
Secure and Practical Splitting of IoT Device
Functionalities

Han Zhang

CMU-CS-23-129

August 2023

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Yuvraj Agarwal, Co-chair
Matt Fredrikson, Co-chair

Vyas Sekar
Alec Wolman, Microsoft

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2023 Han Zhang

This research was sponsored by: Air Force Research Laboratory under award number 87501520281; Intelligent Au-
tomation, Inc., under award number 24331; National Science Foundation under award numbers 1704542, 1564009,
and 1943016; Office of Naval Research under award number 000141812619; US Army Contracting Command under
award number 911NF20D0002; Defense Advanced Research Projects Agency under award number 00112020006;
and University of Wisconsin-Madison under award number 0000001468.

The views and conclusions contained in this document are those of the author and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the United States Government or any other supporting
entity.

Keywords: Internet-of-Things, Security, Privacy, Access Control, Computation Offloading,
Verification

Abstract
Internet-of-things (IoT) devices have rapidly gained popularity in people’s daily

lives. While these devices provide many smart functionalities and enable new ap-
plications, they raise several security and privacy concerns and practical operational
challenges for device users and vendors. With their growing adoption and sheer
deployment volumes, IoT devices have become attractive targets for attackers, and
many recent security incidents have had broad and serious impacts. Meanwhile,
IoT devices can collect a wide range of personal data through sensors and ubiqui-
tous placements. It is an important challenge for device vendors to protect users’
privacy and manage access control properly. In addition, device vendors have to in-
vest heftily in cloud infrastructures to mitigate the limited computation resources on
devices. With more and more devices installed in the future, the demand for more
computation will also increase.

We attribute these concerns and challenges of future IoT deployment partially to
the predominant monolithic design of IoT devices and applications. Device vendors
must take responsibility for many tasks, including managing device security, pro-
tecting user data privacy, and maintaining cloud infrastructure efficiently. However,
device vendors mainly focus on building compelling applications to attract more
users. Therefore, they have to prioritize certain tasks over other responsibilities,
given their limited engineering resources. As a result, the current monolithic design
leads to many vulnerabilities, security incidents, and inefficiencies.

In this thesis, we argue that by combining formal security analyses and perfor-
mance optimizations, we can achieve a separation of concerns and offload many
high-level IoT functionalities to third-party services, improving IoT devices’ secu-
rity and privacy while minimizing performance impacts. In particular, we design
three systems — TEO, CAPTURE, and VERISPLIT — to showcase the benefits of
functionality splitting. Each of these systems delivers strong security and practi-
cality guarantees. We demonstrate their feasibility and effectiveness with prototype
implementations and evaluations using various smart home applications. Overall,
these systems present several novel techniques towards enabling secure and practi-
cal functionality splitting for IoT devices.

iv

Acknowledgments
First and foremost, I would like to express my gratitude to my advisors, Profes-

sors Yuvraj Agarwal and Matt Fredrikson, for their countless guidance during my
graduate studies. It’s a privilege to work with both of them and learn so much from
their advice and feedback over the years. This journey has helped me become a
researcher and given me many valuable experiences in life.

I would like to thank other members of my thesis committee: Professor Vyas
Sekar, for always being accessible for collaboration and providing constructive com-
ments and advice on many research projects. Dr. Alec Wolman, for kindly agreeing
to join my committee and providing valuable feedback on the dissertation.

I am fortunate to have worked with many researchers and faculty members on
various projects: Arthur Azevedo de Amorim, Anupam Datta, Jason Hong, Limin
Jia, Carlee Joe-Wong, Corina Pasareanu, and Justine Sherry. Their collaborations
helped broaden my research interests and allowed me to continue learning new
knowledge throughout these years.

I would like to thank the research and support staff in the Computer Science De-
partment and Software and Societal Systems Department: Deb Cavlovich, Catherine
Copetas, Jennifer Cooper, Tracy Farbacher, Jenn Landefeld, Angy Malloy, Erin Mur-
ray, and Charlotte Yano. I appreciate their help in making everything go smoothly
around the departments.

I want to thank many long-time friends who made my graduate school jour-
ney really enjoyable: Matt Butrovich, Graham Gobieski, Jack Kosaian, Michael
Rudow, and Giulio Zhou. Hanging out with them truly makes time fly by. More-
over, I am fortunate to have met and collaborated with many talented graduate stu-
dents and friends: Abhijith Anilkumar, Nirav Atre, Krishna Bagadia, Sudershan
Boovaraghavan, Emily Black, Christopher Canel, Chen Chen, Mike Czapik, Mihir
Dhamankar, Clement Fung, Haojian Jin, Jeremy Lacomis, Tianshi Li, Klas Leino,
Antonis Manousis, Soo-Jin Moon, Prasoon Patidar, Joseph Severini, Ke Wu, Dae-
hyeok Kim, Dohyun Kim, Thomas Kim, Zifan Wang, Samuel Yeom, Yuhang Yao,
Haozhe Zhou, Chi Zhang, and Zichao Zhang.

Moreover, I would like to thank my undergraduate mentors, who inspired me to
pursue a PhD degree and conduct research: Harsha V. Madhyastha, Peter Honey-
man, and Michalis Kallitsis. Their support, advice, and kind guidance lead to the
beginning of this journey.

Finally, I would like to express my deepest gratitude to my family, who have
supported me unconditionally in pursuing my interests and passions with confidence
and freedom over the years.

vi

Contents

1 Introduction 1
1.1 Current Monolithic Device Design . 2
1.2 Secure and Practical Functionality Splitting . 3
1.3 Thesis Outline . 5

2 Background 7
2.1 IoT Security and Privacy Concerns . 7

2.1.1 Stakeholder and Bystander Privacy . 7
2.1.2 Smart Device Access Control . 7

2.2 New System Designs for IoT Security and Privacy 8
2.2.1 IoT Network Security . 8
2.2.2 IoT Software Security . 8
2.2.3 IoT Frameworks and OSes . 8

2.3 Secure Offloading Designs for Emerging IoT Applications 8
2.3.1 Trusted Hardware . 8
2.3.2 Efficient Verification . 9
2.3.3 Cryptography for Machine Learning Applications 9

2.4 Summary . 10

3 TEO: Protecting IoT Device Users by Offloading Ownership Management and Ac-
cess Control 11
3.1 Motivation: Importance of Stakeholder Privacy 12
3.2 System Overview . 13

3.2.1 Target Use Cases . 13
3.2.2 Design Goals . 14
3.2.3 Threat Model . 15

3.3 TEO Protocol . 15
3.3.1 Notation . 16
3.3.2 Device Initialization . 16
3.3.3 Device Ownership Management . 17
3.3.4 Data Storage and Access . 19
3.3.5 Revocation . 22
3.3.6 Partial Availability . 23

3.4 Security Analysis . 23

vii

3.4.1 Security Goals . 23
3.4.2 Modeling Protocol Workflow . 24
3.4.3 Modeling Security Goals . 24
3.4.4 Modeling Group Ownership . 25

3.5 Implementation . 26
3.6 Evaluation . 26

3.6.1 Microbenchmarks . 27
3.6.2 Case Studies . 29

3.7 Discussion and Limitations . 30
3.8 Summary . 32

4 CAPTURE: Securing IoT Devices by Offloading Third-Party Library Management 33
4.1 Motivation . 33
4.2 Third-Party Libraries in IoT . 34

4.2.1 Data Collection . 34
4.2.2 Results . 35

4.3 CAPTURE Framework . 38
4.3.1 Overview . 38
4.3.2 Library Update Management . 40
4.3.3 Virtual Device Entities (VDEs) . 41
4.3.4 Communication Isolation . 42
4.3.5 Resource Isolation . 43

4.4 Security Analysis . 43
4.5 Integration Approaches . 44

4.5.1 OS Library Replacement . 44
4.5.2 IoT Framework SDK Extension . 45
4.5.3 Native Driver Development . 45

4.6 Implementation . 46
4.6.1 Core Hub Functionality . 46
4.6.2 Benchmark Applications . 47

4.7 Evaluation . 48
4.7.1 Performance Overhead . 48
4.7.2 Overhead Perceived in the Real World 50
4.7.3 Scalability . 51
4.7.4 Integration Efforts and Tradeoffs . 51

4.8 Discussions and Limitations . 52
4.9 Summary . 53

5 VERISPLIT: Efficient Computation Offloading for IoT Devices with Neural Net-
work Applications 55
5.1 Motivation . 55
5.2 VERISPLIT Overview . 56

5.2.1 Design Goals . 57
5.2.2 Threat Model . 58

viii

5.3 Data Privacy . 59
5.4 Model Confidentiality . 60
5.5 Inference Integrity . 61

5.5.1 Asynchronous Verification . 62
5.5.2 Partial Verification . 63
5.5.3 Tunable Verification . 64

5.6 Security Analysis . 65
5.6.1 Proofs . 66

5.7 Floating Point Errors . 68
5.7.1 Mask Precision . 68
5.7.2 Cross-Platform Numerical Errors . 69

5.8 Implementation . 70
5.9 Evaluations . 71

5.9.1 Setup . 71
5.9.2 Vision Transformers . 72
5.9.3 VGG16 . 73

5.10 Limitations and Discussion . 74
5.11 Summary . 75

6 Conclusions 77
6.1 Lessons Learned . 78
6.2 Future Directions . 79

A Formal Modeling Code for TEO Protocol Verification 81

Bibliography 103

ix

x

List of Figures

1.1 Current monolithic design of IoT devices. Device vendors must implement and
integrate all components in blue, including device firmware and cloud backend
applications. Orange lines indicate communication over the public Internet. . . . 2

3.1 Overall TEO workflow. An admin initializes the device (1). Next, the user
claim device ownership with the admin’s pre-approval (2a and 2b). During
normal operation (3), the device encrypts users’ data and uploads it to storage. A
requester can download the data (4), but needs the owner’s approval to decrypt
it (5). To revoke access, the user can directly issue a request to the storage
provider (6). 12

3.2 Protocol workflow for device initialization. 17

3.3 Protocol workflow for proximity detection. 17

3.4 Protocol workflow for acquiring pre-auth tokens. 18

3.5 Protocol workflow for claiming ownership. 18

3.6 Example data storage workflow. Nonces with numerical subscripts are local vari-
ables, only used within the corresponding protocol flow. The orange box indi-
cates user-specific actions in group ownership. 20

3.7 Example data access workflow. The requester wants to access the data associated
with uuid3 from the previous case. For brevity, the steps involved with sending
download requests for UUID to the storage are omitted. 21

3.8 Revocation workflow. 22

4.1 List of the most common libraries in all 26 devices across vendors. Among
26 devices, over 50% use these libraries. The most popular ones, OpenSSL
and BusyBox, are used by 92.31% and 88.46% of devices. We also show the
percentage of vendors who use these libraries on their devices. 36

4.2 OpenSSL library ages in different devices. Dashed lines represent actual library
used in the firmware. Each marker indicates a new firmware release. Solid lines
indicate the expected library age if new firmware release always uses the latest
versions, representing a best-case scenario. Red circles highlight cases in which
devices actually use the latest version. 37

xi

4.3 Number of publicly known OpenSSL CVEs in firmware releases. X-axis shows
the firmware release date (YY-MM-DD format). We do not have CVE sever-
ity breakdowns for data prior to August 2014 (the red dashed line in (a)). For
newer libraries, we find many High and Moderate CVEs present in the firmware.
Certain Nest Protect firmware releases are skipped due to missing release dates. . 38

4.4 Capture system architecture. Every device consists of local device firmware and
a driver on the hub. They form a logically unified entity, Virtual Device Entity
(orange dashed box). The Capture Hub maintains a central version of common
libraries and has extra monitoring and enforcement modules. 40

4.5 Device bootstrap procedure. In Step 1, the device connects to the Capture Hub
using a shared setup network. Then it joins a VDE-specific VLAN network in
Step 2 (dashed box). Section 4.3.4 discusses more details on network configura-
tions. Section 4.4 addresses potential attacks during bootstrap. 42

4.6 Integration using IoT framework SDK extension. 45

4.7 Performance overhead for all prototype apps. Data are normalized to results
from the orignal apps. CAM has two modes: STreaming videos and taking
Pictures. We denote integration approaches in parentheses: OS Replacement,
Native Driver, and Framework SDK Replacement. Based on geometric means,
Figure (a) shows a 15% latency increase and Figure (b) shows a 34% throughput
reduction. Figure (c) shows the CAPTURE-enabled firmware incur around 10%
more on-device resource utilization. 49

5.1 VERISPLIT deployment example in a smart home. The IoT device (a smart
camera) can offload ML inferences to one or more local devices by sharing input
data and model parameters (1) and receiving results (2). Later, the camera
can verify the integrity of the inference by repeating selected computations and
comparing the results (3), doing it asynchronously to avoid additional latency
during inference. 57

5.2 VERISPLIT’s workflow for data privacy. During setup, the device shares model
parameters with the worker, generates multiple one-time noises ϵi, and precom-
putes their values Wϵi. For each inference, the device applies a mask ϵi to the
input xi and subtracts the precomputed values from the offloading results. 59

5.3 A simple but ineffective approach to adding masks for model confidentiality.
This does not save any work for the device during inference, since it still needs
to compute δxi. 60

5.4 VERISPLIT’s workflow for model confidentiality. During setup, the offloading
device generates masking noises (δ, β) and shares modified model parameters
with two non-colluding workers. For inferences, the device sends data and re-
ceives layer results (y′1, y

′
2). It can reconstruct the actual results by combining the

two results. 60

xii

5.5 VERISPLIT’s inference commitment design based on Merkle trees. This example
network includes several 2D convolution layers, one flatten and one dense layer.
During inference, the worker computes hash values of all layers’ intermediate
results (h1–h8) and reduces them into the final commit value hcommit. Assuming
the verifier randomly decides to check results from layer 3 (blue shadow), the
worker sends all values in blue boxes as its integrity proof. This commitment
mechanism can be expanded to partially verify layer results (Section 5.5.2). . . . 62

5.6 An example comparison between VERISPLIT’s disjoint slicing mechanism and
the continuous approach. We select the unit size to be 2x2. We color-code dis-
joint units and mark continuous units by their content. For continuous slicing,
we only show slicing a 3x3 matrix due to limited spaces. The red box indicates
one possible region verifiers may choose to check. After slicing, the Merkle tree
adds extra leaf nodes, as shown in the transition from one hash hm of the original
matrix into 4 more leaves (h1–h4). 64

5.7 Visualization of masking failure probabilities. If the observed value (xi+ϵi) falls
within the orange dashed region, then adversary A can distinguish the original
value. 67

5.8 Inference accuracy of ImageNet data after applying different magnitudes of masks
to data (for Privacy) and model weights (for Confidentiality). Neither option has
noticeable impacts unless k ≥ 104. However, combining both quickly degrades
inference accuracy when k > 101. 68

5.9 Average recovery errors for attackers to predict original value x based on ob-
served masked value x′. The red dashed line indicates randomly guessing values
from [xmin, xmax]. The blue line represents guessing values from [x′ − ϵ, x′ + ϵ]
where ϵ depends on the masking scale multiplier k. 69

5.10 Average inference latency of Vision Transformer models (ViT-L16 unless noted
otherwise) with guarantees: Integrity (I), Data Privacy (P), and Model Confiden-
tiality (C), under different configurations for the offloading device. (a) Latency
comparison of memory sizes. (b) Latency comparison of numbers of CPU cores.
(c) Latency comparison of different network conditions. (d) Latency comparison
of a larger model (ViT-H16) with different memory sizes. 72

5.11 Latency for offloading and verifying VGG16 model with VERISPLIT. The local
execution baseline provides 0.57 inference per second, while integrity-enabled
VERISPLIT can provide 2.04 inference/s. Notably, for VERISPLIT, verification
can be performed asynchronously when the device is idle. Verification overhead
includes the workers assembling the proofs, transmitting them over the network
(WiFi in this setting), and the device recomputing the results and validating the
proofs. 74

xiii

xiv

List of Tables

3.1 Average latency (in ms) for TEO operations, with a performance comparison of
different IoT device hardware. We also measure battery usage for the TEO phone
app (in µAh). Data access and revocation operations do not involve devices’
participation. 27

3.2 Data store operation overhead breakdown for Raspberry Pi 4, reported as mean
values in ms. 28

3.3 Average latency and standard deviation for storing 1MB data for different group
sizes. We emulate multiple owners as different processes on a PC and have the
device repeatedly store data 100 times. We also include a single user running a
TEO phone agent. 29

3.4 Total changes required (lines of code) to integrate existing applications with
TEO. These changes mostly focus on redirecting data storage to the co-located
TEO device driver program. See more details in Section 3.6.2. 29

4.1 Summary of devices and vendors included in the measurement. We skip firmware
for network equipment since our focus is on smart devices. 35

4.2 Details of devices and firmware releases included in the measurement. For each
device, we count the number of unique libraries and unique library-version com-
binations across all firmware releases. 39

4.3 Prototype applications and descriptions. 47
4.4 Average latency for automation apps with standard deviations (30 runs). Overall,

CAPTURE has insignificant impacts, with noteworthy improvements on A1 and
A3 (ESP) due to offloading TLS operations on the hub. See Section 4.7.2 for
further analysis. 51

5.1 Pre-process and verification time for VERISPLIT offloading with data privacy
and integrity options, measured on a device with 1GB memory. Both overheads
can be asynchronous: generate masks before inference starts and verify anytime
after inference finishes. 73

xv

xvi

Chapter 1

Introduction

Internet-of-Things (IoT) devices have rapidly gained popularity in modern smart homes, build-
ings, and shared spaces [30, 74, 229]. IoT devices are equipped with diverse sets of sensors
and actuators, enabling many new applications and functionalities. Their prevalence also begins
to raise more and more security and privacy concerns. Numerous news reports of high-profile
security breaches involving these devices [12, 181, 188, 233] create a troubling outlook for the
future of IoT deployments as the number of devices continues to grow [6, 229]. Due to their
closed-source nature, end-users must count on the device vendors to promptly patch their de-
vice’s firmware to mitigate security vulnerabilities.

Moreover, IoT devices can collect a large variety of sensitive data from their sensors (e.g., au-
dio, video, behavior), raising additional privacy concerns for device users [22, 64, 93]. To make
matters worse, IoT devices are often heavily resource-constrained and must rely on the vendor’s
cloud backend to augment their limited computation capability. Offloading to the vendor’s cloud
not only induces extra costs to end-users [189, 224], but also exacerbates security and privacy
concerns. Device users must fully trust IoT vendors with a long list of responsibilities, such as
securing their devices from Internet attackers, protecting their data and managing access control
properly, and meticulously managing cloud infrastructures to reduce users’ cost burdens.

Currently, IoT devices have monolithic designs — device vendors must provide full-
fledged solutions for the entire device software stack, including firmware, companion apps, ap-
plications, and cloud backend for various services. Given limited engineering resources, vendors
must prioritize certain tasks, such as developing new compelling applications, over other respon-
sibilities. As a result, they may sometimes fall behind in applying security patches and securing
their applications, leading to the security incidents mentioned above.

Several IoT frameworks have been proposed aiming to alleviate the drawbacks of mono-
lithic designs [8, 140, 165]. These frameworks advocate an approach to help IoT vendors with
managing low-level device firmware and software libraries, liberating them to focus on building
high-level applications. Although these approaches are promising, they still lack several critical
features, such as supporting heterogeneous hardware platforms, third-party libraries’ flexibility,
and strong security and privacy guarantees.

In this thesis, we argue that by applying formal security analyses and secure system designs
with appropriate optimizations, we can provide secure and practical solutions to help IoT de-
vices become more secure, privacy-preserving, and cost-efficient. This dissertation introduces

1

Figure 1.1: Current monolithic design of IoT devices. Device vendors must implement and
integrate all components in blue, including device firmware and cloud backend applications.
Orange lines indicate communication over the public Internet.

Application
Software Library
Operating System

Hardware
Cloud

Application
Database

Vendor Cloud BackendDevice Firmware

Third-Party Services
(e.g., Automation Platforms)

several new system frameworks with the goal of relieving IoT vendors of many responsibilities.
The general approach is to offload many common functionalities in IoT devices (e.g., software
library updates, ownership and access management) to third parties. This concept, which we call
functionality splitting, enables many new system designs; meanwhile, we applied a number of
security analysis techniques to formally ensure the security and privacy guarantees of our new
system designs.

In particular, we present the designs, implementations, and security analyses of three frame-
works for functionality splitting. First, TEO helps protect smart home users’ data by enabling
IoT vendors to offload the task of enforcing access controls with a new ownership model. Sec-
ond, CAPTURE alleviates the prevalent security challenges of mismanaged software libraries by
offloading the responsibility of managing third-party libraries. Finally, VERISPLIT reduces IoT
vendors’ burdens and costs of maintaining cloud infrastructure by offloading machine learning
inferences to local devices. All of these systems employ a combination of applied formal security
analyses and application-specific optimizations to ensure a secure and practical design.

Thesis statement: By combining formal security analyses and performance optimizations,
we can enable IoT device vendors to efficiently and securely offload many functionalities to
improve the overall IoT deployment’s security, privacy, and cost-efficiency.

1.1 Current Monolithic Device Design

With the proliferation of IoT devices, more and more manufacturers have developed smart de-
vices for their product lines. Today, many IoT devices have adopted a monolithic design for their
software stacks and cloud companion applications, as illustrated in Figure 1.1 (based on tear-
down blogs [4, 5, 54, 55, 97]). IoT vendors directly control both firmware and cloud backend,
retaining high flexibility in development.

IoT vendors are responsible for many tasks and must implement and maintain multiple com-
ponents in the software stack. Let’s take a look at the stack from the bottom up. Device vendors
have to design the physical hardware with various microcontrollers (MCUs) and operating sys-
tems (e.g., Linux, RTOS). They must procure a list of third-party software library dependencies
to be flashed with the firmware. They must develop high-level application logic in the device
firmware and manage communication with backend systems for data storage and functionality.

2

Device vendors must also manage the cloud backend applications to prevent security and
privacy incidents and optimize performance. In addition, the vendor’s backend needs to extend
support for third-party services (e.g., home automation platforms) to expand interoperability
with other devices in the smart home ecosystems. However, interfacing with third-party services
further complicates the backend system design and increases the difficulty of protecting users’
security and privacy.

In summary, the current monolithic design imposes an extensive list of responsibilities on
IoT vendors’ plates. Vendors must implement or integrate many functionalities to fulfill these
responsibilities. Given the limited engineering resources, whether IoT vendors can maintain all
these functionalities satisfactorily is questionable. Unfortunately, as indicated by many security
incidents and our own analysis conducted in this thesis, the answer is “no”.

1.2 Secure and Practical Functionality Splitting
In this thesis, we propose the designs of three novel systems facilitating functionality splitting in
IoT devices. We want to help IoT vendors delegate selected functionalities to third parties se-
curely and practically. We incorporate many formal analysis techniques to provide strong secu-
rity guarantees during the design process. In addition, we meticulously investigate optimization
opportunities to minimize performance impacts. Splitting these functionalities helps IoT vendors
reduce the scope of their responsibilities and minimize workload; meanwhile, our new systems
help improve the overall IoT deployment’s security, privacy, and cost-efficiency. In particular,
each of the three systems identifies new opportunities in splitting functionalities from different
layers of the device software stack:

TEO: Application Access Control and Ownership Management. The first system, TEO,
provides a solution to splitting application-level functionalities for IoT vendors. TEO addresses
challenges in managing access control for users’ private data and ownership of shared IoT de-
vices. Currently, IoT vendors store users’ data in their first-party backend services. Therefore,
they must be responsible for properly managing user data access control. To make matters worse,
more and more devices are being deployed in shared or semi-private spaces beyond users’ homes,
which raises new concerns on how to decide who the current users are and how to protect their
data accordingly.

TEO presents a suite of protocols designed to address these emerging challenges in manag-
ing IoT device access controls. TEO achieves several high-level design goals. Specifically, it can
support frequent changes in temporary device ownership efficiently through fine-grained seg-
mentation of temporal ownership sessions. It enables variable-sized groups to collectively con-
trol and manage shared devices by leveraging Shamir Secret Sharing [194] to distribute control
across stakeholders. Finally, to enable data access revocation with low communication overhead,
TEO incorporates key homomorphic encryption [28, 217] for third-party data storage providers
to rotate encryption keys without accessing plaintext contents.

To ensure TEO’s security guarantees and mitigate potential design-level vulnerabilities, we
utilize a protocol verification tool ProVerif [26] to formally analyze TEO protocol specification
against our well-stated security goals. We address multiple modeling challenges and extend

3

ProVerif with a new template language for easy encoding. After an iterative process of veri-
fication and revisions, we eliminated many design vulnerabilities. We concluded with a final
protocol suite satisfying security properties, including secrecy, mutual authentication, resilience
to data spoofing, and effective revocation for variable group sizes.

CAPTURE: Third-Party Software Library Maintenance. The second system, CAPTURE,
dives deeper underneath the software stack and addresses issues in mismanaged third-party
library dependencies in many IoT devices. CAPTURE proposes a new framework for device
firmware development that enables IoT vendors to delegate the responsibility of maintaining and
updating libraries to a trusted third party (a local hub). Currently, the monolithic device design
entrusts IoT vendors always to keep their devices (along with all dependent libraries) up-to-date
to eliminate potential attacks leveraging publicly-known exploits. Unfortunately, as we demon-
strate in our analysis results, this is a tall order, and even the most well-known IoT vendors often
fall short of satisfactorily fulfilling this responsibility.

CAPTURE enables IoT vendors to offload library management tasks to a trusted entity, reduc-
ing the IoT attack surfaces stemming from vulnerable, outdated third-party libraries. CAPTURE

centralizes library management responsibilities by introducing a trusted local hub. CAPTURE-
enabled devices partition their software across the device and a corresponding driver on the hub.
The hub maintains common third-party libraries and keeps them updated. In addition, the hub
enforces strong network and process isolation to prevent compromised devices from escalating
attacks.

We formalize reasons about CAPTURE’s system design against both internal and external
threats for our security analysis. We want to ensure CAPTURE is secure by construction and can
uphold various security goals, such as strong isolation and minimal attack surfaces.

VERISPLIT: Efficient Use of Compute Infrastructure. Finally, the third system, VERISPLIT,
explores functionality splitting opportunities at the hardware and computation infrastructure
level. In this case, VERISPLIT relieves IoT vendors from managing individual cloud back-
ends for transitory computation demands by offloading them to local devices. Currently, IoT
devices with limited local computing power must utilize first-party cloud services for heavy-
weight computation demands. In VERISPLIT, they can seek helps from other devices deployed
in the same user’s home. Although computation offloading has been a long-standing research
topic and widely adopted in practice, there lacks a solution for secure and efficient offloading for
IoT devices, given their limited computing and communication capability. By focusing on the
emerging applications of machine learning models, we provide specialized solutions for secure
and private inference offloading with practical performance overheads.

VERISPLIT presents solutions to address various security and practical concerns for offload-
ing inferences to third-party hardware. First, the offloading device may want to protect the pri-
vacy of the inference data, which could contain smart home users’ personal information, before
sharing them with third-party workers. Second, the offloading device could be hesitant about
sharing proprietary machine-learning models with third parties, which is necessary for workers
to perform the computation. Third, the offloading device may need to verify the offloaded com-
putation’s integrity and the reported results’ correctness. Finally, VERISPLIT provides an effi-

4

cient and practical solution so that, unlike other heavyweight cryptographic solutions, offloading
inferences with all security options enabled still outperforms the local inference baselines.

We perform security analysis with formal proofs to justify VERISPLIT’s security and pri-
vacy guarantees. VERISPLIT consists of several algorithms, each addressing specific goals (data
privacy, model confidentiality, and inference integrity). Therefore, we individually prove their
correctness and security properties. Combining all together, VERISPLIT presents a comprehen-
sive solution for secure and private inference offloading for IoT devices.

1.3 Thesis Outline
This thesis proceeds as follows. In Chapter 2, we discuss the background and related work
in securing IoT devices, protecting users’ privacy, and facilitating mobile device computation
offloading. In Chapter 3, we discuss TEO, a new device ownership and access management
architecture to help devices protect user data and provide access control. In Chapter 4, we present
CAPTURE, which helps IoT devices manage third-party libraries to improve system security. In
Chapter 5, we discuss VERISPLIT, a new offloading framework that facilitates secure and private
machine learning inference offloading across local IoT devices. Finally, in Chapter 6, we discuss
lessons learned and future research directions and conclude the thesis.

5

6

Chapter 2

Background

This chapter provides background information and an overview of related work in the broad
Internet-of-Things (IoT) research space. We split this chapter into three parts, covering various
discussion topics including 1) high-level challenges and user concerns in IoT security and pri-
vacy, 2) current and experimental system and networking designs of IoT devices, and 3) novel
offloading solutions for emerging IoT applications (specifically, machine learning model infer-
ences in IoT).

2.1 IoT Security and Privacy Concerns

2.1.1 Stakeholder and Bystander Privacy

Recent work has identified the challenges due to the discrepancy between decision makers and
device users [41, 93, 235], partially motivating the need for stakeholder privacy. Some of
this work examines privacy issues from the perspective of bystanders [22, 228] and inciden-
tal users [40]. Moreover, research on preventing intimate partner violence (IPV) for smart de-
vices [75, 76, 92, 161, 210] also echoes our goals for stakeholders’ privacy.

2.1.2 Smart Device Access Control

Motivated by real-world security incidents and research results that highlight the risks stemming
from mismanaged IoT delegation chains [230], researchers have proposed many improvements
and novel access control systems for smart devices, as surveyed by He et al. [94]. Prior work have
proposed improving access control policy language with expressive authorization logic [20] and
contextual information about the home environment [71, 105, 187]. Specifically, Kratos [196]
designs an access control system over multi-user multi-device-aware smart homes. Comple-
mentary to providing granular access control from a temporal aspect, I-Pic [1] proposes a novel
approach to enforce privacy policies for pictures owned by groups, while Hivemind [114] intro-
duces mechanisms to enable collectively control of shared public IoT actuators. Moreover, many
decentralized authorization frameworks, including Wave [10] and several blockchain-based ap-
proaches [18, 61, 168, 191], further eliminate the need for central trusted entities. Finally, the use

7

of novel cryptographic constructions to facilitate access control and delegation has been present
in several instances of recent work [101, 118, 123, 158, 192, 193].

2.2 New System Designs for IoT Security and Privacy

2.2.1 IoT Network Security
Several prior efforts have looked at IoT security issues [229], and proposed augmenting current
network designs to address them. Dreamcatcher [65] uses a network attribution method to pre-
vent link-layer spoofing attacks. Simpson et al. [198], DeadBolt [115], and SecWIR [125] pro-
pose adding features and components on network routers to secure unencrypted traffic. HoMonit
[242], Bark [98], and HanGuard [50] propose finer-grained network filtering rules and context-
rich firewall designs.

2.2.2 IoT Software Security
Several projects address vulnerabilities in various aspects of current IoT software development.
Vigilia [209] introduces capability-based network access control to protect devices while sup-
porting home automation applications. Each device has one driver program, which provides
public APIs accessible by home automation programs. Other efforts [129, 151, 222] address
security challenges in the application-layer of devices, such as operation logging, cloud backend
services, and automation apps, which are complementary to our work.

2.2.3 IoT Frameworks and OSes
Both academia and industry have looked at the challenges of IoT software stacks for smart homes
with heterogeneous IoT devices. HomeOS [56] proposes a unified PC-like platform to manage
all local devices. Commercial IoT frameworks emphasize their security offerings and ease of
management for third-party developers. Microsoft Azure Sphere [140], Particle OS [165], and
AWS Greengrass [8] all provide services to manage device library updates on behalf of devel-
opers. These frameworks also include native support for application-level over-the-air upgrades,
reducing the barrier for developers to patch bugs. Samsung SmartThings Device SDK [184] re-
duces the developer burden of managing library updates by directly offering high-level APIs in
the SDK (e.g., MQTT services). Developers do not need to worry about patching libraries, as
long as they regularly update the SDK runtime.

2.3 Secure Offloading Designs for Emerging IoT Applications

2.3.1 Trusted Hardware
To facilitate secure and verifiable computation offload, several prior works leverage hardware
support using trusted execution environments (TEEs). Slalom [208] utilizes a CPU TEE on the
worker device (e.g., Intel secure enclaves) to ensure the correctness of ML inferences on GPUs.

8

Similarly, DeepAttest [34] relies on TEEs to attest the integrity of DNN models. TrustFL [244]
and PPFL [143] also leverage TEEs (on untrusted devices) to ensure the integrity of federated
learning based training.

Several recent efforts propose new secure accelerators [100, 215, 249] to expand the trusted
computing base beyond the CPU. Notably, Graviton [215] brings trusted execution environments
to GPUs, enabling new applications such as privacy-preserving, high-performance video anal-
ysis [169]. Efforts like SecureTF [171] extend ML frameworks with TEE support to help with
developer adoption. Commercial efforts [154] have started adding support for TEEs on datacen-
ter GPUs.

With a trusted computing base on workers, it should be possible to meet our goals by running
model inferences inside TEEs. However, several practical challenges and additional security im-
plications hinder its adoption for IoT devices. First, executing inferences with TEEs inside CPUs
incurs high performance overhead [208]. In addition, TEE-enabled accelerators are too costly
to be widely deployed in users’ smart homes (e.g., datacenter GPUs cost over $10,000 [38]).
Moreover, TEE systems may be vulnerable to side-channel attacks [33, 172, 212] and other at-
tack vectors [2], potentially affecting our security goals and requiring additional research and
security enhancement efforts.

2.3.2 Efficient Verification

Various techniques for general-purpose verifiable computation [77] and proof techniques for
practical verification[45, 164] have been used to support verifiable inferences using ML models.
For example, SafetyNets [78] proposes interactive proof (IP) protocols and VeriML [245] lever-
ages succinct non-interactive arguments of knowledge (SNARK) proofs to make the inference
execution verifiable. Unfortunately, these proof generation techniques require computing over
finite fields (instead of real numbers) and do not support non-linear activation functions (and
hence must use quadratic activation approximation). Therefore, these approaches do not scale to
large neural networks while preserving high accuracy of the original, unmodified models.

In addition to generating succinct proofs, prior works have explored other techniques for
efficient verification. Fiore et al. [72] propose the approach of “hash-first, verify-later” to verify
computations on outsourced data. Zhang and Muhr [243] introduce a selective testing mechanism
for federated learning that also use Merkle tree hashes to record intermediate results. GOAT [17]
performs probabilistic verification of the intermediate results of machine learning inferences.

2.3.3 Cryptography for Machine Learning Applications

Many recent works propose novel cryptographic protocols for secure ML inferences. These
solutions ensure the integrity of the computation since unfaithful executions can be easily de-
tected by the client (e.g., resulting in corrupted ciphertext). One popular approach is by us-
ing partial or fully homomorphic encryption (FHE) for matrix multiplication used for infer-
ences [13, 79, 106, 227]. In addition to providing inference integrity, homomorphic encryp-
tion often preserves data privacy from untrusted workers because it enables computation over
encrypted data. Despite recent advances in making FHE more efficient [178] and using accel-

9

erators [183], homomorphic encryption still imposes a significant performance penalty, slowing
down inferences by orders of magnitudes.

To alleviate FHE’s overhead, recent works have explored incorporating secure multi-party
computation into the offloading protocol design [144] or with homomorphic encryption [110,
142]. In addition, systems like MiniONN [133] leverage oblivious transfers to prevent private
data from leaving the device while preserving model secrets on the worker machine.

2.4 Summary
Although many researchers have looked into various challenges in IoT devices, a few impor-
tant problems remain unanswered. The rest of this thesis will present our contributions in these
areas: protecting stakeholder privacy, enhancing device security from mismanaged library up-
dates, and improving computation efficiency through local offloading. More importantly, this
thesis proposes novel solutions with practicality and strong security guarantees.

10

Chapter 3

TEO: Protecting IoT Device Users by
Offloading Ownership Management and
Access Control

Many IoT device users worry about the potential privacy implications of the ubiquitous IoT de-
vice deployment and the breadth of the sensitive data they can collect [22, 64, 93]. Although
IoT device vendors already have basic access controls in their existing applications, those sys-
tems are insufficient to handle complex use cases in future IoT deployments. Specifically, many
prior works have looked into how to improve IoT device authorization and delegation systems’
expressiveness [20, 71, 105, 187], decentralized storage models [18, 61, 168, 191], and crypto-
graphically enforced access policies [101, 118, 123, 158, 192, 193, 217]. One common pitfall
of these approaches is that they primarily focus on addressing the privacy concerns of the device
owners and fail to consider concerns from other stakeholders. Those whose data may be captured
by the IoT device must trust the device owners or the small group of device administrators.

In this thesis chapter, we describe our work on the design of a new IoT device ownership
model (TEO — IoT Ephemeral Ownership) giving direct controls to the device stakeholders —
who may be impacted by the presence of the device — and the implementation of a new system
architecture demonstrating the ownership model. This architecture splits the role of maintaining
secure data storage and managing access controls of users’ private data from the list of respon-
sibilities of current IoT device vendors into a third-party service. More importantly, we limit the
trusted computing base of handling private data and avoid any trusted requirements for the cloud
and storage service providers. At the same time, the data owners retain control and ultimately de-
cide who can access their data. To provide strong security guarantees, we apply formal security
analysis and verify that the proposed protocol design satisfies all our security goals.

The rest of this section describes TEO in detail, based on our published paper [240]. More-
over, we presented a working prototype of TEO as a demonstration [241] and released the source
code of our prototype [238]. In Appendix A, we provide the formal modeling code of TEO’s
protocol used for verification in ProVerif and the additional template language we developed.

11

Figure 3.1: Overall TEO workflow. An admin initializes the device (1). Next, the user claim
device ownership with the admin’s pre-approval (2a and 2b). During normal operation (3), the
device encrypts users’ data and uploads it to storage. A requester can download the data (4),
but needs the owner’s approval to decrypt it (5). To revoke access, the user can directly issue a
request to the storage provider (6).

User Device

Admin

Data
Requester

Untrusted
Storage

1
2a

2b

3

3
4

5

6

3.1 Motivation: Importance of Stakeholder Privacy

Internet-of-Things (IoT) devices are rapidly gaining popularity in both private settings (e.g.,
homes, offices) and public spaces (e.g., conference rooms) [30, 74]. However, their growing
ubiquity has led to privacy concerns that often stem from the breadth of sensitive data (e.g.
audio, video, images) that they can sense [22, 64, 93].

To address growing IoT privacy concerns, prior work proposes expressive access control
mechanisms for authorization and delegation [20, 71, 105, 187], decentralized storage solutions
based on blockchain [18, 61, 168, 191], and cryptographic access control schemes [10, 101, 118,
123, 158, 192, 193]. One key limitation of these approaches is that they lack support for exclusive
user control. They focus primarily on the privacy concerns relevant to the device owners and not
other stakeholders who may have legitimate concerns about these devices since the data they
capture may relate to their activities. These approaches often grant the sole device owner, or a
small group of administrators, full authority over the data that the device generates, assuming
these entities are trusted by those who may be impacted by the devices.

As pointed out by a growing body of research, these assumptions are not always consistent
with the emerging ubiquity of smart devices in shared spaces. Passive bystanders may nonethe-
less be impacted by a smart device simply by, for example, visiting someone’s home [22, 228],
or by incidental exposure in public areas [40]. A related but distinct scenario is illustrated by
the presence of IoT devices in short-term rentals (e.g., Airbnb), where guests may wish to use
whatever smart devices are in their units but have concerns about the host’s ability to invade their
privacy [53, 135]. Both cases highlight the lack of support for stakeholders’ privacy in existing
access management systems. In situations like these, where there is an implied expectation of
privacy, any user in a device’s vicinity who is impacted by its sensors should have a say when it
comes to the device’s functionality and the data it generates. A key challenge arises as to how to
give stakeholders control over devices that impact them so that they can decide how these devices
operate, and who has access to any data that emanates from their sensors.

12

3.2 System Overview
To address stakeholders’ privacy and security concerns, we envision a new model of device
ownership that protects the interests of both the device users and its administrators. We propose
TEO — IoT Ephemeral Ownership – that grant users, as ephemeral owners, full control over the
device’s operations. Historical data collected by the device will always belong to the ephemeral
owners. When someone wants to access the data, they have to get permission from all the data
owners (stakeholders). While the device administrators decide who can claim the device to
become an ephemeral owner, they cannot interfere with the device’s operation or access private
data captured by it without the owners’ approval. To help contextualize TEO’s workflow, we use
a running example of a group of friends renting an Airbnb house for the rest of this section.

The high-level TEO workflow is illustrated in Figure 3.1. The admin (e.g., Airbnb host)
first installs the IoT device and initializes it. (Step 1). Afterward, the device is ready to be
claimed by new owners only if they are authorized by the device admin. The potential users
(e.g., Airbnb guests) all have a user agent program running on their phones. After booking
their reservation, they need to ask the host to issue “pre-auth tokens” with everyone’s public
key (Step 2a). Pre-auth tokens prevent unauthorized people such as malicious neighbors from
accessing the device. When users arrive at the Airbnb rental, the user agent on their phones
initiates a process to claim the device (Step 2b). As the group membership changes (users join
and leave), the device dynamically adjusts the set of owners. During normal operation, the device
protects its stakeholders in two ways. First, if the device receives commands to perform actions
(e.g., open the door, adjust the temperature), it needs to ensure the command is authorized by
the current owners (omitted from the figure). Every command includes a certificate with user-
generated signatures, which the device can verify using the current owners’ public keys. Second,
the device preserves users’ data ownership with a series of encryption operations and distributes
individual data keys to the set of owners (Step 3). To facilitate future data access and reduce
users’ storage overhead, TEO-enabled devices directly upload the encrypted data to any untrusted
cloud storage provider. When any entity wants to request access to this encrypted data (Step 4),
they need to seek the permissions of the original owner(s) to decrypt it (Step 5). Later on,
if a user decides to revoke the access, they can directly contact the storage service provider
and provide re-key tokens (Step 6) generated with key homomorphic encryption. This special
cryptography primitive allows the storage provider to switch encryption keys of the ciphertext
by directly applying user-provided tokens. In other words, key revocation can be performed by
the storage provider on the encrypted data itself without having to decrypt it first.

3.2.1 Target Use Cases
TEO aims to provide ephemeral owners with full control over who can access their data and when
regardless of data types. Therefore, TEO is well suited for applications and IoT devices that store
operational data that could contain sensitive information about their users, such as camera and
speaker recordings or sensor readings. For data accesses, we primarily focus on scenarios where
data requesters want to use historical data for analysis, such as to train machine learning models
or to recall past events.

Since TEO devices maintain an up-to-date list of current owners, we can extend TEO to

13

enforce real-time access control of the device as well. Consider, for example, a smart door lock.
After being claimed by a new user, this lock should reject commands issued by previous owners.
To achieve this, the device can require that all incoming commands include an authorization
certificate signed by the owner, and we implemented a simple application as part of our case
studies. Although not the current focus of TEO, we believe it would be a useful future direction to
enrich certificate designs with proof-carrying authorizations [15, 20, 23, 119] for more expressive
policy specification languages.

TEO targets a variety of deployment scenarios such as rental homes and shared offices.
Specifically, they have different design requirements and considerations. In rental homes (e.g.,
Airbnb), the host sets up smart devices and lets guests use them. Guests have lower churn rates
(stay a few days at least) and smaller group sizes. Sometimes, a single owner would suffice as
the group implicitly trusts each other if they stay at the same place. In contrast, smart devices in
shared offices and conference rooms have more frequent changes in owners and group members
would prefer an equal role in decision making. These devices would be managed by the building
managers, and they may have more insight on users’ daily routine (e.g., which floors and rooms
they are likely to occupy). Building managers can potentially use this information to improve the
practicality of TEO. For example, they can selectively issue pre-auth tokens to conference rooms
based on a user’s calendar events.

3.2.2 Design Goals
Flexible Association of Devices and Users. We expect frequent ownership changes in physical
spaces with smart devices. An Airbnb may see ownership changes that span days, while shared
spaces in smart buildings (e.g. conference rooms) may see ownership changes even hourly.
Moreover, multiple users can share an office and hence be collectively impacted by the devices.
Ideally, all stakeholders should have a say in controlling the device and accessing the data it
collects. Unfortunately, existing smart home access control systems often assume a static group
of user(s) make all these decisions.

Preserving Data Ownership. Data collected by smart devices should always belong to the
group of users present at the time of capture. Anyone trying to access the data should request
the data owners’ permission. Most importantly, dynamically changing ownership of the device’s
users and administrators should not affect historical data ownership. This requirement ensures
that users preserve their control over the private data even if they no longer own the original
device in the future.

Decentralized Trust. Users should be able to manage access requests without relying on third
parties. Centralized access control systems, managed by individual companies and building own-
ers, require complete trust in these entities and in their ability to protect users’ data and enforce
access policies. In return, centralized systems provide an efficient solution for processing access
requests and sharing data. On the contrary, we want to empower users to decide who should have
access to their data themselves while benefiting from the performance and availability of cloud
services.

14

Formally Verified Security. Our goal is to provide formally verified security guarantees for
our proposed TEO system. The main components of TEO are a series of complex communication
protocols designed for multiple entities in IoT deployments. Therefore, we encode our protocol
specifications into models and verify their security and correctness under our stated threat model
in Section 3.4. After several rounds of refinement, our streamlined TEO design provides assur-
ances of security and correctness.

3.2.3 Threat Model
We designed TEO under the assumption of a powerful attacker, who can monitor all communi-
cations between users, devices, and the third-party storage provider, attempts to undermine its
goals by either (1) controlling the device without the active consent of the ephemeral owner, (2)
accessing the data generated by the device, which should only be accessible by the ephemeral
owner, or (3) impersonating one of these parties. This follows the Dolev-Yao network attacker
model [57] used in our formal analysis (Section 3.4). Concretely, such an attacker might cor-
respond to someone in the vicinity of the device, a malicious admin who wishes to violate the
privacy of an ephemeral owner, or a previous ephemeral owner who aims to extend their control
of the device and its data past the agreed-upon terms.

We assume that local devices are trusted to correctly execute the protocol, i.e. the TEO-
enabled device has not been backdoored or rooted, and will not leak data, encryption keys, or
bypass authorization checks. We assume that the third-party storage providers may be passively
malicious (i.e. honest-but-curious): they might attempt to extract private information from the
data they receive, but will faithfully execute the TEO protocol as specified. This is consistent
with using reputable cloud services, with whom users may not trust storing cleartext data, but for
whom the reputational risk stemming from actively-malicious behavior is too great.

Our formal analysis (Section 3.4) is in the symbolic model, so we must also assume that the
cryptographic primitives used by the protocol are secure against computational attacks. Like-
wise, our analysis does not consider information that might be leaked from metadata (e.g., the
identity of users who participate in the protocol, from their public key certificates), nor semantic
information that might leak through traffic analysis (e.g., inferring user behaviors by observing
the timing and sizes of encrypted network packets). While these may provide opportunities for
attackers to learn unwanted information in certain settings, we leave careful consideration of
these risks to future work.

3.3 TEO Protocol
We now describe the TEO protocol and the workflow between device administrators, users, stor-
age providers, and devices. We start by introducing the key challenges that we sought to address
in our design and describing our notation.

Granular Ownership & Data-Sharing. First, we envision TEO’s use in settings where device
ownership changes frequently, and the duration of ownership varies drastically (e.g., using a
conference room for tens of minutes, or renting a house for several days). We accommodate these

15

in TEO by partitioning the ownership period into relatively small segments, with each segment
tracking its set of owners (potentially distinct) from adjacent segments. A new user wishing to
claim (potentially shared) ownership of a device takes effect at the start of the next available
segment. This approach facilitates fine-grained data sharing of selected time windows of data
rather than all-or-nothing sharing. However, to do so requires generating fresh keys even when
ownership remains the same across segments. Configuring a relatively small segment interval
affords flexible and responsive transitive ownership, at the cost of the corresponding overhead of
managing cryptographic state for each segment, and additional rounds of TEO communication.

The storage overhead introduced by this scheme may be significant for mobile user agents.
However, for many of the envisioned use scenarios for TEO, data sharing requests are likely to
access several contiguous segments, e.g., in the case of streaming video or sensor readings. Thus,
to mitigate the storage overhead, we designed TEO to securely store groups of keys from a single
session on the untrusted cloud storage, so that the user agent is only responsible for maintaining
a single key for the entire session. This mechanism also enables efficient group ownership, using
Shamir Secret Sharing [194] to split data block keys across group members.

Efficient Revocation. Finally, efficient key revocation is challenging, as it is infeasible for
resource-constrained user agents to download, locally re-encrypt, and re-upload ciphertexts to the
storage. We leverage key-homomorphic encryption [28, 217] to facilitate re-encryption directly
on the untrusted storage provider, requiring users to only generate fresh rekey-tokens.

3.3.1 Notation

We use three main encryption primitives in our protocol. Each is denoted by Enc(·) for en-
cryption and Dec(·) for decryption, but vary by the set of keys that they take. Symmetric-key
encryption is represented as Enck(n,m) with key k, nonce n, and message m. Long messages
are concatenated with multiple parts (m1| · · · |mn). Encrypting a message with a recipient’s pub-
lic key is denoted by EncpkR(m) where pkR is the receiver’s public key. We use public-key
authenticated encryption to protect the message’s confidentiality and integrity when the public
keys of both parties are known, denoted by Enc⟨skS ,pkR⟩(n,m) where skS is the sender’s secret
key. Finally, we use key homomorphic encryption from Sieve [217] to support revocation, and
denote this operation by SieveEncKs(ns,m), where Ks is the Sieve key.

3.3.2 Device Initialization

New devices need to go through a one-time initialization process and obtain a valid device proof
(DP), as illustrated in Figure 3.2, before they can start regular operation and accept new owners.
The device proof is necessary for the device to demonstrate its authenticity to potential owners
in later steps. To facilitate mutual authentication, devices and administrators need to establish an
out-of-band communication channel to share setup keys. This is common with smart devices
using existing solutions including QR codes printed on devices, physically-printed passkeys
packaged with the device, and short-range wireless communication [159]. Our prototype im-
plementation uses QR codes to share setup keys in this phase of the protocol. If the device needs

16

Figure 3.2: Protocol workflow for device initialization.

Admin A Device D

Generates setup key: K

Share K (Out-of-Band)

Generates admin
challenge: AC n1, EncK(n1, pkA|AC)

Generates device
challenge: DCEncpkA

(AC|DC|pkD)

Creates device proof: DP = SignskA(pkD)

n2, Enc⟨skA,pkD⟩(n2, DC|DP)

Figure 3.3: Protocol workflow for proximity detection.

Device DUser U
Device Discovery

Generates proximity nonce: np

BLE Beacon advertise np

Match device from discovery results

TCP/IP Heartbeat: pkU , np

to change its administrator, it must be reset, and the initialization process needs to be completed
again with fresh out-of-band key material. Note that this is different from changing ephemeral
owners, which we describe next.

3.3.3 Device Ownership Management
Device Discovery. When users enter a new environment, they can discover TEO-enabled de-
vices to obtain public information about the device, such as its public key and admin information.
This can be achieved in several ways. First, they can locate the device and scan the QR code
dynamically generated and displayed on the device. However, many IoT devices do not have
displays to provide such functionalities. Alternatively, the device can advertise its presence and
communicate this information over a local network, similar to service discovery functions used
in existing protocols [16, 155, 204, 236]. Users broadcast discovery requests to all local hosts
and TEO devices will respond with their information. Since this request is broadcast, users may
receive responses from devices located in nearby rooms and offices. To reduce false positives,
we envision several potential extensions to improve TEO’s usefulness and practicality in future
deployments. First, the reply messages can include additional information about the device’s
location, so users can choose the correct device based on their own location. In addition, admins
can decide who are capable of claiming certain devices by restricting pre-auth tokens to users.
For example, Airbnb hosts can give tokens based on guests’ emails, and building managers can

17

Figure 3.4: Protocol workflow for acquiring pre-auth tokens.

Admin A User U
pkU

Generate token: t = SignskA
(pkU)

n, Enc⟨skA,pkU ⟩(n, t)

Figure 3.5: Protocol workflow for claiming ownership.

User U Device D
pkU

pkD, DP (from initialization)

Verify DP ; Generates user challenge: UC

n1, Enc⟨skU ,pkD⟩(n1, t|UC)

Verify token tsuccess, n2,
Enc⟨skD,pkU ⟩(n2, UC)

provision tokens based on users’ locations (buildings, floors, etc.). Finally, the device can ask its
current occupants to moderate new users’ join requests since they can physically confirm whether
the new users are in the room.

Proximity Detection and Duration Setting. We propose a Bluetooth Low Energy (BLE)
based proximity detection mechanism for the TEO enabled device to detect when ephemeral
owners leave its vicinity. For simpler scenarios such as home rentals, this might be unnecessary
since the owners’ stay has a fixed duration. However, this mechanism would alleviate chal-
lenges in shared spaces such as offices and conference rooms where users frequently enter and
leave. Figure 3.3 shows the workflow of TEO’s BLE proximity detection. The device periodi-
cally generates new proximity nonce np and broadcasts it through BLE. We do not require a high
frequency of new proximity nonce generation, since the device only needs to know if the owner
is part of the current data block recording (e.g. one data block per minute). Since multiple users
can collectively own the same device, we set the device in BLE beacon mode so it continuously
advertises information without requiring an explicit connection from the user’s phone. On the
other side, the TEO app on the user’s phone periodically sends out heartbeat messages with the
latest nonce sent within the device advertisements over BLE. Once the device stops receiving
the correct nonce from a particular user’s phone for an extended period, it can infer that the user
must no longer be in BLE range and thus remove them from the list of ephemeral owners. The
device should be configured with proper transmission power so only nearby users likely in the
same space can receive the BLE advertisement while reducing false positives. This automated
process is executed by the user’s phone app to minimize user burden. However, as a fallback
mechanism, users can manually specify the duration of their occupancy in a space (or use default
values) to be included in the ownership claiming process.

This mechanism is designed to ensure current ephemeral owners are still within the device’s

18

vicinity. Consequently, the device can quickly remove stale owners that have already left the
room. On the other hand, this mechanism is not intended to limit who can claim devices (the
responsibility of pre-auth tokens) because BLE could have high false positive rates (i.e., everyone
within the range will receive this message).

Claiming Ownership. Figures 3.4 and 3.5 illustrate the steps to claim ephemeral ownership.
First, the user acquires a “pre-authorization token” from the administrator (Figure 3.4). TEO uses
these tokens to prevent unauthorized device access and enforce more granular, device-specific
usage policies. For example, rental hosts can generate pre-auth tokens for guests with upcoming
reservations, and building administrators can give pre-auth tokens for the devices in a specific
office to those who can use them.

Figure 3.5 illustrates the next step in establishing ownership. Just as the pre-auth token estab-
lishes the authenticity of the ownership claim to the device, the device proves its authenticity to
the new owner by issuing its device proof (DP) obtained during initialization. The user also gen-
erates a fresh random challenge (UC) to prevent replay-enabled device spoofing. Extending this
phase to support group ownership is straightforward: each user performs the steps in Figure 3.5
independently, and the device tracks the list of ephemeral owners accordingly. The device is then
responsible for synchronizing control between its current owners.

The device needs to verify the integrity of the token t before accepting the owner. Option-
ally, this token can include expiration times and other constraints (signed by the admin when
creating the token), and the device can enforce these constraints during token verification. We
can enhance the token design with JSON web tokens (JWT) [109] for this use case, although our
current implementation does not support it yet.

After a user becomes an ephemeral owner, the device can enforce access checks for incoming
commands and instructions from a cloud back-end or home automation platform (e.g., IFTTT)
to prevent previous owners from retaining controls. To support this check, every automation
applet or cloud service should obtain authorization in the form of signed certificates from current
owners.

3.3.4 Data Storage and Access

To preserve users’ ownership of data generated by the device, one approach would be to transmit
any such data directly to the user, and let them manage it independently. This is too demanding
for mobile user agents, and even if it were not, would impose an unnecessary burden on them.
Our protocol instead uses a third-party cloud storage provider that is honest but curious: we ex-
pect it to correctly store data from the device and respond faithfully to users’ requests, but do not
trust it to refrain from attempting to inspect the confidential data. To protect the confidentiality
of the device data, which may contain sensor readings or video recordings that users consider
private, the device could encrypt the data before sending it to the cloud provider, and provide the
user with all of the keys necessary to access it in the future. This poses several challenges, in-
cluding how to support group ownership while managing data-sharing and subsequent revocation
requests.

19

Figure 3.6: Example data storage workflow. Nonces with numerical subscripts are local vari-
ables, only used within the corresponding protocol flow. The orange box indicates user-specific
actions in group ownership.

User U Device D Storage

Generates session ID sid, data key k, nonce nd;
Create encrypted data block: d′ = Enck(nd, d)

uuid1, d′, pkU

n1, Enc⟨skD,pkU ⟩(n1, sid)

Creates and store Sieve
key Ks, nonce ns

n2, Enc⟨skU ,pkD⟩(n2,Ks|ns)

Creates Sieve data block: ds = SieveEncKs
(ns, k)

uuid2, ds, pkUn3, Enc⟨skD,pkU ⟩
(n3, sid|uuid1|uuid2)

Create metadata block for sid:
dm = (uuid1, nd, uuid2|ns|pkU)

uuid3, dm, pkUn4, Enc⟨skD,pkU ⟩
(n4, sid|uuid3)

Sieve Encryption. In addition to standard cryptography operations, we incorporate a key ho-
momorphic cipher proposed in Sieve [217] in TEO’s protocol design. Key homomorphism [28]
allows an entity to change the encryption key of a ciphertext without seeing the underlying plain-
text. This characteristic is well-suited for untrusted TEO storage providers to assist in the process
of revoking data access without ever being able to decrypt the data itself.

Storing Data. Here we explain the data storage process for a single owner, as we will discuss
group modes later. Figure 3.6 illustrates how TEO addresses these challenges and the steps taken
to store a user’s data in the cloud. First, the device encrypts the data with a freshly generated
session key k for the current time segment. We use symmetric encryption for computational
efficiency. The device uploads the encrypted data block to the storage provider, with an identifier
uuid1. Next, the device obtains Sieve credentials from current owners (Sieve keys Ks and Sieve
nonce ns). Afterwards, the device constructs the Sieve data block for this session and encrypts the
value of session key k with Sieve cipher. This Sieve data block is then uploaded to the storage
provider with an identifier uuid2. Finally, the device uploads a metadata block to the storage
provider, containing all the information needed to locate the encrypted data, as well as the Sieve
blocks and the nonces used for the Sieve cipher. Meanwhile, the owner can collect bookkeeping
information (such as session IDs and block UUIDs) from the device asynchronously.

To grant access to an encrypted block, the user can distribute the Sieve key to the requester.
The symmetric key used to decrypt the data is stored in the Sieve block on the storage provider.

20

Figure 3.7: Example data access workflow. The requester wants to access the data associated
with uuid3 from the previous case. For brevity, the steps involved with sending download re-
quests for UUID to the storage are omitted.

User U Requester R Storage
uuid3, dm, pkU

Generates access nonce na

pkR, n4,
Enc⟨skR,pkU ⟩(n4, uuid2|na)

Check na freshness; grant access

n5, Enc⟨skU ,pkR⟩(n5,Ks|na)
uuid2, ds, pkU

Obtain data key k := SieveDecKs
(ns, ds)

uuid1, d′, pkU

Figure 3.7 shows the process for someone to request data access. After receiving the Sieve key,
the requester can gather all the information necessary to decrypt the requested data.

Threshold Encryption. One building block to enable group ownership is the well-established
threshold encryption; specifically, we use Shamir Secret Sharing [194]. At a high level, the t-
of-n threshold encryption allows protecting a secret message with n key shares. To decrypt the
message, someone only needs to collect t shares (t ≤ n). The values of t and n must be set
statically before the encryption process begins.

Group Ownership. To extend the protocol to support group ownership, the device needs to
collect Sieve key information from each owner in the group by repeating the steps in the orange
box of Figure 3.6. Assuming a group of owners with public keys pkG = [pkU1 , · · · , pkUN

], the
device still encrypts the data with the session key k the same way as before, and then uploads the
result to the storage provider as (uuid1, d′, pkG). The device then splits the data key k into N key
shares k1, . . . , kN . It constructs one Sieve data block for each owner, dsi = SieveEncKsi (nsi , ki),
and sends them to the storage provider as (uuid2i , dsi , pkUi

). Finally, the device constructs a
metadata block uuid3 that refers to each of the owners and their corresponding Sieve blocks, and
stores it on the storage provider:

dm = (uuid1, nd, uuid21|ds1|pkU1| · · · |uuid2N |dsN |pkUN
)

To access a shared data block, the requester needs to seek permission of each owner and obtain
the Sieve key for their share of the data key.

We conclude by noting that threshold encryption can support several data access policies
by adjusting the threshold value t. Currently, TEO requires that accessors have the approval of
all group members (by setting t == n) because we want to give everyone the right to veto.
It is straightforward to extend TEO with alternative policies (e.g., requiring majority approval

21

Figure 3.8: Revocation workflow.

User U Storage S

Generates user nonce nu

EncpkS
(uuid2|uuid3|nu)

Generates storage nonce ns
EncpkU

(nu|ns)

Selects new Sieve key K ′
s;

Generates rekey token: δ = −Ks +K ′
s;

Generates notification nonce: nnoti

n1, uuid2,
Enc⟨skU ,pkS⟩(n1, δ|nnoti|nu|ns)

Apply rekey token δ
on block uuid2success, nnoti

by choosing t > n/2). In addition, a future extension of TEO can include another layer of
threshold encryption for individual users. Each user can save multiple key shares on different
agents (laptops, phones, backup codes) and have a threshold value t == 1 in case they lose
devices.

3.3.5 Revocation

TEO uses three blocks to encrypt each segment of data uploaded by the device and to support
efficient revocation of access to a given block — the encrypted payload, a Sieve block, and the
metadata block in plaintext. If the revocation was not needed, then the design could be simplified
and storage overhead mitigated by dropping the Sieve block, and granting access by sharing the
data key directly. Instead, our approach manages access by treating the Sieve key as a credential
so that revocation can be accomplished by having the storage provider re-encrypt only the Sieve
block, which is small in size relative to the actual ciphertext.

Figure 3.8 illustrates revocation in TEO. The user generates a rekey-token δ, and sends it to
the storage provider along with identifiers for the appropriate Sieve blocks. The storage provider
re-encrypts these blocks using the rekey-token. A benefit of this design is the consolidation of
multiple encrypted data blocks, each with its own key, into a single Sieve block while maintain-
ing low overhead on the client’s side for revocation. The client can generate a fixed size rekey
token to change the Sieve data block, thereby avoiding the need to download and re-encrypt ar-
bitrary sized Sieve data blocks containing multiple data keys. Unifying encrypted data blocks
in this way is especially helpful when a session contains a series of smaller data chunks, for ex-
ample, an hour’s worth of video recording may be stored as one-minute chunks to accommodate
frequent membership changes and granular sharing, but the user is not burdened with managing
credentials for each of these chunks individually. Additionally, each owner in a group can make
access control decisions independently by rekeying their corresponding Sieve block.

22

3.3.6 Partial Availability
To process access requests, data owners (users in Figure 3.7) need to be online. This requirement
in TEO is intentional to give users direct control over their data, as all access requests must seek
their direct approval. However, the limitation is that even if a single user is unreachable, no one
can access the original content even if they have everyone else’s permission already. To strike
a balance between data availability and users’ access control, the group of users can modify the
access policies at the time of data recording to choose different values of t for the threshold
encryption (as discussed in Section 3.3.4).

Moreover, individual users may lose their mobile devices and thus lose their key shares.
Aside from periodic backups, one popular solution for implementing recovery mechanisms is to
leverage threshold encryption (as mentioned in Section 3.3.4 and demonstrated by prior work
[217]). We acknowledge that such a mechanism is important for future TEO deployment in the
real world.

Finally, users may be temporarily unreachable when the device executes the data storage
operation. Our protocol design ensures that unresponsive users will not block the main data
encryption and upload functions (first step in Figure 3.6). If the device cannot reach a user, it can
store the user’s key shares locally and retry later. Eventually, the device deletes its local copy
once the user is back online. Meanwhile, since the private data have already been uploaded, the
device does not need to keep the data while waiting for the unresponsive users.

3.4 Security Analysis
We formally model TEO using a well-known protocol verifier, ProVerif [26], and encode several
key security properties to verify TEO’s security and correctness. In modeling TEO we address
several challenges, particularly in formalizing group ownership, key splitting, and revocation.

3.4.1 Security Goals
We aim to achieve the following security goals with our TEO protocol design.

• Secrecy. A user’s private data, once encrypted by a TEO supported device, should not be
accessible by anyone without the explicit authorization of the user. For group ownership,
the policy requires that only entities with the consent of all owners are able to access the
data.

• Mutual Authentication. After the device is initialized and claimed (Section 3.3.3), all
parties must mutually authenticate and agree on each other’s roles (i.e., device and admin,
device and owner must acknowledge each other).

• Prevent Data Spoofing. Attackers should not be able to spoof data, potentially over-
whelming users’ local storage space with keys for non-existent data blocks. If the user
concludes a data store operation, then the device must have indeed stored the user’s private
data for the corresponding session.

• Effectiveness of Revocation. If the data requester’s access is revoked by the owner, the
requester should not be able to decrypt the data block if they download it again from the

23

storage provider. Conversely, revocation should only happen when the owner requests it,
and the new key should be able to decrypt the data in the future. For groups, an individual’s
decision should not affect others (i.e., others’ keys should still work since they did not
revoke their keys). Note that TEO does not preclude a requester from storing the already
decrypted data offline perpetually.

3.4.2 Modeling Protocol Workflow

We aim to identify protocol design-level bugs that may compromise TEO’s security and privacy
protections. We assume that the cryptographic primitives (e.g., encryption algorithms) are secure.
Hence, we choose a symbolic verifier (ProVerif [26]) since it requires lower human guidance and
is better suited for automated analysis compared to computational ones. Interested readers can
refer to prior work for a more detailed discussion of different types of protocol verifiers [19, 25].

In ProVerif, protocols are modeled as sets of processes. Each process can generate fresh
internal variables and local secrets, such as private keys that are hidden from the attacker. We
represent each entity (e.g., admin, user, device) as its own process that can spawn and execute
repeatedly to conduct multiple rounds of communication.

We symbolically encode all cryptographic operations so that incorrect credentials (e.g., de-
cryption keys and invalid signatures) will terminate the process’ execution. Processes commu-
nicate over channels. Attackers can intercept, drop, or fabricate any message over the channel.
Since attackers can obtain a complete history of all network messages, we can conservatively
model the untrusted storage provider with this general network attacker.

3.4.3 Modeling Security Goals

We encode every security goal from Section 3.4.1 with concrete ProVerif queries to ensure TEO’s
protocol design satisfies all security properties. We create unique events as checkpoints for the
execution of each process. We construct correspondence queries to encode properties such as
“if A happens, B must have already happened”. Correspondence queries can be injective, which
means that the verifier will check that there is a strong one-to-one mapping between events. To
ensure correctness, we also add reachability queries to verify that all events are reachable during
process execution; unreachable events can vacuously satisfy correspondence queries, leading to
a false conclusion of TEO’s correctness.

Secrecy. We create a private variable userPrivateData to represent the confidential informa-
tion. This variable can be shared across different processes but remains hidden from the network
attacker. The device encrypts this variable and uploads the ciphertext to the storage. We con-
struct a secrecy query to verify that this variable remains secret from the network attacker and
untrusted storage provider.

To verify that a data requester (requesterPK) can only decrypt the data with approval from
all owners (owner 1, owner 2, · · ·), we construct a query ensuring that the event Access-
Data(requesterPK, userPrivateData) from the requester is preceded by the GrantAccess(
owner i PK, requesterPK, dataUUID) events for all data owners i ∈ [1, N].

24

Mutual Authentication. We encode several injective correspondence queries to verify this
goal. For initialization, the query states that whenever the event DeviceAcceptAdmin(devicePK,
adminPK) happens on the device, the predecessor AdminAcquireDevice(adminPK, devicePK)
must already have occurred for the admin.

For claiming device ownership, the device needs to verify that the user has a valid pre-auth
token before accepting new owners. Therefore, the final event UserFinishDevice(userPK, de-
vicePK, adminPK) on the user process should be preceded by the device-generated DeviceAc-
ceptUser(userPK, devicePK, adminPK, preAuthToken), which itself should be preceded by
the event that admin marks this token as valid, AdminGrant(adminPK, userPK, preAuthTo-
ken).

Prevent Data Spoofing. When the user finishes the Sieve key negotiation in data store (Fig-
ure 3.6), it produces the event UserStoreFinish(userPK, devicePK, sessionID). This event
should be preceded, injectively, by the device side event DeviceFinishSieve(userPK, devi-
cePK, sessionID) issued after it finishes uploading Sieve data block to storage. Violating this
query will cause users to store information for non-existed sessions.

Effectiveness of Revocation. We encode the revocation process in different phases, a cross-
process synchronization primitive provided by ProVerif. Operations in one phase will be in-
active when the model moves into a new phase. All processes start in “phase 0”. The data
requester obtains the owner’s authorization and successfully access the data. When the user
revokes access, the system transfers into “phase 1” and Sieve data blocks in the storage are up-
dated with new keys. In “phase 2”, the requester downloads the data blocks from storage but
attempts to decrypt with the previously cached Sieve key. We verify that SucceedDecryptOld-
Key(dataBlockUUID) should be unreachable. As group size increases, we add more phases and
pick one owner to revoke access at each phase. By the end of every round, the requester’s cache
of other owners’ Sieve keys is still valid, thus we also verify that one owner’s decision to revoke
will not interfere with other users’ keys.

Finally, we implement an injective query to ensure that the storage provider only applies to
rekey tokens upon the data owner’s request. This query led us to identify a bug in an earlier
protocol draft that an attacker can replay rekey requests, rendering users’ data inaccessible by
anyone. This finding prompted us to add additional nonces to our protocol.

3.4.4 Modeling Group Ownership
To support group ownership, we use Shamir Secret Sharing to distribute data keys among co-
owners. However, ProVerif currently lacks language support for this type of threshold encryp-
tion [145], particularly for encoding variable-sized sets of co-owners. To address this, we encode
the size of the owner set statically in the model. All parameters of cryptographic operations must
also be set statically, including the number of users and their positions. We have to create unique
processes for every user in the group to handle different keys and internal states. As the group
size grows, we have to expand these arguments and processes accordingly. Note that the im-
plementation of different user processes is nearly identical, except for minor differences in user

25

indices. Therefore, we developed a preprocessor language that automates the construction of
static models with specified group sizes. We express the protocol flow with template functions
and parameterized values. In this way, we can implement a common user process and, during
compilation, expand this template into a variable number of concrete user processes.

3.5 Implementation
We provide an open-source repository [238] that includes the source code of TEO and the details
of the security protocol modeling. We implement the core TEO protocol as a shared cross-
platform library, libteo, with public-facing APIs. The library is written in 8945 lines of C++,
excluding third-party libraries and evaluation tests. We use libsodium [130] as the main cryptog-
raphy library, containing implementation for standard secret-key and public-key cryptography
operations, with X25519 key exchange, XSalsa20 stream cipher encryption, Poly1306 MAC
authentication, and Ed25519 signatures. In addition, we leverage the Crypto++ [46] library to
implement Shamir Secret Sharing and the key splitting functionality for group ownership. Since
the authors of Sieve [217] did not release their code, we re-implement Sieve operations using the
Ed448-Goldilocks elliptic curve library [90] and consulted with them over email with our im-
plementation details to ensure correctness. We use FlatBuffers [82] to serialize TEO’s protocol
message in a cross-platform format.

Our TEO prototype consists of client applications for multiple platforms. We developed a
prototype Android app with support for the users’ and admins’ functionalities in 3350 lines of
Java code. We use Android Beacon Library [150] for BLE scanning. It includes libteo as
a native C++ library and uses Java Native Interface to execute API calls. We also implement
test clients for different roles on x86 Linux desktops and popular single-board computers with
ARM SoCs (Rasberry Pi 4 and Pi Zero W). Moreover, we develop a storage provider daemon
as a key-value store for encrypted data contents using LevelDB [83] and with support for TEO

revocation. In total, we implement these agents in 1206 lines of C++ in addition to the libteo
library. TEO’s protocol model contains 940 lines of ProVerif code with the group templates.
After compilation, these models include 917, 1258, and 1599 lines of ProVerif code for group
of size 1–3. We observed an exponential growth in verification time and memory consumption
with larger group sizes. For example, on a 16-core machine with 64 GB RAM group size=1 took
3.62s, 258 MB memory while group size=3 took 17+ hours and consumed 50 GB. While we did
not verify higher group sizes, our model generalizes to any group size.

3.6 Evaluation
We evaluate TEO’s design and our prototype implementation, with a suite of microbenchmarks
and by integrating TEO with several real-world IoT device applications. Our evaluation results
demonstrate that TEO introduces nominal communication and power consumption overhead over
a baseline system without TEO’s security primitives. One-time operations, such as device initia-
tion and ownership claims, add an additional latency of up to 187 ms. Meanwhile, devices that
continuously upload TEO encrypted data experience a performance overhead mostly dominated

26

Table 3.1: Average latency (in ms) for TEO operations, with a performance comparison of dif-
ferent IoT device hardware. We also measure battery usage for the TEO phone app (in µAh).
Data access and revocation operations do not involve devices’ participation.

Operation
User App

Battery (µAh)

Average Latency ±
Standard Deviation (ms)
RPi 4 RPi Zero

Initialize Device 20.18 44± 9 65± 35

Acquire Pre-Auth Token + Claim Device 34.43 187± 52 258± 128

Claim Device 21.19 67± 10 94± 31

Store Data, 1MB 43.03 308± 57 684± 155

Access Data, 1MB 22.25 170± 54

Revocation and Re-encrypt 25.07 62± 15

by the network communication speed: for larger files, TEO incurs 7–25% extra latency compared
to a baseline of just uploading the same size data; for smaller files (10KB – 1MB), TEO’s storage
latency is 101-308 ms.

To characterize the overhead of TEO’s primitives, we select representative IoT devices and
client platforms, with different computational capabilities. We developed a TEO mobile app and
installed it on Android phones (Nexus 5X), serving as TEO client agents for users and admins.
For operations requiring human interaction (e.g., deciding whether to grant access or issue pre-
auth tokens), we skip the user confirmation step to automate the tests so as to only measure
the overhead of TEO’s protocol communication and not the user reaction time. We chose off-
the-shelf single-board computers, namely Raspberry Pi 4 (1.5 GHz 4-core, 4GB RAM,$35–$55)
and Raspberry Pi Zero W (1 GHz single-core, 512MB RAM, $10), as TEO-endabled IoT devices.
Both Android phones and IoT devices connect to our campus WiFi infrastructure as other devices
in the building. On the other hand, we launched our prototype storage providers and agents for
requesting data accesses on Linux machines (8-core, 16GB RAM) with wired connections to the
same infrastructure.

3.6.1 Microbenchmarks
Latency. We first measure the overhead of each TEO operation in terms of the end-to-end la-
tency from initiating the operation to the time it completes (Table 3.1). We repeat every operation
100 times and report the mean and standard deviation latency. Several operations such as device
initialization (∼44ms) and revocation (∼62ms) are lightweight, while the initial claiming of the
device has higher latency (∼187ms). We analyze recurring TEO operations (data store) in further
detail. Switching the device from Raspberry Pi 4 to Pi Zero, we observe modest slowdown (up to
2.2x for data store) but all operations finish within 65–258 ms. This is understandable since they
have drastically different compute capabilities. Overall, most TEO operations are only needed
once or very infrequently, so a ≤187 ms latency increase has a modest impact on end users.

Phone Battery Impact. Table 3.1 reports the battery consumption of TEO operations involving
the user’s phone app, as the average µAh over 100 iterations. We currently use the battery levels

27

Table 3.2: Data store operation overhead breakdown for Raspberry Pi 4, reported as mean values
in ms.

Data Size Data Encryption Data Upload Total Time (vs. Upload Time)
10KB < 1 19 101 (5x)

100KB 2 29 116 (4x)
1MB 25 127 308 (2.42x)
10MB 168 1429 1791 (1.25x)

100MB 1577 15256 16293 (1.07x)

reported by Android since they seemed sufficient for our use case [11], leaving more precise
energy measurements for future work [126, 127]. Our test Nexus 5x has a rated battery capacity
of 2700 mAh. Operations such as providing Sieve key share for the device to store data (43.03
µAh) once a minute consumes just 2.2% of the battery life over a 24 hour period. Proximity
detection (Section 3.3.3) for group membership supported by BLE scans also affects battery life
depending on the frequency. We measure the battery drain speed over a period of 5 minutes and
calculate the difference when the phone is idle. Continuous scanning quickly drains the battery
at a speed of 2090 µAh per minute. However, a simple optimization (increasing the BLE scan
interval to once every 10 seconds) reduces the drain to 66.2 µAh per minute, consuming 3.5% of
the battery over a 24 hour period. With additional optimizations (iBeacon-based BLE entry/exit
detection, reducing scan intervals), the energy impact of proximity detection can be reduced
further.

Data Store and Sizes. The latency overhead of recurring operations, such as encrypting the
data on the device and then transmitting it to be stored on a storage provider, depends on the size
of the data, as reported in Table 3.2. We omit other overheads in the breakdown table since they
do not scale significantly with data sizes. For example, Sieve data blocks (containing the data
keys) are independent of the size of the data in this experiment and have the same size since we
use a single key to encrypt the data.

As the data size increases, the overheads associated with data encryption and upload scale
proportionally, dominating the latency for using TEO for large data sizes. For example, the
total latency is just 1.25x compared to the time spent on uploading the 10MB files (since TEO’s
symmetric encryption produces ciphertext the same length as the plaintext). For larger files
(100MB), the relative latency of TEO decreases further to 1.07x upload time, showing that TEO’s
overhead amortizes as the data size increases. For smaller data sizes (e.g. 10KB - 1MB), TEO’s
protocol overhead is still relatively small (≤ 308 ms) given the asynchronous nature of data
storage operations.

To help reduce TEO overhead for large files, we implemented an optimization to pipeline
data encryption and upload. We split large data into fixed chunks (1MB by default) and start
uploading them as soon as the encryption of that chunk completes. Therefore, for large files such
as 100MB, the sum of encryption and upload time exceeds the total elapsed time.

28

Table 3.3: Average latency and standard deviation for storing 1MB data for different group sizes.
We emulate multiple owners as different processes on a PC and have the device repeatedly store
data 100 times. We also include a single user running a TEO phone agent.

Group Size
Phone Emulation

1 1 5 25 50
Average Latency (ms) 308 ±57 234 ±156 316 ±30 634 ±58 1085 ±85

Table 3.4: Total changes required (lines of code) to integrate existing applications with TEO.
These changes mostly focus on redirecting data storage to the co-located TEO device driver
program. See more details in Section 3.6.2.

Applications Motion [146] Mycroft [147] Doorlock [89]
Language C++/Python Python Node.js

Lines Changed 31 73 121

Group Ownership. We measure the performance impact of variable group sizes on the de-
vice’s data store operations. We emulate a large number of users in a group using a standalone
Linux desktop with a wired connection to the campus network. Each user in this scenario is a
separate process on this desktop. The device still performs normal TEO operations, but it needs to
communicate with all users. Table 3.3 shows the average latency for such operations for groups
of up to 50 members. To provide a comparison between our emulated users forming a group
and a real phone client, we also include the latency for a single user on an Android phone (first
column). We observe a small performance discrepancy between the emulation platform (Linux)
and the real Android phones (308 ms vs. 234 ms). As the size of the group increases, the main
cause of the additional latency is the resource contention on the device. For every owner, the
IoT device spins off a new thread to encrypt their key share with Sieve and upload the Sieve
data block to the storage. Because the Raspberry Pi 4 only has 4 cores, threads for different
owners cause CPU contention. Even with a large group size of 50 users, the slowdown is just 5x
compared to the single-owner case.

3.6.2 Case Studies
We integrate three real-world smart IoT applications into TEO-enabled devices (Raspberry Pi 4).
We searched for popular open-source smart apps on GitHub and tutorial websites and finalized
one for each of the interesting categories. In all three cases, we extend the original apps with new
functionality using TEO operations and primitives. Table 3.4 shows the total changes in terms
of lines of code we made to each application. In general, the integration process incurs minimal
changes. We develop a TEO driver (as part of our TEO prototype) that manages the TEO runtime
on the device. It opens API interfaces as REST endpoints exposed only to localhost so that the
application can leverage the driver to store data and verify command certificates.

Motion Camera. Motion [146] is a smart camera app that records video clips whenever it de-
tects motions. The users can later review these recorded events. To preserve privacy, all data are

29

saved locally. We edit Motion’s configuration file and implement a post-recording hook program
that uses TEO to encrypt and store the video recording. This integration not only protects user
data but also increases the limited local storage space.

For evaluation, we set the length of event recording to be 1 minute, repeatedly triggering event
detection over 100 times to measure runtime latency. We set the group size to be a single user. On
average, the 1-minute clip is around 22MB and the TEO driver takes around 2879 ms to process
the storage request. These performance numbers are consistent with our microbenchmark results
(Table 3.2). Since it only takes ∼ 3 seconds to store a one-minute long video recording, we
believe that TEO integration would be a useful and practical extension for the Motion app.

Speaker with Voice Assistant. Mycroft AI [147] is a smart speaker app similar to Amazon
Echo and Google Home. Users trigger it with a “wake” word, followed by their instructions. A
critical privacy concern with smart speakers is that they can record user interactions and upload
audio clips to train better machine learning models and for internal analysis [37, 39]. We extend
Mycroft so that users’ private audio recording data are protected with TEO encryption and ac-
cess control. Every time a wake word is detected, Mycroft starts recording the following user
commands and uploads them to a TEO storage provider. Compared to video data, audio clips are
much smaller and highlight the extra overhead in TEO communication. On average, the audio
clips are around 72KB, and it takes the app 235 ms to finish storing these clips. This result is
slightly higher than our microbenchmark, highlighting that applications storing smaller pieces of
data are more sensitive to TEO’s overhead and cross-app communications (between Mycroft and
the TEO driver). However, we consider this overhead still acceptable since storing clips is done
asynchronously and does not block the users’ normal interaction with the device.

Smart Doorlock. Complementary to the previous two cases, we implement a smart doorlock
application that shows how TEO can protect owners in real time and prevent unauthorized control
of the device from non-stakeholders. We develop this app based on an open source door lock
project [89] and utilize the Blynk IoT Library [27]. With TEO integration, the app can check for
access authorizations accompanying every incoming command, and only executes valid com-
mands from current owners. Our evaluation measures an average increase of 11 ms in latency
due to certificate check on the TEO runtime. Low overhead is important in this case, since the
process is now on the critical path of the device’s functionality and user interactions.

3.7 Discussion and Limitations
Support for Less Capable, Lower-Power Devices. Currently, our TEO prototype supports
mobile phones, Linux machines, and Raspberry Pis. These platforms are equipped with modern
ARM or x86 processors. Unfortunately, porting TEO to other low-power devices (e.g. using
the popular ESP32 series or the ARM Cortex M3 series) is more challenging for two reasons.
First, TEO makes extensive use of several heavy-weight cryptography libraries, which are not
yet supported by microcontroller-based architectures in these devices. Second, assuming that
all of TEO’s dependencies have been ported, TEO could encounter high performance overhead
due to limited processing power and resources (e.g., ESP8266 only has 160Mhz CPU and 50KB

30

memory [70]). It would be an interesting future research direction to extend TEO to these lower-
power class of devices and, indeed, recent works have proposed novel cryptography protocols to
enable public-key cryptography on them [3].

Reducing the Trusted Computing Base. TEO assumes that IoT devices and user mobile
phones are trusted to protect user data. Compromised devices can bypass TEO and directly
leak users’ private data, or impersonate other devices through Cuckoo attacks by relaying net-
work traffic [162]. Malware-infected phones can steal credentials to users’ data. Furthermore,
TEO assumes that the cloud storage services correctly perform the computation for re-encryption
to work. To reduce the trusted computing base, one promising future direction is to expand TEO

with a secure hardware infrastructure. For example, we can perform security critical opera-
tions inside the Trusted Execution Environment (e.g., Intel SGX, ARM TrustZone) as inspired
by many prior works [18, 143, 186, 208, 247] and leverage Trusted Platform Modules and re-
mote attestations [9, 103, 116, 152, 163] to ensure the integrity of TEO programs and operating
systems.

Specifically, to mitigate the threats of compromised smart devices, we can borrow insights
from many recent works and develop a trusted TEO hub. The hub can act as a network access
point for local devices and require all egress network traffic to be encrypted with TEO [65, 98,
209, 239], or redesign the IoT application programming architecture and have the trusted hub to
process all user’s private data [108, 113, 231].

Deployment Challenges. There are some practical challenges with large-scale use of TEO.
In addition to partial availability (Section 3.3.6), identity management can be complex. Ad-
mins need to associate a user’s public key with their real identity. This could be facilitated by
conventional PKIs, third-party services like Keybase [112] or a trusted mediator (e.g., Airbnb
holds public keys and identities for hosts and guests). Moreover, storage providers should be
compensated since they will host all encrypted data with high availability. To encourage compet-
itive pricing and avoid vendor lock-in, TEO’s design does not require strong trust in the storage
provider, so this role can be filled by many entities (e.g., building manager self-hosts, public
cloud services, or centralized servers in Airbnb). We also provide a reference storage provider
implementation in our TEO prototype that uses a simple key value store database.

Monitoring Device Ownership. To ensure their data are always protected by TEO, users
should keep monitoring the list of devices they currently own. Otherwise, they might mistak-
enly think they still are ephemeral owners when the device is re-claimed by someone else. We
envision extending TEO mobile apps with monitoring functionality for future deployment to al-
leviate user burdens. The app can send notifications when the user loses device ownership to
help them stay informed. It can also analyze the latest data stored by the device to verify that the
user is one of the owners (since metadata is publicly accessible).

31

3.8 Summary
This section of the thesis illustrates the added benefits for IoT device vendors to offload the role
of ownership management and access control enforcement to third-party services. Specifically,
device users can enjoy better privacy and security protections and directly control how their
data can be accessed. By proposing the design of TEO, we materialize this vision with a set of
formally verified operation protocols to ensure their correctness and security. We demonstrate
TEO’s practicality in terms of low performance overhead and ease of device vendor adoptions
with our evaluation results from the prototype implementation.

32

Chapter 4

CAPTURE: Securing IoT Devices by
Offloading Third-Party Library
Management

This section of the thesis illustrates the security benefits for IoT device vendors to offload library
management responsibilities to a central trusted service. We first present our study on real-world
IoT device firmware and demonstrate the widespread issue of mismanaged third-party libraries
and its security implications. We identify the opportunity and potential benefits of consistently
applying library security patches in IoT devices.

To achieve our vision and reduce the attack surface of future IoT deployment, we propose
a new system architecture, Capture, that centralizes library management tasks across heteroge-
neous IoT devices. We propose the use of a trusted central hub in the home that maintains the
security upkeep of common libraries and enables local devices to share the up-to-date library
runtime. Although the security benefits of updating library dependencies are fairly obvious, we
need to address several challenges in enforcing isolation, preserving device integrity, and reduc-
ing adoption barriers to make our solution practical.

The rest of this chapter explains CAPTURE in detail, based on our published paper [239]. We
release the source code [237] for the prototype implementation as well.

4.1 Motivation
With their growing popularity, in-home Internet-of-Things (IoT) devices are becoming ripe vic-
tims for remote attacks, leading to high-profile incidents such as the Mirai botnet [12]. Com-
pared to traditional network hosts, IoT devices are often more vulnerable due to weak cre-
dentials [117, 181, 233], insecure protocols [125], and outdated software [174, 180]. Making
matters worse, despite their home deployment, these devices may connect directly to public In-
ternet hosts to send data and even listen for incoming connections [87, 188]. If any of them is
compromised, attackers can easily wreak further havoc by moving to other devices on the same
network [12, 229].

Although many current IoT exploits originate from misconfigurations, weak credentials, and

33

insecure applications [6, 117], the extensive use of third-party libraries in IoT devices may have
security implications but remains overlooked. Vulnerabilities in common libraries, when left
unpatched, can affect a massive number of devices (e.g., CallStrager [232] and Ripple20 [234]).
The security impact of vulnerable libraries in traditional software systems is well-known [42,
49], with slow rollout of security-critical patches exacerbating the issue [62, 122, 149]. Although
one may believe that similar issues of code reuse and library mismanagement are also common in
IoT devices, there lacks sufficient evidence and concrete answers for the actual severity of these
issues. As we will demonstrate later in the chapter by our analysis, common third-party libraries
are widely used. They are often egregiously outdated, leading to many IoT devices operating
with publicly-known exploits!

Recent works in IoT security may partially alleviate this challenge, but each has its own limi-
tations. Commercial IoT frameworks and operating systems (e.g., Microsoft Azure Sphere [140],
AWS Greengrass [8], and Particle Device OS[165]) all assume the burden of managing a lim-
ited set of shared libraries provided by the OS. However, developers may use a variety of IoT
libraries for functionality [166]. These OSes provide little protection for those custom libraries
imported by developers. Alternatively, several proposals attempt to isolate vulnerable devices on
the network [65, 98, 209]. Network isolation offers limited flexibility when it comes to mitigat-
ing the effects of compromised devices, so these approaches present an inherent security tradeoff
whenever devices need Internet access.

4.2 Third-Party Libraries in IoT

Although it is common practice for software developers to integrate mature third-party libraries
into their applications, we found a lack of concrete evidence on how popular these libraries are
in IoT device firmware and how well they are maintained. Therefore, in this section, we set out
to address two key questions largely unanswered by previous work. Specifically,

• How prevalent is third-party library usage among existing IoT devices?
• How diligent are device vendors when it comes to releasing firmware updates that patch

critical security vulnerabilities?
Previous studies [32, 149, 248] that focus mainly on network equipment report widespread

vulnerabilities, some of which can be attributed to unpatched third-party libraries. A recent study
focusing on smart appliances reports similar findings [6]. However, these studies do not address
the state of affairs on current IoT devices, and in particular on how frequently libraries are used
and updated. To fill this gap in our knowledge, we conducted a measurement study on 122
firmware releases from 26 devices and 5 popular vendors. We find that third-party library use is
prevalent, and even more concerning, that security-essential libraries like OpenSSL often remain
unpatched for hundreds of days.

4.2.1 Data Collection

Retrieving Library Information. A potential approach is to analyze the binary images of
publicly available firmware images. However, despite the availability of analysis tools [60, 95],

34

Table 4.1: Summary of devices and vendors included in the measurement. We skip firmware for
network equipment since our focus is on smart devices.

Vendor Belkin TP-Link Ring Nest D-Link Total
Devices 12 3 1 7 3 26

Firmware 12 3 1 74 32 122
Libraries 80 5 53 290 93 441

Library versions 103 5 55 400 114 654

validating the resulting information would be time-consuming and error-prone, and the num-
ber of devices with easily obtainable firmware images is limited. Instead, we collect vendor-
reported information about the use of GPL open-source libraries in firmware release notes, as
this disclosure is required by the license terms. While our results may thus exclude information
about closed-source and non-GPL third-party libraries, we note that this will, if anything, under-
represent the true prevalence of third-party library use in IoT devices. We used this approach to
collect all available data for 441unique libraries across 122firmware releases from 5IoT vendors,
dating back to 2011. We manually collected library names and version numbers for 122firmware
releases.

Firmware Selection. We selected 5popular device vendors (Belkin, TP-Link, Ring, Nest, and
D-Link) since we were able to find consistent, detailed information about their firmware releases
with the required third-party library information. Table 4.1 summarizes 122firmware releases
we collected data about. Nest and D-Link provide the most comprehensive information about
their firmware release history, dating back to 2011. We use these historical releases to analyze
longitudinal patching behaviors. Belkin and TP-Link maintain public information for a single
firmware version for each device still under support. Ring releases one summary for all open-
source libraries used in their devices, which we categorize as a single generic device with a single
firmware release. Table 4.2 includes individual device details.

4.2.2 Results
From the collected data, we aim to characterize two main statistics: the prevalence of third-party
library usage in IoT firmware images across vendors, and the characteristics of patch release
over time. In particular, our goal for the latter statistic is to understand how quickly a new
firmware image is released after a third-party library is updated in response to a known CVE
with a corresponding moderate or high severity.

Prevalence. As expected, we found that IoT devices use third-party libraries extensively. Ta-
ble 4.1 shows that the 122 firmware releases we studied disclosed 441 unique open-source li-
braries. Counting libraries with different version numbers as unique, this number increases to
654. While some vendors consistently use the same version across images, others do not: for
example, of the 12 Belkin devices we studied (each corresponding to one image), there are 80
unique libraries spanning 103 library versions. This finding already suggests problematic patch-

35

Figure 4.1: List of the most common libraries in all 26 devices across vendors. Among 26
devices, over 50% use these libraries. The most popular ones, OpenSSL and BusyBox, are used
by 92.31% and 88.46% of devices. We also show the percentage of vendors who use these
libraries on their devices.

openssl

busybox zlib lzma

e2fs-p
rogs

curl
libtool

libpcap
u-boot lua

ncurse

ntpclient

sqlite
-autoconf

squashfs
c-ares

dmalloc

wireless-t
ools

0%

50%

100% % Devices (n=26)
% Vendors (n=5)

ing behavior. While there is a significant variation in the range of libraries in use (441 across
just 26 devices), there is a common subset across devices. Figure 4.1 shows the most popular
libraries, appearing in at least 50% of the devices. OpenSSL and BusyBox are ubiquitous, used
by 92.31% and 88.46% out of a total of 26 devices.

Patching Practices. To better understand the security risk of third-party library use, we exam-
ine firmware releases longitudinally, and their alignment with library patches and CVE disclo-
sures. Since historical release data was only available for 5 devices from Nest and D-Link, we
use 100 firmware releases for these devices, for a 7-year period (2011-2018).

We pick OpenSSL to study library patching practices for two reasons. First, OpenSSL is a
popular library used by all vendors in our dataset, except for Ring which uses GnuTLS. Sec-
ond, OpenSSL is critical for software security and has a well-documented history of vulnera-
bility discoveries and patches [157]. By examining OpenSSL versions in firmware releases and
OpenSSL’s update history, we analyze vendors’ patching behaviors and outstanding vulnerabili-
ties over time.

Figure 4.2 illustrates the “age” of the OpenSSL library, defined as the number of days elapsed
since the release date of a particular version. The dashed lines represent the library ages used in
different device firmware, while the solid green lines represent the ideal case where the devices
can always use the most up-to-date library versions. As shown in these dashed lines, device
firmware updates routinely lag behind using the latest versions of OpenSSL. In some cases, this
extends for hundreds of days. For example, Nest Protect’s last firmware release on 2016-07-13
used a 1525 days old OpenSSL version, while the latest available one was released on 2016-
05-03 (only 71 days old). Furthermore, there are often multiple new firmware releases made by
vendors without incorporating the up-to-date library version, suggesting a missed opportunity.
Notably, even devices from the same vendor often use different library versions, highlighting the
challenge of coordinating upgrades.

The Nest Learning Thermostat appears to have the best patching practices among devices in
our study; it sometimes even used the latest OpenSSL (red circles in Figure 4.2(a)). However,
a closer look at how this aligns with known vulnerabilities suggests that even this case reflects
unnecessary exposure. Figure 4.3(a) depicts the number of OpenSSL CVEs and in particular

36

Figure 4.2: OpenSSL library ages in different devices. Dashed lines represent actual library
used in the firmware. Each marker indicates a new firmware release. Solid lines indicate the
expected library age if new firmware release always uses the latest versions, representing a best-
case scenario. Red circles highlight cases in which devices actually use the latest version.

(a) OpenSSL in Nest Devices.

2012 2013 2014 2015 2016 2017 2018
0

500

1,000

1,500
L

ib
ra

ry
A

ge
(D

ay
s)

Latest Available
Learning Thermostat
Protect

(b) OpenSSL in D-Link Devices.

2014-7 2015-1 2015-7 2016-1 2016-7
0

500

1,000

1,500

L
ib

ra
ry

A
ge

(D
ay

s)

Latest Available DSPW110
DSPW215 DCHS150

those of moderate or high severity (severity data is only available after August 2014), that apply
to each version of the Nest Learning Thermostat in this time frame. Unsurprisingly, the periods
corresponding to Figure 4.2(a)’s red circles are not vulnerable, but this only lasts for a few months
until multiple vulnerabilities emerge. Importantly, most of these CVEs are avoidable only if the
firmware uses the latest OpenSSL.

Hardware Architecture. Many devices in our dataset are Unix-based systems, as 88.46% and
46.15% of devices include BusyBox and Linux Kernel libraries. Teardowns on high-end smart
devices [54, 55, 97] often find powerful ARM processors, affirming our findings. Meanwhile,
budget-oriented devices may prefer alternative microcontrollers (such as ESP32 and ESP8266
in light bulbs and plugs [4, 5]). Our dataset might under-represent lower-end devices for two
reasons. First, they could use libraries provided by chip maker, royalty-free [69]. Second, we
had some difficulty searching for open-source compliance notices from several lesser-known
vendors.

Key Takeaways and Limitations. Our measurement results reveal concerning statistics about
the current state of third-party library management in IoT devices. Just by considering widely
used open-source GPL libraries, we show that even market-leading vendors such as Nest and
D-Link oftentimes fail to update their dependent libraries promptly. This results in unnecessary
exposure to known vulnerabilities. While our data collection methodology is limited to open-
source GPL libraries, we aim to shed light on the existing state of IoT library mismanagement
using these libraries as indicators.

37

Figure 4.3: Number of publicly known OpenSSL CVEs in firmware releases. X-axis shows the
firmware release date (YY-MM-DD format). We do not have CVE severity breakdowns for data
prior to August 2014 (the red dashed line in (a)). For newer libraries, we find many High and
Moderate CVEs present in the firmware. Certain Nest Protect firmware releases are skipped due
to missing release dates.

(a) Nest Learning Thermostat.

11
-10

-25

11
-11

-22

11
-12

-16

12
-01

-11

12
-01

-20

12
-01

-24

12
-03

-07

12
-04

-05

12
-05

-17

12
-08

-30

12
-10

-02

12
-11

-09

12
-11

-16

13
-01

-07

13
-01

-23

13
-04

-29

13
-06

-21

13
-11

-22

14
-05

-15

14
-05

-21

14
-05

-30

14
-06

-30

14
-09

-04

14
-11

-04

14
-11

-17

15
-04

-09

15
-06

-17

15
-06

-19

15
-09

-01

15
-11

-04

15
-11

-11

15
-11

-17

15
-12

-10

16
-01

-11

16
-01

-21

16
-02

-03

16
-06

-06

16
-07

-19

16
-10

-24

17
-05

-01

17
-08

-07

17
-10

-16
0
5
10
15

C
V

E
s High Moderate Total

(b) Nest Protect.

13
-11

-19

14
-06

-17

14
-09

-04

15
-06

-23

15
-11

-12

16
-01

-15

16
-07

-13
0
20
40
60

C
V

E
s

(c) D-Link DCHS150.

14
-07

-09

14
-10

-07

14
-12

-30

15
-01

-01

15
-03

-27

15
-07

-03

15
-09

-09

16
-03

-08

16
-04

-30
0

20

40

C
V

E
s

(d) D-Link DSPW110.

14
-07

-15

15
-01

-01

15
-07

-07

15
-08

-28

15
-09

-24

16
-03

-07

16
-05

-31

16
-07

-14
0

20

40

C
V

E
s

(e) D-Link DSPW215.

14
-06

-05

14
-06

-09

14
-08

-07

14
-10

-07

14
-12

-30

15
-02

-09

15
-05

-03

15
-07

-07

15
-07

-15

15
-08

-13

15
-09

-04

15
-10

-10

16
-03

-07
0

20

40

C
V

E
s

4.3 CAPTURE Framework

To mitigate the security threats from outdated libraries in device firmware reported in Section 4.2,
we present CAPTURE, a novel architecture for deploying IoT firmware to support centralized
management of third-party libraries, alleviating the need for library updates by individual ven-
dors.

4.3.1 Overview

Figure 4.4 provides an overview of CAPTURE. A Capture Hub in the local network centralizes
library security updates. Every device has two components: a device firmware (F/W A*, B*),
and a remote driver (Driver A*, B*) running on the Capture Hub. Developers can use default
drivers (provided by CAPTURE) or implement custom ones to use the latest libraries on the hub.
The device firmware and the driver use CAPTURE SDK libraries for network communication.
Moreover, the driver uses API wrappers provided by CAPTURE to interact with common li-
braries on the hub. If vendors need libraries not provided by CAPTURE, they can include custom
dependencies in their firmware while still benefiting from CAPTURE’s isolation protection. The

38

Table 4.2: Details of devices and firmware releases included in the measurement. For each
device, we count the number of unique libraries and unique library-version combinations across
all firmware releases.

Device Vendor Firmware Release Date Libraries Library Versions

WeMo F7C027/F7C028 Belkin 1 2019/08/09 53 55
Wemo Light Switch v1 F7C030 Belkin 1 2019/08/09 53 55

WeMo SNS Belkin 1 2015/10/14 53 54
WeMo Mini F7C063 Belkin 1 2019/09/05 54 54

WeMo Smart Belkin 1 2015/06/30 54 55
WeMo Smart F7C046/47/49/50 Belkin 1 2019/09/05 53 54

WeMo WLS040 Belkin 1 2019/09/04 55 55
WeMo Dimmer Belkin 1 2019/09/03 47 48

WeMo InsightCR Belkin 1 2019/08/09 53 54
WeMo Jarden Belkin 1 2019/09/03 53 54
WeMo Maker Belkin 1 2019/09/03 53 54

WeMo Insight F7C029 Belkin 1 2019/08/09 53 54
SmartPlug - HS100 TP-Link 1 N/A 5 5
SmartPlug - HS110 TP-Link 1 N/A 5 5
SmartPlug - HS200 TP-Link 1 N/A 5 5

Generic Release Ring 1 N/A 53 55
Nest Cam Nest 2 N/A 177 186

Nest Connect Nest 1 N/A 7 8
Nest Detect Nest 1 N/A 12 13
Nest Guard Nest 1 N/A 107 108
Nest Hello Nest 1 N/A 20 20

Nest Learning Thermostat Nest 57 2011/10/25 - 2017/10/16 140 194
Nest Protect Nest 11 2013/11/19 - 2016/07/13 18 21
DSPW110 D-Link 9 2014/07/15 - 2016/07/14 75 86
DSPW215 D-Link 14 2014/06/05 - 2016/03/07 72 85
DCHS150 D-Link 9 2014/07/09 - 2016/04/30 51 54

Capture Hub Monitor and Enforce module manages all drivers and provides runtime and network
isolation for all devices supported by it.

Threat Model. We assume that the Capture Hub is trusted, and all standard wireless protocols
and Linux tools we use to provide isolation are up-to-date to address any known vulnerabili-
ties. We consider an adversary who seeks to compromise IoT devices through known vulnera-
bilities in unpatched third-party libraries. Unlike prior efforts that restrict devices to explicitly
whitelisted hosts (e.g., the vendors’ cloud backend) [98, 115], we allow devices to communicate
with arbitrary hosts to avoid limiting their functionality. Since local devices (or drivers) may
be compromised, our goal is to prevent them from being able to affect other non-compromised
devices and drivers in the same home deployment. Attack vectors from zero-day exploits (i.e. no
patches available) and non-library vulnerabilities (e.g., weak passwords) are out of the scope of
this work. In addition, we exclude side-channel attacks arising from the shared hub access from
different drivers.

39

Figure 4.4: Capture system architecture. Every device consists of local device firmware and
a driver on the hub. They form a logically unified entity, Virtual Device Entity (orange dashed
box). The Capture Hub maintains a central version of common libraries and has extra monitoring
and enforcement modules.

Firmware A*
Capture Device Library

Driver A*
Capture Driver Library

Firmware B*
Capture Device Library

Driver B*
Capture Driver Library Hub Monitor &

Enforcement
Shared Security Libraries (e.g. OpenSSL)

Capture Hub

Security Goals. Intuitively, the main goal of CAPTURE is to centralize library management
by providing a consistent, up-to-date set of third-party libraries for devices in the local network,
configured and managed by the central hub. Since we do this by splitting the firmware across an
IoT device and a hub, CAPTURE should not introduce new vulnerabilities or attack opportunities.
For example, CAPTURE needs to preserve device integrity by protecting communication that
would normally be on the device. Hence CAPTURE needs to prevent any entity from intercepting
or impersonating a device with its driver on the hub and vice-versa.

In addition, CAPTURE needs to maintain proper isolation between devices and drivers. This
implies that compromised devices should not be able to communicate with other hosts on the
same local network, and that compromised drivers on the hub should not affect the operation of
devices other than the one that they represent.

4.3.2 Library Update Management

CAPTURE alleviates the burden of patching security-critical shared libraries, enabling device
vendors to use the up-to-date versions on the Capture Hub without managing patches them-
selves. Notably, vendors still implement their device firmware and the corresponding drivers.
However, they may be concerned with losing control over devices’ stability whenever CAPTURE

automatically updates shared libraries. These library updates can potentially cause semantic
changes (e.g., new APIs) or unexpected bugs to break the existing functionality of the drivers.
Fortunately, prior work on patching vulnerable libraries for Android apps provides an optimistic
outlook [52], reporting that 97.8% of apps using libraries with known vulnerabilities can be fixed
with a drop-in patched version of the library. To determine whether this finding applies to IoT
devices, we analyze the dataset from Section 4.2 for potential impacts of library updates on de-
vice functionality. We focus on the OpenSSL library usage in Nest devices, since their dataset
has a comprehensive history of versions and upgrades.

OpenSSL Versioning. OpenSSL’s versioning scheme uses letters to denote minor security
patches and numbers for major changes [156]. For example, an application using version 1.0.2a
can upgrade to 1.0.2b to fix bugs and security vulnerabilities, while an upgrade to 1.1.0 indicates
new features and APIs. Each major version has an end-of-life date, after which users stop receiv-
ing security updates. OpenSSL’s staggered release strategy supports multiple major versions at

40

the same time, providing a buffer to transition between versions. Our analysis of Nest’s OpenSSL
use finds that Nest always upgrades the major version before the old one reaches end-of-life.

Library Update Strategies. There are three strategies for CAPTURE to support multiple li-
brary versions concurrently.

Maintain Multiple Majors in Parallel. The most stable strategy to preserve device function-
ality is to support all active major versions in parallel. The hub applies security patches for each
major version independently. According to the OpenSSL’s release history [157, 219], CAPTURE

has to support two or three majors concurrently and needs to apply security updates every few
months. This strategy will not break any Nest device’s functionality in our dataset, since they
never use any outdated major versions.

Only Maintain the Latest Major Version. Managing multiple library versions in parallel may
become complicated as the number of libraries increases. A simple strategy is only to keep one
version per library on the hub, presumably the latest major release. Based on our dataset, Nest
devices use a non-latest major version in 1238 out of 2184 days. This strategy will cause version
mismatches almost half of the time. Mixing drivers intended for older versions with newer
runtime can be problematic. Although OpenSSL meticulously preserves backward compatibility
across major upgrades [156], we are pessimistic about third-party libraries ’ stability in general.
Therefore, we use the major mismatch as a conservative estimator of potential functionality
breakages. Choosing how many major versions to support demonstrates the tradeoffs between
manageability and functionality.

Forceful Major Upgrades after End-of-Life. Vendors could ignore library upgrades so long
that it reaches the end-of-life dates. CAPTURE could forcefully upgrade major versions to main-
tain security at the expense of potential functionality breakages. Since Nest always upgrades
OpenSSL to the next major version before the end-of-life dates, we do not have data to measure
the impact of a forceful upgrade. However, this tradeoff is a very difficult yet open challenge.
Prior works proposed various strategies from blocking devices with insecure libraries [115], quar-
antining insecure devices locally [65], to preserving functionality at the expense of security [125].
We plan to leave this as a configurable option for end-users to make informed decisions based on
their concerns.

4.3.3 Virtual Device Entities (VDEs)
An IoT device supporting CAPTURE comprises of two components: a CAPTURE-enabled firmware
on the device and an associated software driver running on a hub, collectively forming a Virtual
Device Entity (VDE). Note that CAPTURE creates a unique VDE instance for every deployed de-
vice. Even if there are multiple identical devices, CAPTURE instantiates separate VDE instances
for each of them. CAPTURE ensures confidentiality within the VDE and enforces isolation across
different VDEs, as we will explain in the following sections.

Device Bootstrap. Figure 4.5 illustrates the process of bootstrapping new devices and obtain-
ing VDE. A device first connects to a setup network with pre-shared credentials, just like tradi-
tional home WiFi. In Step 1 , the Capture Hub creates a fresh VDE and prepares a VDE-specific

41

Figure 4.5: Device bootstrap procedure. In Step 1, the device connects to the Capture Hub using
a shared setup network. Then it joins a VDE-specific VLAN network in Step 2 (dashed box).
Section 4.3.4 discusses more details on network configurations. Section 4.4 addresses potential
attacks during bootstrap.

Phase Device Capture Hub

VDE Discovery1

Connect Network2

Request Credential
Respond Credential Generate VDE

Join Network
Reply Ready

Create Driver &
Configure Network

VLAN on the second operation network. After receiving the VDE-specific credential, the device
disconnects the setup network and joins the operation network (Step 2), where the hub binds the
device to its VLAN. This transition won’t affect other existing devices, since they are connected
to their VDE-specific VLANs already. The hub creates a driver for the VDE, sets up network
interfaces and isolation, and enforces resource isolation for the driver on the hub.

4.3.4 Communication Isolation
A CAPTURE-enabled device essentially functions as a “local” device since it can only communi-
cate with its driver on Capture Hub and vice versa. Other communication, such as between local
devices or different drivers, is automatically blocked. We achieve this in CAPTURE by creating
unique logical networks for each VDE with its own subnet and virtual interface.

The Capture Hub simultaneously manages two separate WiFi Access Points (APs). The first
one is a WPA2-Personal AP with pre-shared credentials for the first step of initialization (Fig-
ure 4.5), similar to current home WiFi. The second AP uses WPA2-Enterprise and enforces
VDE-based isolation. Specifically, Capture Hub creates unique RADIUS user accounts and con-
structs different virtual Network Interface Cards (vNICs) for each VDE. Using enterprise features
such as VLAN and RADIUS authentication, the second AP binds each VDE’s device into its own
subnet and vNIC. The hub binds the corresponding driver to the same vNIC interface using TO-
MOYO [206], a Linux security module for mandatory access control. If the driver needs Internet
access, the hub creates a designated public-facing port and enables the driver’s connection to the
port via TOMOYO. We then configure the firewall program iptables’s rulesets to block com-
munications across vNICs to achieve VDE-based isolation. CAPTURE’s VDE-based isolation
is inspired by DreamCatcher [65], which shows vNIC-based isolation is effective against link-
layer spoofing. We extend DreamCatcher’s network isolation with additional mandatory access
control to accommodate Capture Hub’s shared driver execution environment.

To bind multiple devices into different vNICs while using a single WiFi AP, we utilize the
VLAN isolation feature from WPA2-Enterprise. While WPA2-Personal is common for home
users, popular WiFi modules used by vendors to build their products already support WPA2-
Enterprise [67]. Hence we believe modern devices can support CAPTURE and WPA2-Enterprise
either out of the box or with updated firmware. For legacy devices without WPA2-Enterprise
support, CAPTURE can create a new WPA2-Personal AP for each legacy device, however that

42

may run into software limitations of the number of SSIDs per antenna [65]. An alternative
approach is to create unique WPA group keys for each device, isolating hosts under one shared
WPA2-Personal network [209]. CAPTURE didn’t take this approach as it requires modifying
standard protocols.

4.3.5 Resource Isolation

Since Capture Hub executes multiple drivers, a key challenge is to ensure secure and fair resource
sharing on the hub. CAPTURE needs to ensure slow or malicious drivers are contained and cannot
affect other VDE’s availability and private data. Linux containers [132] seem like a natural choice
for process isolation. However, they are ill-suited for CAPTURE since each container has a copy
of the libraries the driver needs. Whenever the library is updated, all container images would
have to be updated and rebuilt, which conflicts with our goal of managing libraries centrally.
Instead, CAPTURE provides resource isolation and access control using lightweight Linux system
primitives. The Capture Hub creates a new Linux user account per VDE, under which context the
associated driver runs, applying standard Linux filesystem and memory protections. We further
limit the driver’s capability by utilizing the TOMOYO Linux extension and its domain-based
security management. We assign each VDE and all of its subprocesses to the same security
domain and enforce security policies for networking and file systems. Finally, we used Linux
cgroups [96], a key building block for implementing containers, to limit the resources used by
each VDE. Linux cgroups are known to be an efficient and low overhead mechanism to account
for resource usage[167, 225]. Currently we statically set the CPU and the memory resources for
each driver to equally share the total system resources, but in the future, we can add support for
drivers to specify their resource demands (such as via manifest files during installation, similar
to mobile apps) and dynamically enforce them.

4.4 Security Analysis

External Threats. CAPTURE protects devices from external threats by securing the driver
components, which are reachable from the Internet. This is done by the Capture Hub, which
ensures that the latest library versions are installed automatically and used by the drivers, with-
out the device vendors having to do this. Unlike drivers, the actual devices are isolated from other
hosts in the local network. Manufacturers still implement custom firmware running on their de-
vices, meaning that some outdated libraries and vulnerabilities may still exist. However, since
the network isolation in CAPTURE only allows communication between driver and device, it lim-
its other hosts from exploiting them. This security protection is contingent on vendor adoptions
and properly implemented driver software.

Internal Threats. We consider internal threats which include compromised devices, drivers,
and other devices within the WiFi range. CAPTURE prevents compromised local devices from
attacking other Virtual Device Entities (VDEs) through network isolation since these devices are
confined to their VDE and cannot reach any other hosts directly. Similarly, a compromised driver

43

is also isolated from other VDE drivers using our network and other resource isolation mecha-
nisms (Mandatory Access Control, cgroups) mentioned above. In CAPTURE, drivers communi-
cate with their associated device using our library runtime, which requires developers to specify
the message format between the device firmware and driver. This design prohibits compromised
drivers from sensing arbitrary packets to their associated devices and affecting them. Further-
more, drivers cannot communicate with other VDEs on the hub due to our resource isolation
mechanisms.

Malicious devices (including CAPTURE-incompatible local devices) can not learn about other
VDE’s network credentials simply by eavesdropping on the setup network. Although the setup
network is a WPA2-Personal AP with shared password credentials, each device actually has its
own PTK (pairwise transient key) through WPA2 4-way handshake [125, 220]. However, link-
layer encryption provided by WPA2 is insufficient for CAPTURE’s network isolation because
all drivers will run in the same application layer on the hub. Therefore, we generate a unique
network interface and VLAN for each VDE during the bootstrap process (Figure 4.5).

An adversary could potentially impersonate the Capture Hub and perform man-in-the-middle
attacks during new device bootstraps (Figure 4.5). This threat can be mitigated by using certifi-
cates and public key infrastructure for devices to verify the hub’s identity, or other novel device
pairing and initialization techniques [91, 190]. We did not implement these features in our pro-
totype since our current threat model focuses on attacks from vulnerable third-party libraries
(Section 4.3.1).

4.5 Integration Approaches

We propose three integration approaches for developers to adopt CAPTURE, motivated by current
IoT development practices. Our goal is to provide paths of least resistance to help with the
adoption while providing flexibility to developers.

4.5.1 OS Library Replacement

The first approach is to provide a CAPTURE-enabled version of standard OS libraries. Take
the OS networking library in ESP32 platform, WiFi.h, for example. Devices use APIs from
this library to connect access points, maintain web servers, and communicate over sockets. We
provided a fully-compatible CAPTURE-enabled library, named as CaptureWiFi.h. Devel-
opers just need to make minor changes to use CAPTURE, such as replacing the #include
<WiFi.h> statement and initializing CAPTURE global runtime. We provide a default CAP-
TURE driver on the hub, which acts as a proxy to relay network traffic. If the original device
works as a webserver, we open a public-facing server on the driver to forward traffic and restrict
network traffic between driver and device.

This approach is platform-dependent. We need custom implementations for specific OS APIs
and libraries. However, this is a one-time effort that can then be used by device developers with
minimal porting effort. For example, all of our prototype apps use the same ESP32 modified
library runtime.

44

Figure 4.6: Integration using IoT framework SDK extension.

(a) Current deployment requires SmartThings Hub for networking.

App SmartThings
Device SDK

MQTT
& HTTP

1 SmartThing
Hub

MQTT2a Vendor
Cloud

HTTP2b

Device LAN

SmartThing
Hub

(b) Capture-enabled SmartThings devices move all network communication onto the device drivers at the
central hub.

App

Capture-Enabled
ST-Device SDK

ST-Device Driver
Capture Driver

Library

MQTT & HTTP1
MQTT

& HTTP
2

Vendor
CloudHTTP3

Device
Hub LAN

4.5.2 IoT Framework SDK Extension
Similar to replacing OS APIs, our second approach is to extend the SDK of a popular IoT frame-
work to support CAPTURE. IoT frameworks (e.g., Azure Sphere [140], Particle OS [165], and
Samsung SmartThings Device SDK (ST-SDK) [184]) provide rich functionalities to differenti-
ate from standalone embedded device OSes with limited networking APIs. For example, Azure
Sphere [140] and Particle DeviceOS [165] provide APIs to communicate with their native cloud
backends; Samsung SmartThings Device SDK [184] offers local devices the option of using the
SmartThings Hub as an MQTT broker.

In this case, the developers of the IoT frameworks can incorporate CAPTURE by modify-
ing their SDK implementation while preserving existing functionality. As a proof of concept,
we added CAPTURE support into the ST-SDK, which enables third-party devices to use their
SmartThings Hub. Figure 4.6(a) shows how an example device would integrate with the ST-
SDK, similar to a custom OS library. A locally installed SmartThings Hub (ST-Hub) provides
functions such as MQTT brokers, which device developers can directly invoke using ST-SDK
APIs. A device-side library manages the underlying connections with the ST-Hub. We develop
a CAPTURE-augmented ST-SDK library (Figure 4.6(b)), so that device developers only need to
switch their ST-SDK library runtime without modifying their application. Since the SmartThings
Hub is proprietary, we were only able to re-create their known functions such as MQTT brokers
using corresponding open source versions. We provide a default SmartThings-compatible driver
to mimic the ST-Hub operations in CAPTURE.

4.5.3 Native Driver Development
The two prior approaches provide default drivers on the Capture Hub to aid developer adoption.
As a complementary approach, we developed a CAPTURE Native Driver SDK, for developers
to implement their own custom drivers with much more flexibility. To motivate this, consider
an IoT device with a web server. Using the previous approaches, the default driver on our hub
will create another public accessible web server for new connections, and relay incoming client

45

connections to the device local-only web server. However, this may cause unnecessary latency
to serve the web request since both inbound and outbound traffic has to go through the hub and
processed by two webservers. To address this, we propose the CAPTURE Native Driver SDK
for developers looking to build customized drivers. Developers can use our SDK APIs to access
security and networking functions on the Capture Hub, and even offload some computation to
the hub.

4.6 Implementation

4.6.1 Core Hub Functionality
We implement the Capture Hub using a Raspberry Pi 3B+ with Linux in 1874 lines of C++ [237].
We use the TOMOYO Linux security module [206] and iptables to implement the Virtual
Device Entity based isolation mechanisms. Our hub uses hostapd [99] to manage WPA2 Personal
and Enterprise WiFi APs. The main CAPTURE program listens for new connections on the setup
network, and upon request, creates a new VDE for the incoming device, allocates a new VLAN
subnet with fresh RADIUS credentials, launches the corresponding driver program based on the
device type, and updates the TOMOYO and iptables rulesets accordingly. The main program
stores all metadata for each VDE locally. While our current prototype does not address device
removal, this functionality can be added in a straightforward manner.

Optimizations. Existing applications often use blocking network calls. During prototype de-
velopment, we observed a pathological case wherein the application only communicated using
one sequential byte at a time. Clearly, adapting such applications into CAPTURE introduces a
significant performance penalty, as each read request will incur one round of communication
with the driver residing on the hub. We found that without correction, this can lead to a 9.56x
latency penalty for the simple Web Server app (listed in Section 4.6.2).

The first optimization we perform to address this issue is to introduce read and write buffers
on the device. When an Internet host sends data to the driver, the payload is forwarded to the
local device in batch. Subsequent read calls from the device will just retrieve the payload from
the local buffer. Similarly, using write buffers enables network writes to be non-blocking I/Os,
aggregating multiple payloads into chunks in one round of driver communication. We found that
this reduces the latency penalty for the Web Server app from 9.56x to 1.62x, largely due to the
reduced number of round trips to the hub.

Although the previous approach reduces average latency overhead to an acceptable 1.62x,
it still incurs a median increase of 31 ms. We were able to attribute this to the poor wireless
performance on the budget-oriented ESP32 microcontroller, where a single packet transmission
can take up to 6 milliseconds. To reduce the total number of packets sent, we extended the proto-
col header fields and aggressively coalesce small packets throughout our protocol. One concrete
example is proactively loading read buffers after accepting new clients, where previously the
device needs to send two messages to check client status and fetch data to read, respectively.

Applying protocol optimizations and message coalescing bring down the median latency
overhead to 1.2x (+10 ms), using the Web Server’s baseline performance as a reference. Given

46

Table 4.3: Prototype applications and descriptions.

Abbreviation App Name Platform Description
WEB Web Server ESP32 Standard web server to display and manage

GPIO on/off status.
CAM Camera ESP32 Stream live video, take pictures.
SM Servo Motor ESP32 Adjust the speed of a servo motor.
CP Color Picker ESP32 Change the color of LED light bulb.
WS Weather

Station
ESP23 Monitor weather with a BME sensor.

TH Temperature
& Humidity

ESP32 Display temperature and humidity data from
DHT sensor.

ST-L SmartThings
Lamp

SmartThings Subscribe to MQTT broker to receive on/off
message.

ST-S SmartThings
Switch

SmartThings Publish to MQTT broker to issue on/off
message.

MM MagicMirror Linux Smart mirror display with online data such as
news and weather.

that the ESP32 takes 5-6 ms to send a single packet, this approaches the limit of what can be
done without better hardware. Detailed results are discussed in Section 4.7.1.

4.6.2 Benchmark Applications
To evaluate CAPTURE, and explore different approaches for integrating apps, we developed 9
prototype applications (Table 4.3), including smart devices, Linux applications, and IoT frame-
works, and 3 IFTTT automation applets for benchmarking (Table 4.4). CAPTURE provides run-
time libraries for device firmware and drivers to handle network setup and communication with
the hub. The device-side library was implemented in 1335 lines of C++ code while the driver-side
library varies.

Prototype Apps. We collected 6 open source applications from popular online forums and
tutorials [66, 88, 211], and adapted them to use CAPTURE. We chose the Espressif ESP32 plat-
form given its reported popularity [4, 5] and use in hundreds of millions of IoT devices [68]. We
implemented a generic default driver to support the OS Replacement approach, which required
166lines of Python.

IoT Framework. We extended the Samsung SmartThings Device SDK (ST-SDK) [184] to
showcase integrating CAPTURE with existing frameworks (Section 4.5.2). ST-SDK is open-
source, whereas other proprietary alternatives (e.g., Azure Sphere and Particle OS) raise chal-
lenges for replication and comparison. CAPTURE-enabled devices cannot work directly with
unmodified SmartThing Hub, so we analyzed ST-SDK’s codebase and replicated its function-
ality with a driver that executes on the CAPTURE hub. We then adapted sample applications
provided by ST-SDK [185] into CAPTURE.

47

Linux apps. Some IoT devices are powerful enough to run a Linux OS and applications (Sec-
tion 4.2), so we adapted Linux smart devices into CAPTURE to demonstrate its capability. We
selected MagicMirror, a project with over 12K Github stars [139], that uses Raspberry Pi with
a display to function as a smart mirror, displaying custom content (e.g. news and weather).
Internally, the app includes a webserver and a browser to display the webpage. We migrated
MagicMirror into a CAPTURE prototype using the custom driver integration (Section 4.5.3)
and separated the server component to the driver on the hub, keeping the display parts on the
firmware.

Automation Applets. To better measure CAPTURE’s macro-benchmark performance impact
on real-world scenarios, we implemented several home automation applets developed for IFTTT
[104]. Prior work [138] categorized IFTTT applets by trigger-action service types (Device ⇒
WebApp, WebApp⇒ Device, Device⇒ Device) and reported an average execution latency of
several seconds. We implemented CAPTURE-enabled devices for all three trigger-action service
types (Table 4.4), using the Web Server app (c.f. Table 4.3, WEB) on ESP32 in place of physical
lights and switches, since it can control GPIO pins. Since ESP32 boards are lower performance
and slow at performing SSL encryption, integrating these devices into CAPTURE often improves
performance due to our hub hardware being more capable. To provide a fair comparison, we
also implement “mock” lights and switches directly on the Raspberry Pi and measure the latency
impact from CAPTURE integration as well.

4.7 Evaluation
Our evaluation aims to answer three primary questions.

• How much performance overhead do key device functionalities incur on CAPTURE versus
their native platform, and is the amount tolerable for typical home use?

• Can the Capture Hub scale to home deployments with hundreds of devices in the near
future, and how many devices can our prototype reliably support at once?

• Roughly how much effort is required to port existing IoT devices to CAPTURE, and do the
integration approaches in Section 4.5 entail meaningful differences in the effort?

Our experiments were performed in a laboratory setting on 9 prototype devices (Table 4.3) and
3 IFTTT automation applets (Table 4.4). We use one Raspberry Pi 3 B+ as the Capture Hub
and another Raspberry Pi and multiple ESP32 boards for prototype apps. Our evaluation results
show that CAPTURE typically incurs low overhead (15% latency increase, 10% device resource
utilization), insignificant impact on applets from real-world automation platforms, and can sup-
port hundreds of devices for a single Capture Hub.

4.7.1 Performance Overhead
Setup. We compare the performance of apps running on CAPTURE to that achieved by their
original implementations. Because many IoT devices and automation apps are event-driven, they
usually transmit a small amount of traffic but are sensitive to delays in latency. We categorize

48

Figure 4.7: Performance overhead for all prototype apps. Data are normalized to results from
the orignal apps. CAM has two modes: STreaming videos and taking Pictures. We denote
integration approaches in parentheses: OS Replacement, Native Driver, and Framework SDK
Replacement. Based on geometric means, Figure (a) shows a 15% latency increase and Figure
(b) shows a 34% throughput reduction. Figure (c) shows the CAPTURE-enabled firmware incur
around 10% more on-device resource utilization.

(a) Normalized average latency and numerical differences. Red crosses show median latency changes.

0.5

1

1.5

WEB
(OS)
-7ms

SM
(OS)

-34ms

CP
(OS)
±0ms

WS
(OS)
-7ms

TH
(ND)

+19ms

CAM-ST
(ND)

+297ms

CAM-P
(ND)

+160ms

ST-L
(SDK)
+23ms

ST-S
(SDK)
+4ms

MM
(ND)
+6ms

Geometric
Mean

0.88x

1.57x 1.53x

0.63x

1x 0.92x
1.16x

1.35x 1.32x
1.55x

1.15x

N
or

m
al

iz
ed

(b) Normalized average throughput.

0.4
0.6
0.8
1

1.2

CAM-ST
(ND)

CAM-P
(ND)

MM
(ND)

Geometric
Mean

0.58x
0.62x

1.04x

0.66x

N
or

m
al

iz
ed

(c) Application code size and memory usage on-device.

WEB
(OS)

SM
(OS)

CP
(OS)

WS
(OS)

TH
(ND)

CAM
(ND)

ST-L
(SDK)

ST-S
(SDK)

MM
(ND)

Geometric
Mean

0.9

1

1.1

1.2 1.14x

1x

1.14x 1.14x 1.14x
1.08x 1.09x 1.09x

1x

1.09x1.11x

1x

1.11x 1.11x 1.11x 1.08x 1.08x 1.08x

0.96x

1.07x

N
or

m
al

iz
ed Code Size Memory Usage

prototype apps (Table 4.3) into two categories: latency-sensitive and throughput-sensitive. We
measure application-layer latency for all of them, but only measure the throughput reduction for
the second group (such as a streaming camera). For most applications, we use Apache JMe-
ter [14] to benchmark average and median latency for 500 HTTP requests. For the streaming
camera (CAM), we measure the video latency by pointing the camera towards a millisecond
clock and calculate average delays from 50 readings. For the SmartThings apps (ST-L and ST-
S), we add instrumentation to send a notification packet to the hub so that we can calculate
the time duration between the first MQTT message and the final notification from Wireshark’s
packet capture history. Finally, we measure the firmware code size and memory utilization on
the device.

Simple Integration with All Apps. We aim to conservatively estimate CAPTURE’s perfor-
mance impact assuming minimal burden on the developer. Hence, we first try to integrate apps

49

with either OS or SDK replacements, since these require minimal modifications by the devel-
oper. If this attempt fails (for example, the app requires features not supported by our current
prototype), we develop simple native drivers without spending too much engineering effort on
app-specific optimizations.

Figure 4.7(a) shows the normalized latency for integrated apps. On average, apps experience
a 15% latency increase due to the extra processing by the drivers on the hub. The baseline apps for
the comparison process everything on the device and communicate directly with external hosts.
After CAPTURE integration, external hosts need the drivers on the hub acting as a proxy. For
example, the camera streaming app driver needs to retrieve the raw footage from the device and
forward it to the viewers. These extra steps introduce overhead to the end application. However,
as Figure 4.7(a) shows, most apps experience a modest latency change between−34 ms and +23
ms. Given most apps’ event-driven nature, this minor increase in absolute latency should not
impact the quality of services for end applications. CAM app experiences the most substantial
latency increase, increasing from 523 ms to an average of 820 ms (+297 ms), and a 40% FPS
throughput reduction. However, the relative increase (1.6x) is on par with other apps. Since
the baseline latency is very high, we believe the original app is not designed to be real-time for
ESP32, and thus we did not further optimize its driver.

Several of the apps integrated with OS-Replacement see improved average latency results.
This is because CAPTURE-integrated apps perform more consistently, while the ESP32-only
baselines occasionally experience latency spikes (thus having higher average results). Median
results are more robust against outliers, and confirm CAPTURE often increases latency slightly.
The overall results show that CAPTURE offers comparable performance to the baseline for most
requests.

We measure the throughput overhead for several throughput-sensitive apps and report results
in Figure 4.7(b). For throughput metrics, we choose FPS for streaming, packet transfer rates
for taking pictures, and full web page load time for the complex MagicMirror dashboard. The
Camera app has a modest throughput reduction of around 40%. We observe no throughout drop
for the Linux-based MagicMirror benchmark. Figure 4.7(c) shows that the CAPTURE firmware
is, on average, 10% larger and uses 7% more on device memory. We only measure the code
increase for ESP-based devices given they have limited flash storage.

4.7.2 Overhead Perceived in the Real World

We implemented several IFTTT automation applets and measured CAPTURE’s impact on latency
(Table 4.4). We programmatically trigger applets 30 times, reporting the average end-to-end la-
tency. These results show moderate variances, largely due to the fact that these applets interact
with remote cloud services (IFTTT, Google Sheets, and email servers), which is consistent with
results from prior work [138]. Applets A1 and A2 show insignificant latency changes from
CAPTURE integration, indicating the communications to Internet services as the performance
bottleneck. Applet A3’s ESP32 integration demonstrates a benefit of CAPTURE for low-budget
devices. A3-ESP32 baseline has high latency due to compute-intensive tasks such as TLS en-
cryption, while A3-Raspberry Pi and CAPTURE-integrated ones have comparable latency results.

50

Table 4.4: Average latency for automation apps with standard deviations (30 runs). Overall,
CAPTURE has insignificant impacts, with noteworthy improvements on A1 and A3 (ESP) due to
offloading TLS operations on the hub. See Section 4.7.2 for further analysis.

ID Service Type IFTTT Applet Rule ESP32 Raspberry Pi
Trigger Action Original CAPTURE Original CAPTURE

A1 Device Web
App

Turn on switch. ⇒ Add
line to Google Sheet.

2.65±
0.42

2.00±
0.35

2.04±
0.66

1.83±
0.75

A2 Web
App

Device New email arrives. ⇒
Turn on light bulb.

2.93±
0.82

2.93±
0.90

2.62±
0.62

2.83±
0.87

A3 Device Device Turn on switch. ⇒
Turn on light bulb.

2.21±
0.43

0.81±
0.16

0.94±
0.28

0.88±
0.35

4.7.3 Scalability

Since our Capture Hub executes all drivers on the hub, its resources limit the number of devices
it can support. Among resources including memory, CPU, network interfaces, and private IP
addresses, we identify the memory capacity as the key scaling bottleneck. The default driver for
OS replacement uses the least amount of memory (3.7 MB) while the MagicMirror’s driver uses
the most memory (42 MB) as reported by smem’s Proportional Set Size [207]. Therefore, we
emulated a deployment of 40 devices using the default drivers and 10 devices with MagicMirror
drivers on a single Raspberry Pi 3B unit (1 GB RAM, quad-core). This setup uses 664 MB mem-
ory, but the CPU load average never exceeds 0.8 (max 4.0, due to four cores). Network virtual
interfaces and subnets do not impose any practical limits with fine-grained assignments [175].
While the RAM on the hub is a limiting factor, several inexpensive platforms exist with more
memory (e.g., Raspberry Pi 4 with 8 GB RAM for $75 [173]), which can potentially support
hundreds of devices.

4.7.4 Integration Efforts and Tradeoffs

Integrating apps by replacing OS libraries or framework SDKs is straightforward, requiring mod-
ifying less than 10 lines of code after importing the CAPTURE device library. Developing native
drivers is more involved since it requires declaring a custom message format for device-driver
communications and implementing the driver while delegating the network management to CAP-
TURE’s library runtime. The most sophisticated CAM driver we implemented was 817 lines of
Python.

We demonstrate the tradeoff between ease of adoption and performance impact by analyzing
different integration approaches for the Web Server app. Although we spent considerable effort
optimizing the default OS-replacement driver, it yielded a modest 12% average latency reduction
over the baseline ESP32 app. The integration only requires changing a few lines of the original
code. In comparison, implementing a native driver for this app significantly reduces latency by
36% over the same baseline. However, to implement the driver, we modified 264 lines of source
code to process device-driver communication and customize protocols.

51

4.8 Discussions and Limitations

Vendor Incentives and Adoption Challenges. Vendors may be incentivized to use CAPTURE

because they can offload the security upkeep responsibility to a central trusted entity (the Capture
Hub). They no longer need to keep applying security patches themselves, a task they often
lag behind (Section 4.2). CAPTURE’s isolation design also helps protect vendors from other
compromised devices in the user’s local home.

There might be several hurdles for vendor’s adoption. We have already proposed various
integration approaches Section 4.5 to reduce adoption costs for existing devices and hub’s library
management strategies Section 4.3.2 to alleviate vendor’s loss of agency and to avoid breaking
functions.

The need for firmware splitting may pose another major roadblock for vendors. They have
to bear the extra onus of developing two separated pieces of the “device” and the additional
overhead in signing and logistics involved in firmware updates. Implementing CAPTURE drivers
and new firmware would require vendors to change significantly from the current status quo and
would induce extra engineering efforts.

Single Point of Failure. CAPTURE’s centralized design means that the Capture Hub is a po-
tential single point of failure; this is part of our threat model (Section 4.3.1), where the hub is
assumed to be trustworthy. If the hub is compromised by vulnerabilities or privilege escalation
bugs like those on conventional systems [31, 48], the integrity and confidentiality of the installed
devices will be likewise compromised. By centralizing the management of security-critical up-
dates, and providing additional isolation between devices, we hope to contribute to improving
the overall security posture of devices deployed within the network (i.e., relative to the status
quo). However, this improvement is contingent on vendor adoption.

Centralization may lead to a less robust network even without adversarial compromise. If
the hub goes down, devices would lose network connectivity and drivers become unresponsive.
Because most device firmware controls local actions (e.g., managing the on/off states for smart
plugs), most devices should still function (e.g., through physical buttons on the device). Capture
Hub failures, in this case, largely resemble network outages and router failures in current smart
homes.

Protocol Compatibility. Since CAPTURE isolates devices, link layer discovery and local net-
work scanning no longer work. One such example is UPnP, an infamous protocol for posing
security threats in IoT devices [117, 124] and recent exploits like CallStranger [232]. A future
direction for our work is to provide a secure centralized discovery service on the Capture Hub
itself with co-located drivers and shared libraries, substituting link layer discovery and mitigat-
ing fallout like CallStranger. With that said, many smart devices have companion smartphone
apps that communicate with the device via a cloud service to support access to the device behind
a home NAT. As communication through the cloud will not be impeded by our approach, we
believe that the practical impact of CAPTURE’s isolation on everyday use will be minimal.

There are other potential security improvements, which are out of the scope of the current
security goals for CAPTURE and threat model. We do not support alternative wireless proto-

52

cols such as BLE, Zigbee, and Z-Wave since Internet-based attacks over WiFi, the focus of our
work, impose significant threats already. As future work, we can look into incorporating related
works in securing other wireless protocols [98, 242] into CAPTURE’s centralized hub design.
In addition, CAPTURE does not address potential attacks due to weak security practices, such
as the use of default credentials. However, CAPTURE’s Virtual Device Entity isolation blocks
compromised devices from exploiting any other devices’ vulnerabilities.

Augmenting Device Resources. Another opportunity that we have not explored is to use the
hub’s computation resources to augment the limited resources of local devices. Specifically, by
introducing additional CAPTURE APIs, we can extend the storage and processing capability of
low-power microprocessors on the device to the hub.

Firmware Splitting. CAPTURE proposes splitting monolithic firmware into remote and local
components, an approach that could face practical challenges, such as data serialization, con-
sistency, and fault tolerance. These issues are not uncommon to many distributed systems that
make use of RPC-like components and have been studied extensively [24, 81, 86, 176, 199, 213,
214, 216, 221]. While our prototype implementation does not make use of all of these advances,
CAPTURE can benefit from this work to enhance its robustness and reliability. We view this as
important future work.

4.9 Summary
This section of this thesis illustrates the benefits of offloading library management responsibil-
ities for IoT device vendors to a trusted third party. Based on historical data, we can identify
the necessity of better library management and timely security patching for future IoT devices.
To achieve our goal, we propose the design of Capture, a new system architecture for IoT de-
vice deployment. We demonstrate that Capture is a practical solution to mitigate the security
challenges rising from the prevalent use of outdated libraries while maintaining the security and
performance requirement of individual IoT device vendors.

53

54

Chapter 5

VERISPLIT: Efficient Computation
Offloading for IoT Devices with Neural
Network Applications

The previous two chapters of this thesis have addressed security and privacy concerns mainly
from the device users’ perspective. In this chapter, we will investigate another opportunity for
functionality splitting that may directly incentivize IoT vendors. We aim to provide an efficient
computation offloading architecture to augment the limited computing resources on IoT devices
while alleviating vendors’ cloud resources and infrastructure management overheads. Mean-
while, device users can benefit from lower operating costs due to more efficient utilization of
local resources.

With the growing adoption of IoT devices, smart homes are packed with more powerful
computers and machines with special machine-learning accelerators (e.g., GPUs and multi-core
processors). On the other hand, many resource-constrained IoT devices must rely on first-party
vendor cloud services for transitory computing demands, such as machine learning inferences,
under the current monolithic device design. There is a missed opportunity to utilize available
computation resources in IoT home deployments to fulfill these demands.

In this thesis chapter, we present the design of a novel offloading architecture, VERISPLIT,
that enables local IoT devices to share computation resources securely and privately. By focus-
ing on machine learning inferences, VERISPLIT provides a practical solution to convince IoT
vendors to adopt while addressing challenges in protecting privacy for user data, confidentiality
for proprietary machine learning models, and integrity of the offloaded computation.

The rest of this chapter explains VERISPLIT in detail.

5.1 Motivation
Several Internet-of-Things (IoT) devices now support diverse functionality enabling the vision
of smart and connected homes (e.g., smart cameras [223] and video doorbells [7]). Often these
devices are inexpensive to purchase, and given their limited compute capabilities, device vendors
set up dedicated cloud services to support advanced services like serving inferences using ma-

55

chine learning models as additional subscriptions [189, 224]. Since cloud offloading can incur
high operational costs, researchers have proposed techniques to minimize works to be offloaded,
such as executing part of the machine model on the local devices [111, 246].

Meanwhile, users of smart homes might have other computationally capable devices in their
homes, such as gaming consoles, computers and mobile devices, and high-end IoT devices with
expensive hardware (e.g., vacuum robots with GPUs [170]). These devices are wall-powered,
have significant computation resources, and are often idle since they are used sporadically. It
seems natural to try to broker a deal between the manufacturers of the resource-limited IoT de-
vices to offload certain computation tasks to the more powerful (local) machines (when they are
less busy). The worker devices can even potentially charge a lower rate for leasing out idle local
resources and pass along any savings, compared to the status quo of offloading to the cloud, to
the device maker or the homeowner. In this project, we focus on offloading ML inferences rather
than just general computation offload [36, 47] since these workloads are becoming increasingly
important for IoT settings [29, 120, 121, 136]. Moreover, we leverage the unique characteristics
of machine learning workloads to develop secure and practical solutions, while it is challenging
to address similar concerns for general-purpose offloading.

Specifically, there are three major security and practicality concerns we must address to con-
vince IoT device vendors to adopt our vision of local offloading with third-party devices. First, it
is necessary to provide input data with third-party workers for computation. Offloading devices
must preserve the data privacy if users do not want to share their data with third parties. Second,
offloading devices must also provide the model weights to workers, which may be proprietary
and raise concerns of model confidentiality. Finally, ensuring the integrity of the offloaded in-
ferences is critical [160]. Otherwise, cheating workers can perform inferences with lightweight
models to save computation costs and remain undetected.

Many recent research works have been proposed for secure offloading of machine learning in-
ferences, such as designing cryptographic protocols for data privacy [79, 102, 110, 142], applying
homomorphic encryption for model confidentiality [106], and leveraging verifiable computation
to provide inference integrity [78, 134, 208, 218]. These approaches, while indeed promising
in providing strong security guarantees, often involve heavyweight computation and high com-
munication overhead, diminishing the values of computation offloading and the practicality of
such solutions (e.g., secure inference on ResNet-32 raises the latency from hundreds of mil-
liseconds to 3.8 seconds [142], and some assume high-speed communication channel like PCI-e
bus [208]). Moreover, cryptographic approaches usually require finite field arithmetic, affecting
the model’s quality (such as reducing accuracy when models are initially trained with floating
point arithmetic operations) [208].

5.2 VERISPLIT Overview
VERISPLIT is a comprehensive framework designed to enable local IoT devices to offload ma-
chine learning inferences securely and efficiently. In this section, we start with a high-level
overview of VERISPLIT, followed by our detailed design goals (Section 5.2.1) and our threat
model (Section 5.2.2). The next few sections address solutions to each design goal in detail
(Sections 5.3 to 5.5).

56

Figure 5.1: VERISPLIT deployment example in a smart home. The IoT device (a smart camera)
can offload ML inferences to one or more local devices by sharing input data and model param-
eters (1) and receiving results (2). Later, the camera can verify the integrity of the inference
by repeating selected computations and comparing the results (3), doing it asynchronously to
avoid additional latency during inference.

Camera
(Offloading Device)

Gaming
Console

Laptop1

2

1

2

3

Figure 5.1 illustrates the overall workflow of VERISPLIT offloading across local devices
using a resource-constrained IoT device (a smart camera in this example). As the offloading
device, it first goes through setup processes with local devices (not shown in the figure). This
setup process includes various steps depending on the requirements (data privacy, confidentiality,
and integrity), and the offloading device shares model weights with workers.

During inference, the camera shares the input data with one or more workers (Step 1).
VERISPLIT needs multiple workers to support model confidentiality. To support only data pri-
vacy or integrity, a single worker is sufficient. Then, workers respond with the inference results
and additional proofs for integrity, if applicable (Step 2). Next, to check the integrity of the
offloaded computation, the camera can decide when and how many results to verify thanks to
VERISPLIT’s asynchronous and partial verification design.

We integrate two types of offloading solutions to accommodate various model architectures
and desired security and privacy properties in VERISPLIT:

• Holistic Offload. The most straightforward approach is to offload the model in its entirety.
The device shares all model parameters with workers and sends input data during inference.
After executing the full model, workers reply with the final predictions. Compared to local
execution, holistic offloading greatly improves performance but can only ensure inference
integrity. However, this method cannot support data privacy and model confidentiality.

• Layer-by-Layer Offload. To protect data privacy and model confidentiality, we propose
a layer-by-layer offloading alternative due to non-linearity across layers. The device can
choose which layers to offload and offload them individually. This approach introduces
much higher communication overhead; as a result, it may not be suitable for certain use
cases or network conditions.

5.2.1 Design Goals

We want to propose a practical solution to motivate IoT device vendors to enlist help from other
co-located devices in the same user’s home. Therefore, we must address many common concerns
related to data privacy, model confidentiality, computation integrity, and performance overhead

57

from the offloading device vendor’s perspective.

Protecting User Data from Third-Party Workers. It is necessary for the offloading device to
share input data with workers. However, this process inevitably leaks smart home users’ private
data to third parties. If the user does not want to expose their information to other local devices,
VERISPLIT must support data privacy while preserving the functionality and accuracy of the
offloaded computation.

Preserving Model Secrets. Device vendors may hesitate, or even refuse, to share their mod-
els with third-party workers due to intellectual property concerns. To protect vendors’ models,
VERISPLIT must provide practical solutions that prevent third-party workers’ unauthorized use
of secret models.

Ensuring Correct Computation. A fundamental requirement for offloading is to ensure the
correctness of the computation. Otherwise, lazy workers may avoid work and return arbitrary
results. Therefore, VERISPLIT should provide efficient verification solutions so that device ven-
dors can easily check the results reported by workers are computed correctly.

Practical and Low Overhead. While addressing the aforementioned secure and private of-
floading features, VERISPLIT needs to have low overhead to be practical for different IoT device
use cases. We provide comprehensive analyses regarding VERISPLIT’s performance trade-offs.

5.2.2 Threat Model

We assume workers performing the computation are untrusted. They may attempt to steal any
data the offloading device shares, such as the inputs for inference and the ML model parameters
(e.g., layer weights and bias), raising concerns for data privacy and model confidentiality. In ad-
dition, workers may have incentives to “cheat” by executing inferences using lightweight models
or reporting incorrect results to save computation costs or reduce application accuracy from com-
peting IoT vendors. Therefore, it calls for verification solutions to ensure inference integrity. We
assume multiple workers used in the same round of inference offloading are non-colluding (e.g.,
belonging to different vendors) as a prerequisite for model confidentiality. This assumption of
non-colluding workers has been commonly used in various prior works [144, 177].

Such a strong attacker model may be too restrictive in certain cases and can be relaxed to
reduce the performance overhead, depending on the use cases and deployment environment.
Specifically, if the smart home user can trust the worker devices with their personal data (e.g., if
they use their own PC as workers), they may not require data privacy protection. However, model
confidentiality and integrity are still important for offloading device vendors. On the other hand,
if the offloading device only cares about integrity (e.g., when using public models for feature
extraction and keeping proprietary layers on-device, as used in transfer learning applications),
they can further relax the requirement of model confidentiality, further reducing VERISPLIT’s
overhead.

58

Figure 5.2: VERISPLIT’s workflow for data privacy. During setup, the device shares model pa-
rameters with the worker, generates multiple one-time noises ϵi, and precomputes their values
Wϵi. For each inference, the device applies a mask ϵi to the input xi and subtracts the precom-
puted values from the offloading results.

Offloading Device Worker
Model W, b

Generate random noise: ϵi

Precompute: Wϵi Setup
InferenceData (xi + ϵi)

y′ = W (xi + ϵi) + b
Result y′

y = y′ −Wϵi = Wxi + b

5.3 Data Privacy
This section discusses how VERISPLIT utilizes linear arithmetic and one-time masks to preserve
users’ private data during offloading. We do this to prevent third-party workers from accessing
user data while providing inferences.

Prior research has proposed using cryptography for data privacy in inference offloading (e.g.,
garbled circuits, homomorphic encryption, etc.). These approaches are still heavyweight, despite
recent advances significantly improving performance [110, 142]. For example, Delphi [142]
takes 3.8 seconds for a single secure inference of ResNet-32, while similar models only need a
few hundred milliseconds1.

We introduce a linear masking solution to protect data privacy in VERISPLIT without rely-
ing on computationally expensive cryptographic primitives. It must be used with layer-by-layer
offloading due to non-linearity across layers (e.g., activation functions). Our masking design is
partly inspired by prior works [142, 208], commonly used in various cryptographic inference
protocols, while we provide additional security analysis for floating-point masks (Section 5.6)
instead of finite field.

Figure 5.2 presents the workflow of VERISPLIT’s data privacy protection. During setup, the
offloading device shares model parameters (e.g., weights W and bias b) with the worker and
locally generates one-time masks (ϵi). In addition, the device computes the value Wϵi for each
mask and stores it locally. It can generate many masks (and precompute Wϵi’s) during idle times
since each inference will consume a fresh one. This pre-processing step is commonly used by
prior works [142, 208].

For a particular inference i, the device sends masked inputs (x′ = x + ϵi) instead of the real
data. The worker executes inference and replies with the results (y′ = W (x + ϵi) + b). The
worker never has access to users’ private data. Once the device receives y′, it can subtract the
precomputed mask noise (Wϵi) and obtain the true layer output y = y′ −Wϵi = Wxi + b. This

1Baselines empirically measured by us since not presented in Delphi [142].

59

Figure 5.3: A simple but ineffective approach to adding masks for model confidentiality. This
does not save any work for the device during inference, since it still needs to compute δxi.

Offloading Device WorkerOffloading Device Worker

Generate random noises: δ, β

Model W + δ, b+ β Setup
InferenceData xi

y′ = (W + δ)xi + (b+ β)
Result y′

y = y′ − δxi − β = Wxi + b

Figure 5.4: VERISPLIT’s workflow for model confidentiality. During setup, the offloading
device generates masking noises (δ, β) and shares modified model parameters with two non-
colluding workers. For inferences, the device sends data and receives layer results (y′1, y

′
2). It can

reconstruct the actual results by combining the two results.

Offloading Device Worker 2Worker 1

Generate random noise: δ and β

Model (W − δ)/2, (b− β)/2Model (W + δ)/2, (b+ β)/2
Setup

InferenceData xiData xi

y′2 = 1
2 (W − δ)xi +

1
2 (b− β)y′1 = 1

2 (W + δ)xi +
1
2 (b+ β)

Result y′2Result y′1

y = y′1 + y′2 = Wxi + b

solution offloads the expensive matrix multiplication computation to workers during inferences.
As a compromise, the device must perform pre-computation (Wϵi) asynchronously during setup
or obtain pre-computed mask values from a trusted source (e.g., vendor backend can generate
many masks and distribute them to edge devices).

5.4 Model Confidentiality
For model confidentiality, we propose a similar masking approach to that for data privacy. How-
ever, simply adding noise to these parameters does not work. Figure 5.3 illustrates this alternative
and why it does not work for offloading since the device must still perform large matrix multi-
plication (δxi in the last step) for each inference. Since this value is input-dependent, the device
can not pre-compute it as in the case of data privacy. Offloading is actually worse in this case.

In VERISPLIT, we propose a solution leveraging multiple workers to provide model confi-
dentiality. By sharing inference tasks with multiple workers, the device can avoid computing

60

matrix multiplications and leverage the performance benefits of more capable workers. As men-
tioned in our threat model (Section 5.2.2), we assume these workers are non-colluding, so they
will not collectively compromise model confidentiality. This is a common threat model in many
prior works [144, 177]. To achieve this, the offloading device can choose two workers from
different vendors (or one personal device like a PC owned by the smart home user).

Figure 5.4 illustrates VERISPLIT’s workflow for model confidentiality. The offloading device
generates masks for model parameters (e.g., δ for weights and β for biases) and selects two local
workers to share masked values. This is a one-time setup effort; subsequent inferences can use
the same weights and biases. During the offload of an inference i, the device shares the input
data with both workers and receives results y′1 and y′2. By combining these two results, the mask
terms cancel out and provide the actual result of Wxi + b. On the other hand, both workers only
have access to masked weight parameters. Neither one can reconstruct original values without
collusion. We elaborate on the security guarantee this method provides in Section 5.6.

The online inference process requires two workers to perform an equal workload with dif-
ferent model parameters. Both workers need to have capable hardware. In comparison, the
offloading device now only needs to sum up intermediate results (y′1 and y′2), which is much
faster than performing matrix multiplication operations locally.

5.5 Inference Integrity
This section explains how VERISPLIT ensures the integrity of the offloaded computation. We
propose asynchronous verification to minimize the additional latency by removing it from the
critical path of inferences. We also propose a partial verification mechanism to reduce the com-
munication overhead.

Layer-by-Layer Offloading

If the IoT device requires data privacy or model confidentiality, it has to offload the neural net-
work’s computations layer-by-layer because VERISPLIT’s solutions only apply to linear oper-
ations (e.g., unsuitable for activation functions between layers). In the layer-by-layer offload
scenario, verifying the integrity of inferences is fairly straightforward. During the layer-by-layer
offloading, the device must transmit all intermediate results to workers. Therefore, the offload-
ing device already has the complete inputs and outputs for each layer. To verify integrity, it can
repeat the computation locally and check if the results match. As long as the device saves these
results (at the expense of extra storage), it can choose when and how much to verify, retaining
flexibility for asynchronous and partial verification. Alternatively, they can use VERISPLIT’s
Merkle-tree-based hash commits (explained in the next section) to further reduce local storage
overhead, although our prototype currently does not implement this function for layer-by-layer
offloading due to sufficient storage space.

Holistic Offloading

If the offloading device only requires integrity guarantees without data confidentiality or data
privacy, it can perform holistic offloading — sending the entire model to the worker and directly

61

Figure 5.5: VERISPLIT’s inference commitment design based on Merkle trees. This example
network includes several 2D convolution layers, one flatten and one dense layer. During infer-
ence, the worker computes hash values of all layers’ intermediate results (h1–h8) and reduces
them into the final commit value hcommit. Assuming the verifier randomly decides to check re-
sults from layer 3 (blue shadow), the worker sends all values in blue boxes as its integrity proof.
This commitment mechanism can be expanded to partially verify layer results (Section 5.5.2).

Input
x

Layer 1
Conv2D

Layer 2
Conv2D

Layer 3
Conv2D

Layer 4
Conv2D

Layer 5
Conv2D

Layer 6
Flatten

Layer 7
Dense

Output
y

h1 h2 h3 h4 h5 h6 h7 h8

h12 = H(h1||h2) h34 = H(h3||h4) h56 = H(h5||h6) h78 = H(h7||h8)

h1234 = H(h12||h34) h5678 = H(h56||h78)

hcommit = H(h1234||h5678)

sharing the inputs to the model. The worker executes all model layers in one pass and returns the
inference outputs. To verify the integrity of any layers, the device needs to access the inputs and
outputs of the corresponding layer. Sending all intermediate results during inference can incur
high communication overhead. To minimize inference latency, VERISPLIT separates verifica-
tion from the inference process by proposing a commitment-based, asynchronous solution. The
device can request intermediate data from previous inferences whenever it has free cycles. In
addition, the device can request partial results from arbitrary layers (instead of full-layer results)
if it only wants to check part of the results (to reduce computation and communication overhead).

5.5.1 Asynchronous Verification
The first key insight of VERISPLIT’s integrity solutions is to move the verification process out
of the critical path of the prediction itself while only requiring minimal storage overheads on
the worker and verifier (i.e., the offloading device) sides. While prior works can support asyn-
chronous verification (such as incorporating interactive proof techniques into neural network
models [78]), they require modification to the model and affect its behavior and accuracy. On the
other hand, works like Slalom [208] require transmitting intermediate results as part of the infer-
ence process, incurring high overhead. In addition, the verifier may need to store all intermediate
results locally if they want to check them later. In contrast, VERISPLIT verifier only needs to
store a single hash commit.

During inferences, the worker saves the input data while discarding all intermediate results,
saving on storage. During verification, the verifier asks the worker for the original intermediate
values (certain layers’ inputs and outputs) and repeats the computation locally to check if the
results match. To generate the selected layer results, the worker can repeat the inference a second
time (since it stores the input data) and send back the requested values.

For integrity, VERISPLIT has to check whether the worker provides the same values during
verification as those used in the original inferences. For example, a malicious or lazy worker

62

may only execute the correct model if an inference is selected for verification. To address this
challenge, we design a Merkle tree-based inference commitment mechanism to capture all inter-
mediate values generated during inference. The verifier receives this short commit value along
with the inference results and stores it locally. During verification, the verifier can request arbi-
trary intermediate values from the worker, and the worker must generate proofs showing these
values are included in the original commit.

In VERISPLIT, we designed a Merkle tree construction algorithm to enable flexible verifica-
tion of arbitrary intermediate values across internal layers of a neural network model. Merkle
tree [137] data structures have been widely used in many applications for generating short com-
mit messages to provide verifiable integrity guarantees on system states [10, 63, 179, 226]. Re-
cent works have also incorporated them into various machine learning applications [205, 243].

Figure 5.5 illustrates constructing the Merkle tree commit for an inference. For simplicity, we
consider a 7-layer network with five 2D convolution layers, one flatten layer, and one dense layer
for final prediction. The sizes of the matrices shown are for illustrative purposes only. During
inference, the worker collects all layer inputs and outputs and computes their hash values (h1–
h8). Then it generates the inference commit (hcommit) by recursively concatenating and hashing
values in the Merkle tree. The verifier receives this commit along with the final prediction results
at the end of the inference offloading process.

5.5.2 Partial Verification
In this section, we explained how to verify the results of a single layer. However, the simple
Merkle tree only supports checking each layer’s results in their entirety. The inputs and outputs
of one network layer can still be quite large, and verifying them requires significant computation.
Instead, partial verification intuitively can be beneficial to reduce the overhead since the verifier
would need to check a subset of values.

Directly reducing a simple Merkle tree for partial verification is inefficient. The worker needs
to generate a proof with entire layer inputs and outputs (as the basis of the Merkle tree leaf nodes),
even if the verifier only checks a small subset. If the verifier wants to verify a tiny portion of every
layer, the worker needs to send all values! To solve this issue, we extend the original Merkle tree
with fine-grained leaf nodes of smaller content sizes, reducing proof sizes and communication
overhead. Figure 5.6 visualizes an example of VERISPLIT’s slicing algorithm, which we will
explain next.

Slicing Verify Units

It turns out that slicing layers’ outputs into smaller units involves many trade-offs and delibera-
tions. At one extreme, we can single out every element in the matrix into one unit. This provides
fine granularity for partial verification since verifiers can choose arbitrary regions. However, it is
impractical because of the large dimensions of layer results (e.g., certain VGG16 layers have out-
puts of 224x224x64). The more units we have, the larger the Merkle tree will be, and the worker
needs to compute significantly more hashes to create the commit during inference time. Instead,
we choose a fixed unit size, balancing the complexity of the Merkle tree and the flexibility of
partial verification (Section 5.5.3 explains how to choose this value).

63

Figure 5.6: An example comparison between VERISPLIT’s disjoint slicing mechanism and the
continuous approach. We select the unit size to be 2x2. We color-code disjoint units and mark
continuous units by their content. For continuous slicing, we only show slicing a 3x3 matrix due
to limited spaces. The red box indicates one possible region verifiers may choose to check. After
slicing, the Merkle tree adds extra leaf nodes, as shown in the transition from one hash hm of the
original matrix into 4 more leaves (h1–h4).

a b c
d e f
g h i

a b
d e

b c
e f

d e
g h

e f
h i

Continuous
Slicing

Disjoin
Slicing

(VERISPLIT)

Modified
Merkle Tree

hm

h1 h2 h3 h4

In VERISPLIT, we employ a disjoint slicing method to separate large matrices into smaller
verify units. Figure 5.6 visualizes this slicing method compared with continuous alternatives.
Disjoint slicing generates less number of units (we can not enumerate continuous units in a
4x4 matrix due to limited spaces), leading to less computation in the Merkle tree construction
during inference. The compromise with disjoint slicing is that, during verification, the worker
might need to include more neighboring units in the proof. For example, if the verifier selects
the region in the red box, the worker needs to include all 4 slices since the exact region is not
included in any individual Merkle tree leaf node.

Certain layer types cannot benefit from unit slicing to reduce the computation overhead. For
example, dense layers with softmax activation are often used in the final prediction layer. To
verify softmax, the verifier needs to gather all layer inputs and outputs, eliminating the benefit of
partial verification. VERISPLIT thus reverts to full layer verification for those layers. Fortunately,
many computationally demanding layers can benefit from partial verification (such as convolu-
tion layers, who take up over 90% of all computations in certain CNN models [35, 128, 131]).

5.5.3 Tunable Verification
VERISPLIT utilizes a configurable knob (verify ratio) to decide the size of individual verify units.
If the verifier wants to enable partial verification as fine-grain as 1% (by setting this as the verify
ratio), the worker slices each layer’s results into at least 100 units. We can then calculate the unit
size accordingly. The verifier can select a new value for every offloading request. This helps the
verifier to adjust partial verification ratios based on the predicted arrival rates of new inferences.
For scenarios where new inferences are rare, the verifier can set a higher ratio for individual
offloads or maybe even perform full verification. On the other hand, if there are a large number
of inferences consistently arriving, the verifier can set a smaller verify ratio to preserve resources

64

while retaining a high probability of catching malicious workers.

5.6 Security Analysis

In this section, we present a formal security analysis of VERISPLIT’s solutions for VERISPLIT’s
three main goals (data privacy, model confidentiality, and inference integrity).

Data Privacy and Model Confidentiality. As a building block, we define a secure masking
scheme between a client C and an adversary A that produces indistinguishable results for A
when C randomly picks a value from choices (x1, x2) and applies a mask from range [−ϵ, ϵ]. We
assume both choices for x and mask ranges are known to A and C:

Definition 5.6.1 (ϵ-Masking Schemes). An ϵ-masking scheme consists of the following steps:
• xi ← (x1, x2), ϵi ← [−ϵ, ϵ]: C uniformly randomly selects a value xi and a mask ϵi. C

shares the masked value (xi + ϵi) with A.
• A guesses whether the selected value is x1 or x2 based on the observation of (xi + ϵi).

Definition 5.6.1 defines an ϵ-bound masking scheme. Ideally, with perfect security,A should
not gain any advantage in guessing xi after observing the masked value of (xi + ϵi). Therefore,
we present the following definition of security:

Definition 5.6.2 (Secure Masking Schemes). An ϵ-masking scheme is secure if it produces in-
distinguishable results such that A can only succeed at deciding the original value of xi with up
to 50% probability.

Furthermore, we define failures of such schemes as follows:

Definition 5.6.3 (Masking Scheme Failures). A masking scheme fails when A can distinguish
the original value of xi based on observed (xi + ϵi) with > 50% success rates.

Next, following these definitions, we can show that an ϵ-masking scheme can achieve perfect
security by selecting a mask range of all possible numbers:

Theorem 5.6.1 (Perfectly Secure Masking Schemes). If the masking scheme encodes all values
in a finite field and selects the mask ϵi uniformly randomly from all field elements, then such a
scheme is perfectly secure with 0% failure rates. The observed value (xi + ϵi) will uniformly
randomly distribute across the field elements regardless of which xi is selected.

Theorem 5.6.1 describes the perfect masking scheme in which the adversary A can only
observe uniformly random values. However, this scheme requires finite field operations, which
are computationally expensive. Instead, we extend this masking mechanism to floating point
numbers with bounded failure rates as follows:

65

Theorem 5.6.2 (Failure Rates for ϵ-Masking). Assuming xδ = |x1 − x2| and ϵ = k xδ (k ≥ 1).
If C selects mask ϵi ∈ [−ϵ, ϵ] instead of using finite field elements, then A, after observing a
masked value of (xi + ϵi), will be able to distinguish the original value between x1 and x2 with
a probability of 2

2k+1
.

Theorem 5.6.2 describes the probability of an adversary defeating the indistinguishability
property of a masking scheme (Definition 5.6.3). We can apply this failure rate calculation to our
solutions for data privacy and model confidentiality with the following conservative estimates:

Corollary 5.6.2.1 (Estimated Failure Rates for Data Privacy and Model Confidentiality). As-
suming input data x = (x1, x2,
· · · , xn), xδ = max(x) −min(x), and ϵ = k xδ (k ≥ 1). Then ∀xi ∈ x, we estimate the failure
rate of applying ϵ-masking is 2

2k+1
. We expect the masking scheme to leak up to 2n

2k+1
data points

from x overall. Similar estimates also apply to model weights w and biases b.

Inference Integrity. First, we define the offloading scheme with partial verification as follows:

Definition 5.6.4 (α-Verified Offload). Assuming client C wants to offload the computation of
function F : Rm → Rn to server S using the following steps:

• C shares input data x = (x1, x2, · · · , xm) with S.
• S computes ŷ = (ŷ1, ŷ2, · · · , ŷn) and shares ŷ with C.
• C selects a verification set V ⊆ ŷ such that |V | = ⌈αn⌉, α ∈ (0, 1]. C verifies that
∀ŷi ∈ V, ŷi = yi, where y = F(x).

With this definition, we can calculate the failure rates of VERISPLIT’s partial verification
mechanism under multiple offloading iterations:

Theorem 5.6.3 (Failure Rates for α-Verification over k Iterations). Assuming C and S conducts
k rounds of α-verified offload. For each offload, S reports partially incorrect results, with ratio

β. The probability of α-verification fails to detect incorrect results is
(
(n−b

a)
(na)

)k

, where a =

⌈αn⌉, b = ⌈β n⌉,
(
.
.

)
is binomial coefficient (combination).

5.6.1 Proofs
Proof of Theorem 5.6.1. In this case, all numbers (e.g., x1, x2) are embedded in a finite field
Zp. Assuming client C picks masking noise ϵi uniformly randomly from finite field Zp. After
applying the mask, C shares the value of (xi+ϵi) ∈ Zp with the adversaryA. A has no advantage
in determining the original values of xi since both (x1+ϵi) and (x2+ϵi) would appear uniformly
random across all field elements in Zp.

Proof of Theorem 5.6.2. Recall xδ = |x1 − x2| and ϵ = k xδ (k ≥ 1). Assuming, without loss
of generality, that x1 ≤ x2. Figure 5.7 provides an example visualization. If the masked value
(xi+ϵi) falls between the regions [x1−ϵ, x2−ϵ] and [x1+ϵ, x2+ϵ] (orange regions in the figure),
then A can distinguish whether the original value is x1 or x2. Otherwise, A has no advantage

66

Figure 5.7: Visualization of masking failure probabilities. If the observed value (xi + ϵi) falls
within the orange dashed region, then adversary A can distinguish the original value.

x1x1 − ϵ

x1 + ϵ

x2x2 − ϵ x2 + ϵ

over randomly guessing with a 50% success rate. Therefore, the failure rate of this ϵ-masking
scheme is:

failure rates =
(x2 − ϵ)− (x1 − ϵ) + (x2 + ϵ)− (x1 + ϵ)

(x2 + ϵ)− (x1 − ϵ)
(5.1)

=
x2 − x1 + x2 − x1

x2 − x1 + 2ϵ
(5.2)

=
2xδ

xδ + 2ϵ
(5.3)

=
2

2k + 1
(5.4)

Proof of Corollary 5.6.2.1. We assume there are n elements in data x = (x1, x2, · · · , xn) (simi-
lar proof holds for weights w and biases b). For any individual data point xi ∈ x, the worst-case
estimated failure rates are bounded by the minimal and maximal values in x (hence, xδ). There-
fore, the upper bound of failure rates for individual data points is 2

2k+1
(Theorem 5.6.2). Because

ϵ-masking scheme is applied to each data point independently, the total expected number of failed
points in x is 2n

2k+1
in the worst case.

Proof of Theorem 5.6.3. First, consider the failure probability of α-verification in a single round
of offload. Let a = ⌈αn⌉ = |V | and b = ⌈β n⌉. With α-verification, C fails to detect misbe-
having S if and only if no points in V selected by C are incorrect. Therefore, by definition of
combination, we calculate the failure probability of a single round offload with verification as:(

n−b
a

)(
n
a

)
that is, the total number of ways of choosing a points from correct values in ŷ divided by the
total number of ways of choosing a points from all values in ŷ.

Similarly, for k iterations, S must consistently avoid detection by C. Therefore, the overall
failure rate for k iterations is the product of individual failure rates:((

n−b
a

)(
n
a

))k

67

Figure 5.8: Inference accuracy of ImageNet data after applying different magnitudes of masks to
data (for Privacy) and model weights (for Confidentiality). Neither option has noticeable impacts
unless k ≥ 104. However, combining both quickly degrades inference accuracy when k > 101.

101 103 105

k (log scale)

0

25

50

75

Ac
cu

ra
cy

 (%
)

P
C
P+C

5.7 Floating Point Errors
As explained in (Section 5.6), VERISPLIT utilizes floating point numbers to provide security
guarantees without converting models into finite fields or using quantization. Unfortunately,
floating point operations introduce new challenges due to precision issues and platform depen-
dencies.

5.7.1 Mask Precision

With floating points masks, the key security parameter is k, the multiplier for the scale of masks
relative to the range of input values (i.e., ϵ = kxδ, Theorem 5.6.2). As k gets larger, the failure
rate (2

2k+1
) gets smaller and smaller. Ideally, we would make k as large as possible. However, we

quickly run into a limitation of floating point operations: precision issues. If the mask value is
too large, it is impossible to recover original results from the masked values (e.g., y = y′ −Wϵi
in Figure 5.2) due to a loss in precision (y′ ≈ Wϵi). Therefore, we must consider practical limits
on how large k can be.

Figure 5.8 measures the inference accuracy of the Vision Transformer model (ViT-L16) on
the ImageNet validation dataset using different masking parameters. Applying masks for either
data privacy or model confidentiality alone does not affect accuracy significantly for smaller k
values (< 104). Eventually, masks become too large and imprecise for VERISPLIT to produce
accurate inference results. Moreover, combining masking for both privacy and confidentiality
significantly limits the maximum values of k before losing precision. We observe a drop of
accuracy for k between 101 and 102. This is because of the multiplicative nature of masking (i.e.,
applying masks for both W and x and computing Wx).

Setting k = 10 may seem like a relatively weak security guarantee. However, our security
analysis is based on the indistinguishability of two values (Theorem 5.6.2); hence, the failure
rates are a conservative estimate for an attacker to recover original values based on masked ob-
servations. To understand the practical implications of these parameters, we design an empirical

68

Figure 5.9: Average recovery errors for attackers to predict original value x based on observed
masked value x′. The red dashed line indicates randomly guessing values from [xmin, xmax]. The
blue line represents guessing values from [x′ − ϵ, x′ + ϵ] where ϵ depends on the masking scale
multiplier k.

10 2 100

k (log scale)

0.0

0.1

0.2

0.3

Av
er

ag
e

Er
ro

r
(N

or
m

al
ize

d)

attack simulation to measure the recovery error rates under various k’s. Specifically, we define
a game where client C chooses values and adversary A tries to recover the original values with
minimal errors (in L1 distance):

Definition 5.7.1 (Attack on Floating Point Masks). The attack on masked values is conducted
as follows:

• C uniformly randomly selects a value xi ∈ [xmin, xmax] and a mask ϵi ∈ [−ϵ, ϵ], where
ϵ = k(xmax − xmin).

• A receives the value xm = (xi + ϵi) and the range [xmin, xmax]. A tries to guess x′ with
two strategies. The first one is to guess x′

i ∈ [xmin, xmax] randomly as a baseline. The
second one is to guess x′

i ∈ [xm − ϵ, xm + ϵ] (clipped by xmin, xmax).
• We measure the average errors as |xi − x′

i|.

Figure 5.9 presents the average errors empirically measured following Definition 5.7.1. We
normalize errors by the range of the input (xmax − xmin). The red dashed line represents the
baseline attack of uniformly randomly guessed values from [xmin, xmax]. The blue line represents
the more sophisticated strategy of ϵ-bounded guesses. When k is small (≤ 10−1), A has a strong
advantage in recovering the original values with low errors. However, as k gets larger (> 1), the
adversary has no optimal strategy compared to random guesses. These results demonstrate that
our security analysis (Theorem 5.6.2) is very conservative, and k doesn’t have to be too large to
effectively protect masked data.

5.7.2 Cross-Platform Numerical Errors
Another floating-point challenge comes from the hardware platform differences in heterogeneous
IoT devices. Specifically, for workers with GPUs, floating point operations can often cause small
numerical errors due to imprecision and non-determinism in runtime libraries [153, 200, 200,

69

201]. These errors can not be reproduced on the offloading devices (CPUs or ARM micropro-
cessors), leading to inconsistent results. Therefore, VERISPLIT can not guarantee the integrity
and distinguish results from unfaithful inference executions. Therefore, we develop a solution to
address the cross-platform result discrepancy with tolerances.

To select appropriate tolerances for cross-platform numerical errors, we introduce a profil-
ing phase before the beginning of VERISPLIT offload. During profiling, we assume workers
faithfully execute all inferences so we can correctly select tolerances. This process is commonly
used in anomaly detection to select threshold and cut-off values [51, 141]. In future deployment,
VERISPLIT users can collectively share an open-source database to look up appropriate toler-
ances for various hardware platforms without going through a worker-specific profiling process
(and hence avoiding the trust-on-first-use issue for new workers).

During profiling, the device should select a small but representative dataset to offload to the
worker. After receiving the worker’s results, the device computes tolerances by measuring the
maximum differences τ between offloaded and locally-computed results. Moreover, we multiply
the tolerance by a factor of 4 (empirically chosen) as a relaxation to avoid mistakenly rejecting
any offloading results unseen in the profile dataset. Finally, because each layer has different error
ranges, we profile them individually and choose different tolerances.

Verifying integrity with tolerances introduces another challenge since VERISPLIT may fail
to detect unfaithful workers. To better analyze this trade-off, we experiment with attacks on
VERISPLIT’s tolerance verification. We consider a malicious worker who performs Fast Gra-
dient Method (FGM) attacks [80] aiming to covertly change prediction results by perturbing
intermediate values while remaining below the acceptable tolerance. In short, an FGM attack
maximizes the classification loss w.r.t. to the input by gradient ascend and ensures the attacked
input is τ -away from the original input w.r.t to L2 norms. The attacker can either change val-
ues from one single-layer or perform multi-layer attacks to modify layer i and all subsequent
layers to cascade perturbations. We measure the number of predictions the attacker can change
in the validation set of ImageNet [182] and use 10% of the dataset for profiling. We choose
VGG16 models for experiments because VERISPLIT must offload them holistically, hence more
vulnerable to attacks (i.e., multi-layer attacks are not feasible for layer-by-layer offloading). Our
experiment results show that, with tolerances, an attacker can change the prediction results for
0.38% of the data (single-layer attacks) or 0.79% (multi-layer attacks) without being detected by
the VERISPLIT verification algorithm.

Prior works [201] and our own experience finds that different batch sizes can affect the range
of numerical errors. Switching from a batch size of 1 to 16 for profiling and inference signif-
icantly reduces the number of vulnerable points in the dataset (0.02% for single-layer attacks,
0.04% for multi-layer ones). Therefore, to further improve the integrity guarantee and to avoid
false negatives, the device can pad inferences to use larger batch sizes in deployment.

5.8 Implementation
We implemented a prototype of VERISPLIT in 8728 lines of Python code. We implemented
VERISPLIT’s machine learning module based on TensorFlow [202] framework and communi-
cation serialization using Google Protocol Buffers [85]. We implemented the Merkle tree con-

70

struction and verification operation using pymerkle Python library [73]. In VERISPLIT we
assume all workers are connected to wall power and hence do not consider battery constraints.
We also explored alternative embedded devices with TPU accelerators (e.g., Pixels with Tensor
chips [84] and Coral USB Edge TPU [43]). Unfortunately, TPUs (and their TensorFlow Lite
SDK [203]) lack high precision floating point support and require model quantization [44] and
quantization-aware training to provide competitive behavior [148]. This violates our practical
goals of maintaining high flexibility with floating point operations (Section 5.2.1), so we did not
pursue this route.

We implemented several performance optimizations, including model weight in-memory
caching, multi-threading, and data compression. These optimizations bring mixed returns. For
holistic offloading, they greatly reduced inference and verification latency. However, layer-
by-layer offloading and memory-constrained devices experience negative results as these op-
tions exacerbate resource contention. For example, sending uncompressed data from memory-
constrained Raspberry Pi has lower latency due to lower CPU utilization.

5.9 Evaluations

We evaluate the performance overhead of VERISPLIT with various security options compared
to local execution. We present results from two types of machine learning models — Vision
Transformers [58] and a convolution-based VGG16 [197]. Their architectural differences lead to
different practical choices (layer-by-layer vs. holistic).

5.9.1 Setup

We use a Raspberry Pi 4 (RPi4) with 4 CPU cores (64 bit ARM Cortex-A72 cores, running at
1.5Ghz) and 4GB RAM as an example IoT device. To keep a representative setup, we manually
restrict RPi’s available resources (CPU, memory, network bandwidth) for the VERISPLIT appli-
cation, considering 1) many IoT devices are less powerful (e.g., using micro-controllers [4, 5])
and 2) similar-equipped devices must share resources across many applications [30, 170]. We
enforce hard limits on memory capacity and processors by modifying the Linux boot configura-
tion. We allocate 4GB for memory swap space. The RPi connects to a local LAN either over
Gigabit Ethernet or the 5GHz WiFi interfaces, depending on the evaluation.

For the local worker, we choose a gaming desktop (16 cores, 48GB RAM) with a GPU (RTX
3090, 24GB VRAM). The computer is connected to the LAN via Gigabit Ethernet. During our
evaluation, the worker does not execute any resource-intensive workload and remains idle. To
emulate multiple workers for model confidentiality, we create multiple VERISPLIT runtime on
the same worker machine.

We selected the ImageNet [182] dataset for offloading workload and measured the average
inference latency over 50 inferences. The offloading device conducts each inference in single
batch to better capture real-time inference experience. We incorporate two representative ma-
chine learning models — a classic, convolution-based one (VGG16 [197]) and a more recent,
attention-based family of Vision Transformers [58] (different sizes and configurations).

71

Figure 5.10: Average inference latency of Vision Transformer models (ViT-L16 unless noted
otherwise) with guarantees: Integrity (I), Data Privacy (P), and Model Confidentiality (C), under
different configurations for the offloading device. (a) Latency comparison of memory sizes. (b)
Latency comparison of numbers of CPU cores. (c) Latency comparison of different network
conditions. (d) Latency comparison of a larger model (ViT-H16) with different memory sizes.

(a) Impact of Memory Size

Local I I+P I+C
I+P+C

0

50

La
te

nc
y

(s
)

2x CPU, Ethernet
Mem=2GB
Mem=1GB

(b) Impact of CPU Cores

Local I I+P I+C
I+P+C

0

50

1GB, Ethernet
2 CPUs
1 CPU

(c) Impact of the Network

I I+P I+C
I+P+C

0

50

2x CPU, 1GB
Local
Ethernet
Wi-Fi

(d) Memory Impact on Big Model

Local I I+P I+C
I+P+C

0

100

200
2x CPU, Ethernet, ViT-H16

Mem=4GB
Mem=2GB

5.9.2 Vision Transformers

In this section, we present the evaluation results for offloading Vision Transformer (ViT) models
with VERISPLIT. We employ a layer-by-layer offloading approach to demonstrate VERISPLIT’s
full capability of protecting data privacy, model confidentiality, and inference integrity.

For ViT models, we offload computationally-expensive dense layers in MLP to workers while
keeping other layers (e.g., non-linear layers, attentions) on the device. This reduces computation
demands on the device without incurring too much communication overhead.

Inference Latency. Figure 5.10 presents the average latency of model inferences with the ViT
Large model (ViT-L16, with a batch size of 16) under various settings. As a baseline, we select
local execution on the IoT device rather than comparison with first-party cloud offloading, which
would require vendors to set up an additional cloud backend.

First, offloading with VERISPLIT outperforms local execution for devices with limited com-
putation. Figure 5.10(a) shows that, for a device with 1GB memory, running ViT-L32 locally
takes 82 seconds, while VERISPLIT offloading reduces latency by 49%–83%, depending on the
set of options enabled. One might argue that the IoT device could increase memory to 2GB, and

72

CPU
(cores)

Pre-Process (seconds/mask) Inference
(seconds)

Verification
(seconds)

1 14.48 25.92 17
2 13.20 28.04 12.36

Table 5.1: Pre-process and verification time for VERISPLIT offloading with data privacy and
integrity options, measured on a device with 1GB memory. Both overheads can be asynchronous:
generate masks before inference starts and verify anytime after inference finishes.

the local execution would improve significantly. However, as machine learning models get more
complex, larger models would quickly exceed device hardware capability. For example, even
2GB memory is insufficient for a larger vision transformer (ViT-H16, Figure 5.10(d)), which
provides better accuracy. Looking forward, we believe VERISPLIT provides a practical solution
to enable the execution of complex large models on resource-limited IoT devices with strong
security and privacy guarantees.

In addition to memory size, we observe a slight impact from the number of CPU cores. Fig-
ure 5.10(b) presents the average inference latency on a device with 1GB memory and connected
over Ethernet. Increasing CPU cores from 1x to 2x reduces latency of VERISPLIT offloading by
up to 37% using the same set of options. In comparison, local execution only experiences 10%
latency reduction due to it being memory constrained (i.e., not bounded by CPU).

As expected, different network conditions significantly impact the performance of VERISPLIT

offloading. Figure 5.10(c) compares the average inference latency between WiFi 5GHz and Eth-
ernet connections for devices with 2 CPU cores and 1GB memory. The horizontal red dashed line
indicates the local execution baseline. Switching the connection from Ethernet to WiFi raises the
inference latency by up to 1.89x. However, it is important to note that offloading over WiFi with
all options enabled still outperforms local inference baselines.

Additional Overhead. In addition to inference delays, different options of VERISPLIT incur
additional overhead, such as pre-processing for data privacy and verification to ensure integrity.
Table 5.1 presents these overheads compared to inference times. Here the device verifies all re-
sults without the need for partial verification. As expected, more CPU cores help reduce latency,
although they both take considerable time. Unlike time-sensitive inferences, the device can pre-
process multiple masks during idle times for future use and aggregate verification for many prior
inferences altogether. Therefore, these delays should not impose too much performance penalty
in a real-world deployment. Even if we combine both overheads together, VERISPLIT with data
privacy and integrity verification still outperforms local inference baselines (Figure 5.10(b)).

5.9.3 VGG16

In addition to Vision Transformers, we evaluate VERISPLIT with a more traditional, convolution-
based VGG16 model. Unlike transformers, VGG16 utilizes convolution layers extensively. Con-
volutions generate large amounts of intermediate values (layer inputs and outputs), as measured
by prior research [111, 208]. Therefore, offloading VGG16 layer-by-layer incurs high commu-

73

Figure 5.11: Latency for offloading and verifying VGG16 model with VERISPLIT. The local
execution baseline provides 0.57 inference per second, while integrity-enabled VERISPLIT can
provide 2.04 inference/s. Notably, for VERISPLIT, verification can be performed asynchronously
when the device is idle. Verification overhead includes the workers assembling the proofs, trans-
mitting them over the network (WiFi in this setting), and the device recomputing the results and
validating the proofs.

0 500 1000 1500 2000 2500 3000
Latency (ms)

Local
Inferences

VeriSplit
(Inference)

VeriSplit
(Verify 1% of Model)

VeriSplit
(Verify 10% of Model)

0.57 inferences/s

2.04 inferences/s

0.67 verifications/s

0.38 verifications/s

4x CPU, 4GB, WiFi
Inference/Offloading
Verification

nication overhead, limiting the practicality of VERISPLIT and the performance benefits. Instead,
we employ a holistic offloading approach to ensure inference integrity with VERISPLIT with
minimal overhead. This implies VERISPLIT can provide inference integrity guarantees in this
case.

Figure 5.11 presents the average latency for inferences with VGG16 models with integrity
verification. We evaluate these tasks on a device with 4x CPU cores and 4GB memory. As a
baseline, it takes 1746 ms to perform inferences locally. The device can use VERISPLIT to of-
fload inferences to a worker with a GPU. This helps reduce inference latency to 491 ms. The
most significant benefit of VERISPLIT offloading, in this case, is reduced CPU loads on the de-
vice (from 2.61 for local inferences to 0.63 for VERISPLIT with verification, not shown in the
figure). If the device selects 1% of the intermediate values to verify, the verification overhead av-
erages around 1503 ms, but this step can happen asynchronously. In addition, if the device wants
to verify more values, it must spend more time collecting the additional intermediate results and
validating proofs.

5.10 Limitations and Discussion

Applying VERISPLIT to Cloud Offloading. We designed VERISPLIT as a solution for se-
cure and private offloading across local IoT devices. Therefore, we made a few design decisions
based on network conditions and trade-offs between communication and computation overhead.
We believe that the techniques we propose in VERISPLIT should also apply to certain cloud
offloading applications depending on the network condition. For example, data-center network-
ing may provide higher bandwidth and lower latency, making it ideal for VERISPLIT solutions.
However, offloading over a WAN might introduce significantly higher latency and potentially
metered bandwidth, and is thus less applicable for VERISPLIT.

74

Extending VERISPLIT to Additional Models. Incorporating new models into VERISPLIT

requires a few steps. First, analyzing whether layer-by-layer or holistic offload is more suitable
is important. If the new model involves layers with large intermediate values (e.g., convolution
layers), offloading those layers might not be worthwhile due to the communication overhead.
Therefore, one task is determining where each layer should be executed (locally or remotely)
and how many layers should be offloaded altogether. Second, for new layer types, it is necessary
to implement solutions for verifying partial results (instead of running the entire layer) to save
on computation costs.

Resource Requirements for Efficient Verification. Although VERISPLIT enables devices to
offload the bulk of computation to more capable workers, these devices still need sufficient re-
sources (memory, processors) to perform masking and verification steps. If the device has insuf-
ficient resources, the performance will degrade: smaller memory sizes will trigger more memory
swaps (if supported), and slower processor speeds will incur higher latency. If the device’s re-
sources are too limited, VERISPLIT offloading may not be suitable.

5.11 Summary
This chapter of the thesis presents the design and implementation of an efficient offloading solu-
tion, VERISPLIT, for local IoT devices to securely and privately utilize idle computing resources
without managing infrastructure themselves. VERISPLIT addresses several practical challenges
in protecting data privacy, model confidentiality, and inference integrity for resource-constrained
IoT devices. We introduce masking mechanisms to protect private data and models by adding
noises and an inference commitment mechanism based on Merkle trees to separate verification
steps from real-time inferences. In addition, we addressed challenges in floating-point computa-
tion errors and precision issues.

75

76

Chapter 6

Conclusions

In this thesis, we have demonstrated that by applying various formal security analysis techniques
and optimizing diligently, we can successfully split many functionalities from the list of IoT
vendors’ responsibilities to achieve a better landscape for IoT deployment’s security, privacy,
and cost-efficiency. More importantly, we have demonstrated the benefits of various formal
security analysis techniques through their applications in the system design process.

With TEO, we showed that splitting the responsibility of managing application-level access
controls can provide better privacy control for smart device users, especially in shared environ-
ments, which would be increasingly popular in future IoT deployments. For security analysis, we
adopted an automated protocol verification tool ProVerif to examine design vulnerabilities and
potential attacks violating security goals exhaustively. During the iterative process of verifying
and revising, we addressed all security problems, streamlined protocol workflow, and reduced
complexity.

With CAPTURE, we proposed that separating the role for managing security updates for third-
party software libraries helps improve the overall IoT deployments’ security by reducing the
potential attack surfaces. Individual IoT vendors can delegate the responsibility of applying
timely updates to centralized library management services. As for ensuring security properties,
we employed a secure-by-construction approach, carefully considered potential attack points in
the system, and analyzed the effectiveness of our isolation approaches in potentially compro-
mised scenarios. Moreover, we identified network communication bottlenecks and incorporated
proactive packet transmissions to minimize latency impacts.

With VERISPLIT, we presented that secure offloading machine learning inferences could
alleviate IoT vendors’ burdens and costs of managing first-party cloud services and infrastruc-
tures. We addressed the main challenges hindering vendors’ adoptions, including data privacy,
model confidentiality, and inference integrity, with novel designs of the offloading algorithm.
To ensure security guarantees, we constructed formal proofs for quantitative analysis of security
risks under different parameters. To improve the solution’s practicality, we avoided heavyweight
cryptographic operations but delivered a secure system design with lightweight alternatives.

77

6.1 Lessons Learned
Through conducting research for this thesis, we have obtained many insights and accumulated
experiences in designing and implementing secure and practical IoT devices and systems by
splitting functionalities. Upon reflection, we summarize and share several important lessons we
learned in our journey.

Formal analyses provide strong security guarantees for new system designs. We employed
various formal analysis techniques throughout the work presented in different thesis chapters.
These approaches help us deliver strong security guarantees with our new system designs. In
TEO, we leverage a symbolic protocol verification tool to ensure the security of our new protocol
suite. In CAPTURE, we took a secure-by-construction approach and combined multiple security
primitives into the new system design. We followed up with an in-depth analysis of how CAP-
TURE would prevent internal and external attackers. Finally, in VERISPLIT, we provided proofs
of our new offloading algorithms’ security arguments and statistic guarantees.

It is often challenging to justify the security guarantees when designing new systems. An
accomplished faculty once told me that “you kind of have to take a kitchen sink approach” while
asked about how to ensure any new system we develop is secure. His answer essentially means
we should utilize all available tools and analyze as many security properties as possible. As a
more principled approach, many formal analysis techniques we employed in this thesis could
be easily adapted into other application domains and provide guidance on how to design new
systems with strong security guarantees.

Splitting holistic designs demands performance-critical optimizations. This thesis presents
many systems that separate certain functionalities from the traditional, holistic IoT device design.
Without sufficient optimization, splitting those functionalities to third parties often incurs exor-
bitant performance overhead regarding network communication and computation. Sometimes,
the optimizations can be as straightforward as buffering and batch processing — as shown in
the CAPTURE’s design of data buffers and message coalescing. In other cases, we may run into
fundamental limitations of the splitting design and have to revise the systems and targeted use
cases. For example, in VERISPLIT, the amounts of intermediate values in some neural networks
are so large that it is impractical to offload them on a layer-by-layer basis. Therefore, we must
relax the security guarantees for certain machine learning model types (e.g., VGG-16 vs. Vision
Transformers).

Functionality splitting must address vendors’ loss of agency and reduce adoption barri-
ers. By delegating functionalities to third parties, IoT vendors no longer control the end-to-end
software stack on the device. Therefore, a common theme of our works presented in this thesis
is to alleviate vendors’ adoption barriers and tackle their loss of agency. For example, central-
izing library management on the CAPTURE hub takes away vendors’ control over what library
runtime their applications may be executed with. To avoid interrupting the normal operations
of IoT applications, we conducted extensive analyses of library updating practices and the ef-
fectiveness of semantic versioning in preserving library stability in the real world. Based on

78

our insights, we proposed three library update strategies to balance between manageability and
backward compatibility with existing applications. In addition, we also considered many other
aspects to reduce vendors’ adoption barriers. For example, throughout many of our projects, we
proposed a number of integration approaches and often provided cross-platform library runtime
to help existing applications integrate our new systems with low modifications.

6.2 Future Directions
More Capable and Secure Smart Home Hub Designs. Looking forward, many important
functionalities still need improvements. As demonstrated in this thesis, splitting them from the
monolithic design into dedicated services could provide many practical benefits and improve
the landscape of future IoT deployment. A few prominent examples include providing stronger
encryption for resource-limited devices [3] and more privacy-preserving user data processing
with local hubs [107, 108].

As we split more and more functionalities from the holistic designs, the prevalent smart
home hubs seem to be ideal candidates for taking over these new responsibilities. his future
direction builds upon many important lessons learned and the limitations of systems presented
in this thesis. For example, TEO-enabled trusted local hubs could help resource-constrained
IoT devices better protect users’ private data. We can extend the CAPTURE framework with
more library supports to lower the adoption barrier for existing devices. In VERISPLIT, we
can integrate with more machine learning models and inference workloads to make it widely
available to common, existing workloads. One of the main contributions of this thesis is that we
presented several approaches to designing practical hubs with strong security guarantees through
a combination of formal analyses and optimizations. We believe these projects would provide
valuable insights into designing the next-generation smart home hubs with minimal trust required
from individual devices.

Beyond Smart Homes. Besides smart homes, many new applications can benefit from a more
secure and practical offloading design, such as the emerging usage of vehicular networks [59],
wearable computing [21], and virtual reality devices [195]. Many approaches and solutions
proposed in this thesis are not limited to smart home applications. For example, VERISPLIT

introduces a secure and verifiable offloading algorithm for neural network models, and it can be
easily adapted into applications beyond smart home devices. One of the main challenges is that
new use cases may not have the same network characteristics as smart homes — high bandwidth
over unmetered networks — and hence, many targeted neural network models would require
further investigation on which layers to offload and when to do it.

We can extend works in this thesis to more and more use cases. Although they may require
small modifications, many components, such as the security analysis and the common optimiza-
tion techniques, can be reused. Therefore, we believe it would be a promising direction to apply
ideas from this thesis to other emerging new use cases to provide secure and practical offloading
solutions.

79

80

Appendix A

Formal Modeling Code for TEO Protocol
Verification

free io:channel.

(**)
(* HMAC *)
(**)

type mac_key.
fun mk2b(mac_key):bitstring [data,typeConverter].
fun b2mk(bitstring):mac_key [data,typeConverter].

(**)
(* Public Key Signatures *)
(**)

type privkey.
type pubkey.
fun pk(privkey): pubkey.
const NoPubKey:pubkey.

fun pubkey2b(pubkey):bitstring [data, typeConverter].
fun b2pubkey(bitstring):pubkey [data, typeConverter].

(**)
(* Function mapping between Libsodium and ProVerif APIs *)
(**)

type nonce.
fun nonce2b(nonce):bitstring [data, typeConverter].
fun b2nonce(bitstring):nonce [data, typeConverter].

(*
Secret key encryption

81

*)

(* Debug helper function to test key secrecy, not real crypto APIs *)
fun debug_enc(bitstring, bitstring):bitstring.
fun debug_dec(bitstring, bitstring):bitstring
reduc forall k,msg:bitstring;

debug_dec(k, debug_enc(k, msg)) = msg.

(* Message authentication HMAC *)
fun crypto_auth(mac_key, bitstring):bitstring.

fun crypto_auth_verify(mac_key, bitstring, bitstring):bool
reduc forall k:mac_key, msg:bitstring;

crypto_auth_verify(k, msg, crypto_auth(k, msg)) = true
otherwise forall k:mac_key, x,y:bitstring;

crypto_auth_verify(k, x, y) = false.

(* Encrypting file streams *)
type secretstream_key.
type secretstream_header.

fun crypto_secretstream_encrypt(secretstream_key, secretstream_header,
bitstring):bitstring.

fun crypto_secretstream_decrypt(secretstream_key, secretstream_header,
bitstring):bitstring

reduc forall k:secretstream_key, h:secretstream_header, msg:bitstring;
crypto_secretstream_decrypt(k, h, crypto_secretstream_encrypt(k, h, msg))

= msg.

(*
Public key cryptography

*)

(* AEAD operations *)
(* encryption(msg, nonce, receiverPubkey, senderPrivkey) *)
fun crypto_box_easy(bitstring, nonce, pubkey, privkey):bitstring.

(* decryption(ciphertext, nonce, senderPubkey, receiverPrivkey) *)
fun crypto_box_open_easy(bitstring, nonce, pubkey, privkey):bitstring
reduc forall msg:bitstring, n:nonce, senderPrivkey:privkey, receiverPrivkey:

privkey;
crypto_box_open_easy(crypto_box_easy(msg, n, pk(receiverPrivkey),

senderPrivkey),
n, pk(senderPrivkey), receiverPrivkey) = msg.

(* Sealed boxes for encrypting with receiver’s public key *)
fun crypto_box_seal(bitstring, pubkey):bitstring.

fun crypto_box_seal_open(bitstring, privkey):bitstring
reduc forall msg:bitstring, k:privkey;

82

crypto_box_seal_open(crypto_box_seal(msg, pk(k)), k) = msg.

(* EdDSA signature algorithm *)
fun crypto_sign(privkey, bitstring): bitstring.

(* verify(signerPubkey, message, hashValue) *)
fun crypto_sign_verify(pubkey, bitstring, bitstring):bool
reduc forall k:privkey, x:bitstring;

crypto_sign_verify(pk(k), x, crypto_sign(k, x)) = true
otherwise forall k:pubkey, x,y:bitstring;

crypto_sign_verify(k, x, y) = false.

(*
Sieve cryptography functions

*)

type sieve_key.
type rekey_token.

fun sieve_key2b(sieve_key):bitstring [data, typeConverter].
fun b2sieve_key(bitstring):sieve_key [data, typeConverter].

fun sieve_enc(sieve_key, nonce, bitstring):bitstring.

fun sieve_dec(sieve_key, nonce, bitstring, bitstring):bitstring
reduc forall k:sieve_key, n:nonce, hint,msg:bitstring;

sieve_dec(k, n, hint, sieve_enc(k, n, msg)) = msg.

fun sieve_rekey_token(sieve_key, sieve_key):rekey_token.

fun sieve_rekey(bitstring, rekey_token):bitstring
reduc forall k:sieve_key, kNew:sieve_key, n:nonce, msg:bitstring;

sieve_rekey(sieve_enc(k, n, msg), sieve_rekey_token(k, kNew)) = sieve_enc(
kNew, n, msg).

(*
Shamir secret sharing

Split secrets into variable number of parts.

*)

$template ${UID}
fun split_key_shares_${UID}(secretstream_key):bitstring.
$endtemplate

fun assemble_key_shares($expand{bitstring}$with{,}$by{${UID}}):
secretstream_key

reduc forall d:secretstream_key;
assemble_key_shares($expand{split_key_shares_${UID}(d)}$with{,}) = d.

83

(**)
(* Security property prooofs *)
(**)

(*********** Debug ***********)
(*
Helper variable to test out secret keys.

Expected value: query returns true so attacker doesn’t know the secret.

*)
free debugSecret:bitstring [private].
query attacker(debugSecret).

(*********** Initialization ***********)
event InitializationAdminAcquireDevice(pubkey, pubkey).
event InitializationDeviceAcceptAdmin(pubkey, pubkey).

(*
Reachability queries:

If the query returns "RESULT not event() is true", this means the event
is

not reachable. Thus the corresponding code belongs to an unreachable
branch.

We can use conjunction to ensure multiple events are reachable.

Expected value: Query not (event() && ... && event()) is false.

*)
query admin, device:pubkey;

event(InitializationAdminAcquireDevice(admin, device))
&& event(InitializationDeviceAcceptAdmin(admin, device))
.

(*
Property: when device accepts a new admin manager, the admin must have
initiated a request first.

*)
query admin, device:pubkey;

inj-event(InitializationDeviceAcceptAdmin(admin, device))
==> inj-event(InitializationAdminAcquireDevice(admin, device))
.

(*********** AcquirePreAuthToken ***********)

event AcquirePreAuthTokenAdminGrant(pubkey, pubkey, bitstring).
event AcquirePreAuthTokenUserReceive(pubkey, pubkey, bitstring).

query admin, user:pubkey, token:bitstring;
event(AcquirePreAuthTokenAdminGrant(admin, user, token))
&& event(AcquirePreAuthTokenUserReceive(admin, user, token))
.

84

(*
Property: When user receives a token, this is a valid token issued by
the official system admin.

*)
query admin, user:pubkey, token:bitstring;

inj-event(AcquirePreAuthTokenUserReceive(admin, user, token)) ==> inj-
event(AcquirePreAuthTokenAdminGrant(admin, user, token)).

(*********** ClaimDevice ***********)

event ClaimDeviceDeviceAcceptUser(pubkey, pubkey, pubkey, bitstring).
event ClaimDeviceUserFinishDevice(pubkey, pubkey, pubkey).

query user, device, admin:pubkey, preAuthToken:bitstring;
event(ClaimDeviceDeviceAcceptUser(user, device, admin, preAuthToken))
&& event(ClaimDeviceUserFinishDevice(user, device, admin))
.

(*
Property: if a device accepts a new user, the user must have initiated it
and the user must possess a valid pre-auth token issued by admin.

*)
query user, device, admin:pubkey, preAuthToken:bitstring;

inj-event(ClaimDeviceUserFinishDevice(user, device, admin))
==> (

inj-event(ClaimDeviceDeviceAcceptUser(user, device, admin, preAuthToken)
)

==> (
inj-event(AcquirePreAuthTokenAdminGrant(admin, user, preAuthToken))

)
)
.

(*********** DataStore ***********)

free privateUserData:bitstring [private].
query attacker(privateUserData).

$template ${UID}
(* user, device, sessionID *)
event DataStoreUserReceiveNotification${UID}(pubkey, pubkey, bitstring).
$endtemplate
(* users, device, sessionID *)
event DataStoreDeviceFinish($expand{pubkey}$with{,}$by{${UID}}, pubkey,

bitstring).
(* users, UUID, content *)
event DataStoreAssignOwnership($expand{pubkey}$with{,}$by{${UID}}, bitstring

, bitstring).

85

(* Basic reachability queries *)
query $expand{user${UID}}$with{,}, device:pubkey, sessionID:bitstring;

$expand{event(DataStoreUserReceiveNotification${UID}(user${UID}, device,
sessionID))}$with{ && }

&& event(DataStoreDeviceFinish($expand{user${UID}}$with{,}, device,
sessionID))

.

query $expand{user${UID}}$with{,}, device:pubkey, sessionID:bitstring;
$expand{inj-event(DataStoreUserReceiveNotification${UID}(user${UID},

device, sessionID))}$with{ && }
==> inj-event(DataStoreDeviceFinish($expand{user${UID}}$with{,}, device,

sessionID))
.

(*********** DataAccess ***********)
(* accessor, UUID *)
event DataAccessAccessorDecrypt(pubkey, bitstring).
$template ${UID}
(* user, accessor, UUID *)
event DataAccessUserGrantPermission${UID}(pubkey, pubkey, bitstring).
$endtemplate

query $expand{user${UID}}$with{,}, accessor:pubkey, metaDataUUID:bitstring;
event(DataAccessAccessorDecrypt(accessor, privateUserData))
&&
$expand{event(DataAccessUserGrantPermission${UID}(user${UID}, accessor,

metaDataUUID))}$with{ && }
.

query $expand{user${UID}}$with{,}, accessor:pubkey, metaDataUUID:bitstring;
inj-event(DataAccessAccessorDecrypt(accessor, privateUserData))
==> (

$expand{inj-event(DataAccessUserGrantPermission${UID}(user${UID},
accessor, metaDataUUID))}$with{ && }

)
.

(*********** DataReencryption ***********)
$template ${UID}
event DataReencryptionUserRequestKeySwitch${UID}(bitstring,nonce,nonce).
event DataReencryptionUserSwitchKey${UID}(bitstring,nonce,nonce).
event DataReencryptionStorageSwitchKey${UID}(bitstring,nonce,nonce).
event DataReencryptionAccessorTryDecryptOldKey${UID}(bitstring,bitstring).
event DataReencryptionAccessorSucceedDecryptOldKey${UID}(bitstring,bitstring

).

86

query metaDataUUID, sieveDataUUID:bitstring, userNonce,storeNonce:nonce;
event(DataReencryptionUserRequestKeySwitch${UID}(sieveDataUUID, userNonce,

storeNonce))
&& event(DataReencryptionUserSwitchKey${UID}(sieveDataUUID, userNonce,

storeNonce))
&& event(DataReencryptionStorageSwitchKey${UID}(sieveDataUUID, userNonce,

storeNonce))
&& event(DataReencryptionAccessorTryDecryptOldKey${UID}(metaDataUUID,

sieveDataUUID))
.

(*
This event is unreachable if re-encrypt succeeds;
otherwise, accessor can decrypt the data with old keys, make it reachable.

*)
query metaDataUUID, sieveDataUUID:bitstring;

event(DataReencryptionAccessorSucceedDecryptOldKey${UID}(metaDataUUID,
sieveDataUUID))

.

(*
If storage provider switches key, user must have requested it already.

*)
query metaDataUUID, sieveDataUUID:bitstring, userNonce,storeNonce:nonce;

inj-event(DataReencryptionUserSwitchKey${UID}(sieveDataUUID, userNonce,
storeNonce))

==> (
inj-event(DataReencryptionStorageSwitchKey${UID}(sieveDataUUID,

userNonce,storeNonce))
==> (

inj-event(DataReencryptionUserRequestKeySwitch${UID}(sieveDataUUID,
userNonce,storeNonce))

)
)

.

$endtemplate

(**)
(* Protocol Message Header *)
(**)
(* Placeholder for switching group mode in Device Claim request *)
$template ${UID}
const GROUP_MODE_${UID} : bitstring.
$endtemplate

const INITIALIZATION_REQUEST
, INITIALIZATION_DEVICE_INFO
, INITIALIZATION_ADMIN_REPLY

87

, ACQUIRE_PRE_AUTH_TOKEN_REQUEST
, ACQUIRE_PRE_AUTH_TOKEN_RESPONSE

, CLAIM_DEVICE_DISCOVERY
, CLAIM_DEVICE_DISCOVERY_RESPONSE
, CLAIM_DEVICE_REQUEST
, CLAIM_DEVICE_RESPONSE

, DATA_STORE_SIEVE_CRED_REQUEST
, DATA_STORE_SIEVE_CRED_RESPONSE
, DATA_STORE_UPLOAD
, DATA_STORE_UPLOAD_NOTIFICATION_1
, DATA_STORE_UPLOAD_NOTIFICATION_2
, DATA_STORE_DOWNLOAD_REQUEST
, DATA_STORE_DOWNLOAD_RESPONSE_1
, DATA_STORE_DOWNLOAD_RESPONSE_1_ACK

, DATA_ACCESS_FETCH
, DATA_ACCESS_RESPONSE

, DATA_REENCRYPTION_PRE_REQUEST
, DATA_REENCRYPTION_PRE_RESPONSE
, DATA_REENCRYPTION_REQUEST
, DATA_REENCRYPTION_RESPONSE
:bitstring.

const ADMIN_SIGN_TYPE_DEVICE_PROOF
, ADMIN_SIGN_TYPE_PRE_AUTH_TOKEN
, USER_SIGN_TYPE_REKEY_TOKEN
:bitstring.

const CIPHER_INITIALIZATION_REQUEST
, CIPHER_INITIALIZATION_DEVICE_INFO
, CIPHER_INITIALIZATION_ADMIN_REPLY

, CIPHER_ACQUIRE_PRE_AUTH_TOKEN_RESPONSE

, CIPHER_CLAIM_DEVICE_REQUEST
, CIPHER_CLAIM_DEVICE_RESPONSE

, CIPHER_DATA_STORE_SIEVE_CRED_REQUEST
, CIPHER_DATA_STORE_SIEVE_CRED_RESPONSE
, CIPHER_DATA_STORE_UPLOAD_NOTIFICATION_1
, CIPHER_DATA_STORE_UPLOAD_NOTIFICATION_2

, CIPHER_DATA_ACCESS_RESPONSE

, CIPHER_DATA_REENCRYPTION_PRE_REQUEST
, CIPHER_DATA_REENCRYPTION_PRE_RESPONSE
, CIPHER_DATA_REENCRYPTION_REQUEST
:bitstring.

88

(**)
(* Protocol Modules *)
(**)

(*********** Initialization ***********)

(* device pubkey <--> device manager/accepted admin pubkey *)
table deviceAdminKeyTable(pubkey, pubkey).
table deviceValidProofTable(pubkey, bitstring).

let AdminInitialization(setupKey:secretstream_key, adminPrivkey:privkey) =
new setupHeader:secretstream_header;
new adminChallenge:bitstring;
let adminPubkey = pk(adminPrivkey) in

out(io, (INITIALIZATION_REQUEST,
setupHeader,
crypto_secretstream_encrypt(

setupKey,
setupHeader,
(CIPHER_INITIALIZATION_REQUEST, adminPubkey, adminChallenge)

)));

in(io, (=INITIALIZATION_DEVICE_INFO, ciphertext:bitstring));

let (=CIPHER_INITIALIZATION_DEVICE_INFO, =adminChallenge, deviceChallenge:
bitstring, devicePubkey:pubkey) = crypto_box_seal_open(ciphertext,
adminPrivkey) in

event InitializationAdminAcquireDevice(adminPubkey, devicePubkey);

let validDeviceProof = crypto_sign(adminPrivkey, (
ADMIN_SIGN_TYPE_DEVICE_PROOF, devicePubkey)) in

new msgNonce:nonce;
out(io, (INITIALIZATION_ADMIN_REPLY,

msgNonce,
crypto_box_easy(

(CIPHER_INITIALIZATION_ADMIN_REPLY, deviceChallenge,
validDeviceProof),

msgNonce,
devicePubkey,
adminPrivkey

)));

out(io, debug_enc((setupKey, setupHeader), debugSecret)).

let DeviceInitialization(setupKey:secretstream_key, devicePrivkey:privkey) =

let devicePubkey = pk(devicePrivkey) in

89

in(io, (=INITIALIZATION_REQUEST, setupHeader:secretstream_header,
ciphertext:bitstring));

new deviceChallenge:bitstring;

let (=CIPHER_INITIALIZATION_REQUEST, adminPubkey:pubkey, adminChallenge:
bitstring) = crypto_secretstream_decrypt(setupKey, setupHeader,
ciphertext) in

out(io, (INITIALIZATION_DEVICE_INFO,
crypto_box_seal((CIPHER_INITIALIZATION_DEVICE_INFO, adminChallenge

, deviceChallenge, devicePubkey),
adminPubkey

)));

in(io, (=INITIALIZATION_ADMIN_REPLY, msgNonce:nonce, msgEncrypted:
bitstring));

let (=CIPHER_INITIALIZATION_ADMIN_REPLY, =deviceChallenge,
validDeviceProof:bitstring) = crypto_box_open_easy(msgEncrypted,
msgNonce, adminPubkey, devicePrivkey) in

insert deviceAdminKeyTable(devicePubkey, adminPubkey);
insert deviceValidProofTable(devicePubkey, validDeviceProof);
event InitializationDeviceAcceptAdmin(adminPubkey, devicePubkey);
out(io, debug_enc((setupKey, setupHeader), debugSecret)).

(*********** AcquirePreAuthToken ***********)

table userPreAuthTokenTable(pubkey, bitstring).

let AdminAcquirePreAuthToken(adminPrivkey:privkey) =
in(io, (=ACQUIRE_PRE_AUTH_TOKEN_REQUEST, userPubkey:pubkey));

new boxNonce:nonce;
let token = crypto_sign(adminPrivkey, (ADMIN_SIGN_TYPE_PRE_AUTH_TOKEN,

userPubkey)) in
event AcquirePreAuthTokenAdminGrant(pk(adminPrivkey), userPubkey, token);
out(io, (ACQUIRE_PRE_AUTH_TOKEN_RESPONSE, boxNonce, crypto_box_easy((

CIPHER_ACQUIRE_PRE_AUTH_TOKEN_RESPONSE, token), boxNonce, userPubkey,
adminPrivkey))).

let UserAcquirePreAuthToken(userPrivkey:privkey, adminPubkey:pubkey) =
let userPubkey = pk(userPrivkey) in
out(io, (ACQUIRE_PRE_AUTH_TOKEN_REQUEST, userPubkey));

in(io, (=ACQUIRE_PRE_AUTH_TOKEN_RESPONSE, boxNonce:nonce, ciphertext:
bitstring));

let (=CIPHER_ACQUIRE_PRE_AUTH_TOKEN_RESPONSE, token:bitstring) =
crypto_box_open_easy(ciphertext, boxNonce, adminPubkey, userPrivkey) in

insert userPreAuthTokenTable(userPubkey, token);

90

event AcquirePreAuthTokenUserReceive(adminPubkey, userPubkey, token).

(*********** ClaimDevice ***********)

$template ${UID}
table userControlDeviceTable${UID}(pubkey, pubkey).

let UserClaimDevice${UID}(userPrivkey:privkey, adminPubkey:pubkey) =
let userPubkey = pk(userPrivkey) in
get userPreAuthTokenTable(=userPubkey, token) in

out(io, (CLAIM_DEVICE_DISCOVERY, userPubkey));
in(io, (=CLAIM_DEVICE_DISCOVERY_RESPONSE, devicePubkey:pubkey,

validDeviceProof:bitstring));

if crypto_sign_verify(adminPubkey, (ADMIN_SIGN_TYPE_DEVICE_PROOF,
devicePubkey), validDeviceProof) then

new sessionNonce:nonce;
new userChallenge:bitstring;

out(io, (CLAIM_DEVICE_REQUEST,
sessionNonce,
crypto_box_easy((CIPHER_CLAIM_DEVICE_REQUEST, GROUP_MODE_${UID},

token, userChallenge), sessionNonce, devicePubkey,
userPrivkey)

));
in(io, (=CLAIM_DEVICE_RESPONSE, status:bool, responseNonce:nonce,

challengeResponseEncrypted:bitstring));
if status then

let (=CIPHER_CLAIM_DEVICE_RESPONSE, challengeDecrypted:bitstring) =
crypto_box_open_easy(challengeResponseEncrypted, responseNonce,
devicePubkey, userPrivkey) in

if challengeDecrypted = userChallenge then

insert userControlDeviceTable${UID}(userPubkey, devicePubkey);

event ClaimDeviceUserFinishDevice(userPubkey, devicePubkey,
adminPubkey).

$endtemplate

$template ${UID}
table deviceOwnerKeyTable${UID}(pubkey, pubkey).

let DeviceClaimDevice${UID}(devicePrivkey:privkey) =
let devicePubkey = pk(devicePrivkey) in
get deviceValidProofTable(=devicePubkey, deviceValidProof) in
get deviceAdminKeyTable(=devicePubkey, adminPubkey) in

in(io, (=CLAIM_DEVICE_DISCOVERY, userPubkey:pubkey));

91

out(io, (CLAIM_DEVICE_DISCOVERY_RESPONSE, devicePubkey, deviceValidProof))
;

in(io, (=CLAIM_DEVICE_REQUEST,
sessionNonce:nonce,
msgEncrypted:bitstring

));
let (=CIPHER_CLAIM_DEVICE_REQUEST, =GROUP_MODE_${UID}, token:bitstring,

userChallenge:bitstring) = crypto_box_open_easy(msgEncrypted,
sessionNonce, userPubkey, devicePrivkey) in

if crypto_sign_verify(adminPubkey, (ADMIN_SIGN_TYPE_PRE_AUTH_TOKEN,
userPubkey), token) then

event ClaimDeviceDeviceAcceptUser(userPubkey, devicePubkey, adminPubkey,
token);

insert deviceOwnerKeyTable${UID}(devicePubkey, userPubkey);

new responseNonce:nonce;
out(io, (CLAIM_DEVICE_RESPONSE, true, responseNonce, crypto_box_easy((

CIPHER_CLAIM_DEVICE_RESPONSE, userChallenge), responseNonce,
userPubkey, devicePrivkey)));

0.

$endtemplate

(*********** DataStore ***********)

(* storageTableV0(UUID, ownerPubkey, content) *)
const NULLPK: pubkey.
table storageTableV0(bitstring, $expand{pubkey}$with{,}$by{${UID}},

bitstring).
$template ${UID}
(* Work around for rekey since tables are append-only *)
table storageTableV${UID}

(bitstring, $expand{pubkey}$with{,}$by{${UID}}, bitstring).
$endtemplate

let DeviceDataStore(devicePrivkey:privkey) =
let devicePubkey = pk(devicePrivkey) in

$template ${UID}
get deviceOwnerKeyTable${UID}(=devicePubkey, ownerPubkey${UID}) in

$endtemplate

(* Session creds are used for communication b/w device and owner *)
new sessionID:bitstring;

$template ${UID}
new sessionNonce${UID}:nonce;

$endtemplate

(* Data creds are used for later accessor decryption *)
new dataKey:secretstream_key;

92

new dataHeader:secretstream_header;

(* Generate list of UUIDs *)
new dataUUID:bitstring;

$template ${UID}
new sieveDataUUID${UID}:bitstring;

$endtemplate
new metaDataUUID:bitstring;

(* Encrypte data locally *)
let dataEncrypted = crypto_secretstream_encrypt(dataKey, dataHeader,

privateUserData) in

out(io, (DATA_STORE_UPLOAD, dataUUID, $expand{ownerPubkey${UID}}$with{,},
dataEncrypted));

(* Fetch Sieve creds to retrieve *)
$template ${UID}

out(io, (DATA_STORE_SIEVE_CRED_REQUEST,
devicePubkey,
sessionNonce${UID},
ownerPubkey${UID},
crypto_box_easy((CIPHER_DATA_STORE_SIEVE_CRED_REQUEST, sessionID),

sessionNonce${UID}, ownerPubkey${UID}, devicePrivkey)));

in(io, (=DATA_STORE_SIEVE_CRED_RESPONSE, =ownerPubkey${UID},
responseNonce${UID}:nonce, ciphertext${UID}:bitstring));

let (=CIPHER_DATA_STORE_SIEVE_CRED_RESPONSE, sieveKey${UID}:sieve_key,
sieveNonce${UID}:nonce) = crypto_box_open_easy(ciphertext${UID},
responseNonce${UID}, ownerPubkey${UID}, devicePrivkey) in

(* Split data key into shares *)
let dataKeyShare${UID} = split_key_shares_${UID}(dataKey) in

(* Create Sieve data block per user *)
let sieveContentBlock${UID} = (dataKeyShare${UID}) in
new sieveDataHint${UID}:bitstring;
let sieveDataBlock${UID} = sieve_enc(sieveKey${UID}, sieveNonce${UID},

sieveContentBlock${UID}) in
out(io, (DATA_STORE_UPLOAD, sieveDataUUID${UID}, $foreach{i}{UID}{$if{${i}

== ${UID}}{ownerPubkey${UID}}{NULLPK}}$with{,},
sieveDataBlock${UID}));

new notificationNonce1${UID}:nonce;
out(io, (DATA_STORE_UPLOAD_NOTIFICATION_1,

ownerPubkey${UID},
notificationNonce1${UID},
crypto_box_easy((CIPHER_DATA_STORE_UPLOAD_NOTIFICATION_1,

sessionID, sieveDataUUID${UID}, dataUUID), notificationNonce1${
UID}, ownerPubkey${UID}, devicePrivkey)));

$endtemplate

93

(* Assemble meta data block *)
let ownerInfo = ($expand{sieveNonce${UID}, ownerPubkey${UID},

sieveDataUUID${UID}, sieveDataHint${UID}}$with{,}) in
let metaData = (ownerInfo, dataUUID, dataHeader) in
out(io, (DATA_STORE_UPLOAD, metaDataUUID, $expand{ownerPubkey${UID}}$with{

,}, metaData));

event DataStoreDeviceFinish($expand{ownerPubkey${UID}}$with{,},
devicePubkey, sessionID);

event DataStoreAssignOwnership($expand{ownerPubkey${UID}}$with{,},
metaDataUUID, privateUserData);

(* Send upload notification to data owner *)
$template ${UID}

new notificationNonce2${UID}:nonce;
out(io, (DATA_STORE_UPLOAD_NOTIFICATION_2,

ownerPubkey${UID},
notificationNonce2${UID},
crypto_box_easy((CIPHER_DATA_STORE_UPLOAD_NOTIFICATION_2,

sessionID, metaDataUUID), notificationNonce2${UID},
ownerPubkey${UID}, devicePrivkey)));

$endtemplate

0.

$template ${UID}
(* userRecordingLookupTable(userPubkey, sessionID, metaDataUUID,

sieveDataUUID, sieveKey) *)
table userRecordingLookupTable${UID}(pubkey, bitstring, bitstring, bitstring

, sieve_key).

let UserDataStore${UID}(userPrivkey:privkey) =
let userPubkey = pk(userPrivkey) in

in(io, (=DATA_STORE_SIEVE_CRED_REQUEST, devicePubkey:pubkey, sessionNonce:
nonce, =userPubkey, ciphertext:bitstring));

let (=CIPHER_DATA_STORE_SIEVE_CRED_REQUEST, sessionID:bitstring) =
crypto_box_open_easy(ciphertext, sessionNonce, devicePubkey,
userPrivkey) in

get userControlDeviceTable${UID}(=userPubkey, =devicePubkey) in

new sieveKey:sieve_key;
new sieveNonce:nonce;
new responseNonce:nonce;

out(io, (DATA_STORE_SIEVE_CRED_RESPONSE,
userPubkey,

94

responseNonce,
crypto_box_easy((CIPHER_DATA_STORE_SIEVE_CRED_RESPONSE, sieveKey,

sieveNonce), responseNonce, devicePubkey, userPrivkey)
));

in(io, (=DATA_STORE_UPLOAD_NOTIFICATION_1, =userPubkey, notificationNonce1
:nonce, notificationPayload1:bitstring));

let (=CIPHER_DATA_STORE_UPLOAD_NOTIFICATION_1, =sessionID, sieveDataUUID:
bitstring, dataUUID:bitstring) = crypto_box_open_easy(
notificationPayload1, notificationNonce1, devicePubkey, userPrivkey) in

in(io, (=DATA_STORE_UPLOAD_NOTIFICATION_2, =userPubkey,
notificationNonce2:nonce, notificationPayload2:bitstring));

let (=CIPHER_DATA_STORE_UPLOAD_NOTIFICATION_2, =sessionID, metaDataUUID:
bitstring) = crypto_box_open_easy(notificationPayload2,
notificationNonce2, devicePubkey, userPrivkey) in

insert userRecordingLookupTable${UID}(userPubkey, sessionID, metaDataUUID,
sieveDataUUID, sieveKey);

event DataStoreUserReceiveNotification${UID}(userPubkey, devicePubkey,
sessionID);

out(io, metaDataUUID);
0.

$endtemplate

(*********** DataAccess ***********)
table approvedAccessor(pubkey).

(* Malicious accessor stores stale sieve key *)
table accessorDataCache(bitstring, sieve_key).

table malicious(bitstring).

let AccessorDataAccess(accessorPrivkey:privkey) =
let accessorPubkey = pk(accessorPrivkey) in

in(io, metaDataUUID:bitstring);
insert malicious(metaDataUUID);

(* Download Sieve data block from storage *)
out(io, (DATA_STORE_DOWNLOAD_REQUEST, metaDataUUID));
in(io, (=DATA_STORE_DOWNLOAD_RESPONSE_1, $expand{ownerPubkey${UID}:pubkey}

$with{,}, metaData:bitstring));

(* Unmarshalling Sieve data block *)
let (($expand{sieveNonce${UID}:nonce, =ownerPubkey${UID}, sieveDataUUID${

UID}:bitstring, sieveDataHint${UID}:bitstring}$with{,}), dataUUID:
bitstring, dataHeader:secretstream_header) = metaData in

95

$template ${UID}
new randomNoise${UID}:bitstring;
new payloadNonce${UID}:nonce;
let payload${UID} = crypto_box_easy((metaDataUUID, randomNoise${UID}),

payloadNonce${UID}, ownerPubkey${UID}, accessorPrivkey) in
out(io, (DATA_ACCESS_FETCH, accessorPubkey, payloadNonce${UID}, payload${

UID}));

in(io, (=DATA_ACCESS_RESPONSE, msgNonce${UID}:nonce, ciphertext${UID}:
bitstring));

(* Retrieve user specific Sieve key *)
let (=CIPHER_DATA_ACCESS_RESPONSE, sieveKey${UID}:sieve_key, =randomNoise$

{UID}) = crypto_box_open_easy(ciphertext${UID}, msgNonce${UID},
ownerPubkey${UID}, accessorPrivkey) in

(* Download metadata block and decrypt *)
out(io, (DATA_STORE_DOWNLOAD_REQUEST, sieveDataUUID${UID}));
in(io, (=DATA_STORE_DOWNLOAD_RESPONSE_1, $foreach{i}{UID}{$if{${i} == ${

UID}}{=ownerPubkey${UID}}{dummy_${UID}_${i}:pubkey}}$with{,},
sieveDataBlock${UID}:bitstring));

let sieveContentBlock${UID} = sieve_dec(sieveKey${UID}, sieveNonce${UID},
sieveDataHint${UID}, sieveDataBlock${UID}) in

let (dataKeyShare${UID}:bitstring) = sieveContentBlock${UID} in
$endtemplate

let dataKey:secretstream_key = assemble_key_shares($expand{dataKeyShare${
UID}}$with{,}) in

(* Retrieve data *)
out(io, (DATA_STORE_DOWNLOAD_REQUEST, dataUUID));
in(io, (=DATA_STORE_DOWNLOAD_RESPONSE_1, $expand{=ownerPubkey${UID}}$with{

,}, dataEncrypted:bitstring));

(*
get storageTableVersion2(=dataUUID, a:pubkey, b:bitstring) in 0 else
insert storageTableVersion2(dataUUID, ownerPubkey, dataEncrypted);

*)

let dataDecrypted = crypto_secretstream_decrypt(dataKey, dataHeader,
dataEncrypted) in

if (dataDecrypted = privateUserData) then
event DataAccessAccessorDecrypt(accessorPubkey, privateUserData);

$template ${UID}
insert accessorDataCache(sieveDataUUID${UID}, sieveKey${UID});

$endtemplate
0.

$template ${UID}

96

let UserDataAccess${UID}(userPrivkey:privkey) =
let userPubkey = pk(userPrivkey) in
in(io, (=DATA_ACCESS_FETCH, accessorPubkey:pubkey, payloadNonce:nonce,

payload:bitstring));

get approvedAccessor(=accessorPubkey) in

let (metaDataUUID:bitstring, randomNoise:bitstring) = crypto_box_open_easy
(payload, payloadNonce, accessorPubkey, userPrivkey) in

get userRecordingLookupTable${UID}(=userPubkey, sessionID:bitstring, =
metaDataUUID, sieveDataUUID:bitstring, sieveKey:sieve_key) in

event DataAccessUserGrantPermission${UID}(userPubkey, accessorPubkey,
metaDataUUID);

new msgNonce:nonce;
let ciphertext = crypto_box_easy((CIPHER_DATA_ACCESS_RESPONSE, sieveKey,

randomNoise), msgNonce, accessorPubkey, userPrivkey) in
out(io, (DATA_ACCESS_RESPONSE, msgNonce, ciphertext));

0.
$endtemplate

(*********** Storage daemon ***********)
let StorageDownloadDaemon() =

in(io, (=DATA_STORE_DOWNLOAD_REQUEST, blockUUID:bitstring));
get storageTableV0(=blockUUID, $expand{ownerPubkey${UID}:pubkey}$with{,},

content:bitstring) in
out(io, (DATA_STORE_DOWNLOAD_RESPONSE_1, $expand{ownerPubkey${UID}}$with{,

}, content));
0.

let StorageUploadDaemon() =
in(io, (=DATA_STORE_UPLOAD, blockUUID:bitstring, $expand{ownerPubkey${UID}

:pubkey}$with{,}, content:bitstring));
insert storageTableV0(blockUUID, $expand{ownerPubkey${UID}}$with{,},

content);
0.

(*********** DataReencryption ***********)
$template ${UID}
let UserDataReencryption${UID}(userPrivkey:privkey, storagePubkey:pubkey) =
phase $compute{(${UID}-1)*${REENCRYPT_PHASE_INTERVAL}+1};

let userPubkey = pk(userPrivkey) in
get userRecordingLookupTable${UID}(=userPubkey, sessionID:bitstring,

metaDataUUID:bitstring, sieveDataUUID:bitstring, sieveKey:sieve_key) in

(* Model key revocation: make a fresh new sieve key *)

97

new sieveNewKey:sieve_key;
(* Alternatively: make the new key the same as old key to check the

reachability of DataReencryptionAccessorSucceedDecryptOldKey() *)
(* let sieveNewKey = sieveKey in *)

let rekeyToken = sieve_rekey_token(sieveKey, sieveNewKey) in

(* Add session-specific negotiation to prevent replay attack *)
new userNonce: nonce;
let preReqCiphertext = crypto_box_seal(

(
CIPHER_DATA_REENCRYPTION_PRE_REQUEST,
metaDataUUID,
sieveDataUUID,
userNonce

),
storagePubkey) in

out(io, (DATA_REENCRYPTION_PRE_REQUEST, preReqCiphertext));
in(io, (=DATA_REENCRYPTION_PRE_RESPONSE, preResCiphertext:bitstring));
let (=CIPHER_DATA_REENCRYPTION_PRE_RESPONSE, =userNonce, storeNonce:nonce)
= crypto_box_seal_open(preResCiphertext, userPrivkey) in

event DataReencryptionUserRequestKeySwitch${UID}(sieveDataUUID, userNonce,
storeNonce);

new notificationToken:bitstring;
new msgNonce:nonce;

out(io, (DATA_REENCRYPTION_REQUEST, metaDataUUID, msgNonce,
crypto_box_easy((CIPHER_DATA_REENCRYPTION_REQUEST, rekeyToken,
notificationToken, userNonce, storeNonce), msgNonce, storagePubkey,
userPrivkey)));

in(io, (=DATA_REENCRYPTION_RESPONSE, =notificationToken));

(* Can’t update this table again here. Cause infinite loop. It’s okay if we
just want to validate rekey token revoke old sieve keys. As the result,
the old data is never accessible after rekey in the current model... *)

(* insert userRecordingLookupTable(userPubkey, sessionID, metaDataUUID,
dataUUID, sieveNewKey);

*)
event DataReencryptionUserSwitchKey${UID}(sieveDataUUID, userNonce,

storeNonce);
0.

$endtemplate

$template ${UID}
let StorageDataReencryptionPhased${UID}(storagePrivkey:privkey) =

phase $compute{(${UID}-1)*${REENCRYPT_PHASE_INTERVAL}+1};

in(io, (=DATA_REENCRYPTION_PRE_REQUEST, preReqCiphertext:bitstring));

98

let (=CIPHER_DATA_REENCRYPTION_PRE_REQUEST, metaDataUUID:bitstring,
sieveDataUUIDReq:bitstring, userNonce:nonce) = crypto_box_seal_open(
preReqCiphertext, storagePrivkey) in

get storageTableV$compute{${UID}-1}
(=metaDataUUID, $expand{ownerPubkey${UID}:pubkey}$with{,}, metaData:

bitstring) in

let (($expand{sieveNonce${UID}:nonce, =ownerPubkey${UID}, sieveDataUUID${
UID}:bitstring, sieveDataHint${UID}:bitstring}$with{,}), dataUUID:
bitstring, dataHeader:secretstream_header) = metaData in

if sieveDataUUID${UID} = sieveDataUUIDReq then
new storeNonce:nonce;
let preCiphertext = crypto_box_seal((CIPHER_DATA_REENCRYPTION_PRE_RESPONSE

, userNonce, storeNonce), ownerPubkey${UID}) in
out(io, (DATA_REENCRYPTION_PRE_RESPONSE, preCiphertext));

in(io, (=DATA_REENCRYPTION_REQUEST, metaDataUUID:bitstring, msgNonce:nonce
, ciphertext:bitstring));

insert storageTableV${UID}
(metaDataUUID, $expand{ownerPubkey${UID}}$with{,}, metaData);

let (=CIPHER_DATA_REENCRYPTION_REQUEST, rekeyToken:rekey_token,
notificationToken:bitstring, =userNonce, =storeNonce) =
crypto_box_open_easy(ciphertext, msgNonce, ownerPubkey${UID},
storagePrivkey) in

get storageTableV0(=sieveDataUUID${UID}, $foreach{i}{UID}{$if{${i} == ${
UID}}{=ownerPubkey${UID}}{=NULLPK}}$with{,}, sieveDataBlock:bitstring)
in

let sieveDataBlockNewKey = sieve_rekey(sieveDataBlock, rekeyToken) in

insert storageTableV${UID}
(sieveDataUUID${UID}, $foreach{i}{UID}{$if{${i} == ${UID}}{ownerPubkey${

UID}}{NULLPK}}$with{,}, sieveDataBlockNewKey);

event DataReencryptionStorageSwitchKey${UID}(sieveDataUUID${UID},
userNonce,storeNonce);

out(io, (DATA_REENCRYPTION_RESPONSE, notificationToken));
0.

$endtemplate

let StorageDataReencryption(storagePrivkey:privkey) =
$expand{StorageDataReencryptionPhased${UID}(storagePrivkey)}$with{ | }
| 0.

99

$template ${UID}
let AccessorBadDataReencryptionPhased${UID}() =
phase $compute{(${UID}-1)*${REENCRYPT_PHASE_INTERVAL}+2};
get malicious(metaDataUUID:bitstring) in

get storageTableV${UID}
(=metaDataUUID, $expand{ownerPubkey${UID}:pubkey}$with{,}, metaData) in

let (($expand{sieveNonce${UID}:nonce, =ownerPubkey${UID}, sieveDataUUID${
UID}:bitstring, sieveDataHint${UID}:bitstring}$with{,}), dataUUID:
bitstring, dataHeader:secretstream_header) = metaData in

$expand{get accessorDataCache(sieveDataUUID${UID}:bitstring, sieveKey${UID
}:sieve_key) in }$with{ }

event DataReencryptionAccessorTryDecryptOldKey${UID}(metaDataUUID,
sieveDataUUID${UID});

$foreach{i}{UID}{get storageTableV$if{${i} == ${UID}}{${i}}{0} (=
sieveDataUUID${i}, $foreach{j}{UID}{$if{${j} == ${UID}}{=ownerPubkey${
UID}}{=NULLPK}}$with{,} , sieveDataBlock${i}) in }$with{ }

$expand{let sieveContentBlock${UID} = sieve_dec(sieveKey${UID},
sieveNonce${UID}, sieveDataHint${UID}, sieveDataBlock${UID}) in let (
dataKeyShare${UID}:bitstring) = sieveContentBlock${UID} in }$with{ }

let dataKey:secretstream_key = assemble_key_shares($expand{dataKeyShare${
UID}}$with{,}) in

out(io, (DATA_STORE_DOWNLOAD_REQUEST, dataUUID));
in(io, (=DATA_STORE_DOWNLOAD_RESPONSE_1, a:pubkey, dataEncrypted:bitstring

));

let dataDecrypted = crypto_secretstream_decrypt(dataKey, dataHeader,
dataEncrypted) in

if (dataDecrypted = privateUserData) then
event DataReencryptionAccessorSucceedDecryptOldKey${UID}(metaDataUUID,

sieveDataUUID${UID});

0.
$endtemplate

let AccessorBadDataReencryption() =
$expand{AccessorBadDataReencryptionPhased${UID}()}$with{ | }
| 0.

100

(**)
(* Main Process *)
(**)

const adminName, storageName:bitstring.

(* Lookup table for canonical name <--> pubkey *)
table KMS(bitstring, pubkey).

let AdminProcess(setupKey:secretstream_key) =
new adminPrivkey: privkey;
let adminPubkey = pk(adminPrivkey) in
insert KMS(adminName, adminPubkey);
AdminInitialization(setupKey, adminPrivkey)
| !AdminAcquirePreAuthToken(adminPrivkey)
| 0.

let DeviceProcess(setupKey:secretstream_key) =
new devicePrivkey: privkey;
let devicePubkey = pk(devicePrivkey) in
DeviceInitialization(setupKey, devicePrivkey)

$template ${UID}
| DeviceClaimDevice${UID}(devicePrivkey)

$endtemplate
| DeviceDataStore(devicePrivkey)
| 0.

$template ${UID}
let UserProcess${UID}() =

new userPrivkey:privkey;
get KMS(=adminName, adminPubkey) in
get KMS(=storageName, storagePubkey) in
UserAcquirePreAuthToken(userPrivkey, adminPubkey)
| UserClaimDevice${UID}(userPrivkey, adminPubkey)
| UserDataStore${UID}(userPrivkey)
| UserDataAccess${UID}(userPrivkey)
| UserDataReencryption${UID}(userPrivkey, storagePubkey)
| 0.

$endtemplate

let StorageProcess() =
new storagePrivkey:privkey;
let storagePubkey = pk(storagePrivkey) in
insert KMS(storageName, storagePubkey);
!StorageDownloadDaemon()
| !StorageUploadDaemon()
| !StorageDataReencryption(storagePrivkey)
| 0.

let AccessorProcess() =
new accessorPrivkey:privkey;

101

let accessorPubkey = pk(accessorPrivkey) in
insert approvedAccessor(accessorPubkey);
AccessorDataAccess(accessorPrivkey)
| AccessorBadDataReencryption()
| 0.

process
new setupKey:secretstream_key;
AdminProcess(setupKey)
| !DeviceProcess(setupKey)

$template ${UID}
| !UserProcess${UID}()

$endtemplate
| StorageProcess()
| !AccessorProcess()

102

Bibliography

[1] Paarijaat Aditya, Rijurekha Sen, Peter Druschel, Seong Joon Oh, Rodrigo Benenson,
Mario Fritz, Bernt Schiele, Bobby Bhattacharjee, and Tong Tong Wu. I-pic: A platform
for privacy-compliant image capture. In Proceedings of the 14th annual international
conference on mobile systems, applications, and services, pages 235–248, 2016. 2.1.2

[2] Ayaz Akram, Venkatesh Akella, Sean Peisert, and Jason Lowe-Power. Sok: Limitations
of confidential computing via tees for high-performance compute systems. In 2022 IEEE
International Symposium on Secure and Private Execution Environment Design (SEED),
pages 121–132. IEEE, 2022. 2.3.1

[3] Fatemah Alharbi, Arwa Alrawais, Abdulrahman Bin Rabiah, Silas Richelson, and Nael
Abu-Ghazaleh. Csprop: Ciphertext and signature propagation low-overhead public-key
cryptosystem for iot environments. In 30th {USENIX} Security Symposium ({USENIX}
Security 21), pages 609–626, 2021. 3.7, 6.2

[4] Alasdair Allan. The problem with throwing away a smart device. https://www.ha
ckster.io/news/the-problem-with-throwing-away-a-smart-devic
e-75c8b35ee3c7, 2020. 1.1, 4.2.2, 4.6.2, 5.9.1

[5] Alasdair Allan. Teardown of a smart plug (or two). https://www.hackster.io/
news/teardown-of-a-smart-plug-or-two-6462bd2f275b, 2020. 1.1,
4.2.2, 4.6.2, 5.9.1

[6] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. SoK: Security
evaluation of home-based IoT deployments. In 2019 IEEE Symposium on Security and
Privacy, 2019. 1, 4.1, 4.2

[7] Amazon. Blink video doorbell. https://www.amazon.com/Blink-Video-Doo
rbell/dp/B08SG2MS3V, 2022. 5.1

[8] Amazon Web Services. AWS IoT Greengrass. https://aws.amazon.com/green
grass/, 2020. 1, 2.2.3, 4.1

[9] Mahmoud Ammar, Bruno Crispo, and Gene Tsudik. Simple: A remote attestation ap-
proach for resource-constrained iot devices. In 2020 ACM/IEEE 11th International Con-
ference on Cyber-Physical Systems (ICCPS), pages 247–258. IEEE, 2020. 3.7

[10] Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro, John Kolb, Hyung-
Sin Kim, David E Culler, and Raluca Ada Popa. {WAVE}: A decentralized authorization
framework with transitive delegation. In 28th USENIX Security Symposium (USENIX
Security 19), pages 1375–1392, 2019. 2.1.2, 3.1, 5.5.1

103

https://www.hackster.io/news/the-problem-with-throwing-away-a-smart-device-75c8b35ee3c7
https://www.hackster.io/news/the-problem-with-throwing-away-a-smart-device-75c8b35ee3c7
https://www.hackster.io/news/the-problem-with-throwing-away-a-smart-device-75c8b35ee3c7
https://www.hackster.io/news/teardown-of-a-smart-plug-or-two-6462bd2f275b
https://www.hackster.io/news/teardown-of-a-smart-plug-or-two-6462bd2f275b
https://www.amazon.com/Blink-Video-Doorbell/dp/B08SG2MS3V
https://www.amazon.com/Blink-Video-Doorbell/dp/B08SG2MS3V
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/

[11] Android. Batterymanager. https://developer.android.com/reference/
android/os/BatteryManager, 2021. 3.6.1

[12] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime
Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis Kallitsis,
Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Seaman,
Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding the mirai botnet. In 26th
USENIX Security Symposium, 2017. 1, 4.1

[13] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. Privacy-preserving
deep learning via additively homomorphic encryption. IEEE Transactions on Information
Forensics and Security, 13(5):1333–1345, 2017. 2.3.3

[14] apache-jmeter. Apache JMeter. https://jmeter.apache.org/, 2020. 4.7.1

[15] Andrew W Appel and Edward W Felten. Proof-carrying authentication. In Proceedings of
the 6th ACM Conference on Computer and Communications Security, pages 52–62, 1999.
3.2.1

[16] Apple. Bonjour. https://developer.apple.com/bonjour/, 2021. 3.3.3

[17] Aref Asvadishirehjini, Murat Kantarcioglu, and Bradley Malin. Goat: GPU outsourcing of
deep learning training with asynchronous probabilistic integrity verification inside trusted
execution environment. arXiv preprint arXiv:2010.08855, 2020. 2.3.2

[18] Gbadebo Ayoade, Vishal Karande, Latifur Khan, and Kevin Hamlen. Decentralized IoT
data management using blockchain and trusted execution environment. In 2018 IEEE
International Conference on Information Reuse and Integration (IRI), pages 15–22. IEEE,
2018. 2.1.2, 3, 3.1, 3.7

[19] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin
Liao, and Bryan Parno. SoK: Computer-aided cryptography. In IEEE Symposium on
Security and Privacy, May 2021. 3.4.2

[20] Lujo Bauer, Scott Garriss, Jonathan M McCune, Michael K Reiter, Jason Rouse, and Peter
Rutenbar. Device-enabled authorization in the grey system. In International Conference
on Information Security, pages 431–445. Springer, 2005. 2.1.2, 3, 3.1, 3.2.1

[21] Abdelkareem Bedri, Yuchen Liang, Sudershan Boovaraghavan, Geoff Kaufman, and
Mayank Goel. Fitnibble: A field study to evaluate the utility and usability of automatic
diet monitoring in food journaling using an eyeglasses-based wearable. Proceedings of
the Annual Conference on Intelligent User Interfaces, 2022. 6.2

[22] Julia Bernd, Ruba Abu-Salma, and Alisa Frik. Bystanders’ privacy: The perspectives
of nannies on smart home surveillance. In 10th USENIX Workshop on Free and Open
Communications on the Internet (FOCI 20), 2020. 1, 2.1.1, 3, 3.1

[23] Arnar Birgisson, Joe Gibbs Politz, Úlfar Erlingsson, Ankur Taly, Michael Vrable, and
Mark Lentczner. Macaroons: Cookies with contextual caveats for decentralized autho-
rization in the cloud. In Network and Distributed System Security Symposium, 2014. 3.2.1

[24] Andrew D Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems (TOCS), 1984. 4.8

104

https://developer.android.com/reference/android/os/BatteryManager
https://developer.android.com/reference/android/os/BatteryManager
https://jmeter.apache.org/
https://developer.apple.com/bonjour/

[25] Bruno Blanchet. Security protocol verification: Symbolic and computational models. In
International Conference on Principles of Security and Trust, pages 3–29. Springer, 2012.
3.4.2

[26] Bruno Blanchet. Modeling and verifying security protocols with the applied pi calculus
and proverif. Found. Trends Priv. Secur., 2016. 1.2, 3.4, 3.4.2

[27] Blynk.io. Blynk library. https://github.com/blynkkk/blynk-library,
2022. 3.6.2

[28] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Key homomorphic
prfs and their applications. In Annual Cryptology Conference, pages 410–428. Springer,
2013. 1.2, 3.3, 3.3.4

[29] Sudershan Boovaraghavan, Anurag Maravi, Prahaladha Mallela, and Yuvraj Agarwal.
MLIoT: An end-to-end machine learning system for the Internet-of-Things. In 6th
ACM/IEEE Conference on Internet of Things Design and Implementation, IoTDI, 2021.
5.1

[30] Sudershan Boovaraghavan, Chen Chen, Anurag Maravi, Mike Czapik, Yang Zhang, Chris
Harrison, and Yuvraj Agarwal. Mites: Design and deployment of a general-purpose sens-
ing infrastructure for buildings. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
7(1), mar 2023. doi: 10.1145/3580865. URL https://doi.org/10.1145/3580
865. 1, 3.1, 5.9.1

[31] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi,
and Bhargava Shastry. Towards taming privilege-escalation attacks on Android. In NDSS,
2012. 4.8

[32] Daming D. Chen, Maverick Woo, David Brumley, and Manuel Egele. Towards automated
dynamic analysis for Linux-based embedded firmware. In NDSS, 2016. 4.2

[33] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H Lai.
Sgxpectre: Stealing intel secrets from sgx enclaves via speculative execution. In 2019
IEEE European Symposium on Security and Privacy (EuroS&P), pages 142–157. IEEE,
2019. 2.3.1

[34] Huili Chen, Cheng Fu, Bita Darvish Rouhani, Jishen Zhao, and Farinaz Koushanfar. Deep-
attest: an end-to-end attestation framework for deep neural networks. In 2019 ACM/IEEE
46th Annual International Symposium on Computer Architecture (ISCA), pages 487–498.
IEEE, 2019. 2.3.1

[35] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural networks. IEEE journal
of solid-state circuits, 52(1):127–138, 2016. 5.5.2

[36] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti.
Clonecloud: elastic execution between mobile device and cloud. In Proceedings of the
sixth conference on Computer systems, pages 301–314, 2011. 5.1

[37] CNBC. Amazon Alexa records you every time you ask it something — here’s how to
delete those recordings. https://www.cnbc.com/2021/02/18/how-to-del

105

https://github.com/blynkkk/blynk-library
https://doi.org/10.1145/3580865
https://doi.org/10.1145/3580865
https://www.cnbc.com/2021/02/18/how-to-delete-amazon-alexa-recordings-for-privacy.html
https://www.cnbc.com/2021/02/18/how-to-delete-amazon-alexa-recordings-for-privacy.html
https://www.cnbc.com/2021/02/18/how-to-delete-amazon-alexa-recordings-for-privacy.html

ete-amazon-alexa-recordings-for-privacy.html, 2021. 3.6.2

[38] CNBC. Meet the $10,000 Nvidia chip powering the race for A.I. https://www.cnbc
.com/2023/02/23/nvidias-a100-is-the-10000-chip-powering-the
-race-for-ai-.html, 2023. 2.3.1

[39] CNET. Amazon’s Astro may be cute, but security experts warn of privacy concerns.
https://www.cnet.com/tech/amazons-astro-may-be-cute-but-sec
urity-experts-warn-of-privacy-concerns/, 2021. 3.6.2

[40] Camille Cobb, Sruti Bhagavatula, Kalil Anderson Garrett, Alison Hoffman, Varun Rao,
and Lujo Bauer. “i would have to evaluate their objections”: Privacy tensions between
smart home device owners and incidental users. Proceedings on Privacy Enhancing Tech-
nologies, 4:54–75, 2021. 2.1.1, 3.1

[41] Jessica Colnago, Yuanyuan Feng, Tharangini Palanivel, Sarah Pearman, Megan Ung,
Alessandro Acquisti, Lorrie Faith Cranor, and Norman Sadeh. Informing the design of
a personalized privacy assistant for the internet of things. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, 2020. 2.1.1

[42] Computer Weekly. Third-party code bug left instagram users at risk of account takeovers.
https://www.computerweekly.com/news/252489542/Third-party
-code-bug-left-Instagram-users-at-risk-of-account-takeover,
2020. 4.1

[43] Coral. Usb accelerator. https://coral.ai/products/accelerator/, 2022.
5.8

[44] Coral. Edge tpu inferencing overview. https://coral.ai/docs/edgetpu/in
ference/, 2022. 5.8

[45] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable com-
putation. In 2015 IEEE Symposium on Security and Privacy, pages 253–270. IEEE, 2015.
2.3.2

[46] Crypto++. Crypto++. https://www.cryptopp.com/, 2021. 3.5

[47] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu, Ran-
veer Chandra, and Paramvir Bahl. Maui: making smartphones last longer with code of-
fload. In Proceedings of the 8th international conference on Mobile systems, applications,
and services, pages 49–62, 2010. 5.1

[48] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy. Privi-
lege escalation attacks on Android. In International Conference on Information Security,
2010. 4.8

[49] Alexandre Decan, Tom Mens, and Eleni Constantinou. On the impact of security vulner-
abilities in the npm package dependency network. In 15th International Conference on
Mining Software Repositories, MSR, 2018. 4.1

[50] Soteris Demetriou, Nan Zhang, Yeonjoon Lee, XiaoFeng Wang, Carl A. Gunter, Xiaoyong
Zhou, and Michael Grace. HanGuard: SDN-driven protection of smart home WiFi devices

106

https://www.cnbc.com/2021/02/18/how-to-delete-amazon-alexa-recordings-for-privacy.html
https://www.cnbc.com/2021/02/18/how-to-delete-amazon-alexa-recordings-for-privacy.html
https://www.cnbc.com/2021/02/18/how-to-delete-amazon-alexa-recordings-for-privacy.html
https://www.cnbc.com/2021/02/18/how-to-delete-amazon-alexa-recordings-for-privacy.html
https://www.cnbc.com/2023/02/23/nvidias-a100-is-the-10000-chip-powering-the-race-for-ai-.html
https://www.cnbc.com/2023/02/23/nvidias-a100-is-the-10000-chip-powering-the-race-for-ai-.html
https://www.cnbc.com/2023/02/23/nvidias-a100-is-the-10000-chip-powering-the-race-for-ai-.html
https://www.cnet.com/tech/amazons-astro-may-be-cute-but-security-experts-warn-of-privacy-concerns/
https://www.cnet.com/tech/amazons-astro-may-be-cute-but-security-experts-warn-of-privacy-concerns/
https://www.computerweekly.com/news/252489542/Third-party-code-bug-left-Instagram-users-at-risk-of-account-takeover
https://www.computerweekly.com/news/252489542/Third-party-code-bug-left-Instagram-users-at-risk-of-account-takeover
https://coral.ai/products/accelerator/
https://coral.ai/docs/edgetpu/inference/
https://coral.ai/docs/edgetpu/inference/
https://www.cryptopp.com/

from malicious mobile apps. In 10th ACM Conference on Security and Privacy in Wireless
and Mobile Networks, WiSec, 2017. 2.2.1

[51] Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multi-
variate time series. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 4027–4035, 2021. 5.7.2

[52] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. Keep me up-
dated: An empirical study of third-party library updatability on Android. In 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS, 2017. 4.3.2

[53] Rajib Dey, Sayma Sultana, Afsaneh Razi, and Pamela J Wisniewski. Exploring smart
home device use by Airbnb hosts. In Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems, pages 1–8, 2020. 3.1

[54] Brian Dipert. Teardown: A WiFi smart plug for home automation. https://www.ed
n.com/teardown-a-wi-fi-smart-plug-for-home-automation/, 2020.
1.1, 4.2.2

[55] Brian Dipert. Teardown: WeMo switch is highly integrated. https://www.edn.co
m/teardown-wemo-switch-is-highly-integrated/, 2020. 1.1, 4.2.2

[56] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A.J. Brush, Bongshin Lee, Stefan Saroiu,
and Paramvir Bahl. An operating system for the home. In 9th USENIX Symposium on
Networked Systems Design and Implementation, NSDI, 2012. 2.2.3

[57] Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE Transactions
on information theory, 29(2):198–208, 1983. 3.2.3

[58] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=YicbFdNTTy. 5.9, 5.9.1

[59] Jianbo Du, F Richard Yu, Xiaoli Chu, Jie Feng, and Guangyue Lu. Computation offloading
and resource allocation in vehicular networks based on dual-side cost minimization. IEEE
Transactions on Vehicular Technology, 68(2):1079–1092, 2018. 6.2

[60] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. Identifying open-
source license violation and 1-day security risk at large scale. In 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS, 2017. 4.2.1

[61] Chethana Dukkipati, Yunpeng Zhang, and Liang Chieh Cheng. Decentralized, blockchain
based access control framework for the heterogeneous internet of things. In Proceedings
of the Third ACM Workshop on Attribute-Based Access Control, pages 61–69, 2018. 2.1.2,
3, 3.1

[62] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and J. Alex Halderman.
A search engine backed by Internet-wide scanning. In 2015 ACM SIGSAC Conference on
Computer and Communications Security, CCS, 2015. 4.1

[63] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. Fairswap: How to fairly exchange

107

https://www.edn.com/teardown-a-wi-fi-smart-plug-for-home-automation/
https://www.edn.com/teardown-a-wi-fi-smart-plug-for-home-automation/
https://www.edn.com/teardown-wemo-switch-is-highly-integrated/
https://www.edn.com/teardown-wemo-switch-is-highly-integrated/
https://openreview.net/forum?id=YicbFdNTTy

digital goods. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 967–984, 2018. 5.5.1

[64] Pardis Emami-Naeini, Janarth Dheenadhayalan, Yuvraj Agarwal, and Lorrie Faith Cranor.
Which privacy and security attributes most impact consumers’ risk perception and will-
ingness to purchase IoT devices? In 2021 IEEE Symposium on Security and Privacy (SP),
pages 1937–1954, 2021. 1, 3, 3.1

[65] Jeremy Erickson, Qi Alfred Chen, Xiaochen Yu, Erinjen Lin, Robert Levy, and Z Morley
Mao. No one in the middle: Enabling network access control via transparent attribution. In
Proceedings of the 2018 on Asia Conference on Computer and Communications Security,
pages 651–658, 2018. 2.2.1, 3.7, 4.1, 4.3.2, 4.3.4

[66] ESP32.NET. The internet of things with ESP32. http://esp32.net/, 2020. 4.6.2

[67] Espressif. [SDK release] esp8266-nonos-sdk-v1.5.0-15-11-27. https://bbs.espr
essif.com/viewtopic.php?f=46&t=1442, 2015. 4.3.4

[68] Espressif. We just hit a new major milestone. https://www.espressif.com/en
/media_overview/news/espressif-achieves-100-million-targe
t-iot-chip-shipments, 2018. 4.6.2

[69] Espressif. WolfSSL for ESP-IDF. https://github.com/espressif/esp-wol
fssl, 2020. 4.2.2

[70] Espressif. Esp8266 datasheet. https://www.espressif.com/sites/defaul
t/files/documentation/0a-esp8266ex_datasheet_en.pdf, 2020. 3.7

[71] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro Conti,
and Atul Prakash. Flowfence: Practical data protection for emerging IoT application
frameworks. In 25th USENIX Security Symposium (USENIX Security 16), pages 531–
548, Austin, TX, August 2016. USENIX Association. ISBN 978-1-931971-32-4. URL
https://www.usenix.org/conference/usenixsecurity16/technic
al-sessions/presentation/fernandes. 2.1.2, 3, 3.1

[72] Dario Fiore, Cédric Fournet, Esha Ghosh, Markulf Kohlweiss, Olga Ohrimenko, and
Bryan Parno. Hash first, argue later: Adaptive verifiable computations on outsourced data.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 1304–1316, 2016. 2.3.2

[73] fmerg. pymerkle. https://github.com/fmerg/pymerkle, 2022. 5.8

[74] Francesco Fraternali, Bharathan Balaji, Yuvraj Agarwal, and Rajesh K Gupta. ACES:
Automatic configuration of energy harvesting sensors with reinforcement learning. ACM
Transactions on Sensor Networks (TOSN), 16(4):1–31, 2020. 1, 3.1

[75] Diana Freed, Jackeline Palmer, Diana Elizabeth Minchala, Karen Levy, Thomas Risten-
part, and Nicola Dell. Digital technologies and intimate partner violence: A qualitative
analysis with multiple stakeholders. Proceedings of the ACM on Human-Computer Inter-
action, 1(CSCW):1–22, 2017. 2.1.1

[76] Diana Freed, Sam Havron, Emily Tseng, Andrea Gallardo, Rahul Chatterjee, Thomas
Ristenpart, and Nicola Dell. ” is my phone hacked?” analyzing clinical computer security

108

http://esp32.net/
https://bbs.espressif.com/viewtopic.php?f=46&t=1442
https://bbs.espressif.com/viewtopic.php?f=46&t=1442
https://www.espressif.com/en/media_overview/news/espressif-achieves-100-million-target-iot-chip-shipments
https://www.espressif.com/en/media_overview/news/espressif-achieves-100-million-target-iot-chip-shipments
https://www.espressif.com/en/media_overview/news/espressif-achieves-100-million-target-iot-chip-shipments
https://github.com/espressif/esp-wolfssl
https://github.com/espressif/esp-wolfssl
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fernandes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fernandes
https://github.com/fmerg/pymerkle

interventions with survivors of intimate partner violence. Proceedings of the ACM on
Human-Computer Interaction, 3(CSCW):1–24, 2019. 2.1.1

[77] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In Annual Cryptology Conference, pages
465–482. Springer, 2010. 2.3.2

[78] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safetynets: Verifiable execution of deep
neural networks on an untrusted cloud. Advances in Neural Information Processing Sys-
tems, 30, 2017. 2.3.2, 5.1, 5.5.1

[79] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and
John Wernsing. Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy. In International conference on machine learning, pages 201–
210. PMLR, 2016. 2.3.3, 5.1

[80] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014. 5.7.2

[81] Google. Protocol buffers. https://developers.google.com/protocol-buf
fers, 2020. 4.8

[82] Google. Flatbuffers. https://google.github.io/flatbuffers/, 2021. 3.5

[83] Google. Leveldb. https://github.com/google/leveldb, 2021. 3.5

[84] Google. Google tensor is a milestone for machine learning. https://blog.googl
e/products/pixel/introducing-google-tensor/, 2021. 5.8

[85] Google. Protocol buffers. https://developers.google.com/protocol-buf
fers, 2022. 5.8

[86] grpc. gRPC — a high-performance, open source universal rpc framework. https:
//grpc.io/, 2020. 4.8

[87] Hang Guo and John Heidemann. Detecting IoT devices in the internet (extended). Tech-
nical Report ISI-TR-726B, USC/Information Sciences Institute, 2018. 4.1

[88] Hackaday.io. 382 projects tagged with ”ESP32”. https://hackaday.io/projec
ts?tag=ESP32, 2020. 4.6.2

[89] Hacker Shack. Smartphone connected home door lock. https://www.hackster
.io/hackershack/smartphone-connected-home-door-lock-69944f,
2017. 3.4, 3.6.2

[90] Mike Hamburg. Ed448-goldilocks. https://sourceforge.net/p/ed448gol
dilocks/wiki/Home/, 2021. 3.5

[91] Jun Han, Albert Jin Chung, Manal Kumar Sinha, Madhumitha Harishankar, Shijia Pan,
Hae Young Noh, Pei Zhang, and Patrick Tague. Do you feel what I hear? enabling
autonomous IoT device pairing using different sensor types. In 2018 IEEE Symposium on
Security and Privacy, 2018. 4.4

[92] Sam Havron, Diana Freed, Rahul Chatterjee, Damon McCoy, Nicola Dell, and Thomas
Ristenpart. Clinical computer security for victims of intimate partner violence. In 28th

109

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://google.github.io/flatbuffers/
https://github.com/google/leveldb
https://blog.google/products/pixel/introducing-google-tensor/
https://blog.google/products/pixel/introducing-google-tensor/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://grpc.io/
https://grpc.io/
https://hackaday.io/projects?tag=ESP32
https://hackaday.io/projects?tag=ESP32
https://www.hackster.io/hackershack/smartphone-connected-home-door-lock-69944f
https://www.hackster.io/hackershack/smartphone-connected-home-door-lock-69944f
https://sourceforge.net/p/ed448goldilocks/wiki/Home/
https://sourceforge.net/p/ed448goldilocks/wiki/Home/

USENIX Security Symposium (USENIX Security 19), 2019. 2.1.1

[93] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Earlence
Fernandes, and Blase Ur. Rethinking access control and authentication for the home in-
ternet of things (iot). In 27th USENIX Security Symposium (USENIX Security 18), 2018.
1, 2.1.1, 3, 3.1

[94] Weijia He, Valerie Zhao, Olivia Morkved, Sabeeka Siddiqui, Earlence Fernandes,
Josiah D. Hester, and Blase Ur. SoK: Context sensing for access control in the adver-
sarial home iot. In Proceedings of the 6th IEEE European Symposium on Security and
Privacy, 2021. 2.1.2

[95] Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Dolstra. Finding software
license violations through binary code clone detection. In 8th Working Conference on
Mining Software Repositories, MSR, 2011. 4.2.1

[96] Tejun Heo. Control group v2. https://www.kernel.org/doc/Documentati
on/cgroup-v2.txt, 2015. 4.3.5

[97] David Hodson. Nest learning thermostat 2nd generation teardown. https://www.if
ixit.com/Teardown/Nest+Learning+Thermostat+2nd+Generation+
Teardown/13818, 2020. 1.1, 4.2.2

[98] James Hong, Amit Levy, Laurynas Riliskis, and Philip Levis. Don’t talk unless i say so!
securing the Internet of things with default-off networking. In 3rd ACM/IEEE Interna-
tional Conference on Internet-of-Things Design and Implementation, IoTDI, 2018. 2.2.1,
3.7, 4.1, 4.3.1, 4.8

[99] hostapd. hostapd. https://w1.fi/hostapd/, 2020. 4.6.1

[100] Weizhe Hua, Muhammad Umar, Zhiru Zhang, and G Edward Suh. Guardnn: secure
accelerator architecture for privacy-preserving deep learning. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pages 349–354, 2022. 2.3.1

[101] Qinlong Huang, Yixian Yang, and Licheng Wang. Secure data access control with cipher-
text update and computation outsourcing in fog computing for internet of things. IEEE
Access, 5:12941–12950, 2017. doi: 10.1109/ACCESS.2017.2727054. 2.1.2, 3, 3.1

[102] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast
secure {Two-Party} deep neural network inference. In 31st USENIX Security Symposium
(USENIX Security 22), pages 809–826, 2022. 5.1

[103] Ahmad Ibrahim, Ahmad-Reza Sadeghi, and Gene Tsudik. Us-aid: Unattended scalable
attestation of iot devices. In 2018 IEEE 37th Symposium on Reliable Distributed Systems
(SRDS), pages 21–30. IEEE, 2018. 3.7

[104] IFTTT. IFTTT. https://www.ifttt.com, 2020. 4.6.2

[105] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
Z. Morley Mao, and Atul Prakash. ContexIoT: Towards Providing Contextual Integrity
to Appified IoT Platforms. In 21st Network and Distributed Security Symposium, Feb
2017. 2.1.2, 3, 3.1

[106] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced matrix

110

https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.ifixit.com/Teardown/Nest+Learning+Thermostat+2nd+Generation+Teardown/13818
https://www.ifixit.com/Teardown/Nest+Learning+Thermostat+2nd+Generation+Teardown/13818
https://www.ifixit.com/Teardown/Nest+Learning+Thermostat+2nd+Generation+Teardown/13818
https://w1.fi/hostapd/
https://www.ifttt.com

computation and application to neural networks. In Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security, pages 1209–1222, 2018. 2.3.3, 5.1

[107] Haojian Jin. Modular Privacy Flows: A Design Pattern for Data Minimization. PhD
thesis, Carnegie Mellon University, 2022. 6.2

[108] Haojian Jin, Gram Liu, David Hwang, Swarun Kumar, Yuvraj Agarwal, and Jason I Hong.
Peekaboo: A hub-based approach to enable transparency in data processing within smart
homes. In 2022 IEEE Symposium on Security and Privacy (SP), pages 303–320. IEEE,
2022. 3.7, 6.2

[109] Michael Jones, John Bradley, and Nat Sakimura. Rfc 7519: Json web token (jwt), 2015.
3.3.3

[110] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A
low latency framework for secure neural network inference. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1651–1669, 2018. 2.3.3, 5.1, 5.3

[111] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars,
and Lingjia Tang. Neurosurgeon: Collaborative intelligence between the cloud and mobile
edge. ACM SIGARCH Computer Architecture News, 45(1):615–629, 2017. 5.1, 5.9.3

[112] Keybase. Keybase. https://keybase.io/, 2021. 3.7

[113] Dohyun Kim, Prasoon Patidar, Han Zhang, Abhijith Anilkumar, and Yuvraj Agarwal.
Self-serviced iot: Practical and private iot computation offloading with full user control.
arXiv preprint arXiv:2205.04405, 2022. 3.7

[114] Wonjung Kim, Seungchul Lee, Youngjae Chang, Taegyeong Lee, Inseok Hwang, and
Junehwa Song. Hivemind: social control-and-use of IoT towards democratization of pub-
lic spaces. In Proceedings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services, pages 467–482, 2021. 2.1.2

[115] Ronny Ko and James Mickens. DeadBolt: Securing IoT deployments. In Applied Net-
working Research Workshop, ANRW, 2018. 2.2.1, 4.3.1, 4.3.2

[116] Boyu Kuang, Anmin Fu, Shui Yu, Guomin Yang, Mang Su, and Yuqing Zhang. Esdra: An
efficient and secure distributed remote attestation scheme for iot swarms. IEEE Internet
of Things Journal, 6(5):8372–8383, 2019. 3.7

[117] Deepak Kumar, Kelly Shen, Benton Case, Deepali Garg, Galina Alperovich, Dmitry
Kuznetsov, Rajarshi Gupta, and Zakir Durumeric. All things considered: An analysis
of IoT devices on home networks. In 28th USENIX Security Symposium, 2019. 4.1, 4.8

[118] Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E. Culler.
JEDI: Many-to-many end-to-end encryption and key delegation for iot. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1519–1536, Santa Clara, CA, August
2019. USENIX Association. ISBN 978-1-939133-06-9. URL https://www.usen
ix.org/conference/usenixsecurity19/presentation/kumar-sam.
2.1.2, 3, 3.1

[119] Butler Lampson, Martı́n Abadi, Michael Burrows, and Edward Wobber. Authentication
in distributed systems: Theory and practice. ACM Transactions on Computer Systems

111

https://keybase.io/
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-sam
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-sam

(TOCS), 10(4):265–310, 1992. 3.2.1

[120] Gierad Laput, Yang Zhang, and Chris Harrison. Synthetic sensors: Towards general-
purpose sensing. In Proc. of the 2017 CHI Conference on Human Factors in Com-
puting Systems, CHI ’17, page 3986–3999, New York, NY, USA, 2017. ACM. ISBN
9781450346559. doi: 10.1145/3025453.3025773. URL https://doi.org/10.114
5/3025453.3025773. 5.1

[121] Gierad Laput, Karan Ahuja, Mayank Goel, and Chris Harrison. Ubicoustics: Plug-and-
play acoustic activity recognition. In Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology, pages 213–224, 2018. 5.1

[122] Tobias Lauinger, Chaabane Abdelberi, Sajjad Arshad, William Robertson, Christo Wilson,
and Engin Kirda. Thou shalt not depend on me: Analysing the use of outdated JavaScript
libraries on the web. In NDSS, 2017. 4.1

[123] Tam Le and Matt W Mutka. Access control with delegation for smart home applications.
In Proceedings of the International Conference on Internet of Things Design and Imple-
mentation, pages 142–147, 2019. 2.1.2, 3, 3.1

[124] The Security Ledger. Devices’ UPnP service emerges as key threat to home IoT networks.
https://securityledger.com/2019/03/devices-upnp-service-eme
rges-as-key-threat-to-home-iot-networks/, 2020. 4.8

[125] Xinyu Lei, Guan-Hua Tu, Chi-Yu Li, Tian Xie, and Mi Zhang. SecWIR: Securing smart
home IoT communications via wi-fi routers with embedded intelligence. In 18th Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys, 2020. 2.2.1,
4.1, 4.3.2, 4.4

[126] Ding Li, Shuai Hao, William GJ Halfond, and Ramesh Govindan. Calculating source line
level energy information for android applications. In Proceedings of the 2013 Interna-
tional Symposium on Software Testing and Analysis, pages 78–89, 2013. 3.6.1

[127] Ding Li, Shuai Hao, Jiaping Gui, and William GJ Halfond. An empirical study of the
energy consumption of android applications. In 2014 IEEE International Conference on
Software Maintenance and Evolution, pages 121–130. IEEE, 2014. 3.6.1

[128] Sheng Li, Jongsoo Park, and Ping Tak Peter Tang. Enabling sparse winograd convolution
by native pruning. arXiv preprint arXiv:1702.08597, 2017. 5.5.2

[129] Chieh-Jan Mike Liang, Börje F. Karlsson, Nicholas D. Lane, Feng Zhao, Junbei Zhang,
Zheyi Pan, Zhao Li, and Yong Yu. SIFT: Building an internet of safe things. In 14th
International Conference on Information Processing in Sensor Networks, IPSN, 2015.
2.2.2

[130] libsodium. A modern, portable, easy to use crypto library. https://libsodium.or
g/, 2021. 3.5

[131] Yingyan Lin, Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. Predictivenet: An
energy-efficient convolutional neural network via zero prediction. In 2017 IEEE interna-
tional symposium on circuits and systems (ISCAS), pages 1–4. IEEE, 2017. 5.5.2

[132] linux-containers. Linux containers. https://linuxcontainers.org/, 2020.

112

https://doi.org/10.1145/3025453.3025773
https://doi.org/10.1145/3025453.3025773
https://securityledger.com/2019/03/devices-upnp-service-emerges-as-key-threat-to-home-iot-networks/
https://securityledger.com/2019/03/devices-upnp-service-emerges-as-key-threat-to-home-iot-networks/
https://libsodium.org/
https://libsodium.org/
https://linuxcontainers.org/

4.3.5

[133] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predic-
tions via minionn transformations. In Proceedings of the 2017 ACM SIGSAC conference
on computer and communications security, pages 619–631, 2017. 2.3.3

[134] Tianyi Liu, Xiang Xie, and Yupeng Zhang. Zkcnn: Zero knowledge proofs for convolu-
tional neural network predictions and accuracy. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 2968–2985, 2021. 5.1

[135] Shrirang Mare, Franziska Roesner, and Tadayoshi Kohno. Smart devices in Airbnbs: Con-
sidering privacy and security for both guests and hosts. Proc. Priv. Enhancing Technol.,
2020(2):436–458, 2020. 3.1

[136] Massimo Merenda, Carlo Porcaro, and Demetrio Iero. Edge machine learning for ai-
enabled iot devices: A review. Sensors, 20(9):2533, 2020. 5.1

[137] Ralph C Merkle. A digital signature based on a conventional encryption function. In
Conference on the theory and application of cryptographic techniques, pages 369–378.
Springer, 1987. 5.5.1

[138] Xianghang Mi, Feng Qian, Ying Zhang, and XiaoFeng Wang. An empirical character-
ization of IFTTT: ecosystem, usage, and performance. In 2017 Internet Measurement
Conference, IMC, 2017. 4.6.2, 4.7.2

[139] MichMich. MagicMirror. https://github.com/MichMich/MagicMirror,
2020. 4.6.2

[140] Microsoft Azure. Azure Sphere. https://azure.microsoft.com/en-us/se
rvices/azure-sphere/, 2020. 1, 2.2.3, 4.1, 4.5.2

[141] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: An ensem-
ble of autoencoders for online network intrusion detection. In Network and Distributed
Systems Security (NDSS) Symposium, 2018. 5.7.2

[142] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. Delphi: A cryptographic inference service for neural networks. In
29th USENIX Security Symposium (USENIX Security 20), pages 2505–2522, 2020. 2.3.3,
5.1, 5.3, 1

[143] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and Nicolas
Kourtellis. Ppfl: privacy-preserving federated learning with trusted execution environ-
ments. In Proceedings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services, pages 94–108, 2021. 2.3.1, 3.7

[144] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-
preserving machine learning. In 2017 IEEE symposium on security and privacy (SP),
pages 19–38. IEEE, 2017. 2.3.3, 5.2.2, 5.4

[145] Murat Moran and Dan S Wallach. Verification of star-vote and evaluation of fdr and
proverif. In International Conference on Integrated Formal Methods, pages 422–436.
Springer, 2017. 3.4.4

[146] Motion. Motion. https://motion-project.github.io/, 2021. 3.4, 3.6.2

113

https://github.com/MichMich/MagicMirror
https://azure.microsoft.com/en-us/services/azure-sphere/
https://azure.microsoft.com/en-us/services/azure-sphere/
https://motion-project.github.io/

[147] Mycroft. Mycroft – the open source privacy-focused voice assistant. https://mycr
oft.ai/, 2021. 3.4, 3.6.2

[148] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van
Baalen, and Tijmen Blankevoort. A white paper on neural network quantization. arXiv
preprint arXiv:2106.08295, 2021. 5.8

[149] Asuka Nakajima, Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and Maverick Woo.
A pilot study on consumer IoT device vulnerability disclosure and patch release in japan
and the united states. In 2019 ACM Asia Conference on Computer and Communications
Security, AsiaCCS, 2019. 4.1, 4.2

[150] Radius Network. Android beacon library. https://altbeacon.github.io/an
droid-beacon-library/index.html, 2021. 3.5

[151] Hung Nguyen, Radoslav Ivanov, Linh T.X. Phan, Oleg Sokolsky, James Weimer, and
Insup Lee. LogSafe: Secure and scalable data logger for IoT devices. In 3rd ACM/IEEE
International Conference on Internet-of-Things Design and Implementation, IoTDI, 2018.
2.2.2

[152] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael Steiner,
and Gene Tsudik. {VRASED}: A verified {Hardware/Software} {Co-Design} for remote
attestation. In 28th USENIX Security Symposium (USENIX Security 19), pages 1429–
1446, 2019. 3.7

[153] NVIDIA. Determinism in deep learning. https://developer.nvidia.com/gtc
/2019/video/s9911, 2019. 5.7.2

[154] NVIDIA. Confidential computing. https://www.nvidia.com/en-us/data-c
enter/solutions/confidential-computing/, 2023. 2.3.1

[155] Open Connectivity Foundation. Upnp standards and architecture. https://openco
nnectivity.org/developer/specifications/upnp-resources/upnp,
2021. 3.3.3

[156] OpenSSL. Release strategy. https://www.openssl.org/policies/release
strat.html, 2020. 4.3.2, 4.3.2

[157] openssl-changelog. OpenSSL changelog. https://www.openssl.org/news/c
hangelog.html, 2020. 4.2.2, 4.3.2

[158] Nouha Oualha and Kim Thuat Nguyen. Lightweight attribute-based encryption for the
internet of things. In 2016 25th International Conference on Computer Communication
and Networks (ICCCN), pages 1–6, 2016. doi: 10.1109/ICCCN.2016.7568538. 2.1.2, 3,
3.1

[159] Shijia Pan, Carlos Ruiz, Jun Han, Adeola Bannis, Patrick Tague, Hae Young Noh, and
Pei Zhang. Universense: IoT device pairing through heterogeneous sensing signals. In
Proceedings of the 19th International Workshop on Mobile Computing Systems & Appli-
cations, pages 55–60, 2018. 3.3.2

[160] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. Towards the
science of security and privacy in machine learning. arXiv preprint arXiv:1611.03814,

114

https://mycroft.ai/
https://mycroft.ai/
https://altbeacon.github.io/android-beacon-library/index.html
https://altbeacon.github.io/android-beacon-library/index.html
https://developer.nvidia.com/gtc/2019/video/s9911
https://developer.nvidia.com/gtc/2019/video/s9911
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing/
https://openconnectivity.org/developer/specifications/upnp-resources/upnp
https://openconnectivity.org/developer/specifications/upnp-resources/upnp
https://www.openssl.org/policies/releasestrat.html
https://www.openssl.org/policies/releasestrat.html
https://www.openssl.org/news/changelog.html
https://www.openssl.org/news/changelog.html

2016. 5.1

[161] Simon Parkin, Trupti Patel, Isabel Lopez-Neira, and Leonie Tanczer. Usability analysis
of shared device ecosystem security: Informing support for survivors of iot-facilitated
tech-abuse. In Proceedings of the New Security Paradigms Workshop, 2019. 2.1.1

[162] Bryan Parno. Bootstrapping trust in a” trusted” platform. In HotSec, 2008. 3.7

[163] Bryan Parno, Jonathan M McCune, and Adrian Perrig. Bootstrapping trust in commodity
computers. In 2010 IEEE Symposium on Security and Privacy, pages 414–429. IEEE,
2010. 3.7

[164] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly prac-
tical verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages
238–252. IEEE, 2013. 2.3.2

[165] particlel-device-os. Particle device OS. https://www.particle.io/device-o
s/, 2020. 1, 2.2.3, 4.1, 4.5.2

[166] phodal/awesome-iot. A collaborative list of great resources about IoT framework, library,
OS, platform. https://github.com/phodal/awesome-iot#library, 2020.
4.1

[167] Raspberry Pi. Issue: cpuset disabled #1950. https://github.com/raspberry
pi/linux/issues/1950, 2020. 4.3.5

[168] Otto Julio Ahlert Pinno, Andre Ricardo Abed Gregio, and Luis C. E. De Bona. Con-
trolchain: Blockchain as a central enabler for access control authorizations in the iot. In
GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pages 1–6, 2017.
doi: 10.1109/GLOCOM.2017.8254521. 2.1.2, 3, 3.1

[169] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath Setty, Stavros Volos, and Raluca Ada
Popa. Visor:{Privacy-Preserving} video analytics as a cloud service. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1039–1056, 2020. 2.3.1

[170] Qualcomm. With help from qualcomm technologies, the irobot roomba i7+ robot vacuum
delivers more intelligent, effective cleaning. https://www.qualcomm.com/new
s/onq/2018/12/help-qualcomm-technologies-irobot-roomba-i7-r
obot-vacuum-delivers-more, 2018. 5.1, 5.9.1

[171] Do Le Quoc, Franz Gregor, Sergei Arnautov, Roland Kunkel, Pramod Bhatotia, and
Christof Fetzer. securetf: a secure tensorflow framework. In Proceedings of the 21st
International Middleware Conference, pages 44–59, 2020. 2.3.1

[172] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Crosstalk: Speculative data leaks across cores are real. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1852–1867. IEEE, 2021. 2.3.1

[173] raspberry-pi-4-spec. Raspberry Pi 4 specification. https://www.raspberrypi.or
g/products/raspberry-pi-4-model-b/specifications/, 2020. 4.7.3

[174] Dark Reading. Over 80% of medical imaging devices run on outdated operating systems.
https://www.darkreading.com/iot/over-80--of-medical-imaging
-devices-run-on-outdated-operating-systems/d/d-id/1337273,

115

https://www.particle.io/device-os/
https://www.particle.io/device-os/
https://github.com/phodal/awesome-iot#library
https://github.com/raspberrypi/linux/issues/1950
https://github.com/raspberrypi/linux/issues/1950
https://www.qualcomm.com/news/onq/2018/12/help-qualcomm-technologies-irobot-roomba-i7-robot-vacuum-delivers-more
https://www.qualcomm.com/news/onq/2018/12/help-qualcomm-technologies-irobot-roomba-i7-robot-vacuum-delivers-more
https://www.qualcomm.com/news/onq/2018/12/help-qualcomm-technologies-irobot-roomba-i7-robot-vacuum-delivers-more
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/
https://www.darkreading.com/iot/over-80--of-medical-imaging-devices-run-on-outdated-operating-systems/d/d-id/1337273
https://www.darkreading.com/iot/over-80--of-medical-imaging-devices-run-on-outdated-operating-systems/d/d-id/1337273

2020. 4.1

[175] Red Hat. What is the maximum number of interface aliases supported in Red Hat En-
terprise Linux? https://access.redhat.com/solutions/40500, 2020.
4.7.3

[176] Muzammil Abdul Rehman and Paul Grosu. RPC is not dead: Rise, fall and the rise of
remote procedure calls. http://dist-prog-book.com/chapter/1/rpc.ht
ml, 2017. 4.8

[177] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori, Thomas
Schneider, and Farinaz Koushanfar. Chameleon: A hybrid secure computation framework
for machine learning applications. In Proceedings of the 2018 on Asia conference on
computer and communications security, pages 707–721, 2018. 5.2.2, 5.4

[178] M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. Heax: An architecture for com-
puting on encrypted data. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 1295–
1309, 2020. 2.3.3

[179] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. Using address
independent seed encryption and bonsai merkle trees to make secure processors os-and
performance-friendly. In 40th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO 2007), pages 183–196. IEEE, 2007. 5.5.1

[180] RTInsights. Malware attacks IoT devices running windows 7. https://www.rtinsi
ghts.com/malware-iot-windows-7/, 2020. 4.1

[181] RTInsights. IoT devices still exposed, vast majority of traffic unencrypted. https:
//www.rtinsights.com/iot-security-remains-lacklustre/, 2020. 1,
4.1

[182] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal
of Computer Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.
5.7.2, 5.9.1

[183] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald Dres-
linski, Christopher Peikert, and Daniel Sanchez. F1: A fast and programmable accelerator
for fully homomorphic encryption. In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 238–252, 2021. 2.3.3

[184] Samsung SmartThings. Direct-connected device SDK. https://smartthings.de
veloper.samsung.com/docs/devices/direct-connected-devices/o
verview.html, 2020. 2.2.3, 4.5.2, 4.6.2

[185] Samsung SmartThings. SmartThings device SDK. https://github.com/Smart
ThingsCommunity/st-device-sdk-c, 2020. 4.6.2

[186] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado, Glo-
ria Mainar-Ruiz, and Mark Russinovich. Vc3: Trustworthy data analytics in the cloud

116

https://access.redhat.com/solutions/40500
http://dist-prog-book.com/chapter/1/rpc.html
http://dist-prog-book.com/chapter/1/rpc.html
https://www.rtinsights.com/malware-iot-windows-7/
https://www.rtinsights.com/malware-iot-windows-7/
https://www.rtinsights.com/iot-security-remains-lacklustre/
https://www.rtinsights.com/iot-security-remains-lacklustre/
https://smartthings.developer.samsung.com/docs/devices/direct-connected-devices/overview.html
https://smartthings.developer.samsung.com/docs/devices/direct-connected-devices/overview.html
https://smartthings.developer.samsung.com/docs/devices/direct-connected-devices/overview.html
https://github.com/SmartThingsCommunity/st-device-sdk-c
https://github.com/SmartThingsCommunity/st-device-sdk-c

using sgx. In 2015 IEEE symposium on security and privacy, pages 38–54. IEEE, 2015.
3.7

[187] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Situational access control in the in-
ternet of things. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1056–1073, 2018. 2.1.2, 3, 3.1

[188] Senrio. 400,000 publicly available IoT devices vulnerable to single flaw. https://bl
og.senr.io/blog/400000-publicly-available-iot-devices-vulne
rable-to-single-flaw, 2016. 1, 4.1

[189] Amazon Web Services. Wyze case study - AWS. https://aws.amazon.com/sol
utions/case-studies/wyze/, 2022. 1, 5.1

[190] Mohit Sethi, Elena Oat, Mario Di Francesco, and Tuomas Aura. Secure bootstrapping
of cloud-managed ubiquitous displays. In 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, UbiComp, 2014. 4.4

[191] Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquennoy. Towards
blockchain-based auditable storage and sharing of IoT data. In Proceedings of the 2017
on Cloud Computing Security Workshop, pages 45–50, 2017. 2.1.2, 3, 3.1

[192] Hossein Shafagh, Anwar Hithnawi, Lukas Burkhalter, Pascal Fischli, and Simon Duquen-
noy. Secure sharing of partially homomorphic encrypted IoT data. In Proceedings of the
15th ACM Conference on Embedded Network Sensor Systems, pages 1–14, 2017. 2.1.2,
3, 3.1

[193] Hossein Shafagh, Lukas Burkhalter, Sylvia Ratnasamy, and Anwar Hithnawi. Droplet:
Decentralized authorization and access control for encrypted data streams. In 29th
{USENIX} Security Symposium ({USENIX} Security 20), pages 2469–2486, 2020. 2.1.2,
3, 3.1

[194] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
1.2, 3.3, 3.3.4

[195] Shu Shi, Varun Gupta, Michael Hwang, and Rittwik Jana. Mobile vr on edge cloud:
A latency-driven design. In Proceedings of the 10th ACM Multimedia Systems Confer-
ence, MMSys ’19, page 222–231, New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450362979. doi: 10.1145/3304109.3306217. URL
https://doi.org/10.1145/3304109.3306217. 6.2

[196] Amit Kumar Sikder, Leonardo Babun, Z Berkay Celik, Abbas Acar, Hidayet Aksu, Patrick
McDaniel, Engin Kirda, and A Selcuk Uluagac. Kratos: multi-user multi-device-aware
access control system for the smart home. In Prelavantroceedings of the 13th ACM Con-
ference on Security and Privacy in Wireless and Mobile Networks, 2020. 2.1.2

[197] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 5.9, 5.9.1

[198] Anna Kornfeld Simpson, Franziska Roesner, and Tadayoshi Kohno. Securing vulnerable
home IoT devices with an in-hub security manager. In 2017 IEEE International Confer-
ence on Pervasive Computing and Communications Workshops, PerCom, 2017. 2.2.1

117

https://blog.senr.io/blog/400000-publicly-available-iot-devices-vulnerable-to-single-flaw
https://blog.senr.io/blog/400000-publicly-available-iot-devices-vulnerable-to-single-flaw
https://blog.senr.io/blog/400000-publicly-available-iot-devices-vulnerable-to-single-flaw
https://aws.amazon.com/solutions/case-studies/wyze/
https://aws.amazon.com/solutions/case-studies/wyze/
https://doi.org/10.1145/3304109.3306217

[199] A.S. Tanenbaum and R. van Renesse. A critique of the remote procedure call paradigm.
In Proceedings of the Euteco ’88 Conference, pages 775–783, 1988. 4.8

[200] TensorFlow. Difference in output between cpu and gpu. https://github.com/ten
sorflow/tensorflow/issues/19200, 2018. 5.7.2

[201] TensorFlow. Dependence of output on batch size. https://github.com/tensorf
low/tensorflow/issues/25625, 2019. 5.7.2

[202] TensorFlow. Tensorflow. https://www.tensorflow.org/, 2022. 5.8

[203] TensorFlow. Tensorflow lite. https://www.tensorflow.org/lite, 2022. 5.8

[204] Thread Group. Thread. https://www.threadgroup.org/, 2021. 3.3.3

[205] Youliang Tian, Ta Li, Jinbo Xiong, Md Zakirul Alam Bhuiyan, Jianfeng Ma, and
Changgen Peng. A blockchain-based machine learning framework for edge services in
iiot. IEEE Transactions on Industrial Informatics, 18(3):1918–1929, 2021. 5.5.1

[206] tomoyo. TOMOYO linux. https://tomoyo.osdn.jp/index.html.en, 2020.
4.3.4, 4.6.1

[207] tool-smem. smem(8) - linux man page. https://linux.die.net/man/8/smem,
2020. 4.7.3

[208] Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private execution of neural
networks in trusted hardware. arXiv preprint arXiv:1806.03287, 2018. 2.3.1, 3.7, 5.1, 5.3,
5.5.1, 5.9.3

[209] Rahmadi Trimananda, Ali Younis, Bojun Wang, Bin Xu, Brian Demsky, and Guoqing Xu.
Vigilia: Securing smart home edge computing. In 2018 IEEE/ACM Symposium on Edge
Computing, SEC, 2018. 2.2.2, 3.7, 4.1, 4.3.4

[210] Emily Tseng, Rosanna Bellini, Nora McDonald, Matan Danos, Rachel Greenstadt, Damon
McCoy, Nicola Dell, and Thomas Ristenpart. The tools and tactics used in intimate partner
surveillance: An analysis of online infidelity forums. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1893–1909. USENIX Association, August 2020. ISBN 978-
1-939133-17-5. 2.1.1

[211] Random Nerd Tutorials. 70+ ESP32 projects, tutorials and guides with Arduino IDE.
https://randomnerdtutorials.com/projects-esp32/, 2020. 4.6.2

[212] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow:
Extracting the keys to the intel {SGX} kingdom with transient {Out-of-Order} execution.
In 27th USENIX Security Symposium (USENIX Security 18), pages 991–1008, 2018. 2.3.1

[213] Maarten Van Steen and Andrew S Tanenbaum. Distributed systems. Maarten van Steen
Leiden, The Netherlands, 2017. 4.8

[214] Steve Vinoski. Convenience over correctness. IEEE Internet Computing, 12(4):89–92,
2008. 4.8

[215] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Graviton: Trusted execution envi-
ronments on {GPUs}. In 13th USENIX Symposium on Operating Systems Design and

118

https://github.com/tensorflow/tensorflow/issues/19200
https://github.com/tensorflow/tensorflow/issues/19200
https://github.com/tensorflow/tensorflow/issues/25625
https://github.com/tensorflow/tensorflow/issues/25625
https://www.tensorflow.org/
https://www.tensorflow.org/lite
https://www.threadgroup.org/
https://tomoyo.osdn.jp/index.html.en
https://linux.die.net/man/8/smem
https://randomnerdtutorials.com/projects-esp32/

Implementation (OSDI 18), pages 681–696, 2018. 2.3.1

[216] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on distributed comput-
ing. In International Workshop on Mobile Object Systems, pages 49–64, 1996. 4.8

[217] Frank Wang, James Mickens, Nickolai Zeldovich, and Vinod Vaikuntanathan. Sieve:
Cryptographically enforced access control for user data in untrusted clouds. In 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 16), pages
611–626, 2016. 1.2, 3, 3.3, 3.3.1, 3.3.4, 3.3.6, 3.5

[218] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique: Ef-
ficient conversions for zero-knowledge proofs with applications to machine learning. In
USENIX Security Symposium, pages 501–518, 2021. 5.1

[219] Wikipedia. OpenSSL - major version releases. https://en.wikipedia.org/wik
i/OpenSSL#Major_version_releases, 2020. 4.3.2

[220] Wikipedia. IEEE 802.11i-2004. https://en.wikipedia.org/wiki/IEEE_8
02.11i-2004, 2020. 4.4

[221] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for the javaˆ tˆ m
system. Computing Systems, 9:265–290, 1996. 4.8

[222] Rich Wolski, Chandra Krintz, Fatih Bakir, Gareth George, and Wei-Tsung Lin. CSPOT:
Portable, multi-scale functions-as-a-service for IoT. In 4th ACM/IEEE Symposium on
Edge Computing, SEC, 2019. 2.2.2

[223] Wyze. Wyze cam. https://www.wyze.com/products/wyze-cam, 2022. 5.1

[224] Wyze. Wyze cam plus subscription. https://services.wyze.com/detail/c
amplus, 2022. 1, 5.1

[225] Miguel G. Xavier, Marcelo V. Neves, Fabio D. Rossi, Tiago C. Ferreto, Timoteo Lange,
and Cesar A. F. De Rose. Performance evaluation of container-based virtualization for
high performance computing environments. In 2013 21st Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing, 2013. 4.3.5

[226] Bin Cedric Xing, Mark Shanahan, and Rebekah Leslie-Hurd. Intel® software guard ex-
tensions (intel® sgx) software support for dynamic memory allocation inside an enclave.
Proceedings of the Hardware and Architectural Support for Security and Privacy 2016,
pages 1–9, 2016. 5.5.1

[227] Guowen Xu, Hongwei Li, Hao Ren, Jianfei Sun, Shengmin Xu, Jianting Ning, Haomiao
Yang, Kan Yang, and Robert H Deng. Secure and verifiable inference in deep neural
networks. In Annual Computer Security Applications Conference, pages 784–797, 2020.
2.3.3

[228] Yaxing Yao, Justin Reed Basdeo, Oriana Rosata Mcdonough, and Yang Wang. Privacy
perceptions and designs of bystanders in smart homes. Proceedings of the ACM on
Human-Computer Interaction, 3(CSCW):1–24, 2019. 2.1.1, 3.1

[229] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj Agarwal, and Chenren Xu. Han-
dling a trillion (unfixable) flaws on a billion devices: Rethinking network security for the
internet-of-things. In 14th ACM Workshop on Hot Topics in Networks, HotNets, 2015. 1,

119

https://en.wikipedia.org/wiki/OpenSSL#Major_version_releases
https://en.wikipedia.org/wiki/OpenSSL#Major_version_releases
https://en.wikipedia.org/wiki/IEEE_802.11i-2004
https://en.wikipedia.org/wiki/IEEE_802.11i-2004
https://www.wyze.com/products/wyze-cam
https://services.wyze.com/detail/camplus
https://services.wyze.com/detail/camplus

2.2.1, 4.1

[230] Bin Yuan, Yan Jia, Luyi Xing, Dongfang Zhao, XiaoFeng Wang, and Yuqing Zhang.
Shattered chain of trust: Understanding security risks in cross-cloud IoT access delegation.
In 29th USENIX Security Symposium (USENIX Security 20), pages 1183–1200, 2020.
2.1.2

[231] Gina Yuan, David Mazières, and Matei Zaharia. Extricating iot devices from vendor
infrastructure with karl. arXiv preprint arXiv:2204.13737, 2022. 3.7

[232] ZDNet. CallStranger vulnerability lets attacks bypass security systems and scan LANs.
https://www.zdnet.com/article/callstranger-vulnerability-l
ets-attacks-bypass-security-systems-and-scan-lans/, 2020. 4.1,
4.8

[233] ZDNet. Hacker leaks passwords for more than 500,000 servers, routers, and IoT devices.
https://www.zdnet.com/article/hacker-leaks-passwords-for-m
ore-than-500000-servers-routers-and-iot-devices/, 2020. 1, 4.1

[234] ZDNet. Ripple20 vulnerabilities will haunt the IoT landscape for years to come. https:
//www.zdnet.com/article/ripple20-vulnerabilities-will-haunt
-the-iot-landscape-for-years-to-come/, 2020. 4.1

[235] Eric Zeng and Franziska Roesner. Understanding and improving security and privacy in
multi-user smart homes: a design exploration and in-home user study. In 28th USENIX
Security Symposium (USENIX Security 19), 2019. 2.1.1

[236] Zeroconf. Zero configuration networking. http://www.zeroconf.org/, 2021.
3.3.3

[237] Han Zhang. synergylabs/iot-capture. https://github.com/synergylabs/iot
-capture, 2021. 4, 4.6.1

[238] Han Zhang. synergylabs/teo-release. https://github.com/synergylabs/TEO
-release, 2022. 3, 3.5

[239] Han Zhang, Abhijith Anilkumar, Matt Fredrikson, and Yuvraj Agarwal. Capture: Cen-
tralized library management for heterogeneous {IoT} devices. In 30th USENIX Security
Symposium (USENIX Security 21), pages 4187–4204, 2021. 3.7, 4

[240] Han Zhang, Yuvraj Agarwal, and Matt Fredrikson. TEO: Ephemeral ownership for iot
devices to provide granular data control. In Proceedings of the 20th Annual Interna-
tional Conference on Mobile Systems, Applications and Services, MobiSys ’22, page
302–315, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450391856. doi: 10.1145/3498361.3539774. URL https://doi.org/10
.1145/3498361.3539774. 3

[241] Han Zhang, Yuvraj Agarwal, and Matt Fredrikson. Protecting user data through ephemeral
ownership of iot devices. In Proceedings of the 20th Annual International Conference on
Mobile Systems, Applications and Services, MobiSys ’22, page 620–621, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN 9781450391856. doi: 10.114
5/3498361.3538664. URL https://doi.org/10.1145/3498361.3538664. 3

120

https://www.zdnet.com/article/callstranger-vulnerability-lets-attacks-bypass-security-systems-and-scan-lans/
https://www.zdnet.com/article/callstranger-vulnerability-lets-attacks-bypass-security-systems-and-scan-lans/
https://www.zdnet.com/article/hacker-leaks-passwords-for-more-than-500000-servers-routers-and-iot-devices/
https://www.zdnet.com/article/hacker-leaks-passwords-for-more-than-500000-servers-routers-and-iot-devices/
https://www.zdnet.com/article/ripple20-vulnerabilities-will-haunt-the-iot-landscape-for-years-to-come/
https://www.zdnet.com/article/ripple20-vulnerabilities-will-haunt-the-iot-landscape-for-years-to-come/
https://www.zdnet.com/article/ripple20-vulnerabilities-will-haunt-the-iot-landscape-for-years-to-come/
http://www.zeroconf.org/
https://github.com/synergylabs/iot-capture
https://github.com/synergylabs/iot-capture
https://github.com/synergylabs/TEO-release
https://github.com/synergylabs/TEO-release
https://doi.org/10.1145/3498361.3539774
https://doi.org/10.1145/3498361.3539774
https://doi.org/10.1145/3498361.3538664

[242] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin Zhu.
HoMonit: Monitoring smart home apps from encrypted traffic. In 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS, 2018. 2.2.1, 4.8

[243] Wensheng Zhang and Trent Muhr. TEE-based selective testing of local workers in fed-
erated learning systems. In 2021 18th International Conference on Privacy, Security and
Trust (PST), pages 1–6. IEEE, 2021. 2.3.2, 5.5.1

[244] Xiaoli Zhang, Fengting Li, Zeyu Zhang, Qi Li, Cong Wang, and Jianping Wu. Enabling
execution assurance of federated learning at untrusted participants. In IEEE INFOCOM
2020-IEEE Conference on Computer Communications, pages 1877–1886. IEEE, 2020.
2.3.1

[245] Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, and Bo Feng. Veriml: En-
abling integrity assurances and fair payments for machine learning as a service. IEEE
Transactions on Parallel and Distributed Systems, 32(10):2524–2540, 2021. 2.3.2

[246] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. Deepthings: Dis-
tributed adaptive deep learning inference on resource-constrained iot edge clusters. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(11):
2348–2359, 2018. 5.1

[247] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E Gonzalez,
and Ion Stoica. Opaque: An oblivious and encrypted distributed analytics platform. In
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17),
pages 283–298, 2017. 3.7

[248] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and Limin Sun.
FIRM-AFL: high-throughput greybox fuzzing of IoT firmware via augmented process
emulation. In 28th USENIX Security Symposium, 2019. 4.2

[249] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang, Jiangfeng Cao, Boyan Zhao,
Zhongpu Wang, Yuhui Zhang, Jiameng Ying, Lixin Zhang, et al. Enabling rack-scale
confidential computing using heterogeneous trusted execution environment. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 1450–1465. IEEE, 2020. 2.3.1

121

	1 Introduction
	1.1 Current Monolithic Device Design
	1.2 Secure and Practical Functionality Splitting
	1.3 Thesis Outline

	2 Background
	2.1 IoT Security and Privacy Concerns
	2.1.1 Stakeholder and Bystander Privacy
	2.1.2 Smart Device Access Control

	2.2 New System Designs for IoT Security and Privacy
	2.2.1 IoT Network Security
	2.2.2 IoT Software Security
	2.2.3 IoT Frameworks and OSes

	2.3 Secure Offloading Designs for Emerging IoT Applications
	2.3.1 Trusted Hardware
	2.3.2 Efficient Verification
	2.3.3 Cryptography for Machine Learning Applications

	2.4 Summary

	3 Teo: Protecting IoT Device Users by Offloading Ownership Management and Access Control
	3.1 Motivation: Importance of Stakeholder Privacy
	3.2 System Overview
	3.2.1 Target Use Cases
	3.2.2 Design Goals
	3.2.3 Threat Model

	3.3 Teo Protocol
	3.3.1 Notation
	3.3.2 Device Initialization
	3.3.3 Device Ownership Management
	3.3.4 Data Storage and Access
	3.3.5 Revocation
	3.3.6 Partial Availability

	3.4 Security Analysis
	3.4.1 Security Goals
	3.4.2 Modeling Protocol Workflow
	3.4.3 Modeling Security Goals
	3.4.4 Modeling Group Ownership

	3.5 Implementation
	3.6 Evaluation
	3.6.1 Microbenchmarks
	3.6.2 Case Studies

	3.7 Discussion and Limitations
	3.8 Summary

	4 Capture: Securing IoT Devices by Offloading Third-Party Library Management
	4.1 Motivation
	4.2 Third-Party Libraries in IoT
	4.2.1 Data Collection
	4.2.2 Results

	4.3 Capture Framework
	4.3.1 Overview
	4.3.2 Library Update Management
	4.3.3 Virtual Device Entities (VDEs)
	4.3.4 Communication Isolation
	4.3.5 Resource Isolation

	4.4 Security Analysis
	4.5 Integration Approaches
	4.5.1 OS Library Replacement
	4.5.2 IoT Framework SDK Extension
	4.5.3 Native Driver Development

	4.6 Implementation
	4.6.1 Core Hub Functionality
	4.6.2 Benchmark Applications

	4.7 Evaluation
	4.7.1 Performance Overhead
	4.7.2 Overhead Perceived in the Real World
	4.7.3 Scalability
	4.7.4 Integration Efforts and Tradeoffs

	4.8 Discussions and Limitations
	4.9 Summary

	5 VeriSplit: Efficient Computation Offloading for IoT Devices with Neural Network Applications
	5.1 Motivation
	5.2 VeriSplit Overview
	5.2.1 Design Goals
	5.2.2 Threat Model

	5.3 Data Privacy
	5.4 Model Confidentiality
	5.5 Inference Integrity
	5.5.1 Asynchronous Verification
	5.5.2 Partial Verification
	5.5.3 Tunable Verification

	5.6 Security Analysis
	5.6.1 Proofs

	5.7 Floating Point Errors
	5.7.1 Mask Precision
	5.7.2 Cross-Platform Numerical Errors

	5.8 Implementation
	5.9 Evaluations
	5.9.1 Setup
	5.9.2 Vision Transformers
	5.9.3 VGG16

	5.10 Limitations and Discussion
	5.11 Summary

	6 Conclusions
	6.1 Lessons Learned
	6.2 Future Directions

	A Formal Modeling Code for Teo Protocol Verification
	Bibliography

