
Automatic Amortized Resource Analysis for
Exception Handling

Yiyang Guo

CMU-CS-23-133
August 2023

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Jan Hoffmann, Chair

Robert Harper

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science.

Copyright © 2023 Yiyang Guo

Keywords: Type Systems, Resource Analysis, Exception Handling, Amortized Analysis

Abstract
Automatic amortized resource analysis (AARA) is a type-based technique for

inferring symbolic resource bounds for programs at compile time. Since its first
introduction, the technique has been extended to the analysis to different resource
metrics, evaluation strategies, non-linear bounds, and various language features.

This thesis builds upon AARA. The contribution consists of two parts. First,
we present a new soundness proof of the type system of AARA with respect to a
small-step, operational cost semantics on an abstract machine that makes control
flow explicit. Compared to the big-step, structural cost semantics adopted in the
previous works, it leads to a more concise type soundness proof that is amenable
to extension to complex language features, such as polymorphism and nonstandard
control flows. Second, we extend the technique of AARA to a language with ex-
ception handling in the style of Standard ML. We present a type system, prove its
soundness by extending the small-step soundness proof, and show resource safety
as a corollary of the type soundness theorem. We discuss how type inference can be
automated to achieve, for the first time, automatic amortized resource analysis for
programs with exception handling.

Acknowledgments
The world of programming languages has inspired me in an indescribable way.

It has been a privilege to have encountered and explored the field and I am eternally
grateful for those who made my journey possible.

First and foremost, I want to thank my advisor, Jan Hoffmann. His insights and
character greatly enlightened not only my work, including this thesis, but also my
personal growth outside of the research. I cannot thank enough for his selfless guid-
ance throughout my study. I want to thank Professor Robert Harper for insightful
feedback on this thesis, for 15-312 which introduced me to the world of program-
ming languages. I am extremely grateful for his patience and for inspiring me in the
field throughout the years. I would also like to thank Professor Stephanie Balzer,
for her mentorship and for encouraging me at many critical points during my time at
CMU.

I would also like to shoutout to friends in the Principles of Programming group
for fun and fruitful discussions, and to Tracy Farbacher for her kindness and help
over the course of my Master’s program.

Last but not least, I want to thank my parents and sister for their unconditional
love throughout my life.

Contents

1 Introduction 1
1.1 AARA . 1
1.2 Static Analysis for Exception Handling . 1
1.3 Outline . 2

2 Soundness Proof via K-machine 3
2.1 Language . 3
2.2 Cost Semantics . 4
2.3 Type System . 5
2.4 Soundness . 8

3 Exception Handling 11
3.1 Language . 11
3.2 Type System . 12
3.3 A More Precise Type System . 13
3.4 Soundness . 15

4 Exception Handling using Dynamic Classification 25
4.1 Exceptions and Dynamic Classfication . 25
4.2 Language . 26
4.3 Type System . 27
4.4 Soundness . 27

5 Discussion 31
5.1 Future Work . 31

5.1.1 Automation . 31
5.1.2 Advanced Control Construct: Continuations 32

5.2 Conclusion . 33

Bibliography 35

v

vi

Chapter 1

Introduction

1.1 AARA
Automatic amortized resource analysis (AARA) is a type-based technique for inferring symbolic
resource bounds for programs at compile time [6]. The central pieces of this technique are the
following:

• A type system, consisting of local inference rules, codifies the resource bounds of pro-
grams. Type checking certifies resource bounds. The derivation tree is the proof. Type
inference generates resource bounds.

• The type system is usually a combination of the standard type system for the underly-
ing language and some form of resource annotations. Type checking and inference then
amount to a traditional checking/inference method such as Hindley–Milner–Damas and a
process of deriving resource annotations. Resource annotations are derived by solving a
numeric optimization problem, usually a linear program induced by the constraints in the
typing rules.

• The type system incorporates potential method (as in amortized analysis), which gives
symbolic, amortized resource bounds of programs.

• The analysis is proven sound by showing the soundness of the type system, with respect to
a cost semantics that associates closed programs with an evaluation cost.

The type-based approach makes AARA compositional by nature and extensible to various
programming paradigms. The technique has been developed to support different resource met-
rics, evaluation strategies, non-linear bounds, and various language features[6]. This thesis de-
velops some of the missing pieces in AARA: (1) a new soundness proof that would be helpful in
the presence of complex language features (2) an extension of AARA to exception handling.

1.2 Static Analysis for Exception Handling
Most of the static analysis works for exceptions focus on estimating uncaught exceptions using
control flow analysis and/or type and effect systems.[7][8][3][4][2][1]. The focus of this line
of works is to achieve both precision and efficiency of the analysis. It is motivated by software

1

engineering applications where uncaught exceptions cause programs to terminate abruptly with
little information for debugging.

However, exception handling is much more than exiting program execution and reporting
errors. Exceptions, especially in functional languages such as Standard ML, are oftentimes used
by programmers as a way to utilize nonstandard control flows. For example, in a program that
multiplies a list of numbers, an exception can be raised when the program encounters a zero
in the list. Its handler can then bypass normal control flows and return zero immediately. In
this sense, exceptions are not ‘exceptional” (i.e. rare cases of failures, anomalies), but rather a
mechanism with which programmers use to transfer control flows when desired, akin to the role
of continuations and algebraic effects.

Under this view, program analysis for exceptions should not make assumptions about how
and why exceptions are used. Resource bounds when the exceptions are raised (and potentially
handled), are as relevant as when other constructs are used. To our knowledge, this thesis is the
first work of resource analysis in the presence of exception handling.

1.3 Outline
The rest of this thesis is organized as follows:

1. In Chapter 2, we describe a soundness proof of AARA with respect to a small-step, oper-
ational semantics on an abstract machine that we call K-machine.

2. In Chapter 3, we present a type system for a language with exception handling, where
exceptions are implemented to be a globally fixed type. We prove its soundness by adapting
the proof in Chapter 2.

3. In Chapter 4, we extend Chapter 3 to allow exceptions to be dynamically classified val-
ues, as implemented in Standard ML. We show how the type system can be adapted to
accommodate such for AARA.

4. In Chapter 5, we summarize the results, discuss automation of the type system, and suggest
future directions for this work.

2

Chapter 2

Soundness Proof via K-machine

In this chapter, we describe a soundness proof of AARA with respect to a small-step, operational
cost semantics. We define our semantics using an abstract machine, which we call K-machine,
that makes control flows explicit in its state.

2.1 Language

Consider the following language with a base type of unit, general recursive functions, and lists.

v ::= x variable
| ⟨⟩ unit
| fun(f.x.e) function
| nil empty list
| cons(v1, v2) list construction

e ::= ret(v) return
| v1(v2) function application
| let(e1;x.e2) sequence
| match(v)(e0;x.y.e1) match list
| tick(q) consume/free up resource

The syntax separates expressions from values. Values are data that can carry potential (which we
will explain below). They include variables, units, recursive functions, empty lists, and inductive
cases of list construction. Expressions are computation that can consume or free up potential
when executed. They include returns, which lift values to expressions, function applications,
let-binds that sequence two expressions, and pattern matchers for lists. In addition, we have
tick(q), which has no computational meaning, but signals resource changes. tick(q)(q ≥ 0)
says the program consumes q amount of resource; tick(q)(q ≤ 0) says the program frees up
q amount of resource. We assume they have been inserted by programmers before typing and
analysis.

3

Despite being minimal, this language is sufficient to showcase the key ideas of AARA and
our extension presented in this thesis. We believe many developments of AARA, including non-
linear cost bounds and other standard functional language constructs (such as products, sums,
and recursive types), are orthogonal to the ideas below. The technique presented below can be
easily extended to those features and constructs. For the remainder of this thesis, we develop our
type systems, proofs, and exception handling constructs on top of this small language.

2.2 Cost Semantics
K-machine

Now, to define the cost semantics of our language, we follow the formulation in [5] to introduce
an abstract machine, called K-machine. K-machine includes an explicit control stack that records
the work that remains to be done after an instruction is executed.

During program execution, a state s; q of a computation says:
• We have q amount of resource available.
• s is one of the following two:

k ▷ e. This says a closed expression e is being evaluated on a stack k.

k ◁ v. This says a closed value v is being returned to a stack k.

A stack k consists of a list of frames. Each frame f is a let-binder x.e that sequences computation.
The full syntax is summarized below:

f ::= x.e sequence
k ::= ϵ empty stack

| k; f frame sequence
s ::= k ▷ e evaluate expression

| k ◁ v return value

Transitions

With this representation, we now define the dynamics of our language.
Initial and final states of computation are:

ϵ ▷ e; q initial D-INIT ϵ ◁ v; q final D-FINAL

Transition of states is given by:
s; q 7−→ s′; q′

p ≥ q

k ▷ tick(q); p 7−→ k ◁ ⟨⟩; p− q
D-TICK

k ▷ ret(v); q 7−→ k ◁ v; q
D-RET

k ▷ fun(f.x.e)(v2); q 7−→ k ▷ [fun(f.x.e), v2/f, x]e; q
D-FUN

4

k ▷ let(e1;x.e2); q 7−→ k;x.e2 ▷ e1; q
D-LET

k;x.e ◁ v; q 7−→ k ▷ [v/x]e; q
D-SEQ

k ▷ match(nil)(e0;x.y.e1); q 7−→ k ▷ e0; q
D-NIL

k ▷ match(cons(v1, v2))(e0;x.y.e1); q 7−→ k ▷ [v1, v2/x, y]e1; q
D-CONS

Rule D-TICK implies when program execution intends to consume q amount of resource, the
state of the program must have at least q amount of resource for it to proceed. The rest of the
rules is straightforward. This semantics presents a standard dynamics, subject to a quantitative
resource constraint.

To show the soundness of AARA under this semantics, it suffices to show the following the-
orem:
Theorem 2.2.1 (Resource safety).
For a closed expression e, if it is well-typed with some resource bound q according to the AARA
type system (presented below), then starting with q amount of resource (i.e. initial state ϵ ▷ e; q)
the program execution does not get stuck.

2.3 Type System
Now we present our type system that would give rise to a sound AARA. It is in spirit the same as
the ones presented in the previous AARA works [6], but reformulated to account for the syntactic
separation of values from expressions and our use of K-machine.

We have two classes of types for values and expressions respectively: τ for values, and an-
notated type A = ⟨τ, q⟩ for expressions. ⟨τ, q⟩ means a value of type τ plus q potential.
⟨τ1, q1⟩ → ⟨τ2, q2⟩ is a function type τ1 → τ2 where q1 potential is given with the input and
q2 potential is guarenteed upon function returns. L(⟨τ, q⟩) is a list type, where each element is of
type τ and each carries q potential.

τ ::= unit unit
| A → B function
| L(A) list

A ::= ⟨τ, q⟩ potential

Affine Types

Values carry potential, in the same sense in amortized analysis. Potentials are morally “tokens”
of resource (or to make the name more fit, the “ability” to do work(consume resource)). There-
fore, the type system treats potential in an affine manner, so that the resource is not duplicated
out of nowhere in the analysis.

To put it concretely, the typing rules treat all variables as affine resource by default. Contraction
is only allowed when the potential involved is properly shared (See 2.3).

5

Value Typing

Values typing stipulates the exact potential each value carries.
Γ; q ⊢ v : τ says under context Γ, a value v of type τ carries q potential.

x : τ ; 0 ⊢ x : τ
T-VAR ·; 0 ⊢ ⟨⟩ : unit T-TRIV

p ≥ 0

·; 0 ⊢ nil : L(⟨τ, p⟩) T-NIL

q = p+ q1 + q2 Γ1; q1 ⊢ v1 : τ Γ2; q2 ⊢ v2 : L(⟨τ, p⟩) Γ = Γ1,Γ2

Γ; q ⊢ cons(v1, v2) : L(⟨τ, p⟩)
T-LIST

Variables carry zero potential before being substituted. ⟨⟩ carries zero potential. A list of type
L(⟨τ, p⟩) carries p potential per element, in addition to the potential carried by the element itself.

|Γ| = Γ Γ, f : A → B, x : τ ; q ⊢ e : B A = ⟨τ, q⟩ A → B <: A′ → B′

Γ; 0 ⊢ fun(f.x.e) : A′ → B′ T-FUN

Functions take in a value and some potential, and if they terminate, return some value and some
potential. We chose to treat functions as values that do not carry potential. This way, we can
reuse/reinvoke functions as needed. This means in the typing rule, we need to require potential
of the function and the context Γ to be zero. |Γ| is a point-wise application of | · | to every type
in Γ, where | · | is defined by the following:

|unit| = unit

|L(A)| = L(|A|)
|A → B| = A → B

|⟨τ, q⟩| = ⟨|τ |, 0⟩

The constraint |Γ| = Γ essentially says functions are not allow to use potential carrying variables
from the context. Notice this means we cannot type check any code as it is, for example, a
function defined in a context with a variable x : L(A). But it does not limit the language’s
expressiveness, since we can transform the function to take in an extra argument of x : L(A),
and have the callsites responsible for the potential.
In addition, we have explicit subtyping in T-FUN rule to be able to relax the resource bound of a
function. Subtyping relaxes the resource bound represented in a type to a looser one. The formal
definition of subtyping is the following:
τ1 <: τ2 A1 <: A2

unit <: unit SB-UNIT
q′ ≤ q τ1 <: τ2
⟨τ1, q⟩ <: ⟨τ2, q′⟩

SB-POT

A2 <: A1 B1 <: B2

A1 → B1 <: A2 → B2
SB-FUN

A1 <: A2

L(A1) <: L(A2)
SB-LIST

This explicit subtyping of function values in T-FUN turned out to be necessary to have type
preservation in our language. To see why, consider the following piece of code:

6

f1: <unit,0> -> <unit,0>
f2: <(<unit,1> -> <unit,0>),0> -> <unit,0>

f1(x:unit) = match [] with
| nil => return x;
| y::ys => f1(<>);f1(<>);

let
x = ret(f1)

in
f2(x)

end
The expression f2(f1) is ill-typed but the code above (which steps to f2(f1)) is well-typed,
since we can subtype the expression ret(f1) (see T-SUB below). Retyping function f1 to
type <unit,1> -> <unit,0> is not possible without explicit subtyping on function values.

Although type preservation is not necessary for type soundness in some cases, we adopt this
patch here so as not to disrupt the proof strategy to type soundness.

Expression Typing

Expressions consume or free up potential and, if they terminate, evaluate to values.
Γ; q ⊢ e : ⟨τ, p⟩ says under context Γ, an expression e, if it terminates, evaluates to a value of

type τ and the starting q potential is enough to cover potential carried in the value of type τ plus
extra p potential.

Γ; q ⊢ v : τ

Γ; q ⊢ ret(v) : ⟨τ, 0⟩ T-RET
Γ1; q ⊢ e1 : ⟨τ1, q1⟩ Γ2, x : τ1; q1 ⊢ e2 : B

Γ1,Γ2; q ⊢ let(e1;x.e2) : B
T-LET

q = q1 + q2 Γ1; 0 ⊢ v1 : ⟨τ, q1⟩ → B Γ2; q2 ⊢ v2 : τ

Γ1,Γ2; q ⊢ v1(v2) : B
T-APP

q ≥ 0

·; q ⊢ tick(q) : ⟨unit, 0⟩ T-TICK

q = q1 + q2 Γ1; q1 ⊢ v : L(⟨τ, p⟩) Γ2; q2 ⊢ e0 : B Γ2, x : τ, y : L(⟨τ, p⟩); q2 + p ⊢ e1 : B

Γ1,Γ2; q ⊢ match(v)(e0;x.y.e1) : B
T-MATCH

All the rules above treat the variables linearly. We add the following structural rules to type
programs that are well-typed under usual cost-agnostic structural type systems.

Γ; p ⊢ e : ⟨τ, p′⟩ q ≥ p q − q′ ≥ p− p′

Γ; q ⊢ e : ⟨τ, q′⟩ T-RELAX
Γ; q ⊢ e : B

Γ, x : τ ; q ⊢ e : B
T-WEAK

T-RELAX and T-WEAK relax type and potential to be affine, instead of linear.

Γ; q ⊢ e : ⟨τ ′, q′⟩ τ ′ <: τ

Γ; q ⊢ e : ⟨τ, q′⟩ T-SUB
Γ, x : τ ; q ⊢ e : B τ ′ <: τ

Γ, x : τ ′; q ⊢ e : B
T-SUPER

7

T-SUB and T-SUPER allow us to type match expressions.

Γ, x1 : τ1, x2 : τ2; q ⊢ e : B τ . (τ1, τ2)

Γ, x : τ ; q ⊢ [x, x/x1, x2]e : B
T-CONTRACT

Lastly, contraction is allowed by properly sharing the potential involved, i.e. potential is not
duplicated.

Sharing

. is formally defined to be: τ . (τ1, τ2) , which says the potential carried by a value of type τ

equals to that of a value of type τ1, plus that of a value of type τ2.
A . (A1, A2)

unit . (unit, unit)
SH-UNIT

A → B . (A → B,A → B)
SH-FUN

q = q1 + q2 q1 ≥ 0 q2 ≥ 0 τ . (τ1, τ2)

⟨τ, q⟩ . (⟨τ1, q1⟩, ⟨τ2, q2⟩)
SH-POT

A . (A1, A2)

L(A) . (L(A1), L(A2))
SH-LIST

Stack/State Typing

Now with the type system above, we have specified the set of closed, well-typed expressions
and their resource bounds q. (when ·; q ⊢ e : B). To show the resource safety theorem 2.2.1, it
suffices to show a program exexution starting from ϵ ▷ e; q does not get stuck.

To that end, we define a notion of well-formedness for program states that would be preserved
during execution.
k ◁ : A . This says k is good given a value and potential of A.

ϵ ◁ : A
FR-EMP

k ◁ : B x : τ ; q ⊢ e : B

k;x.e ◁ : ⟨τ, q⟩ FR-BND

q ⊢ s . A program execution state is well-formed when:

·; q ⊢ e : B k ◁ : B

q ⊢ k ▷ e
ST-EXP

q = q1 + q2 ·; q1 ⊢ v : τ k ◁ : ⟨τ, q2⟩
q ⊢ k ◁ v

ST-VAL

2.4 Soundness

The remaining pieces to show 2.2.1 amount to proving type soundness via progress and preser-
vation mediated by such well-formedness. The key lemmas and theorems are:

8

Lemma 2.4.1 (Substitution).
If ·; q1 ⊢ v1 : τ1:
(A) If Γ, x1 : τ1; q2 ⊢ v : τ , then Γ; q1 + q2 ⊢ [v1/x1]v : τ .
(B) If Γ, x1 : τ1; q2 ⊢ e : B, then Γ; q1 + q2 ⊢ [v1/x1]e : B.

Theorem 2.4.2 (Progress).
If q ⊢ s, then either s final or s; q 7−→ s′; q′.

Theorem 2.4.3 (Preservation).
If q ⊢ s and s; q 7−→ s0; q0 then q0 ⊢ s0.

Since the language here is a subset of the one in Chapter 3, the proof is subsumed by the type
soundness proof there. We omit the full proof for brevity.

9

10

Chapter 3

Exception Handling

In this chapter, we extend AARA to a language with exception handling. We first start with a
setup where exception type is simply a globally fixed type (let τexn be this type) in our language.
In the next chapter, we relax this to match the exceptions in Standard ML.

3.1 Language
On top of the small language presented in Chapter 2, we add two additional constructs in the
class of expressions, similar to the setup in [5]. raise(v) raises an exception with value v. For
example, if τexn = Int, raise(0) would be one valid way to raise an exception and the value
0 would be passed to the handler. try(e1;x.e2) sets up exception handlers. It first evaluates
expression e1. If it raises an exception v, the control flow would be transfered to the handler, and
v would be bound to variable x, e2 would be evaluated; otherwise, the handler is ignored.

e ::= ...
| raise(v) raise exception
| try(e1;x.e2) exception handler

Again, following [5], we extend the semantics for exception handling. A stack k is now a list of
x.e and/or try(;x.e). A program state can now also be k ◀ v, which says an exception v is
thrown to the stack k.

f ::= x.e sequence
| try(;x.e) exception handler

k ::= ϵ empty stack
| k; f frame sequence

s ::= k ▷ e evaluate expression
| k ◁ v return value
| k ◀ v exception

Initial states are still ϵ ▷ e; q and final states are now:

ϵ ◁ v; q final D-FINAL
ϵ ◀ v; q final D-FINAL-EXN

11

Transition relation is extended with:

k ▷ raise(v); q 7−→ k ◀ v; q
D-RAISE

k; try(;x.e) ◀ v; q 7−→ k ▷ [v/x]e; q
D-HANDLE

k;x.e ◀ v; q 7−→ k ◀ v; q
D-EXN

k; try(;x.e) ◁ v; q 7−→ k ◁ v; q
D-NORMAL

k ▷ try(e1;x.e); q 7−→ k, try(;x.e) ▷ e1; q
D-TRY

3.2 Type System
Statics of exception handling is enriched with resource analysis via potential. raise(v) is similar
to ret(v), it needs potential q to pay for the potential stored in exception value being thrown to
the stack. The resulting type can be any arbitrary B, since no normal value would be returned
and bound to the following computation. try(e1;x.e2) needs potential to account for both cases
of handler being invoked or not. In either case, the resulting type should be that of the entire try
expression.

Γ; q ⊢ v : τexn
Γ; q ⊢ raise(v) : B

T-RAISE

q = q1 + q2 Γ1; q1 ⊢ e1 : B Γ2, x : τexn; q2 ⊢ e2 : B

Γ1,Γ2; q ⊢ try(e1;x.e2) : B
T-HANDLE

Problem in Soundness Proof

This type system is in fact sound. However, its proof in the style of progress and preservation
sketched in Chapter 2 demands a more precise version of well-typedness. To observe why, let
us revisit T-HANDLE and T-RELAX. Consider a case where the expression try(e1;x.e2) is typed
with the following derivation:

q′ ≥ q q′ − r′ ≥ q − r

q = q1 + q2 Γ1; q1 ⊢ e1 : ⟨τ, r⟩ Γ2, x : τexn; q2 ⊢ e2 : ⟨τ, r⟩
q ⊢ try(e1;x.e2) : ⟨τ, r⟩

T-HANDLE

q′ ⊢ try(e1;x.e2) : ⟨τ, r′⟩
T-RELAX

The use of T-RELAX looks unsound at the first sight. Raising the starting potential from q to q′

is only enough to leave an additional r′ − r potential, but if we blend T-RELAX into T-HANDLE,
both q1 and q2 need to have additional q′ − q potential. Since q = q1 + q2, the total q should be
raised with 2 ∗ (q′ − q)!
However, this rule is in fact sound, since e1 and e2 might both get evaluated, but never normally
return at the same time. If e1 evaluates to completion without raising an exception, the handler
x.e2 would be skipped, therefore we don’t need potential for that. We have exactly enough for e1
to leave extra r′ − r potential. If the handler is invoked, we know e1 raised an exception. Since
q1 ⊢ e1 : ⟨τ, r⟩, we know morally q1 is enough for e1 to reach the exception, then intuitively
we should be able to derive q1 ⊢ e1 : ⟨τ, r′⟩, since the resulting type of an exception-raising
expression is irrelevant according to T-RAISE.
Notice similar reasoning is not necessary for match statements, where only one of the two

12

branches of match will be evaluated, so the typing rule simply says, if in both branches, q
potential is enough to fuel through evaluation, leaving r potential, then the entire match can
evaluate to completion, starting with q potential, leaving r potential.
This use of T-HANDLE and T-RELAX blocks the preservation proof, when we need to show the
stepping k ▷ try(e1;x.e2); q 7−→ k, try(;x.e2) ▷ e1; q preserves well-formedness. The well-
formedness would mean e1 is well-typed, the stack k, try(;x.e2) is well-formed, and with re-
source q, the two compose “well”. The assumption tells us e1 is well-typed (q1 ⊢ e1 : ⟨τ, p⟩),
which only tells us q1 potential is enough to cover either e1 evaluating to v : τ plus potential p,
or e1 raising an exception. It does not tell us if e1 raises an exception, if there is any remaining
potential we could (also need to) use to evaluate the handler x.e2 and the computation left on the
stack k.

3.3 A More Precise Type System
With this intuition, we develop the following type system that leads to the final proof of type
soundness.

Expressions are now typed to ⟨τ, q⟩ ⊕ p, which means the expression evaluates to a value and
potential of ⟨τ, q⟩, or raises an exception, leaving p potential. The syntax of types is adjusted
accordingly to:

τ ::= unit unit
| A → (B ⊕ p) function
| L(A) list

A ::= ⟨τ, q⟩ potential

Subtyping and Sharing

Subtyping and sharing relations on types remain morally the same. ⊕p is treated contravariant
in the function return type, similar to q in ⟨τ, q⟩.
τ . (τ1, τ2) A . (A1, A2)

unit . (unit, unit)
SH-UNIT

A → (B ⊕ p) . (A → (B ⊕ p), A → (B ⊕ p))
SH-FUN

q = q1 + q2 q1 ≥ 0 q2 ≥ 0 τ . (τ1, τ2)

⟨τ, q⟩ . (⟨τ1, q1⟩, ⟨τ2, q2⟩)
SH-POT

A . (A1, A2)

L(A) . (L(A1), L(A2))
SH-LIST

τ1 <: τ2 A1 <: A2

unit <: unit SB-UNIT
q′ ≤ q τ1 <: τ2
⟨τ1, q⟩ <: ⟨τ2, q′⟩

SB-POT

A2 <: A1 B1 <: B2 p2 ≤ p1
A1 → (B1 ⊕ p1) <: A2 → (B2 ⊕ p2)

SB-FUN
A1 <: A2

L(A1) <: L(A2)
SB-LIST

13

Value Typing

Similarly, value typing remains the same. Explicit subtyping in T-FUN is updated for ⊕p.
Γ; q ⊢ v : τ

x : τ ; 0 ⊢ x : τ
T-VAR ·; 0 ⊢ ⟨⟩ : unit T-TRIV

p ≥ 0

·; 0 ⊢ nil : L(⟨τ, p⟩) T-NIL

|Γ| = Γ Γ, f : A → (B ⊕ p), x : τ ; q ⊢ e : B ⊕ p A = ⟨τ, q⟩ A → (B ⊕ p) <: A′ → (B′ ⊕ p′)

Γ; 0 ⊢ fun(f.x.e) : A′ → (B′ ⊕ p′)
T-FUN

q = p+ q1 + q2 Γ1; q1 ⊢ v1 : τ Γ2; q2 ⊢ v2 : L(⟨τ, p⟩) Γ = Γ1,Γ2

Γ; q ⊢ cons(v1, v2) : L(⟨τ, p⟩)
T-LIST

Expression Typing

Γ; q ⊢ e : B ⊕ p says e, if it terminates, evaluates to a value and potential of B, or raises an
exception, leaving p potential. Notice the symmetry between T-LET and T-HANDLE. In T-LET,
normal return composes between e1 and e2, while exceptional flow ⊕p falls through between
them. In T-HANDLE, normal return falls through e1 and e2, while exceptional flow composes
between.

Γ; q ⊢ v : τ

Γ; q ⊢ ret(v) : ⟨τ, 0⟩ ⊕ 0
T-RET

Γ1; q ⊢ e1 : ⟨τ1, q1⟩ ⊕ p Γ2, x : τ1; q1 ⊢ e2 : B ⊕ p

Γ1,Γ2; q ⊢ let(e1;x.e2) : B ⊕ p
T-LET

q = q1 + q2 Γ1; 0 ⊢ v1 : ⟨τ, q1⟩ → (B ⊕ p) Γ2; q2 ⊢ v2 : τ

Γ1,Γ2; q ⊢ v1(v2) : B ⊕ p
T-APP ·; q ⊢ tick(q) : ⟨unit, 0⟩ ⊕ 0

T-TICK

q = q1 + q2 Γ1; q1 ⊢ v : L(⟨τ, r⟩) Γ2; q2 ⊢ e0 : B ⊕ p Γ2, x : τ, y : L(⟨τ, r⟩); q2 + r ⊢ e1 : B ⊕ p

Γ1,Γ2; q ⊢ match(v)(e0;x.y.e1) : B ⊕ p
T-MATCH

Γ; q ⊢ v : τexn
Γ; q ⊢ raise(v) : B ⊕ 0

T-RAISE

Γ1; q ⊢ e1 : B ⊕ p1 Γ2, x : τexn; p1 ⊢ e2 : B ⊕ p

Γ1,Γ2; q ⊢ try(e1;x.e2) : B ⊕ p
T-HANDLE

Structural rules are morally the same. T-RELAX also relaxes ⊕p.

Γ, x1 : τ1, x2 : τ2; q ⊢ e : B ⊕ p τ . (τ1, τ2)

Γ, x : τ ; q ⊢ [x, x/x1, x2]e : B ⊕ p
T-CONTRACT

Γ; q ⊢ e : B ⊕ p

Γ, x : τ ; q ⊢ e : B ⊕ p
T-WEAK

Γ; q′ ⊢ e : ⟨τ, r′⟩ ⊕ p′ q ≥ q′ q − r ≥ q′ − r′ q − p ≥ q′ − p′

Γ; q ⊢ e : ⟨τ, r⟩ ⊕ p
T-RELAX

Γ; q ⊢ e : ⟨τ ′, r⟩ ⊕ p τ ′ <: τ

Γ; q ⊢ e : ⟨τ, r⟩ ⊕ p
T-SUB

Γ, x : τ ; q ⊢ e : B ⊕ p τ ′ <: τ

Γ, x : τ ′; q ⊢ e : B ⊕ p
T-SUPER

14

Stack/State Typing

With ⊕p, we can now define a precise-enough notion of well-formedness for program states, in
the presence of exceptions. A stack is well-formed when:
k ◁ : A⊕ p . This says k is good, given either a value and potential of A, or an exception and

potential p.

p ≥ 0
ϵ ◁ : A⊕ p

FR-EMP
k ◁ : B ⊕ p x : τ ; q ⊢ e : B ⊕ p

k;x.e ◁ : ⟨τ, q⟩ ⊕ p
FR-BND

k ◁ : B ⊕ p0 x : τexn; p ⊢ e : B ⊕ p0
k; try(;x.e) ◁ : B ⊕ p

FR-EXN

Finally, a program execution state is well-formed when:
q ⊢ s

·; q ⊢ e : B ⊕ p k ◁ : B ⊕ p

q ⊢ k ▷ e
ST-EXP

q = q1 + q2 ·; q1 ⊢ v : τ k ◁ : ⟨τ, q2⟩ ⊕ p

q ⊢ k ◁ v
ST-VAL

q = q1 + p ·; q1 ⊢ v : τexn k ◁ : B ⊕ p

q ⊢ k ◀ v
ST-EXN

3.4 Soundness
We now present the full proof of type soundness.
Lemma 3.4.1.
If Γ; q ⊢ v : τ , then q ≥ 0.

Lemma 3.4.2.
If Γ; q ⊢ v : τ and |τ | = τ , then q = 0.

Proof. Induct on Γ; q ⊢ v : τ .

• T-VAR: q = 0.
• T-TRIV: q = 0.
• T-NIL: q = 0.
• T-FUN: q.
• T-LIST: v = cons(v1, v2), τ = L(⟨τ ′, p⟩).

By the assumption, q = p+ q1 + q2, Γ1; q1 ⊢ v1 : τ
′, Γ2; q2 ⊢ v2 : τ , Γ = Γ1,Γ2.

Since |L(⟨τ ′, p⟩)| = L(|⟨τ ′, p⟩|) = L(⟨|τ ′|, 0⟩) = L(⟨τ ′, p⟩), we have p = 0 and |τ ′| = τ ′.
Using the IH, q1 = 0 and q2 = 0.
Then q = p+ q1 + q2 = 0.

Lemma 3.4.3 (Sharing).
If τ . (τ1, τ2) and ·; q ⊢ v : τ , then ·; q1 ⊢ v : τ1, ·; q2 ⊢ v : τ2, where q = q1+ q2, q1 ≥ 0, q2 ≥ 0.

15

Proof. Induction on τ . (τ1, τ2).

• SH-UNIT: τ = τ1 = τ2 = unit. Induct on ·; q ⊢ v : unit, we get v = ⟨⟩, q = 0. Then let
q1 = q2 = 0.

• SH-FUN: Similarly, τ = τ1 = τ2, q = q1 = q2 = 0.
• SH-POT: Vacuous.
• SH-LIST: τ = L(A), L(A) . (L(A1), L(A2)). By the assumption, A . (A1, A2).

Induct on ·; q ⊢ v : τ .
T-NIL: v = nil, q = 0, ·; 0 ⊢ nil : L(⟨τ, p⟩) for any p ≥ 0, which is guaranteed by
A . (A1, A2)

T-LIST: v = cons(v1, v2), A = ⟨τ ′, p⟩, q = p + r1 + r2, and ·; r1 ⊢ v1 : τ ′,
·; r2 ⊢ v2 : L(⟨τ ′, p⟩).
Invert A . (A1, A2), get A1 = ⟨τ ′1, p1⟩, A2 = ⟨τ ′2, p2⟩, τ ′ . (τ ′1, τ

′
2), and p = p1 + p2,

p1 ≥ 0, p2 ≥ 0.
Using the inner IH, ·; r′1 ⊢ v1 : τ

′
1, ·; r′′1 ⊢ v1 : τ

′
2, where r1 = r′1 + r′′1 , r

′
1 ≥ 0, r′′1 ≥ 0.

Also, ·; r′2 ⊢ v2 : L(⟨τ ′1, p1⟩), ·; r′′2 ⊢ v2 : L(⟨τ ′2, p2⟩), where r2 = r′2 + r′′2 , r
′
2 ≥

0, r′′2 ≥ 0.
By T-LIST, ·; r′1 + r′2 + p1 ⊢ cons(v1, v2) : L(⟨τ ′1, p1⟩), and ·; r′′1 + r′′2 + p2 ⊢
cons(v1, v2) : L(⟨τ ′2, p2⟩), where r′1 + r′2 + p1 + r′′1 + r′′2 + p2 = q.

Lemma 3.4.4 (Transitivity of <:).
Subtyping is transitive, i.e. if τ1 <: τ2, τ2 <: τ3, then τ1 <: τ3.
Lemma 3.4.5 (Value Subtyping).
If ·; q ⊢ v : τ and τ <: τ ′, then ·; q′ ⊢ v : τ ′ where q′ ≤ q.

Proof. Induction on τ <: τ ′.

• SB-UNIT: τ = τ ′ = unit, let q′ = q.
• SB-POT: /
• SB-FUN: τ = A1 → (B1 ⊕ p1), τ ′ = A2 → (B2 ⊕ p2). A2 <: A1, B1 <: B2, and p2 ≤ p1.

Induct on ·; q ⊢ v : τ to see q = 0, v = fun(f.x.e). And f : A′
1 → (B′

1 ⊕ p′1), x : τ0; q0 ⊢
e : B′

1, A
′
1 = ⟨τ0, q0⟩, where A1 <: A′

1, B
′
1 <: B1, p1 ≤ p′1.

By transitivity of subtyping, A2 <: A′
1, B

′
1 <: B2. Also p2 ≤ p′1.

By T-FUN, ·; 0 ⊢ v : A2 → (B2 ⊕ p2).
• SB-LIST: τ = L(A1), τ ′ = L(A2), A1 <: A2.

Induct on ·; q ⊢ v : τ . Either v = nil, then let q′ = q = 0.
Or v = cons(v1, v2), where A1 = ⟨τ0, p⟩ q = q1 + q2 + p, ·; q1 ⊢ v1 : τ0, ·; q2 ⊢ v2 :
L(⟨τ0, p⟩).
Also, A1 <: A2, so A2 = ⟨τ ′0, p′⟩, τ0 <: τ ′0, p ≥ p′.
By IH, ·; q′1 ⊢ v1 : τ

′
0, ·; q′2 ⊢ v2 : L(⟨τ ′0, p′⟩) with q′1 ≤ q1, q

′
2 ≤ q2.

By T-LIST, ·; p′ + q′1 + q′2 ⊢ v : L(⟨τ ′0, p′⟩) and p′ + q′1 + q′2 ≤ p+ q1 + q2.

Lemma 3.4.6. If Γ; q ⊢ e : ⟨τ, r⟩ ⊕ p, then Γ; q + d ⊢ e : ⟨τ, r + d⟩ ⊕ p+ d when d ≥ 0.

16

Lemma 3.4.7. If k ◁ : ⟨τ, q⟩ ⊕ p, then k ◁ : ⟨τ, q + d⟩ ⊕ p+ d when d ≥ 0.
Lemma 3.4.8 (State relaxing). If q ⊢ s, then q′ ⊢ s when q′ ≥ q.

Lemma 3.4.9 (Substitution).
If ·; q1 ⊢ v1 : τ1:
(A) If Γ, x1 : τ1; q2 ⊢ v : τ , then Γ; q1 + q2 ⊢ [v1/x1]v : τ .
(B) If Γ, x1 : τ1; q2 ⊢ e : B ⊕ p, then Γ; q1 + q2 ⊢ [v1/x1]e : B ⊕ p.

Proof. Induction on ·; q1 ⊢ v1 : τ1:

• T-VAR: /
• T-TRIV, T-FUN, T-NIL, T-LIST:

(A): Induction on Γ, x1 : τ1; q2 ⊢ v : τ

T-VAR: q2 = 0, v = x1,Γ = ·, τ1 = τ . Then [v1/x1]x1 = v1, and ·; q1 ⊢ v1 : τ1.
T-TRIV: /
T-FUN: q2 = 0, v = fun(f.x.e)(x1 ̸= x), τ ′ <: τ, τ ′ = ⟨τx, q′⟩ → (B ⊕ p).
[v1/x1]fun(f.x.e) = fun(f.x.[v1/x1]e).
By the assumption, Γ, x1 : τ1, f : ⟨τx, q′⟩ → (B ⊕ p), x : τx; q

′ ⊢ e : B ⊕ p, and
|Γ, x1 : τ1| = Γ, x1 : τ1 (so |τ1| = τ1).
Then by lemma 3.4.2, q1 = 0.
Using IH(B), Γ, f : ⟨τx, q′⟩ → (B ⊕ p), x : τx; q

′ + q1 ⊢ [v1/x1]e : B, where q1 = 0,
|Γ| = Γ.
By T-FUN, Γ; 0 ⊢ fun(f.x.[v1/x1]e) : τ .
T-NIL: /
T-LIST: v = cons(v′1, v

′
2), τ = L(⟨τ0, p⟩), Γ, x1 : τ1 = Γ1,Γ2.

By the assumption q2 = p+ q′1 + q′2, Γ1; q
′
1 ⊢ v′1 : τ0, and Γ2; q

′
2 ⊢ v′2 : L(⟨τ0, p⟩).

Then x1 : τ1 ∈ Γ1 xor x1 : τ1 ∈ Γ2.
− If x1 : τ1 ∈ Γ1, using IH(A), Γ1 \ (x1 : τ1); q

′
1 + q1 ⊢ [v1/x1]v

′
1 : τ0.

By T-LIST, Γ; q2 + q1 ⊢ cons([v1/x1]v
′
1, v

′
2) : L(⟨τ0, p⟩).

− Otherwise, x1 : τ1 ∈ Γ2, using IH(A), Γ2 \ (x1 : τ1); q
′
2 + q1 ⊢ [v1/x1]v

′
2 :

L(⟨τ0, p⟩).
By T-LIST, Γ; q2 + q1 ⊢ cons(v′1, [v1/x1]v

′
2) : L(⟨τ0, p⟩).

(B): Induction on Γ, x1 : τ1; q2 ⊢ e : B ⊕ p

T-RET: e = ret(v′), B = ⟨τ, 0⟩, p = 0.
By the assumption, Γ, x1 : τ1; q2 ⊢ v′ : τ .
Using IH(A), Γ; q2 + q1 ⊢ [v1/x1]v

′ : τ .
By T-RET, Γ; q2 + q1 ⊢ [v1/x1]ret(v

′) : ⟨τ, 0⟩ ⊕ 0.
T-LET: Γ, x1 : τ1 = Γ1,Γ2 and e = let(e1;x.e2).
By the assumption, Γ1; q2 ⊢ e1 : ⟨τ, q3⟩ ⊕ p and Γ2, x : τ1; q3 ⊢ e2 : B ⊕ p(x ̸= x1).
Then x1 : τ1 ∈ Γ1 xor x1 : τ1 ∈ Γ2.
− If x1 : τ1 ∈ Γ1, by IH(B), Γ1 \ (x1 : τ1); q2 + q1 ⊢ [v1/x1]e1 : ⟨τ, q3⟩ ⊕ p.

By T-LET, Γ; q2 + q1 ⊢ let([v1/x1]e1;x.e2) : B ⊕ p.
− Otherwise x1 : τ1 ∈ Γ2, then by IH(B), Γ2 \ (x1 : τ1), x : τ ; q3 + q1 ⊢ [v1/x1]e2 :

B ⊕ p.

17

Using T-RELAX on Γ1; q2 ⊢ e1 : ⟨τ, q3⟩ ⊕ p, we have Γ1; q2 + q1 ⊢ e1 : ⟨τ, q3 +
q1⟩ ⊕ p.
By T-LET, Γ; q2 + q1 ⊢ let(e1;x.[v1/x1]e2) : B ⊕ p.

T-APP: Γ, x1 : τ1 = Γ1,Γ2, e = v′1(v
′
2).

By the assumption, q2 = p1 + p2. Γ1; 0 ⊢ v′1 : ⟨τ, p1⟩ → (B ⊕ p) and Γ2; p2 ⊢ v′2 : τ .
Then x1 : τ1 ∈ Γ1 xor x1 : τ1 ∈ Γ2.
− If x1 : τ1 ∈ Γ1, by IH(A), Γ1 \ (x1 : τ1); q1 ⊢ [v1/x1]v

′
1 : ⟨τ, p1⟩ → (B ⊕ p).

Since |⟨τ, p1⟩ → (B ⊕ p)| = ⟨τ, p1⟩ → (B ⊕ p), by lemma 3.4.2, q1 = 0.
By T-APP, Γ; q2 ⊢ [v1/x1]v

′
1(v

′
2) : B ⊕ p.

− Otherwise x1 : τ1 ∈ Γ2, then by IH(A), Γ2 \ (x1 : τ1); p2 + q1 ⊢ [v1/x1]v
′
2 : τ .

By T-APP, Γ; q2 + q1 ⊢ v′1([v1/x1]v
′
2) : B ⊕ p.

T-TICK: /
T-MATCH: Γ, x1 : τ1 = Γ1,Γ2 and e = match(v)(e0;x.y.e1).
By the assumption, q2 = q′1 + q′2, Γ1; q

′
1 ⊢ v : L(⟨τ0, r⟩), Γ2; q

′
2 ⊢ e0 : B ⊕ p,

Γ2, x : τ0, y : L(⟨τ0, r⟩); q′2 + r ⊢ e1 : B ⊕ p.
Then x1 : τ1 ∈ Γ1 xor x1 : τ1 ∈ Γ2.
− If x1 : τ1 ∈ Γ1, by IH(A), Γ1 \ (x1 : τ1); q1 + q′1 ⊢ [v1/x1]v : L(⟨τ0, r⟩).

By T-MATCH, Γ; q1 + q2 ⊢ match([v1/x1]v)(e0;x.y.e1) : B ⊕ p.
− Otherwise x1 : τ1 ∈ Γ2, then by IH(B), Γ2\(x1 : τ1); q

′
2+q1 ⊢ [v1/x1]e0 : B⊕p,

and Γ2 \ (x1 : τ1), x : τ0, y : L(⟨τ0, r⟩); q′2 + q1 + r ⊢ [v1/x1]e1 : B ⊕ p.
By T-MATCH, Γ; q1 + q2 ⊢ match(v)([v1/x1]e0;x.y.[v1/x1]e1) : B ⊕ p.

T-RAISE: By the assumption, p = 0, and Γ, x1 : τ1; q2 ⊢ v : τexn.
Using IH(A), Γ; q1 + q2 ⊢ [v1/x1]v : τexn.
By T-RAISE, Γ; q1 + q2 ⊢ [v1/x1]raise(v) : B ⊕ 0.
T-HANDLE: Γ, x1 : τ1 = Γ1,Γ2. Then x1 : τ1 ∈ Γ1 xor x1 : τ1 ∈ Γ2.
By the assumption, Γ1; q2 ⊢ e1 : B ⊕ p0, Γ2, x : τexn; p0 ⊢ e2 : B ⊕ p.
− If x1 : τ1 ∈ Γ1,using IH(B), Γ1 \ (x1 : τ1); q1 + q2 ⊢ [v1/x1]e1 : B ⊕ p0.

By T-HANDLE, Γ; q2 + q1 ⊢ [v1/x1]try(e1;x.e2) : B ⊕ p.
− Otherwise, x1 : τ1 ∈ Γ2, using IH(B), Γ2\(x1 : τ1), x : τexn; q1+p0 ⊢ e2 : B⊕p.

Using T-RELAX on Γ1; q2 ⊢ e1 : B ⊕ p0 to get Γ1; q2 + q1 ⊢ e1 : B ⊕ p0 + q1.
By T-HANDLE, Γ; q2 + q1 ⊢ [v1/x1]try(e1;x.e2) : B ⊕ p.

T-CONTRACT: Γ, x1 : τ1 = Γ′, x : τ and e = [x, x/y1, y2]e
′ : B ⊕ p.

Then x1 = x xor x1 ̸= x.
By the assumption, Γ′, y1 : τ

′
1, y2 : τ

′
2; q2 ⊢ e′ : B ⊕ p and τ . (τ ′1, τ

′
2).

− If x1 = x, Γ = Γ′, x1 /∈ Γ′ and τ1 = τ . (τ ′1, τ
′
2).

By the sharing lemma 3.4.3, ·; p1 ⊢ v1 : τ
′
1 and ·; p2 ⊢ v1 : τ

′
2, where q1 = p1+p2.

Using IH(B) once for y1 and y2 respectively, we get Γ′; q2+p1+p1 ⊢ [v1/y2][v1/y1]e
′ :

B ⊕ p.
x1 /∈ v1, so [v1/y2][v1/y1]e

′ = [v1/x][x, x/y1, y2]e
′ = [v1/x1]e.

Then Γ; q2 + q1 ⊢ [v1/x1]e : B ⊕ p.
− Otherwise x1 ̸= x, Γ′ = Γ′′, x1 : τ1. x1 ̸= y1, x2 ̸= y2.

Using IH(B), Γ′′, y1 : τ
′
1, y2 : τ

′
2; q2 + q1 ⊢ [v1/x1]e

′ : B ⊕ p.

18

By T-CONTRACT, Γ′′, x : τ ; q2 + q1 ⊢ [x, x/y1, y2][v1/x1]e
′ : B ⊕ p, which is

Γ; q2 + q1 ⊢ [v1/x1]e : B ⊕ p.
T-WEAK: Γ, x1 : τ1 = Γ′, x : τ .
Then x = x1 xor x ̸= x1. By the assumption, Γ′; q2 ⊢ e : B ⊕ p.
− If x = x1, then Γ = Γ′, x1 /∈ Γ′, therefore x1 /∈ e. Then [v1/x1]e = e. Then

Γ; q2 ⊢ [v1/x1]e : B ⊕ p by the assumption.
By T-RELAX, Γ; q2 + q1 ⊢ [v1/x1]e : B ⊕ p (q1 ≥ 0 by lemma 3.4.1).

− Otherwise x ̸= x1, x1 ∈ Γ′. By the assumption, Γ′; q2 ⊢ e : B ⊕ p.
Using IH(B), Γ′ \ (x1 : τ1); q2 + q1 ⊢ [v1/x1]e : B ⊕ p.
By T-WEAK, Γ; q2 + q1 ⊢ [v1/x1]e : B ⊕ p.

T-RELAX: B = ⟨τ, r⟩.
By the assumption, Γ, x1 : τ1; q

′ ⊢ e : ⟨τ, r′⟩ ⊕ p′ and q2 ≥ q′, q2 − r ≥ q′ − r′,
q2 − p ≥ q′ − p′.
Using IH(B), Γ; q′ + q1 ⊢ [v1/x1]e : ⟨τ, r′⟩ ⊕ p′.
By T-RELAX, Γ; q2 + q1 ⊢ [v1/x1]e : ⟨τ, r⟩ ⊕ p

T-SUB: B = ⟨τ, r⟩.
By the assumption τ ′ <: τ and Γ, x1 : τ1; q2 ⊢ e : ⟨τ ′, r⟩ ⊕ p.
Using IH(B), Γ; q2 + q1 ⊢ [v1/x1]e : ⟨τ ′, r⟩ ⊕ p.
By T-SUB, Γ; q2 + q1 ⊢ [v1/x1]e : ⟨τ, r⟩ ⊕ p.
T-SUPER: Γ, x1 : τ1 = Γ′, x : τ ′.
Then x = x1 xor x ̸= x1.
By the assumption, τ ′ <: τ , and Γ′, x : τ ; q2 ⊢ e : B ⊕ p.
− If x = x1, then Γ = Γ′, τ ′ = τ1.

Since ·; q1 ⊢ v1 : τ1, τ1 <: τ , by the value subtyping lemma 3.4.5, ·; q′1 ⊢ v1 : τ
with q′1 ≤ q1.
Using IH(B), Γ; q2 + q′1 ⊢ [v1/x1]e : B ⊕ p.
By T-RELAX, Γ; q2 + q1 ⊢ [v1/x1]e : B ⊕ p.

− Otherwise x ̸= x1, x1 ∈ Γ′.
So the assumption gives Γ′′, x1 : τ1, x : τ ; q2 ⊢ e : B⊕p, where Γ′′, x1 : τ1 = Γ′.
Using IH(B), Γ′′, x : τ ; q2 + q1 ⊢ [v1/x1]e : B ⊕ p.
By T-SUPER, Γ′′, x : τ ′; q2 + q1 ⊢ [v1/x1]e : B ⊕ p, where Γ′′, x : τ ′ = Γ.

Preservation

Theorem 3.4.10 (Preservation).
If q ⊢ s and s; q 7−→ s0; q0 then q0 ⊢ s0.

Proof. Induct on s; q 7−→ s0; q0.

• D-TICK: k ▷ tick(r); q 7−→ k ◁ ⟨⟩; q0 and q ≥ r, q0 = q − r.
q ⊢ s, so ·; q ⊢ tick(r) : B ⊕ p and k ◁ : B ⊕ p.
We want to show q − r ⊢ k ◁ ⟨⟩.

19

Let B = ⟨τ, x⟩. Induct on ·; q ⊢ tick(r) : ⟨τ, x⟩ ⊕ p to show q − x ≥ r and unit <: τ .
Only 3 cases are possible:

T-TICK: q = r, τ = unit, x = 0. Good.
T-RELAX: By the assumption, ·; q′ ⊢ tick(r) : ⟨τ, x′⟩⊕p′ and q ≥ q′, q−x ≥ q′−x′,
q − p ≥ q′ − p′.
Using the inner IH, get unit <: τ and q′ − x′ ≥ r. So q − x ≥ r.
T-SUB: By the assumption, ·; q ⊢ tick(r) : ⟨τ ′, x⟩ ⊕ p, where τ ′ <: τ .
Using the inner IH, q − x ≥ r, unit <: τ ′, by transitivity of subtyping, unit <: τ .

By T-TRIV, ·; 0 ⊢ ⟨⟩ : unit. By value subtyping lemma 3.4.5, ·; y ⊢ ⟨⟩ : τ where y ≤ 0.
We have k ◁ : ⟨τ, x⟩ ⊕ p, then by ST-VAL, x+ y ⊢ k ◁ ⟨⟩.
x+ y ≤ q − r + 0 = q − r. By state relaxing lemma 3.4.8, q − r ⊢ k ◁ ⟨⟩.

• D-FUN: k ▷ fun(f.x.e)(v2); q 7−→ k ▷ [fun(f.x.e), v2/f, x]e; q.
q ⊢ s, so k ◁ : B ⊕ p, ·; q ⊢ fun(f.x.e)(v2) : B ⊕ p.
It suffices to show ·; q ⊢ [fun(f.x.e), v2/f, x]e : B ⊕ p.
Induct on ·; q ⊢ fun(f.x.e)(v2) : B ⊕ p. Only 3 cases are possible:

T-APP:
By the assumption, ·; 0 ⊢ fun(f.x.e) : ⟨τ, q1⟩ → (B ⊕ p), ·; q2 ⊢ v2 : τ , q = q1 + q2.
Invert, get f : ⟨τ ′, q′1⟩ → (B′⊕p′), x : τ ′; q′1 ⊢ e : B′⊕p′, B′ <: B, ⟨τ, q1⟩ <: ⟨τ ′, q′1⟩,
p ≤ p′ so τ <: τ ′, q′1 ≤ q1.
Then by T-FUN, ·; 0 ⊢ fun(f.x.e) : ⟨τ ′, q′1⟩ → (B′ ⊕ p′).
By value subtyping lemma 3.4.5, ·; q′2 ⊢ v2 : τ

′ with q′2 ≤ q2.
Using the substitution lemma 3.4.9 twice on f, x, ·; q′1 + q′2 ⊢ [fun(f.x.e), v2/f, x]e :
B′ ⊕ p′.
By T-RELAX and T-SUB, ·; q1+q2 ⊢ [fun(f.x.e), v2/f, x]e : B⊕p, where q = q1+q2.
T-RELAX: B = ⟨τ, r⟩.
By the assumption, ·; q′ ⊢ fun(f.x.e)(v2) : ⟨τ, r′⟩⊕ p′, where q ≥ q′, q− r ≥ q′− r′,
q − p ≥ q′ − p′.
Using the inner IH, ·; q′ ⊢ [fun(f.x.e), v2/f, x]e : ⟨τ, r′⟩ ⊕ p′.
By T-RELAX, ·; q ⊢ [fun(f.x.e), v2/f, x]e : ⟨τ, r⟩ ⊕ p.
T-SUB: B = ⟨τ, r⟩.
By the assumption, ·; q ⊢ fun(f.x.e)(v2) : ⟨τ ′, r⟩ ⊕ p and τ ′ <: τ .
Using the inner IH, ·; q ⊢ [fun(f.x.e), v2/f, x]e : ⟨τ ′, r⟩ ⊕ p.
By T-SUB, ·; q ⊢ [fun(f.x.e), v2/f, x]e : ⟨τ, r⟩ ⊕ p.

• D-RET: k ▷ ret(v); q 7−→ k ◁ v; q.
q ⊢ k ▷ ret(v), so k ◁ : B ⊕ p and ·; q ⊢ ret(v) : B ⊕ p.
Let B = ⟨τ, r⟩. Induct on ·; q ⊢ ret(v) : ⟨τ, r⟩ ⊕ p to show there exists τ ′ <: τ , where
·; q1 ⊢ v : τ ′ and q − r ≥ q1.
Only 3 cases are possible:

T-RET: B = ⟨τ, 0⟩, and the assumption gives ·; q ⊢ v : τ (r = 0, q1 = q, τ = τ ′).
T-RELAX: B = ⟨τ, r⟩.
By the assumption, ·; q′ ⊢ ret(v) : ⟨τ, r′⟩⊕ p′, where q ≥ q′, q− r ≥ q′− r′, q− p ≥
q′ − p′.
Using the inner IH, we have: ·; q1 ⊢ v : τ ′ with τ ′ <: τ and q′ − r′ ≥ q1.

20

Then q − r ≥ q1.
T-SUB: B = ⟨τ, r⟩.
By the assumption, ·; q ⊢ ret(v) : ⟨τ ′, r⟩ ⊕ p, and τ ′ <: τ .
Using the inner IH, we have q − r ≥ q1, where ·; q1 ⊢ v : τ ′′, and τ ′′ <: τ ′.
By transitivity of subtyping, τ ′′ <: τ .

By value subtyping lemma 3.4.5, ·; q′1 ⊢ v : τ with q′1 ≤ q1 ≤ q − r.
By ST-VAL, q′1 + r ⊢ k ◁ v.
q′1 + r ≤ q − r + r = q, so q ⊢ k ◁ v by state relaxing lemma 3.4.8.

• D-LET: k ▷ let(e1;x.e2); q 7−→ k;x.e2 ▷ e1; q.
By the assumption, q ⊢ s, so ·; q ⊢ let(e1;x.e2) : B ⊕ p, k ◁ : B ⊕ p.
Induct on ·; q ⊢ let(e1;x.e2) : B ⊕ p to show:
for some τ1, q1, we have ·; q ⊢ e1 : ⟨τ1, q1⟩ ⊕ p and x : τ1; q1 ⊢ e2 : B ⊕ p.
Only 3 cases are possible:

T-LET: Immediate by the assumption.
T-RELAX: B = ⟨τ, r⟩.
By the assumption, ·; q′ ⊢ let(e1;x.e2) : ⟨τ, r′⟩ ⊕ p′, and q ≥ q′, q − r ≥ q′ − r′,
q − p ≥ q′ − p′.
Using the inner IH, get τ1, q1, such that ·; q′ ⊢ e1 : ⟨τ1, q1⟩ ⊕ p′ and x : τ1; q1 ⊢ e2 :
⟨τ, r′⟩ ⊕ p′.
By T-RELAX, ·; q ⊢ e1 : ⟨τ1, q1+(q−q′)⟩⊕p and x : τ1; q1+(q−q′) ⊢ e2 : ⟨τ, r⟩⊕p.
T-SUB:B = ⟨τ, r⟩.
By the assumption, ·; q ⊢ let(e1;x.e2) : ⟨τ ′, r⟩ ⊕ p, and τ ′ <: τ .
Using the inner IH, we have τ1, q1, such that ·; q ⊢ e1 : ⟨τ1, q1⟩ ⊕ p, x : τ1; q1 ⊢ e2 :
⟨τ ′, r⟩ ⊕ p.
By T-SUB, x : τ1; q1 ⊢ e2 : ⟨τ, r⟩ ⊕ p.

By FR-BND, k;x.e2 ◁ : ⟨τ1, q1⟩ ⊕ p.
We have ·; q ⊢ e1 : ⟨τ1, q1⟩ ⊕ p. By ST-EXP, q ⊢ k;x.e2 ▷ e1.

• D-SEQ: k;x.e ◁ v; q 7−→ k ▷ [v/x]e; q.
By the assumption, q ⊢ k;x.e ◁ v. Invert, get q = q1 + q2, ·; q1 ⊢ v : τ and k;x.e ◁ :
⟨τ, q2⟩ ⊕ p.
Invert, x : τ ; q2 ⊢ e : B ⊕ p and k ◁ : B ⊕ p.
By the substitution lemma 3.4.9, ·; q2 + q1 ⊢ [v/x]e : B ⊕ p.
By ST-EXP, q2 + q1 ⊢ k ▷ [v/x]e (q = q1 + q2).

• D-NIL: k ▷ match(nil)(e0;x.y.e1); q 7−→ k ▷ e0; q.
By the assumption, k ◁ : B ⊕ p, ·; q ⊢ match(nil)(e0;x.y.e1) : B ⊕ p.
It suffices to show ·; q ⊢ e0 : B ⊕ p.
Induct on ·; q ⊢ match(nil)(e0;x.y.e1) : B ⊕ p. Only 3 cases are possible:

T-MATCH: By the assumption, ·; q2 ⊢ e0 : B⊕p, ·; q1 ⊢ nil : L(A) where q = q1+q2.
q1 ≥ 0 by lemma 3.4.1, then by T-RELAX, ·; q ⊢ e0 : B ⊕ p.
T-RELAX: By the assumption, B = ⟨τ, r⟩ and ·; q′ ⊢ match(nil)(e0;x.y.e1) :
⟨τ, r′⟩ ⊕ p′ where q ≥ q′, q − r ≥ q′ − r′, q − p ≥ q′ − p′.
Using the inner IH, ·; q′ ⊢ e0 : ⟨τ, r′⟩ ⊕ p′. Then by T-RELAX, ·; q ⊢ e0 : B ⊕ p.

21

T-SUB: By the assumption, B = ⟨τ, r⟩ and ·; q ⊢ match(nil)(e0;x.y.e1) : ⟨τ ′, r⟩⊕p
where τ ′ <: τ .
Using the inner IH, ·; q ⊢ e0 : ⟨τ ′, r⟩ ⊕ p.
Then by T-SUB, ·; q ⊢ e0 : B ⊕ p.

• D-CONS: k ▷ match(cons(v1, v2))(e0;x.y.e1); q 7−→ k ▷ [v1, v2/x, y]e1; q.
By the assumption, k ◁ : B ⊕ p0, ·; q ⊢ match(cons(v1, v2))(e0;x.y.e1) : B ⊕ p0.
It suffices to show ·; q ⊢ [v1, v2/x, y]e1 : B ⊕ p0.
Induct on ·; q ⊢ match(cons(v1, v2))(e0;x.y.e1) : B ⊕ p0. Only 3 cases are possible:

T-MATCH:
By the assumption, x : τ, y : L(⟨τ, p⟩); q2 + p ⊢ e0 : B ⊕ p0, where ·; q1 ⊢
cons(v1, v2) : L(⟨τ, p⟩), q = q1 + q2.
Invert ·; q1 ⊢ cons(v1, v2) : L(⟨τ, p⟩) to get q1 = q′1 + q′2 + p, ·; q′1 ⊢ v1 : τ ,
·; q′2 ⊢ v2 : L(⟨τ, p⟩).
Using substitution lemma 3.4.9, ·; q2 + p+ q′1 + q′2 ⊢ [v1, v2/x, y]e1 : B ⊕ p0, which
is ·; q ⊢ [v1, v2/x, y]e1 : B ⊕ p0.
T-RELAX: B = ⟨τ, r⟩.
By the assumption, ·; q′ ⊢ match(cons(v1, v2))(e0;x.y.e1) : ⟨τ, r′⟩⊕p′ where q ≥ q′,
q − r ≥ q′ − r′, q − p0 ≥ q′ − p′.
Using the inner IH, ·; q′ ⊢ [v1, v2/x, y]e1 : ⟨τ, r′⟩ ⊕ p′.
Then by T-RELAX, ·; q ⊢ [v1, v2/x, y]e1 : B ⊕ p0.
T-SUB: B = ⟨τ, r⟩.
By the assumption, ·; q ⊢ match(cons(v1, v2))(e0;x.y.e1) : ⟨τ ′, r⟩ ⊕ p0 where τ ′ <:
τ .
Using the inner IH, ·; q ⊢ [v1, v2/x, y]e1 : ⟨τ ′, r⟩ ⊕ p0.
Then by T-SUB, ·; q ⊢ [v1, v2/x, y]e1 : B ⊕ p0.

• D-RAISE: k ▷ raise(v); q 7−→ k ◀ v; q.
By the assumption, ·; q ⊢ raise(v) : B ⊕ p and k ◁ : B ⊕ p.
Induct on ·; q ⊢ raise(v) : B ⊕ p to show ·; q1 ⊢ v : τexn with q1 ≤ q − p. Only 3 cases
are possible:

T-RAISE: immediate by the assumption, q = q1, p = 0, q1 ⊢ v : τexn.
T-RELAX: By the assumption, B = ⟨τ, r⟩, ·; q′ ⊢ raise(v) : ⟨τ, r′⟩ ⊕ p′ where
q′ ≤ q, q − r ≥ q′ − r′, q − p ≥ q′ − p′.
Using inner IH, get ·; q1 ⊢ v : τexn with q1 ≤ q′ − p′ ≤ q − p.
T-SUB: By the assumption, B = ⟨τ, r⟩, ·; q ⊢ raise(v) : ⟨τ ′, r⟩ ⊕ p where τ ′ <: τ .
Using inner IH, get ·; q1 ⊢ v : τexn with q1 ≤ q − p.

By ST-EXN, q1 + p ⊢ k ◀ v. q1 + p ≤ q − p+ p = q.
By state relaxing lemma 3.4.8, q ⊢ k ◀ v.

• D-HANDLE: k; try(;x.e) ◀ v; q 7−→ k ▷ [v/x]e; q.
By the assumption, q = q1 + p1, ·; q1 ⊢ v : τexn, and k; try(;x.e) ◁ : B ⊕ p1.
Invert, get k ◁ : B ⊕ p and x : τexn, p1 ⊢ e : B ⊕ p.
Using substitution lemma 3.4.9, ·; q1 + p1 ⊢ [v/x]e : B ⊕ p.
By ST-EXP, q1 + p1 ⊢ k ▷ [v/x]e, which is q ⊢ k ▷ [v/x]e.

22

• D-EXN: k;x.e ◀ v; q 7−→ k ◀ v; q.
By the assumption, q = q1 + p where ·; q1 ⊢ v : τexn and k;x.e ◁ : B ⊕ p.
Invert, get k ◁ : A⊕ p for some A.
By ST-EXN, q1 + p = q ⊢ k ◀ v.

• D-NORMAL: k; try(;x.e) ◁ v; q 7−→ k ◁ v; q.
By the assumption, q = q1 + q2, ·; q1 ⊢ v : τ , k; try(;x.e) ◁ : ⟨τ, q2⟩ ⊕ p.
Invert, get k ◁ : ⟨τ, q2⟩ ⊕ p′ for some p′.
By ST-VAL, q1 + q2 = q ⊢ k ◁ v.

• D-TRY: k ▷ try(e1;x.e); q 7−→ k; try(;x.e) ▷ e1; q.
By the assumption, k ◁ : B ⊕ p and ·; q ⊢ try(e1;x.e) : B ⊕ p.
Induct on ·; q ⊢ try(e1;x.e) : B ⊕ p to show there exists p0 such that ·; q ⊢ e1 : B ⊕ p0,
x : τexn; p0 ⊢ e : B ⊕ p.
Only 3 cases are possible:

T-HANDLE: Immediate by the assumption.
T-RELAX: B = ⟨τ, r⟩.
By the assumption, ·; q′ ⊢ try(e1;x.e) : ⟨τ, r′⟩ ⊕ p′. where q′ ≤ q, q − r ≥ q′ − r′,
q − p ≥ q − p′.
Using the inner IH, get p0, such that ·; q′ ⊢ e1 : ⟨τ, r′⟩ ⊕ p0, x : τexn; p0 ⊢ e :
⟨τ, r′⟩ ⊕ p′.
By T-RELAX, ·; q ⊢ e1 : ⟨τ, r⟩⊕p0+(q−q′), and x : τexn; p0+(q−q′) ⊢ e : ⟨τ, r⟩⊕p.
T-SUB: By the assumption, B = ⟨τ, r⟩, ·; q ⊢ try(e1;x.e) : ⟨τ ′, r⟩ ⊕ p. where
τ ′ <: τ .
Using the inner IH, get p0, such that ·; q ⊢ e1 : ⟨τ ′, r⟩ ⊕ p0 and x : τexn; p0 ⊢ e :
⟨τ ′, r⟩ ⊕ p.
By T-SUB, ·; q ⊢ e1 : B ⊕ p0 and x : τexn; p0 ⊢ e : B ⊕ p.

Then by FR-EXN, k; try(;x.e) ◁ : B ⊕ p0.
By ST-EXP, q ⊢ k; try(;x.e) ▷ e1.

Progress

Lemma 3.4.11 (Canonical Forms).
If ·; q ⊢ v : τ , and

• τ = L(A), then either v = nil or v = cons(v1, v2).
• τ = A → (C ⊕ p), then v = fun(f.x.e′).

Corollary 3.4.12.
If ·; q ⊢ e : B ⊕ p, and

• e = match(v)(e0;x.y.e1), then either v = nil or v = cons(v1, v2).
• e = v1(v2), then v1 = fun(f.x.e′).

Theorem 3.4.13 (Progress).
If q ⊢ s, then either s final or s; q 7−→ s′; q′.

Proof. Induct on q ⊢ s.

23

• ST-VAL: q ⊢ k ◁ v.
k = ϵ, or k = k′;x.e, or k = k′; try(;x.e).
If k = ϵ, k ◁ v is final.
Otherwise if k = k′;x.e, by D-SEQ, k′;x.e ◁ v; q 7−→ k′ ▷ [v/x]e; q.
Otherwise, k = k′; try(;x.e), by D-NORMAL, k′; try(;x.e) ◁ v; q 7−→ k′ ◁ v; q.

• ST-EXN: q ⊢ k ◀ v.
k = ϵ, or k = k′;x.e, or k = k′; try(;x.e).
If k = ϵ, k ◀ v is final.
Otherwise if k = k′;x.e, by D-EXN, k′;x.e ◀ v; q 7−→ k′ ◀ v; q.
Otherwise, k = k′; try(;x.e), by D-HANDLE, k′; try(;x.e) ◀ v; q 7−→ k′ ▷ [v/x]e; q.

• ST-EXP: q ⊢ k ▷ e.
By the assumption, ·; q ⊢ e : B ⊕ p, k ◁ : B ⊕ p .
Induct on the structure of e.

e is not tick(r). Then k ▷ e; q 7−→ s′; q for some s′ by the canonical forms lemma and
rules D-RET, D-FUN,D-LET, D-SEQ, D-NIL, D-CONS, D-RAISE, D-TRY.
e = tick(r).
Induct on ·; q ⊢ tick(r) : B ⊕ p to show q ≥ r. Only 3 cases are possible:
− T-TICK: q = r.
− T-RELAX: ·; q ⊢ tick(r) : ⟨τ, x⟩ ⊕ p.

By the assumption, ·; q′ ⊢ tick(r) : ⟨τ, x′⟩ ⊕ p′, and q ≥ q′.
Using the inner IH, q′ ≥ r, then q ≥ r.

− T-SUB: q ≥ r by the IH.
q ≥ r then b D-TICK, k ▷ tick(r); q 7−→ k ◁ ⟨⟩; q − r.

Soundness of AARA

Finally, as a corollary to progress and preservation, we have our main theorem of this thesis:
Theorem 3.4.14 (Resource safety).
If ·; q ⊢ e : B ⊕ p, then starting with q amount of resource (i.e. initial state ϵ ▷ e; q), the program
execution does not get stuck.

Notice we can show the following theorem:
Theorem 3.4.15.
If ·; q ⊢ e : B (from section 3.2), then ·; q ⊢ e : B ⊕ 0 (from section 3.3).
Therefore the type system in Section 3.2 is also sound with respect to resource safety.

24

Chapter 4

Exception Handling using Dynamic
Classification

This chapter extends the previous chapter to accomodate a more modular, robust, flexible imple-
mentation of exceptions.

4.1 Exceptions and Dynamic Classfication
In Chapter 3, we assumed the exception type is some globally fixed type in our system. In other
words, we adopted a closed-world view of exceptions: the entire program agrees beforehand on
possible exception classes and their types [5]. However, it is oftentimes beneficial to dynamically
generate classes of exceptions, as it is implemented in Standard ML. This gives better modularity,
since the entire program does not need to agree upon possible classes of exceptions beforehand.
Dynamic class generation also ensures exceptions are handled only by the intended handler,
rather than by some alien code.

The key behavior of dynamically classified exception is best exemplified by the following
code:
let exception Fail in

let exception Fail in
raise Fail

end
handle Fail => ...

end

Upon execution of the statement exception Fail in line 2, a new class of exception is
generated. The new class is distinct from existing classes of exceptions, despite having the same
exception name Fail. The handler in line 5 would not catch the exception raised in line 4. In
applications, this implies that the alien code could never “guess” the dynamic class and intercept
the classified data/exception.

Dynamic classification can be realized using symbols. See [5] for implementation details and
a formal account of symbols.

25

4.2 Language

We extend the language in Chapter 3 with dynamically classified type, which we call τexn. We
equip the external language with limited access to dynamic classification. Specifically, we have
constructs to declare/generate a new class denoted by a, and to classify and declassify data with a.
Externally, such a is not a first-class value that we can pass around and compute with. Internally,
a is a variable of type class reference (cls(A)). Declaration generates a new class and binds the
reference to the new class to a.
Syntax of the internal language is the following:

τ ::= ...
| cls(A) class reference
| τexn exception/classified type

A ::= ⟨τ, q⟩ annotated type
v ::= ...

| &s class reference
| classify(v1; v2) classified value

e ::= ...
| exn[A](a.e) declare exception
| isin(v1)(v2;x.e1; e2) declassify/match exceptions

In the external language, we can declare an exception (exception F of tau in e);within
e, we can raise it (raise F v) and handle it(try e where handle F x => e’). These
external constructs can be elaborated to expressions in our internal language as the following:
// r is a constant number
exception F of <tau,r> in e ----> exn[<tau,r>](F.e)

// v:tau
raise F v ----> raise(classify(F; v))

// x:tau_exn, y:tau
try e where handle F x => e’ ----> try(e;y.isin(F)(y;x.e’;raise(y)))

Dynamics is extended with a symbol context Σ which keeps track of all the symbols declared.
Declaring an exception generates a fresh symbol and passes a reference to it. Declassifying an
exception checks for the equality of symbols. The other rules in Chapter 3 simply propagate Σ.

s is fresh with respect to Σ

k ▷ exn[A](x.e); q; Σ 7−→ k ▷ [&s/x]e; q; Σ, s ∼ A
D-DCL

s = s′ in Σ
k ▷ isin(&s′)(classify(&s; v2);x.e1; e2); q; Σ 7−→ k ▷ [v2/x]e1; q; Σ

D-ISIN1

s ̸= s′ in Σ

k ▷ isin(&s′)(classify(&s; v2);x.e1; e2); q; Σ 7−→ k ▷ e2; q; Σ
D-ISIN2

26

4.3 Type System
Accordingly, we modify our type system to keep around the symbol context Σ. Notice to type
check expressions in the external language (do not need T-SYMREF), Σ is irrelevant.
Γ; q ⊢Σ v : τ

·; 0 ⊢Σ,s∼A &s : cls(A)
T-SYMREF

Γ1; 0 ⊢Σ v1 : cls(⟨τ, r⟩) Γ2; q ⊢Σ v2 : τ

Γ1,Γ2; q + r ⊢Σ classify(v1; v2) : τexn
T-CLASSIFY

A symbol reference does not carry potential. A classified exception carries the potential carried
by the exception value v1, as well as extra r potential that we declare this class to have.
Γ; q ⊢Σ e : B ⊕ p

Γ, x : cls(A); q ⊢Σ e : B ⊕ p

Γ; q ⊢Σ exn[A](x.e) : B ⊕ p
T-DCL

q = q1 + q2 Γ1; 0 ⊢Σ v1 : cls(⟨τ, r⟩) Γ2; q1 ⊢Σ v2 : τexn

Γ3, x : τ ; q2 + r ⊢Σ e1 : B ⊕ p Γ3; q2 ⊢Σ e2 : B ⊕ p

Γ1,Γ2,Γ3; q ⊢Σ isin(v1)(v2;x.e1; e2) : B ⊕ p
T-ISIN

Declaring an exception creates a variable binding x, where x is a class reference. Declassifying
data needs to pay for the potential carried by the classified exception, and the potential needed to
evaluate either branch of the declassification. In the case where the exception is declassifed, we
get extra r potential that we packaged into the exception upon classification.

Stack/State typing judgements k ◁ : A ⊕ p and q ⊢ s are modified to be k ◁ :Σ A ⊕ p and
q ⊢Σ s. They simply propagate Σ to value and expression typing.

We also need to define sharing and subtyping for the two types we added. cls(A) does not
carry potential, so it can be freely shared. τexn carries a classified amount of potential, so it
cannot be shared.

cls(A) <: cls(A)
SB-SYMREF

τexn <: τexn
SB-EXN

cls(A) . (cls(A), cls(A))
SH-SYMREF

And finally, | · | is extended to say τexn is not potential-free, cls(A) is.

|τexn| = ,
|cls(A)| = cls(A)

4.4 Soundness
Again, soundness of the type system can be proved by showing progress and preservation. We
briefly go over the proof in Chapter 3 to show how it can be extended.

27

Lemma 4.4.1.
If Γ; q ⊢Σ v : τ , then q ≥ 0.

Lemma 4.4.2.
If Γ; q ⊢Σ v : τ and |τ | = τ , then q = 0.

Lemma 4.4.3 (Sharing).
If τ . (τ1, τ2) and ·; q ⊢Σ v : τ , then ·; q1 ⊢Σ v : τ1, ·; q2 ⊢Σ v : τ2, where q = q1 + q2, q1 ≥
0, q2 ≥ 0.
Lemma 4.4.4 (Transitivity of <:).
Subtyping is transitive, i.e. if τ1 <: τ2, τ2 <: τ3, then τ1 <: τ3.
Lemma 4.4.5 (Value Subtyping).
If ·; q ⊢Σ v : τ and τ <: τ ′, then ·; q′ ⊢Σ v : τ ′ where q′ ≤ q.
Lemma 4.4.6. If Γ; q ⊢Σ e : ⟨τ, r⟩ ⊕ p, then Γ; q + d ⊢Σ e : ⟨τ, r + d⟩ ⊕ p+ d when d ≥ 0.
Lemma 4.4.7. If k ◁ :Σ ⟨τ, q⟩ ⊕ p, then k ◁ :Σ ⟨τ, q + d⟩ ⊕ p+ d when d ≥ 0.
Lemma 4.4.8 (State relaxing). If q ⊢Σ s, then q′ ⊢Σ s when q′ ≥ q.

We can check the lemmas above still hold.
Lemma 4.4.9 (Substitution).
If ·; q1 ⊢Σ v1 : τ1:

(A) If Γ, x1 : τ1; q2 ⊢Σ v : τ , then Γ; q1 + q2 ⊢Σ [v1/x1]v : τ .
(B) If Γ, x1 : τ1; q2 ⊢Σ e : B ⊕ p, then Γ; q1 + q2 ⊢Σ [v1/x1]e : B ⊕ p.

Proof.
(A): Induction on Γ, x1 : τ1; q2 ⊢Σ v : τ

• ...
• T-SYMREF: vacuous.
• T-CLASSIFY: v = classify(v3; v4), q2 = q + r, Γ, x1 : τ1 = Γ1,Γ2, Γ1; 0 ⊢Σ v3 :
cls(⟨τ ′, r⟩), and Γ2; q ⊢Σ v4 : τ

′.
Then x1 : τ1 ∈ Γ1 xor x1 : τ1 ∈ Γ2.

If x1 : τ1 ∈ Γ1, using IH(A), So Γ1 \ (x1 : τ1); q1 ⊢Σ [v1/x1]v3 : cls(⟨τ ′, r⟩).
Since |cls(⟨τ ′, r⟩)| = cls(⟨τ ′, r⟩), q1 = 0 by lemma 4.4.2.
By T-CLASSIFY, Γ; q2 + q1 ⊢Σ [v1/x1]v : τexn.
Otherwise, x1 : τ1 ∈ Γ2, using IH(A), Γ2 \ (x1 : τ1); q + q1 ⊢Σ [v1/x1]v4 : τ

′.
By T-CLASSIFY, Γ; q2 + q1 ⊢Σ [v1/x1]v : τexn.

(B): Induction on Γ, x1 : τ1; q2 ⊢Σ e : B ⊕ p

• ...
• T-DCL: follows directly from IH(B).
• T-CLASSIFY: follows from IH(A), IH(B), and lemma 4.4.2.

Lemma 4.4.10.
If Γ; q ⊢Σ v : τ and s is fresh with respect to Σ, then Γ; q ⊢Σ,s∼A v : τ .

If Γ; q ⊢Σ e : B ⊕ p and s is fresh with respect to Σ, then Γ; q ⊢Σ,s∼A e : B ⊕ p.

28

Theorem 4.4.11 (Preservation).
If q ⊢Σ s and s; q; Σ 7−→ s0; q0; Σ0 then q0 ⊢Σ0 s0.

Proof. Induct on s; q; Σ 7−→ s0; q0; Σ0.

• D-DCL: k ▷ exn[A](x.e); q; Σ 7−→ k ▷ [&s/x]e; q; Σ, s ∼ A, where s fresh w.r.t. Σ.
By the assumption, ·; q ⊢Σ exn[A](x.e) : B ⊕ p and k ◁ :Σ B ⊕ p. It suffices to show
·; q ⊢Σ,s∼A [&s/x]e : B ⊕ p.
Induct on ·; q ⊢Σ exn[A](x.e) : B ⊕ p. Only three cases are possible.

T-DCL: By the assumption, x : cls(A); q ⊢Σ e : B ⊕ p. By lemma 4.4.10, x :
cls(A); q ⊢Σ,s∼A e : B ⊕ p, where s fresh w.r.t. Σ.
By T-SYM, we have ·; 0 ⊢Σ,s∼A &s : cls(A).
By the substituition lemma 4.4.9, ·; q ⊢Σ,s∼A [&s/x]e : B ⊕ p.
T-RELAX: follows from the inner IH.
T-SUB: follows from the inner IH.

• D-ISIN1: k ▷ isin(&s′)(classify(&s; v2);x.e1; e2); q; Σ 7−→ k ▷ [v2/x]e1; q; Σ, where
s = s′.
By the assumption, ·; q ⊢Σ isin(&s′)(classify(&s; v2);x.e1; e2) : B ⊕ p and k ◁ :Σ
B ⊕ p. It suffices to show ·; q ⊢Σ [v2/x]e1 : B ⊕ p.
Induct on ·; q ⊢Σ isin(&s′)(classify(&s; v2);x.e1; e2) : B ⊕ p. Only three cases are
possible.

T-ISIN: By the assumption, q = q1+q2, ·; 0 ⊢Σ &s′ : cls(⟨τ, r⟩), ·; q1 ⊢Σ classify(&s; v2) :
τexn, and x : τ ; q2 + r ⊢Σ e1 : B ⊕ p.
Induct on ·; q1 ⊢Σ classify(&s; v2) : τexn to get q1 = q′ + r, ·; q′ ⊢Σ v2 : τ ′,
·; 0 ⊢Σ &s : cls(⟨τ ′, r′⟩).
Invert ·; 0 ⊢Σ &s : cls(⟨τ ′, r′⟩) and ·; 0 ⊢Σ &s′ : cls(⟨τ, r⟩) to get s ∼ ⟨τ ′, r′⟩ ∈ Σ
and s′ ∼ ⟨τ, r⟩ ∈ Σ.
Since s = s′, so τ = τ ′ and r = r′.
By the substituition lemma 4.4.9, ·; q2 + r + q′ ⊢Σ [v2/x]e1 : B ⊕ p, which is
·; q ⊢Σ [v2/x]e1 : B ⊕ p.
T-RELAX: follows from the inner IH.
T-SUB: follows from the inner IH.

• D-ISIN2: k ▷ isin(&s′)(classify(&s; v2);x.e1; e2); q; Σ 7−→ k ▷ e2; q; Σ, where s ̸= s′.
By the assumption, ·; q ⊢Σ isin(&s′)(classify(&s; v2);x.e1; e2) : B ⊕ p and k ◁ :Σ
B ⊕ p. It suffices to show ·; q ⊢Σ e2 : B ⊕ p.
Induct on ·; q ⊢Σ isin(&s′)(classify(&s; v2);x.e1; e2) : B ⊕ p. Only three cases are
possible.

T-ISIN:By the assumption, q = q1+q2, ·; 0 ⊢Σ &s′ : cls(⟨τ, r⟩), ·; q1 ⊢Σ classify(&s; v2) :
τexn, and ·; q2 ⊢Σ e2 : B ⊕ p.
By lemma 4.4.1, q1 ≥ 0.
By T-RELAX, ·; q ⊢Σ e2 : B ⊕ p.
T-RELAX: follows from the inner IH.
T-SUB: follows from the inner IH.

29

Lemma 4.4.12 (Canonical Forms).
If ·; q ⊢Σ v : τ , and

• τ = L(A), then either v = nil or v = cons(v1, v2).
• τ = A → (C ⊕ p), then v = fun(f.x.e′).
• τ = cls(A), then v = &s and s ∈ Σ.
• τ = τexn, then v = classify(v1; v2) where v1 = &s with s ∈ Σ

Corollary 4.4.13.
If ·; q ⊢Σ e : B ⊕ p, and

• e = match(v)(e0;x.y.e1), then either v = nil or v = cons(v1, v2).
• e = v1(v2), then v1 = fun(f.x.e′).
• e = isin(v1)(v2;x.e1; e1), then v1 = &s′, v2 = classify(&s; v′2), with s, s′ both valid in
Σ.

Theorem 4.4.14 (Progress).
If q ⊢Σ s, then either s final or s; q; Σ 7−→ s′; q′; Σ′.

Proof. Follows from preservation and lemma 4.4.13.

30

Chapter 5

Discussion

5.1 Future Work

5.1.1 Automation
Although not fully explained in this thesis, the type system in Chapter 3 was developed with
automation in mind. We believe it is possible to automate resource bound inference using the
type system, in a similar way other AARA works do [6].

First notice, from the type system we developed, if we erase all potential annotations and
rules that only touch potential annoatations (T-RELAX, T-SUB, T-SUPER) , we get a standard,
plain type system for the language. Also notice we can incorporate all the structural rules in each
of the non-structural rules to get an equivalent, syntax-directed type system.

Weakening T-WEAK is allowed by modifying the base cases of the type system (T-VAR,
T-TICK, T-TRIV, T-NIL). For example, T-VAR would now be:

Γ, x : τ ; 0 ⊢ x : τ
T-VAR

Contraction T-CONTRACT is left untouched. It does not hinder algorithmic type inference:
everytime we see an expression with x(x ≥ 2) uses of the same variable, we apply T-CONTRACT

x− 1 times.
Rules T-SUB, T-SUPER, T-RELAX that make potential affine can be blended in the expression

typing rules. For example, the rule T-LET from 3 was:

Γ1; q ⊢ e1 : ⟨τ1, q1⟩ ⊕ p Γ2, x : τ1; q1 ⊢ e2 : B ⊕ p

Γ1,Γ2; q ⊢ let(e1;x.e2) : B ⊕ p
T-LET

One algorithmic version of the rule would be:

Γ1; q ⊢ e1 : ⟨τ1, q1⟩ ⊕ p Γ2, x : τ ′1; q
′
1 ⊢ e2 : ⟨τ, r⟩ ⊕ p

τ1 <: τ ′1 q1 ≥ q′1 q′ ≥ q q′ − r′ ≥ q − r q′ − p′ ≥ q − p

Γ1,Γ2; q
′ ⊢ let(e1;x.e2) : ⟨τ ′, r′⟩ ⊕ p′

T-LET

It then suffices to infer potential annotation in the deirvation tree. We can imagine a procedure
where we start with all potential annotations left unspecified. We then collect all the constraints

31

on those annotations from each typing rule invoked. Since all the constraints on those potential
annotations are linear (as in linear algebra), the inference amounts to solving a linear optimization
problem induced by those constraints. The objective of the linear optimization problem can be
set to minimizing the resouce bound of interest.

5.1.2 Advanced Control Construct: Continuations

Another piece of future work is to extend AARA to more advanced constructs that bypass stan-
dard control flows, such as letcc/callcc in functional languages. Continuation, captured by
letcc, is exactly what is on the control stack k of the K-machine, so the soundness proof we
developed using K-machine is clearly relevant. However, the exact type system that would give
rise to a sound AARA is unclear. We summarize the intuition that we have collected so far below.

At first sight, continuations appear like functions. Both pass around pieces of computation
as values (no matter whether we syntactically treat values separately or not). A function type
⟨τ, q⟩ → A says given a value of type τ and q potential, the function can safely evaluate to A. In
section 2.3, we had k ◁ : ⟨τ, q⟩ to say the stack(continuation) k can safely evaluate to completion
given a value of τ and q potential. Somewhat arbitrarily, we chose to make functions not carry
potentials. Cost of the function body is “paid” at the call sites. Alternatively, we could allow
functions to carry potential (at least some cost is “paid” upon creation of the functions) and treat
them as linear values. Similarly, continuations can also be set up cost-free or not, the cost of
executing the continuation can be “paid” when we throw to it, or when we capture it.

However, the two are, at least different, perhaps incomparable. Unlike functions which are
defined by the code x.e, continuations are not defined by the list of frames. The intensional
identity of continuations is not determined until runtime. This seems to make continuations a
different type of animal. Consider the following code that exemplifies some interesting cost
semantics of continuations.
let

f = letcc(k. ret(fun _ => throw (fn <> => <>) to k))
in

let
_ = tick(1)

in
f(<>)

end
end

letcc captures a continuation that consumes 1 resource and calls the function f that was thrown
to the continuation. Within the letcc, it returns a suspended computation of throwing an identity
function to the captured continuation. The entire expression costs 2 to evaluate.

Intuitively and informally, the captured k expects a function f with cost x to run on input
<> and costs x + 1 to execute the continuation. In the current setup of AARA, although the
same value/expression can be typed to different types (e.g. identity function can be typed to
consume 0, 1, or any positive amount of resource), once the typing derivation is presented, each

32

value/expression is stipulated to a constant resource annotation. If we follow this setup and at-
tempt to type the continuation k to expect a fixed type and potential, we would assign the identity
function to be a function with a cost of constant number a(a ≥ 0). Then the entire letcc ex-
pression would be typed to be a function of cost 1 + a(constant). The letcc expression should
also match the hole of the continuation, which is a function of cost a. Then a ≈ 1+a, which has
no solution in our setup.

We are still hopeful that we can develop a static semantics of continuations in the style of
AARA, but it appears that we need a principled view of continuations, in juxtaposition to values
and expressions, informed by an adequate type theory that accounts for cost semantics. Poten-
tially, we also need to reconsider our treatment of functions that bridge expressions and values,
in that framework.

5.2 Conclusion
The type-based approach of Automatic Amortized Resource Analysis(AARA) makes the tech-
nique extensible to many language features and analysis requirements. This thesis presents a
new soundness proof of AARA with respect to a cost semantics via an abstract machine that
makes control stack explicit. We showcase the power of this new semantics, proof, and AARA,
by extending them to support exception handling.

33

34

Bibliography

[1] Byeong-Mo Chang and Kwanghoon Choi. A review on exception analysis. Informa-
tion and Software Technology, 77:1–16, 2016. ISSN 0950-5849. doi: https://doi.org/10.
1016/j.infsof.2016.05.003. URL https://www.sciencedirect.com/science/
article/pii/S0950584916300830. 1.2

[2] Manuel Fähndrich and Alexander Aiken. Program analysis using mixed term and set con-
straints. In Pascal Van Hentenryck, editor, Static Analysis, pages 114–126, Berlin, Heidel-
berg, 1997. Springer Berlin Heidelberg. ISBN 978-3-540-69576-9. 1.2

[3] J Guzmán and Ascánder Suárez. An extended type system for exceptions. In Proceedings of
the ACM SIGPLAN Workshop on ML and its Applications, volume 135, 1994. 1.2

[4] J Guzmán and Ascánder Suárez. An extended type system for exceptions. In Proceedings of
the ACM SIGPLAN Workshop on ML and its Applications, volume 135, 1994. 1.2

[5] Robert Harper. Practical Foundations for Programming Languages. Cambridge University
Press, USA, 2nd edition, 2016. ISBN 1107150302. 2.2, 3.1, 4.1

[6] Jan Hoffmann and Steffen Jost. Two decades of automatic amortized resource analy-
sis. Mathematical Structures in Computer Science, 32(6):729–759, 2022. doi: 10.1017/
S0960129521000487. 1.1, 2.3, 5.1.1

[7] Xavier Leroy and François Pessaux. Type-based analysis of uncaught exceptions. ACM
Trans. Program. Lang. Syst., 22(2):340–377, mar 2000. ISSN 0164-0925. doi: 10.1145/
349214.349230. URL https://doi.org/10.1145/349214.349230. 1.2

[8] Kwangkeun Yi and Sukyoung Ryu. A cost-effective estimation of uncaught exceptions
in standard ml programs. Theoretical Computer Science, 277(1):185–217, 2002. ISSN
0304-3975. doi: https://doi.org/10.1016/S0304-3975(00)00317-0. URL https://www.
sciencedirect.com/science/article/pii/S0304397500003170. Static
Analysis. 1.2

35

https://www.sciencedirect.com/science/article/pii/S0950584916300830
https://www.sciencedirect.com/science/article/pii/S0950584916300830
https://doi.org/10.1145/349214.349230
https://www.sciencedirect.com/science/article/pii/S0304397500003170
https://www.sciencedirect.com/science/article/pii/S0304397500003170

	1 Introduction
	1.1 AARA
	1.2 Static Analysis for Exception Handling
	1.3 Outline

	2 Soundness Proof via K-machine
	2.1 Language
	2.2 Cost Semantics
	2.3 Type System
	2.4 Soundness

	3 Exception Handling
	3.1 Language
	3.2 Type System
	3.3 A More Precise Type System
	3.4 Soundness

	4 Exception Handling using Dynamic Classification
	4.1 Exceptions and Dynamic Classfication
	4.2 Language
	4.3 Type System
	4.4 Soundness

	5 Discussion
	5.1 Future Work
	5.1.1 Automation
	5.1.2 Advanced Control Construct: Continuations

	5.2 Conclusion

	Bibliography

