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Abstract
Statements in the first-order logic of real arithmetic (FOLR) that involve the

“there exists” and “for all” quantifiers arise in various application domains, includ-
ing the formal verification of cyber-physical systems and robot motion planning.
These quantifiers are difficult for both humans and computers to handle. The best
way of analyzing quantified formulas in FOLR is to reduce them to logically equi-
valent quantifier-free formulas, through a process known as quantifier elimination
(QE). By removing the quantifiers in a logically sound manner, QE makes formulas
significantly simpler to analyze (as quantifier-free formulas can be easily evaluated
by arithmetic in individual states, whereas quantified formulas cannot).

Given the safety-critical nature of applications involving real quantifier elimi-
nation, having correct QE algorithms is crucial. For this, formally verifying QE
algorithms—by implementing them in a theorem prover and developing associated
proofs of correctness—is very desirable. These proofs of correctness are rigorous,
as they rely only on the trusted core of the theorem prover—a (typically small) foun-
dation of trusted code/logical axioms from which all other results are built.

This thesis provides formally verified support for real QE with a two-pronged ap-
proach: First, develop support for efficient even if incomplete QE algorithms (which
are specialized to a fragment of real arithmetic), with a focus on filling gaps in the
existing body of related work. Second, develop support for a promising complete
QE algorithm with the potential for eventual efficiency / good complexity. For the
first goal, the thesis discusses a verification of linear and quadratic virtual substitu-
tion with a focus on correctness, experimentation, and optimization; the experiments
show that this verified VS implementation is competitive with unverified implemen-
tations of VS. For the second goal, the thesis discusses the verification of a complete
QE algorithm that uses insights from the influential Ben-Or, Kozen, and Reif (BKR)
algorithm; although this verified algorithm does not currently exploit all insights
from BKR and does not yet realize practical efficiency, it lays groundwork for even-
tual verified complete QE algorithms with strong parallel complexity bounds. This
thesis uses the theorem prover Isabelle/HOL for both verifications.
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Chapter 1

Introduction

Quantified formulas in the first-order logic of real arithmetic (FOLR) arise in various application
domains, including the formal verification of cyber-physical systems (CPS), geometric theorem
proving, and stability analysis of models of biological systems [83]. Intuitively, these formulas
naturally capture questions such as: “For all possible positions that my robot is in, does there
exist a safe control choice?” The “there exists” and “for all” quantifiers make these statements
difficult to analyze, because they range over the real numbers, which are uncountably infinite. It
is extremely useful to reduce quantified formulas to logically equivalent quantifier-free formulas
through a process known as quantifier elimination (QE). These quantifier-free formulas are sig-
nificantly simpler to analyze subsequently, because they can be explicitly evaluated by arithmetic
in individual states (assignments of values to free variables) [70]. If a formula is fully quantified
(i.e., it has no free variables), QE is able to reduce it to either True or False; otherwise, QE will
identify what conditions on the free variables are needed to make the formula true. Satisfiability
and validity questions are fully quantified (after prefixing existential and universal quantifiers,
respectively), whereas other applications may involve QE problems with free variables.

Alfred Tarski proved that algorithms for real QE exist [85]. Thus, in theory, all it takes to
rigorously answer any real arithmetic question is to verify a complete QE procedure for FOLR
(in particular, FOLR validity and satisfiability are decidable by QE and evaluation). However,
in practice, complete QE algorithms are complicated and the fastest known one, cylindrical
algebraic decomposition (CAD) [16] is, in the worst case, doubly exponential in the number
of variables. In principle, this complexity bound is not bad, since QE is known to be doubly
exponential in the number of quantifier alternations [23, 24, 91]. However, in practice, layers of
optimizations are needed to help CAD realize its potential for efficiency [6, 17, 56], and work to
improve CAD has been going on for decades.

As the applications which require QE are safety-critical [69, 70]; it is vital to have efficient
trustworthy support for QE to trust the resulting decisions. Unfortunately, QE algorithms are
intricate (intuitively, each QE algorithm has to reduce a highly continuous problem, where each
quantifier ranges over the uncountable real numbers, to a discrete problem which can be solved
computationally), which makes it difficult to implement them correctly. An ideal solution is to
formally verify QE algorithms by implementing the algorithms in the rigorous logical setting
of a theorem prover and developing associated proofs of correctness. The theorem prover will
enforce that the proofs of correctness only depend on a (typically small) trusted core, a code base
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which consists of the base logical axioms and their basic implementation. This makes the proofs
of correctness, and the associated algorithms, highly trustworthy.

However, developing relatively efficient support for unverified QE took decades [7, 82], and
as verification is both newer and more difficult than implementation, there is a dearth of formally
verified QE algorithms. In practice, this necessitates the use of unverified tools to solve quantifier
elimination problems, even in safety-critical settings. For example, as mentioned previously, QE
problems naturally (and frequently) arise when analyzing mathematical models of CPS [71, 79].
Currently, the theorem prover KeYmaera X [38], which is designed to formally verify models
of CPS (such as planes [12, 45], trains [47], and robots [4]) uses Mathematica/Wolfram Engine
and/or Z3 as blackbox solvers for QE. While these are admirable tools, they are unverified,
and their use introduces a weak link [34] into what would otherwise be a (fully verified [3])
trustworthy proof.

There are many algorithms that can be used to solve QE problems [66], and to realize scal-
ability, clever combinations of these algorithms are needed. Many of the most efficient QE
algorithms are incomplete, in that they target specific fragments of real arithmetic, but are not
able to solve all QE problems.1 On the other hand, complete QE algorithms, which are capable
of solving any QE problem, tend to be complex and inefficient. In practice, unverified tools like
Mathematica make extensive use of efficient incomplete methods, preprocessing, and heuris-
tics and at least one complete QE algorithm (typically CAD) to achieve efficient QE. A recent
thesis by Passmore studies (in an unverified setting) combinations of a range of complete and
incomplete QE methods with the goal of systematically realizing strong efficiency benefits [66].

1.1 Our Approach
In this thesis, we are interested in verifying QE algorithms in order to attain strong correctness
guarantees. In a nutshell, this thesis aims to advance formally verified support for QE by taking
practical steps towards verifying efficient incomplete QE methods in conjunction with a promis-
ing complete QE algorithm. Our approach is to work in the formal setting of a theorem prover, a
piece of software which is based on a (typically small) trusted core of logical axioms. We write
QE algorithms in a theorem prover and provide corresponding proofs of correctness. Theorem
provers are designed so that, in principle, everything written in the theorem prover reduces to
that core set of logical axioms, which makes everything formalized in a theorem prover highly
trustworthy. Our theorem prover of choice is Isabelle/HOL [65, 67]. While selecting a theorem
prover is slightly a matter of taste, Isabelle/HOL is excellent for our purposes: it is well-suited for
formalizing mathematics and has a large, centralized, and well-maintained collection of existing
proof developments available in the Archive of Formal Proofs (AFP), a number of which we
build upon in our work2; further, the built-in search tool and Sledgehammer [68] provide invalu-
able automation for discovering existing theorems and for finishing (easy) subgoals in proofs. A

1On an intuitive level, it is precisely this specialization to a fragment of real arithmetic which can allow these
algorithms to realize considerable practical performance.

2In practice, the AFP is very convenient for us, because it allows us to easily find and load relevant prior forma-
lizations. Further, when Isabelle/HOL undergoes an update (currently, this happens approximately once a year), the
AFP formalizations are also updated so that they are consistent with the newest version of the tool.
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Figure 1.1: A pipeline of our methodology.

pipeline of our approach is visualized in Fig. 1.1.
For any work that seeks to formalize mathematics, there will be challenges on both the math-

ematical side and the formalization side. On the mathematical side, it is often difficult to write
mathematics and mathematical proofs in a theorem prover; specifying details that were initially
underspecified and fleshing out proofs can take considerable creativity. On the formalization
side, there are often considerable low-level details that must be made explicit to the theorem
prover, which can require fleshing out gaps in existing libraries, and particularly intricate pieces
of proof may require significant time and effort.

Since working in a verified setting poses considerable challenges compared to an unverified
setting (namely, by specifying that all algorithms must be completely logically precise and by
enforcing that all results must be accompanied by rigorous correctness proofs), we presently
limit our attention to verifying a narrow range of QE methods, with the hope that future works
will augment this range.

First, we verify the linear and quadratic cases of virtual substitution (VS) [91, 93]. Linear and
quadratic VS have considerable practical significance [66] and, correspondingly, are widely used
in QE implementations in unverified software, including Mathematica [95], Maple [89, 96], and
Redlog [30]. Although these methods are incomplete, as they target problems that contain low-
degree polynomial inequalities or equations, they are very impactful. To demonstrate the practi-
cal potential of our verified algorithms, we test our verified VS implementation on benchmarks
from the literature, comparing to several unverified tools, and show promising performance. In
the course of this formalization, there were challenges on both the mathematical side and on
the formalization side, but most of the challenges were on the formalization side. Intuitively,
because the VS algorithm is already highly syntactic, writing it in a formal setting is rather nat-
ural, which somewhat lessens the mathematical challenge. However, as we will discuss in more
detail later, this work required developing a framework for expressing multivariate QE prob-
lems in Isabelle/HOL, and we also had to spend considerable effort developing Isabelle/HOL’s
multivariate polynomials libraries.

We then verify a complete multivariate QE algorithm that incorporates insights from the Ben-
Or, Kozen, and Reif (BKR) algorithm [2]. The BKR algorithm was an influential algorithm with
good potential for parallelism, and it gave rise to a number of variant QE algorithms by Rene-
gar [75], Canny [10], and others with compelling parallel complexity bounds. In the process of
our multivariate formalization, we formalize univariate BKR and the univariate case of Renegar,
which are of independent interest, as the insights from univariate BKR have been foundational
in a number of later algorithms [9, 59]. In the multivariate case, our work does not currently use
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Figure 1.2: Thesis overview

all of the insights from BKR; rather, we blend theoretical insights from BKR and Tarski’s orig-
inal QE algorithm [85]. To our knowledge, this is the first complete multivariate QE algorithm
formalized in Isabelle/HOL, and although we trade off some efficiency for ease of formaliza-
tion, it is a significant step towards formalized QE algorithms that have good complexity. In
the course of this formalization, there were challenges on both the mathematical side and on
the formalization side, but most of the challenges were on the mathematical side. Intuitively,
this can be viewed as being somewhat emblematic of the gap between Theory A research and
Theory B research, which my thesis seeks to bridge. The BKR result is a complexity result in
the Theory A community that uses sophisticated mathematics; it contains many brilliant ideas
but is not immediately well-set-up for formalization, so it is unsurprising that it takes many extra
steps to turn it into a formal artifact in the Theory B community. This effort required first turning
BKR’s mathematical arguments into a recursive function in Isabelle/HOL, then deciding what
correctness lemmas to state in order to break apart the proof into manageable pieces, and, finally,
fully proving those lemmas.

Finally, to get a unified QE implementation, we link together our verified VS implementation
with our verified complete QE algorithm. This allows us to simultaneously have both complete-
ness and the efficiency of virtual substitution.

This thesis is organized into three main technical sections (cross-reference Fig. 1.2). The first
discusses our formalization of linear and quadratic virtual substitution. The second discusses our
formalization of univariate BKR and univariate Renegar. The third discusses our formalization
of a complete multivariate QE algorithm. In the remainder of this introduction, we give a broad
overview of related work (related works that are specific to one chapter will be discussed at
greater length therein), briefly introduce VS and BKR, and motivate our consideration of each.

1.2 Related Work

Given the safety-critical nature of real arithmetic questions, it is not surprising that considerable
attention has been given to formally verifying algorithms for real QE [11, 15, 40, 54, 55, 58,
61, 63, 64, 72]. A variety of works have focused on verifying incomplete QE methods [11,
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40, 64, 72], though not always with a focus on practical efficiency. Further, good progress has
been made on verifying the univariate cases of complete QE algorithms (which can solve QE
problems that only involve one variable, and so de facto have at most one quantifier) [54, 61, 63].
Additionally, some progress [15, 55, 58] has been made on fully verifying complete multivariate
QE algorithms (i.e., algorithms that are capable of resolving any real QE problem). We now
discuss each of these general categories in more detail.

Incomplete Methods

Regarding incomplete QE methods, virtual substitution (VS) is a particularly well-known effi-
cient algorithm which targets problems with low-degree polynomials. It is natural, then, that
previous work has considered formalizing the linear [64] and quadratic equality [11] cases of
VS. As discussed in more detail in Sect. 2.1, for various reasons we choose not to directly build
upon these works in our development (which also formalizes the quadratic inequality case of
VS, which is considerably more intricate than the equality case, since it requires reasoning not
just about roots of quadratic polynomials, but also about points in ranges between roots, of which
there are infinitely many).

Other work, by Harrison [40], has considered formalizing incomplete QE methods for the
universal fragment of real arithmetic (that is, for QE problems that are fully universally quanti-
fied) that employ sum-of-squares methods. The basic intuitive idea is that if a polynomial can
be decomposed into a sum of polynomial squares, then it is nonnegative, though Harrison also
formalizes more general sum-of-squares methods. These include, for example, a way of estab-
lishing the inconsistency of a set of polynomial equations and inequalities based on Hilbert’s
Nullstellensatz (and variations thereof) [40].

There has also been some prior work by Platzer et al. on comparing verified and unverified
QE methods which took an experimental focus [72]. This work compared (on 97 benchmarks)
unverified complete QE methods in tools including Mathematica, an unverified implementation
of virtual substitution that defaults to an optimized version of CAD in Redlog, a verified proof-
producing procedure for QE by McLaughlin and Harrison [58] (which we will discuss later in
more detail), and both verified and unverified incomplete methods for the universal fragment of
real arithmetic, including Harrison’s [40] and a new QE method3 which combines ideas from
the real Nullstellensatz with Gröbner bases methods. This experimental approach for evaluating
verified QE methods adds a useful practical lens to the literature, especially because some of the
methods that were tested had not previously been extensively benchmarked. We take a similarly
practical focus in our work on verified virtual substitution, where we do extensive experiments
to test the effectiveness of our formalization on real-world benchmarks (see Sect. 2.4).

Univariate Methods

Regarding univariate methods, several univariate cases of complete QE algorithms have been
verified independently of their multivariate counterparts. In Isabelle/HOL, Li, Passmore, and

3An interesting theoretical contribution of Platzer et al. [72] was identifying a simple set of proof rules that are
complete for universal real arithmetic. These proof rules require identifying a useful witness for each QE problem,
and Platzer et al.’s new QE method poses a strategy to do this.
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Paulson [54] formalized an efficient univariate decision procedure based on univariate cylindrical
algebraic decomposition (CAD). Their decision procedure is highly optimized and makes use of
Mathematica as an untrusted oracle, meaning that Mathematica is used to (efficiently) perform
certain computations but that the results are then checked within Isabelle/HOL’s trusted core; it
achieves strong performance on a set of microbenchmarks [54].

Additionally, two univariate decision procedures have been verified in the theorem prover
PVS: hutch [61], which is based on univariate CAD, and tarski [63], which is based on the
Sturm-Tarski theorem and thus shares some conceptual overlap with Tarski’s original QE pro-
cedure. Originally, tarski was limited to the existential conjunctive fragment of universal real
arithmetic, but some of my work extended it into a full decision procedure [18]. As expected,
hutch is typically faster than tarski, since it uses a more efficient algorithm; notably, however,
tarski sometimes outperforms hutch [18]. This is likely because the mathematical underpin-
nings of hutch and tarski are different, leading to different efficiency tradeoffs. This suggests
that, in addition to a range of efficient preprocessing methods, it is desirable to have multiple
formalized QE algorithms—problems that are adversarial for one strategy may be resolved more
quickly by another strategy.

Complete Multivariate Methods

Unsurprisingly, complete multivariate QE algorithms are significantly more challenging than
their univariate counterparts. Multivariate polynomials are unlike univariate polynomials, be-
cause they may have infinitely many roots, their leading coefficients are polynomials in fewer
variables and so may have zeros, and polynomial division is not always unique. Additionally,
whereas univariate QE problems only involve a single quantifier and always reduce to True or
False, multivariate QE problems can involve nested quantifier alternations and free variables.

To our knowledge, the main published progress on verifying complete multivariate QE algo-
rithms in theorem provers is threefold: first, Mahboubi [55] implemented (but did not yet verify)
the fastest-known complete multivariate QE algorithm, CAD [16], in Coq; second, McLaughlin
and Harrison developed a proof-producing (but not verified) procedure based on the Cohen-
Hörmander algorithm in HOL Light [58]; finally, Cohen and Mahboubi verified Tarski’s original
QE algorithm in Coq [13, 15]. Unfortunately, both Tarski’s original QE algorithm and the Cohen-
Hörmander algorithm have non-elementary complexity (i.e. the complexity is not bounded by
any tower of powers of two) [1, p. 444]. While McLaughlin and Harrison’s procedure can solve
simple microbenchmarks, they acknowledge considerable experimental limitations [58].4 Simi-
larly, Cohen and Mahboubi consider their work to be primarily a theoretical contribution [15].

The dearth of efficient formally-verified complete QE algorithms is in part a consequence of
the intricacy of the algorithms themselves. Indeed, we observe a tradeoff between the computa-
tional efficiency of an algorithm and the tractability of verification [76]. Most notably, the multi-
variate CAD algorithm is efficient but complex and tremendously difficult to verify, even though
the (significantly simpler) univariate case has been independently verified both in Isabelle/HOL
[54] and PVS [61]. Further, in order for CAD to realize its full potential for efficiency, many

4This is not only due to the complexity of the Cohen-Hörmander algorithm, but also because proof-producing
algorithms are not verified once and for all but, instead, have to produce a new proof of correctness per question,
which incurs significant overhead compared to fully verified ones [58, 72].
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further insights [6, 17, 32, 56] beyond the original development [16] are needed, and improving
CAD (and algorithms for real QE at large) is an active area of research [5, 8, 36, 62].

The lack of efficient verified QE methods is also a consequence of the challenge posed by
verification. Working within the formal setting of a theorem prover adds a considerable layer of
rigor but also intricacy, which is why even small progress needs significant effort. For example,
Mahboubi [55] discusses the many challenges involved in implementing CAD in Coq—a sig-
nificantly more arduous and involved task than implementing CAD in an unverified computer
algebra system (which also took decades [7, 82]).

Why BKR?

This thesis identifies a potential sweet spot within the tradeoff between complexity and veri-
fication amenability [76] by focusing on verifying a complete multivariate QE algorithm with
insights from the Ben-Or, Kozen, and Reif (BKR) algorithm [2]. The BKR algorithm was an
influential algorithm with good potential for parallelism. It has some theoretical similarity with
Tarski’s original QE method [85], but BKR includes important insights that lead to better effi-
ciency / complexity. One of its key insights is a clever recursive procedure that computes the
set of all consistent sign assignments for an input set of univariate polynomials while carefully
managing intermediate steps to avoid exponential blowup from naively enumerating all possible
sign assignments (this insight is fundamental for both the univariate case and the multivariate
case). Using this insight, the univariate BKR algorithm has good parallel complexity—when
optimized, it is an NC algorithm (that is, it runs in parallel polylogarithmic time) [2].

Since multivariate BKR seems to rely fairly directly on the univariate version, we hope that
it will be significantly easier to formally verify than multivariate CAD, which is highly compli-
cated. However, it is unlikely that multivariate BKR will be as efficient as CAD in the average
case. While BKR states that their multivariate algorithm is computable in parallel exponential
time (or in NC for fixed dimension), Canny later found an error in BKR’s analysis of the multivar-
iate case [10], which highlights the subtlety of the algorithm and the role for formal verification.
Various variants [10, 22, 75] of the BKR algorithm were developed to fix this error; these often
achieve highly compelling parallel complexity bounds.5 Notwithstanding this, it seems highly
likely that multivariate BKR will outperform Tarski’s original QE algorithm (when its inherent
parallelism is exploited), and a highly optimized parallel implementation of BKR, or perhaps
of its variants, could (ideally) potentially supplement an eventual formalization of multivariate
CAD.

Indeed, as previously noted, it is desirable to have a variety of formally verified decision pro-
cedures for arithmetic since different strategies can have different efficiency tradeoffs on different
classes of problems [18, 72]. Toward this end, it is beneficial that BKR has a fundamentally dif-
ferent working principle than CAD; like the Cohen-Hörmander procedure, it represents roots

5As previous work [42] has drawn a strong distinction between computational complexity and practical efficiency
(with particular attention to Renegar [75]), these complexity bounds will not necessarily translate into immediate
practical efficiency. However, a followup work [41] argued for the potential of algorithms with strong theoretical
complexity bounds to realize efficiency on fragments of real arithmetic. As a promising example of this, in his
2008 thesis, Huntington [43] implemented an experimentally promising algorithm for the existential fragment of
real arithmetic based on Canny’s variant of BKR. Overall, BKR-based algorithms remain influential.
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and sign-invariant regions abstractly, instead of via the computationally expensive real algebraic
numbers required in CAD.
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Chapter 2

Verifying Virtual Substitution

This chapter discusses the formal verification of linear and quadratic virtual substitution (VS)
due to Weispfenning [91, 93], which focuses on QE for a quantified variable x occurring in
polynomials of at most degree 2 in x, although variations [50, 92] can handle higher degree
polynomials. Linear and quadratic VS are of practical significance. They serve to improve QE
[66] and SMT tools and are the basis of the experimentally successful [84] Redlog solver [30].
To our knowledge, ours is the first formally verified VS algorithm which includes the intricate
quadratic inequality case. We are also unique in that we explicitly focus on achieving promising
empirical performance of our verified VS implementation.

As we focus on correct and practical VS, we export our verified Isabelle/HOL code to
SML for experimentation. We test our exported formalization of the equality VS algorithm
(Sect. 2.2.2) and of the general VS algorithm (Sect. 2.2.3). We compare to four tools that im-
plement real QE: Redlog, SMT-RAT [21], Z3 [25], and Wolfram Engine. With 304 examples,
we solve more examples than SMT-RAT in quantifier elimination mode (solves 191) and come
close to virtual substitution in Wolfram Engine (solves 322). The remaining tools solve almost
all examples; this is to be expected given that those tools have been optimized and fine-tuned
(some for decades) and use efficient complete fallback QE algorithms when VS does not suc-
ceed. However, as we found 137 inconsistencies in other solvers, it is significant that ours is the
only VS implementation with associated correctness proofs (assuming the orthogonal challenge
of correct code generation from Isabelle [44]).

The formalization is approximately 23,000 lines in Isabelle/HOL and is available on the
Archive of Formal Proofs (AFP) [78].

Collaborators. The material in this chapter is based upon joint work with Matias Scharager,
Stefan Mitsch, and André Platzer which appeared at FM 2021 [76]. Fabian Immler also assisted
with augmenting the polynomial libraries of Isabelle/HOL during his time at CMU; unfortu-
nately, his subsequent industry position precluded our ability to include him as a coauthor on the
final paper.
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2.1 Related Work
There has already been some work on formally verified VS: Nipkow [64] formally verified a
VS procedure for linear equations and inequalities. The building blocks of FOLR formulas, or
“atoms,” in Nipkow’s work only allow for linear polynomials

∑
i aixi ∼ c, where ∼ ∈ {=, <},

the xi’s are quantified variables and c and the ai’s are real numbers. These restrictions ensure
that linear QE can always be performed, and they also simplify the substitution procedure and
associated proofs. Nipkow additionally provides a generic framework that can be applied to sev-
eral different kinds of atoms (each new atom requires implementing several new code theorems
in order to create an exportable algorithm). While this is an excellent theoretical framework—
we utilize several similar constructs in our formulation—we create an independent formalization
that is specific to general FOLR formulas, as our main focus is to provide an efficient algorithm
in this domain. Specializing to one type of atom allows us to implement several optimizations,
such as our modified DNF algorithm, which would be unwieldy to develop in a generic setting.

Chaieb [11] extends Nipkow’s work to quadratic equalities. His formalizations are not pub-
licly available, but he generously provided us with the code. While this was helpful for refer-
ence, we chose to build on a newer Isabelle/HOL polynomial library, and we focus on VS as
an exportable standalone procedure, whereas Chaieb intrinsically links VS with an auxiliary QE
procedure.

Other related work includes some unverified solvers. For example, some work has been done
in constraint solving with falsification: RSolver [74] was designed for hybrid systems verification
and can find concrete counterexamples for fully quantified existential QE problems on compact
domains; notably, RSolver considers a system to be unsafe if it is close to an unsafe system. dReal
[39] is based on similar ideas and slightly relaxes the notion of satisfiability to δ-satisfiability,
where a formula is considered false if a small numerical perturbation of the formula would render
it false. Constraint solving has also been considered in SMT-solving with Z3’s nlsat [46], which
uses CDCL to decide systems of nonlinear inequalities and equations.

2.2 The Virtual Substitution Algorithm
Informally (and broadly) speaking, VS discretizes the QE problem by solving for the roots of one
or more low-degree polynomials f1(x), . . . , fn(x). VS focuses on these roots and the intervals
around them to identify and substitute appropriate representative “sample points” for x into the
rest of the formula. However, these sample points may contain fractions, square roots, and/or
other extensions of the logical language, and so they must be substituted “virtually”: That is,
VS creates a formula in FOLR proper that models the behavior of the direct substitution, which
would be outside of FOLR. VS applies in two cases: an equality case and a general case. We
formalize both, and discuss each in turn.
Remark 1. The VS algorithms need to work for multivariate polynomials. But as the VS correct-
ness proofs show the equivalence is true for every real value of the free variables, they often
implicitly treat all but one variable as having fixed (but arbitrary) real values. That is why
most correctness lemmas (but not the top-level algorithmic constructions) suffice for univariate
polynomials with real coefficients. We utilize this trick to simplify difficult proofs for general VS.
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2.2.1 Example

Example 1. Say that we want to perform QE on the formula ∃x.(x2 = 2∧xy2+2y+1 = 0). One
might notice that x2 = 2 forces x = ±

√
2 and accordingly wish to substitute. Direct substitution

yields the following expression: (
√
2y2 + 2y + 1 = 0 ∨ −

√
2y2 + 2y + 1 = 0). However, as its

mention of the
√
· operator makes it an illegal FOLR formula, we will need some further tricks.

Cleverly, VS finds that
√
2y2 + 2y + 1 = 0 is logically equivalent to y2 · (2y + 1) ≤ 0

∧ 2y4 − (2y + 1)2 = 0, which is a FOLR formula.1 Similarly, VS identifies a FOLR formula that
is logically equivalent to −

√
2y2 + 2y + 1 = 0. Then, VS returns the following quantifier-free

FOLR formula which is logically equivalent to ∃x.(x2 = 2 ∧ xy2 + 2y + 1 = 0):(
(y2 · (2y + 1) ≤ 0 ∧ 2y4 − (2y + 1)2 = 0)

∨ (−y2 · (2y + 1) ≤ 0 ∧ 2y4 − (2y + 1)2 = 0)
)
.

Remark 2. If instead our starting formula were ∃x.∃y.(x2 = 2 ∧ xy2 + 2y + 1 = 0), where
now y is quantified, then (following the same method as above) VS would identify the following
logically equivalent FOLR formula with fewer variables:

∃y.
(
(y2 · (2y + 1) ≤ 0 ∧ 2y4 − (2y + 1)2 = 0)

∨ (−y2 · (2y + 1) ≤ 0 ∧ 2y4 − (2y + 1)2 = 0)
)
.

(2.1)

Unfortunately, here we are left with a quantified formula with no linear or quadratic equations
or inequalities. As we are thus outside of the fragment of FOLR that standard VS applies to, at
this point we would want to outsource (2.1) to a complete QE algorithm (such as CAD, or the
algorithm described in Chapter 4 of this thesis) to eliminate the quantifier on y.

Example 1 was relatively simple, because it involved a quadratic equation with constant
coefficients for x. However, nothing in our reasoning was limited to constant coefficients: To
perform QE on ∃x.(x2 = c ∧ xy2 + 2y + 1 = 0), where c is a polynomial in the variable z, we
could handle substituting x = ±

√
c in the exact same way as for x = ±

√
2, but the answer must

distinguish the case of c ≥ 0 symbolically. More difficult is the generalization to inequalities,
which seemingly require uncountably infinitely many values to be virtually substituted. We first
turn to the general equality case, and then discuss inequalities.

2.2.2 Equality Virtual Substitution Algorithm

Let a, b and c be arbitrary polynomials with real coefficients that do not mention the variable x.
Consider the formula ∃x.(ax2 + bx + c = 0 ∧ F ). There are three possible cases: Either a ̸= 0,
or a = 0 and b is nonzero, or all of a, b, c are zero (so ax2+ bx+ c = 0 is uninformative). Letting
F r
x denote the substitution of x = r for x in F , and solving for the roots of ax2+ bx+ c, we have

1Notice that if y = 0, then both
√
2y2 + 2y + 1 = 0 and y2 · (2y + 1) ≤ 0 ∧ 2y4 − (2y + 1)2 = 0 are

false. If instead y ̸= 0, then
√
2y2 + 2y + 1 = 0 is true exactly when

√
2 = −(2y + 1)/y2, or exactly when

−(2y+1)/y2 ≥ 0∧ 2y4− (2y+1)2 = 0, which is logically equivalent to y2 · (2y+1) ≤ 0∧ 2y4− (2y+1)2 = 0,
as desired.
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the following:

∃x.(ax2 + bx+ c = 0 ∧ F )←→(
(a = 0 ∧ b = 0 ∧ c = 0 ∧ ∃x.F ) ∨

(a = 0 ∧ b ̸= 0 ∧ F−c/b
x ) ∨

(a ̸= 0 ∧ b2 − 4ac ≥ 0 ∧ (F (−b+
√
b2−4ac)/(2a)

x ∨ F (−b−
√
b2−4ac)/(2a)

x ))
)
.

Conditions such as b2 − 4ac ≥ 0 are needed to ensure (−b±
√
b2 − 4ac)/(2a) are well-defined;

these are symbolic formulas unless a, b, c are concrete numbers.
Similarly as in Example 1, if we substituted F−c/b

x , F (−b+
√
b2−4ac)/(2a)

x , and F (−b−
√
b2−4ac)/(2a)

x

directly (for polynomials a, b, and c that do not involve x), the resulting formula would no
longer be in FOLR. Instead, VS avoids directly dividing polynomials or taking square roots with
equivalent rewritings in FOLR. This involves two procedures: one for fractions, and one for
square roots.

To virtually substitute a fraction p/q of polynomials where q ̸= 0 into the atom
∑n

i=0 aix
i ∼

0, where ∼ ∈ {=, <,≤, ̸=} and each ai is an arbitrary polynomial expression not involving x,
it suffices to normalize the denominator of the LHS, with the caveat that we must not flip the
direction of the inequality for < and ≤ atoms by normalizing by a value that might be negative.
When n is even, qn ≥ 0 under any possible valuation, so normalizing by qn does not flip the
inequality. Alternatively, if n is odd, then qn+1 ≥ 0, so we can normalize by qn+1 without flipping
the inequality. We formalize this in our linear_substitution function (see Appendix A.1.1).

Next, we consider substituting x =
√
c into an atom

∑n
i=0 aix

i ∼ 0, where c is an arbitrary
polynomial expression not involving x that satisfies c ≥ 0, each ai is an arbitrary polynomial
expression not involving x, and ∼ ∈ {=, <,≤, ̸=}. Its direct substitution can be separated out
into even and odd exponents:

n∑
i=0

ai · (
√
c)i =

n/2∑
i=0

a2ic
i +

n/2∑
i=0

a2i+1c
i
√
c

Now our polynomial has the form A + B
√
c, where A and B and c are symbolic polynomial

expressions not involving x. Then, we have the following cases:

A+B
√
c = 0←→ AB ≤ 0 ∧ A2 −B2c = 0

A+B
√
c < 0←→ (A < 0 ∧B2c− A2 < 0) ∨ (B ≤ 0 ∧ (A < 0 ∨ A2 −B2c < 0))

A+B
√
c ≤ 0←→ (A ≤ 0 ∧B2c− A2 ≤ 0) ∨ (B ≤ 0 ∧ A2 −B2c ≤ 0)

A+B
√
c ̸= 0←→ −AB < 0 ∨ A2 −B2c ̸= 0

The equivalences for = and ̸= atoms are derived from the observation that ifB ̸= 0,A+B
√
c = 0

can be solved to find
√
c = −A/B, which holds iff A2 = B2c and −A/B ≥ 0. The inequality

cases involve casework to determine when polynomial A is negative and dominates B
√
c as

A2 > B2c, and when B is negative and B
√
c dominates A as B2c > A. We formalize the VS

procedure for quadratic roots in quadratic_sub (see Appendix A.1.2).
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2.2.3 General Virtual Substitution Algorithm
As we have seen, QE very naturally leads to finitely many cases (discretizes) for formulas that
involve quadratic equality atoms (we call this the equality case). The VS algorithm for the
general case, which also handles inequality atoms, is more involved, because, unlike equalities,
inequalities may have uncountably many solutions. General VS only directly applies to a very
specific fragment of FOLR formulas: conjunctions of polynomials that are at most quadratic in
the variable of interest. However, we can extend general VS to apply to more formulas with the
help of a disjunctive normal form (DNF) transformation.

As a simple example, consider the formula ∃x.(p < 0 ∧ q < 0), where p and q are the
univariate quadratic polynomials (in variable x) depicted in Fig. 2.1. Noting that the roots of p
and q cannot possibly satisfy the strict inequalities, we partition the number line into ranges in
between these zeros.

Figure 2.1: Two quadratics, their roots
(black dots) and off-roots (red x’s)

We recognize a key property: In each of the
ranges between the roots of p, q, the signs of both
p and q do not change. Since the ranges cover all
roots of p, q, the truth value of the formula at a single
point in a range is representative of the truth value
of the formula on the entire range. To discretize the
QE problem, we need only pick one sample point
for each range.

However, we want to pick appropriate sample
points for any possible p and q. The points we pick as representatives are called the off-roots,
which occur ϵ units away from the roots, where ϵ > 0 is arbitrarily small. We additionally
need a representative for the leftmost range, which we represent with the point −∞, where −∞
is arbitrarily negative. Of course, we cannot directly substitute ϵ and −∞: they are not real
numbers! However, we can virtually substitute them.

Negative Infinity

Given any formula F , the VS of −∞ should satisfy the equivalence F−∞
x ←→ ∃y. ∀x<y. F (x)

(where y does not occur in F ). Intuitively, this says that −∞ acts as if it is arbitrarily negative
(and thus less than the x component of all roots of the polynomials in F ) and captures information
for the leftmost range on the real number line in any valuation of the non-x variables. If formula
∃y. ∀x<y. ax2 + bx + c = 0 is true, where a, b, c are polynomials that do not involve x, then
ax2+ bx+ c = 0 holds at infinitely many x; since nonzero polynomials have finitely many roots,
this can only happen if ax2 + bx+ c is the zero polynomial in x, i.e., it holds that:

(ax2 + bx+ c = 0)−∞
x ←→ a = 0 ∧ b = 0 ∧ c = 0 (2.2)

The negation of (2.2) captures the behavior of ̸= atoms. For < atoms, note that the sign value
at −∞ is dominated by the leading coefficient, so:

(ax2 + bx+ c < 0)−∞
x ←→ a < 0 ∨ (a = 0 ∧ (b > 0 ∨ (b = 0 ∧ c < 0)))

Finally, (ax2 + bx+ c ≤ 0)−∞
x ←→(ax2 + bx+ c = 0)−∞

x ∨ (ax2 + bx+ c < 0)−∞
x .
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In Isabelle/HOL, we formalize that our virtual substitution of −∞ satisfies the desired equi-
valence (on R using Remark 1) in the following lemma:
lemma infinity_evalUni: shows "(∃y. ∀x<y. aEvalUni At x) =
(evalUni (substNegInfinityUni At) x)"

To explain this lemma, we need to take a slight detour and discuss a few structural details of
our framework (which is discussed in greater detail in Sect. 2.3). The datatype atomUni contains
a triple of real numbers (which represent the coefficients of a univariate quadratic polynomial)
and a sign condition:
datatype atomUni = LessUni "real*real*real" | EqUni "real*real*real"

| LeqUni "real*real*real" | NeqUni "real*real*real"

The aEvalUni function has type atomUni ⇒ real ⇒ bool; that is, it takes a sign condition
with a triple of real numbers (a, b, c) and a real number x and evaluates whether ax2 + bx + c
satisfies the sign condition. The evalUni function has type atomUni fmUni ⇒ real ⇒
bool, where an atomUni fmUni is a formula that involves conjunctions and disjunctions of
elements of type atomUni (and “True” and “False”). That is, the evalUni function takes such
a formula and a real number and evaluates whether the formula is true at the real number. Thus,
infinity_evalUni states that, given At of type atomUni, with tuple (a, b, c) and sign condi-
tion ∼ ∈ {<,=,≤, ̸=}, At−∞

x holds iff ∃y.∀x<y.ax2 + bx + c ∼ 0. This captures the desired
equivalence.

Note that these definitions are set up for univariate polynomials (coefficients are assumed to
be real numbers). This is deliberate. In Sect. 2.3.3, we will discuss how our framework reduces
correctness results for multivariate polynomials to univariate lemmas like infinity_evalUni.

Infinitesimals

Given arbitrary r (not containing x), VS of r + ϵ for variable x should capture the equivalence
F r+ϵ
x ←→ ∃y>r.∀x∈(r, y]. F (x), where F does not contain y. Intuitively, this says that (in any

valuation of the non-x variables) r + ϵ captures information for the interval between r and the
next greatest x-root.

For = and ̸= atoms, we proceed in the same manner as we did with −∞, as (r, y] contains
infinitely many points and only the zero polynomial has infinitely many solutions. As before, ≤
atoms turn into disjunctions of the inequality and equality representations at r + ϵ. We are left
only to consider < atoms.

Consider (p<0)r+ϵ
x where p = ax2 + bx + c with polynomials a, b, c not containing x, and

an arbitrary r not containing x. Notice that if (p<0)rx, then because polynomials are continuous,
we can choose a small enough y so that ∀x∈(r, y]. p<0. If instead (p = 0)rx, then consider
the partial derivative of p evaluated at r. If ∂p

∂x
(r) is negative, then ∃y>r.∀x∈(r, y]. p<0 holds,

because p is decreasing in x locally after x=r. If ∂p
∂x
(r) is positive, then ∃y>r.∀x∈(r, y]. p<0

does not hold, because p is increasing in x after x=r. If ∂p
∂x
(r) is zero, then to ascertain whether

∃y>r.∀x∈(r, y]. p<0, we will need to check higher derivatives.
This pattern forms the following recurrence, with the base case (p < 0)r+ϵ

x = (p < 0)rx for
polynomials p of degree zero:

(p < 0)r+ϵ
x

def
= (p < 0)rx ∨

(
(p = 0)rx ∧ ((∂p/∂x) < 0)r+ϵ

x

)
14



We use the VS algorithm from Section 2.2.2 to characterize (p < 0)rx and (p = 0)rx.
In Isabelle/HOL, we show that given a quadratic root r, the virtual substitution of r + ϵ

satisfies the desired equivalence in the following theorem (on R using Remark 1; we have an
analogous lemma for linear roots r):
lemma infinitesimal_quad:

fixes A B C D:: "real"
assumes "D ̸=0"
assumes "C≥0"
shows "(∃y::real>((A+B * sqrt(C))/(D)).

∀x::real ∈{((A+B * sqrt(C))/(D))<..y}. aEvalUni At x)
= (evalUni (substInfinitesimalQuadraticUni A B C D At) x)"

Note that {r<..y} in Isabelle stands for the range (r, y]. This says that, given At of type
atomUni, with tuple (a, b, c) and sign condition∼ ∈ {<,=,≤, ̸=}, Atr+ϵ

x holds iff ∃y > r.∀x ∈
(r, y].ax2 + bx+ c ∼ 0, which is the desired equivalence.

The General VS Theorem

Now that we have explained virtually substituting −∞ and infinitesimals, we are ready to state
the general VS theorem.

Let F be a formula of the following shape, where each ai, bi, ci, and di is a polynomial that
is at most quadratic in variable x:

F =
(∧

ai = 0
)
∧
(∧

bi < 0
)
∧
(∧

ci ≤ 0
)
∧
(∧

di ̸= 0
)
.

Let R(p) denote the set of symbolic expressions of the form (g1 + g2
√
g3)/g4 that, as in

Sect. 2.2.2, are roots of the polynomial p in x, where the gi’s are polynomials not involving x.
For the zero polynomial, let R(0) = ∅. Note that, as in Sect. 2.2.2, the gi’s come with certain
well-definedness checks that we retain implicitly in the construction (for example, g4 ̸= 0 and
g3 ≥ 0). We now define:

A =
⋃

R(ai) B =
⋃

R(bi) C =
⋃

R(ci) D =
⋃

R(di)

Then we obtain the following QE equivalence, where for simplicity we elide the relevant crucial
well-definedness checks (cross-reference [70, Theorem 21.1]):

(∃x.F )←→ F−∞
x ∨

∨
r∈A∪C

F r
x ∨

∨
r∈B∪C∪D

F r+ϵ
x (2.3)

Intuitively, this formula states that if there is a particular x that satisfies F , then it must be the
case that x is one of the equality roots from A ∪ C, or that x falls in one of the particular ranges
(including −∞ as a range) obtained by partitioning the number line by the roots in B ∪ C ∪D.

Equation (2.3) can be optimized further by eliding C from the off-roots:

(∃x.F )←→ F−∞ ∨
∨

r∈A∪C

F r
x ∨

∨
r∈B∪D

F r+ϵ
x . (2.4)
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Intuitively, this optimization holds because polynomials are continuous. More precisely, if F has
the shape F = (p≤0∧G), and if r is an x-root of p, then r already satisfies p≤0 in any valuation
of the non-x variables, so including r+ ϵ as a sample point on account of p≤0 is redundant. It is
possible that G contains some atom q < 0 or q ̸= 0 where r is an x-root of q. In this case, r + ϵ
will already be a sample point on account of q, and we do not need to add it in on account of p.
Alternatively, if G does not contain such a q, then, in any valuation of the non-x variables, it is
impossible for G to be satisfied by r + ϵ and not r, meaning that it is redundant to include r + ϵ
as a sample point on account of G.

The general QE theorem is proved in Isabelle/HOL as the following, using Remark 1 to
restrict to the univariate case and avoid well-definedness formulas:
theorem general_qe:

defines "R ≡ {(=), (<), (≤), ( ̸=)}"
assumes "∀rel∈R. finite (Atoms rel)"
defines "F ≡ (λx. ∀rel∈R. ∀(a,b,c)∈(Atoms rel). rel (a*x

2+b*x+c) 0)"
defines "Fε ≡ (λr. ∀rel∈R. ∀(a,b,c)∈(Atoms rel). ∃y>r. ∀x∈{r<..y}.

rel (a*x
2+b*x+c) 0)"

defines "Finf ≡ (∀rel∈R. ∀(a,b,c)∈(Atoms rel). ∃x. ∀y<x.
rel (a*y

2+b*y+c) 0)"
defines "all_roots ≡ (λ(a,b,c).

if a=0 ∧ b ̸=0 then {-c/b} else
if a ̸=0 ∧ b2-4*a*c≥0 then {(-b+sqrt(b2-4*a*c))/(2*a)}
∪ {(-b-sqrt(b2-4*a*c))/(2*a)} else {})"

shows "(∃x. F(x)) = (Finf ∨
(∃r∈

⋃
(all_roots ‘ (Atoms (=) ∪ Atoms (≤))). F r) ∨

(∃r∈
⋃
(all_roots ‘ (Atoms (<) ∪ Atoms (̸=))). Fε r))"

Here, ‘ is the Isabelle/HOL syntax for mapping a function over a set. This theorem says
that if a finite-length formula F is of the requisite shape, then there exists an x satisfying F

iff F is satisfied at −∞ (captured by Finf), or there is a root r of one of the = or ≤ atoms
where F r holds, or if there is a root r of one of the < or ̸= atoms where Fε r holds. The
proof is quite lengthy and involves a significant amount of casework (we choose to split the
proof into two implications, proving that the LHS implies the RHS and vice-versa; to show that
the RHS implies the LHS, we consider each of the disjunctions on the RHS separately, and
showing that the LHS implies the RHS requires proving that we are not losing information by
limiting our attention to the sample points); however, because we are working with univariate
polynomials thanks to Remark 1, this casework mostly reduces to arithmetic computations and
basic real analysis for univariate polynomials, and some of what we need, such as properties of
discriminants and continuity properties of polynomials, is already formalized in Isabelle/HOL’s
standard library.

2.2.4 Top Level Algorithms

We develop several top-level algorithms that perform these VS procedures on multivariate polynom-
ials; these are described in more detail in Appendix A.2. Crucially, each features its own proof
of correctness. For example, the following theorem proves the soundness of the VSEquality
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algorithm, which performs equality VS repeatedly. The correctness of this theorem only relies
on Isabelle/HOL’s trusted core2.

theorem VSEquality_eval: "∀ ν. eval (VSEquality φ) ν = eval φ ν"

Here, the eval function expresses the truth value of the (multivariate) input formula given
a valuation xs, represented as a list of real numbers. This theorem says that, over all possible
valuations, the truth value of φ is the same as the truth value of VSEquality φ; that is, applying
VSEquality to a formula does not change its logical meaning, i.e. VSEquality is sound.

As our algorithms are general enough to handle formulas with high degree polynomials where
VS does not apply, we cannot assert that the result is quantifier free (it might not be). To demon-
strate the practical usefulness of these algorithms, we export our code to SML and experimentally
show that these algorithms solve many benchmarks. The code exports rely on the correctness of
Isabelle/HOL’s code export, which ongoing work is attempting to establish [44].

2.3 Framework

We turn to a discussion of our framework, which is designed with two key goals in mind: First,
perform VS as many times as possible on any given formula. Second, reduce unwieldy multivar-
iate proofs to more manageable univariate ones.

2.3.1 Representation of Formulas

We define our type for formulas in the canonical datatype fm:
datatype (atoms: ’a) fm = TrueF | FalseF | Atom ’a |

And "’a fm" "’a fm" | Or "’a fm" "’a fm" | Neg "’a fm" |
ExQ "’a fm" | AllQ "’a fm" | ExN "nat" "’a fm" | AllN "nat" "’a fm"

As in Nipkow’s previous work [64], we use De Bruijn indices to express the variables: That
is, the 0th variable represents the innermost quantifier, and variables greater than the number of
quantifiers represent the free variables.

We have two constructors for each type of quantifier: ExQ F (resp. AllQ F) indicates a
single existential (universal) quantifier, and ExN n F (resp. AllN n F) represents a block of n
existential (universal) quantifiers. These representations are interchangeable and converted back
and forth in our algorithm; we include the block representation for variable ordering heuristics
(see Appendix A.3.3).

We utilize the multivariate polynomial library [80] to define our atoms:
datatype atom = Less "real mpoly" | Eq "real mpoly" | Leq "real mpoly"

| Neq "real mpoly"

Each atom is normalized without loss of generality, so that atom Less p means p < 0, Eq p

means p = 0, and so on.

2The correctness of a theorem in the mathematical sense also relies on the correctness of its component defini-
tions. If any of the definitions used in a theorem does not reflect the mathematical intention, then the theorem (while
still proved) does not express what it is intended to express, and is thus not correct in a mathematical sense.
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For example, the FOLR formula ∀x.((∃y.xa = y2b) ∧ ¬(∀y.5x2 ≤ y)) is represented in our
framework as follows, where Const n represents the constant n ∈ R, and Var i represents the
ith variable:
AllQ (And (ExQ (Atom (Eq (Var 1 * Var 2 - (Var 0)ˆ2 * Var 3))))

(Neg (AllQ (Atom (Leq (Const 5 * (Var 1)ˆ2 - Var 0)))))).
Note that we could restrict ourselves to the ⊤,¬,∨,∃ connectives and normalize ≤ and ̸=

atoms to combinations of < and = atoms, and we could still express all of FOLR. We avoid this
for two reasons: because it would linearly increase the size of the formula, and because we want
to handle ≤ atoms in the optimized way discussed in Sect. 2.2.3 (see (2.4)). We do, however,
allow for the normalization of p = q into p− q = 0. This does not affect the size of the formula,
and can afford simplifications: For example, x3 + x2 + x+ 1 = x3 becomes x2 + x+ 1 = 0.

2.3.2 Modified Disjunctive Normal Form
Nipkow’s prior work [64] avoided incurring cases where linear VS does not apply by constraining
atoms to be linear. In order to develop a VS method which can be used, e.g., as a preprocessing
method for CAD, we must reason about cases where VS fails to perform QE for a specific
quantifier. We would like to use the context of the broader formula to continue the execution
of the VS algorithm to the remaining quantifiers to simplify as much as possible. To help with
this, we implement a modified disjunctive normal form (DNF) that allows expressions to involve
quantifiers.

Contextual Awareness

Let us analyze how to increase the informational content in a formula with respect to a quantified
variable of interest.

Say we wish to perform VS to eliminate variable x in the formula ∃x.F , where F is not nec-
essarily quantifier free. In linear time, we remove all negations from the formula by converting
it into negation normal form. We can then normalize ∃x.F into the following form, where the
An,i’s are (quantifier-free) atoms:

∃x.
∨
n

(∧
i

An,i ∧
∧
j

(
∀y.Fn,j

)
∧
∧
k

(
∃z.Fn,k

))
.

This normalization procedure is similar to standard DNF, as it handles quantified formulas
as if they were atomic formulas. We can distribute the existential quantifier across the disjuncts,
which results in the equivalent formula:∨

n

∃x.
(∧

i

An,i ∧
∧
j

(∀y.Fn,j) ∧
∧
k

(∃z.Fn,k)
)
. (2.5)

Now we run the VS algorithm, i.e. the input to VS is a conjunction of atomic formulas and
quantified formulas in the shape of (2.5). Notice that if equality VS applies to atom An,i, then the
relevant roots can be substituted into the quantified formulas Fn,j and Fn,k, but roots from Fn,j or
Fn,k cannot be substituted into An,i since they feature quantified variables which are undefined
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in the broader context. So, our informational content is greatest when the number of An,i atoms
is maximized and the sizes of the Fn,j and Fn,k are minimized.

Innermost Quantifier Elimination

The innermost quantifier has an associated formula which is entirely quantifier free (and thus
has no Fn,j and Fn,k). As such, we opt to perform VS recursively, starting with the innermost
quantifier and moving outwards, hoping that VS is successful and the quantifier-free property is
maintained. This is not always optimal. Consider the following formula:

∃x.(x = 0 ∧ ∃y. xy3 + y = 0).

If we attempt to perform quadratic VS on the innermost y quantifier, it is cubic and will fail.
However, performing VS on the x quantifier first fixes x = 0, which converts the cubic xy3+y =
0 equality into the linear y = 0. So, an (unoptimized) run of inside-out VS would produce
∃y.y = 0, and we could completely resolve the QE query by running VS again.

Reaching Under Quantifiers

We would like to recover usable information from the Fn,k formulas to increase the informational
content going into our QE algorithm. It would be ideal if we could “reach underneath” the
existential binders and “pull out” the atoms from the formulas. We can achieve this through a
series of transformations. Let k range from 0 to Kn. If we pull out each existential quantifier one
by one, we get the following formula, which is equivalent to formula (2.5):∨

n

∃z0. · · · ∃zKn .∃x.
(∧

i

An,i ∧
∧
j

(∀y.Fn,j) ∧
∧
k

Fn,k

)
This works because the rest of the conjuncts do not mention the quantified variable zk and adja-
cent existential quantifiers can be swapped freely (without changing the logical meaning of the
formula).

We can then recursively unravel the formulas Fn,k, moving as many existential quantifiers as
possible to the front. Our implementation does this via a bottom-up procedure, starting under-
neath the innermost existential quantifier and building upwards, normalizing the formula into the
form: ∨

n

∃z0. · · · ∃zKn .∃x.
(∧

i

An,i ∧
∧
j

∀y.Fn,j

)
On paper, these transformations are simple as they involve named quantified variables; how-

ever, because our implementation uses a locally nameless form for quantifiers with de Bruijn
indices, shifting an existential quantifier requires a “lifting” procedure A↑ which increments all
the variable indices in A by one. This allows for the following conversion: A ∧ ∃z.F ←→
∃z.((A↑) ∧ F ).
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2.3.3 Logical Evaluation

Our proofs show that the input formula and the output formula (after VS) are logically equivalent,
i.e., have the same truth value under any valuation. This needs a method of “plugging in” the
real-valued valuation into the variables of the polynomials. Towards this, we define the eval

function, which accumulates new values into the valuation as we go underneath quantifiers, and
the aEval function, which homomorphically evaluates a polynomial at a valuation.

When proving correctness, we focus our attention on one quantifier at a time. By Remark 1,
the correctness of general VS follows when considering a formula F with a single quantifier,
where F contains only polynomials of at most degree two (otherwise general VS does not ap-
ply). With these restrictions, we can substitute a valuation into the non-quantified variables,
transforming multivariate polynomials into univariate polynomials. For example, let a, b, and
c be arbitrary multivariate polynomials that do not mention variable x. Let p̂ = γ(p) denote
the evaluation of polynomial p at valuation γ (p̂ is a real number). We obtain the following
conversion between multivariate and univariate polynomials:

eval (ax2 + bx+ c = 0) γ ←→ evalUni (âx2 + b̂x+ ĉ = 0) x̂

As such, we develop an alternative VS algorithm for univariate polynomials, where atoms
are represented as triples of real-valued coefficients (as seen in Sect. 2.2.3), and show that under
this specific valuation, the multivariate output is equivalent per valuation with the output of the
univariate case. Thus, we finish the proof of the multivariate case by lifting the proof for the
univariate case.

2.3.4 Polynomial Contributions

We build on the polynomials library [80], which was designed to support executable multivar-
iate polynomial operations. This choice naturally comes with tradeoffs, and a number of func-
tions and lemmas that we needed were missing from the library. For example, we needed an
efficient way to isolate the coefficient of a variable within a polynomial, which we define in
the isolate_variable_sparse function. The following particularly critical lemma rewrites
a multivariate polynomial in R[a1, . . . , an, x] as a nested polynomial R[a1, . . . , an][x], i.e., a
univariate polynomial in x with coefficients that are polynomials in R[a1, . . . , an]:

lemma sum_over_degree: "(p :: real mpoly) =
(
∑

i≤degree p x. isolate_variable_sparse p x i * Var xˆi)"

This is needed rather frequently within VS, as we often seek to re-express polynomials with
respect to a single quantified variable of interest, and although it is mathematically quite obvious,
its verification was somewhat involved.

Additionally, to utilize the variables within polynomials as de Bruijn indices, we implemen-
ted various lifting and substitution operations. These include the liftPoly and lowerPoly

variable reindexing functions. These and other contributions to the polynomials library are dis-
cussed in Appendix A.2.4.
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2.4 Experiments

The benchmark suite consists of 378 QE problems in category CADE09 collected from 94 ex-
amples [72], and category Economics with 45 QE problems [60]. CADE09 and Economics
examples were converted into decision problems, powers were flattened to multiplications, and
CADE09 were additionally rewritten to avoid polynomial division. For sanity checking, we also
negated the CADE09 examples [72]. We run on commodity hardware.3 The benchmark exam-
ples, as well as all scripts to rerun the experiments are in [77].

Tools. We compare the performance of a) our VSEquality (E), VSGeneral (G), VSLucky
(L), and VSLEG (LEG) algorithms (Appendix A.2) to b) Redlog [30] snapshots 2021-04-134

(RE) and 2021-07-165 (R✓, which includes bug fixes for contradictions we reported to Redlog
developers), c) SMT-RAT 21.056 [21] quantifier elimination (S-QE✓) and satisfiability check-
ing (S-SATE), d) the SMT solver Z3 4.8.107 [25] (Z3), and e) Wolfram Engine 12.3.1(W-VS,
W-QE). All tools were run in Docker containers on Ubuntu 18.04 with 8GB of memory and 6
CPU cores. Tool syntax translations from SMT-LIB format were done prior to benchmarking:
For our VS algorithms, examples were translated to SML data structures and compiled with ML-
ton8; as a result, measurements do not include parsing. For W-VS and W-QE, examples were
translated into Wolfram syntax, including configuration options restricting QE to quadratic vir-
tual substitution in W-VS. For S-QE✓, eliminate-quantifiers replaced check-sat.

Results. Each example has a timeout of 30s. Figure 2.2 summarizes the performance on the
CADE09 and Economics examples in terms of the cumulative time needed to solve (return “true”,
“false”, “sat”, or “unsat”) the fastest n problems with a logarithmic time axis: more problems
solved and a flatter curve is better.

Wolfram Engine solves all problems in the CADE09 category, closely trailed by Redlog, Z3.
The near constant computation time offset of Redlog in comparison to Z3, SMT-RAT, and Wol-
fram Engine may be attributable to the additional step of entering an SMT REPL. Our verified
VSEquality (E), VSGeneral (G), VSLucky (L), and VSLEG (LEG) algorithms rank in perform-
ance between the basic quantifier elimination implementation in SMT-RAT (S-QE✓), virtual
substitution in Wolfram Engine (W-VS), full SMT approaches (S-SATE, Z3), and combined
virtual substitution plus CAD implementations (R✓, W-QE). The reduced startup time of our
algorithms is attributable to the omitted parsing step. Overall, VSEquality and VSLucky solve
examples fast, but the wider applicability of VSGeneral and VSLEG allows them to solve con-
siderably more examples. Though we have already implemented a number of optimizations for
VS (Appendix A.3) we do not expect to outperform prior tools at this stage, as many of them
have been optimized over a period of many years.

3 MacBook Pro 2019 with 2.6GHz Intel Core i7 (model 9750H) and 32GB memory (2667MHz DDR4 SDRAM).
4https://sourceforge.net/projects/reduce-algebra/files/snapshot_2021-04-13/
5https://sourceforge.net/projects/reduce-algebra/files/snapshot_2021-07-16/
6https://github.com/ths-rwth/smtrat/releases/tag/21.05
7https://github.com/Z3Prover/z3/releases/tag/z3-4.8.10
8http://mlton.org/
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Figure 2.2: Cumulative time to solve fastest n problems (flatter and more is better)

Figure 2.3: CADE09 duration per problem (color indicates duration, lighter is better)

A comparison of duration per problem is in Fig. 2.3. Though there is considerable overlap
between VSEquality, VSGeneral, and VSLucky, mutually exclusive sets of solved examples (and
considerable performance differences on a number of examples) foreshadow the performance
achievable with the combined VSLEG algorithm.

Contradictions. In Fig. 2.4, we compare the CADE09 results to the results on negated CADE09
examples to highlight contradictions between answers (e.g., both A and ¬A are claimed to be
true). Wolfram Engine and Z3 answer consistently on both formula sets, and solve (almost) all
examples. Redlog, the main VS implementation, in RE and previous versions in general does not
perform well on the negated formulas and reports 96 contradictory answers; the contradictory
examples were shared with the developers and triggered several bug fixes that are now available
in R✓ (no contradictions found on the benchmark set). SMT-RAT performs better than RE on the
negated formulas, but in satisfiability mode contradicts itself on 41 examples by silently ignor-
ing quantifiers in the input; in quantifier elimination mode, SMT-RAT supports quantifiers and
does not report contradictions, but SMT-RAT then incurs a significant performance loss (S-SATE

reports 359 answers while S-QE✓ only solves 187). No contradictions were found across tools,
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Figure 2.4: CADE09 consistency comparison between original and negated formula: color indi-
cates discrepancies within tools (green ( ): answer on original and negated formula agree, dark-
blue ( ): only original solved, light-blue ( ): only negated solved, red+long ( ): contradictory
answers (both formulas unsat/proved or both sat/disproved), empty: both timeout/unknown)

i.e., whenever a tool’s answers were consistent internally, the answers agreed with those of other
tools. Our VSLEG algorithm has similar performance for proving and disproving in terms of
absolute number of solved examples, but combining proving and disproving would still solve
more examples than just one question individually (as for S-QE✓ and W-VS).

In summary, the performance of our verified virtual substitution QE on the benchmark set is
encouraging. The number of examples solved by our verified VS is close to other VS implemen-
tations (304 examples by our VSLEG vs. 322 by W-VS) and the cumulative solving time reveals
that the majority of examples are solved fast.

2.5 Takeaways and Future Directions
This chapter focuses on the formalization of linear and quadratic virtual substitution for real arith-
metic. Our algorithms are provably correct up to Isabelle/HOL’s trusted core and code export.
Developing practical verified VS in Isabelle/HOL required significant low-level improvements
and extensions to Isabelle’s multivariate polynomials library. The extensive experiments both re-
veal the benefits of our current optimizations and indicate room for future improvements. Adding
in some simplification techniques from the literature by, for example, generalizing our existing
degree-reduction optimizations (see Appendix A.3.1) or more closely analyzing dependencies
of atoms within formulas [31] could be of interest. Further optimizations to Isabelle/HOL’s
polynomial libraries, such as efficient coefficient lookup for polynomials using red black trees,
would be welcome. Expanding our framework to handle formulas that involve polynomial di-
vision would also be of practical significance. Continuing to develop our formalization with
such improvements is of especial significance given that our experiments found long-standing
errors in existing unverified real arithmetic tools. Combined with our promising experimental
results, this highlights the benefits of formal verification, which provides an ideal path toward
QE implementations that are both useful and correct in practice.
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Chapter 3

Verifying Univariate BKR

This chapter discusses the formal verification of the univariate fragment of Ben-Or, Kozen,
and Reif’s (BKR) decision procedure [2] for first-order real arithmetic in Isabelle/HOL. Our
proof combines ideas from BKR and a follow-up work by Renegar [75] that are well-suited
for formalization. While formalizing the univariate case of BKR, we simultaneously formalize
the univariate case of Renegar. The resulting proof outline allows us to build substantially on
Isabelle/HOL’s libraries for algebra, analysis, and matrices. Our main extensions to existing
libraries are also detailed.

Our formalization of univariate BKR is ≈7000 lines. It is available on the Archive of Formal
Proofs (AFP) [20]. Our main contributions are:

• In Sect. 3.1, we present an algorithmic blueprint for implementing BKR’s procedure that
blends insights from Renegar’s [75] later variation of BKR. Compared to the original ab-
stract presentations [2, 75], our blueprint is phrased concretely in terms of matrix opera-
tions which facilitates its implementation and identifies its correctness properties.

• Our blueprint is designed for formalization by judiciously combining and fleshing out
BKR’s and Renegar’s proofs. In Sect. 3.2, we outline key aspects of our proof, its use of
existing Isabelle/HOL libraries, and our contributions to those libraries.

As stated previously, when its inherent parallelism is exploited, an optimized version of
univariate BKR is an NC algorithm (i.e. it runs in parallel polylogarithmic time). Our formali-
zation is not yet optimized and parallelized, so we do not yet achieve such efficiency. However,
we do export our Isabelle/HOL formalization to SML code and are already able to solve some
microbenchmarks with this exported code (Sect. 3.2.3).

Additionally, our univariate formalization is a significant stepping stone towards the multi-
variate case, which builds inductively on the univariate case. Indeed, this formalization was
already instrumental in our verification of a complete multivariate algorithm which mixes ideas
from BKR and Tarski (Chapter 4 of this thesis).

Collaborators. The material in this chapter is based upon joint work with Yong Kiam Tan
and André Platzer which appeared at ITP 2021 [19].
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3.1 Mathematical Underpinnings

This section provides an outline of our decision procedure for univariate real arithmetic and its
verification in Isabelle/HOL [65]. The goal is to provide an accessible mathematical blueprint
that explains our construction and its blend of ideas from BKR [2] and Renegar [75]; in-depth
technical discussion of the formal proofs is largely deferred to Sect. 3.2. Our procedure starts
with two transformation steps (Sections 3.1.1 and 3.1.2) that simplify an input decision problem
into a so-called restricted sign determination format. An algorithm for the latter problem is then
presented in Sect. 3.1.3. Throughout this paper, unless explicitly specified, we are working with
univariate polynomials, which we assume to have variable x. Our decision procedure works for
polynomials with rational coefficients (rat poly in Isabelle), though some lemmas are proved
more generally for univariate polynomials with real coefficients (real poly in Isabelle).

3.1.1 From Univariate Problems to Sign Determination

Formulas of univariate real arithmetic are generated by the following grammar, where p is a
univariate polynomial with rational coefficients:

ϕ, ψ ::= p > 0 | p ≥ 0 | p = 0 | ϕ ∨ ψ | ϕ ∧ ψ

In Isabelle/HOL, we define this grammar in fml, which is our type for formulas. This is very
similar to our datatype for multivariate formulas from Sect. 4.1.3. The major difference is that
our univariate grammar is simpler because we are explicitly restricting our attention to univariate
formulas, and thus we do not need to include quantifiers in our grammar. As a minor differ-
ence, unlike in our multivariate grammar, we do not include logical negation of formulas in our
datatype; instead, we explicitly include cases for p < 0, p ≤ 0, and p ̸= 0 in our fml type. This
does not significantly increase proof overhead as, unlike the VS algorithm, the BKR algorithm
is more concerned with the mathematical content of a formula (i.e., the polynomials it involves
and their mathematical properties) than with the syntactic structure of the formula.

For formula ϕ, the universal decision problem is to decide if ϕ is true for all real values of
x, i.e., validity of the quantified formula ∀xϕ. The existential decision problem is to decide if
ϕ is true for some real value of x, i.e., validity of the quantified formula ∃xϕ. For example, a
decision procedure should return false for formula (3.1) and true for formula (3.2) below (left).

∀x (x2 − 2 = 0 ∧ 3x > 0) (3.1)
∃x (x2 − 2 = 0 ∧ 3x > 0) (3.2)

Formula Structure: A = 0 ∧ B > 0

Polynomials: A : x2 − 2, B : 3x

The first observation is that both univariate decision problems can be transformed to the
problem of finding the set of consistent sign assignments (also known as realizable sign assign-
ments [1, Definition 2.34]) of the set of polynomials appearing in the formula ϕ.
Definition 1. A sign assignment for a set G of polynomials is a mapping σ that assigns each
g ∈ G to either +1, −1, or 0. A sign assignment σ for G is consistent if there exists an x ∈ R
where, for all g ∈ G, the sign of g(x) matches the sign of σ(g).
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For the polynomials x2 − 2 and 3x appearing in formulas (3.1) and (3.2), the set of all
consistent sign assignments (written as ordered pairs) is:

{(+1,−1), (0,−1), (−1,−1), (−1, 0), (−1,+1), (0,+1), (+1,+1)}

Formula (3.1) is not valid because the consistency of sign assignment (0,−1) implies there
exists a real value x ∈ R such that conjunct x2 − 2 = 0 is satisfied but not 3x > 0. Conversely,
formula (3.2) is valid because the consistent sign assignment (0,+1) demonstrates the existence
of an x ∈ R satisfying x2 − 2 = 0 and 3x > 0. The truth-value of formula ϕ at a given
sign assignment is computed by evaluating the formula after replacing all of its polynomials by
their respective assigned signs. For example, for the sign assignment (0,−1), replacing A by
0 and B by −1 in the formula structure underlying (3.1) and (3.2) shown above (right) yields
0 = 0 ∧ −1 > 0, which evaluates to false. Validity of ∀xϕ is decided by checking that ϕ
evaluates to true at each of its consistent sign assignments. Similarly, validity of ∃xϕ is decided
by checking that ϕ evaluates to true at at least one consistent sign assignment.

Our top-level formalized algorithms are decide_universal and decide_existential,
both with type rat poly fml ⇒ bool. The definition of decide_existential is as fol-
lows (the omitted definition of decide_universal is similar):
definition decide_existential :: "rat poly fml ⇒ bool"
where "decide_existential fml = (let (fml_struct,polys)=convert fml in
find (lookup_sem fml_struct) (find_consistent_signs polys) ̸= None)"

Here, convert extracts the list of constituent polynomials polys from the input formula
fml along with the formula structure fml_struct, find_consistent_signs returns the
list of all consistent sign assignments conds for polys, and find checks that at one of those
sign assignments the predicate lookup_sem fml_struct is true. Given a sign assignment σ,
lookup_sem fml_struct σ evaluates the truth value of fml at σ by recursively evaluating
the truth of its subformulas after replacing polynomials by their sign according to σ using the
formula structure fml_struct. Thus, decide_existential returns true iff fml evaluates to
true for at least one of the consistent sign assignments of its constituent polynomials.

The correctness theorem for decide_universal and decide_existential is shown
below, where fml_sem fml x evaluates the truth of formula fml at the real value x. This
top-level correctness result shows that our decision procedures correctly reduces any quantified
univariate input formula to the logically equivalent output of either True or False (note that
univariate QE problems are inherently fully quantified, as each has exactly one quantifier). The
correctness of this theorem only relies on the correctness of the trusted core of Isabelle/HOL1.
theorem decision_procedure:
"(∀x::real. fml_sem fml x) ←→ decide_universal fml"
"(∃x::real. fml_sem fml x) ←→ decide_existential fml"

This theorem depends crucially on find_consistent_signs correctly finding all consis-
tent sign assignments for polys, i.e., solving the sign determination problem.

1As discussed previously, the mathematical meaning of this theorem also relies on the correctness of its compo-
nent definitions.
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3.1.2 From Sign Determination to Restricted Sign Determination

The next step restricts the sign determination problem to the following more concrete format:
Find all consistent sign assignments σ for a set of polynomials q1, . . . , qn at the roots of a nonzero
polynomial p, i.e., the signs of q1(x), . . . , qn(x) that occur at the (finitely many) real values x ∈ R
with p(x) = 0. Intuitively, the idea here is that the polynomial p should be chosen so that sign
information at its roots are representative of sign information for the entire real number line.
Then, a key insight of BKR is that this restricted problem can be solved efficiently (in parallel)
using purely algebraic tools (Sect. 3.1.3). Following BKR’s procedure, we also normalize the
qi’s to be coprime with (i.e. share no common factors with) p, which simplifies the subsequent
construction for the key step and its formal proof.
Remark 3. The normalization of qi’s to be coprime with p can be avoided using a slightly more
intricate construction due to Renegar [75]. We have also formalized the univariate case of this
construction. Intuitively, the overall structure of the algorithms is quite similar, but Renegar’s
matrix equation is slightly larger than BKR’s and uses a slightly more general Tarski query
computation than BKR’s, in order to store the extra information that can arise when the qi’s are
potentially not coprime with p. When generalizing to multivariate polynomials in Chapter 4, we
use the Renegar-style matrix equation (which will be described in Sect. 4.1.2), since a coprimality
assumption on polynomials does not remove 0 as a potential consistent sign assignment in a
multivariate setting2. Our formalization of univariate Renegar is available in the AFP alongside
our formalization of univariate BKR [20]; as the underlying algorithms are very similar, these
formalizations share considerable code.

Consider as input a set of polynomials (with rational coefficients)G = {g1, . . . , gk} for which
we need to find all consistent sign assignments. The transformation proceeds as follows:

(1) Factorize the input polynomials G into a set of pairwise coprime factors (with rational
coefficients) Q = {q1, . . . , qn}. This also removes redundant/duplicate polynomials.
Each input polynomial g ∈ G can be expressed in the form g = c

∏n
i=1 q

di
i for some

rational coefficient c and natural number exponents di ≥ 1 so the sign of g is directly
recovered from the signs of the factors q ∈ Q. For example, if g1 = q1q2 and in a consistent
sign assignment q1 is positive while q2 is negative, then g1 is negative according to that
assignment, and so on. Accordingly, to determine the set of all consistent sign assignments
for G it suffices to determine the same for Q.

(2) Because the qi’s are pairwise coprime, there is no consistent sign assignment where two or
more qi’s are set to zero. So, in any given sign assignment, there is either exactly one qi set
to zero, or the qi’s are all assigned to nonzero (i.e., +1, -1) signs.
Now, for each 1 ≤ i ≤ n, solve the restricted sign determination problem for all consistent
sign assignments of {q1, . . . , qn} \ {qi} at the roots of qi. This yields all consistent sign
assignments of Q where exactly one qi is assigned to zero.

2While the ring of multivariate polynomials Q[x1, . . . , xn] is a unique factorization domain (and thus the notions
of GCD and coprimality make sense for polynomials in Q[x1, . . . , xn]), even if two polynomials p and q are globally
coprime, they may not be coprime in every valuation, and so we would not be able to immediately exclude 0 as a
potential consistent sign assignment for q at the roots of p in a multivariate matrix equation. For example, if p = x
and q = 2x− y, then p and q are coprime in Q[x, y] but both p and q are 0 when x = y = 0.
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(3) This step and the next step focus on finding all consistent sign assignments where all qi’s
are nonzero. Compute a polynomial p that satisfies the following properties:

(i) p is pairwise coprime with all of the qi’s,

(ii) p has a root in every interval between any two roots of the qi’s,

(iii) p has a root that is greater than all of the roots of the qi’s, and

(iv) p has a root that is smaller than all of the roots of the qi’s.

An explicit choice of p satisfying these properties when qi ∈ Q are squarefree and pairwise
coprime is shown in Sect. 3.2.1. The relationship between the roots of p and the roots of
qi ∈ Q is visualized in Fig. 3.1. Intuitively, the roots of p (red points) provide representative
sample points between the roots of the qi’s (black squares), and thus cover sign information
for all ranges of the number line where all the qi’s are nonzero, as desired.

The roots of all the qi’s

Some root of p is 
greater than all the 
roots of the qi’s

p has a root in 
between any two 
roots of the qi’s

Some root of p is 
less than all the 
roots of the qi’s

Figure 3.1: The relation between the roots of the added polynomial p and the roots of the qi’s.

(4) Solve the restricted sign determination problem for all consistent sign assignments of
{q1, . . . , qn} at the roots of p.
Returning to Fig. 3.1, the qi’s are sign-invariant in the intervals between any two roots of
the qi’s (black squares) and to the left and right beyond all roots of the qi’s. Intuitively,
this is true because moving along the blue real number line in Fig. 3.1, no qi can change
sign without first passing through a black square. Thus, all consistent sign assignments
of qi that only have nonzero signs must occur in one of these intervals and therefore, by
sign-invariance, also at one of the roots of p (red points).

(5) The combined set of sign assignments where some qi is zero, as found in (2), and where
no qi is zero, as found in (4), solves the sign determination problem for Q, and therefore
also for G, as argued in (1).

Our algorithm to solve the restricted sign determination problem using BKR’s key insight is
called find_consistent_signs_at_roots; we now turn to the details of this method.

3.1.3 Restricted Sign Determination

The restricted sign determination problem for polynomials q1, . . . , qn at the roots of a polynomial
p ̸= 0, where each q1, . . . , qn is coprime with p, can be tackled naively by setting up and solving a
matrix equation. The idea of using a matrix equation for sign determination dates back to Tarski
[85] [1, Section 10.3], and accordingly our formalization shares some similarity to Cohen and
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Mahboubi’s formalization [15] of Tarski’s algorithm (see [13, Section 11.2]). BKR’s additional
insight is to avoid the prohibitive complexity of enumerating exponentially many possible sign
assignments for q1, . . . , qn by computing the matrix equation recursively and performing a re-
duction that retains only the consistent sign assignments at each recursive step. This reduction
keeps intermediate data sizes manageable because the number of consistent sign assignments is
bounded by the number of roots of p throughout. We first explain the technical underpinnings of
the matrix equation before returning to our implementation of BKR’s recursive procedure. For
brevity, references to sign assignments for q1, . . . , qn in this section are always at the roots of p,
because those are representative of sign assignments that are elsewhere.

Matrix Equation

The inputs to the matrix equation are a set of candidate (i.e., not necessarily consistent) sign
assignments Σ̃ = {σ̃1, . . . , σ̃m} for the polynomials q1, . . . , qn and a set of subsets S = {I1, . . . , Il},
Ii ⊆ {1, . . . , n} of indices selecting among those polynomials. The set of all consistent sign
assignments Σ for q1, . . . , qn is assumed to be a subset of Σ̃, i.e., Σ ⊆ Σ̃.

For example, consider p = x3 − x and q1 = 3x3 + 2. The set of all possible candidate sign
assignments Σ̃ = {(+1), (−1)} must contain the consistent sign assignments for q1 (sign (0) is
impossible as p, q1 are coprime). The possible subsets of indices are I1 = {} and I2 = {1}.

The main algebraic tool underlying the matrix equation is the Tarski query which provides
semantic information about the number of roots of p with respect to another polynomial q.
Definition 2. Given univariate polynomials p, q with p ̸= 0, the Tarski query N(p, q) is:

N(p, q) = #{x ∈ R | p(x) = 0, q(x) > 0} −#{x ∈ R | p(x) = 0, q(x) < 0}.

As an example, for p = x3 − x and q = 1, we have:

N(p, q) = #{x ∈ R | x3 − x = 0, 1 > 0} −#{x ∈ R | x3 − x = 0, 1 < 0}
= #{x ∈ R | x3 − x = 0} = 3,

and this captures the information that p has three roots.
Importantly, the Tarski queryN(p, q) can be computed from input polynomials p, q using Eu-

clidean remainder sequences without explicitly finding the roots of p. This is a consequence of
the Sturm-Tarski theorem which has been formalized in Isabelle/HOL by Li [51]. The theoretical
complexity for computing N(p, q) is O(deg p (deg p+deg q)) [1, Sections 2.2.2 and 8.3]. How-
ever, this complexity analysis does not take into account the growth in bitsizes of coefficients in
the remainder sequences [1, Section 8.3], so it will not be achieved by the current Isabelle/HOL
formalization of Tarski queries [51] without further optimization.

For the matrix equation, we lift Tarski queries to a subset of the input polynomials:
Definition 3. Given a univariate polynomial p ̸= 0, univariate polynomials q1, . . . , qn, and a
subset I ⊆ {1, . . . , n}, the Tarski query N(I) with respect to p is:

N(I) = N(p,Πi∈Iqi) = #{x ∈ R | p(x) = 0,Πi∈Iqi(x) > 0}
−#{x ∈ R | p(x) = 0,Πi∈Iqi(x) < 0}.
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The idea here is that, given p and q1, . . . , qn, then by considering Tarski queries for a repre-
sentative set of subsets of {1, . . . , n}, we will be able to relate Tarski queries to sign information
on the qi’s at the roots of p. For example, when p = x3 − x and q1 = 3x3 + 2, the two possible
subsets we might consider of {1} are {} and {1}. We can then compute: N({}) = N(p, 1) = 3
and

N({1}) = N(p, q1) = #{x ∈ R | x3−x = 0, 3x3+2 > 0} −#{x ∈ R | x3−x = 0, 3x3+2 < 0}
= 2− 1 = 1.

Using these Tarski queries, the sign information for 3x3 + 2 at the roots of x3 − x will then be
captured with the matrix equation that we will now describe (see also Fig. 3.2).

The matrix equation is the relationship M · w = v between the following three entities:
• M , the l-by-m matrix with entries Mi,j = Πk∈Iiσ̃j(qk) ∈ {−1, 1} for Ii ∈ S and σ̃j ∈ Σ̃,
• w, the length m vector whose entries count the number of roots of p where q1, . . . , qn has

sign assignment σ̃, i.e., wi = #{x ∈ R | p(x) = 0, sgn(qj(x)) = σ̃i(qj) for all 1 ≤ j ≤ n},
• v, the length l vector consisting of Tarski queries for the subsets, i.e., vi = N(Ii).
Observe that the vector w is such that the sign assignment σ̃i is consistent (at a root of p) iff

its corresponding entry wi is nonzero. Thus, the matrix equation can be used to solve the sign
determination problem by solving for w. In particular, the matrix M and the vector v are both
computable from the input (candidate) sign assignments and subsets. Further, since the subsets
will be chosen such that the constructed matrix M is invertible, the matrix equation uniquely
determines w and the nonzero entries of w =M−1 · v.

The following Isabelle/HOL theorem summarizes sufficient conditions on the list of sign
assignments signs and the list of index subsets subsets for the matrix equation to hold for
polynomial list qs at the roots of polynomial p. Note the switch from set-based representation to
list-based representation in the theorem. This formally provides an ordering to the polynomials,
sign assignments, and subsets, which is useful for computations.
theorem matrix_equation:
assumes "p ̸=0"
assumes "

∧
q. q ∈ set qs =⇒ coprime p q"

assumes "distinct signs"
assumes "consistent_signs_at_roots p qs ⊆ set signs"
assumes "

∧
l i. l ∈ set subsets =⇒ i ∈ set l =⇒ i < length qs"

shows "M_mat signs subsets *v w_vec p qs signs = v_vec p qs subsets"

Here, M_mat, w_vec, and v_vec construct the matrix M and vectors w, v respectively; *v
denotes the matrix-vector product in Isabelle/HOL. The switch into list notation necessitates
some consistency assumptions, e.g., that the signs list contains distinct sign assignments
and that the index i occurring in each list of indices l in subsets points to a valid element of
the list qs. The proof of matrix_equation uses a counting argument: intuitively, Mi,j is the
contribution of any real value x that has the sign assignment σ̃j towards N(Ii), so multiplying
these contributions by the actual counts of those real values in w gives Mi · w = vi.

Note that the theorem does not ensure that the constructed matrix M is invertible (or even
square). This must be ensured separately when solving the matrix equation for w. We now
discuss BKR’s inductive construction and its usage of the matrix equation.
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Figure 3.2: Matrix equation for p = x3 − x, q1 = 3x3 + 2.

Base Case

The simplest (base) case of the algorithm is when there is a single polynomial [q1]. Here, it
suffices to set up a matrix equation M · w = v from which we can compute all consistent sign
assignments. As hinted at earlier, this can be done with the list of index subsets [{}, {1}] and
the candidate sign assignment list [(+1), (−1)].3 Further, as illustrated in Fig. 3.2, the matrix M
is invertible for these choices of subsets and candidate sign assignments, so the matrix equation
can be explicitly solved for w.

Inductive Case: Combination Step

The matrix equation can be similarly used to determine the consistent sign assignments for an
arbitrary list of polynomials [q1, . . . , qn]. The driving idea for BKR is that, given two solu-
tions of the sign determination problem at the roots of p for two input lists of polynomials, say,
ℓ1 = [r1, . . . , rk] and ℓ2 = [rk+1, . . . , rk+l], one can combine them to yield a solution for the
list of polynomials [r1, . . . , rk+l]. This yields a recursive method for solving the sign determi-
nation problem by solving the base case at the single polynomials [q1], [q2], . . . , [qn], and then
recursively combining those solutions, i.e., solving [q1, q2], [q3, q4], . . . , then [q1, q2, q3, q4], . . . ,
and so on until a solution for [q1, . . . , qn] is obtained. Importantly, BKR performs a reduction
(Sect. 3.1.3) after each combination step to bound the size of the intermediate data.

More precisely, assume for ℓ1, we have a list of index subsets S1 and a list of sign assign-
ments Σ̃1 such that Σ̃1 contains all of the consistent sign assignments for ℓ1 and the matrix M1

constructed from S1 and Σ̃1 is invertible. Accordingly, for ℓ2, we have the list of subsets S2,
list of sign assignments Σ̃2 containing all consistent sign assignments for ℓ2, and M2 constructed
from S2, Σ̃2 is invertible. In essence, we are assuming that S1, Σ̃1 and S2, Σ̃2 satisfy the hypothe-
ses for the matrix equation to hold, so that they contain all the information needed to solve for
the consistent sign assignments of ℓ1 and ℓ2 respectively.

Observe that any consistent sign assignment for ℓ = [r1, . . . , rk+l] must have a prefix that is

3In the Isabelle/HOL formalization, we use 0-indexed lists to represent sets and sign assignments, so the subsets
list is represented as [[],[0]] and the signs list is [[1],[-1]].
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Figure 3.3: Combining two systems.

itself a consistent sign assignment to ℓ1 and a suffix that is itself a consistent sign assignment
to ℓ2. Thus, the combined list of sign assignments Σ̃ obtained by concatenating every entry
of Σ̃1 with every entry of Σ̃2 necessarily contains all consistent sign assignments for ℓ. The
combined subsets list S is obtained in an analogous way from S1, S2 (where concatenation is
now set union), with a slight modification: the subset list S2 indexes polynomials from ℓ2, but
those polynomials now have different indices in ℓ, so everything in S2 is shifted by the length of
ℓ1 before combination. Once we have the combined subsets list, we can calculate the RHS vector
v with Tarski queries as explained in Sect. 3.1.3.

The matrix M constructed from S, Σ̃ is exactly the Kronecker product of M1 and M2. Fur-
ther, the Kronecker product of invertible matrices is invertible, so the matrix equation can be
solved for the LHS vector w using M and the vector v computed from the subsets list S. Then
the nonzero entries ofw correspond to the consistent sign assignments of ℓ. Taking a concrete ex-
ample, suppose we want to find the list of consistent sign assignments for ℓ = [3x3 + 2, 2x2 − 1]
at the zeros of p = x3 − x. The combination step for ℓ1 = [3x3 + 2] and ℓ2 = [2x2 − 1] is
visualized in Fig. 3.3.

Reduction Step

The reduction step takes an input list of index subsets S and candidate sign assignments Σ̃. It
removes the inconsistent sign assignments and then unnecessary index subsets, which keeps the
size of the intermediate data tracked for the matrix equation as small as possible.

The reduction step is best explained in terms of the matrix equation M · w = v constructed
from the inputs S, Σ̃. After solving for w, the reduction starts by deleting all indexes of wi that
are 0 and the corresponding i-th sign assignments in Σ̃ which are now known to be inconsistent
(recall that wi counts the number of zeros of p where the i-th sign assignment is realized). This
corresponds to deleting the i-th columns of matrix M . If any columns are deleted, the resulting
matrix is no longer square (nor invertible). Thus, the next step finds a basis among the remaining
rows of the matrix to make it invertible again (deleting any rows that do not belong to the chosen
basis). Deleting the j-th row in this matrix corresponds to deleting the j-th index subset in S.

The reduction step for the matrix equation with p = x3 − x and ℓ = [3x3 + 2, 2x2 − 1]
is visualized in Fig. 3.4. Naively using the matrix equation for restricted sign determination
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Figure 3.4: Reducing a system.

would require 2|ℓ| = 4 Tarski queries for this example, whereas 2 + 2 + 4 = 8 queries are
required using BKR (2 for each base case, 4 for the combination step). However, for longer lists
ℓ, the naive approach requires 2|ℓ| queries while BKR’s reduction step ensures that the number
of intermediate consistent sign assignments is bounded by the number of roots of p (and hence
deg p) throughout. This difference is shown in Sect. 3.2.3 and is also illustrated by Fig. 3.4, where
p has degree 3 and there are 3 consistent sign assignments for ℓ after reduction.

3.2 Formalization

Now that we have set up the theory behind the BKR algorithm, we turn to some details of our
formalization: the proofs, extensions to the existing matrix libraries, and the exported code. Our
proof builds significantly on existing proof developments in the Archive of Formal Proofs [51, 87,
88]. Isabelle/HOL’s builtin search tool and Sledgehammer [68] provided invaluable automation
for discovering existing theorems and for finishing (easy) subgoals in proofs. The most chal-
lenging part of the formalization, in our opinion, is the reduction step, in no small part because
it involves significant linear algebra (further details in Sect. 3.2.2).

3.2.1 Formalizing the Decision Procedure

In this section, we discuss the proofs for our decision procedure in reverse order compared to
Sect. 3.1; that is, we first discuss the formalization of our algorithm for restricted sign determi-
nation find_consistent_signs_at_roots before discussing the top-level decision proce-
dures for univariate real arithmetic, decide_{universal|existential}. The reader may
wish to revisit Sect. 3.1 for informal intuition behind the procedure while reading this section.
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Sign Determination at Roots

We combine BKR’s base case (Sect. 3.1.3), combination step (Sect. 3.1.3), and reduction step
(Sect. 3.1.3) to form our core algorithm calc_data for the restricted sign determination problem
at the roots of a polynomial. The calc_data algorithm takes a real polynomial p and a list of
polynomials qs and produces a 3-tuple (M, S, Σ), consisting of the matrix M from the matrix
equation, the list of index subsets S, and the list of all consistent sign assignments Σ for qs at
the roots of p. Although M can be calculated directly from S and Σ, it is returned (as part of the
algorithm), to avoid redundantly recomputing it at every recursive call.
fun calc_data :: "real poly ⇒ real poly list ⇒ (rat mat ×
(nat list list × rat list list))"

where "calc_data p qs = (let len = length qs in
if len = 0 then (λ(a,b,c).

(a,b,map (drop 1) c)) (reduce_system p ([1],base_case_info))
else if len ≤ 1 then reduce_system p (qs,base_case_info)
else (let qs1 = take (len div 2) qs; left = calc_data p qs1;

qs2 = drop (len div 2) qs; right = calc_data p qs2 in
reduce_system p (combine_systems p (qs1,left) (qs2,right))))"

definition find_consistent_signs_at_roots :: "real poly ⇒ real poly list
⇒ rat list list"

where "find_consistent_signs_at_roots p qs =
(let (M,S,Σ) = calc_data p qs in Σ)"

The base case where qs has length ≤ 1 is handled4 using the fixed choice of matrix, in-
dex subsets, and sign assignments (defined as the constant base_case_info) from Sect. 3.1.3.
Otherwise, when length qs > 1, the list is partitioned into two sublists qs1, qs2 and the al-
gorithm recurses on those sublists. The outputs for both sublists are combined using the function
combine_systems, which takes the Kronecker product of the output matrices and concatenates
the index subsets and sign assignments as explained in Sect. 3.1.3. Finally, reduce_system
performs the reduction according to Sect. 3.1.3, removing inconsistent sign assignments and re-
dundant subsets of indices. The top-level procedure is find_consistent_signs_at_roots,
which returns only Σ (the third component of calc_data). The following Isabelle/HOL snip-
pets show its main correctness theorem and important relevant definitions.
definition roots :: "real poly ⇒ real set"

where "roots p = {x. poly p x = 0}"

definition consistent_signs_at_roots :: "real poly ⇒ real poly list ⇒
rat list set"

where "consistent_signs_at_roots p qs = (sgn_vec qs) ‘ (roots p)"

theorem find_consistent_signs_at_roots:
assumes "p ̸= 0"
assumes "

∧
q. q ∈ set qs =⇒ coprime p q"

shows "set (find_consistent_signs_at_roots p qs) =
consistent_signs_at_roots p qs"

4The trivial case where length qs = 0 is also handled for completeness; in this case, the list of consistent
sign assignments is empty if p has no real roots, otherwise, it is the singleton list [[]].
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Here, roots defines the set of roots of a polynomial p (non-constructively), i.e., the set of real
values x where p evaluates to 0 (poly p x = 0). Similarly, consistent_signs_at_roots
returns the set of all sign vectors for the list of polynomials qs at the roots of p; sgn_vec returns
the sign vector for input qs at a real value and ‘ is Isabelle/HOL notation for the image of a
function on a set. These definitions are not meant to be computational. Rather, they are used to
state the correctness theorem that the algorithm find_consistent_signs_at_roots (and
hence calc_data) computes exactly all consistent sign assignments for p and qs for input
polynomial p ̸= 0 and polynomial list qs, where every entry in qs is coprime to p.

The proof of find_consistent_signs_at_roots is by induction on calc_data. Spe-
cifically, we prove that the following properties (our inductive invariant) are satisfied by the base
case and maintained by both the combination step and the reduction step:

1. The signs list is well-defined, i.e., the length of every entry in the signs list is the same
as the length of the corresponding qs. Additionally, all assumptions on S and Σ from the
matrix_equation theorem from Sect. 3.1.3 hold. (In particular, the algorithm always
maintains a distinct list of sign assignments that, when viewed as a set, is a superset of all
consistent sign assignments for qs.)

2. The matrix M matches the matrix calculated from S and Σ. (Since we do not directly
compute the matrix from S and Σ, as defined in Sect. 3.1.3, we need to verify that our
computations keep track of M correctly.)

3. The matrix M is invertible (so M · w = v can be uniquely solved for w).

Some of these properties are easier to verify than others. The well-definedness properties,
for example, are quite straightforward. In contrast, matrix invertibility is more complicated
to verify, especially after the reduction step; we will discuss this in more detail in Sect. 3.2.2.
The inductive invariant establishes that we have a superset of the consistent sign assignments
throughout the construction. This is because the base case and the combination step may include
extraneous sign assignments. Only the reduction step is guaranteed to produce exactly the set
of consistent sign assignments. Thus the other main ingredient in our formalization, besides the
inductive invariant, is a proof that the reduction step deletes all inconsistent sign assignments. As
calc_data always calls the reduction step before returning output, calc_data returns exactly
the set of all consistent sign assignments, as desired.

Building the Univariate Decision Procedure

To prove the decision_procedure theorem from Sect. 3.1.1, we need to establish correct-
ness of find_consistent_signs. The most interesting part is formalizing the transformation
described in Sect. 3.1.2. We discuss the steps from Sect. 3.1.2 enumerated (1)–(5) below.

(1) Our procedure takes an input list of rational polynomials G = [g1, . . . , gk] and computes a
list of their pairwise coprime and squarefree factors5 Q = [q1, . . . , qn]. An efficient method
to factor a single rational polynomial is formalized in Isabelle/HOL by Divasón et al. [27];

5This is actually overkill: we do not necessarily need to completely factor every polynomial in G to transform G
into a set of pairwise coprime factors. BKR suggest a parallel algorithm based in part on the literature [90] to find a
“basis set” of squarefree and pairwise coprime polynomials.
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we slightly modified their proof to find factors for a list of polynomials while ensuring
that the resulting factors are pairwise coprime, which implies that their product

∏
i qi is

squarefree.

(2) This step makes n calls to find_consistent_signs_at_roots, one for eachQ\{qi}.
(3) We choose the polynomial p = (x−crb(

∏
i qi))(x+crb(

∏
i qi))(

∏
i qi)

′, where (
∏

i qi)
′ is

the formal polynomial derivative of
∏

i qi and crb(
∏

i qi) is a computable positive integer
with larger magnitude than any real root of

∏
i qi. The choice of crb(

∏
i qi) uses a proof

of the Cauchy root bound [1, Section 10.1] by Thiemann and Yamada [88]. We prove that
p satisfies the four properties of step (3) from Sect. 3.1.2:

(i) Since
∏

i qi is squarefree, (
∏

i qi)
′ is coprime with

∏
i qi and, thus, also coprime with

each of the qi’s. Because crb(
∏

i qi) is strictly larger in magnitude than all of the
roots of the roots of the qi’s, it follows that p is also coprime with all of the qi’s.

(ii) By Rolle’s theorem6 (which is already formalized in Isabelle/HOL’s standard library),
(
∏

i qi)
′ has a root between every two roots of

∏
i qi and therefore p also has a root in

every interval between any two roots of the qi’s.

(iii) and iv) This choice of p has roots at −crb(
∏

i qi) and crb(
∏

i qi), which are respec-
tively smaller and greater than all roots of the qi’s.

(4) Each polynomial qi is sign invariant between its roots.7 Accordingly, the qi’s are sign
invariant between the roots of

∏
i qi (and to the left/right of all roots of the qi’s).

(5) We use the find_consistent_signs_at_roots algorithm with Q and our chosen p.

Putting the pieces together, we verify that find_consistent_signs finds exactly the con-
sistent sign assignments for its input polynomials. The decision_procedure theorem follows
by induction over the fml type representing formulas of univariate real arithmetic and our for-
malized semantics for those formulas.

3.2.2 Matrix Library

Matrices feature prominently in our algorithm: the combination step uses the Kronecker product,
while the reduction step requires matrix inversion and an algorithm for finding a basis from the
rows (or, equivalently, columns) of a matrix. There are a number of linear algebra libraries
available in Isabelle/HOL [28, 81, 87], each building on a different underlying representation of
matrices. We use the formalization by Thiemann and Yamada [87] as it provides most of the
matrix algorithms required by our decision procedure and supports efficient code extraction [87,
Section 1]. Naturally, any such choice leads to tradeoffs; we now detail some challenges of
working with the library and some new results we prove.

6For a differentiable function f : R 7→ R with f(a) = f(b), a < b, there exists a < z < b where f ′(z) = 0.
7By the intermediate value theorem (which is already formalized in Isabelle/HOL’s standard library), if qi

changes sign, e.g., from positive to negative, between two adjacent roots, then there exists a third root in between
those adjacent roots, which is a contradiction.
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Combination Step: Kronecker Product

We define the Kronecker product for matrices A, B over a ring as follows:
definition kronecker_product :: "’a :: ring mat ⇒ ’a mat ⇒ ’a mat"
where "kronecker_product A B = (
let ra = dim_row A; ca = dim_col A; rb = dim_row B; cb = dim_col B in

mat (ra * rb) (ca * cb)
(λ(i,j). A $$ (i div rb, j div cb) * B $$ (i mod rb, j mod cb)))"

Matrices with entries of type ’a are constructed with mat m n f, where m, n :: nat are
the number of rows and columns of the matrix respectively, and f :: nat × nat ⇒ ’a is
such that f i j gives the matrix entry at position i, j. Accordingly, M $$ (i,j) extracts the
(i,j)-th entry of matrix M, and dim_row, dim_col return the number of rows and columns
of a matrix respectively.

We prove basic properties of our definition of the Kronecker product: it is associative, dis-
tributes over addition, and satisfies the mixed-product identity for matrices A, B, C, D with com-
patible dimensions (for A * C and B * D):

kronecker_product (A * C) (B * D) =

(kronecker_product A B) * (kronecker_product C D).

The mixed-product identity implies that the Kronecker product of invertible matrices is invertible.
Briefly, for invertible matrices A, B with respective inverses A−1, B−1, the mixed product identity
gives:

(kronecker_product A B) * (kronecker_product A−1 B−1) =

kronecker_product (A * A−1) (B * B−1) = I,

where I is the identity matrix—so kronecker_product A B and kronecker_product A−1

B−1 are inverses. We use this to prove that the matrix obtained by the combination step is invert-
ible (part of the inductive hypothesis from Sect. 3.2.1).
Remark 4. Prathamesh [73] formalized Kronecker products for Isabelle/HOL’s default matrix
type. For computational purposes, we provide a new formalization that is compatible with the
matrix representation of Thiemann and Yamada [87].

Reduction Step: Gauss–Jordan and Matrix Rank

Our reduction step makes extensive use of the Gauss–Jordan elimination algorithm formalized by
Thiemann and Yamada [86]. First, we use matrix inversion based on Gauss–Jordan elimination to
invert the matrix M in the matrix equation (Sect. 3.1.3 and Step 1 in Fig. 3.4). We also contribute
new proofs surrounding their Gauss–Jordan elimination algorithm in order to use it to extract a
basis from the rows (equivalently columns) of a matrix (Step 3 in Fig. 3.4).

Suppose that an input matrix A has more rows than columns, e.g., the matrix in Step 2
of Fig. 3.4. The following definition of rows_to_keep returns a list of (distinct) row indices of
A.
definition rows_to_keep:: "(’a::field) mat ⇒ nat list" where
"rows_to_keep A = map snd (pivot_positions (gauss_jordan_single (AT)))"
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Here, gauss_jordan_single returns the row-reduced echelon form (RREF) of A after
Gauss–Jordan elimination and pivot_positions finds the positions, i.e., (row, col) pairs,
of the first nonzero entry in each row of the matrix; both are existing definitions from the library
by Thiemann and Yamada [86]. Our main new result for rows_to_keep is:
lemma rows_to_keep_rank:

assumes "dim_col A ≤ dim_row A"
shows "vec_space.rank (length (rows_to_keep A)) (take_rows A

(rows_to_keep A)) = vec_space.rank (dim_row A) A"

Here vec_space.rank n M (defined by Bentkamp [87]) is the finite dimension of the vec-
tor space spanned by the columns of M. Thus, the lemma says that keeping only the pivot rows of
matrix A (with take_rows A (rows_to_keep A)) preserves the rank of A. At a high level,
the proof of rows_to_keep_rank is in three steps:

1. First, we prove a version of rows_to_keep_rank for the pivot columns of a matrix and
where A is assumed to be a matrix in RREF. The RREF assumption for A enables direct
analysis of the shape of its pivot columns.

2. Next, we lift the result to an arbitrary matrix A, which can always be put into RREF form
by gauss_jordan_single.

3. Finally, we formalize the following classical result that column rank is equal to row rank:
vec_space.rank (dim_row A) A = vec_space.rank (dim_col A) (AT). We
lift the preceding results for pivot columns to also work for pivot rows by matrix transpo-
sition (pivot rows of matrix A are the pivot columns of the transpose matrix AT ).

To complete the proof of the reduction step, recall that the matrix in Step 2 of Fig. 3.4 is
obtained by dropping columns of an invertible matrix. The resulting matrix has full column rank
but more rows than columns. We show that when A in rows_to_keep_rank has full column
rank (its rank is dim_col A) then length (rows_to_keep A) = dim_col A and so the
matrix consisting of pivot rows of A is square, has full rank, and is therefore invertible.
Remark 5. Divasón and Aransay formalized the equivalence of row and column rank for Is-
abelle/HOL’s default matrix type [29] while we have formalized the same result for Bentkamp’s
definition of matrix rank [87]. Another technical drawback of our choice of libraries is the locale
argument n for vec_space. Intuitively (for real matrices) this carves out subsets of Rn to form
the vector space spanned by the columns of M. Whereas one would usually work with n fixed
and implicit within an Isabelle/HOL locale, we pass the argument explicitly here because our
theorems often need to relate the rank of vector spaces in Rm and Rn for m ̸= n. This negates
some of the automation benefits of Isabelle/HOL’s locale system.

3.2.3 Code Export

We export our decision procedure to Standard ML, compile with mlton, and test it on 10 micro-
benchmarks from [54, Section 8]. While we leave extensive experiments for future work since
our implementation is unoptimized, we compare the performance of our procedure using BKR
sign determination (Sections 3.1.3–3.1.3) versus an unverified implementation that naively uses
the matrix equation (Sect. 3.1.3). We also ran Li et al.’s univ_rcf decision procedure [54]
which can be directly executed as a proof tactic in Isabelle/HOL (code kindly provided by Wenda
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Li). The benchmarks were ran on an Ubuntu 18.04 laptop with 16GB RAM and 2.70 GHz Intel
Core i7-6820HQ CPU. Results are in Table 3.1.

The most significant bottleneck in our current implementation is the computation of Tarski
queries N(p, q) when solving the matrix equation. Recall for our algorithm (Sect. 3.1.3) the
input q to N(p, q) is a product of (subsets of) polynomials appearing in the inputs. Indeed,
Table 3.1 shows that the algorithm performs well when the factors have low degrees, e.g., ex1,
ex2, ex4, and ex5. Conversely, it performs poorly on problems with many factors and higher
degrees, e.g., ex3, ex6, and ex7. Further, as noted in experiments by Li and Paulson [53], the
Sturm-Tarski theorem in Isabelle/HOL currently uses a straightforward method for computing
remainder sequences which can also lead to significant (exponential) blowup in the bitsizes of
rational coefficients of the involved polynomials. This is especially apparent for ex6 and ex7,
which have large polynomial degrees and high coefficient complexity; these time out without
completing even a single Tarski query. From Table 3.1, the BKR approach successfully reduces
the number of Tarski queries as the number of input factors grows—the number of queries for
BKR is dependent on the polynomial degrees and the number of consistent sign assignments,
while the naive approach always requires exactly (n

2
+ 1)2n queries for n factors8 (which are

reported in Table 3.1 whether completed or not). On the other hand, there is some overhead for
smaller problems, e.g., ex1, ex3, that arises from the recursion in BKR.

The univ_rcf tactic relies on an external solver (we used Mathematica 12.1.1) to produce
untrusted certificates which are then formally checked (by reflection) in Isabelle/HOL [54]. The
untrusted solver (Mathematica) is used in two key ways: first, for real root isolation (the solver
returns a list of points that it claims are roots to Isabelle/HOL), second, to decide satisfiable
existentially quantified formulas (as Li et al. point out, CAD may not even be used in these
instances—sometimes these formulas can be decided in external tools by incomplete methods
that are faster than CAD, so there is considerable benefit to outsourcing these problems). This
procedure is optimized and efficient: except for ex7 where the tactic timed out, most of the time
(roughly 3 seconds per example) is actually spent to start an instance of the external solver.

An important future step, e.g., to enable use of our procedure as a tactic in Isabelle/HOL, is to
avoid coefficient growth by using pseudo-division [63, Section 3] or more advanced techniques:
for example, using subresultants to compute polynomial GCDs (and thereby build the remainder
sequences) [33]. Pseudo-division is also important in the multivariate generalization of BKR (as
we will see shortly in Chapter 4), where the polynomial coefficients of concern are themselves
(multivariate) polynomials rather than rational numbers. The pseudo-division method has been
formalized in Isabelle/HOL [54]; this formalization was not publicly available at the time of our
univariate work, but it later was added to Isabelle’s Archive of Formal Proofs (and we use it in
our multivariate formalization).

As a final comment, it is worth noting that Renegar-based sign determination is likely to
almost always be significantly slower than BKR-based sign determination, as univariate Rene-
gar involves Tarski queries with polynomials of higher degree. This is of consequence for the
multivariate algorithm discussed in the next chapter (Chapter 4), as this algorithm is based on

8For n factors, Sect. 3.1.2’s transformation yields n restricted sign determination subproblems involving n − 1
polynomials each and one subproblem involving n polynomials. Using naive sign determination to solve all of these
subproblems requires n(2n−1) + 2n = (n2 + 1)2n Tarski queries in total.
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Formula #Poly #Factor #N(p, q)
(Naive)

#N(p, q)
(BKR)

Time
(Naive)

Time
(BKR)

Time
([54])

ex1 4 (12) 3 (1) 20 31 0.003 0.006 3.020
ex2 5 (6) 7 (1) 576 180 5.780 0.442 3.407
ex3 4 (22) 5 (22) 112 120 1794.843 1865.313 3.580
ex4 5 (3) 5 (2) 112 95 0.461 0.261 3.828
ex5 8 (3) 7 (3) 576 219 28.608 8.333 3.806
ex6 22 (9) 22 (8) 50331648 - - - 6.187
ex7 10 (12) 10 (11) 6144 - - - -
ex1 ∧ 2 9 (12) 9 (1) 2816 298 317.432 3.027 3.033
ex1 ∧ 2 ∧ 4 13 (12) 12 (2) 28672 555 - 51.347 3.848
ex1 ∧ 2 ∧ 5 16 (12) 14 (3) 131072 826 - 436.575 3.711

Table 3.1: Comparison of decision procedures using naive and BKR sign determination and Li
et al.’s univ_rcf tactic in Isabelle/HOL [54]. All formulas are labeled following [54, Section
8]; formulas with ∧ indicate conjunctions of the listed examples. Columns: #Poly counts the
number of distinct polynomials appearing in the formula (maximum degree among polynomials
in parentheses), #Factor counts the number of distinct factors from (1) in Sect. 3.1.2 (maximum
degree among factors in parentheses), #N(p, q) counts the number of Tarski queries made by
each approach, and Time reports time taken (seconds, 3 d.p.) for each decision procedure to run
to completion. Cells with - indicate a timeout after 1 hour.

univariate Renegar (cross-reference Remark 3), and so further optimizing the computation of
Tarski queries is of considerable significance.

3.3 Related Work
Our work fits into the larger body of formalized univariate decision procedures. Of these, the
most closely related are Li et al.’s formalization of a CAD-based univariate QE procedure in
Isabelle/HOL [54] and the tarski univariate QE strategy formalized in PVS [63]. We discuss
each in detail.

The univariate CAD algorithm underlying Li et al.’s approach [54] decomposes R into a set of
sign-invariant regions, so that every polynomial of interest has constant sign within each region.
A real algebraic sample point is chosen from every region, so the set of sample points captures
all of the relevant information about the signs of the polynomials of interest for the entirety of R.
BKR (and Renegar) take a more indirect approach, relying on consistent sign assignments which
merely indicate the existence of points with such signs. Consequently, although CAD will be
faster in the average case, BKR and CAD have different strengths and weaknesses. For example,
CAD works best on full-dimensional decision problems [57], where only rational sample points
are needed (this allows faster computation than the computationally expensive real algebraic
numbers that general CAD depends on).

The Sturm-Tarski theorem is also invoked in Li et al’s procedure to decide the sign of a

41



univariate polynomial at a point (using only rational arithmetic) [54, Section 5]. (This was later
extended to bivariate polynomials by Li and Paulson [52].) This is theoretically similar to our
procedure to find the consistent sign assignments for q1, . . . , qn at the roots of p, as both rely on
the mathematical properties of Tarski queries; however, for example, we do not require isolating
the real roots of p within intervals. This difference reflects our different goals: theirs is to encode
algebraic numbers in Isabelle/HOL and to verify univariate CAD, ours is to perform full sign
determination with BKR. It is beneficial for us that we are able to completely avoid calculations
with real algebraic numbers. These computations, which are inherent to CAD-based approaches,
can be quite costly; typically, they are performed with subterfuges for better efficiency. These
subterfuges soundly approximate exact arithmetic, but are often somewhat intricate [54].

PVS’s tarski uses Tarski queries and a version of the matrix equation to solve univariate
decision problems [63]. Unlike our work, tarski has already been optimized in significant
ways; for example, tarski computes Tarski queries with pseudo-divisions. However, tarski
does not maintain a reduced matrix equation as our work does. Further, tarski was designed to
solve existential conjunctive formulas and requires a potentially costly DNF transformation to be
able to solve arbitrary problems [18], whereas our development solves problems directly without
requiring a DNF tranformation.

In addition, as previously mentioned, our work is somewhat similar in flavor to Cohen and
Mahboubi’s (multivariate) formalization of Tarski’s algorithm [15]. In particular, the characteri-
zation of the matrix equation and the parts of the construction that do not involve reduction share
considerable overlap, as BKR derives the idea of the matrix equation from Tarski [2]. However,
the reduction step is not present in Tarski’s algorithm and is a distinguishing feature of our work
when compared to Cohen and Mahboubi’s formalization.9 This again reflects different goals:
namely, our goal was to include some of the transformative insights of BKR in a (univariate, and
later multivariate) QE algorithm.

3.4 Takeaways and Future Directions
This chapter describes how we have verified the correctness of a decision procedure for univar-
iate real arithmetic in Isabelle/HOL. This formalization lays the groundwork for several future
directions, including:

1. Optimizing the current formalization and adding parallelism.

2. Proving that the univariate sign determination problem is decidable in NC [2, 75] and
other complexity-theoretic results. This (ambitious) project would require developing a
complexity framework that is compatible with all of the libraries we use.

3. Verifying a multivariate sign determination algorithm and decision procedure based on
BKR. The next chapter of this thesis discusses our progress towards this goal. Additionally,
as mentioned previously, multivariate BKR has an error in its complexity analysis; variants

9Actually, Cohen later extended his formalization of Tarski’s algorithm to add in a reduction step to the construc-
tion of the matrix equation. This work is unpublished and, to our knowledge, was not publicly available prior to the
publication of the work in the present chapter of the thesis, but Cohen has since made a writeup of it is available
on his webpage [14]. We will discuss this work again in the next chapter of the thesis, when we compare it to our
formalization of a complete multivariate QE algorithm.

42



of decision procedures for FOLR based on BKR’s insight that attempt to mitigate this error
could eventually be formalized for useful points of comparison. Two of particular interest
are that of Renegar [75], who develops a complete QE algorithm, and that of Canny [10],
in which coefficients can involve some more general terms, like transcendental functions.
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Chapter 4

Verifying a Complete Multivariate QE
Algorithm

This chapter discusses our formalization of a hybrid mixture of Tarski’s original QE algorithm
and the Ben-Or, Kozen, and Reif algorithm. Verified complete QE algorithms are rare, and so
our formalization is a considerable addition to the body of existing work (see Sect. 1.2).

More specifically, we see this work as making the following contributions: (1) Our work is
the first complete multivariate QE algorithm formalized in Isabelle/HOL. (2) To our knowledge,
it is the first formalized multivariate QE algorithm to include insights from BKR, and it is a first
step towards a less complex verified algorithm (e.g. in the style of Renegar [75]), which could
ideally complement an eventual formalized algorithm based on CAD. (3) Because much of the
source material is either sparsely written (e.g. [2]) or highly mathematical (e.g. [1, 75]), it was
not a priori obvious what the formalized algorithm should look like (this formalization barrier is
discussed in Sect. 4.2.1). The rigorous nature of verification forced us to clearly identify the es-
sential building blocks of the algorithm: In our formalization, all definitions are mathematically
precise and verifiable, and all their correctness properties are identified and proved.

The formalization is approximately 8500 lines of code and is available on the Archive of
Formal Proofs (AFP) [48]. It includes various advances to Isabelle/HOL’s existing libraries,
particularly the library for multivariate polynomials, which could help pave the way for future
multivariate QE algorithms in Isabelle/HOL.

Collaborators. The material in this chapter is based upon joint work with Yong Kiam Tan
and André Platzer which appeared at CPP 2023 [49].

4.1 Quantifier Elimination

Our QE algorithm works by eliminating one quantifier at a time. Hence, if we have polynomials
in n+ 1 variables, we can consider them as univariate polynomials in a variable of interest with
coefficient polynomials in n variables. For example, if x is our variable of interest, then we can
treat 3xyz2 + 6x2wv + 5xy + 1 as the following polynomial in x: (6wv)x2 + (3yz2 + 5y)x+ 1.
For clarity, and WLOG, we assume throughout this section that our variable of interest is x.
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The multivariate algorithm closely mirrors the univariate algorithm (though formalizing it is
considerably more challenging). Working with multivariate polynomials is substantially harder
than univariate polynomials (both mathematically and formally). Mathematically, multivariate
polynomials are more complex than univariate polynomials—for example, they may have in-
finitely many roots, and (polynomial) coefficients may be zero in certain valuations. Certain
constructs, like the Cauchy root bound (see Sect. 3.2.1), apply only to univariate polynomials
and not to multivariate polynomials. Formally, the representation of multivariate polynomials is
more difficult—while it is very natural to represent a univariate polynomials by a list of its coeffi-
cients, multivariate polynomials have multiple possible representations and it is often convenient
to be able to switch between representations—and (in theorem provers) multivariate polynomial
libraries are often less well-developed than univariate polynomial libraries.

The key component of both multivariate and univariate BKR is a sign-determination algo-
rithm which is concerned with finding all consistent sign assignments to a set of polynomials
{q1, . . . , qk}. A sign assignment is a mapping that assigns each polynomial to a sign, i.e. posi-
tive, zero, or negative (represented by 1, 0, and −1). A sign assignment is called consistent if it
is actually realized at some real point.

At the heart of the sign-determination algorithm that we formalize is a matrix equation that is
capable of storing sign information for a set of polynomials in variables x, y1, . . . , yn, under a set
of assumptions on polynomials in y1, . . . , yn. Our overall quantifier elimination algorithm takes
a formula and identifies the polynomials that occur in the formula. It then generates a number of
matrix equations, each of which captures some sign information for the polynomials, subject to
some list of assumptions. Collectively, it is important that the generated matrix equations have
exhaustive assumptions—in the sense that for every possible set of assumptions, there is at least
one corresponding matrix equation. We call sets of assumptions branches. Branches are refined
throughout the construction with additional assumptions until each multivariate matrix equation
has assumptions that generate a unique matrix equation. Initial branches, which are not fully
refined, may still have multiple associated matrix equations.

WLOG, we assume that we are eliminating a ∀ quantifier (because ∃ quantifiers can be trans-
formed into ∀ quantifiers with appropriate negations). We do some initial branching (this is
needed to guide the computations of the matrix equations), and for each branch, we check
whether all of the associated matrix equations describe a sign assignment on our polynomials
that satisfies the original formula. We filter our initial branches to pick out the ones that satisfy
this property. Finally, we return a disjunction of all assumptions of the initial branches in this
filtered list.

Fig. 4.1 visualizes how this QE algorithm works on an example. We begin with formula
∃y.∀x.(xy2 > 0 ∨ y2 + x2 > 0), where our focus is on eliminating the ∀x quantifier. We first
identify the polynomials of interest in this formula and view them as univariate polynomials in
x (with coefficients that are polynomials in y): these are y2x and x2 + y2. Next, we determine
all consistent sign assignments to these polynomials of interest given all possible1 sign assump-
tions on y2, where y2 is significant because it is the leading coefficient of y2x (technically our

1Here, we differ from the BKR algorithm, which would branch on all consistent sign assumptions on y2. That
is, we consider a branch where y2 < 0, because this is a possible (but inconsistent) sign assumption: even though
y2 is never negative, our algorithm does not discern this when branching.
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Assuming: y2 > 0 
Signs to (y2x, x2 + y2):

(-, +), (0, +), (+, +)

Assuming: y2 = 0 
Signs to (y2x, x2 + y2):

(0, +), (0, 0)

Assuming: y2 < 0 
Signs to (y2x, x2 + y2):

(+, +), (-, -), (0, -) , (-, 0),      
(+, 0), (-, +), (+, -)

(0, -) when x is 0
(-, 0) when x = +y; (0, -) when x = -y
(-, +) when x is large and posi8ve
(+, -) when x is small and posi8ve
(+, +) when x is large and nega8ve
(-, -) when x is small and nega8ve

(-, -) to (-, 0) to (-, -) to (0, -), to (+, -) to (0, +) to 
(+, +)

Output: ∃y. (y2 > 0) 

Input:
∃y.∀x. (xy2 > 0 ∨ y2 + x2 > 0) 

Polynomials of interest:
xy2, y2 + x2

Treat as univariate in x:
y2x, x2 + y2

Figure 4.1: A visual overview of the multivariate QE algorithm.

algorithm will do some additional and unnecessary branching, but for the clarity of this example
we focus on the branch on y2; see Sect. 4.1.1 for a more in-depth discussion of the branching).
Internally, our algorithm performs sign determination using matrix equation constructions (but
this is not pictured in the figure). We then pick out the sign assignments that solve our original
QE problem—that is, we are looking for one of our polynomials of interest, y2x or x2+ y2, to be
positive. Signs that satisfy this condition are pictured in green. Then, we filter our branches to
find the ones where every sign assignment satisfies the original QE problem. This happens only
in the branch where y2 is assumed to be positive. This means that y2 > 0 is logically equivalent
to ∀x.(y2x > 0 ∨ x2 + y2 > 0), which means that ∃y.∀x.(xy2 > 0 ∨ y2 + x2 > 0) is logically
equivalent to ∃y.(y2 > 0), whose quantifier ∃y can be eliminated further.

If our original QE question was instead ∃y.∀x.(xy2 ≥ 0 ∨ x2 + y2 > 0), then both the
branch with assumption y2 > 0 and the branch with assumption y2 = 0 would satisfy our QE
problem. This means that the disjunction y2 > 0 ∨ y2 = 0 is logically equivalent to ∀x.(y2x ≥
0 ∨ x2 + y2 > 0), and so our output in this case would be ∃y.(y2 > 0 ∨ y2 = 0).

Here it is important to note that there are many logically equivalent outputs to any given
QE problem. For example, if our original QE question were ∀x.((xy2 = 0 ∧ x2 + y2 = 0) ∨
(xy2 = 0 ∧ x2 + y2 < 0)), then two possible correct outputs that are logically equivalent are
y2 = 0, and y2 < 0 ∨ y2 = 0. Here, y2 = 0 is the simplest output. While the output of our QE
algorithm is always logically correct, it is not guaranteed to be in the simplest form. In particular,
assumptions for branches that are inconsistent will often be included in the final disjunction. This
has no impact on logical correctness, but it does impact formula complexity (and thus potentially
also computational complexity), so it would be potentially impactful to verify the true BKR
algorithm without the extra branching in a future work.

We now turn to more detailed descriptions of the sign determination procedure, the multivar-
iate matrix equation, and the full quantifier elimination procedure.
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4.1.1 Sign Determination

Finding sign information for polynomials q1, . . . qk in variables x, y1, . . . , yn is, on the surface, a
continuous problem—the most obvious way to determine the sign information would be to evalu-
ate (q1, . . . , qk) on Rk, which is clearly not computationally viable. To account for this, BKR and
Renegar reduce the sign-determination problem to a problem with the following format: find sign
information for q1, . . . , qk at the roots of some cleverly chosen polynomial p. This problem is
clearly computationally viable for univariate polynomials, because polynomials in one variable
only have finitely many roots. It is a (non-obvious) key insight that it is also computationally
viable for multivariate polynomials [2, 75]. Intuitively, the output of the univariate algorithm
only depends on the signs of the real polynomial coefficients and not on the actual values of
those coefficients. Thus, the algorithm lifts to the multivariate case by casing on an exhaustive
set of sign assumptions on the (multivariate) polynomial coefficients in variables y1, . . . , yn.

In our multivariate setting, p = (
∏
qi) · ∂

∂x
(
∏
qi) is chosen for p. To see what makes this

particular polynomial useful, consider some valuation ν on y1, . . . , yn (i.e., some assignment of
y1, . . . , yn to real values). Let ν(f) denote the evaluation of polynomial f in valuation ν; note
that ν(f) is univariate in x. Now, the roots of ν(p) = (

∏
ν(qi)) · ∂

∂x
(
∏
ν(qi)) = (

∏
ν(qi)) ·

d
dx
(
∏
ν(qi)) contain all of the roots of the ν(qi)’s (since each ν(qi) divides ν(p)), as well as

sample points from intervals between the roots (by Rolle’s theorem [19]). Because these intervals
are sign-invariant—that is, no ν(qi) changes sign in any of these intervals, since no ν(qi) can
change sign without passing through a root—sign information at a single point within any of
these intervals is representative of sign information for the entire interval. So, we see that the
only intervals which the roots of ν(p) do not adequately cover are the extreme intervals—the
leftmost and rightmost, which lie beyond any of the roots of ν(p)—for which sign information
can be computed with a limit calculation on the ν(qi)’s.2 So, this polynomial p allows a natural
lifting from the univariate QE algorithm to the multivariate case, but the correctness justification
needs an extensive covering of the influence of all possibilities for valuation ν.

This is visualized in Fig. 4.2. Here, we have polynomials q1 = y2x + 1 and q2 = yx + 1, so
p = (y2x+1)(yx+1)(2xy3 + y2 + y). For the purposes of illustration, we consider two sample
valuations: in ν1, we set y = 2, and in ν2, we set y = −1. As depicted, in both valuations, to find
sign information for q1 and q2, it suffices to find sign information for q1 and q2 at the roots of p
and the limit points.

We formalize this procedure for sign determination in the sign determination function.
The first input to this function is a list of polynomials qs of type rmpoly, where rmpoly is
our abbreviation for real mpoly poly. Here, poly is Isabelle/HOL’s type for univariate
polynomials, mpoly is the type for multivariate polynomials, and real is the type for real num-
bers, so an rmpoly is a univariate polynomial whose coefficients are real multivariate polynom-
ials. Say initially we have polynomials in variables x, y1, . . . , yn; then type rmpoly arises when
we treat those polynomials as being univariate in xwith coefficients in y1, . . . , yn. Unlike in com-
puter algebra, these polynomials are not restricted to have any particular representation; rather,

2In the formalization of the univariate case discussed in the previous chapter, the polynomial p was chosen so
as to directly sample from these intervals by using the Cauchy root bound, a mathematical quantity that bounds the
roots of a set of univariate polynomials. This followed BKR’s original work [2]. However, since the Cauchy root
bound is for univariate polynomials only, we must work instead with limit computations as Renegar does [75].
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Polynomials: q1 = y2x + 1, q2 = yx + 1
Variable of interest: x 

Compute:
p = (y2x + 1)(yx + 1)* ( ''( ((y2x + 1)(yx + 1)))

= (y2x + 1)(yx + 1)(2xy3 + y2 + y)

Example valua8on, !1: y = 2
q1, q2 in !1 : 4x + 1, 2x + 1
p in !1 : (4x + 1)(2x + 1)(16x + 6)

Example valuation, !2: y = -1
q1, q2 in !2 : x + 1, -x + 1
p in !2 : (x + 1)(-x + 1)(-2x)

1−1

Lim at ∞Lim at −∞− "3 8

− "1 4− "1 2

Lim at ∞Lim at −∞

Roots of p only
Roots of q’s and of p
Limits

Legend

0

Figure 4.2: An example of sign determination.

they are elements of the free term algebra. The next input to sign determination is a list of
initial assumptions of type (real mpoly × rat) list, which we abbreviate as assumps.
Here, rat is Isabelle/HOL’s type for rational numbers, and so each assumption in the list pairs
a real multivariate polynomial with an associated rational number that indicates a sign condition
on the polynomial (0, 1, or -1). This type is useful in specifying any known sign information
on polynomials in y1, . . . , yn. The output of sign determination is a list of pairs of assump-
tions and associated sign assignments to qs. Each sign assignment has type rat list.3 The
assumptions have type assumps (for the same reason as before), and as each assumption may
have multiple associated sign assignments, each assumption is paired with a list of associated
sign assignments, as demonstrated by the assumps × (rat list list) type. The output,
of type (assumps × (rat list list)) list, contains an exhaustive set of assumptions
(in order to capture all consistent sign assignments for the qi’s).

fun sign_determination:: "rmpoly list ⇒ assumps ⇒
(assumps × rat list list) list"
where "sign_determination qs assumps =
(let branches = lc_assump_generation_list qs assumps in
concat (map (λbranch. let

poly_p_branch = poly_p_in_branch branch;
(pos_limit_branch, neg_limit_branch) =
limit_points_on_branch branch;

mat_eq_signs_on_branch = extract_signs
(calculate_data_assumps_M poly_p_branch
(snd branch) (fst branch)) in

3Technically, we could use int list for sign assignments, since each member of the sign assignment list
is 1, 0, or −1, but as noted in the previous chapter, it is easier to work with rat list in the matrix equation
construction.
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map (λ(a, signs).
(a, pos_limit_branch#neg_limit_branch#signs))
mat_eq_signs_on_branch) branches))"

Here, the lc assump generation list function generates an exhaustive list of possible
branches, branches, that contain assumptions on the signs of the leading coefficients of the
input polynomials qs. An important subtlety is that the leading coefficient of the polynomial qi
may be different in different branches. For example, the leading coefficient of (y+1)x2+yx+2
is y+1 in a branch where y+1 is assumed to be nonzero, y in a branch where y+1 is zero and y is
assumed to be nonzero, and 2 in a branch where both y+1 and y are assumed to be zero. To best
account for this subtlety, each element of branches contains both the generated assumptions
(which determine the branch) and a list of polynomials which contains a simplified version of
the qs: to be precise, qi = c1x

d1 + · · ·+ cmx
dm simplifies to cjxdj + · · ·+ cmx

dm iff c1, . . . , cj−1

are all assumed to be zero and cj is assumed to be nonzero. For example, given a list of input
polynomials [(y + 1)x2 + yx + 2, y2 + (y + 1)x5], an element of branches could be: ([(y +
1, 0), (y, 1), (y2, 1)], [yx+ 2, y2 + (y + 1)x5]). The list of assumptions [(y + 1, 0), (y, 1), (y2, 1)]
specifies that, in this branch, y + 1 is assumed to be 0 and y and y2 are assumed to be positive.
Under these assumptions, (y + 1)x2 + yx+ 2 simplifies to yx+ 2 and y2 + (y + 1)x5 simplifies
to y2 + (y + 1)x5 (as the purpose of the simplification is to determine the leading coefficient, it
is not mission critical to fully simplify y2 + (y + 1)x5 to y2, and our code is not optimized to do
so).

Currently, lc assump generation list naively generates branches by branching on all
possible sign assignments to the leading coefficients, rather than on all consistent ones as BKR
would. Thus, branches with inconsistent assumptions can be generated: for example, the branch
([(y + 1, 0), (y, 1), (y2,−1)], [yx + 2, y2 + (y + 1)x5]) could be generated by the function
lc assump generation despite its inconsistent assumptions (y2 is assumed to be negative).
Exploring these inconsistent branches trades off some efficiency in favor of ease of verification,
and pruning inconsistent branches early on (as BKR does) would be desirable in a future verified
algorithm. Also, although lc assump generation list takes an input list of assumptions,
assumps, as an argument, it does not enforce consistency of the output branches with assumps;
however, before splitting on the sign of a polynomial f , it will check whether assumps already
contains sign information for f .

Branching on the signs of the leading coefficients of the qs provides important information
for two reasons: First, because these signs are relevant for the matrix equation computation
(Sect. 4.1.2); and second, because knowing the sign of the first non-zero leading coefficient for
every qi allows us to easily compute the signs at the limit points.4

The sign determination function maps over branches, and for each computes the poly-
nomial p = (

∏
qi) · ∂

∂x
(
∏
qi), stored in poly p branch (cross reference Fig. 4.2). Although it

would suffice to compute p beforehand, and then simplify it appropriately on each branch given
the associated assumptions (for example, in a branch where y = 0, q1 = y2x+1, and q2 = yx+1,
the polynomial p = (y2x + 1)(yx + 1)(2xy3 + y2 + y) simplifies to p = 0), it is more direct to
compute p in each branch.5 That is, given q1 = y2x+1, and q2 = yx+1, if in a given branch we

4The sign of qi at ∞ equals the sign of its leading coefficient, whereas the sign of qi at −∞ is the sign of its
leading coefficient multiplied by (−1)deg qi , where deg qi is the degree of qi.

5Our polynomials do not have any fixed representation, and equality checking is a potentially costly operation.
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know that y = 0, we also know that the leading coefficient of q1 is 1 and the leading coefficient
of q2 is 1, which means that q1 = 1 and q2 = 1, and so p = (1 · 1) · ( ∂

∂x
(1 · 1)) = 0.

Next, for each branch, sign determination performs a calculation (formalized in our
limit points on branch function) to find the signs of qs at∞ and −∞. These are stored in
pos limit branch and neg limit branch, respectively.

Then, it makes a call to our calculate data assumps M function (discussed in Sect. 4.1.2)
to calculate a list of matrix equations for each branch, each of which stores sign information
under some assumptions (assumptions in our formalization only accumulate, so the output as-
sumptions contain the original branch’s assumptions). It pulls out the assumptions and sign
conditions from the matrix equations with the extract signs function, which returns a list of
type (assumps × rat list list) list. This list is stored in mat eq signs on branch.

Finally, the positive and negative limit sign conditions (respectively, pos limit branch

and neg limit branch) are prepended to each list of sign conditions calculated with the matrix
equations (the # operator in Isabelle/HOL prepends an element to a list), and the resulting list of
assumptions and associated sign conditions is returned.

It is now time to discuss the matrix equation.

4.1.2 The Multivariate Matrix Equation

The multivariate matrix equation, like the univariate matrix equation, is concerned with finding
sign information for a set of polynomials q1, . . . , qn at the roots of an auxiliary polynomial p.
One advantage of formalizing a multivariate QE algorithm based on BKR and Tarski is that
the construction of the multivariate matrix equation is very similar to the construction of the
univariate matrix equation.

Thus, to understand the multivariate matrix equation, we first need to consider the construc-
tion of the univariate matrix equation. At its core, the univariate matrix equation relies on com-
puting Tarski queries, so we start there.

Computing Multivariate Tarski Queries

Recall (see Definition 2) that for univariate polynomials p, q with p ̸= 0, the Tarski query N(p, q)
is defined as:

N(p, q) = #{x ∈ R | p(x) = 0, q(x) > 0} − #{x ∈ R | p(x) = 0, q(x) < 0}.

These Tarski queries can be computed from the Euclidean remainder sequence that starts
with p and p′q:
Proposition 1. (Sturm-Tarski Theorem) Let p ̸= 0 and q be real univariate polynomials. Let
p1 = p, p2 = p′q, p3, . . . , pk be the Euclidean remainder sequence of p and p′q, where

pi = cipi+1 − pi+2,

Further, even if two polynomials are not identically equivalent, they may be so under a branch’s assumptions (for
example, y2 + y + 1 is equivalent to y2 if y + 1 is assumed to be 0).
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for ci ∈ R[x] and where deg(pi+2) < deg(pi+1). Let ai be the leading coefficient of pi and let
di := deg(pi). Let S+(p, q) denote the number of sign changes in the sequence a1, . . . , ak, and
let S−(p, q) denote the number of sign changes in the sequence (−1)d1a1 . . . , (−1)dkak. Then
N(p, q) = S−(p, q)− S+(p, q).

To revisit an example from the last chapter of this thesis (see Sect. 3.1.3), given p = x3 − x
and q = 3x3 + 2, then to calculate N(p, q) = 1, we would first compute p1 = x3 − x and
p2 = (3x2− 1)(3x3+2) = 9x5− 3x3+6x2− 2. Then, p3 = −x3+x, since p1 = 0 · p2− (−p1).
Next, p4 = −6x2 − 6x + 2, since p2 = (−9x2 − 6)p3 − (−6x2 − 6x + 2). Continuing in this
manner, we find p5 = 1

3
x− 1

3
and p6 = 10. Now, the sequence of ai’s is 1, 9,−1,−6, 1

3
, 10. Thus

S+(p, q) = 2. The sequence of (−1)di · ai’s is −1,−9, 1,−6,−1
3
, 10. Thus S−(p, q) = 3, and so

N(p, q) = 3− 2 = 1.
Proposition 1 is from the literature [75, Prop. 8.1] (with an unnecessary assumption removed

that is not included in other references [1] or in Isabelle’s existing formalization [51] of the
Sturm-Tarski theorem). Critically, in the Sturm-Tarski theorem, it is not the values of a1, . . . , ak
that matter; rather, it is the signs that matter; this is what enables the multivariate generalization
[2].

Consider polynomials p ̸= 0 and q in x with polynomial coefficients in y1, . . . , yn (i.e.,
p, q ∈ R[y1, . . . , yn][x]). Then, we can form Euclidean remainder sequences of p and p′q with
respect to x. The Euclidean remainder sequence is no longer unique—instead, there are multiple
sequences, each depending on the signs of the coefficients of p and q (as coefficients that are
polynomials can have different signs at different points). Once we fix a sequence and find the
leading coefficients, we need to consider (by branching) all possible sign assignments to those
coefficients,6 and output a list of Tarski queries and the assumptions they are subject to.

For example, if we take polynomials p = y2x+1 and q = yx+1, then if y2 = 0, then y = 0
so p = q = 1, and the Euclidean remainder sequence is just 1, and N(p, q) = 0.7 However, if
y ̸= 0, then our Euclidean remainder sequence is y2x + 1, y3x + y2,−(1 − y), where we have
calculated y2x+ 1 = 1

y
· (y3x+ y2) + (1− y), using assumption y ̸= 0 for 1

y
.

Now, continuing the computation of N(y2x+1, yx+1), we find that the leading coefficients
of our Euclidean remainder sequence (assuming y ̸= 0) are y2, y3, and −(1 − y). Next, we
consider the possible sign assignments to y2, y3, and −(1 − y). For example, (+,+,−) is one
such sign assignment. So, we have Tarski query N(p, q) = S−(p, q) − S+(p, q) = 0 − 1 = −1
under the assumptions that: y ̸= 0, y2 > 0, y3 > 0, and −(1 − y) < 0. Our output for
N(y2x+ 1, yx+ 1) would be a list of all the Tarski queries under all possible assumptions. This
computation is visualized in Fig. 4.3 (where, for purposes of space, only three output branches
are shown explicitly).

Note that Euclidean remainder sequences for multivariate polynomials sometimes contain
fractions. While we could have chosen to work with Euclidean remainder sequences in a frac-
tion field, this would require complicated type switching in the formalization. Instead, we use
pseudo-remainder sequences for multivariate polynomials. Pseudo-remainder sequences are es-

6Full BKR would consider all consistent sign assignments instead. This makes the algorithm highly recursive,
which adds a considerable layer of difficulty to its verification.

7Technically, our formalization would do more branching than this for two reasons: First, it will branch on
y2 = 0, y2 > 0, and (unnecessarily) y2 < 0; and second, because it will not determine that y2 = 0 implies
y = 0—and so it will not know that q = 1 whenever y2 = 0.

52



Assuming: y = 0
Remainder sequence:

1

Input:
y2x + 1, yx + 1

Assuming: y ≠ 0
Remainder sequence:
y2x + 1, y3x + y2, -(1 - y)

Leading coefficients:
a1 = y2, a2 = y3, a3 = -(1-y)

Degrees:
d1 = 1, d2 = 1, d3 = 0

S-(p, q) = 0, S+(p, q) = 0
N(p, q) = 0

Output: A list of Tarski queries and their assumpJons, 
considering all possible sign assignments

Assuming: (a1: +, a2: +, a3: +)
S-(p, q) = 1, S+(p, q) = 0

N(p, q) = 1

Assuming: (a1: +, a2: +, a3: -)
S-(p, q) = 0, S+(p, q) = 1

N(p, q) = -1

. . .
Assuming: (a1: +, a2: +, a3: 0)

S-(p, q) = 0, S+(p, q) = 0
N(p, q) = 0

Figure 4.3: Computing Tarski queries for p = y2x+ 1, q = yx+ 1.

sentially Euclidean remainder sequences for polynomials, but normalized so as not to contain
fractions (ours are additionally normalized so as not to affect the result of the Sturm-Tarski com-
putation [54]). We develop pseudo-remainder sequences for multivariate polynomials of type
rmpoly (currently, our formalization naively branches on the signs of the leading coefficients
of the relevant polynomials). Here, we benefit from prior work: The Sturm-Tarski theorem was
formalized in Isabelle/HOL by Wenda Li [51]; Li and Paulson later extended this to bivariate
polynomials [52] using pseudo-remainder sequences, and Li, Passmore, and Paulson also devel-
oped univariate Tarski queries with pseudo-remainder sequences [54].
Remark 6. For self-containedness, we briefly describe pseudo-remainder sequences. Polynom-
ial pseudo-quotients (pquo) and pseudo-remainders (prem) satisfy this property [26, 54]:

(lead coeff q)(1+deg p−deg q)p = pquo(p, q) · q + prem(p, q),

where deg prem(p, q) < deg q or q = 0. For example, when considering polynomials p = yx2+1
and q = y3x + 1 as univariate polynomials in x, then pquo(p, q) = y4x − y and prem(p, q) =
y6 + y, as (y3)2p = (y4x− y)q + (y6 + y) and deg(y6 + y) = 0 < deg q = 1. Notice how there
are no fractions in pquo or prem, unlike the fractions in the usual Euclidean remainder sequence
(assuming y ̸= 0 for well-definedness).

We use signed pseudo-remainder sequences, where p1 = p, p2 = p′q, and p3, . . . , pk satisfy
the following equation for a special choice of coefficients si, explained below:

pi+2 = si · prem(pi, pi+1)
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This sequence is normalized so that, in any valuation, the number of sign changes in the eval-
uated pseudo-remainder sequence is the same as in the Euclidean remainder sequence for the
evaluated polynomials, so that the result of the Sturm-Tarski computation is unaffected by the
normalization. For this, we follow the style of [54] and normalize as follows: if (1 + deg pi −
deg pi+1) is even, we multiply prem(pi, pi+1) by si = −1; else, by si = −lead coeff pi+1. To
understand this intuitively, note that the pseudo-remainder prem(p, q) effectively normalizes by
(lead coeff q)(1+deg p−deg q). Then, note that remainder sequences in the Sturm-Tarski theorem al-
ways negate prem (cross-reference Proposition 1). So, if (1+ deg p− deg q) is even, we have not
changed the sign of prem and we need only negate it. However, if (1 + deg p− deg q) is odd, we
have potentially changed the sign of prem—depending on the sign of (lead coeff q)—so we not
only negate prem but also multiply it by (lead coeff q).

Since QE is concerned with sign information for multiple polynomials simultaneously, it is
useful to generalize the notion of Tarski queries to sets of polynomials (compare Definition 3) as
follows:
Definition 4. Given a polynomial p and a list of polynomials q1, . . . , qn, let I and J be subsets
of {1, . . . , n}. Then, the Tarski query N(I, J) with respect to p is

N(I, J) = N(p2 +
(
Σi∈Iq

2
i

)
,Πj∈J qj).

For univariate p and q1, . . . , qn, if I and J are subsets of {1, . . . , n}, then

N(I, J) = N(p2 +
(
Σi∈Iq

2
i

)
,Πj∈J qj) =

#{x ∈ R | p(x) = 0,∀i ∈ I. qi(x) = 0,Πj∈J qj(x) > 0} −
#{x ∈ R | p(x) = 0,∀i ∈ I. qi(x) = 0,Πj∈J qj(x) < 0}.

For example, if p = x3 − x, q1 = 3x3 + 2, q2 = x, and q3 = x2, then

N({2, 3}, {1}) = N((x3 − x)2 + x2 + x4, 3x3 + 2)

= #{x ∈ R | x3−x = 0, x = 0, x2 = 0, 3x3 + 2 > 0} −
#{x ∈ R | x3−x = 0, x = 0, x2 = 0, 3x3 + 2 < 0}

= 1− 0 = 1.

The matrix equation determines the signs of q1, . . . , qn at the zeros of p by computing N(I, J)
for a representative set of combinations of subsets I, J of q1, . . . , qn (see Sect. 4.1.2).

There are two key lemmas that we prove about multivariate Tarski queries. The first is a
soundness lemma showing that the resulting multivariate Tarski queries agree, on every point
satisfying the associated assumptions, with what the univariate Tarski query would have been:
lemma multiv_tarski_query_correct:

assumes inset: "(assumps, tarski_query) ∈
set(construct_NofI_M p acc I J)"

assumes val: "
∧
f n. (f,n) ∈ set assumps =⇒

satisfies_evaluation val f n"
shows "tarski_query = construct_NofI_R (eval_mpoly_poly val p)

(eval_mpoly_poly_list val I) (eval_mpoly_poly_list val J)"
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Here, the construct NofI M function constructs a list of multivariate Tarski queries and the
assumptions they are subject to. As input, it takes a polynomial p, an initial set of assump-
tions acc, and two lists of polynomials I and J. Both p and all of the polynomials in I and
J have type rmpoly, i.e. they are univariate polynomials in x with polynomial coefficients
in some variables y1, . . . , yn. The inset assumption assumes that we have some particular
Tarski query tarski query that is subject to the assumptions assumps, which are assump-
tions on polynomials in y1, . . . , yn. Now, the construct NofI R function is the function to
compute univariate Tarski queries from our prior work [19], so the conclusion of the lemma
is that tarski query is exactly the (unique) univariate Tarski query that would be computed
from evaluating p and all of the polynomials in I, J on val (using the eval mpoly poly and
eval mpoly poly list functions), where val is any assignment of real values to y1, . . . yn
where the assumptions assumps are realized.

The second key lemma is a completeness result:
lemma multiv_tarski_queries_complete:

assumes "
∧
f n. (f,n) ∈ set init_assumps =⇒

satisfies_evaluation val f n"
shows "∃(assumps, tq) ∈ set (construct_NofI_M p init_assumps I J).

(∀(p,n)∈set assumps. satisfies_evaluation val p n)"

Here, this shows that if initial assumptions init assumps are satisfied by valuation val, then
there is some resulting assumptions and Tarski query pair (assumps, tq) where all final as-
sumptions assumps are satisfied by val.

Together, these two lemmas give a strong result: the soundness lemma shows that the multi-
variate results coincide with univariate results in all projections meeting the final assumptions,
and the completeness lemma shows that for any projection meeting the initial assumptions, there
is some corresponding Tarski query whose associated (final) assumptions are met by the projec-
tion. Or, on a more intuitive level, the completeness lemma shows that our function to compute
multivariate Tarski queries generates useful output whenever it is given useful input, and the
soundness lemma shows that useful output has the desired mathematical meaning.

Using Multivariate Tarski Queries

The matrix equation connects a vector of information about possible sign assignments for a set
of multivariate polynomials—i.e., sign assignments that are not necessarily consistent—on the
LHS, to a vector of multivariate Tarski queries on the RHS.

The univariate matrix equation is defined as follows, where we closely follow the definition
of the univariate matrix equation given in the previous chapter, but adapted to our purposes:8

8Both the previous chapter of this thesis and the corresponding univariate BKR paper [19] follow the matrix
equation developed in Ben-Or, Kozen, and Reif’s original paper [2], where p is assumed to be coprime with each
qi, so that sign assignments where any qi is 0 at the roots of p can be automatically excluded from the matrix
equation. Because a global coprimality assumption does not ensure coprimality in each valuation for multivariate
polynomials, in this chapter we use the matrix equation developed by Renegar [75], which encodes information
for sign assignments where the qi’s are 0. While our univariate work formalized both styles of matrix equation
[20], only the former is discussed at length in the paper [19] (and in Chapter 3). As mentioned previously, the two
univariate formalizations are in fact very similar, and much of the code is shared.
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Definition 5. Fix univariate polynomials of interest p and q1, . . . , qk. Let Σ̃ = {σ̃1, . . . , σ̃m}
be a set of possible sign assignments to q1, . . . , qk, and assume Σ̃ contains all consistent sign
assignments to q1, . . . , qk at the roots of p. Let S be a set of pairs of subsets (I1, J1), . . . , (Il, Jl)
where for all 1 ≤ i ≤ l, Ii ⊆ {1, . . . , k} and Ji ⊆ {1, . . . , k}. Then the matrix equation for Σ̃
and S is the relationship M · w = v between the following three entities:

• M , the l-by-m matrix with entries

Mi,j =
(
Πℓ∈Ii(1− (σ̃j(qℓ))

2)
)
· (Πℓ∈Jiσ̃j(qℓ)) ∈ {−1, 0, 1}

for (Ii, Ji) ∈ S and σ̃j ∈ Σ̃,
• w, the length m vector whose entries count the number of roots of p where q1, . . . , qk has

sign assignment σ̃, i.e., wi = #{x ∈ R | p(x) = 0, sgn(qℓ(x)) = σ̃i(qℓ) for all 1 ≤ ℓ ≤ k},
• v, the length l vector consisting of Tarski queries for the subsets, i.e., vi = N(Ii, Ji).
Intuitively, as noted in the previous chapter, the meaning of a matrix equation is captured by

its associated list of signs and list of (pairs of) subsets. Both the matrix M and the RHS vector v
are fully computable from these two lists, and w, which stores information about which possible
sign assignments are consistent (sign assignment σ̃i is consistent iff wi is nonzero), is calculated
as M−1 · v.

For multivariate polynomials the situation is more complicated. We can still construct a
matrix equation for multivariate polynomials—the definition of the matrix M is the same as it
was in the univariate setting, but the righthandside vector uses our function to construct a list of
Tarski queries for multivariate polynomials. Each RHS vector—and so each matrix equation—
comes with an associated list of assumptions which were generated by the multivariate Tarski
queries. So, for an input list of multivariate polynomials p and q1, . . . , qk, we construct a list of
multivariate matrix equations that store sign information for these polynomials, subject to certain
assumptions on polynomials in one fewer variable.

The overall construction is very similar to that in the univariate case, which was discussed
in the previous chapter. It proceeds by induction on the number of q’s, so that the base case
is for a single q. Smaller matrix equations are successively combined and reduced to form the
matrix equation for q1, . . . , qn. The reduction is what differentiates the matrix equation of BKR
from that of Tarski: information for inconsistent sign assignments is removed at appropriate
intervals, which decreases the size of the matrix equation. In the univariate case, the size of the
matrix equation is bounded by #{x. p(x) = 0})2, where #{x. p(x) = 0} is the number of roots
of the polynomial p. The size of a multivariate matrix equation is bounded by the number of
roots of p in a valuation satisfying the associated assumptions. As the univariate reduction step
mainly involves computations on the matrix M , which is unchanged in the multivariate setting,
it generalizes quite naturally, and so our hybrid algorithm essentially inherits reduction in the
matrix equation construction, thus incorporating insights from BKR into our hybrid algorithm.

We formalize our multivariate matrix equation construction in calculate data assumps M

(cross reference Sect. 4.1.1), and prove the following two key lemmas:
lemma multivariate_calculate_data_correct:

assumes mat_eq: "(assumps, mat_eq) ∈
set (calculate_data_assumps_M p qs init_assumps)"

assumes "
∧
p n. (p,n) ∈ set assumps =⇒
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satisfies_evaluation val p n"
assumes "eval_p = eval_mpoly_poly val p"
assumes "eval_qs = map (eval_mpoly_poly val) qs"
assumes p_nonzero: "eval_mpoly_poly val p ̸= 0"
shows "calculate_data_R eval_p eval_qs = mat_eq"

This first lemma connects the behavior of our multivariate matrix equation constructor func-
tion to the Renegar-style univariate matrix equation function (calculate data R) formalized
in our prior work [20]. That is, on any valuation val that satisfies the assumptions assumps,
the associated multivariate matrix equation mat eq, which finds the consistent sign assignments
for qs at the zeros of some p in the valuation val, is equal to the univariate matrix equation
that find the consistent sign assignments for eval qs at the zeros of eval p , where eval p is
p evaluated on val and eval qs is qs evaluated on val. This is a soundness lemma, since it
explains that whenever our output is useful, it has the correct mathematical meaning.
lemma multivariate_calculate_data_complete:

assumes "
∧
p n. (p,n) ∈ set init_assumps =⇒

satisfies_evaluation val p n"
shows "∃ (assumps, mat_eq) ∈

set (calculate_data_assumps_M p qs init_assumps).
(∀ (p,n) ∈ set assumps. satisfies_evaluation val p n)"

This second lemma shows that when calculate data assumps M has logically consis-
tent input assumptions, some output with logically consistent assumptions will be generated
(i.e., useful input generates useful output). These lemmas are analogous to those discussed for
multivariate Tarski queries; taken together, they help us prove key correctness properties of our
elim forall method, which serves to eliminate a single universal quantifier. We now turn to a
discussion of our top-level QE methods, including elim forall.

4.1.3 Overall Quantifier Elimination Algorithm
To best explain our formalized QE algorithm, we must first touch on the framework we are
working with.

We build on the framework discussed in Chapter 2, which detailed the verification of the vir-
tual substitution (VS) algorithm. The VS formalization set up a framework for multivariate QE
(including a type for real QE problems and a function to evaluate QE problems at real-valued
points); by building on this, we are ultimately able to link together our verified (complete, inef-
ficient) QE method with verified virtual substitution, using this (incomplete but experimentally
promising) QE method as a preprocessing step.

Accordingly, we work with formulas of type atom fm [76], which have the following gram-
mar (cross reference Sect. 2.3.1):

F,G ::= TrueF | FalseF | (Atom(Eq p)) | (Atom(Less p)) | (Atom(Leq p)) | (Atom(Neq p)) |
And F G | Or F G | Neg F | ExQ F | AllQ F | ExN n F | AllN n F,

where p is a real polynomial and n ∈ N. Here, (Atom(Eq p)) captures the relationship p = 0,
(Atom(Less p)) captures p < 0, (Atom(Leq p)) captures p ≤ 0, and (Atom(Neq p)) captures
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p ̸= 0. Further, And F G captures the logical meaning of F ∧ G, Or F G captures F ∨ G,
and Neg F captures ¬F . Finally, ExQ F indicates that formula F is quantified by an existential
quantifier, AllQ F indicates that F is quantified by a universal quantifier, ExN n F indicates that
F is quantified by a block of n existential quantifiers, and AllN n F indicates that F is quantified
by a block of n universal quantifiers.

In these formulas, variables are represented with de Bruijn indices; Var 0 is the variable
quantified by the innermost quantifier, Var 1 is the variable quantified by the second innermost
quantifier, and so on. We operate on quantifiers inside-out, i.e. we start with the quantifier
attached to Var 0.

Our elim forall function is designed to eliminate a single ∀ quantifier. It parallels the
method visualized in Fig. 4.1.
fun elim_forall:: "atom fm ⇒ atom fm"

where "elim_forall F = (let qs = extract_polys F;
univ_qs = univariate_in qs 0;
reindexed_univ_qs = map (map_poly (lowerPoly 0 1)) univ_qs;
initial_data = sign_determination reindexed_univ_qs [];
filtered_data = filter (λ(assumps, signs_list).
list_all (λ signs. lookup_sem_M F (zip qs signs) = (Some True))
signs_list
) initial_data

in create_disjunction filtered_data)"

Here, extract polys finds the polynomials qs in our formula F, and univariate in qs 0

transforms our polynomials qs to have the rmpoly type (so that they are univariate polynomials
in Var 0, with coefficients that are multivariate polynomials in bigger variables). The result-
ing list of polynomials is called univ qs. Then, in reindexed univ qs, we transform the
coefficients of every polynomial in univ qs (which do not contain Var 0) by lowering every
variable index by 1. This lowering is crucial for finding all possible signs/assumptions pairs for
our multivariate polynomial coefficients (cross reference Sect. 4.1.1), as sign determination

expects polynomials in Var 0. We then retain all the sign assignments that satisfy our formula of
interest, and return a disjunction of the associated assumptions. If our original formula involved
polynomials in variables Var 0, Var 1, . . . , Var n, then, because of the transformation and
reindexing, these assumptions will be polynomials in variables Var 0, . . . , Var (n - 1). Our
new Var 0, which was previously Var 1, will correctly match to the new innermost quantifier,
which was previously the second innermost quantifier, and so on.

Our top-level QE method, named qe, heavily relies on elim forall and elim exist

(where elim exist F is defined as Neg (elim forall (Neg F))):
fun qe:: "atom fm ⇒ atom fm"

where
"qe TrueF = TrueF"

| "qe FalseF = FalseF"
| "qe (Atom a) = (Atom a)"
| "qe (And F1 F2) = And (qe F1) (qe F2)"
| "qe (Or F1 F2) = Or (qe F1) (qe F2)"
| "qe (Neg F) = Neg (qe F)"
| "qe (ExQ F) = elim_exist (qe F)"
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| "qe (AllQ F) = elim_forall (qe F)"
| "qe (AllN n F) = (elim_forall ˆˆ n) (qe F)"
| "qe (ExN n F) = (elim_exist ˆˆ n) (qe F)"

Our top-level correctness theorem says that for any assignment ν of the free variables in F to
real numbers, our original formula F has the same truth-value as qe F; or, in other words, F and
qe F are logically equivalent:

theorem qe_correct:
fixes F:: "atom fm"
shows "eval F ν = eval (qe F) ν"

Here, eval is the function formalized in the VS development (see Chapter 2) to evaluate formu-
las of type atom fm on valuations. This function accounts for the reindexing of free variables
that naturally takes place during QE. For example, ∀x. x2y ≤ 0 is logically equivalent to y ≤ 0,
but since variables are represented with de Bruijn indices, where the innermost quantifier cor-
responds with Var 0, ∀x. x2y ≤ 0 is represented in the atom fm type as AllQ (Leq ((Var

0)ˆ2 · Var 1)) whereas y ≤ 0 is represented as Leq (Var 0). In eval, this subtlety is
handled by defining, e.g., eval (AllQ F) v as (∀ x. (eval F (x#v))), where x#v is
the list with head x and tail v. So, qe correct shows that F evaluated on any mapping of free
variables to real numbers is equal to qe F evaluated on that same mapping, which establishes
that qe is sound.

We also show that qe fully removes quantifiers in the following lemma, where the function
countQuantifiers counts the number of existential or universal quantifiers in a formula:

theorem qe_complete:
shows "countQuantifiers (qe F) = 0"

This result shows that qe is complete.

To our knowledge, qe is the first sound and complete algorithm for real QE to be formalized
in Isabelle/HOL (previous work [54, 64, 76] was sound but not complete). We now turn to some
further details regarding our formalization.

4.2 Formalization Details

As in our formalization of univariate BKR (see Chapter 3), Isabelle/HOL is well-suited for us; we
not only benefit considerably from the well-developed libraries (including our previous formali-
zations [19, 76] and other prior work [54]), but also from Isabelle/HOL’s support for automated
proof search in Sledgehammer [68].

However, at the same time, working in the formal setting of Isabelle/HOL poses considera-
ble challenges. In this section, we begin by discussing some of those challenges, followed by
some of the high-level proof techniques that helped us succeed in our formalization. We then
discuss some useful low-level details regarding our extensions to Isabelle/HOL’s multivariate
polynomials library. Finally, we discuss our code export and the performance of our algorithm.
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4.2.1 Challenges

Many design decisions for the functions described in Sect. 4.1 were not initially evident. For
example, the need to consistently track assumptions and pass them in as an argument to our
functions throughout the calculation of the matrix equation was initially not obvious. At first, we
wrote a function that was nearly identical to calculate data assumps M, with the one major
difference that we did not include assumps as an argument to this function. While this function
was fully capable of generating a multivariate matrix equation, we soon realized we had made a
major mistake when we tried to extend it into a larger QE algorithm. After this, we were careful
to always include an argument for assumptions in our functions if it could possibly be applicable,
regardless of whether or not it seemed immediately relevant.

The challenge of correctly formalizing the algorithm in Isabelle/HOL is heightened because
the precision of formalization sometimes identifies details that were underspecified in the source
material. Indeed, BKR’s discussion of the multivariate QE algorithm was limited to only two
pages and proceeds at a very high level [2]. Renegar [75] is considerably more detailed, but is
also written in the style of mathematics, which necessitates significant translation to the level
of formalization. For example, the way in which the limit point calculation should be formal-
ized, while entirely obvious in retrospect, did not become clear to us until we fixed a method of
branching—and indeed, our initial method of formalizing the limit point calculation, which was
agnostic to branching, did not make it into the final code for the algorithm. Of this calculation,
Renegar writes the following, in which he uses the notation gi where we use qi, and f instead of
p [75]: “. . . each consistent sign vector of {gi}i occurs at some real zero of f except, perhaps,
for the sign vectors of points to the right or left of all real zeros of

∏
i gi. However, the latter two

consistent sign vectors are trivially determined from the leading coefficients of the polynomials
gi.” While this completely describes the mathematical use of the limit point calculations, it took
some time to translate it into Isabelle/HOL definitions and proofs.

Finally, a last challenge is that even simple details can become complex in the formalized set-
ting of a theorem prover. For example, working with multivariate polynomials in Isabelle/HOL
poses a challenge, as the formal setting requires rigor even for operations that are simple on
paper but may become much more involved when formalized. For example, the transformation
to treat a multivariate polynomial as univariate in some variable of interest is immediate on pa-
per, but in Isabelle/HOL it is more subtle, precisely because the type of our object is changing:
3xyz2+6x2wv+5xy+1 has type real mpoly, whereas (6wv)x2+(3yz2+5y)x+1 has type
rmpoly (see also Sect. 4.1.1).

4.2.2 High Level Proof Techniques

Though treating multivariate polynomials as univariate in some variable of interest poses low-
level challenges in our formal setting, it affords significant high-level simplifications. Many of
our proofs rely on the technique of universal projection—we assume fixed real values for all
variables aside from a variable of interest, which lets us work with truly univariate polynom-
ials. Projection allows us to connect functions in our multivariate construction to corresponding
functions in the univariate construction. This works because the multivariate case of the BKR
algorithm builds rather directly on the univariate case, making it amenable to formalization, as
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noted previously.
In consequence, each key function involved in the construction of the multivariate matrix

equation requires two top-level associated lemmas. The first is a soundness lemma which con-
nects the behavior of the multivariate function to a corresponding univariate function [19] through
projection. The second is a completeness lemma which establishes that data for all possible pro-
jections is captured by the function for some assumptions. Some examples of these soundness
and completeness lemmas are seen in Sect. 4.1.2 (e.g. multiv tarski query correct and
multiv tarski query complete); there are many more in the actual proof development.
This proof structure does not seek to closely mimic the (highly mathematical) proofs in the
source material [2, 75], but rather to translate the key intuition into a shape which is amenable to
formalization.

Our construction and proofs are designed to be modular, and we often rely on induction to
prove key properties of helper functions. In particular, we found it very helpful to use custom in-
duction theorems, supplementing those automatically generated by Isabelle/HOL. For example,
the spmods multiv aux function shown (abridged) below computes a list of pseudo-remainder
sequences for polynomials p and q together with corresponding sign assumptions on the leading
coefficients of the polynomials in each sequence.
function spmods_multiv_aux:: "rmpoly ⇒ rmpoly ⇒ assumps ⇒

(assumps × rmpoly list) list" where
"spmods_multiv_aux p q assumps = (if q = 0 then [(assumps, [p])]
else case (lookup_assump_aux (lead_coeff q) assumps) of
None ⇒

let lcz = spmods_multiv_aux p (one_less_degree q)
((lead_coeff q, 0) # assumps) in

let lcp = spmods_multiv_aux q (mul_pseudo_mod p q)
((lead_coeff q, 1) # assumps) in

let lcn = spmods_multiv_aux q (mul_pseudo_mod p q)
((lead_coeff q, -1) # assumps) in

. . . /* combine lcz, lcp, lcn */
| (Some i) ⇒ . . . /* two recursive branches */ )"

The function branches depending on whether q is the zero polynomial, otherwise, it re-
curses on the (possible) signs of its leading coefficient lead coeff q. Here, assumps speci-
fies a list of assumed input sign conditions, which are checked for assumptions on lead coeff
q. Notably, spmods multiv aux is not structurally recursive; its termination uses the fact
that, on each recursive call, the degree of the polynomial arguments one less degree q or
mul pseudo mod p q strictly decreases. For such functions, Isabelle/HOL automatically gen-
erates induction theorems, but these theorems lack the usual case-splitting support for structurally
recursive functions [94]. The following snippet shows the Isabelle/HOL subgoal (cases) struc-
ture that results from applying induction with the generated theorem for spmods multiv aux.
// apply (induct ... spmods_multiv_aux.induct)
Proof outline with cases:

case (1 p q assumps)
...

qed

Although spmods multiv aux.induct can, in principle, be used to prove the aforemen-
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tioned soundness and completeness properties for spmods multiv aux, we found the proofs
tedious in practice because they lack the case structuring benefits of Isabelle/HOL’s structured
proof language [94]. Instead, we manually prove an alternative induction theorem that mimics
the branching structure of spmods multiv aux (one base case, three branches with recursion).
As before, a snippet of the Isabelle/HOL subgoal (cases) structure is shown below (comments
illustrate the branching structure).
// apply (induct ... spmods_multiv_aux_induct)
Proof outline with cases:

case (Base p q assumps)
... // base case (q = 0)

next
case (Rec p q assumps)
... // lookup_assump_aux returns None

next
case (Lookup0 p q assumps)
... // lookup_assump_aux returns Some 0

next
case (LookupN0 p q assumps r)
... // otherwise

qed

Though some manual effort is needed to state and prove spmods multiv aux induct, our
subsequent, repeated use of this customized induction theorem makes it well worth the initial in-
vestment. We expect similar induction theorems to be broadly useful for structuring proofs about
non-structural recursive functions, including in other proof assistants. Indeed, manual induction
theorems are also used elsewhere in the development, particularly to verify invariant properties
of the helper function that underlies the branching function lc assump generation list (see
Sect. 4.1.1).

4.2.3 Library Extensions
We turn to some of our key results for multivariate polynomials and the library extensions they
prompted.

As seen in Sect. 4.2.1, we need a function to convert polynomials of type real mpoly to
polynomials of type real mpoly poly. Eberl and Thiemann formalized one such way of
doing this in their mpoly to mpoly poly definition [35]. We provide the following alternate
definition, which is executable:
definition mpoly_to_mpoly_poly_alt :: "nat ⇒ ’a :: comm_ring_1 mpoly
⇒ ’a mpoly poly"

where "mpoly_to_mpoly_poly_alt x p = (
∑

i∈{0..MPoly_Type.degree p x} .
monom (isolate_variable_sparse p x i) i)"

This definition applies to multivariate polynomials with coefficients in a commutative ring with
unity (denoted by comm ring 1). It relies on the isolate variable sparse function [78],
where isolate variable sparse p x i finds the coefficient of xˆi in p. For each i from
0 to the degree of x in p, we find this coefficient and construct a monomial of type poly with
degree i and this coefficient. Our final polynomial is the sum of all of these monomials.
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We connect our new definition to mpoly to mpoly poly in the following lemma:
lemma multivar_as_univar:

shows "mpoly_to_mpoly_poly_alt x p = mpoly_to_mpoly_poly x p"

This enables a natural interface between Eberl and Thiemann’s work [35] and the large and
powerful collection of lemmas regarding isolate variable sparse [78], from which we
benefit in the formalization.

We benefit from Eberl and Thiemann’s lemmas regarding mpoly to mpoly poly in one of
our main results regarding polynomials, which is useful in our correctness proof for elim forall

(cross reference Sect. 4.1.3):
lemma reindexed_univ_qs_eval:

assumes "univ_qs = univariate_in qs 0"
assumes "reindexed_univ_qs = map (map_poly (lowerPoly 0 1)) univ_qs"
shows "map (eval_mpoly (x#xs)) qs = (map (λp. (poly p x))

(map (λq. eval_mpoly_poly xs q) reindexed_univ_qs))"

This lemma relates the evaluation of multivariate polynomials, of type real mpoly, and
multivariate polynomials treated as univariate polynomials in the variable of interest Var 0,
of type rmpoly. To fully understand it, we must explain a few Isabelle/HOL operators that
manipulate multivariate polynomials. Here, eval mpoly is our name for the natural definition of
multivariate polynomial evaluation which substitutes real values for variables. Because variables
are represented with de Bruijn indices, we can store the values to substitute in a list L, where
the element of L at position 0 is then substituted for Var 0, the element of L at position 1 is
substituted for Var 1, and so on. If the length of L is shorter than the number of variables, a
default value of 0 is substituted for any variables that are not covered by L. This definition was
implicitly used in the VS formalization [76], but was not explicitly stated and named:
definition eval_mpoly:: "real list ⇒ real mpoly ⇒ real"

where "eval_mpoly L p = insertion (nth_default 0 L) p"

The eval mpoly poly function maps eval mpoly over the coefficients of a real mpoly

poly.
Continuing to unpack the reindexed univ qs eval lemma, the lowerPoly function is

from the VS formalization (cross reference Appendix A.2.4); here, it serves to reindex variables
in multivariate polynomials, so that lowerPoly 0 1 q lowers every variable index in q by 1.
The univariate in operator is our function to perform this multivariate to univariate transfor-
mation. Let qi be the polynomial at the ith index of qs, and uqi be the polynomial at the ith
index of univ qs—then the first assumption of reindexed univ qs eval says that uqi is the
polynomial that we obtain by treating qi as univariate in Var 0.

Next, the second assumption in reindexed univ qs eval says that reindexed univ qs

is the list of polynomials obtained by lowering all variable indices in the coefficients of the
univ qs by 1. Let us call ruqi the polynomial at the ith index of reindexed univ qs. Then,
lemma reindexed univ qs eval captures the mathematical equivalence of qi and ruqi by
showing that evaluating qi on the valuation v = x#xs gives the same result as evaluating the
coefficients of ruqi on xs and then evaluating the resulting univariate polynomial (which now
has constant coefficients) on x.

The proof of this key lemma required that we first prove the following fundamental extension-
ality result, which says that if two polynomials p and q (in n variables) have identical evaluations
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on Rn, then they are themselves identical:
lemma same_evaluations_same_mpoly:

assumes "(
∧

L. eval_mpoly L p = eval_mpoly L q)"
shows "p = q"

Since real multivariate polynomials are fundamental to many areas of mathematics, it is our
hope that our library developments will be useful to others, including in the formalization of
other QE algorithms, but also more widely.

4.2.4 Code Export

Our multivariate algorithm is designed so that it is executable. Like both its univariate prede-
cessor and the VS algorithm, it can be run directly within Isabelle/HOL, or it can be exported to
SML code.9 Building on the framework of verified virtual substitution (by using the same type
for QE formulas and the same evaluation function for formulas) makes the connection with the
verified virtual substitution algorithm very easy.10 This means that we are able to retain efficiency
[76] on examples that are tractable for virtual substitution.

However, because virtual substitution is not a complete QE method (i.e., it is not able to solve
all QE problems), the efficiency, or lack thereof, of our (complete) algorithm is still significant.
To get a ballpark sense of what we are able to achieve at present, we ran (within Isabelle/HOL) the
multivariate algorithm without VS preprocessing on some simple examples. Unfortunately (but
not unexpectedly), these simple experiments confirm that, without the link to virtual substitution,
our hybrid multivariate algorithm is not at all efficient. We were pleased to see that our algorithm
was able to solve some very simple examples, including ∃x. x + 1 < 0, ∃x. x2 = 0, and
∃x. x4 < 0. However, it appears to hang on examples that involve more than one variable, or even
univariate examples that involve even slightly more complicated polynomials, like ∃x. x2 − 1 =
0. While it is possible that experiments with the exported SML code could be slightly more
promising (as the code export may remove some overhead), the main efficiency bottlenecks
come from within the algorithm itself.

Although inefficiency is not surprising given that even Renegar may not realize practical effi-
ciency in its current state [41, 42], at present, we suspect that part of the efficiency bottleneck for
our algorithm is the untenable branching in the computation of the multivariate Tarski queries;
this can be significantly reduced in the future by implementing an algorithm that more closely
follows BKR. We also believe that our algorithm’s lack of inherent optimizations is another
contributing factor; as one example, we currently branch unnecessarily on the signs of constant
coefficients (this explains why ∃x. x2− 1 = 0 hangs while ∃x. x2 = 0 does not). Further, we are
not currently exploiting the algorithm’s inherent parallelism. However, it does not make sense to
focus on optimizing our algorithm at this stage (optimizations may be brittle). Once the branch-

9Both running the algorithm in Isabelle/HOL and running the SML code require trusting Isabelle/HOL’s code
generator in addition to the theorem prover’s trusted core. Partial progress has been made on verifying Isabelle’s
code generator [44].

10The top-level correctness theorems for verified virtual substitution have a very similar shape to qe correct,
as they state that for each top-level formalized virtual substitution method V and valuation ν, eval F ν equals
eval (V F) ν (cross-reference Sect. 2.2.4). This makes it easy to verify that, for any valuation ν, eval F
ν equals eval ((qe ◦ V) F) ν.
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ing reflects the full reduction of BKR, then inefficiencies (such as the unnecessary branching on
constant coefficients) should be identified and handled appropriately. We do not consider our al-
gorithm’s present inefficiency to be a fatal flaw, since we envision it as being a (major) stepping
stone on the way towards an optimized algorithm. As noted previously, unverified computer al-
gebra systems have realized efficient QE in part because many have been extensively optimized
over several decades; thus, it is natural that optimized verified algorithms will similarly take time
to develop.

4.3 Related Work
From a theoretical standpoint, the most closely related work is one by Cyril Cohen, who formal-
ized a sign-determination algorithm with reduction in Coq that, to our understanding, uses the
same matrix equation as our algorithm, although the details of his formalization look quite differ-
ent from ours.11 To our knowledge, he has not yet used this improved sign-determination algo-
rithm for a QE algorithm, and this work is unpublished, but a writeup is available on his webpage
[14]. Additionally, because the algorithm we verify is a hybrid between Tarski’s QE algorithm
and BKR, our work shares some theoretical overlap with Cohen and Mahboubi’s formalization
of Tarski’s algorithm in Coq [13, 15].

From a practical standpoint, we benefit from the well-developed Isabelle/HOL libraries. This
includes, of course, our previous verification of univariate BKR [19] and our verification of vir-
tual substitution [76], which have already been discussed at length. Additionally, we build on
the formalization of pseudo-remainder sequences (recently made available on the AFP [51]) de-
scribed by Li, Passmore, and Paulson [54]. Although we formalize our own functions to generate
pseudo-remainder sequences, which interface well with our assumptions-based framework (and
which are specialized to the rmpoly type), we derive insights from Li’s code and mimic some
of his structure in our functions, adapted appropriately to our purposes. We also benefit from
proving a connection between our functions and his.

4.4 Takeaways and Future Directions
This chapter describes the formalization of Isabelle/HOL’s first complete multivariate quanti-
fier elimination (QE) algorithm for the first-order logic of real-closed fields. Our algorithm
mixes ideas from Tarski’s original QE algorithm [85] and more efficient algorithms by BKR [2]
and Renegar [75]; the formalization requires rigorizing high-level mathematical insights [2, 75].
We realize a number of ideas suggested in the previous chapters of the thesis by extending our
univariate formalization of BKR [19] to the multivariate world and by building on our virtual
substitution framework [76] in order to use VS as an efficient preprocessing step for our hybrid
algorithm. While our algorithm (on its own) currently has prohibitive inefficiency, its nontriv-
ial library extensions and theoretical interest (including its potential to be extended into variant
algorithms with promising parallel complexity [10, 22, 75]) make it a meaningful contribution.

11This is in part because the setup is considerably different: while we extended a univariate QE procedure with
reduction into multivariate, Cohen added reduction to an already multivariate sign-determination procedure.
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Future work includes first extending our algorithm to one that realizes the full reduction
of BKR [2]; one main challenge is that this will make the algorithm highly recursive because,
for example, the computation of each Tarski query will require a recursive call to the top-level
sign-determination algorithm. In order to be able to modularize the algorithm—and thus the
proofs—in the face of this recursion, one possible approach is to pass an “oracle function” for
sign determination as an argument to individual functions (such as the computation of Tarski
queries). This oracle function is simply a function which is assumed to satisfy the key properties
of the top-level sign-determination algorithm. Then, in the body of the main BKR algorithm,
this oracle function will be instantiated as the top-level sign determination function whenever
necessary—for example, when a Tarski query computation is performed. The benefit of this
approach is that many individual computations can then be moved outside the body of the top-
level algorithm, which affords modularization of the proofs.

After this, it would be interesting to identify other areas of inefficiency and aggressively op-
timize. In addition to fine-tuning the branching to avoid splitting on trivial cases (most notably,
on constants), one very significant (and challenging) task will be to optimize the computation of
the Tarski queries; this was previously noted in the univariate case also [19]. Overall, our contri-
bution lays considerable groundwork for more optimized verified QE algorithms with inherent
parallelism.
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Chapter 5

Conclusion

Developing methods for real quantifier elimination (QE) that are both practical and trustworthy
is of considerable practical significance, as QE problems arise in safety-critical application do-
mains. For example, rigorous logical proofs that seek to establish safety properties of models
of cyber-physical systems (like planes, trains, drones, and surgical robots) often reduce to real
QE problems. Currently, in practice, software like Mathematica is then used to solve these prob-
lems; since Mathematica (for example) is a blackbox tool, this raises the question of whether the
answers it provides can be fully trusted.

This thesis takes practical steps to help develop formally verified support for algorithms for
real quantifier elimination. This necessitates not only implementing QE algorithms but also pro-
viding associated rigorous logical correctness proofs, which make the implementation highly
dependable. Working within the theorem prover Isabelle/HOL, we formalize the linear and quad-
ratic cases of virtual substitution (VS); these practically impactful QE methods target problems
with low-degree polynomials. We demonstrate the promising efficiency of our verified VS algo-
rithms on real-world benchmarks. We also formalize (in Isabelle/HOL) a complete QE algorithm
that mixes Tarski’s QE method with insights from the Ben-Or, Kozen, and Reif (BKR) algorithm,
which has good potential for parallelism. This result, which bridges the Theory A and Theory B
communities, involved formalizing the univariate cases of both BKR and a variant due to Rene-
gar, which may be of independent interest, as these are used in other parallel algorithms beyond
real QE.

By contributing an experimentally successful formalization of linear and quadratic virtual
substitution and by realizing Isabelle/HOL’s first formally verified complete QE algorithm, this
thesis advances the state of formally verified support for real QE while also laying considerable
groundwork for future advances in this area. In the short-term future, it would be interesting
to continue to optimize the verified VS implementation, and to combine it with formalizations
of other efficient incomplete QE methods. In the long-term future, it would be compelling to
develop an optimized version of verified univariate BKR that is in NC, and to formalize variants
of (multivariate) BKR with strong parallel complexity bounds. Our considerable advances to
Isabelle/HOL’s multivariate polynomials library, as well as our contributions to Isabelle/HOL’s
matrix library, could help to enable such ambitious goals (and may additionally be of independent
interest).
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Appendix A

Virtual Substitution

This is the appendix associated with Chapter 2 of the thesis. It contains some of the key Is-
abelle/HOL code used within the Equality VS algorithm (see Sect. 2.2.2) and the General VS
algorithm (see Sect. 2.2.3).

A.1 Linear and Quadratic Substitution

A.1.1 Linear Substitution

In Isabelle/HOL, we formalize linear substitution in the linear_substitution function. This
function takes as input a natural number var, which indicates which variable is of interest, two
real multivariate polynomials a and b, and an atom A. Calling linear_substition var a b A

then returns the atom fm that is the result of virtually substituting the fraction a/b for the vari-
able with de Bruijn index var into atom A (the atom and atom fm datatypes are explained
in Sect. 2.3.1). To do this, linear_substition cases on the structure of A and follows the
casework described in Sect. 2.2.2.

fun linear_substitution :: "nat ⇒ real mpoly ⇒ real mpoly ⇒ atom
⇒ atom" where
"linear_substitution var a b (Eq p) =
(let d = MPoly_Type.degree p var in

(Eq (
∑

i∈{0..<(d+1)}.
isolate_variable_sparse p var i*(aˆi)*(bˆ(d-i))))

)" |
"linear_substitution var a b (Less p) =
(let d = MPoly_Type.degree p var in

let P = (
∑

i∈{0..<(d+1)}.
isolate_variable_sparse p var i*(aˆi)*(bˆ(d-i))) in
(Less (P * (b ˆ (d mod 2))))

)" |
"linear_substitution var a b (Leq p) =
(let d = MPoly_Type.degree p var in
let P = (

∑
i∈{0..<(d+1)}.
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isolate_variable_sparse p var i*(aˆi)*(bˆ(d-i))) in
(Leq (P * (b ˆ (d mod 2))))

)" |
"linear_substitution var a b (Neq p) =
(let d = MPoly_Type.degree p var in
(Neq (

∑
i∈{0..<(d+1)}.

isolate_variable_sparse p var i*(aˆi)*(bˆ(d-i))))
)"

In each case, the first step of the algorithm is to recover the degree of the polynomial p that we
wish to substitute into (in the variable of interest var). We store this in d. Then, we can express
the polynomial p as a summation of monomials with respect to the variable we are eliminating
on (which is var). To read off the ith coefficient of the polynomial p with respect to var, we
use the isolate_variable_sparse p var i function.

For the = and ̸= cases, we multiply the ith coefficient by aˆi * b ˆ(d-i), to reflect
that we have normalized by multiplying everything by bˆd (more specifically, this reflects that
(ai/bi) · bd = ai · bd−i). For the < and ≤ cases, we additionally need to check the parity of the
degree d. When d is odd, we must multiply the whole polynomial by an additional factor of b,
as explained in Sect. 2.2.2; in the code, we accomplish this by multiplying by the extra factor of
bˆ(d mod 2) in the < and ≤ cases.

A.1.2 Quadratic Substitution
In Isabelle/HOL, we formalize quadratic substitution in the quadratic_sub function. Here,
quadratic_sub var a b c d A returns the result of virtually substituting (a+ b

√
c)/d for

the variable with de Bruijn index var in atom A. It cases on the structure of A. All of the cases use
the same helper functions. As explained in Sect. 2.2.2, the cases differ in the final arrangement
of the polynomial A + B

√
c, where A and B are multivariate polynomials that do not mention

the variable we are eliminating on.
primrec quadratic_sub :: "nat ⇒

real mpoly ⇒ real mpoly ⇒ real mpoly ⇒ real mpoly ⇒
atom ⇒ atom fm" where

"quadratic_sub var a b c d (Eq p) = (
let (p1::real mpoly) = quadratic_part_1 var a b d (Eq p) in
let (p2::real mpoly) = quadratic_part_2 var c p1 in
let (A::real mpoly) = isolate_variable_sparse p2 var 0 in
let (B::real mpoly) = isolate_variable_sparse p2 var 1 in
And

(Atom (Leq (A*B)))
(Atom (Eq (Aˆ2-Bˆ2*c)))

)" |
"quadratic_sub var a b c d (Less p) = (

let (p1::real mpoly) = quadratic_part_1 var a b d (Less p) in
let (p2::real mpoly) = quadratic_part_2 var c p1 in
let (A::real mpoly) = isolate_variable_sparse p2 var 0 in
let (B::real mpoly) = isolate_variable_sparse p2 var 1 in
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Or
(And

(Atom (Less(A)))
(Atom (Less (Bˆ2*c-Aˆ2))))

(And
(Atom (Leq B))
(Or
(Atom (Less A))
(Atom (Less (Aˆ2-Bˆ2*c)))))

)" |
"quadratic_sub var a b c d (Leq p) = (

let (p1::real mpoly) = quadratic_part_1 var a b d (Leq p) in
let (p2::real mpoly) = quadratic_part_2 var c p1 in
let (A::real mpoly) = isolate_variable_sparse p2 var 0 in
let (B::real mpoly) = isolate_variable_sparse p2 var 1 in
Or

(And
(Atom (Leq(A)))
(Atom (Leq(Bˆ2*c-Aˆ2))))

(And
(Atom (Leq B))
(Atom (Leq (Aˆ2-Bˆ2*c))))

)" |
"quadratic_sub var a b c d (Neq p) = (

let (p1::real mpoly) = quadratic_part_1 var a b d (Neq p) in
let (p2::real mpoly) = quadratic_part_2 var c p1 in
let (A::real mpoly) = isolate_variable_sparse p2 var 0 in
let (B::real mpoly) = isolate_variable_sparse p2 var 1 in
Or

(Atom (Less(-A*B)))
(Atom (Neq(Aˆ2-Bˆ2*c)))

)"

Intuitively, in each case we are splitting the quadratic substitution into two main steps (the
fractional step and the square root step). Essentially, we want to substitute var = (a + by)/d
for a meta-variable y, and then substitute y =

√
c.

The helper function quadratic_part_1 formalizes the fractional step, which is the nor-
malization of denominators discussed in Sect. 2.2.2. It behaves like linear_substitution

(discussed in Appendix A.1.1), except that the fractional polynomial that quadratic_part_1
is substituting into variable var is (a+b*(Var var))/d.
Remark 7. Notice that in the above, we are actually substituting a polynomial mentioning var

for the variable var. This situation arises as a consequence of our multiple-step substitution
process for quadratic roots: If we associate the polynomial variable var with the meta-variable
x and create a second meta-variable y, then we want to perform the substitutions x = (a+by)/d
and y =

√
c. After performing the first substitution for meta-variable x, the polynomial variable

var representing the meta-variable x gets eliminated. As such, it is okay for us to repurpose
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the same polynomial variable var to represent our new meta-variable y when performing the
substitution y =

√
c. Further, reusing this specific variable var allows us to avoid potential

conflicts with other variables within the polynomial.
The helper function quadratic_part_2 handles the parity check on the normalization fac-

tor (a key part of the square root substitution step), as described in Sect. 2.2.2. Here, we simply
collect the summation of all the even-degree monomials (in our variable of interest var) into one
polynomial A and all the odd-degree monomials into another polynomial B, so that ultimately
our polynomial is of the form A+B

√
c where A and B no longer involve square root terms.

fun quadratic_part_2 ::
"nat ⇒ real mpoly ⇒ real mpoly ⇒ real mpoly" where

"quadratic_part_2 var c p = (
let deg = MPoly_Type.degree p var in∑

i∈{0..<deg+1}.
(isolate_variable_sparse p var i)*(cˆ(i div 2)) *

(Const(of_nat(i mod 2))) * (Var var)
+(isolate_variable_sparse p var i)*(cˆ(i div 2)) *

Const(1 - of_nat(i mod 2)))"

In this, of_nat casts natural numbers to real numbers. For each 0 ≤ i < deg + 1,
Const(of_nat(i mod 2)) is 0 when i is even and 1 when i is odd. Similarly, Const(1
- of_nat(i mod 2)) is 1 when i is even and 0 when i is odd. So,

(isolate_variable_sparse p var i)*(cˆ(i div 2)) *

(Const(of_nat(i mod 2)))*(Var var)

collects the summation of the odd-degree monomials (in var) in the form aic
⌊i/2⌋√c, for some

coefficient ai, and where Var var represents
√
c, while

(isolate_variable_sparse p var i)*(cˆ(i div 2)) *

(Const(1 - of_nat(i mod 2)))

collects the summation of the even-degree monomials in var in the form aic
i/2. Notice that in

the even cases, we are able to completely eliminate the square root, whereas the odd cases leave
us with a variable of degree one, for which we will need to substitute

√
c.

Note that here we again exploit the technique explained in Remark 7 of reusing the variable
index var. This is because we have split the square root substitution step (that is, the substitution
of y =

√
c) into two substeps: the parity check performed by quadratic part 2 which collects

terms into A and B, and the final step performed in quadratic sub. Since A and B are both
free in var, it is safe for us to use reuse index var to have quadratic part 2 return something
of the form A + B · var. Then quadratic sub pieces everything together and does the final
substitution of

√
c for var.

A.2 Top-Level Algorithms
We develop (and export to SML for experimentation) several top-level algorithms that use various
combinations of VS procedures and optimizations; these are briefly detailed here.
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The VSLucky algorithm recursively searches through the available atom conjunct list, search-
ing for a quadratic equality atom that features a constant coefficient with respect to the variable
x that we are eliminating. If it finds some ax2 + bx+ c where a, b, or c is a nonzero constant, we
are guaranteed that ax2 + bx+ c is not the zero polynomial, and thus we have the following full
elimination of the quantifier on x, without the remaining zero case (cross-reference Sect. 2.2.2):(

∃x.(ax2 + bx+ c = 0 ∧ F )
)
←→(

(a = 0 ∧ b ̸= 0 ∧ F−c/b
x ) ∨

(a ̸= 0 ∧ b2 − 4ac ≥ 0 ∧ (F (−b+
√
b2−4ac)/(2a)

x ∨ F (−b−
√
b2−4ac)/(2a)

x ))
)
.

Then we can use VS to expand the RHS of the equivalence. So, VSLucky is indeed lucky,
because it fully removes the quantifier on the variable in question.

Next, the VSEquality algorithm performs the equality version of VS (Sect. 2.2.2) iteratively
for all equality atoms of at most quadratic degree, and the VSGeneral algorithm performs the
general version of VS (Sect. 2.2.3).1

Finally, we have VSLEG which performs all three of VSLucky, VSEquality, VSGeneral
(in that order, as the first is the quickest while the last is the most general); this algorithm was
the most competitive one on our benchmarks. We now discuss the correctness theorem for these
algorithms.

A.2.1 Correctness of Top-Level Algorithms
The correctness of our top-level algorithms is established by the following theorem, which ex-
presses that any initial formula φ is logically equivalent to the formula obtained by running the
algorithm on φ; in other words, the two formulas (initial and final) have the same truth-value in
every state, i.e. for every valuation of free variables.
theorem TopLevelSoundessTheorems:

"∀ ν. (eval (VSEquality φ) ν = eval φ ν)"
"∀ ν. (eval (VSGeneral φ) ν = eval φ ν)"
"∀ ν. (eval (VSLucky φ) ν = eval φ ν)"
"∀ ν. (eval (VSLEG φ) ν = eval φ ν)"

In this theorem, our eval function captures the semantics of substituting a valuation into a
formula: For a valuation characterized by a list ν of real numbers and a formula φ, eval φ ν is
true whenever φ is true at ν, i.e. when the ith entry of ν is plugged in for the ith free variable of
φ (for all i). More precisely, the exact definition of eval is as follows:
fun eval :: "atom fm ⇒ real list ⇒ bool" where
"eval (Atom a) ν = aEval a ν" |
"eval (TrueF) _ = True" |
"eval (FalseF) _ = False" |

1Additionally, we have VSEquality_3_times, which performs the equality algorithm three times, and
VSGeneral_3_times, which performs the general algorithm three times. Although these account for the
kind of potential edge cases discussed in Sect. 2.3.2, they did not realize significant experimental benefits over
VSEquality and VSGeneral.
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"eval (And φ ψ) ν = ((eval φ ν) ∧ (eval ψ ν))" |
"eval (Or φ ψ) ν = ((eval φ ν) ∨ (eval ψ ν))" |
"eval (Neg φ) ν = (¬ (eval φ ν))" |
"eval (ExQ φ) ν = (∃x. (eval φ (x#ν)))" |
"eval (AllQ φ) ν = (∀x. (eval φ (x#ν)))" |
"eval (AllN i φ) ν = (∀ γ. length γ = i −→ (eval φ (γ @ ν)))" |
"eval (ExN i φ) ν = (∃ γ. length γ = i ∧ (eval φ (γ @ ν)))"

This is the canonical semantics for evaluating atom formulas. The interesting cases are the
Atom, ExQ, and AllQ cases. We discuss each.

In the Atom case, the aEval function is as follows:
fun aEval :: "atom ⇒ real list ⇒ bool" where
"aEval (Eq p) ν = (insertion (nth_default 0 ν) p = 0)" |
"aEval (Less p) ν = (insertion (nth_default 0 ν) p < 0)" |
"aEval (Leq p) ν = (insertion (nth_default 0 ν) p ≤ 0)" |
"aEval (Neq p) ν = (insertion (nth_default 0 ν) p ̸= 0)"

Here, we are using the insertion function from the multivariate polynomials library [80] to
insert the n values from list ν for variables 0, . . . , n− 1. This captures evaluation by substituting
values for the free variables in the formula.

Because the first argument of the insertion function has type (nat ⇒ ’a), where in
our case ’a has type real, we use Isabelle/HOL’s standard library function nth_default to
expand ν into a mapping from nats to reals. That is, (nth_default 0 ν) i is the ith element
of ν when i is less than the length of ν (lists are 0-indexed in Isabelle/HOL), and 0 otherwise.
Note that this means that if our list ν is not long enough to cover the valuations for all the free
variables in the polynomial, the nth_default function will assign it a value of 0. This is merely
a convenience; our correctness lemmas are unaffected by this, as they quantify over all possible
valuations ν (and thus over all valuations of the correct length).

The ExQ φ case of a new existential quantifier is handled by embedding into Isabelle’s built-
in notion of existential quantification over the real numbers. More precisely, in ∃x.(eval φ

(x#ν)), Isabelle treats the quantified variable x as a new free variable, which is added to the
front of the valuation ν, written x#ν. The AllQ case is similar.

As an example, consider evaluating

∃x.∀y. (x+ y · y + z > 0)

in a state ν where ν(z) = 1. In our framework in Isabelle/HOL, this translates as:
eval (ExQ (AllQ (Var 1 + Var 0*Var 0 + Var 2 > 0)) 1

Here we have two quantified variables, Var 0 and Var 1, and one free variable, Var 2 (this is
because we are using de Bruijn indices). Var 0 matches the AllQ quantifier and Var 1 matches
the ExQ quantifier. We are considering the valuation where Var 2 is set to 1.

In the first step, we expand to:

Exists x.
(eval (AllQ (Var 1 + Var 0*Var 0 + Var 2 > 0)) (x#1)),

and in the second step, we achieve:
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Exists x. Forall y.
(eval (Var 1 + Var 0*Var 0 + Var 2 > 0) (y#(x#1))).

This asks whether there exists an x such that for all y, x+ y2+1 > 0, which matches the desired
semantics.

We additionally include ExN and AllN, which take in two inputs i and φ and are equivalent
to the single quantifier forms ExQ and AllQ repeated i times on φ (which, thanks to de Bruijn
indices, are quantifiers for i different variables). In the eval function, these are represented via
a quantified list γ of real number valuations of length i. Having these ExN and AllN in the
representation allows for specialized algorithms like our block quantifer heuristics (see A.3.3).

Now that we have established that our correctness theorem is correctly stated, we discuss its
proof.

A.2.2 Proving Correctness: Extensibility
It would be very tedious to independently prove the correctness theorems for all of our top-
level algorithms. Instead, our framework is designed so that any optimization opt can easily be
incorporated into our framework, as long as opt does not change the truth-value of any formula;
i.e. our framework is designed to be extensible. This allows us to cleanly substitute different
combinations of optimizations into our top-level QE algorithms without incurring the burden of
significant reproving.

This extensibility can be seen in the following correctness lemma for our QE_dnf function,
which lifts QE algorithms defined for a single quantifier to apply to all quantifiers using the
modified DNF transformation discussed in Sect. 2.3.2:
theorem QE_dnf_eval:

assumes steph : "
∧
var amount L F ν. amount≤var+1 =⇒

eval (ExN (var+1) (list_conj (map fm.Atom L @ F))) ν =
eval (ExN (var+1) (step amount var L F)) ν"

assumes opth : "
∧
ν F . eval (opt F) ν = eval F ν"

shows "eval (QE_dnf opt step φ) ν = eval φ ν"

Here, the step function is intended to be a function that performs virtual substitution. Its
behavior is governed by the steph hypothesis. The opt function is intended to be a function
that performs various optimizations, and its behavior is governed by the opth hypothesis. Intu-
itively, QE dnf eval proves that any function that obeys the steph hypothesis (as we prove that
our VS procedures do) and any functions that obey the opth hypothesis (as we prove that our
optimizations do) can be combined to create an overall top-level QE procedure. We now discuss
the characteristics of opt and step further.

The opth hypothesis assumes that we have a procedure opt which preserves the truth value
of the eval function for every valuation on every formula. In our QE framework, this function
is called before performing the DNF transformation of Sect. 2.3.2, and then step is called after
performing the DNF transformation.

As specified by the steph hypothesis, the step function receives as input two natural num-
bers amount and var, a list of atoms L, and a list of atom formulas F. Here, amount is designed
to track for how many of the var+1 existential quantifiers in the prefix QE has not yet been
attempted. Since the modified DNF transformation (see Sect. 2.3.2) is performed before step,
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this can move some quantifiers for which we have already attempted VS to the top-level of the
formula. In such cases, tracking amount allows us to stop computation early, rather than re-
attempting VS on quantifiers where it previously did not apply.

The left-hand side of the equality in steph represents the form that our formula takes in one
of the disjuncts of the DNF transformation (cross-reference Sect. 2.3.2): there are var+1 exis-
tential quantifiers in this disjunct (because we use zero-indexing for variables), and everything in
L and F is conjuncted. Intuitively, this is what we pass into virtual substitution. The right-hand
side of the equality in steph represents the result of calling the step function. The equality
captures that the original formula and the formula we obtain by applying step have the same
truth value in any valuation ν. So, overall, the steph equality captures that step can perform
any arbitrary manipulation of the inputs as long as it preserves logical equivalence.

The QE dnf eval lemma showcases the extensible nature of our framework and allows us to
determine the soundness of the top level algorithms described in Appendix A.2, but it makes no
claim about whether VS is actually simplifying our formula. We are unable to make such claims
for this top-level procedure, as we must allow for our VS algorithms to fail to make progress in
cases where VS does not apply (e.g. in the presence of high degree polynomials), but we now
discuss the specific cases where our VS step procedures successfully eliminate quantifiers, as
well as the important correctness lemmas for these procedures.

A.2.3 Proving Correctness: VS
Our elimVar function is the multivariate analog of the univariate general VS procedure dis-
cussed in Sect. 2.2.3) (and it closely resembles this procedure). More specifically, elimVar is
an overarching proof procedure that analyzes the roots of a polynomial and applies the appro-
priate VS algorithms for both the equality and the off-root cases. It checks whether we wish to
substitute the exact root (for = and ≤ atoms) or the off-roots (for < and ̸= atoms).

As input, elimVar receives a variable var we are eliminating on, a list of atoms L and atom
formulas F which are joined by conjunction, and the atom At that we wish to substitute, which
is guaranteed to be at most quadratic (cross-reference Sect. 2.3.2). Each of the top-level VS
algorithms utilizes elimVar as a helper function to substitute particular atoms. Significantly,
elimVar has the property that it removes the variable it is substituting. This is expressed in the
following lemma, where our variableIsRemoved function is true when the input variable var
is not present in a formula:
lemma elimVar_removes_variable: "variableIsRemoved var
(elimVar var L F At)"

If we assume that the atom At that the elimVar function takes as input is an equality atom
with a quadratic or linear polynomial with respect to the variable being eliminated, we can prove
the following important lemma for the equality case of VS:
lemma elimVar_eq:

assumes hlength: "length (ν::real list) = var"
assumes noVariable: "var /∈ vars a" "var /∈ vars b" "var /∈ vars c"
assumes inList: "Eq (a*(Var var)ˆ2+b*(Var var)+c) ∈ set(L)"
assumes nonzero:

"insertion’ a (ν @ x # ν’) ̸= 0 ∨ insertion’ b (ν @ x # ν’) ̸= 0"
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shows "(∃x. eval (list_conj (map fm.Atom L @ F)) (ν @ x # ν’)) =
(∃x. eval(elimVar var L F (Eq(a*(Var var)ˆ2+b*(Var var)+c)))(ν@x#ν’))"

Here, we are assuming that we have the equality atom a*(Var var)ˆ2+b*(Var var)+c

within our list of atoms L, where the variable var does not occur in the coefficients a, b, and
c; these conditions are captured by the inList and noVariable hypotheses, respectively.
We also assume that this polynomial is quadratic or linear in the particular variable of inter-
est (in the nonzero hypothesis). Performing elimVar on this atom allows us to remove the
quantifier completely: in the linear case, when Eq(a*(Var var)ˆ2 + b*(Var var) + c)

is Eq(b*(Var var) + c), elimVar virtually substitutes -c/b for var into every formula;
in the quadratic case, elimVar produces the disjunct of virtually substituting the two possible
quadratic roots into every formula. This lemma establishes the correctness of the Equality VS
algorithm as described in Section 2.2.2. Note that we could strengthen the ∃ quantifier on the
RHS of the equality to a ∀ by using elimVar removes variable.

Additionally, we use elimVar to formulate the lemma for the general VS case:

lemma gen_qe_eval:
assumes "F = list_conj (map Atom L)"
assumes "all_degree_2 var L"
assumes "length ν > var"
shows "(∃x. (eval F (ν[var:=x]))) = (∀x. (eval

(list_disj (mapNegInfinity var L # mapElimVar var L))
(ν[var:=x])))"

This lemma regards the executable multivariate procedure that corresponds to the univariate
lemma explained in Section 2.2.3. Here, we assume that our formula F is a conjunction of atoms
L as expressed in the first hypothesis. Additionally, the second hypothesis expresses that F has
the requisite shape for general VS to apply; this means that every polynomial in L has at most
degree two with respect to the variable we are eliminating, var. The third assumption states
that our valuation ν is long enough to cover the variable in question (which makes it a valid
valuation).

Under these assumptions, we show that there exists an x that can be substituted for var to
make formula F true iff substituting one of the sample points prescribed by virtual substitution
(which are negative infinity, the roots of the = and ≤ atoms in L with respect to var, and the
off-roots of the ̸= and < atoms in L with respect to var) makes F hold. Notice that the ∀ quan-
tification on the x on the RHS of the equality is permissible because we have actually eliminated
the variable x from the formula after applying virtual substitution (this is established by the
elimVar_removes_variable lemma).

A.2.4 More Polynomial Library Contributions

In order to prove correctness of VS, we needed to formalize a large number of additions to
the Isabelle/HOL multivariate polynomials library. For example, we added a partial derivative
function (which is needed to formalize VS for infinitesimals, as discussed in Sect. 2.2.3); and
prove its correctness for polynomials of degree at most two (more is not needed for quadratic
virtual substitution).
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For execution, we also needed to extend code theorems for the generically defined insertion
function, which inserts a valuation into a polynomial, in order to be able to compute the re-
sult of valuations and export our program. This required a number of lemmas that rely on the
monomials function, which separates a polynomial into a sum of monomials, and the degree
function, which computes the degree of a multivariate polynomial with respect to a single vari-
able.

To make these new functions usable in proofs, we formulated a large collection of lemmas
for polynomials with real-valued coefficients. These include a variety of simplification lemmas
for the interaction of the isolate_variable_sparse function discussed in Sect. 2.3.4 and the
insertion, and degree functions across summations and products of polynomials.

To utilize the variables within polynomials as de Bruijn indices, we implemented various
lifting and substitution operations. Our liftPoly function takes in a lower limit d, a lifting
amount a, and a polynomial p and returns a polynomial which reindexes variables within p such
that every variable greater or equal to d is increased by a. This is commonly denoted by p↑ad.
This liftPoly is needed in cases where we want to reshuffle formulas to increase the number of
quantifiers surrounding a formula. For example, ∀.((∃A)∧B) is equivalent to ∀.∃.(A∧ (B↑11)).

We also need an inverse function to liftPoly, which we call lowerPoly. Whenever we
have eliminated a quantified variable with our QE procedure, we can drop that quantifier and use
lowerPoly to reindex all the other variables accordingly. Our clearQuantifiers procedure
implements this.

A.3 Optimizations
We formalize a number of optimizations for VS, as optimizations are critical for achieving
reasonable performance. It will take some time to catch up to the highly optimized perform-
ance of tools like Wolfram Engine and Redlog.

This is the benefit of an extensible framework: future optimizations can be easily inte-
grated. From Appendix A.2.2, we see that any optimization function opt that satisfies the truth-
preservation lemma lemma "eval (opt F) xs = eval F xs" can be cleanly integrated
into our algorithm (using the QE_dnf_eval theorem), and the composition of several of these
optimization functions directly preserves this property. We discuss our current optimizations in
this appendix.

A.3.1 Unpower
As our algorithm performs VS on quadratic and linear polynomials, it is critical to reduce the
degree of polynomials whenever possible. The most natural simplification we can perform is to
factor out a common xn from every monomial:∑

aix
n+i = xn

∑
aix

i = pxn

From here, we can split the atom pxn ∼ 0, where ∼ ∈ {=, < . ≤, ̸=}, into lower-degree atoms
that involve p and xn separately.
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In the equality case, pxn = 0 reduces to x = 0 ∨ p = 0, as the product of the components
is zero if and only if at least one of the components is zero. For inequalities, we case on the
parity of n. If we have an even exponent, we can reduce pxn < 0 into p < 0 ∧ x ̸= 0, since xn

is nonnegative. Otherwise, we must assert that the sign values differ: (p < 0 ∧ x > 0) ∨ (p >
0 ∧ x < 0).

All ̸= are treated as negated equality atoms. For ≤ atoms, we follow a similar structure to <:
when n is even, the result is p ≤ 0∨ x = 0, and when n is odd the result is p = 0∨ (p < 0∧ x ≥
0) ∨ (p > 0 ∧ x ≤ 0).

A.3.2 Simplifying Constants
It is clear that the atom 5 = 0 is always false and can be replaced by the FalseT formula. Our
simpfm function replaces constant polynomial atoms with their respective TrueT or FalseT
evaluations and performs shortcut optimizations for the ∨,∧,¬ connectives. This is especially
useful when our QE algorithm is successful on closed formulas: since no more variables are
present, the formula becomes a collection of constant polynomial atoms joined by connectives,
which means the whole formula can be reduced to either TrueF or FalseF by simpfm.

This constant identification and constant folding is also crucial for effiency within the QE
procedure to cut down the expansion of the formula. Recall that we transform QE problems to
have the form ∨

∃z0. · · · ∃zn.∃x.
((∧

Ai

)
∧
(∧
∀y.Fj

))
, (A.1)

where the Ai are atoms and the Fi are formulas (see Sect. 2.3.2). Now consider a QE problem
of the form ∃x.(ax2 + bx + c = 0 ∧ F ). In the event that at least one of a, b, or c is a nonzero
constant polynomial, we can immediately determine the only possible values of x in the whole
formula, which are just the roots of this specific polynomial. As such, in both our general QE
and equality QE algorithms, for each disjunct in a formula of the form of (A.1), our algorithm
performs a linear scan for these “lucky” atoms within the conjunct list of atoms before proceed-
ing with the VS algorithm. If a lucky atom is found, we immediately eliminate its associated
quantifier and then proceed with other steps of the algorithm. This optimization demonstrates
significant experimental benefits, as it eliminates quantifiers without greatly increasing the size
of the formula. It also utilizes the DNF form optimizations discussed in Section 2.3.2 to reach
underneath existential quantifiers to find more “lucky” atoms. It could be further adapted in the
future to, for example, allow for simplifications underneath universal quantifiers.

Even better than the “lucky” atoms, where a single coefficient is constant, are “luckiest”
atoms, in which all coefficients are constants: with luckiest atoms, we are substituting real num-
bers rather than polynomials. We found that “luckiest” atoms are empirically very significant
(identifying and cleverly utilizing them yields significant speedup), so our algorithms preprocess
input formulas for these kinds of atoms and perform virtual substitution on them first.

A.3.3 Variable Ordering Heuristics
Variable ordering heuristics are of great practical significance in QE [60]. We proved that one
can freely swap the ordering of quantifiers in a homogeneous block (a number of existential or of
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universal quantifiers that occur in a row) without affecting a formula’s truth value. To capitalize
on this, our groupQuantifiers function locates instances of homogeneous blocks in a formula
and converts them into an equivalent block quantifier representation; for example, ExQ (ExQ F)

is converted into ExN 2 F (see Sect. 2.3.1). This allows later algorithms to identify blocks by
pattern matching. When the VS algorithm reaches a block ExN n F, it uses the modified DNF
algorithm on F and focuses on a single disjunct, at which point we invoke a heuristic function to
choose which of the quantifiers in the innermost block to eliminate first.

Since DNF yields a disjunct list of conjuncts, the input information to the heuristic function
(at each disjunct) is a conjunct list of atoms L and formulas F. As such, a heuristic function H

is of the type H :: nat ⇒ atom list ⇒ atom fm list ⇒ nat, where H (N-1) L F

analyses the input conjuncts L and F and determines the optimal variable ranging from 0 to N-1

to eliminate on (remember that we use 0-indexing for variables). After selecting a variable var
to eliminate, we swap var with variable N-1, perform VS on the newly reindexed var, optimize
the result, and then run DNF again2. We then recursively proceed on each new disjunct until we
have attempted to eliminate every quantifier.

The only property that the heuristic function must satisfy for correctness purposes is that it
must suggest a variable within the block of interest; this allows users to create their own heuristics
without incurring significant proof burden. Verifying this property is trivial for heuristics that
check their result and explicitly disallow results outside of the desired range.

We implement three heuristic functions: one of our own design, one based on the literature,
and the identity heuristic. The identity heuristic always returns the innermost variable, which
yields experimental results comparable to an earlier version of the framework which did not
implement block quantifiers; this demonstrates that we do not incur significant overhead by sup-
porting block quantifiers. We also implement a heuristic based on Brown’s heuristic for quantifier
ordering for CAD, as presented in [37]; this yielded promising experimental results. Lastly, the
heuristic that we designed both chooses which variable to eliminate first and also chooses which
VS algorithm to use at each step; this heuristic was the most experimentally successful of the
three. Overall, our results indicate that block quantifiers do not introduce significant overhead
and confirm that variable ordering heuristics are of practical significance in virtual substitution.

2As an implementation detail, although our VS construction typically quantifiers inside-out, so that the innermost
quantifier is eliminated first, within blocks we eliminate outside-in, so in a block of length N, the variable with index
N-1 is eliminated first.
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univariate real arithmetic. Archive of Formal Proofs, April 2021. https://www.isa-
afp.org/entries/BenOr_Kozen_Reif.html, Formal proof development. 3, 3,
8, 4.1.2

[21] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and Erika Ábrahám.
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