℓt,i : Θ ÞÑ r0, 1s be drawn i.i.d. Pt � Q, tℓt,iui � Pm

t for distribution Q over tasks. Suppose they
are passed to an algorithm with average regret upper-bound U after T tasks that at each t picks
xt P X to initialize a within-task method with convex regret upper-bound Ut : X ÞÑ r0, B?ms,
forB ¥ 0. If the within-task algorithm is initialized by x̄ � 1

T
x1:T and it takes actions θ1, . . . ,θm

on m i.i.d. losses from new task P � Q then θ̄ � 1
m
θ1:m satisfies the following transfer risk

bounds for any θ� P Θ (all w.p. 1� δ):

1. general case: EP�QEPmℓPpθ̄q ¤ EP�QℓPpθ�q �LT for LT � U
m
�B

b
8
mT

log 1
δ
.

2. ρ-self-bounded losses ℓ: if D ρ ¡ 0 s.t. ρEℓ�P∆ℓpθq ¥ Eℓ�Pp∆ℓpθq�Eℓ�P∆ℓpθqq2 for
all distributions P � Q, where ∆ℓpθq � ℓpθq�ℓpθ�q for any θ� P argminθPΘ ℓPpθq, then

for LT as above we have EP�QℓPpθ̄q ¤ EP�QℓPpθ�q�LT �
b

2ρLT
m

log 2
δ
� 3ρ�2

m
log 2

δ
.

3. α-strongly-convex, G-Lipschitz regret-upper-bounds Ut: in parts 1 and 2 above we

can substitute LT � U�minx EP�QUpxq
m

� 4G
T

b
U
αm

log 8 log T
δ

� maxt16G2,6αB
?
mu

αmT
log 8 log T

δ
.

In the general case, Theorem 2.2.6 provides bounds on the excess transfer risk decreasing
with U{m and 1{?mT . Thus if U improves with task similarity so will the transfer risk as T Ñ
8. Note that the second term is 1{?mT rather than 1{?T as in some past most-analyses [Denevi
et al., 2019]; this is because regret is m-bounded but the OMD regret-upper-bound is Op?mq-
bounded. The results also demonstrate ARUBA’s ability to utilize specialized results from the
online-to-batch conversion literature. This is witnessed by the guarantee for self-bounded losses,
a class which Zhang [2005] shows includes linear regression; we use a result by the same author
to obtain high-probability bounds, whereas previous GBML bounds are in-expectation [Denevi
et al., 2019]. We also apply a result due to Kakade and Tewari [2008] for the case of strongly-
convex regret-upper-bounds, enabling fast rates in the number of tasks T . The strongly-convex
case is especially relevant for GBML since it holds for OGD with fixed learning rate.

We present two consequences of these results for the algorithms from Section 2.2.1 when run
on i.i.d. data. To measure task similarity we use the variance V 2

Q � minϕPΘ EP�QEPm}θ��ϕ}22
of the empirical risk minimizer θ� of anm-sample task drawn from Q. If VQ is known we can use
strong-convexity of the regret-upper-bounds to obtain a fast rate for learning the initialization, as
shown in the first part of Corollary 2.2.2. The result can be loosely compared to Denevi et al.
[2019], who provide a similar asymptotic improvement but with a slower rate of Op1{?T q in
the second term. However, their task similarity measures the deviation of the true, not empirical,
risk minimizers, so the results are not directly comparable. Corollary 2.2.2 also gives a guarantee
for when we do not know VQ and must learn the learning rate η in addition to the initialization;
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Figure 2.2: Learning rate variation across layers of a convolutional net trained on Mini-ImageNet
using Algorithm 2. Following intuition outlined in Section 2.2.4, shared feature extractors are
not updated much if at all compared to higher layers.

here we match the rate of Denevi et al. [2019], who do not learn η, up to some additional fast
op1{?mq terms.

Corollary 2.2.2. In the setting of Theorems 2.2.2 and 2.2.6, if δ ¤ 1{e and Algorithm 1 uses
within-task OGD with initialization ϕt�1 � 1

t
θ�1:t and step-size ηt � VQ�1{?T

G
?
m

for VQ as above,
then w.p. 1� δ

EP�QEPmℓPpθ̄q ¤ EP�QℓPpθ�q � Õ
�
VQ?
m
�
�

1?
mT

� 1

T



log

1

δ



(2.19)

If ηt is set adaptively using ε-EWOO as in Theorem 2.2.2 for ε � 1{ 4
?
mT � 1{?m then w.p.

1� δ

EP�QEPmℓPpθ̄q ¤ EP�QℓPpθ�q� Õ

�
VQ?
m
�min

#
1?
m
� 1?

T

VQm
,

1
4
?
m3T

� 1

m

+
�
c

1

T
log

1

δ

�
(2.20)

2.2.4 Empirical results for few-shot and federated learning
A generic GBML method does the following at iteration t: (1) initialize a descent method at ϕt;
(2) take gradient steps with learning rate η to get task parameter θ̂t; (3) update meta-initialization
to ϕt�1. Motivated by Section 2.2.2, in Algorithm 2 we outline a generic way of replacing η by a
per-coordinate rate learned on-the-fly. This entails keeping track of two quantities: (1) bt P Rd,
a per-coordinate sum over s   t of the squared distances from the initialization ϕs to within-task
parameter θ̂s; (2) gt P Rd, a per-coordinate sum of the squared gradients seen so far. At task t
we set η to be the element-wise square root of bt{gt, allowing multi-task information to inform
the trajectory. For example, if along coordinate j the θ̂trjs is usually not far from initialization
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Table 2.1: Meta-test-time performance of GBML algorithms on few-shot classification
benchmarks. 1st-order and 2nd-order results obtained from Nichol et al. [2018] and Li
et al. [2017], respectively.

20-way Omniglot 5-way Mini-ImageNet
1-shot 5-shot 1-shot 5-shot

1st-Order MAML 89.4� 0.5 97.9� 0.1 48.07� 1.75 63.15� 0.91
1st Reptile w. Adam 89.43� 0.14 97.12� 0.32 49.97� 0.32 65.99� 0.58

Order Reptile w. ARUBA 86.67� 0.17 96.61� 0.13 50.73� 0.32 65.69� 0.61
Reptile w. ARUBA++ 89.66� 0.3 97.49� 0.28 50.35� 0.74 65.89� 0.34

2nd 2nd-Order MAML 95.8� 0.3 98.9� 0.2 48.7� 1.84 63.11� 0.92
Order Meta-SGD [Li et al., 2017] 95.93� 0.38 98.97� 0.19 50.47� 1.87 64.03� 0.94

then brjs will be small and thus so will ηrjs; then if on a new task we get a high noisy gradient
along coordinate j the performance will be less adversely affected because it will be down-
weighted by the learning rate. Single-task algorithms such as AdaGrad [Duchi et al., 2011] and
Adam [Kingma and Ba, 2015] also work by reducing the learning rate along frequent directions.
However, in meta-learning some coordinates may be frequently updated during meta-training
because good task weights vary strongly from the best initialization along them, and thus their
gradients should not be downweighted; ARUBA encodes this intuition in the numerator using
the distance-traveled per-task along each direction, which increases the learning rate along high-
variance directions. We show in Figure 2.2 that this is realized in practice, as ARUBA assigns a
faster rate to deeper layers than to lower-level feature extractors, following standard intuition in
parameter-transfer meta-learning. As described in Algorithm 2, we also consider two variants:
ARUBA++, which updates the meta-learned learning-rate at meta-test-time in a manner similar
to AdaGrad, and Isotropic ARUBA, which only tracks scalar quantities and is thus useful for
communication-constrained settings.

Few-shot classification

We first examine if Algorithm 2 can improve performance on Omniglot [Lake et al., 2017] and
Mini-ImageNet [Ravi and Larochelle, 2017], two standard few-shot learning benchmarks, when
used to modify Reptile, a simple meta-learning method [Nichol et al., 2018]. In its serial form
Reptile is roughly the algorithm we study in Section 2.2.1 when OGD is used within-task and η is
fixed. Thus we can set Reptile+ARUBA to be Algorithm 2 with θ̂t the last iterate of OGD and the
meta-update a weighted sum of θ̂t and ϕt. In practice, however, Reptile uses Adam [Kingma and
Ba, 2015] to exploit multi-task gradient information. As shown in Table 2.1, ARUBA matches or
exceeds this baseline on Mini-ImageNet, although on Omniglot it requires the additional within-
task updating of ARUBA++ to show improvement.

It is less clear how ARUBA can be applied to MAML [Finn et al., 2017], as by only taking
one step the distance traveled will be proportional to the gradient, so η will stay fixed. We also
do not find that ARUBA improves multi-step MAML, which is perhaps not surprising as it is
further removed from our theory due to its use of held-out data. In Table 2.1 we compare to
Meta-SGD [Li et al., 2017], which does learn a per-coordinate learning rate for MAML by auto-
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Figure 2.3: Next-character prediction performance for recurrent networks trained on the
Shakespeare dataset [Caldas et al., 2018] using FedAvg [McMahan et al., 2017] and its
modifications by Algorithm 2. Note that the two ARUBA methods require no learning rate
tuning when personalizing the model (refine), unlike both FedAvg methods; this is a critical
improvement in federated settings. Furthermore, isotropic ARUBA has negligible overhead by
only communicating scalars.

matic differentiation. This requires more computation but does lead to consistent improvement.
As with the original Reptile, our modification performs better on Mini-ImageNet but worse on
Omniglot compared to MAML and its modification Meta-SGD.

Federated learning

A main goal in this setting is to use data on heterogeneous nodes to learn a global model without
much communication; leveraging this to get a personalized model is an auxiliary goal [Smith
et al., 2017], with a common application being next-character prediction on mobile devices. A
popular method is FedAvg [McMahan et al., 2017], where at each communication round r the
server sends a global model ϕr to a batch of nodes, which then run local OGD; the server then
sets ϕr�1 to the average of the returned models. This can be seen as a GBML method with
each node a task, making it easy to apply ARUBA: each node simply sends its accumulated
squared gradients to the server together with its model. The server can use this information and
the squared difference between ϕr and ϕr�1 to compute a learning rate ηr�1 via Algorithm 2
and send it to each node in the next round. We use FedAvg with ARUBA to train a character
LSTM [Hochreiter and Schmidhuber, 1997] on the Shakespeare dataset, a standard benchmark
of a thousand users with varying amounts of non-i.i.d. data [McMahan et al., 2017, Caldas
et al., 2018]. Figure 2.3 shows that ARUBA significantly improves over non-tuned FedAvg and
matches the performance of FedAvg with a tuned learning rate schedule. Unlike both baselines
we also do not require step-size tuning when refining the global model for personalization. This
reduced need for hyperparameter optimization is crucial in federated settings, where the number
of user-data accesses are extremely limited.
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2.2.5 Conclusion

In this section we have demonstrated the application of ARUBA for analyzing gradient-based
meta-learning, yielding new guarantees and algorithms for adaptive, dynamic, and statistical
LTL via online learning. ARUBA has significant potential to yield many other new LTL methods
in a similar manner, but so far our results were for convex, Lipschitz, and full-information loss
functions, assumptions that do not hold in many potential applications where we might want to
learn-to-learn across tasks. We thus devote the next two sections to exploring how these assump-
tions might be avoided, first by showing guarantees for the meta-learning of online algorithms
over nonconvex piecewise-Lipschitz functions and second by studying adversarial bandit algo-
rithms. In doing so we go beyond gradient-based learning algorithms as well, demonstrating
that the idea of targeting surrogate performance bounds can be useful even when moving to more
probabilistic algorithms.

2.3 Learning-to-learn piecewise-Lipschitz functions

Our first direction is the meta-learning of online learners of piecewise-Lipschitz functions, which
can be nonconvex and highly discontinuous. As no-regret learning over such functions is impos-
sible in-general, we study the case of piecewise-Lipschitz functions whose discontinuities are
dispersed, i.e. which do not concentrate in any small compact subset of the domain [Balcan
et al., 2018b]. Such functions arise frequently in data-driven algorithm design, in which the goal
is to learn the optimal parameter settings of algorithms for difficult (often NP-hard) problems
over a distribution or sequence of instances [Balcan, 2021]; for example, a small change to the
metric used in cluster linkage can lead to a discontinuous change in classification error [Balcan
et al., 2019]. Such problems are often solved across many time periods or problem domains,
resulting in natural multi-task structure that we might hope to use to improve performance.

In the single-task setting the problem of learning dispersed functions can be solved using
simple methods such as the exponentially-weighted forecaster. To design an algorithm for learn-
ing to initialize online learners in this setting, we apply ARUBA to optimize a sequence of
data-dependent upper-bounds on the within-task regret. The result is an averaged bound that im-
proves upon the regret of the single-task exponential forecaster so long as there exists an initial
distribution that can compactly contain many of the within-task optima of the different tasks.
Designing the meta-procedure is especially challenging in our setting because it involves online
learning over a set of distributions on the domain. To handle this we study a “prescient” form of
the classic follow-the-regularized leader (FTRL) scheme that is run over an unknown discretiza-
tion; we then show the existence of another algorithm that plays the same actions but uses only
known information, thus attaining the same regret while being practical to implement.

As an application, we consider data-driven tuning of the parameters of combinatorial opti-
mization algorithms for hard problems such as knapsack and clustering. The likely intractabil-
ity of these problems on worst case instances have led to several approaches to study them in
more realistic settings, such as smoothed analysis [Spielman and Teng, 2004] and data-driven
algorithm configuration [Balcan, 2021]. Our setting is more realistic than those considered in
prior work. It is more challenging than learning from i.i.d. instances [Gupta and Roughgar-
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den, 2017], but at the same time less pessimistic than online learning over adversarial problem
instances [Balcan et al., 2018b], as it allows us to leverage similarity of problem instances com-
ing from different but related distributions. We instantiate our bounds theoretically on several
problems where the cost functions are piecewise-constant in the tuned parameters, allowing our
meta-procedure to learn the right initial distribution for exponential forecasters. This includes
well-known combinatorial optimization problems like finding the maximum weighted indepen-
dent set (MWIS) of vertices on a graph, solving quadratic programs with integer constraints
using algorithms based on the celebrated Goemans-Williamson algorithm, and mechanism de-
sign for combinatorial auctions. Then we consider experimentally the problem of tuning the
right α for the α-Lloyd’s family of clustering algorithms [Balcan et al., 2018c]. In experimental
evaluations on two datasets—a synthetic Gaussian mixture model and the well-known Omniglot
dataset from meta-learning [Lake et al., 2017]—our meta-procedure leads to improved cluster-
ing accuracy compared to single-task learning to cluster. The results holds for both one-shot and
five-shot clustering tasks. We also study our results for a family of greedy algorithms for the
knapsack problem introduced by Gupta and Roughgarden [2017] and obtain similar results.

2.3.1 Related work
Most learning-theoretic results for initialization-based meta-learning have been in the convex
Lipschitz setting, with work on inherently nonconvex modeling approaches usually focuseing
on multi-task representation learning [Balcan et al., 2015, Maurer et al., 2016, Du et al., 2021b,
Tripuraneni et al., 2021] or targeting optimization, e.g. stationary point convergence [Fallah
et al., 2020]. An exception is a study of linear models over Gaussian data showing that noncon-
vexity is critical to meta-learning an initialization that exploits low-rank task structure [Saunshi
et al., 2020]. There is also work extending results from the neural tangent kernel literature to
meta-learning [Zhou et al., 2021], but in this case the objective becomes convex. On the other
hand, we study initializations for learning a class of functions that can be highly nonconvex and
have numerous discontinuities.

2.3.2 Initialization-dependent learning of dispersed functions
In this section we introduce our setup for online learning of piecewise-Lipschitz functions in a
multi-task setting. We then generalize existing results for the single-task setting in order to obtain
within-task regret bounds that depend on both the initialization and the task data. This is critical
for both defining a notion of task similarity and devising a meta-learning procedure.

Meta-learning setup

As before, for some T,m ¡ 0 and all t P rT s and i P rms we consider a meta-learner faced
with a sequence of Tm loss functions ℓt,i : C ÞÑ r0, 1s over a compact subset C � Rd that lies
within a ball Bpρ, Rq of radius R around some point ρ P Rd. Before each loss function ℓt,i the
meta-learner must pick an element ρt,i P C before then suffering a loss or cost ℓt,ipρt,iq. As in
the previous section, the subsequence ℓt,1, . . . , ℓt,m defines a task, but a key point now is that the
tasks we consider can have numerous global optima. We will assume, after going through the
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m rounds of task t, that we have oracle access to a single fixed optimum for t, which we will
refer to using ρ�t and use in both our algorithm and to define the task similarity. Note that in
the types of applications we are interested in—piecewise-Lipschitz functions—the complexity
of computing optima scales with the number of discontinuities. In the important special case of
piecewise-constant functions, this dependency becomes logarithmic [Cohen-Addad and Kanade,
2017]. Thus this assumption does not affect the usefulness of the result.

Our goal will be to improve the guarantees for regret in the single-task case by using in-
formation obtained from solving multiple tasks. As before, we will do this by proving task
similarity-dependent bounds on the task-averaged regret 1

T

°T
t�1

°m
i�1 ℓt,ipρt,iq � ℓt,ipρ�t q and

claim improvement over single-task learning if in the limit of T Ñ 8 it is better than the best
available bounds on the single-task regret. Note that for simplicity we assume all tasks have
the same number of rounds within-task, but as with past work our results are straightforward to
extend to the more general setting.

Learning piecewise-Lipschitz functions

We now turn to our target functions and within-task algorithms for learning them: piecewise-
Lipschitz losses, i.e. functions that are L-Lipschitz w.r.t. the Euclidean norm everywhere except
on measure zero subsets of the space; here they may have arbitrary jump discontinuities so
long they still bounded between r0, 1s. Apart from being a natural setting of interest due to its
generality compared to past work on meta-learning, this class of functions has also been shown to
have important applications in data-driven algorithm configuration [Balcan et al., 2018b]; there
these functions represent the cost, e.g. an objective value or time-complexity, of algorithms for
difficult problems such as integer programming, auction design, and clustering.

This literature has also shown lower bounds demonstrating that no-regret learning piecewise-
Lipschitz function is impossible in general, necessitating assumptions about the sequence. One
such condition is dispersion, which requires that the discontinuities are not too concentrated.

Definition 2.3.1 (Balcan et al. [2018b]). The sequence of random loss functions ℓ1, . . . , ℓm is
said to be β-dispersed with Lipschitz constant L if, for all m and for all ϵ ¥ m�β , we have
that, in expectation over the randomness of the functions, at most Õpϵmq functions (the soft-O
notation suppresses dependence on quantities beside ϵ,m and β, as well as logarithmic terms)
are not L-Lipschitz for any pair of points at distance ϵ in the domain C. That is, for all m and for
all ε ¥ m�β ,

E

�
� max

ρ,ρ1PC
}ρ�ρ1}2¤ϵ

}∣∣ti P rms | ℓipρq � ℓipρ1q ¡ L}ρ� ρ1}2u
∣∣�� ¤ Õpϵmq (2.21)

Assuming a sequence of m β-dispersed loss functions and initial distribution w1 set to the
uniform distribution over C and optimize the step-size parameter, the exponential forecaster
presented in Algorithm 3 achieves sublinear regret Õpadm logpRmq � pL � 1qm1�βq. While
this result achieves a no-regret procedure, its lack of dependence on both the task data and on
the chosen initialization makes it difficult to meta-learn. In the following theorem, we generalize
the regret bound for the exponential forecaster to make it data-dependent and hyperparameter-
dependent:
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Algorithm 3: Exponential Forecaster
Input: step-size parameter λ P p0, 1s, initialization w : C Ñ R¥0.
Initialize w1 Ð w for i � 1, 2, . . . ,m do

Wi Ð
³
C
wipρqdρ

Sample ρi with probability proportional to wipρiq, i.e. with probability
pipρiq � wipρiq

Wi

Suffer ℓipρiq and observe ℓip�q
For each ρ P C, set wi�1pρq � e�λℓipρqwipρq

Theorem 2.3.1. Let ℓ1, . . . , ℓm : C ÞÑ r0, 1s be any sequence of piecewise L-Lipschitz functions
that are β-dispersed. Suppose C � Rd is contained in a ball of radius R. The exponentially
weighted forecaster (Algorithm 3) has expected regret Rm ¤ mλ� logp1{Zq

λ
� ÕppL� 1qm1�βq,

where Z �
³
Bpρ�,m�βq wpρqdρ³

C wpρqdρ
for ρ� the optimal action in hindsight.

The proof of this result adapts past analyses of Algorithm 3; setting step-size λ appropriately
recovers the previously mentioned bound. The new bound is useful due to its explicit dependence
on both the initialization w and the optimum in hindsight via the logp1{Zq term. Assuming w is a
(normalized) distribution, this effectively measures the overlap between the chosen initialization
and a small ball around the optimum; we thus call

� logZ � � log

³
Bpρ�,m�βqwpρqdρ³

C
wpρqdρ (2.22)

the negative log-overlap of initialization wp�q with the optimum ρ�.
We also obtain an asymptotic lower bound of Ω̃pm1�βq on the expected regret of any algo-

rithm by extending the argument of Balcan et al. [2020b] to the multi-task setting; this shows a
limit on any improvement we can hope to achieve from task similarity.

Theorem 2.3.2. There is a sequence of piecewise L-Lipschitz β-dispersed losses ℓi,j : r0, 1s ÞÑ
r0, 1s whose optimal actions in hindsight argminρ

°m
i�1 lt,ipρq are contained in some fixed ball

of diameter D�, for which any algorithm has expected regret Rm ¥ Ω̃pm1�βq.

Task similarity

Before proceeding to our discussion of meta-learning, we first discuss what we might hope to
achieve with it; specifically, we consider what a reasonable notion of task similarity is in this
setting. Note that the Theorem 2.3.1 regret bound has three terms, of which two depend on the
hyperparameters and the last is due to dispersion and cannot be improved via better settings.
Our focus will thus be on improving the first two terms, which are the dominant ones due to the
dependence on the dimensionality and the distance from the initialization encoded in the negative
log overlap. In particular, when the initialization is the uniform distribution then this quantity
depends inversely on the size of a small ball around the optimum, which may be quite small.
Via meta-learning we hope to assign more of the probability mass of the initializer to areas close
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to the optimum, which will decrease these terms. On average, rather than a dependence on the
volume of a small ball we aim to achieve a dependence on the average negative log-overlap

V 2 � � min
w:C ÞÑR¥0,

³
C wpρqdρ�1

1

T

Ţ

t�1

log

»
Bpρ�t ,m�βq

wpρqdρ (2.23)

which can be much smaller if the task optima ρ�t are close together; for example, if they are
the same then V � 0, corresponding to assigning all the initial weight within the common ball
Bpρ�,m�βq around the shared optima. This is also true if volpXtPTBpρ�t ,m�βqq ¡ 0, as one
can potentially initialize with all the weight in the intersection of the balls. On the other hand
if volpXtPTBpρ�t ,m�βqq � 0, V ¡ 0. For example, if a p-fraction of tasks have optima ρ0 and
the remaining at ρ1 with ||ρ0 � ρ1|| ¡ 2m�β the task similarity is given by the binary entropy
function V � Hbppq � �p log p� p1� pq logp1� pq.

The settings of Algorithm 3 that achieve the minimum in the definition of V are directly re-
lated to V itself: the optimal initializer is the distribution achieving V and the optimal step-size is
V {?m. Note that while the explicit definition requires computing a minimum over a set of func-
tions, the task similarity can be computed using the discretization constructed in Section 2.3.3.

2.3.3 An algorithm for meta-learning the initialization and step-size
Having established a single-task algorithm whose regret depends on the initialization and step-
size, we move on to meta-learning these hyperparameters. Recall that the goal is to make the
task-averaged regret (2.2) small and improve upon the single-task baseline of repeatedly running
Algorithm 3 from the uniform distribution, up to oT p1q terms that vanish as we see more tasks. In
this section, we use the ARUBA strategy of online learning our data-dependent regret guarantees;
if we can do so with regret sublinear in T then we will improve upon the single-task guarantees
up to oT p1q terms, as desired. Specifically, we are faced with a sequence of regret-upper-bounds
Utpw, vq � pv � ftpwq{vq

?
m � gpmq on nonnegative functions w over C and positive scalars

v ¡ 0. As gpmq cannot be improved via meta-learning, we will focus on learning w and v.
To do so, we run two online algorithms, one over the functions ft and the other over htpvq �
v� ftpwtq{v, where wt is set by the first procedure. The following shows that if both procedures
have sublinear regret then our task-averaged regret will have the desired properties:

Theorem 2.3.3. Assume each task t P rT s consists of a sequence ofm β-dispersed piecewise L-
Lipschitz functions ℓt,i : C ÞÑ r0, 1s. Let ft and g be functions such that the regret of Algorithm 3
run with step-size λ � v

?
m for v ¡ 0 and initialization w : C ÞÑ R¥0 is bounded by Utpw, vq �

pv � ftpwq{vq
?
m � gpmq. Suppose we have a procedure that achieves FT pwq regret w.r.t. any

w : C ÞÑ R¥0 by playing actions wt : C ÞÑ R¥0 on ft and another procedure that achieves
HT pvq regret w.r.t. any v ¡ 0 by playing actions vt ¡ 0 on htpvq � v � ftpwtq{v, where HT

is non-increasing on the positive reals. Then by setting ρt,i using Algorithm 3 with step-size
vt{
?
m and initialization wt at each task t we get task-averaged regret bounded by�

HT pV q
T

�min

"
FT pw�q
V T

, 2
a
FT pw�q{T

*
� 2V


?
m� gpmq (2.24)

for w� � argminw:C ÞÑR¥0

°T
t�1 ftpwq the optimal initialization and V the task similarity (2.23).
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This result is an analog of Theorem 2.2.2 and follows by manipulating the definition of regret.
It reduces the problem of obtaining a small task-averaged regret to solving two online learning
problems, one to set the initialization and one to set the step-size. So long as both have sublinear
regret then we will improve over single-task learning. In the next two sections we derive suitable
procedures.

Meta-learning the initialization

We now come to the most technically challenging component of our meta-learning procedure:
learning the initialization. As discussed above, we can accomplish this by obtaining a no-regret
procedure for the function sequence

ftpwq � � log

³
Bpρ�t ,m�βqwpρqdρ³

C
wpρqdρ (2.25)

This is nontrivial as the optimization domain is a set of nonnegative functions, effectively mea-
sures on the domain C. To handle this, we first introduce some convenient notation and abstrac-
tions. At each task t we are faced with some function ft associated with an unknown closed
subset Ct � C—in particular Ct � Bpρ�t ,m�βq—with positive volume volpCtq ¡ 0 that is
revealed after choosing wt : C ÞÑ R¥0. For each time t define the discretization

Dt � tD �
£
s¤t

C
pcrssq
s : c P t0, 1ut, volpDq ¡ 0u (2.26)

of C, where Cp0q
t � Ct and C

p1q
t � CzCt. We will use elements of these discretizations to

index nonnegative vectors in R|Dt|
¥0 ; specifically, for any measure w : C ÞÑ R¥0 let wptq P R|Dt|

¥0

denote the vector with entries wptqrDs �
³
D
wpρqdρ for D P Dt. Note that we will exclusively

use p, q, v, w for measures, with v specifically referring to the uniform measure, i.e. vptqrDs �
volpDq. For convenience, for all real vectors x we will use x̂ to denote p{}p}1. Finally, we abuse
notation and remove the parentheses to refer those vectors associated with the final discretization,
i.e. v � vpT q and w � wpT q.

Now that we have this notation we can turn back to the functions we are interested in:
ftpwq � � log

³
Ct
wpρqdρ³

C wpρqdρ
, where Ct � Bpρ�t ,m�βq. Observe that we can equivalently write

this as ftpwq � � logxw�
t , ŵy, where w�

trDs � 1D�Ct; this translates our online learning problem
from the domain of measures on C to the simplex on |DT | elements. However, we cannot play
in this domain explicitly as we do not have access to the final discretization DT , nor do we get
access to w�

t after task t, except implicitly via Ct. In this section we design a method that implic-
itly run an online convex optimization procedure over R|DT |

¥0 while explicitly playing probability
measures w : C ÞÑ R¥0.

As the functions ft are exp-concave, one might first consider applying a method attaining
logarithmic regret on such losses [Hazan et al., 2007, Orabona et al., 2012]; however, such al-
gorithms have regret that depends linearly on the dimension, which in our case is polypT q. We
thus turn to the the follow-the-regularized-leader (FTRL) family of algorithms, which in the case
of entropic regularization are well-known to have regret logarithmic in the dimension [Shalev-
Shwartz, 2011]. In Algorithm 4 we display the pseudo-code of a modification with regularizer
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Algorithm 4: Follow-the-Regularized-Leader (prescient form)
Input: discretization DT of C, mixture parameter γ P r0, 1s, step-size η ¡ 0
Initialize w1 � v̂ for t � 1, 2, . . . , T do

Play wt

Suffer ftpwtq � � logxw�
t ,wty

Observe ft
Update wt�1 � argmin}w}1�1,w¥γv̂DKLpw||v̂q � η

°
s¤t fspwq

DKLp�||v̂q, where recall v is the vector of volumes of the discretization DT ofC, and we constrain
the played distribution to have measure at least γv̂rDs over every set D P DT .

While Algorithm 4 explicitly requires knowing the discretization DT of C in advance, the
following key lemma shows that we can run the procedure knowing only the discretization Dt

after task t by simply minimizing the same objective over probability distributions discretized
on Dt. This crucially depends on the re-scaling of the entropic regularizer by v̂ (which notably
corresponds to the uniform distribution over C) and the fact that w�

t P t0, 1u|DT |.
Lemma 2.3.1. Let w : C ÞÑ R¥0 be the probability measure corresponding to the minimizer

w � argmin
}q}1�1,q¥γv̂

DKLpq||v̂q � η
¸
s¤t

logxw�
s ,qy (2.27)

and let w̃ : C ÞÑ R¥0 be the probability measure corresponding to the minimizer

w̃ptq � argmin
}q}1�1,q¥γv̂ptq

DKLpq||v̂ptqq � η
¸
s¤t

logxw�
s ptq,qy (2.28)

Then w � w̃.

We can thus move on to proving a regret guarantee for Algorithm 4. This follows from
Jensen’s inequality together with standard results for FTRL once we show that the loss func-
tions are 1

γ volpCtq -Lipschitz over the constrained domain, yielding the following guarantee for
Algorithm 4:

Theorem 2.3.4. Algorithm 4 has regret bounded by

1� γ

η
DKLpw�||v̂q � η

γ2

Ţ

t�1

1

pvolpCtqq2 � γ
Ţ

t�1

log
1

volpCtq (2.29)

w.r.t. the optimum in hindsight w� P argmin}w}1�1,w¥0

°T
t�1 ftpwq of the functions ft. Setting

γ2 � GB{?T and η2 � B2γ2

TG2 , where B2 � DKLpw�||v̂q and G2 � 1
T

°T
t�1

1
pvolpCtqq2 , yields

sublinear regret Õp?BGT 3
4 q.

Proof. Algorithm 4 is standard FTRL with regularizer 1
η
DKLp�||v̂q, which has the same Hes-

sian as the standard entropic regularizer over the simplex and is thus 1
η
-strongly-convex w.r.t.

} � }1 [Shalev-Shwartz, 2011, Example 2.5]. Applying Jensen’s inequality, the standard regret
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bound for FTRL [Shalev-Shwartz, 2011, Theorem 2.11] together with the Lipschitz guarantee of
Claim 2.A.9, and Jensen’s inequality again yields the result:

Ţ

t�1

ftpwtq � ftpw�q �
Ţ

t�1

ftpwtq � p1� γqftpw�q � γftpv̂q � γpftpv̂q � ftpw�qq

¤
Ţ

t�1

ftpwtq � ftpγv̂ � p1� γqw�q � γ log
xw�

t ,w
�y

xw�
t , v̂y

¤ 1

η
DKLpγv̂ � p1� γqw�||v̂q � η

γ2

Ţ

t�1

1

pvolpCtqq2 � γ
Ţ

t�1

log
1

volpCtq

¤ 1� γ

η
DKLpw�||v̂q � η

γ2

Ţ

t�1

1

pvolpCtqq2 � γ
Ţ

t�1

log
1

volpCtq
(2.30)

Since the regret is sublinear in T , this result satisfies our requirement for attaining asymptotic
improvement over single-task learning via Theorem 2.3.3. However, there are several aspects of
this bound that warrant some discussion. The first is the rate of OpT 3

4 q, which is less sublinear
than the standard Op?T q and certainly the Oplog T q regret of exp-concave functions. However,
the functions we face are (a) non-Lipschitz and (b) over a domain that has dimensionality ΩpT q;
both violate conditions for good rates in online convex optimization [Hazan et al., 2007, Shalev-
Shwartz, 2011], making our problem much more difficult.

A more salient aspect is the dependence on B2 � DKLpw�||v̂q, effectively the negative
entropy of the optimal initialization. This quantity is in-principle unbounded but is analogous
to standard online convex optimization bounds that depend on the norm of the optimum, which
in e.g. the Euclidean case are also unbounded. In our case, if the optimal distribution is highly
concentrated on a very small subset of the space it will be difficult to compete with. Note that
our setting of η depends on knowing or guessing B; this is also standard but is certainly a target
for future work to address. For example, past work on parameter-free algorithms has solutions
for optimization over the simplex [Orabona and Pal, 2016]; however, it is unclear whether this
is straightforward to do while preserving the property given by Lemma 2.3.1 allowing us to
implicitly work with an unknown discretization. A more reasonable approach may be to compete
only with smooth measures that only assign probability at most κ volpDq to any subset D � C
for some constant κ ¥ 1; in this case we will simply have B bounded by log κ.

A final issue is the dependence on
?
G, which is bounded by the reciprocal of the smallest vol-

ume volpCtq, which in the dispersed case is roughly Opmβdq; this means that the task-averaged
regret will have a term that, while decreasing as we see additional tasks, is increasing in the
number of within-task iterations and the dispersion parameter, which is counter-intuitive. It is
also does so exponentially in the dimension. Note that in the common algorithm configuration
setting of β � 1{2 and d � 1 this will simply mean that for each task we suffer an extra oT p1q
loss at each within-task round, a quantity which vanishes asymptotically.
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Meta-learning the step-size

In addition to learning the initialization, Theorem 2.3.3 requires learning the task similarity to set
the within-task step-size λ ¡ 0. This involves optimizing functions of form htpvq � v�ftpwtq{v.
Since we know that the measures wt are lower-bounded in terms of γ, we can use our previous
approach that solves this by running the EWOO algorithm [Hazan et al., 2007] on the modified
sequence v � ftpwtq�ε2

v
:

Corollary 2.3.1. For any ε ¡ 0, running the EWOO algorithm on the modified sequence v �
ftpwq�ε2

v
over the domain rε,

a
D2 � log γ � ε2s, where D2 ¥ 1

T

°T
t�1 log

1
volpCtq , attains regret

min

"
ε2

v�
, ε

*
T �

a
D2 � log γ

2
max

"
D2 � log γ

ε2
, 1

*
p1� logpT � 1qq (2.31)

on the original sequence htpvq � v � ftpwq{v for all v� ¡ 0.

Setting ε � 1{ 4
?
T gives a guarantee of form Õppmint1{v�, 4

?
T uq?T q. Note this rate might

be improvable by using the fact that v is lower-bounded due to the γ-constraint; however, we do
not focus on this since this component is not the dominant term in the regret. In fact, because of
this we can adapt our approach from Section 2.2.1 that simply runs follow-the-leader (FTL) on
the same modified sequence without affecting the dominant terms in the regret:

Corollary 2.3.2. For any ε ¡ 0, running the FTL algorithm on the modified sequence v� ftpwq�ε2
v

over the domain rε,
a
D2 � log γ � ε2s, where D2 ¥ 1

T

°T
t�1 log

1
volpCtq , attains regret

min

"
ε2

v�
, ε

*
T � 2

a
D2 � log γmax

#
pD2 � log γq 3

2

ε3
, 1

+
p1� logpT � 1qq (2.32)

on the original sequence htpvq � v � ftpwq{v for all v� ¡ 0.

Setting ε � 1{ 5
?
T gives a guarantee of form Õppmint1{v�, 5

?
T uqT 3

5 q. The alternatives are
described in pseudocode at the bottom of Algorithm 5; while the guarantee of the FTL-based
approach is worse, it is almost as simple to compute as the task similarity and does not require
integration, making it easier to implement.

Putting the two together

Now that we have an algorithm for both the initialization and the step-size, we can combine the
two in Algorithm 5 to meta-learn the parameter of the exponential forecaster. Then we can obtain
a bound on the task-averaged regret from Theorem 2.3.3 to attain our final result.

Theorem 2.3.5. Define B2 � DKLpw�||v̂q, G2 � 1
T

T°
t�1

1
pvolpCtqq2 , D2 ¥ 1

T

T°
t�1

log 1
volpCtq �

Opβd logmq, and the task similarity V as in (2.23). Then Algorithm 5 with η, γ set as in Theo-
rem 2.3.4 and ε � 1{ 4

?
T (if using EWOO) or 1{ 5

?
T (otherwise) yields task-averaged regret

Õ
�
min

"?
BG

V 4
?
T
,

4
?
BG
8
?
T

*
� 2V


?
m� gpmq (2.33)
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Algorithm 5: Meta-learning the parameters of the exponential forecaster (Algorithm 3).
Recall that pptq refers to the time-t discretization of the measure p : C ÞÑ R¥0 (c.f.
Section 2.3.3).

Input: domain C � Rd, dispersion β ¡ 0, step-size η ¡ 0, constraint parameter
γ P r0, 1s, offset parameter ε ¡ 0, domain parameter D ¡ 0

Initialize w1 to the uniform measure on C and set λ1 � ε�
?
D2�ε2�log γ

2
?
m

for task t � 1, 2, . . . , T do
Run Algorithm 3 with initialization wt and step-size λt; get task t optimum ρ�t P C
Set w�

t � 1Bpρ�t ,m�βq to be 1 in an m�β-ball at ρ�t and 0 elsewhere
Set wt�1 to wt�1ptq � argmin}w}1�1,w¥γv̂ptqDKLpw||v̂ptqq � η

°
s¤t logxw�

s ptq,wy
if using EWOO then

Define µtpxq � exp
�
�α

�
tx� tε2�°

s¤t logxw�
s psq,wspsqy

x

		
for

α � 2
D
min

!
ε2

D2 , 1
)

Set λt�1 �
³?D2�ε2�log γ
ε xµtpxqdx

?
m

³?D2�ε2�log γ
ε µtpxqdx

else

Set λt�1 �
b°

s¤t ε2�logxw�
s psq,wspsqy

tm

So as in the previous section, this achieves the meta-learning goal of adapting to the task
similarity by attaining asymptotic regret of 2V

?
m � Opm�βq on-average, where here we sub-

stitute the dispersion term for g and V 2 is the task similarity encoding the average probability
mass assigned to the different task balls by the optimal initialization distribution. We include
the minimum of two rates in the bound, with the rate being Op1{ 4

?
T q is the task similarity is a

constant ΘT p1q and Op1{ 8
?
T q if it is extremely small. As discussed in above, this rate reflects

the difficulty of our meta-problem, in which we are optimizing nonsmooth functions over a space
of distributions; in contrast, our meta-update procedures in the previous section took advantage
of nice properties of Bregman divergences to obtain faster rates.

2.3.4 Meta-learning for data-driven algorithm design
We demonstrate the utility of our bounds in a series of applications in data-driven algorithm de-
sign, demonstrating how our results imply guarantees for meta-learning the tuning of solvers for
several difficult combinatorial problems arising from the theory of computing. We also demon-
strate the practical utility of our approach for tuning clustering algorithms on real and synthetic
datasets.

Instantiations for tuning combinatorial optimization algorithms

Algorithm configuration for combinatorial optimization algorithms involves learning algorithm
parameters from multiple instances of combinatorial problems [Gupta and Roughgarden, 2017,

43



Balcan et al., 2018c]. For problems like maximum weighted independent set (MWIS), integer
quadratic programming (IQP), and auction design, the an algorithm’s performance on a fixed
instance is typically a piecewise-Lipschitz function of its parameters. Prior work has looked
at learning these parameters in the distributional setting (i.e. assuming i.i.d. draws of problem
instances) [Gupta and Roughgarden, 2017, Balcan et al., 2018b] or the online setting where
the problem instances may be adversarially drawn [Balcan et al., 2018b, 2020b]. On the other
hand, instantiating our results for these problems provide upper bounds for much more realistic
settings where different tasks may be related and our bounds improve with this relatedness. We
demonstrate how to apply our results to several combinatorial problems under mild smoothness
assumptions. The key idea is to show that if the inputs come from a smooth distribution, the
algorithmic performance is dispersed (as a sequence of functions in the algorithm parameters).

We start with the MWIS problem, where there is a graph G � pV,Eq and a weight wv P R¡0

for each vertex v P V . The goal is to find a set of non-adjacent vertices with maximum total
weight. The problem is NP-hard and in fact does not have any constant factor polynomial time
approximation algorithm. Gupta and Roughgarden [2017] propose a greedy heuristic family,
which selects vertices greedily based on largest value of wv{p1 � degpvqqρ, where degpvq is the
degree of vertex v, and removes neighbors of the selected vertex before selecting the next vertex.

For this algorithm family, we can learn the best parameter ρ provided pairs of vertex weights
have a joint κ-bounded distribution, and Theorem 2.3.5 implies regret bounds that improve with
task similarity. We use the recipe from Balcan et al. [2020a] to establish dispersion:

Theorem 2.3.6. Consider instances of MWIS with all vertex weights in p0, 1s and for each in-
stance, every pair of vertex weights has a κ-bounded joint distribution. Then the asymptotic
task-averaged regret for learning the algorithm parameter ρ is oT p1q � 2V

?
m�Op?mq.

Proof sketch. The loss function is piecewise constant with discontinuities corresponding to ρ
such that wv{p1� degpvqqρ � wu{p1� degpuqqρ for a pair of vertices u, v. Balcan et al. [2018b]
show that the discontinuities have pκ lnnq-bounded distributions where n is the number of ver-
tices. This implies that in any interval of length ϵ, we have in expectation at most ϵκ lnn discon-
tinuities. Using this in dispersion recipe from Balcan et al. [2020a] implies 1

2
-dispersion, which

in turn implies the desired regret bound by applying Theorem 2.3.5.

Similar results may be obtained for other combinatorial problems including knapsack, k-
center clustering, IQP and auction design (c.f. Appendix 2.A.5 for full details). We further show
instantiations of our results for knapsack and k-center clustering, for which we will empirically
validate our proposed methods in the next sections. The first of these, knapsack, is a well-
known NP-complete problem. We are given a knapsack with capacity cap and items i P rms
with sizes wi and values vi. The goal is to select a subset S of items to add to the knapsack
such that

°
iPS wi ¤ cap while maximizing the total value

°
iPS vi of selected items. The classic

greedy heuristic to add items in decreasing order of vi{wi gives a 2-approximation. We consider
a generalization to use vi{wρi proposed by Gupta and Roughgarden [2017] for ρ P r0, 10s. For
example, for the value-weight pairs tp0.99, 1q, p0.99, 1q, p1.01, 1.01qu and capacity cap � 2 the
classic heuristic ρ � 1 gives value 1.01 but using ρ � 3 gives the optimal value 1.98. We
can learn this optimal value of ρ from similar tasks, and obtain formal guarantees similar to
Theorem 2.3.6 (proof in Appendix 2.A.5).
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Theorem 2.3.7. Consider instances of the knapsack problem given by bounded weights wi,j P
r1, Cs and κ-bounded independent values vi,j P r0, 1s for i P rms, j P rT s. Then the asymp-
totic task-averaged regret for learning the algorithm parameter ρ for the greedy heuristic family
described above is oT p1q � 2V

?
m�Op?mq.

Lastly, for k-center clustering we consider the parameterized α-Llyod’s algorithm family
introduced in Balcan et al. [2018c]. In the seeding phase, each point x is sampled with probabil-
ity proportional to mincPC dpv, cqα, where dp�, �q is the distance metric and C is the set of centers
chosen so far. The family contains an algorithm for each α P r0,8q Y 8, and includes popular
clustering heuristics like vanilla k-means (random initial centers, for α � 0), k-means++ (cor-
responding to α � 2) and farthest-first traversal (α � 8). The performance of the algorithm is
measured using the Hamming distance to the optimal clustering, and is a piecewise constant func-
tion of α. Our meta-learning result can be instantiated for this problem even without smoothness
assumptions by leveraging the smoothness induced by the internal randomness of the clustering
algorithm (proof in Appendix 2.A.5).

Theorem 2.3.8. Consider instances of the k-center clustering problem on n points, with Ham-
ming loss li,j for i P rms, j P rT s against some (unknown) ground truth clustering. Then the
asymptotic task-averaged regret for learning the algorithm parameter α for the α-Lloyd’s clus-
tering algorithm family of Balcan et al. [2018c] is oT p1q � 2V

?
m�Op?mq.

In the following section we look at applications of our results through experiments for the
knapsack and k-center clustering problems.

Experiments for greedy knapsack and k-center clustering

We design experiments to evaluate our new meta-initialization algorithm for data-driven design
for knapsack and clustering problems on real and simulated data. Our experiments show the
usefulness of our techniques in learning a sequence of piecewise-Lipschitz functions.

For our experiments, we generate a synthetic dataset of knapsack instances described as
follows. For each problem instance of each task, we have cap � 100 and m � 50. We
have 10 ‘heavy’ items with wi � N p27, 0.5q and vi � N p27, 0.5q, and 40 items with wi �
N p19� wt, 0.5q and vi � N p18, 0.5q, where wt P r0, 2s is task-dependent.

We also consider the parameterized α-Lloyd’s algorithm family from Balcan et al. [2018c].
The performance of the algorithm is measured using the Hamming loss relative to the optimal
clustering, and is a piecewise constant function of α. We can compute the pieces of this function
for α P r0, 10s by iteratively computing the subset of parameter values where a candidate point
can be the next center. We use the small split of the Omniglot dataset [Lake et al., 2017], and
create clustering tasks by drawing random samples consisting of five characters each, where
four characters are constant throughout. We also create a Gaussian mixture binary classification
dataset, with each class a 2D Gaussian distribution consisting of 100 points each, with variance
diag

��
σ2 4σ2

��
and centers 02 and dσe1. We pick d P r2, 3s to create different tasks.

For each dataset we learn using 30 instances each of 10 training tasks and evaluate aver-
age loss over 5 test tasks. We perform 100 iterations to average over the randomization of the
clustering algorithm and the exponential forecaster algorithm. We perform meta-initialization
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Table 2.2: Effect of meta-initialization on few-shot learning of algorithmic parameters. Per-
formance is computed as a fraction of the average value (Hamming accuracy, or knapsack
value) of the offline optimum parameter.

Dataset Omniglot Gaussian Mixture Knapsack
One-shot Five-shot One-shot Five-shot One-shot Five-shot

Single task 88.67� 0.47% 95.02� 0.19% 90.10� 1.10% 91.43� 0.44% 84.74� 0.29% 98.89� 0.17%
Meta-initialized 89.65� 0.49% 96.05� 0.15% 95.76� 0.60% 96.39� 0.27% 85.66� 0.57% 99.12� 0.15%

with parameters γ � η � 0.01 (no hyperparameter search performed). The step-size is set to
minimize the regret term in Theorem 2.3.1, and not meta-learned.

The relative improvement in task-averaged regret due to meta-learning in our formal guar-
antees depend on the task similarity V and how it compares to the dispersion-related Opm1�βq
term, and can be significant when the latter is small. Our results in Table 2.2 show that meta-
learning an initialization, i.e. a distribution over the algorithm parameter, for the exponential
forecaster in this setting yields improved performance on each dataset. We observe this for both
the one-shot and five-shot settings, i.e. the number of within-task iterations of the test task are
one and five respectively. The benefit of meta-learning is most pronounced for the Gaussian
mixture case (well-dispersed and similar tasks), and gains for Omniglot may increase with more
tasks (dispersed but less similar tasks). For our knapsack dataset, the relative gains are smaller
(similar tasks, but less dispersed). See Appendix 2.B.2 for further details.

2.3.5 Conclusion

In this section we extended our approach for analyzing initialization-based meta-learning to the
online learning of piecewise-Lipschitz functions, demonstrating how online convex optimization
over an adaptive discretization can find an initialization that improves the performance of the
exponential forecaster across tasks, assuming the tasks have related optima. We then applied this
result to data-driven algorithm design, such as the online configuration of clustering algorithms.
Our results demonstrate that ARUBA can be applied even in the face of nonconvex losses; in the
next section, we will further show its extension to problems with partial information.

2.4 Meta-learning adversarial bandit algorithms
Thus far we have used ARUBA to understood meta-learning of online learning algorithms in the
full-information setting, where the loss for every arm is revealed after each round. This assump-
tion is not realistic in many applications, e.g. recommender systems and experimental design,
where often partial or bandit feedback—only the loss of the action taken—is revealed. Such
feedback can be stochastic, e.g. the losses are i.i.d. from some distribution, or adversarial, i.e.
chosen by an adversary. In this section we establish formal guarantees for online-within-online
meta-learning with adversarial bandit feedback. As with past full-information meta-learning re-
sults, our goal when faced with a sequence of bandit tasks will be to achieve low regret on average
across them. Specifically, our task-averaged regret should (a) be no worse than that of algorithms
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for the single-task setting, e.g. if the tasks are not very similar, and should (b) be much better
on tasks that are closely related, e.g. if the same small set of arms do well on all of them. We
show that a natural way to achieve both is to initialize and tune online mirror descent (OMD), an
algorithm associted with a strictly convex regularizer whose hyperparameters have a significant
impact on performance. Our approach works because it can learn the best hyperparameters in
hindsight across tasks, which will recover OMD’s worst-case optimal performance if the tasks
are dissimilar but will take advantage of more optimistic settings if they are related. As general-
ized distances, the regularizers also induce interpretable measures of similarity between tasks.

To show these results, we extend our ARUBA-based analysis of meta-learning online mirror
descent from Section 2.2, which involved online learning of sequences of Bregman divergences.
Our core structural result shows that the regularizers ψθ of these divergences can be tuned with-
out interfering with meta-learning the initialization and step-size; tuning θ is critical for adapting
to settings such as that of a small set of optimal arms in MAB. Doing so depends on several re-
finements of the original approach, including bounding the task-averaged-regret via the spectral
norm of ∇2ψθ and expressing the loss of the meta-comparator using only ψθ, rather than via its
Bregman divergence as in prior work. Applying the structural result also requires setting-specific
analysis, e.g. to show regularity w.r.t. θ or to obtain MAB guarantees in terms of the entropy of
the true optimal arms. The latter is especially difficult, previous we defined task similarity via
full information upper bounds, and involves applying tools from the best-arm-identification liter-
ature [Abbasi-Yadkori et al., 2018] to show that a constrained variant of Exp3 finds the optimal
arm w.h.p.

Overview of bandit results

We design a meta-algorithm (Algorithm 6) for learning variants of OMD—specifically those
with entropic or self-concordant regularizers—that are used for adversarial bandits. This meta-
algorithm combines three full-information algorithms—follow-the-leader (FTL), exponentially
weighted online optimization (EWOO), and multiplicative weights (MW)—to set the initializa-
tion, step-size, and regularizer-specific parameters, respectively. It works by optimizing a se-
quence of functions that each upper-bound the regret of OMD on a single task (Theorem 2.4.1),
resulting in (a) interesting notions of task similarity because these functions depend on general-
ized notions of distances (Bregman divergences) and (b) adaptivity, i.e not needing to know how
similar the tasks are beforehand.

Our first application is to OMD with the Tsallis regularizer [Abernethy et al., 2015], a rela-
tive of Exp3 [Auer et al., 2002] that is optimal for adversarial MAB. We bound the task-averaged
regret by the Tsallis entropy of the estimated optima-in-hindsight (Corollary 2.4.1), which we
further extend to that of the true optima by assuming a gap between the best and second-best
arms (Corollary 2.4.2). Both results are consequences of Corollary 2.A.1, where we showed the
online-learnability of sequences of Bregman divergences, even ones that are nonconvex in their
second (learned) arguments, which is the case here due to the Tsallis regularizer. As an example,
our bound on the m-round regret across T tasks under the gap assumption is

oT ppolypmqq � 2 min
βPp0,1s

b
Hβdβm{β � op?mq (2.34)

47



where d is the number of actions and Hβ is the Tsallis entropy [Tsallis, 1988, Abernethy et al.,
2015] of the distribution of the optimal actions (β � 1 recovers the Shannon entropy). This
entropy is low if all tasks are usually solved by the same few arms, making it a natural task sim-
ilarity notion. For example, if only s ! d of the arms are ever optimal then Hβ � Opsq, so using
β � 1{ log d in (2.34) yields an asymptotic task-averaged regret of Op?sm log dq, dropping fast
terms. For s � Odp1q this beats the minimax optimal rate of Θp?dmq [Audibert et al., 2011].
On the other hand, since H1{2 � Op?dq, the same bound recovers this rate in the worst-case of
dissimilar tasks.

Lastly, we adapt our meta-algorithm to the adversarial BLO problem by setting the regular-
izer to be a self-concordant barrier function, as in Abernethy et al. [2008b]. Our bounds yield
notions of task similarity that depend on the constraints of the action space, e.g. over the sphere
the measure is the closeness of the average of the estimated optima to the sphere’s surface (Corol-
lary 2.4.4). We also instantiate BLO on the bandit shortest-path problem (Corollary 2.4.5) [Taki-
moto and Warmuth, 2003, Kalai and Vempala, 2005].

Related work

While we study the adversarial setting, meta-learning has been analyzed in various stochastic
bandit settings [Azar et al., 2013, Kveton et al., 2020, Sharaf and Daumé III, 2021, Simchowitz
et al., 2021, Kveton et al., 2021, Basu et al., 2021, Cella et al., 2020, Moradipari et al., 2022,
Azizi et al., 2022]. The latter three study stochastic bandits under various task generation as-
sumptions, e.g. Azizi et al. [2022] is in a batch-within-online setting where the optimal arms are
adversarial. In contrast, we make no distributional assumptions either within or without. Apart
from this difference, the results of Azizi et al. [2022] are the ones our MAB results are most
easily compared to, which we do in detail in Section 2.4.2. Notably, they assume that only s ! d
of the d arms are ever optimal across T tasks and show (roughly speaking) Õp?smq asymptotic
regret; we instead focus on an entropic notion of task similarity that achieves the same asymp-
totic regret when specialized to their s ! d. However, avoiding their explicit assumption has
certain advantages, e.g. robustness in the presence of opT q outlier tasks (c.f. Section 2.4.2).

A setting that bears some similarity to online-within-online bandits is that of switching ban-
dits [Auer et al., 2002], and more generally online learning with dynamic comparators [Anava
and Karnin, 2016, Jadbabaie et al., 2015, Luo et al., 2018, Auer et al., 2019, Zhao et al., 2021].
In such problems, instead of using a static best arm as the comparator we use a piecewise con-
stant sequence of arms, with a limited number of arm switches. The key difference between such
work and ours is our assumption that task boundaries are known; this makes the other setting
more general. However, while e.g. Exp3.S [Auer et al., 2002] can indeed be applied to on-
line meta-learning, guarantees derived from switching costs cannot improve upon just running
Tsallis-INF on each task [Marinov and Zimmert, 2021, Table 1]. Furthermore, these approaches
usually quantify difficulty by the number of switches, whereas we focus on task similarity. While
there exists stochastic-setting work that measures difficulty using a notion of average change in
distribution across rounds [Wei and Luo, 2021], it does not lead to improved performance if this
average change is ΩpT q, as is the case in e.g. the s-sparse setting discussed above.
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2.4.1 Learning the regularizers of bandit algorithms
We consider the problem of meta-learning over bandit tasks t � 1, . . . , T over some fixed
set K � Rd, a (possibly improper) subset of which is the action space A. On each round
i � 1, . . . ,m of task t we play action xt,i P A and receive feedback ℓt,ipxt,iq for some function
ℓt,i : A ÞÑ r�1, 1s. Note that all functions we consider will be linear and so we will also write
ℓt,ipxq � xℓt,i,xy, i.e. ℓt,iras � ℓt,ipaq. Additionally, we assume the adversary is oblivious within-
task, i.e. it chooses losses ℓt,1, . . . , ℓt,m at time t. Finally, note that all proofs can be found in
Appendices 2.A.6 through 2.A.10.

Recall that in online learning the goal on a single task t is to play actions xt,1, . . .xt,m that
minimize regret

°m
i�1 ℓt,ipxt,iq � ℓt,ip̊xtq, where x̊t P argminxPK

°m
i�1 ℓt,ipxq denotes the opti-

mum on task t.4 Lifting this to the meta-learning setting, our goal as in the previous sections
will be to design an algorithm that uses multi-task data to improve the task-averaged regret
1
T

°T
t�1

°m
i�1 ℓt,ipxi,tq � ℓt,ip̊xtq. For example, we wish to attain a task-averaged regret bound of

the form oT ppolypmqq� ÕpV?mq�op?mq, where V P R¥0 is a measure of task similarity that
is small if the tasks are similar but still yields the worst-case single-task performance—Op?dmq
for MAB and Opd?mq for BLO—if they are not.

Regret upper bounds for bandit OMD

Previously in Section 2.2.1 we showed guarantees for meta-learning the initialization and step-
size of online mirror descent (OMD), which given a strictly convex regularizer ψ : K� ÞÑ R,
step-size η ¡ 0, and initialization xt,1 P K� takes a actions

xt,i�1 � argmin
xPK�

Bpx||xt,1q � η
¸
j¤i
x∇ℓt,jpxt,jq,xy (2.35)

where Bp�||�q is the Bregman divergence of ψ. Our investigation focused on the case of ψpxq �
1
2
}x}22, in which case Bpx||yq � 1

2
}x � y}22 and OMD is just online gradient descent (OGD). In

this setting we derived a GBML method that—if the tasks are similar according to a task similar-
ity measure induced by this Euclidean Bregman divergence—finds an initialization that performs
well after only a few steps on a new task.

However, the OMD family includes many methods beyond OGD, e.g. exponentiated gradient
when ψppq � xp, logpy is the negative Shannon entropy on probability vectors p P △ and B
is the KL-divergence [Shalev-Shwartz, 2011]. Most importantly for bandit tasks, OMD variants
run on loss estimators ℓ̂t,i constructed via partial feedback are an important class of bandit
methods that achieve state-of-the-art guarantees in various theoretical settings [Auer et al., 2002,
Abernethy et al., 2008b, 2015]. As a result, we can adapt our ARUBA framework by again
constructing and optimizing sequences Utpx, η, θq of affine functions of Bregman divergences
that bound the regret of OMD run with initialization x, step-size η, and a new offset parameter
we introduce to handle the non-Lipschitzness of bandit regularizers near the boundaries.

To define these upper bounds, first note that the regret of OMD w.r.t. a comparator y is
bounded by Bpy||xq{η�Opηmq [Shalev-Shwartz, 2011, Hazan, 2015]. In our case the compara-
tor is based on the estimated optimum x̂t P argminxPKxℓ̂t,xy, where ℓ̂t �

°m
i�1 ℓ̂t,i, resulting

4In this section we use x̊t instead of x�t to avoid double superscripts in the corresponding proofs.
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from running OMD on task t using initialization x P K and hyperparameters η and θ, which we
denote OMDη,θpxq. Unlike full-information meta-learning, we use a parameter ε ¡ 0 to constrain
this optimum to lie in a subset Kε � K�. Formally, we fix a point x1 P K� to be the “center”—e.g.
x1 � 1d{d when K is the d-simplex △—and define the projection cεpxq � x1 � x�x1

1�ε mapping
from K to Kε. For example, c ε

1�ε pxq � p1� εqx� ε1d{d on the simplex. This projection allows
us to handle regularizers ψ that diverge near the boundary, but also introduces ε-dependent error
terms. In the BLO case it also forces us to tune ε itself, as initializing too close to the boundary
leads to unbounded regret while initializing too far away does not take advantage of task similar-
ity. Thus the general upper bounds of interest are the following functions of the initialization x,
the step-size η ¡ 0, and a third parameter θ that is either β or ε, depending on the setting (MAB
or BLO):

Utpx, η, θq � Bθpcθpx̂tq||xq
η

� ηgpθqm� fpθqm (2.36)

Here Bθ is the Bregman divergence of ψθ while gpθq ¥ 1 and fpθq ¥ 0 are tunable constants. We
overload θ to be either β or ε for notational simplicity, as we will not tune them simultaneously;
if θ � β (for MAB) then cθpxq � x1 � x�x1

1�ε for fixed ε, while if θ � ε (for BLO) then Bθ
is the Bregman divergence of a fixed ψ. The reason to optimize this sequence of upper bounds
Ut is because they directly bound the task-averaged regret while being no worse than the worst-
case single-task regret. Furthermore, an average over Bregman divergences is minimized at the
average ˆ̄x � 1

T

°T
t�1 x̂t, where it attains the value V̂ 2

θ � 1
T

°T
t�1 ψθpcθpx̂tqq � ψθpcθpˆ̄xqq (c.f.

Claim B.2.2). We will show that this quantity leads to intuitive and interpretable notions of task
similarity in all the applications we study.

A meta-algorithm for tuning bandit algorithms

To learn these functions Utpx, η, θq—and thus to meta-learn OMDη,θpxq—our meta-algorithm sets
x to be the projection cθ of the mean of the estimated optima—i.e. follow-the-leader (FTL)
over the Bregman divergences in (2.36)—while simultaneously setting η via EWOO and θ via
discrete multiplicative weights (MW). We choose FTL, EWOO, and MW because each is well-
suited to the way Ut depends on x, η, and θ, respectively. First, the only effect of x on Ut
is via the Bregman divergence Bθpcθpx̂tq||xq, over which FTL attains logarithmic regret (c.f.
Corollary 2.A.1). For η, Ut is exp-concave on η ¡ 0 so long as the first term is nonzero, but it is
also non-Lipschitz; the EWOO algorithm is one of the few methods with logarithmic regret on
exp-concave losses without a dependence on the Lipschitz constant [Hazan et al., 2007], and we
ensure the first term is nonzero by regularizing the upper bounds as follows for some ρ ¡ 0 and
D2
θ � maxx,yPKθ Bθpx||yq:

U
pρq
t px, η, θq � Bθpcθpx̂tq||xq � ρ2D2

θ

η
� ηgpθqm� fpθqm (2.37)

This function depends only on x̂t, obtained by running OMD on task t, and so we can use full-
information MW to tune θ across the grid Θk. Showing low regret w.r.t. any θ P Θ � Θk then
just requires sufficiently large k and Lipschitzness of Ut w.r.t. θ. Combining all three algorithms
together thus yields the guarantee in Theorem 2.4.1, which is our main structural result. It implies
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a generic approach for obtaining meta-learning algorithms by (1) bounding the task-averaged
regret by an average of functions of the form Ut, (2) applying the theorem to obtain a new bound
oT p1q �minθ,η

V̂ 2
θ

η
� ηgpθqm� fpθqm, and (3) bounding the estimated task similarity V̂ 2

θ by an
interpretable quantity. Crucially, since we can choose any η ¡ 0, the asymptotic regret is always
as good as the worst-case guarantee for running the base learner separately on each task.

Theorem 2.4.1 (c.f. Thm. 2.A.13). Suppose x1 � argminxPK ψθpxq @ θ and letD, M , F , and S
be maxima over θ of Dθ, Dθ

a
gpθqm, fpθq, and ~∇2ψθ~8, respectively. For each ρ P p0, 1q we

can set η, η, α, and λ s.t. the expected average of the losses Utpcθtpxtq, ηtpθtq, θtq of Algorithm 6
is at most

min
θPΘ,η¡0

EV̂ 2
θ

η
� ηgpθqm� fpθqm� Õ

�
M
ρ
� Fm?
T

� Lη
k
� M

ρ2T
�min

"
ρ2D2

η
, ρM

*
� S

ηT

�
(2.38)

Here V̂ 2
θ � 1

T

°T
t�1 ψθpcθpx̂tqq � ψθpcθpˆ̄xqq and Lη bounds the Lipschitz constant w.r.t. θ at

V̂ 2
θ {η � ηgpθqm� fpθqm. The same bound plus pM{ρ� Fmq

b
1
T
log 1

δ
holds w.p. ¥ 1� δ.

Proof sketch. First consider online learning Utp�, �, θq for fixed θ P Θk. To tune η, we online learn
the one-dimensional losses Bθpcθpx̂tq||cθpxtqq{η�ηgpθq, where cθpx̂tq is the (ηtpθq-independent)
action of FTL at time t. As discussed, the corresponding regularized losses U pρq

t are exp-concave,
and so running EWOO yields Õ pM{ρ2 �min tρ2D2{η, ρMuT q regret w.r.t. the original se-
quence. At the same time, we show that FTL has logarithmic regret on the sequence Bθpcθpx̂tq||�q
that scales with the spectral norm S of ∇2ψθ (c.f. Corollary 2.A.1), and that the average loss of
the optimal comparator is V̂ 2

θ (c.f. Claim B.2.2). Thus, since we only care about a fixed compara-
tor η, dividing by ηT yields the first and last terms (2.38). We run a copy of these algorithms for
each θ P Θk; since their losses are bounded by ÕpM{ρ � Fmq, textbook results for MW yield
Op?T log kq regret w.r.t. θ P Θk, which we then extend to Θ � Θk using Lη-Lipschitzness.

We keep details of the dependence on S and other constants as they are important in apply-
ing this result, but in most cases setting ρ � 1

4?T yields ÕpT 3
4 q regret. While a slow rate, the

losses Ut are non-Lipschitz and nonconvex in-general, and learning them allows us to tune θ over
user-specified intervals and η over all positive numbers, which will be crucial later. At the same
time, this tuning is what leads to the slow rate, as without tuning (k � 1, Lη � 0) the same ρ
yields Õp?T q regret. Lastly, while we focus on learning guarantees, we note that Algorithm 6
is reasonably efficient, requiring a 2k single-dimensional integrals per task; this is discussed in
more detail in Section 2.4.1.

Computational and space complexity

Algorithm 6 implicitly maintains a separate copy of FTL for each hyperparameter in the continu-
ous space of EWOO and the grid Θk over the domain of θ, but explicitly just needs to average the
estimated task optima x̂t; this is due to the mean-as-minimizer property of Bregman divergences
and the linearity of cε. Thus the memory it uses is Opd� kq, where k is size of the discretization
of Θ and should be viewed as sublinear in T , e.g. for MAB with implicit exploration and BLO
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Algorithm 6: Meta-procedure for tuning OMDη,θ with regularizer ψθ : K� ÞÑ R and
step-size η ¡ 0. Assume OMD takes as input an initialization in K, is run over loss esti-
mators ℓ̂t,1, . . . , ℓ̂t,m, and returns estimated task optima x̂t � argminxPK

°m
i�1xℓ̂t,i,xy.

Input: compact set K � Rd, initialization x1 P K, ordered subset Θk � R also used to
index interval bounds η, η P Rk

¥0 and hyperparameters α P Rk
¥0, scalar

hyperparameters ρ ¡ 0 and λ ¥ 0, learners OMDη,θ : K ÞÑ Rd, projections
cθ : K ÞÑ Kθ

for θ P Θk do
w1pθq Ð 1 and η1pθq Ð ηpθq�ηpθq

2
// initialize MW and EWOO

for task t � 1, . . . , T do
sample θt from Θk w.p. 9 exppwtq // sample from MW distribution
x̂t Ð OMDηtpθtq,θtpcθtpxtqq // run bandit OMD within-task

xt�1 Ð 1
t

°t
s�1 x̂s // FTL update of initialization

for θ P Θk do

ηt�1pθq Ð
³ηpθq
ηpθq v expp�αpθq°ts�1 U

pρq
s pxs,v,θqqdv³ηpθq

ηpθq expp�αpθq°ts�1 U
pρq
s pxs,v,θqqdv // EWOO step-size update

wt�1pθq Ð wtpθq � λUtpxt, ηtpθq, θq // MW update to tune θ

k � Op 4
?
d
?
T q. Computationally, at each timestep t and for each grid point we must compute

two single-dimensional integrals; the integrands are sums of upper bounds that just need to be
incremented once per round, leading to a total per-iteration complexity of Opkq (ignoring the
running of OMD). Although outside the scope of this thesis, it may be possible to avoid inte-
gration by tuning η with MW as well, rather than EWOO, but likely at the cost of worse regret
because it would not take advantage of the exp-concavity of U pρq

t .

2.4.2 Multi-armed bandits
We now turn to our first application: the multi-armed bandit problem, where at each round i of
task t we take action at,i P rds and observe loss ℓt,ipat,iq P r0, 1s. As we are sampling actions
from distributions x P K � △ on the k-simplex, the inner product xℓt,i,xt,iy is the expected loss
and the optimal arm åt on task t can be encoded as a vector x̊t s.t. x̊tras � 1a�åt .

We use as a base learner a generalization of Exp3 that uses the negative Tsallis entropy

ψβppq � 1�°d
a�1 p

β
ras

1�β for some β P p0, 1s as the regularizer; this improves regret from Exp3’s
Op?dm log dq to the optimal Op?dmq [Abernethy et al., 2015]. Note that �ψβ is the Shannon
entropy in the limit β Ñ 1 and its Bregman divergence Bβpx||�q is nonconvex in the second
argument. As the Tsallis entropy is non-Lipschitz at the simplex boundary, which is where the
estimated and true optima x̂t and x̊t lie, we will project them using c ε

1�ε pxq � p1�εqx�ε1d{d to
the set K ε

1�ε � tx P △ : mina xras ¥ ε{du. We denote the resulting vectors using the superscript

pεq, e.g. x̂pεqt � c ε
1�ε px̂tq, and also use △pεq � K ε

1�ε to denote the constrained simplex. For MAB
we also study two base learners: (1) implicit exploration and (2) guaranteed exploration. The

52



former uses low-variance loss under-estimators ℓ̂t,ipaq � ℓt,ipaq1at,i�a
xt,iras�γ for γ ¡ 0, where xt,iras is

the probability of sampling a on task t round i, to enable high probability bounds [Neu, 2015].
On the other hand, guaranteed exploration uses unbiased loss estimators (i.e. γ � 0) but con-
strains the action space to △pεq, which we will use to adapt to a task similarity determined by the
true optima-in-hindsight.

Adapting to low estimated entropy with high probability using implicit exploration

In our first setting, the base learner runs OMDηt,βtpxt,1q on γ-regularized estimators with Tsallis
regularizer ψβt , step-size ηt, and initialization xt,1 P △pεq. Standard OMD analysis combined
with implicit exploration analysis [Neu, 2015] shows (2.165) that the task-averaged regret is
bounded w.h.p. by

pε� γdqm� Õ

�?
d

γT

�
� 1

T

Ţ

t�1

Bβtpx̂pεqt ||xt,1q
ηt

� ηtd
βtm

βt
(2.39)

The summands have the desired form of Utpxt,1, ηt, βtq, so by Theorem 2.4.1 we can bound their
average by

min
βPrβ,βs,η¡0

V̂ 2
β

η
� ηdβm

β
� Õ

�
Lη
k
�

�
d
ε

�2�β
ηT

�
�
ρ� 1

ρ
?
T
� 1

ρ2T



d
?
m

�
(2.40)

where V̂ 2
β � 1

T

°T
t�1 ψβpx̂pεqt q � ψβpˆ̄xpεqq is the average difference in Tsallis entropies between

the (ε-constrained) estimated optima x̂t and their empirical distribution ˆ̄x � 1
T

°T
t�1 x̂t, while Lη

is the Lipschitz constant of
V̂ 2
β

η
� ηdβm

β
w.r.t. β P rβ, βs. The specific instantiation of Algorithm 6

that (2.40) holds for is to do the following at each time t:

1. sample βt via the MW distribution 9 exppwtq over the discretization Θk of rβ, βs � r0, 1s
2. run OMDηt,βt using the initialization xt,1 � 1

t�1

¸
s t x̂

pεq
t � ε

d
1d � 1�ε

t�1

¸
s t x̂t (FTL)

3. update EWOO at each β P Θk with loss
Bβpx̂pεqt ||xt,1q�ρ2D2

β

η
� ηdβm

β
, where D2

β � d1�β�1
1�β

4. update pt�1 using multiplicative weights with expert losses Bβpx̂pεqt ||xt,1q
η

� ηdβm
β

(2.41)

The final guarantee for this procedure, given in full in Theorem 2.A.14, follows by two properties
of the Tsallis entropy �ψβ: (1) its Lipschitzness w.r.t. β P r0, 1s (c.f. Lem 2.A.5) and (2) the
fact that V̂ 2

β is bounded by the entropy Ĥβ � �ψβpˆ̄xq of the empirical distribution of estimated
optima (c.f. Lem 2.A.6), which yields our first notion of task similarity: multi-armed bandit
tasks are similar if the empirical distribution of their (estimated) optimal arms has low entropy.

We exemplify the implications of Theorem 2.A.14 in Corollary 2.4.1, where we consider
three regimes of the lower bound β on the entropy parameter: β � 1, i.e. always using Exp3;
β � 1{2, which corresponds to the optimal worst-case setting [Abernethy et al., 2015]; and
β � 1{ log d, below which the OMD regret-upper-bound always worsens (and so it does not
make sense to try β   1{ log d).
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Corollary 2.4.1 (c.f. Cors. 2.A.10, 2.A.11, and 2.A.12). Suppose β � 1 and we set the initializa-
tion, step-size, and entropy parameter of Tsallis OMD with implicit exploration via Algorithm 6
as in Theorem 2.A.14.

1. If β � 1 and T ¥ d2

m
we can ensure that w.h.p.

1

T

Ţ

t�1

m̧

i�1

ℓt,ipxt,iq � ℓt,ip̊xtq ¤ 2

b
Ĥ1dm� Õ

�
d

2
3m

2
3

3
?
T

�
(2.42)

2. If β � 1
2

and T ¥ d5{2
m

we can set k � r 4
?
d
?
T s and ensure w.h.p. that task-averaged regret

is

min
βPr 1

2
,1s
2

b
Ĥβdβm{β � Õ

�
d5{7m5{7

T 2{7 � d
?
m

4
?
T



(2.43)

3. If β � 1
log d

and T ¥ d3

m
we can set k � r 4

?
d
?
T s and ensure w.h.p. that task-averaged

regret is

min
βPp0,1s

2

b
Ĥβdβm{β � Õ

�
d3{4m3{4 � d

?
m

4
?
T



(2.44)

In all three settings, as T Ñ 8 the regret scales directly with the entropy of the estimated
optima-in-hindsight, which is small if most tasks are estimated to be solved by one of a few
arms and large if all arms are used roughly equally. Corollary 2.4.1 demonstrates the impor-
tance of tuning β: even if tasks are dissimilar, we asymptotically recover the worst-case optimal
guarantee Op?dmq in cases two and three because the entropy is at most d1�β

1�β . On the other
hand, if a constant s ! d actions are always minimizers, i.e. the empirical distribution ˆ̄x is
s-sparse, then the last bound (2.44) implies that Algorithm 6 can achieve task-averaged regret
oT pmdq�Op?sm log dq. At the same time, this tuning is costly, with the last two results having
an extra Õ

�
d
?
m

4?T

	
term because of it. Furthermore, the bound of β � 1

2
has a slightly better de-

pendence on d,m, and T compared to that of β � 1
log d

due to the
�
d
ε

�2�β term in the bound (2.40)
returned for MAB by our structural result.

We can compare the s-sparse result to Azizi et al. [2022], who achieve task-averaged regret
Õpm{ 3

?
T �?sm log T q for stochastic MAB. Despite our adversarial setting and no stipulations

on how tasks are related, our bounds are asymptotically comparable if the estimated and true op-
tima are roughly equivalent (ignoring their Op?log T q-factor), as we also have Õp?smq average
regret as T Ñ 8. Their rate in the number of tasks is better, but at a cost of runtime exponential
in s. Apart from generality, we believe a great strength of our results is their adaptiveness; unlike
Azizi et al. [2022], we do not need to know how many optimal arms there are to adapt to there
being few of them.

Adapting to the entropy of the true optima-in-hindsight using guaranteed exploration

While the entropy of estimated optima-in-hindsight may be useful in some cases where we wish
to actually compute the task similarity, it is otherwise generally more desirable to adapt to an
intrinsic and algorithm-independent measure, e.g. the entropy of the true optima-in-hindsight.
However, doing so is difficult without further assumptions, as the optima are both hard to identify
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and the measure itself may not be well-defined in case of ties. Thus in this section we study the
setting where we have a nonzero performance gap ∆ ¡ 0 between the best and second-best arms:

Assumption 2.4.1. For some ∆ ¡ 0 and all tasks t P rT s, 1
m

°m
i�1 ℓt,ipaq�ℓt,ip̊atq ¥ ∆ @ a � åt.

This assumption is common in the best-arm identification literature [Jamieson and Talwalkar,
2015, Abbasi-Yadkori et al., 2018], which we adapt to show that the estimated optimal arms
match the true optima, and thus so do their entropies. To do so, we switch to unbiased loss
estimators, i.e. γ � 0, and control their variance by lower-bounding the probability of selecting
an arm to be at least ε

d
; this can alternatively be expressed as running OMD using the regularizer

ψβ � I△pεq , where for any C � Rd the function ICpxq � 0 if x P C and 8 otherwise. Guaran-
teed exploration allows us extend the analysis of Abbasi-Yadkori et al. [2018] to show that the
estimated arm is optimal w.h.p.:

Lemma 2.4.1 (c.f. Lem 2.A.8). Suppose for ε ¡ 0 and any β P p0, 1s we run OMD on task
t P rT swith regularizer ψβ�I△pεq . Ifm � Ω̃p d

ε∆2 q then x̂t � x̊t w.p. ¥ 1�d expp�Ωpε∆2m{dqq.
However, the constraint that the probabilities are at least ε

d
does lead to εm additional error

on each task, with the upper bound on the task-averaged expected regret becoming

E
1

T

Ţ

t�1

m̧

i�1

ℓt,ipat,iq � ℓt,ip̊atq ¤ εm� 1

T

Ţ

t�1

EBβtpx̂pεqt ||xt,1q
ηt

� ηtd
βtm

βt
(2.45)

Moreover, we will no longer set ε � oT p1q, as this would require m to be increasing in T for
the best-arm identification result of Lemma 2.A.8 to hold. Thus, unlike in the previous section,
our results will contain “fast” terms—terms in the task-averaged regret that are op?mq but not
decreasing in T nor affected by the task similarity. They will still improve upon the Ωp?dmq
MAB lower bound if tasks are similar, but the task-averaged regret will not converge to zero as
T Ñ 8 if the tasks are identical.

Nevertheless, the tuning-dependent component of the upper bounds in (2.45) has the appro-
priate form for our structural result—in fact we can use the same meta-algorithm (2.41) as for im-
plicit exploration—and so we can again apply Theorem 2.4.1 to get a bound on the task-averaged
regret in terms of the average difference V̂ 2

β � 1
T

°T
t�1 ψβpx̂pεqt q � ψβpˆ̄xpεqq of the entropies of

the ε-constrained estimated task optima x̂
pεq
t and their mean ˆ̄x

pεq. The easiest way to apply
Lemma 2.A.8 to bound V̂ 2

β in terms of Hβ � 1
T

°T
t�1 ψβ p̊xtq � ψβ p̊x̄q is via union bound on all

T tasks to show that x̂t � x̊t @ t w.p. ¥ 1� dT expp�Ωpε∆2m{dqq; however, setting a constant
failure probability leads to m growing, albeit only logarithmically, in T . Instead, by analyzing
the worst-case best-arm identification probabilities, we show in Lemma 2.A.9 that the expecta-
tion of V̂ 2

β is bounded by Hβ � 3β pd{εq1�β�1
1�β exp

�
�3ε∆2m

28d

	
without resorting to m � ωT p1q.

Assuming m ¥ 75d
ε∆2 log

d
ε∆2 is enough (2.190) to bound the second term by 56

dm
. Then the final

result (c.f. Theorem 2.A.15) bounds the expected task-averaged regret as follows (ignoring terms
that become oT p1q after setting ρ and k):

εm� min
βPrβ,βs,η¡0

hβp∆q
η

� ηdβm

β
for hβp∆q �

#
Hβ � 56

md
if m ¥ 75d

ε∆2 log
d
ε∆2

d1�β�1
1�β otherwise

(2.46)
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If the gap ∆ is known and sufficiently large, then we can set ε � Θp d
∆2m

q to obtain an asymptotic
task-averaged regret that scales only with the entropyHβ and a fast term that is logarithmic inm:

Corollary 2.4.2 (c.f. Cor. 2.A.15). Suppose we set the initialization, step-size, and entropy
parameter of Tsallis OMD with guaranteed exploration via Algorithm 6 as specified in Theo-
rem 2.A.15. If rβ, βs � r 1

log d
, 1s and m ¥ 75d

∆2 log
d
∆2 , then setting ε � Θ̃

�
d

∆2m

�
, ρ � 1

3?d 6?mT ,

and k � r 3
?
d2mT s ensures that the expected task-averaged regret is at most

min
βPp0,1s

2
b
Hβdβm{β � Õ

�
d

∆2
� d

4
3m

2
3

3
?
T

� d
5
3m

5
6

T
2
3

� d∆4m3

T

�
(2.47)

Knowing the gap ∆ is a strong assumption, as ideally we could set ε without it. Note that if
ε � Ωp 1

mp
q for some p P p0, 1q then the condition m ¥ 75d

ε∆2 log
d
ε∆2 only fails if m ¤ polyp 1

∆
q,

i.e. for gap decreasing in m. We can use this together with the fact that minimizing over η and
β in our bound allows us to replace them with any value, even a gap-dependent one, to derive
a gap-independent setting of ε that ensures a task similarity-adaptive bound when ∆ is not too
small and falls back to the worst-case optimal guarantee otherwise. Specifically, for indicator

ι∆ � 1m¥ 75d
ε∆2 log d

ε∆2
, setting η � Θ

�b
hβp∆q
dβm{β

	
in (2.46) and using β � 1

2
if the condition ι∆ fails

yields asymptotic regret at most

εm� min
βPp0,1s

O
�
ι∆

b
Hβd

βm

β
� p1� ι∆q

?
dm




¤ εm� Õ
�
min

"
min
βPp0,1s

b
Hβd

βm

β
� d

∆
?
ε
,
?
dm

*
 (2.48)

Setting ε � Θp?d{m 2
3 q yields the desired dependence on the entropy Hβ and a fast term in m:

Corollary 2.4.3 (c.f. Cor. 2.A.16). In the setting of Corollary 2.4.2 but with m � Ωpd 3
4 q and

unknown ∆, using ε � Θp?d{m 2
3 q ensures expected task-averaged regret at most

min

#
min
βPp0,1s

2
b
Hβdβm{β � Õ

�
d

3
4 3
?
m

∆

�
, 8
?
dm

+
� Õ

�
d

4
3m

2
3

3
?
T

� d
5
3m

5
6

T
2
3

� d2m
7
3

T

�
(2.49)

While not logarithmic, the gap-dependent term is still op?mq, and moreover the asymptotic
regret is no worse than the worst-case optimal Op?dmq. Note that the latter is only needed if
∆ � op1{ 6

?
mq.

The main improvement in this section is in using the entropy of the true optima, which can be
much smaller than that of the estimated optima if there are a few good arms but large noise. Our
use of the gap assumption for this seems difficult to avoid for this notion of task similarity. We
can also compare to Corollary 2.4.1 (2.44), which did not require ∆ ¡ 0 and had no fast terms
but had a worse rate in T ; in contrast, the Op 1

3?T q rates above match that of the closest stochastic
bandit result [Azizi et al., 2022]. As before, for s ! d “good” arms we obtain Op?sm log dq
asymptotic regret, assuming the gap is not too small. Finally, we can also compare to the classic
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shifting regret bound for Exp3.S [Auer et al., 2002], which translated to task-averaged regret is
Opadm logpdmT qq. This is worse than even running OMD separately on each task, albeit under
weaker assumptions (not knowing task boundaries). It also cannot take advantage of repeated
optimal arms, e.g. the case of s ! d good arms.

Adapting to entropic task similarity implies robustness to outliers

While we considered mainly the s-sparse setting as a way of exemplifying our results and com-
paring to other work such as Azizi et al. [2022], the fact that our approach can adapt to the
Tsallis entropy minβHβ of the optimal arms implies meaningful guarantees for any low-entropy
distribution over the optimal arms, not just sparsely-supported ones. One way to illustrate the
importance of this is through an analysis of robustness to outlier tasks. Specifically, suppose that
the s-sparsity assumption—that optima åt lie in a subset of rT s of size s ! d—only holds for all
but OpT pq of the tasks t P rT s, where p P r0, 1q. Then the best we can do using an asymptotic
bound of Õp?smq—e.g. that of Azizi et al. [2022] in the stochastic case or from naively ap-
plying minβPp0,1sHβd

βm{β ¤ esm log d to any of our previous results—is to substitute s � T p

instead of s, which will only improve over the single-task bound if d � ωpT pq, i.e. in the regime
where the number of arms increases with the number of tasks.

However, our notion of task similarity allows us to do much better, as we can show (c.f.
Proposition 2.A.6) that in the same settingHβ � Ops� d1�β

Tβp1�pq q for any β P r 1
log d

, 1
2
s. Substituting

this result into e.g. Corollary 2.4.3 yields the same asymptotic result of Op?sm log dq, although
the rate in T is a very slow Op?dm{T 1�p

2 log d q. This demonstrates how our entropic notion of task
similarity simultaneously yields strong results in the s-sparse setting and is meaningful in more
general settings.

2.4.3 Bandit linear optimization
Our last application is bandit linear optimization, in which at task t round i we play xt,i P K in
some convex K � Rd and observe loss xℓt,i,xt,iy P r�1, 1s. We will again use a variant of mirror
descent, using a self-concordant barrier for ψ and the specialized loss estimators of Abernethy
et al. [2008b, Algorithm 1]. More information on such regularizers can be found in the literature
on interior point methods [Nesterov and Nemirovskii, 1994]. We pick this class of algorithms
because of their optimal dependence on the number of rounds and their applicability to any con-
vex domain K via specific barriers ψ, which will yield interesting notions of task similarity. Our
ability to handle nonsmooth regularizers via the structural result (Theorem 2.4.1) is even more
important here, as barriers are infinite at the boundaries. Indeed, we will not learn a β parameter-
izing the regularizer and instead focus on tuning a boundary offset ε ¡ 0. Here we make use of
notation from Section 2.4.1, where cε maps points in K to a subset Kε defined by the Minkowski
function (c.f. Definition 2.A.2) centered at x1 � argminxPK ψpxq.

From Abernethy et al. [2008b] we have an upper bound on the expected task-averaged regret
of their algorithm run from initializations xt,1 P K� with step-sizes ηt ¡ 0 and offsets εt ¡ 0:

E
1

T

Ţ

t�1

m̧

i�1

xℓt,i,xt,i � x̊ty ¤ 1

T

Ţ

t�1

EBpcεtpx̂tq||xt,1q
ηt

� p32ηtd2 � εtqm (2.50)
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We can show (2.209) that D2
ε � maxx,yPKε Bpx||yq ¤ 9ν

3
2K

?
S1

ε
, where ν is the self-concordance

constant of ψ and S1 � }∇2ψpx1q}2 is the spectral norm of its Hessian at the center x1 of
K. Restricting to tuning ε P r 1

m
, 1s—which is enough to obtain constant task-averaged regret

above if the estimated optima x̂t are identical—we can now apply Algorithm 6 via the following
instantiation:

1. sample εt via the MW distribution 9 exppwtq over the discretization Θk of r 1
m
, 1s

2. run OMDηt,εt using the initialization xt,1 � 1
t�1

¸
s t cεtpx̂tq � x1 �

°
s t x̂t�x1

p1�εtqpt�1q (FTL)

3. update EWOO at each ε P Θk with loss Bpcεpx̂tq||xt,1q�ρ2D2
ε

η
� 32ηd2 for D2

ε � 9ν
3
2K

?
S1

ε

4. update pt�1 using multiplicative weights with expert losses Bpcεpx̂tq||xt,1q
η

� εm

(2.51)

Note the similarity to the MAB case (2.41), with the difference being the upper bound passed to
EWOO and MW. Our structural result bounds the expected task-averaged regret as follows (c.f.
Theorem 2.A.16):

E min
εPr 1

m
,1s,η¡0

V̂ 2
ε

η
� p32ηd2 � εqm

� Õ

�
m2

T
� 1

k

η
� m

k
�mmin

"
ρ2

η
, dρ

*
� dm

ρ

c
log k

T
� dm

ρ2T

� (2.52)

For ρ � oT p1q and k � ωT p1q this becomes oT ppolypmqq�EminεPr 1
m
,1s,η¡0

V̂ 2
ε

η
�32ηd2m�εm,

where V̂ 2
ε � 1

T

°T
t�1 ψpcεpx̂tq � ψpcεpˆ̄xtq. Then by tuning η we get an asymptotic (T Ñ 8)

regret of 4dV̂ε
?
2m � εm for any ε P r 1

m
, 1s. Our analysis removes the explicit dependence on?

ν that appears in the single-task regret [Abernethy et al., 2008b]; as an example, ν equals the
number of inequalities defining a polytope K, as in the bandit shortest-path application below.

The remaining challenge is to interpret V̂ 2
ε , which as we did for MAB we do via specific ex-

amples, in this case concrete action domains K. Our first example is for BLO over the unit sphere
K � tx P Rd : }x}2 ¤ 1u using the appropriate log-barrier regularizer ψpxq � � logp1� }x}22q:
Corollary 2.4.4 (c.f. Cor. 2.A.17). For BLO on the sphere, Algorithm 6 has expected task-
averaged regret

Õ

�
dm

3
2

T
3
4

� dm
4
?
T

�
� min

εPr 1
m
,1s
4d

d
2m log

�
1� 1� E}ˆ̄x}22

2ε� ε2



� εm (2.53)

The bound above is decreasing in E}ˆ̄x}22, the expected squared norm of the average of the
estimated optima x̂t. We thus say that bandit linear optimization tasks over the sphere are sim-
ilar if the norm of the empirical mean of their (estimated) optima is large. This makes intuitive
sense: if the tasks’ optima are uniformly distributed, we should expect E}ˆ̄x}22 to be small, even
decreasing in d. On the other hand, in the degenerate case where the estimated optima x̂t are the
same across all tasks t P rT s, we have E}ˆ̄x}22 � 1, so the asymptotic task-averaged regret is 1
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because we can use ε � 1
m

. Perhaps slightly more realistically, if it is 1
mp

-away from 1 for some
power p ¥ 1

2
then setting ε � 1?

m
can remove the logarithmic dependence on m. These two

regimes illustrate the importance of tuning ε.
As a last application, we apply our meta-BLO result to the shortest-path problem in online

optimization [Takimoto and Warmuth, 2003, Kalai and Vempala, 2005]. In its bandit variant
[Awerbuch and Kleinberg, 2004, Dani et al., 2008], at each step i � 1, . . . ,m the player must
choose a path pi from a fixed source u P V to a fixed sink v P V in a directed graph GpV,Eq.
At the same time the adversary chooses edge-weights ℓi P R|E| and the player suffers the sum°
ePpt ℓipeq of the weights in their chosen path pt. This can be relaxed as BLO over vectors x in a

set K � r0, 1s|E| defined by a set C of Op|E|q linear constraints pa, bq xa,xy ¤ b enforcing flows
from u to v; u to v paths can be sampled from any x P K in an unbiased manner [Abernethy
et al., 2008b, Proposition 1]. On a single-instance, applying the BLO method of Abernethy et al.
[2008b] ensures Op|E| 32?mq regret on this problem.

In the multi-instance setting, comprising a sequence t � 1, . . . , T of shortest path instances
with m adversarial edge-weight vectors ℓt,i each, we can attempt to achieve better performance
by tuning the same method across instances. Notably, we can view this as the problem of learning
predictions in the algorithms with predictions paradigm (c.f. Part II), with the OMD initialization
on each instance being effectively a prediction of its optimal path. Our meta-learner then has the
following average performance across bandit shortest-path instances:

Corollary 2.4.5 (c.f. Cor. 2.A.18). For multi-task bandit online shortest path, Algorithm 6 with
regularizer ψpxq � �°

a,bPC logpb� xa,xyq attains the following expected average regret across
instances

Õ

�
|E|4m 3

2

T
3
4

� |E| 52m 5
6

4
?
T

�
� min

εPr 1
m
,1s
4|E|E

gfffe2m
¸
a,bPC

log

�
� 1

T

°T
t�1 b� xa, cεpx̂tqy

T

b±T
t�1 b� xa, cεpx̂tqy

�
� εm

(2.54)

Here the asymptotic regret scales with the sum across all constraints a, b P C of the log of the
ratio between the arithmetic and geometric means across tasks of the distances b � xa, cεpx̂tqy
from the estimated optimum flow cεpx̂tq to the constraint boundary. As it is difficult to separate
the effect of the offset ε, we do not state an explicit task similarity measure like in our previ-
ous settings. Nevertheless, since the arithmetic and geometric means are equal exactly when all
entries are equal—and otherwise the former is larger—the bound does show that regret is small
when the estimated optimal flows x̂t for each task are at similar distances from the constraints,
i.e. the boundaries of the polytope. Indeed, just as on the sphere, if the estimated optima are all
the same then setting ε � 1

m
again yields constant averaged regret.

2.4.4 Future work
In this section we applied ARUBA to design a meta-algorithm for learning to initialize and tune
bandit algorithms, obtaining task-averaged regret guarantees for both multi-armed and linear
bandits that depend on natural, setting-specific notions of task similarity. For MAB, we meta-
learn the initialization, step-size, and entropy parameter of Tsallis-entropic OMD and show good
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performance if the entropy of the optimal arms is small. For BLO, we use OMD with self-
concordant regularizers and meta-learn the initialization, step-size, and boundary-offset, yielding
interesting domain-specific task similarity measures. Some natural directions for future work in-
volve overcoming some limitations of our results: can we adapt to a notion of task similarity that
depends on the true optima without assuming a gap for MAB, or at all for BLO? Alternatively,
can we design meta-learning algorithms that adapt to both stochastic and adversarial bandits,
i.e. a “best-of-both-worlds” guarantee? Beyond this, one could explore other partial information
settings, such as contextual bandits or bandit convex optimization.

2.5 Conclusion
This chapter introduces ARUBA, a learning-theoretic framework for deriving and analyzing al-
gorithms for learning-to-learn. Our approach works by applying off-the-shelf learning guaran-
tees to nice but meaningful bounds on the performance of learning algorithms; we show that
this approach yields meta-learning methods that are similar to practical gradient-based meta-
learning methods such as Reptile, scale to large scale models, and provably adapt to natural,
setting-specific notions of task similarity. While motivated by gradient-based meta-learning, we
also demonstrate that our approach extends to a variety of learning-theoretic settings, includ-
ing nonconvex meta-learning and bandits. In the next chapter we will highlight its usefulness in
showing provable guarantees for a new method for federated hyperparameter optimization, while
in the next part of the thesis we extend ARUBA beyond learning algorithms to algorithms with
predictions.
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2.A Proofs

2.A.1 Strongly convex coupling
Our first result is a simple trick that we believe may be of independent interest. It allows us to
bound the regret of FTL on any (possibly nonconvex) sequence of Lipschitz functions so long
as the actions played are identical to those played on a different strongly-convex sequence of
Lipschitz functions. The result is formalized in Theorem 2.A.1.

Derivation

We start with some standard facts about convex functions.

Claim 2.A.1. Let f : X ÞÑ R be an everywhere sub-differentiable convex function. Then for
any norm } � } we have

fpxq � fpyq ¤ }∇fpxq}�}x� y} @ x,y P X (2.55)

Claim 2.A.2. Let f : X ÞÑ R be α-strongly-convex w.r.t. } �} with minimum x� P argmin
xPX

fpxq.
Then x� is unique and for all x P X we have

fpxq ¥ fpx�q � α

2
}x� x�}2 (2.56)

Next we state to some technical results, starting with the well-known be-the-leader lemma:

Lemma 2.A.1 (Shalev-Shwartz [2011]). Let x1, . . . ,xT�1 P X be the sequence of actions of
FTL on the function sequence tℓt : X ÞÑ RutPrT s. Then

Ţ

t�1

ℓtpxtq � ℓtpx�q ¤
Ţ

t�1

ℓtpxtq � ℓtpxt�1q (2.57)

for all x� P X .

The final result depends on a stability argument for FTL on strongly-convex functions adapted
from Saha et al. [2012]:

Lemma 2.A.2. Let tℓt : X ÞÑ RutPrT s be a sequence of functions that are αt-strongly-convex
w.r.t. } � } and let x1, . . . ,xT�1 P X be the corresponding sequence of actions of FTL. Then

}xt � xt�1} ¤ 2}∇t}�
αt � 2α1:t�1

(2.58)

for all t P rT s.
Proof. The proof slightly generalizes an argument in Saha et al. [2012, Theorem 6]. For each
t P rT s we have by Claim 2.A.2 and the α1:t-strong-convexity of

°t
s�1 ℓsp�q that

ţ

s�1

ℓspxtq ¥
ţ

s�1

ℓspxt�1q � α1:t

2
}xt � xt�1}2 (2.59)
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We similarly have
t�1̧

s�1

ℓspxt�1q ¥
t�1̧

s�1

ℓspxtq � α1:t�1

2
}xt�1 � xt}2 (2.60)

Adding these two inequalities and applying Claim 2.A.1 yields

�αt
2
� α1:t�1

	
}xt � xt�1}2 ¤ ℓtpxtq � ℓtpxt�1q ¤ }∇t}�}xt � xt�1} (2.61)

Dividing by }xt � xt�1} yields the result.

Theorem 2.A.1. Let tℓt : X ÞÑ RutPrT s be a sequence of functions that are Gt-Lipschitz in } � }A
and let x1, . . . ,xT�1 be the sequence of actions produced by FTL. Let tℓ1t : X ÞÑ RutPrT s be
a sequence of functions on which FTL also plays x1, . . . ,xT�1 but which are G1

t-Lipschitz and
αt-strongly-convex in } � }B. Then

Ţ

t�1

ℓtpxtq � ℓtpx�q ¤ 2C
Ţ

t�1

GtG
1
t

αt � 2α1:t�1

(2.62)

for all x� P X and some constant C s.t. }x}A ¤ C}x}B @ x P X . If the functions ℓt are also
convex then we have

Ţ

t�1

ℓtpxtq � ℓtpx�q ¤ 2C
Ţ

t�1

}∇t}A,�}∇1
t}B,�

αt � 2α1:t�1

(2.63)

or all x� P X

Proof. By Lemma 2.A.2,

}xt � xt�1}A ¤ C}xt � xt�1}B ¤ 2CG1
t

αt � 2α1:t�1

(2.64)

for all t P rT s. Then by Lemma 2.A.1 and the Gt-Lipschitzness of ℓt we have for all x� P X that

Ţ

t�1

ℓtpxtq � ℓtpx�q ¤
Ţ

t�1

ℓtpxtq � ℓpxt�1q ¤
Ţ

t�1

Gt}xt � xt�1}A ¤ 2C
Ţ

t�1

GtG
1
t

αt � 2α1:t�1

(2.65)

In the convex case we instead apply Claim 2.A.1 and Lemma 2.A.2 to get

Ţ

t�1

ℓtpxtq � ℓtpx�q ¤
Ţ

t�1

ℓtpxtq � ℓpxt�1q ¤
Ţ

t�1

}∇t}A,�}xt � xt�1}A ¤ 2C
Ţ

t�1

}∇t}A,�}∇1
t}B,�

αt � 2α1:t�1

(2.66)
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Applications

We now show two applications of strongly convex coupling. The first shows logarithmic regret
for FTL run on a sequence of Bregman divergences generated by a fixed regularizer ψ : X ÞÑ R.
Note that such functions are nonconvex in general.

Proposition 2.A.1. Letψ : X ÞÑ R be 1-strongly-convex w.r.t. }�} and consider any x1, . . . ,xT P
X . Then when run on the loss sequence α1Bψpx1||�q, . . . , αTBψpxT ||�q for any positive scalars
α1, . . . , αT P R¡0, FTL obtains regret

Regret ¤ 2CD
Ţ

t�1

α2
tGt

αt � 2α1:t�1

(2.67)

for C s.t. }x} ¤ C}x}2 @ x P X , D � maxx,yPX }x � y}2 the ℓ2-diameter of X , and Gt the
Lipschitz constant of Bψpxt||�q over X w.r.t. } � }. Note that for } � } � } � }2 we have C � 1 and
Gt ¤ D @ t P rT s.
Proof. Note that αtBψpxt||�q is αtGt-Lipschitz w.r.t. } � }. Let ψ1p�q � 1

2
} � }22, so Bψ1pxt||yq �

1
2
}xt � y}22 @ y P X , t P rT s. The function αtBψ1pxt||�q is thus αt-strongly-convex and D-

Lipschitz w.r.t. } � }2. Now by Claim B.2.1 FTL run on this new sequence plays the same actions
as FTL run on the original sequence. Applying Theorem 2.A.1 yields the result.

We can state a more elegant result using a bound on the Hessian of the regularizer:

Corollary 2.A.1. Let ψ : X ÞÑ R be a strictly convex function with maxxPX ~∇2ψpxq~8 ¤ S
over a convex set X � Rd of size maxxPX }x}2 ¤ K. Then for any points x1, . . . ,xT P X the
actions y1 � argminxPX ψpxq and yt � 1

t�1

°
s t xs have regret

Ţ

t�1

Bψpxt||ytq � Bψpxt||yT�1q ¤
Ţ

t�1

8SK2

2t� 1
¤ 8SK2p1� log T q (2.68)

Proof. Note that

∇yBψpx||yq � �∇ψpyq �∇yx∇ψpyq,xy �∇yx∇ψpyq,yy � diagp∇2ψpyqqpy � xq (2.69)

so Bψpxt||�q is 2SK-Lipschitz w.r.t. } � }2. Now if ψ1p�q � 1
2
} � }22 then the functions Bψ1pxt||�q are

1-strongly-convex and 2K-Lipschitz w.r.t. } � }2. Therefore, since FTL run on this new sequence
plays the same actions as FTL run on the original sequence, we can apply Theorem 2.A.1 to
obtain the result.

In the next application we use coupling to give a ÕpT 3
5 q-regret algorithm for a sequence of

non-Lipschitz convex functions.

Proposition 2.A.2. Let tℓt : R¡0 ÞÑ Rut¥1 be a sequence of functions ℓtpxq �
�
B2
t

x
� x

	
αt for

any positive scalars α1, . . . , αT P R¡0 and adversarially chosen Bt P r0, Ds. Then the ε-FTL
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algorithm, which for ε ¡ 0 uses the actions of FTL run on the functions ℓ̃tpxq �
�
B2
t�ε2
x

� x
	
αt

over the domain rε,?D2 � ε2s to determine xt, achieves regret

Regret ¤ min

"
ε2

x�
, ε

*
α1:T � 2Dmax

"
D3

ε3
, 1

* Ţ

t�1

α2
t

αt � 2α1:t�1

(2.70)

for all x� ¡ 0.

Proof. Define B̃2
t � B2

t � ε2 and note that FTL run on the functions ℓ̃1tpxq �
�
x2

2
� B̃2

t log x
	
αt

plays the exact same actions x2t �
°
s t αsB̃

2
s

α1:t�1
as FTL run on ℓ̃t. We have that

|Bxℓ̃t| � αt

�����1� B̃2
t

x2

����� ¤ αtD
2

ε2
(2.71)

|Bxℓ̃1t| � αt

�����x� B̃2
t

x

����� ¤ αtmax

"
D,

D2

ε

*
Bxxℓ̃1t � αt

�
1� B̃2

t

x2

�
¥ αt (2.72)

so the functions ℓ̃t are αtD2

ε2
-Lipschitz while the functions ℓ̃1t are αtDmax

 
D
ε
, 1
(

-Lipschitz and
αt-strongly-convex. Therefore by Theorem 2.A.1 we have that

Ţ

t�1

ℓ̃tpxtq � ℓ̃tpx�q ¤ 2Dmax

"
D3

ε3
, 1

* Ţ

t�1

α2
t

αt � 2α1:t�1

(2.73)

for any x� P rε,?D2 � ε2s. Since
°T
t�1 ℓ̃t is minimized on rε,?D2 � ε2s, the above also holds

for all x� ¡ 0. Therefore we have that
Ţ

t�1

ℓtpxtq ¤
Ţ

t�1

�
B2
t � ε2

xt
� xt



αt

�
Ţ

t�1

ℓ̃tpxtq

¤ min
x�¡0

2Dmax

"
D3

ε3
, 1

* Ţ

t�1

α2
t

αt � 2α1:t�1

�
Ţ

t�1

ℓ̃tpx�q

� min
x�¡0

2Dmax

"
D3

ε3
, 1

* Ţ

t�1

α2
t

αt � 2α1:t�1

�
Ţ

t�1

�
B2
t � ε2

x�
� x�



αt

� min
x�¡0

ε2

x�
α1:T � 2Dmax

"
D3

ε3
, 1

* Ţ

t�1

α2
t

αt � 2α1:t�1

�
Ţ

t�1

ℓtpx�q

(2.74)

Note that substituting x� �
b°T

t�1 αtB̃
2
t

α1:T
into the second-to-last line yields

min
x�¡0

Ţ

t�1

�
B2
t � ε2

x�
� x�



αt ¤ 2

gffeα1:T

Ţ

t�1

αtB̃2
t ¤ 2εα1:T � min

x�¡0

Ţ

t�1

ℓtpx�q (2.75)

completing the proof.
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2.A.2 Adaptive and dynamic guarantees

Throughout Appendices 2.A.2, 2.A.3, and 2.A.4 we assume that argminθPΘ
°
ℓPS ℓpθq returns

a unique minimizer of the sum of the loss functions in the sequence S. Formally, this can be
defined to be the one minimizing an appropriate Bregman divergence BRp�|ϕRq from some fixed
ϕR P Θ, e.g. the origin in Euclidean space or the uniform distribution over the simplex, which
is unique by strong-convexity of BRp�|ϕRq and convexity of the set of optimizers of a convex
function.

Theorem 2.A.2. Let each task t P rT s consist of a sequence of mt convex loss functions ℓt,i :
Θ ÞÑ R that are Gt,i-Lipschitz w.r.t. } � }. For G2

t � G2
1:mt{mt and R : Θ ÞÑ R a 1-strongly-

convex function w.r.t. } � } define the following online algorithms:
1. INIT: a method that has dynamic regret bound U init

T pΨq ¥ °T
t�1 f

init
t pϕtq � f init

t pψtq w.r.t.
reference actions Ψ � tψtuTt�1 � Θ over the sequence f init

t p�q � BRpθ�t ||�qGt
?
mt .

2. SIM: a method that has (static) regret boundU sim
T pxq decreasing in x ¡ 0 over the sequence

of functions f sim
t pxq �

�
BRpθ�t ||ϕtq

x
� x

	
Gt
?
mt.

Then if Algorithm 1 sets ϕt � INITptq and ηt � SIMptq
Gt
?
mt

it will achieve

Regret ¤ U ¤ U sim
T pVΨq
T

� 1

T
min

$&
%U init

T pΨq
VΨ

, 2

gffeU init
T pΨq

Ţ

t�1

Gt

?
mt

,.
-� 2VΨ

T

Ţ

t�1

Gt

?
mt

(2.76)
for V 2

Ψ � 1°T
t�1Gt

?
mt

°T
t�1 BRpθ�t ||ψtqGt

?
mt.

Proof. Letting xt � SIMptq be the output of SIM at time t, defining σt � Gt
?
mt and σ1:T �°T

t�1 σt, and substituting into the regret-upper-bound of OMD/FTRL (1.1), we have that

UT �
Ţ

t�1

�
BRpθ�t ||ϕtq

xt
� xt



σt

¤ min
x¡0

U sim
T pxq �

Ţ

t�1

�
BRpθ�t ||ϕtq

x
� x



σt

¤ min
x¡0

U sim
T pxq � U init

T pΨq
x

�
Ţ

t�1

�
BRpθ�t ||ψtq

x
� x



σt

¤ U sim
T pVΨq �min

"
U init
T pΨq
VΨ

, 2
b
U init
T pΨqσ1:T

*
� 2VΨσ1:T

(2.77)

where the last line follows by substituting x � max

"
VΨ,

b
U init
T pΨq
σ1:T

*
.

Corollary 2.A.2. Under the assumptions of Theorem 2.A.2 and boundedness of BR over Θ, if
INIT uses FTL, or AOGD in the case of Rp�q � 1

2
} � |22, and SIM uses ε-FTL as defined in
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Proposition 2.A.2, then Algorithm 1 achieves

UT ¤ min

"
ε2

V
, ε

*
σ1:T � 2Dmax

"
D3

ε3
, 1

* Ţ

t�1

σ2
t

σ1:t
�
gffe8CDσ1:T

Ţ

t�1

σ2
t

σ1:t
� 2V σ1:T (2.78)

for V 2 � minϕPΘ
°T
t�1 σtBRpθ�t ||ϕq and constant C the product of the constant C from Proposi-

tion 2.A.1 and the bound on the gradient of the Bregman divergence. Assuming σt � G
?
m @ t

and substituting ε � 1
5?T yields

Regret ¤ U � Õ
�
min

"
1

V T
2
5

� 1?
T
,

1
5
?
T

*
� V


?
m (2.79)

Proof. Substitute Propositions 2.A.1 and 2.A.2 into Theorem 2.A.2.

Proposition 2.A.3. Let tℓt : R¡0 ÞÑ Rut¥1 be a sequence of losses of form ℓtpxq �
�
B2
t

x
� x

	
αt

for any positive scalars α1, . . . , αT P R¡0 and adversarially chosen Bt P r0, Ds. Then the losses
ℓ̃tpxq �

�
B2
t�ε2
x

� x
	
αt on the domain rε,?D2 � ε2s are αtD2

ε2
-Lipschitz and 2

αtD
min

!
ε2

D2 , 1
)

-
exp-concave.

Proof. Lipschitzness follows by taking derivatives as in Proposition 2.A.2. Define B̃2
t � B2

t �ε2.
We then have

Bxℓ̃t � αt

�
1� B̃2

t

x2

�
Bxxℓ̃t � 2αtB̃

2
t

x3
(2.80)

The γ-exp-concavity of the functions ℓ̃t can be determined by finding the largest γ satisfying

γ ¤ Bxxℓ̃t
pBxℓ̃tq2

� 2B̃2
t x

αtpB̃2
t � x2q2 (2.81)

for all x P rε,?D2 � ε2s and all t P rT s. We first minimize jointly over choice of x, B̃t P
rε,?D2 � ε2s. The derivatives of the objective w.r.t. x and B̃t, respectively, are

2B̃2
t pB̃2

t � 3x2q
pB̃2

t � x2q3 � 4B̃txpB̃2
t � x2q

pB̃2
t � x2q3 (2.82)

Note that the objective approaches 8 as the coordinates approach the line x � B̃t. For x   B̃t

the derivative w.r.t. x is always positive while the derivative w.r.t. B̃t is always negative. Since
we have the constraints x ¥ ε and B̃2

t ¤ D2 � ε2, the optimum over x   B̃t is thus attained at
x � ε and B̃2

t � D2 � ε2. Substituting into the original objective yields

2pD2 � ε2qε
αtD4

¥ 2ε

αtD2
(2.83)
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For x ¡ B̃t the derivative w.r.t. x is always negative while the derivative w.r.t. B̃t is always
positive. Since we have the constraints x ¤ ?

D2 � ε2 and B̃2
t ¥ ε2, the optimum over x ¡ B̃t

is thus attained at x � ?
D2 � ε2 and B̃2

t � ε2. Substituting into the original objective yields

2ε2
?
D2 � ε2

αtD4
¥ 2ε2

αtD3
(2.84)

Thus we have that the functions ℓ̃t are 2
αtD

min
!
ε2

D2 , 1
)

-exp-concave.

Corollary 2.A.3. Let tℓt : R¡0 ÞÑ Rut¥1 be a sequence of functions of form ℓtpxq �
�
B2
t

x
� x

	
αt

for any positive scalars α1, . . . , αT P R¡0 and adversarially chosen Bt P r0, Ds. Then the ε-
EWOO algorithm, which for ε ¡ 0 uses the actions of EWOO run on the functions ℓ̃tpxq ��
B2
t�ε2
x

� x
	
αt over the domain rε,?D2 � ε2s to determine xt, achieves regret

Regrett ¤ min

"
ε2

x�
, ε

*
α1:T � Dαmax

2
max

"
D2

ε2
, 1

*
p1� logpT � 1qq (2.85)

for all x� ¡ 0.

Proof. Since
°T
t�1 ℓ̃t is minimized on rε,?D2 � ε2s, we apply Theorem B.3.3 and follow a

similar argument to that concluding Proposition 2.A.2 to get

Ţ

t�1

ℓtpxtq ¤ Dαmax

2
max

"
D2

ε2
, 1

*
p1� logpT � 1qq �

Ţ

t�1

ℓ̃tpx�q

� min

"
ε2

x�
, ε

*
α1:T � Dαmax

2
max

"
D2

ε2
, 1

*
p1� logpT � 1qq �

Ţ

t�1

ℓtpx�q
(2.86)

Corollary 2.A.4. Under the assumptions of Theorem 2.A.2 and boundedness of BR over Θ, if
INIT uses FTL, or AOGD in the case of Rp�q � 1

2
} � }22, and SIM uses ε-EWOO as defined in

Proposition 2.A.3, then Algorithm 1 achieves

UT ¤ min

"
ε2

V
, ε

*
σ1:T � Dσmax

2
max

"
D2

ε2
, 1

*
p1� logpT � 1qq

�
gffe8CDσ1:T

Ţ

t�1

σ2
t

σ1:t
� 2V σ1:T

(2.87)

for V 2 � minϕPΘ
°T
t�1 σtBRpθ�t ||ϕq and constant C the product of the constant C from Proposi-

tion 2.A.1 and the bound on the gradient of the Bregman divergence. Assuming σt � G
?
m @ t

and substituting ε � 1
4?T yields

Regret ¤ U � Õ
�
min

"
1� 1

V?
T

,
1

4
?
T

*
� V


?
m (2.88)
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Proof. Substitute Proposition 2.A.1 and Corollary 2.A.3 into Theorem 2.A.2.

Corollary 2.A.5. Under the assumptions of Theorem 2.2.1 and boundedness of Θ, if INIT
is OGD with learning rate 1

σmax
and SIM uses ε-EWOO as defined in Proposition 2.A.3 then

Algorithm 1 achieves

UT ¤ min

"
ε2

VΨ
, ε

*
σ1:T � Dσmax

2
max

"
D2

ε2
, 1

*
p1� logpT � 1qq

� 2Dmin

"
Dσmax

VΨ
p1� PΨq,

a
2σmaxσ1:T p1� PΨq

*
� 2VΨσ1:T

(2.89)

for PT pΨq �
°T
t�2 }ψt � ψt�1}2. Assuming σt � G

?
m @ t and substituting ε � 1

4?T yields

Regret ¤ U � Õ

�
min

#
1� 1

VΨ?
T

,
1

4
?
T

+
�min

#
1� PΨ

VΨT
,

c
1� PΨ

T

+
� VΨ

�
?
m (2.90)

Proof. Substitute Theorem 2.2.3 and Corollary 2.A.3 into Theorem 2.A.2.

2.A.3 Guarantees for adapting to the inter-task geometry
For any nonnegative a P Rd we will use the notation }�}a � x?a, �y; note that if all elements of
a are positive then }�}a is a norm on Rd with dual norm }�}a�1 .

Claim 2.A.3. For t ¥ 1 and p P p0, 1q we have

t�1̧

s�0

1

ps� 1qp ¥
ţ

s�1

1

ps� 1qp ¥ cpt
1�p and

ţ

s�1

1

sp
¤ cpt

1�p (2.91)

for cp �
1�p 2

3q1�p
1�p and cp � 1

1�p .

Proof.

t�1̧

s�0

1

ps� 1qp ¥
ţ

s�1

1

ps� 1qp ¥
» t�1

1

ds

ps� 1qp �
pt� 2q1�p � 21�p

1� p
¥ cppt� 2q1�p ¥ cpt

1�p

(2.92)
ţ

s�1

1

sp
¤ 1�

» t

1

ds

sp
� 1� t1�p � 1

1� p
¤ cpt

1�p (2.93)

Claim 2.A.4. For any x P Rd we have }x2}22 ¤ }x}42.

Proof.

}x2}22 �
ḑ

j�1

x4j ¤
�

ḑ

j�1

x2j

�2

� }x}42 (2.94)
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We now review some facts from matrix analysis. Throughout this section we will use matrices
in Rd�d; we denote the subset of symmetric matrices by Sd, the subset of symmetric PSD matrices
by Sd�, and the subset of symmetric positive-definite matrices by Sd��. Note that every symmetric
matrix A P Sd has diagonalization A � VΛV�1 for diagonal matrix Λ P Sd containing the
eigenvalues of A along the diagonal and a matrix V P Rd�d of orthogonal eigenvectors. For
such matrices we will use λjpAq to denote the jth largest eigenvalue of A and for any function
f : rλdpAq, λ1pAqs ÞÑ R we will use the notation

fpAq � V

�
��fpΛr1,1sq

. . .
fpΛrd,dsq

�
�V�1 (2.95)

Claim 2.A.5. [Boyd and Vandenberghe, 2004, Section A.4.1] fpXq � log detX has gradient
∇Xf � X�1 over Sd��

Claim 2.A.6. [Moridomi et al., 2018, Theorem 3.1] The function fpXq � � log detX is 1
σ2 -

strongly-convex w.r.t. ~ � ~8 over the set of symmetric positive-definite matrices with spectral
norm bounded by σ.

Definition 2.A.1. A function f : p0,8q ÞÑ R is operator convex if @ X,Y P Sd�� and any
t P r0, 1s we have

fptX� p1� tqYq ¨ tfpXq � p1� tqfpYq (2.96)

Claim 2.A.7. If A P Sd� and f : p0,8q ÞÑ R is operator convex then TrpAfpXqq is convex on
Sd��.

Proof. Consider any X,Y P Sd�� and any t P r0, 1s. By the operator convexity of f , positive
semi-definiteness of A, and linearity of the trace functional we have that

0 ¨ TrpAptfpXq � p1� tqfpYq � fptX� p1� tqYqqq
� tTrpApfpXqqq � p1� tqTrpAfpYqq � TrpApfptX� p1� tqYqqq (2.97)

Corollary 2.A.6. If A P Sd� then TrpAX�1q and TrpAXq are convex over Sd��.

Proof. By the Löwner-Heinz theorem [Davis, 1963], x�1, x, and x2 are operator convex. The
result follows by applying Claim 2.A.7.

Corollary 2.A.7. [Lieb, 1973, Corollary 1.1] If A,B P Sd� then TrpAXBXq is convex over Sd�.

Proposition 2.A.4. Let tℓt : R¡0 ÞÑ Rut¥1 be of form ℓtpxq �
���b2

t

x
� g2

t d x
���
1

for adver-

sarially chosen bt,gt satisfying }bt}2 ¤ D, }gt}2 ¤ G. Then the pε, ζ, pq-FTL algorithm,
which for ε, ζ ¡ 0 and p P p0, 2

3
q uses the actions of FTL run on the functions ℓ̃tpxq ����b2

t�ε2t1d
x

� pg2
t � ζ2t 1dq d x

���
1
, where ε2t � ε2pt � 1q�p, ζ2t � ζ2pt � 1q�p for t ¥ 0 and
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b0 � g0 � 0d, to determine xt, has regret

Regrett ¤ Cp

ḑ

j�1

min

"�
ε2

x�j
� ζ2x�j



T 1�p,

b
ζ2b2

j,1:T � ε2g2
j,1:TT

1�p
2 � 2εζT 1�p

*

� Cp

�
D � ε

ζ3
G4 � G� ζ

ε3
D4



T

3
2
p � CppDζ �Gε� εζqd

(2.98)

for any x ¡ 0 and some constant Cp depending only on p.

Proof. Define b̃2
t � b2

t � ε2t1d, g̃2
t � g2

t � ζ2t 1d and note that FTL run on the modified functions

ℓ̃1tpxq �
��� g̃2

tdx2

2
� b̃2

t d logpxq
���
1

plays the exact same actions x2
t � b̃2

0:t�1

g̃2
0:t�1

as FTL run ℓ̃t. Since
both sequences of loss functions are separable across coordinates, we consider d per-coordinate
problems, with loss functions of form ℓ̃tpxq � b̃2t

x
� g̃2t x and ℓ̃1tpxq � g̃2t x

2

2
� b̃2t log x. We have that

|∇t| �
�����g̃2t � b̃2t

x2t

����� � |g̃2t x2t � b̃2t |
x2t

|∇1
t| �

�����g̃2t xt � b̃2t
xt

����� � |g̃2t x2t � b̃2t |
xt

Bxxℓ̃1t � g̃2t �
b̃2t
x2

¥ g̃2t

(2.99)
so by Theorem 2.A.1 and substituting the action x2t � b̃20:t�1

g̃20:t�1
we have per-coordinate regret

Ţ

t�1

ℓ̃tpxtq � ℓ̃tpx�q ¤ 2
Ţ

t�1

|∇t||∇1
t|

g̃21:t
� 2

Ţ

t�1

|g̃2t x2t � b̃2t |2
x3t g̃

2
1:t

¤ 2
Ţ

t�1

g̃4t xt
g̃21:t

� b̃4t
x3t g̃

2
1:t

� 2
Ţ

t�1

g̃4t

b
b̃20:t�1

g̃21:t
a
g̃20:t�1

� b̃4t

g̃21:t

�
b̃20:t�1

g̃20:t�1

	 3
2

¤ 2
Ţ

t�1

g̃4t

b
b̃20:t�1

g̃21:t
a
g̃20:t�1

� b̃4t
a
2g̃21:t

pb̃20:t�1q
3
2

� b̃4t g̃
3
0

?
2

g̃21:tpb̃20:t�1q
3
2

(2.100)
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Taking the summation over the coordinates yields

Ţ

t�1

ℓ̃tpxtq � ℓ̃tpx�q

¤ 4
Ţ

t�1

�
pD � εqp}g2

t }22 � ζ4t dq
ζ21:t

a
2ζ20:t�1

� pG� ζqp}b2
t }22 � ε4tdq

pε20:t�1q
3
2

� p}b2
t }22 � ε4tdqζ3

ζ̃20:t�1pε̃20:t�1q
3
2

�?
2t

¤ 4
Ţ

t�1

�
pD � εqpG4 � ζ4t dq
pcpζ2t1�pq

3
2

?
2

� pG� ζqpD4 � ε4tdq
pcpε2t1�pq

3
2

� pD4 � ε4tdqζ
ε3pcpt1�pq

5
2

�?
2t

¤ 4
?
2
1� 1

cp

c
3
2
p

Ţ

t�1

�
D � ε

ζ3
G4 � G� ζ

ε3
D4



t
3
2
p�1 � Dζ �Gε� 2εζ

t1�
p
2

d

¤ Cp,1

�
D � ε

ζ3
G4 � G� ζ

ε3
D4



T

3
2
p � Cp,2pDζ �Gε� 2εζqd

(2.101)

for Cp,1 � 4c1� 3
2
p

?
2
�
1� 1

cp

	
{c3{2p and Cp,2 � 4

?
2
�
1� 1

cp

	°8
t�1

1

t1�
p
2
{c3{2p . Thus we have

Ţ

t�1

ℓtpxtq ¤
Ţ

t�1

ℓ̃tpxtq

¤ min
x�¡0

Cp,1

�
D � ε

ζ3
G4 � G� ζ

ε3
D4



T

3
2
p � Cp,2pDζ �Gε� 2εζqd�

Ţ

t�1

ℓ̃tpx�q

� Cp,1

�
D � ε

ζ3
G4 � G� ζ

ε3
D4



T

3
2
p � Cp,2pDζ �Gε� 2εζqd

� min
x�¡0

Ţ

t�1

����b2
t � ε2t1d
x�

� pg2
t � ζ2t 1dq d x�

����
1

¤ Cp,1

�
D � ε

ζ3
G4 � G� ζ

ε3
D4



T

3
2
p � Cp,2pDζ �Gε� 2εζqd

min
x�¡0

cpT
1�p

ḑ

j�1

ε2

x�j
� ζ2x�j �

Ţ

t�1

ℓtpx�q

(2.102)

Separating again per-coordinate we have that

Ţ

t�1

b̃2t
x�

� g̃2t x
� ¤ cpT

1�p ε
2

x�
� ζ2x� �

Ţ

t�1

ℓtpx�q (2.103)
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However, substituting x� �
b

b̃21:T
g̃1:T

also yields

min
x�¡0

Ţ

t�1

b̃2t
x�

� g̃2t x
� ¤ 2

b
b̃21:T g̃

2
1:T

¤ 2
b
cp pζ2b21:T � ε2g21:T qT

1�p
2 � 2cpεζT

1�p � min
x�¡0

Ţ

t�1

ℓtpx�q
(2.104)

completing the proof.

Theorem 2.A.3. Let Θ be a bounded convex subset of Rd, let Dd
� be the set of positive definite

diagonal matrices, and let each task t P rT s consist of a sequence of m convex Lipschitz loss
functions ℓt,i : Θ ÞÑ R. Suppose for each task t we run the iteration in Equation 2.14 setting
ϕ � 1

t�1
θ�1:t�1 and setting H � diagpηtq via Equation 2.15 for ε � 1, ζ � ?

m, and p � 2
5
. Then

we achieve
Regret ¤ U

� min
ϕPΘ
HPDd�

Õ

�
ḑ

j�1

min

# 1
Hrj,js

�Hrj,js

T
2
5

,
1

5
?
T

+�
?
m� 1

T

Ţ

t�1

}θ�t � ϕ}2H�1

2
�

m̧

i�1

}∇t,i}2H

(2.105)

Proof. Define b2
t � 1

2
pθ�t � ϕtq2 and g2

t � ∇2
1:m. Then applying Proposition 2.A.4 yields

UT �
Ţ

t�1

}θ�t � ϕt}2η�1
t

2
�

m̧

i�1

}∇t,i}2ηt

�
Ţ

t�1

����pθ�t � ϕtq22ηt
� ηt d∇2

t,1:m

����
1

¤ min
ηPRd¡0

Ţ

t�1

����pθ�t � ϕtq22η
� η d∇2

t,1:m

����
1

� Cp

ḑ

j�1

min

"�
ε2

ηrjs
� ζ2ηrjs



T 1�p,

b
ζ2b2

1:T rjs � ε2g2
1:T rjsT

1�p
2 � 2εζT 1�p

*

� Cp

�
D � ε

ζ3
G4m2 � G

?
m� ζ

ε3
D4



T

3
2
p � CppDζ �G

?
mε� εζqd

¤ min
ϕPΘ
ηPRd¡0

Ţ

t�1

}θ�t � ϕ}2η�1

2
�

mţ

i�1

}∇t,i}2η �
D2
8
2
}η�1}1p1� log T q

� Cp

ḑ

j�1

min

"�
ε2

ηrjs
� ζ2ηrjs



T 1�p,

b
ζ2b2

1:T rjs � ε2g2
1:T rjsT

1�p
2 � 2εζT 1�p

*

� Cp

�
D � ε

ζ3
G4m2 � G

?
m� ζ

ε3
D4



T

3
2
p � CppDζ �G

?
mε� εζqd

(2.106)
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Substituting η � 1d?
mT

for the optimum and the values of ε, ζ, p completes the proof.

Proposition 2.A.5. Let tℓt : R¡0 ÞÑ Rut¥1 be of form ℓtpXq � TrpX�1B2
t q � TrpXG2

t q for
adversarially chosen Bt,Gt satisfying ~Bt~8 ¤ σB,~Gt~8 ¤ σG

?
m for m ¥ 1. Then

the pε, ζq-FTL algorithm, which for ε, ζ ¡ 0 uses the actions of FTL on the alternate function
sequence ℓ̃tpXq � TrppB2 � ε2IdqX�1q � TrppG2 � ζ2IdqXq, achieves regret

Regrett ¤
Cσm

2

ε4ζ3
p1� log T q � pp1� σ2

Gqε
?
m� p1� σ2

BqζqT (2.107)

for constant Cσ depending only on σB, σG.

Proof. Define B̃2
t � B2

t � ε2Id, G̃
2
t � G2

t � ζ2Id and note that FTL run on modified functions
ℓ̃1tpXq � 1

2
TrpB̃�2

t XG̃2
tXq � log detX has the same solution B̃2

1:T � XG̃2
1:TX.

~∇Xℓ̃tpXq~8 � ~G̃2
t �X�1B̃2

tX
�1~8 ¤ ~G̃t~2

8 � ~X�1~2
8~B̃t~2

8 ¤ σ2
B

ε2
�mσ2

G � ζ2

(2.108)

~∇Xℓ̃
1
tpXq~8 � ~G̃2

tXB̃�2
t �X�1~8 ¤ ~G̃t~2

8~X~8~B̃�1
t ~2

8 � }X�1~8

¤ pmσ2
G � ζ2qaσ2

B � ε2

ε2ζ
�

a
mσ2

G � ζ2

ζ

(2.109)

Since by Claim 2.A.6 � log det |X| is ζ2

σ2
B�ε2

-strongly-convex we have by Theorem 2.A.1 that

Ţ

t�1

ℓ̃tpXtq � ℓ̃tpX�q ¤ Cσm
2

ε4ζ3
p1� log T q (2.110)

for some Cσ depending on σ2
B, σ

2
G. Therefore

Ţ

t�1

ℓtpXq ¤
Ţ

t�1

ℓ̃tpXq

¤ Cσm
2

ε4ζ3
p1� log T q �min

X¡0

Ţ

t�1

ℓ̃tpXq

¤ Cσm
2

ε4ζ3
p1� log T q �min

X¡0
ε2T TrpX�1q � ζ2T TrpXq �

Ţ

t�1

ℓtpXq

¤ Cσm
2

ε4ζ3
p1� log T q � p1� σ2

GqεT
?
m�min

X¡0
ζ2T TrpXq �

Ţ

t�1

ℓtpXq

¤ Cσm
2

ε4ζ3
p1� log T q � pp1� σ2

Gqε
?
m� p1� σ2

BqζqT �min
X¡0

Ţ

t�1

ℓtpXq

(2.111)
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Theorem 2.A.4. Let Θ be a bounded convex subset of Rd and let each task t P rT s consist of
a sequence of m convex Lipschitz loss functions ℓt,i : Θ ÞÑ R. Suppose for each task t we run
the iteration in Equation 2.14 with ϕ � 1

t�1
θ�1:t�1 and H the unique positive definite solution of

B2
t � HG2

tH for

B2
t � tε2Id �

¸
s t
pθ�s � ϕsqpθ�s � ϕsqJ and G2

t � tε2Id �
¸
s t

m̧

i�1

∇s,i∇J
s,i (2.112)

for ε � 1{ 8
?
T and ζ � ?

m{ 8
?
T . Then we achieve

Regret ¤ U � Õ
�

1
8
?
T


?
m� min

ϕPΘ
H¡0

2λ21pHq
λdpHq

1� log T

T
�

Ţ

t�1

}θ�t � ϕ�}2H�1

2
�

m̧

i�1

}∇t,i}2H
(2.113)

Proof. Let D and G be the diameter of Θ and Lipschitz bound on the losses, respectively. Then
applying Proposition 2.A.5 yields

RegretT �
Ţ

t�1

}θ�t � ϕt}2H�1
t

2
�

m̧

i�1

}∇t,i}2Ht

�
Ţ

t�1

1

2
Tr

�
H�1
t pθ�t � ϕtqpθ�t � ϕtqJ

�� Tr

�
Ht

m̧

i�1

∇t,i∇J
t,i

�

¤ min
H¡0

Ţ

t�1

1

2
Tr

�
H�1pθ�t � ϕtqpθ�t � ϕtqJ

�� Tr

�
H

m̧

i�1

∇t,i∇J
t,i

�

� Cσm
2

ε4ζ3
p1� log T q � pp1�G2qε?m� p1�D2qζqT

� min
H¡0

Ţ

t�1

}θ�t � ϕt}2H�1

2
� Tr

�
H

m̧

i�1

∇t,i∇J
t,i

�

� Cσm
2

ε4ζ3
p1� log T q � pp1�G2qε?m� p1�D2qζqT

¤ min
ϕPΘ
H¡0

2λ21pHq
λdpHq

Ţ

t�1

1

t
�

Ţ

t�1

}θ�t � ϕ�}2H�1

2
�

m̧

i�1

}∇t,i}2H

� Cσm
2

ε4ζ3
p1� log T q � pp1�G2qε?m� p1�D2qζqT

� min
ϕPΘ
H¡0

2λ21pHq
λdpHq

Ţ

t�1

1

t
�

Ţ

t�1

}θ�t � ϕ�}2H�1

2
�

m̧

i�1

}∇t,i}2H

� Cσm
2

ε4ζ3
p1� log T q � pp1�G2qε?m� p1�D2qζqT

(2.114)
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2.A.4 Online-to-batch conversion for task-averaged regret
Theorem 2.A.5. Let Q be a distribution over distributions P over convex loss functions ℓ : Θ ÞÑ
r0, 1s. A sequence of sequences of loss functions tℓt,iutPrT s,iPrms is generated by drawing m loss
functions i.i.d. from each in a sequence of distributions tPtutPrT s themselves drawn i.i.d. from
Q. If such a sequence is given to an meta-learning algorithm with task-averaged regret Regret
that has states tstutPrT s at the beginning of each task t then we have w.p. 1 � δ for any θ� P Θ
that

Et�UrT sEP�QEPmEℓ�Pℓpθ̄q ¤ EP�QEℓ�Pℓpθ�q � Regret

m
�
c

8

T
log

1

δ
(2.115)

where θ̄ � 1
m
θ1:m is generated by randomly sampling t P UnifrT s, running the online algorithm

with state st, and averaging the actions tθiuiPrms. If on each task the meta-learning algorithm runs
an online algorithm with regret upper bound Upstq a convex, nonnegative, and B

?
m-bounded

function of the state st P X , where X is a convex Euclidean subset, and the total regret-upper-
bound is U , then we also have the bound

EP�QEPmEℓ�Pℓpθ̄q ¤ EP�QEℓ�Pℓpθ�q � U

m
�B

c
8

mT
log

1

δ
(2.116)

where θ̄ � 1
m
θ1:m is generated by running the online algorithm with state s̄ � 1

T
s1:T and averag-

ing the actions tθiuiPrms.
Proof. For the second inequality, applying Proposition B.4.1, Jensen’s inequality, and Proposi-
tion B.4.2 yields

EP�QEPmEℓ�Pℓpθ̄q ¤ EP�Q

�
Eℓ�Pℓpθ�q � Ups̄q

m




¤ EP�QEℓ�Pℓpθ�q � 1

T

Ţ

t�1

EP�Q

�
Upstq
m




� EP�QEℓ�Pℓpθ�q � 2B

T
?
m

Ţ

t�1

EP�Q

�
Upstq
2B
?
m
�
?
m

2B



� 1

¤ EP�QEℓ�Pℓpθ�q � U

m
�B

c
8

mT
log

1

δ

(2.117)

The first inequality follows similarly except using Regrett instead of U , linearity of expectation
instead of Jensen’s inequality, 1 instead of B, and Regret instead of U .

Note that since regret-upper-bounds are nonnegative one can easily replace 8 by 2 in the
second inequality by simply multiplying and dividing by B

?
m in the third line of the above

proof.

Claim 2.A.8. In the setup of Theorem 2.A.5, let θ�t P argminθPΘ
°m
i�1 ℓt,ipθq and define the

quantities V 2
Q � argminϕPΘ EP�QEPm}θ� �ϕ}22 and D the ℓ2-radius of Θ. Then w.p. 1� δ we

have

V 2 � min
ϕPΘ

1

T

Ţ

t�1

}θ�t � ϕ}22 ¤ O
�
V 2
Q �

D2

T
log

1

δ



(2.118)
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Proof. Define ϕ̂ � argminϕPΘ
°T
t�1 }θ�t � ϕ}22 and ϕ� � argminϕPΘ EP�QEPm}θ� � ϕ}22.

Then by a multiplicative Chernoff’s inequality w.p. at least 1� δ we have

TV 2 �
Ţ

t�1

}θ�t � ϕ̂}22 ¤
Ţ

t�1

}θ�t � ϕ�}22

¤
�
1�max

"
1,

3D2

V 2
QT

log
1

δ

*

TEP�QEPm}θ� � ϕ�}22

¤ 2TV 2
Q � 3D2 log

1

δ

(2.119)

Corollary 2.A.8. Under the assumptions of Theorems 2.2.2 and 2.2.6, if the loss functions are
Lipschitz and we use Algorithm 1 with ηt also learned, using ε-EWOO as in Theorem 2.2.2 for
ε � 1{ 4

?
mT �1{?m, and set the initialization using ϕt�1 � 1

t

°
s¤t θ

�
s , then w.p. 1� δ we have

EP�QEPmℓPpθ̄q ¤ EP�QℓPpθ�q� Õ

�
VQ?
m
�min

#
1?
T
� 1?

m

VQm
,

1
4
?
m3T

� 1

m

+
�
c

1

T
log

1

δ

�
(2.120)

where V 2
Q � minϕPΘ EP�QEPm}θ� � ϕ}22.

Proof. Substitute Corollary 2.A.4 into Theorem 2.A.5 using the fact the the regret-upper-bounds
are Op

?
m
ε
q-bounded. Conclude by applying Claim 2.A.8.

Theorem 2.A.6. Let Q be a distribution over distributions P over convex losses ℓ : Θ ÞÑ r0, 1s
s.t. the functions ℓpθq� ℓpθ�q are ρ-self-bounded for some ρ ¡ 0 and θ� P argminθPΘ Eℓ�Ppθq.
A sequence of sequences of loss functions tℓt,iutPrT s,iPrms is generated by drawing m loss func-
tions i.i.d. from each in a sequence of distributions tPtutPrT s themselves drawn i.i.d. from Q. If
such a sequence is given to an meta-learning algorithm with task-averaged regret Regret that has
states tstutPrT s at the beginning of each task t then we have w.p. 1� δ for any θ� P Θ that

Et�UrT sEP�QEℓ�Pℓpθ̄q ¤ EP�QEℓ�Pℓpθ�q � Regret

m
�
gffe2ρ

m

�
Regret

m
�
c

8

T
log

2

δ

�
log

2

δ

�
c

8

T
log

2

δ
� 3ρ� 2

m
log

2

δ
(2.121)

where θ̄ � 1
m
θ1:m is generated by randomly sampling t P UrT s, running the online algorithm

with state st, and averaging the actions tθiuiPrms. If on each task the meta-learning algorithm runs
an online algorithm with regret upper bound Upstq a convex, nonnegative, and B

?
m-bounded

function of the state st P X , where X is a convex Euclidean subset, and the total regret-upper-
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bound is U , then we also have the bound

EP�QEℓ�Pℓpθ̄q ¤ EP�QEℓ�Pℓpθ�q � U

m
�
gffe2ρ

m

�
U

m
�B

c
8

mT
log

2

δ

�
log

2

δ

�B

c
8

mT
log

2

δ
� 3ρ� 2

m
log

2

δ

(2.122)

where θ̄ � 1
m
θ1:m is generated by running the online algorithm with state s̄ � 1

T
s1:T and averag-

ing the actions tθiuiPrms.
Proof. By Corollary B.4.2 and Jensen’s inequality we have w.p. 1� δ

2
that

EP�QEℓ�Pℓpθ̄q ¤ EP�Q

�
Eℓ�Pℓpθ�q � Ups̄q

m
� 1

m

c
2ρUps̄q log 1

δ
� 3ρ� 2

m
log

1

δ

�

¤ EP�QEℓ�Pℓpθ�q � 1

T

Ţ

t�1

EP�Q

�
Upstq
m




�
gffe 2ρ

mT

Ţ

t�1

EP�Q

�
Upstq
m



log

2

δ
� 3ρ� 2

m
log

2

δ

(2.123)

As in the proof of Theorem 2.A.5, by Proposition B.4.2 we further have w.p. 1� δ
2

that

1

T

Ţ

t�1

EP�Q

�
Upstq
m



¤ U

m
�B

c
8

mT
log

2

δ
(2.124)

Substituting the second inequality into the first yields the second bound. The first bound fol-
lows similarly except using Regrett instead of U , linearity of expectation instead of Jensen’s
inequality, 1 instead of B, and Regret instead of U .

Theorem 2.A.7. Let Q be a distribution over distributions P over convex loss functions ℓ : Θ ÞÑ
r0, 1s. A sequence of sequences of loss functions tℓt,iutPrT s,iPrms is generated by drawing m loss
functions i.i.d. from each in a sequence of distributions tPtutPrT s themselves drawn i.i.d. from
Q. If such a sequence is given to an meta-learning algorithm that on each task runs an online
algorithm with regret upper bound Upstq a nonnegative, B

?
m-bounded, G-Lipschitz w.r.t. } � },

and α-strongly-convex w.r.t. } � } function of the state st P X at the beginning of each task t,
where X is a convex Euclidean subset, and the total regret upper bound is U , then we have w.p.
1� δ for any θ� P Θ that

EP�QEPmEℓ�Pℓpθ̄q ¤ EP�QEℓ�Pℓpθ�q � LT (2.125)

for

LT � U� � U

m
� 4G

T

d
U

αm
log

8 log T

δ
� maxt16G2, 6αB

?
mu

αmT
log

8 log T

δ
(2.126)
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where U� � EP�QUps�q for any valid s� and θ̄ � 1
m
θ1:m is generated by running the online

algorithm with state s̄ � 1
T
s1:T and averaging the actions tθiuiPrms. If we further assume that the

functions ℓpθq � ℓpθ�q are ρ-self-bounded for some ρ ¡ 0 and θ� P argminθPΘ Eℓ�Ppθq for all
P in the support of Q then we also have the bound

EP�QEℓ�Pℓpθ̄q ¤ EP�QEℓ�Pℓpθ�q � LT �
c

2ρLT
m

log
2

δ
� 3ρ� 2

m
log

2

δ
(2.127)

Proof. Applying Proposition B.4.1 and Theorem B.4.1 we have w.p. 1� δ
2

that

EP�QEPmEℓ�Pℓpθ̄q ¤ EP�Q

�
Eℓ�Pℓpθ�q � Ups̄q

m




¤ EP�QEℓ�Pℓpθ�q � 1

m
EP�QUps�q � U

m

� 4G

T

d
U

αm
log

8 log T

δ
� maxt16G2, 6αB

?
mu

αmT
log

8 log T

δ

¤ EP�QEℓ�Pℓpθ�q � LT
(2.128)

This yields the first bound since. The second bound follows similarly except for the application
of Corollary B.4.2 in the second step w.p. 1� δ

2
.

Corollary 2.A.9. Under the assumptions of Theorem 2.2.6 and boundedness of Θ, if the loss
functions are G-Lipschitz and we use Algorithm 1 running OGD with fixed η � VQ�1{?T

G
?
m

, where
we have V 2

Q � minϕPΘ EP�QEPm}θ� � ϕ}22, and set the initialization using ϕt�1 � 1
t
θ�1:t, then

w.p. 1� δ we have

EP�QEPmℓPpθ̄q ¤ EP�QℓPpθ�q � Õ

�
VQ?
m
�
�
1

T
� 1?

mT



max

#
log

1

δ
,

c
log

1

δ

+�
(2.129)

Proof. Apply Theorem 2.A.2 with VΦ � VQ � 1{?T , U sim � 0 (because the learning rate is
fixed), and U init � Õ

�
V̂
?
m� 1{?T

	
(for V̂ 2 � minϕPΘ 1

T

°T
t�1 }θ�t � ϕ}22). Substitute the

result into Theorem 2.A.7 using the fact thatU is O
��

1
ε
� ε

�?
m
�
-bounded, O

�?
m
ε

	
-Lipschitz,

and Ω
�?

m
ε

	
-strongly-convex. Conclude by applying Claim 2.A.8 to bound V̂ .

2.A.5 Non-convex meta-learning
Proof of Theorem 2.3.1

Proof. The proof adapts the analysis of the exponential forecaster in Balcan et al. [2018b]. Let
Wt �

³
C
wtpρqdρ be the normalizing constant and Pt � Eρ�ptrutpρqs be the expected payoff

at round t. Also let Utpρq �
°t
j�1 ujpρq. We seek to bound Regret � OPT � P pT q, where
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OPT � UT pρ�q for optimal parameter ρ� and P pT q � °T
t�1 Pt is the expected utility of Al-

gorithm 3 in T rounds. We will do this by lower bounding P pT q and upper bounding OPT by
analyzing the normalizing constant Wt.

Lower bound for P pT q: This follows from standard arguments, included for completeness.
Using the definitions in Algorithm 3, it follows that

Wt�1

Wt

�
³
C e

λutpρqwtpρqdρ
Wt

�
»
C
eλutpρq

wtpρq
Wt

dρ �
»
C
eλutpρqptpρqdρ (2.130)

Use inequalities eλx ¤ 1� peλ � 1qx for x P r0, 1s and 1� x ¤ ex to conclude

Wt�1

Wt

¤
»
C
ptpρq

�
1� peλ � 1qutpρq

�
dρ � 1� peHλ � 1qPt ¤ exp

�peλ � 1qPt
�

(2.131)

Finally, we can write WT�1{W1 as a telescoping product to obtain

WT�1

W1

�
T¹
t�1

Wt�1

Wt

¤ exp

�
peλ � 1q

¸
t

Pt

�
� exp

�
P pT qpeλ � 1q� ,

or, WT�1 ¤ exp
�
P pT qpeλ � 1q� ³

C
w1pρqdρ.

Upper bound for OPT : If there are at most k discontinuities in any ball of radius r, we
can conclude that for all ρ P B�pρ, rq, UT pρq ¥ OPT � k � LTr. Now, since WT�1 �³
C
w1pρq exppλUT pρqqdρ, we have

WT�1 ¥
»
B�pρ,rq

w1pρqeλUT pρqdρ ¥
»
B�pρ,rq

w1pρqeλpOPT�k�LTrqdρ

� eλpOPT�k�LTrq
»
B�pρ,rq

w1pρqdρ
(2.132)

Putting together with the lower bound, and rearranging, gives

OPT � PT ¤ P pT qpeλ � 1� λq
λ

� logp1{Zq
λ

� k � LTr

¤ Tλ� logp1{Zq
λ

� k � LTr

(2.133)

where we use that P pT q ¤ T and for all x P r0, 1s, ex ¤ 1 � x � pe � 2qx2. Take expectation
over the sequence of utility functions and apply dispersion to conclude the result.

Proof of Theorem 2.3.2

We extend the construction in Balcan et al. [2020b] to the multi-task setting. The main difference
is that we generalize the construction for any task similarity, and show that we get the same lower
bound asymptotically.
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Proof. Define upb,xqpρq � Irb � 0s�Irρ ¡ xs�Irb � 1s�Irρ ¤ xs, where b P t0, 1u, x, ρ P r0, 1s
and Ir�s is the indicator function. For each iteration the adversary picks up0,xq or up1,xq with equal
probability for some x P ra, a�D�s, the ball of diameter D� containing all the optima.

For each task t,m� 3
D�m

1�β functions are presented with the discontinuity x P ra�D�{3, a�
2D�{3s while ensuring β-dispersion. The remaining 3

D�m
1�β are presented with discontinuities

located in successively halved intervals (the ‘halving adversary’) containing the optima in hind-
sight, any algorithm gets half of these wrong in expectation. It is readily verified that the func-
tions are β-dispersed. The construction works provided m is sufficiently large (m ¡ �

3
D�

�1{β).
The task averaged regret is therefore also Ω̃pm1�βq.

Proof of Theorem 2.3.3

Proof.

Ţ

t�1

m̧

m�1

ℓt,ipρt,iq � min
ρ�t PC

m̧

i�1

ℓt,ipρ�t q

¤
Ţ

t�1

Utpwt, vtq

¤ min
v¡0

HT pvq
?
m�

Ţ

t�1

�
v � ftpwtq

v


?
m� gpmq

¤ min
w:C ÞÑR¥0,v¡0

HT pvq
?
m� FT pwq

?
m

v
�

Ţ

t�1

�
v � ftpwq

v


?
m� gpmq

¤
�
HT pV q �min

"
FT pw�q
V

, 2
a
FT pw�qT

*
� 2TV


?
m� Tgpmq

(2.134)

where the last step is achieved by substituting w � w� and v � max
!
V,

a
FT pw�q{T

)
.

Proof of Lemma 2.3.1

Proof. Define a probability measure p : C ÞÑ R¥0 that is constant on all elements D̃ P Dt of the
discretization at time t, taking the value ppρq � 1

volpD̃q
°
DPDT ,D�D̃wrDs @ ρ P D̃. Note that for

any D P DT that is a subset of D̃ we have that

prDs �
»
D

w̃pρqdρ � vrDs°
D1PDT ,D1�D̃ vrD1s

¸
D1PDT ,D1�D̃

wrD1s (2.135)
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Then

DKLpp||v̂q � η
¸
s¤t

logxw�
s ,py

�
¸
D̃PDt

¸
DPDT ,D�D̃

prDs log
prDs
v̂rDs

� η
¸
s¤t

log
¸
D̃PDt

¸
DPDT ,D�D̃

w�
s rDsprDs

�
¸
D̃PDt

¸
DPDT ,D�D̃

vrDs°
D1PDT ,D1�D̃ vrD1s

¸
D1PDT ,D1�D̃

wrD1s log

°
D1PDT ,D1�D̃wrD1s°
D1PDT ,D1�D̃ v̂rD1s

� η
¸
s¤t

log
¸
D̃PDt

¸
DPDT ,D�D̃

w�
s rDsvrDs°

D1PDT ,D1�D̃ vrD1s

¸
D1PDT ,D1�D̃

wrD1s

¤
¸
D̃PDt

¸
DPDT ,D�D̃

vrDs°
D1PDT ,D1PD̃ vrD1s

¸
D1PDT ,D1�D̃

wD1 log
wrD1s
v̂rD1s

� η
¸
s¤t

log
¸

D̃PDt,D̃�Cs

¸
DPDT ,D�D̃

vrDs°
D1PDT ,D1�D̃ vrD1s

¸
D1PDT ,D1�D̃

wrD1s

�
¸
D̃PDt

¸
D1PDT ,D1PD̃

wrD1s log
wrD1s
v̂rD1s

� η
¸
s¤t

log
¸

D̃PDt,D̃�Cs

¸
D1PDT ,D1�D̃

wrD1s

� DKLpw||v̂q � η
¸
s¤t

logxw�
s ,wy

(2.136)

where the inequality follows from applying the log-sum inequality to the first term and the fact
that w�

s rDs � 1D�Cs in the second term. Note that we also have

}p}1 �
¸
D̃PDt

¸
DPDT ,D�D̃

vrDs°
D1PDT ,D1�D̃ vrD1s

¸
D1PDT ,D1�D̃

wrD1s �
¸
D̃PDt

¸
D1PDT ,D1�D̃

wrD1s � 1

(2.137)
and

prDs �
vrDs°

D1PDT ,D1�D̃ vrD1s

¸
D1PDT ,D1�D̃

wrD1s ¥
γvrDs°

D1PDT ,D1�D̃ vrD1s

¸
D1PDT ,D1�D̃

v̂rD1s � γv̂rDs

(2.138)
so p satisfies the optimization constraints. Therefore, since w was defined to be the minimum of
the sum of the KL-divergence (a strongly-convex function [Shalev-Shwartz, 2011, Example 2.5])
and a convex function, it is unique and so coincides with p.
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On the other hand

DKLppptq||v̂ptqq � η
¸
s¤t

logxw�
s ptq,pptqy ¤ DKLpp||v̂q � η

¸
s¤t

logxw�
s ,py

� DKLpw||v̂q � η
¸
s¤t

logxw�
s ,wy

¤ DKLpw̃||v̂q � η
¸
s¤t

logxw�
s , w̃y

� DKLpw̃ptq||v̂ptqq � η
¸
s¤t

logxw�
s ptq, w̃ptqy

(2.139)

where the first inequality follows from above and the second from the optimality of w. Note that
by nonnegativity the discretization of p does not affect its measure over C, so }p}1 � 1 ùñ
}pptq}1 � 1. Finally, also from above we have

pptqrDs �
¸

D1PDT ,D1�D
prD1s ¥ γ

¸
D1PDT ,D1�D

prD1sv̂rD1s � γv̂ptqrDs (2.140)

Thus as before pptq satisfies the optimization constraints, which with the previous inequality and
the uniqueness of the optimum w̃ptq implies that pptq � w̃ptq. Finally, since w̃ is constant on
all elements of the discretization Dt of C this last fact implies that p � w̃, which together with
p � w implies the result.

Lipschitzness for Algorithm 4

Claim 2.A.9. The loss ft is 1
γ volpCtq -Lipschitz w.r.t. } � }1 over the set tw P R|DT | : }w}1 �

1,w ¥ γv̂u.
Proof.

max
}w}1�1,w¥γv̂

}∇ logxw�
t ,wy}8 � max

D,}w}1�1,w¥γv̂

w�
t rDs

xw�
t ,wy

¤ 1

xw�
t , γv̂y

� 1

γ volpCtq (2.141)

Proof of Corollary 2.3.1

Proof. Using first-order conditions we have that the optimum in hindsight of the functions ht
satisfies

v2 � 1

T

Ţ

t�1

ftpwtq � � 1

T

Ţ

t�1

logxw�
t ,wty ¤ 1

T

Ţ

t�1

log
1

γ volpCtq (2.142)

Applying Corollary 2.A.3 with αt � 1, B2
t � ftpwtq, and D2 � log γ instead of D2 yields the

result.

82



Proof of Corollary 2.3.2

Proof. Using first-order conditions we have that the optimum in hindsight of the functions ht
satisfies

v2 � 1

T

Ţ

t�1

ftpwtq � � 1

T

Ţ

t�1

logxw�
t ,wty ¤ 1

T

Ţ

t�1

log
1

γ volpCtq (2.143)

Applying Proposition 2.A.2 with αt � 1, B2
t � ftpwtq, and D2 � log γ instead of D2 yields the

result.

Proof of Theorem 2.3.5

Proof. We have FT pw�q � Õp?BGT 3
4 q and HT pV q � Õpmint1{V, 5

?
T uT 3

5 q from Corollar-
ies 2.3.1 and 2.3.2. Substituting into Lemma 2.3.1 and simplifying yields

Õ

�
min

 
1
V
, 4
?
T
(

?
T

�min

"?
BG

V 4
?
T
,

4
?
BG
8
?
T

*
� 2V

�
?
m� gpmq (2.144)

Simplifying further yields the result.

Learning algorithmic parameters for combinatorial problems

We discuss implications of our results for several combinatorial problems of widespread inter-
est including integer quadratic programming and auction mechanism design. We will need the
following theorem from Balcan [2021], which generalizes the recipe for establishing dispersion
given by Balcan et al. [2020a] for d � 1, 2 dimensions to arbitrary constant d dimendions. It
is straightforward to apply the recipe to establish dispersion for these problems, which in turn
implies that our meta-learning results are applicable. We demonstrate this for a few important
problems below for completeness.

Theorem 2.A.8 (Balcan [2021]). Let l1, . . . , lm : Rd Ñ R be independent piecewiseL-Lipschitz
functions, each having discontinuities specified by a collection of at most K algebraic hypersur-
faces of bounded degree. Let L denote the set of axis-aligned paths between pairs of points in
Rd, and for each s P L define Dpm, sq � |t1 ¤ t ¤ m | lt has a discontinuity along su|. Then
we have ErsupsPLDpm, sqs ¤ supsPL ErDpm, sqs �Opam logpmKqq.

Greedy knapsack We are given a knapsack with capacity C and items i P rms with sizes
wi and values vi. The goal is to select a subset S of items to add to the knapsack such that°
iPS wi ¤ C while maximizing the total value

°
iPS vi of selected items. We consider a general

greedy heuristic to insert items with largest vi{wρi first (due to Gupta and Roughgarden [2017])
for ρ P r0, 10s.

The classic greedy heuristic sets ρ � 1 and can be used to provide a 2-approximation for
the problem. However other values of ρ can improve the knapsack objective on certain problem
instances. For example, for the value-weight pairs tp0.99, 1q, p0.99, 1q, p1.01, 1.01qu and capacity
C � 2 the classic heuristic ρ � 1 gives value 1.01 as the greedy heuristic is maximized for the
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third item. However, using ρ � 3 (or any ρ ¡ 1 � logp1{0.99q{ logp1.01q ¡ 2.01) allows us to
pack the two smaller items giving the optimal value 1.98.

Our result (Theorem 2.3.5) when applied to this problem shows that it is possible to learn
the optimal parameter values for the greedy heuristic algorithm family for knapsack from similar
tasks.

Theorem 2.A.9. Consider instances of the knapsack problem given by bounded weights wi,j P
r1, Cs and κ-bounded independent values vi,j P r0, 1s for i P rms, j P rT s. Then the asymp-
totic task-averaged regret for learning the algorithm parameter ρ for the greedy heuristic family
described above is oT p1q � 2V

?
m�Op?mq.

Proof. Lemma 11 of Balcan et al. [2020a] shows that the loss functions form a 1
2
-dispersed

sequence. The result follows by applying Theorem 2.3.5 with β � 1
2
.

k-center clustering We consider the α-Lloyd’s clustering algorithm family from Balcan et al.
[2018c], where the initial k centers in the procedure are set by sampling points with proba-
bility proportional to dα where d is the distance from the centers selected so far for some
α P r0, Ds, D P R¥0. For example, α � 0 corresponds to the vanilla k-means with random
initial centers, and α � 2 setting is the k-means++ procedure. For this algorithm family, we
are able to show the following guarantee. Interestingly, for this family it is sufficient to rely on
the internal randomness of the algorithmic procedure and we do not need assumptions on data
smoothness.

Theorem 2.A.10. Consider instances of the k-center clustering problem on n points, with Ham-
ming loss li,j for i P rms, j P rT s against some (unknown) ground truth clustering. Then the
asymptotic task-averaged regret for learning the algorithm parameter α for the α-Lloyd’s clus-
tering algorithm family of Balcan et al. [2018c] is oT p1q � 2V

?
m�Op?mq.

Proof. We start by applying Theorem 4 from Balcan et al. [2018c] to an arbitrary α-interval
rα0, α0 � ϵs � r0, Ds of length ϵ. The expected number of discontinuities (expectation under the
internal randomness of the algorithm when sampling successive centers), is at most

Opnk logpnq logpmaxtpα0 � ϵq{α0q, pα0 � ϵq logRuq (2.145)

where R is an upper bound on the ratio between any pair of non-zero distances. Considering
cases α0 º 1

logR
and using the inequality logp1 � xq ¤ x for x ¥ 0 we get that there are, in ex-

pectation, at most Opϵnk log n logRq discontinuities in any interval of length ϵ. Theorem 2.A.8
now implies 1

2
-dispersion using the recipe from Balcan et al. [2020a]. The task-averaged regret

bound follows from Theorem 2.3.5.

Integer quadratic programming (IQP) The objective is to maximize a quadratic function
xJAx for a matrix A with non-negative diagonal entries, subject to x P t0, 1un. In the classic
Goemans-Williamson algorithm [Goemans and Williamson, 1995] one solves an SDP relaxation
UJAU where columns ui of U are unit vectors. The entries of ui are then rounded to t�1u
by projecting on a vector z � N p0n, 1q and using signpxui,xyq. A simple parametric family is
s-linear rounding where the rounding is as before if |xui,xy| ¡ s but uses probabilistic rounding
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to round ui to 1 with probability 1�pxui,zyq{s
2

. The dispersion analysis of the problem from Balcan
et al. [2018b] and the general recipe from Balcan et al. [2020a] imply that our results yield low
task-averaged regret for learning the parameter of the s-linear rounding algorithms.

Theorem 2.A.11. Consider instances of IQP given by appropriate matrices At,i and rounding
vectors xt,i � N p0n, 1q for t P rT s, i P rms. Then the asymptotic task-averaged regret for
learning the algorithm parameter s for s-linear rounding is oT p1q � 2V

?
m�Op?mq.

Proof. As noted in Balcan et al. [2018b], since xi,j are normal, the local of discontinuities s �
|xui,xy| are distributed with a

b
2
π

-bounded density. Thus in any interval of length ϵ, we have

in expectation at most ϵ
b

2
π

discontinuities. Theorem 2.A.8 together with the general recipe

from Balcan et al. [2020a] implies 1
2
-dispersion. The task-averaged regret bound is now a simple

application of Theorem 2.3.5.

Our results are an improvement over prior work which have only considered iid and (single-
task) online learning settings. Similar improvements can be obtained for auction design, as
described below.

Posted price mechanisms with additive valuations There are m items and n bidders with
valuations vjpbiq, j P rns, i P r2ms for all 2m bundles of items. We consider additive valua-
tions which satisfy vjpbq �

°
iPb vjptiuq. The objective is to maximize the social welfare (sum

of buyer valuations). If the item values for each buyer have κ-bounded distributions, then the
corresponding social welfare is dispersed and our results apply.

Theorem 2.A.12. Consider instances of posted price mechanism design problems with additive
buyers and κ-bounded marginals of item valuations. Then the asymptotic task-averaged regret
for learning the price which maximizes the social welfare is oT p1q � 2V

?
m�Op?mq.

Proof. As noted in Balcan et al. [2018b], the locations of discontinuities are along axis-parallel
hyperplanes (buyer j will be willing to buy item i at a price pi if and only if vjptiuq ¥ pi, each
buyer-item pair in each instance corresponds to a hyperplane). Thus in any pair of points p, p1

(corresponding to pricing) at distance ϵ, we have in expectation at most ϵκmn discontinuities
along any axis-aligned path joining p, p1, since discontinuities for an item can only occur along
axis-aligned segment for the axis corresponding to the item. Theorem 2.A.8 now implies 1

2
-

dispersion. The task-averaged regret bound is now a simple application of Theorem 2.3.5.

2.A.6 Structural results for bandits

Tuning the step-size

Lemma 2.A.3. Let ℓ1, . . . , ℓT : R¡0 ÞÑ R¡0 be a sequence of functions of form ℓtpxq � B2
t

x
�

G2x for adversarially chosen Bt P r0, Ds and some G ¡ 0. Then for any ρ ¥ 0, the actions of
EWOO [Hazan et al., 2007, Figure 4] with parameter 2ρ2

DG
run on the modified losses B2

t�ρ2D2

x
�
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G2x over the domain
�
ρD
G
, D
G

a
1� ρ2

�
achieves regret w.r.t. any x ¡ 0 of

Ţ

t�1

ℓtpxq � ℓtpxq ¤ min

"
ρ2D2

x
, ρDG

*
T � DGp1� logpT � 1qq

2ρ2
(2.146)

Proof. By Proposition 2.A.3 the modified functions are 2ρ2

DG
-exp-concave, so applying Corol-

lary 2.A.3 with Bt set to Bt
G

, D to D
G

, αt � G2, and ε � ρD
G

yields the result.

Lemma 2.A.4. For x̂1, . . . , x̂T P BK consider a sequence of functions of form

Utpx, ηq � Bpcεpx̂tq||xq
η

� ηG2m (2.147)

where B is the Bregman divergence of a strictly convex d.g.f. ψ : K� ÞÑ R and where x1 �
argminxPK ψpxq defines the projection cεpxq � x1 � x�x1

1�ε for some ε ¡ 0 . Suppose we play
xt�1 Ð cε

�
1
t

°t
s�1 x̂s

�
and set ηt using the actions of EWOO [Hazan et al., 2007, Figure 4]

with parameter 2ρ2

DG
for some ρ,Dε ¡ 0 s.t. Bpcεpx̂tq||xq ¤ D2

ε @ x P Kε on the functions
Bpcεpx̂tq||xtq�ρ2D2

ε

η
� ηG2m over the domain

�
ρDε
G
?
m
, Dε
G

b
1�ρ2
m

�
, with η1 being at the midpoint of

the domain. Then Utpxt, ηtq ¤ DεG
?
m
�

1
ρ
�
a
1� ρ2

	
@ t P rT s and

Ţ

t�1

Utpxt, ηtq ¤ min
η¡0,xPK

Ţ

t�1

Bpcεpx̂tq||xq
η

� ηG2m

�min

"
ρ2D2

ε

η
, ρDεG

*
T � DεGp1� logpT � 1qq

2ρ2
� 8SεK

2p1� log T q
η

(2.148)

for K � maxxPK }x}2 and Sε � maxxPKε }∇2ψpxq}2.

Proof. The first claim follows by directly substituting the worst-case values of η into Utpx, ηq.
For the second, apply Lemma 2.A.3 followed by Corollary 2.A.1:

Ţ

t�1

Utpxt, ηtq

�
Ţ

t�1

Bpcεpx̂tq||xtq
ηt

� ηtG
2m

¤ min
η¡0

min

"
ρ2D2

ε

η
, ρDεG

*
T � DεGp1� logpT � 1qq

2ρ2
�

Ţ

t�1

Bpcεpx̂tq||xq
η

� ηG2m

¤ min
η¡0

min

"
ρ2D2

ε

η
, ρDεG

*
T � DεGp1� logpT � 1qq

2ρ2
� 8SεK

2p1� log T q
η

� min
xPKε

Ţ

t�1

Bpcεpx̂tq||xq
η

� ηG2m

(2.149)
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Conclude by noting that the sum of Bregman divergence to cεpx̂tq is minimized on their convex
hull, a subset of Kε.

Main structural result

Theorem 2.A.13. Consider a family of strictly convex functions ψθ : K� ÞÑ R parameter-
ized by θ lying in an interval Θ � R of radius RΘ that are all minimized at the same x1 P
K�, and for x̂1, . . . , x̂T P BK consider a sequence of functions of form Utpx, η, θq (2.36), as
well as the associated regularized upper bounds U pρq

t (2.37). Define the maximum divergence
D � maxθPΘDθ, radius K � maxxPK }x}2, and Lη the Lipschitz constant w.r.t. θ P Θ of
V̂ 2
θ

η
� ηgpθqm � fpθqm. Then Algorithm 6 with Θk � Θ the uniform discretization of Θ

s.t. maxθPΘminθ1PΘk |θ � θ1| ¤ RΘ

k
, ρ P p0, 1q, ηpθq � ρDθ?

gpθqm , ηpθq � Dθ

b
1�ρ2
gpθqm , αpθq �

2ρ2

Dθ
?
gpθqm , and λ �

�
M

�
1
ρ
�
a
1� ρ2

	
� Fm

	�1b
log k
2T

leads to a sequence pxt, ηtpθtq, θtq
s.t. E

°T
t�1 Utpxt, ηtpθtq, θtq is bounded by

E min
θPΘ,η¡0

8SK2p1� log T q
η

�
�
V̂ 2
θ

η
� ηgpθqm� fpθqm� LηRΘ

k
�min

"
ρ2D2

η
, ρM

*�
T

�
�
4M

ρ
� Fm


a
T log k � Mp1� logpT � 1qq

2ρ2

(2.150)

and
°T
t�1 Utpxt, ηtpθtq, θtq is bounded w.p. ¥ 1� δ1k¡1 by

min
θPΘ,η¡0

8SK2p1� log T q
η

�
�
V̂ 2
θ

η
� ηgpθqm� fpθqm� LηRΘ

k
�min

"
ρ2D2

η
, ρM

*�
T

�
�
4M

ρ
� Fm


�a
T log k � 1k¡1

c
T

2
log

1

δ

�
� Mp1� logpT � 1qq

2ρ2

(2.151)

87



Proof. Formally, we have that

E
Ţ

t�1

Utpxt, ηtpθtq, θtq

� E
Ţ

t�1

Bθtpcθtpx̂tq||xtq
ηtpθtq � ηtpθtqgpθqm� fpθqm

¤
�
M

�
1

ρ
�
?
2



� Fm


a
2T log k � Emin

θPΘk

Ţ

t�1

Bθpcθpx̂tq||xtq
ηtpθq � ηtpθqgpθqm� fpθqm

¤
�
4M

ρ
� Fm


a
T log k � E min

θPΘk,η¡0,xPK

Ţ

t�1

Bθpcθpx̂tq||xq
η

� ηgpθqm� fpθqm

�min

"
ρ2D2

θ

η
, ρDθ

a
gpθqm

*
T � Dθ

a
gpθqmp1� logpT � 1qq

2ρ2
� 8SK2p1� log T q

η
(2.152)

where the first inequality is the regret of multiplicative weights with step-size λ [Shalev-Shwartz,
2011, Corollary 2.14] and the second is by applying Lemma 2.A.4 for each θ. We then simplify
and apply the definition of V̂ 2

θ via Claim B.2.2 and conclude by applying Lipschitzness w.r.t. θ:

E
Ţ

t�1

Utpxt, ηtpθtq, θtq

¤
�
4M

ρ
� Fm


a
T log k � E min

θPΘk,η¡0

V̂ 2
θ T

η
� ηgpθqmT � fpθqmT

�min

"
ρ2D2

η
, ρM

*
T � Mp1� logpT � 1qq

2ρ2
� 8SK2p1� log T q

η

¤ E min
θPΘ,η¡0

8SK2p1� log T q
η

�
�
V̂ 2
θ

η
� ηgpθqm� fpθqm� LηRΘ

k
�min

"
ρ2D2

η
, ρM

*�
T

�
�
4M

ρ
� Fm


a
T log k � Mp1� logpT � 1qq

2ρ2

(2.153)

The w.h.p. guarantee follows by Cesa-Bianchi and Lugosi [2006, Lemma 4.1].

2.A.7 Implicit exploration

Properties of the Tsallis entropy

Lemma 2.A.5. For any ε P p0, 1s and x P △ s.t. xras ¥ ε
d
@ a P rds the β-Tsallis entropy

Hβpxq � �1�°d
a�1 x

β
ras

1�β is d log d
ε
-Lipschitz w.r.t. β P r0, 1s.
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Proof. Let logβ x � x1�β�1
1�β be the β-logarithm function and note that by Yamano [2002, Equa-

tion 6] we have logβ x � log x � p1 � βqpBb logβ x � logβ x log xq ¥ 0 @ β P r0, 1s. Then we
have for β P r0, 1q that

|BβHβpxq| �
�����
�Hβpxq �

°d
a�1 x

β
ras log xras

1� β

�����
� 1

1� β

�����
ḑ

a�1

xβrasplogβ xras � log xrasq
�����

� 1

1� β

ḑ

a�1

xβrasplogβ xras � log xrasq

¤ 1

1� β

�
ḑ

a�1

xras

�β � ḑ

a�1

plogβ xras � log xrasq
1

1�β

�1�β

¤ 1

1� β

ḑ

a�1

logβ xras � log xras ¤ d

1� β
plogβ

d

ε
� log

d

ε
q ¤ �d log d

ε

(2.154)

where the fourth inequality follows by Hölder’s inequality, the fifth by subadditivity of xa for
a P p0, 1s, the sixth by the fact that Bxplogβ x � log xq � x�β � 1{x ¤ 0 @ β, x P r0, 1q, and

the last line by substituting β � 0 since Bβ
�

logβ x�log x

1�β

	
� 2px�xβq�p1�βqpxβ�xq log x

xβp1�βq3 ¤ 0 @ β P
r0, 1q, x P p0, 1{ds. For β � 1, applying L’Hôpital’s rule yields

lim
βÑ1

BβHβpxq � �1

2
lim
βÑ1

ḑ

a�1

xβras log
2 xrasp1� p1� βq log xrasq � �1

2

ḑ

a�1

xras log
2 xras (2.155)

which is bounded on r�2d{e2, 0s.

Lemma 2.A.6. Consider x1, . . . ,xT P △ s.t. xtpatq � 1 for some at P rds, and let x̄ �
1
T

°T
t�1 xt be their average. For any ε P p0, 1s and β P p0, 1s we have that for every t P rT s

Hβpx̄pεqq �Hβpxpεqt q ¤ Hβpx̄q (2.156)

where recall that xpεq � c ε
1�ε pxq � 1d{d� p1� εqpx� 1d{dq � p1� εqx� ε

d
1d.

Proof. Assume w.l.o.g. that x̄r1s ¤ x̄r2s ¤ . . . ¤ x̄rds and at � 1, so that xpεqt � e
pεq
1 . We take the
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derivative

BεHβ

�
p1� εqx̄� ε

d
1d

	
� BεHβ

�
e
pεq
1

	

� d

1� β

d�1̧

a�1

�
1

pp1� εqx̄ras � ε{dq1�β �
1

pε{dq1�β



� d

1� β

d�1̧

a�1

�
1

pp1� εq � ε{dq1�β �
1

pp1� εqx̄rds � ε{dq1�β



� d2

1� β

d�1̧

a�1

x̄ras

�
1

pp1� εqx̄rds � ε{dq1�β �
1

pp1� εqx̄ras � ε{dq1�β



(2.157)

By the assumption that x̄ras is non-decreasing in a, each of the summands above become non-
positive. So for ε P p0, 1s the derivative is non-positive, and for εÑ 0� it goes to �8. Thus the
l.h.s. of the bound is monotonically non-increasing in ε for all ε P r0, 1s. The result then follows
from the fact that for ε � 0 we have Hβ

�p1� εqx̄� ε
d
1d
��Hβ

�
e
pεq
1

	
� Hβpx̄q.

Implicit exploration bounds

Lemma 2.A.7. Suppose we play OMDβ,η with regularizer ψβ the negative Tsallis entropy and
initialization x1 P △ on the sequence of linear loss functions ℓ1, . . . , ℓT P r0, 1sd. Then for any
x P △ we have

Ţ

t�1

xℓt,xt � xy ¤ Bβpx||x1q
η

� η

β

ḑ

a�1

x2�β
tras ℓ

2
t paq (2.158)

Proof. Note that the following proof follows parts of the course notes by Luo [2017], which we
reproduce for completeness. The OMD update at each step t involves the following two steps:
set yt�1 P △ s.t. ∇ψβpyt�1q � ∇ψβpxtq � ηℓt and then set xt�1 � argminxP△ Bβpx,yt�1q
[Hazan, 2015, Algorithm 14]. Note that by Hazan [2015, Equation 5.3] and nonnegativity of the
Bregman divergence we have

Ţ

t�1

xℓt,xt � xy ¤ Bβpx||x1q
η

� 1

η

Ţ

t�1

Bβpxt||yt�1q (2.159)

To bound the second term, note that when ψβ is the negative Tsallis entropy we have

Bβpxt||yt�1q

� 1

1� β

ḑ

a�1

�
yβt�1ras � xβtras �

β

y1�β
t�1ras

pxtras � yt�1ras

�

� 1

1� β

ḑ

a�1

�
p1� βqyβt�1ras � xβtras � β

�
1

x1�β
tras

� 1� β

β
ηℓtpaq

�
xtras

�

�
ḑ

a�1

�
yβt�1ras � xβtras � ηxtrasℓtpaq

	
(2.160)
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Plugging the following result, which follows from p1�xqα ¤ 1�αx�αpα�1qx2 @ x ¥ 0, α   0,
into the above yields the desired bound.

yβt�1ras � xβtras

�
yβ�1
t�1ras
xβ�1
tras

� β
β�1

� xβtras

�
1� 1� β

β
ηx1�β

tras ℓtpaq

 β

β�1

¤ xβtras

�
1� ηx1�β

tras ℓtpaq �
η2

β
x2�2β
tras ℓtpaq2




� xβtras � ηxtrasℓtpaq � η2

β
x2�β
tras ℓtpaq2

(2.161)

Theorem 2.A.14. In Algorithm 6, let OMDη,β be online mirror descent with the Tsallis entropy
regularizer ψβ over γ-offset loss estimators, Θk is a subset of rβ, βs � r 1

log d
, 1s, and

Utpx, η, βq � Bβpx̂pεqt ||xq
η

� ηdβm

β
(2.162)

where x̂
pεq
t � p1 � εqx̂t � ε1d{d. Note that U pρq

t px, η, βq � Utpx, η, βq � ρ2pd1�β�1q
ηp1�βq . Then there

exists settings of η, η, α, λ s.t. for all ε, ρ, γ P p0, 1q we have w.p. ¥ 1� δ that

Ţ

t�1

m̧

i�1

ℓt,ipat,iq � ℓt,ip̊atq

¤ pε� γdqmT �
2�

b
d log d
em

γ
log

5

δ
� 8d

?
m

ρ

�
1k¡1

c
T log

5k

δ
� 1� logpT � 1q

16ρ

�

� min
βPrβ,βs,η¡0

8
�
d
ε

�2�β p1� log T q
η

�
�
Ĥβ

η
� ηdβm

β
� Lηpβ � βq

2k
� dmin

"
ρ2

2η
, ρ
?
m

*�
T

(2.163)

for Lη �
�

log d
ε

η
� ηm log2 d

	
d.

Proof. In this setting we have gpβq � dβ{β, fpβq � 0, D2
β � d1�β�1

1�β , D ¤ a
d{2, M � d

?
m,
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F � 0, S � pd{εq2�β , and K � 1. We have that

Ţ

t�1

m̧

i�1

ℓt,ipat,iq � ℓt,ip̊atq

�
Ţ

t�1

m̧

i�1

xℓ̂t,i,xt,iy � ℓt,ip̊atq � γ
ḑ

a�1

ℓ̂t,ipaq

¤
Ţ

t�1

Bβtpx̂pεqt ||xt,1q
ηt

�
m̧

i�1

xℓ̂t,i, x̂pεqt y � ℓt,ip̊atq � ηt
βt

ḑ

a�1

x2�βt
t,iras ℓ̂

2
t,ipaq � γ

ḑ

a�1

ℓ̂t,ipaq

¤ εmT �
Ţ

t�1

Bβtpx̂pεqt ||xt,1q
ηt

�
m̧

i�1

xℓ̂t,i, x̂pεqt y � xℓt,i, x̊pεqt y

�
Ţ

t�1

ηt
βt

m̧

i�1

ḑ

a�1

x1�βt
t,iras ℓ̂t,ipaq � γ

ḑ

a�1

ℓ̂t,ipaq

(2.164)

where the equality follows similarly to Luo [2017] since xℓ̂t,i,xt,iy � ℓt,ipat,iq � γ
°d
a�1 ℓ̂t,ipaq,

the first inequality follows by Lemma 2.A.7 and the second by Hölder’s inequality and the defi-
nitions of ℓ̂t,i and x̂

pεq
t,i . We next apply the optimality of ât for

°m
i�1 ℓ̂t,i to get

Ţ

t�1

m̧

i�1

ℓt,ipat,iq � ℓt,ip̊atq

¤ εmT �
Ţ

t�1

Bβtpx̂pεqt ||xt,1q
ηt

� p1� εq
m̧

i�1

ℓ̂t,ip̊atq � ℓt,ip̊atq � ε

d

ḑ

a�1

ℓ̂t,ipaq � ℓt,ipaq

�
Ţ

t�1

ηt
βt

m̧

i�1

ḑ

a�1

x1�βt
t,iras ℓ̂t,ipaq � γ

ḑ

a�1

ℓ̂t,ipaq

¤ εmT �
1� ε

d
� η

β
� γ

2γ
log

5

δ
�

Ţ

t�1

Bβtpx̂pεqt ||xt,1q
ηt

�
Ţ

t�1

ηt
βt

m̧

i�1

ḑ

a�1

x1�βt
t,irasℓt,ipaq � γ

ḑ

a�1

ℓt,ipaq

¤ εmT �
2�

b
d log d
em

γ
log

5

δ
� γdmT �

Ţ

t�1

Bβtpx̂pεqt ||xt,1q
ηt

� ηtd
βtm

βt

(2.165)

where the the second inequality follows by Neu [2015, Lemma 1] applied to each of the last four
terms and the fifth by the definition of ℓt,i and using maxβPr 1

log d
,1s ηpβq ¤

b
d

em log d
. Substituting

into Theorem 2.A.13 and simplifying yields the result except with V̂ 2
β � 1

T

°T
t�1 ψβpx̂pεqt q �

ψβpˆ̄xpεqq in place of Ĥβ , but the former is bounded by the latter by Lemma 2.A.6.
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Corollary 2.A.10. Let β � β � 1. Then w.h.p. we can ensure task-averaged regret at most

2

b
Ĥ1dm� Õ

�
d
?
m� d

2
3m

2
3

3
?
T

�
(2.166)

so long as mT ¥ d2 or alternatively ensure

min

#
2

b
Ĥ1dm� Õ

�
d

3
4m

3
4 � d

?
m

4
?
T

�
, 2
a
dm log d� Õ

�
d

3
2
?
m?
T

�+
(2.167)

so long as mT ¥ d.

Proof. Applying Theorem 2.A.14, simplifying, and dividing by T yields task-averaged regret at
most

pε� γdqm�
2�

b
d log d
em

γT
log

5

δ
�
�
1� logpT � 1q

2ρ2T
�min

"
ρ2

η
?
m
, ρ

*

d
?
m

�min
η¡0

8dp1� log T q
εηT

�
�
Ĥ1

η
� ηdm

� (2.168)

Set γ � 1?
dmT

. Then set ε � 3

b
d2

mT
and ρ � 1

3?T , and use η �
b

Ĥ1

dm
� 1

3?dmT to get the first

result. Otherwise, set ε �
b

d
mT

and ρ � 1
4?T , and use the better of η �

b
Ĥ1

dm
� 1

4?dmT and

η �
b

log d
dm

to get the second.

Corollary 2.A.11. Let β � 1
2

and β � 1 and assume mT ¥ d
5
2 . Then w.h.p. we can ensure

task-averaged regret at most

min
βPr 1

2
,1s
2

b
Ĥβdβm{β � Õ

�
d

5
7m

5
7

T
2
7

� d
?
m

4
?
T

�
(2.169)

using k � P
4
?
d
?
T
T
.

Proof. Applying Theorem 2.A.14, simplifying, and dividing by T yields task-averaged regret at
most

pε� γdqm�
2�

b
d log d
em

γT
log

5

δ
� 8d

?
m

ρ

�
�
d

log 5k
δ

T
� 1� logpT � 1q

16ρT

�


� min
βPrβ,βs,η¡0

8d
3
2 p1� log T q
ε

3
2ηT

�
�
Ĥβ

η
� ηdβm

β
� d

4k

�
log d

ε

η
� ηm log2 d

�
� ρd

?
m

�

(2.170)

Set γ � 1?
dmT

, ε � d
5
7

pmT q 27
, ρ � 1

4?T , and use η �
b

βĤβ
mdβ

� 1

pdmT q 27
to get the result.
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Corollary 2.A.12. Let β � 1
log d

and β � 1 and assume mT ¥ d3. Then w.h.p. we can ensure
task-averaged regret at most

min
βPp0,1s

2

b
Ĥβdβm{β � Õ

�
d

3
4m

3
4 � d

?
m

4
?
T

�
(2.171)

using k � P
4
?
d
?
T
T
.

Proof. Applying Theorem 2.A.14, dividing by T , and simplifying yields

pε� γdqm�
2�

b
d log d
em

γT
log

5

δ
� 8d

?
m

ρ

�
�
d

log 5k
δ

T
� 1� logpT � 1q

16ρT

�


� min
βPrβ,βs,η¡0

8d2p1� log T q
ε2ηT

�
�
Ĥβ

η
� ηdβm

β
� d

2k

�
log d

ε

η
� η log2 d

�
� ρd

?
m

�

(2.172)

Note that Ĥβ and dβ

β
are both decreasing on β   1

log d
, so β in the chosen interval is optimal

over all β P p0, 1s. Set γ � 1?
dmT

, ε � d
3
4

4?mT , ρ � 1
4?T , and use η �

b
βĤβ
mdβ

� 1
4?dmT to get the

result.

2.A.8 Guaranteed exploration

Best-arm identification

Lemma 2.A.8. Suppose for ε ¡ 0 we run OMD on task t P rT s with initialization xt,1 P
△pεq, regularizer ψβt � I△pεq for some βt P p0, 1s, and unbiased loss estimators (γ � 0). If

Assumption 2.4.1 holds andm ¡ 28d log d
3ε∆2 then x̂t � x̊t w.p. ¥ 1�dκ, where κ � exp

�
�3ε∆2m

28d

	
.

Proof. We extend the proof by Abbasi-Yadkori et al. [2018, Appendices B and F] to arbitrary
lower bounds ε{d on the probability. First, since 0 ¤ ℓ̂t,ipaq ¤ d

ε
ℓt,ipaq we have that

�d
ε
¤ �1 ¤ �ℓt,ipaq ¤ ℓ̂t,ipaq � ℓt,ipaq ¤

�
d

ε
� 1



ℓt,ipaq ¤ d

ε
(2.173)

and so |ℓ̂t,ipaq � ℓt,ipaq| ¤ d
ε
. Therefore since the variance of the estimated losses is a scaled

Bernoulli we have that

Varpℓ̂t,ipaq � ℓt,ipaqq � Varpℓ̂t,ipaqq � xt,irasp1� xt,irasq
�
ℓt,ipaq
xt,iras


2

¤ ℓ2t,ipaq
xt,iras

¤ d

ε
(2.174)

We can thus apply a martingale concentration inequality of Fan et al. [2012, Corollary 2.1] to the
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martingale difference sequence (MDS) ε
d
pℓ̂t,ipaq � ℓt,ipaqq P r� ε

d
, 1s to obtain

Pr

�
m̧

i�1

ℓ̂t,ipaq � ℓt,ipaq ¥ m∆a

2

�
� Pr

�
ε

d

m̧

i�1

ℓ̂t,ipaq � ℓt,ipaq ¥ εm∆a

2d

�

¤ Pr

�
max
jPrms

ε

d

m̧

i�j
ℓ̂t,ipaq � ℓt,ipaq ¥ εm∆a

2d

�

¤ exp

�
� 2

�
εm∆a
2d

�2
min

 
mp1� ε{dq2, 4pεm{d� εm∆a

6
q(
�

¤ exp

�
� 2

�
εm∆a
2d

�2
4pεm{d� εm∆a

6
q

�

� exp

�
� 3εm∆2

a

4dp6�∆aq



¤ exp

�
�3εm∆2

a

28d



(2.175)

where ∆a � 1
m
|°m

i�1 ℓt,ipaq �mina1�a
°m
i�1 ℓt,ipa1q| is the per-arm loss gap in the last step we

apply ∆a ¤ 1. For the symmetric MDS � ε
d
¤ ℓt,ipaq � ℓ̂t,ipaq ¤ 1 we have

Pr

�
m̧

i�1

ℓ̂t,ipaq � ℓt,ipaq ¤ �m∆a

2

�
� Pr

�
m̧

i�1

ℓt,ipaq � ℓ̂t,ipaq ¥ m∆a

2

�

¤ exp

�
� 2

�
m∆a
2

�2
4
�
dm
ε
� m∆a

6

�
�

¤ exp

�
� 3εm∆2

a{d
4p6� ε∆a{dq




¤ exp

�
�3εm∆2

a

28d



(2.176)
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We can then conclude that

Pr px̂t � x̊tq

¤ Pr

�
D a � åt :

m̧

i�1

ℓ̂t,ipaq ¤
m̧

i�1

ℓt,ip̊atq
�

¤ Pr

�
m̧

i�1

ℓ̂t,ip̊atq ¥
m̧

i�1

ℓt,ip̊atq � m∆åt

2
_ D a � åt :

m̧

i�1

ℓ̂t,ipaq ¤
m̧

i�1

ℓt,ipaq � m∆a

2

�

¤ Pr

�
m̧

i�1

ℓ̂t,ip̊atq ¥
m̧

i�1

ℓt,ip̊atq � m∆åt

2

�
�

¸
a�åt

Pr

�
m̧

i�1

ℓ̂t,ipaq ¤
m̧

i�1

ℓt,ipaq � m∆a

2

�

¤ exp

�
�3εm∆2

åt

28d



�

¸
a�åt

exp

�
�3εm∆2

a

28d




¤ d exp

�
�3εm∆2

28d



(2.177)

where the second-to-last line follows by substituting the bounds (2.175) and (2.176) into the left
and right terms, respectively.

Lemma 2.A.9. Suppose on each task t P rT s we run OMD as in Lemma 2.A.8. Then for any
β P p0, 1s we have 1

T
E
°T
t�1 ψβpx̂pεqt q � ψβpˆ̄xpεqq ¤ �ψβ p̊x̄q � 3dκβ

1�β

��
d
ε

�1�β � 1
	

.

Proof. We consider the expected divergence of the best initialization under the worst-case distri-
bution of best arm estimation, which satisfies Lemma 2.A.8 and (2.177). We have by Claim B.2.2
and the mean-as-minimizer property of Bregman divergences that

1

T
E

Ţ

t�1

ψβpx̂pεqt q � ψβpˆ̄xpεqq � E min
xP△pεq

1

T

Ţ

t�1

Bβ
�
x̂
pεq
t ||x

	

¤ min
xP△pεq

E
1

T

Ţ

t�1

Bβ
�
x̂
pεq
t ||x

	

� min
xP△pεq

1

T

Ţ

t�1

ḑ

a�1

Ppa � âtqBβ
�
epεqa ||x

�

¤ max
ptP△,@tPrT s

ptras¤2κ,@tPrT s,a�åt
1�dκ¤ptras,@tPrT s,a�åt

min
xP△pεq

1

T

Ţ

t�1

ḑ

a�1

ptrasBβ
�
epεqa ||x

�
(2.178)

To simplify the last expression, we define p̄ � 1
T

°T
t�1 pt and again apply the (weighted) mean-
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as-minimizer property, followed by Claim B.2.2:

min
xP△pεq

1

T

Ţ

t�1

ḑ

a�1

ptrasBβ
�
epεqa ||x

� � min
xP△pεq

ḑ

a�1

p̄rasBβ
�
epεqa ||x

� � ḑ

a�1

Bβ
�
epεqa ||p̄pεq

�
� ψβpepεq1 q � ψβpp̄pεqq

(2.179)

By substituting into the previous inequality, we can bound the expected divergence for the worst-
case pt as follows:

1

T
E

Ţ

t�1

ψβpx̂pεqt q � ψβpˆ̄xpεqq ¤ ψβ

�
e
pεq
1

	
� max

ptP△,@tPrT s
ptras¤2κ,@tPrT s,a�åt

1�dκ¤ptras,@tPrT s,a�åt

�ψβpp̄pεqq

¤ ψβ

�
e
pεq
1

	
� max°T

t�1

°d
a�1 ptras�T°T

t�1 ptras¥p1�dκq̊x̄rasT,@a°T
t�1 ptras¤p2κp1�̊x̄rasqT �̊x̄rasT q,@a

�ψβpp̄pεqq

� ψβ

�
e
pεq
1

	
� min

p̄P△
p̄ras¥p1�dκq̊x̄ras,@a

p̄ras¤2κ�p1�2κq̊x̄ras,@a

ψβpp̄pεqq

(2.180)

We use the shorthand hpxq � ψβ
�p1� εqx� ε

d
1d
�
. We have

�Bxras pψβpxqq � Bxras
�

1

p1� βq

�
ḑ

b�1

xβrbs � 1

��

� Bxras
�

1

p1� βq

�
ḑ

b�1

xβrbs � βd1�βp1�
ḑ

b�1

xrbsq � 1

��

� β

1� β
�
�
xβ�1
ras � d1�β

	
(2.181)

and therefore

}∇hpxq}8 � max
a�1,...,d

���Bxrasψβ �p1� εqx� ε

d
1d

	���
¤ β

1� β
max
a�1,...,d

��pp1� εqxras � ε{dqβ�1 � d1�β
��

¤ β

1� β

��
d

ε


1�β
� 1

�
� β logβ

�
d

ε


 (2.182)

Finally, by convexity of h we have

min
p̄P△

p̄ras¥p1�dκq̊x̄ras,@a
p̄ras¤2κ�p1�2κq̊x̄ras,@a

hpp̄q ¥ hp̊x̄q � }∇hp̊x̄q}8 max
p̄P△

p̄ras¥p1�dκq̊x̄ras,@a
p̄ras¤2κ�p1�2κq̊x̄ras,@a

}p̄�˚̄x}1

¥ hp̊x̄q � 3dκ}∇hp̊x̄q}8
¥ hp̊x̄q � 3dκβ logβ

�
d

ε


 (2.183)
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so we can substitute into (2.180) to get

1

T
E

Ţ

t�1

ψβpx̂pεqt q � ψβpˆ̄xpεqq ¤ �ψβ p̊x̄pεqq � 3dκβ

1� β

��
d

ε


1�β
� 1

�
(2.184)

Applying Lemma 2.A.6 completes the proof.

Guaranteed exploration bounds

Lemma 2.A.10. Suppose we play OMDβ,η with initialization x1 P △pεq, regularizer ψβ � I△pεq

for some β P p0, 1s, and unbiased loss estimators (γ � 0) on the sequence of loss functions
ℓ1, . . . , ℓT P r0, 1sd. Then for any å P rds we have expected regret

E
Ţ

t�1

ℓtpatq � ℓtp̊aq ¤ EBβpx̂pεq||x1q
η

� ηdβm

β
� εm (2.185)

for x̂ the estimated optimum of the loss estimators ℓ̂1, . . . , ℓ̂T .

Proof.

E
Ţ

t�1

ℓtpatq � ℓtp̊aq � E
Ţ

t�1

ℓtpatq � xℓt, x̊y

¤ E
Ţ

t�1

ℓtpatq � xℓt, x̊pεqy � εm

� E
m̧

t�1

ℓ̂tpatq � xℓ̂t, x̊pεqy � εm

¤ E
m̧

t�1

ℓ̂tpatq � xℓ̂t, x̂pεqy � εm

¤ E

�
Bβpx̂pεq||x1q

η
� η

β

Ţ

t�1

ḑ

a�1

ℓ̂2t paqx2�β
tras

�
� εm

¤ EBβpx̂pεq||x1q
η

� ηdβm

β
� εm

(2.186)

where the second inequality follows by optimality of x̂ for the estimated losses ℓ̂t, the third by
Lemma 2.A.7 constrained to △pεq, and the fourth similarly to Theorem 2.A.14 (note both are also
effectively shown in Luo [2017]).

Theorem 2.A.15. In Algorithm 6, let OMDη,β be online mirror descent with the regularizer ψβ �
I△pεq over unbiased (γ � 0) loss estimators, Θk is a subset of rβ, βs � r 1

log d
, 1s, and

Utpx, η, βq � Bβpx̂pεqt ||xq
η

� ηdβm

β
(2.187)
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where x̂
pεq
t � p1� εqx̂t � ε1d{d. Note that U pρq

t px, η, βq � Utpx, η, βq � ρ2pd1�β�1q
ηp1�βq . Then under

Assumption 2.4.1 there exists settings of η, η, α, λ s.t. for all ε, ρ P p0, 1q we have that

E
1

T

Ţ

t�1

m̧

i�1

ℓt,ipat,iq � ℓt,ip̊atq

¤ εm� 8d
?
m

ρ

�
1k¡1

c
log k

T
� 1� logpT � 1q

16ρT

�

� min
βPrβ,βs,η¡0

8
�
d
ε

�2�β p1� log T q
ηT

� hβp∆q
η

� ηdβm

β
� Lηpβ � βq

2k
� dmin

"
ρ2

2η
, ρ
?
m

*
(2.188)

forLη �
�

log d
ε

η
� ηm log2 d

	
d, hβp∆q � pHβ� 56

dm
qι∆�d1�β�1

1�β p1�ι∆q, and ι∆ � 1m¥ 75d
ε∆2 log d

ε∆2
.

Proof. By Lemma 2.A.10 we have

E
Ţ

t�1

m̧

i�1

ℓt,ipat,iq � ℓt,ip̊atq ¤ εmT � E
Ţ

t�1

Bβtpx̂pεqt ||xt,1q
ηt

� ηtd
βtm

βt
(2.189)

Since we have the same environment-dependent quantities as in Theorem 2.A.14, we can substi-
tute the above bound into Theorem 2.A.13 and then apply the Lemma 2.A.9 bound

EV̂ 2
β ¤ Hβ � 3dκβ

1� β

��
d

ε


1�β
� 1

�
¤ Hβ � 3d2

ε
exp

�
�3ε∆2m

28d




� Hβ � 3ε∆2

d2
exp

�
4 log

d

ε∆2
� 3ε∆2m

28d




¤ Hβ � 3ε∆2{d2
3ε∆2m
28d

� 4 log d
ε∆2

¤ Hβ � 56

dm

(2.190)

where the last line follows by assuming m ¥ 75d
ε∆2 log

d
ε∆2 . If this condition does not hold, then

we apply the default bound of EV̂ 2
β ¤� 1

T

°T
t�1 ψβpx̂tq � ψβpˆ̄xq ¤ d1�β�1

1�β .

Corollary 2.A.13. Let β � β � 1. Then for known ∆ and assuming m ¥ 75d
∆2 log

d
∆2 we can

ensure expected task-averaged regret at most

2
a
H1dm� 56� 75d

∆2
W

�m
75

	
� Õ

�
d

3
2m

3
4?

T
� d∆2m2

T

�
(2.191)

where W is the Lambert W -function, while for unknown ∆ we can ensure expected task-
averaged regret at most

2
a
H1dm� 56� 3

∆
3

d
50dm log d log

d2m2

150∆6 log d
� Õ

�
d

3
2m

3
4?

T
� d

4
3m

5
3

T

�
(2.192)
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so long as m2 ¥ 150d log d.

Proof. Applying Theorem 2.A.15 and simplifying yields

εm� 8d
?
mp1� logpT � 1qq

16ρ2T
�min

η¡0

8dp1� log T q
εηT

� h1p∆q
η

� ηdm� dρ2

2η
(2.193)

Then substitute η �
b

h1p∆q
dm

and set ρ � 4

b
1

dT
?
m

and ε � 75d
∆2m

W pm
75
q (for known ∆) or

ε � 3

b
150d log d

m2 (otherwise).

Corollary 2.A.14. Let β � 1
2

and β � 1. Then for known ∆ and assuming m ¥ 75d
∆2 log

d
∆2 we

can ensure task-averaged regret at most

min
βPr 1

2
,1s
2
b
pHβm� 56{dqdβ{β � 75d

∆2
W

�m
75

	
� Õ

�
d

4
3m

2
3

3
?
T

� d
5
3m

5
6

T
2
3

� d∆3m
5
2

T

�
(2.194)

using k � r 3
?
d2mT s, while for unknown ∆ we can ensure expected task-averaged regret at most

min
βPr 1

2
,1s
2
b
pHβm� 56{dqdβ{β � 3

∆
3

c
50d2m log

dm2

150∆6
� Õ

�
d

4
3m

2
3

3
?
T

� d
5
3m

5
6

T
2
3

� d
3
2m2

T

�
(2.195)

so long as m ¥ 5d
?
6.

Proof. Applying Theorem 2.A.15 and simplifying yields

εm� 8d
?
m

ρ

�c
log k

T
� 1� logpT � 1q

16ρT

�

� min
βPrβ,βs,η¡0

8d
3
2 p1� log T q
ε

3
2ηT

� hβp∆q
η

� ηdβm

β
� d

4k

�
log d

ε

η
� ηm log2 d

�
� dρ2

2η

(2.196)

Then substitute η �
b

hβp∆q
dβm{β and set ρ � 3

b
1

d
?
mT

and ε � 75d
∆2m

W pm
75
q (for known ∆) or

ε � 3

b
150d2

m2 (otherwise).

Corollary 2.A.15. Let β � 1
log d

and β � 1. Then for known ∆ and assuming m ¥ 75d
∆2 log

d
∆2

we can ensure task-averaged regret at most

min
βPp0,1s

2
b
pHβm� 56{dqdβ{β � 75d

∆2
W

�m
75

	
� Õ

�
d

4
3m

2
3

3
?
T

� d
5
3m

5
6

T
2
3

� d∆4m3

T

�
(2.197)

using k � r 3
?
d2mT s, while for unknown ∆ we can ensure expected task-averaged regret at most

min
βPp0,1s

2
b
pHβm� 56{dqdβ{β � 3

∆
3

c
50d2m log

dm2

150∆6
� Õ

�
d

4
3m

2
3

3
?
T

� d
5
3m

5
6

T
2
3

� d
5
3m

7
3

T

�
(2.198)

so long as m ¥ 5d
?
6.
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Proof. Applying Theorem 2.A.15 and simplifying yields

εm� 8d
?
m

ρ

�c
log k

T
� 1� logpT � 1q

16ρT

�

� min
βPrβ,βs,η¡0

8d2p1� log T q
ε2ηT

� hβp∆q
η

� ηdβm

β
� d

2k

�
log d

ε

η
� ηm log2 d

�
� dρ2

2η

(2.199)

Then substitute η �
b

hβp∆q
dβm{β and set ρ � 3

b
1

d
?
mT

and ε � 75d
∆2m

W pm
75
q (for known ∆) or

ε � 3

b
150d2

m2 (otherwise).

Corollary 2.A.16. Let β � 1
log d

and β � 1. Then for unknown ∆ and assuming m ¥
maxtd 3

4 , 56u we can ensure task-averaged regret at most

min
βPp0,1s

min

#
8
?
dm, 2

d�
Hβm� 56

d



dβ

β
� 21d

3
4 3
?
m

∆

c
3 log

dm

∆2

+

� Õ

�
d

4
3m

2
3

3
?
T

� d
5
3m

5
6

T
2
3

� d2m
7
3

T

� (2.200)

using k � r 3
?
d2mT s.

Proof. Applying Theorem 2.A.15 and simplifying yields

εm� 8d
?
m

ρ

�c
log k

T
� 1� logpT � 1q

16ρT

�

� min
βPrβ,βs,η¡0

8d2p1� log T q
ε2ηT

� hβp∆q
η

� ηdβm

β
� d

2k

�
log d

ε

η
� ηm log2 d

�
� dρ2

2η

(2.201)

Then substitute η �
b

hβp∆q
dβm{β and set ρ � 3

b
1

d
?
mT

and ε �
?
d

3?
m2

.

2.A.9 Robustness to outliers

Proposition 2.A.6. Suppose there exists a constant p P r0, 1s and a subset S � rT s of size
s such that åt P S for all but OpT pq MAB tasks t P rT s. Then if β P r 1

log d
, 1
2
s we have

Hβ � Ops� d1�β
Tβp1�pq q.

Proof. Define the vector eS P r0, 1sd s.t. eSras � 1aPS . Then by Claim B.2.2 and the mean-as-
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minimizer property of Bregman divergences we have

Hβ � �ψβ p̊x̄q

� 1

T

Ţ

t�1

ψβ p̊xtq � ψβ p̊x̄q

� 1

T

Ţ

t�1

Bβ p̊xt||̊x̄q

� min
xP△d

1

T

Ţ

t�1

Bβ p̊xt||̊x̄q

¤ min
δPp0,1q

1

T

Ţ

t�1

Bβ
�̊
xt

����
����1� δ

s
eS � δ

d
1d




� min
δPp0,1q

1

T

Ţ

t�1

1

1� β

ḑ

a�1

�
1� δ

s
1aPS � δ

d


β

� x̊βtras �
βp̊xtras � 1�δ

s
1aPS � δ

d
q

p1�δ
s
1sPS � δ

d
qβ

� min
δPp0,1q

1

T

Ţ

t�1

ḑ

a�1

�
1� δ

s
1aPS � δ

d


β

�
x̊βtras
1� β

�
βx̊βtras

p1� βqp1�δ
s
1aPS � δ

d
q1�β

¤ min
δPp0,1q

s1�β � δβd1�β � β

p1� βqT
Ţ

t�1

ḑ

a�1

1a�åt
p1� βqp1�δ

s
1aPS � δ

d
q1�β

¤ min
δPp0,1q

s1�β

1� β
� δβd1�β �O

�
βpd

δ
q1�β

p1� βqT 1�p

�

� O
�
s� d1�β

T βp1�pq




(2.202)

where the last line follows by considering δ � 1{T 1�p.

2.A.10 Online learning with self-concordant barrier regularizers

General results

Lemma 2.A.11. Let K � Rd be a convex set and ψ : K� ÞÑ Rd be a self-concordant barrier.
Suppose ℓ1, . . . , ℓT are a sequence of loss functions satisfying |xℓt,xy| ¤ 1 @ x P K. Then if we
run OMD with step-size η ¡ 0 as in Abernethy et al. [2008b, Algorithm 1] on the sequence of
estimators ℓ̂t our estimated regret w.r.t. any x P Kε for ε ¡ 0 will satisfy

Ţ

t�1

xℓ̂t,xt � xy ¤ Bpx||x1q
η

� 32d2ηT (2.203)

Proof. The result follows from Abernethy et al. [2008b] by stopping the derivation on the second
inequality below Equation 10.
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Definition 2.A.2. For any convex set K and any point y P K, πypxq � inf
t¥0,y�x�y

t
PK
t is the

Minkowski function with pole y.

Lemma 2.A.12. For any x P K � Rd and ψ : K� ÞÑ R a ν-self-concordant regularizer with
minimum x1 P K�, the quantity ψpcεpxqq is ν

?
2-Lipschitz w.r.t. ε P r0, 1s.

Proof. Consider any ε, ε1 P r0, 1s s.t. ε1 � ε P p0, 1
2
s Note that for t � ε1�ε

1�ε we have

cε1pxq � cε1pxq � cεpxq
t

� x1 � x� x1

1� ε1
� x1 � x�x1

1�ε � x1 � x�x1

1�ε1
t

� x P K (2.204)

so πcε1 pxqpcεpxqq ¤ ε1�ε
1�ε ¤ ε1 � ε. Therefore by Nesterov and Nemirovskii [1994, Proposi-

tion 2.3.2] we have

ψpcεpxqq � ψpcε1pxqq ¤ ν log

�
1

1� πcε1 pxqpcεpxqq


¤ ν log

�
1

1� ε� ε1



¤ νpε1 � εq

?
2

(2.205)
where for the last inequality we used� logp1�xq ¤ x

?
2 for x P r0, 1

2
s. The case of ε1�ε P p0, 1s

follows by considering ε2 � ε1�ε
2

and applying the above twice.

Theorem 2.A.16. In Algorithm 6, let OMDη,ε be online mirror descent over loss estimators spec-
ified in Abernethy et al. [2008b] with a ν-self-concordant barrier regularizer ψ : K� ÞÑ R that
satisfies ν ¥ 1 and ~∇2ψpx1q~8 � S1 ¥ 1. Let Θk be a subset of r 1

m
, 1s and

Utpx, η, εq � Bpcεpx̂q||xq
η

� 32ηd2 � εm (2.206)

Note that U pρq
t px, η, εq � Utpx, η, εq � 9ν

3
2 ρ2Km

?
S1

η
. Then there exists settings of η, η, α, λ s.t.

for all ε, ρ P p0, 1q we have expected task averaged regret at most

E min
εPr 1

m
,1s,η¡0

512ν2K2S1m
2p1� log T q
η

�
�
V̂ 2
ε

η
� 32ηd2m� εm� ν

?
2{η �m

k

�
T

� 3ν
3
4mmin

#
3ρ2ν

3
4K

?
S1

η
, 4dρ

b
2K

a
S1

+
T

� 7dm

ρ

b
2K

a
ν3S1

�
7
a
T log k � 1� logpT � 1q

ρ



(2.207)

Proof. Let ε � 1
m

. For any ε P rε, 1s and x P K we have πx1pcεpxqq ¤ 1
1�ε , so by Nesterov and

Nemirovskii [1994, Proposition 2.3.2] we have

~∇2ψpcεpxqq~8 ¤
�

1� 3ν

1� πx1pcεpxqq

2

~∇2ψpx1q~8 ¤ 64ν2S1

ε2
(2.208)
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Thus S � maxx,yPK,εPrε,1s ~∇2ψpcεpxqq~8 � 64ν2S1

ε2
and also

D2
ε � max

x,yPK
Bpcεpxq||cεpyqq

� max
x,yPK

ψpcεpxqq � ψpcεpyqq � x∇ψpcεpyqq,x� yy

¤ max
x,yPK

ν log

�
1

1� πx1pcεpxqq


�
a
ν}∇2ψpcεpyqq}2}x� y}2

¤ ν log
2

ε
� 8ν

3
2K

?
S1

ε

¤ 9ν
3
2K

?
S1

ε

(2.209)

where the first inequality follows by Nesterov and Nemirovskii [1994, Proposition 2.3.2] and the
definition of a self-concordant barrier [Abernethy et al., 2008b, Definition 5]. In addition, we
have gpεq � 32d2, fpεq � ε, M � 12d

a
2Km{ε 4

?
ν3S1, and F � 1. We have
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Ţ

t�1

εtm�
m̧

i�1

xℓ̂t,i,xt,i � cεt p̊xtqy

¤ E
Ţ
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where the first inequality follows by Abernethy et al. [2008b, Lemma 8], the second by Aber-
nethy et al. [2008b, Lemma 3], the third by optimality of x̂t, and the fourth by Lemma 2.A.11.
Substituting into Theorem 2.A.13 and simplifying yields the result.

Specialization to the unit sphere

Corollary 2.A.17. Let K be the unit sphere with the self-concordant barrier ψpxq � � logp1 �
}x}22q. Then Algorithm 6 attains expected task-averaged regret bounded by
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using k � P?
T
T
.

Proof. Using the fact the ν � 1 and K � S1 � 2, we apply Theorem 2.A.16 and simplify to
obtain
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Then substitute η � V̂ε
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where we use the fact that }x̂t}2 � 1 and the inequality is Jensen’s.

Specialization to polytopes, specifically the bandit online shortest-path problem

Corollary 2.A.18. Let K � tx P r0, 1s|E| : xa,xy ¤ b @ pa, bq P Cu be the set of flows from
u to v on a graph GpV,Eq, where C � R|E| � R is a set of Op|E|q linear constraints. Suppose
we see T instances of the bandit online shortest path problem with m timesteps each. Then
sampling from probability distributions over paths from u to v returned by running Algorithm 6
with regularizer ψpxq � �°

a,bPC logpb � xa,xyq attains the following expected average regret
across instances

Õ
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Then substitute η � V̂ε
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Omniglot 1-shot 5-shot

5-way evaluation setting hyperparameters evaluation setting hyperparameters

regular transductive η � ε
ζ

c regular transductive η � ε
ζ

c

MAML (1) 98.3� 0.5 99.2� 0.2
Reptile 95.39� 0.09 97.68� 0.04 1E � 3 98.90� 0.10 99.48� 0.06 1E � 3

ARUBA 94.57� 1.04 97.44� 0.32 1E � 1 98.64� 0.04 99.29� 0.07 1E � 2
ARUBA++ 94.80� 1.10 97.58� 0.13 1E � 1 103 98.93� 0.13 99.46� 0.02 1E � 2 103

MAML (2) 98.7� 0.4 99.9� 0.1
Meta-SGD 99.53� 0.26 99.93� 0.09

Table 2.3: Meta-learning evaluations on the 5-way Omniglot classification task.

Omniglot 1-shot 5-shot

20-way evaluation setting hyperparameters evaluation setting hyperparameters

regular transductive η � ε
ζ

c regular transductive η � ε
ζ

c

MAML (1) 95.8� 0.3 98.9� 0.2
Reptile 88.14� 0.15 89.43� 0.14 5E � 4 96.65� 0.33 97.12� 0.32 5E � 4

ARUBA 85.61� 0.25 86.67� 0.17 5E � 3 96.02� 0.12 96.61� 0.13 5E � 3
ARUBA++ 88.38� 0.24 89.66� 0.3 5E � 3 103 96.99� 0.35 97.49� 0.28 5E � 3 10

MAML (2) 95.8� 0.3 98.9� 0.2
Meta-SGD 95.93� 0.38 98.97� 0.19

Table 2.4: Meta-learning evaluations on the 20-way Omniglot classification task.

2.B Experimental details

2.B.1 Adaptive gradient-based meta-learning
Code is available at https://github.com/mkhodak/ARUBA.

Reptile

For our Reptile experiments we use the code and default settings provided by Nichol et al. [2018],
except we tune the learning rate, which for ARUBA corresponds to ε{ζ , and the coefficient c in
ARUBA++. In addition to the the parameters listed in Tables 2.3, 2.4, and 2.5, we set ζ � p � 1.0
for all experiments. All evaluations are averages of three runs.

FedAvg

For FedAvg we train a 2-layer stacked LSTM model with 256 hidden units, 8-dimensional trained
character embeddings, with a maximum input string size of 80 characters; these settings are used
to match those of McMahan et al. [2017]. Similarly, we take their approach of only removing
those actors from the Shakespeare dataset with fewer than two lines and split each user tem-
porally into train/test sets with a training fraction of 0.8. Unlike McMahan et al. [2017], we
also split the users into meta-training and meta-testing sets, also with a fraction of 0.8, in order
to evaluate meta-test performance. We run both algorithms for 500 rounds with a batch of 10
users per round and a within-task batch-size of 10, as in Caldas et al. [2018]. For unmodified
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Figure 2.4: Final learning rate ηT across the layers of a CNN trained on 1-shot 5-way Omniglot
(top) and 5-shot 5-way Omniglot (bottom) using Algorithm 2 applied to Reptile.

FedAvg we found that an initial learning rate of η � 1.0 worked well—this is similar to those
reported in McMahan et al. [2017] and Caldas et al. [2018]—and for the tuned variant we found
that a multiplicative decay of 0.99. At meta-test-time we tuned the refinement learning rate over
t10�3, 10�2, 10�1u. For ARUBA and its isotropic variant we set ε � ζ � 0.05 and p � 1.0, so
that η � ε{ζ � 1.0 in our setting as well.
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Figure 2.5: Final learning rate ηT across the layers of a CNN trained on 1-shot 20-way Omniglot
(top) and 5-shot 20-way Omniglot (bottom) using Algorithm 2 applied to Reptile.

2.B.2 Non-convex meta-learning

Number of training tasks needed for meta-learning

We also examine the number of training tasks that our meta-learning procedure needs to obtain
improvements over the single-task baseline. We use a single test task, and a variable number
of training tasks (0 through 10) to meta-learn the initialization. We use the same settings as in
Section 2.3.4, except the meta-learning experiments have been averaged over 20 iterations (to
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Mini-ImageNet 1-shot 5-shot

5-way evaluation setting hyperparameters evaluation setting hyperparameters

regular transductive η � ε
ζ

c regular transductive η � ε
ζ

c

MAML (1) 48.07� 1.75 63.15� 0.91
Reptile 47.07� 0.26 49.97� 0.32 1E � 3 62.74� 0.37 65.99� 0.58 1E � 3

ARUBA 47.01� 0.37 50.73� 0.32 5E � 3 62.35� 0.25 65.69� 0.61 5E � 3
ARUBA++ 47.25� 0.61 50.35� 0.74 5E � 3 10 62.69� 0.57 65.89� 0.34 5E � 3 10�1

MAML (2) 48.70� 1.84 63.11� 0.92
Meta-SGD 50.47� 1.87 64.03� 0.94

Table 2.5: Meta-learning evaluations on the 5-way Mini-ImageNet classification task.

average over randomization in the algorithms). In Figure 2.8, we plot the average regret against
number of meta-updates performed before starting the test task, and compare against the single-
task baselines. We observe gains with meta-learning with just T � 10 tasks for the Omniglot
dataset, and with even a single task in the Gaussian mixture dataset. The latter is likely due to a
very high degree of task similarity across all the tasks (examined below), so learning on any task
transfers very well to another task.

Task similarity and dispersion

We also examine the task similarity of the different tasks by plotting the optimal values α�t of
the clustering parameter α and the corresponding balls Bpα�t ,m�βq used in our definition of task
similarity (Figure 2.9).

The intervals of the parameter induced by these balls correspond to the discretization used by
Algorithm 4. We notice a stronger correlation in task similarity for the Gaussian mixture clus-
tering tasks, which implies that meta-learning is more effective here (both in terms of learning
test tasks faster, and with lower regret). For knapsack the task similarity is also high, but it turns
out that for our dataset there are very ‘sharp peaks’ at the optima of the total knapsack values as
a function of the parameter ρ. So even though meta-learning helps us get within a small ball of
the optima, a few steps are still needed to converge and we do not see the single-shot benefits of
meta-learning as we do for the Gaussian clustering experiment.
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Figure 2.6: Final learning rate ηT across the layers of a CNN trained on 1-shot 5-way Mini-
ImageNet (top) and 5-shot 5-way Mini-ImageNet (bottom) using Algorithm 2 applied to Reptile.
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Figure 2.7: Final learning rate ηT across the layers of an LSTM trained for next-character pre-
diction on the Shakespeare dataset using Algorithm 2 applied to FedAvg.
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Figure 2.8: Average regret vs. number of training tasks for meta-learning. The clustering data
on the left is from Omniglot and on the right it comes a mixture of Gaussians.
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Figure 2.9: Location of optimal parameter values for the training tasks. The left evaluation is for
Omniglot clustering, the right for Gaussian mixture clustering, and the bottom is Knapsack.

Figure 2.10: Average performance (over algorithm randomization) for a few tasks as a function
of the configuration parameter. The left evaluation is Gaussian mixture clustering and the right is
Knapsack. This explains why, despite high task similarity in either case, few-shot meta-learning
works better for the Gaussian mixture clustering.
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Chapter 3

FedEx: Federated hyperparameter tuning

In the previous chapter, we introduced ARUBA, a framework for designing meta-learning al-
gorithms and proving guarantees about them. We then proceeded to study meta-learning in a
variety of settings and show many new learning-theoretic guarantees for learning-to-learn across
multiple tasks. Now we turn to a more applied study of meta-learning, in which we show how
its intersection with federated learning can be exploited to develop hyperparameter tuning algo-
rithms for the latter. At the same time, we still make use of ARUBA to show provable guarantees
in a restricted setting for an algorithm we develop called FedEx.

3.1 Motivation

Federated learning (FL) is a popular distributed computational setting where training is per-
formed locally or privately on heterogeneous networks [McMahan et al., 2017, Li et al., 2020c]
and where hyperparameter tuning has been identified as a critical problem [Kairouz et al., 2021b].
Although general hyperparameter optimization has been the subject of intense study [Hutter
et al., 2011, Bergstra and Bengio, 2012, Li et al., 2018a], several unique aspects of the feder-
ated setting make tuning hyperparameters especially challenging. We formalize the problem of
hyperparameter optimization in FL, introducing the following three key challenges:

1. Federated validation data: In federated networks, as the validation data is split across
devices, the entire dataset is not available at any one time; instead a central server is given
access to some number of devices at each communication round, for one or at most a few
runs of local training and validation. Thus, because the standard measure of complex-
ity in FL is the number of communication rounds, computing validation metrics exactly
dramatically increases the cost.

2. Extreme resource limitations: FL applications often involve training using devices with
very limited computational and communication capabilities such as mobile phones. Fur-
thermore, many require the use of privacy techniques such as differential privacy that limit
the number times user data can be accessed. Thus we cannot depend on being able to run
many different configurations to completion.

0The work presented in this chapter first appeared in Khodak et al. [2021].
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Figure 3.1: FedEx can be applied to any local training-based FL method, e.g. FedAvg, by inter-
leaving standard updates to model weights (computed by aggregating results of local training)
with exponentiated gradient updates to hyperparameters (computed by aggregating results of lo-
cal validation).

3. Evaluating personalization: Finally, even with non-federated data, applying common hy-
perparameter optimization methods to standard personalized FL approaches (such as fine-
tuning) can be costly because evaluation may require performing many additional training
steps locally.

With these challenges in mind, we propose reasonable baselines for federated hyperparameter
tuning by showing how to adapt standard non-federated algorithms. We further study the chal-
lenge of noisy validation signal due to federation, and show that simple state-estimation-based
fixes do not help.

Our formalization and analysis of this problem leads us to develop FedEx, a method that ex-
ploits a novel connection between hyperparameter tuning in FL and the weight-sharing technique
widely used in neural architecture search (NAS) [Pham et al., 2018, Liu et al., 2019b, Cai et al.,
2019]. In particular, we observe that weight-sharing is a natural way of addressing the three
challenges above for federated hyperparameter tuning, as it incorporates noisy validation sig-
nal, simultaneously tunes and trains the model, and evaluates personalization as part of training
rather than as a costly separate step. Although standard weight-sharing only handles architec-
tural hyperparameters such as the choice of layer or activation, and not critical settings such as
those of local stochastic gradient descent (SGD), we develop a formulation that allows us to tune
most of these as well via the relationship between local-training and fine-tuning-based personal-
ization. This make FedEx a general hyperparameter tuning algorithm applicable to many local
training-based FL methods, e.g. FedAvg [McMahan et al., 2017], FedProx [Li et al., 2020d], and
SCAFFOLD [Karimireddy et al., 2020].

In Section 3.5, we next conduct a theoretical study of FedEx in a simple setting: tuning the
client step-size. Using our ARUBA framework, we show that a variant of FedEx correctly tunes
the on-device step-size to minimize client-averaged regret by adapting to the intrinsic similarity
between client data.

Finally, in Section 3.6, we instantiate our baselines and FedEx to tune hyperparameters of
FedAvg, FedProx, and Reptile, evaluating on three standard FL benchmarks: Shakespeare, FEM-
NIST, and CIFAR-10 [McMahan et al., 2017, Caldas et al., 2018]. While our baselines already
obtain performance similar to past hand-tuning, FedEx further surpasses them in most settings
examined, including by 2-3% on Shakespeare.
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3.2 Related work
Several papers have explored limited aspects of hyperparameter tuning in FL [Mostafa and Wang,
2019, Koskela and Honkela, 2018, Dai et al., 2020], focusing on a small number of hyperpa-
rameters (e.g. the step-size and sometimes one or two more) in less general settings (studying
small-scale problems or assuming server-side validation data). In contrast our methods are able
to tune a wide range of hyperparameters in realistic federated networks. Some papers also dis-
cussed the challenges of finding good configurations while studying other aspects of federated
training [Reddi et al., 2021]. We argue that it is critical to properly address the challenges of fed-
erated hyperparameter optimization in practical settings, as we discuss in detail in Section 3.3.

Methodologically, our approach draws on the fact that local training-based methods such as
FedAvg can be viewed as optimizing a surrogate objective for personalization, and more broadly
leverages the similarity of the personalized FL setup and initialization-based meta-learning [Chen
et al., 2018a, Li et al., 2020a, Jiang et al., 2019, Fallah et al., 2020]. While FedEx’s formulation
and guarantees use this relationship, the method itself is general-purpose and applicable to fed-
erated training of a single global model. Many recent papers address FL personalization more
directly [Mansour et al., 2020, Yu et al., 2020b, Ghosh et al., 2020, Smith et al., 2017, Li et al.,
2021b]. This connection and our use of NAS techniques also makes research connecting NAS
and meta-learning relevant [Lian et al., 2020, Elsken et al., 2019b], but unlike these methods we
focus on tuning non-architectural parameters. In fact, we believe our work is the first to apply
weight-sharing to regular hyperparameter search. Furthermore, meta-learning does not have the
data-access and computational restrictions of FL, where such methods using the DARTS mix-
ture relaxation [Liu et al., 2019b] are less practical. Instead, FedEx employs the lower-overhead
stochastic relaxation [Li et al., 2019, Dong and Yang, 2019], and its exponentiated update is
similar to the GAEA algorithm we introduce in Section 9.2.1. Running NAS itself in federated
settings has also been studied [Garg et al., 2020, He et al., 2020, Xu et al., 2020a]; while our
focus is on non-architectural hyperparameters, in-principle our algorithms can also be used for
federated NAS.

3.3 Federated hyperparameter optimization
In this section we formalize the problem of hyperparameter optimization for FL and discuss the
connection of its personalized variant to meta-learning. We also review FedAvg [McMahan et al.,
2017], a common federated optimization method, and present a reasonable baseline approach for
tuning its hyperparameters.

3.3.1 Global and personalized FL
In FL we are concerned with optimizing over a network of heterogeneous clients i � 1, . . . , n,
each with training, validation, and testing sets Ti, Vi, and Ei, respectively. We use LSpwq to
denote the average loss over a dataset S of some w-parameterized ML model, for w P Rd some
real vector. For hyperparameter optimization, we assume a class of algorithms Alga hyperpa-
rameterized by a P A that use federated access to training sets Ti to output some element of Rd.
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Here by “federated access" we mean that each iteration corresponds to a communication round
at which Alga has access to a batch of B clients1 that can do local training and validation.

Specifically, we assume Alga can be described by two subroutines with hyperparameters
encoded by b P B and c P C, so that a � pb, cq and A � B � C. Here c encodes settings
of a local training algorithm Locc that take a training set S and initialization w P Rd as input
and outputs a model LoccpS,wq P Rd, while b sets those of an aggregation Aggb that takes
the initialization w and outputs of Locc as input and returns a model parameter. For example,
in standard FedAvg, Locc is T steps of gradient descent with step-size η and Aggb takes a
weighted average of the outputs of Locc across clients; here c � pη, T q and b � pq. As detailed
in Appendix 3.B, many FL methods can be decomposed this way, including well-known ones
such as FedAvg [McMahan et al., 2017], FedProx [Li et al., 2020d], SCAFFOLD [Karimireddy
et al., 2020], and Reptile [Nichol et al., 2018] as well as more recent methods [Li et al., 2021b,
Al-Shedivat et al., 2021, Acar et al., 2021]. Our analysis and our proposed FedEx algorithm will
thus apply to all of them, up to an assumption detailed next.

Starting from this decomposition, the global hyperparameter optimization problem can be
written as

min
aPA

ņ

i�1

|Vi|LVipAlgaptTjunj�1qq (3.1)

In many cases we are also interested in obtaining a device-specific local model, where we take
a model trained on all clients and finetune it on each individual client before evaluating. A
key assumption we make is that the finetuning algorithm will be the same as the local training
algorithm Locc used by Alga. This assumption can be justified via our work on meta-learning in
the previous chapter, where we saw that algorithms that aggregate the outputs of local SGD can
be viewed as optimizing for personalization using local SGD. Then, in the personalized setting,
the tuning objective becomes

min
a�pb,cqPA

ņ

i�1

|Vi|LVipLoccpTi,AlgaptTjunj�1qq (3.2)

Our approach will focus on the setting where the hyperparameters c of local training make up a
significant portion of all hyperparameters a � pb, cq; by considering the personalization objective
we will be able to treat such hyperparameters as architectural and thus apply weight-sharing.

3.3.2 Tuning FL methods: Challenges and baselines
In the non-federated setting, the objective (3.1) is amenable to regular hyperparameter optimiza-
tion methods; for example, a random search approach would repeatedly sample a setting a from
some distribution over A, run Alga to completion, and evaluate the objective, saving the best
setting and output [Bergstra and Bengio, 2012]. With a reasonable distribution and enough sam-
ples this is guaranteed to converge and can be accelerated using early stopping methods [Li et al.,
2018a], in which Alga is not always run to completion if the desired objective is poor at inter-
mediate stages, or by adapting the sampling distribution using the results of previous objective

1For simplicity the number of clients per round is fixed, but all methods can be easily generalized to varying B.
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Algorithm 7: Successive halving algorithm (SHA) applied to personalized FL. For
the non-personalized objective (3.1), replace LVtipwiq by LVtipwaq. For random
search (RS) with N samples, set η � N and R � 1.

Input: distribution D over hyperparameters A, elimination rate η P N, elimination
rounds τ0 � 0, τ1, . . . , τR

sample set of ηR hyperparameters H � DrηRs

initialize a model wa P Rd for each a P H
for elimination round r P rRs do

for setting a � pb, cq P H do
for comm. round t � τr�1 � 1, . . . , τr do

for client i � 1, . . . , B do
send wa, c to client
wi Ð LoccpTti,waq
send wi, LVtipwiq to server

wa Ð Aggbpwa, twiuBi�1q
sa Ð

°B
i�1 |Vti|LVtipwiq{

°B
i�1 |Vti|

H Ð ta P H : sa ¤ 1
η
-quantileptsa : a P Huqu

Output: remaining a P H and associated model wa

evaluations [Snoek et al., 2012]. As mentioned in the introduction, applying such methods to FL
is inherently challenging due to

1. Federated validation data: Separating data across devices means we cannot immediately
get a good estimate of the model’s validation performance, as we only have access to a
possibly small batch of devices at a time. This means that decisions such as which models
to flag for early stopping will be noisy and may not fully incorporate all the available
validation signal.

2. Extreme resource limitations: As FL algorithms can take a very long time to run in
practice due to the weakness and spotty availability of devices, we often cannot afford
to conduct many training runs to evaluate different configurations. This issue is made
more salient in cases where we use privacy techniques that only allow a limited number of
accesses to the data of any individual user.

3. Evaluating personalization: While personalization is important in FL due to client het-
erogeneity, checking the performance of the current model on the personalization objec-
tive (3.2) is computationally intensive because computing may require running local train-
ing multiple times. In particular, while regular validation losses require computing one
forward pass per data point, personalized losses require several forward-backward passes,
making it many times more expensive if this loss is needed to make a tuning decision such
as eliminating a configuration from consideration.

Despite these challenges, we can still devise sensible baselines for tuning hyperparameters in
FL, most straightforward of which is to use a regular hyperparameter method but use validation
data from a single round as a noisy surrogate for the full validation objective. Specifically,
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Figure 3.2: Tuning FL with SHA but making elimination decisions based on validation estimates
from different discount factors. On both FEMNIST (left) and CIFAR (right) using more of the
validation data does not improve upon just using the most recent round’s validation error.

one can use random search (RS)—repeatedly evaluate random configurations—and a simple
generalization called successive halving (SHA), in which we sample a set of configurations and
partially run all of them for some number of communication rounds before eliminating all but
the best 1

η
fraction, repeating until only one configuration remains. Note both are equivalent to a

“bracket” in Hyperband [Li et al., 2018a] and their adaptation to FL is detailed in Algorithm 7.
As shown in Section 3.6, SHA performs reasonably well on the benchmarks we consider.

However, by using validation data from one round it may make noisy elimination decisions,
early-stopping potentially good configurations because of a difficult set of clients on a particular
round. Here the problem is one of insufficient utilization of the validation data to estimate model
performance. A reasonable approach to use more is to try some type of state-estimation: using
the performance from previous rounds to improve the noisy measurement of the current one.
For example, instead of using only the most recent round for elimination decisions we can use a
weighted sum of the performances at all past rounds. To investigate this, we study a power decay
weighting, where a round is discounted by some constant factor for each time step it is in the
past. We consider factors 0.0 (taking the most recent performance only, as before), 0.5, and 1.0
(taking the average). However, in Figure 3.2 we show that incorporating more validation data
this way than is used by Algorithm 7 by default does not significantly affect results.

Thus we may need a better algorithm to use more of the validation signal, most of which is
discarded by using the most recent round’s performance. We next propose FedEx, a new method
that does so by using validation on each round to update a client hyperparameters distribution
used to sample configurations to send to devices. Thus it alleviates issue (1) above by updating at
each step, not waiting for an elimination round as in RS or SHA. By simultaneously training the
model and tuning (client) hyperparameters, it also moves towards a fully single-shot procedure in
which we only train once (we must still run multiple times due to server hyperparameters), which
would solve issue (2). Finally, FedEx addresses issue (3) by using local training to both update
the model and to estimate personalized validation loss, thus not spending extra computation on
this more expensive objective.
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3.4 Weight-sharing for federated learning
We now present FedEx, a way to tune local FL hyperparameters. This section contains the
general algorithm and its connection to weight-sharing; we instantiate it on several FL methods
in Section 3.6.

3.4.1 Weight-sharing for architecture search
We first lightly introduce the weight-sharing approach in NAS2, which for a set C of network
configurations is often posed as the bilevel optimization

min
cPC

Lvalidpw, cq s.t. w P argmin
uPRd

Ltrainpu, cq (3.3)

where Ltrain, Lvalid evaluate a single configuration with the given weights. If, as in NAS, all
hyperparameters are architectural, then they are effectively themselves trainable model parame-
ters, so we could instead consider solving the following “single-level" empirical risk minimiza-
tion (ERM):

min
cPC,wPRd

Lpw, cq � min
cPC,wPRd

Ltrainpw, cq � Lvalidpw, cq (3.4)

Solving this instead of the bilevel problem (3.3) has been proposed in several recent papers [Li
et al., 2019], including our own work in Section 9.2.1.

Early approaches to solving either formulation of NAS were costly due to the need for full or
partial training of many architectures in a very large search space. The weight-sharing paradigm
[Pham et al., 2018] reduces the problem to that of training a single architecture, a “supernet"
containing all architectures in the search space C. A straightforward way of constructing a su-
pernet is via a “stochastic relaxation" where the loss is an expectation w.r.t. sampling c from
some distribution over C [Dong and Yang, 2019]. Then the shared weights can be updated using
SGD by first sampling an architecture c and using an unbiased estimate of ∇wLpw, cq to update
w. The distribution over C may itself be adapted or stay fixed. We focus on the former case,
adapting some θ-parameterized distribution Dθ; this yields the stochastic relaxation objective

min
θPΘ,wPRd

Ec�Dθ
Lpw, cq (3.5)

Since architectural hyperparameters are often discrete decisions, e.g. a choice of which of a fixed
number of operations to use, a natural choice of Dθ is as a product of categorical distributions
over simplices. In this case, any discretization of an optimum θ of the relaxed objective (3.5)
whose support is in the support of θ will be an optimum of the original objective (3.4). A
natural update scheme here is exponentiated gradient [Kivinen and Warmuth, 1997], where each
successive θ is proportional to θ d expp�η∇̃q, η is a step-size, and ∇̃ an unbiased estimate
of ∇θEc�DθLpw, cq that can be computed using the re-parameterization trick [Rubinstein and
Shapiro, 1993]. By alternating this exponentiated update with the standard SGD update to w
discussed earlier we obtain a simple block-stochastic minimization scheme that is guaranteed to
converge, under certain conditions, to the ERM objective (c.f. Section 9.2.1).
2A more detailed and NAS-focused introduction is given in Section 8.A.3.
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3.4.2 The FedEx method
To obtain FedEx from weight-sharing we restrict to the case of tuning only the hyperparameters
c of local training Locc.3 Our goal then is just to find the best initialization w P Rd and local
hyperparameters c P C, i.e. we replace the personalized objective (3.2) by

min
cPC,wPRd

ņ

i�1

|Vi|LVipLoccpTi,wqq (3.6)

Note Alga outputs an element of Rd, so this new objective is upper-bounded by the original (3.2),
i.e. any solution will be at least as good for the original objective. Note also that for fixed c this
is equivalent to the classic train-validation split objective for meta-learning with Locc as the
base learner. More importantly for us, it is also in the form of the r.h.s. of the weight-sharing
objective (3.4), i.e. it is a single-level function of w and c. We thus apply a NAS-like stochastic
relaxation:

min
θPΘ,wPRd

ņ

i�1

|Vi|EcPDθ
LVipLoccpTi,wqq (3.7)

In NAS we would now set the distribution to be a product of categorical distributions over differ-
ent architectures, thus making θ an element of a product of simplices and making the optimum
of the original objective (3.6) equivalent to the optimum of the relaxed objective (3.7) as an ex-
treme point of the simplex. Unlike in NAS, FL hyperparameters such as the learning rate are
not extreme points of a simplex and so it is less clear what parameterized distribution Dθ to use.
Nevertheless, we find that crudely imposing a categorical distribution over k ¡ 1 random sam-
ples from some distribution (e.g. uniform) over C and updating θ using exponentiated gradient
over the resulting k-simplex works well. We alternate this with updating w P Rd, which in a
NAS algorithm involves an SGD update using an unbiased estimate of the gradient at the current
w and θ.

We call this alternating method for solving (3.7) FedEx and describe it for a general Alga
consisting of sub-routines Aggb and Locc in Algorithm 8; recall from Section 3.3 that many FL
methods can be decomposed this way, so our approach is widely applicable. FedEx has a minimal
overhead, consisting only of the last four lines of the outer loop updating θ. Thus, as with weight-
sharing, FedEx can be viewed as reducing the complexity of tuning local hyperparameters to that
of training a single model. Each update to θ requires a step-size ηt and an approximation ∇̃ of
the gradient w.r.t. θ; for the latter we obtain an estimate ∇̃θrjs of each gradient entry via the
reparameterization trick, whose variance we reduce by subtracting a baseline λt. How we set ηt
and λt is detailed in Appendices 3.C.2 and 3.E, respectively.

To see how FedEx is approximately optimizing the relaxed objective (3.7), we can consider
the case where Alga is Reptile [Nichol et al., 2018], which was designed to optimize some ap-
proximation of (3.6) for fixed c, or equivalently the relaxed objective for an atomic distribution
Dθ. As we discussed in the previous chapter, Reptile can be interpreted as optimizing a surrogate
objective minimizing the squared distance between w and the optimum of each task i, with the
latter being replaced by the last iterate in practice. It is also shown that the surrogate objective

3We will use some wrapper algorithm to tune the hyperparameters b of Aggb.
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Algorithm 8: FedEx
Input: configurations c1, . . . , ck P C, setting b for Aggb, schemes for setting step-size ηt

and baseline λt, total number of steps τ ¥ 1
initialize θ1 � 1k{k and shared weights w1 P Rd

for comm. round t � 1, . . . , τ do
for client i � 1, . . . , B do

send wt,θt to client
sample cti � Dθt

wti Ð LocctipTti,wtq
send wti, cti, LVtipwtiq to server

wt�1 Ð Aggbpw, twtiuBi�1q
∇̃j Ð

°B
i�1 |Vti|pLVti pwtiq�λtq1cti�cj

θtrjs
°B
i�1 |Vti|

@ j
θt�1 Ð θt d expp�ηt∇̃q
θt�1 Ð θt�1{}θt�1}1

Output: model w, hyperparameter distribution θ

is useful for personalization in the online convex setting.4 As opposed to this past work, FedEx
makes two gradient updates in the outer loop, on two disjoint sets of variables: the first is the
sub-routine Aggb of Alga that aggregates the outputs of local training and is using the gradient
of the surrogate objective, since the derivative of the squared distance is the difference between
the initialization w and the parameter at the last iterate of Locc; the second is the exponenti-
ated gradient update that is directly using an unbiased estimate of the derivative of the second
objective w.r.t. the distribution parameters θ. Thus, roughly speaking FedEx runs simultaneous
stochastic gradient descent on the relaxed objective (3.7), although for the variables w we are
using a first-order surrogate. In the theoretical portion of chapter we employ this interpretation to
show the approach works for tuning the step-size of online gradient descent in the online convex
optimizations setting.

3.4.3 Wrapping FedEx
We can view FedEx as an algorithm of the form tuned by Algorithm 7 that implements federated
training of a supernet parameter pw,θq, with the local training routine Loc including a step for
sampling c � Dθ and the server aggregation routine including an exponentiated update of θ.
Thus we can wrap FedEx in Algorithm 7, which we find useful for a variety of reasons:

• The wrapper can tune the settings of b for the aggregation step Aggb, which FedEx cannot.
• FedEx itself has a few hyperparameters, e.g. how to set the baseline λt, which can be

tuned.
• By running multiple seeds and potentially using early stopping, we can run FedEx using

more aggressive steps-sizes and the wrapper will discard cases where this leads to poor
results.

4Formally they study a sequence of upper bounds and not a surrogate objective, as their focus is online learning.
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Figure 3.3: Comparison of the range of performance values attained using different perturbation
settings. Although the range is much smaller for ϵ � 0.1 than for ϵ � 1.0 (the latter is the entire
space), it still covers a large (roughly 10-20%) range of different performance levels on both
FEMNIST (left) and CIFAR (right).

• We can directly compare FedEx to a regular hyperparameter optimization scheme run over
the original algorithm, e.g. FedAvg, by using the same scheme to both wrap FedEx and
tune FedAvg.

• Using the wrapper allows us to determine the configurations c1, . . . , ck given to Algo-
rithm 8 using a local perturbation scheme (detailed next) while still exploring the entire
hyperparameter space.

3.4.4 Local perturbation

It remains to specify how to select the configurations c1, . . . , ck P C to pass to Algorithm 8. While
the simplest approach is to draw from UnifkpCq, we find that this leads to unstable behavior if the
configurations are too distinct from each other. To interpolate between sampling ci independently
and setting them to be identical (which would just be equivalent to the baseline algorithm), we
use a simple local perturbation method in which c1 is sampled from UnifpCq and c2, . . . , ck are
sampled uniformly from a local neighborhood of C. For continuous hyperparameters (e.g. step-
size, dropout) drawn from an interval ra, bs � R the local neighborhood is rc�pb�aqεs for some
ε ¥ 0, i.e. a scaled ε-ball; for discrete hyperparameters (e.g. batch-size, epochs) drawn from a
set ta, . . . , bu � Z, the local neighborhood is similarly tc � tpb � aqεu, . . . , c � rpb � aqεsu; in
our experiments we set ε � 0.1, which works well, but run ablation studies varying these values
in Appendix 3.E showing that a wide range of them leads to improvement. Note that while local
perturbation does limit the size of the search space explored by each instance of FedEx, as shown
in Figure 3.3 the difference in performance between different configurations in the same ball is
still substantial.
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3.4.5 Limitations of FedEx
While FedEx is applicable to many important FL algorithms, those that cannot be decomposed
into local fine-tuning and aggregation should instead be tuned by one of our baselines, e.g. SHA.
FedEx is also limited in that it is forced to rely on such algorithms as wrappers for tuning its own
hyperparameters and certain FL hyperparameters such as server learning rate.

3.5 Theoretical analysis for tuning the step-size
As noted in Section 3.4, FedEx can be viewed as alternating minimization, with a gradient step
on a surrogate personalization loss and an exponentiated gradient update of the configuration
distribution θ. We make this formal and prove guarantees for a simple variant of FedEx in the
setting where the server has one client per round, to which the server sends an initialization to
solve an online convex optimization (OCO) problem using online gradient descent (OGD) on a
sequence of m adversarial convex losses (i.e. one SGD epoch in the stochastic case). Note we
use “client” and “task” interchangeably, as the goal is a meta-learning (personalization) result.
As in Chapter 2, our performance measure will be task-averaged regret, which takes the average
over τ clients of the regret they incur on its loss:

Regret � 1

τ

τ̧

t�1

m̧

i�1

ℓt,ipwt,iq � ℓt,ipw�
t q (3.8)

Here ℓt,i is the ith loss of client t, wt,i the parameter chosen on its ith round from a compact
parameter space W , and w�

t P argminwPW
°m
i�1 ℓt,ipwq the task optimum. In this setting, our

ARUBA framework can be used to show guarantees for a Reptile (i.e. FedEx with a server step-
size) variant in which at each round the initialization is updated as wt�1 Ð p1 � αtqwt � αtw

�
t

for server step-size αt � 1{t; observe that the only difference between this update and FedEx’s
is that the task t optimum w�

t is used rather than the last iterate of OGD on that task. Specifically
we bound the task-averaged regret by

Regret ¤ Õ
�

1
4
?
τ
� V


?
m for V 2 � min

wPW
1

τ

τ̧

t�1

}w �w�
t }22 (3.9)

Here V—the average deviation of the optimal actions w�
t across tasks—is a measure of task

similarity: V is small when the tasks (clients) have similar data and thus can be solved by similar
parameters in W but large when their data is different and so the optimum parameters to use
are very different. Thus the bound in (2.3) shows that as the server (meta-learning) sees more
and more clients (tasks), their regret on each decays with rate Op1{ 4

?
τq to depend only on the

task similarity, which is hopefully small if the client data is similar enough that transfer learning
makes sense, in particular if V ! diampWq. Since single-task regret has lower bound ΩpD?mq,
achieving asymptotic regret V

?
m thus demonstrates successful learning of a useful initialization

in W that can be used for personalization. Recall that such bounds can also be converted to obtain
guarantees in the statistical meta-learning setting as well (c.f. Section 2.2.3).

A drawback of our past results using the ARUBA framework is that they either assume the
task similarity V is known in order to set the client step-size or they employ an OCO method to
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learn the local step-size that cannot be applied to other potential algorithmic hyperparameters.
In contrast, we prove results for using bandit exponentiated gradient to tune the client step-
size, which is precisely the FedEx update. In particular, Theorem 3.5.1 shows that by using a
discretization of potential client step-sizes as the configurations in Algorithms 8 we can obtain
the following task-averaged regret:

Theorem 3.5.1. Let W � Rd be convex and compact with diameter D � diampWq and let ℓt,i
be a sequence of mτ b-bounded convex losses—m for each of τ tasks—with Lipschitz constant
¤ G. We assume that the adversary is oblivious within-task. Suppose we run Algorithm 8
with B � 1, configurations cj � D

Gj
?
m

for each j � 1, . . . , k determining the local step-
size of single-epoch SGD (OGD), wti � w�

t , regret
°m
i�1 ℓt,ipwt,iq � ℓt,ipwtq used in place of

LVtipwtiq, and λt � 0 @ t P rτ s. Then if ηt � 1
mb

b
log k
kτ

@ t P rτ s, k 3
2 � DG

b

a
τ
2m

, and
Aggbpw,w�

t q � p1 � αtqw � αtw
�
t for αt � 1{t @ t P rτ s we have (taking expectations over

sampling from Dθt)

ERegret ¤ Õ
�

3
a
m{τ � V

	?
m (3.10)

The proof of this result, given in the supplement, follows the ARUBA framework of us-
ing meta OCO algorithm to optimize the initialization-dependent upper bound on the regret of
OGD; in addition we bound errors to the bandit setting and discretization of the step-sizes. The-
orem 3.5.1 demonstrates that FedEx is a sensible algorithm for tuning the step-size in the meta-
learning setting where each task is an OCO problem, with the average regret across tasks (clients)
converging to depend only on the task similarity V , which we hope is small in the setting where
personalization is useful. As we can see by comparing to the bound in (2.3), besides holding for
a more generally-applicable algorithm our bound also improves the dependence on τ , albeit at
the cost of an additional m

1
3 factor. Note that that the sublinear term can be replaced by 1{?τ in

the full-information setting, i.e. where required the client to try SGD with each configuration cj
at each round to obtain regret for all of them.

3.6 Empirical results
In our experiments, we instantiate FedEx on the problem of tuning FedAvg, FedProx, and Rep-
tile; the first is the most popular algorithm for federated training, the second is an extension
designed for heterogeneous devices, and the last is a compatible meta-learning method used for
learning initializations for personalization. At communication round t these algorithms use the
aggregation

Aggbpw, twiuBi�1q � p1� αtqw � αt°B
i�1 |Tti|

B̧

i�1

|Tti|wi (3.11)

for some learning rate αt ¡ 0 that can vary through time; in the case of FedAvg we have
αt � 1 @ t. The local training sub-routine Locc is SGD with hyperparameters c over some
objective defined by the training data Tti, which can also depend on c. For example, to include
FedProx we include in c an additional local hyperparameter for the proximal term compared with
that of FedAvg.
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Table 3.1: Final test error obtained when tuning using a standard hyperparameter tuning
algorithm (SHA or RS) alone, or when using it for server (aggregation) hyperparameters
while FedEx tunes client (on-device training) hyperparameters. The target model is the
one used to compute on-device validation error by the wrapper method, as well as the
one used to compute test error after tuning. Note that this table reports the final error
results corresponding to the online evaluations reported in Figure 3.4, which measure
performance as more of the computational budget is expended.

Wrapper Target Tuning Shakespeare FEMNIST CIFAR-10
method model method i.i.d. non-i.i.d. i.i.d. non-i.i.d. i.i.d.

global RS (server & client) 60.32� 10.03 64.36� 14.19 22.81� 4.56 22.98� 3.41 30.46� 9.44
Random + FedEx (client) 53.94� 9.13 57.70� 17.57 20.96� 4.77 22.30� 3.66 34.83� 14.74
Search person- RS (server & client) 61.10� 9.32 61.71� 9.08 17.45� 2.82 17.77� 2.63 34.89� 10.56
(RS) alized + FedEx (client) 54.90� 9.97 56.48� 13.60 16.31� 3.77 15.93� 3.06 39.13� 15.13

global SHA (server & client) 47.38� 3.40 46.79� 3.51 18.64� 1.68 20.30� 1.66 21.62� 2.51
Successive + FedEx (client) 44.52� 1.68 45.24� 3.31 19.22� 2.05 19.43� 1.45 20.82� 1.37

Halving person- SHA (server & client) 46.77� 3.61 48.04� 3.72 14.79� 1.55 14.78� 1.31 24.81� 6.13
(SHA) alized + FedEx (client) 46.08� 2.57 45.89� 3.76 14.97� 1.31 14.76� 1.70 21.77� 2.83

We tune several hyperparameters of both aggregation and local training; for the former we
tune the server learning rate schedule and momentum, found to be helpful for personaliza-
tion [Jiang et al., 2019]; for the latter we tune the learning rate, momentum, weight decay, the
number of local epochs, the batch-size, dropout, and proximal regularization. Please see the
supplementary material for the exact hyperparameter space considered. While we mainly eval-
uate FedEx in cross-device federated settings, which is generally more difficult than cross-silo
in terms of hyperparameter optimization, FedEx can be naturally applied to cross-silo settings,
where the challenges of heterogeneity, privacy requirements, and personalization remain.

Because our baseline is running Algorithm 7, a standard hyperparameter tuning algorithm,
to tune all hyperparameters, and because we need to also wrap FedEx in such an algorithm for
the reasons described in Section 3.4, our empirical results will test the following question: does
FedEx, wrapped by random search (RS) or a successive halving algorithm (SHA), do better
than RS or SHA run with the same settings directly? Here “better” will mean both the final
test accuracy obtained and the online evaluation setting, which tests how well hyperparameter
optimization is doing at intermediate phases. Furthermore, we also investigate whether FedEx
can improve upon the wrapper alone even when targeting a good global and not personalized
model, i.e. when elimination decisions are made using the average global validation loss. We run
Algorithm 7 on the personalized objective and use RS and SHA with elimination rate η � 3, the
latter following Hyperband [Li et al., 2018a]. To both wrappers we allocate the same (problem-
dependent) tuning budget. To obtain the elimination rounds in Algorithm 7 for SHA, we set the
number of eliminations to R � 3, fix a total communication round budget, and fix a maximum
number of rounds to be allocated to any configuration a; as detailed in Appendix 3.D.1, this
allows us to determine T1, . . . , TR so as to use up as much of the budget as possible.

We evaluate the performance of FedEx on three datasets (Shakespeare, FEMNIST, and CIFAR-
10) on both vision and language tasks. We consider the following two different partitions of data:

1. Each device holds i.i.d. data. While data across the network can be non-i.i.d., we shuffle
local data within each device before splitting into train, validation, and test sets.
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Figure 3.4: Online evaluation of FedEx on the Shakespeare next-character prediction dataset
(left), the FEMNIST image classification dataset (middle), and the CIFAR-10 image classifica-
tion dataset (right) in the fully non-i.i.d. setting (except CIFAR-10). We report global model
performance on the top and personalized performance on the bottom. All evaluations are run for
three trials.

2. Each device holds non-i.i.d. data. In Shakespeare, each device is an actor and local data
is split according to temporal position in the play; in FEMNIST, each device is the digit
writer and local data is split randomly; in CIFAR-10, we do not study this setting.

For Shakespeare and FEMNIST we use 80% of the data for training and 10% each for valida-
tion and testing. In CIFAR-10 we hold out 10K examples from the usual training/testing split
for validation. The backbone models used for Shakespeare and CIFAR-10 follow from the Fe-
dAvg evaluation [McMahan et al., 2017] and use 4K communications rounds (at most 800 round
for each arm), while that of FEMNIST follows from LEAF [Caldas et al., 2018] and uses 2K
communication rounds (at most 200 for each arm).

Table 3.1 presents our main results, displaying the final test error of the target model after
tuning using either a wrapper algorithm alone or its combination with FedEx. The evaluation
shows that using FedEx on the client parameters is either equally or more effective in most
cases; in particular, a FedEx-modified method performs best everywhere except i.i.d. FEMNIST,
where it is very close. Furthermore, FedEx frequently improves upon the wrapper algorithm by
2 or more percentage points.

We further present online evaluation results in Figure 3.4, where we display the test error of
FedEx wrapped with SHA compared to SHA alone as a function of communication rounds. Here
we see that for most of training FedEx is either around the same or better then the alternative,
except at the beginning; the former is to be expected since the randomness of FedEx leads to less
certain updates at initialization. Nevertheless FedEx is usually better than the SHA baseline by
the halfway point.
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3.7 Conclusion
This concludes our study of the problem of hyperparameter optimization in FL, starting with
identifying the key challenges and proposing reasonable baselines that adapts standard approaches
to the federated setting. We further make a novel connection to the weight-sharing paradigm
from NAS—to our knowledge the first instance of this being used for regular (non-architectural)
hyperparameters—and use it to introduce FedEx. This simple, low-overhead algorithm for ac-
celerating the tuning of hyperparameters in federated learning can be theoretically shown to
successfully tune the step-size for multi-task OCO problems and effectively tunes FedAvg, Fed-
Prox, and Reptile on standard benchmarks. The scope of application of FedEx is very broad,
including tuning actual architectural hyperparameters rather than just settings of local SGD, i.e.
doing federated NAS, and tuning initialization-based meta-learning algorithms such as Reptile
and MAML.
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3.A Proof of Theorem 3.5.1
Proof. Let γt � Dθt be the step-size chosen at time t. Then we have that

τERegret �
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where the second line uses linearity of expectations over γt � Dθt , the third substitutes the

bandit regret of EG [Shalev-Shwartz, 2011, Corollary 4.2], the fourth substitutes η � 1
mb

b
log k
τk

and the regret of OGD [Shalev-Shwartz, 2011, Corollary 2.7], the fifth substitutes the regret
guarantee of Adaptive OGD over functions 1

2
}wt � w�

t }22 [Bartlett et al., 2008, Theorem 2.1]
with step-size αt � 1{t and the definition of V , the sixth substitutes the best discretized step-size
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and dividing both sides by τ yields the
result.

3.B Decomposing federated optimization methods
As detailed in Section 3.3 our analysis and use of FedEx to tune local training hyperparameters
depends on a formulation that decomposes FL methods into two subroutines: a local training
routine LoccpS,wq with hyperparameters c over data S and starting from initialization w and
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an aggregation routine Aggb with hyperparameters b. In this section we discuss how a variety of
federated optimization methods, including several of the best-known, can be decomposed in this
manner. This enables the application of FedEx to tune their hyperparameters.

FedAvg [McMahan et al., 2017] The best-known FL method, FedAvg runs SGD on each client
in a batch starting from a shared initialization and then updates to the average of the last iterate
of the clients, often weighted by the number of data points each client has. The decomposition
here is:
Locc Local SGD (or another gradient-based algorithm, e.g. Adam [Kingma and Ba, 2015]), with

c being the standard hyperparameters such as step-size, momentum, weight decay, etc.

Aggb Weighted averaging, with no hyperparameters in b.

FedProx [Li et al., 2020d] FedProx has the same decomposition as FedAvg except local SGD
is replaced by a proximal version that regularizes the routine to be closer to the initialization,
adding another hyperparameter to c governing the strength of this regularization.

Reptile [Nichol et al., 2018] A well-known meta-learning algorithm, Reptile has the same
decomposition as FedAvg except the averaged aggregation is replaced by a convex combination
of the initialization and the average of the last iterates, as in Equation 3.11. This adds another
hyperparameter to b governing the tradeoff between the two.

SCAFFOLD [Karimireddy et al., 2020] SCAFFOLD comes in two variants, both of which
compute and aggregate control variates in parallel to the model weights. The decomposition here
is:
Locc Local SGD starting from a weight initialization with a control variate, which can be merged

to form the local training initialization. The hyperparameters in c are the same as in Fe-
dAvg.

Aggb Weighted averaging of both the initialization and the control variates, with the same hy-
perparameters as Reptile.

FedDyn [Acar et al., 2021] In addition to a FedAvg/FedProx/Reptile-like training routine, this
algorithm maintains a regularizer on each device that affects the local training routine. While this
statefulness cannot strictly be subsumed in our decomposition, since it does not introduce any
additional hyperparameters the remaining hyperparameters can be tuned in the same manner as
we do for FedAvg/FedProx/Reptile. In order to choose between using FedDyn or not, one can
introduce a binary hyperparameter to c specifying whether or not Locc uses that term in the
objective it optimizes or not, allowing it also to be tuned via FedEx.

FedPA [Al-Shedivat et al., 2021] This algorithm replaces local SGD in FedAvg by a local
Markov-chain Monte Carlo (MCMC) routine starting from the initialization given by aggregat-
ing the previous round’s MCMC routines. The decomposition is then just a replacement of local
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SGD and its associated hyperparameters by local MCMC and its hyperparameters, with the ag-
gregation routine remaining the same.

Ditto [Li et al., 2021b] Although it depends on what solver is used for the local solver and
aggregation routines, in the simplest formulation, the local optimization of personalized models
involves an additional regularization hyperparameter. While the updating rule of Ditto is different
from that of FedProx, the hyperparameters can be decomposed and tuned in a similar manner.

MAML [Finn et al., 2017] A well-known meta-learning algorithm, MAML takes one or more
full-batch gradient descent (GD) steps locally and updates the global model using a second-order
gradient using validation data. The decomposition here is:
Locc Local SGD starting from a weight initialization. The hyperparameters in c are the same as

in FedAvg. The algorithm also returns second-order information required to compute the
meta-gradient.

Aggb Meta-gradient computation, summation, and updating using a standard descent method
like Adam [Kingma and Ba, 2015]. The hyperparameters in b are the hyperparameters of
the latter.

3.C FedEx details

3.C.1 Stochastic gradient used by FedEx
Below is a simple calculation showing that the stochastic gradient used to update the categorical
distribution of FedEx is an unbiased estimate of the true gradient w.r.t. its parameters.

∇θrjsEcij |θLVtipwiq � ∇θrjsEcij |θpLVtipwiq � λq
� Ecij |θ

�pLVtipwiq � λq∇θrjs logPθpcijq
�

� Ecij |θ

�
pLVtipŵkq � λq∇θrjs log

n¹
i�1

Pθpcij � cjq
�

� Ecij |θ

�
pLVtipwiq � λq

ņ

i�1

∇θrjs logPθpcij � cjq
�

� Ecij |θ
�pLVtipwiq � λq1cij�cj

θrjs



(3.13)

Note that this use of the reparameterization trick has some similarity with a recent RL ap-
proach to tune the local step-size and number of epochs [Mostafa and Wang, 2019]; however,
FedEx can be rigorously formulated as an optimization over the personalization objective, has
provable guarantees in a simple setting, uses a different configuration distribution that leads to
our exponentiated update, and crucially for practical deployment does not depend on obtaining
aggregate reward signal on each round.
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Algorithm 9: FedEx wrapped with SHA.
Input: distribution D over hyperparameters A, elimination rate η P N, elimination

rounds τ0 � 0, τ1, . . . , τR
sample set of ηR hyperparameters H � DrηRs

initialize a model wa P Rd for each a P H
for elimination round r P rRs do

for setting a � pb, cq P H do
sa,wa,θa Ð FedEx(wa, b, c,θa, τr�1 � τr)

H Ð ta P H : sa ¤ 1
η
-quantileptsa : a P Huqu

Output: remaining a P H and associated model wa

FedEx(w, b, tc1, . . . , cku,θ, τ ¥ 1):

initialize θ1 Ð θ
initialize shared weights w1 Ð w
for comm. round t � 1, . . . , τ do

for client i � 1, . . . , B do
send wt,θt to client
sample cti � Dθt
wti Ð LocctipTti,wtq
send wti, cti, LVtipwtiq to server

wt�1 Ð Aggbpw, twtiuBi�1q
set step-size ηt and baseline λt
∇̃j Ð

°B
i�1 |Vti|pLVti pwtiq�λtq1cti�cj

θtrjs
°B
i�1 |Vti|

@ j
θt�1 Ð θt d expp�ηt∇̃q
θt�1 Ð θt�1{}θt�1}1
sÐ °B

i�1 |Vti|LVti{
°B
i�1 |Vti|

Return s, model w, hyperparameter distribution θ

3.C.2 Hyperparameters of FedEx

We tune the computation of the baseline λt, which we set to

λt � 1°
s t γ

t�s
¸
s t

γt�s°B
i�1 |Vti|

B̧

i�1

LVtipwiq (3.14)

for discount factor γ P r0, 1s. As discussed in Section 3.4, the local perturbation factor is set to
ε � 0.1. 27 configurations are used in each arm for SHA and RS. The number of configuration
used per arm of FedEx (i.e. the dimensionality of θ) is the same (27).
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Table 3.2: Final test error obtained when tuning using a standard hyperparameter
tuning algorithm (SHA or RS) alone, or when using it for server (aggregation)
hyperparameters while FedEx tunes client (on-device training) hyperparameters. The
target model is the one used to compute on-device validation error by the wrapper
method, as well as the one used to compute test error after tuning. The confidence
intervals displayed are 90% Student-t confidence intervals for the mean estimates from
Table 3.1, with 5 independent trials for Shakespeare, 10 for FEMNIST, 10 for RS on
CIFAR, and 6 for SHA on CIFAR.

Wrapper Target Tuning Shakespeare FEMNIST CIFAR-10
method model method i.i.d. non-i.i.d. i.i.d. non-i.i.d. i.i.d.

global RS (server & client) 60.32� 9.56 64.36� 13.53 22.81� 2.64 22.98� 1.98 30.46� 5.47
Random + FedEx (client) 53.94� 8.70 57.70� 16.75 20.96� 2.77 22.30� 2.12 34.83� 8.54
Search person- RS (server & client) 61.10� 8.89 61.71� 8.66 17.45� 1.63 17.77� 1.52 34.89� 6.12
(RS) alized + FedEx (client) 54.90� 9.50 56.48� 12.97 16.31� 2.19 15.93� 1.77 39.13� 8.77

global SHA (server & client) 47.38� 3.24 46.79� 3.35 18.64� 0.97 20.30� 0.96 21.62� 1.45
Successive + FedEx (client) 44.52� 1.60 45.24� 3.16 19.22� 1.19 19.43� 0.84 20.82� 0.79

Halving person- SHA (server & client) 46.77� 3.44 48.04� 3.54 14.79� 0.90 14.78� 0.75 24.81� 3.55
(SHA) alized + FedEx (client) 46.08� 2.45 45.89� 3.58 14.97� 0.76 14.76� 0.99 21.77� 1.64

3.D Experimental details
Code for FedEx is available here: https://github.com/mkhodak/fedex. Shakespeare
and FEMNIST data can be found here: https://github.com/TalwalkarLab/leaf.

3.D.1 Settings of the baseline/wrapper algorithm
We use the same settings of Algorithm 7 for both tuning FedAvg and wrapping FedEx. Given
an elimination rate η, number of elimination rounds R, budget B, and maximum rounds per arm
M , we assign T1, . . . , TR s.t. Ti � Ti�1 � pT �Mq{

�
ηn�1�1
η�1

� n� 1
	

, with T0 � 0.

3.D.2 Hyperparameters of FedAvg/FedProx/Reptile
Server hyperparameters (learning rate αt � γt):

• log10 lr: Unifr�1, 1s
• momentum: Unifr0, 0.9s
• log10p1� γq: Unifr�4,�2s

Local hyperparameters (n.b. we only use one epoch for Shakespeare to conserve computation):
• log10plrq: Unifr�4, 0s
• momentum: Unifr0.0, 1.0s
• log10pweight decayq: Unifr�5,�1s
• epoch: Unift1, 2, 3, 4, 5u
• log2pbatchq: Unift3, 4, 5, 6, 7u
• dropout: Unifr0, 0.5s
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Figure 3.5: Comparison of different ε settings
for the local perturbation component of FedEx
from Section 3.4.

Figure 3.6: Comparison of step-size schedules
for ηt in FedEx. In practice we chose the ‘ag-
gressive’ schedule, which exhibits faster con-
vergence to favorable configurations.

3.E Ablation studies
We now discuss two design choices of FedEx and how they affect performance of the algorithm.
First, the choice of the local perturbation ε � 0.1 discussed in Section 3.4; we choose this setting
due to its consistent performance across several settings. In Figure 3.5 we plot the performance
of FedEx on CIFAR-10 between ε � 0.0 (no FedEx, i.e. SHA only) and ε � 1.0 (full FedEx,
i.e. client configurations are chosen independently) and show that while the use of a nonzero ε is
important, performance at fairly low values of ε is roughly similar.

We further investigated the setting of the step-size ηt for the exponentiated gradient update in
FedEx. We examine three different approaches: a constant rate of ηt �

?
2 log k, an ‘adaptive’

schedule of ηt �
?
2 log k{

b°
s¤t }∇̃s}28, and an ‘aggressive’ schedule of ηt �

?
2 log k{}∇̃t}8.

Here ∇̃t is the stochastic gradient w.r.t. θ computed in Algorithm 8 at step t and the form of the
step-size is derived from standard settings for exponentiated gradient in online learning [Shalev-
Shwartz, 2011]. We found that the ‘aggressive’ schedule works best in practice, as shown in
Figure 3.6. A key issue with using the ‘constant’ and ‘adaptive’ approaches is that they con-
tinue to assign high probability to several configurations late in the tuning process; this slows
down training of the shared weights. One could consider a tradeoff between allowing FedEx to
run longer than while keeping the total budget constant, but for simplicity we chose the more
effective ‘aggressive’ schedule.
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Part II

Algorithms with predictions
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Chapter 4

Overview

The second part of this thesis moves away from learning to parameterize learning algorithms
to learning parameters of regular algorithms. We focus on algorithms with predictions [Mitzen-
macher and Vassilvitskii, 2021], a subfield of beyond-worst-case analysis of algorithms that aims
to design methods that make use of machine-learned predictions in order to reduce runtime, er-
ror, or some other performance cost. Mathematically, given some prediction x, algorithms in this
field are designed such that the cost Ctpxq of an instance t while using the prediction is upper-
bounded by some measure Utpxq of the quality of the prediction on that instance. The canonical
example here is that the cost of binary search on a sorted array of size n can be improved from
Oplog nq to at most Utpxq � 2 log ηtpxq, where ηtpxq is the distance between the true location of
a query t in the array and the location predicted by the predictor x [Mitzenmacher and Vassilvit-
skii, 2021]. In recent years, algorithms whose cost depends on the quality of possibly imperfect
predictions have been developed for numerous important problems, including caching [Rohatgi,
2020, Jiang et al., 2020, Lykouris and Vassilvitskii, 2021], scheduling [Lattanzi et al., 2020,
Scully et al., 2022], ski-rental [Kumar et al., 2018, Anand et al., 2020, Diakonikolas et al., 2021],
bipartite matching [Dinitz et al., 2021], page migration [Indyk et al., 2022], and many more [Ba-
mas et al., 2020, Du et al., 2021a, Mitzenmacher and Vassilvitskii, 2021].

While there has been a significant effort to develop algorithms that can take advantage of
learned predictions, there has been less focus on actually learning to predict. For example, of the
works listed above only two focusing on ski-rental [Anand et al., 2020, Diakonikolas et al., 2021]
and one other [Dinitz et al., 2021] show sample complexity guarantees, and none consider the
important online learning setting, in which problem instances are not guaranteed to come from
a fixed distribution. This is in contrast to the related area of data-driven algorithm design [Gupta
and Roughgarden, 2017, Balcan, 2021], which has established techniques such as dispersion for
deriving learning-theoretic guarantees, leading to end-to-end results encompassing both learning
and computation [Balcan et al., 2018b]. It is also despite the fact that learning even simple
predictors is in many cases a non-trivial problem.

Chapter 5 bridges this gap with a framework for obtaining learning-theoretic guarantees for
algorithms with predictions. In addition to better sample complexity bounds, we show how to
learn the parameters of interest in online via bounds on the overall regret. Moreover, we show the
first instance-dependent learning guarantees for predictions, showing that one can learn not just
static predictions but prediction policies that customize their prediction to the instance at-hand;
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this hews more closely to what is done in practice. All of this is accomplished using a two-step
approach inspired by ARUBA, with regret-upper-bounds replaced by runtime-upper-bounds.

To show the above results we study existing algorithms with predictions, which as a subfield
has focused on graph algorithms, data structures, and online algorithms. However, incorporating
external information via predictions has significant potential across all areas of algorithm design,
as we demonstrate in Chapters 6 and7, where we extend the field to two completely new di-
rections: differentially private statistics and scientific computing. Theoretically, these directions
yield interesting new phenomena at the intersection of learning and algorithms, including (1)
the impossibility of simultaneous robustness and simple learnability for private quantile release
and (2) instance-optimal prediction for solving certain sequences of linear systems. We also
demonstrate the utility of incorporating learned predictions through extensive experiments.

4.1 Literature
Algorithms with predictions is an important approach to the beyond-worst-case analysis of al-
gorithms [Roughgarden, 2020], studies of computation that take advantage of the fact that many
real-world instances are not worst-case. Other approaches include smoothed analysis [Spielman
and Teng, 2004] and data-driven algorithm design [Balcan, 2021]. Inspired by strong empirical
success in applications such as learned index structures [Kraska et al., 2018], the area has seen
a great deal of theoretical study, with a particular focus on algorithms whose guarantees depend
on the quality of a given predictor (c.f. the survey of Mitzenmacher and Vassilvitskii [2021]
and the references therein). The actual learning of this predictor has been studied to a lesser
extent [Anand et al., 2020, Diakonikolas et al., 2021, Dinitz et al., 2021, Chen et al., 2022] and
very rarely in the online learning setting; in Chapter 5 we present the first general framework for
efficiently learning useful predictors.

Data-driven algorithm design is a closely related area that has seen much more learning-
theoretic effort [Gupta and Roughgarden, 2017, Balcan et al., 2018b, Balcan, 2021]. At a high-
level, it often studies the tuning of algorithmic parameters such as the step-size of gradient de-
scent [Gupta and Roughgarden, 2017] or settings of branch and bound for solving integer pro-
grams [Balcan et al., 2018a], whereas the predictors in algorithms with predictions often either
try to guess the full sequence in an online algorithm [Indyk et al., 2022] or the actual outcome of
the computation such as the dual in a primal-dual method [Dinitz et al., 2021]. The distinction
can be viewed as terminological, since a prediction of the outcome can be viewed as a parameter
of the algorithm, but it does mean that in the settings we study we have full information about
the loss function since it is typically some discrepancy between the full sequence or computa-
tional outcome and the prediction. In contrast, in data-driven algorithm design getting the cost
of each parameter setting often requires additional computation, and so we are often in a ban-
dit or semi-bandit setting [Balcan et al., 2020a]. A more salient difference is that data-driven
algorithm design guarantees compete with the parameter that minimizes average cost but do
not always quantify the improvement attainable via learning; in algorithms with predictions we
do generally quantify this improvement with an upper bound on the cost that depends on the
prediction quality, but we usually only compete with the parameter that is optimal for prediction
quality, which is not always optimal for the cost. In Chapter 5 we do adapt ideas from data-driven
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algorithm design, specifically dispersions, to show guarantees for algorithms with predictions;
later in Chapter 7 we also show data-driven algorithm design-type guarantees for the problem of
tuning a linear solver, allowing us to compare results from the two subfields more directly.

4.2 Contributions

The algorithms with predictions results in this thesis stem from centering learning as a crucial
aspect of the field. This approach allows us to both design algorithms for learning to predict
by extending the ARUBA framework, which we do in Chapter 5, and guides the development
of new algorithms with predictions in the fields of differentially private statistics (Chapter 6)
and scientific computing (Chapter 7). In particular, learning influences our exploration of what
predictions to use and how they might be useful; for example, for private quantiles we study what
distributional families to use as priors for releasing statistics and for setting preconditioners in
PDE solvers we convert the entire setup into an online learning problem.

4.2.1 Learning predictions, provably

While much work in algorithms with predictions has focused on using predictions to improve
competitive ratios, running times, or other performance measures, less effort has been devoted
to the question of how to obtain the predictions themselves, especially in the critical online set-
ting. In Chapter 5 we introduce a general design approach for algorithms that learn predictors:
(1) identify a functional dependence of the performance measure on the prediction quality and
(2) apply techniques from online learning to learn predictors, tune robustness-consistency trade-
offs, and bound the sample complexity. This approach is effectively an extension of the ARUBA
framework from Chapter 2—which focused on learning algorithms with learning-theoretic per-
formance measures—to general algorithms and objectives.

We demonstrate the effectiveness of this approach by applying it to several graph algorithms,
such as bipartite matching, and online algorithms such as scheduling, ski-rental, and page migra-
tion, and job scheduling. For the graph algorithms our optimization-based approach allows us to
obtain dramatic improvements in the sample complexity, reducing it by Opnq to Opn2q factors,
where n is the number of nodes in the graph. In the online algorithms our guarantees are for the
most part the first learning-theoretic guarantees available. Importantly, our approach allows us
to reason for the first time about provable instance-dependent prediction, in which rather than
learning a fixed prediction for every instance we learn a model from instance features to cus-
tomized predictions. This reflects much better what is done in practice and will be crucial to
many of the extensions we show in the applications in Chapters 6 and 7.

4.2.2 Extending algorithms with predictions

While predictions have classically been used to augment online algorithms, graph algorithms,
and data structures, our learning-based understanding points to many other applications areas for
this paradigm, two of which we study in detail.
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Private statistics. In Chapter 6 we use our learning-based design approach to develop learning-
augmented algorithms for releasing differentially private (DP) statistics about sensitive data.
Here a common way of getting improved performance is to use external information such as
other sensitive data, public data, or human priors. We propose to use the algorithms with predic-
tions framework as a powerful way of designing and analyzing privacy-preserving methods that
use such external information to improve utility. For three important tasks—(multiple) quantile
release, covariance estimation, and data release—we construct prediction-dependent DP methods
whose utility scales with natural measures of prediction quality. Our analysis enjoys several ad-
vantages, including minimal assumptions about the data, natural ways of adding robustness, and
the provision of useful surrogate losses for two novel “meta" algorithms that learn predictions
from other (potentially sensitive) data. We conclude with experiments in a diverse set of multi-
dataset quantile release settings that show how a learning-augmented approach to incorporating
external information can lead to large error reductions while preserving privacy.

Scientific computing. Chapter 7 concludes our contributions to data-driven algorithms with a
study of linear system solvers, fundamental primitives in scientific computing systems for which
numerous solvers and preconditioners have been developed. They come with parameters whose
optimal values depend on the system being solved and are often impossible or too expensive to
identify; thus in practice sub-optimal heuristics are used. We consider the common setting in
which many related linear systems need to be solved, e.g. during a single numerical simula-
tion. In this scenario, can we sequentially choose parameters that attain a near-optimal overall
number of iterations, without extra matrix computations? We answer in the affirmative for Suc-
cessive Over-Relaxation (SOR), a standard solver whose parameter ω has a strong impact on
its runtime. For this method, we prove that a bandit online learning algorithm—using only the
number of iterations as feedback—can select parameters for a sequence of instances such that
the overall cost approaches that of the best fixed ω as the sequence length increases. Further-
more, when given additional structural information, we show that a contextual bandit method
asymptotically achieves the performance of the instance-optimal policy, which selects the best
ω for each instance. Our work provides the first learning-theoretic treatment of high-precision
linear system solvers and the first end-to-end guarantees for data-driven scientific computing,
demonstrating theoretically the potential to speed up numerical methods using well-understood
learning algorithms. In addition to these technical contributions, this is also the first instance
where the separate fields of learning-augmented algorithms and data-driven algorithm design are
used to solve the same problem, allowing us to compare these two paradigms more directly.

4.2.3 Contributions of independent interest

Our study of private estimation schemes parameterized by learned predictions highlights how
useful doing such learning-augmented analysis can be to the original field of study, in this case
yielding several results of broader interest to DP. First, for the problem of quantile estimation we
design the first private algorithm that does not require knowledge of an interval containing the
true quantile to be run. While our scheme does take a guess of the interval as an input, it has an
error guarantee of Op1

ε
logRq, where R is the distance between the guess and the true quantile
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and ε ¡ 0 is the privacy parameter.; in contrast, past approaches have vacuous guarantee if the
interval is misspecified. Our key insight is to use a heavy-tailed (e.g. Cauchy) base distribution
in the exponential mechanism instead of the usual uniform prior; this allows sufficient weight to
be assigned to the interval containing the prior even in the case of misspecification.

A second contribution is to DP covariance estimation, where our analysis results in a strict
improvement to the state-of-the-art trace-dependent guarantees of Dong et al. [2022, Theorem 1]
without changing their algorithm. In particular, whereas they show error bounds that grow
with the trace norm }C}Tr of the true covariance matrix C P Rd�d, we replace this term by
mincPR }C � cI}Tr. The new guarantee can be much stronger because covariance matrices of
commonly occurring distributions such as isotropic Gaussians are often close to scalar multiples
of the identity, in which case mincPR }C�cI}Tr vanishes while }C}Tr � Opdq. Our result follows
from the observation that a prediction-dependent extension the algorithm of Dong et al. [2022]
is invariant to perturbing the prediction by a scalar multiple of the identity.

Lastly, we introduce a non-Euclidean extension of DP-FTRL [Kairouz et al., 2021a], a pri-
vate online convex optimization method. This is the first DP online learning scheme applicable
to general convex losses that is customizable to different geometries, e.g. to obtain regret bounds
with better dimension-dependence (compared to Euclidean FTRL) when the optimization do-
main is the simplex or the trace ball.

4.3 Discussion
Our first major contribution to algorithms with predictions is a theoretical framework for ana-
lyzing how to learn the predictions themselves, a direction that has seen expanded interest in
recent years. Apart from our own work presented in DP statistics and scientific computing,
the optimization-based approach we introduced in Chapter 4 was also used to show prediction-
learning guarantees in a sequence of work on discrete convex optimization tasks [Sakaue and
Oki, 2022, 2023, Oki and Sakaue, 2023]. There have also been several efforts to go beyond the
static predictions analyzed in most learning-theoretic results for data-driven algorithms, although
the results have generally differed significantly from our approach of learning instance-dependent
prediction models on top of instance features. For example, Srinivas and Blum [2024] showed
learning guarantees for warm-start-type algorithms—e.g. those for bipartite matching—that are
competitive with multiple predictions simultaneously, while Eliáš et al. [2024] studied learning
to make predictions while running an online algorithm.

Beyond learning, interest in learning-augmented algorithms continues to grow, with new di-
rections including the incorporation of uncertainty about the predictions [Christianson et al.,
2024, Sun et al., 2024] and proving bounds if predictions are correct with probability ε and ar-
bitrarily poor otherwise [Gupta et al., 2022, Cohen-Addad et al., 2024]. Our own work in Chap-
ters 6 and 7 points to great opportunities to develop learning-augmented methods for statistical
and numerical tasks; for example, can predictions be incorporated into probabilistic algorithms
such as sampling or numerical subroutines beyond linear solvers? As we demonstrate with our
analysis of learning-augmented scientific computing, these directions also have significant poten-
tial to connect with other subfields at the intersection of ML and algorithms, including amortized
optimization [Amos, 2023] and data-driven algorithm design [Bartlett et al., 2022].
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4.A Background
We first give some necessary background on the field of algorithms with predictions, also known
as learning-augmented algorithms; for a more in-depth introduction see the survey by Mitzen-
macher and Vassilvitskii [2021]. The basic requirement for a learning-augmented algorithm is
that the cost Ctpxq of running it on an instance t with prediction x should be upper bounded—
usually up to constant or logarithmic factors—by a metric Utpxq of the quality of the prediction
on the instance. We denote this by Ct À Ut.

A good guarantee for a learning-augmented algorithm will have several important properties
that formally separate its performance from naive upper bounds Ut Á Ct. The first, consistency,
requires it to be a reasonable indicator of strong performance in the limit of perfect prediction:

Definition 4.A.1. A guarantee Ct À Ut is ct-consistent if Ctpxq ¤ ct whenever Utpxq � 0.

Here ct is a prediction-independent quantity that should depend weakly or not at all on prob-
lem difficulty.

Consistency is often presented via a tradeoff with robustness [Lykouris and Vassilvitskii,
2021], which bounds how poorly the method can do when the prediction is bad, in a manner
similar to a standard worst-case bound:

Definition 4.A.2. A guaranteeCt À Ut is rt-robust if it impliesCtpxq ¤ rt for all predictions w.

Unlike consistency, robustness usually depends strongly on the difficulty of the instance x,
with the goal being to not do much worse than a prediction-free approach. Note that the latter is
trivially robust but not (meaningfully) consistent, since it ignores the prediction; this makes clear
the need for considering the two properties via a tradeoff between them.

Robustness-consistency tradeoffs are often presented as parameterized upper bounds, with
a parameter λ P r0, 1s that specifies how tolerant the user is to performance worse than the
worst-case guarantee. A typical guarantee then has an upper bound of the form

Utpx, λq � min tfpλqutpxq, gtpλqu ¥ Ctpxq (4.1)

with f monotonically increasing (often fp0q � 1), gt monotonically decreasing, and utpxq mea-
sures the quality of the prediction x on instance t. A very common structure is fpλq � 1{p1�λq
and gtpλq 9 1{λ. Thus specifying a small λ results in good performance under good predictions
but sacrifices robustness, while setting λ closer to 1 never does much worse than a prediction-free
guarantee but takes less advantage of good predictions.
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Chapter 5

Learning predictions

As discussed in Chapter 4, past work in algorithms with predictions has focused on designing
methods with good robustness-consistency tradeoffs, i.e. that can take advantage of a good pre-
diction without doing much worse than a default approach if the prediction is poor. However,
this focus ignores the question of where the predictions come from, which is usually learning:
whether or not predictions can be learned has been much less studied, and what guarantees do
exist have exclusively shown (a) sample complexity guarantees for (b) static predictions [Anand
et al., 2020, Diakonikolas et al., 2021, Dinitz et al., 2021, Chen et al., 2022]. This chapter of
the thesis introduces a way to systematically obtain learning-theoretic guarantees for algorithms
with predictions, with a particular emphasis on avoiding the two restrictions above by (a) proving
regret bounds for sequences of adversarial instances (that still imply sample complexity guaran-
tees via online-to-batch conversion) and (b) showing guarantees that can be extended to simple
instance-dependent predictions such as linear maps from instance features.

Our approach extends the ARUBA framework from Chapter 2—which we introduced for the
purposes of designing and analyzing meta-learning—to algorithms with predictions, in particular
to learning predictions or predictors using past instances. This is a natural generalization of the
framework, as in meta-learning can be viewed as the problem of learning to predict a good
initialization for learning algorithms; the main difference now is that the objective is no longer
a learning-theoretic quantity such as regret but can rather be any performance measure such as
time complexity or competitive ratio.

The generalization manifests as a two-step framework for applying it to any algorithms with
prediction problem:

1. For a given algorithm, derive a meaningful and convenient-to-optimize upper bound Utpxq
on the costCtpxq that depends on both the prediction x and information specific to instance
t returned once the algorithm terminates, e.g. the optimum in combinatorial optimization.

2. Apply online learning to these upper bounds obtain both regret guarantees against adver-
sarial sequences and sample complexity bounds for i.i.d. instances.

The challenging part of this framework is usually the first step, as it is often trivially easy to
bound Ct but difficult to do so with a bound that is both meaningful—i.e. non-vacuous and in-
dicative of the underlying performance—and easy-to-optimize. Whether a bound is meaningful

0The work presented in this chapter first appeared in Khodak et al. [2022].
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can be a subjective question, but since in this chapter we focus on showing learning guarantees
for existing algorithms with predictions, we can formalize whether or not a bound is meaningful
using existing guarantees. In particular, we find that for many tasks—e.g. bipartite match-
ing [Dinitz et al., 2021] and online page migration [Indyk et al., 2022]—past work has shown
prediction-dependent upper bounds U 1

t Á Ct that are challenging to optimize, e.g. discontinuous
or nonconvex. Assuming the bound U 1

t from past work is meaningful, we will say that the new,
easy-to-optimize bounds Ut Á Ct that we derive are also meaningful if they are themselves upper
bounded (up to constant or at worst logarithmic factors) by the existing bound U 1

t .

Apart from this, our approach is designed to be simple-to-execute, leaving much of the dif-
ficulty to what the field is already good at: designing algorithms and proving prediction-quality-
dependent upper bounds Ut on their costs Ct Once the latter is accomplished, our framework
leverages problem-specific structure to design a customized learning algorithm for each problem,
leading to strong regret and sample complexity guarantees. In particular, in multiple settings we
improve upon existing results in either sample complexity or generality, and in all cases we are
the first to show regret guarantees in the online setting. This demonstrates the usefulness of and
need for such a theoretical framework for studying these problems.

We summarize the diverse set of contributions enabled by our theoretical framework below,
as well as in Table 5.1:

1. Bipartite matching: Our starting example builds upon the work on minimum-weight
bipartite matching using the Hungarian algorithm by Dinitz et al. [2021]. We show how
our framework leads directly to both the first regret guarantees in the online setting and
new sample complexity bounds that improve over the previous approach by a factor linear
in the number of nodes. In Appendices 5.B and 5.D we show similar strong improvements
for b-matching and other graph algorithms.

2. Page migration: We next study a more challenging application, online page migration,
and show how we can adapt the algorithmic guarantee of Indyk et al. [2022] into a learnable
upper bound for which we can again provide both adversarial and statistical guarantees.

3. Learning linear maps with instance-feature inputs: Rather than assume the existence
of a strong fixed prediction, it is often more natural to assume each instance comes with
features that can be input into a predictor such as a linear map. Our approach yields the first
guarantees for learning linear predictors for algorithms with predictions, which we obtain
for the two problem settings above and also for online job scheduling using makespan
minimization [Lattanzi et al., 2020].

4. Tuning robustness-consistency tradeoffs: Many bounds for online algorithms with pre-
dictions incorporate parameterized tradeoffs between trusting the prediction or falling back
on a worst-case approximation. This suggests the usefulness of tuning the tradeoff param-
eter, which we instantiate on a simple job scheduling problem with a fixed predictor. Then
we turn to the more challenging problem of simultaneously tuning the tradeoff and learn-
ing predictions, which we achieve on two variants of the ski-rental problem. For the
discrete case we give the only learning-theoretic guarantee, while for the continuous case
our bound uses a dispersion assumption [Balcan et al., 2018b] that, in the i.i.d. setting, is a
strictly weaker assumption than the log-concave requirement of Diakonikolas et al. [2021].
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Table 5.1: Settings we apply our framework to, our new learning algorithms, and their regret.

Problem Algorithm with prediction Feedback Upper bound (losses) Learning algo. Regret

Min. weight bipartite Hungarian method Opt. dual O p}x̂� x�pcq}1q Proj. online O
�
n

??
T
	

matching (5.2)�,: initialized by dual x̂ P Rn x�pcq gradient

Online page Lazy offline optimal for Requests
Õ

�
max
iPrns

Ep

i�γD°
j�i

1ŝrjs�srjs

�
Exponentiated O

�
n

??
T
	

migration (5.3)� predictions tŝrjs�prjsunj�1 tsrjsunj�1 gradient �n
Online job Corrected offline optimal Opt. weights O p}x̂� logw}8q Euclidean O

�aa
mT logpmT q

	
scheduling (5.4)� for predicted logits x̂ P Rm w P △m KT-OCO

Non-clairvoyant Preferential round-robin Prediction
min

!
1�2η{n
1�λ , 2

λ

) Exponential O
�??
T log T

�
job scheduling (5.5); with tradeoff parameter λ quality η forecaster

Ski-rental w. integer Buy if price b ¤ x, λ trade- Number of mintλpb1x¡b�n1x¤bq,b,nu
1�p1�1{bq�bλ

Exponentiated O
�
N

aa
T logpNT q

	
days n P rNs (5.5) off with worst-case approx. ski-days n gradient

Ski-rental with Buy after x days, λ trade- Number of min
 emintn,bu

pe�1qλ , Exponential O
�aa
T logpNT q

β-dispersed n (5.5) off with worst-case approx. ski-days n n1n¤x�pb�xq1n¡x
1�λ

(
forecaster �N2T 1�β�

� For these we also show guarantees in the statistical (i.i.d.) setting and for learning linear predictors that take instance features as inputs.
: We extend these results to minimum-weight b-matching and other graph algorithms with predictions in Appendices 5.C.1 and 5.D.
; We also provide new guarantees for the problem of learning job permutations in the non-clairvoyant setting in Appendix 5.E.

5.1 Related work
While there has been a great deal of theoretical study focusing on algorithms whose guaran-
tees depend on the quality of a given predictor (c.f. the Mitzenmacher and Vassilvitskii [2021]
survey), the actual learning of these predictions has been less frequently studied [Anand et al.,
2020, Diakonikolas et al., 2021, Dinitz et al., 2021], especially in the online setting; we aim
to change this with our framework. Some approaches improve online learning itself using pre-
dictions [Rakhlin and Sridharan, 2013, Jadbabaie et al., 2015, Dekel et al., 2017], but they also
assume known predictors or only learn over a small set of policies, and their goal is minimizing
regret not computation. In-general, we focus on showing how algorithms with predictions can
make use of online learning rather than on new methods for the latter. Several works [Balcan and
Blum, 2007, Rakhlin and Sridharan, 2017, Anand et al., 2021] use learning while advising an
algorithm, in-effect taking a learning-inspired approach to better make use of a prediction within
an algorithm, whereas we focus on learning the prediction outside of the target algorithm. We
present the first general framework for efficiently learning useful predictors.

5.2 Framework overview and bipartite matching application
In this section we outline the theoretical framework for designing algorithms and proving guar-
antees for learned predictors. As an illustrative example we will use the Hungarian algorithm
for bipartite matching, for which Dinitz et al. [2021] demonstrated an instance-dependent upper
bound on the running time using a learned dual vector. Along the way, we will show an improve-
ment to their sample complexity bound together with the first online results for this setting.

We first introduce the problem, min-weight perfect matching (MWPM), which for a bipar-
tite graph on n nodes andm edges asks for the perfect matching with the least weight according to
edge-costs c P Zm¥0. The Hungarian algorithm is a popular convex optimization-based approach
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for which Dinitz et al. [2021] showed a runtime bound of Õ pm?nmin t}x� x�pcq}1,
?
nuq,

where x P Zn initializes the duals in a primal-dual algorithm and x�pcq P Zn is dual of the
optimal solution; note that the latter is obtained for free after running the method.

5.2.1 Step 1: Upper bound

The first step of our approach is to find a suitable function Utpxq of the prediction x that (a) upper
bounds the target algorithm’s cost Ctpxq, (b) can be constructed completely once the algorithm
terminates, and (c) can be efficiently optimized. These qualities allow learning the predictor
in the second step. The requirements are similar to those of ARUBA for showing results for
meta-learning, although there the quantity being upper-bounded was regret, not algorithmic cost.

Many guarantees for algorithms with predictions are already amenable to being optimized,
although we will see that they can require some massaging in order to be useful. In many cases
the guarantee is a distance metric between the prediction x and some instance-dependent perfect
prediction x�, which is convex and thus straightforward to learn. This is roughly true of our
bipartite matching example, although taking the minimum of a constant and the distance }x �
x�pcq}1 between the predicted and actual duals makes the problem nonconvex. However, we can
further upper bound their result by Õ pm?n}x� x�pcq}1q; note that Dinitz et al. [2021] also
optimize this quantity, not the tighter upper bound with the minimum. While this might seem to
be enough for step one, Dinitz et al. [2021] also require the prediction x to be integral, which is
difficult to combine with standard online procedures. In order to get around this issue, we show
that rounding any nonnegative real vector to the closest integer vector incurs only a constant
multiplicative loss in terms of the ℓ1-distance.

Claim 5.2.1. Given any vectors x P Zn and y P Rn, let ỹ P Zn be the vector whose elements
are those of y rounded to the nearest integer. Then }x� ỹ}1 ¤ 2}x� y}1.

Proof. Let S � rns be the set of indices i P rns for which xris ¥ yris ðñ ỹris � ryriss. For
i P rnszS we have |xris � yris| ¥ 1{2 ¥ |ỹris � yris| so it follows by the triangle inequality that

}x� ỹ}1 �
¸
iPS
|xris � ỹris| �

¸
iPrnszS

|xris � ỹris|

¤
¸
iPS
|xris � yris| �

¸
iPrnszS

|xris � yris| � |yris � ỹris|

¤
¸
iPS
|xris � yris| � 2

¸
iPrnszS

|xris � yris| ¤ 2}x� y}1

(5.1)

Combining this projection with the convex relaxation above and the result of Dinitz et al.
[2021] shows that for any predictor x P Rn we have (up to affine transformation) a convex upper
bound Utpxq � }x�x�pctq}1 on the runtime of the Hungarian method, as desired. We now move
to step two.
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5.2.2 Step 2: Online learning

Once one has an upper bound Ut on the cost, the second component of our approach is to apply
standard online learning algorithms and results to these upper bounds to obtain guarantees for
learning predictions. In online learning, on each of a sequence of rounds t � 1, . . . , T we predict
xt P X and suffer Utpxtq for some adversarially chosen loss function Ut : X ÞÑ R that we then
observe; the goal is to use this information to minimize regret

°T
t�1 Utpxtq � minxPX Utpxq,

with the usual requirement being that it is sublinear in T and thus decreasing on average over
time. For bipartite matching, we can just apply regular projected online (sub)gradient descent
(OGD) to lossesUtpxq � }x�x�pctq}1, i.e. the update rule xt�1 Ð argminxPX αx∇Utpxtq,xy�
1
2
}x}22 for appropriate step-size α ¡ 0; as shown in Theorem 5.2.1, this yields sublinear regret

via a textbook result. The simplicity here is the point: by relegating as much of the difficulty as
we can to obtaining an easy-to-optimize upper bound in step one, we make the actual learning-
theoretic component easy. However, as we show in the following sections, it is not always easy to
obtain a suitable upper bound, nor is it always obvious what online learning algorithm to apply,
e.g. if the upper bounds are nonconvex.

Our use of online learning is motivated by three factors: (1) doing well on non-i.i.d. instances
is important in practical applications, e.g. in job scheduling where resource demand changes over
time; (2) its extensive suite of algorithms lets us use different methods to tailor the approach to
specific settings and obtain better bounds, as we exemplify via our use of exponentiated gra-
dient over the simplex geometry in Section 5.3 and KT-OCO over unbounded Euclidean space
in Section 5.4; (3) the existence of classic online-to-batch procedures for converting regret into
sample complexity guarantees [Cesa-Bianchi et al., 2004], i.e. bounds on the number of samples
needed to obtain an ε-suboptimal predictor w.p. ¥ 1 � δ. While online-to-batch conversion can
be suboptimal [Hazan and Kale, 2014], as we show in Theorems 5.2.1, 5.B.1, and 5.D.1 its ap-
plication to various graph algorithms with predictions problems improves upon existing sample
complexity results. See Appendix B.4 for more details on online-to-batch conversion.

We now show how to apply the second online learning step to bipartite matching by improv-
ing upon the result of Dinitz et al. [2021] in Theorem 5.2.1; the improvement is the entirely new
regret bound against adversarial cost vectors and a Õpnq lower sample complexity. Note how the
proof needs only their existing algorithmic contribution, Claim 5.2.1, and some standard tools in
online convex optimization.

Theorem 5.2.1. Suppose we have a fixed bipartite graph with n ¥ 3 vertices and m ¥ 1 edges.
1. For any cost vector c P Zm¥0 and any dual vector x P Rn there exists an algorithm for

MWPM that runs in time

Õ
�
m
?
nmin

 
Upxq,?n(� ¤ Õ

�
m
?
nUpxq� (5.2)

for Upxq � }x� x�pcq}1, where x�pcq the optimal dual vector associated with c.
2. There exists a poly-time algorithm s.t. for any δ, ε ¡ 0 and distribution D over integer
m-vectors with ℓ8-norm ¤ C it takes O

��
Cn
ε

�2
log 1

δ

	
samples from D and returns x̂ s.t.

w.p. ¥ 1� δ:
Ec�D}x̂� x�pcq}1 ¤ min

}x}8¤C
Ec�D}x� x�pcq}1 � ε (5.3)
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3. Let c1, . . . , cT P Zm¥0 be an adversarial sequence of m-vectors with ℓ8-norm ¤ C. Then
OGD with appropriate step-size has regret

max
}x}8¤C

Ţ

t�1

}xt � x�pctq}1 � }x� x�pctq}1 ¤ Cn
?
2T (5.4)

Proof. The first result follows by combining Dinitz et al. [2021, Theorem 13] with Claim 5.2.1.
For the third result, let xt be the sequence generated by running OGD [Zinkevich, 2003] with
step-size C{?2T on the losses Utpxq � }x � x�pctq}1 over domain r�C,Csn. Since these
losses are

?
n-Lipschitz and the duals are C

?
n-bounded in Euclidean norm the regret guarantee

follows from Shalev-Shwartz [2011, Corollary 2.7]. For the second result, we apply standard
online-to-batch conversion to the third result, i.e. we draw T � Ω

��
Cn
ε

�2
log 1

δ

	
samples ct, run

OGD as above on the resulting losses Ut, and set x̂ � 1
T

°T
t�1 xt to be the average of the resulting

predictions xt. The result follows by Lemma B.4.1.

This concludes an overview of our two-step approach for obtaining learning guarantees for
algorithms with predictions. To summarize, we propose to (1) obtain simple-to-optimize upper
bounds Utpxq on the cost of the target algorithm on instance t as a function of prediction x and
(2) optimize Utpxq using online learning. While conceptually simple, even in this illustrative ex-
ample it already improves upon past work; in the sequel we demonstrate further results that this
approach makes possible. Note that, like Dinitz et al. [2021], we are also able to generalize The-
orem 5.2.1 to b-matchings, which we do in Appendix 5.C.1; another advantage of our approach
is that it lets us prove online and statistical learning in the case where the demand vector b varies
across instances rather than staying fixed as in Dinitz et al. [2021]. Finally, in Appendix 5.D
we also improve upon the more recent learning-theoretic results of Chen et al. [2022] for related
graph algorithms with predictions problems.

5.3 Predicting requests for page migration
Equipped with our two-step approach for deriving guarantees for learning predictors, we inves-
tigate several more important problems in combinatorial optimization, starting with the page
migration problem. Our results demonstrate that even for learning such simple predictors there
are interesting technical challenges in deriving a learnable upper bound. Nevertheless, once this
is accomplished the second step of our approach is again straightforward.

To introduce the online task we consider, suppose we have a server that sees a sequence of
requests sr1s, . . . , srns from metric space pK, dq and at each timestep decides whether to change
its state aris P K at cost Ddpari�1s, arisq for some D ¡ 1; it then suffers a further cost dparis, srisq.
The online page migration (OPM) problem is then to minimize the cost to the server. Re-
cently, Indyk et al. [2022] studied a setting where we are given a sequence of predicted points
ŝr1s, . . . , ŝrns P K to aid the page migration algorithm. They show that if there exists γ, q P p0, 1q
s.t. γD P rns and for any i P rns we have

°i�γD�1
j�i 1srjs�ŝrjs ¤ qγD then there exists an al-

gorithm with competitive ratio p1 � γqp1 � Opqqq w.r.t. to the offline optimal. This algorithm
depends on γ but not q, so we study the setting where γ is fixed.
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5.3.1 Deriving an upper bound
As in the previous section, the predictions are discrete, so to use our approach we must convert it
into a continuous problem. As we have fixed γ, the competitive ratio is an affine function of the
following upper bound on q:

Qpŝ, sq � 1

γD
max

iPrn�γD�1s

i�γD�1¸
j�i

1ŝrjs�srjs (5.5)

We assume that the set of points K is finite with indexing k � 1, . . . , |K| and use this to introduce
our continuous relaxation, a natural randomized approach converting the problem of learning a
prediction into n experts problems on |K| experts. For each j P rns we define a probability
vector prjs P △|K| governing the categorical r.v. ŝrjs, i.e. Prpŝrjs � kq � prj,ks @ k P K.
Under these distributions the expected competitive ratio will be p1 � γqp1 � OpEŝ�pQpŝ, sqqq,
for p the product distribution of the vectors pj . Note that forcing each pj to be a one-hot vector
recovers the original approach with no loss, so optimizing Eŝ�pQpŝ, sq over p P △n

|K| would find
a predictor that fits the original result.

However, Eŝ�pQpŝ, sq is not convex in p. The simplest relaxation is to replace the maximum

by summation, but this leads to a worst-case bound of O
�

n
γD

	
. We instead bound Eŝ�pQpŝ, sq—

and thus also the expected competitive ratio—by a function of the following maximum over
expectations:

Usppq � max
iPrn�γD�1s

Eŝ�p

i�γD�1¸
j�i

1ŝrjs�srjs � max
iPrn�γD�1s

i�γD�1¸
j�i

1� xsrjs,prjsy (5.6)

where srj,ks � 1srjs�k @ k P K, i.e. srjs encodes the location in K of the jth request. As a
maximum over n � γD � 1 convex functions this objective is also convex. Note also that if
Usppq is zero—i.e. the probability vectors are one-hot and perfect—then Eŝ�pQpŝ, sq ¥ q will
also be zero. In fact, q is upper-bounded by a monotonically increasing function of Usppq that is
zero at the origin, but as this function is concave and non-Lipschitz (c.f. Figure 5.1) we incur an
additive O

�
logpn�γD�1q

γD

	
loss to obtain an online-learnable upper bound. This is formalized in

the following result (proof in Appendix 5.A.1).

Lemma 5.3.1. There exist constants a   e, b   2{e and a monotonically increasing function
f : r0,8q ÞÑ r0,8q s.t. fp0q � 0 and

Eŝ�pQpŝ, sq ¤ fpUsppqq
γD

¤ aUsppq � b logpn� γD � 1q
γD

¤ aEŝ�pQpŝ, sq � b logpn� γD � 1q
γD

(5.7)

As in bipartite matching—where we similarly resorted to a relaxation of a discrete problem—
we now have a prediction-dependent convex bound on the competitive ratio for the OPM algo-
rithm of Indyk et al. [2022]. However, whereas before we only incurred a multiplicative loss of
two compared to the upper bound of Dinitz et al. [2021] (c.f. Claim 5.2.1), our convex upper
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Figure 5.1: Bounds f (c.f. Lemma 5.3.1) for different n and γD on the expected largest number
of mistakes in any γD-interval as a function of the maximum expected number Usppq.

bound for OPM also incurs an additive loss relative to the original prediction-dependent of Indyk
et al. [2022] that makes it meaningful only for γD " log n. However, as the method we propose
optimizes Usppq, which bounds q with no additive error via the function f in Lemma 5.3.1, in
practice we may expect it to help minimize q in all regimes. Note that the non-Lipschitzness near
zero that prevents using f for regret guarantees comes from poor tail behavior of Poisson-like
random variables with small means, which we do not expect can be significantly improved.

5.3.2 Learning guarantees
Having established an upper bound, in Theorem 5.3.1 we again show how a learning-theoretic
result follows from standard online learning. This time, instead of OGD we run exponenti-
ated (sub)gradient (EG) [Shalev-Shwartz, 2011], a classic method for learning from experts,
on each of n simplices to learn the probabilities prjs @ j P rns. The multiplicative update
xt�1 9 xt d expp�α∇Utpxtqq of EG is notable for yielding regret logarithmic in the size |K| of
the simplices, which is important for large metric spaces. Note that as the relaxation is random-
ized, our algorithms output a dense probability vector; to obtain a prediction for OPM we sample
ŝtrjs � prjs @ j P rns.
Theorem 5.3.1. Let pK, dq be a finite metric space.

1. For any request sequence s and any set of probability vectors p P △n
|K| there exists an

algorithm for OPM with expected competitive ratio

p1� γq
�
1�O

�
Usppq � logpn� γD � 1q

γD




(5.8)

2. There exits a poly-time algorithm s.t. for any δ, ε ¡ 0 and distribution D over request
sequences s P Kn it takes O

��
γD
ε

�2 �
n2 log |K| � log 1

δ

�	
samples from D and returns p̂

s.t. w.p. ¥ 1� δ:
Es�DUspp̂q ¤ min

pP△n
|K|

Es�DUsppq � ε (5.9)
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3. Let s1, . . . , sT be an adversarial sequence of request sequences. Then updating the distribu-
tion ptrjs over △|K| at each timestep j P rns using EG with appropriate step-size has regret

max
pP△n

|K|

Ţ

t�1

Ustpptq � Ustppq ¤ γDn
a
2T log |K| (5.10)

Proof. The first result follows by combining Indyk et al. [2022, Theorem 1] with Lemma 5.3.1.
For the third let pt be generated by running n exponentiated gradient algorithms with step-sizeb

log |K|
2γ2D2T

on losses Ustppq over △n
|K|. Since these are γD-Lipschitz and the maximum entropy is

log |K|, the regret follows by [Shalev-Shwartz, 2011, Theorem 2.15]. For the second result, apply
standard online-to-batch conversion to the third, i.e. draw T � Ω

��
γD
ε

�2 �
n2 log |K| � log 1

δ

�	
samples st, run EG on Ustppq as above, and set p̂ � 1

T

°T
t�1 pt to be the average of the resulting

actions. The result follows by Lemma B.4.1.

As before, this result first shows how the quantity of interest—here the competitive ratio—is
upper-bounded by an affine function of some quality measure Usppq, for which we then provide
regret and statistical guarantees using online learning. The difficulty deriving a suitable bound
exemplifies the technical challenges that arise in learning predictors, and may also be encoun-
tered in other sequence prediction problems such as TCP [Bamas et al., 2020]. Nevertheless,
our approach does yield an online procedure that incurs only Op logn

γD
q additive error over Indyk

et al. [2022] in the case of a perfect predictor and, unlike their work, we provide an algorithm
for learning the predictor itself. In Appendix 5.C.2 we also show an auto-regressive extension
which does not require learning a distribution for each timestep j P rns.

5.4 Learning linear predictors with instance-feature inputs
So far we have considered only fixed predictors, either optima-in-hindsight in the online setting
or a population risk minimizers for i.i.d. data. Actual instances can vary significantly and so a
fixed predictor may not be very good, e.g. in the example of querying a sorted array it means
always returning the same index. In the online setting one can consider methods that adapt to
dynamic comparators [Zinkevich, 2003, Jadbabaie et al., 2015, Mokhtari et al., 2016], which are
also applicable to our upper bounds; however, these still need measures such as the comparator
path-length to be small, which may be more reasonable in some cases but not all.

We instead study the setting where all instances come with instance-specific features, a nat-
ural and practical assumption [Kraska et al., 2018, Lattanzi et al., 2020] that encompasses nu-
merical representations of the instance itself—e.g. bits representing a query or a graph—or other
information such as weather or day of the week. These are passed to functions—e.g. linear pre-
dictors, neural nets, or trees—whose parameters can be learned from data. We study linear pre-
dictors, which are often amenable to similar analyses as above since the composition of a convex
and affine function is convex. For example, it is straightforward to extend the matching results to
learning linear predictors of duals. OPM is more challenging because the outputs must lie in the
simplex, which can be solved by learning rectangular stochastic matrices. Both sets of results
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are shown in Appendix 5.C. Notably, for page migration our guarantees cover the auto-regressive
setting where the server probabilities are determined by a fixed linear transform of past states.

Our main example will be online job scheduling via minimizing the fractional makespan [Lat-
tanzi et al., 2020], where we must assign each in a sequence of variable-sized jobs to one of m
machines. Lattanzi et al. [2020] provide an algorithm that uses predictions ŵ P Rm

¡0 of “good”
machine weights w P Rm

¡0 to assign jobs based on how well ŵ corresponds to machine demand;
the method has a performance guarantee of Oplogmintmaxi

ŵris
wris

,muq. They also discuss learn-
ing linear and other predictors, but without guarantees. We study linear prediction of the loga-
rithm of the machine weights, which makes the problem convex, and assume features lie in the f -
dimensional simplex. For simplicity we only consider learning the linear transform from features
to predictors and not the intercept, as the former subsumes the latter. For the online result, we
use KT-OCO [Orabona and Pal, 2016, Algorithm 1], a parameter-free subgradient method with
update xt�1 Ð 1�°t

s�1xgs,xsy
t�1

°t
s�1 gs for gs � ∇Uspxsq; it allows us to not assume any bound

on the machine weights and thus to compete with the optimal linear predictor in all of Rm�f .

Theorem 5.4.1. Consider online restricted assignment with m ¥ 1 machines [Lattanzi et al.,
2020, Section 2.1].

1. For predicted logits x P Rm there is an algorithm whose fractional makespan has compet-
itive ratio

Opmint}x� logw}8, logmuq ¤ OpUpxqq (5.11)

for Upxq � }x � logw}8, where w P Rm
¡0 are good machine weights [Lattanzi et al.,

2020, Section 3].
2. There exists a poly-time algorithm s.t. for any δ, ε ¡ 0 and distribution D over ma-

chine (weight, feature) pairs pw, fq P Rm
¡0 �△f s.t. } logw}8 ¤ B the algorithm takes

O
��

B
ε

�2 �
mf � log 1

δ

�	
samples from D and returns Â P Rm�f s.t. w.p. ¥ 1� δ

Epw,fq�D}Âf � logw}8 ¤ min
}A}max¤B

Epw,fq�D}Af � logw}8 � ε (5.12)

3. Let pw1, f1q, . . . , pwT , fT q P Rm
¡0 � △f be an adversarial sequence of (weights, feature)

pairs. Then for any A P Rm�f KT-OCO has regret

Ţ

t�1

}Atft � logwt}8 � }Aft � logwt}8 ¤ }A}F
b
T logp1� 24T 2}A}2F q � 1 (5.13)

If the matrices have B-bounded entries then OGD with appropriate step-size has regret

max
}A}max¤B

Ţ

t�1

}Atft � logwt}8 � }Aft � logwt}8 ¤ B
a
2mfT (5.14)

Proof. The first result follows by substituting maxi
exppxrisq

wris
for η in Lattanzi et al. [2020, Theo-

rem 3.1] and upper bounding the maximum by the ℓ8-norm. For the third, since Ut is 1-Lipschitz
w.r.t. the Euclidean norm we apply the guarantee for KT-OCO [Orabona and Pal, 2016, Algo-
rithm 1] using ε � 1 and the subgradients of }Atft�logwt}8 as rewards [Orabona and Pal, 2016,
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Corollary 5]. The result for B-bounded A follows by applying OGD with step-size B
b

mf
2T

over
}A}max ¤ B [Shalev-Shwartz, 2011, Corollary 2.7]. Finally, the second result follows by apply-
ing online-to-batch conversion to the latter result, i.e. draw T � Ω

��
B
ε

�2 �
mf � log 1

δ

�	
sam-

ples pwt, ftq, run OGD on the resulting losses }Aft� logwt}8 as above, and set Â � 1
T

°T
t�1At

to be the average of the resulting actions At. The result follows by Lemma B.4.1.

This is the first guarantee for learning non-static predictors in the algorithms with predic-
tions literature. It demonstrates both how to extend static predictor results to learning linear
predictors—the former is recovered by ft � 11 @ t—and how to handle unbounded predictor
domains. The ability to provide such guarantees is another advantage of our approach.

5.5 Tuning parameterized robustness-consistency tradeoffs
We turn to tuning robustness-consistency tradeoffs, introduced in Lykouris and Vassilvitskii
[2021]. As discussed in the previous chapter, this tradeoff captures the tension between following
the predictions when they are good (consistency) and doing not much worse than the worst-case
guarantee in either case (robustness). We focus on the case where the tradeoff is made explicit
via a parameter λ P r0, 1s, the setting of which is crucial but often left to the end-user. Here
we show that it is often eminently learnable in an online setting. We then demonstrate how to
accomplish a much harder task—tuning λ at the same time as learning to predict—on two related
but technically very different variants of the ski-rental problem. This meta-application highlights
the applicability of our approach to nonconvex upper bounds.

5.5.1 Robustness-consistency tradeoffs

Recall the parameterized robustness-consistency tradeoff Utpx, λq � min tfpλqutpxq, gtpλqu
from Equation 4.1, where ut is some measure of the quality of x on instance t, f is a mono-
tonically increasing function that ideally satisfies fp0q � 1, and gt is a monotonically decreas-
ing function that (for online algorithms) ideally evaluates to the worst-case competitive ratio at
λ � 1. For example, in job scheduling with predictions, a setting where we are given n jobs
and their predicted runtimes with total absolute error η and must minimize the sum of their
completion times when running on a single server with pre-emption. Here Kumar et al. [2018,
Theorem 3.3] showed that a preferential round-robin algorithm has competitive ratio at most
min

!
1�2η{n
1�λ , 2

λ

)
. Thus if we know the prediction is perfect we can set λ � 0 and obtain the

optimal cost (consistency); on the other hand, if we know the prediction is poor we can set λ � 1
and get the (tight) worst-case guarantee of two (robustness).

Of course in practice we often do not know how good a prediction is on a specific instance t;
we thus would like to learn to set λ, i.e. to learn how trustworthy our prediction is. As a first step,
we can consider doing so when we are given a prediction for each instance and thus only need to
optimize over λ. For example, the just-discussed problem of job scheduling has competitive ratio
upper-bounded by Utpλq � min

!
1�2ηt{nt

1�λ , 2
λ

)
for nt and ηt the number of jobs and the prediction
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quality, respectively, on instance t. Assuming a bound B on the average error makes Ut Lips-
chitz, so we can apply the exponentially weighted average forecaster [Krichene et al., 2015,
Algorithm 1], also known as the exponential forecaster. This algorithm, whose action at each
time t � 1 is to sample from the distribution with density ρt�1p�q 9 ρ1p�q expp�α

°t
s�1 Usp�qq,

has the following regret guarantee (proof in Appendix 5.A.2):

Corollary 5.5.1. For the competitive ratio upper bounds Ut of the job scheduling problem with
average prediction error η{nt at most B the exponential forecaster with appropriate step-size has
expected regret

max
λPr0,1s

E
Ţ

t�1

Utpλtq � Utpλq ¤ 9B

�
1�

c
T

2
log T

�
(5.15)

Thus a standard method produces a sequence λt that performs as well as the best λ asymp-
totically. Next we study the harder problem of simultaneously tuning λ and learning to predict.

5.5.2 Ski-rental
We instantiate this challenge on ski-rental, where each task t is a ski season with an unknown
number of days nt P Z¥2; to ski each day, we either buy skis at price bt or rent each day for
the price of one. The optimal offline policy is to buy iff bt   nt, and the best algorithm has
worst-case competitive ratio e{pe� 1q. Kumar et al. [2018] and Bamas et al. [2020, Theorem 2]
further derive an algorithm with the following robustness-consistency tradeoff between blindly
following a prediction x and incurring cost utpxq � bt1x¡bt�nt1x¤bt or going with the worst-case
guarantee:

Utpx, λq � mintλutpxq, bt, ntu
1� etp�λq , etpzq � p1� 1{btqbtz (5.16)

Assuming a bound of N ¥ 2 on the number of days and B ¡ 0 on the buy price implies that Ut
is bounded and Lipschitz w.r.t. λ. We can thus run exponentiated gradient on the functions Ut
to learn a categorical distribution over the product set rN s � tδ{2, . . . , 1 � δ{2u for some δ s.t.
1{δ P Z¥2. This yields the following bound on the expected regret (proof in Appendix 5.A.3).

Corollary 5.5.2. For the competitive ratio upper bounds Ut of the discrete ski-rental problem the
randomized exponentiated gradient algorithm with an appropriate step-size has expected regret

max
xPrNs,λPp0,1s

E
Ţ

t�1

Utpxt, λtq � Utpx, λq ¤ 6N
a
T logpBNT q (5.17)

Thus via an appropriate discretization the sequence of predictions pxt, λtq does as well as the
joint optimum on this problem. However, we can also look at a case where we are not able to just
discretize to get low regret. In particular, we consider the continuous ski-rental problem, where
each day nt ¡ 1 is a real number, and study how to pick thresholds x after which to buy skis,
which has cost utpxq � nt1nt¤x�pbt�xq1nt¡x. Note that x � 0 and x � N recovers the previous
setting where our decision was to buy or not at the beginning. For this setting, Diakonikolas et al.
[2021] adapt an algorithm of Mahdian et al. [2012] to bound the cost as follows:

Ctpx, λq ¤ Utpx, λq � min

"
utpxq
1� λ

,
emintnt, btu
pe� 1qλ

*
(5.18)
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While the bound is simpler in λ, it is discontinuous in x because ut is piecewise-Lipschitz. Since
one cannot even attain sublinear regret on adversarially chosen threshold functions, we must
make an assumption on the data. In particular, we will assume the days are dispersed:

Definition 5.5.1. A set of points n1, . . . , nT P R is β-dispersed if @ ε ¥ T�β the expected
number in any ε-ball is ÕpεT q, i.e. EmaxxPr0,Ns |rx� εs X tn1, . . . , nT u| � ÕpεT q.

Dispersion encodes the stipulation that the days, and thus the discontinuities of utpx, λq, are
not too concentrated. In the i.i.d. setting, a simple condition that leads to dispersion with β � 1{2
is the assumption that the points are drawn from a κ-bounded distribution [Balcan et al., 2018b,
Lemma 1]. Notably this is a strictly weaker assumption than the log-concave requirement of
Diakonikolas et al. [2021] that they used to show statistical learning results for ski-rental. Hav-
ing stipulated that the ski-days are β-dispersed, we can show that it implies dispersion of the
loss functions [Balcan et al., 2018b] and thus obtain the following guarantee for the exponential
forecaster applied to Utpx, λq (proof in Appendix 5.A.4):

Corollary 5.5.3. For cost upper bounds Ut of the continuous ski-rental problem the exponential
forecaster with an appropriate step-size has expected regret

max
xPr0,Ns,λPp0,1s

E
Ţ

t�1

Utpxt, λtq � Utpx, λq ¤ Õ
�a

T logpNT q � pN �Bq2T 1�β
	

(5.19)

Thus in two mathematically quite different settings of ski-rental we can directly apply online
learning to existing bounds to not only learn online the best action for ski-rental, but to at the
same time learn how trustworthy the best action is via tuning the robustness-consistency tradeoff.

5.6 Conclusion
The field of algorithms with predictions has been successful in circumventing worst case lower
bounds and showing how simple predictions can improve algorithm performance. However,
except for a few problem-specific approaches, the question of how to predict has largely been
missing from the discussion. In this chapter we presented the first general framework for effi-
ciently learning useful predictions and applied it to a diverse set of previously studied problems,
giving the first low regret learning algorithms, reducing sample complexity bounds, and showing
how to learn the best robustness-consistency tradeoff. One current limitation is the lack of more
general-case guarantees for simultaneously tuning robustness-consistency and learning the pre-
dictor, which we only show for ski-rental. There are also several other avenues for future work.
The first is to build on our results and provide learning guarantees for other problems where the
algorithmic question of how to use predictions is already addressed. Another is to try to improve
known bounds by solving the problems holistically: developing easy-to-learn parameters in con-
cert with developing algorithms that can use them. We make progress in this direction in the next
chapter. Finally, there is the direction of identifying hard problems: what are the instances where
no reasonable prediction can help improve an algorithm’s performance?
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5.A Proofs of main results

5.A.1 Proof of Lemma 5.3.1

Proof. Note that the second line follows directly by Jensen’s inequality, so we focus on showing
the first two inequalities. For each j P rns define pj � 1 � xsrjs,prjsy, i.e. the probability that
ŝj � sj , and the r.v. Xj � Berppjq. Define also the r.v. Si �

°i�γD�1
j�i Xj , s.t. we have

γDEpq � Ep max
iPrn�γD�1s

Si � Ep max
iPrn�γD�1s

i�γD�1¸
j�i

Xj (5.20)

Note that Si is a Poisson binomial and so has moment-generating function Ep expptSiq �±i�γD�1
j�i p1� pj � pje

tq. Therefore applying Jensen’s inequality and the union bound yields

exp

�
tEp max

iPrn�γD�1s
Si



¤ Ep exp

�
t max
iPrn�γD�1s

Si



� Ep max

iPrn�γD�1s
exp ptSiq

¤
n�γD�1¸
i�1

Ep exp ptSiq

¤ pn� γD � 1q
i��γD�1¹
j�i�

p1� pj � pje
tq

(5.21)

for all t ¡ 0 and i� P argmaxiPrn�γD�1s EpSi. We then have

tEp max
iPrn�γD�1s

Si ¤ logpn� γD � 1q �
i��γD�1¸
j�i�

logp1� pj � pje
tq

¤ logpn� γD � 1q �
i��γD�1¸
j�i�

log expppjpet � 1qq

¤ logpn� γD � 1q �
i��γD�1¸
j�i�

pjpet � 1q

¤ logpn� γD � 1q � EpSi�pet � 1q

(5.22)

Dividing by t � W
�

logpn�γD�1q
x

	
� 1 shows that fpxq � xpexpptq�1q�logpn�γD�1q

tγD
, where W :

r0,8q ÞÑ r0,8q is the LambertW -function. Define L � logpn�γD�1q{e, so we are interested
in bounding fpxq � xpexppW pL{xq�1q�1q�eL

W pL{xq�1
. We compute its derivative:

f 1pxq � xpeW pL{xq�1 � 1qW pL{xq2 � 3xpW pL{xq � 1{3q � xeW pL{xq�1 � 2eL

xpW pL{xq � 1q3 (5.23)
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and second derivative:

f2pxq � �W pL{xq ppx� eLqW pL{xq2 � 2p2x� eLqW pL{xq � eLq
x2pW pL{xq � 1q5 (5.24)

Since the second derivative is always negative, f is a concave function on x ¥ 0. Thus for
ω � W p1q we have

fpxq ¤ min
y¡0

fpyq � f 1pyqpx� yq

¤ Lpe{ω � 1� eq
ω � 1

� Lpe{ω � 1qω2 � 3Lpω � 1{3q � Le{ω � 2eL

Lpω � 1q3 px� Lq
� �

e{ω � 1{pω � 1q3 � pe� 1q{pω � 1q � 1{pω � 1q2�x
� �

1{pω � 1q2 � e{pω � 1q � 1{pω � 1q3�L
  ex� 2

e
logpn� γD � 1q

(5.25)

5.A.2 Proof of Corollary 5.5.1

Proof. We have that Utpλq is bounded above by 3p1 � 2Bq, its largest gradient is attained at
2{p3� 2ηt{nq where it is bounded by p3� 2Bq{2. Applying Krichene et al. [2015, Corollary 2]
and simplifying yields the result.

5.A.3 Proof of Corollary 5.5.2

Proof. Utpx, λq is bounded above by 2N and its largest gradient is attained at λ � mintbt,ntu
utpxq ¥ 1

N

with norm bounded by B expp1{Nq
pexpp1{Nq�1q2 . Let Λ � tkδut1{δuk�1 for some δ P p0, 1s. Then we run

EG on the simplex over rN s � Λ and with step-size 1
2N

b
log N

δ

2T
to obtain regret compared to

the best element of rN s � Λ of 2N
b
2T log N

δ
[Shalev-Shwartz, 2011, Theorem 2.15]. Setting
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δ � min
!
Npexpp1{Nq�1q2
B expp1{Nq

b
2
T
, 1
)

yields

E
Ţ

t�1

Utpxt, λtq ¤ 2N
a
2T logpN t1{δuq � min

xPrNs,λPΛ

Ţ

t�1

Utpx, λq

¤ 2N

c
2T log

N

δ
� B expp1{NqδT
pexpp1{Nq � 1q2 � min

xPrNs,λPp0,1s

Ţ

t�1

Utpx, λq

¤ 2N

d
2T

�
logpBT q �max

"
logN,

1

N
� 2 log

�
exp

�
1

N



� 1


*


�N
?
2T � min

xPrNs,λPp0,1s

Ţ

t�1

Utpx, λq

¤ 6N
a
T logpBNT q � min

xPrNs,λPp0,1s

Ţ

t�1

Utpx, λq
(5.26)

5.A.4 Proof of Corollary 5.5.3

Proof. Utpx, λq is bounded above by epN � Bq, its largest gradient w.r.t. λ is attained at λ �
emintnt,btu

pe�1qutpxq�emintnt,btu , where it is bounded by
�

2epN�Bq
e�1

	2

, and its largest gradient w.r.t. x is

epN � Bq. Thus the function is 5epN � Bq2-Lipschitz w.r.t. the Euclidean norm, apart from
discontinuities at x � nt. Now, note that our assumption that the points n1, . . . , nT are β-
dispersed implies exactly that the functions Ut are β-dispersed (c.f. Definition 2.3.1), so the
exponentially-weighted forecaster attains expected regret Õ

�a
T logpNT q � pN �Bq2T 1�β

	
.

5.B b-matching

Definition 5.B.1. For b P Rn
¥0 the b-seminorm } � }b,1 : Rn ÞÑ R¥0 is }x}b,1 �

°n
i�1 bris|xris|.

Claim 5.B.1. Given any vectors x P Zn and y P Rn, let ỹ P Zn be the vector whose elements are
those of y rounded to the nearest integer. Then for all b P Zn we have }x� ỹ}b,1 ¤ 2}x�y}b,1.

Proof. Let S � rns be the set of indices i P rns for which xris ¥ yris ðñ ỹris � ryriss. For
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i P rnszS we have |xris � yris| ¥ 1{2 ¥ |ỹris � yris| so it follows by the triangle inequality that

}x� ỹ}b,1 �
¸
iPS

bris|xris � ỹris| �
¸

iPrnszS
bris|xris � ỹris|

¤
¸
iPS

bris|xris � yris| �
¸

iPrnszS
brisp|xris � yris| � |yris � ỹris|q

¤
¸
iPS

bris|xris � yris| � 2
¸

iPrnszS
bris|xris � yris| ¤ 2}x� y}b,1

(5.27)

Theorem 5.B.1. Suppose we have a fixed graph with n ¥ 3 vertices and m ¥ 1 edges.
1. For any cost vector c P Zm¥0, any demand vector b P Zn¥0, and any dual vector x P

Rn there exists an algorithm for minimum weight perfect b-matching that runs in time
Õ pmnUpxqq, where Upxq � }x � x�pc,bq}b,1 for x�pc,bq the optimal dual vector asso-
ciated with c and b.

2. There exists a poly-time algorithm s.t. for any δ, ε ¡ 0 and any distribution D over (cost,
demand) vector pairs in Zm¥0 � Zn¥0 with respective ℓ8-norms bounded by C and B the

algorithm takes O
��

CBn
ε

�2
log 1

δ

	
samples from D and returns x̂ s.t. w.p. ¥ 1� δ:

Epc,bq�D}x̂� x�pc,bq}b,1 ¤ min
}x}8¤C

Epc,bq�D}x� x�pc,bq}b,1 � ε (5.28)

3. Let pc1,b1q, . . . , pcT ,bT q P Zm¥0�Zn¥0 be an adversarial sequence of (cost, demand) vector
pairs with ℓ8-norms bounded by C and B, respectively. Then OGD with appropriate step-
size has regret

max
}x}8¤C

Ţ

t�1

}xt � x�pct,btq}bt,1 � }x� x�pct,btq}bt,1 ¤ CBn
?
2T (5.29)

Proof. The first result follows by Dinitz et al. [2021, Theorem 31] and Claim 5.B.1. For the
third, let xt be the sequence generated by running OGD [Zinkevich, 2003] with step-size C

B
?
2T

on the losses Utpxq � }x � x�pct,btq}bt,1 over domain r�C,Csn. Since these losses are B
?
n-

Lipschitz and the duals are C
?
n-bounded in Euclidean norm the regret guarantee follows from

Shalev-Shwartz [2011, Corollary 2.7]. For the second result, apply online-to-batch conversion
to the third result, i.e. draw T � Ω

��
CBn
ε

�2
log 1

δ

	
samples pct,btq, run OGD as above on

the resulting losses Ut, and set x̂ � 1
T

°T
t�1 xt to be the average of the resulting predictions xt.

Applying Lemma B.4.1 yields the result.

5.C Learning linear predictors with instance-feature inputs
Computational instances on which we want to run algorithms with predictions often come with
instance-specific features, e.g. ones derived from text descriptions of the instance or summary
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statistics about related graphs or environments [Kraska et al., 2018, Lattanzi et al., 2020]. It
is thus natural to learn parameterized functions, e.g. linear mappings or neural networks, from
these features to predictions. However, there has been very little work, in either the statistical
or online setting, showing that such predictions are learnable. In this section we show how our
framework naturally handles this setting by exploiting the convexity of compositions of convex
and affine functions, resulting in the first formal guarantees for linear predictors for algorithms
with predictions. While the first application to the matching problem of Dinitz et al. [2021] is a
straightforward extension, we also show how to handle more complicated cases, such as when
the output space is constrained to probability simplices as in the page migration problem. Note
we assume all feature vectors lie in the f -dimensional simplex; this is generally easy to accom-
plish by normalization. For simplicity we also only consider learning the linear transform from
features to predictors and not the intercept, as the latter follows from the former by appending an
extra dimension with value 1{2 to the feature vector and doubling the bound on the norm of the
linear transform.

5.C.1 b-matching
Our first application for learning mappings from instance features is to the b-matching setting.
Note that the learning-theoretic results for the regular bipartite matching setting in Section 5.2
follow directly by setting b � 1n for all instances, and that the learning-theoretic results of The-
orems 5.2.1 and 5.B.1 are also special cases of the following when f � 11 for all instances. Note
that we optimize only over A P r�C,Csn�f , but unlike in the f � 1 case the optimal A may be
unbounded; to handle that setting, one could again use an algorithm such as KT-OCO that does
not depend on knowing the set size [Orabona and Pal, 2016].

Theorem 5.C.1. Consider the setting of Theorem 5.B.1.
1. There exists a poly-time algorithm s.t. for any δ, ε ¡ 0 and any distribution D over (cost,

demand, feature) vector triples in Zm¥0�Zn¥0�△f s.t. the respective ℓ8-norms of the first

two are bounded by C and B, respectively, the algorithm takes O
��

CBn
ε

�2 �
f 2 � log 1

δ

�	
samples from D and returns Â P Rn�f s.t. w.p. ¥ 1� δ:

Epc,b,fq�D}Âf � x�pc,bq}b,1 ¤ min
}A}max¤C

Epc,b,fq�D}Ax� x�pc,bq}b,1 � ε (5.30)

2. Let pc1,b1, f1q, . . . , pcT ,bT , fT q P Zm¥0 � Zn¥0 �△f be an adversarial sequence of (cost,
demand, feature) vector triples s.t. the ℓ8-norms of the first two are bounded by C and B,
respectively. Then OGD with appropriate step-size has regret

max
}A}max¤C

Ţ

t�1

}Atft � x�pct,btq}bt,1 � }Aft � x�pct,btq}bt,1 ¤ CBnf
?
2T (5.31)

Proof. For the second result let At be generated by running OGD with step-size C
B
?
2T

on the
losses UtpAfq � }Af � x�pct,btq}bt,1 over r�C,Csn�f . Since these are B

?
nf -Lipschitz and

the duals are C
?
nf -bounded in the Euclidean norm, the regret follows from Shalev-Shwartz

[2011, Corollary 2.7]. For the first result, apply online-to-batch conversion to the second result,
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i.e. draw T � Ω
��

CBn
ε

�2 �
f 2 � log 1

δ

�	
samples pct,bt, ftq, run OGD as above on the resulting

losses Ut, and set Â � 1
T

°T
t�1At to be the average of the resulting predictions At. Applying

Lemma B.4.1 yields the result.

5.C.2 Online page migration
Using instance features for online page migration is more involved because the output space
must be constrained to the product of n |K|-dimensional simplices. However, we can solve
this by restricting to tensors consisting of matrices whose columns sum to one, also known as
rectangular stochastic matrices. Note that the learning-theoretic results of Theorem 5.3.1 are
special cases of the following when f � 11 for all instances.

Theorem 5.C.2. In the setting of Theorem 5.3.1 let Sn�|K|�f be the set of stacks of |K| � f
nonnegative matrices whose columns have unit ℓ1-norm.

1. There exists a poly-time algorithm s.t. for any δ, ε ¡ 0 and distribution D over request
sequences s of length n in K and associated feature vectors f P △f it takes

O

��
γD

ε


2�
n2f 2 log |K| � log

1

δ


�
(5.32)

samples from D and returns Â s.t. w.p. ¥ 1� δ:

Eps,fq�DUspÂfq ¤ min
APSn�|K|�f

Eps,fq�DUspAfq � ε (5.33)

2. Let ps1, f1q, . . . , psT , fT q be an adversarial sequence of (request sequence, feature) pairs.
Then updating the distribution Atrj,,ks over △|K| at each (timestep,column) pair pj, kq P
rns � rf s using EG with appropriate step-size has regret

max
APSn�|K|�f

Ţ

t�1

UstpAtftq � UstpAftq ¤ γDnf
a
2T log |K| (5.34)

Proof. For the second result let At be the sequence generated by running nf EG algorithms with

step-size
b

log |K|
2γ2D2T

on the losses UstpAfq over Sn�|K|�f . Since these losses are γD-Lipschitz
and the maximum entropy over the simplex is log |K|, the regret guarantee follows from Shalev-
Shwartz [2011, Theorem 2.15]. For the first result, apply standard online-to-batch conversion to
the second result, i.e. draw T � Ω

��
γD
ε

�2 �
n2f 2 log |K| � log 1

δ

�	
samples pst, ftq, run EG on

the resulting losses UstpAftq as above, and set Â � 1
T

°T
t�1At to be the average of the resulting

actions At. Applying Lemma B.4.1 yields the result.

We can further also show a result in the perhaps more-natural setting where the linear pre-
dictor A is the same for each element in the sequence, and maps directly from features to the
|K|-simplex. Notably, the linear auto-regressive setting, in which we want a linear map from the
past k sequence elements to a probabilistic prediction of the next one, is covered by this result if
we allow the features to be k|K|-dimensional concatenations of k one-hot |K|-length vectors.
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Theorem 5.C.3. In the setting of Theorem 5.3.1 let Sa�b be the set of a�b nonnegative matrices
whose columns have unit ℓ1-norm.

1. There exists a poly-time algorithm s.t. for any δ, ε ¡ 0 and distribution D over re-
quest sequences s of length n in K and associated feature sequence FJ P Sf�n it takes
O
��

γD
ε

�2 �
n2f 2 log |K| � log 1

δ

�	
samples from D and returns Â s.t. w.p. ¥ 1� δ:

Eps,Fq�DUspFÂJq ¤ min
APS|K|�f

Eps,Fq�DUspFAJq � ε (5.35)

2. Let ps1,F1q, . . . , psT ,FT q be an adversarial sequence of (request sequence, feature se-
quence) pairs. Then updating the distribution Atr,ks over △|K| at each column k P rf s has
regret

max
APS|K|�f

Ţ

t�1

UstpFtA
J
t q � UstpFtA

Jq ¤ γDf
a
2T log |K| (5.36)

Proof. For the second result let At be the sequence generated by running f EG algorithms with

step-size
b

log |K|
2γ2D2T

on the losses UstpFAJq over S|K|�f . Since these losses are γD-Lipschitz and
the maximum entropy over the simplex is log |K|, the regret guarantee follows from [Shalev-
Shwartz, 2011, Theorem 2.15]. For the first result, apply standard online-to-batch conversion to
the second result, i.e. draw T � Ω

��
γD
ε

�2 �
f 2 log |K| � log 1

δ

�	
samples pst, ftq, run EG on the

resulting losses UstpFtA
Jq as above, and set Â � 1

T

°T
t�1At to be the average of the resulting

actions At. Applying Lemma B.4.1 yields the result.

5.D Faster graph algorithms with predictions

In this section we compare to the results of Chen et al. [2022], who analyze several prediction-
based graph algorithms, including one with an improved prediction-dependent runtime for the
matching approach of Dinitz et al. [2021] and a prediction-dependent bound for single-source
shortest path. From the learnability perspective, they observe two important error metrics in the
analysis of graph algorithms with predictions: the ℓ1-metric of Dinitz et al. [2021] measuring
the ℓ1-norm between the prediction and a ground truth vector such as the dual and the ℓ8-metric
measuring the ℓ8-norm between the same quantities. In the first case their setting and results are
equivalent to those of Dinitz et al. [2021], so we improve upon this by a factor of Opdq, where d
is the dimension of the hint.

To analyze the ℓ8 case, we start by showing that—as in the ℓ1 case—we can round integer
vectors with only a multiplicative factor loss:

Claim 5.D.1. Given any vectors x P Zn and y P Rn, let ỹ P Zn be the vector whose elements
are those of y rounded to the nearest integer. Then we have }x� ỹ}8 ¤ 2}x� y}8.

Proof. Let S � rns be the set of indices i P rns for which xris ¥ yris ðñ ỹris � ryriss. For
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i P rnszS we have |xris � yris| ¥ 1{2 ¥ |ỹris � yris| so it follows by the triangle inequality that

}x� ỹ}8 � max

"
max
iPS

|xris � ỹris|, max
iPrnszS

|xris � ỹris|
*

¤ max

"
max
iPS

|xris � yris|, max
iPrnszS

|xris � yris| � |yris � ỹris|
*

¤ max

"
max
iPS

|xris � yris|, 2 max
iPrnszS

|xris � yris|
*
¤ 2}x� y}8

(5.37)

We are thus able to also use online convex optimization in this setting and apply the rounded
outputs to graph algorithms. In particular, we can use regular OGD to improve upon the ℓ8-
learnability result of Chen et al. [2022] by a factor of Opd2q, where d is the dimension of the
prediction:

Theorem 5.D.1. Consider any graph algorithm with optimal d-dimensional M -bounded predic-
tions hpcq associated with every instance c.

1. There exists a poly-time algorithm s.t. for any δ, ε ¡ 0 and distribution D over instances it
takes O

��
M
ε

�2 �
d� log 1

δ

�	
samples from D and returns ĥ P Rd s.t. w.p. ¥ 1� δ

Ec�D}ĥ� hpcq}8 ¤ min
}h}8¤M

Ec�D}h� hpcq}8 � ε (5.38)

2. Let c1, . . . , cT be an adversarial sequence of instances. Then OGD with appropriate step-
size achieves regret

max
}h}8¤M

Ţ

t�1

}ht � hpctq}8 � }h� hpctq}8 ¤M
?
2dT (5.39)

Proof. The proof is the same as for the last two results of Theorem 5.4.1 in the special case
f � 1.

5.E Permutation predictions for non-clairvoyant scheduling
Finally, we discuss the the applicability of our framework to the results in Lindermayr and
Megow [2022], who study how to prioritize among n jobs by predicting the best permutation
of them under weights w P Rn

¥0 and processing requirements p P Rn
¥0 that are only known after

completion. Ignoring robustness-consistency tradeoffs and terms that do not depend on the pre-
diction, they show that in several settings the competitive ratio depends linearly on the following
error of an n� n permutation matrix X:

Uw,ppXq � TrpXwppUdXqpqJq � TrppUdXqJXwpJq (5.40)

where U P t0, 1un�n is upper triangular. The above expression is derived from the third equation
in the proof of Theorem 4.1 of Lindermayr and Megow [2022] for the case of z � 1 sample; we
construct the matrix form to reason about its online learnability.
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Naively, a sequence of bounded functions of permutations is computationally inefficiently
learnable by using randomized EG over the n! experts corresponding to each permutation:

Theorem 5.E.1. Consider the setting of Lindermayr and Megow [2022] with n jobs with W -
bounded weights and P -bounded processing times. Let Pn�n be the set of n � n permutation
matrices.

1. There exists an algorithm that s.t. for any δ, ε ¡ 0 and distribution D over weights and pro-
cessing requirements it takes O

��
WPn
ε

�2 �
n log n� log 1

δ

�	
samples from D and returns

a discrete distribution x̂ P △n! over Pn�n such that

EX�x̂Epw,pq�DUw,ppXq ¤ min
XPPn�n

Epw,pq�DUw,ppXq � ε (5.41)

2. Let pw1,p1q, . . . , pwT ,pT q be an adversarial sequence of job (weight, processing require-
ment) pairs. Then running EG with appropriate step-size over △|Pn�n| has regret

E max
XPPn�n

Ţ

t�1

Uwt,ptpXtq � Uwt,ptpXq ¤ WPn
a
2nT log n (5.42)

where the expectation is over the randomness of the algorithm.

Proof. For the second result let xt P △n! be the sequence generated by running EG with step-

size
b

logpn!q
2T

over the n! experts corresponding to each element of Pn�n. Then the sequence
of permutation matrices Xt � xt sampled from this distribution satisfies the guarantee on the
expected regret [Shalev-Shwartz, 2011, Corollary 2.14] since logpn!q ¤ n log n and Uw,p is
WPn-bounded. The first result follows by applying online-to-batch conversion to this sequence,
i.e. we draw T � Ω

��
WPn
ε

�2 �
n log n� log 1

δ

�	
samples pwt,ptq, run randomized EG as above,

and set x̂ � 1
T

°T
t�1 xt to be the average of the resulting distributions xt. Applying Lemma B.4.1

yields the result.

The sample complexity guarantee resulting from online-to-batch conversion matches that of
Lindermayr and Megow [2022], except that the output is a distribution over permutation matrices
so the error is in expectation over that distribution. However, randomized EG is incredibly inef-
ficient due to the need to store and sample from a distribution over n! variables. Another way of
learning over permutation matrices is to run an online learning algorithm over the set of doubly
stochastic matrices [Helmbold and Warmuth, 2009]. When the losses are linear functions of the
permutation matrices this is yields efficient low-regret algorithms because each doubly stochas-
tic matrix corresponds to a small convex combination of permutation matrices, i.e. a distribution
from which one can sample an action. However, the losses Uw,p are nonlinear and so a different
approach is needed.
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Chapter 6

Private algorithms with private predictions

In the previous chapter we provided learning-theoretic guarantees for several existing learning-
augmented algorithms. We now show how our framework can be deployed when extending
algorithms with predictions in new directions, starting with differential privacy (DP). The differ-
entially private release of statistics about a sensitive dataset x P Rn is an inevitably error-prone
task because we are by definition precluded from revealing exact information about the instance
at hand [Dwork and Roth, 2014]. However, DP instances rarely occur in a vacuum: even in
the simplest practical settings, we usually know basic information such as the fact that all indi-
viduals have a nonnegative age. Often, the dataset we are considering is drawn from a similar
population as a public dataset x1 P RN and should thus have similar statistics, a case known as
the public-private setting [Liu et al., 2021a, Bie et al., 2022]. Alternatively, in what we call se-
quential release, we aim to release information about each of a sequence of datasets x1, . . . ,xT
one-by-one. These could be generated by a stationary or other process that allows information
derived from prior releases to inform predictions of future releases. In all of these settings, we
might hope to incorporate external information to reduce error, but approaches for doing so tend
to be ad hoc and assumption-heavy.

We propose that the framework of algorithms with predictions [Mitzenmacher and Vassilvit-
skii, 2021]—provides the right tools for deriving DP algorithms in this setting, and instantiate this
idea for multiple quantile release [Gillenwater et al., 2021, Kaplan et al., 2022], covariance esti-
mation [Biswas et al., 2020, Amin et al., 2019, Dong et al., 2022], and data release [Hardt et al.,
2012, Liu et al., 2021a]. Whereas in past algorithms with predictions work the goal is usually
to bound the cost Cxpwq of running on instance x given a prediction w by some metric Uxpwq
of the quality of the prediction on that instance, we instead aim to design learning-augmented
algorithms where it captures the error of some statistic—e.g. quantiles—computed privately on
instance an x given a prediction w. We are interested in bounding this cost in terms of the quality
of the external information provided to our algorithm, which we denote by Uxpwq.

While incorporating external information into DP is well-studied, c.f. public-private meth-
ods [Bie et al., 2022, Liu et al., 2021a] and private posterior inference [Dimitrakakis et al., 2017,
Geumlek et al., 2017, Seeman et al., 2020], by deriving and analyzing a learning-augmented
algorithm for multiple quantiles we show numerous comparative advantages, including:

0The work presented in this chapter first appeared in Amin et al. [2023] and Khodak et al. [2023a].
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1. Minimal data assumptions, sometimes even fewer than used by the unaugmented baseline.

2. Existing tools for studying the robustness of algorithms to noisy predictions [Lykouris and
Vassilvitskii, 2021].

3. Co-design of algorithms with predictions with methods from Chapter 5 for learning those
predictions from data, which we show is crucial for both the public-private and sequential
release settings.

We derive learning-augmented extensions of the state-of-the-art ApproximateQuantiles (AQ)
method [Kaplan et al., 2022] for quantile release and of the covariance estimation algorithms
SeparateCov [Dong et al., 2022] and IterativeEigenvectorSampling [Amin et al., 2019]; for data
release we show how our framework applies to MWEM [Hardt et al., 2012], for which using a
non-uniform (i.e. prediction-based) prior has been studied in past work [Liu et al., 2021a]. In
all cases our instance-dependent guarantees (nearly) match past worst-case bounds while being
much better if a natural measure Uxpwq of prediction quality is small. We also show how these
algorithms can be made robust to poor predictions w and how they can be efficiently and pri-
vately learned by optimizing Ux across related datasets x. In addition, our analysis yields several
contributions of independent interest for differential privacy:

1. The first robust algorithm for (single or multiple) private quantile release that avoids as-
suming the data is bounded on some interval, specifically by using a heavy-tailed prior.

2. Prediction-free trace-sensitive guarantees for SeparateCov (for both the pure and zCDP
versions) that strictly improve upon the original bounds of Dong et al. [2022] for the same
algorithm.

3. A non-Euclidean extension of DP-FTRL [Kairouz et al., 2021a] that is the first DP online
convex optimization method that can be easily customized to obtain better regret guaran-
tees on different geometries.

Finally, we conclude with an empirical study where we use our framework to design algorithms
to reduce the error of private quantile release in both the public-private and sequential release
settings described above. Our technical approach takes advantage of a novel connection between
DP quantiles and censored regression to obtain both guarantees and practical algorithms. The ex-
perimental results highlight the effectiveness of our framework for ensuring robust performance
in the face of noisy predictions and for designing surrogate loss functions that can be optimized
to yield useful predictions.

6.1 Problem formulation

As discussed in Section 4.A, in algorithms with predictions we seek to bound some algorithmic
performance measure Cxpwq by a prediction-dependent upper bound Uxpwq that measures the
quality of a prediction w for the instance x. In our work this cost will be the error of a privately
released statistic, as compared to some ground truth. We will use the following privacy notion:
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Definition 6.1.1 ([Dwork and Roth, 2014]). Algorithm A is pε, δq-differentially private if for
all subsets S of its range, PrpApxq P Sq ¤ eε PrpApx̃q P Sq � δ whenever x � x̃ are neighbor-
ing datasets.

Using ε-DP to denote pε, 0q-DP, our broad goal will be to reduce the error Cxpwq of ε-
DP multiple quantile release while fixing the privacy level ε. For easier comparison to past
prediction-free results, we will define neighboring datasets differently depending on the appli-
cation; specifically, for quantile release we use add-remove privacy, where x can be obtained
from x̃ by adding or removing an entry, while for covariance estimation and data release we use
swap privacy, in which x can be obtained from x̃ by replacing one entry with another.

Working with the learning-augmented algorithms framework when incorporating external
information into DP methods allows us to make use of its existing language for quantifying useful
properties such as robustness and learning. In past work robustness-consistency tradeoffs have
mainly been studied for online algorithms with predictions, as for runtime we can easily show
robustness by running the learning-augmented algorithm with a worst-case optimal algorithm in
parallel. However, DP statistics are similar to online algorithms in that we have limited access to
data, albeit in a very different manner, and so robustness to poor predictions is nontrivial to show.

In the previous chapter we argued that the prediction quality measures Uxpwq we derive
should be useful for making good predictions, e.g. by Uxt being learnable from multiple instance

xt. We will again mainly focus on online learnability, i.e. bounds on the regret max
wPW

T°
t�1

Uxtpwtq�
Uxtpwq of predictions wt in some space W given instances x1, . . . ,xt�1. Since Uxt roughly
upper-bounds the error Cxt , this means that asymptotically the average error is governed by the
average prediction quality minwPW 1

T

°T
t�1 Uxtpwq of the optimal w P W . As in Chapter 5, we

will seek to derive upper bounds UX that are amenable to familiar gradient-based optimization
schemes, which will also enable instance-dependent linear prediction: setting wt using a learned
function of some instance features ft. However, since the upper bounds depend on sensitive
datasets xt, the learning algorithms we use will themselves have to be private, so in Section 6.5
we derive a non-Euclidean extension of DP-FTRL (c.f. Theorem 6.5.1) to show online and PAC
learnability of the prediction quality measures Ux for all three DP tasks we consider.

The usefulness of both the learning-theoretic and robustness-consistency analysis is demon-
strated in Section 6.6 on two applications where it is reasonable to have external information
about the sensitive dataset(s). In the public-private setting, the prediction w is obtained from a
public dataset x1 that is assumed to be similar to x but is not subject to privacy-protection. In se-
quential release, we privately release information about each dataset in a sequence x1, . . . ,xT ;
the release at time t can depend on xt and on a prediction wt, which can be derived (privately)
from past observations. We show that sequential release can be posed directly as a private on-
line learning problem, while the public-private setting can be approached via online-to-batch
conversion [Cesa-Bianchi et al., 2004]. Both can thus be solved by treating the prediction qual-
ity measures Uxt as surrogate objectives for the actual cost functions Cx and applying standard
optimization techniques, as we demonstrated in Chapter 5.
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6.2 Overview of theoretical results
We now summarize the main results for the three tasks we consider, focusing on the prediction-
dependent performance bounds Ux Á Cx that we show for our learning-augmented private al-
gorithms. These will be stated more formally in Section 6.3. We also highlight the utility of
these results in ensuring robustness and enabling learning, which will be further detailed in Sec-
tions 6.4 and 6.5, respectively.

6.2.1 Related work

There has been significant work on incorporating external information to improve DP methods.
A major line of work is the public-private framework, where we have access to public data that
is related in some way to the private data [Liu et al., 2021a, Amid et al., 2022, Li et al., 2022, Bie
et al., 2022, Bassily et al., 2022]. The use of public data can be viewed as using a prediction, but
such work starts by making (often strong) distributional assumptions on the public and private
data; we instead derive instance-dependent upper bounds with minimal assumptions that we then
apply to such public-private settings. Furthermore, our framework allows us to ensure robust-
ness to poor predictions without distributional assumptions, and to derive learning algorithms
using training data that may itself be sensitive. Another approach is to treat DP mechanisms
(e.g. the exponential) as Bayesian posterior sampling [Dimitrakakis et al., 2017, Geumlek et al.,
2017, Seeman et al., 2020]. Our work can be viewed as an adaptation where we give explicit
prior-dependent utility bounds. To our knowledge, no such guarantees exist in the literature.
Moreover, our approach does not necessitate specifying the external information in the form of
(explicit) priors, e.g. for covariance estimation we use matrix predictions.

Our approach for augmenting DP with external information centers the algorithms with pre-
dictions framework, where past work has focused on using predictions to improve metrics related
to time, space, and communication complexity. Tuning DP algorithms has been an important
topic in private machine learning, e.g. for hyperparameter tuning [Chaudhuri and Vinterbo,
2013] and federated learning [Andrew et al., 2021], but these have not considered incorporating
per-instance predictions.

6.2.2 Multiple quantile release

In the quantile problem, given a quantile q and a sorted dataset x P Rn of n distinct points, the
goal is to release a number o that upper bounds exactly tqnu of the entries. The error metric,
Gapqpx, oq, is the number of entries between the released number o and tqnu. A straightfor-
ward application of the well-known exponential mechanism [McSherry and Talwar, 2007] with
utility �Gapq outputs o that satisfies Gapqpx, oq ¤ 2

ε
log 1

βΨ
pqq
x

w.p. ¥ 1 � β, where Ψ
pqq
x is

the probability µppxrtqnus,xrtqnu�1ssq that the prior assigns to the optimal interval. We thus use
U
pqq
x pµq � � log Ψ

pqq
x as our measure of prediction quality in the single-quantile setting, which

allows us to recover standard guarantees that assume x P pa, bqn is bounded and set µ to be the
uniform measure on pa, bq. As our first major contribution, we show by studying Ux how to dis-
pense with this assumption by instead using the Cauchy distribution with location a�b

2
and scale
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b�a
2

. If the boundedness assumption holds then the resulting mechanism has nearly the same
bound on Gapq as the uniform measure, up to an additive 2

ε
log π factor, but if does not—e.g.

if all points xris in the dataset are a distance R ¡ b�a
2

away from a�b
2

—then we still have the
guarantee Gapq � Õp logR

ε
q w.h.p. (c.f. Corollary 6.3.1). In contrast, the error of the released

quantile when using the uniform measure in the latter scenario is Ωpnq a.s.
The main technical challenge is then to extend the single-quantile guarantee to the case

where we must estimate m ¡ 1 quantiles q1, . . . , qm P p0, 1q while making use of m priors
µ1, . . . , µm. In particular, we want a guarantee on the maximum gap that encodes how use-
ful each prior µi is for its quantile qi and that grows sublinearly in m, ideally recovering the
maxiGapqi � Oppolylogpmq

ε
q bound of Kaplan et al. [2022] in the prediction-free limit. Although

it requires several major modifications to AQ, we are able to nearly achieve this goal, devising a
method (c.f. Algorithm 13) that guarantees a bound of Õp rpmq

ε
log

°m
i�1 e

U
pqiq
x pµiqq on the maxi-

mum gap w.h.p. (c.f. Theorem 6.3.3), where rpmq is sub-polynomial but super-polylogarithmic
in m. This yields a quality measure Ux for µ1, . . . , µm that aggregates the single-quantile mea-
sures U pqiq

x pµiq via their log-sum-exp, a convenient form that allows us to easily extend single-
quantile robustness and learning-theoretic results to multiple quantiles.

Our quantile results exemplify the advantages of our approach to incorporating external
information into DP algorithms that we discussed in the introduction: minimal assumptions,
robustness-consistency tradeoffs, and learning. In-fact, the first outcome of our analysis was
removing a boundedness assumption. This contrasts with past public-private work [Liu et al.,
2021a, Bie et al., 2022], which makes distributional assumptions, and is why we can obtain
guarantees in two very distinct settings in Section 6.6. We next highlight how our results imply
convenient robustness-consistency tradeoffs and efficient learnability.

Robustness

Using the formalization of robustness and consistency in Definitions 4.A.1 and 4.A.2, algorithms
with predictions provides a convenient way to deploy them by parameterizing the robustness-
consistency tradeoff, in which methods are designed to be rxpλq-robust and cxpλq-consistent for
a user-specified parameter λ P r0, 1s [Bamas et al., 2020, Lykouris and Vassilvitskii, 2021]. For
quantiles, we can obtain an elegant parameterized tradeoff by interpolating prediction priors with
a “robust" prior. In particular, we can pick ρ to be a trusted prior such as the uniform or Cauchy
and for any prediction µ use µpλq � p1 � λqµ � λρ instead. Then since Ψ

pqq
x is linear we have

Ψ
pqq
x pµpλqq � p1� λqΨpqq

x pµq � λΨ
pqq
x pρq, which implies the following guarantee:

Corollary 6.2.1 (of Lem. 6.A.1; c.f. Cor. 6.4.1). For any quantile q P p0, 1q, applying EM with
prior µpλq � p1� λqµ� λρ is

�
2
ε
log 1{β

λΨ
pqq
x pρq

	
-robust and

�
2
ε
log 1{β

1�λ

	
-consistent.

Thus w.h.p. error is simultaneously at most 2
ε
log 1

λ
worse than that of only using the robust

prior ρ and we only have error 2
ε
log 1{β

1�λ if the prediction µ is perfect, i.e. if it is only supported
on the optimal interval. This is easy to extend to the multiple-quantile metric Ux � � log Ψx. In
fact, we can even interpolate between the polylogpmq prediction-free guarantee of past work and
our learning-augmented guarantee with the worse dependence on m (c.f. Corollary 6.4.2); thus

169



if the prediction is not good enough to overcome the worse rate we can still ensure that we do not
do much worse than the original guarantee. These results show the advantage of our framework
in designing algorithms that make robust use of possibly noisy predictions. Notably, related
public-private work that studies robustness still assumes source and target data are Gaussian [Bie
et al., 2022], whereas we make no distributional assumptions. We demonstrate the importance
of our robustness techniques throughout the experiments in Section 6.6.

Learning

A last important use for prior-dependent bounds is as surrogate objectives for optimization. Be-
ing able to learn across upper bounds Ux1 , . . . , UxT of a sequence of (possibly sensitive) datasets
xt is useful for both the public-private setting and for the sequential release setting (c.f. Sec-
tion 6.6). As we saw in Chapter 5, algorithms with predictions guarantees are often sufficiently
nice to do this using off-the-shelf online learning, a property that largely holds for our upper
bounds as well. Most saliently, the bound U pqq

x � � log Ψ
pqq
x is a convex function of an inner

product Ψpqq
x between the EM score and the prior µ; thus by discretizing one can learn over a

large family of piecewise-constant priors, which themselves approximate Lipschitz priors over a
bounded domain. The same is true of the multiple quantile bound Ux because it is the log-sum-
exp over U pqiq

x and thus also convex. We therefore can apply an entropic variant of DP-FTRL
to (privately) online learn the sequence Uxt with low-regret w.r.t. any set of m Lipschitz priors
(c.f. Theorem 6.5.2). However, in practice we may not want to learn in the high dimensions
needed by the discretization, and rather than fixed priors we may wish to learn a mapping from
dataset-specific features.

Thus, in Section 6.6 we focus on the less-expressive family of location-scale models, which
allows us to develop algorithms that are amenable to both analysis and implementation. In par-
ticular, we show that Ux has the same form as the negative log-likelihood of censored regression,
which for log-concave location-scale families is convex in a convenient reparameterization of the
location and scale [Pratt, 1981, Burridge, 1981]. We can thus show DP online learning guarantees
in the sequential release setting (c.f. Theorem 6.6.3) and derive an algorithm for public-private
transfer whose error is bounded by the TV-distance between the order statistics of the public and
private distributions (c.f. Theorem 6.6.2).

6.2.3 Covariance estimation
While encoding predictions via base measures of DP mechanisms is a natural starting point
for learning-augmented algorithms, it is not the only way of doing so. We can instead start
with existing algorithms whose errors have explicit or implicit dependence on some measure of
complexity of the data and use this to convert them into algorithms with predictions. The errors
will then have an (explicit) dependence on a related measure of the error between the data and a
point (rather than distributional) prediction, leading to highly interpretable bounds Uxpwq on the
utility loss.

Our application to covariance estimation exemplifies this approach. For this task we take
advantage of recent “trace-sensitive" results, which bound the Frobenius error between the co-
variance matrix C � XXJ{n of a dataset X P Rd�n by some function of its trace [Amin et al.,
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2019, Dong et al., 2022]. Since the core component of these algorithms is a DP estimate of a
symmetric d � d matrix, if we have a symmetric prediction W P Rd�d we can try to use the
methods to instead privately estimate the error C�W and then add W to the result; we can then
hope to show that the error depends on the trace norm }C �W}Tr of the error rather than the
trace of C. We achieve exactly this and more by extending the analysis in this prior work to the
negative spectrum, in order to handle the possibly negative eigenvalues of C�W. The result be-
low, for the learning-augmented extension of the state-of-the-art SeparateCov algorithm [Dong
et al., 2022], is characteristic of these results (c.f. Section 6.3.2):

Corollary 6.2.2 (of Thm. 6.3.4; c.f. Cor 6.3.2). If X P Rd�n has columns bounded by 1 in
ℓ2-norm then applying SeparateCov to C �W and obtaining Ĉ by adding W to the result is
ε-DP and satisfies }Ĉ�C}2F ¤ Õ

�
d

ε2n2 � d
?
d

εn
mincPR }C�W � cId}Tr

	
w.h.p.

Notably, for W � 0d�d this bound improves upon the corresponding prediction-free result
of Dong et al. [2022], who only show it for c � 0. A simple setting where this improvement
is tangible is when the columns of X are drawn from a bounded distribution whose covari-
ance is a scalar multiple of the identity, in which case w.h.p. mincPR }XXJ{n � cId}Tr ¤
Õpdmint1,ad{nuq but }XXJ{n}Tr ¥ Õpdq; therefore for constant ε the bound in Corol-
lary 6.3.2 becomes Õpd2

n

a
mintd, d2{nuq whereas the bound of Dong et al. [2022, Lemma 19]

is no better than Õpd2?d{nq. In particular, for d � Op1q our bound is asymptotically dominated
by the error Õpd2

n
q of (non-privately) estimating the population covariance.

Robustness

Because of its nonconvexity, we drop the minimum over c P R for our robustness and learning-
theoretic analyses of covariance estimation, using the looser bound at c � 0 to define our predic-
tion quality metric UXpWq � }XXJ{n�W}Tr. To ensure robustness, we take the approach of
privately checking if the quality UXpWq of the prediction W P Rd�d is better than UXp0d�dq,
i.e. that of the prediction-free approach. In doing so we pay for robustness by a factor of

?
d in

the leading (non-trace-sensitive) term, although as we discuss later this may be an artifact of the
setting.

Corollary 6.2.3 (of Thm. 6.3.4; c.f. Cor. 6.3.2). Running SeparateCov with the prediction W
only if its trace distance }XXJ{n�W}Tr is smaller than }XXJ{n}Tr according to the Laplace
mechanism is Õ

�
d
?
d

εn

�
1
εn
� }XXJ{n}Tr

�	
-robust and Õ

�
d
?
d

ε2n2

	
-consistent.

Learning

Similar to before, we can pose the problem of learning to release covariance estimates across
multiple datasets as the online learning problem of obtaining low regret w.r.t. any matrix W P
Rd�d for the functions UXtpWq � }XtX

J
t {nt �W}Tr determined by the sequence of datasets

tXt P Rd�ntuTt�1. We apply DP-FTRL with with a Schatten p-norm regularizer, which applies
p-norm regularization to the spectrum of the matrix [Duchi et al., 2010]; this yields a Op?dq-
improvement in the regret—and a corresponding Opdq-improvement in sample complexity—
over regular DP-FTRL, highlighting the usefulness of our non-Euclidean analysis.
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Theorem 6.2.1 (c.f. Thm. 6.5.3). There exists an pε1, δ1q-DP online learner whose regret w.r.t.
all symmetric W P Rd�d is bounded w.h.p. by Õ

�ap1� d{ε1qT
	

. Furthermore, if the datasets

Xt are all drawn i.i.d. from the same distribution and we set Ŵ � 1
T

°T
t�1Wt to be the average

iterate then T � Ω̃
�

1�d{ε1
α2

	
samples suffice to ensure that w.h.p. its excess risk is at most α.

6.2.4 Data release

In our last application we study private data release, where we seek to construct a synthetic
dataset x̂ P Rd

¥0 using sensitive data x P Zd¥0 such that the maximum error of a finite set Q of
linear queries q P r�1, 1sd is bounded. To do so we use the well-known MWEM method of Hardt
et al. [2012], which has an implicit dependence on the KL-divergence DKLpx{n||1d{dq between
the data distribution and the uniform distribution it uses to initialize its iterative approach; by
instead initializing with a prediction w P △d in the d-dimensional simplex one can instead
obtain a dependence on DKLpx{n||wq:
Lemma 6.2.1 (c.f. Lem. 6.3.2). Initializing MWEM with w P △d and running it for m itera-
tions on dataset x is ε-DP and w.p. ¥ 1 � β produces a synthetic dataset s.t. the largest mean
squared error of any linear query in Q is bounded by O

�
n
m
DKLpxn ||wq � m2

ε2n
log2 m

β
log4 |Q|

	
,

where n � }x}1.
As in quantile release, for this task we can again ensure robustness via an interpolation-

based approach, although here we are mixing finite-dimensional vectors rather than probability

distributions. Note that using the uniform prior guarantees Õ
�

3

b
n log2 d
ε2



error, so since the

data-dimension d can be very large in this application, if we use small enough λ we can obtain a
strong advantage under perfect predictions while ensuring performance similar to the prediction-
free guarantee.

Corollary 6.2.4 (of Lem. 6.3.2; c.f. Cor. 6.4.4). There exists a fixed number of iterations s.t.
using wpλq � p1 � λqw � λ1d{d instead of the prediction w P △d to initialize MWEM is

Õ
�

3

b
n

ε2 log d
log d

λ



-robust, and Õ

�
λ 3

b
n log2 d
ε2



-consistent, where n is the number of records.

The observation that MWEM can be initialized non-uniformly is not novel, having been used
by both the original authors and by subsequent public-private work [Liu et al., 2021a]. However,
our learning-theoretic analysis reveals interesting aspects that this prior work does not consider
as closely, such as how the optimal choice for other parameters of the algorithm are influenced
by the prediction quality. In-particular, when online learning the sequence of prediction quality
measures Uxtpwq � nt

m
DKLpxt{nt||wq � m2

ε2nt
that bound the error of data release—here nt is the

number of examples in xt and m is the number of iterations—we note that the optimal setting of
m depends on the similarity between instances: if minw

°T
t�1 ntDKLpxt{nt||wq, i.e. the entropy

of the average distribution
�°T

t�1 xt

	
{°T

t�1 nt, is small then we can take advantage of this
by taking fewer iterations. However, we do not know this entropy a priori, so we can instead
adapt to it by competing with the best step-size—which will encode the unknown entropy—by
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simultaneously running online learners both for w and for m, with the optimization domain of
the latter being the m-simplex △m. We again apply entropic DP-FTRL to get the following
guarantee:

Theorem 6.2.2 (c.f. Thm. 6.5.4). There exists an pε1, δ1q-DP algorithm that adaptively sets the
initializations wt P △d and number of iterations mt ¡ 0 s.t. the regret w.r.t. the optimal (ini-

tialization, iteration) pair pw,mq is Õ
�

dN
4
3

λmint1,ε2u
a
T {ε1

	
, where N � maxt nt is the maximum

number of entries in any dataset xt.

6.2.5 Discussion

This concludes our overview of our theoretical results, where we highlight multiple ways of in-
corporating predictions—as priors in DP mechanisms, as offsets to be corrected using sensitive
data, or as initializations for iterative methods—as well as two ways of making the methods ro-
bust to noisy predictions: (1) interpolating with a default prediction and (2) privately checking
whether the quality of the default prediction is better. We also illustrate how learning-augmented
analysis can yield new insights in the prediction-free setting, as demonstrated by our results for
unbounded quantile release and trace-sensitive covariance estimation. Next we will go into fur-
ther detail about these prediction-dependent guarantees, robustness-consistency tradeoffs, and
learning-theoretic results in Sections 6.3, 6.4, and 6.5, respectively. Then in Section 6.6 we will
present a theoretical and empirical investigation of of how to use predictions to improve multiple
quantile release in both the public-private and sequential release settings.

6.3 Prediction-dependent utility bounds

As formulated in Section 6.1, the basic guarantee of learning-augmented private algorithm is an
upper bound Uxpwq on the error Cxpwq of the statistic it releases about a dataset x when using
a prediction w. We now demonstrate how to design methods for different DP tasks that enjoy
such guarantees. While for single quantile release and data release we take the straightforward
approach of incorporating a prediction-dependent prior into the EM mechanism, we also show
how to handle difficulties that arise when multiple mechanisms need to be combined for releasing
multiple quantiles and how to incorporate matrix predictions instead of explicit distributional
priors by estimating the additive error between true and predicted covariances. This section
also discusses DP contributions of independent interest that arise from our study of measures
of prediction quality, specifically our Cauchy-based approach for releasing quantiles without
assuming boundedness (Corollary 6.3.1) and our improved bounds for the SeparateCov algorithm
proposed by Dong et al. [2022] (Corollary 6.3.2).

6.3.1 Quantile estimation via prediction-dependent priors

Given a quantile q P p0, 1q and a sorted dataset x P Rn of n distinct points, we want to release o P
rxrtqnus,xrtqnu�1sq, i.e. such that the proportion of entries less than o is q. As in prior work [Kaplan
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et al., 2022], the error of o will be the number of points between it and the desired interval:

Gapqpx, oq � ||ti : xris   ou| � tqnu| � | max
xris o

i� tqnu| (6.1)

Gapqpx, oq is constant on intervals Ik � pxrks,xrk�1ss in the partition by x of R (let I0 �
p�8,xr1ss and In � pxrns,8q), so we also say that Gapqpx, Ikq is the same as Gapqpx, oq
for some o in the interior of Ik.

Warm-up: Releasing one quantile

For single quantile release we choose perhaps the most natural way of specifying a prediction
for a DP algorithm: via the base measure µ : R ÞÑ R¥0 of the exponential mechanism:

Theorem 6.3.1 (McSherry and Talwar [2007]). If the utility upx, oq of an outcome o of a query
over dataset x has sensitivity maxo,x�x̃ |upx, oq � upx̃, oq| ¤ ∆ then the exponential mecha-
nism, which releases o w.p. 9 expp ε

2∆
upx, oqqµpoq for some base measure µ, is ε-DP.

The utility function we use is uq � �Gapq, so since this is constant on each interval Ik the
mechanism here is equivalent to sampling k w.p. 9 exppεuqpx, Ikq{2qµpIkq and then sampling
o from Ik w.p. 9 µpoq. While the idea of specifying a prior for EM is well-known, the key idea
here is to obtain a prediction-dependent bound on the error that reveals a useful measure of the
quality of the prediction. In particular, we can show (c.f. Lemma 6.A.1) that running EM in this
way yields o that w.p. ¥ 1� β satisfies

Gapqpx, oq ¤
2

ε
log

1{β
Ψ
pq,εq
x pµq

¤ 2

ε
log

1{β
Ψ
pqq
x pµq

(6.2)

where the quantity Ψ
pq,εq
x � ³

expp� ε
2
Gapqpx, oqqµpoqdo is the inner product between the prior

and the EM score while Ψ
pqq
x � limεÑ8Ψ

pq,εq
x � µppxrtqnus,xrtqnu�1ssq is the probability that the

prior assigns to the optimal interval.
This suggests two metrics of prediction quality: the negative log-inner-products U pq,εq

x pµq �
� log Ψ

pq,εq
x pµq and U pqq

x pµq � � log Ψ
pqq
x pµq. Both make intuitive sense: we expect predictions

µ that assign a high probability to intervals that the EM score weighs heavily to perform well,
and EM assigns the most weight to the optimal interval. There are also many ways that these
metrics are useful. For one, in the case of perfect prediction—i.e. if µ assigns probability one to
the optimal interval Itqnu—then Ψ

pq,εq
x pµq � Ψ

pqq
x pµq � 1, yielding an upper bound on the error

of only 2
ε
log 1

β
. Secondly, as we will see, both are also amenable for analyzing robustness (the

mechanism’s sensitivity to incorrect priors) and learning. A final and important quality is that
the guarantees using these metrics hold under no extra assumptions. Between the two, the first
metric provides a tighter bound on the utility loss while the second does not depend on ε, which
may be desirable.

It is also fruitful to analyze the metrics for specific priors. When x is in a bounded interval
pa, bq and µpoq � 1oPpa,bq

b�a is the uniform measure, then Ψ
pqq
x pµq ¥ ψx

b�a , where ψx is the minimum
distance between entries; thus we recover past bounds, e.g. Kaplan et al. [2022, Lemma A.1],
that implicitly use this measure to guarantee Gapqpx, oq ¤ 2

ε
log b�a

βψx
. Here the support of the
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uniform distribution is correct by assumption as the data is assumed bounded. However, analyz-
ing Ψ

pqq
x also yields a novel way of removing this assumption: if we suspect the data lies in pa, bq,

we set µ to be the Cauchy prior with location a�b
2

and scale b�a
2

. Even if we are wrong about the
interval, there exists an R ¡ 0 s.t. the data lies in the interval pa�b

2
� Rq, so using the Cauchy

yields Ψpqq
x ¥ 2pb�aqψx{π

pb�aq2�4R2 and thus the following guarantee:

Corollary 6.3.1 (of Lem. 6.A.1). If the data lies in the interval pa�b
2
� Rq and µ is the Cauchy

measure with location a�b
2

and scale b�a
2

then the output of the exponential mechanism satisfies

Gapqpx, oq ¤ 2
ε
log

�
π
b�a� 4R2

b�a
2βψx



w.p. ¥ 1� β.

If R � b�a
2

, i.e. we get the interval right, then the bound is only an additive factor 2
ε
log π

worse than before, but if we are wrong then performance degrades as Oplogp1 � R2qq, unlike
the OpRq error of the uniform prior. Note our use of a heavy-tailed distribution here: a sub-
exponential density decays too quickly and leads to error OpRq rather than Oplogp1 � R2qq.
We can also adapt this technique if we know only a single-sided bound, e.g. if values must be
positive, by using an appropriate half-Cauchy distribution.

Releasing multiple quantiles

To simultaneously estimate quantiles q1, . . . , qm we adapt the ApproximateQuantiles [Kaplan
et al., 2022], which assigns each qi to a node in a binary tree and, starting from the root, uses
EM with the uniform prior to estimate a quantile before sending the data below the outcome
o to its left child and the data above o to its right child. Thus each entry is only involved in
rlog2ms exponential mechanisms, and so for data in pa, bq the maximum Gapqi across quantiles

is O
�

log2m
ε

log mpb�aq
βψx

	
, which is much better than the naive bound of a linear function of m.

Given one prior µi for each qi, a naive extension of (6.2) gets a similar polylogpmq bound
(c.f. Lem 6.A.2); notably we extend the Cauchy-unboundedness result to multiple quantiles (c.f.
Corollary 6.A.1). However the upper bound is not a deterministic function of µi, as it depends
on restrictions of x and µi to subsets poj, okq of the domain induced by the outcomes of EM for
quantiles qj and qk earlier in the tree. It thus does not encode a direct relationship between the
prediction and instance data and is less amenable for learning.

We instead want guarantees depending on a more natural metric, e.g. one aggregating
Ψ
pqi,εiq
x pµiq from the previous section across pairs pqi, µiq. The core issue is that the data splitting

makes the probability assigned by a prior µi to data outside the interval poj, okq induced by the
outcomes of quantiles qj and qk earlier in the tree not affect the distribution of oi. One way to
handle this is to assign this probability mass to the edges of poj, okq, rather than the more natural
conditional approach of ApproximateQuantiles. We refer to this as “edge-based prior adapta-
tion" and use it to bound Gapmax � maxiGapqipx, oiq via the harmonic mean Ψ

pεq
x of the inner

products Ψpqi,εiq
x pµiq:
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Theorem 6.3.2 (c.f. Thm. 6.A.1). If m � 2k � 1 for some k, quantiles q1, . . . , qm are uniformly
spaced, and for each we have a prior µi : R ÞÑ R¥0, then running ApproximateQuantiles with
edge-based prior adaptation (c.f. Algorithm 13) is ε-DP, and w.p. ¥ 1� β

Gapmax ¤
2

ε
ϕlog2pm�1qrlog2pm� 1qs log m{β

Ψ
pεq
x

for Ψpεq
x �

�
m̧

i�1

1{m
Ψ
pqi,εiq
x pµiq

��1

(6.3)

Here εi � ε
rlog2pm�1qs and ϕ � 1�?5

2
is the golden ratio.

The golden ratio is due to a Fibonacci-type recurrence bounding the maximum Gapqi at each
depth of the tree. Ψ

pεq
x depends only on x and predictions µi, and it yields a nice error metric

U
pεq
x � � log Ψ

pεq
x � log

°m
i�1 e

U
pqi,εiq
x . However, the dependence of the error on m is worse

than that of ApproximateQuantiles, as ϕlog2m is roughly Opm0.7q, although the bound is still
sublinear and thus better than the naive baseline of running EM m times. Note that, as in the
single-quantile case, we can construct a looser but ε-independent upper bound

Ux � � log Ψx � log
m̧

i�1

eU
pqiq
x ¥ U pεq

x (6.4)

using the harmonic mean Ψx of Ψpqiq
x . We will make heavy use of this prediction quality measure

as a surrogate loss function in applications (c.f. Section 6.6).
The Õpϕlog2mq dependence on the number of quantiles m in Theorem 6.3.2 results from

error compounding across depths of the tree, so we can try to reduce depth by going from a
binary to a K-ary tree. This involves running EM K � 1 times at each node—and paying K � 1
more in budget—to split the data into K subsets; the resulting estimates may also be out of
order. However, by showing that sorting them back into order does not increase the error and
then controlling the maximum Gapqi at each depth via another recurrence relation, we prove the
following:

Theorem 6.3.3 (c.f. Thm. 6.A.2). For any q1, . . . , qm, using K � rexppalog 2 logpm� 1qqs
and edge-based adaptation guarantees ε-DP and w.p. ¥ 1� β has

Gapmax ¤
2π2

ε
exp

�
2
a
logp2q logpm� 1q

	
log

m{β
Ψ
pεq
x

(6.5)

The rate inm is both sub-polynomial and super-poly-logarithmic (opmαq and ωplogαmq @ α ¡
0); while asymptotically worse than the prediction-free original result [Kaplan et al., 2022], for
almost any practical value of m (e.g. m P r3, 1012s) it does not exceed a small constant (e.g.
nine) times log3m. Thus if the error� log Ψ

pεq
x of the prediction is small—i.e. the inner products

between priors and EM scores are large on (harmonic) average—then we may do much better
with this approach.

We compare K-ary AQ with edge-based adaptation to regular AQ in Figure 6.1. The orig-
inal is better at higher ε but similar or worse at higher privacy. We also find that conditional
adaptation is only better on discretized data with repetitions, where neither method provides
guarantees. Overall, we find that our prior-dependent analysis covers a useful algorithm, but for
consistency with past work and due to its better performance at high ε we focus on the original
binary approach in experiments.
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Figure 6.1: Maximum gap as a function of m for different variants of AQ when using the
uniform prior, evaluated on 1000 samples from a standard Gaussian (left) and the Adult “age"
dataset (right). The dashed and solid lines correspond to ε � 1 and 0.1, respectively.

6.3.2 Covariance estimation by estimating the prediction error

Encoding predictions as priors for EM and other mechanisms is a natural starting point for inte-
grating external information into DP algorithms, but one might also wish to use a point prediction
directly and hope to perform well if some distance measure between it and the output is small.
While this is a less natural requirement for quantile release, where errors are measured using data
points rather than metrics over the domain they live in, we show how this is easily achievable
for the important problem of covariance estimation. In this setting we have a dataset X P Rd�n,
where each of n records is a d-dimensional column with ℓ2-norm bounded by 1, and we want
to privately release an approximation Ĉ of its covariance matrix C � XXJ{n such that the
Frobenius distance between the two is small.

Given a prediction W P Rd�d of C, one can immediately construct the trivial, private,
prediction-sensitive algorithm of just releasing W, which has the obvious prediction-dependent
performance guarantee of }W �C}F . However, we can hope to use the data to get an error that
both decreases with n and is small if some distance between the prediction and ground truth is
small. To do so, we make use of recent approaches that enjoy trace-sensitive guarantees, i.e.
their utility improves if TrpXXJq is small [Amin et al., 2019, Dong et al., 2022]; for exam-
ple, the state-of-the-art method SeparateCov returns Ĉ that is ε-DP and satisfies }Ĉ � C}2F �
Õp d

ε2n2 � d
?
d

εn
TrpXXJ{nqq w.h.p. [Dong et al., 2022, Lemma 18]. This suggests a natural way

to incorporate a symmetric prediction matrix W: use the existing algorithm to privately estimate
its difference C �W with the ground truth, and then add W to the result; since C �W is no
longer PSD, the hope would be to obtain error that scales with its trace norm.

We do exactly this in Algorithm 10, which uses the SeparateCov approach of separately esti-
mating and combining eigenvalues and eigenvectors but applies it to C�W. The one potential
issue is showing that their main error bound holds for symmetric matrices with negative eigen-
values, but this follows in Lemma 6.3.1 by applying their argument to both sides of the spectrum
(c.f. Appendix 6.B.1):
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Algorithm 10: SeparateCov with predictions
Input: data X P Rd�n, symmetric prediction matrix W P Rd�d, privacy ε ¡ 0
UΛUJ Ð XXJ{n�W
Λ̂Ð Λ� diagpzq where zris � Lap

�
4
εn

�
// add noise to error eigenvalues

C̃Ð XXJ{n� Z for Zri,js � Zrj,is � Lap
�

2d
?
2

εn

	
ŨΛ̃ŨJ Ð C̃�W // get eigenvectors of noised prediction error

Output: Ĉ � ŨΛ̂ŨJ�W // combine to estimate XXJ{n�W and add W

Lemma 6.3.1. For X P Rd�n and symmetric W P Rd�d, if ŨΛ̃ŨJ � XXJ{n �W � Z for
some symmetric Z P Rd�d and Λ̂ � Λ� diagpzq for UΛUJ � XXJ{n�W and some vector
z P Rd then

}ŨΛ̂ŨJ �W �XXJ{n}2F ¤ 4
�}z}22 � ~Z~8}XXJ{n�W}Tr

�
(6.6)

We can then apply Laplace concentration to obtain the performance-dependent guarantee in
Theorem 6.3.4, which recovers the guarantee of Dong et al. [2022, Lemma 18] when W � 0d�d.1

The result shows that if we have a good guess of the prediction matrix in terms of trace distance
then the error can be made to depend mostly on the first term—which has a better dependence on
both d and n—without sacrificing privacy. Note that the algorithm requires the same number of
eigen-decompositions as the one without predictions [Dong et al., 2022] and only requires some
extra matrix additions to implement.

Theorem 6.3.4. If X has columns bounded by 1 in ℓ2-norm then Algorithm 10 is ε-DP and w.p.
¥ 1� β

}Ĉ�XXJ{n}2F ¤
144d�Oplog2 1

β
log2 dq

ε2n2
�

48d
?
2d�Opd log 1

β
log dq

εn
}XXJ{n�W}Tr

(6.7)

Proof. Following the analysis in Amin et al. [2019, Theorem 1] (c.f. Lemma 6.B.1) the ℓ1-
sensitivity of the eigenvalues of XXJ{n �W is 2{n, and upper-bounding the ℓ2-sensitivity of
the covariance XXJ{n of

?
2{n [Biswas et al., 2020, Lemma 3.2] shows that its ℓ1-sensitivity

is d
?
2{n. Thus the privacy guarantee follows from the composition of two Laplace mecha-

nisms with budget ε{2 each. For the utility guarantee we use concentration of }y}2 ¤ 3
?
d{2 �

O
�
log 1

β
log d

	
w.p. ¥ 1 � β{2 for i.i.d. yris � Lapp1q [Dong et al., 2022, Lemma 15] and

~Y~8 ¤ 3
?
d � O

�
log 1

β
log d

	
w.p. ¥ 1 � β{2 for i.i.d. Yri,js � Lapp1q for i ¥ j and

Yri,js � Yrj,is for i   j [Dong et al., 2022, Lemma 16]. Substituting z � 4
εn
y and Z � 2d

?
2

εn
Y

into Lemma 6.3.1 yields the result.

In addition to its computational simplicity, there are two other aspects of Algorithm 10 that
are important for understanding the utility of its output: (1) it adds the same amount of noise
1Unlike Dong et al. [2022] we square the Frobenius norm for the purposes of learning predictions later; in the single-
instance setting this is immaterial. Whether one is more interested in one or the other is application-dependent.
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Algorithm 11: MWEM with predictions
Input: dataset x P Zd¥0 with n entries, query set Q � r�1, 1sd, prediction w P △d,
number of iterations m ¡ 0, privacy parameter ε ¡ 0
w1 Ð w
for i � 1, . . . ,m do

sample qi P Q w.p. 9 exp
�

ε
8m

���Aq,x� nwi
}wi}1

E���	 // exponential mechanism

wi�1 Ð wi d exp

�A
qi,x� nwi

}wi}1

E
�Lapp 4m

ε q
2n

qi



// mult. weights update

Output: x̂ � n
m

°m
i�1wi // release average iterate

as the original SeparateCov method [Dong et al., 2022, Algorithm 1], despite our two-sided
sensitivity analysis, and (2) it is invariant to perturbations of the prediction matrix by any scalar
multiple of the identity, i.e. Ĉ is the same when W is replaced by W � cId for any c P R.
Crucially, this means we can obtain a tighter bound for free by replacing the trace difference in
the upper bound (6.7) by mincPR }XXJ{n �W � cId}Tr. Substituting W � 0d�d then yields
the following corollary, which is a strict improvement upon the main pure-DP guarantee of Dong
et al. [2022, Lemma 19] for prediction-free SeparateCov:

Corollary 6.3.2. If X has columns bounded by 1 in ℓ2-norm then Algorithm 10 with W � 0d�d
returns w.p. ¥ 1� β an estimate Ĉ P Rd�d satisfying

}Ĉ�XXJ{n}2F ¤
144d�Oplog2 1

β
log2 dq

ε2n2
�
48d

?
2d�Opd log 1

β
log dq

εn
min
cPR

}XXJ{n�cId}Tr
(6.8)

While this improvement is for a prediction-free method, it is the direct result of the two-sided
analysis we needed to incorporate predictions; as with our unbounded quantile release result,
this is another example of how learning-augmented analysis is useful even in the prediction-free
setting.

Lastly, we point the interested reader to several supplementary results that highlight the broad
applicability of our framework. First, while we focus on pure DP (except for learning), the main
analysis of Dong et al. [2022] is in the zCDP setting; in Appendix 6.B.2 we show that similar
guarantees hold there. Note that a prediction-free improvement similar to that of Corollary 6.3.2
can also be shown for SeparateCov under zCDP (c.f. Corollary 6.B.1, which improves upon Dong
et al. [2022, Theorem 1]). Lastly, we show that prediction-dependent guarantee also holds for
the older approach of Amin et al. [2019], albeit with a modified algorithm and a more involved
sensitivity analysis (c.f. Appendix 6.B.3).

6.3.3 Initializing synthetic dataset construction with a predicted dataset
Our final application is to private data release, in which the goal is to privately respond to queries
of a dataset, with the latter being defined via counts of items from some finite universe. For
simplicity we will assume an indexing that allows us to specify datasets as vectors x P Zd¥0, and

179



we will consider a finite set Q of linear queries, i.e. ones that can be defined as an inner product
of x with a vector q P r�1, 1sd. Here again we will incorporate a prediction into an existing
algorithm, specifically the MWEM method of Hardt et al. [2012], which uses multiplicative
weights to iteratively update a distribution over the data domain and to construct a synthetic
dataset x̂ P Rd

¥0 such that the maximum error maxqPQ |xq,x � x̂y| of all queries is small. The
natural approach here is to assume the prediction can be written as a distribution w P △d and
use it instead of the uniform initialization used by Hardt et al. [2012]. Indeed this observation
has been made in both the original work and by Liu et al. [2021a], who adapt the method to only
operate over the support of a source dataset. A prediction-dependent guarantee also follows in a
straightforward manner from the original analysis:2

Lemma 6.3.2. Algorithm 11 is ε-DP and produces x̂ P Rd
¥0 s.t. w.p. ¥ 1� β

max
qPQ

|xq,x� x̂y|2
n

¤ 8n

m
DKL

�
x

n

����
����w



� 16m2

ε2n

�
3 log

2m

β
� 2 log2 |Q|


2

(6.9)

Our main purpose with this application is thus to discuss interesting issues arising in its
robustness and especially in learning the prediction. We also conclude by noting the similarity
of deriving prediction-based guarantees for all four methods—finding algorithms that implicitly
use a default prediction such as a uniform distribution or zero matrix—even while the actual
algorithms and uses of the predictions are quite different.

6.4 Robustness-consistency tradeoffs
While prediction-dependent guarantees work well if the prediction is accurate, without safe-
guards they may perform catastrophically poorly if the prediction is incorrect. In this section
we provide robust alternatives to the methods we derived in the previous section, demonstrating
the usefulness of the algorithms with predictions framework for understanding robustness when
incorporating external information into DP algorithms.

6.4.1 Quantile estimation
While prediction-dependent guarantees work well if the prediction is accurate, without safe-
guards they may perform catastrophically poorly if the prediction is incorrect. Quantiles provide
a prime demonstration of the importance of robustness, as using priors allows for approaches
that may assign very little probability to the interval containing the quantile. For example, if one
is confident that it has a specific value x P pa, bq one can specify a more concentrated prior, e.g.
the Laplace distribution around x. Alternatively, if one believes the data is drawn i.i.d. from
some a known distribution then µ can be constructed via its CDF using order statistics [David
and Nagaraja, 2003, Equation 2.1.5]. These reasonable approaches can result in distributions
with exponential or high-order-polynomial tails, using which directly may work poorly if the
prediction is incorrect.

2Similar to covariance estimation, we consider the mean squared error for the purposes of learning the prediction.
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Luckily, for our negative log-inner-product error metric it is straightforward to show a param-
eterized robustness-consistency tradeoff by simply mixing the prediction prior µ with a robust
prior ρ:

Corollary 6.4.1. For any prior µ : R ÞÑ R¥0, robust prior ρ : R ÞÑ R¥0, and robustness
parameter λ P r0, 1s, releasing o P R w.p. 9 expp�εGapqpx, oq{2qµpλqpoq for µpλq � p1 �
λqµ� λρ is

�
2
ε
log 1{β

λΨ
pq,εq
x pρq

	
-robust and

�
2
ε
log 1{β

1�λ

	
-consistent w.p. ¥ 1� β.

Proof. Apply Lemma 6.A.1 and linearity of Ψpq,εq
x pµpλqq � p1� λqΨpq,εq

x pµq � λΨ
pq,εq
x pρq.

Thus if the interval is finite and we set ρ to be the uniform prior, using µpλq in the algorithm
will have a high probability guarantee at most 2

ε
log 1

λ
-worse than the prediction-free guarantee

of Kaplan et al. [2022, Lemma A.1], no matter how poor µ is for the data, while also guarantee-
ing w.p. ¥ 1� β that the error will be at most 2

ε
log 1{β

1�λ if µ is perfect. A similar result holds for
the case of an infinite interval if we instead use a Cauchy prior. Corollary 6.4.1 demonstrates the
usefulness of the algorithms with predictions framework for not only quantifying improvement
in utility using external information but also for making the resulting DP algorithms robust to
prediction noise.

The above argument for single-quantiles is straightforward to extend to the negative log of
the harmonic means of the inner products. In-fact for the binary case with uniform quantiles
we can tradeoff between polylogpmq-guarantees similar to those of Kaplan et al. [2022] and our
prediction-dependent bounds:

Corollary 6.4.2. Consider priors µ1, . . . , µm : R ÞÑ R¥0, Cauchy prior ρ : R ÞÑ R¥0 with
location a�b

2
and scale b�a

2
, and robustness parameter λ P r0, 1s. Then running Algorithm 13 on

quantiles that are uniform negative powers of two with K � 2, edge-based prior adaptation, εi �
ε̄ � ε{rlog2ms @ i, and priors µpλqi � λρ � p1 � λqµi @ i is

�
2
ε
rlog2ms2 log

�
πm

b�a� 4R2

b�a
2λβψx




-

robust and
�

2
ε
ϕlog2mrlog2ms log m{β

1�λ

	
-consistent w.p. ¥ 1� β.

Proof. Apply Lemma 6.A.2, Theorem 6.A.1, and linearity of the inner products in Ψ̂
pεq
x and

Ψ
pεq
x .

6.4.2 Covariance estimation
We take a different approach to making our prediction-based covariance estimation method ro-
bust to matrices W with large trace distance to XXJ{n. Instead of combining the prediction
with a robust default, we simply spend some privacy to check whether }XXJ{n � W}Tr is
larger than }XXJ{n}Tr and if so run Algorithm 10 with the zero matrix instead. This has the
following guarantee:

Corollary 6.4.3. Pick λ P p0, 1q and run Algorithm 10 with privacy p1 � λqε and symmet-
ric prediction matrix W if }XXJ{n � W}Tr � z ¤ }XXJ}Tr{n and 0d�d otherwise, where
z � Lapp 4

λεn
q. This procedure is ε-DP, Õ

�
d
?
d

εn

�
1
εn
� }XXJ{n}Tr

�	
-robust, and Õ

�
d
?
d

ε2n2

	
-

consistent w.h.p.
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Proof. By Lemma 6.B.1 the difference }XXJ{n �W}Tr � }XXJ{n}Tr has sensitivity 4{n, so
the comparison of }XXJ{n � W}Tr � z and }XXJ{n}Tr is equivalent to using the Laplace
mechanism with λε-DP to estimate this difference and then taking the sign. Composing this
with the privacy guarantee of Theorem 6.3.4 yields ε-DP. Since Prp|z| ¥ 4

λεn
log 2

β
q ¤ β{2, the

matrix Wz P tW,0d�du passed to Algorithm 10 satisfies }XXJ{n�Wz}Tr ¤ mint}XXJ{n�
W}Tr, }XXJ{n}Tru� 4

λεn
log 2

β
w.p. ¥ 1�β{2. Applying the utility guarantee of Theorem 6.3.4

w.p. 1� β{2 for constant λ P p0, 1q yields the result.

Adding this check for robustness make the data-independent term worse by a factor of
?
d;

note that the data-dependent term can still be up to Õpεn}XXJ{n}Trq times larger, so this does
not remove the usefulness of the prediction guarantee. The additional cost results from the large
dependence on d of this latter term in the original bound, which is itself be caused by a mismatch
between the ℓ1-sensitivity measure and the ℓ2-bound on the columns. Specifically, if instead
the ℓ1-norms of the columns are assumed bounded by one then the ℓ1-sensitivity of XXJ{n is
2{n, making the numerator of the second term in Theorem 6.3.4 be Õp?dq and thus causing no
(asymptotic) cost due to robustness.3 Similarly, under the original assumption the corresponding
term in the ℓ2-sensitivity-based zCDP guarantee is also Õp?dq (c.f. Theorem 6.B.2) and leads to
a term that is Opan{dq worse (multiplicatively) due to robustness (c.f. Corollary 6.B.2); while
worse in some regimes, in sufficiently high dimensions (d � Ωpnq) this means no (asymptotic)
cost of robustness.

6.4.3 Data release

As with quantiles, a natural approach to making data release robust is to mix the initialization
with the default uniform distribution, achieving a tunable tradeoff. In the following result we
specify the number of steps based on the the worst-case guarantees for a prediction-free algorithm
and obtain a favorable tradeoff that allows for very small values of λ for high consistency while
still maintaining robustness due the latter’s log d

λ
dependence.

Corollary 6.4.4. For d ¥ 2 and any w P △d, running Algorithm 11 with m � 3

b
ε2n2 log d
2 log4 |Q| and

initialization wpλq � p1�λqw�λ1d{d is ε-DP, Õ
�
p1� log4{3 |Q|q 3

b
n

ε2 log d
log d

λ



-robust, and

Õ
�
λp1� log4{3 |Q|q 3

b
n log2 d
ε2



-consistent w.h.p., where Õ hides poly-log terms in 1

ε
, n, log d,

and log |Q|.

Proof. If w � x
n

then we have DKLpxn ||wpλqq ¤ p1 � λqDKLpxn ||wq � λDKLpxn ||w ¤ λ log d by
joint convexity of DKL. On the other hand DKLpxn ||wpλqq ¤ xx

n
, log dx

λn
y ¤ log d

λ
. Substituting

into Lemma 6.3.2 and simplifying yields the result.

3It is not as clear that the ℓ1-sensitivity of the eigenvalues would be as affected by the different assumption.
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Algorithm 12: Non-Euclidean DP-FTRL. For the InitializeTree, AddToTree,
and GetSum subroutines see Kairouz et al. [2021a, Section B.1].

Input: Datasets x1, . . . ,xT arriving in a stream in arbitrary order, domain Θ � Rp,
step-size η ¡ 0, noise scale σ ¡ 0, ℓ2-sensitivity ∆2 ¡ 0, regularizer ϕ : Θ ÞÑ R

g1 Ð 0p
T ÐInitializeTree(T, σ2,∆2) // start tree aggregation
for t � 1, . . . , T do
θt Ð argminθPΘ ϕpθq � ηxgt,θy
suffer ℓxtpθtq
T ÐAddToTree(T , t,∇θℓxtpθtq) // add gradient to tree

gt�1 ÐGetSum(T , t) // estimate
°t
s�1∇θℓxspθsq

6.5 Learning predictions, privately

Our last objective will be to learn predictions that do well according to the quality metrics we
have defined, which themselves control the utility loss of running the DP algorithms. Past work,
e.g. the public-private framework [Liu et al., 2021a, Bassily et al., 2022, Bie et al., 2022], has of-
ten focused on domain adaptation-type learning where we adapt a public source to private target.
We avoid assuming access to large quantities of i.i.d. public data and instead assume numerous
tasks that can have sensitive data and may be adversarially generated. As discussed before, this
is the online setting where we see loss functions defined by a sequence of datasets x1, . . . ,xT
and aim to compete with best fixed prediction in-hindsight. As in the previous chapter, such a a
guarantee can also be converted into excess risk bounds (c.f. Lemma B.4.1).

6.5.1 Non-Euclidean DP-FTRL

Because the optimization domain is not well-described by the ℓ2-ball, we are able to obtain
significant savings in dependence on the dimension and in some cases even in the number of
instances T by extending the DP-FTRL algorithm of Kairouz et al. [2021a] to use non-Euclidean
regularizers, as in Algorithm 12. For this we prove the following regret guarantee:

Theorem 6.5.1. Let θ1, . . . ,θT be the outputs of Algorithm 12 using a regularizer ϕ : Θ ÞÑ R
that is strongly-convex w.r.t. } � }. Suppose @ t P rT s that ℓxtp�q is L-Lipschitz w.r.t. } � } and its
gradient has ℓ2-sensitivity ∆2. Then w.p. ¥ 1� β1 we have @ θ� P Θ that

Ţ

t�1

ℓpθt;xtq � ℓpθ�;xtq ¤ ϕpθ�q � ϕpθ1q
η

� ηL

�
L�

�
G� C

d
2 log

T

β1

�
σ∆2

a
rlog2 T s

�
T

(6.10)
where G � Ez�N p0p,Ipq sup}y}¤1xz,yy � Ez�N p0p,1q}z}� is the Gaussian width of the unit } � }-
ball and C is the Lipschitz constant of } � }� w.r.t. } � }2. Furthermore, for any ε1 ¤ 2 log 1

δ1 , setting

σ � 1
ε1

b
2rlog2 T s log

1
δ1 makes the algorithm pε1, δ1q-DP.
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Proof. The privacy guarantee follows from past results for tree aggregation [Smith and Thakurta,
2013, Kairouz et al., 2021a]. For all t P rT s we use the shorthand ∇t � ∇θℓxtpθtq; we can then
define θ̃t � argminθPΘ ϕpθq � η

°t
s�1x∇s,θy and bt � gt �

°t
s�1∇s. Then

Ţ

t�1

ℓxtpθtq � ℓxtpθ�q ¤
Ţ

t�1

x∇t,θt � θ�y

�
Ţ

t�1

x∇t, θ̃t � θ�y �
Ţ

t�1

x∇t,θt � θ̃ty

¤ ϕpθ�q � ϕpθ1q
η

� η
Ţ

t�1

}∇t}2� �
Ţ

t�1

}∇t}�}θ̃t � θt}

¤ ϕpθ�q � ϕpθ1q
η

� ηL

�
LT �

Ţ

t�1

}bt}�
�

(6.11)

where the first inequality follows from the standard linear approximation in online convex opti-
mization [Zinkevich, 2003], the second by the regret guarantee for online mirror descent [Shalev-
Shwartz, 2011, Theorem 2.15], and the last by applying McMahan [2017, Lemma 7] with
ϕ1p�q � ϕp�q � η

°t
s�1x∇s, �y, ψp�q � ηxbt, �y, and ϕ2p�q � ϕp�q � ηxgt, �y, yielding }θ̃t � θt} ¤

η}bt}� @ t P rT s. The final guarantee follows by observing that the tree aggregation protocol adds
noise bt � N p0p, σ2∆2

2rlog2 tsq to each prefix sum and applying the Gaussian concentration of
Lipschitz functions [Boucheron et al., 2012, Theorem 5.6].

The above proof of this result follows that of the Euclidean case, which can be recovered by
setting G � Op?dq, C � 1, and ∆2 � OpLq.4 In addition to the Lipschitz constants L, a key
term that can lead to improvement is the Gaussian width G of the unit } � }-ball, which for the
Euclidean case is Op?dq but e.g. for } � } � } � }1 is Op?log dq. Note that a related dependence
on the Laplace width of Θ appears in Agarwal and Singh [2017, Theorem 3.1], although their
guarantee only holds for linear losses and is not obviously extendable. Thus Theorem 6.5.1 may
be of independent interest for DP online learning.

6.5.2 Learning priors for one or more quantiles

We now turn to learning vectors µt �
�
µtr1s, � � � ,µtrms

�
or priors µris : R ÞÑ R¥0 to privately

estimate m quantiles q1, . . . , qm on each of a sequence of T datasets xt. We will aim to set
µ1, . . . ,µT s.t. if at each time t we run Algorithm 13 with privacy ε ¡ 0 then the guarantees
given by Lemmas 6.A.1 and 6.A.2 will be asymptotically at least as good as those of the best set
of measures in Fm, where F is some class of measures on the finite interval pa, bq. The latter we
will assume to be known and bounded. Note that in this section almost all single-quantile results
follow from setting m � 1, so we study it jointly with learning for multiple quantiles.

4As of this writing, the most recent arXiv version of Kairouz et al. [2021a, Theorem C.1] has a typo leading to
missing a Lipschitz constant in the bound, confirmed via correspondence with the authors.
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Ignoring constants, the loss functions implied by our prediction-dependent upper bounds for
multiple-quantiles are the following negative log-harmonic sums of prior-EM inner-products:

U pεq
xt pµq � log

m̧

i�1

1

Ψ
pqi,εiq
xt pµrisq

� log
m̧

i�1

1³b
a
expp�εiGapqipxt, oq{2qµrispoqdo

(6.12)

We focus on minimizing regret maxµPFm
°T
t�1 U

pεq
xt pµtq�U pεq

xt pµq over these losses for priorsµris
in a class FV,d of probability measures that are piecewise V -Lipschitz over each of d intervals
uniformly partitioning ra, bq. This is chosen because it covers the class FV,1 of V -Lipschitz
measures and the class of F0,d of discrete measures that are constant on each of the d intervals.
The latter can be parameterized by W P △m

d , so that the losses have the form U
pεq
xt pµWq �

log
°m
i�1xst,i,Wrissy�1 for st,i P Rd

¥0. This can be seen by setting

st,irjs � d

b� a

» a� b�a
d
j

a� b�a
d
pj�1q

expp�εiGapqipxt, oq{2qdo (6.13)

and µWrispoq � d
b�aWri,js over the interval

�
a� b�a

d
pj � 1q, a� b�a

d
j
�
. Finally, for λ P r0, 1s

we also let F pλq � tp1 � λqµ � λ
b�a : µ P Fu denote the class of mixtures of measures µ P F

with the uniform measure.
As detailed in Appendix 6.D.1, losses of the form � logxst, �y, i.e. those above when m � 1,

have been studied in (non-private) online learning [Hazan et al., 2007], including in this the-
sis (c.f. Section 2.3). However, specialized approaches, e.g. those taking advantage exp-
concavity, are not obviously implementable via prefix sums of gradients, the standard approach
to private online learning [Smith and Thakurta, 2013, Agarwal and Singh, 2017, Kairouz et al.,
2021a]. Still, we can at least use the fact that we are optimizing over a product of simplices to
improve the dimension-dependence by applying Non-Euclidean DP-FTRL with entropic regular-
izer ϕpWq � mxW, logWy, which yields an m-way exponentiated gradient (EG) update [Kivi-
nen and Warmuth, 1997]. To apply its guarantee for the problem of learning priors for quantile
estimation, we need to bound the sensitivity of the gradients ∇WU

pεq
xt pµWq to changes in the

underlying datasets xt. This is often done via a bound on the gradient norm, which in our case
is unbounded near the boundary of the simplex. We thus restrict to γ-robust priors for some
γ P p0, 1s by constraining W P △m

d to have entries lower bounded by γ{d—a domain where
}∇WU

pεq
xt pµWq}1 ¤ d{γ (c.f. Lemma 6.D.1)—and bounding the resulting approximation error;

we are not aware of even a non-private approach that avoids this except by taking advantage of
exp-concavity [Hazan et al., 2007].

We thus have a bound of 2d{γ on the ℓ2-sensitivity. However, this may be too loose since it
allows for changing the entire dataset xt, whereas we are only interested in changing one entry.
Indeed, for small ε we can obtain a tighter bound:

Lemma 6.5.1. The ℓ2-sensitivity of ∇wU
pεq
xt pµwq is d

γ
mint2, eε̃m � 1u, where ε̃m � p1 �

1m¡1qmaxi εi.
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Proof for m � 1; c.f. Appendix 6.D.1. Let x̃t be a neighboring dataset of xt and let U pεq
x̃t
pµWq �

� logxs̃t,wy be the corresponding loss. Note that maxoPra,bs |Gapqpxt, oq �Gapqpx̃t, oq| ¤ 1 so

s̃trjs �
» a� b�a

d
j

a� b�a
d
pj�1q

exp
�
�ε
2
Gapqpx̃t, oq

	
do P e� ε

2

» a� b�a
d
j

a� b�a
d
pj�1q

exp
�
�ε
2
Gapqpxt, oq

	
do

� e�
ε
2 strjs

(6.14)

Therefore since m � 1 we denote w �Wr1s, st � st,1, and s̃t � s̃t,1 and have

}∇wU
pεq
xt pµwq �∇wU

pεq
x̃t
pµwq}2 �

gffe ḑ

j�1

�
strjs
xst,wy �

s̃trjs
xs̃t,wy


2

�
gffe ḑ

j�1

s2trjs
xst,wy2

�
1� s̃trjsxst,wy

strjsxs̃t,wy

2

¤ }∇wU
pεq
xt pµwq}1max

j
|1� κj|

(6.15)

where κj � s̃trjsxst,wy
strjsxs̃t,wy P

strjs expp� ε
2
qxst,wy

strjsxst,wy expp� ε
2
q P expp�εq by Equation 6.14. The result follows by

taking the minimum with the bound on the Euclidean norm of the gradient (Lemma 6.D.1).

Since eε � 1 ¤ 2ε for ε P p0, 1.25s, for small ε this allows us to add less noise in DP-FTRL.
With this sensitivity bound, we apply Algorithm 12 using the entropic regularizer to obtain the
following result (c.f. Appendix 6.D.1):

Theorem 6.5.2. For d ¥ 2, γ P p0, 1
2
s if we run Algorithm 12 on U pεq

xt pµWq � log
m°
i�1

1

Ψ
pqi,εiq
xt pµWq

over γ-robust priors with step-size η � γm
d

c
logpdq{T

1�
�
2
?

logpmdq�
b
2 log T

β1
	
σ
?

logrlog2 T smint1,ε̃mu
and reg-

ularizer ϕpWq � mxW, logWy then for any V ¥ 0, λ P r0, 1s, and β1 P p0, 1s we will have
regret

max
µrisPFpλq

V,d

Ţ

t�1

U pεq
xt pµWtq � U pεq

xt pµq

¤ V mT

γdψ̄
pb� aq3 � 2maxtγ � λ, 0uT log 2

� 2md

γ

gffe�
1�

�
4
a
logpmdq � 2

d
2 log

T

β1

�
σ
a
rlog2 T smint1, ε̃mu

�
T log d

(6.16)

w.p. ¥ 1 � β1, where ψ̄ is the harmonic mean of ψxt � mink xtrk�1s � xtrks and ε̃m �
p1 � 1m¡1qmaxi εi. For any ε1 ¤ 2 log 1

δ1 setting σ � 1
ε1

b
2rlog2 T s log

1
δ1 makes this proce-

dure pε1, δ1q-DP.
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Note that in the case of V ¡ 0 or λ � 0 we will need to set d � ωT p1q or γ � oT p1q in order to
obtain sublinear regret. Thus for these more difficult classes our extension of DP-FTRL to non-
Euclidean regularizers yields improved rates, as in the Euclidean case the first term has an extra
4
?
d-factor. The following provides some specific upper bounds derived from Theorem 6.5.2:

Corollary 6.5.1. For each of the following classes of priors there exist settings of d (where
needed) and γ ¡ 0 in Theorem 6.5.2 that guarantee obtain the following regret w.p. ¥ 1� β1:

1. λ-robust and discrete µris P F pλq
0,d : Õ

�
dm
λ

c�
1� mint1,ε̃mu

ε1

	
T




2. λ-robust and V -Lipschitz µris P F pλq
V,1 : Õ

�
m
λ

b
V
ψ̄

4

c�
1� mint1,ε̃mu

ε1

	
T 3




3. discrete µris P F0,d: Õ
�?

dm 4

c�
1� mint1,ε̃mu

ε1

	
T 3




4. V -Lipschitz µris P FV,1: Õ
�?

m 4

b
V
ψ̄

8

c�
1� mint1,ε̃mu

ε1

	
T 7




Thus competing with λ-robust priors with discrete PDFs enjoys the fastest regret rate of
Õp?T q, while either removing robustness or competing with any V -Lipschitz prior has regret
ÕpT 3{4q, and doing both has regret ÕpT 7{8q. When comparing to Lipschitz priors we also incur
a dependence on the inverse of minimum datapoint separation, which may be small. A notable
aspect of all the bounds is that the regret improves with small ε due to the sensitivity analysis
in Lemma 6.5.1; indeed for ε � Opε1q the regret bound only has a Oplog 1

δ1 q-dependence on
the privacy guarantee. Finally, for λ-robust priors we can also apply the log b�a

λψ
-boundedness

of � log Ψ
pq,εq
x pµq and standard online-to-batch conversion (c.f. Appendix B.4) to obtain the

following sample complexity guarantee:

Corollary 6.5.2. For any α ¡ 0 and distribution D over finite datasets x of ψ-separated points
from pa, bq, if we run the algorithm in Theorem 6.5.2 on

T � Ω

�
log 1
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�
d2m2
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�
1� mint1, ε̃mu
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� log2

1

λψ


�
(6.17)

i.i.d. samples from D then w.p. ¥ 1 � β1 the average Ŵ � 1
T

°T
t�1Wt of the resulting iterates

satisfies

Ex�D log
m̧

i�1

1

Ψ
pqi,εiq
x pµŴrisq

¤ min
µrisPFpλq

0,d

Ex�D log
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i�1
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Ψ
pqi,εiq
x pµrisq
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For α-suboptimality w.r.t. µris P F pλq
V,1 the sample complexity is

T � Ω

�
log 1

β1

α2

�
V 2m2

λ4ψ2α2

�
1� mint1, ε̃mu

ε1



� log2

1

λψ


�
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6.5.3 Learning to estimate covariance matrices
We next study how to learn prediction matrices for DP covariance estimation by targeting the
trace distance between them and the ground truth. This is a more straightforward learning task,
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with Lipschitz losses over a finite-dimensional domain. Indeed, we could apply standard DP-
FTRL and obtain regret Õpap1� d{ε1qdT q w.r.t. any symmetric matrix W because the losses
UXtpWq � }XtX

J
t {|Xt| � W}Tr are

?
d-Lipschitz w.r.t. the Frobenius norm. However, we

can reduce the dependence on the dimension by a
?
d-factor by combining our non-Euclidean

DP-FTRL algorithm with the well-known matrix-learning technique of using Schatten p-norm
regularization [Duchi et al., 2010]:

Theorem 6.5.3. Let X1, . . . ,XT be a sequence of datasets with d-dimensional columns bounded
by 1 in the ℓ2-norm. If we run Algorithm 12 on lossesUXtpWq � }XtX

J
t {|Xt|�W}Tr with step-

size η �
c

6 logpdq{T
1�

�?
d�

b
2 log T

β1
	
σ
?
drlog2 T s

and regularizer ϕp�q � 3
2
log d~�~2

p then we will have regret

max
WPRd�d
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UXtpWtq � UXtpWq ¤ O
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gffe�
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�?

d�
d
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σ
a
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T log d
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w.p. ¥ 1�β1. For any ε1 ¤ 2 log 1

δ1 setting σ � 1
ε1

b
2rlog2 T s log

1
δ1 makes this procedure pε1, δ1q-

DP. Furthermore, suppose the datasets are drawn i.i.d. from some distribution D. If we run the
same algorithm and return the average prediction Ŵ � 1

T

°T
t�1Wt then T � Ω̃

�
1�d{ε1
α2 log 1

β1

	
samples suffice to guarantee that w.p. 1� β1

EX�D}XXJ{|X| � Ŵ}Tr ¤ min
W

EX�D}XXJ{|X| �W}Tr � α (6.21)

Proof. The loss functions }XtX
J
t {|Xt|�W}Tr have gradients�UtStU

J
t , where Ut is the matrix

of eigenvectors of XtX
J
t {|Xt| �W and St is the diagonal matrix of the signs of its eigenvalues;

the losses are thus
?
d-Lipschitz w.r.t. the Frobenius norm and 1-Lipschitz w.r.t. the trace norm.

Note that these gradients can be computed in polynomial time via eigendecomposition and used
in DP-FTRL with the Schatten-p norm regularizer 3

2
log d~ � ~2

p for p � 1 � 1{ log d, which is
strongly-convex w.r.t. the trace norm } � }Tr [Duchi et al., 2010]. Since the Gaussian width of the
(symmetric) trace ball is Op?dq [Latała et al., 2018] and the spectral norm is 1-Lipschitz w.r.t.
the Frobenius norm, applying Theorem 6.5.1 yields the bound

3 log d~W~2
p
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For any optimal W we have

~W~p ¤ }W}Tr ¤ 1

T

Ţ

t�1

}W �XtX
J
t {|Xt|}Tr � }XtX

J
t {|Xt|}Tr

¤ 2

T

Ţ

t�1

TrpXtX
J
t q{|Xt| ¤ 2

(6.23)

so the regret follows by substituting η. The sample complexity result follows from online-to-
batch conversion (c.f. Lemma B.4.1).
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Thus prediction matrices for covariance estimation are efficiently and privately learnable, in
both the online and distributional settings. Moreover, for both our extension to non-Euclidean
DP-FTRL is critical for obtaining a weaker dependence on the dimension. One limitation of
the analysis is that, unlike for quantiles, we did not conduct a refined analysis by studying how
swapping single columns of Xt rather than the entire dataset affects the gradient of UXt . It is
not immediately clear that an improvement is possible, with the difficulty being the gradient’s
dependence on the signs of the eigenvalues.

6.5.4 Learning the initialization and number of iterations for data release
Finally, we learn to initialize MWEM-based data release. Here we are faced with optimizing

Uxtpw,mq �
8nt
m
DKL

�
xt
nt

����w

� 16m2

ε2n� t

�
3 log

2m

β
� 2 log2 |Q|


2

(6.24)

Notably, unlike the past learning settings, this function is parameterized by both a prediction w
and the number of steps m, which we will also set online. The reason for this is that the op-
timal step-size depends on the similarity between instances: if for the optimal w the measure
DKLpxt{nt||wq is small for most datasets xt then it is better to set a small m above, whereas if it
is usually large it should be counter-acted with a larger m. Our goal will thus be to set wt and mt

together in an online fashion so as to simultaneously compete with the optimal λ-robust w P △d

for some λ ¡ 0 and the optimal number of steps m ¡ 0. To do so we will run DP-FTRL with the
entropic regularizer, i.e. private exponentiated gradient (EG), to set both the initialization from
the simplex △d and to set the number of iterations mt at step t by sampling from a categorical
distribution. This has the following regret guarantee (c.f. Appendix 6.D.3):

Theorem 6.5.4. Let x1, . . . ,xT P Zd¥0 be a sequence of datasets with nt � }xt}1 entries each,
let N � maxt nt, and consider any γ P p0, 1s and λ P r0, 1s. Then there exists M P Z¡0 and
η1, σ1, η2, σ2 ¡ 0 s.t. running DP-FTRL with regularizer ϕpwq � xw, logwy, step-size η1, and
noise σ1 on the losses ntDKLpxtnt ||wq over the domain wris ¥ γ{d to set wt and simultaneously
running DP-FTRL with regularizer ϕpθq � xθ, log θy, step-size η2, and noise σ2 on the losses
Em�θUxtpwt,mq over the domain △M and setting mt using the categorical distribution defined
by θt over the Unift1, . . . ,Mu such that the entire scheme is pε1, δ1q-DP and w.h.p. has regret
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w.r.t. any m ¡ 0 and w P △d satisfying wris ¥ λ
d
. For λ ¡ 0 setting γ � λ yields regret

Õ
�

d
λmint1,ε2uN

4
3

b
T
ε1

	
; for λ � 0 and T ¥ d2, setting γ �
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N
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3
4

b
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.

As in quantile learning, we suffer a strong dependence on the dimension here, and the rate
is worse if we try to compete the non-robust initializations (λ � 0). It thus remains an open
question whether either a better learning result or upper bound is possible. Nevertheless, to inter-
pret this guarantee, note that for Hλ � minwris¥λ{d

�°T
t�1 ntDKLpxt{nt||wq

	
{
�°T

t�1 nt

	
and if
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nt � n @ t then we have that the optimum-in-hindsight for the average upper bound is
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Since Hλ approximates the entropy of the aggregate distribution across instances x1, . . . ,xT—
indeed for λ � 0 it is exactly the entropy of the average distribution

�°T
t�1 xt

	
{°T

t�1 nt—the
regret guarantee shows that we will do well asymptotically if the entropy is small. Note that being
able to choose m in addition to w is crucial to adapting to this entropy, and is closely related to
the problem of choosing the step-size in meta-learning, where similar aggregate measures appear
as forms of task similarity (c.f. Sections 2.2 and 2.3).

6.6 Applications
Having derived prediction-dependent performance bounds for three DP tasks and analyzed their
robustness and learnability, we now investigate how these algorithms might be deployed in prac-
tice. We focus on the problem of multiple quantile release and consider the two motivating set-
tings from the introduction: public-private transfer and sequential release. While we make direct
use of the robust mixing scheme devised in Section 6.4, our learnability analysis in Section 6.5
yielded unwieldy discretization-based algorithms due to the focus on approximating very gen-
eral priors. This generality seems unnecessary, as we might reasonably expect simple, unimodal
distributions to be good priors for quantiles.

We thus consider instead the problem of optimizing the performance bounds Ux � � log Ψx

for multiple quantile release across classes of location-scale priors, which for some measure
f : R ÞÑ R¥0 have the form µν,σpxq � 1

σ
f
�
x�ν
σ

�
for ν P R and σ ¡ 0. Such families allows us

to model both the location of a quantile using ν � xw, fy—where w P Rd is a linear model from
public features f P Rd about the dataset—and our uncertainty about it using σ, all while staying
in reasonable dimensions. Note that in this section we target only the ε-independent bound Ux, as
U
pεq
x does not yield a convex objective; furthermore, while we mainly discuss the single-quantile

bound U pqq
x for simplicity, the general results (c.f. Section 6.E) extend naturally to the case of

m ¡ 1 because it is the log-sum-exp of the former.

6.6.1 Convexity vs. robustness of location-scale models
We must first determine which location-scale family to use, as this include Gaussians with mean
ν and variance σ2, Laplace with mean ν and scale σ, Cauchy with location ν and scale σ, and
more. To make this decision, we consider two desiderata: (1) the prior should be robust in the
way the Cauchy is robust, i.e. being wrong about the data location should not harm us too much,
and (2) it should be easy to learn the parameters ν and σ, e.g. by optimizing U pqq

x pµν,σq.
While not necessary, one way of ensuring (2) is convexity of U pqq

x , which we focus on as it
enables efficient algorithms. We use a connection between our upper bounds and the likelihood
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of censored regression [Pratt, 1981], which for noise ξi P R models a relationship between
features fi P Rd and a variable yi � xw, fiy � ξi when information about yi is only provided via
an interval rai, biq containing it (e.g. an individual’s income bracket, not their exact income). If
ξi is from a location-scale distribution with ν � 0 the log-likelihood given datapoints pai, bi, fiq is

Ltai,bi,fiuni�1
pw, σq �

ņ

i�1

log

» bi

ai

1

σ
f

�
y � xw, fiy

σ



dy (6.27)

Observe that for a � xrtqnus and b � xrtqnus�1 we have

U pqq
x pµxw,fy,σq � � log µxw,fy,σppa, bsq � � log

» b

a

1

σ
f

�
o� xw, fy

σ



do (6.28)

which is the negative of La,b,f pw, σq. We thus adopt the reparameterization of Burridge [1981],
who showed that (6.27) is concave w.r.t. pv, ϕq � pw

σ
, 1
σ
q whenever f is log-concave, a property

satisfied by the Gaussian and Laplace families but not the Cauchy. Therefore, for such f we have
that ℓpqqx pxv, fy, ϕq � U

pqq
x pµ xv,fy

ϕ
, 1
ϕ
q is convex w.r.t. pv, ϕq.

Unfortunately, we show that no log-concave f is robust, in the sense that for any R ¡ 0

there exists a dataset of points in the interval pθ � Rqn s.t. U
pqq
x pµθ,1q � ΩpRq (rather than

Oplogp1 � R2qq as shown for the Cauchy family in Corollary 6.3.1). On the other hand, log-
concave location-scale families are the only ones for which U pqq

x is convex, both for the original
parameterization and that of Burridge [1981]. We record these facts in the following theorem:

Theorem 6.6.1 (c.f. Thm. 6.E.1). Let µν,σ be a location-scale family associated with a continu-
ous measure f : R ÞÑ R¥0.

1. If f is log-concave then D a, b ¡ 0 s.t. for any R ¡ 0, ψ P p0, R
2n
s, q ¥ 1

n
, and θ P R there

exists x P pθ �Rqn with mini xri�1s � xris � ψ s.t. U pqq
x pµθ,1q � aR � log b

ψ
.

2. If f is not log-concave then there exists x P Rn with mini xri�1s � xris ¡ 0 s.t. U pqq
x pµθ,1q

is nonconvex in θ.

Note the latter dataset is not degenerate: for f strictly log-convex over ra, bs, any x whose
optimal interval has length   b�a

2
has nonconvex U pqq

x pµθ,1q � � log Ψ
pqq
x pµθ,1q. We must thus

choose between having a robust location-scale family like the Cauchy or an easy-to-optimize
log-concave one. As we can ensure robustness of the learned prior post-hoc using the approach
of Section 6.4, we choose the latter. Specifically, we use the Laplace prior, as it is in some sense
the most robust log-concave distribution (it has loss ΘpRq if x P pθ�Rqn, whereas e.g. the Gaus-
sian has loss ΘpR2q) and because it yields a numerically stable closed-form expression (6.103)
for ℓpqqx pθ, ϕq (unlike e.g. the Gaussian).

6.6.2 Augmenting quantile release using public data

We turn to two applications that depend on optimizing upper bounds ℓpqqx pθ, ϕq on the perfor-
mance of quantile release using the Laplace prior with scale 1

ϕ
and location θ

ϕ
. While our final

objective is small Gapq, we will mainly discuss optimizing ℓpqqx � U
pqq
x , or its expectation if x
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is drawn from some distribution. In the former case this directly bounds (w.h.p.) the cost of
multiple quantile release, while a bound on ExUx can bound EGapmax by setting β appropriately.
For example, using β � 2π2

εn
expp2alogp2q logpm� 1qq in Theorem 6.3.3 implies Gapmax has

expectation at most

O
�
exp

�
2
a
logp2q logpm� 1q

	 logpεmnq � ExUx

ε



(6.29)

Our first application is the popular setting where we have a large public dataset x1 P RN and want
to use it to improve the release of statistics of a smaller private dataset x P Rn. To apply our
quantile release method, we must use x1 to construct a prior µ1ris for each quantile qi that makes

U
pqiq
x pµ1risq small. If the entries of x and x1 are sampled i.i.d. from similar distributions D and D1,

respectively, the convexity of U pqiq
x suggests using stochastic optimization find priors µ that ap-

proximately minimize the expectation Ez�D1nUzpµq using samples of size n drawn from x1. We
provide a guarantee for a variant of this generic approach that runs online gradient descent (OGD)
with separate learning rates for θ and ϕ on samples drawn without replacement from x1:

Theorem 6.6.2 (c.f. Thm. 6.E.2). If D and D1 have bounded densities with bounded support
then there exists an algorithm optimizing Ux1t over T datasets x1t of size n drawn from x1 P RN

without replacement that runs in time OpmNq and returns a set µ1 of m Laplace priors s.t. w.h.p.

Ex�DnUxpµ1q ¤ min
µPLapmB,σmin,σmax

Ex�DnUxpµq � Õ
�
TVqpD,D1q �

c
mn

N



(6.30)

where LapB,σmin,σmax
is the set of Laplace priors with locations in r�Bs and scales in rσmin, σmaxs and

TVqpD,D1q is the total variation distance between the joint distributions of the order statistics pxrtqinus,xrtqinu�1sq
(m
i�1

for x � Dn and
!
px1rtqinus,x1rtqinu�1sq

)m
i�1

for x1 � D1n.

For N " mn, the suboptimality of µ1 for the upper bound Ux will depend on the statistical
distance between the quantile intervals of D and D1: even if D and D1 are dissimilar, similar
order statistic distributions will ensure good performance. Note, as in Section 6.4, we can hedge
against large TVqpD,D1q by mixing the output µ1 with a robust prior.

We evaluate this approach, which we call Public Fit or PubFit, on Adult [Kohavi, 1996]
and Goodreads [Wan and McAuley, 2018], both used previously for DP quantiles [Gillenwater
et al., 2021, Kaplan et al., 2022]. Because our guarantees improve with different step-sizes for θ
and ϕ, we use COCOB [Orabona and Tomassi, 2017]—an OGD variant that provably sets per-
coordinate step-sizes without the need for tuning—as PubFit’s stochastic solver. We also test
a robust version where its output is mixed with a half-Cauchy distribution, and three baselines:
the uniform prior, just using the quantiles of the public data (public quantiles), and using
the public quantiles to set the location parameters of m Cauchy priors (public Cauchy).

Adult tests the D � D1 case, with its “train" set the public dataset and a hundred samples
from “test" as private. Figure 6.2 shows that public quantiles does best at small ε, as is
expected with no distribution shift, but it cannot adapt to the empirical distribution of a small
number of private points, and so is worse at ε ¡ 1. Among the rest, PubFit is most similar to
public quantiles at small ε but still does well at large ε.
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Figure 6.2: Public-private release of nine quantiles using 100 samples from the Adult age (left)
and hours (right) datasets. The public data is the Adult training set while private data is test.

We use the Goodreads “History" and “Poetry" genres to evaluate under distribution shift by
fitting on all but a small fraction of data from the former and releasing quantiles of samples from
varying mixtures of the two datasets. As expected, the performance of public quantiles
deteriorates with more samples from “Poetry." For book ratings, PubFit is best among the re-
maining methods, but without much change with distribution shift, possibly due to an incomplete
fit of the data. For page counts, the PubFit methods and public Cauchy both do as well
as public-quantiles when most data is from “History," but PubFit (robust) deteri-
orates least—and much less than regular PubFit—as the distribution shifts. This highlights the
importance of robustness analysis, and suggest the former as a good method to start with, as it
takes advantage of similar public and private distributions (Figure 6.2) while never doing much
worse than the default method (uniform) when the the distributions are dissimilar (Figure 6.3).

6.6.3 Sequentially setting priors using past sensitive data
Our second application is sequential release, which we do not believe has been studied, but arises
naturally if e.g. we wish to release daily statistics from a continuous stream of data. Here we have
a sequence of datasets x1, . . . ,xT , each with associated public features f1, . . . , fT P Rd (e.g. day
of the week), and we wish to minimize the average maximum gap 1

T

°T
t�1maxiGapqipxt, ot,iq,

whose expectation can be bounded (6.29) in terms of 1
T

°T
t�1 Uxt . For simplicity, we assume

individuals do not occur in multiple datasets xt, e.g. we are releasing the median age of new users
of a service. Note the natural way to avoid this assumption is to compose the privacy budgets at
each time; empirically our methods are especially useful in the low privacy regime this entails.

Our analysis suggests that we can apply online learning here, e.g. doing the following at each
t starting with a prior µ1:

1. release ot using the prior µt and suffer Gapqpxt, otq
2. update to µt�1 using online learning on the loss ℓpqqxt
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Figure 6.3: Public-private release of nine quantiles on one hundred samples from the Goodreads
rating (left) and page count (right) datasets, with ε � 1. The public data is the “History" genre
while private data is sampled from a mixture of it and “Poetry."

Because ℓpqqxt pθ, ϕq � U
pqq
xt pµ θ

ϕ
, 1
ϕ
q is convex for Laplace priors, online convex optimization (OCO)

lets us compete with the best prior in hindsight according to the upper bounds U pqq
xt pµtq, or with

the best linear map w to locations xw, fty. We can again hedge against poor predictions by
mixing with a constant robust distribution.

However, we face the difficulty that online learning on losses ℓpqqxt leaks information about
xt. There are two natural solutions. One is to use part of the budget ε1   ε on a DP online
learner [Jain et al., 2012, Smith and Thakurta, 2013] and hope that the reduction in budget allo-
cated to quantile release is made up for by the improved priors. Alternatively, we can replace ℓ
with a proxy loss ℓ̂ that does not depend on the data and optimize it using regular OCO. The first
can be done with provable guarantees by applying DP-FTRL [Kairouz et al., 2021a], again using
two different step-sizes:

Theorem 6.6.3 (c.f. Thm. 6.E.3). Consider a sequence of datasets xt P r�Bsnt with bounded
features ft and suppose we set Laplace priors µtris � µ xVtris,fty

ϕtris
, 1
ϕtris

via two DP-FTRL algorithms

applied separately to the variables V (an m � d matrix of m d-dimensional linear maps) and ϕ
(anm-vector of inverse scale parameters) passed to the losses ℓxtpxVris, fty,ϕrisqwith budgets ε1

2
,
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(6.31)

Thus we can do as well as any sequence of Laplace priors µt with locations determined by a
fixed linear map from ft, up to a term that decreases at rate Õp 1?

T
q. Furthermore, running quan-

tile release with budget ε � ε1 ensures pε, δ1q-DP for each dataset xt. Note that using different
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Figure 6.4: Comparison of sequential release over time on Synthetic (left, log10 ε � �1{2) and
CitiBike (right, log10 ε � �2) tasks.

step-sizes allows us to separate the difficulty of learning a d-dimensional linear map from the
difficulty of learning a scale parameter of magnitude at most σmax.

Unfortunately, DP-FTRL is too noisy to learn competitive priors, except with a lot of station-
ary data (c.f. Figure 6.4 (left)). One issue is that its DP guarantee is too strong, as it it allows
swapping out the entire dataset xt rather than a single entry. It is unclear if a better sensitiv-
ity is possible for Uxt , as changing an entry can flip the sign of the gradient while preserving
magnitude. We show (c.f. Lemma 6.5.1) that it is possible for the ε-dependent bound U

pεq
xt

over piecewise-constant priors—remarkably sensitivity decreases with ε—but that upper bound
is nonconvex for location-scale families, which are preferable for model learning.

Our second solution involves recognizing that U pqq
xt depends only on the optimal interval

rxtrtqnus,xtrtqnu�1sq, whose location and size we have (public) estimates for: the former via the
quantile estimate ot and the size is lower-bounded by the underlying data discretization, which
we have access to in practice (e.g. age is reported in years, bicycle trip length in seconds). We
use this information to construct proxy losses ℓ̂pqqot pxv, fty, ϕq, which do not depend on xt and
so be learned with (standard) OCO. As our DP-FTRL analysis again showed the importance of
different step-sizes, we again use the COCOB optimizer here.

We evaluate sequential release on three online tasks, each consisting of a sequence of datasets
needing quantiles:

1. Synthetic: each dataset is generated such that the quantiles are fixed linear functions of a
random Gaussian feature vector, plus noise.

2. CitiBike: the data are the lengths of a day’s bicycle trips, with the date and NYC weather
information features.

3. BBC: the data are the Flesch readability scores of the comments on a headline posted to
Reddit’s worldnews forum, with date and headline text information features.

In addition to the proxy approach, which we call PubProx, we evaluate static priors—the
uniform, Cauchy, and half-Cauchy (if nonnegative)—and an approach we call PubPrev, which
uses a Laplace prior centered around the previous step’s released quantile. Note that using the
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Figure 6.5: Time-averaged performance of the sequential release of nine quantiles on the Syn-
thetic (left) and CitiBike (right) tasks.

uniform prior is equivalent to ApproximateQuantiles (AQ). For both PubProx and PubPrev
we ensure robustness by mixing with a Cauchy (or half-Cauchy, if nonnegative) distribution with
coefficient 0.1; this nearly always improves performance for these methods, likely by ensuring
their training data is not too noisy. To see its effectiveness, note how in Figure 6.4 (right) both
augmented methods are almost always better when made robust, especially PubPrev; in fact,
non-robust PubPrev is unable to do better than AQ after around day 1600, when the start of the
COVID-19 pandemic significantly affects bicycle trips.

Our main comparisons is time-aggregated performance as a function of ε (c.f. Figs. 6.5
and 6.6). All except perhaps Synthetic demonstrate significant improvement by our methods
over the uniform (AQ) baseline, especially at small ε. On Synthetic and CitiBike, both tasks
with features for which a linear model should provide some benefit, we see in Figure 6.5 that
PubProx is indeed the best across all except perhaps the lowest privacy settings. For BBC,
Figure 6.6 reveals a large difference between mean and median performance (note the difference
in y-axis scales), with PubProx doing best for the typical headline but the Cauchy doing better
on-average due to better performance on headlines with many comments. The result suggests
that in highly noisy settings, the learning-based scheme should help, but it might not overcome
the robustness of a static Cauchy prior in-expectation.

Overall, the results demonstrate the strength of the Cauchy and half-Cauchy priors, both as
unbounded substitutes for the uniform and as a means of robustifying learning-augmented al-
gorithms. They also demonstrate the utility of our upper bound in providing an objective for
learning, albeit using proxy data rather the DP online learning: PubProx usually does better
than PubPrev despite using the same information. Overall, PubProx performs the best at
most privacy levels in all evaluation settings (Synthetic, CitiBike, and BBC) except when the
mean is used as the metric for BBC (Figure 6.6, left), where it does almost as well as the best.
Narrowing the performance gap with non-private OCO (c.f. Figure 6.4 (left), where we run
COCOB directly on ℓpqqxt )—remains an important research direction.
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Figure 6.6: Time-aggregated mean (left) and median (right) performance of sequential release
of nine quantiles on the BBC task.

6.7 Conclusion
This chapter extends the algorithms with predictions setup to DP methods and provides exten-
sive evidence of its utility as a way of integrating external information into privacy-preserving
algorithms. In particular, we show how it informs the design of methods that are robust to poor
predictions and of learning algorithms for obtaining good predictions from data. Finally, we
demonstrate how combining optimization with learning-augmented private algorithms can be
used to significantly improve the quality of released statistics in practice. As a result, we be-
lieve these methods hold great promise for reducing error while preserving privacy on practical,
real-world problems.

Beyond the current work, we believe this way of studying DP methods is highly applicable
and will see a great deal of future work in finding new applications for incorporating predic-
tions or improving the approaches described here. By conducting a fine-grained analysis of DP
algorithms beyond their default parameterizations, it also is highly likely to lead to significant
contributions even in the prediction-free setting, as exemplified by our guarantees for unbounded-
domain quantile release and improved bounds for trace-sensitive covariance estimation. Some
specific areas to explore include other forms of iterative data analysis beyond MWEM [Gupta
et al., 2012, Hardt and Rothblum, 2010] and other important dataset statistics [Biswas et al.,
2020]. Another important direction is that of learning: can DP online convex optimization be
made useful for the purpose of learning predictions, or can guarantees be shown for our alterna-
tive of using public proxies?
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6.A Quantile release

6.A.1 Section 6.3.1 details
The base measure µ of DP mechanisms such as the exponential is the starting point of many
approaches to incorporating external information, especially ones focused on Bayesian posterior
sampling [Dimitrakakis et al., 2017, Geumlek et al., 2017, Seeman et al., 2020]; while it is also
our approach to single-quantile estimation with predictions, a key difference here is the focus on
utility guarantees depending on both the prediction and instance, which is missing from this past
work. In the quantile problem, given a quantile q and a sorted dataset x P Rn of n distinct points,
the goal is to release a number o that upper bounds exactly tqnu of the entries. A natural error
metric, Gapqpx, oq, is the number of entries between the released number o and tqnu, and we
can show that prediction-dependent bound using astraightforward application of EM with utility
�Gapq:

Lemma 6.A.1. Releasing o P R w.p. 9 expp�εGapqpx, oq{2qµpoq is ε-DP, and w.p. 1� β

Gapqpx, oq ¤
2

ε

�
log

1

β
� log Ψpq,εq

x pµq


¤ 2

ε

�
log

1

β
� log Ψpqq

x pµq



(6.32)

where Ψpq,εq
x pµq � °n

i�0 expp�εGapqpx, Iiq{2qµpIiq �
³
expp�εGapqpx, oq{2qµpoqdo is the in-

ner product between µ and the exponential score while Ψ
pqq
x pµq � µpItqnuq is the measure of the

optimal interval (note maxk uqpx, Ikq � �Gapqpx, Itqnuq � 0 and so Ψ
pqq
x pµq ¤ Ψ

pq,εq
x pµq @ ε ¡

0).

Proof. ε-DP follows from uq having sensitivity one and the guarantee of EM with base measure
µ [McSherry and Talwar, 2007, Theorem 6]. For the error, since we sample an interval Ik and
then sample o P Ik we have

PrpGapqpx, oq ¥ γq � Prpuqpx, Ikq ¤ �γq �
ņ

j�0

Prpk � jq1uqpx,Ijq¤�γ

¤
ņ

j�0

expp� εγ
2
qµpIjq°n

i�0 expp ε2uqpx, IiqqµpIiq
¤ expp� εγ

2
q

Ψ
pq,εq
x pµq

(6.33)

The result follows by substituting β for the failure probability and solving for γ.

We can also analyze the error metrics in this bound for specific measures µ. In particular, if
the points are in a bounded interval pa, bq and we use the uniform measure µpoq � 1oPpa,bq{pb�aq
then Ψ

pq,εq
x pµq ¥ ψx

b�a , where ψx � mink xrk�1s � xrks, and we exactly recover the standard
bound of 2

ε
log b�a

βψx
, e.g. the one in Kaplan et al. [2022, Lemma A.1] (indeed their analysis

implicitly uses this measure). However, our approach also allows us to remove the boundedness
assumption, which itself can be viewed as a type of prediction, as one needs external information
to assume that the data, or at least the quantile, lies within the interval pa, bq. Taking this view,
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we can use the prediction to set the location ν P R and scale σ ¡ 0 of a Cauchy prior µν,σpoq �
σ{pπpσ2 � po � νq2qq without committing to pa, bq actually containing the data. Since we know
that the optimal interval pxrtqnus,xrtqnu�1ss is a subset of pa�b

2
� Rq for some R ¡ 0, setting

ν � a�b
2

and σ � b�a
2

yields

Ψpqq
x pµν,σq ¥ σ

π

xrtqnu�1s � xrtqnus
σ2 �maxkPttqnu,tqnu�1upν � xrksq2 ¥

σ

π
min
k

xrk�1s � xrks
σ2 �R2

¥ 2pb� aqψx{π
pb� aq2 � 4R2

(6.34)

If R � b�a
2

, i.e. we get the interval containing the data correct, then substituting the above into
Lemma 6.A.1 recovers the guarantee of the uniform prior up to an additive factor 2

ε
log π. How-

ever, whereas for the uniform prior we have no performance guarantees if the interval is incorrect,
using the Cauchy prior the performance degrades gracefully as the error (R) grows. While this
first result can be viewed as designing a better prediction-free algorithm, it can also be viewed as
making more robust use of the external information about the interval containing the data.

Multiple quantile release using multiple priors

To estimate m ¡ 1 quantiles q1, . . . , qm at once, we adapt the recursive approach of Kaplan et al.
[2022], whose method ApproximateQuantiles implicitly constructs a binary tree with a quantile
qi at each node and uses the exponential mechanism to compute the quantile q̃i � pqi� qiq{pqi�
q
i
q of the dataset x̂i of points in the original dataset x restricted to the interval pâi, b̂iq; here

q
i
  qi and qi ¡ qi are quantiles appearing earlier in the tree whose respective estimates âi and

b̂i determine the sub-interval (if there is no earlier quantile on the left and/or right of qi we use
q
i
� 0, âi � a and/or qi � 1, b̂i � b). Because each datapoint only participates in Oplog2mq

exponential mechanisms, the approach is able to run each mechanism with budget Ωpε{ log2mq
and thus only suffer error logarithmic in the number of quantiles m, a significant improvement
upon running one EM with budget ε{m on the entire dataset for each quantile, which has error
Opmq in the number of quantiles.

We can apply prior-dependent guarantees to ApproximateQuantiles—pseudocode for a gen-
eralized version of which is provided in Algorithm 13—by recognizing that implicitly the method
assigns a uniform prior µi to each quantile qi and then running EM with the conditional prior µ̂i
restricted to the interval râi, b̂is determined by earlier quantiles in the binary tree. An extension
of the argument in Equation 6.33 (c.f. Lemma 6.A.2) then yields a bound on the error of the
estimate oi returned for quantile qi in terms of the prior-EM inner-product computed with this
conditional prior µ̂i over the subset x̂i:

PrpGapqipx, oiq ¥ γq ¤ exp
�
εi
2
pγ̂i � γq�

Ψ
pq̃i,εiq
x̂i

pµ̂iq
for γ̂i � p1� q̃iqGapq

i
px, âiq � q̃iGapqipx, b̂iq

(6.35)
Note that the error is offset by a weighted combination γ̂i of the errors of the estimates of quan-
tiles earlier in the tree. Controlling this error allows us to bound the maximum error of any
quantile via the harmonic mean of the inner products between the exponential scores and condi-
tional priors:
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Lemma 6.A.2. Algorithm 13 with K � 2 and εi � ε{rlog2ms @ i is ε-DP and w.p. ¥ 1� β has

max
i

Gapqipx, oiq ¤
2

ε
rlog2ms2 log

m

βΨ̂
pεq
x

for Ψ̂pεq
x �

�
m̧

i�1

1{m
Ψ
pq̃i,εiq
x̂i

pµ̂iq

��1

(6.36)

Proof. The privacy guarantee follows as in Kaplan et al. [2022, Lemma 3.1]. Setting the above
probability bound (6.35) to βΨ̂

pεq
x

mΨ
pq̃i,εiq
x̂i

pµ̂iq
for each i we have w.p. ¥ 1 � β that Gapqipx, oiq ¤

2
ε̄
log m

βΨ̂
pεq
x

� γ̂i @ i. Now let ki be the depth of quantile qi in the tree. If ki � 1 then i is the

root node so γ̂i � 0 and we have Gapqipx, oiq ¤ 2
ε̄
log m

βΨ̂
pεq
x

. To make an inductive argument, we

assume Gapqipx, oiq ¤ 2k
ε̄
log m

βΨ̂
pεq
x

@ i s.t. ki ¤ k, and so for any i s.t. ki � k � 1 we have that

Gapqipx, oiq ¤
2

ε̄
log

m

βΨ̂
pεq
x

� p1� q̃iqGapq
i
px, âiq � q̃iGapqipx, b̂iq ¤

2pk � 1q
ε̄

log
m

βΨ̂
pεq
x

(6.37)
Thus Gapqipx, oiq ¤ 2ki

ε̄
log m

βΨ̂
pεq
x

@ i, so using ki ¤ rlog2ms and ε̄ � ε
rlog2ms

yields the re-
sult.

Setting µ̂i to be uniform on râi, b̂is exactly recovers both the algorithm and guarantee of
Kaplan et al. [2022, Theorem 3.3]. As before, we can also extend the algorithm to the infinite
interval:

Corollary 6.A.1. If all priors are Cauchy with location a�b
2

and scale b�a
2

and the data lies in the

interval pa�b
2
�Rq then w.p. ¥ 1�β the maximum error is at most 2

ε
rlog2ms2 log

�
πm

b�a� 4R2

b�a
2βψx



.

However, while this demonstrates the usefulness of Lemma 6.A.2 for obtaining robust pri-
ors on infinite intervals, the associated prediction measure Ψ̂

pεq
x is imperfect because it is non-

deterministic: its value depends on the random execution of the algorithm, specifically on the
data subsets x̂i and priors µ̂i, which for i not at the root of the tree are affected by the DP mech-
anisms of i’s ancestor nodes. In addition to not being given fully specified by the prediction
and data, this makes Ψ̂pεq difficult to use as an objective for learning. A natural more desirable
prediction metric is the harmonic mean of the inner products between the exponential scores and
original priors µi over the original dataset x, i.e. the direct generalization of our approach for
single quantiles.

Unfortunately, the conditional restriction of µi to the interval râi, b̂is removes the influence of
probabilities assigned to intervals between points not in this interval. To solve this, we propose
a different edge-restriction of µi that assigns probabilities µipp�8, âiqq and µippb̂i,8qq of being
outside the interval râi, b̂is to atoms on its edges âi and b̂i, respectively. Despite not using any
information from points outside x̂i, this approach puts probabilities assigned to intervals outside
râi, b̂is to the edge closest to them, allowing us to extend the previous probability bound (6.35)
to depend on the original prior-EM inner-product (c.f. Lemma 6.A.5):

PrpGapqipx, oiq ¥ γq ¤ exppεpγ̂i � γ{2qq{Ψpqi,εiq
x pµiq (6.38)
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However, the stronger dependence of this bound on errors γ̂i earlier in the tree lead to an
Õpϕlog2mq � Opm0.7q dependence on m, where ϕ � 1�?5

2
is the golden ratio:

Theorem 6.A.1. If the quantiles are uniform negative powers of two then Algorithm 13 with
K � 2, edge-based prior adaptation, and εi � ε{rlog2pm� 1qs @ i is ε-DP and w.p. ¥ 1� β has

max
i

Gapqipx, oiq ¤
2

ε
ϕlog2pm�1qrlog2pm� 1qs log m

βΨ
pεq
x

for Ψpεq
x �

�
m̧

i�1

1{m
Ψ
pqi,εiq
x pµiq

��1

(6.39)

Proof. Since q̃i � 1{2 @ i, setting the new probability bound equal to βΨ
pεq
x

mΨ
pqiεiq
x pµiq

yields that w.p.

¥ 1� β

Gapqipx, oiq ¤
2

ε̄
log

m

βΨ
pεq
x

� 2γ̂i � 2

ε̄
log

m

βΨ
pεq
x

�Gapq
i
px, âiq �Gapqipx, b̂iq @ i (6.40)

If for each k ¤ rlog2ms we define Ek to be the maximum error of any quantile of at most depth
k in the tree then since one of q

i
and qi is at depth at least one less than qi and the other is at depth

at least two less than qi we have Ek ¤ 2Ak
ε̄

log m

βΨ
pεq
x

for recurrent relation Ak � 1�Ak�1�Ak�2

with A0 � 0 and A1 � 1. Since Ak � Fk�1� 1 for Fibonacci sequence Fj � ϕj�p1�ϕqj?
5

, we have

max
i

Gapqipx, oiq � max
k
Ek ¤ 2ϕrlog2pm�1qs�1

ε̄
?
5

log
m

βΨ
pεq
x

� 2ϕrlog2pm�1qs�1

ε
?
5

rlog2pm� 1qs log m

βΨ
pεq
x

(6.41)

Thus while we have obtained a performance guarantee depending only on the prediction and
the data via the harmonic mean Ψ

pεq
x of the true prior-EM inner-products, the dependence on m

is now polynomial. Note that it is still sublinear, which means it is better than the naive base-
line of running m independent exponential mechanisms. Still, we can do much better—in-fact
asymptotically better than any power ofm—by recognizing that the main issue is the compound-
ing error induced by successive errors to the boundaries of sub-intervals. We can reduce this by
reducing the depth of the tree using a K-ary rather than binary tree and instead paying K � 1
times the privacy budget at each depth in order to naively release values forK�1 quantiles. This
can introduce out-of-order quantiles, but by Lemma 6.A.6 swapping any two out-of-order quan-
tiles does not increase the maximum error and so this issue can be solved by sorting the K � 1
quantiles before using them to split the data. We thus have the following prediction-dependent
performance bound for multiple quantiles:

Theorem 6.A.2. If we run Algorithm 13 with K � rexppalog 2 logpm� 1qqs, edge-based
adaptation, and εi � ε̄

kpi
for some power p ¡ 1, ki the depth of qi in the K-ary tree, and
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ε̄ � ε
K�1

�°rlogKpm�1qs
k�1

1
kp

	�1

, then the result satisfies ε-DP and w.p. ¥ 1� β we have

max
i

Gapqipx, oiq ¤
2π2

ε
exp

�
2
a
logp2q logpm� 1q

	
log

m

βΨ
pεq
x

(6.42)

if p � 2 and more generally

max
i

Gapqipx, oiq ¤
cp
ε
exp

�
2
a
logp2q logpm� 1q

	
log

m

βΨ
pεq
x

(6.43)

where cp depends only on p.

Proof. The privacy guarantee follows as in [Kaplan et al., 2022, Lemma 3.1] except before each
split we compute K � 1 quantiles with K � 1 times less budget. As in the previous proof, we
have w.p. ¥ 1� β that

Gapqipx, oiq ¤
2

εi
log

m

βΨ
pεq
x

�2γ̂i � 2k2i
ε̄

log
m

βΨ
pεq
x

�2p1�q̃iqGapq
i
px, âiq�2q̃iGapqipx, b̂iq @ i

(6.44)
If for each k ¤ rlogKpm � 1qs we define Ek to be the maximum error of any quantile of at
most depth k in the tree then since both q

i
and qi are at depth at least one less than qi we have

Ek ¤ 2Ak
ε̄

log m

βΨ
pεq
x

, where Ak � kp � 2Ak�1 and A1 � 1. For the case of p � 2, Ak ¤ 6 � 2k and

1{ε̄ � K�1
ε

°rlogKpm�1qs
k�1

1
k2
¤ π2

6ε
pK � 1q so we have that

max
i

Gapqipx, oiq � max
k
Ek ¤ 12

ε̄
2rlogKpm�1qs log

m

βΨ
pεq
x

¤ 2π2

ε
pK � 1q2rlogKpm�1qs log

m

βΨ
pεq
x

(6.45)
Substituting K � rexppalog 2 logpm� 1qqs and simplifying yields the result. For p ¡ 1,
Ak ¤ 2k�2

�
2� Φ

�
1
2
,�p, 2��, where Φ is the Lerch transcendent, and 1{ε̄ ¤ K�1

ε
ζppq, where ζ

is the Riemann zeta function. Therefore

max
i

Gapqipx, oiq � max
k
Ek ¤ 2rlogKpm�1qs

2ε̄

�
2� Φ

�
1

2
,�p, 2




log

m

βΨ
pεq
x

¤ cp
ε
pK � 1q2rlogKpm�1qs log

m

βΨ
pεq
x

(6.46)

for cp �
�
1� Φ

�
1
2
,�p, 2� {2� ζppq.

Similarly to Theorem 6.A.1, the proof establishes a recurrence relationship between the
maximum errors at each depth. Note that in addition to the K-ary tree this bound uses depth-
dependent budgeting to remove a Oplog2mq-factor; the constant depending upon the parameter
p ¡ 1 of the latter has a minimum of roughly 8.42 at p � 1.6. As discussed before, the new de-
pendence Õ

�
exp

�
2
a
logp2q logpm� 1q

		
on m is sub-polynomial, i.e opmαq @ α ¡ 0. While

it is also super-polylogarithmic, its shape for any practical value of m is roughly Oplog22mq,
making the result of interest as a justification for the negative log-inner-product performance
metric.
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Experimental details

For the experiments we report in Section 6.3.1, specifically Figure 6.3, we evaluate three variants
of the algorithm on data drawn from a standard Gaussian distribution and from the Adult “age”
dataset [Kohavi, 1996]. In both cases we use 1000 samples and run each experiment 40 times,
reporting the average performance. As we do for all datasets, we use reasonable guesses of mean,
scale, and bounds on each dataset to set priors. As in this section we report the uniform, we need
to specify its range; for Gaussian we use r�10, 10s, while for “age” we use r10, 120s.

The original AQ algorithm of Kaplan et al. [2022] is now fully specified. We test two variants
of our K-ary modification: one with edge-based adaptation, and the other using the original
conditional adaptation. For both cases we set K as a function of m according to the formula in
Theorem 6.3.3, and we set the power p of the depth-dependent budget discounting to 1.5, which
is close to the theoretically optimal value of around 1.6 (c.f. Thm 6.A.2).

6.A.2 Additional proofs

Lemma 6.A.3. In Algorithm 13, for any i P rms and γ̂i � p1� q̃iqGapq
i
px, âiq� q̃iGapqipx, b̂iq

we have
1. Gapq̃ipx̂i, oq ¤ Gapqipx, oq � γ̂i @ o P R
2. Gapqipx, oq ¤ Gapq̃ipx̂i, oq � γ̂i @ o P râi, b̂is

Proof. For o P râi, b̂is we apply the triangle inequality twice to get

Gapq̃ipx̂i, oq � | max
x̂rjs o

j � tq̃in̂iu|

� | max
x̂rjs o

j � max
xrjs âi

j � tqinu� tqinu� max
xrjs âi

j � tq̃in̂iu|

¤ Gapqipx, oq �
�����tq̃iptqinu� tq

i
nuqu� tq

i
nu� max

xrjs âi
j � tq̃ipmax

xrjs b̂i
j � max

xrjs âi
jqu

�����
¤ Gapqipx, oq � p1� q̃iqGapq

i
px, âiq � q̃iGapqipx, b̂iq

(6.47)

and again to get

Gapqipx, oq � | max
xrjs o

j � tqinu|
� | max

x̂rjs o
j � max

xrjs âi
j � tq̃in̂iu� tq̃in̂iu� tqinu|

¤ Gapq̃ipx̂i, oq �
����� max
xrjs âi

j � tq̃ipmax
xrjs b̂i

j � max
xrjs âi

jqu� tq̃iptqinu� tq
i
nuqu� tq

i
nu

�����
¤ Gapq̃ipx̂i, oq � p1� q̃iqGapq

i
px, âiq � q̃iGapqipx, b̂iq

(6.48)
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For o   âi we use the fact that maxxrjs o j ¤ maxxrjs âi j and the triangle inequality to get

Gapq̃ipx̂i, oq � tq̃in̂iu

� tq̃ipmax
xrjs b̂i

j � max
xrjs âi

jqu

¤ tq̃i max
xrjs b̂i

ju� tp1� q̃iq max
xrjs âi

ju� max
xrjs o

j

� tq̃i max
xrjs b̂i

ju� tp1� q̃iq max
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j � tqinu| � tq̃iptqinu� tq
i
nuqu� tq

i
nu

¤ Gapqipx, oq � p1� q̃iqGapq
i
px, âiq � q̃iGapqipx, b̂iq

(6.49)

For o ¡ b̂i we use the fact that maxxrjs b̂i j ¤ maxxrjs o j and the triangle inequality to get

Gapq̃ipx̂i, oq � tp1� q̃iqn̂iu
� tp1� q̃iqpmax

xrjs b̂i
j � max

xrjs âi
jqu
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j � tq̃i max
xrjs b̂i

j � tp1� q̃iq max
xrjs âi

j
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j � tq̃i max
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j � tp1� q̃iq max
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i
nuqu� tq

i
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¤ Gapqipx, oq � p1� q̃iqGapq
i
px, âiq � q̃iGapqipx, b̂iq

(6.50)

Lemma 6.A.4. For any γ ¡ 0 the estimate oi of the quantile qi by Algorithm 13 satisfies

PrtGapqipx, oiq ¥ γu ¤ exp pεipγ̂i � γq{2q
Ψ
pq̃i,εiq
x̂i

pµ̂iq
(6.51)

Proof. We use ki to denote the interval Îpjqk sampled at index i in the algorithm and note that oi
corresponds to the released number o at that index. Since oi P râi, b̂is, applying Lemma 6.A.3
yields

PrpGapqipx, oiq ¥ γq �
n̂i̧

j�0

Prpki � jq1
Gapqi px,Î

piq
j q¥γ

�
ni̧

j�0

expp�εGapq̃ipx̂i, Îpiqj q{2qµ̂ipÎpiqj q1Gapqi px,Î
piq
j q¥γ°n̂i

l�0 exppεuq̃ipx̂i, Îpiql q{2qµ̂ipÎlq

¤ exppεγ̂i{2q
Ψ
pq̃i,εiq
x̂i

pµ̂iq
ni̧

j�0

expp�εGapqipx, Îpiqj q{2qµ̂ipÎpiqj q1Gapqi px,Î
piq
j q¥γ

¤ exppεpγ̂i � γq{2q
Ψ
pq̃i,εiq
x̂i

pµ̂iq

(6.52)
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Lemma 6.A.5. For any γ ¡ 0 the estimate oi of the quantile qi by Algorithm 13 with edge-based
prior adaptation satisfies

PrpGapqipx, oiq ¥ γq ¤ exppεpγ̂i � γ{2qq
Ψ
pqi,εiq
x pµiq

(6.53)

Proof. Applying Lemma 6.A.3 yields the following lower bound on Ψ
pεiq
q̃i
px̂i, µ̂iq:

n̂i̧

l�0

exppεuq̃ipx̂i, Îpiql q{2qµ̂ipÎpiql q

� exppεuq̃ipx̂i, Îpiq0 q{2qµipp�8, âisq � exppεuq̃ipx̂i, Îpiqn̂i q{2qµiprb̂i,8qq

�
n̂i̧

l�0

exppεuq̃ipx̂i, Îpiql q{2qµipÎlq

�
maxxrjs âi j¸

l�0

expp�εGapq̃ipx̂i, Il X p�8, âisq{2qµipIl X p�8, âisq

�
ņ

l�maxxrjs b̂i
j

expp�εGapq̃ipx̂i, Il X rb̂i,8qq{2qµipIl X rb̂i,8qq

�
maxxrjs b̂i

j¸
l�maxxrjs âi j

expp�εGapq̃ipx̂i, Il X râi, b̂isqµipIl X râi, b̂isq

¥ Ψpqi,εiq
x pµiq expp�εγ̂i{2q

(6.54)

Substituting into Lemma 6.A.2 yields the result.

Lemma 6.A.6. Suppose q0   q1 are two quantiles and o0 ¡ o1. Then

max
i�0,1

Gapqipx, oiq ¥ max
i�0,1

Gapqipx, o1�iq (6.55)

Proof. We consider four cases. If tq0|x|u ¤ maxxrjs o1 j and tq1|X|u ¤ maxxrjs o0 j then

tq0|x|u ¤ minttq1|x|u, max
xrjs o1

ju ¤ maxttq1|x|u, max
xrjs o1

ju ¤ max
xrjs o0

j (6.56)

and so
max
i�0,1

Gapqipx, oiq � max
xrjs o0

j � tq0|x|u ¥ max
i�0,1

GapqipX, oi�1q (6.57)

If tq0|X|u ¤ maxxrjs o1 j and tq1|x|u ¡ maxxrjs o0 j then

tq0|x|u ¤ max
xrjs o1

j ¤ max
xrjs o0

j   tq1|x|u (6.58)
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and so both improve after swapping. If tq0|x|u ¡ maxxrjs o1 j and tq1|x|u ¡ maxxrjs o0 j then

max
xrjs o1

j ¤ minttq0|x|u, max
xrjs o0

ju ¤ maxttq0|x|u, max
xrjs o0

ju ¤ tq1|x|u (6.59)

and so
max
i�0,1

Gapqipx, oiq � max
xrjs o1

j � tq1|x|u ¥ max
i�0,1

Gapqipx, oi�1q (6.60)

Finally, if tq0|x|u ¡ maxxrjs o1 j and tq1|x|u ¤ maxxrjs o0 j then

max
xrjs o1

j   tq0|x|u ¤ tq1|x|u ¤ max
xrjs o0

j (6.61)

so swapping will make the new largest error for each quantile at most as large as the other
quantile’s current error.

6.B Covariance estimation

6.B.1 Section 6.3.2 details
Sensitivity results

Lemma 6.B.1. The eigenvalues Λ of XXJ{n �W � UΛUJ for X P Rd�n with 1-bounded
columns and symmetric W P Rd�d has ℓ1-sensitivity 2{n, as does its trace norm }Λ}1 �
}XXJ{n�W}Tr.
Proof. Consider two datasets X, X̃ P Rd�n that share the same first n � 1 columns Z P Rd�n�1

but have different respective last columns x, x̃ P Rd. For any vector v P Rd we have

vJpXXJ{n�Wqv � vJZZJv{n� vJxxJv{n� vJWv ¥ vJpZZJ{n�Wqv (6.62)

so for ÛΛ̂ÛJ � ZZJ{n�W we have

Λris ¥ Λ̂ris @ i P rds (6.63)

Thus

}Λ� Λ̂}1 � TrpXXJ{n�Wq � TrpZZJ{n�Wq � TrpxxJ{nq ¤ 1{n (6.64)

The same argument holds when replacing X by X̃, so the result for the eigenvalues follows by
the triangle inequality.

For the trace norm we have that

��}XXJ{n�W}Tr � }ZZJ{n�W}Tr
�� �

�����
ḑ

i�1

|Λris| � |Λ̂ris|
����� ¤

ḑ

i�1

||Λris| � |Λ̂ris||

¤
ḑ

i�1

|Λris � Λ̂ris| ¤ 1{n
(6.65)
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where the second inequality holds trivially when Λris and Λ̂ris have the same sign and otherwise
the latter is negative (6.63) so we have ||Λris| � |Λ̃ris|| � |Λris � Λ̃ris| ¤ |Λris � Λ̃ris|, and the
third is by Equation 6.64. This also holds when replacing X by X̃, so the result follows by the
triangle inequality.

Claim 6.B.1. If ak, bk ¥ ck @ k P rds then
d°

k�1

pak � bkq2 ¤
�

d°
k�1

ak � ck


2

�
�

d°
k�1

bk � ck


2

.

Proof. Note that this result is an easy corollary of Dong et al. [2022, Fact 1], but for complete-
ness:

�
ḑ

k�1

ak � ck

�2

�
�

ḑ

k�1

bk � ck

�2

�
ḑ

k�1

pak � ckq2 � pak � ckq
¸
j�k

aj � cj �
ḑ

k�1

pbk � ckq2 � pbk � ckq
¸
j�k

bj � cj

¥
ḑ

k�1

a2k � 2akck � c2k � b2k � 2bkck � c2k

�
ḑ

k�1

pak � bkq2 � 2akbk � 2akck � 2bkck � 2c2k ¥
ḑ

k�1

pak � bkq2

(6.66)

where the first inequality follows because ak � ck, bk � ck ¥ 0 @ k and the second because the
convex function akbk � akck � 2bkck � c2k attains its minimum over ck P p�8,mintak, bkus at
mintak, bku.

Lemma 6.B.2. The ℓ2-sensitivities of XXJ{n�W and its eigenvalues Λ are both
?
2{n.

Proof. The first result follows directly by Biswas et al. [2020, Lemma 3.2] For the second,
consider two datasets X, X̃ P Rd�n that share the same first n � 1 columns Z P Rd�n�1 but
have different respective last columns x, x̃ P Rd. Applying Claim 6.B.1, Equation 6.63, and
Equation 6.64 yields

}Λ� Λ̃}2F �
ḑ

k�1

pΛris � Λ̃risq2 ¤
�

ḑ

k�1

Λris � Λ̂ris

�2

�
�

ḑ

k�1

Λ̃ris � Λ̂ris

�2

¤ 1

n2
� 1

n2
� 2

n2

(6.67)
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Proof of Lemma 6.3.1

Proof. Let C � XXJ{n. Then by triangle inequality and the orthonormality of Ũ we have

}C�W � ŨΛ̂ŨJ}F � }C�W � ŨΛ̂ŨJ}F
� }C�W � ŨΛŨJ � ŨpΛ̂�ΛqŨJ}F
¤ }C�W � ŨΛŨJ}F � }ŨpΛ̂�ΛqŨJ}F
¤
b
}C�W}2F � 2TrppC�WqpŨΛŨJqq � }ŨΛŨJ}2F � }z}2

�
gffe2

ḑ

j�1

Λ2
rjs � 2TrpΛŨJpC�WqŨq � }z}2

�
gffe2

ḑ

j�1

Λ2
rjs � 2

ḑ

j�1

ΛrjsŨJ
rjspC�WqŨrjs � }z}2

�
gffe2

ḑ

j�1

ΛrjspΛrjs � ŨJ
rjspC�WqŨrjsq � }z}2

(6.68)

For j P rds s.t. Λrj,js ¡ 0 let uj � argmax}u}2�1,Ũrj:dsu�0 upC�Wqu. By the Courant-Fischer-
Weyl min-max principle we have that

Λrjs � min
VPRpd�j�1q�d

max
}u}2�1,Vu�0

uJpC�Wqu ¤ max
}u}2�1,Ũrj:dsu�0

uJpC�Wqu � ujpC�Wquj
(6.69)

Therefore

ŨJ
rjspXXJ �WqŨrjs � ŨJ

rjspXXJ �W � ZqŨrjs � ŨJ
rjsZŨrjs

¥ ŨJ
rjspXXJ �W � ZqŨrjs � ~Z~8

¥ ujpC�W � Zquj � ~Z~8
¥ ujpC�Wquj � 2~Z~8 ¥ Λrjs � 2~Z~8

(6.70)

Similarly, for j P rds s.t. Λrj,js   0 let uj � argmin}u}2�1,Ũr1:jsu�0 upC � Wqu. By the
Courant-Fischer-Weyl min-max principle we have that

Λrjs � max
VPRj�d

min
}u}2�1,Vu�0

uJpC�Wqu ¥ min
}u}2�1,Ũr1:jsu�0

uJpC�Wqu � ujpC�Wquj
(6.71)

Therefore

ŨJ
rjspC�WqŨrjs � ŨJ

rjspC�W � ZqŨrjs � ŨJ
rjsZŨrjs

¤ ŨJ
rjspC�W � ZqŨrjs � ~Z~8

¤ ujpC�W � Zquj � ~Z~8
¤ ujpC�Wquj � 2~Z~8 ¤ Λrjs � 2~Z~8

(6.72)
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Substituting the bounds (6.70) and (6.72) in for the appropriate j terms in the summation in
Equation 6.68 yields

}C�W�ŨΛ̂ŨJ}F ¤ 2}z}2�2

gffe~Z~8
ḑ

j�1

|Λrjs| � 2
�
}z}2 �

a
~Z~8}C�W}Tr

	
(6.73)

6.B.2 zCDP guarantees for SeparateCov with predictions
Definition 6.B.1 (Bun and Steinke [2016]). Algorithm A is ρ-zCDP if DαpApXq||ApX̃qq ¤
ρα @ α ¡ 1 whenever X and X̃ differ in a single element, where Dα is the α-Rényi divergence.

Theorem 6.B.1 (Bun and Steinke [2016]). If a query q : X ÞÑ Rd has an ℓ2-sensitivity of
maxX�X̃ }qpXq � qpX̃q}22 ¤ ∆ then the Gaussian mechanism, which releases qpXq � z for
z � N p0d, ∆2

2ρ
q, is ρ-zCDP.

Theorem 6.B.2. If X has columns bounded by 1 in ℓ2-norm then Algorithm 14 is ρ-zCDP and
w.p. ¥ 1� β

}Ĉ�XXJ{n}2F ¤ Õ

�
d

n2ρ
� }XXJ{n�W}Tr

n

d
d

ρ

�
(6.74)

Proof. The privacy guarantee follows from the composition of two Gaussian mechanisms with
the sensitivities of Lemma 6.B.2. The utility guarantee is due to substituting Gaussian concen-
tration from Dong et al. [2022, Lemmas 6 & 7] into Lemma 6.3.1.

Corollary 6.B.1. If X has columns bounded by 1 in ℓ2-norm then Algorithm 14 with W � 0d�d
returns w.p. ¥ 1� β an estimate Ĉ P Rd�d satisfying

}Ĉ�XXJ{n}2F ¤ Õ

�
d

n2ρ
�min

cPR
}XXJ{n� cId}Tr

n

d
d

ρ

�
(6.75)

Corollary 6.B.2. Pick λ P p0, 1q and run Algorithm 14 with privacy p1�λqρ and symmetric pre-
diction matrix W if }XXJ{n�W}Tr � z ¤ }XXJ}Tr{n and 0d�d, where z � N p0, 1

λρn
q. This

procedure is ρ-zCDP, Õ
� ?

d
n
?
ρ

�?
d{n�1{?n?

ρ
� }XXJ{n}Tr

		
-robust and Õ

� ?
d

n
?
ρ

�?
d{n�1{?n?

ρ

		
-

consistent.

Proof. By Lemma 6.B.2 the difference }XXJ{n�W}Tr�}XXJ{n}Tr has sensitivity 2{?n, so
the comparison of }XXJ�W}Tr�z and }XXJ{n}Tr is equivalent to using the Gaussian mech-
anism with λρ-zCDP to estimate this difference and then taking the sign. Composing this with
the privacy guarantee of Theorem 6.B.2 yields ρ-zCDP. Since Prp|z| ¥ 2

b
1
λρn

log 2
β
q ¤ β{2, the

matrix Wz P tW,0d�du passed to Algorithm 14 satisfies }XXJ{n�Wz}Tr ¤ mint}XXJ{n�
W}Tr, }XXJ{n}Tr � 2

b
1
λρn

log 2
β

w.p. ¥ 1 � β{2. Applying the utility guarantee of Theo-

rem 6.B.2 w.p. 1� β{2 for constant λ P p0, 1q yields the result.
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6.B.3 IterativeEigenvectorSampling with predictions
Lemma 6.B.3. Given a dataset X P Rd�n with 1-bounded columns, any orthonormal basis
P P Rk�d, and a symmetric matrix W P Rd�d the queries uJPtXXJ{n � Wu�PJu and
uJPtM�XXJ{nuPJu—where tAu� denotes taking only the components of A with positive
eigenvalues—have sensitivity 2{n.

Proof. Consider two datasets X, X̃ P Rd�n that share the same first n � 1 columns Z P Rd�n�1

but have different respective last columns x, x̃ P Rd. Let P� and Q� P Rd�d be projection
matrices removing the negative components of XXJ �W and ZZJ �W, respectively. Then
we have

~tXXJ{n�Wu� � tZZJ{n�Wu�~8
� ~P�pXXJ{n�WqP� �Q�pZZJ{n�WqQ�~8
� max

}v}2�1
vJP�pZZJ{n�WqP�v � vJP�xxJP�v{n� vJQ�pZZJ{n�WqQ�v

¤ 1{n� max
}v}2�1

vJQ�pZZJ{n�WqQ�v � vJQ�pZZJ{n�WqQ�v{n � 1{n
(6.76)

where the second equality follows by (6.62) and the definition of the spectral norm. The same
argument holds when replacing X by X̃, so we can bound the sensitivity by the triangle inequal-
ity:

|uJPtXXJ{n�Wu�PJu� uJPtX̃X̃J{n�Wu�PJu|
¤ ~PptXXJ{n�Wu� � tX̃X̃J{n�Wu�qPJ~8
¤ ~tXXJ{n�Wu� � tX̃X̃J{n�Wu�~8 ¤ 2{n

(6.77)

Similarly, for P� and Q� P Rd�d the projection matrices removing the negative components of
XXJ �W and ZZJ �W, respectively, we have

~tW �XXJ{nu� � tW � ZZJ{nu�~8
� ~P�pW �XXJ{nqP� �Q�pW � ZZJ{nqQ�~8
� max

}v}2�1
vJQ�pW �XXJ{nqQ�v � vJQ�xxJQ�v{n� vJP�pW �XXJ{nqP�v

¤ 1{n� max
}v}2�1

vJP�pW �XXJ{nqP�v � vJP�pW �XXJ{n�WqP�v � 1{n
(6.78)

where the second equality follows by (6.62) and the definition of the spectral norm. The same
argument holds when replacing X by X̃, so as before we can obtain the sensitivity via the triangle
inequality.

Theorem 6.B.3. Algorithm 15 preserves

� °
sPt�1u

d°
i�0

ε
psq
i

�
-DP and the output Ĉ satisfies w.p.
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¥ 1� β

}XXJ{n� Ĉ}2F ¤ Õ

�
�d

n

�
� ¸
sPt�1u

1

ε
psq2
0 n

�
ḑ

i�1

|Λris|
ε
pSrisq
i

�

�
 (6.79)

where Λris is the matrix of eigenvalues of XXJ{n �W, Sris is the matrix of its signs, and Õ
hides logarithmic factors in d, ~XXJ{n�W~8, and β.

Proof. The privacy result follows from Lemma 6.B.3 applied to Algorithm 15’s release of λpsqi
and û

psq
i using the Laplace and Exponential mechanisms, respectively, followed by basic com-

position. For utility, since XXJ{n � Ĉ � XXJ � W � Ĉ � W � tXXJ{n � Wu� �
tĈ �Wu� � tW �XXJ{nu� � tW � Ĉu� we have by the triangle inequality, the fact that
pa � bq2 ¤ 2pa2 � b2q @ a, b P R, and the utility guarantee (squared and normalized by n) of
IterativEigenvectorSampling [Amin et al., 2019, Theorem 1] applied to tXXJ{n �Wu� and
tW �XXJ{nu� that

}XXJ{n� Ĉ}2F
¤ 2}tXXJ{n�Wu� � tĈ�Wu�}2F � 2}tW �XXJ{nu� � tW � Ĉu�}2F

¤ Õ

�
d

�
1

pεp1q0 nq2
�

ḑ

i�1

maxtΛris, 0u
ε
p1q
i n

� 1

pεp�1q
0 nq2

�
ḑ

i�1

maxt�Λris, 0u
ε
p�1q
i n

��

� Õ

�
�d

�
� ¸
sPt�1u

1

pεpsq0 nq2
�

ḑ

i�1

|Λris|
ε
pSrisq
i n

�

�


(6.80)

Corollary 6.B.3. Suppose for s P t�1u we set εpsq0 � ε{4 and εpsqi � ε
4d
@ i P rds, where ε ¡ 0

is the overall privacy budget. Then w.p. 1� β the output Ĉ of Algorithm 15 satisfies

}XXJ{n� Ĉ}2F ¤ Õ
�
d

εn

�
1

εn
� d}XXJ{n�W}Tr




(6.81)

6.C Data release
Proof of Lemma 6.3.2. Follow the proof of the original [Hardt et al., 2012] but replace Fact A.3
by Ψ0 ¤ DKLpxn ||wq, upper bound the square of the result by twice the sum of the squares of the
two terms, and obtain guarantees w.p. ¥ 1 � β by solving 2m

|Q|c � β for c and substituting the
solution into the bound.

6.D Online learning

6.D.1 Negative log-inner-product losses

For functions of the form ftpµq � � log
³b
a
stpoqµpoqdo, we showed ÕpT 3{4q regret for the

case stpoq P t0, 1u @ o P ra, bs using a variant of exponentiated gradient with a dynamic dis-
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cretization (c.f. Section 2.3). Notably their algorithm can be extended to (non-privately) learn
� log Ψ

pqq
xt pµq, since st in this case is one on the optimal interval and zero elsewhere. However,

the changing discretization and dependence of the analysis on the range of st suggests it may be
difficult to privatize their approach. The discretized form � logxst,wy is more heavily studied,
arising in portfolio management [Cover, 1991]. It enjoys the exp-concavity property, leading
to Opd log T q regret using the EWOO method [Hazan et al., 2007]. However, EWOO requires
maintaining and sampling from a distribution defined by a product of inner products, which is
inefficient and similarly difficult to privatize. Other algorithms, e.g. adaptive FTAL [Hazan
et al., 2007], also attain logarithmic regret for exp-concave functions, but the only private vari-
ant we know of is non-adaptive and only guarantees Op?T q-regret for non-strongly-convex
losses [Smith and Thakurta, 2013]. The adaptivity, which is itself data-dependent, seems critical
for taking advantage of exp-concavity.

Lemma 6.D.1. If ftpµWq � � log
°m
i�1

1{m
xst,i,Wrisy for some st,i P Rd

¥0 then we have the bound
}∇WftpµWq}1 ¤ d{γ @W P △m

d s.t. Wri,js ¥ γ{d @ i, j for some γ P p0, 1s.

Proof.

}∇WftpµWq}1 �
m̧

i�1

}∇WrisftpµWq}1 �
�

m̧

i�1

1

xst,i,Wrisy

��1 m̧

i�1

ḑ

j�1

st,irjs
xst,i,Wrisy2

¤
�

m̧

i�1

1

xst,i,Wrisy

��1 m̧

i�1

1

xst,i,Wris dWrisy ¤ d{γ

(6.82)

where the first inequality follows by Sedrakyan’s inequality and the second by Wri,js ¥ γ{d.

Proof of Lemma 6.5.1 for m ¡ 1

Proof. Let x̃t be a neighboring dataset of xt constructed by adding or removing a single element,
and let Ũt be the corresponding loss function. We note that changing from xt to x̃t changes the
value of Gapqipxt, oq at any point o P ra, bs by at most �1 and so the value of the exponential
score at any point o P ra, bs is changed by at most a multiplicative factor expp�εi{2q in either
direction. Therefore

s̃t,irjs �
» a� b�a

d
j

a� b�a
d
pj�1q

expp�εiGapqipx̃t, oq{2qdo

P expp�εi{2q
» a� b�a

d
j

a� b�a
d
pj�1q

expp�εiGapqipxt, oq{2qdo � expp�εi{2qst,irjs
(6.83)
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where � indicates the interval between values.

}∇WUtpWq �∇WŨtpWq}F

�

gfffe m̧

i�1

ḑ

j�1

�
��

m̧

i1�1

1

xst,i1 ,Wri1sy

��1
st,irjs

xst,i,Wrisy2 �
�

m̧

i1�1

1

xs̃t,i1 ,Wri1sy

��1
s̃t,irjs

xs̃t,i,Wrisy2

�


2

�
�

m̧

i1�1

1

xst,i1 ,Wri1sy

��1
gffe m̧

i�1

ḑ

j�1

�
st,irjs

xst,i,Wrisy2 �
s̃t,irjs

xs̃t,i,Wrisy2

°m
i1�1

1
xst,i1 ,Wri1sy°m

i1�1
1

xs̃t,i1 ,Wri1sy

�2

�
�

m̧

i1�1

1

xst,i1 ,Wri1sy

��1

gfffe m̧

i�1

ḑ

j�1

s2t,irjs
xWt,i,Wrisy4

�
�1� xgt,i,xrisy2

xs̃t,i,Wrisy2

°m
i1�1

s̃t,irjs
xst,i1 ,Wri1sy°m

i1�1

st,irjs
xs̃t,i1 ,Wri1sy

�


2

¤
�

m̧

i1�1

1

xst,i1 ,Wri1sy

��1 m̧

i�1

ḑ

j�1

st,irjs
xst,i,Wrisy2 |1� κi,j| ¤ d

γ
max
i,j

|1� κi,j|

(6.84)

where we have

κi,j �
xst,i,Wrisy2
xs̃t,i,xrisy2

m°
i1�1

s̃t,irjs
xst,i1 ,Wri1sy

m°
i1�1

st,irjs
xs̃t,i1 ,Wri1sy

P xst,i,Wrisy2
xst,i,Wrisy2 expp�εiq

m°
i1�1

st,irjs expp�
ε
i1
2
q

xst,i1 ,Wri1sy
m°
i1�1

st,irjs
xst,i1 ,Wri1sy expp�

ε
i1
2
q

� expp�2max
i
εiq

(6.85)

Substituting into the previous inequality and taking the minimum with the ℓ1 bound on the gra-
dient of the losses from Lemma 6.D.1 yields the result.

Proof of Theorem 6.5.2

Proof. For set of γ-robust priors ρ s.t. ρris � mint1� γ � λ, 1uµris � maxtγ�λ,0u
b�a and W P △m

d

s.t. Wri,js � b�a
d

³a� b�a
d
j

a� b�a
d
pj�1q ρrispoqdo we can divide the regret into three components:

Ţ

t�1

U pεq
xt pµWtq � U pεq

xt pµq

�
Ţ

t�1

U pεq
xt pµWtq � U pεq

xt pµWq �
Ţ

t�1

U pεq
xt pµWq � U pεq

xt pρq �
Ţ

t�1

U pεq
xt pρq � U pεq

xt pµq
(6.86)

The first summation is the regret of DP-FTRL with regularizer ϕ, which is strongly convex w.r.t.
} � }1. The Gaussian width of its unit ball is 2

a
logpmdq, by Lemma 6.D.1 the losses are d

γ
-

Lipschitz w.r.t. } � }1, and by Lemma 6.5.1 the ℓ2-sensitivity is ∆2 � d
γ
mint2, eε̃m � 1u ¤
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2d
γ
mint1, ε̃mu, so applying Theorem 6.5.1 yields the bound

m2 log d

η
� ηd2T

γ2

�
1�

�
4
a
log d� 2

d
2 log

T

β1

�
σ
a
rlog2 T smint1, εu

�
(6.87)

The second summation is a sum over the errors due to discretization, where we have

Ţ

t�1

U pεq
xt pµWq � U pεq

xt pρq

�
Ţ

t�1

log
m̧

i�1

xst,i,Wrisy�1 � log
m̧

i�1

1³b
a
expp�εiGapqipxt, oq{2qρrispoqdo

¤
Ţ

t�1

m̧

i�1

³b
a
expp� εi

2
Gapqipxt, oqqρrispoqdo� xst,i,Wrisy

xst,i,Wrisy

¤
Ţ

t�1

m̧

i�1

°d
j�1

³a� b�a
d
j

a� b�a
d
pj�1q expp� εi

2
Gapqipxt, oqqpρrispoq � µWrispoqqdo

γψxt{pb� aq

¤
Ţ

t�1

m̧

i�1

°d
j�1

³a� b�a
d
j

a� b�a
d
pj�1q |ρrispoq � ρrispoi,jq|do
γψxt{pb� aq ¤ V mT

γdψ̄
pb� aq3

(6.88)

where the first inequality follows by concavity, the second by using the definition of W to see
that xst,i,Wrisy �

³b
a
expp� εi

2
Gapqipxt, oqqµWrispoqdo ¥ γψxt

b�a , the third by Hölder’s inequality
and the mean value theorem for some oi,j P pa � b�a

d
pj � 1q, a � b�a

d
jq, and the fourth by the

Lipschitzness of ρris P F pγq
V,d . The third summation is a sum over the errors due to γ-robustness,

with the result following by U pεq
xt pρq�U pεq

xt pµq ¤ U
pεq
xt pµq� logp1�maxtγ�λ, 0uq�U pεq

xt pµq ¤
2maxtγ � λ, 0u log 2.

Settings of γ and d for Corollary 6.5.1

1. λ-robust and discrete µris P F pλq
0,d : γ � λ

2. λ-robust and V -Lipschitz µris P F pλq
V,1 : γ � λ and d �

Sd
V pb�aq3

ψ̄

c�
1� mint1,ε̃mu

ε1

	
T

W

3. discrete µris P F0,d: γ �
?
md 4

b
1�mint1,ε̃mu{ε1

T

4. V -Lipschitz µris P FV,1: γ �
?
m 4

b
V pb�aq3

ψ̄
8

b
1�mint1,ε̃mu{ε1

T
and

d �
Sd

V pb�aq3
ψ̄

c�
1� mint1,ε̃mu

ε1

	
T

W
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6.D.2 Data release

Lemma 6.D.2. For w P △d s.t. wris ¥ γ{d @ i P rns the gradient ∇wDKLpxn ||wq of the KL
divergence w.r.t. its second argument is bounded in ℓ8-norm by d{γ and has ℓ2-sensitivity d

?
2

γn
.

Proof. We have ∇wDKLpx{n||wq � �∇wxx{n, logwy � x
nw

so since wris ¥ γ{d we have that
}∇wDKLpx{n||wq}8 � �� x

nw

��
8 ¤ dmaxi xris

γn
¤ d{γ Furthermore, for neighboring datasets x and

x̃ we have

}∇wDKLpx{n||wq �∇wDKLpx̃{n||wq}2 �
���� x

nw
� x̃

nw

����
2

¤ d
?
2

γn
(6.89)

Lemma 6.D.3. For w P △d s.t. wris ¥ γ{d @ i P rns the gradient ∇θEm�θUtpw,mq has
ℓ2-sensitivity at most 7π log d

γ
.

Proof. For any xt and neighboring x̃t that replaces one element we have

|DKLpxt{nt||wq �DKLpx̃t{nt||wq| � |xxt � x̃t, logwy|{nt ¤ 2

nt
log

d

γ
(6.90)

Therefore

}∇θEm�θUtpw,mq �∇θEm�θŨtpw,mq}2 ¤ 8nt

gffe 8̧

m�1

�
DKLpxt{nt||wq �DKLpx̃t{nt||wq

m


2

¤ 7π log
d

γ
(6.91)

6.D.3 Proof of Theorem 6.5.4

Proof. Let M �
R

3

c
ε2N2 log d

γ

16 log2 2|Q|
β

V
and note that the m minimizing

°T
t�1 Utpwt,mq is in rM s and

also

max
t,m

Utpwt,mq ¤ 8N log
d

γ
� 54 log

2
3
d

γ
ppN2{εq 2

3 � 1{ε2q
�
log2

εN log d
γ

β
� log4 |Q|

�

� Õ

�
N

4
3 log4 |Q|

β

mint1, ε2u log
d

γ

�

(6.92)
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Letting A � O
�
log d

γ

	
and B � Õ

�
N

4
3 log4 |Q|

β

mint1,ε2u log d
γ



we have

Ţ

t�1

Utpwt,mtq

¤ logM

η2
� η2

�
B

�
B �

�
2
a
logM �

d
2 log

3T

β1

��
σ2A

a
rlog2 T s

�
T

�B

d
T

2
log

3

β1
�min

θPΘ

Ţ

t�1

Utpwt, θq

¤ logM

η2
� η2

�
B

�
B �

�
2
a
logM �

d
2 log

3T

β1

��
σ2A

a
rlog2 T s

�
T

�B

d
T

2
log

3

β1
� min

mPrMs

Ţ

t�1

8nt
m
DKL

�
xt
nt

����
����wt



� 16m2

ε2nt

�
3 log

2m

β
� 2 log2 |Q|


2

¤ logM

η2
� η2

�
B

�
B �

�
2
a
logM �

d
2 log

3T

β1

��
σ2A

a
rlog2 T s

�
T

� 8

�
log d

η1
� η1

Nd

γ

�
Nd

γ
�
�
2
a
log d�

d
2 log

3T

β1

�
σ1
d
?
2

γ

a
rlog2 T s

�
T

�

�B

d
T

2
log

3

β1
� min

m¡0,wris¥γ{d

Ţ

t�1

Utpw,mq

¤ Õ
�a

pB � Aσ2qBT
	
� Õ

�
d

γ

a
pN � σ1qNT



�B

d
T

2
log

3

β1

� Õ pmaxtγ � λ, 0uNT q � min
m¡0,wris¥λ{d

Ţ

t�1

Utpw,mq

� Õ

��
N

4
3

mint1, ε2u �
N

2
3 {?ε1

mint1, εu �
dN

γ
� d

γ

c
N

ε1

�?
T �maxtγ � λ, 0uNT

�

� min
m¡0,wris¥λ{d

Ţ

t�1

Utpw,mq
(6.93)

where the first inequality follows by the regret of DP-FTRL w.r.t. θ together with Cesa-Bianchi
and Lugosi [2006, Lemma 4.1], the second by noting the definition of Ut and restricting to inte-
ger m, the third by the guarantee of DP-FTRL w.r.t. w, and the fourth by joint-convexity of DKL

and simplifying terms.
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6.E Section 6.6 details
Code to reproduce the experimental results in Section 6.6 is available here: https://github.
com/mkhodak/private-quantiles.

6.E.1 Location-scale families

A location-scale model is a distribution parameterized by a location ν P R and scale σ P R¥0

with density of form µν,σpxq � 1
σ
f
�
x�ν
σ

�
for some centered probability measure f : R ÞÑ R¥0.

Impossibility of simultaneous robustness and convexity

Theorem 6.E.1. Let f : R ÞÑ R¥0 be a centered probability measure and for each θ P Θ define
µθpxq � fpx� θq.

1. If f is continuous then Uxpµθq is convex in θ for all sorted dataset x P Rn if and only if f
is log-concave.

2. There exist constants a, b ¡ 0 s.t. for any r ¡ 0, ψ P p0, R
2n
s, q ¥ 1

n
, and θ P R there exists

a sorted dataset x P pθ�Rqn with miniPrn�1s xri�1s�xris � ψ s.t. U pqq
x pµθq � aR� log b

ψ
.

Proof. For the first direction of the first result, consider any θ, θ1 P R and λ P r0, 1s. We have
that

U pqq
x pµλθ�p1�λqθ1q �

�
λU pqq

x pµθq � p1� λq logU pqq
x pµθ1

� � log
Ψ
pqq
x pµθqλΨpqq

x pµθ1q1�λ
Ψ
pqq
x µλθ�p1�λqθ1q

(6.94)

so it suffices to show that Ψpqq
x pµλθ�p1�λqθ1q ¥ Ψ

pqq
x pµθqλΨpqq

x pµθ1q1�λ. By the log-concavity of f
we have

µλθ�p1�λqθ1pλx� p1� λqyq � fpλpx� θq � p1� λqpy � θ1qq ¥ fpx� θqλfpy � θ1q1�λ
� µθpxqλµθ1pyq1�λ

(6.95)

for all x, y P R. Therefore by the Prékopa-Leindler inequality we have that

Ψpqq
x pµλθ�p1�λqθ1q �

» xrtqnu�1s

xrtqnus
µλθ�p1�λqθ1pxqdx

¥
�» xrtqnu�1s

xrtqnus
µθpxqdx

�λ�» xrtqnu�1s

xrtqnus
µθ1pxqdx

�1�λ

� Ψpqq
x pµθqλΨpqq

x pµθ1q1�λ

(6.96)

For the second direction, by assumption D a   c, b ¡ c s.t.
a
fpxqfpyq ¡ fpx�y

2
q @ x, y P ra, bs,

i.e. f is strictly log-convex on ra, bs. Let x P Rn be any dataset s.t. xrtqnu�1s � xrtqnus ¤ b�a
2

and

217

https://github.com/mkhodak/private-quantiles
https://github.com/mkhodak/private-quantiles


set θ � xrtqnus � a, θ1 � xrtqnus � a�b
2

. Then we have

d» xrtqnu�1s

xrtqnus
µθpxqdx

» xrtqnu�1s

xrtqnus
µθ1pxqdx �

d» xrtqnu�1s

xrtqnus

a
µθpxq2dx

» xrtqnu�1s

xrtqnus

a
µθ1pxq2dx

¥
» xrtqnu�1s

xrtqnus

a
µθpxqµθ1pxqdx

�
» xrtqnu�1s

xrtqnus

a
fpx� θqfpx� θ1qdx

¡
» xrtqnu�1s

xrtqnus
f

�
x� θ � θ1

2



dx �

» xrtqnu�1s

xrtqnus
µ θ�θ1

2
pxqdx
(6.97)

where the first inequality is Hölder’s and the second is due to the strict log-convexity of f on
ra, bs. Taking the logarithm of both sides followed by their negatives completes the proof.

Finally, for the second result, since f is centered and log-concave, by Cule and Samworth
[2010, Lemma 1] there exist constants C, c ¡ 0 s.t. µθpxq ¤ C expp�c|x � θ|q @ θ P R. Let
x � �

θ �R � nψ θ �R � pn� 1qψ � � � θ �R � 2ψ θ �R � ψ
�
, so that |xrtqnus � θ| ¥

|xr1s � θ| � R � nψ ¥ R
2

. Then

Ψpqq
x pµθq �

» xrtqnu�1s

xrtqnus
µθpxqdx ¤ Cψ expp�c|xrtqnus � θ|q ¤ Cψ expp�cR{2q (6.98)

so U pqq
x pµq � � log Ψ

pqq
x pµθq ¥ log 1

Cψ
� cR

2
.

Variants of the first result have been previously shown in the censored regression litera-
ture [Burridge, 1981, Pratt, 1981]. In fact, Burridge [1981] shows convexity of U pqq

x pµ xv,fy
ϕ

, 1
ϕ
q

w.r.t. pv, ϕq P Rd � R¡0, i.e. simultaneous learning of a feature map and inverse scale. Con-
vexity of Ux � � log Ψx � log

°m
i�1

1

Ψ
pqiq
x

� log
°m
i�1 expp� log Ψ

pqiq
x q follows because the

log-sum-exp LSEpℓq � log
°m
i�1 e

ℓris is convex and non-decreasing in each argument. Note that
for the converse direction, the dataset x is not a degenerate case; in-fact if f is strictly log-convex
over an interval ra, bs then any dataset whose optimal interval has length smaller than b�a

2
will

yield a nonconvex U pqq
x pµθq.

The case of the Laplacian

For the Laplace prior with a � xrtqnus and b � xrtqnu�1s we have

� logΨpqq
x pµ θ

ϕ
, 1
ϕ
q

� log 2� log

�
sign

�
b� θ

ϕ


�
1� e�|b� θ

ϕ |ϕ
	
� sign

�
a� θ

ϕ


�
1� e�|a� θ

ϕ |ϕ
	

(6.99)
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For θ   aϕ this simplifies to

log 2� log
�
eθ�aϕ � eθ�bϕ

� � log 2� log
�
pe b�a2 ϕ � e

a�b
2
ϕqeθ�a�b

2
ϕ
	

�
����θ � a� b

2
ϕ

����� log

�
sinh

�
b� a

2
ϕ



 (6.100)

and similarly for θ ¡ bϕ it becomes

log 2� log
�
ebϕ�θ � eaϕ�θ

� � log 2� log
�
pe b�a2 ϕ � e

a�b
2
ϕqea�b2

ϕ�θ
	

�
����a� b

2
ϕ� θ

����� log

�
sinh

�
b� a

2
ϕ



 (6.101)

On the other hand for θ P raϕ, bϕs it is

log 2� log
�
2� e�|bϕ�θ| � e�|aϕ�θ|

� � log 2� log
�
2� eθ�bϕ � eaϕ�θ

�
� log 2� log

�
e�

b�a
2
ϕ
�
2e

b�a
2
ϕ � eθ�

a�b
2
ϕ � e

a�b
2
ϕ�θ

		
� b� a

2
ϕ� log 2� log

�
2e

b�a
2
ϕ � eθ�

a�b
2
ϕ � e

a�b
2
ϕ�θ

	
� b� a

2
ϕ� log

�
e
b�a
2
ϕ � cosh

�
θ � a� b

2
ϕ




(6.102)

Thus we have

U pqq
x pµ θ

ϕ
, 1
ϕ
q �

#
b�a
2
ϕ� log

�
exp

�
b�a
2
ϕ
�� cosh

�
θ � a�b

2
ϕ
��

if θ P raϕ, bϕs��θ � a�b
2
ϕ
��� log

�
sinh

�
b�a
2
ϕ
��

else
(6.103)

Suppose x P r�Bsn and has the optimal interval has separation ψ ¡ 0, θ
ϕ
P r�Bs, and

1
ϕ
P rσmin, σmaxs. Then ϕ P r1{σmax, 1{σmins and θ P r�B{σmins, and so

U pqq
x pµ θ

ϕ
, 1
ϕ
q ¤ 2B

σmin

� log
2σmax

ψ
(6.104)

For θ R raϕ, bϕs, the derivative w.r.t. θ always has magnitude 1. Within the interval, the

derivative w.r.t. θ is � sinhpa�b
2
ϕ�θq

expp b�a
2
ϕq�coshpθ�a�b

2
ϕq , which attains its extrema at the endpoints aϕ and

bϕ, where its magnitude is also 1. Outside the interval, the derivative w.r.t. ϕ has magnitude����a� b

2
sign

�
a� b

2
ϕ� θ



� b� a

2
coth

�
b� a

2
ϕ


���� ¤ |a� b|
2

� b� a

2
coth

�
b� a

2
ϕ




¤ |a� b|
2

� b� a

2

�
2{ϕ

pb� aq � 1




� |a� b|
2

� b� a

2
� 1

ϕ
(6.105)
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while inside the interval the derivative w.r.t. ϕ is b�a
2
� pb�aq expp b�a

2
ϕq�pa�bq sinhpa�b

2
ϕ�θq

2pexpp b�a2 ϕq�coshpa�b
2
ϕ�θqq , which

again attains its extrema at the endpoints aϕ and bϕ, yielding magnitudes

b� a

2
� b� a

2

�
coth

�
b� a

2
ϕ



� 1



� |a� b|

2
¤ b� a

2

�
2{ϕ

pb� aq � 3



� |a� b|

2

¤ 1

ϕ
� 3

2
pb� aq � |a� b|

2

(6.106)

Thus we have

|BθU pqq
x pµ θ

ϕ
, 1
ϕ
q| ¤ 1 and |BϕU pqq

x pµ θ
ϕ
, 1
ϕ
q| ¤ 4B � σmax (6.107)

6.E.2 Public-private release

In this subsection we use ℓxpθ,ϕq �
�
ℓ
pq1q
x pθr1s,ϕr1sq � � � ℓpqmqx pθrms,ϕrmsq

	
to refer to a vec-

tor whose ith entry is the loss ℓpqiqx pθ, ϕq � U
pqiq
x pµ θ

ϕ
, 1
ϕ
q associated with the ith of m quantiles

q1, . . . , qm. Furthermore, we use ℓx � LSEpℓxq to refer to their log-sum-exp.

Guarantees

Theorem 6.E.2. Suppose for N ¥ n we have a private dataset x � Dn and a public dataset
x1 � D1N , both drawn from κ-bounded distributions over r�Bs. Use i.i.d. draws from the
public dataset to construct T � tN{nu datasets x1t � D1n and run online gradient descent on the
resulting losses ℓx1tpθ,ϕq � LSEpℓxtpθ,ϕqq over the parameter space θ P r�B{σminsm starting
at θ � 0m and ϕ P r1{σmax, 1{σminsm starting at the midpoint, with stepsize B

a
m
T

for θ and
σmax�σmin
4B�σmax

a
m
T

for ϕ, obtaining iterates pθ1,ϕ1q, . . . , pθT ,ϕT q. Return the priors µi � µ θ̄ris
ϕ̄ris

, 1
ϕ̄ris

for θ̄ � 1
T

°T
t�1 θt and ϕ̄ � 1

T

°T
t�1ϕt the average of these iterates. Then µ1 � �

µ1 � � � µm
�

satisfies

E
x�Dn

Uxpµ1q ¤ min
µPLapmB,σmin,σmax

E
x�Dn

Uxpµq � 2

�
2B

σmin

� log
4κmpn� 1qNσmax

β1



TVqpD,D1q

� pB � 4Bσmax � σ2
maxq

c
mpn� 1q

N

� 2

�
4B

σmin

� log
4κmpn� 1qNσmax

β1


d
2pn� 1q

N
log

4

β1

� pn� 1qβ1
N

�
3� 4B

σmin

� 4 log
2κpn� 1qN?2mσmax

β1



(6.108)

where LapB,σmin,σmax
is the set of Laplace priors with locations in r�Bs and scales in rσmin, σmaxs.
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Proof. Define D1
ψ
n to be the conditional distribution over z � D1n s.t. ψz ¥ ψ, with associated

density ρ1ψpzq � ρ1pzq1ψz¥ψ
1�p1ψ

, where p1ψ � ³
ψz ψ ρ

1pzq ¤ κn2ψ. Then we have for any µ� P
LapmB,σmin,σmax

that

E
z�Dn

Uxpµ1q � E
z�Dn

Uzpµ1q � E
z�D1n

Uzpµ1q � E
z�D1n

Uzpµ1q � E
z�D1

ψ
n
Uzpµ1q � E

z�D1
ψ
n
Uzpµ1q

¤
»
Uzpµ1qpρpzq � ρ1pzqq �

»
Uzpµ1qpρ1pzq � ρ1ψpxqq � E

z�D1
ψ
n
Uzpµ�q � Eψ

¤ E
z�Dn

Uxpµ�q �
»
pUzpµ1q � Uxpµ�qq|ρpzq � ρ1pxq|

�
»
pUzpµ1q � Uzpµ�qq|ρ1pzq � ρ1ψpzq| � Eψ

(6.109)

where Eψ is the error of running online gradient descent with the specified step-sizes on samples
z1t � D1

ψ
n for t � 1, . . . , T . Now if z has entries drawn i.i.d. from a κ-bounded distribution Dn

(or D1n), then we have that

» ψ

0

ρψzpyqdy � Prpψz ¤ ψ : z � Dnq ¤ npn� 1qmax
zPR

Prp|z � z1| ¤ ψ : z1 � Dq ¤ κn2ψ

(6.110)
where ρψz is the density of ψz for z � Dn (not to be confused with the conditional density ρψ over
z); the same holds for the analog ρ1ψz

for D1n. Since this holds for all ψ ¥ 0 and log 1
y

is mono-
tonically decreasing on y ¡ 0, this means the worst-case measure that ρψz can be is constant over
r0, ψs and thus

³ψ
0
ρψzpyq log 1

y
dy ¤ κn2

³ψ
0
log 1

y
dy � κn2ψp1� log 1

ψ
q, and similarly for ρ1ψz

.

To bound the first integral, note that Uz � LSEpℓzq ¤ maxi U
pqiq
z � logm ¤ 2B

σmin
� log 2mσmax

ψz

and that the r.v. ψz depends only on the joint distribution over the order statistics of Dn and D1n.
Then we have

»
pUzpµ1q�Uzpµ�qq|ρpzq � ρ1pzq|

¤
» �

2B

σmin

� log
2mσmax

ψz



|ρpzq � ρ1pzq|

¤ 2

�
2B

σmin

� log
2mσmax

ψ



TVqpD,D1q �

»
ψz ψ

|ρpzq � ρ1pzq| log 1

ψz

¤ 2

�
2B

σmin

� log
2mσmax

ψ



TVqpD,D1q �

» ψ

0

pρψzpyq � ρ1ψz
pyqq log 1

y
dy

¤ 2

�
2B

σmin

� log
2mσmax

ψ



TVqpD,D1q � 2κn2ψ

�
1� log

1

ψ
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For the second integral we have for p1ψ �
³
ψz ψ ρ

1pzq ¤ κn2ψ that

»
pUzpµ1q � Uzpµ�qq|ρ1pzq � ρ1ψpzq|

�
»
ψz¥ψ

pUxpµ1q � Uzpµ�qq
�����ρ1pzq � ρ1pzq

1� p1ψ

������
»
ψz ψ

pUzpµ1q � Uzpµ�qqρ1pzq

� 2p1ψ
1� p1ψ

»
ψz¥ψ

�
2B

σmin

� log
2mσmax

ψ



ρ1pzq �

»
ψz ψ

�
2B

σmin

� log
2mσmax

ψz



ρ1pzq

� 2p1ψ

�
4B

σmin

� log
4m2σ2

max

ψ



�
»
ψz ψ

ρ1pzq log 1

ψz

¤ 2κn2ψ

�
4B

σmin

� log
4m2σ2

max

ψ



� κn2ψ

�
1� log

1

ψ
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Finally, we bound Eψ. By κ-boundedness of D1, the probability that D t P rT s s.t. ψz1t   ψ @ t P
rT s is at most κn2Tψ, so if we set ψ � β1

2κn2T
then w.p. ¥ 1 � β1{2 the sampling z1t from x1 as

specified is equivalent to rejection sampling from D1
ψ
n, on which the functions Uz are bounded by

2B
σmin

�log 2mσmax
ψ

. Therefore with probability¥ 1�β1{2 by Shalev-Shwartz [2011, Theorem 2.21]
and Lemma B.4.1 we have that w.p. 1� β1{2

Eψ ¤ pB � pσmax � σminqp4B � σmaxqq
c
m

T
� 2

�
4B

σmin

� log
2mσmax

ψ


c
2

T
log

4

β1

� pB � 4Bσmax � σ2
maxq

c
mpn� 1q

N
� 2

�
4B

σmin

� log
2mσmax

ψ


d
2pn� 1q

N
log

4

β1
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Combining terms and substituting the selected value for ψ yields the result.

Experimental details

We evaluate on Adult (“age" and “hours" categories) and Goodreads (“rating" and “page count"
categories) data. For the former we use the train and test sets as the public and private data, re-
spectively, while for the latter we use the “History" and “Poetry" genres as the public and private
data, respectively. Public data is used to fit Laplace location and scale parameters using the CO-
COB optimizer run until progress stops. We use the implementation here: https://github.
com/anandsaha/nips.cocob.pytorch. All evaluations are averages of forty trials.

We use the following reasonable guesses for locations ν, scales σ, and quantile ranges ra, bs:
• age: ν � 40, σ � 5, a � 10, b � 120

• hours: ν � 40, σ � 2, a � 0, b � 168

• rating: ν � 2.5, σ � 0.5, a � 0, b � 5

• page count: ν � 200, σ � 25, a � 0, b � 1000
1�q
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Note that, here and elsewhere, using q-dependent range for b only helps the uniform prior, which
is the baseline. The scales σ are used to set the scale parameter of the Cauchy distribution for
public quantiles—its location is fixed by the public quantiles. Meanwhile the locations
ν are used to set to scale parameter of the half-Cauchy prior used to mix with PubFit for
robustness (using coefficient 0.1 on the robust prior). We choose this prior because the data are
all nonnegative.

6.E.3 Sequential release

In this subsection we use ℓx,f pV,ϕq �
�
ℓ
pq1q
x,f pVr1s,ϕr1sq � � � ℓpqmqx,f pVrms,ϕrmsq

	
to refer to a vec-

tor whose ith entry is the loss ℓpqiqx,f pv, ϕq � U
pqiq
x pµ xv,fy

ϕ
, 1
ϕ
q associated with the ith of m quantiles.

Guarantees

Theorem 6.E.3. Consider a sequence of datasets xt P r�Rsnt and associated feature vectors
ft P r�F sd. Suppose we set the components of µt as the Laplace priors µtris � µ xVtrisfty

ϕtris
, 1
ϕtris

,

where Vt P r�B{σminsm�d and ϕt P r1{σmax, 1{σminsm are determined by separate runs of DP-

FTRL with budgets pε1{2, δ1{2q and step-sizes η1 � B
Fσmin

c
2mε11

rlog2pT�1qsT
�
1�

b
2md log T

β1 log
1
δ1
	 , and

η2 � 1{σmin
B�σmax

c
mε12

2rlog2pT�1qsT
�
1�

b
2m log T

β1 log
1
δ1
	 . Then we have regret

max
WPr�Bsm�d
σPrσmin,σmaxsm

Ţ

t�1

Uxtpµtq � Uxt

��
µxWr1s,fty,σr1s � � �µxWrms,fty,σrms

��
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gffemdrlog2pT � 1qsT
�
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d
2md log
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log

2

δ1

� (6.114)

For sufficiently small ε1 (including ε1 ¤ 1) we can instead simplify the regret to

4

σmin

�
BFd

3
4 �B � σmax

	gffemrlog2pT � 1qsT
ε1

d
2m log

T

β1
log

2

δ1
(6.115)

Proof. Note that

m̧

j�1

}∇Vrjs LSEpℓxt,ftq}22 ¤ }ft}22
m̧

j�1

�
exppℓpqjqxt,ft

q°m
i�1 exppℓpqiqxt,ft

q

�2

¤ F 2d (6.116)

and

m̧

j�1

pBϕrjs LSEpℓxt,ftqq2 ¤ p4B � σmaxq2
m̧

j�1

�
exppℓpqjqxt,ft

q°m
i�1 exppℓpqiqxt,ft

q

�2

¤ p4B � σmaxq2 (6.117)
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and so applying Theorem 6.5.1 twice with the assumed budgets and step-sizes yields

max
WPr�Bsm�d
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Experimental details

For sequential release we consider the following tasks:
• Synthetic is a stationary dataset generation scheme in which we randomly sample a one

standard Gaussian vector a for each feature dimension (we use ten) and another b of size
m � 2, which we sort. On each day t of T we sample the public feature vector ft, also
from a standard normal, and the “ground truth" quantiles qi on that day are then set by
xa, fty�bri�1s. We generate the actual data by sampling from the uniform distributions on
rxa, fty�bris, xa, fty�bri�1ss. The number of points we sample is determined by t100{pm�
1qu plus different Poisson-distributed random variable for each; in the “noiseless" setting
used in Figure 6.4 (left) the Poisson’s scale is zero, so the “ground truth" quantiles are
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correct for the dataset, while for Figure 6.5 (left) we use a Poisson with scale five. For the
noiseless setting we use 100K timesteps, while for the noisy setting we use 2500.

• CitiBike consists of data downloaded from here: https://s3.amazonaws.com/
tripdata/index.html, We take the period from September 2015 through Novem-
ber 2022, which is roughly 2500 days, although days with less than ten trips—seemingly
data errors—are ignored. For each day we include a feature vector containing seven di-
mensions for the day of the week, one dimension for a sinusoidal encoding of the day of
the year, and six weather features from the Central Park station downloaded from here
https://www.ncei.noaa.gov/cdo-web/, specifically average wind speed, pre-
cipitation, snowfall, snow depth, maximum temperature, and minimum temperature. These
are scaled to lie within similar ranges.

• BBC consists of Reddit’s worldnews subreddit corpus downloaded from the follow-
ing link: https://zissou.infosci.cornell.edu/convokit/datasets/
subreddit-corpus/corpus-zipped/. We find all conversations corresponding
to a post of a BBC article, specified by the domain bbc.co.uk, and collect those with
at least ten comments. We compute the Flesch readability score of each comment using
the package here https://github.com/textstat/textstat. The datasets for
computing quantiles are then the collection of scores for each headline; the size is roughly
10K, corresponding to articles between 2008 and 2018. As features we combine a seven-
dimensional day-of-the-week encoding, sinusoidal features for the day of the year and the
time of day of the post, information about the post itself (whether it is gilded, its own
Flesch score, and the number of tokens), and finally a 25-dimensional embedding of the
title, set using a normalized sum of GloVe embeddings [Pennington et al., 2014] of the
tokens, excluding English stop-words via NLTK [Loper and Bird, 2002].

We again use reasonable guesses of data information to set the static priors, and to initialize
the learning schemes.

• Synthetic: ν � 0, σ � 1, a � �100, b � 100

• CitiBike: ν � 10, σ � 1, a � 0, b � 50{p1� qq
• BBC: ν � 50, σ � 10, a � �100� 100{p1� qq, b � 100� 100q

We use a and b for the static uniform distributions, ν and σ for the static Cauchy distributions,
in the case of nonnegative data (CitiBike) we use ν for the scale of the half-Cauchy distribution,
and for the learning schemes we initialize their Laplace priors to be centered at ν with scale σ.
We again use the COCOB optimizer for non-private and proxy learning, and for robustness we
mix with the Cauchy (or half-Cauchy for nonnegative data) with coefficient 0.1 on the robust
prior. For the PubPrev method, we set its scale using σ. For DP-FTRL, we heavily tune it to
show the possibility of learning on the synthetic task; the implementation is adapted from the one
here: https://github.com/google-research/DP-FTRL. All results are reported as
averages over forty trials.
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Algorithm 13: ApproximateQuantiles with predictions
Input: sorted unrepeated data x P pa, bqn, ordered quantiles q1, . . . , qm P p0, 1q, priors

µ1, . . . , µm : R ÞÑ R¥0, prior adaptation rule r P{conditional,edge}, privacy
parameters ε1, . . . , εm ¡ 0, branching factor K ¥ 2

// runs single-quantile algorithm on datapoints x̂
Method quantile(x̂, q, ε, µ):

Output: o P pa, bq w.p. 9 expp�εGapqpx̂, oq{2qµpoq

Method recurse(j, q, q, â, b̂):
// determines K � 1 indices i whose quantiles to compute at

this node
if |j| ¥ K then

iÐ
�
jrr|j|{Kss, � � � , jrrpK�1q|j|{Kss

�
else

iÐ j

// restricts dataset to the interval pâ, b̂q
ki Ð minxrks¡â k
ki Ð maxxrks b̂ k

x̂i Ð
�
xrkis, � � � ,xrkis

	

// sets relative quantiles q̃i and restricts priors to the

interval râ, b̂s
for j � 1, . . . , |i| do

q̃irjs Ð pqirjs � qq{pq � qq

if r � conditional then

µ̂irjspoq Ð
µirjs poq

µirjs prâ,b̂sq
1oPrâ,b̂s

else
µ̂irjspoq Ð µirjspoq1oPpâ,b̂q � µirjspp�8, âsqδpo� âq � µirjsprb̂,8qqδpo� b̂q

// computes K � 1 quantiles oi and sorts the results

oi Ð
�
quantile(x̂i, q̃ir1s , εir1s{|i|, µ̂ir1s) , � � � , quantile(x̂i, q̃ir|i|s , εir|i|s{|i|, µ̂ir|i|s)

�
oi Ðsort(oi)
// recursively computes remaining indices on the K intervals

induced by oi
if |j|   K then

oÐ oi
else

oÐ concat(recurse(
�
jr1s, � � � , jrr|j|{Ks�1s

�
, q, qir1s , â,or1s),

�
or1s

�
)

for j � 2, . . . , |i| do
oÐconcat(o,
recurse(

�
jrrpj�1q|j|{Ks�1s, � � � , jrrj|j|{Ks�1s

�
, qirj�1s , qirjs ,orj�1s,orjs))

oÐconcat(o,
�
orjs

�
)

oÐ concat(o, recurse(
�
jrrpK�1q|j|{Ks�1s, � � � , jr|j|s

�
, qirK�1s , q,orK�1s, b̂))

Output: o
Output: recurse(

�
1, � � � ,m

�
, 0, 1,�8,8)
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Algorithm 14: SeparateCov with predictions (zCDP)
Input: data X P Rd�n, symmetric prediction W P Rd�d, privacy parameter ρ ¡ 0
UΛUJ Ð XXJ{n�W
Λ̂Ð Λ� diagpzq, z � N p0d, 2

ρn2 q // add noise to error eigenvalues

C̃Ð XXJ{n� Z for Zri,js � Zrj,is � N
�
0, 2

ρn2

	
ŨΛ̃ŨJ Ð C̃�W // get eigenvectors of noised prediction error

Output: Ĉ � ŨΛ̂ŨJ�W // combine to estimate XXJ{n�W and add W

Algorithm 15: IterativeEigenvectorSampling with predictions
Input: data matrix X P Rd�n, symmetric prediction W P Rd�d, privacy parameters

ε
p�1q
0 , . . . , ε

p�1q
d

initialize ĈÐW
for s,C P pp1, tXXJ �Wu�q, p�1, tW �XXJu�qq do

// run the original IterativeEigenvectorSampling on C,

then add s times the result to Ĉ
initialize C1 Ð C and P1 Ð Id
UΛUJ Ð C // get eigenvalues of C
for i=1,. . . ,d do

λ
psq
i Ð Λris � Lapp2{εpsq0 q
θ̂
psq
i Ð PJ

i û
psq
i for ûpsqi sampled w.p. 9 fCipuq � exp

�
ε
psq
i

4
uJCiu



set Pi�1 P Rpd�iq�d to be an orthonormal basis orthogonal to θ̂psq1 , . . . , θ̂

psq
i

Ci�1 Ð Pi�1CPJ
i�1 P Rpd�iq�pd�iq

ĈÐ Ĉ� s
°d
i�1 λ̂

psq
i θ̂

psq
i θ̂

psqJ
i

Output: Ĉ
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Chapter 7

Learning-augmented scientific computing

Our final study of learning-augmented algorithms extends the field in yet another direction:
scientific computing. In particular, we study approximate linear system solving, a bottleneck
subroutine in many scientific computations. For example, simulating a partial differential equa-
tion (PDE) often involves solving sequences of high-dimensional systems to very high preci-
sion [Thomas, 1999]. A vast array of solvers and preconditioners have thus been developed,
many of which have tunable parameters that significantly affect runtime [Greenbaum, 1997,
Hackbusch, 2016]. There is a long literature analyzing these algorithms, and indeed for some
problems we have a strong understanding of the optimal parameters for a given matrix. However,
computing them can be more costly than solving the original system, leading to an assortment of
heuristics for setting good parameters [Ehrlich, 1981, Golub and Ye, 1999].

We provide an alternative to such heuristics by taking advantage of the fact that we often
sequentially solve many linear systems. In addition to numerical simulation, this occurs in
graphics computations such as mean-curvature flow [Kazhdan et al., 2012], nonlinear system
solvers [Marquardt, 1963], and beyond. A natural approach is to treat these instances as data to
be passed to a machine learning (ML) algorithm; in particular the framework of online learn-
ing that we have been extensively using provides a language to reason about such sequential
learning problems. For example, if we otherwise would solve a sequence of linear systems
pA1,b1q, . . . , pAT ,bT q using a given solver with a fixed parameter, can we use ML to do as
well as the best choice of that parameter, i.e. can we minimize regret? Or, if the matrices are all
diagonal shifts of single matrix A, can we learn the functional relationship between the shift ct
and the optimal solver parameter for At � A� ctIn, i.e. can we predict using context?

We investigate these questions for the Successive Over-Relaxation (SOR) solver, a general-
ization of Gauss-Seidel whose relaxation parameter ω P p0, 2q dramatically affects the number
of iterations (c.f. Figures 7.1 and 7.3, noting the log-scales). SOR and its symmetric variant are
well-studied and often used as preconditioners for Krylov methods such as conjugate gradient
(CG), as bases for semi-iterative schemes, and as multigrid smoothers. We sequentially set the
parameter ωt for SOR to use when solving each linear system pAt,btq. Unlike past theoretical
studies of related methods [Gupta and Roughgarden, 2017, Bartlett et al., 2022, Balcan et al.,
2022], we aim to provide end-to-end guarantees—covering the full pipeline from data-intake to

0The work presented in this chapter first appeared in Khodak et al. [2024].
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efficient learning to execution—while minimizing dependence on the dimension (n can be 105 or
higher) and precision (1{ε can be 108 or higher). We emphasize that we do not seek to immedi-
ately improve the empirical state of the art, and also that existing research on saving computation
when solving sequences of linear systems (recycling Krylov subspaces, reusing preconditioners,
etc.) is complementary to our own, i.e. it can be used in addition to the ideas presented here.

7.1 Contributions
We study two distinct theoretical settings, corresponding to views on the problem from two dif-
ferent approaches to data-driven algorithms. In the first we have a deterministic sequence of
instances and study the spectral radius of the iteration matrix, the main quantity of interest in
classical analysis of SOR [Young, 1971]. We show how to convert its asymptotic guarantee into
a surrogate loss that upper bounds the number of iterations via a quality measure of the chosen
parameter, in the style of algorithms with predictions [Mitzenmacher and Vassilvitskii, 2021].
The bound holds under a near-asymptotic condition implying that convergence occurs near the
asymptotic regime, i.e. when the spectral radius of the iteration matrix governs the convergence.
We verify the assumption and show that one can learn the surrogate losses using only bandit
feedback from the original costs; notably, despite being non-Lipschitz, we take advantage of the
losses’ unimodal structure to match the optimal ÕpT 2{3q regret for Lipschitz bandits [Kleinberg,
2004]. Our bound also depends only logarithmically on the precision and not at all on the dimen-
sion. Furthermore, we extend to the diagonally shifted setting described before, showing that an
efficient, albeit pessimistic, contextual bandit (CB) method has ÕpT 3{4q regret w.r.t. the instance-
optimal policy that always picks the best ωt. Finally, we show a similar analysis of learning a
relaxation parameter for the more popular (symmetric SOR-preconditioned) CG method.

Our second setting is semi-stochastic, with target vectors bt drawn i.i.d. from a (radially
truncated) Gaussian. This is a reasonable simplification, as convergence usually depends more
strongly on At, on which we make no extra assumptions. We show that the expected cost of
running a symmetric variant of SOR (SSOR) is Op?nq polylogpn

ε
q-Lipschitz w.r.t. ω, so we can

(a) compete with the optimal number of iterations—rather than with the best upper bound—and
(b) analyze more practical, regression-based CB algorithms [Foster and Rakhlin, 2020, Simchi-
Levi and Xu, 2021]. We then show Õp 3

a
T 2
?
nq regret when comparing to the single best ω

and ÕpT 9{11?nq regret w.r.t. the instance-optimal policy in the diagonally shifted setting using
a novel, Chebyshev regression-based CB algorithm. While the results do depend on the dimen-
sion n, the dependence is much weaker than that of past work on data-driven tuning of a related
regression problem [Balcan et al., 2022].

Remark 7.1.1. Likely the most popular algorithms for linear systems are Krylov subspace meth-
ods such as CG. While an eventual goal is to understand how to tune (many) parameters of (pre-
conditioned) CG and other algorithms, SOR is a well-studied method and serves as a good start-
ing point. In fact, we show that our near-asymptotic analysis extends directly, and in the semi-
stochastic setting there is a natural path to (e.g.) SSOR-preconditioned CG, as it can be viewed as
computing polynomials of iteration matrices where SSOR just takes powers. Lastly, apart from
its use as a preconditioner and smoother, SOR is still sometimes preferred for direct use too [Fried
and Metzler, 1978, Van Vleck and Dwyer, 1985, King et al., 1987, Woźnicki, 1993, 2001].
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By studying a scientific computing problem through the lens of data-driven algorithms and
online learning, we also make the following contributions to the latter two fields:

1. Ours is the first head-to-head comparison of two leading theoretical approaches to data-
driven algorithms applied to the same problem. While the algorithms with predictions ap-
proach in Section 7.3 takes better advantage of the scientific computing literature to obtain
(arguably) more interpretable and dimension-independent bounds, data-driven algorithm
design [Balcan, 2021] competes directly with the quantity of interest in Section 7.4 and
enables guarantees for modern CB algorithms.

2. For algorithms with predictions, our near-asymptotic approach may be extendable to other
iterative solvers, as we demonstrate with CG. We also show that such performance bounds
on a (partially-observable) cost are learnable even when the bounds themselves are too
expensive to compute.

3. In data-driven algorithm design, we take the novel theoretical approach of proving conti-
nuity of the expectation of a discrete cost, rather than showing dispersion of its discontinu-
ities [Balcan et al., 2018b] or bounding predicate complexity [Bartlett et al., 2022].

4. We introduce the idea of using CB to set instance-adaptive algorithmic parameters; while
we showed (linear) instance-adaptivity via convexity in Chapters 5 and 6, we now go fur-
ther by taking advantage of multi-instance structure to asymptotically do as well as the
instance-optimal policy.

5. We show that standard discretization-based bandit algorithms are optimal for sequences
of adversarially chosen semi-Lipschitz losses that generalize regular Lipschitz functions
(c.f. Appendix 7.A).

6. We introduce a CB method combining SquareCB [Foster and Rakhlin, 2020] with Cheby-
shev polynomial regression to get sublinear regret on Lipschitz losses (c.f. Appendix 7.B).

Lastly, we show how our proposed methods can lead to practical speedups by applying them
to the numerical simulation of a 2D heat equation and reducing the runtime by 2-3x. This demon-
strates the potential of data-driven scientific computing to significantly impact practical codes.

7.2 Related work

Iterative (discrete) optimization has been studied in learning-augmented algorithms [Dinitz et al.,
2021, Chen et al., 2022, Sakaue and Oki, 2022], and our construction of an upper bound under
asymptotic convergence is inspired by our ARUBA framework, although unlike before we do
not assume access to the bound directly because it depends on hard-to-compute spectral proper-
ties. Algorithms with predictions often involve initializing a computation with a prediction of its
outcome, e.g. a vector near the solution A�1b; we do not consider this because the runtime of
SOR and other solvers depends fairly weakly on the distance to the initialization.

Scientific computing algorithms have been more extensively studied in data-driven algorithm
design, starting with the study by Gupta and Roughgarden [2017] of the sample complexity of
learning the step-size of gradient descent, which can also be used to solve linear systems. While
their sample complexity guarantee is logarithmic in the precision 1{ε, directly applying their
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Lipschitz-like analysis in a bandit setting yields regret with a polynomial dependence; note that
a typical setting of ε is 10�8. Mathematically, their analysis relies crucially on the iteration re-
ducing error at every step, which is well-known not to be the case for SOR (e.g. Trefethen and
Embree [2005, Figure 25.6]). Data-driven numerical linear algebra was studied most explicitly
by Bartlett et al. [2022], who provided sample complexity framework applicable to many algo-
rithms; their focus is on the offline setting where an algorithm is learned from a batch of samples.
While they do not consider linear systems directly, in Appendix 7.4.3 we do compare to the guar-
antee their framework implies for SOR; we obtain similar sample complexity with an efficient
learning procedure, at the cost of a strong distributional assumption on the target vector. Note
that generalization guarantees have been shown for convex quadratic programming—which sub-
sumes linear systems—by Sambharya et al. [2023]; they focus on learning-to-initialize, which
we do not consider because for high precisions the initialization quality usually does not have a
strong impact on cost. Note that all of the above work also does not provide end-to-end guaran-
tees, only e.g. sample complexity bounds.

Online learning guarantees were shown for the related problem of tuning regularized regres-
sion by Balcan et al. [2022], albeit in the easier full information setting and with the target of
reducing error rather than computation. Their approach relies on the dispersion technique [Bal-
can et al., 2018b], which often involves showing that discontinuities in the cost are defined by
bounded-degree polynomials [Balcan et al., 2020a]. While possibly applicable in our setting, we
suspect using it would lead to unacceptably high dependence on the dimension and precision, as
the power of the polynomials defining our decision boundaries is Opn� log εq. Lastly, we believe
our work is notable within this field as a first example of using contextual bandits, and in doing
so competing with the provably instance-optimal policy.

Gradient-based meta-learning can also be viewed as a related field, although theoretical stud-
ies have focused on learning-theoretic notions of cost such as regret or statistical risk. Further-
more, their guarantees are usually on the error after a fixed number of gradient steps rather than
the number of iterations required to converge; targeting the former can be highly suboptimal
in scientific computing applications [Arisaka and Li, 2023]. This latter work, which connects
meta-learning and data-driven scientific computing, analyzes specific case studies for accelerat-
ing numerical solvers, whereas we focus on a general learning guarantee.

Empirically, there are many learned solvers [Luz et al., 2020, Taghibakhshi et al., 2021, Li
et al., 2023] and even full simulation replacements [Karniadakis et al., 2021, Li et al., 2021c];
to our knowledge, theoretical studies of the latter have focused on expressivity [Marwah et al.,
2021]. Amortizing the cost on future simulations [Amos, 2023], these approaches use offline
computation to train models that integrate directly with solvers or avoid solving linear systems
altogether. In contrast, the methods we propose are online and lightweight, both computationally
and in terms of implementation; unlike many deep learning approaches, the additional compu-
tation scales slowly with dimension and needs only black-box access to existing solvers. As a
result, our methods can be viewed as reasonable baselines, and we discuss an indirect compari-
son with the CG-preconditioner-learning approach of Li et al. [2023] in Appendix 7.F. Finally,
note that improving the performance of linear solvers across a sequence of related instances has
seen a lot of study in the scientific computing literature [Parks et al., 2006, Tebbens and Tůma,
2007, Elbouyahyaoui et al., 2021]. To our knowledge, this work does not give explicit guarantees
on the number of iterations, and so a direct theoretical comparison is challenging.
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Algorithm 16: Successive over-relaxation (SOR) with relative convergence condition.
Input: A P Rn�n, b P Rn, parameter ω P p0, 2q, initial vector x P Rn, tolerance ε ¡ 0
D� L� LJ Ð A // D diagonal, L strictly lower triangular
Wω Ð D{ω � L // compute the third normal form
r0 Ð b�Ax // compute initial residual
for k � 0, . . . do

if }rk}2 ¤ ε}r0}2 then
return k // return iteration count (for use in learning)

x � x�W�1
ω rk // solve triangular system and update vector

rk�1 Ð b�Ax // compute the next residual

7.3 Asymptotic analysis of learning the relaxation parameter
We start this section by going over the problem setup and the SOR solver. Then we study the
asymptotic analysis of the method to derive a good performance upper bound to target as a sur-
rogate loss for the true cost function. Finally, we prove and analyze online learning guarantees.

7.3.1 Setup
At each step t � 1, . . . , T of (say) a numerical simulation we get a linear system instance, de-
fined by a matrix-vector pair pAt,btq P Rn�n � Rn, and are asked for a vector x P Rn such
that the norm of its residual or defect r � bt � Atx is small. For now we define “small” in
a relative sense, specifically }Atx � bt}2 ¤ ε}bt}2 for some tolerance ε P p0, 1q; note that
when using an iterative method initialized at x � 0n this corresponds to reducing the residual
by a factor 1{ε, which we call the precision. In applications it can be quite high, and so we will
show results whose dependence on it is at worst logarithmic. To make the analysis tractable, we
make two assumptions (for now) about the matrices A: they are symmetric positive-definite and
consistently-ordered (c.f. Hackbusch [2016, Definition 4.23]). We emphasize that, while not nec-
essary for convergence, both are standard in the analysis of SOR [Young, 1971]; see Hackbusch
[2016, Criterion 4.24] for multiple settings where they holds.

To find a suitable x for each instance in the sequence we apply Algorithm 16 (SOR), which
works by multiplying the current residual r by the inverse of a matrix Wω—derived from the di-
agonal D and lower-triangular component L of A—and then adding the result to the current iter-
ate x. Note that multiplication by W�1

ω is efficient because Wω is triangular. We will measure the
cost of this algorithm by the number of iterations it takes to reach convergence, which we denote
by SORpA,b, ωq, or SORtpωq for short when it is run on the instance pAt,btq. For simplicity, we
will assume that the algorithm is always initialized at x � 0n, and so the first residual is just b.

Having specified the computational setting, we now turn to the learning objective, which is
to sequentially set the parameters ω1, . . . , ωT so as to minimize the total number of iterations:

Ţ

t�1

SORtpωtq �
Ţ

t�1

SORpAt,bt, ωtq (7.1)
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Figure 7.1: Comparison of different cost esti-
mates for solving a linear system where the ma-
trix is a discrete Laplacian of a 100�100 square
domain.

Figure 7.2: Asymptocity as measured by the
difference between the spectral norm at itera-
tion k and the spectral radius, together with its
upper bound τp1� ρpCωqq.

To set ωt at some time t ¡ 1, we allow the learning algorithm access to the costs SORspωsq in-
curred at the previous steps s � 1, . . . , t�1; in the literature on online learning this is referred to
as the bandit or partial feedback setting, to distinguish from the (easier, but unreasonable for us)
full information case where we have access to the cost function SORs at every ω in its domain.

Selecting the optimal ωt using no information about At is impossible, so we must use a
comparator to obtain an achievable measure of performance. In online learning this is done by
comparing the total cost incurred (7.1) to the counterfactual cost had we used a single, best-in-
hindsight ω at every timestep t. We take the minimum over some domain Ω � p0, 2q, as SOR
diverges outside it. While in some settings we will compete with every ω P p0, 2q, we will often
algorithmically use r1, ωmaxs for some ωmax   2. The upper limit ensures a bound on the number of
iterations—required by bandit algorithms—and the lower limit excludes ω   1, which is rarely
used because theoretical convergence of vanilla SOR is worse there for realistic problems, e.g.
those satisfying our assumptions.

This comparison-based approach for measuring performance is standard in online learning
and effectively assumes a good ω P Ω that does well-enough on all problems; in Figure 7.3 (left)
we show that this is sometimes the case. However, the right plot in the same figure shows we
might do better by using additional knowledge about the instance; in online learning this is
termed a context and there has been extensive development of contextual bandit algorithms that
do as well as the best fixed policy mapping contexts to predictions. We will study an example
of this in the diagonally shifted setting, in which At � A � ctIn for scalars ct P R; while
mathematically simple, this structure arises in natural settings, e.g. solving the heat equation
with temporally variable diffusivity, and is well-motivated by other applications [Frommer and
Glässner, 1998, Bellavia et al., 2011, Baumann and van Gijzen, 2015, Anzt et al., 2016, Wang
et al., 2019]. Furthermore, the same learning algorithms can also be extended to make use of
other context information, e.g. rough spectral estimates.
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Figure 7.3: Mean performance of different parameters across forty instances of form
A � 12c�3

20
In, where on the left plot c � Betap2, 6q and on the right c � Betap1{2, 3{2q, the

latter being relatively higher-variance. In both cases the dashed line indicates instance-optimal
performance, the matrix A is a discrete Laplacian of a 100� 100 square domain, and the targets
b are truncated Gaussians.

7.3.2 Establishing a surrogate upper bound
Our first goal is to solve T linear systems almost as fast as if we had used the best fixed ω P Ω
without knowing it in advance. In online learning, this corresponds to minimizing regret, which
for cost functions ℓt : Ω ÞÑ R is defined as

RegretptℓtuTt�1q �
Ţ

t�1

ℓtpωtq �min
ωPΩ

Ţ

t�1

ℓtpωq (7.2)

In particular, since we can upper-bound the objective (7.1) by RegretptSORtuTt�1q plus the opti-
mal cost minωPΩ

°T
t�1 SORtpωq, if we show that regret is sublinear in T then the leading-order

term in the upper bound corresponds to the cost incurred by the optimal fixed ω.
Many algorithms attaining sublinear regret under different conditions on the losses ℓt have

been developed [Cesa-Bianchi and Lugosi, 2006, Bubeck and Cesa-Bianchi, 2012]. However,
few handle losses with discontinuities—i.e. most algorithmic costs—and those that do (neces-
sarily) need additional conditions on their locations [Balcan et al., 2018b, 2020a]. At the same
time, numerical analysis often deals more directly with continuous asymptotic surrogates for
cost, such as convergence rates. Thus we can try to apply ARUBA by finding upper bounds Ut
on SORt that are both (a) learnable and (b) reasonably tight in practice. We can then aim for
overall performance nearly as good as the optimal ω P Ω as measured by these upper bounds:

Ţ

t�1

SORtpωtq ¤
Ţ

t�1

Utpωtq � RegretptUtuTt�1q �min
ωPΩ

Ţ

t�1

Utpωq � opT q �min
ωPΩ

Ţ

t�1

Utpωq (7.3)

A natural approach to get a bound Ut is via the defect reduction matrix Cω � In�ApD{ω�
Lq�1, so named because the residual at iteration k is Ck

ωb and b is the first residual. Under
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Figure 7.4: Solver cost for b drawn from a
truncated Gaussian v.s. b a small eigenvector
of C1.4.

Figure 7.5: Values of τ and β for A � cIn for
different c, where the matrix A is a discrete
Laplacian of a 100� 100 square domain.

our assumptions on A, Young [1971] shows that the spectral radius ρpCωq of Cω is a (nontriv-
ial to compute) piecewise function of ω with a unique minimum in r1, 2q. Since we have error
}Ck

ωb}2{}b}2 ¤ ~Ck
ω~8 at iteration k, ρpCωq � limkÑ8 k

a~Ck
ω~8 asymptotically bounds how

much the error is reduced at each step. It is thus often called the asymptotic convergence rate
and the number of iterations is said to be roughly bounded by � log ε

� log ρpCωq (e.g. Hackbusch [2016,
Equation 2.31b]). However, while it is tempting to use this as our upper bound, in fact it is often
not one at all since Cω is not normal and so SOR often goes through a transient phase where the
residual norm first increases before decreasing [Trefethen and Embree, 2005, Figure 25.6].

Thus we must either take a different approach or make assumptions. Note that one can show
an ω-dependent, finite-time convergence bound for SOR via the energy norm [Hackbusch, 2016,
Corollary 3.45], but this can give rather loose upper bounds on the number of iterations (c.f.
Figure 7.1). Instead, we make the following assumption, which roughly states that convergence
always occurs near the asymptotic regime, where nearness is measured by a parameter τ P p0, 1q:
Assumption 7.3.1. There exists τ P p0, 1q s.t. @ ω P Ω the matrix Cω � In �ApD{ω � Lq�1

satisfies ~Ck
ω~8 ¤ pρpCωq � τp1� ρpCωqqqk at k � min}Ci�1

ω b}2 ε}b}2 i.

This effectively assumes an upper bound ρpCωq � τp1 � ρpCωqq on the empirically ob-
served convergence rate, which gives us a measure of the quality of each parameter ω for
the given instance pA,bq. Note that the specific form of the surrogate convergence rate was
chosen both because it is convenient mathematically—it is a convex combination of 1 and
the asymptotic rate ρpCωq—and because empirically we found the degree of “asymptocity”
as measured by ~Ck

ω~1{k
8 � ρpCωq for k right before convergence to vary reasonably similarly

to a fraction of 1 � ρpCωq (c.f. Figure 7.2). This makes intuitive sense, as the parameters
ω for which convergence is fastest have the least time to reach the asymptotic regime. Fi-
nally, note that since limkÑ8 ~Ck

ω~1{k
8 � ρpCωq, for every γ ¡ 0 there always exists k1 s.t.

~Ck
ω~8 ¤ pρpCωq � γqk @ k ¥ k1; therefore, since 1 � ρpCωq ¡ 0, we view Assumption 7.3.1

not as a restriction on Cω (and thus on A), but rather as an an assumption on ε and b. Specif-
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Algorithm 17: Online tuning of a linear system solver using Tsallis-INF. The
probabilities can be computed using Newton’s method (e.g. Zimmert and Seldin [2021,
Algorithm 2]).

Input: linear system solver SOLVE : Rn�n � Rn � Ω ÞÑ Z¡0, instance sequence
tpAt,btquTt�1 � Rn�n � Rn, normalization K ¡ 0, parameter grid g P Ωd,
step-size η ¡ 0

kÐ 0d // initialize vector of cumulative costs
for t � 1, . . . , T do

pÐ argminpP△d
xk,py � 4K

η

°d
i�1

?
pris // compute probabilities

sample it P rds w.p. prits and set ωt � grits // sample action from grid

krits Ð krits � SOLVEpAt,bt,ωtq�1
prits

// run solver and update cost

ically, the former should be small enough that Ci
ω reaches that asymptotic regime for some i

before the criterion }Ck
ωb}2 ¤ ε}b}2 is met; for similar reasons, the latter should not happen to

be an eigenvector corresponding to a tiny eigenvalue of Cω (c.f. Figure 7.4 (left)).
Having established this surrogate of the spectral radius, we can use it to obtain a reasonably

tight upper bound U on the cost (c.f. Figure 7.1). Crucially for learning, we can also establish
the following properties via the functional form of ρpCωq derived by Young [1971]:

Lemma 7.3.1. Define Upωq � 1 � � log ε
� logpρpCωq�τp1�ρpCωqqq , α � τ � p1 � τqmaxtβ2, ωmax � 1u,

and ω� � 1� β2{p1�
a
1� β2q2, where β � ρpIn �D�1Aq. Then the following holds:

1. U bounds the iteration cost and is itself bounded: SORpA,b, ωq   Upωq ¤ 1� � log ε
� logα

2. U is decreasing towards ω�, and it is �p1�τq log ε
α log2 α

-Lipschitz on ω ¥ ω� if either τ ¥ 1
e2

or
β2 ¥ 4

e2
p1� 1

e2
q

Lemma 7.3.1 introduces a quantity α � τ�p1�τqmaxtβ2, ωmax�1u that appears in the upper
bound Upωq and its Lipschitz constant. It will in some sense measure the difficulty of learning:
if α is close to 1 for many instances then learning will be harder. Crucially, all quantities in the
result are spectral and do not depend on the dimensionality of the matrix. Furthermore, while in
the next subsection we will require that τ and β satisfy the conditions for (partial) Lipschitzness
in the second item above, this does not truly reduce the matrices our analysis is applicable to, as
we can always re-define τ in Assumption 7.3.1 to be at least 1{e2. Our analysis does not strongly
depend on this latter restriction; it is largely done for simplicity and because it does not exclude
too many settings of interest. In-particular, we find for ε ¥ 10�8 that τ is typically indeed larger
than 1

e2
, and furthermore τ is likely quite high whenever β is small, as it suggests the matrix is

near-diagonal and so ω near one will converge extremely quickly (c.f. Figure 7.5 (right)).

7.3.3 Performing as well as the best fixed ω
Having shown these properties of U , we now show that it is learnable via Tsallis-INF [Abernethy
et al., 2015, Zimmert and Seldin, 2021], a bandit algorithm which at each instance t samples ωt
from a discrete probability distribution over a grid of d relaxation parameters, runs SOR with ωt

237



on the linear system pAt,btq, and uses the number of iterations required SORtpωtq as feedback to
update the probability distribution over the grid. The scheme is described in full in Algorithm 17.
Note that it is a relative of the simpler and more familiar Exp3 algorithm [Auer et al., 2002], but
has a slightly better dependence on the grid size d. In Theorem 7.3.1, we bound the cost of using
the parameters ωt suggested by Tsallis-INF by the total cost of using the best fixed parameter
ω P Ω at all iterations—as measured by the surrogate bounds Ut—plus a term that increases
sublinearly in T and a term that decreases in the size of the grid.

Theorem 7.3.1. Define αt � τt � p1 � τtqmaxtβ2
t , ωmax � 1u, where βt � ρpIn �D�1

t Atq and
τt is the minimal τ satisfying Assumption 7.3.1 and the second part of Lemma 7.3.1. If we run
Algorithm 17 using SOR initialized at x � 0n as the solver, gris � 1 � pωmax � 1q i

d
as the pa-

rameter grid, normalization K ¥ � log ε
� logαmax

for αmax � maxt αt, and step-size η � 1{?T then the
expected number of iterations is bounded as

E
Ţ

t�1

SORtpωtq ¤ 2K
?
2dT �

Ţ

t�1

� log ε

d log2 αt
� min

ωPp0,ωmaxs

Ţ

t�1

Utpωq (7.4)

Using ωmax � 1�max
t

�
βt

1�
?

1�β2
t


2

,K � � log ε
� logαmax

, and d � 3

b
T
2
γ̄2 log2 αmax, for γ̄ � 1

T

T°
t�1

1
log2 αt

,

yields

E
Ţ

t�1

SORtpωtq ¤ 3 log
1

ε
3

d
2γ̄T 2

log2 αmax

� min
ωPp0,2q

Ţ

t�1

Utpωq

¤ 3 log
1

ε
3

d
2T 2

log4 αmax

� min
ωPp0,2q

Ţ

t�1

Utpωq
(7.5)

Thus asymptotically (as T Ñ 8) the average cost on each instance is that of the best fixed
ω P p0, 2q, as measured by the surrogate loss functions Utpωq. The result clearly shows that the
difficulty of the learning problem can be measured by how close the values of αt are to one. As
a quantitative example, for the somewhat “easy” case of τt ¤ 0.2 and βt ¤ 0.9, the first term is
  T log 1

ε
—i.e. we take at most log 1

ε
excess iterations on average—after around 73K instances.

The proof of Theorem 7.3.1 (c.f. Section 7.D) takes advantage of the fact that the up-
per bounds Ut are always decreasing wherever they are not locally Lipschitz; thus for any
ω P p0, ωmaxs the next highest grid value in g will either be better or Op1{dq worse. This al-
lows us to obtain the same OpT 2{3q rate as the optimal Lipschitz-bandit regret [Kleinberg, 2004],
despite Ut being only semi-Lipschitz. One important note is that setting ωmax, K, and d to obtain
this rate involves knowing bounds on spectral properties of the instances. The optimal ωmax re-
quires a bound on maxt βt akin to that used by solvers like Chebyshev semi-iteration; assuming
this and a reasonable sense of how many iterations are typically required is enough to estimate
αmax and then set d � 3

b
T {2

log2 αmax
, yielding the right-hand bound in (7.5). Lastly, we note that

Tsallis-INF adds quite little computational overhead: it has a per-instance update cost of Opdq,
which for d � Op 3

?
T q is likely to be negligible in practice.

238



Figure 7.6: Average across forty trials of the time (in iterations) needed to solve 5K diagonally
shifted systems with At � A � 12c�3

20
In for c � Betap1

2
, 3
2
q (left) and c � Betap2, 6q (right);

as in Figure 7.3, A is a 100 � 100 Laplacian and the targets b are sampled from truncated
Gaussians. The plots on the upper row compare different learning schemes while those on the
bottom compare Tsallis-INF to different fixed choices of ω.

7.3.4 The diagonally shifted setting

The previous analysis is useful when a fixed ω is good for most instances pAt,btq. A non-fixed
comparator can be much stronger (c.f. the dashed lines in Figure 7.3), so in this section we study
how to use additional, known structure in the form of diagonal shifts: At � A � ctIn for a
fixed A and scalars ct. It is easy to see that selecting an instance-dependent ωt using the value
of ct is exactly the contextual bandit setting [Beygelzimer et al., 2011], in which the compara-
tor is a fixed policy f : R ÞÑ Ω that maps ct to a good parameter. In this setting we bound
Regretf ptℓtuTt�1q �

°T
t�1 ℓtpωtq �

°T
t�1 ℓtpfpctqq, so if f is the optimal mapping from ct to ω

then sublinear regret implies doing nearly optimally at every instance. In our case, the policy
ω� minimizing Ut is a well-defined function of At (c.f. Lemma 7.3.1) and thus of ct [Young,
1971]; in fact, the policy is Lipschitz w.r.t. ct (c.f. Lemma 7.D.1). This allows us to use a very
simple algorithm—discretizing the space of offsets ct into m intervals and running Tsallis-INF
separately on each—to obtain OpT 3{4q regret w.r.t. the instance-optimal policy ω�:
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Theorem 7.3.2 (c.f. Theorem 7.D.1). Suppose all offsets ct lie in rcmin, cmin � Cs for some cmin ¡
�λminpAq, and define L � 1�βmax

βmax

?
1�β2

max

�
λminpDq�cmin�1
λminpDq�cmin

	2

for βmax as in Theorem 7.3.1. Then there

is a discretization of this interval s.t. running Algorithm 17 separately on each sequence of
contexts in each bin with appropriate parameters results in expected cost

E
Ţ

t�1

SORtpωtq ¤ 4

d
54C3L3T

log2 αmax

� 4 log 1
ε

log 1
αmax

4
?
24CLT 3 �

Ţ

t�1

Utpω�pctqq (7.6)

Observe that, in addition to αt, the difficulty of this learning problem also depends on the
maximum spectral radius βmax of the Jacobi matrices In � D�1pctqApctq via the Lipschitz con-
stant L of ω�.

7.3.5 Tuning preconditioned conjugate gradient
CG is perhaps the most-used solver for positive definite systems; while it can be run without
tuning, in practice significant acceleration can be realized via a good preconditioner such as
(symmetric) SOR. The effect of ω on CG performance can be somewhat distinct from that of
regular SOR, requiring a separate analysis. We use the condition number analysis of Axelsson
[1994, Theorem 7.17] to obtain an upper bound UCGpωq on the number of iterations required
CGpA,b, ωq to solve a system. While the resulting bounds match the shape of the true perfor-
mance less exactly than the SOR bounds (c.f. Figure 7.9), they still provide a somewhat reason-
able surrogate. After showing that these functions are also semi-Lipschitz (c.f. Lemma 7.D.2),
we can bound the cost of tuning CG using Tsallis-INF:

Theorem 7.3.3. Set µt � ρpDtA
�1
t q, µmax � maxt µt,

?
µ � 1

T

°T
t�1

?
µ
t
, and κmax � maxt κpAtq.

If mint µt� 1 is a positive constant then for Algorithm 17 using preconditioned CG as the solver
there exists a parameter grid g P r2?2� 2, ωmaxsd and normalization K ¡ 0 such that

E
Ţ

t�1

CGtpωtq � O

�
� 3

gffe log2
?
κmax

ε

log2
?
µmax�1?
µmax�1

?
µT 2

�
� min

ωPp0,2q

Ţ

t�1

Utpωq (7.7)

Observe that the rate in T remains the same as for SOR, but the difficulty of learning now
scales mainly with the spectral radii of the matrices DtA

�1
t .

7.4 A stochastic analysis of symmetric SOR
Assumption 7.3.1 in the previous section effectively encodes the idea that convergence will not
be too quick for a typical target vector b, e.g. it will not be a low-eigenvalue eigenvector of Cω

for some otherwise suboptimal ω (e.g. Figure 7.4 (left)). Another way of staying in a “typical
regime” is randomness, which is what we assume in this section. Specifically, we assume that
bt � mtut @ t P rT s, where ut P Rn is uniform on the unit sphere and m2

t is a χ2 random vari-
able with n degrees of freedom truncated to r0, ns. Since the standard n-dimensional Gaussian
is exactly the case of untruncated m2

t , b can be described as coming from a radially truncated
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normal distribution. Note also that the exact choice of truncation was done for convenience; any
finite bound ¥ n yields similar results.

We also make two other changes: (1) we study symmetric SOR (SSOR) and (2) we use an
absolute convergence criterion, i.e. }rk}2 ¤ ε, not }rk}2 ¤ ε}r0}2. Symmetric SOR (c.f. Algo-
rithm 23) is very similar to the original, except the linear system being solved at every step is now
symmetric: W̆ω � ω

2�ωWωD
�1WJ

ω . Note that the defect reduction matrix C̆ω � In�AW̆�1
ω is

still not normal, but it is (non-orthogonally) similar to a symmetric matrix, A�1{2C̆ωA
1{2. SSOR

is twice as expensive per-iteration, but often converges in fewer steps, and is commonly used
as a base method because of its spectral properties (e.g. by the Chebyshev semi-iteration, c.f.
Hackbusch [2016, Section 8.4.1]).

7.4.1 Regularity of the expected cost function
We can then show that the expected cost EbSSORpA,b, ωq is Lipschitz w.r.t. ω (c.f. Corol-
lary 7.E.1). Our main idea is the observation that, whenever the error }C̆k

ωb}2 falls below the
tolerance ε, randomness should ensure that it does not fall so close to the threshold that the error
}C̆k

ω1b}2 of a nearby ω1 is not also below ε. Although clearly related to dispersion [Balcan et al.,
2018b], here we study the behavior of a continuous function around a threshold, rather than the
locations of the costs’ discontinuities.

Our approach has two ingredients, the first being Lipschitzness of the error }C̆k
ωb}2 at each

iteration k w.r.t. ω, which ensures }C̆k
ω1b}2 P pε, ε � Op|ω � ω1|qs if }C̆k

ωb}2 ¤ ε   }C̆k
ω1b}2.

The second ingredient is anti-concentration, specifically that the probability that }C̆k
ωb}2 lands

in pε, ε � Op|ω � ω1|qs is Op|ω � ω1|q. While intuitive, both steps are made difficult by power-
ing: for high k the random variable }C̆k

ωb}2 is highly concentrated because ρpC̆ωq ! 1; in fact
its measure over the interval is Op|ω � ω1|{ρpC̆ωqkq. To cancel this, the Lipschitz constant of
}C̆k

ωb}2 must scale with ρpC̆ωqk, which we can show because switching to SSOR makes C̆k
ω is

similar to a normal matrix. The other algorithmic modification we make—using absolute rather
than relative tolerance—is so that }C̆k

ωb}22 is (roughly) a sum of i.i.d. χ2 random variables; note
that the square of relative tolerance criterion }C̆k

ωb}22{}b}22 does not admit such a result. At the
same time, absolute tolerance does not imply an a.s. bound on the number of iterations if }b}2 is
unbounded, which is why we truncate its distribution.

Lipschitzness follows because |EbSSORpωq � EbSSORpω1q| can be bounded using Jensen’s
inequality by the probability that ω and ω1 have different costs k � l, which is at most the prob-
ability that }C̆k

ωb}2 or }C̆l
ω1b}2 land in an interval of length Op|ω � ω1|q. Note that the Lipschitz

bound includes an Õp?nq factor, which results from C̆k
ω having stable rank ! n due to power-

ing. Regularity of EbSSOR leads directly to regret guarantee for the same algorithm as before,
Tsallis-INF:

Theorem 7.4.1. Define κmax � maxt κpAtq to be the largest condition number and βmin �
mint ρpIn�D�1

t Atq. Then there exists K � Ωplog n
ε
q s.t. running Algorithm 17 with SSOR has

regret

E
Ţ

t�1

SSORtpωtq � min
ωPr1,ωmaxs

Ţ

t�1

SSORtpωq ¤ 2K
?
2dT � 32K4T

β4
mind

c
2nκmax

π
(7.8)
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Algorithm 18: ChebCB: SquareCB with a follow-the-leader oracle and polynomial
regressor class.

Input: linear system solver SOLVE : Rn�n � Rn � Ω ÞÑ Z¡0, instance sequence
tpAt,btquTt�1 � Rn�n � Rn, context sequence tctuTt�1 � rcmin, cmin � Cs, learning
rate η ¡ 0, parameter grid g P Ωd, Chebyshev polynomial features
f : rcmin, cmin � Cs ÞÑ Rm�1, normalizations K,L,N ¡ 0

for t � 1, . . . , T do

θi Ð argmin
|θr0s|¤ 1

N
,|θrjs|¤ 2CL

KNj

t�1°
s�1
is�i

�xθ, fpcsqy � ks
KN

�2 @ i P rds // update models

sris Ð xθi, fpctqy @ i P rds // compute model predictions
i� Ð argminiPrds sris
pris Ð 1

d�ηpsris�sri�sq @ i � i� // compute probability of each action

pri�s Ð 1�°
i�i� pris

sample it P rds w.p. prits and set ωt � grits // sample action
kt Ð SOLVEpAt,bt, ωtq � 1 // run solver and update cost

Setting d � ΘpK2 3
?
nT q yields a regret bound of Oplog2 n

ε
3
a
T 2
?
nq. Note that, while this

shows convergence to the true optimal parameter, the constants in the regret term are much worse,
not just due to the dependence on n but also in the powers of the number of iterations. Thus this
result can be viewed as a proof of the asymptotic (T Ñ 8) correctness of Tsallis-INF for tuning
SSOR.

7.4.2 Chebyshev regression for diagonal shifts

For the shifted setting, we can use the same approach to prove that EbSSORpA � cIn,b, ωq is
Lipschitz w.r.t. the diagonal offset c (c.f. Corollary 7.E.2); for n � Op1q this implies regret
ÕpT 3{4?nq for the same discretization-based algorithm as in Section 7.3.4. While optimal for
Lipschitz functions, the method does not readily adapt to nice data, leading to various smoothed
comparators [Krishnamurthy et al., 2019, Majzoubi et al., 2020, Zhu and Mineiro, 2022]; how-
ever, as we wish to compete with the true optimal policy, we stay in the original setting and
instead highlight how this section’s semi-stochastic analysis allows us to study a very different
class of bandit algorithms.

In particular, since we are now working directly with the cost function rather than an upper
bound, we are able to utilize a more practical regression-oracle algorithm, SquareCB [Foster and
Rakhlin, 2020]. It assumes a class of regressors h : rcmin, cmin � Cs � rds ÞÑ r0, 1s with at least
one function that perfectly predicts the expected performance EbSSORpA� cIn,b,grisq of each
action gris given the context c; a small amount of model misspecification is allowed. If there
exists an online algorithm that can obtain low regret w.r.t. this function class, then SquareCB can
obtain low regret w.r.t. any policy.

To apply it we must specify a suitable class of regressors, bound its approximation error,
and specify an algorithm attaining low regret over this class. Since m terms of the Chebyshev
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series suffice to approximate a Lipschitz function with error Õp1{mq, we use Chebyshev poly-
nomials in c with learned coefficients—i.e. models xθ, fpcqy � °m

j�0 θrjsPjpcq, where Pj is the
jth Chebyshev polynomial—as our regressors for each action. To keep predictions bounded,
we add constraints |θrjs| � Op1{jq, which we can do without losing approximation power due
to the decay of Chebyshev series coefficients. This allows us to show Opdm log T q regret for
Follow-The-Leader via Hazan et al. [2007, Theorem 5] and then apply Foster and Rakhlin [2020,
Theorem 5] to obtain the following guarantee:

Theorem 7.4.2 (Corollary of Theorem 7.B.4). Suppose cmin ¡ �λminpAq. Then Algorithm 18
with appropriate parameters has regret w.r.t. any policy f : rcmin, cmin � Cs ÞÑ Ω of

E
Ţ

t�1

SSORtpωtq �
Ţ

t�1

SSORtpfpctqq ¤ Õ

�
d
?
mnT � T

?
dn

m
� T

?
n

d

�
(7.9)

Setting d � ΘpT 2{11q and m � ΘpT 3{11q yields ÕpT 9{11?nq regret, so we asymptotically
attain instance-optimal performance, albeit at a rather slow rate. The rate in n is also worse
than e.g. our semi-stochastic result for comparing to a fixed ω (c.f. Theorem 7.4.1), although
to obtain this the latter algorithm uses d � Op 3

?
nq grid points, making its overhead nontrivial.

Experimentally, we compare ChebCB to the Section 7.3.4 algorithm that uses multiple runs of
Tsallis-INF (among other methods), and find that, despite the former’s worse guarantees, it seems
able to converge to an instance-optimal policy much faster than the latter (c.f. Figure 7.7 (left)).

7.4.3 Additional theoretical implications and comparisons

Before going into details of our experimental results, we briefly discuss some additional sample
complexity implications of our work and compare our results to two theoretical baselines.

Sample complexity implications and a comparison to the Goldberg-Jerrum framework

While not the focus of our work, we briefly note the generalization implications of our semi-
stochastic analysis. Suppose for any α ¡ 0 we have T � Õp 1

α2 polylog
n
δ
q i.i.d. samples

from a distribution D over matrices At satisfying the assumptions in Section 7.3.1 and truncated
Gaussian targets bt. Then empirical risk minimization ω̂ � argminω̂Pg

°T
t�1 SSORpAt,bt, ωq

over a uniform grid g P r1, ωmaxsd of size d � Õp?nT q will be α-suboptimal w.p. ¥ 1� δ:

Corollary 7.4.1. Let D be a distribution over matrix-vector pairs pA,bq P Rn�n � Rn where
A satisfies the SOR conditions and for every A the conditional distribution of D given A over
Rn is the truncated Gaussian. For every T ¥ 1 consider the algorithm that draws T samples
pAt,btq � D and outputs ω̂ � argminω̂Pg

°T
t�1 SSORtpωq, where gris � 1 � pωmax � 1q i�1{2

d

and d � L
?
T

K
for L as in Corollary 7.E.1. Then T � Õ

�
1
α2 polylog

n
εδ

�
samples suffice to ensure

EDSSORpA,b, ω̂q ¤ minωPr1,ωmaxs SSORpA,b, ωq � α holds w.p. ¥ 1� δ.

This matches directly applying the GJ framework of Bartlett et al. [2022, Theorem 3.3] to
our problem:

243



Corollary 7.4.2. In the same setting as Corollary 7.4.1 but generalizing the distribution to any
one whose target vector support is

?
n-bounded, empirical risk minimization (running ω̂ �

argminωPr1,ωmaxs
°T
t�1 SSORtpωq) has sample complexity Õ

�
1
α2 polylog

n
εδ

�
.

At the same, recent generalization guarantees for tuning regularization parameters of linear
regression by Balcan et al. [2022, Theorem 3.2]—who applied dual function analysis [Balcan
et al., 2021a]—have a quadratic dependence on the instance dimension. Unlike both results—
which use uniform convergence—our bound also uses a (theoretically) efficient learning proce-
dure, at the cost of a strong (but in our view reasonable) distributional assumption on the target
vectors.

Approximating the spectral radius of the Jacobi iteration matrix

Because the asymptotically optimal ω is a function of the spectral radius β � ρpM1q of the
Jacobi iteration matrix, a simple baseline is to approximate β using an eigenvalue solver and
then run SOR with the corresponding approximately best ω. It is difficult to compare our results
to this approach directly, since the baseline will always run extra matrix iterations while bandit
algorithms will asymptotically run no more than the comparator. Furthermore, M1 is not a
normal matrix, a class for which it turns out to be surprisingly difficult to find bounds on the
number of iterations required to approximate its largest eigenvalue within some tolerance α ¡ 0.

A comparison can be made in the diagonal offset setting by modifying this baseline somewhat
and making the assumption that A has a constant diagonal, so that M1 is symmetric and we can
use randomized block-Krylov to obtain a β̂ satisfying |β̂2 � β2| � Opεq in Õp1{?εq iterations
w.h.p. [Musco and Musco, 2015, Theorem 1]. To modify the baseline, we consider a preprocess-
ing algorithm which discretizes rcmin, cmin �Cs into d grid points, runs k iterations of randomized
block-Krylov on the Jacobi iteration matrix of each matrix A� cIn corresponding to offsets c in
this grid, and then for each new offset ct we set ωt using the optimal parameter implied by the
approximate spectral radius of the Jacobi iteration matrix of A�cIn corresponding to the closest
c in the grid. This algorithm thus does Õpdkq matrix-vector products of preprocessing, and since
the upper bounds Ut are 1

2
-Hölder w.r.t. ω while the optimal policy is Lipschitz w.r.t. β2 over an

appropriate domain r1, ωmaxs it will w.h.p. use at most Õpa1{k2 � 1{dq more iterations at each
step t P rT s compared to the optimal policy. Thus w.h.p. the total regret compared to the optimal
policy ω� is

Ţ

t�1

SORtpωtq � Õ
�
dk � T {d� T {

?
k
	
�

Ţ

t�1

Utpω�pctqq (7.10)

Setting d � 4
?
T and k � ?

T yields the rate ÕpT 3{4q, which can be compared directly to our
ÕpT 3{4q rate for the discretized Tsallis-INF algorithm in Theorem 7.3.2. The rate of approximat-
ing ρpM1q thus matches that of our simplest approach, although unlike the latter (and also unlike
ChebCB) it does not guarantee performance as good as the optimal policy in the semi-stochastic
setting, where ω� might not be optimal. Intuitively, the randomized block-Krylov baseline will
also suffer from spending computation on points c P rcmin, cmin�Cs that it does not end up seeing.
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Figure 7.7: Cost of running the numerical simulation of the 2D heat equation in iterations (left)
and normalized total wallclock time (center & right); the normalization is by the average number
of seconds required when using vanilla CG to solve the linear systems (the latter’s runtime is
displayed as numbers in the middle). The right plot shows 95% confidence intervals across the
three trials for Tsallis-INF and ChebCB at the three higher-dimensional evaluations.

7.5 Accelerating a 2D heat equation solver
In the experimental results so far we have looked at linear system instances pA � cIn,bq where
both the target vectors b and the coefficients of the diagonal offsets determining the system ma-
trix are synthetic, i.i.d. random variables. As demonstrated in Figure 7.6, the algorithms we
propose are indeed able to accelerate solving sequences of such instances. However, the adver-
sarial setting in which we proved our results suggests that we can go beyond i.i.d. coefficients c,
and our argument for studying the semi-stochastic setting in Section 7.4 was that it preserved the
properties of “typical” instances by not making any additional assumptions on A. Furthermore,
while we have mainly focused on tuning SOR alone, in Section 7.3.5 we also gave evidence of
the applicability of our approach to tuning its use as a preconditioner for CG. Thus it is relevant
to ask whether the proposed methods can accelerate the solving of non-synthetic sequences of
linear system instances using solvers that are more commonly used in state-of-the-art scientific
computing systems.

We answer in the affirmative by evaluating our algorithms on a sequence of linear system
instances coming from a numerical simulation. In particular, we apply our methods to the task
of simulating the 2D heat equation

Btupt,xq � κptq∆xupt,xq � fpt,xq (7.11)

over the domain x P r0, 1s2 and t P r0, 5s. We use a five-point finite difference discretization with
size denoted nx � 1{∆x, so that when an implicit time-stepping method such as Crank-Nicolson
is applied with timestep ∆t the numerical simulation requires sequentially solving a sequence
of linear systems pAt,btq with At � Ipnx�1q2 � κppt � 1{2q∆tqA for a fixed matrix A (that
depends on ∆t and ∆x) corresponding to the discrete Laplacian of the system [LeVeque, 2007,
Equation 12.29]. Each At is positive definite, and moreover note that mathematically the setting
is equivalent to an instantiation of the diagonal offset setting introduced in Section 7.3.4, since
the linear system is equivalent to ctIpnx�1q2 �A � ctbt for ct � 1{κppt� 1{2q∆tq. However, for
simplicity we will simply pass κppt�1{2∆tqq as contexts to CB methods. In the experiments, we
set κptq � maxt0.01 sinp2πtqq,�10 sinp2πtqu, a functional form chosen to make the instance-
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Figure 7.8: Parameters chosen at each timestep of a 2D heat simulation, overlaid on a contour
plot of the cost of solving the system at step t with parameter ω (left); the periodic behavior of
the instance-optimal action is driven by the time-varying diffusion coefficient κptq (right).

optimal ω behave roughly periodically (c.f. Figure 7.8). For the complete problem specification,
as well as algorithmic changes, see Appendix 7.F.

We set ∆t � 10�3, thus making T � 5000, and evaluate our approach across five spatial dis-
cretizations: nx � 25, 50, 100, 200, 400; the resulting linear systems have size n � pnx� 1q2. At
each timestep, we solve each linear system using CG to relative precision ε � 10�8. The base-
lines we consider are vanilla (unpreconditioned) CG and SSOR-CG with ω � 1 or ω � 1.5; as
comparators we also evaluate performance when using the best fixed ω in hindsight at each round,
and when using the instance-optimal ω at each round. Recall that we showed that Tsallis-INF has
sublinear regret w.r.t. the surrogate cost of the best fixed ω of SSOR-CG (Theorem 7.3.3), and
that ChebCB has sublinear regret w.r.t. the instance-optimal ω for SOR in the semi-stochastic
setting of Section 7.4. Since both methods are randomized, we take the average of three runs.

Figure 7.7 (left) shows both methods substantially outperform all three baselines, except at
nx � 25 and nx � 50, when ω � 1.5 almost recovers the best fixed parameter; furthermore,
ChebCB does better then the best fixed ω in hindsight in most cases. In Figure 7.7 (center & right)
we also show that—at high-enough dimensions—this reduction in the number of iterations leads
to an overall improvement in the runtime of the simulation. Lastly, we give additional details
for the plot in Figure 7.8 (left), which shows the actions taken by the various algorithms for a
simulation at nx � 100. For clarity all lines are smoothed using a moving average with a window
of 25, and for Tsallis-INF and ChebCB we also shade � one standard deviation computed over
this window. The plot shows that Tsallis-INF converges to an action close to the best fixed ω in
hindsight, and that ChebCB fairly quickly follows the instance-optimal path, with the standard
deviation of both decreasing over time.

Our empirical results demonstrate the utility of learning as the problem scale increases. In
particular, at lower dimensions the learning-based approaches have slower overall runtime be-
cause of overhead associated with learning; ChebCB in particular solves a small constrained lin-
ear regression at each step. However, this overhead does not scale with matrix dimension, and we
expect data-driven approaches to have the greatest impact in higher dimensions. Figure 7.7 (cen-
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ter & right) also show that vanilla (unpreconditioned) CG is faster than SSOR-preconditioned
CG with ω � 1 despite having more iterations because each iteration is more costly; thus learn-
ing can be needed to making preconditioned methods useful at all. Finally, we also observe that
ChebCB is much better in practice than Tsallis-INF-CB, despite having a worse regret bound.

To get a comparative sense of how these improvements compare with previous approaches
to data-driven scientific computing, we can consider the results in Li et al. [2023, Table 1],
who learn a (deep-learning-based) preconditioner for CG to simulate the 2D heat equation. In
the precision ε � 10�8 case their solver takes 2.3 seconds, while Gauss-Seidel (i.e. SSOR
with ω � 1) takes 2.995 seconds, a roughly 1.3x improvement. In our most closely comparable
setting, Tsallis-INF and ChebCB are roughly 2.4x and 3.5x faster than Gauss-Seidel, respectively
(and have other advantages such as simplicity and being deployable in an online fashion without
pretraining). We caveat this comparison by noting that Li et al. [2023] consider a statistical, not
online, learning setup, and their matrix structure may be significantly different—it results from a
finite element method rather than finite differences.1

7.6 Conclusion
We have shown that bandit algorithms provably learn to parameterize SOR, an iterative linear
system solver, and do as well asymptotically as the best fixed ω in terms of either (a) a near-
asymptotic measure of cost or (b) expected cost. We further show that a modern contextual
bandit method attains near-instance-optimal performance. Both procedures require only the iter-
ation count as feedback and have limited computational overhead settings, making them practical
to deploy. Furthermore, the theoretical techniques—especially the use of contextual bandits for
taking advantage of instance structure and Section 7.4.1’s conversion of anti-concentrated Lip-
schitz criteria to Lipschitz expected costs—have the strong potential to be applicable to other
domains of data-driven algorithm design. Finally, we also take initial steps towards accelerating
practical numerical simulations using such approaches in Section 7.5, where we demonstrate 2-
3x speedups over default approaches. Such performance improvements suggest expanding these
ideas to more general settings and integrating them into more practical codebases is a useful
direction for future work.

At the same time, only the near-asymptotic results yield reasonable bound on the instances
needed to attain good performance, with the rest having large spectral and dimension-dependent
factors; the latter is the most obvious area for improvement. Furthermore, the near-asymptotic
upper bounds are somewhat loose for sub-optimal ω and for preconditioned CG, and as discussed
in Section 7.3.4 do not seem amenable to regression-based CB. Beyond this, a natural direction
is to attain semi-stochastic results for non-stationary solvers like preconditioned CG, or either
type of result for the many other algorithms in scientific computing. Practically speaking, work
on multiple parameters—e.g. the spectral bounds used for Chebyshev semi-iteration, or multiple
relaxation parameters for Block-SOR—would likely be most useful. A final direction is to de-
sign online learning algorithms that exploit properties of the losses beyond Lipschitzness, or CB
algorithms that take better advantage of such functions.

1A direct comparison is difficult without the authors’ code, which as of this writing has not been made public.
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Algorithm 19: General form of Tsallis-INF. The probabilities can be computed
using Newton’s method (e.g. Zimmert and Seldin [2021, Algorithm 2]).

Input: loss sequence tℓt : ra, bs ÞÑ r0, KsuTt�1, action set g P ra, bsd, step-sizes
η1, . . . , ηT ¡ 0

kÐ 0d // initialize vector of cumulative losses
for t � 1, . . . , T do

pÐ argminpP△d
xk,py � 4K

ηt

°d
i�1

?
pris // compute probabilities

sample it P rds with probability prits // sample index of an action
krits Ð krits � ℓtpgritsq{prits // play action and update losses

7.A Semi-Lipschitz bandits

We consider a sequence of adaptively chosen loss functions ℓ1, . . . , ℓT : ra, bs ÞÑ r0, Ks on an
interval ra, bs � R and upper bounds u1, . . . , uT : ra, bs ÞÑ R satisfying utpxq ¥ ℓtpxq @ t P
rT s, x P ra, bs, where rT s denotes the set of integers from 1 to T . Our analysis will focus on the
Tsallis-INF algorithm of Abernethy et al. [2015], which we write in its general form in Algo-
rithm 19, although the analysis extends easily to the better-known (but sub-optimal) Exp3 [Auer
et al., 2002]. For Tsallis-INF, the following two facts follow directly from known results:

Theorem 7.A.1 (Corollary of Abernethy et al. [2015, Corollary 3.2]). If ηt � 1{?T @ t P rT s
then Algorithm 19 has regret E

°T
t�1 ℓtpgritsq �miniPrds

°T
t�1 ℓtpgrisq ¤ 2K

?
2dT .

Theorem 7.A.2 (Corollary of Zimmert and Seldin [2021, Theorem 1]). If ηt � 2{?t @ t P rT s
then Algorithm 19 has regret E

°T
t�1 ℓtpgritsq �miniPrds

°T
t�1 ℓtpgrisq ¤ 4K

?
dT � 1.

We now define a generalization of the Lipschitzness condition that trivially generalizes reg-
ular L-Lipschitz functions, as well as the notion of one-sided Lipschitz functions studied in the
stochastic setting by Dütting et al. [2023].

Definition 7.A.1. Given a constant L ¥ 0 and a point z P ra, bs, we say a function f : ra, bs ÞÑ R
is pL, zq-semi-Lipschitz if fpxq � fpyq ¤ L|x� y| @ x, y s.t. |x� z| ¤ |y � z|.

We now show that Tsallis-INF with bandit access to ℓt on a discretization of ra, bs attains
OpT 2{3q regret w.r.t. any fixed x P ra, bs evaluated by any comparator sequence of semi-Lipschitz
upper bounds ut. Note that guarantees for the standard comparator can be recovered by just
setting ℓt � ut @ t P rT s, and that the rate is optimal by Kleinberg [2004, Theorem 4.2].

Theorem 7.A.3. If ut ¥ ℓt is pLt, zq-semi-Lipschitz @ t P rT s then Algorithm 19 using action
space g P ra, bsd s.t. gris � a� b�a

d
i @ i P rd� 1s and grds � z has regret

E
Ţ

t�1

ℓtpgritsq � min
xPra,bs

Ţ

t�1

utpxq ¤ 2K
?
2dT � b� a

d

Ţ

t�1

Lt (7.12)

Setting d � 3

b
pb�aq2L̄2T

2K2 for L̄ � 1
T

°T
t�1 Lt yields the bound 3 3

a
2pb� aqL̄K2T 2.
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Algorithm 20: Contextual bandit algorithm using multiple runs of Tsallis-INF across a
grid of contexts.

Input: loss sequence tℓt : ra, bs ÞÑ r0, KsuTt�1, context sequence tctuTt�1 � rc, c� Cs,
action set g P ra, bsd, discretization h P rc, c� Csm

for j � 1, . . . ,m do
Aj � Tsallis-INFpg, t 2?

t
uTt�1q // start m runs of Algorithm 19

for t � 1, . . . , T do
jt � min argminjPrms |hrjs � ct| // pick element of h closest to ct
it Ð Ajt // get action from jtth run of Algorithm 19
ℓtpgritsq Ñ Ajt // pass loss to jtth run of Algorithm 19

Proof. Let r�ug denote rounding to the closest element of g in the direction of z. Then for
x P ra, bs we have |rxug � z| ¤ |x � z| and |rxug � x| ¤ b�a

d
, so applying Theorem 7.A.1 and

this fact yields

E
Ţ

t�1

ℓtpgritsq ¤ 2K
?
2dT �min

iPrds

Ţ

t�1

ℓtpgrisq ¤ 2K
?
2dT �min

iPrds

Ţ

t�1

utpgrisq

� 2K
?
2dT � min

xPra,bs

Ţ

t�1

utprxugq

¤ 2K
?
2dT � b� a

d

Ţ

t�1

Lt � min
xPra,bs

Ţ

t�1

utpxq
(7.13)

For contextual bandits, we restrict to pLt, bq-semi-Lipschitz functions and Lf -Lipschitz poli-
cies, obtaining OpT 3{4q regret; this rate matches known upper and lower bounds for the case
where losses are Lipschitz in both actions and contexts [Lu et al., 2010, Theorem 1], although
this does not imply optimality of our result.

Theorem 7.A.4. If ut ¥ ℓt is pLt, bq-semi-Lipschitz and ct P rc, c � Cs @ t P rT s then Algo-
rithm 20 using action space gris � a� b�a

d
i and hrjs � c� C

m
pj � 1

2
q as the grid of contexts has

regret w.r.t. any Lf -Lipschitz policy f : rc, c� Cs ÞÑ ra, bs of

E
Ţ

t�1

ℓtpgritsq �
Ţ

t�1

utpπpctqq ¤ m� 4K
?
dmT �

�
CLf
m

� b� a

d


 Ţ

t�1

Lt (7.14)

Setting d � 4

b
pb�aq3L̄2T
4CLfK2 , m � 4

b
C3L3

f L̄
2T

4pb�aqK2 yields regret 4 4
a
4K2L̄2pb� aqCLfT 3 � 4

b
C3L3

f L̄
2T

4pb�aqK2 .

Proof. Define r�uh to be the operation of rounding to the closest element of h, breaking ties
arbitrarily, and set rT sj � tt P rT s : rctuh � hrjsu. Furthermore, define rxsg to be the smallest
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element gris in g s.t. x� CLf
2m

¤ gris (or maxiPrds gris if such an element does not exist).

E
Ţ

t�1

ℓtpgritsq � E
m̧

j�1

¸
tPrT sj

ℓtpgritsq �min
iPrds

¸
tPrT sj

ℓtpgrisq �min
iPrds

¸
tPrT sj

ℓtpgrisq

¤ m� 4
m̧

j�1

K
b
d|rT sj| �min

iPrds

¸
tPrT sj

ℓtpgrisq

¤ m� 4K
?
dmT �

m̧

j�1

min
iPrds

¸
tPrT sj

utpgrisq

¤ m� 4K
?
dmT �

Ţ

t�1

utprfprctuhqsgq

(7.15)

where the first inequality follows by Theorem 7.A.2, the second applies Jensen’s inequality to
the left term and ut ¥ ℓt on the right, and the last uses optimality of each i for each j. Now
since f is Lf -Lipschitz we have by definition of r�uh that |fpctq � fprctuhq| ¤ CLf

2m
. This in turn

implies that fpctq ¤ rfprctuhqsg ¤ fpctq � CLf
m

� b�a
d

by definition of g and r�sg. Since ut is
pLt, bq-semi-Lipschitz, the result follows.

7.B Chebyshev regression for contextual bandits

7.B.1 Preliminaries

We first state a Lipschitz approximation result that is standard but difficult-to-find formally. For
all j P Z¥0 we will use Pjpxq � cospj arccospxqq to denote the jth Chebyshev polynomial of the
first kind.

Theorem 7.B.1. Let f : r�1s ÞÑ r�Ks be a K-bounded, L-Lipschitz function. Then for each
integer m ¥ 0 there exists θ P Rm�1 satisfying the following properties:

1. |θr0s| ¤ K and |θrjs| ¤ 2L{j @ j P rms
2. maxxPr�1s

���fpxq �°m
j�0 θrjsPjpxq

��� ¤ π� 2
π
logp2m�1q
m�1

L

Proof. Define θr0s � 1
π

³1
�1

fpxq?
1�x2dx and for each j P rms let θrjs � 2

π

³1
�1

fpxqPjpxq?
1�x2 dx be the

jth Chebyshev coefficient. Since
³1
�1

dx?
1�x2 � π we trivially have |θr0s| ¤ K and by Trefethen

[2008, Theorem 4.2] we also have

|θrjs| ¤ 2

πj

» 1

�1

|f 1pxq|?
1� x2

dx ¤ 2L

πj

» 1

�1

dx?
1� x2

� 2L{j (7.16)

for all j P rms. This shows the first property. For the second, by Trefethen [2008, Theorem 4.4]
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Algorithm 21: SquareCB for contextual bandits using an online regression oracle.
Input: loss sequence tℓt : g ÞÑ r0, 1suTt�1, context sequence tctuTt�1, learning rate η ¡ 0,

online regression oracle A
for t � 1, . . . , T do

sris Ð Apct,grisq @ i P rds // compute oracle prediction
i� Ð argmini sris
pris Ð 1

d�ηpsris�sri�sq @ i � i� // compute action probabilities

pri�s Ð 1�°
i�i� pris

sample it P rds with probability prits // sample index of a grid point
ppct,gritsq, ℓtpgritsqq Ñ A // pass context, action, loss to oracle

we have that

max
xPr�1,1s

�����fpxq �
m̧

j�0

θrjsPjpxq
����� ¤

�
2� 4 logp2m� 1q

π2



max
xPr�1s

|fpxq � p�mpxq|

¤
�
2� 4 logp2m� 1q

π2



Lπ

2pm� 1q �
π � 2

π
logp2m� 1q
m� 1

L

(7.17)

where p�m is the (at most) m-degree algebraic polynomial that best approximates f on r�1s and
the second inequality is Jackson’s theorem [Cheney, 1982, page 147].

Corollary 7.B.1. Let f : ra, bs ÞÑ r�Ks be a K-bounded, L-Lipschitz function on the interval
ra, bs. Then for each integer m ¥ 0 there exists θ P Rm�1 satisfying the following properties:

1. |θr0s| ¤ K and |θrjs| ¤ Lpb�aq
j

2. maxxPra,bs
���fpxq �°m

j�0 θrjsPjp 2
b�apx� aq � 1q

��� ¤ π� 2
π
logp2m�1q

2pm�1q Lpb� aq

Proof. Define gpxq � fp b�a
2
px � 1q � aq, so that g : r�1s ÞÑ r�Ks is K-bounded and L b�a

2
-

Lipschitz. Applying Theorem 7.B.1 yields the result.

We next state regret guarantees for the SquareCB algorithm of Foster and Rakhlin [2020] in
the non-realizable setting:

Theorem 7.B.2 (Foster and Rakhlin [2020, Theorem 5]). Suppose for any sequence of actions
a1, . . . , aT an online regression oracle A playing regressors h1, . . . , hT P H has regret upper
bound

UpT q ¥
Ţ

t�1

pℓtpct, atq � htpct, atqq2 �min
hPH

Ţ

t�1

pℓtpct, atq � hpct, atqq2 (7.18)

If all losses and regressors have range r0, 1s and D h P H s.t. Eℓtpaq � hpct, aq � αtpct, aq for
|αtpaq| ¤ α then Algorithm 21 with learning rate η � 2

a
dT {pUpT q � 2α2T q has expected
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Algorithm 22: SquareCB for Lipschitz contextual bandits using Follow-the-Leader.
Input: loss sequence tℓt : ra, bs ÞÑ r0, KsuTt�1, context sequence tct P rc, c� CsuTt�1,

learning rate η ¡ 0, action set g P ra, bsd, featurizer f : rc, c� Cs ÞÑ Rm,
normalizations L,N ¡ 0

for t � 1, . . . , T do
for i � 1, . . . , d do

θi Ð argmin
|θr0s|¤ 1

N
,|θrjs|¤ 2CL

KNj

°
sPrt�1si

�
xθ, fpcsqy � ℓtpgrissq

KN

	2

// update models

sris Ð xθi, fpctqy // compute model predictions

i� Ð argmini sris
pris Ð 1

d�ηpsris�sri�sq @ i � i� // compute action probabilities

pri�s � 1�°
i�i� pris

sample it P rds with probability prits and play action grits

regret w.r.t the the optimal policy f : ra, bs ÞÑ g bounded as

E
Ţ

t�1

ℓtpgritsq �
Ţ

t�1

ℓtphpctqq ¤ 2
a
dTUpT q � 5αT

?
d (7.19)

SquareCB requires an online regression oracle to implement, for which we will use the
Follow-the-Leader scheme. It has the following guarantee for squared losses:

Theorem 7.B.3 (Corollary of Hazan et al. [2007, Theorem 5]). Consider the follow-the-leader
algorithm, which sequentially sees feature-target pairs px1, y1q, � � � , pxT , yT q P X � r0, 1s for
some subset X � r0, 1sn and at each step sets θt�1 � argminθPΘ

°T
t�1pxxt,θy � ytq2 for some

subset Θ � Rn. This algorithm has regret
Ţ

t�1

pxxt,θty � ytq2 �min
θPΘ

pxxt, θy � ytq2 ¤ 4B2n

�
1� log

XDT

2B



(7.20)

forDΘ the diameter maxθ,θ1 }θ�θ1}2 of Θ,X � maxtPrT s }xt}2, andB � maxtPrT s,θPΘ |xxt,θy|.

7.B.2 Regret of ChebCB
Theorem 7.B.4. Suppose Eℓtpxq is an Lx-Lipschitz function of actions x P ra, bs and an Lc-
Lipschitz function of contexts ct P rc, c � Cs. Then Algorithm 22 run with learning rate η �
2
a
dT {pUpT q � 2α2T q for UpT q and α as in Equations 7.22 and 7.23, respectively, action set

gris � a � pb � aq i�1{2
d

, Chebyshev features frjspctq � Pjpctq, and normalizations L � Lc and
N � 2� 4CLc

K
p1� logmq has regret w.r.t. any policy f : rc, c� Cs ÞÑ ra, bs of

E
Ţ

t�1

ℓtpgritsq � ℓtpfpctqq � Õ

�
Lcd

?
mT � LcT

?
d

m
� LxT

d

�
(7.21)

Setting d � ΘpT 2{11q and m � ΘpT 3{11q yields a regret ÕpmaxtLc, LxuT 9{11q.
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Proof. Observe that the method is equivalent to running Algorithm 21 with the follow-the-

leader oracle over an dpm�1q-dimensional space Θ with diameter
c

d
N2

�
1� 4C2L2

c

K2

°m
j�1

1
j2

	
¤

?
dK2�2dC2L2

cπ
2{3

KN
, features bounded by

b
1�°m

j�1 Pjpctq ¤
?
m� 1, and predictions bounded

by |xfpcq,θy| ¤ }θ}1}fpcq}8 ¤ 1
N
� 2CLc

KN

°m
j�1 ¤ 1

2
. Thus by Theorem 7.B.3 the oracle has

regret at most

UpT q � dpm� 1q
�
1� log

T
a
dpm� 1qpK2 � 2C2L2

cπ
2{3q

KN

�
(7.22)

Note that, to ensure the regressors and losses have range in r0, 1s we can define the former
as hpc,grisq � xfpcq,θiy � 1

2
and the latter as ℓt

KN
� 1

2
and Algorithm 22 remains the same.

Furthermore, the error of the regression approximation is then

α � π � 2
π
logp2m� 1q

2KNpm� 1q CLc (7.23)

We conclude by applying Theorem 7.B.2, unnormalizing by multiplying the resulting regret by
KN , and adding the approximation error Lxpb�aq

2d
due to the discretization of the action space.

7.C SOR preliminaries
We will use the following notation:

• Mω � In�pD{ω�Lq�1A is the matrix of the first normal form [Hackbusch, 2016, 2.2.1]
• Wω � D{ω � L is the matrix of the third normal form [Hackbusch, 2016, Section 2.2.3]
• Cω � In �ApD{ω � Lq�1 � In �AW�1

ω � AMωA
�1 is the defect reduction matrix

• M̆ω � In � 2�ω
ω
pD{ω � LJq�1DpD{ω � Lq�1A is the matrix of the first normal form in

the case of SSOR [Hackbusch, 2016, 2.2.1]
• W̆ω � ω

2�ω pD{ω � LqD�1pD{ω � LJq is the matrix of the third normal form in the case
of SSOR [Hackbusch, 2016, Section 2.2.3]

• C̆ω � In� 2�ω
ω

ApD{ω�LJq�1DpD{ω�Lq�1 � In�AW̆�1
ω � AM̆ωA

�1 is the defect
reduction matrix in the case of SSOR

We further derive bounds on the number of iterations for SOR and SSOR using the following
energy norm estimate:

Theorem 7.C.1 (Corollary of Hackbusch [2016, Theorem 3.44 & Corollary 3.45]). If A ¡ 0

and ω P p0, 2q then }Mω}2A ¤ 1� 2�ω
ω
γ

p 2�ω
2ω q2� γ

ω
�ρpD�1LD�1LJq� 1

4

, where γ � 1� ρpD�1pL�LJqq.

Corollary 7.C.1. Let Kω be the maximum number of iterations that SOR needs to reach error

ε ¡ 0. Then for any ω P p0, 2q we have Kω ¤ 1�
� log ε

2
?
κpAq

� log νωpAq , where νωpAq is the square root of
the upper bound in Theorem 7.C.1.
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Proof. By Hackbusch [2016, Equations 2.22c & B.28b] we have at each iteration k of Algo-
rithm 16 that

}rk}2
}r0}2 ¤

2

}r0}2~A
1
2~8}Mk

ω}A}A� 1
2 r0}2 ¤ 2

a
κpAq}Mω}kA (7.24)

Setting the r.h.s. equal to ε and solving for k yields the result.

Corollary 7.C.2. Let K̆ω be the maximum number of iterations that SSOR (Algorithm 23) needs

to reach (absolute) error ε ¡ 0. Then for any ω P p0, 2q we have K̆ω ¤ 1�
� log ε

2}b}2
?
κpAq

�2 log νωpAq , where
νωpAq is the square root of the upper bound in Theorem 7.C.1.

Proof. By Hackbusch [2016, Equations 2.22c & B.28b] we have at each iteration k of Algo-
rithm 16 that

}rk}2 ¤ 2~A 1
2~8}M̆k

ω}A}A� 1
2 r0}2 ¤ 2}b}2

a
κpAq}Mω}2kA (7.25)

Setting the r.h.s. equal to ε and solving for k yields the result.

7.D Near-asymptotic proofs

7.D.1 Proof of Lemma 7.3.1

Proof. For the first claim, suppose l � min
}Ckωb}2 ε}b}2

k ¡ Upωq. Then

ε ¤ }Cl�1
ω b}2
}b}2 ¤ ~Cl�1

ω ~8}b}2
}b}2 ¤ pρpCωq � τp1� ρpCωqqql�1   ε (7.26)

so by contradiction we must have min
}Ckωb}2 ε}b}2

k ¤ Upωq. Now by Hackbusch [2016, Theo-

rem 4.27] and similarity of Cω and Mω we have that ρpCωq � 1
4

�
ωβ �a

ω2β2 � 4pω � 1q
	2

for ω   ω� � 1 �
�

β

1�
?

1�β2


2

and ω � 1 otherwise. Therefore on ω   ω� we have ρpCωq ¤
ρpC1q � β2 and on ω ¥ ω� we have ρpCωq ¤ ωmax�1. This concludes the second part of the first
claim. The first part of the second claim follows because ρpCωq is decreasing on ω   ω�. For
the second part, we compute the derivative |BωUpωq| � pτ�1q log ε

pτ�p1�τqpω�1qq log2pτ�p1�τqpω�1qq . Since
τ � p1� τqpω � 1q ¥ 1

e2
by assumption—either by nonnegativity of ω � 1 if τ ¥ 1

e2
or because

otherwise β2 ¥ 4
e2
p1 � 1

e2
q implies τ � p1 � τqpω � 1q ¥ p1 � 1

e2
q
�

β

1�
?

1�β2


2

¥ 1
e2

—the

derivative is increasing in ω and so is at most �p1�τq log ε
α log2 α

.
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7.D.2 Proof of Theorem 7.3.1
Proof. The first bound follows from Theorem 7.A.3 by noting that Lemma 7.3.1 implies that the
functionsUt�1 are

�
�p1�τtq log ε
αt log

2 αt
, ωmax

	
-semi-Lipschitz over r1, ωmaxs and the functions SORt�1 ¤

Ut�1 are � log ε
� logαt

-bounded. To extend the comparator domain to p0, ωmaxs, note that Lemma 7.3.1.2
implies that all Ut are decreasing on ω P p0, 1q. To extend the comparator domain again in the
second bound, note that the setting of ωmax implies that the minimizer 1 � β2

t {p1 �
a
1� β2

t q of
each Ut is at most ωmax, and so all functions Ut are increasing on ω P pωmax, 2q.

7.D.3 Approximating the optimal policy
Lemma 7.D.1. Define Apcq � A � cIn for all c P rcmin,8q, where cmin ¡ �λminpAq. Then

ω�pcq � 1 �
�

βc?
1�β2

c�1


2

is
6βmaxp1�βmaxq{

?
1�β2

max�?
1�β2

max�1
	2

�
λminpDq�cmin�1
λminpDq�cmin

	2

-Lipschitz, where βmax �
maxc βc is the maximum over βc � ρpIn � pD� cInq�1pA� cInqq.
Proof. We first compute

Bcβc � BcρpIn � pD� cInq�1pA� cInqq
� BcλmaxpIn � pD� cInq� 1

2 pA� cInqpD� cInq� 1
2 q

� vJ1 BcppIn � pD� cInq� 1
2 pA� cInqpD� cInq� 1

2 qqv1

� �vJ1 pBcppD� cInq� 1
2 qpA� cInqpD� cInq� 1

2

� pD� cInq� 1
2BcpA� cInqpD� cInq� 1

2

� pD� cInq� 1
2 pA� cInqBcppD� cInq� 1

2 qqv1

� 1

2
vJ1 ppD� cInq� 3

2 pA� cInqpD� cInq� 1
2 � 2cpD� cInq�1

� pD� cInq� 1
2 pA� cInqpD� cInq� 3

2 qv1

� 1

2
vJ1 pIn � pD� cInq�1qpD� cInq� 1

2 pA� cIqpD� cInq� 1
2 pIn � pD� cInq�1qv1

� 1

2
vJ1 pD� cInq� 1

2 pA� cInqpD� cInq� 1
2v1

� 1

2
vJ1 pD� cInq� 3

2 pA� cInqpD� cInq� 3
2v1 � cvJ1 pD� cInq�1v1

� 1

2
vJ1 pIn � pD� cInq�1qpD� cInq� 1

2 pA� cIqpD� cInq� 1
2 pIn � pD� cInq�1qv1

� 1

2
vJ1 pD� cInq� 1

2 pA� 3cInqpD� cInq� 1
2v1

� 1

2
vJ1 pD� cInq� 3

2 pA� cInqpD� cInq� 3
2v1

(7.27)

The first component is positive and the matrix has eigenvalues bounded by
�
1� 1

λminpDq�c

	2
1�βc
2

,
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while the last term is negative and the matrix has If c ¥ 0 the positive component has spectral
radius at most 1�βc

2

�
1� 1

pλminpDq�cq2
	

. If the middle term is negative, subtracting 2A from the

middle matrix shows that its magnitude is bounded by 3
2
p1�βcq. If the middle term is positive—

which can only happen for negative c—its magnitude is bounded by �3c{2
λminpDq�c ¤ 3λminpDq{2

λminpDq�c . Com-

bining all terms yields a bound of 3
�
λminpDq�c�1
λminpDq�c

	2

p1� βcq. We then have that

|Bcω�pcq| �
2βc{

a
1� β2

c�a
1� β2

c � 1
�2 |Bcβc| � 6βcp1� βcq{

a
1� β2

c�a
1� β2

c � 1
�2

�
λminpDq � c� 1

λminpDq � c


2

(7.28)

The result follows because 2xp1�xq{?1�x2
p?1�x2�1q2 increases monotonically on x P r0, 1q and the bound

itself decreases monotonically in c

Theorem 7.D.1. Suppose ct P rcmin, cmin � Cs @ t P rT s, where cmin ¡ �λminpAq, and define
βmax � maxt βt. Then if we run Algorithm 20 with losses pSORtp�q � 1q{K normalized by

K ¥ � log ε
� logαmax

for αmax � maxt αt, action set gris � 1�pωmax�1q i
d

for ωmax ¥ 1�
�

βmax

1�
?

1�β2
max


2

,

and context discretization hrjs � cmin � C
m

�
j � 1

2

�
, then the number of iterations will be bounded

in expectation as

E
Ţ

t�1

SORtpωtq ¤ m� 4K
?
dmT �

�
CL�{m
ωmax � 1

� 1

d


 Ţ

t�1

� log ε

log2 αt
�

Ţ

t�1

Utpω�pctqq (7.29)

where L� is the Lipschitz constant from Lemma 7.D.1. Setting ωmax � 1 �
�

β2
max

1�
?

1�β2
max


2

,

K � � log ε
� logαmax

, d � 4

b
γ̄2T log2 αmax

24CL
, and m � 4

a
54C3L3γ̄2T log2 αmax where γ̄ � 1

T

°T
t�1

1
log2 αt

and L̃ �
�
λminpDq�cmin�1
λminpDq�cmin

	2
1�βmax

βmax

?
1�β2

max
, yields

E
Ţ

t�1

SORtpωtq ¤ 4

b
54C3L3γ̄2T log2 αmax � 4 log

1

ε
4

d
24CLγ̄T 3

log2 αmax

�
Ţ

t�1

Utpω�pctqq

¤ 4

d
54C3L3T

log2 αmax

� 4 log 1
ε

log 1
αmax

4
?
24CLT 3 �

Ţ

t�1

Utpω�pctqq
(7.30)

Proof. The bound follows from Theorem 7.A.4 by noting that Lemma 7.3.1 implies that the
functionsUt�1 are

�
�p1�τtq log ε
αt log

2 αt
, ωmax

	
-semi-Lipschitz over r1, ωmaxs and the functions SORt�1 ¤

Ut � 1 are � log ε
� logαt

-bounded. Note that for the choice of ωmax we the interval r1, ωmaxs contains the
range of the optimal policy ω�, and further by Lemma 7.D.1 it is L�-Lipschitz over rcmin, cmin �
Cs.
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Figure 7.9: Comparison of actual cost of running SSOR-preconditioned CG and the upper
bounds computed in Section 7.D.4 as functions of the tuning parameter ω P r2?2 � 2, 1.9s
on various domains.

7.D.4 Extension to preconditioned CG

While CG is an iterative algorithm, for simplicity we define it as the solution to a minimization
problem in the Krylov subspace:

Definition 7.D.1. CGpA,b, ωq � min}Axk�b}2¤ε k for xk � argmin
x�PkpW̆�1

ω AqW̆�1
ω b

}x � A�1b}A
where the minimum is taken over all degree k polynomials Pk : Rn�n ÞÑ Rn�n.

Lemma 7.D.2. Let A be a positive-definite matrix and b P Rn any vector. Define

UCGpωq � 1�
τ log

�?
κpAq
ε

�
b

κpAq
ε2

� 1




� log

�
1� 4

2�
b

4
2�ω�

µp2�ωq
ω

� 4νω
2�ω


 (7.31)

for µ � λmaxpDA�1q ¥ 1, ν � λmaxppLD�1LJ � D{4qA�1q P r�1{4, 0s, and τ the smallest
constant (depending on A and b) s.t. UCG ¥ CGpA,b, �q. Then the following holds

1. τ P p0, 1s
2. if µ ¡ 1 then UCG is minimized at ω� � 2

1�
b

2
µ
p1�2νq

and monotonically increases away

from ω� in both directions
3. UCG is

�
µ�4ν�4

4µν�2µ�1
τ
a
µ
?
2, 2

?
2� 2

	
-semi-Lipschitz on r2?2� 2, 2q

4. if µ ¤ µmax then UCG ¤ 1� τ logp 2
ε

?
κpAqq

� log
�
1� 2

1�?γ
	 on r2?2� 2, 2

1�1{?µmax
s, where γ ¤ 7�3µmax

8
.

Proof. By Hackbusch [2016, Theorem 10.17], the kth residual of SSOR-preconditioned CG
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satisfies

}rkpωq}2 � }b�Axk}2 ¤
a
~A~8}A�1b� xk}A ¤

a
~A~8 2xk

1� x2k
}A�1b� x0}A

¤ 2
a
κpAqxk

1� x2k
}r0}2

(7.32)

for x �
?
κpW̆�1

ω Aq�1?
κpW̆�1

ω Aq�1
� 1� 2?

κpW̆�1
ω Aq�1

. By Axelsson [1994, Theorem 7.17] we have

κpW̆�1
ω Aq ¤ 1� µ

4ω
p2� ωq2 � ων

2� ω
(7.33)

Combining the two inequalities above yields the first result. For the second, we compute the
derivative w.r.t. ω:

BωUCG

τ
� 8p2ν � 1qω2 � 4µp2� ωq2

p2� ωqω
b

4
2�ω � µp2�ωq

ω
� 4νω

2�ω pµp2� ωq2 � 4ωpνω � ω � 1qq
(7.34)

Since ν P r�1{4, 0s and µ ¡ 1, we have that µp2�ωq2�4ωpνω�ω�1q ¥ p2�ωq2�3ω2�4ω,
which is nonnegative. Therefore the derivative only switches signs once, at the zero of specified
in the second result. The monotonic increase property follows by positivity of the numerator on
ω ¡ ω�. The third property follows by noting that since UCG is increasing on ω ¡ ω� we only
needs to consider ω P r2?2� 2, ω�s, where the numerator of the derivative is negative; here we
have

|BωUCG|
τ

¤ 4µp2� ωq
ω
b

4
2�ω � µp2�ωq

ω
� 4νω

2�ω pµp2� ωq2 � 4ωpνω � ω � 1qq
¤ µ� 4ν � 4

4µν � 2µ� 1

b
µ
?
2

(7.35)
where we have used µp2 � ωq2 � 4ωpνω � ω � 1q ¥ 16µν�8µ�4

µ�4ν�4
and ω ¥ 2

?
2 � 2. For the last

result we use the fact that κpW̆�1
ω Aq is maximal at the endpoints of the interval and evaluate it

on those endpoints to bound γ ¤ 1
2
� maxtpµmax�1q?2,3

?
µmaxu

4
¤ 1

2
� 3pµmax�1q

8
.

We plot the bounds from Lemma 7.D.2 in Figure 7.9. Note that τ P p0, 1s is an instance-
dependent parameter that is defined to effectively scale down the function as much as possible
while still being an upper bound on the cost; it thus allows us to exploit the shape of the upper
bound without having it be too loose. This is useful since upper bounds for CG are known to
be rather pessimistic, and we are able to do this because our learning algorithms do not directly
access the upper bound anyway. Empirically, we find τ to often be around 3{4 or larger.

Proof of Theorem 7.3.3

Proof. By Lemma 7.D.2 the functions Ut � 1 ¥ CGt � 1 are
�

µt�4νt�4
4µtνt�2µt�1

a
µt
?
2, 2

?
2� 2

	
-

semi-Lipschitz and logp 2
ε

?
κmaxq

log
?
6µmax�14�4?
6µmax�14�4

-bounded on r2?2� 2, 2
1�1{?µmax

s; note that by the assumption
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on mint µt and the fact that νt ¥ 1{4 the semi-Lipschitz constant is Op?µtq. Therefore the
desired regret w.r.t. any ω P r2?2 � 2, 2

1�1{?µmax
s follows, and extends to the rest of the interval

because Lemma 7.D.2.2 also implies all functions Ut are increasing away from this interval.

7.E Semi-stochastic proofs

7.E.1 Regularity of the criterion

Lemma 7.E.1. }C̆k
ωb}2 is ρpC̆ωqk�1}b}2k

aa
κpAq

�
1

2�ωmax
� 2ρpDA�1q

	
-Lipschitz w.r.t. ω P Ω.

Proof. Taking the derivative, we have that

|Bω}C̆k
ωb}2| �

|BωrpC̆k
ωbqJC̆k

ωbs|
}C̆k

ωb}2

�

∣∣∣pC̆k
ωbqJ

°k
i�1

�
C̆i�1
ω pBωC̆ωqC̆k�i

ω b
�∣∣∣

}C̆k
ωb}2

¤
�����

ķ

i�1

C̆i�1
ω pBωC̆ωqC̆k�i

ω b

�����
8

¤
ķ

i�1

���C̆i�1
ω pBωC̆ωqC̆k�i

ω b
���
8

�
ķ

i�1

���A 1
2A� 1

2 C̆i�1
ω A

1
2A� 1

2 pBωC̆ωqA 1
2A� 1

2 C̆k�i
ω A

1
2A� 1

2b
���
8

¤ }b}2
a
κpAq

ķ

i�1

~pA� 1
2 C̆ωA

1
2 qi�1~8~A� 1

2 pBωC̆ωqA 1
2~8~pA� 1

2 C̆ωA
1
2 qk�i~8

� ρpC̆ωqk�1}b}2k~A� 1
2 pBωC̆ωqA 1

2~8
a
κpAq

(7.36)

where the first inequality is due to Cauchy-Schwartz, the second is the triangle inequality, and
the third is due to the sub-multiplicativity of the norm. The last line follows by symmetry of
A� 1

2 C̆ωA
1
2 , which implies that the spectral norm of any of power equals that power of its spec-

tral radius, which by similarity is also the spectral radius of C̆ω. Next we use a matrix calculus
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tool [Laue et al., 2018] to compute

BωC̆ω �
�
1

ω
� 2� ω

ω2



ApD{ω � LJq�1DpD{ω � Lq�1

� 2� ω

ω3
ApD{ω � LJq�1DpD{ω � LJq�1DpD{ω � Lq�1

� 2� ω

ω3
ApD{ω � LJq�1DpD{ω � Lq�1DpD{ω � Lq�1

�
�

1

2� ω
� 1

ω



AW̆�1

ω � 1

ω2
ApD{ω � LJq�1DW̆�1

ω � 1

ω2
AW̆�1

ω DpD{ω � Lq�1

(7.37)

so since ~A 1
2W̆�1

ω A
1
2~8 � ~In �A� 1

2 C̆ωA
1
2~8 ¤ 1� ρpA� 1

2 C̆ωA
1
2 q ¤ 2 and

~A 1
2 pD{ω � LJq�1DW̆�1

ω A
1
2~8 � ~A 1

2W̆�1
ω DpD{ω � Lq�1A

1
2~8

� }W̆�1
ω DW�1

ω A}A
¤ }W̆�1

ω D}A}In �Mω}A
¤ 2~W̆�1

ω A}A}A� 1
2DA� 1

2~8
� 2ρpDA�1q}In � M̆ω}A ¤ 4ρpDA�1q

(7.38)

we have by applying ω P r1, ωmaxs that

~A� 1
2 pBωC̆ωqA 1

2~8 ¤ 2

2� ω
� 2

ω
� 8ρpDA�1q

ω2
¤ 4

2� ωmax

� 8ρpDA�1q (7.39)

Lemma 7.E.2. }C̆k
ωpcqb}2 is 10

λminpAq�cmin
ρpC̆ωqk�1pcq}b}2k

a
κpAq-Lipschitz w.r.t. all c ¥ cmin ¡

�λminpApcqq, where pcq denotes matrices derived from Apcq � A� cIn.

Proof. We take the derivative as in the above proof of Lemma 7.E.1:

|Bc}C̆k
ωpcqb}2| � ρpC̆ωpcqqk�1}b}2k~A� 1

2 pcqpBcC̆ωpcqqA 1
2 pcq~8

a
κpApcqq (7.40)

We then again apply the matrix calculus tool of Laue et al. [2018] to get

BcC̆ωpcq � �2� ω

ω
pDpcq{ω � LJq�1DpcqpDpcq{ω � Lq�1

� 2� ω

ω2
ApcqpDpcq{ω � LJq�2DpcqpDpcq{ω � Lq�1

� 2� ω

ω
ApcqpDpcq{ω � LJq�1pDpcq{ω � Lq�1

� 2� ω

ω2
ApcqpDpcq{ω � LJq�1DpcqpDpcq{ω � Lq�2

� �2� ω

ω
pW̆�1

ω pcq �ApcqW�T
ω pcqW�1

ω pcqq

� 2� ω

ω2
ApcqpW�T

ω pcqW̆�1
ω pcq � W̆�1

ω pcqW�1
ω pcqq

(7.41)
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Algorithm 23: Symmetric SOR with absolute convergence condition.
Input: A P Rn�n, b P Rn, parameter ω P p0, 2q, initial vector x P Rn, tolerance ε ¡ 0
D� L� LJ Ð A // D diagonal, L strictly lower triangular

W̆ω Ð ω
2�ω pD{ω � LqD�1pD{ω � LJq // compute third normal form

r0 Ð b�Ax // compute initial residual
for k � 0, . . . do

if }rk}2 ¡ ε then
return k // return iteration count (for use in learning)

x � x� W̆�1
ω rk // solve triangular systems and update vector

rk�1 Ð b�Ax // compute the next residual

Output: k

By symmetry of W̆�1
ω pcq we have

~A� 1
2 pcqW̆�1

ω pcqA 1
2 pcq~8 � }W̆�1

ω pcq}Apcq ¤ }W̆�1
ω pcqApcq}Apcq~A�1pcq~8

� }In � M̆ωpcq}ApcqρpA�1pcqq ¤ 2ρpA�1pcqq
(7.42)

Furthermore

~A 1
2 pcqW�T

ω pcqW�1
ω pcqA 1

2 pcq~8 � ~A� 1
2 pcqpIn �MJ

ω pcqqpIn �MωpcqqA� 1
2 pcq~8

¤ ~A�1~8}In �Mωpcq}2Apcq ¤ 4ρpA�1pcqq (7.43)

and

~A 1
2 pcqW�T

ω pcqW̆�1
ω pcqA 1

2 pcq~8 � ~A 1
2 pcqW̆�1

ω pcqW�1
ω pcqA 1

2 pcq~8 ¤ 4ρpA�1pcqq (7.44)

so by the lower bound of 1
λminpAq�cmin

on ρpA�1pcqq we have the result.

7.E.2 Anti-concentration

Lemma 7.E.3. Let X P Rn�n be a nonzero matrix and b � mu be a product of independent
random variables m ¥ 0 and u P Rn with m2 P r0, ns a χ2-squared random variable with n
degrees of freedom truncated to the interval r0, ns and u distributed uniformly on the surface
of the unit sphere. Then for any interval I � pε, ε � ∆s � R for ε,∆ ¡ 0 we have that

Prp}Xb}2 P Iq ¤ 2∆
ρpXq

b
2
π

.

Proof. Let f be the p.d.f. of b and g be the p.d.f. of g � N p0n, Inq. Then by the law of total
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probability and the fact that b follows the distribution of g conditioned on }b}22 ¤ n we have that

Prp}Xb}2 P Iq �
»
}x}22¤n

Prp}Xb}2 P I|b � xqdfpxq

�
³
}x}22¤n Prp}Xb}2 P I|b � xqdgpxq³

}x}22¡n dgpxq

¤ 2

»
}x}22¤n

Prp}Xg}2 P I|g � xqdgpxq

¤ 2

»
Rn

Prp}Xg}2 P I|g � xqdgpxq � 2Prp}Xg}2 P Iq

(7.45)

where the second inequality uses the fact that a χ2 random variable with n degrees of freedom
has more than half of its mass below n. Defining the orthogonal diagonalization QJΛQ � XJX
and noting that Qg � N p0n, Inq, we then have that

}Xg}22 � pQgqJΛQg �
ņ

i�1

Λri,isχ2
i (7.46)

for i.i.d. χ1, . . . , χn � N p0, 1q. Let h, h1, and h�1 be the densities of
°n
i�1Λri,isχ2

i , Λr1,1sχ2
1, and°n

i�2Λri,isχ2
i , respectively, and let upaq be the uniform measure on the interval pa, a�2ε∆�∆2s.

Then since the density of the sum of independent random variables is their convolution, we can
apply Young’s inequality to obtain

Prp}Xg}2 P Iq � Prp}Xg}22 P pε2, pε�∆q2sq

¤ max
a¥ε2

» a�2ε∆�∆2

a

hpxqdx

� max
a¥ε2

» 8

�8
upx� aqhpxqdx

� }u � h}L8prε,8qq
� }u � h1 � h�1}L8prε,8qq
¤ }u � h1}L8prε,8qq}h�1}L1prε,8qq

¤ max
a¥ε2

» a�2ε∆�∆2

a

h1pxqdx

� max
a¥ε

» a�2ε∆�∆2

a

e
� x

2Λr1,1sa
2πΛr1,1sx

dx

¤ max
a¥ε2

d
2pa� 2ε∆�∆2q

πΛr1,1s
�
d

2a

πΛr1,1s
� ∆

d
2

πΛr1,1s

(7.47)

Substituting into the first equation and using Λri,is � ~X~2
8 ¥ ρpXq2 yields the result.
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7.E.3 Lipschitz expectation

Lemma 7.E.4. Suppose b � mu, where m and u are independent random variables with u
distributed uniformly on the surface of the unit sphere andm2 P r0, ns a χ2-squared random vari-
able with n degrees of freedom truncated to the interval r0, ns. Define K as in Corollary 7.C.2,
β � minx ρpIn � D�1

x Axq, and SSORpxq � min}C̆kxb}2¤ε k to be the number of iterations to
convergence when the defect reduction matrix depends on some scalar x P X for some bounded
interval X � R. If }C̆k

xb}2 is LρpC̆xqk�1-Lipschitz a.s. w.r.t. any x P X then ESSOR is
32K3L

?
2{π

β4 -Lipschitz w.r.t. x.

Proof. First, note that by Hackbusch [2016, Theorem 6.26]

ρpC̆xq � ρpM̆xq � }M̆2
x}Ax ¥ ρpMxq2 ¥

�
β

1�
a
1� β2

�4

¥ β4

16
(7.48)

Now consider any x1, x2 P X s.t. |x1 � x2| ¤ εβ4
?
π{2

2K3L
, assume w.l.o.g. that x1   x2, and pick

x1 P rx1, x2s with maximal ρpC̆xq. Then setting ρx1 � ρpC̆x1q we have that }C̆k
xi
b}2 is Lρk�1

x1 -
Lipschitz for both i � 1, 2 and all k P rKs. Therefore starting with Jensen’s inequality we have
that

|ESSORpxiq � ESSORpx1q|
¤ E|SSORpxiq � SSORpx1q|

�
Ķ

k�1

Ķ

l�1

|k � l|PrpSSORpxiq � k X SSORpx1q � lq

¤ K
Ķ

k�1

�¸
l k

Prp}C̆l
xi
b}2 ¡ εX }C̆l

x1b}2 ¤ εq �
¸
l¡k

Prp}C̆k
xi
b}2 ¤ εX }C̆k

x1b}2 ¡ εq
�

¤ K
Ķ

k�1

¸
l k

Prp}C̆l
x1b}2 P pε� Lρl�1

x1 |xi � x1|, εsq

�K
Ķ

k�1

¸
l¡k
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x1b}2 P pε, ε� Lρk�1

x1 |xi � x1|sq

¤ K
Ķ

k�1

�¸
l k

2Lρl�1
x1

a
2{π

ρpC̆l
x1q

|xi � x1| �
Ķ

k�1

¸
l¡k

2Lρk�1
x1

a
2{π

ρpC̆k
x1q

|xi � x1|
�

¤ 2K3L
a
2{π

ρx1
|xi � x1| ¤ 32K3L

a
2{π

β4

(7.49)

where the second inequality follows by the definition of SSOR, the third by Lipschitzness, and
the fourth by the anti-concentration result of Lemma 7.E.3. Since this holds for any nearby pairs
x1   x2, taking the summation over the interval X completes the proof.
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Corollary 7.E.1. Under the assumptions of Lemma 7.D.1, the function EbSSORpA,b, ωq is
32K4

?
2nκpAq{π
β4

�
1

2�ωmax
� 2ρpDA�1q

	
-Lipschitz w.r.t. ω P r1, ωmaxs � p0, 2q.

Proof. Apply Lemmas 7.E.1 and 7.D.1, noting that }b}2 ¤
?
n by definition.

Corollary 7.E.2. Under the assumptions of Lemma 7.D.1, the function EbSSORpApcq,b, ωq is

maxc
320K4

?
2nκpApcqq{π

β4pλminpAq�cminq -Lipschitz w.r.t. c ¥ cmin ¡ �λmin.

Proof. Apply Lemma 7.E.2 and 7.D.1, noting that }b}2 ¤
?
n by definition.

7.E.4 Sample complexity

Proof of Corollary 7.4.1

Proof. A standard covering bound (see e.g. Lafferty et al. [2010, Theorem 7.82]) followed by an
application of Corollary 7.E.1 implies that w.p. ¥ 1� δ

EDSSORpA,b, ω̂q ¤ min
ωPg

EDSSORpA,b, ωq � 3K

c
2

T
log

2d
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� min
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EArEbSSORpA,b, ωq|As � 3K

c
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T
log

2d

δ

¤ min
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EA

�
EbSSORpA,b, ωq � L

d

����A
�
� 3K

c
2

T
log

2d

δ

� min
ωPr1,ωmaxs

EDSSORpA,b, ωq � L

d
� 3K

c
2

T
log

2d

δ

¤ min
ωPr1,ωmaxs

EDSSORpA,b, ωq � 4K

c
2

T
log

2LT

Kδ

(7.50)

Noting that by Corollary 7.E.1 we have L � OpK4
?
nq � Op?n log4 n

ε
q yields the result.

Proof of Corollary 7.4.2

Proof. For every pA,bq pair in the support of D and any r P R it is straightforward to define a GJ
algorithm [Bartlett et al., 2022, Definition 3.1] that checks if SSORpA,b, ωq ¡ r by computing
}rkpωq}22 � }C̆k

ωb}22—a degree 2k polynomial—for every k ¤ tru and returning “True” if one
of them satisfies }rkpωq}22 ¤ ε2 and ”False” otherwise (and automatically return “True” for
r ¥ K and “False” for r   1). Since the degree of this algorithm is at most 2K, the predicate
complexity is at most K, and the parameter size is 1, by Bartlett et al. [2022, Theorem 3.3] the
pseudodimension of tSSORp�, �, ωq : ω P r1, ωmaxsu is OplogKq. Using the bounded assumption
on the target vector—SSOR ¤ K � Oplog n

ε
q—-completes the proof.
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7.F Experimental details
All numerical results were generated in MATLAB on a laptop and can be re-generated by running
the scripts available at https://github.com/mkhodak/learning-to-relax.

7.F.1 Algorithmic modifications
Since we do not have access to problem parameters, we experimented with a few approaches
to setting them automatically or heuristically on the simplest (low variance) setting below and
then used the same settings for the rest of the experiments (high variance and heat equation).
Furthermore, because the default step-size/learning rate settings in both algorithms are rather
pessimistic, we use more aggressive time-varying approaches in practice. For Tsallis-INF we set
ηt � 2{?t, which is what is used in the anytime variant [Zimmert and Seldin, 2021]. As for
ChebCB, we use an increasing schedule ηt � Optq; note that Simchi-Levi and Xu [2021] also
use an increasing learning rate schedule for setting inverse gap-weighted probabilities.

7.F.2 Initial conditions and forcing for the 2D heat simulation
Recall that we are aiming to solve the 2D heat equation (7.11) with periodically-varying diffu-
sion coefficient κptq � maxt0.01 sinp2πtqq,�10 sinp2πtqu. We set the initial conditions to be
up0,xq � bp 1

2
1
2
q, 1

4
pxq and the forcing function to be fpt,xq � 32bp 1

2
�cosp16πtq{4, 1

2
�cosp16πtq{4q,1{8pxq,

where bc,rpxq is a bump function centered at c P R2 with radius r ¡ 0 and defined to be

exp
�
� 1

1�}x�c}22{r2
	

if }x� c}2   r and 0 otherwise. This specific forcing function—effectively
a bump circling around the center of the domain—is chosen to ensure that the linear system
solutions are not too close to each other or to zero.
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Part III

Architecture search
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Chapter 8

Overview

The third and final part of this thesis is concerned with neural architecture search (NAS), a
subfield of automated machine learning (AutoML) focused on finding suitable neural network
architectures for learning tasks. While there has been a lot of empirical progress on designing
search spaces and heuristic search algorithms for finding good networks for computer vision
tasks, the theoretical understanding of these approximation methods has been minimal and their
applicability to diverse types of data beyond images and text is limited. Following the current
overview chapter, we make significant progress in both of these directions in the next two chap-
ters: the first focuses on developing an understanding of the highly successful weight-sharing
heuristic for searching discrete neural architecture spaces while the second designs efficient but
expressive search spaces for discovering neural operations that perform well on diverse tasks.

8.1 Literature

Simple architectural hyperparameters such as network width have been a part of hyperparameter
search spaces for some time [Bergstra and Bengio, 2012, Li et al., 2018a], but NAS became an
important subfield as it became more clear that significant performance improvements could be
realized through intricate architectural innovations that could only be captured through changes
to neural operations and how they are connected [Zoph et al., 2018]. Although at first exorbi-
tantly expensive because of the combinatorially large search spaces, important heuristics such as
weight-sharing have achieved state-of-the-art performance while drastically reducing the com-
putational cost of NAS to just that of training a single shared-weights network [Pham et al.,
2018]. Methods such as DARTS [Liu et al., 2019b] combine weight-sharing with a continu-
ous relaxation of the discrete search space to allow cheap gradient updates, enabling the use of
popular optimizers. However, despite empirical success, weight-sharing remains poorly under-
stood and has received criticism due to issue of rank disorder and poor results on recent bench-
marks. At the same time, there has been some theoretical analysis of classical discrete search
approaches [White et al., 2020, 2021].

On the empirical side, the development of NAS algorithms and especially search spaces
has been centered closely on vision and—to a lesser degree—text tasks; for example, most NAS
operation spaces only contain a few operations such as convolutions [Liu et al., 2019b, Mei et al.,
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2020, Zela et al., 2020b, Dong and Yang, 2020], which may not be useful for domains where
CNNs are ineffective. Applications of NAS outside vision largely follow the same pattern of
combining human-designed operations [Nekrasov et al., 2019, Wang et al., 2020b]. On the other
extreme, AutoML-Zero [Real et al., 2020] demonstrates the possibility of evolving all aspects
of ML from scratch. This leaves significant room for a middle ground with large and domain-
agnostic search spaces that still allow the use of well-tested methods based on weight-sharing
and continuous relaxation.

8.2 Contributions
The architecture search contributions in this thesis start with first steps towards a mathematical
understanding of weight-sharing in Chapter 9, which studies this critical NAS paradigm from the
perspective of both optimization and generalization. While significant theoretical work remains,
our investigation does inspire a more relaxed view of architectural parameters that allows for a
significant expansion of the types of neural operations contained in architecture search spaces.
We build upon this in Chapter 10, which focuses on designing search spaces that work for diverse
tasks beyond vision and language processing.

8.2.1 Understanding weight-sharing
Motivated by the challenge of developing simple and efficient methods that achieve state-of-the-
art performance, in Chapter 9 we study how to best handle the goals and optimization objectives
of NAS. We start by observing that weight-sharing subsumes architecture hyperparameters as
another set of learned parameters of the shared-weights network, in effect extending the class of
functions being learned. We argue that NAS with weight-sharing can be studied not only as a
bilevel optimization problem but also as a single-level objective in which architectural decisions
are treated as learned parameters rather than hyperparameters. Our setup clarifies recent concerns
about rank disorder and makes clear that proper regularization and optimization of the chosen
objective is critical to obtaining high-quality solutions.

While many regularization approaches have been implicitly proposed in recent NAS efforts,
we start by focusing instead on the question of optimizing architecture parameters, which may
not be amenable to standard procedures such as SGD that work well for standard neural network
weights. We propose to improve existing NAS algorithms by re-parameterizing architecture
parameters over the simplex and updating them using exponentiated gradient, a variant of (of-
fline) mirror descent [Nemirovski and Yudin, 1983, Beck and Teboulle, 2003] that converges
quickly over this domain and enjoys favorable sparsity properties. This simple modification—
which we call the Geometry-Aware Exponentiated Algorithm (GAEA)—is easily applicable
to numerous methods, including popular NAS algorithms such as (first-order) DARTS [Liu et al.,
2019b]. To show correctness and efficiency of our scheme, we prove polynomial-time stationary-
point convergence of block-stochastic mirror descent—a family of geometry-aware gradient al-
gorithms that includes GAEA—over a continuous relaxation of the single-level NAS objective.
These are the first finite-time convergence guarantees for gradient-based NAS. Empirically, we
demonstrate that GAEA improves upon high-performance NAS algorithms on several computer
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vision benchmarks, including NAS-Bench-201 [Dong and Yang, 2020] and the the more chal-
lenging DARTS search space [Liu et al., 2019b], with evaluations on both CIFAR [Krizhevksy,
2009] and ImageNet [Russakovsky et al., 2015]. Together, our theory and experiments demon-
strate a principled way to co-design optimizers and continuous relaxations of discrete NAS search
spaces.

While this optimization-based analysis of weight-sharing focuses on the single-level objec-
tive, there remains the question of whether to use it or the bilevel objective in practice. Our last
contribution in Chapter 9 proposes to use feature map selection—the problem of choosing which
featurization of data to use in a downstream task such as linear regression or classification—as
a simple setting for understanding weight-sharing. As with NAS, we show that weight-sharing
provides a useful signal to evaluate many feature map configurations without individual train-
ing, giving an empirical justification for studying the paradigm through this lens. However, the
resulting generalization analysis yields a sample complexity argument that favors bilevel rather
than single-level optimization, suggesting a tradeoff between optimization and generalization in
weight-sharing that practical algorithms should address.

8.2.2 Architecture search for diverse tasks

The success of deep learning for computer vision and natural language processing has spurred
growing interest in enabling similar breakthroughs for other domains such as biology, healthcare,
and the physical sciences. Indeed there is enormous potential for NAS to help automate model
development in these diverse areas, but despite extensive research devoted to architecture search
most of the approaches have subpar performance beyond the (usually vision) tasks on which they
were developed. In Chapter 10, the last in this thesis, we use weight-sharing as a starting point
for developing architecture search spaces for diverse tasks, using its relaxation of architectural
parameters to search over larger spaces of candidate architectures. The hope is that these search
spaces are both large-enough to contain the “right” neural operations for diverse tasks while
being small enough to be efficiently and successfully searched.

XD-operations

We start with the observation that in weight-sharing we use a gradient algorithm to optimize a
“supernet” objective that interpolates the set of possible operations on each edge in a neural net-
work using a continuous relaxation, and that most past work simply uses a convex combination
of operations to do so [Liu et al., 2019b]. This leads to a re-imagining of NAS operation spaces
based upon an alternative continuous relaxation that exploits the fact that most commonly used
operations such as convolutions return linear transforms diagonalized by the discrete Fourier
transform (DFT). Replacing the DFT matrices in the diagonal decomposition by a more expres-
sive family of efficient linear transforms known as Kaleidoscope or K-matrices [Dao et al., 2020]
yields the set of Expressive Diagonalization (XD) Operations, which comprise a large search
space containing various types of grid-based convolutions and pooling, permutations, certain
kinds of graph convolutions, the Fourier Neural Operator (FNO) from the PDE literature [Li
et al., 2021c], and infinitely many more.
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We leverage XD-operations to take critical steps towards a broader NAS that enables the
discovery of good design patterns with limited human specification from data in under-explored
domains. To do so we develop a simple procedure which transforms any backbone convolutional
neural network (CNN) into an architecture search space by replacing its operations with XD-
operations. This space is then searched using a simple weight-sharing algorithm that needs only
a small amount of tuning to find effective operations. As a simple first demonstration, we show
that XD-operations yield models that are 15% more accurate than standard discrete search spaces
on permuted CIFAR-10, highlighting the fragility of standard NAS operation spaces on new
datasets, and thus the need for XD-operations. We then demonstrate the effectiveness of XD-
operations in a series of applications showing that, starting from vanilla CNNs, they consistently
outperform custom-designed operations. This includes:

• Learning to solve partial differential equations (PDEs): when substituted into a simple
CNN backbone, XD-operations outperform convolutions and the dense prediction NAS
method Auto-DeepLab [Liu et al., 2019a], and even achieve lower error than custom-
designed, state-of-the-art operations (FNOs) across three problems with different dimen-
sionalities (Burgers’ equation, Darcy Flow, and Navier-Stokes). Our method also main-
tains consistent performance across different resolutions, a major stated advantage of FNOs
over previous methods.

• Protein folding: on the task of predicting residue distances in a polypeptide chain—a
key component of the protein folding problem—we substitute XD-operations into vanilla
ResNets and achieve lower error than cyclically-dilated ResNets adapted specifically for
this setting [Adhikari, 2019]. Furthermore, our ResNet-34 XD outperforms the reported
error of the much deeper Dilated ResNet-258.

• Music modeling: on two next-note music prediction tasks, we show that substituting XD-
operations into an undilated CNN outperforms temporal convolutional networks (TCNs),
which are exponentially-dilated 1D CNNs that themselves outperform standard convolu-
tional and recurrent networks [Bai et al., 2018].

DASH

While these results show the potential of a larger search space for improving performance on di-
verse tasks, they hide a significant practical issue: the compute and memory costs associated with
training architectures based on XD-operations. Can we take a similar approach of substituting
better operations in place of convolutions in widely used CNN backbones, but do so efficiently?
We answer in the affirmative by introducing a novel NAS method called DASH (Diverse-task
Architecture SearcH), in which we consider a search space of cross-scale dilated convolutions
which are effective for multi-scale feature extraction [van den Oord et al., 2016, Yang et al.,
2017] and context aggregation [Yu and Koltun, 2016, Chen et al., 2018c]. Our key difference
from past search spaces is that we explicitly consider filters with a wide range of kernel sizes
and dilations—while most NAS methods only handle kernels with maximum size 5 and dila-
tion rate 2, our proposed operator space includes not only the conventional small kernels but
also significantly larger ones with size 15 or dilation 127. This design choice is motivated by
the fact that large kernels can capture input relations for dense prediction problems [Peng et al.,
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2017], model long-range dependencies for sequence tasks [Bai et al., 2018, 2019], and resem-
ble global-attention in Transformers [Liu et al., 2022]. Thus, DASH’s cross-scale search space
enables adaptation to diverse downstream tasks, unlike prior NAS work which targets image
classification and assumes that small kernels are sufficient.

However, efficiently searching for an appropriate kernel configuration in this expansive cross-
scale search space is non-trivial. Indeed, for existing NAS algorithms, the cost of exploring
a combinatorially large set of operators is substantial. Even for weight-sharing methods that
are known for efficiency, e.g. DARTS [Liu et al., 2019b], the computational complexity scales
directly with the number of kernels considered and quadratically with the largest kernel size.
To overcome this obstacle, DASH explores multi-scale convolutions via three techniques—the
first two exploit mathematical properties of convolutions, and the last one takes advantage of fast
matrix multiplication on GPUs. Specifically:

1. Using the linearity of convolutions, we mix several convolutions by computing one con-
volution equipped with a combined kernel rather than applying each filter separately and
aggregating multiple outputs. While the number of convolution computations required by
the naive aggregation of |K| possible kernel sizes and |D| possible dilations is Op|K||D|q,
our approach has Op1q complexity, independent of the search space size.

2. Using the diagonalization of convolutions, we relegate a major portion of the computation
to element-wise multiplication in the Fourier domain, minimizing the effect of the largest
kernel size on the complexity of our algorithm. For instance, a standard 1D convolution
requires Opnkq operations to convolve a size-k kernel with a length-n input, but a Fourier
convolution takes only Opn log nq, a critical improvement that makes searching over large
kernels significantly easier.

3. Our final strategy is to use Kronecker products of undilated kernels and small sparse ma-
trices to compute dilated kernels quickly on GPUs. This brings an additional two-fold
speedup on top of the previous techniques.

Aside from these innovations, DASH employs the standard weight-sharing scheme of training a
supernet, discretizing to obtain a model, and retraining the model for end tasks [Liu et al., 2019b].
We analyze the asymptotic complexity of the first two techniques and verify the practical utility
when all three are combined together. In particular, DASH achieves a ten-fold speedup in total
for differentiable NAS over the multi-scale search space. Moreover, we show that searching over
large kernels is necessary to solve diverse problems and that each technique on its own cannot
scale in this large-kernel setting.

In terms of accuracy performance, we evaluate DASH on ten datasets spanning multiple
application areas such as PDE solving, protein folding, and disease prediction from NAS-Bench-
360 [Tu et al., 2022], a new benchmark for diverse tasks. DASH yields models with better ag-
gregate performance than those returned by leading AutoML methods as well as hand-designed
task-specific architectures; it also beats all past automated approaches on seven of the ten prob-
lems and exceeds hand-designed models on seven, simultaneously maintaining strong efficiency
relative to weight-sharing methods like DARTS. The empirical success of DASH implies that
CNNs with appropriate kernels can be competitive baselines for problems where expert architec-
tures are not available.
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8.3 Discussion
Our first chapter on NAS attempts to build up an understanding of modern architecture search,
starting with the weight-sharing technique. This has remained a challenging direction for theory,
although Oymak et al. [2021] do show generalization guarantees for solving our feature map
selection setup via continuous optimization on top of shared weights They also study the use of
weight-sharing for activation function search, a setup later extended by Roberts et al. [2023] for
the purpose of understanding the discretization step of weight-sharing-based NAS. Developing a
complete understanding of architecture search is likely quite challenging, as the problem encom-
passes that of understanding deep learning itself. Nevertheless, it may be possible to build up
a better empirical understanding of phenomena such as weight-sharing in order to make formal
mathematical predictions of behavior, as has been done in other areas such as neural network
optimization [Cohen et al., 2021].

Our last chapter focuses on applying NAS to diverse tasks beyond vision and language appli-
cations, a direction that has continued to see significant research investment, including through
AutoML competitions [Roberts et al., 2022] as well as via the development of the NAS-Bench-
360 benchmark that we use in our final evaluation [Tu et al., 2022]. At the same time, evidence
continues to emerge that much of the NAS literature—which was developed on vision tasks, es-
pecially CIFAR-10—does not perform well beyond image data [White et al., 2022]. As a result,
there remains significant scope for developing approaches that do yield high-performing architec-
tures outside the vision modality. Here we believe our approach of focusing on operation spaces
rather than network topology is promising because it can be used to design search spaces that
contain truly novel operations while being easily incorporated into standard residual backbones.

Separately, the rise of large-scale pretrained models that can be fine-tuned on a wide vari-
ety of downstream tasks raises questions about the role of NAS in modern ML [Devlin et al.,
2019, Dosovitskiy et al., 2021, Liu et al., 2021b]. For example, Lu et al. [2022] showed that
Transformer models trained on text data can be effective feature extractors for out-of-modality
datasets, suggesting their usefulness for diverse tasks. This finding was taken to its logical con-
clusion by Shen et al. [2023], who developed a way to fine-tune text Transformers such as BERT
and image Transformers such as SWIN on all of the modalities in NAS-Bench-360, outperform-
ing DASH in the process. While the two approaches can be complementary, and NAS retains
some advantages such as inference-time performance, these results nevertheless show that the
best performance on diverse tasks will likely be obtained by going beyond NAS and regular hy-
perparameter search to integrate cross-modality transfer into AutoML pipelines. Some promising
directions here include learning combinable “tags” for representing domain-specific information
and functions that can improve the performance of large language models (LLMs) on specialized
tasks [Shen et al., 2024] or using the representation power of LLMs to generate embeddings of
tasks [Achille et al., 2019] from their natural language descriptions and take advantage of the
resulting task similarity information.
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8.A Background
We briefly provide some background on modern approaches in architecture search. Since the
possible number of neural network graphs is combinatorially large, significant effort is devoted
to defining constraints on architecture search space that are thought to still preserve good settings
while dramatically reducing its size. Often these constraints are motivated by common patterns
found in existing expert-designed architectures. In this thesis we will at different times make use
of two largely incompatible constraints: micro cell-based search spaces [Pham et al., 2018] and
network morphisms [Jin et al., 2018].

8.A.1 Cell-based architecture search
Cell-based search spaces, which we use in Chapter 9, define the search domain using a small
directed acyclic graph (DAG) or cell on ordered nodes N and edges E, with |N | usually not
much larger than ten. Each node xpiq P N is a feature representation and each edge pi, jq P E
is associated with an operation on the feature of node j passed to node i and aggregated with
other inputs to form xpjq, with the restriction that a given node j can only receive edges from
prior nodes as input. Hence, the feature at node i is xpiq � °

j i o
pi,jqpxpjqq. These cells are then

stacked one after another, with the output of one DAG feeding into the other; usually the number
of cells used during search is smaller than when the final architecture is retrained. This stacking
both reflects common architectural patterns such as ResNet blocks [He et al., 2016] and also
significantly constrains the search domain while allowing very deep architectures. The resulting
search spaces are specified by the number of nodes, the number of edges per node, and the set of
(usually less than 10) operations O that can be applied at each edge. Thus A � t0, 1u|E|�|O| is
the set of all valid architectures for encoded by edge and operation decisions.

8.A.2 Network morphisms
The network morphism approach takes the alternative approach of starting with an existing ar-
chitecture and evolving it. For example, an approach we take in Chapter 10 is to start with a
well-known CNN backbone such as VGG [Simonyan and Zisserman, 2015] or ResNet [He et al.,
2016] and searching for convolutions to substitute in places of its convolutions. The resulting
architectures are thus as large as expert-designed architectures but the search space itself is con-
strained to a simple product space over operations. At the same time, many highly successful
architectures share similar network design patterns, e.g. Transformers have a roughly ResNet-
like structure but with attention blocks instead of convolution [Vaswani et al., 2017].

8.A.3 Weight-sharing
Apart from imposing architectural constraints, the other significant research direction has been
to find search heuristics to enable faster traversal of such large search spaces. Perhaps the most
successful of these is weight-sharing [Pham et al., 2018], a technique that we wil make significant
use of as well. Treating both the shared weights w P Rd and architecture decisions a P A as
parameters, weight-sharing methods train a single network or supernet subsuming all possible
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functions within the search space. Weight-sharing methods have been mainly applied to cell-
based search and are usually specified using one of two relaxations: continuous or stochastic.

Gradient-based weight-sharing methods apply continuous relaxations to the architecture space
A in order to compute gradients in a continuous space Θ. Methods like DARTS [Liu et al.,
2019b] and its variants [Chen et al., 2019, Laube and Zell, 2019, Hundt et al., 2019, Liang
et al., 2019, Noy et al., 2019] relax the search space by considering a mixture of operations per
edge. For example, in Chapter 9 we will consider a relaxation where the architecture space
A � t0, 1u|E|�|O| is relaxed into Θ � r0, 1s|E|�|O| with the constraint that

°
oPO θri,j,os �

1, i.e. the operation weights on each edge sum to 1. The feature at node i is then xpiq �°
j i

°
oPO θri,j,osopxpjqq. To get a valid architecture a P A from a mixture θ, rounding and

pruning are typically employed after the search phase.
The alternative, stochastic approach, such as that used by GDAS [Dong and Yang, 2019],

instead uses Θ-parameterized distributions pθ over A to sample architectures [Pham et al., 2018,
Xie et al., 2019, Akimoto et al., 2019, Cai et al., 2019]; unbiased gradients w.r.t. θ P Θ can
be computed using Monte Carlo sampling. The goal of all these relaxations is to use simple
gradient-based approaches to approximately optimize (9.1) over a P A by optimizing (9.2) over
θ P Θ instead. However, both the relaxation and the optimizer critically affect the convergence
speed and solution quality.
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Chapter 9

Understanding weight-sharing

An important tool for automating machine learning, neural architecture search has seen great
progress in recent years [Real et al., 2019, Cai et al., 2019]; in particular, weight-sharing [Pham
et al., 2018] has led to fast algorithms with state-of-the-art results on canonical image classifica-
tion and language modeling problems [Liu et al., 2019b, Li and Talwalkar, 2019]. At the same
time, theoretical study of statistical and optimization questions in this area has been minimal.
Motivated by the challenge of developing simple and efficient methods that achieve state-of-the-
art performance, we study different optimization objectives in NAS.

9.1 Weight-sharing objectives
Formally, consider the standard supervised ML setup where we have a dataset T of labeled
pairs px, yq drawn from a distribution D over input/output spaces X and Y . The goal is to
use T to search a function class H for hw : X ÞÑ Y parameterized by w P Rd that has low
expected test loss ℓphwpxq, yq when using x to predict the associated y on unseen samples drawn
from D, as measured by some loss ℓ : Y � Y ÞÑ r0,8q. A common way to do so is by
approximate (regularized) empirical risk minimization (ERM), i.e. finding w P Rd with the
smallest average loss over T , via some iterative method Alg, e.g. SGD. NAS is often viewed
as hyperparameter optimization on top of Alg, with each architecture a P A corresponding to a
function classHa � thw,a : X ÞÑ Y,w P Rdu to be selected by using validation data V � X�Y
to evaluate the predictor obtained by fixing a and doing approximate ERM over T :

min
aPA

¸
px,yqPV

ℓphwa,apxq, yq s.t. wa � AlgpT, aq (9.1)

Since training individual sets of weights for any sizeable number of architectures is prohibitive,
weight-sharing methods instead use a single set of shared weights to obtain validation signal
about many architectures at once. In its most simple form, RS-WS [Li and Talwalkar, 2019],
these weights are trained to minimize a non-adaptive objective, min

wPRd
Ea

°
px,yqPT ℓphwa,apxq, yq,

where the expectation is over a fixed distribution over architectures A. The final architecture a

0The work presented in this chapter first appeared in Li et al. [2021a] and Khodak et al. [2020].
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is then chosen to maximize the outer (validation) objective in (9.1) subject to wa � w. More
frequently used is a bilevel objective over some continuous relaxation Θ of the architecture space
A, after which a valid architecture is obtained via a discretization step Map : Θ ÞÑ A [Pham
et al., 2018, Liu et al., 2019b]:

min
θPΘ

¸
px,yqPV

ℓphw,θpxq, yq s.t. w P argmin
uPRd

¸
px,yqPT

ℓphu,θpxq, yq (9.2)

This objective is not significantly different from (9.2), since AlgpT, aq approximately minimizes
the empirical risk w.r.t. T ; the difference is replacing discrete architectures with relaxed archi-
tecture parameters θ P Θ, w.r.t. which we can take derivatives of the outer objective. This allows
(9.2) to be approximated via alternating gradient updates w.r.t. w and θ. As described in the pre-
vious chapter, relaxations can be stochastic, so that Mappθq is a sample from a θ-parameterized
distribution [Pham et al., 2018, Dong and Yang, 2019], or a mixture, in which case Mappθq se-
lects architectural decisions with the highest weight in a convex combination given by θ [Liu
et al., 2019b].

While weight-sharing significantly shortens search [Pham et al., 2018], it draws two main
criticisms:

• Rank disorder: this describes when the rank of an architecture a according to the valida-
tion risk evaluated with fixed shared weights w is poorly correlated with the one using
“standalone" weights wa � AlgpT, aq. This causes suboptimal architectures to be se-
lected after shared weights search [Yu et al., 2020a, Zela et al., 2020a, Zhang et al., 2020,
Pourchot et al., 2020].

• Poor performance: weight-sharing can converge to degenerate architectures [Zela et al.,
2020a] and is outperformed by regular hyperparameter tuning on NAS-Bench-201 [Dong
and Yang, 2020].

9.2 Optimization in NAS: A single-level study
To study weight-sharing from the optimization perspective, we focus on the single-level objective
in Equation 9.1. Why are we able to apply weight-sharing to NAS? The key is that, unlike
regular hyperparameters such as step-size, architectural hyperparameters directly affect the loss
function without requiring a dependent change in the model weights w. Thus we can distinguish
architectures without retraining simply by changing architectural decisions. Besides enabling
weight-sharing, this point reveals that the goal of NAS is perhaps better viewed as a regular
learning problem over an extended class HA � �

aPAHa � thw,a : X ÞÑ Y,w P Rd, a P Au
that subsumes the architectural decisions as parameters of a larger model class, an unrelaxed
“supernet." The natural approach to solving this is by approximate empirical risk minimization,
e.g. by approximating continuous objective below on the right using a gradient algorithm and
passing the output θ through Map to obtain a valid architecture:

min
wPRd,aPA

¸
px,yqPT

ℓphw,apxq, yqloooooooooooooooooomoooooooooooooooooon
discrete (unrelaxed) supernet (NAS ERM)

min
wPRd,θPΘ

¸
px,yqPT

ℓphw,θpxq, yqloooooooooooooooooomoooooooooooooooooon
continuous relaxation (supernet ERM)

(9.3)

278



Several works have optimized this single-level objective as an alternative to bilevel (9.2) [Xie
et al., 2019, Li and Talwalkar, 2019]. We argue for its use as the baseline object of study in NAS
for three reasons:

1. As discussed above, it is the natural first approach to solving the statistical objective of
NAS: finding a good predictor hw,a P HA in the extended function class over architectures
and weights.

2. The common alternating gradient approach to the bilevel problem (9.2) is in practice very
similar to alternating block approaches to ERM (9.3); as we will see, there are estab-
lished ways of analyzing such methods for the latter objective, while for the former con-
vergence is known only under very strong assumptions such as uniqueness of the inner
minimum [Franceschi et al., 2018].

3. While less frequently used in practice than bilevel, single-level optimization can be very
effective: we use it to achieve new state-of-the-art results on NAS-Bench-201 [Dong and
Yang, 2020].

Understanding NAS as single-level optimization—the usual deep learning setting—makes weight-
sharing a natural, not surprising, approach. Furthermore, for methods—both single-level and
bilevel—that adapt architecture parameters during search, it suggests that we need not worry
about rank disorder as long as we can use optimization to find a single feasible point that gen-
eralizes well; we explicitly do not need a ranking. Non-adaptive methods such as RS-WS still
do require rank correlation to select good architectures after search, but they are explicitly not
changing θ and so have no variant solving (9.3). The single-level formulation thus reduces search
method design to well-studied questions of how to best regularize and optimize ERM. While
there are many techniques for regularizing weight-sharing—including partial channels [Xu et al.,
2020b] and validation Hessian penalization [Zela et al., 2020a]—we focus on the second question
of optimization.

9.2.1 Geometry-aware gradient algorithms

We seek to minimize the (possibly regularized) empirical risk fpw,θq � 1
|T |

°
px,yqPT

ℓphw,θpxq, yq
over shared-weights w P Rd and architecture parameters θ P Θ. Assuming we have noisy
gradients of f w.r.t. w or θ at any point pw,θq P Rd � Θ—i.e. ∇̃wfpw,θq or ∇̃θfpw,θq
satisfying E∇̃wfpw,θq � ∇wfpw, θq or E∇̃θfpw,θq � ∇θfpw,θq, respectively—our goal is
a point where f , or at least its gradient, is small, while taking as few gradients as possible. Our
main complication is that architecture parameters lie in a constrained, non-Euclidean domain Θ.
Most search spaces A are product sets of categorical decisions—which operation o P O to use at
edge e P E—so the natural relaxation is a product of |E| |O|-simplices. However, NAS methods
often re-parameterize Θ to be unconstrained using a softmax and then SGD or Adam [Kingma
and Ba, 2015]. Is there a better parameterization-algorithm co-design? We consider a geometry-
aware approach that uses mirror descent to design NAS methods with better properties depending
on the domain; a key desirable property is to return sparse architectural parameters to reduce loss
from post-search discretization.
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Background on (offline) mirror descent

Mirror descent has many formulations [Nemirovski and Yudin, 1983, Beck and Teboulle, 2003,
Shalev-Shwartz, 2011]; the proximal starts by noting that, in the unconstrained case, an SGD
update at θ P Θ � Rk using gradient estimate ∇̃fpθq with step-size η ¡ 0 is equivalent to

θ � η∇̃fpθq � argmin
uPRk

η∇̃fpθq � u � 1

2
}u� θ}22 (9.4)

Here the first term aligns the output with the gradient while the second (proximal) term regular-
izes for closeness to the previous point as measured by the Euclidean distance. While the SGD
update has been found to work well for unconstrained high-dimensional optimization, e.g. deep
nets, this choice of proximal regularization may be sub-optimal over a constrained space with
sparse solutions. The canonical such setting is optimization over the unit simplex, i.e. when
Θ � tθ P r0, 1sk : }θ}1 � 1u. Replacing the ℓ2-regularizer in Equation 9.4 by the relative
entropy u � plogu� log θq, i.e. the KL-divergence, yields the exponentiated gradient:

θ d expp�η∇̃fpθqq 9 argmin
uPΘ

η∇̃fpθq � u � u � plogu� log θq (9.5)

Note that the full EG update is obtained by ℓ1-normalizing the l.h.s. It is well-known that
EG over the k-dimensional simplex requires only Oplog kq{ε2 iterations to achieve a func-
tion value ε-away from optimal [Beck and Teboulle, 2003, Theorem 5.1], compared to the
Opk{ε2q guarantee of gradient descent. This nearly dimension-independent iteration complex-
ity is achieved by choosing a regularizer—the KL divergence—well-suited to the underlying
geometry—the simplex. More generally, mirror descent is specified by a distance-generating
function (DGF)1 ϕ that is strongly-convex w.r.t. some norm. ϕ induces a Bregman divergence
Bϕpu||vq � ϕpuq � ϕpvq � ∇ϕpvq � pu � vq [Bregman, 1967], a notion of distance on Θ that
acts as a regularizer in the mirror descent update:

argmin
uPΘ

η∇̃fpθq � u � Bϕpu||θq (9.6)

For example, to recover SGD (9.4) set ϕpuq � 1
2
}u}22, which is strongly-convex w.r.t. the Eu-

clidean norm, while EG (9.5) is recovered by setting ϕpuq � u � logu, which is strongly-convex
w.r.t. the ℓ1-norm.

Block-stochastic mirror descent

In the previous section we saw how mirror descent can perform better over certain geometries
such as the simplex. However, in weight-sharing we are interested in optimizing over a hybrid
geometry containing both the shared weights in an unconstrained Euclidean space and the archi-
tecture parameters in a non-Euclidean domain. Thus we focus on optimization over two blocks:
shared weights w P Rd and architecture parameters θ P Θ, the latter associated with a DGF ϕ
that is strongly-convex w.r.t. some norm } � }. In NAS a common approach is to perform alternat-
ing gradient steps on each domain; for example, both ENAS [Pham et al., 2018] and first-order
1In Parts I and II we used the term “regularizer” instead of DGF, as is often done in the OCO community.
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Algorithm 24: Block-stochastic mirror descent optimization of f : Rd �Θ ÞÑ R.
Input: initialization pw1,θ1q P Rd �Θ, step-size η ¡ 0, number of iterations T ¥ 1,

strongly-convex distance-generating function ϕ : Θ ÞÑ R
for iteration t � 1, . . . , T do

sample bt � Unift1, 2u // randomly select update block
if block bt � 1 then

wt�1 Ð wt � η∇̃wfpwt,θtq // SGD update to shared weights
θt�1 Ð θt // no update to architecture params

else
wt�1 Ð wt // no update to shared weights

θt�1 Ð argmin
uPΘ

η∇̃θfpwt,θtq �u�Bϕpu||θtq // update arch. params

Output: pwr,θrq for r � Unift1, . . . , T u // return random iterate

DARTS [Liu et al., 2019b] alternate between SGD on the shared weights and Adam on archi-
tecture parameters. This approach is encapsulated in the block-stochastic algorithm described in
Algorithm 24, which at each step chooses one block at random to update using mirror descent
(recall that SGD is a variant) and after T steps returns a random iterate. Algorithm 24 generalizes
the single-level variant of both ENAS and first-order DARTS if SGD is used to update θ instead
of Adam, with some mild caveats: in practice blocks are picked cyclically and the algorithm
returns the last iterate, not a a random one.

To analyze the convergence of Algorithm 24 we first state some regularity assumptions:

Assumption 9.2.1. Suppose ϕ is strongly-convex w.r.t. some norm } � } on a convex set Θ and
the objective function f : Rd �Θ ÞÑ r0,8q satisfies the following:

1. γ-relatively-weak-convexity: fpw,θq � γϕpθq is convex on Rd �Θ for some γ ¡ 0

2. gradient bound: DGw andGθ ¥ 0 s.t. E}∇̃wfpw,θq}22 ¤ G2
w and E}∇̃θfpw,θq}2� ¤ G2

θ

The second assumption is a standard bound on the gradient norm while the first is a general-
ization of smoothness that allows all smooth and some nonsmooth nonconvex functions [Zhang
and He, 2018]. Using these assumptions, our aim will be to show (first-order) ε-stationary-point
convergence of Algorithm 24, a standard metric indicating that it has reached a point with no
feasible descent direction, up to error ε; for example, in the unconstrained Euclidean case an
ε-stationary-point is simply one where the gradient has squared-norm ¤ ε. The number of steps
required to obtain such a point thus measures how fast a first-order method terminates. Station-
arity is also significant as a necessary condition for optimality.

In our case Θ may be constrained and so the gradient may never be small, thus necessitating
a measure other than gradient norm. We use Bregman stationarity [Zhang and He, 2018, Equa-
tion 2.11], which measures stationary at a point pw,θq using the Bregman divergence between
the point and its proximal map proxλpw,θq � argminuPRd�Θ λfpuq � Bℓ2,ϕpu||w,θq for some
λ ¡ 0:

∆λpw,θq � Bℓ2,ϕpw,θ|| proxλpw,θqq � Bℓ2,ϕpproxλpw,θq||w,θq
λ2

(9.7)
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Here λ � 1
2γ

and the Bregman divergence Bℓ2,ϕ is that of the DGF 1
2
}w}22 � ϕpθq that encodes

the geometry of the joint optimization domain over w P Rd and θ; note that the dependence of
the stationarity measure on γ is standard [Dang and Lan, 2015, Zhang and He, 2018].

To understand why reaching a point pw,θq with small Bregman stationarity is a reasonable
goal, note that the proximal operator proxλ has the property that its fixed points, i.e. those sat-
isfying pw,θq � proxλpw,θq, correspond to points where f has no feasible descent direction.
Thus measuring how close pw,θq is to being a fixed point of proxλ—as is done using the Breg-
man divergence in (9.7)—is a good measure of how far away the point is from being a stationary
point of f . Finally, note that if f is smooth, ϕ is Euclidean, and Θ is unconstrained—i.e. if we
are running SGD over architecture parameters as well—then ∆ 1

2γ
¤ ε implies a Opεq-bound on

the squared gradient norm, recovering the standard definition of ε-stationarity. More intuition on
proximal operators can be found in Parikh and Boyd [2013, Section 1.2], while further details on
Bregman stationarity and how it relates to other notions of convergence can be found in Zhang
and He [2018, Section 2.3].

The following result shows that Algorithm 24 needs polynomially many iterations to finds a
point pw,θq with ε-small Bregman stationarity in-expectation:

Theorem 9.2.1. Let F � fpw1,θ1q be the value of f at initialization. Under Assumption 9.2.1,
if we run Algorithm 24 for T � 16γF

ε2
pG2

w �G2
θq iterations with step-size η �

b
4F

γpG2
w�G2

θqT
then

E∆ 1
2γ
pwr,θrq ¤ ε. Here the expectation is over the randomness of the algorithm and gradients.

The proof in Appendix 9.A.1 follows from single-block analysis [Zhang and He, 2018, The-
orem 3.1] and in fact holds for the general case of any number of blocks associated to any set of
strongly-convex DGFs. Although there are prior results for the multi-block case [Dang and Lan,
2015], they do not hold for nonsmooth Bregman divergences such as the KL divergence needed
for exponentiated gradient.

Thus Algorithm 24 returns an ε-stationary-point given T � OpG2
w�G2

θq{ε2 iterations, where
G2

w bounds the squared ℓ2-norm of the shared-weights gradient ∇̃w and G2
θ bounds the squared

magnitude of the architecture gradient ∇̃θ, as measured by the dual norm } � }� of } � }. Only
the last term Gθ is affected by our choice of DGF ϕ. The DGF of SGD is strongly-convex
w.r.t. the ℓ2-norm, which is its own dual, so G2

w is defined via ℓ2. However, for EG the DGF
ϕpuq � u � logu is strongly-convex w.r.t. the ℓ1-norm, whose dual is ℓ8. Since the ℓ2-norm of
a k-dimensional vector can be

?
k times its ℓ8-norm, picking this DGF can lead to better bound

on Gθ and thus on the number of iterations.

GAEA: A geometry-aware exponentiated algorithm

Equipped with these single-level guarantees, we turn to designing methods that can in-principle
be applied to both the single-level and bilevel objectives, seeking parameterizations and algo-
rithms that converge quickly and encourage favorable properties; in particular, we focus on
returning architecture parameters that are sparse to reduce loss due to post-search discretiza-
tion. EG is often considered to converge quickly to sparse solutions over the simplex [Bradley
and Bagnell, 2008, Bubeck, 2019], which makes it a natural choice for the architecture update.
We thus propose GAEA, a Geometry-Aware Exponentiated Algorithm in which operation
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Figure 9.1: Evolution over search epochs of the average entropy of the operation weights
when run on the DARTS search space (left), NAS-Bench-1Shot1 Search Space 1 (middle), and
NASBench-201 on CIFAR-10 (right). GAEA reduces entropy much more quickly, allowing it
to quickly obtain sparse architecture weights. This leads to both faster convergence to a single
architecture and a lower loss when pruning at the end of search.

weights on each edge are constrained to the simplex and trained using EG; as in DARTS, the
shared weights w are trained using SGD. GAEA can be used as a simple, principled modifi-
cation to the many NAS methods that treat architecture parameters θ P Θ � R|E|�|O| as real-
valued “logits" to be passed through a softmax to obtain mixture weights or probabilities for
simplices over the operations O. Such methods include DARTS, PC-DARTS [Xu et al., 2020b],
and GDAS [Dong and Yang, 2019]. To apply GAEA, first re-parameterize Θ to be the product
set of |E| simplices, each associated to an edge pi, jq P E; thus θri,j,os corresponds directly to
the weight or probability of operation o P O for edge pi, jq, not a logit. Then, given a stochastic
gradient ∇̃θfpwt,θtq and step-size η ¡ 0, replace the architecture update by EG:

θ̃t�1 Ð θt d exp
�
�η∇̃θfpwt,θtq

	
(multiplicative update)

θt�1ri,j,os Ð
θ̃t�1ri,j,os°

o1PO θ̃t�1ri,j,o1s
@ o P O, @ pi, jq P E (simplex projection)

(9.8)

These two simple modifications, re-parameterization and exponentiation, suffice to obtain state-
of-the-art results on several NAS benchmarks, as shown in Section 9.2.2. Note that to obtain
a bilevel algorithm we simply replace the gradient w.r.t. θ of the training loss with that of the
validation loss.

GAEA is equivalent to Algorithm 24 with ϕpθq � °
pi,jqPE

°
oPO θri,j,os log θri,j,os, which is

strongly-convex w.r.t. }�}1{
a|E| over the product of |E| |O|-simplices. The dual is

a|E|}�}8, so
if Gw bounds the shared-weights gradient and we have an entry-wise bound on the architecture
gradient then GAEA reach ε-stationarity in OpG2

w � |E|q{ε2 iterations. This can be up to a
factor |O| improvement over SGD, either over the simplex or the logit space. In addition, GAEA
encourages sparsity in the architecture weights by using a multiplicative update over simplices
and not an additive update over R|E|�|O|. Obtaining sparse architecture parameters is critical for
good performance, both for the mixture relaxation, where it alleviates the effect of discretization
on the validation loss, and for the stochastic relaxation, where it reduces noise when sampling
architectures.
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9.2.2 Empirical results using GAEA
We evaluate GAEA on three different computer vision benchmarks: the large and heavily studied
search space from DARTS [Liu et al., 2019b] and two smaller oracle evaluation benchmarks,
NAS-Bench-1Shot1 [Zela et al., 2020b], and NAS-Bench-201 [Dong and Yang, 2020]. NAS-
Bench-1Shot1 differs from the others by applying operations per node instead of per edge, while
NAS-Bench-201 differs by not requiring edge-pruning. Since GAEA can modify a variety of
methods, e.g. DARTS, PC-DARTS [Xu et al., 2020b], and GDAS [Dong and Yang, 2019],
on each benchmark we start by evaluating the GAEA variant of the current best method on that
benchmark. We show that despite the diversity of search spaces, GAEA improves upon this state-
of-the-art across all three. Note that we use the same step-size for GAEA variants of DARTS/PC-
DARTS and do not require weight decay on architecture parameters. We defer experimental
details and hyperparameter settings to Appendix 9.B.1 and release all code, hyperparameters,
and random seeds for reproducibility.

Convergence and sparsity of GAEA

We first examine the impact of GAEA on convergence and sparsity. Figure 9.1 shows the en-
tropy of the operation weights averaged across nodes for a GAEA-variant and its base method
across the three benchmarks, demonstrating that it decreases much faster for GAEA-modified
approaches. This validates our expectation that GAEA encourages sparse architecture param-
eters, which should alleviate the mismatch between the continuously relaxed architecture pa-
rameters and the discrete architecture returned. Indeed, we find that post-search discretization
on the DARTS search space causes the validation accuracy of the PC-DARTS supernet to drop
from 72.17% to 15.27%, while for GAEA PC-DARTS the drop is only 75.07% to 33.23%; note
that this is shared-weights accuracy, obtained without retraining the final network. The numbers
demonstrate that GAEA both (1) achieves better supernet optimization of the weight-sharing
objective and (2) suffers less due to discretization.

GAEA on the DARTS search space

Here we evaluate GAEA on the task of designing CNN cells for CIFAR-10 [Krizhevksy, 2009]
and ImageNet [Russakovsky et al., 2015] by using it to modify PC-DARTS [Xu et al., 2020b],
the current state-of-the-art method. We follow the same three stage process used by both DARTS
and RS-WS for search and evaluation. Table 9.1 displays results on both datasets and demon-
strates that GAEA’s parameterization and optimization scheme improves upon PC-DARTS. In
fact, GAEA PC-DARTS outperforms all search methods except ProxylessNAS, which uses 1.5
times as many parameters on a different search space. Thus we improve the state-of-the-art on the
DARTS search space. To meet a higher bar for reproducibility on CIFAR-10, in Appendix 9.B.1
we report “broad reproducibility” [Li and Talwalkar, 2019] by repeating our pipeline with new
seeds. While GAEA PC-DARTS consistently finds good networks when selecting the best of
four independent trials, multiple trials are required due to sensitivity to initialization, as is true
for many approaches [Liu et al., 2019b, Xu et al., 2020b].

On ImageNet, we follow Xu et al. [2020b] by using subsamples containing 10% and 2.5%
of the training images from ILSVRC-2012 [Russakovsky et al., 2015] as training and validation
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Table 9.1: Comparison with SOTA NAS methods on the DARTS search space, plus
three results on different search spaces with a similar number of parameters reported at
the top for comparison. All evaluations and reported performances of models found on
the DARTS search space use similar training routines; this includes auxiliary towers and
cutout but no other modifications, e.g. label smoothing [Müller et al., 2019], AutoAug-
ment [Cubuk et al., 2019], Swish [Ramachandran et al., 2017], Squeeze & Excite [Hu
et al., 2018], etc. The specific training procedure we use is that of PC-DARTS, which
differs slightly from the DARTS routine by a small change to the drop-path probabil-
ity; PDARTS tunes both this and batch-size. Our results are averaged over 10 random
seeds. Search cost is hardware-dependent; we used Tesla V100 GPUs. For more details
see Tables 9.4 & 9.5.

CIFAR-10 Error Search Cost ImageNet Error Search Cost
Search Method (source) Best Average (GPU Days) top-1 top-5 (GPU Days) method

NASNet-A� [Zoph et al., 2018] - 2.65 2000 26.0 8.4 1800 RL
AmoebaNet-B� [Real et al., 2019] - 2.55� 0.05 3150 24.3 7.6 3150 evolution
ProxylessNAS� [Cai et al., 2019] 2.08 - 4 24.9 7.5 8.3 gradient (WS)

ENAS [Pham et al., 2018] 2.89 - 0.5 - - - RL (WS)
RS-WS: [Li and Talwalkar, 2019] 2.71 2.85� 0.08 0.7 - - - random (WS)
ASNG [Akimoto et al., 2019] - 2.83� 0.14 0.1 - - - gradient (WS)
SNAS [Xie et al., 2019] - 2.85� 0.02 1.5 27.3 9.2 1.5 gradient (WS)
DARTS (1st): [Liu et al., 2019b] - 3.00� 0.14 0.4 - - - gradient (WS)
DARTS (2nd): [Liu et al., 2019b] - 2.76� 0.09 1 26.7 8.7 4.0 gradient (WS)
PDARTS [Chen et al., 2019] 2.50 - 0.3 24.4 7.4 0.3 gradient (WS)
PC-DARTS: [Xu et al., 2020b] - 2.57� 0.07 0.1 24.2 7.3 3.8 gradient (WS)
GAEA PC-DARTS: (ours) 2.39 2.50� 0.06 0.1 24.0 7.3 3.8 gradient (WS)
PC-DARTS: [Xu et al., 2020b] (search on CIFAR-10, train on ImageNet) 25.1 7.8 0.1 gradient (WS)
GAEA PC-DARTS: (ours) (search on CIFAR-10, train on ImageNet) 24.3 7.3 0.1 gradient (WS)
�

Search space/backbone differ from the DARTS setting; we show results for networks with a comparable number of parameters.
:

For fair comparison to other work, we show the search cost for training the shared-weights network with a single initialization.

sets, respectively. We fix architecture parameters for the first 35 epochs, then run GAEA PC-
DARTS with step-size 0.1. All other hyperparameters match those of Xu et al. [2020b]. Table 9.1
shows the final performance of both the architecture found by GAEA PC-DARTS on CIFAR-10
and the one found directly on ImageNet when trained from scratch for 250 epochs using the
same settings as Xu et al. [2020b]. GAEA PC-DARTS achieves a top-1 test error of 24.0%,
which is state-of-the-art performance in the mobile setting when excluding additional training
modifications, e.g. those in the caption. Additionally, the architecture found by GAEA PC-
DARTS for CIFAR-10 and transferred achieves a test error of 24.2%, comparable to the 24.2%
error of the one found by PC-DARTS directly on ImageNet. The top architectures found by
GAEA PC-DARTS are depicted in Figure 9.5 in Appendix 9.B.1.

GAEA on NAS-Bench-1Shot1

NAS-Bench-1Shot1 [Zela et al., 2020b] is a subset of NAS-Bench-101 [Ying et al., 2019] that
allows benchmarking weight-sharing methods on three search spaces over CIFAR-10 that differ
in the number of nodes considered and the number of input edges per node. Of the weight-
sharing methods benchmarked by Zela et al. [2020b], we found that PC-DARTS achieves the best
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Figure 9.2: Online comparison of PC-DARTS and GAEA PC-DARTS in terms of the test regret
at each epoch of shared-weights training on NAS-Bench-1Shot1, i.e. the difference between the
ground truth test error of the proposed architecture and that of the best architecture in the search
space. The dark lines indicate the mean of four random trials and the light colored bands �
one standard deviation. The dashed line is the final regret of the best weight-sharing method
according to Zela et al. [2020b]; note that in our reproduction PC-DARTS performed better than
their evaluation on spaces 1 and 3.

performance on 2 of 3 search spaces, so we again evaluate GAEA PC-DARTS here. Figure 9.2
shows that GAEA PC-DARTS consistently finds better architectures on average than PC-DARTS
and thus exceeds the performance of the best method from Zela et al. [2020b] on 2 of 3 search
spaces. We hypothesize that the benefits of GAEA are limited here due to the near-saturation of
NAS methods. In particular, existing methods obtain within 1% test error of the top network in
each space, while the latters’ test errors when evaluated with different initializations are 0.37%,
0.23% and 0.19%, respectively.

GAEA on NAS-Bench-201

NAS-Bench-201 has one search space on three datasets—CIFAR-10, CIFAR-100, and ImageNet-
16-120—that includes 4-node architectures with an operation fromO � tnone, skip connect, 1x1
convolution, 3x3 convolution, 3x3 avg poolu on each edge, yielding 15625 possible networks.
Dong and Yang [2020] report results for several algorithms in the transfer NAS setting, where
search is conducted on CIFAR-10 and the resulting networks are trained on a possibly different
target dataset. Table 9.2 reports a subset of these results alongside evaluations of our imple-
mentation of several existing and GAEA-modified NAS methods in both the transfer and direct
setting. Both the results from Dong and Yang [2020] and our reproductions show that GDAS
is the best previous weight-sharing method; we evaluate GAEA GDAS and find that it achieves
better results on CIFAR-100 and similar results on the other two datasets.

Since we are interested in improving upon not only GAEA GDAS but also upon traditional
hyperparameter optimization methods, we also investigate the performance of GAEA applied to
first-order DARTS. We evaluate GAEA DARTS with both single-level (ERM) and bilevel opti-
mization; recall that in the latter case we optimize architecture parameters w.r.t. the validation
loss and the shared weights w.r.t. the training loss, whereas in ERM there is no data split. GAEA
DARTS (ERM) achieves state-of-the-art performance on all three datasets in both the transfer
and direct setting, exceeding the test accuracy of both weight-sharing and traditional hyperpa-
rameter tuning by a wide margin. GAEA DARTS (bilevel) performs worse but still exceeds all
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Table 9.2: NAS-Bench-201 separated into traditional hyperparameter optimization
algorithms with search run on CIFAR-10 (top block), weight-sharing methods with
search run on CIFAR-10 (middle block), and weight-sharing methods run directly on
the dataset used for training (bottom block). The use of transfer NAS follows the
evaluations conducted by Dong and Yang [2020]; unless otherwise stated all non-
GAEA results are from their paper. The best results in the transfer and direct settings
on each dataset are bolded.

Search� (seconds) CIFAR-10 (test) CIFAR-100 (test) ImageNet-16-120 (test)

Regular REA N/A 93.92� 0.30 71.84� 0.99 45.54� 1.03
HO, RS N/A 93.70� 0.36 71.04� 1.08 44.57� 1.25

search on REINFORCE N/A 93.85� 0.37 71.71� 1.09 45.25� 1.18
CIFAR-10 BOHB N/A 93.61� 0.52 70.85� 1.28 44.42� 1.49

RSPS 7587 87.66� 1.69 58.33� 4.34 31.14� 3.88
DARTS (bilevel) 35781 54.30� 0.00 15.61� 0.00 16.32� 0.00

Weight SETN 34139 87.64� 0.00 59.05� 0.24 32.52� 0.21
sharing, GDAS 31609 93.61� 0.09 70.70� 0.30 41.71� 0.98

search on DARTS; (bilevel) 10683: 54.30� 0.00 15.32� 0.00 16.38� 0.00
CIFAR-10 GAEA DARTS (bilevel) 7930: 91.63� 2.57 68.39� 4.47 41.59� 4.20

DARTS; (ERM) 18112: 84.39� 3.82 54.81� 7.08 31.82� 4.78
GAEA DARTS (ERM) 9061: 94.10� 0.29 72.60� 0.89 45.81� 0.51

GDAS; 27923: 93.52� 0.15 67.52� 0.15 40.91� 0.12
Weight GAEA GDAS 16754: 93.55� 0.13 70.47� 0.47 40.91� 0.12
sharing, DARTS; (bilevel) 10683: 54.30� 0.00 15.32� 0.00 28.96� 10.22
direct GAEA DARTS (bilevel) 7930: 91.63� 2.57 71.87� 0.57 45.69� 0.56
search DARTS; (ERM) 18112: 84.39� 3.82 51.26� 6.14 31.35� 7.46

GAEA DARTS (ERM) 9061: 94.10� 0.29 73.43� 0.13 46.36� 0.00

ResNet N/A 93.97 70.86 43.63
Optimal N/A 94.37 73.51 47.31

�
Search cost reported for running the search algorithm on CIFAR-10.

:
Search cost measured on NVIDIA P100 GPUs.

;
Our reproduction or implementation of a non-GAEA method.

other methods on CIFAR-100 and ImageNet-16-120 in the direct search setting. The result thus
also confirms the relevance of studying the single-level case to understand NAS; notably, the
DARTS (ERM) baseline also improves substantially upon the DARTS (bilevel) baseline.

9.2.3 Conclusion

In this section we studied NAS as a single-level optimization problem, arguing that the design
of good NAS algorithms is largely a matter of successfully optimizing and regularizing the su-
pernet. In support of this, we develop GAEA, a simple modification of gradient-based NAS that
attains state-of-the-art performance on several computer vision benchmarks while enjoying fa-
vorable speed and sparsity properties. The next section complicates this view, showing that from
a statistical perspective there may be some evidence for the bilevel approach.
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9.3 The benefits of bilevel optimization: Selecting feature maps
using weight-sharing

While NAS is at least as hard a problem as deep learning, we might still hope to gain insight
from understanding certain sub-problems, sub-routines, or simple settings. In this section focus-
ing on the bilevel optimization problem, we take the latter approach and propose feature map
selection—picking the best fixed data representations to use in a linear model—as a way to study
NAS and weight-sharing. In this setting, we show empirically that weight-sharing provides a
signal in the form of correlation between the performances of shared and standalone weights for
individual configurations, just as in NAS. Using this, we design a simple method that outper-
forms hyperparameter tuning baselines on two tasks. Finally, we show how the simple setting
also provides an explicit case where a bilevel objective improves over single-level optimization
in terms of sample complexity and discuss insights and limitations of this analysis.

9.3.1 Random search with weight-sharing
A starting point for solving the bilevel optimization problem is random search [Bergstra and Ben-
gio, 2012]: randomly sample a configuration c P C, train the inner loop problem to completion,
and repeat. More sophisticated methods adapt the distribution [Hutter et al., 2011] or allocate
fewer resources to less-promising configurations [Li et al., 2018a]. A major drawback of these
methods is the need to train configurations separately, which means only a limited part of the
search space can be explored under resource constraints. Hence, Pham et al. [2018] proposed
simultaneously exploring both the weight-space W and the configuration space C by partially
training the weights w with minibatch gradient steps w.r.t. architectures c sampled from a pa-
rameterized distribution. These weights are called shared because they are trained to optimize a
distribution of architectures over C.

Despite the noise due to updating w.r.t. different architectures, weight-sharing has become an
incredibly successful tool. A simple example that illustrates its surprising power is random search
with weight-sharing (RS-WS) [Bender et al., 2018, Li and Talwalkar, 2019], where weights are
trained by taking minibatch gradient steps w.r.t. uniformly sampled architectures. The bilevel
object solved by RS-WS is thus

min
cPC

ℓV pw�, cq s.t. w� P argmin
uPW

E
c�UnifpCq

LT pu, cq (9.9)

i.e. shared-weights are trained to optimize the expected loss of a uniformly sampled architec-
ture. This is followed by evaluations of different configurations c P C using the resulting shared
weights w�. In the case of the two benchmarks studied by Li and Talwalkar [2019], highly per-
formant architectures according to the shared-weights also had high ground truth performance.
In Section 9.3.2 we observe analogous behavior for the feature map selection problem.

9.3.2 Feature map selection: A simple setting for understanding NAS
In this section, we introduce feature map selection and show how it can be viewed as a sim-
ple type of NAS with weight-sharing. Empirically, weight-sharing outperforms random search
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Algorithm 25: Feature map selection using successive halving with weight-sharing.
Input: training set T , validation set V , convex loss ℓ, set of feature map ϕc

configurations C, regularization parameter λ ¡ 0
for round t � 1, . . . , log2 |C| do

for datapoint px, yq P T Y V do
assign cx � UnifpCq i.i.d.

w�
t Ð argmin

wPRd
λ}w}22 �

°
px,yqPT

ℓpxw, ϕcxpxqy, yq
for configuration c P C do

Vc Ð tpx, yq P V : cx � cu
sc Ð 1

|Vc|
°

px,yqPVc
ℓpxw�

t , ϕcxpxqy, yq

C � tc P C : sc ¤ Medianptsc : c P Cuqu
Result: Singleton set of configurations C.

and Hyperband [Li et al., 2018a] both when selecting random Fourier maps on CIFAR-10 and
configuring Bag-of-n-Grams representations on IMDb, motivating further analysis.

In feature map selection each configuration c P C corresponds to a feature map ϕc : X ÞÑ
Rd of the input to be passed to a linear classifier in W � Rd; the hypothesis space is then
HpRd, Cq � txw,ϕcp�qy : w P Rd, c P Cu. This can be viewed as a simple NAS problem, with
the difference that in neural nets the maps ϕc also depend on parameter-weights w, whereas here
we only parameterize the last layer. We can write the standard bilevel optimization for feature
map selection in the form of (9.2) for regularization parameter λ ¡ 0:

min
cPC

¸
px,yqPV

ℓpxw�
c ,ϕcpxqy, yq s.t. w�

c � argmin
wPRd

λ}w}22 �
¸

px,yqPT
ℓpxw,ϕcpxqy, yq (9.10)

Note that as a non-architectural hyperparameter, λ is not tuned by weight-sharing.
How can we use weight-sharing to approximate (9.10) without solving for w�

c for each con-
figuration c P C? We take inspiration from the RS-WS algorithm described in Section 9.3.1,
which allocates a resource—a minibatch of training examples—to a configuration at each it-
eration. Analogously, in Algorithm 25, we propose to allocate training examples to feature
maps: at each iteration t we solve an ERM problem with each point featurized by a random map
ϕc, c � UnifpCq. The result wt is thus shared among the feature maps rather than being the min-
imizer for any single one; as with RS-WS we find that, despite being trained using the uniform
distribution over configurations, as showin in Figure 9.3 the shared-weights wt are much better
classifiers for data featurized using the best maps. We use this as validation signal in a successive
halving procedure approximating (9.10) in log2 |C| regression solves.

We evaluate Algorithm 25 on two problems: kernel ridge regression over random Fourier fea-
tures [Rahimi and Recht, 2008] on CIFAR-10 and regularized SVM classification over hashed
Bag-of-n-Gram representations [Wang and Manning, 2012] on IMDb. The hyperparameters we
tune are described in Appendix 9.B.2. In Figure 9.3, we show that the performance of the shared
weights found at the first stage of Algorithm 25 on CIFAR-10 is strongly correlated with the
standalone validation accuracy; thus, as in NAS we can use weight-sharing to obtain a useful
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Figure 9.3: Validation accuracy of individual feature maps using shared weights compared to
individual training.
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Figure 9.4: Oracle test-error on CIFAR-10 (left) and IMDb (right) as a function of number
of solver calls. Here, oracle test-error refers to evaluation of a separately trained, non-weight-
shared, classifier on the best config at any given round according to weight-sharing. All curves
are averaged over 10 independent trials.

290



noisy indication of the performance of many configurations while training only one set of pa-
rameters. We can exploit this fact in Figure 9.4, where we see that Algorithm 25 obtains a better
test accuracy in fewer calls to the ridge regression or SVM solver than random search. Inter-
estingly, in terms of wallclock time the average weight-sharing solve is slower than the average
single-configuration solve, but in Appendix 9.B.2 we describe how we can modify Algorithm 25
to outperform both random search and Hyperband [Li et al., 2018a] in terms of both accuracy
and time. Note that we do not compare to Hyperband in the above plot because it computes many
more solutions to lower-dimensional problems and so the evaluations are incomparable.

9.3.3 Generalization guarantees for the bilevel problem

While in our experiments we have used the bilevel formulation, it is not immediately clear, in
NAS or feature map selection, that the joint ERM problem

min
cPC,wPW

λ}w}22 �
¸

px,yqPTYV
ℓpxw,ϕcpxqy, yq (9.11)

over the combined data would not also work. This question is interesting due to the widespread
use of the bilevel formulation in NAS with weight-sharing. Especially when continuous re-
laxation [Liu et al., 2019b] is applied, architecture parameters in NAS appear more similar to
regular model parameters rather than controls on the model complexity, so it is reasonable to
wonder why most NAS practitioners have used the bilevel formulation. In this section we give
an analysis suggesting that decomposing the objective can improve generalization by adapting
to the sample complexity of the best configuration in C, whereas ERM suffers that of the worst.
For feature map selection our theory gives concrete excess risk bounds.

We start with a key fact about the weights that optimize the bilevel problem: they are op-
tima argminwPW LT pw, cq of the inner objective, i.e. elements of the version space Hc,T �
thw,c : w P argminuPW LT pu, cqu [Kearns et al., 1997, Equation 6]. We use the following data-
dependent quantification of how much the hypotheses are restricted by the inner optimization for
NpF, εq the L8-covering-number of a set of functions F at scale ε ¡ 0, i.e. the number of L8

balls in an ε-cover of F [Mohri et al., 2012, Equation 3.60]:

Definition 9.3.1. The version entropy of HpC,Wq at scale ε ¡ 0 induced by the objective LT
over training data T is ΛpH, ε, T q � logN p�cPC Hc,T , εq.

For finite C, the version entropy is less than log |C|�maxcPC logNpHc,T , εq, so that the second
term measures the worst-case complexity of the global minimizers of LT . In the feature selection
problem, LT is usually a strongly-convex loss due to regularization and so all version spaces are
singleton sets, making the version entropy log |C|. In the other extreme case of nested model
selection the version entropy reduces to the complexity of the version space of the largest model
and so may not be informative. However, in practical problems such as NAS an inductive bias is
often imposed via constraints on the number of input edges.

To bound the excess risk in terms of the version entropy, we first discuss an important as-
sumption describing cases when we expect the bilevel approach to perform well:
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Assumption 9.3.1. There exists a c� P C s.t. pw�, c�q P argminW�C ℓDpw, cq for some w� PW
and s.t. w.h.p. over the training sample T at least one of the minima of the optimization induced
by c� and T has low excess risk, i.e. w.p. 1 � δ there exists w P argminuPW LT pu, c�q s.t.
ℓDphw,c�q � ℓDph�q ¤ ε�p|T |, δq for excess risk ε� and all h� P HpW , Cq.

This assumption requires that the inner optimization objective does not exclude all good
classifiers for the optimal configuration. It asks nothing of the other configurations in C, which
may be arbitrarily bad, nor of the hypotheses found by the procedure, but prevents the case
where even minimizing the objective LT p�, c�q does not provide a set of good weights. Note that
if the inner optimization is simply ERM over the training set T , i.e. LT � ℓT , then standard
learning-theoretic guarantees will give ε�p|T |, δq decreasing in the size |T | of the training set and
increasing at most poly-logarithmically in 1

δ
. With this assumption, we can show the following

guarantee for solutions to the bilevel optimization (9.2):

Theorem 9.3.1. If Assumption 9.3.1 holds, ℓ is B-bounded, and pw, cq P W � C solves the
bilevel objective (9.2) for space HpW , Cq and data V, T, as in Section 9.3.1 then w.p. 1� 3δ

ℓDphw,cq ¤ min
hPHpW,Cq

ℓDphq � ε�p|T |, δq � inf
ε¡0

3ε� 3B

2

d
2

|V |
�
ΛpH, ε, T q � log

1

δ



(9.12)

Excess risk of feature map selection

To use this theorem we must bound the version entropy. In feature map selection, strong-
convexity induces a unique minimum for each each ϕc and thus a singleton version space, so
the bound is log |C|. Then we can show the following for Lipschitz (e.g. hinge) losses:

Corollary 9.3.1. For feature map selection with Lipschitz loss ℓ there exists λ ¡ 0 s.t. bilevel

optimization yields a hypothesis with excess risk less than O
�b

}w�}22�1

|T | log 1
δ
�
b

1
|V | log

|C|
δ



.

In the case of selection random Fourier approximations of kernels, we can show that we can
compete with the optimal RKHS from among those associated with one of the configurations:

Corollary 9.3.2. In feature map selection suppose each map ϕc, c P C is associated with a
random Fourier feature approximation of a continuous shift-invariant kernel approximating an
RKHS Hc and ℓ is the square loss. Then for sufficiently large d there exists λ ¡ 0 s.t. w.p. 1� δ

solving (9.10) yields a hypothesis with excess risk w.r.t. Hc less than O
�

log2 1
δ?

|T | �
b

1
|V | log

|C|
δ



.

In both cases we get bounds almost identical to the excess risk achievable by knowing the best
configuration beforehand, up to a term depending weakly on the number of configurations. This
improves upon solving the regular ERM objective, where we have to contend with the possibly
high complexity of the hypothesis space induced by the worst configuration.

Version entropy and NAS

In simple settings Theorem 9.3.1 can guarantee excess risk almost as good as that of the (un-
known) optimal configuration without assuming anything about the complexity or behavior of
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sub-optimal configurations. However, for NAS we do not have a bound on the version entropy,
which now depends on all of C. Whether the version space of deep networks is small compared
to the number of samples is unclear, although we gather some evidence below. The question
amounts to how many (functional) global optima are induced by a training set of size |T |. In an
idealized spin-glass model, Choromanska et al. [2015, Theorem 11.1] suggest that the number
of critical points is exponential only in the number of layers, which would yield a small ver-
sion entropy. It is conceivable that the quantity may be further bounded by the complexity of
solutions explored by the algorithm when optimizing LT [Nagarajan and Kolter, 2017, Bartlett
et al., 2017]. On the other hand, Nagarajan and Kolter [2019] argue, with evidence in restricted
settings, that even the most stringent implicit regularization cannot lead to a non-vacuous uni-
form convergence bound; if true more generally this would imply that the NAS version entropy
is quite large.

9.4 Conclusion
This chapter presented our investigations into the weight-sharing paradigm in architecture search,
approaching the challenge by studying optimization objectives—single-level and bilevel—and
how they affected different aspects of learning: optimization and generalization. From the per-
spective of optimization we found that the single-level problem was both tractable to analyze
and effective in practice, influencing the development of GAEA. However, our study of feature
map selection suggests that bilevel optimization may be preferable for generalization, providing
a possible explanation for its prevalence in the NAS literature. As a setting that both empirically
demonstrates the usefulness of weight-sharing while being simple to stay and analyze, we expect
feature map selection to spur further theoretical study of architecture search.
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9.A Proofs

9.A.1 Optimization
This section contains proofs and generalizations of the nonconvex optimization results in Sec-
tion 9.2.1. Throughout this section, V denotes a finite-dimensional real vector space with Eu-
clidean inner product x�, �y.

Preliminaries

Definition 9.A.1. [Zhang and He, 2018, Definition 2.1] Consider a closed and convex subset
X � V. For any γ ¡ 0 and ϕ : X ÞÑ R an everywhere-subdifferentiable function f : X ÞÑ R is
called γ-relatively-weakly-convex (γ-RWC) w.r.t. ϕ if fp�q � γϕp�q is convex on X .

Definition 9.A.2. [Zhang and He, 2018, Definition 2.3] Consider a closed and convex subset
X � V. For any λ ¡ 0, function f : X ÞÑ R, and DGF ϕ : X ÞÑ R the Bregman proximal
operator of f is

proxλpxq � argmin
uPX

λfpuq � Bϕpu||xq (9.13)

Definition 9.A.3. [Zhang and He, 2018, Equation 2.11] Consider a closed and convex subset
X � V. For any λ ¡ 0, function f : X ÞÑ R, and DGF ϕ : X ÞÑ R the Bregman stationarity
of f at any point x P X is

∆λpxq � Bϕpx|| proxλpxqq � Bϕpproxλpxq||xq
λ2

(9.14)

Results

Throughout this section let V � �b
i�1Vi be a product space of b finite-dimensional real vector

spaces Vi, each with an associated norm } � }i : Vi ÞÑ R¡0, and X � �b
i�1Xi be a product set

of b subsets Xi � Vi, each with an associated 1-strongly-convex DGF ϕi : Xi ÞÑ R w.r.t. } � }i.
For each i P rbs will use } � }i,� to denote the dual norm of } � }i and for any element x P X
we will use xris to denote its component in block i and xr�is to denote the component across all
blocks other than i. Define the functions } � } : V ÞÑ R¡0 and } � }�V ÞÑ R¡0 for any x P V
by }x}2 � °b

i�1 }xris}2i and }x}2� �
°b
i�1 }xris}2i,�, respectively, and the function ϕ : X ÞÑ R

for any x P X by ϕpxq � °b
i�1 ϕipxq. Finally, for any n P N we will use rns to denote the set

t1, . . . , nu.
Setting 9.A.1. For some fixed constants γi, Li ¡ 0 for each i P rbs we have the following:

1. f : X ÞÑ R is everywhere-subdifferentiable with minimum f� ¡ �8 and for all x P X
and each i P rbs the restriction fp�,xr�isq is γi-RWC w.r.t. ϕi.

2. For each i P rbs there exists a stochastic oracle Gi that for input x P X outputs a random
vector Gipx, ξq s.t. EξGipx, ξq P Bifpxq, where Bifpxq is the subdifferential set of the
restriction fp�,xr�isq at xris. Moreover, Eξ}Gipx, ξq}2i,� ¤ L2

i .

Define γ � maxiPrbs γi and L2 � °b
i�1 L

2
i .

294



Claim 9.A.1. } � } is a norm on V.

Proof. Positivity and homogeneity are trivial. For the triangle inequality, note that for any λ P
r0, 1s and any x,y P X we have that

}λx� p1� λqy} �
gffe b̧

i�1

}λxris � p1� λqyris}2i

¤
gffe b̧

i�1

pλ}xris}i � p1� λq}yris}iq2

¤ λ

gffe b̧

i�1

}xris}2i � p1� λq
gffe b̧

i�1

}yris}2i

� λ}x} � p1� λq}y}

(9.15)

where the first inequality follows by convexity of the norms } � }i @ i P rbs and the fact that the
Euclidean norm on Rb is nondecreasing in each argument, while the second inequality follows
by convexity of the Euclidean norm on Rb. Setting λ � 1

2
and multiplying both sides by 2 yields

the triangle inequality.

Claim 9.A.2. 1
2
} � }2� is the convex conjugate of 1

2
} � }2.

Proof. Consider any u P V. To upper-bound the convex conjugate note that

sup
xPV

xu,xy � }x}2
2

� sup
xPV

b̧

i�1

xuris,xrisy �
}xris}2i

2

¤ sup
xPV

b̧

i�1

}uris}i,�}xris}i �
}xris}2i

2

� 1

2

b̧

i�1

}uris}2i,�

� }u}2�
2

(9.16)

where the first inequality follows by definition of a dual norm and the second by maximizing
each term w.r.t. }xris}i. For the lower bound, pick x P V s.t. xuris,xrisy � }uris}i,�}xris}i and
}xris}i � }uris}i,� @ i P rbs, which must exist by the definition of a dual norm. Then

xu,xy � }x}2
2

�
b̧

i�1

xuris,xrisy �
}xris}2i

2
� 1

2

b̧

i�1

}uris}2i,�
2

� }u}2�
2

(9.17)

so supxPVxu,xy � 1
2
}x}2 ¥ 1

2
}u}2�, completing the proof.
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Algorithm 26: Block-stochastic mirror descent over the product domain X ��b
i�1Xi

given DGFs ϕi associated with each Xi.
Input: initialization x1 P X , number of steps T ¥ 1, step-size sequence tηtuTt�1

for iteration t P rT s do
sample i � Unifrbs
set xt�1r�is � xtr�is
get g � Gipxt, ξtq
set xt�1ris � argminuPXi ηtxg,uy � Bϕipu||xtrisq

Output: x̂ � xt w.p. ηt°T
t�1 ηt

.

Theorem 9.A.1. Let x̂ be the output of Algorithm 26 after T iterations with non-increasing
step-size sequence tηtuTt�1. Then under Setting 9.A.1, for any γ̂ ¡ γ we have that

E∆ 1
γ̂
px̂q ¤ γ̂b

γ̂ � γ

minuPX fpuq � γ̂Bϕpu||x1q � f� � γ̂L2

2b

°T
t�1 η

2
t°T

t�1 ηt
(9.18)

where the expectation is w.r.t. ξt and the randomness of the algorithm.

Proof. Define transforms Ui, i P rbs s.t. UJ
i x � xris and x � °b

i�1Uixris @ x P X . Let
G be a stochastic oracle that for input x P X outputs Gpx, i, ξq � bUiGipx, ξq. This im-
plies Ei,ξGpx, i, ξq � 1

b

°b
i�1 bUiEξGipx, ξq P

°b
i�1UiBifpxq � Bfpxq and Ei,ξ}Gpx, i, ξq}2� �

1
b

°b
i�1 b

2Eξ}UiGipx, ξq}2i,� ¤ b
°b
i�1 L

2
i � bL2. Then

xt�1 � Ui

�
argmin

uPXi
ηtxg, uy � Bϕipu||xtrisq

�

� UiU
J
i

�
argmin

uPX
ηtxUiGipxt, ξtq,uy �

b̧

i�1

Bϕipuris||xtrisq
�

� argmin
uPX

ηt
b
xGpx, i, ξtq,uy � Bϕpu||xtq

(9.19)

Thus Algorithm 26 is equivalent to Zhang and He [2018, Algorithm 1] with stochastic oracle
Gpx, i, ξq, step-size sequence tηt{buTt�1, and no regularizer. Note that ϕ is 1-strongly-convex
w.r.t. } � } and f is γ-RWC w.r.t. ϕ, so in light of Claims 9.A.1 and 9.A.2 our setup satisfies
Assumption 3.1 of Zhang and He [2018]. The result then follows from Theorem 3.1 of the
same.

Corollary 9.A.1. Under Setting 9.A.1 let x̂ be the output of Algorithm 26 with constant step-size

ηt �
b

2bpfpx1q�f�q
γL2T

@ t P rT s. Then we have

E∆ 1
2γ
px̂q ¤ 2L

c
2bγpfpx1q � f�q

T
(9.20)

where the expectation is w.r.t. ξt and the randomness of the algorithm. Equivalently, we can
reach a point x̂ satisfying E∆ 1

2γ
px̂q ¤ ε in 8γbL2pfpx1q�f�q

ε2
stochastic oracle calls.
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A single-level analysis of ENAS and DARTS

In this section we apply our analysis to understanding two existing NAS algorithms, ENAS [Pham
et al., 2018] and DARTS [Liu et al., 2019b]. For simplicity, we assume objectives induced by ar-
chitectures in the relaxed search space are γ-smooth, which excludes components such as ReLU.
However, such cases can be smoothed via Gaussian convolution, i.e. adding noise to every
gradient; thus given the noisiness of SGD training we believe the following analysis is still in-
formative [Kleinberg et al., 2018].

ENAS continuously relaxes A via a neural controller that samples architectures a P A, so
Θ � ROph2q, where h is the number of hidden units. The controller is trained with Monte
Carlo gradients. On the other hand, first-order DARTS uses a mixture relaxation but applies a
softmax instead of constraining parameters to the simplex. Thus Θ � R|E|�|O| for E the set
of learnable edges and O the set of possible operations. If we assume that both algorithms use
SGD for the architecture parameters then to compare them we are interested in their respective
values of Gθ, which we will refer to as GENAS and GDARTS. Before proceeding, we note again
that our theory holds only for the single-level objective and when using SGD as the architecture
optimizer, whereas both algorithms specify the bilevel objective and Adam [Kingma and Ba,
2015], respectively.

At a very high level, the Monte Carlo gradients used by ENAS are known to be high-variance,
so GENAS may be much larger than GDARTS, yielding faster convergence for DARTS, which is
reflected in practice [Liu et al., 2019b]. We can also do a simple low-level analysis under the
assumption that all architecture gradients are bounded entry-wise, i.e. in ℓ8-norm, by some
constant; then since the squared ℓ2-norm is bounded by the product of the dimension and the
squared ℓ8-norm we have G2

ENAS � Oph2q while G2
DARTS � Op|E||O|q. Since ENAS uses a

hidden state size of h � 100 and the DARTS search space has |E| � 14 edges and |O| � 7
operations, this also points to DARTS needing fewer iterations to converge.

9.A.2 Generalization

This section contains proofs of the generalization results in Section 9.3.3.

Settings and main assumption

We first describe the setting for which we prove our general result.

Setting 9.A.2. Let C be a set of possible architecture/configurations of finite size such that each
c P C is associated with a parameterized hypothesis class Hc=thw,c : X ÞÑ Y 1 : w P Wu
for input space X , output space Y 1, and fixed set of possible weights W . We will measure the
performance of a hypothesis hw,c on an input x, y P X � Y for some output space Y using
a B-bounded loss function ℓ : Y 1 � Y ÞÑ r0, Bs. Note that while the examples below have
unbounded loss functions, in practice they are explicitly or implicitly bounded by explicit or
implicit regularization.

We are given a training sample T � D|T | and a validation sample V � D|V |, where D is
some distribution over X �Y . We will denote the the population risk by ℓDphw,cq � ℓDpw, cq �
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Epx,yq�Dℓphw,cpxq, yq and for any finite subset S � X �Y we will denote the empirical risk over
S by ℓSphw,cq � ℓSpw, cq � 1

|S|
°

px,yqPS ℓphw,cpxq, yq.
Finally, we will consider solutions of optimization problems that depend on the training data

and architecture. Specifically, for any configuration c P C and finite subset S � X � Y let
WcpSq � W be the set of global minima of some optimization problem induced by S and c and
let the associated version space [Kearns et al., 1997] be HcpSq � thw,c : w PWcpSqu.

We next give as examples two specific settings encompassed by Setting 9.A.2.

Setting 9.A.3. For feature map selection, in Setting 9.A.2 the configuration space C is a set of
feature maps ϕc : X ÞÑ Rd, the set of weights W � Rd consists of linear classifiers, for inputs
x P X the hypotheses are hw,cpxq � xw,ϕcpxqy for w P W , and so WcpSq is the singleton set
of solutions to the regularized ERM problem

argmin
wPW

λ}w}22 �
¸

px,yqPS
ℓpxw,ϕcpxqy, yq (9.21)

for square loss ℓ : Y 1 � Y ÞÑ R¡0 and some coefficient λ ¡ 0.

Setting 9.A.4. For neural architecture search, in Setting 9.A.2 the configuration space consists
of all possible choices of edges on a DAG of N nodes and a choice from one of K operations at
each edge, for a total number of configurations bounded by KN2 . The hypothesis hw,c : X ÞÑ Y 1

is determined by a choice of architecture c P C and a set of network weights w P W and the
loss ℓ : Y 1 � Y ÞÑ R¡0 is the cross-entropy loss. In the simplest case WcpSq is the set of global
minima of the ERM problem

min
wPW

¸
px,yqPS

ℓphw,cpxq, yq (9.22)

We now state the main assumption we require.

Assumption 9.A.1. In Setting 9.A.2 there exists a good architecture c� P C, i.e. one satisfying
pw�, c�q P argminW�C ℓDpw, cq for some weights w� PW , such that w.p. 1�δ over the drawing
of training set T � D|T | at least one of the minima of the optimization problem induced by c�

and T has low excess risk, i.e. D w PWc�pT q s.t.

ℓDpw, c�q � ℓDpw�, c�q ¤ ε�p|T |, δq (9.23)

for some error function ε�.

Clearly, we prefer error functions ε� that are decreasing in the number of training samples
|T | and increasing at most poly-logarithmically in 1

δ
. This assumption requires that if we knew

the optimal configuration a priori, then the provided optimization problem will find a good set
of weights for it. We will show how, under reasonable assumptions, Assumption 9.A.1 can be
formally shown to hold in Settings 9.A.3 and 9.A.4.

Main result

Our general result will be stated in terms of covering numbers of certain function classes.
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Definition 9.A.4. Let H be a class of functions from X to Y 1. For any ε ¡ 0 the associated L8

covering number NpH, εq of H is the minimal positive integer k such that H can be covered by
k balls of L8-radius ε.

The following is then a standard result in statistical learning theory (see e.g. Lafferty et al.
[2010, Theorem 7.82]):

Theorem 9.A.2. Let H be a class of functions from X to Y and let ℓ : Y 1 � Y ÞÑ r0, Bs be an
L-Lipschitz, B-bounded loss function. Then for any distribution D over X � Y we have

Pr
S�Dm

�
sup
hPH

|ℓDphq � ℓSphq| ¥ 3ε



¤ 2N pH, εq exp

�
�mε

2

2B2



(9.24)

where we use the loss notation from Setting 9.A.2.

Before stating our theorem, we define a final quantity, which measures the log covering
number of the version spaces induced by the optimization procedure over a given training set.

Definition 9.A.5. In Setting 9.A.2, for any sample S � X �Y define the version entropy to be
ΛpH, ε, Sq � logN p�cPC HcpSq, εq.
Theorem 9.A.3. In Setting 9.A.2 let pŵ, ĉq P W � C be obtained as a solution to the following
optimization problem:

argmin
wPW,cPC

ℓV pw, cq s.t. w PWcpT q (9.25)

Then under Assumption 9.A.1 we have w.p. 1� 3δ that

ℓDpŵ, ĉq ¤ ℓDpw�, c�q

� ε�p|T |, δq �B

d
1

2|V | log
1

δ
� inf

ε¡0
3ε�B

d
2

|V |
�
ΛpH, ε, T q � log

1

δ


 (9.26)

Proof. We have for any w P Wc�pT q satisfying Equation 9.23, whose existence holds by As-
sumption 9.A.1, that

ℓDpŵ, ĉq � ℓDpw�, c�q ¤ ℓDpŵ, ĉq � ℓV pŵ, ĉqlooooooooooomooooooooooon
1

� ℓV pŵ, ĉq � ℓV pw, c�qlooooooooooomooooooooooon
2

� ℓV pw, c�q � ℓDpw, c�qloooooooooooomoooooooooooon
3

� ℓDpw, c�q � ℓDpw�, c�qlooooooooooooomooooooooooooon
4

(9.27)

each term of which can be bounded as follows:

1. Since ŵ P WĉpT q for some ĉ P C the hypothesis space can be covered by the union of the
coverings of HcpT q over c P C, so by Theorem 9.A.2 we have that w.p. 1� δ

ℓDpŵ, ĉq � ℓV pŵ, ĉq ¤ inf
ε¡0

3ε�B

d
2

|V |
�
ΛpH, ε, T q � log

1

δ



(9.28)
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2. By optimality of the pair pŵ, ĉq and the fact that w PWc�pT q we have

ℓV pŵ, ĉq � min
cPC,w1PWcpT q

ℓV pw1, ĉq ¤ min
w1PWc� pT q

ℓV pw1, c�q ¤ ℓV pw, c�q (9.29)

3. Hoeffding’s inequality yields ℓV pw, c�q � ℓDpw, c�q ¤ B
b

1
2|V | log

1
δ

w.p. 1� δ

4. Assumption 9.A.1 states that ℓDpw, c�q � ℓDpw�, c�q ¤ ε�p|T |δq w.p. 1� δ.

Applications

For the feature map selection problem, Assumption 9.A.1 holds by standard results for ℓ2-
regularized ERM for linear classification (e.g. Sridharan et al. [2008]):

Corollary 9.A.2. In Setting 9.A.3, suppose the loss function ℓ is Lipschitz. Then for regulariza-
tion parameter λ �

b
1
|T | log

1
δ

we have

ℓDpw, c�q � ℓDpw�, c�q ¤ O

�d
}w�}22 � 1

|T | log
1

δ

�
(9.30)

We can then directly apply Theorem 9.A.3 and the fact that the version entropy is bounded
by log |C| because the minimizer over the training set is always unique to get the following:

Corollary 9.A.3. In Setting 9.A.3 let pŵ, ĉq PW � C be obtained as a solution to the following
optimization problem:

argmin
wPW,cPC

ℓV pw, cq s.t. w � argmin
wPW

λ}w}22 �
¸

px,yqPT
ℓpxw,ϕcpxqy, yq (9.31)

Then

ℓDpŵ, ĉq � ℓDpw�, c�q ¤ O

�d
}w�}22 � 1

|T | log
1

δ
�
d

1

|V | log
|C| � 1

δ

�
(9.32)

In the special case of kernel selection we can apply generalization results for learning with
random features to show that we can compete with the optimal RKHS from among those associ-
ated with one of the configurations [Rudi and Rosasco, 2017, Theorem 1]:

Corollary 9.A.4. In Setting 9.A.3, suppose each configuration c P C is associated with a random
Fourier feature approximation of a continuous shift-invariant kernel that approximates an RKHS
Hc. Suppose ℓ is the squared loss so that pŵ, ĉq PW�C is obtained as a solution to the following
optimization problem:

argmin
wPW,cPC

ℓV pw, cq s.t. w � argmin
wPW

λ}w}22 �
¸

px,yqPT
pxw,ϕcpxqy � yq2 (9.33)
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If the number of random features d � Opa|T | loga|T |{δq and λ � 1{a|T | then w.p. 1� δ we
have

ℓDphŵ,ĉq �min
cPC

min
hPHc

ℓDphq ¤ O

�
log2 1

δa|T | �
d

1

|V | log
|C| � 1

δ

�
(9.34)

In the case of neural architecture search we are often solving (unregularized) ERM in the
inner optimization problem. In this case we can make an assumption weaker than Assump-
tion 9.A.1, namely that the set of empirical risk minimizers contains a solution that, rather than
having low excess risk, simply has low generalization error; then applying Hoeffding’s inequality
yields the following:

Corollary 9.A.5. In Setting 9.A.2 let pŵ, ĉq PW � C be obtained as a solution to the following
optimization problem:

argmin
wPW,cPC

ℓV pw, cq s.t. w P argmin
w1PW

ℓT pw1, cq (9.35)

Suppose there exists c� P C satisfying pw�, c�q P argminW�C ℓDpw, cq for some weights w� P
W such that w.p. 1 � δ over the drawing of training set T � D|T | at least one of the min-
ima of the optimization problem induced by c� and T has low generalization error, i.e. D w P
argminw1PW ℓT pw1, c�q s.t.

ℓDpw, c�q � ℓT pw�, c�q ¤ ε�p|T |, δq (9.36)

for some error function ε�. Then we have w.p. 1� 4δ that

ℓDpŵ, ĉq ¤ ℓDpw�, c�q � ε�p|T |, δq �B

d
1

2|V | log
1

δ
�B

d
1

2|T | log
1

δ

� inf
ε¡0

3ε�B

d
2

|V |
�
ΛpH, ε, T q � log

1

δ


 (9.37)

9.B Experimental details

9.B.1 GAEA
We provide additional detail on the experimental setup and hyperparameter settings used for each
benchmark studied in Section 9.2.2. Code to reproduce the results for GAEA is available here:
https://github.com/liamcli/gaea_release.

DARTS search space

We consider the same search space as DARTS [Liu et al., 2019b], which has become one of the
standard search spaces for CNN cell search [Xie et al., 2019, Chen et al., 2019, Noy et al., 2019,
Liang et al., 2019]. Following the evaluation procedure used in Liu et al. [2019b] and Xu et al.
[2020b] , our evaluation of GAEA PC-DARTS consists of three stages:
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• Stage 1: In the search phase, we run GAEA PC-DARTS with 5 random seeds to reduce
variance from different initialization of the shared-weights network.2

• Stage 2: We evaluate the best architecture identified by each search run by training from
scratch.

• Stage 3: We perform a more thorough evaluation of the best architecture from stage 2 by
training with ten different random seed initializations.

For completeness, we describe the convolutional neural network search space considered. A
cell consists of 2 input nodes and 4 intermediate nodes for a total of 6 nodes. The nodes are
ordered and subsequent nodes can receive the output of prior nodes as input so for a given node
k, there are k�1 possible input edges to node k. Therefore, there are a total of 2�3�4�5 � 14
edges in the weight-sharing network.

An architecture is defined by selecting 2 input edges per intermediate node and also selecting
a single operation per edge from the following 8 operations: (1) 3 � 3 separable convolution,
(2) 5� 5 separable convolution, (3) 3� 3 dilated convolution, (4) 5� 5 dilated convolution, (5)
max pooling, (6) average pooling, (7) identity (8) zero. We use the same search space to design a
“normal” cell and a “reduction” cell; the normal cells have stride 1 operations that do not change
the dimension of the input, while the reduction cells have stride 2 operations that half the length
and width dimensions of the input. In the experiments, for both cell types, , after which the
output of all intermediate nodes are concatenated to form the output of the cell.

Stage 1: Architecture Search For stage 1, as is done by DARTS and PC-DARTS, we use
GAEA PC-DARTS to update architecture parameters for a smaller shared-weights network in
the search phase with 8 layers and 16 initial channels. All hyperparameters for training the
weight-sharing network are the same as that used by PC-DARTS:
train:

scheduler: cosine
lr_anneal_cycles: 1
smooth_cross_entropy: false
batch_size: 256
learning_rate: 0.1
learning_rate_min: 0.0
momentum: 0.9
weight_decay: 0.0003
init_channels: 16
layers: 8
autoaugment: false
cutout: false
auxiliary: false
drop_path_prob: 0
grad_clip: 5

2Note [Liu et al., 2019b] trains the weight-sharing network with 4 random seeds. However, since PC-DARTS is
significantly faster than DARTS, the cost of an additional seed is negligible.
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For GAEA PC-DARTS, we initialize the architecture parameters with equal weight across all
options (equal weight across all operations per edge and equal weight across all input edges per
node). Then, we train the shared-weights network for 10 epochs without performing any archi-
tecture updates to warmup the weights. Then, we use a learning rate of 0.1 for the exponentiated
gradient update for GAEA PC-DARTS.

Stage 2 and 3: Architecture Evaluation For stages 2 and 3, we train each architecture for
600 epochs with the same hyperparameter settings as PC-DARTS:

train:
scheduler: cosine
lr_anneal_cycles: 1
smooth_cross_entropy: false
batch_size: 128
learning_rate: 0.025
learning_rate_min: 0.0
momentum: 0.9
weight_decay: 0.0003
init_channels: 36
layers: 20
autoaugment: false
cutout: true
cutout_length: 16
auxiliary: true
auxiliary_weight: 0.4
drop_path_prob: 0.3
grad_clip: 5

Broad Reproducibility Our ‘broad reproducibility’ results in Table 9.3 show the final stage 3
evaluation performance of GAEA PC-DARTS for 2 additional sets of random seeds from stage
1 search. The performance of GAEA PC-DARTS for one set is similar to that reported in Ta-
ble 9.1, while the other is on par with the performance reported for PC-DARTS in Xu et al.
[2020b]. We do observe non-negligible variance in the performance of the architecture found by
different random seed initializations of the shared-weights network, necessitating running mul-
tiple searches before selecting an architecture. We also found that it was possible to identify and
eliminate poor performing architectures in just 20 epochs of training during stage 2 intermediate
evaluation, thereby reducing the total training cost by over 75% (we only trained 3 out of 10
architectures for the entire 600 epochs).

We depict the top architectures found by GAEA PC-DARTS for CIFAR-10 and ImageNet in
Figure 9.5 and detailed results in Tables 9.4 and 9.5.
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Table 9.3: GAEA PC-DARTS Stage 3 Eval-
uation for 3 sets of random seeds.

Stage 3 Evaluation

Set 1 (Reported) Set 2 Set 3

2.50� 0.07 2.50� 0.09 2.60� 0.09

Table 9.4: CIFAR-10 performance comparisons with manually designed net-
works and those found by SOTA NAS methods, mainly on the DARTS search
space [Liu et al., 2019b]. Results grouped by the type of search method: manually
designed, full-evaluation NAS, and weight-sharing NAS. All test errors are for
models trained with auxiliary towers and cutout (parameter counts exclude auxil-
iary weights). Test errors we report are averaged over 10 seeds. “-" indicates that
the field does not apply while “N/A" indicates unknown. Note that search cost is
hardware-dependent; our results used Tesla V100 GPUs.

Test Error Params Search Cost Comparable Search
Architecture Best Average (M) (GPU Days) Search Space Method

Shake-Shake [DeVries and Taylor, 2017] N/A 2.56 26.2 - - manual
PyramidNet [Yamada et al., 2018] 2.31 N/A 26 - - manual

NASNet-A� [Zoph et al., 2018] N/A 2.65 3.3 2000 N RL
AmoebaNet-B� [Real et al., 2019] N/A 2.55� 0.05 2.8 3150 N evolution

ProxylessNAS; [Cai et al., 2019] 2.08 N/A 5.7 4 N gradient
ENAS [Pham et al., 2018] 2.89 N/A 4.6 0.5 Y RL
Random search WS: [Li and Talwalkar, 2019] 2.71 2.85� 0.08 3.8 0.7 Y random
ASNG-NAS [Akimoto et al., 2019] N/A 2.83� 0.14 3.9 0.1 Y gradient
SNAS [Xie et al., 2019] N/A 2.85� 0.02 2.8 1.5 Y gradient
DARTS (1st-order): [Liu et al., 2019b] N/A 3.00� 0.14 3.3 0.4 Y gradient
DARTS (2nd-order): [Liu et al., 2019b] N/A 2.76� 0.09 3.3 1 Y gradient
PDARTS# [Chen et al., 2019] 2.50 N/A 3.4 0.3 Y gradient
PC-DARTS: [Xu et al., 2020b] N/A 2.57� 0.07 3.6 0.1 Y gradient
GAEA PC-DARTS: (Ours) 2.39 2.50� 0.06 3.7 0.1 Y gradient
�

We show results for networks with a comparable number of parameters.
:

For fair comparison to other work, we show the search cost for training the shared-weights network with a single
initialization.

;
Search space and backbone architecture (PyramidNet) differ from the DARTS setting.

#
PDARTS results not reported for multiple seeds. Additionally, PDARTS uses deeper weight-sharing networks during

search, on which PC-DARTS has also been shown to improve performance [Xu et al., 2020b], so we GAEA PC-DARTS
to further improve if modified similarly.

NAS-Bench-1Shot1

The NAS-Bench-1Shot1 benchmark [Zela et al., 2020b] contains 3 different search spaces that
are subsets of the NAS-Bench-101 search space. The search spaces differ in the number of nodes
and the number of input edges selected per node. We refer the reader to [Zela et al., 2020b] for
details about each individual search space.

Of the NAS methods evaluated in Zela et al. [2020b], PC-DARTS had the most robust per-
formance across the three search spaces and converged to the best architecture in search spaces
1 and 3. GDAS, a probabilistic gradient NAS method, achieved the best performance on search
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Table 9.5: ImageNet performance comparisons of manually designed net-
works and those found by SOTA NAS methods, mainly on the DARTS
search space [Liu et al., 2019b]. Results are grouped by the type of
search method: manually designed, full-evaluation NAS, and weight-
sharing NAS. All test errors are for models trained with auxiliary towers
and cutout but no other modifications, e.g. label smoothing [Müller et al.,
2019], AutoAugment [Cubuk et al., 2019], Swish [Ramachandran et al.,
2017], squeeze and excite modules [Hu et al., 2018], etc. “-" indicates that
the field does not apply while “N/A" indicates unknown. Note that search
cost is hardware-dependent; our results used Tesla V100 GPUs.

Test Error Params Search Cost Search
Architecture Source top-1 top-5 (M) (GPU Days) Method

MobileNet [Howard et al., 2017] 29.4 10.5 4.2 - manual
ShuffleNet V2 2x [Ma et al., 2018] 25.1 N/A � 5 - manual

NASNet-A� [Zoph et al., 2018] 26.0 8.4 5.3 1800 RL
AmoebaNet-C� [Real et al., 2019] 24.3 7.6 6.4 3150 evolution

DARTS: [Liu et al., 2019b] 26.7 8.7 4.7 4.0 gradient
SNAS [Xie et al., 2019] 27.3 9.2 4.3 1.5 gradient
ProxylessNAS; [Cai et al., 2019] 24.9 7.5 7.1 8.3 gradient
PDARTS# [Chen et al., 2019] 24.4 7.4 4.9 0.3 gradient
PC-DARTS (CIFAR-10): [Xu et al., 2020b] 25.1 7.8 5.3 0.1 gradient
PC-DARTS (ImageNet): [Xu et al., 2020b] 24.2 7.3 5.3 3.8 gradient
GAEA PC-DARTS (CIFAR-10): Ours 24.3 7.3 5.3 0.1 gradient
GAEA PC-DARTS (ImageNet): Ours 24.0 7.3 5.6 3.8 gradient
�,: ,; ,# See notes in Table 9.4.

space 2. Hence, we focused on applying a geometry-aware approach to PC-DARTS. We imple-
mented GAEA PC-DARTS within the repository provided by the authors of Zela et al. [2020b]
available at https://github.com/automl/nasbench-1shot1. We used the same hy-
perparameter settings for training the weight-sharing network as that used by Zela et al. [2020b]
for PC-DARTS. Similar to the previous benchmark, we initialize architecture parameters to allo-
cate equal weight to all options. For the architecture updates, the only hyperparameter for GAEA
PC-DARTS is the learning rate for exponentiated gradient, which we set to 0.1.

As mentioned in Section 9.2.2, the search spaces considered in this benchmark differ in that
operations are applied after aggregating all edge inputs to a node instead of per edge input as
in the DARTS and NAS-Bench-201 search spaces. This structure inherently limits the size of
the weight-sharing network to scale with the number of nodes instead of the number of edges
(Op|nodes|2q), thereby limiting the degree of overparameterization. Understanding the impact
of overparameterization on the performance of weight-sharing NAS methods is a direction for
future study.

NAS-Bench-201

The NAS-Bench-201 benchmark [Dong and Yang, 2020] evaluates a single search space across
3 datasets: CIFAR-10, CIFAR-100, and a miniature version of ImageNet (ImageNet-16-120).
ImageNet-16-120 is a downsampled version of ImageNet with 16 � 16 images and 120 classes
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Figure 9.5: The best normal and reduction cells found by GAEA PC-DARTS on CIFAR-10 (top)
and ImageNet (bottom). From top to bottom we show: CIFAR-10: Normal Cell, CIFAR-10:
Reduction Cell, ImageNet: Normal Cell, ImageNet: Reduction Cell.
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Figure 9.6: Evolution over search phase epochs of the best architecture according to the NAS
method on NAS-Bench-201. DARTS (first-order) converges to nearly all skip connections while
GAEA is able to suppress overfitting to the mixture relaxation by encouraging sparsity in opera-
tion weights.

for a total of 151.7k training images, 3k validation images, and 3k test images. The authors of
Dong and Yang [2020] evaluated the architecture search performance of multiple weight-sharing
methods and traditional hyperparameter optimization methods on all three datasets. According
to the results from Dong and Yang [2020], GDAS outperformed other weight-sharing methods
by a large margin. Hence, we first evaluated the performance of GAEA GDAS on each of the
three datasets. Our implementation of GAEA GDAS uses an architecture learning rate of 0.1,
which matches the learning rate used for GAEA approaches in the previous two benchmarks.
Additionally, we run GAEA GDAS for 150 epochs instead of 250 epochs used for GDAS in
the original benchmarked results; this is why the search cost is lower for GAEA GDAS. All
other hyperparameter settings are the same. Our results for GAEA GDAS is comparable to
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the reported results for GDAS on CIFAR-10 and CIFAR-100 but slightly lower on ImageNet-
16-120. Compared to our reproduced results for GDAS, GAEA GDAS outperforms GDAS on
CIFAR-100 and matches it on CIFAR-10 and ImageNet-16-120.

Next, to see if we can use GAEA to further improve the performance of weight-sharing
methods, we evaluated GAEA DARTS (first order) applied to both the single-level (ERM) and
bi-level optimization problems. Again, we used a learning rate of 0.1 and trained GAEA DARTS
for 25 epochs on each dataset. The one additional modification we made was to exclude the zero
operation, which limits GAEA DARTS to a subset of the search space. To isolate the impact of
this modification, we also evaluated first-order DARTS with this modification. Similar to [Dong
and Yang, 2020], we observe DARTS with this modification to also converge to architectures
with nearly all skip connections, resulting in similar performance as that reported in Dong and
Yang [2020]. We present the learning curves of the oracle architecture recommended by DARTS
and GAEA DARTS (when excluding zero operation) over the training horizon for 4 different
runs in Figure 9.6. For GAEA GDAS and GAEA DARTS, we train the weight-sharing network
with the following hyperparameters:

train:
scheduler: cosine
lr_anneal_cycles: 1
smooth_cross_entropy: false
batch_size: 64
learning_rate: 0.025
learning_rate_min: 0.001
momentum: 0.9
weight_decay: 0.0003
init_channels: 16
layers: 5
autoaugment: false
cutout: false
auxiliary: false
auxiliary_weight: 0.4
drop_path_prob: 0
grad_clip: 5

Surprisingly, we observe single-level optimization to yield better performance than solving
the bi-level problem with GAEA DARTS on this search space. In fact, the performance of
GAEA DARTS (ERM) not only exceeds that of GDAS, but also outperforms traditional hyper-
parameter optimization approaches on all three datasets, nearly reaching the optimal accuracy
on all three datasets. In contrast, GAEA DARTS (bi-level) outperforms GDAS on CIFAR-100
and ImageNet-16-120 but underperforms slightly on CIFAR-10. The single-level results on this
benchmark provides concrete support for our convergence analysis, which only applies to the
ERM problem. As noted in Section 9.2.2, the search space considered in this benchmark differs
from the prior two in that there is no subsequent edge pruning. Additionally, the search space
is fairly small with only 3 nodes for which architecture decisions must be made. The success of
GAEA DARTS (ERM) on this benchmark indicate the need for a better understanding of when
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Figure 9.7: Observed test-error on CIFAR-10 (left) and IMDb (right) as a function of number of
time. All curves are averaged over 10 independent trials.

single-level optimization should be used in favor of the default bi-level optimization problem and
how the search space impacts the decision.

9.B.2 Feature map selection

Fast weight-sharing algorithm

In addition to the weight-sharing approach described in Algorithm 25, we evaluate a variant we
call Fast Weight-Sharing in which at each round t the feature dimension used is a constant mul-
tiplicative factor greater than that used on the previous round (we use

?
2, finding doubling to

be too aggressive), with the final dimension d reached only at the last round. This is reminiscent
of the resource allocation scheme of Li et al. [2018a], who after each round of successive elim-
ination give the promoted arms multiplicatively more features. The results, showing that Fast
Weight-Sharing outperforms the strong baseline of successive halving and random search, are
displayed in Figure 9.7.

All results are for 10 independent trials of each algorithm with the maximum number of
features used by all competing algorithms set to 100K. For both the Weight-Sharing and Fast
Weight-Sharing algorithms we started with 256 different configurations. For Figure 9.3 we var-
ied the feature dimension as shown and considered the correlation between shared-weights per-
formance and standalone performance fo 32 different configurations. The remaining settings are
in the provided code: https://github.com/mkhodak/weight-sharing.
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Hyperparameter tuning setup

For selecting feature maps on CIFAR-10 and IMDb we used the Ridge regression and SVM
solvers from scikit-learn [Pedregosa et al., 2011] to solve the inner ℓ2-regularized ERM
problems. The regularization was fixed to λ � 1

2
since weight-sharing does not tune non-

architectural hyperparameters; the same λ was used for all search algorithms. We tested whether
including λ in the search space helped random search and found that it did not, or even caused
random search to do worse; this is likely due to the bandwidth parameter playing a similar role.

Random Fourier features on CIFAR-10 For the search space we used the same kernel con-
figuration settings as Li et al. [2018a, Table 5] but replacing the regularization parameter by the
option to use the Laplace kernel instead of the Gaussian kernel. The data split used was the
standard 40K/10K/10K for training/validation/testing.

Hashed bag-of-n-grams on IMDb For the search space we tuned whether to just tokenize on
spaces, split on punctuation, or use the NLTK [Loper and Bird, 2002] tokenizer; whether to re-
move stopwords; whether to lowercase; the n-gram order between 1-3; whether to binarize bins;
whether to weight using Naive-Bayes [Wang and Manning, 2012] or SIF [Arora et al., 2017]; the
constant α for these weighting schemes between r10�5, 101s on a logarithmic scale; and whether
to use nothing, normlizing, or averaging as preprocessing. The data split was 25K/12.5K/12.5K
for training/validation/testing.
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Chapter 10

Finding neural operations for diverse tasks

Automated machine learning (AutoML) and neural architecture search (NAS) are often moti-
vated by a vision of democratizing ML by reducing the need for expert design on a variety of
tasks. While NAS has grown rapidly with developments such as weight-sharing [Pham et al.,
2018] and “NAS-benches” [Ying et al., 2019, Zela et al., 2020b], most efforts focus on search
spaces that glue together established primitives for well-studied tasks like vision and text [Liu
et al., 2019b, Li and Talwalkar, 2019, Xu et al., 2020b] or on issues such as latency [Cai et al.,
2020, Fang et al., 2020]. In this chapter, we revisit the broader vision of NAS and propose to
move towards much more general search spaces while still exploiting successful network topolo-
gies. To do so we focus on expanding the set of operations, which is usually fairly small; for
example, that of the well-studied DARTS space has eight elements: a few types of convolution
and pooling layers [Liu et al., 2019b]. The baseline approach for expanding this set—adding op-
erations one-by-one—scales poorly and will not result in new operations when faced with new
types of data.

Our contributions are two different search spaces for increasing the size of the operation
space while extending the well-known benefits of CNNs. The first is one called XD-Operations
that mimic the inductive bias of standard multi-channel convolutions while being much more
expressive: we prove that it includes many named operations across multiple application areas.
Starting with any standard backbone such as ResNet, we show how to transform it into a search
space over XD-operations and how to traverse the space using a simple weight-sharing scheme.
On a diverse set of tasks—solving PDEs, distance prediction for protein folding, and music
modeling—our approach consistently yields models with lower error than baseline networks and
often even lower error than expert-designed domain-specific approaches.

Seeking an approach that is faster, simpler, and broadly applicable, in our second search
space we again fix a standard CNN topology but propose to search for the right kernel sizes and
dilations its operations should take on. This dramatically expands the model’s capacity to extract
features at multiple resolutions for different types of data while only requiring search over the op-
eration space. To overcome the efficiency challenges of naive weight-sharing in this search space,
we introduce DASH, a differentiable NAS algorithm that computes the mixture-of-operations us-
ing the Fourier diagonalization of convolution, achieving both a better asymptotic complexity and

0The work presented in this chapter first appeared in Roberts et al. [2021] and Shen et al. [2022].
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an up-to-10x search time speedup in practice. We evaluate DASH on ten tasks spanning a variety
of application domains such as PDE solving, protein folding, and heart disease detection. DASH
outperforms state-of-the-art AutoML methods in aggregate, attaining the best-known automated
performance on seven tasks. Meanwhile, on six of the ten tasks, the combined search and retrain-
ing time is less than 2x slower than simply training a CNN backbone that is far less accurate.

10.1 Related work
Most work in AutoML has focused on either small hyperparameter spaces [Bergstra and Bengio,
2012, Li et al., 2018a] or on NAS [Elsken et al., 2019a]; search spaces for the latter usually
only contain a few operations such as convolutions [Liu et al., 2019b, Mei et al., 2020, Zela
et al., 2020b, Dong and Yang, 2020], which may not be useful for domains where CNNs are
ineffective. Applications of NAS outside vision largely follow the same pattern of combining
human-designed operations [Nekrasov et al., 2019, Wang et al., 2020b]. On the other extreme,
AutoML-Zero [Real et al., 2020] demonstrates the possibility of evolving all aspects of ML from
scratch. We seek to establish a middle ground with large and domain-agnostic search spaces that
still allow the use of well-tested methods, e.g. stochastic gradient descent (SGD).

We introduce two approaches for improving the applicability of NAS by a morphism-based
approach [Wei et al., 2016, Chen et al., 2016] that adapts existing CNN backbones to target tasks.
The first, XD-Operations, aims to generalize convolutions by generalizing the DFT matrices in
their diagonalization. Several papers have generalized the DFT to replace layers in deep nets
[Dao et al., 2019, Alizadeh vahid et al., 2020, Ailon et al., 2020, Dao et al., 2020] in order to
speed up or add structure to models while reducing expressivity. In contrast, we can replace
convolutions and other layers while increasing expressivity by extending their diagonalization
via K-matrices. As discussed in Section 10.2.1, using K-matrices for this directly is inefficient
for input dimension ¡ 1.

Although this new search space includes all types of convolutions, the search process is un-
acceptably long even for simple benchmarking tasks such as CIFAR-100 (Figure 10.5), let alone
the more complex set of diverse problems that we would like to consider, e.g. those in Tu et al.
[2022]. In addition, the output architectures of XD are as inefficient as the supernet due to the
absence of a discretization step. We thus move to a second approach, DASH, which specifically
focuses on expanding the operation space to multiple types of convolutions, simultaneously vary-
ing the kernel size and the dilation factor. Past work in related directions has at most studied the
easier problem of altering dilation alone, and only for vision tasks [Chen et al., 2018b]. There-
fore, although convolution has been an integral part of NAS, how to search over a large set of
convolutional operators remains an open problem. In the following, we identify three types of
solutions from existing work and illustrate their limitations.

1. Differentiable Architecture Search (DARTS): We can treat convolutions as ordinary op-
erators and apply a scalable NAS algorithm. In particular, DARTS [Liu et al., 2019b]
introduces continuous relaxation to the weight-sharing paradigm [Pham et al., 2018] and
allows us to gain information about many networks efficiently by training a combined su-
pernet. The algorithm relaxes the discrete set of operations at each edge in a computational
graph as a softmax so the search process is end-to-end differentiable and amenable to reg-
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ular optimizers. After search, it discretizes the weights to output a valid architecture. The
original DARTS search space contains only four convolutions with kernel sizes no larger
than 5 and dilation rates no larger than 2. While this small search space might be enough
for low-resolution image input, it is insufficient for diverse tasks such as high-dimensional
time series problems [Tu et al., 2022]. Although one could add more convolutions one-by-
one to the operator set to augment performance, this approach scales poorly, as reflected
in the limited search spaces of similar methods like AMBER [Zhang et al., 2021]. In fact,
AMBER has to shift the kernel size up to achieve good performance on long-sequence
genomic data.

2. MergeNAS and RepVGG: An alternative way to explore the convolutional search space
is to take advantage of the operator’s linearity. That is, we can first mix the kernels and
then apply convolution once, unlike DARTS which computes each convolution separately
and outputs the aggregated result to the next layer. This kernel-mixing strategy, which
we call mixed-weights and will formally define in Section 10.3.2, has been employed by
MergeNAS [Wang et al., 2020a] and RepVGG [Ding et al., 2021] to improve architecture
search robustness and VGG inference speed, respectively. It works well for a few small
kernels. However, we will show later that similar to DARTS, mixed-weights on its own is
also insufficient for searching over a diverse set of large kernels which is crucial to solving
a wide range of problems.

3. Single-Path NAS: This approach defines a large filter and uses its subsets for smaller
filters [Stamoulis et al., 2020]. This DARTS-based method compensates operator hetero-
geneity for efficiency during search. It does not handle search spaces with many large
kernels and is not evaluated on diverse tasks.

Outside the field of AutoML, there is also emerging interest in designing general-purpose
models such as Perceiver IO [Jaegle et al., 2022] and Frozen Pretrained Transformer [Lu et al.,
2022]. However, these Transformer-based models do not adapt the network to the target tasks
and are generally harder to train compared with CNNs. In Table 10.5, we evaluate Perceiver IO
and show that its performance is not ideal.

10.2 XD-operations
In this section we formalize XD-operations, a large, general search space of neural operations,
and design a search procedure for finding good architectures. We then evaluate this approach on
multiple understudied applications.

10.2.1 The expressive diagonalization relaxation
In this section we overview our main contribution:

Formally, we view an architecture as a parameterizable object—a mapping from model
weights to functions—described by a labeled directed acyclic graph (DAG) GpV,Eq. Each edge
in E has the form pu, v,Opq, where u, v P V are nodes and Op is an operation that can be
parameterized to define some transformation of the representation at node u; node v aggregates

313



the outputs of its incoming edges into a new representation. For example, the popular ResNet
architecture [He et al., 2016] has many nodes with two incoming edges, one labeled by the con-
volution operation Conv and one by the identity (skip-connect) Id, whose outputs it sums and
passes to outgoing edges with the same labels. Each architecture has a source node taking in
input data and an output node returning a prediction.

Neural architecture search is the problem of automatically selecting an operation for each
edge of G to optimize an objective.1 For each edge e P E a NAS algorithm must pick one
element of a search space S � tOpa |a P Au of operations specified by architecture param-
eters a P A to assign to e; in past work, A usually indexes a small set of operations. As
an example, we will refer to a variant2 Sdiscrete of the DARTS search space with parameters
Adiscrete � t1, . . . , 8u where each operation is one of Zero, Id, MaxPool3�3, AvgPool3�3,
Conv3�3 or 5�5, or DilatedConv3�3,2 or 5�5,2 [Liu et al., 2019b].

Our main contribution is a novel family of operations that comprise a search space con-
taining almost all these operations, in addition to many others that have been found useful on
different types of data. The starting point of our construction of these XD-operations is the
simple observation that all the operations Op P Sdiscrete listed above except MaxPool3�3 are
linear, i.e. for any model weights w there exists a matrix Aw such that for all inputs x we have
Oppwqpxq � Awx. More specifically, all seven of them return convolutions: to see this note
that Zero, Id, and AvgPool3�3 each apply a convolution with filter 01�1, 11�1, and 13�3{9,
respectively. This means that most of the operations in the DARTS search space—which is repre-
sentative of NAS operation spaces in computer vision—share the convolution’s diagonalization
by the discrete Fourier transform (DFT). Formally, if Aw P Rn2�n2 is the matrix representing a
2D convolution with filter w P Rk of kernel size k P rns2, then for any 2D input x P Rn2 we have

Convpwqpxq � Awx � F�1 diag pFwqFx (10.1)

Here diagpzq denotes the diagonal matrix with entries z, w P Rn2 is an appropriate zero-padding
of w P Rk, and F P Cn2�n2 is the 2D DFT (a Kronecker product of two 1D DFTs).

This diagonalization explicates both the computational and representational efficiency of the
DARTS operations, as the DFT and its inverse can be applied in time Opn log nq and stored
with Opn log nq bits. It also suggests a natural way to dramatically expand the operation space
while preserving these efficiencies: just replace matrices F and F�1 in (10.1) by any one of a
general family of efficient matrices. Doing so yields the single-channel version of our expressive
diagonalization (XD) operations:

XD1
αpwqpxq � Real pK diag pLwqMxq (10.2)

Here architecture parameter α � pK,L,Mq specifies the matrices that replace F and F�1 in
Equation 10.1.

The main remaining question is the family of efficient matrices to use, i.e. the domain of
the architecture parameters K, L, and M. For this we turn to the Kaleidoscope matrices, or K-
matrices [Dao et al., 2020], which generalize F and F�1 to include all computationally efficient
1It is often defined as selecting both operations and a graph topology [Zoph et al., 2018], but if the set of operations
contains the zero-operation Zero then the former subsumes the latter.

2For memory-efficiency, all convolutions in the original DARTS search space are separable [Liu et al., 2019b].
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linear transforms with short description length, including important examples such as sparse
matrices and permutations. To obtain this general family, K-matrices allow the DFT’s butterfly
factors—matrices whose products yield its efficient implementation—to take on different values.
While a detailed construction of K-matrices can be found in the original paper, we need only the
following useful properties: they are as (asymptotically) efficient to apply as DFTs, are differ-
entiable and can thus be updated using gradient-based methods, and can be composed (made
“deeper”) to make more expressive K-matrices.

Specifying that K, L, and M in Equation 10.2 are K-matrices largely completes our core
contribution: a new search space SXD of XD-operations with K-matrix architecture parame-
ters. We give a full multi-channel formalization in N dimensions, as well as an overview of its
expressivity, in Section 10.2.2. First, we note some key aspects of this new search space:

• Complexity: XD1
αpwq requires three K-matrices and Op1q filter weights to represent,

i.e. description length Opn log nq; this is larger than a regular convolution (which has no
architecture parameters) but is not quadratic in the input size like a linear layer. Apply-
ing XD1

α requires multiplication by three K-matrices, yielding a theoretical per-channel
time complexity of Opn log nq, matching the efficiency of convolutions. However, as XD-
operations strictly generalize convolutions they are more expensive to apply in practice; we
detail these costs both in the application sections and in Table 10.7, and we view improving
upon them as an important future direction.

• Initialization: a crucial advantage of XD-operations is that we can initialize or warm-start
search using operations with known constructions. In particular, since we can recover
convolutions (10.1) by setting architecture parameters K � F�1, L � F, and M �
F in Equation 10.2, we can always start search with any CNN backbone. We use this
extensively in experiments.

• K-matrices: as they contain all efficient linear transforms, K-matrices can represent all
functions returned by XD-operations, including convolutions. However, for input dimen-
sion and filter size ¡ 1 the only known way is to apply K-matrices directly to flattened
inputs x P RnN , yielding much worse description length OpnN log nq. In contrast, as de-
tailed in Section 10.2.2, our diagonalization approach uses Kronecker products to apply
DFTs to each dimension separately, yielding description length Opn log nq. It is thus the
first (and in some sense, “right”) method to use such matrices to replace convolutions.
Furthermore, diagonalization allows us to separate model weights w from architecture
parameters α, letting the former vary across channels while fixing the latter.

Finally, we address the fact that the architecture parameters of SXD are continuous, not dis-
crete, contrasting with much of the NAS literature. This can be viewed as a natural extension
of the weight-sharing paradigm [Pham et al., 2018], in which continuous relaxation enables up-
dating architecture parameters with gradient methods. For example, many algorithms traverse
the relaxed DARTS search space S̃discrete �

 °8
i�1 λiOpi |λi ¥ 0,

°8
i�1 λi � 1

(
, defined via

DARTS operations Opi P Sdiscrete and architecture parameters λi in the 8-simplex; most search
spaces then require discretizing after search via a rounding procedure that maps from the sim-
plex to Adiscrete. Note that the fully continuous nature of XD-operations means that we will only
evaluate the final network returned by search. In particular, while some weight-sharing papers
also report the correlation between true architecture performance and that indicated by the shared
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weights [Yang et al., 2020], there is no obvious way to define a ranking or sampling distribution
over XD-operations in order to do so. This also means that our final architecture will not be more
efficient than the supernet, unlike other weight-sharing methods that do discretize.

10.2.2 XD-operations and their expressivity
Here we formalize XD-operations and what operations they include. We first define operations:

Definition 10.2.1. A parameterizable operation is a mapping Op : W ÞÑ F from parameter
space W to a space F � tOppwq : X ÞÑ Y |w P Wu of parameterized functions from input
space X to output space Y . A search space is a set of operations with the same W , X , and Y .

For example, if X � Y � Rn and W � Rn�n then each W P W defines a parameterized
linear layer that for each x P X returns LinpWqpxq � Wx. Here Lin is the parameterizable
operation and for each W the linear map LinpWq is the parameterized function.

From Definition 10.2.1, we say a search space can express a specific operation if it contains
it. Crucially, the ability of a parameterizable operation Op1 to express a parameterized function
Op2pwq output from another operation Op2 given the right set of weights w does not imply that
a search space containing Op1 can express Op2. For example, LinpInq � IdpWq @W P Rn�n

but LinpWq � IdpWq @W � In, so a search space containing the linear operation Lin cannot
express the skip-connection Id, despite the fact that the operation Lin can itself be parameterized
by a specific W to compute the identity.

Formalizing multi-channel XD-operations

Recall the single-channel XD-operation XD1
α in Equation 10.2 specified by three-matrix ar-

chitecture parameter α � pK,L,Mq. For input dimension N ¥ 1, every matrix B P α is
a Kronecker product of N K-matrices of depth d P Z3

¡0, i.e. B � ÂN
i�1Bi for K-matrices

Bi P Cn�n of depth dr1s, dr2s, or dr3s for B � K, L, or M, respectively.3 Roughly speaking,
XD1

α can return any linear operation that is diagonalized by K-matrices and is thus efficient to
compute and represent, e.g. any convolution (recall we recover the diagonalization of Convpwq
in Equation 10.1 by setting K, L, and M appropriately in Equation 10.2). However, XD1

α cannot
represent efficient parameter-free operations such as skip-connections and average-pooling, both
common in NAS. In particular, the only way to always ignore the model weights w is to set one
of the K-matrices to zero, producing the zero-operation. We avoid this by adding a bias b P CnN

as an architecture parameter, yielding the biased single-channel XD-operation:4

XD1
α,bpwqpxq � Real pK diagpLw � bqMxq (10.3)

This lets us define skip-connections (K � M � InN , L � 0nN�nN , and b � 1nN ) and average-
pooling (K � F�1, L � 0nN�nN , M � F, and b is F multiplied by a pooling filter).

Lastly, we use XD1
α,b to construct multi-channel “layers” that pass input features through

multiple channels and re-combine them as multiple output features. This follows the primary

3A depth-d K-matrix is a product of d depth-1 K-matrices.
4Zero-padding x as well lets the input to be smaller than the output if needed, e.g. for transposed convolutions.
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way of using convolutions in deep nets. The key insight here is that we will share the same pa-
rameterizable operation (specified by α and b) across all channels, just as in convolutional layers.

Definition 10.2.2. Let a � pα,b,Cq be an architecture parameter containing a triple α �
pK,L,Mq of Kronecker products of N K-matrices with depths d P Z3

¡0, a bias b P CnN , and
channel gates C P Cc�c.5 Using “

À
” to denote concatenation, the XD-operation XDa of depth

d specified by a is a parameterizable operation on parameter space W � Rc�c�k consisting of c2

filters of size k P rnsN that outputs parameterized functions on X � Rc�mN for m ¤ n mapping
every x P X to

XDapwqpxq �
cà
i�1

ç

j�1

Cri,jsXD1
α,bpwri,jsqpxrjsq (10.4)

The last architecture parameter C allows interpolation between all-to-all layers (C � 1c�c),
e.g. multi-channel convolutions, and layers where each channel is connected to one other chan-
nel (C � Ic), e.g. skip-connections and average-pooling. We note that we use SXD to describe
the set of operations covered by Definition 10.2.2 and conclude our construction by discussing
two properties:

• Kernel size: the weight-space available to an XD-operation is Rc�c�nN ; however, since we
will initialize search with existing CNNs, we will zero-pad to have the same weight-space
Rc�c�kN as the convolutions with filter size k ¤ n that they replace. This preserves the
weight count but also means that if the backbone has 3� 3 filters our search space will not
contain 5 � 5 convolutions. Experimentally, we find that relaxing the constraint to allow
this does not significantly affect results on image tasks, so we do not do so in subsequent
applications to avoid increasing the weight count.

• Depth: an XD-operation’s depth is a triple describing the depths of its K-matrices K, L,
and M. Increasing it trades off efficiency for expressivity; for example, in the next section
we describe operations that we can show are contained in SXD if L or M have depth ¡ 1.
By default we will set the depth to be the minimum needed to initialize search with the
backbone operation.

Expressivity of XD-operations

For many papers that replace deep net layers with efficient linear transforms [Moczulski et al.,
2015, Dao et al., 2020], the question of expressivity comes down to the transform capacity.
For example, layers with a K-matrix in every channel can represent a different transform in
each, thus allowing the output to be any combination of efficient linear operations. Our case is
less straightforward since we care about expressivity of the search space, not of parameterized
functions, and our approach is less-expressive by design as all channels share K-matrices K, L,
and M. The latter can be thought of as a useful inductive bias on NAS: the set of XD-operations
is still much broader than the set of convolutions, but the way in which model weights are applied
is the same across all channels.

5For simplicity we formalize the case where all N dimensions have the same input size and there is an identical
number c of input and output channels; both are straightforward to extend.
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Expressivity results are a way to see if this bias is useful or constraining. Here we summarize
some important operations that are 1D XD-operations; proofs can be found in Appendix 10.A.1
and are straightforward to extend to multi-dimensional inputs. Formally, there exists d P Z3

¡0

such that the set of XD-operations of depth d over weights W � Rc�c�k and inputs X � Rm for
m ¤ n contains

1. convolutions with filter size¤ k, dilation rate¤ tn�1
k�1

u, stride length¤ n�1, and arbitrary
channel groups.

2. parameter-free operations Id, Zero, and AvgPools for any kernel size s ¤ n.

3. composing 1 or 2 operations with multiplication of all input or output channels by a
bounded-depth K-matrix.

Note this does not account for all important XD-operations, e.g. we show in Appendix 10.A.1
that they also express Fourier Neural Operators [Li et al., 2021c] with ¤ tk{2u modes and any
transposed convolutions whose stride equals the dilated kernel size.6 Still, the first two items
account for non-separable variants of most operations considered in past NAS work in computer
vision, excluding the nonlinear MaxPool [Ying et al., 2019, Dong and Yang, 2020]. Note
depthwise-separable convolutions are contained in the set of compositions of XD-operations.
The third item implies that XD-operations can express the basic and diffusion graph convolutions
over fixed graphs [Kipf and Welling, 2017, Li et al., 2018b]: both are point-wise convolutions
composed with sparse multiplication by a modified adjacency matrix, which K-matrices can
represent efficiently.

As a concrete example, consider dilated convolutions, which for k ¡ 1 and dilation factor
d ¥ 1 apply filters of effective size pk � 1qd � 1 with nonzero entries separated by d � 1 zeros.
One could hope to express the application of DilatedConvk,d to an input x P Rn in the single-
channel setting as F�1 diagpF diagppk,dqwqFx, where pk,d P t0, 1un zeroes out appropriate
entries of w, but this requires filter size pk � 1qd � 1 ¡ k, increasing the number of weights.
Instead, we can use a permutation Pk,d P t0, 1un�n before the DFT to place the k entries of w
into dilated positions:

DilatedConvk,dpwqpxq � F�1 diagpFPk,dwqFx (10.5)

As permutations are depth-2 K-matrices [Dao et al., 2020], we can express DilatedConvk,d
with an XD-operation of depth p1, 3, 1q, with K � F�1, L � FPk,d, and M � F.

10.2.3 Finding and evaluating XD-operations

This section outlines a simple procedure that we use to evaluate XD-operations. Recall that NAS
methods specify architectures by assigning operations to each edge pu, v,Opq of a computational
graph. We aim to simultaneously find good operations and model weights, a goal distinct from
the classic two-stage NAS formulation, which finds assignments in an initial search phase before
training the resulting architecture from scratch [Ying et al., 2019]. However, the use of weight-
sharing [Pham et al., 2018] extends NAS to one-shot objectives where weights and architectures

6This includes those transposed convolutions used in popular architectures such as U-Net [Ronneberger et al., 2015].
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are jointly optimized. Under weight-sharing, architecture parameters become weights in a larger
“supernet,” extending the hypothesis class (c.f. Chapter 9).

To assess XD-operations directly we assume the user provides a starter network with existing
edge labels Opu,v as a backbone. We transform this into a weight-sharing supernet by repa-
rameterizing each operation Opu,v as an XD-operation XDau,v with architecture parameter au,v.
Then we simultaneously train both au,v and the model weights wu,v associated with each edge
as follows:

• Architecture parameters au,v are initialized using the original operation used by the CNN
backbone by setting Opu,v � XDau,v ; au,v is then updated via SGD or Adam [Kingma
and Ba, 2015]. We tune step-size, momentum, and the number of “warmup” epochs:
initial epochs during which only model weights wu,v are updated. This can be viewed as a
specialized step-size schedule.

• Model weights wu,v are initialized and updated using the backbone’s original routine.
This approach allows us to use established topologies and optimizers while searching for

new operations, thus aligning with the goal for Sections 10.2.4, 10.2.4, and 10.2.4: to improve
upon the CNN backbones that practitioners often use as a first attempt. As a simple example,
we start by applying the procedure to image classification. Since this is not the main objec-
tive of our work, we treat it as a warmup and consider two datasets: CIFAR-10 and a variant
where the images’ rows and columns are permuted. On CIFAR-10 we do not expect to see much
improvement from XD-operations over the CNN backbone used to initialize search, as convolu-
tions are already the “right” operation for images. On the other hand, the “right” operation on
permuted data, at least in layer one, is an inverse permutation followed by convolution; as this is
an XD-operation7, here we do hope to see improvement.

Using LeNet [LeCun et al., 1999] and ResNet-20 [He et al., 2016] as backbones, we com-
pare applying our algorithm to XD-operations with two baselines: (1) using just the backbone
CNN and (2) applying a similar method to the relaxed set S̃discrete of DARTS operations from
Section 10.2.1. To optimize over S̃discrete we take an approach similar to DARTS: parameterize
the simplex using a softmax and apply Adam. We experiment with both a uniform initialization
and one biased towards the backbone’s operation. While both SXD and Sdiscrete contain LeNet’s
Conv5�5 and ResNet’s Conv3�3 and Id, for LeNet’s MaxPool3�3 layer we initialize with the
closest operation. For direct comparison, both search spaces employ weights with maximum
filter size 5� 5 and for both we evaluate the shared weights rather than retraining, which we find
hurts S̃discrete. We set the XD-operations’ depth to d � 33 to express the dilated convolutions
in Sdiscrete and convolutions composed with permutations.

In Table 10.1, we see that while both the relaxed discrete NAS operations and XD-operations
perform comparably on regular images, XD-operations achieve around 15% better accuracy with
both backbones when the images are permuted.8 Note that even networks obtained by running
state-of-the-art NAS procedures such as GAEA PC-DARTS (c.f. Section 9.2.2) and Dense-
NAS [Fang et al., 2020] on permuted CIFAR-10 achieve only 66.3% and 61.6% accuracy, re-
spectively, despite using millions more parameters than ResNet-20. While it is not straightfor-
ward to understand the recovered XD-operations that perform so well, we can use the relative

7Recall SXD includes compositions of convolutions with multiplication by a K-matrix, e.g. a permutation.
8Full accuracy can be recovered via an auxiliary loss encouraging permutation-like K-matrices [Dao et al., 2020].

319



Table 10.1: Search space comparison on CIFAR-
10. Validation accuracies are averages of three
trials. While we use small CNNs for explo-
ration, XD-operations can also be used with high-
performance backbones to obtain ¡ 95% accu-
racy (c.f. Appendix 10.C.1).

Backbone Permuted Cost
search space CIFAR-10 CIFAR-10� (hours:)

LeNet 75.5� 0.1 43.7� 0.5 0.3
S̃discrete 75.6� 3.4 47.7� 1.0 1.0
SXD 77.7� 0.7 63.0� 1.0 0.9

ResNet-20 91.7� 0.2 58.6� 0.7 0.6
S̃discrete 92.7� 0.2 58.0� 1.0 5.3
SXD 92.4� 0.2 73.5� 1.6 5.6
� No data augmentation used in the permuted case.

Figure 10.1: On permuted images,
where convolutions are not the “right”
operation, we find XD-operations that
are farther away from the operations of
the initial CNN backbone.

Euclidean distance of their architecture parameters from initialization as a proxy for novelty; in
Figure 10.1 we see that on regular images our procedure finds operations that are quite similar
to convolutions, but on permuted data they are much further away. These results show that to
enable NAS on diverse data, we will need a search space that contains truly novel operations, not
just combinations of existing ones. In the remainder of this section we study more diverse and
realistic tasks that show further evidence that SXD is a strong candidate for this.

10.2.4 Diverse applications

In selecting applications to consider beyond vision, we focused on domains with structured data
that is distinct from natural images or text, with an emphasis on scientific topics; of course,
availability of data and competitive hand-designed architectures as baselines was also a con-
sideration. After our initial experiments with XD, Tu et al. [2022] released NAS-Bench-360,
a ten-task benchmark that significantly simplifies the types of evaluations we are interested in
performing; as a result, our experiments in the next section focus on that benchmark. However,
for now we turn to the three domains we chose for XD.

Learning to solve PDEs

As our first non-vision application, we consider the task of solving PDEs, an important appli-
cation area of ML in the natural sciences [Li et al., 2015, 2018c, Sirignano and Spiliopoulos,
2018]. In our setup, data generated by classical PDE solvers is used to learn functions from
some initial condition or setting to the corresponding PDE solution, with the goal of replacing
the solver by a deep net forward pass; the latter can be orders of magnitude faster. A recent state-
of-the-art approach for this introduces Fourier Neural Operators [Li et al., 2021c], operations that
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Figure 10.2: Relative error on Burgers’ equation (left) and Darcy Flow (right).

significantly improve upon previous neural approaches across three different PDE settings. To
evaluate the ability of XD-operations to compete with such custom-designed operations starting
from simple CNN backbones, we will investigate the same three PDEs that they study: Burgers’
equation, Darcy Flow, and the 2D Navier-Stokes equations, which involve 1D, 2D, and 3D data,
respectively. The first two are studied across multiple resolutions, while the last one is studied at
different viscosities.

As before, we start with a simple CNN backbone—the type a scientist might use in a first
attempt at a solution—and replace all convolutions by XD-operations. We initially hope to do
better than this backbone, but ambitiously also hope to compete with the custom-designed FNO.
The specific CNN we use is simply the FNO architecture of the appropriate dimensionN but with
all N -dimensional FNOs replaced by N -dimensional convolutions; this performs similarly to
their CNN baselines [Li et al., 2021c]. In all cases we compare mainly to the CNN backbone and
our reproduction of the FNO results, as the latter exceeds all other neural methods; a complete
results table is provided in Appendix 10.C.2. Our reproduction of FNO is slightly worse than
their reported numbers for Burgers’ equation and slightly better in the other two settings. Note
that on the Navier-Stokes equations we only compare to the 3D FNO on the two settings in
which we were able to reproduce their approach; moreover, we do not compare to their use of
a 2D FNO plus a recurrent net in time, but in-principle XD-operations can also be substituted
there. In the 2D Darcy Flow case we also include comparisons to DARTS operations in the
simple CNN backbone, as in Section 10.2.3, and to Auto-DeepLab (AutoDL) [Liu et al., 2019a],
a well-known NAS method for dense prediction. For evaluating XD-operations we again follow
the procedure in Section 10.2.3, in which we tune only the architecture optimizer; notably, we
do this only at the lowest resolutions. At all dimensions we use XD-operations of depth d � 13;
in addition, in dimensions N ¡ 1 we fix the architecture biases b and channel gates C to 0
and 1, respectively, to conserve memory at higher resolutions. At lower ones we find that the
performance difference is negligible.
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Table 10.2: Relative test error on the 2D Navier-Stokes equations at
different settings of the viscosity ν and time steps T . Best results in
each setting are bolded.

ν � 10�4, T � 30 ν � 10�5, T � 20

CNN-3d (our baseline) 0.325 0.278
FNO-3d (reproduced) 0.182 0.177
CNN-3d XD (ours) 0.172 0.168

We report our results for the Burger’s equation and Darcy Flow in Figure 10.2; for 2D Navier-
Stokes the results are in Table 10.2. In all cases we dramatically outperform the CNN backbone
used to initialize XD-operations; furthermore, we also achieve better error than FNO, despite it
being custom-made for this problem. In particular, we find that XD-operations have higher train-
ing error but generalize better (c.f. Figure 10.10). Figure 10.2 also shows that XD-operations
perform consistently well across resolutions, a major advantage of FNOs over previous methods,
whose performance was tightly coupled to the discretization [Li et al., 2021c]. Notably, CNN
performance worsens with higher resolution, unlike that of XD and FNO. Finally, we also sub-
stantially outperform DARTS operations and AutoDL in 2D, although the latter is at least con-
sistent across resolutions. These results provide strong evidence that XD-operations are a useful
search space for discovering neural operations, even in domains where the convolutions used to
initialize them perform much worse than state-of-the-art. Note that these results do come at a
cost of slower training and inference: XD-operations are roughly an order of magnitude slower
than FNOs, despite having fewer parameters in 2D and 3D. This still yields solvers one-to-two
orders of magnitude faster than classical solvers, maintaining usefulness for the problem.

Real-valued distance prediction for protein folding

As a second scientific application, we consider the task of inferring the 3D “folded” structure
of a polypeptide chain, which yields important insights into the function of the resulting pro-
tein [Adhikari, 2020]. This problem is a high-priority challenge in biology and has recently seen
significant ML-driven advances from deep learning methods such as AlphaFold [Senior et al.,
2020, Jumper et al., 2021] and PDNET [Adhikari, 2020]. These typically involve training a net-
work to predict pairwise physical distances between residues in the chain. We work with the
PDNET benchmark, which consists of a training set of 3,356 proteins, a validation set of 100
of proteins, and the PSICOV [Adhikari, 2020] test set of 150 proteins. PDNET is designed to
be more accessible than datasets used by large-scale methods such as AlphaFold, which are not
always publicly available and/or require massive compute [Senior et al., 2020, Jumper et al.,
2021]. We follow the PDNET training procedure [Adhikari, 2020] and evaluate test set perfor-
mance using their MAE8 metric for assessing long-range distances.

As before we start with simple CNN backbones—in this case ResNets. We choose this
to compare most directly to the custom-designed architecture used by PDNET, consisting of a
Dilated ResNet characterized by its use of a cyclically increasing dilation rate across ResNet
blocks [Adhikari, 2020]. At a sufficient depth, the Dilated ResNet is shown to outperform a
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standard pre-activation ResNet adapted to this task [Adhikari, 2020]. Our goal will be to see
whether we can start with the vanilla ResNet and use XD to outperform both it and the specialized
Dilated ResNet. We also aim to outperform the DARTS operations baseline from the previous
two sections as well as the AutoDL NAS approach for dense prediction. We use XD-operations
of depth d � 13 and fix the architecture biases and channel gates as before to conserve memory.
We evaluate architectures of different depths—4, 6, 10, 18, and 34—by varying the number of
ResNet blocks used in the backbone architecture and baseline.

We report the results as averages across three trials for each depth in Figure 10.3. Notably,
while Dilated ResNet slightly outperforms ResNet, ResNet XD outperforms both dilated and
standard ResNets at all depths. This provides further evidence that XD-operations can out-
perform specialized operations for diverse domains, even when initialized naively as standard
convolutions. XD also outperforms AutoDL, which does poorly, and DARTS operations, except
at the two smaller depths where performance is similar. Moreover, our ResNet-34 XD’s MAE8

of 4.0 also improves upon PDNET’s reported MAE8 of 4.1 attained by the much deeper Di-
lated ResNet-258 [Adhikari, 2020]; however, in our reproduction Dilated ResNet-258 achieved
an MAE8 of 3.5. Given the trend in Figure 10.3, where XD-operations consistently improve the
backbone architecture of the same depth, we conjecture that ResNet-258 XD could further im-
prove upon this result. We leave scaling XD-operations to such deeper networks to future work.

Music modeling

Our last application is music modeling: learning to predict the next note from sheet music [Allan
and Williams, 2005]. The dominant approaches here are recurrent nets [Hochreiter and Schmid-
huber, 1997] and Transformers [Vaswani et al., 2017], but recent work shows that specially-
designed CNNs are also competitive [Bai et al., 2018, 2019]. We will consider the temporal
convolutional network (TCN) [Bai et al., 2018], which improves upon a regular CNN by having
the dilations grow exponentially across layers. The tasks we study are on the JSB Chorales and
Nottingham corpora, used in the original evaluation of TCNs [Bai et al., 2018]. As the baseline
we take the TCN and set all dilation factors to one (undilated); our goal will be to start with this
undilated network and match or outperform the custom dilation design of the TCN.
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Table 10.3: XD-operations compared to recent results in music model-
ing. We report average loss across three trials. The best result on each
task is bolded.

Method (source) JSB Chorales Nottingham

Best recurrent [Bai et al., 2018] 8.43 3.29
TCN [Bai et al., 2018] 8.10 3.07
Transformer [Wang et al., 2020c] - 3.34
R-Transformer [Wang et al., 2020c] - 2.37

Undilated TCN (our baseline) 8.16� 0.04 3.23� 0.02
TCN (reproduced) 8.17� 0.01 2.97� 0.01
Undilated TCN XD (ours) 8.07� 0.01 2.84� 0.02

The results presented in Table 10.3 show that we achieve this goal, as we outperform both
the undilated baseline and the TCN on both tasks. While the simple undilated backbone that we
initialize with turns out to already match the TCN on JSB Chorales, on Nottingham our approach
demonstrates that XD-operations can be used to outperform hand-designed architectures starting
from vanilla CNNs.9 Where possible we also compare to other known results; XD-operations
outperforms all of these except the R-Transformer [Wang et al., 2020c], a model combining
recurrent nets and self-attention, on Nottingham.

Together with our results on PDEs and proteins, our study of music modeling provides further
evidence that XD-operations can effectively find good operations using standard backbones on
diverse tasks. One notable difficulty here is causality enforcement: making sure the input data
does not contain the target when predicting the next entry. While TCNs can efficiently do so
via temporal shifts, we do it in a brute-force manner by treating sequences of length n as n � 1
data-points with masked targets. This is expensive and thus limits our evaluation to small music
tasks. A fruitful direction for future work is thus to examine whether it is possibly to directly
enforce causality in XD-operations, e.g. by forcing architecture parameters K and M to be
lower triangular; since a product of lower triangular matrices is again lower triangular, the entire
operation is then a multiplication of the input sequence by a lower triangular matrix, which
suffices to prevent causality violations.

10.2.5 Conclusion

This chapter aims to transition NAS from combining existing operations designed for vision and
text to finding novel and effective operations in many domains. Our first approach introduced a
new search space of XD-operations and demonstrated its effectiveness on diverse tasks. Combin-
ing XD-operations with standard topology-search NAS, warm-starting search from non-standard

9In Appendix 10.C.4 we report similar improvements on two other tasks on which TCNs were evaluated— permuted
MNIST and Penn TreeBank—that we do not discuss in detail as our focus is on under-explored tasks.
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operations such as graph convolutions and FNOs,10 resolving the computational limitations de-
scribed earlier, and constructing spaces containing missing operations such as BatchNorm [Ioffe
and Szegedy, 2015] and self-attention [Vaswani et al., 2017] are all promising future directions.

10.3 DASH: Efficient architecture search for diverse tasks

XD improves the applicability of AutoML methods by relaxing inductive biases encoded in
standard search spaces, but it is too expensive to execute even for simple problems like CIFAR-
100 (Figure 10.5). Is there an approach that can provide sufficient expressivity to yield high
accuracy across multiple domains, while still retaining the faster search and the more efficient
final models of discrete architecture search? In this section, we show that an approach called
DASH, which simply searches for the right kernel sizes and dilation rates to use in an existing
CNN backbone, can successfully do so on a diverse array of tasks.

In the sequel, we first explain how DASH—detailed in Algorithm 27—leverages existing
networks to initialize the supernet and generate different models for diverse tasks. Then, we for-
mally define the multi-scale convolution search space and propose a fast way to search this space

10In this direction, we found that initializing XD with FNO did worse than initializing with convolutions on Burgers’
equation and Darcy Flow, a surprising result given how much better FNO is than the baseline CNN. Similarly,
initializing XD with convolutions dilated as in the original TCN did not lead to significant improvement, except
in one setting, over undilated initialization. See Appendix 10.C for more details and results.
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Algorithm 27: DASH
Input: training data Z, loss function l, the set of kernel sizes K, the set of dilation rates

D, and subsampling ratio p
Initialize the backbone and replace each Conv layer with the mixed operation
AggConvK,D while not converged do

Subsample p|Z| training points uniformly at random
Compute forward pass using Equation 10.9
Descend the architecture parameters α by ∇αlpw, αq and the model weights w by
∇wlpw, αq

Select argmaxkPK,dPD αk,d for each AggConv layer
Tune retraining hyperparameters on a validation subset of the training data
Retrain the discretized model with all training data

using the three efficiency-motivated techniques mentioned earlier. Next, we outline the proce-
dure for discretizing the search space and retraining the searched model. Lastly, we evaluate
DASH on a benchmark of ten diverse tasks spanning multiple input and output dimensionalities.

10.3.1 Decoupling topology and operations
Every architecture is a mapping from model weights to functions and can be described by a
directed acyclic graph GpV,Eq. Each edge in E is characterized by pu, v,Opq, where u, v P V
are nodes and Op is an operation applied to u. Node v aggregates the outputs of its incoming
edges. NAS aims to automatically select the edge operations and the graph topology to optimize
some objective. For each edge, Op is chosen from a search space S � tOpa |a P Au where
a P A are architecture parameters. In past work, A usually indexes a small set of operations.
For instance, the DARTS search space specifies Adiscrete � t1, . . . , 8u with S � tZero, Id,
MaxPool3�3, AvgPool3�3, Conv3�3, Conv5�5, DilatedConv3�3,2, DilatedConv5�5,2u.
However, A can also be defined systematically to identify operator properties, e.g. tpkernel size
k, dilation dqu for convolutions.

A common way to determine the network topology is to search for blocks of operations and
stack several blocks together. As in the rest of this chapter, we take a different, morphism-
based approach [Wei et al., 2016, Chen et al., 2016]: we use existing networks as backbones and
replace certain layers in the backbone with the searched operations. Specifically, we select a set
of architectures to accommodate both 2D and 1D datasets. Convolutional layers with different
kernels can then be plugged into these networks. An advantage of decoupling topology and
operation search is flexibility: the searched operators can vary from the beginning to the end of
a network, so features at different granularities can be processed differently.

We pick Wide ResNets (WRNs) [Zagoruyko and Komodakis, 2016, Ismail Fawaz et al.,
2020] as the backbone networks due to their simplicity and effectiveness in image and sequence
modeling. Before search, the supernet is initialized to the backbone. Then, all Conv layers are
substituted with an operator AggConvK,D (short for aggregated convolution) that represents the
new search space which we now define. For simplicity, our mathematical discussion will stick to
the 1D case, though our experiments are on both 1D and 2D data.
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10.3.2 Efficiently searching for multi-scale convolutions
A convolution filter is specified by the kernel size k and the dilation rate d (we do not consider
stride which does not change the filter shape). The effective filter size is pk�1qd�1 with nonzero
entries separated by d � 1 zeros. Let Convk,d be the convolution with kernel size k, dilation
rate d, cin input channels, and cout output channels. Given input data with shape n, let K be our
interested set of kernel sizes, D the set of dilations. We define the AggConvK,D search space as

SAggConvK,D � tConvk,d |k P K, d P Du. (10.6)

Hence, A � K � D in previous notations. SAggConvK,D contains a collection of convolutions
with receptive field size ranging from kmin to dmaxpkmax�1q�1, which allows us to discover models
that process the input with varying resolution at each layer.

To retain the efficiency of discrete NAS, we apply the continuous relaxation scheme of
DARTS to SAggConvK,D , which mixes all operations in the space using architecture parameters
tαk,d P △|K||D||pk, dq P K �Du11, so the output of each edge in the computational graph is

AggConvK,Dpxq �
¸
kPK

¸
dPD

αk,d �Convpwk,dqpxq. (10.7)

Here twk,d|pk, dq P K �Du are the kernel weights. The resulting supernet can be trained end-
to-end, and our hope is that after search, the most important operation is assigned the highest
weight. However, the complexity of computing the above summation directly, a baseline algo-
rithmic approach we call mixed-results , is Opcincoutp|K||D| � K̄qnq, where K̄ � |D|°kPK k.
Mixed-results can be expensive when we increase the maximum element in K or D with larger
input size n. To improve upon it, we propose three techniques which build up to the efficiency-
oriented DASH.

Technique 1: Mixed-weights

Since convolution is linear, instead of computing |K||D| convolutions, we can combine the ker-
nels and compute convolution once. We call this approach mixed-weights:

AggConvK,Dpxq � Conv

�¸
kPK

¸
dPD

αk,d �w1
k,d

�
pxq. (10.8)

Here w1 is a padded version of w (appending 0’s at the end of each dimension) that allows filters
of different sizes to be added. The aggregated kernel has size D̄ � maxk,dpk � 1qd � 1 and the
n-dependent term of the complexity of mixed-weights is cincoutD̄n. Hence, it removes the direct
dependence of the leading-order term on |K||D|, the search space size, that mixed-results had.

Technique 2: Fourier convolution

If we wish to increase the kernel size and dilation with the input size, the complexity of mixed-
weights will still grow implicitly with the search space size through the dependence on D̄. To
11△ denotes the probability simplex.
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address this issue, we combine the kernel re-weighting idea with another technique motivated
by the convolution theorem. Given a kernel w, recall that Convpwqpxq � F�1 diagpFw1qFx,
where F is the discrete Fourier transform (DFT) and diagpzq is a diagonal matrix with entries z.
In other words, convolution involves multiplying the DFT of the kernel by that of the input. Since
the DFT can be applied in time Opn log nq using the Fast Fourier Transform (FFT) and apart from
that we only need element-wise multiplication, this yields an efficient approach to reducing de-
pendence on the combined kernel size D̄. While in XD we replaced the DFTs with a continuous
set of matrices for XD-operations, DASH can be viewed as replacing the middle DFT with a
discrete set of matrices for efficiency. Accordingly, DASH computes AggConvK,D as follows:

AggConvK,Dpxq � F�1 diag

�
F

�¸
kPK

¸
dPD

αk,d �w1
k,d

��
Fx. (10.9)

Note that while the kernel changes for each Convk,d, the input does not. Hence, we also save
time by transforming the input to the frequency domain only once.

In Table 10.4, we report the theoretical complexities of the baselines and DASH, the latter
leveraging both Technique 1 and 2. It is easy to obtain the operation complexities of mixed-
weights and mixed-results. For DASH, the number of multiplications and additions can be at-
tributed to the inner weight sum and multi-channel product (the first term) as well as three FFTs
(the second). A detailed analysis is provided in Appendix 10.A.2. We see that mixed-weights is
favorable to mixed-results when D̄   K̄ � Op|D|k2maxq, which occurs with large kernels and a
few dilations. On the other hand, only DASH completely separates the dominant terms contain-
ing cincoutn from the size of the search space and its elements, replacing them by Oplog nq, which
is small for any realistic n. As we increase kmax and dmax for larger inputs, this will also lead to a
slower asymptotic increase in complexity, making DASH an attractive choice for the multi-scale
search space where D̄ is large by design to extract possible long-range dependencies in the data.
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Table 10.4: Complexity of different methods for computing AggConv, denoting K̄ �
|D| �°kPK k and D̄ � maxk,dpk � 1qd� 1. For details see Appendix 10.A.2.

Method MULTs ADDs

mixed-results (10.7) pcincoutK̄ � cout|K||D|qn pcincoutK̄ � cout|K||D|qn
mixed-weights (10.8) cincoutpK̄ � D̄nq cincoutD̄p|K||D| � nq

DASH (10.9) cincoutpK̄ � nq �Opcincoutn log nq cincoutp|K||D|D̄ � nq �Opcincoutn log nq

Technique 3: Kronecker dilation

To efficiently implement the kernel summation in mixed-weights and DASH on a GPU, we intro-
duce our final technique: after initializing wk,d for each Convk,d separately, we use a Kronecker
product b to transform the undilated kernels into dilated forms. For example, to compute a 2D
convolution with dilation d, we introduce the sparse pattern matrix P P Rd�d whose entries are
all 0’s except for the upper-left entry P1,1 � 1. Then, wk,d � wk,1 b P. Beyond the theoretical
gains shown in Wu et al. [2019], this dilation strategy is empirically faster than the standard way
of padding 0’s into wk,1 (Figure 10.6 and 10.7). After dilating the kernels, we sum them together,
zero-pad to match the input size, and apply the FFTs.

Ablation study for the proposed techniques

To check that our asymptotic analysis leads to actual speedups and perform an ablation study
on the proposed techniques, we evaluate the three methods on single-channel 1D inputs (experi-
mental details can be found in Appendix 10.B.2). Since both mixed-weights and DASH require
kernel summation, which can be implemented with Kronecker dilation (Technique 3), we com-
pare five methods in total.

Figure 10.6 illustrates the combined forward- and backward-pass time in log scale for one
search epoch vs. the size of SAggConvK,D when n � 1000. For small D̄, the FFT overhead
makes DASH runtime slightly longer but the difference is negligible. However, as D̄ increases,
the DASH curves grow much slower whereas the runtimes for the other methods scale with the
number of operations. In Figure 10.7, we fix K and D to study how runtime is affected by input
size n. Both mixed-results and mixed-weights become extremely inefficient for large n’s which
commonly occur in time-series or signal processing. Surprisingly, DASH’s runtime does not
increase much with n. We hypothesize that this is due to wallclock-time being dominated by
data-passing at that speed.

In general, Technique 1 on its own scales poorly for the considered search space. This is
why methods like MergeNAS [Wang et al., 2020a] cannot be used in our setting. Though XD
makes use of Technique 2, it considers a parametrized space with infinitely many operations that
need to be continuously evolved and is too expensive to be applied to tasks beyond CIFAR-100
(c.f. Figure 10.5). Technique 3 contributes to 2� speedups for both mixed-weights and DASH.
Overall, DASH (Kronecker) leads to about 10� search-time speedups compared to the mixed-
results scheme of DARTS for both the large operation space and large input size regimes. Hence,
we use this version of DASH in later experiments.
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10.3.3 Full pipeline: Search, hyperparameter tuning, and retraining

Having shown the main techniques for searching a large space of kernel patterns, we now specify
the full search and model development pipeline. Given a dataset to train on, we set K � t3 �
dpp� 1q|1 ¤ p ¤ pmaxu for kernel sizes and D � t2q � 1|1 ¤ q ¤ qmaxu for dilations, with d, pmax,
and qmax depending on the task’s dimensionality. For 2D input, we set d to 2, pmax to 4, and qmax

to 4, while for longer 1D sequence data, we set d � 4, pmax � 5, and qmax � 4. Thus we do not
explicitly use larger kernels and dilations for tasks with larger input sizes, but determining if this
useful to do is an interesting direction. To normalize architecture parameters into a probability
distribution, we adopt the soft Gumbel Softmax activation, similar to Xie et al. [2019].

The backbone networks are as follows. For 2D tasks, we use WRN-16-1 as the search back-
bone to accelerate supernet training and WRN-16-4 for retraining. For 1D tasks, we use 1D
WRN [Ismail Fawaz et al., 2020] in the entire pipeline. During search, we subsample the train-
ing data at each epoch. Given the loss for the target task, DASH jointly optimizes the model
weights and the architecture parameters using direct gradient descent. This single-level opti-
mization is more efficient than two-stage NAS, which finds initial assignments for architecture
parameters and trains the candidates from scratch.

After searching for a predefined number of epochs, we discretize the search space and pick
Convk,d P SAggConvK,D with the largest weight for each layer. The final model has a similar
overall structure to the backbone, but the intermediate operations are tailored to the target task.
To improve training stability, we additionally add a simple hyperparameter tuning stage between
search and retraining using grid search (configuration space shown in Appendix 10.C.5). For
each setting, we train the discretized model on a subset of the training data for fewer epochs so
the tuning cost is a small fraction of the entire pipeline’s cost (Table 10.20), Then, we evaluate
the performance on a holdout validation set and select the configuration with the best validation
score. As a final step, we retrain the discretized model with the optimal hyperparameters on all
training data until convergence. Like other weight-sharing methods with discretization, our final
model will be more efficient than the supernet.

10.3.4 Evaluation

We evaluate the performance of DASH on diverse tasks using ten datasets from NAS-Bench-
360 [Tu et al., 2022], a benchmark spanning multiple application domains, input dimensions,
and learning objectives.12 These include classical vision tasks such as CIFAR-100 where CNNs
do well, scientific computing tasks such as Darcy Flow where standard CNN backbones can
perform poorly [Li et al., 2021c], sequence tasks such as DeepSEA where large dilations are
preferred [Bai et al., 2018, Zhang et al., 2021], and many others. Thus, our evaluation will not
only test whether DASH can find good architectures in the proposed new search space, but also
investigate whether multi-scale convolution is a strong competitor for solving different problems.
In fact, our results show that DASH is a top choice for many tasks, obtaining in-aggregate the
best speed-accuracy tradeoffs among the methods we evaluate (c.f. Figure 10.9).

12We give a detailed summary of its tasks in Table 10.17.
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Table 10.5: Error rates (lower is better) on NAS-Bench-360 tasks across diverse application
domains and problem dimensions (the last three problems are 1D and the rest are 2D). DASH
beats all the other NAS methods on 7/10 tasks and exceeds hand-designed expert models on 7/10
tasks. Scores of DASH are averaged over three trials. Baseline errors are from Tu et al. [2022].
See Table 10.19 for standard deviations.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA

0-1 error (%) 0-1 error (%) relative ℓ2 MAE8 1-AUROC 0-1 error (%) 1-mAP 1-F1 0-1 error (%) 1- AUROC

Expert 19.39 67.41 0.008 3.35 0.13 8.73 0.62 0.28 19.8 0.30

WRN 23.35 85.77 0.073 3.84 0.24 6.78 0.92 0.43 15.49 0.40
TCN - - - - - - - 0.57 16.21 0.44
WRN-ASHA 23.39 75.46 0.066 3.84 0.25 7.34 0.91 0.43 15.84 0.41
DARTS-GAEA 24.02 48.23 0.026 2.94 0.22 17.67 0.94 0.34 12.51 0.36
DenseNAS 25.98 72.99 0.10 3.84 0.38 10.17 0.64 0.40 13.81 0.40
AutoDL - - 0.049 6.73 0.49 - - - - -
AMBER - - - - - - - 0.67 12.97 0.68
Perceiver IO 70.04 82.57 0.24 8.06 0.48 22.22 0.72 0.66 15.93 0.38

BABY DASH 25.56 63.45 0.016 3.94 0.16 8.28 0.62 0.37 13.29 0.37
DASH 24.37 71.28 0.0079 3.30 0.19 6.60 0.60 0.32 12.28 0.28

Baselines and experimental setup

We compare DASH with the following methods: DenseNAS [Fang et al., 2020] and GAEA PC-
DARTS (c.f. Section 9.2.2), which represent general NAS; Auto-DeepLab [Liu et al., 2019a]
and AMBER [Zhang et al., 2021], which represent specialist NAS methods for dense prediction
and 1D tasks, respectively; 1D temporal convolutional network (TCN) [Bai et al., 2018], regular
WRN, and WRN with hyperparameter tuner ASHA [Li et al., 2020b], which represent natu-
ral NAS baselines; and Perceiver IO [Jaegle et al., 2022], which represents non-NAS general-
purpose models. While these results are available in Tu et al. [2022], we additionally add a
BABY DASH baseline: we run DASH in the DARTS convolution space with K � t3, 5u and
D � t1, 2u to study whether large kernel sizes and dilations are necessary to strong performance
across-the-board. Finally, we compare our method to expert architectures from NAS-Bench-360.
These models are representatives of the best that hand-crafting has to offer.

Each dataset is preprocessed and split using the NAS-Bench-360 script, with the training
set being used for search, hyperparameter tuning, and retraining. To construct the multi-scale
search space, we set K and D according to the rules in Section 10.3.3. We use the default
SGD optimizer for the WRN backbone and fix the learning rate schedule and gradient clipping
threshold for every task. The entire DASH pipeline is run on a single NVIDIA V100 GPU, which
is what we use to report the runtime cost. More details can be found in Appendix 10.C.5.

We evaluate the performance of all competing methods following the NAS-Bench-360 pro-
tocol. We first report results of the target metric for each task by running the model of the last
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Figure 10.8: Performance profiles of general
NAS methods and DASH on NAS-Bench-360.
DASH being far in the top left corner indicates
it is rarely suboptimal and is often the best.
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Figure 10.9: Comparing � log τ -suboptimality
of speed vs. accuracy on all tasks. DASH’s
concentration in the top right corner indicates
its strong efficacy-efficiency tradeoffs relative
to the other methods.

epoch on the test data. Then, we report aggregate results via performance profiles [Dolan and
Moré, 2002], a technique that considers both outliers and small performance differences to com-
pare methods across multiple tasks robustly. In such plots, each curve represents one method.
The τ on the x-axis denotes the fraction of tasks on which a method is no worse than a τ -factor
from the best.

Results and discussion

We present the accuracy results for each task in Table 10.5 and the performance profiles in
Figure 10.8. Figure 10.8 clearly demonstrates that DASH is superior to other competing methods
in terms of aggregate performance. In particular, it ranks first among all automated models for
7/10 tasks, among all expert models for 7/10 tasks, and performs favorably when considering
both accuracy and efficiency as shown in Figure 10.9. In addition, Table 10.6 shows that DASH
outperforms DARTS in speed for all 10 tasks (in several cases by an order of magnitude), and
attains comparable efficiency with training vanilla WRNs for 6/10 tasks (full-pipeline time is less
than or about twice as long as the WRN training time). In the following, we provide a detailed
analysis of the experimental results.

DASH dominates automated methods. Compared to other automated methods, DASH has a
clear advantage in accuracy. Even for tasks where it does not beat the expert, e.g. ECG, DASH’s
performance is significantly better than other AutoML methods. It also outperforms specialist
methods AutoDL and AMBER on dense prediction and 1D tasks, respectively. Although DARTS
does best on CIFAR-100 (the task for which it was designed), Spherical, and PSICOV, it is
the worst on NinaPro and FSD50K. Note that the underperformance of DASH on CIFAR-100
relative to WRN (and on Spherical and Cosmic relative to BABY DASH) suggests suboptimality
of the gradient descent optimization procedure but not of the operation space, since WRN and
BABY DASH are contained in our search space. This indicates a future direction to improve
optimization in the DASH search space.
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Table 10.6: Full-pipeline runtime in GPU hours for NAS-Bench-360 (PSICOV results are
omitted due to a discrepancy in the implementation of data loading). DASH is consistently
faster than DARTS, and it is less than a factor of two slower than simply training a WRN
on six of the ten tasks. DenseNAS is fast but its accuracy is far less impressive. XD is too
expensive to be applied to tasks other than CIFAR-100.

CIFAR-100 Spherical Darcy Flow Cosmic NinaPro FSD50K ECG Satellite DeepSEA

DARTS 9.5 16.5 6.5 21.5 0.5 37 140 28 39.5

DenseNAS 2.5 2.5 0.5 2.5 0.2 4.5 6.5 3 2

WRN 2 2 0.5 4 0.2 4 5 4.5 1.5

DASH 2.5 5 5.3 6.8 0.3 29 1.3 6.5 10

DASH dominates expert architectures. While the degree of sophistication of the expert net-
works varies task by task, the performance of DASH on tasks such as Darcy Flow suggests that
it is capable of competing with highly specialized networks, e.g. Fourier Neural Operator [Li
et al., 2021c] for PDE solving. These results imply that DASH, and more generally the strategy
of equipping backbone networks with task-specific kernels, is a promising approach for tackling
model development in new domains. Meanwhile, DASH consistently outperforms Perceiver IO
which represents non-automated general-purpose models. We speculate that the poor perfor-
mance of Perceiver IO is because it is developed on more sophisticated natural language and
multi-modal reasoning tasks and training Transformers is generally difficult.

Large kernels are needed. We also ablate the large-k-large-d design of the search space
by comparing DASH with BABY DASH. We hypothesize that for the same task, a small per-
formance gap between the two methods would indicate that small kernels suffice for extract-
ing local features, whereas a major degradation in the quality of the BABY DASH model can
imply that the task needs global modeling. Consequently, datasets such as Darcy Flow and
ECG provide compelling evidence that kernels with large receptive fields play an important
role in solving real-life problems and further back up the design of our multi-scale convolu-
tional search space. An example of the series of WRN kernels found by DASH on Darcy Flow
is: Conv5,3 Ñ Conv3,1 Ñ Conv3,1 Ñ Conv3,15 Ñ Conv7,15 Ñ Conv9,7 Ñ Conv9,7 Ñ

Conv3,7 Ñ Conv5,7 Ñ Conv5,15 Ñ Conv9,7 Ñ Conv3,7 Ñ Conv7,7. We can see that large
kernels are indeed selected during search. More visualizations can be found in Appendix 10.D.

DASH is computationally efficient. In addition to low error, we also care about the efficiency
of the selected models. Table 10.6 provides the combined search and retraining time in GPU
hours for DARTS, DenseNAS, and DASH, as well as the training time for a vanilla WRN-16-4
without hyperparameter tuning (baseline results are taken from Tu et al. [2022]). We also present
the breakdown of DASH’s full-pipeline runtime in Table 10.20. A key observation is that the cost
of DASH is consistently below DARTS’ on all tasks and is similar to training a simple CNN for
more than half of them. Although DenseNAS is fast, its prediction performance is poor.
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In Figure 10.9, we visualize the tradeoff between efficiency and effectiveness for each method
and task combination. Evidently, DASH takes an important step towards bridging the gap be-
tween the efficiency of DARTS and the expressivity of XD. The fact that DASH can be trained
at a low cost testifies that we need not sacrifice efficiency for adding more operations. In fact, we
have actually shown that DASH is both faster and more effective than DARTS in many tasks.

DASH works with other backbones and is backwards-compatible. Lastly, in addition to the
Wide ResNet backbone and NAS-Bench-360 tasks, we have also verified the efficacy of DASH
on other backbones including TCN [Bai et al., 2018] and ConvNeXt [Liu et al., 2022], as well
as on the larger ImageNet dataset. In particular, DASH is able to achieve a 1.4% increase in
top-1 accuracy for ImageNet on top of the ConvNeXt backbone (c.f. Appendix 10.C.6). As the
latter was itself developed in part via manual tuning of the kernel size, this means that DASH
outperforms human hand-tuning on ImageNet. These results show that DASH is both backbone-
agnostic and also works well with computer vision tasks, making it backward-compatible with
the original use-case of CNNs.

10.3.5 Limitations and future work
There are several open problems which we leave for future work. First, it is beneficial to study
why certain kernel patterns are chosen, as the selected operations can hint us at the intrinsic
properties of the datasets. Second, one can improve upon DASH, e.g. by including non-square
convolutions for 2D problems, using a better optimization algorithm, or developing techniques
that further reduces the memory usage of performing a forward architecture search pass. One
could also construct a more comprehensive search space with high-level operators such as self-
attention [Vaswani et al., 2017].

Meanwhile, although we focus on NAS, which is an alternative to fine-tuning pretrained
models, the aggregated convolution can be a plug-and-play module for algorithms that search
for large-scale models. For instance, many Transformer models still depend on convolutions
for feature extraction and transformation, and their performance relies on the quality of the em-
bedded features. Since DASH is applicable to any architecture with a convolutional layer, it
can be helpful for such models, including Vision Transformer with a convolutional patching
layer [Dosovitskiy et al., 2021], Deformable Transformer with a ResNet embedder [Zhu et al.,
2021], Swin Transformer with a convolutional decoder [Liu et al., 2021b], and many others.

10.4 Conclusion
In this final chapter of the thesis we argued that a discovering effective architecture for diverse
tasks is a crucial but underexplored goal of NAS. To that end, we undertook the study of search
spaces likely to contain good operations for processing a wide variety of data modalities, starting
with XD-operations and concluding with DASH; we then designed methods for searching for and
integrating these operations into existing CNN backbones. The latter approach overcomes the
computational limitations of differentiable NAS and obtains high-quality models with accuracy
comparable to or better than that of the handcrafted networks on many tasks.
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10.A Analyses

10.A.1 XD-operations: Expressivity

Here we collect results on the expressivity of the set of XD-operations. For simplicity, our
results will be in the following single-dimensional (N � 1) setting:

Setting 10.A.1. We consider input spaces of form X � Rc�m for input size m P N and channel
count c P N and parameter spaces W � Rc�c�k for filter size k P rns, where output size n ¥ m
is a power of 2.

It is straightforward to extend the results to multiple dimensions using Kronecker products
and to input sizes other than powers of two using padding. Note that all of our results will also
assume a circular padded domain.

Convolutions

Definition 10.A.1. A convolution in Setting 10.A.1 with filter size k, dilation d P rtn�1
k�1

us, stride
s P rn � 1s, and channel groups described by a matrix B P t0, 1un�n s.t. Bri,js � 1 if channels
i and j are in the same group and 0 otherwise is a parameterizable operation that for any weight
w PW outputs a function mapping every x P X to

1

n

�
������
diagpasp1rn

s
sqq

c°
j�1

Br1,jsF�1
n diagpFnadpwr1,jsqqFnxrjs

...

diagpasp1rn
s
sqq

c°
j�1

Brc,jsF�1
n diagpFnadpwrc,jsqqFnxrjs

�
����� (10.10)

where Fn P Cn�n is the n � n DFT and ad : Rn ÞÑ Rn is an atrous permutation of a vector that
is equivalent to multiplication by some permutation matrix Pd P t0, 1un�n. We will use Convk
to denote the case of d � 1, s � 1, and B � 1c�c.

Claim 10.A.1. All multi-channel convolutions of the form given in Definition 10.A.1 are con-
tained in the search space of XD-operations of depth p1, 3, 1q.

Proof. Setting the architecture parameters to be K � diagpasp1rn
s
sqqF�1

n , L � FnPd, M � Fn,
b � 0n, and C � B, and noting that (a) the DFT and its inverse are both depth 1 K-matrices,
(b) multiplying a K-matrix by a diagonal matrix is another K-matrix of the same depth, and (c)
permutation matrices are K-matrices of depth 2 yields the result. These three facts can be found
in the original paper [Dao et al., 2020].

Remark 10.A.1. Note that for the case of dilation d � 1 the result in Claim 10.A.1 holds with
depth 13.
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Parameter-free operations

Definition 10.A.2. The skip-connection in Setting 10.A.1 is parameterizable operation that out-
puts a function mapping every x P X to itself. The zero-operation in Setting 10.A.1 is parame-
terizable operation that outputs a function mapping every x P X to 0c�n.

Claim 10.A.2. The skip-connection and zero-operation are both contained in the search space
of XD-operations of depth 13.

Proof. For both set the architecture parameters to be K � F�1
n , L � 0n�n, M � Fn, and

C � Ic. To obtain the skip-connection set b � 1n; to obtain the zero-operation set b � 0n.

Definition 10.A.3. An average pooling operation in Setting 10.A.1 with filter size k, dilation
d P rtn�1

k�1
us, and stride s P rn�1s is parameterizable operation outputs a function mapping every

x P X to the output of a convolution (as in Definition 10.A.1) with the same filter size, dilation,
and stride, channel groups described by B � Ic, and filters wrj,js � 1k{k @ j P rcs.
Claim 10.A.3. All average pooling operations are contained in the search space of XD-operations
of depth 13.

Proof. Setting the architecture parameters to be K � diagpasp1rn
s
sqqF�1

n , L � 0n�n, M � Fn,
b � adp1k{kq, and C � Ic and noting that (a) the DFT and its inverse are both depth 1 K-matrices
and (b) multiplying a K-matrix by a diagonal matrix of the same depth is another K-matrix of
the same depth yields the result.

Compositions with multiplication by fixed K-matrix

Definition 10.A.4. A fixed linear operation LinA in Setting 10.A.1 with matrix A P Rn�n is
a parameterizable operation that outputs a function mapping every x P X to LinApwqpxq ��
Axr1s � � � Axrcs

�J. For example, LinIc � Id.

Definition 10.A.5. Let Op1 and Op2 be two parameterizable operations in Setting 10.A.1 with
X . Then for any weight w P W their composition Op1 �Op2 outputs the parameterized func-
tion Op1pwq �Op2pwq.
Claim 10.A.4. Let Op be a parameterizable operation in Setting 10.A.1 that is contained in
the set of XD-operations of some depth d P N 3 and let A be a K-matrix of depth d1. Then
Op �LinA is contained in the set of XD-operations of depth pdr1s,dr2s,dr3s�d1q and LinA �Op
is contained in the set of XD-operations of depth pdr1s � d1,dr2s,dr3sq.
Proof. Let K and M be the first and last K-matrices of the representation of Op as an XD-
operation, which thus have depth at most dr1s and dr3s, respectively. Then the representation of
Op �LinA as an XD-operation is the same except with depth dr3s� d1 K-matrix MA as the last
K-matrix, and similarly the representation of LinA �Op as an XD-operation is the same except
with depth dr1s � d1 K-matrix AK as the first K-matrix.
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Other named operations

Definition 10.A.6. Suppose we have a fixed n-node graph with adjacency matrix A and degree
matrix D, and let Â and D̂ be the adjacency and degree matrices, respectively, of the same
graph but with added self-loops. Then regular graph convolution [Kipf and Welling, 2017] in
Setting 10.A.1 with k � 1 is a parameterizable operation that for any weight W P W outputs
a function mapping every x P X to D̂� 1

2 ÂD̂� 1
2xJw and the diffusion graph convolution [Li

et al., 2018b] in Setting 10.A.1 with k � 1 is a parameterizable operation that for any weight
W PW outputs a function mapping every x P X to D�1AxJw.

Claim 10.A.5. Suppose A and Â can be represented by K-matrices of depth d and d̂, respec-
tively. Then the corresponding graph convolution is contained in the search space of XD-
operations of depth p1, 1, d̂ � 1q and the corresponding diffusion graph convolution in that of
depth p1, 1, d� 1q.
Proof. For any G P Rn�n we have GxJw � LinGpwqpxqw � Conv1pwqpLinGpwqpxqq �
pConv1 �LinGqpwqpxq. The result follows by Claims 10.A.1 and 10.A.4, the fact that a K-
matrix multiplied by a diagonal matrix is another K-matrix of the same depth, and by substituting
G � D̂� 1

2 ÂD̂� 1
2 (for graph convolution) or G � D�1A (for diffusion graph convolution).

Remark 10.A.2. Note that the above claim is meaningful because adjacency matrices of realistic
graphs are usually sparse and sparse matrices can be efficiently represented as K-matrices [Dao
et al., 2020].

Definition 10.A.7. A Fourier neural operator (FNO) [Li et al., 2021c] in Setting 10.A.1 with
even k and thus k{2 modes is a parameterizable operation that for any weight w P W outputs a
function mapping every x P X to�

����
Real

�°c
j�1F

�1
n diagp�wr1,j,1:k{2s � iwr1,j,k{2�1:ks 0n�k{2

�JqFnxrjs
	

...

Real
�°c

j�1F
�1
n diagp�wrc,j,1:k{2s � iwrc,j,k{2�1:ks 0n�k{2

�JqFnxrjs
	
�
��� (10.11)

Claim 10.A.6. The FNO with k{2 modes is contained in the search space of XD-operations of
depth p1, 4, 1q.
Proof. Setting the architecture parameters to be K � F�1

n , L P Cn�n the n-sparse matrix map-
ping w to

�
wr1,j,1:k{2s � iwr1,j,k{2�1:ks 0n�k{2

�J, M � Fn, b � 0n, and C � 1c�c, and noting
that an n-sparse matrix is a depth-4 K-matrix [Dao et al., 2020] yields the result.

Remark 10.A.3. If we allow the parameter space in Setting 10.A.1 to be complex then the FNO
with all k modes will be contained in the search space of XD-operations of depth 13.

Definition 10.A.8. Each channel of transposed convolution with stride dpk�1q�1, where k is
the kernel size and d is the dilation rate, computes a feature map in which each input element is
replaced by that element multiplied by the dilated filter of size dpk � 1q � 1. The multi-channel
extension of this over parameter space W � Rc�c�k is similar to that for standard convolutions.
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Claim 10.A.7. All transposed convolutions with stride equal to the dilated kernel size are con-
tained in the search space of XD-operations of depth p1, 3, 3q.

Proof. A transposed convolution is equivalent to a regular convolution with the same filter ap-
plied to the input after it has been zero-padded and then permuted to separate all entries by
dpk�1q zeros. Since permutations are K-matrices of depth 2 the result follows by Claims 10.A.1
and Claim 10.A.4.

Definition 10.A.9. A depthwise-separable convolution in Setting 10.A.1 with filter size k but
with parameter space W � Rc�k � Rc�c is a parameterizable operation that for any weight
w P W outputs Conv1pwr2sq � Convk,Icpwr1sq, where Convk,Ic denotes the convolution in
Definition 10.A.1 with B � Ic.

Remark 10.A.4. Since both Conv1 and Convk,Ic are XD-operations, by definition depthwise-
separable convolutions are contained in the search space of composed XD-operations, which by
Claim 10.A.2 also contains all of the above operations.

10.A.2 DASH: Asymptotic analysis

In this section we outline the runtime analysis used to populate the asymptotic complexities
in Table 10.4. All three methods in the table—mixed-results, mixed-weights, and DASH—are
computing the following weighted sum of convolutions:

AggConvK,Dpxq �
¸
kPK

¸
dPD

αk,d �Convpwk,dqpxq. (10.12)

We consider 1D inputs x with length n and cin input channels; the convolutions have cout output
channels. We view Convpwk,dqpxq as having the naive complexity cincoutkn since the deep
learning frameworks use the direct (non-Fourier) algorithm. mixed-results computes the sum
directly, which involves (1) applying one convolution of each size k and dilation to x at a cost of
cincoutknMULTs and ADDs each for a total cost of cincoutK̄n, (2) scalar-multiplying the outputs
at a cost of cout|K||D|n MULTs, and (3) summing the results together at a cost of cout|K||D|n
ADDs. mixed-weights instead (1) multiplies all kernels by their corresponding weight at a cost
of cincoutK̄ MULTs, (2) zero-pads the results to the largest effective kernel size D̄ and adds them
together at a cost of cincout|K||D|D̄ ADDs, and (3) applies the resulting D̄-size convolution to
the input at a cost of cincoutD̄n MULTs and ADDs. Finally, DASH also (1) does the first two
steps of mixed-weights at a cost of cincoutK̄ MULTs and cincout|K||D|D̄ ADDs but then (2)
pads the resulting D̄-size convolution to size n and applies an FFT at a cost of Opcincoutn log nq
MULTs and ADDs, (3) applies an FFT to x at a cost of Opcinn log nq, (4) element-wise multiplies
the transformed filters by the inputs at a cost of cincoutn MULTs, (5) adds up cin results for each
of cout output channels at a cost of cincout MULTs, and (6) applies an iFFT to the result at a cost
of Opcoutn log nq.
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Table 10.7: Comparison of the computational and memory costs of XD-operations
when substituted for convolutions. For simplicity, we consider cases with 2D inputs
and where the channel and bias parameters are fixed.

input kernel minutes / epoch memory (Gb) param. (�106)
Task (backbone) size size Conv XD Conv XD Conv XD

CIFAR-10 (WRN-40-4) 32 3 1.4 4.3 3.73 15.6 8.96 9.08
Darcy Flow (Conv4�) 85 13 0.028 0.14 4.51 5.53 0.701 0.744
PSICOV (ResNet-18) 128 3 5.9 11 1.50 10.7 0.038 0.549
� Four-layer convolutional network with parameterized skip (shortcut) connections

derived from the FNO network [Li et al., 2021c] as described in Section 10.2.4.

10.B Computational cost

10.B.1 XD-operations

In this section we report a detailed comparison of computational costs of the XD-operation com-
pared to a convolution; this is presented in Table 10.7. Due to their familiarity, we present results
for tasks that have 2D inputs and thus use 2D convolutions in their default backbone. Note that
since XD-operations are more general than convolutions, they must by definition be at least as
expensive as convolutions in both computation and memory. While our focus is on absolute per-
formance using learning metrics (e.g. test error), we view finding a good tradeoff between the
performance of XD-operations on certain tasks and convolutions, for example by restricting the
expressivity of XD-operations, as important directions for future work.

10.B.2 DASH

For the speed tests in Figures 10.6 and 10.7 we work with the Sequential MNIST dataset, i.e.
the 2D 28 � 28 images are stretched into 1D with length 784. We zero pad or truncate the input
to generate data with different input size n. The backbone is 1D WRN with the same structure
as introduced in Section 10.C.5. We run the workflows on a single NVIDIA V100 GPU with a
batch size of 128 and report timing results as log10pcombined forward and backward pass time
for one search epochq.

In Figure 10.6, we study how the size of our multi-scale convolution search space affects
the runtimes of mixed-results, mixed-weights, and DASH for n � 1000 (zero-padded MNIST).
We define K � t3 � 2pp � 1q|1 ¤ p ¤ cu, D � t2q � 1|1 ¤ q ¤ cu and vary c from 1 to
7. Consequently, the number of operations included in the search space grows from 1 to 49.
In Figure 10.7, we study how the input size affects the runtimes of the three methods. We fix
K � t3, 5, 7, 9, 11u, D � t1, 3, 7, 15, 31u and vary n from 25 to 212.
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Table 10.8: Architecture optimizer settings on CIFAR-10 tasks. Note that the step-size is
updated using the same schedule as the backbone.

search space backbone task optimizer initial step-size warmup epochs perturb

S̃discrete

LeNet
CIFAR-10 Adam 1E-1 0 0.1
Permuted Adam 1E-1 50 0.875

ResNet-20
CIFAR-10 Adam 1E-3 0 0.1
Permuted Adam 1E-1 0 0.875

SXD

LeNet
CIFAR-10 Adam 1E-4 0 -
Permuted Adam 1E-3 0 -

ResNet-20
CIFAR-10 Adam 1E-4 50 -
Permuted Adam 1E-3 0 -

10.C Evaluations

Code to reproduce our results with XD-operations is available at https://github.com/
nick11roberts/XD. We have also provided software to easily apply them to new tasks and
CNN backbones here: https://github.com/mkhodak/relax. Additional code extend-
ing the latter to DASH is available at https://github.com/sjunhongshen/DASH.

10.C.1 CIFAR-10 and Permuted CIFAR-10

For our experiments with vision backbones we use the standard CIFAR-10 dataset [Krizhevksy,
2009] and a permuted version where all rows and columns are identically permuted. For un-
permuted data we use standard data augmentation [He et al., 2016] while for permuted data we
do not use any data augmentation. As specified in Section 10.2.3, we keep the training routine
of the model weights the same and tune only the architecture optimizer, the settings of which
are specified in Table 10.8. Note that for the DARTS operation space we specify a “perturb”
parameter that specifies how unbiased the initial architecture parameters are towards the back-
bone operation; specifically, we initialize architecture parameters so as to assign one minus this
quantity as the weight to the backbone operation, so 0.875 means the initialization is uniform
(since |S̃discrete| � 8) while 0.1 means the backbone operation is assigned 0.9 of the weight.

LeNet

The LeNet backbone we use consists of two Conv5�5 layers, each followed by MaxPool2�2,
and two fully connected layers. When warm-starting with XD-operations we use AvgPool2�2

instead of MaxPool2�2; when warm-starting with the DARTS operations we use MaxPool3�3.
For the baseline training routine we use 200 epochs of Momentum(0.9), with the first 100 at
learning rate 0.01, the next 50 at 0.005, and the last 50 at 0.001.
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ResNet-20

We use the implementation and training routine provided here: https://github.com/
akamaster/pytorch_resnet_cifar10. When replacing operations in the backbone we
substitute for both the Conv3�3 operations and the skip-connections Id; some of the latter are
downsampled, which XD-operations can handle as strides.

WRN-40-4

We use the same implementation as for ResNet-20 but adapt the original WRN training rou-
tine [Zagoruyko and Komodakis, 2016], except with weight decay set to 10�4 (as in ResNet-20);
on the regular CIFAR-10 tasks this does not seem to affect performance. To conserve com-
putation and memory, we do not tune the architecture optimizer parameters here and simply
use the same ones used for ResNet-20; furthermore, we fix the channel and bias parameters of
XD-operations and do not allow the kernel size to be larger the 3 � 3. Because of these mod-
ifications, we only use our evaluation here as a sanity check for large-network performance of
XD-operations and do not include it in the main results.

DARTS cell search

To search the full DARTS search space, which is a standard NAS benchmark, we use our GAEA
PC-DARTS method (c.f. Section 9.2.2). On CIFAR-10 we simply use their best reported cell but
evaluate it using the “base" routine [Yang et al., 2020], i.e. without auxiliary losses or additional
data augmentation; this is to obtain fair comparison with the other backbone models. Note that
the model is still much larger and the training routine much more intensive. On permuted data we
follow the standard three-stage pipeline in which we run search four times, train all four found
cells and select the best one, and finally train that cell multiple times.

DenseNAS search

We use the DenseNAS search and evaluation code released by the authors here: https://
github.com/JaminFong/DenseNAS. While the search space is designed for ImageNet
[Russakovsky et al., 2015], we adapt it to CIFAR-10 by taking the DenseNAS-R1 setting and
downscale the input sizes to match 32x32 images used.

10.C.2 Solving PDEs
For our PDE experiments, we use the FNO code and setup [Li et al., 2021c] provided here:
https://github.com/zongyi-li/fourier_neural_operator. We use the same
training routine and settings as the backbone architecture for each task and only tune the architec-
ture optimizer. We consider the following hyperparameters for the architecture optimizer: Adam
vs. SGD (with or without momentum), initial learning rate, and number of warmup epochs.
The final hyperparameters for each task can be found in Table 10.10. Our CNN backbone is
analogous to the FNO architecture used for each problem. In particular, the CNN backbone ar-
chitecture used for each task is simply the FNO architecture where FNO layers of dimension N
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Table 10.9: Search space comparison on CIFAR-10. Validation
accuracies are averages of three trials.

Backbone Search Space CIFAR-10 Permuted� Cost (hours:)

LeNet
backbone 75.5� 0.1 43.7� 0.5 0.3
S̃discrete 75.6� 3.4 47.7� 1.0 1.0
SXD 77.7� 0.7 63.0� 1.0 0.9

ResNet-20
backbone 91.7� 0.2 58.6� 0.7 0.6
S̃discrete 92.7� 0.2 58.0� 1.0 5.3
SXD 92.4� 0.2 73.5� 1.6 5.6

WRN-40-4
backbone 95.2� 0.1 64.7� 0.9 4.6
S̃discrete 95.2� 0.2 61.3� 1.3 19.9
SXD 95.0� 0.1 72.9� 0.8 14.3

ResNet-18 DenseNAS 94.5� 0.3 61.6� 3.3 3.6
Cell DARTS; 96.0� 0.2 66.3� 0.5 28.6
� No data augmentation used in the permuted case.
: On a V100 GPU; time for DARTS Cell is training cost only.
; Search using GAEA PC-DARTS (c.f. Section 9.2.2); training

using “base” routine [Yang et al., 2020].

Table 10.10: Architecture optimizer settings on PDE tasks. Note that the step-size is
updated using the same schedule as the backbone.

task optimizer initial step-size warmup epochs

1D Burgers’ equation Adam 1E-3 0
1D Burgers’ equation (FNO init) Momentum(0.5) 1E-4 250
2D Darcy Flow Momentum(0.5) 1E-1 0
2D Darcy Flow (FNO init) Momentum(0.5) 1E-1 0
2D Navier Stokes (ν � 10�4, T � 30) Momentum(0.5) 5E-3 0
2D Navier Stokes (ν � 10�5, T � 20) Momentum(0.5) 1E-3 0

with m modes are replaced by N -dimensional convolutional layers with filters of size pm� 1qN
and circular padding to match the dimensionality of FNO. In Table 10.11 and Table 10.12 we
present reported [Li et al., 2021c], reproduced, and our own results on the 1D Burgers’ equation
and 2D Darcy Flow.

For AutoDL we borrow the code and setup provided here: https://github.com/
NoamRosenberg/autodeeplab. We only conduct search on the lowest resolution and use
the resulting architecture at higher resolutions. Search was conducted for 40 epochs, as in the
original paper, and the search learning rate was tuned.
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Table 10.11: Test relative errors on the 1D Burgers’ equation. We were not able to
match the FNO-1D results reported by the authors [Li et al., 2021c] using their published
codebase, however, our proposed XD operations outperform our reproduction of their
results at every resolution. Furthermore, we outperform their reported test relative errors
on every resolution except s � 4096, where we roughly match their performance.

Method (source) s � 256 s � 512 s � 1024 s � 2048 s � 4096 s � 8192

NN [Li et al., 2021c] 0.4714 0.4561 0.4803 0.4645 0.4779 0.4452
GCN [Li et al., 2021c] 0.3999 0.4138 0.4176 0.4157 0.4191 0.4198
FCN [Li et al., 2021c] 0.0958 0.1407 0.1877 0.2313 0.2855 0.3238
PCANN [Li et al., 2021c] 0.0398 0.0395 0.0391 0.0383 0.0392 0.0393
GNO [Li et al., 2021c] 0.0555 0.0594 0.0651 0.0663 0.0666 0.0699
LNO [Li et al., 2021c] 0.0212 0.0221 0.0217 0.0219 0.0200 0.0189
MGNO [Li et al., 2021c] 0.0243 0.0355 0.0374 0.0360 0.0364 0.0364
FNO-1d [Li et al., 2021c] 0.0149 0.0158 0.0160 0.0146 0.0142 0.0139

CNN (ours) 0.0518 0.1220 0.1830 0.2280 0.2730 0.2970
FNO-1d (reproduced) 0.0181 0.0191 0.0188 0.0184 0.0183 0.0183
CNN XD (ours) 0.0141 0.0079 0.0154 0.0099 0.0145 0.0123
FNO-1d XD (ours) 0.0153 0.0154 0.0154 0.0167 0.0160 0.0155

Table 10.12: Test relative errors on 2D Darcy Flow. Our reproduction of
the FNO-2D results outperform those reported by the authors [Li et al.,
2021c]. Nonetheless, our proposed XD operations outperform both our
reproduction and the reported results at every resolution.

Method (source) s � 85 s � 106 s � 141 s � 211 s � 421

NN [Li et al., 2021c] 0.1716 - 0.1716 0.1716 0.1716
GCN [Li et al., 2021c] 0.0253 - 0.0493 0.0727 0.1097
FCN [Li et al., 2021c] 0.0299 - 0.0298 0.0298 0.0299
PCANN [Li et al., 2021c] 0.0244 - 0.0251 0.0255 0.0259
GNO [Li et al., 2021c] 0.0346 - 0.0332 0.0342 0.0369
LNO [Li et al., 2021c] 0.0520 - 0.0461 0.0445 -
MGNO [Li et al., 2021c] 0.0416 - 0.0428 0.0428 0.0420
FNO-2d [Li et al., 2021c] 0.0108 - 0.0109 0.0109 0.0098

CNN (ours) 0.0404 0.0495 0.0613 0.0813 0.1150
FNO-2d (reproduced) 0.0096 0.0092 0.0091 0.0091 0.0091
CNN XD (ours) 0.0065 0.0065 0.0065 0.0071 0.0066
FNO-2d XD (ours) 0.0082 0.0079 0.0077 0.0076 0.0074
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Figure 10.10: Training curves (dotted) and test curves (solid) on Darcy Flow at resolution 141,
showing better generalization of XD-operations.

Table 10.13: Architecture optimizer settings on for our protein
folding experiments, across different ResNet depths. Note that
the same step-size is used throughout since the backbone has
no step-size schedule.

search space optimizer step-size warmup epochs

ResNet-4 XD Adam 1E-4 2
ResNet-6 XD Momentum(0.99) 1E-4 2
ResNet-10 XD Momentum(0.99) 1E-3 2
ResNet-18 XD Momentum(0.9) 5E-4 2
ResNet-34 XD Momentum(0.9) 5E-4 2

Table 10.14: Test MAE8 of the Dilated ResNet of Adhikari [2020], compared to a
standard ResNet backbone and XD-operations applied to ResNet. Results are averaged
over 3 trials.

Method depth � 4 depth � 6 depth � 10 depth � 18 depth � 34

ResNet 5.99� 0.43 5.30� 0.11 4.91� 0.25 4.80� 0.07 4.66� 0.15
Dilated ResNet 6.04� 0.33 5.49� 0.02 4.64� 0.08 4.59� 0.22 4.50� 0.13
ResNet XD 5.59� 0.09 4.59� 0.17 4.25� 0.16 4.22� 0.03 4.00� 0.07

10.C.3 Protein folding

For our protein folding experiments, our code is a PyTorch re-implementation of the PDNET
code and setup [Adhikari, 2020] provided here: https://github.com/ba-lab/pdnet.
As before, we use the same training routine and settings as the Dilated ResNet architecture
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Table 10.15: Architecture optimizer settings on sequence mod-
eling tasks. Note that the step-size is updated using the same
schedule as the backbone.

task optimizer initial step-size warmup epochs

Permuted MNIST Adam 2E-4 0
JSB Chorales Adam 2E-4 25
Nottingham Adam 2E-3 0
Penn Treebank Adam 2E-6 0

Table 10.16: XD-operations applied to TCNs compared to recent empirical results in
sequence modeling. Our results are averages of three trials. Methods achieving within
one deviation of the best performance are bolded.

Permuted MNIST� JSB Chorales Nottingham Penn Treebank
Method (source) (error) (loss) (loss) (perplexity)

LSTM [Bai et al., 2018] 14.3 8.45 3.29 78.93
GRU [Bai et al., 2018] 12.7 8.43 3.46 92.48
RNN [Bai et al., 2018] 74.7 8.91 4.05 114.50
TCN backbone [Bai et al., 2018] 2.8 8.10 3.07 88.68
TrellisNet [Bai et al., 2019] 1.87 - - 54.19
R-Transformer [Wang et al., 2020c] - - 2.37 84.38
HiPPO-LegS [Gu et al., 2020] 1.7 - - -

TCN backbone (reproduced) 2.89� 0.04 8.17� 0.01 2.97� 0.01 88.49� 0.31
TCN backbone XD (ours) 1.75� 0.11 8.07� 0.02 2.81� 0.05 84.11� 0.25
Undilated TCN (ours) 11.3� 2.1 8.16� 0.04 3.21� 0.02 94.30� 0.33
Undilated TCN XD (ours) 1.77� 0.10 8.07� 0.01 2.84� 0.02 85.04� 0.49

� We use depth d � p3, 3, 3q XD-operations for permuted MNIST experiments; elsewhere we
use p1, 3, 1q. Results within a standard deviation of the best are bolded.

and only tune the architecture optimizer. We consider the following hyperparameters for the
architecture optimizer: Adam vs. SGD (with or without momentum), learning rate, and number
of warmup epochs. The final hyperparameters for each depth can be found in Table 10.13.
Our ResNet backbone differs from Dilated ResNet in that its dilation rate is set to 1 in every
convolutional layer. In Table 10.14, we present average MAE8 on the PSICOV test set for each
method at each depth.

10.C.4 Music modeling and sequence modeling

For our sequence modeling experiments we use the TCN code [Bai et al., 2018] provided here:
https://github.com/locuslab/TCN. As before we use the same settings and training
routine as the backbone for all tasks, tuning only the architecture optimizer. The specific set-
tings are provided in Table 10.15. For both the baselines and XD-operations we use the same
optimizer settings for both the dilated and undilated TCN backbones. In Table 10.16 we present
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Table 10.17: Information about evaluation tasks in NAS-Bench-360 [Tu et al., 2022].

task name datapoints data dimension prediction type learning objective expert architecture

CIFAR-100 60K 2D point classify natural images into 100 classes DenseNet-BC
[Huang et al., 2017]

Spherical 60K 2D point classify spherically projected images S2CN
into 100 classes [Cohen et al., 2018]

NinaPro 3956 2D point classify sEMG signals into 18 classes Attention Model
corresponding to hand gestures [Josephs et al., 2020]

FSD50K 51K 2D point classify sound events in log-mel VGG
(multi-label) spectrograms with 200 labels [Fonseca et al., 2021]

Darcy Flow 1100 2D dense predict the final state of a fluid from its FNO
initial conditions [Li et al., 2021c]

PSICOV 3606 2D dense predict pairwise distances between resi- DEEPCON
duals from 2D protein sequence features [Adhikari, 2019]

Cosmic 5250 2D dense predict propablistic maps to identify cos- deepCR-mask
mic rays in telescope images [Zhang and Bloom, 2020]

ECG 330K 1D point detect atrial cardiac disease from ResNet-1d
a ECG recording (4 classes) [Hong et al., 2020]

Satellite 1M 1D point classify satellite image pixels’ time ROCKET
series into 24 land cover types [Dempster et al., 2020]

DeepSEA 250K 1D point predict chromatin states and binding DeepSEA
(multi-label) states of RNA sequences (36 classes) [Zhou and Troyanskaya, 2015]

results for both music modeling and for two additional benchmarks—permuted MNIST and Penn
Treebank—on which we see a similar pattern of XD-operations being able to recover and even
beat (dilated) TCN performance starting from an undilated network.

10.C.5 NAS-Bench-360
Term clarification

Since we compare with a variety of methods, here we clarify some of the terms we use.
• Best-Automated (Figure 10.4): WRN, WRN-ASHA, DARTS, DenseNAS, AutoDL, and

AMBER
• Hand-Designed (Figure 10.4): the expert architectures in Table 10.17
• AutoML: WRN-ASHA, DARTS, DenseNAS, AutoDL, and AMBER
• NAS: DARTS, DenseNAS, AutoDL, and AMBER
• WRN: WRN without hyperparameter tuning

Backbone network structure

Below we describe the CNN backbones we adopt for all 1D and 2D tasks. In both cases, we
modify the original model’s activation layer according to the learning objective, e.g. log softmax
for classification and sigmoid for dense prediction. Both backbones also incorporate a dropout
rate that we set to zero during search and tune as a hyperparameter when retraining.
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Table 10.18: Task-specific DASH hyperparameters.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic

batch size 64 64 10 8 4
input size (32, 32) (60, 60) (85, 85) (128, 128) (128, 128)

kernel sizes pKq t3, 5, 7, 9u t3, 5, 7, 9u t3, 5, 7, 9u t3, 5, 7, 9u t3, 5, 7, 9u
dilations pDq t1, 3, 7, 15u t1, 3, 7, 15u t1, 3, 7, 15u t1, 3, 7, 15u t1, 3, 7, 15u

loss plq cross entropy cross entropy ℓ2 MSE BCE

NinaPro FSD50K Satellite ECG DeepSEA

batch size 128 128 256 1024 256
input size (16, 52) (96, 101) 46 1000 1000

kernel sizes pKq t3, 5, 7, 9u t3, 5, 7, 9u t3, 7, 11, 15, 19u t3, 7, 11, 15, 19u t3, 7, 11, 15, 19u
dilations pDq t1, 3, 7, 15u t1, 3, 7, 15u t1, 3, 7, 15u t1, 3, 7, 15u t1, 3, 7, 15u

loss plq focal BCE w. logits cross entropy cross entropy BCE w. logits

2D tasks We use WRN-16-4 [Zagoruyko and Komodakis, 2016] as the backbone for 2D tasks,
using the code here: https://github.com/meliketoy/wide-resnet.pytorch.

1D tasks We use a 1D WRN [Ismail Fawaz et al., 2020] for all 1D tasks, borrowing the im-
plementation here: https://github.com/okrasolar/pytorch-timeseries. We
modify the number of output channels from the original model’s 64 to mint4num_classes{{10�1, 64u
to account for simpler tasks with fewer class labels. Separately, we also evaluate DASH with
the Temporal Convolutional Network (TCN) backbone using the implementation of Bai et al.
[2018]; we include the results for completeness in the last row of Table 10.23.

DASH pipeline hyperparameters

Search
• epochs: 100
• optimizer: SGD(momentum=0.9, nesterov=True, weight_decay=5E-4)

• model weight learning rate: 0.1 for point prediction tasks, 0.01 for dense tasks
• architecture parameter learning rate: 0.05 for point prediction tasks, 0.005 for dense tasks
• learning rate scheduling: decay by 0.2 at epoch 60

• gradient clipping threshold: 1
• softmax temperature: 1
• subsampling ratio: 0.2

Hyperparameter tuning
• epochs: 80
• configuration space: learning rate in t1E � 1, 1E � 2, 1E � 3u, weight decay in t5E �
4, 5E � 6u, momentum in t0.9, 0.99u, dropout in t0, 0.05u

347

https://github.com/meliketoy/wide-resnet.pytorch
https://github.com/okrasolar/pytorch-timeseries


Table 10.19: Errors of DASH and the baselines on NAS-Bench-360. Methods are
grouped into three classes: non-automated, automated, and DASH. Results of DASH are
averaged over three trials using the models obtained after the last retraining epoch.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic
0-1 error(%) 0-1 error(%) relative ℓ2 MAE8 1-AUROC

WRN 23.35�0.05 85.77�0.71 0.073�0.001 3.84�0.053 0.24�0.015
Expert 19.39�0.20 67.41�0.76 0.008�0.001 3.35�0.14 0.13�0.01
Perceiver IO 70.04�0.44 82.57�0.19 0.24�0.01 8.06�0.06 0.48�0.01

WRN-ASHA 23.39�0.01 75.46�0.40 0.066�0.00 3.84�0.05 0.25�0.021
DARTS-GAEA 24.02�1.92 48.23�2.87 0.026�0.001 2.94�0.13 0.22�0.035
DenseNAS 25.98�0.38 72.99�0.95 0.10�0.01 3.84�0.15 0.38�0.038
AutoDL - - 0.049�0.005 6.73�0.73 0.49�0.004

BABY DASH 25.56�1.37 63.45�0.88 0.016�0.002 3.94�0.54 0.16�0.007
DASH 24.37�0.81 71.28�0.68 0.0079�0.002 3.30�0.16 0.19�0.02

NinaPro FSD50K ECG Satellite DeepSEA
0-1 error (%) 1- mAP 1-F1 0-1 error (%) 1-AUROC

WRN 6.78�0.26 0.92�0.001 0.43�0.01 15.49�0.03 0.40�0.001
TCN - - 0.57�0.005 16.21�0.05 0.44�0.001
Expert 8.73�0.9 0.62�0.004 0.28�0.00 19.8�0.00 0.30�0.24
Perceiver IO 22.22�1.80 0.72�0.002 0.66�0.01 15.93�0.08 0.38�0.004

WRN-ASHA 7.34�0.76 0.91�0.03 0.43�0.01 15.84�0.52 0.41�0.002
DARTS-GAEA 17.67�1.39 0.94�0.02 0.34�0.01 12.51�0.24 0.36�0.02
DenseNAS 10.17�1.31 0.64�0.002 0.40�0.01 13.81�0.69 0.40�0.001
AMBER - - 0.67�0.015 12.97�0.07 0.68�0.01

BABY DASH 8.28�0.62 0.62�0.01 0.37�0.001 13.29�0.108 0.37�0.017
DASH 6.60�0.33 0.60�0.008 0.32�0.007 12.28�0.5 0.28�0.013
DASH-TCN - - 0.29�0.004 12.39�0.043 0.24�0.012

Table 10.20: Runtime of DASH on NAS-Bench-360 tasks, in NVIDIA V100 GPU-hours.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K ECG Satellite DeepSEA

search 1.6 1.6 0.16 0.88 1.6 0.028 0.88 0.18 1.8 0.36

tune 0.15 0.25 1.6 0.64 0.055 0.16 0.88 0.28 0.4 1.6

retrain 0.77 3.16 3.5 14 5.1 0.11 27 0.83 4.3 8.3

total 2.5 5.0 5.3 15 6.8 0.30 29 1.3 6.5 10
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Table 10.21: Time for one search
epoch, in seconds.

WRN ConvNeXt

# param 3M 28M

DASH 151.3 80.5
mixed-weights 705.4 300.1
mixed-results 330.6 149.6

Table 10.22: Total runtime on
ImageNet-1K, in hours.

WRN ConvNeXt

DASH search 24 13
DASH retrain 52 48
backbone train 16 41

Table 10.23: Prediction error on ImageNet-
1K. Backbone results from Liu et al. [2022].

WRN ConvNeXt

vanilla backbone 37.56�0.14 17.9�0.0
DASH model 34.12�0.21 16.42�0.15

Retraining
• epochs: 200
• learning rate scheduling: for 2D tasks, decay by 0.2 at epoch 60, 120, 160; for 1D tasks,

decay by 0.2 at epoch 30, 60, 90, 120, 160

10.C.6 ImageNet

Although vision objectives are not our main motivation, we find that DASH is backward com-
patible with large-scale image classification by testing it on ImageNet-1K with two backbones
of distinct scales. Our results show that DASH generalizes to tasks with large input shape
(3� 224� 224), dataset size (1.2M), and number of classes (1000). It improves the accuracy of
the original models and searches efficiently regardless of the backbone used.

We evaluated WRN-16-4 from before along with ConvNeXt-T [Liu et al., 2022], a large-scale
CNN that has performance on par with state-of-the-art Transformers, and performed experiments
on four NVIDIA V100 GPUs. To demonstrate DASH’s efficiency in Table 10.21 we present
the per-epoch search time (forward and backward time in seconds) for three baselines over the
search space K � t3, 5, 7, 9, 11u, D � t1, 3, 7u. A subset of 4096 images is used. We can see
that DASH’s efficiency holds for both backbones; although ConvNeXt has more parameters, it
is searched faster than WRN as it has fewer convolution layers and applies downsampling to the
input. Then in Table 10.22 we report DASH’s runtime vs. the train-time of the vanilla backbone
(in hours). We let DASH search for 10 epochs with subsampling ratio 0.2. (Re)training takes 50
and 100 epochs for WRN and ConvNeXt, respectively.

Lastly, in Table 10.23 we report the top-1 accuracy of the searched vs. original models to
show DASH generalizes to large vision input. We trained ConvNeXt for 300 epochs. In general,
DASH improves backbone performance by adopting task-specific kernels.
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Figure 10.11: Visualization of the architecture DASH discovers on Darcy Flow, for which
it generates a WRN-16-4 [Zagoruyko and Komodakis, 2016] for retraining. The network
architecture consists of several residual blocks. For instance, the residual block with the
structure in the top image can be denoted by Block64,p7,1q,p9,3q (64 is the number of output
channels and “BN” denotes the BatchNorm layer). Note that size of a convolutional layer in the
figure is proportional to the kernel size but not the number of channels. The bottom image is an
example network found by DASH on Darcy Flow; n.b. since Darcy Flow is a dense prediction
task, the last layer is a channel-matching (permutation+linear+permutation) layer instead of a
pooling+linear layer for classification.

10.D Searched architecture visualization
Lastly, we give two example networks searched by DASH to demonstrate that search spaces
containing large kernels matter for diverse tasks. We visualize a 2D architecture discovered for
Darcy Flow in Figure 10.11 and a 1D architecture discovered for DeepSEA in Figure 10.12.
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Figure 10.12: Visualization of the architecture DASH discovers on DeepSEA, for which it
generates a 1D WRN [Ismail Fawaz et al., 2020] for retraining. The network architecture
consists of several residual blocks. For instance, the residual block with the structure in the top
image can be denoted by Block64,p3,1q,p5,3q,p7,5q (64 is the number of output channels and “BN”
denotes the BatchNorm layer). The bottom image is an example network found by DASH on
DeepSEA, from which we can see that large kernels are selected for during search.
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Appendix A

Notation

Unless otherwise specified, Õ will be used to ignore logarithmic factors in standard asymptotic
notation. We also use Onp�q (and onp�q) to denote terms with constant (and sub-constant) depen-
dence on n.

A.1 Sets
We use Z and R to denote the integers and reals, respectively, R to denote the set of extended
real numbers R Y t�8u, and Z¡0, R¡0, Z¥0, and R¥0 to denote their associated positive and
nonnegative subsets. For any x P Rd and R ¥ 0 we use Bpx, Rq to denote the ℓ2-ball of
radius R around x. We use K� to denote the interior of a closed set K and BK to denote its
boundary. Brackets rns are used to denote the sequence p1, . . . , nq, and we will use standard
bracket/parenthesis notations to denote intervals. We use 1S : S ÞÑ t0, 1u to denote the indicator
function on the set S and |S| to denote the number of entries.

A.2 Vectors and matrices
We use bolded lower-case letters to denote vectors, bolded upper-case letters to denote matrices,
and brackets in subscripts to index into them (e.g. xris is the ith element of a vector x, Xri,js
is the jth element in the ith row of a matrix X, and Xris is its ith row); whether bracketing is
being used to denote a set as in the previous section or to index into a vector will be clear from
context. For both vectors and matrices we will use } � }p to denote the entry-wise p-norm, and for
the latter we will use ~ � ~p to denote the Schatten p-norm; thus on matrices } � }2 � } � }F is the
Frobenius norm, } � }8 � } � }max is the max-norm, ~ � ~8 is the spectral norm, and ~ � ~1 � } � }Tr
is the trace or nuclear norm. We use } � }� to refer to the dual norm of } � }. For any two vectors
x,y P Rd, x d y will denote element-wise multiplication, x

y
will denote element-wise division,

xp will denote raising each element of x to the power p (with
?
x � x

1
2 ), and maxtx,yu and

mintx,yu will denote element-wise maximum and minimum, respectively.
We use 0n, 1n, In, 0m�n, and 1m�n to denote the n-dimensional zero vector, the n-dimensional

all-ones vector, the n� n identity matrix, the m� n zero matrix, and the m� n all-ones matrix,
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respectively. In cases where the dimension can be inferred from context we will us ei to denote
one-hot vectors, i.e. eirjs � 1i�j . In all cases we drop the subscript when the dimension can be
inferred from context. Lastly, given an n� n matrix A, we make use of the following additional
notation:

• ρpAq denotes the spectral radius of A
• A ¡ 0 and A © 0 mean that A is positive definite and positive semi-definite, respectively
• κpAq � ~A~8~A�1~8 denotes the condition number of A ¡ 0

• }x}A � }A 1
2x}2 is the energy norm of a vector x P Rn associated with A ¡ 0

• }X}A � ~A 1
2XA� 1

2~8 is the energy norm of a matrix X P Rn�n associated with A ¡ 0

A.3 Probability
We will use △n � tx P Rn

¥0 : }x}1 � 1u to denote the n-dimensional probability simplex,
x � UnifpSq or x � Unif S to denote sampling uniformly from a set S, and x � N pµ,Σq to
denote sampling from a normal distribution with mean µ and covariance Σ ¡ 0; the isotropic
case where Σ � σ2I for some σ2 P R¡0 we be denoted by N pµ, σ2q. We will also use Lappxq,
Berppq, and Betapa, bq as shorthands for sampling random variables from a Laplace distribution
with scale x, a Bernoulli distribution with probability p, and a Beta distribution with parameters
a and b, respectively.

Given a probability measure µ : S ÞÑ R¥0 on a set S, we use µpS 1q � ³
S1 µ to denote the

probability it assigns to any subset S 1 � S. We will use Erxs to denote the expectation of a
random variable x, Varpxq to denote its variance, PrpAq to denote the probability of an event A,
and DKLpp||qq to denote the KL-divergence between probability vectors p,q P △n.
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Appendix B

Online convex optimization

Throughout this appendix we assume all subsets are convex and in a finite-dimensional real vec-
tor space V with inner product x�, �y unless explicitly stated. For sequences of scalars σ1, . . . , σT P
R we will use the notation σ1:t to refer to the sum of the first t of them. In the online learning
setting, we will use the shorthand ∇t to denote the subgradient of ℓt : Θ ÞÑ R evaluated at action
θt P Θ. We will use ProjSp�q to be the projection to any convex subset S.

B.1 Basic function classes
We start with some basic properties of functions.

Definition B.1.1. Consider a closed and convex subset X � V. For any α ¡ 0 and norm
} � } : X ÞÑ R¡0 an everywhere-subdifferentiable function f : X ÞÑ R is called α-strongly-
convex w.r.t. } � } if @ x,y P X we have

fpyq ¥ fpxq � x∇fpxq,y � xy � α

2
}y � x}2 (B.1)

Definition B.1.2. Consider a closed and convex subset X � V. For any β ¡ 0 and norm
} � } : X ÞÑ R¡0 a continuously-differentiable function f : X ÞÑ R is called β-strongly-smooth
w.r.t. } � } if @ x,y P X we have

fpyq ¤ fpxq � x∇fpxq,y � xy � β

2
}y � x}2 (B.2)

Definition B.1.3. An everywhere sub-differentiable function f : X ÞÑ R is γ-exp-concave if
expp�γfp�qq is concave. For X � R we have that Bxxfpxq

pBxfpxqq2 ¥ γ @ x P X ùñ f is γ-exp-
concave.

B.2 The Bregman divergence
We next turn to defining the Bregman divergence, a generalized notion of distance used in
optimization theory, and stating several of its properties:
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Definition B.2.1 (Bregman [1967], Banerjee et al. [2005]). Let X be a closed and convex sub-
set of V. The Bregman divergence induced by a strictly convex, continuously-differentiable
distance-generating function (DGF)1 ϕ : X ÞÑ R is

Bϕpx||yq � ϕpxq � ϕpyq � x∇ϕpyq,x� yy @ x,y P X (B.3)

By definition, the Bregman divergence satisfies the following properties:
1. Bϕpx||yq ¥ 0 @ x, y P X and Bϕpx||yq � 0 ðñ x � y.
2. If ϕ is α-strongly-convex w.r.t. norm } � } then so is Bϕp�||yq @ y P X . Furthermore,

Bϕpx||yq ¥ α
2
}x� y}2 @ x,y P X .

3. If ϕ is β-strongly-smooth w.r.t. norm } � } then so is Bϕp�||yq @ y P X . Furthermore,
Bϕpx||yq ¤ β

2
}x� y}2 @ x,y P X .

A crucial property of Bregman divergences is that the minimizer of a (weighted) sum of
Bregman divergences from a set of points is their (weighted) mean:

Claim B.2.1. Let ϕ : X ÞÑ R be a strictly convex function on X � V, α1, . . . , αn P R be a
sequence satisfying α1:n ¡ 0, and x1, . . . ,xn P X . Then

x̄ � 1

α1:n

ņ

i�1

αixi � argmin
yPS

ņ

i�1

αiBϕpxi||yq (B.4)

Proof. @ y P X we have

ņ

i�1

αi pBϕpxi||yq � Bϕpxi||x̄qq

�
ņ

i�1

αi pϕpxiq � ϕpyq � x∇ϕpyq,xi � yy � ϕpxiq � ϕpx̄q � x∇ϕpx̄q,xi � x̄yq

� pϕpx̄q � ϕpyq � x∇ϕpyq,yyqα1:n �
ņ

i�1

αi p�x∇ϕpx̄q, x̄y � x∇ϕpx̄q �∇ϕpyq,xiyq

� pϕpx̄q � ϕpyq � x∇ϕpyq, x̄� yyqα1:n

� α1:nBϕpx̄||yq
(B.5)

By Definition B.2.1 the last expression has a unique minimum at y � x̄.

Related to this is the following property relating the average Bregman divergence from a
mean vector to evaluations of the generating function:

Claim B.2.2. Let ψ : K ÞÑ R be a strictly-convex function with Bregman divergence Bp�||�q over
a convex set K � Rd containing points x1, . . . ,xT . Then their mean x̄ � 1

T

°T
t�1 xt satisfies

Ţ

t�1

Bpxt||x̄q �
Ţ

t�1

ψpxtq � ψpx̄q (B.6)

1Also sometimes called a regularizer.
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Proof.

Ţ

t�1

Bpxt||x̄q �
Ţ

t�1

ψpxtq � ψpx̄q � x∇ψpx̄q,xt � x̄y

�
Ţ

t�1

ψpxtq � ψpx̄q � x∇ψpx̄q,
Ţ

t�1

xt � x̄y �
Ţ

t�1

ψpxtq � ψpx̄q
(B.7)

B.3 Algorithms
Here we provide a review of the online learning algorithms we use. Recall that in this setting our
goal is minimizing regret:

Definition B.3.1. The regret of an agent playing actions tθt P ΘutPrT s on a sequence of loss
functions tℓt : Θ ÞÑ RutPrT s is

Regret �
Ţ

t�1

ℓtpθtq �min
θPΘ

Ţ

t�1

ℓtpθq (B.8)

Within-task our focus is on two closely related meta-algorithms, Follow-the-Regularized-
Leader (FTRL) and (lazy linearized) Online Mirror Descent (OMD).

Definition B.3.2. Given a strictly convex function R : Θ ÞÑ R, starting point ϕ P Θ, fixed
learning rate η ¡ 0, and a sequence of functions tℓt : Θ ÞÑ Rut¥1, Follow-the-Regularized
Leader (FTRLpRqϕ,η) plays

θt � argmin
θPΘ

BRpθ||ϕq � η
¸
s t

ℓspθq (B.9)

Definition B.3.3. Given a strictly convex function R : Θ ÞÑ R, starting point ϕ P Θ, fixed
learning rate η ¡ 0, and a sequence of functions tℓt : Θ ÞÑ Rut¥1, lazy linearized Online
Mirror Descent (OMDpRqϕ,η) plays

θt � argmin
θPΘ

BRpθ||ϕq � η
¸
s t
x∇s,θy (B.10)

These formulations make the connection between the two algorithms—their equivalence in
the linear case ℓsp�q � x∇s, �y—very explicit. There exists a more standard formulation of
OMD that is used to highlight its generalization of OGD—the case of Rp�q � 1

2
} � }22—and the

fact that the update is carried out in the dual space induced by R [Hazan, 2015, Section 5.3].2

However, we will only need the following regret bound satisfied by both [Shalev-Shwartz, 2011,
Theorems 2.11 and 2.15]
2Mirror descent can also be formulated in the offline setting, c.f. Section 9.2.1.
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Theorem B.3.1. Let tℓt : Θ ÞÑ RutPrT s be a sequence of convex functions that are Gt-Lipschitz
w.r.t. } � } and let R : Θ ÞÑ R be 1-strongly-convex. Then the regret of both FTRLpRqη,ϕ and OMDpRqη,ϕ

is bounded by
BRpθ�||ϕq

η
� ηG2T (B.11)

for all θ� P Θ and G2 ¥ 1
T

°T
t�1G

2
t .

We next review the online algorithms we use for the meta-update. The main requirement here
is logarithmic regret guarantees for the case of strongly convex loss functions, which is satisfied
by two well-known algorithms:

Definition B.3.4. Given a sequence of strictly convex functions tℓt : Θ ÞÑ Rut¥1, Follow-the-
Leader (FTL) plays arbitrary θ1 P Θ and for t ¡ 1 plays

θt � argmin
θPΘ

¸
s t

ℓspθq (B.12)

Definition B.3.5. Given a sequence of functions tℓt : Θ ÞÑ Rut¥1 that are αt-strongly-convex
w.r.t. } � }2, Adaptive OGD (AOGD) plays arbitrary θ1 P Θ and for t ¡ 1 plays

θt�1 � ProjΘ

�
θt � 1

α1:t

∇fpθtq



(B.13)

Kakade and Shalev-Shwartz [2008, Theorem 2] and Bartlett et al. [2008, Theorem 2.1] pro-
vide for FTL and AOGD, respectively, the following regret bound:

Theorem B.3.2. Let tℓt : Θ ÞÑ RutPrT s be a sequence of convex functions that are Gt-Lipschitz
and αt-strongly-convex w.r.t. } � }. Then the regret of both FTL and AOGD is bounded by

1

2

Ţ

t�1

G2
t

α1:t

(B.14)

Finally, we state the EWOO algorithm due to Hazan et al. [2007]. While difficult to run
in high-dimensions, we will be running this method in single dimensions, when computing it
requires only one integral.

Definition B.3.6. Given a sequence of γ-exp-concave functions tℓt : Θ ÞÑ Ru, Exponentially
Weighted Online Optimization (EWOO) plays

θt �
³
Θ
θ expp�γ°s t ℓspθqqdθ³

Θ
expp�γ°s t ℓspθqqdθ

(B.15)

Hazan et al. [2007, Theorem 7] provide the following guarantee for EWOO, which is notable
for its lack of explicit dependence on the Lipschitz constant.

Theorem B.3.3. Let tℓt : Θ ÞÑ Ru be a sequence of γ-exp-concave functions. Then the regret
of EWOO is bounded by

d

γ
p1� logpT � 1qq (B.16)
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B.4 Online-to-batch conversion
As we are also interested in distributional meta-learning, we discuss some techniques for con-
verting regret guarantees into generalization bounds, which are usually named online-to-batch
conversions. We first state some standard results.

Proposition B.4.1. If a sequence of convex loss functions tℓt : Θ ÞÑ RutPrT s drawn i.i.d. from
some distribution D is given to an online algorithm with regret bound UpT q that generates a
sequence of actions tθt P ΘutPrT s then

EDTEℓ�Dℓpθ̄q ¤ Eℓ�Dℓpθ�q � UpT q
T

(B.17)

for θ̄ � 1
T
θ1:T and any θ� P Θ.

Proof. Applying Jensen’s inequality yields

EDTEℓ�Dℓpθ̄q ¤ 1

T
EDT

Ţ

t�1

Eℓ1t�Dℓ
1
tpθtq

� 1

T
Etℓtu�DT

�
Ţ

t�1

Eℓ1t�Dℓ
1
tpθtq � ℓtpθtq

�
� 1

T
Etℓtu�DT

�
Ţ

t�1

ℓtpθtq
�

¤ 1

T

Ţ

t�1

Etℓsus t�Dt�1

�
Eℓ1t�Dℓ

1
tpθtq � Eℓt�Dℓtpθtq

�� UpT q
T

� 1

T

Ţ

t�1

Eℓ�Dℓpθ�q

� UpT q
T

� Eℓ�Dℓpθ�q
(B.18)

where we used the fact that θt only depends on ℓ1, . . . , ℓt�1.

For nonnegative and bounded losses we have the following fact [Cesa-Bianchi et al., 2004,
Proposition 1]:

Proposition B.4.2. If a sequence of loss functions tℓt : Θ ÞÑ r0, 1sutPrT s drawn i.i.d. from some
distribution D is given to an online algorithm that generates a sequence of actions tθt P ΘutPrT s
then

1

T

Ţ

t�1

Eℓ�Dℓpθtq ¤ 1

T

Ţ

t�1

ℓtpθtq �
c

2

T
log

1

δ
w.p. 1� δ (B.19)

1

T

Ţ

t�1

Eℓ�Dℓpθtq ¥ 1

T

Ţ

t�1

ℓtpθtq �
c

2

T
log

1

δ
w.p. 1� δ (B.20)

Note that Cesa-Bianchi et al. [2004] only prove the first inequality; the second follows via the
same argument but applying the symmetric version of the Azuma-Hoeffding inequality [Azuma,
1967]. The inequalities above can be easily used to derive the following competitive bounds:
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Corollary B.4.1. If a sequence of loss functions tℓt : Θ ÞÑ r0, 1sutPrT s drawn i.i.d. from some
distribution D is given to an online algorithm with regret bound UpT q that generates a sequence
of actions tθt P ΘutPrT s then

Et�UrT sEℓ�Dℓpθtq ¤ Eℓ�Dℓpθ�q � UpT q
T

�
c

8

T
log

1

δ
w.p. 1� δ (B.21)

for any θ� P Θ. If the losses are also convex then for θ̄ � 1
T
θ1:T we have

Eℓ�Dℓpθ̄q ¤ Eℓ�Dℓpθ�q � UpT q
T

�
c

8

T
log

1

δ
w.p. 1� δ (B.22)

Proof. By Proposition B.4.2 we have

1

T

Ţ

t�1

Eℓ�Dℓpθtq ¤ 1

T

Ţ

t�1

ℓtpθ�q�UpT q
T

�
c

2

T
log

1

δ
¤ Eℓ�Dℓpθ�q�UpT q

T
�
c

8

T
log

1

δ
(B.23)

Apply linearity of expectations to get the first inequality and Jensen’s inequality to get the second.

The following lemma provides a statement of the conversion in a sample complexity (rather
than statistical risk) formulation:

Lemma B.4.1. Suppose an online learner has regret bound UpT q on sequences of convex losses
ℓy1 , . . . , ℓyT : X ÞÑ r0, Bswhose data yt are drawn i.i.d. from some distribution D. If x1, . . . ,xT

are the actions of the online learner, x̂ � 1
T

°T
t�1 xt is their average, and T � Ω

�
Tε � B2

ε2
log 1

δ

	
for Tε � min2UpT 1q¤εT 1 T 1, then w.p. ¥ 1� δ we have Ey�Dℓypx̂q ¤ minxPX Ey�Dℓypxq � ε.

Proof. Apply Jensen’s inequality, Cesa-Bianchi et al. [2004, Proposition 1], the regret bound,
and Hoeffding’s bound:

Eyℓypx̂q ¤ 1

T

Ţ

t�1

Eyℓypxtq ¤ 1

T

Ţ

t�1

ℓytpxtq �B

c
2

T
log

2

δ

¤ min
xPX

1

T

Ţ

t�1

ℓytpxq �
UpT q
T

�B

c
2

T
log

2

δ

¤ min
xPX

Eyℓypxq � UpT q
T

� 2B

c
2

T
log

2

δ

(B.24)

B.4.1 Strongly convex losses
We also discuss some stronger guarantees for certain classes of loss functions. The first, due to
Kakade and Tewari [2008, Theorem 2], yields faster rates for strongly convex losses:

360



Theorem B.4.1. Let D be some distribution over loss functions ℓ : Θ ÞÑ r0, Bs for some B ¡ 0
that are G-Lipschitz w.r.t. } � } for some G ¡ 0 and α-strongly-convex w.r.t } � } for some α ¡ 0.
If a sequence of loss functions tℓtutPrT s is drawn i.i.d. from D and given to an online algorithm
with regret bound UpT q that generates a sequence of actions tθt P ΘutPrT s then w.p. 1 � δ we
have for θ̄ � 1

T
θ1:T and any θ� P Θ that

Eℓ�Dℓpθ̄q ¤ Eℓ�Dℓpθ�q � UpT q
T

� 4G

T

c
UpT q
α

log
4 log T

δ
� maxt16G2, 6αBu

αT
log

4 log T

δ
(B.25)

B.4.2 Self-bounding losses
We can also obtain a data-dependent bound using a result of Zhang [2005] under a self-bounding
property. Cesa-Bianchi and Gentile [2005, Proposition 2] show a similar but less general result.

Definition B.4.1. A distribution D over ℓ : Θ ÞÑ R has ρ-self-bounding losses if @ θ P Θ we
have

ρEℓ�Dℓpθq ¥ Eℓ�Dpℓpθq � Eℓ�Dℓpθqq2 (B.26)

Theorem B.4.2. Let D be some distribution over ρ-self-bounding convex loss functions ℓ : Θ ÞÑ
r�1, 1s for some ρ ¡ 0. If a sequence of loss functions tℓtutPrT s is drawn i.i.d. from D and given
to an online algorithm with bounded regret that generates a sequence of actions tθt P ΘutPrT s
then w.p. 1� δ we have

Eℓ�Dℓpθ̄q ¤ LpT q
T

�
c

2ρmaxt0, L̄T u
T

log
1

δ
� 3ρ� 2

T
log

1

δ
(B.27)

where θ̄ � 1
T
θ1:T and LpT q � °T

t�1 ℓtpθtq is the average loss suffered by the agent.

Proof. Apply Jensen’s inequality and Zhang [2005, Theorem 4].

Note that nonnegative 1-bounded convex losses satisfy the conditions of Theorem B.4.2 with
ρ � 1. However, we are interested in a different result that can yield a data-dependent competi-
tive bound:

Corollary B.4.2. Let D be some distribution over convex loss functions ℓ : Θ ÞÑ r0, 1s such that
the functions ℓpθq�ℓpθ�q are ρ-self-bounded for some θ� P argminθPΘ Eℓ�Dℓpθq. If a sequence
of loss functions tℓtutPrT s is drawn i.i.d. from D and given to an online algorithm with regret
bound UpT q that generates a sequence of actions tθt P ΘutPrT s then w.p. 1� δ we have

Eℓ�Dℓpθ̄q ¤ Eℓ�Dℓpθ�q � UpT q
T

� 1

T

c
2ρUpT q log 1

δ
� 3ρ� 2

T
log

1

δ
(B.28)

where θ̄ � 1
T
θ1:T and E� � argminθPΘ Eℓpθq.

Proof. Apply Theorem B.4.2 over the sequence of functions tℓtpθq � ℓtpθ�qutPrT s and by defini-
tion of regret substitute L̄T � 1

T

°T
t�1 ℓtpθq � ℓtpθ�q ¤ UpT q

T
.

Zhang [2005, Lemma 7] shows that the conditions in Corollary B.4.2 are satisfied for ρ � 4
by least-squares regression.
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B.5 Dynamic regret
Here we review several results for optimizing dynamic regret. We first define this quantity:

Definition B.5.1. The dynamic regret of an agent playing actions tθt P ΘutPrT s on a sequence
of loss functions tℓt : Θ ÞÑ Ru w.r.t. a sequence of reference parameters Ψ � tψtutPrT s is

RegretΨ �
Ţ

t�1

ℓtpθtq �
Ţ

t�1

ℓtpψtq (B.29)

Mokhtari et al. [2016, Corollary 1] show the following guarantee for OGD over strongly
convex functions:

Theorem B.5.1. Let tℓt : Θ ÞÑ RutPrT s be a sequence of α-strongly-convex, β-strongly-smooth,
and G-Lipschitz functions w.r.t. } � }2. Then OGD with step-size η ¤ 1

β
achieves dynamic regret

RegretΨ ¤
GD

1� ρ

�
1�

Ţ

t�2

}ψt �ψt�1}2
�

(B.30)

w.r.t. reference sequence Ψ � tψtutPrT s for ρ �
b
1� hα

η
for any h P p0, 1s and D the ℓ2-

diameter of Θ.
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Sanjiv Kumar, and H. Brendan McMahan. Adaptive federated optimization. In Proceedings
of the 9th International Conference on Learning Representations, 2021. 3.2

Nicholas Roberts, Mikhail Khodak, Tri Dao, Liam Li, Chris Ré, and Ameet Talwalkar. Re-

385



thinking neural operations for diverse tasks. In Advances in Neural Information Processing
Systems, 2021. 0.3, 0

Nicholas Roberts, Samuel Guo, Cong Xu, Ameet Talwalkar, David Lander, Lvfang Tao, Linhang
Cai, Shuaicheng Niu, Jianyu Heng, Hongyang Qin, Minwen Deng, Johannes Hog, Alexander
Pfefferle, Sushil Ammanaghatta Shivakumar, Arjun Krishnakumar, Yubo Wang, Rhea Suk-
thanker, Frank Hutter, Euxhen Hasanaj, Tien-Dung Le, Mikhail Khodak, Yuriy Nevmyvaka,
Kashif Rasul, Frederic Sala, Anderson Schneider, Junhong Shen, and Evan Sparks. AutoML
Decathlon: Diverse tasks, modern methods, and efficiency at scale. In Advances in Neural
Information Processing Systems: Competition Track, 2022. 8.3

Nicholas Roberts, Yingyu Liang, and Fred Sala. Understanding neural architecture search by its
architecture parameters. 2023. 8.3

Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In Pro-
ceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, 2020. 4

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted In-
tervention, 2015. 6

Timothy Roughgarden. Beyond Worst-Case Analysis of Algorithms. Cambridge University Press,
2020. 4.1

Reuven Y. Rubinstein and Alexander Shapiro. Discrete Event Systems: Sensitivity Analysis and
Stochastic Optimization by the Score Function Method. John Wiley & Sons, Inc., 1993. 3.4.1

Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random fea-
tures. In Advances in Neural Information Processing Systems, 2017. 9.A.2

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet large scale visual recognition challenge. International Journal of Computer
Vision, 115(3):211–252, 2015. 8.2.1, 9.2.2, 10.C.1

Ankan Saha, Prateek Jain, and Ambuj Tewari. The interplay between stability and regret in
online learning. arXiv, 2012. 2.A.1, 2.A.1

Shinsaku Sakaue and Taihei Oki. Discrete-convex-analysis-based framework for warm-starting
algorithms with predictions. In Advances in Neural Information Processing Systems, 2022.
4.3, 7.2

Shinsaku Sakaue and Taihei Oki. Rethinking warm-starts with predictions: Learning predictions
close to sets of optimal solutions for faster L-/L6-convex function minimization. In Proceed-
ings of the 40th International Conference on Machine Learning, 2023. 4.3

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. End-to-end learning
to warm-start for real-time quadratic optimization. In Proceedings of the 5th Annual Confer-
ence on Learning for Dynamics and Control, 2023. 7.2

Nikunj Saunshi, Yi Zhang, Mikhail Khodak, and Sanjeev Arora. A sample complexity separa-
tion between non-convex and convex meta-learning. In Proceedings of the 37th International
Conference on Machine Learning, 2020. 1.3.1, 2.1.2, 2.3.1

386



Nikunj Saunshi, Arushi Gupta, and Wei Hu. A representation learning perspective on the impor-
tance of train-validation splitting in meta-learning. In Proceedings of the 38th International
Conference on Machine Learning, 2021. 1.3.1

Ziv Scully, Isaac Grosof, and Michael Mitzenmacher. Uniform bounds for scheduling with
job size estimates. In Proceedings of the 13th Innovations in Theoretical Computer Science
Conference, 2022. 4

Jeremy Seeman, Aleksandra Slavkovic, and Matthew Reimherr. Private posterior inference con-
sistent with public information: A case study in small area estimation from synthetic census
data. In Proceedings of the International Conference on Privacy in Statistical Databases,
2020. 6, 6.2.1, 6.A.1

Jonas Seng, Pooja Prasad, Martin Mundt, Devendra Singh Dhami, and Kristian Kersting.
FEATHERS: Federated architecture and hyperparameter search. arXiv, 2023. 1.3.1

Andrew W. Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green,
Chongli Qin, Augustin Žídek, Alexander W. R. Nelson, Alex Bridgland, Hugo Penedones,
Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli, David T. Jones, David Sil-
ver, Koray Kavukcuoglu, and Demis Hassabis. Improved protein structure prediction using
potentials from deep learning. Nature, 577(7792):706–710, 2020. 10.2.4

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends
in Machine Learning, 4(2):107–194, 2011. 1.A.1, 1.A.1, 2.1.1, 2.2.1, 2.2.1, 2.2.2, 2.3.3, 2.3.3,
2.3.3, 2.4.1, 2.A.1, 2.A.5, 2.A.6, 3.A, 3.E, 5.2.2, 5.3.2, 5.3.2, 5.4, 5.A.3, 5.B, 5.C.1, 5.C.2,
5.C.2, 5.E, 6.5.1, 6.E.2, 9.2.1, B.3

Amr Sharaf and Hal Daumé III. Meta-learning effective exploration strategies for contextual
bandits. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021. 2.4

Junhong Shen, Mikhail Khodak, and Ameet Talwalkar. Efficient architecture search for diverse
tasks. In Advances in Neural Information Processing Systems, 2022. 0.3, 0

Junhong Shen, Liam Li, Lucio M. Dery, Corey Staten, Mikhail Khodak, Graham Neubig, and
Ameet Talwalkar. Cross-modal fine-tuning: Align then refine. In Proceedings of the 40th
International Conference on Machine Learning, 2023. 8.3

Junhong Shen, Neil Tenenholtz, James Brian Hall, David Alvarez-Melis, and Nicolò Fusi. Tag-
LLM: Repurposing general-purpose LLMs for specialized domains. In Proceedings of the
41st International Conference on Machine Learning, 2024. 8.3

David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal
algorithm for contextual bandits under realizability. Mathematics of Operations Research, 47,
2021. 7.1, 7.F.1

Max Simchowitz, Christopher Tosh, Akshay Krishnamurthy, Daniel J. Hsu, Thodoris Lykouris,
Miro Dudik, and Robert E. Schapire. Bayesian decision-making under misspecified priors
with applications to meta-learning. In Advances in Neural Information Processing Systems,
2021. 2.4

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale im-
age recognition. In Proceedings of the 3rd International Conference on Learning Representa-

387



tions, 2015. 8.A.2

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving
partial differential equations. Journal of Computational Physics, 375:1339–1364, 2018. 10.2.4

Adam Smith and Abhradeep Thakurta. (Nearly) optimal algorithms for private online learning in
full-information and bandit settings. In Advances in Neural Information Processing Systems,
2013. 6.5.1, 6.5.2, 6.6.3, 6.D.1

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-task
learning. In Advances in Neural Information Processing Systems, 2017. 2.2.4, 3.2

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning.
In Advances in Neural Information Processing Systems, 2017. 1, 1.1

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, 2012. 3.3.2

Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463, 2004. 2.3, 4.1

Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. On the universality of online mirror
descent. In Advances in Neural Information Processing Systems, 2011. 1.A.1

Karthik Sridharan, Nathan Srebro, and Shai Shalev-Schwartz. Fast rates for regularized objec-
tives. In Advances in Neural Information Processing Systems, 2008. 9.A.2

Vaidehi Srinivas and Avrim Blum. Competitive strategies to use “warm start” algorithms with
predictions. arXiv, 2024. 4.3

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha,
J. Liu, and Diana Marculescu. Single-path NAS: Designing hardware-efficient ConvNets in
less than 4 hours. In Proceedings of the Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 2020. 3

Bo Sun, Jerry Huang, Nicolas Christianson, Mohammad Hajiesmaili, Adam Wierman, and Raouf
Boutaba. Online algorithms with uncertainty-quantified predictions. In Proceedings of the 41st
International Conference on Machine Learning, 2024. 4.3

Ali Taghibakhshi, Scott MacLachlan, Luke Olson, and Matthew West. Optimization-based alge-
braic multigrid coarsening using reinforcement learning. In Advances in Neural Information
Processing Systems, 2021. 7.2

Eiji Takimoto and Manfred K. Warmuth. Path kernels and multiplicative updates. Journal of
Machine Learning Research, 4:773–818, 2003. 2.4, 2.4.3
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