
VeriISLE: Verifying Instruction Selection in Cranelift

Monica Pardeshi

CMU-CS-23-126

July 2023

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Fraser Brown (Advisor)

Bryan Parno

Submitted in partial fulfillment of the requirements for
the degree of Master of Science.

Copyright © 2023 Monica Pardeshi

Research credits: AAUW Selected Professions Fellowship

Abstract

Language-level guarantees—like runtime isolation for WebAssembly (Wasm) modules—are
only as strong as the compiler that produces a final, native-machine-specific executable. The
process of lowering language-level constructions to ISA-specific instructions can introduce
subtle bugs that violate security guarantees. In this paper, we present VeriISLE, a system for
lightweight, modular verification of instruction-lowering rules within Cranelift, a production
retargetable Wasm code generator. We use VeriISLE to verify lowering rules that cover
WebAssembly 1.0 support for integer operations in the ARM aarch64 backend. We show
that VeriISLE can reproduce 3 known bugs (including a 9.9/10 severity CVE), identify 2
previously-unknown bugs and an underspecified compiler invariant, and help analyze the root
causes of a new bug.

Keywords: Lightweight verification, SMT solvers, Cranelift, instruction selection, WASM

Acknowledgments

This project would not have been possible without the support of my advisor, Prof.
Fraser Brown. I would like to thank her for her constant encouragement and patience, and
for sharing her wealth of experience in bug finding, program verification, and SMT solvers.
I would also like to thank Prof. Alexa VanHattum for her mentorship, code review, and
lightning fast responses to the many questions I had during this project. I am grateful for
Prof. Adrian Sampson’s clever design suggestions. Special thanks to Dr. Chris Fallin, Nick
Fitzgerald, Jamey Sharp, and Trevor Elliott for helping me understand ISLE and providing
feedback on VeriISLE. It’s exciting when industry professionals share the same level of interest
in a research project as the researchers!

I would also like to thank Prof. Justine Sherry and Ranysha Ware for allowing me to
help with one of their projects as an undergrad. Although I’m not doing networks research
anymore, I am thankful for the opportunity to explore the area. I probably wouldn’t have
continued to security research if I hadn’t had this experience.

Finally, I would like to thank my friends and family for always listening and supporting
me. The last year wouldn’t have been possible without you!

iii

Contents

1 Introduction 1

2 Background 3

3 VeriISLE Design 7

4 Evaluation 14

5 Related Work 21

6 Future Work 23

7 Conclusion 24

Bibliography 25

iv

1
Introduction

WebAssembly [36] (Wasm) is a portable bytecode format originally designed for the browser,
with three main goals: safety, speed, and portability. Wasm’s machine-independent but
low-level semantics make compilation and execution fast on any platform; its type system
and bounded memory regions work together to prevent programs from reading or writing
data outside of their own heap (their sandbox). This isolation guarantee is essential when
users interact with the web, because each click leads to untrusted code.

Isolation has made Wasm popular beyond the web, too. Edge cloud services from Cloud-
flare [43], Vercel [71], and Fastly [61], for example, run users’ Wasm code on geographically
distributed content delivery networks. To improve startup time, these Wasm-based services
can co-locate different untrusted code modules within the same process ; Wasm’s lightweight
isolation enforcement takes the place of more traditional, costly process- or VM-based
isolation.

Unlike a process or VM, however, Wasm’s safety guarantee relies on the correctness of
the underlying compiler. The compiler inserts dynamic checks that confine a module to its
own memory region before generating native code for that module. Code generation, then, is
a pillar of every Wasm-backed system’s trusted compute base: almost any miscompilation,
however seemingly benign or rare, could be exploited to produce code that bypasses Wasm’s
security guarantees [31, 24, 22, 23]. Code generation bugs can let malicious Wasm code steal
data from—or corrupt the execution of—completely unrelated modules or the host runtime
itself.

As one example, a code generation CVE1 in Cranelift [17], a compiler backend used in
several industrial Wasm runtimes, permitted this kind of sandbox escape [25]. The bug was in
Cranelift’s x86-64 instruction selection, which uses addressing modes to implement complex
address computations with a single instruction. x86-64 addressing modes can apply small
left shifts, so a single movl instruction is enough to implement code like the following Wasm
snippet:

1 (i32.load (i32.shl (local.get x) (i32.const 3)))

To lower this code to x86-64, Cranelift must convert 32-bit Wasm addresses into offests from
an instance’s base address in the target machine’s 64-bit address space. This conversion
requires zero-extending the 32-bit Wasm address, computing the 64-bit address as base+

zext(addr) (where addr is the original 32-bit Wasm address, base is the base address for
the module’s memory region, and zext is a zero-extension). Unfortunately, the Cranelift

1“Common Vulnerabilities and Exposures”, a designated list of publicly disclosed security bugs.

1

instruction selector lowered the above Wasm code to x86-64 instructions that computed
base+zext(x)<<3 instead of base+zext(x<<3). This mistake lets attackers break out of the
Wasm sandbox by giving them access to an extra 3 significant bits of native address space.
In Wasmtime [18], a popular Wasm engine that uses Cranelift, this allows a guest Wasm
instance to silently read and write memory 6 to 34 GB away from its own sandbox. Clearly,
even simple bugs in instruction selection can create security vulnerabilities.

Instruction selection is hard to get right because it bridges the (large) semantic gap
between the compiler’s intermediate representation (IR) and the processor’s instruction set
architecture (ISA). While some instruction-lowering rules are simple—essentially one-to-one
translations from an IR construct to an equivalent ISA instruction—others are not. They
perform complex transformations to eke out instruction-level performance improvements;
account for operators that exist in either the IR or the ISA—not both; and select different
ISA instructions based on details of IR operations (e.g., their bit-widths).

To help compiler developers automatically reason about the correctness of their instruction-
lowering rules, we present VeriISLE. VeriISLE verifies rules written in Cranelift’s ISLE
domain-specific language (DSL) for specifying how IR terms translate to machine code
sequences. To use VeriISLE, developers annotate their ISLE lowering rules with specifications;
VeriISLE uses a Satisfiability Modulo Theories (SMT) solver [11] to automatically verify full
functional equivalence—i.e., that a rule translates an IR instruction to a native code sequence
with equivalent semantics. VeriISLE allows developers to gradually annotate new rules, and
to quickly update annotations as rules evolve. This modularity is essential because Cranelift
is an evolving production compiler: lowering rules—and entire backends!—are subject to
change. To our knowledge, our work with VeriISLE is the first formal verification effort for
the instruction-lowering phase of an efficiency-focused production compiler.

In sum, in this paper, we:

1. Create VeriISLE, a framework for verifying instruction-lowering rules in ISLE.

2. Verify Cranelift’s implementation of all integer operations in the latest major We-
bAssembly release—1.0 [66]—for the ARM aarch64 Instruction Set Architecture (ISA).

3. Use VeriISLE to reproduce and detect previously-fixed bugs (§4.0.3) and vulnerabilities
(§4.0.3), including the example bug from this section.

4. Use VeriISLE to help Cranelift developers identify (§4.0.4, §4.0.4) and fix (§4.0.4) new
bugs and under-specified compiler invariants (§4.0.4).

We begin by introducing background on instruction lowering and the ISLE DSL (§2.0.1). Then,
we present VeriISLE’s design (§3), and evaluate its results on Cranelift (§4), a production
Wasm compiler backend. Finally, we discuss plans to build on VeriISLE towards fully-verified
Wasm compilers (§6).

2

2
Background

This section provides background for understanding VeriISLE verification (§3) by describing
the instruction lowering problem (§2.0.1) and Cranelift’s ISLE domain-specific language
(DSL) for writing lowering rules (§2.0.3). Finally, it introduces SMT solvers [11], the tools
that power the VeriISLE verification engine (§2.0.4).

2.0.1 Instruction Lowering

During instruction lowering, an instruction selector translates the compiler’s intermediate
representation (IR) to machine instructions. The instruction selector’s job is to search for a
combination of machine instructions that (1) matches the IR’s semantics and (2) performs
well. A single-pass selector that emits a fixed set of instructions for every IR operator fulfills
the first goal but not the second: it allows translations of one IR instruction to N machine
instructions, but not more efficient N -to-M translations. This design, for example, precludes
compiling a program with addition and multiplication operations to machine code that uses
a fast multiply-add (madd) instruction.

Most modern instruction selectors do support more general N -to-M matching; in fact, a
good instruction selector often embodies a good pattern matcher. It detects arrangements of
multiple operators in the IR that can be translated, together, into machine instructions. In
full generality, this is an NP-hard combinatorial search problem; as a result, most production
compilers use heuristic shortcuts for practicality (e.g., greedy pattern matching, as in the
“maximal munch” scheme [20]).

More complex ISAs and ISA extensions yield more complex matching strategies. For
an extreme example, bit-permutation and swizzling instructions vary widely across ISAs,
and lowering of a general permutation operator sometimes requires a “solver”—or at least a
bevy of heuristic special cases to produce good code [65, 55, 70]. This is part of what makes
instruction selection (and instruction selection verification!) interesting: it is not simply the
task of mapping mostly-equivalent operators, like translating IR addition to the machine’s
integer addition instruction. The most subtle reasoning—and many bugs—occur when there
is a large semantic gap between the IR and ISA, and when producing efficient machine code
is a first-order priority [75, 53].

Production compilers today use a mix of hand-written and DSL-based descriptions of
their instruction lowering rules: e.g., LLVM [46] has a 46K-line C++ file specifying x86-64

lowerings, while the Go compiler uses a term-rewriting DSL where developers can specify
expression-tree patterns [35]. In this paper, we focus on the Cranelift compiler’s lowering

3

DSL.

2.0.2 The ISLE lowering DSL

The Cranelift compiler project [17] introduced the ISLE (Instruction Selection Lowering
Expressions) DSL [32, 3, 33] in 2021 in order to replace handwritten instruction-lowering
code with declarative patterns. ISLE is broadly a term-rewriting system [29, 72]. In the next
sections, we give a brief overview, and then walk through an example of instruction lowering
in ISLE.

ISLE’s term rewriting for lowering

The main body of a program in ISLE consists of a series of rules. These rules are written
in S-expression syntax and consist of a left-hand side (LHS) and right-hand side (RHS).
The LHS is a pattern, and can use pattern-matching operators such as wildcards, variable
captures, or destructuring (matching a term and then feeding its arguments to sub-patterns).
The RHS is an expression consisting of a tree of terms, possibly using variables captured
from the LHS. A rule indicates that the RHS expression is produced whenever the instruction
selector encounters a term tree matching the LHS.

To express instruction lowering as term rewriting, ISLE introduces a top-level term lower

that takes an expression tree as its argument. For example, to lower an integer add operator
(iadd) to the add instruction in the ISA (e.g., x86-64 or aarch64), one would write:1

1 (rule (lower (iadd ty x y)) (isa_add ty x y))

where iadd is defined in Cranelift IR and isa_add is defined amongst all available machine
instructions in the ISA.

ISLE has a strict, static type system that operates on types defined in ISLE (some of
which are external, Cranelift-defined types, such as Rust enums for instructions’ opcodes).
Nested terms on both the left- and right-hand sides must type check (i.e., with return and
argument values aligned). In addition, the left- and right-hand side of a rule must have the
same type.

Because of the type system’s restrictions, Cranelift expresses all lowerings as rewrites
from (lower (IR_operator ...)) to term trees representing machine code expressions,
potentially passing through multiple intermediate terms. The term lower is necessary
because the LHS and RHS of a rule must have the same type—but top-level LHS patterns
return IR Insts, while top-level RHS expressions return machine Registers. lower, with
type signature (decl lower (Inst)Reg),2 does the Inst to Register conversion that allows
lowerings rules to type check by giving the LHS and RHS the same type.

Finally, ISLE’s type system supports automatic type conversions. In the iadd example,
such conversions apply to x and y, which are variables of type Value bound by the left-hand
side of the rule. The RHS, in contrast, operates on x and y Registers. To reconcile these
incompatible types, the ISLE compiler automatically inserts type conversions if a conversion

1Slightly simplified for clarity; real rules differentiate on the values’ types.
2We elide an indirection via another type for clarity.

4

rule has already been specified for a pair of types. In this case, ISLE wraps the latter uses of
x and y with the user-defined term put_in_reg, which converts Values to Regs.3

2.0.3 ISLE by example: lowering rotations

In this section, we walk through Cranelift’s lowerings for a few specific instructions; this sets
us up to verify such lowerings in the next section (§3).

Consider the Wasm rotl and rotr (“rotate”) binary numeric instructions, which shift
the bits of a value left or right with wraparound. Cranelift has corresponding rotl and rotr

IR operations. The ARM aarch64 ISA has a single implementation of rotate—ROR—which
has a corresponding ISLE term named a64_rotr that includes an additional parameter to
specify the 64-bit or 32-bit variants of the instruction.

A simple attempt at lowering rotr instructions to the ARM aarch64 backend might look
like this:

1 (rule (lower (rotr x y)) (a64_rotr I64 x y))

This rule lowers to the 64-bit variant (I64) of a64_rotr. It works properly for 32- and 64-bit
values, but not for narrower values (e.g., 8-bit values). This is because Cranelift operates on
narrow values of w bits by placing them in 64-bit registers but considering only their lowest
w bits to be meaningful. To see how the above rule is broken for 8-bit values, imagine it
matching in a situation where x is #b00000001. Placing this value in a 64-bit register and
attempting to right-shift it by one moves the right-most 1 bit to the highest bit of 64—not
the expected result of 64 bits with #b10000000 as the lowest eight!

Cranelift must instead special-case on narrow values:

1 (rule

2 (lower (has_type (fits_in_16 ty) (rotr x y)))

3 (small_rotr ty (zext32 x) y))

This rule uses external helper terms has_type and fits_in_16 to predicate this rule only
on narrow types; if ty is larger than 16-bits, the rule will not match. The helper terms
are defined externally from ISLE, in Rust code that returns the value’s type (has_type)
and checks the type against the integer sixteen (fits_in_16), respectively. This rule also
abstracts over types (lowering the burden on the compiler engineer): the rule binds a new
variable, ty, to the type of the return value of rotr, and passes ty through as an argument
to the right-hand side.

The rotate rule also uses an intermediate term, small_rotr. small_rotr only ever exists
in ISLE—not in the resulting machine code—and is an intermediate step along the path
to a final machine code representation. Intermediate terms like small_rotr let developers
share logic across many different rules. As one example, Cranelift’s rotl (rotate left) rule for
narrow inputs also uses small_rotr. The compiler uses a small_rotr with a negated rotate
amount because ARM does not have a distinct rotate left instruction:

1 (rule

2 (lower (has_type (fits_in_16 ty) (rotl x y)))

3 (let ((neg_amt Reg (a64_sub I32 (zero) y)))

3We describe the semantics of put_in_reg in §3.0.1.

5

4 (small_rotr ty (zext32 x) neg_amt)))

This rule is the same as the previous one with two additions. First, it uses a let clause to
include another ISA instruction: an ARM a64_sub subtraction instruction, negating the
value y by computing 0 − y. Second, the rule wraps x on the right-hand side with a call
to zext32, which zero-extends (that is, left-pads with zeros) the value of x up to 32 bits.
Finally, to lower small_rotr to ISA-level operations, the Cranelift ISLE rules specify that
narrow rotates can be composed of aarch64-native left shift and right shift instructions (not
pictured). Thus, these ISLE rules lower a single IR instruction to multiple machine code
instructions (a64_sub followed by shift and bitwise or instructions).

2.0.4 Satisfiability Modulo Theories (SMT)

To verify lowering rules written in ISLE, VeriISLE uses an SMT solver [28]. SMT solvers are
tools that determine whether logical formulas are satisfiable for some assignment of values to
variables.

Unlike SAT formulas [56], SMT formulas allow users to express higher-level statements
(e.g., “x < y[2]”) using a rich set of operators and types (e.g., integers and arrays) that are
defined in the SMT-LIB standard [11]. VeriISLE lowers ISLE rules to SMT formulas in the
theory of bitvectors and integers; we discuss this further in the next section.

6

3
VeriISLE Design

VeriISLE is a framework for verifying rewrite rules in the ISLE domain-specific language for
instruction selection. VeriISLE uses an SMT solver [28] to show functional equivalence of the
left- and right-hand sides of individual rules.1 An equivalent left and right side mean that
the rule has preserved IR semantics at the machine-code level; a differing left and right side
indicate a bug in the lowering.

To verify their lowering rules, compiler developers write annotations on ISLE terms in
VeriISLE’s annotation language (§3.0.1). This language makes it simple to express term
semantics (e.g., that fits_in_16 means that a type can losslessly be represented with 16 bits).
VeriISLE consumes ISLE’s program representation for rules, combines this with the compiled
annotations to create its own intermediate representation, and performs type inference (§3.0.1).
Type inference is necessary for VeriISLE to lower its IR to an SMT formula, a logical formula
that asks whether a rule’s right and left-hand sides are equivalent. Finally, VeriISLE feeds
the resulting formula into the SMT solver. If the right and left-hand sides of a rule differ, the
solver returns a counter-example showing a set of inputs that cause the divergence; otherwise,
the rule is verified.

In this section, we walk through the verification pipeline, from VeriISLE’s annotation
language (§3.0.1) to how it constructs and customizes verification conditions (§3.0.2).

3.0.1 The annotation language

It is impossible to verify functional correctness without precise semantics on terms within
ISLE. While there are formal semantics for certain ISAs (e.g., ARM [4] and Intel [27]), there
are no semantics for Cranelift’s intermediate representation—or for ISLE helper terms (e.g.,
has_type) and intermediate terms (e.g., small_rotr). The challenge in specifying these
semantics is that production compilers are living software: engineers change rules, add rules,
and occasionally add entire new back-ends. To support modular verification of an evolving
codebase, VeriISLE introduces an annotation language that allows rule authors to define
specifications as they go, introducing a term’s semantics inline, next to the term itself.

For example, consider our VeriISLE annotation on the helper term fits_in_16:2

1 (spec (sig (args arg) (ret))

2 (provide (= ret arg))

1Though VeriISLE supports more general custom verification conditions, as we will describe later in this
section.

2ISLE terms and specification syntax lightly edited for clarity and brevity.

7

⟨annot⟩ ::= (‘spec’ ⟨sig⟩ (‘provide’⟨ex ⟩+) (‘require’⟨ex ⟩+))

⟨sig⟩ ::= (‘sig’ (args ⟨bound⟩+) (⟨bound⟩))

⟨bound⟩ ::= (⟨ident⟩ ‘:’ ⟨type⟩)

⟨type⟩ ::= ‘bv’ | ‘bv’ ⟨int⟩ | ‘Int’ | ‘Bool’

⟨width⟩ ::= ⟨int⟩ | ⟨ex ⟩

⟨const⟩ ::= ‘true’ | ⟨int⟩ | ...

⟨ex ⟩ ::= ⟨ident⟩ | ⟨const⟩ | ⟨encoding⟩ ⟨ex ⟩+
| (⟨unop⟩ ⟨ex ⟩) | (⟨binop⟩ ⟨ex ⟩ ⟨ex ⟩)
| (⟨conv⟩ ⟨width⟩ ⟨ex ⟩) | (‘extract’ ⟨int⟩ ⟨int⟩ ⟨ex ⟩)
| (‘int2bv’ ⟨width⟩ ⟨ex ⟩) | (‘bv2int’ ⟨ex ⟩)
| (‘widthof’ ⟨ex ⟩) | (‘concat’ ⟨ex ⟩+)
| (‘if’ ⟨ex ⟩ ⟨ex ⟩ ⟨ex ⟩) | (‘switch’ ⟨ex ⟩ (⟨ex ⟩ ⟨ex ⟩)+)

⟨unop⟩ ::= ‘!’ | ‘~’ | ‘-’ | ...

⟨binop⟩ ::= ‘+’ | ‘-’ | ‘=’ | ‘<=’ | ...

⟨conv⟩ ::= ‘sign_ext’| ‘zero_ext’ | ‘convto’

⟨encoding⟩ ::= ‘cls’ | ‘clz’ | ‘rev’ | ‘subs’ | ‘popcnt’

Figure 3.1: VeriISLE’s annotation language, which combines SMT-LIB constructs with conveniences
(e.g., switch) and VeriISLE-specific constructs (e.g., convto and widthof).

3 (require (<= arg (16: Int))))

4 (decl fits_in_16 (Type) Type)

This specification says that fits_in_16 is a partial identity function on the argument type
Type—that is, for the arguments on which fits_in_16 is defined, it returns the argument
itself. The function is specified by the provide clause (= ret arg), which sets the return
value equal to the first argument; both variables are bound in the spec signature. require
clauses specify a preconditions on the term. This precondition specifies that the rule is
a partial function predicated on (<= arg (16:Int))—the fact that the argument, which
VeriISLE maps to the SMT-LIB theory of integers, is less than or equal to 16. In ISLE,
partial functions are used to determine whether a rule matches: if any term on the left-hand
side is undefined, the rule does not match. In sum, these three lines of specification are
enough to describe the semantics of fits_in_16: it is a partial identity function that returns
the type argument arg, which matches if arg is under sixteen bits.

The annotation language grammar and semantics

Figure 3.1 shows the VeriISLE annotation language grammar. Most operations in the
annotation grammar map directly to SMT-LIB constructions. For example, + applied to a
bitvector maps to SMT-LIB’s bvadd bitvector addition function.

VeriISLE adds conveniences like switch and a variadic concat operation, both of which
desugar to folding SMT-LIB’s fixed-argument ite (if-then-else) and concat (bitvector con-

8

catenation) operators over any number of arguments. switch also adds a verification condition
that enforces that its branches are exhaustive, which has helped surface faulty annotations.

VeriISLE provides constructs for introspecting on and modifying bitvector widths. widthof
returns the width—often only known directly at solving time (§3.0.2)—of a given bitvector
value. convto changes the width of its bitvector argument with the following semantics: if the
destination width is more narrow, convto extracts the relevant bits; if the destination width
is wider, convto leaves the upper bits unspecified by concatenating a fresh SMT variable
with unrestricted bits.

VeriISLE also provides higher-level versions of SMT-LIB constructs. For example, SMT-
LIB rotates must have statically-provided widths; VeriISLE instead offers symbolic rotates,
which it implements with shift and bitvector logic instructions. Finally, VeriISLE includes
keywords that map to custom encodings in its backend: (1) cls and clz, which count the
number of leading sign and zero bits, respectively (§4.0.3), (2) rev, which reverses the order
of bits, (3) subs, which performs subtraction-with-flags, and (4) popcnt, which counts the
number of 1 bits.

provide blocks specify the semantics of a term, typically by relating the returned value
bound in the specification to one or more of the arguments. require blocks specify precondi-
tions, which are assumed when a term is used on the left-hand side of a rule but checked—that
is, verified to hold—when a term is used on the right-hand side of a rule. This is analogous
to more traditional Hoare-style verification [38, 9], where function preconditions may be
assumed within the body of a function but must be checked at function call site.

For example, small_rotr requires that the amount being rotated has been zero-extended
from the narrow starting width to the full 64 bits of the register. This can be specified as:

1 (require (switch (ty)

2 ((8: Int) (= (extract 63 8 x) (0:bv)))

3 ((16: Int) (= (extract 63 16 x) (0:bv)))))

This require clause say that the type ty is 8 or 16, and that the relevant bits beyond
index ty have been zero-extended. This must be proven true for a term that uses small_rotr
on the right-hand side, but is assumed true for terms that rewrite from a small_rotr on the
left-hand side.

The annotation language type system

Types in VeriISLE are integers, booleans, and bitvectors. The VeriISLE annotation language
must support polymorphism over bitvector widths, since most of Cranelift’s ISLE rules
operation on its Value type, which is polymorphic over integer values in the Cranelift
intermediate representation. (§2.0.3).

For example, during preprocessing, ISLE automatically inserts put_in_reg to implicitly
convert Cranelift IR Values to machine code Regs—and because Values vary in width,
VeriISLE’s annotation language must provide a polymorphic type signature to put_in_reg.
In other words, put_in_reg must reconcile the potentially narrow Value with the 64-bit Reg.
VeriISLE’s put_in_reg annotation uses convto to reinterpret the polymorphic bitwidth of
the argument as 64 bits:

1 (spec (sig (args arg) (ret))

9

2 (provide (= (convto (64: Int) arg) ret)))

3 (decl put_in_reg (Value) Reg)

Type inference

The annotation language supports polymorphism over bitvector types, but its target represen-
tation does not: all bitvector operations in SMT-LIB operate on fixed-width bitvectors [60].
Therefore, VeriISLE must transform its high-level intermediate representation, which allows
polymorphic bitvector types, into several SMT formulas, each over a different set of bitvector
widths. VeriISLE uses two passes of type inference to determine those widths. The first
inference pass produces an assignment of SMT types (e.g., bitvector) for each variable in a
term or its specification. The second pass resolves the bitvector widths.

First pass First, VeriISLE runs a variant of classic unification-based type inference [54]
in order to rule out type errors between annotations. This first pass yields an SMT type
(kind)—either an integer, boolean, or bitvector—for each variable in both the specification
and the term it describes. The first pass, however, does not necessarily resolve the width of
each bitvector.

VeriISLE is not always able to resolve types via the first unification pass because types
in ISLE are polymorphic at the time ISLE generates Rust for code generation (e.g., the
type Value does not have a specific width when ISLE is being processed). For example, the
width of the value of small_rotr depends on the value of an argument passed in, ty. Thus,
VeriISLE finishes resolving bitwidths in a second typing pass.

Second pass During the second type inference pass, VeriISLE uses an SMT solver to resolve
unknown bitvector widths. This pass takes terms and their specifications as input, along with
the types that the first inference pass resolved. It models bitvectors as an over-approximation
of their width (i.e., with bitwidth 64) and uses integer SMT variables to model the widths of
each subexpression.

For each rule, we provide a set of possible type instantiations for the root left-hand
side term (that is, a set of possible types for the argument and return values, based on
Cranelift semantics). For example, for a simple Cranelift IR type such as iadd, the set of
type instatiations is (t, t) → t for t in {i8, i16, i32, i64} (e.g., (i8, i8) → i8).

For a more complicated term that involves modifying the Cranelift IR width of the input
and output, we consider a wider set of instantiations. For example, for extending values, we
consider multiple output types per argument type:

s → d
for s in {i8, i16, i32, i64}

for d in {i8, i16, i32, i64} if d ≥ s
Most terms on the right-hand side of Cranelift’s ISLE rules operate on types modeling

registers, instead of values in the intermediate representation. Cranelift’s invariant for narrow
types placed in registers is that low bits are defined and high bits are undefined, so we encode
registers as 64-bit bitvectors with potentially-unspecified high bits.

10

For most rules, this second pass produces a single possible type assignment. For some
rules, there are multiple valid type assignments—in this case, we continue the verification
process until the SMT solver says there are no more unique possible type assignments (similar
to counter-example guided inductive synthesis [1]).

3.0.2 Generating verification conditions

Once VeriISLE has run type inference—yielding a low-level, typed intermediate representation—
it can lower that representation to an SMT formula(s) that expresses equivalence of the right
and left-hand sides of a lowering rule. When VeriISLE invokes the solver on the formula,
there are three possible outcomes:

1. Success: the rule is verified.

2. Failure with counterexample: the rule is broken, and the solver provides a set of
inputs that exposes the bug, formatted in ISLE surface syntax.

3. Rule inapplicable: for the given type instantiation, the rule does not match. This
indicates that the rule contains predicates on the left-hand side—or guarded if/if-let
clauses (see §4.0.4)—such that the rule never matches on this type instantiation.

To produce these 3 outcomes, VeriISLE uses (at least) two additional SMT queries. The first
query determines if the rule is applicable by querying the solver to see if there exists a model in
which all the necessary preconditions hold; if not, VeriISLE produces a Rule inapplicable

result. The second query determines whether the lowering rule preserves equivalence; if so,
Success, and if not, Failure with counterexample.

For each query, VeriISLE’s formula for a given rule combines the semantics and precondi-
tions of Cranelift IR terms, ISA terms, and external and intermediate terms—all provided by
annotations—with the semantics of the ISLE language itself (e.g., if-let and other language
constructs). VeriISLE combines semantics across term annotations via a recursive descent
over the rule’s RHS and LHS, equating corresponding arguments and return values.

The first query: applicability

Let i0 . . . in−1 be input variables in the LHS of a rule, ALHS be the set of SMT variables
generated by the recursive descent on the LHS (and analogously RHS), PLHS and RLHS be
the set of provide and require predicates in all annotations on the LHS (and analogously
RHS). A rule is applicable if there are some inputs such that the LHS and RHS are both
defined:

∃{i0, . . . , in−1} ∪ ALHS ∪ ARHS|PLHS ∧ RLHS ∧ PRHS ⌊3.1

Recall that this query does not ask about equivalence; it asks whether the rule applies at all, to
at least one input. Including the RHS SMT variables (ARHS) and provide expressions (PRHS)
in this initial query helps catch overly restrictive annotations. For instance, a vacuously false
assertion in a provide annotation on the RHS should make the rule fail the applicability
check (otherwise, the next step would be unable to find any counterexamples—because in

11

first order logic, false implies anything). Including PRHS in the query makes such a rule fail
at the applicability check.

The optional model distinctness check The applicability check succeeds as long as at
least one assignment of input terms is applicable—even if there is just one set of applicable
inputs. VeriISLE implements an optional check that looks for distinct input sets (i.e., checks
that multiple SMT models are feasible in which every bitvector input term is distinct).
VeriISLE creates a formula that asserts that each bitvector input differs from the one in the
original model; if the query is unsatisfiable, there is only one set of matching inputs. This
check identified a previously unknown bug where an ISLE rule never fired in practice (§4.0.4).

The second query: equivalence

If the first query succeeds, VeriISLE constructs another SMT query to determine equivalence.
Let retLHS be the value returned by the outermost LHS term and retRHS be the value
returned by the outermost RHS term. A rule is correct if assuming (1) the semantics of the
LHS and RHS terms and (2) preconditions of the LHS implies (1) the equivalence of the LHS
and RHS and (2) preconditions on the RHS terms:

∀{i0, . . . , in−1} ∪ ALHS ∪ ARHS|
(PLHS ∧RLHS ∧ PRHS) ⇒ (retLHS = retRHS) ∧RRHS ⌊3.2

To convert this statement to an SMT query, VeriISLE plays the standard trick of asking
if there are counterexample inputs such that the verification conditions do not hold (by
switching the quantifier to an existential and negating the implication).

Verification conditions for narrow widths ISLE’s type system itself conveys to VeriISLE
which bits are demanded to produce the right verification conditions. For many rule and
type instantiation pairings, the expression retLHS (the returned value from the outermost
LHS term) has a width narrower than 64 bits. The RHS, however, typically operates on
register-width values with 64 bits. In such cases of mis-matched widths, the condition
VeriISLE verifies aligns with Cranelift IR’s intended invariant: that the lower bits of the
register are equivalent to the Cranelift IR semantics on the narrow width. We implement this
condition in VeriISLE by adding an annotation on the output_reg term, which the ISLE
preprocessor inserts as an automatic type conversion:

1 (spec (sig (args arg) (ret))

2 (provide (= ret (convto (widthof ret) arg))))

3 (decl output_reg (Reg) InstOutput)

The convto in this annotation narrows the bits of Reg in consideration to the bit demanded
by the width of the InstOutput (which models the potentially narrow Cranelift IR type).

Optional custom verification conditions and assumptions Some compiler transfor-
mations intentionally break strict equivalence. For example, Cranelift attempts to rewrite
comparisons that include a statically-known argument to prefer an even integer immediate:

12

as a mathematical identity, A ≥ B + 1 → A− 1 ≥ B → A > B. This rewrite is profitable
because even values are more likely to fit in ARM64’s 12-bit immediate encodings, improving
code size.

The rule that implements this identity is closely tied to how comparisons are emitted
to machine code. On ARM, comparisons are done by a subtraction-with-flags and then
comparing those flags again the condition code for the specific comparison (in this example,
≥ vs >). The relevant rule acts on terms that that produce the ISLE type FlagsAndCC,
rather than a boolean value directly. Since the mathematical identity changes the values of
both the flags and the condition code, VeriISLE reports a verification failure on this and
similar rules.

Optionally, users can run VeriISLE with custom verification conditions instead of checking
strict bitvector equality of the LHS and RHS. In this case, VeriISLE can encode the logic that
flattens flags and a condition code into a boolean in order to prove that the boolean result
of the comparison maintains equivalence. Users can also provide VeriISLE with additional
assumptions on input values, which we use to encode cases where a rule would not match
due to ISLE’s priority semantics.

3.0.3 Implementation and trust model

VeriISLE is implemented 15,825 lines3 of Rust as a fork of the Wasmtime codebase.4 We
run VeriISLE queries as a Rust test suite in continuous integration on our Wasmtime fork.
VeriISLE is designed to be useful to compiler engineers who are not experts in verification
tooling; VeriISLE lifts counterexamples from the SMT model back into ISLE syntax to make
debugging easier. VeriISLE can also test rules against specific concrete inputs (i.e., run as an
interpreter), allowing developers to test their annotations against their expectations (and
paving the way for future work in fuzzing VeriISLE’s annotations).

Caveats and the trusted code base VeriISLE is limited to reasoning about individual
rewrite rules written in ISLE; it reasons about correctness in instruction lowering itself, but
trusts other passes in the Cranelift compiler and Wasm runtime. Cranelift and the Wasmtime
engine invoke instruction selection after WebAssembly safety checks are inserted, but prior to
a couple final compiler stages (e.g., register allocation).5 VeriISLE also trusts the semantics
of ISLE terms as written in the annotation language (though our provide and require

distinction and concrete tests help find bad specifications). For example, we found that an
old version of VeriISLE did not require condition codes to fall into a valid range. Finally,
VeriISLE currently reasons about each rule individually. Support for verifying properties over
multiple rules (e.g., reasoning about rule priorities) is future work.

3Plus 26,465 lines for our auto-generated annotation language parser.
4Forked at commit 9556cb1.
5Cranelift also has a distinct symbolic translation validation checker for register allocation; this shows

how engineers can take an ensemble approach to applying formal methods in a production setting.

13

4
Evaluation

This section answers the following evaluation questions:

Q1 Can VeriISLE be applied to a meaningful set of ISLE rules?

Q2 For test and benchmark suites for WebAssembly and Rust, what proportion of invoked
ISLE rules has VeriISLE verified?

Q3 Can VeriISLE reproduce prior, known Cranelift bugs?

Q4 Can VeriISLE help identify and fix new bugs?

We answer Q1 by verifying a natural subset of rules, those necessary to compile integer
computations in the latest major release of WebAssembly (“1.0” [66]). Section 4.0.2 addresses
Q2—we find that the rules we verify comprise wasm-no-simd-rules of the lowering rules
invoked by the WebAssembly reference test suite.

To answer Q3, we choose two previously-discovered CVEs in ISLE rules (out of 14
Wasmtime CVEs, 10 of which do not involve ISLE); we also select an ISLE bug that was
not assigned a CVE because it affects non-Wasm types. We annotate the buggy rules and
present the counterexamples VeriISLE produces in Section 4.0.3.

Finally, in Section 4.0.4 we address Q4, outlining 3 new faults (2 patched) that VeriISLE
discovered, and 1 compiler mid-end bug that VeriISLE helped root-cause and patch. These
case studies highlight that instruction-lowering rules are error-prone even for experienced
compiler engineers: many of the issues were subtle interactions between constants, sign- and
zero- extensions, and tricky bitwidth-specific reasoning. Moreover, to our knowledge, no new
bugs have been discovered by any other means (e.g., any Cranelift fuzzers [6]) in rules verified
by VeriISLE.

Total Success Timeout Inapplicable Failure
Rules rules rules-succeeded rules-timedout rules-inapplicable rules-failed
Type Instantiations type-invs invs-succeeded invs-timedout invs-inapplicable invs-failed

Table 4.1: Verification results for rules and type instantiations (because rules match on
multiple possible types, potentially with different verification results) for integer operations
from WebAssembly 1.0 to Arm aarch64. Note that the failures all succeed with custom
(rather than bitvector equivalence) verification conditions.

14

4.0.1 Is VeriISLE applicable to real rules?

We use VeriISLE to verify the instruction-lowering rules for all integer operations1 from
WebAssembly’s 1.0 release to the ARM aarch64 backend. In addition, we verify most of the
new integer operations in WebAssembly’s 2.0 version, which is currently in draft status [67].
We choose these rules because WebAssembly uses integers for addressing computations, which
means that logical issues in integer codegen can lead to security vulnerabilities. We verify
aarch64 rules because this backend is less well-tested than x86-64. The ARM backend rules
we do not verify fall into four categories: (1) i128 types; (2) floating point; (3) SIMD (vector)
instructions; and (4) side effects and control flow. We discuss further in Section 6.

Verification requires 182 total annotations (1075 LOC). For some ISA terms, we modify
or cross-reference formal semantics from SAIL-ISLA [4, 5], a symbolic execution engine for
ISAs. For Cranelift IR and external Rust terms, we refer to WebAssembly’s specification,
Cranelift documentation, and the external Rust definitions.

In total, our verification effort covers rules distinct rules with type-invs type invocations,
since each rule is tested against 1 to 10 possible type assignments. For most rules, we consider
all Cranelift-supported integers up to 64 bits (i.e., i8, i16, u/i32, and u/i64), though we note
that WebAssembly 1.0 only supports 32-bit and 64-bit numbers. rustc_codegen_cranelift,
an alternative backend for the Rust language, uses the narrower types VeriISLE supports [58,
10].

Table 4.1 shows the verification results for all type-invs total type invocations. Recall that
the six verification failures do not represent real bugs, since the context in which they are used
does not require bitvector equivalence. With custom verification conditions, these rules verify
successfully. type-invs-term of the type-invs invocations complete, in sum, within 5 minutes
on a laptop.2 The rules-timedout-number rules that timeout on some type instantiations
contain multiplication, division, remainder, and popcnt operations on bitvectors, which are
difficult for SMT solvers to reason about for wider widths [40].3 Each of these rules fails with
a counterexample within 10 seconds if we inject a flaw in the rule logic.

4.0.2 What proportion of invoked rules has VeriISLE verified?

We instrument Cranelift to determine, on various targets, what proportion of invoked ISLE
rules VeriISLE has verified. For the WebAssembly reference test suite, VeriISLE verifies wasm-
no-simd-rules (wasm-no-simd-rules-frac) of the unique ISLE rules used during compilation.
(We use a version of the WebAssembly specification’s test suite that corresponds to the
language features in Wasm 1.0, which notably excludes SIMD instructions.) To assess our
coverage on integer types narrower than those that Wasm supports, we repeat this experiment
on the rustc_codegen_cranelift test suite, an alternative backend for the Rust compiler
that uses Cranelift as its code generator [58, 10]. Verified rules make up rust-no-simd-rules
(rust-no-simd-rules-frac) of the unique ISLE rules used during compilation. These numbers
will grow as we enhance VeriISLE to additional memory operations and floating point (§6).

1All operation defined under section “4.3.2 Integer Operations” of the WebAssembly Specification Release,
1.0

2We run experiments on a MacBook Pro Apple M2 Max, 12-core CPU, 32GB RAM, macOS 13.2.1.
3Timed out after 6 hours, run in parallel with other tests.

15

4.0.3 Can VeriISLE detect known bugs?

To answer our third question, we use VeriISLE to detect three known, recent Cranelift bugs.
We select these bugs for their severity and because they occur in ISLE rules in scope for the
current version of VeriISLE.

x86-64 addressing mode CVE

In under one second on a laptop, VeriISLE detects a 2023 CVE in x86-64 instruction lowering
that permitted a WebAssembly sandbox escape (§1) [25]. The reproduction requires 13 new
annotations to support terms in the x86-64 backend, which we had not previously covered
(§4.0.1).

The bug appeared in this ISLE rule:4

1 (rule

2 (amode_add (Amode.ImmReg off base)

3 (uextend (ishl x (iconst shft))))

4 (if (u32_lteq (u8_as_u32 shift) 3))

5 (Amode.ImmRegRegShift off base

6 (extend_reg x I64 (Extend.Zero)) shft))

This rule intends to take advantage of an x86-64 addressing mode that allows shifts to be
computed within the instruction itself, before adding together address components. However,
the core problem with this rule (§1) is that the LHS performs a shift on a 32-bit value
(throwing away any bits that are shifted left beyond 32 bits), while the RHS performs the
shift on a 64-bit value (throwing away bits shifted left beyond 64 bits), which lets the emitted
shift modify bits beyond WebAssembly’s effective address space.

To see how the problem manifests, we walk through the rule. The outermost LHS term,
amode_add, is an intermediate term that earlier rules construct to model memory address
computations that can be folded into addressing modes. The second argument of the match,
(uextend ...), is a Cranelift IR value that is a zero-extended (uxtend) shift operation (ishl)
with a statically known, constant shift amount (shft) (conceptually (i64.extend_i32_u (

i32.shl <x> (i32.const <shft>)))). The rule’s if clause checks that the shift amount,
shft, is less than or equal to 3. If all the above conditions hold and the rule matches, it
emits a single addressing mode where the value x to be shifted is zero-extended, shifted
by the static shft amount, and added to the other components of the computed address
(base + off).

VeriISLE provides the following counterexample:5

1 (amode_add

2 (Amode.ImmReg

3 [off|# x30c04100] [base|# x0000000000000000])

4 (uextend

5 (ishl [x|# xd0000920] (iconst [shft|#x02])))) =>

6 (Amode.ImmRegRegShift

7 [off|# x30c04100]

4Lightly edited for brevity
5Lightly edited for brevity.

16

8 (gpr_new [base|# x0000000000000000])

9 (extend_to_gpr [x|# xd0000920] I64 Extend.Zero)

10 [shft|#x02])

11

12 #x0000_0000_70c0_6580 =>

13 #x0000_0003_70c0_6580

In this counterexample, the 32-bit value x, #xd0000920, has the most significant bit set.
When x is shifted by the specified 2 bits to the left, the results differ on the LHS and
RHS. As expected, the LHS throws away the shifted bits after 32 bits (e.g., the higher
32 bits of #x0000_0000_70c0_6580 are zero). However, the RHS does not throw away the
shifted bits after 32 bits, allowing non-zero bits beyond the expected effective address space:
#x0000_0003_70c0_6580!

The patch for this bug simply removes the rule entirely, so we did not verify the patch
with VeriISLE.

aarch64 unsigned divide CVE (moderate severity)

VeriISLE reproduces a 2022 CVE in aarch64 instruction lowering in which divides with
constant divisors were miscompiled. In this case, trying to write annotations was enough to
highlight the root cause of the bug—that constant values, when used as divisors, were not
correctly sign- or zero-extended according to signed or unsigned division.

The ISLE rules that matched on constant divisors for both udiv and sdiv—unsigned and
signed divide—used the term imm on the RHS. imm models an immediate value that can be
encoded in a machine instruction itself, lowering both the number of instructions and register
pressure. At the time of this CVE, the ISLE signature for imm was:

1 (decl imm (Type u64) Reg)

This term’s intention was to take the immediate’s value as a u64 and place it in a register.
When trying to annotate this term and the terms for signed constant divisors, though, an
issue was immediately clear: imm provides no argument for whether narrow values should be
sign- or zero-extended. Annotating zero-extension causes signed division to fail; choosing
sign-extension causes unsigned division to fail. In practice, the external Rust implementation
sign-extended, so the bug surfaced in udiv instructions. The patched version of imm takes
in an argument for the type of extension, and the rules for udiv and sdiv now successfully
verify.6

aarch64 count-leading-sign bug

VeriISLE reproduces a pre-existing bug in the ISLE aarch64 lowering rule for cls, the
instruction that counts the number of leading sign bits in a value (excluding the sign bit
itself). The rule for narrow cls instructions must extend its input values, since Cranelift IR
supports operations on narrow types like i8 and i16, while aarch64 only supports operations
on 32- and 64-bit values. Unfortunately, the faulty version of the rule failed to properly
extend:

6Though as noted previously, VeriISLE times out on some wide divisions.

17

1 (rule

2 (lower (has_type I8 (cls x)))

3 (a64_sub_imm I32 (a64_cls I32 (zext32 x)) 24))

This rule matches on cls computations over 8-bit values. The RHS extends 8-bit x to 32 bits
using zext32, and then computes a64_cls on this wider value. Finally, it subtracts 24 bits
(32− 8) to obtain the leading bit count on the narrow type. VeriISLE reports the following
counterexample:

1 (lower (has_type I8 (cls [x|# b11111100]))) =>

2 (output_reg

3 (a64_sub_imm I32

4 (a64_cls I32 (zext32 [x|# b11111100])) 24))

5

6 #b00000101 => #b11111111

In this counterexample, the LHS correctly computes that the value #b11111100 has 5 leading
sign bits (1), excluding the sign bit itself. The RHS, however, zero-extends this value to 32
bits, then counts the new leading sign (0) to produce 23, and subtracts 24 to produce -1.
The amended version of the rule uses a sign-extend instead of a zero-extend, and VeriISLE
verifies it successfully.

4.0.4 Can VeriISLE find new bugs?

This section outlines VeriISLE’s discoveries in Cranelift so far: two bugs, both patched; a
case of imprecise semantics; and a root cause analysis.

Another addressing mode bug

VeriISLE discovered a new correctness bug in an x86-64 addressing mode rule related to the
one discussed in §4.0.3 (which was not identified by Cranelift engineers even in a subsequent
close look at addressing mode rules). This rule was identical except that it did not have an
explicit uextend (line 3 in §4.0.3)—the same bug could surface on a direct load of a 32-bit
address. Cranelift developers determined that the bug would not be triggered in practice
because on 64-bit targets, all addresses should be 64-bit typed, and frontends generate code
in this form. However, nothing in the compiler backend validated this IR invariant and the
bug could be triggered if frontend implementations changed. Cranelift engineers patched this
issue immediately after we notified them of VeriISLE’s result.

Flawed negated constant rules

VeriISLE found an issue where 3 rules were unintentionally restricted to never fire in practice.
This was a performance issue—optimizations did not apply as often as they should—but
not a correctness issue. The three buggy rules all, in various ways, attempted but failed to
find small, constant arguments that could be encoded in ARM’s imm12 encoding. This is an
optimization because it is an alternative to the more expensive option of using a separate
load-immediate instruction.

18

This is one of the buggy rules VeriISLE discovered:

1 (rule

2 (lower (has_type (fits_in_64 ty)

3 (isub x (imm12_from_negated_value y))))

4 (a64_add_imm ty x y))

The imm12_from_negated_value term matches when the second argument, after being
negated, can be encoded into ARM’s 12-bit immediate format. Matching negated constants
allows a wider range of numbers to be encoded as immediates: around 8,000 constant values
can be encoded in ARM’s imm12 (12 bits plus a shift bit)—checking for negated values as
well doubles the number of possible constants.

When run on this rule, though, VeriISLE warns that there are no distinct models—the
rule only matches one set of input values. The issue is in the (external Rust) implementation
of imm12_from_negated_value:

1 Imm12:: maybe_from ((n as i64).wrapping_neg () as u64)

In Cranelift’s IR, all constant integers are represented with Rust’s u64 type. This code takes
the constant n’s underlying u64 value, negates it, and checks if it fits into an Imm12 immediate.
Unfortunately, for any width of integer narrower than 64 bits, the only value this holds true
for is zero! This is because Cranelift has an informal invariant that when a negative narrow
value is stored as a constant, its value should be zero-extended—not sign-extended—into a
u64 representation. Negating (wrapping_neg) a zero-extended constant always produces a
64-bit value with with left-filled ones, which will always fail the check Imm12::maybe_from

because the highest bits on the 64-bit value are set.
VeriISLE discovered that, while not incorrect, this rule was useless—it never matched

in practice. Our merged fix corrects this rule to negate the narrow constant and then zero
extend it.

Imprecise semantics for constants in Cranelift IR

VeriISLE also found that Cranelift had under-specified semantics for integer constant repre-
sentations in IR. While most Cranelift front-ends zero-extend narrow constant values to 64
bits, VeriISLE found that Cranelift’s own parser for unit tests sign-extends. The issue we
filed is the site of ongoing discussion about enforcing clear semantics; since then, a fuzzer
discovered a bug in Cranelift’s mid-end optimizations caused by the same imprecise semantics.

A mid-end root cause analysis

While we designed VeriISLE for ISLE’s lowering rules, we have found that it can reason
about backend-agnostic rewrites—rewrites in the compiler “mid-end”—as well. In this case
study, VeriISLE identified the root cause of a new bug—a boolean optimization rewriting
false to true—before Cranelift engineers identified it.

A Cranelift engineer ran Souper—a superoptimizer for LLVM [57]—on a subset of Cranelift
IR and discovered that Cranelift was missing the boolean rewrite or(and(x, y), not(y)

)== or(x, not(y)). To port this to ISLE, the engineer wrote a new rule with an explicit

19

guard to check the for a bitwise-not between constants y and z:7

1 (rule

2 (simplify (bor (band x (iconst y)) (iconst z)))

3 (if (u64_eq zk (u64_not y)))

4 (bor x z))

This rule passed code review and was merged, but broke an integration test with a wasm trap

error that did not point to a root cause. Before the Cranelift engineers were able to complete
a manual investigation, we extended VeriISLE analyze this rule (e.g., added annotations for
mid-end terms) in under two hours. VeriISLE produced the following counterexample:8

1 (bor (band [x|#b1] [y|#b1]) (iconst [z|#b0])) =>

2 (bor [x|#b1] [z|#b0])

3 #b0 => #b1

VeriISLE surfaces a subtle bug related to the semantics of ISLE’s if construct. Recall
that terms in ISLE are partial functions. The semantics of ISLE’s terms with external Rust
implementations are that a match should continue if the return value is Some(...) and
should not match if any LHS term returns None. Deceptively, because the Rust external
definition of term u64_eq in the prior rule returned Some(false) instead of None (that is, the
boolean was defined, just false) this guard as written always allowed the match to proceed!

To fix this bug, Cranelift engineers re-wrote the guard to actually check for Some(true).
VeriISLE’s analysis also led Cranelift engineers to propose a longer-term solution—redesigning
semantics of if to avoid similar mistakes in the future. Finally, after the patch was in, a
Cranelift engineer said, “this would have taken me so much longer without the counterexample,
really helpful!”

This case study has a another unexpected takeaway: this bug occurred despite the
optimization being harvested from another formal-methods-based tool! While the Souper
superoptimizer is also based on the SMT theory of bitvectors, the subtle interaction between
Souper-IR and ISLE semantics could not have been caught by Souper itself. This highlights
the benefits of VeriISLE’s tight integration with ISLE’s own program representation: VeriISLE
was able to root-cause this bug because it must reason about core ISLE semantics.

7Lightly edited for clarity and brevity.
8Example truncated to 1 bit for brevity.

20

5
Related Work

Compiler verification Compiler verification research falls into two broad categories:
lightweight verification of (parts of) existing compilers using solvers (e.g., [45, 48, 47]), and
clean-slate, foundational verification using proof assistants [13] (e.g., CompCert [49, 44]).
Foundational verification provides end-to-end correctness guarantees at the cost of time and
performance: typically, such verification takes experts many years [68], and makes serious
optimizations impractical. There are manually verified lowering passes for CompCert [50]
and CakeML [69, 34], but not for production compilers that consider performance first-class.

Other works use solver-backed methods to verify portions of industrial compilers. Most
closely related to VeriISLE, Alive [52] verifies LLVM [46] peephole optimization rules written
in a DSL. Alive’s main challenge is undefined behavior; in contrast, VeriISLE need not reason
about undefined behavior, but must instead reconcile IR and ISA types. Further afield,
Alive2 [51] does translation validation on LLVM IR, and VeRA [15] verifies range analysis in
the Firefox JavaScript engine. Finally, Jitterbug [59] verifies lowering from BPF, a setting
where instruction selection entails simple “macro expansion” of one instruction at a time.

WebAssembly verification. VeriWasm proves that individual binaries do not violate
Wasm’s safety guarantees [42]. VeriWasm does not prove compiler correctness, though,
and places restrictions on how Wasm compilers can emit native code.1 In [14], the authors
present a non-optimizing compiler to x86-64 that is verified to preserve sandbox safety, and
a non-optimizing compiler from Wasm to Rust; in contrast, we verify the correctness of a
production, optimizing compiler.

There is also work on mechanizing the Wasm specification [73] and formalizing Wasm
in the K framework [37]. Other verification efforts look beyond the language and compiler:
WaVE [41] verifies that interactions between the Wasm runtime and the host OS preserve
safety guarantees; SecWasm [12] extends Wasm’s guarantees using information flow control;
[62] bring verified cryptography to Wasm; and CT-Wasm extends Wasm itself with constant-
time guarantees [74].

Synthesizing instruction selectors. The complexity of instruction selection has inspired
work on automatically generating rules based on machine-language semantics. Because of
their focus on portability vs. correctness, many instruction selector generators use ad hoc

1After discovering the amode bug described in the introduction, Cranelift engineers tried to update
VeriWasm to operate on the current version of the backend, but determined it would be too large of an
undertaking.

21

search procedures instead of solver-aided techniques [39, 19, 21, 30]. Others use solver-aided
synthesis: LibFIRM [16], for example, uses SMT to synthesize new rules that cover about
75% of input instructions, while using an existing, handwritten rule set for the rest. [26]
uses a solver to generate high-coverage selection simple rules for diverse target architectures.
Rake [2] synthesizes lowering rules from Halide [63] to digital signal processor ISAs, but
its focus is on capturing complex data movement mechanics within vector registers instead
of general-purpose instruction semantics. Though many compilers use a DSL to express
instruction selection rules, to our knowledge VeriISLE is the first tool for verifying existing
rules by modeling DSL semantics.

Formal semantics for ISAs. Several efforts formalize ISA semantics, including the SAIL
language [4] and the K Framework [27]. In the future, we will extend VeriISLE to exploit
these existing semantic models.

22

6
Future Work

VeriISLE annotations are currently trusted. We can address this issue by deriving certain
annotation from existing formal models. For example, VeriISLE can integrate SAIL semantics
for aarch64 [4] and K framework semantics for x86-64 [27]. While neither Cranelift IR
nor external Rust term definitions have formal semantics, we can raise assurance in our
specifications by, for example, verifying them against their external Rust implementations [7,
8, 64].

Future work can extend VeriISLE to reason about floating point, more operations with side
effects, some SIMD vector instructions, and wider integers. VeriISLE already incorporates
annotations for some 128-bit vector instructions, because the implementation of popcnt
on aarch64 uses them. VeriISLE can also be extended to automatically reason about rule
priorities and to cover other backends and the mid-end optimizer.

VeriISLE is meant to be used. We are working to upstream it into mainline Cranelift,
which raises research questions around usability: how can a formal methods tool best support
engineers who are experts in their domain, but not necessarily in verification? We hope to
explore these questions as we improve VeriISLE, and as we build on VeriISLE to create more
comprehensive verification infrastructure for other parts of the compiler.

23

7
Conclusion

Language-based technologies such as WebAssembly promise a more secure computing envi-
ronment, where hosts can safely sandbox untrusted code to limited segments of memory. This
software-level isolation, though, fundamentally places an incredibly high burden (full func-
tional correctness!) on the compiler that produces the final executable in a machine-specific
ISA. VeriISLE is a tool for verifying instruction-lowering rules in one such safety-critical
compiler: the Cranelift code generator. VeriISLE’s key selling point is its modularity—
VeriISLE’s annotation language allows concise semantics of individual terms to be added
alongside definitions in ISLE, a feature-rich instruction-lowering DSL. With VeriISLE, com-
piler developers can eliminate instruction lowering logic as a potential source security-critical
vulnerabilities such as sandbox escapes. VeriISLE builds toward a future where heavily
optimized, production compilers can integrate advanced formal methods to produce fast and
correct machine code.

24

Bibliography

[1] Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening, and Elizabeth
Polgreen. Counterexample guided inductive synthesis modulo theories. 2018.

[2] Maaz Bin Safeer Ahmad, Alexander J. Root, Andrew Adams, Shoaib Kamil, and Alvin
Cheung. Vector instruction selection for digital signal processors using program synthesis.
2022.

[3] Bytecode Alliance. ISLE language reference. https://github.com/bytecodealliance/
wasmtime/blob/main/cranelift/isle/docs/language-reference.md, 2023.

[4] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E.
Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christopher
Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. ISA semantics for
ARMv8-A, RISC-V, and CHERI-MIPS. 2019.

[5] Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter Sewell.
Isla: Integrating full-scale ISA semantics and axiomatic concurrency models. 2021.

[6] Javier Cabrera Arteaga, Nicholas Fitzgerald, Martin Monperrus, and Benoit Baudry.
Wasm-mutate: Fuzzing WebAssembly compilers with e-graphs. In E-Graph Research,
Applications, Practices, and Human-factors Symposium, 2022.

[7] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. Leveraging
Rust types for modular specification and verification. 2019.

[8] Marek Baranowski, Shaobo He, and Zvonimir Rakamaric. Verifying Rust programs with
SMACK. 2018.

[9] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The spec# programming
system: An overview. In Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices, 2005.

[10] Björn Roy Baron et al. Cranelift codegen backend for Rust, 2023.

[11] Clark W. Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB standard version
2.0. In Proceedings of the 8th International Workshop on Satisfiability Modulo Theories
(SMT), 2010.

[12] Iulia Bastys, Maximilian Algehed, Alexander Sjösten, and Andrei Sabelfeld. Secwasm:
Information flow control for WebAssembly. In Static Analysis, 2022.

[13] Yves Bertot and Pierre Castéran. Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer Science & Business Media,
2013.

[14] Jay Bosamiya, Wen Shih Lim, and Bryan Parno. Provably-safe multilingual software
sandboxing using WebAssembly. 2022.

25

https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/isle/docs/language-reference.md
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/isle/docs/language-reference.md

BIBLIOGRAPHY

[15] Fraser Brown, John Renner, Andres Nötzli, Sorin Lerner, Hovav Shacham, and Deian
Stefan. Towards a verified range analysis for JavaScript JITs. 2020.

[16] Sebastian Buchwald, Andreas Fried, and Sebastian Hack. Synthesizing an instruction
selection rule library from semantic specifications. 2018.

[17] Bytecode Alliance. The Cranelift compiler. https://github.com/bytecodealliance/
wasmtime/tree/main/cranelift, 2023.

[18] Bytecode Alliance. Wasmtime: A fast and secure runtime for WebAssembly. https:

//wasmtime.dev, 2023.

[19] R. G. Cattell. Automatic derivation of code generators from machine descriptions. ACM
Transactions on Programming Languages and Systems, 1980.

[20] R G G Cattell. Formalization and Automatic Derivation of Code Generators. PhD thesis,
Carnegie Mellon University, 1978. https://apps.dtic.mil/sti/pdfs/ADA058872.pdf.

[21] J. Ceng, M. Hohenauer, R. Leupers, G. Ascheid, H. Meyr, and G. Braun. C compiler
retargeting based on instruction semantics models. 2005.

[22] Alex Crichton. Data leakage between instances in the pooling alloca-
tor. https://github.com/bytecodealliance/wasmtime/security/advisories/

GHSA-wh6w-3828-g9qf, November 2022.

[23] Alex Crichton. Miscompilation of constant values in division on aarch64.
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-

7f6x-jwh5-m9r4, July 2022.

[24] Alex Crichton. Miscompilation of ‘i8x16.swizzle’ and ‘select’ with v128 in-
puts. https://github.com/bytecodealliance/wasmtime/security/advisories/

GHSA-jqwc-c49r-4w2x, 2022.

[25] Alex Crichton. Guest-controlled out-of-bounds read/write on x8664. https://github.
com/bytecodealliance/wasmtime/security/advisories/GHSA-ff4p-7xrq-q5r8,
2023.

[26] Ross Daly, Caleb Donovick, Jackson Melchert, Rajsekhar Setaluri, Nestan Tsiskaridze
Bullock, Priyanka Raina, Clark Barrett, and Pat Hanrahan. Synthesizing instruction
selection rewrite rules from RTL using SMT. 2022.

[27] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and Grigore
Roşu. A complete formal semantics of x86-64 user-level instruction set architecture.
2019.

[28] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. 2008.

[29] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Handbook of
Theoretical Computer Science, Volume B: Formal Models and Sematics, 1991.

26

https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://github.com/bytecodealliance/wasmtime/tree/main/cranelift
https://wasmtime.dev
https://wasmtime.dev
https://apps.dtic.mil/sti/pdfs/ADA058872.pdf
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-wh6w-3828-g9qf
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-wh6w-3828-g9qf
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-7f6x-jwh5-m9r4
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-7f6x-jwh5-m9r4
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-jqwc-c49r-4w2x
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-jqwc-c49r-4w2x
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-ff4p-7xrq-q5r8
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-ff4p-7xrq-q5r8

BIBLIOGRAPHY

[30] João Dias and Norman Ramsey. Automatically generating instruction selectors using
declarative machine descriptions. 2010.

[31] Chris Fallin. Memory access due to code generation flaw in Cranelift
module. https://github.com/bytecodealliance/wasmtime/security/advisories/
GHSA-hpqh-2wqx-7qp5, May 2021.

[32] Chris Fallin. RFC: Design of the ISLE instruction-selector DSL. https://github.com/
bytecodealliance/rfcs/pull/15, August 2021.

[33] Chris Fallin. Cranelift’s instruction selector DSL, ISLE: Term-rewriting made practical.
https://cfallin.org/blog/2023/01/20/cranelift-isle/, January 2023.

[34] Anthony Fox, Magnus O Myreen, Yong Kiam Tan, and Ramana Kumar. Verified
compilation of CakeML to multiple machine-code targets. 2017.

[35] Go Authors. Go compiler backend lowering rules. https://github.com/golang/go/

tree/master/src/cmd/compile/internal/ssa/ gen, 2023.

[36] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to speed with
WebAssembly. 2017.

[37] Rikard Hjort. Formally verifying WebAssembly with KWasm, 2020.

[38] C. A. R. Hoare. An axiomatic basis for computer programming. In Communications of
the ACM, 1969.

[39] Roger Hoover and Kenneth Zadeck. Generating machine specific optimizing compilers.
1996.

[40] Susmit Jha, Rhishikesh Limaye, and Sanjit A. Seshia. Beaver: Engineering an efficient
SMT solver for bit-vector arithmetic. In Computer Aided Verification, 2009.

[41] Evan Johnson, Evan Laufer, Zijie Zhao, Dan Gohman, Shravan Narayan, Stefan Savage,
Deian Stefan, and Fraser Brown. WaVe: a verifiably secure WebAssembly sandboxing
runtime. 2023.

[42] Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan, Fraser Brown, Sorin
Lerner, Tyler McMullen, Stefan Savage, and Deian Stefan. Trust but verify: SFI safety
for native-compiled Wasm. 2021.

[43] Kenton Varda. WebAssembly on Cloudflare workers. https://blog.cloudflare.com/
webassembly-on-cloudflare-workers/, 2018.

[44] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: A
verified implementation of ML. 2014.

[45] Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. Proving optimizations correct using
parameterized program equivalence. 2009.

27

https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-hpqh-2wqx-7qp5
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-hpqh-2wqx-7qp5
https://github.com/bytecodealliance/rfcs/pull/15
https://github.com/bytecodealliance/rfcs/pull/15
https://cfallin.org/blog/2023/01/20/cranelift-isle/
https://github.com/golang/go/tree/master/src/cmd/compile/internal/ssa/_gen
https://github.com/golang/go/tree/master/src/cmd/compile/internal/ssa/_gen
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/

BIBLIOGRAPHY

[46] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. 2004.

[47] Sorin Lerner, Todd Millstein, and Craig Chambers. Automatically proving the correctness
of compiler optimizations. 2003.

[48] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. Automated soundness
proofs for dataflow analyses and transformations via local rules. 2005.

[49] Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

[50] Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363–446, 2009.

[51] Nuno P Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. Alive2:
bounded translation validation for LLVM. 2021.

[52] Nuno P Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Provably
correct peephole optimizations with Alive. 2015.

[53] Nuno P. Lopes and John Regehr. Future directions for optimizing compilers. 2018.

[54] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. In ACM
Transactions on Programming Languages and Systems, 1982.

[55] Charith Mendis and Saman Amarasinghe. GoSLP: Globally optimized superword level
parallelism framework. 2018.

[56] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Annual
Design Automation Conference, 2001.

[57] Manasij Mukherjee, Pranav Kant, Zhengyang Liu, and John Regehr. Dataflow-based
pruning for speeding up superoptimization. 2020.

[58] Joshua Nelson. Using rustc codegen cranelift for debug builds. https://blog.rust-
lang.org/inside-rust/2020/11/15/Using-rustc codegen cranelift.html,
November 2020.

[59] Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. Specification and verifica-
tion in the field: Applying formal methods to BPF just-in-time compilers in the Linux
kernel. 2020.

[60] Aina Niemetz, Mathias Preiner, Andrew Reynolds, Yoni Zohar, Clark Barrett, and
Cesare Tinelli. Towards bit-width-independent proofs in SMT solvers. 2019.

[61] Pat Hickey. Lucet takes WebAssembly beyond the browser — Fastly.
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-

compiler-runtime, 2019.

28

https://blog.rust-lang.org/inside-rust/2020/11/15/Using-rustc_codegen_cranelift.html
https://blog.rust-lang.org/inside-rust/2020/11/15/Using-rustc_codegen_cranelift.html
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime

BIBLIOGRAPHY

[62] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and Karthikeyan Bhar-
gavan. Formally verified cryptographic web applications in WebAssembly. In IEEE
Symposium on Security and Privacy (SP), 2019.

[63] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman P. Amarasinghe. Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. 2013.

[64] Alastair Reid, Luke Church, Shaked Flur, Sarah de Haas, Maritza Johnson, and Ben
Laurie. Towards making formal methods normal: meeting developers where they are.
2020.

[65] Gang Ren, Peng Wu, and David Padua. Optimizing data permutations for SIMD devices.
page 118–131, 2006.

[66] Andreas Rossberg. WebAssembly Specification Release 1.0. https://webassembly.

github.io/JS-BigInt-integration/core/ download/WebAssembly.pdf, 2019.

[67] Andreas Rossberg. WebAssembly Specification Release 2.0 Draft Draft 2023-04-08.
https://webassembly.github.io/spec/core/ download/WebAssembly.pdf, 2023.

[68] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. Composi-
tional CompCert. 2015.

[69] Yong Kiam Tan, Magnus O Myreen, Ramana Kumar, Anthony Fox, Scott Owens,
and Michael Norrish. The verified CakeML compiler backend. Journal of Functional
Programming, 29, 2019.

[70] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson.
Vectorization for digital signal processors via equality saturation. 2021.

[71] Vercel Inc. Using WebAssembly (Wasm) at the edge. https://vercel.com/docs/

concepts/functions/edge-functions/wasm, 2023.

[72] Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. Building program opti-
mizers with rewriting strategies. 1998.

[73] Conrad Watt. Mechanising and verifying the WebAssembly specification. 2018.

[74] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan. CT-
Wasm: Type-driven secure cryptography for the web ecosystem. 2019.

[75] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs
in C compilers. 2011.

29

https://webassembly.github.io/JS-BigInt-integration/core/_download/WebAssembly.pdf
https://webassembly.github.io/JS-BigInt-integration/core/_download/WebAssembly.pdf
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://vercel.com/docs/concepts/functions/edge-functions/wasm
https://vercel.com/docs/concepts/functions/edge-functions/wasm

	Introduction
	Background
	Instruction Lowering
	The ISLE lowering DSL
	ISLE by example: lowering rotations
	Satisfiability Modulo Theories (SMT)

	VeriISLE Design
	The annotation language
	Generating verification conditions
	Implementation and trust model

	Evaluation
	Is VeriISLE applicable to real rules?
	What proportion of invoked rules has VeriISLE verified?
	Can VeriISLE detect known bugs?
	Can VeriISLE find new bugs?

	Related Work
	Future Work
	Conclusion
	Bibliography

