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Abstract
For any new machine learning technique, a large body of research often fol-

lows up in order to tune the technique to work suitably for each of the numerous
application areas, requiring significant scientific and engineering efforts. Moreover,
this typically involves unprincipled approaches for hyperparameter selection without
any guarantee on global optimality. Inspired from the recently proposed paradigm
of ‘data-driven algorithm design’, this thesis develops first principled hyperparame-
ter tuning techniques for several core machine learning algorithms, including semi-
supervised learning, regularized linear regression, robust nearest neighbors and de-
cision trees, with formal near-optimality guarantees in statistical and online learning
settings.

Given multiple problem instances of a learning problem from some problem
domain, we develop approaches to learn provably well-tuned parameters over the
domain and answer questions related to the number of problem samples needed to
learn a well-tuned learning algorithm. In addition, we also develop online learning
techniques when the problem instances arrive in a potentially adversarial sequence.
Our approaches apply to the following diverse scenarios:

• selecting graph hyperparameters in semi-supervised learning,
• setting regularization coefficients in linear regression,
• controlling the robustness vs. abstention trade-off using parameterized nearest-

neighbor algorithms,
• splitting and pruning nodes for accurate and interpretable decision trees,
• meta-learning common parameters for similar tasks, and
• learning adaptively in changing environments.

In addition to providing techniques for tuning fundamental learning algorithms, we
expand the applicability of data driven algorithm design to algorithm families with
multiple parameters by developing better online and more computationally efficient
techniques.
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Chapter 1

Introduction

Machine learning has in the recent decades experienced a virtuous cycle of growth and adoption.
But several major challenges to this development are imposed by the seemingly unprecedented
march towards automation. Are we truly automating overall, or just generating alternate labori-
ous tasks to help the machine work better? Is the rapid and often expensive deployment justified
without addressing critical concerns like safety, or ensuring various important properties are
met? Are various application domains uniformly able to reap the benefits of the advancement?
This thesis rephrases, and attempts to initiate a new and powerful line-of-attack to address, the
following tantalizing question:

Can machine learning fix its own challenge?

Assuming the widespread adoption of machine learning is here to stay, we can expect to gen-
erate and solve repeated instances of the same underlying problems. Can we leverage this avail-
ability of problems from the same domain to automatically adapt or tune our learning techniques
to any given domain, without an excessive need of domain or application specific expertise and
labour? This thesis presents principled approaches to achieve this by essentially “learning” the
learning techniques, by treating the problem instances as “data” for the tuning problem. At the
same time, we also ensure our approaches are sufficiently powerful to satisfy the requirements
and desiderata which we have come to expect of modern machine learning systems.

More to the point, behind the scenes, typically an intensive amount of largely unprinci-
pled effort is poured into tweaking the learning algorithms—typically by selecting real-valued
“hyperparameters”—to make them work well for any given problem domain. Moreover, the in-
creased scrutiny and lengthened list of crucial properties that come with the ubiquitous usage
(e.g. robust performance under attacked inputs, ability to learn faster having seen similar tasks
before, and adaptivity to unseen tasks), further magnifies this challenge. The research in this
thesis takes inspiration from and builds on ‘data-driven algorithm design’—a learning paradigm
formally introduced by Gupta and Roughgarden [84] to the theory of computing community and
further extended by Balcan et al. [7, 10, 13, 15, 16]—and makes efforts towards addressing both
these concerns. Chapters 2, 3, 4 and 6 in the thesis are concerned with data-driven hyperparam-
eter tuning in classic learning algorithms (semi-supervised learning, linear regression, decision
trees and nearest-neighbor classification), while Chapters 7, 8 and 9 approach the direction of
providing desirable guarantees (robustness, meta-learning and adaptivity).
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The next section discusses how the thesis is organized. We also provide useful terminology
and settings relevant to several chapters of the thesis, to act as a convenient reference. We will
conclude this chapter with a brief discussion on related work.

1.1 Overview
As noted above, recent widespread adopton of machine learning has been accompanied by unique
challenges posed by learning from data; from reducing the need for human curation of data, and
finding the delicate balance between fitting observed data and generalizing to unseen data, to the
challenge of learning across multiple similar tasks, and in the presence of adversaries or changing
environments.

We summarize this thesis in two main themes: providing data-driven parameter selection
techniques with formal guarantees for core learning problems (Chapters 2, 3, 4 and 6), and
developing general tools applicable to a large class of data-driven algorithm design problems
(Chapters 7, 8 and 9).

Chapter 2 considers the problem of learning with limited labeled data, which is often tedious
and/or expensive to obtain. We focus on graph-based techniques, where the examples are con-
nected in a graph under the implicit assumption that similar nodes likely have similar labels. We
address the central challenge of how to create the graph from data, which impacts the practical
usefulness of these methods significantly, but for decades has been relegated to domain-specific
art and heuristics. In this chapter, we present a novel data-driven approach for learning the graph
and provide strong formal guarantees in both the distributional and online learning formaliza-
tions. We expect some of the tools and techniques we develop along the way to be of general
interest beyond semi-supervised learning.

Chapter 3 considers the problem of tuning the regularization parameters in popular tech-
niques for linear regression (including the ElasticNet) across multiple problem instances, a set-
ting that encompasses both cross-validation and multi-task hyperparameter optimization. We
obtain a novel structural result for the ElasticNet which is useful to bound the structural com-
plexity of the regularized loss functions and show generalization guarantees for tuning the Elas-
ticNet regression coefficients in the statistical setting, and low regret guarantees in the online
setting. We further extend our results to tuning classification algorithms obtained by threshold-
ing regression fits regularized by Ridge, LASSO, or ElasticNet. Our results are the first general
learning-theoretic guarantees for this important class of problems that avoid strong assumptions
on the data distribution.

Chapter 4 analyzes novel and known parameterized algorithm families for learning decision
trees. We consider algorithms for both classification and regression, and study approaches for
top-down construction of the decision tree based on a learned splitting criterion, and pruning the
built decision trees. We also study tuning of parameters in Bayesian decision tree approaches.
We study the effectiveness of data-driven algorithm design for optimizing both accuracy and
interpretability of the decision trees.

Chapter 5 studies the design of subsidy by a central agent in a component maintenance game
relevant for civil engineering. We show that the Price of Anarchy can be very large, especially
when there are a large number of components in the system. In contrast, we show that via subsidy
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a central agent can improve the system performance. While good values of subsidy are easy to
compute in simpler two-agent games, it is computationally hard to do so for general n-agent
games under standard complexity theoretic assumptions. We show this is the case for designing
subsidy allocation for a variety of relevant goals for the central agent. We further show that we
can learn provably good values of subsidy in repeated games coming from the same domain.

Chapter 6 introduces the random feature subspace threat model, an abstraction designed to
focus on the impact of non-Lipschitzness (of the model’s representation mapping) on vulnerabil-
ity to adversaries. Under this threat model all classifiers that partition the feature space into two
or more classes—without an ability to abstain—are provably vulnerable to adversarial attacks
for any distribution. We show that in contrast, a classifier with the ability to abstain (concretely,
a thresholded nearest-neighbor algorithm) can overcome this vulnerability. We further present a
novel data-driven method for learning data-specific hyperparameters in our defense algorithms to
simultaneously obtain high robust accuracy and low abstention rates. We support our results with
experiments on representations learned by supervised and self-supervised contrastive learning.

Chapter 7 shows how the data-driven algorithm design techniques can leverage similarity of
problem instances coming from different but related domains. We present data-dependent upper
bounds on the regret for a sequence of problems for a single task or domain, and optimize these
bounds via meta-learning across different tasks. We instantiate our results for learning good
parameters for several classic problems, and a novel robustness setting of particular relevance to
meta-learning from diverse sources.

Chapter 8 extends the suite of data-driven algorithm design tools and techniques along an-
other interesting axis, namely adaptivity to changing environment. Our approach uses a careful
balance of exploration and exploitation to ensure the online learning techniques continue to work
under stronger baselines, with near-optimal regret guarantees.

Chapter 9 proposes a novel computational geometry based approach for implementing the
ERM algorithm for data-driven algorithm design for piecewise-structured loss functions with
linear piece boundaries. We show several applications of our methodology, including pricing
problems, linkage-based clustering and dynamic progamming based sequence alignment.

1.2 Preliminaries
Data-driven hyperparameter tuning. We are given a class of algorithms A parameterized by
hyperparameter ρ over a set of problem instancesX , and a given utility (or loss) function u : A×
X → R which measures the performance of any algorithm in A on any fixed problem instance.
Suppose we need to solve repeated instances of the problem, either drawn from some problem
distribution or arriving online. Can we learn a provably good value of the hyperparameter?
Distributional setting. In this setting, we assume our repeated problem instances are drawn from
a fixed problem distribution D. An important question we will be interested in is the number of
‘training’ problem instances that are sufficient (a.k.a. sample complexity) to learn a value of
the hyperparameter ρ that is guaranteed to perform well on a random (unseen) ‘test’ problem
instance drawn from the same distribution D.
We state the definition of pseudo-dimension which generalizes the notion of VC dimension to
real-valued functions, and is a well-known measure for hypothesis-space complexity in statistical
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learning theory.

Definition 1. Pseudo-dimension [137]. LetH be a set of real valued functions from input space
X . We say that C = (x1, . . . , xm) ∈ Xm is pseudo-shattered by H if there exists a vector
r = (r1, . . . , rm) ∈ Rm (called “witness”) such that for all b = (b1, . . . , bm) ∈ {±1}m there
exists hb ∈ H such that sign(hb(xi) − ri) = bi. Pseudo-dimension of H (denoted PDIM(H)) is
the cardinality of the largest set pseudo-shattered byH.

Consider the set of functions HA = {u(A, ·) | A ∈ A}. Bounding the pseudo-dimension of HA
gives a bound on the sample complexity for uniform convergence guarantees, i.e. a bound on the
sample size n for which the algorithm ÂS ∈ A which minimizes the average loss on any sample
S of size n drawn i.i.d. from any problem distribution D is guaranteed to be near-optimal with
high probability [68].

Online setting. Online learning consists of a repeated game with T iterations. At iteration t, the
player selects a hyperparameter value by choosing a point ρt from a compact decision set C ⊂ Rd;
after the choice is committed, a bounded utility (or loss) function ut : C → [0, H] is revealed.
We consider full information settings where ut(·) is revealed over the entire domain C, as well as
partial feedback settings where the function is revealed over some subset Ct ⊆ C containing ρt.
The goal of the player is to minimize the regret RT := maxρ∈C

∑T
t=1 ut(ρ)−

∑T
t=1 ut(ρt), defined

as the difference between the cumulative payoff using an optimal offline choice in hindsight and
the online cumulative payoff accrued by the player.

We will also need the definition of dispersion which, informally speaking, captures how
amenable a non-Lipschitz function is to online learning [15, 20].

Definition 2. Dispersion [15]. The sequence of random loss functions l1, . . . , lT is β-dispersed
for the Lipschitz constant L if, for all T and for all ϵ ≥ T−β , we have that, in expectation, at
most Õ(ϵT ) functions (the soft-O notation suppresses dependence on quantities beside ϵ, T and
β, as well as logarithmic terms) are not L-Lipschitz for any pair of points at distance ϵ in the
domain C. That is, for all T and for all ϵ ≥ T−β ,

E


 max

ρ,ρ′∈C
||ρ−ρ′||2≤ϵ

∣∣{t ∈ [T ] | lt(ρ)− lt(ρ
′) > L||ρ− ρ′||2}

∣∣

 ≤ Õ(ϵT ).

Intuitively, a sequence of piecewise L-Lipschitz functions is well-dispersed if not too many func-
tions are non-Lipschitz in the same region in C. An assumption like this is necessary, since, even
for piecewise constant functions, linear regret is unavoidable in the worst case. We will also need
the following definition which captures the notion of a “smooth” distribution in several chapters.
Roughly speaking the definition below captures smoothness of a distribution.

Definition 3. A continuous probability distribution is said to be κ-bounded if the probability
density function p(x) satisfies p(x) ≤ κ for any x in the sample space.

For example, the normal distribution N (µ, σ2) with mean µ and standard deviation σ is 1
σ
√
2π

-
bounded.
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1.3 Related work
Data-driven algorithm design refers to using machine learning for algorithm design, includ-
ing choosing a good algorithm from a parameterized family of algorithms for given data. It
is known as “hyperparameter tuning” to machine learning practitioners and typically involves a
“grid search”, “random search” [39] or gradient-based search, with no guarantees of convergence
to a global optimum.

Data-driven algorithm design was formally introduced to the theory of computing commu-
nity by Gupta and Roughgarden [84] as a learning paradigm, and was further extended by Balcan
et al. [7, 10, 13, 15, 16]. The key idea is to model the problem of identifying a good algorithm
from data as a statistical learning problem. The technique has found useful application in pro-
viding provably better (typically in terms of accuracy or speed) algorithms for several problems
of fundamental significance in machine learning including clustering [16, 18, 24], simulated an-
nealing [41], mixed integer programming [14, 29], low rank approximation [35] and many more
[17, 25, 106, 171]. This work adapts and extends the techniques to algorithm design for core
machine learning problems including semi-supervised learning [10] and regularized regression
[28]. Furthermore, designing ‘better’ algorithms in the context modern machine learning often
involves several desiderata where data-driven design can play an important role (for example,
differential privacy [15, 89]). This work significantly increases the scope of data-driven design
for meeting these presently prominent requirements along multiple axes—including robustness
[30], meta-learning [24] and adaptive online learning [20]. There has also fundamental work on
developing general tools/approaches for data-driven algorithm design that apply to a wide class
of problems [15, 19, 23, 26, 84, 104, 167]. We extend this suite of tools in fundamental ways and
make it significantly more powerful, in particular making them more effective in multi-parameter
settings. See [7] for further context on this rapidly growing body of research.

1.4 Summary of contributions
In this thesis, we advance the theory and applicability of data-driven algorithm design along
multiple axes.

Better online learning, covering multiple-parameter settings and stronger dynamic base-
lines. For online data-driven algorithm design, recent seminal work proposed dispersion as
a sufficient condition for the existence of an online learner that achieves low expected regret
guarantees. Our work significantly extends the class of algorithm design problems for which
dispersion may be verified. We develop tools for establishing dispersion for single parameter
problems where the dual loss function (on a fixed problem instance, as the parameter is varied) is
piecewise Lipschitz, where the piece boundaries are given by roots of exponential polynomials
with random coefficients [10]. We also provide a first general recipe for verifying dispersion
for parameterized algorithm families with multiple parameters where the piece boundaries of the
dual loss function are algebraic varieties [10], by significantly extending previous research [19]
which only handled the case of one or two parameters. We further develop online learning algo-
rithms that achieve no regret under stronger baselines of shifting experts, which capture changing
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environments [20].

Design and analysis of new, useful algorithm families for ML. In addition to developing new
tools and techniques for data-driven algorithm design, it is equally important to identify useful
algorithm families for fundamental ML problems. We design new parameterized algorithmic
families for graph-based semi-supervised learning [10], robust near-neighbor algorithms [30] and
decision tree learning algorithms [11], and analyze their inherent structure to establish bounds on
learning theoretic complexity. Beyond machine learning, we design a subsidy allocation family
and use it to achieve various game-theoretic objectives in a component maintenance game with
applications to civil engineering [32].

Adversarial robustness, applying and extending the power of data-driven algorithm design.
We extend the power of data-driven algorithm design to optimize metrics beyond accuracy (e.g.
clustering), profit (mechanism design) and running time (branch and bound search). We propose
a class of parameterized algorithms that make non-Lipschitz networks robust to test-time adver-
sarial attacks, by learning to abstain on potentially perturbed data. We show how data-driven
algorithm design can be used to tune the parameters of the algorithm to simultaneously achieve
low robust error and small abstention rate on natural data [30]. We also obtain general results
on robust online data-driven algorithm design in the presence of adversarial perturbations to the
observed loss function [24]. In contrast to previous works which consider bounded-norm attacks,
we allow the adversary to make arbitrarily large perturbations in the feature space, provided the
attack follows a smooth distribution (analogous to the “smoothed analysis” of [155]).

Better learning guarantees using multiple similar tasks. Another way in which we make
data-driven algorithm design more practical is by considering a meta-learning setting which is
intermediate to the (optimistic) distributional setting and the (pessimistic) online learning settings
considered before [24]. We define a novel notion of task similarity which applies to the case of
piecewise-Lipschitz functions that appear frequently in data-driven algorithm design, and extend
the theory of online meta-learning beyond convex losses. Our learning guarantees improve with
the number of tasks, and provide an improvement over the previous online learning guarantees
provided the tasks are similar.

Tackling the complex hypothesis space of machine learning algorithms. While data-driven
algorithm design was originally introduced to improve algorithm design, my work demonstrates
the power of the paradigm for tuning core machine learning algorithms. In graph-based semi-
supervised learning, we develop the first principled approaches for designing the graph, address-
ing a major unresolved problem in the field for over two decades [10, 152]. Key challenges in-
volve studying the learning theoretic structure of complex concept classes induced by the family
of graph algorithms, and designing efficient algorithms for online learning. We also study tuning
of L1 and L2 regularization coefficients in linear regression, in both online and statistical learn-
ing settings [28, 31]. For both the above cases, we provide asymptotically tight bounds on the
pseudo-dimension of algorithmic classes, essentially characterizing their learning theoretic com-
plexity. Finally, we show how to tune several different hyperparameters when learning decision
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trees using popular methods like top-down learning, Bayesian search and pruning, guaranteeing
high accuracy as well as interpretability [11].

Efficient implementation. Computational efficiency is well-known as a major challenge in
making data-driven algorithm design approaches practical [41, 85]. We use tools from com-
putational geometry to develop output-sensitive algorithms for implementing the ERM in the
distributional setting, when the loss function has linear piece boundaries [33]. Our work gives
a first potentially efficient approach for the case of data-driven algorithm design with multiple
parameters. We instantiate the result for pricing problems, linkage-based clustering and dynamic
programming algorithms for sequence alignment. A key technical contribution is the develop-
ment of an “execution graph” approach, that can be used to efficiently compute the refinement of
the parameter space corresponding to the dual loss pieces, with each step of the algorithm (merge
in clustering or a single dynamic programming update). We also develop efficient algorithms for
online graph selection for semi-supervised learning [7, 152].

The work in this has thesis appeared in AISTATS 2020, NeurIPS 2021, NeurIPS 2022,
NeurIPS 2023, JMLR 2023, UAI 2023, UAI 2024, EMI/PMC 2024 and the LEANOPT work-
shop at AAAI 2024. Part of the work in Chapter 2 received an oral presentation at NeurIPS 2021,
the work in Chapter 4 received an Outstanding Student Paper Award and an oral presentation at
UAI 2024. Part of the work in Chapter 6 was awarded an Oral presentation at the ICLR 2022
SRML workshop, and a poster based on Chapter 8 was awarded the Best Poster at the YinzOR
2019 conference.
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Chapter 2

Semi-supervised learning

In recent years machine learning techniques have found gainful application in diverse settings
including textual, visual, or acoustic data. A major bottleneck of the currently used approaches is
the heavy dependence on expensive labeled data. At the same time advances in cheap computing
and storage have made it relatively easier to store and process large amounts of unlabeled data.
Therefore, an important focus of the present research community is to develop general (domain-
independent) methods to learn effectively from the unlabeled data, along with a small amount of
labels. Achieving this goal would significantly elevate the state-of-the-art machine intelligence,
which currently lags behind the human capability of learning from a few labeled examples. Our
work is a step in this direction, and provides algorithms and guarantees that enable fundamental
techniques for learning from limited labeled data to provably adapt to problem domains.

Graph-based approaches have been popular for learning from unlabeled data for the past two
decades [173]. Labeled and unlabeled examples form the graph nodes and (possibly weighted)
edges denote the feature similarity between examples. The implicit modeling assumption needed
to make semi-supervised learning possible is that the likelihood of having a particular label in-
creases with closeness to nodes of that label [9]. The graph therefore captures how each example
is related to other examples, and by optimizing a suitably regularized objective over it one ob-
tains an efficient discriminative, nonparametric method for learning the labels. There are several
well-studied ways to define and regularize an objective on the graph [54, 173], and all yield com-
parable results which strongly depend on the graph used. A general formulation is described as
follows.

Problem formulation: Given sets L and U of labeled and unlabeled examples respectively,
and a similarity metric d over the data, the goal is to use d to extrapolate labels in L to U . A
graph G is constructed with L+U as the nodes and weighted edges W with w(u, v) = g(d(u, v))
for some g : R≥0 → R≥0. We seek labels f(·) for nodes u of G which minimize a regularized
loss function l(f) = α

∑
v∈L l̂(f(v), yv) + βH(f,W ) + γ ∥f∥2, under some constraints on f .

The objective H captures the smoothness (regularization) induced by the graph (see Table 2.1
for examples) and l̂(f(v), yv) is the misclassification loss (computed here on labeled examples).

The graph G takes a central position in this formulation. However, the majority of the re-
search effort on this problem has focused on how to design and optimize the regularized loss
function l(f), the effectiveness of which crucially depends on G. Indeed the graph G is expected
to reflect a deep understanding of the problem structure and how the unlabeled data is expected to

9



Algorithm (α, β, γ) H(f,W ), ∥·∥ Constraints on f

A. Mincut [40] (∞, 1, 0) fT (D −W )f f ∈ {0, 1}n

B. Harmonic functions [174] (∞, 1, 0) fT (D −W )f f ∈ [0, 1]n

C. Normalized cut [153] (∞, 1, 0) fT (D −W )f fT1 = 0, fTf = n2,
f ∈ [0, 1]n

D. Label propagation [172] (1, µ, 1) fTLf , ∥·∥2 f ∈ [0, 1]n

Optimization using a quadratic objective involved in some prominent algorithms for
graph-based semi-supervised learning. Here

Dij := I[i = j]
∑

k Wik,L := D−1/2(D −W )D−1/2 and the objective is
l(f) = α

∑
u∈L(f(u)− yu)

2 + βH(f,W ) + γ ∥f∥2.

Table 2.1:

help. Despite the central role of G in the semi-supervised learning process, only some heuristics
are known for setting the graph hyperparameters [175]. There is no known principled study on
how to do this and prior work largely treats this as a domain-specific art. Is it possible to acquire
the required domain expertise, without involving human experts?

In this work we provide an affirmative answer by introducing data-driven algorithms for
building the graphs, that is techniques which learn a provably good problem-specific graph from
instances of a learning problem. More precisely, we are required to solve not only one instance
of the problem, but multiple instances of the underlying algorithmic problem that come from the
same domain [7, 13, 84]. This approach allows us to model the problem of identifying a good
algorithm from data as an online or statistical learning problem. We formulate the problem of
creating the learning graph as a data-specific decision problem, where we select the graph from
well-known infinite families of candidates which capture a range of ways to encode example
similarity. We show learning a near-optimal graph over these families is possible in both online
and distributional settings. In the process we generalize and extend results developed in the
context of other data-driven learning problems, and obtain practical methods to build the graphs
with strong guarantees. In particular, we show that the approach may be used for learning several
parameters at once, and it is useful for learning a broader class of parameters than previously
known.

2.1 Notation and definitions

We are given some labeled points L and unlabeled points U . One constructs a graph G by
placing (possibly weighted) edges w(u, v) between pairs of data points u, v which are ‘similar’,
and labels for the unlabeled examples are obtained by optimizing some graph-based score. We
have an oracle O which on querying provides us the labeled and unlabeled examples, and we
need to pick G from some family G of graphs. We commit to using some algorithm A(G,L, U)
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(abbreviated as AG,L,U ) which provides labels for examples in U , and we should pick a G such
that A(G,L, U) results in small error in its predictions on U . To summarize more formally,
Setup: Given data space X , label space Y and an oracle O which yields a number of labeled
examples L ⊂ X × Y and some unlabeled examples U ⊂ X such that |L| + |U | = n. We are
further given a parameterized family of graph construction procedures over parameter space P ,
G : P → (X × X → R≥0), graph labeling algorithm A : (X × X → R≥0) × 2X×(Y∪{⊥}) →
(X → Y), a loss function l : Y ×Y → [0, 1] and a target labeling τ : U → Y . We need to select
ρ ∈ P such that corresponding graph G(ρ) minimizes

∑
U l(AG(ρ),L,U(u), τ(u)) w.r.t. ρ.

We will consider online and distributional settings of the above. In the online setting, we will
see a (potentially adversarial) sequence of semi-supervised learning problems (each with its own
set of labeled and unlabeled points) and seek to minimize the regret, i.e. the loss suffered in an
arbitrary online sequence of oracle queries O relative to that endured by the best parameter ρ∗ in
hindsight. In the distributional setting we will assume that problems supplied by O come from
an underlying distribution D and we would like to minimize the expected loss suffered on test
examples drawn from the distribution with high probability. We will present further details and
notations for the respective settings in the subsequent sections.

We will now describe graph families G and algorithms AG,L,U considered in this work. We
assume there is a feature based similarity function d : X ×X → R≥0, a metric which monotoni-
cally captures similarity between the examples. For now assume we have a single d. Definition
4 summarizes commonly used parametric methods to build a graph using the similarity function.

In this work, we will consider three parametric families of graph construction algorithms
defined below. I[·] is the indicator function taking values in {0, 1}.
Definition 4. Graph kernels.

a) Threshold graph, G(r). Parameterized by a threshold r, we set edge weights w(u, v) =
I[d(u, v) ≤ r].

b) Polynomial kernel, G(α̃). w(u, v) = (d̃(u, v) + α̃)d for fixed degree d, parameterized by
α̃.1

c) Gaussian RBF or exponential kernel, G(σ). w(u, v) = e−d(u,v)2/σ2
, parameterized by

bandwidth parameter σ.
Remark 1. Another popular family of graphs used in practice is the k nearest neighbor graphs,
where k ∈ {0, 1, . . . , n − 1}, n is the number of nodes in the graph, is the parameter. Even
though k-NN graphs may result in different graphs the ones considered in the paper, learning
how to build an optimal graph over the algorithm family G(k) is much simpler. Online learning
of the parameter k in this setting can be recognized as an instance of learning with experts advice
for a finite hypothesis class (Section 3.1 of [151]), where an upper bound of O(

√
T log n) is

known for the Weighted Majority algorithm. Online-to-batch conversion provides generalization
guarantees in the distributional setting (Section 5 of [151]).

The threshold graph adds (unweighted) edges to G only when the examples are closer than
some r ∈ R≥0, i.e. a step function of the distance. Polynomial and exponential kernels add
(weighted) edges to the graph, with weights varying polynomially and exponentially (respec-
tively) with the similarity. Note that similarity function d̃(u, v) in the definition for polynomial

1With some notational abuse here, we have d as the integer degree of the polynomial, and d̃(·, ·) as the similarity
function.
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kernels increases monotonically with similarity of examples, as opposed to the other two2. Usu-
ally the threshold graph setting (Definition 4a) will be easier to optimize over, but it is also a small
parameter family often with relatively weaker performance in practice. In the following, we will
refer to this setting by the unweighted graph setting, and the other two settings (Definitions 4b
and 4c) by the weighted graph setting.

Once the graph is constructed using one of the above kernels, we can assign labels using
a suitable algorithm AG,L,U . A popular and effective approach is by optimizing a quadratic
objective 1

2

∑
u,v w(u, v)(f(u)− f(v))2 = fT (D −W )f . Here f may either be discrete f(u) ∈

{0, 1} which corresponds to finding a graph mincut separating the oppositely labeled vertices
[40], or f may be continuous, i.e. f ∈ [0, 1], and we can round f to obtain the labels [174]. These
correspond to algorithms A and B respectively from Table 2.1. It is noted that all algorithms have
comparable performance provided the graph G encodes the problem well [173].

2.2 New general dispersion-based tools
We present new techniques and generalize known tools for analyzing data-driven algorithms. Our
new tools apply to a very broad class of algorithm design problems, for which we derive sufficient
smoothness conditions to infer dispersion of a random sequence of problems, i.e. the algorithmic
performance as a function of the algorithm parameters is dispersed. Balcan et al. [19] provide
a general tool for verifying dispersion if non-Lipschitzness occurs along roots of (algebraic)
polynomials in one and two dimensions. We improve the results along two distinct axes.

Our first result is that dispersion for one-dimensional loss functions follows when the points
of discontinuity occur at the roots of exponential polynomials if the coefficients are random, lie
within a finite range, and are drawn according to a bounded joint distribution.
Theorem 2.2.1. Let ϕ(x) =

∑n
i=1 aie

bix be a random function, such that coefficients ai are real
and of magnitude at most R, and distributed with joint density at most κ. Then for any interval I
of width at most ϵ, P(ϕ has a zero in I)≤ Õ(ϵ) (dependence on bi, n, κ, R has been suppressed).

Proof Sketch. For n = 1 there are no roots, so assume n > 1. Suppose ρ is a root of ϕ(x).
Then a = (a1, . . . , an) is orthogonal to ϱ(ρ) = (eb1ρ, . . . , ebnρ) in Rn. For a fixed ρ, the set Sρ

of coefficients a for which ρ is a root of ϕ(y) lie along an n − 1 dimensional linear subspace
of Rn. Now ϕ has a root in any interval I of length ϵ, exactly when the coefficients lie on Sρ

for some ρ ∈ I . The desired probability is therefore upper bounded by maxρ VOL(∪Sy | y ∈
[ρ−ϵ, ρ+ϵ])/VOL(Sy | y ∈ R) which we will show to be Õ(ϵ). The key idea is that if |ρ−ρ′| < ϵ,
then ϱ(ρ) and ϱ(ρ′) are within a small angle θρ,ρ′ = Õ(ϵ) for small ϵ (the probability bound is
vacuous for large ϵ). But any point in Sρ is at most Õ(θρ,ρ′) from a point in Sρ′ , which implies
the desired bound.

We further go beyond single-parameter discontinuties, which occur as points along a line to
general small dimensional parameter spaces Rp, where discontinuties can occur along algebraic
hypersurfaces. We employ tools from algebraic geometry to establish a bound on shattering of
algebraic hypersurfaces by axis-aligned paths, which implies dispersion using a VC dimension

2Common choices are setting d(u, v) as the Euclidean norm and d̃(u, v) as the dot product, when u, v ∈ Rn.
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based argument. Our result is the first of its kind, a general sufficient condition for dispersion for
any constant number p of parameters, and applies to a broad class of algorithm families. We will
first give a bound on the ability of axis-aligned line segments to shatter a collection of algebraic
hypersurfaces.
Theorem 2.2.2. There is a constant k depending only on d and p such that axis-aligned line
segments in Rp cannot shatter any collection of k algebraic hypersurfaces of degree at most d.

Proof Sketch. Let C denote a collection of k algebraic hypersurfaces of degree at most d in Rp.
We say that a subset of C is hit by a line segment if the subset is exactly the set of curves in C
which intersect the segment, and hit by a line if some segment of the line hits the subset. We
can upper bound the subsets of C by line segments in a fixed axial direction x in two steps.
Along a fixed line, Bezout’s theorem bounds the number of intersections and therefore subsets
hit by different line segments. The lines along x can further be shown to belong to equivalence
classes corresponding to cells in the cylindrical algebraic decomposition of the projection of the
hypersurfaces, orthogonal to x. Finally, we can extend this to axis-aligned segments by noting
they may hit only p times as many subsets.

Above result can be used to give a VC-dimension based argument to establish the following,
which can be combined with results in [19] to establish dispersion results when discontinuities
occur at roots of polynomial equations in multiple variables.
Theorem 2.2.3. Let l1, . . . , lT : Rp → R be independent piecewise L-Lipschitz functions,
each having discontinuities specified by a collection of at most K algebraic hypersurfaces of
bounded degree. Let L denote the set of axis-aligned paths between pairs of points in Rp, and
for each s ∈ L define D(T, s) = |{1 ≤ t ≤ T | lt has a discontinuity along s}|. Then we have
E[sups∈L D(T, s)] ≤ sups∈L E[D(T, s)] +O(

√
T log(TK)).

Proof Sketch. We relate the number of ways line segments can label vectors of K algebraic
hypersurfaces of degree d to the VC-dimension of line segments (when labeling algebraic hy-
persurfaces), which from Theorem 2.2.2 is constant. To verify dispersion, we need a uniform-
convergence bound on the number of Lipschitz failures between the worst pair of points ρ, ρ′

at distance ≤ ϵ, but the definition allows us to bound the worst rate of discontinuties along any
path between ρ, ρ′ of our choice. We can bound the VC dimension of axis aligned segments
against bounded-degree algebraic hypersurfaces, which will allow us to establish dispersion by
considering piecewise axis-aligned paths between points ρ and ρ′.

In the following subsections, we provide detailed proofs of the above results.

2.2.1 Dispersion for roots of exponential polynomials
In this section we will extend the applicability of the dispersion analysis technique from Ap-
pendix A.1 to exponential polynomials, i.e. functions of the form ϕ(x) =

∑n
i=1 aie

bix. We will
now extend the analysis to obtain similar results when using the exponential kernel w(u, v) =
e−||u−v||2/σ2 . The results of Balcan et al. [19] no longer directly apply as the points of disconti-
nuity are no longer roots of polynomials. To this end, we extend and generalize arguments from
[19] below. We need to generalize Theorem A.1.1 to exponential polynomials below.
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Theorem 2.2.4. Let ϕ(x) =
∑n

i=1 aie
bix be a random function, such that coefficients ai are real

and of magnitude at most R, and distributed with joint density at most κ. Then for any interval I
of width at most ϵ, P(ϕ has a zero in I)≤ Õ(ϵ) (dependence on bi, n, κ, R suppressed).

Proof. For n = 1 there are no roots, so assume n > 1. Suppose ρ is a root of ϕ(x). Then
a = (a1, . . . , an) is orthogonal to ϱ(ρ) = (eb1ρ, . . . , ebnρ) in Rn. For a fixed ρ, the set Sρ of
coefficients a for which ρ is a root of ϕ(y) lie along an n − 1 dimensional linear subspace of
Rn. Now ϕ has a root in any interval I of length ϵ, exactly when the coefficients lie on Sρ

for some ρ ∈ I . The desired probability is therefore upper bounded by maxρ VOL(∪Sy | y ∈
[ρ−ϵ, ρ+ϵ])/VOL(Sy | y ∈ R) which we will show to be Õ(ϵ). The key idea is that if |ρ−ρ′| < ϵ,
then ϱ(ρ) and ϱ(ρ′) are within a small angle θρ,ρ′ = Õ(ϵ) for small ϵ (the probability bound is
vacuous for large ϵ). But any point in Sρ is at most Õ(θρ,ρ′) from a point in Sρ′ , which implies
the desired bound (similar arguments to Theorem A.1.1).

We will now flesh out the above sketch. Indeed,

sin θρ,ρ′ =

√
1− (⟨ϱ(ρ), ϱ(ρ′)⟩)2

∥ϱ(ρ)∥ ∥ϱ(ρ′)∥

=

√
1− (

∑
i e

biρebiρ′)2∑
i e

2biρ
∑

i e
2biρ′

=

√∑
i ̸=j e

2(biρ+bjρ′) − e(bi+bj)(ρ+ρ′)

∑
i e

2biρ
∑

i e
2biρ′

.

Now, for ρ′ = ρ+ ε, |ε| < ϵ,

sin θρ,ρ′ =

√∑
i ̸=j e

2(biρ+bjρ+bjε) − e(bi+bj)(2ρ+ε)

∑
i e

2biρ
∑

i e
2biρ′

=

√∑
i ̸=j e

2ρ(bi+bj)(e2bjε − e(bi+bj)ε)∑
i e

2biρ
∑

i e
2biρ′

.

Using the Taylor’s series approximation for e2bjε and e(bi+bj)ε, we note that the largest terms that
survive are quadratic in ε. sin θρ,ρ′ , and therefore also θρ,ρ′ , is Õ(ϵ).

Next it is easy to show that any point in Sρ is at most Õ(θρ,ρ′) from a point in Sρ′ . For
n = 2, Sρ and Sρ′ are along lines orthogonal to ρ and ρ′ and are thus themselves at an angle
θρ,ρ′ . Since we further assume that the coefficients are bounded by R, any point on Sρ is within
O(Rθρ,ρ′) = Õ(θρ,ρ′) of the nearest point in Sρ′ . For n > 2, consider the 3-space spanned by ρ,
ρ′ and an arbitrary ς ∈ Sρ. Sρ and Sρ′ are along 2-planes in this space with normal vectors ρ, ρ′

respectively. Again it is straightforward to see that the nearest point in the projection of Sρ′ to ς
is Õ(θρ,ρ′).

The remaining proof is identical to that of Theorem A.1.1 (see Theorem 18 of [19]), and is
omitted for brevity.

We will also need the following lemma for the second step noted above, i.e. obtain a result similar
to Theorem A.1.2 for exponential polynomials.
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Lemma 2.2.5. The equation
∑n

i=1 aie
bix = 0 where ai, bi ∈ R has at most n−1 distinct solutions

x ∈ R.

Proof. We will use induction on n. It is easy to verify that there is no solution for n = 1. We
assume the statement holds for all 1 ≤ n ≤ N . Consider the equation ϕN+1(x) =

∑N+1
i=1 aie

bix =
0. WLOG a1 ̸= 0 and we can write

ϕN+1(x) =
N+1∑

i=1

aie
bix = a1e

b1x

(
1 +

N+1∑

i=2

ai
a1

e(bi−b1)x

)
= a1e

b1x (1 + g(x)) .

By our induction hypothesis, g′(0) = 0 has at most N−1 solutions, and so (1+g(x))′ has at most
N − 1 roots. By Rolle’s theorem, (1 + g(x)) has at most N roots, and therefore ϕN+1(x) = 0
has at most N solutions.

Lemma 2.2.5 implies that Theorem A.1.2 may be applied. The number of discontinuities may be
exponentially high in this case. Indeed solving the quadratic objective can result in an exponential
equation of the form in Lemma 2.2.5 with O(|U |n) terms.

2.2.2 Learning several metrics simultaneously
We start by getting a couple useful definitions out of the way.
Definition 5 (Homogeneous algebraic hypersurface). An algebraic hypersurface is an algebraic
variety (a system of polynomial equations) that may be defined by a single implicit equation of
the form p(x1, . . . , xn) = 0, where p is a multivariate polynomial. The degree d of the algebraic
hypersurface is the total degree of the polynomial p. We say that the algebraic hypersurface is
homogeneous if p is a homogeneous polynomial, i.e. p(λx1, . . . , λxm) = λdp(x1, . . . , xn).
In the following we will refer to homogeneous algebraic hypersurfaces as simply algebraic hy-
persurfaces. We will also need the standard definition of set shattering, which we restate in our
context as follows.
Definition 6 (Hitting and Shattering). Let C denote a set of curves in Rp. We say that a subset
of C is hit by a curve s if the subset is exactly the set of curves in C which intersect the curve s.
A collection of curves S shatters the set C if for each subset C of C, there is some element s of
S such that s hits C.
To extend our learning results to learning graphs built from several metrics, we will now state and
prove a couple theorems involving algebraic hypersurfaces. Our results generalize significantly
the techniques from [19] by bringing in novel connections with algebraic geometry.
Theorem 2.2.6. There is a constant k depending only on d and p such that axis-aligned line
segments in Rp cannot shatter any collection of k algebraic hypersurfaces of degree at most d.

Proof. Let C denote a collection of k algebraic hypersurfaces of degree at most d in Rp. We say
that a subset of C is hit by a line segment if the subset is exactly the set of curves in C which
intersect the segment, and hit by a line if some segment of the line hits the subset. We seek to
upper bound the number of subsets of C which may be hit by axis-aligned line segments. We
will first consider shattering by line segments in a fixed axial direction x. We can easily extend
this to axis-aligned segments by noting they may hit only p times as many subsets.
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Let Lc be a line in the x direction. The subsets of C which may be hit by (segments along)
Lc is determined by the pattern of intersections of Lc with hypersurfaces in C. By Bezout’s
theorem, there are at most kd + 1 distinct regions of Lc due to the intersections. Therefore at
most

(
kd+1
2

)
distinct subsets may be hit.

Define the equivalence relation Lc1 ∼ Lc2 if the same hypersurfaces in C intersect Lc1 and
Lc2 , and in the same order (including with multiplicities). To determine these equivalence classes,
we will project the hypersurfaces in C on to a hyperplane orthogonal to the x-direction. By the
Tarski-Seidenberg-Lojasiewicz Theorem, we get a semi-algebraic collection Cx, i.e. a set of
polynomial equations and constraints in the projection space. Each cell of Cx corresponds to an
equivalence class. Using well-known upper bounds for cylindrical algebraic decomposition (see
for example England and Davenport [73]), we get that the number of equivalence classes is at
most O

(
(2d)2

p−1k2p−122
p−1
)

.

Putting it all together, the number of subsets hit by any axis aligned segment is at most

O

(
p

(
kd+ 1

2

)
(2d)2

p−1k2p−122
p−1

)
.

We are done as this is less than 2k for fixed d and p and large enough k, and therefore all subsets
may not be hit.

Theorem 2.2.7. Let l1, . . . , lT : Rp → R be independent piecewise L-Lipschitz functions,
each having discontinuities specified by a collection of at most K algebraic hypersurfaces of
bounded degree. Let L denote the set of axis-aligned paths between pairs of points in Rp, and
for each s ∈ L define D(T, s) = |{1 ≤ t ≤ T | lt has a discontinuity along s}|. Then we have
E[sups∈L D(T, s)] ≤ sups∈L E[D(T, s)] +O(

√
T log(TK)).

Proof. The proof is similar to that of Theorem A.1.2 (see [19]). The main difference is that
instead of relating the number of ways intervals can label vectors of discontinuity points to the
VC-dimension of intervals, we instead relate the number of ways line segments can label vectors
of K algebraic hypersurfaces of degree d to the VC-dimension of line segments (when labeling
algebraic hypersurfaces), which from Theorem 2.2.2 is constant. To verify dispersion, we need a
uniform-convergence bound on the number of Lipschitz failures between the worst pair of points
α, α′ at distance ≤ ϵ, but the definition allows us to bound the worst rate of discontinuties along
any path between α, α′ of our choice. We can bound the VC dimension of axis aligned segments
against bounded-degree algebraic hypersurfaces, which will allow us to establish dispersion by
considering piecewise axis-aligned paths between points α and α′.

Let C denote the set of all algebraic hypersurfaces of degree d. For simplicity, we assume
that every function has its discontinuities specified by a collection of exactly K algebraic hyper-
surfaces. For each function lt, let γ(t) ∈ CK denote the ordered tuple of algebraic hypersurfaces
in C whose entries are the discontinuity locations of lt. That is, lt has discontinuities along
(γ

(t)
1 , . . . , γ

(t)
K ), but is otherwise L-Lispchitz.
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For any axis aligned path s, define the function fs : C
K → {0, 1} by

fs(γ) =

{
1 if for some i ∈ [K], γi intersects s,
0 otherwise,

where γ = (γ1, . . . , γK) ∈ CK . Now, the sum
∑T

t=1 fs(γ
(t)) counts the number of vectors

(γ
(t)
1 , . . . , γ

(t)
K ) that intersect s or, equivalently, the number of functions l1, . . . , lT that are not

L-Lipschitz on s. We will apply VC-dimension uniform convergence arguments to the class
F = {fs : CK → {0, 1} | s is an axis-aligned path}. In particular, we will show that for an
independent set of vectors (γ(t)

1 , . . . , γ
(t)
K ), with high probability we have that 1

T

∑T
t=1 fs(γ

(t)) is
close to E[ 1

T

∑T
t=1 fs(γ

(t))] for all paths s. This uniform convergence argument will lead to the
desired bounds.

Indeed, Theorem 2.2.2 implies that VC dimension of F is O(logK). Now standard VC-
dimension uniform convergence arguments for the class F imply that with probability at least
1− δ, for all fs ∈ F

∣∣∣∣∣
1

T

T∑

t=1

fs(γ
(t))− E

[
1

T

T∑

t=1

fs(γ
(t))

]∣∣∣∣∣ ≤ O

(√
log(K/δ)

T

)
, or

∣∣∣∣∣
T∑

t=1

fs(γ
(t))− E

[
T∑

t=1

fs(γ
(t))

]∣∣∣∣∣ ≤ O
(√

T log(K/δ)
)
.

Now since D(T, s) =
∑T

t=1 fs(γ
(t)), we have for all s and δ, with probability at least 1 − δ,

sups∈LD(T, s) ≤ sups∈L E[D(T, s)] + O(
√

T log(K/δ)). Taking expectation and setting δ =

1/
√
T completes the proof as it allows us to bound the expected discontinuities by O(

√
T ) when

the above high probability event fails.

Theorem 2.2.3 above generalizes the second step of the dispersion tool from single parameter
families to several hyperparameters, and uses Theorem 2.2.2 as a key ingredient. To complete
the first step of in the multi-parameter setting, we can use a simple generalization of Theorem
A.1.1 by showing that few zeros are likely to occur on a piecewise axis-aligned path on whose
pieces the zero sets of the multivariate polynomial is the zero set of a single-variable polynomial.
Putting together we get Theorem 2.2.8.
Theorem 2.2.8. Let l1, . . . , lT : Rp → R denote an independent sequence of losses as a func-
tion of parameters ρi, i ∈ [p], when the graph is created using a polynomial kernel w(u, v) =
(
∑p−1

i=1 ρid̃(u, v) + ρp)
d and labeled by optimizing the quadratic objective

∑
u,v w(u, v)(f(u) −

f(v))2. If d̃(u, v) follows a κ-bounded distribution with a closed and bounded support, the se-
quence is 1

2
-dispersed, and the regret may be upper bounded by Õ(

√
T ).

Proof. Notice that w(u, v) is a homogeneous polynomial in ρ = (ρi, i ∈ [p]). Further, the
solutions of the quadratic objective subject to f(u) = 1/2 for some u are also homogeneous
polynomial equations, of degree nd. Now to show dispersion, consider an axis-aligned path
between any two parameter vectors ρ, ρ′ such that ∥ρ− ρ′∥ < ϵ (notice that the definition of
dispersion allows us to use any path between ρ, ρ′ for counting discontinuities). To compute the
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expected number of non-Lipchitzness in along this path, notice that for any fixed segment of
this path, all but one variable are constant and the discontinuities are the zeros of single variable
polynomial with bounded-density random coefficients, and that Theorem A.1.1 applies. Sum-
ming along these paths we get at most Õ(pϵ) discontinuities in expectation for any ∥ρ− ρ′∥ < ϵ.
Theorem 2.2.3 now completes the proof of dispersion in this case.

2.3 Online learning under dispersion
We consider the problem of learning the graph online. In the online setting, we are presented
with instances of the problem and want to learn the best value of the parameter ρ while making
predictions. We also assume we get all the labels for past instances which may be used to
determine the loss for any ρ (full information)3. A choice of ρ uniquely determines the graph
G(ρ) (for example in single parameter families in Definition 4) and we use some algorithm
AG(ρ),L,U to make predictions (e.g. minimizing the quadratic penalty score above) and suffer loss
lA(G(ρ),L,U) :=

∑
u∈U l(AG(ρ),L,U(u), τ(u)) which we seek to minimize relative to the best fixed

choice of ρ in hindsight. Formally, at time t ∈ [T ] we predict pt ∈ P (the parameter space) based
on labeled and unlabeled examples (Li, Ui), i ∈ [t] and past labels τ(u) for each u ∈ Uj, j < t
and seek to minimize

RT :=
T∑

t=1

lA(G(ρt),Lt,Ut) −min
ρ∈P

T∑

t=1

lA(G(ρ),Lt,Ut).

A key difficulty in the online optimization for our settings is that the losses, as noted above, are
discontinuous functions of the graph parameters ρ. We can efficiently solve this problem if we
can show that the loss functions are dispersed, in fact 1

2
-dispersed functions may be learned with

Õ(
√
T ) regret ([15, 20]). Algorithm 1 adapts the general algorithm of [15] to data-driven graph-

based learning and achieves low regret for dispersed functions. Recall that dispersion roughly
says that the discontinuities in the loss function are not too concentrated. We will exploit an
assumption that the embeddings are approximate, so small random perturbations to the distance
metric will likely not affect learning. This mild distributional assumption allows us to show
dispersion, and therefore learnability.

2.3.1 Dispersion of the loss functions
We start with showing dispersion for the unweighted graph family, with threshold parameter
r. Here dispersion follows from a simple assumption that the distance d(u, v) for any pair of
nodes u, v follows a κ-bounded distribution4, and observing that discontinuities of the loss (as
a function of r) must lie on the set of distances d(u, v) in the samples (for any optimization
algorithm).

3We can think of each problem instance to be of a small size, so we do not need too many labels if we can learn
with a reasonable number of problem instances. We improve on the label requirement further in the semi-bandit
setting.

4A density function f : R → R corresponds to a κ-bounded distribution if maxx∈R{f(x)} ≤ κ. For example,
N (µ, σ) is 1

2πσ -bounded for any µ.
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Algorithm 1 Data-driven Graph-based SSL
1: Input: Graphs Gt with labeled and unlabeled nodes (Lt, Ut) and node similarities

d(u, v)u,v∈Lt∪Ut .
2: Hyperparameter: step size parameter λ ∈ (0, 1].
3: Output: Graph parameter ρt for times t = 1, 2, . . . , T .
4: Set w1(ρ) = 1 for all ρ ∈ R≥0.
5: for t = 1, 2, . . . , T do
6: Wt :=

∫
C
wt(ρ)dρ.

7: Sample ρ with probability pt(ρ) =
wt(ρ)
Wt

, output as ρt.
8: Compute average loss function lt(ρ) =

1
|Ut|
∑

u∈U l(AGt(ρ),Lt,Ut(u), τ(u)).
9: Set ut(ρ) = 1− lt(ρ) (loss is converted to utility function, ut(ρ) ∈ [0, 1]).

10: For each ρ ∈ C, set wt+1(ρ) = eλut(ρ)wt(ρ).

Lemma 2.3.1. Let l̄(r) = lA(G(r),L,U) be the loss function for graph G(r) created using the
threshold kernel w(u, v) = I[d(u, v) ≤ r]. Then l̄(r) is piecewise constant and any discontinuity
occurs at r∗ = d(u, v) for some graph nodes u, v.

Proof. This essentially follows from the observation that as r is increased, the graph gets a new
edge only for some r∗ = d(u, v). Therefore no matter what the optimization algorithm is used
to predict labels to minimize the loss, the loss is fixed given the graph, and has discontinuities
potentially only when new edges are added.

We can use it to show the following theorem.
Theorem 2.3.2. Let l1, . . . , lT : R→ R denote an independent5 sequence of losses as a function
of parameter r, when the graph is created using a threshold kernel w(u, v) = I[d(u, v) ≤ r]
and labeled by applying any algorithm on the graph. If d(u, v) follows a κ-bounded distribution
for any u, v, the sequence is 1

2
-dispersed, and there is an algorithm (Algorithm 1, with suitable

choice of λ) for setting r with regret upper bounded by Õ(
√
T ).

Proof. Assume a fixed but arbitrary ordering of nodes in each Vt = Lt ∪ Ut denoted by V
(i)
t , i ∈

[n]. Define di,j = {d(u, v) | u = V
(i)
t , v = V

(j)
t , t ∈ [T ]}. Since di,j is κ-bounded, the

probability that it falls in any interval of length ϵ is O(κϵ). Since different problem instances are
independent and using the fact that the VC dimension of intervals is 2, with probability at least
1−δ/D, every interval of width ϵ contains at most O

(
κϵT +

√
T logD/δ

)
discontinuities from

each di,j (using Lemma 2.3.1). Now a union bound over the failure modes for di,j for different

i, j gives O
(
n2κϵT + n2

√
T log n/δ

)
discontinuities with probability at least 1 − δ for any ϵ-

interval. Setting δ = 1/
√
T , for each ϵ ≥ 1/

√
T the maximum number of discontinuities in

5Note that the problems arriving online are adversarial. The adversary is smoothed [155] in the sense it has a
distribution which it can choose as long as it has bounded density over the parameters, independent samples are
drawn from adversary’s distribution.
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any ϵ-interval is at most (1− δ)O

(
κn2

√
T log n

√
T

)
+ δT = Õ(ϵT ), in expectation, proving

1
2
-dispersion.

We can show similar regret bounds via dispersion for weighted graph kernels as well. We first
need a simple lemma about κ-bounded distributions. We remark that similar properties have
been proved in [15, 19], in other problem contexts. Specifically, [15] show the lemma for a ratio
of random variables, Z = X/Y , and [19] establish it for the sum Z = X+Y but for independent
variables X, Y .
Lemma 2.3.3. Suppose X and Y are real-valued random variables taking values in [m,m+M ]
and [m′,m′ + M ′] for some m,m′,M,M ′ ∈ R+ and suppose that their joint distribution is
κ-bounded. Then,

(i) Z = X+Y is drawn from a K1κ-bounded distribution, where we have K1 ≤ min{M,M ′}.
(ii) Z = XY is drawn from a K2κ-bounded distribution, where we have K2 ≤ min{M/m,M ′/m′}.

Proof. Let fX,Y (x, y) denote the joint density of X, Y .

(i) The case where X, Y are independent has been studied (Lemma 25 in [19]), the following
is slightly more involved. The cumulative density function for Z is given by

FZ(z) = Pr(Z ≤ z) = Pr(X + Y ≤ z) = Pr(X ≤ z − Y )

=

∫ m′+M ′

m′

∫ z−y

m

fX,Y (x, y)dxdy.

The density function for Z can be obtained using Leibniz’s rule as

fZ(z) =
d

dz
FZ(z) =

d

dz

∫ m′+M ′

m′

∫ z−y

m

fX,Y (x, y)dxdy

=

∫ m′+M ′

m′

(
d

dz

∫ z−y

m

fX,Y (x, y)dx

)
dy

=

∫ m′+M ′

m′
fX,Y (z − y, y)dy

≤M ′κ.

A symmetric argument shows that fZ(z) ≤ Mκ, together with above this completes the
proof.

(ii) The cumulative density function for Z is given by

FZ(z) = Pr(Z ≤ z) = Pr(XY ≤ z) = Pr(X ≤ z/Y )

=

∫ m′+M ′

m′

∫ z/y

m

fX,Y (x, y)dxdy.
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The density function for Z can be obtained using Leibniz’s rule as

fZ(z) =
d

dz
FZ(z) =

d

dz

∫ m′+M ′

m′

∫ z/y

m

fX,Y (x, y)dxdy

=

∫ m′+M ′

m′

(
d

dz

∫ z/y

m

fX,Y (x, y)dx

)
dy

=

∫ m′+M ′

m′

1

y
fX,Y (z/y, y)dy

≤
∫ m′+M ′

m′

1

m′fX,Y (z/y, y)dy

≤ M ′

m′ κ.

Similarly we can show that fZ(z) ≤Mκ/m, together with above this completes the proof.

Theorem 2.3.4. Let l1, . . . , lT : R→ R denote an independent sequence of losses as a function
of parameter α̃, when the graph is created using a polynomial kernel w(u, v) = (d̃(u, v) + α̃)d

and labeled by optimizing the quadratic objective
∑

u,v w(u, v)(f(u)−f(v))2. If d̃(u, v) follows
a κ-bounded distribution with a closed and bounded support, the sequence is 1

2
-dispersed, and

the regret of Algorithm 1 may be upper bounded by Õ(
√
T ).

Proof. w(u, v) is a polynomial in α̃ of degree d with coefficient of α̃i given by ci = Dd,id̃(u, v)
Ed,i

for i ∈ [d]. Since the support of d̃(u, v) is closed and bounded, we have m ≤ d̃(u, v) ≤ M with
probability 1 for some M > 1,m > 0 (since d̃(u, v) is a metric, d̃(u, v) > 0 for u ̸= v).

To apply Theorem A.1.1, we note that we have an upper bound on the coefficients, R <
(dM)d. Moreover, if f(x) denotes the probability density of d(u, v) and F (x) its cumulative
density,

Pr(ci ≤ xi) = Pr
(
Dd,id̃(u, v)

Ed,i ≤ xi

)

= Pr

(
d̃(u, v) ≤

(
xi

Dd,i

)1/Ed,i

)

= F

((
xi

Dd,i

)1/Ed,i

)
.

Thus,

Pr(ci ≤ xi for each i ∈ [d]) = F

(
min

i

(
xi

Dd,i

)1/Ed,i

)
.

The joint density of the coefficients is therefore Kκ-bounded where K only depends on d,m.
(K ≤ maxi Dd,i

−1/Ed,im−1+1/Ed,i).
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Consider the harmonic solution of the quadratic objective [174] which is given by fU =
(DUU −WUU)

−1WULfL. For any u ∈ U , f(u) = 1/2 is a polynomial equation in α̃ with degree
at most nd. The coefficients of these polynomials are formed by multiplying sets of weights
w(u, v) of size up to n and adding the products, and are also bounded density on a bounded
support (using above observation in conjunction with Lemma 2.3.3). The dispersion result now
follows by an application of Theorems A.1.1 and A.1.2. The regret bound is implied by results
from [15, 20].

Often the distance metric used for measuring similarity between the data points is a heuristic,
and we can have multiple reasonable metrics. Different metrics may have their own advantages
and issues and often a weighted combination of metrics, say

∑
i ρidi(·, ·), works better than any

individual metric. This has been observed in practice for semi-supervised learning [12]. The
combination weights ρi are additional graph hyperparameters. A combination of metrics has
been shown to boost performance theoretically and empirically for linkage-based clustering [18].
However the argument therein crucially relies on the algorithm depending on relative distances
and not the actual values, and therefore does not extend directly to our setting. We develop a first
general tool for analyzing dispersion for multi-dimensional parameters (Theorem 2.2.3 above),
which is used to show the following.
Theorem 2.3.5. Let l1, . . . , lT : Rp → R denote an independent sequence of losses as a func-
tion of parameters ρi, i ∈ [p], when the graph is created using a polynomial kernel w(u, v) =
(
∑p−1

i=1 ρid̃(u, v) + ρp)
d and labeled by optimizing the quadratic objective

∑
u,v w(u, v)(f(u) −

f(v))2. If d̃(u, v) follows a κ-bounded distribution with a closed and bounded support, the se-
quence is 1

2
-dispersed, and the regret may be upper bounded by Õ(

√
T ).

2.3.2 Semi-bandit setting and efficient algorithms
Online learning with full information is usually inefficient in practice since it involves comput-
ing and working with the entire domain of hyperparameters. For our setting in particular this is
computationally infeasible for weighted graphs since the number of pieces (in loss as a piece-
wise constant function of the parameter) may even be exponentially large. Fortunately we have
a workaround provided by Balcan et al. [19] where dispersion implies learning in a semi-bandit
setting as well. This setting differs from the full information online problem as follows. In each
round as we select the parameter ρi, we only observe losses for a single interval containing ρi
(as opposed to the entire domain). We call the set of these observable intervals the feedback
set, and these provide a partition of the domain. The trade-off is slower convergence, the regret
bound for these approaches is weaker (it is O(

√
K) in the size K of the feedback set instead of

O(
√
logK)) but still converges to optimum as Õ(1/

√
T ).

For the case of learning the unweighted threshold graph, computing the feedback set contain-
ing a given r is easy as we only need the next and previous thresholds from among the O(n2)
values of pairwise distances where loss may be discontinuous in r. We present algorithms for
computing the semi-bandit feedback sets (constant performance interval containing any σ) for
the weighted graph setting (we will use Definition 4c for concreteness, but the algorithms eas-
ily extend to Definition 4b). We propose a hybrid combinatorial-continuous algorithm for the
min-cut objective and use continuous optimization for the harmonic objective (recall objectives
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Algorithm 2 Efficient Data-driven Graph-based SSL (λ)
1: Input: Graphs Gt with labeled and unlabeled nodes (Lt, Ut) and node similarities

d(u, v)u,v∈Lt∪Ut .
2: Hyperparameter: step size parameter λ ∈ (0, 1].
3: Output: Graph parameter ρt for times t = 1, 2, . . . , T .
4: Set w1(ρ) = 1 for all ρ ∈ C
5: for t = 1, 2, . . . , T do
6: Wt :=

∫
C
wt(ρ)dρ.

7: Sample ρ with probability pt(ρ) =
wt(ρ)
Wt

, output as ρt.
8: Compute the feedback set A(t)(ρ) containing ρt. For example, for the min-cut objective

use Algorithm 3 to set A(t)(ρ) = DYNAMICMINCUT(Gt, ρt, 1/
√
T ).

9: Compute average loss function lt(ρ) =
1

|Ut|
∑

u∈U l(AGt(ρ),Lt,Ut(u), τ(u)).

10: Set l̂t(ρ) =
I[ρ∈A(t)(ρ)]∫
A(t)(ρ)

pt(ρ)
lt(ρ).

11: For each ρ ∈ C, set wt+1(ρ) = eλl̂t(ρ)wt(ρ).

from Table 2.1). For the former, we describe our approach in Algorithm 3, for which we have
the following runtime guarantee.
Theorem 2.3.6. For the mincut objective and exponential kernel (Definition 4c), Algorithm 3
outputs the interval containing σ in time O(n3K(n, ϵ)), where K(n, ϵ) is the complexity of solv-
ing an exponential equation ϕ(y) =

∑n
i=1 aiy

bi = 0 to within error ϵ.

Proof Sketch. Let L1 and L2 denote the labeled points L of different classes. To obtain the labels
for U , we seek the smallest cut (V1, V \ V1) of G separating the nodes in L1 and L2. If Li ⊆ V1,
label exactly the nodes in V1 with label i. The loss function, l(σ) gives the fraction of labels this
procedure gets right for the unlabeled set U .

It is easy to see, if the min-cut is the same for two values of σ, then so is the loss function
l(σ). So we seek the smallest amount of change in σ so that the mincut changes. Consider a fixed
value of σ = σ0 and the corresponding graph G(σ0). We can compute the max-flow on G(σ),
and simultaneously obtain a min-cut (V1, V \ V1) in time O(n3). Clearly, all the edges in ∂V1

are saturated by the flow. For each ei ∈ ∂V1, let fi denote the flow that saturated ei. Note that
the fi are distinct. Now as σ is increased, we increment each fi by the additional capacity in the
corresponding edge ei, until an edge in E \ ∂V1 saturates (at a faster rate than the flow through
it). We now increment flows while keeping this edge saturated. The procedure stops when we
can no longer find an alternate path for some flow among the unsaturated edges, which implies
the existence of a new min-cut. This gives us a new critical value of σ.

Further, we can show a bound on the number of pieces. As we increase σ from σ0 to σ1, say
edge e′ saturates by increasing flow fi. Then for any larger value of σ, capacity of ei will exceed
capacity of e′. This crucial observation allows us to bound the number of times we can find a
new critical value of σ by O(m2), where m is the number of edges in G. Finally note that each
time we perform step 10 of the algorithm, a new saturated edge stays saturated for all further σ
until the new cut is found. So we can do this at most O(n2) times. In each loop we need to obtain
the saturation condition for O(n) edges.
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Algorithm 3 DYNAMICMINCUT(G, σ0, ϵ)

1: Input: Graph G with unlabeled nodes, query parameter σ0, error tolerance ϵ.
2: Output: Piecewise constant interval containing σ0.
3: Use a max-flow algorithm to compute max-flow and min-cut C for G(σ), σh = σ0.
4: Compute the flow decomposition of the max-flow, F.
5: Let fe be a unique path flow (i.e. along an st-path) through e ∈ C.
6: Say e is augmentable if flow fe can be increased by amount we(σ)−we(σh) for some σ > σh.

e acts as the bottleneck for increasing the flow fe.
7: Initialize S to C (a set of saturated edges).
8: while All edges e ∈ S are augmentable, do
9: Increase flow in all fe for e ∈ S to keep e saturated.

10: Find first saturating edge e1 /∈ S for some fe′ (e′ ∈ S) and σ′ to within ϵ.
11: Reassociate flow through e1, e

′ as fe1 . fe′ will now be along an alternate path in the
residual capacities graph.

12: Add e1 to S.
13: Set σh = σ′.
14: Similarly find the start of the interval σl by detecting saturation while reducing flows.
15: return [σl, σh].

For the harmonic objective, we can obtain similar efficiency (Algorithm 4). We seek points
where fu(σ) = 1

2
for some u ∈ U closest to given σ0. For each u we can find the local minima of(

fu(σ)− 1
2

)2 or simply the root of fu(σ) − 1
2

using gradient descent or Newton’s method. The
gradient computation requires O(n3) time for matrix inversion. We will later (Section 2.6) see
how to make this algorithm more computationally efficient.
Theorem 2.3.7. For the harmonic function objective (Table 2.1) and exponential kernel (Defi-
nition 4c), Algorithm 4 outputs the interval containing σ within accuracy ϵ in time O(n4K1(ϵ)),
where K1(ϵ) is the complexity of convergence for Newton’s method (K1(ϵ) = O(log log 1

ϵ
) under

standard assumptions).

Proof. The key observation is that any boundary point σ′ of a piece (where the loss function is
constant) has fu(σ

′) = 1
2

for some u ∈ U . This follows from continuity of fu(σ) (it is in fact
differentiable). Algorithm 4 simply estimates the locations of these σ′ closest to σ0 for each u
(by using Newton’s method) to find the root of gu(σ) = (fu(σ) − 1

2
)2. For each of O(n) nodes,

Algorithm 4 computes the gradient and function value of gu(σ) in O(n3) time for different values
of σ until convergence, which gives the bound on time complexity.

2.3.3 Full details for the min-cut objective

First some notation for this section. We will use G = (V,E) to denote an undirected graph with
V as the set of nodes and E ⊆ V × V the weighted edges with capacity d : E → R≥0. We are
given special nodes s, t ∈ V called source and target vertices. Recall the following definitions.
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Algorithm 4 HARMONICFEEDBACKSET(G, σ0, ϵ)

1: Input: Graph G with unlabeled nodes, query parameter σ0, error tolerance ϵ.
2: Output: Piecewise constant interval containing σ0.
3: Let fU = (DUU −WUU)

−1WULfL denote the harmonic objective minimizer, where Dij :=
I[i = j]

∑
k Wik.

4: for all u ∈ U do
5: Let gu(σ) = (fu(σ)− 1

2
)2.

6: σ1 = σ0 − gu(σ0)
g′u(σ0)

, where g′u(σ) is given by

∂gu
∂σ

= 2

(
fu(σ)−

1

2

)
∂fu
∂σ

,

∂f

∂σ
= (I − PUU)

−1

(
∂PUU

∂σ
fU −

∂PUL

∂σ
fL

)
,

∂Pij

∂σ
=

∂w(i,j)
∂σ
− Pij

∑
k∈L+U

∂w(i,k)
∂σ∑

k∈L+U w(i, k)
,

∂w(i, j)

∂σ
=

2w(i, j)d(i, j)2

σ3
,

where P = D−1W .
7: n = 0
8: while |σn+1 − σn| ≥ ϵ do
9: n← n+ 1

10: σn+1 = σn − gu(σn)
g′u(σn)

11: σu = σn+1

12: σl = maxu{σu | σu < σ0}, σh = minu{σu | σu > σ0}
13: return [σl, σh].

Definition 7. (s,t)-flows An (s,t)-flow (or just flow if the source and target are clear from context)
is a function f : V × V → R≥0 that satisfies the conservation constraint at every vertex v except
possibly s and t given by

∑
(u,v)∈E f(u, v) =

∑
(v,u)∈E f(v, u). The value of flow (also refered by

just flow when clear from context) is the total flow out of s,
∑

u∈V f(s, u)−
∑

u∈V f(u, s).
Definition 8. (s,t)-cut An (s,t)-cut (or just a cut if the source and target are clear from context)
is a partition of V into S, T such that s ∈ S, t ∈ T . We will denote the set {(u, v) ∈ E | u ∈
S, v ∈ T} of edges in the cut by ∂S or ∂T . The capacity of the cut is the total capacity of edges
in the cut.
For convenience we also define
Definition 9. Path flow. An (s,t)-flow is a path flow along a path p = (s = v0, v1, . . . , vn = t) if
f(u,w) > 0 iff (u,w) = (vi, vi+1) for some i ∈ [n− 1].
Definition 10. Residual capacity graph. Given a set of path flows F , the residual capacity
graph (or simply the residual graph) is the graph G′ = (V,E) with capacities given by c′(e) =
c(e)−

∑
f∈F f(e).
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We will list without proof some well-known facts about maximum flows and minimum cuts in a
graph which will be useful in our arguments.
Fact 1. 1. Let f be any feasible (s, t)-flow, and let (S, T ) be any (s, t)-cut. The value of f

is at most the capacity of (S, T ). Moreover, the value of f equals the capacity of (S, T ) if
and only if f saturates every edge in the cut.

2. Max-flow min-cut theorem. The value of maximum (value of) (s, t)-flow equals the capacity
of the minimum (s, t)-cut. It may be computed in O(V E) time.

3. Flow Decomposition Theorem. Every feasible (s, t)-flow f can be written as a weighted
sum of directed (s, t)-paths and directed cycles. Moreover, a directed edge (u, v) appears
in at least one of these paths or cycles if and only if f(u, v) > 0, and the total number
of paths and cycles is at most the number of edges in the network. It may be computed in
O(V E) time.

We now have the machinery to prove the correctness and analyze the time complexity of our
Algorithm 3.
Theorem 2.3.8. For the harmonic function objective (Table 2.1) and exponential kernel (Defi-
nition 4c), Algorithm 7 outputs the interval containing σ within accuracy ϵ in time O(n4K1(ϵ)),
where K1(ϵ) is the complexity of convergence for Newton’s method (K1(ϵ) = O(log log 1

ϵ
) under

standard assumptions).

Proof. First, we briefly recall the set up of the mincut objective. Let L1 and L2 denote the labeled
points L of different classes. To obtain the labels for U , we seek the smallest cut (V1, V \ V1)
of G separating the nodes in L1 and L2. To frame as s, t-cut we can augment the data graph
with nodes s, t, and add infinite capacity edges to nodes in L1 and L2 respectively. If Li ⊆ V1,
label exactly the nodes in V1 with label i. The loss function, l(σ) gives the fraction of labels this
procedure gets right for the unlabeled set U .

If the min-cut is the same for two values of σ, then so is prediction on each point and thus the
loss function l(σ). So we seek the smallest amount of change in σ so that the mincut changes.
Our semi-bandit feedback set is given by the intervals for which the min-cut is fixed. Consider
a fixed value of σ = σ0 and the corresponding graph G(σ0). We can compute the max-flow
on G(σ0), and simultaneously obtain a min-cut (V1, V \ V1) in time O(V E) = O(n3). All
the edges in ∂V1 are saturated by the flow. Obtain the flow decomposition of the max-flow
(again O(V E) = O(n3)). For each ei ∈ ∂V1, let fi be a path flow through ei from the flow
decomposition (cycle flows cannot saturate, or even pass through, ei since it is on the min-cut).
Note that the fi are distinct due to the max-flow min-cut theorem. Now as σ is increased, we
increment each fi by the additional capacity in the corresponding edge ei, until an edge e′ in
E \ ∂V1 saturates (at a faster rate than the flow through it). This can be detected by expressing fi
as a function of σ for each fi and computing the zero of an exponential polynomial capturing the
change in residual capacity of any edge e /∈ ∂V1. Let fj be one of the path flows through e′. We
reassign this flow to e′ (it will now increase with e′ as its bottleneck) and find an alternate path
avoiding this edge through non-saturated edges and ej (if one exists) along which we send the
new fj . We now increment all the path flows as before keeping their bottleneck edges saturated.
The procedure stops when we can no longer find an alternate path for some ej . But this means we
must have a new cut with the saturated edges, and therefore a new min-cut. This gives us a new
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critical value of σ, and the desired upper end for the feedback interval. Obtaining the lower end is
possible by a symmetric procedure that decreases the path flows while keeping edges saturated.

We remark that our procedure differs from the well-known algorithms for obtaining min-cuts
in a static graph. The greedy procedures for static graphs need directed edges (u, v) and (v, u)
in the residual graph, and find paths through unsaturated edges through this graph to increase the
flow, and cannot work with monotonically increasing path flows. We however start with a max
flow and maintain the invariant that our flow equals some cut size throughout.

Finally note that each time we perform step 9 of the algorithm, a new saturated edge stays
saturated for all further σ until the new cut is found. So we can do this at most O(n2) times. In
each loop we need to obtain the saturation condition for O(n) edges corresponding to one new
path flow.

We remind the reader that a remarkable property of finding the min-cuts dynamically in our set-
ting is an interesting “hybrid” combinatorial and continuous set-up, which may be of independent
interest. A similar dynamic, but purely combinatorial, setting for recomputing flows efficiently
online over a discrete graph sequence has been studied in [3].

2.4 Distributional setting
In the distributional setting, we are presented with instances of the problem assumed to be drawn
from an unknown distribution D and want to learn the best value of the graph parameter ρ. We
also assume we get all the labels for past instances (full information). A choice of ρ uniquely de-
termines the graph G(ρ) and we use some algorithm AG(ρ),L,U to make predictions (e.g. minimiz-
ing the quadratic penalty score above) and suffers loss lA(G(ρ),L,U) :=

∑
U l(AG(ρ),L,U(u), τ(u))

which we seek to minimize relative to smallest possible loss by some graph in the hypothesis
space, in expectation over the data distribution D.

We will show a divergence in the weighted and unweighted graph learning problems. We ana-
lyze and provide asymptotically tight bounds for the pseudodimension of the set of loss functions
(composed with the graph creation algorithm family and the optimization algorithm for predict-
ing labels) parameterized by the graph family parameter ρ, i.e. Hρ = {lA(G(ρ),L,U) | ρ ∈ P}.
For learning the unweighted threshold graphs, the pseudodimension is O(log n). However, the
pseudodimension is shown to be Ω(n) for the weighted graph setting. Both these bounds are
shown to be tight up to constant factors.

The online learning results above only work for smoothed but adversarial instances, while the
distributional learning sample complexity results based on pseudodimension work for any types
(no smoothness needed) of independent and identically distributed instances. So these results are
not superseded by the online learning results, the settings are strictly speaking incomparable, and
the pseudodimension results in the distributional setting provide new upper and lower bounds for
the problem.

2.4.1 Pseudodimension bounds
We can efficiently learn the unweighted graph with polynomially many samples. We show this
by providing a bound on the pseudodimension of the set of loss functions Hr = {lA(G(r),L,U) |
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0 ≤ r < ∞}, where G(r) is specified by Definition 4a. Our bounds hold for both the min-cut
and quadratic objectives (Table 2.1).
Theorem 2.4.1. The pseudo-dimension ofHr is O(log n), where n is the total number of (labeled
and unlabeled) data points.

Proof. There are at most
(
n
2

)
distinct distances between pairs of data points. As r is increased

from 0 to infinity, the graph changes only when r corresponds to one of these distances, and so
at most

(
n
2

)
+ 1 distinct graphs may be obtained.

Thus given set S of m instances (A(i), L(i)), we can partition the real line into O(mn2) intervals
such that all values of r behave identically for all instances within any fixed interval. Since A
and therefore its loss is deterministic once G is fixed, the loss function is a piecewise constant
with only O(n2) pieces. Each piece can have a witness above or below it as r is varied for the
corresponding interval, and so the binary labeling of S is fixed in that interval. The pseudo-
dimension m satisfies 2m ≤ O(mn2) and is therefore O(log n).

We can also show an asymptotically tight lower bound on the pseudodimension of Hr. We do
this by presenting a collection of graph thresholds and well-designed labeling instances which
are shattered by the thresholds.
Theorem 2.4.2. The pseudo-dimension ofHr is Ω(log n).

Proof Sketch. We have three labeled nodes, a1 with label 0 and b1, b2 labeled 1, and n′ = O(n)
unlabeled nodes U = {u1, . . . , un′}. We can show that given a sequence {r1, . . . , rn′} of values
of r, it is possible to construct an instance with suitable true labels of U such that the loss as a
function of r oscillates above and below some witness as r moves along the sequence of intervals
(ri, ri+1)i≥0.

(a) G(ri)
(b) Loss oscillations in shattered
instances

Figure 2.1: Graphs G(r) as r is varied, for lower bound construction for pseudodimension ofHr.
Labels are set in the instances to match bit flips in the sequence of binary numbers as shown.

At the initial threshold r0, all unlabeled points have a single incident edge, connecting to a1,
so all predicted labels are 0. As the threshold is increased to ri, (the distances are set so that)
ui gets connected to both nodes with label 1 and therefore its predicted label changes to 1. If
the sequence of nodes ui is alternately labeled, the loss decreases and increases alternately as all
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the predicted labels turn to 1 as r is increased to rn′ . This oscillation between a high and a low
value can be achieved for any subsequence of distances r1, . . . , rn′ , and a witness may be set as
a loss value between the oscillation limits. By precisely choosing the subsequences so that the
oscillations align with the bit flips in the binary digit sequence, we can construct m instances
which satisfy the 2m shattering constraints (Figure 2.1).

For learning weighted graphs, we can show a Θ(n) bound on the pseudodimension of the set of
loss functions. We show this for the loss functions for learning graphs with exponential kernels,
Hσ = {lA(G(σ),L,U) | 0 ≤ σ < ∞}, where G(σ) is specified by Definition 4c. Our lower bound
argument here is significantly more intricate.
Theorem 2.4.3. The pseudo-dimension of Hσ is Θ(n), where n is the total number of (labeled
and unlabeled) data points.
We provide proof details for the above pseudo-dimension bounds in the following subsection.

2.4.2 Proof details
Recall that we define the set of loss functions Hr = {lA(G(r),L,U) | 0 ≤ r < ∞}, where G(r) is
the family of threshold graphs specified by Definition 4a, andHσ = {lA(G(σ),L,U) | 0 ≤ σ <∞},
where G(σ) is the family of exponential kernel graphs specified by Definition 4c. We show lower
bounds on the pseudodimension of these function classes below.
We first prove the following useful statement which helps us construct general examples with
desirable properties. In particular, the following lemma guarantees that given a sequence of
values of r of size O(n), it is possible to construct an instance S of partially labeled points such
that the cost of the output of algorithm A(G(r), L) on V as a function of r oscillates above and
below some threshold as r moves along the sequence of intervals (ri, ri+1). Given this powerful
guarantee, we can then pick appropriate sequences of r and generate a sample set of Ω(log n)
instances that correspond to cost functions that oscillate in a manner that helps us pick Ω(n)
values of r that shatters the samples.
Lemma 2.4.4. Given integer n > 5 and a sequence of n′ r’s such that 1 < r1 < r2 < · · · <
rn′ < 2 and n′ ≤ n − 5, there exists a real valued witness w > 0 and a labeling instance S of
partially labeled n points, such that for 0 ≤ i ≤ n′/2− 1, lA(G(r),L) < w for r ∈ (r2i, r2i+1), and
lA(G(r),L) > w for r ∈ (r2i+1, r2i+2) (where r0 and rn′+1 correspond to immediate left and right
neighborhoods respectively of r1 and rn′).

Proof. We first present a sketch of the construction. We will use binary labels a and b. We further
have three points labeled a (namely a1, a2, a3) and two points labeled b (say b1, b2). At some intial
r = r0, all the like-labeled points are connected in G(r0) and all the unlabeled points (namely
u1, . . . , un′) are connected to a1 as shown in Figure 2.2a. The algorithm A(G(r), L) labels
everything a and gets exactly half the labels right. As r is increased to ri, ui gets connected to
b1 and b2 (Figure 2.2b). If the sequence ui is alternately labeled, the loss increases and decreases
alternately as all the predicted labels turn to b as r is increased to rn′ . Further increasing r may
connect all the unlabeled points with true label a to a2 and a3 (Figure 2.2c), although this is not
crucial to our argument. The rest of the proof gives concrete values of r and verifies that the
construction is indeed feasible.
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We will ensure all the pairwise distances are between 1 and 2, so that triangle inequality is
always satisfied. It may also be readily verified that O(log n) dimensions suffice for our con-
struction to exist. We start by defining some useful constants. We pick r−, r+, rmax ∈ (1, 2) such
that r− < r1 < · · · < rn′ < r+ < rmax,

r− =
1 + r1

2
,

r+ = 1 +
rn′

2
,

rmax = 1 +
r+
2
.

We will now specify the distances of the labeled points. The points with the same label are close
together and away from the oppositely labeled points.

d(ai, aj) = r−, 1 ≤ i < j ≤ 3,

d(b1, b2) = r−,

d(ai, bj) = rmax, 1 ≤ i ≤ 3, 1 ≤ j ≤ 2.

Further, the unlabeled points are located as follows

d(a1, uk) = r−, 1 ≤ k ≤ n′,

d(bi, uk) = rk, 1 ≤ k ≤ n′, 1 ≤ i ≤ 2,

d(ai, uk) = r+, 1 ≤ k ≤ n′, 2 ≤ i ≤ 3,

d(ui, uj) = rmax, 1 ≤ i < j ≤ n′.

That is, all unknown points are closest to a1, followed by bi’s, remaining ai’s and other ui’s in
order. Further let the true labels of the unlabeled nodes be alternating with the index, i.e. uk is a
if and only if k is even.

We will now compute the loss for the soft labeling algorithm A(G(r), L) of [174] as r varies
from r− to r+, starting with r = r0 = r−. We note that our construction also works for other
algorithms as well, for example the min-cut based approach of [40], but omit the details.

For the graph G(r−), A(G,L) labels each unknown node as a since each unknown point is
a leaf node connected to a1. Indeed if f(a1) = 1, the quadratic objective attains the minimum
of 0 for exactly f(uk) = 1 for each 1 ≤ k ≤ n′. This results in half the labels in the dataset
being incorrectly labeled since we stipulate that half the unknown labels are of each category.
This results in loss lA(G(r−),L) =: lhigh say.

Now as r is increased to r1, the edges (bi, u1), i = 1, 2 are added with bi labeled as f(bi) = 0.
This results in a fractional label of 1

3
for f(u1) while f(uk) = 1 for k ̸= 1. Indeed the terms

involving f(u1) in the objective are (1− f(u1))
2 + 2f(u1)

2, which is minimized at 1
3
. Since u1

has true label b, this results in a slightly smaller loss of lA(G(r1),L) =: llow. This happens when A
uses rounding, or in expectation if A uses randomized prediction with probability f(u).

At the next critical point r2, u2 gets connected to bi’s and gets incorrectly classified as b.
This increases the loss again to lhigh. The loss function thus alternates as r is varied through the
specified values, between lhigh and llow. We therefore set the witness w to something in between.

w =
llow + lhigh

2
.
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Figure 2.2: Graphs G(r) as r is varied, for lower bound construction for pseudodimension ofHr.

Proof of Theorem 2.4.2. We will now use Lemma 2.4.4 to prove our lower bound. Arbitarily
choose n′ = n − 5 (assumed to be a power of 2 just for convenient presentation) real numbers
r[000...01] < r[000...10] < · · · < r[111...11] in (1, 2). The indices are increasing binary numbers of
length m = log n′. We create labeling instances using Lemma 2.4.4 which can be shattered by
these r values. Instance Si = (Gi, Li) corresponds to fluctuation of i-th bit bi in our rb sequence,
where b = (b1, . . . , bm) ∈ {0, 1}m, i.e., we apply the lemma by using a subset of the rb values
which correspond to the bit flips in the i-th binary digit. For example, S1 just needs a single bit
flip (at r[100...00]). The lemma gives us both the instances and corresponding witnesses wi.

This construction ensures sign(lA(Gi(rb),Li) − wi) = bi, i.e. the set of instances is shattered.
Thus the pseudodimension is at least log(n− 5) = Ω(log n).

Theorem 2.4.5. The pseudo-dimension ofHσ is O(n).

Proof. There are at most 2|U | ≤ 2n distinct cuts on any problem instance with |U | unlabeled
examples. As σ is increased from 0 to infinity, the number of points at which the min-cut may
switch between any pair of cuts C1 and C2 is given by an exponential equation with O(n2) terms
and therefore at most O(n2) distinct solutions in σ. Across all pairs of cuts, there are at most
O(22nn2) distinct values of σ at which the min-cut may change.

Thus, given m instances we can partition the real line into O(mn222n) intervals such that
all values of σ behave identically for all problem instances and have the same value of the loss
function. The pseudo-dimension m satisfies 2m ≤ O(mn222n), or m = O(n).

Theorem 2.4.6. The pseudo-dimension ofHσ is Ω(n).

Proof. The plan for the proof is to first construct a graph where the edge weights are carefully
selected, so that we have 2N oscillations in the loss function with σ for N = Ω(n). Then we use
this construction to create Θ(n) instances, each having a subset of the oscillations so that each
interval leads to a unique labeling of the instances, for a total of 2N labelings, which would imply
pseudodimension is Ω(n). We will present our discussion in terms of the min-cut objective, for
simplicity of presentation.
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Figure 2.3: The base case of our inductive construction.

Graph construction: First a quick rough overview. We start with a pair of labeled nodes of
each class, and a pair of unlabeled nodes which may be assigned either label depending on σ.
We then build the graph in N = (n − 4)/2 stages, adding two new nodes at each step with
carefully chosen distances from existing nodes. Before adding the ith pair xi, yi of nodes, there
will be 2i−1 intervals of σ such that the intervals correspond to distinct min-cuts which result in
all possible labelings of {x1, . . . , xi−1}. Moreover, yj will be labeled differently from xj in each
of these intervals. The edges to the new nodes will ensure that the cuts that differ exactly in xi

will divide each of these intervals giving us 2i intervals where distinct mincuts give all labelings
of {x1, . . . , xi}, and allowing an inductive proof. The challenge is that we only get to set O(i)
edges but seek properties about 2i cuts, so we must do this carefully.

Let ς = e−1/σ2 . Notice ς ∈ (0, 1), and bijectively corresponds to σ ∈ (0,∞) (due to
monotonicity) and therefore it suffices to specify intervals of ς corresponding to different label-
ings. Further we can specify distances d(u, v) between pairs of nodes u, v by specifying the
squared distance d(u, v)2. For the remainder of this proof we will refer to δ(u, v) = d(u, v)2

by distance and set values in [1.5, 1.6]. Consequently, d(u, v) ∈ (1.22, 1.27) and therefore the
triangle inequality is always satisfied. Notice that with this notation, the graph weights will be
w(u, v) = ςδ(u,v).

We now provide details of the construction. We have four labeled nodes as follows. a1, a2
are labeled 0 and are collectively denoted by A = {a1, a2}, similarly b1, b2 are labeled 1 and
B = {b1, b2}. Note that edges between these nodes are on all or no cut separating A,B, we set
the distances to 1.6 and call this graph G0. We further add unlabeled nodes in pairs (xj, yj) in
rounds 1 ≤ j ≤ N . In round i, we construct graph Gi by adding nodes (xi, yi) to Gi−1. The
distances are set to ensure that for GN there are 2N unique values of ς corresponding to distinct
min-cuts, each giving a unique labeling for {x1, . . . , xn} (and the complementary labeling for
{y1, . . . , yn}). Moreover subsets of these points also obtain the unique labeling for {x1, . . . , xi}
for each Gi.

We set the distances in round 1 such that there are intervals I0 = (ς0, ς
′
0) ⊂ (0, 1) and

I1 = (ς1, ς
′
1) ⊂ (0, 1) such that ς ′0 < ς1 and (x1, y1) are labeled (l, 1− l) in interval Il. In general,

there will be 2i−1 intervals at the end of round i− 1, any interval I(i−1) will be split into disjoint
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intervals I(i)0 , I
(i)
1 ⊂ I(i−1) where labelings of {x1, . . . , xi−1} match that of I(i−1) and (xi, yi) are

labeled (l, 1− l) in I
(i)
l .

Now we set up the edges to achieve these properties. In round 1, we set the distances as
follows.

δ(x1, a1) = δ(y1, b2) = 1.5,

δ(x1, a2) = δ(y1, b1) = δ(x1, y1) = 1.5 + 12Nϵ,

δ(x1, b1) = δ(x1, b2) = δ(y1, a1) = δ(y1, a2) = 1.5 + ϵ.

where ϵ is a small positive quantity such that the largest distance 1.5+12Nϵ < 1.6. It is straight-
forward to verify that for I0 = (0, 1

2

1/ϵ
) we have that (x1, y1) are labeled (0, 1) by determining

the values of ς for which the corresponding cut is the min-cut (Figure 2.3). Indeed, we seek ς
such that wC01 = w(x1, b1) + w(x1, b2) + w(x1, y1) + w(y1, a1) + w(y1, a2) satisfies

wC01 ≤ wC00 = w(x1, b1) + w(x1, b2) + w(y1, b1) + w(y1, b2),

wC01 ≤ wC11 = w(x1, a1) + w(x1, a2) + w(y1, a1) + w(y1, a2),

wC01 ≤ wC10 = w(x1, a1) + w(x1, a2) + w(x1, y1) + w(y1, b1) + w(y1, b2),

which simultaneously hold for ς < 1
2

1/ϵ.
Moreover, we can similarly conclude that (x1, y1) are labeled (1, 0) for the interval I1 =

(ς1, ς
′
1) where ς1 < ς ′1 are given by the two positive roots of the equation

1− 2ςϵ + 2ς12Nϵ = 0.

We now consider the inductive step, to set the distances and obtain an inductive proof of the
claim above. In round i, the distances are as specified.

δ(xi, a1) = δ(yi, b2) = 1.5,

δ(xi, a2) = δ(yi, b1) = δ(xi, yi) = 1.5 + 12Nϵ,

δ(xi, b1) = δ(xi, b2) = δ(yi, a1) = δ(yi, a2) = 1.5 + ϵ,

δ(xi, yj) = δ(yi, xj) = 1.5 + 6(2j − 1)ϵ (1 ≤ j ≤ i− 1),

δ(xi, xj) = δ(yi, yj) = 1.5 + 12jϵ (1 ≤ j ≤ i− 1).

We denote the (inductively hypothesized) 2i−1 ς-intervals at the end of round i − 1 by I
(i−1)
b ,

where b = {b(1), . . . , b(i−1)} ∈ {0, 1}i−1 indicates the labels of xj, j ∈ [i− 1] in I
(i−1)
b . Min-cuts

from round i− 1 extend to min-cuts of round i depending on how the edges incident on (xi, yi)
are set (Figure 2.4). It suffices to consider only those min-cuts where xj and yj have opposite
labels for each j. Consider an arbitrary such min-cut Cb = (Ab, Bb) of Gi−1 which corresponds
to the interval I(i−1)

b , that is Ab = {xj | b(j) = 0}∪{yj | b(j) = 1} and Bb contains the remaining
unlabeled nodes of Gi−1. It extends to C[b 0] and C[b 1] for ς ∈ I

(i−1)
b satisfying, respectively,

Eb,0(ς) := 1− 2ςϵ + F (Cb; ς) > 0,

Eb,1(ς) := 1− 2ςϵ + 2ς12Nϵ + F (Cb; ς) < 0,
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Figure 2.4: The inductive step in our lower bound construction for pseudodimension ofHσ. The
min-cut Cb is extended to two new min-cuts (depicted by dashed lines) for which labels of xi, yi
are flipped, at controlled parameter intervals.

where F (Cb; ς) =
∑

z∈Ab
ςδ(xi,z)−

∑
z∈Bb

ςδ(xi,z) =
∑

z∈Bb
ςδ(yi,z)−

∑
z∈Ab

ςδ(yi,z). If we show
that the solutions of the above inequations have disjoint non-empty intersections with ς ∈ I

(i−1)
b ,

our induction step is complete. We will use an indirect approach for this.

For 1 ≤ i ≤ N , given b = {b(1), . . . , b(i−1)} ∈ {0, 1}i−1, let Eb,0 and Eb,1 denote the
expressions (exponential polynomials in ς) in round i which determine labels of (xi, yi), in the
case where for all 1 ≤ j < i, xj is labeled b(j) (and let Eϕ,0, Eϕ,1 denote the expressions for
round 1). Let ςb,i ∈ (0, 1) denote the smallest solution to Eb,i = 0. Then we need to show the
ςb,i’s are well-defined and follow a specific ordering. This ordering is completely specified by
two conditions:

(i) ς[b 0],1 < ς[b],0 < ς[b],1 < ς[b 1],0, and

(ii) ς[b 0 c],1 < ς[b 1 d],0

for all b, c,d ∈ ∪i<N{0, 1}i and |c| = |d|.
First we make a quick observation that all ςb,i’s are well-defined and less than (3/4)1/ϵ. To

do this, it will suffice to note that Eb,i(0) = 1 and Eb,i(
3
4

1/ϵ
) < 0 for all b, i, since the functions
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Figure 2.5: Relative positions of critical values of the parameter ς = e−1/σ2 .

are continuous in (0, 3
4

1/ϵ
). This holds because

Eb,0

(
3

4

1/ϵ
)

< Eb,1

(
3

4

1/ϵ
)

= 1− 3

2
+

(
3

4

)12N

+ F

(
Cb;

3

4

1/ϵ
)

≤ −1

2
+

(
3

4

)12N

+

|b|∑

j=1

(
3

4

)6j
(
1−

(
3

4

)6j
)

< −1

2
+

N∑

j=1

(
3

4

)6j

< 0

Let’s now consider condition (i). We begin by showing ς[b],0 < ς[b],1 for any b. The ex-
ponential polynomials Eb,0 and Eb,1 both evaluate to 1 for ς = 0 (since |Ab| = |Bb| =
|b|) and decrease monotonically (verified by elementary calculus) till their respective small-
est zeros ς[b],0, ς[b],1. But then Eb,1(ς[b],0) = 2(ς[b],0)

12Nϵ > 0, which implies ς[b],0 < ς[b],1.
Now, to show ς[b 0],1 < ς[b],0, note that E[b 0],1(ς) − E[b],0(ς) = 2ς12Nϵ + ς12iϵ − ς(12i−6)ϵ =

ς(12i−6)ϵ(2ς(12(N−i)+6)ϵ + ς6ϵ − 1) where 1 ≤ i = |b| + 1 < N . Since ς[b],0 < 3
4

1/ϵ, it fol-
lows that E[b 0],1(ς[b],0) < 0, which implies ς[b 0],1 < ς[b],0. Similarly, it is readily verified that
ς[b],1 < ς[b 1],0, establishing (i).

Finally, to show (ii), note that E[b 0 c],1(ς) − E[b 0 d],0(ς) = 2ς12Nϵ + ς12iϵ − ς(12i−6)ϵ +
ς12iϵ(F (Cc; ς) − F (Cd; ς)) = ς(12i−6)ϵ(2ς(12(N−i)+6)ϵ + ς6ϵ − 1 + ς6ϵ(F (Cc; ς) − F (Cd; ς))).
Again, similar to above, we use ς[b 0 d],0 < 3

4

1/ϵ in this expression to get E[b 0 c],1(ς[b 0 d],0) < 0.
Since the exponential polynomials decay monotonically with ς till their first roots, (ii) follows.

Problem instances: We will now show the graph instances and witnesses to establish the
pseudodimension bound. Our graphs will be Gi from the above construction (padded appro-
priately such that the min-cut intervals do not change, if we insist each instance has exactly n
nodes), and the shattering family σb (b = (b1, . . . , bN) ∈ {0, 1}N ) will be 2N values of σ cor-
responding to the 2N intervals of ς with distinct min-cuts in GN described above. To obtain the
witnesses, we set the labels so that only the last pair of nodes (xi, yi) have different labels (i.e.
labels are same for all (xj, yj), j < i) and therefore the loss function oscillates 2i times as (xi, yi)
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are correctly and incorrectly labeled in alternating intervals. The intervals of successive Gi are
nested precisely so that σb shatter the instances for the above labelings/witnesses. Thus, we have
shown that the pseudodimension is Ω(N) = Ω((n− 4)/2) = Ω(n).

2.4.3 Uniform convergence
Our results above imply a uniform convergence guarantee for the distributional setting, for both
weighted and unweighted graph families. We can use the pseudodimension bounds from section
2.4.1, as well as the dispersion guarantees above to bound the empirical Rademacher complexity,
a useful learning theoretic complexity measure.
Definition 11. Rademacher complexity [34]. Let F = {fρ : X → [0, 1], ρ ∈ C ⊂ Rd} be a pa-
rameterized family of functions, and sample S = {xi, . . . , xT} ⊆ X . The empirical Rademacher
complexity of F with respect to S is defined as R̂(F ,S) = Eσ

[
supf∈F

1
T

∑T
i=1 σif(xi)

]
, where

σi ∼ U({−1, 1}) are Rademacher variables.
We will need the following theorem (slightly rephrased) from [15].
Theorem 2.4.7. Let F = {fρ : X → [0, 1], ρ ∈ C ⊂ Rd} be a parametereized family of
functions, where C lies in a ball of radius R. For any set S = {xi, . . . , xT} ⊆ X , suppose
the functions uxi

(ρ) = fρ(xi) for i ∈ [T ] are piecewise L-Lipschitz and β-dispersed. Then
R̂(F ,S) ≤ O(min{

√
(d/T ) logRT + LT−β,

√
PDIM(F)/T}).

Now, combining our results above with classic results from learning theory, we can conclude that
Empirical Risk Minimization has good generalization under the distribution.

2.5 Approximate semi-bandit feedback
We consider a generalization of the semi-bandit feedback setting above where only an approx-
imation to the loss value at σt is revealed, along with an approximation to the piece At. The
motivation is that approximate feedback sets may be easier to compute more efficiently, and can
be used to speed up the implementation. Although our formulation below is motivated by con-
siderations for graph parameter tuning for semi-supervised learning, we provide very general
definitions and results that apply to approximate online data-driven parameter selection more
generally [7].
Definition 12. An online optimization problem with loss functions l1, l2, . . . is said to have (ϵ, γ)-
approximate semi-bandit feedback with system size M if for each time t = 1, 2, . . . , there is a
partition Ã

(1)
t , . . . , Ã

(M)
t of the parameter spaceP ⊂ Rd, called an approximate feedback system,

such that if the learner plays point ρt ∈ Ã
(i)
t , she observes the approximate feedback set Ã(i)

t , and
observes approximate loss l̃t(ρ) for all ρ ∈ Ã

(i)
t such that sup

ρ∈Â(i)
t
|l̃t(ρ)− lt(ρ)| ≤ γ, for some

(unknown) Â(i)
t ⊆ Ã

(i)
t with

∣∣∣vol
(
Ã

(i)
t \ Â

(i)
t

) ∣∣∣ ≤ ϵ. Here vol(A) denotes the d-dimensional

volume of set A. We let Ãt(ρ) denote the approximate feedback set that contains ρ ∈ P .
For example, let the parameter space P be one-dimensional, and in round t the learner plays

point ρt ∈ P . Now suppose the approximate loss functions are also piecewise constant with
pieces Ã

(1)
t , . . . , Ã

(M)
t that partition P , and she receives information about the constant piece
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Figure 2.6: A depiction of (ϵ, γ)-approximate feedback (Definition 12) for a one dimensional loss
function. Here, the true loss lt is given by the solid curve, and approximate loss l̃t is piecewise
constant.

Ãt(ρt) containing the played point by receiving the ends points of interval Ãt and approximate
loss value l̃t for the observed piece Ãt with |l̃t − lt| ≤ γ for most of the interval Ãt, except
possibly finitely many small intervals with total length ϵ, where lt is the true loss function. This
satisfies the definition of (ϵ, γ)-approximate semi-bandit feedback. See Figure 2.6 for an illus-
tration. This simple example captures the semi-supervised loss lA(G(ρ),L,U) (where in fact the true
loss function is also piecewise constant [10]), but our analysis in this section applies to more gen-
eral piecewise-Lipschitz loss functions, and for high dimensional Euclidean action space. This
approximate feedback model generalizes the “exact” semibandit feedback model of Balcan et al.
[19] (which in turn generalizes the standard ‘full information’ setting that corresponds to M = 1)
and is useful for cases where computing the exact feedback set or loss function is infeasible or
computationally expensive. Our model also generalizes the approximate loss functions of Balcan
et al. [22] where positive results (data-dependent generalization guarantees) are shown for (0, γ)-
approximate full-information (M = 1) feedback in the distributional setting. This extension is
crucial for applying our techniques of efficient graph learning by computing approximate loss
values for the learned graph.

Algorithm 5 APPROXIMATE CONTINUOUS EXP3-SET(λ)

1: Input: step size λ ∈ [0, 1].
2: Initialize w1(ρ) = 1 for all ρ ∈ P .
3: for t = 1, . . . , T do
4: Sample ρt according to pt(ρ) =

wt(ρ)∫
P wt(ρ)dρ

.
5: Play ρt and suffer loss lt(ρt).
6: Observe (γ, ϵ)-approximate feedback l̃t(ρ) over set Ãt with ρt ∈ Ãt

7: Update wt+1(ρ) = wt(ρ) exp(−λl̂t(ρ)), where l̂t(ρ) =
I{ρ∈Ãt}∫
Ãt

pt(ρ)dρ
l̃t(ρ).

We give a general online learning algorithm in the presence of approximate semi-bandit feed-
back, and we show that our algorithm achieves sub-linear regret bounds. In particular, our results
indicate how the approximation in the loss function impacts the regret of our algorithm and pro-
vides a way to quantify the accuracy-efficiency trade-off (better loss approximation can improve
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regret in Theorem 2.5.1, but at the cost of efficiency in Theorems 2.6.3, 2.6.4).

Theorem 2.5.1. Suppose l1, . . . , lT : P → [0, 1] is a sequence of β-dispersed loss functions,
and the domain P ⊂ Rd is contained in a ball of radius R. The Approximate Continuous Exp3-
Set algorithm (Algorithm 5) achieves expected regret Õ(

√
dMT log(RT ) + T 1−min{β,β′}) with

access to (ϵ, γ)-approximate semi-bandit feedback with system size M , provided γ ≤ T−β′
, ϵ ≤

vol(B(T−β))T−β′
, where B(r) is a d-ball of radius r.

Proof of Theorem 2.5.1. We adapt the CONTINUOUS-EXP3-SET analysis of [2, 19]. Define
weights wt(ρ) over the parameter space P as w1(ρ) = 1 and wt+1(ρ) = wt(ρ) exp(−ηl̂t(ρ)) and
normalized weights Wt =

∫
P wt(ρ)dρ. Note that pt(ρ) = wt(ρ)

Wt
. We will give upper and lower

bounds on the quantity E[logWT+1/W1], i.e. the expected value of the log-ratio of normalized
weights.

Using exp(−x) ≤ 1− x+ x2/2 for all x ≥ 0, we get

Wt+1

Wt

=

∫

P
pt(ρ) exp(−ηl̂t(ρ))dρ

≤ 1− η

∫

P
pt(ρ)l̂t(ρ)dρ+

η2

2

∫

P
pt(ρ)l̂

2
t (ρ)dρ.

Computing the oscillating product and using 1− x ≤ exp(−x) for all x ≥ 0, we get

WT+1

W1

≤ exp

(
− η

T∑

t=1

∫

P
pt(ρ)l̂t(ρ)dρ+

η2

2

T∑

t=1

∫

P
pt(ρ)l̂

2
t (ρ)dρ

)
.

Taking logarithm and expectations on both sides we get

E
[
log

WT+1

W1

]
≤− η

T∑

t=1

E
[∫

P
pt(ρ)l̂t(ρ)dρ

]
+

η2

2

T∑

t=1

E
[∫

P
pt(ρ)l̂

2
t (ρ)dρ

]
.

We have, by the definitions of expectation and approximate semi-bandit feedback,
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Et [lt(ρt)] =

∫

P
pt(ρ)lt(ρ)dρ

=
M∑

i=1

∫

Ã
(i)
t

pt(ρ)lt(ρ)dρ

=
M∑

i=1

[∫

Â
(i)
t

pt(ρ)lt(ρ)dρ+

∫

Ã
(i)
t \Â(i)

t

pt(ρ)lt(ρ)dρ

]

≤
M∑

i=1

∫

Â
(i)
t

pt(ρ)(l̃t(ρ) + γ)dρ+Mϵ (∵ pt(ρ)lt(ρ) ≤ 1 ∀ ρ)

≤
M∑

i=1

∫

Ã
(i)
t

pt(ρ)(l̃t(ρ) + γ)dρ+Mϵ

=

∫

P
pt(ρ)l̃t(ρ)dρ+ γ +Mϵ (∵

∫

P
pt(ρ)dρ = 1).

Moreover,

E
[∫

P
pt(ρ)l̂t(ρ)dρ

]
= E<tEt

[∫

P
pt(ρ)l̂t(ρ)dρ

]

= E<t

[∫

P
pt(ρ)l̃t(ρ)dρ

]
,

using the definition of l̂t in Algorithm 5. Plugging this in above, we get

E [lt(ρt)] = E<tEt [lt(ρt)]

≤ E<t

[∫

P
pt(ρ)l̃t(ρ)dρ

]
+ γ +Mϵ

= E
[∫

P
pt(ρ)l̂t(ρ)dρ

]
+ γ +Mϵ,

and, further,

Et[l̂t(ρ)
2] =

∫

P
pt(ρ

′)

(
I[ρ ∈ Ãt(ρ

′)]

pt(Ãt(ρ′))
l̃t(ρ)

)2

dρ′

=

(
l̃t(ρ)

pt(Ãt(ρ))

)2 ∫

Ãt(ρ)

pt(ρ
′)dρ′

≤ 1

pt(Ãt(ρ))
.
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Therefore,

E[
∫

P
pt(ρ)l̂t(ρ)

2dρ] ≤ E
[∫

P
pt(ρ) ·

1

pt(Ãt(ρ))
dρ

]
= M.

Putting together, we get

E
[
log

WT+1

W1

]
≤ −ηE

[
T∑

t=1

lt(ρt)

]
+ ηT (Mϵ+ γ) +

η2MT

2
.

We can also adapt the argument of [19] to obtain a lower bound for WT+1

W1
in terms of Dr, the

number of L-Lipschitz violations between the worst pair of points within distance r across the T
loss functions. We have

WT+1

W1

=
1

vol(P)

∫

P
wT+1(ρ)dρ

≥ 1

vol(P)

∫

B(ρ∗,r)
wT+1(ρ)dρ.

Taking the log and applying Jensen’s inequality gives

log
WT+1

W1

≥ log
vol(B(ρ∗, r))

vol(P)
− η

vol(B(ρ∗, r))

∫

B(ρ∗,r)

T∑

t=1

l̂t(ρ)dρ.

Taking expectations w.r.t. the randomness in Algorithm 5 (but for any loss sequence l1, . . . , lt)
and using the fact that P is contained in a ball of radius R, we get

E
[
log

WT+1

W1

]
≥ d log

r

R
− η

vol(B(ρ∗, r))

T∑

t=1

E
[∫

B(ρ∗,r)
l̂t(ρ)dρ

]
.

Using E[l̂t(ρ)] = l̃t(ρ), and noting that for any fixed t and r

∫

B(ρ∗,r)
l̃t(ρ)dρ =

M∑

i=1

∫

B(ρ∗,r)∩Ã(i)
t

l̃t(ρ)dρ

≤
M∑

i=1

∫

B(ρ∗,r)∩Â(i)
t

l̃t(ρ)dρ+Mϵ

≤
M∑

i=1

∫

B(ρ∗,r)∩Â(i)
t

(lt(ρ) + γ)dρ+Mϵ

≤
M∑

i=1

∫

B(ρ∗,r)∩Ã(i)
t

l̃t(ρ)dρ+Mϵ

=

∫

B(ρ∗,r)
lt(ρ)dρ+ vol(B(ρ∗, r))γ +Mϵ,
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we get that

E
[
log

WT+1

W1

]
≥d log r

R
− η

vol(B(ρ∗, r))

T∑

t=1

∫

B(ρ∗,r)
lt(ρ)dρ− ηγ − ηMϵ

vol(B(ρ∗, r))
.

By above assumption on the number of L-Lipschitz violations we get
∑

t lt(ρ) ≥
∑

t lt(ρ
∗) −

TLr −Dr, or

E
[
log

WT+1

W1

]
≥d log r

R
− η

T∑

t=1

lt(ρ
∗)− ηTLr − ηDr − ηγT − ηMϵT

vol(B(ρ∗, r))
.

Combining the lower and upper bounds gives

E

[
T∑

t=1

lt(ρt)

]
−

T∑

t=1

lt(ρ
∗) ≤ d

η
log

R

r
+
ηMT

2
+Dr+ T

(
Mϵ+2γ +Lr+

Mϵ

vol(B(ρ∗, r))

)
.

Finally, setting r = T−β , η =
√

2d log(RTβ)
TM

, γ ≤ T−β′ and ϵ ≤ vol(B(r))T−β′ , and using that the
loss sequence is β-dispersed, we get the desired regret bound

E

[
T∑

t=1

lt(ρt)−
T∑

t=1

lt(ρ
∗)

]
≤ O(

√
dMT log(RT ) + T 1−β + T 1−β′

)

= O(
√
dMT log(RT ) + T 1−min{β,β′}).

In particular, we have used vol(B(T−β)) ≤ vol(B(1)) ≤ 8π2

15
for any d, T ≥ 1 and β ≥ 0.

In Theorem 2.5.1. β′ measures the net impact of approximate feedback on the regret of Algorithm
5. In particular, it shows that approximation can affect regret when (γ, ϵ are such that) β′ < β
and β′ < 1

2
. The bound in Theorem 2.5.1 is good for sufficiently small γ, ϵ. However, very small

γ, ϵ can come at the expense of speed. In more detail, our results in Section 2.6.2 discuss how
approximate feedback can be algorithmically implemented and useful to obtain faster runtime
(runtime bounds are weaker for smaller ϵ). Together, the results quantify an accuracy-efficiency
trade-off, and indicate how to set the approximation parameters to improve the efficiency (of
graph hyperparameter tuning) without sacrificing the accuracy.

2.6 Efficiency via sparsity and approximation
We show a formal separation in the learning-theoretic complexity of sparse and dense graph
families. We further show how to approximately learn the best graphs from the sparse families
efficiently using the conjugate gradient method.
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2.6.1 Learning Sparse Graph Families
Let Nk(v) denote the set of nodes of G which are the k-nearest neighbors of node v under the
metric d(·, ·). Define k-mutual neighborhood as the set of edges for which each end-point is a
k-nearest neighbor of the other, i.e. N ′

k = {(u, v) | u ∈ Nk(v) and v ∈ Nk(u)} [133].
Definition 13. Sparse graph families.
a) Thresholded nearest neighbors, G(k, r), (with k ∈ Z+, r ∈ R+): w(u, v) = I[d(u, v) ≤
r and (u, v) ∈ N ′

k] .
b) Gaussian nearest neighbors, G(k, σ), (with k ∈ [K] for K ∈ Z+, σ ∈ R+): w(u, v) =

e−
d(u,v)2

σ2 I[(u, v) ∈ N ′
k].

We also define the family of loss functions Hρ = {lA(G(ρ),L,U) | ρ ∈ P}. For example,
Hk,r = {lA(G(k,r),L,U) | (k, r) ∈ Z+ × R+}. As a shorthand, we will often denote the loss on a
fixed problem instance as a function of the graph hyperparameter ρ as simply l(ρ), and refer to it
as the dual semi-supervised loss.

We can upper bound the pseudodimension of the class of loss functions for sparse graph
families, where only k nearest neighbors are connected, for tunable parameter k ≤ K. This
upper bound improves on the O(n) bound from [10] since K ≤ n, and involves a more careful
argument to bound the number of possible label patterns.
Theorem 2.6.1. The pseudo-dimension ofHk,σ is O(K + log n) when the labeling algorithm A
is the mincut approach of Blum and Chawla [40].

Proof of Theorem 2.6.1. Consider an arbitrary node u in any fixed problem instance. Also fix
k ∈ [K]. Since f(d) = exp(−d2/σ2) is monotonic in d for any σ > 0, the set Nk(u) of k nearest
neighbors of u is the same for all values σ. This is true for any u, therefore Nk and also the set
of mutual nearest neighbors N ′

k(u) = {v ∈ Nk(u) | (u, v) ∈ Nk} is also fixed given the pairwise
distances for the instance.

We can show that the label of u can flip for at most O(K22K) distinct values of σ for the given
instance. Suppose that the label of u flips for σ = σ0 (as σ is increased from 0 to infinity), say
from positive to negative (WLOG). Let S+, S

′
+ ⊆ N ′

k for G(k, σ−
0 ) and G(k, σ+

0 ) respectively
denote the positively labeled neighbors of u just before and after σ = σ0. Note that σ0 is the
root of an exponential equation in at most 2k terms and therefore has at most 2k possible values
(Lemma 26 in Balcan and Sharma [10]) obtained by comparing the total weights of edges in
δ(u,N ′

k \ S+) and δ(u, S ′
+), where δ(v, V ) denotes the set of edges with one end-point v and

the other end point in vertex set V . Over all possible pairs of S+, S
′
+ we have at most 2k

(
2k

2

)
=

O(K22K) possibilities for σ0.
The above bound holds for any fixed k. For all k ∈ [K] there are at most O(K222K) label flips

for any fixed node u (as σ is varied). Summing up over all n possible choices of u and over all
m problem instances, we have at most O(mnK22K) intervals of σ such that the labelings of all
nodes are identical for all instances, for all values of k, within a fixed interval. Using Lemma 2.3
of Balcan [7] (proof of which involves arguments similar to those used in the proof of Theorem
2.6.2), the pseudo-dimension m satisfies 2m ≤ O(mnK22K), or m = O(K + log n).

The above argument gives a better sample complexity than dense graphs, for which the pseudo-
dimension is known to be Θ(n) [10]. We can also give upper bounds on the pseudo-dimension
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(a) Gradient Descent Only (b) Newton’s Method Only (c) Our Method

Figure 2.7: An instance of a node u for graph G on a subset of the MNIST dataset, where finding
local minima of gu(σ) = (fu(σ) − 1

2
)2 is challenging for both Gradient descent and Newton

steps.

for Hk,r, the k-nearest neighbor graph that adds edges only in r-neighborhood, which implies ex-
istence of sample and computationally efficient algorithms for learning the best graph parameter
ρ = (k, r) using standard results.
Theorem 2.6.2. The pseudo-dimension ofHk,r is O(log n) for any labeling algorithm A.

Proof of Theorem 2.6.2. Consider any fixed problem instance with n examples. For any fixed
choice of parameter k, there are at most nk

2
(unweighted) edges in G(k, r) for any value of r.

Therefore, as r is increased from 0 to infinity, the graph changes only when r corresponds to one
of nk

2
distinct distances between pairs of data points, and so at most nk

2
+1 distinct graphs may be

obtained for any k. Summing over all possible values of k ∈ [n], we have at most O(n3) distinct
graphs.
Thus given set S of m instances (d(i), L(i), U (i)), we can partition the real line into O(mn3) in-
tervals such that all values of r behave identically for all instances, and for all values of k, within
any fixed interval. Since A and therefore its loss is deterministic once the graph G is fixed, the
loss function is identical in each interval. Each piece can have a witness above or below it as r
is varied for the corresponding interval, and so the binary labeling of S is fixed in that interval.
The pseudo-dimension m satisfies 2m ≤ O(mn3) and is therefore O(log n).

Note that the lower bounds from Balcan and Sharma [10] imply that the above bound is asymp-
totically tight. Our bounds in this section imply upper bounds on number of problem instances
needed for learning the best parameter values for the respective graph families [7] in the distri-
butional setting.

The above argument gives a better sample complexity than dense graphs, for which the
pseudo-dimension is known to be Θ(n) [10]. We can also give upper bounds on the pseudo-
dimension for Hk,r, the k-nearest neighbor graph that adds edges only in r-neighborhood, which
implies existence of sample and computationally efficient algorithms for learning the best graph
parameter ρ = (k, r) using standard results.
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2.6.2 Scalability with Approximation Guarantees
We will now present and analyse an algorithm (Algorithm 7) for computing approximate semi-
bandit feedback for the dual semi-supervised loss l(σ) over σ ∈ [σmin, σmax] (we assume number
of nearest-neighbors k is a fixed constant in the following), where σ is the Gaussian bandwidth
parameter (Def. 13). This algorithm is a scalable version of 2. Our proposed approach involves
two main modifications noted below.

• Our Algorithm 7 uses approximate soft labels f(σ)ϵ and gradients ∂f
∂σ ϵ

. We use the con-
jugate gradient method to compute these approximations, and provide implementations
for the harmonic objective minimization approach of Zhu et al. [174], as well as the ef-
ficient algorithm of Delalleau et al. [66] with time complexity bounds (Algorithm 6 and
DBLR05APPROX resp. below).

• We use the approximate gradients to locate points where f(σ∗) = 1
2
, corresponding to σ

value where the predicted label flips. We use these points to find (ϵ, ϵ)-approximate feed-
back sets. We propose the use of smaller of Newton’s step and gradient descent for better
convergence to these points (line 10 in Algorithm 7; [10] use only Newton’s method). We
motivate this step by giving an example (from a real dataset) where the gradients are both
too small and too large near the minima (Figure 2.7). This makes convergence challenging
for both gradient descent and Newton’s method, but the combination is effective even in
this setting. We also give convergence guarantees and runtime bounds for Algorithm 7 in
the presence of approximate gradients (Theorems 2.6.3, 2.6.4).

We first describe how to instantiate the sub-routine A to compute approximate soft labels in
Algorithm 7.

Algorithm 6 computes the soft label that optimizes the harmonic function objective [174]
and gradient for a given value of graph parameter σ for a fixed unlabeled node u. This is ac-
complished by running the conjugate gradient for given number of iterations to solve systems
corresponding to the harmonic function objective and its gradient.

(Informal) DBLR05APPROX(G, fL, i, σ, ϵ)[Ũ , λ]: This algorithm computes the soft label
and gradient corresponding to the efficient algorithm of Delalleau et al. [66] for a graph G with
parameter σ for a fixed unlabeled node i ∈ U . Unlike Algorithm 6, a matrix inverse is approxi-
mated via iterations of the CG method for the Laplacian of a small subset of unlabeled ’training’
nodes Ũ ⊂ U along with a set of labeled nodes L. The labels of i ∈ U \ Ũ (’testing’ nodes) are
determined by summing the labels of each x ∈ Ũ∪L, weighted by Wij(x, i). The algorithm finds

an ϵ approximation of f̃u(σ) · ∂f̃u∂σ
using O

(√
κ(A) log

(
λ(|LLabels|+|ŨLabels|)

ϵσminλmin(A)

))
conjugate gradient

iterations, where κ is the condition number, Ũ ⊂ U is a small subset, and λ is a hyperparameter.
Our main result is the following guarantee on the performance of Algorithm 7, which cap-

tures the approximation-efficiency trade-off for the algorithm. Compared to the Õ(n4) running
time of the approach above, this algorithm runs in time Õ(n2) for sparse kNN graphs (i.e. k-
nearest neighbors with small constant k). To achieve this speedup, we replace an O(n3) matrix
inverse for a given unlabeled point with a fixed number of Conjugate Gradient iterations taking
time O(|EG|), where |EG| is the number of edges for graph G corresponding to the matrix being
inverted. Combined with our general algorithm for approximate data-driven algorithm design
(Theorem 2.5.1), we obtain Õ(

√
T ) expected regret for online graph parameter tuning with ap-
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Algorithm 6 HARMONICAPPROXIMATION(G, fL, u, σ, ϵ)

1: Input: Graph G with labeled nodes fL, unlabeled node u, query parameter σ, error tolerance
ϵ.

2: Output: approximate soft label fu,ϵ and approximate gradient ∂fu
∂σ ϵ

.
3: Let CG(A, b, t) represent running the conjugate gradient method for t iterations to solve

Ax = b.
4: Let tϵ indicate the number of iterations sufficient for ϵ-approximation of fu(σ)∂fu∂σ

(Theorem
B.2, appendix).

5: Let fU,ϵ(σ) = CG ((I − PUU), PULfL, tϵ), where Dij := I[i = j]
∑

k Wik, P = D−1W .
6: Let ∂f

∂σ ϵ
= CG

(
(I − PUU),

(
∂PUU

∂σ
fU,ϵ +

∂PUL

∂σ
fL
)
, tϵ
)
, where

∂Pij

∂σ
=

∂w(i,j)
∂σ
− Pij

∑
k∈L+U

∂w(i,k)
∂σ∑

k∈L+U w(i, k)
,

∂w(i, j)

∂σ
=

2w(i, j)d(i, j)2

σ3
.

7: return fu,ϵ(σ),
∂fu
∂σ ϵ

.

proximate semi-bandit feedback, provided we run Algorithm 7 with ϵ ≤ 1√
T

. For our proof, we
will assume that the soft label function fu(σ) is convex and smooth (i.e. derivative w.r.t. σ is
Lipschitz continuous) for estimating the convergence rates.
Theorem 2.6.3. Using Algorithm 6 for computing ϵ-approximate soft labels and gradients for
the harmonic objective of Zhu et al. [174], if fu(σ) is convex and smooth, Algorithm 7 computes
(ϵ, ϵ)-approximate semi-bandit feedback for the semi-supervised loss l(σ) in time

O

(
|EG|n

√
κ(LUU) log

(
n∆

ϵλmin(LUU)

)
log log

1

ϵ

)
,

where |EG| is the number of edges in graph G, LUU = I − PUU is the normalized grounded
graph Laplacian (with labeled nodes grounded), ∆ = σmax − σmin is the size of the parameter
range and κ(M) = λmax(M)

λmin(M)
denotes the condition number of matrix M .

Proof. As in Balcan and Sharma [10], note that any boundary σmin or σmax must have some
fu(σ) = 1

2
. Algorithm 7 finds these boundary pieces by finding roots/zeros of

(
fu(σ)− 1

2

)2.
As noted in Theorems 2.6.8 and 2.6.9, both Nesterov’s and Newton’s descent methods have
quadratic convergence, so at every update step in Algorithm 7 (lines 12 and 15), we converge
quadratically, leading to log log(1

ϵ
) update steps needed to satisfy |σ∗

ϵ − σ∗| < ϵ, where σ∗ is the
root with gu(σ

∗) = 0.

In Theorems 2.6.6 and 2.6.7, we assumed that |∂f
∂σ
| < 1

ϵλmin(G)
for some graph G. Consider

this is not the case. We examine the Newton update, which is an upper bound on the size of the
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Algorithm 7 APPROXFEEDBACKSET(G, fL, σ0, ϵ, η,A)
1: Input: Graph G with unlabeled nodes U , labels fL, query parameter σ0, error tolerance ϵ,

learning rate η, algorithm A to estimate soft labels and derivatives at any σ (e.g. Algorithm
6).

2: Output: Estimates for piecewise constant interval containing σ0, and function value at σ.
3: Initialize σl = σh = σ0.
4: for all u ∈ U do
5: Initialize n = 0, λ0 = 1, y0 = σ0.
6: while |σn+1 − σn| ≥ ϵ do
7: Compute fu,ϵ(σ),

∂fu
∂σ ϵ

as A(G, fL, u, σn, ϵ)

8: Set gu(σn) = (fu,ϵ(σn)− 1
2
)2, g′u(σn) = 2

(
fu,ϵ(σn)− 1

2

) (
∂fu
∂σ ϵ

)
.

9: ξGD ← ηg′u(σn); ξNewton ← 2gu(σn)
g′u(σn)

.
10: yn+1 = σn −min{ξGD, ξNewton}.
11: if ξGD < ξNewton then

12: λn+1 =
1+
√

1+4λ2
n

2
, γn = 1−λn

λn+1
, σn+1 = (1− γn)yn+1 + γnyn

13: else
14: σn+1 = yn+1

15: n← n+ 1
16: σl = min{σl, σn+1}, σh = max{σh, σn+1}.
17: return [σl, σh], fϵ(σ0).

update step used as our update uses the minimum of Newton and Nesterov steps:

2·gu(σ)
g′u(σ)

= 2 · (fu(σ)− 1/2)2

2 · (∂f/∂σ)(fu(σ)− 1/2)

=
(fu(σ)− 1/2)

(∂f/∂σ)

< ϵλmin(G)(fu(σ)− 1/2) (∵ |∂f/∂σ| > 1/ϵλmin(G))

< ϵ (∵ fu(σ) ≤ 1/λmin, cf. Thms 2.6.6, 2.6.7).

Thus in this case the update step is less than ϵ, and we will terminate after one subsequent step.
As noted in Theorem 2.6.6, we need O

(√
κ(LUU) log

(
n

ϵ′λmin(LUU )

))
CG steps to reach an ϵ′

approximation of f ∂f
∂σ

. Theorem 2.6.8 states that we need ϵ′ = O
(

ϵ
∆

)
to find an ϵ approximation

of the root σ∗, so this takes complexity

O

(√
κ(LUU) log

(
n∆

ϵλmin(LUU)

))
.

Running a single iteration of the conjugate gradient method requires a constant number of
matrix-vector products of form Ax, where A is the weighted adjacency matrix for graph G. This
computation takes O(|EG|) time. Finally, we run this algorithm for each of the n points, leading
to an overall time complexity of
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O

(
|EG|n

√
κ(LUU) log

(
n∆

ϵλmin(LUU)

)
log log

1

ϵ

)
.

If G is the complete graph, |EG| ∈ O(n2). If G is a kNN graph for some fixed k, then
|EG| = kn ∈ O(n).

Above analysis can be adapted to obtain the following guarantee for tuning σ in the efficient
algorithm of Delalleau et al. [66]. While the above result guarantees a running time of Õ(n2) for
kNN graphs, learning the graph can be done even more efficiently for the scalable approach of
Delalleau et al. [66]. Their algorithm minimizes a proxy for the harmonic objective given by

1

2

∑

u,v∈Ũ

w(u, v)(f(u)− f(v))2 + λ
∑

w∈L
(f(w)− yw)

2,

where Ũ ⊂ U and λ are hyperparameters. In particular, one chooses a small set Ũ with |Ũ | ≪ n
and efficiently extrapolates the harmonic labels on Ũ to the rest of U using a Parzen windows
based extrapolation. As before, the success of this more efficient approach also depends on the
choice of the graph G used. Our Algorithm 7 obtains good theoretical guarantees in this case as
well, with appropriate choice of algorithm A (namely DBLR05APPROX).
Theorem 2.6.4. (Informal) Given an algorithm for computing ϵ-approximate soft labels and gra-
dients for the efficient semi-supervised learning algorithm of Delalleau et al. [66] (DBLR05APPROX),
Algorithm 7 computes (ϵ, ϵ)-approximate semi-bandit feedback for the semi-supervised loss l(σ)
in time

O

(
|EGŨ

|n
√
κ(LA)log

(
λ(|LLabels|+ |ŨLabels|)∆

ϵσminλmin(LA)

)
log log

1

ϵ

)
,

where all values are defined as in DBLR05APPROX.
We empirically observe that sparsity (using only kNN edges, and nodes in Ũ ) results in well-
conditioned matrices (bounded

√
κ(A)) in the considered parameter range [σmin, σmax].

2.6.3 Approximate Soft Label and Gradient

The piecewise constant interval computation in Algorithm 7 needs computation of soft labels
f(σ) as well as gradients ∂f

∂σ
for all unlabeled nodes. Typically, one computes a matrix inverse

to exactly compute these quantities, and the exact matrix inverted is different for different ap-
proaches. In this section, we provide approximate but more efficient procedures for computing
these quantities for computing soft labels using the Harmonic objective approach of [174], as well
as for the scalable approach of [66]. We also provide convergence guarantees for our algorithms,
in terms of the number of conjugate gradient iterations needed for obtaining an ϵ-approximation
to the above quantities. Note that replacing CG(A, b, t) by the computation A−1b recovers the
algorithm from [10], which is more precise but takes longer (O(n3) time or O(nω), where ω is
the matrix multiplication exponent, for the matrix inversion step).
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Approximate Efficient Soft-labeling of [174]

We provide an approximation guarantee for Algorithm 6. We first need a simple lemma to upper
bound matrix vector products for positive definite matrices.
Lemma 2.6.5. Suppose matrix A ∈ Rn×n is positive definite, with x ∈ Rn. Then ∥Ax∥2 ≤
λmax∥x∥2 where λmax is the maximum eigenvalue of A

Proof. The idea is to normalize vector x, then consider SVD of A. Since the vectors are or-
thonormal, we will be able to simplify to a form that can be upper bounded by λmax∥x∥2. Letting
x̂ = x

∥x∥ and {ϕi}i∈[n] be an orthonormal basis for A, we can write x̂ as a linear combination of
{ϕi}:

x̂ =
∑

i∈[n]
αiϕi.

Now,

∥Ax̂∥22 =

∥∥∥∥∥∥
A
∑

i∈[n]
αiϕi

∥∥∥∥∥∥

2

2

=

∥∥∥∥∥∥
∑

i∈[n]
αiλiϕi

∥∥∥∥∥∥

2

2

=
∑

i∈[n]
α2
iλ

2
i (ϕi orthonormal)

≤ λ2
max (λi ≤ λmax∀i; x̂ is a unit vector).

Thus, ∥Ax∥ ≤ λmax∥x∥ using x̂ = x
∥x∥ .

Equipped with this lemma, we are ready to prove our approximation guarantee for Algorithm 6.
Theorem 2.6.6. Suppose the function f : R → R is convex and differentiable, and that its
gradient is Lipschitz continuous with constant L > 0, i.e. we have that |f ′(x)−f ′(y)| ≤ L|x−y|
for any x, y. Then for some σ ∈ [σmin, σmax], where

∣∣∂f
∂σ

∣∣ < 1
ϵλmin(I−PUU )

on [σmin, σmax], κ(A)
is condition number of matrix A and λmin(A) is the minimum eigenvalue of A, we can find
an ϵ approximation of fu(σ)∂fu∂σ

achieving
∣∣fu(σ)∂fu∂σ

−
(
fu(σ)

∂fu
∂σ

)
ϵ

∣∣ < ϵ, where fu(σ),
∂fu
∂σ

are

as described in Algorithm 6 using O
(√

κ(I − PUU) log
(

n
ϵλmin(I−PUU )

))
conjugate gradient

iterations.

Proof. A grounded Laplacian (aka Dirichlet Laplacian) matrix is obtained by “grounding”, i.e.
removing rows and columns corresponding to, some subset of graph nodes from the Laplacian
matrix L = D − W . It is well known that the grounded Laplacian matrix is positive definite
[120, 162]. In particular, LUU = DUU −WUU and therefore I − PUU = D

−1/2
UU LUUD

−1/2
UU are

positive definite. This implies (I − PUU)
−1 is also positive definite with maximum eigenvalue

1
λmin

, where λmin is the minimum eigenvalue for I − PUU . From here, note that all elements of
PULfL are less than one as all labels are 0 or 1, and P is positive in all terms and row normalized
to have rowsums of 1. Therefore,
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∥f(σ)∥ = ∥(I − PUU)
−1PULfL∥ ≤

1

λmin

∥PULfL∥ ≤
√
n

λmin

where the first inequality holds via Lemma 2.6.5.

We now have that ∥f(σ)∥ is bounded by
√
n

λmin(I−PUU )
on [σmin, σmax]. To find an ϵ approxima-

tion in the sense ∥f − fϵ∥ ≤ ϵ, we set

ϵ′ = ϵλmin(I − PUU) ≤
√
nϵ

maxσ∈[σmin,σmax] f(σ)

and note
∥f − fϵ′∥ ≤ ϵ′∥f∥ ≤ ϵ

We consider this process for ∂f
∂σ

as well since ∂f
∂σ

is bounded by 1
ϵλmin(I−PUU )

. Setting ϵ′ =

ϵ2λmin(I − PUU), ∣∣∣∣
∂f

∂σ
− ∂f

∂σ ϵ

∣∣∣∣ ≤ ϵ′
∂f

∂σ
≤ ϵ

holds. Finally, letting

ϵ′ =

√
nϵ2λmin(I − PUU)

3

we achieve the desired result
∣∣∣∣f

∂f

∂σ
− fϵ′

∂f

∂σ ϵ′

∣∣∣∣ < ϵ′f + ϵ′
∂f

∂σ
+ ϵ′2 < ϵ.

Next we analyze the number of iterations of the CG method used. By [6], finding ϵ′ approxima-
tions using the CG method on positive definite matrix G be done in

O(
√
κ(G)) log

1

ϵ′

iterations. Here we need an ϵ′ =
√
nϵ2λmin(I−PUU )

3
approximation for matrix I−PUU , so this takes

O

(√
κ(I − PUU) log

(
n

ϵλmin(I − PUU)

))

iterations of the CG method.

Approximate Efficient Soft-labeling of [66]

Algorithm 8 computes the soft label corresponding to the efficient algorithm of [66] and gradient
for a given value of graph parameter σ for a fixed unlabeled node i, by running the conjugate
gradient for given number of iterations.
We again provide an approximation guarantee for the algorithm.

49



Algorithm 8 NONPARAMETRICAPPROXIMATION(G, fL, i, σ, ϵ)[Ũ , λ]

1: Input: Graph G with labeled nodes fL and set of unlabeled nodes U , unlabeled node i ∈ U ,
query parameter σ, error tolerance ϵ.

2: Hyperparameters: Small subset Ũ ⊂ U (e.g. chosen by the greedy approach of [66], or via
[166]), labeled loss regularization coefficient λ (see [66]).

3: Output: approximate soft label f̃i,ϵ and approximate gradient ∂f̃i
∂σ ϵ

.
4: Let CG(A, b, t) represent running the conjugate gradient method for t iterations to solve

equation Ax = b.
5: Let tϵ be the number of iterations sufficient for ϵ-approximation (Thm 2.6.7).
6: Let f̃i,ϵ(σ) =

∑
j∈Ũ∪L Wij(σ)fj(σ)ϵ∑

j∈Ũ∪L Wij(σ)
, where

f(σ)ϵ = CG(A, λ−→y , tϵ),

A = λ∆L +Diag(W1n)−W,

(∆L)ij = δijδi∈L,
−→y = (y1, ..., yl, 0, ..., 0)

⊤.

7: Let ∂f̃i
∂σ ϵ

=
∑

j∈Ũ∪L

∂Wij
∂σ

fj(σ)+
∑

j∈Ũ∪L Wij(σ)
∂fj
∂σ ϵ

+f̃i,ϵ(σ)
∑

j∈Ũ∪L

∂Wij
∂σ∑

j∈Ũ∪L Wij
, where

∂f

∂σ ϵ
= −CG(A,

∂A

∂σ
f, tϵ),

∂A

∂σ
= Diag

(
∂W

∂σ
1n

)
− ∂W

∂σ
,

∂Wij

∂σ
=

2Wijd
2
ij

σ3
.

8: return f̃i,ϵ(σ),
∂f̃i
∂σ ϵ

.

Theorem 2.6.7. Suppose the function f : R → R is convex and differentiable, and that its
gradient is Lipschitz continuous with constant L > 0, i.e. we have that |f ′(x)−f ′(y)| ≤ L|x−y|
for any x, y. Then for some σ ∈ [σmin, σmax], where

∣∣∂f
∂σ

∣∣ ∈ O
(

1
ϵλmin(A)

)
on [σmin, σmax], κ(A)

is condition number of matrix A and λmin(A) is the minimum eigenvalue of A, we can find an ϵ

approximation of f̃u(σ) · ∂f̃u∂σ
achieving

∣∣∣f̃u(σ)∂f̃u∂σ
−
(
f̃u(σ)

∂f̃u
∂σ

)
ϵ

∣∣∣ < ϵ, where f̃u(σ),
∂f̃u
∂σ

are as
described in Algorithm 8 using
O
(√

κ(A) log
(

λ(|LLabels|+|ŨLabels|)
ϵσminλmin(A)

))
conjugate gradient iterations. Here LLabels and ŨLabels are

sets of labels as described in Algorithm 8, and λ is the parameter passed into Algorithm 8.

Proof. As noted in the proof of 2.6.6, the grounded Laplacian A is positive definite. We can now
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bound A−1 as in Theorem 2.6.6 and note that

A−1λ−→y ≤
λ
√
|LLabels|

λmin(A)

via Lemma 2.6.5 as the vector −→y contains at most Llabels elements with value 1. Note that λ is
the constant passed in to Algorithm 8, and λmin(A) is the smallest eigenvalue of A.

Next, we argue that we can find ϵ approximations of f, ∂f
∂σ

with ϵ′ =
√

|LLabels|ϵ2λmin(A)

λ
similarly

to Theorem 6 as well. From here we consider f̃(σ) and note that
∣∣∣∣∣

∑
j∈Ũ∪LWij(σ)f(σ)∑

j∈Ũ∪L Wij

−
∑

j∈Ũ∪L Wij(σ)f(σ)ϵ∑
j∈Ũ∪L Wij

∣∣∣∣∣ <
∣∣∣∣∣

∑
j∈Ũ∪L Wij∑
j∈Ũ∪L Wij

ϵ

∣∣∣∣∣ = ϵ

Finally, we show that the result holds for ∂f̃i
∂σ

, noting we have proven the result for both f̃i,ϵ and
∂f
∂σ ϵ

, and noting that we have exact values for Wij and ∂Wij

∂σ

∣∣∣∣∣
∂f̃i
∂σ ϵ
− ∂f̃i

∂σ

∣∣∣∣∣ =
∑

j∈Ũ∪L Wij(σ)ϵ+ ϵ
∑

j∈Ũ∪L
∂Wij

∂σ∑
j∈Ũ∪LWij(σ)

= ϵ+ ϵ

∑
j∈Ũ∪L

∂Wij

∂σ∑
j∈Ũ∪LWij(σ)

= ϵ+
2ϵ

σ3

∑
j∈Ũ∪L e

−
d2ij

σ2 d2ij
∑

j∈Ũ∪L e
−

d2
ij

σ2

≤ ϵ+
2ϵ

σ3

∑

j∈Ũ∪L

e−
d2ij

2σ2 dij (Cauchy-Schwartz inequality)

≤ ϵ+
2ϵ

σ3

∑

j∈Ũ∪L

σe−
1
2 (max of f(x) = xe−

x2

2c2 at x = c)

≤ ϵ

(
1 +

2(|LLabels|+ |ŨLabels|)
σ2

)

≤ ϵ

(
1 +

2(|LLabels|+ |ŨLabels|)
σ2
min

)
.

In a similar manner to Theorem 6, we need

ϵ′ =

√
|LLabels|ϵ2λmin(A)

λ

to achieve ϵ approximations of ∂f
∂σ

and f̃ . Setting

ϵ′′ =
ϵ2σ2

minλmin(A)

(2(|LLabels|+ |ŨLabels|) + σ2
min)

√
|LLabels|λ
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we also achieve ∣∣∣∣∣
∂f̃i
∂σ ϵ′

− ∂f̃i
∂σ

∣∣∣∣∣ < ϵ.

As a result, we obtain the desired bound
∣∣∣∣∣f̃u(σ)

∂f̃u
∂σ
−

(
f̃u(σ)

∂f̃u
∂σ

)

ϵ

∣∣∣∣∣ < ϵ.

Since we have that A is positive definite, via [6], This can be achieved in

O

(√
κ(A) log

1

ϵ′′

)
= O

(
√
κ(A) log

(
λ(|LLabels|+ |ŨLabels|)

ϵσminλmin(A)

))

iterations of the CG method.

2.6.4 Convergence of Nesterov’s Gradient Descent and Newton’s Method
In this section we provide useful lemmas that provide convergence analysis for Nesterov’s gradi-
ent descent and Newton’s method, when working with approximate gradients. First we provide
a guarantee for Nesterov’s method in Theorem 2.6.8, which uses the result of [64] to analyse our
algorithm.
Theorem 2.6.8. Suppose the function f : R → R is convex and differentiable, and that its
gradient is Lipschitz continuous with constant L > 0, i.e. we have that |f ′(x)−f ′(y)| ≤ L|x−y|
for any x, y. Then if we run Nesterov’s method to minimize g(σ) = (f(σ)− 1

2
)2 on some range

[σmin, σmax] where
∣∣∂f
∂σ

∣∣ < 1
ϵλmin(GA)

using ∂g
∂σ

as defined in Algorithm 7 and finding soft labels
and derivatives as defined by some algorithm A, we can achieve an ϵ approximation σ∗

ϵ of the
optimal result σ∗ satisfying |σ∗

ϵ − σ∗| < ϵ in O(log log 1
ϵ
) iterations of Nesterov’s method. We

use O(CGA(
ϵ

42(σmax−σmin)
) log log 1

ϵ
) conjugate gradient iterations overall, where CGA(ϵ

′) is the
number of conjugate gradient iterations used by algorithm A to achieve ϵ′ approximations of
f, ∂f

∂σ
satisfying |fu,ϵ(σ)∂f∂σ ϵ

− fu(σ)
∂f
∂σ
| < ϵ′.

Proof. First, note that
∣∣∣∣
∂gu
∂σ
− ∂gu

∂σ ϵ′

∣∣∣∣ =
∣∣∣∣2
(
fu(σ)−

1

2

)(
∂fu
∂σ

)
− 2

(
fu(σ)ϵ′ −

1

2

)(
∂fu
∂σ ϵ′

)∣∣∣∣

≤ 4ϵ′fu(σ)
∂fu(σ)

∂σ
+ 2(ϵ′)2fu(σ)

∂fu(σ)

∂σ
+ ϵ′

∂fu(σ)

∂σ

≤ 7

∣∣∣∣fu(σ)
∂fu
∂σ
−
(
fu(σ)

∂fu
∂σ

)

ϵ

∣∣∣∣ .

Letting
ϵ′ =

ϵ

42(σmax − σmin)
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we find ϵ′ approximations of f and ∂fu
∂σ

in CGA(ϵ
′) steps. We can then bound

∣∣∣∣
(
∂g

∂σ

)

ϵ′
−
(
∂g

∂σ

)∣∣∣∣ ≤
ϵ

6(σmax − σmin)
.

On compact set [σmin, σmax] with this bound, we then have that

∣∣∣∣
〈(

∂g

∂σ

)

ϵ′
−
(
∂g

∂σ

)
, y − z

〉∣∣∣∣ ≤
ϵ

6
∀y, z ∈ [σmin, σmax].

With this, [64] shows that Nesterov’s accelerated gradient descent using an approximate gradi-
ent will converge to within ϵ of the optimal σ∗ ∈ [σmin, σmax] in O( 1√

ϵ
) complexity. This yields

O(log log 1
ϵ
) steps until convergence.

Next we analyze the number of iterations of the CG method used. We called algorithm A

O(log log 1
ϵ
) times, each time using CGA(ϵ

′) = CGA

(
ϵ

42(σmax−σmin)

)
iterations. This yields

O

(
CGA

(
ϵ

42(σmax − σmin)

)
log log

1

ϵ

)

overall iterations of the CG method to find σ∗.

We also provide an analysis for convergence of Newton’s method using approximate gradients
in Theorem 2.6.9.

Theorem 2.6.9. Suppose the function f : R → R has multiplicity 2 at optimal point x∗, with
f(x∗) = 0. If Newton’s accelerated method xn+1 = xn − 2 f(xn)

f ′(xn)
coverges quadratically, then so

does an epsilon approximation xn+1 = xn − f(xn)
f ′(xn)ϵ

satisfying |f ′(x)ϵ − f ′(x)| ≤ ϵ|f(x)|∀x ∈ R

Proof. First, quadratic convergence of accelerated Newton’s method gives us en+1 ≤ Le2n for
some constant L, where en = x∗ − xn is the error for the accelerated Newton’s method update,
and xn+1 = xn − 2 f(xn)

f ′(xn)
.

Using the Lagrange form of the Taylor series expansion, we see that

f(xn) = f(x∗) + f ′(x∗)(x∗ − xn) + (x∗ − xn)f
′′(ξ)

with ξ between xk and x∗. Letting x∗ be the optimal point with f(x∗) = 0, f ′(x∗) = 0 by
multiplicity 2, we see that f(xk) = (x∗ − xn)f

′′(ξ). Now to handle the ϵ-approximate case note
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(a) MNIST (b) Omniglot (c) CIFAR-10

Figure 2.8: Loss for different unweighted graphs as a function of the threshold r.

that

en+1 = x∗ − xn − 2
f(xk)

f ′(xn)ϵ

≤ x∗ − xn − 2
f(xk)

f ′(xn)(1 + ϵ)

= x∗ − xn −
2f(xk)

f ′(xn)
+

2ϵ

1 + ϵ
f(xn)

≤ Le2n +
2ϵ

1 + ϵ
f(xn)

≤ Le2n +
2ϵ

1 + ϵ
(x∗ − xn)

2f ′′(ξ)

≤
(
L+

2ϵ

1 + ϵ
f ′′(ξ)

)
e2n

as xn → x∗, we see that this is quadratic convergence if we are sufficiently close to x∗ (f ′′(ξ) <
Cf ′′(x∗)∀ξ ∈ [xn, x

∗]).

2.7 Experiments

In this section we evaluate the performance of our learning procedures when finding application-
specific semi-supervised learning algorithms (i.e. graph parameters). Our experiments demon-
strate that the best parameter for different applications varies greatly, and that the techniques
presented in this paper can lead to large gains. We will look at image classification based on
standard pixel embedding for different datasets.

Setup: We consider the task of semi-supervised classfication on image datasets. We restrict
our attention to binary classification and pick two classes for each data set. We then draw random
subsets of the dataset (with class restriction) of size n = 100 and randomly select L (10 ≤
L ≤ 20) examples for labeling. For any data subset S, we measure distance between any pairs
of images using the L2 distance between their pixel intensities. We would like to determine
data-specific parameters r and σ which lead to good weighted and unweighted graphs for semi-
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(a) MNIST (b) Omniglot (c) CIFAR-10

Figure 2.9: Loss for different weighted graphs as a function of the parameter σ.

supervised learning on the datasets. We will optimize the harmonic function objective (Table
2.1) and round the fractional labels f to make our predictions.

Data sets: We use three popular benchmark datasets — MNIST, Omniglot and CIFAR-10.
The MNIST dataset [107] contains images of hand-written digits from 0 to 9 as 28 × 28 binary
images, with 5000 training examples for each class. We consider examples with labels 0 or 1.
We generate a random semi-supervised learning instance from this data by sampling 100 random
examples and further sampling L = 10 random examples from the subset for labeling. Omniglot
[105] has 105 × 105 binary images of handwritten characters across 30 alphabets with 19,280
examples. We consider the task of distinguishing alphabets 0 and 1, and set L = 20 in this
setting. CIFAR-10 [156] has 32× 32 color images (an integer value in [0, 255] for each of three
colors) for object recognition among 10 classes. Again we consider objects 0 and 1 and set
L = 20.

Results and discussion: For the MNIST dataset we get optimal parameters with near-perfect
classification even with small values of L, while the error of the optimal parameter is∼ 0.2−0.3
even with larger values of L, indicating differences in the inherent difficulties of the classification
tasks (like label noise and how well separated the classes are). We examine the full variation of
performance of graph-based semi-supervised learning for all possible graphs G(r) (rmin < r <
rmax) and G(σ) for σ ∈ [0, 10] (Figures 2.8, 2.9). The losses are piecewise constant and can
have large discontinuities in some cases. The optimal parameter values vary with the dataset, but
we observe at least 10% gap in performance between optimal and suboptimal values within the
same dataset.

Another interesting observation is the variation of optima across subsets, indicating trans-
ductively optimal parameters may not generalize well. We plot the variation of loss with graph
parameter σ for several subsets of the same size N = 100 for MNIST and Omniglot datasets in
Figure 2.10. In MNIST we have two optimal ranges in most subsets but only one shared opti-
mum (around σ = 2) across different subsets. This indicates that local search based techniques
that estimate the optimal parameter values on a given data instance may lead to very poor per-
formance on unseen instances. The CIFAR-10 example further shows that the optimal algorithm
may not be easy to empirically discern.

We also implement our online algorithms and compute the average regret (i.e. excess error
in predicting labels of unlabeled examples over the best parameter in hindsight) for finding the
optimal graph parameter σ for the different datasets. To obtain smooth curves we plot the average
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(a) MNIST (b) Omniglot (c) CIFAR-10

Figure 2.10: Comparing different subsets of the same problem.

(a) MNIST (b) Omniglot (c) CIFAR-10

Figure 2.11: Average regret vs. T for online learning of parameter σ

over 50 iterations for learning from 50 problem instances each (T = 50, Figure 2.11). We
observe fast convergence to the optimal parameter regret for all the datasets considered. The
starting part of these curves (T = 0) indicates regret for randomly setting the graph parameters,
averaged over iterations, which is strongly outperformed by our learning algorithms as they learn
from problem instances.

The results in this chapter are joint work with Nina Balcan [10] and Maxwell Jones [152].
Existing results have appeared in NeurIPS 2021, where the work was selected for an Oral pre-
sentation (top 1% of submissions), and in UAI 2023.
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Chapter 3

Regularized regression

Ridge regression [95, 159], LASSO [157], and their generalization the ElasticNet [92] are among
the most popular algorithms in machine learning and statistics, with applications to linear clas-
sification, regression, data analysis, and feature selection. Given a supervised dataset (X, y) ∈
Rm×p × Rm with m datapoints and p features, these algorithms compute the linear predictor

β̂
(X,y)
λ1,λ2

= argminβ∈Rp∥y −Xβ∥22 + λ1∥β∥1 + λ2∥β∥22 (3.1)

Here λ1, λ2 ≥ 0 are regularization coefficients constraining the ℓ1 and ℓ2 norms, respectively, of
the model β. For general λ1 and λ2 the above algorithm is the ElasticNet, while setting λ1 = 0
recovers Ridge and setting λ2 = 0 recovers LASSO.

These coefficients play a crucial role across fields: in machine learning controlling the norm
of β implies provable generalization guarantees and prevent over-fitting in practice [125], in data
analysis their combined use yields parsimonious and interpretable models [92], and in Bayesian
statistics they correspond to imposing specific priors on β [127]. In practice, λ2 regularizes
β by uniformly shrinking all coefficients, while λ1 encourages the model vector to be sparse.
This means that while they do yield learning-theoretic and statistical benefits, setting them to be
too high will cause models to under-fit the data. The question of how to set the regularization
coefficients becomes even more unclear in the case of the ElasticNet, as one must juggle trade-
offs between sparsity, feature correlation, and bias when setting both λ1 and λ2 simultaneously.
As a result, there has been intense empirical and theoretical effort devoted to automatically tuning
these parameters.

In this chapter, we study a variant on the above well-established and intensely studied for-
mulation. The key distinction is that instead of a single dataset (X, y), we consider a collection
of datasets or instances of the same underlying regression problem (X(i), y(i)) and would like
to learn a pair (λ1, λ2) that selects a model in equation (3.1) that has low loss on a validation
dataset. This can be useful to model practical settings, for example where new supervised data is
obtained several times or where the set of features may change frequently. We do not require all
examples across datasets to be i.i.d. draws from the same data distribution, and can capture more
general data generation scenarios like cross-validation and multi-task learning. Despite these
advantages, we remark that our problem formulation is quite different from the standard single
dataset setting. Our formulation treats the selection of regularization coefficients as data-driven
algorithm design, which is often used to study combinatorial problems [7, 84].
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Formal setup. Given data (X, y) with X ∈ Rm×p and y ∈ Rm, consisting of m labeled examples
with p features, we seek estimators β ∈ Rp which minimize the regularized loss. Popular meth-
ods for regularized least-squares regression (including LASSO and ElasticNet) can be expressed
as computing the solution of an optimization problem given by

β̂
(X,y)
λ,f ∈ argminβ∈Rp ∥y −Xβ∥22 + ⟨λ, f(β)⟩

where f : Rp → Rd
≥0 gives the regularization penalty for estimator β, λ ∈ Rd

≥0 is the regulariza-
tion parameter, and d is the number of regularization parameters. d = 1 for Ridge and LASSO,
and d = 2 for the ElasticNet. Setting f = f2 with f2(β) = ∥β∥22 yields Ridge regression, and
setting f(β) = f1(β) := ∥β∥1 corresponds to LASSO. Also using fEN(β) := (f1(β), f2(β))
gives the ElasticNet with regularization parameter λ = (λ1, λ2). Note that we use the same λ
(with some notational overloading) to denote the regularization parameters for ridge, LASSO, or
ElasticNet. We write β̂(X,y)

λ,f as simply β̂λ,f when the dataset (X, y) is clear from context. On any
instance x ∈ Rp from the feature space, the prediction of the regularized estimator is given by
the dot product ⟨x, β̂λ,f⟩. The average squared loss over a dataset (X ′, y′) with X ′ ∈ Rm′×p and

y′ ∈ Rm′ is given by lr(β̂λ,f , (X
′, y′)) = 1

m′

∥∥∥y′ −X ′β̂λ,f

∥∥∥
2

2
. By setting (X ′, y′) to be the training

data (X, y), we get the training loss lr(β̂λ,f , (X, y)). We use (Xval, yval) to denote a validation
split.

Distributional and Online Settings. In the distributional or statistical setting, we receive a
collection of n instances of the regression problem P (i) = (X(i), y(i), X

(i)
val , y

(i)
val) ∈ Rmi,pi,m′

i
:=

Rmi×pi × Rmi × Rm′
i×pi × Rm′

i for i ∈ [n] generated i.i.d. from some problem distribution
D. The problems are in the problem space given by Πm,p =

⋃
m1≥0,m2≤m,p1≤pRm1,p1,m2 (note

that the problem distribution D is over Πm,p). On any given instance P (i) the loss is given by
the squared loss on the validation set, ℓEN(λ, P

(i)) = lr(β̂
(X(i),y(i))
λ,fEN

, (X
(i)
val , y

(i)
val)). On the other

hand, in the online setting, we receive a sequence of T instances of the ElasticNet regression
problem P (i) = (X(i), y(i), X

(i)
val , y

(i)
val) ∈ Πm,p for i ∈ [T ] online. On any given instance P (i),

the online learner is required to select the regularization parameter λ(i) without observing y
(i)
val,

and experiences loss given by ℓ(λ(i), P (i)) = lc(β̂
(X(i),y(i))

λ(i),fEN
, (X

(i)
val , y

(i)
val)). The goal is to minimize

the regret w.r.t. choosing the best fixed parameter in hindsight for the same problem sequence,
i.e. RT =

∑T
i=1 ℓ(λ

(i), P (i))−minλ

∑T
i=1 ℓ(λ, P

(i)). We also define average regret as 1
T
RT and

expected regret as E[RT ] where the expectation is over both the randomness of the loss functions
and any random coins used by the online algorithm.

3.1 A structural result
Consider the class of algorithms consisting of ElasticNet regressors for different values of λ =
(λ1, λ2) ∈ (0,∞)×(0,∞). We seek to solve problems of the form P = (X, y,Xval, yval) ∈ Πm,p,
where (X, y) is the training set, (Xval, yval) is the validation set with the same set of features, and
m, p are upper bounds on the number of examples and features respectively in any dataset. Let
HEN = {ℓEN(λ, ·) | λ ∈ (0,∞) × (0,∞)} denote the set of loss functions for the class of algo-
rithms consisting of ElasticNet regressors for different values of λ ∈ R+×R+. Additionally, we
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will consider information criterion based loss functions, ℓAIC
EN (λ, P ) = ℓEN(λ, P ) + 2||β̂(X,y)

λ,fEN
||0

and ℓBIC
EN (λ, P ) = ℓEN(λ, P ) + 2||β̂(X,y)

λ,fEN
||0 logm [1, 149]. Let HAIC

EN and HBIC
EN denote the corre-

sponding sets of loss functions. These criteria are popularly used to compute the squared loss
on the training set, to give alternatives to cross-validation. We do not make any assumption on
the relation between training and validation sets in our formulation, so our analysis can capture
these settings as well. To state our structural result we will need the following definition.
Definition 14 (Piecewise structured functions, [23]). A function class H ⊆ RX that maps a
domain X to R is (F,G, k)-piecewise decomposable for a class G ⊆ {0, 1}X of boundary
functions and a class F ⊆ RX of piece functions if the following holds: for every h ∈ H ,
there are k boundary functions g1, . . . , gk ∈ G and a piece function fb ∈ F for each bit vector
b ∈ {0, 1}k such that for all x ∈ X , h(x) = fbx(x) where bx = (g1(x), . . . , gk(x)) ∈ {0, 1}k.
Intuitively, a real-valued function is piecewise-structured if the domain can be divided into pieces
by a finite number of boundary functions (say linear or polynomial thresholds) and the function
value over each piece is easy to characterize (e.g. constant, linear, polynomial). We start with
a helper lemma that characterizes the solution of the ElasticNet in terms of equicorrelation sets
and sign vectors (See Appendix A.2.1 for background details).
Lemma 3.1.1. Let X be a matrix with columns in the general position, and λ = (λ1, λ2) ∈
(0,∞) × [0,∞). The ElasticNet solution β̂λ,fEN

∈ argminβ∈Rp ∥y −Xβ∥22 + ⟨λ, fEN(β)⟩ is
unique for any dataset (X, y) and satisfies

β̂λ,fEN
= (XT

E XE + λ2I|E|)
−1XT

E y − λ1(X
T
E XE + λ2I|E|)

−1s

for some E ∈ [p] and s ∈ {−1, 1}p.

Proof. We start with the well-known characterization of the ElasticNet solution as the solution
of a LASSO problem on a transformed dataset, obtained using simple algebra [177]. Given any
dataset (X, y), the ElasticNet coefficients β̂λ,fEN

are given by β̂λ,fEN
= 1√

1+λ2
β̂∗
λ

1 where β̂∗
λ is

the solution for a LASSO problem on a modified dataset (X∗, y∗)

β̂∗
λ = argmin

β
∥y∗ −X∗β∥22 + λ∗

1f1(β)

with X∗ = 1√
1+λ2

(
X√
λ2Ip

)
, y∗ =

(
y
0

)
, and λ∗

1 =
λ1√
1+λ2

.

If the columns of X are in general position (Definition 37), then the same is true of X∗. For
E ⊆ [p], note that X∗

E
TX∗

E = 1
1+λ2

(XT
E XE +λ2I|E|) and X∗

E
Ty∗ = 1√

1+λ2
XT

E y. By Lemma A.2.2,
if E denotes the equicorrelation set of covariates and s ∈ {−1, 1}|E| the equicorrelation sign
vector for the LASSO problem, then the ElasticNet solution is given by

β̂λ,fEN
= c1 − c2λ1

where c1 =
1√

1+λ2
(X∗

E
TX∗

E)
−1X∗

E
Ty∗ = (XT

E XE + λ2I|E|)−1XT
E y, and

c2 =
1

1+λ2
(X∗

E
TX∗

E)
−1s = (XT

E XE + λ2I|E|)−1s.

1This corresponds to the “naive” ElasticNet solution in the terminology of [177]. They also define an ElasticNet
‘estimate’ given by

√
1 + λ2β̂

∗
λ with nice properties, to which our analysis is easily adapted.
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The following lemma helps determine the dependence of ElasticNet solutions on λ2.
Lemma 3.1.2. Let A be an r×s matrix. Consider the matrix B(λ) = (ATA+λIs)

−1 and λ > 0.
1. Each entry of B(λ) is a rational polynomial Pij(λ)/Q(λ) for i, j ∈ [s] with each Pij of

degree at most s− 1, and Q of degree s.
2. Further, for i = j, Pij has degree s − 1 and leading coefficient 1, and for i ̸= j Pij has

degree at most s− 2. Also, Q(λ) has leading coefficient 1.

Proof. Let G = ATA be the Gramian matrix. G is symmetric and therefore diagonalizable, and
the diagonalization gives the eigendecomposition G = EΛE−1. Thus we have

(ATA+ λIs)
−1 = (EΛE−1 + λEE−1)−1 = E(Λ + λIs)

−1E−1

But Λ is the diagonal matrix Diag(Λ11, . . . ,Λss), and therefore (Λ + λIs)
−1 = Diag((Λ11 +

λ)−1, . . . , (Λss + λ)−1). This implies the desired characterization, with Q(λ) = Πi∈[s](Λii + λ)
and

Pij(λ) = Q(λ)
s∑

k=1

Eik(E
−1)kj

Λkk + λ
=

s∑

k=1

(
Eik(E

−1)kjΠi∈[s]\k(Λii + λ)
)
,

with coefficient of λs−1 in Pij(λ) equal to
∑s

k=1Eik(E
−1)kj = I{i = j}.

We will now formally state our key structural result which is needed to establish our generaliza-
tion and online regret guarantees.
Theorem 3.1.3. Let L be a set of functions {lλ : Πm,p → R≥0 | λ ∈ R+ × R≥0} that map a
regression problem instance P ∈ Πm,p to the validation loss ℓEN(λ, P ) of ElasticNet trained with
regularization parameter λ = (λ1, λ2). The dual class L∗ is (F ,G, p3p)-piecewise decompos-
able, with F = {fq : L → R} consisting of rational polynomial functions fq1,q2 : lλ 7→

q1(λ1,λ2)
q2(λ2)

,
where q1, q2 have degrees at most 2p, and G = {gr : L → {0, 1}} consisting of semi-algebraic
sets bounded by algebraic curves gr : uλ 7→ I{r(λ1, λ2) < 0}, where r is a polynomial of degree
1 in λ1 and at most p in λ2.

Proof. Let P = (X, y,Xval, yval) ∈ Πm,p be a regression problem instance. By using the standard
reduction to LASSO [177] and well-known characterization of the LASSO solution in terms of
equicorrelation sets, we can characterize the solution β̂λ,fEN

of the Elastic Net as follows (Lemma
3.1.1):

β̂λ,fEN
= (XT

E XE + λ2I|E|)
−1XT

E y − λ1(X
T
E XE + λ2I|E|)

−1s

for some E ∈ [p] and s ∈ {−1, 1}p. Thus for any λ = (λ1, λ2), the prediction ŷ on any validation
example with features x ∈ Rp satisfies (for some E , s ∈ 2[p] × {−1, 1}p)

ŷj = xβ̂λ,fEN
= x(XT

E XE + λ2I|E|)
−1XT

E y − λ1x(X
T
E XE + λ2I|E|)

−1s

For any subset R ⊆ R2, if the signed equicorrelation set (E , s) is fixed over R, then the above
observation, together with Lemma 3.1.2 implies that the loss function ℓEN(λ, P ) is a rational
function of the form q1(λ1,λ2)

q2(λ2)
, where q1 is a bivariate polynomial with degree at most 2|E| and q2

is univariate with degree 2|E|.
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To show the piecewise structure, we need to demonstrate a set boundary functions G =
{g1, . . . , gk} such that for any sign pattern b ∈ {0, 1}k, the signed equicorrelation set (E , s) for
the region with sign pattern b is fixed. To this end, based on the observation above, we will
consider the conditions (on λ) under which a covariate may enter or leave the equicorrelation
set. We will show that this can happen only at one of a finite number of algebraic curves (with
bounded degrees).

Condition for joining E . Fix E , s. Also fix j /∈ E . If covariate j enters the equicorrelation
set, the KKT conditions (Lemma A.2.1) applied to the LASSO problem corresponding to the
ElasticNet (Lemma 3.1.1) imply

(x∗
j)

T (y∗ −X∗
E(c1 − c2λ

∗
1)) = ±λ∗

1,

where c1 = (X∗
E
TX∗

E)
−1X∗

E
Ty∗, c2 = (X∗

E
TX∗

E)
−1s, X∗ = 1√

1+λ2

(
X√
λ2Ip

)
, y∗ =

(
y
0

)
, and

λ∗
1 =

λ1√
1+λ2

. Rearranging, and simplifying, we get

λ∗
1 =

(x∗
j)

TX∗
E(X

∗
E
TX∗

E)
−1(X∗

E)
Ty∗ − (x∗

j)
Ty∗

(x∗
j)

TX∗
E(X

∗
E
TX∗

E)
−1s± 1

, or

λ1 =
xT
j XE(XE

TXE + λ2I|E|)−1XE
Ty − xT

j y

xT
j XE(XE

TXE + λ2I|E|)−1s± 1
.

Note that the terms (x∗
j)

TX∗
E = xT

j XE , (X∗
E)

Ty∗ = XT
E y, and (x∗

j)
Ty∗ = xT

j y do not
depend on λ1 or λ2 (the λ2 terms are zeroed out since j /∈ E). Moreover, (X∗

E
TX∗

E)
−1 =

(XE
TXE + λ2I|E|)−1. Using Lemma 3.1.2, we get an algebraic curve rj,E,s(λ1, λ2) = 0 with

degree 1 in λ1 and |E| in λ2 corresponding to addition of j /∈ E given E , s.
Condition for leaving E . Now consider a fixed j′ ∈ E , given fixed E , s. The coefficient of

j′ will be zero for λ∗
1 =

(c1)j′

(c2)j′
, which simplifies to λ1((XE

TXE + λ2I|E|)−1s)j′ = ((XE
TXE +

λ2I|E|)−1XE
Ty)j′ . Again by Lemma 3.1.2, we get an algebraic curve rj′,E,s(λ1, λ2) = 0 with

degree 1 in λ1 and at most |E| in λ2 corresponding to removal of j′ ∈ E given E , s.
Putting the two together, we get

∑p
i=0 2

i
(
p
i

)
((p− i) + i) = p3p algebraic curves of degree 1

in λ1 and at most p in λ2, across which the signed equicorrelation set may change. These curves
characterize the complete set of points (λ1, λ2) at which (E , s) may possibly change. Thus by
setting these p3p curves as the set of boundary functions G, E , s is guaranteed to be fixed for each
sign pattern, and the corresponding loss takes the rational function form shown above.

The exact same piecewise structure can be established for the loss function classes ℓAIC
EN (λ, ·) and

ℓBIC
EN (λ, ·). Given this piecewise structure, a challenge to learning values of λ that minimize the

loss function is that the function may not be differentiable (or may even be discontinuous, for the
information criteria based losses) at the piece boundaries, making well-known gradient-based
(local) optimization techniques inapplicable here. In the following, we will show that techniques
from data-driven design may be used to overcome this optimization challenge.
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3.1.1 A more refined structure
While the above struture is sufficient to establish a O(p2) bound on the pseudo-dimension using
results from [23], we establish a more refined structure below which can be used to obtain a
sharper O(p) bound.
Definition 15. A function class H ⊆ RY that maps a domain Y to R is (F , kF ,G, kG)−piece-
wise decomposable for a class G of boundary functions and a class F ∈ RY of piece functions
if the following holds: for every h ∈ H, (1) there are kG functions g(1), . . . , g(kG) ∈ G and a
function fbbb ∈ F for each bit vector bbb ∈ {0, 1}kG s.t. for all y ∈ Y , h(y) = hbbby(y) where
bbby = {(g(1)(y), . . . , g(kG)(y))} ∈ {0, 1}kG , and (2) there is at most kF different functions in F .
A key distinction from [23] is the finite bound kF on the number of different piece functions
needed to define any function in the class H. Under this definition we give the following more
refined structure for the ElasticNet loss function class by extending arguments from [28].
Theorem 3.1.4. Let HEN = {hEN(λ, ·) : Πm,p → R≥0 | λ ∈ R2

>0} the class of Elastic Net
validation loss function class. Consider the dual class H∗

EN = {h∗
P : HEN → R≥0 | P ∈ Πm,p},

where h∗
P (hEN(λ, ·)) = hEN(λ, P ). Then H∗

EN is (F , 3p,G, p3p)-piecewise decomposable, where
the piece function class F = {fq : HEN → R} consists at most 3p rational function fq1,q2 :

hEN(λ, ·) 7→ q1(λ1,λ2)
q2(λ1,λ2)

of degree at most 2p, and the boundary function class G = {gr : HEN →
{0, 1}} consists of semi-algebraic sets bounded by at most p3p algebraic curves gr : hEN(λ, ·) 7→
I{r(λ1, λ2) < 0}, where r is a polynomial of degree at most p.

Proof. Given a problem instance P = (X, y,Xval, yval) ∈ Πm,p, from Lemma 3.1.1, for each λ,
the solution β̂(λ) of the Elastic Net can be characterized as follow

β̂(λ) = (X⊤
E XE + λ2I|E|)

−1X⊤
E y − λ1(X

⊤
E XE + λ2I|E|)

−1s,

for some E ∈ [p] and s ∈ {±1}p. Therefore, the prediction ŷ on any validation example with
features x ∈ Rp is

ŷ = xβ̂(λ) = x[(X⊤
E XE + λ2I|E|)

−1X⊤
E y − λ1(X

⊤
E XE + λ2I|E|)

−1s].

This implies that: for any region R ⊂ R2
>0, if the equicorrelation set and sign vector (E , s)

is fixed over R, then the solution β̂(λ) and the prediction y corresponding to x is also fixed.
Consequently, within any region R where (E , s) remains unchanged, Lemma 3.1.2 establishes
that the validation loss function hEN(λ, P ) (associated with a given problem instance P ) is a
constant rational function of the form q1(λ1,λ2)

q2(λ1,λ2)
, where q1 and q2 are polynomials of degree at

most 2p (since 2 |E| ≤ 2p by definition). Notably, there are at most 3p distinct values of (E , s),
which implies that hEN(λ, P ) can take on at most 3p different polynomial forms.

The only remaining task is to examine the semi-algebraic sets and algebraic curves that sep-
arates region R. Consider such region R, in which the equicorrelation set and sign (E , s) is
fixed.

• Condition for a feature enters E : consider a feature j ̸∈ E , the condition for j to enters E
is

(x∗
j)

⊤(y∗ −X∗
E(c1 − c2λ

∗
1)) = ±λ∗

1
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where c1 = (X∗
E
⊤X∗

E)
−1, c2 = (X∗

E
⊤X∗

E)
−1s, X∗ = 1√

1+λ2

[
X√
λ2Ip

]
, y∗ =




y
0
...
0


. Simpli-

fying the equation above, we have

λ∗
1 −

(x∗
j)

⊤X∗
E(X

∗
EX

∗
E)

−1(X∗
E)

⊤y∗ − (x∗
j)

⊤y∗

(x∗
j)

⊤X∗
E(X

∗
E
⊤X∗

E)
−1s± 1

= 0, or

λ1(x
⊤
j (XEX

∗
E
⊤)−1XEs± 1)− x⊤

j XE(X
⊤
E XE + λ2I|E|)

−1X⊤
E y − x⊤

j y = 0,

which is an algebraic curve with the RHS is a polynomial of degree at most p.
• Condition for a feature leaves E : consider a feature j′ ∈ E . Similar to the previous case,

the condition for j′ to leave E can be described by an algebraic curve with the RHS as a
polynomial of degree at most p.

Finally, notice that there are at most
∑p

i=0

(
p
i

)
((p − i) + i) = p3p curves, across which the

equicorrelation set and sign (E , s) might change, which concludes the proof.
Using the GJ framework [35], one can show that if a function class H has its dual-class

H∗ is piece-wise decomposable (in the sense of Definition 15), and all the piece and boundary
functions are rational functions with upper bounded degree, then Pdim(H) is upper bounded.

Lemma 3.1.5. Consider the function classH = {h(a, ·) : X → R | a ∈ Rn} be a function class
parameterized by a ∈ RW . Consider the dual class H∗ = {hx(·) : Rn → R | x ∈ X}, where
hx(a) = h(a, x). Assume thatH∗ is (F , kF ,G, kG) piece-wise decomposable, and F , G contains
only rational functions in a of degree at most ∆. Then Pdim(F) = O(n log(∆(kF + kG))).

Proof. Given an input x ∈ X and a threshold t ∈ R, for any function h(a, ·) ∈ H corresponding
to parameter a, consider the computation Γx,t : H → {0, 1}, where

Γx,t(h(a, ·)) = I{h(a, x)− t ≥ 0}, for any h(a, ·) ∈ H.

Our goal now is to show that Γx,t is a GJ algorithm.
From assumptions, we know that the dual class H∗ is (F , kF ,G, kG) piece-wise decompos-

able, where F ,G consists of rational function in a of degree at most ∆. This implies that for any
h(a, ·) ∈ H, the function hx(a) = h(a, x) is a rational function of a, of which the form is one
of kF rational functions in F . Hence, to compute Γx,t(h(a, ·)), one needs to specify the closed-
form of h(a, ·), which is determined by binary-valued vector ba = {g(1)(a), . . . , g(kG)(a)}, and
can be calculated as conditional statements in the form I{g(i)(a) ≥ 0} for i ∈ kG . Therefore, we
conclude that the computation of Γx,t can be described by a GJ algorithm.

The predicate complexity of Γx,t is the total number of functions in F and G, which is equal
to kF + kG . The degree of Γx,t is the maximum degree of rational functions in F and G, which is
∆ from assumptions. Using [35], we conclude that Pdim(F) = O(n log(∆(kF + kG)).

Theorem 3.1.6. LetHEN = {hEN(λ, ·) : Π→ R≥0 | λ ∈ R2
>0} be the Elastic Net validation loss

function class that maps problem instance P to validation loss ℓval(λ, P ). Then Pdim(HEN) is
O(p).
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Proof. Given a problem instance P ∈ Πm,p and a threshold t ∈ R, for any validation loss
function hEN(λ, ·) ∈ HEN, consider the computation ΓP,t : HEN → {0, 1}, where

ΓP,t(h(λ, ·)) = I{h(λ, P )− t ≥ 0}, for any h(λ, ·) ∈ HEN.

From Theorem 3.1.4, for a given problem instance P , we know that the dual-class H∗
EN is

(F , 3p,G, p3p)−piecewise decomposable, where F consists at most 3p rational function of de-
gree at most 2p, and G consists of at most p3p algebraic curves of degree at most p. From Lemma
3.1.5, Pdim(HEN) = O(2 log(2p(p+ 1)3p) = O(p).

3.2 Learning to regularize the ElasticNet
We will consider the problem of learning provably good ElasticNet parameters for a given prob-
lem domain, from multiple datasets (problem instances) either available as a collection (Section
3.2.1), or arriving online (Section 3.2.3).

3.2.1 Distributional Setting
Our main result in this section is the following upper bound on the pseudo-dimension of the
classes of loss functions for the ElasticNet, which implies that in our distributional setting it is
possible to learn near-optimal values of λ with polynomially many problem instances.

Theorem 3.2.1. PDIM(HEN) = O(p), PDIM(HAIC
EN ) = O(p) and PDIM(HBIC

EN ) = O(p).

In our setting of learning from multiple problem instances, each sample is a dataset instance, so
the sample complexity is simply the number of regression problem instances needed to learn the
tuning parameters to any given approximation and confidence level.

To guarantee the boundedness of the considered validation loss function classes, we will
have the following assumptions for the data and regularization parameters. The first assumption
is that all features and target values in the training and validation examples are bounded. The
second assumption is that we only consider regularization coefficient values λ within an interval
[λmin, λmax]. In practice, those assumptions are naturally satisfied by data normalization.

Assumption 1 (Bounded covariate and label). We assume that all the feature vectors and target
values in training and validation set is upper-bounded by absolute constants R1 and R2, i.e.
max{∥X∥∞ , ∥Xval∥∞} ≤ R1, and max{∥y∥∞ , ∥yval∥∞} ≤ R2.

Assumption 2 (Bounded Coefficient). We assume that λ ∈ [λmin, λmax]
2 with λmin > 0.

Under Assumptions 2, 1, Theorem 3.2.1 immediately implies the following generalization guar-
antee for Elastic Net hyperparameter tuning.

Theorem 3.2.2. LetD be an arbitrary distribution over the problem instance space Πm,p. Under
Assumptions 1, 2, the loss functions inHEN have range bounded by some constant H . Then there
exists an algorithm s.t. for any ϵ, δ > 0, given N = O(H

2

ϵ2
(p+log(1

δ
))) sample problem instances
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drawn from D, the algorithm outputs a regularization parameter λ̂ such that with probability at
least 1− δ, EP∼DhEN(λ̂, P ) < minλ EP∼DhEN(λ, P ) + ϵ.

Discussion and applications. Computing the parameters which minimize the loss on the problem
samples (aka Empirical Risk Minimization, or ERM) achieves the sample complexity bound in
Theorem 3.2.2. Even though we only need polynomially many samples to guarantee the selec-
tion of nearly-optimal parameters, it is not clear how to implement the ERM efficiently. Note
that we do not assume the set of features is the same across problem instances, so our approach
can handle “feature reset” i.e. different problem instances can differ in not only the number of
examples but also the number of features. Moreover, as a special case application, we consider
the commonly used techniques of leave-one-out cross validation (LOOCV)2 and Monte Carlo
cross validation (repeated random test-validation splits, typically independent and in a fixed pro-
portion). Given a dataset of size mtr, LOOCV would require mtr regression fits which can be
inefficient for large dataset size. Alternately, we can consider draws from a distribution DLOO

which generates problem instances P from a fixed dataset (X, y) ∈ Rm+1×p × Rm+1 by uni-
formly selecting j ∈ [m + 1] and setting P = (X−j∗, y−j, Xj∗, yj). Theorem 3.2.2 now implies
that Õ(p/ϵ2) iterations are enough to determine an ElasticNet parameter λ̂ with loss within ϵ
(w.h.p.) of the parameter λ∗ obtained from running the full LOOCV.

Remark 2. While our result implies polynomial sample complexity, the question of learning the
provably near-optimal parameter efficiently is left open.

Boundedness of the validation loss function

We will now formally show the boundedness of the validation loss function class of Elastic Net
HEN, which is essential for establishing learning guarantees. The following lemma essentially
shows that under mild assumptions on the value of data and the search space of hyperparameters,
the validation loss function classHEN is uniformly bounded by some constant H > 0.

Lemma 3.2.3. Under Assumptions 1 and 2, there exists a uniform constant H > 0 so that for
all hEN(λ, ·) ∈ HEN = {hEN(λ, ·) : Πm,p → R≥0 | λ ∈ [λmin, λmax]}, we have ∥hEN(λ, ·)∥∞ =
supP∈Πm,p

|hEN(λ, P )| ≤ H .

Proof. For any problem instance P = (X, y,Xval, yval) ∈ Πm,p, and for any λ = (λ1, λ2) ∈
[λmin, λmax]

2, consider the optimization problem for training set

argmin
β

F (β), (3.2)

where F (β) = 1
2m
∥y −Xβ∥22 + λ1 ∥β∥1 + λ2 ∥β∥22. If we set β = 0⃗, we have

F (⃗0) =
1

2m
∥y∥22 ≤ C,

2While standard LOOCV involves computing all mtr train-validation splits, corresponding to leaving out a
single training example in each split, we also consider DLOO which corresponds to computing a series of training-
validation splits with a uniformly random training example as the validation set.
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for some constant C that only depends on R2, due to Assumption 2. Let β̂(X,y)(λ) be the optimal
solution of 3.2, we have

C ≥ F (β̂(X,y)(λ)) ≥ λ1

∥∥∥β̂(X,y)(λ)
∥∥∥
1
+ λ2

∥∥∥β̂(X,y)(λ)
∥∥∥
2

2
.

Therefore, for any problem instance P , the solution of the training optimization problem β̂(X,y)(λ)

has bounded norm, i.e.
∥∥∥β̂(X,y)(λ)

∥∥∥
1
,
∥∥∥β̂(X,y)(λ)

∥∥∥
2

2
≤ C

λmin
, which implies

hEN(λ, P ) =
1

2m

∥∥∥yval − β̂(X,y)(λ)Xval

∥∥∥
2

2
≤ 1

2m
∥yval∥22 +

1

2m

∥∥∥β̂(X,y)(λ)Xval

∥∥∥
2

2
≤ H,

for some constant H (that only depends on R1, R2 and λmin).

3.2.2 Lower bound
Remarkably, we are able to establish a matching lower bound on the pseudo-dimension of the
Elastic Net loss function class, parameterized by the regularization parameters. Note that every
Elastic Net problem can be converted to an equivalent LASSO problem [177]. In fact, we show
something stronger, that the pseudo-dimension of even the LASSO regression loss function class
(parameterized by regression coefficient λ1) is Ω(p), from which the above observation follows
(by taking λ2 = 0 in our construction). Our proof of the lower bound adapts the “adversarial strat-
egy” of [115] which is used to design a worst-case LASSO regularization path. While [115] con-
struct a single dataset to bound the number of segments in the piecewise-linear LASSO solution
path, we create a collection of problem instances for which all above-below sign patterns may be
achieved by selecting regularization parameters from different segments of the solution path.

Theorem 3.2.4. LetHLASSO be a set of functions {hLASSO(λ, ·) : Πm,p → R≥0 | λ ∈ R+} that map
a regression problem instance P ∈ Πm,p to the validation loss hLASSO(λ, P ) of LASSO trained
with regularization parameter λ. Then Pdim(HLASSO) is Ω(p).

Proof. Our proof of the lower bound in Theorem 3.2.4 builds on the “adversarial strategy” due to
[115], where a data set (X, y) is constructed with the largest possible number of segments in the
LASSO regularization path, for any p. Here we will include and discuss the main results from
[115] that are useful in understanding our proof.

Our approach is to construct N = p problem instances such that all 2N above-below patterns
(w.r.t. witness values) for the validation loss are achieved by choosing appropriate points (λ val-
ues) on the piecewise linear regularization path of the training instance, by utilizing the property
that all unsigned sparsity patterns are achieved by the construction of [115]. In more detail, re-
call that the signed sparsity pattern {η1, . . . , ηk} of a piecewise-linear regularization path P for
dataset (X, y) is a sequence of vectors in {±1, 0}p corresponding to the signs of the coefficients
of the LASSO fit β̂(X,y)(λ) in consecutive pieces of P , i.e. ηj = (sign(β̂(X,y)

i (λj)))
p
i=1 where λj

corresponds to an interior point of the j-th piece of P . Let’s further denote by UP = {ηj | 1 ≤
j ≤ k} where ηj = (|ηj1|, . . . , |ηjp|) ∈ {0, 1}p as the unsigned sparsity pattern of path P .
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We use the same training set (X, y) (but different validation sets) across our problem in-
stances, namely the one with (3p + 1)/2 segments constructed by Mairal and Yu (Theorem 1 of
[115]). A useful property of this problem instance is that it achieves all the unsigned sparsity
patterns, which follows from the following proposition.

Proposition 3.2.5 ([115]). Consider y in Rn and X in Rn×p such that XE is full rank for each
E ⊆ [p] and y is in the span of X . Denote by P the regularization path of the Lasso problem cor-
responding to (X, y), and by k the number of linear segments of P . Then, there exist y′ in Rn+1

and X ′ in R(n+1)×(p+1) such that the regularization path P ′ of the Lasso problem associated to
(X ′, y′) has 3k − 1 linear segments. Moreover, let {η1 = 0, η2, . . . , ηk} denote the sequence
of sparsity patterns in {−1, 0, 1}p of P (the coordinate-wise signs of the solutions β̂(X,y)(λ)),
ordered from large to small values of λ. The sequence of sparsity patterns in {−1, 0, 1}p+1 of the
new path P ′ is the following:

{[
η1
0

]
,

[
η2
0

]
, . . . ,

[
ηk
0

]
,

[
ηk
1

]
,

[
ηk−1

1

]
, . . . ,

[
η1 = 0

1

]
,

[
−η2
1

]
, . . . ,

[
−ηk
1

]}
.

Formally, one could use a simple inductive argument to establish the above claim. In the base
case (p = 1), X = y = [1] and it is easy to verify that the regularization path P1 consists of two
segments with UP1 = {0, 1}. In the inductive case (p+1 features), consider the first 2k sign pat-
terns for the path P ′ in Proposition 3.2.5. Using the inductive hypothesis, it is readily verified that
the number of unsigned sparsity patterns in the regularization path P ′ is |UP ′| = 2|UP | = 2p+1.

In other words, all subsets of the p features appear as “active sets” of coefficients along the
regularization path of the training set (X, y). By carefully setting the validation sets across the
p problem instances in our proof of Theorem 3.2.4, we are able to ensure that the validation loss
is non-zero exactly in the subset of problems corresponding to the unsigned sparsity patterns of
β̂(X,y)(λ). Thus, the property that all 2p unsigned sparsity patterns are achieved for certain values
of λ implies that all 2N validation loss patterns are achieved w.r.t. witnesses 0p.

3.2.3 Online Learning

We further extend our results to learning the regularization coefficients given an online sequence
of regression problems, such as when one needs to solve a new regression problem each day.
Unlike the distributional setting above, we will not assume a fixed problem distribution and our
results will hold for an adversarial sequence of problem instances. We will need mild assump-
tions on the data, namely boundedness of feature and prediction values and ‘smoothness’ of
predictions.

Our first assumption is that all feature values and predictions are bounded, for training as
well as validation examples.

Assumption 3. The predicted variable and all feature values are bounded by an absolute con-
stant R, i.e. max{||X(i)||∞,∞, ||y(i)||∞, ||X(i)

val ||∞,∞, ||y(i)val||∞} ≤ R.

We assume that the predicted variable y in the training set comes from a κ-bounded (i.e. smooth)
distribution. Moreover, the online adversary is allowed to change the distribution as long as it is
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κ-bounded. Note that our assumption also captures common data preprocessing steps, for exam-
ple the jitter parameter in the popular Python library scikit-learn [135] adds a uniform noise to
the y values to help model stability. The assumption is formally stated as follows:

Assumption 4 (Smooth predictions). The predicted variables y(i) in the training set are drawn
from a joint κ-bounded distribution, i.e. for each i, the variables y(i) have a joint distribution
with probability density bounded by κ.

Under these assumptions, we can show that it is possible to learn the ElasticNet parameters with
sublinear expected regret when the problem instances arrive online. The learning algorithm that
achieves this regret is a continuous variant of the classic Exponential Weights algorithm [15, 51].
It samples points in the domain with probability inversely proportional to the exponentiated loss.

Our key contribution is to show that the loss sequence is dispersed (Definition 2) under the
above assumptions. This involves establishing additional structure for the problem, specifically
about the location of boundary functions in the piecewise structure from Theorem 3.1.3.

Theorem 3.2.6. Suppose Assumptions 3 and 4 hold. Let l1, . . . , lT : C2 → R≥0 denote an
independent sequence of losses (e.g. fresh randomness is used to generate the validation set fea-
tures in each round) as a function of the ElasticNet regularization parameter λ = (λ1, λ2),
li(λ) = lr(β̂

(X(i),y(i))
λ,fEN

, (X
(i)
val , y

(i)
val)), for compact C ⊂ R+. The sequence of functions is 1

2
-

dispersed, and there is an online algorithm with Õ(
√
T )3 expected regret. The result also holds

for loss functions adjusted by information criteria AIC and BIC.

Proof. We start with the piecewise-decomposable characterization of the dual class function in
Theorem 3.1.3. On any fixed problem instance P ∈ Πm,n, as the parameter λ is varied in the
loss function ℓEN(·, P ) of ElasticNet trained with regularization parameter λ = (λ1, λ2), we have
the following piecewise structure. There are k = p3p boundary functions g1, . . . , gk for which
the transition boundaries are algebraic curves ri(λ1, λ2), where ri is a polynomial with degree
1 in λ1 and at most p in λ2. Also the piece function fb for each sign pattern b ∈ {0, 1}k is a
rational polynomial function qb1(λ1,λ2)

qb2(λ2)
, where qb1 , q

b
2 have degrees at most 2p, and corresponds to

a fixed signed equicorrelation set (E , s). To show online learnability, we will examine this piece-
wise structure more closely – in particular analyse how the structure varies when the predicted
variable is drawn from a smooth distribution.

In order to show dispersion for the loss functions {li(λ)}, we will use the recipe of [19] and
bound the worst rate of discontinuities between any pair of points λ = (λ1, λ2) and λ′ = (λ′

1, λ
′
2)

with ||λ − λ′||2 ≤ ϵ along the axis-aligned path λ → (λ′
1, λ2) → λ′. First observe that the only

possible points at which li(λ) may be discontinuous are

(a) (λ1, λ2) such that ri(λ1, λ2) = 0 corresponding to some boundary function gi.
(b) (λ1, λ2) such that qb2 (λ2) = 0 corresponding to some piece function fb.

Fortunately the discontinuity of type (b) does not occur for λ2 > 0. From the ElasticNet char-
acterization in Lemma 3.1.1, and using Lemma 3.1.2, we know that q2(λ2) = Πj∈[|E|](Λj + λ2),

3The Õ(·) notation hides dependence on logarithmic terms, as well as on quantities besides T .

68



where (Λj)j∈[|E|] are non-negative eigenvalues of the positive semi-definite matrix X
(i)
E

T
X

(i)
E . It

follows that qb2 does not have positive zeros (for any sign vector b).
Therefore it suffices to locate boundaries of type (a). To this end, we have two subtypes

corresponding to a variable entering or leaving the equicorrelation set.
Addition of j /∈ E . As observed in the proof of Theorem 3.1.3, a variate j /∈ E can enter the

equicorrelation set E only for (λ1, λ2) satisfying

λ1 = K0

(
xT
j (XE(XE

TXE + λ2I|E|)
−1XE

T − xT
j

)
y

(K0 does not depend on λ1, λ2 or y). For fixed λ2, the distribution of λ1 at which the discontinu-
ity occurs for insertion of j is K1κ-bounded (by Lemma A.2.7) for some constant K1 that only
depends on R,m, p and λmax. This implies an upper bound of K1κϵ on the expected number of
discontinuities corresponding to j along the segment λ→ (λ′

1, λ2) for any j, E .
For constant λ1, we can use Lemma 3.1.2 and a standard change of variable argument (e.g.

Theorem 22 of [19]) to conclude that the discontinuties lie at the roots of a random polynomial
in λ2 of degree |E|, leading coefficient 1, and bounded random coefficients with K2κ-bounded
density for some constant K2 (that only depends on R,m, p and λmax). By Theorem A.2.4,
the expected number of discontinuities along the segment (λ′

1, λ2) → λ′ is upper bounded by
K2Kpκϵ (Kp only depends on p). This implies that the expected number of Lipschitz violations
between λ and λ′ along the axis aligned path is Õ(κϵ) and completes the first step of the recipe
in this case (Õ notation suppresses terms in R,m, p and λmax as constants).

Removal of j′ ∈ E . The second case, when a variate j′ ∈ E leaves the equicorrelation set E
for (λ1, λ2) satisfying λ1((XE

TXE + λ2I|E|)−1s)j′ = ((XE
TXE + λ2I|E|)−1XE

Ty)j′ , also yields
the same bound using the above arguments. Putting together, and noting that we have at most
p3p distinct curves each with Õ(κϵ) expected number of intersections with the axis aligned path
λ→ λ′, the total expected number of discontinuities is also Õ(κϵ). This completes the first step
(S1) of the above recipe.

We use Theorem 9 of [19] to complete the second step of the recipe, which employs a VC-
dimension argument for K ′ algebraic curves of bounded degrees (here degree is at most p+1) to
conclude that the expected worst number of discontinuties along any axis-aligned path between
any pair of points ≤ ϵ apart is at most Õ(ϵT ) + O(

√
T logK ′T ). K ′ ≤ p3p as shown above.

This implies that the sequence of loss functions is 1
2
-dispersed, and further there is an algorithm

(Algorithm 4 of [15]) that achieves Õ(
√
T ) expected regret.

Finally note that loss functions with AIC and BIC have the same dual class piecewise struc-
ture, and therefore the above analysis applies. The only difference is that the value of the piece
functions fb are changed by a constant (in λ), Km,p ≤ p logm. The piece boundaries are the
same, and are therefore 1

2
-dispersed as above. The range of the loss functions is now [0, Km,p+1],

so the same algorithm (Algorithm 4 of [15]) again achieves Õ(
√
T ) expected regret.

3.3 Regularized Kernel Regression
The Kernel Least Squares Regression ([92]) is a natural generalization of the linear regression
problem, which uses a kernel to handle non-linearity. In this problem, each sample has p1 fea-
ture, corresponding to a real-valued target. Formally, each problem instance P drawn from Π
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can be described as

P = (X, y,Xval, yval) ∈ Rm×p1 × Rm × Rm′×p1 × Rm′
.

A common issue in practice is that the relation between y and X is non-linear in the original
space. To overcome this issue, we consider the mapping ϕ : Rp1 → Rp2 which maps the original
input space to a new feature space in which we hopefully can perform linear regression. De-
fine ϕ(X) = (ϕ(x1), . . . , ϕ(xm))m×p2 , our goal is to find a vector θ ∈ Rp2 so that the squared
loss 1

2
∥y − ϕ(X)θ∥22+R(∥θ∥) is minimized, where the regularization term R(∥θ∥) is any strictly

monotonically increasing function of the Hilbert space norm. It is well-known from the literature
(e.g. Schölkopf et al. [148]) that under the Representer Theorem’s conditions, the optimal value
θ∗ can be linearly represented by row vectors of ϕ(X), i.e., θ∗ = ϕ(X)β =

∑m
i=1 ϕ(xi)βi, where

β = (β1, . . . , βm) ∈ Rm. This directly includes the ℓ2 regularizer but does not include ℓ1 regu-
larization. To overcome this issue, Roth (Roth [145]) proposed an alternative approach to regu-
larized kernel regression, which directly restricts the representation of coefficient θ via a linear
combination of ϕ(xi), for i ∈ [m]. The regularized kernel regression hence can be formulated as

β̂
(X,y)
l,λ = argmin

β∈Rm

1

2
∥y −Kβ∥22 + λ1 ∥β∥1 + λ2 ∥β∥22 ,

where k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ is the kernel mapping, and the Gram matrix K satisfies [K]i,j =
k(xi, xj) for all i, j ∈ [m].

Clearly, the problem above is a linear regression problem. Formally, denote hKER(λ, P ) =
1
2
∥y−Kβ̂(X,y)(λ)∥2 and letHKER = {hKER(λ, ·) : Πm,p → R≥0 | λ ∈ R2

+}. The following result
is a direct corollary of Theorem 3.1.6, which gives an upper bound for the pseudo-dimension of
HKER.

Corollary 3.3.1. Pdim(HKER) = O(m).

Note that m here denotes the training set size for a single problem instance, and Corollary 3.3.1
implies a guarantee on the number of problem instances needed for learning a good regular-
ization parameter for kernel regression via classic results [4, 7]. Our results do not make any
assumptions on the m samples within a problem instance/dataset; if these samples within prob-
lem instances are further assumed to be i.i.d. draws from some data distribution (distinct from
problem distribution D), then well-known results imply that m = O(k log p) samples are suffi-
cient to learn the optimal LASSO coefficient [164, 165], where k denotes the number of non-zero
coefficients in the optimal regression fit.

The results in this chapter are based on joint work with Nina Balcan, Misha Khodak and
Ameet Talwalkar [28], which appeared in NeurIPS 2022, and joint work with Nina Balcan and
Anh Nguyen [31], which appeared in NeurIPS 2023.
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Chapter 4

Decision Trees

4.1 Introduction

Decision trees are ubiquitous, with applications in operations research, management science,
data mining, and machine learning. They are easy to use and understand models that explicitly
include the decision rules used in making predictions. Each decision rule is a simple comparsion
of a real-valued attribute to a threshold or a categorical attribute against a candidate set of values.
Given their remarkable simplicity, decision trees are widely preferred in applications where it is
important to justify algorithmic decisions with intuitive explanations [147]. However, decades
of research on decision trees has resulted in a large suite of candidate approaches for building
decision trees [45, 98, 114, 116, 121, 141, 142]. This raises an important question, namely how
should one select the best approach to build a decision tree for the problem at hand.

Several empirical studies have been performed comparing various ways to build decision
trees [74, 122, 123, 128]. Current wisdom from the literature dictates that for any problem at
hand, one needs a domain expert to try out, compare and tune various methods to build the best
decision trees for any given problem domain. For instance, the popular Python library Scikit-
learn [135] implements both Gini impurity and entropy as candidate ‘splitting criteria’ (a crucial
component in building the decision trees top-down by deciding which node to split into child
nodes), and yet theory suggests another promising candidate [98] that achieves smaller error
bounds under the Weak Hypothesis Assumption1. It is therefore desirable to determine which
approach works better for the data coming from a given domain. With sufficient data, can we
automate this tedious manual process?

In this chapter we approach this crucial question, and propose ways to build more effective
decision trees automatically. Our results show provable learning theoretic guarantees and select
methods over larger search spaces than what human experts would typically explore. For ex-
ample, instead of comparing a small finite number of splitting criteria, we examine learnability
over continuously infinite parameterized families that yield more effective decision tree learning
algorithms.

We consider the problem where the learner has access to multiple related datasets D1, . . . , DN

1an a priori assumption on the target function. Roughly speaking, it means that the decision tree node functions
are already slightly correlated with the target function.
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coming from the same problem domain (given by a fixed but unknown distribution D), and the
goal is to design a decision tree learning algorithm that works well over the distribution D using
as few datasets (N , the sample complexity) as possible. This algorithm design problem is typi-
cally formulated as the selection of a hyperparameter from an infinite family. Typically finding
the best hyperparameters even on a single problem sample is tedious and computationally inten-
sive, so we would like to bound the number of samples over which we should optimize them,
while learning parameters that generalize well over the distribution generating the problem sam-
ples. We take steps towards systematically unifying, automating and formalizing the process of
designing decision tree learning algorithms, in a way that is adaptive to the data domain.

4.2 Preliminaries and definitions
Let [k] denote the set of integers {1, 2, . . . , k}. A (supervised) classification problem is given by a
labeled dataset D = (X, y) over some input domain X ∈ X n and y ∈ Yn = [c]n where c denotes
the number of distinct classes or categories. Let D be a distribution over classification problems
of size n.2 We will consider parameterized families of decision tree learning algorithms, param-
eterized by some parameter ρ ∈ P ⊆ Rd and access to datasets D1, . . . , DN ∼ DN . We do not
assume that individual data points (Xi, yi) are i.i.d. in any dataset Dj .

We consider a finite node function class F consisting of boolean functions X → {0, 1}
which are used to label internal nodes in the decision tree, i.e. govern given any data point x ∈ X
whether the left or right branch should be taken when classifying x using the decision tree. Any
given data point x ∈ X corresponds to a unique leaf node determined by the node function eval-
uations at x along some unique root-to-leaf path. Each leaf node of the decision tree is labeled
by a class in [c]. Given a dataset (X, y) this leaf label is typically set as the most common label
for data points x ∈ X which are mapped to the leaf node.

We denote by Tl→f the tree obtained by splitting the leaf node l, which corresponds to re-
placing it by an internal node labeled by f and creating two child leaf nodes. We consider a
parameterized class of splitting criterion GP over some parameter space P consisting of func-
tions gρ : [0, 1]c → R≥0 for ρ ∈ P that govern which leaf to be split next and which node
function f ∈ F to be used when building the decision tree using a top-down learning algorithm
which builds a decision tree by successively splitting nodes using gρ until the size equals in-
put tree size t. More precisely, suppose w(l) (the weight of leaf l) denotes the number of data
points in X that map to leaf l, and suppose pi(l) denotes the fraction of data points labeled by
y = i ∈ [c] among those points that map to leaf l. The splitting function over tree T is given by

Gρ(T ) =
∑

l∈leaves(T )

w(l)gρ ({pi(l)}ci=1) ,

and we build the decision tree by successively splitting the leaf nodes using node function f
which cause the maximum decrease in the splitting function. For example, the information gain
criterion may be expressed using gρ({pi(l)}ci=1) = −

∑c
i=1 pi log pi.

2For simplicity of technical presentation we assume that the dataset size n is fixed across problem instances, but
our sample complexity results hold even without this assumption.
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Algorithm 9 Top-down decision tree learner (F , gρ, t)
Input: Dataset D = (X, y)

Parameters: Node function class F , splitting criterion gρ ∈ GP , tree size t
Output: Decision tree T

1: Initialize T to a leaf node labeled by most frequent label y in D.
2: while T has at most t internal nodes do
3: l∗, f ∗ ← argminl∈leaves(T ),f∈FGρ(Tl→f )
4: T ← Tl∗→f∗

5: return T

Algorithm 9 summarizes this well-known general paradigm. We denote the tree obtained
by the top-down decision tree learner on dataset D as TF ,ρ,t(D). We study the 0-1 loss of the
resulting decision tree classifier. If T (x) ∈ [c] denotes the prediction of tree T on x ∈ X , we
define the loss on dataset D(X, y) as

L(T,D) :=
1

n

n∑

i=1

I[T (Xi) ̸= yi],

where I[·] denotes the 0-1 valued indicator function.

4.3 Learning to split nodes

Given a discrete probability distribution P = {pi} with
∑c

i=1 pi = 1, we define (α, β)-Tsallis
entropy as

gTSALLIS
α,β (P ) :=

C

α− 1


1−

(
c∑

i=1

pαi

)β

 ,

where C is a normalizing constant (does not affect Algorithm 9), α ∈ R+, β ∈ Z+. β = 1
corresponds to standard Tsallis entropy [160]. For example, α = 2, β = 1 corresponds to Gini
impurity, α = 1

2
, β = 2 corresponds to the Kearns and Mansour criterion (using which error ϵ

can be achieved with trees of size poly(1/ϵ), [98]) and limα→1 g
TSALLIS
α,1 (P ) yields the (Shannon)

entropy criterion. Formally, we have

Proposition 4.3.1. The splitting criteria gTSALLIS
2,1 (P ), gTSALLIS

1
2
,2

(P ) and limα→1 g
TSALLIS
α,1 (P ) corre-

spond to Gini impurity, the [98] objective and the entropy criterion respectively.

Proof of Proposition 4.3.1. Setting α = 2, β = 1 immediately yields the expression for Gini
impurity. Plugging α = 1

2
, β = 2 yields
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gTSALLIS
1
2
,2

(P ) =
C

−1
2


1−

(
c∑

i=1

√
pi

)2



= 2C

(
c∑

i=1

pi + 2
∑

i ̸=j

√
pipj − 1

)

= 4C
∑

i ̸=j

√
pipj.

For c = 2, gTSALLIS
1
2
,2

(P ) = 4C
√
p1(1− p1) which matches the splitting function of [98]. Also

taking the limit α→ 1 gives

gTSALLIS
α→1,β (P ) = lim

α→1

C

α− 1


1−

(
c∑

i=1

pi
α

)β



= −Cβ

(
c∑

i=1

pαi

)β−1( c∑

i=1

pαi ln pi

)

= −Cβ

(
c∑

i=1

pi ln pi

)
.

For β = 1, this corresponds to the entropy criterion.

We further show that the gTSALLIS
α,β (P ) family of splitting criteria enjoys the property of being per-

missible splitting criteria (in the sense of [98]) for any α ∈ R+, β ∈ Z+, α /∈ (1/β, 1), which
implies useful desirable guarantees the top-down decision tree learner [65, 98].

Proposition 4.3.2. (α, β)-Tsallis entropy has the following properties for any α ∈ R+, β ∈
Z+, α /∈ (1/β, 1)

1. (Symmetry) For any P = {pi}, Q = {pπ(i) for some permutation π over [c], gTSALLIS
α,β (Q) =

gTSALLIS
α,β (P ).

2. gTSALLIS
α,β (P ) = 0 at any vertex pi = 1, pj = 0 for all j ̸= i of the probability simplex P .

3. (Concavity) gTSALLIS
α,β (aP+(1−a)Q) ≥ agTSALLIS

α,β (P )+(1−a)gTSALLIS
α,β (Q) for any a ∈ [0, 1].

Proof of Proposition 4.3.2. Properties 1 and 2 are readily verified. We further show that (α, β)-
Tsallis entropy is concave for α, β > 0, αβ ≥ 1.

First consider the case α ≥ 1. We use the fact that the univariate function f(x) = xθ is
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convex for all θ ≥ 1. For any a ∈ [0, 1], P = {pi}ci=1, Q = {qi}ci=1,

gTSALLIS
α,β (aP + (1− a)Q) =

C

α− 1


1−

(
c∑

i=1

(api + (1− a)qi)
α

)β



≥ C

α− 1


1−

(
c∑

i=1

api
α + (1− a)qαi

)β



=
C

α− 1


1−

(
a

c∑

i=1

pi
α + (1− a)

c∑

i=1

qαi

)β



≥ C

α− 1


1−


a
(

c∑

i=1

pi
α

)β

+ (1− a)

(
c∑

i=1

qαi

)β





= agTSALLIS
α,β (P ) + (1− a)gTSALLIS

α,β (Q).

It remains to consider the case 0 < α ≤ 1/β. In this case, we apply the reverse Minkowski’s
inequality and use that αβ ≤ 1 to establish concavity.

gTSALLIS
α,β (aP + (1− a)Q) =

C

α− 1


1−

(
c∑

i=1

(api + (1− a)qi)
α

)β



≥ C

α− 1


1−



(

c∑

i=1

(api)
α

) 1
α

+

(
c∑

i=1

((1− a)qi)
α

) 1
α




αβ



=
C

α− 1


1−


a

(
c∑

i=1

pi
α

) 1
α

+ (1− a)

(
c∑

i=1

qαi

) 1
α




αβ



≥ C

α− 1


1−


a
(

c∑

i=1

pi
α

) 1
α
·αβ

+ (1− a)

(
c∑

i=1

qαi

) 1
α
·αβ





= agTSALLIS
α,β (P ) + (1− a)gTSALLIS

α,β (Q).

The above properties ensure that (α, β)-Tsallis entropy is a permissible splitting criterion when-
ever α /∈ (1/β, 1).

We consider α ∈ R+ and β ∈ [B] for some positive integer B, and observe that several previ-
ously studied splitting criteria can be readily obtained by setting appropriate values of parameters
α, β. We consider the problem of tuning the parameters α, β simultaneously when designing the
splitting criterion, given access to multiple problem instances (datasets) drawn from some distri-
bution D. The goal is to find parameters α̂, β̂ based on the training samples, so that on a random
D ∼ D, the expected loss
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ED∼DL(TF ,(α̂,β̂),t, D)

is minimized. We will bound the sample complexity of the ERM (Empirical Risk Minimization)
principle, which given N problem samples D1, . . . , DN computes parameters α̂, β̂ such that

α̂, β̂ = argminα>0,β∈[B]

N∑

i=1

L(TF ,(α,β),t, Di).

We obtain the following guarantee on the sample complexity of learning a near-optimal splitting
criterion.

Theorem 4.3.3. Suppose α > 0 and β ∈ [B]. For any ϵ, δ > 0 and any distributionD over prob-
lem instances with n examples, O( 1

ϵ2
(t(log |F|+ log t+ c log(B + c)) + log 1

δ
)) samples drawn

from D are sufficient to ensure that with probability at least 1− δ over the draw of the samples,
the parameters α̂, β̂ learned by ERM over the sample have expected loss that is at most ϵ larger
than the expected loss of the best parameters α∗, β∗ = argminα>0,β≥1ED∼DL(TF ,(α̂,β̂),t, D) over
D. Here t is the size of the decision tree, F is the node function class used to label the nodes of
the decision tree and c is the number of label classes.

Proof. Our overall approach is to analyze the structure of the dual class loss function [7], that is
the loss as a function of the hyperparameters α, β for a fixed problem instance (X, y). Based on
this structure, we give a bound on the pseudodimension of the loss function class which implies
a bound on the sample complexity using classic learning theoretic results.

Since the loss is completely determined by the final decision tree TF ,(α,β),t, it suffices to bound
the number of different algorithm behaviors as one varies the hyperparameters α, β in Algorithm
9. As the tree is grown according to the top-down algorithm, suppose the number of internal
nodes is τ < t. There are τ + 1 candidate leaf nodes to split and |F| candidate node functions,
for a total of (τ + 1)|F| choices for (l, f). For any of

(
(τ+1)|F|

2

)
pair of candidates (l1, f1) and

(l2, f2), the preference for which candidate is ‘best’ and selected for splitting next is governed
by the splitting functions Gα,β(Tl1→f1) and Gα,β(Tl2→f2). This preference flips across bound-
ary condition given by

∑
l∈leaves(Tl1→f1

) w(l)gα,β({pi(l)}) =
∑

l∈leaves(Tl2→f2
) w(l)gα,β({pi(l)}).

Most terms (all but three) cancel out on both sides as we substitute a single leaf node by an inter-
nal node on both LHS and RHS. The only unbalanced terms correspond to deleted leaves l1, l2
and newly introduced leaves la1 , l

b
1, l

a
2 , l

b
2, i.e.

∑

l∈{la1 ,lb1,l2}
w(l)gα,β({pi(l)}) =

∑

l∈{la2 ,lb2,l1}
w(l)gα,β({pi(l)})

where gα,β(·) = gTSALLIS
α,β (·), the (α, β)-Tsallis entropy. For integer β, by the multinomial theo-

rem, (
∑c

i=1 pi(l)
α)β consists of at most

(
β+c−1

c

)
distinct terms. By Rolle’s theorem, the number

of distinct solutions of the above equation in α is O((β+c)c). Thus, for any fixed β and fixed par-
tial decision tree built in τ rounds, the number of critical points of α at which the argmax in Line
3 of Algorithm 9 changes is at most O(|F|2τ 2(β+c)c) and a fixed leaf node is split and labeled by
a fixed f for any interval of α induced by these critical points. Over t rounds, this corresponds to
at most O(Πt

τ=1|F|2τ 2(β+ c)c) critical points across which the algorithmic behaviour (sequence

76



of choices of node splits in Algorithm 9) can change as α is varied for a fixed β. Adding up over
β ∈ [B], we get O(

∑B
β=1 |F|2tt2t(β + c)ct), or at most O(B|F|2tt2t(B + c)ct) critical points.

This implies a bound of O(t(log |F| + log t + c log(B + c)) on the pseudodimension of the
loss function class by using Lemma A.3.2. Finally, an application of Theorem A.3.1 completes
the proof.

Observe that parameter α is tuned over a continuous domain and our near-optimality guarantees
hold over the entire continuous domain (as opposed to say over a finite grid of α values). Our
results have implications for cross-validation since typical cross-validation can be modeled via a
distribution D created by sampling splits from the same fixed dataset, in which case our results
imply how many splits are sufficient to converge to within ϵ error of best the parameter learned by
the cross validation procedure. Similar convergence guarantees have been shown for tuning the
regularization coefficients of the elastic net algorithm for linear regression via cross-validation
[28, 31]. Our setting is of course more general than just cross validation and includes the case
where the different datasets come from related similar tasks for which we seek to learn a common
good choice of hyperparameters.

While (α, β)-Tsallis entropy is well-motivated as a parameterized class of node splitting cri-
teria as it includes several previously studied splitting criteria, and generalizes the Tsallis entropy
which may be of independent interest in other applications, it involves simulatenous optimiza-
tion of two parameters which can be computationally challenging. To this end, we define the
following single parameter family which interpolates known node splitting methods:

gγ({pi}) := C (Πipi)
γ ,

where γ ∈ (0, 1] and C is some constant. For binary classification, the setting γ = 1
2

and γ = 1
correspond to [98] and Gini entropy respectively, for appropriate choice of C. It is straight-
forward to verify that gγ is permissible for all γ ∈ (0, 1], i.e. is symmetric, zero at simplical
vertices and concave. We show the following improved sample complexity guarantee for tuning
γ. Note that this family is not a special case of (α, β)-Tsallis entropy, but contains additional
splitting functions which may work well on given domain-specific data. Also, since it has a
single parameter, it can be easier to optimize efficiently in practice.

Theorem 4.3.4. Suppose γ ∈ (0, 1]. For any ϵ, δ > 0 and any distribution D over problem
instances with n examples, O( 1

ϵ2
(t(log |F| + log t) + log 1

δ
)) samples drawn from D are suffi-

cient to ensure that with probability at least 1− δ over the draw of the samples, the parameter γ̂
learned by ERM over the sample is ϵ-optimal, i.e. has expected loss at most ϵ larger than that of
the optimal parameter over D.

Proof. The loss is completely determined by the final decision tree TF ,γ,t. It suffices to bound the
number of different algorithm behaviors as one varies the hyperparameter γ in Algorithm 9. As
the tree is grown according to the top-down algorithm, suppose the number of internal nodes is
τ < t. There are τ + 1 candidate leaf nodes to split and |F| candidate node functions, for a total
of (τ + 1)|F| choices for (l, f). For any of

(
(τ+1)|F|

2

)
pair of candidates (l1, f1) and (l2, f2), the

preference for which candidate is ‘best’ and selected for splitting next is governed by the splitting
functions Gγ(Tl1→f1) and Gγ(Tl2→f2). This preference flips across boundary condition given by∑

l∈leaves(Tl1→f1
) w(l)gγ({pi(l)}) =

∑
l∈leaves(Tl2→f2

)w(l)gγ({pi(l)}). Most terms (all but three)
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cancel out on both sides as we substitute a single leaf node by an internal node on both LHS and
RHS. The only unbalanced terms correspond to deleted leaves l1, l2 and newly introduced leaves
la1 , l

b
1, l

a
2 , l

b
2, i.e.

∑

l∈{la1 ,lb1,l2}
w(l)gγ({pi(l)}) =

∑

l∈{la2 ,lb2,l1}
w(l)gγ({pi(l)}).

Recall gγ({pi}) := C (Πipi)
γ , giving an equation in six or O(1) terms. By Rolle’s theorem, the

number of distinct solutions of the above equation in γ is O(1). Thus, the number of critical
points of γ at which the argmax in Line 3 of Algorithm 9 changes is at most O(|F|2τ 2) and a
fixed leaf node is split and labeled by a fixed f for any interval of γ induced by these critical
points. Over t rounds, this corresponds to at most O(Πt

τ=1|F|2τ 2) = O(|F|2tt2t) critical points
across which the algorithmic behaviour (sequence of choices of node splits in Algorithm 9) can
change as γ is varied. This implies a bound of O(t(log |F| + log t)) on the pseudodimension
of the loss function class using Lemma A.3.2. An application of Theorem A.3.1 completes the
proof.

4.3.1 Bayesian decision tree models
Several Bayesian approaches for building a decision tree have been proposed in the literature
[59, 60, 169]. The key idea is to specify a prior which induces a posterior distribution and a
stochastic search is performed using Metropolis-Hastings algorithms to explore the posterior
and find an effective tree. We will summarize the overall approach below and consider the prob-
lem of tuning parameters in the prior, which control the accuracy and size of the tree. Unlike
most of prior research on data-driven algorithm design which study deterministic algorithms, we
will analyze the learnability of parameters in a randomized algorithm.

Let F = (f1, . . . , ft) denote the node functions at the nodes of the decision tree T . The prior
p(F, T ) is specified using the relationship

p(F, T ) = p(F |T )p(T ).
We start with a tree T consisting of a single root node. For any node τ in T , it is split with proba-
bility pSPLIT(τ) = σ(1 + dτ )

−ϕ, and if split, the process is repeated for the left and right children.
Here dτ denotes the depth of node τ , and σ, ϕ are hyperparameters. The size of generated tree is
capped to some upper bound t. Intuitively, σ controls the size of the tree and ϕ controls its depth.
This specifies the prior p(T ). The conjugate prior for the node functions F = (f1, . . . , ft) is given
by the standard Dirichlet distribution of dimension c− 1 (recall c is the number of label classes)
with parameter a = (a1, . . . , ac), ai > 0. Under this prior, the label predictions are given by

p(y | X,T ) =

(
Γ(
∑

i ai)

ΠiΓ(ai)

)t t∏

j=1

ΠiΓ(nji + ai)

Γ(nj +
∑

i ai)
,

where nji =
∑

k I(yjk = i) counts the number of datapoints with label i at node j, nj =∑
i nji and i = 1, . . . , c. a is usually set as the vector (1, . . . , 1) which corresponds to the uni-

form Dirichlet prior. Finally the stochastic search of the induced posterior is done using the
Metropolis-Hastings (MH) algorithm for simulating a Markov chain [59].
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We consider the problem of tuning of prior hyperparameters σ, ϕ, to obtain the best expected
performance of the algorithm. To this end, we define z = (z1, . . . , zt−1) ∈ [0, 1]t−1 as the ran-
domness used in generating the tree T according to p(T ). Let Tz,σ,ϕ denote the resulting initial
tree. Let z′ denote the remaining randomness used in the prior and the stochastic search. Our
goal is to minimize the expected loss

Ez,z′,DL(Tz,σ,ϕ, D),

where D denotes the distribution according to which the data D is sampled. We prove the fol-
lowing generalization guarantee for learning a near-optimal prior for the Bayesian decision tree.
So far, we have considered learning decision tree classifiers that classify any given data point into
one of finitely many label classes. In the next subsection, we consider an extension of the setting
to learning over regression data, for which decision trees are again known as useful interpretable
models [45].

Theorem 4.3.5. Suppose σ, ϕ > 0. For any ϵ, δ > 0 and any distribution D over problem in-
stances with n examples, O( 1

ϵ2
(log t+log 1

δ
)) samples drawn fromD are sufficient to ensure that

with probability at least 1− δ over the draw of the samples, the parameters σ̂, ϕ̂ learned by ERM
over the sample have expected loss that is at most ϵ larger than the expected loss of the best
parameters. Here t denotes an upper bound on the size of the decision tree.

Proof. Fix the dataset D and fix the random coins z used to generate the tree T . We will use
the piecewise loss structure to bound the Rademacher complexity, which would imply uniform
convergence guarantees by applying standard learning-theoretic results.

First, we establish a piecewise structure of the dual class loss ℓz(σ, ϕ) = Ez′L(Tz,σ,ϕ, D).
Notice that the expected value under the remaining randomization z′ is fixed, once the gen-
erated tree Tz,σ,ϕ is fixed. We first give a bound on the number of pieces of distinct trees
generated as σ, ϕ are varied. The decision whether a node τi is split is governed by whether
pSPLIT(τ) = σ(1 + dτi)

−ϕ > zi. Thus, we get at most t − 1 2D curves in σ, ϕ across which the
splitting decision may change. The curves are clearly monotonic. We further show that any pair
of curves intersect in at most one point. Indeed, if σ(1 + dτi)

−ϕ = zi and σ(1 + dτj)
−ϕ = zj ,

then ϕ′ = log(zj/zi)/ log
(

1+dτi
1+dτj

)
and σ′ = zi(1 + dτi)

ϕ′ is the unique point provided ϕ′ > 0.

Thus the set of all curves intersects in at most
(
t−1
2

)
< t2 points. Since the curves are planar, the

number of pieces in the dual loss function (or the number of distinct trees) is also O(t2). The
above argument easily extends to a collection of N problem instances, with a total of at most
O(t2N2) pieces where distinct trees are generated across the instances.

Let ρ1, . . . , ρm denote a collection of parameter values, with one parameter from each of the
m = O(N2t2) pieces induced by all the dual class functions ℓizi(·) for i ∈ [N ], i.e. across prob-
lems in the sample {D1, . . . , DN} for some fixed randomizations. Let F = {fρ : (D, z) 7→
lD,z
T (ρ) | ρ ∈ R+×R+} be a family of functions on a given sample of instances S = {Di, zi}Ni=1.

Since the function fρ is constant on each of the m pieces, we have the empirical Rademacher
complexity,
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R̂(F , S) : = 1

N
Eσ

[
sup
fρ∈F

N∑

i=1

σifρ(Di, zi)

]

=
1

N
Eσ

[
sup
j∈[m]

N∑

i=1

σifρj(Di, zi)

]

=
1

N
Eσ

[
sup
j∈[m]

N∑

i=1

σivij

]
,

where σ = (σ1, . . . , σm) is a tuple of i.i.d. Rademacher random variables, and vij := fρj(Di, zi).
Note that v(j) := (v1j, . . . , vNj) ∈ [0, H]N , and therefore ||v(j)||2 ≤ H

√
N , for all j ∈ [m]. An

application of Massart’s lemma [117] gives

R̂(F , S) = 1

N
Eσ

[
sup
j∈[m]

N∑

i=1

σivij

]

≤ H

√
2 logm

N

≤ H

√
4 logNt

N
.

Standard Rademacher complexity bounds [Barlett et al. 2002] now imply the desired sample
complexity bound.

4.3.2 Splitting regression trees
In the regression problem, we have Y = R and the top-down learning algorithm can still be used
but with continous splitting criteria. Popular splitting criteria for regression trees include the
mean squared error (MSE) and half Poisson deviance (HPD). Let yl denote the set of labels for
data points classified by leaf node l in tree T yl :=

1
|yl|
∑

y∈yl y is the mean prediction for node l.
MSE is defined as gMSE(yl) :=

1
|yl|
∑

y∈yl(y− yl)
2 and HPD as gHPD(yl) :=

1
|yl|
∑

y∈yl(y log
y
yl
−

y + yl). These are interpolated by the mean Tweedle deviance error with power p given by

gp(yl) :=
2

|yl|
∑

y∈yl

(
max{y, 0}2−p

(1− p)(2− p)
− yyl

1− p
+

yl
2−p

2− p

)
,

where p = 0 corresponds to MSE and the limit p → 1 corresponds to HPD. We call this the
p-Tweedle splitting criterion, and have the following sample complexity guarantee for tuning p
in the multiple instance setting.

Theorem 4.3.6. Suppose p ∈ [0, 1]. For any ϵ, δ > 0 and any distribution D over problem
instances with n examples, O( 1

ϵ2
(t(log |F| + n) + log 1

δ
)) samples drawn from D are sufficient
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to ensure that with probability at least 1 − δ over the draw of the samples, the Tweedle power
parameter p̂ learned by ERM over the sample is ϵ-optimal.

Proof. The loss is completely determined by the final decision tree TF ,p,t. It suffices to bound
the number of different algorithm behaviors as one varies the hyperparameter p in Algorithm
9. As the tree is grown according to the top-down algorithm, suppose the number of inter-
nal nodes is τ < t. For any of

(
(τ+1)|F|

2

)
pair of candidates (l1, f1) and (l2, f2), the prefer-

ence for which candidate is ‘best’ and selected for splitting next is governed by the splitting
functions Gp(Tl1→f1) and Gp(Tl2→f2). This preference flips across boundary condition given by∑

l∈leaves(Tl1→f1
) w(l)gp({pi(l)}) =

∑
l∈leaves(Tl2→f2

) w(l)gp({pi(l)}). The expression simplifies
and the only remaining terms correspond to deleted leaves l1, l2 and newly introduced leaves
la1 , l

b
1, l

a
2 , l

b
2, i.e.

∑
l∈{la1 ,lb1,l2}w(l)gp({pi(l)}) =

∑
l∈{la2 ,lb2,l1}w(l)gp({pi(l)}).

Recall gp({pi}) gives an equation in O(|yl|) = O(n) terms. By Rolle’s theorem, the number
of distinct solutions of the above equation in p is O(n). Thus, the number of critical points of p
at which the argmax in Line 3 of Algorithm 9 changes is at most O(|F|2τ 2n) and a fixed leaf
node is split and labeled by a fixed f for any interval of p induced by these critical points. Over
t rounds, this corresponds to at most O(Πt

τ=1|F|2τ 2n) = O(|F|2tt2tnt) critical points across
which the algorithmic behaviour (sequence of choices of node splits in Algorithm 9) can change
as p is varied. This implies a bound of O(t(log |F| + log t + n)) = O((log |F| + n)) on the
pseudodimension of the loss function class using Lemma A.3.2, since t ≤ n. An application of
Theorem A.3.1 completes the proof.

Since t < n, this indicates that tuning regression parameters typically (for sufficiently small B, c)
has a larger sample complexity upper bound.

4.4 Learning to prune
Some leaf nodes in a decision tree learned via the top-down learning algorithm may involve nodes
that overfit to a small number of data points. This overfitting problem in decision tree learning is
typically resolved by pruning some of the branches and reducing the tree size [45]. The process
of growing trees to size t and pruning back to smaller size t′ tends to produce more effective
decision trees than learning a tree of size t′ top-down. We study the mininum cost-complexity
pruning algorithm here, which involves a tunable complexity parameter α̃, and establish bounds
on the sample complexity of tuning α̃ given access to repeated problem instances from dataset
distribution D.

The cost-complexity function for a tree T is given by

R(T,D) := L(T,D) + α̃|leaves(T )|.

More leaf nodes correspond to higher flexibility of the decision tree in partitioning the space
into smaller pieces and therefore greater ability to fit the training data. α̃ ∈ [0,∞) controls how
strongly we penalize this increased complexity of the tree. The mininum cost-complexity prun-
ing algorithm computes a subtree Tα̃ of T which minimizes the cost-complexity function. When
α̃ = 0, this selects T and when α̃ =∞ a single node tree is selected.

81



Figure 4.1: The loss of pruned tree as a function of the mininum cost-complexity pruning param-
eter α̃ is piecewise constant with at most t pieces. The optimal complexity parameter α̃ varies
with dataset.

Given a leaf node l of T labeled by i ∈ [c], the cost-complexity measure is defined to be
R(l, D) = w(l)−pi(l)

w(l)
+ α̃. Denote by Tt, the branch of tree T rooted at node t and R(Tt, D) :=∑

l∈leaves(Tt)
R(l, D) + α̃|leaves(Tt)|. The mininum cost-complexity pruning algorithm succes-

sively deletes weakest links which minimize R(t,D)−R(Tt,D)
|leaves(Tt)|−1

over internal nodes t of the currently
pruned tree.

We have the following result bounding the sample complexity of tuning α̃ from multiple data
samples.

Theorem 4.4.1. Suppose α̃ ∈ R≥0 and t denote the size of the unpruned tree. For any ϵ, δ > 0
and any distribution D over problem instances with n examples, O( 1

ϵ2
(log t + log 1

δ
)) samples

drawn from D are sufficient to ensure that with probability at least 1 − δ over the draw of the
samples, the mininum cost-complexity pruning parameter learned by ERM over the sample is
ϵ-optimal.

Proof. Fix a dataset D. Then there are critical values of α̃ given by α̃0 = 0 < α̃1 < α̃2 · · · <∞
such that the optimal pruned tree Tk is fixed for over any interval [α̃k, α̃k+1) for k ≥ 0. Further-
more, the optimal pruned trees form a sequence of nested sub-trees T0 = T ⊃ T1 ⊃ . . . ([45],
Chapter 10). Thus, the behavior of the min cost-complexity pruning algorithm is identical over
at most t intervals, and the loss function is piecewise constant with at most t pieces. The rest of
the argument is similar to the proof of Theorem 4.3.3, and we obtain a pseudo-dimension bound
of O(log t) using Lemma A.3.2. An application of Theorem A.3.1 implies the stated sample
complexity.

Minimum cost-complexity pruning [45] can be implemented using a simple dynamic program to
find the sequence of trees that minimize R(T,D) for any given fixed α̃, which takes quadratic
time to implement in the size of T [42]. Faster pruning approaches are known that directly
prune nodes for which the reduction in error or splitting criterion when splitting the node is not
statistically significant. This includes Critical Value Pruning [121, 122] and Pessimistic Error
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Figure 4.2: Accuracy vs η ∗ |leaves(T )| as the pruning parameter α̃ is varied, for η = 0.01.

Pruning [140]. Principled statistical learning guarantees are known for the latter [116], and here
we will consider the problem of tuning the confidence parameter in pessimistic pruning, which
we describe below.

SupposeX ⊆ Ra, i.e. each data point consists of a real features or attributes. For any internal
node h of T , if eh denotes the fraction of data points that are misclassified among the nh data
points that are classified via the sub-tree rooted at h, and el denotes the fraction of misclassified
data points if h is replaced by a leaf node, then the pessimistic pruning test of [116] is given by

el ≤ eh + c1

√
th log a+ c2

nh

,

where c1 and c2 are parameters, and th denotes the size of the sub-tree rooted at h. We consider
the problem of tuning c1, c2 given repeated data samples, and bound the sample complexity of
tuning in the following theorem.

Theorem 4.4.2. Suppose c1, c2 ∈ R≥0 and t denote the size of the unpruned tree. For any ϵ, δ > 0
and any distribution D over problem instances with n examples, O( 1

ϵ2
(log t + log 1

δ
)) samples

drawn from D are sufficient to ensure that with probability at least 1 − δ over the draw of the
samples, the pessimistic pruning parameters learned by ERM over the sample is ϵ-optimal.

Proof. For a fixed dataset D, the c1, c2 parameter space can be partitioned by at most t algebraic
curves of degree 3 that determine the result of the pessimistic pruning test. We use a general
result on the pseudodimension bound in data-driven algorithm design due to [35] when the loss
can be computed by evaluating rational expressions to obtain a O(log t) on the pseudodimension.
The result is stated below for convenience.

In this theorem, our above arguments show that there is a GJ algorithm, i.e. an algorithm
which only computes and compares rational (ratios of polynomials) functions of its inputs, for
computing the loss function. Here the number of real parameters n = 2, the maximum degree
of any computed expression is ∆ = 3 and the total number of distinct predicates that need to be
evaluated to compute the loss for any value of the parameters is Γ = t. Plugging into Theorem
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A.3.3 yields a bound of O(log t) on the pseudo-dimension, and the result follows from Theorem
A.3.1.

We have studied parameter tuning in two distinct parameterized approaches for decision tree
pruning. However, several other pruning methods are known in the literature [74, 75], and it
is an interesting direction for future research to design approaches to select the best method
based on data. We conclude this section with a remark about another interesting future direction,
namely extending our results to tree ensembles.

Remark 3 (Extension to tree ensembles). Extension of our approaches to tree ensembles is an
interesting question, although this comes at the expense of making the model less interpretable.
We still need to choose splitting and pruning methods used in building the individual trees. If we
learn a uniform splitting criterion for all trees, our sample complexity arguments are straightfor-
ward to extend to this case and would imply an additional O(nt) factor in the sample complexity,
where nt is the number of trees in the random forest (in the case of pruning, our arguments
would imply an O(log nt) term). There are interesting further questions here, including learning
a combination of splitting/pruning criteria across different trees and tuning the number of trees
nt as a hyperparameter (which impacts both accuracy and interpretability).

4.5 Optimizing the Interpretability versus Accuracy trade-off

Decision trees are often regarded as one of the preferred models when the model predictions
need to be interpretable. Complex or large decision trees can however not only overfit the data
but also hamper model interpretability. So far we have considered parameter tuning when build-
ing or pruning the decision tree with the goal of optimizing accuracy on unseen “test” datasets on
which the decision tree is built using the learned hyperparameters. We will consider a modified
objective here which incorporates model complexity in the test objective. That is, we seek to find
hyperparameters α, β, α̃ based on the training samples, so that on a random D ∼ D, the expected
loss

Lη := ED∼DL(T,D) + η|leaves(T )|

is minimized, where η ≥ 0 is the complexity coefficient. This objective has been studied in a
recent line of work which designs techniques for provably optimal decision trees with high in-
terpretability [96, 111]. Note that, while the objective is similar to min cost-complexity pruning,
there the regularization term α̃|leaves(T )| is added to the training objective to get the best gen-
eralization accuracy on test data. In contrast, we add the regularization term to the test objective
itself and η here is a fixed parameter that governs the balance between accuracy and interpetabil-
ity that the learner aims to strike.

Our approach here is to combine tunable splitting and pruning to optimize the accuracy-
interpetability trade-off. We set (α, β)-Tsallis entropy as the splitting criterion and min cost-
complexity pruning with parameter α̃ as the pruning algorithm. We show the following upper
bound on the sample complexity when simultaneously learning to split and prune.
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Dataset Best (α∗, β∗) Acc(α∗, β∗) Acc(Gini) Acc(Entropy) Acc(KM96)
Iris (0.5,1) 96.00± 1.85 92.99± 1.53 93.33± 1.07 94.67± 2.70
Banknote (2.45,2) 98.32± 0.52 97.01± 0.59 97.30± 1.62 97.00± 1.79
Breast cancer (0.5, 3) 94.69± 0.77 92.92± 1.29 93.01± 1.05 93.27± 1.16
Wine (2.15,6) 96.57± 1.88 89.14± 3.18 92.57± 2.38 93.71± 2.26

Table 4.1: A comparison of the performance of different splitting criteria. The first column
indicates the best (α, β) parameters for each dataset over the grid considered in Figure 4.3. Acc
denotes test accuracy along with a 95% confidence interval.

Theorem 4.5.1. Suppose α > 0, β ∈ [B], α̃ ≥ 0. For any ϵ, δ > 0 and any distribution D over
problem instances with n examples, O( 1

ϵ2
(t(log |F| + log t + c log(B + c)) + log 1

δ
)) samples

drawn from D are sufficient to ensure that with probability at least 1 − δ over the draw of the
samples, the parameters learned by ERM for Lη are ϵ-optimal.

Proof. As argued in the proof of Theorems 4.3.3, we have an upper bound of O(B|F|2tt2t(B +
c)ct) on the number of distinct algorithmic behavior of the top-down learning algorithm in grow-
ing a tree of size t as the parameters α, β are varied. Further, as argued in the proof of Theorem
4.4.1, for each of these learned trees, there are at most t distinct pruned trees as α̃ is varied. Over-
all, this corresponds to O(B|F|2tt2t+1(B + c)ct) distinct behaviors, which implies the claimed
sample complexity bound using standard tools from learning theory and data-driven algorithm
design (Lemma A.3.2, Theorem A.3.1).

4.6 Experiments
We examine the significance of the novel splitting techniques and the importance of designing
data-driven decision tree learning algorithms via hyperparameter tuning for various benchmark
datasets. We only perform small-scale simulations that can be run on a personal computer and
include code in the supplementary material for reproducibility. The datasets used are from the
UCI repository, are publicly available and are briefly described below.

Iris [79] consists of three classes of the iris plant and four real-valued attributes. A total of
150 instances, 50 per class. Wine [109] has three classes of wines, 13 real attributes and 178
data points in all. Breast cancer (Wisconsin diagnostic) contains 569 instances, with 30 features,
and two classes, malignant and benign [168]. The Banknote Authentication dataset [112] also
involves binary classification and has 1372 data points and five real attributes. These datasets are
selected to capture a variety of attribute sizes and number of data points.

We first study the effect of choice of (α, β) parameters in the Tsallis entropy based splitting
criterion. For each dataset, we perform 5-fold cross validation for a large grid of parameters
depicted in Figure 4.3 and measure the accuracy on held out test set consisting of 20% of the
datapoints (i.e. training datasets are just random subsets of the 80% of the dataset used for learn-
ing the parameters). We implement a slightly more sophisticated variant of Algorithm 9 which
grows the tree to maximum depth of 5 (as opposed to a fixed size t). We do not use any pruning
here. There is a remarkable difference in the optimal parameter settings for different datasets.
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Figure 4.3: Average test accuracy (proportional to brightness, yellow is highest) of (α, β)-Tsallis
entropy based splitting criterion as the parameters are varied, across datasets. We observe that
different parameter settings work best for each dataset, highlighting the need to learn data-
specific values.

Moreover, we note in Table 4.1, that carefully chosen values of (α, β) significantly outperform
standard heuristics like Gini impurity or entropy based splitting, or even specialized heuristics
like [98] for which worst-case error guarantees (assuming weak learning) are known. This further
underlines the significance of data-driven algorithm design for decision tree learning.

We further study the impact of tuning the complexity paramter α̃ in the minimum cost-
complexity pruning algorithm. The test error varies with α̃ in a data dependent way and different
data could have different optimal parameter as depicted in Figure 4.1. We use Gini impurity as
the splitting criterion. Furthermore, we observe that on a single instance, the average test error
is a piecewise constant function with at most t pieces which motivates the sample complexity
bound in Theorem 4.4.1.

We also examine the interpetability-accuracy trade-off as given by our regularized objective
with complexity coefficient η. In Figure 4.2, we plot the interpetability-accuracy frontier as the
pruning parameter α̃ is varied. Here we fix the splitting criterion as the Gini impurity. For a given
dataset, this frontier can be pushed by a careful choice of the splitting criterion (Theorem 4.5.1).

4.6.1 Interpretability-accuracy frontier

We study the effect of varying α (for fixed β = 1) and β (for fixed α = 1.5) on the Iinterpretability-
accuracy trade-off. We fix η = 0.01, and obtain the plot by varying the amount of pruning by
changing the complexity parameter α̃ in min-cost complexity pruning.

We perform this study for Iris and Wine datasets in Figure 4.4. We observe that for a given
accuracy, the best (smallest) explanation (size) could be obtained for different different splitting
criteria (corresponding to setting of α, β). In particular, different criteria can dominate in differ-
ent regimes of size and η. Therefore, simultaneously tuning splitting criterion and pruning as in
Theorem 4.5.1 is well-motivated.
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Figure 4.4: Accuracy-interpretability frontier for different α or different β, as the pruning pa-
rameter α̃ is varied.

4.6.2 (α, β)-Tsallis entropy
We consider several additional datasets from the UCI repository and examine the best setting of
(α, β) in the splitting criterion. The results are depicted in Figure 4.5 and summarized below.

Seeds [55] involves 3 classes of wheat, and has 210 instances with 7 attributes each. The
splitting criterion proposed by [98] seems to work best here. Note that the original work only
studied binary classification, and seeds involves three label classes and therefore our experiment
involves a natural generalization of [98] to gTSALLIS

1
2
,2

(·).
Cryotherapy [103] has 90 instances with 7 real or integral attributes and contains the binary

label of whether a wart was suffessfully treated using cryotherapy. Here α = 0.5 with β = 4 is
one of the best settings, indicating usefulness of varying the β exponent in the KM96 criterion.

Glass identification [81] involves classification into six types of glass defined in terms of their
oxide content. There are 214 instances with 9 real-valued features. Interestingly, the best perfor-
mance is observed when both α and β are larger than their typical values in popular criteria. For
example, (α, β) = 2.45, 6 works well here.

Algerian forest fires involves binary classification with 12 attributes and 244 instances. Gini
entropy by itself does poorly, but augmented with the β-parameter the performance improves
significantly and beats other candidate approaches for β = 8.

Human activity detection using smartphones [143] is a 6-way classification dataset consist-
ing of smartphone accelerometer and gyroscope readings corresponding to different activities,
with 10299 instances with 561 features. Smaller values of α work better on this dataset, and the
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Figure 4.5: Average test accuracy (proportional to brightness) of (α, β)-Tsallis entropy based
splitting criterion across additional datasets.

dependence on β is weaker.

4.6.3 Pruning experiments

We will examine the effectiveness of learning to prune by comparing the accuracy of pruning
using the learned parameter α̃ in the mininum cost-complexity pruning algorithm family with
other baseline methods studied in the literature. Prior literature on empirical studies on pruning
methods has shown that different pruning methods can work best for different datasets [74, 122].
This indicates that a practitioner should try out several pruning methods in order to obtain the
best result for given domain-specific data. Here we will show that a well-tuned pruning from a
single algorithm family can be competitive, and allows us to automate this process of manual
selection of the pruning algorithm.

We perform our experiments on benchmark datasets from the UCI repository, including Iris,
Wine, Breast Cancer and Digits datasets. We split the datasets into train-test sets, using 80%
instances for training and 20% for testing. In each case, we build the tree using entropy as the
splitting criterion. We compare the mean accuracy on the test sets over 50 different splits for the
following methods:

• Unpruned, that is no pruning method is used.
• α̃∗ in MCCP. Min-cost complexity pruning using the best parameter α̃∗ for the dataset.
• REP, Reduced error pruning method of [140].
• TDP, Top-down pessimistic pruning method of [139].
• BUP, Bottom-up pessimistic pruning method of [116].

We report our findings in Table 4.2. We observe that the learned pruning method has a better
mean test accuracy than other baseline methods on the tested datasets.
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Dataset Acc(Unpruned) Acc(α̃∗) in MCCP Acc(REP) Acc(TDP) Acc(BUP)
Iris 80.03 97.37 96.67 90.00 93.33
Digits 84.44 89.42 86.67 83.61 88.89
Breast cancer 87.72 93.71 92.98 91.23 92.11
Wine 80.56 94.44 91.67 88.89 86.11

Table 4.2: A comparison of the mean test accuracy of decision trees obtained using different
pruning methods.

4.7 Conclusion
We consider the problem of automatically designing decision tree learning algorithms by data-
driven selection of hyperparameters. Previous extensive research has observed that different
ways to split or prune nodes when building a decision tree work best for data coming from
different domain. We present a novel splitting criterion called (α, β)-Tsallis entropy which inter-
polates popular previously known methods into a rich infinite class of algorithms. We consider
the setting where we have repeated access to data from the same domain and provide formal
bounds on the sample complexity of tuning the hyperparameters for the ERM principle. We
extend our study to learning regression trees, selecting pruning parameters, and optimizing over
the interpetability-accuracy trade-off. Empirical simulations validate our theoretical study and
highlight the significance and usefulness of learning decision tree algorithms.

Our work presents several directions for future research. While our results provide guarantees
on sample efficiency, the problem of computationally efficient optimization of the sample accu-
racy is left open. Another direction for future research is designing and analyzing a potentially
more powerful algorithm family for pruning, and extending our results to tree ensembles. We
also remark that we focus on upper bounds on sample complexity, and providing corresponding
lower bounds is an interesting avenue for further research.

The results in this chapter are based on joint work with Nina Balcan, which appeared as an
Oral presentation at UAI 2024 and was awarded the Outstanding Student Paper Award.
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Chapter 5

Subsidy design in games

5.1 Introduction

Critical infrastructure maintenance typically involves joint responsibility shared among multiple
stakeholders, and failure of coordination can lead to disastrous consequences. For example, the
Internet backbone consists of many networks with different owners, connected together in a cer-
tain way. Smaller networks themselves consist of independent nodes connected using a specific
topology. In 2013, an outage at Google caused a 40% drop in the worldwide web traffic, and in
2021, Facebook was down for several hours. With an increasingly connected physical and digital
world, it is a major challenge to coordinate large-scale systems consisting of several disjointly
owned components. As a result, one crucially needs a central planner—who has the ability to
allocate shared resources to avoid major catastrophic failures—to ensure smooth operation of the
overall system. Ideally, the central agent would ensure a judicious use of the common resources
which are to be allocated to appropriate stakeholders to incentivize them to do their part. Iden-
tifying the optimal resource allocations can be hard, but very often the central agent manages
multiple similar systems or has access to relevant historical data. Could one take advantage of
this data availability to improve the allocation?

Coordination in infrastructure projects poses multiple challenges when different pieces are
owned by different agents. In systems requiring all of multiple components to simultaneously
work, the failure of any single component can bring the entire system down. As a countermea-
sure, critical systems often have in place some amount of redundancy in terms of the compo-
nents needed for the system to function. But this could introduce volunteer’s dilemma, where
the agents with knowledge of their redundancy can choose to not invest the due maintenance
cost in hope that a different agent would put in the cost instead. Furthermore, selfish agents
could choose to ignore or deliberately not collect important information about their own com-
ponent, if public knowledge of that information comes at increased personal cost to them. With
these various strategic aspects at play, a good amount of literature is devoted to identifying and
circumventing such issues as individual agents [38, 47].

A common lesson from major failures and the primary recommendation for avoiding large-
scale failure is ensuring an active role by the top management in coordination and resource
allocation [86, 136]. For example, in public-private partnership infrastructure projects a cen-
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tral government agency typically decides the allotment of common resources among the various
project stakeholders. Resources are typically scarce, and therefore a judicious allocation is cru-
cial to ensure that all the critical components essential for the project function properly. The
challenge can be particularly severe in systems with a large number of components.

5.2 Formal notation and setup
Let G = ⟨N, (Si), (costi)⟩ denote a game, where N is a set of n agents (or players), Si is the
finite action space of agent i ∈ N , and costi is the cost function of agent i. The joint action space
of the agents is S = S1 × · · · × Sn. Given joint action s = (s1, . . . , sn) ∈ S let s−i denote
the actions of all agents except agent i, i.e. s−i = (s1, . . . , si−1, si+1, . . . , sn). The cost function
costi : S → R≥0 of agent i (which the agent seeks to minimize) is a function of the joint action
s ∈ S. The social cost function of the game is the sum of cost functions of all the agents in the
game, cost =

∑n
i=1 costi. The optimal social cost is OPT = mins∈S cost(s). Given a joint action

s, the best response of agent i is the set of actions BRi(s) that minimizes its cost given s−i the
actions of other agents, i.e., BRi(s−i) = argmina∈Si

costi(a, s−i). A joint action s ∈ S is a (pure)
Nash equilibrium (or NE) if no agent can benefit from unilaterally deviating to another action, in
other words every agent is simultaneously playing a best response action in s, i.e., si ∈ BRi(s−i)
for every i ∈ N . A Nash equilibrium is said to be global if it also minimizes the social cost
among all Nash equilibria. We say a Nash equilibrium is a local equilibrium if it is not global.

Component maintenance game [110]. We will consider a specific game defined as follows.
Each agent is associated with a component ci which has a binary state xi ∈ {0, 1} where xi = 0
corresponds to a broken component and xi = 1 corresponds to a functioning component. The
action space of each agent is also binary, Si = {0, 1}, where action si = 1 indicates that the
agent repaired the component (denoted RE), and si = 0 denotes that the agent did nothing (de-
noted DN). The state xi of ci is updated after action si as x′

i = max{xi, si}. This corresponds
to ‘perfect repair’, i.e. if an agent picks the RE action, their component is guaranteed to work,
and otherwise it stays as is. For a tuple of actions s, we will denote the updated state by x′(s),
or simply x′ when s is evident from context. The state u of the system is a fixed binary function
of the component states, u = ϕ(x), where x = (x1, . . . , xn) and ϕ : {0, 1}n → {0, 1}1. u = 0
denotes a failure of the system. Let u′ = ϕ(x′) denote the state of the system after the agents’
actions. The cost for agent i is given by, costi = Cisi+1−u′ for repair cost Ci ∈ R. The actions
depend on the belief about the state x of the components, which we model by a distribution θ
over {0, 1}n. We will assume here that θ is a product distribution, and all agents share the same
common belief about the state of the components. The system failure probability under this be-
lief is Pϕ(θ) = 1−Ex∼θ[ϕ(x

′)], and the expected cost of action si to agent i, given other agents’
actions are s−i, is li(si, s−i, θ) = Ex∼θ[costi] = Cisi + 1− Ex∼θ[ϕ(x

′)]. Similarly, the expected
social cost is defined as l(s, θ) = Ex∼θ[cost] =

∑
i li(si, s−i, θ) for s = (s1, . . . , sn).

We now imagine that each agent j has the ability, for free, to inspect their own component to
determine its state. The catch, however, is that this state is revealed to all agents. The revelation
of the state would result in an updated common belief θ̃ and therefore an updated cost function

1The component maintenance game intuitively corresponds to monotone boolean functions ϕ, but our results
easily extend to general boolean functions.
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System state: ϕ(x1, x2) = x1 ∧ x2

c1 c2
state: x1state: x2

Figure 5.1: A two component series system.

Agent 1\2 DN (s2 = 0) RE (s2 = 1)

DN (s1 = 0) 0.75, 0.75 0.5, 0.8
RE (s1 = 1) 0.8, 0.5 0.3, 0.3

Table 5.1: Cost matrix for a 2-series system.

for all agents. As a result, the set of Nash equilibria can now change and the agent may suffer
higher personal cost in the new equilibria, inducing the agent to avoid inspecting their own com-
ponent for selfish reasons. We will use the terminology prior (respectively posterior) game and
equilibria to refer to the game before (respectively after) the inspection of any fixed component
cj . We formalize the setup and define Value of Information metric to capture this behavior.

Component inspection game, and Value of Information [110]. Suppose the inspection of
component cj reveals state yj ∈ {0, 1}. We will assume perfect inspection, i.e. yj = xj . Denote
posterior belief after the inspection of component cj by θ̃j,yj . If agent i switches action from si to
s̃
j,yj
i after the inspection (and other agents switch from s−i to s̃

j,yj
−i ), the value of information about

inspection of cj for agent i and posterior yj is given by VoIi,j(si, s−i, s̃
j,yj
i , s̃

j,yj
−i ) := li(si, s−i, θ)−

li(s̃
j,yj
i , s̃

j,yj
−i , θ̃

j,yj). The expected value of information is given by VoIi,j(si, s−i, s̃
j,∗
i , s̃j,∗−i) :=

li(si, s−i, θ)− Eyj li(s̃
j,yj
i , s̃

j,yj
−i , θ̃

j,yj), where s̃j,∗ is the collection of states s̃j,0, s̃j,1. Typically we
will assume that the joint actions s and s̃j,yj are Nash equilibria. We want the value of informa-
tion to be non-negative for each agent i, when inspecting any component j. This is to not have
any undesirable information avoidance behavior among the agents, where agents may choose
to ignore freely available information (about the inspected component state) for selfish reasons
(to reduce personal cost, for example by choosing to not repair their broken component), which
could lead to sub-optimal social cost or undesirable system state.

5.3 Subsidy to reduce cost and tackle information avoidance
We first present a motivating example where subsidy for component repair costs can help im-
prove social cost by steering the system to a better equilibrium.

Example 1 (A 2-series system). Consider the two component series system depicted in Fig 5.1.
Suppose that the components are independent and the failure probabilities for components c1
and c2 are both 0.5, and the repair cost is C1 = C2 = 0.3. Then the cost matrix for the com-
ponent maintenance game is given in Table 5.1. Notice that both DN-DN and RE-RE are Nash
equilibria for the game, but RE-RE has a smaller social cost. If the central authority provides a
subsidy of 0.05 + ϵ for the repair action, for any ϵ > 0, then it would incentivize the agents to
switch their actions from DN to RE, and the only Nash equilibrium is RE-RE. Note that the cost
reduction in RE-RE (0.3 to 0.25 − ϵ for each agent) equals the subsidy provided by the central
agent in this case, and the social cost + subsidy for RE-RE is preserved, while ruling out the
sub-optimal equilibrium DN-DN.

Formally, we have the following definition.
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Definition 16 (Subsidy scheme). A subsidy scheme S is defined as a set of functions subsi :
Si → R≥0 where subsi(si) gives the subsidy offered by the central agent to agent i given
agent action si. In a subsidized game using scheme S, the cost of agent i is given by the dif-
ference function costSi := costi − subsi, and total subsidy provided for joint action s ∈ S is
subs(s) =

∑
i subsi(si). In the component maintenance game, we consider subsidy schemes ‘for

repair’, i.e. subsi(0, s−i) = 0 for all agents i.

In the component maintenance game, we will consider subsidy schemes that incentivize repair,
i.e. our subsidy functions subsi will be of the form s∗i si for some constant s∗i , where si denotes
the action of agent i (recall si = 1 for repair and si = 0 for doing nothing). We also say that
a subsidy scheme is uniform if the scheme is identical for all agents and actions, i.e. s∗i = csubs

for all agents i for some constant csubs ≥ 0. We consider two types of subsidies which a central
agent, whose goal is to altruistically maximize social welfare, can offer to reduce the repair cost
of certain components.

Conditional vs. unconditional subsidies. The central agent may offer an unconditional sub-
sidy which effectively reduces the cost of repair for the components, or may be conditional on
inspection in order to encourage agents to inspect their components, even when the information
about the state of an agent’s component results is something the agent might want to avoid (in the
absence of subsidy). Note that the subsidy still is a payment to reduce the repair cost, and not a
payment for inspection. Formally, if a component inspection game involving inspection of some
component j, a general subsidy consists of three functions for each agent given by subsi, subs1i ,
subs0i , corresponding to prior, posterior with component j intact, and posterior with component
j damaged respectively. For simplicity, we will say that the agent provides subsidy conditional
on yj = k to denote that subski is the only non-zero function in the conditional scheme, and
conditional on inspection to denote that subsi is a zero function and subs1i = subs0i .

Price of Anarchy measures the reduction in system efficiency (social cost) due to selfish be-
havior of the agents [130, 146]. We define Price of Anarchy (PoA) in the presence of subsidy
along the lines of [49] as the ratio of the sum of total social cost and subsidy in the worst case
equilibrium, to the optimal social cost.

Definition 17 (Price of Anarchy under subsidy). Let S = {subsi} denote the subsidy scheme. Let
SNE(S) ⊆ S denote the subset of states corresponding to Nash equilibria when the cost for agent
i is costi − subsi. Suppose OPT ̸= 0. Then the Price of Anarchy under subsidy S is given by

PoA(S) =
maxs∈SNE(S) costS(s) + subs(s)

OPT
.

We also define a related metric for studying the effectiveness of subsidy scheme S,

P̃oA(S) =
maxs∈SNE(S) costS(s) + subs(s)

mins∈SNE
cost(s)

,

where SNE denotes the set of Nash equilibria in the component maintenance game (in the ab-
sence of any subsidy), provided mins∈SNE

cost(s) ̸= 0.

By setting zero subsidies (i.e. subsi(s) = 0 for each i, s) we recover the usual Price of Anarchy,
PoA [130]. Note that finding the subsidy scheme that optimizes PoA(S) or P̃oA(S) corresponds
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to the same optimization problem. In some games, it will be easier to show absolute bounds
on P̃oA(S). Note that P̃oA(S) = PoA(S)/PoS, where PoS is the usual Price of Stability in the
unsubsidized game [130].

Addition of subsidy effectively changes the set of states that correspond to a Nash equilib-
rium. The goal of a central agent is to ensure suboptimal (local) Nash equilibria are not included
in the set SNE when the subsidy is applied. The subsidy provided by the central agent could for
example come from taxes collected from the agents, and therefore it makes sense to add the total
subsidy provided by the central agent to the social cost in the definition of PoA(S).

The central agent designing the subsidy scheme can have several different objectives for the
scheme. In this work, we consider the following three objectives:

1. PoA(S) is minimized. This means that the social cost in the worst-case Nash equilibrium
after the subsidy is provided (with the total subsidy added) is not much worse than the
social cost of the best joint action (or the best Nash equilibrium if we minimize P̃oA(S))
when no subsidy is offered. As the result, the harmful effects of selfish behavior and lack
of coordination among the agents is minimized.

2. The system is guaranteed to work in any Nash equilibrium. This is desirable if the central
agent is keen on guaranteeing system functionality and willing to provide the needed sub-
sidy for it. This can differ from minimizing the price of anarchy as the optimal social cost
could correspond to doing nothing and letting the system stay broken, for example when
the repair costs are too large.

3. The value of information for each agent is non-negative when a single component is in-
spected. This corresponds to minimizing the tendency of agents to avoid seeking freely
available information about the state of their component to avoid an increase in their per-
sonal cost, potentially at the expense of the social cost.

Depending on the game, the appropriate subsidy scheme could vary depending on the objective
of the central agent. We will illustrate this for a two agent series game in Section 5.3.1, where
we will obtain the optimal subsidy schemes for each objective. Similarly, optimal schemes can
be derived for the two-agent parallel game, the interested reader is directed to Appendix B.2.
However, for general n-agent games, we show in Section 5.3.2 that computing the optimal total
subsidy is NP hard, under the above objectives.

Definition 18 (Price of Information Avoidance in the component inspection game). Let S =
{subsi} denote the subsidy scheme. Consider the component inspection game for inspection of
component j. Let SNE(S),S0

NE(S),S1
NE(S) ⊆ S denote the subset of states corresponding to

Nash equilibria when the cost for agent i is costi − subsi for prior, posteriors yj = 0 and yj = 1
respectively. Let VoIj(S) = mini,s∈SNE(S),s′∈S0

NE(S)∪S1
NE(S) VoIi,j(si, s′i) denote the least value of

information for any agent i for equilibria under S. Then the Price of Information Avoidance is
given by

PoIA(j) =
minS|VoIj(S)≥0maxs∈SNE(S) cost(s)

minSmaxs∈SNE(S) cost(s)
=

minS|VoIj(S)≥0 PoA(S)
minS PoA(S)

.

Recall that Price of Anarchy captures the effect of selfish behavior on social cost, relative
to best centralized (co-ordinated) action under unselfish behavior, and is minimized (equals 1)
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when selfish behavior does not impact social cost. Similarly, Price of Information Avoidance
corresponds to the effect of information avoidance, relative to the best centralized action when
agents do not avoid information for selfish reasons. Also, it equals 1 if there is never any neg-
ative value of information under any subsidizing policy. Otherwise it is at least 1, and captures
the sacrifice in social cost to avoid negative VoI.

5.3.1 Optimal subsidy in two-agent series game
Suppose we have two agents N = {1, 2} with components c1, c2 connected in series. Let p1, p2
denote the (prior) probability that the components c1, c2 will work (respectively). We will use
the notation p := 1− p for conciseness. This corresponds to the prior game in Table 5.2, where
DN denotes ‘do nothing’ (si = 0) and RE denotes ‘repair’ (si = 1). We will now consider the
above three objectives. For each objective, we will note that subsidy helps and we will obtain the
optimal subsidy in the two-agent series game.

Minimizing the price of anarchy with subsidy.

To demonstrate the significance of subsidy for reducing the social cost in the two-agent series
games, we will first show a lower bound on the Price of Anarchy in the absence of subsidy. The
following proposition indicates that the Price of Anarchy can be very high when the probabilities
of the components functioning (p1, p2) are small. Moreover, for n agents connected in series, the
price of anarchy can increase exponentially with number of agents n.

Proposition 5.3.1. In the two-agent series prior game (defined above and cost matrix noted in
the first row of Table 5.2), the Price of Anarchy in the absence of subsidy is at least PoA ≥ 2

p1+p2
,

for some repair costs C1, C2. More generally, for n agents, PoA ≥ H̃/G̃n for some repair costs
C1, . . . , Cn, where H̃ and G̃ are the harmonic and geometric means, respectively, of the prior
probabilities p1, . . . , pn.

By Proposition 5.3.1, if probabilities of component working p1 = p2 = ϵ ≪ 1, then Price of
Anarchy can be as large as 1

ϵ
(or as large as ϵ−(n−1) for general n). We remark that our lower

bounds also apply to the ratio PoA/PoS, i.e. when we compare the worst-case Nash equilibrium
with the global Nash equilibrium instead of OPT. We will now show that a constant price of
anarchy can be achieved in this game using subsidy, more precisely, that P̃oA(S) = 1 for some
subsidy scheme S. In fact, we characterize the total subsidy needed to guarantee this for any
game parameters. The proof involves carefully considering cases for the parameters resulting in
different sets of Nash equilibria and computing necessary and sufficient amounts of subsidy in
each case (see Appendix).

Theorem 5.3.2. Consider the two-agent series component maintenance game with C1, C2 > 0
and 0 < p1, p2 < 1. Let s∗ = I{(C1, C2) ∈ [p1p2, p1]× [p2p1, p2]} ·min{C1 − p1p2, C2 − p2p1},
where I{·} denotes the 0-1 valued indicator function. Then there exists a subsidy scheme S with
total subsidy s for any s > s∗ such that P̃oA(S) = 1. Moreover, a total subsidy of at least s∗ is
necessary for any subsidy scheme S that guarantees P̃oA(S) = 1.
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Figure 5.2: Cost region R with system functioning in any NE (ϕ(x′) = 1, shaded orange) in a
two-agent series game (Theorem 5.3.3). PoA ̸= PoS in region R′ (Theorem 5.3.2).

Guaranteeing that the system functions in any NE.

As seen in Example 1, the agents may be in an equilibrium (e.g. DN-DN) such that the system
is not guaranteed to function. This problem can also be remedied using subsidy. We will quan-
tify the optimal subsidy needed to guarantee that the system functions, i.e. ϕ(x′) = 1, where x′

denotes the component states after the agents’ actions.

Theorem 5.3.3. Consider the two-agent series component maintenance game with C1, C2 > 0
and 0 < p1, p2 < 1. Define R ⊂ R+ × R+ as the set of cost pairs that satisfy C1 ≤ p1 ∧ C2 ≤
p2 ∧ (C1 ≤ p1p2 ∨C2 ≤ p2p1), depicted in Figure 5.2. Let s∗ = min(x,y)∈R ||(C1, C2)− (x, y)||1,
where || · ||1 denotes the L1-norm. Then there exists a subsidy scheme S with total subsidy s for
any s > s∗ such that the system functions in any NE. Moreover, a total subsidy of at least s∗ is
necessary for any subsidy scheme S that guarantees that the system functions in any NE.

The proof is deferred to Appendix B.1. In constrast to Theorem 5.3.2, here the central agent
needs to provide subsidy in the states where the price of anarchy may be 1 without subsidy but
the system is not guaranteed to function as agents may choose to do nothing.

Ensuring value of information is non-negative for each agent.

[110] exhibit several examples, including 2-agent series games, where the value of information
for certain agents can be negative, when actions in the prior and posterior games are selected
according to some Nash equilibria. We will demostrate the use of subsidy in tackling this unde-
sirable information avoidance behavior.

In addition to the prior game, we will now consider posterior games where component c1 is
inspected, and its state y1 is revealed on inspection (y1 = 1 corresponds to c1 is functioning,
and y1 = 0 corresponds to c1 is broken). Table 5.2 summarizes prior and posterior costs for the
two agents for each action pair (recall that DN denotes ‘do nothing’ or si = 0, and RE denotes
‘repair’ or si = 1). [110] show that the expected value of information (VoI) is non-negative for
all agents if a global NE is selected.

Theorem 5.3.4 ([110]). In the two-agent series game described above, if component cj, j ∈
{1, 2} is inspected, and the prior and posterior actions s, s̃ are selected from global equilibria,
then the expected value of information VoIi,j(s, s̃) is non-negative for each agent i ∈ {1, 2}.

Therefore, if we avoid suboptimal local equilibria in this setting then expected VoI is guaran-
teed to be non-negative. Combined with Theorem 5.3.2 above, this implies that negative Value
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Conditions DN-DN DN-RE RE-DN RE-RE

Prior p1p2, p1p2 p1, p1 + C2 p2 + C1, p2 C1, C2

y1 = 1 p2, p2 0, C2 p2 + C1, p2 C1, C2

y1 = 0 1, 1 1, 1 + C2 p2 + C1, p2 C1, C2

Table 5.2: Matrix for cost-pairs (agent 1, agent 2) when component c1 is inspected for the two-
agent series system. Here p1p2 = 1− p1p2 and pi = 1− pi.

of Information may be avoided via subsidizing repair costs in the two-agent series game. In
more detail, we can employ a conditional subsidy scheme, with prior subsidy subsi according to
the scheme S in Theorem 5.3.2, and posterior subsidy subsyi when agent 1 is inspected employs
the subsidy scheme from Theorem 5.3.2 by setting the parameter p1 = y. Theorem B.1.1 in Ap-
pendix B.1 characterizes the optimal unconditional subsidy for ensuring the Value of Information
is non-negative for each agent.

5.3.2 NP-Hardness in general n-agent maintenance and inspection games
We will now consider the problem of computing the best subsidy scheme in general component
maintenance games, i.e. when a general boolean function ϕ governs system failure. We will
prove computational hardness results in this section and assume familiarity with fundamental
concepts in complexity theory [5]. We will do this by reducing the VERTEX-COVER problem
(one of Karp’s original NP-complete problems [97]) to the decision-problem version of comput-
ing the best subsidy, for the different objectives that the central agent may care about. Recall
that VERTEX-COVER is the following decision problem, specified by a graph G = (V,E) and an
integer k.

VERTEX-COVER: Does a given graph G = (V,E) admit a vertex cover2 of size k?

Price of Anarchy under Subsidy.

Finding the best subsidy in a given component maintanence game (CMG) to minimize the price
of anarchy is an optimization problem. Here we will study the hardness of a corresponding
decision problem stated below.

CMG-POAS: Given a CMG G and a subsidy budget n∗, does there exist subsidy scheme S
with non-zero subsidy provided to n∗ agents such that PoA(S) = 1?

Note that here we define the best subsidy scheme to be the one that provides subsidy to fewest
agents. This meaningfully models situations when subsidy consists of allocation of indivisible
resources, for example the central agent providing commitment to intervene and assist but with
a bandwidth constraint on the number of agents thart could receive the assistance. As mentioned
above, we will do a Karp reduction from the VERTEX-COVER problem. The key idea is to con-
struct a component maintenance game G given any graph G, with agents corresponding to graph
nodes, and the system state function ϕ corresponding to the graph edges. We show that the Nash

2A set of vertices such that all edges of the the graph have at least one endpoint in the set.
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equilibria of G roughly correspond to minimal vertex covers of G. To ensure PoA(S) = 1, we
provide subsidy to the agents in a smallest vertex cover of G.

Theorem 5.3.5. CMG-POAS is NP-Hard.

Proof. We will reduce the VERTEX-COVER problem to CMG-POAS. Given an instance G, k of
the VERTEX COVER problem, we create a corresponding CMG-POAS problem as follows. In-
troduce an agent i for every vertex i ∈ V and consider the (2-CNF) formula ϕ(x) =

∧
(i,j)∈E(xi∨

xj), where the clauses consist of component states xi, xj for all pairs i, j of agents corresponding
to edges in E. Set the probability distribution θ to be the constant distribution with the entire
probability mass on 0n (i.e. all the components are guaranteed to fail without repair). Set repair
cost Ci = 1 for all components i. Then the cost function for agent i for joint action s = (si, s−i)
is given by

li(si, s−i, θ) = Ex∼θ[costi] = Cisi + Pϕ(θ)

= 1 · si + 1− ϕ(x′)

= si + 1− ϕ(s),

where x′
i = max{0, si} = si denotes the component state after agent i takes action si.

We first proceed to characterize the set of Nash equilibria of this game. Note that s = 0n is a
NE for this game, since any repair action by any agent increases the agent’s cost by 1 if the repair
does not change the state ϕ of the system, and by 0 otherwise (since ϕ is monotonic, ϕ(s) can only
change from 0 to 1 on repair). Therefore no agent has any incentive to switch from DN to RE. We
will now show that the remaining NEs for the game correspond to minimal vertex covers of G.

Suppose K ⊆ [n] be a set of agents for which the corresponding nodes in G constitute a
minimal vertex cover. Let sK′ = (s1, . . . , sn) where si = I[i ∈ K ′], and I[·] is the 0-1 valued
indicator function, denote the joint action where agents in set K ′ ⊆ [n] choose repair. Clearly,
ϕ(sK) = 1. If i ∈ K, agent i does not reduce cost by switching from RE to DN since K is a
minimal cover therefore not repairing component i causes the system to fail. As noted above,
switching from DN to RE never improves an agent’s cost in this game. Further, if K is the set of
agents corresponding to a non-minimal vertex cover, then there must be some agent that can re-
duce its cost by switching from RE to DN (and system continues to function). Finally, if K ′ ̸= ∅
is the set of agents with one or more agents short of a vertex cover, then any agent in K ′ can
reduce its cost by switching from RE to DN. This establishes that besides 0n, only possible NE
must correspond to a minimal vertex cover. In particular, this implies that OPT = k∗, where k∗

is the size of the smallest vertex cover K∗ of G, and the corresponding NE is sK∗ .
To complete the reduction, we consider the game defined above with subsidy budget n∗ = k.

We will show a bijection between the YES and NO instances of the two decision problems to
complete the proof.

If there exists a vertex cover of size k, then the smallest vertex cover K∗ has size k∗ ≤ k. We
design a subsidy scheme with subsidy allocated to k∗ ≤ n∗ agents, allocating subsidy of 1 + 1

2n

for repair (the total subsidy is no more than k∗ + 1
2
) to all agents in the minimum cover K∗, a

and subsidy of 0 otherwise. As argued above, the only candidate NE without subsidy are 0n and
sK corresponding to some minimal vertex cover K. The social cost for 0n is n (except the trivial
case k∗ = 0) and that for sK∗ is k∗ which is smaller. If we provide subsidy in our scheme S to the
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agents in K∗ then 0n is no longer an NE. In particular, every subsidized agent in K∗ would now
always choose repair at subsidized cost − 1

2n
over doing nothing (even when the system stays

broken after the repair). Thus, the social cost plus subsidy is k∗(− 1
2n
)+k∗(1+ 1

2n
) = k∗, and the

price of anarchy for the subsidy scheme is 1 (any agent outside of K∗ will prefer to do nothing
to reduce their cost).

On the other hand, suppose that G has no vertex cover of size k. Any minimal vertex cover of
G therefore has size at least k+1. Suppose S is a subsidy scheme with subsidy allocated to most
k agents. We will show that PoA(S) > 1. Indeed, let K be an arbitrary minimal vertex cover of
G. By pigeonhole principle, at least one agent in K does not receive subsidy. Let K ′ denote the
(possibly empty) set of agents that receive subsidy greater than 1. As argued above, these agents
will always prefer the repair action. Thus, sK′ is a Nash equilibrium (agents without subsidy
never have incentive to switch from DN to RE in this game) in the subsidized game. Note that
ϕ(sK′) = 0 since at least one vertex is missed in any minimal vertex cover K, and therefore we
must have an uncovered edge. Now OPT ≤ cost(sK) = |K| < n. Therefore, PoA(S) > 1 as
total cost plus subsidy is at least n for sK′ .

We make a couple of remarks about the above result. Our proof implies a similar hardness result
if the decision problem is stated for P̃oA(S) instead of PoA(S). We further note that our reduc-
tion from VERTEX-COVER does not involve any negative literals in the boolean system function
ϕ, i.e. applies to monotone boolean functions where if a component is repaired from broken to a
working state, then it cannot cause the overall system to go from working to broken.

Guaranteeing that the system functions in any NE.

Here we consider a more challenging optimization objective of finding the optimal subsidy
scheme with the least total value across all agents that receive the subsidy, and the goal of the
central agent is to disburse sufficient subsidy to guarantee that the system functions in any Nash
equilibrium. The decision problem in this case is stated as follows.

CMG-SYSTEM: Given a component maintenance game (CMG) and subsidy budget s∗, does
some subsidy scheme S with total subsidy at most s∗ guarantee that the system functions in any
NE (i.e. ϕ(s) = 1 for any s ∈ SNE(S))?

We give a Karp mapping from any vertex cover instance G, k to a CMG-SYSTEM instance
and use a slightly different game instance for the reduction. We show that the system is guar-
anteed to function in any NE iff the subsidy budget is one less than the size of a smallest vertex
cover. See Appendix B.3 for a proof of the following result.

Theorem 5.3.6. CMG-SYSTEM is NP-Hard.

Value of Information.

We also show NP-hardness of the problem of determining the minimal subsidy needed to avoid
negative Value of Information in the component inspection game. Formally, the decision problem
is stated below.

CIG-VOI: Given a component inspection game (CIG) and subsidy budget s∗, does some
subsidy scheme S with total subsidy at most s∗ guarantee that no agent has negative value of
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information when a single component j is inspected (i.e. for fixed inspected component j,
VoIi,j(s, s̃j,yj) ≥ 0 for any s ∈ SNE(S), s̃j,yj ∈ S

yj
NE(S), for each agent i ∈ [n], and each

posterior component state yj ∈ {0, 1})?
Our proof (Appendix B.3) again involves a reduction from the VERTEX-COVER problem,

but we use a different subsidy budget and examine the non-negativity of VoI when potentially
different equilibria are selected in the prior and posterior games.

Theorem 5.3.7. CIG-VOI is NP-Hard.

5.3.3 A Bayesian view

It is possible to view the component maintenance game from a Bayesian perspective. A Bayesian
game [91, 132] is defined as a tuple B = ⟨N,S = (S1×· · ·×Sn), T = (T1×· · ·×Tn), θ, (costi)⟩,
where N is a set of n agents (or players), Si is the finite action space of agent i ∈ N , Ti is the type
space of player i, θ is a common prior over types and costi : S×T → R≥0 is the cost function of
agent i. In the component maintenance game, the types of the agents are their component states
xi. Bayesian games are typically analysed from three perspectives—ex-ante, where the agents
do not know the actual type for any agent, interim, where the agents know their own actual type
but not for any other agent, and ex-post, where the agents know every agents’ type.

A pure-strategy Bayesian Nash Equilibrium (BNE) from the ex-ante perspective in a finite
game is simply a pure-strategy Nash Equilibrium with the cost matrix given by the expected
costs for types drawn according to θ [132]. This corresponds to the ‘prior’ game above in the
component maintenance game. In the above formulation for component inspection, in the ‘pos-
terior’ game a single agent’s component is inspected and all the agents are assumed to know the
type (state) of the inspected agent (component). This does not fit neatly with the interim state
where every agent learns their own private type, or the ex-post state where every agent learns
every agents’ type. Studying the effect of providing subsidy in these settings is an interesting
direction for future work.

5.4 Data-driven subsidy in repeated games

Above computational hardness results motivate us to consider a beyond worst-case approach to
finding a good subsidy for a given game. Specifically, we will consider the data-driven algorithm
design paradigm introduced by [83], and further studied by [13, 15]. In this framework, we will
assume access to multiple games coming from the same domain (e.g. infrastructure management
in similar counties) and determine a good value of subsidy for unseen game instances from the
same domain. We will consider games drawn i.i.d. from an (arbitrary, unknown) game distribu-
tion, or games arriving in an online sequence. In the former we and will be interested in having a
small sample complexity of the number of game samples needed to generalize well to an unseen
sample from the same distribution. For the latter, we will study regret relative to the best possible
subsidy scheme over the online sequence, in hindsight.
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5.4.1 Sample complexity for subsidy schemes
In this section, we define the notion of sample complexity for designing sample-based subsidy
schemes for cost minimization games. The sample complexity for (uniform convergence of) a
given set of subsidy schemes measures how many samples are sufficient to ensure the expected
social cost of any subsidy scheme in the set approximately matches its average cost over the game
samples with high probability, for any given approximation and confidence level. In particular,
if there is a subsidy scheme in the set with small social cost over a sufficiently large set of game
samples, then that scheme will almost certainly have low cost in expectation over the distribu-
tion over games from which the samples are generated. Guarantees on sample complexity are a
central topic in computational learning theory [4, 161].

Definition 19 (Sample complexity). The sample complexity for a class S of subsidy schemes is
a function N : R≥0 × (0, 1) → Z≥1 defined such that for any ϵ > 0, any δ ∈ (0, 1), any sample
size N ∈ Z≥1, and any distribution D over the games, with probability at least 1 − δ over the
draw of a set S ∼ DN , for any scheme S in S , the difference between the average cost of S over
S and the expected cost of S over D is at most ϵ, whenever N ≥ N (ϵ, δ). In other words,

Pr
S∼DN

[
∃S ∈ S s.t.

∣∣∣∣∣
1

N

∑

v∈S
COSTS(v)− E[COSTS(v)]

∣∣∣∣∣ > ϵ

]
< δ.

Note that the existence of a single S ∈ S that violates the ϵ-approximation for its expected cost
is sufficient to cause the ‘failure’ event which happens with probability δ. In other words, with
probability 1 − δ, all schemes S must observe uniform convergence of sample cost to expected
cost (for sufficiently large sample). The 1 − δ high probability condition is needed because it is
always possible that (with a very small but non-zero probability) the set of samples S, no matter
how large, is completely unrepresentative of the distribution D over the games. Clearly, N (ϵ, δ)
should grow as δ or ϵ shrinks since we need to ensure that the difference between the average and
expected cost of each subsidy in S is at mostN (ϵ, δ) with probability at least 1− δ. The sample
complexityN (ϵ, δ) of class S of course also depends on the specific subsidy class S. According
to classic computational learning theory, the more “complex” the subsidy class S is, the more
challenging it is to bound the difference between the average and expected cost of every subsidy
in S, i.e. richer subsidy classes S have larger sample camplexity N (ϵ, δ).

For an arbitrary class S , a bound on the sample complexity allows the subsidy scheme de-
signer to relate the expected cost of a scheme in S which achieves minimum average cost over
the set of samples to the expected cost of an optimal scheme in S, using classic arguments from
learning theory [125]. More precisely, for a set of samples S from the distribution over buyers’
values, let Ŝ be the scheme in S that minimizes average cost over the set of samples and let S∗

be the scheme in S that minimizes expected cost over D. Finally, let P be the minimum cost
achievable by any scheme in S over the support of the distribution D. For any δ ∈ (0, 1), with
probability at least 1− δ over the draw of a set of N ≥ N (ϵ, δ) samples S fromD, the difference
between the expected cost of Ŝ over D and the expected cost of S∗ over D is at most 2ϵ. There-
fore, so long as there is a good sample complexity N (ϵ, δ) bound for subsidy scheme class S,
the scheme designer can be confident that an optimal scheme over the set of observed samples
competes with an optimal scheme in S.
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Pseudo-dimension. Pseudo-dimension [137] is a well-known learning theoretic measure of
complexity of a class of functions (it generalizes the Vapnik-Chervonenkis or VC dimension
to real-valued functions), and is useful in obtaining bounds on the sample complexity of fitting
functions from that class to given data.

Definition 20 (Pseudo-dimension). Let H be a set of real valued functions from input space
X . We say that C = (x1, . . . , xm) ∈ Xm is pseudo-shattered by H if there exists a vector
r = (r1, . . . , rm) ∈ Rm (called “witness”) such that for all b = (b1, . . . , bm) ∈ {±1}m there
exists hb ∈ H such that sign(hb(xi) − ri) = bi. Pseudo-dimension of H is the cardinality of the
largest set pseudo-shattered byH.

For a function class with range [0, H] and pseudo-dimension d, a sample complexity bound of
N (ϵ, δ) = O(H

2

ϵ2
(d+log 1

δ
)) is well-known [4, 7]. We conclude this section with a useful general

lemma from data-driven algorithm design for giving upper bounds on the pseudo-dimension of
certain loss function classes.

Lemma 5.4.1. (Lemma 2.3, [7]) Suppose that for every game G ∈ G, the function LG(σ) : R→
R is piecewise constant with at most N pieces. Then the family {Lσ(·)} over games in G has
pseudo-dimension O(logN).

5.4.2 Sample complexity for subsidizing games drawn from a distribution

Learning uniform subsidies. We start with some initial results on learning a good value of the
subsidy even in the absence of considerations about value of information, or possible equilibria
in posterior games. We will consider uniform subsidy σ ∈ R≥0 conditional on repair (i.e. re-
duces cost of repair for all agents that choose to repair). A simple loss objective in this uniform
subsidy setting is given by

Lprior(σ) := max
s∈SNE(σ)

costσ(s) + nsσ,

where ns is the number of agents that choose repair in joint state s, SNE(σ) and costσ(s) denote
the set of Nash equilibria and (respectively) the updated total cost, when a uniform subsidy of σ
is applied. We further assume all the repair costs as well as subsidy budget is no more than H ,
i.e. σ,Ci ≤ H for each i ∈ [n]. Therefore, Lprior(σ) ≤ (2H + 1)n.

Suppose the central agent (learner) who needs to set the subsidy has repeated instances of
this game (e.g. cost matrices) drawn from a distribution. Can we learn a good value of uniform
subsidy s∗, that has small expected loss over the distribution? We will use standard machinery
for data-driven algorithm design [7].

Theorem 5.4.2. For any ϵ, δ > 0 and any distribution D over component maintenance games
with n agents, O(n

2H2

ϵ2
(n + log 1

δ
)) samples of the game drawn from D are sufficient to ensure

that with probability at least 1−δ over the draw of the samples, the best value of uniform subsidy
over the sample ŝ∗ has expected loss Lprior(ŝ∗) that is at most ϵ larger than the expected loss of
the best value of subsidy over D.
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Proof. Consider any fixed component maintenance game G. Observe that if actions of all agents
except agent i i.e. s′−i is fixed (2n−1 possibilities), then the agent i will repair its component pro-
vided the cost under subsidy Ci − s∗ + 1− Eθϕ(x

′(1, s′−i)) is smaller than 1− Eθϕ(x
′(0, s′−i)).

That is we have at most 2n−1 critical values of s∗ where the preferred action of agent i may
change. Over n agents, we have at most n2n−1 such points. Moreover, the loss is piecewise
constant in any fixed piece.

Given the piecewise-constant structure with a bound on the total number of pieces, the sam-
ple complexity bound follows from standard learning theoretic arguments. In more detail, by
Lemma 5.4.1, this implies that the pseudo-dimension of the loss function class parameterized by
the subsidy value is at most O(log(n2n−1)) = O(n) and the sample complexity result follows
classic bounds [4, 7].

Remark 4. Note that a naive bound of O(2n) could be derived on the pseudo-dimension of any
n player game, where each player has 2 possible actions. This is because there are 2n distinct
states and therefore at most 22

n
possible distinct state subsets which could correspond to a Nash

Equilibrium. The critical subsidy values s∗ correspond to values at which the set of NE changes,
and for any pair of state subsets exactly one could be the set of NE for all values of subsidy above
(respectively below) some critical value s∗. The loss is again piecewise constant, and by Lemma
5.4.1 we have that the pseudo-dimension is O(2n). The above proof makes use of cost matrix of
the component maintenance game to obtain the exponentially better upper bound of O(n).

Learning non-uniform subsidies. We are further able to obtain a sample complexity bound
even for the non-uniform subsidy scheme defined above, where the central agent can provide a
different subsidy to each agent depending on their component cost, failure probability and how
critical the component is to overall system functionality. The subsidy scheme consists of a vector
of multiple real-valued parameters, one for each agent.

Lprior(S) := max
s∈SNE(S)

costS(s) + subs(s),

We assume that subsi(s), Ci ≤ H for each i ∈ [n], and therefore Lprior(S) ≤ (2H + 1)n. Again,
we are able to give a polynomial sample complexity for the number of games needed to learn a
good value of subsidy with high probability over the draw of game samples coming from some
fixed but unknown distribution (proof in Appendix B.4).

Theorem 5.4.3. For any ϵ, δ > 0 and any distribution D over component maintenance games
with n agents, O(n

2H2

ϵ2
(n2 + log 1

δ
)) samples of the game drawn from D are sufficient to ensure

that with probability at least 1− δ over the draw of the samples, the best vector of subsidies over
the sample ŝ∗ has expected loss Lprior that is at most ϵ larger than the expected loss of the best
vector of subsidies over D.

A similar sample complexity bound can also be given for learning conditional subsidies from
game samples, by minimizing a loss based on the social cost in the posterior game. See Theorem
B.4.1 in Appendix B.4. Note that minimization of Lprior corresponds to minimization of PoA(S).
To guarantee that the system functions, we can simply add a regularization term λ(1−ϕ(s)), for
sufficiently large λ > (2H + 1)n.
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In learning terminology, our results imply a bound on the number of sample games in the
‘training set’ to do well on an unseen ‘test’ game instance from the same distribution. We note
that optimization over the training set is still computationally hard, but we can avoid solving the
hard problem over and over again for repeated test instances.

5.4.3 No-regret when subsidizing in an online sequence of games
In the online setting, we receive a sequence of games at times (rounds) t = 1, . . . , T . In each
round t, the central agent must set a value of the (uniform) subsidy σt, with potentially some
feedback on previous rounds but no knowledge of the game parameters (costs/priors) of the
current or future rounds. This is more pessimistic (but potentially also more realistic) than the
distributional setting above. In particular, the sequence of games may be adversarially picked.
The performance of the algorithm is measured by the difference in the cumulative loss for the
selected subsidy values and the cumulative loss of the best fixed value of subsidy in hindsight,
also known as regret (RT ).

RT :=
T∑

t=1

Lprior(σt)− min
σ∈[0,H]

Lprior(σ).

‘No-regret’ corresponds to RT being sublinear in T , and the average regret RT/T approaches
zero for large T in this case. We will impose a mild assumption on the repair costs Ci to obtain
good results in the online setting. We will assume that the costs are not known exactly, but come
from some smooth distribution. Formally,

Assumption 5. We assume that the probability distributions generating the costs have κ-bounded
probability density, i.e. maxx∈R fi(x) ≤ κ for some κ ∈ R+, where fi denotes the probability
density function for cost Ci.

The adversary designing the sequence of games may select any bad distribution as long as it
is smooth. Under this assumption, our analysis above and tools from [19] can be used to show
that the online sequence of loss functions is dispersed [15]. Dispersion, informally speaking,
captures how amenable a non-Lipschitz function is to online learning. As noted in [15, 20],
dispersion is a sufficient condition for learning piecewise Lipschitz functions online, even in
changing environments. A formal definition is included below.

Definition 21 (Dispersion, [15, 19]). The sequence of random loss functions L1, . . . , LT is β-
dispersed for the Lipschitz constant ℓ if, for all T and for all ϵ ≥ T−β , we have that, in expecta-
tion, at most Õ(ϵT ) functions (here Õ suppresses dependence on quantities beside ϵ, T and β, as
well as logarithmic terms) are not ℓ-Lipschitz for any pair of points at distance ϵ in the domain
C. That is, for all T and ϵ ≥ T−β ,

E
[
max ρ,ρ′∈C

||ρ−ρ′||2≤ϵ

∣∣{t∈ [T ] | Lt(ρ)− Lt(ρ
′) > ℓ||ρ−ρ′||2}

∣∣
]
≤ Õ(ϵT ).

Under Assumption 5, we have the following guarantee about online learning of subsidy in a
sequence of games, namely one can predict good values of subsidy (with Õ

(√
n
T

)
average ex-

pected regret over T online rounds). We establish 1
2
-dispersion of the sequence of loss functions
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under the above assumption and use results from [19] to obtain the regret bound. Our main result
is stated below (proof in Appendix B.4).

Theorem 5.4.4. Suppose Assumption 5 holds. Let L1, . . . , LT : [0, H]→ [0, (2H +1)N ] denote
an independent sequence of losses as a function of the subsidy value σ, in an online sequence
of T component maintenance games. Then sequence of functions is 1

2
-dispersed and there is an

online algorithm with Õ(
√
nT ) expected regret.

5.5 Discussion
We study the problem of resource allocation for infrastructure maintenance in systems with pri-
vately owned components via a game-theoretic model. The abstract model captures the typical
organization of engineering systems, computer networks, or project pipelines. We identify useful
metrics related to price of anarchy, shared ‘system’ costs and value of information that a central
agent may care about and examine the challenge in optimally allocating resources to optimize
these metrics. Some metrics might be of interest in analyzing other games involving shared costs
or information.

Our work employs a data-driven approach, which has not been previously employed in the
literature of subsidy or taxation design which has largely focused on designing approximations
for worst-case game parameters. An interesting further question is to extend this idea of an-
alyzing ‘typical’ games to potentially obtain better domain-specific subsidy schemes in other
interesting games [49, 119]. Also our learning-based approach allows modeling more realistic
settings, where the game parameters or even set of agents may change over time.

The results in this chapter are based on joint work with Nina Balcan and Matteo Pozzi, which
will appear at EMI/PMC 2024.

106



Chapter 6

Robustness

Deep networks are highly susceptible to adversarial attack, and a key challenge to robustness is
that they typically involve non-Lipschitz maps from inputs to feature embeddings (as small input
perturbations can often produce large movements in the network’s final-layer feature space). This
chapter will consider an attack model that abstracts this challenge, to help understand its intrinsic
properties: the adversary may move data an arbitrary distance in feature space but only in random
low-dimensional subspaces. Such adversaries can defeat any algorithm that must classify any in-
put it is given. However, by allowing the algorithm to abstain on unusual inputs, such adversaries
can be overcome when classes are reasonably well-separated in feature space. A key tool in de-
signing a good algorithm will be using data-driven methods to select algorithm parameters to
optimize over accuracy-abstention trade-offs. The results provide new robustness guarantees for
nearest-neighbor style algorithms, and also have application to contrastive learning, where we
empirically demonstrate the ability of such algorithms to obtain high robust accuracy with low
abstention rates.

Formal threat model. Let x be an n1-dimensional test input for classification. The input is
embedded into an n2-dimensional feature space using an abstract mapping F . Our threat model
is that the adversary may corrupt F (x) such that the modified feature vector is any point in a
random n3-dimensional affine subspace denoted by S + {F (x)}. For example, if n3 = 1 then
S + {F (x)} is a random line through F (x), and the adversary may select an arbitrary point on
that line; if n3 = 2 then S + {F (x)} is a random 2-dimensional plane through F (x), and the
adversary may select an arbitrary point in that plane. The adversary is given access to everything
including the algorithm’s classification function, F , x, S and the true label of x.

Our framework can be thought of as a kind of smoothed analysis [155] in its combination
of random and adversarial components. However, a key distinction is that in smoothed analysis,
the adversary moves first, and randomness is added to its decision afterwards. In our model,
in contrast, first a random restriction is applied to the space of perturbations the adversary may
choose from, and then the adversary may move arbitrarily in that random subspace. Thus, the
adversary in our setting has more power, because it can make its decision after the randomness
has been applied.
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6.1 Robustness via abstention
Remarkably, abstention is necessary for robust prediction under our model. A classifier without
abstention must label the entire feature space. For a simple linear decision boundary, a perturba-
tion in any direction (except parallel to the boundary) can cross the boundary with an appropriate
magnitude (Figure 6.1, mid). The left and right figures show that if we try to ‘bend’ the decision
boundary to ‘protect’ one of the classes, the other class is still vulnerable. This intuition may be
formalized and generalized (beyond linear classifiers to any classifier), and one could show that
there must be at least one vulnerable class irrespective of how you may try to shape the class
boundaries, where the adversary succeeds in a large fraction of directions.

Figure 6.1: A simple example to illustrate that abstention is necessary in our model. Bending
the decision boundary to avoid adversarial examples for one class makes it harder to defend the
other class.

Theorem 6.1.1. For any classifier that partitions Rn2 into two or more classes, any data distri-
bution D, any δ > 0 and any feature embedding F , there must exist at least one class y∗, such
that for at least a 1 − δ probability mass of examples x from class y∗ (that is, x is drawn from
DX|y∗), for a random unit-length vector v, with probability at least 1/2 − δ for some ∆0 > 0,
F (x) + ∆0v is not labeled y∗ by the classifier. In other words, there must be at least one class
y∗ such that for at least 1 − δ probability mass of points x of class y∗, the adversary wins with
probability at least 1/2− δ.

Proof. Define rδ to be a radius such that in the feature space, for every class y, at least a 1 − δ
probability mass of examples F (x) of class y lie within distance rδ of the origin. Define R such
that for a ball of radius R, if we move the ball by a distance rδ, at least a 1 − δ fraction of the
volume of the new ball is inside the intersection with the old ball. Now, let B be the ball of radius
R centered at the origin in feature space. Let vol(B) denote the volume of B and let voly(B)
denote the volume of the subset of B that is assigned label y by the classifier. Let y∗ be any label
such that voly∗(B)/vol(B) ≤ 1/2. Now by the definition of y∗, a point z picked uniformly at
random from B has probability at least 1/2 of being classified differently from y∗. This implies
that, by the definition of R, if F (x) is within distance rδ of the origin, then a point zx that is
picked uniformly at random in the ball Bx of radius R centered at F (x) has probability at least
1/2 − δ of being classified differently from y∗. This immediately implies that if we choose a
random unit-length vector v, then with probability at least 1/2− δ, there exists ∆0 > 0 such that
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F (x) +∆0v is classified differently from y∗, since we can think of choosing v by first sampling
zx from Bx and then defining v = (zx − F (x))/∥zx − F (x)∥2. Moreover, since the classifier
has no abstention region, being classified differently from y∗ implies a win by the adversary. So,
the theorem follows from the fact that, by the definition of rδ, at least 1 − δ probability mass of
examples F (x) from class y∗ are within distance rδ of the origin in feature space.

We remark that our lower bound applies to any classifier and exploits the fact that a classifier
without abstention must label the entire feature space. For a simple linear decision boundary, a
perturbation in any direction (except parallel to the boundary) can cross the boundary with an
appropriate magnitude (Figure 6.1, mid). The left and right figures show that if we try to ‘bend’
the decision boundary to ‘protect’ one of the classes, the other class is still vulnerable. Our
argument formalizes and generalizes this intuition, and shows that there must be at least one vul-
nerable class irrespective of how you may try to shape the class boundaries, where the adversary
succeeds in a large fraction of directions.

We propose a simple parameterized nearest-neighbor algorithm (to be applied to feature em-
beddings of deep non-Lipschitz networks) which is able to overcome the above lower bound, and
attain small robust error in our model.

Algorithm 10 ROBUSTCLASSIFIER(τ, σ)

1: Input: A test example F (x) (potentially an adversarial example), a set of training examples
F (xi) and their labels yi, i ∈ [m], a threshold parameter τ , a separation parameter σ.

2: Preprocessing: Delete training examples xi corresponding to features F (xi) if
minj∈[m],yi ̸=yj dist(F (xi), F (xj)) < σ.

3: Output: A predicted label of F (x), or “don’t know”.
4: if mini∈[m] dist(F (x), F (xi)) < τ then
5: return yargmini∈[m]dist(F (x),F (xi));
6: else
7: return “don’t know”.

We prove an upper bound on the robust error of Algorithm 10, which is defined as the prob-
ability the adversary succeeds under our threat model. Formally, Exadv(f) := ES∼SI{∃e ∈
S + F (x) s.t. f(e) ̸= y and f(e) does not abstain} the robust error of a given classifier f for
classifying instance x.

We illustrate the analysis in the simpler case of n3 = 1. Suppose we have a training example
x′ of another class, and suppose F (x) and F (x′) are at distance D in the feature space. That
is, dist(F (x), F (x′)) = D. If τ = o (D), the probability that the adversary can move F (x) to
within distance τ of F (x′) is at most the ratio of the surface area of a sphere of radius τ to the
surface area of a sphere of radius D, which is at most

( τ

D

)n2−1

≤
(τ
r

)n2−1

if the feature space is n2-dimensional. See Figure 6.2. By a union bound, for the case n3 = 1,
the robust error is at most

m
(τ
r

)n2−1

.
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Figure 1: Adversarial misclassification for nearest-neighbor predictor

Some comments/further questions:

2.1 How do the bounds depend on n1, n2?

2.1.1 We claim the above ✏2

r2 bound can be generalized to
�
✏
r

�n2�n1
upper bound on probability of error

in the general case.

2.1.2 This bound should be tight i.e. show ⌦
⇣�

✏
r

�n2�n1
⌘

lower bound.

TODO: Add a concrete theorem here.

2.2 This indicates that a ‘nice’ F could cluster together points from same class into small geometric regions,
to give an even better bound. Well separation already boosts the above bound as it improves with
increasing r. Can we extend sample complexity and prediction confidence bounds for F to robust
bounds for our setting?

– Concretely, if we have that F +h have a sample complexity of m(✏, �), then in the above adversary
model the failure probability is only increased by the above upper bound. We should therefore
get a slightly weaker sample complexity bound for our model. Also look at what we can say about
accuracy assuming adversary did not perturb the input.

2.3 The bound using n seems conservative, examples with the same label as x would not lead to misclas-
sification for example. Also ‘directions’ where you may get adversarially close to examples of a fixed
class probably overlap/correlate.

– Can we extend the above argument about individual training points to regions/clusters corre-
sponding to individual classes and get something tighter? We’ll probably also need to consider
probability mass of input points to overcome low mass examples that violate our assumptions.
Ideally we want our results to improve with more training examples.

2.4 Probabilistic Lipschitzness [2] is an assumption on ‘data niceness’ which can give sample complexity
guarantees for NN algorithm which scale with this ‘niceness’ of data distribution.

– It looks like Probabilistic Lipschitzness does not directly apply to our model (captures standard
threat model better), but we might want to introduce a similar definition for our setting.

2.5 Reducing ✏ improves the above bound but at the cost of more “don’t knows”. We might want to
quantify this trade-o↵ of accuracy of output vs dismissibility of input.

3 Robust PCA

F (x) is low-rank by design, and therefore L0 perturbations to it can be detected/resolved using the Robust
PCA method. Notice that this approach can be thought of as more than just a data assumption, even if x
is full rank, embedding into F (x) results in n1 dimensional manifolds in n2 > n1 dimensional space.

We currently treat this as a separate direction to be looked at after Sections 2 and 4. Unlike Section 2,
here we potentially expect unsupervised results.
TODO(Dravy, Hongyang): Add more details and further questions.
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Figure 6.2: Adversarial misclassification for nearest-neighbor predictor. Here F (x) is the test
point and F (xi) is a training point from a different class. For n3 = 1, the adversary succeeds for
the directions inside the depicted cone around F (xi).

The argument above may be generalized to general n3 > 1 (see Theorem 2, [30]) using the
following Random Projection Theorem [63, 163].

Theorem 6.1.2 (Random Projection Theorem). Let z be a fixed unit length vector in d-dimensional
space and z̃ be the projection of z onto a random k-dimensional subspace. For 0 < δ < 1,

Pr

[∣∣∣∣∥z̃∥22 −
k

d

∣∣∣∣ ≥ δ
k

d

]
≤ e−

k(δ2−δ3)
4 .

In fact, we are able to use a high dimensional geometric argument to prove the following (asymp-
totically better for fixed n3 and large n2) guarantee via a tighter bound on the probability mass
of the region of adversarial success.

Theorem 6.1.3. If τ = o(r), the robust error Exadv(f) of ROBUSTCLASSIFIER(τ, 0) in Algorithm

10 for classifying x is at most O
(

m
n2−n3

(
τ
r

)n2−n3 1
B(n3/2,(n2−n3)/2)

)
, where B(·, ·) is the Beta

function. The Beta function is given by B(r1, r2) =
∫ 1

0
tr1−1(1 − t)r2−1dt, for r1, r2 ∈ R+, and

is closely related to binomial coefficients.

Proof. We drop F (·) from the notation for simplicity. Let x be the origin. Let x′ be a train-
ing point of another class, and R be a random n3-dimensional linear subspace. Scale all dis-
tances by a factor of 1

dist(x,x′)
. By rotational symmetry, we assume WLOG that R is given by

xn3+1 = xn3+2 = · · · = xn2 = 0, and x′ is the uniformly random unit vector (z1, . . . , zn2).
Indeed, for a fixed direction from x, the set of subspaces for which the projection of x′ lies
along that direction is constrained by one vector each in the range space and kernel space, and is
therefore in bijection to the set of subspaces associated with another fixed direction (Figure 6.3).

The adversary can win only if the distance between x′ with the closest vector Proj[x′] in R,
that is with (z1, . . . , zn3 , 0, . . . , 0), is at most τ

dist(x,x′)
≤ τ

r
. We can now apply Lemma C.1.1,

which gives a bound on the fraction of the surface of the sphere at some fixed small distance
from the orthogonal space, to get that the adversary succeeds by perturbing x to a point within
B(x′, τ) with probability at most

2(τ/r)n2−n3

n2 − n3

· A(n2 − n3 − 1)A(n3 − 1)

A(n2 − 1)
,

where A(n) is the surface-area of the unit n-sphere embedded in Rn+1. We have a closed form

A(n) = 2π
n+1
2

Γ(n+1
2 )

, where Γ(z) =
∫∞
t=0

tz−1e−tdt is the gamma function.
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Figure 6.3: Rotational symmetry of adversarial subspaces. Let y be a random direction from
test point x, and Proj[x′] be the projection of training point x′ on to xy. For any adversarial
space with Proj[x′] as the projection of x′ on the space, we must have xy in the range space and
x′Proj[x′] in the nullspace.

Noting that B(z1, z2) =
Γ(z1)Γ(z2)
Γ(z1+z2)

, together with a union bound over all training points from
a different class, gives the result.

6.1.1 Outlier Removal and Improved Upper Bound
The guarantees above are good when the test points are far from training points from other classes
in the feature space. This empirically holds true for good data and perfect embeddings—a so-
called neural collapse phenomenon that the trained network converges to representations such
that all points of class k get embedded close to a single point µk in the feature space [134]. But
for noisy data and good-but-not-perfect embeddings, the condition may not hold. In Theorem
6.1.4 we show that we obtain almost the same upper bound on failure probability as above by
exploiting the outlier removal threshold σ. Intuitively, outlier removal artificially induces well-
separateness in the feature space, by deleting training examples that are close to other examples
with a different label.

Our results will be good for distributions for which the induced distribution Dσ after the
preprocessing step of Algorithm 10 satisfies the following property with small N =

∑
y |By|.

Definition 22. A distribution D is σ-separably {By}-coverable if all points in the support of the
marginal distribution DF (X )|y over Rn2 can be covered by balls in the set By = {By

1, . . . , By
Ny
},

of radius τ/2 such that
min

F (x)∈By
i ,F (x′)∈By′

j ,

y ̸=y′

dist(F (x), F (x′)) ≥ σ.

In addition, we will assume that a test point (x, y) from the natural distributionD has the property
that x is covered by some ball in By with high probability.

Theorem 6.1.4. Suppose the distribution Dσ induced by the preprocessing step of Algorithm 10
is σ-separably {By}-coverable with finite N =

∑
y |By|. Let Prx,y∼D[x ∈ ∪Bi∈ByBi] ≥ 1− γ. If

τ = o(σ), the robust error of Algorithm 10 on any test point x ∼ DF (X ) is at most

O


N

(
cτ

(σ + τ/2)
√
1− n3

n2

)n2−n3

+Ncn2−n3
0 + γ


 ,
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where c > 0 and 0 < c0 < 1 are absolute constants.

Proof. Let x, y ∼ D. We will bound the probability the adversary succeeds for a test point x
covered by ∪yBy, that is Pr[adversary succeeds on x | x ∈ ∪Bi∈ByBi]. Let xi be a training point
that survives the preprocessing step of Algorithm 10, and belongs to a different class than x.
By the covering assumption, xi ∈ By′

j for some y′ ̸= y and By′

j ∈ By′ . Let c denote the center
of By′

j . By the σ-separable property, we have dist(x, c) ≥ σ + τ/2. Moreover, to succeed by
perturbing close to any training point in By′

j , the adversary must perturb to a point at distance at
most τ + τ/2 = 3τ/2 from c (by triangle inequality).

Using the same argument as in Theorem 6.1.3, the adversary succeeds in causing misclassi-
fication by perturbing x close to a point in By′

j with probability at most
(

cτ

(σ + τ/2)
√
1− n3

n2

)n2−n3

+ cn2−n3
0

over the randomness of the adversarial subspace, for absolute constants c > 0 and 0 < c0 < 1.
By a union bound, the adversary’s success probability is at most N times the above quantity,
conditioned on x ∈ ∪Bi∈ByBi. Finally by assumption Prx,y∼D[x /∈ ∪Bi∈ByBi] ≤ γ, and using the
law of total probability we get the desired upper bound.

6.1.2 A More General Adversary with Bounded Density
We extend our results in Theorem 6.1.3 to a more general class of adversaries, which have a
bounded density over the space of linear subspaces of a fixed dimension n3 and the adversary
can perturb a test feature vector arbitrarily in the sampled adversarial subspace. Specifically,
a distribution is said to be κ-bounded if the corresponding probability density f(x) satisfies,
supx f(x) ≤ κ. For example, the standard normal distribution N (µ, σ) is 1√

2πσ
-bounded.

Theorem 6.1.5. Consider the setting of Theorem 6.1.3 , with an adversary having a κ-bounded
distribution over the space of linear subspaces of a fixed dimension n3 for perturbing the test
point. If E(τ, r) denotes the bound on error rate in Theorem 6.1.3 for ROBUSTCLASSIFIER(τ, 0)
in Algorithm 10, then the error bound of the same algorithm against the κ-bounded adversary is
O(κE(τ, r)).

Proof. To argue upper bounds on failure probability, we consider the set of adversarial subspaces
which can allow the adversary to perturb the test point x close to a training point x′. Let S(x′, τ)
denote the subset of linear subspaces of dimension n3 such that for any S ∈ S(x′, τ) there exists
v ∈ S with x + v ∈ B(x′, τ). Note that we can upper bound the fraction of the total proba-
bility space occupied by S(x′, τ) by 1

m
E(τ, r), where constants in n2, n3 have been suppressed.

If we show that S(x′, τ) is a measurable set, we can use the κ-boundedness of the adversary
distribution to claim that the failure probability for misclassifying as x′ is upper bounded by
κvol(S) 1

m
E(τ, r) = O

(
κ
m
E(τ, r)

)
, since the volume of the complete adversarial space S is a

constant in n2, n3. In Lemma 6.1.6, we make the stronger claim that S(x′, τ) is convex. We can
then use a union bound on the training points to get a bound on the total failure probability as
O (κE(τ, r)).
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The following lemma establishes a useful convexity property for the adversarial linear subspaces.

Lemma 6.1.6. Let x,x′ ∈ Rn2 , τ ∈ R+ and S(x′, τ) denote the subset of linear subspaces of
dimension n3 such that for any S ∈ S(x′, τ) there exists v ∈ S with x + v ∈ B(x′, τ). The set
S(x′, τ) is convex.

Proof. Let S, S ′ ∈ S(x′, τ). Then we have v ∈ S, v′ ∈ S ′ such that x+ v, x+ v′ ∈ B(x′, τ). Let
S∗ = αS + (1 − α)S ′, α ∈ [0, 1]. Pick v∗ = αv + (1 − α)v′ ∈ S∗. x + v∗ must lie in B(x′, τ)
by convexity of B(x′, τ).

6.2 Small abstention rate
If natural data has the property that for every label class, one can cover most of the probability
mass of the class with not too many (potentially overlapping) balls of at least some minimal
probability mass, then our algorithm will have a low abstention rate.

Definition 23. A distribution D is (δ, β,N)-coverable if at least a 1 − δ fraction of probability
mass of the marginal distribution DF (X ) over Rn2 can be covered by N balls B1, B2, ... BN of
radius τ/2 and of mass PrDF (X )

[Bk] ≥ β.

Intuitively, if a set of balls cover (most of) the distribution and we sample enough points from
the distribution, we should get at least one sample from each ball and our algorithm will not
abstain on the covered points. Formally, we show the following guarantee on the abstention rate
on distributions that are (δ, β,N)-coverable w.r.t. threshold τ .

Theorem 6.2.1. Suppose that F (x1), ..., F (xm) are m training instances i.i.d. sampled from
marginal distribution DF (X ). If the distribution D is (δ, β,N)-coverable, for sufficiently large
m ≥ 1

β
ln N

γ
, with probability at least 1 − γ over the sampling, we have Pr[∪mi=1B(F (xi), τ)] ≥

1− δ.

Proof. Fix ball Bi in the cover from Definition 23. Let Bi denote the event that no point is drawn
from ball Bi over the m samples. Since successive draws are independent, and by Definition 23
PrDF (X )

[Bi] ≥ β, we have that Pr[Bi] ≤ (1− β)m ≤ exp(−βm). Further, by a union bound
over N balls Pr[∪iBi] ≤ N exp(−βm) ≤ γ, for m ≥ 1

β
ln N

γ
.

Therefore, with probability at least 1 − γ for all k ∈ [N ] there is at least a sample F (xik) ∈
{F (x1), F (x2), ..., F (xm)} such that F (xik) ∈ Bk. This implies ∪mi=1B(F (xi), τ) ⊇ ∪Nk=1Bk,
since Bk is a ball of radius τ/2. So with probability at least 1 − γ over the sampling, we have
Pr[∪m

i=1B(F (xi), τ)] ≥ Pr[∪Nk=1Bk] ≥ 1− δ.

Note that in the special case that the N balls are disjoint and each has probability mass β = 1/N ,
then m = Ω(N logN) samples are also necessary to get a point inside each ball, by a standard
coupon-collector analysis.

Theorem 6.2.1 implies that if we have a covering with N balls, each with probability mass at
least β and large enough sample size m, with probability at least 1−γ over the sampling, we have
Pr[∪m

i=1B(F (xi), τ)] ≥ 1− δ. Therefore, with high probability, the algorithm will output “don’t
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know” only for a δ fraction of natural data. Below we give an example of a distribution where
our algorithm will simultaneously achieve low robust error and low natural abstention rates.
Example distribution where Algorithm 10 is robust with low abstention rate. Our example
will consist of well-separated data in the feature space. Suppose DF (X )|y for each label class y
consists of the uniform distribution over Ny n2-balls of radius τ/2 centered at axis-aligned unit
vectors {ej | j ∈ Sy}, where Sy ⊂ [n2] is the set of axes with balls labeled by y, with τ < 1/3
and Sy ∩ Sy′ = ∅ for y ̸= y′. Further let m = n2 log

n2

γ
for some absolute constant γ ∈ (0, 1), so

this distribution is (δ, β,N)-coverable with δ = 0, β = 1/N and N = n2. If n3 = 1, by the argu-
ment presented above, the robust error of Algorithm 10 is bounded by O(n2 log n2τ

n2−1) = o(1).
Thus, in this setting, our algorithm enjoys low robust error without abstaining too much (for suf-
ficiently large n2).

Our result above also implies another bound on the abstention rate on natural data based on
the doubling dimension [48] of the data distribution (Theorem 8, [30]).

6.3 Robustness vs. abstention trade-off
Given an embedding function F and a classifier fτ which outputs either a predicted class if the
nearest neighbor is within distance τ of a test point or abstains from predicting if not (see Algo-
rithm 10), we want to evaluate the performance of fτ on a test set T against an adversary which
can perturb a test feature vector in a random n3-dimensional subspace S ∼ S . To this end, we
define

Definition 24 (Robust error). Let Eadv(τ, S) := 1
|T |
∑

(x,y)∈T 1{∃e ∈ S+F (x) ⊆ Rn2 such that
fτ (e) ̸= y and fτ (e) does not abstain} denote the robust error on the test set T , for n3-dimensional
perturbation subspace S and threshold setting τ in Algorithm 10. Also define average robust er-
ror as Eadv(τ) := ES∼S [Eadv(τ, S)] for distribution S over n3-dimensional subspaces (assumed
to be the uniform distribution unless stated otherwise) and estimated robust error over a set Ŝ of
subspaces as Êadv(τ, Ŝ) := 1

|Ŝ|
∑

S∈Ŝ Eadv(τ, S). Let Ŝ consist of multiple samples drawn from

S, and for conciseness, we will often denote Êadv(τ, Ŝ) by Êadv(τ) and Ŝ will be implicit from
context.

Êadv(τ) gives an easier-to-compute surrogate to Eadv(τ), by drawing subspaces in Ŝ according to
S. For an abstentive classifier, the robust error can be trivially minimized by abstaining every-
where. We will therefore also need to control the abstention rate on unperturbed data.

Definition 25 (Natural abstention rate). Define the abstention rate on the unperturbed test set T
as Dnat(τ) :=

1
|T |
∑

(x,y)∈T 1{fτ (F (x)) abstains}.

Eadv(τ) and Dnat(τ) are both monotonic in τ ; while the former is non-decreasing, the latter is
non-increasing (Lemma 6.3.1).

Lemma 6.3.1. Robust error Eadv(τ, S) is monotonically non-decreasing in τ for any S. Further,
natural abstention rate Dnat(τ) is monotonically non-increasing in τ .

Lemma 6.3.1 further implies that Eadv(τ) and Êadv(τ) are also monotonic non-decreasing in τ .
The robust error Eadv(τ) is optimal at τ = 0, but this implies that we abstain from prediction
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Algorithm 11 Exponential Forecaster Algorithm [15]
1: Input: step size parameter λ ∈ (0, 1].
2: Output: thresholds τt for times t = 1, 2, . . . , T .
3: Set w1(τ) = 1 for all τ ∈ [0, τmax].
4: for t = 1, 2, . . . , T do
5: Wt :=

∫
[0,τmax]

wt(τ)dτ .

6: Sample τ with probability proportional to wt(τ), that is, with probability pt(τ) = wt(τ)
Wt

.
Output the sampled τ as τt.

7: Observe lt(·). Set ut(τ) := 1− lt(τ)
1+c

.
8: For each τ ∈ [0, τmax], set wt+1(τ) = eλut(τ)wt(τ).

all the time (that is, Dnat(0) = 1). Conversely, we can minimize the abstention rate by not
abstaining, that is, Dnat(∞) = 0 corresponding to vanilla nearest-neighbor, but this maximizes
the robust error. This motivates us to consider the following objective function which combines
robust error and natural abstention rate.

Definition 26 (Robust Chow’s objective). Define l(τ) := Eadv(τ) + cDnat(τ) as the robust
Chow’s objective, where c is a positive constant and denotes the cost of abstention. Define
l̂(τ) := Êadv(τ) + cDnat(τ) as the estimated robust Chow’s objective.

Definition 26 may be viewed as an adversarial version of Chow’s objective for abstentive classi-
fiers [61], which uses natural risk instead of adversarial risk. If, for example, we are willing to
take a one percent increase of the abstention rate for a two percent drop in the error rate, we could
set c to 1

2
. For a single test set T , the abstention rateDnat(τ) can change at (at most) |T | ‘critical’

values of τ corresponding to nearest neighbor distances. Given oracle access to Eadv(τ), we can
minimize l(τ) over the given test sample with at most |T | evaluations. Suppose, however, the
test data arrives sequentially in batches of size b, potentially from related tasks with different data
distributions, and we need to figure out how to set the threshold τ for unseen tasks. As we will
show, techniques from data-driven algorithm design [15, 24] can help approach this multi-task
robustness setting.

Formally, we define our online learning setting as follows. Consider a game consisting
of T rounds. In each round t = 1, . . . , T , the learner is presented with a new test batch Tt
of size b. In Theorem 6.3.2, we show no regret can be achieved for online learning of the
threshold τ using test batches of size b (consisting of unperturbed points) on which the learner
chooses abstention threshold τt, that is, predicting using classifier fτt . Let lt (resp. l̂t) be the
(resp. estimated) robust Chow’s objective on the test set Tt. The learner suffers loss lt(τt)
and observes lt(τ). The goal of the learner is to minimize total expected regret, defined as
RT := E

[∑T
t=1 lt(τt)−minτ

∑T
t=1 lt(τ)

]
, where the expectation is over the randomness of the

loss functions as well as learner’s internal randomness.
Our main result is the following theorem (Theorem 6.3.2) in the above setting. Our proof

strategy is to show that the sequence of loss functions lt(τ) is dispersed (Definition 2) provided
data distribution D is smooth.
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Theorem 6.3.2. Consider the online learning setting described above. Assume τ ∈ [0, τmax]
with τmax = o (r), r > 1, and each test batch Tt is sampled from a data distribution D that has
κ-bounded density. If τt is set using a continuous version of the multiplicative updates algorithm,
Algorithm 11, for T rounds of the online game, then with probability at least 1− δ, the total ex-

pected regret of the learner for the loss sequence lt(τ) is bounded by O
(√

n2T log
(
κmbτmaxT

δ

))
.

Here b is the batch size and r is the smallest distance between points of different labels.

Proof. We show the sequence of loss functions lt(τ) is (w, k)-dispersed (in the sense of [15]) in
two steps. We first argue that the robust error part of the loss l(τ) is Lipschitz, and we further
show that the natural abstention rate is piecewise constant with dispersed discontinuities.

A key challenge is to analyze the adversary success probability and show that Eadv(τ) is Lipschitz
for sufficiently small τ . In Lemma C.2.2 (see Appendix C.2 for a proof), we show that Eadv(τ) is
L-Lipschitz, where L = O (mτn2−n3−1

max /rn2−n3). Intuitively, for any test point the probability the
adversary succeeds by perturbing to within a distance τ and τ + ∆ of a fixed training point can
be upper bounded using arguments similar to our proof of bounds on robust error in Section C.1.
A union bound over training points then gives the bound on L. Note that Dnat(τ) is piecewise
constant. This is because, for any set Tt of test points, we have at most |Tt| points corresponding
to distances of the test points to the nearest training point, where the function value decreases by
1

|Tt| . Together with L-Lipschitzness of Eadv(τ), this implies l(τ) is piecewise L-Lipschitz.

In Lemma C.2.5 we show that, for batch size b, Dnat(τ) has O(κbmwτn2−1
max ) discontinuities

in expectation (over the data distribution) in any interval of width w. Note that if a discontinuity
occurs within the interval I = [τ, τ + w], then there must exist a test point x in the test set T
for which the nearest-neighbor training point is at distance τ ′ ∈ I . That is, the training point
lies within B(x, τ +w) \ B(x, τ). The proof involves bounding the fraction of points at distance
d ∈ [τ, τ + w] for any test point, using smoothness of the data distribution, and using a union
bound over the b test points. See Appendix C.2 for a formal argument. Since Eadv(τ) is Lipschitz
continuous, l(τ) has at most O (κbmwτn2−1

max ) discontinuities in expectation in any w-interval.

Using a standard argument based on the VC-dimension of 1D intervals (for example, The-
orem 7 in [19]), the maximum number of discontinuities in any interval of width w is k =

O
(
κbmwτn2−1

max T +
√

T log b
γ

)
with high probability 1 − γ. In other words, l(τ) is (w, k)-

Lipschitz with high probability over the data distribution. This allows us to use a continuous
version of standard Exponential Weights update introduced by [15] as our online algorithm
(which we include as Algorithm 11 for completeness), for which they show an upper bound

O
(√

T log R
w
+ k + wLT

)
on the expected regret if the sequence of loss functions is (w, k)-

dispersed with L-Lipschitz pieces, where R is a bound on the diameter of the continuous domain
(R = τmax in our setting).
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Contrastive Prior Work Ours (τ = 3.0) Ours (τ = 2.0)
Enat Eadv Enat Eadv Dnat Enat Eadv Dnat

(σ = 0)
Self-supervised 8.9% 100.0% 15.4% 40.7% 2.2% 14.3% 26.2% 28.7%

Supervised 5.6% 100.0% 5.7% 60.5% 0.0% 5.7% 33.4% 0.0%

(σ = 0.9τ)
Self-supervised 8.9% 100.0% 7.2% 9.4% 12.9% 10.0% 17.7% 29.9%

Supervised 5.6% 100.0% 6.2% 18.9% 0.0% 5.6% 22.0% 0.1%

(σ = τ)
Self-supervised 8.9% 100.0% 1.1% 1.2% 33.4% 2.1% 3.1% 49.9%

Supervised 5.6% 100.0% 1.9% 2.8% 10.6% 4.1% 4.8% 3.3%

Table 6.1: Natural error Enat and robust error Eadv on the CIFAR-10 data set when n3 = 1 and
the 512-dimensional representations are learned by contrastive learning, where Dnat represents
the fraction of each algorithm’s output of “don’t know” on the natural data. We report values for
σ ≈ τ as they tend to give a good abstention-error trade-off w.r.t. σ. Bold values correspond
to parameter settings that minimize Eadv + Dnat over the grid. Prior work [58, 102] uses no
abstention.

Formally, we can apply Theorem C.2.6 with w = 1

κbmτ
n2−1
max

√
T

to get the desired regret bound.

RT = O

(√
T log

R

w
+ k + wLT

)

≤ O

(√
T log

τmax

(κbmτn2−1
max

√
T )−1

+O

(
√
T +

√
T log

b

δ

)
+

O(mτn2−n3−1
max /rn2−n3)

κbmτn2−1
max

√
T

· T

)

≤ O

(√
T log

(
κmbτn2

maxT

δ

))
,

where the first inequality holds with probability at least 1− δ.

A similar no-regret learning guarantee can also be given for the estimated robust Chow’s objec-
tive l̂(τ). In practice l(τ) can be hard to compute, but as discussed above the learner can more
easily estimate this loss by computing l̂(τ). The key difference in the proof is that the estimated
robust error Êadv(τ) is piecewise constant, while Eadv(τ) was shown to be Lipschitz for small τ .

In this work we restrict our attention to the full information setting where entire function
lt(τ) is available to the learner after the prediction in round t. It is an interesting future question
to model the adversary with bandit feedback where only lt(τt) is revealed to the learner. The
test sets Tt may be adversarial as long as they are generated by smooth but possibly different
data distributions (in the sense of Theorem 6.3.2). Our experiments in Section 6.4 indicate Al-
gorithm 10 can be made more effective by tuning both parameters τ and σ together. Effective
tuning of data-driven algorithms with multiple parameters is an interesting research direction.
Finally, we perform the analysis for tuning our relatively simple thresholded nearest-neighbor
approach, but data-driven algorithm design may prove useful for selecting the best data-specific
robust approach from candidate algorithms more generally.
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Remark 5. A simple goal for setting τ is to fix an upper limit d∗ on Dnat(τ), corresponding
to a maximum abstention rate allowed on the natural data. It is straightforward to search for
an optimal τ ∗ such that Dnat(τ

∗) = maxτ,Dnat(τ)≤d∗ Dnat(τ)—simply use the nearest neighbor
distances (to training examples) for the test points to compute the abstention rate at any τ , and
do a binary search for d∗. For τ < τ ∗ we have a higher abstention rate, and when τ > τ ∗ we
have a higher robust error rate. For more sophisticated goals, for example minimizing objectives
that depend on both Eadv(τ) andDnat(τ), we may not be able to perform a binary search, though
a linear search would still suffice. Here we have considered a setting where we have multiple
test sets, conceptually coming from different but related tasks in some domain, and rather than
separately performing this parameter tuning on each task, we want instead to learn a common
value of τ that works well across all the tasks.

6.3.1 A simple intuitive example with exact calculation demonstrating sig-
nificance of data-driven algorithm design

The significance of data-driven design in this setting is underlined by the following two obser-
vations. Firstly, as noted above, optimization for τ across problem instances is difficult due to
the non-Lipschitz nature ofDnat(τ) and the intractability of characterizing the objective function
l(τ) exactly due to Eadv(τ). Secondly, the optimal value of τ can be a complex function of the
data geometry and sampling rate. We illustrate this by exact computation of optimal τ for a sim-
ple intuitive setting: consider a binary classification problem where the features lie uniformly on
two one-dimensional manifolds embedded in two-dimensions (that is, n2 = 2, see Figure 6.4).
Assume that the adversary perturbs in a uniformly random direction (n3 = 1). Further assume
that our training set consists of 2m examples, m from each class. In this toy setting, we show
that the optimal threshold varies with data-specific factors.

D

r

Class A Class B

D

Figure 6.4: A simple example where we compute the optimal value of the abstention threshold
exactly. Classes A and B are both distributed respectively on segments of length D, embedded
collinear and at distance r in R2.

Formal setting: We set the feature and adversary dimensions as n2 = 2, n3 = 1. Examples of
class A are all located on the segment SA = [(0, 0), (D, 0)], similarly instances of class B are
located on SB = [(D + r, 0), (2D + r, 0)] (where [a,b] := {αa + (1 − α)b | α ∈ [0, 1]}).
The data distribution returns an even number of samples, 2m, with m > 0 points each drawn
uniformly from SA and SB. For this setting, we show that the optimal value of the threshold is a
function of both the geometry (D, r) and the sampling rate (m).

Theorem 6.3.3. Let τ ∗ := argminτ∈R+ l(τ). For the setting considered above, if we further
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assume D = o(r) and m = ω
(
log
(
2πcr
D

))
, then there is a unique value of τ ∗ in [0, D/2). Further,

τ ∗ =

{
Θ
(

D log((πcrm)/D)
m

)
, if 1

m
< πcr

D
;

0, if πcr
D
≤ 1

m
.

Proof. We compute the robust error Eadv(τ) and abstention rate Dnat(τ) as functions of τ . Even
with D = o(r), the exact computation of the robust error as a simple closed form is difficult
without further assuming τ = o(r) as well. Fortunately, by Lemma 6.3.4, we only need to con-
sider τ ≤ D. For this case, indeed τ = o(r). We compute the abstention and robust error rates
in Lemmas 6.3.5 and 6.3.6, respectively. This gives us, for τ ≤ D,

l(τ) =
τ

πr

(
1− m+ 3

m+ 1
·Θ
(
D

r

))
−Θ

((τ
r

)3)

+
c

m+ 1

[
2
(
1− τ

D

)m+1

+ (m− 1)Iτ≤D/2

(
1− 2τ

D

)m+1
]
.

For τ ≤ D/2,

l′(τ) =
1

πr

(
1− m+ 3

m+ 1
·Θ
(
D

r

))
−Θ

(
1

r

(τ
r

)2)

− 2c

D

[(
1− τ

D

)m
+ (m− 1)

(
1− 2τ

D

)m]
.

We need to consider two cases.
Case 1. πcr

D
≤ 1

m
. In this case l′(0) = 1

πr
− 2cm

D
≥ 0. Since l′′(τ) ≥ 0, so we must have the only

minimum at τ = 0.

Case 2. 1
m

< πcr
D

. l′(0) = 1
πr
− 2cm

D
< 0. Also l′(D/2) = 1

πr
− 2c

D2m
> 0 since m > log

(
2πcr
D

)
. But

l′′(τ) ≥ 0, so we must have a unique local minimum in (0, D/2), which is the global minimum.
Further, define y as τ = D

m
log y. Now if y = 2o(m), we have τ

D
= o(1), or

(
1− τ

D

)m
= exp

(
m log

(
1− τ

D

))
= y−1−o(1).

If y > 1, for y = 2πcrm
D

,

l′(τ) =
1

πr
− 2c

D

[(
D

2πcrm

)1+o(1)

+ (m− 1)

(
D

2πcrm

)2+o(1)
]

>
1

πr
− 2c

D

[(
D

2πcrm

)1

+ (m− 1)

(
D

2πcrm

)1
]

=
1

πr
− 2c

D

[
D

2πcr

]
= 0,
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and for y =
(

2πcr(m−1)
D

)1/4
,

l′(τ) =
1

πr
− 2c

D

[(
D

2πcr(m− 1)

) 1
4
+o(1)

+ (m− 1)

(
D

2πcrm

) 1
2
+o(1)

]

<
1

πr
− 2c

D

[(
D

2πcr(m− 1)

)1

+ (m− 1)

(
D

2πcr(m− 1)

)1
]

=
−1

πr(m− 1)
< 0.

Together, we get that τ ∗ = Θ
(

D log((πcrm)/D)
m

)
in this case.

Lemma 6.3.4. In the setting of Theorem 6.3.3, l(τ) is monotonically non-decreasing for τ > D.

Proof. Note that Dnat(τ) = 0 for τ > D as long as m > 0, since any test point of a class
must be within D of every training point of that class. Hence, it suffices to note that Eadv(τ) is
monotonically non-decreasing in τ (increasing the threshold can only increase the ability of the
adversary to successfully perturb to the opposite class).

Lemma 6.3.5. In the setting of Theorem 6.3.3, the abstention rate is given by

Dnat(τ) =
1

m+ 1

[
2Iτ≤D

(
1− τ

D

)m+1

+ (m− 1)Iτ≤D/2

(
1− 2τ

D

)m+1
]
.

Proof. Note that for τ ≥ D, if m > 0, we never abstain on any test point. So we will assume
τ ≤ D in the following. Consider a test point x = (x, 0) sampled from class A (class B is
symmetric, so the overall abstention rate is the same is that of points drawn from class A). Let
nbdx(τ) denote the intersection of a ball of radius τ around x with SA. For x to be classified
as ‘don’t know’, we must have no training point sampled from nbdx(τ). This happens with

probability
(
1− |nbdx(τ)|

D

)m
, where |nbdx(τ)| is the size of nbdx(τ) and is given by

|nbdx(τ)| =





min{x+ τ,D}, x < τ ;

min{2τ,D}, τ ≤ x ≤ D − τ ;

min{D − x+ τ,D}, x > D − τ.

Averaging over the distribution of test points x, we get

Dnat(τ) =
1

D

∫ D

0

(
1− |nbdx(τ)|

D

)m

dx

=
1

m+ 1

[
2
(
1− τ

D

)m+1

+ (m− 1)Iτ≤D/2

(
1− 2τ

D

)m+1
]
.
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Class A Class B

x

y y′

adversarial direction
τ balls

Figure 6.5: It suffices to consider the nearest point of the opposite class for adversarial perturba-
tion.

Lemma 6.3.6. In the setting of Theorem 6.3.3, the robust accuracy rate for τ ≤ D is given by

Aadv(τ) = 1− τ

πr

(
1− m+ 3

m+ 1
·Θ
(
D

r

))
−Θ

((τ
r

)3)
.

Proof. Consider a test point x = (x, 0) from SA. Let y = (y, 0) denote the nearest point in SB.
In the given geometry, it is easy to see that if x can be perturbed into the τ neighborhood of some
point y′ ∈ SB when moved along a fixed direction, then it must be possible to perturb it into the
τ neighborhood of y (Figure 6.5). Therefore it suffices to consider directions where perturbation
to the τ -ball around y is possible.

Therefore the probability of adversary’s success for x, given y is the nearest point of the
opposite class, is

errx|y(τ) =
1

π
arcsin

(
τ

y − x

)
=

1

π
arcsin

(
τ

r + d

)
,

where d = y − x− r ∈ [0, 2D]. Now since τ ≤ D = o(r), we have

errx|y(τ) =
τ

π(r + d)
+ Θ

((τ
r

)3)
=

τ

πr

(
1−Θ

(
d

r

))
+Θ

((τ
r

)3)
.

We can now compute the average error using the probability distributions for x and y, x is a
uniform distribution over SA, while y is a nearest-neighbor distribution.

p(x) =
1

D
, p(y) =

m

D

(
1− y − r −D

D

)m−1

.

The average value of d is

d̄ =

∫ D

0

∫ D

0

(y′ + x′)
m

D

(
1− y′

D

)m−1

dy′
dx′

D
=

D(m+ 3)

2(m+ 1)
.

Using this to compute the average of errx|y(τ) gives the result.

6.4 Contrastive learning experiments
We will present results for self-supervised [58] and supervised [102] contrastive learning ex-
periments. We verify the robustness of Algorithm 10 when the representations are learned
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Figure 6.6: Adversarial accuracy (that is, rate of adversary failure) vs. abstention rate as threshold
τ varies for n3 = 1 and different outlier removal thresholds σ. Each colored line corresponds to
a fixed σ, as τ is varied from 0 (always abstain) to infinity (vanilla nearest-neighbor).

by contrastive learning. Given embedding function F and a classifier f which outputs either
a predicted class or abstains from predicting, recall that we define the natural and robust er-
rors, respectively, as Enat(f) := E(x,y)∼D1{f(F (x)) ̸= y and f(F (x)) does not abstain}, and
Eadv(f) := E(x,y)∼D,S∼S1{∃e ∈ S + F (x) ⊆ Rn2 s.t. f(e) ̸= y and f(e) does not abstain},
where S ∼ S is a random adversarial subspace of Rn2 with dimension n3. We also define
Dnat(f) := E(x,y)∼D1{f(F (x)) abstains} as the abstention rate on the natural examples. Note
that the robust error is always at least as large as the natural error. Consult [30] for additional
experimental details. We summarize the main results here in Table 6.1 and Figure 6.6.

The threshold parameter τ captures the trade-off between the robust accuracy Aadv := 1 −
Eadv and the abstention rate Dnat on the natural data. We report both metrics for different values
of τ for supervised and self-supervised contrastive learning. The supervised setting enjoys higher
adversarial accuracy and a smaller abstention rate for fixed τ ’s due to the use of extra label infor-
mation. We plot Aadv against Dnat for Algorithm 10 as hyperparameters are varied. For small τ ,
both accuracy and abstention rate approach 1.0. As the threshold increases, the abstention rate
decreases rapidly and our algorithm enjoys good accuracy even with small abstention rates. For
τ →∞ (that is the nearest neighbor search), the abstention rate on the natural dataDnat is 0% but
the robust accuracy is also roughly 0%. Increasing σ (for small σ) gives us higher robust accuracy
for the same abstention rate. Too large σ may also lead to degraded performance (Figure 6.6).

The results in this chapter are joint work with Nina Balcan, Avrim Blum and Hongyang
Zhang [30], and have appeared in JMLR 2023.
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Chapter 7

Multiple similar tasks

Suppose we have multiple similar tasks involving hyperparameter tuning, in the sense that there
is a shared good parameter value across all the tasks on average. The tasks appear online, but the
learner has the opportunity to learn from previously encountered similar tasks. This setting seems
more practical for modeling real-world repeated problem instances in typical applications, as the
distributional setting may be too optimistic and the online (adversarial, possibly ‘smoothed’ in
the sense of dispersion) setting may be too pessimistic.

In this chapter, we analyze the meta-learning of the initialization and step-size of learning
algorithms for piecewise-Lipschitz functions. Starting from regret bounds for the exponential
forecaster on losses with dispersed discontinuities due to Balcan et al. [15], we generalize them
to be initialization-dependent and then use this result to propose a practical meta-learning pro-
cedure that learns both the initialization and the step-size of the algorithm from multiple online
learning tasks. Asymptotically, we guarantee that the average regret across tasks scales with a
natural notion of task-similarity that measures the amount of overlap between near-optimal re-
gions of different tasks. Finally, we instantiate the method and its guarantee in two important
settings: multi-task data-driven algorithm design and robust meta-learning.

Formally, for some T,m > 0 and all t ∈ [T ] and i ∈ [m] we consider a meta-learner faced
with a sequence of Tm loss functions ℓt,i : C 7→ [0, 1] over a compact subset C ⊂ Rd that lies
within a ball B(ρ,R) of radius R around some point ρ ∈ Rd. Before each loss function ℓt,i the
meta-learner must pick an element ρt,i ∈ C before then suffering a loss or cost ℓt,i(ρt,i). For a
fixed t, the subsequence ℓt,1, . . . , ℓt,m defines a task for which we expect a single element ρ∗t ∈ C
to do well, and thus we will use the within-task regret on task t to describe the quantity

Rt,m =
m∑

i=1

ℓt,i(ρt,i)− ℓt,i(ρ
∗
t ) where ρ∗t ∈ argminρ∈C

m∑

i=1

ℓt,i(ρ)

Our goal will be to improve the guarantees for regret in the single-task case by using information
obtained from solving multiple tasks. In particular, we expect average performance across tasks
to improve as we see more tasks; formally we define the task-averaged regret

R̄T,m =
1

T

T∑

t=1

Rt,m =
1

T

T∑

t=1

m∑

i=1

ℓt,i(ρt,i)− ℓt,i(ρ
∗
t )
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and claim improvement over single-task learning if in the limit of T → ∞ it is smaller than
Rt,m. Note that for simplicity in this work we assume all tasks have the same number of rounds
within-task.

7.1 Meta-learning

We first generalize the regret bound for the exponential forecaster algorithm of Balcan et al. [15]
to make it data-dependent and hyperparameter-dependent:

Theorem 7.1.1. Let ℓ1, . . . , ℓm : C 7→ [0, 1] be any sequence of piecewise L-Lipschitz functions
that are β-dispersed. Suppose C ⊂ Rd is contained in a ball of radius R. The exponentially
weighted forecaster [15] has expected regret Rm ≤ mλ + log(1/Z)

λ
+ Õ((L + 1)m1−β), where

Z =
∫
B(ρ∗,m−β)

w(ρ)dρ∫
C w(ρ)dρ

for ρ∗ the optimal action in hindsight.

Proof. The proof adapts the analysis of the exponential forecaster in [15]. Let Wt =
∫
C
wt(ρ)dρ

be the normalizing constant and Pt = Eρ∼pt [ut(ρ)] be the expected payoff at round t. Also let
Ut(ρ) =

∑t
j=1 uj(ρ). We seek to bound RT = OPT −P (T ), where OPT = UT (ρ

∗) for optimal
parameter ρ∗ and P (T ) =

∑T
t=1 Pt is the expected utility of Algorithm 11 in T rounds. We

will do this by lower bounding P (T ) and upper bounding OPT by analyzing the normalizing
constant Wt.

Lower bound for P (T ): This follows from standard arguments, included for completeness.
Using the definitions in Algorithm 11, it follows that

Wt+1

Wt

=

∫
C
eλut(ρ)wt(ρ)dρ

Wt

=

∫

C

eλut(ρ)
wt(ρ)

Wt

dρ =

∫

C

eλut(ρ)pt(ρ)dρ.

Use inequalities eλx ≤ 1 + (eλ − 1)x for x ∈ [0, 1] and 1 + x ≤ ex to conclude

Wt+1

Wt

≤
∫

C

pt(ρ)
(
1 + (eλ − 1)ut(ρ)

)
dρ = 1 + (eHλ − 1)Pt ≤ exp

(
(eλ − 1)Pt

)
.

Finally, we can write WT+1/W1 as a telescoping product to obtain

WT+1

W1

=
T∏

t=1

Wt+1

Wt

≤ exp

(
(eλ − 1)

∑

t

Pt

)
= exp

(
P (T )(eλ − 1)

)
,

or, WT+1 ≤ exp
(
P (T )(eλ − 1)

) ∫
C
w1(ρ)dρ.

Upper bound for OPT : Let B∗(r) be the ball of radius r around ρ∗. If there are at most
k discontinuities in any ball of radius r, we can conclude that for all ρ ∈ B∗(r), UT (ρ) ≥
OPT − k − LTr. Now, since WT+1 =

∫
C
w1(ρ) exp(λUT (ρ))dρ, we have
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WT+1 ≥
∫

B∗(r)

w1(ρ)e
λUT (ρ)dρ

≥
∫

B∗(r)

w1(ρ)e
λ(OPT−k−LTr)dρ

= eλ(OPT−k−LTr)

∫

B∗(r)

w1(ρ)dρ.

Putting together with the lower bound, and rearranging, gives

OPT − PT ≤
P (T )(eλ − 1− λ)

λ
+

log(1/Z)

λ
+ k + LTr

≤ Tλ+
log(1/Z)

λ
+ k + LTr,

where we use that P (T ) ≤ T and for all x ∈ [0, 1], ex ≤ 1 + x + (e − 2)x2. Take expectation
over the sequence of utility functions and apply dispersion to conclude the result.

The new bound is useful due to its explicit dependence on both the initialization w and the
optimum in hindsight via the log(1/Z) term. Assuming w is a (normalized) distribution, this
effectively measures the overlap between the chosen initialization and a small ball around the
optimum; we thus call

− logZ = − log

∫
B(ρ∗,m−β)

w(ρ)dρ
∫
C
w(ρ)dρ

the negative log-overlap of initialization w(.) with the optimum ρ∗. This motivates our notion of
task similarity, namely the average negative log-overlap

V 2 = − min
w:C 7→R≥0,

∫
C w(ρ)dρ=1

1

T

T∑

t=1

log

∫

B(ρ∗t ,m
−β)

w(ρ)dρ

which can be much smaller if the task optima ρ∗t are close together; for example, if they are
the same then V = 0, corresponding to assigning all the initial weight within the common ball
B(ρ∗,m−β) around the shared optima. This is also true if vol(∩t∈TB(ρ∗t ,m

−β)) > 0, as one
can potentially initialize with all the weight in the intersection of the balls. On the other hand
if vol(∩t∈TB(ρ∗t ,m

−β)) = 0, V > 0. For example, if a p-fraction of tasks have optima ρ0 and
the remaining at ρ1 with ||ρ0 − ρ1|| > 2m−β the task similarity is given by the binary entropy
function V = Hb(p) = −p log p− (1− p) log(1− p).

We provide a bound on the task-averaged regret in terms of average negative log-overlap
between the task-specific optima, by adapting and extending techniques developed for meta-
learning with convex losses [101]. Notice that while initialization in the prior meta-learned algo-
rithms would typically be a single point in the domain, here we learn a good initial distribution
w(ρ) over the parameter space. Our regret bound has an additional dispersion-based term, which
we show is unavoidable without additional assumptions.
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Theorem 7.1.2. There is an algorithm which achieves task-averaged regret

oT (1) + Õ
(
V
√
m+m1−β

)
.

Here V is the task-similarity.

7.2 Applications
To demonstrate the usefulness of our method, we study the meta-learning algorithm in two set-
tings of interest.

7.2.1 Multi-task data-driven hyperparameter selection
The online learning of hyperparameters under data-driven algorithm design [15, 20] can be im-
proved by learning good initial distributions over the parameter space, i.e. the results in this
chapter can be used on top of typical data-driven online tuning results to enable leveraging of
good parameters shared across similar tasks. We will instantiate our results in a few classic
problems to illustrate this.

k-center clustering. We consider a parameterized Llyod’s algorithm family for initializing
cluster centers [16]. In the seeding phase, each point x is sampled with probability proportional to
minc∈C d(v, c)α, where d(·, ·) is the distance metric and C is the set of centers chosen so far. The
family contains an algorithm for each α ∈ [0,∞)∪∞, and includes popular clustering heuristics
like vanilla k-means (random initial centers, for α = 0), k-means++ (corresponding to α = 2)
and farthest-first traversal (α = ∞). The performance of the algorithm is measured using the
Hamming distance to the optimal clustering, and is a piecewise constant function of α. Our meta-
learning result can be instantiated for this problem even without smoothness assumptions (simply
leveraging the smoothness induced by the internal randomness of the clustering algorithm).

Theorem 7.2.1. Consider instances of the k-center clustering problem on n points, with Ham-
ming loss li,j for i ∈ [m], j ∈ [T ] w.r.t. some (unknown) ground truth clustering. Then the
task-averaged regret for learning the algorithm parameter α for the α-Lloyd’s clustering algo-
rithm family of [16] is oT (1) + Õ((V + 1)

√
m).

Proof. We start by applying Theorem 4 from [16] to an arbitrary α-interval [α0, α0 + ϵ] ⊆ [0, D]
of length ϵ. The expected number of discontinuities (expectation under the internal randomness
of the algorithm when sampling successive centers), is at most

D(m, ϵ) = O(nk log(n) log(max{(α0 + ϵ)/α0), (α0 + ϵ) logR}),

where R is an upper bound on the ratio between any pair of non-zero distances. Considering
cases α0 ≶ 1

logR
and using the inequality log(1 + x) ≤ x for x ≥ 0 we get that there are, in ex-

pectation, at most O(ϵnk log n logR) discontinuities in any interval of length ϵ. Theorem D.3.1
now implies 1

2
-dispersion using the recipe from [19]. The task-averaged regret bound follows

from Theorem 7.1.2.
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Integer quadratic programming (IQP). The objective is to maximize a quadratic function
zTAz for A with non-negative diagonal entries, subject to z ∈ {0, 1}n. In the classic Goemans-
Williamson algorithm [82] one solves an SDP relaxation UTAU where columns ui of U are unit
vectors. ui are then rounded to {±1} by projecting on a vector Z drawn according to the stan-
dard Gaussian, and using sgn(⟨ui, Z⟩). A simple parametric family is s-linear rounding where
the rounding is as before if |⟨ui, Z⟩| > s but uses probabilistic rounding to round ui to 1 with
probability 1+(⟨ui,Z⟩)/s

2
. Our results yield low task-averaged regret for learning the parameter of

the s-linear rounding algorithms.

Theorem 7.2.2. Consider instances of IQP given by matrices Ai,j and rounding vectors Zi,j ∼
Nn for i ∈ [m], j ∈ [T ]. Then the asymptotic task-averaged regret for learning the algorithm
parameter s for s-linear rounding is oT (1) + 2V

√
m+O(

√
m).

Proof. As noted in [15], since Zi,j are normal, the local of discontinuities s = |⟨ui, Z⟩| are dis-

tributed with a
√

2
π

-bounded density. Thus in any interval of length ϵ, we have in expectation

at most ϵ
√

2
π

discontinuities. Theorem D.3.1 together with the general recipe from [19] implies
1
2
-dispersion. The task-averaged regret bound is now a simple application of Theorem 7.1.2.

7.2.2 Robust meta-learning
In online learning, we seek to minimize a sequence of loss functions, and are required to perform
well relative to the optimal choice in hindsight. It is possible for the observed loss functions to
be noisy on some inputs, either naturally or due to adversarial intent. We will now explore the
conditions under which learning robust to such an adversarial influence (i.e. outlier injection) is
possible, which is particularly common in meta-learning with diverse sources.

Setup: At round i, we play xi, observe perturbed loss l̃i : X → [0, 1] which is set by the ad-
versary by modifying the true loss li : X → [0, 1] using an attack function ai : X → [0, 1] such
that l̃i = li + ai and may be non-Lipschitz, and suffer perturbed loss l̃i(xi) and true loss li(xi).
We seek to minimize regret relative to best fixed action in hindsight, i.e. R̃m =

∑m
i=1 l̃i(xi) −

minx∈X
∑m

i=1 l̃i(x) for the perturbed loss and regret Rm =
∑m

i=1 li(xi)−minx∈X
∑m

i=1 li(x) for
the true loss.

No regret can be achieved provided the adversary distribution is sufficiently smooth, i.e. sat-
isfies β-dispersion for some β > 0, as this corresponds to online optimization of the perturbed
loss function. We can show this for both perturbed and true loss. The perturbed loss guarantee
is immediate from standard results on online learning of piecewise Lipschitz functions [15, 18].
For the true loss, we can achieve no regret if the adversary perturbation ai is limited to small
balls and the centers of the balls are dispersed, which we capture using the following definition.

Definition 27 (δ-bounded, βa-dispersed attack). An attack function ai is δ-bounded if there exists
a ball B(xa, δ) of radius δ such that ai(x) = 0 for each x ∈ X \B(xa, δ). xa is called a center
cai for attack ai. A sequence of attack functions a1, . . . , am is said to be βa-dispersed, if the
positions of attack centers xa are dispersed i.e. for all m and for all ϵ ≥ m−βa ,

E
[

max
x,x′∈X,x∈B(x′,ϵ)

∣∣{i ∈ [m] | x = cai}
∣∣
]
≤ Õ(ϵm).
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Theorem 7.2.3. Given a sequence of β-dispersed adversarially perturbed losses l̃i = li + ai,
where l̃i, li, ai are piecewise L-Lipschitz functions X→ [0, 1] for i = 1, . . . ,m and X ⊂ Rd, the
exponential forecaster algorithm has

E[R̃m] = Õ

(
mλ+

log(1/Z)

λ
+ (L+ 1)m1−β

)

(with Z as in Theorem 7.1.1). If in addition we have that ai is a m−βa-bounded, βa-dispersed
attack, then

E[Rm] = Õ

(
mλ+

log(1/Z)

λ
+ (L+ 1)m1−min{β,βa}

)
.

Proof. The bound on E[R̃T ] is immediate from Theorem 7.1.1. For E[RT ], we can upper bound
the natural regret with the sum of robust regret, total adversarial perturbation at the optimum and
a term corresponding to the difference between the loss of natural and robust optima.

RT =
T∑

t=1

lt(xt)−min
x∈X

T∑

t=1

lt(x)

= R̃T +
T∑

t=1

lt(xt)−
T∑

t=1

l̃t(xt) + min
x∈X

T∑

t=1

l̃t(x)−min
x∈X

T∑

t=1

lt(x)

= R̃T −
T∑

t=1

at(xt) +
T∑

t=1

at(x̃
∗) +

T∑

t=1

lt(x̃
∗)−

T∑

t=1

lt(x
∗)

≤ R̃T +
T∑

t=1

at(x̃
∗) +

∣∣∣
T∑

t=1

lt(x̃
∗)−

T∑

t=1

lt(x
∗)
∣∣∣

where x̃∗ = argminx∈X
∑T

t=1 l̃t(x) and x∗ = argminx∈X
∑T

t=1 lt(x). We now use the βa-
dispersedness of the attack to show an excess expected regret of Õ(T 1−βa). Using attack dis-
persion on a ball of radius T−βa around x̃∗, the number of attacks that have non-zero at(x̃

∗) is
at most Õ(T 1−βa), and therefore

∑T
t=1 at(x̃

∗) ≤ Õ(T 1−βa). Further, observe that the robust and
natural optima coincide unless some attack occurs at the natural optimum x∗. We can use attack
dispersion at x∗, and a union bound across rounds, to conclude E|

∑T
t=1 lt(x̃

∗)−
∑T

t=1 lt(x
∗)| ≤

Õ(T 1−βa) which concludes the proof.

Together with Theorem 7.1.2, this implies no regret meta-learning in the presence of dis-
persed adversaries, in particular the occurrence of unreliable data in small dispersed parts of
the domain. We also show a lower bound below which establishes that our upper bounds are
essentially optimal in the attack dispersion.

The results in this chapter are joint work with Nina Balcan, Misha Khodak and Ameet Tal-
walkar [24], and have appeared in NeurIPS 2021.
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Chapter 8

Adaptivity

Optimization in the presence of sharp (non-Lipschitz), unpredictable (w.r.t. time and amount)
changes is a challenging and largely unexplored problem of great significance. In this chapter
we will approach this problem in the online learning setting, and in the process develop general
tools for data-driven algorithm design in changing environments.

In online learning, the typical goal of the player is to minimize the regret, defined as the
difference between the online cumulative payoff (i.e.

∑T
t=1 ut(ρt)) and the cumulative payoff

using an optimal offline choice in hindsight. In many real world problems, like online routing,
detecting spam email/bots and ad/content ranking, it is often inadequate to assume a fixed point
will yield good payoff at all times. It is more natural to compute regret against a stronger offline
baseline, say one which is allowed to switch the point a few times (say s shifts), to accommodate
events which significantly change the function values for certain time periods. The switching
points are neither known in advance nor explicitly stated during the course of the game. This
stronger baseline is known as shifting regret [94].

Definition 28. The s-shifted regret (tracking regret in [94]) is given by

E


 max

ρ∗i∈C,
t0=1<t1···<ts=T+1

s∑

i=1

ti−1∑

t=ti−1

(ut(ρ
∗
i )− ut(ρt))




Shifting regret is a particularly relevant metric for online learning problems in the context of
data-driven algorithm design, where the goal is to decide in a data-driven way what algorithm to
use from a large family of algorithms for a given problem domain. In the online setting, one has
a configurable algorithm such as an algorithm for clustering data [13], and must solve a series
of related problems, such as clustering news articles each day for a news reader or clustering
drugstore sales information to detect disease outbreaks. For problems of this nature, significant
events in the world or changing habits of buyers might require changes in algorithm parameters,
and we would like the online algorithms to adapt well to sudden changes.

8.1 Online algorithms with low shifting regret
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Algorithm 12 Fixed Share Exponential Forecaster (Fixed Share EF)
Input: step size parameter λ ∈ (0, 1/H], exploration parameter α ∈ [0, 1]
[1.] w1(ρ) = 1 for all ρ ∈ C
[2.] For each t = 1, 2, . . . , T :

[i.] Wt :=
∫
C
wt(ρ)dρ

[ii.] Sample ρ with probability proportional to wt(ρ), i.e. with probability pt(ρ) =
wt(ρ)
Wt

[iii.] Observe ut(·)
[iv.] Let et(ρ) = eλut(ρ)wt(ρ). For each ρ ∈ C, set

wt+1(ρ) =(1− α)et(ρ) +
α

VOL(C)

∫

C

et(ρ)dρ (8.1)

We present the first results for shifting regret for non-convex utility functions which poten-
tially have sharp discontinuities. Algorithms with O(

√
sT logNT ) regret are known for the case

of s shifts for prediction with N experts [94], using weight regularization (adding uniform explo-
ration at each step, that increases with the fraction s

T
of shifts). We show how to extend the result

to arbitrary compact sets of experts, and more general utility functions where convexity can no
longer be exploited. Our key insight is to view the regularization as simultaneously inducing
multiplicative weights update with restarts matching all possible shifted expert sequences, which
allows us to use the dispersion condition introduced in [15].

Our shifting regret bounds are O(
√
sdT log T + sT 1−β) which imply low regret for suf-

ficiently dispersed (large enough β) functions. We provide and analyze an algorithm which
achieves this, by a careful mix of exploration (mixing with uniform sampling) and exploitation
(multiplicative weights).

Theorem 8.1.1. Suppose the utility functions ut : C → [0, H], t ∈ [T ] are piecewise L-Lipschitz
and β-dispersed (Definition 2), where C ⊂ Rd is contained in a ball of radius R. Then s-shifted
regret O(H

√
sT (d log(RT β) + log(T/s)) + (sH + L)T 1−β) is achievable.

Proof of Theorem 8.1.1. We first provide an upper and lower bound to WT+1

W1
.

Upper bound: The proof is similar to the upper bound for exponential weighted forecaster in
[15] and uses Lemma E.3.3 for Wt.

Wt+1

Wt

=

∫
C
eλut(ρ)wt(ρ)dρ

Wt

=

∫

C

eλut(ρ)
wt(ρ)

Wt

dρ =

∫

C

eλut(ρ)pt(ρ)dρ.

Finally use inequalities eλz ≤ 1 + (eλ − 1)z for z ∈ [0, 1] and 1 + z ≤ ez to get

Wt+1

Wt

≤
∫

C

pt(ρ)

(
1 + (eHλ − 1)

ut(ρ)

H

)
dρ = 1 + (eHλ − 1)

Pt

H
≤ exp

(
(eHλ − 1)

Pt

H

)
.

where Pt denotes the expected payoff of the algorithm in round t. Let P (A) be the expected
total payoff. Then we can write WT+1

W1
as a telescoping product which gives

WT+1

W1

=
T∏

t=1

Wt+1

Wt

≤ exp

(
(eHλ − 1)

∑
t Pt

H

)
= exp

(
P (A)(eHλ − 1)

H

)
. (8.2)
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Lower bound: Again the proof is similar to [15] and the major difference is use of Lemma E.3.2.
We first lower bound payoffs of points close to the optimal sequence of experts using dispersion.
If the optimal sequence with s shifts has shifts at t∗i (1 ≤ i ≤ s − 1), by β-dispersion for any
ρi ∈ B(ρ∗i , w)

t∗i−1∑

t=t∗i−1

ut(ρi) ≥
t∗i−1∑

t=t∗i−1

ut(ρ
∗
i )− kH − L(t∗i − t∗i−1)w, (8.3)

where w = T−β and k = O(T 1−β). Summing both sides over i ∈ [s − 1] helps us relate the
lower bound to the payoff OPT of the optimal sequence.

s∑

i=1

t∗i−1∑

t=t∗i−1

ut(ρi) ≥
s∑

i=1

t∗i−1∑

t=t∗i−1

ut(ρ
∗
i )− kH − L(t∗i − t∗i−1)w = OPT − ksH − LTw. (8.4)

Now to lower bound WT+1

W1
, we first lower bound WT+1. We use Lemma E.3.2 and lower bound

by picking the term corresponding to times of expert shifts in the optimal sequence with s-shifted
expert.

WT+1 =
∑

s∈[T ]

[ ∑

t0=1<t1···<ts=T+1

(
αs−1(1− α)T−s

VOL(C)s−1

s∏

i=1

W̃ (ti−1, ti)

)]
(Lemma E.3.2) (8.5)

≥ αs−1(1− α)T−s

VOL(C)s−1

s∏

i=1

W̃ (t∗i−1, t
∗
i ). (8.6)

The product of W̃ ’s can in turn be lower bounded by restricting attention to points close (i.e.
within a ball of radius w centered at optimal expert ρ∗i ) to the optimal sequence. The payoffs of
such points was lower-bounded in (8.3) and (8.4) in terms of the optimal payoff.

s∏

i=1

W̃ (t∗i−1, t
∗
i ) =

s∏

i=1

∫

C

exp

(
λ

t∗i−1∑

t=t∗i−1

ut(ρ)

)
dρ

≥
s∏

i=1

∫

B(ρ∗i ,w)

exp

(
λ

t∗i−1∑

t=t∗i−1

ut(ρ)

)
dρ (Restrict domains)

≥
s∏

i=1

∫

B(ρ∗i ,w)

exp

(
λ
( t∗i−1∑

t=t∗i−1

ut(ρ
∗
i )− kH − L(t∗i − t∗i−1)w

))
dρ (Using equation 8.3)

= VOL(B(w))s exp

(
s∑

i=1

λ

( t∗i−1∑

t=t∗i−1

ut(ρ
∗
i )− kH − L(t∗i − t∗i−1)w

))
(Independent of ρ)

= VOL(B(w))s exp

(
λ
(
OPT − ksH − LTw

))
(Using equation 8.4).
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Plugging into equation (8.6) we get

WT+1 ≥
αs−1(1− α)T−sVOL(B(w))s

VOL(C)s−1
exp

(
λ
(
OPT − ksH − LTw

))
.

Also, W1 =
∫
C
w1(ρ)dρ = VOL(C). Thus, using the fact that ratio of volume of balls B(w) and

B(R) in d-dimensions is (w/R)d, and assuming C is bounded by some ball B(R).

WT+1

W1

≥ αs−1(1− α)T−sVOL(B(w))s

VOL(C)s
exp

(
λ
(
OPT − ksH − LTw

))

≥ αs−1(1− α)T−s

(
w

R

)sd

exp

(
λ
(
OPT − ksH − LTw

))
. (8.7)

Putting together: Combining upper and lower bounds from (E.4) and (8.7) respectively,

log
(
αs−1(1− α)T−s

)
− sd log

R

w
+ λ(OPT − ksH − LTw) ≤ P (A)(eHλ − 1)

H
,

which rearranges to

OPT − P (A)

≤ P (A)(e
Hλ − 1−Hλ)

Hλ
+

sd log(R/w)

λ
+ ksH + LTw − log(αs−1(1− α)T−s)

λ
.

Using P (A) ≤ HT and using ez ≤ 1 + z + (e− 2)z2 for z ∈ [0, 1] we have

OPT − P (A)

≤ HT
(eHλ − 1−Hλ)

Hλ
+

sd log(R/w)

λ
+ ksH + LTw − log(αs−1(1− α)T−s)

λ

< H2Tλ+
sd log(R/w)

λ
+ ksH + LTw − log(αs−1(1− α)T−s)

λ
.

Now we tighten the bound, first w.r.t. α then w.r.t. λ. Note minα− log(αs−1(1 − α)T−s) occurs
for α0 =

s−1
T−1

and

− log(αs−1
0 (1− α0)

T−s) = (T − 1)

[
− s− 1

T − 1
log

s− 1

T − 1
− T − s

T − 1
log

T − s

T − 1

]

≤ (s− 1) log e
T − 1

s− 1

(binary entropy function satisfies h(x) ≤ x ln(e/x) for x ∈ [0, 1]). Finally minimizing over λ
gives

OPT − P (A) ≤ O(H
√

sT (d log(R/w) + log(T/s)) + ksH + LTw),

for λ =
√

s(d log(R/w) + log(T/s))/T/H . Plugging back w = T−β and k = O(T 1−β) com-
pletes the proof.
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In a large range of applications, one is able to show β ≥ 1
2

[10, 15, 28]. We further show that our
bounds on the expected regret are tight modulo sublogarithmic terms, providing a near-optimal
characterization of the problem.

Theorem 8.1.2. For each β > log 3s
log T

, there exist utility functions u1, . . . , uT : [0, 1] → [0, 1]

which are β-dispersed, and the s-shifted regret of any online algorithm is Ω(
√
sT + sT 1−β).

Proof of Theorem 8.1.2. I1 = [0, 1]. In the first phase, for the first T−3sT 1−β

s
functions we have a

single discontinuity in the interval
(
1
2

(
1− 1

3s

)
, 1
2

(
1 + 1

3s

))
⊆ (1

3
, 2
3
). The functions have payoff

1 before or after (with probability 1/2 each) their discontinuity point, and zero elsewhere. We
introduce 3T 1−β functions each for the same discontinuity point, and set the discontinuity points
T−β apart for β-dispersion. This gives us 1/3s

T−β −1 potential points inside [1
3
, 2
3
], so we can support

3T 1−β
(

1/3s
T−β − 1

)
= T

s
− 3T 1−β such functions (T

s
− 3T 1−β > 0 since β > log 3s

log T
). By Lemma

E.6.1 we accumulate Ω(
√

T−3sT 1−β

s
) = Ω(

√
T/s) regret for this part of the phase in expectation.

Let I ′1 be the interval from among [0, 1
2

(
1− 1

3s

)
] and [1

2

(
1 + 1

3s

)
, 1] with more payoff in the

phase so far. The next function has payoff 1 only at first or second half of I ′1 (with probability 1/2)
and zero everywhere else. Any algorithm accumulates expected regret 1/2 on this round. We
repeat this in successively halved intervals. β-dispersion is satisfied since we use only Θ(T 1−β)
functions in the interval I ′ of size greater than 1/3, and we accumulate an additional Ω(T 1−β)
regret. Notice there is a fixed point used by the optimal adversary for this phase.
Finally we repeat the construction inside the largest interval with no discontinuities at the end
of the last phase for the next phase. Note that at the i-th phase the interval size will be Θ(1

i
).

Indeed at the end of the first round we have unused intervals with sizes given by the sequence
1
2

(
1− 1

3s

)
, 1
4

(
1− 1

3s

)
, 1
8

(
1− 1

3s

)
, . . . At the i = 2j-th phase, we’ll be repeating inside an

interval of size 1
2j+1

(
1− 1

3s

)
= Θ(1

i
). This allows us to run Θ(s) phases and get the desired

lower bound (the intervals must be of size at least 1
s

to support the construction).

For s = 1, this improves over the lower bound construction of [15] where the lower bound is
shown only for β = 1/2. In particular our results establish an almost tight characterization of
static and dynamic regret under dispersion.

8.2 Efficient implementation
In this section we show that our algorithm can be implemented efficiently when ut’s are piece-
wise concave (dimishing returns). In particular we overcome the need to explicitly compute and
update wt(ρ) (there are potentially uncountably infinite ρ in a compact domain C) by showing
that we can sample the points according to pt(ρ) directly.
The high-level strategy is to show that pt(ρ) is a mixture of t distributions which are Exponential
Forecaster distributions from [15] i.e. p̃i(ρ) :=

w̃(ρ;i,t)

W̃ (i,t)
for each 1 ≤ i ≤ t, with proportions Ci,t.

As shown in [15] these distributions can be approximately sampled from (exactly in the one-
dimensional case, C ⊂ R). We need to sample from one of these t distributions with probability
Ct,i to get the distribution pt, and we can approximate these coefficients efficently (or compute
exactly in one-dimensional case). We provide algorithms to do these approximations efficiently
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Algorithm 13 Fixed Share Exponential Forecaster - efficient approximate implementation
Input: approximation parameter η ∈ (0, 1), confidence parameter ζ ∈ (0, 1)
[1.] W1 = VOL(C)
[2.] For each t = 1, 2, . . . , T :

[i.] Estimate Ct,j using Lemma 8.2.3 for each 1 ≤ j ≤ t.
[ii.] Sample i with probability Ct,i.
[iii.] Sample ρ with probability approximately proportional to w̃(ρ; i, t) by running Al-

gorithm BDV-18 with approximation-confidence parameters (η/3, ζ/2).
[iv.] Estimate Wt+1 using Lemma 8.2.2. Algorithm BDV-18 to get (η/6T, η/2T 2) esti-

mates for all W̃ (τ, τ ′) and memoize values of Wi, i ≤ t.

(in poly(d, T ) time), and we bound the extra expected regret. Asymptotically we get the same
bound as the exact algorithm.

Theorem 8.2.1. If utility functions are piecewise concave and L-Lipschitz, we can approxi-
mately sample a point ρ with probability pt+1(ρ) in time Õ(Kd4T 4) for approximation parame-
ters η = ζ = 1/

√
T and λ =

√
s(d ln(RT β) + ln(T/s))/T/H and enjoy the same regret bound

as the exact algorithm. (K is an upper bound on the number of discontinuities in the utility
functions ut; with probability at least 1− ζ , its expected payoff is within a factor of eη of that of
exact algorithm).

Proof of Theorem 8.2.1. Based on Lemma 8.2.3, we can sample a uniformly random number r
in [0, 1] and then sample a ρ from one of t distributions (selected based on r) that pt(ρ) is a mix-
ture of with probability proportional to Ct,i. The sampling from the exponentials can be done in
polynomial time for concave utility functions using sampling algorithm of [36]. At each round
we sample from exactly one of t distributions in the sum for pt in Lemma 8.2.3. We compute
(η/6T, ζ/2T 2) approximations for W̃ (i, j), 1 ≤ i < j ≤ T in time O(T 2K.T∫ ) where T∫
is the time to integrate a logconcave distribution (at most Õ(d4/ϵ2) from [113]). These give
(η/3, ζ/2)-approximation for Ct,i’s by corollary E.5.3. Finally we run Algorithm 2 from [15]
with approximation-confidence parameters (η/3, ζ/2).
With probability at least 1 − ζ , Ct,i estimation and ρ sampling according to w̃(ρ; i, t) succeeds.
If µ̂ denotes output distribution of ρ with approximate sampling, and µ denotes the exact distri-
bution per pt(ρ), then we show D∞(µ̂, µ) ≤ η. Indeed, for any set of outcomes E ⊂ C

µ̂(E) = Pr(ρ̂ ∈ E) =
t∑

i=1

Pr(ρ̂ ∈ E | Ei,t)Pr(Ei,t) =
t∑

i=1

µ̂i(E)
Ĉt,i∑
j Ĉt,j

,

where Ei,t denotes the event that w̃(ρ; i, t) was used for sampling pt(ρ), and µ̂i corresponds to
the distribution for approximate sampling of w̃(ρ; i, t). Noting that we used η/3 approximation
for µ̂i and each Ĉt,i, we have

µ̂(E) ≤
t∑

i=1

eη/3µi(E)e2η/3
Ct,i∑
j Ct,j

= eηµ(E).
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Similarly, µ̂(E) ≥ e−ηµ(E) and hence D∞(µ̂, µ) ≤ η.
Finally we can show (cf. Theorem 12 of [15]) that with probability at least 1 − ζ the expected
utility per round of the approximate sampler is at most a (1− η) factor smaller than the expected
utility per round of the exact sampler. Together with failure probability of ζ , this implies at most
(η + ζ)HT additional regret which results in same asymptotic regret as the exact algorithm for
η = ζ = 1/

√
T .

To compute the time complexity, we note from [113] that logconcave functions can be inte-
grated in Õ(d4/ϵ2) and sampled from in Õ(d3) time. The time to integrate dominates the com-
plexity, and the overall complexity can be upper bounded by O(T 2K ·d4/(η/T )2) = O(KT 4d4).
Note: The approximate integration and sampling are only needed for multi-dimensional case,
for the one-dimensional case we can compute the weights and sample exactly in polynomial
time.

We use the following algorithm due to [15] as a sub-routine.
Algorithm BDV-18: Simply integrate pieces of the exponentiated utility function, pick a piece
with probability proportional to its integral, and sample from that piece. [113] show how to
efficient sample from and integrate logconcave distributions. See [15] for more details.
The coefficients have a simple form in terms of normalizing constants Wt’s of the rounds so far,
so we first express Wt+1 in terms of Wt’s from previous rounds and some W̃ (i, j)’s.

Lemma 8.2.2. In Algorithm 12, for t ≥ 1,

Wt+1 = (1− α)t−1W̃ (1, t+ 1) +
α

VOL(C)

t∑

i=2

[
(1− α)t−iWiW̃ (i, t+ 1)

]
.

Proof of Lemma 8.2.2. For t = 1, first term is W̃ (1, 2) =
∫
C
eλu1(ρ)dρ = W2 and second term is

zero. Also, by Lemma E.3.3, for t > 1,

Wt+1 =

∫

C

eλut(ρ)wt(ρ)dρ

=

∫

C

eλut(ρ)

[
(1− α)eλut−1(ρ)wt−1(ρ) +

α

VOL(C)

∫

C

eλut−1(ρ)wt−1(ρ)dρ

]
dρ

= (1− α)

∫

C

eλ(ut(ρ)+ut−1(ρ))wt−1(ρ)dρ+
α

VOL(C)
Wt

∫

C

eλut(ρ)dρ.

Continue substituting wj(ρ) = (1 − α)eλuj(ρ)wj−1(ρ) +
α

VOL(C)

∫
C
eλuj(ρ)wj−1(ρ)dρ in the first

summand until w1 = 1 to get the desired expression.

As indicated above, pt(ρ) is a mixture of t distributions.

Lemma 8.2.3. In Algorithm 12, for t ≥ 1, pt(ρ) =
∑t

i=1 Ct,i
w̃(ρ;i,t)

W̃ (i,t)
. The coefficients Ct,i are

given by

Ct,i =





1 i = t = 1,

α i = t > 1,

(1− α)Wt−1

Wt

W̃ (i,t)

W̃ (i,t−1)
Ct−1,i i < t,
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and (Ct,1, . . . , Ct,t) lies on the probability simplex ∆t−1.

Proof of Lemma 8.2.3. At each iteration, pt is obtained by mixing eutpt−1 with the uniform dis-
tribution, i.e. we rescale distributions that pt−1 was a mixture of and add one more. Another way
to view it is to consider a distribution over the sequences of exponentially updated or randomly
chosen points. The final probability distribution is the mixture of a combinatorial number of
distributions but a large number of them have a proportional density. Ct,i are simply sums of
mixture coefficients. This establishes the intuition for the expression for pt and that the mixing
coefficients should sum to 1, but we still need to convince ourselves that the coefficients can be
computed efficiently.
We proceed by induction on t. For t = 1 (using definitions for w2(ρ) and w2(ρ))

p1(ρ) =
w1(ρ)

W1

=
1

VOL(C)
= C1,1

w̃(ρ; 1, 1)

W̃ (1, 1)

(recall w̃(ρ; 1, 1) := 1 and W̃ (1, 1) =
∫
C
w̃(ρ; 1, 1)dρ). For the inductive step, we first express

pt+1 in terms of pt

pt+1(ρ) =
wt+1(ρ)

Wt+1

= (1− α)
eλut(ρ)wt(ρ)

Wt+1

+
α

VOL(C)

= (1− α)
Wt

Wt+1

eλut(ρ)wt(ρ)

Wt

+
α

VOL(C)

= (1− α)
Wt

Wt+1

eλut(ρ)pt(ρ) +
α

VOL(C)
.

The lemma is now straightforward to see with induction hypothesis.

pt+1(ρ) = (1− α)
Wt

Wt+1

eλut(ρ)

[ t∑

i=1

Ct,i
w̃(ρ; i, t)

W̃ (i, t)

]
+

α

VOL(C)

=
t∑

i=1

[
(1− α)

Wt

Wt+1

Ct,i
w̃(ρ; i, t+ 1)

W̃ (i, t)

]
+

α

VOL(C)

=
t∑

i=1

[(
(1− α)

Wt

Wt+1

W̃ (i, t+ 1)

W̃ (i, t)
Ct,i

)
w̃(ρ; i, t+ 1)

W̃ (i, t+ 1)

]
+

Ct+1,t+1

VOL(C)

=
t∑

i=1

Ct+1,i
w̃(ρ; i, t+ 1)

W̃ (i, t+ 1)
+

Ct+1,t+1

VOL(C)
.

Finally noting

Ct+1,t+1
w̃(ρ; t+ 1, t+ 1)

W̃ (t+ 1, t+ 1)
= Ct+1,t+1

1∫
C
(1)dρ

=
Ct+1,t+1

VOL(C)
.
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completes the proof.

Thus Wt (by Lemma 8.2.2) and Ct,i can be computed recursively for logconcave utility func-
tions using integration algorithm from [113]. We can compute them efficiently using Dynamic
Programming.
Finally it’s straightforward to establish that the coefficients for pt must lie on the probability
simplex ∆t−1. All coefficients are positive, which is easily seen from the recursive relation and
noting all weights are positive. Also we know

pt(ρ) =
t∑

i=1

Ct,i
w̃(ρ; i, t)

W̃ (i, t)
.

Since pt(ρ) is a probability distribution by definition, integrating both sides over C gives

∫

C

pt(ρ)dρ =
t∑

i=1

Ct,i

∫
C
w̃(ρ; i, t)dρ

W̃ (i, t)
, or,

1 =
t∑

i=1

Ct,i.

8.3 Recurring environments

Algorithm 14 Generalized Share Exponential Forecaster (Generalized Share EF)
Input: step size parameter λ ∈ (0, 1/H], exploration parameter α ∈ [0, 1], discount rate
γ ∈ [0, 1]
[1.] w1(ρ) = 1 for all ρ ∈ C
[2.] For each t = 1, 2, . . . , T :

[i.] Wt :=
∫
C
wt(ρ)dρ

[ii.] Sample ρ with probability proportional to wt(ρ), i.e. with probability pt(ρ) =
wt(ρ)
Wt

[iii.] Let et(ρ) = eλut(ρ)wt(ρ) and βi,t =
e−γ(t−i)∑t

j=1 e
−γ(t−j) . For each ρ ∈ C, set

wt+1(ρ) = (1− α)et(ρ) + α

(∫

C

et(ρ)dρ

) t∑

i=1

βi,tpi(ρ)

An interesting special case of changing environments is where a small number of distinct experts
are likely to be good baselines over the course of the online game.

Definition 29. Extend Definition 28 with an additional constraint on the number of distinct ex-
perts used,

∣∣{ρ∗i | 1 ≤ i ≤ s}
∣∣ ≤ m. We call this (m-sparse, s-shifted) regret [43].
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This restriction makes sense if we think of the adversary as likely to reuse the same experts again,
or the changing environment to experience recurring events with similar payoff distributions.

As it turns out adding equal exploration to all points does not allow us to exploit recurring
environments of the (m-sparse, s-shifted) setting very well. To overcome this, we replace the
uniform update with a prior consisting of a weighted mixture of all the previous probability dis-
tributions used for sampling. This includes uniformly random exploration as the first probability
distribution p1(·), but the weight on this distribution decreases exponentially with time according
to discount rate γ (more precisely, it decays by a factor e−γ with each time step). While previ-
ously exploration was limited to starting afresh, here it includes partial resets to explore again
from all past states, with an exponentially discounted rate (formally Algorithm 3 in [20]).

For this approach we can show low (m-sparse, s-shifted) regret as well.

Theorem 8.3.1. There exists an algorithm with its (m-sparse, s-shifted) regret at most

O(H
√

T (md log(RT β) + s log(mT/s)) + (mH + L)T 1−β).

Proof of Theorem 8.3.1. Like Theorem 8.1.1 we first provide an upper and lower bound to WT+1

W1
.

The upper bound proof is identical to that of Theorem 8.1.1 by replacing Lemma E.3.3 by Lemma
E.3.8.

For the lower bound we use Corollaries E.3.10 and E.3.7. Applying corollary E.3.7 repeat-
edly to collect exponential updates for the times OPT played the same expert lets us use the
arguments for Theorem 8.1.1. Indeed if {(si, fi) | 1 ≤ i ≤ l} are the start and finish times of a
particular expert ρ in the OPT sequence, we can use Corollary E.3.10 to write

Wfl+1 ≥ α(1− α)fl+1−slWslW̃ (πsl ; sl, fl + 1).

Applying Corollary E.3.7 repeatedly now gets us

W fl+1 ≥

αl(1− α)
∑l

j=1 fj+1−sj(1− e−γ)l−1

(e−γ + α(1− e−γ))
∑l−1

j=1 fj+1−sj+1

∏l
i=1Wsi∏l−1

i=1Wfi+1

∫

C

(
πs1(ρ)

l∏

j=1

w̃(ρ; sj, fj + 1)

)
dρ,

or,
∏l

i=1 Wfi+1∏l
i=1Wsi

≥ αl(1− α)
∑l

j=1 fj+1−sj(1− e−γ)l−1

(e−γ + α(1− e−γ))
∑l−1

j=1 fj+1−sj+1

∫

C

(
πs1(ρ)

l∏

j=1

w̃(ρ; sj, fj + 1)

)
dρ.

Multiplying these inequalities for each of m experts in the optimal sequence gives us WT+1

W1
on

the left side. Also note ∫

C

πt(ρ)f(ρ)dρ ≥
α1,t

W1

∫

C

f(ρ)dρ,

and, using dispersion as in proof of Theorem 8.1.1,

∏

experts in OPT

∫

C

(
l∏

j=1

w̃(ρ; sj, fj + 1)

)
dρ

≥ VOL(B(T−β))m exp
(
λ
(
OPT − (mH + L)O(T 1−β)

))
.
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Putting it all together, and combining the lower and upper bounds on WT+1

W1
gives us a bound on

OPT − P (A).

OPT − P (A) <

H2Tλ+
md log(RT β)

λ
+ (mH + L)O(T 1−β)− log

(
αs(1− α)T (1− e−γ)s

(e−γ + α(1− e−γ))−mT

)
/λ.

We now chose parameters γ, α, λ to get the tightest regret bound. Note that − log(αs(1 − α)T )
is minimized for α = s

T+s
= Θ( s

T
) and − log((1 − e−γ)s(e−γ + α(1 − e−γ))mT ) is minimized

for γ = log
(

1+s/mT
1−sα/mT (1−α)

)
= Θ( s

mT
). The corresponding minimum values can be bounded as

− log(αs(1− α)T ) = s log
T + s

s
+ T log

(
1 +

s

T

)
≤ s log

T + s

s
+ s = O

(
s log

T

s

)
.

Using log(1 + x) ≤ x, and substituting e−γ = 1−sα/mT (1−α)
1+s/mT

,

− log((1− e−γ)s(e−γ + α(1− e−γ))mT )

= −s log
s

mT
· 1
(1−α)

1 + s
mT

−mT log
1

1 + s
mT

= s log

(
(1− α)

(
mT

s
+ 1

))
+mT log

(
1 +

s

mT

)

≤ s log

(
(1− α)

(
mT

s
+ 1

))
+ 1

= O

(
s log

mT

s

)
.

Finally we minimize w.r.t. λ, to obtain the desired regret bound.

The results in this chapter are joint work with Nina Balcan and Travis Dick [20], and have
appeared in AISTATS 2020.
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Chapter 9

Output-sensitivity

An important open problem is the design of computationally efficient data-driven algorithms for
combinatorial algorithm families with multiple parameters. As one fixes the problem instance
and varies the parameters, the “dual” loss function typically has a piecewise-decomposable struc-
ture, i.e. is well-behaved except at certain sharp transition boundaries. In this work we initiate
the study of techniques to develop efficient ERM learning algorithms for data-driven algorithm
design by enumerating the pieces of the sum dual loss functions for a collection of problem in-
stances. The running time of our approach scales with the actual number of pieces that appear
as opposed to worst case upper bounds on the number of pieces. Our approach involves two
novel ingredients – an output-sensitive algorithm for enumerating polytopes induced by a set
of hyperplanes using tools from computational geometry, and an execution graph which com-
pactly represents all the states the algorithm could attain for all possible parameter values. We
illustrate our techniques by giving algorithms for pricing problems, linkage-based clustering and
dynamic-programming based sequence alignment.

9.1 Output-sensitive Parameterized Complexity
Output-sensitive algorithms have a running time that depends on the size of the output for any in-
put problem instance. Output-sensitive analysis is frequently employed in computational geome-
try, for example Chan’s algorithm [52] computes the convex hull of a set of 2-dimensional points
in time O(n logR), where R is the size of the (output) convex hull. Output-sensitive algorithms
are useful if the output size is variable, and ‘typical’ output instances are much smaller than worst
case instances. Parameterized complexity extends classical complexity theory by taking into ac-
count not only the total input length n, but also other aspects of the problem encoded in a parame-
ter k1. The motivation is to confine the super-polynomial runtime needed for solving many natu-
ral problems strictly to the parameter. Formally, a parameterized decision problem (or language)
is a subset L ⊆ Σ∗×N , where Σ is a fixed alphabet, i.e. an input (x, k) to a parameterized prob-
lem consists of two parts, where the second part k is the parameter. A parameterized problem L
is fixed-parameter tractable if there exists an algorithm which on a given input (x, k) ∈ Σ∗×N ,

1N.B. The term “parameter” is overloaded. It is used to refer to the real-valued parameters in the algorithm
family, as well as the parameter to the optimization problem over the algorithm family.
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decides whether (x, k) ∈ L in f(k) · poly(|x|) time, where f is an arbitrary computable function
in k [67]. FPT is the class of all parameterized problems which are fixed-parameter tractable.
In contrast, the class XP (aka slicewise-polynomial) consists of problems for which there is an
algorithm with running time |x|f(k). It is known that FPT ⊊ XP. We consider an extension of the
above to search problems and incorporate output-sensitivity in the following definition.

Definition 30 (Output-polynomial Fixed Parameter Tractable). A parameterized search problem
P : Σ∗ × N → Σ̃∗ is said to be output-polynomial fixed-parameter tractable if there exists an
algorithm which on a given input (x, k) ∈ Σ∗ × N , computes the output P (x, k) ∈ Σ̃∗ in time
f(k) · poly(|x|, R), where R = |P (x, k)| is the output size and f is an arbitrary computable
function in k.

As discussed above, output-sensitvity and fixed-parameter tractability both offer more fine-grained
complexity analysis than traditional (input) polynomial time complexity. Both techniques have
been employed in efficient algorithmic enumeration [77, 129] and have gathered recent interest
[78]. In this work, we consider the optimization problem of selecting tunable parameters over a
continuous domain C ⊂ Rd with the fixed-parameter k = d, the number of tunable parameters.
We will design OFPT enumeration algorithms which, roughly speaking, output a finite “search
space” which can be used to easily find the best parameter for the problem instance.

9.2 Output-sensitive cell enumeration
Let H be a collection of t hyperplanes in Rd. We consider the problem of enumerating the d-faces
(henceforth cells) of the convex polyhedral regions induced by the hyperplanes. The cells will
be represented as sign-patterns2 of facet-inducing hyperplanes. We will present an approach for
enumerating these cells in OFPT time (Definition 30), which involves two key ingredients: (a)
locality-sensitivity, and (b) output-sensitivity. By locality sensitivity, we mean that our algorithm
exploits problem-specific local structure in the neighborhood of each cell to work with a smaller
candidate set of hyperplanes which can potentially constitute the cell facets. This is abstracted
out as a sub-routine COMPUTELOCALLYRELEVANTSEPARATORS which we will instantiate and
analyse for each individual problem. In this section we will focus more on the output-sensitivity
aspect.

To provide an output-sensitive guarantee for this enumeration problem, we compute only the
non-redundant hyperplanes which provide the boundary of each cell c in the partition induced by
the hyperplanes. We denote the closed polytope bounding cell c by Pc. A crucial ingredient for
ensuring good output-sensitive runtime of our algorithm is Clarkson’s algorithm for computing
non-redundant constraints in a system of linear inequalities [62]. A constraint is redundant in a
system if removing it does not change the set of solutions. The key idea is to maintain a set I of
non-redundant constraints detected so far, and solve LPs that detect the redundancy of a remain-
ing constraint (not in I) when added to I . If the constraint is redundant relative to I , it must also
be redundant in the full system, otherwise we can add a (potentially different) non-redundant
constraint to I . The following runtime guarantee is known for the algorithm.

2For simplicity we will denote these by vectors of the form {0, 1,−1}t where non-zero co-ordinates correspond
to signs of facet-inducing hyperplanes. Hash tables would be a practical data structure for implementation.
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Theorem 9.2.1 (Clarkson’s algorithm). Given a list L of k half-space constraints in d dimen-
sions, Clarkson’s algorithm outputs the set I ⊆ L of non-redundant constraints in L in time O(k ·
LP(d, |I|+ 1)), where LP(v, c) is the time for solving an LP with v variables and c constraints.

Algorithm 15 uses AUGMENTEDCLARKSON, which modifies Clarkson’s algorithm with some
additional bookkeeping to facilitate a search for neighboring regions in our algorithm, while re-
taining the same asymptotic runtime complexity. Effectively, our algorithm can be seen as a
breadth-first search over an implicit underlying graph (Definition 31), where the neighbors (and
some auxiliary useful information) are computed dynamically by AUGMENTEDCLARKSON.

Algorithm 15 OUTPUTSENSITIVEPARTITIONSEARCH

1: Input: Set H = {ai · x = bi}i∈[t] of t hyperplanes in Rd, convex polytopic domain P ⊆ Rd

bounded by hyperplane set P .
Output: Partition cells C̃ = {c̃(j)} , c(j) ∈ {0, 1,−1}t with |c̃(j)i | = 1 iff ai · x = bi is a
bounding hyperplane for cell j, and sgn(c̃(j)i ) = sgn(ai · xj − bi) for interior point xj.

2: x1 ← an arbitrary point in Rd (assumed general position w.r.t. H)
3: Cell c(1) with sgn(c(1)i ) = sgn(ai · x1 − bi)
4: q← empty queue; q.enqueue([c(1),x1])
5: C ← {}; C̃ ← {}
6: while q.non empty() do
7: [c,x]← q.dequeue()
8: Continue to next iteration if c ∈ C
9: C ← C ∪ {c}

10: H̃ ← COMPUTELOCALLYRELEVANTSEPARATORS(x, H) subset of hyperplanes in H
that can be facets for cell containing x

11: H ′ ← {(−sign(ci)ai · x,−sign(ci)bi) | ai · x = bi ∈ H̃} ∪ P
12: (c̃,neighbors)← AUGMENTEDCLARKSON(x, H ′, c)
13: C̃ ← C̃ ∪ {c̃}
14: q.enqueue([c′,x′]) for each [c′,x′] ∈ neighbors
15: return C̃

Definition 31 (Cell adjacency graph). Define the cell adjacency graph for a set H of hyperplanes
in Rd, written GH = (VH , EH), as follows. There is a vertex v ∈ VH corresponding to each cell
in the partition C̃ of Rd induced by the hyperplanes; for v, v′ ∈ VH , add the edge {v, v′} to EH

if the corresponding polytopes intersect, i.e. Pv ∩ Pv′ ̸= ∅. This generalizes to a subdivision of a
polytope in Rd.

This allows us to state the following guarantee about the runtime of Algorithm 15.

Theorem 9.2.2. Let H be a set of t hyperplanes in Rd. Suppose |EH | = E and |VH | = V in the
cell adjacency graph GH = (VH , EH) of H; then if the domain P is bounded by |P | ≤ t hyper-
planes, Algorithm 15 computes the set VH in time Õ(dE+V TCLRS+tLRS ·

∑
c∈VH

LP(d, |Ic|+1)),
where LP(r, s) denotes the time to solve an LP in r variables and s constraints, Ic denotes the
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number of facets for cell c ∈ VH , TCLRS denotes the running time of COMPUTELOCALLYREL-
EVANTSEPARATORS and tLRS denotes an upper bound on the number of locally relevant hyper-
planes in Line 10.

Proof of Theorem 9.2.2. Algorithm 15 maintains a set of visited or explored cells in C, and their
bounding hyperplanes (corresponding to cell facets) in C̃. It also maintains a queue of cells,
such that each cell in the queue has been discovered in Line 12 as a neighbor of some visited
cell in C, but is yet to be explored itself. The algorithm detects if a cell has been visited be-
fore by using its sign pattern on the hyperplanes in H . This can be done in O(d log t) time,
since |C| = O(td) using a well-known combinatorial fact (e.g. [50]). For a new cell c, we run
AUGMENTEDCLARKSON to compute its bounding hyperplanes Ic as well as sign patterns for
neighbors in time O(tLRS ·LP(d, |Ic|+1)) by Theorem 9.2.1. The computed neighbors are added
to the queue in Line 14. A cell c gets added to the queue at this step up to |Ic| times, but is not
explored if already visited. Thus we run up to V iterations of AUGMENTEDCLARKSON and up
to 1+

∑
c∈VH
|Ic| = 2E+1 queue insertions/removals. Using efficient union-find data-structures,

the set union and membership queries (for C and C̃) can be done in Õ(1) time per iteration of
the loop. So total time over the V cell explorations and no more than 2E + 1 iterations of the
while loop is Õ(dE) +O(tLRS ·

∑
c∈VH

LP(d, |Ic|+ 1)) +O(V TCLRS).

We will demonstrate several data-driven parameter selection problems which satisfy Definition
14 and for which the COMPUTELOCALLYRELEVANTSEPARATORS can be implemented in FPT
(often poly(d, t)) time for fixed-parameter d. The above result then implies that the problem of
enumerating the induced polytopic cells is in OFPT (Definition 30).

Corollary 9.2.3. If COMPUTELOCALLYRELEVANTSEPARATORS runs in FPT time for fixed-
parameter d, Algorithm 15 enumerates the cells induced by a set H of t hyperplanes in Rd in
OFPT time.

Proof of Corollary 9.2.3. Several approaches for solving a (low-dimensional) LP in r variables
and s constraints in deterministic rO(r)s time are known [53, 57] (the well-known randomized
algorithm of [150] runs in expected rO(r)s time). Noting tLRS ≤ TCLRS, the runtime bound in
Theorem 9.2.2 simplifies to Õ(dO(d)(E + V )TCLRS), and the result follows by the assumption on
TCLRS and since E ≤ V 2.

We illustrate the significance of output-sensitivity and locality-sensitivity with simple examples.

Example 2. The worst-case size of VH is O(td) and standard (output-insensitive) enumeration
algorithms for computing VH (e.g. [70, 170]) take O(td) time even when output size may be
much smaller. For example, if H is a collection of parallel planes in R3, running time of these
approaches is O(t3). Even a naive implementation of COMPUTELOCALLYRELEVANTSEPARA-
TORS which always outputs the complete set H gives a better runtime of O(t2). By employing a
straightforward algorithm which binary searches the closest hyperplanes to x (in a pre-processed
H) as COMPUTELOCALLYRELEVANTSEPARATORS we have tLRS = O(1) and TCLRS = Õ(1),
and Algorithm 15 attains a running time of Õ(t). Analogously, if H is a collection of t hy-
perplanes in Rd with 1 ≤ k < d distinct unit normal vectors, then output-sensitivity improves
runtime from O(td) to O(tk+1), and locality-sensitivity further improves it to Õ(tk).
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Example 3. If H is a collection of t hyperplanes in Rd, d ≥ 2 which all intersect in a d − 2
hyperplane (e.g. collinear planes in R3), we can again obtain worst-case O(t2) runtime due to
output-sensitivity of Algorithm 15 and further improvement to Õ(t) runtime by exploiting locality
sensitivity similar to the above example.

9.2.1 ERM in the statistical learning setting
We now use Algorithm 15 to compute the sample mimimum (aka ERM, Empirical Risk Mini-
mization) for the (F , t) piecewise-structured dual losses with linear boundaries (Definition 14)
over a problem sample S ∈ Πm, provided piece functions in F can be efficiently optimized
over a polytope (typically the piece functions are constant or linear functions in our examples).
Formally, we define search-ERM for a given parameterized algorithm family A with parameter
space P and the dual class utility function being (F , t)-piecewise decomposable (Definition 14)
as follows: given a set of m problem instances S ∈ Πm, compute the pieces, i.e. a partition of
the parameter space into connected subsets such that the utility function is a fixed piece function
in F over each subset for each of the m problem instances. The following result gives a recipe
for efficiently solving the search-ERM problem provided we can efficiently compute the dual
function pieces in individual problem instances, and the the number of pieces in the sum dual
class function over the sample S is not too large. The key idea is to apply Algorithm 15 for each
problem instance, and once again for the search-ERM problem.

Theorem 9.2.4. Let C̃i denote the cells partitioning the polytopic parameter space P ⊂ Rd cor-
responding to pieces of the dual class utility function ui on a single problem instance xi ∈ Π,
from a collection s = {x1, . . . , xm} of m problem instances. Let (VS, ES) be the cell adjacency
graph corresponding to the polytopic pieces in the sum utility function

∑m
i=1 ui. Then there is an

algorithm for computing VS given the cells C̃i in time Õ((d+m)|ES|+mtLRS ·
∑

c∈VS
LP(d, |Ic|+

1)), where Ic denotes the number of facets for cell c ∈ VS , and tLRS is the number of locally rel-
evant hyperplanes in a single instance.

Proof of Theorem 9.2.4. We will apply Algorithm 15 and compute the locally relevant hyper-
planes by simply taking a union of the facet-inducing hyperplanes at any point x, across the
problem instances.

Let G(i) = (V (i), E(i)) denote the cell adjacency graph for the cells in C̃i. We apply Algo-
rithm 15 implicitly over H = ∪iH

(i)
where H

(i)
is the collection of facet-inducing hyperplanes

in C̃i. To implement COMPUTELOCALLYRELEVANTSEPARATORS(x, H) we simply search
the computed partition cell C̃i for the cell containing x in each problem instance xi in time
O(
∑

i |E(i)|) = O(m|ES|), obtain the set of corresponding facet-inducing hyperplanes H(i)
x , and

output H̃x = ∪iH(i)
x in time O(mtLRS). The former step only needs to be computed once, as the

partition cells for subsequent points can be tracked in O(m) time. Theorem 9.2.2 now gives a
running time of Õ(d|ES|+m|ES|+mtLRS|VS|+mtLRS ·

∑
c∈VS

LP(d, |Ic|+ 1)).

An important consequence of the above result is an efficient output-sensitive algorithm for data-
driven algorithm design when the dual class utility function is (F , t)-piecewise decomposable. In
the following sections, we will instantiate the above results for various data-driven parameter se-
lection problems where the dual class functions are piecewise-structured with linear boundaries
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(Definition 14). Prior work [17, 18, 23] has shown polynomial bounds on the sample complexity
of learning near-optimal parameters via the ERM algorithm for these problems in the statistical
learning setting, i.e. the problem instances are drawn from a fixed unknown distribution. In other
words, ERM over polynomially large sample size m is sufficient for learning good parameters. In
particular, we will design and analyze running time for problem-specific algorithms for comput-
ing locally relevant hyperplanes. Given Theorem 9.2.4, it will be sufficient to give an algorithm
for computing the pieces of the dual class function for a single problem instance.

9.2.2 Online learning

In the online learning setting, one receives a sequence of problem instances x1, . . . , xT ∈ Π, and
needs to select an algorithm in each round. Recent research has shown that no-regret learning
in online algorithm design is possible under additional smoothness assumptions on the online
adversary [15, 69], but has noted computationally efficient implementation of the online learner
as an open direction. Efficient algorithms are known for the case where the utility is a piece-
wise constant function of a single parameter, our tools allow output-sensitive enumeration for
the (F , t) piecewise-structured dual functions with linear boundaries (Definition 14) even in the
multiparameter setting.

Suppose the dual class functions for the online sequence of problem instances are given by
u1(ρ), . . . , uT (ρ). A key ingredient in implementing an online learner is to compute the partition
of the parameter space where the partial sum function

∑t
i=1 ui(ρ) is well-behaved. This allows

us to use the Exponential Forecaster algorithm for the (F , t) piecewise-structured dual functions
with linear boundaries (Algorithm 2 of [15]).

Theorem 9.2.5. Let C̃u denote the cells partitioning the polytopic parameter space P ⊂ Rd

corresponding to pieces of the dual class utility function u, and u1, . . . , uT denote an online se-
quence of dual class functions corresponding to problem instances {x1, . . . , xm}. Let (Vt, Et) be
the cell adjacency graph corresponding to the polytopic pieces in the partial sum utility function
Ut :=

∑t
i=1 ui for any t ∈ [T ]. Then there is an algorithm for computing Vt given the cells C̃Ut−1

in time Õ((d+|Vt|)|Et|+TCLRS|Vt|+ttLRS ·
∑

c∈Vt
LP(d, |Ic|+1)), where Ic denotes the number of

facets for cell c ∈ Vt, and tLRS is the number of locally relevant hyperplanes in a single instance.

Proof. We will apply Algorithm 15 and compute the locally relevant hyperplanes by simply tak-
ing a union of the facet-inducing hyperplanes of the cell containing x in C̃Ut−1 , and the locally
relevant hyperplanes for the new problem instance xt.

Let G(i) = (V (i), E(i)) denote the cell adjacency graph for the cells in C̃i. We apply Algo-
rithm 15 implicitly over H = ∪iH

(i)
where H

(i)
is the collection of facet-inducing hyperplanes

in C̃i. To implement COMPUTELOCALLYRELEVANTSEPARATORS(x, H) we simply search the
computed partition cell C̃Ut−1 for the cell containing x in time O(|Et−1|), obtain the set of cor-
responding facet-inducing hyperplanes H

(t−1)
x , compute the locally relevant separators H t

x for
the new problem instance xt and output H̃x = H

(t−1)
x ∪H t

x in time O(|Et−1| + TCLRS + ttLRS).
Theorem 9.2.2 now gives a running time of Õ(d|Et| + (|Et−1| + TCLRS + ttLRS)|Vt| + ttLRS ·∑

c∈Vt
LP(d, |Ic|+ 1)).
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Above result gives a way to bound the per-iteration complexity of the online learning algorithm
of [15] in an output-sensitive way. In particular, if the utility functions u1, . . . , uT are concave
in ρ, the remaining per-iteration runtime overhead of sampling from C̃Ut is O(|C̃Ut|poly(d, T ))
using approximate logconcave sampling and integration algorithms of [113]. This online learner
enjoys no-regret guarantees under a mild assumption on the sequence u1, . . . , uT , called disper-
sion. Roughly speaking, a sequence of (F , t) piecewise-structured utility functions u1, . . . , uT

is said to be dispersed if the number of functions for which the piece boundaries intersect any
small ball in the parameter space is bounded (see [15, 19] for formal definition).

Remark 6. A related recent work [8] studies an alternative discretization-based algorithm for
online learning of pricing problems, including the two-part tariff pricing studied here. The pro-
posed approach is however not output-sensitive and only known to work for pricing problems,
but it obtains no-regret even without the dispersion assumption.

9.2.3 Augmented Clarkson’s Algorithm
We describe here the details of the Augmented Clarkson’s algorithm, which modifies the al-
gorithm of Clarkson [62] with additional bookkeeping needed for tracking the partition cells in
Algorithm 15. The underlying problem solved by Clarkson’s algorithm may be stated as follows.

Problem Setup. Given a linear system of inequalities Ax ≤ b, an inequality Aix ≤ bi is
said to be redundant in the system if the set of solutions is unchanged when the inequality is
removed from the system. Given a system (A ∈ Rm×d, b ∈ Rm), find an equivalent system with
no redundant inequalities.

Note that to test if a single inequality Aix ≤ bi is redundant, it is sufficient to solve the
following LP in d variables and m constraints.

maximize Aix

subject to Ajx ≤ bj, ∀j ∈ [m] \ {i}
Aix ≤ bi + 1

(9.1)

Using this directly to solve the redundancy removal problem gives an algorithm with running
time m · LP(d,m), where LP(d,m) denotes the time to solve an LP in d variables and m con-
straints. This can be improved using Clarkson’s algorithm if the number of non-redundant con-
straints s is much less than the total number of constraints m (Theorem 9.2.1).

We assume that an interior point z ∈ Rd satisfying Ax < b is given. At a high level, one
maintains the set of non-redundant constraints I discovered so far i.e. Aix ≤ bi is not redundant
for each i ∈ I . When testing a new index k, the algorithm solves an LP of the form 9.1 and
either detects that Akx ≤ bk is redundant, or finds index j ∈ [m] \ I such that Ajx ≤ bj is non-
redundant. The latter involves the use of a procedure RayShoot(A, b, z, x) which finds the non-
redundant hyperplane hit by a ray originating from z in the direction x−z (x ∈ Rd) in the system
A, b. The size of the LP needed for this test is LP(d, |I|+1) from which the complexity follows.

To implement the RayShoot procedure, we can simply find the intersections of the ray x∗− z
with the hyperplanes Ajx ≤ bj and output the one closest to z (defining the cell facet in that
direction). We also output an interior point from the adjacent cell during this computation, which
saves us time relative to [154] where the interior point is computed for each cell (our Clarkson
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Algorithm 16 AUGMENTEDCLARKSON(z,H = (A, b), c)
Input: A ∈ Rm×d, b ∈ Rm, z ∈ Rd, sign-pattern c ∈ {0, 1,−1}m.
Output: list of non-redundant hyperplanes I ⊆ [m], points in neighboring cells Z ⊂ Rd.
I ← ∅, J ← [m], Z ← ∅
while J ̸= ∅ do

Select k ∈ J
Detect if Akx ≤ bk is redundant in AI∪{k}x ≤ bI∪{k} by solving LP (9.1).
x∗ ← optimal solution of the above LP
if redundant then
J ← J \ {k}
j, z∗ ← RayShoot(A, b, z, x∗)
J ← J \ {j}
c′j ← −cj, c′i ← ci ∀ i ∈ [m] \ {j}
I ← I ∪ {j}, Z ← Z ∪ {[c′, z∗]}

return I, Z

based approach also circumvents their need for the Raindrop procedure [46]). Finally we state the
running time guarantee of Algorithm 16, which follows from the original result of Clarkson [62].

Algorithm 17 RayShoot
Input: A ∈ Rm×d, b ∈ Rm, z ∈ Rd, x ∈ Rd.
if Ai · (x− z) = 0 for some i then
z ← z + (ϵ, ϵ2, . . . , ϵd) for sufficiently small ϵ

ti ← bi−Ai·z
Ai·(x−z)

j = argmini{ti | ti > 0}, t′ = max{mini ̸=j{ti | ti > 0}, 0}
return j, z +

tj+t′

2
(x− z)

Theorem 9.2.6 (Augmented Clarkson’s algorithm). Given a list L of k half-space constraints in
d dimensions, Algorithm 16 outputs the set I ⊆ [L] of non-redundant constraints in L, as well
as auxiliary neighbor information, in time O(k · LP(d, |I| + 1)), where LP(v, c) is the time for
solving an LP with v variables and c constraints.

9.3 Profit maximization in pricing problems
Prior work [17, 126] on data-driven mechanism design has shown that the profit as a function of
the prices (parameters) is (F , t)-decomposable withF the set of linear functions on Rd for a large
number of mechanism classes. We will instantiate our approach for multi-item pricing problems
which are (F , t)-decomposable and analyse the running times. In contrast, recent work [8] em-
ploys data-independent discretization for computationally efficient data-driven algorithm design
for mechanism design problems even in the worst-case. This discretization based approach is not
output-sensitive and is known to not work for other applications like data-driven clustering.
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In the two-part tariff problem [108, 131], the seller with multiple identical items charges a
fixed price, as well as a price per item purchased. For example, cab meters often charge a base
cost for any trip and an additional cost per mile traveled. Subscription or membership programs
often require an upfront joining fee plus a membership fee per renewal period, or per service
usage. Often there is a menu or tier of prices, i.e. a company may design multiple subscription
levels (say basic, silver, gold, platinum), each more expensive than the previous but providing a
cheaper per-unit price. Given access to market data (i.e. profits for different pricing schemes for
typical buyers) we would like to learn how to set the base and per-item prices to maximize the
profit. We define these settings formally as follows.
Two-part tariffs. The seller has K identical units of an item. Suppose the buyers have valuation
functions vi : {1, . . . , K} → R≥0 where i ∈ {1, . . . ,m} denotes the buyer, and the value is
assumed to be zero if no items are bought. Buyer i will purchase q quantities of the item that
maximizes their utility ui(q) = vi(q)− (p1 + p2q), buying zero units if the utility is negative for
each q > 0. The revenue, which we want to maximize as the seller, is zero if no item is bought,
and p1 + p2q if q > 0 items are bought. The algorithmic parameter we want to select is the price
ρ = ⟨p1, p2⟩, and the problem instances are specified by the valuations vi. We also consider a
generalization of the above scheme: instead of just a single two-part tariff (TPT), suppose the
seller provides a menu of TPTs (p11, p

1
2), . . . , (p

ℓ
1, p

ℓ
2) of length ℓ. Buyer i selects a tariff (pj1, p

j
2)

from the menu as well as the item quantity q to maximize their utility uj
i (q) = vi(q)− (pj1+pj2q).

This problem has 2ℓ parameters, ρ = (p11, p
1
2, . . . , p

ℓ
1, p

ℓ
2), and the single two-part tariff setting

corresponds to ℓ = 1.
The dual class functions in this case are known to be piecewise linear with linear boundaries

[17]. We will now implement Algorithm 15 for this problem by specifying how to compute
the locally relevant hyperplanes. For any price vector x = ρ, say the buyers buy quantities
(q1, . . . , qm) ∈ {0, . . . , K}m according to tariffs (j1, . . . , jm) ∈ [ℓ]m. For a fixed price vector
this can be done in time O(mKℓ) by computing argmaxq,j u

j
i (q) for each buyer at that price

for each two-part tariff in the menu. Then for each buyer we have K(ℓ − 1) potential alterna-
tive quantities and tariffs given by hyperplanes uji

i (qi) ≥ uj′

i (q
′), q′ ̸= qi, j

′ ̸= ji, for a total of
tLRS = mK(ℓ−1) locally relevant hyperplanes. Thus TCLRS = O(mKℓ) for the above approach,
and Theorem 9.2.2 implies the following runtime bound.

Theorem 9.3.1. There exists an implementation of COMPUTELOCALLYRELEVANTSEPARA-
TORS in Algorithm 15, which given valuation function v(·) for a single problem instance, com-
putes all the R pieces of the dual class function uv(·) in time Õ(R2(2ℓ)ℓ+2K), where the menu
length is ℓ, and there are K units of the good.

Proof of Theorem 9.3.1. In the terminology of Theorem 9.2.2, we have d = 2ℓ, E ≤ R2, V = R,
TCLRS = O(Kℓ), tLRS ≤ Kℓ. By [53], we have

∑
c∈VH

LP(d, |Ic| + 1) ≤ O(Edd/2+1) ≤
O(R2(2ℓ)ℓ+1). Thus, Theorem 9.2.2 implies a runtime bound on Algorithm 15 of Õ(dE +
V TCLRS + tLRS ·

∑
c∈VH

LP(d, |Ic|+ 1)) = Õ(R2(2ℓ)ℓ+2K).

Theorem 9.3.1 together with Theorem 9.2.4 implies an implementation of the search-ERM prob-
lem over m buyers (with valuation functions vi(·) for i ∈ [m]) in time O(R2

Σ(2ℓ)
ℓ+2mK), where

RΣ denotes the number of pieces in the total dual class function U⟨v1,...,vm⟩(·) =
∑

i uvi(·).
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Corollary 9.3.2. There exists an implementation of COMPUTELOCALLYRELEVANTSEPARA-
TORS in Algorithm 15, which given valuation functions vi(·) for i ∈ [m], computes all the RΣ

pieces of the total dual class function U⟨v1,...,vm⟩(·) =
∑

i uvi(·) in time Õ(R2
Σ(2ℓ)

ℓ+2mK), where
the menu length is ℓ, there are K units of the good and m is the number of buyers.

Proof. We first compute the pieces for each of the problem instances (single buyers) and then
the pieces in the sum dual class function using Theorem 9.2.4. By Theorem 9.3.1, the for-
mer takes time Õ(mR2(2ℓ)ℓ+2K) and the latter can be implemented in time O((m + 2ℓ)R2

Σ +
mKℓ

∑
c∈VS

LP(d, |Ic| + 1)) = Õ(R2
Σ(2ℓ)

ℓ+2mK), which dominates the overall running time.

In contrast, prior work for this problem has only obtained an XP runtime of (mK)O(ℓ) [21].
For the special case ℓ = 1, we also provide an algorithm that uses additional structure of the
polytopes and employs a computational geometry algorithm due to [56] to compute the pieces
in optimal O(mK log(mK) + RΣ) time, improving over the previously best known runtime of
O(m3K3) due to [21] even for worst-case RΣ. The worst-case improvement follows from a
bound of RΣ = O(m2K) on the number of pieces. We further show that our running time for
ℓ = 1 is asymptotically optimal under the algebraic decision-tree model of computation, by a
linear time reduction from the element uniqueness problem.

9.3.1 Piecewise structure of the dual class function
The following lemma restates the result from [17] in terms of Definition 14. Note that uρ in the
following denotes the revenue function (or seller’s utility) and should not be confused with the
buyer utility function ui.

Lemma 9.3.3. Let U be the set of functions {uρ : v(·) 7→ pj
∗

1 +pj
∗

2 q∗ | q∗, j∗ = argmaxq,j v(q)−
ρj ·⟨1, q⟩, ρj = ⟨pj1, p

j
2⟩} that map valuations v(·) to R. The dual class U∗ is (F , (Kℓ)2)-piecewise

decomposable, where F = {fc : U → R | c ∈ R2ℓ} consists of linear functions fc : uρ 7→ ρ · c.

We also bound the number of pieces R in the worst-case for ℓ = 1. The following bound im-
plies that our algorithm is better than prior best algorithm which achieves an O(m3K3) runtime
bound, even for worst case outputs.

Theorem 9.3.4. Let menu length ℓ = 1. The number of pieces RΣ in the total dual class function
U⟨v1,...,vm⟩(·) =

∑
i uvi(·) is at most O(m2K).

Proof. By Lemma 9.3.3, the dual class is (F , K2)-piecewise decomposable, whereF is the class
of linear functions. That is, the two-dimensional parameter space (p1, p2) can be partitioned into
polygons by at most K2 straight lines such that any dual class function uvi is a linear function
inside any polygon.

We first tighten the above result to show that the dual class is in fact (F , 2K + 2)-piecewise
decomposable, that is the number of bounding lines for the pieces is O(K). This seems coun-
terintuitive since for any buyer i, we have Θ(K2) lines ui(q) ≥ ui(q

′) for q < q′ ∈ {0, . . . , K}.
If q > 0, ui(q) = ui(q

′) are axis-parallel lines with intercepts vi(q
′)−vi(q)
q′−q

. Since for any pair q, q′

the buyer has a fixed (but opposite) preference on either side of the axis-parallel line, we have at
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most K distinct horizontal ‘slabs’ corresponding to buyer’s preference of quantities, i.e. regions
between lines p2 = a and p2 = b for some a, b > 0. Thus we have at most K non-redundant
lines. Together with another K lines ui(0) = ui(q

′) and the axes, we have 2K+2 bounding lines
in all as claimed.

We will next use this tighter result to bound the number of points of intersection of non-
collinear non-axial bounding lines, let’s call them crossing points, across all instances ⟨v1, . . . , vm⟩.
Consider a pair of instances given by buyer valuation functions vi, vj . We will establish that the
number of crossing points are at most 4K for the pair of instances. Let li and lj be bounding
lines for the pieces of uvi and uvj respectively. If they are both axis-parallel, then they cannot
result in a crossing point. For pairs of bounding lines li and lj such that li is axis-parallel and lj
is not, we can have at most K crossing points in all. This is because any fixed li can intersect at
most one such lj since buyer j’s preferred quantity qj is fixed along any horizontal line, unless
qj changes across li in which case the crossing points for the consecutive lj’s coincide. Thus,
there is at most one such crossing point for each of at most K axis-parallel li’s. By symmetry,
there are at most K crossing points between li, lj where lj is axis parallel and li is not. Finally,
if neither li, lj is axis parallel, we claim there can be no more than 2K crossing points. Indeed,
if we arrange these points in the order of increasing p2, then the preferred quantity of at least
one of the buyers i or j strictly decreases between consecutive crossing points. Thus, across all
instances, there are at most 2m2K crossing points.

Finally, observe that the cell adjacency graph GU for the pieces of the total dual class function
U⟨v1,...,vm⟩(·) is planar in this case. The vertices of this graph correspond to crossing points, or
intersections of bounding lines with the axes. The latter is clearly O(mK) since there are O(K)
bounding lines in any problem instance. Using the above bound on crossing points, the number
of vertices in GU is O(m2K). Since GU is a simple, connected, planar graph, the number of
faces is no more than twice the number of vertices and therefore the number of pieces RΣ is also
O(m2K).

9.3.2 Optimal algorithm for Single TPT pricing
Consider the setting with menu-length ℓ = 1. The key insight is to characterize the polytopic
structure of the pieces of the dual class function for a single buyer. We do this in Lemma 9.3.5.

Lemma 9.3.5. Consider a single buyer with valuation function v(·). The buyer buys zero units
of the item except for a set ϱv ⊂ R2, where ϱv is a convex polygon with at most K + 2 sides.
Moreover, ϱv can be subdivided into K ′ ≤ K polygons ϱ(i)v , each a triangle or a trapezoid with
bases parallel to the ρ1-axis, such that for each i ∈ [K ′] the buyer buys the same quantity q(i) of
the item for all prices in ϱ

(i)
v .

Proof. We proceed by an induction on K, the number of items. For K = 1, it is straightforward
to verify that ϱv is the triangle p1 ≥ 0, p2 ≥ 0, p1 + p2 ≤ v(1).

Let K > 1. If we consider the restriction of the valuation function v(·) to K − 1 items,
we have a convex polygon ϱ′v satisfying the induction hypothesis. To account for the K-th item
we only need to consider the region p1 ≥ 0, p2 ≥ 0, p2 ≤ v(K)−v(q)

K−q
for 0 < q < K, and

p1 + p2K ≤ v(K). If this region is empty, ϱv = ϱ′v, and we are done. Otherwise, denoted by

151



Algorithm 18 ComputeFixedAllocationRegions
Input: vi(·), valuation functions
1. For i = 1 . . .m do
2. Q← ∅ (stack), q′ = 1, h = vi(1).
3. For q = 2 . . . K do
3.1 h′ ← (vi(q)− vi(q

′))/(q − q′)
3.2 if 0 < h′ < h

h← h′

Push (q, h′) onto Q
q′ ← q

3.3 else if 0 < h′

while h′ ≥ h do
Pop (q′, h) from Q
(q1, h1)← Top(Q)
h′ ← (vi(q)− vi(q1))/(q − q1)
h← h1

q′ ← q
Push (q, h′) onto Q

4. For (q, h) ∈ Q do
Obtain ϱ

(j)
vi for q(j) = q using lines p2 = h and p1 = v(q)− p2q.

5. Compute intersection of segments in ϱ
(j)
vi for i ∈ [m] using [56].

6. Use the intersection points to compute boundaries of all polygons (pieces) formed by the
intersections.

ϱ
(K′)
v with q(K

′) = K, the region where the buyer would buy K units of the item is a trapezoid
with bases parallel to the ρ1-axis. We claim that ϱv =

(
ϱ′v ∩ p2 ≤ v(K)−v(q)

K−q

)
∪ ϱ

(K′)
v and it

satisfies the properties in the lemma.
We have q(K

′−1) = argminq
v(K)−v(q)

K−q
such that the buyer’s preference changes from q′ =

q(K
′−1) to q(K

′) = K units across the line p2 = v(K)−v(q′)
K−q′

. To prove ϱv is convex, we use the
inductive hypothesis on ϱ′v and observe that ρ1 = v(K)− p2K coincides with ρ′1 = v(q′)− p2q

′

for p2 = v(K)−v(q′)
K−q′

. Also the only side of ϱv that is not present in ϱ′v lies along the line
p1 + p2K = v(K), thus ϱv has at most K + 2 sides. The subdivison property is also readily
verified given the construction of ϱv from ϱ′v and ϱ

(K′)
v .

Based on this structure, we propose Algorithm 18 which runs in in O(mK log(mK)+RΣ) time.

Theorem 9.3.6. There is an algorithm (Algorithm 18) that, given valuation functions vi(·) for
i ∈ [m], computes all the R pieces of the total dual class function U⟨v1,...,vm⟩(·) for K units of the
good from the m samples in O(mK log(mK) +RΣ) time.

Proof. Note that if 0 < q < q′ and vi(q) > vi(q
′), then for any ρ1 ≥ 0, ρ2 ≥ 0 we have that

ui(q) = vi(q)− (p1+ p2q) > vi(q
′)− (p1+ p2q), or the buyer will never prefer quantity q′ of the

item over the entire tariff domain. Thus, we will assume the valuations vi(q) are monotonic in q
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(we can simply ignore valuations at the larger value for any violation). Algorithm 18 exploits the
structure in Lemma 9.3.5 and computes the O(K) line segments bounding the dual class pieces
for a single buyer i in O(K) time. Across m buyers, we have O(mK) line segments (com-
puted in O(mK) time). The topological plane-sweep based algorithm of [56] now computes all
the intersection points in O(mK(logmK) + RΣ) time. Here we have used that the number of
polytopic vertices is O(RΣ) using standard result for planar graphs.

We further show that this bound is essentially optimal. A runtime lower bound of Ω(mK +RΣ)
follows simply due to the amount of time needed for reading the complete input and producing
the complete output. We prove a stronger lower bound which matches the above upper bound
by reduction to the element uniqueness problem (given a list of n numbers, are there any dupli-
cates?) for which an Ω(n log n) lower bound is known in the algebraic decision-tree model of
computation.

Theorem 9.3.7. Given a list of n numbers L = ⟨x1, . . . , xn⟩ ∈ N n, there is a linear time reduc-
tion to a m-buyer, K-item TPT pricing given by vi(·), i ∈ [m], with mK = Θ(n), such that the
pieces of the total dual class function U⟨v1,...,vm⟩(·) can be used to solve the element uniqueness
problem for L in O(n) time.

Proof. Let mK = n be any factorization of n into two factors. We construct a m-buyer, K + 1
item single TPT pricing scheme as follows. Define yj = xj +maxk xk + 1 for each xj in the list
L. For every buyer i ∈ [m], we set vi(1) = maxk xk+1 and vi(q+1) =

∑q
j=1 yj+(i−1)K for each

q ∈ [K]. Buyer i’s pieces include the segments p2 = (vi(q+1)− vi(q))/(q+1−1) = xq+(i−1)K

for q ∈ [K] (Lemma 9.3.5). Thus, across all buyers i ∈ [m], we have mK = n segments along
the lines p2 = xj for j ∈ [n]. We say a duplicate is present if there are fewer than mK segments
parallel to the p1-axis in the pieces of the total dual class function, otherwise we say ‘No’ (i.e.
all elements are distinct). This completes the linear-time reduction.

9.3.3 Item-Pricing with anonymous prices

We will consider a market with a single seller, interested in designing a mechanism to sell m dis-
tinct items to n buyers. We represent a bundle of items by a quantity vector q ∈ Zm

≥0, such that the
number of units of the ith item in the bundle denoted by q is given by its ith component q[i]. In
particular, the bundle consisting of a single copy of item i is denoted by the standard basis vector
ei, where ei[j] = I{i = j}, where I{·} is the 0-1 valued indicator function. Each buyer j ∈ [n]
has a valuation function vj : Zm

≥0 → R≥0 over bundles of items. We denote an allocation as
Q = (q1, . . . , qn) where qj is the bundle of items that buyer j receives under allocation Q. Under
anonymous prices, the seller sets a price pi per item i. There is some fixed but arbitrary ordering
on the buyers such that the first buyer in the ordering arrives first and buys the bundle of items that
maximizes their utility, then the next buyer in the ordering arrives, and so on. For a given buyer j
and bundle pair q1, q2 ∈ {0, 1}m, buyer j will prefer bundle q1 over bundle q2 so long as uj(q1) >
uj(q2) where uj(q) = vj(q)−

∑
i:q[i]=1 pi. Therefore, for a fixed set of buyer values and for each

buyer j, their preference ordering over the bundles is completely determined by the
(
2m

2

)
hyper-

planes. The dual class functions are known to be piecewise linear with linear boundaries [17].
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To implement Algorithm 15 for this problem we specify how to compute the locally relevant
hyperplanes. For any price vector x = (p1, . . . , pm), say the buyers buy bundles (q1, . . . , qn).
For a fixed price vector this can be done in time O(n2m) by computing argmaxq⊆Ij

uj(q) for
each buyer at that price vector, where Ij denotes the remaining items after allocations to buyers
1, . . . , j − 1 at that price. Then for each buyer we have at most 2m − 1 potential alternative
bundles given by hyperplanes uj(q) ≥ uj(q

′), q′ ̸= qi, for a total of tLRS ≤ n(2m − 1) locally
relevant hyperplanes. Thus TCLRS = O(n2m) for the above approach, and Theorem 9.2.2 implies
the following runtime bound.

Theorem 9.3.8. There exists an implementation of COMPUTELOCALLYRELEVANTSEPARA-
TORS in Algorithm 15, which given valuation functions vi(·) for i ∈ [n], computes all the R
pieces of the dual class function in time Õ(R2(2m)mn), where there are m items and n buyers.

Proof. In the terminology of Theorem 9.2.2, we have d = m, E ≤ R2, V = R, TCLRS =
O(n2m), tLRS = n(2m − 1). By [53], we have

∑
c∈VH

LP(d, |Ic| + 1) ≤ O(Edd) ≤ O(R2mm).
Thus, Theorem 9.2.2 implies a runtime bound on Algorithm 15 of Õ(dE + V TCLRS + tLRS ·∑

c∈VH
LP(d, |Ic|+ 1)) = Õ(R2(2m)mn).

Our approach yields an efficient algorithm when the number of items m and the number of dual
class function pieces R are small. Prior work on item-pricing with anonymous prices has only
focussed on sample complexity of the data-driven design problem [17].

9.4 Linkage-based clustering
Clustering data into groups of similar points is a fundamental tool in data analysis and unsuper-
vised machine learning. A variety of clustering algorithms have been introduced and studied but
it is not clear which algorithms will work best on specific tasks. Also the quality of clustering
is heavily dependent on the distance metric used to compare data points. Interpolating multiple
metrics and clustering heuristics can result in significantly better clustering [18].
Problem setup. Let X be the data domain. A clustering instance from the domain consists of a
point set S = {x1, . . . , xn} ⊆ X and an (unknown) target clustering C = (C1, . . . , Ck), where
the sets C1, . . . , Ck partition S into k clusters. Linkage-based clustering algorithms output a hier-
archical clustering of the input data, represented by a cluster tree. We measure the agreement of
a cluster tree T with the target clustering C in terms of the Hamming distance between C and the
closest pruning of T that partitions it into k clusters (i.e., k disjoint subtrees that contain all the
leaves of T ). More formally, the loss ℓ(T, C) = minP1,...,Pk

minσ∈Sn

1
|S|
∑k

i=1 |Ci \ Pσi
|, where

the first minimum is over all prunings P1, . . . , Pk of the cluster tree T into k subtrees, and the
second minimum is over all permutations of the k cluster indices.

A merge function D defines the distance between a pair of clusters Ci, Cj ⊆ X in terms of
the pairwise point distances given by a metric d. Cluster pairs with smallest values of the merge
function are merged first. For example, single linkage uses the merge function Dsgl(Ci, Cj; d) =
mina∈Ci,b∈Cj

d(a, b) and complete linkage uses Dcmpl(Ci, Cj; d) = maxa∈Ci,b∈Cj
d(a, b). Instead

of using extreme points to measure the distance between pairs of clusters, one may also use
more central points, e.g. we define median linkage as Dmed(Ci, Cj; d) = median({d(a, b) |
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a ∈ Ci, b ∈ Cj}), where median(·) is the usual statistical median of an ordered set S ⊂ R3.
Single, median and complete linkage are 2-point-based, i.e. the merge function D(A,B; d) only
depends on the distance d(a, b) for two points (a, b) ∈ A×B.
Parameterized algorithm families. Let ∆ = {D1, . . . , Dl} denote a finite family of merge func-
tions (measure distances between clusters) and δ = {d1, . . . , dm} be a finite collection of distance
metrics (measure distances between points). We define a parameterized family of linkage-based
clustering algorithms that allows us to learn both the merge function and the distance metric. It
is given by the interpolated merge function D∆

α (A,B; δ) =
∑

Di∈∆,dj∈δ αi,jDi(A,B; dj), where
α = {αi,j | i ∈ [l], j ∈ [m], αi,j ≥ 0}. In order to ensure linear boundary functions for the
dual class function, our interpolated merge function D∆

α (A,B; δ) takes all pairs of distance met-
rics and linkage procedures. Due to invariance under constant multiplicative factors, we can set∑

i,j αi,j = 1 and obtain a set of parameters which allows α to be parameterized by d = lm− 1

values4. Define the parameter space P = ▲d =
{
ρ ∈

(
R≥0

)d |∑i ρi ≤ 1
}

; for any ρ ∈ P

we get α(ρ) ∈ Rd+1 as α
(ρ)
i = ρi for i ∈ [d], α(ρ)

d+1 = 1 −
∑

i∈[d] ρi. We focus on learning the
optimal ρ ∈ P for a single instance (S,Y). With slight abuse of notation we will sometimes
use D∆

ρ (A,B; δ) to denote the interpolated merge function D∆
α(ρ)(A,B; δ). As a special case we

have the family D∆
ρ (A,B; d0) that interpolates merge functions (from set ∆) for different link-

age procedures but the same distance metric d0. Another interesting family only interpolates the
distance metrics, i.e. use a distance metric dρ(a, b) =

∑
dj∈δ α

(ρ)
j dj(a, b) and use a fixed linkage

procedure. We denote this by D1
ρ(A,B; δ).

Overview of techniques. First, we show that for a fixed clustering instance S ∈ Π, the dual class
function uS(·) is piecewise constant with a bounded number of pieces and linear boundaries. We
only state the result for the interpolation of merge functions D∆

ρ (A,B; d0) below for ∆ a set of
2-point-based merge functions.

Lemma 9.4.1. Let ∆ be a finite set of 2-point-based merge functions. Let T S
ρ denote the cluster

tree computed using the parameterized merge function D∆
ρ (A,B; d0) on sample S. Let U be the

set of functions {uρ : S 7→ ℓ(T S
ρ , C) | ρ ∈ Rd} that map a clustering instance S to R. The

dual class U∗ is (F , |S|4d+4)-piecewise decomposable, where F consists of constant functions
fc : uρ 7→ c.

We will extend the execution tree approach introduced by [18] which computes the pieces (inter-
vals) of single-parameter linkage-based clustering. Informally, for a single parameter, the exe-
cution tree is defined as the partition tree where each node represents an interval where the first t
merges are identical, and edges correspond to the subset relationship between intervals obtained
by refinement from a single merge. The execution, i.e. the sequence of merges, is unique along
any path of this tree. The same properties, i.e. refinement of the partition with each merge and
correspondence to the algorithm’s execution, continue to hold in the multidimensional case, but

3median(S) is the smallest element of S such that S has at most half its elements less than
median(S) and at most half its elements more than median(S). For comparison, the more well-
known average linkage is Davg(Ci, Cj ; d) = mean({d(a, b) | a ∈ Ci, b ∈ Cj}). We may also use
geometric medians of clusters. For example, we can define mediod linkage as Dgeomed(Ci, Cj ; d) =
d(argmina∈Ci

∑
a′∈Ci

d(a, a′), argminb∈Cj

∑
b′∈Cj

d(b, b′)).
4In contrast, the parametric family in [18] has l +m− 2 parameters but it does not satisfy Definition 14.
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with convex polytopes instead of intervals. Computing the children of any node of the execution
tree corresponds to computing the subdivision of a convex polytope into polytopic cells where the
next merge step is fixed. The children of any node of the execution tree can be computed using
Algorithm 15. We compute the cells by following the neighbors, keeping track of the cluster pairs
merged for the computed cells to avoid recomputation. For any single cell, we find the bounding
polytope along with cluster pairs corresponding to neighboring cells by computing the tight con-
straints in a system of linear inequalities. Theorem 9.2.2 gives the runtime complexity of the pro-
posed algorithm for computing the children of any node of the execution tree. It only remains to
specify COMPUTELOCALLYRELEVANTSEPARATORS. For a given x = ρ we find the next merge
candidate in time O(dn2) by computing the merge function D∆

ρ (A,B; δ) for all pairs of candi-
date (unmerged) clusters A,B. If (A∗, B∗) minimizes the merge function, the locally relevant
hyperplanes are given by D∆

ρ (A
∗, B∗; δ) ≤ D∆

ρ (A
′, B′; δ) for (A′, B′) ̸= (A∗, B∗) i.e. tLRS ≤ n2.

Using Theorem 9.2.2, we give the following bound for the overall runtime of the algorithm.

Theorem 9.4.2. Let S be a clustering instance with |S| = n, and let Ri = |Pi| and R = Rn.
Furthermore, let Ht = |{(Q1,Q2) ∈ P2

t | Q1 ∩Q2 ̸= ∅}| denote the total number of adjacen-
cies between any two pieces of Pi and H = Hn. Then, the leaves of the execution tree on S can
be computed in time Õ (

∑n
i=1 (Hi +RiTM) (n− i+ 1)2), where TM is the time to compute the

merge function.

Proof. Let T be the execution tree with respect to S, and let Tt denote the vertices of T at depth
t. From Theorem 9.2.2, for each node v = (M,Q) ∈ T with depth t, we can compute the
children of v in time O(n2

t · LP(d,Ev) + Vv · n2
tK), where Vv is the number of children of v, and

Ev =

∣∣∣∣∣∣





(Q1,Q2) ∈ P2
t+1 | Q1 ∩Q2 ̸= ∅ and

u1 = (M1,Q1), u2 = (M2,Q2)
for some children u1, u2 of v





∣∣∣∣∣∣
.

Now, observe
∑

v∈Tt+1

Ev ≤ Ht+1

since Ht+1 counts all adjacent pieces Q1,Q2 in Pt+1; each pair is counted at most once by some
Ev. Similarly, we have

∑
v∈Tt+1

Vv ≤ Rt+1, since Rt+1 counts the total size of Pt+1. Note that
nt+1 = (n − t), since t merges have been executed by time t + 1, so ni = n − i + 1. Seidel’s
algorithm is a randomized algorithm that may be used for efficiently solving linear programs in
low dimensions, the expected running time for solving an LP in d variables and m constraints
is O(d! · Ev) (also holds with high probability, e.g. Corollary 2.1 of [150]). There are also
deterministic algorithms with the same (in fact slightly better) worst-case runtime bounds [53].
Therefore, we can set LP(d,Ev) = O(d! · Ev). So that the total cost of computing Pi is

O

(
n∑

i=1

∑

v∈Ti

d! · Ev(n− i+ 1)2 + VvK(n− i+ 1)2

)
, or,

O

(
n∑

i=1

(d! ·Hi +RiK) (n− i+ 1)2

)
,
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as desired.

In the case of single, median, and complete linkage, we may assume TM = O(d) by carefully
maintaining a hashtable containing distances between every pair of clusters. Each merge requires
overhead at most O(n2

t ), nt = n− t being the number of unmerged clusters at the node at depth
t, which is absorbed by the cost of solving the LP corresponding to the cell of the merge. We
have the following corollary which states that our algorithm is output-linear for d = 2.

Corollary 9.4.3. For d = 2 the leaves of the execution tree of any clustering instance S with
|S| = n can be computed in time O(RTMn3).

Proof of Corollary 9.4.3. The key observation is that on any iteration i, the number of adjacen-
cies Hi = O(Ri). This is because for any region P ∈ Pi, P is a polygon divided into convex sub-
polygons, and the graph GP has vertices which are faces and edges which cross between faces.
Since the subdivision of P can be embedded in the plane, so can the graph GP . Thus GP is planar,
meaning Hi = O(Ri). Plugging into Theorem 9.4.2, noting that (n− i+1)2 ≤ n2, Hi ≤ H , and
Ri ≤ R, we obtain the desired runtime bound of O (

∑n
i=1(R +RTM)n2) = O(RTMn3).

Above results yield bounds on TS , the enumeration time for dual function of the pieces in a single
problem instance. Theorem 9.2.4 further implies bounds on the runtime of ERM.

9.4.1 Comparing the quality of single, complete and median linkage pro-
cedures on different data distributions

We will construct clutering instances where each of two-point based linkage procedures, i.e. sin-
gle, complete and median linkage, dominates the other two procedures. Let T S

sgl, T
S
cmpl and T S

med
denote the cluster tree on clustering instance S using Dsgl, Dcmpl and Dmed as the merge func-
tion (defined in Section 9.4) respectively for some distance metric d which will be evident from
context. We have the following theorem.

Theorem 9.4.4. For any n ≥ 10, for i ∈ {1, 2, 3}, there exist clustering instances Si with
|Si| = n and target clusterings Ci such that the hamming loss of the optimal pruning of the
cluster trees constructed using single, complete and median linkage procedures (using the same
distance metric d) satisfy

(i) ℓ(T S1
sgl , C1) = O( 1

n
), ℓ(T S1

cmpl, C1) = Ω(1) and ℓ(T S1
med, C1) = Ω(1),

(ii) ℓ(T S2
cmpl, C2) = O( 1

n
), ℓ(T S2

sgl , C2) = Ω(1) and ℓ(T S2
med, C2) = Ω(1),

(iii) ℓ(T S3
med, C3) = O( 1

n
), ℓ(T S3

cmpl, C3) = Ω(1) and ℓ(T S3
sgl , C3) = Ω(1).

Proof. In the following constructions we will have Si ⊂ R2 and the distance metric d will be the
Euclidean metric. Also we will have number of target clusters k = 2.

Construction of S1, C1. For S1, we will specify the points using their polar coordinates. We
place a single point x at the origin (0, ϕ) and n−1

8
points each along the unit circle at locations

y1 = (1, 0), y2 = (1, π
4
− ϵ), y3 = (1, π

2
), y4 = (1, 3π

4
− ϵ), y5 = (1, π), y6 = (1, 5π

4
− ϵ), y7 =

(1, 3π
2
) and y8 = (1, 7π

4
− ϵ), where ϵ = 0.001. Also set C1 = {{x}, S1 \ {x}}.
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Figure 9.1: Construction of clustering instances showing the need for interpolating linkage
heuristics. We give concrete instances and target clusterings where each of two-point based
linkage procedures, i.e. single, complete and median linkage, dominates the other two.

In each linkage procedure, the first n − 9 merges will join coincident points at locations
yj, j ∈ [8], let ỹj denote the corresponding sets of merged points. The next four merges will be
zj := {ỹj, ỹj+1} for j ∈ {1, 3, 5, 7} for each procedure since d(yj, yj+1) =

√
2− 2 cos(π

4
− ϵ) <

min{
√
2− 2 cos(π

4
+ ϵ), 1}, again common across all procedures. Now single linkage will con-

tinue to merge clusters on the unit circle since
√
2− 2 cos(π

4
+ ϵ) < 1, however both complete

and median linkage will join each of zj, j ∈ {1, 3, 5, 7} to the singleton cluster {x} since the
median (and therefore also the maximum distance between points in zj, zj′ , j ̸= j′ is at least√
2 > 1. Therefore a 2-pruning5 of T S1

sgl yields C1 i.e ℓ(T S1
sgl , C1) = 0, while a 2-pruning of T S1

cmpl

or T S1
med would yield {zj, S1 \ zj} for some j ∈ {1, 3, 5, 7}, corresponding to a hamming loss of

1
4
+ Ω( 1

n
) = Ω(1).

Construction of S2, C2. For S2, we will specify the points using their Cartesian coordinates.
We place single points x1, x2 at (0, 0) and (3.2, 0.5) and n−2

2
points each at y1 = (1.1, 1.8) and

y2 = (1.8, 0.5). We set C2 = {{(x, y) ∈ S2 | y > 1}, {(x, y) ∈ S2 | y ≤ 1}}. The distances
between pairs of points may be ordered as

d(x2, y2) = 1.4 < d(y1, y2) ≈ 1.5 < d(x1, y2) ≈ 1.9 < d(x1, y1) ≈ 2.1 < d(x2, y1) ≈ 2.5

< d(x1, x2)

All linkage procedures will merge the coincident points at y1 and y2 (respectively) for the
first n− 4 merges. Denote the corresponding clusters by ỹ1 and ỹ2 respectively. The next merge
will be z2 := {x2, ỹ2} in all cases. Now single linkage will join z2 with ỹ1. Further, since
n ≥ 10, n−2

2
≥ 4 and therefore the median distance between z2 and ỹ1 is also d(y1, y2). How-

ever, since d(x1, y1) < d(x2, y1), the complete linkage procedure will merge {x1, z2}. Finally,
the two remaining clusters are merged in each of the two procedures. Clearly, 2-pruning of T S2

cmpl

yields C2 or ℓ(T S2
cmpl, C2) = 0. However, ℓ(T S2

sgl , C2) = ℓ(T S2
med, C2) = 1

2
−O( 1

n
) = Ω(1).

5A k0-pruning for a tree T is a partition of the points contained in T ’s root into k0 clusters such that each cluster
is an internal node of T .
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Figure 9.2: The first three levels of an example execution tree of a clustering instance on four
points, with a two-parameter algorithm (P = ▲2). Successive partitions P0, P1, P2 are shown at
merge levels 0, 1, and 2, respectively, and the nested shapes show cluster merges.

Construction of S3, C3. We specify the points in S3 using their Cartesian coordinates. We
place n−1

6
points each at x1 = (0, 0), x′

2 = (0, 1 + 2ϵ), n−1
12

points each at x′
1 = (0, ϵ), x2 =

(0, 1 + ϵ), n−1
4

points each at y1 = (1+ 0.9ϵ, ϵ), y2 = (1+ ϵ, 1 + 1.9ϵ), and one point z1 = (0, 2)
with ϵ = 0.3. With some abuse of notation we will use the coordinate variables defined above
to also denote the collection of points at their respective locations. We set C3 = {{(x, y) ∈ S2 |
x ≤ 0}, {(x, y) ∈ S2 | x > 0}}.

After merging the coincident points, all procedures will merge clusters x̃1 := {x1, x
′
1} and

x̃2 := {x2, x
′
2, z1}. Let us now consider the single linkage merge function. We have that

Dsgl(x̃1, x̃2; d) = 1 and all other cluster pairs are further apart. The next merge is therefore
x̃ := {x̃1, x̃2}. Also, Dsgl(x̃, y1; d) = 1 + 0.9ϵ < min{Dsgl(x̃, y2; d), Dsgl(y1, y2; d)} leading to
the merge {x̃, y1}, and finally y2 is merged in. A 2-pruning therefore has loss ℓ(T S3

sgl , C3) = Ω(1).
On the other hand, Dmed(x̃1, x̃2; d) = 1 + ϵ > Dmed(y1, y2; d) =

√
(1 + 0.9ϵ)2 + 0.01ϵ2 and

Dmed(x̃1, y1; d) =
√
(1 + 0.9ϵ)2 + ϵ2 > {Dmed(y1, y2; d), Dmed(x̃1, x̃2; d)}. As a result, median

linkage would first merge {y1, y2}, followed by {x̃1, x̃2}, and 2-pruning yields C3. Complete
linkage also merges {y1, y2} first. But Dcmpl(x̃1, x̃2; d) = 2 > Dcmpl(x̃1, {y1, y2}; d). Thus,
ℓ(T S3

cmpl, C3) = Ω(1).

9.4.2 Piecewise dual structure
Definition 32 (2-point-based merge function [18]). A merge function D is 2-point-based if for
any pair of clusters A,B ⊆ X and any metric d, there exists a set of points (a, b) ∈ A×B such
that D(A,B; d) = d(a, b). Furthermore, the selection of a and b only depend on the relative
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ordering of the distances between points in A and B. More formally, for any metrics d and d′

such that d(a, b) ≤ d(a′, b′) if and only if d′(a, b) ≤ d′(a′, b′), then D(A,B; d) = d(a, b) implies
D(A,B; d′) = d′(a, b).

For instance, single, median and complete linkage are 2-point-based, since the merge function
D(A,B; d) only depends on the distance d(a, b) for some a ∈ A, b ∈ B. We have the fol-
lowing observation about our parameterized algorithm families D∆

ρ (A,B; δ) when ∆ consists
of 2-point-based merge functions which essentially establishes piecewise structure with linear
boundaries (in the sense of Definition 14).

Lemma 9.4.5. Suppose S ∈ Π is a clustering instance, ∆ is a set of 2-point-based merge func-
tions with |∆| = l, and δ is a set of distance metrics with |δ| = m. Consider the family of
clustering algorithms with the parameterized merge function D∆

ρ (A,B; δ). The corresponding
dual class function uS(·) is piecewise constant with O(|S|4lm) linear boundaries.

Proof. Let (aij, bij, a′ij, b
′
ij)1≤i≤l,1≤j≤m ⊆ S be sequences of lm points each; for each such a, let

ga : P → R denote the function

ga(ρ) =
∑

i∈[l],dj∈δ
αi,j(ρ)(dj(aij, bij)− dj(a

′
ij, b

′
ij))

and let G = {ga | (aij, bij, a′ij, b′ij)1≤i≤l,1≤j≤m ⊆ S} be the collection of all such linear functions;
notice that |G| = O(|S|4lm). Fix ρ, ρ′ ∈ P with g(ρ) and g(ρ′) having the same sign patterns for
all such g. For each A,B,A′, B′ ⊆ S, Di ∈ ∆, and dj ∈ δ, we have Di(A,B; dj) = dj(a, b) and
Di(A

′, B′; dj) = dj(a
′, b′) for some a, b, a′, b′ ∈ S (since Di is 2-point-based). Thus we can write

Dρ(A,B; δ) =
∑

i∈[m],dj∈δ αi,j(ρ)dj(aij, bij) for some aij, bij ∈ S; similarly, Dρ(A
′, B′; δ) =∑

i∈[m],dj∈δ αi,j(ρ)dj(a
′
ij, b

′
ij) for some a′ij, b

′
ij ∈ S. As a result, Dρ(A,B; δ) ≤ Dρ(A

′, B′; δ) if
and only if ∑

i∈[l],dj∈δ
αi,j(ρ)

(
dj(aij, bij)− dj(a

′
ij, b

′
ij)
)
≤ 0

which is exactly when ga(ρ) ≤ 0 for some sequence a. Since ga(ρ) and ga(ρ
′) have the same

sign pattern, we have Dρ(A,B; δ) ≤ Dρ(A
′, B′; δ) if and only if Dρ′(A,B; δ) ≤ Dρ′(A

′, B′; δ).
So ρ and ρ′ induce the same sequence of merges, meaning the algorithm’s output is constant on
each piece induced by g, as desired.

From Lemma 9.4.5, we obtain a bound on the number of hyperplanes needed to divide P into
output-constant pieces. Let H be a set of hyperplanes which splits P into output-constant pieces;
then, a naive approach to finding a dual-minimizing ρ ∈ P is to enumerate all pieces generated
by H , requiring O(|H|d) runtime. However, by constructing regions merge-by-merge and suc-
cessively refining the parameter space, we can obtain a better runtime bound which is output-
sensitive in the total number of pieces.

Proof of Lemma 9.4.1. This is a simple corollary of Lemma 9.4.5 for m = 1. In this case, we
have l = d+ 1.
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Lemma 9.4.6. Consider the family of clustering algorithms with the parameterized merge func-
tion D1

ρ(A,B; δ). Let T S
ρ denote the cluster tree computed using the parameterized merge func-

tion D∆
ρ (A,B; d0) on sample S. Let U be the set of functions {uρ : S 7→ ℓ(T S

ρ , C) | ρ ∈ Rd}
that map a clustering instance S to R. The dual class U∗ is (F , |S|4)-piecewise decomposable,
where F = {fc : U → R | c ∈ R} consists of constant functions fc : uρ 7→ c.

The key observation for the proof comes from [18] where it is observed that two parameterized
distance metrics dρ1 , dρ2 behave identically (yield the same cluster tree) on a given dataset S if
the relative distance for all pairs of two points (a, b), (a′, b′) ∈ S2 × S2, dρ(a, b) − dρ(a

′, b′),
has the same sign for ρ1, ρ2. This corresponds to a partition of the parameter space with |S|4
hyperplanes, with all distance metrics behaving identically in each piece of the partition. More
formally, we have

Proof of Lemma 9.4.6. Let S be any clustering instance. Fix points a, b, a′, b′ ∈ S. Define the
linear function ga,b,a′,b′(ρ) =

∑
i ρi(di(a, b) − di(a

′, b′)). If dρ(·, ·) denotes the interpolated dis-
tance metric, we have that dρ(a, b) ≤ dρ(a

′, b′) if and only if ga,b,a′,b′(ρ) ≤ 0. Therefore we have a
set H = {ga,b,a′,b′(ρ) ≤ 0 | a, b, a′, b′ ∈ S} of |S|4 hyperplanes such that in any piece of the sign-
pattern partition of the parameter space by the hyperplanes, the interpolated distance metric be-
haves identically, i.e. for any ρ, ρ′ in the same piece dρ(a, b) ≤ dρ(a

′, b′) iff dρ′(a, b) ≤ dρ′(a
′, b′).

The resulting clustering is therefore identical in these pieces. This means that for any connected
component R of Rd \H , there exists a real value cR such that uρ(s1, s2) = cR for all ρ ∈ Rd. By
definition of the dual, u∗

s1,s2
(uρ) = uρ(s1, s2) = cR. For each hyperplane h ∈ H , let g(h) ∈ G

denote the corresponding halfspace. Order these k = |S|4 functions arbitrarily as g1, . . . , gk. For
a given connected component R of Rd \H , let bR ∈ {0, 1}k be the corresponding sign pattern.
Define the function f (bR) = fcR and for b not corresponding to any R, f (b) = f0. Thus, for each
ρ ∈ Rd,

u∗
s1,s2

(uρ) =
∑

b∈{0,1}k
I{gi(uρ) = bi∀i ∈ [k]}f (b)(uρ).

Corollary 9.4.7. For any clustering instance S ∈ Π, the dual class function uS(·) for the family
in Lemma 9.4.6 is piecewise constant with O

(
|S|4d

)
pieces.

Lemma 9.4.8. Let S ∈ Π be a clustering instance, ∆ be a set of merge functions, and δ be a
set of distance metrics. Then, the corresponding dual class function uS(·) is piecewise constant
with O(16|S|) linear boundaries of pieces.

Proof. For each subset of points A,B,A′, B′ ⊆ S, let gA,B,A′,B′ : P → R denote the function

gA,B,A′,B′(ρ) = Dρ(A,B; δ)−Dρ(A
′, B′; δ)

and let G be the collection of all such functions for distinct subsets A,B,A′, B′. Observe that G is
a class of linear functions with |G| ≤

(
2|S|
)4

= 16|S|. Suppose that for ρ, ρ′ ∈ P , g(ρ) and g(ρ′)
have the same sign for all g ∈ G; then, the ordering over all cluster pairs A,B of Dρ(A,B; δ)
is the same as that of Dρ′(A,B; δ). At each stage of the algorithm, the cluster pair A,B ⊆ S
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minimizing Dρ(A,B; δ) is the same as that which minimizes Dρ′(A,B; δ), so the sequences of
merges produced by ρ and ρ′ are the same. Thus the algorithm’s output is constant on the region
induced by gA,B,A′,B′ , meaning uS(·) is piecewise constant on the regions induced by G, which
have linear boundaries.

9.4.3 Execution Tree
Formally we define an execution tree (Figure 9.2) as follows.

Definition 33 (Execution tree). Let S be a clustering instance with |S| = n, and ∅ ≠ P ⊆ [0, 1]d.
The execution tree on S with respect to P is a depth-n rooted tree T , whose nodes are defined
recursively as follows: r = ([],P) is the root, where [] denotes the empty sequence; then, for any
node v = ([u1, u2, . . . , ut],Q) ∈ T with t < n− 1, the children of v are defined as

children(v) =

{(
[u1, . . . , ut, (A,B)],QA,B

)
:
A,B ⊆ S is the (t+ 1)st merge by
Aρ for exactly the ρ ∈ QA,B ⊆ P ,

with ∅ ≠ QA,B ⊆ Q

}
.

For an execution tree T with v ∈ T and each i with 0 ≤ i ≤ n, we let Pi denote the set of Q
such that there exists a depth-i node v ∈ T and a sequence of mergesM with v = (M,Q). Intu-
itively, the execution tree represents all possible execution paths (i.e. sequences for the merges)
for the algorithm family when run on the instance S as we vary the algorithm parameter ρ ∈ P .
Furthermore, each Pi is a subdivision of the parameter space into pieces where each piece has the
first i merges constant. We establish the execution tree captures all possible sequences of merges
by some algorithm Aρ in the parameterized family via its nodes, and each node corresponds to a
convex polytope if the parameter space P is a convex polytope (Lemmata 9.4.9 and 9.4.10).

Our cell enumeration algorithm for computing all the pieces of the dual class function now
simply computes the execution tree, using Algorithm 15 to compute the children nodes for any
given node, starting with the root.

Lemma 9.4.9. Let S be a clustering instance and T be its execution tree with respect to P . Then,
if a sequence of mergesM = [u1, u2, . . . , ut] is attained byAρ for some ρ ∈ P , then there exists
some v ∈ T at depth t with v = (M,Q) and with Q ⊆ P being the exact set of values of ρ for
which Aρ may attainM. Conversely, for every node v = (M,Q) ∈ T ,M is a valid sequence
of merges attainable by Aρ for some ρ ∈ P .

Proof. We proceed by induction on t. For t = 0, the only possible sequence of merges is the
empty sequence, which is obtained for all ρ ∈ P . Furthermore, the only node in T at depth 0 is
the root ([],P), and the set P is exactly where an empty sequence of merges occurs.

Now, suppose the claim holds for some t ≥ 0. We show both directions in the induction step.
For the forward direction, letMt+1 = [u1, u2, . . . , ut, ut+1], and supposeMt+1 is attained

by Aρ for some ρ ∈ P . This means that Mt = [u1, u2, . . . , ut] is attained by Aρ as well; by
the induction hypothesis, there exists some node vt = (Mt,Qt) ∈ T at depth t, where ρ ∈ Qt

and Qt is exactly the set of values for which A may attain Mt. Now, ut+1 is a possible next
merge by Aρ for some ρ ∈ Qt; by definition of the execution tree, this means vt has some child
vt+1 = (Mt+1,Qt+1) in T such thatQt+1 is the set of values where ut+1 is the next merge inQt.
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Moreover, Qt+1 is exactly the set of values ρ ∈ P for which Aρ can attain the merge sequence
Mt+1. In other words for any ρ′ ∈ P \Qt+1, Aρ′ cannot attain the merge sequenceMt+1. Other-
wise, either some ρ′ ∈ P\Qt attainsMt+1, meaning Aρ′ attainsMt (contradicting the induction
hypothesis), or Aρ′ attainsMt+1 for some ρ′ ∈ Qt+1 \ Qt, contradicting the definition of Qt+1.

For the backward direction, let vt+1 = (Mt+1,Qt+1) ∈ T at depth t + 1. Since vt+1 is not
the root, vt+1 must be the child of some node vt, which has depth t. By the induction hypothe-
sis, vt = (Mt,Qt), where Mt = [u1, u2, . . . , ut] is attained by Aρ for some ρ ∈ P . Thus by
definition of the execution tree,Mt+1 has the form [u1, u2, . . . , ut, (A,B)], for some merging of
cluster pairs (A,B) which is realizable for ρ ∈ Qt. ThusMt+1 is a valid sequence of merges
attainable by Aρ for some ρ ∈ P .

Lemma 9.4.10. Let S be a clustering instance and T be its execution tree with respect to P .
Suppose P is a convex polytope; then, for each v = (M,Q) ∈ T , Q is a convex polytope.

Proof. We proceed by induction on the tree depth t. For t = 0, the only node is ([],P), and P
is a convex polytope. Now, consider a node v ∈ T at depth t + 1; by definition of the execution
tree, v = (Mv,Qv) is the child of some node u ∈ T , where the depth of u is t. Inductively,
we know that w = (Mw,Qw), for some convex polytope Qw. We also knowMw has the form
Mw = [u1, u2, . . . , ut], and thus Qv is defined to be the set of points ρ ∈ Qw where the merge
sequence Mv = [u1, u2, . . . , ut, (A,B)] is attainable for some fixed A,B ⊆ S. Notice that
the definition of being attainable by the algorithm Aρ is that Dρ(A,B; δ) is minimized over all
choices of next cluster pairs A′, B′ to merge. That is, Qv is the set of points

{ρ∈Qw | Dρ(A,B; δ) ≤ Dρ(A
′, B′; δ) for all available cluster pairs A′, B′ afterMw}

Since Dρ(A,B; δ) is an affine function of ρ, the constraint Dρ(A,B; δ) ≤ Dρ(A
′, B′; δ) is a

half-space. In other words, Qv is the intersection of a convex polytope Qw with finitely many
half space constraints, meaning Qv is itself a convex polytope.

It follows from Lemma 9.4.10 that Pi forms a convex subdivision of P , where each Pi+1 is a
refinement of Pi; Figure 9.2 (in the appendix) shows an example execution tree corresponding
to a partition of a 2-dimensional parameter space. From Lemma 9.4.9, the sequence of the first
i merges stays constant on each region P ∈ Pi. Our algorithm computes a representation of the
execution tree of an instance S with respect to P; to do so, it suffices to provide a procedure to
list the children of a node in the execution tree. Then, a simple breadth-first search from the root
will enumerate all the leaves in the execution tree.

Now, our goal is to subdivide P into regions in which the (j + 1)st merge is constant. Each
region corresponds to a cluster pair being merged at step j +1. Since we know these regions are
always convex polytopes (Lemma 9.4.10), we can provide an efficient algorithm for enumerating
these regions.

Our algorithm provides an output-sensitive guarantee by ignoring the cluster pairs which are
never merged. Supposing there are nt unmerged clusters, we start with some point x ∈ P and
determine which piece W it is in. Then, we search for more non-empty pieces contained in P
by listing the “neighbors” of W . The neighbors of W are pieces inside P that are adjacent to W ;
to this end, we will more formally define a graph GP associated with P where each vertex is a
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piece and two vertices have an edge when the pieces are adjacent in space. Then we show that
we can enumerate neighbors of a vertex efficiently and establish that GP is connected. It follows
that listing the pieces is simply a matter of running a graph search algorithm from one vertex of
GP , thus only incurring a cost for each non-empty piece rather than enumerating through all n4

t

pairs of pieces.

9.4.4 Auxiliary lemmas and proofs of runtime bounds
Lemma 9.4.11. Fix an affine function f : R→ Rd via f(x) = xa+ b, for a, b ∈ Rd and a ̸= 0d.
For a subset S ⊆ R, if f(S) is convex and closed, then S is also convex and closed.

Proof. First note that f is injective, since a ̸= 0d. To show convexity of S, take arbitrary x, y ∈ S
and λ ∈ [0, 1]; we show that λx+ (1− λ)y ∈ S. Consider f(λx+ (1− λ)y):

f(λx+ (1− λ)y) = (λx+ (1− λ)y)a+ b

= λ(xa+ b) + (1− λ)(ya+ b)

By definition, ya + b, xa + b ∈ f(S), so it follows that f(λx + (1 − λ)y) ∈ f(S) by convexity
of f(S). So there exists some z ∈ S with f(z) = f(λx + (1 − λ)y), but since f is injective,
λx+ (1− λ)y = z ∈ S. Thus S is convex.

To show closedness of S, we show R \ S is open. Let N(x, r) denote the open ball of ra-
dius r around x, in either one-dimensional or d-dimensional space. Let x ∈ R \ S; we know
f(x) /∈ f(S) since f is injective. Since Rd \ f(S) is open, there exists some r > 0 with
N(f(x), r) ⊆ Rd \ f(S). Then, take e = r

∥a∥2 > 0; for every y ∈ N(x, e), we have

∥f(x)− f(y)∥2 = ∥xa+ b− ya− b∥2 < |x− y|∥a∥2 ≤ r

and so f(y) ∈ N(f(x), r) ⊆ Rd \ f(S), meaning y /∈ S since f is injective. Thus N(x, e) ⊆
R \ S, meaning S is closed as desired.

This allows us to prove the following key lemma. We describe a proof sketch first. For arbitrary
(i, j), (i′, j′) ∈ V ∗

P , we show that there exists a path from (i, j) to (i′, j′) in GP . We pick arbitrary
points w ∈ Qi,j, x ∈ Qi′,j′; we can do this because by definition, V ∗

P only has elements corre-
sponding to non-empty cluster pairs. Then, we draw a straight line segment in P from w to x.
When we do so, we may pass through other sets on the way; each time we pass into a new region,
we traverse an edge in GP , so the sequence of regions we pass through on this line determines a
GP -path from w to x.

Lemma 9.4.12. The vertices V ∗
P of the region adjacency graph GP form a connected component;

all other connected components of GP are isolated vertices.

Proof. It suffices to show that for arbitrary vertices (i1, j1), (i2, j2) ∈ VP , there exists a path from
(i1, j1) to (i2, j2) in GP . For ease of notation, define Q1 = Qi1,j1 and Q2 = Qi2,j2 .

Fix arbitrary points u ∈ Q1 and w ∈ Q2. If u = w then we’re done, since the edge from
(i1, j1) to (i2, j2) exists, so suppose u ̸= w. Consider the line segment L defined as

L = {λu+ (1− λ)w : λ ∈ [0, 1]}
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Since Q1, Q2 ⊆ P , we have u,w ∈ P . Furthermore, by convexity of P , it follows that L ⊆ P .
Define the sets Ri,j as

Ri,j = Qi,j ∩ L

Since each Qi,j and L are convex and closed, so is each Ri,j . Furthermore, since
⋃

i,j Qi,j =
P , we must have

⋃
i,j Ri,j = L. Finally, define the sets Si,j as

Si,j = {t ∈ [0, 1] : tu+ (1− t)w ∈ Ri,j} ⊆ [0, 1]

Note that Si,j is convex and closed; the affine map f : Si,j → Ri,j given by f(x) = xu + (1 −
x)w = x(u − w) + w has Ri,j as an image. Furthermore, u − w ̸= 0d; by Lemma 9.4.11, the
preimage Si,j must be convex and closed. Furthermore,

⋃
i,j Si,j = [0, 1].

The only convex, closed subsets of [0, 1] are closed intervals. We sort the intervals in in-
creasing order based on their lower endpoint, giving us intervals I1, I2, . . . , Iℓ. We also assume
all intervals are non-empty (we throw out empty intervals). Let σ(p) denote the corresponding
cluster pair associated with interval Ip; that is, if the interval Ip is formed from the set Si,j , then
σ(p) = (i, j).

Define ai, bi to be the lower and upper endpoints, respectively, of Ii. We want to show that
for all 1 ≤ i ≤ ℓ− 1, the edge {σ(i), σ(i+ 1)} ∈ EP ; this would show that σ(1) is connected to
σ(ℓ) in the VP . But σ(1) = (i1, j1) and σ(ℓ) = (i2, j2), so this suffices for our claim.

Now consider intervals Ii = [ai, bi] and Ii+1 = [ai+1, bi+1]. It must be the case that bi = ai+1;
otherwise, some smaller interval would fit in the range [bi, ai+1], and it would be placed before
Ii+1 in the interval ordering.

Since bi ∈ Ii∩ Ii+1, by definition, ubi+(1− bi)w ∈ Rσ(i)∩Rσ(i+1). In particular, ubi+(1−
bi)w ∈ Qσ(i) ∩Qσ(i+1); by definition of EP , this means {σ(i), σ(i+ 1)} ∈ EP , as desired.

9.5 Global sequence alignment
Sequence alignment is a fundamental combinatorial problem with applications to computational
biology. For example, to compare two DNA, RNA or amino acid sequences the standard ap-
proach is to align two sequences to detect similar regions and compute the optimal alignment.
However, the optimal alignment depends on the relative costs or weights used for specific sub-
stitutions, insertions/deletions, or gaps (consecutive deletions) in the sequences. Given a set of
weights, the optimal alignment computation is typically a simple dynamic program. Our goal is
to learn the weights, such that the alignment produced by the dynamic program has application-
specific desirable properties.
Problem setup. Given a pair of sequences s1, s2 over some alphabet Σ of lengths m = |s1|
and n = |s2|, and a ‘space’ character − /∈ Σ, a space-extension t of a sequence s over Σ is a
sequence over Σ ∪ {−} such that removing all occurrences of − in t gives s. A global align-
ment (or simply alignment) of s1, s2 is a pair of sequences t1, t2 such that |t1| = |t2|, t1, t2 are
space-extensions of s1, s2 respectively, and for no 1 ≤ i ≤ |t1| we have t1[i] = t2[i] = −. Let
s[i] denote the i-th character of a sequence s and s[: i] denote the first i characters of sequence
s. For 1 ≤ i ≤ |t1|, if t1[i] = t2[i] we call it a match. If t1[i] ̸= t2[i], and one of t1[i] or t2[i]
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is the character − we call it a space, else it is a mismatch. A sequence of − characters (in t1
or t2) is called a gap. Matches, mismatches, gaps and spaces are commonly used features of
an alignment, i.e. functions that map sequences and their alignments (s1, s2, t1, t2) to Z≥0 (for
example, the number of spaces). A common measure of cost of an alignment is some linear com-
bination of features. For example if there are d features given by lk(·), k ∈ [d], the cost may be
given by c(s1, s2, t1, t2, ρ) =

∑d
k=1 ρklk(s1, s2, t1, t2) where ρ = (ρ1, . . . , ρd) are the parameters

that govern the relative weight of the features. Let τ(s, s′, ρ) = argmint1,t2 c(s, s
′, t1, t2, ρ) and

C(s, s′, ρ) = mint1,t2 c(s, s
′, t1, t2, ρ) denote the optimal alignment and its cost respectively.

A general DP update rule. For a fixed ρ, suppose the sequence alignment problem can be
solved, i.e. we can find the alignment with the smallest cost, using a dynamic program Aρ with
linear parameter dependence (described below). Our main application will be to the family of
dynamic programs Aρ which compute the optimal alignment τ(s1, s2, ρ) given any pair of se-
quences (s1, s2) ∈ Σm ×Σn = Π for any ρ ∈ Rd, but we will proceed to provide a more general
abstraction. See Section 9.5.1 for example DPs using well-known features in computational biol-
ogy, expressed using the abstraction below. For any problem (s1, s2) ∈ Π, the dynamic program
Aρ (ρ ∈ P ⊆ Rd, the set of parameters) solves a set π(s1, s2) = {Pi | i ∈ [k], Pk = (s1, s2)}
of k subproblems (typically, π(s1, s2) ⊆ Πs1,s2 = {(s1[: i′], s2[: j′]) | i′ ∈ {0, . . . ,m}, j′ ∈
{0, . . . , n}} ⊆ Π) in some fixed order P1, . . . , Pk = (s1, s2). Crucially, the subproblems se-
quence P1, . . . , Pk do not depend on ρ6. In particular, a problem Pj can be efficiently solved
given optimal alignments and their costs (τi(ρ), Ci(ρ)) for problems Pi for each i ∈ [j − 1].
Some initial problems in the sequence P1, . . . , Pk of subproblems are base case subproblems
where the optimal alignment and its cost can be directly computed without referring to a pre-
vious subproblem. To solve a (non base case) subproblem Pj , we consider V alternative cases
q : Π→ [V ], i.e. Pj belongs to exactly one of the V cases (e.g. if Pj = (s1[: i

′], s2[:j′]), we could
have two cases corresponding to s1[i

′] = s2[j
′] and s1[i

′] ̸= s2[j
′]). Typically, V will be a small

constant. For any case v = q(Pj) ∈ [V ] that Pj may belong to, the cost of the optimal alignment
of Pj is given by a minimum over Lv terms of the form cv,l(ρ, Pj) = ρ ·wv,l + σv,l(ρ, Pj), where
l ∈ [Lv], wv,l ∈ Rd, σv,l(ρ, Pj) = Ct(ρ) ∈ {C1(ρ), . . . , Cj−1(ρ)} is the cost of some previously
solved subproblem Pt = (s1[: i

′
t], s2[:j

′
t]) = (s1[: i

′
v,l,j], s2[:j

′
v,l,j]) (i.e. t depends on v, l, j but not

on ρ), and cv,l(ρ, Pj) is the cost of alignment τv,l(ρ, Pj) = Tv,l(τt(ρ)) which extends the optimal
alignment for subproblem Pt by a ρ-independent transformation Tv,l(·). That is, the DP update
for computing the cost of the optimal alignment takes the form

DP (ρ, Pj) = min
l
{ρ · wq(Pj),l + σq(Pj),l(ρ, Pj)}, (9.2)

and the optimal alignment is given by DP ′(ρ, Pj) = τq(Pj),l∗(ρ, Pj), where l∗ = argminl{ρ ·
wq(Pj),l+σq(Pj),l(ρ, Pj)}. The DP specification is completed by including base cases {C(s, s′, ρ) =
ρ · ws,s′ | (s, s′) ∈ B(s1, s2)} (or {τ(s, s′, ρ) = τs,s′ | (s, s′) ∈ B(s1, s2)} for the opti-
mal alignment DP) corresponding to a set of base case subproblems B(s1, s2) ⊆ Πs1,s2 . Let
L = maxv∈[V ] Lv denote the maximum number of subproblems needed to compute a single DP

6For the sequence alignment DP in Appendix 9.5.1, we have π(s1, s2) = Πs1,s2 and we first solve the base
case subproblems (which have a fixed optimal alignment for all ρ) followed by problems (s1[: i

′], s2[: j′]) in a
non-decreasing order of i′ + j′ for any value of ρ.
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Algorithm 19 COMPUTECOMPACTEXECUTIONDAG
1: Input: Execution DAG Ge = (Ve, Ee), problem instance (s1, s2)
P0 ← P

2: v1, . . . , vn ← topological ordering of vertices Ve

3: for i = 1 to n do
4: Let Si be the set of nodes with incoming edges to vi
5: For vs ∈ Si, let Ps denote the partition corresponding to vs
6: Pi ← COMPUTEOVERLAYDP({Ps | s ∈ Si})
7: for each p ∈ Pi do
8: p′ ← COMPUTESUBDIVISIONDP(p, (s1, s2))
9: Pi ← Pi \ {p} ∪ p′

10: Pi ← RESOLVEDEGENERACIESDP(Pi)
11: return Partition Pn

update in any of the cases. L is often small, typically 2 or 3. Our main result is to provide
an algorithm for computing the polytopic pieces of the dual class functions efficiently for small
constants d and L. We provide a summary of the key steps and our main result. The main idea
is to use an Execution DAG which compactly represents the partition of the parameter space
corresponding to the pieces of the dual class loss (Algorithm 19), and involves three subroutines.
We give intuitive overviews of the main subroutines in Algorithm 19.

• COMPUTEOVERLAYDP computes an overlay Pi of the input polytopic subdivisions {Ps |
s ∈ Si} and uses Clarkson’s algorithm for intersecting polytopes with output-sensitive
efficiency. The overlay can be computed by solving at most R̃L linear programs.

• COMPUTESUBDIVISIONDP applies Algorithm 15, in each piece of the overlay we need to
find the polytopic subdivision induced by O(L2) hyperplanes (specific to the piece). This
works because all relevant subproblems have the same fixed solution within any piece of
the overlay.

• Finally RESOLVEDEGENERACIESDP merges pieces where the optimal alignment is iden-
tical using a simple search over the resulting subdivision.

For our implementation of the subroutines, we have the following guarantee for Algorithm 19.

Theorem 9.5.1. Let Ri,j denote the number of pieces in P [i][j], and R̃ = maxi≤m,j≤nRi,j . If
the time complexity for computing the optimal alignment is O(TDP), then Algorithm 19 can be
used to compute the pieces for the dual class function for any problem instance (s1, s2), in time
O(d!L4dR̃2L+1TDP).

For the special case of d = 2, we show that the pieces may be computed in O(RTDP) time using
the ray search technique of [118]. We conclude with a remark on the size of R.

Remark 7. For the sequence alignment problem, the upper bounds on R depend on the nature
of cost functions involved. In practice, R is usually much smaller than the worst case bounds,
making our results even stronger. In prior work on computational biology data (sequence align-
ment with d = 2, sequence length ~100), [87] observe that of a possible more than 2200 align-
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ments, only R = 120 appear as possible optimal sequence alignments (over R2) for a pair of
immunoglobin sequences.

9.5.1 Example dynamic programs for sequence alignment
We exhibit how two well-known sequence alignment formulations can be solved using dynamic
programs which fit our model in Section 9.5. In Section 9.5.1 we show a DP with two free param-
eters (d = 2), and in Section 9.5.1 we show another DP which has three free parameters (d = 3).

Mismatches and spaces

Suppose we only have two features, mismatches and spaces. The alignment that minimizes the
cost c may be obtained using a dynamic program in O(mn) time. The dynamic program is given
by the following recurrence relation for the cost function which holds for any i, j > 0, and for
any ρ = (ρ1, ρ2),

C(s1[: i], s2[:j], ρ) =





C(s1[: i− 1], s2[:j − 1], ρ) if s1[i] = s2[j],

min
{
ρ1 + C(s1[: i− 1], s2[:j − 1], ρ),

ρ2 + C(s1[: i− 1], s2[:j], ρ),

ρ2 + C(s1[: i], s2[:j − 1], ρ)
} if s1[i] ̸= s2[j].

The base cases are C(ϕ, ϕ, ρ) = 0, C(ϕ, s2[: j], ρ) = jρ2,= C(s1[: i], ϕ, ρ) = iρ2 for i, j ∈
[m] × [n]. Here ϕ denotes the empty sequence. One can write down a similar recurrence for
computing the optimal alignment τ(s1, s2, ρ).

We can solve the non base-case subproblems (s1[: i], s2[: j]) in any non-decreasing or-
der of i + j. Note that the number of cases V = 2, and the maximum number of subprob-
lems needed to compute a single DP update L = 3 (L1 = 1, L2 = 3). For a non base-case
problem (i.e. i, j > 0) the cases are given by q(s1[: i], s2[: j]) = 1 if s1[i] = s2[j], and
q(s1[: i], s2[: j]) = 2 otherwise. The DP update in each case is a minimum of terms of the form
cv,l(ρ, (s1[: i], s2[:j])) = ρ ·wv,l + σv,l(ρ, (s1[: i], s2[:j])). For example if q(s1[: i], s2[:j]) = 2, we
have w2,1 = ⟨1, 0⟩ and σ2,1(ρ, (s1[: i], s2[:j])) equals C(s1[: i− 1], s2[:j − 1], ρ), i.e. the solution
of previously solved subproblem (s1[: i − 1], s2[: j − 1]), the index of this subproblem depends
on l, v and index of (s1[: i], s2[:j]) but not on ρ itself.

Mismatches, spaces and gaps

Suppose we have three features, mismatches, spaces and gaps. Typically gaps (consecutive
spaces) are penalized in addition to spaces in this model, i.e. the cost of a sequence of three
consecutive gaps in an alignment (. . . a−−− b . . . , . . . a′ p q r b′ . . . ) would be 3ρ2 + ρ3 where
ρ2, ρ3 are costs for spaces and gaps respectively [100]. The alignment that minimizes the cost c
may again be obtained using a dynamic program in O(mn) time. We will need a slight extension
of our DP model from Section 9.5 to capture this. We have three subproblems corresponding
to any problem in Πs1,s2 (as opposed to exactly one subproblem, which was sufficient for the
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example in 9.5.1). We have a set of subproblems π(s1, s2) with |π(s1, s2)| ≤ 3|Πs1,s2| for which
our model is applicable. For each (s1[: i], s2[:j]) we can compute the three costs (for any fixed ρ)

• Cs(s1[: i], s2[:j], ρ) is the cost of optimal alignment that ends with substitution of s1[i] with
s2[j].

• Ci(s1[: i], s2[:j], ρ) is the cost of optimal alignment that ends with insertion of s2[j].
• Cd(s1[: i], s2[:j], ρ) is the cost of optimal alignment that ends with deletion of s1[i].

The cost of the overall optimal alignment is simply C(s1[: i], s2[: j], ρ) = min{Cs(s1[: i], s2[:
j], ρ), Ci(s1[: i], s2[:j], ρ), Cd(s1[: i], s2[:j], ρ)}.
The dynamic program is given by the following recurrence relation for the cost function which
holds for any i, j > 0, and for any ρ = (ρ1, ρ2, ρ3),

Cs(s1[: i], s2[:j], ρ) = min





ρ1 + Cs(s1[: i− 1], s2[:j − 1], ρ),

ρ1 + Ci(s1[: i− 1], s2[:j − 1], ρ),

ρ1 + Cd(s1[: i− 1], s2[:j − 1], ρ)

Ci(s1[: i], s2[:j], ρ) = min





ρ2 + ρ3 + Cs(s1[: i], s2[:j − 1], ρ),

ρ2 + Ci(s1[: i], s2[:j − 1], ρ),

ρ2 + ρ3 + Cd(s1[: i], s2[:j − 1], ρ)

Cd(s1[: i], s2[:j], ρ) = min





ρ2 + ρ3 + Cs(s1[: i− 1], s2[:j], ρ),

ρ2 + ρ3 + Ci(s1[: i− 1], s2[:j], ρ),

ρ2 + Cd(s1[: i− 1], s2[:j], ρ)

By having three subproblems for each (s1[: i], s2[: j]) and ordering the non base-case problems
again in non-decreasing order of i+ j, the DP updates again fit our model (9.2).

9.5.2 Piecewise dual structure
The following results closely follow and extend the corresponding results from [23]. Specifi-
cally, we generalize to the case of two sequences of unequal length, and provide sharper bounds
on the number of distinct alignments and boundary functions in the piecewise decomposition
(even in the special case of equal lengths). We first have a bound on the total number of distinct
alignments.

Lemma 9.5.2. For a fixed pair of sequences s1, s2 ∈ Σm × Σn, with m ≤ n, there are at most
m(m+ n)m distinct alignments.

Proof. For any alignment (t1, t2), by definition, we have |t1| = |t2| and for all i ∈ [|t1|], if
t1[i] = −, then t2[i] ̸= − and vice versa. This implies that t1 has exactly n − m more gaps
than t2. To prove the upper bound, we count the number of alignments (t1, t2) where t2 has
exactly i gaps for i ∈ [m]. There are

(
n+i
i

)
choices for placing the gap in t2. Given a fixed
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t2 with i gaps, there are
(

n
n−m+i

)
choices for placing the gap in t1. Thus, there are at most(

n+i
i

)(
n

n−m+i

)
= (n+i)!

i!(m−i)!(n−m+i)!
≤ (m + n)m possibilities since i ≤ m. Summing over all i, we

have at most m(m+ n)m alignments of s1, s2.

This implies that the dual class functions are piecewise-structured in the following sense.

Lemma 9.5.3. Let U be the set of functions {uρ : (s1, s2) 7→ u(s1, s2, ρ) | ρ ∈ Rd} that map
sequence pairs s1, s2 ∈ Σm × Σn to R by computing the optimal alignment cost C(s1, s2, ρ) for
a set of features (li(·))i∈[d]. The dual class U∗ is (F ,G,m2(m+ n)2m)-piecewise decomposable,
where F = {fc : U → R | c ∈ R} consists of constant functions fc : uρ 7→ c and G = {gw :
U → {0, 1} | w ∈ Rd} consists of halfspace indicator functions gw : uρ 7→ I{w · ρ < 0}.

Proof. Fix a pair of sequences s1 and s2. Let τ be the set of optimal alignments as we range over
all parameter vectors ρ ∈ Rd. By Lemma 9.5.2, we have |τ | ≤ m(m + n)m. For any alignment
(t1, t2) ∈ τ , the algorithm Aρ will return (t1, t2) if and only if

d∑

i=1

ρili(s1, s2, t1, t2) >
d∑

i=1

ρili(s1, s2, t
′
1, t

′
2)

for all (t′1, t
′
2) ∈ τ \ {(t1, t2)}. Therefore, there is a set H of at most

(|τ |
2

)
≤ m2(m + n)2m

hyperplanes such that across all parameter vectors ρ in a single connected component of Rd \H ,
the output of the algorithm Aρ on (s1, s2) is fixed. This means that for any connected component
R of Rd \H , there exists a real value cR such that uρ(s1, s2) = cR for all ρ ∈ Rd. By definition
of the dual, u∗

s1,s2
(uρ) = uρ(s1, s2) = cR. For each hyperplane h ∈ H , let g(h) ∈ G denote the

corresponding halfspace. Order these k =
(|τ |

2

)
functions arbitrarily as g1, . . . , gk. For a given

connected component R of Rd \H , let bR ∈ {0, 1}k be the corresponding sign pattern. Define
the function f (bR) = fcR and for b not corresponding to any R, f (b) = f0. Thus, for each ρ ∈ Rd,

u∗
s1,s2

(uρ) =
∑

b∈{0,1}k
I{gi(uρ) = bi∀i ∈ [k]}f (b)(uρ).

For the special case of d = 2, we have an algorithm which runs in time O(RTDP), where R is the
number of pieces in P [m][n] which improves on the prior result O(R2+RTDP) for two-parameter
sequence alignment problems. The algorithm employs the ray search technique of [118] (also
employed by [88] but for more general sequence alignment problems) and enjoys the following
runtime guarantee.

Theorem 9.5.4. For the global sequence alignment problem with d = 2, for any problem in-
stance (s1, s2), there is an algorithm to compute the pieces for the dual class function in O(RTDP)
time, where TDP is the time complexity of computing the optimal alignment for a fixed parameter
ρ ∈ R2, and R is the number of pieces of u(s1,s2)(·).
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Proof. We note that for any alignment (t1, t2), the boundary functions for the piece where (t1, t2)
is an optimal alignment are straight lines through the origin of the form

ρ1l1(s1, s2, t1,t2) + ρ2l2(s1, s2, t1, t2) > ρ1l1(s1, s2, t
′
1, t

′
2) + ρ2l2(s1, s2, t

′
1, t

′
2)

for some alignment (t′1, t
′
2) different from (t1, t2). The intersection of these halfplanes is either

the empty set or the region between two straight lines through the origin. The output subdivision
therefore only consists of the axes and straight lines through the origin in the positive orthant.

We will present an algorithm using the ray search technique of [118]. The algorithm com-
putes the optimal alignment (t1, t2), (t′1, t

′
2) at points ρ = (0, 1) and ρ = (1, 0). If the alignments

are identical, we conclude that (t1, t2) is the optimal alignment everywhere. Otherwise, we find
the optimal alignment (t′′1, t

′′
2) for the intersection of line L joining ρ = (0, 1) and ρ = (1, 0),

with the line L′ given by

ρ1l1(s1, s2, t1,t2) + ρ2l2(s1, s2, t1, t2) > ρ1l1(s1, s2, t
′
1, t

′
2) + ρ2l2(s1, s2, t

′
1, t

′
2)

If (t′′1, t
′′
2) = (t1, t2) or (t′′1, t

′′
2) = (t′1, t

′
2), we have exactly 2 optimal alignments and the piece

boundaries are given by L′ and the axes. Otherwise we repeat the above process for alignment
pairs (t′′1, t

′′
2), (t

′
1, t

′
2) and (t′′1, t

′′
2), (t1, t2). Notice we need to compute at most R + 1 dynamic

programs to compute all the pieces, giving the desired time bound.

9.5.3 Details and Analysis of the Algorithm
We start with an overview of the techniques.
Overview of techniques. [88] provide a solution for computing the pieces for sequence align-
ment with only two free parameters, i.e. d = 2, using a ray-search based approach in O(R2 +
RTDP) time, where R is the number of pieces in u(s1,s2)(·). [99] solve the simpler problem of find-
ing a point in the polytope (if one exists) in the parameter space where a given alignment (t1, t2)
is optimal by designing an efficient separation oracle for a linear program with one constraint
for every alignment (t′1, t

′
2) ̸= (t1, t2), c(s1, s2, t1, t2, ρ) ≤ c(s1, s2, t

′
1, t

′
2, ρ), where ρ ∈ Rd for

general d. We provide a first (to our knowledge) algorithm for the global pairwise sequence
alignment problem with general d for computing the full polytopic decomposition of the param-
eter space with fixed optimal alignments in each polytope. We adapt the idea of execution tree
to the sequence alignment problem by defining an execution DAG of decompositions for prefix
sequences (s[: i], s[: j]). We overlap the decompositions corresponding to the subproblems in
the DP update and sub-divide each piece in the overlap using fixed costs of all the subproblems
within each piece. The number of pieces in the overlap are output polynomial (for constant d
and L) and the sub-division of each piece involves at most L2 hyperplanes. By memoizing de-
compositions and optimal alignments for the subproblems, we obtain our runtime guarantee for
constant d, L. For d = 2, we get a running time of O(RTDP).

As indicated above, we consider the family of dynamic programs Aρ which compute the op-
timal alignment τ(s1, s2, ρ) given any pair of sequences (s1, s2) ∈ Σm×Σn = Π for any ρ ∈ Rd.
For any alignment (t1, t2), the algorithm has a fixed real-valued utility (different from the cost
function above) which captures the quality of the alignment, i.e. the utility function u((s1, s2), ρ)
only depends on the alignment τ(s1, s2, ρ). The dual class function is piecewise constant with

171



convex polytopic pieces (Lemma 9.5.3). For any fixed problem (s1, s2), the space of parameters
ρ can be partitioned into R convex polytopic regions where the optimal alignment is fixed. The
optimal parameter can then be found by simply comparing the costs of the alignments in each of
these pieces. For the rest of this section we consider the algorithmic problem of computing these
R pieces efficiently.

For the clustering algorithm family, as we have seen in Section 9.4, we get a refinement of
the parameter space with each new step (merge) performed by the algorithm. This does not
hold for the sequence alignment problem. Instead we obtain the following DAG, from which the
desired pieces can be obtained by looking at nodes with no out-edges (call these terminal nodes).
Intuitively, the DAG is built by iteratively adding nodes corresponding to subproblems P1, . . . , Pk

and adding edges directed towards Pj from all subproblems that appear in the DP update for it.
That is, for base case subproblems, we have singleton nodes with no incoming edges. Using the
recurrence relation (9.2), we note that the optimal alignment for the pair of sequences (s1[: i], s2[:
j]) can be obtained from the optimal alignments for subproblems {(s1[: iv′,l], s2[: jv′,l])}l∈[Lv′ ]

where v′ = q(s1[: i], s2[: j]). The DAG for (s1[: i], s2[: j]) is therefore simply obtained by using
the DAGs Gv′,l for the subproblems and adding directed edges from the terminal nodes of Gv′,l

to new nodes vp,i,j corresponding to each piece p of the partition P [i][j] of P given by the set of
pieces of u(s1[:i],s2[:j])(ρ). A more compact representation of the execution graph would have only
a single node vi,j for each subproblem (s1[: i], s2[:j]) (the node stores the corresponding partition
P [i][j]) and edges directed towards vi,j from nodes of subproblems used to solve (s1[: i], s2[:j]).
Note that the graph depends on the problem instance (s1, s2) as the relevant DP cases v′ = q(s1[:
i], s2[: j]) depend on the sequences s1, s2. A naive way to encode the execution graph would be
an exponentially large tree corresponding to the recursion tree of the recurrence relation (9.2).
Execution DAG. Formally we define a compact execution graph Ge = (Ve, Ee) as follows. For
the base cases, we have nodes labeled by (s, s′) ∈ B(s1, s2) storing the base case solutions
(ws,s′ , τs,s′) over the unpartitioned parameter space P = Rd. For i, j > 0, we have a node
vi,j labeled by (s1[: i], s2[: j]) and the corresponding partition P [i][j] of the parameter space,
with incoming edges from nodes of the relevant subproblems {(s1[: iv′,l], s2[: jv′,l])}l∈[Lv′ ]

where
v′ = q(s1[: i], s2[: j]). This graph is a DAG since every directed edge is from some node vi,j to
a node vi′,j′ with i′ + j′ > i + j in typical sequence alignment dynamic programs (Appendix
9.5.1); an example showing a few nodes of the DAG is depicted in Figure 9.3. Algorithm 19
gives a procedure to compute the partition of the parameter space for any given problem instance
(s1, s2) using the compact execution DAG.
We now present some well-known terminology from computational geometry.

Definition 34. A (convex) subdivision S of P ⊆ Rd is a finite set of disjoint d-dimensional (con-
vex) sets (called cells) whose union is P . The overlay S of subdivisions S1, . . . , Sn is defined as
all nonempty sets of the form

⋂
i∈[n] si with si ∈ Si. With slight abuse of terminology, we will

refer to closures of cells also as cells.

The COMPUTEOVERLAY procedure takes a set of partitions, which are convex polytopic subdivi-
sions of Rd, and computes their overlay. We will represent a convex polytopic subdivision as a list
of cells, each represented as a list of bounding hyperplanes. Now to compute the overlay of sub-
divisions P1, . . . , PL, with lists of cells C1, . . . , CL respectively, we define |C1|× · · ·× |CL| sets of
hyperplanes Hj1,...,jL = {

⋃
l∈[L]H(c

(l)
jl
)}, where c(l)jl is the jl-th cell of Pl andH(c) denotes the hy-
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P [i−1][j −1]
(ATGG,TGC)

P [i − 1][j]
(ATGG,TGCA)

P [i][j − 1]
(ATGGC,TGC)

P [i][j]
(ATGGC,TGCA)

OVERLAY SUBDIVIDE MERGE

Figure 9.3: Incoming nodes used for computing the pieces at the node P [i][j] in the execution
DAG.

perplanes bounding cell c. We compute the cells of the overlay by applying Clarkson’s algorithm
[62] to each Hj1,...,jL . We have the following guarantee about the running time of Algorithm 20.

Algorithm 20 COMPUTEOVERLAYDP
Input: Convex polytopic subdivisions P1, . . . , PL of Rd, represented as lists Cj of hyperplanes
for each cell in the subdivision
H(c(l)jl )← hyperplanes bounding jl-th cell of Pl for l ∈ [L], jl ∈ Cl
for each j1, . . . , jL ∈ |C1|, . . . , |CL| do
Hj1,...,jL ← {

⋃
l∈[L]H(c

(l)
jl
)}

H ′
j1,...,jL

← CLARKSON(Hj1,...,jL)
C ← non-empty lists of hyperplanes in H ′

j1,...,jL
for jl ∈ Cl

return Partition represented by C

Lemma 9.5.5. Let Ri,j denote the number of pieces in P [i][j], and R̃ = maxi≤m,j≤n P [i][j].
There is an implementation of the COMPUTEOVERLAYDP routine in Algorithm 19 which com-
putes the overlay of L convex polytopic subdivisions in time O(LR̃L+1 · LP(d, R̃L + 1)), which
is O(d!LR̃2L+1) using algorithms for solving low-dimensional LPs [53].

Proof. Consider Algorithm 20. We apply the Clarkson’s algorithm at most R̃L times, once
corresponding to each L-tuple of cells from the L subdivisions. Each iteration corresponding
to cell c in the output overlay O (corresponding to C) has a set of at most LR̃ hyperplanes
and yields at most Rc non-redundant hyperplanes. By Theorem 9.2.1, each iteration takes time
O(LR̃ · LP(d,Rc + 1)), where LP(d,Rc + 1) is bounded by O(d!Rc) for the algorithm of [53].
Note that

∑
c Rc corresponds to the total number of edges in the cell adjacency graph ofO, which

is bounded by R̃2L. Further note that Rc ≤ R̃L for each c ∈ C and |C| ≤ R̃L to get a runtime
bound of O(LR̃L+1 · LP(d, R̃L + 1)).

We now consider an implementation for the COMPUTESUBDIVISIONDP subroutine. The algo-
rithm computes the hyperplanes across which the subproblem used for computing the optimal

173



Algorithm 21 COMPUTESUBDIVISIONDP
Input: Convex Polytope P , problem instance (s1, s2)
v ← the DP case q((s1, s2)) for the problem instance
ρ0 ← an arbitrary point in P
(t01, t

0
2) ← optimal alignment of (s1, s2) for parameter ρ0, using subproblem (s1[: iv,l0 ], s2[:

jv,l0 ]) for some l0 ∈ [Lv]
mark← ∅, polys← new hashtable, poly queue← new queue
poly queue.enqueue(l0)
while poly queue.non empty() do
l← poly queue.dequeue() Continue to next iteration if l ∈ mark
mark← mark ∪ {l}
L ← P
for all subproblems (s1[: iv,l1 ], s2[:jv,l1 ]) for l1 ∈ [Lv], l1 ̸= l do

Add the half-space inequality bTρ ≤ c corresponding to cv,l(ρ, (s1, s2)) ≤
cv,l1(ρ, (s1, s2)) to L

I ← CLARKSON(L)
poly queue.enqueue(l′) for each l′ such that the constraint labeled by it is in I
polys[l]← {L[ℓ] : ℓ ∈ I}

return polys

alignment changes in the recurrence relation (9.2) by adapting Algorithm 15. We restate the
algorithm in the context of sequence alignment as Algorithm 21.

Lemma 9.5.6. Let Ri,j denote the number of pieces in P [i][j], and R̃ = maxi≤m,j≤nRi,j . There
is an implementation of COMPUTESUBDIVISIONDP routine in Algorithm 19 with running time
at most O((L2d+2 + L2dR̃L) · LP(d, L2 + R̃L)) for each outer loop of Algorithm 19. If the
algorithm of [53] is used to solve the LP, this is at most O(d!L2d+2R̃2L).

Proof. Consider Algorithm 21. For any piece p in the overlay, all the required subproblems
have a fixed optimal alignment, and we can find the subdivision of the piece by adapting Algo-
rithm 15 (using O(L2 + R̃L) hyperplanes corresponding to subproblems and piece boundaries).
The number of pieces in the subdivision is at most L2d since we have at most L2 hyperplanes
intersecting the piece, so we need O(L2d+2 + L2dR̃L) time to list all the pieces Cp. The time
needed to run Clarkson’s algorithm is upper bounded by O(

∑
c∈Cp(L

2 + R̃L) ·LP(d,Rc +1)) =

O(
∑

c∈Cp(L
2 + R̃L) · LP(d, L2 + R̃L)) = O((L2d+2 +L2dR̃L) · LP(d, L2 + R̃L)). Using [53] to

solve the LP, this is at most O(d!R̃2LL2d+4).

Lemma 9.5.7. Let Ri,j denote the number of pieces in P [i][j], and R̃ = maxi≤m,j≤nRi,j . There
is an implementation of RESOLVEDEGENERACIESDP routine in Algorithm 19 with running time
at most O(R̃2LL4d) for each outer loop of Algorithm 19.

Proof. The RESOLVEDEGENERACIESDP is computed by a simple BFS over the cell adjacency
graph Gc = (Vc, Ec) (i.e. the graph with polytopic cells as nodes and edges between polytopes
sharing facets). We need to find (maximal) components of a subgraph of the cell adjacency graph
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where each node in the same component has the same optimal alignment. This is achieved by a
simple BFS in O(|Vc|+ |Ec|) time. Indeed, by labeling each polytope with the corresponding op-
timal alignment, we can compute the components of the subgraph of Gc with edges restricted to
nodes joining the same optimal alignment. Note that the resulting polytopic subdivision after the
merge is still a convex subdivision using arguments in Lemma 9.5.3, but applied to appropriate
sequence alignment subproblem. As noted in the proof of Lemma 9.5.6, we have |Vc| ≤ L2dR̃L

since the number of cells within each piece p is at most L2d and there are at most R̃L pieces in
the overlay. Since |Ec| ≤ |Vc|2, we have an implementation of RESOLVEDEGENERACIESDP in
time O((L2dR̃L)2) = O(R̃2LL4d).

Finally we can put all the above together to give a proof of Theorem 9.5.1.

Proof of Theorem 9.5.1. The proof follows by combining Lemma 9.5.5, Lemma 9.5.6 and Lemma
9.5.7. Note that in the execution DAG, we have |Ve| ≤ |Ee| = O(TDP). Further, we invoke
COMPUTEOVERLAYDP and RESOLVEDEGENERACIESDP |Ve| times across all iterations and
COMPUTESUBDIVISIONDP across the |Ve| outer loops.

The results in this chapter are joint work with Nina Balcan and Chris Seiler [33], and have
appeared in AAAI 2024 Learnable Optimization (LEANOPT) workshop.
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Chapter 10

Ongoing and future work

The results in this thesis suggest several exciting directions for further research, a couple are
noted below.

10.1 Computational efficiency
Most of the prior work on data-driven algorithm design has focused on sample efficiency of learn-
ing good algorithms from the parameterized families, and a major open question for this line of
research is to design computationally efficient learning algorithms [41, 85]. Computational effi-
ciency of typical approaches is particularly a bottleneck when learning multiple real parameters.
A concrete example follows.

The empirical (sample) loss function for the typical problems studied in data-driven design
is discontinuous (even on a single problem instance). One approach to find good parameters on
a sample is to find a partition of the parameter space into regions or pieces where the loss (as
a function of the parameters, on fixed problem instance, also known as dual class loss function
[23]) behaves well.

In Chapter 2, we use approximation as a key tool to speed up computation. This includes
approximating the graph by sparsification, and approximately computing the boundary functions
and piece functions for the dual loss function. Future work can explore this direction in the con-
text of other problems. In Chapter 9, we use classic techniques from computational geometry for
designing output-sensitive enumeration algorithms which are applicable to several data-driven
design problems. A future direction is to extend our approaches beyond piecewise-structure loss
functions with linear piece boundaries.

10.2 Robustness
Chapter 4 in the proposal discusses how a small amount of abstention can help improve robust-
ness of some learning algorithms. While relatively novel in the recently popular area of adversar-
ial robustness, the signficance of abstention in learning has been long known [61]. In particular,
Rivest and Sloan [144] formulate a model of reliable learning where one must correctly predict
or abstain, and provide an algorithm based on Mitchell’s candidate elimination approach [124]

177



with the goal being to maximize usefulness (i.e. how often we predict). This model has been
recently extended to a novel notion of robustly-reliable learning under data poisoning attacks
[27]. This connection raises potentially interesting questions, besides broader incorporation of
reliability in robustness studies.

If we are willing to relax the reliability criterion slightly and allow a trade-off between relia-
bility and usefulness, we could formulate the optimization over the trade-off as a data-driven de-
sign problem similar to the one considered in Chapter 4. The formulation is interesting even with-
out the robustness or data-driven lens, and the objective has been recently studied for general hy-
pothesis classes [44, 138]. Can we provide interesting guarantees in the repeated problem setting,
i.e. we receive a sequence/collection of related data sets (examples within each data set might not
even be i.i.d.)? For linear separators, one natural choice is to abstain within a margin of the clas-
sifier and the margin-width can be the tunable parameter. It could be particularly interesting to
further understand reliability for widely used concept classes like neural networks. One concrete
direction is to try to bound the Hanneke’s disagreement coefficient [90] (and apply fundamental
results connecting disagreement coefficient with reliability [27, 71, 72]). This would have further
implications for deep active learning, and is noted as an open question by Zhu and Nowak [176].

178



Appendix A

Background from prior work

We include background on learning theory, data-driven algorithm design and other prior work
needed for Chapters 2, 3 and 4 here.

A.1 A general tool for analyzing dispersion

If the weights of the graph are given by a polynomial kernel w(u, v) = (d̃(u, v) + α̃)d, we can
apply the general tool developed by Balcan et al. [19] to learn α̃, which we summarize below.

1. Bound the probability density of the random set of discontinuities of the loss functions.
2. Use a VC-dimension based uniform convergence argument to transform this into a bound

on the dispersion of the loss functions.

Formally, we have the following theorems from [19], which show how to use this technique when
the discontinuities are roots of a random polynomial.

Theorem A.1.1 ([19]). Consider a random degree d polynomial ϕ with leading coefficient 1 and
subsequent coefficients which are real of absolute value at most R, whose joint density is at most
κ. There is an absolute constant K depending only on d and R such that every interval I of
length ≤ ϵ satisfies Pr(ϕ has a root in I) ≤ κϵ/K.

Theorem A.1.2 ([19]). Let l1, . . . , lT : R → R be independent piecewise L-Lipschitz functions,
each having at most K discontinuities. D(T, ϵ, ρ) = |{1 ≤ t ≤ T | lt is not L-Lipschitz on [ρ−
ϵ, ρ+ ϵ]}| is the number of functions that are not L-Lipschitz on the ball [ρ− ϵ, ρ+ ϵ]. Then we
have E[maxρ∈R D(T, ϵ, ρ)] ≤ maxρ∈R E[D(T, ϵ, ρ)] +O(

√
T log(TK)).

A.2 Background for regularized regression

We include additional details from Chapter 3 here.
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A.2.1 Background for the structural result
We first present some useful terminology from algebraic geometry.

Definition 35 (Semialgebraic sets, Algebraic curves.). A semialgebraic subset of Rn is a finite
union of sets of the form {x ∈ Rn | pi(x) ≥ 0 for each i ∈ [m]}, where p1, . . . , pm are polyno-
mials. An algebraic curve is the zero set of a polynomial in two dimensions.

We will next review some properties of LASSO solutions from prior work that are useful in prov-
ing our results. Let (X, y) with X = [x1, . . . ,xp] ∈ Rm×p and y ∈ Rm denote a (training) dataset
consisting of m labeled examples with p features. LASSO regularization may be formulated as
the following optimization problem.

min
β∈Rp
∥y −Xβ∥22 + λ1||β||1,

where λ1 ∈ R+ is the regularization parameter. Dealing with the case λ1 = 0 (i.e. Ordinary
Least Squares) is not difficult, but is omitted here to keep the statements of the definitions and
results simple. We will use the following well-known facts about the solution of the LASSO op-
timization problem [80, 158]. Applying the Karush-Kuhn-Tucker (KKT) optimality conditions
to the problem gives,

Lemma A.2.1 (KKT Optimality Conditions for LASSO). The optimal solution for LASSO,
β∗ ∈ argminβ∈Rp ∥y −Xβ∥22 + λ1||β||1 iff for all j ∈ [p],

xT
j (y −Xβ∗) = λ1sign(β∗), if β∗

j ̸= 0,

|xT
j (y −Xβ∗)| ≤ λ1, otherwise.

Here xT
j (y −Xβ∗) is simply the correlation of the the j-th covariate with the residual y −Xβ∗

(when y,X have been standardized). This motivates the definition of equicorrelation sets of
covariates (Definition 36).

Definition 36 (Equicorrelation sets, [158]). Let β∗ ∈ argminβ∈Rp ∥y −Xβ∥22 + λ1||β||1. The
equicorrelation set corresponding to β∗, E = {j ∈ [p] | |xT

j (y −Xβ∗)| = λ1}, is simply the set
of covariates with maximum absolute correlation. We also define the equicorrelation sign vector
for β∗ as s = sign(XT

E (y −Xβ∗)) ∈ {±1}.

In terms of the equicorrelation set and the equicorrelation sign vector, the characterization of the
LASSO solution in Lemma A.2.1 implies

XT
E (y −XEβ

∗
E) = λ1s.

This implies a necessary and sufficient condition for the uniqueness of the LASSO solution,
namely that XE is full rank for all equicorrelation sets E [158]. Our results will hold if the
dataset X satisfies this condition, but for simplicity we will use the a simpler (and possibly more
natural) sufficient condition involving the general position.
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Definition 37. A matrix X ∈ Rm×p is said to have its columns in the general position if the affine
span of any k ≤ m points (σixji)i∈[k],{ji}i=J⊆[p] for arbitrary signs σ[k] ∈ {−1, 1}k and subset J
of the columns of size k, does not contain any element of {xi | i /∈ J}.

Finally, we state the following useful characterization of the LASSO solutions in terms of the
equicorrelation sets and sign vectors.

Lemma A.2.2 ([158], Lemma 3). If the columns of X are in general position, then for any y and
λ1 > 0, the LASSO solution is unique and is given by

β∗
E = (XT

E XE)
−1(XT

E y − λ1s), β
∗
[p]\E = 0.

We remark that Lemma A.2.2 does not give a way to compute β∗ for a given value of λ1, since E
and s depend on β∗, but still gives a property of β∗ that is convenient to use. In particular, since
we have at most 3p possible choices for (E , s), this implies that the LASSO solution β∗(λ1) is a
piecewise linear function of λ1, with at most 3p pieces (for λ1 > 0). Following popular termi-
nology, we will refer to this function as a solution path of LASSO for the given dataset (X, y).
LARS-LASSO of [177] is an efficient algorithm for computing the solution path of LASSO.

Corollary A.2.3. Let X be a matrix with columns in the general position. If the unique LASSO
solution for the dataset (X, y) is given by the function β∗ : R+ → Rp, then β∗ is piecewise linear
with at most 3p pieces given by Lemma A.2.2.

A.2.2 Background for online learning
At a high level, the plan is to show dispersion using the general recipe developed in [19]. The
recipe may be summarized at a high level as follows.

S1. Bound the probability density of the random set of discontinuities of the loss functions.
Intuitively this corresponds to computing the average number of loss functions that may
be discontinuous along a path connecting any two points within distance ϵ in the domain.

S2. Use a VC-dimension based uniform convergence argument to transform this into a bound
on the dispersion of the loss functions.

Formally, we have the following theorems from [19], which show how to use this technique
when the discontinuities are roots of a random polynomial with bounded coefficients. The theo-
rems implement steps S1 and S2 of the above recipe respectively.

Theorem A.2.4 ([19]). Consider a random degree d polynomial ϕ with leading coefficient 1 and
subsequent coefficients which are real of absolute value at most R, whose joint density is at most
κ. There is an absolute constant K0 depending only on d and R such that every interval I of
length ≤ ϵ satisfies Pr(ϕ has a root in I) ≤ κϵ/K0.

Theorem A.2.5 ([19]). Let l1, . . . , lT : R → R be independent piecewise L-Lipschitz func-
tions, each having at most K discontinuities. Let D(T, ϵ, ρ) = |{1 ≤ t ≤ T | lt is not L-Lipschitz on [ρ−
ϵ, ρ+ ϵ]}| be the number of functions that are not L-Lipschitz on the ball [ρ− ϵ, ρ+ ϵ]. Then we
have E[maxρ∈R D(T, ϵ, ρ)] ≤ maxρ∈R E[D(T, ϵ, ρ)] +O(

√
T log(TK)).
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Lemma A.2.6. Let A be an r×s matrix with R-bounded max-norm, i.e. ||A||∞,∞ = maxi,j |Aij| ≤
R. Then each entry of the matrix (ATA + λIs)

−1 is a rational polynomial Pij(λ)/Q(λ) for
i, j ∈ [s] with each Pij of degree at most s − 1, Q of degree s, and all the coefficients have
absolute value at most rs(Rs)2s.

Proof. Let G = ATA be the Gram matrix. |Gij| = |
∑

k AkiAkj| ≤
∑

k |AkiAkj| ≤ rR2, by the
triangle inequality and using maxi,j |Aij| ≤ R. The determinant DET(ATA + λIs) is a sum of
s! ≤ ss signed terms, each a product of s elements of the form Gij or Gii + λ. Thus, in each of
the s! terms, the coefficient of λk is a sum of at most

(
s

s−k

)
≤ sk ≤ ss expressions of the form

Π(i,j)∈SGij with |S| ≤ s− k. Now |Π(i,j)∈SGij| ≤ (rR2)|S| ≤ (rR2)s, and by triangle inequality
the coefficient of λk is upper bounded by (rR2)s · sk · ss for any k. This establishes the bound on
the coefficients of Q(λ). A similar argument implies the upper bound for each Pij(λ).

We will also need the following result, which is a simple extension of Lemma 24 from [10].

Lemma A.2.7. Suppose X and Y are real-valued random variables taking values in [m,m+M ]
for some m,M ∈ R+ and suppose that their joint distribution is κ-bounded. Let c be an absolute
constant. Then,

(i) Z = X + Y is drawn from a K1κ-bounded distribution, where K1 ≤M .
(ii) Z = XY is drawn from a K2κ-bounded distribution, where K2 ≤M/m.

(iii) Z = X − Y is drawn from a K1κ-bounded distribution, where K1 ≤M .
(iv) Z = X + c has a κ-bounded distribution, and Z = cX has a κ

|c| -bounded distribution.

Proof. Let fX,Y (x, y) denote the joint density of X, Y . (i) and (ii) are immediate from Lemma
24 from [10], (iii) is a simple extension. Indeed, the cumulative density function for Z is given by

FZ(z) = Pr(Z ≤ z) = Pr(X − Y ≤ z) = Pr(X ≤ z + Y )

=

∫ m+M

m

∫ z+y

m

fX,Y (x, y)dxdy.

The density function for Z can be obtained using Leibniz’s rule as

fZ(z) =
d

dz
FZ(z) =

d

dz

∫ m+M

m

∫ z+y

m

fX,Y (x, y)dxdy

=

∫ m+M

m

(
d

dz

∫ y

m

fX,Y (x, y)dx+
d

dz

∫ z

0

fX,Y (t+ y, y)dt

)
dy

=

∫ m+M

m

fX,Y (z + y, y)dy

≤
∫ m+M

m

κdy

= Mκ.

Finally, (iv) follows from simple change of variable manipulations (e.g. Theorem 22 of [19]).
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A.3 Standard results from learning theory and data-driven
algorithm design

The pseudo-dimension is frequently used to analyze the learning theoretic complexity of real-
valued function classes. The formal definition is stated here for convenience.

Definition 38 (Shattering and Pseudo-dimension, [4]). Let F be a set of functions mapping from
X to R, and suppose that S = {x1, . . . , xm} ⊆ X . Then S is pseudo-shattered by F if there
are real numbers r1, . . . , rm such that for each b ∈ {0, 1}m there is a function fb in F with
sign(fb(xi) − ri) = bi for i ∈ [m]. We say that r = (r1, . . . , rm) witnesses the shattering. We
say that F has pseudo-dimension d if d is the maximum cardinality of a subset S of X that is
pseudo-shattered by F , denoted Pdim(F) = d. If no such maximum exists, we say that F has
infinite pseudo-dimension.

Pseudo-dimension is a real-valued analogue of VC-dimension, and is a classic complexity
notion in learning theory due to the following theorem which implies the uniform convergence
sample complexity for any function in class F when Pdim(F) is finite.

Theorem A.3.1 (Uniform convergence sample complexity via pseudo-dimension, [4]). Sup-
pose H is a class of real-valued functions with range in [0, H] and finite Pdim(F). For ev-
ery ϵ > 0 and δ ∈ (0, 1), the sample complexity of (ϵ, δ)-uniformly learning the class H is
O
((

H
ϵ

)2 (
Pdim(F) log

(
H
ϵ

)
+ log

(
1
δ

)))
.

Uniform learning is closely related to the notion of PAC (probably approximately correct)
learning, indeed (ϵ, δ)-uniform learning corresponds to (ϵ/2, δ)-PAC learning [125].

We also need the following lemma from data-driven algorithm design.

Lemma A.3.2. (Lemma 2.3, [7]) Suppose that for every problem instance D ∈ D, the function
LD(ρ) : R → R is piecewise constant with at most N pieces. Then the family {Lρ(·)} over
instances in D has pseudo-dimension O(logN).

The follwing theorem is due to [35] and is useful in obtaining some of our pseudodimension
bounds.

Theorem A.3.3 ([35]). Suppose that each function f ∈ F is specified by n real parameters.
Suppose that for every x ∈ X and r ∈ R, there is a GJ algorithm Γx,r that given f ∈ F , re-
turns “true” if f(x) ≥ r and “false” otherwise. Assume that Γx,r has degree ∆ and predicate
complexity Λ. Then, Pdim(F) = O(n log(∆Λ)).
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Appendix B

Subsidy design in games

B.1 Proofs from Section 5.3.1

Proposition 5.3.1 (restated). In the two-agent series prior game (defined above and cost matrix
noted in the first row of Table 5.2), the Price of Anarchy in the absence of subsidy is at least
PoA ≥ 2

p1+p2
, for some repair costs C1, C2. More generally, for n agents, PoA ≥ H̃/G̃n for some

repair costs C1, . . . , Cn, where H̃ and G̃ are the harmonic and geometric means, respectively, of
the prior probabilities p1, . . . , pn.

Proof. We set C1 = p1p2 and C2 = p2p1. Observe that DN-DN is an equilibrium since1

p1p2 = p1+ p2p1 ≤ p1+C2, and similarly p1p2 ≤ p2+C1. Also, RE-RE is an equilibrium since
C1 = p1p2 ≤ p1 and C2 = p2p1 ≤ p2. Clearly,

PoA ≥ cost(DN,DN)

cost(RE,RE)
=

2p1p2
C1 + C2

≥ 2

p1 + p2
,

where the last inequality follows from the observations

p1p2(p1 + p2) = p1 + p2 − (p1 + p2)p1p2 ≥ p1 + p2 − 2p1p2 = C1 + C2.

For the n agent series game, we set the costs Ci = piΠj ̸=ipj . DNn (i.e., s = 0n) is a Nash
equilibrium, since

Ci +Πj ̸=ipj = (1− pi)Πj ̸=ipj + 1− Πj ̸=ipj ≥ Πjpj.

1In our notation, p1p2 := 1− p1p2, while p1 · p2 := (1− p1) · (1− p2).
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Moreover, REn is also an equilibrium as Ci ≤ pi for all i ∈ [n]. Therefore,

PoA ≥ cost(DNn)

cost(REn)
=

nΠipi∑
i Ci

=
n (1− Πipi)∑

i Πj ̸=ipj − nΠipi

≥ n (1− Πipi)∑
i Πj ̸=ipj − (

∑
i Πj ̸=ipj)Πipi

=
n∑

i Πj ̸=ipj

=
n

Πipi ·
∑

i
1
pi

,

and the claim follows by noting H̃ = n∑
i

1
pi

and G̃ = (Πipi)
1/n.

Theorem 5.3.2 (restated). Consider the two-agent series component maintenance game with
C1, C2 > 0 and 0 < p1, p2 < 1. Let s∗ = I{(C1, C2) ∈ [p1p2, p1] × [p2p1, p2]} · min{C1 −
p1p2, C2 − p2p1}, where I{·} denotes the 0-1 valued indicator function. Then there exists a sub-
sidy scheme S with total subsidy s for any s > s∗ such that P̃oA(S) = 1. Moreover, a total
subsidy of at least s∗ is necessary for any subsidy scheme S that guarantees P̃oA(S) = 1.

Proof. We will characterize the set of values of C1, C2 for which there are multiple Nash equi-
libria and design subsidy schemes that achieve P̃oA(S) = 1. We consider the following cases.

C0: C1 < p1p2, C2 > p2. In this case the only NE is RE-DN (Table 5.2). Thus, PoA = 1 even
in the absense of subsidy and s∗ = 0 in this case.

C1: C1 = p1p2, C2 > p2. Both RE-DN and DN-DN are Nash equilibria, and

cost(RE,DN) = C1 + 2p2 = p1p2 + 2p2 = 2− p1p2 − p2 < 2p1p2 = cost(DN,DN).

An arbitrarily small subsidy to agent 1 is sufficient to guarantee P̃oA(S) = 1 (therefore
s∗ = 0 works) as DN-DN would no longer be a NE.

C2: C1 > p1p2, C2 > p2. In this case the only NE is DN-DN. Thus, PoA = 1 even in the
absense of subsidy.

C3: C1 < p1p2, C2 = p2. Both RE-DN and RE-RE are Nash equilibria, and

cost(RE,DN) = C1 + 2p2 > C1 + p2 = C1 + C2 = cost(RE,RE).

An arbitrarily small subsidy to agent 2 is sufficient to guarantee P̃oA(S) = 1 (therefore
s∗ = 0 works) as RE-DN would no longer be a NE.

C4: C1 < p1p2, C2 < p2. In this case the only NE is RE-RE. Thus, PoA = 1 even in the
absense of subsidy.
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C5: (C1, C2) ∈ [p1p2, p1]× [p2p1, p2]. Both RE-RE and DN-DN are Nash equilibria, and OPT
corresponds to RE-RE. A subsidy greater than C1 − p1p2 to agent 1, or a subsidy greater
than C2 − p2p1 to agent 2 guarantees that the only NE is RE-RE. Further, in either case
P̃oA(S) = 1 as the subsidy equals the reduction in the repair cost of the respective agent.
Further suppose a subsidy of s∗ = s∗1 + s∗2 is sufficient to ensure P̃oA(S) = 1 in this
case. Now if subsidy to agent 1 s∗1 ≤ C1 − p1p2 and subsidy to agent 2 s∗2 ≤ C2 − p2p1.
Then both DN-DN and RE-RE are NE and P̃oA(S) > 1 since the worst-case equilibrium
(i.e. DN-DN) cost does not depend on the subsidy. Therefore either s∗1 > C1 − p1p2 or
s∗2 > C2− p2p1, establishing that a subsidy of at least s∗ is necessary in this case to ensure
P̃oA(S) = 1.

C6: Otherwise. By symmetry, the case is similar to one of C0 through C4 with agents 1 and 2
switched. s∗ = 0 and price of anarchy of 1 is achieved by no or arbitrarily small subsidy
as above.

Note that s∗ is non-zero only in case C5, in which case we have established both sufficiency and
necessity of a total subsidy of s∗ to ensure P̃oA(S) = 1.

Theorem 5.3.3 (restated). Consider the two-agent series component maintenance game with
C1, C2 > 0 and 0 < p1, p2 < 1. Define R ⊂ R+ × R+ as the set of cost pairs that sat-
isfy C1 ≤ p1 ∧ C2 ≤ p2 ∧ (C1 ≤ p1p2 ∨ C2 ≤ p2p1), depicted in Figure 5.2. Let s∗ =
min(x,y)∈R ||(C1, C2) − (x, y)||1, where || · ||1 denotes the L1-norm. Then there exists a subsidy
scheme S with total subsidy s for any s > s∗ such that the system functions in any NE. More-
over, a total subsidy of at least s∗ is necessary for any subsidy scheme S that guarantees that the
system functions in any NE.

Proof. (Sufficiency of s∗). We do this by cases on the cost vector (C1, C2), as follows.

C0: (C1, C2) lies in the interior of R. In this case it is easy to see that PoA = 1 and s∗ = 0. In
particular, the conditions C1 < p1, C2 < p2 rule out DN-RE, RE-DN as candidate equilib-
ria respectively, and since C1 < p1p2 or C2 < p2p1, DN-DN cannot be a NE either (agent
1 or agent 2 will prefer to repair).

C1: C1 ≤ p1p2, C2 ≥ p2. In this case, a subsidy more than s∗ = C2− p2 to agent 2 is sufficient
to bring the cost vector to the interior of R.

C2: C2 ≤ p2p1, C1 ≥ p1. Symmetric to C1.
C3: p1p2 < C1 ≤ p1, p2p1 < C2 ≤ p2. A subsidy more than mini{Ci − pip3−i} to agent

argmini{Ci − pip3−i} is sufficient to bring the cost vector to the interior of R.
C4: Otherwise. It is straighforward to verify by direct calculation that a subsidy of s∗1 =

max{C1 − p1, 0} + p1 · p2 to agent 1 and a subsidy of s∗2 = max{C2 − p2, 0} + p1 · p2 to
agent 2 is sufficient.

The necessity argument essentially follows by updating the cost matrix with conditional subsi-
dies (s1, s2) and noting that the system is guaranteed to function in any NE if the costs (C1, C2)
are in the interior of R.
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Figure B.1: Cost region R1 with non-negative VoI for each agent when component 1 is inspected
in a two-series game (Theorem B.1.1).

In addition to expected VoI, we can also ensure posterior conditioned VoIi,j when component cj
is inspected is non-negative for each agent i and each posterior yj via subsidy. The following
result gives the optimal value of subsidy to ensure this.

Theorem B.1.1. Consider the two-agent series component inspection game with C1, C2 > 0 and
0 < p1, p2 < 1. Then

(a) VoIi,j(si, s̃j,1) ≥ 0 for any agents i, j, any prior NE si and any posterior NE s̃j,1, when
the inspected component j is working, except when C3−j = p3−j and an arbitrarily small
subsidy is sufficient to ensure VoI is non-negative in this case.

(b) Define R1 ⊂ R+×R+ as the set of cost pairs that satisfy (Cj ≤ pj∧C3−j ≤ p3−jpj)∨(Cj ≤
pjp3−j). Let s∗ = min(x,y)∈R1 ||(C1, C2)−(x, y)||1, where ||·||1 denotes the L1-norm. Then
there exists a subsidy scheme S with total (unconditional) subsidy s for any s > s∗ such that
VoIi,j(si, s̃j,0) ≥ 0 for any agents i, j, any prior NE si and any posterior NE s̃j,0, when the
inspected component j is broken. Moreover, a total (unconditional) subsidy of at least s∗

is necessary for any subsidy scheme S that guarantees that the system functions in any NE.

Proof. WLOG j = 1.

(a) If y1 = 1, the only candidate posterior equilibria are DN-DN if C2 ≥ p2 and DN-RE if
C2 ≤ p2.
If C2 > p2, then the prior NE is either DN-DN or RE-DN. In either case both agents have
a non-negative Value of Information (Table 5.2). If C2 < p2, then the prior NE is either
DN-DN, RE-RE or DN-RE. In each case both agents can be readily verified to have a non-
negative Value of Information. If C2 = p2 and C1 ≤ p2, then VoI can be negative for agent
1 if the prior equilibrium is RE-RE and the posterior equilibrium is DN-DN. But in this
case a (unconditional, or conditional on inspection) subsidy of s∗2 > 0 to agent 2 ensures
that DN-DN is not a posterior equilibrium and both agents have non-negative VoI.

(b) For y1 = 0, we consider the following cases.

C0: C1 ≤ p1p2, C2 > p2. If C1 < p1p2, the only prior NE is RE-DN and the only poste-
rior NE is also RE-DN. Thus, VoI = 0 for each agent even in the absense of subsidy
and s∗ = 0 in this case. If C1 = p1p2, DN-DN is also a prior NE but VoI is still
non-negative for each agent, since the posterior costs

cost1(RE,DN) = C1 + p2 ≤ p1p2 + p2 = p1p2,
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and
cost2(RE,DN) = p2 < p1p2.

C1: p1p2 < C1 ≤ p2, C2 > p2. DN-DN is the only prior NE and the only posterior
equilibrium is RE-DN (except if C1 = p2, when DN-DN is also a posterior NE), and

cost1(RE,DN) = C1 + p2 > p1p2.

A subsidy of C1− p1p2 to agent 1 is sufficient to ensure VoI is non-negative for agent
1 as noted in case C0. Alternatively, a subsidy of C2 − p1p2 to agent 2 ensures that
RE-RE is the only prior and posterior NE, and VoI is non-negative for each agent.
The smaller of the two subsidies works and is necessary in this case.

C2: C1 > p2, C2 > p2. In this case the only NE is DN-DN in both prior and posterior
games. The value of information is negative for both agents in the absense of sub-
sidy as the posterior costs are 1. Subsidy schemes described in case C1 above can be
verified to be optimal in this case as well.

C3: C1 < p1p2, C2 = p2. Both RE-DN and RE-RE are prior and posterior Nash equilib-
ria, and

cost(RE,DN) = C1 + 2p2 > C1 + p2 = C1 + C2 = cost(RE,RE).

An arbitrarily small subsidy to agent 2 is sufficient to guarantee non-negative VoI as
RE-DN would no longer be a NE.

C5: Otherwise. Value of Information for agent 1 is negative since either DN-DN or DN-
RE is a posterior NE with cost 1, and there is a prior NE with smaller cost to agent 1.
It may be verified that the subsidy scheme from Theorem 5.3.3 is optimal in ensuring
non-negative VoI in this case.

B.2 Optimal subsidy in two agent parallel game
The cost matrix for a two-agent parallel game is summarized in Table B.1. pR denotes the prob-
ability that remaining components work. These additional components are not controlled by any
agent, and connected in parallel to the components controlled by the two agents.

B.2.1 Guaranteeing system functions in any NE
Theorem B.2.1. Consider the two-agent parallel component maintenance game such that C1, C2 >
0 and 0 < p1, p2 < 1. Let s∗ = I{(C1, C2) ∈ [pR · p1 · p2,∞)2} · (min{C1, C2} − pR · p1 · p2),
where I{·} denotes the 0-1 valued indicator function. Then there exists a subsidy scheme S with
total subsidy s for any s > s∗ such that the system functions in any NE. Moreover, a total subsidy
of at least s∗ is necessary for any subsidy scheme S that guarantees that the system functions in
any NE.
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Conditions DN-DN DN-RE RE-DN RE-RE

Prior pR · p1 · p2, pR · p1 · p2 0, C2 C1, 0 C1, C2

y1 = 1 0, 0 0, C2 C1, 0 C1, C2

y1 = 0 pR · p2, pR · p2 0, C2 C1, 0 C1, C2

Table B.1: Matrix for cost-pairs (agent 1, agent 2) when component c1 is inspected for the two-
agent parallel system.

Proof. Note that the system does not function only in DN-DN, for which to be a NE we must
have (C1, C2) ∈ [pR · p1 · p2,∞)2. Now a subsidy s∗i > Ci − pR · p1 · p2 to agent i guarantees
that agent i chooses repair, establishing the first part of the theorem.

Conversely, suppose (C1, C2) ∈ [pR · p1 · p2,∞)2 and a subsidy scheme with total subsidy s∗

guarantees that the system functions in any NE. But if s∗i ≤ Ci − pR · p1 · p2 for i ∈ {1, 2}, then
DN-DN is still an NE, and the system does not function for this NE. By contradiction, the total
subsidy must be at least s∗ as claimed.

B.2.2 Value of Information
For this case as well, the Value of Information may be negative if a local equilibrium is selected
for some parameter settings. In the following we will show a dichotomy—if the repair costs are
small then a central agent using subsidy must subsidize the full costs of repair to avoid negative
Value of Information of component inspection for the agents. Otherwise, the central agent can
partially subsidize to avoid negative VoI.

Theorem B.2.2. Suppose C1, C2 /∈ {0, pR·p2, pR·p1·p2}. A subsidy scheme with s∗1 > max{C1−
pR · p1 · p2,min{C1, pR · p2}} and s∗2 > max{C2 − pR · p1 · p2,min{C2, pR · p2}}, conditional
on inspection, is sufficient to avoid negative VoI for both agents when component 1 is inspected.

Proof. Note that RE-RE cannot be an equilibrium since C1, C2 > 0. Also negative VoI is not
possible when the posterior is y1 = 1 as the only Nash equilibrium is DN-DN with zero cost for
each agent.

First suppose min{C1, C2} ≥ pR ·p1 ·p2. This implies DN-DN is the prior equilibrium. In this
case, the conditional subsidies of s∗i = Ci−pR ·p1 ·p2 are sufficient to ensure that posterior repair
costs for each agent is less than pR · p1 · p2 ≤ pR · p2. Thus, DN-DN cannot be a posterior NE for
y1 = 0. For DN-RE and RE-DN, the subsidy ensures that VoI is non-negative for both agents.

Otherwise, we have three cases to consider w.r.t. relative choice values of repair costs and
failure probabilities,

C1: C1 < pR · p1 · p2 ≤ C2. In this case, RE-DN is the prior equilibrium. Moreover, since
C1 < pR · p1 · p2 ≤ pR · p2, agent 1 would prefer action RE over DN and so DN-DN
cannot be a posterior NE for y1 = 0. If RE-DN is the posterior NE, then by Table B.1
clearly VoI is non-negative for both agents. So it only remains to consider the posterior
equilibrium DN-RE. If C2 > pR · p2, DN-RE cannot be an equilibrium, and we are done.
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If C2 ≤ pR · p2, then the subsidy s∗2 > min{C2, pR · p2} ensures that VoI of agent 2 is
non-negative even if DN-RE is the posterior equilibrium.

C2: C2 < pR · p1 · p2 ≤ C1. The argument for this case is symmetric to the previous case, with
DN-RE as the only possible prior equilibrium.

C3: max{C1, C2} < pR · p1 · p2. In this case DN-RE as well as RE-DN can be prior Nash
equilibria. Since max{C1, C2} < pR · p1 · p2 ≤ pR · p2, DN-RE and RE-DN are the only
candidate posterior NE. The setting of subsidies s∗i > pR ·p2 ≥ pR ·p1 ·p2 > max{C1, C2}
ensures that VoI is non-negative for both agents in this case.

B.3 Additional proofs from Section 5.3.2
Theorem 5.3.6 (restated). CMG-SYSTEM is NP-Hard.

Proof. We will reduce the VERTEX-COVER problem to CMG-SYSTEM. Given an instance G, k
of the VERTEX COVER problem, we create a corresponding CMG-SYSTEM problem as fol-
lows. Introduce an agent i for every vertex i ∈ V and consider the (2-CNF) formula ϕ(x) =∧

(i,j)∈E(xi∨xj), where the clauses consist of states xi, xj for all pairs i, j of agents/components
corresponding to edges in E. Set the probability distribution θ to be the constant distribution with
the entire probability mass on 0n (i.e. all the components are guaranteed to fail without repair).
Set repair cost Ci = 1− ϵ for 0 < ϵ < 1/n for all components i.

Observe that,

li(si, s−i, θ) = Ex∼θ[costi]
= Cisi + Pϕ(θ)

= (1− ϵ)si + 1− ϕ(x′)

= (1− ϵ)si + 1− ϕ(s),

where x′
i = max{0, si} = si denotes the state of component i after agent i takes action si. Note

that WLOG s = 0n is a NE for this game, since any repair action by any agent increases the
agent’s cost by (1 − ϵ) if the repair does not change the state ϕ of the system, and 0 otherwise
(since ϕ is monotonic, it can only change from 0 to 1). We will now show that the remaining
NEs for the game correspond to vertex covers of G.

Suppose K ⊆ [n] be a set of agents for which the corresponding nodes in G constitute a
minimal vertex cover. Let sK′ = (s1, . . . , sn) where si = I[i ∈ K ′], where I[·] is the 0-1 valued
indicator function and K ′ ⊂ K with |K ′| = |K| − 1. Similarly, sK := (s1, . . . , sn) where
si = I[i ∈ K]. Clearly, ϕ(sK′) = 0 and ϕ(sK) = 1. If i ∈ K, agent i does not reduce cost
by switching from RE to DN since K is a minimal cover therefore not repairing component i
causes the system to fail. If j /∈ K, agent j does not reduce cost by switching from DN to
RE as the system was already functioning. Further, if K is the set of agents corresponding to a
non-minimal vertex cover, then there must be some agent that can reduce its cost by switching
from RE to DN. Finally, if K ′ ̸= ∅ is the set of agents with one or more agents short of a vertex
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cover, then any agent in K ′ can reduce its cost by switching from RE to DN. This establishes
that besides 0n, only possible NE must correspond to a minimal vertex cover.

To complete the reduction, we consider the game defined above and subsidy budget s∗ =
k−1. If there exists a vertex cover of size k, then a minimal cover K ′ has size k′ ≤ k. We design
a subsidy scheme with total subsidy s′ = k′− 1 ≤ s∗, allocating subsidy of 1 for repair to all but
one agent in the minimal cover K ′ and subsidy of 0 otherwise. Clearly the only agent not given
subsidy will choose repair since cost of repair 1− ϵ is more than compensated by the change due
to system state. As argued above, the only candidate NE are 0n and sK corresponding to some
minimal vertex cover K. Without the subsidy, the social cost for 0n is n (except the trivial case
k = 0) and that for sK′ is k′(1 − ϵ) which is smaller. If we provide subsidy in our scheme S to
the agents in K ′ except one then 0n is no longer an NE. In particular, every subsidized agent in
K ′ would now choose repair at cost 1−ϵ over doing nothing (even when the system stays broken
after the repair) and the remaining agent in K ′ will choose repair if the system is broken. Thus,
the system functions in all NEs.

Conversely, suppose there exists a subsidy scheme S with total subsidy at most s∗ = k − 1,
such that the system functions in any NE. Then either the system functions in 0n and there is a 0-
cover for graph G, or the NE corresponds to a minimal vertex-cover K ′ of size k′ as the repaired
components (in the subsidized game). In the latter case, we seek to show k′ ≤ k to complete the
proof. Since the system is not assumed to function for s = sκ for repair actions by agents in any
κ ⊂ K ′ with κ = k′ − 1, we need to provide subsidy at least 1 − ϵ to all but one agent in K ′.
That is, k − 1 = s∗ ≥ (1 − ϵ)(k′ − 1) > k′ − 1 − (k′ − 1)/n (since ϵ < 1/n), or k ≥ k′ since
both k, k′ are integers.

Theorem 5.3.7 (restated). CIG-VOI is NP-Hard.

Proof. We will reduce VERTEX-COVER to CIG-VOI. Recall that VERTEX-COVER is the fol-
lowing decision problem—given a graph G = (V,E) and integer k, does there exist a vertex
cover of size k? In contrast to proof of Theorem 5.3.6, we will need to set a slightly higher
subsidy and carefully adapt the argument to the value of information computation.

We will create an instance of the CIG-VOI problem with n = |V |+ 1 agents, an agent each
for vertices in G and an additional agent j = |V | + 1. The construction of the instance and
several arguments are similar to the proof of Theorem 5.3.6. The key difference is that we have
an additional agent j that does not correspond to a vertex in G. We will consider the inspection
of the component cj corresponding to this agent.

Consider the (2-CNF) formula ϕ(x) =
∧

(u,v)∈E(xu ∨ xv), where the clauses consist of states
xu, xv for all pairs u, v of agents/components corresponding to edges in E. Set the probability
distribution θ to be the constant distribution with the entire probability mass on 0n (i.e. all the
components are guaranteed to fail without repair). Set repair cost Ci = 1 − ϵ for 0 < ϵ < 1/n
for all components i ∈ [|V |] and Cj = 1. Therefore, li(si, s−i, θ) = (1 − ϵ)si + 1 − ϕ(s) for
i ∈ [|V |] and lj(sj, s−j, θ) = 2 − ϕ(s). Note that WLOG s = 0n is a NE for this game, since
any repair action by any agent increases the agent’s cost by (1− ϵ) if the repair does not change
the state ϕ of the system, and 0 otherwise (since ϕ is monotonic, it can only change from 0 to 1).
As shown in the proof of Theorem 5.3.6, the remaining NEs for the game correspond to minimal
vertex covers of G. Moreover, since ϕ(s) does not depend on sj by definition, agent j will always
prefer action DN for any s−j . Let sK := (s1, . . . , sn) where si = I[i ∈ K] for any K ⊆ V .
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Notice that the prior and posterior games (for inspection of cj) have identical cost matrices
and equilibria for this component inspection game. To complete the reduction, we consider the
game defined above and subsidy budget s∗ = k. Suppose there exists a vertex cover of G of size
k, then there exists a minimal vertex cover, say K ′ of size k′ ≤ k. We design a subsidy scheme
with total subsidy s′ = k′ ≤ s∗, allocating subsidy of 1 for repair to exactly the agents in K ′.
Clearly, all subsidized agents will always choose repair. We claim that the only NE after subsidy
is sK′ . Indeed, by the above observation, any NE must be sK for some K ⊇ K ′. But if K ̸= K ′,
then any agent in K \K ′ will choose to do nothing as the system would function without their
repair action. Since there is exactly one NE in prior and posterior games, Value of Information
is exactly zero for all agents.

Conversely, if there is no vertex cover of size k, then we show that no subsidy scheme with
s∗ ≤ k may guarantee that no agent has negative value of information when a single component
j is inspected. In this case the any vertex cover K ′ has |K ′| > k. We consider two cases:

C0: |K ′| > k + 1. Observe that if the subsidy provided to an agent is less than the repair cost
1 − ϵ, then the agent will prefer to do nothing, except when repairing their component
(given other players actions) changes the system state from 0 to 1. However, with a budget
of s∗ = k, the maximum number of agents that can receive a subsidy of at least 1 − ϵ is
at most k

1−ϵ
< k + 1, since ϵ < 1/n and k < n WLOG. Thus, at least two agents are

without subsidy at least 1 − ϵ in K ′, and these agents will prefer to do nothing if only the
agents K∗ = {i ∈ [|V |] | s∗i > 1 − ϵ} with sufficient subsidy choose repair. Observe that
both sK′ and sK∗ are Nash equilibria in the subsidized game. If sK′ is chosen as the prior
equilibrium and sK∗ a posterior equilibrium, then the value of information for agents in
K ′ \K∗ is (1− ϵ)− 1 < 0 since the system does not work in sK∗ .

C1: |K ′| = k + 1. In this case, the only new possibility is if at least 1 − ϵ subsidy is provided
to all but one agent (say k′) in K ′, then the remaining agent will choose repair. Without
loss of generality, we assume k + 1 < n, and that K ′ is a minimal vertex cover. Now if
vk′ denotes the vertex corresponding to agent k′ in G, and let E ′ denote the set of edges
incident on vertices V ′ ⊆ V \ K ′ with one end at vk′ . E ′ is non-empty, as otherwise
K ′ \ {vK′} would constitute a vertex cover for G contradicting minimality of K ′. Observe
that K1 = K ′ \ {vK′} ∪ V ′ is a vertex cover. Let K2 denote a minimal vertex cover which
is a subset of K1. Now both sK2 and sK′ are NEs in the subsidized game. If the former
is set as the prior equilibrium, and the latter a posterior equilibrium then, the value of
information is negative (equals 0− (1− ϵ) = ϵ− 1) for agent k′.

Thus in either case, some agent has a negative value of information when the subsidy budget is
k. This completes the reduction.

B.4 Additional proofs from Section 5.4

Theorem 5.4.3 (restated). For any ϵ, δ > 0 and any distribution D over component mainte-
nance games with n agents, O(n

2H2

ϵ2
(n2 + log 1

δ
)) samples of the component maintenance game

drawn from D are sufficient to ensure that with probability at least 1 − δ over the draw of the
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samples, the best vector of subsidies over the sample ŝ∗ has expected loss Lprior that is at most ϵ
larger than the expected loss of the best vector of subsidies over D.

Proof. Consider any fixed game G. Given any joint action s = (si, s−i), an agent i’s decision
for switching their action from si to si := 1 − si is determined by the inequality (Ci − s∗i )si +
1 − Φ(si, s

′
−i) ≤ (Ci − s∗i )(si) + 1 − Φ(si, s

′
−i), where Φ(s) := Eθ[ϕ(x

′(s))], which is linear
in s∗i , the subsidy provided to agent i. Thus, for each agent i, we have at most 2n−1 axis-parallel
hyperplanes in the parameter space in Rn, or a total of n2n−1 hyperplanes overall. Moreover, the
loss function as a function of the parameters is piecewise constant in any fixed piece. Therefore
the loss function class is (n, n2n−1)-delineable in the sense of [17], that is the subsidy parameter
space is Euclidean in n dimensions and is partitioned by at most n2n−1 hyperplanes into regions
where the loss is linear (in this case constant) in the parameters.
By using a general result from [17] which states that a (d, t)-delineable function class has pseudo-
dimension O(d log(dt)), the above structural argument implies that the pseudo-dimension of the
loss function class parameterized by the subsidy value is at most O(n log(n22n−1)) = O(n2) and
the sample complexity result follows [4, 7].

Learning conditional subsidies. We will now obtain a sample complexity bound for non-
uniform subsidy schemes in component inspection games, where the central agent provides sub-
sidy only in posterior games. Let S denote the subsidy scheme. Let S0

NE(S) (resp. S1
NE(S))

denote the subset of states in S corresponding to Nash equilibria when the cost for agent i is
the subsidized cost costS,0i (resp. costS,1i ) for posterior yj = 0 (resp. yj = 1). For component
inspection game of component c1 (wlog), define

Lposterior(S) := p1L
1
posterior(S) + p1L

0
posterior(S),

where Li
posterior(S) := maxs∈Si

NE(S) costS,i(s) + subsi(s). We assume that subsji (s) ≤ H,Ci ≤ H
for each i ∈ [n], j ∈ {0, 1}, thus Lposterior(S) ≤ (2H + 1)n. In this case too, we are able to give
a polynomial sample complexity for the number of games needed to learn a good value of sub-
sidy with high probability over the draw of game samples coming from some fixed but unknown
distribution.

Theorem B.4.1. For any ϵ, δ > 0 and any distribution D over component inspection games with
n agents, O(n

2H2

ϵ2
(n2 + log 1

δ
)) samples of the component inspection game drawn from D are

sufficient to ensure that with probability at least 1 − δ over the draw of the samples, the best
vector of subsidies over the sample ŝ∗ has expected loss Lposterior that is at most ϵ larger than the
expected loss of the best vector of subsidies over D.

Proof. Consider any fixed game G. Given any joint action s = (si, s−i), an agent i’s decision for
switching their action from si to si := 1 − si in posterior game y1 = y is determined by the in-
equality (Ci−syi )si+1−Φ(si, s′−i) ≤ (Ci−syi )(si)+1−Φ(si, s′−i) (with Φ(s) := Eθ̃1,y [ϕ(x

′(s))]),
which is linear in syi , the subsidy provided to agent i conditional on y1 = y. Thus, for each agent
i, we have at most 2 · 2n−1 axis-parallel hyperplanes in the parameter space in R2n, or a total of
n2n hyperplanes overall. Moreover, the loss function as a function of the parameters is piecewise
constant in any fixed piece. Therefore the loss function class is (2n, n2n)-delineable in the sense
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of [17]. The rest of the argument is similar to the proof of Theorem 5.4.3, differing only in some
multiplicative constants.

Theorem 5.4.4 (restated). Suppose Assumption 5 holds. Let L1, . . . , LT : [0, H] → [0, (2H +
1)N ] denote an independent sequence of losses as a function of the subsidy value σ, in an online
sequence of T component maintenance games. Then sequence of functions is 1

2
-dispersed and

there is an online algorithm with Õ(
√
nT ) expected regret.

Proof. The key idea is to observe that each loss function Lt has at most K = n2n−1 discontinu-
ities (as in proof of Theorem 5.4.2 above). Further, any interval of length ϵ has at most O(κϵT )
functions that are non-Lipschitz in that interval, in expectation. This uses Assumption 5, and the
observation that critical values of s∗ are linear in some cost Ci. Indeed, as shown in the proof of
Theorem 5.4.2, the critical values of subsidy are given by s∗ = Ci+Eθϕ(0, s

′
−i)−Eθϕ(1, s

′
−i) for

some agent i and joint action s′−i. By [19] then the expected number of non-Lipschitz losses on
the worst interval of length ϵ is at most Õ(Tϵ+

√
T log(TK)) = Õ(

√
(n+ log T )T ) for ϵ ≥ 1√

T
.

This implies 1/2-dispersion of the sequence of loss functions in the sense of Definition 2.
Then Theorem 5 from [19] with M = 1 implies the desired regret bound.
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Appendix C

Robustness

We include proofs and additional details from Chapter 6 here.

C.1 Technical lemmas for robustness of Algorithm 10
The following lemma gives a bound on the fraction of the surface of the sphere at some fixed
small distance from the subspace in Theorem 6.1.3. The bound involves a geometric calculation
of a surface element of a sphere in Rn.

Lemma C.1.1. The fraction of the surface of the unit (n− 1)-sphere at a distance at most small
ε = o(1) from a fixed (n−k)-hyperplane through its center is at most 2εk

k
· A(k−1)A(n−k−1)

A(n−1)
, where

A(m) is the surface-area of the unit m-sphere embedded in m+ 1 dimensions.

Proof. Let the fixed hyperplane be x1 = x2 = · · · = xk = 0. We change the coordinates to
a product of spherical coordinates (ρ is the distance from the hyperplane, r is the orthogonal
component of the radius vector).

xj =





ρSj−1 cosϕj, if j < k;

ρSj−1, if j = k;

rTj−k−1 cosαj−k, if k < j < n;

rTj−k−1, if j = n.

where Sl =
∏l

i=1 sinϕi and Tl =
∏l

i=1 sinαi. The desired surface area is easier to compute in
the new coordinate system.

The new coordinates are (y1, . . . , yn) = (ρ, ϕ1, ϕ2, . . . , ϕk−1, r, α1, . . . , αn−k−1). Let z =√
r2 + ρ2 =

√∑n
i=1 x

2
i denote the usual radial spherical coordinate. Volume element in this

new coordinate system is given by

dV = | det(J)| dρ dϕ1 . . . dϕk−1dr dα1 . . . dαn−k−1,

where J is the Jacobian matrix, Jij = ∂xi

∂yj
. We can write

J =

[
A 0
0 B

]
,
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where Aij =
∂xi

∂yj
for 1 ≤ i, j ≤ k and Bij =

∂xi+k

∂yj+k
for 1 ≤ i, j ≤ n− k.

By Leibniz formula for determinants, it is easy to see

det(J) = det(A) · det(B)

= ρk−1

(
k−2∏

i=1

sink−i−1 ϕi

)
· rn−k−1

(
n−k−2∏

i=1

sinn−k−i−1 αi

)

= ρk−1rn−k−1

(
k−2∏

i=1

sink−i−1 ϕi

)(
n−k−2∏

i=1

sinn−k−i−1 αi

)
.

Now the surface element is given by

dS =
1

zn−1

dV

dz
=

1

zn−1

(
dV

dr

∂r

∂z
+

dV

dρ

∂ρ

∂z

)
=

1

rzn−2

dV

dr
+

1

ρzn−2

dV

dρ
.

Plugging in our computation for dV ,

dS =

(
ρk−1rn−k−2

zn−2
dρ+

ρk−2rn−k−1

zn−2
dr

)(k−2∏

i=1

sink−i−1 ϕidϕi

)(
n−k−2∏

i=1

sinn−k−i−1 αidα1

)
.

We care about z = 1 and ρ ≤ ε (or r ≥
√
1− ε2). Notice

∫ 1

√
1−ε2

ρk−2rn−k−1

zn−2
dr =

∫ 0

ε

ρk−2rn−k−1−ρdρ
r

=

∫ ε

0

ρk−1rn−k−2dρ.

Thus, using the surface element in the new coordinates and integrating, we get

Area of ε-close points = A(k−1)A(n−k−1)·2
∫ ε

0

ρk−1rn−k−2dρ ≤ A(k−1)A(n−k−1)· 2ε
k

k

which gives the desired fraction.

C.2 Technical lemmas for online threshold parameter tuning
We begin with an observation, which allows us to focus on small τ . In particular we note that the
nearest-neighbor distance for most points is O(m−1/n2), and therefore searching for threshold
in the range [0, τmax] with τmax = O(m−1/n2) is sufficient for almost no abstention. This can
provide a useful guide in setting τmax in Theorem 6.3.2. To simplify our results, we will treat
n2, n3 as constants in the following.

Lemma C.2.1. Let Φ be a distribution defined on a compact convex subset C of Rn whose den-
sity function ϕ is continuous and strictly positive on C (that is ϕ(x) > 0 for x ∈ C), and has
bounded partial derivatives throughout C. If m samples B = {β1, . . . , βm} are drawn from Φ,
for any βi the probability that the distance di to its nearest neighbor in B is not O(m−1/n) is o(1).
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Proof. We use the asymptotic moments of nearest neighbor distance distribution due to [76]
together with a concentration inequality to complete the proof. Indeed, the asymptotic mean
nearest neighbor distance is shown to be O(m−1/n), and the variance is O(m−2/n). By Cheby-
shev’s inequality, the probability that di is outside ω(1) standard deviations is o(1).

We will need the following lemma about Lipschitzness of Eadv(τ). The argument can also be
adapted to bounded density adversary (Corollary C.2.3), and to show a bound on the breakpoints
in Êadv(τ) (Corollary C.2.4).

Lemma C.2.2. If τ ≤ τmax = o (r), Eadv(τ) is O (mτn2−n3−1
max /rn2−n3)-Lipschitz.

Proof. Consider the probability that the adversary is able to succeed in misclassifying a test
point x as a fixed training point x′ (of different label) only when the threshold increases from τ
to τ + dτ . Scale all distances by a factor of 1

dist(x,x′)
=: 1

r′
. WLOG, let x be the origin and the

adversarial subspace S be given by xn3+1 = xn3+2 = · · · = xn2 = 0, and x′ is the uniformly
random unit vector (z1, . . . , zn2). The adversary can win only if the distance ∆ of x′ from S is at
most τ

r′
. Therefore a threshold change of τ to τ +dτ corresponds to ∆ ∈

(
τ
r′
, τ+dτ

r′

)
. We observe

from the proof of Lemma C.1.1 that

Pr

[
∆ ∈

(
τ

r′
,
τ + dτ

r′

)]
= C(n2, n3) ·

∫ (τ+dτ)/r′

τ/r′
ρn2−n3−1

(√
1− ρ2

)n3−2

dρ

≤ C(n2, n3) ·
τn2−n3−1dτ

r′n2−n3
,

where C(n2, n3) = 2A(n3 − 1)A(n2 − n3 − 1) is a constant for fixed dimensions n2, n3. This
holds for any test point x ∈ T , and in particular, in average over the test points. Using a union
bound over training points we conclude,

Eadv(τ + dτ)− Eadv(τ) ≤ mC(n2, n3)
τn2−n3−1dτ

r′n2−n3
.

The slope bound increases with τ , substituting τ ≤ τmax and r′ ≥ r gives the desired bound on
Lipschitzness.

Corollary C.2.3. For a κ̃-bounded adversary distribution S in Lemma C.2.2, we have that
Eadv(τ) is O (κ̃mτn2−n3−1

max /rn2−n3)-Lipshcitz.

Proof. The proof follows using the same arguments in the proof of Theorem 6.1.5 applied to
Lemma C.2.2 (instead of our upper bounds on the robust error).

Corollary C.2.4. For S drawn from a κ̃-bounded adversary distribution S, the expected number
of discontinuities of Eadv(τ, S) in any τ -interval of length w is O (κ̃bmwτn2−n3−1

max /rn2−n3).

Proof. Consider the interval [τ, τ + w]. We are interested in bounding the probability that for a
given test point x, the smallest threshold τ ′ for which the adversary succeeds when perturbing
along S (over the draw S ∼ S) lies in the interval [τ, τ + w].

For a fixed training point xi, the probability of adversarial success on any x ∈ T by per-
turbing to a point at distance τ ′ ∈ [τ, τ + w] from xi is bounded by O (κ̃wτn2−n3−1

max /rn2−n3) as
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argued above (Lemma C.2.2). Taking a union bound over training points xi implies the adversary
succeeds with probability at most O (κ̃mwτn2−n3−1

max /rn2−n3) by perturbing to within [τ, τ + w]
of some training point. Thus, for b test points the expected number of breakpoints is at most
O (κ̃bmwτn2−n3−1

max /rn2−n3).

The following lemma gives a bound on the expected number of breakpoints in Dnat(τ), a piece-
wise constant function in τ , in a small interval of width w.

Lemma C.2.5. Suppose that the data distribution satisfies the assumptions in Lemma C.2.1, and
further is κ-bounded. The expected number of discontinuties in Dnat(τ) in any interval of width
w for τ ≤ τmax is O(κbmwτn2−1

max ).

Proof. Note that the discontinuities of Dnat(τ) in an interval (τ, τ + w) corresponds to points
(x,y) ∈ T such that nearest neighbor distance of x is in that interval.

E[number of discontinuities in (τ, τ + w)]

= bPr[nearest neighbor of a test point ∈ (τ, τ + w)]

≤ bPr[some neighbor of a test point ∈ (τ, τ + w)]

≤ κbmvol(spherical shell of radius τ and width w)

= κbmO(τn2−1
max w)

= O(κbmwτn2−1
max ).

For the full proof of Theorem 6.3.2, we will need a low-regret bound for dispersed functions due
to [15]. If the sequence of functions is dispersed, we can bound the regret of a simple exponential
forecaster algorithm (Algorithm 11) by the following theorem.

Theorem C.2.6 ([15]). Let u1, . . . , uT : C → [0, 1] be any sequence of piecewise L-Lipschitz
functions that are (w, k)-dispersed. Suppose C ⊂ Rd is contained in a ball of radius R and
B(ρ∗, w) ⊂ C, where ρ∗ = argmaxρ∈C

∑T
i=1 ui(ρ). The exponentially weighted forecaster with

λ =
√
d ln(R/w)/T has expected regret bounded by O

(√
Td log(R/w) + k + TLw

)
.
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Appendix D

Multiple similar tasks

We include proofs and additional details from Chapter 7 here.

D.1 Lower Bound

We extend the construction in [18] to the multi-task setting. The main difference is that we
generalize the construction for any task similarity, and show that we get the same lower bound
asymptotically.

Theorem D.1.1. There is a sequence of piecewise L-Lipschitz β-dispersed functions ℓi,j : [0, 1] 7→
[0, 1], whose optimal actions in hindsight argminρ

∑m
i=1 lt,i(ρ) are contained in some fixed ball

of diameter D∗, for which any algorithm has expected regret Rm ≥ Ω̃(m1−β).

Proof. Define u(b,x)(ρ) = I[b = 0]∗ I[ρ > x]+ I[b = 1]∗ I[ρ ≤ x], where b ∈ {0, 1}, x, ρ ∈ [0, 1]
and I[·] is the indicator function. For each iteration the adversary picks u(0,x) or u(1,x) with equal
probability for some x ∈ [a, a+D∗], the ball of diameter D∗ containing all the optima.

For each task t, m− 3
D∗m

1−β functions are presented with the discontinuity x ∈ [a+D∗/3, a+
2D∗/3] while ensuring β-dispersion. The remaining 3

D∗m
1−β are presented with discontinuities

located in successively halved intervals (the ‘halving adversary’) containing the optima in hind-
sight, any algorithm gets half of these wrong in expectation. It is readily verified that the func-
tions are β-dispersed. The construction works provided m is sufficiently large (m >

(
3
D∗

)1/β).
The task averaged regret is therefore also Ω̃(m1−β).

D.2 Robustness lower bound

Theorem D.2.1. There exist sequences of piecewise L-Lipschitz functions l̃i, li, ai [0, 1]→ [0, 1]
for i = 1, . . . ,m such that for any online algorithm

1. l̃i is β-dispersed and E[R̃m] = Ω(m1−β),
2. l̃i is β-dispersed, ai is m−β-bounded, βa-dispersed and E[Rm] = Ω(m1−min{β,βa}).
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Proof. Part 1 follows from the lower bound in Theorem D.1.1, by setting l̃i = li as the loss
sequence used in the proof.

To establish Part 2, we extend the construction as follows. l̃i = li are both equal and corre-
spond to the ‘halving adversary’ from the proof of Theorem D.1.1 for the first Θ(m1−β) rounds.
If β ≤ βa we are done, so assume otherwise. Let I denote the interval containing the optima over
the rounds so far. Notice that the length of I is at most |I| ≤ (1

2
)Θ(m1−β) ≤ (1

2
)β logm = m−β for

β > 0. For further rounds li continues to be the halving adversary for Θ(m1−βa) rounds, which
implies any algorithm suffers Ω(m1−βa) regret. We set attack ai on interval I such that l̃i = 0
on I on these rounds. This ensures that ai is βa-dispersed and l̃i is β-dispersed. Putting together
with the case β ≤ βa, we obtain Ω(m1−min{β,βa}) bound on the regret of any algorithm.

D.3 Learning algorithmic parameters for combinatorial prob-
lems

We discuss implications of our results for several combinatorial problems of widespread interest
including integer quadratic programming and auction mechanism design. We will need the fol-
lowing theorem from [10], which generalizes the recipe for establishing dispersion given by [19]
for d = 1, 2 dimensions to arbitrary constant d dimendions. It is straightforward to apply the
recipe to establish dispersion for these problems, which in turn implies that our meta-learning
results are applicable. We demonstrate this for a few important problems below for completeness.

Theorem D.3.1 ([10]). Let l1, . . . , lm : Rd → R be independent piecewise L-Lipschitz functions,
each having discontinuities specified by a collection of at most K algebraic hypersurfaces of
bounded degree. Let L denote the set of axis-aligned paths between pairs of points in Rd, and
for each s ∈ L define D(m, s) = |{1 ≤ t ≤ m | lt has a discontinuity along s}|. Then we have
E[sups∈L D(m, s)] ≤ sups∈L E[D(m, s)] +O(

√
m log(mK)).

D.3.1 Greedy knapsack

We are given a knapsack with capacity cap and items i ∈ [m] with sizes wi and values vi. The
goal is to select a subset S of items to add to the knapsack such that

∑
i∈S wi ≤ cap while

maximizing the total value
∑

i∈S vi of selected items. We consider a general greedy heuristic to
insert items with largest vi/w

ρ
i first (due to [84]) for ρ ∈ [0, 10].

The classic greedy heuristic sets ρ = 1 and can be used to provide a 2-approximation for the
problem. However other values of ρ can improve the knapsack objective on certain problem in-
stances. For example, for the value-weight pairs {(0.99, 1), (0.99, 1), (1.01, 1.01)} and capacity
cap = 2 the classic heuristic ρ = 1 gives value 1.01 as the greedy heuristic is maximized for the
third item. However, using ρ = 3 (or any ρ > 1 + log(1/0.99)/ log(1.01) > 2.01) allows us to
pack the two smaller items giving the optimal value 1.98.

Our result (Theorem 7.1.2) when applied to this problem shows that it is possible to learn
the optimal parameter values for the greedy heuristic algorithm family for knapsack from similar
tasks.
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Theorem D.3.2. Consider instances of the knapsack problem given by bounded weights wi,j ∈
[1, C] and κ-bounded independent values vi,j ∈ [0, 1] for i ∈ [m], j ∈ [T ]. Then the asymp-
totic task-averaged regret for learning the algorithm parameter ρ for the greedy heuristic family
described above is oT (1) + 2V

√
m+O(

√
m).

Proof. Lemma 11 of [19] shows that the loss functions form a 1
2
-dispersed sequence. The result

follows by applying Theorem 7.1.2 with β = 1
2
.

D.3.2 k-center clustering

We consider the α-Lloyd’s clustering algorithm family from [16], where the initial k centers
in the procedure are set by sampling points with probability proportional to dα where d is the
distance from the centers selected so far for some α ∈ [0, D], D ∈ R≥0. For example, α = 0 cor-
responds to the vanilla k-means with random initial centers, and α = 2 setting is the k-means++
procedure. For this algorithm family, we are able to show the following guarantee. Interestingly,
for this family it is sufficient to rely on the internal randomness of the algorithmic procedure and
we do not need assumptions on data smoothness.

Theorem D.3.3. Consider instances of the k-center clustering problem on n points, with Ham-
ming loss li,j for i ∈ [m], j ∈ [T ] against some (unknown) ground truth clustering. Then the
asymptotic task-averaged regret for learning the algorithm parameter α for the α-Lloyd’s clus-
tering algorithm family of [16] is oT (1) + 2V

√
m+O(

√
m).

D.3.3 Integer quadratic programming (IQP)

The objective is to maximize a quadratic function zTAz for A with non-negative diagonal en-
tries, subject to z ∈ {0, 1}n. In the classic Goemans-Williamson algorithm [82] one solves an
SDP relaxation UTAU where columns ui of U are unit vectors. ui are then rounded to {±1} by
projecting on a vector Z drawn according to the standard Gaussian, and using sgn(⟨ui, Z⟩). A
simple parametric family is s-linear rounding where the rounding is as before if |⟨ui, Z⟩| > s but
uses probabilistic rounding to round ui to 1 with probability 1+(⟨ui,Z⟩)/s

2
. The dispersion analy-

sis of the problem from [15] and the general recipe from [19] imply that our results yield low
task-averaged regret for learning the parameter of the s-linear rounding algorithms.

Theorem D.3.4. Consider instances of IQP given by matrices Ai,j and rounding vectors Zi,j ∼
Nn for i ∈ [m], j ∈ [T ]. Then the asymptotic task-averaged regret for learning the algorithm
parameter s for s-linear rounding is oT (1) + 2V

√
m+O(

√
m).

Our results are an improvement over prior work which have only considered iid and (single-task)
online learning settings. Similar improvements can be obtained for auction design, as described
below. We illustrate this using a relatively simple auction, but the same idea applies for an
extensive classes of auctions as studied in [17].
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D.3.4 Posted price mechanisms with additive valuations
There are m items and n bidders with valuations vj(bi), j ∈ [n], i ∈ [2m] for all 2m bundles of
items. We consider additive valuations which satisfy vj(b) =

∑
i∈b vj({i}). The objective is to

maximize the social welfare (sum of buyer valuations). If the item values for each buyer have
κ-bounded distributions, then the corresponding social welfare is dispersed and our results apply.

Theorem D.3.5. Consider instances of posted price mechanism design problems with additive
buyers and κ-bounded marginals of item valuations. Then the asymptotic task-averaged regret
for learning the price which maximizes the social welfare is oT (1) + 2V

√
m+O(

√
m).

Proof. As noted in [15], the locations of discontinuities are along axis-parallel hyperplanes
(buyer j will be willing to buy item i at a price pi if and only if vj({i}) ≥ pi, each buyer-item pair
in each instance corresponds to a hyperplane). Thus in any pair of points p, p′ (corresponding
to pricing) at distance ϵ, we have in expectation at most ϵκmn discontinuities along any axis-
aligned path joining p, p′, since discontinuities for an item can only occur along axis-aligned
segment for the axis corresponding to the item. Theorem D.3.1 now implies 1

2
-dispersion. The

task-averaged regret bound is now a simple application of Theorem 7.1.2.
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Appendix E

Adaptivity

We include proofs and additional details from Chapter 8 here.

E.1 Discretization based algorithm

Algorithm 22 Discrete Fixed Share Forecaster
Input: β, the dispersion parameter
[1.] Obtain a T−β-discretization D of C (i.e. any c ∈ C is within T−β of some d ∈ D)
[2.] Apply an optimal algorithm for finite experts with points in D as the experts (e.g. fixed
share [94])

Recall that C ⊂ Rd is contained in a ball of radius R. A standard greedy construction gives an
r-discretization of size at most (3R/r)d [15]. Given the dispersion parameter β, a natural choice
is to use a T−β-discretization as in Algorithm 22.

Theorem E.1.1. Let Rfinite(T, s,N) denote the s-shifted regret for the finite experts problem on
N experts, for the algorithm used in step 2 of Algorithm 22. Then Algorithm 22 enjoys s-shifted
regret RC(T, s) which satisfies

RC(T, s) ≤ Rfinite
(
T, s,

(
3RT β

)d)
+ (sH + L)O(T 1−β).

Proof of Theorem E.1.1. We show we can round the optimal points in C to points in the (T−β)-
discretization D with a payoff loss at most (sH + L)T 1−β in expectation. But in D we know
a way to bound regret by Rfinite(T, s,N), where N , the number of points in D, is at most(

3R
T−β

)d
=
(
3RT β

)d.
Let t0:s denote the expert switching times in the optimal offline payoff, and ρ∗i be the point
picked by the optimal offline algorithm in [ti−1, ti− 1]. Consider a ball of radius T−β around ρ∗i .
It must have some point ρ̂∗i ∈ D. We then must have that {ut | t ∈ [ti−1, ti − 1]} has at most
O(T−βT ) = O(T 1−β) discontinuities due to β-dispersion, which implies

ti−1∑

t=ti−1

ut(ρ̂
∗
i ) ≥

ti−1∑

t=ti−1

ut(ρ
∗
i )−O(T 1−β)H − L(ti − ti−1)T

−β.
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Let ρ̂t = ρ̂∗i for each ti−1 ≤ t ≤ ti − 1. Summing over i gives

T∑

t=1

ut(ρ̂t) ≥ OPT −O(T 1−β)sH − LT 1−β = OPT − (sH + L)O(T 1−β).

Now payoff of this algorithm is bounded above by the payoff of the optimal sequence of experts
with s shifts

T∑

t=1

ut(ρ̂t) ≤ OPT finite.

Let the finite experts algorithm with shifted regret bounded by Rfinite(T, s,N) choose ρt at round
t. Then, using the above inequalities,

T∑

t=1

ut(ρt) ≥ OPT finite −Rfinite(T, s,N) ≥ OPT − (sH + L)O(T 1−β)−Rfinite(T, s,N).

We use this to bound the regret for the continuous case

RC(T, s) = OPT −
T∑

t=1

ut(ρt)

≤ OPT − (OPT − (sH + L)O(T 1−β)−Rfinite(T, s,N))

= Rfinite(T, s,N) + (sH + L)O(T 1−β).

E.2 Counterexamples
We will construct problem instances where some sub-optimal algorithms mentioned in the paper
suffer high regret.

We first show that the Exponential Forecaster algorithm of [15] suffers linear s-shifted regret
even for s = 2. This happens because pure exponential updates may accumulate high weights
on well-performing experts and may take a while to adjust weights when these experts suddenly
start performing poorly.

Lemma E.2.1. There exists an instance where Exponential Forecaster algorithm of [15] suffers
linear s-shifted regret.

Proof. Let C = [0, 1]. Define utility functions

u(0)(ρ) =

{
1 if ρ < 1

2

0 if ρ ≥ 1
2

and u(1)(ρ) =

{
0 if ρ < 1

2

1 if ρ ≥ 1
2

Now consider the instance where u(0)(ρ) is presented for the first T/2 rounds and u(1)(ρ) is pre-
sented for the remaining rounds. In the second half, with probability at least 1

2
, the Exponential
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Algorithm 23 Random Restarts Exponential Forecaster (Random Restarts EF)
Input: step size parameter λ ∈ (0, 1/H], exploration parameter α ∈ [0, 1]
[1.] ŵ1(ρ) = 1 for all ρ ∈ C
[2.] For each t = 1, 2, . . . , T :

[i.] Ŵt :=
∫
C
ŵt(ρ)dρ

[ii.] Sample ρ with probability proportional to ŵt(ρ), i.e. with probability pt(ρ) =
ŵt(ρ)

Ŵt

[iii.] Sample zt uniformly in [0, 1] and set

ŵt+1(ρ) =

{
eλut(ρ)ŵt(ρ) if zt < 1− α∫
C eλut(ρ)ŵt(ρ)dρ

VOL(C)
otherwise

Forecaster algorithm will select a point from [0, 1
2
] and accumulate a regret of 1. Thus the ex-

pected 2-shifted regret of the algorithm is at least T
2
· 1
2
= Ω(T ). Notice that the construction

does not depend on the step size parameter λ.

We further look at the performance of Random Restarts EF (Algorithm 23), an easy-to-implement
algorithm which looks deceptively similar to Algorithm 12, against this adversary. Turns out
Random Restarts EF may not restart frequently enough for the optimal value of the exploration
parameter, and have sufficiently long chains of pure exponential updates in expectation to suffer
high regret.

Theorem E.2.2. There exists an instance where Random Restarts EF (Algorithm 23) with pa-
rameters λ and α as in Theorem 8.1.1 suffers linear s-shifted regret.

Proof. The probability of pure exponential updates from t = T/4 through t = 3T/4 is at least

(1− α)T/2 =

(
1− 1

T − 1

)T/2

>
1

2

for T > 5. By Lemma E.2.1, this implies at least T
8

regret in this case, and so the expected regret
of the algorithm is at least T

16
= Ω(T ).

E.3 Analysis of algorithms

Lemma E.3.1 (Algorithm 12). For each t ∈ [T ], wt(ρ) = E[ŵt(ρ)] and Wt = E[Ŵt], where the
expectations are over random restarts zt = {z1, . . . , zt−1}.

Proof of Lemma E.3.1. wt(ρ) = E[ŵt(ρ)] implies Wt = E[Ŵt] by Fubini’s theorem (recall C is
closed and bounded). wt(ρ) = E[ŵt(ρ)] follows by simple induction on t. In the base case, z1 is
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the empty set and w1(ρ) = 1 = ŵt(ρ) = E[ŵt(ρ)]. For t > 1,

E[ŵt(ρ)]

= (1− α)E[eλut(ρ)ŵt−1(ρ)] +
α

VOL(C)
E
[∫

C

eλut(ρ)ŵt−1(ρ)dρ

]
(definition of ŵt)

= (1− α)eλut(ρ)E[ŵt−1(ρ)] +
α

VOL(C)

∫

C

eλut(ρ)E[ŵt−1(ρ)]dρ (expectation is over zt)

= (1− α)eλut(ρ)wt−1(ρ) +
α

VOL(C)

∫

C

eλut(ρ)wt−1(ρ)dρ (inductive hypothesis)

= wt(ρ) (definition of wt)

Lemma E.3.2 (Algorithm 12). WT+1 equals the sum

∑

s∈[T ]

∑

t0=1<t1···<ts=T+1

αs−1(1− α)T−s

VOL(C)s−1

s∏

i=1

W̃ (ti−1, ti).

Proof of Lemma E.3.2. Recall that we wish to show that ŵT+1(ρ) | s, ts (weights of Algorithm
23 at time T + 1 given restarts occur exactly at ts) can be expressed as the product of weight
w̃(ρ; ts−1, ts) at ρ of regular Exponential Forecaster since the last restart times the normalized
total weights accumulated over previous runs, i.e.

ŵT+1(ρ) | s, ts = w̃(ρ; ts−1, ts)
s−1∏

i=1

W̃ (ti−1, ti)

VOL(C)
.

We show this by induction on s. For s = 1, we have no restarts and

w̃(ρ; ts−1, ts)
s−1∏

i=1

W̃ (ti−1, ti)

VOL(C)
= w̃(ρ; t0, t1)

0∏

i=1

W̃ (ti−1, ti)

VOL(C)

= w̃(ρ; 1, T + 1)

= ŵT+1(ρ) | 1, t1.

For s > 1, the last restart occurs at ts−1 > 1. By inductive hypothesis for time ts−1 − 1 until
which we’ve had s− 2 restarts,

ŵts−1−1(ρ) | s, ts = ŵts−1−1(ρ) | s− 1, ts−1 = w̃(ρ; ts−2, ts−1 − 1)
s−2∏

i=1

W̃ (ti−1, ti)

VOL(C)
.

Due to restart at ts−1,

ŵts−1(ρ) | s, ts =
∫
C
eλut(ρ)ŵts−1−1(ρ)dρ

VOL(C)
=

s−1∏

i=1

W̃ (ti−1, ti)

VOL(C)
.

It’s regular exponential updates from this point to ts, which gives the result.
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Lemma E.3.3 (Algorithm 12). Wt+1 =
∫
C
eλut(ρ)wt(ρ)dρ.

The rest of this section is concerned with the analysis of Algorithm 14 for the sparse experts
setting.

Lemma E.3.4. For any t < T ,

wT (ρ) ≥ α(1− α)T−tπt(ρ)w̃(ρ; t, T )Wt

Proof. Follows using the restart algorithm technique used in Lemma E.3.2. Consider the proba-
bility of last restart being at time t.

Lemma E.3.5. Let πt(ρ) =
∑t

i=1 βi,tpi(ρ) in Algorithm 14. Then

πt(ρ) =
α1,t

W1

+
t−1∑

i=1

αi+1,t
eλui(ρ)wi(ρ)

Wi+1

,

where

αi,t ≥
1− α

et

(
e−γ +

α

et

)t−i

,

and et :=
∑t

i=1 e
−γ(i−1).

Proof. Notice, by definition of weight update in Algorithm 14,

pt(ρ) = (1− α)
eλut−1(ρ)wt−1(ρ)

Wt

+ α

t−1∑

i=1

βi,t−1pi(ρ)

= (1− α)
eλut−1(ρ)wt−1(ρ)

Wt

+ απt−1(ρ).

This gives us a recursive relation for αi,t.

αi,t =

{
βi,t(1− α) + α

∑t
j=i+1 βj,tαi,j−1 , if i > 1,

βi,t + α
∑t

j=i+1 βj,tαi,j−1 , if i = 1.

Thus for each 1 ≤ i ≤ t

αi,t ≥ βi,t(1− α) + α
t∑

j=i+1

βj,tαi,j−1.

We proceed by induction on t− i. For i = t,

αt,t ≥ βt,t(1− α) =
1− α

et

(
e−γ +

α

et

)t−t

.
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For i < t, by inductive hypothesis

αi,t ≥ βi,t(1− α) +
t∑

j=i+1

βj,tααi,j−1

≥ (1− α)
e−γ(t−i)

et
+ α

1− α

et

t∑

j=i+1

e−γ(t−j)

et

(
e−γ +

α

et

)j−1−i

=
1− α

et

(
e−γ(t−i) +

αe−γt

et

t∑

j=i+1

eγj
(
e−γ +

α

et

)j−1−i
)

=
1− α

et


e−γ(t−i) +

αe−γt

et

eγ(t+1)
(
e−γ + α

et

)t−i

− eγ(i+1)

eγ
(
e−γ + α

et

)
− 1




=
1− α

et

(
e−γ +

α

et

)t−i

,

which completes the induction step.

Lemma E.3.6. Let πt(ρ) =
∑t−1

i=1 βi,tpi(ρ). For Algorithm 14, WT+1 can be shown to be equal
to the sum

∑

s∈[T ]

∑

t0=1<...ts=T+1

αs−1(1− α)T−s

s∏

i=1

W̃ (πti−1
; ti−1, ti),

where W̃ (p; τ, τ ′) :=
∫
C
p(ρ)w̃(ρ; τ, τ ′)dρ.

Corollary E.3.7. Let wt(ρ),Wt be as in Algorithm 14 and πt as in Lemma E.3.6. For each
τ < τ ′ < t and any bounded f defined on C.

∫

C

πt(ρ)f(ρ)dρ ≥
α(1− α)τ

′−τ (1− e−γ)

(e−γ + α(1− e−γ))τ
′−t

Wτ

Wτ ′

∫

C

πτ (ρ)w̃(ρ; τ, τ
′)f(ρ)dρ.

Proof. By Lemma E.3.5,
∫

C

πt(ρ)f(ρ)dρ =

∫

C

πt(ρ)f(ρ)dρ

≥
∫

C

ατ ′,t
eλuτ ′−1(ρ)wτ ′−1(ρ)

Wτ ′
f(ρ)dρ

≥ 1− α

et

(
e−γ +

α

et

)t−τ ′
1

Wτ ′

∫

C

eλuτ ′−1(ρ)wτ ′−1(ρ)f(ρ)dρ

≥ 1− α

et

(
e−γ +

α

et

)t−τ ′
α(1− α)τ

′−1−τWτ

Wτ ′

∫

C

πτ (ρ)w̃(ρ; τ, τ
′)f(ρ)dρ,
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where for the last inequality we have used Lemma E.3.4. The lemma then follows by noting

1

et
=

1− e−γ

1− e−γt
≥ 1− e−γ,

where et =
∑t

i=1 e
−γ(i−1) as defined in Lemma E.3.5.

Lemma E.3.8 (Algorithm 14). Wt+1 =
∫
C
eλut(ρ)wt(ρ)dρ.

Lemma E.3.9. Let πt(ρ) =
∑t−1

i=1 βi,tpi(ρ). For Algorithm 14, WT+1 can be shown to be equal
to the sum

∑

s∈[T ]

∑

t0=1<...ts=T+1

αs−1(1− α)T−s

s∏

i=1

W̃ (πti−1
; ti−1, ti)

where W̃ (p; τ, τ ′) :=
∫
C
p(ρ)w̃(ρ; τ, τ ′)dρ.

Corollary E.3.10. WT ≥ α(1− α)T−tW̃ (πt; t, T )Wt, for all t < T .

Proof. Consider the probability of last reset (setting wt(ρ) = Wtπt(ρ)) at time t when computing
WT+1 as the expected weight of a random restart version which matches Algorithm 14 till time
t.

E.4 Adaptive Regret
It is known that the fixed share algorithm obtains good adaptive regret for finite experts and OCO.
We show that it is the case here as well.

Definition 39. The τ -adaptive regret (due to [93]) is given by

E

[
max
ρ∗∈C,

1≤r<s≤T,s−r≤τ

s∑

t=r

(ut(ρ
∗)− ut(ρt))

]
.

The goal here is to ensure small regret on all intervals of size up to τ simultaneously. Adaptive
regret measures how well the algorithm approximates the best expert locally, and it is therefore
somewhere between the static regret (measured on all outcomes) and the shifted regret, where
the algorithm is compared to a good sequence of experts.

Theorem E.4.1. Algorithm 12 enjoys O(H
√
τ(d log(R/w) + log τ)+(H+L)τ 1−β) τ -adaptive

regret for λ =
√
(d log(Rτβ) + log(τ))/τ/H and α = 1/τ .

Proof sketch of Theorem E.4.1. Apply arguments of Theorem 8.1.1 to upper and lower bound
Ws+1/Wr for any interval [r, s] ⊆ [1, T ] of size τ . We get

Ws+1

Wr

≤ exp

(
P (A)(eHλ − 1),

H

)
,
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where P (A) is the expected payoff of the algorithm in [r, s], Also, by Corollary E.3.10 (equiva-
lent for Algorithm 12),

Ws+1 ≥
α(1− α)s+1−r

VOL(C)
W̃ (r, s)Wr =

α(1− α)τ

VOL(C)
W̃ (r, s)Wr.

By dispersion, as in proof of Theorem 8.1.1,

W̃ (r, s) ≥ VOL(B(τ−β)) exp
(
λ
(
OPT − (H + L)O(τ 1−β)

))
.

Putting the upper and lower bounds together gives us a bound on OPT −P (A), which gives the
desired regret bound for α = 1

τ
.

E.5 Efficient Sampling
In Section 8.2 we introduced Algorithm 13 for efficient implementation of Algorithm 12 in Rd.
We present proofs of the results in that section, and an exact algorithm for the case d = 1.

Algorithm 24 Fixed Share Exponential Forecaster - exact algorithm for one dimension
Input: λ ∈ (0, 1/H].
[1.] W1 = VOL(C).
[2.] For each t = 1, 2, . . . , T :

[i.] Estimate Ct,j using Lemma 8.2.3 for each 1 ≤ j ≤ t using memoized values for
weights.

[ii.] Sample i with probability Ct,i.
[iii.] Sample ρ with probability proportional to w̃(ρ; i, t).
[iv.] Estimate Wt+1 using Lemma 8.2.2.

Definition 40. For α ≥ 0 we say Â is an (α, ζ)-approximation of A if

Pr
(
e−αA ≤ Â ≤ eαA

)
≥ 1− ζ.

Lemma E.5.1. If Â is an (α, ζ)-approximation of A and B̂ is a (β, ζ ′)-approximation of B, such
that A,B, Â, B̂ are all positive reals

1. ÂB̂ is an (α + β, ζ + ζ ′)-approximation of AB.
2. pÂ+ qB̂ is a (max{α, β}, ζ + ζ ′)-approximation of pA+ qB for p, q ≥ 0.

Proof. The results follow from a union bound on failure probabilities.

Corollary E.5.2. For one-dimensional case, we can exactly compute W̃ (i, j), 1 ≤ i < j ≤ t,
hence Wt at each iteration can be computed in O(t) time using Lemma 8.2.2. More generally, if
we have a (β, ζ) approximation for each W̃ (i, j), 1 ≤ i < j ≤ t, then by Lemma 8.2.2 we can
compute a (tβ, t2ζ)-approximation for Wt+1.
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Proof. Union bound on failure probabilities of all W̃ (i, j), 1 ≤ i < j ≤ t gives we have a
β approximation for each with probability at least 1 − t2ζ . This covers failure for all terms in
Wi, 2 ≤ i ≤ t. Further, by induction, the error for estimates for Wi is at most (i − 1)β. By
Lemma E.5.1, the error for Wt+1 estimates is at most tβ.

Corollary E.5.3. If we have a (β, ζ) approximation for each W̃ (i, j), 1 ≤ i < j ≤ t, then by
Corollary E.5.2 and Lemma 8.2.3 we can compute Ĉt+1,i which are (2tβ, t2ζ)-approximation for
each Ct+1,i.

Proof. For i = t, we know Ct,i exactly by Lemma 8.2.3. For i < t,

Ct,i = (1− α)t−iWi

Wt

W̃ (i, t)

VOL(C)
Ci,i (E.1)

In Corollary E.5.2, we show how to compute ((i − 1)β, (i − 1)2ζ)-approximation for Wi and
((t − 1)β, (t − 1)2ζ)-approximation for Wt given (β, ζ) approximations for each W̃ (i, j), 1 ≤
i < j ≤ t. A similar argument using Lemma E.5.1 shows with failure probability at most t2ζ ,
plugging in the approximations in equation E.1 has at most (t+ i)β error.

E.6 Lower bounds

We start with a simple lower bound argument for s-shifted regret for prediction with two experts
based on a well-known Ω(

√
T ) lower bound argument for static regret. We will then extend it to

the continuous setting and use it for the Ω(
√
sT ) part of the lower bound.

Lemma E.6.1. For prediction with two experts, there exists a stochastic sequence of losses for
which the s-shifted regret of any online learning algorithm satisfies

E[RT ] ≥
√
sT/8.

Proof. Let the two experts predict 0 and 1 respectively at each time t ∈ [T ]. The utility at each
time t is computed by flipping a coin - with probability 1/2 we have u(0) = 1, u(1) = 0 and
with probability 1/2 it’s u(0) = 0, u(1) = 1. Expected payoff for any algorithm A is

P (A, T ) = E
[ T∑

t=1

ut(ρt)
]
=

T∑

t=1

E[ut(ρt)] =
T

2
,

since expected payoff is 1/2 at each t no matter which expert is picked.
To compute shifted regret we need to compare this payoff with the best sequence of experts with
s − 1 switches. We compare with a weaker adversary A′ which is only allowed to switch up to
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s− 1 times, and switches at only a subset of fixed times ti = iT/s to lower bound the regret.

E[RT ] = OPT − P (A, T )

≥ P (A′, T )− P (A, T )

=
T∑

t=1

E[ut(ρ
′
t)]−

T∑

t=1

E[ut(ρt)]

=
s−1∑

i=0

ti+1∑

t=ti+1

E[ut(ρ
′
t)]− E[ut(ρt)].

Now let Pi,j =
∑ti+1

t=ti+1 E[ut(j)] for i+ 1 ∈ [s] and j ∈ {0, 1}.

ti+1∑

t=ti+1

E[ut(ρ
′
t)] = max

ρ∈{0,1}

ti+1∑

t=ti+1

E[ut(ρ)]

=
1

2

[
Pi,0 + Pi,1 + |Pi,0 − Pi,1|

]

=
T

2s
+ |Pi,0 − T/2s|,

using Pi,0 + Pi,1 = T/s. Thus,

E[RT ] ≥
s−1∑

i=0

[( T
2s

+ |Pi,0 − T/2s|
)
− T

2s

]
=

s−1∑

i=0

|Pi,0 − T/2s|.

Noting Pi,0 =
∑ti+1

t=ti+1 E[ut(0)] =
∑ti+1

t=ti+1

(
1+σt

2

)
where σt are Rademacher variables over

{−1, 1} and applying Khintchine’s inequality (see for example [37]) we get

E[RT ] ≥
s−1∑

i=0

∣∣∣∣
ti+1∑

t=ti+1

σt/2

∣∣∣∣ ≥
s−1∑

i=0

√
T/8s =

√
sT/8.

Corollary E.6.2. We can embed the two-expert setting to get a lower bound for the continuous
case.

Proof. Indeed in Lemma E.6.1 let C = [0, 1], expert 0 correspond to ρ1 = 1/4, expert 1 corre-
sponds to ρ2 = 3/4 and replace the loss functions by

u(0)(ρ) =

{
1 if ρ < 1

2
,

0 if ρ ≥ 1
2
,

and u(1)(ρ) =

{
0 if ρ < 1

2
,

1 if ρ ≥ 1
2
.

We can further generalize this while dispersing the discontinuities somewhat. Instead of having
all the discontinuties at ρ = 1

2
, we can have discontinuities dispersed say within an interval [1

3
, 2
3
]

and still have Ω(
√
sT ) regret.
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