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Abstract

Developing machine learning models heavily relies on access to data. To
build a responsible data economy and protect data ownership, it is crucial to
enable learning models from separate, heterogeneous data sources without
centralization. Federated learning (FL) aims to train models collectively across
massive remote devices or isolated organizations, while keeping user data
local. However, federated networks introduce a number of challenges beyond
traditional distributed learning scenarios. While FL has shown great promise
for enabling edge applications, current FL systems are hindered by several
constraints. In addition to being accurate, federated methods must scale to
potentially massive and heterogeneous networks of devices, and must exhibit
trustworthy behavior—addressing pragmatic concerns related to issues such
as fairness, robustness, and user privacy.

In this thesis, we aim to address the practical challenges of federated learn-
ing in a principled fashion. We study how heterogeneity lies at the center
of the constraints of federated learning—not only affecting the accuracy of
the models, but also competing with other critical metrics such as fairness,
robustness, and privacy. To address these metrics, we develop new, scalable
learning objectives and algorithms that rigorously account for and address
sources of heterogeneity. In particular, in terms of accuracy, we propose novel
federated optimization frameworks with convergence guarantees under real-
istic heterogeneity assumptions. In terms of trustworthiness, we develop and
analyze fair learning objectives which offer flexible fairness/utility tradeoffs.
We consider the joint constraints between fairness and robustness, and explore
personalized FL to provably address both of them simultaneously. Finally,
we study new differentially private optimization methods with improved
convergence behavior, achieving state-of-the-art performance under privacy
constraints.

Although our work is grounded by the application of federated learning,
we show that many of the techniques and fundamental tradeoffs extend
well beyond this use-case to more general applications of large-scale and
trustworthy machine learning.
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Chapter 1

Introduction

Mobile phones, wearable devices, and smart homes form just a few of the modern
distributed networks generating a wealth of data each day. Due to the growing com-
putational power of these devices—coupled with concerns over transmitting private
information—it is increasingly attractive to store data locally and push network com-
putation to the edge. For example, federated learning (FL) is a learning paradigm that
aims to enable efficient and secure data sharing while keeping user data local. FL con-
siders collaboratively training machine learning models across remote devices or siloed
organizations in a privacy-preserving manner.

Federated learning has the ability to produce highly accurate statistical models by
aggregating knowledge from disparate data sources. Examples of potential applications
include: learning sentiment, semantic location, or activities of mobile phone users;
adapting to pedestrian behavior in autonomous vehicles; and predicting health events
like heart attack risk from wearable devices.

1.1 Canonical Problem Formulation

The canonical federated learning problem involves learning a single, global statistical
model from data stored on tens to potentially millions of remote devices. We aim to
learn this model under the constraint that device-generated data is stored and processed
locally, with only intermediate updates being communicated periodically with a central
server. In particular, the goal is typically to minimize the following objective function:

min
w

Fpwq , where Fpwq :“
N
ÿ

k“1

pkFkpwq . (1.1)

Here, N is the total number of devices, pk ě 0 and
ř

k pk “ 1, and Fk is the local
objective function for the kth device. The local objective function is often defined as the
empirical risk over local data, i.e., Fkpwq “ 1

nk

řnk
jk“1 f jkpw; xjk , yjkq, where nk is the number

of samples available locally. The user-defined term pk specifies the relative impact of
each device, with two natural settings being pk “ 1

n or pk “
nk
n , where n “

ř

k nk is the
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total number of samples. While we will focus on this most popular objective in some
chapters, in this thesis, we also study other objectives or modeling approaches that are
appropriate depending on the application of interest.

To be successful, the field of federated learning requires fundamental advances in
areas such as optimization, systems, and privacy, as federated networks present a variety
of practical challenges beyond traditional distributed learning scenarios.

1.2 Challenges of Federated Networks

Federated networks introduce and exacerbate a number of challenges for distributed
learning workflows, including expensive communication, systems heterogeneity, and
statistical heterogeneity, as discussed in detail in the following.

Challenge 1: Expensive Communication. Communication is a critical bottleneck in
federated networks, which, coupled with privacy concerns over sending raw data,
necessitates that data generated on each device remain local. Indeed, federated networks
are potentially comprised of a massive number of devices, e.g., millions of smart phones,
and communication in the network can be slower than local computation by many
orders of magnitude [122, 282]. In order to fit a model to data generated by the devices
in the federated network, it is therefore necessary to develop communication-efficient
methods that iteratively send small messages or model updates as part of the training
process, as opposed to sending the entire dataset over the network. To further reduce
communication in such a setting, two key aspects to consider are: (i) reducing the total
number of communication rounds, or (ii) reducing the size of transmitted messages at
each round.

Challenge 2: Systems Heterogeneity. The storage, computational, and communication
capabilities of each device in federated networks may differ due to variability in hardware
(CPU, memory), network connectivity (3G, 4G, 5G, wifi), and power (battery level).
Additionally, the network size and systems-related constraints on each device typically
result in only a small fraction of the devices being active at once, e.g., hundreds of active
devices in a million-device network [36]. Each device may also be unreliable, and it is
not uncommon for an active device to drop out at a given iteration due to connectivity or
energy constraints. These system-level characteristics dramatically exacerbate challenges
such as straggler mitigation and fault tolerance. Federated learning methods that are
developed and analyzed must therefore: (i) anticipate a low amount of participation, (ii)
tolerate heterogeneous hardware, and (iii) be robust to dropped devices in the network.

Challenge 3: Statistical Heterogeneity. Devices frequently generate and collect data in
a non-identically distributed manner across the network, e.g., mobile phone users have
varied use of language in the context of a next word prediction task. Moreover, the num-
ber of data points across devices may vary significantly, and there may be an underlying
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Systems HeterogeneityExpensive Communication Statistical Heterogeneity

PrivacyRobustnessFairnessAccuracy

Figure 1.1: Federated networks need to satisfy critical constraints including accu-
racy/efficiency, fairness, robustness, and privacy. Practical systems and heterogeneity
challenges can exacerbate the issues of accuracy and trustworthiness relative to central-
ized training. The overarching goal of this thesis is to develop principled approaches
to understanding and addressing these constraints and their interplays. Taking into
account practical challenges of the network, we explore how heterogeneity affects these
constraints, and how they interact with one another.

structure present that captures the relationship amongst devices and their associated
distributions. This data generation paradigm violates frequently-used independent and
identically distributed (I.I.D.) assumptions in distributed optimization, increases the
likelihood of stragglers, and may add complexity in terms of modeling, analysis, and
evaluation. Indeed, although the canonical federated learning problem of (1.1) aims
to learn a single global model, there exist other alternatives such as simultaneously
learning distinct local models via multi-task learning frameworks [cf. 264]. There is also
a close connection in this regard between leading approaches for federated learning
and meta-learning [170]. Enabling personalized or device-specific modeling is often a more
natural approach to handling the statistical heterogeneity of the data.

Finally, privacy is often a major concern in federated learning applications. Federated
learning makes a step towards protecting data generated on each device by sharing
model updates, e.g., gradient information, instead of the raw data [79, 84]. However,
communicating model updates throughout the training process can nonetheless reveal
sensitive information [210]. While recent methods aim to enhance the privacy of feder-
ated learning using tools such as secure multiparty computation or differential privacy,
these approaches often provide privacy at the cost of reduced model performance or
system efficiency. Understanding and balancing these tradeoffs, both theoretically and
empirically, is a considerable challenge in realizing private federated learning systems.

While federated learning has shown great promise for enabling edge applications,
partly as a result of the major challenges above, current FL systems are hindered by

3



several conflicting constraints. In this thesis, our goal is to develop principled and
scalable approaches to understand and address the challenges of federated networks.
In particular, we aim to study how heterogeneity lies at the center of these practical
constraints—not only affecting the final accuracy of the models, but also competing with
issues of trustworthiness (fairness, robustness, and privacy), as detailed below.

1.3 Constraints of Federated Learning

Accuracy and Scalability. To be practically useful, federated methods must first and
foremost deliver reasonably accurate solutions in an efficient manner, even in light of
underlying data and systems heterogeneity.

Trustworthiness. As FL applications aim to learn over client data while using client
devices as a distributed computing substrate, there are a number of issues related to
trustworthiness that are also critical to consider. These constraints commonly include (a)
client privacy due to the potential leakage of sensitive information when transmitting
information (e.g., model parameters) across the network, (b) robustness to device failures,
real-world data noise, and adversarial attacks, and (c) delivering fair performance to all
clients/devices.

Mitigating the potential negative impacts of heterogeneity on federated learning in
terms of separate metrics is already challenging, and it is even more so if we jointly
consider all metrics which may be fundamentally at odds with each other. For instance,
current methods that focus solely on accuracy or fairness are also at odds with robustness
constraints, as implementing current approaches can render federated learning systems
highly susceptible to adversarial attacks. It is therefore critical to develop and analyze
approaches to holistically addressing these connected constraints in realistic networks.

This thesis includes my PhD research on scalable and trustworthy (fair, robust, and
private) optimization algorithms and objective functions for both federated learning
and general machine learning (Figure 1.1). We rigorously analyze the convergence
of our optimization methods, and fairness, robustness, or privacy properties of the
proposed approaches. Through evaluation on a suite of realistic federated benchmarks,
we demonstrate the practical improvements and efficiency of our works.

1.4 Overview of Contributions

In this section, we summarize the main contributions of this thesis on scalable and trust-
worthy learning in heterogeneous networks. We discuss background and preliminaries
in Chapter 2, and present each work in detail in Chapters 3-7. Although most of the
works are grounded by the application of federated learning, we show that many of the
techniques and fundamental tradeoffs explored in this thesis extend beyond this use-case
to general machine learning applications.
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(Chapter 3) Accuracy/Scalability: Federated Optimization Methods under Systems
and Data Heterogeneity. FedAvg is the de facto optimization method in the federated
setting that allows for local updating and low participation. However, it does not fully ad-
dress the underlying challenges associated with heterogeneity. We propose FedProx [176],
which can be viewed as a generalization and re-parametrization of FedAvg (where we
add a proximal term to the local objective). While the algorithmic modification is minor,
theoretically, we provide the first convergence guarantees for federated optimization
methods under realistic heterogeneity assumptions. Practically, we demonstrate that
in highly heterogeneous settings, FedProx yields more robust convergence. Federated
optimization has become an important topic that has received a significant amount of re-
cent research attention [290]. FedProx (as well as another principled variant we develop
named FedDane [175]) takes a first step towards analyzing and improving federated
optimization under practical constraints (device unreliability, expensive communication,
and heterogeneity).

(Chapter 4) Fairness: Addressing Representation Disparity. Heterogeneity not only
affects the convergence of federated learning methods, but also poses challenges to
the fairness of the final model performance. For example, while models trained via
federated learning may be accurate on average, these models can sometimes perform
unfairly or even catastrophically on subsets of the network. This type of unfairness is
known as representation disparity, and is a critical concern especially in massive cross-
device federated settings. To address unfairness stemming from heterogeneity, we
developed q-Fair FL (q-FFL) [182], a new optimization objective to minimize an aggregate
reweighted loss parameterized by q such that the devices with higher loss are given higher
relative weight. This framework allows for a tunable fairness/utility tradeoff through the
hyperparameter q, and is easy to implement in a scalable fashion.

(Chapter 5) Robustness: Handling Competing Constraints Between Fairness and
Robustness Through Personalization. Simultaneously satisfying the constraints of
accuracy, fairness, and robustness is exceptionally difficult. For instance, current fairness
approaches usually upweight worst-performing devices, thus being highly susceptible
to training time attacks from malicious devices. On the other hand, robust methods may
filter out rare but informative updates, causing unfairness. In this setting, heterogeneity is
again a root cause for tension between these constraints—and is key in paving a path
forward. With this insight, we propose a multi-task learning (a framework that learns
shared, heterogeneous models) method, Ditto, as a unified approach for satisfying the
diverse constraints in federated learning [186]. Theoretically, we analyze the ability of
Ditto to achieve fairness and robustness simultaneously on a class of linear problems.
Empirically, we demonstrate that Ditto not only achieves competitive performance
relative to recent personalization methods, but also enables more accurate, robust, and
fair models relative to state-of-the-art fair or robust baselines. Our Ditto work opens
up many interesting questions regarding the connections between personalization and
practical constraints.
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(Chapter 6) Privacy: Private Adaptive Optimization. Privacy is a critical concern in
both centralized and federated learning, but the study of differential privacy (DP) in
machine learning has been largely limited to (variants) of the very basic SGD optimizer.
Considering the widely-used adaptive methods (such as AdaGrad), we observed that
privacy costs may negate the benefits of adapting to gradient geometry. In particular,
the preconditioners might become less effective (e.g., being dominated by DP noise)
if naively privatizing existing adaptive optimizers. We proposed to leverage some
structures of gradients to construct more effective preconditioners with reduced privacy
noise, where the resulting algorithms can be applied to federated settings as well. For
instance, we leverage non-sensitive side information to precondition the gradients [187].
In other cases where such information is not available, we rely on the observation that
adaptive methods can tolerate stale preconditioners, and constructed delayed but less
noisy preconditioners from historical gradients [188]. We prove that in both cases, the
private adaptive methods can reduce the amount of privacy noise when the gradients
are sparse. This takes an initial step towards guaranteeing differential privacy by default
in conjunction with modern learning objectives and algorithms.

(Chapter 7) Extensions to General ML Problems: Tilted Empirical Risk Minimization
The insights from q-FFL can be further extended to general ML problems. In partic-
ular, the empirical risk minimization objective is typically designed to perform well
on the average loss, which can result in models that are sensitive to outliers, general-
ize poorly, or treat subgroups unfairly. We propose tilted empirical risk minimization
(TERM) [184, 185], a unified framework to address all these issues through a flexible
parameter called the tilt. By tuning this parameter, we show that we are able to tune the
impact of individual losses to provably decrease the influence of outliers, enable fairness
or robustness, and provide better generalization. We additionally analyze various prop-
erties of TERM and its connections with other risk-averse formulations and apply it to
numerous modern ML problems. TERM can match the performance of state-of-the-art
approaches on many applications, converges almost as quickly as standard mini-batch
SGD, and has inspired the design of new objectives with favorable properties. Both the
q-FFL and TERM objectives have become common baselines in the areas of fair/robust
learning.

1.5 Excluded Work

Federated learning differs significantly from traditional distributed environments—
requiring fundamental advances in areas such as privacy, large-scale machine learning,
and distributed optimization, and raising new questions at the intersection of diverse
fields, such as machine learning and systems [177]. In this section, I describe the research
I am involved in that is not included as part of this thesis.

To address the entire pipeline, it is important to develop comprehensive solutions
considering various critical aspects of real-world scenarios including system automation,
tools and benchmarks, and incorporation of domain knowledge. Other projects on this front
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(where I am not the primary contributor) include hyperparameter tuning at scale in fed-
erated settings [154], better client selection strategies in massive networks [24], lifecycle
management of machine learning systems and operations, applying federated learning
to the application of anomaly detection across IoT devices [313], and incentivizing clients
to participate in federation [53].

We have also developed common resources for federated learning that have been
widely adopted by the community, including an FL survey [177] and two benchmarks
on federated datasets [43]1 and personalized federated learning [301] to help with repro-
ducibility and facilitate research progress in the related areas.

1.6 Bibliographic Notes

The research presented in this thesis is based on joint work with many co-authors, as
described below. In each work, I am either the primary contributor or one of two equal
primary contributors.

Chapter 3 is based on joint work with Anit Kumar Sahu, Manzil Zaheer, Maziar
Sanjabi, Ameet Talwalkar, and Virginia Smith [175, 176]. Chapter 4 and Chapter 7 are
joint works with Ahmad Beirami, Maziar Sanjabi, and Virginia Smith [182, 184, 185].
Chapter 5 is based on joint work with Shengyuan Hu, Ahmad Beirami, and Virginia
Smith [186]. Chapter 6 is based on joint works with Manzil Zaheer, Ken Ziyu Liu,
Sashank Reddi, Brendan McMahan, and Virginia Smith [187, 188].
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Chapter 2

Preliminaries and Related Work

In this chapter, we discuss the background and related work of this thesis. As federated
learning (or machine learning) is a quickly growing area, we do not aim to cover complete
literature of each topic; but rather, discuss only closely-related works, highlight their
connections with our works, and defer interested readers to other references. We also set
up definitions of fairness, robustness, and privacy considered in this thesis.

2.1 Distributed and Federated Optimization

Large-scale machine learning, particularly in data center settings, has motivated the
development of numerous distributed optimization methods in the past decade [see,
e.g., 39, 65, 66, 172, 236, 241, 253, 267, 323, 325]. However, as computing substrates such
as phones, sensors, and wearable devices grow both in power and in popularity, it
is increasingly attractive to learn statistical models locally in networks of distributed
devices, in contrast to moving the data to the data center. Recent optimization methods
have been proposed that are tailored to the specific challenges in the federated setting.
These methods have shown significant improvements over traditional distributed ap-
proaches such as ADMM [39] or mini-batch methods [66] by allowing both for inexact
local updating in order to balance communication vs. computation in large networks,
and for a small subset of devices to be active at any communication round [208, 264]. For
example, Smith et al. [264] propose a communication-efficient primal-dual optimization
method that learns separate but related models for each device through a multi-task
learning framework. In the non-convex setting, Federated Averaging (FedAvg), a heuris-
tic method based on averaging local Stochastic Gradient Descent (SGD) updates in the
primal, has instead been shown to work well empirically [208].

Unfortunately, FedAvg is quite challenging to analyze due to its local updating
scheme, the fact that few devices are active at each round, and the issue that data is
frequently distributed in a heterogeneous nature in the network. In particular, as each
device generates its own local data, statistical heterogeneity is common with data being
non-identically distributed between devices. Several works have made steps towards
analyzing FedAvg in simpler, non-federated settings. For instance, parallel SGD and
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related variants [191, 236, 253, 272, 289, 300, 323, 329], which make local updates similar
to FedAvg, have been studied in the IID setting. However, the results rely on the premise
that each local solver is a copy of the same stochastic process (due to the IID assumption).
This line of reasoning does not apply to the heterogeneous setting.

Although some recent works [110, 131, 294, 311] have explored convergence guaran-
tees in statistically heterogeneous settings, they make the limiting assumption that all
devices participate in each round of communication, which is often infeasible in realistic
federated networks [208]. Further, they rely on specific solvers to be used on each device
(either SGD or GD), as compared to the solver-agnostic framework proposed herein, and
add additional assumptions of convexity [294] or uniformly bounded gradients [311]
to their analyses. There are also heuristic approaches that aim to tackle statistical het-
erogeneity by sharing the local device data or server-side proxy data [123, 127, 327].
However, these methods may be unrealistic: in addition to imposing burdens on network
bandwidth, sending local data to the server [127] violates the key privacy assumption
of federated learning, and sending globally-shared proxy data to all devices [123, 327]
requires effort to carefully generate or collect such auxiliary data.

Beyond statistical heterogeneity, systems heterogeneity is also a critical concern in
federated networks. The storage, computational, and communication capabilities of each
device in federated networks may differ due to variability in hardware (CPU, memory),
network connectivity (3G, 4G, 5G, wifi), and power (battery level). These system-level
characteristics dramatically exacerbate challenges such as straggler mitigation and fault
tolerance. One strategy used in practice is to ignore the more constrained devices failing
to complete a certain amount of training [36]. However, this can have negative effects
on convergence as it limits the number of effective devices contributing to training, and
may induce bias in the device sampling procedure if the dropped devices have specific
data characteristics.

Our FedProx framework (Chapter 3) is capable of handling heterogeneous feder-
ated environments while maintaining similar privacy and computational benefits. We
analyze the convergence behavior of the framework through a statistical dissimilarity
characterization between local functions, while also taking into account practical systems
constraints. Our dissimilarity characterization is inspired by the randomized Kaczmarz
method for solving linear system of equations [139, 274], a similar assumption of which
has been used to analyze variants of SGD in other settings [see, e.g., 250, 283, 310]. Our
proposed framework provides improved robustness and stability for optimization in
heterogeneous federated networks.

2.2 Fair Federated Learning

Fairness in Machine Learning. Fairness is a broad topic that has received much at-
tention in the machine learning community, though the goals often differ from that
described in this work. Indeed, fairness in machine learning is typically defined as the
protection of some specific attribute(s). Two common approaches are to preprocess the
data to remove information about the protected attribute, or to post-process the model
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by adjusting the prediction threshold after classifiers are trained [44, 91, 111]. Another
set of works optimize an objective subject to some fairness constraints during training
time [7, 23, 59, 83, 113, 299, 315, 316]. Our fairness work described in Chapter 4 also
enforces fairness during training, although we define fairness as the uniformity of the
accuracy distribution across devices (Definition 1) in federated learning, as opposed to
the protection of a specific attribute. Although some works define accuracy parity to
enforce equal error rates among specific groups as a notion of fairness [59, 315], devices
in federated networks may not be partitioned by protected attributes, and our goal is
not to optimize for identical accuracy across all devices. Cotter et al. [59] use a notion of
‘minimum accuracy’, which is conceptually similar to our goal. However, it requires one
optimization constraint for each device, which would result in hundreds to millions of
constraints in federated networks.

Fairness in Resource Allocation. Fair resource allocation has been extensively studied
in fields such as network management [85, 106, 151, 221] and wireless communica-
tions [86, 220, 248, 256]. In these contexts, the problem is defined as allocating a scarce
shared resource, e.g., communication time or power, among many users. In these cases,
directly maximizing utilities such as total throughput may lead to unfair allocations
where some users receive poor service. As a service provider, it is important to improve
the quality of service for all users while maintaining overall throughput. For this reason,
several popular fairness measurements have been proposed to balance between fairness
and total throughput, including Jain’s index [126], entropy [239], max-min/min-max
fairness [234], and proportional fairness [150]. A unified framework is captured through
α-fairness [164, 214], in which the network manager can tune the emphasis on fairness
by changing a single parameter, α.

To draw an analogy between federated learning and the problem of resource allo-
cation, one can think of the global model as a resource that is meant to serve the users
(or devices). In this sense, it is natural to ask similar questions about the fairness of the
service that users receive and use similar tools to promote fairness. Despite this, we are
unaware of any works that use α-fairness from resource allocation to modify objectives in
machine learning. Inspired by the α-fairness metric, we propose a similarly modified ob-
jective, q-Fair Federated Learning (q-FFL) (Chapter 4), to encourage a more fair accuracy
distribution across devices in the context of federated training (Definition 1). Similar to
the α-fairness metric, our q-FFL objective is flexible enough to enable tradeoffs between
fairness and other traditional metrics such as accuracy by changing the parameter q.
In Section 4.3, we show empirically that the use of q-FFL as an objective in federated
learning enables a more uniform accuracy distribution across devices—significantly
reducing variance while maintaining the average accuracy.

Fairness in Federated Learning. Due to the heterogeneity of the data in federated
networks, it is possible that the performance of a model will vary significantly across the
devices. This concern, also known as representation disparity [113], is a major challenge in
FL, as it can potentially result in uneven outcomes for the devices. Throughout the thesis,
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our fairness notion in the context of federated learning is formally defined as below.

Definition 1 (Fairness). We say that a model w1 is more fair than w2 if the test performance
distribution of w1 across the network is more uniform than that of w2, i.e., std tFkpw1qukPrKs ă

std tFkpw2qukPrKs where Fkp¨q denotes the test loss on device kPrKs, and stdt¨u denotes the
standard deviation. In the presence of adversaries, we measure fairness only on benign devices.

We note that there exists a tension between variance and utility in the definition
above; in general, a common goal is to lower the variance while maintaining a reasonable
average performance (e.g., average test accuracy). To address representation disparity,
it is common to use minimax optimization [68, 215] or flexible sample reweighting ap-
proaches [182, 184] to encourage a more uniform quality of service. For instance, Mohri
et al. [215] proposed a minimax optimization scheme, Agnostic Federated Learning (AFL),
which optimizes for the performance of the single worst device. This method has only
been applied at small scales (for a handful of devices). Compared to AFL, our fairness
objective (Chapater 4) is more flexible as it can be tuned based on the desired amount
of fairness. In all cases, by up-weighting the importance of rare devices or data, fair
methods may not be robust in that they can easily overfit to corrupted devices. The
tension between fairness and robustness (defined broadly) has been studied in previous
works, though for different notions of fairness (equalized odds) or robustness (backdoor
attacks) [288], or in centralized settings [47]. In Chapter 5, we explore two specific forms
of fairness (defined herein) and robustness (see next section), and develop new methods
to address them jointly.

2.3 Robust Federated Learning

Training-time attacks (including data poisoning and model poisoning) have been exten-
sively studied in prior work [33, 52, 80, 103, 124, 124, 194, 252, 288, 303]. In federated
settings, a number of strong attack methods have been explored, including scaling mali-
cious model updates [22], collaborative attacking [276], defense-aware attacks [29, 90],
and adding edge-case adversarial training samples [288].

In Chapter 5, we investigate a simple, scalable technique to simultaneously improve
accuracy, fairness, and robustness in federated learning. Our work aims to investigate
common attacks related to Byzantine robustness [163], as formally described below.

Definition 2 (Robustness). We are conceptually interested in Byzantine robustness [163],
where the malicious devices can send arbitrary updates to the server to compromise training. To
measure robustness, we assess the mean test performance on benign devices, i.e., we consider
model w1 to be more robust than w2 to a specific attack if the mean test performance across the
benign devices is higher for model w1 than w2 after training with the attack. We examine three
widely-used attacks in our threat model:

• (A1) Label poisoning: Corrupted devices do not have access to the training APIs and
training samples are poisoned with flipped (if binary) or uniformly random noisy
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labels [29, 32].

• (A2) Random updates: Malicious devices send random zero-mean Gaussian parame-
ters [304].

• (A3) Model replacement: Malicious devices scale their adversarial updates to make them
dominate the aggregate updates [22].

While non-exhaustive, these attacks have been commonly studied in distributed and
federated settings, and explore corruption at various points (the underlying data, labels,
or model). In terms of defenses, robust aggregation is a common strategy to mitigate
the effect of malicious updates [35, 114, 171, 230, 277]. Other defenses include gradient
clipping [277] or normalization [121]. While these strategies can improve robustness,
they may also produce unfair models by filtering out informative updates, especially in
heterogeneous settings [288]. In our experiments, we compare our proposed approach
with several strong defenses (median, gradient clipping [277], Krum, Multi-Krum [35],
gradient-norm based anomaly detector [22], and a new defense proposed herein) and
show that our approach can improve both robustness and fairness compared with these
methods.

2.4 Personalized Federated Learning

Given the variability of data in federated networks, personalization is a natural approach
used to improve accuracy. Numerous works have proposed techniques for personalized
federated learning. Smith et al. [265] first explore personalized FL via a primal-dual
MTL framework, which applies to convex settings. Personalized FL has also been
explored through clustering [e.g., 100, 216, 249], finetuning/transfer learning [312, 328],
meta-learning [50, 88, 132, 153, 169, 261], and other forms of MTL, such as hard model
parameter sharing [8, 190] or the weighted combination method in Zhang et al. [322].
Our work (Chapter 5) differs from these approaches by simultaneously learning local and
global models via a global-regularized MTL framework, which applies to non-convex
ML objectives.

Similar in spirit to our approach are works that interpolate between global and local
models [69, 202]. However, as discussed in Deng et al. [69], these approaches can effec-
tively reduce to local minimizers without additional constraints. The most closely related
works are those that regularize personalized models towards their average [72, 107, 108],
which can be seen as a form of classical mean-regularized MTL [87]. Our objective is simi-
larly inspired by mean-regularized MTL, although we regularize towards a global model
rather than the average personalized model. One advantage of this is that it allows for
methods designed for the global federated learning problem (e.g., optimization methods,
privacy/security mechanisms) to be easily re-used in our framework, with the benefit
of additional personalization. We compare against a range of personalized methods
empirically, showing that our approach achieves similar or superior performance across
a number of common FL benchmarks.

Finally, a key contribution of our work is jointly exploring the robustness and fairness
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benefits of personalized FL. The benefits of personalization for fairness alone have been
demonstrated empirically in prior work [109, 291]. Connections between personalization
and robustness have also been explored in Yu et al. [312], although the authors propose
using personalization methods on top of robust mechanisms. Our work differs from
these works by arguing that MTL itself offers inherent robustness and fairness benefits,
and exploring the challenges that exist when attempting to satisfy both constraints
simultaneously.

2.5 Differentially Private Machine Learning

Differentially private (DP) training is a common tool for federated learning, which in-
spires our work; but our research on private optimization applies to general ML problems
(Chapter 6). Informally, differential privacy in machine learning offers protection by
masking the influence of individual examples (example-level DP, e.g. [4, 25, 269]) or all
of the examples from one user (user-level DP, e.g. [143, 210]) on the trained model. There
are many algorithms to achieve this, including object perturbation, gradient perturba-
tion, and model perturbation. This thesis focuses on the popular gradient perturbation
method with Gaussian mechanisms [84]. Without additional assumptions on the prob-
lem structure, DP algorithms can suffer from Op

?
d

nε q excess empirical risk where d is
the dimension of the model parameters and n is the number of training samples [25].
It is possible to mitigate such a dependence in the unconstrained setting [141, 270] or
assuming oracle access to a constant-rank gradient subspace [141, 333]. However, these
assumptions may not be satisfied in practice.

Unless much larger batch sizes and possibly larger datasets are used, DP mechanisms
often lead to a significant utility drop. Extensive research has thus been devoted to
investigating improved privacy/utility/computation tradeoffs for DP-SGD, including
various training techniques (e.g., data augmentation and large-batch training) [64],
leveraging public data [15, 333], and releasing gradient statistics via tree aggregation to
reduce the amount of noise [46, 70, 143]. These prior works are orthogonal to and could
be applied in conjunction with our proposed method in Chapter 6, focusing on adaptive
optimizers. Recent work [15] proposes to use public data differently (evaluating public
loss as the mirror map in a mirror descent algorithm) to obtain dimension-independent
bounds. However, this method do not account for gradient preconditioning, as their
approximation is a linear combination of private and public gradients.

In gradient-based optimization, adaptive optimizers and their properties have been
extensively studied [e.g., 78, 155, 218, 318]. They effectively result in coordinate-wise
learning rates, which can be advantageous for many learning problems. The precon-
ditioners can be estimated via a moving average of mini-batch gradients (as in, e.g.,
Adam) or simply by calculating the sum of gradients so far (AdaGrad). In the context of
adaptive differentially private optimization, we note that ‘adaptivity’ may have various
meanings. For example, Andrew et al. [16] adaptively set the clipping threshold based
on the private estimation of gradient norms. To reduce privacy cost in iterative DP algo-
rithms, it is natural to consider applying adaptive optimizers (e.g., AdaGrad [78, 207],
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RMSProp [117], AMSGrad [237], and Yogi [318]) to speed up convergence. Our work
is related to this line of work that aims to develop and analyze differentially private
variants of common adaptive optimizers (e.g., private AdaGrad, private Adam), which
mostly focus on estimating gradient statistics from noisy gradients [20, 229, 332]. How-
ever, estimating gradient moments in this way may yield preconditioners with too much
noise, resulting in adaptive methods that may not have meaningful improvements over
DP-SGD.

In Chapter 6, we propose two methods to handle this issue. The first one (named
AdaDPS) leverages side information (such as summary statistics or proxy data) to estimate
the preconditioner. Previous works differ from AdaDPS in the order of preconditioning
and privatization, the techniques used to approximate the gradient geometry, and the
convergence analysis (see Section 6.3 for details). In addition, without access to public
data, we propose DP2, using delayed preconditioners to reduce noise. We also note that
previous works have explored the high-level direction of delayed preconditioners, but
mainly as a compromise for computational considerations in non-private training [104].
In DP2, we instead show that staleness can be leveraged to improve privacy/utility
tradeoffs in private adaptive optimization.

In terms of privacy formulations, we consider classic sample-level DP in centralized
settings, and a variant of it—user-level DP—in distributed/federated environments. We
define both more formally below.

Definition 3 (Differential privacy [82]). A randomized algorithm M is pε, δq-differentially
private if for all neighbouring datasets D, D1 differing by one element, and every possible subset
of outputs O,

PrpMpDqPOqďeεPr
`

MpD1
qPO

˘

`δ.

Within DP, neighbouring datasets can be defined in different ways depending on the
application of interest. In this work, we also apply AdaDPS to federated learning, where
differential privacy is commonly defined at the granularity of users/devices [144, 210],
as stated below.

Definition 4 (User-level DP for federated learning [210]). A randomized algorithm M is
pε, δq-differentially private if for all datasets U, U1 differing by one user, and every possible subset
of outputs O,

PrpMpUqPOqďeεPr
`

MpU1
qPO

˘

`δ.

2.6 Fair or Robust Learning Beyond FL

Our insights in the fair federated learning work [182] lead us to develop and analyze
a unified objective function—tilted empirical risk minimization (TERM)—to handle
fairness and robustness. TERM is parameterized by a constant t to control the impact
of individual losses. Our TERM work [184, 185] (Chapter 7) applies broadly to a range
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of ML applications, achieving competitive performance with state-of-the-art, problem-
specific approaches. Here we discuss related problem-specific works in machine learning
addressing deficiencies of ERM to achieve fairness or robustness and their connections
with TERM. We roughly group them into alternate aggregation schemes, alternate loss
functions, and sample re-weighting schemes.

Alternate Aggregation Schemes. A common alternative to the standard average loss
in empirical risk minimization is to consider a min-max objective, which aims to min-
imize the max-loss. Min-max objectives are commonplace in machine learning, and
have been used for a wide range of applications, such as ensuring fairness across sub-
groups [113, 161, 215, 247, 271, 281], enabling robustness under small perturbations [262],
or generalizing to unseen domains [285]. Our TERM objective can be viewed as a mini-
max smoothing [157, 227] with the added flexibility of a tunable t to allow the user to op-
timize utility for different quantiles of loss similar to superquantile approaches [160, 243],
directly trading off between robustness/fairness and utility for positive and negative
values of t. However, the TERM objective remains smooth (and efficiently solvable) for
moderate values of t, resulting in faster convergence even when the resulting solutions
are effectively the same as the min-max solution or other desired quantiles of the loss. In-
terestingly, Cohen et al. introduce Simnets [55, 56], with a similar exponential smoothing
operator, though for a differing purpose of achieving layer-wise operations between sum
and max in deep neural networks.

Alternate Loss Functions. Rather than modifying the way the losses are aggregated,
as in (smoothed) min-max or superquantile methods, it is also quite common to modify
the losses themselves. For example, in robust regression, it is common to consider losses
such as the L1 loss, Huber loss, or general M-estimators [119] as a way to mitigate the
effect of outliers [30]. Wang et al. [295] study a similar exponentially tilted loss for robust
regression and characterize the break down point, though it is limited to the squared loss
and only corresponds to TERM with tă0. Losses can also be modified to address outliers
by favoring small losses [314, 326] or gradient clipping [211]. Some works mitigate label
noise by explicitly modeling noise distributions into end-to-end training combined with
an additional noise model regularizer [135, 136]. On the other extreme, the largest losses
can be magnified to encourage focus on hard samples [182, 192, 296], which is a popular
approach for curriculum learning. Constraints could also be imposed to promote fairness
during the optimization procedure [13, 23, 58, 73, 111, 198, 231, 240, 315, 317]. A line of
work proposes α-loss, which is able to promote fairness or robustness for classification
tasks [278]. Ignoring the log portion of the objective, TERM can be viewed as an alternate
loss function exponentially shaping the loss to achieve both of these goals with a single
objective, i.e., magnifying hard examples with t ą 0 and suppressing outliers with
t ă 0. In addition, we show that TERM can even achieve both goals simultaneously with
hierarchical multi-objective optimization.
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Sample Re-Weighting Schemes. There exist approaches that implicitly modify the
underlying ERM objective by re-weighting the influence of the samples themselves.
These re-weighting schemes can be enforced in many ways. A simple and widely used
example is to subsample training points in different classes. Alternatively, one can
re-weight examples according to their loss function when using a stochastic optimizer,
which can be used to put more emphasis on “hard” or “unfair” examples [6, 128, 149, 166,
257]. Re-weighting can also be implicitly enforced via the inclusion of a regularization
parameter [5], loss clipping [306], or modelling crowd-worker qualities [152]. Such
an explicit re-weighting has been explored for other applications [e.g., 48, 96, 130, 192,
238, 258], though in contrast to these methods, TERM is applicable to a general class
of loss functions, with theoretical guarantees. TERM is equivalent to a dynamic re-
weighting of the samples based on the values of the objectives, which could be viewed as
a convexified version of loss clipping. We note that such view holds more generally for
all distributionally robust objectives [263]. We compare to several sample re-weighting
schemes empirically.
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Chapter 3

Accuracy: Federated Optimization in
Heterogeneous Networks

The first question we would like to ask in this thesis is: How does systems and statistical
heterogeneity affect optimization? How can we develop methods to ensure that federated
methods converge to the correct solution efficiently under heterogeneity? This chapter
presents a scalable and principled optimization framework to explore thesis questions,
leveraging a device similarity characterization.

3.1 Overview

Federated learning has emerged as an attractive paradigm for distributing training of
machine learning models in networks of remote devices. While there is a wealth of
work on distributed optimization in the context of machine learning, two key challenges
distinguish federated learning from traditional distributed optimization: high degrees of
systems and statistical heterogeneity1 [178, 208].

In an attempt to handle heterogeneity and tackle high communication costs, opti-
mization methods that allow for local updating and low participation are a popular
approach for federated learning [208, 264]. In particular, FedAvg [208] is an iterative
method that has emerged as the de facto optimization method in the federated setting.
At each iteration, FedAvg first locally performs E epochs of stochastic gradient descent
(SGD) on K devices—where E is a small constant and K is a small fraction of the total
devices in the network. The devices then communicate their model updates to a central
server, where they are averaged.

While FedAvg has demonstrated empirical success in heterogeneous settings, it does
not fully address the underlying challenges associated with heterogeneity. In the context
of systems heterogeneity, FedAvg does not allow participating devices to perform vari-

1Privacy is a third key challenge in the federated setting. While not the focus of this work, standard
privacy-preserving approaches such as differential privacy and secure multiparty communication can
naturally be combined with the methods proposed herein—particularly since our framework proposes
only lightweight algorithmic modifications to prior work.
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able amounts of local work based on their underlying systems constraints; instead it is
common to simply drop devices that fail to compute E epochs within a specified time
window [36]. From a statistical perspective, FedAvg has been shown to diverge empiri-
cally in settings where the data is non-identically distributed across devices [e.g., 208, Sec
3]. Unfortunately, FedAvg is difficult to analyze theoretically in such realistic scenarios
and thus lacks convergence guarantees to characterize its behavior (see Section 2.1 for
additional details).

In this work, we propose FedProx, a federated optimization algorithm that addresses
the challenges of heterogeneity both theoretically and empirically. A key insight we
have in developing FedProx is that an interplay exists between systems and statistical
heterogeneity in federated learning. Indeed, both dropping stragglers (as in FedAvg)
or naively incorporating partial information from stragglers (as in FedProx with the
proximal term set to 0) implicitly increases statistical heterogeneity and can adversely
impact convergence behavior. To mitigate this issue, we propose adding a proximal
term to the objective that helps to improve the stability of the method. This term
provides a principled way for the server to account for heterogeneity associated with
partial information. Theoretically, these modifications allow us to provide convergence
guarantees for our method and to analyze the effect of heterogeneity. Empirically,
we demonstrate that the modifications improve the stability and overall accuracy of
federated learning in heterogeneous networks—improving the absolute testing accuracy
by 22% on average in highly heterogeneous settings.

We present our proposed framework, FedProx, in Section 3.2, and derive convergence
guarantees for the framework accounting for both statistical and systems heterogeneity
in Section 3.3. Finally, in Section 3.4, we provide a thorough empirical evaluation of
FedProx on a suite of synthetic and real-world federated datasets. Our empirical results
help to illustrate and validate our theoretical analysis, and demonstrate the practical
improvements of FedProx over FedAvg in heterogeneous networks.

3.2 Federated Optimization: Methods

In this section, we introduce the key ingredients behind recent methods for federated
learning, including FedAvg, and then outline our proposed framework, FedProx.

Federated learning methods [e.g., 208, 264] are designed to handle multiple devices
collecting data and a central server coordinating the global learning objective across the
network. In particular, as mentioned in Chapter 1, the aim is to minimize:

min
w

f pwq “

N
ÿ

k“1

pkFkpwq “ EkrFkpwqs, (3.1)

where N is the number of devices, pk ě 0, and
ř

k pk=1. In general, the local objec-
tives measure the local empirical risk over possibly differing data distributions Dk, i.e.,
Fkpwq :“ Exk„Dkr fkpw; xkqs, with nk samples available at each device k. Hence, we can
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set pk=nk
n , where n=

ř

k nk is the total number of data points. In this work, we consider
Fkpwq to be possibly non-convex.

To reduce communication, a common technique in federated optimization is that on
each device, a local objective function based on the device’s data is used as a surrogate
for the global objective function. At each outer iteration, a subset of the devices are
selected and local solvers are used to optimize the local objective functions on each of
the selected devices. The devices then communicate their local model updates to the
central server, which aggregates them and updates the global model accordingly. The
key to allowing flexible performance in this scenario is that each of the local objectives
can be solved inexactly. This allows the amount of local computation vs. communication
to be tuned based on the number of local iterations that are performed (with additional
local iterations corresponding to more exact local solutions). We introduce this notion
formally below, as it will be utilized throughout the chapter.

Definition 5 (γ-inexact solution). For a function hpw; w0q “ Fpwq `
µ
2 }w ´ w0}2, and γ P

r0, 1s, we say w˚ is a γ-inexact solution of minw hpw; w0q if }∇hpw˚; w0q} ď γ}∇hpw0; w0q},
where ∇hpw; w0q “ ∇Fpwq ` µpw ´ w0q. Note that a smaller γ corresponds to higher accuracy.

We use γ-inexactness in our analysis (Section 3.3) to measure the amount of local
computation from the local solver at each round. As discussed earlier, different devices
are likely to make different progress towards solving the local subproblems due to
variable systems conditions, and it is therefore important to allow γ to vary both by
device and by iteration. This is one of the motivations for our proposed framework
discussed in the next sections. For ease of notation, we first derive our main convergence
results assuming a uniform γ as defined here (Section 3.3), and then provide results with
variable γ’s in Corollary 2.

3.2.1 Federated Averaging (FedAvg)

In Federated Averaging (FedAvg) [208], the local surrogate of the global objective function
at device k is Fk p¨q, and the local solver is stochastic gradient descent (SGD), with the
same learning rate and number of local epochs used on each device. At each round,
a subset K ! N of the total devices are selected and run SGD locally for E number of
epochs, and then the resulting model updates are averaged. The details of FedAvg are
summarized in Algorithm 1.

McMahan et al. [208] show empirically that it is crucial to tune the optimization
hyperparameters of FedAvg properly. In particular, the number of local epochs in FedAvg
plays an important role in convergence. On one hand, performing more local epochs
allows for more local computation and potentially reduced communication, which can
greatly improve the overall convergence speed in communication-constrained networks.
On the other hand, with dissimilar (heterogeneous) local objectives Fk, a larger number
of local epochs may lead each device towards the optima of its local objective as opposed
to the global objective—potentially hurting convergence or even causing the method to
diverge. Further, in federated networks with heterogeneous systems resources, setting
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Algorithm 1 Federated Averaging (FedAvg)

1: Input: K, T, η, E, w0, N, pk, k “ 1, ¨ ¨ ¨ , N
2: for t “ 0, ¨ ¨ ¨ , T ´ 1 do
3: Server selects a subset St of K devices at random (each device k is chosen with

probability pk)
4: Server sends wt to all chosen devices
5: Each device k P St updates wt for E epochs of SGD on Fk with step-size η to obtain

wt`1
k

6: Each device k P St sends wt`1
k back to the server

7: Server aggregates the w’s as wt`1 “ 1
K
ř

kPSt
wt`1

k
8: end for

the number of local epochs to be high may increase the risk that devices do not com-
plete training within a given communication round and must therefore drop out of the
procedure [36].

In practice, it is therefore important to find a way to set the local epochs to be high (to
reduce communication) while also allowing for robust convergence. More fundamentally,
we note that the ‘best’ setting for the number of local epochs is likely to change at each
iteration and on each device—as a function of both the local data and available systems
resources. Indeed, a more natural approach than mandating a fixed number of local
epochs is to allow the epochs to vary according to the characteristics of the network,
and to carefully merge solutions by accounting for this heterogeneity. We formalize this
strategy in FedProx, introduced below.

3.2.2 Proposed Framework: FedProx

Our proposed framework, FedProx (Algorithm 2), is similar to FedAvg in that a subset of
devices are selected at each round, local updates are performed, and these updates are
then averaged to form a global update. However, FedProx makes the following simple
yet critical modifications, which result in significant empirical improvements and also
allow us to provide convergence guarantees for the method.

Tolerating Partial Work. As previously discussed, different devices in federated net-
works often have different resource constraints in terms of the computing hardware,
network connections, and battery levels. Therefore, it is unrealistic to force each device to
perform a uniform amount of work (i.e., running the same number of local epochs, E), as
in FedAvg. In FedProx, we generalize FedAvg by allowing for variable amounts of work to
be performed locally across devices based on their available systems resources, and then
aggregate the partial solutions sent from the stragglers (as compared to dropping these
devices). In other words, instead of assuming a uniform γ for all devices throughout the
training process, FedProx implicitly accommodates variable γ’s for different devices and
at different iterations. We formally define γt

k-inexactness for device k at iteration t below,
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which is a natural extension from Definition 5.

Definition 6 (γt
k-inexact solution). For a function hkpw; wtq “ Fkpwq `

µ
2 }w ´ wt}

2, and γ P

r0, 1s, we say w˚ is a γt
k-inexact solution of minw hkpw; wtq if }∇hkpw˚; wtq} ď γt

k}∇hkpwt; wtq},
where ∇hkpw; wtq “ ∇Fkpwq ` µpw ´ wtq. Note that a smaller γt

k corresponds to higher accu-
racy.

Analogous to Definition 5, γt
k measures how much local computation is performed to

solve the local subproblem on device k at the t-th round. The variable number of local
iterations can be viewed as a proxy of γt

k. Utilizing the more flexible γt
k-inexactness, we

can readily extend the convergence results under Definition 5 (Theorem 1) to consider
issues related to systems heterogeneity such as stragglers (see Corollary 2).

Proximal Term. As mentioned in Section 3.2.1, while tolerating nonuniform amounts
of work to be performed across devices can help alleviate negative impacts of systems
heterogeneity, too many local updates may still (potentially) cause the methods to diverge
due to the underlying heterogeneous data. We propose to add a proximal term to the
local subproblem to effectively limit the impact of variable local updates. In particular,
instead of just minimizing the local function Fkp¨q, device k uses its local solver of choice
to approximately minimize the following objective hk:

min
w

hkpw; wt
q “ Fkpwq `

µ

2
}w ´ wt

}
2 . (3.2)

The proximal term is beneficial in two aspects: (1) It addresses the issue of statistical
heterogeneity by restricting the local updates to be closer to the initial (global) model
without any need to manually set the number of local epochs. (2) It allows for safely
incorporating variable amounts of local work resulting from systems heterogeneity. We
summarize the steps of FedProx in Algorithm 2.

Algorithm 2 FedProx (Proposed Framework)

1: Input: K, T, µ, γ, w0, N, pk, k “ 1, ¨ ¨ ¨ , N
2: for t “ 0, ¨ ¨ ¨ , T ´ 1 do
3: Server selects a subset St of K devices at random (each device k is chosen with

probability pk)
4: Server sends wt to all chosen devices
5: Each chosen device k P St finds a wt`1

k which is a γt
k-inexact minimizer of: wt`1

k «

arg minw hkpw; wtq “ Fkpwq `
µ
2 }w ´ wt}2

6: Each device k P St sends wt`1
k back to the server

7: Server aggregates the w’s as wt`1 “ 1
K
ř

kPSt
wt`1

k
8: end for

We note that proximal terms such as the one above are a popular tool utilized through-
out the optimization literature; for completeness, we provide a more detailed discussion
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on this in Appendix 3.6. An important distinction of the proposed usage is that we
suggest, explore, and analyze such a term for the purpose of tackling heterogeneity in
federated networks. Our analysis (Section 3.3) is also unique in considering solving such
an objective in a distributed setting with: (1) non-IID partitioned data, (2) the use of any
local solver, (3) variable inexact updates across devices, and (4) a subset of devices being
active at each round. These assumptions are critical to providing a characterization of
such a framework in realistic federated scenarios.

In our experiments (Section 3.4), we demonstrate that tolerating partial work is
beneficial in the presence of systems heterogeneity and our modified local subproblem
in FedProx results in more robust and stable convergence compared to vanilla FedAvg
for heterogeneous datasets. In Section 3.3, we also see that the usage of the proximal
term makes FedProx more amenable to theoretical analysis (i.e., the local objective may
be more well-behaved). In particular, if µ is chosen accordingly, the Hessian of hk may be
positive semi-definite. Hence, when Fk is non-convex, hk will be convex, and when Fk is
convex, it becomes µ-strongly convex.

Finally, we note that since FedProx makes only lightweight modifications to FedAvg,
this allows us to reason about the behavior of the widely-used FedAvg method, and
enables easy integration of FedProx into existing packages/systems, such as TensorFlow
Federated and LEAF [1, 43]. In particular, we note that FedAvg is a special case of FedProx
with (1) µ “ 0, (2) the local solver specifically chosen to be SGD, and (3) a constant γ
(corresponding to the number of local epochs) across devices and updating rounds (i.e.,
no notion of systems heterogeneity). FedProx is in fact much more general in this regard,
as it allows for partial work to be performed across devices and any local (possibly
non-iterative) solver to be used on each device.

3.3 FedProx: Convergence Analysis

FedAvg and FedProx are stochastic algorithms by nature: in each round, only a fraction
of the devices are sampled to perform the update, and the updates performed on each
device may be inexact. It is well known that in order for stochastic methods to converge
to a stationary point, a decreasing step-size is required. This is in contrast to non-
stochastic methods, e.g., gradient descent, that can find a stationary point by employing
a constant step-size. In order to analyze the convergence behavior of methods with
constant step-size (as is usually implemented in practice), we need to quantify the
degree of dissimilarity among the local objective functions. This could be achieved by
assuming the data to be IID, i.e., homogeneous across devices. Unfortunately, in realistic
federated networks, this assumption is impractical. Thus, we first propose a metric that
specifically measures the dissimilarity among local functions (Section 3.3.1), and then
analyze FedProx under this assumption while allowing for variable γ’s (Section 3.3.2).
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3.3.1 Local Dissimilarity

Here we introduce a measure of dissimilarity between the devices in a federated network,
which is sufficient to prove convergence. This can also be satisfied via a simpler and
more restrictive bounded variance assumption of the gradients, which we explore in our
experiments in Section 3.4. Interestingly, similar assumptions [e.g., 250, 283, 310] have
been explored elsewhere but for differing purposes; we provide a discussion of these
works in Appendix 3.6.

Definition 7 (B-local dissimilarity). The local functions Fk are B-locally dissimilar at w if

Ek
“

}∇Fkpwq}2‰ď}∇ f pwq}2B2. We further define Bpwq“

c

Ekr}∇Fkpwq}2s
}∇ f pwq}2 for2 }∇ f pwq}‰0.

Here Ekr¨s denotes the expectation over devices with masses pk “ nk{n and
řN

k“1 pk “

1 (as in Equation 3.1). Definition 7 can be seen as a generalization of the IID assumption
with bounded dissimilarity, while allowing for statistical heterogeneity. As a sanity
check, when all the local functions are the same, we have Bpwq “ 1 for all w. However,
in the federated setting, the data distributions are often heterogeneous and B ą 1 due to
sampling discrepancies even if the samples are assumed to be IID. Let us also consider
the case where Fk p¨q’s are associated with empirical risk objectives. If the samples on all
the devices are homogeneous, i.e., they are sampled in an IID fashion, then as mink nk
Ñ 8, it follows that Bpwq Ñ 1 for every w as all the local functions converge to the same
expected risk function in the large sample limit. Thus, Bpwq ě 1 and the larger the value
of Bpwq, the larger is the dissimilarity among the local functions.

Using Definition 7, we now state our formal dissimilarity assumption, which we
use in our convergence analysis. This simply requires that the dissimilarity defined in
Definition 7 is bounded. As discussed later, our convergence rate is a function of the
statistical heterogeneity/device dissimilarity in the network.

Assumption 1 (Bounded dissimilarity). For some ϵ ą 0, there exists a Bϵ such that for all the
points w P S c

ϵ “ tw | }∇ f pwq}2 ą ϵu, Bpwq ď Bϵ.

For most practical machine learning problems, there is no need to solve the problem
to highly accurate stationary solutions, i.e., ϵ is typically not very small. Indeed, it is well-
known that solving the problem beyond some threshold may even hurt generalization
performance due to overfitting [307]. Although in practical federated learning problems
the samples are not IID, they are still sampled from distributions that are not entirely
unrelated (if this were the case, e.g., fitting a single global model w across devices
would be ill-advised). Thus, it is reasonable to assume that the dissimilarity between
local functions remains bounded throughout the training process. We also measure
the dissimilarity metric empirically on real and synthetic datasets in Section 3.4.3.4 and
show that this metric captures real-world statistical heterogeneity and is correlated with
practical performance (the smaller the dissimilarity, the better the convergence).

2As an exception we define Bpwq “ 1 when Ek
“

}∇Fkpwq}2‰ “ }∇ f pwq}2, i.e. w is a stationary solution
that all the local functions Fk agree on.
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3.3.2 FedProx Analysis

Using the bounded dissimilarity assumption (Assumption 1), we now analyze the
amount of expected decrease in the objective when one step of FedProx is performed.
Our convergence rate (Theorem 2) can be directly derived from the results of the expected
decrease per updating round. We assume the same γt

k for any k, t for ease of notation in
the following analyses.

Theorem 1 (Non-convex FedProx convergence: B-local dissimilarity). Let Assumption 1
hold. Assume the functions Fk are non-convex, L-Lipschitz smooth, and there exists L´ ą 0,
such that ∇2Fk ľ ´L´I, with µ̄ :“ µ ´ L´ ą 0. Suppose that wt is not a stationary solution
and the local functions Fk are B-dissimilar, i.e. Bpwtq ď B. If µ, K, and γ in Algorithm 2 are
chosen such that

ρ“

ˆ

1
µ

´
γB
µ

´
Bp1`γq

?
2

µ̄
?

K
´

LBp1`γq

µ̄µ
´

Lp1`γq2B2

2µ̄2 ´
LB2p1`γq2

µ̄2K

ˆ

2
?

2K`2
˙˙

ą0,

then at iteration t of Algorithm 2, we have the following expected decrease in the global objective:

ESt

”

f pwt`1
q

ı

ď f pwt
q´ρ}∇ f pwt

q}
2,

where St is the set of K devices chosen at iteration t.

We direct the reader to Appendix 3.5.1 for a detailed proof. The key steps include
applying our notion of γ-inexactness (Definition 5) for each subproblem and using the
bounded dissimilarity assumption, while allowing for only K devices to be active at
each round. This last step in particular introduces ESt , an expectation with respect to
the choice of devices, St, in round t. We note that in our theory, we require µ̄ ą 0, which
is a sufficient but not necessary condition for FedProx to converge. Hence, it is possible
that some other µ (not necessarily satisfying µ̄ ą 0) can also enable convergence, as we
explore empirically (Section 3.4).

Theorem 1 uses the dissimilarity in Definition 7 to identify sufficient decrease of
the objective value at each iteration for FedProx. In Appendix 3.5.2, we provide a
corollary characterizing the performance with a more common (though slightly more
restrictive) bounded variance assumption. This assumption is commonly employed, e.g.,
when analyzing methods such as SGD. We next provide sufficient (but not necessary)
conditions that ensure ρ ą 0 in Theorem 1 such that sufficient decrease is attainable after
each round.

Remark 1. For ρ in Theorem 1 to be positive, we need γB ă 1 and B?
K

ă 1. These conditions
help to quantify the tradeoff between dissimilarity (B) and the algorithm parameters (γ, K).

Finally, we can use the above sufficient decrease to the characterize the rate of conver-
gence to the set of approximate stationary solutions Ss “ tw | E

“

}∇ f pwq}2‰ ď ϵu under
the bounded dissimilarity assumption, Assumption 1. Note that these results hold for
general non-convex Fkp¨q.
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Theorem 2 (Convergence rate: FedProx). Given some ϵ ą 0, assume that for B ě Bϵ, µ, γ,
and K the assumptions of Theorem 1 hold at each iteration of FedProx. Moreover, f pw0q ´ f ˚ “

∆. Then, after T “ Op ∆
ρϵ q iterations of FedProx, we have 1

T
řT´1

t“0 E
“

}∇ f pwtq}2‰ ď ϵ.

While the results thus far hold for non-convex Fkp¨q, we can also characterize the
convergence for the special case of convex loss functions with exact minimization in
terms of local objectives (Corollary 1). A proof is provided in Appendix 3.5.3.

Corollary 1 (Convergence: Convex case). Let the assertions of Theorem 1 hold. In addition,
let Fk p¨q’s be convex and γt

k “ 0 for any k, t, i.e., all the local problems are solved exactly, if
1 ! B ď 0.5

?
K, then we can choose µ « 6LB2 from which it follows that ρ « 1

24LB2 .

Note that small ϵ in Assumption 1 translates to larger Bϵ. In order to solve the
problem with increasingly higher accuracies using FedProx, one needs to increase µ
appropriately. We empirically verify that µ ą 0 leads to more stable convergence in
Section 3.4.3. Moreover, in Corollary 1, if we plug in the upper bound for Bϵ, under a
bounded variance assumption, the number of required steps to achieve accuracy ϵ is
Op L∆

ϵ ` L∆σ2

ϵ2 q. Our analysis helps to characterize the performance of FedProx and similar
methods when local functions are dissimilar.

Remark 2 (Comparison with SGD). We note that FedProx achieves the same asymptotic
convergence guarantee as SGD: Under the bounded variance assumption, for small ϵ, if we replace
Bϵ with its upper-bound in Corollary 3 and choose µ large enough, the iteration complexity of
FedProx when the subproblems are solved exactly and Fkp¨q’s are convex is Op L∆

ϵ ` L∆σ2

ϵ2 q, the
same as SGD [98].

To provide context for the rate in Theorem 2, we compare it with SGD in the convex
case in Remark 2. In general, our analysis of FedProx does not yield convergence rates
that improve upon classical distributed SGD (without local updating)—even though
FedProx possibly performs more work locally at each communication round. In fact,
when data are generated in a non-identically distributed fashion, it is possible for local
updating schemes such as FedProx to perform worse than distributed SGD. Therefore,
our theoretical results do not necessarily demonstrate the superiority of FedProx over
distributed SGD; rather, they provide sufficient (but not necessary) conditions for FedProx
to converge. Our analysis is the first we are aware of to analyze any federated (i.e.,
with local-updating schemes and low device participation) optimization method for
Problem (3.1) in heterogeneous settings.

Finally, we note that the previous analyses assume no systems heterogeneity and use
the same γ for all devices and iterations. However, we can extend them to allow for γ to
vary by device and by iteration (as in Definition 6), which corresponds to allowing devices
to perform variable amounts of work as determined by the local systems conditions. We
provide convergence results with variable γ’s below.

Corollary 2 (Convergence: Variable γ’s). Assume the functions Fk are non-convex, L-Lipschitz
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smooth, and there exists L´ ą 0, such that ∇2Fk ľ ´L´I, with µ̄ :“ µ ´ L´ ą 0. Suppose that
wt is not a stationary solution and the local functions Fk are B-dissimilar, i.e. Bpwtq ď B. If µ, K,
and γt

k in Algorithm 2 are chosen such that

ρt
“

ˆ

1
µ

´
γtB
µ

´
Bp1`γtq

?
2

µ̄
?

K
´

LBp1`γtq

µ̄µ
´

Lp1`γtq2B2

2µ̄2 ´
LB2p1`γtq2

µ̄2K

ˆ

2
?

2K`2
˙˙

ą0,

then at iteration t of Algorithm 2, we have the following expected decrease in the global objective:

ESt

”

f pwt`1
q

ı

ď f pwt
q´ρt

}∇ f pwt
q}

2,

where St is the set of K devices chosen at iteration t and γt“maxkPSt γt
k.

The proof can be easily extended from the proof for Theorem 1 , noting the fact that
Ekrp1 ` γt

kq}∇Fkpwtq}s ď p1 ` maxkPSt γt
kqEkr}∇Fkpwtq}s.

3.4 Experiments

We now present empirical results for the generalized FedProx framework. In Section 3.4.2,
we demonstrate the improved performance of FedProx tolerating partial solutions in the
face of systems heterogeneity. In Section 3.4.3, we show the effectiveness of FedProx in
the settings with statistical heterogeneity (regardless of systems heterogeneity). We also
study the effects of statistical heterogeneity on convergence (Section 3.4.3.1) and show
how empirical convergence is related to our theoretical bounded dissimilarity assump-
tion (Assumption 1) (Section 3.4.3.4). We provide thorough details of the experimental
setup in Section 3.4.1 and Appendix 3.7. All code, data, and experiments are publicly
available at: github.com/litian96/FedProx.

3.4.1 Experimental Details

We evaluate FedProx on diverse tasks, models, and real-world federated datasets. In
order to better characterize statistical heterogeneity and study its effect on convergence,
we also evaluate on a set of synthetic data, which allows for more precise manipulation
of statistical heterogeneity. We simulate systems heterogeneity by assigning different
amounts of local work to different devices.

Synthetic Data. To generate synthetic data, we follow a similar setup to that in Shamir
et al. [253], additionally imposing heterogeneity among devices. In particular, for each
device k, we generate samples pXk, Ykq according to the model y “ argmax(softmaxpWx `

bqq, x P R60, W P R10ˆ60, b P R10. We model Wk „ N puk, 1q, bk „ N puk, 1q, uk „ N p0, αq;
xk „ N pvk, Σq, where the covariance matrix Σ is diagonal with Σj,j “ j´1.2. Each element
in the mean vector vk is drawn from N pBk, 1q, Bk „ Np0, βq. Therefore, α controls how
much local models differ from each other and β controls how much the local data at each
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device differs from that of other devices. We vary α, β to generate three heterogeneous
distributed datasets, denoted Synthetic (α, β), as shown in Figure 3.2. We also generate
one IID dataset by setting the same W, b on all devices and setting Xk to follow the
same distribution. Our goal is to learn a global W and b. Full details are given in
Appendix 3.7.1.

Real Data. We also explore four real datasets; statistics are summarized in Table 3.1.
These datasets are curated from prior work in federated learning as well as recent
federated learning benchmarks [43, 208]. We study a convex classification problem with
MNIST [165] using multinomial logistic regression. To impose statistical heterogeneity,
we distribute the data among 1,000 devices such that each device has samples of only
two digits and the number of samples per device follows a power law. We then study a
more complex 62-class Federated Extended MNIST [43, 54] (FEMNIST) dataset using the
same model. For the non-convex setting, we consider a text sentiment analysis task on
tweets from Sentiment140 (Go et al., 2009) (Sent140) with an LSTM classifier, where each
twitter account corresponds to a device. We also investigate the task of next-character
prediction on the dataset of The Complete Works of William Shakespeare [208] (Shakespeare).
Each speaking role in the plays is associated with a different device. Details of datasets,
models, and workloads are provided in Appendix 3.7.1.

Table 3.1: Statistics of four real federated datasets.

Dataset Devices Samples Samples/device

mean stdev
MNIST 1,000 69,035 69 106
FEMNIST 200 18,345 92 159
Shakespeare 143 517,106 3,616 6,808
Sent140 772 40,783 53 32

Implementation. We implement FedAvg (Algorithm 1) and FedProx (Algorithm 2) in
Tensorflow [3]. In order to draw a fair comparison with FedAvg, we employ SGD as a
local solver for FedProx, and adopt a slightly different device sampling scheme than
that in Algorithms 1 and 2: sampling devices uniformly and then averaging the updates
with weights proportional to the number of local data points (as originally proposed
in McMahan et al. [208]). While this sampling scheme is not supported by our analysis,
we observe similar relative behavior of FedProx vs. FedAvg whether or not it is employed.
Interestingly, we also observe that the sampling scheme proposed herein in fact results
in more stable performance for both methods (see Appendix 3.7.3.4, Figure 3.12). This
suggests an additional benefit of the proposed framework. Full details are provided in
Appendix 3.7.2.
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Hyperparameters & Evaluation Metrics. For each dataset, we tune the learning rate
on FedAvg (with E=1 and without systems heterogeneity) and use the same learning rate
for all experiments on that dataset. We set the number of selected devices to be 10 for all
experiments on all datasets.

For each comparison, we fix the randomly selected devices, the stragglers, and
mini-batch orders across all runs. We report all metrics based on the global objective
f pwq. Note that in our simulations (see Section 3.4.2 for details), we assume that each
communication round corresponds to a specific aggregation time stamp (measured in
real-world global wall-clock time)—we therefore report results in terms of rounds rather
than FLOPs or wall-clock time.

3.4.2 Systems Heterogeneity: Tolerating Partial Work

In order to measure the effect of allowing for partial solutions to be sent to handle
systems heterogeneity with FedProx, we simulate federated settings with varying system
heterogeneity, as described below.

Systems Heterogeneity Simulations. We assume that there exists a global clock during
training, and each participating device determines the amount of local work as a function
of this clock cycle and its systems constraints. This specified amount of local computation
corresponds to some implicit value γt

k for device k at the t-th iteration. In our simulations,
we fix a global number of epochs E, and force some devices to perform fewer updates than
E epochs given their current systems constraints. In particular, for varying heterogeneous
settings, at each round, we assign x number of epochs (chosen uniformly at random
between [1, E]) to 0%, 50%, and 90% of the selected devices, respectively. Settings
where 0% devices perform fewer than E epochs of work correspond to the environments
without systems heterogeneity, while 90% of the devices sending their partial solutions
corresponds to highly heterogeneous environments. FedAvg will simply drop these
0%, 50%, and 90% stragglers upon reaching the global clock cycle, and FedProx will
incorporate the partial updates from these devices.

In Figure 3.1, we set E to be 20 and study the effects of aggregating partial work from
the otherwise dropped devices. The synthetic dataset here is taken from Synthetic (1,1) in
Figure 3.2. We see that on all the datasets, systems heterogeneity has negative effects on
convergence, and larger heterogeneity results in worse convergence (FedAvg). Compared
with dropping the more constrained devices (FedAvg), incorporating variable amounts
of work (FedProx, µ “ 0) is beneficial and leads to more stable and faster convergence.
We also observe that setting µ ą 0 in FedProx can further improve convergence, as we
discuss in Section 3.4.3.

We additionally investigate two less heterogeneous settings. First, we limit the
capability of all the devices by setting E to be 1 (i.e., all the devices run at most one
local epoch), and impose systems heterogeneity in a similar way. Even in these settings,
allowing for partial work can improve convergence compared with FedAvg. Second, we
explore a setting without any statistical heterogeneity using an identically distributed
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Figure 3.1: FedProx results in significant convergence improvements relative to FedAvg in
heterogeneous networks. We simulate different levels of systems heterogeneity by forcing
0%, 50%, and 90% devices to be the stragglers (dropped by FedAvg). (1) Comparing
FedAvg and FedProx (µ “ 0), we see that allowing for variable amounts of work to be
performed can help convergence in the presence of systems heterogeneity. (2) Comparing
FedProx (µ “ 0) with FedProx (µ ą 0), we show the benefits of our added proximal term.
FedProx with µ ą 0 leads to more stable convergence and enables otherwise divergent
methods to converge, both in the presence of systems heterogeneity (50% and 90%
stragglers) and without systems heterogeneity (0% stragglers). Note that FedProx with
µ “ 0 and without systems heterogeneity (no stragglers) corresponds to FedAvg. We also
report testing accuracy in Figure 3.7, Appendix 3.7.3.2, and show that FedProx improves
the test accuracy on all datasets.

synthetic dataset (Synthetic IID). In this IID setting, as shown in Figure 3.5 in Appendix
3.7.3.2, FedAvg is rather robust under device failure, and tolerating variable amounts of
local work may not cause major improvement. This serves as an additional motivation
to rigorously study the effect of statistical heterogeneity on new methods designed for
federated learning, as simply relying on IID data (a setting unlikely to occur in practice)
may not tell a complete story.

3.4.3 Statistical Heterogeneity: Proximal Term

To better understand how the proximal term can be beneficial in heterogeneous settings,
we first show convergence can become worse as statistical heterogeneity increases.

3.4.3.1 Effects of Statistical Heterogeneity

In Figure 3.2 (the first row), we study how statistical heterogeneity affects convergence
using four synthetic datasets without the presence of systems heterogeneity (fixing E to
be 20). From left to right, as data become more heterogeneous, convergence becomes
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Figure 3.2: Effect of data heterogeneity on convergence. We remove the effects of systems
heterogeneity by forcing each device to run the same amount of epochs. In this setting,
FedProx with µ “ 0 reduces to FedAvg. (1) Top row: We show training loss (see results on
testing accuracy in Appendix 3.7.3, Figure 3.6) on four synthetic datasets whose statistical
heterogeneity increases from left to right. Note that the method with µ “ 0 corresponds to
FedAvg. Increasing heterogeneity leads to worse convergence, but setting µ ą 0 can help
to combat this. (2) Bottom row: We show the corresponding dissimilarity measurement
(variance of gradients) of the four synthetic datasets. This metric captures statistical
heterogeneity and is consistent with training loss—smaller dissimilarity indicates better
convergence.

worse for FedProx with µ “ 0 (i.e., FedAvg). Though it may slow convergence for IID data,
we see that setting µ ą 0 is particularly useful in heterogeneous settings. This indicates
that the modified subproblem introduced in FedProx can benefit practical federated
settings with varying statistical heterogeneity. For perfectly IID data, some heuristics
such as decreasing µ if the loss continues to decrease may help avoid the deceleration
of convergence (see Figure 3.11 in Appendix 3.7.3.3). In the sections to follow, we see
similar results in our non-synthetic experiments.

3.4.3.2 Effects of µ ą 0

The key parameters of FedProx that affect performance are the amount of local work (as
parameterized by the number of local epochs, E), and the proximal term scaled by µ.
Intuitively, large E may cause local models to drift too far away from the initial starting
point, thus leading to potential divergence [208]. Therefore, to handle the divergence or
instability of FedAvg with non-IID data, it is helpful to tune E carefully. However, E is
constrained by the underlying system’s environments on the devices, and it is difficult
to determine an appropriate uniform E for all devices. Alternatively, it is beneficial to
allow for device-specific E’s (variable γ’s) and tune a best µ (a parameter that can be
viewed as a re-parameterization of E) to prevent divergence and improve the stability of
methods. A proper µ can restrict the trajectory of the iterates by constraining the iterates
to be closer to that of the global model, thus incorporating variable amounts of updates
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Figure 3.3: Effectiveness of setting µ adaptively based on the current model performance.
We increase µ by 0.1 whenever the loss increases and decreases it by 0.1 whenever the
loss decreases for 5 consecutive rounds. We initialize µ to 1 for Synthetic IID (in order
to be adversarial to our methods), and initialize µ to 0 for Synthetic (1,1). This simple
heuristic works well empirically.

and guaranteeing convergence (Theorem 2).
We show the effects of the proximal term in FedProx (µ ą 0) in Figure 3.1. For each

experiment, we compare the results between FedProx with µ “ 0 and FedProx with a best
µ (see the next paragraph for discussions on how to select µ). For all datasets, we observe
that the appropriate µ can increase the stability for unstable methods and can force
divergent methods to converge. This holds both when there is systems heterogeneity
(50% and 90% stragglers) and there is no systems heterogeneity (0% stragglers). µ ą 0
also increases the accuracy in most cases (see Figure 3.6 and Figure 3.7 in Appendix
3.7.3.2). In particular, FedProx improves absolute testing accuracy relative to FedAvg by
22% on average in highly heterogeneous environments (90% stragglers).

3.4.3.3 Choosing µ.

One natural question is to determine how to set the penalty constant µ in the proximal
term. A large µ may potentially slow the convergence by forcing the updates to be close
to the starting point, while a small µ may not make any difference. In all experiments, we
tune the best µ from the limited candidate set t0.001, 0.01, 0.1, 1u. For the five federated
datasets in Figure 3.1, the best µ values are 1, 1, 1, 0.001, and 0.01, respectively. While
automatically tuning µ is difficult to instantiate directly from our theoretical results, in
practice, we note that µ can be adaptively chosen based on the current performance of the
model. For example, one simple heuristic is to increase µ when seeing the loss increasing
and decreasing µ when seeing the loss decreasing. In Figure 3.3, we demonstrate the
effectiveness of this heuristic using two synthetic datasets. Note that we start from
initial µ values that are adversarial to our methods. We provide full results showing the
competitive performance of this approach in Appendix 3.7.3.3. Future work includes
developing methods to automatically tune this parameter for heterogeneous datasets,
based, e.g., on the theoretical groundwork provided here.
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3.4.3.4 Dissimilarity Measurement and Divergence

Finally, in Figure 3.2 (the bottom row), we demonstrate that our B-local dissimilarity
measurement in Definition 7 captures the heterogeneity of datasets and is therefore an
appropriate proxy of performance. In particular, we track the variance of gradients on
each device, Ekr}∇Fkpwq ´ ∇ f pwq}2s, which is lower bounded by Bϵ. Empirically, we
observe that increasing µ leads to smaller dissimilarity among local functions Fk, and
that the dissimilarity metric is consistent with the training loss. Therefore, smaller dis-
similarity indicates better convergence, which can be enforced by setting µ appropriately.
We also show the dissimilarity metric on real federated data in Appendix 3.7.3.2.
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3.5 Complete Proofs

3.5.1 Proof of Theorem 1

Proof. Using our notion of γ-inexactness for each local solver (Definition 5), we can
define et`1

k such that:

∇Fkpwt`1
k q ` µpwt`1

k ´ wt
q ´ et`1

k “ 0,

}et`1
k } ď γ}∇Fkpwt

q} . (3.3)

Now let us define w̄t`1 “ Ek

”

wt`1
k

ı

. Based on this definition, we know

w̄t`1
´ wt

“
´1
µ

Ek

”

∇Fkpwt`1
k q

ı

`
1
µ

Ek

”

et`1
k

ı

. (3.4)

Let us define µ̄ “ µ ´ L´ ą 0 and ŵt`1
k “ arg minw hkpw; wtq. Then, due to the µ̄-strong

convexity of hk, we have

}ŵt`1
k ´ wt`1

k } ď
γ

µ̄
}∇Fkpwt

q}. (3.5)

Note that once again, due to the µ̄-strong convexity of hk, we know that }ŵt`1
k ´ wt} ď

1
µ̄}∇Fkpwtq}. Now we can use the triangle inequality to get

}wt`1
k ´ wt

} ď
1 ` γ

µ̄
}∇Fkpwt

q}. (3.6)

Therefore,

}w̄t`1
´ wt

} ď Ek

”

}wt`1
k ´ wt

}

ı

ď
1 ` γ

µ̄
Ek

“

}∇Fkpwt
q}
‰

ď
1 ` γ

µ̄

b

Ekr}∇Fkpwtq}2s ď
Bp1 ` γq

µ̄
}∇ f pwt

q}, (3.7)

where the last inequality is due to the bounded dissimilarity assumption.
Now let us define Mt`1 such that w̄t`1 ´ wt “ ´1

µ

`

∇ f pwtq ` Mt`1
˘

, i.e.,

Mt`1 “ Ek

”

∇Fkpwt`1
k q ´ ∇Fkpwt

q ´ et`1
k

ı

. (3.8)

We can bound }Mt`1}:

}Mt`1} ď Ek

”

L}wt`1
k ´ wt

k} ` }et`1
k }

ı

ď

˜

Lp1 ` γq

µ̄
` γ

¸

ˆ Ek
“

}∇Fkpwt
q}
‰

ď

˜

Lp1 ` γq

µ̄
` γ

¸

B}∇ f pwt
q} , (3.9)
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where the last inequality is also due to bounded dissimilarity assumption. Based on the
L-Lipschitz smoothness of f and Taylor expansion, we have

f pw̄t`1
q ď f pwt

q ` x∇ f pwt
q, w̄t`1

´ wt
y `

L
2

}w̄t`1
´ wt

}
2

ď f pwt
q ´

1
µ

}∇ f pwt
q}

2
´

1
µ

x∇ f pwt
q, Mt`1y `

Lp1 ` γq2B2

2µ̄2 }∇ f pwt
q}

2

ď f pwt
q ´

ˆ

1 ´ γB
µ

´
LBp1 ` γq

µ̄µ
´

Lp1 ` γq2B2

2µ̄2

˙

ˆ }∇ f pwt
q}

2. (3.10)

From the above inequality it follows that if we set the penalty parameter µ large enough,
we can get a decrease in the objective value of f pw̄t`1q ´ f pwtq which is proportional to
}∇ f pwtq}2. However, this is not the way that the algorithm works. In the algorithm, we
only use K devices that are chosen randomly to approximate w̄t. So, in order to find the
E
“

f pwt`1q
‰

, we use local Lipschitz continuity of the function f .

f pwt`1
q ď f pw̄t`1

q ` L0}wt`1
´ w̄t`1

}, (3.11)

where L0 is the local Lipschitz continuity constant of function f and we have

L0 ď }∇ f pwt
q} ` L maxp}w̄t`1

´ wt
}, }wt`1

´ wt
}q ď }∇ f pwt

q} ` Lp}w̄t`1
´ wt

} ` }wt`1
´ wt

}q.

Therefore, if we take expectation with respect to the choice of devices in round t we need
to bound

ESt

”

f pwt`1
q

ı

ď f pw̄t`1
q ` Qt, (3.12)

where Qt “ ESt

“

L0}wt`1 ´ w̄t`1}
‰

. Note that the expectation is taken over the random
choice of devices to update.

Qt ď ESt

„ˆ

}∇ f pwt
q} ` Lp}w̄t`1

´ wt
} ` }wt`1

´ wt
}q

˙

ˆ }wt`1
´ w̄t`1

}

ȷ

ď

ˆ

}∇ f pwt
q} ` L}w̄t`1

´ wt
}

˙

ESt

”

}wt`1
´ w̄t`1

}

ı

` LESt

”

}wt`1
´ wt

} ¨ }wt`1
´ w̄t`1

}

ı

ď

ˆ

}∇ f pwt
q} ` 2L}w̄t`1

´ wt
}

˙

ESt

”

}wt`1
´ w̄t`1

}

ı

` LESt

”

}wt`1
´ w̄t`1

}
2
ı

(3.13)

From (3.7), we have that }w̄t`1 ´ wt} ď
Bp1`γq

µ̄ }∇ f pwtq}. Moreover,

ESt

”

}wt`1
´ w̄t`1

}

ı

ď

b

ESt

“

}wt`1 ´ w̄t`1}2
‰

(3.14)

and

ESt

”

}wt`1
´ w̄t`1

}
2
ı

ď
1
K

Ek

”

}wt`1
k ´ w̄t`1

}
2
ı
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ď
2
K

Ek

”

}wt`1
k ´ wt

}
2
ı

, (as w̄t`1
“ Ek

”

wt`1
k

ı

)

ď
2
K

p1 ` γq2

µ̄2 Ek

”

}∇Fkpwt
q}

2
ı

(from (3.6))

ď
2B2

K
p1 ` γq2

µ̄2 }∇ f pwt
q}

2, (3.15)

where the first inequality is a result of K devices being chosen randomly to get wt and the
last inequality is due to bounded dissimilarity assumption. If we replace these bounds in
(3.13) we get

Qt ď

˜

Bp1 ` γq
?

2
µ̄

?
K

`
LB2p1 ` γq2

µ̄2K

ˆ

2
?

2K ` 2
˙

¸

}∇ f pwt
q}

2 (3.16)

Combining (3.10), (3.12), (3.11) and (3.16) and using the notation α “ 1
µ we get

ESt

”

f pwt`1
q

ı

ď f pwt
q ´

˜

1
µ

´
γB
µ

´
Bp1 ` γq

?
2

µ̄
?

K
´

LBp1 ` γq

µ̄µ

´
Lp1 ` γq2B2

2µ̄2 ´
LB2p1 ` γq2

µ̄2K

ˆ

2
?

2K ` 2
˙

¸

}∇ f pwt
q}

2.

3.5.2 Proof for Bounded Variance

Corollary 3 (Bounded variance equivalence). Let Assumption 1 hold. Then, in the case
of bounded variance, i.e., Ek

“

}∇Fkpwq ´ ∇ f pwq}2‰ ď σ2, for any ϵ ą 0 it follows that Bϵ ď
b

1 ` σ2

ϵ .

Proof. We have,

Ekr}∇Fkpwq ´ ∇ f pwq}
2
s “ Ekr}∇Fkpwq}

2
s ´ }∇ f pwq}

2
ď σ2

ñ Ekr}∇Fkpwq}
2
s ď σ2

` }∇ f pwq}
2

ñ Bϵ “

d

Ekr}∇Fkpwq}2s

}∇ f pwq}2 ď

c

1 `
σ2

ϵ
.

With Corollary 3 in place, we can restate the main result in Theorem 1 in terms of the
bounded variance assumption.

Theorem 3 (Non-convex FedProx convergence: Bounded variance). Let the assertions
of Theorem 1 hold. In addition, let the iterate wt be such that

›

›∇ f pwtq
›

›

2
ě ϵ, and let
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Ek
“

}∇Fkpwq ´ ∇ f pwq}2‰ ď σ2 hold instead of the dissimilarity condition. If µ, K and γ
in Algorithm 2 are chosen such that

ρ“

˜

1
µ

´

ˆ

γ

µ
`

p1`γq
?

2
µ̄

?
K

`
Lp1`γq

µ̄µ

˙

c

1`
σ2

ϵ
´

ˆ

Lp1`γq2

2µ̄2 `
Lp1`γq2

µ̄2K
p2

?
2K`2q

˙ˆ

1`
σ2

ϵ

˙˙

ą0,

then at iteration t of Algorithm 2, we have the following expected decrease in the global objective:

ESt

”

f pwt`1
q

ı

ď f pwt
q´ρ}∇ f pwt

q}
2,

where St is the set of K devices chosen at iteration t.

The proof of Theorem 3 follows from the proof of Theorem 1 by noting the relationship
between the bounded variance assumption and the dissimilarity assumption as portrayed
by Corollary 3.

3.5.3 Proof of Corollary 1

In the convex case, where L´ “ 0 and µ̄ “ µ, if γ “ 0, i.e., all subproblems are solved
accurately, we can get a decrease proportional to }∇ f pwtq}2 if B ă

?
K. In such a case if

we assume 1 ăă B ď 0.5
?

K, then we can write

ESt

”

f pwt`1
q

ı

Æ f pwt
q ´

1
2µ

}∇ f pwt
q}

2
`

3LB2

2µ2 }∇ f pwt
q}

2 . (3.17)

In this case, if we choose µ « 6LB2 we get

ESt

”

f pwt`1
q

ı

Æ f pwt
q ´

1
24LB2 }∇ f pwt

q}
2 . (3.18)

Note that the expectation in (3.18) is a conditional expectation conditioned on the previ-
ous iterate. Taking expectation of both sides, and telescoping, we have that the number
of iterations to at least generate one solution with squared norm of gradient less than ϵ is
Op LB2∆

ϵ q.

3.6 Connections to Other Single-Machine and Distributed
Methods

Two aspects of the proposed work—the proximal term in FedProx, and the bounded
dissimilarity assumption used in our analysis—have been previously studied in the
optimization literature, but with very different motivations. For completeness, we
provide a discussion below on our relation to these prior works.
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Proximal Term. The proposed modified objective in FedProx shares a connection with
elastic averaging SGD (EASGD) [323], which was proposed as a way to train deep
networks in the data center setting, and uses a similar proximal term in its objective.
While the intuition is similar to EASGD (this term helps to prevent large deviations on
each device/machine), EASGD employs a more complex moving average to update
parameters, is limited to using SGD as a local solver, and has only been analyzed for
simple quadratic problems. The proximal term we introduce has also been explored
in previous optimization literature with different purposes, such as Allen-Zhu [14], to
speed up (mini-batch) SGD training on a single machine, and in Li et al. [173] for efficient
SGD training both in a single machine and distributed settings. However, the analysis
in Li et al. [173] is limited to a single machine setting with different assumptions (e.g.,
IID data and solving the subproblem exactly at each round).

In addition, DANE [253] and AIDE [236], distributed methods designed for the data
center setting, propose a similar proximal term in the local objective function, but also
augment this with an additional gradient correction term. Both methods assume that
all devices participate at each communication round, which is impractical in federated
settings. Indeed, due to the inexact estimation of full gradients (i.e., ∇ϕpwpt´1qq in Shamir
et al. [253, Eq (13)]) with device subsampling schemes and the staleness of the gradient
correction term [253, Eq (13)], these methods are not directly applicable to our setting.
Regardless of this, we explore a variant of such an approach in federated settings and see
that the gradient direction term does not help in this scenario—performing uniformly
worse than the proposed FedProx framework for heterogeneous datasets, despite the
extra computation required (see Figure 3.4). We refer interested readers to Li et al. [180]
for more detailed discussions.

Finally, we note that there is an interesting connection between meta-learning meth-
ods and federated optimization methods [153], and similar proximal terms have recently
been investigated in the context of meta-learning for improved performance on few-shot
learning tasks [102, 330].

Bounded Dissimilarity Assumption. The bounded dissimilarity assumption we dis-
cuss in Assumption 1 has appeared in different forms, for example in Schmidt and Roux
[250], Vaswani et al. [283], Yin et al. [310]. In Yin et al. [310], the bounded similarity
assumption is used in the context of asserting gradient diversity and quantifying the
benefit in terms of scaling of the mean square error for mini-batch SGD for IID data.
In Schmidt and Roux [250], Vaswani et al. [283], the authors use a similar assumption,
called strong growth condition, which is a stronger version of Assumption 1 with ϵ “ 0.
They prove that some interesting practical problems satisfy such a condition. They
also use this assumption to prove optimal and better convergence rates for SGD with
constant step-sizes. Note that this is different from our approach as the algorithm that
we are analyzing is not SGD, and our analysis is different in spite of the similarity in the
assumptions.
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Figure 3.4: DANE and AIDE [236, 253] are methods proposed in the data center setting
that use a similar proximal term as FedProx as well as an additional gradient correction
term. We modify DANE to apply to federated settings by allowing for local updating and
low participation of devices. We show the convergence of this modified method, which
we call FedDane, on synthetic datasets. In the top figures, we subsample 10 devices out
of 30 on all datasets for both FedProx and FedDane. While FedDane performs similarly
as FedProx on the IID data, it suffers from poor convergence on the non-IID datasets.
In the bottom figures, we show the results of FedDane when we increase the number of
selected devices in order to narrow the gap between our estimated full gradient and the
real full gradient (in the gradient correction term). Note that communicating with all (or
most of the) devices is already unrealistic in practical settings. We observe that although
sampling more devices per round might help to some extent, FedDane is still unstable
and tends to diverge. This serves as additional motivation for the specific subproblem
we propose in FedProx.

3.7 Simulation Details and Additional Experiments

3.7.1 Datasets and Models

Here we provide full details on the datasets and models used in our experiments. We
curate a diverse set of non-synthetic datasets, including those used in prior work on
federated learning [208], and some proposed in LEAF, a benchmark for federated set-
tings [43]. We also create synthetic data to directly test the effect of heterogeneity on
convergence, as in Section 3.4.1.
• Synthetic: We set pα, βq=(0,0), (0.5,0.5) and (1,1) respectively to generate three non-

identical distributed datasets (Figure 3.2). In the IID data (Figure 3.5), we set the same
W, b „ N p0, 1q on all devices and Xk to follow the same distribution N pv, Σq where
each element in the mean vector v is zero and Σ is diagonal with Σj,j “ j´1.2. For all
synthetic datasets, there are 30 devices in total and the number of samples on each
device follows a power law.
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• MNIST: We study image classification of handwritten digits 0-9 in MNIST [165] using
multinomial logistic regression. To simulate a heterogeneous setting, we distribute
the data among 1000 devices such that each device has samples of only 2 digits and
the number of samples per device follows a power law. The input of the model is a
flattened 784-dimensional (28 ˆ 28) image, and the output is a class label between 0
and 9.

• FEMNIST: We study an image classification problem on the 62-class EMNIST dataset [54]
using multinomial logistic regression. To generate heterogeneous data partitions, we
subsample 10 lower case characters (‘a’-‘j’) from EMNIST and distribute only 5 classes
to each device. We call this federated version of EMNIST FEMNIST. There are 200
devices in total. The input of the model is a flattened 784-dimensional (28 ˆ 28) image,
and the output is a class label between 0 and 9.

• Shakespeare: This is a dataset built from The Complete Works of William Shakespeare [208].
Each speaking role in a play represents a different device. We use a two-layer LSTM
classifier containing 100 hidden units with an 8D embedding layer. The task is next-
character prediction, and there are 80 classes of characters in total. The model takes
as input a sequence of 80 characters, embeds each of the characters into a learned
8-dimensional space and outputs one character per training sample after 2 LSTM
layers and a densely-connected layer.

• Sent140: In non-convex settings, we consider a text sentiment analysis task on tweets
from Sentiment140 [101] (Sent140) with a two layer LSTM binary classifier containing
256 hidden units with pretrained 300D GloVe embedding [228]. Each twitter account
corresponds to a device. The model takes as input a sequence of 25 characters, embeds
each of the characters into a 300-dimensional space by looking up Glove and outputs
one character per training sample after 2 LSTM layers and a densely-connected layer.

3.7.2 Implementation Details

Implementation. In order to draw a fair comparison with FedAvg, we use SGD as a
local solver for FedProx, and adopt a slightly different device sampling scheme than that
in Algorithms 1 and 2: sampling devices uniformly and averaging updates with weights
proportional to the number of local data points (as originally proposed in McMahan
et al. [208]). While this sampling scheme is not supported by our analysis, we observe
similar relative behavior of FedProx vs. FedAvg whether or not it is employed (Figure
3.12). Interestingly, we also observe that the sampling scheme proposed herein results
in more stable performance for both methods. This suggests an added benefit of the
proposed framework.

Machines. We simulate the federated learning setup (1 server and N devices) on a
commodity machine with 2 Intel® Xeon® E5-2650 v4 CPUs and 8 NVidia® 1080Ti GPUs.
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Hyperparameters. We randomly split the data on each local device into an 80% training
set and a 20% testing set. We fix the number of selected devices per round to be 10 for
all experiments on all datasets. We also do a grid search on the learning rate based on
FedAvg. We do not decay the learning rate through all rounds. For all synthetic data
experiments, the learning rate is 0.01. For MNIST, FEMNIST, Shakespeare, and Sent140,
we use the learning rates of 0.03, 0.003, 0.8, and 0.3. We use a batch size of 10 for all
experiments.

Libraries. All code is implemented in Tensorflow Version 1.10.1 [3].
Please see github.com/litian96/FedProx for full details.

3.7.3 Additional Experiments and Full Results

3.7.3.1 Effects of Systems Heterogeneity on IID Data

We show the effects of allowing for partial work on a perfect IID synthetic data (Synthetic
IID).
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Figure 3.5: FedAvg is robust to device failure with IID data. In this case, whether incorpo-
rating partial solutions from the stragglers would not have much effect on convergence.

3.7.3.2 Complete Results

In Figure 3.6, we present testing accuracy on four synthetic datasets associated with the
experiments shown in Figure 3.2.

In Figure 3.7, we show the testing accuracy associated with the experiments described
in Figure 3.1. We calculate the accuracy improvement numbers by identifying the
accuracies of FedProx and FedAvg when they have either converged, started to diverge,
or run sufficient number of rounds (e.g., 1000 rounds), whichever comes earlier. We
consider the methods to converge when the loss difference in two consecutive rounds
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Figure 3.6: Training loss, test accuracy, and dissimilarity measurement for experiments
described in Fig. 3.2.
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Figure 3.7: The testing accuracy of the experiments in Figure 3.1. FedProx achieves on
average 22% improvement in terms of testing accuracy in highly heterogeneous settings
(90% stragglers).

| ft ´ ft´1| is smaller than 0.0001, and consider the methods to diverge when we see
ft ´ ft´10 greater than 1.

In Figure 3.8, we report the dissimilarity measurement on five datasets (including
four real datasets) described in Figure 3.1. Again, the dissimilarity characterization is
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consistent with the real performance (the loss).
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Figure 3.8: The dissimilarity metric on five datasets in Figure 3.1. We remove systems
heterogeneity by only considering the case when no participating devices drop out of the
network. Our dissimilarity assumption captures the data heterogeneity and is consistent
with practical performance (see training loss in Figure 3.1).

In Figure 3.9 and Figure 3.10, we show the effects (both loss and testing accuracy) of
allowing for partial solutions under systems heterogeneity when E “ 1 (i.e., the statistical
heterogeneity is less likely to affect convergence negatively).
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Figure 3.9: The loss of FedAvg and FedProx under various systems heterogeneity settings
when each device can run at most 1 epoch at each iteration (E “ 1). Since local updates
will not deviate too much from the global model compared with the deviation under large
E’s, it is less likely that the statistical heterogeneity will affect convergence negatively.
Tolerating for partial solutions to be sent to the central server (FedProx, µ “ 0) still
performs better than dropping the stragglers (FedAvg).

3.7.3.3 Adaptively Setting µ

One of the key parameters of FedProx is µ. We provide the complete results of a simple
heuristic of adaptively setting µ on four synthetic datasets in Figure 3.11. For the IID
dataset (Synthetic-IID), µ starts from 1, and for the other non-IID datasets, µ starts from
0. Such initialization is adversarial to our methods. We decrease µ by 0.1 when the loss
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Figure 3.10: The testing accuracy of the experiments shown in Figure 3.9.

continues to decrease for 5 rounds and increase µ by 0.1 when we see the loss increase.
This heuristic allows for competitive performance. It could also alleviate the potential
issue that µ ą 0 might slow down convergence on IID data, which rarely occurs in real
federated settings.
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Figure 3.11: Full results of choosing µ adaptively on all the synthetic datasets. We
increase µ by 0.1 whenever the loss increases and decreases it by 0.1 whenever the loss
decreases for 5 consecutive rounds. We initialize µ to 1 for the IID data (Synthetic-IID) (in
order to be adversarial to our methods), and initialize it to 0 for the other three non-IID
datasets. We observe that this simple heuristic works well in practice.

3.7.3.4 Comparing Two Device Sampling Schemes

We show the training loss, testing accuracy, and dissimilarity measurement of FedProx
on a set of synthetic data using two different device sampling schemes in Figure 3.12.
Since our goal is to compare these two sampling schemes, we let each device perform
the uniform amount of work (E “ 20) for both methods.

45



0 50 100 150 200
# Rounds

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

Synthetic-IID

0 50 100 150 200
# Rounds

1

2

3
Synthetic (0,0)

0 50 100 150 200
# Rounds

1

2

3

Synthetic (0.5,0.5)

0 50 100 150 200
# Rounds

1

2

3

Synthetic (1,1)

0 50 100 150 200
# Rounds

0.2

0.4

0.6

0.8

Te
st

in
g 

Ac
cu

ra
cy

Synthetic-IID

0 50 100 150 200
# Rounds

0.0

0.2

0.4

0.6

0.8
Synthetic (0,0)

0 50 100 150 200
# Rounds

0.2

0.4

0.6

0.8
Synthetic (0.5,0.5)

0 50 100 150 200
# Rounds

0.2

0.4

0.6

Synthetic (1,1)

0 50 100 150 200
# Rounds

0.0

0.1

0.2

0.3

Va
ria

nc
e 

of
 L

oc
al

 G
ra

d. Synthetic-IID

0 50 100 150 200
# Rounds

20

40

Synthetic (0,0)

0 50 100 150 200
# Rounds

20

40

60

Synthetic (0.5,0.5)

0 50 100 150 200
# Rounds

50

100

Synthetic (1,1)

=0, E=20, uniform sampling+weighted average
=1, E=20, uniform sampling+weighted average

=0, E=20, weighted sampling+simple average
=1, E=20, weighted sampling+simple average

Figure 3.12: Differences between two sampling schemes in terms of training loss, testing
accuracy, and dissimilarity measurement. Sampling devices with a probability pro-
portional to the number of local data points and then simply averaging local models
performs slightly better than uniformly sampling devices and averaging the local models
with weights proportional to the number of local data points. Under either sampling
scheme, the settings with µ “ 1 demonstrate more stable performance than settings with
µ “ 0.
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Chapter 4

Fairness: Addressing Representation
Bias in Federated Learning

Beyond accuracy or optimization, heterogeneity also affects fairness in terms of providing
fair quality of service for all participants in the network. In this chapter, we discuss a fair
learning objective, along with efficient solvers. The objective offers flexible and scalable
fairness/utility tradeoffs, which has broader applications where min-max objectives are
desired but expensive to optimize.

4.1 Overview

In federated learning, naively minimizing an aggregate loss in a large network may
disproportionately advantage or disadvantage the model performance on some of the
devices. For example, although the accuracy may be high on average, there is no accuracy
guarantee for individual devices in the network. This is exacerbated by the fact that the
data are often heterogeneous in federated networks both in terms of size and distribution,
and model performance can thus vary widely. In this work, we therefore ask: Can we
devise an efficient federated optimization method to encourage a more fair (i.e., more
uniform) distribution of the model performance across devices in federated networks?

There has been tremendous recent interest in developing fair methods for machine
learning [see, e.g., 59, 83]. However, current approaches do not adequately address
concerns in the federated setting. For example, a common definition in the fairness
literature is to enforce accuracy parity between protected groups1 [315]. For devices in
massive federated networks, however, it does not make sense for the accuracy to be
identical on each device given the significant variability of data in the network. Recent
work has taken a step towards addressing this by introducing good-intent fairness, in which
the goal is instead to ensure that the training procedure does not overfit a model to any
one device at the expense of another [215]. However, the proposed objective is rigid in

1While fairness is typically concerned with performance between “groups”, we define fairness in the
federated setting at a more granular scale in terms of the devices in the network. We note that devices may
naturally combine to form groups, and thus use these terms interchangeably in the context of prior work.
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the sense that it only maximizes the performance of the worst performing device/group,
and has only be tested in small networks (for 2-3 devices). In realistic federated learning
applications, it is natural to instead seek methods that can flexibly trade off between
overall performance and fairness in the network, and can be implemented at scale across
hundreds to millions of devices.

In this work, we propose q-FFL, a novel optimization objective that addresses fairness
issues in federated learning. Inspired by work in fair resource allocation for wireless
networks, q-FFL minimizes an aggregate reweighted loss parameterized by q such that the
devices with higher loss are given higher relative weight. We show that this objective
encourages a device-level definition of fairness in the federated setting, which generalizes
standard accuracy parity by measuring the degree of uniformity in performance across de-
vices.

Increasing the accuracy of the
worst-performing devices

Figure 4.1: Model performance (e.g.,
test accuracy) in federated networks
can vary widely across devices. Our
objective, q-FFL, aims to increase the
fairness/uniformity of model perfor-
mance while maintaining average
performance.

As a motivating example, we examine the test ac-
curacy distribution of a model trained via a base-
line approach (FedAvg) vs. q-FFL in Figure 4.1.
Due to the variation in the data across devices,
the model accuracy is quite poor on some de-
vices. By using q-FFL, we can maintain the same
overall average accuracy while ensuring a more
fair/uniform quality of service across the net-
work. Adaptively minimizing our q-FFL objective
results in a flexible framework that can be tuned
depending on the desired amount of fairness.

To solve q-FFL in massive federated networks,
we additionally propose a lightweight and scal-
able distributed method, q-FedAvg. Our method
carefully accounts for important characteristics
of the federated setting such as communication-
efficiency and low participation of devices [36,

209]. The method also reduces the overhead of tuning the hyperparameter q in q-FFL by
dynamically estimating the step-sizes associated with different values of q.

Through extensive experiments on federated datasets with both convex and non-
convex models, we demonstrate the fairness and flexibility of q-FFL and the efficiency of
q-FedAvg compared with existing baselines. In terms of fairness, q-FFL is able to reduce
the variance of accuracies across devices by 45% on average while maintaining the same
overall average accuracy. In terms of efficiency, our distributed method, q-FedAvg, is
capable of solving the proposed objective orders-of-magnitude more quickly than other
baselines. Finally, while we consider our approaches primarily in the context of federated
learning, we also demonstrate that q-FFL can be applied to other related problems such
as meta-learning, helping to produce fair initializations across multiple tasks.
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4.2 Fair Federated Learning

Our fairness notion in this works follows Definition 1. There are many ways to mathe-
matically evaluate the uniformity of the performance. In this work, we mainly use the
variance of the performance distribution as a measure of uniformity. However, we also
explore other uniformity metrics, both empirically and theoretically, in Appendix 4.4.1.
We note that a tension exists between the fairness/uniformity of the final testing accuracy
and the average testing accuracy across devices. In general, our goal is to impose more
fairness/uniformity while maintaining the same (or similar) average accuracy.

Remark 3 (Connections to other fairness definitions). Definition 1 targets device-level
fairness, which has finer granularity than the classical attribute-level fairness such as accuracy
parity [315]. We note that in certain cases where devices can be naturally clustered into groups
with specific attributes, our definition can be seen as a relaxed version of accuracy parity, in that
we optimize for similar but not necessarily identical performance across devices.

4.2.1 The objective: q-Fair Federated Learning (q-FFL)

A natural idea to achieve fairness as defined in (1) would be to reweight the objective—
assigning higher weights to devices with poor performance, so that the distribution of
accuracies in the network shifts towards more uniformity. Note that this reweighting
must be done dynamically, as the performance of the devices depends on the model
being trained, which cannot be evaluated a priori. Drawing inspiration from α-fairness,
a utility function used in fair resource allocation in wireless networks, we propose the
following objective. For given local non-negative cost functions Fk and parameter q ą 0,
we define the q-Fair Federated Learning (q-FFL) objective as:

min
w

fqpwq “

m
ÿ

k“1

pk
q ` 1

Fq`1
k pwq , (4.1)

where Fq`1
k p¨q denotes Fkp¨q to the power of pq`1q. Here, q is a parameter that tunes the

amount of fairness we wish to impose. Setting q “ 0 does not encourage fairness beyond
the classical federated learning objective. A larger q means that we emphasize devices
with higher local empirical losses, Fkpwq, thus imposing more uniformity to the training
accuracy distribution and potentially inducing fairness in accordance with Definition 1.
Setting fqpwq with a large enough q reduces to classical minimax fairness [215], as the
device with the worst performance (largest loss) will dominate the objective. We note
that while the pq`1q term in the denominator in (4.1) may be absorbed in pk, we include it
as it is standard in the α-fairness literature and helps to ease notation. For completeness,
we provide additional background on α-fairness in Appendix 4.5.

As mentioned previously, q-FFL generalizes prior work in fair federated learning
(AFL) [215], allowing for a flexible tradeoff between fairness and accuracy as parameter-
ized by q. In our theoretical analysis (Appendix 4.4), we provide generalization bounds
of q-FFL that generalize the learning bounds of the AFL objective. Moreover, based on
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our fairness definition (Definition 1), we theoretically explore how q-FFL results in more
uniform accuracy distributions with increasing q. Our results suggest that q-FFL is able to
impose ‘uniformity’ of the test accuracy distribution in terms of various metrics such as
variance and other geometric and information-theoretic measures.

In our experiments (Section 4.3.2), on both convex and non-convex models, we show
that using the q-FFL objective, we can obtain fairer/more uniform solutions for federated
datasets in terms of both the training and testing accuracy distributions.

4.2.2 The Solver: FedAvg-Style q-Fair Federated Learning (q-FedAvg)

In developing a functional approach for fair federated learning, it is critical to consider
not only what objective to solve but also how to solve such an objective efficiently in a
massive distributed network. In this section, we provide methods to solve q-FFL. We start
with a simpler method, q-FedSGD, to illustrate our main techniques. We then provide
a more efficient counterpart, q-FedAvg, by considering local updating schemes. Our
proposed methods closely mirror traditional distributed optimization methods—mini-
batch SGD and federated averaging (FedAvg)—but with step-sizes and subproblems
carefully chosen in accordance with the q-FFL problem (4.1).

Achieving Variable Levels of Fairness: Tuning q. In devising a method to solve q-FFL
(4.1), we begin by noting that it is crucial to first determine how to set q. In practice, q can
be tuned based on the desired amount of fairness (with larger q inducing more fairness).
As we describe in our experiments (Section 4.3.2), it is therefore common to train a family
of objectives for different q values so that a practitioner can explore the tradeoff between
accuracy and fairness for the application at hand.

One concern with solving such a family of objectives is that it requires step-size tuning
for every value of q. In particular, in gradient-based methods, the step-size inversely
depends on the Lipschitz constant of the function’s gradient, which will change as we
change q. This can quickly cause the search space to explode. To overcome this issue,
we propose estimating the local Lipschitz constant for the family of q-FFL objectives by
using the Lipschitz constant we infer by tuning the step-size (via grid search) on just one
q (e.g., q “ 0). This allows us to dynamically adjust the step-size of our gradient-based
optimization method for the q-FFL objective, avoiding manual tuning for each q. In
Lemma 1 below we formalize the relation between the Lipschitz constant, L, for q “ 0
and q ą 0.

Lemma 1. If the non-negative function f p¨q has a Lipschitz gradient with constant L, then for
any q ě 0 and at any point w,

Lqpwq “ L f pwq
q

` q f pwq
q´1

}∇ f pwq}
2 (4.2)

is an upper-bound for the local Lipschitz constant of the gradient of 1
q`1 f q`1p¨q at point w.
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Proof. At any point w, we can compute the Hessian ∇2
´

1
q`1 f q`1pwq

¯

as:

∇2
ˆ

1
q ` 1

f q`1
pwq

˙

“ q f q´1
pwq∇ f pwq∇T f pwq

loooooooomoooooooon

ĺ}∇ f pwq}2ˆI

` f q
pwq∇2 f pwq

looomooon

ĺLˆI

. (4.3)

As a result, }∇2 1
q`1 f q`1pwq}2 ď Lqpwq “ L f pwqq ` q f pwqq´1}∇ f pwq}2.

A First Approach: q-FedSGD. Our first fair federated learning method, q-FedSGD, is
an extension of the well-known federated mini-batch SGD (FedSGD) method [209]. q-
FedSGD uses a dynamic step-size instead of the normal fixed step-size of FedSGD. Based
on Lemma 1, for each local device k, the upper-bound of the local Lipschitz constant
is LFkpwqq ` qFkpwqq´1}∇Fkpwq}2. In each step of q-FedSGD, ∇Fk and Fk on each selected
device k are computed at the current iterate and communicated to the central node. This
information is used to compute the step-sizes (weights) for combining the updates from
each device. The details are summarized in Algorithm 3. Note that q-FedSGD is reduced
to FedSGD when q “ 0. It is also important to note that to run q-FedSGD with different
values of q, we only need to estimate L once by tuning the step-size on q “ 0 and can
then reuse it for all values of q ą 0.

Algorithm 3 q-FedSGD

1: Input: K, T, q, 1{L, w0, pk, k “ 1, ¨ ¨ ¨ , m
2: for t “ 0, ¨ ¨ ¨ , T ´ 1 do
3: Server selects a subset St of K devices at random (each device k is chosen with

prob. pk)
4: Server sends wt to all selected devices
5: Each selected device k computes:

∆t
k “ Fq

k pwt
q∇Fkpwt

q

ht
k “ qFq´1

k pwt
q}∇Fkpwt

q}
2

` LFq
k pwt

q

6: Each selected device k sends ∆t
k and ht

k back to the server
7: Server updates wt`1 as:

wt`1
“ wt

´

ř

kPSt
∆t

k
ř

kPSt
ht

k

8: end for

Improving Communication-Efficiency: q-FedAvg. In federated settings, communication-
efficient schemes using local stochastic solvers (such as FedAvg) have been shown to
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Algorithm 4 q-FedAvg

1: Input: K, E, T, q, 1{L, η, w0, pk, k “ 1, ¨ ¨ ¨ , m
2: for t “ 0, ¨ ¨ ¨ , T ´ 1 do
3: Server selects a subset St of K devices at random (each device k is chosen with

prob. pk)
4: Server sends wt to all selected devices
5: Each selected device k updates wt for E epochs of SGD on Fk with step-size η to

obtain w̄t`1
k6: Each selected device k computes:

∆wt
k “ Lpwt

´ w̄t`1
k q

∆t
k “ Fq

k pwt
q∆wt

k

ht
k “ qFq´1

k pwt
q}∆wt

k}
2

` LFq
k pwt

q

7: Each selected device k sends ∆t
k and ht

k back to the server
8: Server updates wt`1 as:

wt`1
“ wt

´

ř

kPSt
∆t

k
ř

kPSt
ht

k

9: end for

significantly improve convergence speed [209]. However, when q ą 0, the Fq`1
k term

is not an empirical average of the loss over all local samples due to the q ` 1 exponent,
preventing the use of local SGD as in FedAvg. To address this, we propose to generalize
FedAvg for q ą 0 using a more sophisticated dynamic weighted averaging scheme. The
weights (step-sizes) are inferred from the upper bound of the local Lipschitz constants
of the gradients of Fq`1

k , similar to q-FedSGD. To extend the local updating technique of
FedAvg to the q-FFL objective (4.1), we propose a heuristic where we replace the gradient
∇Fk in the q-FedSGD steps with the local updates that are obtained by running SGD locally
on device k. Similarly, q-FedAvg is reduced to FedAvg when q “ 0. We provide additional
details on q-FedAvg in Algorithm 4. As we will see empirically, q-FedAvg can solve q-FFL
objective much more efficiently than q-FedSGD due to the local updating heuristic. Finally,
recall that as q Ñ 8 the q-FFL objective recovers that of the AFL. However, we empirically
notice that q-FedAvg has a more favorable convergence speed compared to AFL while
resulting in similar performance across devices.

4.3 Evaluation

We now present empirical results of the proposed objective, q-FFL, and proposed methods,
q-FedAvg and q-FedSGD. We describe our experimental setup in Section 4.3.1. We then
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demonstrate the improved fairness of q-FFL in Section 4.3.2, and compare q-FFL with
several baseline fairness objectives in Section 4.3.3. Finally, we show the efficiency of
q-FedAvg compared with q-FedSGD in Section 4.3.4. All code, data, and experiments are
publicly available at github.com/litian96/fair_flearn.

4.3.1 Experimental Setup

Federated Datasets. We explore a suite of federated datasets using both convex and non-
convex models in our experiments. The datasets are curated from prior work in federated
learning [181, 209, 215, 265] as well as recent federated learning benchmarks [43]. In
particular, we study: (1) a synthetic dataset using a linear regression classifier, (2) a
Vehicle dataset collected from a distributed sensor network [75] with a linear SVM for
binary classification, (3) tweet data curated from Sentiment140 [101] (Sent140) with an
LSTM classifier for text sentiment analysis, and (4) text data built from The Complete
Works of William Shakespeare [209] and an RNN to predict the next character. When
comparing with AFL, we use the two small benchmark datasets (Fashion MNIST [302]
and Adult [34]) studied in [215]. When applying q-FFL to meta-learning, we use the
common meta-learning benchmark dataset Omniglot [162]. Full dataset details are given
in Appendix 4.6.1.

Implementation. We implement all code in Tensorflow [2], simulating a federated
network with one server and m devices, where m is the total number of devices in the
dataset (Appendix 4.6.1). We provide full details (including all hyperparameter values)
in Appendix 4.6.2.

4.3.2 Fairness of q-FFL

In our first experiments, we verify that the proposed objective q-FFL leads to more fair
solutions (Definition 1) for federated data. In Figure 4.2, we compare the final testing
accuracy distributions of two objectives (q “ 0 and a tuned value of q ą 0) averaged
across 5 random shuffles of each dataset. We observe that while the average testing
accuracy remains fairly consistent, the objectives with q ą 0 result in more centered (i.e.,
fair) testing accuracy distributions with lower variance. In particular, while maintaining
roughly the same average accuracy, q-FFL reduces the variance of accuracies across all devices
by 45% on average. We further report the worst and best 10% testing accuracies and
the variance of the final accuracy distributions in Table 4.1. Comparing q “ 0 and
q ą 0, we see that the average testing accuracy remains almost unchanged with the
proposed objective despite significant reductions in variance. We report full results
on all uniformity measurements (including variance) in Table 4.5 in the appendix, and
show that q-FFL encourages more uniform accuracies under other metrics as well. We
observe similar results on training accuracy distributions in Figure 4.6 and Table 4.6,
Appendix 4.7. In Table 4.1, the average accuracy is with respect to all data points, not all
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devices; however, we observe similar results with respect to devices, as shown in Table
4.7, Appendix 4.7.

Figure 4.2: q-FFL leads to fairer test accuracy distributions. While the average accuracy
remains almost identical (see Table 4.1), by setting q ą 0, the distributions shift towards
the center as low accuracies increase at the cost of potentially decreasing high accuracies
on some devices. Setting q “ 0 corresponds to the original objective (3.1). The selected q
values for q ą 0 on the four datasets, as well as distribution statistics, are also shown in
Table 4.1.

Table 4.1: Statistics of the test accuracy distribution for q-FFL. By setting q ą 0, the
accuracy of the worst 10% devices is increased at the cost of possibly decreasing the
accuracy of the best 10% devices. While the average accuracy remains similar, the
variance of the final accuracy distribution decreases significantly. We provide full results
of other uniformity measurements (including variance) in Table 4.5, Appendix 4.7.1, and
show that q-FFL encourages more uniform distributions under all metrics.

Dataset Objective Average Worst 10% Best 10% Variance
(%) (%) (%)

Synthetic q “ 0 80.8 ˘ .9 18.8 ˘ 5.0 100.0 ˘ 0.0 724 ˘ 72

q “ 1 79.0 ˘ 1.2 31.1 ˘ 1.8 100.0 ˘ 0.0 472 ˘ 14

Vehicle q “ 0 87.3 ˘ .5 43.0 ˘ 1.0 95.7 ˘ 1.0 291 ˘ 18

q “ 5 87.7 ˘ .7 69.9 ˘ .6 94.0 ˘ .9 48 ˘ 5

Sent140 q “ 0 65.1 ˘ 4.8 15.9 ˘ 4.9 100.0 ˘ 0.0 697 ˘ 132

q “ 1 66.5 ˘ .2 23.0 ˘ 1.4 100.0 ˘ 0.0 509 ˘ 30

Shakespeare q “ 0 51.1 ˘ .3 39.7 ˘ 2.8 72.9 ˘ 6.7 82 ˘ 41

q “ .001 52.1 ˘ .3 42.1 ˘ 2.1 69.0 ˘ 4.4 54 ˘ 27

Choosing q. As discussed in Section 4.2.2, a natural question is to determine how
q should be tuned in the q-FFL objective. Our framework is flexible in that it allows
one to choose q to tradeoff between fairness/uniformity and average accuracy. We
empirically show that there are a family of q’s that can result in variable levels of fairness
(and accuracy) on synthetic data in Table 4.11, Appendix 4.7. In general, this value can
be tuned based on the data/application at hand and the desired amount of fairness.
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Another reasonable approach in practice would be to run Algorithm 4 with multiple
q’s in parallel to obtain multiple final global models, and then select amongst these
based on performance (e.g., accuracy) on the validation data. Rather than using just one
optimal q for all devices, for example, each device could pick a device-specific model
based on their validation data. We show additional performance improvements with this
device-specific strategy in Table 4.12 in Appendix 4.7. Finally, we note that one potential
issue is that increasing the value of q may slow the speed of convergence. However, for
values of q that result in more fair results on our datasets, we do not observe significant
decrease in the convergence speed, as shown in Figure 4.8, Appendix 4.7.

4.3.3 Comparison with Other Objectives

Next, we compare q-FFL with other objectives that are likely to impose fairness in
federated networks. One heuristic is to weight each data point equally, which reduces
to the original objective in (3.1) (i.e., q-FFL with q “ 0) and has been investigated in
Section 4.3.2. We additionally compare with two alternatives: weighting devices equally
when sampling devices, and weighting devices adversarially, namely, optimizing for the
worst-performing device, as proposed in Mohri et al. [215].

Weighting Devices Equally. We compare also q-FFL with uniform sampling schemes
and report testing accuracy in Figure 4.3. While the ‘weighting each device equally’
heuristic tends to outperform our method in training accuracy distributions (Figure 4.7
and Table 4.8 in Appendix 4.7), we see that our method produces more fair solutions in
terms of testing accuracies. One explanation for this is that uniform sampling is a static
method and can easily overfit to devices with very few data points, whereas q-FFL will
put less weight on a device once its loss becomes small, potentially providing better
generalization performance due to its dynamic nature.

Figure 4.3: q-FFL (q ą 0) compared with uniform sampling. In terms of testing accuracy,
our objective produces more fair solutions than uniform sampling. q-FFL achieves similar
average accuracies and more fair solutions.

Weighting Devices Adversarially. We further compare with AFL [215], which is the
only work we are aware of that aims to address fairness issues in federated learning. We
implement a non-stochastic version of AFL where all devices are selected and updated
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each round, and perform grid search on the AFL hyperparameters, γw and γλ. In order to
devise a setup that is as favorable to AFL as possible, we modify Algorithm 4 by sampling
all devices and letting each of them run gradient descent at each round. We use the
same small datasets (Adult [34] and subsampled Fashion MNIST [302]) and the same
logistic regression model as in Mohri et al. [215]. Full details of the implementation and
hyperparameters (e.g., values of q1 and q2) are provided in the appendix. We note that,
as opposed to AFL, q-FFL is flexible depending on the amount of fairness desired, with
larger q leading to more accuracy uniformity. As discussed, q-FFL generalizes AFL in this
regard, as AFL is equivalent to q-FFL with a large enough q. In Table 4.2, we observe that
q-FFL can in fact achieve higher testing accuracy than AFL on the device with the worst
performance (i.e., the problem that the AFL was designed to solve) with appropriate q.
This also indicates that q-FFL obtains the most fair solutions in certain cases. We also
observe that q-FFL converges faster in terms of communication rounds compared with
AFL to obtain similar performance (Appendix 4.7), which we speculate is due to the
non-smoothness of the AFL objective.

Table 4.2: Our objective compared with weighing devices adversarially (AFL [215]). In
order to be favorable to AFL, we use the two small, well-behaved datasets studied in [215].
q-FFL pq ą 0q outperforms AFL on the worst testing accuracy of both datasets. The tunable
parameter q controls how much fairness we would like to achieve—larger q induces less
variance. Each accuracy is averaged across 5 runs with different random initializations.

Adult Fashion MNIST

Objectives average PhD non-PhD average shirt pullover T-shirt
(%) (%) (%) (%) (%) (%) (%)

q-FFL, q=0 83.2 ˘ .1 69.9 ˘ .4 83.3 ˘ .1 78.8 ˘ .2 66.0 ˘ .7 84.5 ˘ .8 85.9 ˘ .7

AFL 82.5 ˘ .5 73.0 ˘ 2.2 82.6 ˘ .5 77.8 ˘ 1.2 71.4 ˘ 4.2 81.0 ˘ 3.6 82.1 ˘ 3.9

q-FFL, q1>0 82.6 ˘ .1 74.1 ˘ .6 82.7 ˘ .1 77.8 ˘ .2 74.2 ˘ .3 78.9 ˘ .4 80.4 ˘ .6

q-FFL, q2>q1 82.3 ˘ .1 74.4 ˘ .9 82.4 ˘ .1 77.1 ˘ .4 74.7 ˘ .9 77.9 ˘ .4 78.7 ˘ .6

4.3.4 Efficiency of the Method q-FedAvg

In this section, we show the efficiency of our proposed distributed solver, q-FedAvg, by
comparing Algorithm 4 with its non-local-updating baseline q-FedSGD (Algorithm 3) to
solve the same objective (same q ą 0 as in Table 4.1). At each communication round, we
have each method perform the same amount of computation, with q-FedAvg running one
epoch of local updates on each selected device while q-FedSGD runs gradient descent with
the local training data. In Figure 4.4, q-FedAvg converges faster than q-FedSGD in terms
of communication rounds in most cases due to its local updating scheme. The slower
convergence of q-FedAvg compared with q-FedSGD on the synthetic dataset may be due
to the fact that when local data distributions are highly heterogeneous, local updating
schemes may allow local models to move too far away from the initial global model,
potentially hurting convergence; see Figure 4.10 in Appendix 4.7 for more details.
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Figure 4.4: For a fixed objective (i.e., q-FFL with the same q), the convergence of q-FedAvg
(Algorithm 4), q-FedSGD (Algorithm 3), and FedSGD. For q-FedAvg and q-FedSGD, we tune
a best step-size on q “ 0 and apply that step-size to solve q-FFL with q ą 0. For q-FedSGD,
we tune the step-size directly. We observe that (1) q-FedAvg converges faster in terms
of communication rounds; (2) our proposed q-FedSGD solver with a dynamic step-size
achieves similar convergence behavior compared with a best-tuned FedSGD.

To demonstrate the optimality of our dynamic step-size strategy in terms of solving
q-FFL, we also compare our solver q-FedSGD with FedSGD with a best-tuned step-size. For
q-FedSGD, we tune a step-size on q “ 0 and apply that step-size to solve q-FFL with q ą 0.
q-FedSGD has similar performance with FedSGD, which indicates that (the inverse of) our
estimated Lipschitz constant on q ą 0 is as good as a best tuned fixed step-size. We can
reuse this estimation for different q’s instead of manually re-tuning it when q changes.
We show the full results on other datasets in Appendix 4.7. We note that both proposed
methods q-FedAvg and q-FedSGD can be easily integrated into existing implementations
of federated learning algorithms such as TensorFlow Federated [1].

4.3.5 Beyond Federated Learning: Applying q-FFL to Meta-Learning

Finally, we generalize the proposed q-FFL objective to other learning tasks beyond
federated learning. One natural extension is to apply q-FFL to meta-learning, where each
task can be viewed as a device in federated networks. The goal of meta-learning is to
learn a model initialization such that it can be quickly adapted to new tasks using limited
training samples. However, as the new tasks can be heterogeneous, the performance
distribution of the final personalized models may also be non-uniform. Therefore, we
aim to learn a better initialization such that it can quickly solve unseen tasks in a fair
manner, i.e., reduce the variance of the accuracy distribution of the personalized models.

To achieve this goal, we propose a new method, q-MAML, by combining q-FFL with the
popular meta-learning method MAML [92]. In particular, instead of updating the global
model in the way described in MAML, we update the global parameters using the gradients
of the q-FFL objective 1

q`1 Fq`1
k pwq, with weights inferred from Lemma 1. Similarly, q-MAML

with q “ 0 reduces to MAML, and q-MAML with q Ñ 8 corresponds to MAML with a most
‘fair’ initialization and a potentially lower average accuracy. The detailed algorithm is
summarized in Algorithm 5 in the appendix. We sample 10 tasks at each round during
meta-training, and train for 5 iterations of (mini-batch) SGD for personalization on meta-
testing tasks. We report test accuracy of personalized models on the meta-testing tasks.
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Figure 4.5: q-FFL results
in fairer (more centered)
initializations for meta-
learning tasks.

Table 4.3: Statistics of the accuracy distribution of per-
sonalized models using q-MAML. The method with q “ 0
corresponds to MAML. Similarly, we see that the variance
is reduced while the accuracy of the worst 10% devices is
increased.

Dataset Obj. Average Worst 10% Best 10% Variance
(%) (%) (%)

Omniglot q “ 0 79.1 ˘ 9.8 61.2 ˘ 3.2 94.0 ˘ .5 93 ˘ 23

q “ .1 79.3 ˘ 9.6 62.5 ˘ 5.3 93.8 ˘ .9 86 ˘ 28

From Figure 5 and Table 3 above, we observe that q-MAML is able to learn initializations
which result in fairer personalized models with lower variance.
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4.4 Theoretical Analysis of the Proposed Objective q-FFL

4.4.1 Uniformity Induced by q-FFL

In this section, we theoretically justify that the q-FFL objective can impose more unifor-
mity of the performance/accuracy distribution. As discussed in Section 4.2.1, q-FFL can
encourage more fair solutions in terms of several metrics, including (1) the variance
of accuracy distribution (smaller variance), (2) the cosine similarity between the accu-
racy distribution and the all-ones vector 1 (larger similarity), and (3) the entropy of the
accuracy distribution (larger entropy). We begin by formally defining these fairness
notions.

Definition 8 (Uniformity 1: Variance of the performance distribution). We say that the perfor-
mance distribution of m devices tF1pwq, . . . , Fmpwqu is more uniform under solution w than w1

if

VarpF1pwq, . . . , Fmpwqq ă VarpF1pw1
q, . . . , Fmpw1

qq.

Definition 9 (Uniformity 2: Cosine similarity between the performance distribution and 1). We
say that the performance distribution of m devices tF1pwq, . . . , Fmpwqu is more uniform under
solution w than w1 if the cosine similarity between tF1pwq, . . . , Fmpwqu and 1 is larger than that
between tF1pw1q, . . . , Fmpw1qu and 1, i.e.,

1
m
řm

k“1 Fkpwq
b

1
m
řm

k“1 F2
k pwq

ě

1
m
řm

k“1 Fkpw1q
b

1
m
řm

k“1 F2
k pw1q

.

Definition 10 (Uniformity 3: Entropy of performance distribution). We say that the performance
distribution of m devices tF1pwq, . . . , Fmpwqu is more uniform under solution w than w1 if

rHpFpwqq ě rHpFpw1
qq,

where rHpFpwqq is the entropy of the stochastic vector obtained by normalizing tF1pwq, . . . , Fmpwqu,
defined as

rHpFpwqq :“ ´

m
ÿ

k“1

Fkpwq
řm

k“1 Fkpwq
log

ˆ

Fkpwq
řm

k“1 Fkpwq

˙

. (4.4)

To enforce uniformity/fairness (defined in Definition 8, 9, and 10), we propose
the q-FFL objective to impose more weights on the devices with worse performance.
Throughout the proof, for the ease of mathematical exposition, we consider a similar
unweighted objective:

min
w

$

&

%

fqpwq “

˜

1
m

m
ÿ

k“1

Fq`1
k pwq

¸
1

q`1
,

.

-

,
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and we denote w˚
q as the global optimal solution of minw fqpwq.

We first investigate the special case of q “ 1 and show that q “ 1 results in more fair
solutions than q “ 0 based on Definition 8 and Definition 9.

Lemma 2. q “ 1 leads to a more fair solution (smaller variance of the model performance
distribution) than q “ 0, i.e., VarpF1pw˚

1q, . . . , Fmpw˚
1qq ă VarpF1pw˚

0q, . . . , Fmpw˚
0qq.

Proof. Use the fact that w˚
1 is the optimal solution of minw f1pwq, and w˚

0 is the optimal
solution of minw f0pwq, we get

řm
k“1 F2

k pw˚
1q

m
´

˜

1
m

m
ÿ

i“1

Fkpw˚
1q

¸2

ď

řm
k“1 F2

k pw˚
0q

m
´

˜

1
m

m
ÿ

i“1

Fkpw˚
1q

¸2

ď

řm
k“1 F2

k pw˚
0q

m
´

˜

1
m

m
ÿ

i“1

Fkpw˚
0q

¸2

. (4.5)

Lemma 3. q “ 1 leads to a more fair solution (larger cosine similarity between the performance
distribution and 1) than q “ 0, i.e.,

1
m
řm

k“1 Fkpw˚
1q

b

1
m F2

k pw˚
1q

ě

1
m
řm

k“1 Fkpw˚
0q

b

1
m F2

k pw˚
0q

.

Proof. As 1
m
řm

k“1 Fkpw˚
1q ě 1

m
řm

k“1 Fkpw˚
0q and 1

m
řm

k“1 F2
k pw˚

1q ě 1
m
řm

k“1 F2
k pw˚

0q, it di-
rectly follows that

1
m
řm

k“1 Fkpw˚
1q

b

1
m F2

k pw˚
1q

ě

1
m
řm

k“1 Fkpw˚
0q

b

1
m F2

k pw˚
0q

.

We next provide results based on Definition 10. It states that for arbitrary q ě 0, by
increasing q for a small amount, we can get more uniform performance distributions
defined over higher-orders of the performance.

Lemma 4. Let Fpwq be twice differentiable in w with ∇2Fpwq ą 0 (positive definite). The
derivative of rHpFqpw˚

pqq with respect to the variable p evaluated at the point p “ q is non-
negative, i.e.,

B

Bp
rHpFq

pw˚
pqq

ˇ

ˇ

ˇ

ˇ

p“q
ě 0,

where rHpFqpw˚
pqq is defined in (4.4).
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Proof.
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Now, let us examine B
Bp w˚

p

ˇ

ˇ

ˇ

p“q
. We know that

ř

k ∇wFp
k pw˚

pq “ 0 by definition. Taking

the derivative with respect to p, we have
ÿ

k

∇2
wFp

k pw˚
pq

B

Bp
w˚

p `
ÿ

k

´

ln Fp
k pw˚

pq ` 1
¯

∇wFp
k pw˚

pq “ 0. (4.10)

Invoking implicit function theorem,

B

Bp
w˚

p “ ´

˜

ÿ

k

∇2
wFp

k pw˚
pq

¸´1
ÿ

k

´

ln Fp
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pq ` 1
¯
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k pw˚
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Plugging B
Bp w˚

p

ˇ

ˇ

ˇ

p“q
into (4.9), we get that B

Bp
rHpFqpw˚

pqq

ˇ

ˇ

ˇ

p“q
ě 0 completing the proof.

Lemma 4 states that for any p, the performance distribution of tFp
1 pw˚

p`ϵq, . . . , Fp
mpw˚

p`ϵqu

is guaranteed to be more uniform based on Definition 10 than that of tFp
1 pw˚

pq, . . . , Fp
mpw˚

pqu

for a small enough ϵ. Note that Lemma 4 is different from the existing results on the mono-
tonicity of entropy under the tilt operation, which would imply that B

Bq
rHpFqpw˚

pqq ď 0
for all q ě 0 (see Beirami et al. [26, Lemma 11]).

Ideally, we would like to prove a result more general than Lemma 4, implying that
the distribution tFq

1 pw˚
p`ϵq, . . . , Fq

mpw˚
p`ϵqu is more uniform than tFq

1 pw˚
pq, . . . , Fq

mpw˚
pqu for

any p, q and small enough ϵ. We prove this result for the special case of m “ 2 in the
following.
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Lemma 5. Let Fpwq be twice differentiable in w with ∇2Fpwq ą 0 (positive definite). If m “ 2,
for any q P R`, the derivative of rHpFqpw˚

pqq with respect to the variable p is non-negative, i.e.,

B

Bp
rHpFq

pw˚
pqq ě 0,

where rHpFqpw˚
pqq is defined in (4.4).

Proof. First, we invoke Lemma 4 to obtain that

B

Bp
rHpFq

pw˚
pqq

ˇ

ˇ

ˇ

ˇ

p“q
ě 0. (4.12)

Let

θqpwq :“
Fq

1 pwq

Fq
1 pwq ` Fq

2 pwq
. (4.13)

Without loss of generality assume that θqpw˚
pq P p0, 1

2s, as we can relabel F1 and F2
otherwise. Then, given that m “ 2, we conclude from (4.12) along with the monotonicity
of the binary entropy function in p0, 1

2s that

B

Bp
θqpw˚

pq

ˇ

ˇ

ˇ

ˇ

p“q
ě 0, (4.14)

which in conjunction with (4.13) implies that

B

Bp

˜

F1pw˚
pq

F2pw˚
pq

¸qˇ
ˇ

ˇ

ˇ

ˇ

p“q

ě 0. (4.15)

Given the monotonicity of xq with respect to x for all q ą 0, it can be observed that the
above is sufficient to imply that for any q ą 0,

B

Bp

˜

F1pw˚
pq

F2pw˚
pq

¸q

ě 0. (4.16)

Going all of the steps back we would obtain that for all p ą 0

B

Bp
rHpFq

pw˚
pqq ě 0. (4.17)

This completes the proof of the lemma.

We conjecture that the statement of Lemma 4 is true for all q P R`, which would be
equivalent to the statement of Lemma 5 holding true for all m P N.

Thus far, we provided results that showed that q-FFL promotes fairness in three
different senses. Next, we further provide a result on equivalence between the geometric
and information-theoretic notions of fairness.
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Lemma 6 (Equivalence between uniformity in entropy and cosine distance). q-FFL encourages
more uniform performance distributions in the cosine distance sense (Definition 9) if any only if
it encourages more uniform performance distributions in the entropy sense (Definition 10), i.e.,
(a) holds if and only if (b) holds where
(a) for any p, q P R, the derivative of HpFqpw˚

pqq with respect to p is non-negative,

(b) for any 0 ď t ď r, 0 ď v ď u, ftpw˚
u q

frpw˚
u q

ě
ftpw˚

v q

frpw˚
v q

.

Proof. Definition 10 is a special case of HpFqpw˚
pqq with q “ 1. If rHpFqpw˚

pqq increases with
p for any p, q, then we are guaranteed to get more fair solutions based on Definition 10.
Similarly, Definition 9 is a special case of ftpw˚

u q

frpw˚
u q

with t “ 0, r “ 1. If ftpw˚
u q

frpw˚
u q

increases with
u for any t ď r, q-FFL can also obtain more fair solutions under Definition 9.

Next, we show that (a) and (b) are equivalent measures of fairness.
For any r ě t ě 0, and any u ě v ě 0,

ftpw˚
uq

frpw˚
uq

ě
ftpw˚

vq

frpw˚
vq

ðñ ln
ftpw˚

uq

frpw˚
uq

´ ln
ftpw˚

vq

frpw˚
vq

ě 0 (4.18)

ðñ

ż u

v

B

Bτ
ln

ftpw˚
τq

frpw˚
τq

dτ ě 0 (4.19)

ðñ
B

Bp
ln

ftpw˚
pq

frpw˚
pq

ě 0, for any p ě 0 (4.20)

ðñ
B

Bp
ln frpw˚

pq ´
B

Bp
ln ftpw˚

pq ď 0, for any p ě 0 (4.21)

ðñ

ż r

t

B2

BpBq
ln fqpw˚

pqdq ď 0 for any p, q ě 0 (4.22)

ðñ
B2

BpBq
ln fqpw˚

pq ď 0, for any p, q ě 0 (4.23)

ðñ
B

Bp
rHpFq

pw˚
pqq ě 0, for any p, q ě 0. (4.24)

The last inequality is obtained using the fact that by taking the derivative of ln fqpw˚
pq

with respect to q, we get ´ rHpFqpw˚
pqq.

Discussions. We give geometric (Definition 9) and information-theoretic (Definition 10)
interpretations of our uniformity/fairness notion and provide uniformity guarantees
under the q-FFL objective in some cases (Lemma 2, Lemma 3, and Lemma 4). We reveal
interesting relations between the geometric and information-theoretic interpretations in
Lemma 6. Future work would be to gain further understandings for more general cases
indicated in Lemma 6.
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4.4.2 Generalization Bounds

In this section, we first describe the setup we consider in more detail, and then provide
generalization bounds of q-FFL. One benefit of q-FFL is that it allows for a flexible tradeoff
between fairness and accuracy, which generalizes AFL (a special case of q-FFL with
q Ñ 8). We also provide learning bounds that generalize the bounds of the AFL objective,
as described below.

Suppose the service provider is interested in minimizing the loss over a distributed
network of devices, with possibly unknown weights on each device:

Lλphq “

m
ÿ

k“1

λkEpx,yq„Dk
rlphpxq, yqs, (4.25)

where λ is in a probability simplex Λ, m is the total number of devices, Dk is the local
data distribution for device k, h is the hypothesis function, and l is the loss. We use L̂λphq

to denote the empirical loss:

L̂λphq “

m
ÿ

k“1

λk
nk

nk
ÿ

j“1

lphpxk,jq, yk,jq, (4.26)

where nk is the number of local samples on device k and pxk,j, yk,jq „ Dk.
We consider a slightly different, unweighted version of q-FFL:

min
w

fqpwq “
1
m

m
ÿ

k“1

Fq`1
k pwq , (4.27)

which is equivalent to minimizing the empirical loss

L̃qphq “ max
ν,}ν}pď1

m
ÿ

k“1

νi

nk

nk
ÿ

j“1

lphpxk,jq, yk,jq, (4.28)

where 1
p ` 1

q`1 “ 1 (p ě 1, q ě 0).

Lemma 7 (Generalization bounds of q-FFL for a specific λ). Assume that the loss l is bounded by
M ą 0 and the numbers of local samples are pn1, ¨ ¨ ¨ , nmq. Then, for any δ ą 0, with probability
at least 1 ´ δ, the following holds for any λ P Λ, h P H:

Lλphq ď AqpλqL̃qphq ` E

„

max
hPH

Lλphq ´ L̂λphq

ȷ

` M

g

f

f

e

m
ÿ

k“1

λ2
k

2nk
log

1
δ

,

where Aqpλq “ }λ}p, and 1{p ` 1{pq ` 1q “ 1.
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Proof. Similar to the proof in Mohri et al. [215], for any δ ą 0, the following inequality
holds with probability at least 1 ´ δ for any λ P Λ, h P H:

Lλphq ď L̂λphq ` E

„

max
hPH

Lλphq ´ L̂λphq

ȷ

` M

g

f

f

e

m
ÿ

k“1

λ2
k

2nk
log

1
δ

. (4.29)

Denote the empirical loss on device k 1
nk

řnk
j“1 lphpxk,jq, yk,jq as Fk. From Hölder’s

inequality, we have

L̂λphq “

m
ÿ

k“1

λkFk ď

˜

m
ÿ

k“1

λ
p
k

¸
1
p
˜

m
ÿ

k“1

Fq`1
k

¸
1

q`1

“ AqpλqL̃qphq,
1
p

`
1

q ` 1
“ 1.

Plugging L̂λphq ď AqpλqL̃qphq into (4.29) yields the results.

Theorem 4 (Generalization bounds of q-FFL for any λ). Assume that the loss l is bounded by
M ą 0 and the number of local samples is pn1, ¨ ¨ ¨ , nmq. Then, for any δ ą 0, with probability at
least 1 ´ δ, the following holds for any λ P Λ, h P H:

Lλphq ď max
λPΛ

`

Aqpλq
˘

L̃qphq ` max
λPΛ

¨

˝E

„

max
hPH

Lλphq ´ L̂λphq

ȷ

` M

g

f

f

e

m
ÿ

k“1

λ2
k

2nk
log

1
δ

˛

‚,

where Aqpλq “ }λ}p, and 1{p ` 1{pq ` 1q “ 1.

Proof. This directly follows from Lemma 7, by taking the maximum over all possible λ’s
in Λ.

Discussions. From Lemma 7, letting λ “

´

1
m , ¨ ¨ ¨ , 1

m

¯

and q Ñ 8, we recover the
generalization bounds in AFL [215]. In that sense, our generalization results extend those
of AFL’s. In addition, it is not straightforward to derive an optimal q with the tightest
generalization bound from Lemma 7 and Theorem 4. In practice, our proposed method
q-FedAvg allows us to tune a family of q’s by re-using the step-sizes.

4.5 α-fairness and q-FFL

While it is natural to consider the α-fairness framework for machine learning, we are
unaware of any work that uses α-fairness to modify machine learning training objectives.
We provide additional details on the framework below; for further background on α-
fairness and fairness in resource allocation more generally, we defer the reader to Mo
and Walrand [214], Shi et al. [256].

α-fairness [164, 214] is a popular fairness metric widely-used in resource allocation
problems. The framework defines a family of overall utility functions that can be derived
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by summing up the following function of the individual utilities of the users in the
network:

Uαpxq “

#

lnpxq, if α “ 1
1

1´α x1´α, if α ě 0, α ‰ 1 .

Here Uαpxq represents the individual utility of some specific user given x allocated re-
sources (e.g., bandwidth). The goal is to find a resource allocation strategy to maximize
the sum of the individual utilities. This family of functions includes a wide range of pop-
ular fair resource allocation strategies. In particular, the above function represents zero
fairness with α “ 0, proportional fairness [150] with α “ 1, harmonic mean fairness [62]
with α “ 2, and max-min fairness [234] with α “ `8.

Note that in federated learning, we are dealing with costs and not utilities. Thus,
max-min in resource allocation corresponds to min-max in our setting. With this analogy,
it is clear that in our proposed objective q-FFL (4.1), the case where q “ `8 corresponds
to min-max fairness since it is optimizing for the worst-performing device, similar to
what was proposed in Mohri et al. [215]. Also, q “ 0 corresponds to zero fairness, which
reduces to the original FedAvg objective (3.1). In resource allocation problems, α can
be tuned for tradeoffs between fairness and system efficiency. In federated settings, q
can be tuned based on the desired level of fairness (e.g., desired variance of accuracy
distributions) and other performance metrics such as the overall accuracy. For instance,
in Table 4.2 in Section 4.3.3, we demonstrate on two datasets that as q increases, the
overall average accuracy decreases slightly while the worst accuracies are increased
significantly and the variance of the accuracy distribution decreases.

4.6 Experimental Details

4.6.1 Datasets and Models

We provide full details on the datasets and models used in our experiments. The statistics
of four federated datasets used in federated learning (as opposed to meta-learning)
experiments are summarized in Table 4.4. We report the total number of devices, the
total number of samples, and mean and deviation in the sizes of total data points on each
device. Additional details on the datasets and models are described below.

• Synthetic: We follow a similar set up as that in Shamir et al. [253] and impose
additional heterogeneity. The model is y “ argmax(softmaxpWx ` bqq, x P R60, W P

R10ˆ60, b P R10, and the goal is to learn a global W and b. Samples pXk, Ykq and
local models on each device k satisfies Wk „ N puk, 1q, bk „ N puk, 1q, uk „ N p0, 1q;
xk „ N pvk, Σq, where the covariance matrix Σ is diagonal with Σj,j “ j´1.2. Each
element in vk is drawn from N pBk, 1q, Bk „ N p0, 1q. There are 100 devices in total and
the number of samples on each devices follows a power law.
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• Vehicle2: We use the same Vehicle Sensor (Vehicle) dataset as Smith et al. [265],
modelling each sensor as a device. This dataset consists of acoustic, seismic, and
infrared sensor data collected from a distributed network of 23 sensors [75]. Each
sample has a 100-dimension feature and a binary label. We train a linear SVM to
predict between AAV-type and DW-type vehicles. We tune the hyperparameters in
SVM and report the best configuration.

• Sent140: This dataset is a collection of tweets curated from 1,101 accounts from
Sentiment140 [101] (Sent140) where each Twitter account corresponds to a device. The
task is text sentiment analysis which we model as a binary classification problem. The
model takes as input a 25-word sequence, embeds each word into a 300-dimensional
space using pretrained Glove [228], and outputs a binary label after two LSTM layers
and one densely-connected layer.

• Shakespeare: This dataset is built from The Complete Works of William Shakespeare [209].
Each speaking role in the plays is associated with a device. We subsample 31 speaking
roles to train a deep language model for next character prediction. The model takes
as input an 80-character sequence, embeds each character into a learnt 8-dimensional
space, and outputs one character after two LSTM layers and one densely-connected
layer.

• Omniglot: The Omniglot dataset [162] consists of 1,623 characters from 50 different
alphabets. We create 300 meta-training tasks from the first 1,200 characters, and 100
meta-testing tasks from the last 423 characters. Each task is a 5-class classification
problem where each character forms a class. The model is a convolutional neural
network with two convolution layers and two fully-connected layers.

Table 4.4: Statistics of federated datasets

Dataset Devices Samples Samples/device

mean stdev
Synthetic 100 12,697 127 73
Vehicle 23 43,695 1,899 349
Sent140 1,101 58,170 53 32
Shakespeare 31 116,214 3,749 6,912

4.6.2 Implementation Details

Machines. We simulate the federated setting (one server and m devices) on a server
with 2 Intel® Xeon® E5-2650 v4 CPUs and 8 NVidia® 1080Ti GPUs.

Software. We implement all code in TensorFlow [2] Version 1.10.1.
Please see github.com/litian96/fair_flearn for full details.

2http://www.ecs.umass.edu/~mduarte/Software.html
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Algorithm 5 q-FFL applied to MAML: q-MAML

1: Input: K, T, η, w0, N, pk, k “ 1, ¨ ¨ ¨ , N
2: for t “ 0, ¨ ¨ ¨ , T ´ 1 do
3: Sample a batch of St (|St| “ K) tasks randomly (each task k is chosen with proba-

bility pk)
4: Send wt to all sampled tasks
5: Each task k P St samples data Dk from the training set and D1

k from the testing set,
and computes updated parameters on Dk: wt

k “ wt ´ η∇Fkpwtq

6: Each task k P St computes the gradients ∇Fkpwt
kq on D1

k
7: Each task k P St computes:

∆t
k “ Fq

k pwt
kq∇Fkpwt

kq

ht
k “ qFq´1

k pwt
kq}∇Fkpwt

kq}
2

` LFq
k pwt

kq

8: wt`1 is updated as:

wt`1
“ wt

´

ř

kPSt
∆t

k
ř

kPSt
ht

k

9: end for

Hyperparameters. We randomly split data on each local device into 80% training set,
10% test set, and 10% validation set. We tune a best q from t0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10, 15u

on the validation set and report accuracy distributions on the testing set. We pick up the
q value where the variance decreases the most, while the overall average accuracy change
(compared with the q “ 0 case) is within 1%. For each dataset, we repeat this process for
five randomly selected train/test/validation splits, and report the mean and standard
deviation across these five runs where applicable. For Synthetic, Vehicle, Sent140, and
Shakespeare, optimal q values are 1, 5, 1, and 0.001, respectively. For all datasets, we
randomly sample 10 devices each round. We tune the learning rate and batch size on
FedAvg and use the same learning rate and batch size for all q-FedAvg experiments of
that dataset. The learning rates for Synthetic, Vehicle, Sent140, and Shakespeare are
0.1, 0.01, 0.03, and 0.8, respectively. The batch sizes for Synthetic, Vehicle, Sent140, and
Shakespeare are 10, 64, 32, and 10. The number of local epochs E is fixed to be 1 for both
FedAvg and q-FedAvg regardless of the values of q.

In comparing q-FedAvg’s efficiency with q-FedSGD, we also tune a best learning rate for
q-FedSGD methods on q “ 0. For each comparison, we fix devices selected and mini-batch
orders across all runs. We stop training when the training loss Fpwq does not decrease
for 10 rounds. When running AFL methods, we search for a best γw and γλ such that AFL
achieves the highest testing accuracy on the device with the highest loss within a fixed
number of rounds. For Adult, we use γw “ 0.1 and γλ “ 0.1; for Fashion MNIST, we use
γw “ 0.001 and γλ “ 0.01. We use the same γw as step-sizes for q-FedAvg on Adult and
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Fashion MNIST. In Table 4.2, q1 “ 0.01, q2 “ 2 for q-FFL on Adult and q1 “ 5, q2 “ 15 for
q-FFL on Fashion MNIST. Similarly, the number of local epochs is fixed to 1 whenever
we perform local updates.

4.7 Full Experiments

4.7.1 Full Results of Previous Experiments

Fairness of q-FFL Under All Uniformity Metrics. We demonstrate the fairness of q-
FFL in Table 4.1 in terms of variance. Here, we report similar results in terms of other
uniformity measures (the last two columns).

Table 4.5: Full statistics of the test accuracy distribution for q-FFL. q-FFL increases the
accuracy of the worst 10% devices without decreasing the average accuracies. We see
that q-FFL encourages more uniform distributions under all uniformity metrics defined
in Appendix 4.4.2: (1) the variance of the accuracy distribution (Definition 8), (2) the
cosine similarity/geometric angle between the accuracy distribution and the all-ones
vector 1 (Definition 9), and (3) the KL-divergence between the normalized accuracy
vector a and the uniform distribution u, which can be directly translated to the entropy
of a (Definition 10) .

Dataset Objective Average Worst 10% Best 10% Variance Angle KL(a}u)
(%) (%) (%) (˝)

Synthetic q “ 0 80.8 ˘ .9 18.8 ˘ 5.0 100.0 ˘ 0.0 724 ˘ 72 19.5 ˘ 1.1 .083 ˘ .013

q “ 1 79.0 ˘ 1.2 31.1 ˘ 1.8 100.0 ˘ 0.0 472 ˘ 14 16.0 ˘ .5 .049 ˘ .003

Vehicle q “ 0 87.3 ˘ .5 43.0 ˘ 1.0 95.7 ˘ 1.0 291 ˘ 18 11.3 ˘ .3 .031 ˘ .003

q “ 5 87.7 ˘ .7 69.9 ˘ .6 94.0 ˘ .9 48 ˘ 5 4.6 ˘ .2 .003 ˘ .000

Sent140 q “ 0 65.1 ˘ 4.8 15.9 ˘ 4.9 100.0 ˘ 0.0 697 ˘ 132 22.4 ˘ 3.3 .104 ˘ .034

q “ 1 66.5 ˘ .2 23.0 ˘ 1.4 100.0 ˘ 0.0 509 ˘ 30 18.8 ˘ .5 .067 ˘ .006

Shakespeare q “ 0 51.1 ˘ .3 39.7 ˘ 2.8 72.9 ˘ 6.7 82 ˘ 41 9.8 ˘ 2.7 .014 ˘ .006

q “ .001 52.1 ˘ .3 42.1 ˘ 2.1 69.0 ˘ 4.4 54 ˘ 27 7.9 ˘ 2.3 .009 ˘ .05
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Fairness of q-FFL w.r.t. Training Accuracy. The empirical results in Section 4.3 are with
respect to testing accuracy. As a sanity check, we show that q-FFL also results in more
fair training accuracy distributions in Figure 4.6 and Table 4.6.

Figure 4.6: q-FFL (q ą 0) results in more centered (i.e., fair) training accuracy distributions
across devices without sacrificing the average accuracy.

Table 4.6: q-FFL results in more fair training accuracy distributions in terms of all uni-
formity measurements—(a) the accuracy variance, (b) the cosine similarity (i.e., angle)
between the accuracy distribution and the all-ones vector 1, and (c) the KL divergence
between the normalized accuracy a and uniform distribution u.

Dataset Objective Average Worst 10% Best 10% Variance Angle KL(a}u)
(%) (%) (%) (˝)

Synthetic q “ 0 81.7 ˘ .3 23.6 ˘ 1.1 100.0 ˘ .0 597 ˘ 10 17.5 ˘ .3 .061 ˘ .002

q “ 1 78.9 ˘ .2 41.8 ˘ 1.0 96.8 ˘ .5 292 ˘ 11 12.5 ˘ .2 .027 ˘ .001

Vehicle q “ 0 87.5 ˘ .2 49.5 ˘ 10.2 94.9 ˘ .7 237 ˘ 97 10.2 ˘ 2.4 .025 ˘ .011

q “ 5 87.8 ˘ .5 71.3 ˘ 2.2 93.1 ˘ 1.4 37 ˘ 12 4.0 ˘ .7 .003 ˘ .001

Sent140 q “ 0 69.8 ˘ .8 36.9 ˘ 3.1 94.4 ˘ 1.1 278 ˘ 44 13.6 ˘ 1.1 .032 ˘ .006

q “ 1 68.2 ˘ .6 46.0 ˘ .3 88.8 ˘ .8 143 ˘ 4 10.0 ˘ .1 .017 ˘ .000

Shakespeare q “ 0 72.7 ˘ .8 46.4 ˘ 1.4 79.7 ˘ .9 116 ˘ 8 9.9 ˘ .3 .015 ˘ .001

q “ .001 66.7 ˘ 1.2 48.0 ˘ .4 71.2 ˘ 1.9 56 ˘ 9 7.1 ˘ .5 .008 ˘ .001
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Average Testing Accuracy w.r.t. Devices. In Section 4.3.2, we show that q-FFL leads
to more fair accuracy distributions while maintaining approximately the same testing
accuracies. Note that we report average testing accuracy with respect to all data points
in Table 4.1. However, we observe similar results on average accuracy with respect to
all devices between q “ 0 and q ą 0 objectives, as shown in Table 4.7. This indicates that
q-FFL can reduce the variance of the accuracy distribution without sacrificing the average
accuracy over devices or over data points.

Table 4.7: Average testing accuracy under q-FFL objectives. We show that the resulting
solutions of q “ 0 and q ą 0 objectives have approximately the same average accuracies
both with respect to all data points and with respect to all devices.

Dataset Objective Accuracy w.r.t. Data Points Accuracy w.r.t. Devices
(%) (%)

Synthetic q “ 0 80.8 ˘ .9 77.3 ˘ .6

q “ 1 79.0 ˘ 1.2 76.3 ˘ 1.7

Vehicle q “ 0 87.3 ˘ .5 85.6 ˘ .4

q “ 5 87.7 ˘ .7 86.5 ˘ .7

Sent140 q “ 0 65.1 ˘ 4.8 64.6 ˘ 4.5

q “ 1 66.5 ˘ .2 66.2 ˘ .2

Shakespeare q “ 0 51.1 ˘ .3 61.4 ˘ 2.7

q “ .001 52.1 ˘ .3 60.0 ˘ .5

Comparison with Uniform Sampling Devices. In Figure 4.7 and Table 4.8, we show
that in terms of training accuracies, the uniform sampling heuristic may outperform
q-FFL (as opposed to the testing accuracy results in Section 4.3). We suspect that this is
because the uniform sampling baseline is a static method and is likely to overfit to those
devices with few samples. In additional to Figure 4.3 in Section 4.3.3, we also report the
average testing accuracy with respect to data points, best 10%, worst 10% accuracies, and
the variance (along with two other uniformity measures) in Table 4.9.

Figure 4.7: q-FFL (q ą 0) compared with uniform sampling in training accuracy. We see
that on some datasets uniform sampling has higher (and more fair) training accuracies
due to the fact that it is overfitting to devices with few samples.
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Table 4.8: More statistics comparing the uniform sampling objective with q-FFL in terms
of training accuracies. We observe that uniform sampling could result in more fair
training accuracy distributions with smaller variance in some cases.

Dataset Objective Average Worst 10% Best 10% Variance Angle KL(a}u)
(%) (%) (%) (˝)

Synthetic uniform 83.5 ˘ .2 42.6 ˘ 1.4 100.0 ˘ .0 366 ˘ 17 13.4 ˘ .3 .031 ˘ .002

q “ 1 78.9 ˘ .2 41.8 ˘ 1.0 96.8 ˘ .5 292 ˘ 11 12.5 ˘ .2 .027 ˘ .001

Vehicle uniform 87.3 ˘ .3 46.6 ˘ .8 94.8 ˘ .5 261 ˘ 10 10.7 ˘ .2 .027 ˘ .001

q “ 5 87.8 ˘ .5 71.3 ˘ 2.2 93.1 ˘ 1.4 37 ˘ 12 4.0 ˘ .7 .003 ˘ .001

Sent140 uniform 69.1 ˘ .5 42.2 ˘ 1.1 91.0 ˘ 1.3 188 ˘ 19 11.3 ˘ .5 .022 ˘ .002

q “ 1 68.2 ˘ .6 46.0 ˘ .3 88.8 ˘ .8 143 ˘ 4 10.0 ˘ .1 .017 ˘ .000

Shakespeare uniform 57.7 ˘ 1.5 54.1 ˘ 1.7 72.4 ˘ 3.2 32 ˘ 7 5.2 ˘ .5 .004 ˘ .001

q “ .001 66.7 ˘ 1.2 48.0 ˘ .4 71.2 ˘ 1.9 56 ˘ 9 7.1 ˘ .5 .008 ˘ .001

Table 4.9: More statistics showing more fair solutions induced by q-FFL compared with
the uniform sampling baseline in terms of test accuracies. Again, we observe that under
q-FFL, the testing accuracy of the worst 10% devices tends to increase compared with
uniform sampling, and the variance of the final testing accuracies is smaller. Similarly,
q-FFL is also more fair than uniform sampling in terms of other uniformity metrics.

Dataset Objective Average Worst 10% Best 10% Variance Angle KL(a}u)
(%) (%) (%) (˝)

Synthetic uniform 82.2 ˘ 1.1 30.0 ˘ .4 100.0 ˘ .0 525 ˘ 47 15.6 ˘ .8 .048 ˘ .007

q “ 1 79.0 ˘ 1.2 31.1 ˘ 1.8 100.0 ˘ 0.0 472 ˘ 14 16.0 ˘ .5 .049 ˘ .003

Vehicle uniform 86.8 ˘ .3 45.4 ˘ .3 95.4 ˘ .7 267 ˘ 7 10.8 ˘ .1 .028 ˘ .001

q “ 5 87.7 ˘ 0.7 69.9 ˘ .6 94.0 ˘ .9 48 ˘ 5 4.6 ˘ .2 .003 ˘ .000

Sent140 uniform 66.6 ˘ 2.6 21.1 ˘ 1.9 100.0 ˘ 0.0 560 ˘ 19 19.8 ˘ .7 .076 ˘ .006

q “ 1 66.5 ˘ .2 23.0 ˘ 1.4 100.0 ˘ 0.0 509 ˘ 30 18.8 ˘ .5 .067 ˘ .006

Shakespeare uniform 50.9 ˘ .4 41.0 ˘ 3.7 70.6 ˘ 5.4 71 ˘ 38 9.1 ˘ 2.8 .012 ˘ .006

q “ .001 52.1 ˘ .3 42.1 ˘ 2.1 69.0 ˘ 4.4 54 ˘ 27 7.9 ˘ 2.3 .009 ˘ .05
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4.7.2 Additional Experiments

Effects of Data Heterogeneity and The Number of Devices on Unfairness. To study
how data heterogeneity and the total number of devices affect unfairness in a more
direct way, we investigate into a set of synthetic datasets where we can quantify the
degree of heterogeneity. The results are shown in Table 4.10 below. We generate three
synthetic datasets following the process described in Appendix 4.6.1, but with different
parameters to control heterogeneity. In particular, we generate an IID data— Synthetic
(IID) by setting the same W and b on all devices and setting the samples xk „ N p0, 1q for
any device k. We instantiate two non-identically distributed datasets (Synthetic (1, 1) and
Synthetic (2, 2)) from Synthetic (α, β) where uk „ N p0, αq and Bk „ N p0, βq. Recall that
α, β allows to precisely manipulate the degree of heterogeneity with larger α, β values
indicating more statistical heterogeneity. Therefore, from top to bottom in Table 4.10, data
are more heterogeneous. For each dataset, we further create two variants with different
number of participating devices. We see that as data become more heterogeneous and as
the number of devices in the network increases, the accuracy distribution tends to be less
uniform.

Table 4.10: Effects of data heterogeneity and the number of devices on unfairness. For a
fixed number of devices, as data heterogeneity increases from top to bottom, the accuracy
distributions become less uniform (with larger variance) for both q “ 0 and q ą 0.
Within each dataset, the decreasing number of devices results in a more uniform accuracy
distribution. In all scenarios (except on IID data), setting q ą 0 helps to encourage more
fair solutions.

Dataset Objective Average Worst 10% Best 10% Variance

Synthetic (IID)
100 devices q “ 0 89.2 ˘ .6 70.9 ˘ 3 100.0 ˘ 0 85 ˘ 15

q “ 1 89.0 ˘ .5 70.3 ˘ 3 100.0 ˘ 0 88 ˘ 19

50 devices q “ 0 87.1 ˘ 1.5 66.5 ˘ 3 100.0 ˘ 0 107 ˘ 14

q “ 1 86.8 ˘ 0.8 66.5 ˘ 2 100.0 ˘ 0 109 ˘ 13

Synthetic (1, 1)
100 devices q “ 0 83.0 ˘ .9 36.8 ˘ 2 100.0 ˘ 0 452 ˘ 22

q “ 1 82.7 ˘ 1.3 43.5 ˘ 5 100.0 ˘ 0 362 ˘ 58

50 devices q “ 0 84.5 ˘ .3 43.3 ˘ 2 100.0 ˘ 0 370 ˘ 37

q “ 1 85.1 ˘ .8 47.3 ˘ 3 100.0 ˘ 0 317 ˘ 41

Synthetic (2, 2)
100 devices q “ 0 82.6 ˘ 1.1 25.5 ˘ 8 100.0 ˘ 0 618 ˘ 117

q “ 1 82.2 ˘ 0.7 31.9 ˘ 6 100.0 ˘ 0 484 ˘ 79

50 devices q “ 0 85.9 ˘ 1.0 36.8 ˘ 7 100.0 ˘ 0 421 ˘ 85

q “ 1 85.9 ˘ 1.4 39.1 ˘ 6 100.0 ˘ 0 396 ˘ 76
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A Family of q’s Results in Variable Levels of Fairness. In Table 4.11, we show the
accuracy distribution statistics of using a family of q’s on synthetic data. Our objective
and methods are not sensitive to any particular q since all q ą 0 values can lead to more
fair solutions compared with q “ 0. In our experiments in Section 4.3, we report the
results using the q values selected following the protocol described in Appendix 4.6.2.

Table 4.11: Test accuracy statistics of using a family of q’s on synthetic data. We show
results with q’s selected from our candidate set t0.001, 0.01, 0.1, 1, 2, 5, 10, 15u. q-FFL allows
for a more flexible tradeoff between fairness and accuracy. A larger q results in more
fairness (smaller variance), but potentially lower accuracy. Similarly, a larger q imposes
more uniformity in terms of other metrics—(a) the cosine similarity/angle between the
accuracy distribution and the all-ones vector 1, and (b) the KL divergence between the
normalized accuracy a and a uniform distribution u.

Dataset Objective Average Worst 10% Best 10% Variance Angle KL(a}u)
(%) (%) (%) (˝)

Synthetic

q=0 80.8 ˘ .9 18.8 ˘ 5.0 100.0 ˘ 0.0 724 ˘ 72 19.5 ˘ 1.1 .083 ˘ .013

q= 0.1 81.1 ˘ 0.8 22.1 ˘ .8 100.0 ˘ 0.0 666 ˘ 56 18.4 ˘ .8 .070 ˘ .009

q=1 79.0 ˘ 1.2 31.1 ˘ 1.8 100.0 ˘ 0.0 472 ˘ 14 16.0 ˘ .5 .049 ˘ .003

q=2 74.7 ˘ 1.3 32.2 ˘ 2.1 99.9 ˘ .2 410 ˘ 23 15.6 ˘ 0.7 .044 ˘ .005

q=5 67.2 ˘ 0.9 30.0 ˘ 4.8 94.3 ˘ 1.4 369 ˘ 51 16.3 ˘ 1.2 .048 ˘ .010

Device-Specific q. In these experiments, we explore a device-specific strategy for
selecting q in q-FFL. We solve q-FFL with q P t0, 0.001, 0.01, 0.1, 1, 2, 5, 10u in parallel.
After training, each device selects the best resulting model based on the validation data
and tests the performance of the model using the testing set. We report the results in
terms of testing accuracy in Table 4.12. Interestingly, using this device-specific strategy
the average accuracy in fact increases while the variance of accuracies is reduced, in
comparison with q “ 0. We note that this strategy does induce more local computation
and additional communication load at each round. However, it does not increase the
number of communication rounds if run in parallel.
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Table 4.12: Effects of running q-FFL with several q’s in parallel. We train multiple global
models (corresponding to different q’s) independently in the network. After the training
finishes, each device picks up a best, device-specific model based on the performance
(accuracy) on the validation data. While this adds additional local computation and
more communication load per round, the device-specific strategy has the added ben-
efit of increasing the accuracies of devices with the worst 10% accuracies and devices
with the best 10% accuracies simultaneously. This strategy is built upon the proposed
primitive Algorithm 4, and in practice, people can develop other heuristics to improve
the performance (similar to what we explore here), based on the method of adaptively
averaging model updates proposed in Algorithm 4.

Dataset Objective Average Worst 10% Best 10% Variance Angle KL(a}u)
(%) (%) (%) (˝)

Vehicle
q=0 87.3 ˘ .5 43.0 ˘ 1.0 95.7 ˘ 1.0 291 ˘ 18 11.3 ˘ .3 .031 ˘ .003

q=5 87.7 ˘ .7 69.9 ˘ .6 94.0 ˘ .9 48 ˘ 5 4.6 ˘ .2 .003 ˘ .000

multiple q 88.5 ˘ .3 70.0 ˘ 2.0 95.8 ˘ .6 52 ˘ 7 4.7 ˘ .3 .004 ˘ .000

Shakespeare
q=0 51.1 ˘ .3 39.7 ˘ 2.8 72.9 ˘ 6.7 82 ˘ 41 9.8 ˘ 2.7 .014 ˘ .006

q=.001 52.1 ˘ .3 42.1 ˘ 2.1 69.0 ˘ 4.4 54 ˘ 27 7.9 ˘ 2.3 .009 ˘ .05

multiple q 52.0 ˘ 1.5 41.0 ˘ 4.3 72.0 ˘ 4.8 72 ˘ 32 10.1 ˘ .7 .017 ˘ .000

Convergence Speed of q-FFL. Since q-FFL pq ą 0q is more difficult to optimize, a natural
question one might ask is: will the q-FFL q ą 0 objectives slow the convergence compared
with FedAvg? We empirically investigate this on the four datasets. We use q-FedAvg to
solve q-FFL, and compare it with FedAvg (i.e., solving q-FFL with q “ 0). As demonstrated
in Figure 4.8, the q values that result in more fair solutions also do not significantly slow
down convergence.

Figure 4.8: The convergence speed of q-FFL compared with FedAvg. We plot the distance
to the highest accuracy achieved versus communication rounds. Although q-FFL with
q>0 is a more difficult optimization problem, for the q values we choose that could lead
to more fair results, the convergence speed is comparable to that of q “ 0.

Efficiency of q-FFL Compared with AFL. One added benefit of q-FFL is that it leads to
faster convergence than AFL—even when we use non-local-updating methods for both
objectives. In Figure 4.9, we show with respect to the final testing accuracy for the single
worst device (i.e., the objective that AFL is trying to optimize), q-FFL converges faster
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than AFL. As the number of devices increases (from Fashion MNIST to Vehicle), the
performance gap between AFL and q-FFL becomes larger because AFL introduces larger
variance.

q- q-

Figure 4.9: q-FFL is more efficient than AFL. With the worst device achieving the same
final testing accuracy, q-FFL converges faster than AFL. For Vehicle (with 23 devices) as
opposed to Fashion MNIST (with 3 devices), we see that the performance gap is larger.
We run full gradient descent at each round for both methods.

Efficiency of q-FedAvg under Different Data Heterogeneity. As mentioned in Ap-
pendix 4.7.1, one potential cause for the slower convergence of q-FedAvg on the synthetic
dataset may be that local updating schemes could hurt convergence when local data
distributions are highly heterogeneous. Although it has been shown that applying
updates locally results in significantly faster convergence in terms of communication
rounds [209, 266], which is consistent with our observation on most datasets, we note
that when data is highly heterogeneous, local updating may hurt convergence. We
validate this by creating an IID synthetic dataset (Synthetic-IID) where local data on each
device follow the same global distribution. We call the synthetic dataset used in Section
4.3 Synthetic-Non-IID. We also create a hybrid dataset (Synthetic-Hybrid) where half of
the total devices are assigned IID data from the same distribution, and half of the total
devices are assigned data from different distributions. We observe that if data is per-
fectly IID, q-FedAvg is more efficient than q-FedSGD. As data become more heterogeneous,
q-FedAvg converges more slowly than q-FedSGD in terms of communication rounds. For
all three synthetic datasets, we repeat the process of tuning a best constant step-size for
FedSGD and observe similar results as before — our dynamic solver q-FedSGD behaves
similarly (or even outperforms) a best hand-tuned FedSGD.
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Figure 4.10: Convergence of q-FedAvg compared with q-FedSGD under different data
heterogeneity. When data distributions are heterogeneous, it is possible that q-FedAvg
converges more slowly than q-FedSGD. Again, the proposed dynamic solver q-FedSGD
performs similarly (or better) than a best tuned fixed-step-size FedSGD.
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Chapter 5

Robustness: Addressing Competing
Constraints Through Personalization

In federated learning, heterogeneity not only affects separate metrics such as accuracy
or fairness, but also affects how they interplay with each other. In this chapter, we
explore this direction by considering the constraints between fairness and robustness,
and propose a unified framework to probably address them simultaneously.

5.1 Overview

To deploy FL in practice, it is necessary for the resulting systems to be not only accurate,
but to also satisfy a number of pragmatic constraints regarding issues such as fairness,
robustness, and privacy. Simultaneously satisfying these varied constraints can be
exceptionally difficult [144].

We focus in this work specifically on issues of accuracy, fairness (i.e., limiting perfor-
mance disparities across the network [215]), and robustness (against training-time data
and model poisoning attacks). Many prior efforts have separately considered fairness or
robustness in federated learning. For instance, fairness strategies include using minimax
optimization to focus on the worst-performing devices [121, 215] or reweighting the
devices to allow for a flexible fairness/accuracy tradeoff [182, 184]. Robust methods
commonly use techniques such as gradient clipping [277] or robust aggregation [35, 309].

While these approaches may be effective at either promoting fairness or defending
against training-time attacks in isolation, we show that the constraints of fairness and
robustness can directly compete with one another when training a single global model,
and that simultaneously optimizing for accuracy, fairness, and robustness requires careful
consideration. For example, as we empirically demonstrate (Section 5.3), current fairness
approaches can render FL systems highly susceptible to training time attacks from
malicious devices. On the other hand, robust methods may filter out rare but informative
updates, causing unfairness [288].

In this work, we investigate a simple, scalable technique to simultaneously improve
accuracy, fairness, and robustness in federated learning. While addressing the competing
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constraints of FL may seem like an insurmountable problem, we identify that statistical
heterogeneity (i.e., non-identically distributed data) is a root cause for tension between
these constraints, and is key in paving a path forward. In particular, we suggest that
methods for personalized FL—which model and adapt to the heterogeneity in federated
settings by learning distinct models for each device—may provide inherent benefits in
terms of fairness and robustness.

To explore this idea, we propose Ditto, a scalable federated multi-task learning
framework. Ditto can be seen as a lightweight personalization add-on for standard
global FL. It is applicable to both convex and non-convex objectives, and inherits similar
privacy and efficiency properties as traditional FL. We evaluate Ditto on a suite of
federated benchmarks and show that, surprisingly, this simple form of personalization
can in fact deliver better accuracy, robustness, and fairness benefits than state-of-the-art,
problem-specific objectives that consider these constraints separately. We summarize our
contributions below:

• We propose Ditto, a multi-task learning objective for federated learning that provides
personalization while retaining similar efficiency and privacy benefits as traditional FL.
We provide convergence guarantees for our proposed Ditto solver, which incorporate
common practices in cross-device federated learning such as limited device participa-
tion and local updating. Despite its simplicity, we show that Ditto can deliver similar
or superior accuracy relative to other common methods for personalized federated
learning.

• Next, we demonstrate that the benefits of Ditto go beyond accuracy—showing that the
personalized objective can inherently offer robustness superior to that of common robust
FL methods across a diverse set of data and model poisoning attacks. On average
across all datasets and attacks, Ditto improves test accuracy by „6% (absolute) over
the strongest robust baseline.

• Similarly, we show that Ditto can naturally increase fairness—reducing variance of the
test accuracy across devices by „10% while maintaining similar or superior accuracy
relative to state-of-the-art methods for fair FL.

• Finally, we highlight that Ditto is particularly useful for practical applications where
we simultaneously care about multiple constraints (accuracy, fairness, and robust-
ness). We motivate this through analysis on a toy example in Section 5.2, as well as
experiments across a suite of federated datasets in Section 5.3.

5.2 Ditto: Global-Regularized Federated Multi-Task Learn-
ing

In order to explore the possible fairness/robustness benefits of personalized FL, we
first propose a simple and scalable framework for federated multi-task learning. As
we will see, this lightweight personalization framework is amenable to analyses while
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also having strong empirical performance. We explain our proposed objective, Ditto,
in Section 5.2.1 and then present a scalable algorithm to solve it in federated settings
(Section 5.2.2). We provide convergence guarantees for our solver, and explain several
practical benefits of our modular approach in terms of privacy and efficiency. Finally, in
Section 5.2.3, we characterize the benefits of Ditto in terms of fairness and robustness on
a class of linear problems. We empirically explore the fairness and robustness properties
against state-of-the-art baselines in Section 5.3.

5.2.1 Ditto Objective

Traditionally, federated learning objectives consider fitting a single global model, w,
across all local data in the network. The aim is to solve:

min
w

GpF1pwq, . . . FKpwqq , (Global Obj)

where Fkpwq is the local objective for device k, and Gp¨q is a function that aggregates
the local objectives tFkpwqukPrKs from each device. For example, in FedAvg [206], Gp¨q is
typically set to be a weighted average of local losses, i.e.,

řK
k“1 pkFkpwq, where pk is a

pre-defined non-negative weight such that
ř

k pk “ 1.
However, in general, each device may generate data xk via a distinct distribution Dk,

i.e., Fkpwq :“ Exk„Dk r fkpw; xkqs. To better account for this heterogeneity, it is common
to consider techniques that learn personalized, device-specific models, tvkukPrKs across
the network. In this work we explore personalization through a simple framework for
federated multi-task learning. We consider two ‘tasks’: the global objective (Global Obj),
and the local objective Fkpvkq, which aims to learn a model using only the data of
device k. To relate these tasks, we incorporate a regularization term that encourages
the personalized models to be close to the optimal global model. The resulting bi-level
optimization problem for each device k P rKs is given by:

min
vk

hkpvk; w˚
q :“ Fkpvkq `

λ

2
}vk ´ w˚

}
2

s.t. w˚
P arg min

w
GpF1pwq, . . . FKpwqqq .

(Ditto)

Here the hyperparameter λ controls the interpolation between local and global mod-
els. When λ is set to 0, Ditto is reduced to training local models; as λ grows large, it
recovers global model objective (Global Obj) (λ Ñ `8).

Intuition for Fairness/Robustness Benefits. In addition to improving accuracy via
personalization, we argue that Ditto can offer fairness and robustness benefits. To reason
about this, consider a simple case where data are homogeneous across devices. Without
adversaries, learning a single global model is optimal for generalization. However,
in the presence of adversaries, learning globally might introduce corruption, while
learning local models may not generalize well due to limited sample size. Ditto with
an appropriate value of λ offers a tradeoff between these two extremes: the smaller λ,
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the more the personalized models vk can deviate from the (corrupted) global model w,
potentially providing robustness at the expense of generalization. In the heterogeneous
case (which can lead to issues of unfairness), a finite λ exists to offer robustness and
fairness jointly. We explore these ideas more rigorously in Section 5.2.3 by analyzing the
tradeoffs between accuracy, fairness, and robustness in terms of λ for a class of linear
regression problems, and demonstrate fairness/robustness benefits of Ditto empirically
in Section 5.3.

Other Personalization Schemes. Personalization is a widely-studied topic in FL. Our
intuition in Ditto is that personalization, by reducing reliance on the global model, can
reduce representation disparity (i.e., unfairness) and potentially improve robustness. It
is possible that other personalization techniques beyond Ditto offer similar benefits: We
provide some initial, encouraging results on this in Section 5.3.4. However, we specifically
explore Ditto due to its simple nature, scalability, and strong empirical performance.
Ditto is closely related to works that regularize personalized models towards their
average [72, 107, 108], similar to classical mean-regularized MTL [87]; Ditto differs by
regularizing towards a global model rather than the average personalized model. We
find that this provides benefits in terms of analysis (Section 5.2.3), as we can easily reason
about Ditto relative to the global (λ Ñ 8) vs. local (λ Ñ 0) baselines; empirically, in
terms of accuracy, fairness, and robustness (Section 5.3); and practically, in terms of the
modularity it affords our corresponding solver (Section 5.2.2).

Other Regularizers. To encourage the personalized models vk to be close to the optimal
global model w˚, there are choices beyond the L2 norm that could be considered, e.g.,
using a Bregman divergence-based regularizer or reshaping the L2 ball using the Fisher
information matrix. Under the logistic loss (used in our experiments), the Bregman diver-
gence will reduce to KL divergence, and its second-order Taylor expansion will result in
an L2 ball reshaped with the Fisher information matrix. Such regularizers are studied in
other related contexts like continual learning [156, 251], multi-task learning [312], or fine-
tuning for language models [129]. However, in our experiments (Section 5.3.4), we find
that incorporating approximate empirical Fisher information [156, 312] or symmetrized
KL divergence [129] does not improve the performance over the simple L2 regularized
objective, while adding non-trivial computational overhead.

Remark (Relation to FedProx). We note that the L2 term in Ditto bears resemblance
to FedProx, a method which was developed to address heterogeneity in federated
optimization [176]. However, Ditto fundamentally differs from FedProx in that the goal
is to learn personalized models vk, while FedProx produces a single global model w. For
instance, when the regularization hyperparameter is zero, Ditto reduces to learning
separate local models, whereas FedProx would reduce to FedAvg. In fact, Ditto is
significantly more general than FedProx in that FedProx could be used as the global
model solver in Ditto to optimize Gp¨q. As discussed above, other regularizers beyond
the L2 norm may also be used in practice.
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We note that Hu et al. [121] propose FedMGDA+, a method targeting fair and ro-
bust FL; however, this work combines classical fairness (minimax optimization) and
robustness (gradient normalization) techniques, in contrast to the multi-task learning
framework proposed herein, which we show can inherently provide benefits with respect
to both constraints simultaneously.

5.2.2 Ditto Solver

To solve Ditto, we propose jointly solving for the global model w˚ and personalized
models tvkukPrKs in an alternating fashion, as summarized in Algorithm 6. Optimization
proceeds in two phases: (i) updates to the global model, w˚, are computed across the
network, and then (ii) the personalized models vk are fit on each local device. The process
of optimizing w˚ is exactly the same as optimizing for any objective Gp¨q in federated
settings: If we use iterative solvers, then at each communication round, each selected
device can solve the local subproblem of Gp¨q approximately (Line 5). For personalization,
device k solves the global-regularized local objective minvk hkpvk; wtq inexactly at each
round (Line 6-7). Due to this alternating scheme, our solver can scale well to large
networks, as it does not introduce additional communication or privacy overheads
compared with existing solvers for Gp¨q. In our experiments (all except Table 5.3), we
use FedAvg as the objective and solver for Gp¨q, under which we simply let device k run
local SGD on Fk (Line 5).

We note that another natural choice to solve the Ditto objective is to first obtain w˚,
and then for each device k, perform finetuning on the local objective minvk hkpvk; w˚q.
These two approaches will arrive at the same solutions in strongly convex cases. In non-
convex settings, we observe that there may be additional benefits of joint optimization:
Empirically, we find that the updating scheme tends to guide the optimization trajectory
towards a better solution compared with finetuning starting from w˚, particularly when
w˚ is corrupted by adversarial attacks (Section 5.3.4). Intuitively, under training-time
attacks, the global model may start from a random one, get optimized, and gradually
become corrupted as training proceeds [174]. In these cases, feeding in early global
information (i.e., before the global model converges to w˚) may be helpful under strong
attacks.

We note that Ditto with joint optimization requires the devices to maintain local
states (i.e., personalized models) and carry these local states to the next communication
round where they are selected. Solving Ditto with finetuning does not need devices to
be stateful, while losing the benefits of alternate updating discussed above.

Modularity of Ditto. From the Ditto objective and Alg 6, we see that a key advantage
of Ditto is its modularity, i.e., that we can readily use prior art developed for the Global
Obj along with the personalization add-on of hkpvk; w˚q, as highlighted in red. This has
several benefits:
• Optimization: It is possible to plug in other methods beyond FedAvg [e.g., 148, 179, 235]

in Algorithm 6 to update the global model, and inherit the convergence benefits, if any
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Algorithm 6 Ditto for Personalized FL

1: Input: K, T, s, λ, η, w0, tv0
kukPrKs

2: for t “ 0, ¨ ¨ ¨ , T ´ 1 do
3: Server randomly selects a subset of devices St, and sends wt to them
4: for device k P St in parallel do
5: Solve the local sub-problem of Gp¨q inexactly starting from wt to obtain wt

k:

wt
k Ð UPDATE_GLOBALpwt,∇Fkpwt

qq

6: /* Solve hkpvk; wtq */
7: Update vk for s local iterations:

vk “ vk ´ ηp∇Fkpvkq ` λpvk ´ wt
qq

8: Send ∆t
k :“ wt

k ´ wt back
9: end for

10: Server aggregates t∆t
ku:

wt`1
Ð AGGREGATE

`

wt, t∆t
kukPtStu

˘

11: end for
12: Return tvkukPrKs (personalized), wT (global)

(we make this more precise in Theorem 5).
• Privacy: Ditto communicates the same information over the network as typical FL

solvers for the global objective, thus preserving whatever privacy or communication
benefits exist for the global objective and its respective solver. This is different from
most other personalization methods where global model updates depend on local
parameters, which may raise privacy concerns [196].

• Robustness: Beyond the inherent robustness benefits of personalization, robust global
methods can be used with Ditto to further improve performance (see Section 5.3.4).

In particular, while not the main focus of our work, we note that Ditto may offer a
better privacy-utility tradeoff than training a global model. For instance, when training
Ditto, if we fix the number of communication rounds and add the same amount of
noise per round to satisfy differential privacy, Ditto consumes exactly the same privacy
budget as normal global training, while yielding higher accuracy via personalization
(Section 5.3). Similar benefits have been studied, e.g., via finetuning strategies [312].

Convergence of Algorithm 6. Note that optimizing the global model wt does not
depend on any personalized models tvkukPrKs. Therefore, w enjoys the same global
convergence rates with the solver we use for G. Under this observation, we present the
local convergence of Algorithm 6.
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Theorem 5 (Local convergence of Alg. 6; formal statement and proof in Theorem 14).
Assume for k P rKs, Fk is strongly convex and smooth, under common assumptions, if wt

converges to w˚ with rate gptq, then there exists a constant Că8 such that for λ P R, and for
k P rKs, vt

k converges to v˚
k :“ arg minvk

hkpvk; w˚q with rate Cgptq.

Using Theorem 5, we can directly plug in previous convergence analyses for any Gp¨q.
For instance, when the global objective and its solver are those of FedAvg, we can obtain
an Op1{tq convergence rate for Ditto under suitable conditions (Corollary 4). We provide
a full theorem statement and proof of convergence in Appendix 5.5.

5.2.3 Analyzing the Fairness/Robustness Benefits of Ditto in Simpli-
fied Settings

In this section, we more rigorously explore the fairness/robustness benefits of Ditto
on a class of linear problems. Throughout our analysis, we assume Gp¨q is the standard
objective in FedAvg [206].

Point Estimation. To provide intuition, we first examine a toy one-dimensional point
estimation problem. Denote the underlying models for the devices as tvkukPrKs, vk P

R, and let the points on device k, txk,1, . . . , xk,nu1, be observations of vk with random
perturbation, i.e., xk,i “ vk ` zk,i, where zk,i „ N p0, σ2q and are IID. Assume vk „ N pθ, τ2q,
where θ is drawn from the uniform uninformative prior on R, and τ is a known constant.

Here, τ controls the degree of relatedness of the data on different devices: τ=0
captures the case where the data on all devices are identically distributed while τ Ñ 8

results in the scenario where the data on different devices are completely unrelated. The
local objective is minvk Fkpvkq “ 1

2pvk ´ 1
nk

řnk
i“1 xk,iq

2. In the presence of adversaries, we
look at a specific type of label poisoning attack. Let Ka denote the number of malicious
devices, and the ‘capability’ of an adversary is modeled by τa, i.e., the underlying model
of an adversary follows N pθ, τ2

a q where τ2
a ą τ2.

We first derive the Bayes estimator (which will be the most accurate and robust) for
the real model distribution by observing a finite number of training points. Then, we
show that by solving Ditto, we are able to recover the Bayes estimator with a proper
λ˚ (with the knowledge of τ). In addition, the same λ˚ results in the most fair solution
among the set of solutions of Ditto parameterized by λ. This shows that Ditto with a
proper choice of λ is Bayes optimal for this particular problem instance. In general, in
our theorems, we prove that

λ˚
“

σ2

n
K

Kτ2 `
Ka

K´1pτ2
a ´ τ2q

.

We see that λ˚ decreases when (i) there are more local samples n, (ii) the devices are
less related (larger τ), or (iii) the attacks are stronger (larger number of attackers, Ka,

1For ease of notation, we assume each device has the same number of training samples. It is straightfor-
ward to extend the current analysis to allow for varying number of samples per device.
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and more powerful adversaries, τa). Related theorems (Theorem 10-13) are presented in
Appendix 5.4.3.

Figure 5.1: Empirically, the λ˚ given by our theorems results in the most accurate, fair,
and robust solution within Ditto’s solution space. λ˚ is also optimal in terms of accuracy
and robustness among any possible federated estimation algorithms.

Figure 5.2: Impact of data relatedness across all devices. When 1{τ is small (less related),
local outperforms global; when 1{τ is large (more related), global is better than local.
Ditto (λ˚) achieves the lowest test error and variance (measured across benign devices).

In Figure 5.1, we plot average test error, fairness (standard deviation shown as error
bars), and robustness (test error in the adversarial case) across a set of λ’s for both clean
and adversarial cases. We see that in the solution space of Ditto, there exists a specific
λ which minimizes the average test error and standard deviation across all devices at
the same time, which is equal to the optimal λ˚ given by our theory. Figure 5.2 shows
(i) Ditto with λ˚ is superior than learning local or global models, and (ii) λ˚ should
increase as the relatedness between devices (1{τ) increases.

Linear Regression. All results discussed above can be generalized to establish the
optimality of Ditto on a class of linear regression problems (with additional assumptions
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on feature covariance). We defer readers to Appendix 5.4.2 for full statements and proofs.
While our analyses here are limited to a simplified set of attacks and problem settings, we
build on this intuition in Section 5.3—empirically demonstrating the accuracy, robustness,
and fairness benefits of Ditto using both convex and non-convex models, across a range
of federated learning benchmarks, and under a diverse set of attacks.

5.3 Experiments

In this section, we first demonstrate that Ditto can inherently offer similar or superior
robustness relative to strong robust baselines (Section 5.3.1). We then show it results
more fair performance than recent fair methods (Section 5.3.2). Ditto is particularly
well-suited for mitigating the tension between these constraints and achieving both
fairness and robustness simultaneously (Section 5.3.3). We explore additional beneficial
properties of Ditto in Section 5.3.4.

Setup. For all experiments, we measure robustness via test accuracy, and fairness via
test accuracy variance (or standard deviation), both across benign devices (see Def. 2, 1).
We use datasets from common FL benchmarks [1, 43, 265], which cover both vision
and language tasks, and convex and non-convex models. Detailed datasets and models
are provided in Table 5.4 in Appendix 5.6. We split local data on each device into
train/test/validation sets randomly, and measure performance on the test data. For each
device, we select λ locally based on its local validation data. We further assume the
devices can make a binary decision on whether the attack is strong or not. For devices
with very few validation samples (less than 4), we use a fixed small λ (λ=0.1) for strong
attacks, and use a fixed relatively large λ (λ=1) for all other attacks. For devices with
more than 5 validation data points, we let each select λ from t0.05, 0.1, 0.2u for strong
attacks, and select λ from t0.1, 1, 2u for all other attacks. See Appendix 5.7.2 for details.
More advanced tuning methods are left for future work. Our code, data, and experiments
are publicly available at github.com/litian96/ditto.

5.3.1 Robustness of Ditto

Following our threat model described in Definition 2, we apply three attacks to corrupt a
random subset of devices. We pick corruption levels until a point where there is a signifi-
cant performance drop when training a global model. We compare robustness (Def. 2) of
Ditto with various defense baselines, presenting the results of three strongest defenses
in Figure 5.3. Execution details and full results are reported in Appendix 5.7.4. As shown
in Figure 5.3, Ditto achieves the highest accuracy under most attacks, particularly those
with a large fraction of malicious devices. On average across all datasets and attacks,
Ditto results in „6% absolute accuracy improvement compared with the strongest robust
baseline (Appendix 5.7.4). In scenarios where a robust baseline outperforms Ditto, we
have also found that replacing the global objective and its solver (FedAvg) with a robust
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Figure 5.3: Robustness, i.e., average test accuracy on benign devices (Definition 2), on
Fashion MNIST and FEMNIST. We compare Ditto with learning a global model and
three strong defense mechanisms (see Appendix 5.7 for results on all defense baselines),
and find that Ditto is the most robust under almost all attacks.

version (e.g., using robust aggregators) can further improve Ditto, yielding superior
performance (Section 5.3.4).

5.3.2 Fairness of Ditto

To explore the fairness of Ditto, we compare against TERM [184] as a baseline. It is an
improved version of the q-FFL [182] objective, which has been recently proposed for
fair federated learning. TERM also recovers AFL [215], another fair FL objective, as a
special case. TERM uses a parameter t to offer flexible tradeoffs between fairness and
accuracy. In Table 5.1, we compare the proposed objective with global, local, and fair
methods (TERM) in terms of test accuracies and standard deviation. When the corruption
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Table 5.1: Average (standard deviation) test accuracy to benchmark performance and
fairness (Definition 1) on Fashion MNIST and FEMNIST. Ditto is either (i) more fair
compared with the baselines of training a global model, or (ii) more accurate than the
fair baseline under a set of attacks. We bold the method with highest average minus
standard deviation across all methods.

Fashion A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

global .911 (.08) .897 (.08) .855 (.10) .753 (.13) .900 (.08) .882 (.09) .857 (.10) .753 (.10) .551 (.13) .275 (.12)
local .876 (.10) .874 (.10) .876 (.11) .879 (.10) .874 (.10) .876 (.11) .879 (.10) .877 (.10) .874 (.10) .876 (.11)
fair (TERM, t=1) .909 (.07) .751 (.12) .637 (.13) .547 (.11) .731 (.13) .637 (.14) .635 (.14) .653 (.13) .601 (.12) .131 (.16)
Ditto .943 (.06) .944 (.07) .937 (.07) .907 (.10) .938 (.07) .930 (.08) .913 (.09) .921 (.09) .902 (.09) .873 (.11)

FEMNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global .804 (.11) .773 (.11) .727 (.12) .574 (.15) .774 (.11) .703 (.14) .636 (.15) .517 (.14) .487 (.14) .314 (.13)
local .628 (.15) .620 (.14) .627 (.14) .607 (.14) .620 (.14) .627 (.14) .607 (.14) .622 (.14) .621 (.14) .620 (.14)
fair (TERM, t=1) .809 (.11) .636 (.15) .562 (.13) .478 (.12) .440 (.15) .336 (.12) .363 (.12) .353 (.12) .316 (.12) .299 (.11)
Ditto .834 (.09) .802 (.10) .762 (.11) .672 (.13) .801 (.09) .700 (.15) .675 (.14) .685 (.15) .650 (.14) .613 (.13)

level is high, ‘global’ or ‘fair’ will even fail to converge. Ditto results in more accurate
and fair solutions both with and without attacks. On average across all datasets, Ditto
reduces variance across devices by „10% while improving absolute test accuracy by 5%
compared with TERM (on clean data).

5.3.3 Addressing Competing Constraints

In this section, we examine the competing constraints between robustness and fairness.
When training a single global model, fair methods aim to encourage a more uniform
performance distribution, but may be highly susceptible to training-time attacks in
statistically heterogeneous environments. We investigate the test accuracy on benign
devices when learning global, local, and fair models. In the TERM objective, we set
t “ 1, 2, 5 to achieve different levels of fairness (the higher, the fairer). We perform
the data poisoning attack (A1 in Def. 2). The results are plotted in Figure 5.4. As the
corruption level increases, we see that fitting a global model becomes less robust. Using
fair methods will be more susceptible to attacks. When t gets larger, the test accuracy gets
lower, an indication that the fair method is overfitting to the corrupted devices relative
to the global baseline.

Next, we apply various strong robust methods under the same attack, and explore
the robustness/accuracy and fairness performance. The robust approaches include:
Krum, multi-Krum [35], taking the coordinate-wise median of gradients (‘median’),
gradient clipping (‘clipping’), filtering out the gradients with largest norms (‘k-norm’),
and taking the gradient of the k-th largest loss where k is the number of malicious devices
(‘k-loss’). For Krum, multi-Krum, k-norm, and k-loss, we assume that the server knows
the expected number of malicious devices that are selected each round, and can set k
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Figure 5.4: Fair methods can overfit to corrupted devices (possibly with large training
losses) by imposing more weights on them, thus being particularly susceptible to attacks.

Figure 5.5: Compared with learning a global model, robust baselines (i.e., the methods
listed in the figure excluding ‘global’ and ‘Ditto’) are either robust but not fair (with
higher accuracy, larger variance), or not even robust (with lower accuracy). Ditto lies at
the lower right corner, which is our preferred region.

accordingly for k-norm and k-loss. From Figure 5.5, we see that robust baselines are
either (i) more robust than global but less fair, or (ii) fail to provide robustness due to
heterogeneity. Ditto is more robust, accurate, and fair.

5.3.4 Additional Properties of Ditto

Personalization. We additionally explore the performance of other personalized FL
methods in terms of accuracy and fairness, on both clean and adversarial cases. In
particular, we consider objectives that (i) regularize with the average (L2SGD [107]) or the
learnt device relationship matrix (MOCHA [265]), (ii) encourage closeness to the global
model in terms of some specific function behavior (EWC [156, 312] and Symmetrized KL
(SKL)), (iii) interpolate between local and global models (APFL [69] and mapper [202]),
and (iv) have been motivated by meta-learning (Per-FedAvg (HF) [88]). We provide a
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detailed description in Appendix 5.6.
We compare Ditto with the above alternatives, using the same learning rate tuned

on FedAvg on clean data for all methods except Per-FedAvg, which requires additional
tuning to prevent divergence. For finetuning methods (EWC and SKL), we finetune on
each local device for 50 epochs starting from the converged global model. We report
results of baseline methods using their best hyperparameters. Despite Ditto’s simplicity,
in Table 5.2 below, we see that Ditto achieves similar or superier test accuracy with
slightly lower standard deviation compared with these recent personalization methods.

We also evaluate the performance of MOCHA with a convex SVM model. MOCHA
is more robust and fair than most baselines, which is in line with our reasoning that
personalization can provide benefits for these constraints. Further understanding the
robustness/fairness benefits of other personalized approaches would be an interesting
direction of future work.

Table 5.2: Ditto is competitive with or outperforms other recent personalization methods.
We report the average (standard deviation) of test accuracies across all devices to capture
performance and fairness (Definition 1), respectively.

Clean 50% Adversaries (A1)

Methods FEMNIST CelebA FEMNIST CelebA
global .804 (.11) .911 (.19) .727 (.12) .538 (.28)
local .628 (.15) .692 (.27) .627 (.14) .682 (.27)
plain finetuning .815 (.09) .912 (.18) .734 (.12) .721 (.28)
L2SGD .817 (.10) .899 (.18) .732 (.15) .725 (.25)
EWC .810 (.11) .910 (.18) .756 (.12) .642 (.26)
SKL .820 (.10) .915 (.16) .752 (.12) .708 (.27)
Per-FedAvg (HF) .827 (.09) .907 (.17) .604 (.14) .756 (.26)
mapper .792 (.12) .773 (.25) .726 (.13) .704 (.27)
APFL .811 (.11) .911 (.17) .750 (.11) .710 (.27)
Ditto .836 (.10) .914 (.18) .767 (.10) .721 (.27)

Augmenting with Robust Baselines. Ditto allows the flexibility of learning robust w˚

leveraging any previous robust aggregation techniques, which could further improve the
performance of personalized models. For instance, in the aggregation step at the server
side (Line 7 in Algorithm 6), instead of simply averaging the global model updates as in
FedAvg, we can aggregate them via multi-Krum, or after gradient clipping. As is shown
in Table 5.3, Ditto combined with clipping yields improvements compared with vanilla
Ditto.

Comparing Two Solvers. As mentioned in Section 5.2.2, another way to solve Ditto
is to finetune on minvk hkpvk; w˚q for each k P rKs after obtaining w˚. We examine
the performance of two solvers under the model replacement attack (A3) with 20%
adversaries. In realistic federated networks, it may be challenging to determine how
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Table 5.3: Augmenting Ditto with robust baselines can further improve performance.

FEMNIST A1 A2 A3

Methods 20% 80% 20% 80% 10% 20%

global .773 .574 .774 .636 .517 .364
clipping .791 .408 .791 .656 .795 .061
Ditto .803 .669 .792 .681 .695 .650
Ditto + clipping .810 .645 .808 .684 .813 .672

Figure 5.6: Ditto with joint optimization (Algorithm 6) outperforms the alternative local
finetuning solver under the strong model replacement attack.

many iterations to finetune for, particularly over a heterogeneous network of devices.
To obtain the best performance of finetuning, we solve minvk hkpvk; w˚q on each device
by running different iterations of mini-batch SGD and pick the best one. As shown in
Figure 5.6, the finetuning solver improves the performance compared with learning a
global model, while Ditto combined with joint optimization performs the best. One can
also perform finetuning after early stopping; however, it is essentially solving a different
objective and it is difficult to determine the stopping criteria. We discuss this in more
detail in Appendix 5.7.1.
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5.4 Analysis of the Federated Multi-Task Learning Objec-
tive Ditto

Here, we provide theoretical analyses of Ditto, mainly on a class of linear models. In
this linear setting, we investigate accuracy, fairness, and robustness of Ditto. We first
discuss some general properties of Ditto for strongly convex functions in terms of the
training performance in Section 5.4.1. We next present our main results on character-
izing the benefits (accuracy, fairness, and robustness) of Ditto on linear regression in
Section 5.4.2. Finally, we present results on a special case of linear regression (federated
point estimation problem examined in Section 5.2.3) in Section 5.4.3.

5.4.1 Properties of Ditto for Strongly Convex Functions

Let the Ditto objective on device k be

hkpwq “ Fkpwq ` λψpwq, (5.1)

where Fk is strongly convex, and

ψpwq :“
1
2

}w ´ w˚
}

2, (5.2)

w˚ :“ arg min
w

$

&

%

1
K

ÿ

kPrKs

Fkpwq

,

.

-

. (5.3)

Let
pwkpλq “ arg min

w
hkpwq. (5.4)

Without any distributional assumptions on the tasks, we first characterize the solutions
of the objective hkpwq.

Lemma 8. For all λ ě 0,

B

Bλ
Fkp pwkpλqq ě 0, (5.5)

B

Bλ
ψp pwkpλqq ď 0. (5.6)

In addition, for all k, if Fkpw˚q is finite, then

lim
λÑ8

pwkpλq “ w˚. (5.7)

Proof. The proof here directly follows the proof in Hanzely and Richtárik [Theorem 3.1,
107].

93



As λ increases, the local empirical training loss Fkp pwkpλqq will also increase, and the
resulting personalized models will be closer to the global model. Therefore, λ effectively
controls how much personalization we impose. Since for any device k P rKs, training loss
is minimized when λ “ 0, training separate local models is the most robust and fair in
terms of training performance when we do not consider generalization.

However, in order to obtain the guarantees on the test performance, we need to
explicitly model the joint distribution of data on all devices. In the next section, we
explore a Bayesian framework on a class of linear problems to examine the generalization,
fairness, and robustness of the Ditto objective, all on the underlying test data.

5.4.2 Federated Linear Regression

We first examine the case without corrupted devices in Section 5.4.2.1. We prove that
there exists a λ that results in an optimal average test performance among all possible
federated learning algorithms, which coincides with the optimal λ in Ditto’s solution
space in terms of fairness. When there are adversaries, we analyze the robustness benefits
of Ditto in Section 5.4.2.2. In particular, we show there exists a λ which leads to the
highest test accuracy across benign devices (i.e., the most robust) and minimizes the
variance of the test error across benign devices (i.e., the most fair) jointly.

Before we proceed, we first state a technical lemma that will be used throughout the
analyses.

Lemma 9. Let θ be drawn from the non-informative uniform prior on Rd. Further, let tϕkukPrKs

denote noisy observations of θ with additive zero-mean independent Gaussian noises with covari-
ance matrices tΣkukPrKs. Let

Σθ :“

¨

˝

ÿ

kPrKs

Σ´1
k

˛

‚

´1

. (5.8)

Then, conditioned on tϕkukPrKs, we can write θ as

θ “ Σθ

ÿ

kPrKs

Σ´1
k ϕk ` z,

where z is N p0, Σθq which is independent of tϕkukPrKs.

Lemma 9 is a generalization of Lemma 11 presented in Mahdavifar et al. [200] (re-
stated in Lemma 10 below) to the multivariate Gaussian case. The proof also follows
from the proof in Mahdavifar et al. [200].

Lemma 10 (Lemma 11 in Mahdavifar et al. [200]). Let θ be drawn from the non-informative
uniform prior on R. Further, let tϕkukPrKs denote noisy observations of θ with additive zero-mean
independent Gaussian noises with variances tσ2

k ukPrKs. Let

1
σ2

θ

:“
ÿ

kPrKs

1
σ2

k
. (5.9)
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Then, conditioned on tϕkukPrKs, we can write θ as

θ “ σ2
θ

ÿ

kPrKs

ϕk

σ2
k

` z,

where z is N p0, σ2
θ q which is independent of tϕkukPrKs.

5.4.2.1 No Adversaries: Ditto for Accuracy and Fairness

We consider a Bayesian framework. Let θ be drawn from the non-informative prior
on Rd, i.e., uniformly distributed on Rd. We assume that K devices have their data
distributed with parameters twkukPrKs:

wk “ θ ` ζk, (5.10)

where ζk „ N p0, τ2Idq are I.I.D, and Id denotes the d ˆ d identity matrix. τ controls the
degree of dependence between the tasks on different devices. If τ “ 0, then the data on
all devices is distributed according to parameter θ, i.e., the tasks are the same, and if
τ Ñ 8, the tasks on different devices become completely unrelated.

We first derive optimal estimators twkukPrKs for each device wk given observations
tXi, yiuiPrKs.

Lemma 11. Assume that we have
y “ Xw ` z (5.11)

where y P Rn, X P Rnˆd, and w P Rd, and z P Rn. Further assume that z „ N p0, σ2Idq and w
follows the non-informative uniform prior on Rd. Let

pw “ pXTXq
´1XTy. (5.12)

Then, we have pw follows a multi-variate normal distribution as follows:

pw „ N
´

pXTXq
´1XTy, σ2

pXTXq
´1
¯

. (5.13)

Lemma 12. Let
pwi :“ pXT

i Xiq
´1XT

i yi. (5.14)

Let
Σi :“ σ2

pXT
i Xiq

´1
` τ2Id. (5.15)

Further, let

Σzk
θ :“

¨

˝

ÿ

iPrKs,i‰k

Σ´1
i

˛

‚

´1

. (5.16)

Further let
µ

zk
θ :“ Σzk

θ

ÿ

iPrKs,i‰k

Σ´1
i pwi (5.17)
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Then, conditioned on tXi, yiuiPrKs,i‰k, we can write θ as

θ “ µ
zk
θ ` η,

where η is N p0, Σzk
θ q which is independent of tXi, yiuiPrKs,i‰k.

Proof. From Lemma 11, we know pwi is a noisy observation of the underlying wi with
additive covariance σ2pXT

i Xiq
´1. For twkukPrKs defined in our setup, pwi is a noisy obser-

vation of θ with additive zero mean and covariance Σi :“ τ2Id ` σ2pXT
i Xiq

´1. The proof
completes by applying Lemma 9 to t pwiuiPrKs,i‰k.

Lemma 13. Let
Σzk

wk :“ Σzk
θ ` τ2Id. (5.18)

Further, let

Σwk :“
´

pΣzk
wkq

´1
` pΣk ´ τ2Idq

´1
¯´1

. (5.19)

Conditioned on tXi, yiuiPrKs, we have

wk “ ΣwkpΣk ´ τ2Idq
´1

pwk ` ΣwkpΣzk
wkq

´1µ
zk
θ ` ζk, (5.20)

where ζk „ N p0, Σwkq.

Proof. pwk is a noisy observation of wk with additive noise with zero mean and covari-
ance σ2pXT

k Xkq´1 (which is Σk ´ τ2Id). From Lemma 12, we know conditioned on
tXi, yiuiPrKs,i‰k, µ

zk
θ is a noisy observation of θ with covariance Σzk

θ . Hence, with re-

spect to wk, the covariance is Σzk
θ ` τ2Id :“ Σzk

wk . The conclusion follows by applying
Lemma 9 to pwk and µ

zk
θ .

Let the empirical loss function of the linear regression problem on device k be

Fkpwq “
1
n

}Xkw ´ yk}
2 . (5.21)

Then the estimator pwk is pXT
k Xkq´1XTyk. Applying the previous lemmas, we obtain an

optimal estimator wk given all training samples from K devices (see (5.20)). wk is Bayes
optimal among all solutions that can be achieved by any learning method. Next, we
examine the Ditto objective and its solution space parameterized by λ.

Let each device solve the following objective

min
w

hkpwq “ Fkpwq `
λ

2
}w ´ w˚

}
2 , s.t. w˚

“
1
K

arg min
w

K
ÿ

k“1

Fkpwq. (5.22)

The local empirical risk minimizer for each device k is

pwkpλq “

ˆ

1
n

XJ
k Xk ` λI

˙´1 ˆ1
n

XJ
k Yk ` λw˚

˙

(5.23)
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“

ˆ

1
n

XJ
k Xk ` λI

˙´1
˜

ˆ

1
n

XJ
k Xk

˙

pwk ` λ
K
ÿ

k“1

pXJXq
´1XJ

k Xk pwk

¸

(5.24)

We next prove that for any k P rKs, pwkpλq with a specific λ can achieve the optimal wk.

Theorem 6. Assume for any 1 ď i ď K, XT
i Xi “ βId for some constant β. Let λ˚ be the optimal

λ that minimizes the test performance on device k, i.e.,

λ˚
“ arg min

λ

E
!

Fkp pwkpλqq| pwk, µ
zk
θ

)

. (5.25)

Then,

λ˚
“

σ2

nτ2 . (5.26)

Proof. Notice that

arg min
λ

E
!

Fkp pwkpλqq| pwk, µ
zk
θ

)

“ arg min
λ

E
!

}Xk pwkpλq ´ pXkwk ` zkq}
2
| pwk, µ

zk
θ

)

(5.27)

“ arg min
λ

E
!

}Xk p pwkpλq ´ wkq }
2
| pwk, µ

zk
θ

)

(5.28)

“ arg min
λ

E
!

}wk ´ pwkpλq}
2

| pwk, µ
zk
θ

)

. (5.29)

Plug in XT
k Xk “ βI into (5.20) and (5.24) respectively, we have the optimal estimator wk

is

wk “

¨

˝

K ´ 1
σ2

β ` Kτ2
`

β

σ2

˛

‚

´1
β

σ2 pwk `

¨

˝

K ´ 1
σ2

β ` Kτ2
`

β

σ2

˛

‚

´1
β

σ2 ` Kτ2β

ÿ

iPrKs,i‰k

pwi ` ζk,

(5.30)

and pwkpλq is

pwkpλq “

ˆ

n
β ` nλ

˙

¨

˝

ˆ

β

n
`

λ

K

˙

pwk `
λ

K

ÿ

iPrKs,i‰k

pwi

˛

‚. (5.31)

Taking wk and pwkpλq into

λ˚
“ arg min

λ

E
!

}wk ´ pwkpλq}
2
2 |µ

zk
θ , pwk

)

(5.32)

gives λ˚ “ σ2

nτ2 , as pwkpλ˚q is the MMSE estimator of wk given the observations.

Remark 4. We note that by using λ˚ in Ditto, we not only achieve the most accurate solution
for the objective, but also we achieve the most accurate solution of any possible federated linear
regression algorithm in this problem, as Ditto with λ˚ realizes the MMSE estimator for wk.
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We have derived an optimal λ˚ “ σ2

nτ2 for Ditto in terms of generalization. Recall that
we define fairness as the variance of the performance across all devices [113, 182]. Next,
we prove that the same λ˚ that minimizes the expected MSE also achieves the optimal
fairness among all Ditto solutions.

Theorem 7. Assume for any 1 ď i ď K, XT
i Xi “ βId for some constant β. Among all possible

solutions Ditto parameterized by λ, λ˚ results in the most fair performance across all devices
when there are no adversaries, i.e., it minimizes the variance of test performance (test loss) across
all devices.

Proof. Denote the variance of test loss across K devices as VarK
␣

}Xk pwkpλq ´ yk}2
2
(

. Let

pEktaku :“
1
K

ÿ

kPrKs

ak. (5.33)

Then

arg min
λ

VarK

!

}Xk pwkpλq ´ yk}
2
2

)

“ arg min
λ

VarK

!

}Xk pwkpλq ´ pXkwk ` zkq}
2
2

)

(5.34)

“ arg min
λ

VarK

!

}Xkp pwkpλq ´ wkq}
2
2

)

(5.35)

“ arg min
λ

VarK

!

} pwkpλq ´ wk}
2
2

)

(5.36)

“ arg min
λ

pEK

"

´

}wk ´ pwk}
2
2

¯2
*

´

´

pEK

!

}wk ´ pwkpλq}
2
2

)¯2
. (5.37)

Note that

wk ´ pwkpλq “ ζ ` ak, (5.38)

where

ak “ pwkpλ˚
q ´ pwkpλq, (5.39)

and λ˚ “ σ2

nτ2 .
We have

pEK

"

´

}wk ´ pwk}
2
2

¯2
*

´

´

pEK

!

}wk ´ pwkpλq}
2
2

)¯2
(5.40)

“ pEK

$

&

%

˜

d
ÿ

i

pwki ´ pwkpλqiq
2

¸2
,

.

-

´

˜

pEK

#

d
ÿ

i

pwki ´ pwkpλqiq
2

+¸2

(5.41)

“ pEK

$

&

%

˜

d
ÿ

i

pζi ` akiq
2

¸2
,

.

-

´

˜

pEK

#

d
ÿ

i

pζi ` akiq
2

+¸2

, (5.42)
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where wki, pwkpλqi, ζi, and aki denotes the i-th dimension of wk, pwkpλq, ζ, and ak and d is
the model dimension.

We next expand the variance by decomposing it into two parts. We note

pEK

$

&

%

˜

d
ÿ

i

pζi ` akiq
2

¸2
,

.

-

´

˜

pEK

#

d
ÿ

i

pζi ` akiq
2

+¸2

(5.43)

“

d
ÿ

i

pEk

!

pζi ` akiq
4
)

´

d
ÿ

i

´

pEK

!

pζi ` akiq
2
)¯2

(5.44)

` 2
ÿ

i,jPrds,i‰j

pEK

"

pζi ` akiq
2
´

ζ j ` ak j

¯2
*

´ 2
ÿ

i,jPrds,i‰j

pEK

!

pζi ` akiq
2
)

pEK

"

´

ζ j ` ak j

¯2
*

. (5.45)

For any i P rds, we have

E
"

pEK

!

pζi ` akiq
4
)

´

´

pEK

!

pζi ` akiq
2
)¯2

ˇ

ˇ

ˇ

ˇ

µ
zk
θ , pwk

*

(5.46)

“ E
"

pEK

!

ζ4
i ` 6ζ2

i a2
ki ` a4

ki

)

´

´

pEK

!

ζ2
i ` a2

ki

)¯2
ˇ

ˇ

ˇ

ˇ

µ
zk
θ , pwk

*

(5.47)

“ E
"

pEK

!

ζ4
i ` 6ζ2

i a2
ki ` a4

ki

)

´

´

pEK

!

ζ2
i

)¯2
´ 2pEK

!

ζ2
i

)

pEK

!

a2
ki

)

´

´

pEK

!

a2
ki

)¯2
ˇ

ˇ

ˇ

ˇ

µ
zk
θ , pwk

*

“ 3σ4
w ` 6σ2

w
pEK

!

a2
ki

)

` pEK

!

a4
ki

)

´ σ4
w ´ 2σ2

w
pEK

!

a2
ki

)

´

´

pEK

!

a2
ki

)¯2
(5.48)

“ 2σ4
w ` 4σ2

w
pEK

!

a2
ki

)

` pEK

!

a4
ki

)

´

´

pEK

!

a2
ki

)¯2
, (5.49)

where σw is the i-th diagonal of Σwk which is the same across all k’s and all dimensions,
and we have used the fact that we can swap expectations, and Etζ4

i u “ 3σ4
w, given that ζi

is Gaussian distributed and Σwk is a diagonal matrix. For any i, j P rds, i ‰ j, we have

E
!

pEK pζi ` akiq
2 `ζ j ` akj

˘2
ˇ

ˇ

ˇ
µ

zk
θ , pwk

)

´ E
!

pEK pζi ` akiq
2
pEK

`

ζ j ` akj
˘2
ˇ

ˇ

ˇ
µ

zk
θ , pwk

)

(5.50)

“ pEkta2
kia

2
kju ´ pEkta2

kiu
pEkta2

kju, (5.51)

where we have used the fact that Σwk is a diagonal matrix.
Plugging (5.49) and (5.51) into (5.44) and (5.45) yields

E
!

VarK

!

} pwkpλq ´ wk}
2
2

)ˇ

ˇ

ˇ
µ

zk
θ , pwk

)

(5.52)

“ 2dσ4
w `

ÿ

i

4σ2
w
pEkta2

kiu `
ÿ

i

pEkta4
kiu ´

ÿ

i

´

pEkta2
kiu
¯2

` 2
ÿ

i‰j

´

pEkta2
kia

2
kju ´ pEkta2

kiu
pEkta2

kju
¯

99



“ 2dσ4
w `

ÿ

i

4σ2
w
pEkta2

kiu `
ÿ

i

pEkta4
kiu ` 2

ÿ

i‰j

pEkta2
kia

2
kju ´ p

ÿ

i

´

Ekta2
kiu
¯2

` 2
ÿ

i‰j

pEkta2
kiu

pEkta2
kjquq

“ 2dσ4
w `

ÿ

i

4σ2
w
pEkta2

kiu ` pEktp
ÿ

i

a2
kiq

2
u ´ p

ÿ

i

pEkta2
kiuq

2 (5.53)

“ 2dσ4
w `

ÿ

i

4σ2
w
pEkta2

kiu `
1
K

ÿ

k

p
ÿ

i

a2
kiq

2
´ p

1
K

ÿ

k

ÿ

i

a2
kiq

2
ě 2dσ2

w, (5.54)

where setting takiu1ďkďK,1ďiďd “ 0 achieves the minimum.

Observations. From the optimal λ˚ “ σ2

nτ2 for mean test accuracy and variance of the
test accuracy, we have the following observations.
• Test error and variance can be jointly minimized with one λ.
• As n Ñ 8, λ˚ Ñ 0, i.e., when each local device has an infinite number of samples,

there is no need for federated learning, and training local models is optimal in terms
of generalization and fairness.

• As τ Ñ 8, λ˚ Ñ 0, i.e., if the data on different devices (the tasks) are unrelated, then
training local models is optimal; On the other hand, as τ Ñ 0, λ˚ Ñ 8, i.e., if the data
across all devices are identically distributed, or equivalently if the tasks are the same,
then training a global model is the best we can achieve.
So far we have proved that the same λ˚ achieves the best performance (expected

mean square error) for any device k and fairness (variance of mean square error) without
considering adversaries. In Section 5.4.2.2 below, we analyze the benefits of Ditto for
fairness and robustness in the presence of adversaries.

5.4.2.2 With Adversaries: Ditto for Accuracy, Fairness, and Robustness

As a special case of data poisoning attacks defined in our threat model (Definition 2), we
make the following assumptions on the adversaries.

Let Ka and Kb ě 1 denote the number of malicious and benign devices, respectively,
such that K “ Ka ` Kb.

Definition 11. We say that a device k is a benign device if wk „ θ ` N p0, τ2Idq; and we say a
device k is a malicious device (or an adversary) if wk „ θ ` N p0, τ2

a Idq where τa ą τ.

As mentioned in Definition 1 and 2, in the presence of adversaries, we measure
fairness as the performance variance on benign devices, and robustness as the average
performance across benign devices. We next characterize the benefits of Ditto under such
metrics.

Lemma 14. Let wk be the underlying model parameter of a benign device k. Let

pwi :“ pXT
i Xiq

´1XT
i yi, i P rKs. (5.55)
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Let

Σzk
w “

1
pK ´ 1q2

¨

˝

ÿ

iPrKbs,i‰k

´

σ2
pXT

i Xiq
´1

` τ2Id

¯

`
ÿ

iPrKas,i‰k

´

σ2
pXT

i Xiq
´1

` τ2
a Id

¯

˛

‚,

(5.56)

and

Σ´1
w,a “ pσ2

pXT
k Xkq

´1
q

´1
` pΣzk

w ` τ2Idq
´1. (5.57)

Conditioned on observations pwk and pwKzk :“ 1
K´1

ř

i‰k,iPrKs
pwi, we have

wk “ Σw,apσ2
pXT

k Xkq
´1

q
´1

pwk ` Σw,apΣzk
w ` τ2Idq

´1
pwKzk

` ζk, (5.58)

where ζk „ N p0, Σw,aq.

Proof. For malicious devices i P rKas and i ‰ k, the additive covariance of wi with respect
to θ is σ2pXT

i Xiq
´1 ` τ2

a Id. For benign devices i P rKbs and i ‰ K, the covariance is
σ2pXT

i Xiq
´1 ` τ2Id. Therefore, the covariance of pwKzk is Σzk

w . Hence given pwKzk, wk is
Gaussian with covariance Σzk

w ` τ2Id. pwKzk can be viewed as a noisy observation of wk

with covariance Σzk
w ` τ2Id. pwk is a noisy observation of wk with covariance σ2pXT

k Xkq´1.
The proof follows by applying Lemma 9 to pwk and pwKzk.

Theorem 8. Assume for any 1 ď i ď K, XT
i XI “ βId for some constant β. Let k be a benign

device. Let λ˚
a be the optimal λ that minimizes the test performance on device k, i.e.,

λ˚
“ arg min

λ

E
!

Fkp pwkpλqq| pwk, pwKzk
)

. (5.59)

Then,

λ˚
a “

σ2

n
K

Kτ2 `
Ka

K´1pτ2
a ´ τ2q

. (5.60)

Proof. We obtain λ˚
a following the proof of Theorem 6.

Theorem 9. Among all Ditto solutions parameterized by λ, λ˚
a results in the most fair perfor-

mance across all benign devices, i.e., it minimizes the variance of test performance (test mean
square error) on benign devices.

Proof. Similarly, we look at the variance of the test loss across benign devices:

arg min
λ

E
!

VarKb

!

}Xk pwkpλq ´ yk}
2
2

))

(5.61)

“ arg min
λ

E
!

VarKb

!

}wkpλq ´ wk}
2
2

))

(5.62)
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“ arg min
λ

pEKb

"

´

}wk ´ pwk}
2
2

¯2
*

´

´

pEKb

!

}wk ´ pwkpλq}
2
2

)¯2
. (5.63)

The rest of the proof is the same as the proof of Theorem 7, except that we set ak “

pwkpλq ´ pwkpλ˚
aq.

Remark 5. For any benign device k, the solution we obtain by solving Ditto with λ˚
a is the most

robust solution one could obtain among any federated point estimation method given observations
pwk and pwKzk. λ˚

a also results in a most fair model in the solution space of Ditto parameterized
by λ.

Lemma 15. The expected test error minimized at λ˚
a is dσ2

w,a; and the variance of the test loss
minimized at λ˚

a is 2dσ4
w,a, where σw,a denotes the diagonal element of Σw,a.

Proof. For the expected test performance, we note that

E
!

}wk ´ pwkpλ˚
aq}

2
ˇ

ˇ

ˇ

pwKzk, pwk

)

“ Er}diagpΣw,kq}
2
s “ dσ2

w,k. (5.64)

For variance, as ak “ 0 if λ “ λ˚
a , from (5.54), we get

VarKb

!

}wk ´ pwkpλ˚
aq}

2
)

“ 2dσ4
w,k. (5.65)

Observations. From λ˚
a , we have the following interesting observations.

• Mean test error on benign devices (robustness) and variance of the performance across
benign devices (fairness) can still be minimized with the same λa in the presence of
adversaries.

• As τa Ñ 8, λ˚
a Ñ 0, i.e., training local models is optimal in terms of robustness and

fairness when adversary’s task may be arbitrarily far from the the task in the benign
devices.

• As τ Ñ 0, if τa ą 0, λ˚
a ă 8, which means that learning a global model is not optimal

even with homogeneous data in the presence of adversaries.
• λ˚

a is a decreasing function of the number (Ka) and the capability (τa) of the corrupted
devices. In other words, as the attacks become more adversarial, we need more
personalization.

• The smallest test error is σ2
w,a, and the optimal variance is 2σ4

w,a, which are both
increasing with Ka (number of adversarial devices) or τa (the power of adversary) by
inspecting (5.56) and (5.57). This reveals a fundamental tradeoff between fairness and
robustness.

Discussion. Through our analysis, we prove that Ditto with an appropriate λ is more
accurate, robust, and fair compared with training global or local models on the problem
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described in 5.4.2. We provide closed-form solutions for λ˚ across different settings
(with and without adversaries), and show that Ditto can achieve fairness and robustness
jointly. In the future, we plan to generalize the current theoretical framework to more
general models. In the next section, we present a special case of the current analysis, a
federated point estimation problem, which is also studied in Section 5.2.3 as a motivating
example.

5.4.3 The Case of Federated Point Estimation

We consider the one-dimensional federated point estimation problem, which is a special
case of linear regression. Similarly, Let θ be drawn from the non-informative prior on R.
We assume that K devices have their data distributed with parameters twkukPrKs.

wk “ θ ` ζk, (5.66)

where ζk „ N p0, τ2q are IID.
Let each device have n data points denoted by xk “ txk,1, . . . , xk,nu, such that

xk,i “ wk ` zk,i, (5.67)

where zk,i „ N p0, σ2q and are IID.
Assume that

Fkpwq “
1
2

¨

˝w ´
1
n

ÿ

iPrns

xk,i

˛

‚

2

, (5.68)

and denote by pwk the minimizer of the empirical loss Fk. It is clear that

pwk “
1
n

ÿ

iPrns

xk,i. (5.69)

Further, let

w˚ :“ arg min
w

$

&

%

1
K

ÿ

kPrKs

Fkpwq

,

.

-

. (5.70)

It is straightforward calculation to verify that

w˚
“

1
nK

ÿ

iPrns

ÿ

kPrKs

xk,i “
1
K

ÿ

kPrKs

pwk. (5.71)

Lemma 16. Denote by pwkpλq the minimizer of hk. Then,

pwkpλq “
λ

1 ` λ
w˚

`
1

1 ` λ
pwk (5.72)

“
λ

p1 ` λqK

ÿ

j‰k

pwj `
K ` λ

p1 ` λqK
pwk. (5.73)
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Let

σ2
n :“

σ2

n
, (5.74)

and
pwKzk :“

1
K ´ 1

ÿ

j‰k

pwj. (5.75)

Lemma 17. Given observations pwKzk and pwk, wk is Gaussian distributed and given by

wk “
σ2

w
σ2

n
pwk `

pK ´ 1qσ2
w

Kτ2 ` σ2
n
pwKzk

` ξ, (5.76)

where
1

σ2
w

“
1
σ2

n
`

K ´ 1
Kτ2 ` σ2

n
, (5.77)

and
ξ „ N

´

0, σ2
w

¯

. (5.78)

Proof. The proof follows by setting Xk “ 1nˆ1 (k P rKs) in Lemma 13.

Theorem 10. Let λ˚ be the optimal λ that minimizes the test performance, i.e.,

λ˚
“ arg min

λ
E
!

pwk ´ pwkpλqq
2
ˇ

ˇ

ˇ

pwKzk, pwk

)

. (5.79)

Then,

λ˚
“

σ2
n

τ2 “
σ2

nτ2 . (5.80)

Proof. The proof follows by setting Xk “ 1nˆ1 (k P rKs) in Theorem 6.

Theorem 11. Among all Ditto’s solutions, λ˚ results in the most fair performance across all
devices when there are no adversaries, i.e., it minimizes the variance of test performance (test
mean square error).

Proof. The proof follows by setting Xk “ 1nˆ1 (k P rKs) in Theorem 7.

Similarly, the adversarial case presented below (including setups, lemmas, and theo-
rems) is also a special case of the adversarial scenarios for linear regression.

Let Ka and Kb ě 1 denote the number of adversarial and benign devices, respectively,
such that K “ Ka ` Kb.

Definition 12. We say that a device k is a benign device if wk „ θ ` N p0, τ2q; and we say a
device k is a malicious device (or an adversary) if wk „ θ ` N p0, τ2

a q where τa ě τ.
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Lemma 18. Let wk be the parameter associated with a benign device. Given observations
pwKzk :“ 1

K´1
ř

j‰k pwj and pwk, wk is Gaussian distributed and given by

wk “
σ2

w,a

σ2
n

pwk `
pK ´ 1qσ2

w,a

Kτ2 ` σ2
n `

Ka
K´1pτ2

a ´ τ2q
pwKzk

` ξa, (5.81)

where
1

σ2
w,a

“
1
σ2

n
`

K ´ 1
Kτ2 ` σ2

n `
Ka

K´1pτ2
a ´ τ2q

, (5.82)

and
ξa „ N

´

0, σ2
w,a

¯

. (5.83)

Proof. The proof follows by setting Xk “ 1nˆ1 (k P rKs) in Lemma 14.

Theorem 12. Let wk be a benign device. Let λ˚
a be the optimal λ that minimizes the test

performance, i.e.,
λ˚

a “ arg min
λ

E
!

pwk ´ pwkpλqq
2
ˇ

ˇ

ˇ

pwKzk, pwk

)

. (5.84)

Then,

λ˚
a “

σ2

n
K

Kτ2 `
Ka

K´1pτ2
a ´ τ2q

. (5.85)

Proof. The proof follows by setting Xk “ 1nˆ1 (k P rKs) in Theorem 8.

Theorem 13. Among all solutions of Objective (Ditto) parameterized by λ, λ˚
a results in the

most fair performance across all benign devices, i.e., it minimizes the variance of test performance
(test mean square error) on benign devices.

Proof. The proof follows by setting Xk “ 1nˆ1 (k P rKs) in Theorem 9.

Lemma 19. The expected test error minimized at λ˚
a is σ2

w,a; and the variance of the test perfor-
mance minimized at λ˚

a is 2σ4
w,a.

Proof. The proof follows by setting Xk “ 1nˆ1 (k P rKs) in Lemma 15.
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5.5 Algorithm and Convergence Analysis

In this section, we first present the specific algorithm (Algorithm 7) that we use for most
of our experiments (all except for Table 5.3 and 5.6). Algorithm 7 is a special case of
the more general Ditto solver (Algorithm 6), where we use minw

ř

kPrKs pkFkpwq as the
global objective and FedAvg as its solver. As before, the Ditto personalization add-on
is highlighted in red. In addition, we prove that personalized models can inherit the
convergence rates of the optimal global model for any Gp¨q (Theorem 14), and provide
convergence guarantees for the special case of Algorithm 7 (Corollary 4).

Algorithm 7 Ditto for Personalized FL in the case of Gp¨q being FedAvg [206]

1: Input: K, T, s, λ, ηg, ηl, w0, pk, tv0
kukPrKs

2: for t “ 0, ¨ ¨ ¨ , T ´ 1 do
3: Server randomly selects a subset of devices St, and sends wt to them
4: for device k P St in parallel do
5: Sets wt

k to wt and updates wt
k for r local iterations on Fk:

wt
k “ wt

k ´ ηg∇Fkpwt
kq

6: Updates vk for s local iterations:

vk “ vk ´ ηlp∇Fkpvkq ` λpvk ´ wt
q

7: Sends ∆t
k :“ wt

k ´ wt back
8: end for
9: Server updating wt`1 as

wt`1
Ð wt

`
1

|St|

ÿ

kPSt

∆t
k

10: end for
11: return tvkukPrKs (personalized), wT (global)

To analyze the convergence behavior of Algorithm 6 and 7, we first state a list of
assumptions below.

• The global model converges with rate gptq, i.e., there exists gptq such that limtÑ8 gptq “

0, Er}wt ´ w˚}2s ď gptq.
• For k P rKs, Fk is µ-strongly convex.
• The expectation of stochastic gradients is uniformly bounded at all devices and all

iterations, i.e.,

Er}∇Fkpwt, ξt
q}

2
s ď G2

1 . (5.86)
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Let w˚ be defined as
w˚ :“ min

w
GpF1pwq, . . . FKpwqq (5.87)

i.e., w˚ is the empirically optimal global model for Gp¨q. Let u˚
k denote the empirically

optimal local model on device k, i.e.,

u˚
k “ arg min

u
Fkpuq. (5.88)

We introduce an additional assumption on the distance between optimal local models
tu˚

kukPrKs and the optimal global model w˚ below.
• The L2 distance between the optimal local models and the optimal global model is

bounded, i.e., for k P rKs,

}u˚
k ´ w˚

} ď M. (5.89)

This assumption sets an upper bound on the deviation of the local model on device k,
with the global model. It can in turn be viewed as boundedness of heterogeneity of the
training data across devices. When local data are farther from being IID, M tends to
be larger. Recall that in the fairness/robustness analysis of Ditto (Appendix 5.4), we
model the relatedness of underlying models via τ, and Er}wk ´ θ}2s “ dτ2 where wk is
the underlying model for device k and d is the model dimension. M is related to τ2 as

Er}u˚
k ´ w˚

}
2
s ď 2Er}µ˚

k ´ wk}
2
s ` 4Er}wk ´ θ}

2
s ` 4Er}θ ´ w˚

}
2
s (5.90)

Ñ 4dτ2. (5.91)

when nk and the total number of samples across all devices are sufficiently large, consid-
ering the linear problems we studied. We later show that for convergence, λ scales with
1{M, which is consistent with λ˚ (for fairness/robustness) scaled with 1{τ2.

Further let

v˚
k “ arg min

v
hkpv; w˚

q, (5.92)

i.e., v˚
k is the optimal personalized model for device k. We are interested in the conver-

gence of vk to v˚
k . We first characterize the progress of updating personalized models for

one step under a general Gp¨q.

Lemma 20 (Progress of one step). Under assumptions above, let device k get selected with
probability pk at each communication round, with decaying local step-size 2

pt`1qpµ`λqpk
, at each

communication round t, we have

Er}vt`1
k ´ v˚

k}
2
s ď

ˆ

1 ´
2

t ` 1

˙

Er}vt
´ v˚

}
2
s `

4pG1 ` λpM `
G1
µ qq2

pt ` 1q2pµ ` λq2p2
k

`
4λ2

pt ` 1q2pµ ` λq2p2
k

Er}wt
´ w˚

}
2
s
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`
8λpG1 ` λpM `

G1
µ qq

pt ` 1q2pµ ` λq2p2
k

b

Er}wt ´ w˚}2s

`
4λ

pt ` 1qpµ ` λqpk

b

Er}vt
k ´ v˚

k}2sEr}wt ´ w˚}2s. (5.93)

Proof. Denote gpvt
k; wtq as the stochastic gradient of hkpvt

k; wtq. Let It indicate if device k
is selected at the t-th round, and ErIts “ pk.

Er}vt`1
k ´ v˚

k}
2
s “ Er}vt

k ´ η Itgpvt
k; wt

q ´ v˚
k}

2
s (5.94)

“ Er}vt
k ´ v˚

k}
2
s ` η2Er}Itgpvt
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q}
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q, v˚
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ky (5.95)

ď p1 ´ pµ ` λqηpkqEr}vt
k ´ v˚

k}
2
s ` η2Er}gpvt

k; wt
q}

2
s

` 2ηpkErhpv˚
k ; wt
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k; wt

qs (5.96)

ď p1 ´ pµ ` λqηpkqEr}vt
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k}
2
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` η2Er}gpvt
k; w˚

q}
2
s ` η2λ2Er}wt

´ w˚
}
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s ` 2η2λEr}gpvt

k; w˚
q}}wt
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}s

` 2ηpkphpv˚
k ; w˚

q ´ Erhpvt
k; w˚

qsq ` 2ηpkλEr}vt
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k}}wt
´ w˚

}s.
(5.97)

Further, note that

Er}vt
k ´ u˚

k}
2
s ď

1
µ2 Er}∇Fkpvt

kq}
2
s ď

G2
1

µ2 , (5.98)

Er}vt
k ´ w˚

}
2
s “ Er}vt

k ´ u˚
k ` u˚

k ´ w˚
}

2
s (5.99)

ď Er}vt
k ´ u˚

k}
2
s ` Er}u˚

k ´ w˚
}

2
s ` 2Er}vt

k ´ u˚
k}}u˚

k ´ w˚
}s (5.100)

ď
G2

1
µ2 ` M2

`
2MG1

µ
, (5.101)

Er}gpvt
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q}
2
s “ Er}∇Fkpvt

kq ` λpvt
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q}
2
s (5.102)

ď G2
1 ` λ2

p
G1

µ
` Mq

2
` 2G1λp

G1

µ
` Mq. (5.103)

Plug it into Eq. (5.97),

Er}vt`1
k ´ v˚

k}
2
s

ď p1 ´ pµ ` λqηpkqEr}vt
k ´ v˚

k}
2
s ` η2

pG1 ` λpM `
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µ
qq

2
` η2λ2Er}wt

´ w˚
}

2
s

` 2η2λpG1 ` λpM `
G1

µ
qq

b

Er}wt ´ w˚}2s ` 2ηpkλ
b

Er}vt
k ´ v˚

k}2sEr}wt ´ w˚}2s.

where the last step is due to ErXYs ď
a

ErX2sErY2s. The Lemma then holds by taking
η “ 2

pt`1qpµ`λqpk
.

108



Lemma 20 relates Er}vt`1
k ´ v˚

k}2s with Er}vt
k ´ v˚

k}2s and Er}wt
k ´ w˚}2s. Based on

this, we prove that personalized models can inherit the convergence rate of the global
model wt for any Gp¨q.

Theorem 14 (Relations between convergence of global and personalized models). Under
the assumptions above, if there exists a constant A such that gpt`1q

gptq ě 1 ´
gptq
A , then there exists

C ă 8 such that for any device k P rKs, Er}vt
k ´ v˚

k}2s ď Cgptq with a local learning rate
η “

2gptq
Apµ`λqpk

.

Proof. We proceed the proof by induction. First, for any constant C ą
Er}v0

k´v˚
k }2s

gp0q
, Er}v0

k ´

v˚
k}2s ď Cgp0q. If Er}vt

k ´ v˚
k}2s ď Cgptq holds, then for t ` 1, from Lemma 20,

Er}vt
k`1 ´ v˚
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2
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ˆ
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2gptq
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˙

Cgptq

`
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A
4
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¨
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µ qq2
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˛
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` gptq2 4λ
?

C
pµ ` λq

(5.105)

ď

ˆ

1 ´
2gptq

A

˙

Cgptq `
Cgptq2

A
(5.106)

holds for some C ă 8. Hence,

Er}vt
k`1 ´ v˚

k}
2
s ď

ˆ

1 ´
2gptq

A

˙

Cgptq `
Cgptq2

A
(5.107)

“

ˆ

1 ´
gptq
A

˙

Cgptq (5.108)

ď Cgpt ` 1q, (5.109)

completing the proof.

Discussions. Theorem 14 also suggests how the percentage/power of malicious devices
can affect convergence rates. The percentage/power of adversaries impacts both the
optimal global solution w˚, and the convergence rate of the global model gptq. (i) For w˚,
it affects M in Eq (5.89)—the distance between the local model on a benign device and
the global model. This in turn affects λ in Eq (5.93) and (5.104), and the constant C. λ
can scale inversely proportional to M, which is consistent with our fairness/robustness
analysis where λ˚ should decrease as the increase of τ2. (ii) For gptq, the modularity
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of Ditto allows for decoupling the convergence of personalized models and the global
model (as demonstrated by this theorem), and we can plug in any previous algorithms
and their analysis on the convergence rate gptq as a function of malicious devices.

As a direct result of Theorem 14, we could state a result for Ditto when the global
objective is FedAvg.

Corollary 4 (Convergence of personalized models). Under the assumptions above, if the
global objective Gp¨q is FedAvg, then under Algorithm 7, for k P rKs,

Er}vt
k ´ v˚

k}
2
s “ Op1{tq. (5.110)

Proof. From Li et al. [189] Theorem 2, we know the global model for FedAvg converges
at a rate of Op1{tq, i.e.,

Er}wt
´ w˚

}
2
s ď

D1

t ` B
}w1

´ w˚
}

2
ď

D
t ` 1

, (5.111)

where D, D1, B are constants. Setting gptq “ D
t`1 and A “ D in Theorem 14, it follows that

Er}vt
k ´ v˚

k}2s “ Op1{tq.
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5.6 Experimental Details

5.6.1 Datasets and Models

We summarize the datasets, corresponding models, and tasks in Table 5.4 below. We
evaluate the performance of Ditto with both convex and non-convex models across a set
of FL benchmarks. In our datasets, we have both image data (FEMNIST, CelebA, Fashion
MNIST), and text data (StackOverflow).

Table 5.4: Summary of datasets.

Datasets # DevicesData Partitions Models Tasks
Vehicle [75]2 23 natural (each device is a vehicle) linear SVM binary classification
FEMNIST [54] 205 natural (each device is a writer) CNN 62-class classification
CelebA [195] 515 natural (each device is a celebrity) CNN binary classification
Fashion MNIST [302] 500 synthetic (assign 5 classes to each device) CNN 10-class classification
StackOverflow [1]3 400 natural (each device is a user) logistic regress.500-class tag prediction
FEMNIST (skewed) [54] 100 synthetic (assign 5 classes to each device) CNN 62-class classification

FEMNIST is Federated EMNIST, which is EMNIST [54] partitioned by the writers
of digits/characters created by a previous federated learning benchmark [43]. We have
two versions of FEMNIST in this work under different partitions with different levels
of statistical heterogeneity. The manually-partitioned version is more heterogeneous
than the naturally-partitioned one, as we assign 5 classes to each device. We show that
the benefits of Ditto can be more significant on the skewed FEMNIST data (Table 5.10).
All results shown in the main text are based on the natural partition. We downsample
the number of data points on each device (following the power law) for Vehicle. For
FEMNIST, CelebA, and StackOverflow, we randomly sample devices (users) from the
entire dataset. We use the full version of Fashion MNIST (which has been used in
previous FL works [29]), and assign 5 classes to each device.

5.6.2 Personalization Baselines

We elaborate on the personalization baselines used in our experiments (Table 5.2) which
allow for partial device participation and local updating. We consider:
• MOCHA [265], a primal-dual framework for multi-task learning. It jointly learns the

model parameters and a device relation matrix, and applicable to convex problems.
• APFL [69], which proposes to interpolate between local and global models for person-

alization. While it can reduce to solving local problems (without constraints on the
solution space) as pointed out in [69], we find that in neural network applications, it
has some personalization benefits, possibly due to the joint optimization solver.

2http://www.ecs.umass.edu/~mduarte/Software.html
3https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/

stackoverflow/load_data.
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• Elastic Weight Consolidation (EWC), which takes into account the Fisher information
when finetuning from the optimal global model [156, 312]. The local objective is
minw Fkpwq ` λ

2
ř

i Fii ¨ pwris ´ w˚risq2 where ris denotes the index of parameters and
Fii denotes the i-th diagonal of the empirical Fisher matrix F estimated using a data
batch.

• L2SGD, which regularizes personalized models towards their mean [107]. The
proposed method requires full device participation once in a while. However, to
remain consistent with the other solvers, we use their objective but adopt a dif-
ferent solver with partial device participation—each selected local device solving
minw Fkpwq ` λ

2 }w ´ w̄}2 where w̄ is the current mean of all personalized models
w̄ “ 1

N
řN

k“1 wk.
• Mapper, which is one of the three personalization methods proposed in Mansour et al.

[202] that needs the minimal amount of meta-information. Similar to APFL, it is also
motivated by model interpolation.

• Per-FedAvg (HF) [88] which applies MAML [92] to personalize federated models with
an Hessian-product approximation to approximate the second-order gradients.

• Symmetrized KL constrains the symmetrized KL divergence between the prediction
of finetuned models and that of the initialization. Specifically, in our setting, the local
objective is minw Fkpwq ` λ

2 pDKLp f pwq|| f pw˚qq ` DKLp f pw˚q|| f pwqqq where DKLpP||Qq

is the KL-divergence between P and Q, and f p¨q denotes the softmax probability for
classification.

5.7 Additional and Complete Experiment Results

5.7.1 Comparing with Finetuning

As discussed in Section 7.5, finetuning on hk for each device k is a possible solver for
Ditto. In non-convex cases, however, starting from a corrupted w˚ may result in inferior
performance compared with Algorithm 6. We provide a simple example to illustrate this
point. To perform finetuning, we run different numbers of epochs of mini-batch SGD
on the Ditto objective for each device in the network, and pick the best one. As shown
in Figure 5.7 below, finetuning at round 5,000 will not result in a good final accuracy.
We observe that one could also stop at early iterations and then finetune. However, it is
difficult to do so in practice based on the training or validation data alone, as shown in
Figure 5.8.

5.7.2 Tuning λ

We assume that the server does not have knowledge of which devices are benign vs.
malicious, and we have each device locally select and apply a best λ from a candidate
set of three values based on their validation data. For benign devices, this means they
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Figure 5.7: ‘Ditto, joint’ achieves high
test accuracy on benign devices. The
performance can also be good if we first
early stop at some specific points and
then finetune.

Figure 5.8: Finetuning is not very practical as
it is difficult to determine when to stop train-
ing the global model by looking at the training
loss (left) or validation accuracy (right) on all
devices (without knowing which are benign).

will pick a λ based on their clean validation signal. For malicious devices, how they
perform personalization (i.e., selecting λ) does not affect the corrupted global model
updates they send, which are independent of λ. We further assume the devices have
some knowledge of how ‘strong’ the attack is. We define strong attacks as (i) all of model
replacement attacks (A3) where the magnitude of the model updates from malicious
devices can scale by ą 10ˆ, and (ii) other attacks where more than half of the devices
are corrupted. In particular, for devices with very few validation samples (less than
4), we use a fixed small λ (λ=0.1) for strong attacks, and use a fixed relatively large λ
(λ=1) for all other attacks. For devices with more than 5 validation data points, we let
each select λ from t0.05, 0.1, 0.2u for strong attacks, and select λ from t0.1, 1, 2u for all
other attacks. For the StackOverflow dataset, we tune λ from t0.01, 0.05, 0.1u for strong
attacks, and t0.05, 0.1, 0.3u for all other attacks. We directly evaluate our hyperparameter
tuning strategy in Table 5.5 below—showing that this dynamic tuning heuristic works
well relative to an ideal, but more unrealistic strategy that picks the best λ based on
knowledge of which devices are benign vs. malicious (i.e., by only using the validation
data of the benign devices).
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Table 5.5: Results (test accuracy and standard deviation) of using dynamic λ’s. ‘Best λ’
refers to the results of selecting the best (fixed) λ based on average validation performance
on benign devices (assuming the server knows which devices are malicious).

FEMNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

best λ 0.836 (.10) 0.803 (.10) 0.767 (.10) 0.672 (.14) 0.792 (.11) 0.743 (.14) 0.674 (.14) 0.691 (.15) 0.664 (.14) 0.650 (.14)
dynamic λ’s 0.834 (.09) 0.802 (.10) 0.762 (.11) 0.672 (.13) 0.801 (.09) 0.700 (.15) 0.675 (.14) 0.685 (.15) 0.650 (.14) 0.613 (.13)
Fashion A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

best λ 0.946 (.06) 0.944 (.08) 0.935 (.07) 0.925 (.07) 0.943 (.08) 0.930 (.07) 0.912 (.08) 0.914 (.09) 0.903 (.09) 0.873 (.09)
dynamic λ’s 0.943 (.06) 0.944 (.07) 0.937 (.07) 0.907 (.10) 0.938 (.07) 0.930 (.08) 0.913 (.09) 0.921 (.09) 0.902 (.09) 0.872 (.11)
CelebA A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

best λ 0.914 (.18) 0.828 (.22) 0.721 (.27) 0.724 (.28) 0.872 (.22) 0.826 (.26) 0 708 (.29) 0.699 (.28) 0.694 (.27) 0.689 (.28)
dynamic λ’s 0.911 (.16) 0.820 (.26) 0.714 (.28) 0.724 (.28) 0.872 (.22) 0.826 (.26) 0.706 (.28) 0.699 (.28) 0.694 (.27) 0.689 (.28)
Vehicle A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

best λ 0.882 (.05) 0.862 (.05) 0.841 (.09) 0.851 (.06) 0.884 (.05) 0.872 (.06) 0.879 (.04) 0.872 (.06) 0.829 (.08) 0.827 (.08)
dynamic λ’s 0.872 (.05) 0.857 (.06) 0.827 (.08) 0.834 (.05) 0.872 (.06) 0.867 (.07) 0.848 (.04) 0.839 (.08) 0.824 (.08) 0.822 (.09)
StackOverflow A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

best λ 0.315 (.16) 0.325 (.16) 0.315 (.17) 0.313 (.15) 0.314 (.16) 0.350 (.16) 0.312 (.14) 0.316 (.17) 0.321 (.17) 0.327 (.17)
dynamic λ’s 0.317 (.17) 0.323 (.18) 0.314 (.16) 0.359 (.16) 0.326 (.17) 0.317 (.17) 0.301 (.17) 0.318 (.17) 0.319 (.17) 0.311 (.17)

5.7.3 Ditto Augmented with Robust Baselines

In Section 5.3.4, we demonstrate that the performance of Ditto can be further improved
when it is combined with robust baselines (e.g., learning a robust w˚ via robust aggrega-
tion). Here, we report full results validating this claim in Table 5.6 below.

Table 5.6: Ditto augmented with robust baselines (full results).

FEMNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.773 (.11) 0.727 (.12) 0.574 (.15) 0.774 (.11) 0.703 (.14) 0.636 (.15) 0.517 (.14) 0.487 (.14) 0.364 (.13)
clipping 0.791 (.11) 0.736 (.11) 0.408 (.14) 0.791 (.11) 0.736 (.13) 0.656 (.13) 0.795 (.11) 0.060 (.05) 0.061 (.05)
Ditto 0.803 (.10) 0.767 (.10) 0.672 (.14) 0.792 (.11) 0.743 (.14) 0.674 (.14) 0.691 (.15) 0.664 (.14) 0.650 (.14)
Ditto + clipping 0.810 (.11) 0.762 (.11) 0.645 (.13) 0.808 (.11) 0.757 (.11) 0.684 (.13) 0.813 (.13) 0.707 (.15) 0.672 (.14)
CelebA A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.810 (.22) 0.535 (.26) 0.228 (.21) 0.869 (.22) 0.823 (.23) 0.656 (.26) 0.451 (.27) 0.460 (.29) 0.515 (.31)
multi-Krum 0.882 (.22) 0.564 (.26) 0.107 (.19) 0.887 (.21) 0.891 (.20) 0.617 (.30) 0.512 (.27) 0.529 (.27) 0.430 (.26)
Ditto 0.828 (.22) 0.721 (.27) 0.724 (.28) 0.872 (.22) 0.826 (.26) 0.708 (.29) 0.699 (.28) 0.694 (.27) 0.689 (.28)
Ditto + multi-Krum 0.875 (.20) 0.722 (.26) 0.733 (.27) 0.903 (.20) 0.902 (.21) 0.885 (.23) 0.713 (.28) 0.709 (.28) 0.713 (.28)
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5.7.4 Ditto Complete Results

In Section 5.3.1, we present partial results on three strong attacks on two datasets. Here,
we provide full results showing the robustness and fairness of Ditto on all attacks and
all datasets compared with all defense baselines. We randomly split local data on each
device into 72% train, 8% validation, and 20% test sets, and report all results on test data.
We use a learning rate of 0.01 for StackOverflow, 0.05 for Fashion MNIST and 0.1 for all
other datasets; and batch size 16 for CelebA and Fashion MNIST, 32 for FEMNIST and
Vehicle, and 100 for StackOverflow. For every dataset, we first run FedAvg on clean data
to determine the number of communication rounds. Then we run the same number of
rounds for all attacks on that dataset.

For our robust baselines, ‘median’ means coordinate-wise median. For Krum, multi-
Krum, k-norm, and k-loss, we assume the server knows the expected number of malicious
devices when aggregation. In other words, for k-norm, we filter out the updates with the
k largest norms where k is set to the expected number of malicious devices. Similarly, for
k-loss, we only use the model update with the k+1-th largest training loss. For gradient
clipping, we set the threshold to be the median of the gradient norms coming from all
selected devices at each round. FedMGDA+ has an additional ε hyperparameter which
we select from t0, 0.1, 0.5, 1u based on the validation performance on benign devices.
For the finetuning (only on neural network models) baseline, we run 50 epochs of mini-
batch SGD on each device on the local objective Fk starting from w˚. We see that Ditto
can achieve better fairness and robustness in most cases. In particular, on average of
all datasets and all attack scenarios, Ditto (with dynamic λ’s) achieves 6% absolute
accuracy improvement compared with the strongest robust baseline. In terms of fairness,
Ditto is able to reduce the variance of test accuracy by 10% while improving the average
accuracy by 5% relative to state-of-the-art methods for fair FL (without attacks).
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Table 5.7: Full results (average and standard deviation of test accuracy across all de-
vices) on the Vehicle dataset with linear SVM. On this convex problem, we additionally
compare with another primal-dual MTL method MOCHA [265], which suggests the
fairness/robustness benefits of other MTL approaches.

Vehicle A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

global 0.866 (.16) 0.847 (.08) 0.643 (.10) 0.260 (.27) 0.866 (.18) 0.840 (.21) 0.762 (.27) 0.854 (.17) 0.606 (.08) 0.350 (.19)
local 0.836 (.07) 0.835 (.08) 0.840 (.09) 0.857 (.09) 0.835 (.08) 0.840 (.09) 0.857 (.09) 0.840 (.07) 0.835 (.08) 0.840 (.09)
fair 0.870 (.08) 0.721 (.06) 0.572 (.08) 0.404 (.13) 0.746 (.12) 0.704 (.15) 0.706 (.20) 0.775 (.13) 0.628 (.25) 0.448 (.11)
median 0.863 (.16) 0.861 (.18) 0.676 (.11) 0.229 (.31) 0.864 (.18) 0.838 (.21) 0.774 (.28) 0.867 (.17) 0.797 (.07) 0.319 (.17)
Krum 0.852 (.17) 0.853 (.19) 0.830 (.22) 0.221 (.32) 0.851 (.19) 0.828 (.22) 0.780 (.31) 0.867 (.17) 0.866 (.18) 0.588 (.14)
multi-Krum 0.866 (.16) 0.867 (.18) 0.839 (.20) 0.220 (.32) 0.867 (.18) 0.839 (.22) 0.770 (.31) 0.868 (.17) 0.836 (.08) 0.406 (.15)
clipping 0.864 (.16) 0.865 (.17) 0.678 (.34) 0.234 (.30) 0.865 (.18) 0.839 (.22) 0.764 (.27) 0.868 (.17) 0.789 (.07) 0.315 (.17)
k-norm 0.866 (.16) 0.867 (.17) 0.838 (.21) 0.222 (.32) 0.867 (.18) 0.839 (.22) 0.778 (.31) 0.867 (.17) 0.844 (.09) 0.458 (.16)
k-loss 0.850 (.05) 0.755 (.03) 0.732 (.09) 0.217 (.31) 0.852 (.06) 0.840 (.07) 0.825 (.09) 0.866 (.17) 0.692 (.08) 0.328 (.16)
FedMGDA+ 0.860 (.16) 0.835 (.09) 0.674 (.14) 0.270 (.26) 0.860 (.18) 0.843 (.22) 0.794 (.26) 0.836 (.17) 0.757 (.07) 0.676 (.17)
MOCHA 0.880 (.04) 0.848 (.07) 0.832 (.08) 0.829 (.10) 0.846 (.06) 0.843 (.07) 0.833 (.10) 0.862 (.06) 0.844 (.07) 0.834 (.07)

Ditto, λ=0.1 0.845 (.07) 0.841 (.08) 0.841 (.09) 0.851 (.06) 0.844 (.07) 0.848 (.08) 0.866 (.05) 0.838 (.07) 0.829 (.08) 0.827 (.08)
Ditto, λ=1 0.875 (.05) 0.859 (.06) 0.821 (.07) 0.776 (.08) 0.875 (.06) 0.870 (.07) 0.879 (.04) 0.860 (.07) 0.813 (.07) 0.757 (.08)
Ditto, λ=2 0.882 (.05) 0.862 (.05) 0.800 (.07) 0.709 (.12) 0.884 (.05) 0.872 (.06) 0.869 (.04) 0.872 (.06) 0.791 (.06) 0.690 (.09)

Table 5.8: Full results (average and standard deviation of test accuracy across all devices)
on FEMNIST.

FEMNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.804 (.11) 0.773 (.11) 0.727 (.12) 0.574 (.15) 0.774 (.11) 0.703 (.14) 0.636 (.15) 0.517 (.14) 0.487 (.14) 0.364 (.13)
local 0.628 (.15) 0.620 (.14) 0.627 (.14) 0.607 (.13) 0.620 (.14) 0.627 (.14) 0.607 (.13) 0.622 (.14) 0.621 (.14) 0.620 (.14)
fair 0.809 (.11) 0.636 (.15) 0.562 (.13) 0.478 (.12) 0.440 (.15) 0.336 (.12) 0.363 (.12) 0.353 (.12) 0.316 (.12) 0.299 (.11)
median 0.733 (.14) 0.627 (.15) 0.576 (.15) 0.060 (.04) 0.673 (.14) 0.645 (.14) 0.564 (.15) 0.628 (.14) 0.573 (.15) 0.577 (.16)
Krum 0.717 (.16) 0.059 (.05) 0.096 (.07) 0.091 (.07) 0.604 (.14) 0.062 (.25) 0.024 (.02) 0.699 (.15) 0.719 (.13) 0.648 (.14)
multi-Krum 0.804 (.11) 0.790 (.11) 0.759 (.11) 0.115 (.07) 0.789 (.11) 0.762 (.11) 0.014 (.02) 0.529 (.14) 0.664 (.15) 0.561 (.14)
clipping 0.805 (.11) 0.791 (.11) 0.736 (.11) 0.408 (.14) 0.791 (.11) 0.736 (.13) 0.656 (.13) 0.795 (.11) 0.060 (.05) 0.061 (.05)
k-norm 0.806 (.11) 0.785 (.11) 0.760 (.12) 0.060 (.05) 0.788 (.10) 0.765 (.11) 0.011 (.02) 0.060 (.04) 0.647 (.15) 0.562 (.15)
k-loss 0.762 (.11) 0.606 (.13) 0.599 (.13) 0.596 (.13) 0.432 (.12) 0.508 (.13) 0.572 (.14) 0.060 (.04) 0.009 (.02) 0.006 (.01)
FedMGDA+ 0.803 (.12) 0.794 (.12) 0.730 (.12) 0.057 (.04) 0.793 (.12) 0.753 (.12) 0.671 (.14) 0.798 (.11) 0.794 (.12) 0.791 (.11)
finetuning 0.815 (.09) 0.778 (.11) 0.734 (.12) 0.671 (.13) 0.764 (.11) 0.695 (.18) 0.646 (.14) 0.688 (.13) 0.671 (.14) 0.655 (.13)

Ditto, λ=0.01 0.800 (.15) 0.709 (.15) 0.683 (.17) 0.642 (.13) 0.701 (.14) 0.684 (.14) 0.645 (.14) 0.650 (.14) 0.628 (.14) 0.650 (.14)
Ditto, λ=0.1 0.827 (.10) 0.794 (.11) 0.755 (.13) 0.666 (.14) 0.786 (.13) 0.743 (.14) 0.674 (.14) 0.691 (.15) 0.664 (.14) 0.640 (.14)
Ditto, λ=1 0.836 (.10) 0.803 (.10) 0.767 (.10) 0.672 (.14) 0.792 (.11) 0.691 (.17) 0.575 (.17) 0.642 (.12) 0.595 (.14) 0.554 (.15)
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Table 5.9: Full results (average and standard deviation of test accuracy across all devices)
on Fashion MNIST.

Fashion MNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

global 0.911 (.08) 0.897 (.08) 0.855 (.10) 0.753 (.13) 0.900 (.08) 0.882 (.09) 0.857 (.10) 0.753 (.10) 0.551 (.13) 0.275 (.12)
local 0.876 (.10) 0.874 (.10) 0.876 (.11) 0.879 (.10) 0.874 (.10) 0.876 (.11) 0.879 (.10) 0.877 (.10) 0.874 (.10) 0.876 (.11)
fair 0.909 (.07) 0.751 (.12) 0.637 (.13) 0.547 (.11) 0.731 (.13) 0.637 (.14) 0.635 (.14) 0.653 (.13) 0.601 (.12) 0.131 (.16)
median 0.884 (.09) 0.853 (.10) 0.818 (.12) 0.606 (.17) 0.885 (.09) 0.883 (.09) 0.864 (.10) 0.856 (.09) 0.829 (.11) 0.725 (.15)
Krum 0.838 (.13) 0.864 (.11) 0.818 (.13) 0.768 (.15) 0.847 (.12) 0.870 (.11) 0.805 (.13) 0.868 (.11) 0.866 (.11) 0.640 (.18)
multi-Krum 0.911 (.08) 0.907 (.08) 0.889 (.10) 0.793 (.12) 0.849 (.10) 0.827 (.12) 0.095 (.12) 0.804 (.11) 0.860 (.09) 0.823 (.13)
clipping 0.913 (.07) 0.905 (.08) 0.875 (.10) 0.753 (.12) 0.904 (.08) 0.886 (.09) 0.856 (.11) 0.901 (.08) 0.844 (.11) 0.477 (.13)
k-norm 0.911 (.08) 0.908 (.08) 0.888 (.10) 0.118 (.08) 0.906 (.08) 0.893 (.09) 0.096 (.07) 0.765 (.14) 0.854 (.10) 0.828 (.12)
k-loss 0.898 (.08) 0.856 (.09) 0.861 (.10) 0.851 (.31) 0.876 (.09) 0.866 (.11) 0.870 (.10) 0.538 (.14) 0.257 (.13) 0.092 (.13)
FedMGDA+ 0.915 (.08) 0.907 (.08) 0.874 (.10) 0.753 (.13) 0.911 (.08) 0.900 (.09) 0.873 (.10) 0.914 (.08) 0.904 (.08) 0.869 (.10)
finetuning 0.945 (.06) 0.946 (.07) 0.935 (.07) 0.922 (.08) 0.945 (.07) 0.930 (.08) 0.923 (.08) 0.915 (.08) 0.871 (.11) 0.764 (.15)

Ditto, λ=0.1 0.929 (.09) 0.920 (.09) 0.909 (.10) 0.897 (.10) 0.921 (.09) 0.914 (.09) 0.905 (.08) 0.914 (.09) 0.903 (.09) 0.873 (.09)
Ditto, λ=1 0.946 (.06) 0.944 (.08) 0.935 (.07) 0.925 (.07) 0.943 (.08) 0.930 (.07) 0.912 (.08) 0.887 (.09) 0.831 (.10) 0.740 (.12)
Ditto, λ=2 0.945 (.06) 0.942 (.06) 0.935 (.07) 0.917 (.07) 0.936 (.07) 0.923 (.08) 0.906 (.08) 0.871 (.09) 0.785 (.11) 0.606 (.14)

Table 5.10: Full results (average and standard deviation of test accuracy across all devices)
on FEMNIST (skewed).

FMNIST (skewed) A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.720 (.24) 0.657 (.28) 0.585 (.30) 0.435 (.23) 0.688 (.26) 0.631 (.24) 0.589 (.26) 0.023 (.11) 0.038 (.18) 0.039 (.18)
local 0.915 (.18) 0.903 (.21) 0.937 (.18) 0.902 (.19) 0.903 (.21) 0.937 (.18) 0.902 (.19) 0.881 (.21) 0.912 (.18) 0.903 (.21)
fair 0.716 (.22) 0.644 (.29) 0.545 (.29) 0.421 (.22) 0.348 (.22) 0.321 (.16) 0.242 (.15) 0.010 (.11) 0.042 (.10) 0.037 (.17)
median 0.079 (.12) 0.086 (.12) 0.031 (.06) 0.044 (.08) 0.075 (.12) 0.109 (.13) 0.323 (.25) 0.060 (.10) 0.020 (.09) 0.033 (.07)
Krum 0.457 (.37) 0.360 (.35) 0.061 (.22) 0.127 (.27) 0.424 (.38) 0.051 (.08) 0.147 (.22) 0.434 (.36) 0.472 (.36) 0.484 (.35)
multi-Krum 0.725 (.25) 0.699 (.29) 0.061 (.22) 0.271 (.21) 0.712 (.29) 0.705 (.30) 0.584 (.28) 0.633 (.30) 0.556 (.30) 0.526 (.28)
clipping 0.727 (.28) 0.678 (.28) 0.604 (.34) 0.401 (.26) 0.726 (.26) 0.711 (.26) 0.645 (.24) 0.699 (.29) 0.674 (.28) 0.640 (.28)
k-norm 0.716 (.28) 0.691 (.30) 0.396 (.36) 0.005 (.08) 0.724 (.26) 0.721 (.29) 0.692 (.35) 0.612 (.29) 0.599 (.30) 0.565 (.28)
k-loss 0.587 (.21) 0.526 (.29) 0.419 (.36) 0.127 (.27) 0.555 (.23) 0.550 (.26) 0.093 (.16) 0.003 (.08) 0.009 (.07) 0.006 (.05)
finetuning 0.948 (.11) 0.942 (.13) 0.959 (.10) 0.946 (.10) 0.949 (.16) 0.918 (.21) 0.621 (.11) 0.788 (.25) 0.740 (.27) 0.751 (.26)

Ditto, λ=0.01 0.947 (.15) 0.945 (.18) 0.955 (.20) 0.946 (.13) 0.942 (.18) 0.949 (.15) 0.944 (.14) 0.902 (.20) 0.895 (.23) 0.888 (.20)
Ditto, λ=0.1 0.948 (.10) 0.945 (.14) 0.959 (.12) 0.936 (.09) 0.945 (.13) 0.948 (.10) 0.888 (.18) 0.936 (.16) 0.827 (.23) 0.812 (.24)
Ditto, λ=1 0.902 (.15) 0.899 (.15) 0.907 (.15) 0.861 (.14) 0.899 (.18) 0.818 (.22) 0.423 (.41) 0.880 (.15) 0.730 (.28) 0.736 (.28)
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Table 5.11: Full results (average and standard deviation of test accuracy across all devices)
on CelebA.

CelebA A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.911 (.19) 0.810 (.22) 0.535 (.26) 0.228 (.21) 0.869 (.22) 0.823 (.23) 0.656 (.26) 0.451 (.27) 0.460 (.29) 0.515 (.31)
local 0.692 (.27) 0.690 (.27) 0.682 (.27) 0.681 (.26) 0.690 (.27) 0.682 (.27) 0.681 (.26) 0.692 (.27) 0.693 (.27) 0.690 (.27)
fair 0.905 (.17) 0.724 (.27) 0.509 (.27) 0.195 (.21) 0.790 (.26) 0.646 (.27) 0.646 (.27) 0.442 (.27) 0.426 (.28) 0.453 (.28)
median 0.910 (.18) 0.872 (.22) 0.494 (.28) 0.126 (.18) 0.901 (.20) 0.864 (.20) 0.617 (.30) 0.885 (.20) 0.891 (.19) 0.870 (.21)
Krum 0.775 (.25) 0.810 (.25) 0.641 (.25) 0.377 (.10) 0.790 (.25) 0.699 (.25) 0.584 (.27) 0.780 (.25) 0.728 (.25) 0.685 (.30)
multi-Krum 0.911 (.19) 0.882 (.22) 0.564 (.26) 0.107 (.19) 0.887 (.21) 0.891 (.20) 0.617 (.30) 0.512 (.27) 0.529 (.27) 0.430 (.26)
clipping 0.909 (.18) 0.866 (.19) 0.485 (.29) 0.126 (.20) 0.897 (.20) 0.842 (.21) 0.665 (.26) 0.901 (.20) 0.883 (.21) 0.853 (.23)
k-norm 0.908 (.18) 0.870 (.22) 0.537 (.28) 0.105 (.17) 0.874 (.23) 0.909 (.18) 0.664 (.25) 0.506 (.28) 0.577 (.27) 0.449 (.28)
k-loss 0.873 (.19) 0.584 (.28) 0.550 (.31) 0.169 (.21) 0.595 (.28) 0.654 (.28) 0.683 (.26) 0.543 (.33) 0.458 (.33) 0.455 (.34)
FedMGDA+ 0.909 (.19) 0.853 (.21) 0.508 (.28) 0.473 (.34) 0.907 (.19) 0.889 (.21) 0.782 (.26) 0.865 (.23) 0.805 (.26) 0.847 (.21)
finetuning 0.912 (.18) 0.814 (.24) 0.721 (.28) 0.691 (.29) 0.850 (.24) 0.800 (.25) 0.747 (.24) 0.665 (.28) 0.668 (.27) 0.673 (.28)

Ditto, λ=0.1 0.884 (.24) 0.716 (.27) 0.721 (.27) 0.724 (.28) 0.727 (.26) 0.708 (.28) 0.706 (.28) 0.699 (.28) 0.694 (.27) 0.689 (.28)
Ditto, λ=1 0.911 (.16) 0.820 (.26) 0.714 (.28) 0.675 (.29) 0.872 (.22) 0.826 (.26) 0.708 (.29) 0.629 (.29) 0.667 (.28) 0.685 (.28)
Ditto, λ=2 0.914 (.18) 0.828 (.22) 0.698 (.27) 0.654 (.28) 0.862 (.21) 0.791 (.26) 0.623 (.31) 0.585 (.29) 0.647 (.27) 0.655 (.29)

Table 5.12: Full results (average and standard deviation of test accuracy across all devices)
on StackOverflow.

StackOverflow A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.155 (.13) 0.153 (.13) 0.156 (.16) 0.169 (.18) 0.147 (.12) 0.009 (.03) 0.013 (.01) 0.000 (.00) 0.000 (.00) 0.000 (.00)
local 0.311 (.15) 0.311 (.15) 0.313 (.15) 0.319 (.15) 0.311 (.15) 0.313 (.15) 0.319 (.15) 0.311 (.15) 0.313 (.15) 0.319 (.15)
fair 0.154 (.13) 0.155 (.14) 0.153 (.13) 0.141 (.10) 0.000 (.00) 0.000 (.00) 0.000 (.00) 0.148 (.12) 0.152 (.13) 0.167 (.11)
median 0.002 (.00) 0.001 (.00) 0.000 (.00) 0.000 (.00) 0.000 (.00) 0.001 (.00) 0.000 (.00) 0.000 (.00) 0.000 (.00) 0.000 (.00)
Krum 0.154 (.13) 0.150 (.13) 0.041 (.04) 0.002 (.00) 0.158 (.13) 0.151 (.13) 0.167 (.12) 0.153 (.13) 0.154 (.14) 0.138 (.15)
clipping 0.154 (.13) 0.157 (.13) 0.149 (.13) 0.163 (.17) 0.152 (.13) 0.001 (.01) 0.001 (.01) 0.155 (.12) 0.161 (.14) 0.120 (.16)
k-norm 0.154 (.13) 0.156 (.12) 0.100 (.08) 0.002 (.00) 0.086 (.11) 0.042 (.03) 0.001 (.00) 0.149 (.15) 0.144 (.15) 0.155 (.13)
k-loss 0.155 (.13) 0.160 (.12) 0.164 (.13) 0.129 (.14) 0.136 (.11) 0.145 (.11) 0.156 (.14) 0.148 (.14) 0.159 (.13) 0.156 (.13)
FedMGDA+ 0.155 (.12) 0.154 (.13) 0.152 (.13) 0.165 (.13) 0.147 (.13) 0.160 (.14) 0.101 (.09) 0.155 (.13) 0.158 (.12) 0.154 (.13)

Ditto, λ=0.05 0.315 (.16) 0.325 (.16) 0.315 (.17) 0.313 (.15) 0.314 (.16) 0.350 (.16) 0.312 (.14) 0.316 (.17) 0.321 (.17) 0.327 (.17)
Ditto, λ=0.1 0.309 (.17) 0.318 (.17) 0.315 (.17) 0.293 (.13) 0.309 (.17) 0.316 (.16) 0.307 (.14) 0.319 (.17) 0.302 (.17) 0.305 (.17)
Ditto, λ=0.3 0.255 (.18) 0.298 (.18) 0.288 (.17) 0.304 (.16) 0.283 (.17) 0.233 (.18) 0.321 (.20) 0.252 (.17) 0.261 (.19) 0.269 (.17)
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Chapter 6

Privacy: Differentially Private Adaptive
Optimization

As discussed in Chapter 1, federated learning, by minimizing data exposure, is not
inherently private or secure. We explore differential privacy (DP) in federated networks
in this chapter. We focus on private adaptive optimization, which is fundamental for
current language applications. The proposed methods are effective to reduce privacy
noise for general ML applications beyond FL.

6.1 Overview

Privacy-sensitive applications in areas such as healthcare and cross-device federated
learning have fueled a demand for optimization methods that ensure differential privacy
(DP) [4, 49, 82, 210]. These methods typically perturb gradients with random noise
at each iteration in order to mask the influence of individual examples on the trained
model. As the amount of privacy is directly related to the number of training iterations,
private applications stand to benefit from optimizers that improve convergence speed.
To capitalize on this, a number of recent works have naturally tried to combine DP with
adaptive optimizers such as Adagrad, RMSProp, and Adam, which have proven to
be effective for non-private machine learning tasks, especially those involving sparse
gradients or non-uniform stochastic noise [78, 117, 155, 237, 318, 321].

Unfortunately, tasks where adaptive optimizers work particularly well (e.g., sparse,
high-dimensional problems), are exactly the tasks where DP is known to degrade perfor-
mance [25]. Indeed, as we show in Figure 6.1, this can result in existing private adaptive
optimization methods performing only marginally better than simple baselines such as
differentially private stochastic gradient descent (DP-SGD), even under generous privacy
budgets. The rationale behind this is that to guarantee privacy, estimating the required
statistics on noisy gradients can introduce significant noise (Figure 6.2), making these
methods less effective.

In this chapter, we aim to close the gap between adaptive optimization in non-private
and private settings.
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Figure 6.1: Test performance on IMDB with logistic regression. AdaS refers to using
preconditioning in AdaDPS for non-private training. Adaptive methods (Adam) become
less effective when trained with differential privacy (DP-Adam), while AdaDPS retains
the benefits of adaptivity.
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Figure 6.2: The estimates of gradient statistics (e.g., second moments) in private adaptive
methods (e.g., DP-Adam) are noisy and may become uninformative of the relative
importance of coordinates.

6.1.1 With Side Information

We propose AdaDPS, a simple yet powerful framework leveraging non-sensitive side
information to effectively adapt to the gradient geometry. Our framework makes two
key changes over prior art in private adaptive optimization: (1) Rather than privatizing
the gradients first and then applying preconditioners, we show that transforming the
gradients prior to privatization can reduce detrimental impacts of noise; (2) To perform
gradient transformations, we explore using simple, easily obtainable side information in
the data. We discuss two practical scenarios for obtaining such information below.

Public Data as Side Information. A natural choice for side information is to use a
small amount of public data generated from a similar distribution as the private data, a
common assumption in private optimization [15, 20, 141, 332, 333]. In practice, public
data could be obtained through proxy data or from ‘opt-out’ users who are willing to
share their information [12, 141]. Indeed, the notion of heterogeneous DP where subsets
of samples require zero or weak privacy has been extensively studied in prior works [e.g.,
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11, 137]. Another line of works is to assume that the gradients are low rank, and then use
public data to estimate this gradient subspace—thereby mitigating some of the earlier
discussed poor performance of DP in high-dimensional regimes. We do not consider
using public data for this purpose in this work, as such a low-rank assumption might
not hold in practice, particularly for the problems settings where adaptive optimizers are
known to excel [20]. Instead, we propose to use the public data more directly: we estimate
gradient statistics on public data at each iteration, and then apply these statistics as a
preconditioner before privatizing the gradients. Despite the simplicity of this procedure,
we unaware of any work that has explored it previously.

Summary Statistics as Side Information. Of course, there may also be applications
where it is difficult to obtain public data, particularly data that follows the same distribu-
tion as the private data. In such scenarios, our insight is that for many applications, in
lieu of public data we may have access to some common knowledge about the training
data that can be (i) computed before training, and (ii) used to improve optimization
performance in both private and non-private settings. For instance, in many language
tasks, certain aggregate statistics (e.g., frequency) of different words/tokens are common
knowledge or may be easily computed prior to training, and serve as reasonably good
estimates of the predictiveness of each feature. AdaDPS considers leveraging such sim-
ple heuristics to precondition the gradients. Perhaps surprisingly, in our experiments
(Section 6.4), we demonstrate that the performance of AdaDPS when scaling gradients via
these simple statistics (such as feature frequency) can even match the performance of
AdaDPS with public data.

6.1.2 Without Side Information

Prior works typically address this issue by using non-sensitive auxiliary data or side/meta
information of the dataset to approximate the underlying structures of private gradi-
ents [20, 142, 187]. While this can boost performance, assuming access to informative
public data may be unrealistic in many privacy-sensitive applications. In this section, we
instead ask: Can we improve privacy/utility tradeoffs in private adaptive optimization
without accessing auxiliary data or side information?
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Figure 6.3: Preconditioner val-
ues do not change drastically
during optimization (IMDB
dataset).

A key insight we have in addressing this question is
that for many machine learning problems, the gradient
geometry may not change drastically during succes-
sive steps of optimization (e.g., see Figure 6.3, which
plots successive distributions of preconditioner values).
This presents an opportunity to estimate the precon-
ditioners used by adaptive optimizers with smaller
noise, by averaging across previous iterates. To this
end, we propose DP2, a differentially private adap-
tive method that uses historical gradients to construct
delayed preconditioners with reduced noise. Despite
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the simplicity of this approach, we find that it can sig-
nificantly improve performance in practice—improving convergence speed by as much
as 4ˆ relative to non-adaptive baselines, all without the need to access auxiliary data.
To better understand these performance gains, we theoretically and empirically analyze
the method to study the effect of using delayed preconditioners, including tradeoffs that
emerge between the noise reduction and staleness.

Contributions. We summarize our contributions of this chapter as follows.
• We propose effective optimization frameworks (AdaDPS and DP2) to approximate the

preconditioners in private adaptive optimization. Our algorithms either rely on non-
sensitive side information or stale gradients without access to auxiliary information.

• We analyze AdaDPS and DP2 and provide convergence guarantees for both convex and
non-convex objectives. In convex cases, we analyze a specific form using RMSProp up-
dates to provably demonstrate the benefits of our approaches relative to differentially
private SGD when the gradients are sparse.

• Empirically, we evaluate our method on a set of real-world datasets. They improve
the absolute accuracy significantly compared with strong baselines under the same
privacy budget, and can even achieve similar accuracy as adaptive methods in non-
private settings. We additionally demonstrate how to apply AdaDPS to the application
of federated learning, where it outperforms existing baselines by a large margin.

Notation. Throughout this chapter, we consider using adaptive optimization methods
to solve the classic empirical risk minimization objective, i.e., minw Fpwq “ 1

n
řn

i“1 f pxi; wq,
where w P Rd and t f pxi; wquiPrns are individual loss functions on training sample i P rns.
Optionally, there may exist pubic data denoted as xpub, which does not overlap with
txiuiPrns. For vectors u, v P Rd, we use u ` v for coordinate-wise addition, and u

v for
coordinate-wise division. For any vector v, vj denotes the j-th coordinate of v. For
example, gi,t

j refers to the j-th coordinate of gradient gi,t. Finally, |v| P Rd denotes tak-
ing coordinate-wise absolute values, and } ¨ }M denotes the matrix norm defined as
} ¨ }M :“

a

x¨, M¨y for a symmetric and positive definite matrix M P Rdˆd, or a diagonal
matrix with non-negative diagonal entries populated by a vector M P Rd.

In terms of privacy formulations, we consider classic sample-level DP in centralized
settings, and a variant of it—user-level DP—in distributed/federated environments. They
are formally defined in Chapter 2. We focus primarily on the classic centralized training,
and later on extend it to federated settings (Objective (6.1)) [206].

6.2 AdaDPS: Private Adaptive Optimization With Side In-
formation

Gradient-based private optimization methods usually update the model parameters with
noisy gradients at each iteration and then release the private final models [4]. To control
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the sensitivity of computing and summing individual gradients from a mini-batch, meth-
ods based on the subsampled Gaussian mechanism typically first clip each individual
gradient and then add i.i.d. zero-mean Gaussian noise with variance determined by the
clipping threshold and the privacy budget. To use adaptivity effectively, in AdaDPS, we
instead propose first preconditioning the raw gradients with side information estimated
either on public data or via some auxiliary knowledge, and then applying the Gaussian
mechanism with noise multiplier σ on top. AdaDPS in centralized training is summarized
in Algorithm 8. Note that AdaDPS is a general framework in that it incorporates a set
of private adaptive methods. As described in Algorithm 8, the functions ϕ, φ, and A
abstract a set of updating rules of different adaptive methods. Next, we describe the
algorithm in more detail and instantiate ϕ, φ, and A.

Option 1 (With Public Data). We first consider estimating gradient statistics based on
public data. Functions ϕ, φ, and A can define a very broad a set of common adaptive
updating rules, as shown below.

• Adam: At is the square root of the second moment estimation, and Mt is the first

moment estimation; with Apgi,t, At, Mtq “
βtgi,t`p1´βtqMt

At for some moving averaging
parameter βt.

• AdaGrad: Mt “ 0, pAtq2 “ pAt´1q2 ` pĝtq2, and Apgi,t, At, Mtq “
gi,t

At .
• RMSProp: At is the square root of the second moment estimation with Mt “ 0. And

Apgi,t, At, Mtq “
gi,t

At .

We note that the AdaDPS framework can potentially incorporate other adaptive optimizers,
beyond what is listed above. In our analysis and experiments, we mainly focus on
using RMSProp updates to obtain the preconditioner, because AdaGrad which sums up
gradients in all iterations so far in the denominator, often has poor practical performance,
and Adam needs to maintain an additional mean estimator. However, we also evaluate
the use of Adam within AdaDPS in Table 6.6 in Appendix 6.7, showing that it yields similar
improvements as RMSProp across all datasets. In Section 6.3, we analyze the convergence
of At as Erpĝtq2s, and prove that in sparse settings, AdaDPS allows the addition of less
noise under the same privacy budget.

Option 2 (Without Public Data). When there is no public data available, we develop
simple and effective heuristics to determine which coordinates are more predictive based
on non-sensitive side information. In particular, for generalized linear models in NLP
applications, we set At to be (i) proportional to the frequency of input tokens, or (ii)
proportional to the TF-IDF values of input tokens. Follow a similar analysis as that of
Option 1, we provide theoretical justification in Theorem 17 in Section 6.3.1.1. While
these are simple approaches to remove the dependence on public data, we find that they
can significantly outperform DP-SGD for real-world tasks with several million model
parameters (Section 6.4.1).
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Algorithm 8 AdaDPS

1: Input: T, batch size b, noise multiplier σ, clipping threshold C, initial model w1 P Rd,
side information At P Rd, learning rate αt, potential momentum buffer M0 P Rd

2: for t “ 1, ¨ ¨ ¨ , T ´ 1 do
3: Uniformly sample a mini-batch B (|B|=b) from the training set and get b gradients:

gi,t
Ð ∇ f pxi; wt

q, i P B

4: Option 1: With public data xpub
Uniformly sample a mini-batch B1 (|B1|=b) from xpub, get gradients, and update

At and Mt with recurrence ϕ and φ respectively:

ĝt
Ð

1
b

ÿ

jPB1

∇ f pxj; wt
q, xj

P xpub

At
Ð ϕpAt´1, ĝt

q, Mt
Ð φpMt´1, ĝt

q,

5: Option 2: Without public data

At estimated via heuristics

6: Precondition individual gradients by A:

gi,t
Ð Apgi,t, At, Mt

q

7: Privatize preconditioned gradients:

g̃t
Ð

1
b

ÿ

iPB

clip
´

gi,t, C
¯

`
1
b
N

´

0, σ2C2
¯

,

where clippg, Cq clips a vector g to L2 norm C
8: Update the model parameter w as

wt`1
Ð wt

´ αt g̃t

9: end for
10: return wT

Privacy Guarantees. We now state the differential privacy guarantees of Algorithm 8.
As the side information At (as well as the potential momentum buffer Mt) is non-sensitive,
its privacy property directly follows from previous results [4].

Theorem 15 (Privacy guarantee of Algorithm 8 [4]). Assume the side information At is
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non-sensitive. There exist constants c1 and c2 such that for any ε ă c1b2T{n2, Algorithm 8 is

pε, δq-differentially private for any δ ą 0 if σ ě c2
b
?

T logp1{δq

nε .

6.2.1 Intuition for At

In this section we provide further intuition for the AdaDPS framework. When At is an all-
ones vector, AdaDPS reduces to the normal DP-SGD algorithm. Otherwise, At is indicative
of how informative each coordinate is. Intuitively, suppose clipping does not happen
and the public data come from the same distribution as private data so that for the
RMSProp preconditioner, we have At “

a

Erpgi,tq2s. Then the effective transformation

on each individual gradient gi,t is
gi,t`N p0,σ2C2Erpgi,tq2sq

?
Erpgi,tq2s

. This can be viewed as first adding

non-isotropic noise proportional to the second moment of gradients, and then applying
RMSProp updates, which is beneficial as coordinates with higher second moments are
more tolerant to noise. Therefore, AdaDPS could improve privacy/utility tradeoffs via
adding coordinate-specific noise (formalized in Theorem 16).

We next consider a toy example to highlight one of the regimes where AdaDPS (or,
adaptive methods) is particularly effective. Consider a linear regression task with the
objective minwPR500

1
2n

ř

iPrnspwJxi ´ yiq2 where n “ 1, 000 and each sample xi P R500.
In many real-world applications, the tokens (features) are sparse and their frequencies
follow heavy-tailed distributions. Without loss of generality, we assume the first 10%
features are frequent and uninformative; and the later 90% rare and informative. Let the
j-th feature of all data points be sampled from a random variable xj P t0, 1u. Features
and the underlying true w are generated as follows:

Prpxj “ 1q “

#

0.9, j ď 50
0.01, j ą 50

, wj “

#

0.01, j ď 50
1.0, j ą 50

.

Labels are generated by yi “
@

w, xiD ` bi where bi „ N p0, 0.01q. For AdaDPS, we assume
model engineers know which words are more frequent, thus setting At

j “ 1 for j ď 50
and At

j “ 0.01 otherwise for all t. Using larger learning rates on informative coordinates,
side information helps to improve optimization performance dramatically (see results in
Figure 6.4).

Comparison to Asi et al. [20]. The most related work to ours is Asi et al. [20], which
adds non-isotropic noise which lies in a non-uniform ellipsoid to the gradients, and
(optionally) transforms the resulting gradients with the demoninator used in AdaGrad.
AdaDPS differs from their approach in several ways, as we (i) first precondition then add
noise (as opposed to the other way round), (ii) consider a broader class of preconditioners
(beyond AdaGrad), and (iii) make the approaches to estimating gradient geometry in Asi
et al. [20] more explicit in lieu of public data (as discussed in previous sections). Empiri-
cally, we compare with another state-of-the-art method [15] which outperforms Asi et al.
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Figure 6.4: Training loss on the linear regression problem described in Section 6.2 (aver-
aged over five runs). We tune optimal learning rates separately for each method. Private
training (right) achieves p4.13, 10´3q-DP.

[20], and demonstrate AdaDPS’s superior performance (Section 6.4, Table 6.2).1

6.3 Convergence Analysis of AdaDPS

We now analyze the convergence of AdaDPS (Algorithm 8) with and without public data,
in both convex (Section 6.3.1) and non-convex (Section 6.3.2) settings. When there is
public data available, we prove that AdaDPS adds less noise (plus, with noise proportional
to the magnitude of gradients) compared with DP-SGD. Our theory extends previous
proofs in related contexts, but considers stochastic gradients, adding random Gaussian
noise to the processed gradients, and estimating the preconditioner on public data (as
opposed to updating it with the raw gradients on training data). When there is no public
data, we present convergence results for general At, covering the heuristics used in
practice.

6.3.1 Convex Convergence

For convex functions, we define the optimal model w˚ as w˚ P arg minw Fpwq. First we
state a set of assumptions that are used in the analyses.

Assumption 2. There exists a constant D such that }wt ´ w˚}2 ď D for any t P rTs.

Assumption 3. There exists a constant C such that
›

›

›

gi,t

At

›

›

›

2
ď C for any t P rTs and i P rns.

Assumption 4. Denote gt :“ 1
b
ř

iPB gi,t. There exists a constant a P p0, 1s such that for any
j P rds and t P rTs, apĝt

jq
2 ď pgt

jq
2 ď 1

a pĝt
jq

2 holds.

Assumption 2 (bounded domain across all iterations) is commonly used in adaptive
optimization literature [20, 168, 187, 237]. Assumption 3 aims to bound the L2 norm

1We do not compare with Asi et al. [20] directly as the code is not publicly available.
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of the stochastic gradient, thus helping bound the L2 sensitivity of the operation of
calculating and averaging individual gradients from a mini-batch. Assuming bounded
stochastic gradient norm is standard in prior works on convex and non-convex private
optimization [e.g., 142, 187, 332]. Assumption 4 bounds the dissimilarity between public
and private data.

Within the framework of AdaDPS, we explore the convergence of the RMSProp precon-
ditioner where At “

a

Erpĝtq2s ` ϵt (with public data) where ϵt is some small constant
or At is obtained via side information heuristics. We first look at the case where there
exist public data, and therefore the exact updating rule at the t-th iteration is:

ĝt, gt
Ð

1
b

ÿ

jPB1

∇ f pxj; wt
q pxj

P xpubq,
1
b

ÿ

iPB

∇ f pxi; wt
q,

vt
Ð βtvt´1

` p1 ´ βt
qpĝt

q
2, At

Ð
?

vt ` ϵt,

wt`1
Ð wt

´ αt
ˆ

gt

At ` N
˙

, N „
1
b
N p0, σ2C2

q.

Theorem 16 below states the convergence guarantees.

Theorem 16. Assume Fpwq is a convex function w.r.t. w. Let Assumptions 2-4 hold. Addition-
ally, choose βt such that 1 ´

γ
t ě βt ě 1 ´ 1

t holds for some γ P p0, 1s; and let
?

t ` 1ϵt`1 ě
?

tϵt

for any t. After running Algorithm 8 using learning rates αt “ α?
t

with public data for T itera-
tions, we have

min
tPrTs

ErFpwt
qs ´ F˚

ď
G

?
T

d
ÿ

j“1

E
”

AT
j

ı

`
α

?
T

max
tPrTs

E
”

}N}
2
At

ı

,

where F˚ :“ Fpw˚q, G “ D2

2α `
αp2´γq

aγ , and AT
j “

b

vT
j ` ϵT.

The full proof is deferred to Appendix 6.5.1. Our proof extend the proof of the original
RMSProp method with full gradients in Mukkamala and Hein [218] to stochastic and
private settings. From Theorem 6.5, we see that the first term in the bound is standard
for the RMSProp optimizer, and the last term is due to noise added to ensure differential
privacy. Fixing the noise multiplier σ, the second term depends on the clipping value C
and the preconditioner At. We see that when the gradients are sparse, it is likely that the
added DP noise would be significantly reduced. In other words, to guarantee overall

pε, δq-differential privacy by running T total iterations, we can set σ2 “ O
´

b2T logp1{δq

n2ε2

¯

and T “ O
´

n2ε2

maxtPrTs Er}At}1s logp1{δq

¯

. The convergence rate therefore becomes

min
tPrTs

ErFpwt
qs ´ F˚

ď O

¨

˝

b

maxtPrTs E r}At}1s

nε

˛

‚.
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When gradients are sparse (hence maxtPrTs E
“
›

›At
›

›

1

‰

ă d), the amount of noise added
will be significantly smaller compared with that of vanilla DP-SGD to guarantee the
same level of privacy. This highlights one regime where AdaDPS is particularly useful,
though AdaDPS also yield improvements in other settings with dense gradients (Table 6.6
in the appendix). Here, Theorem 16 assumes access to Erpĝtq2s. When there is no public
data available, we leverage other easily obtainable side information to determine fixed
At prior to training, as analyzed in the next section.

6.3.1.1 Fixed At

Theorem 17. Let assumptions in Theorem 16 hold. Running Algorithm 8 using learning rates
αt “ α?

t
without public data with side information A P Rd for T iterations gives

min
tPrTs

ErFpwt
qs ´ F˚

ď O

¨

˝

αR ` 1
?

T

d
ÿ

j“1

Aj `
α

?
T

E
”

}N}
2
A

ı

˛

‚,

where R :“ maxj,t
Erpgt

jq
2s

A2
j

and gt :“ 1
b
ř

iPB gi,t.

From Theorem 17 above, we observe that A should be chosen such that both R and
řd

i“j Aj are minimized. For a large class of generalized linear models, we are able to
obtain appropriate A based on the feature space information to control the values of R,
as discussed in the following.

Considering generalized linear models. Under the model parameter w P Rd, for
any xi, the gradients are cpxi; wqxi where cpxi; wq P R is a function of xi and w. We
assume that for any i P rns and w, there exists a constant cmax such that |cpxi; wq| ď cmax.
One natural choice of A is to set Aj “

b

Erx2
j s ` ϵ for each coordinate j P rds (such

that R ď c2
max), which could improve the noise term E

“

}N}2
A
‰

when the features are
sparse. Nevertheless, Erx2s can be unrealistic to obtain prior to training. Instead, one
side information of choice is Erxs, which implies how rare the raw features are in some
NLP applications. Let Aj “ Er|xj|s ` ϵ pj P rdsq. Then

R “ max
j,t

E
”

pgt
jq

2
ı

`

Er|xj|s ` ϵ
˘2 ď max

j,t

c2
maxErx2

j s

pEr|xj|sq
2 ` ϵ2 .

To reason about how large R is, we consider a simple setup where each feature takes the
value of v ą 0 with probability p, and 0 with probability 1 ´ p. It is straightforward to
see the scaling of the last two terms in the convergence bound in Theorem 17:

R
d
ÿ

j“1

Aj “ O
ˆ

1
p

˙

O pdpvq “ Opdvq,
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E
”

}N}
2
A

ı

“ σ2C2
d
ÿ

j“1

Aj “ O
ˆ

max
i,t

}gi,t
}

2 dpv
ppv ` ϵq2

˙

.

E
“

}N}2
A
‰

will reduce to Opdq if the gradients are sparse in a certain way, i.e., maxi,t }gi,t}2 “

Oppq. Note that only using this simple first-moment information (Aj “ E
“

|xj|
‰

` ϵ), we
are not able to obtain a constant improvement in the convergence bound as in Theorem 16
with public data. However, we empirically demonstrate that these ideas can be effective
in practice in Section 6.4.

6.3.2 Non-Convex Convergence

In addition to convex problems, we also consider convergence to a stationary point for
non-convex and smooth functions. We introduce additional assumptions in the following.

Assumption 5. Each f pxi; wq pi P rnsq is L-smooth with respect to w P Rd.

Assumption 6. The expectation of stochastic gradient variance is bounded, i.e., Er}gi,t
j ´

Ergi,t
j s}2

2s ď τ2
j for all i, t, j. Denote τ2 :“ pτ2

1 , ¨ ¨ ¨ , τ2
d q P Rd.

Assumption 5 together with Assumption 2 implies that there exists a constant that
bounds }∇Fpwtq} for any t, which we denote as B.

Theorem 18. Let Assumptions 2-6 hold. After running Algorithm 8 with public data for T
iterations using a constant learning rate α and a constant ϵ, choosing the constants to satisfy
α ď ϵ

2L and B
a

1 ´ β ď

?
aϵ
4 , we have

1
T

ÿ

tPrTs

E
”

}∇Fpwt
q}

2
ı

ď O
ˆ

1
T

˙

` O
ˆ

}τ2}1

b
`

σ2

b2

˙

.

The proof is mostly extended from Adam’s proof in Zaheer et al. [318] (see Ap-
pendix 6.5.2 for complete steps). When the batch size increases, both the stochastic
gradient noise and differential privacy noise would be reduced.

Theorem 19. Let Assumptions 2-6 hold. After running Algorithm 8 with a fixed A as prior
information for T iterations using a constant learning rate α and a constant ϵ, choosing the
constants to satisfy α ď ϵ

L , we have

1
T

ÿ

tPrTs

E
”

}∇Fpwt
q}

2
A´1

ı

ď O
ˆ

1
T

˙

` O
ˆ

τ2

A
1
b

`
σ2

b2

˙

.
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6.4 Experiments on AdaDPS

We evaluate the performance of AdaDPS in both centralized (Section 6.4.1) and federated
(Section 6.4.2) settings for various tasks and models. In centralized training, we inves-
tigate two practical scenarios for obtaining side information with and without public
data (Section 6.4.1.1 and 6.4.1.2). We describe our experimental setup below; details of
datasets, models, and hyperparameter tuning are described in Appendix 6.6. Our code
is publicly available at github.com/litian96/AdaDPS.

Datasets. We consider common benchmarks for adaptive optimization in centralized
or federated settings [15, 235, 318] involving varying types of models (both convex and
non-convex) and data (both text and image data). Both linear and non-convex models
contain millions of learnable parameters.

Hyperparameters. We fix the noise multiplier σ for each task, and select an individual
(fixed) clipping threshold for each differentially private run. To track the privacy loss (to
ensure pε, δq-DP), we add the same amount of noise to all compared methods, set the δ
value to be the inverse of the number of all training samples, and compute ε using Rényi
differential privacy (RDP) accountant for the subsampled Gaussian mechanism [213].

6.4.1 Centralized Training

Common Baselines. One can directly privatize an adaptive optimizer by first privatizing
the raw gradients, and then applying that adaptive method on top of noisy gradients [332].
We consider these baselines named DP-Adam or DP-RMSProp where the adaptive
optimizer is chosen to be Adam or RMSProp (same as DP-Adam appearing in previous
sections). As the empirical results of DP-Adam and DP-RMSProp are very similar
(Table 6.6 in the appendix), in the main text, we mainly compare AdaDPS with DP-
Adam [332] and DP-SGD [4]. For completeness, we present the exact DP-Adam algorithm
in Appendix 6.6.

6.4.1.1 With public data

In the main text, we set the public data size to be 1% of training data size. We further
explore the effects of public data size empirically in Table 6.10, Appendix 6.7. Next,
we present results of comparing AdaDPS with several baselines, and results using both
in-distribution (ID) and out-of-distribution (OOD) data as public data to estimate the
preconditioner.

Preconditioning Noisy Gradients with Public Data. In addition to DP-SGD and DP-
Adam mentioned in Section 6.4.1, we consider another method of preconditioning the
noisy gradients with second moment estimates obtained from public data. Specifically, the
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updating rule at iteration t is

g̃t
Ð

1
b

ÿ

iPB

clip
´

gi,t, C
¯

`
1
b
N p0, σ2C2

q,

g̃t
Ð

g̃t
a

Erpĝtq2s ` ϵt
, where ĝt :“ ∇ f px; wt

q for x P xpub.

We call this adaptive baseline DP-R-Pub, which is equivalent to standard DP-RMSProp
but using public data to estimate the preconditioner. Comparing with this method
directly reflects the importance of the order of preconditioning and privatization in
AdaDPS.

Results with in-distribution proxy data (randomly sampled from training sets) are
shown in Figure 6.5 and Table 6.1 below. We see that across three datasets, (i) DP-Adam
does not necessarily outperform DP-SGD all the same, (ii) AdaDPS improves over all
baselines significantly, including DP-R-Pub. Full results involving DP-RMSProp and
AdaDPS with Adam as the updating rule are presented in Table 6.6.
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Figure 6.5: Test accuracies of baselines and AdaDPS assuming access to public data. ε
values on these two datasets are 0.84 and 2.8, respectively. AdaDPS significantly improves
test performance, even reaching an accuracy much higher than the accuracy of SGD in
non-private training on StackOverflow.

Methods Loss ˆ100 (σ=1) Loss ˆ100 (σ=0.75)
DP-SGD 5.013 (.001) 3.792 (.001)
DP-Adam 3.697 (.020) 3.286 (.016)
AdaDPS 3.566 (.008) 3.158 (.003)

Table 6.1: Test reconstruction loss (mean and standard deviation across three runs) on
MNIST under a deep autoencoder model. σ=1 and σ=0.75 correspond to ε=1.6 and ε=3,
respectively. DP-Adam works well in this task compared with DP-SGD. AdaDPS improves
over DP-Adam.

We also evaluate AdaDPS on MNIST, and observe that it yields 0.5% ´ 2% accuracy
improvements (Table 6.6), depending on the specific adaptive method.
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Comparisons with Amid et al. [15]. We compare AdaDPS with one recent work, PDA-
DPMD, which is the state-of-the-art that leverages public data to improve privacy/utility
tradeoffs in a mirror descent framework [15]. We take their proposed approximation,
where the actual gradients are a convex combination of gradients on private and pub-
lic data. As this approximation does not precondition gradients, PDA-DPMD could
underperform AdaDPS in the tasks where adaptivity is critical, as shown in Table 6.2
below.

Datasets Metrics PDA-DPMD AdaDPS AdaDPS
w/ public w/ public w/o public

IMDB accuracy 0.62 0.80 0.75
StackOverflow accuracy 0.33 0.40 0.41
MNIST loss 0.039 0.036 —

Table 6.2: Comparison with a recent method (PDA-DPMD) using public data in private
mirror descent. AdaDPS outperforms PDA-DPMD due to preconditioning.

Out-Of-Distribution Public Data. As mentioned in Section 6.1, public data could be
obtained via a small amount of proxy data or ‘opt-out’ users that do not need privacy
protection. We consider two practical cases where we use OOD data to extract side infor-
mation. For IMDB sentiment analysis, we use a small subset of Amazon reviews2 [324]
as public data (1% the size of IMDB). Amazon reviews study a more fine-grained 5-class
classification problem on product reviews, and we map labels {1, 2} to 0 (negative),
and labels {4, 5} to 1 (positive). For StackOverflow tag prediction task which consists
of 400 users with different styles and interested topics, we simply hold out the first
four of them to provide public data. We show results in Table 6.3 below. We see that
the preconditioners obtained from out-of-distribution but related public data are fairly
effective.

Datasets DP-SGD AdaDPS AdaDPS
OOD public ID public

IMDB 0.63 0.79 0.80
StackOverflow 0.28 0.40 0.40

Table 6.3: Using small out-of-distribution data as public data achieves the same improve-
ments. For IMDB, we leverage Amazon reviews data (1% the size of IMDB) as public
data. For StackOverflow, we hold out 1% users as those who opt out of privacy training.

6.4.1.2 Without Public Data

When it is difficult to obtain public data that follow sufficiently similar distribution as
private training data, we explore two specific heuristics as side information tailored to

2figshare.com/articles/dataset/Amazon_Reviews_Full/13232537/1
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language tasks: token frequencies and TF-IDF values of input tokens (or features). These
statistics are always known as open knowledge, thus can be used as an approximate how
important each feature is. We compare AdaDPS with DP-SGD and DP-Adam.

At Based on Token Frequencies. One easily obtainable side information is token
frequencies, and we can set At pt P rTsq to be proportional to that accordingly. Note that
our implicit assumption here is that rare features are more informative than frequent ones.
We investigate the logistic regression model on two datasets in Figure 4 below. Despite
the simplicity, this simple method works well on StackOverflow and IMDB under a
tight privacy budget, outperforming DP-SGD and DP-Adam significantly. Especially for
StackOverflow, the test accuracy is the same as that of AdaDPSwith a small set of public
data (Figure 6.5).

0 5 10 15 20 25 30 35 40
# epochs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

te
st

 a
cc

ur
ac

y

StackOverflow

DP-SGD
DP-Adam
AdaDPS

0 20 40 60 80 100
# epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

te
st

 a
cc

ur
ac

y

IMDB (convex)

DP-SGD
DP-Adam
AdaDPS

Figure 6.6: AdaDPS uses token frequencies as the side information, demonstrating superior
performance than the baselines. Methods in each subfigure reach p0.84, 4.2 ˆ 10´6q- and
p2.8, 4 ˆ 10´5q-DP.

At Based on TF-IDF Values. Another common criterion to measure the relevance of
tokens to each data point in a collection of training data is TF-IDF values. With the
presence of such information available in a data processing pipeline, we explore the
effects of At being inversely proportional to TF-IDF scores for linear models. The results
are reported in Table 6.4. The ‘ideal’ method refers to AdaDPS with RMSProp updates
and the second moment estimated on clean gradients from private training data, which
serves a performance upper bound. As expected, across all methods, TF-IDF features
result in higher accuracies than BoW features. AdaDPS outperforms the baselines by „10%
absolute accuracy, only slightly underperforming the ‘ideal’ oracle.

Remark (Side Information in Non-Private Training). The idea of using side informa-
tion (with or without public data) can also improve the performance of vanilla SGD in
non-private training, yielding similar accuracies as that of adaptive methods. We report
additional results along this line in Table 6.9 in the appendix.
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Features Methods
DP-SGD DP-Adam AdaDPS ideal

BoW 0.62 (.02) 0.68 (.01) 0.75 (.01) 0.82 (.01)
TF-IDF 0.68 (.01) 0.65 (.01) 0.80 (.00) 0.83 (.00)

Table 6.4: We preprocess IMDB into two versions with either BoW or TF-IDF features,
and report average test accuracy along with standard deviation across three runs. AdaDPS
with At being inversely proportional to features’ TF-IDF values outperforms the baselines
of DP-SGD and DP-Adam by a large margin. AdaDPS also performs relatively closely to
the ‘ideal’ upper bound.

6.4.2 Applying AdaDPS to Federated Learning

In this section, we discuss AdaDPS adapted to FL to satisfy user-level, global differential
privacy (assuming a trusted central server) (Definition 4). We consider the default
objective (1.1) for FL of fitting a model w P Rd to data across a network of N devices, i.e.,

min
wPRd

Fpwq “

N
ÿ

k“1

pk fkpwq, (6.1)

where fkpwq is the empirical local loss on each device k, and pk is some pre-defined
weight for device k such that

řN
k“1 pk “ 1. In this work, we simply set pk “ 1

N , k P rNs.
For this privacy-sensitive application, we assume there is no public data available.

Due to the practical constraints of federated settings (e.g., unreliable network condi-
tions, device heterogeneity, etc), federated optimization algorithms typically randomly
samples a small subset of devices at each communication round, and allows each device
to run optimization methods locally (e.g., local mini-batch SGD) before sending the
updates back to the server [206]. Adapting AdaDPS to federated learning is not straight-
forward, raising questions of applying preconditioning at the server side, the device
side, or both [290]. We empirically find that on the considered dataset, preconditioning
the mini-batch gradients locally at each iteration demonstrates superior performance than
preconditioning the entire model updates at the server side. The exact algorithm is
summarized in Algorithm 10 in the appendix.

We investigate the same StackOverflow dataset described in Section 6.4.1, but follow
its original, natural partition (by Stack Overflow users) for federated settings, one device
per user. There are 400 devices in total for the subsampled version we use. We select
20 devices at each communication round and use a noise multiplier σ “ 0.3. While
we arrive at a large ε value for user-level DP, the final model could still be useful for
defending against membership inference attacks in practice [143].

In Figure 6.7, we plot test accuracy versus the number of communication rounds.
AdaDPS has „5% higher test accuracy than other two methods. We note that in federated
learning applications involving massive and unreliable networks, it is not always realistic
to allow for uniform device sampling. Incorporating recent advances in DP without
sampling [e.g., 143] to address this is left for future work.
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Figure 6.7: Test accuracy of StackOverflow in non-private and private settings under
p34, 0.0025q user-level DP (Definition 4). AdaDPS extended to federated learning (Algo-
rithm 10 in the appendix) improves over baselines of DP-FedAvg [210] and DP-FedAdam
by 5% in terms of test accuracy.

6.5 Convergence Proofs

6.5.1 Proof for Theorem 16 (Convex cases)

Based on our assumptions, the updating rule becomes

gt
Ð

1
b

ÿ

iPB

∇ f pxi; wt
q (6.2)

ĝt
Ð

1
b

ÿ

jPB1

∇ f pxj; wt
q, xj

P xpub (6.3)

vt
Ð βtvt´1

` p1 ´ βt
qpĝt

q
2 (6.4)

At
Ð

?
vt ` ϵt (6.5)

wt`1
Ð wt

´ αt
ˆ

gt

At ` N
˙

, N „
1
b
N p0, σ2C2

q (6.6)

We extend the proof in Mukkamala and Hein [218] to stochastic, private cases with
preconditioner estimated on public data. Based on the updating rule, we have

›

›

›
wt`1

´ w˚
›

›

›

2

At
(6.7)

“

›

›

›
wt

´ αt
pAt

q
´1gt

´ αtN ´ w˚
›

›

›

2

At
(6.8)

“
›

›wt
´ w˚

›

›

2
At `

›

›

›
αt

pAt
q

´1gt
` αtN

›

›

›

2

At
´ 2

@

wt
´ w˚, αtgt

` αt AtN
D

(6.9)

“
›

›wt
´ w˚

›

›

2
At ´ 2αt @gt, wt

´ w˚
D

` pαt
q

2
A

gt, pAt
q

´1gt
E

´ 2αt
xwt

´ w˚, AtNy

` pαt
q

2
}N}

2
At ` 2pαt

q
2
xgt, Ny. (6.10)
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Rearranging terms gives

@

gt, wt
´ w˚

D

“
}wt ´ w˚}2

At ´ }wt`1 ´ w˚}2
At

2αt `
αt

2

A

gt, pAt
q

´1gt
E

´ xwt
´ w˚, AtNy `

αt

2
}N}

2
At ` αt

xgt, Ny. (6.11)

Take expectation on both sides conditioned on wt,

@

∇Fpwt
q, wt

´ w˚
D

“
Et

“

}wt ´ w˚}2
At

‰

´ Etr}wt`1 ´ w˚}2
Ats

2αt

`
αt

2
Et

”A

gt, pAt
q

´1gt
Eı

`
αt

2
Et

”

}N}
2
At

ı

, (6.12)

where we have used the fact that N is a zero-mean Gaussian variable independent of
gt, wt. Taking expectation on both sides and using the convexity of Fp¨q:

ErFpwt
qs ´ Fpw˚

q ď
Er}wt ´ w˚}2

Ats ´ Er}wt`1 ´ w˚}2
Ats

2αt

`
αt

2
Er

A

gt, pAt
q

´1gt
E

s `
αt

2
E
”

}N}
2
At

ı

. (6.13)

Applying telescope sum, we have

T
ÿ

t“1

`

ErFpwt
qs ´ Fpw˚

q
˘

(6.14)

ď
}w1 ´ w˚}2

A1

2α1
`

T
ÿ

t“2

¨

˝

E
“

}wt ´ w˚}2
At

‰

2αt ´

E
”

}wt ´ w˚}2
At´1

ı

2αt´1

˛

‚

`

T
ÿ

t“1

αt

2
E
”A

gt, pAt
q

´1gt
Eı

`

T
ÿ

t“1

αt

2
E
”

}N}
2
At

ı

. (6.15)

Let αt “ α?
t
,

T
ÿ

t“1

`

ErFpwt
qs ´ Fpw˚

q
˘

(6.16)

ď
}w1 ´ w˚}2

A1

2α
`

T
ÿ

t“2

E
”

}wt ´ w˚}2?
tAt´

?
t´1At´1

ı

2α
loooooooooooooooooooomoooooooooooooooooooon

T1

`

T
ÿ

t“1

α

2
?

t
E
”A

gt, pAt
q

´1gt
Eı

loooooooooooooooomoooooooooooooooon

T2

`

T
ÿ

t“1

α

2
?

t
E
”

}N}
2
At

ı

. (6.17)
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Let 1 ´
γ
t ě βt ě 1 ´ 1

t for some γ P p0, 1s and
?

tϵt ě
?

t ´ 1ϵt´1. We first bound T1.
Based on the relations between vt and vt´1 and βt ě 1 ´ 1

t , we can prove for any t, j

?
tpAt

jq “
?

t
´b

vt
j ` ϵt

¯

“
?

t
´b

βtvt´1
j ` p1 ´ βtqpĝt

jq
2 ` ϵt

¯

ě

b

pt ´ 1qvt´1
j `

?
t ´ 1ϵt´1.

(6.18)

So for any j, t,
?

tAt
j ě

?
t ´ 1At´1

j . (6.19)

Hence,

E

«

T
ÿ

t“2

}wt
´ w˚

}
2?

tAt´
?

t´1At´1

ff

(6.20)

“ E

»

–

T
ÿ

t“2

d
ÿ

j“1

pwt
j ´ w˚

j q
2
´b

tvt
j `

?
tϵt

´

b

pt ´ 1qvt´1
j ´

?
t ´ 1ϵt´1

¯

fi

fl (6.21)

“ E

»

–

d
ÿ

j“1

T
ÿ

t“2

pwt
j ´ w˚

j q
2
´b

tvt
j `

?
tϵt

´

b

pt ´ 1qvt´1
j ´

?
t ´ 1ϵt´1

¯

fi

fl (6.22)

ď E

»

–

d
ÿ

j“1

D2
T
ÿ

t“2

´b

tvt
j `

?
tϵt

´

b

pt ´ 1qvt´1
j ´

?
t ´ 1ϵt´1

¯

fi

fl (6.23)

“ E

»

–

d
ÿ

j“1

D2
´b

TvT
j `

?
TϵT

´

b

v1
j ´ ϵ1

¯

fi

fl . (6.24)

We next bound T2. We prove a variant of Lemma 4.1 in Mukkamala and Hein [218]. The
major differences are in that we consider the stochastic case and estimating vt on public
data. We prove the following inequality by induction:

T
ÿ

t“1

E

»

–

pgt
jq

2

b

tvt
j `

?
tϵt

fi

fl ď
2p2 ´ γq

aγ
E
”b

TvT
j `

?
TϵT

ı

, j P rds. (6.25)

For t “ 1,

E

»

–

pg1
j q2

b

vt
j ` ϵ1

fi

fl “ E

»

–

pg1
j q2

b

p1 ´ β1qpĝ1
j q2 ` ϵ1

fi

fl (6.26)

ď E

»

–

pĝ1
j q2

a
b

p1 ´ β1qpĝ1
j q2 ` ϵ1

fi

fl (6.27)
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ď E

»

–

b

p1 ´ β1qpĝ1
j q2 ` ϵ1

ap1 ´ β1q

fi

fl . (6.28)

Suppose that the conclusion holds when t “ T ´ 1, i.e., for any j P rds,

T´1
ÿ

t“1

E

»

–

pgt
jq

2

b

tvt
j `

?
tϵt

fi

fl ď
2p2 ´ γq

aγ
E
”b

pT ´ 1qvT´1
j `

?
T ´ 1ϵT´1

ı

. (6.29)

In addition, combined with the fact that vT
j “ βTvT´1

j ` p1 ´ βTqpĝT
j q2 and

?
TϵT ě

?
T ´ 1ϵT´1, we have

b

pT ´ 1qvT´1
j `

?
T ´ 1ϵT´1

ď

d

pT ´ 1qvT
j

βT ´
pT ´ 1qp1 ´ βTqpĝT

j q2

βT `
?

TϵT (6.30)

ď

d

TvT
j ´

pT ´ 1qp1 ´ βTqpĝT
j q2

βT `
?

TϵT (6.31)

ď

b

TvT
j ´

pT ´ 1qp1 ´ βTqpĝT
j q2

2βT
´
b

TvT
j `

?
TϵT

¯ `
?

TϵT (6.32)

ď

b

TvT
j `

?
TϵT

´
apT ´ 1qp1 ´ βTqpgT

j q2

2βT
´
b

TvT
j `

?
TϵT

¯ . (6.33)

The third inequality comes from
?

a ´ b ď
?

a ´ b
2

?
a pa ě bq by letting a be TvT

j and b be
pT´1qp1´βTqpĝT

j q2

βT . Hence

T
ÿ

t“1

E

»

–

pgt
jq

2

b

tvt
j `

?
tϵt

fi

fl (6.34)

ď
2p2 ´ γq

aγ
E

»

–

b

TvT
j `

?
TϵT

´
apT ´ 1qp1 ´ βTqpgT

j q2

2βT
´
b

TvT
j `

?
TϵT

¯

fi

fl` E

»

–

pgT
j q2

b

TvT
j `

?
TϵT

fi

fl (6.35)

ď
2p2 ´ γq

aγ
E
”b

TvT
j `

?
TϵT

ı

`

ˆ

1 ´
p2 ´ γqpT ´ 1qp1 ´ βTq

γβT

˙

E

»

–

pgT
j q2

b

TvT
j `

?
TϵT

fi

fl

(6.36)

ď
2p2 ´ γq

aγ
E
”b

TvT
j `

?
TϵT

ı

. (6.37)
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We then bound T2 as follows.

E

»

–

T
ÿ

t“1

αt

2

d
ÿ

j“1

pgt
jq

2

b

vt
j ` ϵt

fi

fl “
α

2
E

»

–

T
ÿ

t“1

d
ÿ

j“1

pgt
jq

2

b

tvt
j `

?
tϵt

fi

fl ď
α

2

d
ÿ

j“1

2p2 ´ γq

aγ
E
”b

TvT
j `

?
TϵT

ı

.

(6.38)

Noting that
›

›w1 ´ w˚
›

›

2
A1

2α
ď

D2

2α

d
ÿ

j“1

´b

v1
j ` ϵ1

¯

, (6.39)

combined with the bounds of T1, T2 yields

T
ÿ

t“1

`

ErFpwt
q ´ Fpw˚

qs
˘

ď

ˆ

D2

2α
`

αp2 ´ γq

aγ

˙ d
ÿ

j“1

E
”b

TvT
j `

?
TϵT

ı

, (6.40)

which implies that

min
tPrTs

ErFpwt
qs ´ Fpw˚

q (6.41)

ď

ˆ

D2

2α
`

αp2 ´ γq

aγ

˙

1
T

d
ÿ

j“1

E
”b

TvT
j `

?
TϵT

ı

`
1
T

T
ÿ

t“1

α

2
?

t
E
”

}N}
2
At

ı

(6.42)

ď

ˆ

D2

2α
`

αp2 ´ γq

aγ

˙

1
?

T

d
ÿ

j“1

E
”b

vT
j ` ϵT

ı

`
α

?
T

max
tPrTs

E
”

}N}
2
At

ı

. (6.43)

The first term is standard for the RMSprop optimizer, and the last term is due to noise
added to ensure differential privacy. To guarantee overall pε, δq-differential privacy by

running T total iterations, we set σ2 “ O
´

b2T logp1{δq

n2ε2

¯

and T “ O

˜

n2ε2

maxtPrTs E
”

řd
j“1 At

j

ı

logp1{δq

¸

.

The convergence rate becomes

min
tPrTs

ErFpwt
qs ´ Fpw˚

q ď O

¨

˚

˚

˝

c

maxtPrTs E
”

řd
j“1 At

j

ı

logp1{δq

nε

˛

‹

‹

‚

. (6.44)

6.5.1.1 Proof for Theorem 17 (Fix At Before Training)

Denote the side information as a fixed A at any iteration t. Similar as previous analysis,
setting a decaying learning rate αt “ α?

t
, we have

T
ÿ

t“1

`

ErFpwt
qs ´ Fpw˚

q
˘

(6.45)
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ď
}w1 ´ w˚}2

A
2α

`

T
ÿ

t“2

E
”

}wt ´ w˚}2?
tA´

?
t´1A

ı

2α
loooooooooooooooooomoooooooooooooooooon

T1

`

T
ÿ

t“1

α

2
?

t
E
”A

gt, pAq
´1gt

Eı

loooooooooooooooomoooooooooooooooon

T2

`

T
ÿ

t“1

α

2
?

t
E
”

}N}
2
A

ı

. (6.46)

To bound T1, we have

T
ÿ

t“2

E
”

}wt
´ w˚

}
2?

tA´
?

t´1A

ı

“ E

»

–

T
ÿ

t“2

d
ÿ

j“1

pwt
j ´ w˚

j q
2
´

p
?

t ´
?

t ´ 1qpAjq
¯

fi

fl (6.47)

ď O

¨

˝

?
T

d
ÿ

j“1

Aj

˛

‚´

›

›

›
w1

´ w˚
›

›

›

2

A
. (6.48)

We consider T2 next. From the assumptions on the clipping bound,

R :“ max
j,t

E
”

pgt
jq

2
ı

A2
j

ď C2. (6.49)

Then

T
ÿ

t“1

d
ÿ

j“1

α

2
?

tAj
E
”

pgt
jq

2
ı

ď

T
ÿ

t“1

d
ÿ

j“1

α

2
?

t
RAj ď

?
TαR

d
ÿ

j“1

Aj. (6.50)

Therefore, we obtain

min
tPrTs

ErFpwt
qs ´ Fpw˚

q ď O

¨

˝

1
?

T

d
ÿ

j“1

Aj `
αR
?

T

d
ÿ

j“1

Aj `
α

?
T

E
”

}N}
2
A

ı

˛

‚. (6.51)

6.5.2 Proof for Theorem 18 (Non-convex and smooth cases)

We use the same ϵ at each iteration. Let ∇jFpwq denote the j-th coordinate of ∇Fpwq for
any w. Based on the L-smoothness of Fp¨q,

Fpwt`1
q ď Fpwt

q ´ αt
d
ÿ

j“1

¨

˝∇jFpwt
q ¨

¨

˝

gt
j

b

vt
j ` ϵ

` N

˛

‚

˛

‚

`
pαtq2L

2

d
ÿ

j“1

¨

˚

˝

pgt
jq

2

´
b

vt
j ` ϵ

¯2 ` N2
`

gt
j

b

vt
j ` ϵ

¨ 2N

˛

‹

‚

, (6.52)
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where N „ 1
bN p0, σ2C2q and ErN2s “ σ2C2

b2 . Taking expectation conditioned on wt on
both sides gives

EtrFpwt`1
qs ď Fpwt

q ´ αt
d
ÿ

j“1

∇jFpwt
qEt

»

–

gt
j

b

vt
j ` ϵ

fi

fl

`
pαtq2L

2

d
ÿ

j“1

Et

»

—

–

pgt
jq

2

´
b

vt
j ` ϵ

¯2

fi

ffi

fl

`
pαtq2Ld

2b2 σ2C2. (6.53)

The following proof is extended from that of Theorem 1 in Zaheer et al. [318].

EtrFpwt`1
qs ď Fpwt

q ´ αt
d
ÿ

j“1

∇jFpwt
qEt

»

–

gt
j

b

vt
j ` ϵ

´
gt

j
b

βvt´1
j ` ϵ

`
gt

j
b

βvt´1
j ` ϵ

fi

fl

`
pαtq2L

2

d
ÿ

j“1

Et

»

—

–

pgt
jq

2

´
b

vt
j ` ϵ

¯2

fi

ffi

fl

`
pαtq2Ld

2b2 σ2C2 (6.54)

ď Fpwt
q ´ αt

d
ÿ

j“1

p∇jFpwtqq2
b

βvt´1
j ` ϵ

` αt
d
ÿ

j“1

ˇ

ˇ∇jFpwt
q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Et

»

–

gt
j

b

vt
j ` ϵ

´
gt

j
b

βvt´1
j ` ϵ

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
pαtq2L

2

d
ÿ

j“1

Et

»

—

–

pgt
jq

2

´
b

vt
j ` ϵ

¯2

fi

ffi

fl

`
pαtq2Ld

2b2 σ2C2. (6.55)

Further,

gt
j

b

vt
j ` ϵ

´
gt

j
b

βvt´1
j ` ϵ

ď

ˇ

ˇ

ˇ
gt

j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
b

vt
j ` ϵ

´
1

b

βvt´1
j ` ϵ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(6.56)

“

ˇ

ˇ

ˇ
gt

j

ˇ

ˇ

ˇ

´
b

vt
j ` ϵ

¯´b

βvt´1
j ` ϵ

¯

p1 ´ βqpĝt
jq

2

´
b

vt
j `

b

βvt´1
j

¯ (6.57)

“

ˇ

ˇ

ˇ
gt

j

ˇ

ˇ

ˇ

´
b

vt
j ` ϵ

¯´b

βvt´1
j ` ϵ

¯

p1 ´ βqpĝt
jq

2

´b

βvt´1
j ` p1 ´ βqpĝt

jq
2 `

b

βvt´1
j

¯

(6.58)

ď
1

´
b

vt
j ` ϵ

¯´b

βvt´1
j ` ϵ

¯

a

1 ´ β
?

a
pgt

jq
2 (6.59)
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ď
1

´b

βvt´1
j ` ϵ

¯

ϵ

a

1 ´ β
?

a
pgt

jq
2. (6.60)

We have used the observation
p1´βqpĝt

jq
2

´b

βvt´1
j `p1´βqpĝt

jq
2`

b

βvt´1
j

¯ ď
a

1 ´ βĝt
j , and ĝt

j ď 1?
a gt

j .

From L-smoothness of Fp¨q which implies that }∇Fpuq ´ ∇Fpvq} ď L}u ´ v} for
any u, v P Rd, and Assumption 2, it is easy to see there exists a constant B such that
|∇jFpwq| ď B for any j P rds.

EtrFpwt`1
qs ď Fpwt

q ´ αt
d
ÿ

j“1

p∇jFpwtqq2
b

βvt´1
j ` ϵ

`
αtB

a

1 ´ β

ϵ
?

a

d
ÿ

j“1

Et

»

–

pgt
jq

2

b

βvt´1
j ` ϵ

fi

fl

`
pαtq2Ld

2

d
ÿ

j“1

Et

»

—

–

pgt
jq

2

´
b

vt
j ` ϵ

¯2

fi

ffi

fl

`
pαtq2Ld

2b2 σ2C2 (6.61)

ď Fpwt
q ´ αt

d
ÿ

j“1

p∇jFpwtqq2
b

βvt´1
j ` ϵ

`
αtB

a

1 ´ β

ϵ
?

a

d
ÿ

j“1

Et

»

–

pgt
jq

2

b

βvt´1
j ` ϵ

fi

fl

`
pαtq2L

2ϵ

d
ÿ

j“1

Et

»

–

pgt
jq

2

b

βvt´1
j ` ϵ

fi

fl`
pαtq2Ld

2b2 σ2C2, (6.62)

where the last inequality holds due to
´
b

vt
j ` ϵ

¯2
ě ϵ

´

ϵ `

b

vt
j

¯

ě ϵ
´

ϵ `

b

βvt´1
j

¯

.

Lemma 1 in Zaheer et al. [318] proves that Et

”

pgt
jq

2
ı

ď
τ2

j
b ` p∇jFpwtqq2 where τ2

j is

the variance bound of the j-th coordinate, i.e., E
”

}gt
j ´ ∇jFpwtq}2

ı

ď τ2
j . Plugging this

inequality into Eq. (6.62), combined with Lαt

2ϵ ď 1
4 and

B
?

1´β
?

aϵ
ď 1

4 , we obtain

EtrFpwt`1
qs ď Fpwt

q ´
αt

2p
a

βB ` ϵq
}∇Fpwt

q}
2

`

˜

αtB
a

1 ´ β
?

aϵ2 `
Lpαtq2

2ϵ2
a

β

¸
ř

jPrds τ2
j

b

`
pαtq2Ld

2b2 σ2C2.

Taking expectation on both sides and applying the telescope sum yields

1
T

ÿ

tPrTs

Er}∇Fpwt
q}

2
s ď O

ˆ

1
T

˙

` O
ˆ

}τ2}1

b

˙

` O
ˆ

σ2

b2

˙

(6.63)
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6.5.2.1 Proof for Theorem 19 (Fix A before training)

Due to L-smoothness of Fp¨q, we have

Fpwt`1
q ď Fpwt

q ´ αt
d
ÿ

j“1

˜

∇jFpwt
q ¨

˜

gt
j

Aj
` N

¸¸

`
pαtq2L

2

d
ÿ

j“1

˜

pgt
jq

2

A2
j

` N2
`

gt
j

Aj
¨ 2N

¸

,

where N „ 1
bN p0, σ2C2q. Taking expectation conditioned on wt on both sides gives

Et

”

Fpwt`1
q

ı
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p∇jFpwtqq2

Aj
`

pαtq2L
2

d
ÿ

j“1

1
A2

j
Et

”

pgt
jq

2
ı

`
pαtq2Ld

2b2 σ2C2 (6.65)

ď Fpwt
q ´ αt

d
ÿ

j“1

p∇jFpwtqq2

Aj
`

pαtq2L
2

d
ÿ

j“1

1
A2

j

˜

τ2
j

b
` p∇jFpwt

qq
2

¸

`
pαtq2Ld

2b2 σ2C2 (6.66)

ď Fpwt
q ´ αt

d
ÿ

j“1

p∇jFpwtqq2

Aj
`

pαtq2L
2ϵ

d
ÿ

j“1

1
Aj

˜

τ2
j

b
` p∇jFpwt

qq
2

¸

`
pαtq2Ld

2b2 σ2C2 (6.67)
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d
ÿ

j“1
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j
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`
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The last inequality is due to αt ď ϵ
L . Taking expectation on both sides yields
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Similarly, by rearranging terms and applying telescope sum, we obtain

1
T

ÿ

tPrTs

E
”

}∇Fpwt
q}

2
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ı
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ˆ

1
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˙

` O
ˆ

τ2

A
¨

1
b

˙

` O
ˆ

σ2

b2

˙

. (6.70)

6.6 Experimental Details

Pseudo Code of Some Algorithms. For completeness, we present the full baseline
DP-Adam algorithm in Algorithm 9 and AdaDPS extended to federated learning in Algo-
rithm 10.

Datasets and Models. We consider a diverse set of datasets and tasks.
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Algorithm 9 DP-Adam [332]

1: Input: T, batch size b, noise multiplier σ, clipping threshold C, initial model w1 P Rd,
v0 “ 0, m0 “ 0, small constant vector ϵt P Rd, learning rate αt, moving average
parameters β1, β2

2: for t “ 1, ¨ ¨ ¨ , T ´ 1 do
3: Uniformly randomly sample a mini-batch B with size b from private training data

4: Get individual gradients for sample i P B:

gi,t
Ð ∇ f pxi; wt

q

5: Private gradients using Gaussian mechanism:

g̃t
Ð

1
b

ÿ

iPB

clip
´

gi,t, C
¯

`
1
b
N p0, σ2C2

q

6: Update first and second moment estimates as

mt
Ð β1mt´1

` p1 ´ β1qg̃t

vt
Ð β2vt´1

` p1 ´ β2qpg̃t
q

2

7: Update the model parameter w as

wt`1
Ð wt

´ αt mt{p1 ´ βt
1q

b

vt{p1 ´ βt
2q ` ϵt

,

where βt
1, βt

2 denotes β1, β2 to the power of t (with slight abuse of notations)
8: end for
9: return wT

• StackOverflow [21] consists of posts on the Stack Overflow website, where the task
is tag prediction (500-class classification). We randomly subsample 246,092 samples
from the entire set. There are 10,000 input features in StackOverflow, resulting in more
than 5 million learnable parameters in a logistic regression model.

• IMDB [199] is widely used for for binary sentiment classification of movie reviews,
consisting of 25,000 training and 25,000 testing samples. We study two models on
IMDB: logistic regression and neural networks (with LSTM) with 20,002 and 706,690
parameters, respectively. For logistic regression, we set the vocabulary size to 10,000
and consider two sets of commonly-used features separately: bag-of-words (BoW) and
TF-IDF values.

• MNIST [165] images with a deep autoencoder model (for image reconstruction) which
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Algorithm 10 AdaDPS applied to federated learning
1: Input: T communication rounds, b selected devices each round, noise multiplier

σ, clipping threshold C, initial model w1 P Rd, non-sensitive side information A,
number of local iterations s, local learning rate ηt

2: for t “ 1, ¨ ¨ ¨ , T ´ 1 do
3: Server uniformly selects a subset B of b devices and sends the current global model

wt to them Each device i P B sets the local model to be the current global model:

wi,0
Ð wt

4: Each device i P B runs adaptive mini-batch SGD locally with side information A
to obtain model updates:

5: for j “ 0, ¨ ¨ ¨ , s do

6:

wi,j`1
Ð wi,j

´ ηt∇ f pwi,jq

A

7: end for
8: And then privatize model updates:

∆i,t
Ð wi,s`1

´ wi,0

∆̃i,t
Ð clipp∆i,t, Cq ` N p0, σ2C2

q

9: Each device i P B sends ∆̃i,t to the server
10: Server updates the global model as:

wt`1
Ð wt

`
1
b

ÿ

iPB

∆̃i,t

11: end for
12: return wT

has the same architecture as that in previous works [318] (containing more than 2
million parameters). The loss is reconstruction error measured as the mean squared
distance in the pixel space. We scale each input feature to the range of r0, 1s.

Hyperparameter Tuning. We detail our hyperparameter tuning protocol and the hyper-
parameter values here. Our code is publicly available at github.com/litian96/AdaDPS.

• For non-private training experiments, we fix the mini-batch size to 64, and tune fixed
learning rates by performing a search over t0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2u

separately for all methods on validation data. We do not use momentum for AdaS
(i.e., applying the idea of preconditioning of AdaDPS without privatization) for all
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centralized training experiments.
• For differentially private training, the δ values in the privacy budget are always inverse

of the number of training samples. We fix the noise multiplier σ for each dataset, tune
the clipping threshold, and compute the final ε values. Specifically, the σ values
are 1, 1, and 0.95 for IMDB (convex), IMDB (LSTM), and StackOverflow; 1 and 0.75
for MNIST (autoencoder). The clipping threshold C (in Algorithm 8) is tuned from
t0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3u, jointly with tuning the (fixed) learning rates. The
number of micro-batches is 16 for all related experiments, and the mini-batch size
is 64 (i.e., we privatize each gradient averaged over 4 individual ones to speed up
computation).

• For federated learning experiments, we fix server-side learning rate to be 1 (i.e., simply
applying the unscaled average of noisy model updates in Line 9 of Algorithm 10),
and apply server-side momentum [235] with a moving average parameter 0.9 for all
methods in the left sub-figure in Figure 6.7. The number of local epochs is set to 1 for
all runs, and the local mini-batch size is 100.

The tuned hyperparameter values (clipping threshold C, learning rate) for private
training are summarized in Table 6.5 below.

Datasets DP-SGD DP-Adam DP-RMSProp AdaDPS (RMSProp) AdaDPS (Adam)
IMDB (convex) (0.1, 1) (0.02, 0.1) (0.05, 0.1) (2, 0.5) (2, 1)
IMDB (LSTM) (0.1, 0.1) (0.1, 0.001) (0.1, 0.001) (0.2, 0.1) (0.2, 0.05)
StackOverflow (linear) (0.1, 1) (0.1, 0.01) (0.2, 0.01) (1, 0.5) (1, 0.5)
MNIST (autoencoder) (0.05, 0.5) (0.01, 0.001) (0.01, 0.001) (3, 0.005) (3, 0.005)
MNIST (classification) (0.5, 0.01) (0.5, 0.001) (0.5, 0.001) (2, 0.005) (2, 0.005)

Table 6.5: Major hyperparameter values (learning rate and clipping threshold C) used
in private experiments for all datasets. ‘IMDB (convex)’ is IMDB (BoW features) on a
logistic regression model. StackOverflow results are for centralized training. The noise
multiplier σ values in these four tasks are 1, 1, 0.95, 1, respectively, resulting in ε values
being 1.5, 2.8, 0.84, and 1.6.

6.7 Additional Results

6.7.1 Additional Baselines

Other Private Adaptive Optimization Baselines. In the main text, we mainly compare
AdaDPS with DP-Adam (summarized in Algorithm 9). There are other possible baselines
similar as DP-Adam, by replacing Adam with other adaptive methods, resulting in
DP-AdaGrad and DP-RMSProp. This line of differentially private optimizers has similar
empirical performance as DP-Adam, as shown in the results in Table 6.6 below (using
DP-RMSProp as an example).
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Datasets Metrics DP-SGD DP-Adam DP-RMSProp AdaDPS (RMSProp) AdaDPS (Adam)
IMDB (convex) accuracy 0.63 0.69 0.67 0.80 0.80
IMDB (LSTM) accuracy 0.70 0.69 0.69 0.73 0.73
StackOverflow (linear) accuracy 0.28 0.30 0.31 0.40 0.40
MNIST (autoencoder) loss (ˆ100) 5.013 3.697 3.636 3.566 3.443
MNIST (classification) accuracy 0.9273 0.9333 0.9314 0.9377 0.9541

Table 6.6: Full comparisons between AdaDPS and private adaptive optimization methods.
The evaluation metrics are reported on test data. ‘IMDB (convex)’ is IMDB (BoW features)
on a logistic regression model. For pε, δq-differential privacy, the ε values of experiments
in the five rows are 1.5, 2.8, 0.84, 1.6, and 1.25, respectively, and the δ values are the
inverse of the number of training samples (as mentioned in the main text).

Using Public Data for Pretraining. Another possible way of leveraging public data to
improve privacy/utility tradeoffs is to pretrain on them. However, this would give only
limited performance improvement if the amount of public data is very small. In the main
text, when needed, AdaDPS randomly samples 1% training data as public data. Under
this setup, we empirically compare AdaDPS with the pre-training baseline (denoted as
DP-SGD w/ warm start). From Table 6.7, we see that AdaDPS outperforms it by a large
margin.

Datasets Metrics DP-SGD DP-SGD AdaDPS
w/ warm start w/ public

IMDB (convex) accuracy 0.63 0.73 0.80
StackOverflow accuracy 0.28 0.33 0.40
MNIST (autoencoder) loss 0.050 0.049 0.036

Table 6.7: Compare AdaDPS with an additional baseline of DP-SGD pre-trained on public
data on three datasets. For ‘DP-SGD w/ warm start’, we first train on public data for 10
epochs via adaptive methods (RMSProp), and then run DP-SGD on private data starting
from that initialization.

DP-Adam with Public Data. In the main text (Section 6.4.1.1), we discuss the DP-R-Pub.
baseline based on the RMSProp method with the preconditioner estimated on public
data. Similarly, one can also apply such clean preconditioners in DP-Adam updates,
resulting in another baseline which we call DP-Adam-Pub. The main differences between
DP-Adam-Pub and DP-R-Pub are that DP-Adam-Pub additionally considers momentum.
Formally, the updates of wt is as follows:

g̃t
Ð

1
b

ÿ

iPB

clip
´

gi,t, C
¯

`
1
b
N p0, σ2C2

q, ĝt
Ð Ex

“

∇ f px; wt
q
‰

for x P xpub,

mt
Ð β2mt

` p1 ´ β2q
`

β1 g̃t
` p1 ´ β1qĝt˘ , vt

Ð β3vt
` p1 ´ β3qpĝt

q
2,
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wt`1
Ð wt

´ αt mt{p1 ´ pβ2qtq
a

vt{p1 ´ pβ3qtq ` ϵ
,

where β1, β2, β3, ϵ are small constants.

Datasets Metrics DP-SGD DP-Adam-Pub AdaDPS
w/ public

IMDB (convex) accuracy 0.63 0.74 0.80
StackOverflow accuracy 0.28 0.31 0.40
MNIST (autoencoder) loss 0.050 0.064 0.036

Table 6.8: Results of comparing AdaDPS with to DP-Adam-Pub (i.e., DP-Adam using
clean preconditioners estimated on public data).

6.7.2 Side Information in Non-Private Training

In the main text, we mainly focus on private optimization. It is expected that side
information (even without the assist of public data) would also be beneficial in non-
private settings, which could serve as a simple alternative to adaptive methods. We
report results in Table 6.9.

Datasets Metrics SGD Adam AdaS (w/ public) AdaS (w/o public)
IMDB (convex) accuracy 0.66 0.88 0.88 0.88
IMDB (LSTM) accuracy 0.88 0.88 0.88 0.88
StackOverflow (linear) accuracy 0.38 0.64 0.64 0.64
MNIST (autoencoder) loss (ˆ100) 5.013 1.151 1.805 —

Table 6.9: Performance of each method in non-private training. We see that AdaS can
match the performance of Adam in non-private settings.

6.7.3 Effects of Public Data Size

We further study the effects of public data size. Only a very small set of public data (even
0.04% the size of private training data) can provide good preconditioner estimates.

Datasets upper bound AdaDPS AdaDPS AdaDPS
1% public 5ˆ less 25ˆ less

IMDB (convex) 0.82 0.80 0.80 0.75
StackOverflow 0.41 0.40 0.40 0.39

Table 6.10: Effects of public data sizes.
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6.8 DP2: Private Adaptive Optimization Without Side In-
formation

We now introduce our DP2 framework. While we discuss DP2 in the context of a particular
adaptive method (RMSProp), we note that the approach is method-agnostic in that it can
generally be applied to any private adaptive optimization method where preconditioners
are calculated at each iteration. As an initial step towards understanding the algorithm,
we first investigate the effects of delayed preconditioners in non-private training in Sec-
tion 6.8.1. We then explain how to apply this idea to construct less noisy preconditioners
from prior gradients in private training in Section 6.8.2.

6.8.1 Delayed Preconditioners in Non-Private Settings

Adaptive methods use preconditioners to adapt to gradient geometry, effectively re-
sulting in coordinate-wise learning rates. This can be advantageous for many appli-
cations, especially those with sparse gradients or non-uniform stochastic noise [e.g.,
117, 207, 235, 320]. One of the key design choices of DP2 is to update preconditioners less
frequently and use the average of past gradients to reduce noise. Our observation is
that a wide range of learning problems are tolerant to the staleness of preconditioners.
In this subsection, we validate this empirically on the benchmark datasets considered
throughout this work.

There are potentially many ways that one could instantiate the idea of delayed precon-
ditioner computation in adaptive optimization. Here we consider a specific algorithm,
which is the exact non-private version of our proposed DP2 framework (Algorithm 11)
introduced in later sections. The basic idea is to alternate between s steps of SGD and s
steps of an adaptive method (for simplicity we assume RMSProp as the adaptive algo-
rithm), where s is a constant larger than 1. Each time we switch from SGD to RMSProp,
we average s past SGD gradients and use the average to update the preconditioner.
The preconditioner will be used in subsequent RMSProp updates (thus being stale). As
motivation for DP2, we empirically show that RMSProp with delayed preconditioners
achieves almost the same optimization performance as RMSProp (Figure 6.8).

We note that the idea of delayed preconditioning has been briefly discussed in prior
work [104] for the purpose of speeding up the computation of adaptive optimization
in non-private training. Unlike this prior work, we focus on the goal of reducing noise
in private training, propose an alternative method for using stale preconditioners that
is more amenable to differential privacy, and analyze our method in both convex and
non-convex settings.

6.8.2 Constructing Delayed Preconditioners with Reduced Noise

Without access to public data or other side information, prior works typically update
preconditioners based on noisy gradients at each iteration [332]. For instance, a natural
way to privatize RMSProp is to update the preconditioner v P Rd as v Ð βv ` p1 ´ βqpg̃q2
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Figure 6.8: In non-private training, RMSProp with delayed preconditioners achieves
similar training loss as standard RMSProp across all datasets. Final test accuracies are
presented in Section 6.10.1. This observation provides motivation for our proposed DP2

framework for private training (Section 6.8.2).

where β P p0, 1q is a moving average constant, and g̃ P Rd is the noisy gradient output
by some standard privacy mechanism (e.g., the Gaussian mechanism).3 However, a
drawback to this is that the noise gets accumulated at each iteration, making adaptive
methods significantly less effective [187].

Inspired by the observation that problems can be tolerant to the staleness of pre-
conditioners (Figure 6.8), we propose to update the preconditioners less frequently to
reduce noise. For instance, we update v every s steps using some aggregate function of
s recent private gradients from DP-SGD. During iterations where v is not updated, we
simply apply the most recent (stale) v to precondition the gradients. In order to mitigate
the noise, we average over these s gradients to form a pseudo-gradient g, which can be
plugged into arbitrary adaptive optimization algorithms. Note that the privacy noise
variance will be reduced s times if we average s Gaussian random variables (i.e., the DP
noise).

DP2 is summarized in Algorithm 11. For simplicity of presentation, we assume
RMSProp as the adaptive method (denoted as DP2-RMSProp) throughout this section.
However, our framework can be generally applied to other common adaptive methods
(see Appendices 6.13.3 and 6.14). The high-level idea is to alternate between s1 steps of
private SGD and s2 private RMSProp steps, and use averages of s1 SGD gradients (i.e.,
average of the accumulator G P Rd) to update the preconditioner v. Next, we discuss
some key components of our algorithm.

Order of Privatization and Preconditioning. Given a private preconditioner v, there
are generally two choices to perform adaptive optimization over the raw gradients
tgi,tuiPB generated from mini-batch B at the t-th iteration.

1. First privatize gradients with clipping threshold C1, then precondition noisy gradients

3We consider the practical diagonal (as opposed to matrix) form of adaptive methods.
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with
?

v ` ϵ where ϵ is a small constant:

g̃t
Ð

1
b

˜

ÿ

iPB

clip
´

gi,t, C1

¯

` N
´

0, σ2C2
1

¯

¸

{
`?

v ` ϵ
˘

2. First precondition gradients with
?

v ` ϵ, then privatize the output with clipping
threshold C2:

g̃t
Ð

1
b

˜

ÿ

iPB

clip
´

gi,t
{
`?

v ` ϵ
˘

, C2

¯

` N
´

0, σ2C2
2

¯

¸

The difference is that the privacy noise in the first choice may be scaled in an undesired
direction, as N p0,σ2C2q

?
v`ϵ

with a less noisy estimated
?

v (perfect estimation removing all

privacy noise in the extreme case) would amplify the noise N p0, σ2C2q on informative
coordinates (i.e., coordinates with smaller preconditioner values), which is consistent
with the argument made in Li et al. [187]. We empirically compare the two options and
show that the latter gives better performance (Section 6.10.3).

It is critical to average noisy gradients to construct a cleaner estimate of the precon-
ditioner (Line 5 and 10 in Algorithm 11) and apply it for adaptive optimization (Line
9). As these two steps access raw gradients twice, we need to privatize them separately.
Unfortunately, the privacy budget would accumulate with each query to the raw training
data. Hence, we use the private SGD gradients for both the model update and the precon-
ditioner estimation. This results in a hybrid method that alternates between private SGD
and private adaptive optimization steps. Note that to get an unbiased estimate of the
true delayed preconditioners, we can correct the bias in pGt{s1q2 (Line 5) by subtracting
the privacy noise variance term σ2C2

s1b2 out of pGt{s1q2. But this value is usually very small
and negligible in practice. While in principle, non-adaptive and adaptive updates can
take different numbers of consecutive iterations, in our empirical evaluation, we simply
set s1 “ s2, and find that this works reasonably well across all datasets (Section 6.10).

Privacy Guarantees. From Algorithm 11, we see that at each iteration, we access
raw data and pass them through the privacy barrier once (Line 9) to generate private
gradients g̃t with the same noise multiplier σ and batch size b, and the preconditioner
only accumulates already differentially private gradients. Since the final model is a
composition of these private releases (noisy gradients), Algorithm 11 (or DP2 in general)
achieves the same privacy guarantees as standard DP-SGD training under the same
training settings. For completeness, we formally state the privacy guarantee below.

Theorem 20 (Privacy guarantee of Algorithm 11 [4]). There exist constants c1 and c2
such that for any ε ă c1b2T{n2, Algorithm 11 is pε, δq-differentially private for any δ ą 0 if

σ ě c2
b
?

T logp1{δq

nε .
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In practice, we use Rényi differential privacy (RDP) for the subsampled Gaussian
mechanism accountant [213] to compute the actual ε’s reported in the experiments
(Section 6.10).

6.9 Convergence Analysis of DP2

In this section, we analyze Algorithm 11 for both convex and non-convex problems. We
aim to study the convergence properties of DP2 and investigate the tradeoffs between de-
lay and privacy noise. In doing so, key challenges are introduced by alternating between
adaptive and non-adaptive updating and through the staleness of preconditioners.

6.9.1 Convex Cases

For convex functions, we define the optimal model w˚ as w˚ P arg minw Fpwq. We reuse
Assumption 2 and 3 in the previous section. Under the bounded stochastic gradient norm
assumption, suppose the clipping does not happen, we have g̃t Ð gt ` N p0, σ2C2{b2q,
where gt :“ 1

b
ř

iPB gi,t. Without loss of generality, let s1“s2 in Algorithm 11. Our main
convergence result is as follows (assuming t starts from 1).

Theorem 21 (Convergence of Algorithm 11 for convex problems). Let Assumptions 2 and 3

hold. Assume F is a convex function. Let the learning rate αt be set as αt Ð αt t
2s u`t t`s

2s u`1
?

t
. After

running Algorithm 11 for T iterations with s “ υT for a small constant υ P p0, 1s, we obtain

min
tPrTs

E
“

Fpwt
q
‰

´Fpw˚
qď

R2 ` κ

αt 1
2υ u`t 1`υ

2υ u

1
?

T

ÿ

tPTυ

E
“
›

›Dt›
›

1

‰

`
1
T

T
ÿ

t“1

αt t
2υT u`t t`υT

2υT u
?

t
Er}Nt

}
2
Dts,

where Tυ denotes the iteration indices where we switch from private RMSProp steps to private
SGD steps plus the last iteration, with cardinality |Tυ| “ r 1

2υ s, Nt „ N p0, σ2C2{b2q, and

κ ě max

#

α2C2,
Chpsq

ϵ
a

1 ´ β

+

, α “ min
"

ϵ,
1

?
M ` ϵ

, 1
*

where M :“ C2
`

σ2C2

sb2 .

We defer all proofs to Appendix 6.11 and state simplified convergence results in
Corollary 5. As we can see, the above upper bound relies on a critical metric hpsq which
is related to temporal gradient similarity and the amount of staleness s, formally defined
as:

hpsq ě max
tPrTs

E
“
›

›gt
›

›

1

‰

E
”
›

›

›

1
s Gt t

s us
›

›

›

1

ı

` dϵ
“ max

tPrTs

E
“
›

›gt
›

›

1

‰

E

„

1
s

›

›

›

›

řt t
s us´1

i“t t
s us´s

g̃i
›

›

›

›

1

ȷ

` dϵ

,
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Figure 6.9: Visualization of
hpsq versus s on IMDB.

where the expectation is taken with respect to all random-
ness in the algorithm, and Gt t

s us
P Rd refers to the latest ac-

cumulator that is used to update v (Line 5 in Algorithm 11).
A smaller hpsq indicates better convergence. We see that the
denominator of hpsq can be decomposed into the average
of past raw gradients and the average of random Gaussian
noise. Intuitively, hpsq tends to be smaller as gradients across
the s iterations in Gt t

s us are more similar with the current gra-
dient gt in terms of the gradient norms. In Appendix 6.11.2,
we show that an upper bound of hpsq can be expressed as
c1 ` c2s where c1, c2 are two constants. We also visualize the
value of hpsq on the IMDB dataset in Figure 6.9, and show that (1) the values of hpsq are
consistently small across all delays, and (2) hpsq increases as the s gets larger, which is
consistent with the expression of s.

tradeoffs between Delay and Noise. Here we discuss how s affects convergence based
on our analysis. Intuitively, larger s (larger delay) results in staler preconditioners, but
introduces less noise due to private gradient averaging. In our convergence bound, there
are several terms that depend on s (or υ). Although this makes it difficult to derive a
closed-form characterization of an optimal s, we can analyze the effects of s in simplified
settings. In particular, examine the first term of the RHS of the convergence bound,
let α “ 1?

M`ϵ
“ 1

b

c3`
c4
υ `ϵ

(where c3, c4 are two constants), and assume
Y

1
2υ

]

`

Y

1`υ
2υ

]

“

1
2υ ` 1`υ

2υ “ 2`υ
2υ . Combined with hpsq, the dependence on υ in R2`κ

αt 1
2υ u`t 1`υ

2υ u
can be expressed

as pc1 ` c2υq

´b

c3 `
c4
υ ` ϵ

¯

2`υ
2υ

. This suggests that there exists an optimal υ that achieves
the minimal value. In Section 6.10.1, we empirically study the effects of s across real-
world datasets, and demonstrate that there exist specific ranges of s that provide favorable
tradeoffs between delay and noise (Figure 6.12).

Corollary 5. Let Assumptions 2 and 3 hold. Assume F is a convex function. Ignoring the
constants, the convergence rate under learning rate αt “ O

´

1?
t

¯

simplifies to

min
tPrTs

ErFpwt
qs ´ Fpw˚

q ď O
ˆ

1
?

T
max
tPTs

E
“

}Dt
}1
‰

˙

` O

˜

1
T

T
ÿ

t“1

1
?

t
E
”

}Nt
}

2
Dt

ı

¸

,

where Ts denotes the iteration indices where we switch from private RMSProp steps to private
SGD steps plus the last iteration (thus having a constant cardinality) and Nt „ N p0, σ2C2{b2q.

At a high level, the first term is due to adaptive optimization using RMSProp, and
the second term corresponds to the added privacy noise. Our O

´

1?
T

¯

rate is the
same as previous results for SGD (or DP-SGD) in convex cases with delaying learn-
ing rates [25, 222]. Compared with DP-SGD, the added privacy noise would be reduced
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from 1
T
řT

t“1
1?

t
Er}Nt}2s to 1

T
řT

t“1
1?

t
Er}Nt}2

Dts when the gradients are sparse (so that
}Dt}1 ă d in adaptive iterations). Hence, this theorem suggests some constant improve-
ments relative to DP-SGD when we switch for a constant number of times.

6.9.2 Non-Convex Cases

Assumption 7. Stochastic gradient variance is bounded, i.e., Er}gi,t ´ Ergi,ts}2
2s ď τ2 for all

i, t.

Theorem 22 (Convergence of Algorithm 11 for non-convex problems.). Let Assump-
tions 2,3,5, and 7 hold. Define constant M as M :“ C2 ` σ2C2

sb2 . Under any delay parameter s,
after running Algorithm 11 with constant learning rates αt “ α such that Lα

ϵ ď 1, we have

1
T

T
ÿ

t“1

Er}∇Fpwt
q}

2
s ď

2p
?

M ` 1qFpw1q

αT
` 2αLp

?
M ` 1q

ˆ

τ2

2ϵ2b
`

dσ2C2

2b2

˙

.

The proof is deferred to Appendix 6.12. Compared with Theorem 21, here we do not
have constraints on s. Note that to guarantee pε, δq-DP by running T iterations, we can set

σ2 “ O
´

b2T logp1{δq

n2ε2

¯

, α “ O
´

1?
d

¯

, and T “ O
´

nε
logp1{δq

¯

, to arrive at a convergence bound

O
´?

d
nε ` τ2

?
db

¯

. Under any s, our rate (with and without noise) is the same as previous
results on DP-SGD and (DP) adaptive methods for non-convex problems [187, 318]. We
note that our non-convex analysis does not directly highlight the benefits of adaptivity
or tradeoffs around s; hence the optimal choice of s according to this result is s “ T, to
maximize the goal of reducing privacy noise. However, the practical performance can be
better than the upper bound derived here, as shown in our experiments (Section 6.10).
Most of the previous works studying stochastic non-convex adaptive optimization does
not prove improvements relative to SGD [e.g., 10, 63, 297, 318]. It is still an open problem
to rigorously characterize the benefits of adaptivity for non-convex problems, which we
leave for future work.

6.10 Experiments on DP2

In this section we report empirical results on a range of learning tasks. In Section 6.10.1,
we compare DP2 with the baselines of DP-SGD and vanilla DP adaptive methods across
various privacy budgets, and investigate the effects of delay on all datasets. We addition-
ally compare DP2 with recent more advanced private adaptive methods in Section 6.10.2,
and conduct ablation studies to validate the effectiveness of different DP2 components in
Section 6.10.3.

In all experiments, we use Rényi differential privacy (RDP) accountant for the sub-
sampled Gaussian mechanism [213] for privacy accounting. We focus on the RMSProp
optimizer [117] and provide results relating to other adaptive methods such as Ada-
Grad [78, 273] in Appendix 6.13. Our experiments are implemented in JAX [40] with
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Haiku [116] to auto-vectorize over the per-example operations (e.g. per-example clip-
ping) for substantial speedups [275]. Unless explicitly stated, we report results with
the best grid-searched hyperparameters. Note that for DP2 we tune the learning rates
and clipping thresholds separately for private SGD iterations and private adaptive (RM-
SProp) iterations. See Appendix 6.13.2 for hyperparameter details. Our code is publicly
available at github.com/kenziyuliu/DP2.

Tuning s. In all experiments, we tune the delay parameter (s) via grid search. For
convex tasks, we choose s from t0.025, 0.5, 0.1, 0.5, 1, 2u epochs. For the non-convex
model, we choose s from t0.5, 3, 10, 25u epochs. We explore the sensitivity of DP2 to s
in Section 6.10.2, and show that there exist a wide range of s parameters that result in
superior performance compared with baseline methods.

Datasets and Tasks. We pick datasets and tasks where adaptivity is crucial (e.g., those
involving sparse gradients). For such tasks, adaptive methods have major benefits
relative to SGD in non-private training, and we expect DP2 to retain the benefits in private
training. See Appendix 6.13.1 for a detailed description. For all datasets, we explore the
effects of several noise multiplier (σ) values, and set δ “ 10´k where k is the smallest
integer that satisfies 10´k ď 1{n for the training dataset size n.

6.10.1 DP2 Compared with DP-SGD and Vanilla DP Adaptive Methods

We consider two popular baselines: DP-SGD [4] and vanilla DP-RMSProp [332]. In
vanilla DP adaptive methods, private gradients are plugged into adaptive updating rules
to approximate the preconditioners at each iteration. Figure 6.10 compares DP2-RMSProp
with DP-SGD and DP-RMSProp. We observe that across all datasets, DP2 consistently
and substantially outperforms the baselines in terms of both convergence and absolute
performance.

Privacy/Utility tradeoffs. Figure 6.10 reports learning curves under specific privacy
budgets determined by the batch size and the number of epochs. Here, we additionally
explore privacy/utility tradeoffs across a range of privacy parameters, where ε ranges
are consistent with prior works [e.g., 143]. Results are shown in Figure 6.11. We observe
that similar to the results in Figure 6.10, DP2 significantly outperforms DP-SGD and
DP-RMSProp under each privacy budget. For reference, the non-private RMSProp
method achieves 87% accuracy, 62% accuracy, and 0.88 mean square error (MSE) on
IMDB, StackOverflow, and MovieLens, respectively. Indeed, with weaker privacy (larger
ε), we expect smaller utility gaps between private and non-private optimization. In
Appendix 6.13.4, we additionally explore how increasing the computational budget may
affect the privacy-utility tradeoff.

Effects of s. Finally, we empirically study the effect of the delay parameter s. Intu-
itively, there exists a tradeoff between the amount of delay and the privacy noise in
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Figure 6.10: Test performance of DP2 compared to DP-SGD and DP-RMSProp on IMDB
(left), StackOverflow (middle), and MovieLens-100k (right) for a fixed privacy budget.
For all datasets, we calculate the privacy loss (ε) under fixed δ’s, noise multipliers {1.0,
1.0, 0.5}, and batch size 64. All runs are repeated over 5 random seeds. Dotted lines
correspond to training metrics.
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4ˆ convergence speedup than DP-SGD. Privacy settings follow those of Figure 6.10.
Although a specific value of s achieves the greatest improvements, we observe that
nearly all instantiations of DP2 improve upon the baselines.
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the preconditioner: averaging over more historical gradients (larger s) could yield less
noisy preconditioners, while introducing more staleness. In Figure 6.12, we report test
performance versus the delay s across all datasets on the first three subplots. In the last
subplot, we additionally show the convergence behavior under different values of s.
These results suggest that there is a “sweet spot” for s to yield good performance—small
delays are gradually improving over DP-RMSProp; moderate delays perform best in
terms of convergence and absolute performance; and large delays may slow down con-
vergence (although it is possible to reach similar performance with sufficient training).
These empirical results are consistent with the implications of our convergence analysis
discussed in Section 6.9.1.

6.10.2 DP2 Compared with Recent Methods for Private Optimization

As discussed in Chapter 2, beyond DP-SGD and vanilla DP adaptive methods, another
line of work uses auxiliary, public data to improve private (adaptive) optimization. While
not directly comparable to DP2 since DP2 does not require any side/public information, we
compare DP2 to two state-of-the-art methods along this direction4: (1) AdadPS [187] which
uses public data or their statistics to estimate gradient geometry, and (2) PDA-DPMD [15],
which uses the loss on public data as a mirror map to learn the underlying gradient
geometry. Results are reported in Table 6.11, which show that DP2 has comparable
performance to state-of-the-art baselines, but without the need to access auxiliary data.
See Appendix 6.13.6 for full details and convergence curves.

Dataset DP-SGD DP-RMSProp PDA-DPMD AdaDPS
DP2-RMSProp(w/ RMSProp)

IMDB Ò .687 ˘ .018 .713 ˘ .005 .703 ˘ .005 .826 ˘ .003 .815 ˘ .011
StackOverflow Ò .330 ˘ .002 .328 ˘ .002 .353 ˘ .001 .406 ˘ .027 .391 ˘ .001
MovieLens Ó 3.02 ˘ .068 2.96 ˘ .062 3.74 ˘ .053 2.86 ˘ .042 2.78 ˘ .054

Table 6.11: DP2 compared with other private (adaptive) methods that use public
data [15, 187]. Even though DP2 does not require auxiliary information, we find that
it achieves comparable performance with these state-of-the-art approaches that require
additional public data. Corresponding convergence plots are presented in Figure 6.17 in
the appendix.

6.10.3 Ablation Studies

4We do not directly compare with the prior work of Asi et al. [20] as the code is not publicly available
and implementation details are missing in the paper; however, the more recent PDA-DPMD work of Amid
et al. [15] we compare with suggests superior performance to Asi et al. [20]. We also implement the
diagonal variant of the method proposed in the theoretically-focused work of Kairouz et al. [142], but
observe that accuracy improves only marginally beyond random guessing (see Figure 6.18 in the appendix).
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Finally, we also study the effectiveness of different
components of DP2. Recall that in Algorithm 11,
we use noisy gradients from DP-SGD iterations to
update both the model parameters and the precon-
ditioner such that the total privacy cost is identical
to that of DP-SGD. The first variant considers accu-
mulating DP-SGD gradients in the same way, but it
runs private adaptive methods using delayed pre-
conditioner in almost all iterations. This requires us
to add independent noise twice at most iterations
(when accumulating the preconditioner and when
noising the preconditioned update), thus increasing
the total privacy budget. The second variant is iden-
tical to DP2 except that it applies the delayed precon-
ditioner after noising the clean gradient; this is to
study the order of preconditioning as discussed in
Section 6.8. As illustrated in Figure 6.13, both variants indeed significantly underperform
our proposed method on the IMDB dataset, thus validating the design choices of DP2.
We defer complete results to Figure 6.16 and Table 6.14 in Appendix 6.13.5. See also
Appendix 6.14 for the exact algorithms of both variants.

Conclusion and Future Work. In this section, we proposed DP2, a private adaptive
optimization framework that uses historical gradients to construct delayed but less noisy
preconditioners, yielding improved privacy/utility tradeoffs without the need to access
auxiliary data. We demonstrated the effectiveness of DP2 both theoretically and empirically.
In the future, it would be interesting to extend the techniques developed herein to other
privacy-sensitive applications such as federated learning [206, 235]. It is also worth
exploring interplays between DP2 and private online optimization with tree aggregation,
which similarly releases cumulative statistics with reduced noise [46].
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6.11 Complete Proofs

Lemma 21. Under Assumption 3, let s1 “ s2 “ s in Algorithm 11, we have for any j P rds,
Ervjs ď C2 ` σ2C2

sb2 .

Proof. Recall that C is the gradient norm bound (Assumption 3). Let the clipping thresh-
old be C as well. We have for j P rds,

E

«

ˆ

1
s

Gj

˙2
ff

“ E

«

ˆ

1
s

´

gi1
j ` ¨ ¨ ¨ ` gis

j

¯

`
1
s

´

Ni1
j ` ¨ ¨ ¨ ` Nis

j

¯

˙2
ff

(6.71)

“ E

„

1
s2

´

gi1
j ` ¨ ¨ ¨ ` gis

j

¯2
ȷ

` E

„

1
s2

´

Ni1
j ` ¨ ¨ ¨ ` Nis

j

¯2
ȷ

(6.72)

ď C2
`

σ2C2

sb2 , (6.73)

where ti1, . . . , isu denotes the indices of s noisy gradients used to obtain Gj, and tNi1
j , . . . , Nis

j u

are random zero-mean Gaussian variables with variance σ2C2

b2 under noise multiplier σ,
clipping threshold C, and mini-batch size b. Hence for any j P rds and t P rTs,

E
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ˆ

1
s

Gj
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sb2 :“ M, (6.74)
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E
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j

ı

ď max
!?

M ` ϵ, 1
)

. (6.77)

6.11.1 Proof of Theorem 21

Based on the updating rule, we have
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›
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Rearranging terms gives
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Taking the expectation on both sides conditioned on wt,
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where we have used the fact that N is a zero-mean Gaussian variable independent of
gt, wt. Taking the expectation on both sides and using the convexity of Fp¨q:
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Applying telescope sum, we have

T
ÿ

t“1

`

ErFpwt
qs ´ Fpw˚

q
˘

ď
}w1 ´ w˚}2

A1

2α1
`

T
ÿ

t“2

¨

˝

E
“

}wt ´ w˚}2
Dt

‰

2αt ´

E
”

}wt ´ w˚}2
Dt´1

ı

2αt´1

˛

‚

`

T
ÿ

t“1

αt

2
E

„B

gt,
gt

Dt

Fȷ

`

T
ÿ

t“1

αt

2
E
”

}Nt
}

2
Dt

ı

. (6.85)

Hence, we need to bound the RHS:
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where the vector Dt P Rd satisfies that Dt “ 1 when running private SGD steps, and
Dt “

?
v ` ϵ when running private RMSProp steps.
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Let the delay parameter to be scheduled as

s “ υT p0 ă υ ă 1q (6.87)

and the learning rate αt be

αt
Ð

αt t
2s u`t t`s

2s u`1
?

t
, (6.88)

where α “ min
!

ϵ, 1?
M`ϵ

, 1
)

, and M is the upper bound of E
“

vj
‰

for j P rds, as defined
and proved in Lemma 21.

We next consider the T1 term. There are four cases.

1. DP-SGD at the t ´ 1-th iteration, and DP-SGD at the t-th iteration: As Dt “ Dt´1

there is not much requirement other that the learning rates need to satisfy αt ď αt´1,
which holds for our choice.

2. Private RMSProp at the t ´ 1-th iteration, and private RMSProp at the t-th iteration:
Similar to previous case, the learning rates need to satisfy αt ď αt´1, which holds for
our choice.

3. DP-SGD at the t ´ 1-th iteration, and private RMSProp at the t-th iteration: We
require

αt

ϵ
ď αt´1

ùñ

?
vt ` ϵ

αt ě
1

αt´1 (6.89)

But in this case we must have t % s “ 0. So this is satisfied by our choice as long as
α ď ϵ.

4. Private RMSProp at the t ´ 1-th iteration, and DP-SGD at the t-th iteration

The first three cases form an updating pattern of DP-SGD Ñ ¨ ¨ ¨ Ñ DP-SGD Ñ DP-
RMSPropÑ ¨ ¨ ¨ Ñ DP-RMSProp, where every pattern takes 2s iterations, except for the
first pattern, because the telescope sum starts from t “ 2. For the first pattern, we have
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where D2s “
?

v ` ϵ.
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For k ě 1, we have
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where D2sk`2s “
?

v ` ϵ belong to DP-RMSProp updates.
We look at the second T2 term, and prove by induction that there exists a constant κ

such that
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ı

. (6.94)

When T “ 1 (α1 “ α and D1 “ 1), α
2 Er}g1}2s ď κd

α holds if κ ě α2C2. At each step t, the
goal is to get

κ

αt´1 E
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}Dt´1
}1

ı

`
αt

2
E

„B

gt,
gt
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Fȷ

ď
κ

αt E
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}Dt
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(6.95)

1. DP-SGD at the t ´ 1-th iteration, and DP-SGD at the t-th iteration: We require

κd
αt´1 `

αt

2
E
”

›

›gt›
›

2
ı

ď
κd
αt (6.96)

which would hold for choice of αt as gradients are bounded and κ ě α2C2.

2. Private RMSProp at the t ´ 1-th iteration, and private RMSProp at the t-th iteration:
We need

κE
”

}
?

vt´1 ` ϵ}1

ı

αt´1 `
αt

2
E

„B

gt,
gt

?
vt´1 ` ϵ
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ď
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αt E
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ı

, (6.97)
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αt ´
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αt´1

¯

E
”
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›

›

a
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›

›

›

1

ı

. (6.98)

162



Let

hpsq ě max
tPrTs
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“

}gt}1
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ˇ
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ˇ
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ı

,

.
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. (6.99)

Based on our updating rule,

E
”›

›

›

?
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›
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ě
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›
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ˇ
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. (6.100)

Note that

αt

2
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„B

gt,
gt

?
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ď
αt

2
E

„

}gt}2

ϵ

ȷ

ď
αtC
2ϵ

Er}gt
}s ď

αtC
2ϵ

Er}gt
}1s, (6.101)

where we have used the assumption that }gt} ď C. Combining the above two,

αtC
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2ϵ

hpsqE

„
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ˇ
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(6.102)

ď
αtC
2ϵ

hpsq
a

1 ´ β
E
”
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›
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›

1

ı

(6.103)

ď κ

ˆ

1
αt ´

1
αt´1

˙

E
”
›

›

›

a

vt´1 ` ϵ
›

›

›

1

ı

. (6.104)

This implies the condition holds as long as κ satisfies

κ ě
Chpsq

ϵ
a

1 ´ β
. (6.105)

3. DP-SGD at the t ´ 1-th iteration, and private RMSProp at the t-th iteration. We
want to prove

κd
αt´1 `

αt

2
E

„B

gt,
gt

Dt

Fȷ

ď
κ

αt E
“
›

›Dt›
›

1
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. (6.106)

As
›

›gt
›

› ď C, it holds that

αt

2
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gt,
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?
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Fȷ

ď
αt

2ϵ
Er}gt

}
2
s ď
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2ϵ

Er}gt
}1s. (6.107)

Therefore,
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Based on our learning rate set in Eq. (6.88),
?

tαt
“

?
t ´ 1αt´1ϵ (6.109)

ùñ
αt

2
ď

1
αt ´

1
αt´1ϵ

ď
1
αt ´

d
αt´1E r}Dt}1s

. (6.110)

Hence,
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ď κ

ˆ

Er}Dt}1s

αt ´
d

αt´1

˙

, (6.112)

where we require

κ ě
Chpsq

ϵ
a

1 ´ β
. (6.113)

4. Private RMSProp at the t ´ 1-th iteration, and DP-SGD at the t-th iteration. We need

κ

αt´1 E
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ı
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Plug in E
”

}
?

vt´1}1

ı

ď d
?

M (Lemma 21) and }gt}2 ď C2, we have
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Based on our learning rate set in Eq. (6.88), for some constant γ,
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“

γ
?

t ´ 1
, αt

ď
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?
tp

?
M ` 1q

(6.116)

ùñ
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d
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αt´1 . (6.117)

Therefore

αt

2
C2

ď κ

ˆ

d
αt ´

d
?

M ` d
αt´1

˙

(6.118)

holds as long as κ ě α2C2. To sum up, the requirement on κ is

κ ě max

#

α2C2,
Chpsq

ϵ
a

1 ´ β

+

. (6.119)
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Final convergence results:

min
tPrTs

E
“

Fpwt
q
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´ Fpw˚
q (6.120)
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Er}Nt

}
2
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where Tv denotes the iteration indices where we switch from private RMSProp steps
to private SGD steps plus the last iteration, and its cardinality is |Tυ| “ r 1

2υ s, and

κ ě max
"

α2C2, Chpsq

ϵ
?

1´β
,
*

, α “ min
!

ϵ, 1?
M`ϵ

, 1
)

.

6.11.2 A Closer Look at hpsq

We closely examine hpsq, defined as

hpsq ě max
tPrTs
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Let us assume mini-batch gradients on consecutive time steps are not very different,
i.e. }gt ´ gt´1}1 ď M. This means each gradient norm cannot be too far away from
each other, which can be used to show the dependence of hpsq on the delay parameter s.
Denote the gap between the current iteration t and the iteration where v gets updated as
k, i.e., k :“ t ´ t t

s us. Hence,
›

›gt
›

›

1
›

›

›

1
s
`

gt´k´1 ` ¨ ¨ ¨ ` gt´k´s
˘

` 1
s
`

Nt´k´1 ` ¨ ¨ ¨ ` Nt´k´s
˘

›

›

›

1
` dϵ

(6.123)
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Denote a :“ 1
s
`

Nt´k´1 ` ¨ ¨ ¨ ` Nt´k´s˘, and b :“ 1
s
`

gt´k´1 ` ¨ ¨ ¨ ` gt´k´s˘. Then
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(6.127)
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In the special case where gradients are sparse, i.e., Er}b}1s ă Er}a}1s, we have

hpsq ď
1

Er}a}1s

Er}b}1s
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Er}b}1s
´ 1

`
sM
dϵ

(6.129)

It is easy to see that the RHS is O psq, and it increases as s. We can informally express it as
c1s ` c2, where c1 and c2 are two constants.

6.12 Proof of Theorem 22

First we introduce a result that will be used in this section. Under the bounded stochastic
gradient variance assumption (Assumption 7), we have that conditioned on wt,

Et
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}gt
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2
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ď
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b
` }∇Fpwt

q}
2, (6.130)

where b refers to the mini-batch size to obtain gradient gt, i.e., gt Ð 1
b
ř

iPB gi,t. This
lemma is proved in Zaheer et al. [318]. The per-coordinate version of this result is that
for j P rds,
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and
ř

jPrds τ2
j “ τ2.

As we assume Fpwq is L-smooth, at each iteration t,
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Based on the updating rule of Algorithm 11, we have
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where N P Rd and Nj „ N
´

0, σ2C2

b2

¯

with noise multiplier σ and clipping threshold C,

and Dt satisfies that
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1 if t mod 2s ď s,
?

v ` ϵ otherwise.
(6.135)
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Take expectation with respect to samples at the t-th iteration and Nt,
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where we have used the fact that Nt is a zero-mean random variable independent of wt,
and Dt is independent of samples at time t. We need to consider two cases.
1. DP-SGD at the t-th iteration

In this case, Dt “ 1. Hence plugging in
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we have
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Under constant learning rate, let αt “ α ď 1
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Taking expectation on both sides gives
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2. Private RMSProp at the t-th iteration
We have
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Plugging in Et
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Let αt “ α ď ϵ
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Combining the two cases, for any t, we have
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Taking a telescope sum results in
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where M :“ C2 ` σ2C2

sb2 .
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Algorithm 11 DP2-RMSprop: Delayed Preconditioners for Differentially Private RMSprop

1: Input: T, batch size b, noise multiplier σ, clipping thresholds C, initial model w0 P Rd,
v “ 0, constant ϵ P R`, learning rate schedule αt, moving average parameter β, SGD
cumulative aggregation step s1, RMSProp cumulative step s2

2: for t “ 0, ¨ ¨ ¨ , T ´ 1 do
3: if t mod ps1 ` s2q “ 0 then
4: Reset accumulator Gt Ð 0
5: end if
6: if t mod ps1 ` s2q “ s1 then
7: Update moment estimates as v Ð βv ` p1 ´ βq

`

Gt{s1
˘2

8: Reset accumulator Gt Ð 0
9: end if

10: Uniformly randomly sample a mini-batch B with size b from private training data

11: Get individual gradients for sample i P B: gi,t Ð ∇ f pxi; wtq

12: Privatize the (preconditioned) gradients using the Gaussian mechanism:

g̃t
Ð

1
b

˜

ÿ

iPB

clip
ˆ

gi,t

Dt , C
˙

` N
´

0, σ2C2
¯

¸

where Dt
Ð

#

1 if t mod ps1 ` s2q ă s1
?

v ` ϵ otherwise.

13: Accumulate the private gradients g̃t : Gt`1 Ð Gt ` g̃t

14: Update model parameters w:

wt`1
Ð wt

´ αt g̃t

15: end for
16: return wT
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6.13 Experimental Details and Additional Results

6.13.1 Datasets
• IMDB [199] is a binary classification dataset on sentiment analysis for movie reviews

that includes 25,000/25,000 training/test samples. Each sample is a review under a
vocabulary size of 10,000. We train a logistic regression model with 10,001 parameters.

• StackOverflow [21, 140] is a large-scale text dataset containing questions and answers
from Stack Overflow. We focus on the task of classifying the tag(s) of a given sentence
described in [21], though we focus on the usual centralized training setting instead of
a federated setting. We randomly sample 246,092 sentences for training and 61,719
for testing, where each sentence is described by 10,000 features. We format the task
as a 500-class classification problem, and the resulting model has roughly 5 million
parameters.

• MovieLens-100k [112] is a movie review dataset commonly used for recommendation
systems. It contains 100,000 movie ratings from 943 users on 1,682 items (« 6% non-
zero entries). We study a (non-convex) matrix factorization task with embedding size
100, thus totaling 262,500 parameters. We treat each non-zero entry as a ‘record’ for
differential privacy, and randomly partition them for training and evaluation.

6.13.2 Hyperparameters

Unless otherwise stated, we fix the following hyperparameters in our experiments: for
IMDB, StackOverflow, and MovieLens respectively, we train for 100/50/50 epochs with
batch size 64 and privacy δ “ 10´5/10´6/10´6. We then perform a grid search on other
hyperparameters:
• Learning rates: We grid search over {0.03, 0.1, 0.3, 1, 3, 5} for SGD / AdaGrad update

rules and from {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3} for the RMSProp update rule.

• Per-example clipping thresholds: We grid search over {0.1, 0.25, 0.5, 1} when performing
per-example clipping on clean gradients without preconditioning (e.g. for DP-SGD
updates), and over {0.1, 0.25, 0.5, 1, 2, 3, 5} when clipping preconditioned clean gradients
(e.g. for DP2 updates in adaptive iterations). The rationale is that, in general, the
preconditioned gradient norms are usually larger than those without preconditioning
(recall from Section 6.8.2 that we apply preconditioning before privatization in DP2). For
AdaDPS and DP2-RMSProp, we also tried a few values of even larger clip thresholds
(ě 10) though we did not perform a full sweep for other hyperparameters at those
values due to computational constraints.

• Delay parameter s: For all datasets, s (i.e., the number of optimization steps) is chosen
heuristically as a function of the number of steps in an epoch. When reporting the
best results (e.g. Figure 6.10, Figure 6.11), we search over s P {195, 390, 780} (roughly
0.5, 1, 2 epochs respectively) for IMDB (390 steps/epoch); s P {100, 300, 1000, 3000} for
StackOverflow (3845 steps/epoch); and s P {1250, 15625, 31250, 50000} for MovieLens
(1250 steps/epoch).
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• Adaptivity ϵ: In our settings, the adaptivity parameter ϵ for RMSProp/AdaGrad (in the
denominator Dt “

?
v ` ϵ) would affect the amount of adaptivity as well as the norms

of preconditioned gradients, which may in turn influence the privacy-utility tradeoff
under per-example clipping. We tune ϵ over a small grid of {10´2, 10´3, 10´5, 10´7}.

All reported results use the best hyperparameter configurations, which are selected using
training set metrics (as overfitting generally does not occur under DP noise). To facilitate
reproducibility, we summarize the tuned hyperparameters for the main experiments and
the ablation studies in Table 6.12 and Table 6.13 below respectively.

Dataset DP-SGD DP-RMSProp PDA-DPMD AdaDPS
DP2-RMSProp(w/ RMSProp)

IMDB (5, 0.5) (0.3, 0.1, 10-3) (5, 0.5) (1, 5, 10-3) (0.1, 3, 0.5, 5, 10-7, 195)
StackOverflow (3, 0.25) (0.03, 0.1, 10-3) (3, 0.25) (0.4, 5, 10-3) (0.3, 0.3, 0.25, 5, 10-5, 1000)
MovieLens (0.1, 1) (0.001, 0.5, 10-3) (0.1, 1) (0.01, 10, 10-2) (0.1, 0.03, 1, 5, 10-3, 31250)

Table 6.12: Tuned hyperparameters for different methods across three datasets. For
DP-SGD and PDA-DPMD, the values refer to (LR, clip); for DP-RMSProp and AdaDPS,
the values refer to (LR, clip, adaptivity ϵ); and for DP2, the values refer to (LR for SGD
iters, LR for RMSProp iters, clip for SGD iters, clip for RMSProp iters, adaptivity ϵ, delay
s). Bold values were experimented on the edges of the hyperparameter grids.

Dataset Ablation Variant1 Ablation Variant 2

IMDB (3.0, 0.1, 0.5, 2.0, 10-7, 780) (0.3, 0.3, 0.25, 10-3, 780)
StackOverflow (1.0, 1.0, 1.0, 1.0, 10-5, 1000) (0.3, 0.001, 0.25, 10-5, 1000)

Table 6.13: Tuned hyperparameters for ablation studies on IMDB and StackOverflow.
Both variants use the RMSProp update rule for the adaptive steps. Bold values were
experimented on the edges of the hyperparameter grids. For Variant 1 and 2 respectively,
the values refer to (LR for SGD iters, LR for RMSProp iters, clip for SGD iters, clip for
RMSProp iters, adaptivity ϵ, delay s) and (LR for SGD iters, LR for RMSProp iters, clip
for both SGD/RMSProp iters, adaptivity ϵ, delay s). Note that for Variant 2 the clipping
threshold do not need to be tuned separately for SGD or RMSProp iters as it applies to
preconditioned gradients in both cases.
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6.13.3 Results for DP2-AdaGrad

The DP2 framework can be applied to a range of adaptive methods beyond RMSProp
mostly discussed in the main text. We extend DP2 to the AdaGrad update rule (with only
one line of code change, see Section 6.14), and benchmark its convergence and privacy-
utility tradeoffs. In Figure 6.14 and Figure 6.15, the results indicate that DP2-AdaGrad,
like DP2-RMSProp, can consistently and substantially improve over the baselines in terms
of both convergence and absolution performance, demonstrating the generality of DP2 to
other adaptive optimizers.
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Figure 6.14: (Extension of Figure 6.10 to the AdaGrad update rule) Test accuracy of DP2

compared to DP-SGD, DP-RMSProp, and DP-AdaGrad on IMDB and StackOverflow.
Dotted lines denote training performance.

6.13.4 Effects of Increasing Computational Budgets

When differential privacy introduces a large utility gap between private and non-private
training, one approach to improving the privacy-utility tradeoff is to increase computa-
tional costs by using larger batch sizes under fixed numbers of steps. The noise multiplier
needs to increase to achieve the same privacy target, while the overall privacy noise may
still be reduced due to the larger batch size. This technique may be adopted in prac-
tice when we want to prioritize the utility of private optimization under fixed privacy
budgets. In Figure 6.15 (right), we explore the effect of such increased computation on
StackOverflow. With a 4ˆ factor increase in computational cost (4ˆ larger batch sizes
with the same number of training iterations), we observe that the privacy/utility tradeoff
of all methods can be substantially improved, narrowing the utility gap to non-private
training. In particular, observe that the absolute performance improvement of DP2 over
the vanilla DP baselines remains similar.
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Figure 6.15: (Extension of Figure 6.11 to the AdaGrad update rule and increased
computational cost) Privacy/utility tradeoffs of DP2 compared to DP-SGD, DP-RMSProp,
and DP-AdaGrad on IMDB and StackOverflow. “(4ˆ)” denotes increasing the batch size
and the number of epochs simultaneously by a factor of 4 and picking the appropriate
noise multiplier to arrive at similar privacy costs pεq.

6.13.5 Additional Results for Ablation Studies

Table 6.14 summarizes the results for ablation studies on IMDB, StackOverflow, and
MovieLens, and Figure 6.16 reports test accuracies on IMDB and StackOverflow during
optimization. The variants are discussed in Section 6.10.3 and complete algorithms
are presented in Appendix 6.14. We observe that DP2 indeed consistently outperforms
the two (weaker) variants on all datasets, thus verifying our design choices for DP2. In
particular, note that the utility drop of variant 2 (adding noise before preconditioning)
on StackOverflow is more significant compared to that on IMDB; we argue that this is
due to StackOverflow being a high-dimensional learning task (roughly 5 million model
parameters) and thus the detrimental effect of preconditioning per-coordinate noise is
larger.

Dataset Variant1 Variant 2 DP2-RMSProp

IMDB Ò .799 ˘ .006 .643 ˘ .007 .815 ˘ .011
StackOverflow Ò .382 ˘ .002 .265 ˘ .004 .391 ˘ .001
MovieLens Ó 3.32 ˘ .088 3.18 ˘ .066 2.78 ˘ .054

Table 6.14: Summary of ablation studies on all three datasets.

6.13.6 Additional Results for Comparison with Public Data-Assisted
Methods

Figure 6.17 extends the results in Section 6.10.2 with convergence plots on IMDB and
StackOverflow. On IMDB, we observe that despite not using any auxiliary information,
the convergence of DP2-RMSProp is comparable with that of AdaDPS-RMSProp [187]
which uses 1% of training data as the public data (250 examples) to approximate the
preconditioner. On StackOverflow where the same public split of 1% corresponds to

174



0 20 40 60 80 100

# epochs

0.5

0.6

0.7

0.8
te

st
ac

c

IMDB (ε = 3.04, δ = 10−5)

DP-SGD
DP-RMSProp
Variant 1 (extra query)
Variant 2 (noise first)

DP2-RMSProp (ours)

0 10 20 30 40 50

# epochs

0.15

0.20

0.25

0.30

0.35

0.40

te
st

ac
c

StackOverflow (ε = 0.87, δ = 10−6)

DP-SGD
DP-RMSProp
Variant 1 (extra query)
Variant 2 (noise first)

DP2-RMSProp (ours)

Figure 6.16: Test accuracies for ablation studies on DP2. Dotted lines correspond to
training metrics.

2460 examples, we observe that AdaDPS-RMSProp can outperform DP2. On the other
hand, the extra public data do not help PDA-DPMD outperform DP2.
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Figure 6.17: Test accuracies of DP2 compared against recent private (adaptive) methods
that leverage public data [15, 187]. Dotted lines correspond to training metrics.

In Figure 6.18, we additionally implement a private AdaGrad method proposed
in [142] that also leverages public data. Specifically, in each iteration, the algorithm clips
and adds independent noise to both the clean gradients and the preconditioner estimated
using clean gradients; it then uses public data to estimate a gradient subspace onto which
to project the clipped/noised preconditioner in order to reduce the effect of noise; finally,
it preconditions the noisy gradient with the noisy preconditioner and takes an update
step. Our implementation differs from [142] in that we use the diagonal form of the
preconditioner instead of the full matrix form. To estimate the gradient subspace, we
follow the approach described in [333] where the projection matrix V P Rdˆk where d is
the number of parameters and k is the dimension of the subspace is obtained by taking
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Figure 6.18: Comparing DP2 against a noisy AdaGrad variant based on [142] where the
gradients and the preconditioner are privatized separately.

the top-k eigenspace of Mt with

Mt
“

1
|Xpub|

ÿ

xiPXpub

∇wt f
´

xi; wt
¯

∇wt f
´

xi; wt
¯J

where Xpub is the set of public examples. Unfortunately, we have not obtained a sat-
isfactory result for this noisy AdaGrad algorithm. We remark that since the method
is extremely computationally expensive (involves computing the eigendecomposition
of a d ˆ d matrix with d “ 10001 at every iteration), further hyperparameter tuning
may help improve the performance. However, our ablation studies (Section 6.10.3 and
Appendix 6.13.5) may shed light on the current observations since this method privatizes
gradients before preconditioning.

6.14 Algorithms

For completeness, we present all algorithms mentioned in the main text in detail.
• Non-private version of DP2: only changing Line 9 in Algorithm 11 to

g̃t
Ð

1
b

ÿ

iPB

gi,t

Dt

• DP2 with the AdaGrad update rule (DP2-AdaGrad): only changing Line 5 in Algo-
rithm 11 to

v Ð v `
`

Gt
{s1

˘2

• DP2 with Yogi’s additive update rule (DP2-Yogi): only changing Line 5 in Algorithm 11
to

v Ð v ` p1 ´ βqsignpGt
{s1 ´ v2

q
`

Gt
{s1

˘2
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• Ablation variant 1 (extra query) with delayed preconditioners: see Algorithm 12.
Observe that the clean batch gradients tgi,tuiPB get privatized twice in most iterations
(when pt ´ 1q mod s ‰ 0), increasing the total privacy cost.

• Ablation variant 2 (noise before preconditioning) with delayed preconditioners: in
Line 9 of Figure 11, privatize the batch gradients with the following replacement:

g̃t
Ð

1
b

˜

ÿ

iPB

clip
´

gi,t, C
¯

` N
´

0, σ2C2
¯

¸

{Dt
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Algorithm 12 Ablation variant 1 (extra query) using delayed preconditioners
1: Input: T, batch size b, noise multiplier σ, clipping thresholds C1, C2, initial model

w0 P Rd, v “ 0, constant ϵ P R`, learning rate schedule αt, moving average parame-
ters β, delay steps s

2: Set accumulator G0 Ð 0
3: for t “ 1, ¨ ¨ ¨ , T do
4: Uniformly randomly sample a mini-batch B with size b from private training data

5: Get individual gradients for sample i P B: gi,t Ð ∇ f pxi; wt´1q

6: Privatize the gradients using the Gaussian mechanism:

g̃t
Ð

1
b

˜

ÿ

iPB

clip
´

gi,t, C1

¯

` N
´

0, σ2C2
1

¯

¸

7: Accumulate the private gradients g̃t : Gt Ð Gt´1 ` g̃t

8: if pt ´ 1q mod s “ 0 then
9: Update moment estimates: v Ð βv ` p1 ´ βq

`

Gt{s
˘2

10: Reset accumulator: Gt Ð 0
11: Set final gradient: ḡt Ð g̃t

12: else
13: Privatize the clean, preconditioned gradients using the Gaussian mechanism:

ĝt
Ð

1
b

˜

ÿ

iPB

clip
ˆ

gi,t
?

v ` ϵ
, C2

˙

` N
´

0, σ2C2
2

¯

¸

14: Set final gradient: ḡt Ð ĝt

15: end if
16: Update model parameters w:

wt
Ð wt´1

´ αt ḡt

17: end for
18: return wT
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Chapter 7

Extensions to General ML Problems:
Tilted Empirical Risk Minimization

The q-FFL objective presented in Chapter 4 essentially minimizes the q-norm (q>1) of the
loss vector across all clients, which is an approximation of the max norm as q gets larger.
Similar intuition leads us to come up with a more general objective based on exponential
tilting, which can be used for a variety of ML problems.

7.1 Overview

Many statistical estimation procedures rely on the concept of empirical risk minimization
(ERM), in which the parameter of interest, θPΘĎRd, is estimated by minimizing an
average loss over the data tx1, ...,xNu:

Rpθq :“
1
N

ÿ

iPrNs

f pxi; θq . (7.1)

Although ERM is widely used in machine learning, it is known to perform poorly in
situations where average performance is not an appropriate surrogate for the problem of
interest. Significant research has thus been devoted to developing alternatives to tradi-
tional ERM for diverse applications, such as learning in the presence of noisy/corrupted
data [130, 152], performing classification with imbalanced data [192, 201], ensuring that
subgroups within a population are treated fairly [113, 247], or developing solutions with
favorable out-of-sample performance [77].

In this chapter, we suggest that deficiencies in ERM can be flexibly addressed via a
unified framework, tilted empirical risk minimization (TERM). TERM encompasses a family
of objectives, parameterized by a real-valued hyperparameter, t. For t P Rz0, the t-tilted
loss (TERM objective) is given by:

rRpt; θq :“
1
t

log
ˆ

1
N

ÿ

iPrNs

et f pxi;θq

˙

. (7.2)

179



TERM generalizes ERM as the 0-tilted loss recovers the average loss, i.e., rRp0, θq“Rpθq.1

It also recovers other popular alternatives such as the max-loss (tÑ`8) and min-loss
(tÑ´8) (Lemma 25). As we discuss below, although tilted risk minimization is not
widely used in machine learning, variants of tilting have been extensively studied in
related fields including statistics, applied probability, optimization, and information
theory.

7.1.1 Perspectives on Exponential Tilting

We begin by defining exponential tilting and discussing uses of tilting in various fields.
Let P :“ tpθu be a set of parametric distributions. For any x P X , we let f px; θq be the
information of x under θ, which is defined as [60]:

f px; θq :“ ´ log pθpxq. (7.3)

Further assume that X is a random variable drawn from distribution pp¨q, which is not
necessarily matched to P , i.e., the model family may be misspecified. The cumulant
generating function of the information random variable, f pX; θq, can be stated as [67,
Section 2.2]:

ΛXpt; θq :“ log
´

E
”

et f pX;θq
ı¯

“ log
ÿ

x
ppxqpθpxq

´t, (7.4)

where in this chapter Er¨s denotes expectation with respect to the true distribution p
unless otherwise stated. This expectation is commonly referred to as an exponential
tilt of the information density, and can induce parametric distribution shifts that have
varied applications in probability, statistics, and information theory. In particular, it is
noteworthy that if P is an exponential family of distributions parameterized by θ, then
the tilted distribution pθpxqt (when normalized by

ş

X pθpxqtdx) also belongs to the same
exponential family. Further, given samples txiuiPrNs, the empirical cumulant generating
function is defined as:

rΛpt; θq :“ log

¨

˝

1
N

ÿ

iPrNs

!

et f pxi;θq
)

˛

‚. (7.5)

It is thus evident that TERM (7.2) can be viewed as an appropriately scaled variant of the
empirical cumulant generating function in (7.5). Although tilting of this form has been
used in a number of related disciplines, uses of exponential tilting in machine learning
are relatively unexplored. We provide several perspectives on exponential tilting from
other fields below.

Statistics. Exponential tilting is well-known as a distribution shifting technique in
statistics, where the main idea is to draw samples from an exponentially tilted version of
the original distribution to improve the convergence properties of statistical estimation,

1
rRp0; θq is defined in (7.20) via the continuous extension of Rpt; θq.
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especially when the distribution of interest belongs to an exponential family, such as
Gaussian or multinomial. Common use cases include rejection sampling, rare-event
simulation, saddle-point approximation [41, p. 156], and importance sampling [260].

Applied Probability. In large deviations theory, exponential tilting lies at the heart
of deriving concentration bounds. For example, Chernoff bounds apply Markov’s
inequality to etX, which results in a parametric set of bounds by using exponential tilts of
various orders. The bound may then be further optimized on the real tilt value to derive
the tightest possible bound [67].

Information Theory. While source coding limits and channel capacity are characterized
by Shannon entropy and Shannon mutual information (which are simple averages over
the information (7.3)) [60], there are other elements of information theory that are not
characterized by the average, such as error exponents in channel decoding [95], probabil-
ity of error in list decoding [212], and computational cost in sequential decoding [17, 204].
These fundamental elements of information theory are asymptotically determined by a
non-zero tilted cumulant generating function of the information random variable (7.3)
(see [26] for further discussion).

Optimization. Exponential tilting has also appeared as a minimax smoothing ap-
proach in optimization [157, 193, 227]. Such smooth approximations to the max often
appear through LogSumExp functions, with applications in geometric programming [42,
Sec. 9.7], and boosting [203, 255]. We discuss min-max objectives and the connections
with TERM in several subsequent sections of the chapter.

Machine Learning. Despite the rich history of tilted objectives in related fields, they
have not seen widespread use in ML beyond limited applications such as robust regres-
sion [295] and sequential decision making [37, 120]. In this work, we argue that tilting is
a critical yet undervalued tool in machine learning. We demonstrate the effectiveness
of tilting by (i) rigorously studying properties of the TERM objective, and (ii) exploring
its utility for a wide range of ML applications. Surprisingly, we find that this simple
extension to ERM can match or exceed state-of-the-art performance from highly tuned,
bespoke solutions to common ML problems, from learning with noisy data to ensuring
fair performance between subgroups. We highlight several motivating applications of
TERM below and provide an outline of the remainder of the chapter in Section 7.1.3.

7.1.2 Motivating Examples

To motivate how the TERM objective (7.2) may be used in machine learning, we provide
several running examples below, which are illustrated in Figure 7.1.

(a) Point estimation: As a first example, consider determining a point estimate from a
set of samples that contain some outliers. We plot an example 2D dataset in Figure 7.1a,
with data centered at (1,1). Using traditional ERM (i.e., TERM with t “ 0) recovers the
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Figure 7.1: Toy examples illustrating TERM as a function of t: (a) finding a point estimate
from a set of 2D samples, (b) linear regression with outliers, and (c) logistic regression
with imbalanced classes. While positive values of t magnify outliers, negative values
suppress them. Setting t“0 recovers the original ERM objective (7.1).

sample mean, which can be biased towards outlier data. By setting t ă 0, TERM can
suppress outliers by reducing the relative impact of the largest losses (i.e., points that
are far from the estimate) in (7.2). A specific value of t ă 0 can in fact approximately
recover the geometric median, as the objective in (7.2) can be viewed as approximately
optimizing specific loss quantiles (a connection which we make explicit in Section 7.2).
In contrast, if these ‘outlier’ points are important to estimate, setting t ą 0 will push
the solution towards a point that aims to minimize variance, as we prove in Section 7.2,
Theorem 25.

(b) Linear regression: A similar interpretation holds for the case of linear regression
(Figure 2b). As t Ñ ´8, TERM finds a line of best while ignoring outliers. However, this
solution may not be preferred if we have reason to believe that these ‘outliers’ should not
be ignored. As t Ñ `8, TERM recovers the min-max solution, which aims to minimize
the worst loss, thus ensuring the model is a reasonable fit for all samples (at the expense
of possibly being a worse fit for many). Similar criteria have been used, e.g., in defining
notions of fairness [113, 247]. We explore several use-cases involving robust regression
and fairness in more detail in Section 7.7.

(c) Logistic regression: Finally, we consider a binary classification problem using logistic
regression (Figure 2c). For t P R, the TERM solution varies from the nearest cluster center
(tÑ´8), to the logistic regression classifier (t“0), towards a classifier that magnifies
the misclassified data (tÑ`8). We note that it is common to modify logistic regression
classifiers by adjusting the decision threshold from 0.5, which is equivalent to moving the
intercept of the decision boundary. This is fundamentally different than what is offered
by TERM (where the slope is changing). As we show in Section 7.7, this added flexibility
affords TERM with competitive performance on a number of classification problems,
such as those involving noisy data, class imbalance, or a combination of the two.

182



7.1.3 Contributions

In this work, we explore the use of tilting in machine learning through TERM, a simple,
unified framework that can flexibly address various challenges with empirical risk
minimization. We first analyze the objective and its solutions, showcasing the behavior
of TERM with varying tilt parameters t (Section 7.2). We also establish connections
between TERM and related approaches such as distributionally robust optimization in
Section 7.3.

We rigorously analyze the relations between TERM and other risks (e.g, Value-at-
Risk (VaR), Conditional Value-at-Risk (CVaR), and Entropic Value-at-Risk (EVaR)) in
Section 7.4. In particular, we introduce a new risk measure based on TERM, called Tilted
Value-at-Risk (TiVaR), to approximate VaR. We show that TiVaR can provide a better
approximation of VaR than CVaR in certain regimes, and improves upon EVaR in all
regimes.

We develop efficient first-order batch and stochastic methods for solving TERM, both
for hierarchical and non-hierarchical cases (Section 7.5 and 7.6). We provide convergence
rates scaling with the hyperparameter t on both convex and non-convex problems for
both batch and stochastic algorithms. Our solvers run within 2–3ˆ wall-clock time
compared with that of ERM in all explored case studies.

Finally, we show via numerous case studies that TERM is competitive with existing,
problem-specific state-of-the-art solutions (Section 7.7). We also extend TERM to handle
compound issues, such as the simultaneous existence of noisy samples and imbalanced
classes (Section 7.6). Our results demonstrate the effectiveness and versatility of tilted
objectives in machine learning.

Outline. This chapter is organized as follows. We discuss general properties and
interpretations of TERM in Section 7.2. We connect TERM with other prior risk measures
in Section 7.3 and propose a new risk motivated by TERM in Section 7.4. In Section 7.5,
we develop both batch and stochastic algorithms for optimizing TERM and provide
convergence guarantees for them. We extend TERM to hierarchical multi-objective
tilting in Section 7.6 and demonstrate the flexibility and competitive performance of the
TERM framework via real-world applications in Section 7.7. We conclude the work in
Section 7.8.

7.2 TERM: Properties and Interpretations

To better understand the performance of the t-tilted losses in (7.2), in this section we
provide several interpretations of the TERM solutions, leaving the full proofs to the
appendix. We make no distributional assumptions on the data, and study properties of
TERM under the assumption that the loss function forms a generalized linear model, e.g.,
L2 loss and logistic loss. However, we also obtain favorable empirical results using TERM
with other objectives such as PCA and deep neural networks in Section 7.7, motivating
the extension of this part of our theory beyond GLMs in future work.
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7.2.1 Assumptions

We first provide notation and assumptions that are used throughout our theoretical
analyses. The results in this chapter are derived under one of the following three nested
assumptions (the assumptions become progressively more restrictive, i.e., 3 Ñ 2 Ñ 1):

Assumption 8 (Continuous differentiability). For i P rNs, the loss function f pxi; θq belongs
to the differentiability class C1 (i.e., continuously differentiable) with respect to θ P Θ Ď Rd.

Assumption 9 (Smoothness and strong convexity condition). Assume that Assumption 8
is satisfied. In addition, for any i P rNs, f pxi; θq belongs to differentiability class C2 (i.e., twice
differentiable with continuous Hessian) with respect to θ. We further assume that there exist
βmin, βmax P Rą0 such that for i P rNs and any θ P Θ Ď Rd,

βminI ĺ ∇2
θθJ f pxi; θq ĺ βmaxI, (7.6)

where I is the identity matrix of appropriate size (in this case d ˆ d), and there does not exist any
θ P Θ, such that ∇θ f pxi; θq “ 0 for all i P rNs.

Assumption 10 (Generalized linear model condition [286]). Assume that Assumption 9 is
satisfied. Further, assume that the loss function f px; θq is given by

f px; θq “ Apθq ´ θJTpxq, (7.7)

where Ap¨q is a convex function such that there exists βmax where for any θ P Θ Ď Rd,

βminI ĺ ∇2
θθJ Apθq ĺ βmaxI , (7.8)

and
ÿ

iPrNs

TpxiqTpxiq
J ą 0. (7.9)

This set of assumptions become the most restrictive with Assumption 10, which
essentially requires that the loss be the negative log-likelihood of an exponential family.
While the assumption is stated using the natural parameter of an exponential family for
ease of presentation, the results hold for any bijective and smooth reparameterization
of the exponential family. For example, Assumption 10 is satisfied by the commonly
used L2 loss for regression and logistic loss for classification (see toy examples (b) and
(c) in Figure 7.1).

ř

iPrNs TpxiqTpxiq
J ą 0 assumes a reasonable regularity on the dataset

txiuiPrNs. For instance, in the case of linear regression (Tpxiq “ xi P Rd), it reduces to
the standard regularity assumption XXT ą 0 (where X :“ rx1, ¨ ¨ ¨ , xNs P RdˆN). While
Assumption 10 is not satisfied when we use neural network function approximators in
Section 7.7, we observe favorable numerical results motivating the extension of these
results beyond the cases that are theoretically studied in this work.

In the sequel, many of the results are concerned with characterizing the t-tilted
solutions defined as the parametric set of solutions of t-tiled losses by sweeping t P R,

θ̆ptq P arg min
θPΘ

rRpt; θq, (7.10)
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where Θ Ď Rd is an open subset of Rd. Further, let the optimal tilted objective be defined
as

rFptq :“ rRpt; θ̆ptqq. (7.11)

We state a final assumption, on θ̆ptq, below.

Assumption 11 (Strict saddle property (Definition 4 in Ge et al. [97])). We assume that the
set arg minθPΘ rRpt; θq is non-empty for all t P R. Further, we assume that for all t P R, rRpt; θq

is a “strict saddle” as a function of θ, i.e., for all local minima, ∇2
θθJ

rRpt; θqą0, and for all other
stationary solutions, λminp∇2

θθJ
rRpt; θqq ă 0, where λminp¨q is the minimum eigenvalue of the

matrix.

We use the strict saddle property in order to reason about the properties of the t-tilted
solutions. In particular, since we are solely interested in the local minima of rRpt; θq, the
strict saddle property implies that for every θ̆ptq P arg minθPΘ rRpt; θq, for a sufficiently
small r, for all θ P Bpθ̆ptq, rq,

∇2
θθJ

rRpt; θq ą 0, (7.12)

where Bpθ̆ptq, rq denotes a d-ball of radius r around θ̆ptq. We will show later in Section 7.2.2
that the strict saddle property is readily verified for t P Rą0 under Assumption 9, and
we need Assumption 11 to be able to reason about t P Ră0.

7.2.2 General Properties of TERM

We begin by noting several general properties of the TERM objective (7.2). In particular:
(i) rRpt; θq is L-Lipschitz continuous in θ if f px; θq is L-Lipschitz (Lemma 22); (ii) If f px; θq

is strongly convex, the t-tilted loss is strongly convex for t ą 0 (Lemma 23); and (iii)
Given a smooth f px; θq, the t-tilted loss is smooth for all finite t (Lemma 24). We state
these properties more formally below.

Lemma 22 (Lipschitzness of rRpt; θq). For any t P R and θ P Θ, if for i P rNs, f pxi; θq is
L-Lipschitz conditnuous in θ, then rRpt; θq is L-Lipschitz in θ.

Lemma 23 (Tilted Hessian and strong convexity for t P Rą0). Under Assumption 9, for any
t P R,

∇2
θθJ

rRpt; θq “
t
N

ÿ

iPrNs

p∇θ f pxi; θq ´ ∇θ
rRpt; θqqp∇θ f pxi; θq ´ ∇θ

rRpt; θqq
Jetp f pxi;θq´rRpt;θqq

(7.13)

`
1
N

ÿ

iPrNs

∇2
θθJ f pxi; θqetp f pxi;θq´rRpt;θqq. (7.14)

In particular, for all θ P Θ and all t P Rą0, the t-tilted objective is strongly convex. That is

∇2
θθJ

rRpt; θq ą βminI. (7.15)
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Figure 7.2: TERM objectives for a squared loss with three samples (N=3). As t moves
from ´8 to `8, t-tilted losses recover min-loss, avg-loss, and max-loss. TERM is smooth
for all finite t and convex for positive t.

Lemma 22 and 23 are proved in Appendix 7.9. Lemma 23 also implies that under
Assumption 9, the strict saddle assumption (Assumption 11) is readily verified.

Lemma 24 (Smoothness of rRpt; θq). For any t P R, let βptq be the smoothness parameter of
twice differentiable rRpt; θq:

βptq :“ λmax

´

∇2
θθJ

rRpt; θq

¯

, (7.16)

where ∇2
θθJ

rRpt; θq is the Hessian of rRpt; θq at θ and λmaxp¨q denotes the largest eigenvalue.
Under Assumption 9, for any t P R, rRpt; θq is a βptq-smooth function of θ. Further, for t P Rď0,2

βptq ă βmax, (7.17)

where βmax is defined in Assumption 9. For t P Rą0,

0 ă lim
tÑ`8

βptq
t

ă `8. (7.18)

Lemma 24 (proved in Appendix 7.9.1) indicates that t-tilted losses are βptq-smooth for
all t. βptq is bounded for all negative t and moderately positive t, whereas it scales linearly
with t as t Ñ `8, which has been previously studied in the context of exponential
smoothing of the max [157, 227]. This can also be observed visually via the toy example
in Figure 7.2.

As discussed in Section 7.1, TERM can recover traditional ERM (t“0), the max-loss
(tÑ`8), and the min-loss (tÑ´8). We formally state this in Lemma 25 below.

Lemma 25. Under Assumption 8,

rRp´8; θq :“ lim
tÑ´8

rRpt; θq “ qRpθq, (7.19)

2Rď0 denotes the set of non-positive real numbers.
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rRp0; θq :“ lim
tÑ0

rRpt; θq “ Rpθq, (7.20)

rRp`8; θq :“ lim
tÑ`8

rRpt; θq “ pRpθq, (7.21)

where pRpθq is the max-loss and qRpθq is the min-loss3:

pRpθq :“ max
iPrNs

f pxi; θq, qRpθq :“ min
iPrNs

f pxi; θq. (7.22)

Note that Lemma 25 has been studied or observed before in the entropic risk litera-
ture [e.g., 9], as well as other contexts [55]. This lemma also implies that θ̆p0q is the ERM
solution, θ̆p`8q is the min-max solution, and θ̆p´8q is the min-min solution. In other
words, a benefit of TERM is that it offers a continuum of solutions between the min and
max losses.

Providing a smooth tradeoff between these specific losses can be beneficial for a
number of practical use-cases—both in terms of the resulting solution and the difficulty
of solving the problem itself. We empirically demonstrate the benefits of such a tradeoff
in Section 7.7. We also visualize the solutions to TERM for a toy problem in Figure 7.2,
which allows us to illustrate several special cases of the general framework. Interestingly,
we additionally show that the TERM solution can be viewed as a smooth approximation
to the tail probability of losses, which effectively minimizes quantiles of losses such as the
median loss (Section 7.4). In Figure 7.2, it is clear to see why this may be beneficial, as
the median loss (orange) can be highly non-smooth in practice. In Theorem 23 and 24
below, we formally characterize how tilted objectives change as a function of values t
(proofs provided in Appendix 7.9).

Theorem 23 (Tilted objective is increasing with t). Under Assumption 10, for all t P R, and
all θ P Θ,

B

Bt
rRpt; θq ě 0. (7.23)

Theorem 24 (Optimal tilted objective is increasing with t). Under Assumption 10, for all
t P R, and all θ P Θ,

B

Bt
rFptq “

B

Bt
rRpt; θ̆ptqq ě 0. (7.24)

Recall that TERM as t Ñ ´8 and t Ñ 8 corresponds to min-loss and max-loss,
respectively. We discuss in Section 7.4.2 that solving TERM with any t P R can indeed
be viewed as approximately minimizing the k-th smallest loss (k P rNs) among all N
individual losses. As we increase k from 1 to N, the corresponding value of t sweeps
in p´8, 8q. Theorem 24 hence roughly states that the optimal k-th smallest loss is
non-decreasing with k, which is intuitively expected.

We next provide two interesting interpretations of the TERM framework to further
understand its behavior.

3When the argument of the max-loss or the min-loss is not unique, for the purpose of differentiating
the loss function, we define pRpθq as the average of the individual losses that achieve the maximum, and
qRpθq as the average of the individual losses that achieve the minimum.
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7.2.3 Interpretation 1: Re-Weighting Samples to Magnify/Suppress
Outliers
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Figure 7.3: We visualize the size of the samples using their gradient weights. Negative
t’s (t “ ´2 on the left) focus on the inlier samples (suppressing outliers), while positive
t’s (t “ 2 on the right) magnify the outlier samples.

As discussed via the toy examples in Section 1, TERM can be tuned (using t) to
magnify or suppress the influence of outliers. We make this notion rigorous by exploring
the gradient of the t-tilted loss in order to reason about the solutions to the objective
defined in (7.2).

Lemma 26 (Tilted gradient). For a smooth loss function f px; θq,

∇θ
rRpt;θq“

ÿ

iPrNs

wipt;θq∇θ f pxi;θq, (7.25)

where tilted weights are given by

wipt; θq :“
et f pxi;θq

ř

jPrNs et f pxj;θq
“

1
N

etp f pxi;θq´rRpt;θqq. (7.26)

Proof. Under Assumption 8, we have:

∇θ
rRpt; θq “ ∇θ

$

&

%

1
t

log

¨

˝

1
N

ÿ

iPrNs

et f pxi;θq

˛

‚

,

.

-

“

ř

iPrNs ∇θ f pxi; θqet f pxi;θq

ř

iPrNs et f pxi;θq
. (7.27)
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Lemma 26 provides the gradient of the tilted objective, which has been studied pre-
viously in the context of exponential smoothing (see Pee and Royset [227, Proposition
2.1]). From this, we can observe that the tilted gradient is a weighted average of the gra-
dients of the original individual losses, where each data point is weighted exponentially
proportional to the value of its loss. Note that t “ 0 recovers the uniform weighting
associated with ERM, i.e., wipt; θq “ 1{N. For positive t, this has the effect of magnifying
the outliers—samples with large losses—by assigning more weight to them, and for
negative t, it suppresses the outliers by assigning less weight to them (Figure 7.3).

Generalizing the notion of tilted gradients (weighted average of individual gradients),
we define tilted empirical mean over any N-vector u P RN below, which will be used
throughout the chapter.

Definition 13 (Tilted empirical mean and variance). For u P RN, let weighted empirical
mean with weights w P ∆N (where ∆N stands for N dimensional simplex) be defined as

pEwpuq :“
ÿ

iPrNs

wiui. (7.28)

Tilted empirical mean is weighted empirical mean with tilted weights, i.e.,

pEwpt;θqpuq :“
ÿ

iPrNs

wipt; θqui, (7.29)

pEwpt;θ̆ptqq
puq :“

ÿ

iPrNs

wipt; θ̆ptqqui, pEt :“ pEwpt;θ̆ptqq
puq, (7.30)

where wipt; θq is defined in Eq. (7.26), and θ̆ptq is defined in Eq. (7.10). We also refer to pEt as the
“t-tilted empirical mean”. Similarly, tilted empirical variance is defined as

yVarwpt;θqpuq :“ pEwpt;θptqq

´

ui ´ pEwpt;θptqq puq

¯2
, (7.31)

yVarwpt;θ̆ptqq
puq :“ pEtpui ´ pEt puqq

2 , yVart :“ yVarwpt;θ̆ptqq
puq, (7.32)

and we refer to yVart as the “t-tilted empirical variance”.

As discussed before, the full gradient of TERM is tilted empirical mean of individual
gradients t∇θ f pxi; θquiPrNs with weights proportional to et f pxi;θq. In the next section as
well as Appendix 7.9.3, we will prove other properties of TERM using tilted empirical
mean and variance defined here.

7.2.4 Interpretation 2: Empirical Bias/Variance tradeoff

Another key property of the TERM solutions is that for any t P R, t-tilted empirical
variance of the losses across all samples will decrease if we increase t by a small amount
of value. We formally stated this in Theorem 25.
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Theorem 25 (Variance reduction). Let fpθq :“ p f px1; θqq, . . . , f pxN; θqq. Then, under As-
sumption 10 and Assumption 11, for any t P R,

B

Bt

!

yVarτpfpθ̆ptqqq

)

ˇ

ˇ

ˇ

ˇ

t“τ

ă 0. (7.33)

Note that yVarτ is τ-tilted empirical variance defined in Eq. (7.32). Hence, for any t, the
t-tilted empirical variance among N losses will decrease if we increase t by a small value.
When τ “ 0, yVarτ reduces to standard empirical variance. In particular, Theorem 25
states that the empirical variance of the loss vector decreases if t is chosen to be a small
positive value. Therefore, it is possible to trade off between optimizing the average loss
vs. reducing variance, allowing the solutions to potentially achieve a better bias-variance
tradeoff for generalization [27, 118, 205]. At a high level, this property is consistent with
and extends the approximation of TERM mentioned by Liu and Theodorou [193, Section
V.A], which approximates TERM as the empirical risk regularized with variance of the
loss at t “ 0. We rely on this property to achieve better generalization in classification in
Section 7.7.

In addition to empirical variance across all losses, there are other related distribution
uniformity measures. In Theorem 26 below, we also prove that entropy of the weight
distribution at solution θ̆ptq tilted by τ close to t is increasing with t, which indicates that
larger t’s encourages more uniform solutions measured via entropy.

Theorem 26 (Gradient weights become more uniform by increasing t). Under Assump-
tion 10 and Assumption 11, for any t P Rą0,

B

Bt
Hpwpτ; θ̆ptqqq

ˇ

ˇ

ˇ

ˇ

τ“t
ą 0, (7.34)

where Hp¨q denotes the Shannon entropy function measured in nats,

H pwpt; θqq :“ ´
ÿ

iPrNs

wipt; θq log wipt; θq. (7.35)

Full proofs of the theorems presented in this section can be found in Appendix 7.9.3.
In the next section, we connect TERM to other objectives. Note that the results in all
subsequent sections do not require the GLMs assumption, unless stated otherwise.

7.3 Connections to Other Risk Measures

In this section (and subsequently in Section 7.4) we explore TERM by comparing, con-
trasting, and drawing connections between TERM and other common risk measures. To
do so, we first introduce a distributional version of TERM, which is closely related to
entropic risk (measure) in previous literature [9, 94]. Entropic risk, denoted as RXpt; θq,
can be viewed as the scaled cumulant generating function of f pX; θq, i.e.,

190



RXpt; θq :“
1
t

ΛXpt; θq “
1
t

log
´

E
”

et f pX;θq
ı¯

“
1
t

log
ÿ

x
ppxqpθpxq

´t. (7.36)

We note that entropic risk is usually defined over t P Rą0 in the literature [94]. In
Eq. (7.36) above, we naturally extend its definition to support t P R. The TERM objective
rRpt; θq is the empirical version of entropic risk RXpt; θq (t P R). One of the contributions
of this work can be viewed as providing an operational meaning to the value of the
(empirical) entropic risk and rigorously investigating its properties for t P Ră0. In the
next sections (Section 7.3.1–Section 7.3.3), we characterize various relations between
tilted risks (TERM or entropic risk) and other common risk measures, both in terms of
the empirical variants (involving TERM) and distributional forms (involving entropic
risk).

7.3.1 TERM and Rényi Cross Entropy

We begin by demonstrating that TERM can be viewed as form of Rényi cross entropy
minimization, which helps to explain the uniformity properties of TERM discussed in
Section 7.2.4. Consider the cross entropy between p and pθ defined by

Hpp}pθq :“ E r f pX; θqs “
ÿ

x
ppxq log

ˆ

1
pθpxq

˙

. (7.37)

Hence, minimizing E r f pX; θqs is equivalent to minimizing the cross entropy between the
true distribution and the postulated distribution. The empirical variant of (7.37) would
be empirical risk minimization (7.1).

For ρ P Rą0, let Rényi cross entropy of order ρ between p and q be defined as:4

Hρpp}qq :“
1

1 ´ ρ
log

˜

ÿ

x
ppxqqpxq

ρ´1

¸

. (7.38)

Rényi cross entropy can be viewed as a natural extension of cross entropy, and in fact
it recovers cross entropy for ρ “ 1, i.e., H1pp}qq “ Hpp}qq. Rényi cross-entropy can also
be viewed as a natural extension of Rényi entropy, which it recovers when p “ q, i.e.,
Hρpp}pq “ Hρppq, where Rényi entropy of order ρ is defined as

Hρppq :“
1

1 ´ ρ
log

˜

ÿ

x
ppxq

ρ

¸

. (7.39)

It is straightforward to see that the entropic risk can be expressed in terms of Rényi
cross entropy:

RXpt; θq “ H1´tpp}pθq. (7.40)

4H1 is defined via continuous extension.
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Equivalently, in the empirical world, TERM can be expressed as:

rRpt; θq “ H1´tpu}wp1; θqq, (7.41)

where u denotes the uniform N-vector and wp1; θq :“ pw1p1; θq, . . . , wnp1; θqq with wip1; θq

defined in Eq. (7.26), and for any two N-vectors p and q,

Hρpp}qq :“
1

1 ´ ρ
log

˜

ÿ

iPN

piq
ρ´1
i

¸

. (7.42)

In other words, if we treat the loss f pxi; θq as log-likelihood of the sample xi under pθ,
this implies that TERM is the Rényi entropy of order p1 ´ tq between the uniform vector
and the normalized likelihood vector of all samples, wp1; θq. Hence, minimizing over θ
is encouraging the uniformity of wp1; θq in the sense of the Rényi cross entropy with the
uniform vector.

7.3.2 TERM as a Regularizer to Empirical Risk

TERM can also be interpreted as a form of regularization in traditional ERM. We first
note that by Taylor series expansion at t “ 0, TERM can be approximately decomposed
into empirical risk regularized by t times the empirical variance of the loss, for small
t [193, Section V.A]. Here, we provide an exact interpretation of TERM as regularized
ERM for all t. We first look at the distributional case, i.e., relating RXpt; θq to cross entropy
as follows.

Lemma 27. The entropic risk of order t can be stated as:

RXpt; θq “ Hpp}pθq `
1
t

Dpp}Tpp, pθ, ´tqq, (7.43)

where D denotes KL divergence between two distributions and Tpp, pθ , ´tq is a mismatched tilted
distribution defined as [246, Definition 1]

Tpp, pθ, ´tqpxq :“
ppxqpθpxq´t

ř

u ppuqpθpuq´t . (7.44)

Proof. Consider the following equation:

ÿ

x
ppxq log

ˆ

ppxq

Tpp, pθ, ´tqpxq

˙

“ ´t
ÿ

x
ppxq log

1
pθpxq

` log

˜

ÿ

x
ppxqpθpxq

´t

¸

, (7.45)

which directly implies the desired identity.

In other words, entropic risk of order t is equivalent to the cross entropy risk regular-
ized via a tilted mismatched distribution. Let wpt; θq :“ pw1pt; θq, . . . , wnpt; θqq denote the
tilted weight vector of the n samples. Our next result is an empirical variant of Lemma 27.
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Lemma 28. TERM objective can be restated as follows:

rRpt; θq “ sRpθq `
1
t

Dpu}wpt; θqq, (7.46)

where sRpθq is the empirical risk (7.1), u denotes the uniform N-vector, i.e., u :“
´

1
N , . . . , 1

N

¯

,
and where for N-vectors p and q,

Dpp}qq :“
ÿ

iPrNs

pi log
ˆ

pi

qi

˙

. (7.47)

Proof. The proof is a consequence of the following identity:

1
t

1
N

ÿ

iPrNs

log

˜

1
N

wipt; θq

¸

`
1
N

ÿ

iPrNs

f pxi; θq “
1
t

log

¨

˝

1
N

ÿ

iPrNs

et f pxi;θq

˛

‚. (7.48)

Hence, TERM aims to minimize an average loss regularized by the KL divergence
between the weight vector (which exponentially tilts the individual losses) and the
uniform vector.

7.3.3 TERM and Distributionally Robust Risks

Finally, we note that TERM is closely related to distributionally robust optimization
(DRO) objectives [e.g., 51, 76, 77, 105, 219]. In particular, TERM with t ą 0 is equivalent
to a form of DRO with a max-entropy regularizer, i.e., the constraint set is determined by
a KL ball around uniform distribution [93, 233, 254]:

rRpt; θq “ max
qP∆N

$

&

%

ÿ

qi f pxi; θq ´
1
t

ÿ

iPrNs

qi log Nqi

,

.

-

“ max
qP∆N

"

Hpq}wp1; θqq ´
1
t

Dpq}uq

*

,

(7.49)

and the corresponding relations in the distributional form is

RXpt; θq “ max
q

"

Eqr f pX; θqs ´
1
t

Dpq}pq

*

“ max
q

"

Hpq}pθq ´
1
t

Dpq}pq

*

. (7.50)

This relation is also a special case of Donsker-Varadhan Variational Formula [81].
We note that similar connections between DRO and TERM have also been explored in
concurrent works by Qi et al. [232, 233] specifically in the limited context of stochastic
optimization methods for solving class imbalance with t ą 0.

In the next section, we propose a new risk motivated by TERM, which may be of
independent interest.
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7.4 Tilted Value-at-Risk and Value-at-Risk

In this section we provide connections between TERM and risk measures such as Value-
at-Risk (VAR) that specifically target loss quantiles. In particular, based on TERM, we
propose a new risk—Tilted Value-at-Risk (TiVaR) and discuss its relations with existing
risks (Section 7.4.2). We find that TiVaR is a computationally efficient alternative to
VaR that provides tighter approximations to VaR than prior risks, which again helps to
motivate the use of TERM.

7.4.1 Tail Probabilities of Losses and Value-at-Risk (VaR)

The tail probabilities of losses focus on quantiles of losses that exceed a certain threshold,
as formally defined below.

Definition 14 (Tail probability of losses). For all γ P R, let QXpγ; θq denote the probability of
the losses f pX; θq no smaller than γ, i.e.,

QXpγ; θq :“ P r f pX; θq ě γs . (7.51)

Equivalently, define the empirical variant rQpγ; θq over samples xi for i P rNs:

rQpγ; θq :“
1
N

ÿ

iPrNs

I t f pxi; θq ě γu (7.52)

where It¨u is the indicator function.

Notice that rQpγ; θq P

!

0, 1
N , . . . , 1

)

quantifies the fraction of the data for which loss is
at least γ. For example, optimizing for 90% of the individual losses (ignoring the worst-
performing 10%) could be a more reasonable practical objective than the pessimistic
min-max objective. Another common application of this is to use the median in contrast
to the mean in the presence of noisy outliers.

Using tail distribution of losses, Value-at-Risk (VaR) [138] with confidence α (0 ă α ă

1) is defined as

VaRXp1 ´ α; θq :“ min
γ

tγ : QXpγ; θq ď αu , (7.53)

and the empirical variant for α P t k
N ukPrNs is

ĄVaRp1 ´ α; θq :“ min
γ

!

γ : rQpγ; θq ď α
)

. (7.54)

Notice that when we view the loss as log-likelihood of a parametric probability
distribution function, QXpγ; θq (Definition 14) can be viewed as the complementary cu-
mulative distribution function (CDF) of the information random variable f pX; θq. Given
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the definition of VaR, QXpγ; θq can also be viewed as ‘inverted’ VaR, as we formalize and
prove in Lemma 29 and 30 below. Let

Q0
Xpγq :“ min

θ
QXpγ; θq, θ0

Xpγq P arg min
θ

QXpγ; θq, (7.55)

rQ0
pγq :“ min

θ

rQpγ; θq, θ0
pγq P arg min

θ

rQpγ; θq. (7.56)

where QX and rQ is defined in Definition 14. Optimizing rQpγ; θq is equivalent to optimiz-
ing VaR. Formally, we have the following lemmas.

Lemma 29. Assume minθ QXpγ; θq is strictly decreasing with γ. We note

min
θ

!

VaRXp1 ´ Q0
Xpγq; θq

)

“ γ, arg min
θ

!

VaRXp1 ´ Q0
Xpγq; θq

)

Q θ0
Xpγq. (7.57)

Note that minθ QXpγ; θq is non-increasing as γ increases by definition. The additional
strict monotonic assumption on γ ÞÑ minθ QXpγ; θq can be easily satisfied if f pX; θq is a
continuous random variable and γ is in the range of f . Lemma 29 is proved as follows.

Proof. First, we note for any θ and γ0 such that QXpγ0; θq ď Q0
Xpγq, we have γ0 ě γ.

Otherwise, there exist θ1, γ1 ă γ and QXpγ1; θ1q ď Q0
Xpγq, which in turn implies that

min
θ

Pr f pX; θq ě γ1
s ď Pr f pX; θ1

q ě γ1
s ď Q0

Xpγq, (7.58)

contradicting Q0
Xpγ1q ą Q0

Xpγq. The proof completes combining with the fact that the
function value of VaRXp1 ´ Q0

Xpγq; θq can achieve γ at any θ0
Xpγq.

Lemma 30 below describes the empirical variant, which does not require the strict
monotonic assumption.

Lemma 30. For any γ P prFp´8q, rFp`8qq where rFptq is defined as the optimal tilted objective
as in Eq. (7.11), let γ0 “ min

!

γ1| rQ0pγ1q “ rQ0pγq

)

. Then

min
θ

!

ĄVaRp1 ´ rQ0
pγ0

q; θq

)

“ γ0, arg min
θ

!

ĄVaRp1 ´ rQ0
pγ0

q; θq

)

Q θ0
pγ0

q. (7.59)

Both tail distribution of losses and VaR are usually non-smooth and non-convex,
and solving them to global optimality is very challenging. In the next section, we
show that TiVaR (an objective based on TERM) provides a good upper bound on VaR,
and is computationally more efficient, as VaR is not even continuous. In parallel, in
Appendix 7.10, we prove that TERM also provides a reasonable approximate solution to
the minimizer of tail probability of losses (i.e., inverted VaR).

The proof of one of the main theorems of this section (Theorem 36) relies on a
new variant of Chernoff bound for non-negative random variables, which may be of
independent interest.
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Theorem 27 (Chernoff bound for non-negative random variables). Let X be a non-negative
random variable. Further assume that E

“

etX‰ ă 8 for all t P R. Then for γ ą 0,

PrX ě γs ď inf
tPR

#

E
“

etX‰´ 1
etγ ´ 1

+

ď inf
tPR`

#

E
“

etX‰

etγ

+

, (7.60)

where the latter term is the generic Chernoff bound with γ ą 0.

Proof. The theorem holds by applying Markov’s inequality twice on etX ´ 1 pt ě 0q and
1 ´ etX pt ă 0q, and noting that

PrX ě γs ď min

#

inf
tPRě0

#

E
“

etX‰´ 1
etγ ´ 1

+

, inf
tPR´

#

1 ´ E
“

etX‰

1 ´ etγ

++

“ inf
tPR

#

E
“

etX‰ ´ 1
etγ ´ 1

+

.

Theorem 27 presents a tighter Chernoff bound for non-negative random variables.
To the best of our knowledge, despite the fact that this bound is a simple extension
of the generic Chernoff bound, and the existing variants of Chernoff bounds in prior
works [38, 305], we have not seen the result we have here appear elsewhere in this
form. In particular, notice that the search for an optimal value of t has been extended
from non-negative values to all real numbers. This can result in significantly tighter
bounds, especially in small deviations regime, as visualized empirically on two simple
distributions in Figure 7.15, Appendix 7.10. We will see how this leads to significantly
better bounds in robustness applications.

7.4.2 TiVaR: Tilted Value-at-Risk

In this section, we introduce a new risk measure, called Tilted Value-at-Risk (TiVaR). To
put TiVaR in perspective, we briefly state other existing risks first. Conditional Value-
at-Risk (CVaR) minimizes the average risk of tail events where the risk is above some
threshold [242, 243]. One form of CVaR is

CVaRXp1 ´ α; θq :“ min
γ

"

γ `
1
α

Er f pX; θq ´ γs`

*

. (7.61)

It is worth noting that CVaRXp1 ´ α; θq is a dual formulation of DRO with an uncertainty
set that perturbs arbitrary parts of the data by an amount up to 1

α [61, 243]. Formally, the

dual of DRO max
Q:

!

dQ
dP ď 1

α

) EQr f pX; θqs is CVaRXp1 ´ α; θq “ minγ

!

γ ` 1
αEr f pX; θq ´ γs`

)

.

Some previous works implicitly minimize CVaR by only training on samples with top-k
losses [e.g., 89]. Entropic Value-at-Risk (EVaR) is proposed as an upper bound of CVaR
and VaR that could be more computationally efficient [9]. EVaR with a confidence level α
p0 ă α ă 1q is defined as:

EVaRXp1 ´ α; θq :“ min
tPRą0

#

1
t

log

˜

Eret f pX;θqs

α

¸+

“ min
tPRą0

"

RXpt; θq ´
1
t

log α

*

. (7.62)
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Similarly, for α P t k
N ukPrNs, the empirical variants of CVaR and EVaR are

ČCVaRp1 ´ α; θq :“ min
γ

$

&

%

γ `
1
α

1
N

ÿ

iPrNs

r f pxi; θq ´ γs`

,

.

-

,

ČEVaRp1 ´ α; θq :“ min
tPRą0

#

1
t

log

˜

1
N
ř

iPrNs et f pxi;θq

α

¸+

“ min
tPRą0

"

rRpt; θq ´
1
t

log α

*

.

Notice that TERM objective appears as part of the objective in ČEVaR, and particularly
optimizing ČEVaR with respect to θ would be equivalent to solving TERM for some value
of t implicitly defined through α (see Lemma 46 and Lemma 47 in the appendix).

It is known that VaRXp1 ´ α; θq ď CVaRXp1 ´ α; θq ď EVaRXp1 ´ α; θq [9] which
directly yields ĄVaRp1 ´ α; θq ď ČCVaRp1 ´ α; θq ď ČEVaRp1 ´ α; θq. Meanwhile, to the best
of our knowledge, it is not clear from existing works how entropic risk (or TERM) is
related to VaR or EVaR. Next, based on TERM, we propose a new risk-averse objective
Tilted Value-at-Risk, showing that it upper bounds VaR and lower bounds EVaR.

Definition 15 (Tilted Value-at-Risk (TiVaR)). Let TiVaR for α P p0, 1s be defined as

TiVaRXp1 ´ α; θq :“ min
tPR

#

FXp´8q `
1
t

log

«

epRXpt;θq´FXp´8qqt ´ p1 ´ αq

α

ff

`

+

. (7.63)

Similarly, empirical TiVaR is defined for α P p0, 1q,

ČTiVaR p1 ´ α; θq :“ min
tPR

#

rFp´8q `
1
t

log

«

eprRpt;θq´rFp´8qqt ´ p1 ´ αq

α

ff

`

+

. (7.64)

We note that TiVaR is not a coherent risk measure (see the work of Artzner [18],
Artzner et al. [19] for definition of coherent risks), despite that it can be tighter than CVaR
in some cases, as discussed in detail later. We next present our main result on relations
between TiVaR, VaR, and EVaR.

Theorem 28. For α P p0, 1s and any θ,

VaRXp1 ´ α; θq ď TiVaRXp1 ´ α; θq ď EVaRXp1 ´ α; θq. (7.65)

Similarly, for α P t k
N ukPrNs and any θ,

ĄVaR p1 ´ α; θq ď ČTiVaR p1 ´ α; θq ď ČEVaR p1 ´ α; θq . (7.66)

We defer the proof to Appendix 7.10, where the main steps include applying the new
Chernoff bound variant (Theorem 27). Theorem 28 indicates that ČTiVaR p1 ´ α; θq is a
tighter approximation to ĄVaR p1 ´ α; θq than ČEVaR p1 ´ α; θq.
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Figure 7.4: Comparing values of VaR, TiVaR, CVaR, and EVaR. ĄVaRp1 ´ αq :“
minθ

ĄVaRp1 ´ α; θq, and ČTiVaRp1 ´ αq, ČCVaRp1 ´ αq, and ČEVaRp1 ´ αq are defined in a sim-
ilar way. From Theorem 28, we know ĄVaRp1 ´ α; θq ď ČTiVaRp1 ´ α; θq ď ČEVaRp1 ´ α; θq,
which is also visualized here. Both CVaR and TiVaR values are between VaR and EVaR.
TiVaR provides a tighter approximation to VaR than CVaR when α is closer to 1.

Comparing TiVaR and CVaR. In general, TiVaR and CVaR are not directly comparable,
as both of them can be viewed as approximations to VaR and neither dominates the
other, i.e., one risk can be tighter than the other depending on the quantile value, 1-α. In
the regimes where α is a large value between some intermediate constant and 1, TiVaR
provides a tighter approximation to VaR than CVaR. For instance, in the extreme case
when α Ñ 1, ĄVaR will be close to the min-loss (miniPrNs f pxi; θq), while the value of
ČCVaR is the mean of the losses ( 1

N
ř

iPrNs f pxi; θq). ČTiVaR reduces to the min-loss in this

case. In other words, both ĄVaR and ČTiVaR sweep the values between the min-loss and
max-loss; whereas ČCVaR sweeps the values between the avg-loss and max-loss. We
compare TiVaR with CVaR and other risks in Figure 7.4 on mean estimation and linear
regression problems, and demonstrate that TiVaR is tighter than CVaR especially when α
is close 1 (corresponding to robustness applications).5

We also note that there exist other risk-averse or risk-seeking formulations that
focus on the upper or lower tail of losses, such as the mean-semideviation frame-
work [145]. Mean-semideviation recovers a set of risk measures including mean-upper-
semideviations and entropic mean-semideviation. Nevertheless, these risks usually
cannot handle both fairness and robustness in a single formulation, and can incur
more per-iteration gradient evaluations or worse convergence rates compared to vanilla
ERM [105, 145, 334].

Finally, we draw connections between the above results and the k-loss, defined as the
k-th smallest loss of N (i.e., 1-loss is the min-loss, N-loss is the max-loss, pN´1q{2-loss is

5While CVaR focuses on upper quantiles, one may explore ‘inverse’ CVaR to better approximate
the lower quantiles. However, inverse CVaR, ranging from avg-loss to min-loss, is not a valid upper
bound of VaR. Despite this, we empirically explore this approximation to solving VaR, among others, in
Appendix 7.10.
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the median-loss). Formally, let Rpkqpθq be the k-th order statistic of the loss vector. Hence,
Rpkq is the k-th smallest loss, and particularly

Rp1qpθq “ qRpθq, RpNqpθq “ pRpθq. (7.67)

Thus, for any k P rNs, we define

R˚
pkq :“ min

θ
Rpkqpθq, θ˚

pkq :“ arg min
θ

Rpkqpθq. (7.68)

Note that

R˚
p1q “ rFp´8q, R˚

pNq “ rFp`8q. (7.69)

While minimizing the k-loss is more desirable than ERM in many applications, the
k-loss is non-smooth (and generally non-convex), and is challenging to solve for large-
scale problems [134, 223]. TERM offers a good approximation to k-loss as well. Note that
if we fix α “ 1 ´ k

N , minimizing k-loss is equivalent to minimizing γ where rQpγ; θq “ α.
Based on the bound of ĄVaR, we obtain a bound on k-loss:

Corollary 6. For all k P t2, . . . , N ´ 1u, and all t P R :

Rpkqpθq ď min
t

#

rFp´8q `
1
t

log

«

eprRpt;θq´rFp´8qqt ´ k
N

1 ´ k
N

ff

`

+

ď min
tPRą0

"

rRpt; θq ´
1
t

log
ˆ

1 ´
k
N

˙*

. (7.70)

Proof. Note that

Rpkqpθq “ ĄVaR
ˆ

k
N

; θ

˙

. (7.71)

The proof completes by setting α “ 1 ´ k
N in Eq. (7.64) and noting ĆVaRp1 ´ α; θq ď

ČTiVaRp1 ´ α; θq ď ČEVaRp1 ´ α; θq .

Corollary 6 optimizes over all t P R over the upper bound of Rpkqpθq, which can be
relaxed to searching over positive t’s, as stated in Corollary 7 below.

Corollary 7. For all k P t2, . . . , N ´ 1u, and all t P Rą0 :

Rpkqpθq ď rFp´8q `
1
t

log

˜

eprRpt;θq´rFp´8qqt ´ k
N

1 ´ k
N

¸

. (7.72)
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7.5 Solving TERM

In this section, we develop first-order batch (Section 7.5.1) and stochastic (Section 7.5.2)
optimization methods for solving TERM, and rigorously analyze the effects that t has on
the convergence of these methods.

Recall that in Section 7.2.2, we discuss the Lipschitzness, convexity, and smoothness
properties of TERM. t-tilted loss remains strongly convex for t ą 0, so long as the original
loss function is strongly convex. On the other hand, for sufficiently large negative t,
the t-tilted loss becomes non-convex. Hence, while the t-tilted solutions for positive
t are unique, the objective may have multiple (spurious) local minima for negative t
even if the original loss function is strongly convex. For negative t, we seek the solution
for which the parametric set of t-tilted solutions obtained by sweeping t P R (i.e., θ̆ptq
defined in Eq. (7.10)) remains continuous (as in Figure 7.1a-c and Figure 7.2). To this
end, for negative t, we solve TERM by smoothly decreasing t from 0 observing that the
solutions form a continuum in Rd empirically. Despite the non-convexity of TERM with
t ă 0, we find that this approach produces effective solutions to multiple real-world
problems in Section 7.7. Additionally, as the objective remains smooth, it is still relatively
efficient to solve. On the toy problem studied in Figure 7.2, we plot the convergence with
t in Figure 7.5 below.
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Figure 7.5: As t Ñ `8, the objective becomes less smooth in the vicinity of the final solu-
tion where smoothness can be measured by the upper bound of Hessian (see Lemma 24),
hence suffering from slower convergence. For negative values of t, TERM converges fast
due to the smoothness in the vicinity of solutions despite its non-convexity.

7.5.1 First-Order Batch Methods

TERM solver in the batch setting is summarized in Algorithm 13. The main steps include
running gradient descent on rRpt; θq, which involve computing the tilted gradients (i.e.,
a weighted aggregation of individual gradients (Lemma 26)) of the objective. We also
provide convergence results in Theorem 29–31 below for Algorithm 13.
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Algorithm 13 Batch Non-Hierarchical TERM

1: Input: t, α, θ
2: for iter “ 0, ¨ ¨ ¨ , T ´ 1 do
3: Compute the loss f pxi; θq and gradient ∇θ f pxi; θq for all i P rNs

4: rRpt; θq Ð t-tilted loss (7.2) on all i P rNs

5: wipt; θq Ð etp f pxi;θq´rRpt;θqq

6: θ Ð θ ´ α
N
ř

iPrNs wipt; θq∇θ f pxi; θq

7: end for

Theorem 29 (Convergence of Algorithm 13 for strongly-convex problems). Under As-
sumption 9, there exist βmax ď C1 ă 8 and C2 ă 8 that do not depend on t such that for any
t P Rą0, setting the step size α “ 1

C1`C2t , after k iterations:

rRpt, θkq ´ rRpt, θ̆ptqq ď

ˆ

1 ´
βmin

C1 ` C2t

˙k
´

rRpt, θ0q ´ rRpt, θ̆ptqq

¯

. (7.73)

Proof. First note that by Lemma 23, rRpt, θq is βmin-strongly convex for all t P Rą0. Next,
by Lemma 24, there exist C1, C2 ă 8 such that rRpt; θq has pC1 ` C2tq-Lipschitz gradients
for all t P Rą0. The result follows directly from Karimi et al. [147, Theorem 1].

Note that under additional assumptions on L-Lipschitzness of f px; θq, we can plug
in the explicit smoothness constants established by Lowy and Razaviyayn [197, Lemma
5.3] to obtain explicit constants in the convergence rate, i.e., C1 “ βmax and C2 “ L2.
Theorem 29 indicates that solving TERM to a local optimum using gradient-based
methods tends to be as efficient as traditional ERM for small-to-moderate values of t [133],
which we corroborate via experiments on multiple real-world datasets in Section 7.7.
This is in contrast to solving for the min-max solution, which would be similar to solving
TERM as t Ñ `8 [157, 225, 227].

Theorem 30 (Convergence of Algorithm 13 for smooth problems satisfying PL conditions).
Assume f px; θq is βmax-smooth and (possibly) non-convex. Further assume

ř

iPrNs pi f pxi; θq is
µ
2 -PL for any p P ∆N where p :“ pp1, . . . , pNq. There exist βmax ď C1 ă 8 and C2 ă 8 that
do not depend on t such that for any t P Rą0, setting the step size α “ 1

C1`C2t , after k iterations:

rRpt, θkq ´ rRpt, θ̆ptqq ď

ˆ

1 ´
µ

C1 ` C2t

˙k
´

rRpt, θ0q ´ rRpt, θ̆ptqq

¯

, (7.74)

Proof. If
ř

iPrNs pi f pxi; θq is µ-PL for any p P ∆N , then rRpt; θq is µ-PL [232]. rRpt; θq is βmax
smooth for t ă 0 and its smoothness parameter scales linearly with t for t ą 0, following
the same proof as Lemma 24.

Theorem 30 applies to both convex and non-convex smooth functions satisfying PL
conditions. Again, here we can plug in explicit smoothness parameter [197, Lemma 5.3]
if f px; θq is Lipschitz. We next state results without the PL condition assumption for
completeness.
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Theorem 31 (Convergence of Algorithm 13 for non-convex smooth problems). Assume
f px; θq is βmax-smooth and (possibly) non-convex. Setting the step size α “ 1

βptq , after K
iterations, we have:

1
K

K´1
ÿ

k“0

}∇rRpt, θkq}
2

ď
2βptqprRpt, θ0q ´ rRpt, θ̆ptqqq

K
, (7.75)

where for t P Rą0, βptq “ C1 ` Ct where C1, C2 are independent of t and βmax ď C1 ă 8, C2 ă

8, and for t P R´, βptq “ βmax.

Theorem 31 also covers the case of convex f px; θq with t ă 0. We note that for
non-convex problems, when t ă 0, the convergence rate is independent of t under our
assumptions. We also observe this on a toy problem in Figure 7.5. In all applications we
studied in Section 7.7 with negative t’s, TERM runs the same number iterations as those
of ERM.

7.5.2 First-Order Stochastic Methods

To obtain unbiased stochastic gradients, we need to have access to the normalization
weights for each sample (i.e., 1

N
ř

iPrNs et f pxi;θq), which is often intractable to compute for

large-scale problems. Hence, we use r

rRt, a term that incorporates stochastic dynamics, to
estimate the tilted objective rRt :“ rRpt; θq, which is used for normalizing the weights as
in (7.25). In particular, we do not use a trivial linear averaging of the current estimate

and the history to update r

rRt. Instead, we use a tilted averaging to ensure an unbiased
estimator (if θ is not being updated).

On the other hand, the TERM objective can be viewed as a composition of functions
1
N
ř

iPrNs et f pxi;θq and 1
t logp¨q, and could be optimized based on previous stochastic com-

positional optimization techniques [e.g., 99, 232, 233, 292, 293]. Similar to Wang et al.
[293], we maintain two sequences (in our context, the model θ and the objective estimate
r

rRt) throughout the optimization process. This (non-hierarchical) stochastic algorithm is
summarized in Algorithm 14 below.

For the purpose of analysis, we sample two independent mini-batches to obtain the

gradient of the original loss functions ∇θ f px; θq and update r

rRt, respectively (described in
Algorithm 17 for completeness). As we will see in Theorem 32, the additional randomness
allows us to achieve better convergence rates compared with the algorithm proposed
in Wang et al. [293] instantiated to our objective. Our rate of this simple algorithm
matches the rate of more complicated ones [232], and developing optimal optimization
procedures is out of the scope of this work. Empirically, we observe that sampling
two mini-batches yield similar performance as using the same mini-batch to query the
individual losses and the weights (Figure 7.17 in Appendix 7.11.2). Therefore, we employ
the cheaper variant of just involving one mini-batch (Algorithm 14) in the corresponding
experiments.
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Algorithm 14 Stochastic Non-Hierarchical TERM

1: Input: θ, rrRt “ 1
t log

´

1
N
ř

iPrNs et f pxi;θq
¯

, t, α, λ

2: for iter “ 0, ¨ ¨ ¨ , T ´ 1 do
3: sample a minibatch B uniformly at random from rNs

4: compute the loss f px; θq and gradient ∇θ f px; θq for all x P B
5: rRB,t Ð t-tilted loss (7.2) on minibatch B

6: r

rRt Ð 1
t log

´

p1 ´ λqetrrRt ` λetrRB,t
¯

7: wt,x Ð et f px;θq´trrRt

8: θ Ð θ ´ α
|B|

ř

xPB wt,x∇θ f px; θq

9: end for

The stochastic algorithm developed here requires roughly the same time/space
complexity as mini-batch SGD, and thus scales similarly for large-scale problems. It
can also help mitigate the potential numerical issues in implementation caused by the
exponential tilting operator. We find that these methods perform well empirically on a
variety of tasks (Section 7.7).

Theorem 32 (Convergence of Algorithm 17 for strongly-convex problems). Assume
f : X ˆ Θ Ñ rrFmin, rFmaxs is L-Lipschitz in θ, i.e., rFmin ď f px; θq ď rFmax,6 and | f px; θiq ´

f px; θjq| ď L}θi ´ θj} for x P X and θi, θj P Θ Ď Rd. Assume rRpt; θq has compact domain
θ. Assume rRpt; θq is µ-strongly convex (Assumption 9) with uniformly bounded stochastic
gradient, i.e., }∇rRpxi; θq} :“

›

›

›

et f pxi ;θq

etrRpt;θq
∇ f pxi; θq

›

›

›
ď B for θ P Rd and i P rNs. Denote kt :“

arg maxk

´

k ă 2e
µ ` etLBetprFmax´rFminq

µk

¯

. Assume the batch size is 1. For k ě kt,

Er}θk`1 ´ θ˚
}

2
s ď

Vt

k ` 1
, (7.76)

where

θ˚ :“ θ̆ptq, Vt “ max

#

ktEr}θkt ´ θ˚
}

2
s,

4B2e2`2tprFmax´rFminq

µ2

+

, (7.77)

and

Er}θkt ´ θ˚
}

2
s ď max

#

Er}θ1 ´ θ˚
}

2
s,

B2e2tprFmax´rFminq`1

µp1 ` tLBetprFmax´rFminqq

+

. (7.78)

Our assumptions are standard compared with those in related literature [233, 293].
The uniformly bounded stochastic gradient of rRpt; θq assumption can be satisfied by
the bounded gradient of f pxi; θq, which can be a limiting condition but has appeared

6For notation consistency between the max-loss and min-loss for any sample and any iteration, we use
rFmin to denote the lower bound of f pxi; θkq. We note that rFmin “ rFp´8q defined in Definition 7.11.
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in previous works on stochastic compositional optimization [233, 292]. If the objectives
are coercive, which typically holds in practice [28], Algorithm 14 will have bounded
iterates and thus the compact domain assumption would hold. We defer full proofs
to Appendix 7.11.2. The main steps involve bounding the expected estimation error

EretprRk´
r

rRkqs conditioning on the previous iterates tθ1, . . . , θku.

Discussions. The theorem indicates that Algorithm 14 starts to make progress after
kt iterations, with convergence rate Ope2t{kq. Both kt and Vk could scale exponentially
with t in the worst-case analysis, but it does not completely reflect the dependence of
Algorithm 14 on t for modest values of t. Empirically, we observe that the stochastic
TERM solver with moderate values of t can converge faster compared with stochastic
min-max solvers, which has a rate of 1{

?
k for strongly convex problems [167]. This

leaves open for future work understanding the exact scaling of the convergence rate of
stochastic TERM as t Ñ 8.

Next, we present convergence results on non-convex smooth problems, without and
with the assumptions of PL-conditions. We defer all proofs to Appendix 7.11.2.

Theorem 33 (Convergence of Algorithm 17 for non-convex smooth problems). Assume
f : X ˆ Θ Ñ rrFmin, rFmaxs is L-Lipschitz in θ, i.e., rFmin ď f px; θq ď rFmax, and | f px; θiq ´

f px; θjq| ď L}θi ´ θj} for x P X and θi, θj P Θ Ď Rd. Assume rRpt; θq is β-smooth with
uniformly bounded stochastic gradient, i.e., }∇rRpxi; θq} ď B for θ P Rd and i P rNs. Assume

the batch size is 1. Denote kt :“
Q

2prFmax´rFminqt2L2

βe2

U

, then for k ě kt,

1
K

K
ÿ

k“kt

Er}∇rRpt; θkq}
2
s ď

?
8BetprFmax´rFminq`1

d

βprFmax ´ rFminq

K
. (7.79)

Theorem 34 (Convergence of Algorithm 17 for non-convex smooth problems with PL
conditions). Let the assumptions in Theorem 33 hold. Further assume that

ř

iPrNs pi f pxi; θq

satisfies µ
2 -PL conditions for any p P ∆N where p :“ pp1, . . . , pNq. Assume the batch size is 1.

Denote kt :“ arg maxk

´

k ă 4e
µ ` 4etLBEtprFmax´rFminq

µk

¯

, then for t P Rą0 and k ě kt,

ErrRpt; θk`1q ´ rRpt; θ̆ptqqs ď
Vt

k ` 1
, (7.80)

where

Vt “ max

#

ktErrRpt; θktq ´ rRpt; θ̆ptqqs,
8βB2e2tprFmax´rFminq`2

µ2

+

. (7.81)
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7.6 TERM Extended: Hierarchical Multi-Objective Tilting

We consider an extension of TERM that can be used to address practical applications
requiring multiple objectives, e.g., simultaneously achieving robustness to noisy data
and ensuring fair performance across subgroups. Existing approaches typically aim to
address such problems in isolation. To handle multiple objectives with TERM, let each
sample x be associated with a group g P rGs, i.e., x P g. These groups could be related to
the labels (e.g., classes in a classification task), or may depend only on features. For any
t, τ P R, we define multi-objective TERM as:

rJpt, τ; θq :“
1
t

log

¨

˝

1
N

ÿ

gPrGs

|g|etrRgpτ;θq

˛

‚ , (7.82)

where

rRgpτ; θq :“
1
τ

log

˜

1
|g|

ÿ

xPg
eτ f px;θq

¸

, (7.83)

and |g| is the size of group g. We evaluate the gradient of the hierarchical multi-objective
tilt objective in Lemma 31 below.

Lemma 31 (Hierarchical multi-objective tilted gradient). Under Assumption 8,

∇θ
rJpt, τ; θq “

ÿ

gPrGs

ÿ

xPg
wg,xpt, τ; θq∇θ f px; θq, (7.84)

where

wg,xpt, τ; θq :“

´

1
|g|

ř

yPg eτ f py;θq
¯p t

τ ´1q

ř

g1PrGs |g1|

´

1
|g1|

ř

yPg1 eτ f py;θq

¯
t
τ

eτ f px;θq. (7.85)

Similar to the tilted gradient (7.25), Lemma 31 indicates that the multi-objective
tilted gradient is a weighted sum of the gradients, making TERM similarly efficient to
solve. Multi-objective TERM recovers sample-level TERM as a special case for τ “ t
(Lemma 32), and reduces to group-level TERM with τ Ñ 0.

Lemma 32 (Sample-level TERM is a special case of hierarchical multi-objective TERM).
Under Assumption 8, hierarchical multi-objective TERM recovers TERM as a special case for
t “ τ. That is

rJpt, t; θq “ rRpt; θq. (7.86)

Proof. The proof is completed by noticing that setting t “ τ in (7.85) recovers the original
sample-level tilted gradient.
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Note that all properties discussed in Section 7.2 carry over to group-level TERM. We
validate the effectiveness of hierarchical tilting empirically in Section 7.7.3, where we
show that TERM can significantly outperform baselines to handle class imbalance and
noisy outliers simultaneously, while underperforming a much more complicated method
in their setup. Note that hierarchical tilting could be extended to hierarchies of greater
depths (than two) to simultaneously handle more than two objectives at the cost of one
extra tilting hyperparameter per each additional optimization objective. For instance, we
state the multi-objective tilting for a hierarchy of depth three in Appendix 7.11.1.

7.6.1 Solving Hierarchical TERM

To solve hierarchical TERM in the batch setting, we can directly use gradient-based
methods with tilted gradients defined for the hierarchical objective in Lemma 31. Note
that Batch hierarchical TERM with t “ τ reduces to solving the sample-level tilted
objective (7.2). We summarize this method in Algorithm 15.

Algorithm 15 Batch Hierarchical TERM
1: Input: t, τ, α
2: for iter “ 0, ¨ ¨ ¨ , T ´ 1 do
3: for g P rGs do
4: compute the loss f px; θq and gradient ∇θ f px; θq for all x P g
5: rRg,τ Ð τ-tilted loss (7.82) on group g

6: ∇θ
rRg,τ Ð 1

|g|

ř

xPg eτ f px;θq´τrRg,τ∇θ f px; θq

7: end for
8: rJt,τ Ð 1

t log
´

1
N
ř

gPrGs |g|etrRgpτ;θq
¯

9: wt,τ,g Ð |g|etrRτ,g´trJt,τ

10: θ Ð θ ´ α
N
ř

gPrGs wt,τ,g∇θ
rRg,τ

11: end for

We next discuss stochastic solvers for hierarchical multi-objective tilting. We extend
Algorithm 14 to the multi-objective setting, presented in Algorithm 16. At a high level, at
each iteration, group-level tilting is addressed by choosing a group based on the tilted
weight vector. Sample-level tilting is then incorporated by re-weighting the samples in
a uniformly drawn mini-batch. Similarly, we estimate the tilted objective rRg,τ for each
group g via a tilted average of the current estimate and the history. While we sample the
group from which we draw the minibatch, for small number of groups, one might want
to draw one minibatch per each group and weight the resulting gradients accordingly.

Group-level tilting can be recovered from Algorithm 15 and 16 by setting the inner-
level tilt parameter τ “ 0. We apply TERM to a variety of machine learning problems; for
clarity, we summarize the applications and their corresponding algorithms in Table 7.10
in the appendix.
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Algorithm 16 Stochastic Hierarchical TERM

1: Input: t, τ, α, λ, rrRg,τ “ 0 @g P rGs

2: for t “ 0, ¨ ¨ ¨ , T ´ 1 do
3: sample g on rGs from a Gumbel-Softmax distribution with logits r

rRg,τ ` 1
t log |g|

and temperature 1
t

4: sample minibatch B uniformly at random within group g
5: compute the loss f px; θq and gradient ∇θ f px; θq for all x P B
6: rRB,τ Ð τ-tilted loss (7.2) on minibatch B

7: r

rRg,τ Ð 1
τ log

ˆ

p1 ´ λqeτrrRg,τ ` λeτrRB,τ

˙

8: wτ,x Ð eτ f px;θq´τrrRg,τ

9: θ Ð θ ´ α
|B|

ř

xPB wτ,x∇θ f px; θq

10: end for

7.7 TERM in Practice: Use Cases

We now showcase the flexibility, wide applicability, and competitive performance of
the TERM framework through empirical results on a variety of real-world problems
such as handling outliers (Section 7.7.1), ensuring fairness and improving generalization
(Section 7.7.2), and addressing compound issues (Section 7.7.3). Despite the relatively
straightforward modification TERM makes to traditional ERM, we show that t-tilted
losses not only outperform ERM, but either outperform or are competitive with state-of-
the-art, problem-specific tailored baselines on a wide range of applications. We provide
implementation details in Appendix 7.12.2. All code, datasets, and experiments are pub-
licly available at github.com/litian96/TERM. The applications explored are summarized
in Table 7.1 below.

Table 7.1: Summary of TERM applications.

Applications Sections

Mitigating noisy outliers (t ă 0)
Robust regression Sec. 7.7.1.1
Robust classification Sec. 7.7.1.2
Low-quality annotators Sec. 7.7.1.3

Fairness and generalization (t ą 0)

Fair PCA Sec. 7.7.2.1
Fair federated learning Sec. 7.7.2.2
Fair meta-learning Sec. 7.7.2.3
Handling class imbalance Sec. 7.7.2.4
Improving generalization Sec. 7.7.2.5

Hierarchical multi-objective tilting Class imbalance and random noise Sec. 7.7.3.1
Class imbalance and adversarial noise Sec. 7.7.3.2
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Choosing t. In applications when we consider tradeoffs between different objectives
(e.g., fair meta-learning and federated learning), we perform a grid search over t from
{0.1, 1, 2, 5, 10, 50, 100, 200} on the validation set and pick the one with the best fairness
performance while not degrading mean performance. When there is not a single t
dominating other values (e.g., fair PCA), we report results under different values of
t. In our initial robust regression experiments, we find that the performance is robust
to various t’s, and we thus use a fixed t “ ´2 for all experiments involving negative
t (Section 7.7.1 and Section 7.7.3). For all values of t tested, the number of iterations
required to solve TERM is within 2ˆ that of standard ERM, with the same per-iteration
complexity.

7.7.1 Mitigating Noisy Outliers (t ă 0)

We begin by investigating TERM’s ability to find robust solutions that reduce the effect of
noisy outliers. We note that we specifically focus on the setting of ‘robustness’ involving
random additive noise; the applicability of TERM to more adversarial forms of robustness
would be an interesting direction of future work. We do not compare with approaches
that require additional clean validation data [e.g., 115, 238, 244, 284], as such data can be
costly to obtain in practice.

7.7.1.1 Robust Regression

Label Noise. We first consider a regression task with noise corrupted targets, where we
aim to minimize the root mean square error (RMSE) on samples from the Drug Discovery
dataset [71, 224]. The task is to predict the bioactivities given a set of chemical compounds.
We compare against linear regression with an L2 loss, which we view as the ‘standard’
ERM solution for regression, as well as with losses commonly used to mitigate outliers—
the L1 loss and Huber loss [125]. We also compare with consistent robust regression
(CRR) [31] and STIR [217], recent state-of-the-art methods specifically designed for label
noise in robust regression. In this particular problem, TERM is equivalent to exponential
squared loss, studied in [295]. We apply TERM at the sample level with an L2 loss, and
generate noisy outliers by assigning random targets drawn from N p5, 5q on a fraction of
the samples.

In Table 7.2, we report RMSE on clean test data for each objective and under different
noise levels. We also present the performance of an oracle method (Genie ERM) which
has access to all of the clean data samples with the noisy samples removed. Note that Genie
ERM is not a practical algorithm and is solely presented to set the expected performance limit in
the noisy setting. The results indicate that TERM is competitive with baselines on the 20%
noise level, and achieves better robustness with moderate-to-extreme noise. We observe
similar trends in scenarios involving both noisy features and targets (Appendix 7.12.1).
CRR tends to run slowly as it scales cubicly with the number of dimensions [31], while
solving TERM is roughly as efficient as ERM.
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Table 7.2: TERM is competitive with robust regression baselines, particularly in high noise
regimes.

objectives test RMSE (Drug Discovery)

20% noise 40% noise 80% noise

ERM 1.87 (.05) 2.83 (.06) 4.74 (.06)
L1 1.15 (.07) 1.70 (.12) 4.78 (.08)
Huber [125] 1.16 (.07) 1.78 (.11) 4.74 (.07)
STIR [217] 1.16 (.07) 1.75 (.12) 4.74 (.06)
CRR [31] 1.10 (.07) 1.51 (.08) 4.07 (.06)
TERM 1.08 (.05) 1.10 (.04) 1.68 (.03)
Genie ERM 1.02 (.04) 1.07 (.04) 1.04 (.03)

Label and Feature Noise. Here, we present results involving both feature noise and
target noise. We investigate the performance of TERM on two datasets (cal-housing [226]
and abalone [74]) used in Yu et al. [314]. Both datasets have features with 8 dimensions.
We generate noisy samples following the setup in Yu et al. [314]—sampling 100 training
samples, and randomly corrupting 5% of them by multiplying their features by 100 and
multiply their targets by 10,000. From Table 7.3 below, we see that TERM significantly
outperforms the baseline objectives in the noisy regime on both datasets.

Table 7.3: An alternative noise setup involving both feature and label noise. Similarly,
TERM with t “ ´2 significantly outperforms several baseline objectives for noisy outlier
mitigation.

objectives test RMSE (cal-housing) test RMSE (abalone)

clean noisy clean noisy
ERM 0.766 (0.023) 239 (9) 2.444 (0.105) 1013 (72)

L1 0.759 (0.019) 139 (11) 2.435 (0.021) 1008 (117)

Huber [125] 0.762 (0.009) 163 (7) 2.449 (0.018) 922 (45)

CRR [31] 0.766 (0.024) 245 (8) 2.444 (0.021) 986 (146)

TERM 0.745 (0.007) 0.753 (0.016) 2.477 (0.041) 2.449 (0.028)

Genie ERM 0.766 (0.023) 0.766 (0.028) 2.444 (0.105) 2.450 (0.109)

Unstructured Random v.s. Adversarial Noise. As a word of caution, we note that
the experiments thus far have focused on random noise. This makes it possible for
the methods to find the underlying structure of clean data even if the majority of the
samples are noisy outliers. To gain more intuition on these cases, we generate synthetic
two-dimensional data points and test the performance of TERM under 0%, 20%, 40%,
and 80% noise for linear regression. TERM with t “ ´2 performs well in all noise
levels (Figure 7.6 and 7.7). However, as one might expect, TERM with negative t’s
could potentially overfit to outliers if they are constructed in an adversarial way. In the
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examples shown in Figure 7.8, under 40% noise and 80% noise, TERM has a high error
measured on the clean data (green dots).
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Figure 7.6: Robust regression on synthetic data with random noise where the mean of
the noisy samples is different from that of clean ones. TERM with negative t’s (blue,
t “ ´2) can fit structured clean data at all noise levels, while ERM (purple) and TERM
with positive t’s (red) overfit to corrupted data. We color inliers in green and outliers in
brown for visualization.
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Figure 7.7: In the presence of random noise with the same mean as that of clean data,
TERM with negative t’s (blue) can still surpass outliers in all cases, while ERM (purple)
and TERM with positive t’s (red) overfit to corrupted data. While the performance drops
for 80% noise, TERM can still learn useful information, and achieves much lower error
than ERM.

°1.5 °1.0 °0.5 0.0 0.5 1.0 1.5 2.0

x

°1.0

°0.5

0.0

0.5

1.0

1.5

y

linear regression, 40% noise

°1.5 °1.0 °0.5 0.0 0.5 1.0 1.5 2.0

x

°1.5

°1.0

°0.5

0.0

0.5

1.0

1.5

y

linear regression, 80% noise

°1.0 °0.5 0.0 0.5 1.0 1.5 2.0 2.5

x

°1.5

°1.0

°0.5

0.0

0.5

1.0

1.5

2.0

y

linear regression, 80% noise

°1.5 °1.0 °0.5 0.0 0.5 1.0 1.5 2.0

x

°1.5

°1.0

°0.5

0.0

0.5

1.0

1.5

2.0

y

linear regression, 40% noise

Figure 7.8: TERM with negative t’s (blue) cannot fit clean data if the noisy samples
(brown) are adversarial or structured in a manner that differs substantially from the
underlying true distribution.
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7.7.1.2 Robust Classification

Deep neural networks can easily overfit to corrupted labels [e.g., 319]. While the theo-
retical properties we study for TERM (Section 7.2) do not directly cover objectives with
neural network function approximations, we show that TERM can be applied empirically
to DNNs to achieve robustness to noisy training labels. MentorNet [130] is a popular
method in this setting, which learns to assign weights to samples based on feedback
from a student net. Following the setup in Jiang et al. [130], we explore classification on
CIFAR10 [158] when a fraction of the training labels are corrupted with uniform noise—
comparing TERM with ERM and several state-of-the-art approaches [158, 159, 238, 326].
As shown in Table 7.4, TERM performs competitively with 20% noise, and outperforms
all baselines in the high noise regimes. We use MentorNet-PD as a baseline since it does
not require clean validation data. In Appendix 7.12.1, we show that TERM also matches
the performance of MentorNet-DD, which requires clean validation data. To help reason
about the performance of TERM, we also explore a simpler, two-dimensional logistic
regression problem in Figure 7.19, Appendix 7.12.1, finding that TERM with t=´2 is
similarly robust across the considered noise regimes.

Table 7.4: TERM is competitive with robust classification baselines, and is superior in high
noise regimes.

objectives test accuracy (CIFAR10, Inception)

20% noise 40% noise 80% noise

ERM 0.775 (.004) 0.719 (.004) 0.284 (.004)
RandomRect [238] 0.744 (.004) 0.699 (.005) 0.384 (.005)
SelfPaced [159] 0.784 (.004) 0.733 (.004) 0.272 (.004)
MentorNet-PD [130] 0.798 (.004) 0.731 (.004) 0.312 (.005)
GCE [326] 0.805 (.004) 0.750 (.004) 0.433 (.005)
TERM 0.795 (.004) 0.768 (.004) 0.455 (.005)
Genie ERM 0.828 (.004) 0.820 (.004) 0.792 (.004)

7.7.1.3 Low-Quality Annotators

It is not uncommon for practitioners to obtain human-labeled data for their learning tasks
from crowd-sourcing platforms. However, these labels are usually noisy in part due to
the varying quality of the human annotators. Given a collection of labeled samples from
crowd-workers, we aim to learn statistical models that are robust to the potentially low-
quality annotators. As a case study, following the setup of [152], we take the CIFAR-10
dataset and simulate 100 annotators where 20 of them are hammers (i.e., always correct)
and 80 of them are spammers (i.e., assigning labels uniformly at random). We apply TERM
at the annotator group level in (7.82), which is equivalent to assigning annotator-level
weights based on the aggregate value of their loss. As shown in Figure 7.9, TERM is able
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to achieve the test accuracy limit set by Genie ERM, i.e., the ideal performance obtained by
completely removing the known outliers. We note in particular that the accuracy reported
by [152] (0.777) is lower than TERM (0.825) in the same setup, even though their approach
is a two-pass algorithm requiring at least to double the training time. We provide full
empirical details and investigate additional noisy annotator scenarios in Appendix 7.12.1.
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Figure 7.9: TERM (t“´2) completely removes the impact of noisy annotators, reaching
the performance limit set by Genie ERM.

7.7.2 Fairness and Generalization (t ą 0)

In this section, we show that positive values of t in TERM can help promote fairness
via learning fair representations and enforcing fairness during optimization, and offer
variance reduction for better generalization.

7.7.2.1 Fair Principal Component Analysis (PCA)

We explore the flexibility of TERM in learning fair representations using PCA. In fair
PCA, the goal is to learn low-dimensional representations which are fair to all considered
subgroups (e.g., yielding similar reconstruction errors) [146, 247, 281]. Despite the non-
convexity of the fair PCA problem, we apply TERM to this task, referring to the resulting
objective as TERM-PCA. We tilt the same loss function as in Samadi et al. [247]: f pX; Uq “

1
|X|

`

}X ´ XUUJ}2
F ´ }X ´ X̂}2

F
˘

, where X P Rnˆd is a subset (group) of data, U P Rdˆr

is the current projection, and X̂ P Rnˆd is the optimal rank-r approximation of X. Instead
of solving a more complex min-max problem using semi-definite programming as
in Samadi et al. [247], which scales poorly with problem dimension, we apply gradient-
based methods, re-weighting the gradients at each iteration based on the loss on each
group. In Figure 7.10, we plot the aggregate loss for two groups (high vs. low education)
in the Default Credit dataset [308] for different target dimensions r. By varying t, we
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achieve varying degrees of performance improvement on different groups—TERM
(t “ 200) recovers the min-max results of [247] by forcing the losses on both groups to be
(almost) identical, while TERM (t “ 10) offers the flexibility of reducing the performance
gap less aggressively. We also provide convergence plots for different values of t in
this application (Figure 7.11), and observe slower convergence for larger values of t,
which is consistent with our analyses in Section 7.2 and 7.5. However, we do not observe
exponential dependence on t from the convergence curves, which suggest that the
theoretical dependence on t in convergence proofs for the solvers may be an artifact
of our proof techniques, and might possibly be further improved by other analysis
techniques for typical practical use cases.
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Figure 7.10: TERM-PCA flexibly trades the
performance on the high (H) edu group for
the performance on the low (L) edu group.
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Figure 7.11: Convergence of TERM with
respect to t in fair PCA (target dimen-
sion=7). We tune optimal learning rates
separately for each t. As t increases, the
convergence becomes slower, which vali-
dates our analyses in Section 7.2 and 7.5.

7.7.2.2 Fair Federated Learning

Federated learning involves learning statistical models across massively distributed
networks of remote devices or isolated organizations [178, 208]. Ensuring fair (i.e.,
uniform) performance distribution across the devices is a major concern in federated
settings [182, 215], as using current approaches for federated learning (FedAvg [208]) may
result in highly variable performance across the network. Li et al. [182] consider solving
an alternate objective for federated learning, called q-FFL, to dynamically emphasize the
worst-performing devices, which is conceptually similar to the goal of TERM, though
it is applied specifically to the problem of federated learning and limited to the case of
positive t. Here, we compare TERM with q-FFL in their setup on the vehicle dataset [75]
consisting of data collected from 23 distributed sensors (hence 23 devices). We tilt the
L2 regularized linear SVM objective at the device level. At each communication round,
we re-weight the accumulated local model updates from each selected device based
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on the weights estimated via Algorithm 16. From Figure 7.12, we see that similar to
q-FFL, TERM (t “ 0.1) can also significantly promote the accuracy on the worst device
while maintaining the overall performance. The statistics of the accuracy distribution are
reported in Table 7.5 below.
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Figure 7.12: TERM FL (t “ 0.1) sig-
nificantly increases the accuracy on the
worst-performing device (similar to q-
FFL) while obtaining a similar average
accuracy.

Table 7.5: Both q-FFL and TERM can en-
courage more uniform accuracy distributions
across the devices in federated networks
while maintaining similar average perfor-
mance. Numbers in the parentheses corre-
spond to the standard error of each metric
across 5 runs.

objectives test accuracy

average worst 10% stdev
FedAvg 0.853 (.078) 0.421 (.007) 0.173 (.001)

q-FFL (q “ 5) 0.862 (.029) 0.704 (.033) 0.064 (.005)

TERM (t “ 0.1) 0.853 (.027) 0.707 (.009) 0.061 (.003)

7.7.2.3 Fair Meta-Learning

Meta-learning aims to learn a shared initialization across all tasks such that the ini-
tialization can quickly adapt to unseen tasks (i.e., meta-testing tasks) using a few
samples. In practice, the resulting performance across meta-testing tasks can vary
due to different data distributions associated with these tasks. One of the popular
meta-learning methods is MAML [92], whose objective is to minimize the sum of em-
pirical losses across tasks tTiu generated from ppT q after one step of adaptation, i.e.,
minθ

ř

Ti„ppT q f pTi; θ ´ α∇θ f pTi; θqq. Previous works have proposed a min-max variant
of MAML to encourage a more fair (uniform) performance distribution by optimizing the
worst meta-training task called TR-MAML [57]. We apply TERM to MAML by replacing
the ERM formulation with tilted losses. Following the setup in Collins et al. [57], we
evaluate TERM on the popular sin wave regression problem. For a fair comparison,
we perform task-level tilting for TERM, and operates on task-level reweighting for TR-
MAML. From Table 7.6, we see that TERM with t “ 2 not only decreases the standard
deviation of test errors, but also achieves lower mean errors than MAML. As the number
of tasks is large (5,000), solving the min-max variant (TR-MAML) is challenging, and
results in slightly worse performance than TERM.
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Table 7.6: TERM (t “ 2) results in fairer
and lower test errors across meta-test tasks
after adaptation compared with MAML [92].
TERM also outperforms a recently proposed
min-max task-robust MAML method (TR-
MAML) [57].

methods mean std max worst 10%
MAML 1.23 1.63 19.1 5.16
TR-MAML 1.25 1.51 14.31 4.85
TERM (t “ 2) 1.14 1.33 13.59 4.29

7.7.2.4 Handling Class Imbalance

Next, we show that TERM can reduce the performance variance across classes with ex-
tremely imbalanced data when training deep neural networks. We compare TERM with
several baselines which re-weight samples during training, including assigning weights
inversely proportional to the class size (InverseRatio), focal loss [192], HardMine [201],
and LearnReweight [238]. Following the setting of Ren et al. [238], the datasets are com-
posed of imbalanced 4 and 9 digits from MNIST [165]. In Figure 7.14, we see that TERM
obtains similar (or higher) final accuracy on the clean test data as the state-of-the-art
methods. We note that compared with LearnReweight, which optimizes the model over
an additional balanced validation set and requires three gradient calculations for each
update, TERM neither requires such balanced validation data nor does it increase the
per-iteration complexity.
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Figure 7.14: TERM (t“100) is competitive with state-of-the-art methods for classification
with imbalanced classes.
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7.7.2.5 Improving Generalization via Variance Reduction

A common alternative to ERM is to consider a distributionally robust objective, which
optimizes for the worst-case training loss over a set of distributions, and has been shown
to offer variance-reduction properties that benefit generalization [e.g., 51, 76, 77, 262].
While not directly developed for distributional robustness, TERM also enables variance
reduction for positive values of t (Theorem 25), which can be used to strike a better
bias-variance tradeoff for generalization. We compare TERM with several baselines
including robustly regularized risk (RobustRegRisk) [77], linear SVM [238], Conditional
Value-at-Risk (CVaR) [243, 268], LearnRewight [238], FocalLoss [192], and HRM [166]
on the HIV-1 dataset [74, 245] originally investigated by Duchi and Namkoong [77]. We
examine the accuracy on the rare class (Y “ 0), the common class (Y “ 1), and overall
accuracy.

The mean and standard error of accuracies are reported in Table 7.7. RobustRegRisk
and TERM offer similar performance improvements compared with other baselines, such
as linear SVM, CVaR, LearnRewight, FocalLoss, and HRM. Note that here RobustRe-
gRisk [77] and CVaR [243] can both be viewed as specific instances of the distributionally
robust optimization framework, with different uncertainty sets. For larger t, TERM
achieves similar accuracy in both classes, while RobustRegRisk does not show similar
trends by sweeping its hyperparameters. It is common to adjust the decision threshold
to boost the accuracy on the rare class. We do this for ERM and RobustRegRisk and
optimize the threshold so that ERM` and RobustRegRisk` result in the same validation
accuracy on the rare class as TERM (t “ 50). TERM achieves similar performance to
RobustRegRisk`, without the need for an extra tuned hyperparameter.

Table 7.7: TERM (t “ 0.1) is competitive with strong baselines in generalization. TERM
(t “ 50) outperforms ERM` (with decision threshold changed for providing fairness)
and is competitive with RobustRegRisk` with no need for extra hyperparameter tuning.

objectives accuracy (Y “ 0) accuracy (Y “ 1) overall accuracy (%)

train test train test train test
ERM 0.841 (.005) 0.822 (.009) 0.971 (.000) 0.966 (.002) 0.944 (.000) 0.934 (.003)

Linear SVM 0.873 (.003) 0.838 (.013) 0.965 (.000) 0.964 (.002) 0.951 (.001) 0.937 (.004)

CVaR [243] 0.877 (.004) 0.844 (.013) 0.972 (.000) 0.964 (.003) 0.952 (.001) 0.937 (.003)

LearnReweight [238] 0.860 (.004) 0.841 (.014) 0.960 (.002) 0.961 (.004) 0.940 (.001) 0.934 (.004)

FocalLoss [192] 0.871 (.003) 0.834 (.013) 0.970 (.000) 0.966 (.003) 0.949 (.001) 0.937 (.004)

HRM [166] 0.875 (.003) 0.839 (.012) 0.972 (.000) 0.965 (.003) 0.952 (.001) 0.937 (.003)

RobustRegRisk (Duchi et al., 2019) 0.875 (.003) 0.844 (.010) 0.971 (.000) 0.966 (.003) 0.951 (.001) 0.939 (.004)

TERM (t “ 0.1) 0.864 (.003) 0.840 (.011) 0.970 (.000) 0.964 (.003) 0.949 (.001) 0.937 (.004)

ERM` (thresh = 0.26) 0.943 (.001) 0.916 (.008) 0.919 (.001) 0.917 (.003) 0.924 (.001) 0.917 (.002)

RobustRegRisk` (thresh=0.49) 0.943 (.000) 0.917 (.005) 0.928 (.001) 0.928 (.002) 0.931 (.001) 0.924 (.001)

TERM (t “ 50) 0.942 (.001) 0.917 (.005) 0.926 (.001) 0.925 (.002) 0.929 (.001) 0.924 (.001)

216



7.7.3 Solving Compound Issues: Hierarchical Multi-Objective Tilting

Finally, in this section, we focus on settings where multiple issues, e.g., class imbalance
and label noise, exist in the data simultaneously. We discuss two possible instances
of hierarchical multi-objective TERM to tackle such problems. One can think of other
variants in this hierarchical tilting space which could be useful depending on applications
at hand.

7.7.3.1 Class Imbalance and Random Noise

We explore the HIV-1 dataset [245], as in Section 7.7.2. We report both overall accuracy
and accuracy on the rare class in four scenarios: (a) clean and 1:4, the original dataset
that is naturally slightly imbalanced with rare samples represented 1:4 with respect to
the common class; (b) clean and 1:20, where we subsample to introduce a 1:20 imbalance
ratio; (c) noisy and 1:4, which is the original dataset with labels associated with 30% of
the samples randomly reshuffled; and (d) noisy and 1:20, where 30% of the labels of the
1:20 imbalanced dataset are reshuffled.

Table 7.8: Hierarchical TERM can address both class imbalance and noisy samples.

objectives
test accuracy (HIV-1)

clean data 30% noise

1:4 1:20 1:4 1:20

Y “ 0 overall Y “ 0 overall Y “ 0 overall Y “ 0 overall
ERM 0.822 (.009) 0.934 (.003) 0.503 (.013) 0.888 (.006) 0.656 (.014) 0.911 (.006) 0.240 (.018) 0.831 (.011)

CVaR [243] 0.844 (.013) 0.937 (.003) 0.621 (.011) 0.906 (.005) 0.651 (.015) 0.909 (.006) 0.252 (.014) 0.834 (.010)

GCE [326] 0.822 (.009) 0.934 (.003) 0.503 (.013) 0.888 (.006) 0.732 (.021) 0.925 (.005) 0.324 (.017) 0.849 (.008)

LearnReweight [238] 0.841 (.014) 0.934 (.004) 0.800 (.022) 0.904 (.003) 0.721 (.034) 0.856 (.008) 0.532 (.054) 0.856 (.013)

RobustRegRisk (Duchi et al., 2019) 0.844 (.010) 0.939 (.004) 0.622 (.011) 0.906 (.005) 0.634 (.014) 0.907 (.006) 0.051 (.014) 0.792 (.012)

FocalLoss [192] 0.834 (.013) 0.937 (.004) 0.806 (.020) 0.918 (.003) 0.638 (.008) 0.908 (.005) 0.565 (.027) 0.890 (.009)

HAR [45] 0.842 (.011) 0.936 (.004) 0.817 (.013) 0.926 (.004) 0.870 (.010) 0.915 (.004) 0.800 (.016) 0.867 (.012)

TERMsc 0.840 (.010) 0.937 (.004) 0.836 (.018) 0.921 (.002) 0.852 (.010) 0.924 (.004) 0.778 (.008) 0.900 (.005)

TERMca 0.844 (.014) 0.938 (.004) 0.834 (.021) 0.918 (.003) 0.846 (.015) 0.933 (.003) 0.806 (.020) 0.901 (.010)

In Table 7.8, hierarchical TERM is applied at the sample level and class level (TERMsc),
where we use the sample-level tilt of τ“´2 for noisy data. We use class-level tilt of t“0.1
for the 1:4 case and t“50 for the 1:20 case. We compare against baselines for robust
classification and class imbalance (discussed previously in Sections 7.7.1 and 7.7.2),
where we tune them for best performance (Appendix 7.12.2). Similar to the experiments
in Section 7.7.1, we avoid using baselines that require clean validation data [e.g., 244]. We
compare TERM with an additional baseline of HAR [45], a recent work addressing the
issues of noisy and rare samples simultaneously with adaptive Lipschitz regularization.
While different baselines (except HAR) perform well in their respective problem settings,
TERM and HAR are far superior to all baselines when considering noisy samples and
class imbalance simultaneously (rightmost column in Table 7.8). Finally, in the last row
of Table 7.8, we simulate the noisy annotator setting of Section 7.7.1.3 assuming that the
data is coming from 10 annotators, i.e., in the 30% noise case we have 7 hammers and 3
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spammers. In this case, we apply hierarchical TERM at both class and annotator levels
(TERMca), where we perform the higher level tilt at the annotator (group) level and the
lower level tilt at the class level (with no sample-level tilting). We show that this approach
can benefit noisy/imbalanced data even further (far right, Table 7.8), while suffering
only a small performance drop on the clean and noiseless data (far left, Table 7.8).

7.7.3.2 Class Imbalance and Adversarial Noise

We evaluate hierarchical tilting on a more difficult task involving more adversarial noise
with deep neural network models. We take the setup studied in Cao et al. [45]. The noise
is created by exchanging labels of 40% samples which come from similar classes (‘cat’ and
‘dog’, ‘vehicle’ and ‘automobile’) in the CIFAR10 dataset. To simulate class imbalance,
only 10% of the training data from these four noisy classes are subsampled. For TERM,
we apply group-level positive tilting by linearly scaling t from 0 to 3, and perform
sample-level negative tilting within each class with τ scaling from 0 to -2. Table 7.9
reports the results of hierarchical TERM (TERMsc) compared with HAR [45] and other
baselines. We see that TERM underperforms HAR, and outperforms all other approaches.
Note that HAR is a more complicated method which requires to perform end-to-end
training for two times with higher per-iteration complexity (involving second-order
information), while TERM is a simple method and enjoys the same training time as that
of ERM on this problem.

Table 7.9: TERM outperforms most baselines addressing the co-existence of noisy samples
and class imbalance by a large margin, and is worse than a more complicated method
HAR.

objectives test accuracy (CIFAR10, ResNet32)

noisy, rare class clean, common class

ERM 0.529 (.012) 0.944 (.001)
GCE [326] 0.482 (.006) 0.916 (.003)
MentorNet [130] 0.541 (.010) 0.903 (.005)
MW-Net [259] 0.554 (.011) 0.917 (.005)
HAR [45] 0.635 (.008) 0.943 (.002)
TERMsc 0.585 (.014) 0.913 (.003)

7.8 Discussion and Conclusion

In this chapter, we have explored the use of exponential tilting in risk minimization,
examining tilted empirical risk minimization (TERM) as a flexible extension to the ERM
framework. We rigorously established connections between TERM and related objectives
including VaR, CVaR, and DRO. We explored, both theoretically and empirically, TERM’s
ability to handle various known issues with ERM, such as robustness to noise, class
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imbalance, fairness, and generalization, as well as more complex issues like the simul-
taneous existence of class imbalance and noisy outliers. Despite the straightforward
modification TERM makes to traditional ERM objectives, the framework consistently
outperforms ERM and delivers competitive performance with state-of-the-art, problem-
specific methods on a wide range of applications.

Our work highlights the effectiveness and versatility of tilted objectives in machine
learning. As such, our framework (TERM) could be widely used for applications both
positive and negative. However, our hope is that the TERM framework will allow
machine learning practitioners to easily modify the ERM objective to handle practical
concerns such as enforcing fairness amongst subgroups, mitigating the effect of outliers,
and ensuring robust performance on new, unseen data. One potential downside of the
TERM objective is that if the underlying dataset is not well-understood, incorrectly tuning
t could have the unintended consequence of magnifying the impact of biased/corrupted
data in comparison to traditional ERM. Indeed, critical to the success of such a framework
is understanding the implications of the modified objective, both theoretically and
empirically. The goal of this work is therefore to explore these implications so that it is
clear when such a modified objective would be appropriate.

In terms of the use-cases explored with the TERM framework, we relied on bench-
mark datasets that have been commonly explored in prior work [e.g., 247, 281, 306, 314].
However, we note that some of these common benchmarks, such as cal-housing [226]
and Credit [308], contain potentially sensitive information. While the goal of our ex-
periments was to showcase that the TERM framework could be useful in learning fair
representations that suppress membership bias and hence promote fairer performance,
developing an understanding for—and removing—such membership biases requires a
more comprehensive treatment of the problem that is outside the scope of this work.

In the future, in addition to generalization bounds of TERM, it would be interesting
to further explore applications of tilted losses in machine learning. We note that since the
early TERM work [183] was made public, there are several subsequent works applying
(variants of) TERM to handle other real-world ML applications [279, 331], or exploring
risk bounds on differential private TERM [197], which suggest rich implications and
wide applicability of TERM, beyond what is studied in this work.
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Here, we provide full statements and proofs of the analyses presented in Section 7.2-
Section 7.4 (Appendix 7.9 and 7.10); details and convergence proof on the methods we
propose for solving TERM (Appendix 7.11), and complete empirical results and details
of our empirical setup (Appendix 7.12).

7.9 Properties and Interpretations (Proofs and Additional
Results)

In this section, we provide the proofs of the main results in the work, along with addi-
tional results on the properties of TERM objective, its solution, as well as the correspond-
ing solvers.

7.9.1 Proofs of Basic Properties of the TERM Objective

We first provide proofs for the basic properties of the TERM objective.

Proof of Lemma 22. The conclusion follows by noting that for any θ1, θ2 P Θ,
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Proof of Lemma 23. Recall that

∇θ
rRpt; θq “

ř

iPrNs ∇θ f pxi; θqet f pxi;θq

ř

iPrNs et f pxi;θq
(7.91)

“
1
N

ÿ

iPrNs

∇θ f pxi; θqetp f pxi;θq´rRpt;θqq. (7.92)

The proof of the first part is completed by differentiating again with respect to θ, followed
by algebraic manipulation. To prove the second part, notice that the term in (7.13) is
positive semi-definite, whereas the term in (7.14) is positive definite and lower bounded
by βminI (see Assumption 9, Eq. (7.6)).
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Proof of Lemma 24. Let us first provide a proof for t P R´. Invoking Lemma 23 and
Weyl’s inequality [298], we have
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where we have used the fact that the term in (7.13) is negative semi-definite for t ă 0,
and that the term in (7.14) is positive definite for all t with smoothness bounded by βmax
(which would hold from smoothness of f pxi; θq; see Assumption 9, Eq. (7.6)).

For t P Rą0, following Lemma 23 and Weyl’s inequality [298], we have
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and hence,

lim
tÑ`8
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ą 0, (7.100)

where we have used the fact that no solution θ exists that would make all fi’s vanish
(Assumption 9).

Under the strict saddle property (Assumption 11), it is known that gradient-based
methods would converge to a local minimum [97], i.e., θ̆ptq would be obtained using
gradient descent (GD). The rate of convergence of GD scales linearly with the smoothness
parameter of the optimization landscape, which is characterized by Lemma 24.

Proof of Lemma 25. For t Ñ 0,
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For t Ñ ´8, we proceed as follows:
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“ min
iPrNs

f pxi; θq. (7.107)

Hence, the proof follows by putting together (7.104) and (7.107).
The proof proceeds similarly to t Ñ ´8 for t Ñ `8 and is omitted for brevity.

7.9.2 General Properties of the Objective for GLMs

In this section, even if not explicitly stated, all results are derived under Assumption 10
with a generalized linear model and loss function of the form (7.7), effectively assuming
that the loss function is the negative log-likelihood of an exponential family [286].

Definition 16 (Empirical cumulant generating function). Let

rΛpt; θq :“ trRpt; θq. (7.108)

Definition 17 (Empirical log-partition function [287]). Let Γpt; θq be

Γpt; θq :“ log

¨

˝

1
N

ÿ

iPrNs

e´tθJTpxiq

˛

‚. (7.109)

Thus, we have
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Definition 18 (Tilted empirical mean and empirical variance of the sufficient statistic).
Let M and V denote the mean and the variance of the sufficient statistic, and be given by

Mpt; θq :“
1
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ÿ

iPrNs

Tpxiqe´tθJTpxiq´Γpt;θq, (7.111)
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Je´tθJTpxiq´Γpt;θq. (7.112)

We notice that Mpt; θq and Vpt; θq defined here are equivalent to tilted empirical
mean/variance in the main text (Eq. (7.29) and Eq. (7.31)) over sufficient statistic, i.e.,

Mpt; θq “
ÿ

iPrNs

wipt; θqTpxiq, (7.113)

Vpt; θq “
ÿ

iPrNs

wipt; θqpTpxiq ´ Mpt; θqqpTpxiq ´ Mpt; θqq
J. (7.114)

Similarly, as a special case of t-tilted empirical mean/variance (Eq. (7.30) and Eq. (7.32)),
t-tilted empirical mean/variance over sufficient statistic are defined as

Mt :“ Mpt; θ̆ptqq, (7.115)
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Vt :“ Vpt; θ̆ptqq. (7.116)

The quantities Mpt; θq,Vpt; θq,Mt, and Vt will be used for proving general properties of
TERM solutions in this section.

Lemma 33. For all t P R, we have Vpt; θq ľ 0.

Next we state a few key relationships that we will use in our characterizations. The
proofs are straightforward and omitted for brevity.

Lemma 34 (Partial derivatives of Γ). For all t P R and all θ P Θ,

B

Bt
Γpt; θq “ ´θJMpt; θq, (7.117)

∇θΓpt; θq “ ´tMpt; θq. (7.118)

Lemma 35 (Partial derivatives of M). For all t P R and all θ P Θ,

B

Bt
Mpt; θq “ ´Vpt; θqθ, (7.119)

∇θMpt; θq “ ´tVpt; θq. (7.120)

The next few lemmas characterize the partial derivatives of the cumulant generating
function.

Lemma 36. (Derivative of rΛ with t) For all t P R and all θ P Θ,

B

Bt
rΛpt; θq “ Apθq ´ θJMpt; θq. (7.121)

Proof. The proof is carried out by

B

Bt
rΛpt; θq “ Apθq ´ θJ

ÿ

iPrNs

Tpxiqe´tθJTpxiq´Γpt;θq
“ Apθq ´ θJMpt; θq. (7.122)

Lemma 37 (Second derivative of rΛ with t). For all t P R and all θ P Θ,

B2

Bt2
rΛpt; θq “ θJVpt; θqθ. (7.123)

Lemma 38 (Gradient of rΛ with θ). For all t P R and all θ P Θ,

∇θ
rΛpt; θq “ t∇θ Apθq ´ tMpt; θq. (7.124)

Lemma 39 (Hessian of rΛ with θ). For all t P R and all θ P Θ,

∇2
θθJ

rΛpt; θq “ t∇2
θθJ Apθq ` t2Vpt; θq. (7.125)

Lemma 40 (Gradient of rΛ with respect to t and θ). For all t P R and all θ P Θ,

B

Bt
∇θ

rΛpt; θq “ ∇θ Apθq ´ Mpt; θq ` tVpt; θqθ. (7.126)
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Proof of Theorem 23. Following (7.110),

B

Bt
rRpt; θq “

B

Bt

"

1
t

Γpt; θq

*

(7.127)

“ ´
1
t2 Γpt; θq ´

1
t

θJMpt; θq, (7.128)

“: gpt; θq, (7.129)

where (7.128) follows from Lemma 34, and (7.129) defines gpt; θq.
Let gp0; θq :“ limtÑ0 gpt; θq Notice that

gp0; θq “ lim
tÑ0

"

´
1
t2 Γpt; θq ´

1
t

θJMpt; θq

*

(7.130)

“ ´ lim
tÑ0

#

1
t Γpt; θq ` θJMpt; θq

t

+

(7.131)

“ θJVp0; θqθ, (7.132)

where (7.132) is due to L’H0̂pital’s rule and Lemma 37. Now consider

B

Bt

!

t2gpt; θq

)

“
B

Bt

!

´Γpt; θq ´ tθJMpt; θq

)

(7.133)

“ θJMpt; θq (7.134)

´ θJMpt; θq ` tθJVpt; θqθ (7.135)

“ tθJVpt; θqθ, (7.136)

where gpt; θq “ B
Bt
rRpt; θq, (7.134) follows from Lemma 34, (7.135) follows from the chain

rule and Lemma 35. Hence, t2gpt; θq is an increasing function of t for t P Rą0, and a
decreasing function of t for t P R´, taking its minimum at t “ 0. Hence, t2gpt; θq ě 0
for all t P R. This implies that gpt; θq ě 0 for all t P R, which in conjunction with (7.129)
implies the statement of the theorem.

7.9.3 General Properties of TERM Solutions for GLMs

Next, we characterize some of the general properties of the solutions of TERM objectives.
Note that these properties are established under Assumptions 10 and 11.

Lemma 41. For all t P R,
∇θ

rΛpt; θ̆ptqq “ 0. (7.137)

Proof. The proof follows from definition and the assumption that Θ is an open set.

Lemma 42. For all t P R,
∇θ Apθ̆ptqq “ Mpt; θ̆ptqq. (7.138)
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Proof. The proof is completed by noting Lemma 41 and Lemma 38.

Lemma 43 (Derivative of the solution with respect to tilt). Under Assumption 11, for all
t P R,

B

Bt
θ̆ptq “ ´

´

∇2
θθJ Apθ̆ptqq ` tVpt; θ̆ptqq

¯´1
Vpt; θ̆ptqqθ̆ptq, (7.139)

where
∇2

θθJ Apθ̆ptqq ` tVpt; θ̆ptqq ą 0 (7.140)

is a symmetric positive definite matrix.

Proof. By noting Lemma 41, and further differentiating with respect to t, we have

0 “
B

Bt
∇θ

rΛpt; θ̆ptqq (7.141)

“
B

Bτ
∇θ

rΛpτ; θ̆ptqq

ˇ

ˇ

ˇ

ˇ

τ“t
` ∇2

θθJ
rΛpt; θ̆ptqq

ˆ

B

Bt
θ̆ptq

˙

(7.142)

“ tVpt; θ̆ptqqθ̆ptq `

´

t∇2
θθJ Apθq ` t2Vpt; θq

¯

ˆ

B

Bt
θ̆ptq

˙

, (7.143)

where (7.142) follows from the chain rule, (7.143) follows from Lemmas 40 and 42 and 39.
The proof is completed by noting that ∇2

θθJ
rΛpt; θ̆ptqq is symmetric positive definite for

all t P R under Assumption 11.

Finally, we state an auxiliary lemma that will be used in the proof of the main theorem.

Lemma 44. For all t, τ P R and all θ P Θ,

Mpτ; θq ´ Mpt; θq “ ´

ˆ
ż τ

t
Vpν; θqdν

˙

θ. (7.144)

Proof. The proof is completed by noting that

Mpτ; θq ´ Mpt; θq “

ż τ

t

B

Bν
Mpν; θqdν “ ´

ˆ
ż τ

t
Vpν; θqdν

˙

θ. (7.145)

Proof of Theorem 24. Notice that for all θ, and all ϵ P Rą0,

rRpt ` ϵ; θq ě rRpt; θq (7.146)

ě rRpt; θ̆ptqq, (7.147)

where (7.146) follows from Theorem 23 and (7.147) follows from the definition of θ̆ptq.
Hence,

rRpt ` ϵ; θ̆pt ` ϵqq “ min
θPBpθ̆ptq,rq

rRpt ` ϵ; θq ě rRpt; θ̆ptqq, (7.148)

which completes the proof.
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Proof of Theorem 25. Recall that f pxi; θq “ Apθq ´ θJTpxiq. Thus,

pEtpfpθqq “
ÿ

iPrNs

wipt; θ̆ptqq f pxi; θq “ Apθq ´ θJ
ÿ

iPrNs

wipt; θ̆ptqqTpxiq “ Apθq ´ θJMt,

(7.149)
where Mt is defined in (7.115). Consequently,

yVartpfpθqq “ pEt

´

f pxi; θq ´ pEtpfpθq

¯2
(7.150)

“ pEt

´

θJTpxiq ´ θJMt

¯2
(7.151)

“ θJ
pEt

´

pTpxiq ´ MtqpTpxiq ´ Mtq
J
¯

θ (7.152)

“ θJVtθ, (7.153)

where Vt is defined in (7.116). Hence,

B

Bτ

!

yVartpfpθ̆pτqqq

)

“

ˆ

B

Bτ
θ̆pτq

˙J

∇θ

!

yVartpfpθ̆pτqqq

)

(7.154)

“ 2
ˆ

B

Bτ
θ̆pτq

˙J

Vtθ̆pτq (7.155)

“ ´2θ̆J
pτqVpτ; θ̆pτqq

´

∇2
θθ Apθ̆pτqq ` τVpτ; θ̆pτqq

¯´1
Vtθ̆pτq, (7.156)

and in turn

B

Bτ

!

yVartpfpθ̆pτqqq

)

ˇ

ˇ

ˇ

ˇ

τ“t
ď 0, (7.157)

where we have used the fact that Vτ

`

∇2
θθ Apθ̆pτqq ` τVτ

˘´1 Vτ is a symmetric positive
semidefinite matrix (due to Lemma 33), hence completing the proof.

Proof of Theorem 26. Notice that

H pwpt; θqq “ ´
ÿ

iPrNs

wipt; θq log wipt; θq (7.158)

“ ´
1
N

ÿ

iPrNs

pt f pxi; θq ´ rΛpt; θqqet f pxi;θq´rΛpt;θq (7.159)

“ rΛpt; θq ´ t
1
N

ÿ

iPrNs

f pxi; θqet f pxi;θq´rΛpt;θq (7.160)

“ rΛpt; θq ´ tApθq ` tθJMpt; θq. (7.161)

Thus,

∇θ H pwpt; θqq “ ∇θ

´

rΛpt; θq ´ tApθq ` tθJMpt; θq

¯

(7.162)

227



“ t∇θ Apθq ´ tMpt; θq ´ t∇θ Apθq ` tMpt; θq ´ t2Vpt; θqθ (7.163)

“ ´t2Vpt; θqθ. (7.164)

Hence,

B

Bτ
H
`

wpt; θ̆pτqq
˘

“

ˆ

B

Bτ
θ̆pτq

˙J

∇θ H
`

wpt; θ̆pτqq
˘

(7.165)

“

ˆ

B

Bτ
θ̆pτq

˙J

∇θ

´

rΛpt; θq ´ tApθq ` tθJMpt; θq

¯

(7.166)

“ t2θ̆J
pτqVpτ; θ̆pτqq

´

∇2
θθ Apθ̆pτqq ` τVpτ; θ̆pτqq

¯´1
Vpt; θ̆pτqqθ̆pτq

(7.167)

and

B

Bτ
H
`

wpt; θ̆pτqq
˘

ˇ

ˇ

ˇ

ˇ

t“τ

ě 0, (7.168)

completing the proof.
There are different ways to define performance uniformity. In Theorem 35, we further

prove that the tilted cosine similarity between the scaled loss vector and the all-ones
vector increases as t decreases by a small amount, which shows that larger t promotes a
more uniform performance across all losses and can have implications for fairness defined
as representation disparity [113] (Section 7.7.2).

Definition 19 (t-tilted cosine similarity). For u, v P RN, let cosine similarity be defined as

spu, vq :“
uJv

}u}2}v}2
. (7.169)

For a weight vector w, let the weighted cosine similarity be defined as

swpu, vq :“ s
´?

Wu,
?

Wv
¯

, (7.170)

where W :“ diagpwq. In particular, we call swpt;θ̆ptqq
p¨, ¨q the t-tilted cosine similarity.

Theorem 35 (t-tilted cosine similarity of the scaled loss vector and the all-ones vector
increases with t). Let

f`
pθq :“

!

f pxi; θq ´ rFp´8q

)

iPrNs
, (7.171)

where rFp´8q is defined in Eq. (7.10), and let 1N denote the all-one N-vector. Then, under
Assumption 10 and Assumption 11, for any t P R,

B

Bt

!

swpτ,θ̆pτqq

`

f`
pθ̆ptqq, 1N

˘

)

ˇ

ˇ

ˇ

ˇ

τ“t
ą 0, (7.172)

where wpt; θ̆ptqq is the tilted weight vector defined in Eq. (7.26).

228



Proof. Notice that

swpt;θ̆ptqq
pf`

pθq, 1Nq “
pEt f pxi; θq ´ rFp´8q

b

pEtp f pxi; θq ´ rFp´8qq2
. (7.173)

Hence,

pEt f pxi; θq ´ rFp´8q “ Apθq ´ θJMt ´ rFp´8q, (7.174)
pEtp f pxi; θq ´ rFp´8qq

2
“ pApθq ´ θJMt ´ rFp´8qq

2
` θJVtθ, (7.175)

where Mt and Vt are defined in (7.115) and (7.116), respectively. Notice that

∇θ

!

s2
wpt;θ̆ptqq

pf`
pθq, 1Nq

)

(7.176)

“ ∇θ

$

’

&

’

%

´

pEt f pxi; θq ´ rFp´8q

¯2

pEtp f pxi; θq ´ rFp´8qq2

,

/

.

/

-

(7.177)

“ ∇θ

#

pApθq ´ θJMt ´ rFp´8qq2

pApθq ´ θJMt ´ rFp´8qq2 ` θJVtθ

+

(7.178)

“
2pApθq ´ θJMt ´ rFp´8qqp∇θ Apθq ´ MtqθJVtθ ´ 2pApθq ´ θJMt ´ rFp´8qq2Vtθ

´

pApθq ´ θJMt ´ rFp´8qq2 ` θJVtθ
¯2

(7.179)

“

2pApθq ´ θJMt ´ rFp´8qq

´

θJp∇θ Apθq ´ Mtq ´ Apθq ` θJMt ` rFp´8q

¯

Vtθ
´

pApθq ´ θJMt ´ rFp´8qq2 ` θJVtθ
¯2

(7.180)

“

2pApθq ´ θJMt ´ rFp´8qq

´

θJ∇θ Apθq ´ Apθq ` rFp´8q

¯

Vtθ
´

pApθq ´ θJMt ´ rFp´8qq2 ` θJVtθ
¯2 . (7.181)

Hence,

B

Bτ

!

s2
wpt;θ̆ptqq

pf`
pθ̆pτqq, 1Nq

)

(7.182)

“

ˆ

B

Bτ
θ̆pτq

˙J

∇θ

!

s2
wpt;θ̆ptqq

pf`
pθ̆pτqq, 1Nq

)

(7.183)

“ ´θ̆J
pτqVpτ; θ̆pτqq

´

∇2
θθ Apθ̆pτqq ` τVpτ; θ̆pτqq

¯´1

ˆ ´
2pApθ̆pτqq ´ θ̆pτqJMt ´ rFp´8qqpApθ̆pτqq ´ θ̆pτqJMpτ; θ̆pτqq ´ rFp´8qq

´

pApθ̆pτqq ´ θ̆pτqJMt ´ rFp´8qq2 ` θ̆pτqJVtθ
¯2 Vtθ̆pτq.

(7.184)
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Note that 2pApθ̆pτqq ´ θ̆pτqJMt ´ rFp´8qqpApθ̆pτqq ´ θ̆pτqJMpτ; θ̆pτqq ´ rFp´8qq ą 0 by
definition, and Vτ

`

∇2
θθ Apθ̆pτqq ` τVτ

˘´1 Vτ is a symmetric positive semi-definite matrix.
Therefore, The proof is completed following that the quantity in Eq. (7.184) is non-
negative for t “ τ.
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7.10 Connections to Other Objectives (Proofs and Addi-
tional Results)
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Figure 7.15: Comparing the new Chernoff bound on complementary CDF (CCDF) (i.e.,
PrX ě γs) proposed in Theorem 27 (denoted as ‘improved’) with the original Chernoff
bound in two cases: X „ Uniformr0, 2s and X „ |N p0, π{2q|. We see that by sweeping t
from all real numbers, our bound is significantly tighter than the generic Chernoff bound
which optimizes over t P R`, especially in the small deviations regime.

Lemma 45. If a ă rFp´8q then rQ0pγq “ 1. Further, if γ ą rFp`8q then rQ0pγq “ 0, where
rFp¨q is defined in Definition 7.11, and is reproduced here:

rFp´8q “ lim
tÑ´8

rRpt; θ̆ptqq “ min
θ

min
iPrNs

f pxi; θq, (7.185)

rFp`8q “ lim
tÑ`8

rRpt; θ̆ptqq “ min
θ

max
iPrNs

f pxi; θq. (7.186)

Next, we present our main result on the connection between tail distribution of losses
and TERM, using Theorem 27.

Theorem 36. For all t P R, and all θ, and all γ P prFp´8q, rFp`8qq,7

rQpγ; θq ď Qpγ; t, θq :“
erRpt;θqt ´ erFp´8qt

eγt ´ erFp´8qt
. (7.187)

Proof. The proof is a direct application of Theorem 27 to the non-negative random
variable p f pX; θq ´ rFp´8qq, where X is distributed according to the empirical distribution.

7We define the RHS at t “ 0 via continuous extension.
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Recall that optimizing ĄVaR is equivalent to optimizing rQ. Next we show how TERM is
related to optimizing rQ. Recall that rQ0pγq denotes the optimal value of rQpγ; θq optimized
over θ. Let

rQ1
pγq :“ inf

tPR

!

rQpγ; θ̆ptqq

)

, (7.188)

which denotes the value at risk optimized over the t-tilted solutions.

Theorem 37. For all γ P prFp´8q, rFp`8qq, we have

rQ0
pγq ď rQ1

pγq ď rQ2
pγq ď rQ3

pγq “ inf
tPR

␣

Qpγ, tq
(

, (7.189)

where

Qpγ, tq :“
erFptqt ´ erFp´8qt

eγt ´ erFp´8qt
, (7.190)

rt3
pγq :“ arg inf

tPR

␣

Qpγ, tq
(

, (7.191)

rQ2
pγq :“ rQpγ; θ̆prt3

pγqqq, (7.192)
rQ3

pγq :“ Qpγ,rt3
pγqq. (7.193)

Proof. The only non-trivial step is to show that Q2pγq ď Q3pγq. Following Theorem 36,

Q2
pγq “ rQpγ; θ̆prtpγqq ď inf

tPR
Qpγ; t, θ̆ptqq “ Q3

pγq, (7.194)

which completes the proof.

Theorem 37 motivates us with the following approximation on the solutions of the
minimizing the tail distribution of losses (Definition 14).

Approximation 1. For all γ P prFp´8q, rFp`8qq,

rQpγ; θ0
pγqq “ rQ0

pγq « rQ2
pγq “ rQpγ; θ̆prtpγqqq, (7.195)

and hence, θ̆prtpγqq is an approximate solution to the tail probability optimization problem.

While we have not characterized how tight this approximation is for γ P prFp´8q, rFp`8qq,
we believe that Approximation 1 provides a reasonable solution to the tail distribution
optimization problem in general. This is evidenced empirically when the approximation
is evaluated on the toy examples of Figure 7.1, and compared with the global solutions
of the tail distribution optimization method, as shown in Figure 7.16. As can be seen,
rQ0pγq « rQ2pγq as suggested by Approximation 1. Also, we can see that while the bound
in Theorem 37 ( rQ3pγq) is not tight, the solution that is obtained from solving it ( rQ2pγq)
results in a good approximation to the tail distribution minimization ( rQ0pγq).
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Figure 7.16: Comparing the solutions of different risks in terms of how well they solve

VaR. For i P t0, 1, 2u, ĄVaR
i
p1 ´ αq :“ minγtγ| rQipγq ď αu. ĄVaR

0
p1 ´ αq :“ minγtγ| rQ0pγq ď

αu is the optimal ĄVaRp1 ´ α; θq. By definition, ĄVaR
2
p1 ´ αq is the risk value of ĄVaRp1 ´ α; θq

with θ being the solutions of ČTiVaRp1 ´ α; θq. ĄVaR
ČCVaR

p1 ´ αq denotes the value of ĄVaRp1 ´

α; θq evaluated at arg minθ
ČCVaRp1 ´ α; θq, and ĄVaR

ČCVaRinv
p1 ´ αq and ĄVaR

ČEVaR
p1 ´ αq

are defined in the similar way. We see that ĄVaR
1
p1 ´ αq and ĄVaR

2
p1 ´ αq are close to

ĄVaR
0
p1 ´ αq, which indicates VaR with the solutions obtained from solving ČTiVaRp1 ´ α; θq

(which is ĄVaR
2
p1 ´ αq) is a tight upper bound of the globally optimal ĄVaRp1 ´ α; θq.

ĄVaR
2
p1 ´ αq is also tighter than VaR under EVaR solutions when α is not small.

Inverse CVaR. We note that while the most popular form of CVaR focuses on upper
quantiles (as discussed in the main text), one may explore ‘inverse’ CVaR that can focus
on lower quantiles, with its empirical form ČCVaRinvp1 ´ α; θq for α P r0, 1q defined as

ČCVaRinvp1 ´ α; θq :“ ´ min
γ

$

&

%

γ `
1

1 ´ α

1
N

ÿ

iPrNs

r´ f pxi; θq ´ γs`

,

.

-

. (7.196)

As α ranges from 0 to 1, optimizing ČCVaRinvp1 ´ α; θq transitions from solving avg-loss
to min-loss. However, different from TiVaR or CVaR, CVaRinv is not a valid upper bound
of VaR. Despite this, we optimize minθ

ČCVaRinvp1 ´ α; θq, plug in the optimal model
parameters to evaluate VaR values, and compare with the approximate VaR values under
the solutions of other risks including TiVaR. From Figure 7.16, we see that VaR values
under TiVaR solutions can be smaller than those under CVaRinv solutions on linear
regression. Given any α, our proposed TiVaR objective approximates VaR, ranging from
min-loss to max-loss smoothly in a single formulation, which can be more desirable than
optimizing two objectives.

233



Proof of Theorem 28. We first prove ČTiVaRp1 ´ α; θq ď ČEVaRp1 ´ α; θq.

ČEVaRp1 ´ α; θq ´ rFp´8q “ min
tPRą0

1
t

log

˜

1
N
ř

iPrNs et f pxi;θq

α

¸

´ rFp´8q (7.197)

“ min
tPRą0

1
t

log

˜

eprRpt;θq´rFp´8qqt

α

¸

(7.198)

ě min
tPRą0

1
t

log

«

eprRpt;θq´rFp´8qqt ´ p1 ´ αq

α

ff

`

(7.199)

ě min
tPR

1
t

log

«

eprRpt;θq´rFp´8qqt ´ p1 ´ αq

α

ff

`

. (7.200)

We next prove ĄVaRp1 ´ α; θq ď ČTiVaRp1 ´ α; θq. From Theorem 36, we know that for any
t, θ,

rQpγ; θq ď min
tPR

#

erRpt;θqt ´ e´rFp´8qt

eγt ´ erFp´8qt

+

(7.201)

Let rQpγ; θq “ α, and γ˚ “ ĄVaRp1 ´ α; θq. We have mintPR

!

erRpt;θqt´e´rFp´8qt

eγ˚t´erFp´8qt

)

ě α. We also
note

min
tPR

#

erRpt;θqt ´ e´rFp´8qt

eČTiVaRp1´α;θqt ´ erFp´8qt

+

“ α. (7.202)

Hence,

ČTiVaRp1 ´ α; θq ě γ˚
“ ĄVaRp1 ´ α; θq. (7.203)

TERM and Entropic Value-at-Risk. Let θ̆Xptq be the minimizer of entropic risk RXpt; θq:

θ̆Xptq :“ arg min
θPΘ

RXpt; θq. (7.204)

Further, let FXptq be the optimum value of entropic risk, i.e.,

FXptq :“ RXpt; θ̆Xptqq. (7.205)

Our next result will relate EVaR to entropic risk.

Lemma 46 (Relations between entropic risk and EVaR). Assume that for t P Rą0, FXptq is a
strongly convex function of 1

t . Further, let

t̆Xpαq P arg min
tPRą0

"

FXptq ´
1
t

log α

*

, (7.206)
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then

arg min
θ

tEVaRXp1 ´ α; θqu “ arg min
θ

␣

RXpt̆Xpαq; θq
(

:“ θ̆Xpt̆Xpαqq, (7.207)

RX
`

t̆Xpαq; θ̆Xpt̆Xpαqq
˘

“ FXpt̆Xpαqq ď EVaRX
`

1 ´ α; θ̆Xpt̆Xpαqq
˘

. (7.208)

Proof. Consider the any minimizer of RXpt̆Xpαq, θq, i.e.,

θ̆Xpt̆Xpαqq P arg min
θ

RXpt̆Xpαq; θq, (7.209)

we next prove

θ̆Xpt̆Xpαqq P arg min
θ

ˆ

min
tą0

ˆ

1
t

log Eret f pX;θq
s ´

1
t

log α

˙˙

. (7.210)

Denote mintą0

´

1
t log Eret f pX;θqs ´ 1

t log α
¯

as hpθ; αq. Let

θ˚
v P arg min

θ
hpθ; αq, (7.211)

tvpθ˚
vq P arg min

tą0

ˆ

1
t

log Eret f pX;θ˚
v q

s ´
1
t

log α

˙

. (7.212)

By the definition of t̆Xpαq and θ̆Xptq, we have

1
t̆Xpαq

log Eret̆Xpαq f pX;θ̆Xpt̆Xpαqqq
s ´

1
t̆Xpαq

log α (7.213)

ď
1

tvpθ˚
vq

log Eretvpθ˚
v q f pX;θ̆Xptvpθ˚

v qqq
s ´

1
tvpθ˚

vq
log α (7.214)

ď
1

tvpθ˚
vq

log Eretvpθ˚
v q f pX;θ˚

v q
s ´

1
tvpθ˚

vq
log α. (7.215)

By the definition of θ˚
v , hpθ˚

v ; αq ď hpθ̆Xpt̆Xpαqq; αq, i.e.,

min
tą0

ˆ

1
t

log Eret f pX;θ˚
v q

s ´
1
t

log α

˙

ď min
tą0

ˆ

1
t

log Eret f pX;θ̆Xpt̆Xpαqqq
s ´

1
t

log α

˙

. (7.216)

We have

1
tvpθ˚

vq
log Eretvpθ˚

v q f pX;θ˚
v q

s ´
1

tvpθ˚
vq

log α (7.217)

ď min
tą0

ˆ

1
t

log Eret f pX;θ̆Xpt̆Xpαqqq
s ´

1
t

log α

˙

(7.218)

ď
1

t̆Xpαq
log Eret̆Xpαq f pX;θ̆Xpt̆Xpαqqq

s ´
1

t̆Xpαq
log α, (7.219)

Hence, θ̆Xpt̆Xpαqq P arg minθ

´

mintą0

´

1
t log Eret f pX;θqs ´ 1

t log α
¯¯

.
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For the other direction, consider any minimizer of EVaRXp1 ´ α; θq, i.e.,

θ˚
v P arg min

θ
hpθ; αq (7.220)

tvpθ˚
vq P arg min

tą0

ˆ

1
t

log Ere f pX;θ˚
v q

s ´
1
t

log α

˙

. (7.221)

We next prove θ˚
v P arg minθ

1
t̆Xpαq

log Eret̆Xpαq f pX;θqs. By the definition of θ̆Xptq and t̆Xpαq,

1
tvpθ˚

vq
log Eretvpθ˚

v q f pX;θ˚
v q

s ´
1

tvpθ˚
vq

log α (7.222)

ě
1

tvpθ˚
vq

log Eretvpθ˚
v q f pX;θ̆Xptvpθ˚

v qq
s ´

1
tvpθ˚

vq
log α (7.223)

ě
1

t̆Xpαq
log Eret̆Xpαq f pX;θ̆Xpt̆Xpαqq

s ´
1

t̆Xpαq
log α. (7.224)

On the other hand, by the definition of θ˚
v and tvpθ˚

vq,

1
tvpθ˚

vq
log Eretvpθ˚

v q f pX;θ˚
v q

s ´
1

tvpθ˚
vq

log α ď min
tą0

ˆ

1
t

log Eret f pX;θ̆Xpt̆Xpαqqq
s ´

1
t

log α

˙

(7.225)

ď
1

t̆Xpαq
log Eret̆Xpαq f pX;θ̆Xpt̆Xpαqqq

s ´
1

t̆Xpαq
log α.

(7.226)

Therefore,

1
tvpθ˚

vq
log Eretvpθ˚

v q f pX;θ˚
v q

s ´
1

tvpθ˚
vq

log α (7.227)

“
1

tvpθ˚
vq

log Eretvpθ˚
v q f pX;θ̆Xptvpθ˚

v qq
s ´

1
tvpθ˚

vq
log α (7.228)

“
1

t̆Xpαq
log Eret̆Xpαq f pX;θ̆Xpt̆Xpαqqq

s ´
1

t̆Xpαq
log α. (7.229)

If

sptq :“
1
t

log Eret f pX;θ̆Xptqq
s ´

1
t

log α (7.230)

has a unique minimizer,

t̆Xpαq “ tvpθ˚
vq, (7.231)

and

θ˚
v P arg min

θ

1
t̆Xpαq

log Eret̆Xpαq f pX;θq
s. (7.232)
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Hence, we have proved

arg min
θ

EVaRXp1 ´ α; θq “ arg min
θ

RXpt̆Xpαq; θq, (7.233)

and

RXpt̆Xpαq; θ̆Xpt̆Xpαqqq ď EVaRXp1 ´ α; θ̆Xpt̆Xpαqqq. (7.234)

The lemma relates the solution and the optimal value of EVaR with those of entropic
risk. We can extend Lemma 46 to the empirical version below.

Lemma 47 (Relations between empirical entropic risk and empirical EVaR). Assume that
rFptq is a strongly convex function of 1

t . For α P t k
N ukPrNs, let

t̆pαq P arg min
tą0

"

rFptq ´
1
t

log α

*

, (7.235)

then

arg min
θ

ČEVaRp1 ´ α; θq “ arg min
θ

rRpt̆pαq; θq, (7.236)

rFpt̆pαqq ď ČEVaRp1 ´ α; θ̆pt̆pαqqq. (7.237)
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7.11 Solving TERM (Proofs and Details)

7.11.1 Hierarchical Multi-Objective Tilting

We state the hierarchical multi-objective tilting for a hierarchy of depth 3. While we
don’t directly use this form, it is stated to clarify the experiments in Section 7.7 where
tilting is done at class level and annotator level, and the sample-level tilt value could be
understood to be 0.

rJpm, t, τ; θq :“
1
m

log

¨

˝

1
N

ÿ

GPrGGs

¨

˝

ÿ

gPrGs

|g|

˛

‚emrJGpτ;θq

˛

‚ (7.238)

rJGpt, τ; θq :“
1
t

log

¨

˝

1
ř

gPrGs |g|

ÿ

gPrGs

|g|etrRgpτ;θq

˛

‚ (7.239)

rRgpτ; θq :“
1
τ

log

˜

1
|g|

ÿ

xPg
eτ f px;θq

¸

, (7.240)

Proof of Lemma 31. We proceed as follows. First notice that by invoking Lemma 26,

∇θ
rJpt, τ; θq “

ÿ

gPrGs

wgpt, τ; θq∇θ
rRgpτ; θq (7.241)

where

wgpt, τ; θq :“
|g|etrRgpτ;θq

ř

g1PrGs |g1|etrRg1pτ;θq
. (7.242)

where rRgpτ; θq is defined in (7.82), and is reproduced here:

rRgpτ; θq :“
1
τ

log

˜

1
|g|

ÿ

xPg
eτ f px;θq

¸

. (7.243)

On the other hand, by invoking Lemma 26,

∇θ
rRgpτ; θq “

ÿ

xPg
wg,xpτ; θq∇θ f px; θq (7.244)

where

wg,xpτ; θq :“
eτ f px;θq

ř

yPg eτ f py;θq
. (7.245)

Hence, combining (7.241) and (7.244),

∇θ
rJpt, τ; θq “

ÿ

gPrGs

ÿ

xPg
wgpt, τ; θqwg,xpτ; θq∇θ f px; θq. (7.246)
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The proof is completed by algebraic manipulations to show that

wg,xpt, τ; θq “ wgpt, τ; θqwg,xpτ; θq. (7.247)

7.11.2 Proofs of Convergence for TERM Solvers

Algorithm 17 Stochastic Non-Hierarchical TERM with two mini-batches

1: Input: θ, rrRt “ 1
t log

´

1
N
ř

iPrNs et f pxi;θq
¯

, t, α, λ

2: for iter “ 0, ¨ ¨ ¨ , T ´ 1 do
3: sample two independent minibatches B1, B2 uniformly at random from rNs

4: compute the loss f px; θq and gradient ∇θ f px; θq for all x P B1

5: rRB,t Ð t-tilted loss (7.2) on minibatch B2

6: r

rRt Ð 1
t log

´

p1 ´ λqetrrRt ` λetrRB,t
¯

wt,x Ð et f px;θq´trrRt

7: θ Ð θ ´ α
|B1|

ř

xPB1
wt,x∇θ f px; θq

8: end for

To prove our convergence results in Theorem 32, we first prove a lemma below.

Lemma 48. Denote kt :“ arg maxk

´

k ă 2e
µ ` etLBetprFmax´rFminq

µk

¯

. Let λ “ 1 ´ 1
2e , and

αk “

# 1
tLBetprFmax´rFminq`1

, if k ď kt

2e
µk , otherwise,

(7.248)

then for any k,

EretprrRk´rRkq
|θ1, . . . , θks ď 2e, (7.249)

where rRk :“ rRpt; θkq “ 1
t log

´

1
N
ř

iPrNs et f pxi;θkq
¯

.

Proof. We have the updating rule

etrrRk`1 “ λet f pξk,θkq
` p1 ´ λqetrrRk . (7.250)

Taking conditional expectation Er¨|θ1, . . . , θk`1s on both sides of (7.250) gives

EretprrRk`1´rRkq
|θ1, . . . , θk`1s (7.251)

“ λEretp f pξk;θkq´rRkq
|θ1, . . . , θk`1s ` p1 ´ λqEretprrRk´rRkq

|θ1, . . . , θk`1s (7.252)

“ λ ` p1 ´ λqEretprrRk´rRkq
|θ1, . . . , θks. (7.253)
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For any k, we have

}θk`1 ´ θk} “ αk

›

›

›

›

›

etrRk

etrrRk

∇rRk

›

›

›

›

›

ď αketprFmax´rFminqB. (7.254)

Therefore,

| f pxi; θk´1q ´ f pxi; θkq| ď L}θk´1 ´ θk} ď αkLBetprFmax´rFminq, (7.255)

and

e´tαk LBetprFmax´rFminq

ď etprRk´rRk`1q
“

ř

iPrNs et f pxi;θkq

ř

iPrNs et f pxi;θk`1q
ď etαk LBetprFmax´rFminq

, (7.256)

e´tαk LBetprFmax´rFminq

EretprrRk`1´rRk`1q
|θ1, . . . , θk`1s (7.257)

ď EretprrRk`1´rRkq
|θ1, . . . , θk`1s

ď etαk LBetprFmax´rFminq

EretprrRk`1´rRk`1q
|θ1, . . . , θk`1s. (7.258)

Hence,

e´tαk LBetprFmax´rFminq

EretprrRk`1´rRk`1q
|θ1, . . . , θk`1s (7.259)

ď λ ` p1 ´ λqEretprrRk´rRkq
|θ1, . . . , θks (7.260)

ď etαk LBetprFmax´rFminq

EretprrRk`1´rRk`1q
|θ1, . . . , θk`1s. (7.261)

(i) When k ď kt, under the learning rate αk set as in Eq. (7.248), we have

αkLBetprFmax´rFminq
ă 1. (7.262)

Hence,

EretprrRk´rRkq
|θ1, . . . , θks ď epλ ` p1 ´ λqEretprrRk´1´rRk´1q

|θ1, . . . , θk´1sq (7.263)

ď e `
1
2

EretprrRk´1´rRk´1q
|θ1, . . . , θk´1s (7.264)

ď ¨ ¨ ¨ ď e
ˆ

2 ´
1

2k´2

˙

`
1

2k´1 EretprrR1´rR1q
|θ1s ď 2e. (7.265)

(ii) When k ą kt,

αk “
2e
µk

ă
k

k ` tLBetprFmax´rFminq
. (7.266)

Similarly, we have

EretprrRk´rRkq
|θ1, . . . , θks ď etαk LBetprFmax´rFminq

ˆ

λ ` p1 ´ λqEretprrRk´1´rRk´1q
|θ1, . . . , θk´1s

˙

(7.267)

ď ¨ ¨ ¨ ď 2e, (7.268)

which completes the proof.
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Proof of Theorem 32 Denote the empirical optimal solution θ̆ptq as θ˚. Denote the tilted
stochastic gradient on data ζk as gk, where

gk “
et f pζk;θkq

etrrRk

∇ f pζk; θkq “
etrRk

etrrRk

et f pζk;θkq

etrRk
∇ f pζk; θkq “

etrRk

etrrRk

∇rRkpζkq. (7.269)

Therefore, for any k ě 1,

Erxθk ´ θ˚, gkys “ ErErxθk ´ θ˚, gky|θ1, . . . , θkss (7.270)
“ Erxθk ´ θ˚, Ergk|θ1, . . . , θksys (7.271)

“ Erxθk ´ θ˚, EretprRk´
r

rRkq
|θ1, . . . , θksEr∇rRkpζkq|θ1, . . . , θksys (7.272)

ě
1
2e

Erxθk ´ θ˚,∇rRpθkqys pEretprRk´
r

rRkq
|θ1, . . . , θks ě 1{EretprrRk´rRkq

|θ1, . . . , θksq

(7.273)

ě
µ

2e
Er}θk ´ θ˚

}
2
s pµ-strong convexity of rRq, (7.274)

where (7.272) follows from the fact that etprRk´
r

rRkq and ∇rRkpζkq are independent given
tθ1, . . . , θku. For k ě kt with αk “ 2e

µk ,

Er}θk`1 ´ θ˚
}

2
s “ Er}θk ´ αkgk ´ θ˚

}
2
s (7.275)

“ Er}θk ´ θ˚
}

2
s ´ 2αkErxθk ´ θ˚, gkys ` α2

kEr}gk}
2
s (7.276)

ď

´

1 ´
αkµ

e

¯

Er}θk ´ θ˚
}

2
s ` α2

kEr}etprRk´
r

rRkq∇rRkpζkq}
2
s (7.277)

ď

ˆ

1 ´
2
k

˙

Er}θk ´ θ˚
}

2
s `

4e2B2e2tprFmax´rFminq

µ2k2 . (7.278)

When k ď kt with αk “ 1
1`tLBetprFmax´rFminq

,

Er}θk ´ θ˚
}

2
s ď

˜

1 ´
µ

eptLBetprFmax´rFminq ` 1q

¸

Er}θk´1 ´ θ˚
}

2
s `

B2e2tprFmax´rFminq

p1 ` tLBetprFmax´rFminqq2
.

We can thus prove

Er}θkt ´ θ˚
}

2
s ď max

#

Er}θ1 ´ θ˚
}

2
s,

B2e2tprFmax´rFminq`1

µp1 ` tLBetprFmax´rFminqq

+

(7.279)

Let

Vt “ max

#

ktEr}θkt ´ θ˚
}

2
s,

4B2e2`2tprFmax´rFminq

µ2

+

. (7.280)
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We next prove for k ě kt,

Er}θk ´ θ˚
}

2
s ď

Vt

k
. (7.281)

Suppose Er}θk ´ θ˚}2s ď
Vt
k . From (7.278), we have

Er}θk`1 ´ θ˚
}

2
s ď

ˆ

1 ´
2
k

˙

Er}θk ´ θ˚
}

2
s `

4e2B2e2tprFmax´rFminq

k2µ2 (7.282)

ď

ˆ

1 ´
2
k

˙

Vt

k
`

V2
t

k2 (7.283)

ď
Vt

k ` 1
, (7.284)

where k ě kt “

S

e`

b

e2`µtLBetprFmax´rFminq`1
µ

W

. This completes the proof.

Proof of Theorem 33. Assume rRpt; θq is non-convex and β-smooth, we have

rRk`1 ´ rRk ´ x∇rRk, θk`1 ´ θky ď
β

2
}θk`1 ´ θk}

2, (7.285)

where rRk :“ rRpt; θkq “ 1
t log

´

1
N
ř

iPrNs et f pxi;θkq
¯

. Plugging in the updating rule

θk`1 ´ θk “ ´αk
etpζk;θkq

etrrRk

∇ f pζk; θkq “ ´αketprRk´
r

rRkq∇rRkpζkq (7.286)

gives

rRk`1 ´ rRk ` αkx∇rRk, etprRk´
r

rRkq∇rRkpζkqy ď
β

2

›

›

›

›

αketprRk´
r

rRkq∇rRkpζkq

›

›

›

›

2

. (7.287)

First, we note
›

›

›

›

α2
ketprRk´

r

rRkq∇rRkpζkq

›

›

›

›

2

ď α2
ke2tprFmax´rFminq

}∇rRkpζkq}
2. (7.288)

Take expectation on both sides of (7.287),

ErrRk`1s ´ ErrRks ` αkErx∇rRk, etprRk´
r

rRkq∇rRkpζkqys ď
βα2

ke2tprFmax´rFminqB2

2
. (7.289)

Let

kt :“

S

2prFmax ´ rFminqt2L2

βe2

W

. (7.290)
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For any k ě kt, let

αk “

b

2prFmax ´ rFminq

etprFmax´rFminq
a

βB2K
. (7.291)

For k ă kt, let

αk “
1

tLBetprFmax´rFminq ` 1
. (7.292)

We have for any k ě 1,

αktLBetprFmax´rFminq
ď 1. (7.293)

Therefore, for any k ě 1,

EretprrRk´rRkq
|θ1, . . . , θks ď 2e. (7.294)

Thus, for any k ě 1,

Erx∇rRk, etprRk´
r

rRkq∇rRkpζkqys “ ErErx∇rRk, etprRk´
r

rRkq∇rRkpζkqy|θ1, . . . , θkss (7.295)

“ Erx∇rRk, EretprRk´
r

rRkq∇rRkpζkq|θ1, . . . , θksys (7.296)

“ Erx∇rRk, EretprRk´
r

rRkq
|θ1, . . . , θksEr∇rRkpζkq|θ1, . . . , θksys

(7.297)

“ Erx∇rRk, EretprRk´
r

rRkq
|θ1, . . . , θks∇rRkys (7.298)

ě
1
2e

Er}∇rRk}
2
s. (7.299)

Plug (7.299) into (7.289),

Er}∇rRk}
2
s `

2e
αk

pErrRk`1s ´ ErrRksq ď βαke2tprFmax´rFminqeB2. (7.300)

Apply telescope sum from kt ` 1 to K and divide both sides by K,

1
K

K
ÿ

k“kt

Er}∇rRk}
2
s `

2epErrRK`1s ´ ErrRktsq

αkK
ď βαke2tprFmax´rFminqeB2. (7.301)

1
K

K
ÿ

k“kt

Er}∇rRk}
2
s ď βαke2tprFmax´rFminqeB2

`
2epErrRkt ´ rRK`1sq

αkK
(7.302)

ď βαke2tprFmax´rFminqeB2
`

2eprFmax ´ rFminq

αkK
(7.303)
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Consider that αk “

?
2prFmax´rFminq

etprFmax´rFminq
?

βB2K
,

1
K

K
ÿ

k“kt

Er}∇rRk}
2
s ď

?
8BetprFmax´rFminq`1

d

βprFmax ´ rFminq

K
, (7.304)

completing the proof.

Proof of Theorem 34. From the assumptions, we have rRpt; θq is µ
2 -PL, i.e.,

µprRpt; θq ´ rR˚
q ď }∇rRpt; θq}

2, (7.305)

where rR˚ :“ rRpt; θ̆ptqq. Let

kt :“ arg max
k

˜

k ă
4e
µ

`
4etLBetprFmax´rFminq

µk

¸

, (7.306)

and

αk “

# 1
tLBetprFmax´rFminq`1

, if k ď kt

4e
µk , otherwise.

(7.307)

Similarly, we can prove for any k ě 1,

EretprrRk´rRkq
|θ1, . . . , θks ď 2e. (7.308)

Similarly,

ErrRk`1s ´ ErrRks `
αk
2e

Er}∇rRk}
2
s ď

βα2
ke2tprFmax´rFminqB2

2
. (7.309)

Therefore,

ErrRk`1s ´ ErrRks `
αk
2e

µErrRk ´ rR˚
s ď

βα2
ke2tprFmax´rFminqB2

2
(7.310)

ErrRk`1 ´ rR˚
s ´ ErrRk ´ rR˚

s `
αk
2e

µErrRk ´ rR˚
s ď

βα2
ke2tprFmax´rFminqB2

2
(7.311)

ErrRk`1 ´ rR˚
s ď

´

1 ´
αk
2e

µ
¯

ErrRk ´ rR˚
s `

βα2
ke2tprFmax´rFminqB2

2
(7.312)

Let αk “ 4e
µk , and

Vt “ max

#

ktErrRkt ´ rR˚
s,

8βB2e2tprFmax´rFminq`2

µ2

+

. (7.313)
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We next prove ErrRk ´ rR˚s ď 1
k (k ě kt) by induction. Suppose ErrRk ´ rR˚s ď

Vt
k , then

ErrRk`1 ´ rR˚
s ď

ˆ

1 ´
2
k

˙

ErrRk ´ rR˚
s `

Vt

k2 (7.314)

ď

ˆ

1 ´
2
k

˙

Vt

k
`

Vt

k2 (7.315)

ď
Vt

k ` 1
, (7.316)

which concludes the proof.
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Figure 7.17: Convergence of Algorithm 14 using two independent mini-batches to update
r

rRt and calculate et f px;θq∇θ f px; θq and a simpler variant using only one mini-batch to query
wt,x∇θ f px; θq. We plot the optimality gap versus the number of iterations on the point
estimation example (Figure 7.1 (a)) with batch size being 1. While Algorithm 14 allows
us to get better convergence guarantees theoretically, we find that these two variants
perform similarly empirically.

Table 7.10: TERM Applications and their corresponding solvers.

Three toy examples (Figure 7.1) Algorithm 13
Robust regression (Table 7.2) Algorithm 13
Robust classification (Table 7.4) Algorithm 14
Low-quality annotators (Figure 7.9) Algorithm 16 (τ “ 0)
Fair PCA (Figure 7.10) Algorithm 15 (τ “ 0)
Class imbalance (Figure 7.14) Algorithm 16 (τ “ 0)
Variance reduction (Table 7.7) Algorithm 15 (τ “ 0)
Hierarchical TERM (Table 7.8) Algorithm 15
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7.12 Additional Experiments and Experimental Details

In Appendix 7.12.1, we provide complete experimental results on the properties or the
use-cases of TERM. Details on how the experiments in Section 7.7 were executed are
provided in Appendix 7.12.2.

7.12.1 Complete Results

Recall that in Section 7.2, Interpretation 1 is that TERM can be tuned to re-weight samples
to magnify or suppress the influence of outliers. In Figure 7.18 below, we visually show
this effect by highlighting the samples with the largest weight for t Ñ `8 and t Ñ ´8

on the logistic regression example previously described in Figure 7.1.
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(a) Samples with the largest weights as t Ñ `8.
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(b) Samples with the largest weights as t Ñ ´8.

Figure 7.18: For positive values of t, TERM focuses on the samples with relatively
large losses (rare instances). When t Ñ `8 (left), a few misclassified samples have the
largest weights and are highlighted. On the other hand, for negative values of t, TERM
suppresses the effect of the outliers, and as t Ñ ´8 (right), samples with the smallest
losses hold the the largest weights.

Next, we provide complete results of applying TERM to a diverse set of applications.

Robust classification. Recall that in Section 7.7.1, for classification in the presence
of label noise, we only compare with baselines which do not require clean validation
data. In Table 7.11 below, we report the complete results of comparing TERM with
all baselines, including MentorNet-DD [130] which needs additional clean data. In
particular, in contrast to the other methods, MentorNet-DD uses 5,000 clean validation
images. TERM is competitive with the performance of MentorNet-DD, even though it
does not have access to this clean data.

To interpret the noise more easily, we provide a toy logistic regression example with
synthetic data here. In Figure 7.19, we see that TERM with t “ ´2 (blue) can converge to
the correct classifier under 20%, 40%, and 80% noise.
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Table 7.11: A complete comparison including two MentorNet variants. TERM is able to
match the performance of MentorNet-DD, which needs additional clean labels.

objectives test accuracy (CIFAR-10, Inception)

20% noise 40% noise 80% noise

ERM 0.775 (.004) 0.719 (.004) 0.284 (.004)

RandomRect [238] 0.744 (.004) 0.699 (.005) 0.384 (.005)

SelfPaced [159] 0.784 (.004) 0.733 (.004) 0.272 (.004)

MentorNet-PD [130] 0.798 (.004) 0.731 (.004) 0.312 (.005)

GCE [326] 0.805 (.004) 0.750 (.004) 0.433 (.005)

MentorNet-DD [130] 0.800 (.004) 0.763 (.004) 0.461(.005)

TERM 0.795 (.004) 0.768 (.004) 0.455 (.005)

Genie ERM 0.828 (.004) 0.820 (.004) 0.792 (.004)
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Figure 7.19: Robust classification using synthetic data. On this toy problem, we show
that TERM with negative t’s (blue) can be robust to random noisy samples. The green
line corresponds to the solution of the generalized cross entropy (GCE) baseline [326].
Note that on this toy problem, GCE is as good as TERM with negative t’s, despite its
inferior performance on the real-world CIFAR10 dataset.

Low-quality annotators. In Section 7.7.1.3, we demonstrate that TERM can be used to
mitigate the effect of noisy annotators, and we assume each annotator is either always
correct, or always uniformly assigning random labels. Here, we explore a different and
possibly more practical scenario where there are four noisy annotators who corrupt
0%, 20%, 40%, and 100% of their data by assigning labels uniformly at random, and
there is one additional adversarial annotator who always assigns wrong labels. We
assume the data points labeled by each annotator do not overlap, since [152] show that
obtaining one label per sample is optimal for the data collectors under a fixed annotation
budget. We compare TERM with several baselines: (a) training without the data coming
from the adversarial annotator, (b) training without the data coming from the worst
two annotators, and (c) training with all the clean data combined (Genie ERM). The
results are shown in Figure 7.20. We see that TERM outperforms the strong baselines of
removing one or two noisy annotators, and closely matches the performance of training
with all the available clean data.
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Figure 7.20: TERM achieves higher test accuracy than the baselines, and can match the
performance of Genie ERM (i.e., training on all the clean data combined).

7.12.2 Experimental Details

We first describe the datasets and models used in each experiment presented in Sec-
tion 7.7, and then provide a detailed setup including the choices of hyperparameters. All
code and datasets are publicly available at github.com/litian96/TERM.

7.12.2.1 Datasets and Models

In Section 7.7.1, for regression tasks, we use the drug discovery data extracted from Di-
akonikolas et al. [71] which is originally curated from Olier et al. [224] and train linear
regression models with different losses. There are 4,085 samples in total with each having
411 features. We randomly split the dataset into 80% training set, 10% validation set,
and 10% testing set. For mitigating noise on classification tasks, we use the standard
CIFAR-10 data and their standard train/val/test partitions along with a standard incep-
tion network [280]. For experiments regarding mitigating noisy annotators, we again
use the CIFAR-10 data and their standard partitions with a ResNet20 model. The noise
generation procedure is described in Section 7.7.1.3.

In Section 7.7.2, for fair PCA experiments, we use the complete Default Credit data to
learn low-dimensional approximations and the loss is computed on the full training set.
We follow the exact data processing steps described in the work [247] we compare with.
There are 30,000 total data points with 21-dimensional features (after preprocessing).
Among them, the high education group has 24,629 samples and the low education group
has 5,371 samples. For meta-learning experiments, one the popular sine wave regression
problem [92], we generate 5,000 meta-training and 5,000 meta-testing tasks. Follow-
ing Collins et al. [57], there are 250 hard meta-training tasks with amplitudes drawn from
r4.95, 5s and 4,750 easy meta-training tasks with amplitudes drawn from r0.01, 1s. The
amplitudes of meta-testing tasks are drawn uniformly from r0.1, 5s. The phase values are
drawn uniformly from r0, πs for all tasks. For class imbalance experiments, we directly
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take the unbalanced data extracted from MNIST [165] used in Ren et al. [238]. When
demonstrating the variance reduction of TERM, we use the HIV-1 dataset [245] as in [77]
and randomly split it into 80% train, 10% validation, and 10% test set. There are 6,590
total samples and each has 160 features. We report results based on five such random
partitions of the data. We train logistic regression models (without any regularization)
for this binary classification task for TERM and the baseline methods. We also investigate
the performance of a linear SVM.

In Section 7.7.3, the HIV-1 data are the same as that in Section 7.7.2. We also manually
subsample the data to make it more imbalanced, or inject random noise, as described in
Section 7.7.3. The CIFAR10 dataset used in this section is a standard benchmark, and we
follow the same procedures in Cao et al. [45] to generate a noisy and imbalanced variant.

7.12.2.2 Hyperparameters

Selecting t. In Section 7.7.2 where we consider positive t’s, we select t from a limited
candidate set of t0.1, 1, 2, 5, 10, 50, 100, 200u on the held-out validation set. For initial
robust regression experiments, RMSE changed by only 0.08 on average across t; we thus
used t “ ´2 for all experiments involving noisy training samples (Section 7.7.1 and
Section 7.7.3).

Other Parameters. For all experiments, we tune all other hyperparameters (the learn-
ing rates, the regularization parameters, the decision threshold for ERM`, ρ for [77],
the quantile value for CVaR (i.e., α in Eq. (7.61)) [243], α and γ for focal loss [192])
based on a validation set, and select the best one. For experiments regarding focal
loss [192], we select the class balancing parameter (α in the original focal loss paper) from
rangep0.05, 0.95, 0.05q and select the main parameter γ from t0.5, 1, 2, 3, 4, 5u. We tune
ρ in [77] such that ρ

n is selected from t0.5, 1, 2, 3, 4, 5, 10u where n is the training set size.
We tune α for CVaR from t0.1, 0.3, 0.5, 0.7, 0.9u. All regularization parameters including
regularization for linear SVM are selected from t0.0001, 0.01, 0.1, 1, 2u. For all experiments
on the baseline methods, we use the default hyperparameters in the original paper (or
the open-sourced code). We summarize a complete list of main hyperparameter values
as follows.
Section 7.7.1:
• Robust regression. The threshold parameter δ for Huber loss for all noisy levels is 1,

the corruption parameter k for CRR is: 500 (20% noise), 1000 (40% noise), and 3000
(80% noise); and TERM uses t “ ´2.

• Robust classification. The results are all based on the default hyperparameters pro-
vided by the open-sourced code of MentorNet [130], if applicable. We tune the q
parameter for generalized cross entropy (GCE) from t0.4, 0.8, 1.0u and select a best one
for each noise level. For TERM, we scale t linearly as the number of iterations from 0
to -2 for all noise levels.

• Low-quality annotators. For all methods, we use the same set of hyperparameters.
The initial step-size is set to 0.1 and decayed to 0.01 at epoch 50. The batch size is 100.
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Section 7.7.2:
• Fair PCA. We use the default hyperparameters and directly run the public code of [247]

to get the results on the min-max fairness baseline. We use a learning rate of 0.001 for
our gradient-based solver for all target dimensions.

• Fair meta-learning. We use a fixed learning rate of 0.01 for all methods, and tune a best
learning rate for the task weights for the work of Collins et al. [57]. Similar as Collins
et al. [57], for all methods, we run one step of mini-batch SGD for inner optimization.

• Handling class imbalance. We take the open-sourced code of LearnReweight [238] and
use the default hyperparameters for the baselines of LearnReweight, HardMine, and
ERM. We implement focal loss, and select α “ 0.05, γ “ 2.

• Variance reduction. The regularization parameter for linear SVM is 1. γ for focal loss is
2. We perform binary search on the decision thresholds for ERM` and RobustRegRisk`,
and choose 0.26 and 0.49, respectively.

Section 7.7.3:
• Logistic regression on HIV. We tune the q parameter for GCE based on validation

data. We use q “ 0, 0, 0.7, 0.3 respectively for the four scenarios we consider. For
RobustlyRegRisk, we use ρ

n “ 10 (where n is the training sample size) and we find
that the performance is not sensitive to the choice of ρ. For CVaR, the tuned α value is
0.5 when the data imbalance ratio is 1:4, and 0.1 when the imbalance ratio is 1:20. For
focal loss, we tune the hyperparameters for best performance and select γ “ 2, α “0.5,
0.1, 0.5, and 0.2 for four scenarios. For HAR, we tune the regularization parameter λ
via grid search from t0.1, 1, 2, 5, 10u and select the best one. We use t “ ´2 for TERM in
the presence of noise, and tune the positive t’s based on validation data. In particular,
the values of tilts under four cases are: (0, 0.1), (0, 50), (-2, 5), and (-2, 10) for TERMsc
and (0.1, 0), (50, 0), (1, -2) and (50, -2) for TERMca.

• ResNet32 on CIFAR10. We reproduce (and then directly take) the results from [45] for
all baseline methods. For hierarchical TERM, we scale t from 0 to 3 for group-level
tilting, and scale t from 0 to -2 for sample-level tilting within each group. λ is set to 0.2.
We use the default hyperparameters (batch size, learning rate, etc) in the open-sourced
code of HAR [45] for TERM.

250



Bibliography

[1] Tensorflow federated: Machine learning on decentralized data. URL https://www.
tensorflow.org/federated.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. K. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: A system for large-scale machine learning. In Operating Systems Design
and Implementation, 2016.

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. K. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: A system for large-scale machine learning. In Operating Systems Design
and Implementation, 2016.

[4] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang. Deep learning with differential privacy. In Conference on Computer and
Communications Security, 2016.

[5] S. Abdelkarim, P. Achlioptas, J. Huang, B. Li, K. Church, and M. Elhoseiny. Long-
tail visual relationship recognition with a visiolinguistic hubless loss. arXiv preprint
arXiv:2004.00436, 2020.

[6] J. Abernethy, P. Awasthi, M. Kleindessner, J. Morgenstern, C. Russell, and J. Zhang.
Active sampling for min-max fairness. In International Conference on Machine
Learning, 2022.

[7] A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. Wallach. A reductions
approach to fair classification. In International Conference on Machine Learning, 2018.

[8] A. Agarwal, J. Langford, and C.-Y. Wei. Federated residual learning. arXiv preprint
arXiv:2003.12880, 2020.

[9] A. Ahmadi-Javid. Entropic value-at-risk: A new coherent risk measure. Journal of
Optimization Theory and Applications, 2012.

[10] A. Alacaoglu, Y. Malitsky, P. Mertikopoulos, and V. Cevher. A new regret analysis
for adam-type algorithms. In International Conference on Machine Learning, 2020.

[11] M. Alaggan, S. Gambs, and A.-M. Kermarrec. Heterogeneous differential privacy.
arXiv preprint arXiv:1504.06998, 2015.

251

https://www.tensorflow.org/federated
https://www.tensorflow.org/federated


[12] N. Aldaghri, H. Mahdavifar, and A. Beirami. Feo2: Federated learning with opt-out
differential privacy. arXiv preprint arXiv:2110.15252, 2021.

[13] W. Alghamdi, S. Asoodeh, H. Wang, F. P. Calmon, D. Wei, and K. N. Ramamurthy.
Model projection: Theory and applications to fair machine learning. In IEEE
International Symposium on Information Theory, 2020.

[14] Z. Allen-Zhu. How to make the gradients small stochastically: Even faster convex
and nonconvex sgd. In Advances in Neural Information Processing Systems, 2018.

[15] E. Amid, A. Ganesh, R. Mathews, S. Ramaswamy, S. Song, T. Steinke, V. M.
Suriyakumar, O. Thakkar, and A. Thakurta. Public data-assisted mirror descent
for private model training. arXiv preprint arXiv:2112.00193, 2021.

[16] G. Andrew, O. Thakkar, H. B. McMahan, and S. Ramaswamy. Differentially private
learning with adaptive clipping. In Advances in Neural Information Processing
Systems, 2021.

[17] E. Arıkan. An inequality on guessing and its application to sequential decoding.
IEEE Transactions on Information Theory, 1996.

[18] P. Artzner. Thinking coherently. Risk, 1997.

[19] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk.
Mathematical Finance, 1999.

[20] H. Asi, J. Duchi, A. Fallah, O. Javidbakht, and K. Talwar. Private adaptive gradient
methods for convex optimization. In International Conference on Machine Learning,
2021.

[21] T. T. F. Authors. TensorFlow Federated Stack Overflow dataset, 2019. URL
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/
datasets/stackoverflow/load_data.

[22] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov. How to backdoor
federated learning. In International Conference on Artificial Intelligence and Statistics,
2020.

[23] S. Baharlouei, M. Nouiehed, A. Beirami, and M. Razaviyayn. Rényi fair inference.
In International Conference on Learning Representations, 2020.

[24] R. Balakrishnan, T. Li, T. Zhou, N. Himayat, V. Smith, and J. Bilmes. Diverse client
selection for federated learning via submodular maximization. In International
Conference on Learning Representations, 2022.

[25] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In Symposium on Foundations of Computer Science,
2014.

[26] A. Beirami, R. Calderbank, M. M. Christiansen, K. R. Duffy, and M. Médard.
A characterization of guesswork on swiftly tilting curves. IEEE Transactions on
Information Theory, 2018.

[27] G. Bennett. Probability inequalities for the sum of independent random variables.

252

https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data


Journal of the American Statistical Association, 1962.

[28] D. P. Bertsekas. Nonlinear programming. Journal of the Operational Research Society,
1997.

[29] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo. Analyzing federated learning
through an adversarial lens. In International Conference on Machine Learning, 2019.

[30] K. Bhatia, P. Jain, and P. Kar. Robust regression via hard thresholding. In Advances
in Neural Information Processing Systems, 2015.

[31] K. Bhatia, P. Jain, P. Kamalaruban, and P. Kar. Consistent robust regression. In
Advances in Neural Information Processing Systems, 2017.

[32] B. Biggio, B. Nelson, and P. Laskov. Support vector machines under adversarial
label noise. In Asian Conference on Machine Learning, 2011.

[33] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector
machines. In International Conference on Machine Learning, 2012.

[34] C. L. Blake. Uci repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository, 1998.

[35] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer. Machine learning with
adversaries: Byzantine tolerant gradient descent. In Advances in Neural Information
Processing Systems, 2017.

[36] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kid-
don, J. Konecny, S. Mazzocchi, H. B. McMahan, T. V. Overveldt, D. Petrou, D. Ra-
mage, and J. Roselande. Towards federated learning at scale: System design. In
Conference on Machine Learning and Systems, 2019.

[37] V. S. Borkar. Q-learning for risk-sensitive control. Mathematics of Operations Research,
2002.

[38] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities: A nonasymptotic
theory of independence. 2013.

[39] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 2010.

[40] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.com/
google/jax.

[41] R. W. Butler. Saddlepoint approximations with applications. Cambridge University
Press, 2007.

[42] G. C. Calafiore and L. El Ghaoui. Optimization Models. Cambridge University Press,
2014.

[43] S. Caldas, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan, V. Smith, and A. Talwalkar.
LEAF: A benchmark for federated settings. In NeurIPS Workshop on Federated

253

http://github.com/google/jax
http://github.com/google/jax


Learning for Data Privacy and Confidentiality, 2019.

[44] F. Calmon, D. Wei, B. Vinzamuri, K. N. Ramamurthy, and K. R. Varshney. Opti-
mized pre-processing for discrimination prevention. In Advances in Neural Informa-
tion Processing Systems, 2017.

[45] K. Cao, Y. Chen, J. Lu, N. Arechiga, A. Gaidon, and T. Ma. Heteroskedastic and
imbalanced deep learning with adaptive regularization. In International Conference
on Learning Representations, 2021.

[46] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of statistics. ACM
Transactions on Information and System Security, 2011.

[47] H. Chang, T. D. Nguyen, S. K. Murakonda, E. Kazemi, and R. Shokri. On adversar-
ial bias and the robustness of fair machine learning. arXiv preprint arXiv:2006.08669,
2020.

[48] H.-S. Chang, E. Learned-Miller, and A. McCallum. Active bias: Training more
accurate neural networks by emphasizing high variance samples. In Advances in
Neural Information Processing Systems, 2017.

[49] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially private empirical
risk minimization. Journal of Machine Learning Research, 2011.

[50] F. Chen, Z. Dong, Z. Li, and X. He. Federated meta-learning for recommendation.
arXiv preprint arXiv:1802.07876, 2018.

[51] R. Chen and I. C. Paschalidis. Distributionally robust learning. Foundations and
Trends® in Optimization, 2020.

[52] X. Chen, C. Liu, B. Li, K. Lu, and D. Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[53] Y. J. Cho, D. Jhunjhunwala, T. Li, V. Smith, and G. Joshi. Maximizing global model
appeal in federated learning. arXiv preprint arXiv:2205.14840, 2022.

[54] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik. Emnist: an extension of mnist to
handwritten letters. arXiv preprint arXiv:1702.05373, 2017.

[55] N. Cohen and A. Shashua. Simnets: A generalization of convolutional networks.
arXiv preprint arXiv:1410.0781, 2014.

[56] N. Cohen, O. Sharir, and A. Shashua. Deep simnets. In Conference on Computer
Vision and Pattern Recognition, 2016.

[57] L. Collins, A. Mokhtari, and S. Shakkottai. Task-robust model-agnostic meta-
learning. In Advances in Neural Information Processing Systems, 2020.

[58] A. Cotter, H. Jiang, M. R. Gupta, S. Wang, T. Narayan, S. You, and K. Sridharan.
Optimization with non-differentiable constraints with applications to fairness,
recall, churn, and other goals. Journal of Machine Learning Research, 2019.

[59] A. Cotter, H. Jiang, S. Wang, T. Narayan, M. Gupta, S. You, and K. Sridharan.
Optimization with non-differentiable constraints with applications to fairness,
recall, churn, and other goals. Journal of Machine Learning Research, 2019.

254



[60] T. M. Cover and J. A. Thomas. Information theory and statistics. Elements of
Information Theory, 1991.

[61] S. Curi, K. Y. Levy, S. Jegelka, and A. Krause. Adaptive sampling for stochastic
risk-averse learning. In Advances in Neural Information Processing Systems, 2020.

[62] M. Dashti, P. Azmi, and K. Navaie. Harmonic mean rate fairness for cognitive radio
networks with heterogeneous traffic. Transactions on Emerging Telecommunications
Technologies, 2013.

[63] S. De, A. Mukherjee, and E. Ullah. Convergence guarantees for rmsprop and adam
in non-convex optimization and an empirical comparison to nesterov acceleration.
arXiv preprint arXiv:1807.06766, 2018.

[64] S. De, L. Berrada, J. Hayes, S. L. Smith, and B. Balle. Unlocking high-accuracy differ-
entially private image classification through scale. arXiv preprint arXiv:2204.13650,
2022.

[65] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang, and A. Ng. Large scale distributed deep networks. In
Advances in Neural Information Processing Systems, 2012.

[66] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal Distributed Online
Prediction Using Mini-Batches. Journal of Machine Learning Research, 2012.

[67] A. Dembo and O. Zeitouni. Large deviations techniques and applications. Springer
Science & Business Media, 2009.

[68] Y. Deng, M. M. Kamani, and M. Mahdavi. Distributionally robust federated
averaging. Advances in Neural Information Processing Systems, 2020.

[69] Y. Deng, M. M. Kamani, and M. Mahdavi. Adaptive personalized federated
learning, 2021. URL https://openreview.net/forum?id=g0a-XYjpQ7r.

[70] S. Denisov, B. McMahan, K. Rush, A. Smith, and A. Thakurta. Improved differential
privacy for sgd via optimal private linear operators on adaptive streams. In
Advances in Neural Information Processing Systems, 2022.

[71] I. Diakonikolas, G. Kamath, D. Kane, J. Li, J. Steinhardt, and A. Stewart. Sever: A
robust meta-algorithm for stochastic optimization. In International Conference on
Machine Learning, 2019.

[72] C. T. Dinh, N. H. Tran, and T. D. Nguyen. Personalized federated learning with
moreau envelopes. In Advances in Neural Information Processing Systems, 2020.

[73] M. Donini, L. Oneto, S. Ben-David, J. S. Shawe-Taylor, and M. Pontil. Empirical
risk minimization under fairness constraints. In Advances in Neural Information
Processing Systems, 2018.

[74] D. Dua and C. Graff. UCI machine learning repository [http://archive. ics. uci.
edu/ml]. https://archive. ics. uci. edu/ml/datasets. 2019.

[75] M. F. Duarte and Y. H. Hu. Vehicle classification in distributed sensor networks.
Journal of Parallel and Distributed Computing, 2004.

255

https://openreview.net/forum?id=g0a-XYjpQ7r


[76] J. Duchi and H. Namkoong. Learning models with uniform performance via
distributionally robust optimization. arXiv preprint arXiv:1810.08750, 2018.

[77] J. Duchi and H. Namkoong. Variance-based regularization with convex objectives.
Journal of Machine Learning Research, 2019.

[78] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 2011.

[79] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Privacy aware learning. In Advances
in Neural Information Processing Systems, 2012.

[80] J. Dumford and W. Scheirer. Backdooring convolutional neural networks via
targeted weight perturbations. arXiv preprint arXiv:1812.03128, 2018.

[81] P. Dupuis and R. S. Ellis. A Weak Convergence Approach to the Theory of Large
Deviations. 1997.

[82] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography Conference, 2006.

[83] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through
awareness. In Innovations in Theoretical Computer Science, 2012.

[84] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 2014.

[85] C. T. Ee and R. Bajcsy. Congestion control and fairness for many-to-one routing in
sensor networks. In International Conference on Embedded Networked Sensor Systems,
2004.

[86] A. Eryilmaz and R. Srikant. Joint congestion control, routing, and mac for stability
and fairness in wireless networks. IEEE Journal on Selected Areas in Communications,
2006.

[87] T. Evgeniou and M. Pontil. Regularized multi–task learning. In International
Conference on Knowledge Discovery and Data Mining, 2004.

[88] A. Fallah, A. Mokhtari, and A. Ozdaglar. Personalized federated learning: A
meta-learning approach. In Advances in Neural Information Processing Systems, 2020.

[89] Y. Fan, S. Lyu, Y. Ying, and B. Hu. Learning with average top-k loss. In Advances in
Neural Information Processing Systems, 2017.

[90] M. Fang, X. Cao, J. Jia, and N. Gong. Local model poisoning attacks to byzantine-
robust federated learning. In USENIX Security Symposium, 2020.

[91] M. Feldman. Computational fairness: Preventing machine-learned discrimination.
2015.

[92] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, 2017.

[93] H. Föllmer and T. Knispel. Entropic risk measures: Coherence vs. convexity, model
ambiguity and robust large deviations. Stochastics and Dynamics, 2011.

[94] H. Föllmer and A. Schied. Stochastic finance: an introduction in discrete time.

256



2004.

[95] R. G. Gallager. Information theory and reliable communication. Springer, 1968.

[96] J. Gao, H. Jagadish, and B. C. Ooi. Active sampler: Light-weight accelerator for
complex data analytics at scale. arXiv preprint arXiv:1512.03880, 2015.

[97] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points—online stochastic
gradient for tensor decomposition. In Conference on Learning Theory, 2015.

[98] S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 2013.

[99] S. Ghadimi, A. Ruszczynski, and M. Wang. A single timescale stochastic approxi-
mation method for nested stochastic optimization. SIAM Journal on Optimization,
2020.

[100] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran. An efficient framework for
clustered federated learning. In Advances in Neural Information Processing Systems,
2020.

[101] A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant
supervision. CS224N Project Report, Stanford, 2009.

[102] M. Goldblum, S. Reich, L. Fowl, R. Ni, V. Cherepanova, and T. Goldstein. Unravel-
ing meta-learning: Understanding feature representations for few-shot tasks. arXiv
preprint arXiv:2002.06753, 2020.

[103] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

[104] V. Gupta, T. Koren, and Y. Singer. Shampoo: Preconditioned stochastic tensor
optimization. In International Conference on Machine Learning, 2018.

[105] M. Gürbüzbalaban, A. Ruszczyński, and L. Zhu. A stochastic subgradient method
for distributionally robust non-convex and non-smooth learning. Journal of Opti-
mization Theory and Applications, 2022.

[106] E. L. Hahne. Round-robin scheduling for max-min fairness in data networks. IEEE
Journal on Selected Areas in communications, 1991.

[107] F. Hanzely and P. Richtárik. Federated learning of a mixture of global and local
models. arXiv preprint arXiv:2002.05516, 2020.

[108] F. Hanzely, S. Hanzely, S. Horváth, and P. Richtárik. Lower bounds and optimal
algorithms for personalized federated learning. Advances in Neural Information
Processing Systems, 2020.

[109] W. Hao, N. Mehta, K. J. Liang, P. Cheng, M. El-Khamy, and L. Carin. Waffle: Weight
anonymized factorization for federated learning. arXiv preprint arXiv:2008.05687,
2020.

[110] Y. Hao, J. Rong, and Y. Sen. On the linear speedup analysis of communication
efficient momentum sgd for distributed non-convex optimization. In International
Conference on Machine Learning, 2019.

257



[111] M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning.
In Advances in Neural Information Processing Systems, 2016.

[112] F. M. Harper and J. A. Konstan. The movielens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems, 2015.

[113] T. Hashimoto, M. Srivastava, H. Namkoong, and P. Liang. Fairness without
demographics in repeated loss minimization. In International Conference on Machine
Learning, 2018.

[114] L. He, S. P. Karimireddy, and M. Jaggi. Byzantine-robust learning on heterogeneous
datasets via resampling. In NeurIPS Workshop on Scalability, Privacy, and Security in
Federated Learning, 2020.

[115] D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel. Using trusted data to
train deep networks on labels corrupted by severe noise. In Advances in Neural
Information Processing Systems, 2018.

[116] T. Hennigan, T. Cai, T. Norman, and I. Babuschkin. Haiku: Sonnet for JAX, 2020.
URL http://github.com/deepmind/dm-haiku.

[117] G. Hinton, N. Srivastava, and K. Swersky. Rmsprop: Divide the gradient by a
running average of its recent magnitude. Neural Networks for Machine Learning,
Coursera Lecture 6e, 2012.

[118] W. Hoeffding. Probability inequalities for sums of bounded random variables. In
The Collected Works of Wassily Hoeffding. 1994.

[119] M. Holland and K. Ikeda. Better generalization with less data using robust gradient
descent. In International Conference on Machine Learning, 2019.

[120] R. A. Howard and J. E. Matheson. Risk-sensitive markov decision processes.
Management science, 1972.

[121] Z. Hu, K. Shaloudegi, G. Zhang, and Y. Yu. FedMGDA+: Federated learning meets
multi-objective optimization. arXiv preprint arXiv:2006.11489, 2020.

[122] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and O. Spatscheck.
An in-depth study of lte: effect of network protocol and application behavior on
performance. SIGCOMM Computer Communication Review, 2013.

[123] L. Huang, Y. Yin, Z. Fu, S. Zhang, H. Deng, and D. Liu. Loadaboost: Loss-based ad-
aboost federated machine learning on medical data. arXiv preprint arXiv:1811.12629,
2018.

[124] W. R. Huang, J. Geiping, L. Fowl, G. Taylor, and T. Goldstein. Metapoison: Practical
general-purpose clean-label data poisoning. In Advances in Neural Information
Processing Systems, 2020.

[125] P. J. Huber. Robust estimation of a location parameter. The Annals of Mathematical
Statistics, 1964.

[126] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe. A quantitative measure of fairness and
discrimination. Eastern Research Laboratory, Digital Equipment Corporation, 1984.

258

http://github.com/deepmind/dm-haiku


[127] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim. Communication-efficient
on-device machine learning: Federated distillation and augmentation under non-
iid private data. arXiv preprint arXiv:1811.11479, 2018.

[128] A. H. Jiang, D. L.-K. Wong, G. Zhou, D. G. Andersen, J. Dean, G. R. Ganger,
G. Joshi, M. Kaminksy, M. Kozuch, Z. C. Lipton, et al. Accelerating deep learning
by focusing on the biggest losers. arXiv preprint arXiv:1910.00762, 2019.

[129] H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and T. Zhao. SMART: Robust and
efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, 2020.

[130] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei. MentorNet: Learning data-
driven curriculum for very deep neural networks on corrupted labels. In Interna-
tional Conference on Machine Learning, 2018.

[131] P. Jiang and G. Agrawal. A linear speedup analysis of distributed deep learning
with sparse and quantized communication. In Advances in Neural Information
Processing Systems, 2018.

[132] Y. Jiang, J. Konečnỳ, K. Rush, and S. Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488,
2019.

[133] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan. How to escape saddle
points efficiently. In International Conference on Machine Learning, 2017.

[134] C. Jin, P. Netrapalli, and M. Jordan. What is local optimality in nonconvex-
nonconcave minimax optimization? In International Conference on Machine Learning,
2020.

[135] I. Jindal, M. Nokleby, and X. Chen. Learning deep networks from noisy labels with
dropout regularization. In International Conference on Data Mining, 2016.

[136] I. Jindal, D. Pressel, B. Lester, and M. Nokleby. An effective label noise model for
dnn text classification. In Conference of the North American Chapter of the Association
for Computational Linguistics, 2019.

[137] Z. Jorgensen, T. Yu, and G. Cormode. Conservative or liberal? personalized
differential privacy. In International Conference on Data Engineering, 2015.

[138] P. Jorion. Value at risk: a new benchmark for measuring derivatives risk. Irwin
Professional Pub, 1996.

[139] S. Kaczmarz. Approximate solution of systems of linear equations. International
Journal of Control, 1993.

[140] Kaggle. Stack Overflow Data on Kaggle. https://www.kaggle.com/datasets/
stackoverflow/stackoverflow, 2022.

[141] P. Kairouz, M. R. Diaz, K. Rush, and A. Thakurta. (nearly) dimension independent
private erm with adagrad rates via publicly estimated subspaces. In Conference on
Learning Theory, 2021.

259

https://www.kaggle.com/datasets/stackoverflow/stackoverflow
https://www.kaggle.com/datasets/stackoverflow/stackoverflow


[142] P. Kairouz, M. R. Diaz, K. Rush, and A. Thakurta. (nearly) dimension independent
private erm with adagrad rates via publicly estimated subspaces. In Conference on
Learning Theory, 2021.

[143] P. Kairouz, B. McMahan, S. Song, O. Thakkar, A. Thakurta, and Z. Xu. Practical and
private (deep) learning without sampling or shuffling. In International Conference
on Machine Learning, 2021.

[144] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends in Machine Learning, 2021.

[145] D. S. Kalogerias and W. B. Powell. Recursive optimization of convex risk measures:
Mean-semideviation models. arXiv preprint arXiv:1804.00636, 2018.

[146] M. M. Kamani, F. Haddadpour, R. Forsati, and M. Mahdavi. Efficient fair principal
component analysis. arXiv preprint arXiv:1911.04931, 2019.

[147] H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, 2016.

[148] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold:
Stochastic controlled averaging for federated learning. In International Conference
on Machine Learning, 2020.

[149] A. Katharopoulos and F. Fleuret. Biased importance sampling for deep neural
network training. arXiv preprint arXiv:1706.00043, 2017.

[150] F. Kelly. Charging and rate control for elastic traffic. European Transactions on
Telecommunications, 1997.

[151] F. P. Kelly, A. K. Maulloo, and D. K. Tan. Rate control for communication networks:
shadow prices, proportional fairness and stability. Journal of the Operational Research
society, 1998.

[152] A. Khetan, Z. C. Lipton, and A. Anandkumar. Learning from noisy singly-labeled
data. In International Conference on Learning Representations, 2018.

[153] M. Khodak, M.-F. F. Balcan, and A. S. Talwalkar. Adaptive gradient-based meta-
learning methods. In Advances in Neural Information Processing Systems, 2019.

[154] M. Khodak, R. Tu, T. Li, L. Li, M.-F. Balcan, V. Smith, and A. Talwalkar. Federated
hyperparameter tuning: Challenges, baselines, and connections to weight-sharing.
arXiv preprint arXiv:2106.04502, 2021.

[155] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[156] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catas-
trophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
2017.

260



[157] B. W. Kort and D. P. Bertsekas. A new penalty function method for constrained
minimization. In IEEE Conference on Decision and Control and 11th Symposium on
Adaptive Processes, 1972.

[158] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[159] M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable
models. In Advances in Neural Information Processing Systems, 2010.

[160] Y. Laguel, K. Pillutla, J. Malick, and Z. Harchaoui. A superquantile approach for
federated learning with heterogeneous devices. In Annual Conference on Information
Sciences and Systems, 2021.

[161] P. Lahoti, A. Beutel, J. Chen, K. Lee, F. Prost, N. Thain, X. Wang, and E. Chi. Fairness
without demographics through adversarially reweighted learning. Advances in
Neural Information Processing Systems, 2020.

[162] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 2015.

[163] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. In
Concurrency: the Works of Leslie Lamport. 2019.

[164] T. Lan, D. Kao, M. Chiang, and A. Sabharwal. An axiomatic theory of fairness in
network resource allocation. In Conference on Information Communications, 2010.

[165] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 1998.

[166] L. Leqi, A. Prasad, and P. K. Ravikumar. On human-aligned risk minimization. In
Advances in Neural Information Processing Systems, 2019.

[167] D. Levy, Y. Carmon, J. C. Duchi, and A. Sidford. Large-scale methods for distribu-
tionally robust optimization. In Advances in Neural Information Processing Systems,
2020.

[168] K. Y. Levy, A. Yurtsever, and V. Cevher. Online adaptive methods, universality and
acceleration. Advances in Neural Information Processing Systems, 2018.

[169] J. Li, M. Khodak, S. Caldas, and A. Talwalkar. Differentially private meta-learning.
In International Conference on Learning Representations, 2020.

[170] J. Li, M. Khodak, S. Caldas, and A. Talwalkar. Differentially private meta-learning.
In International Conference on Learning Representations, 2020.

[171] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling. Rsa: Byzantine-robust stochastic
aggregation methods for distributed learning from heterogeneous datasets. In
AAAI Conference on Artificial Intelligence, 2019.

[172] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Communication efficient distributed
machine learning with the parameter server. In Advances in Neural Information
Processing Systems, 2014.

[173] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-batch training for stochastic

261



optimization. In Conference on Knowledge Discovery and Data Mining, 2014.

[174] M. Li, M. Soltanolkotabi, and S. Oymak. Gradient descent with early stopping
is provably robust to label noise for overparameterized neural networks. In
International Conference on Artificial Intelligence and Statistics, 2020.

[175] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smithy. FedDANE:
A federated newton-type method. In Asilomar Conference on Signals, Systems, and
Computers, 2019.

[176] T. Li, A. K. Sahu, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith. Federated
optimization in heterogeneous networks. In Conference on Machine Learning and
Systems, 2020.

[177] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, Special Issue on
Distributed, Streaming Machine Learning, 2020.

[178] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 2020.

[179] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated
optimization in heterogeneous networks. In Conference on Machine Learning and
Systems, 2020.

[180] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Feddane: A
federated newton-type method. arXiv preprint arXiv:2001.01920, 2020.

[181] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated
optimization in heterogeneous networks. In Conference on Machine Learning and
Systems, 2020.

[182] T. Li, M. Sanjabi, A. Beirami, and V. Smith. Fair resource allocation in federated
learning. In International Conference on Learning Representations, 2020.

[183] T. Li, A. Beirami, M. Sanjabi, and V. Smith. Tilted empirical risk minimization. In
International Conference on Learning Representations, 2021.

[184] T. Li, A. Beirami, M. Sanjabi, and V. Smith. Tilted empirical risk minimization. In
International Conference on Learning Representations, 2021.

[185] T. Li, A. Beirami, M. Sanjabi, and V. Smith. On tilted losses in machine learning:
Theory and applications. arXiv preprint arXiv:2109.06141, 2021.

[186] T. Li, S. Hu, A. Beirami, and V. Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, 2021.

[187] T. Li, M. Zaheer, S. J. Reddi, and V. Smith. Private adaptive optimization with side
information. In International Conference on Machine Learning, 2022.

[188] T. Li, M. Zaheer, K. Liu, S. J. Reddi, H. B. McMahan, and V. Smith. Differen-
tially private adaptive optimization with delayed preconditioners. In International
Conference on Learning Representations, 2023.

[189] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the convergence of fedavg

262



on non-iid data. In International Conference on Learning Representations, 2020.

[190] P. P. Liang, T. Liu, L. Ziyin, R. Salakhutdinov, and L.-P. Morency. Think locally, act
globally: Federated learning with local and global representations. arXiv preprint
arXiv:2001.01523, 2020.

[191] T. Lin, S. U. Stich, and M. Jaggi. Don’t use large mini-batches, use local sgd. In
International Conference on Learning Representations, 2020.

[192] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object
detection. In International Conference on Computer Vision, 2017.

[193] G.-H. Liu and E. A. Theodorou. Deep learning theory review: An optimal control
and dynamical systems perspective. arXiv preprint arXiv:1908.10920, 2019.

[194] Y. Liu, S. Ma, Y. Aafer, W. Lee, J. Zhai, W. Wang, and X. Zhang. Trojaning attack on
neural networks. In Network and Distributed System Security Symposium, 2018.

[195] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In
International Conference on Computer Vision, 2015.

[196] B. London. PAC identifiability in federated personalization. In NeurIPS 2020
Workshop on Scalability, Privacy, and Security in Federated Learning, 2020.

[197] A. Lowy and M. Razaviyayn. Output perturbation for differentially private convex
optimization with improved population loss bounds, runtimes and applications to
private adversarial training. arXiv preprint arXiv:2102.04704, 2021.

[198] A. Lowy, S. Baharlouei, R. Pavan, M. Razaviyayn, and A. Beirami. A stochastic
optimization framework for fair risk minimization. arXiv preprint arXiv:2102.12586,
2021.

[199] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word
vectors for sentiment analysis. In Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, 2011.

[200] H. Mahdavifar, A. Beirami, B. Touri, and J. S. Shamma. Global games with noisy
information sharing. IEEE Transactions on Signal and Information Processing over
Networks, 2018.

[201] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-SVMs for object
detection and beyond. In International Conference on Computer Vision, 2011.

[202] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh. Three approaches for personalization
with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

[203] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient
descent. In Advances in Neural Information Processing Systems, 1999.

[204] J. L. Massey. Guessing and entropy. In IEEE International Symposium on Information
Theory, 1994.

[205] A. Maurer and M. Pontil. Empirical bernstein bounds and sample variance penal-
ization. arXiv preprint arXiv:0907.3740, 2009.

[206] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.

263



Communication-efficient learning of deep networks from decentralized data. In
International Conference on Artificial Intelligence and Statistics, 2017.

[207] H. B. McMahan and M. J. Streeter. Adaptive bound optimization for online convex
optimization. In Conference on Learning Theory, 2010.

[208] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas.
Communication-efficient learning of deep networks from decentralized data. In
International Conference on Artificial Intelligence and Statistics, 2017.

[209] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas.
Communication-efficient learning of deep networks from decentralized data. In
International Conference on Artificial Intelligence and Statistics, 2017.

[210] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning differentially pri-
vate recurrent language models. International Conference on Learning Representations,
2018.

[211] A. K. Menon, A. S. Rawat, S. J. Reddi, and S. Kumar. Can gradient clipping mitigate
label noise? In International Conference on Learning Representations, 2020.

[212] N. Merhav. List decoding—Random coding exponents and expurgated exponents.
IEEE Transactions on Information Theory, 2014.

[213] I. Mironov, K. Talwar, and L. Zhang. Rényi differential privacy of the sampled
gaussian mechanism. arXiv preprint arXiv:1908.10530, 2019.

[214] J. Mo and J. Walrand. Fair end-to-end window-based congestion control.
IEEE/ACM Transactions on Networking, 2000.

[215] M. Mohri, G. Sivek, and A. T. Suresh. Agnostic federated learning. In International
Conference on Machine Learning, 2019.

[216] K. Muhammad, Q. Wang, D. O’Reilly-Morgan, E. Tragos, B. Smyth, N. Hurley,
J. Geraci, and A. Lawlor. Fedfast: Going beyond average for faster training of
federated recommender systems. In International Conference on Knowledge Discovery
& Data Mining, 2020.

[217] B. Mukhoty, G. Gopakumar, P. Jain, and P. Kar. Globally-convergent iteratively
reweighted least squares for robust regression problems. In International Conference
on Artificial Intelligence and Statistics, 2019.

[218] M. C. Mukkamala and M. Hein. Variants of rmsprop and adagrad with logarithmic
regret bounds. In International Conference on Machine Learning, 2017.

[219] H. Namkoong and J. C. Duchi. Variance-based regularization with convex objec-
tives. In Advances in Neural Information Processing Systems, 2017.

[220] T. Nandagopal, T.-E. Kim, X. Gao, and V. Bharghavan. Achieving mac layer fairness
in wireless packet networks. In International Conference on Mobile Computing and
Networking, 2000.

[221] M. J. Neely, E. Modiano, and C.-P. Li. Fairness and optimal stochastic control for
heterogeneous networks. IEEE/ACM Transactions On Networking, 2008.

264



[222] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approxima-
tion approach to stochastic programming. SIAM Journal on Optimization, 2009.

[223] M. Nouiehed, M. Sanjabi, T. Huang, J. D. Lee, and M. Razaviyayn. Solving a class
of non-convex min-max games using iterative first order methods. In Advances in
Neural Information Processing Systems, 2019.

[224] I. Olier, N. Sadawi, G. R. Bickerton, J. Vanschoren, C. Grosan, L. Soldatova, and
R. D. King. Meta-qsar: a large-scale application of meta-learning to drug design
and discovery. Machine Learning, 2018.

[225] D. M. Ostrovskii, A. Lowy, and M. Razaviyayn. Efficient search of first-order
nash equilibria in nonconvex-concave smooth min-max problems. arXiv preprint
arXiv:2002.07919, 2020.

[226] R. K. Pace and R. Barry. Sparse spatial autoregressions. Statistics & Probability
Letters, 1997.

[227] E. Pee and J. O. Royset. On solving large-scale finite minimax problems using
exponential smoothing. Journal of Optimization Theory and Applications, 2011.

[228] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word repre-
sentation. In Empirical Methods in Natural Language Processing, 2014.

[229] V. Pichapati, A. T. Suresh, F. X. Yu, S. J. Reddi, and S. Kumar. Adaclip: Adaptive
clipping for private sgd. arXiv preprint arXiv:1908.07643, 2019.

[230] K. Pillutla, S. M. Kakade, and Z. Harchaoui. Robust aggregation for federated
learning. arXiv preprint arXiv:1912.13445, 2019.

[231] F. Prost, H. Qian, Q. Chen, E. H. Chi, J. Chen, and A. Beutel. Toward a better trade-
off between performance and fairness with kernel-based distribution matching.
arXiv preprint arXiv:1910.11779, 2019.

[232] Q. Qi, Z. Guo, Y. Xu, R. Jin, and T. Yang. A practical online method for distribu-
tionally deep robust optimization. arXiv preprint arXiv:2006.10138, 2020.

[233] Q. Qi, Y. Xu, R. Jin, W. Yin, and T. Yang. Attentional biased stochastic gradient for
imbalanced classification. arXiv preprint arXiv:2012.06951, 2020.

[234] B. Radunovic and J.-Y. Le Boudec. A unified framework for max-min and min-max
fairness with applications. IEEE/ACM Transactions on Networking, 2007.

[235] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ, S. Kumar, and
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