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Abstract
FHE (Fully Homomorphic Encryption) enables computation over encrypted data

without revealing plaintext inputs. This property allows clients to outsource compu-
tation to servers without revealing their inputs. A notable application of FHE is in
Privacy-Preserving Machine Learning as a Service (MLaaS), which enables clients
to submit data to a server-hosted machine learning model and receive processed re-
sults while maintaining data confidentiality.

However, the practical implementation of FHE in evaluating machine learning
models remains challenging. The restricted set of operations permissible under FHE
presents a significant hurdle to implentation. This is further compounded by the
significant performance overhead of each FHE operation compared to its plaintext
counterpart. Computing nonlinear functions like softmax requires complex poly-
nomial approximations. Additionally, even FHE-compatible operations like matrix
multiplication take considerable time.

This thesis addresses the performance and security constraints associated with
using FHE to evaluate machine learning models. First, I propose a novel application
of a softmax approximation for evaluation in FHE that leads to a 4× reduction in la-
tency. Then, I describe a procedure for evaluating the embedding layer on the server
without the client learning the model’s embedding matrix, achieving a 5× speedup
over the naive approach. Lastly, I optimize the HELR algorithm for an in-house
hardware accelerator by modifying rescale and bootstrap placement, significantly
reducing the number of bootstraps.
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Chapter 1

Introduction

The unprecedented performance of AlexNet in 2012 showcased the capabilities of ML (machine
learning) models [28] by outperforming the best-known existing solutions in the ImageNet com-
petition. Since then, cutting-edge ML techniques have revolutionized numerous fields, such as
translation [22] and game-playing [17, 46], consistently surpassing state-of-the-art solutions and
even humans with remarkable ease. More recently, transformer-based Large Language Mod-
els (LLMs) have enabled an even more impressive set of use cases such as answering medical
questions [3], generating code [41], and even financial modeling [47].

Many companies have found success in training and hosting proprietary ML models. They
offer Machine Learning as a Service(MLaaS) where users can send their inputs to be evaluated
by a proprietary ML model hosted on their servers. ChatGPT is a popular example of MLaaS,
exposing an API that allows users to evaluate text inputs on its proprietary models [4].

From a privacy perspective, both MLaaS providers and the users of these services face a
significant dilemma. If a service refuses to give up its model, users must upload their queries to
the service in plain text, risking the exposure of confidential information. Conversely, if users
are unwilling to share their queries, services must disclose their models, risking financial losses
due to potential unauthorized copying and distribution.

MLaaS providers such as ChatGPT are often not willing to shoulder the risks associated with
model leakage and require users to send queries to their servers. In these cases, the service’s
model is protected, but the user’s privacy remains at risk [4]. For this reason, countries like Italy
and companies like Samsung are going so far as to outright ban the service [6, 7]. Protecting
user privacy is not a simple task. Any solution that aims to protect user privacy necessitates that
computations be performed over the user’s input in a manner that does not reveal the input.

We can use a cryptographic primitive known as FHE(Fully Homomorphic Encryption) to
perform computations subject to the above constraints [16]. Using FHE, any party with a user’s
public key can compute using ciphertexts encrypted by the user. Put simply, if we have two ci-
phertexts c1 = Enc(k, a), c2 = Enc(k, b) and a public key, FHE allows us to apply an operation
⊕ on c1, c2 such that the result is a ciphertext encrypting a similar operation, like addition, over
the plaintext inputs: c1 ⊕ c2 = Enc(k, a) ⊕ Enc(k, b) = Enc(k, a + b). Using similar opera-
tions, clients can outsource ML model evaluations to the server by sending a public key with the
encrypted inputs.

Despite fulfilling all of our security requirements, FHE is not without its drawbacks. The
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limited computations FHE is able be perform serve as a barrier to adoption. Even worse, the
operations that are computable in FHE incur a large performance overhead over their plaintext
counterparts. As such, naive implementations attempting to apply FHE to evaluate ML mod-
els can lead to runtime overheads that render them impractical. Therefore, recent works have
developed solutions to optimize computations that can be computed in FHE and efficiently ap-
proximate those that cannot.

Many existing solutions address issues with older neural net architectures such as Convo-
lutional Neural Networks (CNNs) [29]. Unfortunately, these techniques do not apply to recent
transformer-based models, which require approximations for non-linear functions not found in
CNNs, and efficient Matrix Multiplication operations for the larger matrices involved. The ma-
jority of the works that propose non-linear approximations suitable for transformers substitute
“FHE-friendly” activation functions, which require an expensive model retraining or distillation
process [10, 49]. Finally, to the best of our knowledge, the only existing work that fully evaluates
transformers in FHE without any changes, NEXUS, suffers from a large runtime overhead [48].

1.1 Our contributions
This thesis aims to create performant and secure solutions for executing ML training and infer-
ence workloads in FHE. It addresses the challenges in privacy-preserving MLaaS, focusing on
the computational overhead associated with FHE. It applies our techniques to the HELR [20] and
NEXUS [48] algorithms to illustrate how our techniques reduce evaluation time for ML work-
loads in FHE. The first contribution of this thesis applies a novel softmax approximation that
can achieve a significantly reduced runtime for transformer-based ML models. Next, it leverages
techniques used by Private Information Retrieval (PIR) schemes to hide the embedding layer
in transformer-based models at almost no cost to the end-to-end runtime. Finally, it ends by
showing how existing algorithms can be adapted for custom accelerators by manually placing
bootstrap and rescale operations to drastically cut the number of bootstraps required over the
naive placement.

Reducing latency incurred by evaluation of the softmax operation in FHE

The first problem we address is the excessive runtime caused by softmax evaluation. In every
FHE scheme, expensive bootstrap operations must be performed for every few multiplication
operations. Softmax evaluation in FHE requires many multiplications, leading to numerous ex-
pensive bootstrap operations. We introduce a relaxation to the evaluation of softmax, which re-
quires much fewer multiplication operations and fewer bootstraps, ultimately leading to a 1.3×
reduction in runtime when applied to the NEXUS framework.

Applying PIR techniques for faster server-side evaluation of the embedding layer

The next challenge we address is to efficiently evaluate the embedding layer of transformer-based
models in FHE. Inputs to transformer-based models evaluated in FHE are often assumed to be
pre-embedded. This means that the client learns one part of the server model. While not directly
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threatening, this makes it easier for the client to potentially perform a model stealing attack, as
it no longer has to steal the embedding layer. While many existing protocols provide a means
of performing this operation, it is not practical, with NEXUS’s solution taking nearly 4× the
total runtime of FHE evaluation. We find that the embedding layer computations are similar to
the problem of problems faced by PIR. Accordingly, the embedding process requires the client
query to be hidden from the server just as we require the embedding index to be hidden from the
server. By applying techniques introduced by PIR to the evaluation of the embedding layer in
the NEXUS framework, we achieve a 5× speedup.

Optimizing HELR for a custom hardware accelerator

The final challenge we face is determining how to adapt existing FHE-based ML model evalua-
tion for a custom hardware accelerator. While there have been several works introducing compil-
ers that aim to solve this very issue, there is often no backend support for custom FHE hardware
accelerators. As a result, bootstraps and rescales must be manually placed. Even worse, the boot-
strap placement used by algorithms introduced in prior works cannot be used, as the accelerator
runtime uses a different bootstrap algorithm. We use HELR as an example, noting that naive
placement results in a large runtime blowup over the results reported in the paper. To rectify
this, we modify the bootstrap and rescale placement to reduce the total number of bootstraps and
bring down the runtime to a level suitable for benchmarking.

3
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Chapter 2

Background

2.1 Privacy Risks in Machine Learning
Confidentiality is crucial for ML applications concerning areas such as healthcare and finance.
Queries regarding these areas can reveal sensitive information. As an example, consider what
happens when a client sends a query such as: “What are the symptoms of COVID?”. Although
not directly stated, the server can infer that a client, or someone they know, has COVID-like
symptoms. Further, there is evidence that services like ChatGPT deal with sensitive information,
with some studies showing that people use ML applications such as ChatGPT for writing assis-
tance of personal documents such as emails [23]. To make matters worse, ML is increasingly
being used for developing personal assistants, some of which use user-uploaded documents when
answering questions [2]. Privacy policies can mitigate potential misuse of sensitive information
such as those revealed in personal essays or documents uploaded to cloud-based storage, but
ultimately only serve as a deterrent and cannot guarantee that information users send to MLaaS
services is not exploited.

A tangential, but widely studied concern is whether training data can be extracted using only
model weights or access to a query-based API. Many attacks and defenses have been developed
around this issue, with model inversion attacks being used to access training data and member-
ship inference attacks aiming to determine whether a given sample is a part of the training dataset
[37]. Unfortunately, FHE does not protect against these classes of attacks.

2.2 RNS-CKKS encryption scheme
The FHE scheme that we primarily deal with in this thesis is the RNS-CKKS scheme, which sup-
ports arithmetic operations on encrypted data over real or complex numbers [11]. RNS-CKKS
supports Single-Instruction Multiple-Data (SIMD) operations over vectors of real or complex
numbers. The available SIMD operations are addition, multiplication, and conjugation. Rotation
is also supported, but it is not element-wise like the other operations. Ciphertexts in RNS-CKKS
have a multiplicative depth, more commonly referred to as a “level”, set to some number L,
meaning that up to L multiplications can be performed without consequence. The workflow of
computation in the FHE scheme can be seen in figure 2.1.
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Figure 2.1: A diagram depicting the RNS-CKKS workflow from [5]

The security of the RNS-CKKS scheme is based on the Ring Learning With Errors (RLWE)
hardness assumption, which is based on problems involving arithmetic over polynomials. To
encrypt a given plaintext µ with secret key polynomial s into a ciphertext, RNS-CKKS first
samples random polynomials a, e and returns the following pair of polynomials (−a·s+µ+e, a),
where e is a small noise polynomial. Note that real and complex number messages must first be
encoded into a polynomial µ before being encrypted in the RNS-CKKS scheme.

Central to the security of RNS-CKKS are the “noise” polynomials of the ciphertext. Decryp-
tion in RLWE schemes relies on keeping this noise small enough such that it can be removed
without adversely affecting the original value. Performing homomorphic operations increases
the noise in a ciphertext. If the noise grows too large, decryption becomes impossible. To reduce
noise, rescale operations can be performed at the cost of a level.

The amount of rescales performed determines what level a ciphertext is at. In RNS-CKKS,
up to L rescales can be performed. Once a ciphertext’s levels decrease below a certain threshold,
an operation known as bootstrapping is required. Intuitively, bootstrapping performs decryption
and encryption using homomorphic operations, resulting in a fresh ciphertext with L levels re-
maining. It is important to note that bootstrapping itself consumes some number of levels K,
which means only L−K levels are available for computation. Thus, the bootstrapping threshold
mentioned above is K.

2.3 Transformer architecture
Most models based on the transformer architecture share the same basic structure. The trans-
former architecture is most well known for its usage of the attention mechanism, which enables
it to capture long-range dependencies between tokens without significant computation overhead.
This ability to capture long-range dependencies has proved to be invaluable in many settings
such as Natural Language Processing, enabling it to match and even surpass humans in some
scenarios [14, 40].

As shown in Figure 2.2, the input to a transformer is a vector of words. This vector is first
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Figure 2.2: A depiction of a transformer as shown in [45]

tokenized using vocabulary and position information into a vector of n tokens. Then, each token
is mapped to a vector of size dk. From there, it is passed to an attention layer and feed-forward
network. The output of each layer is fed into a layer norm operation. The attention layer, feed-
forward and LayerNorm operations constitute a transformer block. Transformer-based models
consist of multiple blocks stacked together, where the output of each feed-forward layer is fed
into the attention layer of the next block. The final block outputs a value dk for each of the n
tokens fed into it.

Attention Layer

The attention layer tasks as input an embedding matrix A ∈ Rn×dk . It Multiplies it by three
learned matrices of weights WK ,WQ,WV ∈ Rdk×dk to form Q,K, V ∈ Rn×dk respectively.
From there, the following is evaluated:

Attention(Q,K, V ) = Softmax(
QKT

dk
)V

Layer Normalization

LayerNorm is performed after the attention and feed-forward layers. It takes as input a sample:
X ∈ Rm and is defined as follows:

LayerNorm(X)i = γ × Xi − µ√
σ + ϵ

+ β

Where µ = 1
m

∑m−1
i=0 Xi, σ =

√
1
m

∑m−1
i=0 (Xi − µ)2 and β, γ are hyperparameters.
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Feed-Forward Layer

The feed-forward layer takes as input the result of the attention layer after it has been passed
through a layer norm operation A ∈ Rn×dk consisting of matrix multiplication by a learned
weight matrix W1 ∈ Rdk×dhidden , then passed through a GELU activation function, and finally
another matrix multiplication by a learned weight matrix W2 ∈ Rdhidden×dk . It is formulated as
follows:

FeedForward(X) = GELU(XW1)W2

2.4 Private Information Retrieval
In this thesis, we use PIR techniques to ensure that client embeddings can be safely retrieved
without the server learning which word the client wants to embed. Private Information Retrieval
(PIR) is a cryptographic method that allows users to query a database and retrieve specific items
without disclosing which items they are accessing to the database server. PIR schemes involve a
client and a server, or multiple servers which host a database, or parts of a database. The client
sends a query to the server for a given item. The server or servers will process the query and
return a result.

Any PIR scheme must satisfy correctness and privacy guarantees. In other words, the client
must receive the correct result and the server or servers must not be able to figure out which
database entry the client was querying for. A visualization of this can be seen in figure 2.3.

Figure 2.3: A diagram showing how PIR schemes work

There have been two main approaches to developing PIR solutions. Single-server PIR schemes
assume there is only one server that is trusted and thus must handle the entirety of the client’s re-
quest. Multi-server schemes are generally faster and require less storage but require assumptions
about collusion and can be bottlenecked by servers that are slow to respond. Thus, Single-
server schemes remain an area of interest. Single-server schemes, however, are subject to the
fundamental limitation of PIR in that the entire database must be scanned. The state-of-the-art
schemes using lattice-based schemes have made great strides in amortizing this cost across mul-
tiple inputs, using the properties of lattice-based schemes to compress queries as well as perform
multiple queries at once using batch PIR techniques alongside FHE schemes like BFV [36].

8



August 12, 2024
DRAFT

Chapter 3

Related Work

3.1 Privacy-Preserving Machine Learning
The field of PPML (Privacy-Preserving Machine Learning) marries existing cryptographic prim-
itives for secure computation with the computations required to train and evaluate models in a
privacy-preserving manner. Although this work primarily focuses on FHE-based schemes, we
compare them with alternative approaches to better understand the trade-offs involved.

3.1.1 Secure Multi-Party Computation approaches
Secure Multi-Party Computation (SMPC), more commonly referred to as MPC, approaches en-
able n parties with n inputs x1 · · ·xn to compute a function f(x1, · · ·xn) without any individual
party finding about the others’ inputs. Early attempts such as SecureML and MiniONN, used
MPC techniques to train and perform inference to evaluate neural networks [33, 35]. [24] ob-
served that HE could be used alongside MPC to evaluate communication-heavy vector-matrix
multiplications. This hybrid approach turned out to be rather fruitful, with a 40× speedup over
MiniONN when evaluated on the CIFAR-10 dataset. The current state-of-the-art, BOLT builds
on these approaches to evaluate more complex transformers with more efficient packing schemes
and faster non-linear function approximations [38]. Other approaches such as MPCFormer and
Puma opt to assume large bandwidth settings and use pure MPC approaches[15, 32]. Although
MPC and hybrid approaches achieve the best latencies of all PPML solutions, they require fast
network conditions to work well.

3.1.2 Fully Homomorphic Encryption approaches
Existing approaches primarily leverage the ability of RNS-CKKS to compute over real numbers
to evaluate ML models in FHE. This is not a trivial task due to the limitations of the available
operations in the RNS-CKKS scheme. Firstly, the operations that are available in FHE: addition,
multiplication, and rotation can be used to evaluate dot products and matrix multiplications, but
there are many non-linear functions such as max that it cannot. Secondly, matrix multiplication,
which is an essential operation, must be done with care. The reasoning behind this is that some
operations incur large runtimes when the input matrix is not packed correctly. Often, this requires
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repacking the matrix, which is difficult because only SIMD operations are supported, so one
cannot directly index into individual vector slots. Further, any data movement requires expensive
rotation operations. Finally, bootstrapping is inevitable for deep computations such as those
involved in large transformer models and can result in a large runtime blowup if placed naively.

Now that we have explained the challenges involved with FHE implementations, we can now
introduce how existing solutions address each of these issues.

HELR: Efficient Logistic Regression on Large Encrypted Data

The authors of HELR observed that many prior schemes did not scale very well, and were either
trained with extremely small datasets or only used for inference purposes [20]. The main reason
for the poor performance is the unsuitability of the HE schemes being used. Before the HELR,
no other works used the CKKS scheme.

However, implementing logistic regression using CKKS remains challenging due to the re-
stricted set of permissible operations and the significant performance overhead of FHE operations
compared to their plaintext counterparts. Firstly, there is the issue of finding an appropriate poly-
nomial to approximate the Sigmoid activation function so that it can be evaluated in FHE. To
solve this, the authors use a least squares fitting polynomial with degree 3, which can achieve a
much smaller error than the Taylor expansion polynomial. Secondly, there is the issue of mini-
mizing the multiplicative depth to also reduce the number of bootstraps. The authors were able
to cut down the multiplicative depth of each gradient descent iteration from 8 to 5, decreasing
the number of bootstraps from 67 to 40.

Privacy Preserving Machine Learning with Fully Homomorphic Encryption for Deep Neu-
ral Net

However, for deeper neural nets such as ResNet, evaluating RELU and convolution operations
using existing methods is difficult to perform in FHE and consumes much more multiplicative
depth than previously implemented ML models. Additionally, bootstrap placement presents an-
other issue, as a bad placement is compounded over multiple layers. [30] was able to address
these issues by developing solutions for efficiently evaluating all three of these troublesome func-
tions. For RELU, they use a composite polynomial developed incite optimal comparison in FHE
paper. For evaluating convolutions, they modify the strided convolution scheme in [24] to pack
the values in such a way that is natural to the RNS-CKKS scheme. Finally, they were able to re-
duce runtime by 1.38× by placing bootstraps after convolution operations instead of after RELU
operations. However, even with all of these optimizations, it still takes 3 hours to infer a single
image [30].

Transformer-based models

The most recent FHE-based ML schemes aim to evaluate transformer-based models. However,
this requires approximations for non-linear functions such as softmax, inverse square root, and
GELU. Prior works either don’t have approximations or don’t result in reasonable accuracy.
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Many existing solutions address these issue by substituting FHE-friendly polynomial approxi-
mations for non-linear functions in the original model and retraining or distilling the resulting
model to achieve the same accuracy as the original.

THE-X: Privacy-preserving transformer inference with homomorphic encryption

THE-X [10] is one such solution using fine-tuning and distillation. The two core ideas behind
THE-X are to find friendly approximations for activation functions and to offload compute to
the user device for non-linear functions that cannot be easily computed like max. The FHE-
friendly approximations for the non-linear functions require a distillation step and a fine-tuning
step before they can be used for inference in FHE. The resulting model after fine-tuning and
distillation is fairly accurate, with only a 1.9% accuracy drop in F1 score compared to the original
plaintext model. However, distillation is not desirable due to the large amount of training data
and computing involved. Additionally, offloading computations to the user may leak information
about the model.

NEXUS(Secure Transformer Inference made non-interactive)

The state-of-the-art transformer evaluation in FHE that requires neither retraining nor distilling
is NEXUS [48]. As mentioned in the introduction, the NEXUS framework introduced the first
non-interactive protocol for transformer inference. Unlike previous schemes for Transformer
inference, it did not use any MPC techniques, opting to use purely FHE for evaluation. The
NEXUS framework begins with the client embedding the input. It then encrypts this result to
hide it from the server and sends it to the server. The server then evaluates the transformer model
using FHE operations. Once complete, the server sends back the response to the client. The
client then decrypts the result and learns the result of their input when evaluated on the server’s
model. Note that the only times the client and server communicate are when the client initially
sends their input and when the server sends back a response making it non-interactive.

In most network settings, the performance of NEXUS falls behind the current state-of-the-art
solution, BOLT [38]. However, NEUXS shines in poor network conditions, as it removes almost
all of the communication costs incurred by the operations in BOLT performed using MPC. This
allows it to exceed the performance of BOLT under poor network conditions such as over a wide
area network (WAN).

The main optimization introduced by NEXUS is a novel batching technique, which enables
a preprocessing phase that allows a matrix multiplication to occur without expensive rotation
operations. For the non-linear layers, the authors largely use approximations from prior works
such as a set of composite polynomials for the sign function, Newton iteration for the inverse
square root, and the Goldschmidt division algorithm for computing the inverse. Additionally,
the authors set the ciphertext levels L = 35 and bootstrapping level consumption to K = 15,
meaning they use L −K = 21 levels for computation. This gives NEXUS enough levels to be
able to evaluate all layers except for attention without bootstrapping within the layer.
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Chapter 4

Methods

We design two cryptographic protocols for both ML inference and training workloads. The first
protocol builds on the NEXUS protocol introduced in section 3. The second protocol adapts the
HELR algorithm for an in-house FHE runtime. Initially, we illustrate how our approach reduces
latency by proposing an alternative softmax function. Subsequently, we detail the evaluation of
the embedding layer on the server, achieving this with minimal overhead. Finally, we shift focus
to the second protocol, outlining how we optimize bootstrap and rescale operations to better align
with the specific requirements of our environment.

4.1 Reducing softmax level consumption in NEXUS

This section describes our approach to reducing the computational overhead associated with eval-
uating the softmax function in the NEXUS framework, focusing on minimizing level consump-
tion. Reducing the levels required for softmax evaluation is crucial for improving performance,
as it directly impacts the speed and efficiency of the NEXUS framework. This is made clear in
figure 4.1, which illustrates that the majority of the runtime is consumed by bootstrapping and
softmax evaluation.

The state-of-art bootstrapping procedure is highly optimized, and more speedup will likely
come from designing specialized hardware accelerators and finding optimal bootstrap place-
ment [19, 25, 42]. Knowing this, we choose to improve the softmax evaluation, which currently
consumes 143 levels for each transformer block. To put this into perspective, we can compare
its runtime to that of LayerNorm. The level consumption of an individual LayerNorm operation
is 20. Since there are two of them for each transformer block, they consume a total of 40 levels
per transformer block. However, as can be seen in figure 4.1, the percentage of runtime Lay-
erNorm occupied is less than the amount we would expect if level consumption were the only
determining factor. The runtime disparity is primarily explained by the bootstrap operations that
must be performed within the layer. Recall from section 3 that NEXUS has L−K = 21 levels
available for computation, so bootstrapping is not required within LayerNorm, but is required
multiple times within softmax.

The equation for softmax is:
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Figure 4.1: Pie chart displaying the percentage of time the evaluation of each layer contributes
to the end-to-end runtime

Softmax(X)i =
exi∑
i e

xi

However, it is more commonly computed as follows:

Softmax(X)i =
exi−max(X)∑
i e

xi−max(X)

The reasoning behind subtracting our the max is that it ensures that the result does not grow
too large or too small. It prevents overflow by ensuring that the maximum value in the numerator
is 1, and the denominator is at least 1. Therefore, any solution that replaces the max in softmax
must also be careful to ensure that overflow and underflow are managed properly.

Softmax’s computation overhead mainly comes from the approximation of max:

max(a, b) =
a+ b− (sign(a− b) ∗ (a− b)

2

From the evaluation of the function, we see that the number of levels consumed is the number
of levels required for the sign approximation plus two. The total level consumption of max is
18 since the approximation for sign consumes 16 levels. Recall from section 3 that the number
of levels before bootstrap was 21. This means that for a single element-wise max, a bootstrap is
required. Even using a folding method to reduce the number of element-wise maxes required to
compute an array-wise max from n(128) to (7) still results in 7 total bootstraps.
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The max operation is generally expensive to compute, as it requires comparison with other
array elements. In many settings, this requires moving elements, which is often more expen-
sive than direct computation. With this in mind, there have been several attempts at alternate
softmax formulations that substitute the full max operation with a term that is less expensive
to compute.One such recent work observed that the max in the numerator and the sum in the
denominator could be replaced by a sufficiently high constant [34]. Their final approximation
was:

Softmax(X)i ≈ Consmax(X)i =
exi−β

γ

Here, the max is completely removed, potentially reducing the total level consumption down
to 4 when computed in CKKS. However, to achieve acceptable performance with this modified
softmax, the authors trained a GPT-2 model from scratch.

However, training from scratch is a very expensive operation, as it requires a large amount
of training data, computing a gradient over the results, and propagating the changes through
the entire model. The original Consmax work required 20000 iterations to achieve comparable
performance to the original, unmodified model. Additionally, one of the main advantages of
NEXUS is that it can evaluate models without modification. So, adding a training requirement
would eliminate this benefit.

As a logical next step, we used fine-tuning to determine if a suitable γ and β could be found
without complete retraining. Fine-tuning is generally less expensive than training, as its weight
initialization is informed by prior training steps, and therefore takes less time to achieve accept-
able performance. Although this solution would require some modification to the model, it would
still be one step in the right direction regarding the goal of being able to adapt models into FHE
with minimal modification.

To accomplish this, we followed a similar methodology to the Consmax authors, randomly
initializing the β and γ parameters at each end to the parameters at each layer and running a
few warm-up iterations to determine which gave the best performance. Unfortunately, the over-
flow/underflow issues were still present, causing gradients to overflow to infinity, or simply be-
come 0. This was primarily because the constants could not adequately protect against overflow
and underflow as the max function did. The reason is that when γ >> ex−β , then the result
would overflow, while on the flip side, if γ << ex−β , the result would underflow.

The main issue with the prior approach lay in the inability of the γ and β parameters to
perform the normalization functionality of max properly. During the training attempts, it was
observed that this was primarily due to the value of γ not properly adjusting when β made the
numerator too large or too small. Combining this with the fact that the Goldschmidt division
algorithm used for computing the inverse was only a fraction of the contributions of max led us
to consider finding a middle ground between approximations.

With this reasoning, our insight was to keep the sum in the denominator while replacing
the max with β. In the new formulation, the sum serves as a safeguard to ensure that even if
the β parameter was too large or too small, the sum would be able to dynamically adjust itself
and ensure proper normalization. This also accomplishes our original goal of reducing level
consumption, as it can eliminate our dependency on evaluating the max function. If the β had
been replaced instead, it is unclear whether it could have accounted for cases where the max is
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much larger than the rest of the elements, nor does it save many levels. Proper initialization is
still required to ensure that the numerator doesn’t overflow, but accuracy results show that it is a
lot less dependent than the original formulation using γ in the denominator.

4.2 A faster and more secure embedding procedure
NEXUS, like many other PPML schemes, assumes that the model architecture is public and that
the client can embed their inputs easily. Both assumptions make model stealing attacks easier
to conduct for malicious clients. While it is true that there are many high-performing open-
source models whose architecture is readily available[8, 21, 44], some companies believe that
the architecture of their models is the main aspect driving performance and thus seek to hide
their model architectures completely [1, 4]. While many MPC solutions require the architecture
to be known, FHE-based solutions do not, as they are non-interactive, and thus the user should
only have to send input once and receive output without the end-user knowing the computations
required to compute the model.

Unfortunately, the proposed NEXUS solution is not compatible with performing the embed-
ding on the server because it assumes that the inputs are pre-embedded. For this to happen,
the client has to perform the embedding step themselves, which would require access to the
embedding matrix. We propose hiding the underlying architecture in the NEXUS framework
by moving the embedding step to the server. The embedding layer multiplies one-hot vectors,
which encodes input words, by an embedding matrix containing the word embeddings. This can
be seen in 4.2, where the one-hot vector encoding word i serves to select the contents of the ith

word embedding.

Figure 4.2: A diagram of the embedding process for the ith token

These operations can be evaluated in RNS-CCKS using the batched version of the attention
projection matrix multiplications proposed by NEXUS. However, the embedding matrix can
grow very large since it scales with model vocabulary size. For instance, the vocabulary size of
GPT-2 is 50257, meaning that the embedding process becomes a [128× 50257]× [50257× 768]
matrix multiplication. The original batch matrix multiplication for matrices of size [128×768]×
[768× 768] already took 65 seconds. Performing this on a matrix 65× as large results in a large
performance blowup even when amortized over multiple inputs.

In ML libraries such Pytorch [39] the embedding layer is implemented as a lookup table,
where instead of 1-hot encoding each of the tokens, a simple index into the transpose of the
embedding matrix is performed. This does not require performing many vector operations, only
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a memory lookup, and is thus much faster. Unfortunately, as mentioned in section 2, this cannot
be done directly in FHE, since one cannot directly index into vector slots. Therefore, the large
matrix multiplication with the one-hot vectors appears to be a problem to optimize. While it
appears we are back at square one, we now have an alternate view of the problem, namely that
of hiding a client query from the server.

We observe that this problem can be addressed using PIR techniques. As was explained in
section 2, PIR schemes are generally classified as single-server or multi-server schemes. In our
non-interactive scenario, it does not make sense to add additional servers simply for an embed-
ding layer, so single-server solutions are the closest to our scenario. However, even within the
class of single server schemes, there are many decisions that we must consider when determining
applicability to performing the embedding layer.

An ideal PIR solution for this scenario should not require additional functionality and as an
additional constraint, should not add too much computational or communication complexity to
the end-to-end runtime of NEXUS. The first constraint limits our search to FHE-based schemes,
as the existing NEXUS framework only uses FHE operations. Within this space, we ideally
want a scheme that can take advantage of batching similar to the way NEXUS batches inputs.
In regards to the second constraint, the target scheme should have a limited communication
complexity. With minimal added communication, NEXUS would continue to have an advantage
in settings where communication is the limiting factor.

These schemes lead us to use techniques from Vectorized Batch PIR [36]. As a Batch PIR
scheme, Vectorized Batch PIR aims to process multiple queries efficiently, effectively amortiz-
ing the large linear scan costs across multiple inputs. We observe that the techniques used in
Vectorized Batch PIR to reduce the large matrix multiplication costs incurred by 1-hot vector
encodings can be used to also improve the performance of the embedding process within the
NEXUS framework.

Figure 4.3: A diagram of the proposed embedding process

While Vectorized Batch PIR is perfect for protecting client queries, it does not protect the
server’s embeddings, leaving us almost where we started. However, this problem can be solved
by adding a vector of random numbers to the server’s response to the client. This effectively
serves as a one-time pad and is very lightweight in performance since the only operation required
is addition. When the client has all the embeddings, and sends the packed embedded inputs to
the server, the server can then subtract the random masks from the client’s inputs.

Figure 4.3 details what happens when a client wants to retrieve an embedding for their second
element. The client first sends over a query using techniques from Vectorized Batch PIR. In
response, the server samples a random vector and adds it to all database entries. Then, it runs
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the Vectorized Batch PIR response protocol and sends the result back to the client. The server
learns nothing by the security of the underlying PIR protocol, and the client cannot distinguish
the values of the embeddings from random values.

4.3 Modifications to bootstrap and rescale placement to HELR
when running on an accelerator

Implementing FHE-based programs poses significant challenges, particularly regarding the pre-
cise placement of bootstraps and rescaling operations, crucial for maintaining computational
efficiency. While there have been several works introducing compilers that aim to solve this
very issue, there was no backend support for the custom accelerator HELR was being used as a
benchmark. Unfortunately, this means that prior works cannot easily be applied to the custom
accelerator. It is important to note that this is not a fundamental limitation, but one that is born
from a lack of backend support for the accelerator. With time and engineering effort, backend
support will improve to the point where compilers can be used to automatically adapt prior works
to different settings. Until then, prior works must be adapted on a case-by-case basis.

In our case, the new accelerator backend had a different maximum number of levels be-
fore bootstrapping, rendering it incompatible with the algorithm described in HELR. Our initial
attempts to implement HELR using the new backend caused a significant runtime increase com-
pared to the results reported in the paper. We describe how we reduce the runtime increase by
reconciling the difference in bootstrap placement caused by the different maximum number of
levels before bootstrapping.

As stated in the background section, the HELR algorithm introduced a method for evaluating
Logistic Regression in CKKS [20]. Its two main contributions were the novel sigmoid approxi-
mation and evaluation strategy for Nesterov Gradient Descent, the equation of which is shown in
figure 4.4. By intelligently reusing intermediate terms, the HELR authors were able to reduce the
level consumption of each iteration of Gradient Descent from 8 to 5. Accordingly, they set their
bootstrap to refresh 25 levels, meaning that 5 iterations of gradient descent could be performed
before bootstrapping.

wi+1 = vi − γ ·∆wl(vi)

vi+1 = (1− η) · wi+1 + η · wi

Figure 4.4: The Nesterov gradient descent equations which HELR evaluates in CKKS to train
a Logistic Regression Model. wi+1 updates the weights at iteration i + 1. vi+1 stores a moving
average of previous weight updates to help the algorithm converge faster.

Development of benchmarks like HELR for the custom accelerator was done using an in-
house FHE runtime known as Butterscotch. Butterscotch effectively emulated the custom accel-
erator, enabling easier program debugging and preliminary performance measures before being
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run on the accelerator. The environment of the Butterscotch runtime differed from that of the
HELR setting in several key aspects.

First, there was the issue of using 28-bit primes instead of the assumed 30-bit primes used by
HELR. For most cases, the difference in precision that 30-bit primes provide over 28-bit primes
is not necessary. However, precision loss accumulates over repeated computations, and results in
subpar model performance. Second, the maximum level before bootstrap in Butterscotch is 12,
unlike the 25 levels assumed in the original. Normally, this wouldn’t be an issue since a compiler
would do the work of adapting the program.

This brings us to the third difference, mainly that Butterscotch used a modified version of the
EVA CKKS compiler [13] from Microsoft. The modified version lacked essential features such
as bootstrap and rescale placement, which as mentioned earlier, can have a dramatic effect on
performance.

Direct implementation of the HELR algorithm in Butterscotch results in a significant accu-
racy decrease from the original paper. This was the result of the precision loss described earlier.
To amend this, a higher scale is required to address the accuracy decreases. Compilers such as
Hecate [31] make this explicit with the concept of a waterline, which is a floor on the possible
scale values, meaning that if the scale falls below the waterline, precision is lost, and the cipher-
text may be corrupted little by little. With this constraint, Hecate [31] and other compilers can
ensure correctness while optimizing rescales. Since the modified EVA compiler for Butterscotch
lacked this feature, these had to be placed manually.

The original EVA compiler employed a greedy rescale approach, ensuring that there would
always be a rescale as long as the ciphertext remained above the waterline. This worked fairly
well and was easy to roll out manually. However, as a tradeoff, more levels were consumed
when restoring ciphertexts with double, or even triple scale to the singular scale the rest of the
ciphertexts were using.

As a result of adding extra rescale operations, each iteration of gradient descent consumed
more levels than the original evaluation strategy evaluated by HELR. Combining this with the
fact that there were fewer levels before bootstrap in Butterscotch meant that bootstraps could no
longer be placed after each iteration as was done in the original evaluation strategy. Therefore,
we now must address the challenge of placing bootstraps in a manner that is comparable to
the original scheme, but now with the level constraints of the bootstrap operation provided by
Butterscotch.

Now, instead of bootstrapping at the end of an iteration, bootstraps could potentially happen
within the loop. This resulted in a serious runtime increase, as there were points in the middle of
the loop, where multiple ciphertexts had to be bootstrapped. These “fan-out” points are places
where bootstrapping is to be avoided since multiple bootstraps must be performed instead of just
one. For instance, we can see this happening in figure 4.5, which illustrates what happens when
we choose to bootstrap at a “fan-out” point.

To fix this, we moved the bootstrapping step to the aggregation step below it, which was a
“fan-in” point or where the number of ciphertexts that would have had to be bootstrapped at that
step decreased from the previous step. This is illustrated in figure 4.6, where the output of a
function produces fewer ciphertexts than inputs that don’t necessarily have to be bootstrapped.
Although this wasted some levels during some iterations, it ensures that only one bootstrap had
to be performed, resulting in a net decrease in runtime.
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Figure 4.5: A diagram depicting a fan-out scenario where orange filling indicates a ciphertext
that must be bootstrapped

C ′
1

C ′
2

C ′
3

C ′′C

Figure 4.6: A diagram depicting a fan-in scenario where orange filling indicates a ciphertext that
must be bootstrapped
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Chapter 5

Results

5.1 Implementation
Similar to the original NEXUS paper, we implement our system in C++, utilizing the SEAL [43]
library for RNS-CKKS homomorphic encryption and FHE-MP-CNN [30] for bootstrapping.
Further, we also use HEXL [9] to accelerate SEAL on Intel CPUs. We set the multiplicative depth
to L = 35 and the depth for bootstrapping to K = 14, indicating that the available multiplicative
depth is L−K = 21.

5.2 Experimental Setup
We primarily compare these results with the original NEXUS paper. However, since the imple-
mentation was not publicly available at the time of writing, we implemented the NEXUS scheme
ourselves. To enable as direct of a comparison as possible, we conducted benchmarks using
similar settings:

• Experiments were run on c6i.16x large instances on EC2, with 128 GB of memory and 3rd
Generation Intel Xeon Scalable processors.

• The communication bandwidth between instances was controlled using the Linux Traffic
Control (tc) command.

• To evaluate the end-to-end results of our softmax relaxation, we set the bandwidth to 3
Gbps and the round-trip latency to 0.8 ms to simulate the communication in LAN.

• To evaluate the end-to-end results of our embedding procedure, we set the bandwidth to
100 Mbps and the round-trip latency to 0.8 ms to simulate WAN communication.

• The model parameters were taken from a pre-trained BERT-base transformer model [14].
• The number of threads was set to 32

5.2.1 Evaluation metrics
• Total runtime for a single softmax operation
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• Total runtime for end-to-end BERT inference
• Accuracy on benchmarks with softmax relaxation
• Total runtime for end-to-end BERT inference with embedding done server-side

5.3 Softmax relaxation

5.3.1 Runtime comparison
The first evaluation here is meant to determine how much of a performance improvement over the
originally proposed relaxation of Softmax can be achieved. It measured the time taken to evaluate
each variation of the softmax function in seconds. As shown in figure 5.1, we can see that our
proposed softmax function is about 5× faster than the original formulation for softmax. We
believe that this difference is largely due to the significant reduction of bootstrapping operations
required as a result of the level reduction in the new softmax.

Figure 5.1: Bar graph showing the runtime of the original softmax alongside the softmax relax-
ation

5.4 End-to-End

5.4.1 Runtime comparison
To see how much this affected the end-to-end latency of the scheme, we evaluated a BERT-base
model in the NEXUS framework with and without the new softmax approximation. As shown in
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figure 5.2, the results are as expected, and our improvements resulted in an approximately 1.3×
speedup over the original end-to-end runtime.

Figure 5.2: Bar graph showing the end-to-end runtime of the original NEXUS alongside the
proposed version where softmax relaxation is used

5.4.2 Accuracy

To evaluate the accuracy, we used a plaintext BERT-base model implemented in Pytorch [39],
substituting our softmax approximation for the softmax provided by Pytorch. An essential prop-
erty for any approximation used in evaluating models in FHE is that it does not significantly
degrade the performance of the model. To ensure that our softmax approximation was able
to maintain accuracy while also reducing the evaluation time, we also ran benchmarks used to
evaluate Language models such as BERT-base to ensure there was no significant decrease in ac-
curacy. As shown in table 5.1, we can see that there is a < 0.60% accuracy drop for BERT-base
from the NEXUS scheme. Further, there is a < 1% drop from the original plaintext evaluation
of each of the models.

Model Dataset Plaintext NEXUS Modified
BERT-base RTE 70.04 % 69.88% 69.21%

Table 5.1: Table of results showcasing the minimal drop in accuracy when evaluated on the RTE
dataset
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5.5 Secure Embedding

5.5.1 Runtime Comparison

Figure 5.3: Bar graph comparing the runtimes of the NEXUS protocol in three scenarios: When
the embedding is done on the client side, when the proposed technique for matrix multiplication
is used for Embedding, and finally our proposed embedding procedure

To evaluate our embedding layer, we compared it to the performance of the naive scheme
using the matrix multiplication techniques proposed by the original NEXUS authors to evaluate
the matrix multiplication for the embedding layer. Both the modified and unmodified versions
were run end-to-end. The results of these experiments are shown in figure 5.3. It can be seen that
our proposed changes for matrix multiplication are much closer to the original, adding only 3
seconds to the overall evaluation. On the other hand, when using the batch matrix multiplication
proposed by NEXUS, the result is much worse, with almost 5× performance overhead.
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Chapter 6

Conclusion

In summary, we enhance the evaluation of ML models in FHE by introducing two techniques to
supplement the NEXUS framework. These techniques lower end-to-end latency and adapt the
HELR benchmark to the Butterscotch runtime. For applications utilizing transformers such as
medical diagnostics, these improvements will go a long way in making both service providers
benefit and clients more willing to invest and use the services respectively. Service providers
benefit from the option to use a faster and more secure version of NEXUS, while clients remain
content that their information remains private.

Future work should explore whether our proposed softmax approximation generalizes well
to other models and datasets. While the approximation worked relatively well for BERT-base,
it is unclear whether it will produce reliable outputs for other models. Since it was only tested
with two models and a dataset, the chosen parameter may very well be overfitting to the specific
dataset and may not generalize well. If this is the case, then there is a potential research direction
of whether it is possible at all to get a β value that works well across multiple datasets, or whether
it can be interleaved with normal softmax to achieve reasonable results.

Another important takeaway from this thesis is the pressing need for better collaboration
between compiler and accelerator development. Much of the struggles with adapting HELR for
Butterscotch were since rescales and Bootstraps were not automatically placed. Although I was
able to fix these issues with domain knowledge of the space, it remains an issue for wider FHE
adoption and benchmark development.

These issues stem from the lack of a unified framework for representing FHE programs.
Many compilers have proposed a variety of optimizations from tensor packing [27] to rescale
and bootstrap placement [12]. Additionally, many works have made strides in developing ex-
pressive IR representations for different nuances of FHE [8, 18]. Unfortunately, there is no
widely adopted or agreed-upon standard. As a result, recent accelerator designs [26, 42] must
implement custom compilers, requiring re-implementation of existing compiler optimizations,
or simply not including them at all. As a result, FHE accelerator development often takes longer
than necessary. Therefore, future work should be put into designing accelerators around exist-
ing frameworks or building out compiler support for more backends to help reduce the work of
re-implementing benchmarks and accelerate accelerator development.
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