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Abstract
Variable Geometry Truss excels in shape-changing and reconfiguration, enabling

it to perform a wide variety of motions, such as stretching, locomotion, and adapting
to different tasks in various terrains. Despite all these advantages, most of these
designs have a fixed topology. In this work, we aim to design a system of truss robots
with variable topology by introducing the concept of dissolvable beams. Specifically,
we leveraged a genetic algorithm-based computational pipeline to explore channel
optimization and control policy before and after dissolving. We present the results
of our system executing complex, coordinated tasks before dissolving and diverse,
parallel tasks after dissolving.
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Chapter 1

Introduction

A long-standing challenge in robotics is designing a system that can perform a variety of tasks in

different challenging environments. A group of robots named Variable Geometry Truss (VGT)

offers a solution through shape-changing. These robots consist of length-changing beams fol-

lowing a mesh or truss-like structure. Applications involving a high degree of flexibility have

been demonstrated, such as exploring planes [2, 5] or shoring up rubble at disaster sites [13].

In addition to those tasks, a diverse and challenging objective is to design a system in which

both disconnected individual components and collectives can carry out distinct tasks. In nature,

certain types of collectives exist wherein individual members of swarms are capable of executing

simple tasks, yet they collectively perform complex tasks or move more efficiently [10]. For

instance, groups of ants combine to form nests or bridges [8, 11], and slime molds aggregate to

achieve collective locomotion [14].

Motivated by these inspirations, we aim to create a truss-based system capable of both indi-

vidual and collective motions. Designing such a system typically involves altering the topology

of the truss, as we need to break it down into sub-components. However, the majority of exist-

ing truss-based systems primarily focus on geometry changes, involving alterations to the length

of the beams, and have scarcely delved into topology changes. In the case of studies that have

explored topology change, like the Variable Topology Truss (VTT) [13], their primary emphasis
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lies in pushing the boundaries of reconfiguration beyond what can be achieved through geometry

changes alone. The VTT also investigates topology change at a node level, and their system

cannot be divided into disconnected components. Consequently, there is a necessity to introduce

an innovative truss-based system that achieves topology changes by deconstructing the system

into sub-components.

In this work, we propose a novel truss-based system that can break into subparts by introduc-

ing the ideas of dissolvable beams. Furthermore, we introduce an optimization pipeline based on

genetic algorithms [16] for refining our geometry and topology configurations. Additionally, we

showcase two applications of our system:

• Collective Locomotion and Dispersion: The system demonstrates the ability to move

collectively and then disperse, traveling in different directions.

• Grab, Locomote, and Recycle: Our system can seize an object, move to a target location,

and recycle one of its subcomponents back to the original position.

The primary challenge lies in optimizing topology configurations, which introduces an addi-

tional layer of complexity. This is because altering the connectivity can have a profound impact

on the system’s physics. For instance, disconnecting an edge can significantly alter the system’s

center of mass. As a result, optimizing locomotion for both the entire structure and its subparts

becomes intricate, as global parameters can influence local parameters, and vice versa. The fun-

damental contribution of this research is the introduction of a dissolvable truss-based system

along with an associated optimization pipeline.

In chapter 4, we will go through MetaTruss, a computational design framework for Pneumesh

which I was involved in during my master’s degree.

In chapter 5, we will go through the work of this thesis, how we incorporate ideas of dissolv-

able beams as an additional parameter in our optimization pipeline.
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Chapter 2

Related Works

2.1 Truss Robots

A truss is a framework structure constructed from straight, rigid beams interconnected by joints.

Its utilization is extensive in engineering and architecture due to its inherent structural efficiency.

eferred to as Variable Geometry Truss (VGT) has embraced this architectural principle by sub-

stituting conventional fixed-length beams with beams of variable length. These variable-length

beams are typically either electromechanical [12], employing electric motors for linear motion,

or pneumatic [6], utilizing compressed air to facilitate movement. The alterations in the length of

these beams lead to changes in the overall geometry of the structure. This innovative approach

has found application across diverse domains, including robotic manipulators [7], locomotion

systems [9], and adaptive morphing structures [17].

Despite their capacity for a significant degree of shape freedom, these robots are often con-

strained by rigid beams of limited length, tethered systems, and complicated control require-

ments. Certain work has addressed these problems. Usevitch [15] developed an untethered

isoperimetric robot using pneumatic reel actuator to achieve high extension ratio. Pneumesh [4]

used passive-stopper structure, and multi-way joint design to achieve multiple complex motion

with a limited number of air channels.
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All the Truss Robots mentioned above are capable of geometry changes, which involve al-

tering their shapes by extending or contracting the lengths of the beams. However, none of them

can modify their topology—referring to changes in the connections between joints and beams.

The Variable Topology Truss (VTT ) [13] introduced topology changes through a specialized

joint structure known as the Spiral Zipper [1], enabling nodes to merge and split. This innova-

tion allows the VTT to accomplish reconfiguration tasks that cannot be achieved solely through

geometry changes.

In contrast to the Pneumesh and Isoperimetric robot systems, our approach focuses on inves-

tigating topology changes. Unlike the Variable Topology Truss (VTT), which explores topology

changes through the introduction of the Spiral Zipper joint at the node level, we achieve topol-

ogy modifications by incorporating dissolvable beams and altering graph connectivity at the edge

level. The utilization of dissolvable components in our system further enables us to explore loco-

motion for shape-changing tasks in both the integral structure and its subparts. This exploration

of locomotion within both scales represents an aspect that has not been previously explored by

earlier truss-based robot designs.
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Chapter 3

Background

Figure 3.1: Overview of Pneumesh System [4]. A.number of controls needed without multi-way

joint design. B.number of controls needed with multi-way joint design C. various beam lengths

with blocker structure. D. multi-way joint design
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3.1 Hardware System

We built our physical abstraction on top of existing Pneumesh framework 3.1. Pneumesh, a

pneumatic truss-based shape-changing system, possesses the capability to perform multiple tasks

using a minimal number of control units. Pneumesh is consisted of three key components: “ad-

justable pneumatic linear actuators, multi-way joints to separate air channels, and airflow valves

controlling each channel” [4].

The Pneumesh framework employs a blocker structure to establish discrete lengths, effec-

tively expanding the deformation potential without increasing the number of edges within the

truss. Additionally, they utilize a ”selectively-connected joint mechanism” that permits a subset

of edges to be actuated simultaneously by a single actuator. This approach minimizes the quan-

tity of control modules required while still enabling the truss to achieve diverse shapes through

various combinations of open module statuses [4].

Their work introduces a design tool enabling users to customize truss structures for a range

of locomotion and shape-changing applications. We opted for the Pneumesh platform as our

physical system due to its simplicity of fabrication and ease of control. Notably, the Pneumesh

system also incorporates passive beams, which can be conveniently replaced with dissolvable

beams in our approach.

3.2 Optimization Algorithm

3.2.1 Genetic Algorithm

Genetic Algorithm [16] is a random search algorithm based on Darwin′s theory, and is mostly

used in optimization for discrete systems. Genetic algorithm encodes a set of parameter to opti-

mize as a gene. and follows the following pipeline

1. Initialization: create a gene Pool of size Ng filled with randomly generated genes
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2. Evaluation: Evaluate the gene against a set of fitness functions

3. Selection: Select an elite pool of size Nl, where Nl < Ng based on some selection schemes

4. CrossOver: CrossOver parameters between set of two genes to generate offsprings and

add them to the gene pool

5. Mutation: Mutate the newly generated offsprings with low probability to add diversity

into the population

6. Replacement: randomly fill in the rest of gene Pool and repeat the process of evaluation,

selection, crossovers, and mutations.

Genetic algorithms offer several advantages, including their capability to tackle a diverse array

of problems and exploit parallelism. However, they come with certain disadvantages, such as

the need to fine-tune a multitude of parameters, including the formulation of the fitness function,

population size, mutation and crossover rates, and selection criteria. Making an inappropri-

ate choice in these aspects can render the algorithm difficult to converge and lead to outcomes

lacking significance. A notable drawback lies in the selection criteria, which constitutes a key

limitation.

3.2.2 NSGA-II

When applied to multi-objective optimization problems, traditional genetic algorithms often en-

counter challenges such as a deficiency in elitism, the high computational complexity of non-

dominated sorting, and the necessity to define a sharing parameter to maintain diversity. NSGA-

II [3] (Non-dominated Sorting Genetic Algorithm II) is considered as a fast and elitist multi-

objective algorithm that effectively addresses these concerns. NSGA-II exhibits the following

key features:

• Elitism Preservation: It preserves optimal solutions from earlier iterations to prevent their

elimination.
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• Explicit Diversity Preservation: The algorithm incorporates a distinct mechanism for

preserving diversity, eliminating the requirement for a sharing parameter.

• Reduced Computational Complexity: NSGA-II introduces strategies that lead to a re-

duction in computational complexity, ensuring efficient performance.

These attributes collectively contribute to the strengths of NSGA-II, making it a powerful solu-

tion for multi-objective optimization tasks.
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Chapter 4

MetaTruss

With Pneumesh, we possess a tool for forward simulation. Could we develop an algorithm to

solve the inverse design problem? This problem involves creating a design that fulfills specific

desired behaviors, such as achieving a target shape or locomotion pattern. In essence, given an

initial model with position, topology, symmetry constraints, and defined objectives, is it possible

to determine the relevant parameters for the physical system? These parameters include the

contraction of each beam, channel grouping, and the action sequence for the truss.

To address this challenge, we built MetaTruss, a computational design pipeline. MetaTruss

builds upon the physical foundation of Pneumesh and translates the physical attributes into a

parameter set. It then uses genetic algorithm to find a set of optimal parameters for our multi-

objective optimization problem.

4.1 Problem Statement

When we encode the physical system, we need to consider the truss model and its action se-

quences. We also need to consider representation of our abstract objective functions.

9



4.1.1 Model

In our physical system, we have a set of components, including joints, active beams as linear

actuators, passive or dissolvable beams, and various air channels. We represent the truss model

as a Graph G, consisted of vertices as V and edges as E, corresponding to beams and joints. Each

edge e ∈ E consists two vertices (v0, v1), v0, v1 ∈ V . In addition to this basic configuration, each

edge contains an air channel C ∈ nc it belongs to, and an actuation length l ∈ nl.

4.1.2 Action Sequences

We further parametrize the set of actuation Sequences. Each truss consists a series of actuation

A0, A1 · · ·An corresponding to the number of objective functions. Each actuation sequence is

defined as a boolean matrix of size na×nc, where na is the number of action and nc is the number

of channels. 1 means contracting and 0 means inflated.

4.1.3 Objective Functions

Our mass-spring physical simulators take in a graph G and output a set of vertices vs of size

(N, nv, 3) N denotes the length of actuation, nv denotes the number of edges in G, and 3 rep-

resents the (x, y, z) cartesian coordinates of each vertex. We also represent any specific vertex

as either vi,j,x, vi,j,y, vi,j,z where i, j corresponds to the frame in the actuation sequence and the

index of the vertex. We can then represent objective function regarding vs. For example, if we

want to represent an objective function of the truss moving towards the positive y direction, we

can express it as

max[
∑

(vn,j,y − v0,j,y)]∀j ∈ nv

10



Figure 4.1: Overview of computational pipeline for MetaTruss

4.2 Computational Pipeline

4.2.1 Overview

We introduce a computational pipeline utilizing a combination of genetic algorithm and NSGA-

II. This pipeline 4.1 incorporates tailored initialization, mutation, and crossover operators. The

adoption of the genetic algorithm stems from the necessity to address the channel connection

constraint through an optimization approach suitable for discrete data. The implementation of

NSGA-II is motivated by the intention to optimize for multiple objectives.

4.2.2 Channel Constraint

When encoding parameter into gene, we need to taken into account the physical system. One

specific constraint introduced by Pneumehs’s multi-way joint system is channel connection. In

the actual physical setup, we manage the flow of air through a common channel to control multi-

ple joints using a single control signal. In the context of graph representation, it becomes crucial
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to guarantee that all connected edges belong to the same channel. Furthermore, within a given

channel, every edge must be adjacent to at least one other edge through a joint in the same

channel. This ensures the coherent functionality of the system while adhering to the physical

constraints.

4.2.3 Genetic Operator

A gene comprises several elements: the positions of all nodes within the model, the topology,

and action sequences. The positions and topology are predetermined. When a gene is being

altered, we adjust its channel connectivity, edge contraction ratio, and action sequences. During

the process of random assignment and modification of the gene, attention is given to maintaining

adherence to the physical system’s requirements, including channel constraints and the discrete

set of contraction ratios.

• initialization During the initialization phase, we create a collection of random graph con-

figurations, ensuring that each graph adheres to the channel constraint. Additionally, we

generate a set of discrete edge contraction ratios and a boolean action sequence matrix

through a random process.

• Mutation

• During the mutation phase, a random edge is selected, and an attempt is made to modify its

channel by assigning it to one of its neighboring edges. It is crucial that the modified graph

configuration maintains the connectivity within the same channel. An illustration of cor-

rect and incorrect mutations is depicted in 4.2. Additionally, the mutation process involves

iterating through each action sequence and edge contraction ratio. This entails either flip-

ping a bit or altering the value to a different contraction ratio, based on the probability of

mutation.

• CrossOver Regarding crossover, it’s important to note that we do not exchange chan-

nel configurations between two graphs. Instead, the crossover process involves iterating

12



through each action sequence and contraction ratio. Values are crossed over based on the

assigned crossover probability.

Figure 4.2: Illustration of edge mutation. a: initial edge setup. b: correct mutation c: incorrect

mutation

4.2.4 Training Iterations

The training process maintains two distinct sets of gene pools, an active gene pool with capacity

Na, and an elite gene pool with size of Ne. Each iteration of the training contains n genera-

tions. During each generation, we follow the standard genetic algorithm pipeline with NSGA-II

as evaluation algorithm to sort the genes based on their ranking and crowding distance. A fixed

number of surviving genes are retained, while the rest are discarded. The survived genes un-

dergo mutation and crossover, and new genes are randomly generated to replenish the pool. The

surviving gene of the final generation in each iteration is placed into elite gene pool. When elite

gene pool is full, all genes are reintegrated into the active gene pool. The use of an elite gene

pool serves to mitigate the dominance of any single gene by temporarily removing elite genes

from the active gene pool.

13
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Chapter 5

Dissolvable Truss System

Extending beyond MetaTruss pipeline, we aim to explore an optimization pipeline that also ad-

dresses topology change in truss robots. In order to do so, we incorporate a set of new constraints,

such as subgroups and dissolvable beams.

Figure 5.1: Demonstration of our dissolvable truss system. Passive beams break down with water

stimuli
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5.1 Dissolvable System

We propose a physical setup on top of Pneumesh, as shown in, 5.1, where a set of passive

beams are replaced with dissolvable beams. In addition to the existing physical setup, we would

incorporate passive beams with fixed lengths, fabricated from dissolvable materials. This is

achievable due to the availability of materials that dissolve in response to specific stimuli. For in-

stance, polyvinyl alcohol is a water-soluble synthetic polymer that is both easily manufacturable

and possesses sufficient stiffness to support other beams. In certain imaginative scenarios, we

envision a lobster looking robot, carrying an item and delivering it to a designated location. Sub-

sequently, following a rain event, the robot disassembles into components, and recycles back the

control modules on the tail component.

5.2 Group Constraint

The incorporation of dissolvable passive beams effectively partitions the graph into smaller sub-

graphs. edges within each subgraph G′ can not formulate channel connection with edges outside

of the group because in order to formulate disconnected individuals after dissolving, the edge

must be adjacent to an edge within the group or a passive beam. This constraint ensures the

integrity of the disassembled individuals after the dissolution process.

5.3 Problem Statement

Each edge is associated with a new parameter denoted a g, indicating the group to which that

particular edge belongs. Additionally, dissolvable beams are encoded using a channel color of

-1. The remainder of the process adheres to the established procedure.

16



5.4 Simulation

With the incorporation of objectives for both the integral truss system and the collective of dis-

connected subcomponents, we adapt by simulating the system in two modes: as a full graph

denoted as G, and as a subgraph denoted as G∗, excluding the dissolvable beams. This approach

allows us to effectively address the objectives for both scenarios.

5.5 Genetic Operators

During initialization, we simply grow channels for each subgraph following the same chan-

nel growing graph search algorithm. For the mutation step, a subgroup is randomly selected

and a random edge within that subgroup is mutated following the normal mutation scheme. In

crossover, we now introduce the ability to cross over graph configurations. Since each subgroup

is disjoint, we can randomly select a subgroup and cross the subgraph configuration with ts coun-

terpart from another gene. This enhanced approach to initialization, mutation, and crossover

accounts for the new complexities introduced by the dual objectives and the use of dissolvable

beams.

5.6 Adapted Computational Pipeline

In the overall pipeline, we incorporated a new parameter into the parameter space and adjusted

the simulation accordingly we constrained the gene operators to execute initialization and muta-

tion specifically within each subgroup. Additionally, a novel graph cross over operator was built

to accomodate the disjoint nature of subgroups.
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Figure 5.2: Modified computational pipeline by integrating dissolvable beams
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Chapter 6

Results and Discussions

In our experiments with the dissolvable system, we utilize a lobster-looking truss robot with three

subgroups and two channel for each subgroup 6.1. We optimize the parameter space for this robot

to achieve two application tasks: 1. collective locomotion and dispersion 2. grab, locomote, and

recycle. We then provide analysis and insights on the outcome of these optimizations.

Figure 6.1: Dissolvable lobster-looking truss with three subgroups
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6.1 Collective Locomotion and Dispersion

In this first task, we are thinking about a collective components doing locomotion while also

having the ability to locomote as disconnected individuals. we aim to optimize three objective

functions.

• The integral truss moving towards negative x direction.

• Subgroup A moves away from its origin.

• Subgroup B moves away from its origin.

Mathematically speaking, we can define the objectives correspondingly as

• max[
∑

(−(vn,j,x − v0,j,x))/nv], j ∈ nv.

• max[
∑

(|(vn,j,x−v0,j,x)|+ |(vn,j,y−v0,j,y)|)/nA], j ∈ nA, where nA denotes to the number

of vertices in subgroup A.

• max[
∑

(|(vn,j,x−v0,j,x)|+ |(vn,j,y−v0,j,y)|)/nB], j ∈ nB, where nB denotes to the number

of vertices in subgroup B.

Figure 6.2: Locomotion performance over 1000 iterations

As we observed in the plot, the directional displacement for all three objective increases

as training iteration increases, meaning that our optimization pipeline graudally converge to an

optimal solution for each objective.

20



Figure 6.3: Displacement of lobster truss

6.2 Grab, Locomote, and Recycle

In the second scenario, we envision a truss robot conducting a field delivery task. This truss,

resembling a lobster in appearance, is designed to grasp an object and transport it to a specified

destination. Subsequently, the robot disassembles into three components, with the tail component

and control modules being recycled. Although the subgroups remain the same in this case, the

objective functions differ. We are optimizing three objective funcitons:

• The lobster truss grab and object.

• The lobster truss move towards negative x direction.

• Subgroup C move towards the direction from which the lobster originated.

Which can mathematically be represented as
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Figure 6.4: Schematic showing the model and objectives for Grab, locomote, and recycle task

• 6.4 Denoting the two highlighted vertices as l, k, we can represent grabbing an object

as minimizing the max distance between vl and vk through the entire action sequence.

minmax(vi,l − vi,k), i ∈ N .

• max[−
∑

((vn,j,x − v0,j,x))/nv], j ∈ nv.

• max[
∑

((vn,j,x−v0,j,x))/nv], j ∈ nC , where nC denotes the number of vertices in subgroup

C.

6.5 We observe that, apart from the locomotion task, our system successfully optimizes for

an alternative type of motion abstraction, specifically the action of ”grabbing”.

When evaluating the outcomes of our genePool through simulation visualization, we fre-

quently observe instances of asymmetric design within our truss system. This asymmetry is

characterized by non-mirrored channel connections and contraction ratios along specific axes.

The truss robot often encounters challenges when attempting to move directly to a target lo-
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Figure 6.5: Minimum distance between two vertices over 500 iterations

cation, exhibiting a tendency to follow a circular trajectory instead 6.6. However, previous work

in metaTruss has demonstrated that the introduction of a symmetry constraint yields significant

benefits. By enforcing such a constraint, we can ensure symmetrical movement patterns and

simultaneously reduce the search space. This enhancement expedites the computation pipeline

and enhances the overall efficiency of our approach.

It is important to note that incorporating a symmetry constraint alongside the existing group

constraints introduces an additional layer of complexity. However, it can a potential direction for

future explorations and enhancements in our truss robot design and optimization process.

23



Figure 6.6: Displacement of lobster truss when performing grabbing and locomote
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Chapter 7

Future Works

We have showcases preliminary findings from our proposed system, and we are confident that a

wide array of tasks can be explored within the framework of our dissolvable truss-based system.

First, we would like to delve into shape-changing applications, broadening the scope and

diversity for our objective functions. This exploration can encompass two distinct approaches:

• Shape-changing through actuation: Investigating the feasibility of achieving shape changes

in the truss structure through controlled actuation mechanisms.

• Shape-changing through strong buckling force induced by rigid structure: Explor-

ing the concept of inducing significant buckling forces within a rigid truss structure by

selectively removing specific beams.

In addition, we would like to modify the computation pipeline to optimize for our specific

system. To achieve this, we propose a novel approach. Initially, we intend to train the gene pool

for a specified number of iterations, leading to the identification of a set of relatively high-quality

genes located within the pareto fronts. Subsequently, we will implement a distinct modification

to our pipeline. This involves the random selection of a gene from this set and the execution of our

pipeline using the same model configuration, but different action sequences. This modification

is unique to our system because, once the subcomponents become disconnected entities, the
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action sequences of each sub-objective do not interfere. Therefore, it is possible for the system

to converge faster, as we can cross over a wide range of actions while constraining the model

configuration to a locally optimal choice.

Last but not least, we would like to explore incorporation of a set of dissolvable beams as an

optimization parameter. Our existing setup operates under the assumption of a predetermined set

of passive beams and predefined groups. However, we aim to extend our approach by introducing

the concept of dissolvable beams as a dynamic group. By treating dissolvable beams as a variable

within our gene operators, we have the potential to uncover solutions that align more precisely

with the specific objectives we seek to attain.
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