
Low Field Size Constructions of
Access-Optimal Convertible Codes

Saransh Chopra

CMU-CS-24-144

August 2024

Computer Science Department
School of Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Rashmi Vinayak, Chair

Ryan O’Donnell

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright © 2024 Saransh Chopra

This work was funded in part by an NSF CAREER award (CAREER-1943409), a Sloan Fellowship and a VMware
Systems Research Award. The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the
U.S. government or any other entity.



Keywords: Coding theory, distributed storage systems, redundancy tuning, code conversion,
super-regularity



Abstract
Most large-scale storage systems employ erasure coding to provide resilience

against disk failures. Recent work has shown that tuning this redundancy to changes in
disk failure rates leads to substantial storage savings. This process requires code con-
version, wherein data encoded using an [nI, kI] initial code has to be transformed into
data encoded using an [nF, kF] final code, a resource-intensive operation. Convertible
codes are a class of codes that enable efficient code conversion while maintaining
other desirable properties. In this thesis, we focus on the access cost of conversion
(total number of code symbols accessed in the conversion process) and on an impor-
tant subclass of conversions known as the merge regime (combining multiple initial
codewords into a single final codeword).

In this setting, explicit constructions are known for systematic access-optimal
Maximum Distance Separable (MDS) convertible codes for all parameters in the
merge regime. However, the existing construction for a key subset of these parameters,
which makes use of Vandermonde parity matrices, requires a large field size making
it unsuitable for practical applications. In this thesis, we provide (1) sharper bounds
on the minimum field size requirement for such codes, and (2) explicit constructions
for low field sizes for several parameter ranges. In doing so, we provide a proof of
super-regularity of specially designed classes of Vandermonde matrices that could be
of independent interest.
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Chapter 1

Introduction

Erasure codes are used widely in modern large scale distributed storage systems as a means to
mitigate data loss in the event of disk failures. In this context, erasure coding involves dividing
data into groups of k chunks that are each encoded into stripes of n chunks using an [n, k] erasure
code. These encoded chunks are then stored across n distinct storage nodes in the system. The
code parameters n and k determine the amount of redundancy added to the system and the degree
of durability guaranteed.

There are various classes of codes that are commonly used in real-world systems. For example,
systematic codes are those in which the original message symbols are embedded among the
code symbols. This is highly desirable in practice as in the event that there are no observed
disk failures, there is no decoding process needed to recover the original data. Systematic codes
with Vandermonde parity matrices (see §2.1) are even more advantageous as there are known
efficient algorithms utilizing Fast Fourier Transform (FFT) for computing the product between
vectors and Vandermonde matrices [5, 12], speeding up the encoding process. This attribute is
becoming increasingly important given the recent trend to use wider (high k) and longer (high n)
erasure codes [6, 10]. Additionally, Maximum Distance Separable (MDS) codes are a subset of
erasure codes that require the least amount of additional storage in order to meet a specific failure
tolerance goal. An [n, k] MDS code can tolerate loss of any n− k out of the n code symbols. In
this thesis, the focus is on systematic MDS codes with Vandermonde parity matrices.

Recent findings by Kadekodi et al. [9] reveal the dynamic variability in disk failure rates over
time. Their research highlights the potential for meaningful savings in storage and associated
operational expenses through tuning code parameters to observed failure rates. However, the
resource overhead associated with the default approach of re-encoding all of the data in order to
modify n and k is prohibitively expensive [15].

The code conversion problem introduced in [15] formalizes the problem of efficiently trans-
forming data that has been encoded under an [nI, kI] initial code CI to its new representation under
an [nF, kF] final code CF . One of the key measures of the cost of conversion is the access cost,
which represents the total number of code symbols accessed (read/written) during conversion.
Convertible codes [15] are a class of codes that enable efficient conversion while maintaining
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other desirable properties such as being MDS and systematic (more details in §2.3).

Among various types of conversions, the merge regime, where kF = λkI for any integer λ ≥ 2
(i.e., combining multiple initial codewords into a single final codeword), is the most important one.
First, the merge regime requires the least resource utilization [18] among all types of conversions
and hence are a highly favorable choice for practical systems. Second, constructions for the
merge regime are key building blocks for the constructions for codes in the general regime which
allows for any set of initial parameters and any set of final parameters [18]. This thesis focuses on
systematic MDS convertible codes in the merge regime.

In [15], the authors established lower bounds on the access cost of conversion between
pairs of linear MDS codes and provided constructions of access-optimal convertible codes for
all parameters in the merge regime, which meet the established lower bounds. Let us denote
rI := nI − kI and rF := nF − kF, (which correspond to the number of parity symbols in the
initial and final codes if the codes are systematic). For several cases where rI > rF (i.e., when the
initial configuration has more parities than the final configuration), the authors provide explicit
constructions of systematic MDS access-optimal convertible codes over fields of size linear in
nF. For cases where rI < rF (i.e., when more parities are needed in the final configuration than
in the initial), it has been shown [15] that the access cost of conversion for MDS erasure codes
is lower bounded by that of the default approach to decode and re-encode all of the data. As a
consequence, it is not possible to realize any savings with specialized code constructions.

However, in the case where rI = rF, the best-known construction requires a minimum field
size of pD for any prime p and some D ∈ Θ((nF)3) [15]. This field size is far too high for efficient
practical implementations. Most current instruction-set architectures are optimized to operate
on bytes of data at a time. Utilizing erasure codes defined over larger field sizes can hamper the
encoding/decoding speed. Hence most (if not all) practical implementations of storage codes
use F256 (which translates each field symbol to a one-byte representation). Thus, the problem of
constructing low field size access-optimal convertible codes remains open for the case rI = rF.

This thesis studies the setting of systematic MDS access-optimal convertible codes in the
merge regime in the case where rI = rF. The best-known construction of convertible codes
in this setting is a systematic code with a very specific choice of super-regular Vandermonde
parity matrix with a singular degree of freedom [15] (as will be detailed in §2.1). In Chapter 3,
this construction is improved upon by allowing more freedom in the choice of scalars of the
Vandermonde matrix.

We start with an existence condition for the underlying k × r super-regular Vandermonde
parity matrices over a candidate field size q (Theorem 3.1). We then establish a lower bound
on the minimum field size q∗(k, r) required to guarantee the existence of such matrices, when
k > r (Theorem 3.3). The bound takes the form q∗(k, r) ≥ 2r for fields of characteristic
2. Additionally, we establish an upper bound q∗(k, r) ≤ O(kr) (Theorem 3.6), which in turn
results in an improved upper bound q ≤ O((kF)r

F
) on the field size required for the existence of

systematic MDS access-optimal convertible codes in the merge regime in the case where rI = rF.

Furthermore, in Chapter 4, we provide the first explicit low field size constructions of con-
vertible codes in this setting for several parameter ranges via constructing their corresponding
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super-regular Vandermonde parity matrices. The proposed construction makes use of field au-
tomorphisms in designing the Vandermonde matrices. For any general prime power field Fq

where q = pw, we find explicit constructions of k × 3 super-regular Vandermonde matrices for
all k such that k < w (Theorem 4.4). This, in turn, gives us a construction of systematic MDS
access-optimal convertible codes for all parameters in the merge regime such that rF = rI ≤ 3
and kF < w. For any finite field Fq where q = 2w (that is, characteristic 2), we present a stronger
result covering a larger range of k by showing that the same proposed construction is super-regular
for all k such that k < q (Theorem 4.6).

These results are also of independent interest beyond the setting considered in this thesis as
systematic MDS codes with Vandermonde parity matrices serve as the base codes for bandwidth-
optimal convertible codes [14, 17] and have also been studied in various other settings [12, 20, 22].
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Chapter 2

Background and Related Work

Let us begin with an overview of important concepts and notation referred to throughout this
thesis, along with a literature review of previous related work.

2.1 Systematic MDS codes and Vandermonde matrices
An [n, k] linear erasure code C with generator matrix G ∈ M(F)k×n over a finite field F is

said to be systematic, or in standard form, if G = [Ik | P] where Ik is the k × k identity matrix
and P is a k × (n− k) matrix also known as the parity matrix. Let m be a message and c be its
corresponding codeword under C, where m = (mi)

k
i=1 and c = (ci)

n
i=1 are vectors of message

and code symbols, respectively. As m is encoded under C via the multiplication c = mTG, it
follows that ci = mi for all i ≤ k if C is systematic.

An [n, k] linear erasure code C is Maximum Distance Separable (MDS) if and only if every k
columns of its generator matrix G are linearly independent; in other words, every k× k submatrix
of G is non-singular [13]. As a result, data encoded by an [n, k] MDS code can withstand any
erasure pattern of n− k out symbols in any codeword and still successfully recover the original
data. If C is also systematic with parity matrix P, this is equivalent to the property that every
square submatrix of P is non-singular [13]. Such a matrix is also referred to as super-regular. It
is useful to note that any submatrix of a super-regular matrix is also super-regular.

A systematic code with a Vandermonde parity matrix P ∈ M(Fk×r) is one where P is of the
form 

1 1 . . . 1
ξ1 ξ2 . . . ξr
ξ21 ξ22 . . . ξ2r
...

... . . . ...
ξk−1
1 ξk−1

2 . . . ξk−1
r

 (2.1)

for some scalars ξ = (ξi)
r
i=1 ∈ Fr. Let Vk(ξ) denote the k × r Vandermonde matrix over scalars

ξ as depicted in Eq. (2.1). Such a matrix is not always guaranteed to be super-regular [13] and
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thus careful selection of the scalars is required to ensure the resulting systematic code is MDS.

2.2 Code Conversion

Code conversion [15] refers to the theoretical problem of efficiently converting data from its
initial representation under an [nI, kI] code CI to its final representation under an [nF, kF] code
CF , both over the same finite field Fq. Generally, conversion maps multiple codewords in the
initial configuration to (potentially) multiple codewords in the final configuration. As depicted
in Fig. 2.1, rI typically denotes the value nI − kI, or the number of parities per codeword if the
initial code CI is systematic, and likewise rF denotes the value nF − kF for the final code CF .

Additionally, in order to capture the potential change in dimension, the conversion is defined
over every set of M := lcm(kI, kF) message symbols, the smallest instance of the problem. This
is equivalent to λI := M

kI
codewords in the initial configuration and λF := M

kF
codewords in the

final configuration. As a consequence, code conversion also formally requires an initial partition
PI and a final partition PF of the set {1, 2, . . . ,M} mapping the M message symbols to their
initial and final codewords, respectively.

Figure 2.1: Conversion from an [nI, kI] initial code to an [nF, kF] final code. Each box denotes a
codeword symbol; empty boxes denote unchanged symbols, dotted boxes denote retired symbols,
and cross-hatched boxes denote new symbols. The c node denotes the location where new symbols
are computed from the symbols read during conversion.
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2.3 Convertible Codes

Convertible codes [15] are a class of pairs of codes that enable efficient conversion while
maintaining other desired decodability constraints, such as being MDS and systematic. Let
[i] := {1, 2, . . . , i} and let |S| denote the size of a set S. Let m denote the vector (mi)

ℓ
i=1 for

some ℓ. Let m[S] denote the vector formed by projecting m onto the coordinates in the set S, and
let C(m) denote the encoding of m under the code C. Formally, convertible codes are defined as
follows:

Definition 2.1 (Convertible Code [15]): An (nI, kI;nF, kF) convertible code over Fq is defined
by: (1) a pair of codes (CI , CF ) over Fq such that CI is an [nI, kI] code and CF is an [nF, kF] code;
(2) a pair of partitions PI := {P I

i | i ∈ [λI]} and PF := {P F
j | j ∈ [λF]} of [M = lcm(kI, kF)]

such that |P I
i | = kI for all P I

i ∈ PI and |P F
j | = kF for all P F

j ∈ PF indicating which message
symbols correspond to each codeword; and (3) a conversion procedure which, for any m ∈ FM

q ,
maps the set of codewords {CI(m[P I

i ]) | P I
i ∈ PI} over the initial code to the corresponding set

of codewords {CF (m[P F
j ]) | P F

j ∈ PF} over the final code.

The cost of a conversion is defined as a function over its parameters (nI, kI;nF, kF). The
general motivation for designing convertible codes is to minimize the conversion cost for any
given set of parameters. Thus, for any construction of a convertible code, typically only the
optimal conversion procedure between its initial and final codes is considered. There are various
cost metrics affecting cluster storage systems, such as compute, bandwidth, and disk IO. This
thesis will focus on access cost of conversion, defined as follows:

Definition 2.2 (Access Cost [15]): The read access cost of a conversion procedure is defined
as the total number of symbols read during the procedure. Similarly, the write access cost of
a conversion procedure is the total number of new symbols written during the procedure. The
access cost of a conversion procedure is the sum of its read and write access costs. The access
cost of a convertible code is the access cost of its conversion procedure.

Additionally, in this work, we focus on an important subclass of conversions known as the
merge regime, the set of all conversions in which multiple initial codewords are combined into
a single final codeword. Specifically, this is the case where M = kF = λkI for some integer
λ ≥ 2. Other regimes of interest include the split regime, or when M = kI = λkF for some
integer λ ≥ 2, and the general regime, when there are no such restrictions on initial and final
code dimensions. However, it has been shown [18] that there is much greater potential for savings
in access cost over the default approach in the merge regime than in other types of conversions;
moreover, improved constructions of convertible codes in the merge regime directly result in
improved constructions in the general regime [18].
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Initial [6, 4] Codeword 1 Initial [6, 4] Codeword 2

Final [10, 8] Codeword

m1 m2 m3 m4 p1 p2 m5 m6 m7 m8 p3 p4

m1 m2 m3 m4 m5 m6 m7 m8 p5 p6

Figure 2.2: A merge conversion of two codewords encoded under an initial [6, 4] code into a final
codeword encoded under a [10, 8] code. Dashed arrows indicate unchanged symbols, and solid
arrows indicate reads and writes.

A convertible code is said to be access-optimal over a class of codes if it meets established
lower bounds on the access cost of conversion between any pair of codes in that class. It was
previously established for conversions between linear MDS codes, within the merge regime, if
rF ≤ rI and rF < kI, then access cost is lower bounded by λrF + rF; otherwise access cost is
guaranteed to be at least λkI + rF [15]. This second bound is attainable by the default approach
for any pair of linear MDS codes. Therefore, constructing a linear MDS access-optimal code is
only nontrivial when we assume rF ≤ rI and rF < kI.

In the same work, the authors showed that within the merge regime, when rF ≤ rI, a systematic
convertible code is necessarily access-optimal if the λkI × rF final parity matrix PF is rF-column
block-constructible from the kI × rI initial parity matrix PI; that is, the columns of each kI × rF

block of PF are spanned by at most rF columns of PI. Let MI×J denote the submatrix of a matrix
M formed by the intersection of the rows indexed by I and the columns indexed by J , with all
indices 1-indexed. Block-constructibility is formally defined as follows:

Definition 2.3 (t-column block-constructible [15]): A λn × m1 matrix A is t-column block-
constructible from an n×m2 matrix B if and only if for every i ∈ [λ], there exists Si ⊆ [m2] of
size t such that the columns of ARi×[m1] where Ri = {(i− 1)n + j | j ∈ [n]} are contained in
the span of the columns of B[n]×Si

.

It follows that given any scalars ξ = (ξi)
rI

i=1 ∈ FrI, any subset S := {αi | i ∈ [rF]} ⊆ [rI],
the λkI × rF Vandermonde matrix PF := VλkI(ξ[S]) is rF-column block-constructible from the

8



kI × rI Vandermonde matrix PI := VkI(ξ). To see this, observe that for every i ∈ [λ], PF
Ri×[rF]

where Ri = {(i− 1)kI + j | j ∈ [kI]} is of the form
ξ
(i−1)kI

α1 ξ
(i−1)kI

α2 . . . ξ
(i−1)kI

α
rF

ξ
(i−1)kI+1
α1 ξ

(i−1)kI+1
α2 . . . ξ

(i−1)kI+1
α
rF

...
... . . . ...

ξ
(i−1)kI+kI−1
α1 ξ

(i−1)kI+kI−1
α2 . . . ξ

(i−1)kI+kI−1
α
rF

 (2.2)

It is clear that the columns of PF
Ri×[rF] are spanned by the columns of PI

[kI]×S , which is of the
form 

1 1 . . . 1
ξα1 ξα2 . . . ξα

rF...
... . . . ...

ξk
I−1

α1
ξk

I−1
α2

. . . ξk
I−1

α
rF

 (2.3)

Given this condition guaranteeing access-optimality, the authors provided the following explicit
construction of parity matrices that yield systematic MDS access-optimal (nI, kI;nF, kF = λkI)
convertible codes, given sufficiently large field size:

Theorem 2.4 ([15]): Let Fq be a finite field of size q = pD, where p is any prime and D is a
specific exponent required by the construction that is O((max3(nI, nF))). Let θ ∈ Fq be any
primitive element. For any (nI, kI;nF, kF = λkI) such that rF ≤ rI, the pair of initial and final
systematic codes formed by parity matrices PI := VkI((θ

i)r
I

i=1) and PF := VλkI((θ
i)r

F

i=1) over Fq

yield a systematic MDS access-optimal (nI, kI;nF, kF) convertible code.

An extremely large field size is required to ensure super-regularity of the parity matrices in this
construction. To address this limitation, the authors also introduced low field size constructions
of systematic MDS access-optimal convertible codes for several parameter ranges in the merge
regime. The constructions utilized submatrices of super-regular Hankel arrays [20] for parity
matrices of the initial and final codes. A summary of the field sizes required to guarantee
existence of the best-known constructions of systematic MDS access-optimal (nI, kI;nF, kF =
λkI) convertible codes in the merge regime is provided in Table 2.1:

Regime Optimal Construction Minimum Field Size
rF > rI or rF ≥ kI All systematic MDS convertible codes access-optimal

rF ≤ ⌊rI/λ⌋ Hankel-I [15] q ≥ max{nI, nF} − 1
rF ≤ rI − λ+ 1 Hankel-II [15] q ≥ kIrI

All remaining cases Vandermonde [15] log q ∈ O((max3(nI, nF)))

Table 2.1: Field size requirements of various access-optimal convertible code constructions

It is important to note that for the critical regime where rI = rF, or when the amount of failure
tolerance remains constant, there does not exist any known low field size construction. We will
focus on this regime for the remainder of this work.
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2.4 Additional Notation and Preliminaries
This section presents notation and terminology used in this thesis that follows and expands on

the notation introduced in [15], and reviews some preliminaries from field theory that will be used
in the rest of the thesis.

For any two sets I, J , let I △ J denote the symmetric difference of I and J . For any two
integers a, b, let a ⊥ b denote that a and b are coprime. Let Mi,j denote the entry in the ith row
and jth column of the matrix M, with both indices 1-indexed. Let rowi(M) stand for the ith row
vector of the matrix M. Let χP be the indicator function for whether the proposition P is true.

Let Fp denote the prime field of size p, and let us reserve Fq for prime power fields of size
q = pw for some prime p and w > 1. Let F× denote the multiplicative group of the field, or
F \ {0}. Let ord(a) denote the order of an element a ∈ F×. Let F[x1, . . . , xr] denote the ring of
polynomials in x1, . . . , xr over the field F. Let Aut(F) denote the group of automorphisms over
the field F. Let Sn denote the group of permutations of [n].

Recall that a field automorphism is a bijective map σ : F → F such that for all x, y ∈ F,
σ(x+ y) = σ(x) + σ(y) and σ(xy) = σ(x)σ(y); in essence, the map preserves the structure of
the field. Note also by definition, it must be the case that σ(0) = 0 and σ(1) = 1, which also
gives us that σ(−a) = −σ(a), σ(a−1) = σ(a)−1, and ord(a) = ord(σ(a)) for all a ∈ F×. It is
easy to verify that the set of fixed points of an automorphism form a sub-field of F, termed the
fixed field of the automorphism. It is also a consequence of field theory that the fixed field of an
automorphism over the field Fq where q = pw is always an extension of the base prime field Fp

[4].

2.5 Other Related Works
The most directly related works on the code conversion problem [15] and access-optimal

convertible codes [15, 18] were already discussed in §§2.2 and 2.3. In this section, we will
discuss other closely related works. In addition to the access cost, previous works on convertible
codes have also studied other costs of conversion such as bandwidth cost [14] and locality of
repair [11, 16]. In this thesis, while we focus on the access cost of conversion, the proposed
new constructions do enable better constructions of bandwidth-optimal convertible codes as well.
This is because access-optimal convertible codes serve as the base codes of the Piggybacking
framework [14] when constructing convertible codes efficient in bandwidth cost.

There also have been previous efforts to study the fundamental limits of existence of super-
regular Vandermonde matrices. Shparlinski [22] provided an upper bound on the total number
of singular square submatrices of a Vandermonde matrix by showing that any (q − 1) × m

Vandermonde matrix Vq−1(ξ1, . . . , ξm) over the field Fq has at most 3(m − 1)(q − 1)mT
−1

m−1

singular m × m square submatrices where T := mini ̸=j∈[m]ord(
ξi
ξj
); however, this bound has

been shown to be not tight upon closer investigation [12]. Additionally, Intel’s Intelligent
Storage Acceleration Library (ISA-L), commonly used to implement erasure coding in practice,
has published bounds on the range of parameters [n, k] over F256 for which its code supports
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generation of super-regular Vandermonde parity matrices, based on a very specific construction
[8]. There is no proof provided alongside the ISA-L bounds; they were likely determined by
running a code script to test each submatrix for invertibility.

In addition, there has been independent work studying systematic linear MDS codes with
various other constructions of super-regular parity matrices. For example, it is known that a Cauchy
matrix C, that is, one of the form Ci,j = (ai + bj)

−1 for all i, j ∈ [n] given two vectors (ai)ni=1

and (bj)
n
j=1, is super-regular so long as the ai’s and bj’s are all distinct from each other [3, 19, 20].

Additionally, Lacan and Fimes introduced a construction of super-regular matrices formed by
taking the product of two Vandermonde matrices [12]. To add on, there has been considerable
progress in constructing super-regular Toeplitz matrices in the development of convolutional codes
[1, 2, 7]. Nonetheless, none of these alternatives are suitable for the construction of access-optimal
convertible codes.
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Chapter 3

Fundamental Limits on Field Size

Recall from §2.3 that the best-known construction of systematic MDS access-optimal con-
vertible codes for the merge regime where rI = rF, introduced in [15], leads to a very high field
size requirement. In this chapter, we consider a generalization of this previously best-known
construction. The new construction is still based on codes with Vandermonde parity matrices,
but we allow the scalars to take on any distinct nonzero values, rather than being restricted to
consecutive powers of a primitive element in the field. By virtue of the initial and final parity
matrices being Vandermonde matrices over the same set of scalars, as detailed in §2.3, the new
construction of convertible codes remains access-optimal. It follows that existence of any k × r
super-regular Vandermonde matrix over the field Fq yields (nI, kI;nF, kF = λkI) systematic MDS
access-optimal convertible codes over Fq for any λ ≥ 2, kF ≤ k, and rI = rF ≤ r. Thus, in this
chapter, we will study the fundamental limits on the field sizes that ensure the existence of k × r
super-regular Vandermonde matrices. We will establish an existence condition (Theorem 3.1),
a lower bound for fields of characteristic 2 (Theorem 3.3), and a general upper bound on the
minimum field size that guarantees the existence of k × r super-regular Vandermonde matrices
(Theorem 3.6).

We start with a result which provides a requirement on the field sizes over which super-regular
Vandermonde matrices exist. This result draws upon intuition that an optimal choice of scalars for
the Vandermonde matrix would avoid selecting elements with smaller order to avoid repetition
along the corresponding columns.

Theorem 3.1: Over the field Fq, a k × r super-regular Vandermonde matrix can only exist if the
following condition holds: for every divisor m of q − 1 where m < k, q ≥ rm+ 1.

Proof. Consider the k × r Vandermonde matrix Vk(ξ) for any scalars (ξi)ri=1 ∈ Fr
q. Given any

divisor m of q − 1, as k > m, the ith entry in the (m+ 1)th row of Vk(ξ) is of the form ξmi . Note
that raising this entry to the (q − 1)/m power would result in ξq−1

i = 1, so it follows that all of
the entries in this row of Vk(ξ) are roots of the polynomial x(q−1)/m − 1 over Fq. This polynomial
has exactly (q − 1)/m distinct roots in Fq, so if r > (q − 1)/m, then ∃i, j ∈ [r] such that i ̸= j
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and ξmi = ξmj . It follows that Vk(ξ)I×J where I = {1,m+ 1} and J = {i, j} is of the form[
1 1
ξmi ξmj

]
(3.1)

and is singular. Therefore, in order for the matrix to be super-regular, we must have r ≤
(q − 1)/m ⇒ q ≥ rm+ 1.

For the field F256, for example, this result tells us that [n = 90, k = 86] and [n = 58, k = 52]
systematic MDS codes with Vandermonde parity matrices do not exist.

The next lemma is a simple consequence of viewing finite prime power fields as vector spaces
over their base prime fields.

Lemma 3.2: Over the field Fq, where q = 2w, for any r > w, for any S = {ξi}ri=1 ⊆ Fq, there
must exist some nonempty subset I ⊆ [r] such that

∑
i∈I ξi = 0.

Proof. As there are 2r distinct subsets of [r], and q < 2r, then ∃I, J ⊆ [r] such that I ̸= J and∑
i∈I ξi =

∑
i∈J ξi. As every element is its own additive inverse in fields of characteristic 2, it

follows that 0 =
∑

i∈I ξi+
∑

i∈J ξi =
∑

i∈I\J ξi+
∑

i∈J\I ξi+
∑

i∈I∩J ξi+
∑

i∈I∩J ξi =
∑

i∈I△J ξi.
As I ̸= J , I △ J must be nonempty, as desired.

This lemma stems from the fact that any collection of field elements larger than the field’s
dimension must be linearly dependent. Over fields of characteristic 2, this simply corresponds
to a nonempty subset of elements that add to 0. This will be used later to identify a singular
submatrix in a proposed Vandermonde matrix. This in turn, yields a lower bound on the minimum
field size required for the existence of super-regular Vandermonde matrices specific to fields of
characteristic 2.

Theorem 3.3: Over the field Fq, where q = 2w, for any r, k such that k > r, a k×r super-regular
Vandermonde matrix with distinct, nonzero scalars can only exist if q ≥ 2r.

Proof. Let q < 2r, and consider the k × r Vandermonde matrix Vk(ξ) for any distinct scalars
(ξi)

r
i=1 ∈ (F×

q )
r and r, k such that k > r. Then, it follows by Lemma 3.2, that ∃I ⊆ [r] nonempty

such that
∑

i∈I ξi = 0, and we must have |I| > 2 as the ξi’s are nonzero and distinct. Let us define
ℓ := |I| and (ci)

ℓ+1
i=1 ∈ Fℓ+1

q to be the coefficient vector of the polynomial f(x) :=
∏

i∈I(x− ξi)

such that f(x) =
∑ℓ+1

i=1 cix
i−1, and note by construction cℓ =

∑
i∈I ξi = 0. Now consider the

square submatrix H := Vk(ξ)J×I where J = [ℓ + 1] \ {ℓ}. If we take the linear combination
y = cℓ+1rowℓ(H) +

∑ℓ−1
i=1 cirowi(H), it follows that y = (f(ξi))i∈I = 0. As cℓ+1 = 1, this is a

nontrivial linear combination of the rows of H, and thus H is singular. Therefore, in order for the
matrix to be super-regular, we must have q ≥ 2r.

For example, again considering F256, this bound informs us that [n = 19, k = 10] systematic
MDS codes with Vandermonde parity matrices do not exist.
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The first result for general fields (Theorem 3.1) is tighter for regimes where k ≫ r and
∃m ≈ k such that m < k and m divides q − 1 for a proposed field size q. On the other hand, the
lower bound specific to fields of characteristic 2 (Theorem 3.3) is more relevant in settings such
as storage in unreliable environments which demand narrow codes with higher storage overhead,
or when when k ≈ r.

We will next prove the existence of k × r super-regular Vandermonde matrices over all fields
of size greater than a threshold in terms of k and r. We first start with a lemma that narrows
down the set of square submatrices of a Vandermonde matrix that need to be tested for singularity
to establish super-regularity. More specifically, we show that it is sufficient to only consider
submatrices formed by a set of rows that includes the first row.

Lemma 3.4: Over the field Fq, for any r, k, ℓ such that ℓ ≤ min(r, k), for any k×r Vandermonde
matrix Vk(ξ) with (ξi)

r
i=1 ∈ (F×

q )
r, the submatrix H := Vk(ξ)I×J defined by I := {α1, . . . , αℓ} ⊆

[k] and J := {β1, . . . , βℓ} ⊆ [r], where αi < αj for all i < j, is non-singular if and only if the
submatrix H′ := Vk(ξ)I′×J defined by I ′ := {1, α2 − (α1 − 1), . . . , αℓ − (α1 − 1)} ⊆ [k] and J
is non-singular.

Proof. Observe that H is of the form
ξα1−1
β1

ξα1−1
β2

. . . ξα1−1
βℓ

ξα2−1
β1

ξα2−1
β2

. . . ξα2−1
βℓ

...
... . . . ...

ξαℓ−1
β1

ξαℓ−1
β2

. . . ξαℓ−1
βℓ

 (3.2)

while H′ is of the form 
1 1 . . . 1

ξα2−α1
β1

ξα2−α1
β2

. . . ξα2−α1
βℓ

...
... . . . ...

ξαℓ−α1

β1
ξαℓ−α1

β2
. . . ξαℓ−α1

βℓ

 (3.3)

As the ξi’s are all non-zero, it can be seen that we can get from H′ to H by multiplying through
the ith column by ξα1−1

βi
for all i ∈ [ℓ]. Therefore, det(H) = det(H′)

∏ℓ
i=1 ξ

α1−1
βi

, so either
det(H) = det(H′) = 0 or both matrices are non-singular, as desired.

We now utilize the Schwartz–Zippel lemma [21, 23] in a probabilistic argument for the
existence of a super-regular Vandermonde matrix given a sufficiently large field size. This,
in effect, establishes an upper bound on the minimum field size required for the existence of
super-regular Vandermonde matrices. We have restated the lemma for convenience.

Lemma 3.5 (Schwartz–Zippel): Let f ∈ F[x1, . . . , xr] be a non-zero polynomial over a field F
and let d be the total degree of f . Let S be a finite subset of F. If we independently and uniformly
at random select values from S to assign to each of x1, . . . , xr, then Pr[f(x1, . . . , xr) = 0] ≤ d

|S| .
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Theorem 3.6: Over the field Fq, for any r, k, if q > 1 +
(
k
2

)∑r
ℓ=2

(
r
ℓ

)(
k−2
ℓ−2

)
∈ O(kr), then there

must exist scalars (ξi)ri=1 ∈ (F×
q )

r such that the k× r Vandermonde matrix Vk(ξ) is super-regular.

Proof. Let us start by considering an arbitrary square submatrix of our proposed k × r Vander-
monde matrix Vk(ξ)- that is, let I := {α1, . . . , αℓ} ⊆ [k] and J := {β1, . . . , βℓ} ⊆ [r] for some
ℓ ≤ min(k, r) and let us define H := Vk(ξ)I×J so that H is an ℓ× ℓ submatrix of Vk(ξ). Observe
that

det(H) =
∑
σ∈Sℓ

(
sgn(σ)

ℓ∏
i=1

Hi,σ(i)

)

=
∑
σ∈Sℓ

(
sgn(σ)

ℓ∏
i=1

ξαi−1
βσ(i)

)

where Sℓ denotes the group of permutations of [ℓ]. See that we can treat the scalars as variables
(xi)

r
i=1 and the overall determinant as a multivariate polynomial

fH(x) =
∑
σ∈Sℓ

(
sgn(σ)

ℓ∏
i=1

xαi−1
βσ(i)

)
∈ Fq[x1, . . . , xr]

We deduce that the degree of the term in this summation corresponding to any arbitrary σ ∈ Sℓ is∑ℓ
i=1(αi− 1), and thus this is the total degree of fH as well. Also, note that because every term in

this summation corresponds to a unique permutation of [ℓ] and the αi’s are distinct, the resulting
monomial terms are also all unique, so no terms cancel out and fH is not identically 0 so long as
q > deg(fH). From here, see that for any family H of square submatrices of Vk(ξ), if we define
fH :=

∏
H∈H fH, then fH is also not identically 0 so long as q > deg(fH). Note also that fH

evaluates to 0 if and only if one of the square submatrices in H has determinant 0 and is singular.
Moreover, as deg(fH) =

∑
(I,J)|Vk(ξ)I×J∈H

∑
αi∈I(αi − 1), we can then apply Schwartz–Zippel

to get that the probability that a uniformly randomly drawn vector from (F×
q )

r is a root of fH is at
most

Pr
x
[fH(x) = 0] ≤

∑
(I,J)|Vk(ξ)I×J∈H

∑
αi∈I(αi − 1)

q − 1

=

∑
i∈[k](i− 1)

∑
(I,J)|Vk(ξ)I×J∈H χi∈I

q − 1

=

∑
i∈[k](i− 1) |{Vk(ξ)I×J ∈ H | i ∈ I}|

q − 1

Now see that by Lemma 3.4, it is sufficient to test for super-regularity by only considering
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H := {Vk(ξ)I×J | 1 ∈ I}. Therefore, it follows that

Pr
x
[fH(x) = 0] ≤

∑
i∈[k](i− 1) |{Vk(ξ)I×J | 1, i ∈ I}|

q − 1

=

∑
i∈[k](i− 1)

∑r
ℓ=2

(
r
ℓ

)(
k−2
ℓ−2

)
q − 1

=

(
k
2

)∑r
ℓ=2

(
r
ℓ

)(
k−2
ℓ−2

)
q − 1

< 1

if q > 1 +
(
k
2

)∑r
ℓ=2

(
r
ℓ

)(
k−2
ℓ−2

)
. If there is a nonzero probability that a uniformly randomly drawn

vector x from (F×
q )

r is not a root of any of the determinant polynomials, then there must exist
some assignment of scalars (ξi)ri=1 such that the k× r Vandermonde matrix Vk(ξ) is super-regular,
as desired.

Recall that the previously known upper bound [15] on the minimum field size q required
for the existence of systematic MDS access-optimal convertible codes for the merge regime
where rI = rF was log q ≤ Θ((nF)3). Theorem 3.6 establishes the improved upper bound of
log q ≤ O(rF log kF), an order of magnitude smaller.
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Chapter 4

Low Field Size Constructions

In this chapter, we present several explicit constructions of systematic MDS access-optimal
convertible codes in the merge regime (that is, for (nI, kI;nF, kF = λkI) convertible codes where
λ ≥ 2), with field sizes smaller than existing constructions. Specifically, for general prime power
fields Fq where q = pw, we provide explicit constructions of convertible codes in the merge
regime for all parameters such that rF = rI ≤ 3 and w > kF. For fields Fq of characteristic 2, we
present explicit constructions of convertible codes in the merge regime for all parameters such
that rF = rI ≤ 3 and q > kF. We do this by providing constructions of k × 3 super-regular
Vandermonde matrices for field sizes: q > pk for general prime power fields (Theorem 4.4) and
q > k for finite fields of characteristic 2 (Theorem 4.6). The super-regular Vandermonde matrices
serve as the parity matrices for the systematic MDS codes that underlie the aforementioned
convertible codes. As every submatrix of a super-regular matrix is also super-regular, a valid
parity matrix for three parities gives us one for any fewer than three parities as well.

We start with a lemma that builds on the intuition to choose primitive elements of the finite
field for the scalars of the super-regular Vandermonde parity matrix.

Lemma 4.1: Over the field Fq, for all k < q, given any primitive element θ ∈ Fq, given
2 ≤ e ≤ q − 1 such that e, e − 1 ⊥ q − 1, the k × 3 Vandermonde matrix Vk(1, θ, θ

e) has no
singular 2× 2 square submatrices.

Proof. First, note by Lemma 3.4, we can assume any candidate submatrix contains the first row
of the original Vandermonde matrix. Next, see that because e ⊥ q − 1, we must have that θe is in
fact another primitive element of Fq. Thus, we can handle the cases of 2× 2 submatrices formed
by the first and second columns or the first and third columns identically. In both of these cases,
the matrix is of the form [

1 1
1 θj

]
(4.1)

where q− 1 > k− 1 ≥ j. It follows that the determinant of this matrix is equal to θj − 1 and thus
the matrix is singular if and only if θj = 1 ⇐⇒ q − 1 | j, a contradiction. Similarly, for the case
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that the 2× 2 submatrix is formed by the second and third columns, the matrix is of the form[
1 1
θj (θe)j

]
(4.2)

See that as (θj)−1 = (θ−1)j exists and is nonzero, we can multiply through the second row by
this constant and it would not affect the singularity of the matrix. As a result, it is sufficient to
consider the matrix [

1 1
1 (θe−1)j

]
(4.3)

and note that as e−1 ⊥ q−1, θe−1 is again a primitive element, and this matrix is thus non-singular
by the same proof as in the previous case.

Next, we introduce the idea of field automorphisms into our construction and choice of scalars,
in particular as automorphisms are order preserving maps. Recall some key properties of field
automorphisms from §2.4.

Lemma 4.2: Over the field Fq where q = pw, for all k < q, given any primitive element θ ∈ Fq

and nontrivial automorphism σ ∈ Aut(Fq) with fixed field Fp, the k × 3 Vandermonde matrix
Vk(1, θ, σ(θ)) has no 2× 2 singular square submatrices.

Proof. First, recall that Aut(Fq) is a group generated by the Frobenius automorphism, or the map
σ : x → xp, and thus any nontrivial element σ ∈ Aut(Fq) is of the form σ(x) = xpe for some
1 ≤ e < w. It follows that p ≤ pe < pw = q, and because q ≡ 0 mod p, q − 1 ̸≡ 0 mod p and
clearly pe ⊥ q − 1. Next, see that if σ has fixed field Fp, this can only occur if the polynomial
p1(x) = xpe −x, and consequently the polynomial p2(x) = xpe−1− 1, have no roots in Fq outside
of Fp. This implies that pe − 1 ⊥ q − 1, and thus we can apply Lemma 4.1 to get that this matrix
has no 2× 2 singular submatrices.

For the same construction of Vandermonde matrices as in Lemma 4.2, we next consider its
3× 3 square submatrices and establish the necessary and sufficient conditions under which they
are singular. We are able to show a significantly tighter end result for fields of characteristic 2 in
particular, but a lot of the arguments used apply to all finite fields as well. Thus, we start with an
intermediate result using the shared ideas.

Lemma 4.3: Over the field Fq where q = pw, for all k < q, given any primitive element θ ∈ Fq

and nontrivial automorphism σ ∈ Aut(Fq) with fixed field Fp, the k × 3 Vandermonde matrix
Vk(1, θ, σ(θ)) has a 3×3 singular square submatrix if and only if ∃e1, e2 ∈ [k−1] and c1, c2 ∈ F×

p

such that e1 < e2 and {1, θ, σ(θ)} are all roots of the polynomial f(x) = c1 + c2x
e1 + xe2 .

Proof. First, let us consider an arbitrary 3× 3 square submatrix of the Vandermonde matrix; by
Lemma 3.4, we can assume it to be of the form

H :=

1 1 1
1 θe1 (σ(θ))e1

1 θe2 (σ(θ))e2

 (4.4)
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where q − 1 > k − 1 ≥ e2 > e1 > 0. Next, see that H is singular if and only if there exists
nontrivial (ci)3i=1 ∈ F3

q such that
∑3

i=1 cirowi(H) = 0; in other words, {1, θ, σ(θ)} are all roots
of the polynomial f(x) = c1 + c2x

e1 + c3x
e2 . See also that if ci = 0 for any i ∈ [3], then if we

let J = [3] \ {i}, it follows that
∑

j∈J cjrowj(H[3]×[2]) = 0. This would equate to a singular
2 × 2 square submatrix of Vk(1, θ, σ(θ)), a direct contradiction of Lemma 4.2. Thus, we can
assume the ci’s are all nonzero. From here, see that {1, θ, σ(θ)} are all roots of the polynomial
f(x) = c1 + c2x

e1 + c3x
e2 if and only if they are also roots of the polynomial g(x) = c−1

3 f(x), so
we can assume without loss of generality that c3 = 1. In summary, H is singular if and only if
∃c1, c2 ∈ F×

q such that {1, θ, σ(θ)} are all roots of the polynomial f(x) = c1 + c2x
e1 + xe2 .

Plugging in our three roots into the polynomial, we get the following:

c1 + c2 + 1 = 0 (4.5)
c1 + c2θ

e1 + θe2 = 0 (4.6)
c1 + c2(σ(θ))

e1 + (σ(θ))e2 = 0 (4.7)

Furthermore, we can plug in both sides of Eq. (4.6) into σ, giving us the additional equation

0 = σ(c1) + σ(c2)(σ(θ))
e1 + (σ(θ))e2 (4.8)

We can combine Eq. (4.7) and Eq. (4.8) to get

c1 − σ(c1) = (σ(c2)− c2)(σ(θ))
e1

We can then substitute c2 = −c1 − 1 from manipulating Eq. (4.5) to get

c1 − σ(c1) = (c1 + 1 + σ(−c1 − 1))(σ(θ))e1

= (c1 − σ(c1))(σ(θ))
e1

Assume for sake of contradiction that c1 /∈ Fp. Then c1 is not fixed by σ and thus (c1−σ(c1)) ̸= 0.
We can then multiply through by (c1 − σ(c1))

−1 to get 1 = (σ(θ))e1 . Note that as σ(θ) is a
primitive element of Fq, we must have q − 1 | e1, contradicting the assumption that e1 < q − 1.
Therefore, we must have c1 ∈ F×

p , and as c2 = −(c1 + 1) and fields are closed under addition and
inverses, c2 ∈ F×

p as well, as desired.

We now arrive at the first of the major results in this chapter, on explicit constructions of
super-regular Vandermonde matrices over arbitrary prime power fields.

Theorem 4.4: Over the field Fq where q = pw, for all k ≤ w, given any primitive element θ ∈ Fq

and a non-trivial automorphism σ ∈ Aut(Fq) with fixed field Fp, the k × 3 Vandermonde matrix
Vk(1, θ, σ(θ)) is super-regular.

Proof. First, note that every 1× 1 submatrix of Vk(1, θ, σ(θ)) is non-singular as every element is
a power of a nonzero element of Fq. Next, by Lemma 4.2, every 2× 2 submatrix of Vk(1, θ, σ(θ))
is also non-singular. Finally, assume for sake of contradiction that Vk(1, θ, σ(θ)) has a singular
3× 3 square submatrix. Then by Lemma 4.3, ∃e1, e2 ∈ [k − 1] and c1, c2 ∈ F×

p such that e1 < e2
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and {1, θ, σ(θ)} are all roots of the polynomial f(x) = c1 + c2x
e1 + xe2 . However, as f ∈ Fp[x],

it must be a multiple of the minimum polynomial of θ in Fp[x], which we know is of degree
w ≥ k > e2 = deg(f) as θ is a generator of F×

q , resulting in a contradiction. Thus, every 3× 3
square submatrix is also non-singular and Vk(1, θ, σ(θ)) is super-regular, as desired.

Using this result and the Frobenius automorphism, which is known to have fixed field Fp over
any finite extension K/Fp [4], we show a family of constructions of super-regular Vandermonde
matrices for arbitrary prime power fields.

Corollary 4.5: Over the field Fq where q = pw, for all k ≤ w, given any primitive element
θ ∈ Fq, the k × 3 Vandermonde matrix Vk(1, θ, θ

p) is super-regular.

Finally, we show an analogous but stronger result for fields of characteristic 2. This is
of particular interest as finite fields of characteristic 2 are the most efficient choice for the
representation of data in compute nodes and on storage devices.

Theorem 4.6: Over the field Fq where q = 2w, for all k < q, given any primitive element θ ∈ Fq

and a non-trivial automorphism σ ∈ Aut(Fq) with fixed field F2, the k × 3 Vandermonde matrix
Vk(1, θ, σ(θ)) is super-regular.

Proof. First, note that every 1×1 submatrix of Vk(1, θ, σ(θ)) is non-singular as every element is a
power of a nonzero element of Fq. Next, by Lemma 4.2, every 2× 2 submatrix of Vk(1, θ, σ(θ)) is
also non-singular. Finally, assume for sake of contradiction that Vk(1, θ, σ(θ)) has a singular 3× 3
square submatrix. Then by Lemma 4.3, ∃e1, e2 ∈ [k − 1] and c1, c2 ∈ F×

2 such that {1, θ, σ(θ)}
are all roots of the polynomial f(x) = c1 + c2x

e1 + xe2 . However, this implies c1 = c2 = 1, but
then f(1) = 1 + 1 + 1 = 1, contradicting the fact that 1 is a root of f . Therefore, every 3 × 3
square submatrix is also non-singular and Vk(1, θ, σ(θ)) is super-regular, as desired.

Again using the Frobenius automorphism, we show a family of constructions of super-regular
Vandermonde matrices for fields of characteristic 2. We also give results specific to the field F256,
which is the most commonly used finite field in practice.

Corollary 4.7: Over the field Fq where q = 2w, for all k < q, given any primitive element θ ∈ Fq,
the k × 3 Vandermonde matrix Vk(1, θ, θ

2) is super-regular.

Corollary 4.8: Over the field F256, for all k < 256, given any primitive element θ ∈ F256,
the k × 3 Vandermonde matrices Vk(1, θ, θ

2), Vk(1, θ, θ
8), Vk(1, θ, θ

32), and Vk(1, θ, θ
128) are

super-regular.
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Chapter 5

Conclusion

Code conversion provides a theoretical framework to model the problem of redundancy
adaptation, a significant challenge to most large-scale cluster storage systems. Convertible codes
are a class of specially designed codes that enable efficient conversion while maintaining desired
decodability constraints. The access cost of conversion represents the total number of symbols
read or written during the conversion process, which corresponds to the number of disks accessed
in the system for the conversion process. Further, the merge regime is an important subclass of
conversions which involve merging multiple codewords under an [nI, kI] initial code CI into a
final codeword under an [nF, kF] final code CF .

In this thesis, we studied the setting of systematic MDS access-optimal convertible codes
for all parameters (nI, kI;nF, kF) in the merge regime such that rI = rF. The previously best-
known constructions of codes in this setting required an extremely large field size. In this work,
we presented the best-known upper bounds on the field size required to guarantee existence of
systematic MDS access-optimal convertible codes in the merge regime. We did so by considering
constructions of codes based on super-regular Vandermonde parity matrices. First, we presented
an existence condition, a lower bound, and an upper bound on the minimum field size required to
guarantee existence of super-regular Vandermonde matrices. In doing so, we improved upon the
previously best-known upper bounds on the field size requirement of access-optimal convertible
codes by orders of magnitude. Additionally, we provided, to our knowledge, the first explicit
constructions of systematic MDS access-optimal convertible codes in the merge regime when rI =
rF over practically usable field sizes. Specifically, for arbitrary prime power fields Fq, we showed
an explicit construction of the super-regular Vandermonde parity matrices of (nI, kI;nF, kF = λkI)
systematic MDS access-optimal convertible codes for all parameters such that kF < log q and
rI = rF ≤ 3. We made use of field automorphisms in the choice of scalars of these Vandermonde
matrix constructions. With the additional assumption that the fields are of characteristic 2, we
extend this same construction to all parameters such that kF < q and rI = rF ≤ 3.

This work leaves many open questions and potential directions for future work. First, it is of
great interest to find a way to extend the explicit construction of access-optimal convertible codes
beyond three parities per codeword. A second direction of work could be closing the gap between
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fields of characteristic 2 and arbitrary prime power fields. This is purely of theoretical interest,
as in practice we almost exclusively use fields of characteristic 2 for the representation of data.
Third, it would be beneficial to computationally search for explicit super-regular Vandermonde
constructions over various field sizes, as not only would these codes become immediately usable
in practice, but they would also illuminate how far theoretical knowledge is from the ground
truth. Finally, it would be of interest to find better candidates than Vandermonde matrices for
parity matrices of constructions of systematic MDS access-optimal convertible codes. This would
help overcome the shortcomings of Vandermonde matrices, especially as in this work, we have
identified several parameter ranges for which super-regular Vandermonde matrices do not exist
over practical field sizes.
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