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Abstract
Fully Homomorphic Encryption (FHE) is a cryptographic technique that allows

computations to be performed on encrypted data without having to decrypt it. This
property preserves data privacy, enabling a wide range of applications in fields such
as cloud computing, secure data analysis, and privacy-preserving machine learning.

In FHE computations, each ciphertext can only handle a limited number of op-
erations before the accumulation of noise makes decryption impossible. To resolve
this, the bootstrapping operation must be used to reset the noise in the ciphertext.
Bootstrapping is a computationally expensive computation, and it also influences
the costs of other operations. Consequently, the strategic placement of bootstrap-
ping operations is a critical aspect of FHE performance.

This thesis introduces Saturn, a novel method for automatically determining the
optimal placement of bootstrapping operations to minimize program runtime. Given
a directed acyclic graph (DAG) representing an FHE computation, Saturn leverages
the Maximum Satisfiability (MaxSAT) optimization problem to find the most effi-
cient bootstrapping placement. A key innovation in Saturn is the introduction of two
methods for reducing the complexity of the input computational DAG: Quadratic
Behavior Profile (QBP) Reduction and Auto-Compression. These methods signifi-
cantly decrease the solve time of our MaxSAT formulation by simplifying the DAG
while preserving the optimality of the solution. Saturn’s effectiveness is evaluated
on various deep learning models, demonstrating its potential to enhance FHE per-
formance through efficient bootstrapping placement.



vi



Acknowledgments
I would like to express my deepest gratitude to those who have supported me

throughout my research journey at Carnegie Mellon University.
First and foremost, I extend my heartfelt thanks to my advisor, Wenting Zheng.

Wenting’s invaluable support, and insightful guidance have been crucial throughout
this project and all my prior research endeavors. Her mentorship has been instru-
mental in shaping my academic growth and success.

I would also like to thank my thesis committee member, Fraser Brown, for her
valuable feedback and support throughout this project.

I am grateful to Alex for his guidance, particularly in the writing of the correct-
ness proofs for my various ideas.

A special thanks to my mentor, Edward. Your assistance with all my research
projects at CMU has been immensely helpful. Edward was the one to first introduce
me to the concept of optimal bootstrapping placement, and this project would not
have existed without his influence and encouragement.

Finally, I would also like to extend my appreciation to my friends and family
for their unwavering support. Your encouragement and understanding have been a
source of motivation throughout this journey.



viii



Contents

1 Introduction 1

2 Background 3
2.1 RNS-CKKS Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Scale and Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 The Naive Rescaling Assumption . . . . . . . . . . . . . . . . . . . . . 4

2.2 Partial Weighted Maximum Satisfiability Problem . . . . . . . . . . . . . . . . . 4
2.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Solving Partial Weighted MaxSAT . . . . . . . . . . . . . . . . . . . . . 5

3 Motivation and Overview 7
3.1 Prior Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Limitations of Prior Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Why Saturn? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Saturn Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Problem Formulation 11
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 The Level-Aware Bootstrapping Problem (LA-BTS) . . . . . . . . . . . . . . . . 12

4.2.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 MaxSAT Model Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.2 Hard Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.3 Soft Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4 Correctness of the MaxSAT Construction . . . . . . . . . . . . . . . . . . . . . 15

5 DAG Reduction Methods 19
5.1 Quadratic Behavior Profile (QBP) Reduction . . . . . . . . . . . . . . . . . . . 19

5.1.1 QBP Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.2 Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.4 QBP Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix



5.2 Auto-Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.1 DAG Compression and Correctness . . . . . . . . . . . . . . . . . . . . 28
5.2.2 Algorithm for Finding Compression Opportunities . . . . . . . . . . . . 34

6 Evaluation 37
6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 DAG Reduction Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 QBP Truncation for ReLU and SiLU . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4 Bootstrap Selection Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.5 Estimated Performance for CIFAR-10 Inference . . . . . . . . . . . . . . . . . . 40
6.6 Bootstrapping Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Conclusion 43

Bibliography 45

x



List of Figures

3.1 A diagram showcasing the Saturn framework. The yellow and blue units repre-
sent data, and the gray units represent procedures. . . . . . . . . . . . . . . . . . 9

5.1 A DAG calculating the polynomial that approximates ReLU (degree 15) . . . . . 20

xi



xii



List of Tables

6.1 The performance of the DAG reduction methods on deep learning DAGs . . . . . 38
6.2 QBP size reduction from QBP truncation with various values of ∆ for ReLU and

SiLU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 The bootstrap selection times (s) of DaCapo and Saturn (∆ = 1) for the bench-

marks. Note that a “-” represents a timeout (≥ 600s). . . . . . . . . . . . . . . . 39
6.4 The bootstrap selection times (s) of DaCapo and Saturn (∆ = 10) for the bench-

marks. Note that a “-” represents a timeout (≥ 300s). . . . . . . . . . . . . . . . 39
6.5 The simplified cost model used to estimate the inference times. The numbers are

extrapolated from the cost model in [7]. . . . . . . . . . . . . . . . . . . . . . . 40
6.6 The estimated inference times for the benchmarks bootstrapped by DaCapo and

Saturn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.7 The number of bootstraps placed by DaCapo and Saturn for the benchmarks . . . 41

xiii



xiv



Chapter 1

Introduction

Fully homomorphic encryption [13] (FHE) is a cryptographic primitive that allows computations
on encrypted data. Using FHE, a user can securely outsource their computation to an untrusted
third party. This paradigm has many promising applications, such the analysis of sensitive med-
ical data [3], private genome analysis [21], and privacy preserving machine learning [34]. Fol-
lowing Gentry’s groundbreaking work on FHE [13], many additional FHE schemes have been
developed [4, 6, 12]. To facilitate the development of FHE applications, several comprehensive
FHE libraries [1, 15, 29] and compilers [7, 9, 24, 32] have also been created.

A major challenge in the development of FHE applications is noise management. To ensure
security, noise is introduced when data is encrypted into an FHE ciphertext [25]. However, with
each subsequent operation on the encrypted data, the noise increases. Once the noise exceeds
a certain threshold, the ciphertext can not be decrypted accurately. FHE schemes [6] utilize a
mechanism called bootstrapping [5], which can reset the noise level of a ciphertext. For pro-
grams with long computations, bootstrappings must be inserted to periodically reset the noise
in ciphertexts. Unfortunately, bootstrapping is 2-3 orders of magnitude slower than other FHE
operations, make it the main bottleneck of FHE applications. As a result, the strategic placement
of bootstrapping operations is a critical aspect of FHE performance.

One common approach to bootstrapping placement is manual placement [23], where the pro-
grammer determines the specific places in a program at which to inject bootstrappings. However,
for larger FHE programs, this places a great burden on the programmer and could lead to sub-
optimal performance. Achieving optimal bootstrapping placement is challenging due to the need
to balance multiple factors at once.

• First, a sufficient number of bootstraps must be placed to ensure that at any point in the
program, the noise level remains within acceptable limits.

• Second, since bootstrapping incurs significant runtime overhead, the frequency of boot-
strapping operations should generally be minimized.

• Lastly, it is essential to consider the impact of bootstrap insertions on the performance of
other FHE operations. The runtime of arithmetic FHE operations, such as multiplication,
varies based on the amount of noise in the operands. Since bootstrap placement determines
the noise at all the points in the computation, it influences the performance of all other
operations that occur.
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To alleviate the burden of bootstrapping placement on programmers, numerous previous
works have explored methods to automatically determine or approximate the optimal bootstrap-
ping placement [2, 7, 28, 33].

This work introduces Saturn (SAT Using DAG ReductioN), a novel method for finding the
optimal bootstrapping placement of any FHE application. Given an input FHE program repre-
sented as a directed acyclic graph (DAG), Saturn aims to identify the bootstrapping placement
that minimizes the total runtime of the FHE program. This is achieved by solving an instance of
the Partial Weighted Maximum Satisfiability (Weighted MaxSAT) problem, formulated based on
the structure of the input DAG. The CGSS2 solver [19] from MaxSAT Evaluation 2023 [20] is
used to solve Saturn’s MaxSAT formulation. Additionally, Saturn applies two methods of DAG
size reduction (QBP Reduction 5.1 and Auto-Compression 5.2) prior to the MaxSAT formulation
to reduce the MaxSAT solve times.

While the Saturn method can be applied to any FHE scheme, we choose to validate it using
RNS-CKKS [6] due to its support for fixed-point arithmetic and SIMD operations, making it
particularly well-suited for privacy-preserving machine learning models. We evaluate Saturn
with five deep learning models (ResNet [16], AlexNet [22], VGG16 [31], SqueezeNet [18],
and MobileNet [17]). On average Saturn achieves a 5.25× speedup in bootstrapping placement
selection time compared to DaCapo [7], the state-of-the-art automatic bootstrapping method.
Additionally, the benchmarks generally have faster estimated inference time for a CIFAR-10
image, when bootstrapped by Saturn versus when bootstrapped by DaCapo [7].

The main contributions of this work are as follows:
• Development of a Partial Weighted Maximum Satisfiability model for the optimal boot-

strapping placement problem, which aims to minimize the total FHE program runtime.
• Introduction of two DAG reduction techniques that preserve the optimality of the solution

while significantly reducing problem complexity.
• Demonstration of the practicality and effectiveness of Saturn in optimizing bootstrapping

placements for real-world FHE applications.
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Chapter 2

Background

The first section of this chapter presents the necessary background on RNS-CKKS [6], the FHE
scheme utilized for evaluating the Saturn bootstrapping method. We use RNS-CKKS because
its support for fixed-point arithmetic and SIMD operations makes it particularly well-suited for
privacy-preserving machine learning models, which is one of the most challenging FHE appli-
cation archetypes to manually bootstrap. The second section provides an overview the Partial
Weighted MaxSAT problem, which is at the core of the Saturn method.

2.1 RNS-CKKS Background
In RNS-CKKS, plaintexts are polynomial encodings of real number vectors. The encryption
process involves altering the plaintext polynomial with a secret key to obtain a pair of polynomi-
als, which is the ciphertext. During this encryption process, noise is added to the ciphertext for
security. The security of RNS-CKSS relies on the Ring Learning with Errors problem [26].

2.1.1 Scale and Level
Each RNS-CKKS has a scale and a level. The scheme encodes real numbers as an integer over
a scale. For instance, the real number x = 2.1 is encoded as the integer v = 21 over the
scale m = 101. Multiplication results in the accumulation of scales. For example, consider the
following computation:

• x = 2.1 is expressed with v = 21, m = 101

• y = 3.0 is expressed with v = 30, m = 101

• x× y = 6.30 is expressed with v = 630, m = 102

There exists a maximum scale capacity which is determined by encryption parameters. If a
ciphertext’s scale exceeds the maximum capacity, it can no longer be decrypted correctly. Thus,
FHE programs must periodically apply the rescale operation to reset the scale of a ciphertext.
To rescale a ciphertext C, we must consume one of C’s scale factors. Each ciphertext has a
limited number of scale factors, and the level of a ciphertext denotes the number of scale factors
it has available. If a ciphertext’s level reaches 0 (ie. it runs out of scale factors), the bootstrap
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operation can used to refresh the ciphertext’s level. The concept of ciphertext scale and level can
be summarized as follows:

• Each ciphertext starts with a default scale and level.
• Multiplication causes the accumulation of scale.
• The rescale operation consumes one level, but resets the ciphertext’s scale.
• The bootstrap operation resets the ciphertext’s level.

2.1.2 Operations
Below are the computational operations supported in RNS-CKKS. For the descriptions below,
keep in mind that each ciphertext encodes a vector of real numbers.

• Addition: Given two ciphertexts operands, this operation performs element-wise addition.
Requires the operands to have the same scale and level.

• Multiplication: Given two ciphertexts operands, this operation performs element-wise
multiplication. Requires the operands to have the same level. The scale of the result is the
product of the operand scales.

• Rotation: Given one ciphertext operand, this operation performs a circular shift on the
encoded vector.

Note how the arithmetic operations (add/mul) have scale and level requirements for its operands.
For these requirements to be met, the following scale/level management operations are needed
between arithmetic operations. The key challenge to optimizing FHE programs is figuring out
where in the computation to insert the following operations.

• Rescale: Resets the scale of a ciphertext. The ciphertext’s level decreases from l to l − 1.
• Modswitch: Changes the ciphertext’s level from l to l − 1 without changing its scale.
• Bootstrap: Resets the ciphertext’s scale and level back to the default values. This is the

slowest operation of RNS-CKKS. It is 3774× slower than addition, and 112× slower than
multiplication [7].

2.1.3 The Naive Rescaling Assumption
For this project, we assume that rescales are placed naively, specifically following each multi-
plication operation. This simplification facilitates the determination of bootstrap placement by
removing the complexity associated with managing scale. Consequently, under this assumption,
each multiplication consistently consumes one level.

The immediate next step for this research project is to lift this simplifying assumption.

2.2 Partial Weighted Maximum Satisfiability Problem
The satisfiability problem (SAT) is a fundamental problem in computer science and mathematical
logic. It involves determining if there exists an assignment of truth values to variables that makes
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a given Boolean formula true. SAT was the first problem proven to be NP-complete, and it serves
as a cornerstone for complexity theory.

The Maximum Satisfiability (MaxSAT) problem is an extension of the SAT problem. While
SAT asks whether there exists an assignment that satisfies a given Boolean formula, MaxSAT
seeks to find an assignment that satisfies the maximum number of clauses in a formula. This
makes MaxSAT an optimization problem, where the goal is to maximize the number of satisfied
clauses. The Weighted MaxSAT problem goes a step further by associating a weight with each
clause. The objective in Weighted MaxSAT is to find an assignment that maximizes the sum of
the weights of satisfied clauses, making it a more nuanced optimization problem.

2.2.1 Problem Formulation
Formally, a Weighted MaxSAT problem can be defined follows. Given a Boolean formula in
conjunctive normal form (CNF)1, consisting of a set of clauses C1, C2, ..., Cm over a set of vari-
ables X = {x1, x2, ..., xn}, where each clause Ci is associated with a weight wi, the objective is
to find an assignment of truth values to the variables in X that maximizes the toal weight of the
satisfied clauses. The Weighted MaxSAT problem can be expressed as:

Maximize
m∑

i=1

wi · sat(Ci)

where sat(Ci) is 1 if clause Ci is satisfied by the assignment and 0 otherwise.
For Saturn, we utilize a variant of this problem called Partial Weighted MaxSAT, which

introduces a distinction between hard and soft clauses. Hard clauses are those that must be
satisfied for a solution, whereas soft clauses can be violated, but each violation incurs a penalty
based on the clause’s weight. The objective in Partial Weighted MaxSAT is to maximize the
sum of the weights of the satisfied soft clauses, while ensuring that all hard clauses are satisfied.
This variant is particularly useful in scenarios where certain constraints are non-negotiable, while
others are flexible, allowing for more realistic and practical problem-solving approaches [11, 30].

2.2.2 Solving Partial Weighted MaxSAT
Solving Partial Weighted MaxSAT is computationally challenging, as it is an NP-hard prob-
lem. A wide range of algorithms has been proposed for solving Partial Weighted MaxSAT,
including branch-and-bound, local search, and SAT-based methods. Recent advancements in
MaxSAT solvers have significantly improved their efficiency and scalability. Notable solvers in-
clude MaxHS [10], Open-WBO [27], and CGSS [19]. For this work, we experimented with the
solvers submitted to MaxSAT Evaluation 2023 [20]. Of the solvers tested, the CGSS solver [19]
had the best performance on the MaxSAT models generated by Saturn. Thus, CGSS was used
for our system.

Going forward, we will have “MaxSAT” denote the weighted partial variant.

1A formula in CNF is a conjunction (AND) of one or more clauses, where each clause is a disjunction (OR) of
one or more literals. For instance, the following is a CNF formula: (A ∨ ¬B) ∧ (C ∨D)
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Chapter 3

Motivation and Overview

This chapter reviews the limitations of existing methods for automatic bootstrapping placement,
providing the motivation for our work: a novel method capable of identifying more optimal
bootstrapping placements without sacrificing significant runtime.

3.1 Prior Works
Prior works have explored various methods to address the optimal bootstrapping problem. The
earliest research in this field concentrated on minimizing the number of bootstraps inserted [2,
28]. Benhamouda et al. [2] introduced an integer linear programming (ILP) model to identify
the minimal bootstrapping placement, accompanied by an approximation algorithm that rounds
the proposed linear program. In FHE-Booster [33], White et al. introduced a heuristic method
for minimizing the number of bootstrappings based concepts from the ILP formulation in [2].

The state-of-the-art method for optimal bootstrapping is DaCapo [7], which focuses on min-
imizing the total latency of the FHE program rather than merely reducing the number of boot-
straps. DaCapo achieves this through a heuristic-based approach that considers the impact of
bootstrapping placement on the costs of other FHE operations.

3.2 Limitations of Prior Works
Prior methods of automatic bootstrapping can be categorized into exact and approximate meth-
ods:

• Exact methods focus on a specific objective, such as minimizing the total number of boot-
straps, and exhaustively search for the optimal bootstrapping plan. Though exact methods
find the most optimal solution, they share the drawback of scaling poorly for large input
FHE computations. The exact methods from prior works involve solving an ILP formula-
tion [2, 28], and ran into solve times several hours long for larger computation DAGs and
maximum noise budgets.

• Approximate methods, while also targeting a specific objective, employ heuristics to find
a bootstrapping plan that performs well. However, these plans are not guaranteed to be
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the most optimal. For instance, DaCapo’s automatic bootstrapping method [7] targets
the objective of minimizing the total latency of the FHE program. To reduce the search
space, DaCapo splits the input program DAG into layers, and determines which layers to
bootstrap rather than which vertices to bootstrap. This layer-based approach can result in
a loss of precision when identifying the optimal bootstrapping points.

3.3 Why Saturn?
As detailed in the previous section, exact methods are superior in terms of solution quality, they
suffer from poorly scaling solve times. At its core, Saturn is an exact method, capable of finding
the most optimal solution. It scales significantly better than prior exact method for two reasons:

• First, Saturn employs two DAG reduction methods 5 which provably preserve optimally
prior to finding the optimal bootstrapping points. This greatly reduces the search space.

• Second, Saturn employs a MaxSAT model to find the optimal solution, in contrast to pre-
vious works that rely on integer linear programming (ILP) formulations. Our evaluations
revealed that for optimization problems that can be expressed as both MaxSAT and ILP
formulations, the best MaxSAT solvers [19] can solve the problem 2-3 orders of magni-
tude faster than the best ILP solvers [14].

For most realistic FHE programs and noise parameters, Saturn is capable of exhaustively
searching for the optimal bootstrapping plan in less than 2 minutes.

Specifically for FHE deep learning models with more than 15 calls to the SiLU activation
function, an exhaustive search via MaxSAT for the optimal solution is not feasible. For such
programs, Saturn can use an approximation during QBP Reduction to reduce the solve time
to minutes. Evaluations demonstrate that solutions found via this approximate method differs
insignificantly from the optimal.

3.4 Saturn Framework Overview
Saturn is a method for solving the Level-Aware Bootstrapping Problem for a specified FHE
computation DAG and noise budget. That is, Saturn determines the bootstrapping placement
that minimizes the total latency of the FHE computation while adhering to the noise budget
constraints.

Figure 3.4 provides an overview of the Saturn automatic bootstrapping framework. The input
to Saturn is a DAG representing the FHE computation that needs to be bootstrapped. Firstly,
Saturn reduces the size of the input DAG using QBP Reduction and Auto Compression to obtain
a Reduced DAG of significantly smaller size. Using the MaxSAT Model Generation procedure,
Saturn generates the set of MaxSAT variables and constraints which can solves the Level-Aware
Bootstrapping Problem for the Reduced DAG. A state-of-the-art MaxSAT solver [19] is then used
to obtain the solution to the MaxSAT problem, which indicates the optimal way to bootstrap the
Reduced DAG. Finally, the two DAG reduction methods are reverted to obtain the optimal way
to bootstrap the original input DAG.

8



Figure 3.1: A diagram showcasing the Saturn framework. The yellow and blue units represent
data, and the gray units represent procedures.
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Chapter 4

Problem Formulation

This chapter formally defines the Level-Aware Bootstrapping Problem (LA-BTS). The goal of
LA-BTS is to find the feasible bootstrapping placement which minimizes the total runtime of the
FHE program. For a bootstrapping placement to be feasible, it must ensure that the ciphertext
noise level never exceeds the maximum level during the computation. Additionally, this chapter
describes a MaxSAT formulation that can be used to solve any instance of the LA-BTS problem.

For the following sections, let Lmax denote the maximum ciphertext level and let L denote
the set {0, 1, ..., Lmax}.

4.1 Definitions
FHE computations can be represented as a direct acyclic graph (DAG) where vertices represent
computational steps (operations), and edges represent the flow of data. Below is the formal
definition of an FHE Computation DAG.
Definition 1 (FHE Computation DAG). An FHE Computation DAG D consists of two parts, the
vertex set V and the edge set E:

• V is the set of vertices. Each vertex v ∈ V has four attributes:

v.cpr ∈ N denotes the compression factor of v. This attribute is utilized in Section
5.2 to have one vertex represent a collection of vertices. For now, think of v.cpr as
always being equal to 1.
v.op denotes the operation at v. 1

v.lset denotes the set of possible levels vertex v can be at. For most vertices, this set
is a subset of L. Aside from a special type of vertex introduced in Section 5.1, v.lset
is always either {0, 1, ..., Lmax} or {0, 1, ..., Lmax − 1}.

For example, if v.op = Mult, then v.lset = {1, 2, ..., Lmax}2.
If v.op = Add, then v.lset = {0, 1, ..., Lmax}
v.costs : v.lset 7→ N is a map indicating the cost (µs) of running the operation at v at
each possible level i ∈ v.lset.

1Note that v.op determines v.lset, v.costs, and e.lmap for all outgoing edges.
2This set does not include 0 because multiplication is an operation that consumes one level.
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• E is the set of edges. An edge is a parent/child pair of vertices. Edge (vp → vc) indicates
that the output from the operation at vp is used as an input for the operation at vc.

Each edge e = (vp → vc) has an attribute e.lmap : vp.lset 7→ P(vc.lset). 3

For each i ∈ vp.lset, e.lmap[i] is the set of possible levels that vc can have, under the
condition that vp’s level is i and it is not bootstrapped. Note that e.lmap is determined
entirely by vp.op.
For instance, if e = (vp → vc), Lmax = 3 and vp.op = Mult,

e.lmap =





3 : {2, 1, 0}
2 : {1, 0}
1 : {0}
0 : {}





If vp.op = Add,

e.lmap =





3 : {3, 2, 1, 0}
2 : {2, 1, 0}
1 : {1, 0}
0 : {0}





Given an FHE Computation DAG D = (V,E), we can assign it a bootstrapping B ⊆ V. B
is the subset of vertices at which we place a bootstrapping. Placing a bootstrapping at vertex v
means that the result of v’s operation is bootstrapped before being forwarded to v’s child vertices.
Additionally, D can be assigned a levels map levels which maps each vertex v ∈ V to a level in
v.lset.

A pair of (B, levels) describes a bootstrapping plan for D. The pair (B, levels) describes a
valid bootstrapping if the bootstrapping placements determined by B allows each vertex v ∈ V
to have level levels[v] with the addition of modswithces, if needed. A more formal definition is
as follows:

Definition 2 (Valid Bootstrapping). Let pair P = (B, levels), where B ⊆ V is a bootstrapping
subset and levels is a mapping of vertices to levels. P = (B, levels) is a valid bootstrapping for
D = (V,E) if for every (vparent → vchild) ∈ E, either

• vparent ∈ B, or
• levels[vchild] ∈ (vparent → vchild).lmap[levels[vparent]]

4.2 The Level-Aware Bootstrapping Problem (LA-BTS)

This section formally defines the Level-Aware Bootstrapping Problem (LA-BTS).

3P(vc.lset) denotes set of all possible subsets of vc.lset.
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4.2.1 Inputs
The inputs to the problem are as follows:

• Lmax ∈ N, the maximum noise budget
• D = (V,E), the FHE Computation DAG
• cbts ∈ N, the cost (µs) of performing a bootstrapping

4.2.2 Output
To solve LA-BTS, we must find the valid bootstrapping P = (B, levels) that minimizes the
following expression:

(
cbts

∑

vb∈B
vb.cpr

)
+

(∑

v∈V
v.cpr · v.costs[levels[v]])

)

Intuitively, the expression incentivises finding the bootstrapping placement that minimizes
total runtime including bootstraps and computations. As this expression will be used extensively
in the following sections, we set up the following notation.
Definition 3 (σ Function). Let P = (B, levels). Then,4

σ(P ) =

(
cbts

∑

vb∈B
vb.cpr

)
+

(∑

v∈V
v.cpr · v.costs[levels[v]])

)

4.3 MaxSAT Model Generation
The LA-BTS problem can be solved by generating and solving an instance of the Partial Weighted
MaxSAT problem. In this section, we begin with the set of inputs to LA-BTS described in 4.2.1
and construct the set of MaxSAT variables and clauses that allows us to find the optimal valid
bootstrapping as described in 4.2.2.

4.3.1 Variables
For each vertex v ∈ V, define the following boolean variables in the MaxSAT model:

• Level Variables: Γv = {γi
v|i ∈ v.lset}5

The truth value assignments of the variables in each Γv indicates the level assigned to
vertex v. Using the clauses, we will ensure that in the MaxSAT solution, exactly one
variable in each Γv is assigned truth value of ⊤. If γi

v is the single variable in Γv assigned
⊤, it indicates vertex v is assigned level i.

• Bootstrapping Variable: βv

The truth value of each βv indicates whether or not we bootstrap at vertex v.
4Note that V is given by the keys of levels.
5Note that superscripts represent indices (not powers) throughout.
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4.3.2 Hard Clauses

Hard clauses are boolean expressions that must be satisfied in any feasible solution to the MaxSAT
problem.

Vertex-Based Hard Clauses: For each vertex v ∈ V, we add the following hard clause to
ensure that at least one boolean variable in Γv is assigned ⊤.

∨

i∈v.lset
γi
v = ⊤

Later, we will use soft clauses to make sure that exactly one boolean variable in each Γv is
assigned ⊤.

Edge-Based Hard Clauses: For each edge e = (vparent → vchild) ∈ E, we define hard
clauses to ensure that either:

• vparent ∈ B, or
• levels[vchild] ∈ (vparent → vchild).lmap[levels[vparent]]

To ensure this condition, we add the following hard clause for every i ∈ vparent.lset:

βvparent ∨ ¬γi
vparent

∨
( ∨

j∈e.lmap[i]

γj
vchild

)
= ⊤

4.3.3 Soft Clauses

Soft clauses are clauses that the solver tries to satisfy, but they they do not all have to be satisfied
for the solution to be valid. Each soft clause has a weight, and the goal is to maximize the total
weight of the satisfied soft clauses while ensuring all hard clauses are satisfied.

Bootstrapping Cost Soft Clauses: For each v ∈ V, add the following soft clauses:

¬βv = 1 (clause weight = v.cpr · cbts)

Operations Cost Soft Clause: For each v ∈ V, for all i ∈ v.lset, add the following soft
clause:

¬γi
v = 1 (clause weight = bigNum+ v.cpr · v.costs[i])

Here, bigNum is a large constant. It is added to the clause weights to ensure that the solution
to the MaxSAT problem assigns exactly one γi

v to value ⊤ in each Γv. Intuitively, adding this
large constant greatly amplifies the penalty of assigning any γi

v to ⊤. Thus, the solution assigns
⊤ to just one variable in each Γv, which is the minimum required to satisfy the hard clauses.

For correctness, bigNum has the following lower bound:

bigNum >

(
cbts

∑

v∈V
vb.cpr

)
+

(∑

v∈V
v.cpr · max

i∈v.lset
(v.costs[i])

)
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4.4 Correctness of the MaxSAT Construction
In this section, let L-MaxSAT denote the MaxSAT problem constructed in the previous section.

• A valid assignment to L-MaxSAT is an assignment of truth values to the variables of L-
MaxSAT that satisfies all the hard clauses.

• A solution to L-MaxSAT is a valid assignment that maximizes the sum of satisfied soft
clauses.

Lemma 1 (One Noise). In the solution to L-MaxSAT, ∀v ∈ V, the set Γv has exactly one variable
assigned value True.

Proof. ∀v ∈ V, we have the following hard clause:
∨

γi
v∈Γv

γi
v = 1

This ensures that every γi
v as at least one variable assigned value True.

Assume for the sake of contradiction that in the solution Aopt to L-MaxSAT, there exists a
v′ ∈ V such that γi

v′ = ⊤, γj
v′ = ⊤, i ̸= j.

For any valid assignment to L-MaxSAT, the sum of the weights of the unsatisfied soft clauses
is at least (xγ=⊤ · bigNum), where xγ=⊤ is the number of γi

v variables assigned the value ⊤. By
the assumption, we know that xγ=1 ≥ |V |+ 1 for Aopt. Thus, for Aopt, the sum of the weights
of the unsatisfied soft clauses is at least

(|V |+ 1) · bigNum
Consider Aalternate, an alternate valid assignment to L-MaxSAT where ∀v, βv is assigned

⊤, and a single arbitrary variable γlv
v in each Γv is assigned value ⊤. This is the equivalent of

bootstrapping at every vertex. Aalternate is a valid assignment, as all the hard clauses are satisfied.
The sum of the weights of the unsatisfied soft clauses is

Salternate =

(
cbts

∑

v∈V
vb.cpr

)
+

(∑

v∈V
v.cpr · v.costs[lv]

)
+ |V | · bigNum

Note that Salternate < (|V | + 1) · bigNum by the definition of bigNum. Thus, Aalternate has
a smaller unsatisfied soft clause weight sum than the solution Popt, which is supposed to be the
optimal valid assignment. We have a contradiction, as we found a valid assignment better than
the solution.

By contradiction, we conclude that in the solution to L-MaxSAT, every Γv has exactly one
variable assigned True.

Lemma 2. (MaxSAT to Bootstrapping)
Let M be a valid assignment to L-MaxSAT which the property that every Γv has exactly one

variable assigned to 1.
Let function convert() take in M and convert it to a bootstrapping plan P = (B, levels). That

is, convert(M) = (B, levels), where
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• B = {v for each βv assigned ⊤ in M}
• levels is mapping of vertices to levels such that levels[v] = i, where γi

v is the single variable
in Γv assigned ⊤.

Given this,
(B, levels) = convert(M) describes a valid bootstrapping of D.

Proof. Let M be a valid assignment to L-MaxSAT which the property that every Γv has exactly
one variable assigned to 1. Also, let (B, levels) = convert(M).

Suppose e = (vparent → vchild) is an arbitrary edge in E. M being a valid assignment means
that every hard clause is satisfied. Thus, for all i ∈ vparent.lset,

βvparent ∨ ¬γi
vparent

∨
( ∨

j∈e.lmap[i]

γj
vchild

)
= ⊤

Suppose k = levels[vparent]. Then ¬γk
vparent

= 0. Thus, we have that

βvparent ∨
( ∨

j∈e.lmap[levels[vparent]]

γj
vchild

)
= ⊤

Therefore, either:

• βvparent = ⊤ ⇐⇒ vparent ∈ B, or
•
∨

j∈e.lmap[k] γ
j
vchild

⇐⇒ levels[vchild] ∈ e.lmap[k]

In conclusion, (B, levels) describes a valid bootstrapping of D.

Lemma 3. (Bootstrapping to Variable Assignment) Given P = (B, levels), which describes a
valid bootstrapping, we can construct a valid assignment M to L-MaxSAT such that the weight
sum of the unsatisfied soft clauses is:

cbts
∑

vb∈B
vb.cpr +

∑

v∈V
(bigNum+ v.cpr · v.costs[levels[v]])

Proof. For every vB in B, assign truth value ⊤ to variable βvB . For each vertex v ∈ V, assign
truth value ⊤ to variable γ

levels[v]
v . For every other variable assign truth value ⊥. This completes

our variable assignment M .

• Every vertex-based hard clause (4.3.2) is satisfied since for each Γv, there is at least variable
in the set assigned true, as γ levels[v]

v = ⊤.

Consider the set of the edge-based hard clauses (4.3.2) for an arbitrary edge e = (vparent →
vchild). Let k = levels[vparent].

For each i ∈ vparent.lset such that i ̸= k, the hard clause is satisfied since ¬γi
vparent

=
⊤

βvparent ∨ ¬γi
vparent

∨
( ∨

j∈e.lmap[i]

γj
vchild

)
= ⊤
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This leaves one more hard clause:

βvparent ∨ ¬γk
vparent

∨
( ∨

j∈e.lmap[k]

γj
vchild

)
= ⊤

Since B is a valid bootstrapping, we know that either:
− vparent ∈ B ⇐⇒ βvparent = 1, or
− levels[vchild] ∈ e.lmap[k] ⇐⇒ ∨

j∈e.lmap[k] γ
j
vchild

Thus, this hard clause is satisfied.

In conclusion, value assignment M is a valid assignment to L-MaxSAT.
• For each vB ∈ B, we the following soft clause is not satisfied:

¬βvB = ⊤ (clause weight = v.cpr · cbts)

For each vertex v ∈ V , the following soft clause is not satisfied:

¬γ levels[v]
v = ⊤ (clause weight = bigNum+ v.cpr · v.costs[levels[v]])

All other soft clauses are satisfied. This gives a unsatisfied soft clause weight sum of:

cbts
∑

vb∈B
vb.cpr +

∑

v∈V
(bigNum+ v.cpr · v.costs[levels[v]])

Theorem 1. Let M denote the solution to the L-MaxSAT problem.
Then (B, levels) = convert(M), is the valid bootstrapping which minimizes

(
cbts

∑

vb∈B
vb.cpr

)
+

(∑

v∈V
v.cpr · v.costs[levels[v]]

)

Proof. Let Mmsat be the solution to the L-MaxSAT problem. That is , Mmsat is the valid assign-
ment maximizes the soft clause weight sum. Let (Bmsat, levelsmsat = convert(Mmsat)

By Lemma 1, for each v ∈ V, Mmsat assigns exactly one γi
v to value ⊤. Then, by Lemma 2,

(Bmsat, levelsmsat) is a valid bootstrapping of DAG D.

Denote weight sum of unsatisfied soft clauses for L-MaxSAT solution Mmsat as Smsat.

Smsat =

(
cbts

∑

vb∈Bmsat

vb.cpr

)
+

(∑

v∈V
(bigNum+ v.cpr · v.costs[levelsmsat[v]])

)

Consider the set Υbts of all valid bootstrappings of D. Let (Bvalid, levelsvalid) be an arbi-
trary element in Υbts. By Lemma 3, we can construct a valid assignment Mvalid which has the
following weight sum of unsatisfied soft clauses:
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Svalid =

(
cbts

∑

vb∈Bvalid

vb.cpr

)
+

(∑

v∈V
(bigNum+ v.cpr · v.costs[levelsvalid[v]])

)

As Mmsat is a solution to L-MaxSAT (ie. the most optimal valid assignment), and Mvalid is
an arbitrary valid assignment,

Smsat ≤ Svalid =⇒
(
cbts

∑

vb∈Bmsat

vb.cpr

)
+

(∑

v∈V
v.cpr · v.costs[levelsmsat[v]]

)

≤
(
cbts

∑

vb∈Bvalid

vb.cpr

)
+

(∑

v∈V
v.cpr · v.costs[levelsvalid[v]]

)

Thus, (Bmsat, levelsmsat) is a valid bootstrapping that minimizes
(
cbts

∑

vb∈B
vb.cpr

)
+

(∑

v∈V
v.cpr · v.costs[levels[v]]

)

for all possible (B, levels) ∈ Υbts
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Chapter 5

DAG Reduction Methods

In the Chapter 4, we introduced the LA-BTS, an optimization problem where we want to find
the valid bootstrapping P = (B, levels) that minimizes the estimated cost of an FHE program.
Additionally, we show that for any instance I of LA-BTS, we can construct MaxSAT problem
that can be solved to find the solution to I . We use L-MaxSAT denote the MaxSAT problem
constructed to solve an instance of LA-BTS.

Our end goal is solve LA-BTS for large FHE computations, such as deep neural networks.
These computations have computation DAGs D and consequently end up with L-MaxSAT con-
structions with too many variables and clauses to be solved in a reasonable time. Thus, we want
a way to reduce D to a more compact DAG D′ which results in a L-MaxSAT construction that is
much smaller and easier to solve. This chapter introduces two methods for reducing the size of
an FHE Computation DAG: QBP Reduction (5.1) and Auto-Compression (5.2).

5.1 Quadratic Behavior Profile (QBP) Reduction

Quadratic Behavior Profile (QBP) Reduction method involves profiling the behavior of specific
functions in an FHE computation. This profile, which has a number of entries quadratic to Lmax,
is used to represent the calls to the profiled function in a very compact manner.

The main insight is the following: given a single-input single-output (SISO) DAG DSISO,
we can efficiently find the optimal bootstrapping for DSISO under all possible combinations of
input and output levels. The optimal bootstrapping plan for each IO level combination is the
QBP of DSISO. With the QBP, each instance of DSISO can be replaced with a pair of vertices
that behaves the same way under all possible combinations of input and output levels.

The motivation for QBP Reduction is the complexity of activation functions such as ReLU
and SiLU in an HE setting. Such activation functions are implemented using approximation
polynomials. These polynomials have a high degree, so their computation process is long and
complex, as shown in figure 5.1. Fortunately, activation functions are SISO, meaning that each
call to them can be replaced by a pair of behaviorally equivalent vertices via the QBP reduction.
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Figure 5.1: A DAG calculating the polynomial that approximates ReLU (degree 15)

5.1.1 QBP Definition

Definition 4 (Quadratic Behavior Profile). Suppose D = (V,E) describes a SISO DAG with
input vertex vin and output vertex vout. The Level Aware Quadratic Behavior Profile of D, is a
nested map QBProfileD : vin.lset → vout.lset → N.

QBProfileD[i][j] = min
(B,levels)∈Υ(i,j)

D

(
cbts

∑

vb∈B
vb.cpr

)
+

(∑

v∈V
v.cpr · v.costs[levels[v]]

)

Here, Υ(i,j)
D is a subset of Υbts, the set of all valid bootstrappings of D. (B, levels) ∈ Υ

(i,j)
D

iff levels[vin] = i and levels[vout] = j.

The value of each entry QBProfileD[i][j] in the QBP can be found by generating and solving
the MaxSAT model from Section 4.3, with two additional hard constraints:

• γi
vin

= ⊤
• γj

vout = ⊤

5.1.2 Replacement

In this section, we describe the process for replacing an instance of a SISO sub-DAG d with a
pair of vertices, utilizing the information in QBProfiled. First, we define what it means to be a
sub-DAG.
Definition 5 (Sub-DAG). Let D = (V,E) be a computation DAG. DA = (VA,EA) is a sub-
DAG of D iff:

• VA ⊆ V
• EA ⊆ E
• DA is fully connected
• All edges e ∈ EA only involve vertices in VA

Suppose d = (Vd,Ed) is a sub-DAG of D = (V,E) and we want to use QBP reduction to
simplify an instance of d in D to a pair of vertices via the QBP reduction. Let vin and vout
denote the single input and output vertices of d. The replacement process is as follows:
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1. All edges fully internal to d are removed from E. That is, all edges involving a vertex in d
except for the edges going into vin and edges going out of vout are removed.

2. All vertices in d aside from vin and vout are removed.

3. The attributes of vin are updated as follows:
• v.cpr = 1

• v.op = d-qbp-input
• v.lset :

This is the most involved step of the replacement. Recall that v.lset is the set of the
possible levels vertex v can be at. For standard vertices v, which represent inter-
mediate ciphertexts in the FHE-computation, v.lset is simply a set of integers, as a
ciphertext’s levels range from {0, 1, ..., Lmax} or {0, 1, ..., Lmax − 1}.
After the QBP reduction, vin no longer represents an intermediate ciphertext; it rep-
resents an entire sub-computation. The level of vin does not represent a ciphertext
noise level, but rather represents the input/output level combination for the sub-
computation it represents. Thus, we have the following:

v.lset =





(0, 0), (0, 1), ..., (0, Lmax),

(1, 0), (1, 1), ..., (1, Lmax),

...
(Lmax, 0), (Lmax, 1), ..., (Lmax, Lmax)





Note that for nodes in V \ d, the original v.lset types are kept.
• v.costs = {(i, j) 7→ QBProfiled[i][j] for each (i, j) ∈ v.lset}

The entries from the QBP are used to assign the cost of the sub-computation repre-
sented by vin for the possible levels (ie. the IO level combinations).

4. The attributes of vout are updated as follows:
• v.cpr = 1

• v.op = d-qbp-output
• v.lset is not changed.
• v.costs = {(i 7→ 0 for each i ∈ v.lset}

5. Edge e = (vin → vout) is added.

e.lmap = {(i, j) 7→ j for each (i, j) ∈ vin.lset}

6. Each incoming edge to vin is updated.

(vparent → vin).lmap =

{
i 7→ (range(i)× L) for each i ∈ L

}
1

1range(i) is the set of non-negative integers less than or equal to i.
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5.1.3 Correctness
Suppose we have a main DAG D = (V,E), which contains an instance of a SISO sub-DAG d.
In this section, we will prove the correctness of the QBP reduction. First, we define a couple
functions needed for the proof.
Definition 6 (reduce Function). This function applies the QBP reduction on a dag.

• Input: An instance of LA-BTS I = (Lmax,D, cbts), as well as d, a SISO sub-DAG of D.
• Output: A new instance I ′ = (Lmax, G

′, cbts), where D′ = (V′,E′) is D with the replace-
ment process in subsection 5.1.2 applied.

For the remainder of this section, let (vin, vout) denote the input and output vertex of d. Let
(v′in, v

′
out) denote the pair of vertices used to replace d in D′

Definition 7 (reconstruct Function). This function takes a solution to the reduced DAG and
constructs a solution to the original DAG.

• Input: A solution (B′, levels′) to I ′, as well as d, a SISO sub-DAG of D.
For this definition and following proofs, we operate under the assumption that v′in and v′out
are not in B′. Though it is possible to proceed without this assumption, it would make the
reconstruct function more complex and the following proofs much lengthier.

• Output: The solution (B, levels) to I is constructed from (B′, levels′) as follows. For each
v ∈ V, we case based on whether or not v is a part of d:

Step 1: We handle the bootstrapping and level assignments for v ∈ V, where v is not
a part of d. For such v, there is an equivalent vertex v′ ∈ V′.
− Add v to B iff v′ ∈ B′ in the solution I ′

− Set levels[v] to be equal to levels′[v′] in the solution I ′

Step 2: We handle the bootstrapping and level assignments for the vertices v in d.
Suppose (i, j) = levels′[v′in]. Recall the process for finding the value of the entry of
QBProfileD[i][j] in 5.1.1. Obtain (Bd, levelsd) by using argmin instead of min.

(Bd, levelsd) = argmin
(B,levels)∈Υ(i,j)

d

(
cbts

∑

vb∈B
vb.cpr

)
+

(∑

v∈V
v.cpr · v.costs[levels[v]]

)

− Add v to B iff v ∈ Bd

− Set levels[v] to be equal to levelsd[v]

Lemma 4. If (B′, levels′) describes a valid bootstrapping for I ′,

(B, levels) = reconstruct(B′, levels′,d)

describes a valid bootstrapping for I .

Proof. Define (i, j) = levels′[v′in]. This also means that j = levels′[v′out] because v′in is not
bootstrapped. Let e = (vparent → vchild) be an arbitrary edge in E.

• If neither vparent nor vchild are not a part of d, then there is an equivalent edge e′ =
(v′parent → v′child) in E′. Since (B′, levels′) describes a valid bootstrapping, either
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v′parent ∈ B′ =⇒ vparent ∈ B, or
levels′[v′child] ∈ (v′parent → v′child).lmap[levels′[v′parent]]
=⇒ levels[vchild] ∈ (vparent → vchild).lmap[levels[vparent]]

• If e = (vparent → vin):
Consider the edge e′ = (v′parent → v′in) in E. Since (B′, levels′) describes a valid boot-
strapping, either

v′parent ∈ B′ =⇒ vparent ∈ B, or
levels′[v′in] ∈ (v′parent → v′in).lmap[levels′[v′parent]]

=⇒ (i, j) ∈ (v′parent → v′in).lmap[levels′[v′parent]]

=⇒ i ∈ (vparent → vin).lmap[levels[vparent]] (By step 6 in 5.1.2)
=⇒ levels[vin] ∈ (vparent → vin).lmap[levels[vparent]]

(Via construction, levels[vin] = i)

• If e is fully internal to d:
The edge satisfies the valid bootstrapping condition, since the bootstrap and level assign-
ments for the vertices in d were done according to an element of Υ

(i,j)
d , which is a set

exclusively containing valid bootstrappings.
• If e = (vout → vchild):

Consider the edge e′ = (v′out → v′child) in E′. Since (B′, levels′) describes a valid boot-
strapping and a bootstrap is not placed at v′out,

levels′[v′child] ∈(v′out → v′child).lmap[levels′[v′out]]

=⇒ levels′[v′child] ∈ (v′out → v′child).lmap[j]

=⇒ levels[vchild] ∈ (v′out → v′child).lmap[j] (As vchild is not in d)
=⇒ levels[vchild] ∈ (v′out → v′child).lmap[levels[vout]]

(Via construction, levels[vout] = j)

=⇒ levels[vchild] ∈ (vout → vchild).lmap[levels[vout]]
(As reduce does not change the lmap of this edge)

Lemma 5. Applying the reconstruct algorithm can only reduce the σ value. That is,

σ(B′, levels′) ≥ σ(reconstruct(B′, levels′,d))

Proof. Let (B, levels) = reconstruct(B′, levels′,d). We want to compare the σ values of so-
lutions (B′, levels′) for I ′ and and (B, levels) for I . In the comparison below, let (i, j) =
(levels[vin], levels[vout]).

Note that both solutions are identical for all vertices not in d so we just have to compare the
σ contribution of (v′in, v

′
out) for I ′ and the σ contribution of sub-DAG d for I:

• v′in and v′out’s bootstrap and level assignments have the following σ contribution for I ′:

From the bootstrapping placements, the σ contribution is at least 0.
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From the level assignments, the σ contribution is

v′in.cpr · v′in.costs[(i, j)] + v′out.cpr · v′out.costs[j]
= 1 · v′in.costs[(i, j)] + 0

= QBProfiled[i][j]

= min
(B,levels)∈Υ(i,j)

d

(
cbts

∑

vb∈B
vb.cpr

)
+

(∑

v∈V
v.cpr · v.costs[levels[v]]

)

• Sub-DAG d’s bootstrap and level assignments have the following σ contribution for I:

The σ contribution is exactly

min
(B,levels)∈Υ(i,j)

d

(
cbts

∑

vb∈B
vb.cpr

)
+

(∑

v∈V
v.cpr · v.costs[levels[v]]

)

because the Step 2 in the reconstruct function assigns bootstraps and levels based on the
argmin of the formula above.

Thus, σ(B′, levels′) ≥ σ(reconstruct(B′, levels′,d)).

Definition 8 (revreconstruct Function). This function does the reverse of the reconstruct func-
tion. It takes a solution to the original DAG, and constructs a solution to the reduced DAG.

• Input: A solution (B, levels) to I , as well as d, a SISO sub-DAG of D.
Similarly, this definition and the following proofs operate under the assumption that vin
and vout are not in B. Though it is possible to proceed without this assumption, we do not
do this to prevent the section from becoming too verbose.

• Output: The solution (B′, levels′) to I ′ is constructed from (B, levels) as follows:

Step 1: We handle the bootstrapping and level assignments for v′in and v′out, the pair
of vertices used to replace d in D′.

− Neither vertex is added to B′.
− Let vin and vout denote the input and output vertices to sub-DAG d in D.

· Set levels′[v′in] = (levels[vin], levels[vout])

· Set levels′[v′out] = levels[vout]

Step 2: We handle the bootstrapping and level assignments for the remaining vertices
v′ in D′. For such v′, there is an equivalent vertex v ∈ V

− Add v′ to B′ iff v ∈ B

− Set levels′[v′] to be equal to levels[v]

Lemma 6. If (B, levels) describes a valid bootstrapping for I ,

(B′, levels′) = revreconstruct(B, levels,d)

describes a valid bootstrapping for I ′.
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Proof. Define (i, j) = (levels[vin], levels[vout]). Let e′ = (v′parent → v′child) be an arbitrary edge
in E′.

• If neither v′parent nor v′child are not a part of {v′in, v′out}, then there is an equivalent edge
e = (vparent → vchild) in E. Since (B, levels) describes a valid bootstrapping, either

vparent ∈ B =⇒ v′parent ∈ B′, or
levels[vchild] ∈ (vparent → vchild).lmap[levels[vparent]]
=⇒ levels′[v′child] ∈ (v′parent → v′child).lmap[levels′[v′parent]]

• If e′ = (v′parent → v′in):
Consider the edge e = (vparent → vin) in E. Since (B, levels) describes a valid bootstrap-
ping, either

vparent ∈ B =⇒ v′parent ∈ B′, or
levels[vin] ∈ (vparent → vin).lmap[levels[vparent]]

=⇒ i ∈ (vparent → vin).lmap[levels[vparent]]

=⇒ (i, j) ∈ (v′parent → v′in).lmap[levels′[v′parent]] (By step 6 in 5.1.2)

=⇒ levels′[v′in] ∈ (v′parent → v′in).lmap[levels′[v′parent]]

(via construction, levels′[v′in] = (i, j))

• If e′ = (v′in → v′out): By construction, we know that:

j ∈ (v′in → v′out).lmap[levels′[(i, j))]]

Thus,
levels′[v′out] ∈ (v′in → v′out).lmap[levels′[v′in]]

• If e′ = (v′out → v′child):
Consider the edge e = (vout → vchild) in E. Since (B, levels) describes a valid bootstrap-
ping and a bootstrap is not placed at vout,

levels[vchild] ∈(vout → vchild).lmap[levels[vout]]

=⇒ levels[vchild] ∈ (vout → vchild).lmap[j]

=⇒ levels′[v′child] ∈ (vout → vchild).lmap[j]
(As v′child is not a qbp vertex)

=⇒ levels′[v′child] ∈ (vout → vchild).lmap[levels′[v′out]]
(Via construction)

=⇒ levels′[v′child] ∈ (v′out → v′child).lmap[levels′[v′out]]
(As reduce does not change the lmap of this edge)

Lemma 7. Applying the revreconstruct algorithm can only reduce the σ value. That is,

σ(B, levels) ≥ σ(revreconstruct(B, levels,d))
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Proof. Let (B′, levels′) = revreconstruct(B, levels,d).
We want to compare the σ values of solutions (B′, levels′) for I ′ and and (B, levels) for I . In

the comparison below, let (i, j) = (levels[vin], levels[vout])
Note that both solutions are identical for all vertices outside of sub-DAG d so we just have

to compare the σ contribution of (v′in, v
′
out) for I ′ and the σ contribution of d for I:

• v′in and v′out’s bootstrap and level assignments have the following σ contribution for I ′:

As neither vertex is bootstrapped, the σ contribution is

v′in.cpr·v′in.costs[(i, j)]] + v′out.cpr · v′out.costs[j]
= 1 · v′in.costs[(i, j)]] + 0

= QBProfiled[i][j]

= min
(B,levels)∈Υ(i,j)

d

(
cbts

∑

vb∈B
vb.cpr

)
+

(∑

v∈V
v.cpr · v.costs[levels[v]]

)

• Sub-DAG d’s bootstrap and level assignments have the following σ contribution for I:

The σ contribution is at least as large as

min
(B,levels)∈Υ(i,j)

d

(
cbts

∑

vb∈B
vb.cpr

)
+

(∑

v∈V
v.cpr · v.costs[levels[v]]

)

Thus, we can conclude that σ(B′, levels′) ≤ σ(B, levels,d).

Theorem 2. An instance I = (Lmax,D, cbts) of LA-BTS is feasible if there exists a valid boot-
strapping (B, levels) for computation D with max noise level Lmax.

All instances of LA-BTS I are feasible.

Proof. This is trivially true, as for any LA-BTS instance, a valid bootstrapping can be created
by making B equal to the entire vertex set and setting the level map levels arbitrarily.

Theorem 3. If (B′, levels′) is an optimal solution to I ′, then (B, levels) = reconstruct(B′, levels′,d)
is an optimal solution to I .

Proof. We prove the contra-positive:

If ∃ some better solution (B̂, ˆlevels) to I , then ∃ a better solution (B̂′, ˆlevels′) to I ′

Suppose (B̂, ˆlevels) is a better solution than (B, levels) for I . That is,

σ(B̂, ˆlevels) < σ(B, levels)

Construct the solution (B̂′, ˆlevels′) to I ′ as follows:

(B̂′, ˆlevels′) = revreconstruct(B̂, ˆlevels,d)

26



σ(B̂′, ˆlevels′) ≤ σ(B̂, ˆlevels) (By Lemma 7)

< σ(B, levels) (By assumption that (B̂, ˆlevels) is more optimal)
= σ(reconstruct(B′, levels′,d)) (By definition of (B, levels))
≤ σ(B′, levels′) (By Lemma 5)

We have found a better solution for I ′ as desired.

The combination of Theorem 2 and Theorem 3 shows that given a DAG D = (V,E), which
contains an instance of a SISO sub-DAG d, we can solve LA-BTS instance I = (Lmax,D, cbts)
by:

• Obtaining new LA-BTS instance I ′ = reduce(I,d)

• Solving I ′ to obtain solution (B′, levels′)

• Obtaining solution (B, levels) to I by computing (B, levels) = reconstruct(B′, levels′,d)

5.1.4 QBP Truncation
The QBP of a sub-DAG d has the number of entries equal to the number of possible combinations
of input and output levels, which is (Lmax + 1)2.

Recall how when a sub-DAG is reduced to a pair of vertices v′in and v′out, the size of v′in.lset
is equal to the number of entries in the QBP. In our evaluations, we use Lmax = 16, resulting in
a vertex with 172 = 289 level options for each call to ReLU/SiLU. Consequently, this adds a lot
of additional variables and clauses to our MaxSAT model.

To combat this we use the insight that many entries in QBPs are redundant. For example, the
following may occur in the QBP of sub-DAG d:

QBProfiled[i][j − 1] = QBProfiled[i][j] (i)

In this case, the IO-level option of (i, j − 1) is strictly inferior to the option of (i, j), as it
provides a lower output level at the same cost (estimated runtime).
Definition 9 (QBP Truncation). Here, we describe a method for truncating redundant/inferior
IO-level options from a QBP. The ∆ parameter is used to control the magnitude of truncation.

Below, we define function the function truncateQBP:
• Input: A QBP QBProfiled and non-negative integer ∆
• Output: A truncated QBP QBProfileT∆

d is constructed as follows:
For each input level option i ∈ L:

1. Set QBProfileT∆
d [i][Lmax] = QBProfiled[i][Lmax]

2. All QBP entries QBProfiled[i][j] such that

QBProfiled[i][j] ≥ QBProfiled[i][Lmax]−∆

are truncated.
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3. Set QBProfileT∆
d [i][Lnext] = QBProfiled[i][Lnext], where QBProfiled[i][Lnext] is the

entry with the largest cost that is less than QBProfiled[i][Lmax]−∆.
4. All QBP entries QBProfiled[i][j] such that

QBProfiled[i][j] ≥ QBProfiled[i][Lnext]−∆

are truncated.
5. Repeat until all the output level options have been set or truncated.

By using computing QBProfileT∆
d [i][Lnext] = truncateQBP(QBProfiled,∆) prior to doing QBP

reduction, and only including the non-truncated options in step 3 of the Replacement (5.1.2)
phase, we can greatly reduce the number of variables and constraints in the L-MaxSAT formula-
tion.

Note that applying QBP Reduction with ∆ = 1 maintains optimality, as it only truncates
an IO-level option only when it is strictly inferior to another option, such as in (i). Applying
QBP Reduction with larger ∆ allows a greater reduction of MaxSAT variables and constraints.
However, it has the drawback that we lose the guarantee of finding the most optimal valid boot-
strapping (B, levels).

5.2 Auto-Compression
While the QBP Reduction improves performance by compressing a single instance of a SISO
computation, we also find that multiple, repetitive instances of the same computation occur in
many workloads. Such computations are defined as regular computations, and are characterized
by predictable structures and repetitive patterns, which provide opportunities for optimization.

The Auto-Compression method involves identifying such instances of regular computations,
and expressing them in the DAG with vectorized form. Single vertices are used to represent a
collection of ciphertexts that follow a similar computational pattern, resulting in a smaller total
DAG size. The cmp attribute of vertices is used to express vectorization.

The motivation for Auto-Compression is the abundance of regular computations in FHE pro-
grams. Linear algebra operations, such as matrix multiplication and convolution, are mostly
regular because they operate on data structures with predictable, organized formats, such as ma-
trices and arrays. Auto-Compression is used to simplify the computation DAGs of such linear
algebra operations by several orders of magnitude.

Additionally, the Auto-Compression method composes with the QBP Reduction method. For
instance, suppose we have a computation where n ReLU calls occur in a regular manner. The
QBP reduction can reduce the n ReLU instances to 2 · n vertices, and Auto-Compression can
further reduce these instances to just two vertices: one compressed v′in vertex and one compressed
v′out vertex.

5.2.1 DAG Compression and Correctness
In this section, we describe and prove the correctness of a reduction that compresses identical
computational branches in a regular computation. First, we define two vertex attributes which
will be helpful in making the proofs below more readable.
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Definition 10 (v.parents and v.children). Suppose we have FHE computation DAG D = (V,E),
and v ∈ V.

• v.parents is the set of parent vertices of vertex v. Formally, it is defined as follows:

v.parents = {p ∈ V such that (p → v) ∈ E}

• v.children is the set of child vertices of vertex v. Formally, it is defined as follows:

v.children = {c ∈ V such that (v → c) ∈ E}

Next, we determine what it means to be a regular computation in the scope of a computation
DAG. A regular computation is characterized by a collection of identical sub-DAGs which split
from the same point. Below is a formal definition of what it means for two sub-DAGs to be
semi-equivalent, a shorthand for: “identical sub-DAGs splitting from the same point.”
Definition 11 (Sub-DAG Semi-equivalence). Let D = (V,E) be a computation DAG, and let
DA = (VA,EA) and DB = (VB,EB) be sub-DAGs of D. DA and DB are semi-equivalent (ie.
identical sub-DAGs that split from the same point)

⇐⇒

There exists a bijection f : VA ↔ VB such that for each vA ∈ VA, all the conditions below
are true: 2

• f(vA).op = vA.op. 3

• ∀pA ∈ vA.parents,∃pB ∈ f(vA).parents such that f(pA) = pB.
• ∀cA ∈ vA.children,∃cB ∈ f(cA).children such that f(cA) = cB.

Definition 12 (reduce Function). This function applies the compression of the semi-equivalent
sub-DAGs. When specified a set of n semi-equivalent sub-DAGs, this function simplifies the n
instances into one compressed instance.

• Input: An instance of LA-BTS I = (Lmax,D, cbts), as well a set of sub-DAGs {d1,d2, ...,dn}.
The following two conditions must hold:

For all v ∈ V, v.cpr = 1

d1,d2, ...,dn are all sub-DAGs of D and are all semi-equivalent.
• Output: A new instance I ′ = (Lmax,D

′, cbts), where D′ = (V′,E′) is constructed as
follows:

We start with the original D
The vertices and edges internal to sub-DAGs d2,d3...,dn are removed
All vertices vd1 in d1 instance is updated such that vd1 .cpr = n

Definition 13 (reconstruct Function). This function takes a solution to the reduced DAG and
constructs a solution to the original DAG.

2Note that the conditions below are automatically satisfied if f(vA) = vA
3The equality of operators also implies the equality of all lset, costs, lmap attributes of the bijectively corre-

sponding pairs.
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• Input: A solution (B′, levels′) to I ′ = (Lmax,D
′, cbts), as well as {d1,d2, ...,dn}, a set of

sub-DAGs of D. There must be an instance of d1 in D′, where each internal vertex vd1 has
vd1 .cpr = n.

• Output: The solution (B, levels) to I is constructed from (B′, levels′) as follows:

Step 1: We handle the bootstrapping and level assignments for the vertices v in D
which are on one of d1,d2, ...,dn. For such v, there is a corresponding compressed
vertex v′ in V′ (on the compressed d1).

− If v′ ∈ B′, add v to B

− Set levels[v] to be equal to levels′[v′]

Step 2: We handle the bootstrapping and level assignments for the remaining vertices
v in D. For such v, there is an equivalent vertex v′ ∈ D′ (not on the compressed d1).
− Add v′ to B′ iff v ∈ B

− Set levels[v] to be equal to levels′[v′]

Lemma 8. If (B′, levels′) describes a valid bootstrapping for I ′,

(B, levels) = reconstruct(B′, levels′, {d1,d2, ...,dn})

describes a valid bootstrapping for I .

Proof. Let e = (vparent → vchild) be an arbitrary edge in E. As described in the reconstruct
function, both of vparent and vchild have corresponding/equivalent vertices v′parent and v′child in
D′.

Since (B′, levels′) describes a valid bootstrapping, either

• v′parent ∈ B′ =⇒ vparent ∈ B, or
• levels′[v′child] ∈ (v′parent → v′child).lmap[levels′[v′parent]]
=⇒ levels[vchild] ∈ (vparent → vchild).lmap[levels[vparent]]

Lemma 9. Applying the reconstruct does not change the σ value. That is,

σ(B′, levels′) = σ(reconstruct(B′, levels′, {d1,d2, ...,dn}))

Proof. Let (B, levels) = reconstruct(B′, levels′, {d1,d2, ...,dn}). We want to compare the σ
values of solutions (B′, levels′) for I ′ and (B, levels) for I .

Note that both solutions are identical for all vertices outside of the semi-equivalent sub-DAGs.
Thus, we just have to compare the σ contribution of the compressed instance of d1 for I ′ and the
σ contribution of {d1,d2, ...,dn} for I .

Let V′
d denote the set of vertices in D′ which are a part of the compressed instance of d1.

Let Vd denote the set of vertices in D which are a part of the n semi-equivalent sub-DAGs
{d1,d2, ...,dn}.
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• The bootstrap and level assignments of V′
d has the following σ contribution for I ′:

(
cbts · |B′

d| · vb.cpr
)
+

( ∑

v′∈V′
d

v′.cpr · v′.costs[levels′[v′]]
)

=

(
n · cbts · |B′

d|
)
+

(
n ·

∑

v′∈V′
d

v′.costs[levels′[v′]]

)

Here, |B′
d| denotes the number of vertices in V′

d that is a part of B′.
• The bootstrap and level assignments Vd has the following σ contribution for I:

(
cbts · |Bd| · vb.cpr

)
+

( ∑

v∈Vd

v.cpr · v.costs[levels[v]
)

Here, |Bd| denotes the number of vertices in Vd that is a part of B. Note that the
reconstruct function bootstraps n vertices on Vd for each vertex bootstrapped on V′

d.
Thus,

|Bd| = n · |B′
d| (i)

Additionally, Vd consists of n semi-equivalent sub-DAGs, which are each bootstrapped
and assigned levels equivalently. Thus,

∑

v∈Vd

v.cpr · v.costs[levels[v]] = n ·
∑

v∈Vd1

v.cpr · v.costs[levels[v]] (ii)

where Vd1 is a subset of Vd consisting of the vertices from just d1. Thus, we can simplify
the σ contribution as follows:

(
cbts · |Bd| · vb.cpr

)
+

( ∑

v∈Vd

v.cpr · v.costs[levels[v]]
)

=

(
cbts · n · |B′

d| · vb.cpr
)
+

(
n ·

∑

v∈Vd1

v.cpr · v.costs[levels[v]]
)

(Via (i) and (ii))

=

(
cbts · n · |B′

d|
)
+

(
n ·

∑

v∈Vd1

v.costs[levels[v]]

)
(As all v.cpr = 1)

=

(
cbts · n · |B′

d|
)
+

(
n ·

∑

v′∈V′
d

v′.costs[levels′[v′]]

)

(As reconstruct assigns levels to Vd1 in I based on V′
d’s assignments in I ′)

Thus, the two solutions have the same σ contribution.
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Theorem 4. If (B′, levels′) is an optimal solution to I ′, then (B, levels) = reconstruct(B′, levels′)
is an optimal solution to I .

Proof. We prove the contra-positive:

If ∃ some better solution (B̂, ˆlevels) to I , then ∃ a better solution (B̂′, ˆlevels′) to I ′

Suppose (B̂, ˆlevels) is a better solution than (B, levels) for I . That is,

σ(B̂, ˆlevels) < σ(B, levels)

In the DAG D, there are n semi-equivalent sub-DAGs d1,d2, ...,dn. Given the new solution
(B̂, ˆlevels), we locate the sub-DAG instance di with the lowest σ contribution. In the case of ties,
we can break them randomly. Then, we can construct a new solution (B̂′, ˆlevels′) to I ′ as follows:

• Step 1: We handle the bootstrapping and level assignments for the vertices v′ in D′ which
are in the compressed instance of sub-DAG d1. For such v′, there is a corresponding
uncompressed vertex v ∈ di.

If v ∈ B̂, add v′ to B̂′

Set ˆlevels′[v′] to be equal to ˆlevels[v]

• Step 2: We handle the bootstrapping and level assignments for the remaining vertices v′

in D′. For such v′, there is an equivalent vertex v ∈ D.
If v ∈ B̂, add v′ to B̂′

Set ˆlevels′[v′] to be equal to ˆlevels[v]

We can conclude two things about (B̂′, ˆlevels′):

1. (B̂′, ˆlevels′) describes a valid bootstrapping for I ′:
To justify this, we use the same reasoning as in Lemma 8. Let e′ = (v′parent → v′child) be
an arbitrary edge in E′. As described in the solution construction above, both of v′parent
and v′child have corresponding/equivalent vertices vparent and vchild in D.
Since (B̂, ˆlevels) describes a valid bootstrapping, either

• vparent ∈ B̂ =⇒ v′parent ∈ B̂′, or
• ˆlevels[vchild] ∈ (vparent → vchild).lmap[ ˆlevels[vparent]]

=⇒ ˆlevels′[v′child] ∈ (v′parent → v′child).lmap[ ˆlevels′[v′parent]]

Thus, (B̂′, ˆlevels′) describes a valid bootstrapping.
2. σ(B̂′, ˆlevels′) ≤ σ(B̂, ˆlevels):

Note that both solutions are identical for all vertices outside of the semi-equivalent sub-
DAGs d1,d2, ...,dn.
Thus, we just have to compare the σ contribution of the compressed instance of d1 for I ′

and the σ contribution of the n semi-equivalent sub-DAGs d1,d2, ...,dn for I .
Let V′

d denote the set of vertices in D′ which are a part of the compressed instance of d1.
Let Vd denote the set of vertices in D which are a part of the n semi-equivalent sub-DAGs
d1,d2, ...,dn.
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• The bootstrap and level assignments of V′
d has the following σ contribution for I ′:

(
cbts · |B̂′

d| · vb.cpr
)
+

( ∑

v′∈V′
d

v′.cpr · v′.costs[ ˆlevels′[v′]]

)

=

(
n · cbts · |B̂′

d|
)
+

(
n ·

∑

v′∈V′
d

v′.costs[ ˆlevels′[v′]]

)

Here, |B̂′
d| denotes the number of vertices in V′

d that is a part of B̂′.
• The bootstrap and level assignments Vd has the following σ contribution for I:

The σ contribution is lower bounded by n times that sigma contribution of di, the
sub-DAG instance with the lowest σ contribution. Thus, the lower bound is

n ·
(
cbts · |B̂di

| · vb.cpr
)
+ n ·

( ∑

v∈Vdi

v.cpr · v.costs[ ˆlevels[v]]

)

= (n · cbts · |B̂di
|) +

(
n ·

∑

v∈Vdi

v.costs[ ˆlevels[v]]

)

Here, |B̂di
| denotes the number of vertices in Vdi

that is a part of B̂. Note that based
on how B̂′ was constructed,

|B̂di
| = |B̂′

d| (i)

Additionally, based on how B̂′ was constructed,
∑

v∈Vdi

v.costs[ ˆlevels[v]] =
∑

v′∈V′
d

v′.costs[ ˆlevels′[v′]] (ii)

By (i) and (ii), the lower bound for Vd’s σ contribution to I is equal to:
(
n · cbts · |B̂′

d|
)
+

(
n ·

∑

v′∈V′
d

v′.costs[ ˆlevels′[v′]]

)

This allows us to conclude that σ(B̂′, ˆlevels′) ≤ σ(B̂, ˆlevels).

Given the two conclusions about (B̂′, ˆlevels′), we can construct the following chain of inequali-
ties.

σ(B̂′, ˆlevels′) ≤ σ(B̂, ˆlevels) (Concluded directly above)

< σ(B, levels) (By assumption that (B̂, ˆlevels) is more optimal)
= σ(reconstruct(B′, levels′, {d1,d2, ...,dn})) (By definition of (B, levels))
≤ σ(B′, levels′) (By Lemma 9)

We have found a better solution for I ′ as desired.
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The combination of Theorem 2 and Theorem 4 shows that given a DAG D = (V,E), which con-
tains semi-equivalent sub-DAGs d1,d2, ...,dn, we can solve LA-BTS instance I = (Lmax,D, cbts)
by:

• Obtaining new LA-BTS instance I ′ = reduce(I, {d1,d2, ...,dn})
• Solving I ′ to obtain solution (B′, levels′)

• Obtaining solution (B, levels) to I by computing:

(B, levels) = reconstruct(B′, levels′, {d1,d2, ...,dn})

5.2.2 Algorithm for Finding Compression Opportunities

This section describes an algorithm for finding opportunities for DAG compression.
• As input, the algorithm takes in a DAG D = (V,E) be a DAG where for every vertex
v ∈ V, v.cpr = 1.

• As output, the algorithm returns a partitioning of V.
If two different vertices v1 and v2 are assigned to the same partition, it means that v1 and
v2 are corresponding vertices on semi-equivalent sub-DAGs d1 and d2, respectively.

The algorithm is based on equivalence relations for DAG vertices called n-Level Similarity

Definition 14 (n-Level Similarity). For non-negative integer n, n-level similarity (≈n) is defined
as follows:

If vA = vB, then vA ≈n vB. Otherwise, we case on n as follows:
• If n = 0 (Base Case): vA ≈0 vB only if the following conditions hold:

vA.parents, vB.parents are non-empty, and vA.parents ≈set
0 vB.parents

4

vA.op = vB.op
• If n > 0 (General Case): vA ≈n vB only if the following conditions hold:

vA.parents, vB.parents are non-empty, and vA.parents ≈set
n vB.parents

vA.op = vB.op

vA.children ≈set
n−1 vB.children

Definition 15 (partitionByDepthSim). The function partitionByDepthSim() takes a computation
DAG D = (V,E) as input, and returns a partitioning of V based on the equivalent relation
≈depth(D). 5 The pseudocode for the function is as follows:

1. Get a pre-order traversal of DAG D = (V,E). That is, the parent nodes are traversed
before the children nodes.

2. Traverse the vertices, partitioning them based on equivalence relation ≈0

3. Traverse the vertices again, partitioning them based on equivalence relation ≈1

4≈set
0 indicates set-wise 0-level similarity. A ≈set

n B ⇐⇒ ∀vA ∈ A,∃vB ∈ B such that vA ≈n vB , and
∀vB ∈ B, ∃vA ∈ A such that vA ≈n vB .

5depth(D) denotes the length of the longest path in D, where a path is a sequence of vertices such that each
vertex is a child of the last.
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4. Repeat until we obtain a partitioning based on equivalence relation
Since each partition depends solely on the previous iteration, it suffices to stop iterating
when ≈i’s partitioning is equal to ≈i−1’s.

5. Return the partitioning based on the ≈depth(D) equivalence relation.

Now, we want to show that the following is true about the partitioning P returned by
partitionByDepthSim(D):

If P assignes two different vertices v1 and v2 to the same partition,
it means that v1 and v2 are corresponding vertices on
semi-equivalent sub-DAGs d1 and d2, respectively.

To prove this statement, we define the following function:
Definition 16 (findSemiEqSubDags). The inputs, output, and algorithm for this function is as
follows:

• Inputs: A computation DAG D = (V,E) and two unique vertices vA, vB ∈ V such that
vA ≈depth(D) vB.

• Output: Two semi-equivalent sub-DAGs of D, denoted dA and dB, such that vA and vB
are corresponding vertices on the two sub-DAGs.

• Algorithm: As input, we are given D = (V,E), and vA, vB ∈ V, such that vA ̸= vB, and
vA ≈depth(D) vB.

We will construct sub-DAGs dA = (VA,EA), dB = (VB,EB) and bijection f : VA ↔
VB using the following procedure:

Phase 1: We begin by adding vA to VA, vB to VB, and set f(vA) = vB. Throughout this
phase, we maintain the invariant that f(v) ≈depth(D) v.
First, we perform an upwards BFS from vA (ie. towards the parents). The BFS frontier
begins as vA. On each iteration, we take vertex uA from the frontier and complete the
following steps:

1. Let uB = f(uA). It holds that uA ≈depth(D) uB.
2. For each incoming edge eA = (pA → uA), we find edge eB = (pB → uB) such that

pA ≈depth(D) pB. Such an edge is guaranteed to exist by the definition of ≈depth(D).
3. Add eA to EA, eB to EB, pA to VA, pB to VB, and set f(pA) = pB.
4. pA and pB are different vertices, add pA to the frontier.

We repeat this process until the frontier is empty. This ends Phase 1. At the end of Phase
1, the roots nodes of VA and VB will be identical. These roots represent the point in
the computation where it splits into identical sub-DAGs. Additionally, the the bijection
f : VA ↔ VB maintains the property that v ≈depth(D) f(v).

Phase 2: We begin with the dA,dB, f constructed from the previous phase. Throughout
this phase, we maintain the invariant that for each v ∈ VA, f(v) ≈n v for some n ≥ 0.
We perform a downward BFS, that is, towards the children. The BFS frontier begins as
the roots of VA. On each iteration, we take vertex uA from the frontier and complete the
following steps:
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1. Let uB = f(uA). It holds that uA ≈n uB for some positive n.
2. For each outgoing edge eA = (uA → cA), we find edge eB = (uB → cB) such that

pA ≈n−1 pB. Such an edge is guaranteed to exist by the definition of ≈n. Note that
at this step, ≈n−1 is always non-negative, since the roots start with n = depth(D).

3. Add eA to EA, eB to EB, cA to VA, cB to VB, and set f(cA) = cB.
4. cA and cB are different vertices, add cA to the frontier.

We repeat this process until the frontier is empty. This ends Phase 2. At the end of this
phhase, the the bijection f : VA ↔ VB maintains the property that for each vA ∈ V,
vA ≈n f(vA) for some non-negative n. Return dA and dB.

Finally, we will show that findSemiEqSubDags()’s algorithm is correct. For the theorems below,
let D = (V,E) denote a computation DAG and vA, vB denote two unique vertices in V such
that vA ≈depth(D) vB. Compute dA,dB as follows:

(dA,dB) = findSemiEqSubDags(D, vA, vB)

Theorem 5. dA and dB are sub-DAGs of D.

Proof. DA and DB are sub-DAGs of D, as the BFS process ensures that both DA and DB are
fully connected and only involve vertices from their respective vertex sets VA and VB.

Theorem 6. dA and dB are semi-equivalent, and vA and vB are corresponding vertices on dA

and dB, respectively.

Proof. Recall the condition for dA and dB semi-equivalent (from Definition 11): there must
exist a bijection f ′ : vA ↔ vb such that for each vA ∈ VA, all the conditions below are true:

1. f ′(vA).op = vA.op.
2. ∀pA ∈ vA.parents,∃pB ∈ f ′(vA).parents such that f ′(pA) = pB.
3. ∀cA ∈ vA.children,∃cB ∈ f ′(cA).children such that f ′(cA) = cB.

The bijection f we constructed in findSemiEqSubDags()’s algorithm satisfies these condi-
tions. The first condition is satisfied from the fact that for all vA ∈ VA, vA ≈n f(vA) for some
non-negative n. The latter two conditions are satisfied because for every edge eA = (pA → cA)
added to EA during the BFS searches there is an edge eB = (pB → cB) added to EB such that
f(pA) = pB and f(cA) = cB.

Additionally, the steps in the BFS searches ensure that edges are branched out vA and vB in
an equivalent manner when constructing DA and DB. This ensures vA and vB are corresponding
vertices on the two sub-DAGs.

Finally, recall that the function call partitionByDepthSim(D = (V,E)) returns a partitioning
P of V based on the equivalence relation ≈depth(D).

If two unique vertices vA and vB are in the same partition for P , then vA ≈depth(D) vB. By
computing (dA,dB) = findSemiEqSubDags(D, vA, vB), we can apply Theorems 5 and 6 ensure
that vA and vB are corresponding vertices on semi-equivalent sub-DAGs as desired.
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Chapter 6

Evaluation

This chapter begins by describing the experimental setup. In 6.2, we present the performance
of the DAG reduction methods presented in Chapter 5. In the remaining sections, we compare
DaCapo [7], the current state-of-the-art automatic bootstrapping placement scheme, with Saturn
for various performance metrics. We compare the bootstrapping selection times, with various
degrees of QBP Truncation (5.1.4) for Saturn, in 6.4. Furthermore, we compare estimated end-
to-end program runtime in 6.5 and the bootstrapping counts in 6.6.

6.1 Experimental Setup

For our evaluation, we use the deep learning benchmark suite from DaCapo [7]. The suite con-
sists of ResNet-20 [16], AlexNet [22], VGG16 [31], SqueezeNet [18], and MobileNet [17] with
two different activation functions (ReLU, SiLU). To obtain the computation DAGs of each bench-
mark, we use the Hecate [24] compiler’s trace functionality on the front-end implementations
from DaCapo’s GitHub repository [8]. The evaluations run on Intel(R) Xeon(R) Gold 6226R
CPU @ 2.90Ghz.

6.2 DAG Reduction Performance

Table 6.1 demonstrates the effectiveness of Saturn’s two DAG reduction methods. For each col-
umn, Original DAG Size is the number of vertices in the original computation DAG D represent-
ing each benchmark. Reduced DAG Size is the number vertices in the benchmark’s computation
DAG D′′ after DAG reduction via the following steps:

• All instances of ReLU/SiLU are simplified via QBP Reduction (5.1) to obtain D′.
• Vertices of D′ are partitioned via P = partitionByDepthSim(D′).
• For each partition in P , the included vertices are compressed as described in Section 5.2.1

to obtain DAG D′′

DAG Reduction Time is the time it takes to perform the steps above for a given benchmark.
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Model ResNet-20
[ReLU]

AlexNet
[ReLU]

VGG16
[ReLU]

SqueezeNet
[ReLU]

MobileNet
[ReLU]

Original DAG Size 9411 50136 44518 21101 45267
Activ. Function Calls 19 8 15 10 27
Reduced DAG Size 127 60 113 125 171
DAG Reduction Time (s) 1.69 41.27 60.11 14.80 117.65

Table 6.1: The performance of the DAG reduction methods on deep learning DAGs

The results demonstrate that Saturn’s DAG reduction methods are able to decrease DAG size
by 2-3 orders of magnitude for the given benchmarks. Additionally, the reductions are efficient,
taking 2 minutes at worst. Note that the current implementation is done in Python, so faster
reduction times could be achieved by rewriting the implementation with a fast programming
language.

6.3 QBP Truncation for ReLU and SiLU
Table 6.2 shows the sizes of ReLU and SiLU’s quadratic behavior profiles after QBP truncation
with various ∆s. Note that ∆ = 1 truncation does not reduce SiLU’s QBP by much. The effects
of this can be observed in Figure x of the next section.

Activation ReLU SiLU
Size of Original QBP 289 289
Size After ∆ = 1 Truncation 109 283
Size After ∆ = 10 Truncation 100 111
Size After ∆ = 100 Truncation 52 79

Table 6.2: QBP size reduction from QBP truncation with various values of ∆ for ReLU and
SiLU
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6.4 Bootstrap Selection Time

Table 6.3 compares the bootstrap selection time of DaCapo versus Saturn with ∆ = 1 QBP
truncation. Recall that ∆ = 1 QBP truncation maintains optimality. Saturn’s bootstrap selection
time is the sum of the time it takes to find the Auto-Compression opportunties and the time it
take to solve the L-MaxSAT problem corresponding to the benchmark DAG after the reduction
techniques are applied.

Model ResNet-20 AlexNet VGG16 SqueezeNet MobileNet

ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU

DaCapo 15.8 14.4 1042.3 336.5 230.1 188.1 89.1 44.1 222.8 218.0

AutoComp Time 1.7 1.7 41.3 41.3 60.1 60.1 14.8 14.8 117.7 117.7
MaxSAT Solve Time 6.0 - 1.2 28.5 6.1 - 4.8 34.7 8.0 -

Saturn (∆ = 1) 7.7 - 42.5 69.8 66.2 - 19.6 49.5 125.7 -

Table 6.3: The bootstrap selection times (s) of DaCapo and Saturn (∆ = 1) for the benchmarks.
Note that a “-” represents a timeout (≥ 600s).

Note that for the SiLU benchmarks, Saturn’s bootstrap selection time is dominated by the
MaxSAT solve times. The poor truncatability of SiLU’s QBP for ∆ = 1 results in the corre-
sponding L-MaxSAT problems being difficult to solve. These solve times can be greatly reduced
via QBP truncation with larger ∆.

In Table 6.4, we again compare DaCapo’s and Saturn’s bootstrap selection time. Here the
Saturn method is configured to use QBP truncation with ∆ = 10. With a higher ∆, Saturn is
able to achieve faster bootstrap selection times. Note that with this configuration, Saturn is not
guaranteed to find the most optimal valid bootstrapping (B, levels). The evaluations show that
with a ∆ = 10 QBP truncation, Saturn consistently has faster bootstrap selection times than
DaCapo. On average, Saturn provides a 5.25× speedup.

Model ResNet-20 AlexNet VGG16 SqueezeNet MobileNet

ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU

DaCapo 15.8 14.4 1042.3 336.5 230.1 188.1 89.1 44.1 222.8 218.0

AutoComp Time 1.7 1.7 41.3 41.3 60.1 60.1 14.8 14.8 117.7 117.7
MaxSAT Solve Time 4.8 6.8 1.4 1.0 4.5 3.2 7.0 5.7 26.1 10.1

Saturn (∆ = 10) 6.5 8.5 42.7 42.3 64.6 63.3 21.8 20.5 143.8 127.8

Table 6.4: The bootstrap selection times (s) of DaCapo and Saturn (∆ = 10) for the benchmarks.
Note that a “-” represents a timeout (≥ 300s).
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6.5 Estimated Performance for CIFAR-10 Inference
For each benchmark, Figure 6.5 compares the estimated inference time for a CIFAR-10 image,
when bootstrapped by each method (DaCapo, Saturn). The inference time for each benchmark
is estimated using the simplified cost model shown in Table 6.5. Note that this cost model may
be inaccurate, as it does not factor in the costs of scale management operations (eg. rescale,
downscale), which must be inserted between arithmetic operations in FHE programs.

Operation Level

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CMult 0.6 0.7 0.8 1.0 1.2 1.3 1.5 1.6 1.7 2.0 2.3 2.4 2.5 2.7 2.9 3.0 3.1

Boot 354.7

Table 6.5: The simplified cost model used to estimate the inference times. The numbers are
extrapolated from the cost model in [7].

We utilize this limited cost model for our evaluations due to the current lack of support for
optimized scale management operations in the Saturn method. To obtain the data points for
DaCapo, we use our own custom implementation, which has been altered from the original to
place bootstraps under the assumption of naive scale management1.

Implementing support for optimized scale management is the next step of this research
project. Once this functionality is integrated, we will not only be able to employ a more ac-
curate cost model, but also execute inferences with Saturn-compiled benchmarks and compare
the end-to-end runtimes with the open source implementation [8] of DaCapo.

Model ResNet-20 AlexNet VGG16 SqueezeNet MobileNet

ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU

DaCapo* 13881.4 8989.3 13160.5 11868.7 16700.8 14606.3 11235.8 10587.5 23210.3 15970.3
Saturn (∆ = 10) 13881.4 8954.8 13160.5 11869.9 16700.8 14040.5 11002.6 10345.5 23210.3 15940.6

Table 6.6: The estimated inference times for the benchmarks bootstrapped by DaCapo and Saturn

1With naive scale management, a rescale is placed after each multiply. Under this assumption, each multiply
operation consumes 1 level.
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6.6 Bootstrapping Counts
Table 6.7 compares the number of bootstraps placed by DaCapo versus Saturn with ∆ = 10
QBP truncation. The data points for DaCapo are obtained using the open source implementation
[8]. Overall, the two methods place similar number of bootstraps. These results should be
interpreted with caution because as of now, DaCapo and Saturn assume different methods of
scale management (rescale placements).

Model ResNet-20 AlexNet VGG16 SqueezeNet MobileNet

ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU ReLU SiLU

DaCapo 37 19 20 12 29 20 20 19 60 27
Saturn (∆ = 10) 37 20 14 10 29 21 20 19 53 28

Table 6.7: The number of bootstraps placed by DaCapo and Saturn for the benchmarks
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Chapter 7

Conclusion

In this thesis, we presented Saturn, a novel framework for optimizing bootstrapping placement
in Fully Homomorphic Encryption (FHE) applications. Saturn leverages the Maximum Satisfia-
bility (MaxSAT) problem to determine the most efficient points for performing the bootstrapping
operation, thereby minimizing the total runtime of FHE programs.

Our approach begins by representing the FHE computation as a directed acyclic graph (1)
and then applies two reduction methods — Quadratic Behavior Profile Reduction (5.1) and
Auto-Compression (5.2) — to simplify the DAG. This simplification significantly reduces the
complexity of the MaxSAT problem, making it feasible to solve within reasonable timeframes
even for large-scale computations, such as neural network inferences.

We validated Saturn using the RNS-CKKS [6] FHE scheme, chosen for its support for fixed-
point arithmetic and SIMD operations, which are critical for privacy-preserving machine learning
applications. Through extensive evaluations on various deep learning models such as ResNet20
[16], AlexNet [22], VGG16 [31], SqueezeNet [18], and MobileNet [17], Saturn demonstrated
improvements in both bootstrapping placement selection time and estimated overall program
runtime compared to existing methods.

The key contributions of this work include:
1. The development of a Partial Weighted Maximum Satisfiability model (4.3) tailored to the

optimal bootstrapping placement problem (4.2).

2. Introduction of two DAG reduction techniques (5.1), 5.2) that preserve the optimality of
the solution while significantly reducing problem complexity.

3. Demonstration of the practicality and effectiveness of Saturn in optimizing bootstrapping
placements for real-world FHE applications (6).

Despite the success of Saturn, there are several avenues for future research. One immediate
next step is to lift the naive rescaling assumption (2.1.3) to handle more complex scaling scenar-
ios, and allow Saturn to directly compare end-to-end runtimes versus DaCapo [8]. Additionally,
exploring the integration of Saturn with other FHE schemes beyond RNS-CKKS could further
validate its versatility and robustness. Finally, optimizing Saturn’s performance for even larger
and more complex FHE computations, such as large language models, remains a crucial area for
further research.
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