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Abstract

We give the first algorithm that achieves arbitrarily high accuracy for robust
mean estimation on Gaussian and Laplace distribution when the adversary corrupts
the samples before the noise is added. For sufficiently small constant 𝛼 > 0 and
accuracy 𝜀 > 0, our algorithm takes as input samples 𝑌 ⊆ ℝ𝑑 of size 𝑛 obtained
by i.i.d. samples 𝑋 ⊆ ℝ𝑑 of size 𝑛 from the true distribution with unknown mean
𝜇, while an adversary corrupts an 𝛼 fraction of the points before the (Gaussian or
Laplace) noise is added. When the true distribution is Gaussian with unknown mean
𝜇 and covariance 𝐼, our algorithm needs sample size 𝑛 = 2𝑂 (𝑑/𝜀2) . When the true
distribution is Laplace with unknown mean 𝜇 and covariance 𝐼, our algorithm needs
sample size 𝑛 = 𝑂 (𝑑2/𝜀4). Our algorithm runs in 𝑂 (𝑛𝑑) time, and outputs an
estimation �̂� that ∥ �̂�− 𝜇∥2 ≤ 𝜀 with high probability. Our method is to transform the
sample to a Fourier-sparse signal that encodes the true mean 𝜇 and apply the sparse
Fourier transform to decode 𝜇.

In Huber’s contamination model, where the adversary corrupts an 𝛼 fraction of
the sample after the noise is added, it is known that there is a Ω(𝛼) lower bound on
the error of the estimator. In contrast, our algorithm can estimate the mean arbitrarily
closely in this corruption-before-noise setting.

Our algorithm in this new setting has many possible applications. For example,
the one that motivated us is max-affine regression. In max-affine regression, the
model is the maximum of 𝑘 linear models, where the noise is added after taking
the maximum. If we can extend our algorithm to the list-decodable setting, then we
immediately get an algorithm for the max-affine regression.
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Chapter 1

Introduction

1.1 Background
Traditional statistical methods often assume the input samples are generated from some known
distribution. However, real-world data are not necessarily from these known distributions, and
may exhibit anomalies, errors, or extreme values that can significantly affect the results of
statistical estimations. These outliers can arise from various sources, including measurement
errors, adversarial manipulation, or genuine deviations from the assumed underlying model.
Meanwhile, the field of robust statistics [HR09; Tuk75; HRR+11; MMY+19] has been studying
this phenomenon and designing estimators that are robust in the presence of deviations of the
model.

To capture the contamination in the samples, Huber introduced the following model [Hub64].

Definition 1. In Huber’s contamination model, the samples are generated from a distribution

(1 − 𝛼)𝐷 + 𝛼𝑍,

where 𝐷 is the true underlying distribution, 𝑍 is a contamination distribution chosen by an
adversary, and 𝛼 is the fraction of corruption.

If the number of the samples is large enough, then about (1 − 𝛼) fraction of the samples are
from the true distribution 𝐷, called the inliers, and about 𝛼 fraction of the samples are from the
contamination distribution 𝑍 , called the outliers.

There is a stronger model, where the adversary is allowed to observe the inliers before adding
outliers, defined as follows.

Definition 2. In the strong contamination model, the samples {𝑦1, 𝑦2, . . . , 𝑦𝑛} are generated as
follows.

1. Sample 𝑦1, 𝑦2, . . . , 𝑦 (1−𝛼)𝑛 from the true distribution 𝐷.

2. After observing 𝑦1, 𝑦2, . . . , 𝑦 (1−𝛼)𝑛, the adversary picks the rest 𝛼𝑛 samples.

The samples are received in random order.
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For one-dimensional samples, there are many robust estimators for the mean, for example,
median, trimmed mean, and winsorized mean; and robust estimators for the variance, for example,
median absolute deviation and interquartile range. Moreover, they are efficient to compute.

However, for high-dimensional samples, classic estimators, such as the Tukey median, are in-
tractable to compute or have dimension-dependent errors. Thus, there have been extensive works
on algorithmic robust statistics, which aim at designing efficient algorithms to robustly estimate
the parameters of the true distribution. Ever since the breakthrough of Diakonikolas, Kamath,
Kane, Li, Moitra, and Stewart [DKK+16] and Lai, Rao, and Vempala [LRV16] that gave the
first polynomial time algorithms for robust estimation with dimension-independent error, there
has been a line of works on this topic (e.g., [DKK+17; BDL+17; KKM18; HL18; DKK+18;
DKK+19]) aiming at robust mean estimation, covariance estimation, regression, learning Gaus-
sian mixtures, optimization, etc.

Another interesting setting is when there is a majority of the samples being corrupted. In this
setting, it is impossible to produce a unique accurate estimator. Because the adversary can add
a majority of the samples from a distribution with parameters far away from those of the true
distribution, so that we cannot distinguish the two distributions. Therefore, our goal in this setting
is to output a list of the possible parameters, such that the true parameter is close to one of the
parameters in the list. This is called the list-decodable setting, introduced by Balcan, Blum, and
Vempala [BBV08]. Begin with the influential work of Charikar, Steinhardt, and Valiant [CSV17]
that gave the first list-decodable mean estimation algorithm, there has been plenty of subsequent
works on list-decodable mean estimation [KSS18; DKK20; DKS18; DKK+21; CMY20], linear
regression [KKK19; RY20a], subspace recovery [RY20b; BK21], covariance estimation [IK22],
etc.

While there are extensive algorithmic results on robust statistics, it is known that, even in
the most fundamental setting, robust mean estimation for one-dimensional Gaussian distribution
in Huber’s contamination model, there is an information-theoretic lower bound stating that it is
impossible to estimate the mean within additive error

(√︁
𝜋
2 − 𝑜(1)

)
𝛼 when there is an 𝛼 fraction

of corruption [DKK+18]. Thus, no algorithm can output an estimator of the mean with an error
better than 𝑂 (𝛼), no matter how many samples are given, even in Huber’s contamination model.
Therefore, a natural question to ask is, whether one can further relax this adversarial model such
that there is an algorithm that achieves 𝑜(𝛼) additive error, given enough samples.

1.2 Our Results and Techniques
Compared to the adversary in the strong contamination model, the adversary in Huber’s contami-
nation model is oblivious to the inliers. One relaxation is to make the adversary also oblivious to
the “noise”. Here we view the process of generating a random variable from a certain distribution
𝐷 (𝜇) with mean 𝜇 as adding a noise sampled from 𝐷 (0) to the mean 𝜇, where 𝐷 (0) is the trans-
lation of 𝐷 (𝜇) with zero mean. That is, the adversary adds 𝛼𝑛 means to the (1−𝛼)𝑛 true means,
then the noise is applied independently. As a concrete example, consider the true distribution to
be the one-dimensional Gaussian distribution with unknown mean 𝜇 and unit variance. First, the
adversary chooses 𝑧1, 𝑧2, . . . , 𝑧𝛼𝑛 as the corrupted means, adding to (1−𝛼)𝑛 true means 𝜇. Then
the standard Gaussian noise is independently added to these means. The algorithm receives these

2



samples in random order.
In this noise-oblivious model, we designed an algorithm that can achieve arbitrarily small

additive error in the mean estimator, given enough samples:

Theorem 1.1. For sufficiently small 𝛼 > 0, in the noise-oblivious model with 𝛼 fraction of
corruption, there is an algorithm that outputs the estimator of the mean of the true distribution
𝐷 within 𝜀 additive error in ℓ2 norm.

1. For 𝐷 being the 𝑑-dimensional Gaussian distribution with mean 𝜇 and identity covariance,
the algorithm needs 2𝑂 (𝑑/𝜀2) samples and runs in 2𝑂 (𝑑/𝜀2) time.

2. For 𝐷 being the 𝑑-dimensional Laplace distribution with mean 𝜇 and identity covariance,
the algorithm needs 𝑂 (𝑑2/𝜀4) samples and runs in 𝑂 (𝑑3/𝜀4) time.

Our method is based on the characteristic function of the true distribution 𝐷. If 𝐷 has its
characteristic function in the form of 𝑒𝑖𝑡𝜇 𝑓 (𝑡), then one can divide the characteristic function
by 𝑓 (𝑡), and apply the Fourier transform to recover the frequency 𝜇 from 𝑒𝑖𝑡𝜇. Note that the
characteristic function is the inverse Fourier transform of the probability density function. And
𝑓 (𝑡) is the characteristic function of the noise, i.e., the translation of 𝐷 with zero mean. So this
process is equivalent to deconvolving the noise from the distribution, producing a spike located
in 𝜇.

Another important ingredient in our algorithm is Price and Song’s algorithm for sparse
Fourier transform in the continuous setting [PS15]. Their algorithm enables us to recover the
major frequency from the signal in the presence of noise. The noise in the signal comes from
two sources: the error from estimating the characteristic function, and the corruption introduced
by the adversary. We show that both of the noise can be controlled, so that we can succeed in
recovering the frequency, i.e., the true mean.

3



4



Chapter 2

Preliminaries

2.1 Notations
We will use 𝑁 (𝜇, Σ) to denote the 𝑑-dimensional Gaussian distribution with mean 𝜇 and covari-
ance matrix Σ, which is positive semi-definite, with density function

𝑓 (𝑥) = 1√︁
(2𝜋)𝑘 det(Σ)

exp
(
− (𝑥 − 𝜇)TΣ−1(𝑥 − 𝜇)

2

)
,

and Laplace(𝜇, Σ) to denote the 𝑑-dimensional Laplace distribution with mean 𝜇 and covariance
matrix Σ, which is positive semi-definite, with density function

𝑓 (𝑥) = 2√︁
(2𝜋)𝑘 det(Σ)

(
(𝑥 − 𝜇)TΣ−1(𝑥 − 𝜇)

2

)𝑣/2

𝐾𝑣

(√︃
2(𝑥 − 𝜇)TΣ−1(𝑥 − 𝜇)

)
,

where 𝑣 = (2 − 𝑑)/2 and 𝐾𝑣 is the modified Bessel function of the second kind. The marginal
distribution of a 𝑑-dimensional Laplace distribution is a one-dimensional Laplace distribution,
with density function in the form of

𝑓 (𝑥) = 1
√

2𝜎
exp

(
−
√

2|𝑥 − 𝜇 |
𝜎

)
.

2.2 Characteristic Function
For random variable 𝑋 ∈ ℝ𝑑 , the characteristic function 𝜑𝑋 : ℝ𝑑 → ℂ is defined as

𝜑𝑋 (𝑡) = 𝔼[𝑒𝑖𝑡T𝑋] .

We will need the following facts about the characteristic functions of certain random variables.

Fact 2.1. If 𝑋 ∼ 𝑁 (𝜇, 𝜎2), then the characteristic function

𝜑𝑋 (𝑡) = 𝔼[𝑒𝑖𝑡𝑋] = 𝑒𝑖𝑡𝜇− 1
2𝜎

2𝑡2 , 𝑡 ∈ ℝ.
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Fact 2.2. If 𝑋 ∼ 𝑁 (𝜇, Σ), then the characteristic function

𝜑𝑋 (𝑡) = 𝔼[𝑒𝑖𝑡T𝑋] = 𝑒𝑖𝑡T𝜇− 1
2 𝑡

TΣ𝑡 , 𝑡 ∈ ℝ𝑑 .

Fact 2.3. If 𝑋 ∼ Laplace(𝜇, 𝜎2), then the characteristic function

𝜑𝑋 (𝑡) = 𝔼[𝑒𝑖𝑡𝑋] = 𝑒𝑖𝑡𝜇

1 + 1
2𝜎

2𝑡2
, 𝑡 ∈ ℝ.

Fact 2.4. If 𝑋 ∼ Laplace(𝜇, Σ), then the characteristic function

𝜑𝑋 (𝑡) = 𝔼[𝑒𝑖𝑡T𝑋] = 𝑒𝑖𝑡
T𝜇

1 + 1
2 𝑡

TΣ𝑡
, 𝑡 ∈ ℝ𝑑 .

Fact 2.5. Suppose 𝑋 is distributed according to the noncentral chi-squared distribution, that is,

𝑋 =

𝑘∑︁
𝑖=1

𝑋2
𝑖 ,

where 𝑋𝑖 are i.i.d. Gaussian random variables with means 𝜇𝑖 and unit variances, for 𝑖 =

1, 2, . . . , 𝑘 . Then the characteristic function

𝜑𝑋 (𝑡) = 𝔼[𝑒𝑖𝑡𝑋] =
exp

(
𝑖𝜆𝑡

1−2𝑖𝑡
)

(1 − 2𝑖𝑡)𝑘/2 , 𝑡 ∈ ℂ, s.t. |ℑ𝑡 | ≤ 1/2,

where 𝜆 =
∑𝑘
𝑖=1 𝜇

2
𝑖
.

2.3 Sparse Fourier Transform
Price and Song gave an algorithm for sparse Fourier transform in the continuous setting [PS15].
Their result is as follows.

Theorem 2.6 (Theorem 1.1 in [PS15]). Consider any signal 𝑥(𝑡) = 𝑥∗(𝑡) + 𝑔(𝑡) ∈ ℂ, 𝑡 ∈ [0, 𝑇],
for arbitrary noise 𝑔(𝑡) and exactly 𝑘-sparse 𝑥∗(𝑡) =

∑𝑘
𝑗=1 𝑣 𝑗𝑒

2𝜋𝑖 𝑓 𝑗 𝑡 with 𝑓𝑖 ∈ [−𝐹, 𝐹] and
frequency separation 𝜂 ≤ min𝑖≠ 𝑗 | 𝑓𝑖 − 𝑓 𝑗 |. For some 𝛿 > 0, define the “noise level”

N2 :=
1
𝑇

∫ 𝑇

0
|𝑔(𝑡) |2d𝑡 + 𝛿

𝑘∑︁
𝑗=1

|𝑣 𝑗 |2.

Then there’s an algorithm that takes 𝑂 (𝑘 log(𝐹𝑇) log(𝑘/𝛿) log 𝑘) samples from 𝑥(𝑡) over
any duration𝑇 > 𝑂 (log(𝑘/𝛿)/𝜂), returns {(𝑣′

𝑖
, 𝑓 ′
𝑖
)} in𝑂 (𝑘 log(𝐹𝑇) log(𝐹𝑇/𝛿) log 𝑘) time, such

that for any 𝑣𝑖 with |𝑣𝑖 | = Ω(N), | 𝑓 ′
𝑖
− 𝑓𝑖 | ≤ 𝑂 ( N

𝑇 |𝑣𝑖 | ), with constant probability.
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2.4 Lower Bounds for Huber’s Contamination Model

Diakonikolas, Kamath, Kane, Li, Moitra, and Stewart proved an information-theoretic lower
bound on the error of the mean estimator for one-dimensional unit-variance Gaussian distribution
in Huber’s contamination model [DKK+18].

Lemma 2.7 (Lemma 17 in [DKK+18]). It is impossible to estimate the mean of a one-dimensional
unit-variance Gaussian distribution within additive error

(√︁
𝜋
2 −𝑜(1)

)
𝛼 in Huber’s contamination

model with 𝛼 fraction of corruption.

Their proof also extends to Laplace distributions. Here we present their proof first.

Proof. It suffices to show that 𝑝1 = 𝑁 (−𝜀, 1) and 𝑝2 = 𝑁 (𝜀, 1) can be corrupted into the same
distribution 𝑝 with density function 𝑓 (𝑥) = max{𝑝1(𝑥), 𝑝2(𝑥)}/𝜂, where 𝜂 is the normalizing
constant. Compute

𝜂 =

∫ ∞

−∞
max {𝑝1(𝑥), 𝑝2(𝑥)} d𝑥

= 2
∫ ∞

0
𝑝2(𝑥)d𝑥

= 2
(
1
2
+ 1

2
erf

(
𝜀
√

2

))
= 1 + erf

(
𝜀
√

2

)
= 1 +

√︂
2
𝜋
𝜀 −𝑂

(
𝜀3

)
.

Thus, 𝑓 (𝑥) = max{𝑝1(𝑥), 𝑝2(𝑥)}/𝜂 ≥ 𝑝1(𝑥)/𝜂 ≥
(
1 −

√︃
2
𝜋
𝜀 +𝑂 (𝜀3)

)
𝑝1(𝑥). Therefore, when

𝜀 ≤
(√︁

𝜋
2 − 𝑜(1)

)
𝛼, we have that 𝑓 (𝑥) ≥ (1 − 𝛼)𝑝1(𝑥). Let 𝑞1(𝑥) =

𝑓 (𝑥)−(1−𝛼)𝑝1 (𝑥)
𝛼

be the
contamination distribution chosen by the adversary, since 𝑞1(𝑥) ≥ 0 and

∫ ∞
−∞ 𝑞1(𝑥) = 1. Then

𝑝1(𝑥) can be corrupted into 𝑓 (𝑥), and similarly 𝑝2(𝑥) can also be corrupted into 𝑓 (𝑥). So
the algorithm cannot distinguish whether the true distribution is 𝑝1 or 𝑝2 given the corrupted
distribution 𝑓 , and the best mean estimator in this scenario is 0, with error 𝜀. □

Lemma 2.8. It is impossible to estimate the mean of a one-dimensional unit-variance Laplace
distribution within additive error

( 1
2
√

2
− 𝑜(1)

)
𝛼 in Huber’s contamination model with 𝛼 fraction

of corruption.

Proof. The proof is similar to that of the Gaussian case. For 𝑝1 = Laplace(−𝜀, 1) and 𝑝2 =

7



Laplace(𝜀, 1), 𝑓 (𝑥) = max{𝑝1(𝑥), 𝑝2(𝑥)}/𝜂. Compute

𝜂 =

∫ ∞

−∞
max {𝑝1(𝑥), 𝑝2(𝑥)} d𝑥

= 2
∫ ∞

0
𝑝2(𝑥)d𝑥

= 𝑒−
√

2𝜀 (2𝑒
√

2𝜀 − 1)
≤ 2(1 +

√
2𝜀 +𝑂 (𝜀2)) − 1

= 1 + 2
√

2𝜀 +𝑂 (𝜀2).

So similarly, when 𝜀 ≤
( 1

2
√

2
− 𝑜(1)

)
𝛼, 𝑝1 and 𝑝2 can be corrupted into the same distribution

with density 𝑓 so that the algorithm cannot distinguish within error 𝜀. □

2.5 Noise-Oblivious Contamination Model
Let 𝐷 (𝜇) denote the translation of distribution 𝐷 with mean 𝜇. For example, if 𝐷 is the Gaussian
distribution with identity covariance, then 𝐷 (𝜇) is the Gaussian distribution with mean 𝜇 and
identity covariance.

Our noise-oblivious contamination model is defined as follows.

Definition 3. Let 𝛼 be the fraction of corruption. The noise-oblivious contamination model
generates a set of samples 𝑋1, 𝑋2, . . . , 𝑋𝑛 on a distribution 𝐷 (𝜇) with unknown mean 𝜇 by the
following process:

1. The model produces (1 − 𝛼)𝑛 true means 𝜇.

2. An adversary adds 𝛼𝑛 points 𝑧1, 𝑧2, . . . , 𝑧𝛼𝑛 arbitrarily as the means of contamination.

3. The model adds i.i.d. noise from the distribution 𝐷 (0) to the 𝑛 means.

Then the algorithm is given the set of samples 𝑋1, 𝑋2, . . . , 𝑋𝑛 in random order, where (1 − 𝛼)
fraction of the samples are generated from 𝐷 (𝜇), and the rest are generated from 𝐷 (𝑧𝑖) for
𝑖 = 1, 2, . . . , 𝛼𝑛, independently. We say the set of samples 𝑋1, 𝑋2, . . . , 𝑋𝑛 is 𝛼-corrupted.

This model is a relaxation of Huber’s contamination model, in the sense that we required
the contamination distribution chosen by the adversary to be structured, that is, a mixture of the
translations of the underlying distribution.

Meanwhile, recovering the mean 𝜇 from this model can be also viewed as an easier problem
than the problem of learning mixtures, when 𝛼 is small. For example, when the underlying
distribution 𝐷 is the Gaussian distribution with identity covariance, the output distribution of
this model can be viewed as a mixture of spherical Gaussians. However, we only care about the
location of the component with the largest weight 1 − 𝛼, which is the true mean 𝜇.

8



2.6 Median

For some one-dimensional symmetric distribution 𝐷, the median can estimate the mean up to
𝑂 (𝛼) additive error under our noise-oblivious model. Let 𝐹 (𝑥) = Pr𝑋∼𝐷 (0) [𝑋 ≤ 𝑥] denote the
cumulative distribution function of 𝐷 (0). Then we have the following bound.

Lemma 2.9. For 𝑋1, 𝑋2, . . . , 𝑋𝑛 generated from the 𝛼-corrupted noise-oblivious model on dis-
tribution 𝐷 (𝜇), where 𝛼 < 1/2. Let 𝑚 = median(𝑋1, 𝑋2, . . . , 𝑋𝑛), then

Pr[|𝑚 − 𝜇 | > 𝑡] ≤ 2 exp

(
−2(1 − 𝛼)𝑛

(
𝐹 (𝑡) − 1

2
− 𝛼

)2
)
.

Proof. It suffices to prove Pr[𝑚 − 𝜇 > 𝑡] ≤ exp
(
−2(1 − 𝛼)𝑛 (𝐹 (𝑡) − 1/2 − 𝛼)2

)
. Since there are

𝛼𝑛 outliers in the samples, the median is at most the 1/2
1−𝛼 -quantile of the inliers (all the outliers

are larger than all the inliers), which is at most the ( 1
2 + 𝛼)-quantile of the inliers, denoted by 𝑚′.

Let 𝐼 denote the set of the indices of the inliers, and for 𝑖 ∈ 𝐼, let 𝑍𝑖 = 𝟙[𝑋𝑖 − 𝜇 > 𝑡]. Then
𝑚′ − 𝜇 > 𝑡 is equivalent to 1

(1−𝛼)𝑛
∑
𝑖∈𝐼 𝑍𝑖 ≥ 1

2 − 𝛼. Note that 𝔼[𝑍𝑖] = 1 − 𝐹 (𝑡). By the Chernoff
bound, for 𝑠 > 0,

Pr

[
1

(1 − 𝛼)𝑛
∑︁
𝑖∈𝐼

𝑍𝑖 ≥ 1 − 𝐹 (𝑡) + 𝑠
]
≤ 𝑒−2(1−𝛼)𝑛𝑠2

.

Let 𝑠 = 𝐹 (𝑡) − 1
2 − 𝛼. Then

Pr[𝑚 − 𝜇 > 𝑡] ≤ Pr[𝑚′ − 𝜇 > 𝑡]

= Pr

[
1

(1 − 𝛼)𝑛
∑︁
𝑖∈𝐼

𝑍𝑖 ≥
1
2
− 𝛼

]
≤ exp

(
−2(1 − 𝛼)𝑛

(
𝐹 (𝑡) − 1

2
− 𝛼

)2
)
. □

Gaussian If 𝐷 is the one-dimensional unit-variance Gaussian distribution, then 𝐹 (𝑡) = 1
2 +

𝑡√
2𝜋

+𝑂 (𝑡2), and we have the following from Lemma 2.9.

Corollary 2.10. For 𝑋1, 𝑋2, . . . , 𝑋𝑛 generated from the 𝛼-corrupted noise-oblivious model on
distribution 𝑁 (𝜇, 1), where 𝛼 < 1/2. Let 𝑚 = median(𝑋1, 𝑋2, . . . , 𝑋𝑛), then for 𝑡 > 0,

Pr[|𝑚 − 𝜇 | >
√

2𝜋𝛼(1 + 𝑡)] ≤ 2 exp
(
−Ω(𝑡2(1 − 𝛼)𝛼2𝑛)

)
.

That is, for 𝛼 < 1/2, given 𝑛 = 𝑂 (1/𝛼2) samples, the median can robustly estimate the mean
up to 𝑂 (𝛼) additive error for Gaussian distributions, with constant probability.
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Laplace If 𝐷 is the one-dimensional unit-variance Laplace distribution, then 𝐹 (𝑡) = 1
2 +

√
2𝑡 +

𝑂 (𝑡2), and similarly we have the following.

Corollary 2.11. For 𝑋1, 𝑋2, . . . , 𝑋𝑛 generated from the 𝛼-corrupted noise-oblivious model on
distribution Laplace(𝜇, 1), where 𝛼 < 1/2. Let 𝑚 = median(𝑋1, 𝑋2, . . . , 𝑋𝑛), then for 𝑡 > 0,

Pr[|𝑚 − 𝜇 | > 𝛼(1 + 𝑡)/
√

2] ≤ 2 exp
(
−Ω(𝑡2(1 − 𝛼)𝛼2𝑛)

)
.

That is, for 𝛼 < 1/2, given 𝑛 = 𝑂 (1/𝛼2) samples, the median can robustly estimate the mean
up to 𝑂 (𝛼) additive error for Laplace distributions, with constant probability.

10



Chapter 3

Algorithm for Robust Mean Estimation

3.1 One-Dimensional Gaussian Case
As a starting point, we can consider the case where 𝑑 = 1, and 𝐷 is the Gaussian distribution
with unit variance. The input of the algorithm can be view as 𝑛 independent random variables,
with a (1 − 𝛼) fraction being sampled from 𝑁 (𝜇, 1), and the rest 𝛼 fraction being sampled from
𝑁 (𝑧𝑘 , 1), for 𝑘 = 1, 2, . . . , 𝛼𝑛, where 𝑧𝑘 is chosen by the adversary.

3.1.1 Preprocessing
From Corollary 2.10, we can robustly estimate the mean up to 𝑂 (𝛼) by the median, and translate
the samples so that the true mean has magnitude 𝑂 (𝛼).

3.1.2 Transform into Sparse Signal
For a sample 𝑦 𝑗 generated by one of the Gaussian distributions, say 𝑁 (𝑧, 1), from Fact 2.1, we
have for 𝑡 ∈ ℝ

𝔼[𝑒𝑖𝑡𝑦 𝑗 ] = 𝑒𝑖𝑡𝑧− 1
2 𝑡

2
.

Averaging for all 𝑗 = 1, 2, . . . , 𝑛, we have

1
𝑛

𝑛∑︁
𝑗=1

𝔼[𝑒𝑖𝑡𝑦 𝑗 ] = (1 − 𝛼)𝑒𝑖𝑡𝜇− 1
2 𝑡

2 + 1
𝑛

𝛼𝑛∑︁
𝑘=1

𝑒𝑖𝑡𝑧𝑘−
1
2 𝑡

2
.

Multiplying by 𝑒 1
2 𝑡

2 on both sides gives

1
𝑛

𝑛∑︁
𝑗=1

𝔼[𝑒𝑖𝑡𝑦 𝑗 ]𝑒 1
2 𝑡

2
= (1 − 𝛼)𝑒𝑖𝑡𝜇 + 1

𝑛

𝛼𝑛∑︁
𝑘=1

𝑒𝑖𝑡𝑧𝑘 .

This is a noisy 1-sparse signal if we treat the contributions from the corrupted points as noise,
and 𝑒𝑖𝑡𝜇 as the exactly 1-sparse signal. Replacing the expectation with empirical value, we will

11



apply the sparse Fourier transform in Theorem 2.6 on the signal

𝑥(𝑡) = 1
𝑛

𝑛∑︁
𝑗=1
𝑒𝑖𝑡𝑦 𝑗 𝑒

1
2 𝑡

2
.

Proof of Theorem 1.1, part 1. Let 𝑥∗ = (1 − 𝛼)𝑒𝑖𝑡𝜇, and the noise

𝑔(𝑡) = 𝑥(𝑡) − 𝑥∗(𝑡)

=
©«1
𝑛

𝑛∑︁
𝑗=1
𝑒𝑖𝑡𝑦 𝑗 − 1

𝑛

𝑛∑︁
𝑗=1

𝔼[𝑒𝑖𝑡𝑦 𝑗 ]ª®¬ 𝑒 1
2 𝑡

2

︸                                      ︷︷                                      ︸
𝑔1 (𝑡)

+ 1
𝑛

𝛼𝑛∑︁
𝑘=1

𝑒𝑖𝑡𝑧𝑘︸      ︷︷      ︸
𝑔2 (𝑡)

.

For 𝑔1(𝑡), we can use concentration inequalities to bound the difference between the empirical
average and the expectation. By Hoeffding’s inequality, we can bound the real part and the
imaginary part of the difference separately:

Pr

������1𝑛 𝑛∑︁

𝑗=1
cos(𝑡𝑦 𝑗 ) −

1
𝑛

𝑛∑︁
𝑗=1

𝔼[cos(𝑡𝑦 𝑗 )]

������ ≥
√︂
𝐶 log 𝑛
𝑛

 ≤ 2
𝑛𝐶/2 ,

Pr

������1𝑛 𝑛∑︁

𝑗=1
sin(𝑡𝑦 𝑗 ) −

1
𝑛

𝑛∑︁
𝑗=1

𝔼[sin(𝑡𝑦 𝑗 )]

������ ≥
√︂
𝐶 log 𝑛
𝑛

 ≤ 2
𝑛𝐶/2 ,

Since ������1𝑛 𝑛∑︁
𝑗=1
𝑒𝑖𝑡𝑦 𝑗 − 1

𝑛

𝑛∑︁
𝑗=1

𝔼[𝑒𝑖𝑡𝑦 𝑗 ]

������
=

������1𝑛 𝑛∑︁
𝑗=1

cos(𝑡𝑦 𝑗 ) −
1
𝑛

𝑛∑︁
𝑗=1

𝔼[cos(𝑡𝑦 𝑗 )] + 𝑖 ©«1
𝑛

𝑛∑︁
𝑗=1

sin(𝑡𝑦 𝑗 ) −
1
𝑛

𝑛∑︁
𝑗=1

𝔼[sin(𝑡𝑦 𝑗 )]ª®¬
������

≤

������1𝑛 𝑛∑︁
𝑗=1

cos(𝑡𝑦 𝑗 ) −
1
𝑛

𝑛∑︁
𝑗=1

𝔼[cos(𝑡𝑦 𝑗 )]

������ +
������©«1
𝑛

𝑛∑︁
𝑗=1

sin(𝑡𝑦 𝑗 ) −
1
𝑛

𝑛∑︁
𝑗=1

𝔼[sin(𝑡𝑦 𝑗 )]ª®¬
������ ,

by the union bound, we have������1𝑛 𝑛∑︁
𝑗=1
𝑒𝑖𝑡𝑦 𝑗 − 1

𝑛

𝑛∑︁
𝑗=1

𝔼[𝑒𝑖𝑡𝑦 𝑗 ]

������ ≤ 𝑂
(√︂

log 𝑛
𝑛

)
12



with probability at least 1 − 1
poly(𝑛) . Thus, w.h.p.,

|𝑔1(𝑡) | =

������©«1
𝑛

𝑛∑︁
𝑗=1
𝑒𝑖𝑡𝑦 𝑗 − 1

𝑛

𝑛∑︁
𝑗=1

𝔼[𝑒𝑖𝑡𝑦 𝑗 ]ª®¬ 𝑒 1
2 𝑡

2

������
≤ 𝑂

(√︂
log 𝑛
𝑛

· 𝑒 1
2 𝑡

2

)
.

Then we can apply Theorem 2.6, by setting 𝑘 = 1, 𝛿 = 𝑂 (1), 𝜂 = 𝑂 (1), 𝐹 = 𝑂 (𝛼), and
𝑇 = 1

2
√︁

log 𝑛. Then we will need 𝑀 := 𝑂 (log log 𝑛) samples from 𝑥(𝑡), say 𝑥(𝑡1), . . . , 𝑥(𝑡𝑀). By

the union bound, |𝑔1(𝑡 𝑗 ) | ≤ 𝑂
(√︃

log 𝑛
𝑛

· 𝑒 1
2𝑇

2
)
≤ 𝑂 (𝑛−1/4) w.p. at least 1− 1

poly(𝑛) . As we are only

accessing 𝑥(𝑡) via these points, we can pretend that |𝑔1(𝑡) | ≤ 𝑂 (𝑛−1/4) for all 𝑡 ∈ [0, 𝑇]. Then
compute

1
𝑇

∫ 𝑇

0
|𝑔(𝑡) |2d𝑡 =

1
𝑇

∫ 𝑇

0
|𝑔1(𝑡) + 𝑔2(𝑡) |2 d𝑡

≤ 2
𝑇

∫ 𝑇

0
|𝑔1(𝑡) |2 d𝑡 + 2

𝑇

∫ 𝑇

0
|𝑔2(𝑡) |2 d𝑡

≤ 𝑂 (𝑛−1/2) + 2
𝑇

∫ 𝑇

0

�����1𝑛 𝛼𝑛∑︁
𝑘=1

𝑒𝑖𝑡𝑧𝑘

����� d𝑡
≤ 𝑂 (𝑛−1/2) + 2

𝑇

∫ 𝑇

0

1
𝑛2 · 𝛼𝑛 ·

𝛼𝑛∑︁
𝑘=1

|𝑒𝑖𝑡𝑧𝑘 |2d𝑡

= 𝑂 (𝑛−1/2) + 2𝛼2.

So the noise level N2 ≤ 𝑂 (𝑛−1/2) + 2𝛼2 + 𝛿(1−𝛼)2 = 𝑂 (1). So for small enough constant 𝛼, we
have |𝑣1 | = 1 − 𝛼 = Ω(N), and we can recover the frequency (i.e. 𝜇2) up to 𝑂

(
1
𝑇

)
= 𝑂

(
1√

log 𝑛

)
additive error, in 𝑂 ((log log 𝑛)2) time with constant probability.

Overall, note that each sample of the signal takes𝑂 (𝑛) time to compute, and thus our algorithm
for the 1-dimensional case runs in time 𝑂 (𝑛𝑀) = 𝑂 (𝑛) and estimates the true mean 𝜇 up to
additive error 𝑂

(
1√

log 𝑛

)
with constant probability. That is, for our algorithm to estimate the true

mean up to additive error 𝜀 > 0, the sample complexity is 2𝑂 (1/𝜀2) , and the time complexity is
2𝑂 (1/𝜀2) . □

3.2 One-Dimensional Laplace Case
The analysis for the Laplace case follows the same line as that in the Gaussian case. For a sample
𝑦 𝑗 generated by one of the Laplace distributions, say Laplace(𝑧, 1), from Fact 2.3, we have for
𝑡 ∈ ℝ

𝔼[𝑒𝑖𝑡𝑦 𝑗 ] = 𝑒𝑖𝑡𝑧

1 + 1
2 𝑡

2

13



Averaging for all 𝑗 = 1, 2, . . . , 𝑛, we have

1
𝑛

𝑛∑︁
𝑗=1

𝔼[𝑒𝑖𝑡𝑦 𝑗 ] = (1 − 𝛼) 𝑒𝑖𝑡𝜇

1 + 1
2 𝑡

2
+ 1
𝑛

𝛼𝑛∑︁
𝑘=1

𝑒𝑖𝑡𝑧𝑘

1 + 1
2 𝑡

2
.

Multiplying by (1 + 1
2 𝑡

2) on both side gives

1
𝑛

𝑛∑︁
𝑗=1

𝔼[𝑒𝑖𝑡𝑦 𝑗 ]
(
1 + 𝑡

2

2

)
= (1 − 𝛼)𝑒𝑖𝑡𝜇 + 1

𝑛

𝛼𝑛∑︁
𝑘=1

𝑒𝑖𝑡𝑧𝑘 .

Proof of Theorem 1.1, part 2. We will apply the sparse Fourier transform on the signal

𝑥(𝑡) = 1
𝑛

𝑛∑︁
𝑗=1
𝑒𝑖𝑡𝑦 𝑗

(
1 + 𝑡

2

2

)
.

And similarly noise

𝑔1(𝑡) =
©«1
𝑛

𝑛∑︁
𝑗=1
𝑒𝑖𝑡𝑦 𝑗 − 1

𝑛

𝑛∑︁
𝑗=1

𝔼[𝑒𝑖𝑡𝑦 𝑗 ]ª®¬
(
1 + 𝑡

2

2

)
,

and 𝑔2(𝑡) is the same as that in the Gaussian case. We know from the previous section that������1𝑛 𝑛∑︁
𝑗=1
𝑒𝑖𝑡𝑦 𝑗 − 1

𝑛

𝑛∑︁
𝑗=1

𝔼[𝑒𝑖𝑡𝑦 𝑗 ]

������ ≤ 𝑂
(√︂

log 𝑛
𝑛

)
with probability at least 1 − 1

poly(𝑛) . Thus, w.h.p.,

|𝑔1(𝑡) | =

������©«1
𝑛

𝑛∑︁
𝑗=1
𝑒𝑖𝑡𝑦 𝑗 − 1

𝑛

𝑛∑︁
𝑗=1

𝔼[𝑒𝑖𝑡𝑦 𝑗 ]ª®¬
(
1 + 𝑡

2

2

)������
≤ 𝑂

(√︂
log 𝑛
𝑛

· 𝑡2
)
.

Then we can apply Theorem 2.6, by setting 𝑘 = 1, 𝛿 = 𝑂 (1), 𝜂 = 𝑂 (1), 𝐹 = 𝑂 (𝛼), and
𝑇 = 𝑛1/4/log 𝑛. Then we will need 𝑀 := 𝑂 (log 𝑛) samples from 𝑥(𝑡), say 𝑥(𝑡1), . . . , 𝑥(𝑡𝑀). By

the union bound, |𝑔1(𝑡 𝑗 ) | ≤ 𝑂
(√︃

log 𝑛
𝑛

· 𝑇2
)
≤ 𝑂 (1/log 𝑛) w.p. at least 1− 1

poly(𝑛) . As we are only

accessing 𝑥(𝑡) via these points, we can pretend that |𝑔1(𝑡) | ≤ 𝑂 (1/log 𝑛) for all 𝑡 ∈ [0, 𝑇]. Then
similarly, the noise level N2 ≤ 𝑂 ((log 𝑛)−2) + 2𝛼2 + 𝛿(1 − 𝛼)2 = 𝑂 (1). So for small enough
constant 𝛼, we have |𝑣1 | = 1 − 𝛼 = Ω(N), and we can recover the frequency (i.e. 𝜇2) up to
𝑂

(
1
𝑇

)
= 𝑂

(
log 𝑛
𝑛1/4

)
additive error, in 𝑂 ((log 𝑛)2) time with constant probability.

Overall, our algorithm for the 1-dimensional case runs in time 𝑂 (𝑛𝑀) = 𝑂 (𝑛) and estimates
the true mean 𝜇 up to additive error 𝑂

(
log 𝑛
𝑛1/4

)
with constant probability. That is, for our algorithm

to estimate the true mean up to additive error 𝜀 > 0, the sample complexity is 𝑂 ((1/𝜀)4), and
the time complexity is 𝑂 ((1/𝜀)4). □
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3.3 High-Dimensional Case
With this one-dimensional algorithm that can estimate the mean arbitrarily closely, it is easy
to design the algorithm for the high-dimensional case: just project the samples onto each axis,
and apply the one-dimensional algorithm on the projected samples to estimate the corresponding
coordinate of the true mean.

Take the Laplace case for example. For a direction along the axis 𝑒𝑖, project the input
sample 𝑌 = {𝑦 𝑗 }𝑛𝑗=1 along 𝑒𝑖 to get 𝑌𝑖 = {⟨𝑒𝑖, 𝑦 𝑗 ⟩}𝑛𝑗=1, which consists of (1 − 𝛼)𝑛 points being
distributed as Laplace(⟨𝑒𝑖, 𝜇⟩ , 1), and the rest 𝛼𝑛 points being distributed as Laplace(⟨𝑒𝑖, 𝑧𝑘⟩ , 1),
for 𝑘 = 1, 2, . . . , 𝛼𝑛. Then our one-dimensional algorithm, taking 𝑌 ′ as the input, can estimate
⟨𝑒𝑖, 𝜇⟩ up to additive error 𝜀/

√
𝑑 with constant probability with sample and time complexity

𝑂 (𝑑2/𝜀4). Let 𝑖 = 1, 2, . . . , 𝑑, we can estimate each coordinate of 𝜇 up to 𝜀/
√
𝑑 additive error,

and thus we can estimate 𝜇 up to 𝜀 additive error in ℓ2 norm. Also, we need to repeat each one-
dimensional algorithm𝑂 (log 𝑑) times to boost the success probability from constant to 1− 1

poly(𝑑)
to apply the union bound over all axis-aligned directions. So the total sample complexity is
𝑂 (𝑑2/𝜀4), and time complexity is 𝑂 (𝑑3/𝜀4).

Similarly, for the 𝑑-dimensional Gaussian case, the total samples and time complexity are
2𝑂 (𝑑/𝜀2) .
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Chapter 4

Applications

In this chapter, we will give two possible applications of our noise-oblivious model that motivated
us to study this model. While currently our results only solve the robust mean estimation problem
when the fraction of corruption is small in our model, these two applications require an algorithm
that solves the robust linear regression problem in the list-decodable setting.

4.1 Max-Affine Regression
Max-affine regression refers to the following model

𝑦 = max
1≤ 𝑗≤𝑘

{⟨ℓ 𝑗 , 𝑥⟩} + 𝜂,

where 𝑥 is a 𝑑-dimensional covariate, ℓ 𝑗 are unknown linear models for 𝑗 = 1, 2, . . . , 𝑘 , and
𝜂 is a zero-mean noise, independent of 𝑥. Max-affine regression is useful in a broad range of
applications. For 𝑘 = 2, and ℓ1 = −ℓ2 = 𝜃, the model becomes 𝑦 = |⟨𝜃, 𝑥⟩| + 𝜂. This is called real
phase retrieval, which has extensive applications in science and engineering [Tay03; SEC+15;
MCK+99; FWd13]. For general 𝑘 , the model can be viewed as a tractable approximation of
the convex regression problem [MB09; Bal16], as the maximum of 𝑘 linear functions is convex.
While the convex regression problem suffers from the curse of dimensionality [GS13], it is natural
to constrain the number of affine pieces of the function and hope to solve this more structured
problem.

There have been a lot of algorithmic results for max-affine regression based on alternating
minimization and stochastic gradient descent [GPG+19; GPG+20; GPG+22; KL23]. As list-
decodable linear regression algorithms in the strong contamination model can be used to solve the
problem of learning the maximum of 𝑘 linear models, we want to solve the max-affine regression
in the robust statistics perspective, i.e., using a list-decodable linear regression algorithm in
our noise-oblivious model. Before that, let us first introduce how the problem of learning the
maximum of 𝑘 linear models reduces to the problem of list-decodable linear regression in the
strong contamination model. Here, the problem of learning the maximum of 𝑘 linear models
is defined as, given independent samples {(𝑥 (𝑖) , 𝑦 (𝑖)}𝑖, where 𝑥 (𝑖) are i.i.d. standard Gaussian
random variables, and 𝑦 (𝑖) = max1≤ 𝑗≤𝑘 {⟨ℓ 𝑗 , 𝑥 (𝑖)⟩ + 𝜂(𝑖)𝑗 }, for i.i.d. standard Gaussian noise 𝜂(𝑖)

𝑗
,
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the algorithm needs to estimate the true linear models ℓ 𝑗 for 𝑗 = 1, 2, . . . , 𝑘 . One can directly
apply the list-decodable linear regression algorithm to this problem: to recover ℓ 𝑗 , we can view
the samples where (⟨ℓ 𝑗 , 𝑥 (𝑖)⟩ +𝜂(𝑖)𝑗 ) attains the maximum as the inliers, and the rest as the outliers.
That is, the adversary corrupts all the 𝑦 (𝑖) to the maximum of the 𝑘 linear models. As long as the
probability 𝑝 𝑗 of each model being selected as the maximum is bounded from below, there is an
about 𝑝 𝑗 fraction of the samples are uncorrupted, and we can recover all ℓ 𝑗 from the list output
by the algorithm.

The reduction above hints at the correspondence between taking the maximum and corruption.
In the max-affine regression model, the difference is that the noise 𝜂 is added after taking the
maximum. This is our motivation to consider the contamination model where the noise is added
after corruption.

For the max-affine regression problem, the samples can be viewed as generated from the
noise-oblivious model as follows: suppose the true linear function is ℓ 𝑗 , then

1. the model generate the covariates 𝑥 (𝑖) ∼ 𝑁 (0, 𝐼) independently;

2. the model compute 𝑦 (𝑖) = ⟨ℓ 𝑗 , 𝑥 (𝑖)⟩;

3. an adversary changes each 𝑦 (𝑖) = max1≤ 𝑗 ′≤𝑘 {⟨ℓ 𝑗 ′ , 𝑥 (𝑖)⟩} (the fraction of uncorrupted sam-
ples is equal to the fraction of samples where (⟨ℓ 𝑗 , 𝑥 (𝑖)⟩) attains the maximum);

4. the model adds i.i.d. noise from some distribution 𝐷 (0) to all the 𝑦 (𝑖) .

Similarly, if the probability 𝑝 𝑗 of each linear function being selected as the maximum is bounded
from below, we can recover all ℓ 𝑗 from the list output by the list-decodable linear regression
algorithm in the noise-oblivious model.

4.2 Mixed Linear Regression
A list-decodable linear regression algorithm in the noise-oblivious model can also solve the mixed
linear regression problem, in a way the same as that in the strong contamination model. Mixed
linear regression is the problem of given 𝑘 clusters of sample pairs (𝑥 (𝑖) , 𝑦 (𝑖)), each generated by
one of the 𝑘 unknown linear models, estimating the 𝑘 linear functions. The problem of mixed
linear regression has been well-studied before robust linear regression [De 89; JJ93; FS10; SJA16;
BWY17; LL18], but these techniques work under some assumptions, such as pairwise separation
or bounded condition number. Meanwhile, a list-decodable linear regression algorithm in the
strong contamination model immediately gives an algorithm for mixed linear regression by taking
one cluster as inliers and the rest as outliers [KKK19], similarly to the reduction for max-affine
regression. Note that when reducing the mixed linear regression problem to the list-decodable
linear regression problem, the criterion of adversarial corruption is independent of the value of
the samples (in contrast to the case in max-affine regression, where the adversary corrupts a
sample if it is not the maximum), especially, the noise. Therefore, there is no difference between
adding the noise after and before corruption. Thus, a list-decodable linear regression algorithm
in the noise-oblivious model also works for mixed linear regression.
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Chapter 5

Future Work

One important question is whether there exists a polynomial time algorithm for the Gaussian case.
Intuitively, Laplace distributions have an exponential tail, which is heavier than the Gaussian tail,
which indicates that the Gaussian case should be easier than the Laplace case, as the samples will
be more concentrated. Note that the exponential sample and time complexity of our algorithm
for the Gaussian case completely come from the characteristic function of Gaussian distributions.
One natural direction is to operate on the samples, that is, to transform the Gaussian distribution
into some distribution with a tamed characteristic function. Here we will present a failed but
interesting attempt in this direction.

For a Gaussian sample 𝑦 𝑗 ∼ 𝑁 (𝜇, 1), the square 𝑦2
𝑗

is distributed according to the noncentral
chi-squared distribution with one degree of freedom. By Fact 2.5, for 𝑡 ∈ ℂ with |ℑ𝑡 | ≤ 1/2,

𝔼[𝑒𝑖𝑡𝑦
2
𝑗 ] =

exp( 𝑖𝑡𝑧2

1−2𝑖𝑡 )
(1 − 2𝑖𝑡)−1/2 .

Then the analysis is similar to that in Section 3.1.2. Summing up for all 𝑦 𝑗 in the sample set, we
have for 𝑡 ∈ ℂ with |ℑ𝑡1 | ≤ 1/2,

1
𝑛

𝑛∑︁
𝑗=1

𝔼[𝑒𝑖𝑡1𝑦
2
𝑗 ] = (1 − 𝛼)

exp
(
𝑖𝑡1𝜇

2

1−2𝑖𝑡1

)
(1 − 2𝑖𝑡1)1/2 + 1

𝑛

𝛼𝑛∑︁
𝑘=1

exp
(
𝑖𝑡1𝑧

2
𝑘

1−2𝑖𝑡1

)
(1 − 2𝑖𝑡1)1/2 .

Substituting 𝑡 = 𝑡1
1−2𝑖𝑡1 (and thus 𝑡1 = 𝑡

1+2𝑖𝑡 ), then for 𝑡 ∈ ℝ we have |ℑ𝑡1 | = 2𝑡2
1+4𝑡2 ≤ 1/2, and

1
𝑛

𝑛∑︁
𝑗=1

𝔼

[
exp

(
𝑖

𝑡

1 + 2𝑖𝑡
𝑦2
𝑗

)]
=

(
(1 − 𝛼)𝑒𝑖𝑡𝜇2 + 1

𝑛

𝛼𝑛∑︁
𝑘=1

𝑒𝑖𝑡𝑧
2
𝑘

)
(1 + 2𝑖𝑡)1/2.

That is,
1
𝑛

𝑛∑︁
𝑗=1

𝔼

[
exp

(
𝑖

𝑡

1 + 2𝑖𝑡
𝑦2
𝑗

)]
(1 + 2𝑖𝑡)−1/2 = (1 − 𝛼)𝑒𝑖𝑡𝜇2 + 1

𝑛

𝛼𝑛∑︁
𝑘=1

𝑒𝑖𝑡𝑧
2
𝑘 .

Although we can get a noisy 1-sparse signal from the left-hand side, the problem is that the
real part of the exponent 𝑖 𝑡

1+2𝑖𝑡 𝑦
2
𝑗

is 2𝑡2
1+4𝑡2 𝑦

2
𝑗
. Thus the norm of exp

(
𝑖 𝑡

1+2𝑖𝑡 𝑦
2
𝑗

)
is exp

(
2𝑡2

1+4𝑡2 𝑦
2
𝑗

)
,
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which is too large, almost canceling out the Gaussian tail 𝑒−𝑦2/2. This makes it hard to apply
concentration inequalities to bound the difference between the expectation and the empirical
value of exp

(
𝑖 𝑡

1+2𝑖𝑡 𝑦
2
𝑗

)
. Therefore, one possible future direction is to consider another way of

transforming the Gaussian distribution to get a polynomial time algorithm for the Gaussian case.
Here we only consider the mean estimation problem. So another question is, are there

polynomial time algorithms for other statistical estimation problems in our noise-oblivious model,
such as covariance estimation and linear regression? The latter is especially important to us,
because our motivation is to solve the max-affine regression problem. Thus, another question
is whether our method extends to the list-decodable setting, where a majority of the samples
are corrupted. Note that similar to the reduction for the mixed linear regression problem, a
list-decodable mean estimation algorithm in the noise-oblivious model immediately yields an
algorithm for learning mixtures of Gaussians. Since there is an exp(𝑘) lower bound in learning
mixtures of 𝑘 Gaussians [MV10], there should also be an exp(1/𝑐) lower bound in list-decodable
mean estimation in the noise-oblivious model, where 𝑐 = 1 − 𝛼 is the fraction of uncorrupted
samples.
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Theory. Ed. by Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet. Vol. 75.
Proceedings of Machine Learning Research. PMLR, 2018, pp. 1420–1430. url:
https://proceedings.mlr.press/v75/klivans18a.html.

[KL23] Seonho Kim and Kiryung Lee. “Fast max-affine regression via stochastic gradient
descent”. In: 2023 59th Annual Allerton Conference on Communication, Control,
and Computing (Allerton). 2023, pp. 1–5. doi: 10.1109/Allerton58177.2023.
10313409.

[KSS18] Pravesh K. Kothari, Jacob Steinhardt, and David Steurer. “Robust moment estima-
tion and improved clustering via sum of squares”. In: STOC’18—Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing. ACM, New
York, 2018, pp. 1035–1046. isbn: 978-1-4503-5559-9.

[LL18] Yuanzhi Li and Yingyu Liang. “Learning Mixtures of Linear Regressions with
Nearly Optimal Complexity”. In: Proceedings of the 31st Conference On Learning
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