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Abstract
Over the past decade, a large rift has grown between classical and modern ma-

chine learning. The predictive performance of modern learning is incomparably
better, but it is easier to analyze and guarantee safety, efficiency, fairness, and other
properties of classical learning. In this dissertation, I investigate when it is possible
to restore such desiderata to modern machine learning by prudently and strategically
incorporating classical techniques. I form syntheses between classical and modern
learning which can be categorized according to two high-level strategies: (1) wrap-
ping, in which reliable performance guarantees are extracted from modern, opaque
models via classical analytic techniques, or (2) swapping, in which some compo-
nents of a modern model are rebuilt from classical primitives in a way which im-
proves overall efficiency, tractability, and/or expressivity. These efforts lead to new
developments in multiple areas of machine learning.

The most important contribution in this dissertation pertains to meta-analysis, a
structured form of question-answering which serves as the foundation of evidence-
based medicine. Classic meta-analytic techniques are based upon randomized, con-
trolled trials, whose causal validity is trusted; by contrast, modern regression models
are trained upon large observational databases whose causal validity is untrusted. I
show it is possible by incorporate the untrusted data into meta-analysis without sacri-
ficing validity. This involves basic improvements to full conformal prediction which
are of general interest. In a separate, more focused, application to healthcare, I gen-
eralize classic, handcrafted heart-rate variability statistics so they can be fine-tuned,
via supervised learning, as part of a deep neural network. This leads to more accu-
rate, physiologically-informed models.

I also present foundational computational primitives that can be used within fu-
ture machine learning models and algorithms. The first is an algorithm to (approxi-
mately) run nonlinear RNNs for T steps in just O(log T ) parallel time. A key inno-
vation of this algorithm is replacing nonlinearity across time by nonlinearity along
depth through a provably-consistent scheme of local, parallelizable corrections. In
this manner, classical linear dynamical systems (also known as state-space models)
can be stacked to form fast, nonlinear sequence models. Another new computational
primitive is gradient-based optimization over the set of all sequences of orthogonal
polynomials. This optimization formulation has connections to many different prob-
lems in signal processing and optimization. Finally, I propose fairness criteria that
circumvent computational intractability, based upon the geometric notion of margin
used throughout learning theory and optimization.
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Chapter 1

Introduction

“The past is never dead. It’s not even past.” - Faulkner [1951]

1.1 Background

Over the past decade, a considerable rift has developed between classical and modern machine

learning. Traditional machine learning involves minimizing a convex loss function on the train-

ing data, whose variables represent a shallow model and are relatively few in number, with the

overall intent of solving a specific, focused prediction task. Over a series of empirical break-

throughs, modern machine learning reversed each of these traditional design decisions. First, the

use of nonconvex optimization to train neural networks [Hinton, 2007, LeCun, 2007, Vincent

et al., 2008]; then, increasing the depth of these networks to efficiently expand their represen-

tational power [Bengio et al., 2009, Krizhevsky et al., 2012]; the use of more parameters than

training data (“overparameterization”) to further enhance expressiveness while (interestingly)

avoiding overfitting [He et al., 2016a, Simonyan and Zisserman, 2014, Zhang et al., 2017]; the

development of self-attention and transformers to enable parallel utilization of burgeoning hard-

ware resources, especially GPUs [Vaswani et al., 2017]; finally, the development of foundation

models, most notably large language models, to simultaneously address an extremely broad array

of prediction tasks [Dai and Le, 2015, Devlin et al., 2018, Radford et al., 2018].

As a consequence of these breakthroughs, modern machine learning has not only obtained

state-of-the-art accuracy results far beyond classical machine learning: it has challenged broadly-
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held presumptions about the relationship between artificial and human intelligence [Bubeck et al.,

2023], and established itself as a crucial engine of global economic growth. But as machine

learning’s role in society and the economy have expanded, so too have the apprehensions sur-

rounding it, as well as the responsibilities imposed upon it. The expansion of these concerns

has led, in turn, to a bifurcation between classical and modern machine learning theory. In

classical learning theory, the core goal is to prove that a learning algorithm efficiently, reliably

obtains a high-accuracy model under a broad set of circumstances [Valiant, 1984]. For exam-

ple, noise-tolerant learning algorithms work even when the data are randomly corrupted or even

adversarially manipulated [Blum et al., 2003b, Kearns, 1998]. This traditional goal remains an

important, challenging research topic, especially in the context of generative adversarial net-

works, reinforcement learning, and other departures from “plain” supervised learning. But in

modern practice, it is straightforward to try a learning algorithm and see if it works — which it

very often does. Newfound concerns relate to the potential downstream consequences of using a

model with purportedly high test accuracy.

• efficiency: is it possible to make large, overparameterized models less resource intensive

during training and/or inference?

• confidence: does the model merely report point predictions, or does it reliably convey its

uncertainty with (e.g.) prediction sets that, with high probability, include the truth?

• (analytic) tractability: can the model’s behavior be mathematically discerned and rigor-

ously guaranteed?

• interpretability: can we understand why the model makes its decisions? Or have engineer-

ing tradeoffs, used to obtain high accuracy and efficiency, obscured its inner workings?

• fairness: do the model’s predictions inadvertently harm one or more groups?

These concerns are studied under the umbrella of AI safety or trustworthiness. A generally-

held intuition is that classical machine learning is safer than modern learning. It is important

to recognize that this intuition is sometimes false: depending on the meaning of “safe”, modern

learning can be demonstrably safer, for rather straightforward reasons. For example, it can be

computationally challenging to train small, classical models in the presence of noise [Blum et al.,

2



Problem Domain Classic Approach Modern Approach Novel Synthesis Benefits

Meta-analysis Averaging (trusted)
data only

(Untrusted) LLMs
and databases

Conformal
meta-analysis

Rigorous, tight
intervals

Function
approximation

Static polynomial
transforms

Gradient-based
optimization

Learned
polynomial
transforms

Expressiveness

Sequence modeling Linear systems Transformers and
RNNs

Stacks of linear
systems

Speed and
tractability

Electrocardiology Static HRV
statistics

Deep learning Learned HRV
statistics

Useful in more
settings

Fairness Averages Combinatorial
definitions

Margin-based
definitions

Tractability

Figure 1.1: A summary of the contributions of this thesis, emphasizing how a synthesis between
classical and modern approaches can yield benefits over either approach taken in isolation.

2003a, Feldman et al., 2006, Kalai et al., 2008]. Depending on the type of noise, these difficulties

can vanish when a larger (perhaps overparameterized) model is trained instead [Li et al., 2020,

Montasser et al., 2019, Shalev-Shwartz et al., 2011]. Furthermore, modern machine learning

can be safened by novel techniques which do not have roots in classical learning. For example,

sharpness-aware minimization (SAM) is an alternative to gradient descent which improves gen-

eralization and noise-resilience for deep neural networks [Foret et al., 2020]. The study of loss

landscapes and sharpness is rather peculiar to modern nonconvex learning, and the rationale for

SAM differs for linear and nonlinear models [Baek et al., 2024].

Nevertheless, despite strong research efforts, classical machine learning often retains a strong

advantage in some kinds of safety. This is especially common for safety definitions which are

challenging to empirically verify, and are instead guaranteed through mathematical proof. For

example, the worst-case running time of a learning algorithm or the worst-case coverage guaran-

tee of a prediction set are mathematically, not empirically, guaranteed. It is easier to prove such

guarantees for classical machine learning because it adheres more closely to mathematically

tractable foundations such as linearity, convexity, and normality.
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1.2 This Dissertation

This dissertation forms syntheses between classical and modern machine learning techniques,

with the goal of retaining the safety, trustworthiness, and theoretical clarity of classical learning,

while also obtaining the accuracy, flexibility, and practical benefits of modern learning. Different

syntheses are developed in multiple different contexts, where the notions of “classical learning”,

“modern learning”, and “trustworthiness” all have different concrete meanings. Nonetheless, the

high-level recipe is similar among most of these efforts:

1. Start with a mathematically tractable model class from classical machine learning, such as

linear dynamical systems, sequences of orthogonal polynomials, or Gaussian processes.

2. Imbue it with some empirically successful aspect of modern machine learning, such as

depth, stochastic gradient-based optimization, or the involvement of a pretrained founda-

tion model.

3. Demonstrate that the modern enhancement solves some limitation of the classical model

(usually representational power) without destroying the original benefits.

4. Elaborate on how this synthesis can lead to practical benefits and novel applications.

These are the specific contexts in which this research strategy is applied:

Chapter 2 (Meta-Analysis with Untrusted Data): Large databases of informally-collected

observational data, and foundation models trained upon them, could greatly enhance our under-

standing of causal interventions, particularly in healthcare. However, evidence-based medicine

has been averse to involving such data, due to possible confounding; instead, it restricts its anal-

ysis to a relatively small amount of “trusted” data, typically randomized controlled trials. This

chapter presents a new algorithm for meta-analysis — predicting the causal effects of interven-

tions from study-level, rather than individual-level, data — which safely uses such observational

data: it delivers predictions that are always valid, and are tight when the observational and trusted

data align. The new algorithm adapts full conformal prediction to latent observations corrupted

by heteroscedastic noise. Aside from their pivotal role in evidence-based medicine, systematic

review and meta-analysis can be viewed as a reliable, unbiased, manual form of question an-

swering — as language models could ideally perform. This chapter shows that, by wrapping

4



such foundation models in conformal prediction, they can be used to reliably answer important,

quantitative, causal questions.

Chapter 3 (Differentiating Through Orthogonal Polynomial Transforms): This chapter en-

ables sequences of orthogonal polynomials, a classical mathematical tool, to be efficiently used

as a layer within deep neural networks. More specifically, this chapter develops efficient vector-

Jacobian products for orthogonal polynomial evaluation and interpolation, thereby enabling effi-

cient gradient-based optimization over the set of orthogonal polynomials.

Chapter 4 (Linear Dynamical Systems for Sequence Modeling): The original motivation

behind transformers is that they enabled parallel computation along sequence length, whereas

RNNs suffered from a sequential bottleneck. This chapter proves that RNNs can also be paral-

lelized in a similar fashion, by rebuilding them from linear dynamical systems (LDSs), which

are also referred to as state space models (SSMs). While SSMs alone cannot express nonlinear-

ities across time, these can be approximated (to any accuracy) by using depth, stacking multiple

SSMs with interposed nonlinearities. Thus, SSMs imbued with nonlinearity along depth can

be computationally competitive with transformers. Furthermore, unlike transformers, such SSM

constructions are amenable to advanced control-theoretic analysis. In recent years, there have

been dramatic advances in SSM sequence modeling, with new architectures achieving perfor-

mance competitive with Transformers [Gu and Dao, 2023, Gu et al., 2021a, 2022, Smith et al.,

2022]; this chapter contributes a technique — rigorously replacing nonlinearity along the se-

quence axis by nonlinearity along a depth axis — that can be employed in future architectures.

Chapter 5 (Interpretable Deep Learning in Healthcare): This is the most applied chapter of

the dissertation, attempting to predict the sympathetic nervous system’s response to a bout of ex-

ercise, based on easily-measured heartrate data. Traditional statistics used to quantify autonomic

nervous system activity are based on heart-rate variability (HRV) metrics. To modernize such

statistics, this chapter parameterizes and generalizes them within a deep neural network. This

results in novel statistics which capture different aspects of nervous system activity, while retain-

ing some interpretability of traditional HRV metrics. This chapter illustrates a domain-specific

approach to achieving interpretability, which can be challenging to define and achieve in general

[Lipton, 2018].
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Chapter 6 (Towards Computationally-Tractable Multi-Group Fairness): This is the most

abstract chapter of the dissertation, exploring new fairness definitions rather than solving con-

crete learning problems. Circa 2016, fairness enjoyed a renaissance in machine learning research

[Chouldechova, 2017, Dwork et al., 2012, Hardt et al., 2016c]. Many new fairness definitions

were proposed, and most were binary or discrete, which led to computational challenges or even

intractability. Furthermore, most definitions did not adequately address multi-group fairness.

Inspired by the real-valued (i.e. “scale-sensitive” or “margin-based”) formulations in learning

theory and optimization, this chapter proposes and explores real-valued, multi-group definitions

of fairness that can be satisfied by a very simple algorithm. As a more abstract research ef-

fort, this chapter uses lessons from classical learning theory to address modern difficulties in

fair learning. Connections between these areas have been explored in subsequent lines of work

[Dwork et al., 2021, Gopalan et al., 2023].

1.3 Related Research Directions

This dissertation represents a middle ground between two more extreme research agendas. The

first agenda is to develop a fresh theoretical understanding of modern machine learning, with-

out retaining the baggage of traditional machine learning. This is a flourishing and important

research direction, and has delivered novel, satisfying explanations of the success of noncon-

vex optimization, deep learning and overparameterized models [Allen-Zhu et al., 2019b, Belkin

et al., 2018, Bubeck and Sellke, 2021, Simon et al., 2024]. Work is currently underway on under-

standing the power of transformers and the emergent abilities of large language models. Another

research approach is to advance traditional learning in its own right, charting a new course with-

out any particular deference to modern learning. For example, mixed-integer programming can

be used to learn optimal decision trees [Bertsimas and Dunn, 2017]. Small, interpretable, yet

performant linear models for healthcare can be trained using integer programming [Angelino

et al., 2018].

While all these research agendas are valuable in their own right, we offer some insight for

why the middle ground can be appealing. Over long periods of time, it is not always the case that
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research proceeds linearly, with old ideas being completely deprecated and forgotten in favor

of new ones. Instead, research often proceeds cyclically, with tradeoffs between old and new

ideas being continually reexamined as underlying factors change (e.g. hardware advances and

application changes). For example, this dynamic is frequently observed in computer systems

research, which involves long-running contentions between RISC vs. CISC microarchitecture,

microkernels vs. monolithic kernels, microservices vs. monolithic services, and other such design

decisions.

1.4 Organization and Interpretation

The chapters of this dissertation can be read and understood as separate contributions to different

areas of machine learning. All technical results, including mathematical notation and proofs,

remain self-contained within each chapter. Despite their technical independence, the chapters

are not independent: they are sequential iterations of the following overarching research strategy,

which constitutes the thesis statement of this dissertation.

Thesis: It is often possible to restore aspects of safety, efficiency, and tractability

to modern machine learning by prudently incorporating classical techniques.

Thus, besides making specific, technical contributions, this dissertation has a higher-level, less

formal goal: to shed light on when it is likely for this research strategy to succeed. To help

answer this high-level question, the thesis is organized as follows. At the end of each chapter,

there is a Discussion section which rephrases the research as a classical-modern synthesis. It

emphasizes the benefit that was obtained by pursuing a synthesis rather than either approach in

isolation. Content relevant to the dissertation’s final contributions will be marked as follows:

These interjections will highlight noteworthy developments in the dissertation.

The concluding chapter of the dissertation critically, retrospectively evaluates the success of

each chapter, by examining how their respective areas of machine learning subsequently evolved.

The efforts of each chapter are taxonomized, and factors which possibly led to their success (or

failure) are analyzed. This analysis informs recommendations for future work.
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Chapter 2

Meta-Analysis with Untrusted Data
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Abstract

Meta-analysis is a crucial tool for answering scientific questions. It is usually

conducted on a relatively small amount of “trusted” data — ideally from random-

ized, controlled trials — which allow causal effects to be reliably estimated with

minimal assumptions. This chapter shows how to answer causal questions much

more precisely by making two changes. First, it incorporates untrusted data drawn

from large observational databases, related scientific literature and practical expe-

rience — without sacrificing rigor or introducing strong assumptions. Second, it

trains richer models capable of handling heterogeneous trials, addressing a long-

standing challenge in meta-analysis. This chapter’s approach is based on conformal

prediction, which fundamentally produces rigorous prediction intervals, but doesn’t

handle indirect observations: in meta-analysis, we observe only noisy effects due to

the limited number of participants in each trial. To handle noise, this chapter devel-

ops a simple, efficient version of fully-conformal kernel ridge regression, based on a

novel condition called idiocentricity. It introduce noise-correcting terms in the resid-

uals and analyze their interaction with a “variance shaving” technique. In multiple

experiments on healthcare datasets, the proposed algorithms deliver tighter, sounder

intervals than traditional ones. This chapter charts a new course for meta-analysis

and evidence-based medicine, where heterogeneity and untrusted data are embraced

for more nuanced and precise predictions.
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POPULATIONS: any age, AF of any duration, …

INTERVENTIONS: any dosage, IV or oral, …

COMPARISONS: placebo, standard care, …

OUTCOMES: normal rhythm within 1 day, ... 

Prediction interval

          

       

          

                        

              

                       

                     

                                       

                                 

CONFORMAL
META-ANALYSIS(e.g. 400 mg oral QID for 60+ males with persistent AF) 

containing true effect with high probability

Specific

domain

untrusted data

trusted data

Figure 2.1: We propose changing how meta-analysis answers scientific questions. First, a rela-
tively broad domain X for the meta-analysis is determined, possibly through further interaction
with the user. This allows more expansive questions which include more data. Next, both trusted
and untrusted data relevant toX are retrieved. Conformal meta-analysis takes these and produces
not just a single interval, but a predictive model C. Given specific treatment circumstances x,
the model predicts C(x) which, under standard assumptions, contains the true effect with high
probability.

2.1 Introduction

A systematic review of a scientific question formally collects relevant, reliable evidence and an-

swers the question as precisely as the evidence allows. Roughly 30,000 systematic reviews are

published every year, either as standalone scientific papers or as part of clinical practice guide-

lines, by thousands of academic, professional, and regulatory organizations [Hoffmann et al.,

2021]. Systematic reviews adhere to highly-scrutinized methodology [Higgins et al., 2019, Page

et al., 2021, Schünemann et al., 2013] and are widely considered to be the pinnacle of empirical

evidence [Guyatt et al., 1995, Murad et al., 2016]. They have a decisively influential role in

healthcare and related fields, especially in contentious situations where different parties disagree

or have competing interests. This is because systematic reviews are designed to be rigorous

and unbiased, in a broad sense [Sackett, 1979]: they should yield reliably correct answers, un-
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blemished by personal opinions, conflicts of interest, unproven assumptions, or confounding of

causation by correlation.

Meta-analysis is the statistical core of most systematic reviews. A key goal of meta-analysis1

is to learn, from the collected evidence, a predictor C of causal effect: given features x of a

treatment, its true effect u should, with high probability, lie within the predicted interval C(x) ⊆

R. As described here, meta-analysis models heterogeneity in the treatment and (in turn) its

effect. For example, changing the age of patients or the dosage of a drug corresponds to a change

in x, which would lead to a possibly different prediction C(x) of a different u. Unfortunately,

prevalent meta-analysis algorithms do not model heterogeneity in x, treating its consequences as

inexplicable random noise in u. This is because the complexity of meta-analysis is profoundly

constrained by the stringent expectations placed upon systematic reviews: only a limited fraction

of “trusted” evidence is allowed in meta-analysis, leaving little hope of learning the complex

relationship between x and u.

Specifically, to avoid the confounding biases of observational studies, meta-analysis is (ide-

ally) based solely upon well-conducted, randomized, controlled trials. These allow causal ques-

tions (e.g. “what is the effect of administering this drug?”) to be reliably answered. On average,

about 10-20 RCTs are included in the meta-analysis of a systematic review [Hoffmann et al.,

2021], with up to 500 on the upper end [Cipriani et al., 2018]. This ignores the vast majority of

accumulated experience with the empirical phenomena of interest. As discussed in Section 2.7.1,

this bulk of unused, untrusted data may be formalized as a prior distribution over relationships

between x and u.

2.1.1 Our Contributions

This chapter demonstrates that untrusted data — with all its possible confounding, biases, and

even outright errors — can be incorporated into meta-analysis while remaining rigorous and

unbiased. In fact, this chapter offers stronger, provable guarantees while weakening the assump-

tions traditionally employed in meta-analysis. The solution is based upon conformal prediction

[Lei and Wasserman, 2014, Shafer and Vovk, 2008, Vovk et al., 2005]. While conformal pre-

1Meta-analysis also involves estimating parameters with confidence intervals; see Section 2.7.1.
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diction aptly manages the inclusion of untrusted data, there are two unresolved challenges when

applying it to meta-analysis. The first challenge is noise: though we aim to predict true ef-

fects u, the observed effects Yi ∼ N(Ui,Vi) are blurred by limited trial sizes. This noise is

curiously challenging to manage, since small (high noise) studies can differ fundamentally from

large (low noise) studies. This reflects difficulties in clinical practice, where large-scale trials

routinely fail to confirm the results of smaller ones [Ioannidis, 2005, Komajda et al., 2010, Man-

son et al., 2019]. The second challenge arises from limited sample (n ≤ 500) of included trials.

This essentially mandates the use of full (rather than split) conformal prediction, which poses a

computational burden, and complicates efforts to handle noise.

We resolve the aforementioned challenges of applying conformal prediction, giving rise to

conformal meta-analysis. This approach consists of the following layers: (1) kernel ridge re-

gression learning a posterior from the prior and trials, (2) a fast, simple implementation of full

conformal prediction of y, based on residuals produced by KRR, and (3) a strategy for predicting

u, exploiting the simplicity of the conformal intervals for y. We show that sufficiently high regu-

larization makes KRR idiocentric: as y varies, the residual for (x, y) changes more than the other

residuals. Under this condition, fully-conformal KRR can be simplified to computing quantiles

in two lists. Its simplicity allows us to prove — through an analysis we call “variance shaving”

— that its prediction intervals for y typically contain the true effects u as well, with just a slight

loss in confidence.

Our experiments have two goals: (1) to quantify how much conformal meta-analysis could

improve predictions when used, as intended, with large amounts of untrusted data, and (2) to

more qualitatively assess, before such data are available, how it would impact the experience

of producing and consuming systematic reviews. At a high level, we find that conformal meta-

analysis could improve how the medical community interacts with evidence.

2.2 Preliminaries

These are the predictive goals of meta-analysis.

Predicting Effects. Let (X1,U1,V1), . . . , (Xn,Un,Vn), (x,u, v) be exchangeable random vari-
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ables, where Xi,x ∈ X are features, Ui,u ∈ R are effects, and Vi, v > 0 are variances. Let

Yi = Ui+Ei, where independently Ei|Vi ∼ N(0,Vi). Let µ : X → R and κ : X×X 7→ R be fixed

mean and positive-definite kernel functions, respectively. From (µ, κ), the (Xi,Yi,Vi), and x, for

a desired confidence level α ∈ (0, 1), produce an interval C(x) such that P(u ∈ C(x)) ≥ 1− α,

where the probability is over all the random variables.

Predicting Trials. Same as above, except C also takes v, and should satisfy P(y ∈ C(x, v)) ≥

1− α, where y = u+ ϵ for independent ϵ ∼ N(0, v).

This is the first time meta-analysis is introduced to the machine learning com-

munity as a regression problem of major algorithmic interest.

The first task is more practically useful and technically involved. However, since u is not

observable, but y is, the second task is more easily verifiable. It is not immediately clear which

task is more challenging, in the sense of needing wider intervals. On one hand, y has inherently

more variance than u. On the other, the prediction of u is made without knowing v, which

might otherwise distinguish between small and large trials having characteristically different u.

Section 2.7.1 thoroughly describes the origin and purpose of these tasks.

Comment on notation. This chapter uses capital letters (e.g. X) to denote data from the

n training trials, and lowercase letters (e.g. x) for the test trial. In the conformal prediction

literature, it is more common to use capitals to refer to all n+ 1 data. The training data are then

indexed asX1, . . . ,Xn (orX:n), and the testing data asXn+1 (orXtest). This notation emphasizes

the exchangeability of all the data, and reserves lowercase letters for fixed constants. Both of

these conventions are helpful for statistical analysis. This chapter, which is more computational

in nature, involves algebraic expressions and code which reference the training and test data

separately, where the usual indexing would become cumbersome. We lament this notational

incompatibility, but feel it preserves the clarity of some aspects of our presentation.

2.2.1 Related Work

Causal inference from observational data. Performing randomized, controlled trials is not the

only way to estimate causal effects. After making appropriate assumptions, causal inferences can
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be extracted from observational data [Imbens and Rubin, 2015, Pearl, 2009, Spirtes et al., 2001].

This is an extensive research endeavor encompassing many fields; we mention some of the most

relevant work here. The survey by Colnet et al. [2024] discusses various approaches to inte-

grating RCTs with observational data. To estimate the CATE, causal forests [Wager and Athey,

2018] and metalearners [Künzel et al., 2019] combine machine learning techniques with causal

reasoning. The most widespread assumption of such methods is ignorability, or unconfounded-

ness. It requires that, having observed the features x, the treatment assigned to a participant is

independent of their potential outcomes ρ(0) and ρ(1). That is, there are no unmeasured vari-

ables outside of x that could bias treatment towards different participants. Another widespread

assumption is positivity, or overlap: for every x, both the treatment and the comparison have a

chance of being assigned.

Such strong, unproven assumptions are plausible in many circumstances, but they are not ap-

propriate for systematic reviews. At some point, assumptions must be tested; systematic reviews,

more confirmatory than exploratory in nature, often serve this crucial purpose. Nevertheless, con-

formal meta-analysis allows these methods to be (indirectly) used in systematic reviews, without

any concerns about their unproven assumptions. These methods can ideally be used to extract

better µ and κ from the untrusted data. Thus, conformal meta-analysis doesn’t replace these

methods; rather, it expands their domain of application to more scientific settings.

Conformal prediction of latent variables. Previous works have examined how to confor-

mally predict an underlying u while observing only noisy Y1, . . . ,Yn. It is often empirically

observed that conformal prediction can be obliviously robust to label noise, in the sense that

C(x), without any involvement of V or v, manages to covers u without any loss in confidence.

However, provable guarantees remain elusive. Feldman et al. [2023] show that if C(x) always

contains the median of u | x, then C(x) covers u with no loss in confidence. This is a very

strong assumption in meta-analysis, as it essentially posits that the relationship between x and

u has been globally determined, and the main difficulty of conformal prediction is to account

for the uncertainty driven by the unobserved variables ξ. Most approaches to (non-obliviously)

handling noise involve some modification to split conformal prediction. In classification, the

(discrete) labels may be noisy because they are the majority vote from some underlying proba-
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bility distribution, which reflects uncertainty over the true class. Stutz et al. [2023] adapt split

conformal prediction to account for this uncertainty by sampling multiple labels from the under-

lying distribution. Sesia et al. [2023] and Penso and Goldberger [2024] modify split conformal

prediction to estimate the amount of over (or under) coverage of C(x). Unfortunately, splitting

the data is not feasible in meta-analysis, where n is small. Label noise should be distinguished

from label shift, when the training Y1, . . . ,Yn are sampled from a different distribution than the

test y [Podkopaev and Ramdas, 2021].

Meta-regression. A meta-regression fits the observed effects Yi as a (typically linear) func-

tion of the features Xi [Stanley and Jarrell, 1989]. Meta-regression is usually conducted to diag-

nose which features are responsible for heterogeneity. It can also generate useful hypotheses for

future research, by identifying which features are associated with higher or lower effects. While

meta-regression and conformal-meta-analysis are similar in form, there are a number of crucial

differences. Most importantly, unlike conformal-meta analysis, meta-regression does not offer

predictive guarantees for new x; the fit to the data is post-hoc and interpretive [Baker et al., 2009,

Thompson and Higgins, 2002]. The (non-predictive) statistical task in meta-regression is to de-

termine which features have a statistically significant relationship with the effect [Huizenga et al.,

2011]. To limit spurious findings, meta-regression is typically performed on a small number of

prespecified features. By contrast, conformal meta-analysis fits powerful, nonlinear models on

a potentially large number of features. In conformal meta-analysis, the regression, as embodied

by the prediction band C, is presented as the main result, not just an adjunct diagnostic.

Individual treatment effects. This paper improves predictions by tailoring them to spe-

cific patient populations described by x. However, it still averages over individuals within those

populations. There are multiple approaches to accounting for this heterogeneity by predicting

individual treatment effects. One approach is to perform n-of-1 trials, where a single individual

serves as both the treatment and control by applying the treatment at different times [Guyatt et al.,

1986, Liang and Recht, 2023]. Another approach is to conduct causal inference, under stronger

assumptions, on individual-level data from randomized and/or observational studies [Bica et al.,

2021]. As part of this approach, conformal prediction has been employed to obtain prediction

intervals for potential outcomes [Lei and Candès, 2021], possibly as a function of a parameter Γ
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bounding the amount of unobserved confounding [Jin et al., 2023, Yin et al., 2024]. These ap-

proaches require individual-level data, different experimental designs, or stronger assumptions,

which are worth pursuing primarily when individual (within-trial) variation is significant relative

to between-trial variation. Whether this occurs depends on the nature of the treatment as well as

the granularity of X .

Bayesian priors. Conformal meta-analysis takes a prior probability distribution, along with

trial data, and makes predictions from a posterior distribution — a process that mirrors Bayesian

inference [Gelman et al., 1995]. The choice of prior can substantially influence Bayesian infer-

ence, sometimes for the better: for example, informative, data-driven priors for the heterogeneity

variance ν can mitigate excessive posterior uncertainty [Lilienthal et al., 2024, Rhodes et al.,

2016]. However, in a Bayesian meta-analysis, the prior can potentially hurt the empirical cov-

erage of the reported intervals. As a simple example, even if all the trial data indicate a large

treatment effect, a prior which heavily concentrates on zero effect would nonetheless result in

tight posterior intervals around zero. Such behavior is inappropriate for systematic reviews,

which are meant to resolve collective uncertainty among parties who do not necessarily share the

same prior beliefs. One attempt to address this problem is to use uninformative priors. However,

even such choices can seriously impact the empirical validity of a Bayesian meta-analysis [Ham-

aguchi et al., 2021]. In conformal meta-analysis, by contrast, even strong beliefs can be safely

encoded into the prior without breaking empirical coverage guarantees. In the aforementioned

example of a concentrated, incorrect prior, conformal meta-analysis would merely yield loose

intervals.

Uniform confidence bands. Prediction intervals also should not be confused with uniform

confidence bands, which offer the following stronger guarantee, and do not involve unobserved

ξ:

PC (for all x ∈ X , u(x) ∈ C(x)) ≥ 1− α

Such bands have been developed for Gaussian process regression in the context of online opti-

mization, where new points x are sequentially, adaptively chosen to minimize uncertainty about

u [Chowdhury and Gopalan, 2017, Fiedler et al., 2021, Neiswanger and Ramdas, 2021, Srinivas
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et al., 2009]. Since subsequent x are chosen adaptively using the band, it is essential for the band

to hold for arbitrary x rather than just randomly-sampled x. Strictly speaking, these bands are

correct for arbitrary µ and κ. However, their widths depend on the smoothness of u, as quan-

tified by its norm in the reproducing kernel Hilbert space induced by κ. Since u is unknown,

this quantity is also unknown. As a practical matter, when µ and κ can range from very good to

very poor, the band is either very wide or unknown. Though conformal meta-analysis only offers

prediction intervals with marginal coverage guarantees, their width and coverage do not depend

on unknown quantities.

Utilizing unlabeled data. Trusted labels are generally considered a scarce resource in ma-

chine learning, especially compared to unlabeled data (i.e. x sampled from the marginal distri-

bution of P). Unlabeled data are commonly used to pretrain large foundation models [Dahl et al.,

2011, Dai and Le, 2015]. Semi-supervised learning studies how to rigorously use unlabeled data

to improve predictions [Balcan and Blum, 2010]. Angelopoulos et al. [2023] recently proposed

prediction-powered inference as an approach to safely tighten confidence intervals by using un-

labeled data along with a prior derived from separate, untrusted data. In this approach, (1) the

unlabeled data and prior (which is temporarily treated as correct) are used to estimate the param-

eter, (2) concentration inequalities are applied to bound the estimation error arising from limited

unlabeled data, and (3) the labeled data are used to correct the estimation error due to inaccuracy

of the prior. Subsequently, Zrnic and Candès [2024] proposed cross-prediction-powered infer-

ence, which has similar goals but does not utilize untrusted data. Instead, it splits the data (as

in cross-validation) to train a prior. Such methods have been used to improve out-of-distribution

causal inference [Demirel et al., 2024]. However, these methods are not directly applicable to

predictive meta-analysis, in which there are no available unlabeled data. Furthermore, these

methods are designed to produce confidence intervals rather than prediction intervals.

Safely using untrusted data. Various endeavors in statistics and machine learning involve

making predictions that are rigorously guaranteed, even though they use untrusted data. To

some extent, all these techniques manage to circumvent the “garbage-in, garbage-out” principle.

PAC-Bayesian generalization theory formalizes inductive bias as an (untrusted) prior probability

distribution [McAllester, 1998, Seeger, 2002, Shawe-Taylor and Williamson, 1997]. Its general-
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ization bounds are tight when the prior and data align, so that a learning algorithm (producing a

posterior distribution) can fit the data without diverging far from the prior. While PAC-Bayes is

a very useful theoretical tool, conformal prediction bounds are quantitatively tighter, especially

when n is small. In statistics, an untrusted prior distribution can be used to define an e-value,

a nonnegative statistic whose mean is at most one [Neiswanger and Ramdas, 2021]. Using its

reciprocal as an unnormalized density leads to e-posteriors, which can be used as the basis for

valid inferences and decisions [Grünwald, 2023]. To derive confidence intervals with conditional

coverage guarantees, likelihood-free inference methods can exploit untrusted prior information

[Masserano et al., 2023]. In computer science, algorithms can be infused with untrusted pre-

dictions, also called side information, advice, or hints [Mitzenmacher and Vassilvitskii, 2022].

When the predictions are good, the algorithms run faster; when the predictions are bad, the al-

gorithms retain acceptable worst-case performance. A prototypical example is binary search,

which can be modified to run in O(1) time given a good prediction of the target’s index, and in

O(log n) time no matter how bad the prediction was.

2.3 Predicting Trials with Idiocentric Linear Smoothers

The main result of this section is the following algorithm for Predicting Trials. While useful in its

own right, it is also the basis of our subsequent algorithm for Predicting Effects. The parameter

η > 0 adjusts noise correction in the residuals; larger η induces more correction.

Theorem 1 (Conformal Trial Prediction). Let η > 0. Under the assumptions for Predicting

Trials, Algorithm 2.1 returns [y−, y+] satisfying P(y ∈ [y−, y+]) ≥ 1− α.

The following observation is the basis of full conformal prediction.

Proposition 1 (Full Conformal Prediction). Let (Xi,Yi,Vi) ∼ P (for i = 1, . . . ,n) as well as

(x, y∗, v) ∼ P be exchangeable. Let [R; r] be the residuals of a symmetric (i.e. invariant to

permutations of the training data) learning algorithm on [X;x], [Y ; y] and [V ; v]. Given any

α ∈ (0, 1), let τ = ⌈(1− α)(n+ 1)⌉ and:

C(x, v) = {y : r is among the τ smallest of R1, . . . ,Rn} (2.1)
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Then P(y∗ ∈ C(x, v)) ≥ 1− α. [Vovk et al., 2005]

1 # capital arguments for training trials, lowercase are for test

2 def predict_trial(M, K, Y, V, m, k, ko, v, alpha, eta):

3 # linear algebra for KRR; see appendix

4 Q,q,A,a,B,b,D,d,S2,s2,tau = precomputations(M,K,Y,m,k,ko,alpha)

5

6 if tau <= n: # enough training trials for conformal prediction

7 # compute interval L_i = G_i±H_i for each training trial

8 # y in L_i corresponds to r <= R_i for residuals

9 a2A2 = a**2*S2 - A**2*s2

10 rho = eta*(D*s2 - d*S2 - a2A2*v)

11 G = (A*B*s2 -a*b*S2) / a2A2

12 H = sqrt(maximum(0, s2*S2*(A*b - a*B)**2 - rho*a2A2)) / a2A2

13 Ln, Lp = G-H, G+H

14 # return quantiles of L_i's upper/lower endpoints

15 yp = sort(Lp)[tau-1]

16 yn = flip(sort(Ln))[tau-1]

17 return yn, yp

18 else: # not enough training trials

19 return -inf, inf

Algorithm 2.1: Python/NumPy code for conformal prediction of trials. Import statements are
omitted. Section 2.7.2 describes the arguments as well as the subroutine for precomputations.

Our residuals are based on KRR, and use the variances [V ; v] to correct for the noise present

in [Y ; y]. Given a parameter λ ∈ R, prior (µ,κ), and data ([X;x], [Y ; y]), KRR learns a posterior

(µ̂, κ̂). Let the posterior mean on [X;x] be [M̂ ; m̂]. Let the diagonal of the posterior kernel

matrix be [S2; s2]. Let Zi = Eξ(M̂i−Yi)2− (M̂i−Ui)2 ≥ 0 and z = Eϵ(m̂−y)2− (m̂−u)2 ≥ 0

be the expected impact of the noise (ξ and ϵ). The residuals are:

Ri =
(
(M̂i − Yi)2 − ηZi

)
/S2

i r =
(
(m̂− y)2 − ηz

)
/s2

Subtracting (an η fraction of) Zi and z effectively reduces the importance of smaller trials. De-

riving these residuals for KRR, with independent Gaussian noise in Y , is basic linear algebra and

probability. As Section 2.7.2 shows, the residuals are squares of affine functions in y. That is,
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for some Ai,Bi, a, and b:

Ri =
(
(Aiy +Bi)2 − ηZi

)
/S2

i r =
(
(ay + b)2 − ηz

)
/s2 (2.2)

It is easy to see that residuals of this form are shared by any learning algorithm where [M̂ ; m̂]

are linear in [Y ; y], albeit nonlinear in [X;x]. These are known as linear smoothers, including

methods such as k-nearest neighbors, Nadaraya-Watson kernel regression, and smoothing splines

[Buja et al., 1989]. Our techniques conceptually extend to all linear smoothers; we use KRR

primarily because it gracefully incorporates the prior (µ,κ).

2.3.1 Idiocentricity and its Consequences

Burnaev and Nazarov [2016], building upon Nouretdinov et al. [2001], derived an algorithm

for computing KRR’s C(x). Though their algorithm is computationally efficient, it returns a

general prediction set (a union of disjoint intervals and isolated singletons) which isn’t amenable

to analytic reasoning. We substantially simplify the algorithm under the following condition.

Definition 1 (Idiocentricity). The residuals Ri, r are idiocentric if |a|
s
> |Ai|

Si
for all i.

This condition means that changing the test example’s y changes its own residual more than

it changes the residuals of other examples. For other learning algorithms, it can be generalized

in terms of derivatives.

Definition 2 (Idiocentricity). The residuals R1, . . . ,Rn, r are idiocentric if:

lim
y→±∞

|∂r/dy|
|∂Ri/dy|

> 1 for all i = 1, . . . ,n

This definition reduces to the previous one in the case of linear smoothers. Let us show how

idiocentricity simplifies C(x).

Theorem 2. For i = 1, . . . ,n, let ρi = η(Zis
2 − zS2

i ). Define intervals Li = Gi ±Hi, where:

Gi = AiBis
2 − abS2

i

(aSi)2 − (Ais)2 and Hi =

√
max (0, s2S2

i (Aib− aBi)2 − ρi((aSi)2 − (Ais)2))
(aSi)2 − (Ais)2
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If KRR is idiocentric, then its full conformal prediction set (2.1) simplifies to:

C(x, v) = {y : y is inside more than n− τ of the L1, . . . ,Ln}

Proof. Since the residuals defined in (2.2) are squared, we can flip the signs of b and Bi to

standardize on a,Ai ≥ 0. r ≤ Ri rewrites to S2
i (ay + b)2 + ρi ≤ s2(Aiy + Bi)2. Under the

condition a/s > Ai/Si ≥ 0, this is equivalent to y ∈ Li.

Making fully-conformal prediction fast for a large class of learning algorithms

is of general interest in statistics and machine learning.

We slightly loosen the defining condition of C(x) to obtain an even simpler algorithm.

Lemma 1. In the notation of Theorem 2, let y+ be above τ of the upper endpoints of the Li, and

let y− be below τ of the lower endpoints of the Li. Then C(x, v) ⊆ [y−, y+].

Proof. The upper endpoint y+ is met when, for τ of the i ∈ {1, . . . ,n}, we have y+ ≤ Li

or y+ ≥ Li. Ignore the first possibility, which becomes more unlikely as y+ increases, for a

potentially looser but nonetheless valid interval. A similar argument justifies y−.

KRR is idiocentric when λ is set sufficiently large. The following upper bound is sometimes

loose, but works well throughout this chapter. We note that the optimal setting of λ for regression

may not coincide with the optimal setting for conformal prediction. For example, λ = 0 (known

as interpolation or ridgeless regression) can be a good learning algorithm [Hastie et al., 2022,

Liang and Rakhlin, 2020], but it is useless for full conformal prediction, since its residuals are

all zero.

Theorem 3. KRR is idiocentric if λ ≥ max{κ(X1,X1), . . . ,κ(Xn,Xn),κ(x,x)}.

To prove Theorem 1, use the λ of Theorem 3 to earn the simplified interval of Theorem 2,

which is supported by the coverage guarantee of Proposition 1.

2.4 Predicting Effects

The culmination of this chapter is the following algorithm for predicting causal effects.
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1 def predict_effect(M, K, Y, V, m, k, ko, alpha, eta):

2 return predict_trial(M, K, Y, V, m, k, ko, 0, alpha, eta)

Algorithm 2.2: Python code for conformal prediction of effects, deferring entirely to Algo-
rithm 2.1 with v = 0.

Theorem 4 (Conformal Effect Prediction). Let η > 0. Under the assumptions for Predicting

Effects, Algorithm 2.2 returns [u−,u+] satisfying P(u ∈ [u−,u+]) ≥ 1− α

(1−α)erfc
√

η/2
.

Setting η = 0 (i.e. disabling noise correction) obtains confidence 1−2α
1−α

, which is just a slight

loss from 1 − α when α ≈ 0. (For example, 0.95 confidence drops to 0.9473, which probably

doesn’t change τ = ⌈(1− α)(n+ 1)⌉). This setting is appropriate when V ≈ 0, i.e. the trials all

have a large number of participants. By setting η = 2 · inverfc( 1
c(1−α))

2, the confidence drops to

1 − c · α. More noise correction is conceptually more appropriate when analyzing mixtures of

small and large trials. However, the loss of confidence means larger n is needed, which may not

be a worthwhile tradeoff. Conformal prediction is usable only when τ ≤ n; with c = 2, a final

confidence of 95% requires n ≥ 40. This is twice the n needed for η = 0.

While the overhead at η = 0 is not practically important, it indicates either the algorithm or

its analysis are suboptimal. When meta-analysis is very close to regression (V ≈ 0), the original

1 − α coverage should be smoothly recovered. In the appendix, we present another approach

which behaves correctly in this regard. It is based on fundamentally different techniques which

can be extended to non-normal or even adversarial noise. It determines a probability 1− δ region

U for the true effects U . Then, it formulates an optimization problem to bound all the intervals

which could have been generated by Û ∈ U .

This is a general strategy to make conformal prediction robust to label noise.

Theorem 5 (Conformal Effect Prediction via Robust Optimization). Let δ > 0. Under the

assumptions for Predicting Effects, the respective solutions u− and u− to (2.10) and (2.11) in

Section 2.7.7 satisfy P(u ∈ [u−,u+]) ≥ (1− α)(1− δ).
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Figure 2.2: A high-level sketch of C(x, 0)’s coverage of u, when η is small enough (left) versus
too large (right). The gray dots are u, and its distributions conditioned on various v are shown.
C(x, 0) is the dark green bar; as v increases, C(x, v) increases by

√
ηv, and that growth (in

yellow) is shaved. The orange curves convey the spread of |N(0, v)|. With good η (left), C(x, v)
grows slowly compared to |N(0, v)|, which naturally pushes in the u (on average) as v increases.
Thus, C(x, 0) is wide enough to contain most of the u, no matter what v is. On the right, when η
is large, C(x, v) adapts more dynamically to v, so C(x, 0) is smaller. Too many u in the yellow
region are shaved.

2.4.1 Understanding Conformal Effect Prediction

Theorem 1 guarantees that C(x, v) usually covers y ∼ N(u, v). We will use this guarantee to

derive intervals C(x) that usually cover u. We don’t have a v to plug into C(x, v), so we have

to dig into how C(x, v) works. The claim of Theorem 4 is that C(x, 0) covers u just slightly

less often than it covers y, so long as the level of noise correction η is not too high. This holds

because of two counterbalancing properties of C(x, v) that hold for all v ≥ 0.

The first property is that most of the spread of |N(0, v)| can be shaved from the edges of

C(x, v) without losing too many u. This is possible because, in meta-analysis, we care only

about small α, ideally around 0.05. Since C(x, v) covers y with high probability, there are only a

few u closer than |N(0, v)| to the ends of C(x, v) — otherwise, bad flips of the noise could push

too many y out of the interval, which would violate the coverage guarantee of C(x, v). While

this logic indicates shaving is a conceptually feasible strategy, it remains an abstract possibility,

since we don’t know v, and don’t know how much to shave. (It should intuitively be O(
√
v), but

constants matter).

The second property is that making η smaller limits the growth of C(x, v). We mean this

in a completely formulaic sense — we have reasonably concrete expressions for the endpoints

of C(x, v), and the following Lemma 2 shows they widen by
√
ηv. When η = 0, C(x, v)

doesn’t depend on v at all. In other words, when noise correction is disabled, C(x, 0) must
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completely internalize the impact of noise, yielding a relatively wide interval. Larger settings of

η allow C(x, v) to grow more with v, allowing (relatively) thin intervals at small v. To concretely

realize the shaving strategy, we just need to set η small enough so that, as a function of v, the

shaveable region within C(x, v) grows as fast as C(x, v) itself. This allows us to obliviously

use the baseline C(x, 0). The conditional distribution v | x is arbitrary and unknown, but any

probability mass on v > 0 simply pushes more u within C(x, 0).

The fact that C(x, v) grows proportionally to
√
v to capture the noise is not only intuitive,

it is necessary. Most well-behaved learning algorithms should yield conformal intervals which

grow (on average) at roughly this rate. Our ability to prove an exact growth rate, in the next

lemma, relies on the simplicity of full conformal prediction for idiocentric linear smoothers.

Lemma 2 (Normal Interval Growth). Let C(x, v) be the interval from Theorem 2. For all η ≥ 0

and v > 0, C(x, v) ⊆ C(x, 0)±√ηv.

The rest of the proof of Theorem 4 doesn’t depend on either idiocentricity or linear smoothers.

Lemma 3 formalizes the first property described above: most u are contained within C(x, v) by a

margin that grows with v. Finally, Lemma 4 shows that C(x, v) can be shaved down to C(x, 0),

with η determining the loss in coverage of u.

Lemma 3 (Pay For Room). Recall y = u+ϵ for ϵ ∼ N(0, v). Letw = [u−ϵ,u+ϵ], with possibly

unsorted endpoints. If P(y ∈ C(x, v)) ≥ 1− α, then P(w ⊆ C(x, v)) ≥ (1− 2α)/(1− α).

Lemma 4 (Shaving). If P(w ⊆ C(x, v)) ≥ 1−2α
1−α

, then P(u ∈ C(x, 0)) ≥ 1− α

(1−α)erfc
√

η/2
.

2.5 Simulations

We performed four types of simulations on three biomedical datasets from the Penn Machine

Learning Benchmark [Olson et al., 2017]. These regression datasets define K and Y ; we gener-

ated synthetic M and V according to parameters prior error ≥ 0 and effect noise ≥ 0, respec-

tively. We use Algorithm 2.2 with η = 0. We compare it to the state-of-the-art HKSJ method,

which is described in Section 2.7.1.

Simulation 1: This investigates when conformal meta-analysis is superior to traditional

meta-analysis. For different settings of prior error, we compare the widths of the intervals
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obtained by different meta-analysis algorithms. The only situation in which HKSJ is competitive

with conformal meta-analysis is when the prior is bad and the number of trials is small/mod-

erate. Otherwise, conformal meta-analysis is superior, sometimes achieving intervals that are

dramatically thinner than those of HKSJ.

Simulation 2: This experiment checks whether the desired 95% confidence level is still

achieved as effect noise increases. Conformal meta-analysis succeeds, whereas HKSJ fails

badly. On the other datasets (see appendix), HKSJ sometimes drops below 80% confidence. This

deficiency is present at all settings of effect noise, though it aggravates at higher values. This

simulation shows that conformal meta-analysis has a rigorous coverage guarantee, and HKSJ

does not. It should be noted that HKSJ was developed to improve the coverage guarantee of the

more prevalent Higgins-Thompson-Spiegelhalter method.

Simulation 3: This experiment compares different instantiations of Algorithm 2.2: one with

η = 0, and the other with η = 0.4015, with α adjusted so both ultimately seek a 90% confidence

level. With the higher setting of η, over-coverage is consistently demonstrated. This suggests

that the analysis of Section 2.4 can be improved, at least in some settings.

Simulation 4: Our approach assumes that, in many fields, it should be possible to develop

good priors from large volumes of untrusted data. However, if these priors are indeed very

accurate, it is unclear whether using KRR (upon just n trials) is worth the complexity, and pos-

sible statistical overhead, over just using the prior as a fixed predictor. (This is conceptually

equivalent to using an extremely large ridge parameter λ, or performing split conformal using

all the training data for calibration.) This simulation indicates there is no such overhead: our

fully-conformal intervals are strictly superior to those derived from a fixed prior. Thus, unless

assumptions stronger than exchangeability are used to derive prediction intervals, learning is

superior to mere validation. Note that, when prior error is high, HKSJ becomes superior.

2.6 Case Study: Amiodarone

We revisit the systematic review of Letelier et al. [2003], which assessed the effectiveness of

amiodarone for atrial fibrillation (AF) patients. Its outcome measure is the relative risk of normal
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Figure 2.3: Results of all simulations on a single exemplar dataset. See Section 2.7.8 for con-
gruent results on the other datasets, as well as precise descriptions of the effect noise and prior
error parameters. Overall, conformal meta-analysis can deliver much tighter intervals than tradi-
tional methods (Simulation 1), even though traditional methods have weak coverage guarantees
(Simulation 2), whereas our algorithms, or their analyses, have (overly) strong guarantees (Sim-
ulation 3). Our algorithms, not just good priors, are essential to this performance (Simulation 4).

sinus rhythm; that is, the probability of restoring normal rhythm when administered amiodarone,

divided by the probability of restoration with placebo. The review involved n = 21 trials, which

we use as training data. For test data, we identify 4 trials that were published after the review,

but would have met its inclusion criteria [Balla et al., 2011, Karaçağlar et al., 2019, Kochiadakis

et al., 2007, Thomas et al., 2004]. Per the Predicting Trials task, we compare traditional meta-

analysis (the Bayesian algorithm of Proposition 4, described in Section 2.7.1) with conformal

meta-analysis (Algorithm 2.1, with η = 1).

Our goal is not to make any scientific claims about amiodarone, nor to reassess its evidence

base; that would require following a formal, preregistered protocol. Though we temper our

quantitative findings (depicted in Figure 2.4), we find them qualitatively interesting. Conformal
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Thomas et al. (2004)

Kochiadakis et al. (2007)

Balla et al. (2011)

Karacaglar et al. (2019)

Figure 2.4: Prediction intervals for new observed effects y (black dots) produced by traditional
meta-analysis (light blue) and conformal meta-analysis (magenta, thin). On average, they are
comparable in width (1.34 and 1.31, respectively). Conformal meta-analysis manages to cover
the discrepant trial of Balla et al. [2011]. Note that the prior for conformal meta-analysis was
produced post-hoc, having already seen the analysis of Letelier et al. [2003] and the results
therein. Thus, these intervals should not be interpreted as quantitative evidence, but merely as
qualitative illustrations of the behavior of conformal meta-analysis.

meta-analysis manages to correctly predict all 4 trials, whereas traditional meta-analysis suffers

a misprediction. This is not statistically convincing, but it aligns with the fact that conformal

meta-analysis has a rigorous coverage guarantee, whereas traditional algorithms do not. (See

Section 2.7.1 for more details.) It is interesting to observe that not all of the conformal intervals

overlap; by contrast, traditional intervals all inherently overlap. This suggests users of conformal

meta-analysis could enjoy predictions that are meaningfully responsive to the details of their

proposed treatment, perhaps distinguishing between effective and ineffective ones.

Section 2.7.9 describes how we conducted the conformal meta-analysis. We highlight some

ways it differed from the usual process. The first change is training a prior on helpful data that

would otherwise be ignored. We identify 8 trials that did not meet the inclusion criteria, since

they were not placebo controlled. To generate pseudo-effects for these trials, we need to under-

stand the placebo effect. This leads to the second major change, which is holistically including

the perspectives of practitioners. The critique of Slavik and Zed [2004], written by two doctors

of pharmacy, gave estimates for the placebo effect on sinus rhythm (i.e. spontaneous conver-

sion) in different circumstances. We use these estimates to generate the pseudo-effects. Finally,

arguably the biggest change involves LLMs. In order to extract features from trials, we give

their published PDFs to LLMs (specifically, GPT-4 and Claude) along with a prompt including

example output. Next, parsing code (also written by LLMs) converts the textual features to nu-
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merical (x, y, v). Thus, LLMs can be used to aid meta-analysis, much as meta-analysis serves as

a question-answering system. This experience, and the results of the chapter overall, reflect pos-

itively on the following dilemma: can language models be used to rigorously answer scientific

questions?

Meta-analysis can be viewed as a structured, quantitative, yet natural form of

question answering. It could be used as a testbed for studying LLM safety.

2.7 Appendix

2.7.1 Background for Meta-Analysis

Outcomes and Effects

Let x be a features describing a treatment. This consists of the prospectively-set criteria of its

population, intervention, comparison, and measure of outcome, commonly abbreviated as PICO

[Richardson et al., 1995]. For example, x may include the duration of an exercise program and

the minimum age of its participants. It may also include auxiliary information that was collected

passively and retrospectively, though (as described in the next section) this may complicate the

interpretation of the meta-analysis. x does not have to be numerical; it can be, for example, a

published document describing a clinical trial. The number of participants in such a trial should

not be intentionally encoded in x, since a treatment should be applicable to any number of people.

However, avoiding implicit, unintentional correlations between trial design and trial size may

be difficult or impossible. Let ξ encode factors which influence the treatment, but are neither

controlled nor observed. For example, the effect of an exercise program may surreptitiously

depend on the altitude of the training facility or the jobs of the participants.

In the Neyman-Rubin framework of potential outcomes [Neyman, 1923, Rubin, 1974], for a

single participant denoted by ρ, ρ(1) ∈ R is the outcome when assigned the treatment, and ρ(0) ∈

R is the outcome when assigned the comparison. Each outcome may be a final measurement

(such as the amount of strength gained after training), or its change from a baseline measurement,

or the logarithm of the ratio of final to baseline. The difference ρ(1) − ρ(0) is the individual
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effect of the treatment. The potential outcomes framework is challenging because we cannot

observe both terms in ρ(1) − ρ(0), since each participant is assigned to either the treatment or

the comparison. The conditional average treatment effect (CATE), denoted by u, quantifies the

expected difference between the treatment and comparison for a new participant:

u(x, ξ) = Eρ (ρ(1)− ρ(0) | x, ξ) (2.3)

The CATE is usually defined solely in terms of the observed variables x. We include ξ to em-

phasize the influence of unobserved variables, which are sometimes ignored in causal inference.

Different Goals of Meta-Analysis

The CATE is the predictive target of meta-analysis. With high probability (typically 95%, with

α = 0.05), the CATE should lie within the predicted interval:

PC,x,ξ (u(x, ξ) ∈ C(x)) ≥ 1− α (2.4)

Rather than predicting relatively specific, tangible effects, meta-analysis often focuses on es-

timating more abstract, harder-to-verify quantities. Meta-analyses usually report a confidence

interval CI ⊂ R which, with high probability, should contain the average treatment effect (ATE,

also known as the summary effect or grand mean):

PCI (ATE ∈ CI) ≥ 1− α where ATE = Ex,ξ u(x, ξ)

Whereas the confidence interval merely needs to capture the ATE, the prediction interval must

capture most of the dispersion around it. (Formally, a prediction interval covers a random vari-

able, and its coverage probability must also account for the randomness of that variable, whereas

a confidence interval covers a fixed value). In the presence of significant heterogeneity, the con-

fidence interval is much tighter than the prediction interval, and has little chance of capturing the

effect of a future treatment. Due to this potentially unintuitive behavior, and the possibility of in-

stilling overconfidence in evidence about the treatment, many prominent researchers encourage
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systematic reviews to report prediction intervals [Borenstein, 2024, IntHout et al., 2016, Riley

et al., 2011]. According to some researchers, the relative ease of corroborating (or refuting)

predictions makes them essential for scientific rigor and reproducibility [Billheimer, 2019].

These problems are exacerbated by the introduction of features (x) and larger numbers of

trials (n), as proposed in this chapter. Since confidence intervals are tighter than prediction inter-

vals, it may be technically tempting to use untrusted priors to analogously tighten intervals for

ATE. However, when considering many trials with substantially different features, ATE becomes

a useless quantity [Feinstein, 1995, Gould, 2010, Simonsohn et al., 2022, Subramanian et al.,

2018]. It is arguably misleading to use features within a statistical analysis but to simultaneously

obfuscate their existence in the reported statistic. This is why prediction intervals are presently

the preferred solution concept.

While prediction intervals avoid some of the unintuitive pitfalls of confidence intervals, it

is important to note that the predictive guarantee (2.4) has subtleties of its own. It is a mixed

observational-causal guarantee: coverage does not hold for all x, just marginally (on average)

over x. For example, if α = 0.05, then it is possible for coverage to be 99% for patients younger

than 60 and only 80% for patients between 60 and 70, so long as the average is at least 95%.

Achieving conditional coverage guarantees (i.e. without averaging over x) is not possible without

further assumptions [Lei and Wasserman, 2014]. Since prevalent meta-analysis algorithms do not

involve x, their guarantees are of course marginal over x.

The guarantee (2.4) is most reliable when the distribution over x is explicitly specified by a

generative model. If trial designs are actually chosen according to this distribution, and x consists

solely of prospectively-set, controllable variables, then it is easy to sample future x for which the

coverage guarantee holds. If x includes retrospectively-collected information, or the trials are

designed according to unspecified criteria, then the guarantee becomes less meaningful.

Randomized Controlled Trials (RCTs)

An RCT enrolls m participants with potential outcomes ρ1, . . . , ρm. Uniformly at random, it

assignsm0 of them to group 0 (the comparison), and the remainingm1 to group 1 (the treatment).

Most RCTs do not report individual outcomes. Rather, they report the mean and (corrected)
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variance of the comparison outcomes as y(0) and v(0). The same statistics are reported for the

treatment outcomes as y(1) and v(1). These are combined into y, the difference in means, and v,

a sum of the observed standard errors [Deeks and Higgins, 2010]. These statistics are defined as:

y(g) = 1
mg

∑
i in group g

ρi(g) y = y(1) − y(0)

v(g) = 1
mg − 1

∑
i in group g

(ρi(g)− y(g))2 v = v(0)

m0
+ v(1)

m1

Condensing the data into y and v has the following rationale. It can be shown that y is an unbiased

estimate of the CATE:

E(y | x, ξ) = E(u | x, ξ)

Thus, as the RCT enrolls a very large number of participants, y converges to u, regardless of x

and ξ. This is the primary reason why RCTs are so valuable. v is an estimate of y’s variance

around u, under conditions discussed in the next section.

Random-Effects Model of the Data

Meta-analysis is conducted upon n trials, each with data Xi ∈ X , Yi ∈ R and Vi > 0 for

i = 1, . . . ,n. As discussed above, each trial’s Yi is centered around Ui, but varies around it due

to its limited number of participants. Because Yi is a sample average, by the central limit theorem,

it is asymptotically normally distributed around Ui. The random-effects model of meta-analysis

[DerSimonian and Laird, 1986, Higgins et al., 2009] asserts, as a simplifying assumption, that

Yi is exactly (not just asymptotically) normally distributed around Ui with true variance equal to

the observed one. That is, Yi ∼ N(Ui,Vi). This can be written in a way that highlights a key

difference between the standard random-effects model and this chapter’s model:

Yi(Xi, ξi) = ATE + Ui(Xi, ξi)− ATE︸ ︷︷ ︸
between-trial heterogeneity

+ N(0,Vi)︸ ︷︷ ︸
within-trial variation

(2.5)
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The first and last terms are the same in both models. The random-effects model asserts that the

middle term Ui − ATE ∼ N(0, ν) where ν (often denoted by τ 2) is called the heterogeneity

variance. By contrast, in this chapter, Ui depends on the covariates Xi, and may also involve

arbitrary (non-Gaussian) noise through ξi. Thus, this chapter eliminates a normality assumption

which is viewed as dubious in practice [Liu et al., 2023b]. The normality of within-trial variation,

though less controversial, may be tenuous for small trials [Jackson and White, 2018].

Untrusted Data as a Probability Distribution

Independently of RCTs, practitioners and researchers often possess deep intuitions about the

CATE. These intuitions arise from the lower levels of the evidence hierarchy: observational

studies, individually-published cases, hands-on experience, and personal belief [Murad et al.,

2016]. It is difficult to rigorously infer causation from such untrusted (or “real-world”) data, since

they are observational and may have deeply-embedded biases. Nonetheless, it is often found that

untrusted data agree with RCTs [Benson and Hartz, 2000, Concato et al., 2000]. Retrospectively,

Toews et al. [2024] found the ratio of risk-ratios between RCTs and observational studies to be

approximately 1.08. The prospective RCT-DUPLICATE trial found their Pearson correlation to

be 0.82 [Wang et al., 2023], with much of the discrepancy attributable to readily-identified factors

[Heyard et al., 2024]. For example, observational claims data do not typically record whether

treatment was initiated in a hospital, but this may affect the outcomes of RCTs.

Since untrusted data originates from different kinds of sources and experiences, it does not

share the form of RCTs. A modern approach to capturing large, disparate quantities of knowl-

edge is to (pre)train foundation models. Such models are already being developed for health-

care [Moor et al., 2023, Singhal et al., 2023, Tu et al., 2024]. This approach involves learn-

ing an embedding ϕ(x) which maps features x into a Euclidean space having inner product

κ(x,x′) = ϕ(x)Tϕ(x′). On top of this embedding, a linear predictor of the CATE can be trained

as µ(x) = wTϕ(x). Practically, this representation (µ,κ) encompasses nearly every useful way

of predicting the CATE. Mathematically, this representation constructs a Gaussian process, a

probability distribution over functions f : X 7→ R, with higher probability placed on f which

could plausibly approximate the CATE [Kanagawa et al., 2018, Williams and Rasmussen, 2006].
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In this probabilistic perspective, µ(x) = Eff(x) and κ(x,x′) = Ef (f(x)−µ(x))(f(x′)−µ(x′)).

Gaussian processes are often used as prior probability distributions in Bayesian inference [Gel-

man et al., 1995]. (See Section 2.2.1 for further comparison to Bayesian inference).

A significant restriction is that µ and κ are fixed relative to the data. In practical terms, this

means the outcomes of the trials are not reincorporated into the prior. Otherwise, the trials could

trivially, erroneously serve as their own reality check. Thus, although µ and κ are completely

untrusted in terms of their veracity and utility, their provenance (especially the data used to gen-

erate them) must be clearly understood. Practices such as preregistration and data transparency

can facilitate this understanding [Munafò et al., 2017]. Importantly, this assumption is about the

processes used to include data, which are under our control. It is not about the complex phe-

nomena which generate the data itself. In this sense, it is much weaker than the assumptions of

ignorability and positivity which are made in causal inference.

The assumption of fixed µ and κ is technically stronger than necessary. The following task

description more precisely specifies the exchangeability requirement which is required for our

techniques to apply.

Predicting Effects (Technical). Let µ : X → R and κ : X × X 7→ R. Let X̄ = [X;x] ∈ X n+1,

Ū = [U ;u] ∈ Rn+1, V̄ = [V ; v] ∈ Rn+1
+ , M̄ = [µ(X̄i)]i, and K̄ = [κ(X̄i, X̄j)]i,j ≻ 0 be

random variables. Suppose, for any permutation σ of {1, . . . ,n+ 1}, the joint distribution of the

(X̄i, Ūi, V̄i, M̄i, [K̄i,j]j) equals that of the (X̄σ(i), Ūσ(i), V̄σ(i), M̄σ(i), [K̄σ(i),σ(j)]j). Let Yi = Ui+Ei,

where independently Ei|Vi ∼ N(0,Vi). From (X̄,Y ,V , M̄ , K̄), for a desired confidence level

α ∈ (0, 1), produce an interval C(x) such that P(u ∈ C(x)) ≥ 1 − α, where the probability is

over all the random variables.

An advantage of this more technical formulation is that its underlying exchangeability as-

sumption can be tested [Vovk, 2021]. Thus, even when the prior has unknown provenance, a

diagnostic hypothesis test can potentially check if its involvement in the meta-analysis is valid.

Standard Meta-Analysis Algorithms

As previously mentioned, prevalent algorithms for meta-analysis ignore the covariates x; in the

parlance of the field, they perform mean-effect prediction rather than meta-regression. Thus,
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they simply return a single prediction interval C ⊂ R rather than a prediction band. Because the

model (2.5) is not analytically solvable, there is no exact, rigorous frequentist prediction interval.

Instead, there are many different formulae [Nagashima et al., 2021, Veroniki et al., 2019], each

involving approximations which hold only as n→∞. Most of the prediction intervals have this

form:

C = ÂTE± t
√
ν̂ + V̂ar(ÂTE) (2.6)

In this expression, the variance estimates ν̂ and V̂ar(ÂTE) are usually algorithm-specific. More

generally, t is the 1− α
2 quantile of a Student t distribution with either n− 1 or n− 2 degrees of

freedom. ÂTE is an estimate of ATE, usually based upon inverse-variance weighting:

ÂTE =
∑

i

wiYi

/∑
i

wi where wi = 1
Vi + ν̂

for each i = 1, . . . ,n (2.7)

In practice, the most widely-used prediction interval is based on the classical heterogeneity esti-

mator ν̂ of DerSimonian and Laird [1986], and an estimator V̂ar(ÂTE) proposed by Higgins et al.

[2009]. When n is small, experimental evidence indicates this interval is too small to satisfy (2.4)

with the desired probability 1 − α. To the best of our knowledge, this method does not have a

proven coverage guarantee, so the following result is stated imprecisely.

Proposition 2 (Classical Prediction Interval). Assume the model (2.5) with Ui ∼ N(ATE, ν).

Define the following quantities within (2.6):

ν̂ = Q− (n− 1)
S1 + S2/S1

V̂ar(ÂTE) = (
∑

i

wi)2 Ȳ =
∑n

i=1 V
−1

i Yi∑n
i=1 V

−1
i

Q =
n∑

i=1
V −1

i (Yi − Ȳ )2 Sr =
n∑

i=1
V −r

i

Then C, as defined in (2.6), approximately satisfies (2.4) as n→∞.

Partlett and Riley [2017] proposed an alternative prediction interval based upon restricted

maximum likelihood (REML) and Hartung-Knapp-Sidik-Jonkman (HKSJ) estimators [Nagashima

et al., 2021]. REML obtains ν̂ and ÂTE as the maximizers of a log-likelihood function ℓ(ν̂, ÂTE)

which is filtered to remove influences from irrelevant variables [Viechtbauer, 2005]. It is not

concave, so it cannot be maximized by standard algorithms. However, its stationary points
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∂ℓ / dν̂ = 0 (for fixed ÂTE) and ∂ℓ / dÂTE = 0 (for fixed ν̂) have closed-form expressions,

so it is amenable to alternating maximization. The following estimator V̂ar(ÂTE) was developed

independently by Hartung and Knapp [2001] and Sidik and Jonkman [2003]. Cochrane Statis-

tical Methods and other groups endorse the use of HKSJ [IntHout et al., 2014, Veroniki, 2022,

Veroniki et al., 2019]. This method also does not have a proven coverage guarantee.

Proposition 3 (REML+HKSJ Prediction Interval). Assume the model (2.5) withUi ∼ N(ATE, ν).

Initialize ν̂ = 0. Alternate the updates to ÂTE and w in (2.7) with the following update of ν̂, until

a fixed point is approximately reached:

ν̂ ←
∑n

i=1 w
2
i ((Yi − ÂTE)2 − Vi)∑n

i=1 w
2
i

+ 1∑n
i=1 wi

V̂ar(ÂTE) =
n∑

i=1

(Yi − ÂTE)2wi

(n− 1)∑j wj

Then C, as defined in (2.6), approximately satisfies (2.4) as n→∞.

In addition to these frequentist intervals, Bayesian intervals for u can also be obtained [Gel-

man et al., 1995, Smith et al., 1995]. These begin with prior distributions over ATE and ν.

Improper (i.e. unnormalized) uniform priors are a default uninformative choice [Röver, 2017].

Using the random-effects model as a likelihood, Bayes’ theorem obtains the posterior distribu-

tion over ATE and ν, which induces a (normal) posterior distribution over u. From this posterior

distribution, a prediction interval for u can be derived. Such intervals can be highly sensitive to

the choice of uninformative prior, which is partially why Bayesian methods are less common in

systematic reviews [Hamaguchi et al., 2021]. Nonetheless, there are some circumstances where

the flexibility of Bayesian methods is desirable. For example, the Bayesian approach can be ex-

tended to predicting trials. The posterior distribution for future y ∼ N(u, v) is just u’s posterior

with v more variance.

Proposition 4 (Bayesian Trial Prediction). Let the prior distribution over ATE be improper uni-

form. Assume the likelihood (2.5) with Ui |ATE, ν ∼ N(ATE, ν). Then, recalling (2.7), the

posterior predictive distribution conditioned on ν is y | ν = ν̂ ∼ N
(
ÂTE, (∑i wi)−1 + ν̂ + v

)
.

[Röver, 2017]
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The Ethics of Meta-Analysis

Healthcare is important, uncertain, and sometimes controversial. Evidence-based medicine was

introduced to help resolve some of these issues, but it involves controversy of its own. It un-

avoidably privileges certain kinds of experiences and opinions over others. This paper does not

introduce these problems, but it does operate in their midst. Let us examine how these problems

could be ameliorated or aggravated by our approach.

Currently, meta-analysis in evidence-based medicine is highly exclusionary. The “lower lev-

els” of the evidence hierarchy are deprecated in favor of RCTs in an effort to preserve rigor and

eliminate bias. However, this introduces some bias of its own. For example, RCTs are expensive

to conduct. Any methodology that substantially prefers RCTs may be substantially influenced

by funding agencies and associated institutions [Lundh et al., 2017]. Furthermore, RCTs are

not ethical to conduct in many situations [Morris and Nelson, 2007]. Conformal meta-analysis

recognizes that RCTs are especially valuable, but it holistically incorporates data of less rarified

origin. Even when our methods do not lead to quantitative improvements, they are arguably

more fair, inclusive, and comprehensive. They could ameliorate concerns that evidence-based

medicine limits the autonomy of healthcare professionals [Armstrong, 2007].

However, conformal meta-analysis introduces additional computational and statistical com-

plexity into the process of meta-analysis. This complexity could be exploited by bad actors, with

negative societal consequences. For example, a malicious meta-analyst could sneak trial data

into their prior to arrive at intentionally biased conclusions. To prevent such harms from occur-

ring, any rigorous conclusions derived from conformal meta-analysis need to be accompanied by

safeguards on the handling of data.

2.7.2 Computations for KRR

Let M and K be the mean and kernel function applied to the training features:

M = [µ(X1), . . . ,µ(Xn)]T ∈ Rn K = [κ(Xi,Xj)]1≤i,j≤n ∈ Rn×n

Given a parameter λ ∈ R and observations U ∈ Rn, KRR learns the following posterior on the
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training features:

M̂ = (K̂/λ)U + (K/λ+ I)−1M K̂ = λ(K + λI)−1K

In full conformal prediction, KRR is applied to the training set (X,U) augmented by (x,u).

We will use bars to denote this augmentation, so X̄ = [X;x], Ū = [U ;u]. Let m = µ(x),

k = [κ(X1,x), . . . ,κ(Xn,x)]T , k0 = κ(x,x), and:

Ī =

 I 0

0 1

 K̄ =

 K k

kT k0

 Q̄ := (K̄ + λĪ)−1K̄ =

 Q q

qT q0


Then, the augmented posterior mean is:

 M̂

m̂

 = Q̄

 U

u

+

t̄︷ ︸︸ ︷
(K̄/λ+ Ī)−1

 M

m



So the differences between the observations and posterior means are:

 U − M̂

u− m̂

 = (Ī − Q̄)

 U

u

− t̄ =

 (I −Q)U − qu

−qTU + (1− q0)u

− t̄ =

 Au+B

au+ b


with the abbreviations:

 A

a

 =

 −q
1− q0


 B

b

 =

 I −Q

−qT

U − t̄

The augmented posterior kernel matrix is λQ̄. Thus, Si =
√
λQii and s =

√
λq0. To determine

Zi and z, decompose the differences between the observations and the posterior means. As
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before, denote augmentation with overlines, as in Ē = [E ; ϵ].

 Y − M̂

y − m̂

 = (Ī − Q̄)(Ū + Ē − M̄)− z̄

=

 U − M̂

u− m̂

− (Ī + Q̄)Ē =

 U − M̂

u− m̂

+

 (I −Q)E − qϵ

−qTE + (1− q0)ϵ


Now, calculate the mean squared error with respect to Ei ∼ N(0,Vi) and ϵ ∼ N(0, v):

E (Yi − M̂i)2 = E (Ui − M̂i + (ei −Qi)TE − qiϵ)2

= (Ui − M̂i)2 + E

(1−Qii)Ei −
∑
j ̸=i

Qi,jEj − qiϵ

2

= (Ui − M̂i)2 +
Zi︷ ︸︸ ︷

(1−Qii)2Vi +
∑
j ̸=i

Q2
i,jVj︸ ︷︷ ︸

Di

+ q2
i︸︷︷︸

A2
i

v

E (y − m̂)2 = E (u− m̂− qTE + (1− q0)ϵ)2 = (u− m̂)2 +
z︷ ︸︸ ︷∑

j

q2
jVj︸ ︷︷ ︸

d

+ (1− q0)2︸ ︷︷ ︸
a2

v

2.7.3 Proof of Theorem 3

Recalling Definition 1 and the computations in Section 2.7.2, we seek to prove:

|qi|√
Qii

<
|1− q0|√

q0
⇐⇒ |qi|√

Qii · q0
<
|1− q0|
q0

Since Q̄ is positive definite, its entries are the inner products among some vectors f0, . . . , fn. In

particular, qi = ⟨fi, f0⟩. Thus, by the Cauchy-Schwartz inequality:

|qi| = |⟨fi, f0⟩| ≤ ||fi|| · ||f0|| =
√
||fi||2 · ||f0||2 =

√
Qii · q0

Thus, it suffices to show that 1 < 1−q0
q0

, that is, 0 < q0 <
1
2 . Since Q̄ is positive definite, q0 > 0 is

obvious. To establish q0 <
1
2 , let us examine the constraints on the last row of Q̄. By the original
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definition of Q̄, taking just the last column of K̄:

 q

q0

 = (K̄ + λĪ)−1

 k

w


Expanding and multiplying by both sides:


 K k

kT k0

+ λĪ


 q

q0

 =

 k

k0


Expanding again:

 K

kT

 q +

 k

k0

 q0 + λ

 q

q0

 =

 k

k0


This finally leads to the constraints:

(K + λI)q = (1− q0)k

kT q + λq0 = (1− q0)k0

Inverting the first equation to solve for q = (1 − q0)(K + λI)−1k and plugging into the second

yields:

(1− q0)kT (K + λI)−1k + λq0 = (1− q0)k0

If we take λ = k0 then:

(1− q0)kT (K + k0I)−1k = (1− 2q0)k0

n∑
i=1

k̃2
i

λi + k0
= 1− 2q0

1− q0
k0

The left hand side is positive, so in order for the right hand to be positive, it is necessary that

q0 <
1
2 , as originally desired. To ensure λ (and KRR overall) remain symmetric, this analysis
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must be applied to any permutation of the data. Thus, λ should be larger than any diagonal entry

of K̄, not just k0.

2.7.4 Proof of Lemma 2

The interval for y depends on v only through ρi:

1
η
ρi = Zis

2 − zS2
i = Dis

2 − dS2
i −

︷ ︸︸ ︷
((aSi)2 − (Ais)2) v

Under idiocentricity, a/s > Ai/Si. Thus, the bracketed term above is positive, ρi decreases with

v, the square-root radius in Li (which subtracts ρi) increases with v, and the denominator in Li

is positive. Dividing by the denominator, the radius Hi is of the form
√
. . .+ ηv ≤ √. . .+√ηv.

Neither the center Gi of Li nor the other elided terms in the radius depend on v; the
√
ηv term is

the only one which involves v.

2.7.5 Proof of Lemma 3

Abbreviate C(x, v) = C. The key property we repeatedly use is that y is one of the endpoints

of w chosen uniformly at random, conditionally independent of the other data. If w ̸⊆ C, then

either both of its endpoints are not in C, or exactly one of them isn’t. In the former case, y clearly

isn’t in C; in the latter, it isn’t with probability 1
2 . Let gray be the event that exactly one of w’s

endpoints is outside of C. First, we prove that:

P(gray) ≤ 2α (2.8)

Let near denote both ofw’s endpoints are inC, and far that neither are inC, so that near, gray, far

partition the probability space. By total probability, and the aforementioned reasoning about y:

P(y ∈ C) = (1− P(gray)− P(far))P(y ∈ C | near) + P(far)P(y ∈ C | far) + P(gray)P(y ∈ C | gray)

= (1− P(gray)− P(far))(1) + P(far)(0) + P(gray)1
2

≤ 1− P(gray) + P(gray)1
2
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Combining this with the assumption yields (2.8). Next:

P(y ∈ C | w ̸⊆ C) = P(gray)P(y ∈ C | gray) (only nonzero case)

= P(gray)1
2 (symmetry)

≤ α (2.8)

With this inequality, the original claim follows from:

1− α ≤ P(y ∈ C) (assumption)

= P(w ⊆ C, y ∈ C) + (1− P(w ⊆ C))P(y ∈ C | w ̸⊆ C) (total probability)

≤ P(w ⊆ C, y ∈ C) + (1− P(w ⊆ C))α (proved above)

= P(w ⊆ C) + (1− P(w ⊆ C))α (y ∈ w)

Note this proof required ϵ to be symmetric, zero mean, and conditionally independent given its

variance v, but not necessarily normally distributed.

2.7.6 Proof of Lemma 4

Abbreviate C = C(x, v) and C̃ = C(x, 0). For the first inequality of the following block, the

worst case is obtained when u is exactly one of the endpoints of C̃ (say, the upper endpoint c̃+),

since that maximizes the distance from the endpoint of C (say, c+), and therefore maximizes

probability that w will still remain within C.

P(w ⊆ C | u ̸∈ C̃) ≤ P(c̃+ + |ϵ| ≤ c+)

= P(|ϵ| ≤ √ηv) (Lemma 2)

= erf
√
η

2 (normal distribution)
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Thus, the desired claim follows from total probability and some rearranging:

1− 2α
1− α ≤ P(w ⊆ C) (assumption)

= P(u ∈ C̃)P(w ⊆ C | u ∈ C̃) + P(u ̸∈ C̃)P(w ⊆ C | u ̸∈ C̃) (total probability)

≤ P(u ∈ C̃) + (1− P(u ∈ C̃))erf
√
η/2 (proved above)

2.7.7 Predicting Effects with Robust Optimization

If we had observed true effects U rather than noisy Y , then straightforward conformal prediction

would yield a satisfactory interval.

Proposition 5 (Full Conformal Prediction). Let (Xi,Ui) ∼ P (for i = 1, . . . ,n) as well as

(x,u∗) ∼ P be exchangeable. Let [R; r] be the residuals of a symmetric learning algorithm on

[X;x] and [U ;u]. Given any α ∈ (0, 1), let:

C(x) = {u : r is among the τ smallest of R1, . . . ,Rn} for τ = ⌈(1− α)(n+ 1)⌉ (2.9)

Then P(u∗ ∈ C(x)) ≥ 1− α. [Vovk et al., 2005]

Let C(x; Û) denote the prediction interval when Û is given as training data. Suppose we

know a set U which contains the true U . If the outer interval Ĉ(x) contains all C(x; Û) over U ,

then of course Ĉ(x) contains C(x;U) and inherits its coverage. Lemma 5 shows the uncertainty

over U falling in that plausible set separates from fully-conformal KRR’s uncertainty over u,

given U . This is because E is independent from all else, given V .

Lemma 5 (Cover All Possibilities). Let Ĉ(x) contain all intervals induced by the ellipsoid E:

E =
{
E :

n∑
i=1

E2
i

Vi

≤ ρ

}
Ĉ(x) =

⋃
E∈E

C(x;U + E︸ ︷︷ ︸
Y

−E)

Let ρ > 0 be chosen so that PE(E ∈ E | V ) ≥ 1− δ. Then P(u ∈ Ĉ(x)) ≥ (1− α)(1− δ).

Proof. Let C(x;U) = C(x) be the interval from Proposition 5 when computed on the true U . In
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the following, let rest denote X,U ,x,u.

P(u ∈ Ĉ(x)) ≥ P(u ∈ C(x),C(x) ⊆ Ĉ(x)) (partial probability)

= EV Erest

(
1(u ∈ C(x)) · PE(C(x) ⊆ Ĉ(x) | V , rest)

)
(total probability)

≥ EV Erest (1(u ∈ C(x)) · (1− δ)) (see below)

= (1− δ)Prest,V (u ∈ C(x)) (total probability)

≥ (1− δ)(1− α) (conformal prediction)

A sufficient condition for C(x;U) ⊆ Ĉ(x) is that E = E for some E ∈ E, i.e. that E belongs to

the ellipsoid. Note that Ĉ(x) depends on U but this condition does not. Thus:

PE(C(x) ⊆ Ĉ(x) | V , rest) ≥ PE(E ∈ E | V , rest) (sufficient condition)

= PE(E ∈ E | V ) (conditional independence)

≥ 1− δ (assumption)

This lemma doesn’t make any smoothness assumptions on how C(x; Û) changes as Û varies

away from U ; it relies on the coverage of exactly C(x;U), but not of any slight perturbation

C(x; Û). Furthermore, the lemma does not depend specifically on the normal distribution of E ,

just that we know a set E which captures it with probability 1 − δ. For Gaussian noise, this is

an ellipsoid of appropriate scale. This proof does not depend on the geometry of E, just the fact

that it contains E with high probability, and can be computed from Y and V . Thus, this overall

strategy can be extended to handle non-Gaussian noise.

The previous lemma converts the statistical problem of covering u into the purely computa-

tional problem of determining the endpoints of Ĉ(x). When η = 0, and if U is provided in lieue

of Y , Algorithm 2.2 computes the interval C(x) specified in Proposition 5. This allows us to

concretely bound the endpoints of Ĉ(x) as the following two optimization problems:

u− := min
E∈E

max{bottom n− τ + 1 lower endpoints of L1, . . . ,Ln} (2.10)

u+ := max
E∈E

min{top n− τ + 1 upper endpoints of L1, . . . ,Ln} (2.11)
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Though this a nonconvex optimization problem, it has useful structure. From Theorem 2, recall

that the endpoints equal Gi ± Hi, where Hi = |∆i|. We are using η = 0, which implies

ρi = 0, and in turn simplifies the equations for these variables. Recalling the equations from

Section 2.7.2 and Theorem 2, the conformal idiocentric KRR equations are a set of constraints

in the variables B, b, Û and E, involving constants a,A, s,S,Q, q, t̄,Y and V :

Gi = AiBis
2 − abS2

i

(aSi)2 − (Ais)2 ∆i = sSi
Aib− aBi

(aSi)2 − (Ais)2 (2.12) B

b

 =

 I −Q

−qT

 Û − t̄ Û = Y − E
n∑

i=1

E2
i

Vi

≤ ρ

The four constraints on the left are linear. The quadratic constraint is convex, since Vi > 0.

Thus, the constraints (2.12) are convex. Thus, despite the nonconvexity of the objective, the

problems (2.10) and (2.11) may be amenable to semidefinite programming relaxations, robust

optimization, and/or nonconvex optimization. We leave such investigation to separate work.

2.7.8 Simulation Details and Full Results

The simulations were performed using three partially-synthetic biomedical datasets from the

Penn Machine Learning Benchmark [Olson et al., 2017]: 1196_BNG_pharynx, 1201_BNG_breastTumor,

and 1193_BNG_lowbwt. We randomly subsample training data (X,U) as well as test data

(x,u). The kernel matrix K is generated using either the Gaussian or Laplace kernel as κ.

For consistency across datasets having different scales, a parameter effect noise > 0 is in-

troduced, and the distribution of V is constructed to satisfy E(Vi) = effect noise ·
√
E|Ui|.

Specifically Vi ∼ Exp(1) ·
√

effect noise · E|Ui|. Similarly, to produce prior means M of

varying quality, a parameter prior error > 0 is introduced, and the distribution of M satisfies

MSE(M ,U) = prior error ·V(U). Furthermore, the difference between M and U should not be

purely random — otherwise, using KRR to explain this difference would be hopeless. Instead,

we generate a random offset function f̃(x) = ∑
i giκ(x̃i,x) for random held-out data x̃i and

gi ∼ N(0, 1). Since f̃ is an RKHS element generated from random data, there is some hope

in approximating it using the training data. Letting F̃ be f̃ applied to the training features, we
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generate M = pF̃ + (1− p)U where p =
√

prior error · V(U)/MSE(U , F̃ ).

All simulations are averaged over 32 random splits. Intervals are computed for between 256

and 768 test data in each run. Due to the efficiency of our proposed algorithms, all experiments

are capable of running on a free Google Colab instance.
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Simulation 2.1: Rows are different datasets; the different columns, from left to right, set
prior error equal to 3.0, 0.9, and 0.2, respectively. α = 0.1 and effect noise = 0.5 were used.

2.7.9 Case Study Details

We follow the meta-analysis process illustrated in Figure 2.1. First, we determine the domain

X of x. Helpfully, Letelier et al. [2003] identified 10 potentially-relevant features, such as mean

age, mean AF duration, and amiodarone therapy protocol (e.g. “IV, 5 mg/kg in 30 min + 10

mg/kg in 20 h” or “Oral, 600 mg/d for 3 wk”). In order to extract these features from the trial, we

give their published PDFs to a publicly-available language model, along with a prompt including

example output. This extraction is fairly reliable, echoing the experience of Yun et al. [2024].

Next, parsing code (also written by the language model) converts the extracted textual features

to numerical vectors x. As exemplified in Figure 2.7, this parsing can be tedious and error-prone,

even with a state-of-the-art LLM. Our final predictions end up relying on just three features:
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Simulation 2.2: Rows are different datasets. n = 50 and n = 200 are used in the left and right
columns, respectively. prior error is set low to 0.2.

total amiodarone dosage in the first 24 hours, whether mean AF duration was above or below 48

hours, and the number of patients (which is a sensible feature when predicting trials rather than

effects).

In lieue of a powerful pretrained foundation model, we base µ and κ on the critique of Slavik

and Zed [2004]. They describe how multiple sources of heterogeneity, such as dosage, could

impact the effect of amiodarone. Most importantly, amiodarone has a relatively slow course of

action, whereas patients with recent-onset AF (usually defined as an AF duration of less than 48

hours) have a high chance of spontaneously reverting to normal sinus rhythm. (Letelier et al.

[2003] also noted this pattern). With recent-onset AF, median spontaneous conversion rates are

“11% at 2 hours after admission, 18% at 3 hours, 25% at 4 hours, 31% at 6 hours, 39% at 8 hours,

38% at 12 hours, 58% at 24 hours, and 67% at 48 hours.”. This compares to only 0–8% within

the first 72 hours for patients with persistent AF. We identify 8 further trials which compared

amiodarone to an active comparison. We compute pseudo-effects (as relative risk) by taking the

ratio of the observed probability of conversion under amiodarone, over the aforementioned esti-

mated probability of spontaneous conversion over time. Such indirect comparison is reminiscent

of how network meta-analysis works [Cipriani et al., 2013].
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Simulation 2.3: Rows are different datasets; n = 50 and n = 200 are used in the left and right
columns, respectively. α = 0.1 and prior error = 0.1 were used.
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Simulation 2.4: Rows are different datasets; n = 16 and n = 200 are used in the left and right
columns, respectively. A low effect noise = 0.02 was set, along with α = 0.1.
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1 def precomputations(M, K, U, m, k, ko, alpha):

2 n = len(M)

3 I = eye(n)

4 I_ = eye(n+1)

5 M_ = append(M,m)

6 K_ = block([[K, k[:, newaxis]], [k, ko]])

7 lambda = amax(diag(K_))

8 t_ = solve(K_/lambda + I_, M_)

9 Q_ = solve(K_+lambda*I_, K_)

10 Q = Q_[:-1,:-1]

11 q = Q_[-1,:-1]

12 qo = Q_[-1,-1]

13

14 A = -q

15 a = 1-qo

16 B = U - Q@U - t_[:-1]

17 b = -q@U - t_[-1]

18 # a is already positive; flip signs (wlog) so that a,A_i >= 0

19 B *= sign(A) + (A == 0)

20 A *= sign(A)

21 S2 = lambda*diag(Q)

22 s2 = lambda*qo

23 D = square(I-Q) @ V

24 d = square(q) @ V

25

26 tau = ceil((1-alpha)*(n+1)).astype(int32)

27

28 return Q,q,A,a,B,b,D,d,S2,s2,tau

Algorithm 2.3: Python / NumPy code for common linear-algebraic computations described in
Section 2.3. In this code, and the code throughout the paper, some elisions and deoptimizations
are made for readability. In particular, import statements are omitted.
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Can you extract the following features from the attached PDF
paper? I gave example values, from another paper, which should
be replaced with the actual values in this paper. The only
relevant outcome is conversion to normal sinus rhythm. Also,
create a new key like "Results": [a, b, c, d] where a is the
number of amiodarone patients converted to sinus rhythm, b is
the total number of amiodarone patients, c is the number of
comparison patients converted to sinus rhythm, and d is the
total number of comparison patients. Answer as JSON.

{"Name": "Villani et al.11 (Italy) 2000", "Features": { "
Amiodarone Therapy Protocol": "Oral, 400 mg/d for 1 mo", "
Comparison Treatment": "Oral digoxin, 0.25 mg/d or oral
diltiazem hydrochloride 180- 360 mg/d for 1 mo", "Time to
Outcome Measure": "1 mo", "Number of Amiodarone Patients":
"44", "Number of Control Patients": "30", "Fraction with CV
Disease": "47", "Mean Left Atrium Size, mm": "50", "Mean AF
Duration": "17 wk", "Mean Age": "58", "Fraction Male": "67", "
Adequate Concealment of Treatment": "No", "Follow-up Fraction":
"100", "Masked Patients": "Yes", "Masked Caregiver": "no", "

Masked Assessor": "no" }}

Figure 2.5: Prompt used to extract relevant data from trial PDFs.
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In the attached JSON list, each element represents a study
described by the "Features" attribute. Convert these features
to real numbers so they can be provided to a learning algorithm
.

* amiodarone treatment should be the total dosage, in
milligrams, which is given over the first 24 hours. If the
dosage is specified per kg bodyweight, then take into account
the average bodyweight of the patients.

* comparison treatment should be converted to [0,1], where 0
denotes placebo and 1 an intensive, high dose comparison
regimen.

* if the fraction of male patients is unknown, just assume it
is 0.5.

* fraction with CV disease and followup fraction were reported
as integers, so for example 78 should be converted to 0.78.

* number of control and amiodarone patients should be just
copied over as integers

* mean AF duration and time to outcome measure should be
converted to -1 for <= 48 hours and 1 for > 48 hours

* mean left atrium size and mean age should be rescaled to
\[-1,1\] where 0 is the average of the feature, -1 is the
minimum, and 1 is the maximum

* the boolean features should be rescaled to \[-1, 1\], where
-1 means false, 1 means true, and 0 means not present or not
confident.

* include the same keys for all the studies, using the original
key names.

Answer as JSON; no further explanation is necessary.

Figure 2.6: Prompt used to convert extracted data to numerical features.
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1 def parse_dosing_protocol(protocol):

2 if protocol is None or protocol.lower() == 'not specified':

3 return 0

4
5 weight = 70 # Average body weight in kg

6 total_mg = 0 # Initialize total milligrams

7
8 # Normalize and break down the protocol into components

9 protocol = protocol.lower().replace('over', 'in').replace('plus', ',')

10 phases = protocol.split('+')

11
12 for phase in phases:

13 parts = phase.split(',')

14 for part in parts:

15 part = part.strip()

16 tokens = part.split()

17 dose = 0

18 rate_based = False

19 duration = 24 # Default duration is 24 hours unless specified

20
21 # Parse the dose and units

22 for i, token in enumerate(tokens):

23 try:

24 # Attempt to convert token to float to find numeric values

25 potential_dose = float(token)

26
27 # Check for units immediately following the numeric value

28 if i + 1 < len(tokens):

29 unit = tokens[i + 1]

30 if 'g' in unit and 'mg' not in unit:

31 potential_dose *= 1000 # Convert grams to milligrams

32 elif 'mg/kg' in unit:

33 potential_dose *= weight # Convert to total mg for given weight

34
35 # Determine if the dose is time-bound

36 if 'hour' in unit or 'h' in unit or 'min' in unit:

37 rate_based = True # The dose is a rate per time

38 duration = extract_duration(part)

39 if 'min' in unit:

40 duration /= 60 # Convert minutes to hours

41 dose = potential_dose

42 break

43 except ValueError:

44 continue # Not a number, move to next token

45
46 # Apply the dose calculation based on the duration and whether it's rate-based

47 if rate_based:

48 total_mg += min(duration, 24) * dose # Apply the rate up to 24 hours

49 elif 'day' in part:

50 if 'first' in part or '1 day' in part or '1 week' in part:

51 total_mg += dose # Apply if it specifies the first day or week

52 else:

53 total_mg += dose # Single dose or calculated for the duration

54
55 return total_mg

Figure 2.7: Python code generated by GPT-4 to parse and convert amiodarone therapy protocols.
Generating this code required multiple rounds of interaction with the language model. This code
still has mild bugs, which were intentionally left untouched.
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2.8 Discussion

This chapter explores a synthesis between modern regression models trained on large quantities

of untrusted data, and rigorous estimates of causal effect based on small amounts of trusted data.

To researchers in machine learning, it is somewhat unsurprising that prior beliefs or inductive bias

can be safely incorporated into learning algorithms; as discussed earlier in the chapter, a variety

of statistical techniques enable this combination. In evidence-based medicine, however, such a

synthesis between observational data and rigorous causal inference is both counterintuitive and

remarkable. To successfully apply conformal prediction to this field, this chapter fundamentally

advanced some core methodology in (full) conformal prediction. In particular, it shows that full

conformal prediction can be fast and simple for a wide class of learning algorithms.

In my opinion, the results of this chapter are the most significant of this dissertation. In their

seminal paper on random-effects meta-analysis, DerSimonian and Laird [1986] expressed hope

for resolving heterogeneity by using features x. 35 years later, Bryan et al. [2021] declared that

such a “heterogeneity revolution” had still not occurred. Conformal meta-analysis could help

spark this revolution, but much further research is warranted. Improvements to our algorithms

and their analyses seem possible. It should be possible to further relax our statistical assumptions,

such as exchangeability [Barber et al., 2023]. By pairing our techniques with foundation models,

we hope to answer important questions.

At a high level, this chapter follows a “wrapping” strategy: it ensconces a large, difficult-to-

scrutinize model within an algorithm guaranteed to extract rigorous predictions. The following

three chapters employ a different strategy: they attempt to improve large models from within,

“swapping” out internal components to improve tractability, speed, and other factors.
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Chapter 3

Differentiating Through Orthogonal
Polynomial Transforms
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Abstract

Every length-(n+1) sequence of orthogonal polynomials is uniquely represented

by two length-(n + 1) sequences of coefficients α and β. This chapter makes this

representation learnable by gradient-based methods. This amounts to implementing

differentiation algorithms for orthogonal polynomial operations. Automatic differ-

entiation may be applied to such operations, but this uses O(n2) memory, is very

slow in practice, and does not facilitate development of custom descent algorithms

based on approximate gradients. By exploiting reversibility, we derive differenti-

ation algorithms which use O(n) memory and are much faster in practice. Using

these algorithms, fixed polynomial transforms (e.g. discrete cosine transforms) can

be replaced by learnable layers. These are more expressive, but they retain the com-

putational efficiency and analytic tractability of orthogonal polynomials.

As another application, this chapter presents an algorithm for approximating the

minimal value f(w∗) of a general nonconvex objective f , without finding the min-

imizer w∗. It follows a scheme recently proposed by Lasserre [2020], whose core

algorithmic problem is to find the sequence of polynomials orthogonal on a given

probability distribution. Despite the general intractability of this problem, encour-

aging initial results are observed on some test cases. The fulcrum of this application

is that positive measures, moment sequences, and orthogonal polynomial sequences

correspond to one another; this chapter is the first work to explore the orthogonal

polynomials as a parameterization for optimization, which may have computational

advantages in future applications.



3.1 Introduction

Sequences p0, p1, . . . , pn of univariate orthogonal polynomials — such as the Chebyshev, La-

guerre, and Hermite sequences — are fundamental in many areas of scientific computing. Their

core operation is evaluation (or transformation): given a polynomial f , typically represented as

coefficients c0, . . . , cn in the basis p0, . . . , pn, compute f(xi) at n + 1 points x = [x0, . . . ,xn].1

The inverse operation is interpolation: given distinct points xi and corresponding outputs yi,

compute the unique f satisfying f(xi) = yi. A less well-known operation, computing the Jaco-

bian determinant |∂f(x)/∂c|, is useful in applications such as normalizing flows [Rezende and

Mohamed, 2015].

Orthogonal polynomial sequences can be written recursively in terms of two length-(n + 1)

sequences α and β, where both sequences are real, and the latter sequence is positive:

p−1(xi) = 0; p0(xi) = 1; pj+1(xi) = (xi − αj)pj(xi)− βjpj−1(xi) for βj > 0 (3.1)

The correspondence between the orthogonal polynomial sequences p and coefficients (α, β) is

bijective. (A more formal statement is given in Section 3.2.) This chapter enables gradient-based

optimization over the set of orthogonal polynomial sequences. We make (α, β) a learnable repre-

sentation by deriving the gradients, with respect to (α, β), of the evaluation and interpolation op-

erations. Compared to naive algorithms obtained by automatic differentiation, the hand-derived

algorithms use O(n) (rather than O(n2)) memory, are much faster in practice, and enable de-

velopment of approximate-gradient descent algorithms. This chapter explores the following two

applications of this new optimization capability.

Learned polynomial transforms. Currently, orthogonal polynomial transforms are man-

ually chosen based on intuitions about their suitability. Informally, Chebyshev polynomials re-

semble cosines; Laguerre polynomials are similar to cosines multiplied by exponentials; Hermite

polynomials are roughly cosines divided by Gaussians [Valiant, 2016]. They are orthogonal with

respect to different distributions µ over their inputs x; see Figure 3.1. All these transforms are

generalized by the proposed learnable layer, which is called DXT. It has fast algorithms for its

1Zero-indexing vectors of length n + 1 is a standard convention for polynomial transforms.
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forward, backward, inverse, and log-determinant passes. DXT is empirically evaluated as a drop-

in replacement for the DCT and IDCT within JPEG compression, where it is trained by gradient

descent to improve image quality. On the CLIC dataset, this obtains better tradeoffs between

visual quality and compression over standard JPEG. It may be possible to unobtrusively improve

many signal processing pipelines in this manner.

Minimal values of optimization problems. This chapter presents an algorithm, called Mop,

for approximating the minimal value f(w∗) of a continuous function f , without finding its min-

imizer w∗. In recent work, Lasserre [2020] reduced this difficult problem to the following one:

given sampling access to a distribution µ over R, find the sequence of orthogonal polynomials

(represented as coefficients α and β) which are orthogonal with respect to µ. We formulate this

as an optimization problem which is amenable to stochastic gradient descent.

This chapter’s overall contributions are: (1) memory-efficient algorithms, with fast CUDA

implementations, for computing the vector-Jacobian products of evaluation and interpolation, (2)

the learnable DXT layer, which demonstrates reduced error when applied to image compression,

and (3) Mop, an algorithm for estimating the minimal value f ∗ of a continuous function f .

3.2 Preliminaries

The following background material is found in references on orthogonal polynomials [Gautschi,

2004, 2005, Ismail et al., 2005] and numerical linear algebra [Higham, 2002].

Measures and moments. Let µ be a measure over numbers z ∈ R. (We will typically take

z to be one of the coordinates xi of the length-(n + 1) vector x.) The measure µ is positive if

µ(Z) > 0 for all nonempty open sets Z. Its moments are mk =
∫
zkdµ(z) for k ≥ 0. These

define a linear functional L(pj) over polynomials pj via L(zk) = mk. Positive measures µ,

moment sequences m whose Hankel matrices [mi+j]i,j are positive definite, and positive linear

functionals (satisfying L(pj) > 0 for all nonnegative polynomials pj) uniquely correspond to one

another.

Orthogonal polynomials. A measure µ defines an inner product ⟨pi, pj⟩ =
∫
pi(z)pj(z)dµ(z)

over polynomials. pi and pj are µ-orthogonal if ⟨pi, pj⟩ = 0. A sequence [p0, p1, . . . , pn] = p
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Transform xi αk β = γ2 µ

Cosine-III cos( π
n+1)(i+ 1

2) 0 β0 = π, β1 = 1
2 , βk = 1

4 2 · Beta(1
2 , 1

2)− 1

Legendre [Bogaert, 2014] 0 β0 = 2, βk = k2/(4k2 − 1) Uniform(−1, 1)

Hermite [Press et al., 1992] 0 β0 =
√
π, βk = k/2 Normal(0, 1

2)

Laguerre [Press et al., 1992] 2k + 1 β0 = 1, βk = k2 Exponential(1)

Figure 3.1: Parameters of classic orthonormal polynomial transforms, up to diagonal scaling.
Cosine-III (short for the Discrete Cosine Transform, type III) is formed from the Chebyshev
polynomials. The evaluation points xi are taken to be the roots of pn+1. They may not have
a closed form, but can be calculated by the cited algorithms. Coefficient sequences may be
obtained from Gautschi [2005], Leibon et al. [2008] and Chapter 4.5 of Press et al. [1992]. µ is
the probability distribution which renders the polynomial sequence µ-orthogonal.

of polynomials is µ-orthogonal if pi and pj are µ-orthogonal when i ̸= j. A polynomial of

z is monic if its leading coefficient on zn is 1. A polynomial qi is orthonormal if its norm

||qi|| =
√
⟨qi, qi⟩ = 1. q is an orthonormal polynomial sequence if each qi is orthonormal.

Three-term recurrence. For every positive µ, the sequence of µ-orthogonal monic polyno-

mials satisfies the three-term recurrence (3.1) for some α and β. The orthonormal polynomial

sequence q0, q1, . . . satisfies the following similar three-term recurrence, involving the coefficient

sequences (α, γ):

q−1(xi) = 0; q0(xi) = γ−1
0 γj+1qj+1(xi) = (xi − αj)qj(xi)− γjqj−1(xi) for γj > 0 (3.2)

The orthonormal polynomial sequence q defined by (α, γ) corresponds to the monic polynomial

sequence p defined by (α, β) where γj =
√
βj for j > 0. The Jacobi matrix, truncated to order

n, organizes the coefficients (α, β) in the following n× n symmetric tridiagonal matrix:

Jn =



α0
√
β1 0 0 0

√
β1 α1

√
β2 0 0

0
√
β2 α2

√
β3 0

... . . . . . . . . . ...

0 . . . 0
√
βn−1 αn−1


(3.3)
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Favard’s theorem.2 Given any sequence of monic polynomials p defined by α and β in

the recurrence 3.1, define a linear functional L over polynomials as follows: L(p0) = β0 and

L(pj) = 0 for j > 0. Then L is positive by construction. The theorem states that L corresponds

to a positive measure µ for which p are µ-orthogonal, and that L(pj) = Ez∼µpj(z).

Normalization. The squared Euclidean norm of a degree-k monic polynomial is ||pk||2 =

⟨pk, pk⟩ = ∏k
j=0 βj . Neither the three-term recurrence (3.1) nor the Jacobi matrix involve β0.

This is because β0 = ||p0||2 =
∫

1dµ(x) is the normalizing constant of µ. By fixing β0 = 1, we

restrict attention to probability distributions.

Basic operations and Vandermonde systems. The fundamental computational operations

for orthogonal polynomials are listed in Figure 3.2. Evaluation and interpolation are the most

commonly-used operations and are the primary subject of this chapter. Code for these operations

is given in Figure 3.3. These operations can be viewed as matrix-vector multiplication and linear

system solving, respectively, with a polynomial Vandermonde matrix V , which is defined below.

Recalling that c and y are vectors for coefficients and output values, respectively:

V c = y where Vi,j = pj(xi) (indexed from zero) (3.4)

V generalizes the Vandermonde matrix from monomials to orthogonal polynomials. Its determi-

nant is the same as the Vandermonde matrix: det(V ) = ∏
1≤i<j≤n(xj − xi) [Barnett, 1975]. V is

invertible when the xi are distinct. The derivative Vandermonde matrix has entries V ′
i,j = p′

j(xi);

it will appear in the algorithms developed in this chapter.

Numerical stability. The Evaluate algorithm in Figure 3.3 (also called Clenshaw’s algo-

rithm) is known to be numerically stable [Smoktunowicz, 2002]. By contrast, Interpolate can be

unstable for moderate n [Gohberg and Olshevsky, 1997, Higham, 1990]. Fortunately, various

mitigations have been developed for this issue. Furthermore, the instability in Interpolate can be

resolved entirely using program transformation techniques. This chapter does not encounter such

numerical instability, but this important issue is nonetheless discussed further in the appendix.

2This is also by Shohat, Stone, etc., so it is also called the spectral theorem of orthogonal polynomials.
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Operation Inputs Output O(n2)-time Algorithm O(n log2 n)-time Algorithm

Evaluation x,α, β, c V c [Smith, 1965] [Potts, 2003]

Interpolation x,α, β, y V −1y Dual in Higham [1988] not available

Derivative
Evaluation

x,α, β, c V ′c [Smith, 1965] not available

Transpose
Multiply

x,α, β, c V T c Appendix [Driscoll et al., 1997]

Transpose
Solving

x,α, β, y V −Ty Primal in Higham [1988] [Bostan et al., 2010]

Determinant x,α, β det(V ) Formula in Section 3.2 [Gohberg and Olshevsky, 1994]

Eigenvalues α, β λi(Jn) [Dhillon et al., 2006] [Coakley and Rokhlin, 2013]

Figure 3.2: Algorithms for orthogonal polynomials. All the inputs are length-(n + 1) vectors.
The O(n2) algorithms can be parallelized. In particular, a version of Clenshaw’s algorithm for
evaluation takesO(n) parallel time [Barrio, 2000]. Interpolate (the dual in Higham [1988]) takes
O(n) parallel time, since the inner loop over j can be run by O(n) threads, each operating on
three entries of c. General-purpose O(n log2 n)-time algorithms for interpolation and derivative
evaluation are not available in the literature, to our knowledge.

3.3 Vector-Jacobian Product Algorithms

Let ℓ be a scalar loss function of some optimization variables (say, x) which is defined by a

forward computation graph. In reverse-mode differentiation, also known as backpropagation,

we seek to compute the gradient of ℓ with respect to x. To do so, we compute the gradient of

ℓ with respect to intermediate expressions (say, y) in the computation graph. In the standard

“overbar” notation [Baydin et al., 2017], the gradient of y is denoted by ȳ = ∂ℓ
∂y

. Now, suppose

the orthogonal polynomial evaluation operation y = V c is part of the computation graph. The

evaluation points x are (some of) its inputs. During the forward pass, we compute y as usual; up

to this point in the backwards pass, we compute ȳ. Let ∇xy = ∂y
∂x

be the Jacobian matrix of y

with respect to x. Then (by linearity of differentiation) it holds that x̄ = ȳT∇xy. Rather than

naively forming the matrix ∇xy, backpropagation directly implements the operation (x, v) 7→

vT∇xy. Applying this at (x, ȳ) yields the desired result. To summarize: efficient reverse-mode

differentiation amounts to efficient implementation of the vector-Jacobian product (VJP).

Vector-Jacobian products may be computed automatically from a forward computation graph.
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procedure Evaluate(x,α, β, c)
u = [cn, . . . , cn]
v = [0, . . . , 0]
for k ∈ [n− 1, . . . , 0] do

τ = u
u = (x− αk) · u

−βk+1v + ck

v = τ
return u

Figure 3.3: Algorithms for polyno-
mial evaluation and interpolation. All
the inputs are vectors in Rn+1. Both
algorithms return a vector in Rn+1.
Evaluate is the Clenshaw algorithm.
Interpolate is the dual algorithm of
Higham [1988]. DivDiffs(x, y) com-
putes the first row of the table of di-
vided differences of y with respect to
x; see the appendix for its definition.

procedure Interpolate(x,α, β, y)
δ = DivDiffs(x, y)
return ChangeBasis(x,α, β, δ)

procedure DivDiffs(x, y) (naive)
δ = y
for k ∈ [0, . . . ,n− 1] do

∆ = δk

for j ∈ [k + 1, . . . ,n] do
τ = δj

δj = (δj −∆)/(xj − xj−k−1)
∆ = τ

return δ
procedure ChangeBasis(x,α, β, δ)

c = δ
cn−1

+
= (α0 − xn−1)cn

for k ∈ [n− 2, . . . , 0] do
ck

+
= (α0 − xk)ck+1 + β1ck+2

for j ∈ [1, . . . ,n− 2− k] do
ck+j

+
= (αj − xk)ck+j+1 + βj+1ck+j+2

cn−1
+
= (αn−k−1 − xk)cn

return c

procedure Evaluate(x,α, β,u, v, ū)
x̄ = ū ◦ (V ′c)
c̄ = V T ū
v̄ = 0
ᾱ = β̄ = [0, . . . , 0]
for k ∈ [0, . . . ,n− 1] do

w = 1
βk+1

(−u+ (x− αk) · v
+ck)

ᾱk = −ūTv
β̄k+1 = −ūTw
u, v = v,w
τ = ū
ū = v̄ + ū · (x− αk)
v̄ = −τ · βk+1

return x̄, ᾱ, β̄, c̄

Figure 3.4: These algorithms com-
pute the vector-Jacobian products
of Evaluate and Interpolate. In
Evaluate, u, v are the corresponding
values computed during the forward
pass, i.e. u is an alias of y.

procedure Interpolate(x,α, β, y, c, c̄)
ȳ = V −T c̄
x̄ = −ȳ ◦ (V ′c)
ᾱ, β̄ = [0, . . . , 0]
for k ∈ [0, . . . ,n− 2] do

cn−1
+
= − (αn−k−1 − xk)cn

ᾱn−k−1
+
= c̄n−1 · cn

c̄n = c̄n−1 · (αn−k−1 − xk)
for j ∈ [n− 2− k, . . . , 1] do

ck+j
+
= − (αj−xk)ck+j+1−βj+1ck+j+2

ᾱj
+
= c̄k+j · ck+j+1

β̄j+1
+
= c̄k+j · ck+j+2

c̄k+j+2
+
= c̄k+j · βj+1

c̄k+j+1
+
= c̄k+j · (αj − xk)

ck
+
= − (α0 − xk)ck+1 − β1ck+2

ᾱ0
+
= c̄k · ck+1

β̄1
+
= c̄k · ck+2

c̄k+1
+
= c̄k · (α0 − xk)

c̄k+2
+
= c̄k · β1

cn−1
+
= − (α0 − xn−1)cn

ᾱ0
+
= c̄n−1 · cn

return x̄, ᾱ, β̄, ȳ
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Figure 3.5: Runtime comparisons of automatic and custom VJP implementations. The latter is
orders of magnitudes faster than the former, for both the forward and backward passes. The
standard implementation has for loops specially expressed as structured control flow; presently,
algorithms involving sparse updates within nested loops are an edge case for compilers. Python’s
timeit is used to perform timing, taking the best of 4 runs, each having 2 repetitions. A batch
size of 32 is used.

However, this stores intermediate computations of the forward pass, which requires memory scal-

ing with depth. Evaluate and Interpolate have depthO(n), soO(n2) memory would be used. Fur-

thermore, they involve sparse updates in nested loops, which are faster in lower-level CPU/GPU

code than in higher-level XLA. This is because languages like XLA tend to be organized around

bulk operations.

The appendix manually derives efficient VJPs for Evaluate and Interpolate. By exploiting

reversibility, it reduces their memory requirements from O(n2) to O(n). The complete algo-

rithms are displayed in Figure 3.4. As illustrated in Figure 3.5, they are substantially faster than

automatic differention, even when memory is not a concern. The appendix similarly derives an

efficient VJP for orthonormal polynomial evaluation, called NEvaluate, which will be used in

Section 3.5.

3.4 Learned Polynomial Transforms

Now we define the differentiable DXT layer, which encapsulates the Evaluate and Interpolate

algorithms. Its arguments (which may be trainable parameters) are the evaluation points x ∈

Rn+1 and the coefficients α, β ∈ Rn+1. Its forward pass is Evaluate and its inverse pass is

Interpolate. It is invertible when the xi are distinct. Its Jacobian is V , whose log-determinant is

calculated by an algorithm cited in Figure 3.2. Finally, its backwards pass is given in Figure 3.4.
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The following subsection applies DXT to the practical problem of image compression.

3.4.1 Learned JPEG

Perhaps the most widely-used orthogonal polynomial transform is the discrete cosine transform

(DCT) within JPEG image compression [Wallace, 1992]. At a high level, JPEG converts RGB

channels to one luma (brightness channel) and two chroma (color) channels, and operates on

each channel separately. It splits the image into 8x8 patches and applies the 2D DCT, which is

equivalent to the DCT applied to each column, followed by the DCT applied to each row. The

transformed patches are quantized (rounded to the nearest integer) after pointwise division by an

8x8 quantization table, in which larger values correspond to less visually significant components.

(The human visual system is less sensitive to high-frequency stimuli. Since the DCT expresses

the patch as a combination of different-frequency components, the standard tables can readily

discard high-frequency information.) Finally, the sequence of integers is losslessly compressed.

The quantization tables are learnable parameters of JPEG (among other compression meth-

ods). They can be learned by proxy objectives [Fung and Parker, 1995] or zero-order methods

[Hopkins et al., 2018]. By replacing rounding with a smooth approximation, JPEG becomes dif-

ferentiable [Shin and Song, 2017], allowing the quantization tables to be learned with first-order

methods [Luo et al., 2020]. We investigate the additional benefit of replacing the DCT by DXT.

To do so, we use a simple objective which (loosely) captures the tradeoff between visual distor-

tion and compression rate, whose relative importance is set by λ > 0. To measure the former, we

use PSNR, which is a normalized log-squared error. To measure the latter, it is typical to jointly

train a measure of entropy, which can be used for the lossless compression step. Since we don’t

aim to replace this step, we retain the standard entropy measure; the objective linearly penalizes

higher values of this measure.

We evaluate the DXT-based compression method on the CLIC 2020 dataset, from the epony-

mous image compression challenge [Toderici et al., 2020]. Adagrad is used as the optimizer.

Learning rates of 0.2 and 2.0 performed best with and without DXT, respectively. The standard

train/test split of CLIC is used. The batch size is 1. As shown in Figure 3.6, replacing DXT

with the DCT consistently reduces error. These improvements are modest, but there are other
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Figure 3.6: Learning both DXT and quantization tables (red) achieves lower loss than learning
just the tables (blue). The difference is minimal at lower values of λ, where the target PSNRs are
roughly 35-40. This is the regime where the standard JPEG tables are designed to operate. How-
ever, as λ increases (and the target PSNR decreases), DXT can express a substantially different
transform.

advantages to keeping the compression pipeline mostly intact. The first is interpretability: the

explanation of JPEG quantizing visually unimportant components remains valid. Another is ease

of training: there are only 24 additional parameters to be trained on a multi-gigabyte dataset.

3.5 Minimal Values of General Optimization Problems

This application is presented merely as a showcase of this chapter’s vector-

Jacobian algorithms. Nonetheless, it is an ambitious problem with many poten-

tial applications.

3.5.1 Background

Let W ⊆ RN be a compact set and let f : W 7→ R be a continuous function which (for simplic-

ity) attains its minimum over W . f ∗ = minw∈W f(w) is that minimum value. Approximating

f ∗ is NP-hard in general, but may be possible for some practically relevant f . (The minimal

value f ∗ should not be confused with the minimizer w∗ ∈ RN achieving f(w∗) = f ∗.) In many

situations, such as nonconvex polynomial optimization [Laurent, 2009], determining f ∗ helps

obtain w∗. Knowing f ∗ can also be useful in of itself. For example, knowing f ∗ could be prac-

tically useful for debugging model training. If a model is trained to have parameters w̃, and its
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loss f(w̃) is much larger than f ∗, then blame lies with the model’s training, rather than its raw

expressiveness.

Lasserre [2020] recently proposed the following approximation scheme for f ∗. Suppose

ρ is some probability distribution on W which (for simplicity) is absolutely continuous with

respect to Lebesgue measure. We call it a prior since it is ideally concentrated around w∗. Then

µ(X) = ρ(f−1(X)) is the distribution of f(w), where X is a measurable subset of R, and

f−1(X) = {w ∈ W : f(w) ∈ X} is the preimage of X under f . Let α∗ and β∗ be the

(unique) recurrence coefficients of the sequence of polynomials p orthogonal with respect to µ.

Let λ be the minimum eigenvalue of Jn (or, equivalently, the smallest root of pn+1). Lasserre

[2020] shows that, as n → ∞, λ → f ∗ from above. Laurent and Slot [2020] prove the rate of

convergence to f ∗ is O(log2 n/n2) if W satisfies a mild geometric condition.

To implement this scheme, Lasserre [2020] observes that the smallest eigenvalue of Jn coin-

cides with the smallest generalized eigenvalue of two (n + 1) × (n + 1) matrices formed from

the moments Ef(w)k = Exk. In particular, λ is the largest value satisfying [Exi+j+1]ni,j=0 ⪰

λ[Exi+j]ni,j=0. In principle, these moments can be computed if ρ can be sampled and f can be

evaluated. However, unless f has special structure, the computation is hard for large n and N .

In particular, the sample complexity of estimating the moments (i.e. the number of evaluations

of f ) is exponential in n.

3.5.2 Proposed Approach

The core problem in this scheme is: given sampling access to the distribution µ, find the unique

sequence q∗ of µ-orthonormal polynomials, represented by the coefficients (α∗, β∗). Let us de-

sign an optimization problem whose solution is (α∗, β∗), which we can then (attempt to) solve

with gradient descent. By definition, the µ-orthonormal polynomials satisfy I = Ez∼µ[ q∗
i (z)q∗

j (z)]i,j .

Furthermore, since µ is a probability distribution rather than an unnormalized measure, we have

that q∗
0(z) = 1, by the normalization discussion in Section 3.2. Recalling (3.2), this is accom-

plished by setting β0 = 1. Let r = [q1(z), . . . , qn(z)] be the ‘rest’ of q(z). By Favard’s theorem

(also stated earlier), Ez∼µ q
∗
j (z) = 0 for j > 0. Let the mean and covariance induced by the

parameters (α, β) be σ = Ez∼µ r and Σ = E(r− σ)(r− σ)T . Then the optimal (α∗, β∗) induces
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procedure Mop(f , ρ)
Initialize α and β
for t = 1, . . . do

Sample wi ∼ ρ and compute xi = f(wi) for i = 0, . . . ,n
rj = NEvaluate(x,α,

√
β, ej) for j = 1, . . . ,n

Form estimates σ̂ and Σ̂ according to (3.5) using r1, . . . , rn

(Optional) Repeat above steps b times and average the estimates σ̂, Σ̂
Update α, β with a gradient step on ℓ(σ̂, Σ̂)
Constrain β > 0

λ = smallest eigenvalue of Jn as defined in (3.3)
return λ

Figure 3.7: Mop aims to find the minimal value f ∗ of the function f over the support of the ‘prior’
distribution ρ. It does so by stochastically minimizing, over α and β, an objective ℓ(σ̂, Σ̂), where
σ and Σ̂ are functions not only of α and β, but of evaluations of f upon draws from ρ. Once α
and β are optimized, f ∗ is estimated by computing an eigenvalue of a matrix defined in terms of
α and β. The loss function ℓ, batch size b, sequence length n, and regularization strength δ ≥ 0
are all parameters for Mop.

σ = 0 and Σ = I . Thus, we pick a loss ℓ(σ, Σ) which is minimized at those values. σ and Σ

are expectations over µ, so they cannot be computed exactly, but they may be estimated from

batches of evaluations. Consider the following (regularized) estimators:

σ̂ = Ê r and Σ̂ = (1− δ)Ê(r − σ̂)(r − σ̂)T + δI (3.5)

where δ > 0 and Ê is the batch mean. (The purpose of the regularization is to avoid ill-

conditioned covariance estimates; Bessel’s correction to the sample covariance may also be

applied). When ℓ is convex, ℓ(σ, Σ) ≤ E ℓ(σ̂, Σ̂). The latter can be minimized by stochastic

gradient descent, forming σ̂ and Σ̂ from each iteration’s batch of x. This yields the Mop algo-

rithm (Figure 3.7), so-named because it reveals the “floor” f ∗, or at least abbreviates Minimal

value of Optimization Problem.

Implementation. Mop is readily implemented using the evaluation operation for orthonor-

mal polynomials (i.e. NEvaluate, as given by Figure 3.12 in the appendix). Let x0, . . . ,xn ∈ R

be drawn iid from µ, let V be formed from these points, and let ej be the jth coordinate vector.

Then V ej = [qj(xk)]k. Taking an average over the xk yields an unbiased estimate σ̂ of σ, as seen
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by comparing to the definitions of r and σ above. Similarly, we can obtain an unbiased estimate

Σ̂ of Σ by averaging over the xk:

Exk∼µ
1

n+ 1
T

((V ei) ◦ (V ej)) = Exk∼µ
1

n+ 1

n∑
k=0

qi(xk)qj(xk) = Ez∼µqi(z)qj(z)

So, to summarize, σ̂ and Σ̂ are obtained by calling NEvaluate, with a size-b batch of x, on

e1, . . . , en.

When could Mop be better than estimating moments? As noted by Lasserre [2020], the

moment matrix is just the identity matrix when expressed in the basis of orthonormal polynomials

q∗. Since every positive-definite Hankel matrix corresponds to moments of a positive measure

on R, it is straightforward to constrain moment estimates to exactly the correct set. However,

the moment sequence has high-degree, high-variance terms. The moment matrix is known to

have condition number that increases exponentially with n. By contrast, NEvaluate is known

to be backwards stable [Smoktunowicz, 2002]. (However, the stochasticity and nonconvexity of

Mop’s optimization may introduce numerical issues of their own.)

The high-level idea is to reparameterize an optimization over univariate mo-

ment matrices (i.e. symmetric positive-definite Hankel matrices) to an optimiza-

tion over sequences of orthogonal polynomials, thereby eliminating the positive-

definite constraint. This could have other applications.

When could Mop be better than random sampling? Mop involves evaluating f at many

random wi. In general, Mop cannot be expected to achieve better performance than random

sampling. However, it nontrivially ties these samples together by exploiting a crucial property of

how α∗ and β∗ relate to µ. It might be possible for random samples to elucidate this relationship

faster than they directly reveal f ∗. Furthermore, if additional structure about µ is known, then it

may be possible to derive more effective specializations of Mop.

Choice of ℓ. An obvious choice for ℓ is the squared Frobenius norm ℓF(σ̂, Σ̂) = ||σ̂||2 + ||I−

Σ̂||2. In our experience, we encountered more success with ℓKL(σ̂, Σ̂) = ||σ̂||2+tr Σ̂−log det Σ̂−

(n + 1), which is the Kullback-Leibler divergence between a standard normal distribution and
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Chebyshev Legendre

Hermite Laguerre

Chebyshev Legendre

Hermite Laguerre

Figure 3.8: Plots of Σ̂ for classical orthogonal polynomials. These are formed from b · n =
1024 samples and the correct α, β,µ listed in Figure 3.1, so Σ̂ should be close to identity. The
Chebyshev and Legendre polynomials behave as desired. The Hermite and Laguerre polynomials
suffer in the bottom-right entries involving higher-degree polynomials. This is because Hermite
and Laguerre µ have unbounded support, along which high-degree polynomials quickly diverge.
The Chebyshev and Legendre µ are supported on [−1, 1]. f should ideally be bounded.

N(σ̂, Σ̂). One possible explanation is that the sampling distributions of the estimators are normal.

Another possibility is a low Jensen gap in E ℓKL(Σ̂) = tr(Σ) +∑
i E log λi(Σ̂).

Stochastic optimization. Our approach extends beyond deterministic objectives f to the

stochastic objectives which dominate machine learning [Srebro and Tewari, 2010]. In this setting,

D is a distribution over examples z — for example, input-output pairs in supervised learning.

fz(w) is typically the loss of weightsw on example z. A stochastic objective F (w) = Ez∼Dfz(w)

can be easily handled in Mop by combining the sampling of z ∼ D and w ∼ ρ in µ. In this

setting, µ would be the posterior loss (or negative log-likelihood), over the data distribution D,

of a Bayesian neural network with prior ρ over its parameters w.

Limitations and failure modes. As mentioned, approximating f ∗ is a computationally in-

tractable problem. Furthermore, Mop is a statistical query algorithm [Kearns, 1998]: it uses

gradient estimates computed from batches of data, and does not directly manipulate individ-

ual examples. It is therefore subject to stronger (information-theoretic) lower bounds than the

previously-mentioned NP-hardness of minimal value approximation [Reyzin, 2020]. Accord-

ingly, there are different ways in which Mop can fail or demand exorbitant resources. It is possi-

ble to encounter local minima or saddle points of ℓ with respect to α and β. The approximation

of f ∗ by λ occurs asymptotically as n grows, so a large n may be required for some f . Larger n,

in turn, demand more samples of f . λ→ f ∗ from above for Jn defined by the optimal (α∗, β∗);
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this is not necessarily true for suboptimal (α̃, β̃) obtained by an inexact algorithm. Furthermore,

Lasserre’s result does not take finite-sample approximation of moments (or in our setting, means

and covariances) into consideration.

3.5.3 Basic Empirical Evaluation

As a preliminary test, we apply the algorithm to f with known f ∗. Some of these problems are

easy, and Mop is able to solve them. One of them is impossible to solve, so Mop (of course)

fails.

1. Recovering classical orthogonal polynomials. Mop defines µ in terms of f and ρ. Before

doing that, let us simply take the µ listed in Figure 3.1, and see if minimizing L(σ̂, Σ̂) recovers

the listed coefficients (α∗, β∗). As depicted in Figure 3.9, success depends on the choice of L and

µ. In all cases, ℓKL achieved lower error than ℓF. The Chebyshev and Legendre coefficents were

easier to recover than the Hermite and Laguerre ones. This agrees with the intuitions in Figure

3.8. In this experiment, n = 8, b = 512, and δ = 0; the initialization is αi = 0 and βi = 1/2.

2. Test polynomials. Lasserre’s scheme has been run on 4 standard test polynomials [Lasserre,

2020]. These are bivariate (N = 2) and have minimum value f ∗ = 0 on W = [−1, 1]N . We

normalized the polynomials to take values in [0, 1]. To distinguish the algorithm’s behavior from

trivially returning 0, we added constants (either 0.2, 0.4, 0.6, or 0.8), shifting the f ∗. Figure 3.10

shows ℓKL reasonably approximates f ∗, whereas the ℓF does not. Due to the normalization, our

results are quantitatively different than those previously reported, but are qualitatively the same:

the Matyas polynomial is the easiest, and the camel polynomial is the hardest [Laurent and Slot,

2020]. Note that λ produced midway during optimization are neither upper nor lower bounds

of f ∗; it is important to completely optimize α and β. In this experiment, n = 8, b = 1024,

and δ = 0. α was initialized with a Glorot normal and β by random U(0, 1). The optimizer is

RMSprop with learning rate 0.05 and gradient clipping.

3. Learning halfspaces / noisy parities. Let x be uniform on the hypercube {−1, 1}N . For

some noise rate η > 0, y is the parity of x with probability 1− η, and is negated with probability

η. Let f ∗ = argminw∈RN − Ehw(x)y be the (negated) correlation of the best possible (smooth)

halfspace hw(x) = tanh(wTx). Using a statistical query algorithm, it is impossible to distinguish
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f ∗ from zero, by the reduction of Kalai et al. [2008] to learning noisy parities [Blum et al., 1994].

For N = 16 and η = 0 we attempt to use Mop to approximate f ∗. For varying values of n, we

run Mop samples (x, y). For distinguishment, we run it on (x, ỹ) where ỹ are random signs. In

Figure 3.11, we see that Mop does not distinguish these distributions, regardless of n. In this

experiment, n = 8, b = 512. Various optimizers (including SGD and RMSprop) were attempted,

and none changed the (lack of) results.
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Figure 3.9: Mop recovering β∗ for different classical polynomials. Thick dashed lines use ℓKL.
Dotted lines use ℓF. β0, βn, and αn are not in Jn, and so are not measured as part of the relative
error. The error of α is not plotted because it follows the same pattern.
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Figure 3.10: Mop on toy polynomials. Solid lines are true f ∗, thick dashed lines are Mop using
ℓKL, and dotted lines use ℓF. Mop using ℓKL approximates the f ∗, but only after optimization is
complete.

3.6 Related Work

Reversibility underpins low-memory, reverse-mode automatic differentiation [Gomez et al., 2017].

Checkpointing [Griewank and Walther, 2000] and tensor rematerialization [Jain et al., 2020] re-

compute selected intermediate values in the reverse pass, which reduces memory use at the cost
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Figure 3.11: Mop fails to distinguish parity data (colored lines) from noise (gray lines), no matter
the value of n.

of additional computation. Besides our manual derivation, there are other ways to obtain our

VJPs, though they would require comparable effort, and may not be as practical. If an algorithm

is written in a reversible programming language — which is not a trivial rewriting — then its

VJPs can be computed with low memory overhead [Liu and Zhao, 2020]. Forward mode differ-

entiation uses O(n) memory, but generally requires a factor O(n) more computation, and needs

software support to intermix with reverse mode.

Learned image compression algorithms usually replace traditional compression pipelines

with neural networks [Jiang, 1999]. They tend to achieve excellent compression results at the

expense of computational complexity. Even as machine learning hardware becomes faster, there

will likely be a role for fast, simple compression algorithms. This is amply demonstrated by the

most powerful GPU ever released, which adds five dedicated cores for JPEG decoding [Lisiecki

et al., 2020].

Orthogonal polynomial transforms are subsumed by recently-developed representations of

structured linear maps, such as tridiagonal factorizations of low-displacement rank operators

[Thomas et al., 2018], and butterfly factorizations culminating in the Kaleidoscope hierarchy

[Dao et al., 2019, 2020]. It is appropriate to think of unstructured matrices, Kaleidoscope, DXT,

and fixed polynomial transforms as varying tradeoffs between expressive power and tractability.
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procedure NEvaluate(x,α, γ, c)
u = [cn, . . . , cn]
v = [0, . . . , 0]
for k ∈ [n− 1, . . . , 0] do

τ = u
u = ((x− αk)/γk+1) · u

−γk+1
γk+2

v + ck

v = τ
µ = u/γ0
return µ

Figure 3.12: Variants of Evalu-
ate and Interpolate for orthonormal
polynomial sequences. As in Inter-
polate, DivDiffs is the first row of the
table of divided differences.

procedure NInterpolate(x,α, γ, y)
δ = DivDiffs(x, y)
return NChangeBasis(x,α, γ, δ)

procedure NChangeBasis(x,α, γ, δ)
c = δ
cn−1

+
= (α0 − xn−1)cn

cn = γ1cn

for k ∈ [n− 2, . . . , 0] do
ck

+
= (α0 − xk)ck+1 + γ1ck+2

for j ∈ [1, . . . ,n− 2− k] do
ck+j = γjck+j + (αj − xk)ck+j+1

+γj+1ck+j+2

cn−1 = γn−k−1cn−1 + (αn−k−1 − xk)cn

cn = γn−kcn

σ = γ0 · c
return σ

Our results partially extend to the complex domain. The Fast Fourier Transform, perhaps the

most well-known orthogonal polynomial transform, involves the monomials (α = β = 0) of the

roots of unity xi ∈ C. This can be handled by our algorithms, and indeed the original version

of Interpolate [Björck and Pereyra, 1970]. The Szegö polynomials, which are orthogonal with

respect to a Hermitian inner product on the unit circle, need a variant of Interpolate [Bella et al.,

2007].

The problem of finding the orthogonal polynomials (as α, β) which match the given distri-

bution (as moments m) was first studied by Chebyshev. The map m 7→ (α, β) is ill-conditioned

[Gautschi, 1967], so it is preferable to begin with “modified” moments [Gautschi, 2004]. In the

context of time series, Gu et al. [2020] choose a measure µ over the past whose corresponding p

is known. They approximate the observed history f in the basis of p. Our techniques could allow

adaptive choise of µ and p.
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procedure VTMultiply(x,α, β, c)
q = [0, . . . , 0]
p = [1, . . . , 1]
y = [0, . . . , 0]
for i ∈ [0, . . . ,n] do

for j ∈ [0, . . . ,n] do
yi

+
= pj · cj

if i < n then
τ = pj

pj = (xj−αi)pj−βiqj

qj = τ

return y

procedure NVTMultiply(x,α, γ, c)
q = [0, . . . , 0]
p = [γ−1

0 , . . . , γ−1
0 ]

y = [0, . . . , 0]
for i ∈ [0, . . . ,n] do

for j ∈ [0, . . . ,n] do
yi

+
= pj · cj

if i < n then
τ = pj

pj = ((xj − αi)/γi+1)pj − γi

γi+1
qj

qj = τ

return y

Figure 3.13: Transpose Vandermonde multiplication for monic orthogonal (left) and orthonormal
(right) polynomial sequences. These use O(n2) time using O(n) space. They are used in the
following algorithms for VJPs.

3.7 Appendix

3.7.1 Numerical Stability of Interpolate

The divided differences of y at x are the following 1
2(n+ 1)(n+ 2) recursively-defined values:

y[xi] = yi y[x0,x1] = y[x1]− y[x0]
x1 − x0

y[xj, . . . ,xk] = y[xj+1, . . . ,xk]− y[xj, . . . ,xk−1]
xk − xj

(3.6)

DivDiffs(x, y) = [y[x0], y[x0,x1], . . . , y[x0, . . . ,xn]] ∈ Fn+1 is called the first row of the table of

divided differences. They are also known as the coefficients of the Newton interpolant of the data

(x, y) [Berrut and Trefethen, 2004]. Interpolate starts by computing these coefficients δ. Then,

it changes the basis of these coefficients to the specified orthogonal polynomial sequence. The

blame for its instability lies with the first step: naive calculation of divided differences, according

to the definition (3.6), can lead to severe numerical error.

This error can be ameliorated in some simple ways. The most appropriate way depends on

the amount of control over the input data. If x can be chosen arbitrarily, then complex nodes

can be more stable [Gautschi, 1990]. In particular, consider setting xk = e−2πizk where z is
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low-discrepancy sequence, such as the van der Corput sequence. Intuitively, such sequences will

keep denominators xi − xj close to uniform. If x is real, then stability strongly depends on the

ordering of x0, . . . ,xn [Gohberg and Olshevsky, 1997, Higham, 1990]. Choosing x randomly,

as is typical when training a neural network, is a poor choice. If x is in increasing order, then

divided differencing is (relatively) stable [Higham, 1987]. If some points are nonnegative, then

the Leja ordering explicitly maximizes the relevant denominators xi − xj [Higham, 1990]. If

all these options are exhausted, iterative refinement can eliminate moderate amounts of error

[Higham, 1991].

The aforementioned fixes may work in specific scenarios, but they do not satisfactorily solve

the numerical instability of divided differencing. Fortunately, there is a principled, fairly-general

solution to this problem. Divided differencing, like differentiation, is a composable program

transformation [Reps and Rall, 2003]: given a program for f , a program computing the divided

differences x 7→ f [x0, . . . ,xn] can be automatically derived. Existing software packages for

machine learning support the implementation of such transformations [Bradbury et al., 2018].

It should be noted, however, that reverse-mode automatic divided differencing may not be as

efficient as reverse-mode automatic differentiation. Furthermore, divided differencing is not

quite as general as automatic differentiation, since branching conditions are not as easily handled

[Vavasis, 2013].

Implementing divided differencing as a composable function transformation in

Jax or Pytorch could have many other applications.

Thus, the Interpolate algorithm of Higham [1988] is both simple and worthwhile in the long

term. The Parker algorithm, which computes V −1 and then dense-multiplies V −1y, is known to

be more numerically stable [Calvetti and Reichel, 1993, Gohberg and Olshevsky, 1997]. How-

ever, it requires O(n2) memory. Specialized Gaussian elimination with partial pivoting [Kailath

and Olshevsky, 1997] takes O(n2) time and O(n) memory. However, its implementation is in-

volved, and is asymptotically slower than Fourier-based methods. Some of the cited O(n log2 n)

algorithms in Figure 3.2 may also be numerically unstable; see, for example, Remark 4.2 in Bella

et al. [2008].
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3.7.2 Vector-Jacobian Products

The following algorithms have been numerically checked against finite differencing. As dis-

cussed in Section 3.3, We use standard “overbar” notation for adjoints [Baydin et al., 2017]. Let

ℓ be the final scalar loss produced in the entire forward pass. The adjoint of each intermediate

variable ui is ūi = ∂ℓ
dui

.

Evaluate

By linearity, c̄ = ȳT∇cV c = (ȳTV )T = V T ȳ. By similarly elementary operations:

x̄ = ȳT
[
dV c

dxk

]
k

=
[∑

i

ȳi

∑
j

1(i = k)p′
j(xi)cj

]
k

=
[
ȳk

∑
j

p′
j(xk)cj

]
k

= ȳ ◦ (V ′c)

Now we derive the VJPs with respect to α and β. Here, on the left, is Evaluate written with

indexed notation for u, which distinguishes the intermediate values.

procedure Evaluate(x,α, β, c)

u(n) = [cn, . . . , cn]

u(n+1) = [0, . . . , 0]

for k ∈ [n− 1, . . . , 0] do

u(k) = (x − αk) · u(k+1) −

βk+1u
(k+2) + ck

return u(0)

procedure Evaluate(x,α, β,u(0),u(1), ū(0), ū(1))

ᾱ = β̄ = [0, . . . , 0]

for k ∈ [0, . . . ,n− 1] do

u(k+2) = 1
βk+1

(−u(k)+(x−αk)·u(k+1)+ck)

ᾱk = −ū(k) · u(k+1)

β̄k+1 = −ū(k) · u(k+2)

ū(k+1) +
= ū(k) · (x− αk)

ū(k+2) = ū(k) · (−βk+1)

return ᾱ, β̄

The adjoints are computed via standard reverse accumulation, as follows. Also, exploiting
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reversibility, prior values u(k+2) can be computed from later values u(k+1).

ū(k+1) =ū(k) · (x− αk)

ū(k+2) =ū(k) · (−βk+1)

ᾱk =ū(k) · (−u(k+1))

β̄k+1 =ū(k) · (−u(k+2))

u(k+2) = 1
βk+1

(−u(k) + (x− αk) · u(k+1) + ck)

Performing these computations, in the reverse order of Evaluate, yields the VJP for α and β, as

given above on the right. Note that v̄ = 0 since it is computed during the forward pass, but is

not part of the output of Evaluate. The full VJP for Evaluate, given in Figure 3.4, includes the

computation of x̄ and c̄, and elides the indexing of intermediate values.

Interpolate

It is known that c̄T∇yc is the solution ȳ to V T ȳ = c̄ [Abadi et al., 2015]. Also, c̄T∇V c = −ȳcT .

By the chain rule, ∇xc = ∂c
dV
◦ ∂V

dx
. By the definition of V , ∂Vi,j

dxk
= 1(i = k)p′

j(xk). Therefore,

similarly to the previous derivation for evaluation:

x̄ = c̄T∇xc =
[
−ȳcT ◦ dV

dxk

]
k

=
[∑

i,j
−ȳicj1(i = k)p′

j(xi)
]

k
=
[∑

j

−ȳkcjp
′
j(xk)

]
k

= −ȳ ◦
[∑

j

cjp
′
j(xk)

]
k

= −ȳ ◦ (V ′c)

For ᾱ and β̄, we write ChangeBasis in the indexed notation of Higham [1988].
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procedure ChangeBasis(x,α, β, δ)

c(n) = δ

c
(n−1)
n−1 = c

(n)
n−1 + (α0 − xn−1)c(n)

n

c(n−1)
n = c(n)

n

for k ∈ [n− 2, . . . , 0] do

c
(k)
k = c

(k+1)
k + (α0 − xk)c(k+1)

k+1 + β1c
(k+1)
k+2

for j ∈ [1, . . . ,n− 2− k] do

c
(k)
k+j = c

(k+1)
k+j + (αj − xk)c(k+1)

k+j+1 + βj+1c
(k+1)
k+j+2

c
(k)
n−1 = c

(k+1)
n−1 + (αn−k−1 − xk)c(k+1)

n

c(k)
n = c(k+1)

n

return c(0)
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We derive the reverse-mode adjoints in the usual manner.

c(k)
n = c(k+1)

n c̄(k+1)
n =c̄(k)

n

c
(k)
n−1 = c

(k+1)
n−1 + (αn−k−1 − xk)c(k+1)

n c̄
(k+1)
n−1 =c̄(k)

n−1

c̄(k+1)
n =c̄(k)

n−1 · (αn−k−1 − xk)

ᾱn−k−1
+
= c̄

(k)
n−1 · c(k+1)

n

c
(k)
k+j = c

(k+1)
k+j + (αj − xk)c(k+1)

k+j+1 + βj+1c
(k+1)
k+j+2 c̄

(k+1)
k+j =c̄(k)

k+j

c̄
(k+1)
k+j+1 =c̄(k)

k+j · (αj − xk)

c̄
(k+1)
k+j+2 =c̄(k)

k+j · βj+1

ᾱj
+
= c̄

(k)
k+j · c

(k+1)
k+j+1

β̄j+1
+
= c̄

(k)
k+j · c

(k+1)
k+j+2

c
(k)
k = c

(k+1)
k + (α0 − xk)c(k+1)

k+1 + β1c
(k+1)
k+2 c̄

(k+1)
k =c̄(k)

k

c̄
(k+1)
k+1 =c̄(k)

k · (α0 − xk)

c̄
(k+1)
k+2 =c̄(k)

k · β1

ᾱ0
+
= c̄

(k)
k · c

(k+1)
k+1

β̄1
+
= c̄

(k)
k · c

(k+1)
k+2

c(n−1)
n = c(n)

n c̄(n)
n =c̄(n−1)

n

c
(n−1)
n−1 = c

(n)
n−1 + (α0 − xn−1)c(n)

n c̄
(n)
n−1 =c̄(n−1)

n−1

c̄(n)
n =c̄(n−1)

n−1 · (α0 − xn−1)

ᾱ0
+
= c̄

(n−1)
n−1 · c(n)

n

Observe that the reverse accumulation involves values c(k) for k > 0. As with Evaluate, we
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can compute c(k+1) from c(k).

c(k)
n = c(k+1)

n ⇐⇒ c(k+1)
n = c(k)

n

c
(k)
n−1 = c

(k+1)
n−1 + (αn−k−1 − xk)c(k+1)

n ⇐⇒ c
(k+1)
n−1 = c

(k)
n−1 − (αn−k−1 − xk)c(k+1)

n

c
(k)
k+j = c

(k+1)
k+j + (αj − xk)c(k+1)

k+j+1 + βj+1c
(k+1)
k+j+2 ⇐⇒ c

(k+1)
k+j = c

(k)
k+j − (αj − xk)c(k+1)

k+j+1 − βj+1c
(k+1)
k+j+2

c
(k)
k = c

(k+1)
k + (α0 − xk)c(k+1)

k+1 + β1c
(k+1)
k+2 ⇐⇒ c

(k+1)
k = c

(k)
k − (α0 − xk)c(k+1)

k+1 − β1c
(k+1)
k+2

c(n−1)
n = c(n)

n ⇐⇒ c(n)
n = c(n−1)

n

c
(n−1)
n−1 = c

(n)
n−1 + (α0 − xn−1)c(n)

n ⇐⇒ c
(n)
n−1 = c

(n−1)
n−1 − (α0 − xn−1)c(n)

n

Combining the adjoint equations with the reversed computation of c(k), we obtain the VJP with

respect to α and β. The full algorithm in Figure 3.4 elides no-ops and the indexed notation.
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procedure ChangeBasis(x,α, β, δ, c(0), c̄(0))

ᾱ, β̄ = [0, . . . , 0]

for k ∈ [0, . . . ,n− 2] do

c(k+1)
n = c(k)

n

c
(k+1)
n−1 = c

(k)
n−1 − (αn−k−1 − xk)c(k+1)

n

ᾱn−k−1
+
= c̄

(k)
n−1 · c(k+1)

n

c̄(k+1)
n = c̄

(k)
n−1 · (αn−k−1 − xk)

c̄
(k+1)
n−1 = c̄

(k)
n−1

for j ∈ [n− 2− k, . . . , 1] do

c
(k+1)
k+j = c

(k)
k+j − (αj − xk)c(k+1)

k+j+1 − βj+1c
(k+1)
k+j+2

ᾱj
+
= c̄

(k)
k+j · c

(k+1)
k+j+1

β̄j+1
+
= c̄

(k)
k+j · c

(k+1)
k+j+2

c̄
(k+1)
k+j+2

+
= c̄

(k)
k+j · βj+1

c̄
(k+1)
k+j+1

+
= c̄

(k)
k+j · (αj − xk)

c̄
(k+1)
k+j = c̄

(k)
k+j

c
(k+1)
k = c

(k)
k − (α0 − xk)c(k+1)

k+1 − β1c
(k+1)
k+2

ᾱ0
+
= c̄

(k)
k · c

(k+1)
k+1

β̄1
+
= c̄

(k)
k · c

(k+1)
k+2

c̄
(k+1)
k = c̄

(k)
k

c̄
(k+1)
k+1

+
= c̄

(k)
k · (α0 − xk)

c̄
(k+1)
k+2

+
= c̄

(k)
k · β1

c(n)
n = c(n−1)

n

c
(n)
n−1 = c

(n−1)
n−1 − (α0 − xn−1)c(n)

n

ᾱ0
+
= c̄

(n−1)
n−1 · c(n)

n

c̄(n)
n = c̄(n−1)

n

c̄(n)
n = c̄

(n−1)
n−1 · (α0 − xn−1)

c̄
(n)
n−1 = c̄

(n−1)
n−1

return ᾱ, β̄
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NEvaluate

In the notation of Higham [1990], the three-term recurrence is:

p−1(x) = 0; p0(x) = 1; pj+1(x) = θj(x− βj)pj(x)− γjpj−1(x)

Their θj, βj , and γj correspond to our 1/γj+1,αj/γj+1, and γj/γj+1, respectively. Under their

normalization p0(x) = 1, suppose the solution of their algorithm is c̃. Then the solution under

p0(x) = γ−1
0 , as in the orthonormal polynomials, is γ0 · c̃. Following the template of the previous

VJP derivations, here is NEvaluate written in indexed notation.

procedure NEvaluate(x,α, γ, c)

u(n) = [cn, . . . , cn]

for k ∈ [n− 1, . . . , 0] do

u(k) = ((x− αk)/γk+1) · u(k+1) − γk+1
γk+2

u(k+2) + ck

µ = u(0)/γ0

return µ

The adjoints and u are derived as before.

ū(0) =µ̄/γ0

u(0) =µ · γ0

γ̄(0) =− µ̄ · u(0)/γ2
0

ū(k+1) +
= ū(k) · (x− αk)/γk+1

ū(k+2) =ū(k) · (−γk+1

γk+2
)

ᾱk =ū(k) · (−u(k+1)/γk+1)

γ̄k+1 =ū(k) · (−(x− αk)u(k+1)/γ2
k+1 − u(k+2)/γk+2)

γ̄k+2 =ū(k) · (γk+1u
(k+2)/γ2

k+2)

u(k+2) =γk+2

γk+1
(−u(k) + ((x− αk)/γk+1) · u(k+1) + ck)
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Computing these quantities in reverse order yields the VJP algorithm, as follows on the left. The

final algorithm, on the right, elides no-ops and indexing.

procedure NEvaluate(x,α, γ,µ,u(1), µ̄, ū(1))

ᾱ = γ̄ = [0, . . . , 0]

u(0) = µ · γ0

ū(0) = µ̄/γ0

γ̄0 = −µ̄ · u(0)/γ2
0

for k ∈ [0, . . . ,n− 1] do

u(k+2) = γk+2
γk+1

(−u(k) + ((x −

αk)/γk+1) · u(k+1) + ck)

ᾱk = −ū(k) · (u(k+1)/γk+1)

γ̄k+1
+
= − ū(k) ·((x−αk)u(k+1)/γ2

k+1 +

u(k+2)/γk+2)

γ̄k+2 = ū(k) · (γk+1u
(k+2)/γ2

k+2)

ū(k+1) +
= ū(k) · (x− αk)/γk+1

ū(k+2) = ū(k) · (−γk+1
γk+2

)

return ᾱ, γ̄

procedure NEvaluate(x,α, γ,µ, v, µ̄)

v̄ = 0

ᾱ = γ̄ = [0, . . . , 0]

u = µ · γ0

ū = µ̄/γ0

γ̄0 = −µ̄Tu/γ2
0

for k ∈ [0, . . . ,n− 1] do

ᾱk = −ūTv/γk+1

γ̄k+1
+
= − ūT (x− αk) · v/γ2

k+1

if k < n− 1 then

w = γk+2
γk+1

(−u+ x−αk

γk+1
·v+ ck)

γ̄k+1
+
= − ūTw/γk+2

γ̄k+2 = ūTw · γk+1/γ
2
k+2

u, v = v,w

τ = ū

ū = v̄ + ū · (x− αk)/γk+1

v̄ = −τ · γk+1
γk+2

return ᾱ, γ̄

3.8 Discussion

This chapter explores a synthesis between modern gradient-based optimization and classical se-

quences of orthogonal polynomials. The key observation is that the most computationally con-

venient representation of a sequence of orthogonal polynomials consists of the coefficients of

its three-term recurrence. By enabling backpropagation for polynomial evaluation and interpo-

lation — that is, by deriving the vector-Jacobian products of these algorithms — we can use
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orthogonal polynomials to parameterize (or reparameterize) a variety of contemporary learning

and optimization problems. Based on the algorithm of Bella et al. [2009], our core techniques

might extend from polynomial Vandermonde matrices to quasiseparable matrices. This chapter

establishes basic technical underpinnings in the hope that they may be used in future, larger-scale

applications.

This chapter focused on expanding the expressivity of fixed polynomial transforms, or exactly

matching the feasible region of some optimization problems. The next chapter is different: it

approximates (or slightly reduces) the expressivity of a neural network layer, while considerably

improving its speed and tractability.
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Chapter 4

Linear Dynamical Systems for Sequence
Modeling
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Abstract

Running nonlinear RNNs for T steps takes Ω(T ) time, even with parallel ex-

ecution. This chapter’s construction, called LDStack, approximately runs them in

O(log T ) parallel time, and obtains arbitrarily low error via repetition. Though this

specific construction is not a state-of-the-art sequence-to-sequence model, many

of the architectural techniques can be useful for designing future models. The

most interesting technique is replacing nonlinearity across time with nonlinearity

along depth, through a provably-consistent scheme of local corrections. This allows

nonlinear RNNs to be approximated by a stack of multiple-input, multiple-output

(MIMO) linear dynamical systems (LDS). Next, this chapter shows that MIMO LDS

can be approximated by an average or a concatenation of single-input, multiple-

output (SIMO) LDS. Finally, this chapter presents an algorithm for running (and

differentiating) SIMO LDS in O(log T ) parallel time. On long sequences, LDStack

is much faster than traditional RNNs, yet it achieves similar accuracy in initial ex-

periments. Furthermore, LDStack is amenable to linear systems theory. Therefore,

it improves not only speed, but also mathematical tractability. This chapter is based

on the published work of Kaul [2020].



4.1 Introduction

Nonlinear RNNs have two crucial shortcomings. The first is computational: running an RNN

for T steps is a sequential operation which takes Ω(T ) time. The second is analytical: it is chal-

lenging to gain intuition about the behavior of a nonlinear RNN, and even harder to prove this

behavior is desirable. These shortcomings have motivated practitioners to abandon RNNs alto-

gether and to model time series by other means. These include hierarchies of (dilated) convolu-

tions [Gehring et al., 2017, Oord et al., 2016] and attention mechanisms which are differentiable

analogues of key-value lookups [Bahdanau et al., 2014, Vaswani et al., 2017]. In these models,

the underlying parallel primitives are convolution and matrix multiplication, respectively.

This chapter addresses both of these shortcomings. It presents a method to approximately

run and differentiate nonlinear RNNs in O(log T ) parallel time, by rebuilding them from linear

dynamical systems (LDS). In these, the next state st+1 = Ast + Bxt is a linear function of

the current state st and input xt. LDS are a mainstay of control theory and many engineering

applications because their behavior can be understood and regulated [Zhou et al., 1996]. Single-

input, multiple-output (SIMO) LDS, which map a sequence of input numbers to a sequence of

output vectors, are our core primitive. Using parallel scans, these can be run and differentiated

in O(log T ) parallel time [Blelloch, 1990].

Summary of Main Ideas. This chapter’s approach is to (1) approximate the RNN by a stack

of multiple-input, multiple output (MIMO) LDS, then (2) approximate the MIMO LDS by an

aggregation of single-input, multiple-output (SIMO) LDS, and finally (3) run the SIMO LDS in

O(log T ) parallel time using scans and reductions. In step (1), we take the LDS, measure the

deviations of its linear steps from desired nonlinear ones, and add those as corrections to the

LDS in the subsequent layer. This scheme is naturally parallel, since the corrections are based

on only local information; surprisingly, it is provably consistent. A multiplicative variant has

already been extensively used to analyze nonlinear, continuous-time dynamical systems [Tomás-

Rodríguez and Banks, 2010].

For step (2), we consider two kinds of aggregation: averaging and concatenation. The

averaging approach uses a standard technique in randomized numerical linear algebra: the d-

dimensional inputs xt are repeatedly, randomly projected to a single dimension. The concate-
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nation approach pre-applies a decoupling d × d transformation to the inputs. Then, the inputs

are given to d coupled SIMO LDS, each of size n/d. This approach builds upon the canonical

form of Luenberger [1967], which decomposes the MIMO LDS into smaller SIMO LDS, whose

sizes are called the controllability indices of the MIMO system. Unfortunately, these quantities

are onerous to estimate or to even compute. Using a perturbed Luenberger form, we show that a

uniform size n/d may be used with essentially no loss in generality.

Finally, step (3) exploits the linear-algebraic structure of SIMO LDS. It is known that lin-

ear recurrences s′
t+1 = λ ◦ s′

t + bt, which involve entrywise multiplication ◦, can be run in

O(n log T ) parallel time via scans and reductions. A SIMO LDS can be taken to this form via

diagonalization, i.e. by running the LDS in the basis of its eigenvectors. When the SIMO LDS

is in a canonical form, its eigenvectors have closed-form expressions in terms of its eigenval-

ues. Accordingly, the set of SIMO LDS is exactly parameterized by just n numbers, which are

provided to the recurrence solver.

Outline. This chapter presents its key contribution — the LDStack layer, which can replace

nonlinear RNNs — in a bottom-up fashion. Section 4.2 reviews background material on linear

dynamical systems. Section 4.3 presents parameterizations of SIMO LDS, and an algorithm for

running them in O(log T ) parallel time. Section 4.4 presents two ways that SIMO LDS can

be combined to effectively replace MIMO LDS in machine learning applications. Section 4.5

shows that nonlinear RNNs can be approximated by stacks of MIMO LDS with nonlinearities

interspersed solely along depth. LDS and LDStack are empirically evaluated on artificial and

real datasets. LDS achieve state-of-the-art performance on the copy memory problem. LDStack

can be substantially faster than traditional RNNs, while achieving competitive accuracy. Ways to

improve these constructions, and incorporate them into future work, are discussed in Section 4.8.

4.2 Linear Dynamical Systems

Linear dynamical systems have enjoyed a renaissance in machine learning theory. There have

been many recent advances in algorithms for learning LDS from input-output data [Hardt et al.,

2016a, Oymak and Ozay, 2019, Sarkar and Rakhlin, 2019, Simchowitz et al., 2019]. The sample
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complexity of this task is well-studied [Jedra and Proutiere, 2019, Simchowitz et al., 2018]. As

analytical testbeds, they capture the behavior of optimization algorithms [Lessard et al., 2016]

and establish baseline performance for reinforcement learning [Matni et al., 2019, Recht] and

online learning [Ghai et al., 2020, Hazan et al., 2017, Kozdoba et al., 2019]. Efficient and robust

algorithms have recently been developed for controlling LDS [Dean et al., 2019, Hazan et al.,

2020].

This section reviews some basic material about LDS. At time t ∈ [T ], let the input be xt ∈ Rd.

Starting from an initial state s0 ∈ Rn, an LDS produces subsequent states st+1:

st+1 = Ast +Bxt = At+1s0 +
t−1∑
τ=0

Aτ+1Bxt−τ yt = Cst +Dxt +D0 (4.1)

where A ∈ Rn×n and B ∈ Rn×d. By recursively unrolling the first equality, we see the states are

a convolution of the inputs (with an infinite kernel size and only one stride dimension). Outputs

yt ∈ Rm may be optionally produced, using C ∈ Rm×n, D ∈ Rm×d, and D0 ∈ Rm.

4.2.1 SIMO Canonical Form

An LDS is reachable, roughly speaking, if we can take it to any state by supplying the right

input.

Definition 3 (Reachability). A state s ∈ Rn is reachable if there is a sequence of inputs x1, . . . ,xT

which leads to sT = s. An LDS is reachable if every state s ∈ Rn is reachable 1.

Lemma 6 (Hautus). An LDS is reachable iff A is nonsingular and, for all γ ∈ C, the n× (n+d)

matrix [γI − A;B] has full rank n.

A reachable SIMO LDS (Ã, B̃, C̃,D) is placed in canonical form (A,B,C,D) by T ∈

1In continuous time, reachability and controllability are equivalent. In discrete time, they are equivalent when A
is nonsingular.
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Rn×n:

A = T ÃT −1 =



0 0 0 −a0
. . . 0 0 ...

0 1 0 −an−2

0 0 1 −an−1


B = T B̃ =



1

0
...

0


C = C̃T −1 (4.2)

T −1 is the controllability matrix of (Ã, B̃) [Ding, 2010], which will be defined in (4.4). a0, . . . , an−1

are the coefficients of A’s characteristic polynomial t 7→ tn + ∑n−1
i=0 ait

i. Equation (4.2) is

called the Frobenius companion form, and is one of many similar companion forms [Eastman

et al., 2014, Fiedler, 2003]. We also consider the transpose form, which replaces (A,B) by

(AT , [0, . . . , 0, 1]T ). A key property of these forms is that A is determined entirely by its eigen-

values λ. Specifically, ai = (−1)n−ien−i(λ), where ei is the ith elementary symmetric polyno-

mial. Thus, by using these forms, the number of parameters needed to define (A,B) drops from

n2 + n to just n, since B is fixed and A is determined by λ.

4.2.2 Diagonalization

A = V −1ΛV where Λ is a diagonal matrix of the eigenvalues λ. V is the Vandermonde matrix in

λwith entries Vi,j = λj−1
i . Its rows are the (row) eigenvectors ofA. SinceA is not symmetric, the

eigenvectors are neither real nor orthonormal. However, sinceA is real, any complex eigenvalues

come in conjugate pairs: if λj = αj−βji is an eigenvalue, then so too is λj = αj +βji. Defining

s′
t = V st, B′ = V B and C ′ = CV −1, we diagonalize the system to a modal form:

s′
t+1 = V Ast + V Bxt = λ ◦ s′

t +B′xt yt = C ′s′
t +Dxt +D0 (4.3)

The transpose form is often factored in a slightly different way.

Lemma 7. AT = UΛU−1 where the jth column of U is uj =
[

1
λj

n−i

]
1≤i≤n. (Brand [1964],

Leslie [1945]; see the appendix for a self-contained proof.)

As discussed in the previous chapter, multiplication by V and V −1 are equivalent to poly-

nomial evaluation and interpolation, respectively. That is, V c evaluates a univariate polynomial,
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with coefficients c in the monomial basis, at points λ1, . . . ,λn; V −1y recovers the coefficients.

Naively performing these operations may be numerically unstable, due to high-degree powers

of λ. These operations may be more accurately performed in O(n2) time by Horner’s method

and the algorithm of Björck and Pereyra [1970], respectively. These algorithms are (numerically

stable) special cases of those described in the previous chapter.

4.2.3 MIMO Luenberger Form

Let bi be the ith column of B. The controllability matrix of a MIMO LDS has dimensions

n× (n · d):

C = [b1, . . . , bd,Ab1, . . . ,Abd, . . . ,An−1b1, . . . ,An−1bd] (4.4)

From left to right, take n columns, but skip a column if it is linearly dependent on the columns

taken so far. If this procedure skips Aubi, it will also skip the higher powers Au+1bi. For i ∈ [d],

the controllability index µi is the first power of A skipped for bi. For reachable LDS,
∑

i µi = n.

The Luenberger form (A∗d,B∗dE,C,D) expresses any reachable, multiple-input LDS as the

concatenation of d coupled, reachable, single-input LDS, whose sizes equal the controllability

indices [Luenberger, 1967]. Visual examples of A∗d and B∗d are given in Figure 4.3. A∗d has,

along the block diagonal, d transpose-form SIMO LDS transition matrices of sizes µi. It has

off-diagonal entries which couple the SIMO LDS at their inputs. Similarly, B∗d is the block

diagonal matrix of d transpose-form B vectors, each of dimension µi × 1. E is an invertible,

upper triangular matrix which depends on the original system parameters. It is pre-applied to the

inputs.

4.3 SIMO LDS in O(n log T ) Parallel Time and n Parameters

The following result makes reachable SIMO LDS our key computational primitive.

Proposition 6. Reachable, SIMO, n-state LDS are exactly represented by their distinct, nonzero,

complex eigenvalues λ ∈ Cn, without further constraints. These eigenvalues can be concretely
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1. Initialize real variables and use them to define eigenvalues λ. In the standard parameteri-
zation (left), the variables are α and β, whose total length is n. In the unit parameterization
(right), the variables are θ, whose length is n/2.

a ∼ Normal(0, 1/n)n

λ = roots
(
t 7→ tn +

n−1∑
i=0

ait
i
)

α, β satisfy λ = [α + βi,α− βi]

θ ∼ Uniform(−2π, 2π)n/2

λ = [exp(θi), exp(−θi)]

2. Given a sequence of inputs x ∈ RT , compute the sequence of states s′
t+1, and their

gradients ∇s′
t+1 with respect to the underlying real parameters. Use the algorithm of

Proposition 7 on the recurrence s′
t+1 = λ ◦ s′

t + B′xt given in (4.3), where B′ is the all-ones
vector.

3. (Optional). Convert st = V −1s′
t using the algorithm of Björck and Pereyra [1970]. Finally,

compute the outputs yt using an additional dense layer, as in Equation (4.1). Alternatively,
compute yt = Re(C ′s′

t) +Dxt +D0 using a relaxation C ′ ∈ Cm×n.

Figure 4.1: Summary of how reachable SIMO LDS, with spectral parameterizations, can be used
as a fast layer in a neural network. Also consider the “hinge” parameterization in the appendix.
Martin and Cundy [2018] implemented the PLR algorithm (per Proposition 6) in CUDA; we
extend it for complex inputs.

parameterized by n real numbers. Given the parameters and a length-T sequence of inputs x,

it is possible to compute the LDS outputs, and their gradients with respect to the parameters, in

O(n log T + n2) time on O(T ) parallel processors.

It is underpinned by the following algorithm for parallel linear recurrences (PLR).

Proposition 7. Let λ1, . . . ,λT and b1, . . . , bT be sequences of n-dimensional vectors. Let ◦

denote entrywise product between vectors. For t ∈ [T ], the recurrence s′
t+1 = λt ◦ s′

t + bt,

and its gradients, can be computed in O
(
n
(

T
p

+ log p
))

depth (aka parallel time) on p parallel

processors. This is O(n log T ) parallel time when p = O(T ) . [Martin and Cundy, 2018]

Proposition 6 involves three steps: (1) the complex LDS eigenvalues λ must be concretely

parameterized by real numbers, (2) those real parameters must be reasonably initialized, and (3)

the LDS must be diagonalized according to (4.3). At first glance, it seems more straightforward

to directly parameterize λ and B′ in the diagonal form (4.3). Unfortunately, this does not exactly
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capture the set of reachable SIMO LDS, unless additional constraints are imposed. If λ and

B′ are taken to be real, then only a subset is expressed; if they are complex, then a superset

is expressed, and the number of parameters doubles. For analytical and practical reasons, it is

desirable to exactly use reachable LDS. (For example, if LDS are stacked in a neural network,

then reachability would ensure each layer can supply a full spectrum of input to the subsequent

layer.)

Parameterization. The standard approach is to separately parameterize the real and imag-

inary (if present) parts of λ. Since the complex eigenvalues present in conjugate pairs, this

requires only n real parameters (α, β) in total. More specifically, the complex pairs are λj =

αj − βji and λ̄j = αj + βji. The real eigenvalues just have αj . For long-term dependencies, it is

useful to constrain |λj| = 1, as in orthogonal or unitaryA [Arjovsky et al., 2016]. This constraint

is trivial in our framework. Suppose λj has polar representation (rj, θj). Then a zero real part of

ln λj = ln rj + θji corresponds to magnitude rj = 1. Parameterize ln λ with 0 real part and ±θ

imaginary part, then exponentiate.

Initialization. For the previously defined real variables, typical random initializations, such

as sampling from a truncated normal, lead to numerical instability. In the standard parameteriza-

tion, we found it useful to initialize near unit eigenvalues. It is known that a monic polynomial

with random coefficients has roots λ of magnitude close to 1 [Hughes and Nikeghbali, 2008].

These may be obtained by randomly initializing the coefficients a in (4.2), and then computing

the eigenvalues of A [Aurentz et al., 2015]. For the unit parameterization, the coordinates θj

must be kept numerically distinct. For moderate n, uniform random initialization is suitable. For

large n, a low-discrepancy sequence, such as the van der Corput sequence, may be preferable.

Diagonalization. The two computational tasks are computing B′ (for use in PLR) and con-

verting between st and s′
t. For the standard form, B′ = V [1, 0, . . . , 0]T = [1, . . . , 1] since that is

the first column of V . As reviewed in Section 4.2, conversion between st and s′
t may be accom-

plished by polynomial evaluation and interpolation algorithms. For the transpose form expressed

in terms of U , B′ is the last column of U−1. For completeness, this is derived in the appendix.

Lemma 8. Given the (unnormalized) definition of U in Lemma 7, the complex conjugate of the

last column of U−1 is B′ =
[
λn−1

i /
∏

j ̸=i (λi − λj)
]

1≤i≤n
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Related Work. LDS are often reparameterized for computational benefit [Shalit and Chechik,

2014], sometimes in terms of induced subspaces De Cock and De Moor [2002], Huang et al.

[2017]. Chang et al. [2018] also study complex eigenvalue parameterizations with zero real part.

Hsu et al. [2020] analyze LDS clustering using the Vandermonde decomposition. Previous al-

gorithms attempt to run LDS in constant time with respect to T [Kozdoba et al., 2019, Martens,

2010]. However, these works rely on stability assumptions and approximations: they do not

exactly compute forward and backward passes of LDS. Furthermore, they require the inputs to

be partially and completely noise, respectively. Surprisingly, Lemma 8 does not plainly appear

in the literature, even in recent work on generalizations of Vandermonde matrices [Rawashdeh,

2018]. Its proof uses the same technique as the “eigenvectors from eigenvalues” theorems that

have gained recent attention in disparate areas of applied mathematics [Denton et al., 2019].

These results are more general, but do not yield closed-form expressions, and do not directly

apply to the inverse matrix U−1.

4.4 Approximating MIMO LDS by SIMO LDS

4.4.1 Improper Learning: Random Projection

MIMO LDS can be approximated by the average of r SIMO LDS, each produced by randomly

projecting the input vectors to a single dimension. These LDS share the same weights λ.

Proposition 8. Let x1, . . . ,xT ∈ Rd and y1, . . . , yT ∈ Rm be the inputs and outputs of a reach-

able MIMO LDS with parameters (A,B,C,D). For each j ∈ [r], let gj be a d-dimensional

standard normal vector, x[j]
t = xT

t gj be projected scalar inputs, and (A,Bgj,C,D) be the pa-

rameters of a SIMO LDS producing outputs y[j]
t . Let ŷt = 1

r

∑r
j=1 y

[j]
t be the average output. For

each t ≤ T , E ||yt − ŷt||2 = ∑m
j=1 2 ||Zt,j||2F /r, where Zt,j = ∑t−1

τ=1 xt−τCj,:A
τB. Furthermore,

the SIMO LDS are almost surely reachable, and share the same canonical form matrix.

The proof of this equality uses standard techniques. Here is some brief intuition for the result.

Supposem = 1 and each xt has standardN(0, 1) components, as is typical in dynamical systems

literature. Also assume that A’s spectral radius ρ < 1 (i.e. the LDS is strictly stable), ||B||2 ≤ 1,
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Figure 4.2: Illustration of a MISO LDS (black), of state size n = 16, operating on inputs of d =
32 dimensions over T = 1024 timesteps, approximated by SISO LDS. In light gray (nearly filling
the background) are 512 SISO LDS, induced by random projections per Proposition 11. These
have very high variance and do not approximate the MISO LDS. The two blue lines represent
the average of two independent subsamples of 16 SISO LDS. These small averages still do not
approximate the MISO LDS. The red line is the average of all 512 SISO LDS. This is fairly close
to the MISO LDS.

and ||C|| ≤ 1. By the definition of the Frobenius norm and independence of each input:

E tr(ZT
t Zt) = tr

t−1∑
τ=1

BTAτTCT
(
E xT

t−τxt−τ

)
CAτB ≤ d

t−1∑
τ=1

ρ2τ ≤ d
ρ2

1− ρ2 (4.5)

Related Work. Gaussian projections are a key technique in randomized algorithms [Johnson

and Lindenstrauss, 1984, Kannan and Vempala, 2017]. Model reduction is the approximation of

large-size LDS by smaller-size LDS [Antoulas, 2005]. Proposition 8 does not reduce the size of

the LDS, but rather the dimension of its inputs.

4.4.2 Proper Learning: Perturbed Luenberger Form

Proper learning of LDS, also known as system identification, is the task of recovering the pa-

rameters (A,B,C,D) from input-output data. The Luenberger form, reviewed in Section 4.2.3,

exactly decomposes a MIMO LDS into a concatenation of smaller, SIMO LDS. It establishes

a promising connection between proper learning of MIMO LDS and proper learning of SIMO

LDS. However, as a parameterization used during learning, it has a crucial problem: the con-

trollability indices, defining the sizes of the SIMO LDS, are not known. In practice, the SIMO

LDS must be sized according to a loose upper bound, which then makes learning improper. For-
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Figure 4.3: Left: is the Luenberger canonical form of a multiple-input LDS, with A to the left
of the vertical line and B to the right. It decomposes into four single-input LDS of sizes 9, 1, 1
and 1, which match the controllability indices. After the addition of a tiny amount of noise (in
the form of a Gaussian matrix with variance 0.00000001), the canonical form decomposes into
evenly-sized single-input LDS. The asterisks denote nonzero values which couple the single-
input LDS.

tunately, the following result shows that any MIMO LDS is nearly equal to a concatenation of

coupled SIMO LDS, each of known size.

Proposition 9. Let n be divisible by d. Let (A,B) be the parameters of a reachable size-n LDS

taking d-dimensional inputs. For any ϵ > 0, there exists a perturbed system (Ã,B) such that (1)

||A−Ã|| ≤ ϵ, and (2) the controllability indices of (Ã,B) are all n/d. Therefore, the Luenberger

form of (Ã,B) is a concatenation of d coupled SIMO LDS, each of size n/d.

We may effectively treat any MIMO LDS data as if it originated from a system with equal

controllability indices, i.e. equally-sized SIMO LDS. This result suggests that proper learning of

LDS is largely equivalent to proper learning of SIMO LDS, which supports the latter’s consid-

eration as a key primitive. We present the perturbed Luenberger form as a conceptual reduction

from MIMO to SIMO, rather than a practical algorithmic tool. The practical issue is that the

SIMO LDS are coupled: the next state for each LDS depends on not just its own state, but also

on the state of the other (n/d)− 1 LDS. This prevents the LDS from running independently, and

thereby hinders parallelization.

Related Work There is a vast literature on system identification [Ljung, 1999]. Subspace

identification (SSID) is the prevalent technique, utilized by the state-of-the-art work cited in
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Figure 4.4: Left: A step of local correction within LDStack. Suppose the ith layer’s states h(i)
t are

all computed. We consider, at each t, two hypothetical steps from h
(i)
t : the linear stepAh(i)

t +Bxt

and the nonlinear step ρ(Ah(i)
t + Bxt). Their difference is the correction k(i)

t , which is added to
h

(i+1)
t in the next layer. Note that h(i)

t+1 = Ah
(i)
t +Bxt +k

(i−1)
t does not necessarily coincide with

the hypothetical linear step, since it was corrected in this fashion. The faint gray arrows illustrate
that the corrections are computed in parallel using only local information. Right: RNN (black)
approximated using stacked LDS of increasing depth (from top to bottom). Observe the “correct
from the start” behavior described in Proposition 10.

the introduction. SSID does not reduce MIMO to SIMO, as we do. It is well known that the

controllability indices are numerically unstable [Jordan and Sridhar, 1973]. Our result shows

this numerical instability is a blessing, since a small perturbation renders it useful. There are

deterministic methods of modifying the original system to obtain (nearly) equal controllability

indices, at the expense of increased state size [Cook, 1978]. The (mis)use of MIMO canonical

forms as parameterizations for learning is discussed in [Glover and Willems, 1974]. They discuss

a numerical advantage of Luenberger’s (pseudocanonical) form over MIMO canonical forms, and

base a system identification method upon it [Glover, 1973]. Subsequent works on ‘overlapping’

parameterizations also avoided the problem of unknown structural indices [Corrêa and Glover,

1984, Gevers and Ah-Chung, 1985].

4.5 Approximating Nonlinear RNNs by Stacked LDS

Let ht+1 = ρ(Aht + Bxt) be an RNN which takes inputs xt ∈ Rd and an initial state h0 ∈ Rn,

and produces subsequent states ht ∈ Rn. Its nonlinearity ρ has deviation from linearity δ(a) =

ρ(a)− a. This deviation is used to define local corrections to an LDS, as follows:
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ht+1 = (Aht +Bxt) + δ(Aht +Bxt) −→ h
(i+1)
t+1 = Ah

(i+1)
t +Bxt +

k
(i)
t︷ ︸︸ ︷

δ(Ah(i)
t +Bxt) (4.6)

On the left is a trivial equality involving δ. Its first term is a linear transition from ht; its deviation

from a correct (nonlinear) transition is measured by the second term. The approximation starts

with a plain LDS h
(0)
t+1 = Ah

(0)
t + Bxt; then, its deviations are used as corrections k(0)

t to a

subsequent LDS. Iterating this construction yields a stack of corrected LDS. As the previous

layer’s states h(i)
t become close to the next layer’s h(i+1)

t , the corrections become more accurate.

With enough layers, the nonlinear RNN is exactly recovered. More generally, the layers are

“correct from the start”. Since the initial state h(0)
0 = h0 is correct, the first layer gets the first

state correct: h(1)
1 = Ah0 + δ(Ah0) = h1. The second layer gets the second state correct, and so

forth, yielding a consistency guarantee. This holds in the worst-case setting; empirically, close

approximation is observed with far fewer than T layers.

Proposition 10. h(∆)
t = ht for all t ∈ [∆] and all x ∈ RT . Thus, h(T ) = h for all x ∈ RT .

Note that this convergence guarantee is uniform for all input sequences x. The local correc-

tions made to the states are specific to each x. This strong guarantee states that the scheme of

iterated local corrections matches the nonlinear RNN not just on an individual example, but on

an entire dataset.

Since the stacked LDS have nonlinearity along depth, they may seem just as difficult to ana-

lyze as the original nonlinear RNN. Fortunately, our construction is a discrete, additive version of

a continuous, multiplicative scheme developed in control theory [Tomás-Rodríguez and Banks,

2010]. It has been extensively used to analyze nonlinear dynamical systems via sequences of lin-

ear approximations. Controllers for aircraft, supertankers, and autopilots have been derived with

this approach [Çimen and Banks, 2004]. It is possible to derive explicit solutions for the linear

approximation in terms of an underlying Lie algebra [Banks, 2002]. The appendix describes this

control-theoretic precursor of our construction. It is reasonable to expect that some of the same

analytic techniques will carry over.
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This is a simple but useful technique which can be used in both practice (to

improve the expressive power of linear sequence models, without an increase

in parameters) and in theory (to analyze and build correspondences between

nonlinear sequence models and linear ones).

Related Work. Generalizing earlier works [Balduzzi and Ghifary, 2016, Bradbury et al.,

2017], Martin and Cundy [2018] advocate the removal of nonlinearities across time, while in-

troducing nonlinearity along depth. Given an RNN, they replace nonlinear dependencies across

time with a “linear surrogate” amenable to PLR. These new RNNs can run in parallel, but it is

not clear they can approximate the original nonlinear RNNs, and they are not as well-studied as

LDS. Restricted subclasses of RNNs can be approximately differentiated in constant time [Liao

et al., 2018]. There are substantial efforts to understand nonlinear RNNs [Karpathy et al., 2015]

and develop provable learning algorithms for them [Allen-Zhu and Li, 2019, Allen-Zhu et al.,

2019a, Foster et al., 2020].

The culmination of our results is the neural network layer LDStack(ρ,n,∆, r)(x,h0). It

takes (a batch x of) length-T sequences of d-dimensional vectors, and an n-dimensional ini-

tial state h0. It returns (a batch ĥ of) length-T sequences of n-dimensional states. It uses

O(∆n2 log T log r) time on O(rT ) parallel processors.2 Its settings are the nonlinearity ρ, state

size n > 1, depth ∆ ≥ 1, and number of projections r ≥ 1. It has O(n+ n2d) trainable weights

and rd fixed weights.

LDStack details. Suppose the (unknown) RNN has parameters (Ã, B̃) which define a reach-

able LDS. Let C be its n × (n × d) controllability matrix. At initialization, random projections

gj ∈ Rd are drawn, for j ∈ [r]. The first layer is an average of plain SIMO LDS. Let x[j]
t = xT

t gj

be the projected input of the jth SIMO LDS. s(0)′

j,t+1 = λ ◦ s(0)′

j,t +B′x
[j]
t are computed in parallel,

per Section 4.3. To compute the corrections, reverse the canonical and diagonal transformations

Tj and V according to (4.2) and (4.3). Recall from (4.2) that T −1
j = Cj , the n× n controllability

matrix of the jth SIMO LDS (Ã, B̃gj). Then Cj = [Bgj,ABgj, . . . ,An−1Bgj] = C · gj . Eliding

superscripts:

2For simplicity, this time bound does not internally parallelize O(n2) matrix-vector multiplication and linear
system solving. The analogous bound for nonlinear RNNs is O(n2T ).
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Figure 4.5: On the copying memory problem, standard RNNs do not outperform a trivial base-
line. We solve it with the simplest model to date: a unitary SISO LDS, as described in Figure 4.1.

Ãs̃j,t + B̃xt = T −1
j A Tj s̃j,t︸ ︷︷ ︸

sj,t

+T −1
j Bxt =T −1

j (Asj,t +Bxt) = T −1
j V −1(Λ

s′
j,t︷ ︸︸ ︷

V sj,t +V Bxt)

=T −1
j V −1(λ ◦ s′

j,t +B′xt)

We introduce a free parameterW ∈ Cn×n×d which ideally satisfiesW ·rj = (C ·rj)V −1, so it can

directly perform the reverse transformations T −1
j V −1. Averaging within (4.6), the corrections are

k̃
(0)
t = δ(1

r

∑r
j=1 Ãs̃

(0)
j,t + B̃x

[j]
t ). Now we compute the next layer. Take the corrections back to

the diagonalized basis as k(0)′

j,t = V Tj k̃
(0)
t . The corrected SIMO LDS are run in parallel using

s
(1)′

j,t+1 = λ ◦ s(1)′

j,t +B′x
[j]
t + k

(0)′

j,t . After ∆ layers, ĥ(∆−1)
t = 1

r

∑r
j=1 s̃

(∆−1)
j,t are returned.

4.6 Experiments

Copy memory problem [Arjovsky et al., 2016, Hochreiter and Schmidhuber, 1997]. The goal

is to remember the first 10 entries r of an input sequence, withhold output for T steps (for which

the inputs are just “blanks”), and, upon seeing a “go” input at time T + 10, to output r. There is

a SISO LDS which achieves zero error [Henaff et al., 2016], so we do not consider LDStack of

higher depth. Unitary RNNs are known to solve the problem, so we use the unit parameterization

of Figure 4.1. Arjovsky et al. [2016] use LSTM, simple tanh RNN, and uRNN of respective sizes

n = 40, 80, and 128 for parameter counts of roughly 6500. We use n = 160, which results in
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Figure 4.6: Top left: Sequential permuted MNIST. Top right: Runtimes for different sequence
lengths. Bottom: the adding problem, with larger sequence lengths representing more challeng-
ing problems.

just 3380 parameters, including C ′ ∈ Cn×n. Our solution is the state of the art: it uses the

simplest (linear) RNN with the fewest parameters to solve the T = 2000 instance. Previously,

such performance demanded full-capacity uRNNs [Wisdom et al., 2016] or nonlinear RNNs

[Lezcano-Casado and Martínez-Rubio, 2019].

Sequential permuted MNIST. The images are presented as length-784 sequences of pixels.

Their order is arbitrary, but fixed across all images. We compare an n = 384 SIMO LDS having

∼ 16, 500 parameters to an n = 128 LSTM having ∼ 68, 000 parameters, as well as an n = 128

tanh RNN having ∼ 18, 000. The LDS and the LSTM achieve similar accuracies of 91.8% and

92.3%. This performance is not state of the art: for example, Chang et al. [2018] achieve 95.8%

accuracy with 10,000 parameters. However, the LDS steps take 73ms, compared to 324ms for

the RNN.
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Runtime comparison. LDStack (prototype code in both Python and CUDA) is always faster

than unfused RNNs (whose GPU kernels have not been manually coalesced). At longer se-

quence lengths, it is even faster than the highly-optimized, fused CuDNN LSTM. The O(T ) and

O(log T ) asymptotics manifest plainly.

Adding problem [Arjovsky et al., 2016, Hochreiter and Schmidhuber, 1997]. Each input has

dimension T × 2. The output is the sum of the two numbers (from the first dimension) which are

marked by ones (in the second dimension); the rest of the outputs are zeros. Trivially returning

1 achieves mean-squared error 0.167. This problem cannot be solved by an LDS, so it exercises

both random projection and nonlinear approximation by stacking. We use LDStack with state

size n = 32, depth ∆ = 2, and r = 6 projections. This has 4,175 parameters, compared

to ∼ 27, 000 and ∼ 17, 000 for an LSTM and tanh RNN, respectively, having n = 80. The

simple RNN fails to beat the trivial baseline. The LSTM and LDStack both solve the problem

up to T = 750, though the latter takes longer to converge, and is more unstable in later epochs.

Overall, the LSTM and LDStack are roughly comparable in accuracy, but LSTM is slower.

4.7 Appendix

4.7.1 Proof of Lemma 7

Proof. We wish to show Auj = λjuj . If the theorem is true, then λjuj,i = λj
1

λj
n−i = 1

λ
n−(i+1)
j

=

uj,i+1. Recall the state update of the controllable LDS, which shifts n− 1 entries and computes

a dot product in the last entry:

Auj =



uj,2
...

uj,n−1

−∑i ai−1uj,i


=



λjuj,1
...

λjuj,n

−∑i ai−1/λj
n−i
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It suffices to show:

−
∑

i

ai−1/λ
n−i
j = λjuj,n = λj i.e.

∑
1≤i≤n

ai−1

λ
n−(i−1)
j

= −1 (4.7)

It is well known that the characteristic polynomial ofA is p(t) = a0+a1t+a2t
2+. . .+an−1t

n−1+

tn. By definition, its roots (those t where p(t) = 0) are the eigenvalues of A.

So each λj satisfies:

0 = a0 + a1λj + a2λj
2 + . . .+ an−1λj

n−1 + λj
n = λj

n

1 +
∑

1≤i≤n

ai−1

λ
n−(i−1)
j


Either we have a null eigenvalue λj = 0, or we have the desired equation (4.7).

4.7.2 Proof of Lemma 8

Proof. Let vi be the ith row of U−1. The dual basis of U is (U−1)T , i.e. uT
i vi = 1 and for all

j ̸= i, uT
i vj = 0. Since B′ is the conjugate of the nth column of U−1, it is determined by the

nth coordinates of the vi. We derive these by employing the adjugate technique of Denton et al.

[2019]. Recall the determinant det(A) = ∏
i λi is the product of the eigenvalues. Also recall the

following general definition of the adjugate matrix, when A is diagonalizable but not necessarily

Hermitian:

adj(A)i,j =
n∑

k=1

∏
l ̸=k

λl

uk,iv̄k,j

For any k, replace A by λkλIn −A. This causes all but one of the summands to vanish, yielding

the following simplication:

adj(λkI − A)i,j =
∏

l ̸=k

(λk − λl)
uk,iv̄k,j
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Setting i = 1 and j = n, and substituting the previously derived entries of uk:

adj(λkI − A)1,n =
∏

l ̸=k

(λk − λl)
 1
λn−1

k

v̄k,n (4.8)

By the Laplace expansion of the adjugate matrix of A, adj(λkI − A)1,n) = (−1)1+ndet(M),

where M is the minor of λkI − A produced by removing its nth row and 1st column. It is

straightforward to show that the only eigenvalue ofM is−1 with multiplicity n−1, and therefore

det(M) = (−1)n−1. Therefore adj(λkI−A)1,n = (−1)2n = 1. Combining this with (4.8) obtains

an equality for each v̄k,n, which matches the desired result.

4.7.3 Proof of Proposition 8

Proposition 8 is an easy corollary of the following proposition, which involves MISO LDS rather

than MIMO LDS.

Proposition 11. Let x1, . . . ,xT be any sequence of d-dimensional inputs, and let y1, . . . , yT be

the corresponding outputs of a reachable MISO LDS with parameters (A,B,C,D). For each

j ∈ [r], let gj be a d-dimensional standard normal vector, x[j]
t = gT

j xt be a projected sequence of

scalar inputs, and (A,Bgj,C,D) be the parameters of a SISO LDS producing outputs y[j]
t . Let

ŷt = 1
r

∑r
j=1 y

[j]
t be the average output. For each t ≤ T , E(yt − ŷt)2 = 2||Zt||2F/r, where Zt is

defined below in (4.9). Furthermore, the SISO LDS are almost surely reachable, and share the

same canonical form matrix.

Proof. While proving this result, let us take D = 0 and s0 = 0 for notational simplicity. (These

are just constant terms which do not affect the result.) From the convolution representation (4.1)

and the random construction of the SISO LDS, we find that the approximation is unbiased:

E ŷt = E
1
r

∑
j

t−1∑
τ=1

CAτBgjg
T
j xτ =

t−1∑
τ=1

CAτB
(1
r

Egjg
T
j

)
xt−τ = yt

Therefore the mean squared error is just the variance:

E (yt − ŷt)2 = E ((E ŷt)− ŷt)2 = V(ŷt)
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By the independence of the gj , and the cyclic property and linearity of trace, we reduce to the

variance of a quadratic in normal variables:

V(ŷt) =V

t−1∑
τ=1

tr(CAτB

1
r

r∑
j=1

gjg
T
j

xt−τ )


= 1
r2

r∑
j=1

V
(

t−1∑
τ=1

tr(gT
j xt−τCA

τBgj)
)

= 1
r2

r∑
j=1

V
(
gT

j gj

t−1∑
τ=1

CAτBxt−τ

)

= 1
r2

r∑
j=1

V
(
gT

j

t−1∑
τ=1

xt−τCA
τB︸ ︷︷ ︸

Zt

gj

)
(4.9)

The inner quadratic is not changed by replacing Zt, which is asymmetric, with Z̄t = 1
2(Zt +ZT

t ),

which is symmetric, diagonalizable, and shares the same eigenvalues ν1, . . . , νd. gj retains its

distribution under the rotation U that diagonalizes Z̄t. We find the variance is just the squared

Frobenius norm of Zt:

V
(
gT

j Z̄tg
T
j

)
=V

(
gT

j U
T diag(ν)Ugj

)
=V

(
d∑

i=1
g2

j,iνi

)
= 2

d∑
i=1

ν2
i = 2 ||Zt||2F

Now we verify that the SISO LDS are almost surely reachable, assuming the MISO LDS is

reachable. By Lemma 6, we must show that if [γI − A;B] has full rank for all γ ∈ C, then

[γI−A;Bgj] also does, almost surely. This holds because gj has density with respect to Lebesgue

measure.

To conclude the proof of Proposition 11, denote the MIMO LDS matrices above as (Ã, B̃).

When projected to SIMO LDS (Ã, B̃gj), their canonical forms (Aj,B) are obtained via Ãj =

T −1
j ATj . Let vi and λi be an eigenvector and corresponding eigenvalue of Ã: Ãvi = λivi. Then

AjTjvi = λiTjvi, so the Aj share the same eigenvalues as Ã. Since Aj are companion matrices

of the same form (4.2), this means they are actually the same matrix A.

108



4.7.4 Proof of Proposition 9

The following proposition implies Proposition 9.

Proposition 12. Let n be divisible by d. Let A ∈ Rn×n and B ∈ Rn×d be full rank. Let (A,B)

form a reachable MIMO LDS. Choose any ϵ > 0 and any (Schatten) matrix norm || · ||. There is

a δ > 0 such that the following holds. Let G be an n × n matrix of normal variables of mean

zero and variance δ, and Ã = A + G. Then, with nonzero probability, ||A − Ã|| ≤ ϵ and the

controllability indices of (Ã,B) are all equal to n/d.

Proof. Clearly ||G|| ≤ ϵ with nonzero probability. The controllability indices are equal if the

first n rows of the controllability matrix (4.4) are linearly independent. Thus, we must show that

the following n× n matrix has full rank:

C:,:n = [B, (A+G)B, (A+G)2B, . . . , (A+G)n/d−1B]

The first d columns are linearly independent by assumption. In the remaining columns, since G

is normal — and therefore has density with respect to Lebesgue measure — linear independence

follows from a standard argument. C:,:n is full rank unless its determinant is zero. The determi-

nant is a polynomial p : Rn2 → R in the (flattened) entries of C:,:n. For any such polynomial p,

the set p = 0 has Lebesgue measure zero.

4.7.5 Approximation of Nonlinear Systems by Time-Varying LDS

Tomás-Rodríguez and Banks [2010] describe a method of approximating continuous-time dy-

namical systems by linear, time-varying ones. We briefly review their method, showing how it

gives rise to a multiplicative variant of LDStack. Consider the following nonlinear, discrete-time

dynamical system: ht+1 = ρ(Aht)+Bxt. Bxt is usually inside the nonlinearity ρ, but we keep it

separate for reasons that will be discussed below. ρ must be continuously differentiable. Further-

more, in order for the approximation scheme to be numerically stable, ρmust also be analytically

“nice”, as described below. We use the inverse square root activation ρ(a) = a/
√

1 + a2 as a

running example.
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We begin by viewing the RNN as an Euler discretization of a continuous-time dynamical

system (e.g. Tallec and Ollivier [2018]). Using the Taylor expansion h(t+ ϵt) ≈ h(t) + ϵt · ḣ(t),

and taking a step size of ϵ = 1, we obtain the following nonlinear differential equation: ḣ =

ρ(Ah)−h+Bx. (We elide the dependence on t to simplify notation). The first step is to convert

the dynamical system to state-dependent coefficient (SDC) form: ḣ = A(h)h − h + Bx. Here,

the nonlinear update is factorized to resemble an LDS. SDC form does not allow A to depend

on x, which is why Bxt was kept outside of ρ(·). The SDC factorization can be derived in a

straightforward manner.

Lemma 9. The following is a valid SDC factorization when ρ ∈ C1 and ρ(0) = 0. [Cimen,

2010]

A(h) =
∫ 1

0

dρ(Ah)
dh

∣∣∣∣∣
h=λh

dλ

We call ρ “nice” if the above factorization is numerically stable and can be analytically de-

rived. For our example ρ, a brief calculation shows the SDC form is:

ḣ = diag(1/
√

1 + (Ah)2)A︸ ︷︷ ︸
A(h)

h− h+Bx

Note that A(h)h is a multiplicative, entrywise correction of Ah based on its deviation from

ρ(Ah). Under weak conditions on A, the SDC-form nonlinear system can be approximated by a

sequence of linear, time-varying systems.

Theorem 6 (Informal). LetA be locally Lipschitz. Consider this sequence of time-varying LDS:

ḣ(0) =A(h0)h(0) − h(0) +Bx h
(0)
0 = h0

ḣ(i) =A(h(i−1))h(i) − h(i) +Bx h
(i)
0 = h0

As i → ∞, the solution of h(i) converges to the solution of h. [Tomás-Rodríguez and Banks,

2010]

The nonlinear RNN approximation in Definition 4 is just a discretization of Theorem 6.

Definition 4 (Nonlinear RNN Approximation). Let ρ be a continuously differentiable activation

function with ρ(0) = 0. For t ∈ [T ], let ht+1 = ρ(Aht) + Bxt be the n-dimensional states of an
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RNN with parameters (A,B). Let A : Rn → Rn×n, as given by (9), be locally Lipschitz. This is

a stack of time-varying LDS whose depth is indexed by i:

h
(0)
t+1 = A(h0)h(0)

t +Bxt h
(0)
0 = h0

h
(i)
t+1 = A(h(i−1)

t )h(i)
t +Bxt h

(i)
0 = h0

Our additive variant is more algorithmically convenient, whereas the multiplicative variant

is superior for approximation theory. Multiplicative corrections interfere with diagonalization,

which is crucial for our algorithms. However, as illustrated in Figure 4.7, additive corrections

can produce oscillations which lead to slower convergence. Note that this occurs when the LDS

matrix A matches that of the nonlinear RNN - a choice made for analytic simplicity, when A is

known. At relatively small depths ∆, it may be possible to achieve better approximation with

a different LDS matrix A∆. In a practical learning setting, A∆ is learned directly, without any

reference to the unknown A.

Another Eigenvalue Parameterization

This is a simple trick to optimize over precisely the set of reachable linear dy-

namical systems, with the appropriate constraints on the eigenvalues.

A problem with the standard (α, β) parameterization of λ is that the number of real and

complex eigenvalues is hardcoded. Two real eigenvalues cannot “cross over” to being complex

conjugate pairs, and vice versa. To remedy this, we might consider independently parameterizing

the real and imaginary parts of λwith 2n reals. Unfortunately, this does not constrain the complex

numbers to be conjugate pairs, so then λ1, . . . ,λn are not necessarily the eigenvalues of a real

matrix A. The following “hinge” parameterization, defined in terms of two real numbers (α,ω),

avoids both of these issues. Let h(a) = max(0, a) be a ReLU. Consider these values:

α + h(−ω)i and α + h(ω)− h(−ω)i

If ω > 0, then the values simplify to α and α + ω, which are real. If ω < 0, they simplify to
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Figure 4.7: Additive and multiplicative approximations of a nonlinear RNN (black). The latter
converge more quickly than the former, at least when the same matrix A is shared among the
nonlinear RNN and the approximating LDS.
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α± ωi, which are complex conjugate pairs. The values are distinct when ω ̸= 0.

4.7.6 Additional Experiment Details

In all the experiments, we used Adamax [Kingma and Ba, 2014] as the optimizer for LDS and

LDStack. In some situations, we observed this choice substantially improved the rate of conver-

gence. We used Adam as the optimizer for the LSTM and simple RNN. Abbreviate the learning

rate and batch size as η and B, respectively. For the copy memory problem, η = 0.01,B = 256.

For the runtime comparison, n = 32 and B = 4. For sequential permuted MNIST, B = 128.

LDS used η = 0.0003, and the hinge parameterization described in Section 4.7.5. LSTM and

simple RNN used η = 0.01. In the adding problem, B = 32 there were 100 steps per epoch.

LDStack used η = 0.003 and the hinge parameterization. We observed faster convergence with

a smaller n = 32 model LDStack than with a larger n = 64 one. LSTM and simple RNN used

η = 0.01.

4.8 Discussion

This chapter explores a synthesis between nonlinear sequence-to-sequence models and linear

dynamical systems, also known as state-space models. The results achieved in this chapter are

among the most counterintuitive and interesting of the entire dissertation. For good reason, depth

in neural networks is typically thought of as an architectural feature which inhibits analytical

reasoning. However, an interesting approach in control theory indicates that, in some contexts,

depth can actually facilitate analytical reasoning. This is because nonlinearity along time, which

expresses complex dynamics, can be replaced by (approximations of) nonlinearity along depth,

where deviations can be more easily bounded. Aside from analytical tractability, this replacement

enables parallel computation along time, a crucial requirement of modern sequence-to-sequence

models.

This chapter presents new architectural components for developing fast and trustworthy se-

quence models, based on the core primitive of SIMO LDS. Nonetheless, the specific construc-

tions presented have significant technical limitations. Approximation guarantees for low-depth
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stacks must be studied. This chapter does not closely examine algorithms for learning LDStack,

even though RNNs suffer from the vanishing/exploding gradient problem. Finally, deep learning

primitives are heavily optimized for GPUs [Chetlur et al., 2014]; our implementation requires

similar treatment. Although LDStack scales well with T , its current implementation does not

make efficient use of hardware: for example, memory use scales with depth. Reversibility and

hardware-aware techniques could be exploited to address these issues.

Thus far, the dissertation has focused primarily on theoretical and methodological contribu-

tions. The next chapter, by comparison, is very applied and domain-specific. However, it is

not disjoint from the theoretical work: it involves learning from long sequences of time-series

data, which (chronologically) motivated the research of the present chapter. The application is

in healthcare; this field’s stringent requirements for rigorous and trustworthy algorithms inspired

Chapter 2’s foray into evidence-based medicine.
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Chapter 5

Interpretable Deep Learning in Healthcare
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Abstract

Brief, intense exercise can improve health due to its acute effect on the autonomic

nervous system, particularly the sympathetic nervous system. Salivary amylase is a

marker of sympathetic activity during exercise, but it requires specialized equipment

to measure. This chapter investigates the feasibility of estimating the amylase re-

sponse from heartbeat data recorded by commodity sensors. Heartbeat and amylase

data are collected for n = 71 sessions of intense exercise performed in a commer-

cial setting. A machine learning model exploits structure in the heartbeat signal: by

identifying and removing the contribution of the parasympathetic nervous system,

a residual with sympathetic information is obtained. Then, a convolutional neural

network can be applied. This model has better accuracy than existing measures of

exercise response, such as maximum heart rate, even though it doesn’t use meta-

data such as age and gender. This suggests sympathetic activity may be (weakly)

discerned from heartbeat data. With a larger dataset, a practical measure of sympa-

thetic response to exercise could potentially be developed. This chapter’s quantifica-

tion of parasympathetic activity is more powerful than existing approaches and may

have independent value. This chapter is based on the published work of Kaul et al.

[2019].



5.1 Introduction

Intense exercise elicits a much different physiological response than moderate exercise. At low

and moderate intensities, energy demands are satisfied by the oxidative (aerobic) pathway, and

the initial increase in heart rate is accompanied by withdrawal of the parasympathetic nervous

system. At high intensities, the glycolytic (anaerobic) energy pathway predominates; sweating,

lipolysis, gluconeogenesis, and other characteristic responses are driven mostly by activation of

the sympathetic nervous system rather than further parasympathetic withdrawal [Koistinen and

Laitinen, 2004, Michael et al., 2017a, White and Raven, 2014]. Intense training has been shown

to improve insulin sensitivity, blood pressure, aerobic capacity (VO2max), and body composition

[Batacan et al., 2017, Jelleyman et al., 2015, Jelleyman, 2018, Kessler et al., 2012, Milanović

et al., 2015]. Even a single bout of intense exercise can have acute health benefits, such as

enhancing glucose control [Jelleyman, 2018, Marliss and Vranic, 2002] or inhibiting the growth

of colon cancer [Devin et al., 2019]. Intense exercise interventions are safe [Carl et al., 2016,

de Jong et al., 2003, Wewege et al., 2018] and have the potential to improve outcomes for many

patient populations [Elliott et al., 2015, Hannan et al., 2018, Jelleyman et al., 2015, Weston et al.,

2014].

It is hard to measure if the desired response to intense exercise was actually achieved. Sub-

jective measures, such as RPE (rate of perceived exertion) or RIR (repetitions in reserve), are

common in athletic training. However, these measures are often unreliable in patient populations

unaccustomed or indisposed to exercise [Aamot et al., 2014, Strzelczyk et al., 2001, Unick et al.,

2014]. As previously mentioned, the activity of the sympathetic nervous system is of fundamen-

tal importance. There are many methods of measuring sympathetic activity, but none is consid-

ered a gold standard [Grassi and Esler, 1999]. The most common measure of sympathetic tone

is the concentration of plasma epinephrine (a.k.a. adrenaline) or norepinephrine. Unfortunately,

this requires invasive, confounding blood draws and complex laboratory analysis. The cardiac

preejection period has been proposed as a valid, noninvasive measure of sympathetic activity

[Michael et al., 2017a]. Unfortunately, it is recorded by bioimpedance cardiography, which is

sensitive to the postural changes and heavy breathing that occur during exercise. Measurements

can also be made at the periphery. Microneurography involves electrodes inserted directly into
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muscle or skin nerves, which prohibits large movements during exercise [Vallbo et al., 2004].

Electrodermal activity (EDA) of sweat glands correlates with sympathetic activity during exer-

cise [Boettger et al., 2010, Posada-Quintero et al., 2018]. However, peripheral measurements

are not uniform across the body [Shoemaker et al., 2018], the most accurate measurement loca-

tions are not convenient [van Dooren et al., 2012], and are affected by local phenomena, such as

vasoconstriction [Edelberg, 1964].

Salivary α-amylase (briefly, “amylase”) has been identified as a marker of sympathetic tone,

especially during exercise [Chicharro et al., 1998, Koibuchi and Suzuki, 2014, Nater and Rohleder,

2009]; (nor)epinephrine activates β1-adrenergic receptors in the salivary glands, which causes

granules of this enzyme to be released. Below a minimum threshold of intensity –— which

seems to coincide with the accumulation of lactate in blood [Akizuki et al., 2014, Bocanegra

et al., 2012, Calvo et al., 1997] –— the change in amylase is negligible. Above that threshold,

it rises proportionally with intensity [De Oliveira et al., 2010, Li and Gleeson, 2004]. Amylase

is typically measured by immunoassay of saliva sampled by passive drool. It can also be imme-

diately measured by point-of-care devices [Shetty et al., 2011]. However, both methods incur

nonneglible marginal cost due to nonreusable materials. Because salivary flow rate changes dur-

ing exercise [Bosch et al., 2011, Rohleder and Nater, 2009], the point-of-care devices are prone

to substantial error, if used without careful adherence to protocol [Peng et al., 2016].

Practitioners have resorted to metrics based on heart rate, because it is cheap and practical to

measure with commodity sensors. These metrics include average and maximum heart rate, the

decrease in heart rate 60 seconds after exercise (HRR60), and the rate at which heart rate returns

to baseline (HRRτ ). With sensors capable of recording the times between individual heartbeats,

an assortment of heart rate variability (HRV) metrics, such as SDNN, RMSSD, PNN50, and LF,

can be calculated during or after exercise [Shaffer and Ginsberg, 2017]. Though these metrics

may be useful for monitoring recovery, assessing fitness, or related tasks, their utility as measures

of the sympathetic response to intense exercise is limited. LF — the weight placed on low-

frequency (0.04− 0.15 Hz) components of the Fourier decomposition of the heartbeat signal —

was previously thought to reflect slower-responding sympathetic tone, but is now understood to

be parasympathetically driven [Moak et al., 2007, Reyes del Paso et al., 2013, Thomas et al.,
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2019]. During exercise, HRV reaches a near-minimum at a relatively low intensity, analogous

to parasympathetic tone [Boettger et al., 2010, Michael et al., 2017a]. Following exercise, HRV

recovery, unlike sympathetic withdrawal, is substantially delayed by duration [Michael et al.,

2017c] and moderate intensity [Michael et al., 2017b]. Similarly, HRR60 primarily, though

not entirely, reflects parasympathetic reactivation [Kannankeril et al., 2004]. HRRτ seems to

have a stronger dependence on sympathetic tone [Buchheit et al., 2007]; in skeletal muscle,

accumulated metabolites stimulate metaboreceptors, which in turn maintain sympathetic tone

[Fisher et al., 2013]. HRRτ , along with the other recovery metrics, require monitoring from 10

minutes to hours after the cessation of exercise, during which upright posture and further activity

may confound results.

Since intense exercise is hard to monitor, it is hard to prescribe. Exercise intensity is typically

specified as a percentage of some unknown, estimated quantity, such as maximum perceived ex-

ertion, maximum heart rate, or VO2max. The error in this estimate is amplified when prescribing

intense exercise at 95% VO2max rather than moderate exercise at 60% VO2max. Such impreci-

sion stokes lingering concerns of overexertion during intense exercise. Mann et al. [2013] review

the large variation of physiological responses to “poorly standardized” exercise protocols. Im-

precise dosing of exercise raises concerns of overexertion and results in worse health outcomes.

The SMARTEX heart study [Ellingsen et al., 2017a] found intense exercise was not better than

moderate exercise for rehabilitating cardiac-failure patients, because some patients did not ex-

ercise at the correct intensity. In their view, “tight control of prescribed exercise intensity and

intended load increase was somehow lost in the translation from a small proof-of-principle study

to a larger multicenter trial of the efficacy under conditions closer to standard clinical practice”

[Ellingsen et al., 2017b].

5.1.1 Novel Contribution

This chapter investigates the feasibility of measuring sympathetic response without specialized

equipment. Using machine learning, it develops an algorithm which estimates the change in

amylase enzyme activity (from before exercise to after, denoted as ∆Amylase) from heartbeat

data readily collected during exercise. This is a supervised regression problem: the input is an
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arbitrary-length sequence of interbeat intervals, and the label is ∆Amylase, a real value with

units U/mL. We also consider the associated comparison problem: determining if one workout

resulted in greater ∆Amylase than another workout.

To train and evaluate the algorithm, a realistic, albeit noisy, dataset is collected. Previous

studies were conducted in laboratories or elite athletic settings, involved a narrow population

of participants, exerted tight control over their diet and schedule, and specified a small num-

ber of exercises (primarily cycling). This new dataset is collected in commercial group training

sessions, involves a diverse group of participants, observes them in their day-to-day exercise

routine, and involves a wide variety of exercises. However, there may be substantial noise in

both the heartbeat data (due to sensors slipping in full-body exercises) as well as the amylase

measurements (due to changes in salivary flow and inadvertent misuse of equipment). Whereas

laboratory settings have a tendency to produce optimistic results, this study is designed to pro-

duce pessimistic ones, reflecting practical realities of actual application.

This chapter’s machine learning model is informed by the physiology of the autonomic ner-

vous system. The parasympathetic system contributes a substantial, high-frequency component

to the heartbeat signal. Heart rate variability (HRV) is a fairly reliable indicator of parasympa-

thetic activity. By removing an HRV-derived component from the heartbeat signal, we obtain a

residual with information about sympathetic activity. Multiple HRV metrics may be computed

from second moments of the interbeat intervals. To quantify the parasympathetic contribution,

rather than using an existing HRV metric, we allow more general, parametrized metrics of the

same underlying moments. The generalization is mild enough to still consider them variability

metrics rather than arbitrary statistics. The parameters of this metric are (pre)trained upon the

data. Subsequently predicting ∆Amylase from the residual is a straightforward application of

convolutional neural networks.

Clinical Relevance. A practical measure of sympathetic response could greatly improve the

clinical practice of intense exercise. For doctors and researchers, a measure could ease the de-

velopment and specification of intense exercise regimens. For patients and athletes, it could help

ensure that improvements to health and fitness are actually being made. This chapter initiates

the study of this problem in the hope of motivating further research. On the new dataset, heart
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rate (the predominant metric) is no better than random guessing as a measure of sympathetic

response. The bespoke model achieves a modest but discernible improvement. However, the

dataset is too small (n = 71) to train a practically usable model.

Technical Significance. This chapter restores some optimism that heartbeat data contains

information about sympathetic activity. Its novel approach of eliminating parasympathetic influ-

ence from the heartbeat signal proves useful; a naive application of CNNs is not as accurate. Its

generalization of HRV metrics may have some independent utility for quantifying parasympa-

thetic tone in the context of other applications.

5.1.2 Outline

Section 5.2 describes the cohort and the data collection process. Section 5.3 presents basic

statistics of our dataset. These suggest the estimation problem is challenging, and motivate the

use of machine learning. Section 5.4 presents the bespoke machine learning model, and compare

it to previous work. Section 5.5 examines the results of fitting the model to the data. Section 5.6

reviews our findings and offer guidance for future research.

5.2 Study Design

The first goal of the study is to collect a dataset in which the participants and their activities

are realistically observed rather than tightly controlled. This makes the data noisier, and in turn

makes the estimation problem harder. However, a model trained upon this data has a better

chance of transferring to practical use. Importantly, the goal of the study is just to estimate

amylase, not to bolster its physiologic validity as a measure of sympathetic response.

5.2.1 Cohort Selection

The participants in this study are members of a commercial fitness facility in New Jersey. This

membership is evenly split between genders and has an average age of 45, not including minors

who are not eligible for study. Approximately 80% of the members are white and 20% of the

members are of another race. No competitive or professional athletes are included.
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Each exercise session is performed as part of an hour-long, instructor-led class. The workout

is relatively brief, typically between 10 and 15 minutes. It is preceded by a warmup involving dy-

namic exercises, static stretching, and weightlifting practice. The workouts involve a wide variety

of exercises, including bodyweight movements, rowing, cycling, running, gymnastics, dumbbell

exercises, and barbell lifts. Most of the workouts are driven by one of two goals: to complete

the workload as quickly as possible (“time priority”), or to complete as many rounds as possible

within a given time (“task priority”). The workout prescriptions are generated semirandomly, to

avoid repetition of exercises and to keep participants engaged. The workout prescriptions are just

guidelines; participants make modifications, such as reducing the weight, so they can complete

the workout.

Most of the workouts are intended to be intense, though longer workouts are necessarily less

intense than the shorter ones. A small fraction of the workouts focus on “assistance” exercises

which are performed more gingerly with large rest periods and lower overall difficulty. Relatively

low ∆Amylase is expected for these workouts. They may be thought of as informal controls, with

relatively low changes in amylase. Another portion of the workouts are performed competitively

while being judged; relatively high ∆Amylase is expected for these.

5.2.2 Data Collection

The study began in February 2019 and lasted 4 weeks. Participants consented to the study af-

ter being informed of all aspects of the data collection process. During their first session, they

were instructed how to use the necessary equipment. Participants arrived at class as they usu-

ally would; we did not control their food intake, time of day, or any other factors. However,

they were instructed to arrive 10-15 minutes prior to class in order to initiate data collection.

Participants performed their own measurements, having been individually instructed on proper

protocol. (Since they exercised throughout the day, it was not feasible to supervise them at all

times.) Roughly 5 minutes before the class started, they measured their amylase by inserting a

saliva measurement stick (pictured in Figure 5.1) under their tongue for 30 seconds. They took

special care to saturate the stick with saliva, to avoid problems with salivary flow rate. The stick

was then read with a portable colorimetric meter [Shetty et al., 2011]. They then securely wore a
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Figure 5.1: Data collection equipment. Left: pouches of saliva swabs. Center: point-of-care sali-
vary amylase meter, with a single saliva swab. Right: Polar H10 cheststrap heart rate monitors.

Polar H10 (single-lead ECG cheststrap) heart rate monitor. The HRM connected to their personal

smartphone via Bluetooth. To ease data collection and improve compliance, we implemented a

custom iOS application, in which the participant could enter all their information, and the HRM

could log its data. The interface of this application is presented in Figure 5.2. For the entire

class, users remained within 15 meters of their phone, to prevent the HRMs from disconnecting.

Roughly one minute after the main portion of the workout, prior to cooling down, the partic-

ipants gauged their rate of perceived exertion, and again measured their amylase. Participants

noted if any unusual circumstances befell the workout or their preparation for it; these include

illness, injury, a high temperature in the gym, or an atypically large dose of caffeine. Finally,

users submitted all of the data through the application. Using the start and end times of the data

collection, we ensured that data was collected continuously.
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A B C D

Figure 5.2: Screens of the iOS data collection application used in the study. A: The user connects
to a Bluetooth heart rate monitor. B: Heart rate is prominently displayed. Starting amylase is
recorded, and the green “start workout” button is pressed. C: Heart rate is continuously updated
during the workout, after which the red “end workout” button is pressed. D: The remainder of
the data (age, gender, ending amylase, and RPE) are collected.

Total workouts 85
User errors 3
HRM errors 2
App. errors 6
Too much noise 3
Dataset size 71

Figure 5.3: Basic statistics of the dataset. As the table shows, a substantial number of errors
were encountered during data collection. The mean age is 37. The mean absolute magnitude of
∆Amylase is 40. The mean absolute deviation of ∆Amylase is 29.4.

Samples were excluded on the following grounds. (1) User error: the user did not follow

proper protocol (e.g. forgot to measure their amylase at the cessation of exercise). (2) HRM

error: the heart rate monitor prematurely disconnected from the phone. (3) Application error: an

unknown technical error was encountered while using the iOS application. (4) Too much noise:

the heart rate monitor slipped or malfunctioned, resulting in excessively noisy measurement.
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5.3 Basic Data Preprocessing and Analysis

Figure 5.4: Top: a tachogram of the raw heartbeat data of a single workout. RR intervals are
recorded, and converted to instantaneous heart rate via the equation HR = 60000/RR. The
workout is 30 jump-rope double-unders and 15 dumbbell snatches, for as many rounds as possi-
ble within 10 minutes. The main working portion is near the end of the session, and is preceded
by a substantial warmup. The data are presented without any smoothing or noise filtering. The
large amount of noise may be partially attributed to jumping. Bottom: the previous tachogram
processed by the noise filtering algorithm.

In total, 71 workouts were successfully recorded from 19 participants. Though small by the

standards of modern machine learning, this is relatively large compared to previous studies. It

is enough to cover a wide variety of exercise plans performed at varying degrees of intensity. In

this section, we review the salient features of the dataset, and thereby gain some intuition for the

design of the machine learning model.
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5.3.1 Noise

As seen in Figure 5.4, the RR interval data are noisy. The noise consists primarily of isolated,

falsely-ectopic beats which spike below or above the otherwise-smooth curve. Ectopic beats are

known to impede calculation of heart rate variability [Lippman et al., 1994]. Accordingly, we

eliminated the ectopic beats with the following noise filtering algorithm. First, we calculate a

median filter on the entire RR interval sequence using a window size of 24. Next, we measure

the relative deviation of the original RR interval from the filtered value. If this is more than

20%, then we consider the RR interval ectopic and replace it with the filtered value. If more than

15% of the beats are ectopic, then we exclude the entire sample from subsequent analysis. Three

samples were excluded in this manner.

The ∆Amylase measurements are similarly noisy. Immediately following intense exercise,

participants were sometimes forgetful or simply too tired to completely adhere to the measure-

ment protocol. On occasion, saliva measurements were performed in duplicate. Based on these

measurements, we estimate that the inherent noise in the ∆Amylase values is roughly 10. For

similar reasons, RPE was essentially ignored; participants rarely changed it from its default value

of 5. No such omissions were made for age or gender.

5.3.2 Heart Rate Metrics and ∆Amylase

The most basic metric derived from RR intervals is heart rate, via the equation HR = 60000/RR.

Beyond heart rate, heart rate variability (HRV) measures the activity of the parasympathetic ner-

vous system in terms of the variation of time between heartbeats. Higher variation corresponds

to higher parasympathetic activity. The most commonly used HRV statistics are RMSSD (root

mean square of successive differences) and SDNN (standard deviation of normal-to-normal in-

tervals). The equations in Section 5.4.3 formally define these statistics; for further detail, see

Shaffer et al. [2014] or Shaffer and Ginsberg [2017] for reviews of these statistics. In Figure 5.5,

we display, for a variety of workouts, SDNN computed over sliding windows of 24 beats.
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Figure 5.5: Heart rate (red) and SDNN (a measure of parasympathetic activity, gray) compared
for workouts with different amylase changes (given by ∆ in the top left). The vertical axis of
SDNN is flipped for visual clarity. All of these workouts, except for the one with ∆ = 6, illustrate
an interesting pattern. When ∆ is low, changes in HR are mirrored by changes in SDNN. When
∆ is high, HR and SDNN become decoupled: SDNN remains flat while HR may continue to
increase. This manifests as the red line spiking above the gray line. HR changes that do not
coincide with SDNN changes may be sympathetically driven.
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Figure 5.6: Various heart rate metrics, age and ∆Amylase do not seem to correlate. Bright green
denotes young age, and black denotes old age. Five workouts resulted in negative ∆Amylase;
these remain in the dataset, but are clipped off the plot for visual clarity. Maximum heart rate is
estimated as HRmax = 208 − 0.7 · Age [Tanaka et al., 2001]. Heart rate metrics are not a good
measures of sympathetic response, even taking age into account.

As expected, there does not seem to be a discernible correlation between basic heart rate met-

rics and ∆Amylase, even when controlling for age. Figure 5.6 illustrates the lack of correlation.

This is consistent with the consensus that heart rate is not a reliable measure of the response

to exercise, at least across individuals. While these metrics cannot be directly used to predict

∆Amylase, Figure 5.5 illustrates an interesting possibility of using SDNN to isolate sympathetic

activity. We will examine this relationship more closely in Section 5.4.2, and ultimately use it to

derive a custom machine learning model.

5.4 Machine Learning with a Structured Model

5.4.1 Problem Formulation

Let the length-T sequence of interbeat RR intervals be x = [x1, . . . ,xT ]. Each xt ∈ R+ has

millisecond units. So, if R-peak t occurs half a second after R-peak t − 1, then xt = 500.

Let ∆Amylase ∈ R (now abbreviated as just ∆) be the difference in amylase incurred during

exercise. The goal is to find a function f which minimizes the following mean absolute error in

predicting ∆ (left). We also consider the induced pairwise comparison problem (right):

E |f(x)−∆| P ((∆ < ∆′)⇐⇒ (f(x) < f(x′)))
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In the present context, these problems are challenging for the following reasons:

• The sequences are long — typically longer than 7000 elements — and are highly nonsta-

tionary, with long-range dependencies. This precludes the use of many RNNs, which are

typically trained on short segments, lest they become a serial computational bottleneck.

• The signal-to-noise ratio is low. As discussed in Section 5.3.1, there is noise in both the

inputs and the outputs. There is only a single point of supervision ∆ for each sequence x.

• Age, gender, and starting time are excluded from the predictive model. We do this to avoid

overfitting, and to see if ∆Amylase can be estimated from heartbeat data alone.

5.4.2 Key Intuitions

Figure 5.7: Schematic relationship of the parasympathetic (PS) and sympathetic (S) nervous
systems during intense exercise. The left figure, following White and Raven [2014], shows that
PS withdraws mostly at moderate intensities, and S activates mostly at high intensities. The right
figure, from Michael et al. [2017a], shows that PS is faster-acting than S; it withdraws before S
activates, and reactivates before S withdraws.

Let us motivate the design of the machine learning model by examining the relationship

between HR and HRV in Figure 5.6. Large gaps between HR and (inverse) HRV seem to be a

necessary condition for high ∆Amylase. That is, high ∆Amylase seems to be contingent upon

sudden increases in HR despite no decrease in HRV. In workouts with low ∆Amylase, changes

in HR seem to be mirrored by changes in HRV. It makes some visual sense to subtract (inverted)

HRV to obtain the S activity that would explain the unaccounted HR changes. This idea makes

some physiologic sense as well, due to the complementary relationship between the PS and S

systems (Figure 5.7) . The physiology suggests another telltale clue: HRV increasing while HR
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remains elevated.

The overall model takes the form f(x) = s(h(x) − (h ◦ p ◦ v ◦ z)(x)), where z are squared

differences of x, v is a generalized HRV metric, p is the pretrained parasympathetic layer, h(r) =

60000/r converts from RR intervals to instantaneous HR, h(x) − h(p) is the residual, and s is

the sympathetic layer. The model architecture is described in more detail below.

5.4.3 Pretrained Parasympathetic Layer

To eliminate the parasympathetic influence on heart rate, it is tempting to simply subtract an

existing HRV metric from heart rate. However, this is not quantitatively satisfactory for multiple

reasons. First, it is not clear which HRV metric to use. Second, doing this in the manner of Figure

5.6 would involve translating and scaling the metric; these operations would have to be calibrated

to the data. Finally, simply subtracting HRV may not be the best way of removing information

from the signal. Ideally, the residual should be independent of parasympathetic activity, in that

predicting the former from the latter should not be possible. Rather than attempting to ameliorate

these issues by hand, we employ machine learning.

Squared differences. We observe that the most commonly-used HRV metrics can be ex-

pressed in terms of the squared differences zi,j = (xi − xj)2. This is obvious for RMSSD and

PNN50. In the following equation for SDNN, µ = 1
m

∑
i≤m xi is the mean, and we invoke the

usual decomposition of variance.

RMSSD2 = 1
m

∑
i<m

(xi+1 − xi)2 = 1
m

∑
i<m

zi,i+1

m2 · SDNN2 =m
∑
i≤m

(xi − µ)2 = m
∑
i≤m

x2
i −m2µ2

=1
2
∑
i,j
x2

i + x2
j − 2xixj = 1

2
∑
i,j
zi,j

PNN50 = 1
m

∑
i≤m

1 (|xi+1 − xi| ≥ 50) = 1
m

∑
i≤m

1
(
zi,i+1 ≥ 502

)

Put another way, the squared differences are sufficient statistics for HRV. However, these statis-

tics do not capture all the information in the heartbeat signal. This restriction is beneficial because
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if the (purportedly) parasympathetic model overlaps too much with remaining layers, it becomes

less interpretable, and may fail its purpose of isolating a useful residual. We will soon see why

squared differences, rather than the more typical mean and moments xixj , are being used.

This generalization of heart-rate variability could have broader applications in

electrocardiology and psychophysiology.

Generalized HRV metric. The architecture of this part is as follows. For each window of size

m, with stride 1, compute z. Optionally apply a nonlinearity for statistics like PNN50. Then,

take a linear combination of the entries or z. The present model initializes this to the constant

1/(2m2) matrix, to compute SDNN. It uses a window size of m = 24, which is considered an

ultra-short-term measure of HRV.

Parasympathetic contribution. Let us momentarily ignore the unit conversion h. To make

x− p(v) difficult to predict from v, pretrain p to predict x from v, by minimizing mean squared

error. In this way, x̃ becomes the unpredictable part of x. We expect this prediction will be

difficult and that x − p will be substantial. The HRV metrics could have also been written in

terms of the mean and second moments xixj , but this data would allow x to be easily recovered.

The squared differences do not reveal much about the mean of x. This makes p(v(z(·))) a kind

of autoencoder.

Now let us examine the use of h. Because x and p have units of RR intervals, there is

an implicit bias for p to more closely fit low-intensity periods, which is when we expect more

parasympathetic activity. This is because when HR is high, RR intervals are small, so the squared

error is limited. For the sympathetic layer, we want the opposite numerical tendency, so we use

units of heart rate. Computing h(x − p) leads to near division-by-zero where x is close to p.

Instead, we use h(x)− h(p).

Given this functional overview, we can finally settle on the actual architecture of p(v). Since

the parasympathetic system is high-frequency and fast-acting, it uses 3 layers of convolutions of

size 4 with linear activation.
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5.4.4 Sympathetic Layer

The sympathetic layer is designed to be sensitive to the sharp increases and prolonged elevations

coincident with sympathetic response. These sequential, spatially-local patterns can be recog-

nized by one-dimensional convolutions. To increase the receptive field (i.e. to allow for some

amount of sequential dependence), dilated convolutions are employed [Oord et al., 2016]. In

particular, the model stacks a block of dilated convolutions, each followed by a standard con-

volution with a stride length of 2, which halves the output dimension. To mute the output in

uninteresting regions, gated convolutions are used, which doubles the number of convolution pa-

rameters [Dauphin et al., 2017]. Together, the convolution layers output a single response value

for each segment. The cumulative sympathetic response is just the sum of the responses for each

segment. This locality assumption is plausible, but could be reexamined in future work.

Compared to the parasympathetic layer, the sympathetic layer has a generic architecture. This

is appropriate because the theory of how the sympathetic nervous system affects heartbeat inter-

vals is much less well-developed. Though the chosen architecture seems to make the sympathetic

layer work well, it is possible that other choices may work better.

5.4.5 Implementation Details

The experiment splits the dataset into training and testing sets of equal size. To avoid imbalances,

it rejects splits where the train and test means of ∆Amylase differ by more than 5. (Due to the

small size of the dataset, this is a potential concern). Variable-length sequences are either zero-

padded or left-truncated to a uniform length of 7000.

The model is implemented in TensorFlow 1.13. Both pretraining and training use the Adam

optimizer with the default learning rate. For pretraining, the entire training set is used in each

batch; training uses just a single example in each batch. Both pretraining and training run for

60,000 steps. During training, the parasympathetic layer’s parameters are frozen. For both the

regression and comparison problems, the ℓ1 loss is used. To examine the potential of over-

parametrization, the number of parameters in the sympathetic layer were informally varied.
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5.4.6 Related Work

Most work on classifying cardiologic signals starts with nearly-continuous ECG waveforms sam-

pled at approximately 200Hz [Hannun et al., 2019, Lehman et al., 2018]. The goal is often to

detect arrythmia or determine risk of myocardial infarction. We use coarser RR interval data for

the following reasons. It isn’t possible to access raw waveforms from consumer-grade monitors;

the Bluetooth standard provides only for heart rate and RR intervals. During intense exercise, the

waveform is likely to be extremely noisy, since even the extracted RR intervals are noisy. Lastly,

sympathetic response is relatively slow compared to parasympathetic response and other ECG

dynamics, so the time scale of RR intervals is more appropriate.

Most algorithms for assessing autonomic function from RR intervals originate from the field

of signal processing. The algorithms are handcrafted, not learned, for the sake of simplicity, in-

terpretability, and computational efficiency. Even though RR interval data is relatively abundant,

machine learning algorithms which process them are somewhat uncommon. In 2002, the Phy-

sioNet challenge involved generating artificial RR interval sequences and discriminating them

from real ones [Moody, 2002]. Tsipouras et al. [2005] classify heartbeats using a handcrafted

classifier which sequentially operates on windows of RR intervals. Gjoreski et al. [2017] employ

a 7-layer fully-connected ReLU network upon the raw RR intervals. [Faust et al., 2018] apply

an LSTM to detect atrial fibrillation. Asl et al. [2012] extracts time-series features before using

a neural network.

The extraction of a sympathetic residual should not be confused with (and in fact is diamet-

rically opposed to) residual networks in deep learning [He et al., 2016b]. The layers of these

networks have skip connections which add the original input to their transformation of the input.

With a skip connections, the parasympathetic layer would output x + p rather than just p. Skip

connections seem to ease optimization because, if many such layers are stacked, then each indi-

vidual layer can be very close to an identity transformation, with each pmodeling a slight change

(or “residual”) of the input. By contrast, the point of our approach is to eliminate the extraneous

parasympathetic component from the original input.

Various consumer devices calculate proprietary scores for workouts. Some of these scores

purportedly measure the response to intense, anaerobic exercise. Since they do not correspond
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Figure 5.8: A single example of heart rate 60000/x in red, along with the learned parasym-
pathetic contribution 60000/p in purple. As described in Section 5.4.2, this parasympathetic
contribution is subtracted from the signal to isolate the sympathetic component. On this exam-
ple, the parasympathetic contribution visually appears to be a refinement of simple thresholding
at roughly 150 BPM, which is popularly thought of as a demarcation between low-intensity and
high-intensity exercise. It may be compared with SDNN in Figure 5.5, but it is quantitatively
superior to all such baseline HRV metrics.

to any real physiologic quantity, it is difficult to assess the validity of these scores relative to a

gold standard. It is also difficult to assess the relevance of these scores to health outcomes. It

is easier to reason about the outcomes associated with amylase response, since it is part of the

neuroendocrine system.

5.5 Machine Learning Results

First, we examine the results of pretraining. The quantitative error incurred during pretraining is

not pertinent, so we examine some of the qualitative aspects of the learned features. In Figure

5.8, we see that parasympathetic contribution roughly accords with SDNN in Figure 5.5, but is

more steady at higher HR. In Figure 5.9, we see that the learned HRV metric is substantially

different than the known ones.

Next, we examine the accuracy of the algorithm on the regression and comparison problems.

As a baseline method, we consider a plain CNN, whose architecture is the same as the sympa-

thetic layer. We also consider what happens if we didn’t pretrain the parasympathetic layer, but

merely subtracted RMSSD from HR. For the comparison problem, we consider using maximum
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Figure 5.9: The matrix of weights on the squared differences zi,j . Each entry was initialized
to the same value, but after training, there is clearly nonuniformity. The algorithm seems to
take advantage of the flexibility afforded by the additional parameters, with a nontrivial weight
pattern, and both positive and negative weights.

heart rate as a ranking. We find that the novel algorithm is superior to all of these baseline ap-

proaches. This suggests that both our modeling effort and pretraining are worthwhile. However,

the accuracy of all the methods is still relatively poor. This is likely due to the small amount of

training data.

Algorithm Training Error Testing Error

Regression Comparison Regression Comparison

Plain CNN 8.02 0.11 26.29 0.53

No Pretrained PS 12.28 0.37 19.21 0.41

Our Algorithm 10.04 0.28 15.12 0.34

Max HR – 0.48 – 0.52

Figure 5.10: Quantitative evaluation of the algorithm. Our algorithm is superior in both the
regression and comparison problems.
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5.6 Discussion

This chapter explores a synthesis between traditional, handcrafted electrocardiological statistics

and statistics that are learned from labeled data for a specific predictive purpose. It defines a

family of statistics which generalize the handcrafted ones and embed parameters which can be

learned by gradient descent. This chapter is satisfying because its physiologically-informed ap-

proach leads to better predictive performance than a naive one based on more flexible models.

The design of the generalized statistics imparted an empirically-helpful inductive bias. Fur-

thermore, the new statistics preserve some of the interpretation and intuitions surrounding the

traditional ones.

Overall, this chapter made the following contributions. (1) It initiated the study of a novel

supervised learning problem. (2) It describes the collection of a dataset large enough to conduct

a pilot study. (3) It generalizes HRV metrics to allow them to express parasympathetic contribu-

tion to heart rate. (4) It trains and evaluates a physiologically-informed machine learning model

which outperforms baseline methods used by practitioners. Our main result is that ∆Amylase is

(weakly) discernible solely from heartbeat data. This is supported by the nontrivial regression

and comparison accuracy of our model. A secondary result is that it seems easier to predict

∆Amylase after attempting to subtract parasympathetic contribution. It is possible that that this

is simply due to the larger number of parameters in the pretrained model. However, this is un-

likely, since the sympathetic layer already has a large number of parameters, and its performance

was not substantially affected by adding more parameters.

The following limitation must be recognized: the validity of ∆Amylase as a marker of ex-

ercise intensity is outside the scope of the study. This question is examined by previous works

mentioned in the introduction. Importantly, the validity of ∆Amylase may depend on the patient

population. For example, cardiac rehabilitation patients are often prescribed β-receptor antago-

nists, which inhibit both heart rate and likely amylase response. We are presently focused on the

purely quantitative prediction task. Furthermore, considering the small size of our dataset, this

chapter should be considered a pilot study. It identifies, formalizes, and initiates the study of a

machine learning problem, but does not adequately solve it. Accordingly, we offer a methodolog-

ical suggestions for future studies: Point-of-care devices are not recommended for large-scale
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use. Delicate use of the devices is necessary, and probably would not occur without careful

instruction and/or supervision.

The entire dissertation has thus far focused on improving predictive models for preexisting

problems. But machine learning also involves formalizing and understanding the problems that

should be solved in the first place. This is especially true in modern machine learning, where

desiderata besides speed and accuracy abound. The next chapter investigates how classical com-

putational considerations interact with modern desiderata of fairness.
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Chapter 6

Towards Computationally-Tractable
Multi-Group Fairness
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Abstract

This chapter uses the geometric quantity of margin — the distance between a de-

cision boundary and a classified point, or the gap between two scores — to formalize

the principle of equal opportunity: the chance to improve one’s outcome, regardless

of group status. This approach recognizes, for example, that a strongly rejected in-

dividual was offered less recourse than a weakly rejected one, despite the shared

outcome. It also leads to simpler algorithms, since continuous margins are easier

to analyze and optimize than discrete outcomes. This chapter formalizes two ways

that a protected group may be guaranteed equal opportunity: (1) (social) mobility:

acceptance should be within reach for the group (conversely, the general population

shouldn’t be cushioned from rejection), and (2) contrast: within the group, good

candidates should get substantially higher scores than bad candidates, preventing

the so-called ‘token’ effect. A simple linear classifier seems to offer roughly equal

opportunity both experimentally and mathematically. This chapter is based on the

published work of Kaul [2018].



In machine learning, the outcome of a candidate x is often determined by a real-valued score

s(x) ∈ [−1, 1]. A deterministic classifier c(x) = sgn(s(x)) ∈ {−1, 1} uses the sign of the

score to determine whether the individual is accepted or rejected. A randomized, confidence-

based classifier returns sgn(s(x)) with probability |s(x)|, and guesses randomly otherwise. An

accurate classifier minimizes the probability of misclassification P (c(x) ̸= yx) relative to the

correct outcomes yx ∈ {−1, 1}. In ranking, the score is used to compare candidates. An accurate

ranking maximizes the probability of ranking a good candidate x higher than a bad candidate x′:

P (s(x) > s(x′)).

Since discrete optimization problems are typically harder than their continuous variants, un-

derpinning outcomes by scores is computationally expedient. The continuous optimization prob-

lems are often based on a quantity called the margin: a distance in either the input space (of x)

or the output space (of s(x)). In the input space, this is a distance between x and the decision

boundary. (For a linear classifier c(x) = sgn(⟨w,x⟩), this typically refers to |⟨w,x⟩|.) In the

output space, s(x)− s(x′) is the margin by which x is ranked higher than x′.

Besides being accurate, a score should be fair. Suppose candidates belong to either a pro-

tected group Π or the general population Πc; for example, Π may be an underrepresented mi-

nority. In classification, the most well-known definition of group fairness is demographic parity,

which equalizes the acceptance rate of Π and Πc. Rather than enforcing equal outcomes, this

chapter focuses on fair process. It formalizes two aspects of equal opportunity as ‘mobility’ and

‘contrast’. Before the formal discussion, here is some high-level motivation for the definitions.

Suppose a candidate in Π is declined a job offer and seeks to improve her chance the next time

she applies. If she can devote just a few hours per week to prepare, the magnitude of her effort is

limited. Mobility allows candidates to become accepted through a reasonable amount of effort.

Also, the candidate directs her effort by becoming more like her successful peers than the un-

successful ones. Contrast ensures that good candidates have much higher scores (i.e. acceptance

probabilities) than bad ones, which makes it easier to discern the underlying differences between

good and bad peers. Since these guarantees should have the same strength for Π and Πc (on

average), the groups have equal opportunity.

Mobility and contrast are closely related to margins in input and output space, respectively.
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This chapter adapts these quantities to capture equal opportunity while retaining their analytic

tractability. As a result, we can prove that mobility and contrast (or at least precursors thereof)

are offered by a very simple linear classifier computed by averaging the data. These results are

validated on adult income data.

Notation. Let ⟨w,x⟩ = ∑
i wixi be the inner product in n-dimensional Euclidean space Rn.

Let X ⊂ Rn be the set of all candidates; to ease notation, assume it has finite size |X|. Each

candidate has a correct outcome yx equal to either −1 (‘bad’) or 1 (‘good’). The protected group

is a subset Π ⊂ X , and the general population is the complement Πc. We partition the good and

bad members of Π:

Π+ = {x ∈ Π : yx > 0} Π− = Π \Π+

We similarly partition Πc into
∏c

+ and
∏c

−. Let c : X → {−1, 1} and s : X → [−1, 1] be a

classifier and score.

6.1 (Social) Mobility

Take a candidate x ∈ Rn and change them by adding o ∈ Rn. The direction of the change o

represents an ‘opportunity’ if it causes a rejected x to be accepted, or an ‘offense’ otherwise.

The size of the change ||o|| represents ‘effort’ to be accepted, or ‘slack’ to be rejected. The

margin of a candidate x is the smallest ||o|| such that c(x + o) ̸= c(x). This standard margin

definition allows arbitrary o, which may correspond to unnatural or unlikely changes, and would

be incompatible with the principle of equal opportunity:

“Even if all are eligible to apply for a superior position and applications are judged

fairly on their merits, one might hold that genuine or substantive equality of oppor-

tunity requires that all have a genuine opportunity to become [accepted].” [Arneson,

2015]

For example, if a classifier is biased towards males, females may not have mobility, because

the ‘opportunity’ to change their gender is hollow. Such o are more commonly referred to as

‘adversarial perturbations’ which cause the classifier to err after minimal change of the input
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{

strong reject

weak accept

weak reject

Unfair Fair

c

Unfair Fair

s

gΠ

µ(x)

x

Figure 6.1: Suppose the horizontal line c classifies the protected group Π and general population
Πc perfectly; it is still unfair in the first scenario. Rejected members of Π are a far distance from
acceptance, whereas those accepted are a close distance from rejection. By contrast, rejected
members of Πc aren’t as far, and accepted ones are cushioned from rejection. This imbalance is
rectified in the ‘fair’ scenario. µΠ and µΠc are, respectively for Π and Πc, the average distance
of accepted members minus the distance of rejected members. The corresponding directions gΠ
and gΠc are thought of as ‘genuine’ opportunities, as explained below.

[Goodfellow et al., 2014, Hardt et al., 2016b].We restrict attention to the actual (i.e. present in

the data) difference between good candidates and bad ones; this leads to the following definition

of a ‘genuine’ opportunity vector.

Definition 5. For Π, the genuine opportunity can be signified by the following vector:

gΠ = 1
|Π+|

∑
x∈Π+

x− 1
|Π−|

∑
x′∈Π−

x′ (6.1)

The genuine opporunity vector for Πc can be defined analogously as gΠc .

The genuine margin of x is its distance to the decision boundary along this vector. For

rejected x, this is the effort, following the genuine opportunity, needed to become accepted.

Definition 6. For any x ∈ Π, the genuine margin µ(x) ∈ R is the smallest (in absolute value) ϵ

such that

c

(
x+ ϵ · gΠ

||gΠ||

)
̸= c(x)

For any x ∈ Πc, µ(x) is defined the same way, with gΠc replacing gΠ.
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For linear classifiers, the genuine margin is easy to compute. For x ∈ Π:

c(x) = sgn(⟨w,x⟩) ⇔ µ(x) = ⟨w,x⟩
|⟨w, gΠ/||gΠ||⟩|

(6.2)

For nonlinear c, it may be estimated by line search on ϵ. For each group, we consider the av-

erage genuine margin. This is positive if the group is cushioned from rejection, and negative if

acceptance is beyond reach.

Definition 7. The genuine margin of Π is the average of the genuine margins of its constituents:

µΠ = 1
|Π|

∑
x∈Π

µ(x)

Finally, mobility is defined as a group notion of fairness.

Definition 8. c offers Π mobility if µΠ = µΠc .

Mobility concerns input margins: how changes in x affect the discrete outcome c(x). Dwork

et al. [2012] instead bound the effect on the real-valued outcome, positing that similar individuals

x and x′ (with respect to the distance ||x− x′||) should have similar outcomes: |s(x)− s(x′)| ≤

||x − x′||. Fish et al. [2016] equalize acceptance rates between Π and Πc by reclassifying can-

didates who were perhaps likely to be misclassified anyway: those having small margin. Zafar

et al. [2017b] prevents indirect use of sensitive features used by limiting their correlation with

the (signed) margin. Luong et al. [2011] impose this requirement on nearest-neighbor classifiers.

{

strong reject

weak accept

weak reject

Unfair Fair

c

Unfair Fair

s

gΠ

µ(x)

x

Figure 6.2: Scores (with zero marked in the middle) for the protected group and the general popu-
lation. In both scenarios, the protected group has a higher acceptance rate, since more candidates
have positive score. Nonetheless, the left scenario is unfair because good candidates receive
nearly the same scores as bad ones. By contrast, good candidates in the general population are
clearly distinguished by their higher scores.
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6.2 Contrast

The following definition takes probability of correct comparison, as defined in the introduction,

and relaxes the outcome indicator (either 0 or 1) to a continuous value.

Definition 9. The average margin of comparison within Π is

κΠ = 1
|Π+|

1
|Π−|

∑
x∈Π+,x′∈Π−

s(x)− s(x′)

Similarly define κΠc by replacing Π with Πc.

Definition 10. s offers Π contrast if κΠ = κΠc .

This definition captures two key ideas. The first is that comparisons within groups should be

accurate. Suppose a college accepts the best students from the general population, but guesses

randomly within a protected group, or perhaps accepts based on an ancillary attribute such as

athleticism. This so-called ‘token’ effect may distort incentives or otherwise misdirect students

wishing to improve themselves. The second idea is that the scores, in either their calculation or

their subsequent use, involve randomness or error. For example, recall randomized classifiers

from the introduction. As another example, if outcomes in {−1, 1} are sampled with mean s(x)

and s(x′) for good x and bad x′, then the probability of a correct comparison is just (1+s(x))(1−

s(x′))/4. In these scenarios, the magnitude of scores matters as well as their ordering. With these

ideas in mind, let us compare this definition to ones previously proposed in the literature, and

understand their respective benefits and drawbacks.

Accuracy of between-group comparisons. In the contextual bandit problem, an algorithm

compares candidates x1, . . . xk from k known groups (or arms), each with true (but unknown)

values y1, . . . yk. It randomly samples candidate xi with probability based on a score s(xi).

It learns that candidate’s value, and thereby estimates the values of future candidates. In this

context, Joseph et al. [2016] disallow s(xi) > s(xj) if yi < yj; a candidate’s potentially high

value must be considered, even if their group has low overall value. This enforces accurate

comparison between groups; the algorithm must explore and estimate values for each group, not

just the overall population. It crucially relies on random, possibly erroneous choices to learn

about groups without explicitly preferring them. This randomness is presently considered a
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nuisance; contrast mitigates its impact on the outcomes.

The probability of correct comparison is equal to the area under the ROC curve [Cortes and

Mohri, 2004], which quantifies the tradeoff between false positive rate (FPR) and true positive

rate (TPR). Contrast can be reinterpreted in terms of these quantities after some basic algebraic

manipulation:

κΠ = 1
|Π+|

∑
x∈Π+

s(x)− 1
|Π−|

∑
x′∈Π−

s(x′)

For a randomized classifier, this quantity is the expectation of TPRΠ − FPRΠ. Let us think

about how mobility affects these rates. Suppose TPRΠc = TPRΠ but FPRΠc > FPRΠ; that is,

the general population is accidentally accepted more often. To offer contrast, the classifier could

reduce these accidents by decreasing FPRΠc . However, it could also increase TPRΠ and therefore

increase the acceptance rate of Πc, which was already higher. Perhaps worse, it could decrease

TPRΠ and reduce accuracy. Contrast deems this scenario inopportune for the general population

even though they enjoy better outcomes. This shows that contrast does not equalize acceptance

rates between the groups, nor does it necessarily promote accuracy.

Inherent tradeoffs for discrete error rates. Equalized odds, as defined by Hardt et al.

[2016c], requires the FPRs and TPRs to be the same between both groups. Hardt et al. [2016c]

find this notion too strong because it penalizes classifiers which are more accurate on the general

population. They identify equal opportunity with equal TPRs. For example, good students should

have equal chances of being admitted to college, regardless of their group. However, bad students

in Π may be scrutinized more than bad students in Πc. This could allow bad students to be

admitted due to wealth or influence. More generally, Zafar et al. [2017a] seek to equate the FPRs,

TPRs, FNRs, etc. It is not always possible to equate such quantities, which makes various notions

of fairness irreconcilable. Chouldechova [2017], Kleinberg et al. [2016] initiated the study of

such tradeoffs, proving that TPRs and TNRs typically cannot be equated for calibrated scores.

By formalizing contrast as an analytically tractable margin, we hope to avoid such impossibility
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Average Hinge + L2 Logistic + L1 Sigmoid
age

education years capital gains

married, lives with spouse

is a husband

is awife

Figure 6.3: Absolute coordinate values (i.e. dependence on features) of different unit-norm dis-
criminant vectors, each computed on the dataset of adult income. Let Π and Πc be females and
males respectively constituting roughly 1/4 and 3/4 of the candidates, whose income is classified
as high or low. The average vector, as defined in eq. (6.3) is compared to standard, Π-unaware
penalized loss minimizers: hinge loss with ℓ2-norm penalty (aka SVM), logistic loss with ℓ1
penalty, and nonconvex sigmoid loss with no penalty. As expected, the ℓ1 penalty encourages
sparsity; the other vectors are not sparse. The unpenalized vector uses capital gains, which is
predictive but only relevant for a small fraction of the population. Average and SVM are similar,
except the former heavily emphasizes “is a wife” rather than “is a husband”. This is because the
average adjusts for the minority Π.

results. If yx were continuous rather than binary, their margins (from a decision threshold) relate

to fairness. When they are very different for Π and Πc, different TPRs (e.g. ‘hits’ in police

searches) are not necessarily unfair [Simoiu et al., 2016].

6.3 The Average Vector

As we will see below, common ways of learning a linear classifier do not result in mobility and

contrast. This section shows that a simpler classifier based on averaging does yield both, under

appropriate assumptions. We focus on scores and classifiers induced by w ∈ Rn:

sw(x) = ψ(⟨w,x⟩) → cw(x) = sgn(⟨w,x⟩)

The activation function ψ : R → [−1, 1] approximates the sign function, but is differentiable

with maximum slope β: ψ(0) = 0, ψ′(0) = β, and |ψ′(a)| ≤ β for all a. A common choice is
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tanh. As β → ∞, ψ → sgn and sw → cw. The typical approach to choosing w is to minimize

the expectation, over the data, of a loss function plus a penalty function. We analyze a simpler

average of the data.

Definition 11. The average of the genuine opportunities of Π and Πc, as defined in eq. (6.1), is:

g = 1
2

(
gΠ

||gΠ||
+ gΠc

||gΠc ||

)
(6.3)

The figure above compares the average to other vectors.

6.3.1 Theoretical Support

Preprocessing the data allows the average to offer mobility.

Proposition 13. If the data are centered:

1
|Π|

∑
x∈Π

x = 1
|Πc|

∑
x∈Πc

x

then the average offers mobility to Π.

Proof. Since g is the average of two vectors, it has the same angle between both of them:

⟨g, gΠ/||gΠ||⟩ = ⟨g, gΠc/||gΠc ||⟩.

By eq. (6.2):

µΠ = 1
|⟨g, gΠ/||gΠ||⟩|

⟨g, 1
|Π|

∑
x∈Π

x⟩ = 1
|⟨g, gΠc/||gΠc||⟩|

⟨g, 1
|Πc|

∑
x∈Πc

x⟩ = µΠc

Contrast is guaranteed if the score is very smooth (i.e. the slope of the sigmoid is small):

Proposition 14. If ||gΠ|| = ||gΠc ||, as β → 0, sg offers contrast to Π.
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Proof. As β → 0, d
dβ
sg(x) = ⟨g,x⟩. By definition of κΠ:

d

dβ
κΠ

∣∣∣∣∣
β=0

= 1
|Π+|

∑
x∈Π+

⟨g,x⟩ − 1
|Π−|

∑
x′∈Π−

⟨g,x′⟩

= ⟨g, gΠ⟩

Similarly d
dβ
κΠ

∣∣∣
β=0

= ⟨g, gΠc⟩. To equate these quantities, we must show:

||gΠ||+ ⟨
gΠc

||gΠc ||
, gΠ⟩ = ||gΠc ||+ ⟨ gΠ

||gΠ||
, gΠc⟩

Dividing both sides by ||gΠ|| = ||gΠc|| completes the proof.

These propositions have strong, possibly unrealistic preconditions; the conclusion reflects

upon their pertinence, and the next section validates the average on real data.

6.4 Experimental Validation

The well-known adult income dataset consists of 48,842 individuals, each described by 14 fea-

tures, and whether or not they earn more than $50,000 per year [Kohavi, 1996]. Over 75% of

the incomes are higher; eliminating this imbalance reduces the number of data to 15,682. Each

categorical feature with k possible values is ‘one-hot’ encoded using k binary features, and the

the auxiliary ‘final weighting’ attribute is removed. This results in 107 total features, each stan-

dardized to mean 0 and variance 1. Mobility and contrast do not directly involve the discrepancy

between training and test distributions, so the entire dataset is used at once.

Two experiments compare the average with some standard linear classifiers which are un-

aware of Π. In the first experiment, Π is generated by selecting a single defining feature (for

example, “is a husband”). This produces minority (or majority) groups in a relatively realistic

fashion. In the second experiment, Π is just a random half of the population. This ‘null’ ex-

periment decorrelates the features, outcomes, and group memberships. The results of the first

experiment should substantially differ from the second.

Mobility and contrast are defined by exact equalities, but we will observe just approximate
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equality. The absolute difference between the two sides of definition 8 or definition 10 is not

as important as the relative difference. We measure differences by the absolute difference of

logarithms, with values close to zero still being ideal:

d(a, b) = | log(a/b)| (6.4)

Results. These are depicted in Section 6.3.1. In the first experiment, the average offers

roughly equal mobility and contrast, whereas the other classifiers do not. This difference is in

some sense significant, since it disappears in the second experiment. As expected, the differences

are much smaller in the second experiment, since they are between two random sums of the same

mean.

6.5 Remarks

A key underlying idea of this chapter is that, even if decisions are binary, the margin by which

they are established is morally important. They determine how much effort is needed to improve

one’s outcome, or how sensitive the outcome is to randomness and error. We accordingly for-

malize equal opportunity in terms of an input margin (mobility) and an output margin (contrast).

We illustrate the virtues of a very simple averaging classifier with some basic mathematical anal-

ysis and an experiment on a moderately-sized dataset. Let us highlight the limitations of our

contributions with a view to future research.

As previously discussed, mobility and contrast are not comprehensive definitions of fairness:

they may further imbalance outcomes or increase error rates. We loosely compared them to other

previously proposed definitions, but we could not meaningfully say one definition is better than

another. In some scenarios, equal opportunity is just a means to a more quantitative end: better

outcomes. If a rule supposedly ensures equal opportunity, then imposing it upon candidates eager

to improve themselves should eventually lead to better outcomes. Perhaps definitions of equal

opportunity could be quantitatively compared along these lines.

Proposition 13 and proposition 14 only support the average classifier when it is, respectively,

very accurate or very close to random. They also assume the genuine opportunities are com-
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parably sized (i.e. ||gΠ|| = ||gΠc ||). This may be ensured by rescaling or reweighting the data.

However, the relative advantage of the average over other vectors, as illustrated in the experi-

ment, may instead depend on whether the genuine opportunities coincide (i.e. ⟨gΠ, gΠc⟩ is large).

Intuitively, if the way to become accepted differs considerably for Π and Πc, then it is more dif-

ficult to accommodate both groups. A classifier unaware of Π is less likely to do so by accident;

the average, or another Π-aware method, may then have a larger relative advantage. The average

should be perceived as a simple, effective baseline rather than an optimal solution. It is likely

to be outperformed by a more computationally involved algorithm which explicitly attempts to

minimize error while maximizing mobility and contrast.

6.6 Discussion

This chapter explores a synthesis between newly-proposed discrete definitions of fairness, and

continuous quantities preferred in optimization. Unlike the other chapters, this one proposes

objectives rather than solving them. By its nature, this chapter is the most subjective and difficult

to evaluate. It also pursed a rather different strategy for synthesis: rather than wrapping a modern

algorithm, or swapping out some of its components, it attempted to find a compromise between

computational and ethical concerns. As the concluding chapter will discuss, this is perhaps the

least convincing synthesis of the dissertation, for reasons that can be analyzed and learned from

in hindsight.
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Figure 6.4: Two experiments, top and bottom, compare the average vector to standard, Π-
unaware penalized loss minimizers: hinge loss with ℓ2-norm penalty (aka SVM), logistic loss
with ℓ1 penalty, and nonconvex sigmoid loss with no penalty. As described in the main text,
d is a measure of relative difference. The top experiment involves 10 realistic Π. The average
roughly offers mobility (µΠ ≈ µΠc) whereas the others do not. The average and nonconvex
classifier roughly offer contrast (κΠ ≈ κΠc), though the former has better interquartile range.
However, the misclassification error of the average is often substantially higher. (The other clas-
sifiers have the same error rate for every Π since they are not aware of it.) These distinctions
vanish in the bottom experiment, where Π is just a random half of the population.
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Chapter 7

Conclusion and Future Work

The field of machine learning has recently witnessed remarkable empirical advances which have

profoundly enhanced not just benchmark metrics, but the role of machine learning in society.

This progress has not been uniform along all dimensions; the gap between classical and modern

machine learning mirrors growing concerns about rigor, efficiency, interpretability, and fairness.

This dissertation adopts a fundamentally optimistic view: that in some (though not all) situa-

tions, the seemingly-inviolable tradeoffs between classical and modern machine learning can be

carefully sidestepped through a nontrivial synthesis of the two approaches. Stated concisely:

Thesis: It is often possible to restore safety, efficiency, and tractability to modern

machine learning by prudently incorporating classical techniques.

To conclude this dissertation, let us reflect upon this thesis — when was such synthesis possible?

— and offer suggestions for future research.

7.1 Review and Subsequent Developments

Each chapter examines this thesis in a different area of machine learning. Let us review the con-

tributions of these chapters, and examine how each area of machine learning evolved subsequent

to each of these works.
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Chapter 2 (Meta-Analysis with Untrusted Data)

This chapter proposes synthesis between modern regression models trained on large quantities of

untrusted data, and rigorous estimates of causal effect based on small amounts of trusted data. To

researchers in machine learning, it is somewhat unsurprising that prior beliefs or inductive bias

can be safely incorporated into learning algorithms; as discussed earlier in the chapter, a variety

of statistical techniques enable this combination. In evidence-based medicine, however, such a

synthesis between observational data and rigorous causal inference is both counterintuitive and

remarkable. To successfully apply conformal prediction to this field, this chapter fundamentally

advanced some core methodology in (full) conformal prediction. In particular, it shows that

full conformal prediction can be fast for a wide class of learning algorithms. Furthermore, this

full conformal prediction algorithm is simple enough to analyze its behavior in the presence of

noise. Though I feel this work is promising, it is too recent to compare it to new developments in

the field.

Chapter 3 (Differentiating Through Orthogonal Polynomial Transforms)

This chapter implements a synthesis between modern gradient-based optimization and classi-

cal sequences of orthogonal polynomials. The key observation is that the most computationally

convenient representation of a sequence of orthogonal polynomials consists of the coefficients

of its three-term recurrence. By enabling backpropagation for polynomial evaluation and inter-

polation — that is, by deriving the vector-Jacobian products of these algorithms — we can use

orthogonal polynomials to parameterize (or reparameterize) a variety of contemporary learning

and optimization problems.

As a layer within neural networks, structured linear maps (subsuming not just orthogonal

polynomial transforms, but also low rank and sparse matrices) have gained popularity [Dao et al.,

2020, Fu et al., 2024]. The main advantage has been performance (for example, achieving sub-

quadratic matrix-matrix multiplication) rather than interpretability or inductive bias. Since the

DXT layer is a drop-in replacement for fixed polynomial transforms, the hope is that it can

preserve some interpretability of the original signal processing pipeline; for example, intuitions

about the DCT eliminating high-frequency stimuli irrelevant to the human visual system. How-
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ever, it is unclear whether inspecting an orthogonal polynomial basis constitutes an essential

form of interpretability for a wide audience [Lipton, 2016]. The second part of this chapter, per-

taining to the connection between orthogonal polynomials and optimization theory, has remained

(surprisingly) understudied. The paper of Lasserre [2020] explicating this connection has been

cited less than 5 times by other researchers.

Chapter 4 (Linear Dynamical Systems for Sequence Modeling)

This chapter develops a synthesis between nonlinear sequence-to-sequence models and linear

dynamical systems, also known as state-space models. The results achieved in this chapter are

among the most counterintuitive and interesting of the entire dissertation. For good reason, depth

in neural networks is typically thought of as an architectural feature which inhibits analytical

reasoning. However, an interesting approach in control theory indicates that, in some contexts,

depth can actually facilitate analytical reasoning. This is because nonlinearity along time, which

expresses complex dynamics, can be replaced by (approximations of) nonlinearity along depth,

where deviations can be more easily bounded. Aside from analytical tractability, this replacement

enables parallel computation along time, a crucial requirement of modern sequence-to-sequence

models.

Since the publication of this work, there has been intense interest in using linear systems

(also called state-space models) as the basis for modern sequence modeling. Simultaneously

with this work, Gu et al. [2020] showed that long-range memory problems could be, in a sense,

optimally solved by choosing the matrices A, B, C and D according to the HiPPO framework.

The subsequent S4 architecture implemented HiPPO models as convolutions, which allowed

parallel computation over time [Gu et al., 2021a]. Subsequent works showed that plain diagonal

recurrences could achieve similar performance as S4 [Gu et al., 2022, Gupta et al., 2022]. The

convolution kernel of Gu et al. [2021a] can be computed through Vandermonde matrix multipli-

cation [Gu et al., 2022]. Gu et al. [2021b] also provably replace nonlinearity across time with

nonlinearity along depth, through a closely-related scheme of Picard iteration. (However, their

result is only for continuous time, and does not allow the nonlinearity to apply to both the state

and the projected input; it is meant to theoretically motivate existing gating schemes, rather than
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derive a new one). Orvieto et al. [2023] also observed that RNNs with nonlinearity across time

can be empirically replaced by stacks of diagonally-parameterized linear systems, each imple-

mented as a parallel scan. Gu and Dao [2023] introduced time-varying parameters (as a selection

mechanism) and also replaced convolutions with parallel scans. This architecture finally allows

state-space models to achieve competitive predictive performance with transformers on tasks

such as language modeling, while being more computationally efficient.

Chapter 5 (Interpretable Deep Learning in Healthcare)

This chapter carefully generalizes traditional, handcrafted electrocardiological statistics into statis-

tics that are learned from labeled data for a specific predictive purpose. It defines a family of

statistics which generalizes the handcrafted ones, and embeds parameters which can be learned

by gradient descent. This chapter is satisfying because its physiologically-informed approach

leads to better predictive performance than a naive one based on more flexible models. The de-

sign of the generalized statistics imparted an empirically-helpful inductive bias. Furthermore,

the new statistics preserve some of the interpretation and intuitions surrounding the traditional

ones. (Unlike in Chapter 3, this preservation of interpretation coincided with performance im-

provements).

The scientific conclusion of this chapter — that sympathetic activity seems weakly dis-

cernible from heart rate signals — was confirmed simultaneously and independently by Valenza

et al. [2018]. The Sympathetic Activity Index decomposes the heart rate signal using Laguerre

basis functions. Specifically, it expresses the RR interval sequence as a sum of orthogonal La-

guerre functions, where lower and higher frequency functions correspond to the sympathetic and

parasympathetic systems, respectively. Valenza et al. [2018] fit these functions using supervised

learning, but in a very different manner than this dissertation. To fit the low-frequency sym-

pathetic functions, Valenza et al. [2018] administered atropine to seven subjects, which blocks

their parasympathetic systems, and had them perform supine-to-stand tests. Similarly, to fit the

high-frequency parasympathetic functions, subjects performed the same tests with blocked sym-

pathetic systems. By obtaining data on each system independently, they more cleanly fit their

model. (However, they do not utilize a quantitative ground-truth measure, such as salivary amy-
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lase excretion; they simply consider the sympathetic system as “active” while standing). Their

laboratory data collection, though more invasive, allowed identification of the underlying sym-

pathetic signal.

Chapter 6 (Towards Computationally-Tractable Multi-Group Fairness)

This chapter found a compromise between newly-proposed discrete definitions of fairness and

continuous quantities preferred in optimization. Unlike the other chapters, this one proposes ob-

jectives rather than solving them. By its nature, this chapter is the most subjective and difficult to

evaluate. It also pursued a rather different strategy for synthesis: rather than wrapping a modern

algorithm, or swapping out some of its components, it attempted to balance computational and

ethical concerns.

The motivation of this chapter is that combinatorial or discrete definitions of fairness, es-

pecially multi-group fairness, can be computationally challenging to satisfy. This was, in a

sense, soon confirmed by other work: the celebrated notion of multicalibration was proposed as

a comprehensive definition of fairness [Hebert-Johnson et al., 2018]. Multicalibration requires a

predictor to be (approximately) calibrated not just overall, and not just for some subgroups spec-

ified in advance, but for any group that can be efficiently isolated by a boolean hypothesis class

C. Algorithmically, multicalibration can be thought of as a game against an auditor, which seeks

to find subsets Π ⊂ C on which the predictor is poorly calibrated; the learner can then use this

counterexample to improve the predictor. The foundational observation is that achieving multi-

calibration over C is equivalent to (weak) agnostic learning over C. Thus, when C is comprised of

linear classifiers, as in Chapter 6, it is computationally difficult to ensure multicalibration [Feld-

man et al., 2009, Kalai et al., 2008]. In this sense, relaxations (such as those in Chapter 6) are

generally necessary. However, embracing, rather than avoiding, the computational challenges of

fairness has led to strong research developments. Multicalibration is closely connected to (and

in some restricted senses, equivalent to) outcome indistinguishability [Dwork et al., 2021] and

omniprediction [Gopalan et al., 2023], two recently-proposed desiderata for predictive models.
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7.2 Thesis Assessment

As discussed in the previous section, each chapter enjoyed a different degree of success. Orga-

nized in reverse chronological order, they tended to become more successful over time. While

it is tempting to speculate on many different factors, I offer three high-level observations about

where the most research progress was made.

My first observation is that success was largely correlated with an immediate, definite, quan-

titative goal for the synthesis. This seems like a trivial observation; surely it is obvious that

machine learning research should be quantitatively driven. However, in the context of AI safety,

it can be difficult to completely quantify all goals (e.g. tractability), or to pursue the appropriate

balance between competing quantitative goals. Chapter 2 (meta-analysis) had the clearest quan-

titative goal of obtaining the tighest possible prediction intervals meeting the specified coverage

guarantee; no attention was paid to other issues. This chapter is somewhat unusual in that it

pursues a “wrapping” strategy but obtains rigorous guarantees. Other research in this vein —

for example, methods of interpreting black-box predictive models — are sometimes criticized

on account of their lack of well-specified guarantees [Rudin, 2019]. Chapter 6 (fairness) defined

its own quantative goals, and found a compromise which did not align with subsequent research.

Chapters 3, 4, and 5 balanced expressive power against considerations of tractability and speed.

My second observation is that the “swapping” research strategy tended to require relatively

extensive engineering. Chapters 3 and 4 both involved implementation of custom CUDA oper-

ations, the latter with complex numbers. However, even these efforts were not truly sufficient

to do justice to the theoretical developments. For example, the implementation of LDStack has

an unoptimized, memory-inefficient backwards pass, which makes it difficult to achieve com-

petitive performance with state-of-the-art sequence-to-sequence models. Subsequent work on

state-space models has concentrated substantially on hardware-aware algorithms [Dao et al.,

2022, Gu and Dao, 2023]. This is because, even if state-space models are theoretically more

efficient than models such as transformers, they can fall short in practice due to lower hardware

utilization. As noted by Fu et al. [2023], it can be very challenging for algorithmic researchers

to improve upon vendor-optimized implementations and even custom hardware. This has con-

sequences for research on primitives for machine learning: initial algorithmic work likely will

160



not deliver benchmark-beating performance due to these practical issues. Expectations for such

research should be set accordingly.

My third observation is that settling on arbitrary compromises or balance points between clas-

sical and modern techniques should be avoided; there should ideally be major practical down-

sides for choosing a different design. Chapter 3 is a good example of this, since it embodies both

a success and failure in this regard. The DXT is not as widespread as more expressive layers

because there isn’t always a compelling reason to limiting expressivity to just polynomial trans-

forms as opposed to, for example, the slightly-larger class of quasiseparable matrices. However,

in the context of applications such as Mop, there is a strong rationale for optimizing over exactly

the set of orthonormal polynomial sequences, since any larger feasible region would constitute a

relaxation that would not yield the solution to the original problem. In Chapter 2, it is not possi-

ble to introduce any (direct) nonlinearity across time without preventing the use of parallel scans

and convolutions; this is likely why linear systems are a mainstay of fast sequence-to-sequence

models. Chapter 6’s fairness definitions are based on margin quantities, which are merely one

device for achieving computational tractability. Other approaches could also achieve tractability

without departing from well-recognized conceptions of fairness.

7.3 Future Work

7.3.1 Meta-Analysis

Revisiting Network Meta-Analysis

As presented, conformal meta-analysis is a practical algorithm which could be immediately ap-

plied to answer scientific questions. However, before doing so, it is important to understand the

settings in which conformal meta-analysis would likely deliver meaningful, notable conclusions.

It is ideally applied to questions where there is (1) a high amount of heterogeneity, and (2) a

relatively large number of included trials (n ≥ 100), originating from a broad question and/or an

active research field. Network meta-analyses often satisfy both of these criteria. A network meta-

analysis compares multiple interventions (e.g. “drug A“, “drug B“, and so on) against placebo.
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In addition to including placebo-controlled trials (e.g. drug A versus placebo) it also includes

active-comparison trials (e.g. drug A versus drug B) and uses them to indirectly reason about

e.g. drug B versus placebo. This leads to a graph where the nodes are interventions and the edges

are pairwise comparisons of interventions from trials. Inference about treatment effects involves

the graph Laplacian, and an analogy to electrical networks: within-trial variances corresponds to

resistances, observed effects correspond to voltages, and the inverse-variance weighted estimates

of true effects corresponds to current flow [Rücker, 2012]. Network meta-analysis tends to in-

clude more trials because it expands the inclusion criteria. For example, recent meta-analyses

of glaucoma treatments, antipsychotics and antidepressants included 114, 402 and 522 trials,

respectively [Cipriani et al., 2018, Huhn et al., 2019, Li et al., 2016].

Because they involve a relatively large number of trials, are technically sophisticated, and

answer broader questions with more clinical relevance, network meta-analyses tend to be highly

cited and regarded. In a sense, if systematic review and meta-analysis is the highest form of evi-

dence, then network meta-analysis is considered the true apex. However, network meta-analysis

leans on homogeneity (also called “validity”) much more strongly than pairwise meta-analysis.

This is because network meta-analysis doesn’t estimate one global average, but multiple aver-

ages derived from purportedly valid chains of comparisons among multiple trials. In pairwise

meta-analysis, heterogeneity tends to be “swept under the rug” because it affects the interpre-

tation of the analysis rather than the quantitative estimates themselves, which remain unbiased.

If there is a high degree of heterogeneity in pairwise meta-analysis, then the average treatment

effect is less informative about each individual trial’s setting, but it is nonetheless a valid aver-

age. However, it is not clear whether network meta-analysis remains unbiased in the presence

of heterogeneity. This seems to depend on the distribution of the pairwise comparisons (i.e. the

edges in the graph), which may depart substantially from the uniform distribution. For example,

if drug B is often compared to drug C, and trials of drug C tend to downplay its effectiveness,

then drug B might be inappropriately considered more effective than drug A, which inherits less

credit from the biased trials of drug C. Fortunately, these issues can be rigorously avoided, since

network meta-analysis is just a special case of regression (i.e. conformal meta-analysis) where

the different interventions are encoded in the features. It would be interesting to see how the
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conclusions of conformal meta-analyses would differ from previous network meta-analyses.

Beyond Split Conformal and Score Functions

In practice, split conformal prediction is the most widely-used form of conformal prediction.

This is because split conformal doesn’t involve retraining the underlying predictor, and it is very

easy to implement. The downside of split conformal is it is statistically inefficient, requiring

the training data to be split into a proper training set and a calibration set. Methods such as

the jackknife+, cross-validation+ [Barber et al., 2021], and cross-conformal prediction [Vovk,

2015] offer a middle ground between full and split conformal, retraining the underlying predictor

roughly a constant number of times, while reducing the statistical overhead of data splitting.

However, there are still many situations where training the model more than once is prohibitive.

In these situations, fully-conformal kernel ridge regression (as presented in Chapter 2) could

viably replace split-conformal prediction in most applications, without retraining the underlying

predictor or imposing any other practical difficulties.

The key observation is that, in practice, good predictors are almost always based on good

features. In deep learning, predictions are usually linear in some learned feature space: if w is

a vector, and ϕ(x) is a learned feature map, then the prediction typically takes the form µ(x) =

wTϕ(x). So, in most practical situations, training results not just in µ, but a Gaussian process

(µ,κ), where κ(x,x′) = ϕ(x)Tϕ(x′) describes the feature space. So, rather than running split-

conformal prediction with scores based on µ, it is possible to run fully-conformal kernel ridge

regression with (µ,κ), and actually learn from the calibration data. The potential benefits of this

scheme are hinted at by Simulation 4 in Chapter 2, which examined the benefits of KRR learning

a posterior rather than just treating the prior as fixed. Since the calibration set is usually not

nearly as large as the proper training set, and since fast algorithms for KRR have been developed

[Alaoui and Mahoney, 2015, Avron et al., 2017], there would be limited practical downside

to replacing split conformal with fully-conformal KRR. At a higher level, the idea is to more

routinely base conformal prediction not just on score functions derived from µ, but on features

as well.

Replacing split conformal with fully-conformal KRR could be helpful when learning con-
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formal predictors [Stutz et al., 2022]. In this application, a differentiable analogue of conformal

prediction is used as a loss layer while training a predictor with gradient descent. The goal is to

more specifically train the predictor to produce tight conformal prediction intervals. The method-

ology of Stutz et al. [2022] is based upon split conformal prediction, which reduces the effective

batch size due to splitting. The linear algebraic operations in fully-conformal KRR are differen-

tiable, so it could similarly be used as a loss layer. Aside from increasing the batch size, it would

allow gradients to pass through not just µ, but also κ. That is, grading both the predictions and

the features could plausibly lead to a more well-behaved loss layer.

Tighter Analysis, Weaker assumptions, and Stronger Guarantees

The conformal meta-analysis algorithms presented in Chapter 2 are intended to be simple, strong

baselines; they are not optimal solutions to the predictive problems of meta-analysis. As dis-

cussed in Chapter 2, the analysis of the presented algorithms seems empirically loose. It should

be noted, however, that a gap between empirical and provable coverage is not uncommon in the

conformal prediction literature [Barber et al., 2021, Stutz et al., 2023]. Relaxing the assumptions

needed to obtain similar guarantees seems both viable and desirable. Particular attention needs

to be paid to the sequential dependence (i.e. nonexchangeability) of the features x. On a short

time scale, it is not completely unreasonable to model the features as approximately indepen-

dent, simply because, at the edge of scientific knowledge, trial design may seem random or even

haphazard in hindsight. However, at longer timescales, trials are definitely designed in recog-

nition of the past history of results, progressively targeting more promising or novel treatments.

Furthermore, living systematic reviews [Elliott et al., 2017] would keep the same meta-analysis

updated for decades. There are now a number of approaches which extend conformal prediction

beyond exchangeability. The methods developed by Barber et al. [2023] are appropriate when

the distribution departs from exchangeable in a mild or predictable manner. In an adversarial

setting, performing gradient descent to control interval sizes can offer approximately 1− α− 1
n

coverage [Gibbs and Candes, 2021].

Conformal prediction is often criticized for offering only marginal guarantees; indeed, condi-

tional guarantees are not generally possible without further distributional assumptions [Foygel Bar-
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ber et al., 2021]. Meta-analysis is highly unusual among regression problems in that prevalent

algorithms do not use features. Because existing guarantees are all marginal, this downside of

conformal prediction is not as sharply felt in its application to meta-analysis. Nonetheless, in

the future, it would be desirable to offer group or class-conditional guarantees [Ding et al., 2024,

Gibbs et al., 2023].

7.3.2 Other Ideas

Minimal Values of Practical Optimization Problems

This scheme is conceptually interesting, but the crucial question remains: is there a broad class

of applications where it helps find the minimum value faster than gradient descent, moment esti-

mation, or random sampling? The most promising approach is to augment Mop with additional

structure in the objective f and the prior distribution ρ. Black-box sampling access to these

functions is unnecessarily limiting in many settings. Structured representations of probability

distributions — such as normalizing flows, graphical models, diffusion models, and Bayesian

neural networks — offer computational access beyond efficient sampling. (For example, nor-

malizing flows allow the probability density function to be evaluated.) It might be possible to

develop better estimates σ̂ and Σ̂ using this additional information. Aside from incorporating

additional information, there is the question of identifying objectives where knowing the min-

imal value is as useful as knowing the minimizer. This happens in a variety of combinatorial

problems; for example, in network flow problems, knowing the capacity of the network (i.e. the

maximum flow) is just as important as identifying the flow which saturates it. In game theory,

the value of a game is often just as important as the strategies that attain it. In machine learn-

ing, knowing the minimal attainable loss would be an interesting tool for studying nonconvex

learning.

Replacing Positive-Definite Constraints Via Orthogonal Polynomial Reparameterization

Positive-definite Hankel matrices M arrange a vector m as Mi,j = mi+j . They are the univariate

analog of multivariate moment matrices appearing in semidefinite relaxations of polynomial opti-
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mization problems [Blekherman et al., 2012]. Optimizing over positive-definite Hankel matrices

is equivalent to optimizing over the coefficient vectors (α, β) defining sequences of orthogonal

polynomials. The latter parameterization has a notable advantage: it replaces the positive-definite

Hankel constraint, which is computationally burdensome, with trivial entrywise positivity con-

straints on β. This raises an interesting question: is it possible to more efficiently solve these

optimization problems by reparameterizing them in terms of α and β? In general, the answer is

probably no: the map between (α, β) and m is known to be poorly conditioned [Gautschi, 1985].

(A formula for α and β involving powers of the Jacobi matrix is given by Simon [1998].) How-

ever, there may be special cases where the objective can be cleanly rephrased directly in terms of

α and β. It should be noted that this reparameterization may introduce numerical challenges of

its own. However, it is often possible to design optimization algorithms that can handle poorly-

behaved objectives, so long as difficult constraints are eliminated. The Burer-Monteiro approach

to rank-constrained semidefinite programming is a good example of this, where convexity is

sacrificed to avoid the challenging rank and semidefinite constraints [Burer and Monteiro, 2003].

Chapter 3’s approach can be extended to positive-definite Toeplitz matrices, which are more

common in statistics and optimization applications. For example, the covariance matrix of an

ARMA time series model is positive-definite Toeplitz. The extension is possible due to Szegő’s

theorem, which shows that positive-definite Toeplitz matrices correspond to orthogonal polyno-

mials on the complex unit circle [Szego, 1939]. Furthermore, such polynomials obey a recurrence

relation in terms of coefficients known as the Schur parameters. Evaluation and interpolation al-

gorithms have been adapted to this recurrence [Ammar et al., 1993, Bella et al., 2007].

Understanding the Power of Depth in Replacing Nonlinearity

Though state-space models are briskly gaining popularity for sequence modeling, there is still a

technique from Chapter 4 which has been underutilized: replacing nonlinearity across time by

nonlinearity along depth, using the simple, principled mechanism of iterated local corrections.

It would be interesting to understand the rate of convergence of the corrections, i.e. the number

of layers required to approximate a nonlinear RNN. It would also be interesting to determine

if multiplicative corrections, which experimentally seemed to have a faster rate of convergence,
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could be efficiently implemented. Finally, these corrections could easily handle the time-varying

construction of Gu and Dao [2023]; indeed, they were initially proposed for time-varying systems

[Tomás-Rodríguez and Banks, 2010].

At a higher level, it is possible that this line of work could inform recent research on the

interplay between transformers and recurrent models [Katharopoulos et al., 2020], particularly

the ability of transformers to perform complex tasks with low depth [Liu et al., 2023a, Sanford

et al., 2024]. In particular, Liu et al. [2023a] show that automata (which are just a special case of

recurrent neural networks of length T ) can be expressed by O(log T )-depth transformers. This

is a “shortcut” in the sense that an RNN of length T requires depth T to compute. However, the

results of Chapter 4 suggest that some RNNs could be plausibly approximated by stacks of linear

systems, also of logarithmic depth.

Iterated Local Corrections in Practical Architectures

The scheme of iterated local corrections could potentially improve modern state-space model

architectures. Here are two avenues for possible improvement.

(1) Democratizing training by reducing memory requirements. State-space models have

greatly improved speeds of the forward pass, enabling inference of large neural networks on

edge devices. However, computing gradients (the backward pass) remains out of reach for edge

devices, because the amount of memory required to store activations scales linearly with the num-

ber of layers L. Recomputation and reversibility are two techniques which reduce the memory

requirement to O(1), but they cause severe tradeoffs in speed and expressiveness, respectively.

Recomputation (also known as gradient checkpointing) is typically used to reduce the memory

requirement to O(
√
L) [Chen et al., 2016]; reducing it to O(1) impractically requires a factor

O(L) more computation. In reversible neural networks, the inputs can be recomputed from the

outputs. Reversibility substantially constrains the expressive power of the network because it

hinders the ability to forget irrelevant information [MacKay et al., 2018]. Diagonal state-space

models such as Mamba are not (necessarily) reversible. However, their VJP can nevertheless be

computed inO(1) memory. (Due to linearity, the VJP is zero where the input sequence cannot be

recomputed). However, this applies only to the SSM itself and not to the surrounding operations
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in the Mamba block. Thus, major memory savings are achievable only if the Mamba block can

be substantially simplified. This may indeed be possible, as described in the next suggestion.

(2) An alternative approach to hardware-efficient algorithms. Parallel scans, which are

used to compute LDStack and Mamba [Gu and Dao, 2023], are very fast, with optimized im-

plementations running at “memcpy speeds”. Somewhat paradoxically, this extreme efficiency

poses a problem for utilization of GPU hardware. GPUs are generally designed for computa-

tions which involve very little data transfer (i.e. use of limited memory bandwidth) compared

to computation. Furthermore, modern GPUs include dedicated hardware for performing matrix

multiplication, separate from the general-purpose cores used for parallel scans. These concerns

motivated the design of Mamba-2, which replaces parallel scans with matrix multiplication by

imposing a severe “scalar times identity” constraint on the transition matricesA of the state-space

model [Dao and Gu, 2024]. The scheme of iterated local corrections replaces the computation

of a single linear system with the computation of a whole stack of linear systems upon the same

input data. This greatly increases the arithmetic intensity of the parallel scan. Furthermore,

it directly achieves nonlinearity, which requires separate operations and parameters in Mamba.

Thus, it is plausible (though not certain) that replacing the Mamba block by a stack of linear sys-

tems could fully utilize hardware while achieving nonlinearity. This leaves the issue of utilizing

the dedicated matrix multiplication hardware. This hardware could be used asynchronously to

compute Bxt; the size of B could be increased to saturate this hardware.
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