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Abstract

Scalable concurrent data structures are essential for unlocking the potential of
modern multicore machines. This thesis presents techniques for enhancing existing
concurrent data structures with several useful properties: lock-freedom, the ability
to take consistent snapshots, and safe memory management. The goal is to make
these techniques widely applicable, easy-to-use, theoretically efficient (i.e. fast in
worst-case executions), and also fast in practice.

For lock-freedom, we present a new approach to lock-free locks based on helping,
which allows the user to write code using the familiar interface of locks, but run it
in a lock-free manner. This thesis presents some key techniques that make lock-free
locks practical and more general. We show that our lock-free locks can significantly
outperform traditional blocking locks in certain workloads.

We also present an approach for efficiently capturing a consistent view of a
concurrent data structure at a single point in time. This is useful for computing
linearizable multi-point queries such as searching for a range of keys, finding the
first key that matches some criteria, or checking if a collection of keys are all present.
Importantly, our approach preserves the time bound and parallelism of the original
data structure. It can be applied to both lock-based and lock-free data structures
and is compatible with the lock-free locks approach introduced in the first part of
the thesis.

Finally, we present a safe automatic memory reclamation approach for concur-
rent programs, and show that it is both theoretically and practically efficient. Our
approach combines ideas from reference counting and hazard pointers in a novel
way to implement concurrent reference counting with wait-free, constant-time over-
head. It overcomes the limitations of previous approaches by significantly reducing
modifications to, and hence contention on, the reference counts. We further gener-
alize this approach to allow a variety of safe memory reclamation (SMR) schemes to
be used as a substitute for hazard pointers. This augments the SMR schemes with
ease-of-use while maintaining their performance profiles in terms of time and space.
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Chapter 1

Introduction

Given the widespread use of multiprocessor machines, there has been significant work, especially
in recent years, on designing efficient concurrent data structures. Concurrent data structures
are ones that allow multiple processes to access and make changes to them simultaneously.
They are a crucial part of many applications such as database systems, operating systems,
parallel runtime environments, and memory allocators. Nowadays these data structures need
to scale well past a hundred cores to fully utilize the potential of commodity multiprocessor
machines. However, designing concurrent data structures has proven to be notoriously difficult
due to the complex interleaving of instructions from processors executing asynchronously. It
becomes especially difficult if we want to support more advanced features such as lock-freedom,
consistent snapshots, and safe memory reclamation. As evidence for the difficulty, the first
lock-free implementation of a binary search tree was not until 2010 [62], building on decades of
work on concurrency and lock-freedom. Prior to the work in this thesis, these more advanced
features could only be added efficiently by experts in the field. Given how difficult a single
concurrent data structure is to develop, redesigning each of them to support these extra features
is not scalable.

Rather than working on specific data structures, this thesis develops several general tech-
niques for enhancing existing data structures with these more advanced features. This thesis
contends that with the right abstractions and algorithms, general techniques can be very efficient,
often outperforming hand-designed data structures. The algorithms we develop can be intricate
and subtle, but we abstract this complexity away from the user by designing a clean interface
for each of our techniques. Having these easy-to-use interfaces makes concurrent programming
more accessible to non-experts. It also makes reasoning about the algorithm and proving correct-
ness easier and more modular. The goal of this thesis is to simplify the design of new concurrent
data structures by developing general techniques and libraries usable by experts and non-experts
alike.

We validate the practical performance and scalability of these techniques by running them
on a multicore machine with over a hundred cores. To ensure robust performance across thread
schedules and inputs, we also prove theoretical bounds on time and space for data structures
written using our general techniques.
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Lock-freedom. Mutual exclusion and locks are perhaps the most well-known and widely
used tools for concurrent programming. However, traditional implementations of locks require
threads to wait if the requested lock is already taken. This is undesirable in asynchronous
systems where the thread holding the lock could be slow, paused by the system scheduler, or
even crashed. Lock-free programming was introduced to remedy these issues. Lock-freedom is a
technical term, and intuitively, it means some thread will make progress regardless of how they
are scheduled.

While many programmers are familiar with mutual exclusion and locks, techniques for
lock-free programming are less well-known and more complex. We developed the first practical
“lock-free” (in the formal sense) implementation of lockswhich allows the user towrite code using
fine-grained locks, but then run it in a lock-free manner. This approach is purely library based
and does not require the user to know anything about lock-free programming. Furthermore,
lock-free data structures written using this technique can be highly efficient. We applied the
technique to a variety of lock-based data structures for trees, lists, and hash tables, and found that
our lock-free versions perform up to 2.4x faster the original lock-based versions in oversubscribed
environments. Our lock-free versions were also competitive with state-of-the-art lock-free data
structures for trees, lists and hash tables.

When a process wishes to take a lock, the idea is that instead of waiting, it tries to help the
process that currently has the lock exit its critical section. The challenge is in performing the
helping idempotently. This means each critical section should appear to have executed only
once even though it might have been helped by multiple processes. We present a practically
efficient solution to this problem that involves using a shared log to ensure all processes agree
on the outcome of each read and write.

Consistent snapshots. Atomic snapshots capture the state of a concurrent data structure at
one instance in time. This can be useful for debugging as well as for implementing linearizable
multi-point queries which require looking at multiple keys in the data structure. Examples
of such queries include searching for a range of keys (range query), finding the first key that
matches some criteria, or checking if a collection of keys are all present. Snapshots can be
difficult to implement because the state of the data structure can be changing while the snapshot
is being taken. For this reason, many data structures only support non-linearizable multi-point
queries (e.g. a range query that may return a set of nodes that were never simultaneously in the
data structure).

This work presents a general technique for adding linearizable snapshots and multi-point
queries to existing concurrent data structures. This transformation maintains the time bounds
and progress properties (e.g. lock-freedom/wait-freedom) of the original data structure, and it
also ensures that multi-point queries are wait-free. Moreover, the technique provides good time
bounds, with multi-point queries taking time proportional to their sequential complexity plus a
contention term representing the number of update operations concurrent with the query. This
technique applies to a wide range of data structures, both lock-based and lock-free, and can be
used to support arbitrary multi-point queries. Despite its generality, it is also extremely efficient;
in our experimental evaluation, it often outperforms data structures specifically designed to
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support fast range queries. Our technique leverages an idea called multiversioning, which
involves keeping around historical versions of each object.

Safememory reclamation. One of themain challenges holding back the widespread adoption
of concurrent data structures in practice is safe memory management. When a memory location
is removed from a data structure, it is not safe to immediately reuse it for another purpose
because a concurrent operation could be working on an outdated view of the data structure
and might access that memory location in the future. In the research community, concurrent
data structures are often designed without any memory reclamation and this step is treated as
an orthogonal problem. This causes a dilemma for practitioners who need to apply a memory
reclamation scheme themselves in order to deploy the data structure in their system. Several
manual memory reclamation schemes have been proposed, but these are difficult to apply
correctly, even for experts. Automatic approaches based on concurrent reference counting are
much easier to use, but they have traditionally been seen as being slow and not scalable.

In this work, we present the first automatic memory reclamation scheme (based on reference
counting) that adds only constant time overhead while using only instructions available on
modern machines. In practice, it is as fast as Hazard Pointers (a widely used manual memory
reclamation scheme), while being significantly easier to use and less error prone. It also out-
performs all existing concurrent reference counting implementations. Our technique involves
using a novel generalization of hazard pointers to defer reference-count decrements until no
other process can be incrementing them. For efficiency, we also defer or elide reference-count
increments for short-lived references. We further generalize this approach to allow a variety of
safe memory reclamation (SMR) schemes to be used as a substitute for hazard pointers. This
augments the SMR schemes with ease-of-use while maintaining their performance profiles in
terms of time and space.

1.1 Lock-freedom

Lock-free algorithms, or data structures, are guaranteed to make progress even if processes
crash or are delayed indefinitely. They are, however, burdened with some issues. One important
issue is that they tend to be significantly more complicated than their lock-based counterparts.
Even basic data structures such as stacks, queues, and singly linked lists can lead to non-trivial
lock-free algorithms with subtle correctness proofs. More sophisticated data structures, such
as binary trees and doubly linked lists, become considerably more complicated. If one needs
to atomically move data between structures, lock-free algorithms become particularly tricky.
Developing efficient algorithms with fine-grained locks is not necessarily easy, but is typically
much simpler.

Another issue is performance. The relative performance of lock-free vs. lock-based algo-
rithms depends on the environment in which they are run. Several papers demonstrate that
lock-based concurrent algorithms can be faster [8, 48, 83, 162]. However, the experiments de-
scribed in these papers are typically run in rarified environments in which all processes are
dedicated to the task, often pinned to dedicated cores. They are also set up to have no page faults
or other significant delays. In such environments, it is not surprising that algorithms using fine-
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grained locks do well. Some have noted, however, that in environments with oversubscription
(more processes than cores) lock-based algorithms can suffer due to threads getting descheduled
while holding a lock [48]. In the Linux operating system, for example, there has been a push
to use lock-free structures (at least for reads) due to mixed workloads and the unpredictability
of demand [111]. Also, of course, lock-based algorithms can become blocked in environments
where processes can be faulty.

In summary, for robustness in multiprogramming environments, or for peace of mind in
general, lock-free algorithms can have a significant advantage, but they come at the cost of more
subtle and complicated designs, especially when used for more advanced data structures. Due
to the tradeoffs, there is no universal agreement on whether lock-based or lock-free algorithms
are better—some algorithms are lock-free [37, 62, 80, 81, 122, 162] and others use fine-grained
locks [16, 33, 58, 83, 99, 104, 110, 139]. A third choice is to use transactional memory, but this
has not yet shown itself to be competitive with either lock-free or lock-based approaches.
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Figure 1.1: Comparing traditional blocking locks with lock-
free locks on a concurrent binary search tree (leaftree) and
a concurrent radix tree (arttree). Workload consists of 50%
updates and 50% lookups on a tree initialized with 100K keys.

In Chapter 3, we describe and
study an approach that gets the
best of both worlds—i.e., allow one
to program with fine-grained locks
while getting efficient lock-free be-
havior. It is based on the idea of
having processes help complete each
other’s critical sections rather than
passively waiting for the lock. This
means that a critical section must
be idempotent so that even if it is
performed once by the original pro-
cess and many times by helping pro-
cesses, it still appears to only have
executed once. A crucial part of our

approach is a general mechanism for making critical sections idempotent without adding much
overhead. The idea is to maintain a shared log among processes helping to run the same code.
Processes use this log to agree on the results of shared memory operations, as well as other events
such as memory allocation. To achieve agreement, we use the compare-and-swap instruction –
whichever process commits first wins, and all others take the committed value instead of their
attempted commit. For example, each read operation attempts to commit the value it read. This
way, all processes read the same values and follow the same control flow throughout the code
even though they are running in an arbitrary interleaved manner.

In our approach, the user can write standard code based on fine-grained locks, and using a
simple library interface, get lock-free behavior. We have implemented our approach as a C++
library called Flock. Based on the library we have implemented several data structures based
on try-locks, including singly linked lists, doubly linked lists, binary trees, balanced blocked
binary trees, (a,b)-trees, hash tables, and adaptive radix trees (ART). We compare performance of
our versions in lock-free mode and blocking mode to the most efficient existing data structures
we found, both lock-based and lock-free. The lock-based data structures generally perform
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slightly better under controlled environment with one process per processor, but perform
significantly worse with oversubscription (multiple processes per processor). Comparing running
our algorithms in lock-free vs. blocking mode, the lock-free performance rarely has more than
10% overhead, and typically much less. However, with oversubscription, the lock-free mode
greatly outperforms the blocking mode by up to 2.4x. Figure 1.1 shows an example of this by
comparing lock-free locks with traditional spin locks on a concurrent radix tree [104] and a
leaf-oriented binary search tree, both of which use fine-gained locking.

Contributions. Our contributions include the following:
• A practical approach to achieving idempotence in general code
• A new algorithm for lock-free locks
• A general library-based interface to support our ideas, which we used to implement the
first practical lock-free adaptive radix tree.

1.2 Consistent Snapshots

Many applications that use concurrent data structures require querying large portions of
the data structure. For example, one may want to filter all elements by a certain property,
perform range queries, or simultaneously query multiple locations. However, such multi-point
queries have been notoriously hard to implement efficiently. Although it is easy to support
multi-point queries by locking large parts of the data structure, this approach lacks parallelism.
Some concurrent data structures resort to multi-point queries that provide no guarantee of
atomicity [129, 130]. Other efforts have implemented specific multi-point queries (e.g., range
queries, iterators) [3, 7, 36, 42, 66, 67, 134].

A general way to support efficient multi-point queries is to provide the ability to take a
snapshot of the data structure. Conceptually, a snapshot saves a read-only version of the state of
the data structure at a single point in time [2, 6, 70]. Multi-point queries can be performed by
taking a snapshot and reading the necessary parts of that version to answer the query, while
updates run concurrently. Snapshots are also used in database systems for multiversioning and
recovery [25, 53, 124, 131, 136, 144, 171], and in persistent sequential data structures [59, 60, 147].
However, known approaches for taking snapshots either limit the programming model (e.g. to
be purely functional [19, 56]), use locks with no progress guarantees [25, 98, 124], or are lock-
or wait-free but have large running times [2, 32, 65, 69, 92].

Given a concurrent data structure, Chapter 4 presents an approach for efficiently taking
snapshots of its constituent Compare&Swap (CAS) objects. More specifically, it supports a
constant-time operation that returns a snapshot handle, which represents the point in time the
snapshot was taken. This snapshot handle can later be used to read the value of any base object
at that time. Reading an earlier version of a base object is wait-free and takes time proportional
to the number of successful writes to the object since the snapshot was taken. Importantly, this
approach preserves all the time bounds and parallelism of operations supported by the original
data structure. For example, Table 1.1 shows the time bounds achieved by using this technique
to add linearizable query operations to several popular lock-free data structures.
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Original Data Operation Our Time Parameters

Structure Bounds

Michael Scott select(𝑖): 𝑂 (𝑖 + 𝑐) 𝑐: number of dequeues
Queue [118] enqueue/dequeue: same as original concurrent with the query
Harris Linked range(𝑠, 𝑒): 𝑂 (𝑚 + 𝑃 + 𝑐) 𝑚: number of keys in list
List [80] multisearch(𝐿): 𝑂 (𝑚 + 𝑃 + 𝑐) 𝑐: number of inserts/deletes

ith(𝑖): 𝑂 (𝑖 + 𝑃 + 𝑐) concurrent with the query
insert/delete/lookup: same as original 𝑃 : number of processes

Ellen, Fatourou, successor(𝑘) 𝑂 (ℎ + 𝑐) 𝑚: number of keys in BST
Ruppert, Breugel multisearch(𝐿): 𝑂 ( |𝐿 | × ℎ + 𝑐) ℎ: height of tree.
BST [62] range(𝑠, 𝑒): 𝑂 (ℎ + 𝐾 (𝑠, 𝑒) + 𝑐) 𝐾 (𝑠, 𝑒): number of keys in

BST between 𝑠 and 𝑒
Brown, Ellen, height(): 𝑂 (𝑚 + 𝑐) 𝑐: number of inserts, deletes,
Ruppert insert/delete/lookup: same as original rotations concurrent with
Chromatic Tree the query
[38] 𝑃 : number of processes

Table 1.1: Time bounds for various operations on concurrent queues, lists, and BSTs using our snapshot
approach. All the operations we give bounds for are not supported by the original data structure. All
parameters other than the contention term 𝑐 are measured at the linearization point of the operation.
The contention term 𝑐 measures interval contention meaning that it counts the number of update
operations that overlap with the query operation. In the case of Chromatic Tree, the height of the tree
ℎ ∈ 𝑂 (log (𝑚) + 𝑃).

The idea is to keep around historical versions of each CAS object in a version list, where
each version is tagged with the timestamp at which it was written. Taking a snapshot simply
involves reading and incrementing the global timestamp, and then reading the desired version
lists using this timestamp. The algorithmic challenge is in assigning up-to-date timestamps
to newly added versions in a lock-free manner. This is tricky to do in the concurrent setting
because the timestamp assignment needs to be done atomically with the insertion into the
version list. We present a new, constant time algorithm for this which first inserts a version
with a temporary timestamp and uses helping to update it to the final timestamp. Helping is
done carefully to make sure that no processes uses the version list while it is in an intermediate
state. This algorithm allows us to achieve the bounds in Table 1.1, which have not previously
been achieved for any of the listed data structures.

In Chapter 5, we further extend this approach towork for lock-based data structures, as well as
those written with the lock-free locks introduced in Chapter 3. We also present several important
practical optimizations for avoiding indirection and reducing contention when accessing the
global timestamp.

To evaluate the performance of our snapshotting approach, we apply it to a wide range of
lock-based and lock-free data structures. Experiments show that the overhead of supporting
linearizable snapshots is low across a variety of workloads. Moreover, range queries on the
trees built from our snapshots perform as well as or better than state-of-the-art concurrent
data structures designed to support atomic range queries. For example, Figure 1.2 presents
performance numbers for a snapshottable version (VcasBST) of a lock-free BST (BST) designed
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(a) Update Throughput (b) Range Query Throughput

Figure 1.2: Evaluating the performance of our snapshotting approach on a workload with 36 threads
performing updates (half insert, half deletes) and 36 threads performing range queries on a tree initialized
with 100K keys.

using Brown, Ellen and Ruppert’s tree update template [38]. Range queries on the original BST
are not linearizable, but we include it in Figure 1.2 as an upper bound on how fast a linearizable
version can be. Our VcasBST comes close to this upper bound in terms of both update and
range query throughput. It is also consistently faster than a state-of-the-art BST supporting
linearizable range queries called EpochBST [7]. More details on this experiment, as well as a
more complete experimental evaluation, can be found in Section 4.9.

Contributions. In summary, our contributions are:
• A simple, constant-time approach to take a snapshot of a collection of CAS objects.
• A extension of this approach to support lock-based data structures (works with both
lock-free and blocking locks).

• A technique to use snapshots to implement linearizable multi-point queries on many
lock-based and lock-free data structures.

• An easy-to-use, portable library, verlib, for adding linearizable snapshots to existing or
new concurrent data structures.

• Experiments showing our technique has low overhead, often outperforming other state-
of-the-art approaches, despite being more general.

1.3 Safe Memory Reclamation

Memory reclamation, the problem of freeing allocated memory in a safe manner, is essential
in any program that uses dynamic memory allocation. A block of memory is safe to reclaim only
when it cannot be subsequently accessed by any thread of the program. Determining exactly
when this is the case is, however, a difficult problem for mutlithreaded programs which could be
sharing, copying, or modifying references to the samememory blocks concurrently. One solution
is to rely on a garbage collector [93], though it is not always possible, most-efficient, or most-
flexible. In languages without built-in garbage collectors, memory reclamation for concurrent
programs, often called safe memory reclamation (SMR), is a non-trivial and extensively studied
problem. A crucial difficulty in the concurrent setting is the possibility of read-reclaim races [82].
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Figure 1.3: Benchmark results comparing various concurrent reference counting implementations when
applied to a concurrent stack.

Such a race is between a process that reads and follows a pointer to an object and another that
reclaims and reuses the corresponding memory.

Safe memory reclamation techniques can be broadly divided into two categories, manual and
automatic. With manual techniques, the user is responsible for freeing objects. To protect against
read-reclaim races, this is often performed with a retire operation, which defers the reclamation
until it is safe, i.e., until no other thread is reading that object. Manual techniques are often fast
but difficult to use, leading to subtle and hard to reproduce bugs even in code written by experts.
Automatic techniques are similar to what can be found in garbage collectors, but without the
ability to scan processor private root sets (registers, stacks, etc.). A common automatic technique
is reference counting [51, 87, 102, 115, 135, 154, 160], which requires very few modifications
for programmers to integrate into their code, and provides memory safety and leak freedom
automatically as long as the programmer either does not create reference cycles or breaks such
cycles before they become unreachable. C++ and Rust have had reference counting in the form
of smart pointers for over a decade. Owing to their ease of use, there has been an increase in
interest in thread-safe, atomic reference-counted pointers, as evidenced by their inclusion in
the most recent C++ standard (C++20). However, reference counting has traditionally been
considered to be inefficient in the concurrent setting due to frequent increments and decrements
of shared counters [82]. Indeed, we found that the current implementation in the widely used
GNU C++ library does not scale.

Chapter 6 proposes an efficient approach to automatic memory reclamation based on a
novel combination of reference counting and manual SMR. It makes several advances to make
library-based concurrent reference counting both theoretically efficient and more practical,
while preserving its ease-of-use. Theoretically, it shows the first solution with constant expected
time overhead using only single word atomic primitives and only delaying 𝑂 (𝑃2) decrements
at each moment in time (meaning the reference counts might be 𝑂 (𝑃2) more than the actual
number of references).

We have implemented our technique as a C++ library called CDRC 1 and show that it is more
efficient than existing optimized libraries for atomic reference-counted pointers [46, 64, 169].

1Available at https://github.com/cmuparlay/concurrent_deferred_rc
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For example, Figure 1.3 compares CDRC with widely used commercial and open source libraries
and shows that it is significantly faster under both read-dominated and update-heavy workloads.
A more detailed experimental evaluation can be found in Section 6.7

In Chapter 7, we generalize the CDRC technique so that it is capable of turning a wide variety
of manual SMR techniques into automatic techniques based on reference counting. We show
experimentally that our automatic techniques have similar throughput and memory usage to
their manual counterparts, while being safer to use and applicable to more data structures.

Contributions.

• A theoretically and practically efficient algorithm for concurrent reference counting.
• A generalization of the previous algorithm to convert a wide range of manual SMR techniques
into automatic SMR techniques using reference counting.

• Experiments showing that our automatic techniques have similar throughput and memory
usage to their manual counterparts. (This represents a 2x-3x throughput improvement over
existing concurrent reference counting implementations.)

1.4 Outline and Thesis Statement

Outline. Part I describes our completedwork on lock-free locks. Part II describes our completed
work on linearizable snapshots. Part III describes our completed work on safe automatic memory
reclamation based on reference counting. We conclude in Part IV.

The results in this thesis are primarily based on previous publications, and also include new
results that are unpublished. Many other published papers [18, 19, 20, 24, 27, 28, 73, 114, 165, 166]
by the thesis author are not included in this thesis. The papers included in this thesis are listed
below.

• [21] Lock-Free Locks Revisited. Naama Ben-David, Guy Blelloch and Yuanhao Wei. In
Principles and Practice of Parallel Programming (PPoPP), 2022. (received a best paper award,
full version in [23]) Included in this thesis in Chapter 3.

• [164] Constant-time snapshots with applications to concurrent data structures. Yuanhao
Wei, Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert and Yihan Sun.
In Principles and Practice of Parallel Programming (PPoPP), 2021. (full version in [163])
Included in this thesis in Chapter 4.

• [4] Concurrent deferred reference countingwith constant-time overhead. Daniel Anderson,
Guy E. Blelloch and Yuanhao Wei. In Programming Language Design and Implementation
(PLDI), 2021. Included in this thesis in Chapter 6.

• [5] Turning Manual Concurrent Memory Reclamation into Automatic Reference Counting.
Daniel Anderson, Guy E. Blelloch and Yuanhao Wei. In Programming Language Design
and Implementation (PLDI), 2022. Included in this thesis in Chapter 7.

This thesis provides evidence to support the following statement:
Thesis Statement. General techniques, along with appropriate abstractions and library imple-
mentations, can greatly simplify the design and implementation of efficient concurrent algorithms.
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Examples covered in this thesis are techniques for lock-freedom, obtaining a consistent view of a
data structure, and automatic memory reclamation.
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Chapter 2

Preliminaries

We consider an asynchronous shared memory system with 𝑛 processes. Processes communicate
by accessing shared memory via the following atomic primitives: read, write, compare-and-
swap (CAS), fetch-and-add (FAA), and exchange1. The compare-and-swap primitive takes three
parameters, a memory location, an expected value and a new value. It writes the new value in
the memory location and returns true if the current value of the memory location matches the
expected value. Otherwise, it returns false and leaves the memory location unchanged. The
fetch-and-add primitive takes two parameters, a memory location and an integer 𝑎. It atomically
reads the current value 𝑣 stored in the memory location, updates the memory location to store
𝑣 + 𝑎, and returns 𝑣 . The exchange operation takes as input a memory location and a value 𝑣 . It
writes 𝑣 into the memory location and returns the value that was overwritten. The read, write
and compare-and-swap (CAS) primitives are sufficient for all the algorithms in Parts I and II.
Part III also makes use of the exchange and fetch-and-add primitives. All these primitives are
supported in hardware by modern processors. Chapter 4 considers a special type of memory
location that only support read and compare-and-swap operations, referring to them as CAS
objects.

An execution is an alternating sequence of configurations and steps. Each configuration
provides a global view of the system at some point in time and each step specifies a primitive
(on either local or shared memory), its arguments, its return values, and the executing process.
The steps taken by a process in an execution implement operations. An event is the invocation or
response of an operation, which specify its arguments and return values, respectively, as well as
its calling process. The first step of an operation in an execution is associated with its invocation
and its last step is associated with its response. The execution interval of an operation starts from
its invocation and ends at its response. A history is a sequence of events, and can be derived
from an execution 𝐸 by including the invocations and responses of operations in the order their
associated steps appear in 𝐸. An execution is valid if it is consistent with the semantics of the
memory operations.

A data structure is a set of operations. Each operation is specified by a sequential specification,
which defines its expected behavior in an execution in which the executing process’s steps are not

1Also known as swap and fetch-and-store (FAS)
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interleaved with the steps of any other process. An implementation of a data structure specifies
code for processes to run for each of its operations. The correctness condition we consider is
called linearizability [88]. An execution 𝛼 is linearizable if, for every complete operation 𝑜𝑝 in
𝛼 (as well as for some of the uncompleted operations), we can assign it a linearization point
within its execution interval, so that in the sequential execution defined by the linearization
points, each operation has the same response as in 𝛼 . Intuitively, this means that each operation
appears to take effect atomically at some point during its execution interval. An implementation
is linearizable if all its executions are linearizable.

We do not assume any bounds on the relative speeds of the processes, which means they
can be arbitrarily slow or even crash (i.e. not take any more steps in the execution). An
implementation of a data structure 𝐷 is lock-free if, in any infinite execution in which processes
follow this implementation, infinitely many operations complete. Intuitively, it means whenever
there are ongoing operations, one of them will complete after a finite number of steps regardless
of how processes are scheduled. Wait-freedom is a stronger propertywhich requires all operations
to complete within a finite number of their own steps. The time complexity of an operation is
the number of steps (both local and shared) performed by that operation before it completes in
a worst-case execution. We count both local and shared memory towards space usage.

We say a memory location suffers from the ABA problem in some implementation if it is
possible for the value stored in that memory location to go back to what it was at some previous
point in some execution of this implementation. We say an implementation suffers from the
ABA problem if there is some memory location that suffers from the ABA problem in that
implementation. An implementation is ABA-free if it does not suffer from the ABA problem.

In our experiments, concurrent operations are executed by user-level threads, so we often
use the term thread instead of process in the experimental sections. Appropriate memory barriers
and fences were added to all our code to prevent instructions from being reordered.
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Part I

Lock-freedom
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Introduction

Lock-freedom is a useful property that ensures system-wide progress regardless of how pro-
cesses are scheduled. However, lock-free algorithms can be significantly harder to design than
lock-based ones. In this part, we simply this process by presenting a practical "lock-free" imple-
mentations of locks which allows the user to write code using fine-grained locks, but then run it
in a lock-free manner.
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Chapter 3

Lock-free Locks

3.1 Introduction

In this chapter, we describe and study a practical implementation of lock-free locks which
allows one to programwith fine-grained locks while getting efficient lock-free behavior. The idea
of lock-free locks were first proposed by Turek, Shasha and Prakash [159] and independently
Barnes [14] (henceforth called the TSP-B approach). The high-level idea behind the TSP-B
approach is that when a thread takes a lock it leaves behind a descriptor that allows other threads
that want the lock to help it complete its protected code and free its lock. Our implementation
is based on this idea, however, we extend it significantly with several important new ideas to
make it practical and more general.

The general idea of using descriptors for helping is now widely used in the implementation
of specific lock-free applications, such as multiword-CAS [68, 78, 81, 161], other multiword
operations [37], software transactional memory [72, 143, 149], and specific data structures [20,
54, 62, 148, 170]. Despite the use of descriptors for helping in specific applications, prior to this
work, we know of no general implementations of lock-free locks. Most of the papers cited above
mention the TSP-B approach, but describe it as impractical and often use it as motivation for
their more specific approach. The issue is that the TSP-B approach requires translating code
in the lock into a form such that every read or write effectively requires saving the context
of the process (program counter and local variables) so that others can help it run from that
point. Such code can be very inefficient even when no helping occurs. Equally importantly, it
makes the approach very difficult and clumsy to use without a special-purpose compiler. Their
approach also constrains the code inside the locks to only allow race-free reads and writes to
shared memory.

The key contribution of this chapter is an approach to avoid the “context-saving” on each
memory operation, making the approach practical, and additionally making it more general. In
our approach, the user can write standard code based on fine-grained locks, and using a library
interface, get lock-free behavior as long as the code is deadlock-free. Our library preserves the
correctness of the lock-based data structure because all the helping is done idempotently, so
each critical section appears to have only executed once. Beyond being efficient and offering a
simple library-based interface, our approach generalizes the TSP-B approach by (1) allowing
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races in the locked code, (2) supporting memory allocation and freeing in the locked code, and
(3) supporting try locks, which we demonstrate are much more efficient than the standard strict
locks. The advantage of a try lock is that it returns false if the lock is currently taken, giving the
user the flexibility of either trying again or performing a different operation.

Our approach is based on a new technique to achieve idempotence. Intuitively, idempotent
code is code that can be run multiple times but appears to have run once [17, 34, 49, 50]. Such
code is important in the TSP-B approach, since multiple helpers could run the same locked code
when helping. TSP and B suggest similar approaches to idempotence, but failed to abstract out
the notion of just needing idempotent code. Here, we abstract out the need of idempotence for
lock-free locks and suggest a very different, as well as more efficient and general, approach to
achieving idempotence. We also point out that to nest locks, we simply need the locking code
itself to be idempotent, leading to locking code that is very simple.

In our approach to idempotence, instead of using the context saving of TSP-B, we maintain a
shared log among processes running the same code. The log keeps track of all reads from shared
mutable locations, as well as some other events, such as memory allocations. Whenever the
code executes a loggable operation, it commits it to the log using a compare-and-swap (CAS).
Among the processes running the same code, whichever commits first, wins. All others take the
value committed instead of their attempted commit. In this way, they all see the same committed
values, e.g., the same reads, even though they are running in an arbitrary interleaved manner.

One key advantage of our approach is that the user can write concurrent algorithms based
on fine-grained locks, and then either run them entirely in a lock-free mode (with helping) or a
blocking mode (no helping). The blocking mode can use a standard lock implementation without
logging. The helping mode will log, at some additional cost, but guarantee lock-free behavior.
Another key advantage over TSP-B is that our approach is based on try locks, instead of strict
locks, which turns out to be important for the efficiency of optimistic use of fine-grained locks.

We have implemented our approach as a C++-based library called Flock. Based on the
library we have implemented several data structures based on try-locks, including singly linked
lists, doubly linked lists, binary trees, balanced blocked binary trees, (a,b)-trees, hash tables,
and adaptive radix trees (ART). We compare the performance of our versions in lock-free
mode and blocking mode to the most efficient existing data structures we found, both lock-
based and lock-free. The lock-based data structures generally perform slightly better under
controlled environments with one process per processor, but perform significantly worse when
oversubscribing with multiple processes per processor. Comparing running our algorithms in
lock-free vs. blocking mode, the lock-free performance rarely has more than 10% overhead, and
typically much less. However, with oversubscription, the lock-free mode greatly outperforms
the blocking mode by up to 2.4x.

Our contributions include the following:
1. We present a new practical approach to achieving idempotence in general code, which

relies on logging rather than context saving.
2. We present a new approach to lock-free try-locks. They can be nested.
3. We develop a general library-based interface to support our ideas.
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4. We compare several existing approaches with ours, both using locking and without using
locking.

5. We develop the first direct lock-free implementation of adaptive radix trees.

3.1.1 Example of Using Lock-Free Locks

To be concrete on how lock-free locks are used in our framework, we give an example of
maintaining a concurrent sorted doubly-linked list supporting insert, delete, and find. The
example uses optimistic fine-grained locks [99, 100]. Our C++ code using Flock1 is given in
Algorithm 3.1. Each node holds a key and value, previous and next pointers, a lock, and a flag
indicating whether the node has been removed. The flck::atomic wrapper around next, prev,
and removed (lines 2–4) indicates that these are shared mutable values. They need to be read
using a load, with a similar interface to a C++ std::atomic. Flock will log loads of mutable
values when inside a lock. The key and value fields are immutable so they need not be put in
flck::atomic.

Locks are attempted with the try_lock function. It takes a lock as an argument, as well as a
thunk (a function with no arguments). In Flock, the thunk is simply a C++ lambda expression
(which is essentially an anonymous function) containing the code to be run when the lock is
acquired. If the lock is free, try_lock acquires the lock, runs the thunk, releases the lock, and
returns the thunk’s return value (a boolean). Otherwise it returns false. The try_lock function
forces locks to be properly nested. This is important for our lock-free locks since the thunk
captures the code that might need to be helped by another try_lock. In Section 3.3 we describe
a function that avoids pure nesting and supports, for example, hand-over-hand locking.

The find_node finds the first node with a key greater than or equal to the requested key. It
requires no locks. The find just extracts the value from the node if the key matches.

The remove first finds the node n potentially containing the key. If it does not contain the
key, then it returns false indicating the key was not in the list. Otherwise it tries to acquire
a lock on the previous node (prev) and n. If either fails because they are already locked, the
condition on line 39 will be false and the while loop will repeat. The conditions on lines 41
and 42 validate that the previous node has not been deleted, and prev->next still points to n.
If either test fails then the while loop is repeated. If the tests pass, the code in the lock loads
the next pointer from n, marks n as removed, splices it out of the doubly linked list, and retires
its memory2. Note that a lock is not required on the node pointed to by next. This is because
a deletion of next or an insertion of an element before next would require a lock on n so it
cannot happen concurrently. The insert is similar to remove.

This locking-based code for doubly-linked lists is much simpler than any lock-free versions
we know of [9, 20, 77, 148, 155]. The difficulty in generating a lock-free version based on CAS
is that lines 46–47 need to be applied atomically, as do lines 29–30. Our approach gives us a
lock-free algorithm using the simple lock-based algorithm. As we show in our experiments, the

1We use the abbreviation flck in our code as flock is already reserved in C++.
2Flock uses an epoch based memory manager. The retire puts the pointer aside and frees the memory it

points to when it is safe (after all concurrent operations finish).
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1 struct node {
2 flck::atomic<node*> next;
3 flck::atomic<node*> prev;
4 flck::atomic<bool> removed;
5 Key k; Value v; flck::lock lck;
6 node(Key k, Value v, node* next, node* prev)
7 : k(k), v(v), next(next), prev(prev), removed(false)
8 {};};

10 node* find_node(node* head, Key k) {
11 node* n = (head->next).load();
12 while (k > n->key) n = (n->next).load();
13 return n;}

15 std::optional<Value> find(node* head, Key k) {
16 node* n = find_node(head, k);
17 if (n->key == k) return n->value; // found
18 else return {}; } // not found

20 bool insert(node* head, Key k, Value v) {
21 while (true) {
22 node* next = find_node(head, k);
23 if (next->key == k) return false; // already there
24 node* prev = (next->prev).load();
25 if (prev->key < k && prev->lck.try_lock([=] {
26 if (prev->removed.load() || (prev->next).load() != next) // validate
27 return false;
28 node* newl = allocate<node>(k, v, next, prev);
29 prev->next = newl; // splice in
30 next->prev = newl;
31 return true;}))
32 return true;}}; // success

34 bool remove(node* head, Key k) {
35 while (true) {
36 node* n = find_node(head, k);
37 if (n->key != k) return false; // not found
38 node* prev = (n->prev).load();
39 if (prev->lck.try_lock([=] {
40 return n->lck.try_lock([=] {
41 if (prev->removed.load() || // validate
42 (prev->next).load() != n)
43 return false;
44 node* next = (n->next).load();
45 n->removed = true;
46 prev->next = next; // splice out
47 next->prev = prev;
48 retire<node>(n);
49 return true;});}))
50 return true;}} // success

Algorithm 3.1: Sorted doubly-linked lists using fine-grained optimistic locks with Flock. Flock code
shown in red.
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lock-free version is almost as fast as the locking one without oversubscription, but much faster
with oversubscription.

3.2 Idempotence

To achieve lock-free critical sections, processes must be able to help each other. In particular,
if some process holds a lock and crashes, others must be able to release the lock. Since it is
possible that the crashed process has already begun its critical section, the other processes must
complete its critical section for it before releasing the lock.

This leads to the need to have idempotent critical sections. Intuitively, a piece of code is
idempotent if, when it is executed multiple times, it only appears to take effect once. Thus, if
we have idempotent critical sections, processes can safely help execute someone else’s critical
section, without worrying about who else has also executed it. Some code is naturally idempotent.
For example, a critical section that contains just one CAS instruction, which does not suffer from
the ABA problem, is idempotent. After it is executed for the first time, subsequent executions of
it would have their CAS fail, thus leaving the memory in the same state. Many hand-designed
lock-free data structures achieve their lock-freedom by allowing helping in such short, naturally
idempotent sections.

In general, however, most code is not idempotent. For example, code incrementing a counter
would yield different resulting counter values if it is executed several times. Thus, general
lock-free constructions must be able to make general code idempotent. Several approaches in
the literature have shown how to do so [14, 17, 18, 159]. In this section, we define idempotence
formally and present a new construction that makes any piece of code idempotent.

3.2.1 Idempotence Definition

A thunk is a procedure with no arguments [90]. Note that any procedure with given
arguments can be made a thunk by wrapping it in code that reads its arguments from memory.
The pseudocode we present is specialized for thunks returning true or false but it can be
generalized to any return type.

We follow the definition of idempotence introduced in [17]. Let 𝑇 be an instance of a thunk.
A run of 𝑇 is the sequence of steps on shared data taken by a single process to execute or help
execute 𝑇 . The runs of 𝑇 by different processes can be interleaved and each run may take a
different branch through 𝑇 depending on the memory state that it sees. A run is finished if it
reached the end of 𝑇 . We say a sequence of steps 𝑆 is consistent with a run r of T if, ignoring
process ids, 𝑆 contains the exact same steps as 𝑟 . We use 𝐸 | 𝑇 to denote the result of starting
from an execution 𝐸 and removing any step that does not belong to a run of the thunk instance
𝑇 .

Definition 1 (Idempotence [17]). A thunk is idempotent if all instances of it are idempotent. An
instance of a thunk 𝑇 is idempotent if in any valid execution 𝐸 consisting of runs of 𝑇 interleaved
with arbitrary other steps on shared data, there exists a subsequence 𝐸′ of 𝐸 |𝑇 such that:

1. if there is a finished run of 𝑇 (response on 𝑇 ), then the last step of the first such finished run
must be the end of 𝐸′,

21



1 type Log = shared<entry>[logSize];
2 type Thunk = function with no arguments returning bool

4 private process local:
5 Log* log; // the current log for a process
6 int position; // the current position in the log

8 struct descriptor:
9 Log* log;
10 Thunk thunk;
11 flck::atomic<boolean> done;

Algorithm 3.2: Types and global variables used in Algorithm 3.3.

2. removing all of 𝑇 ’s steps from 𝐸 other than those in 𝐸′ leaves a valid execution consistent
with a single run of 𝑇 .

Intuitively, this definition allows an instance of a thunk𝑇 to be executed by several processes
(in several runs of 𝑇 ), but other than one copy of each step executed for 𝑇 , the rest are not
effectual (i.e. have no impact on the rest of the execution). Furthermore, after one run of 𝑇
completes, no other runs of 𝑇 can execute an effectual step.

We assume that a thunk may have thunk-local memory which can only be accessed by
processes executing the thunk. In our simulation the log is thunk-local. Such memory is not
“shared data” as defined in Definition 1.

3.2.2 Our Approach to Idempotence

We now present a new approach to achieving idempotence in any code that is ABA-free.
We note that it is easy to make code ABA-free by attaching a counter to any memory location
that suffers from the ABA problem, and updating that counter every time the value is updated
(our implementation does this). Rather than basing our idempotence construction on context
saving, as were previous general idempotence constructions, we base our approach on using a
shared log. We present pseudocode for the approach in Algorithms 3.2 and 3.3. For memory
management, it assumes a sysAlloc primitive which returns an unused block of memory and a
sysRetire primitive which delays freeing the memory block until it is safe.

We store each instance of a thunk in a struct, called the descriptor. The descriptor also stores
a pointer to the log associated with the thunk instance as well as a boolean indicating whether
or not the instance has already been executed. The log keeps track of all values read, allocated
or retired while executing the thunk instance. The shared<T> type indicates a variable of type
T that is shared among processes. The log, however, is thunk-local; any process executing this
thunk instance uses the same descriptor struct, so the log is shared by all processes that execute
this thunk instance,3 but no other process can access this log.

We implement five operations for idempotent code: load, store, CAM (a CAS that does
not return any value or any indication if it succeeded or failed), allocate, and retire using

3Note that this differs from distributed logs used in, for example, optimistic transactional memory [100], where
each process has its own log. It also differs from logs used to commit successful transactions.
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12 descriptor* createDescriptor(Thunk f):
13 Log* log = allocate<Log>();
14 return allocate<descriptor>(log, f, false);

16 void retireDescriptor(descriptor* T):
17 retire<Log>(D->log);
18 retire<descriptor>(D);

20 bool run(descriptor* D):
21 Log* old_log = log; // store existing log and position
22 int old_pos = position
23 log = D->log; // install D’s log
24 position = 0;
25 bool returnVal = D->thunk(); // run thunk
26 log = old_log; // reinstall previous log and position
27 position = old_pos
28 return returnVal;

30 <V, bool> commitValue(V val):
31 if (log == null): return <val, true>;
32 bool isFirst = log[position].CAS(empty, val);
33 V returnVal = log[position].read();
34 position++;
35 return <returnVal, isFirst>;

37 struct flck::atomic<V>:
38 shared<V> val;
39 V load():
40 V v = val.read();
41 return commitValue(v).first;
42 void store(V newV):
43 V oldV = load();
44 val.CAS(oldV, newV);
45 void CAM(V oldV, V newV):
46 V check = load();
47 if (check != oldV): return;
48 val.CAS(oldV, newV);

50 V* allocate<V>(args):
51 V* newV = sysAllocate<V>(args); //use system allocator
52 <obj, isFirst> = commitValue(newV);
53 if not isFirst: sysFree<V>(newV);
54 return obj;

56 void retire<V>(V* obj)
57 <_, isFirst> = commitValue(1);
58 if isFirst: sysRetire(obj);

Algorithm 3.3: Idempotent primitives. The entrys of the log are assumed to hold any type that fits in a
word (or two if using double width CAS). The log is of fixed sized, but could grow by adding blocks as
needed (see Section 3.4 for details).
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the memory primitives read, write, cas, sysAlloc and sysRetire. Any thunk implemented from
these instructions can then be run idempotently. For ease of use, load, store and CAM are
implemented in a struct called flck::atomic that can wrap any type. This is modelled after
C++’s std::atomic type, which is used for shared mutable variables. Any variable declared
as flck::atomic automatically uses our idempotent versions of the corresponding primitives,
keeping programmer effort to a minimum. We assume that CAMs and stores do not race on
the same location. For our purposes a value is non-mutable (constant) if it is written once
(e.g. on initialization) and only read after it is written. Any non-mutable value, or any local
variables/locations can be read and written as usual without using a flck::atomic.

The idea of the approach is that each process keeps track of its current log (line 5) and how
many items it has logged in it so far while running the corresponding thunk instance (its position,
on line 6). Thus, when it starts executing a new thunk instance, it initializes its position to 0 and
its local log to point to this thunk instance’s log (lines 24 and 23). The process saves its previous
log and position so that it can go back to its previous thunk instance when it finishes executing
the new one. This is useful for executing nested thunks. Once a process has installed its new
log and initialized its position, it can start running the thunk instance. Whenever it executes a
new loggable instruction (load, allocate or retire), it uses the shared log of the thunk instance to
record the return value of this instruction and to see whether others have already logged it.

Values are stored in the log using a helper function called commitValue (line 30). This
function takes in a value to be logged; intuitively, this is the intended return value of the current
instruction. The process uses its current position to index into its thunk instance’s log. It tries
to commit its value by using a CAS on log[position], with old value empty, and new value
equal to the value it would like to log. All log entries are initialized to empty and we assume
that no process attempts to write empty into a flck::atomic variable. The process then checks
what value is written in log[position], and returns this value, as well as a boolean indicating
whether or not its CAS succeeded (i.e. whether it was the first to execute this instruction on this
thunk instance). When the process does not currently have a log (i.e. is not currently executing
a thunk), the commitValue function simply returns the input value and the success flag set to
true (line 31). With our locks this happens when the instruction is executed outside of all locks.
For example, no logging is needed for the loads on line 12 in Algorithm 3.1 since they are not in
a lock, but the load on line 41 is logged in the descriptor for its surrounding lock.

To load a value from a given flck::atomic variable, a process simply does a read from the
variable, and then tries to commit its value to the log by calling commitValue. commitValue
returns the value that was successfully committed which is in turn returned by the load (line 33).
In this way, the process returns the same value from its load as any other process executing this
load for this thunk instance.

To store a value in a given flck::atomic variable, the process first executes a load as
described above, thereby logging the value present before the store occurred, or discovering
what that value was (if this store was already executed by a different process). The process then
executes a CAS with expected value equal to the value returned from the load. Recall that we
assume that shared memory locations are ABA free, and therefore this ensures that all CAS
attempts but the first will fail. The CAM operation works similarly to the store, but with an
additional check to make sure the value returned by the load matches the expected value. It only
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executes a CAS if this is the case. By performing a load before the CAS, we guarantee that the
expected value was stored in the memory location at some point. Combined with the ABA-free
assumption, this prevents a potentially dangerous scenario where the expected value is written
into the memory location after the CAS, causing future executions of the CAM to potentially
succeed and no longer be idempotent. It is important that the CAM does not return the return
value of its CAS, since this value could be different for different processes that execute it, and
could therefore violate idempotence (externalize a different result). An example of use case for
this idempotent CAM will appear in Algorithm 5.5 of Chapter 5.

We also provide allocate and retire operations for idempotence. The idea is again to use the
thunk log to commit values. To allocate a new object, the process allocates this object using the
system-provided allocation mechanism, and then uses commitValue to install this new object
in the log. If it is the first to do so, then the allocation is done, and this new object is returned.
Otherwise, the process destroys its newly allocated object, and instead returns the object that
was already installed in the log.

To retire an object, the processes use the log to compete for ‘ownership’ of this object. The
first process to commit a boolean retirement flag on the log is responsible for retiring this object.
All other processes simply skip retiring it if they discover, by trying to commit a flag to the log,
that some other process already owns this object. In this way, each object is retired at most once.
Standard garbage collection techniques can then be used to collect retired objects when it is safe
to do so.

The commitValue can also be used directly by the user to commit the result of any non-
deterministic instruction. For example, if there is an instruction that generates a value based on
random noise in the processor, this needs to be committed so all instances of the thunk agree on
it.

We now show that our idempotence construction is correct; that is, the flck::atomic type
implemented in Algorithm 3.3 is linearizable, and any thunk that wraps all the mutable shared
variables it accesses in a flck::atomic type is idempotent. We begin by outlining a proof of
idempotence. For the following theorem, we relax Definition 1 so that retire operations in 𝐸′
are allowed to appear later than they would have in a single run of 𝑇 . This has no effect on
correctness and at worst it delays the reclamation of memory. Our idempotence construction
requires this relaxation because a process can go to sleep before peforming the sysRetire
on line 58, and in the meantime, other processes can perform future operations of the thunk
instance, making the retire appear out-of-order.

Theorem3.2.1. Replacing eachmutable shared variable accessed by a thunk𝑇 with a flck::atomic
type and allocating and retiring all objects in 𝑇 with the provided allocate and retire operations
yields an idempotent version of 𝑇 .

Proof. We begin with a brief outline. The idea is that all processes running the same thunk
instance will stay synchronized in the sense they will have the same state at the same point
of their execution. Whichever gets to a loggable event first will log it, and all others will see
it is already logged and use the same value. In this way, they all see the same values, and stay
synchronized. It also means their position in the log will be synchronized. Memory allocation
and retiring is safe since only the first run of each allocate will keep its allocated value and
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only the first run of each retire will retire the value. For stores and CAMs, only the first such
operation will succeed and all others will fail, because of our ABA-free assumption. Therefore
only the first will be visible. This argument is described in more detail below.

Given an execution 𝐸 consisting of runs of𝑇 interleaved with arbitrary other steps on shared
data, we will construct a subsequence 𝐸′ of 𝐸 |𝑇 that satisfy the criteria from Definition 1 (with
the relaxation that retire operations in 𝐸′ are allowed to appear later than they would have in
a single run of 𝑇 ). Throughout the proof, we will refer to load, store, CAM, allocate, retire as
operations, and executions of primitive shared memory instructions such as read, write, and
CAS as steps.

We begin by viewing the execution at the level of operations. We show by induction that all
runs of 𝑇 execute the same sequence of operations with the same arguments and return values.
As the base case, note that all processes that execute𝑇 start with the same local variables, and𝑇
takes no arguments. Therefore, they begin the execution in the same state. As the inductive
hypothesis, assume that the first 𝑘 − 1 operations executed by𝑇 are the same across all runs and
have the same arguments and return values. Consider the 𝑘th operation 𝑂𝑘 . Since all previous
operations returned the same value across all runs, then 𝑂𝑘 is the same operation and is called
with the same arguments across all runs. Note furthermore that if 𝑂𝑘 executes line 32, the CAS
on that line is successful in exactly one instance. All processes executing 𝑂𝑘 use position 𝑘
to access the log, and no process executing a different operation uses position 𝑘 . Therefore,
before the first execution of line 32 for 𝑂𝑘 , log[k] = empty. Since we assume empty is never
written in any allocated variable, the new value of the CAS on line 32 will never be empty.
Therefore, the first instance of that CAS will be successful, and all others will fail. If𝑂𝑘 is a load
or an allocate, since those operations return the value read from log[k] after the first CAS
on line 32 for 𝑂𝑘 , all its instances will return the same value. Note that all other operations do
not return a value, so the claim holds.

Next, we construct the subsequence 𝐸′ by picking steps so that each operation𝑂𝑘 appears to
only run once. We will ensure that all steps picked from runs of 𝑂𝑘 appear before those picked
from runs of 𝑂𝑘+1, except when 𝑂𝑘 is a retire operation in which case its call to sysRetire
may appear later. For each operation 𝑂𝑘 , consider the run that executes the CAS on line 32 first.
We pick a prefix of that run, starting from the beginning of 𝑂𝑘 up to when it executes line 32
(inclusive), to be part of 𝐸′. As shown in the previous paragraph, executions of the CAS on
line 32 by other runs of 𝑂𝑘 will return false. Next, we pick the first execution of line 33 by any
run of 𝑂𝑘 to be part of 𝐸′, and we pick the remaining steps differently depending on what type
of operation 𝑂𝑘 is. load operations do not perform any more shared memory steps so we are
done. Let 𝑟 be a run of𝑂𝑘 that is consistent with the sequence of steps we have picked so far for
𝐸′. Since we picked the successful instance of line 32, isFirst is set to true for 𝑟 . Therefore, if
𝑂𝑘 is an allocate, then 𝑟 will not execute any more shared memory steps after line 33, so 𝐸′
contains all of 𝑟 ’s steps. If 𝑂𝑘 is an retire, then whichever run executed the successful CAS on
line 32 will eventually execute a sysRetire on line 58, and we pick that sysRetire to be part of
𝐸′ (if it exists in 𝐸). Note that this sysRetire may appear in 𝐸′ after steps by future operations
and this is allowed by our relaxed idempotence definition. If 𝑂𝑘 is a store, then we pick the
first execution of the CAS on line 44 to be part of 𝐸′. All executions of this CAS by future runs of
𝑂𝑘 will return false because oldV was previously stored in val and we assume flck::atomic
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types are ABA-free. Finally, suppose 𝑂𝑘 is a CAM. Since the value of check on line 47 was read
from the log on line 33, all runs of 𝑂𝑘 will have the same value for check. Therefore, either all
runs will execute the CAS on line 48 or none of them will. If they execute the CAS, then we pick
the first such step to be part of 𝐸′, just like for stores. Otherwise, 𝑂𝑘 performs no more shared
memory steps and we are done.

Picking steps in this manner ensures that𝑇 appears to run once in 𝐸′ and if there is a finished
run of 𝑇 in 𝐸, then the last step of the first finished run will be the end of 𝐸′ (with the exception
of sysRetire). Furthermore, the steps in 𝐸 |𝑇 that we did not pick have no effect on shared
memory so removing them still leaves a valid execution. This is the case for any removed
CAS operation because they all return false. Also, memory locations allocated by removed
sysAllocate operations are never used since they are never committed to the log. Finally, the
sysFrees that were removed correspond to the removed sysAllocate operations. Therefore,
removing all of 𝑇 ’s steps from 𝐸 other than those in 𝐸′ leaves a valid execution.

□

Idempotent by itself does not guarantee that we are not over-allocating or double freeing. To
prevent memory leaks, every block of memory allocated on line 51 that does not get committed
to the log is freed on line 53. We also use the shared log to ensure that each object is retired no
more than once on line 58.

To complete the correctness proof, we also need to show that load, store, and CAM are
linearizable in executions where each instance is run only once. Intuitively, this is because in
the absence of repeated runs, the load operation simply reads and returns the variable val,
and the store and CAM operations simply read val and try to update it with a CAS. This is a
well-known linearizable implementation of load, store, and CAM (also works for CAS instead of
CAM) using just load and CAS, and it is linearizable as long as stores and CAMs do not race.

As mentioned, most previous approaches to idempotence have been based on context sav-
ing [14, 17, 18, 30, 159]. This involves storing out a program counter and current state of all
local variables at important events (e.g. shared memory operations), and possibly loading and
installing a new context if already stored. Our approach never needs to store a program counter
or local state since the processes are running “synchronously” and have the same local state. For
large thunks, and frequent helping, however, our method potentially does have an additional
cost. In particular, we always start helping from the beginning of a thunk while the other
methods will start at the point of the last context saved by any process. Our method is therefore
particularly well suited for short thunks, which is the intended use with fine-grained locks, and
possibly not as well suited for long running thunks.

3.3 Lock-free Locks

We now describe how we implement a tryLock. It is important that tryLocks can be nested
to allow a process to hold multiple locks at the same time. This means the locking mechanism
itself must be idempotent or otherwise safe to use when there are multiple threads helping to
acquire the lock. In particular, consider an operation 𝑂1 that takes an outer lock 𝐿𝑎 and inside
the lock takes an inner lock 𝐿𝑏 . If another operation 𝑂2 encounters 𝐿𝑎 locked, it will help 𝑂1

27



1 struct taggedDescr :
2 descriptor* d;
3 bool isLocked;

5 type Lock = flck::atomic<taggedDescr>;

7 bool runAndUnlock(Lock* lock, taggedDescr descr):
8 bool result = run(descr.d);
9 descr.d->done.store(true);
10 lock->CAM(descr, taggedDescr(descr.d, false));

12 bool tryLock(Lock* lock, Thunk 𝑓 ):
13 bool result = false;
14 taggedDescr currentDescr = lock->load();
15 if (not currentDescr.isLocked) :
16 descriptor* myDescr = createDescriptor(𝑓 );
17 taggedDescr myTaggedDescr = {myDescr, true};
18 lock->CAM(currentDescr, myTaggedDescr);
19 currentDescr = lock->load();
20 if ((myTaggedDescr.d->done).load() or
21 myTaggedDescr == currentDescr) :
22 result = runAndUnlock(myTaggedDescr); //run self
23 else if (currentDescr.isLocked) :
24 runAndUnlock(currentDescr); // help other
25 retireDescriptor(myDescr);
26 else : runAndUnlock(currentDescr); // help other
27 return result;

29 void unlock(Lock* lock):
30 taggedDescr currDescr = lock->load();
31 lock->CAM(currDescr, taggedDescr(currDescr.d, false));

Algorithm 3.4: Idempotent TryLock
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execute its critical code. This means it will help 𝑂1 acquire 𝐿𝑏 and, if successful, run the code of
𝑂1 in that lock. Note that the outer most tryLock in a sequence of nested tryLocks need not be
idempotent because it will never be helped by another process.

Based on our technique for idempotence, it turns out to be quite simple to implement the
locking mechanism so that it is idempotent. Our code is given in Algorithm 3.4. It uses a
type called taggedDescr, which is a pair consisting of a boolean and a pointer to a descrip-
tor. The boolean indicates whether or not the lock is currently taken. It is easy to put these
two fields into a single word by stealing a bit from the pointer. A Lock is then defined as a
flck::atomic<taggedDescr>.

An attempt at acquiring the lock starts by reading the lock and checking if it is currently
locked. If not locked, the algorithm creates a descriptor for the thunk instance 𝑓 (line 16) and
tags it to mark that it is locked (line 17). It then attempts to install the descriptor on the lock
using a CAM (flck::atomic does not support CAS). Since the CAM does not return whether it
succeeds, the algorithm needs to read the lock again (line 21) to check if the lock was successfully
acquired for its descriptor. If acquired or if previously acquired and now done, it runs the code
and releases the lock (line 22). If not acquired but currentDescr is locked, then the algorithm
helps the descriptor on the lock and unlocks it (line 24). Whether the CAM was successful
or not, myDescr needs to be retired (line 25). If on line 15 the lock is already locked, then the
algorithm helps the descriptor on the lock and unlocks it after finishing helping (line 26). Finally
the result is returned, which will only be true if the lock was successfully acquired and the
thunk 𝑓 returns true.

We now argue correctness. We say a tryLock is correct if it either fails, in which case none
of the critical code (thunk 𝑓 ) is run and it returns false; or it succeeds, in which case all its
critical code is run and the tryLock returns its value. If successful, no other critical code on the
same lock can run concurrently. By this definition, the tryLock could always fail, but this would
not satisfy progress bounds, and in particular for us, our lock-free bounds. We say a successful
tryLock enters on the step the lock is changed to point to the tryLock’s descriptor and exits on
the step when the lock is changed from locked with its descriptor to unlocked.

Theorem 3.3.1. The tryLock in Algorithm 3.4 is correct as long as run(descriptor) runs the
user code in the thunk 𝑓 idempotently, and the operations on a Lock (load, CAM and store) and
on descriptors (createDescriptor and retireDescriptor) are idempotent.

Proof. (Outline). The code in a thunk consists of the user level code and possibly the code of
one or more nested tryLock. Together this is idempotent by assumption.

In the algorithm, a descriptor is run if and only if the tryLock enters and the lock is set. The
descriptor is run by the runAndUnlock method which can be called on line 22 by the process
that installed the descriptor, or on lines 24 or 26 by the helping processes. Some process (either
the primary process or a helper) will finish the thunk first. Since the thunk is idempotent, any
processes working on the same descriptor after that point will have no effect. The lock is only
released after the thunk is first finished so the code can only have an effect between when the
successful tryLock enters and exits. Since there is a unique descriptor on the lock during this
time, no other thunk on the same lock can appear to run concurrently. There could be leftover
thunks from earlier successful attempts on the lock, but they will have no effect.
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If either the lock was already taken on line 14 (i.e. the check on line 15 fails) or the attempt to
install a descriptor was unsuccessful on line 18 (i.e. the check on line 21 fails), then the tryLock
fails and returns false. Otherwise, its descriptor was successfully installed, and it returns the
result of running that descriptor on line 22. Note that it is important to check the descriptor’s
done flag on line 20 because even when the descriptor is successfully installed on line 18, the
load on line 19 might not see it because it might have been helped and replaced by another
process. Checking the done flag ensures that the tryLock will always return the return value of
the descriptor it installed if its CAM on line 18 is successful. □

The theorem does not depend on a particular implementation of idempotence, but works
with ours since ours satisfies the specified conditions.

We now show that tryLocks are lock-free. For this purpose we make some assumptions.
Firstly, we assume the locks have a partial order <ℓ , and that when nesting locks they are
acquired in decreasing order. This is a relatively standard assumption for lock-based algorithms
since it prevents lock-cycles and deadlock. Secondly, we assume that each tryLock includes at
most one other tryLock directly inside of it. Note that this still allows arbitrary depth of nesting
since the one inside can itself contain another lock inside it.4 We refer to locks that satisfy these
two conditions as simply nested and we refer to the outer most lock as the top-level lock. We
say that a simply nested tryLock recursively succeeds if it acquires its lock as well as all locks
nested inside of it and finishes executing its critical section. Note that for a tryLock 𝑎 if any
one tryLock nested in it recursively succeeds then they all do, including 𝑎. We say a tryLock
succeeds if it acquires its lock and finishes executing its critical section.

We also need to bound the time of user code in a lock, otherwise helpers could never
complete helping. We defined step count for a tryLock recursively by counting the number of
steps performed by the thunk passed to the tryLock as follows. We count all functions in the
idempotent interface as unit cost plus the cost of any user code inside of them—in particular
sysAllocate and sysRetire count toward user code. We count a nested try_lock as unit cost
plus the step count of the code in its critical region.

Theorem 3.3.2. Consider an algorithm using simply nested tryLocks for which the maximum
step count for any tryLock, not including helping, is bounded. In such an algorithm, a tryLock,
including any helping it does, will run in a bounded number of steps, and for every bounded number
of tryLock attempts at least one top-level tryLock will recursively succeed.

Proof. We say that a tryLock 𝑏 directly helps another tryLock 𝑐 if (1) line 24 or line 26 of 𝑏 runs
the thunk installed by 𝑐 or (2) currentDescr on line 19 of 𝑏 is unlocked and belongs to 𝑐 . In the
second case, 𝑏 does not actually help 𝑐 , but 𝑐 must have acquired its lock after line 14 of 𝑏 and
released it before line 19 of 𝑏 so we can give 𝑏 credit for helping. Importantly, by this definition,
a tryLock either succeeds or directly helps another tryLock. We say that a tryLock 𝑎 helps 𝑐 if
𝑎 or a tryLock nested in 𝑎 directly helps 𝑐 . We say 𝑏 recursively helps 𝑐 if either 𝑏 helps 𝑐 or 𝑏
helps another tryLock that recursively helps 𝑐 . Every tryLock helps at most one other due to
idempotence and the nesting property that we assume. More specifically, if a nested tryLock

4We expect this requirement is not necessary, but our proof relies on it and it is true for all our tryLock-based
data structures.
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fails, no new locks can be taken until the top level tryLock completes. This implies that helping
forms a chain where the next tryLock in the chain is helped by the previous one.

Now note that if 𝑎 helps 𝑏 due a conflict on lock 𝑙1 and 𝑏 helps 𝑐 due to a conflict on lock 𝑙2,
the tryLock that attempts 𝑙2 is nested inside the tryLock that acquired 𝑙1. Since nested locks are
acquired in the partial order >𝑝 , we have that 𝑙1 >𝑝 𝑙2 and more generally that locks decrease
along any helping chain. Furthermore, each tryLock along the helping chain is owned by a
different process. To see why, we first note that if 𝑎 directly helps 𝑏, then 𝑏 installed its descriptor
before the end of 𝑎 since 𝑎 must have seen 𝑏’s descriptor. Suppose 𝑝 is the process that owns 𝑎.
All the locks recursively helped by 𝑎 have lower priority and their descriptors were installed
before the end of 𝑎, so 𝑎 cannot recursively help a tryLock owned by 𝑝 unless the locking order
is violated. Therefore, the same process will not appear twice along any helping chain, so the
chain will have bounded length (at most 𝑃 ) and will end with a recursively successful tryLock.
Since we assume the user code takes a bounded number of steps, each instance of helping along
the helping chain also takes bounded steps. Hence, running any tryLock takes bounded steps
(including all recursive helping along the chain). Furthermore, since there are a bounded number
of locks on the chain, the number of tryLocks responsible for completing the last one is also
bounded. Finally we note that although the last one might not be top-level, the fact it recursively
succeeds implies the top-level tryLock that contains it recursively succeeds. □

This theorem indicates that simply nested tryLocks are lock-free in that a top-level tryLock
must recursively succeed in a finite number of steps. Recall that this implies all the tryLocks
nested inside it are successful as well. The theorem does not, however, imply wait-freedom
since a particular process could continuously fail to acquire a lock. It also does not, by itself,
guarantee an algorithm using simply nested tryLocks is lock-free. In an algorithm based on
optimistic fine-grained locks, for example, we might need to retry not because a lock failed to
be acquired, but instead because the data structure changed between our optimistic traversal
and our acquiring of the locks (e.g. the consistency check on line 41 of Algorithm 3.1). In all
the algorithms we consider, however, a change in the data structure means another operation
has made progress. In the remove from Algorithm 3.1, for example, the consistency check can
only fail if in between the find_location and when the lock on cur is acquired, either (1) cur
is deleted or (2) it is updated to point to a new next. In either case, the algorithm has made
progress by completing an operation. A similar argument can be made for the insert. Therefore
the ordered list algorithm based on our tryLocks is lock-free, as are the other algorithms we
consider.

It can be useful to release a lock early before the scope of the thunk associated with the
acquired lock completes. We supply a unlock for this purpose. It takes a lock that is currently
acquired by the thread and unlocks it. Its behavior is undefined if the thread has not acquired
the lock. As mentioned in the introduction, this can be used for hand-over-hand locking (also
called lock-coupling) [16].

The code for tryLock can be modified to support a strictLock that always acquires the lock
before returning, by first creating the descriptor, and then putting the attempt to acquire a
lock into a while loop. We have implemented an optimized version of such a strictLock and
compare it to the tryLock in Section 3.6. We note that this implementation of strict locks is not

31



simply nested so is not covered by Theorem 3.3.1. However, it should be possible to adapt TSP’s
proof [159] to show that strict locks are lock-free.

3.4 The Flock Library

We have implemented a C++ library, Flock, based on our lock-free locks approach. This
approach does not require any C++ specific features and can be implemented in other languages
as well. It supports a flck::atomic wrapper to use on any shared variables that can be mutated
inside a lock. Note that these variables can also be accessed outside of critical sections and no
logging will be performed in that case. Our library also supplies a lock type and a try_lock
function. The flck:atomic wrapper has a similar interface to the C++ std::atomic wrapper.
In particular, it supports load, store and cam. The assignment operator (=) is overloaded so
that it becomes a call to store. Flock also supports allocate and retire which are integrated
with its epoch-based collector. An example of how to use Flock is given in Algorithm 3.1. The
library is available at https://github.com/cmuparlay/flock 5.

Here we discuss several specifics about the implementation, including some optimizations.

Epoch-based collection. Flock uses an epoch-based memory manager [71, 79] for simplicity
and it is compatible with other concurrent memory management schemes as well. In an epoch-
based memory manager, each operation runs in an epoch, each of which is associated with an
integer that increases over time. Managing memory with epochs requires some additions to the
the implementation of idempotent code. In particular, when a thread helps another thread, it is
taking on the responsibility of that other thread. It therefore needs to also take on the other
thread’s epoch number. This is because the other thread can complete its operation before the
helping thread finishes its helping steps. To implement this, when Flock has to help inside of a
try_lock, it changes its epoch to be the minimum of its epoch and the epoch of the thunk it is
helping. Note that choosing the minimum prevents the reclamation of any object retired during
either epoch. When it is finished helping, it restores its epoch to what it was before helping.
The descriptors are also allocated and retired with the same epoch-based collector, with one
optimization. In particular if a descriptor is never helped, which is the common case, then it
can be reused immediately instead of being retired. To implement this, we keep a flag on the
descriptors which is set when helping. This requires some careful synchronization.

ABA. Although the idempotent implementation in Algorithm 3.3 requires that mutable shared
variables are ABA free, an atomic in Flock does not have this requirement. To allow for this,
Flock keeps tags on mutable locations. A simple implementation is to use a 64-bit counter, and
increment the counter on each update. Assuming mutable values can be up to 64-bits, this can
be implemented with double-word (128-bit) loads and CASes. Unfortunately double-word loads
are particularly expensive on current machines. Flock has two optimizations to avoid them,
one which supports 64-bit values, and one for 48-bit values, which is sufficient for a pointer.

The first optimization still uses a 64-bit counter on every flck::atomic, but avoids any
double-word loads. A key observation is that a load only needs to log the value, and therefore

5Our paper on Flock [21] originally referred to flck::atomic as “mutable_”, but the newest version of the
Flock library uses atomic.
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only needs to read this value (rather than both the value and the counter). Another observation
is that a store (or cam) does not need to read the counter and value atomically. Instead, it can
first read the counter and then the value, followed by a double-word CAS to the flck::atomic.
This is safe since the value can only change if the counter changes.

The second optimization avoids the extra 64-bit counter on each mutable location and any
double word operations. Instead it uses a safe lock-free approach that only requires a 16-bit tag.
It uses an announcement array to ensure that wrapping around is safe—i.e., it never uses a tag
that is announced. All the experiments in Section 3.6 use this version since the mutable shared
variables are no larger than a pointer.

Constants and Update-once Locations. Shared, constant locations do not need to be wrapped
in an atomic and can just be read directly. A constant location is one that is written once and
only read after it is written. The write could happen during construction of the object that
contains it or after. For example the key and value in the list link in Algorithm 3.1 are constants.
Flock also supports update-once locations. These are locations that have an initial value, and
are updated at most once. Reads can happen before or after the update. The removed flag in a
link in Algorithm 3.1, for example, is updated once. Update-once variables are ABA free and
therefore do not need a tag. Furthermore, the store can be implemented with a simple write
instead of a load and then a CAS. This is because only the first such write will have an effect.
The other writes by helping threads will write the same value and have no effect.

Arbitrary Length Logs. In general it cannot be determined ahead of time how long a log will be.
Flock therefore implements logs that can dynamically increase in size. In the implementation,
a log has a fixed block size (7 by default). If it runs out, another block is allocated. To do this
idempotently, the first thread that runs out allocates the block and attempts to CAS it into a
next-block pointer. If it fails, it frees its block and takes on the block that succeeded.

Avoiding CASes. We found that one of the most expensive aspects of helping is contention due
to CASes on both the log and mutable locations. This is especially true under high contention
when there is a lot of helping. To significantly reduce this contention we use a compare-
and-compare-and-swap. In particular, before doing a CAS, the location is read and compared
against the expected value, and if not equal the CAS can be avoided. When helping under high
contention it is often not equal (someone else already executed the CAS) so many of the CASes
are avoided. This rather simple change made a significant improvement in performance under
high contention—sometimes a factor of two or more.

Capturing by Value. In the code in Algorithm 3.1, one might notice the “[=]” in the definition
of the lambda’s. This indicates that all free variables in the lambda defined outside of it are
captured by value, as opposed to by reference—i.e., they are copied into the thunk. This is
important since the lambda might outlive its context, and any surrounding stack allocated values
could be destructed while being helped. Indeed if the [=] is replaced by [&] (by reference),
Algorithm 3.1 would be incorrect—for example, the variable prev on line 38 could be reused
while the lambda is being helped.
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3.5 Data Structures

We have implemented several concurrent data structures using Flock. These data struc-
tures include the doubly linked list described in Section 3.1.1 (dlist), a singly-linked list [83]
(lazylist), an adaptive radix tree [103, 104] (arttree) which is a state-of-the-art index data
structure used in the database community, a separate chaining hash table (hashtable), a leaf-
oriented unbalanced BST (leaftree), a leaf-oriented balanced BST (leaftreap) with an opti-
mization that stores a batch of key-value pairs (up to 2 cachelines worth) in each leaf to minimize
height, and an (a,b)-tree (abtree). To support concurrent accesses, the data structures use
fine-grained, optimistic locking6, as in [33, 83, 99, 104]. This approach involves (1) traversing
the data structure without any locks, (2) locking a neighborhood around the nodes you wish
to modify, (3) checking for consistency, and (4) performing the desired modifications. If the
consistency check fails, locks are released and the operation restarts. Read-only operations do
not take any locks.

We implement a tryLock and a strictLock version of each data structure. Both tryLock and
strictLock can either be lock-free (with helping and logging) or blocking (using test-and-test-
and-set locks), and with our library, this choice can be made by changing a flag at runtime.

To the best of our knowledge, this results in the first lock-free implementation of an adaptive
radix tree. In many workloads, our lock-free arttree significantly outperforms the other
lock-free ordered set data structures that we ran. Our implementations of these optimistic,
fine-grained locking data structures are available at https://github.com/cmuparlay/flock.

3.6 Experimental Evaluation

Our experimental evaluation has two main goals: first, to compare the performance of lock-
free locks with blocking locks and second, to compare data structures written with lock-free
locks with state-of-the-art alternatives.

Setup. Our experiments ran on a 72-core Dell R930 with 4x Intel(R) Xeon(R) E7-8867 v4 (18
cores, 2.4GHz and 45MB L3 cache), and 1Tbyte memory. Each core is 2-way hyperthreaded
giving 144 hyperthreads. The machine’s interconnection layout is fully connected so all four
sockets are equidistant from each other. We interleaved memory across sockets using numactl
-i all. The machine runs Ubuntu 16.04.6 LTS. We compiled using g++ 9.2.1 with -O3. We used
ParlayLib [31] for scalable memory allocation.

Workloads. We experiment with set data structures supporting insert, delete and lookup
with 8-byte keys and 8-byte values. Our experiments follow a similar methodology to previous
papers [8, 48]. We first pick a key range [1, 𝑟 ] and prefill the data structure with half the keys in
the range. Then each thread performs a mix of lookup and update operations, where update
operations are evenly split between inserts and deletes, keeping the data structure size stable
throughout the run. Each experiment is run for 3 seconds (sufficient for reaching a stable state)
and repeated 4 times. The first run is a warmup run and an average of the last 3 runs is reported.
Before the warmup run, we shuffle the ParlayLib memory allocator by allocating a large number

6Also known as optimistic synchronization [85].
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Figure 3.5: Comparing our lock-free implementation of locks with various blocking implementations on
a lock-based binary search tree initialized with 100K keys. Workload consists of 144 threads, and 50%
updates.

of nodes and freeing them in a random order to increase consistency across runs. Standard
deviation between runs is small enough that the error bars in our graphs are only visible for a
small number of data points.

All keys are randomly chosen from the range [1, 𝑟 ] according to a zipfian distribution
parameterized by 𝛼 . Zipfian with 𝛼 = 0 is identical to the uniform distribution and higher 𝛼
skews accesses towards certain “hot” keys, which is more representative of real-world workloads.
The zipfian distribution is also used in the YCSB benchmark suite, which mimics OLTP index
workloads [43]. We mostly run with 5% and 50% updates, following YCSB Workloads B and A,
respectively.

Our experiments vary four parameters: data structure size, update rate, 𝛼 , and number of
threads. We show graphs along each of the dimensions, fixing the other three. Since arttree is
a trie data structure, it benefits heavily from densely packed keys, so we sparsify the key range
by hashing each key from [1, 𝑟 ] to a 64-bit integer. This does not affect the other data structures
since they either are purely comparison based or hash the keys themselves.

Try vs strict lock. In data structures that employ optimistic locking, tryLock is often preferable
to strictLock. This is because optimistic locking requires checking for consistency after taking
the necessary locks. So if a process 𝑝1 tries to acquire a lock that is held by a another process
𝑝2, it is better for 𝑝1 to restart its operation instead of waiting to acquire the lock because it
will likely fail its consistency check due to modifications by 𝑝2. We see this happen in the
leaftree in Figure 3.5, which compares various tryLock and strictLock implementations. The
leaftree-flock algorithm uses our lock-free version of tryLock, whereas leaftree-trylock
uses the traditional blocking version. For strictLocks, we tested MCSlock, a queue based lock by
Mellor-Crummey and Scott [112], futex, a fast user space lock provided by linux [108], and also
TASlock, a test-and-test-and-set based spinlock. We see that the higher the Zipfian parameter 𝛼
is, the more contention there is on the locks, and the more beneficial tryLock becomes. This
holds for both blocking locks and lock-free locks. In the rest of this section, we only report on
tryLocks.

Binary trees. Figure 3.6 shows the throughput of concurrent trees under a wide range of
workloads. We compare our tree implementations with state-of-the-art lock-based (Bronson [33],
Drachsler [58]) and lock-free (Ellen [62], Chromatic [38] and Natarajan [122]) binary search
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Figure 3.6: Throughput of binary trees under a variety of workloads are shown. Dotted lines are used
for blocking data structures and solid lines for lock-free ones. Subcaptions abbreviate ‘threads’ to ‘th’
and ‘updates’ to ‘up’. The ‘bl’ and ‘lf’ suffixes represent the blocking and lock-free version of our locks,
respectively.
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Figure 3.7: Throughput of concurrent set data structures.

trees. These implementations were obtained from the SetBench benchmarking suite [8]. Bronson
and Chromatic are the only balanced tree among these implementations. Regarding the lock-free
trees, Ellen andNatarajan are implemented directly fromCASwhereas Chromatic is implemented
using the higher-level LLX/SCX primitives [37]. Note that in all the graphs, lock-based algorithms
are denoted by dotted lines and lock-free algorithms appear as solid lines.

Figures 3.6(a)- 3.6(d) consider the case where the tree does not fit in cache and Figures 3.6(e)-
3.6(g) consider the case where they do. In out-of-cache workloads, performance is dominated by
cachemisses incurred during the traversal phase. Figure 3.6(b) shows that the cost of updating the
tree is small compared to these cache misses, whereas in Figure 3.6(f), increasing the percentage
of updates significantly reduced throughput. All trees scale well, up until oversubscription
(Figures 3.6(a) and 3.6(e)), with the exception of Drachsler in Figure 3.6(e). Bronson is generally
the fastest when tree size is large because it is better balanced compared to the other trees (many
of which are only balanced in expectation due to random inserts), resulting in shorter traversals
and less cache misses. As the zipfian parameter 𝛼 increases, all trees except Bronson and
Drachsler speed up because higher 𝛼 means more locality and less cache misses (Figure 3.6(c)).
However, large 𝛼 also means more contention. In the case of Bronson and Drachsler, which
both use blocking strict-locks, this extra contention out-weighs the benefits of locality. This
effect is even more severe for small trees (Figure 3.6(g)).

Lock-free vs blocking. Next, we compare the throughput of lock-free data structures with
blocking ones, with particular emphasis on leaftree-lf and leaftree-bl, the lock-free and
blocking variants, respectively, of our leaftree. The overhead of lock-free locks come from two
main sources (1) allocating and initializing a new descriptor every time a lock is acquired, and
(2) committing values to the log during critical sections. A successful insert commits about 5
entries to the log. This overhead is only visible in small trees with high update rates (Figures 3.5
and 3.6(e)). Across all the graphs in Figure 3.6, the overhead of using lock-free locks rather than
traditional blocking locks is no more than 11%. Furthermore, most graphs do not show any
visible overhead.
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Figure 3.8: Throughput of singly and doubly linked lists. The ‘bl’ and ‘lf’ suffixes represent the blocking
and lock-free version of our locks, respectively.

Where lock-free algorithms shine is in oversubscribed cases (e.g. 288 threads) with high
contention. This is because a thread may get descheduled while it is partway through an
update, and in a lock-free algorithm, if another thread wants to update the same location, it can
simply help complete the inactive thread’s update and then proceed with its own. However, in a
blocking data structure, the new thread will have to either wait for the inactive thread to be
scheduled again and release its lock, or yield and context switch, both of which are expensive.
This effect can be seen in the right side of Figures 3.6(d) and 3.6(g) and the left side of Figure 3.6(h)
where the four lock-free trees outperform the three blocking trees. In particular, leaftree-lf
outperforms leaftreap-bl by up to 2.4x in Figure 3.6(h).

Other set datatypes. In Figure 3.7, arttree, leaftreap, abtree and hashtable, generally
follow the same pattern as leaftree. That is, lock-free versions outperform their blocking
counterparts in oversubscribed, high contention scenarios (right side of Figure 3.7(b)), by up
to 2.5x in the case of the hashtable and 2x for the arttree. In non-oversubscribed scenarios
(left size of Figure 3.7(a)), the overhead of using lock-free locks is small, especially for abtree
and leaftreap. The overhead of lock-free locks is highest in the hashtable because its search
time (i.e. fraction of time spent outside of the critical section) is small and hence the overhead
for the locked part plays a larger role. Figure 3.7 also compares our data structures with
Srivastava’s CoPub-ABtree [151], a state-of-the-art blocking (a,b)-tree. Our lock-free abtree
performs similarly to srivastava_abtree in most cases but is up to 32% faster at the right of
Figure 3.7(b).

Linked List Experiments. Figure 3.8 compares doubly and singly linked lists written using our
lock-free locks (dlist and lazylist, respectively) with Harris’s lock-free singly linked list [80]
(harris_list), and an optimized version of Harris’s list where find operations do not perform
any helping [48] (harris_list_opt). In most cases, our lock-free lazylist is slower than
harris_list_opt by about 16% because the descriptors in harris_list_opt are optimized
to simply be flags. Interestingly, the lock-free versions of dlist and lazylist outperform
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their corresponding blocking versions even without oversubscription on small lists (left of
Figure 3.8(a)).

The pseudo-code for dlist was presented earlier in Algorithm 3.1 and Figure 3.8 show that
this simple algorithm performs well. The overhead of maintaining back pointers is only about
13% (comparing dlist with lazylist).

3.7 Conclusion

We presented a mechanism for implementing lock-free locks, and a library-based implemen-
tation. It is the first such library implementation of lock-free locks we know of. The approach is
practical in two senses. Firstly, in terms of performance it is competitive with state-of-the-art
lock-free and lock-based data structures. Secondly, using the library requires very few changes
to existing lock-based implementations—basically wrapping shared values in a flck::atomic,
and using the Flock lock structure and memory management. In terms of functionality it
significantly extends previous suggested approaches to lock-free locks, supporting memory
management, races, and tryLocks.

We separate out the idea of idempotent blocks of code (thunks) and present a general and
efficient approach along with a C++-based library to support them. The approach supports
arbitrary code with load, stores and CAMs on shared locations, as well as memory allocation
and retirement from a shared pool. A thunk using the approach can be run any number of times
with instructions interleaved in any way while behaving like it ran once. The approach uses a
shared log for each thunk so that separate runs of the thunk see the same result. The idempotent
construction could be of independent interest.

We implemented several data structures using the approach. With regards to the opening
question of whether to be lock-free or not to be, the experiments clearly indicate the advantage
of lock-freedom when processors are oversubscribed. Our experiments are some of the first on
concurrent data structures that study this effect. The experiments also show that the overhead
of being lock-free for our structures is relatively small (rarely more than 10%) and often hardly
noticeable.
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Related Work

As mentioned, the idea of lock-free locks was introduced by Turek, Shasha and Prakash [159]
and Barnes [14]. The idea of helping dates back earlier, at least to Herlihy’s work on wait-free
simulations [84]. Many wait-free and lock-free algorithms achieve their progress guarantees by
allowing processes to safely help each other complete their operations, although in quite specific
ways instead of using a general mechanism. Help used for wait-free progress was formally
studied by Censor-Hillel, Petrank and Timnat [41].

The idea of idempotence has been used in the literature a variety of contexts [18, 30, 30, 34, 49,
50, 95, 109]. Kruijf, Sankaralingam and Jha [50] give a nice overview although only up to 2012.
More recent work has focused on using idempotence for fault tolerance (e.g., [18, 30, 109]). All
these approaches rely on some form of “context saving”. Idempotence has also been considered
and characterized in the literature under different names. Timnat and Petrank [156] define
a similar notion known as parallelizable code, which intuitively allows several processes to
execute it without changing its effects.

In recent work, Ben-David and Blelloch in [17] use a randomized implementation of lock-free
locks to show that when point contention on locks is constant, then operations can be completed
in constant expected time. We use their definition of idempotence in this thesis. However, their
focus is on theoretical efficiency and fairness guarantees of acquiring the locks, whereas in this
thesis we focus on the practicality of the approach. As with previous approaches to idempotence,
their approach relies on context saving.

Approaches for achieving idempotence and lock-freedom sit on a spectrum of generality.
The focus of this thesis is to improve the practicality of the far side of the spectrum; fully general
idempotence/lock-free constructions. However, many other approaches exist, which are less
general but can be more efficient for their specific applications. For example, on the other end
of the spectrum are hand-designed lock-free data structures. These data structures are often
designed to be able to have ‘critical sections’ that contain just one CAS instruction, and can
therefore be executed atomically in hardware with no locks. For example, Michael and Scott’s
queue [118] allows new nodes to be enqueued by swinging a single pointer. Idempotent help
is given by later updating the tail pointer. Similar algorithms, like Harris’s linked-list [80] and
Natarajan and Mital’s BST [122], make use of descriptors to allow others to help, but these
descriptors are optimized to simply be flags. These approaches yield very fast lock-free data
structures, but are difficult to generalize.

A middle-ground between generality and efficiency is found with approaches that implement
useful primitives for lock-freedom. For example, Brown et al [37] introduce the LLX/SCX
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primitive, which allows atomically checking that several locations have not changed their values,
‘freezing’ some of them, and modifying one of them. This primitive can be seen as a lock with a
restricted critical section. Another example of such a primitive is multi-word CAS, which allows
several memory locations to be CASed atomically [68, 78, 81].

Some work aims at achieving practical lock-free locks but only partially solve the problem.
Rajwar and Goodman describe a hardware-based technique that are lock-free under an assump-
tion that processes do not fail or stall during certain critical regions [140]. We assume a process
can fail or stall at any instruction. Gidenstam and Papatriantafilou [74] look at how to make the
handoff of locks lock-free (i.e., waking up threads suspended on a lock in a lock-free manner),
but a thread blocked during a lock will still delay any waiting threads indefinitely.
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Part II

Linearizable Snapshots
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Introduction

The ability to take a snapshot, i.e. obtain a consistent view, of shared memory is very useful
for concurrent programming. For example, it can be used to query a data structure atomically
across multiple locations, even as the data structure is being modified concurrently by other
processes. Such multi-point queries have traditionally been notoriously difficult to implement
efficiently. In this part, we present general techniques for taking snapshots of CAS objects and
pointer types. We show that multi-point queries implemented using these general techniques
are often more efficient than data structures specifically designed to support those kinds of
queries.
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Chapter 4

Versioned CAS

4.1 Introduction

Given any concurrent data structure, this chapter presents an approach for efficiently taking
snapshots of its constituent CAS objects. Importantly, this approach preserves all the time
bounds and parallelism of the original algorithm/data structure. The interface is based on
creating a camera object that has a collection of associated versioned CAS objects, which support
read and CAS operations like normal CAS objects, as well as a versioned read operation. The
camera object supports a single operation takeSnapshot that takes a snapshot of the values
stored in all the associated versioned CAS objects. The takeSnapshot operation does not make
a copy of these objects. Instead it returns, in constant time, a handle representing the point in
time the snapshot was taken. In our algorithms, this handle is a timestamp. The handle can later
be used to query (via the versioned read operation) the state of any versioned CAS object at
that time. New versioned CAS objects can be associated with an existing camera object, so our
construction is applicable to dynamically-sized data structures.

This interface is more flexible than the one traditionally used for a snapshot object [2],
which stores an array and provides update operations that write to individual components
and scan operations that return the state of the entire array. Instead of creating a copy of the
state of the entire shared memory in the local memory of a process, our takeSnapshot simply
makes it possible for a process to later read only the memory locations it needs from shared
memory, knowing that the collection of all such reads will be atomic. Although partial snapshot
objects [10, 89] allow scans of part of the array, they require the set of locations to be specified
in advance, whereas our approach allows the locations to be chosen dynamically as a query is
executed.

Our algorithm has the following important properties.
1. Taking a snapshot of the current state and returning a handle to it takes a constant number

of instructions.
2. A CAS or read of the current state of a versioned CAS object takes constant time. Therefore,

adding snapshots to a CAS-based data structure preserves the data structure’s asymptotic
time bounds.
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3. Reading the value of a versioned CAS object from a snapshot takes time proportional to
the number of successful CAS operations on the object after the snapshot and before the
start of the read. Thus, all reads are wait-free (i.e., every read is completed within a finite
number of instructions.)

4. The algorithm is implemented using single-word read and CAS, which are supported by
modern architectures. It uses an unbounded counter.

We know of no previous general mechanism for snapshotting the state of memory satisfying
even the first two properties.

Similarly to previous work [25, 69, 98, 124, 144, 147, 171], we
use a version list for each CAS object. The list has one node per update (successful CAS)
on the object. Each node contains the value stored by the update and a timestamp indicating
when the update occurred. The list is ordered by timestamps, most recent first. A difficulty in
implementing version lists without locks, which we address, is the need to add a node to the
version list, read a global timestamp, and save that timestamp in the node, all atomically.

Snapshots and Multi-point Queries. Our interface provides a simple way of converting a
concurrent data structure built out of CAS objects into one that supports snapshots: simply
replace all CAS objects with our versioned CAS objects, all associated with a single camera
object. If all shared mutable state is stored in the CAS objects, then taking a snapshot will
effectively provide access to an atomic copy of the entire state of the data structure at the
snapshot’s linearization point. After taking a snapshot, a read-only query is free to visit any
part of the data structure state at its leisure, even as updates proceed concurrently. Often, the
query can be performed by simply taking a snapshot and then running a standard sequential
algorithm on the data structure by replacing each read with our versioned read.

In Section 4.4, we define more precisely when multi-point queries can be computed from
snapshots. In particular, we discuss how our approach can be used for arbitrary queries on
Michael-Scott queues [118], Harris’s linked-lists [80], and two different binary search trees [38,
62]. On the binary search trees, for example, one can support atomic queries for finding the
smallest key that matches a condition, reporting all keys in a range, determining the height of
the tree, or searching for a set of keys. The time complexity of each query is bounded above by
the sequential cost of the query plus the number of vCAS operations it is concurrent with.

Avoiding Indirection and Other Optimizations. Our algorithm introduces only constant
overhead for existing operations, and allows the implementation of wait-free queries. However,
our construction does introduce a level of indirection: to access the value of a versioned CAS
object, one must first access a pointer to the head of the version list, which leads to the actual
value. This may introduce an extra cache miss per access. We therefore consider an optimization
to avoid this in Section 4.5. This optimization applies to many concurrent data structures that
satisfy the recorded-once property we introduce. Roughly speaking, recorded-once means that
each data structure node is the new value of a successful CAS at most once. This allows us to store
information for maintaining the version lists (in particular the timestamp and the pointer to the
next older version) directly in the nodes themselves, thus removing the level of indirection (see
Figure 4.2 for an example). In Section 4.6, we describe other optimizations to reduce contention
and shorten version lists.
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MemoryReclamation. Maintaining all old versions of a versioned CAS object may be infeasible.
In Section 4.7, we describe how to garbage collect old versions using an approach based on
Epoch Based Memory Reclamation (EBR) [71]. Experiments indicate that our approach works
well in practice and has low memory overhead.

Implementation and Experiments. To study the time and space overhead of our approach, we
applied it to three existing concurrent binary search trees, one balanced and two not [7, 38, 62].
Adding support for snapshots was very easy and required minimal changes to the original code.
The experiments demonstrate that the overhead is small. For example, the time overhead of
supporting snapshots is about 9% for a mix of updates and queries on the current version of
the tree. We also compare to state-of-the-art data structures that support atomic range queries,
including KiWi [15], LFCA [170], PNB-BST [67], and SnapTree [33]. In almost all cases, our data
structure performs as well as or better than all of these special-purpose structures even though
our approach is general purpose. Finally, we implement a variety of other atomic multi-point
queries and show that the overhead compared to non-atomic implementations, which are correct
only when there are no concurrent updates, is small.

Contributions. In summary, our contributions are:
• A simple, constant-time approach to take a snapshot of a collection of CAS objects.
• A technique to use snapshots to implement linearizable multi-point queries on many
lock-free data structures.

• Optimizations that make the technique more practical, for example, by avoiding indirec-
tion.

• Experiments showing our technique has low overhead, often outperforming other state-
of-the-art approaches, despite being more general.

4.2 Versioned CAS Objects

Our approach uses “time-stamped” versioned lists to maintain the state of each object,
as in previous work (e.g., [25, 69, 98, 124, 144, 171]). Unlike most of this work, updates do
not increment the timestamps—only taking a snapshot might increment the timestamp.1 An
important aspect of our algorithm is how it attaches a timestamp to a new version when updating
an object (with a CAS). This involves temporarily setting the new version’s timestamp to an
undetermined value (TBD) and then updating this to the “current” timestamp only after it is
inserted into a version list. The new version’s timestamp might be updated by the CAS that
created it or via helping by a concurrent operation accessing the object. We refer to this idea as
set-stamp helping and the helping step is crucial.

We begin with a sequential specification of our objects.

Definition 2 (Camera and Versioned CAS Objects). A versioned CAS object stores a value and
supports three operations, vRead, vCAS, and readVersion. The first two operate on the current
value and the third is used to access a value captured by a snapshot. A camera object supports a

1When there are concurrent snapshots, only one needs to increment the timestamp, avoiding sequentializing
snapshots.
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single operation, takeSnapshot. Each versioned CAS object 𝑂 is associated with a single camera
object when it is created. Consider a sequential history of operations on a camera object 𝑆 and the
set Λ𝑆 of vCAS objects associated with it. The behavior of operations on 𝑆 and 𝑂 , for all 𝑂 ∈ Λ𝑆 , is
specified as follows:
• An 𝑂 .vCAS(oldV, newV) attempts to update the value of 𝑂 to newV and this update takes place if
and only if the current value of 𝑂 is oldV. If the update is performed, the vCAS operation returns
true and is successful. Otherwise, the vCAS returns false and is unsuccessful.

• An 𝑂 .vRead() returns the current value of 𝑂 .
• The behavior of readVersion and takeSnapshot are specified simultaneously. A precondition
of 𝑂 .readVersion(𝑡𝑠) is that there must have been an earlier 𝑆 .takeSnapshot() that returned
the handle 𝑡𝑠 . For any 𝑆 .takeSnapshot() operation𝑇 that returns 𝑡𝑠 and any𝑂 .readVersion(𝑡𝑠)
operation 𝑅, 𝑅 must return the value 𝑂 had when 𝑇 occurred.

4.2.1 A Linearizable Implementation

Algorithm 4.1 is a linearizable implementation of versioned CAS and camera objects. The
ideas behind the algorithm are described below.

1 class Camera {
2 int timestamp;
3 Camera() { timestamp = 0; }
4 int takeSnapshot() {
5 int ts = timestamp;
6 CAS(&timestamp, ts, ts+1);
7 return ts; }
8 };

9 class VNode {
10 Value val; VNode* nextv; int ts;
11 VNode(Value v, VNode* n){
12 val = v; ts = TBD; nextv = n;}
13 };

14 class VersionedCAS {
15 VNode* VHead;
16 Camera* S;

17 VersionedCAS(Value v, Camera* s){
18 S = s;
19 VHead = new VNode(v, NULL);
20 initTS(VHead); }

21 void initTS(VNode* n) {
22 if(n->ts == TBD) {
23 int curTS = S->timestamp;
24 CAS(&(n->ts), TBD, curTS); }}

25 // class VersionedCAS continued...
26 Value readVersion(int ts) {
27 VNode* node = VHead;
28 initTS(node);
29 while (node->ts > ts)
30 node = node->nextv;
31 return node->val; }

32 Value vRead() {
33 VNode* head = VHead;
34 initTS(head);
35 return head->val; }

36 bool vCAS(Value oldV, Value newV) {
37 VNode* head = VHead;
38 initTS(head);
39 if(head->val != oldV) return false;
40 if(newV == oldV) return true;
41 VNode* newN = new VNode(newV, head);
42 if(CAS(&VHead, head, newN)) {
43 initTS(newN);
44 return true;
45 } else {
46 delete newN;
47 initTS(VHead);
48 return false; } } };

Algorithm 4.1: Linearizable implementation of a camera object and a versioned CAS object.

The Camera Object. The camera object behaves like a global clock for all versioned CAS objects
associated with it. It is implemented as a counter called timestamp that stores an integer value.
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A takeSnapshot simply returns the current value 𝑡𝑠 of variable timestamp as the handle and
attempts to increment timestamp using a CAS. If this CAS fails, it means that another concurrent
takeSnapshot has incremented the counter, so there is no need to try again. The handle will be
used by future readVersion operations to find the latest version of any versioned CAS object
that existed when the counter was incremented from ts to ts + 1.

The Versioned CAS Object. Each versioned CAS object is implemented as a singly-linked
list (a version list) that preserves all earlier values committed by vCAS operations, where each
version is labeled by a timestamp read from the camera’s counter during the vCAS. The list is
ordered with more recent versions closer to the head of the list. A vRead operation just returns
the version at the head of the list. A successful vCAS adds a node to the head of the list. After
the node has been added to the list, the value of the camera object’s counter is recorded as the
node’s timestamp. A readVersion(𝑡𝑠) operation traverses the version list and returns the value
in the first node with timestamp at most 𝑡𝑠 .

The versioned CAS object stores a pointer VHead to the last node added to the object’s
version list. Each node in this list is of type VNode and stores
• a value val, which is immutable once initialized,
• a timestamp ts, and
• a pointer nextv to the next VNode of the list, which contains the next (older) version of the
object.

The version list essentially stores the history of the object.

Timestamps. We use a special timestamp TBD (to-be-decided) as the default timestamp for any
newly-created VNode. TBD is not a valid timestamp and must be substituted by a concrete value
later, once the VNode has been added to the version list. When a VNode 𝑥 is added to the version
list, we call the initTS subroutine (Lines 22–24) to assign it a valid timestamp read from the
camera object’s timestamp field. Once 𝑥 ’s timestamp changes from TBD to a valid value, it will
never change again, because the CAS on Line 24 succeeds only if the current value is TBD. This
initTS function can be performed either by the process that added 𝑥 to the list, or by another
process that is trying to help.

Implementing readVersion(ts) and vRead(). The goal of a readVersion(ts) is to return
the latest version whose timestamp is at most ts. It first reads VHead and, if necessary, helps
set the timestamp of the VNode that VHead points to by calling initTS. The readVersion then
traverses the version list by following nextv pointers until it finds a version with timestamp
smaller than or equal to ts, and returns the value in this VNode. The vRead function looks only
at VHead, helps set the timestamp of the VNode that VHead points to, and returns the value in
that VNode.

Implementing vCAS(oldV, newV). This operation first reads VHead into a local variable head.
Then it calls initTS on head to ensure its timestamp is valid. If the value in the VNode that
head points to is not oldV, the vCAS operation fails and returns false (Line 39). Otherwise,
if oldV equals newV, the vCAS returns true because nothing needs to be updated. This is not
just an optimization that avoids creating another VNode unnecessarily; it is also required for
correctness because without it, a successful vCAS(𝑎, 𝑎) could cause a concurrent vCAS(𝑎, 𝑏) to
fail. If oldV and newV are different, and the VNode that head points to contains the value oldV,
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the algorithm attempts to add a new VNode with value newV to the version list. It first allocates
a new VNode newN (Line 41) to store newV and lets it point to head as its next version. It then
attempts to add newN to the beginning of the list by swinging the pointer VHead from head to
newN using a CAS (Line 42). If successful, it then calls initTS on the new VNode to ensure its
timestamp is valid, and returns true to indicate success. Before this call to initTS terminates, a
valid timestamp will have been recorded in the new VNode, either by this initTS or by another
operation helping the vCAS.

If the CAS on Line 42 fails, then VHead must have changed during the vCAS, and this change
must have been done by a concurrent successful vCAS. In this case, the new VNode is not appended
to the version list. The algorithm deallocates the new VNode (Line 46) and returns false. The
unsuccessful vCAS also helps the first VNode in the version list acquire a valid timestamp.

Helping. As mentioned, a vRead, readVersion and an unsuccessful vCAS all help (by calling
initTS) to ensure that the timestamp of the VNode at the head of the version list is valid before
they return. This is necessary to overcome the main difficulty in implementing version lists
without locks, i.e., making the following three steps appear atomic: adding a node to the version
list, reading a global timestamp, and recording a valid timestamp in the node. (See the discussion
of correctness below.)

Initialization. We assume that the constructor (Line 3) for the camera object completes before
invoking the constructor (Line 17) for any associated versioned CAS object. We require, as a
precondition of any readVersion(𝑡𝑠) operation on a versioned CAS object𝑂 , that𝑂 was created
before the takeSnapshot operation that returned the handle 𝑡𝑠 was invoked. In other words,
one should not try to read the version of𝑂 in a snapshot that was taken before𝑂 existed. When
using versioned CAS objects to implement a pointer-based data structure (like a tree or linked
list), this constraint will be satisfied naturally.

Correctness. Theorem 4.2.1 states the algorithm’s properties.

Theorem 4.2.1 (Linearizability and Time Bounds). Algorithm 4.1 is a linearizable implementation
of versioned CAS and camera objects such that

1. the number of instructions performed by vRead, vCAS, and takeSnapshot is constant, and

2. the number of instructions performed by the operation 𝑂 .readVersion(𝑡𝑠) is proportional to
the number of successful 𝑂 .vCAS operations linearized between the linearization point of the
takeSnapshot operation that returned 𝑡𝑠 and the start of the readVersion.

A complete proof of Theorem 4.2.1 appears in the next Section. Below, we just describe the
linearization points used in that proof. We say that a timestamp of a VNode is valid at some
point if the ts field is not TBD at that point; it is invalid otherwise.
• For a vCAS operation 𝑉 :

If 𝑉 performs a successful CAS on Line 42 adding a node 𝑥 to the version list, and 𝑥 ’s
timestamp eventually becomes valid, then 𝑉 is linearized on Line 23 of the initTS
method that makes 𝑥 ’s timestamp valid.
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Let 𝑥 be the node VHead points to on Line 37 of 𝑉 . If 𝑉 returns on Line 39 or 40, it
is linearized either at Line 37 if 𝑥 ’s timestamp is valid at that time, or the first step
afterwards that makes 𝑥 ’s timestamp valid.
If 𝑉 returns false on Line 48, then 𝑉 failed its CAS on Line 42. Thus, some other vCAS
operation changed VHead after 𝑉 read it at Line 37. We linearize the vCAS immediately
after the linearization point of the vCAS operation 𝑉 ′ that made the first such change. If
several vCAS operations that return on Line 48 are linearized immediately after 𝑉 ′, they
can be ordered arbitrarily.

• For a vRead operation that terminates, let 𝑥 be the VNode read from VHead at Line 33. The
vRead is linearized at Line 33 if 𝑥 ’s timestamp is valid at that time, or at the first step afterwards
that makes 𝑥 ’s timestamp valid.

• A readVersion operation that terminates is linearized at its last step.
• For a takeSnapshot operation 𝑇 that terminates, let ts be the value read from timestamp on
Line 5, 𝑇 is linearized when timestamp changes from ts to ts + 1. This increment could have
either been performed by 𝑇 or a takeSnapshot concurrent with 𝑇 .
Intuitively, the correctness of an 𝑂.readVersion operation depends on ensuring that the

timestamp associated with a value is current (i.e., in the timestamp field of the camera object 𝑆
associated with 𝑂) at the linearization point of the vCAS that stored the value in 𝑂 . Hence, we
linearize a successful vCAS at the time when the successfully installed timestamp was read from
𝑆 . Thus, a VNode 𝑥 can appear at the head of the version list before the vCAS that created 𝑥 is
linearized. This is why any other operation that finds a VNode with an invalid timestamp at the
head of the version list calls initTS to help install a valid timestamp in it before proceeding.
This helping mechanism is crucial to prove that the linearization points described above are
well-defined and within the intervals of their respective operations.

4.3 Proof of Linearizability

In this section, we prove that Fig. 4.1 is a linearizable implementation of versioned CAS and
camera objects. First we argue that it suffices to prove linearizability for histories consisting of a
single versioned CAS object and a single camera object. Suppose two versioned CAS objects
are associated with different camera objects. Then we can prove linearizability for the two sets
of objects independently because they do not access any common variables and do not affect
each other in terms of sequential specifications. Suppose two versioned CAS objects 𝑂1 and 𝑂2
are associated with the same camera object 𝑆 . Let 𝐻 ′ be an execution of operations on these
three objects. Furthermore, let 𝐻 ′

1 be the execution 𝐻
′ restricted to only operations from 𝑆 and

𝑂1, and similarly, let 𝐻 ′
2 be the execution 𝐻

′ restricted to only operations from 𝑆 and 𝑂2. We
will define the linearization points of 𝑆 so that they are not affected by operations on 𝑂1 or
𝑂2. Therefore, showing that both 𝐻 ′

1 and 𝐻
′
2 are linearizable is sufficient for showing that 𝐻 ′ is

linearizable because 𝑆 will be linearized the same way in both 𝐻 ′
1 and 𝐻

′
2.

Let 𝐻 be an execution of a versioned CAS object 𝑂 and a camera object 𝑆 . We assume that 𝑆
and 𝑂 are initialized by their constructors (Line 3 and 17, respectively) before the beginning of
𝐻 . We assume this execution satisfies the precondition (described in Definition 2) that whenever
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readVersion(𝑡𝑠) is invoked, there must be a completed takeSnapshot operation that returned
𝑡𝑠 . When referring to the variables 𝑂 .VHead and 𝑆 .timestamp, we will often abbreviate them to
VHead and timestamp.

We first review some useful terminology. Recall that a VNode has a valid timestamp at some
configuration 𝐶 if the value of its ts field is not TBD at 𝐶 . Otherwise, the timestamp of the node
is called invalid. We use the term version list to refer to the list that results from starting at the
VNode pointed to by VHead and following nextv pointers. The head of the version list is the
VNode pointed to by VHead.

A modifying vCAS operation is one that performs a successful CAS on line 42. Due to the if
statement on line 40, if vCAS(𝑜𝑙𝑑𝑉 , 𝑛𝑒𝑤𝑉 ) is a modifying vCAS operation, then 𝑜𝑙𝑑𝑉 ≠ 𝑛𝑒𝑤𝑉 .
Note that modifying vCAS operations can return only on line 44 and any operation that returns
on line 44 is a modifying vCAS. A vCAS is successful if it is a modifying vCAS or if it returns true
at line 40. Otherwise, it is unsuccessful.

We first show that the only change to a version list is inserting a VNode at the beginning of
it.

Lemma 4.3.1. Once a VNode is in the version list, it remains in the version list forever.

Proof. The only way to change a version list is a successful CAS at line 42, which changes VHead
from head to newN. When this happens, newN->nextv = head, so all VNodes that were in the
version list before the CAS are still in the version list after the CAS. □

It is easy to check that every time we access some field of an object via a pointer to that
object, the pointer is not NULL. VHead always points to a VNode after it is initialized on Line 19 of
𝑂 ’s constructor. It follows that every call to initTS is on a non-null pointer. The precondition
of readVersion(ts) ensures that ts is a timestamp obtained from 𝑆 after 𝑂 was initialized and
is therefore greater than or equal to the timestamp that 𝑂’s constructor stored in the initial
VNode of the version list. Thus, the readVersion will stop traversing the version list when it
reaches that initial VNode, ensuring that node is never set to NULL on line 30.

Linearization Points. We begin with a few simple lemmas that describe when VNodes have
valid timestamps.

Lemma 4.3.2. The following hold:

1. Before initTS is called on a VNode, VHead has contained a pointer to that VNode.

2. After a complete execution of initTS on some VNode, that VNode’s timestamp is valid.

Proof. All calls to initTS are done on a pointer that has either been read from VHead or suc-
cessfully CASed into VHead. Once a timestamp is valid, it can never be modified again, since
only a CAS on line 24 modifies the ts variable of any VNode. The CAS on Line 24 can fail only if
the ts variable is already a valid timestamp. □

Lemma 4.3.3. In every configuration𝐶 , the only VNode in the version list that can have an invalid
timestamp is the head of the version list.
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Proof. No VNode’s nextv pointer changes after the VNode is created, so the only way the version
list can change is when VHead is updated. Moreover, no VNode’s timestamp ever changes from
valid to invalid. So, we must only show that updates to VHead preserve the claim.

The value of VHead changes only when a successful CAS is executed on Line 42 of an instance
of vCAS. Consider any such successful CAS by some process 𝑝 and assume the claim holds in
the configuration before the CAS to show that it holds immmediately after the CAS. This CAS
changes VHead from head to newN. By the initialization of newN on Line 41, that VNode’s nextv
pointer is head. So, we must show that head and all VNodes reachable from head by following
nextv pointers have valid timestamps when the CAS occurs. Before executing this CAS, 𝑝
executes initTS(head), so, by Lemma 4.3.2(2), that VNode’s timestamp is valid at the time that
the CAS is executed. Since the CAS is successful, VHead was equal to head immediately before
the CAS, so all nodes reachable from that VNode had valid timestamps, by our assumption. □

The next lemma is used to define the linearization point of a modifying vCAS.

Lemma 4.3.4. Suppose an invocation of initTS makes the timestamp of some VNode 𝑛 valid.
Then, 𝑛 is the head of the version list when that initTS executes Line 23 and 24.

Proof. By Lemma 4.3.2(1), every call to initTS is on a pointer that has previously been in VHead,
so 𝑛 has been in the version list before initTS is called. By Lemma 4.3.1, 𝑛 is still in the version
list when Line 23 and 24 are executed. By Lemma 4.3.3, 𝑛 remains at the head of the version list
until its timestamp becomes valid when initTS performs Line 24. □

We are now ready to define linearization points. As we define them, we argue that the
linearization point of each operation is well-defined and within the interval of the operation.

• A vCAS operation is linearized depending on how it executes.

If the vCAS performs a successful CAS on Line 42 that adds a node 𝑛 to the version list,
and 𝑛’s timestamp eventually becomes valid, then the vCAS is linearized on Line 23
of the initTS method that makes 𝑛’s timestamp valid. Lemma 4.3.4 implies that
the linearization point occurs after the vCAS adds 𝑛 to the version list at Line 42. If
the vCAS terminates, it first calls initTS on 𝑛 at line 43, so Lemma 4.3.2(2) ensures
the vCAS is linearized and that the linearization point comes before the end of that
initTS.
Let ℎ be the value of VHead at Line 37 of a vCAS operation. If the vCAS operation
returns on Line 39 or 40, then it is linearized either at Line 37 if ℎ’s timestamp is valid
at that time, or the first step afterwards that makes ℎ’s timestamp valid. Lemma
4.3.2(2) ensures this step exists and is within the interval of the vCAS, since initTS
is called on ℎ at line 38.
Finally, consider a vCAS(oldV, newV) operation 𝑉 that returns false on Line 48.
This is the most subtle case. The return on Line 48 is only reached when 𝑉 fails its
CAS on Line 42 because some other vCAS operation changed VHead after 𝑉 read it at
Line 37. We linearize the vCAS immediately after the vCAS operation 𝑉 ′ that made
the first such change. (If several vCAS operations that return on Line 48 are linearized
immediately after 𝑉 ′, they can be ordered arbitrarily.)
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To argue that this linearization point is well-defined, we must show that the VNode
𝑛 that 𝑉 ′ added to the version list gets a valid timestamp, so that 𝑉 ′ is assigned a
linearization point as described in the first paragraph above. By Lemma 4.3.1, 𝑛 is
still in the version list when𝑉 reads VHead at Line 47. If 𝑛 is no longer at the head of
the version list, then 𝑛’s timestamp must be valid, by Lemma 4.3.3. Otherwise, if 𝑛 is
still the head of the version list, then 𝑛’s timestamp is guaranteed to be valid after
𝑉 calls initTS on 𝑛 (Line 47), by Lemma 4.3.2(2). So, in either case, 𝑉 ′ is assigned
a linearization point, which is before the timestamp of 𝑛 becomes valid. Thus, 𝑉 ′

(and therefore 𝑉 ) is linearized before the end of 𝑉 . Lemma 4.3.4 implies that the
linearization point of 𝑉 ′ (and therefore of 𝑉 ) is after 𝑉 ′ adds 𝑛 to the version list,
which is after 𝑉 reads VHead. This proves that 𝑉 ’s linearization point is inside the
interval of 𝑉 .

• For a vRead operation that terminates, let ℎ be the VNode read from VHead at Line 33. The
vRead is linearized at Line 33 if ℎ’s timestamp is valid at that time, or at the first step
afterwards that makes ℎ’s timestamp valid. Lemma 4.3.2(2) ensures that this step exists
and is during the interval of the vRead, since the vRead calls initTS on ℎ at Line 34.

• A readVersion operation that terminates is linearized at its last step.
• For takeSnapshot operations, let 𝑡 be the value read from timestamp on line 5. A
takeSnapshot operation that terminates is linearized when the value of timestamp
changes from 𝑡 to 𝑡 + 1. We know that this occurs between the execution of Line 5
and 6: either the takeSnapshot operation made this change itself if the CAS at line 6
succeeds, or some other takeSnapshot operation did so, causing the CAS on line 6 to fail.

Note that all operations that terminate are assigned linearization points. In addition, some
vCAS operations that do not terminate are assigned linearization points.

Proof that Linearization Points are Consistent with Responses. Recall that 𝐻 is the
execution that we are trying to linearize. In the rest of this section, we prove that each operation
returns the same response in 𝐻 as it would if the operations were performed sequentially in the
order of their linearization points.

Lemma 4.3.5. Assume VHead points to a node ℎ in some configuration𝐶 . If ℎ.ts is valid in𝐶 then
either ℎ is the VNode created by the constructor of 𝑂 , or the vCAS that created ℎ is linearized before
the configuration that immediately precedes 𝐶 .

Proof. Suppose ℎ.ts is valid in 𝐶 but ℎ is not the VNode created by the constructor of 𝑂 . Then ℎ
is created by some vCAS operation 𝑉 that added ℎ to the head of the version list. Since ℎ.ts is
valid in 𝐶 , some step prior to 𝐶 set ℎ.ts by executing Line 24. The linearization point of 𝑉 is
at the preceding execution of Line 23. Thus, the linearization point precedes the configuration
before 𝐶 . □

We define the value of the versioned CAS object in configuration 𝐶 to be the value that a
versioned CAS object would store if all of the vCAS operations linearized before 𝐶 are done
sequentially in linearization order (starting from the initial value of the versioned CAS object).
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The following crucial lemma describes how the value of the versioned CAS object is represented
in our implementation. It also says that the responses returned by all readVersion and vCAS
operations are consistent with the linearization points we have chosen.

Lemma 4.3.6. In every configuration 𝐶 of 𝐻 after the constructor of the versioned CAS object has
completed,

1. if VHead points to the VNode created by the constructor of the versioned CAS object, then
VHead->val is the value of the versioned CAS object,

2. if the linearization point of the vCAS that created the first node in the version list is before 𝐶 ,
then VHead->val is the value of the versioned CAS object, and

3. otherwise, VHead->nextv->val is the value of the versioned CAS object.

Moreover, each vRead and vCAS operation that is linearized at or before 𝐶 returns the same result
in 𝐻 as it would return when all operations are performed sequentially in their linearization order.

Proof. We prove this by induction on the length of the prefix of 𝐻 that leads to 𝐶 . In the config-
uration immediately after the constructor of the versioned CAS object terminates, VHead->val
stores the initial value of the versioned CAS object.

Since nextv and val fields of a VNode do not change after the VNode is created, we must
only check that the invariant is preserved by steps that modify VHead or are linearization
points of vCAS operations (which may change the value of the versioned CAS object) or vRead
operations. We consider each such step 𝑠 in turn and show that, assuming the claim holds for
the configuration 𝐶 before 𝑠 , then it also holds for the configuration 𝐶′ after 𝑠 .

First, suppose 𝑠 is a successful CAS on VHead at line 42 of a vCAS operation. It changes VHead
from head to newN, where newN->next = head. By Lemma 4.3.3, head->ts is valid when this
CAS occurs, since head becomes the second node in the version list. By our assumption, the
value of the versioned CAS object prior to the CAS is head->val. Since this step is not the
linearization point of any vCAS operation, the value after the CAS is still head->val. By Lemma
4.3.2(1) initTS is only called on a pointer that has been in VHead previously, and newN has never
been in VHead before this CAS, we know that newN->ts is TBD. So the invariant holds after the
CAS, since VHead->nextv->val = head->val.

Now, consider a step 𝑠 that is the linearization point of a modifying vCAS(oldV, newV),
which we denote𝑉 , possibly followed by the linearization points of some other vCAS operations
that return false on Line 48. Since 𝑉 is a modifying vCAS, it added a new VNode 𝑛1 to the head
of the version list in front of node 𝑛2. This happens after 𝑉 checks that 𝑛2.val = oldV ≠ newV
on Line 39–40 and sets 𝑛1.nextv to point to 𝑛2 and sets 𝑛1.val to newV on Line 41. By Lemma
4.3.4, 𝑛1 is still the head of the version list when step 𝑠 occurs. So in the configuration𝐶 before 𝑠 ,
the value in the versioned CAS object is 𝑛2.val = oldV, by our assumption that the claim holds
in 𝐶 . Thus, when 𝑉 occurs in the sequential execution, it returns true and changes the value
of the versioned CAS object to newV. Note that VHead->val = newV in 𝐶′. It remains to check
that all other vCAS operations that return false at line 48 and are linearized immediately after
𝑉 should return false in the sequential execution and therefore do not change the value of
the versioned CAS object. Consider any such vCAS 𝑉 ′ of the form vCAS(oldV′,newV′). By the
definition of the linearization point of 𝑉 ′, 𝑉 makes the first change to VHead after 𝑉 ′ reads it on
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Line 37. So, 𝑉 ′ must have read a pointer to 𝑛2 on Line 37. Since 𝑉 ′ returns false at Line 48, it
must have seen 𝑛2.val = oldV’ at Line 39. Thus, oldV’ = 𝑛2.val = oldV ≠ newV, so when each
of the vCAS operations 𝑉 ′ is executed sequentially in linearization order, it should return false
and leave the state of the versioned CAS object equal to newV. The claim for 𝐶′ follows.

Finally, consider a step 𝑠 that is the linearization point of one or more vRead operations or
vCAS operations that return at Line 39 or 40. Consider any such operation 𝑜𝑝 . Let ℎ be the node
at the head of the version list when 𝑜𝑝 reads VHead at Line 33 or 37. Then 𝑠 is either this read or
a subsequent execution of Line 24 that makes ℎ’s timestamp valid. Either way, VHead points to ℎ
in𝐶′, by Lemma 4.3.4. By Lemma 4.3.5, either case (1) or (2) of the claim applies to configuration
𝐶 . Either way, the value of the versioned CAS object in 𝐶 is ℎ.𝑣𝑎𝑙 . If 𝑜𝑝 is a vRead, then it
returns ℎ.𝑣𝑎𝑙 as it should. If 𝑜𝑝 is a vCAS that returns false at Line 39, it would do the same
in the sequential execution in linearization order because 𝑜𝑝 reads the state of the versioned
CAS object in 𝐶′ from ℎ.val on Line 39 and sees that it does not match its oldV argument. If
𝑜𝑝 returns true at Line 40, it would also return true when performed in linearization order
because the state of the versioned CAS object in 𝐶′ matches both 𝑜𝑝’s oldV and newV values. In
all cases the value of the versioned CAS object does not change as a result of 𝑜𝑝 , so it is still
ℎ.val in 𝐶′, and the invariant is preserved. □

The following observation follows directly from the way modifying vCAS operations are
linearized.

Observation 1. Consider a VNode 𝑛 that was added to the version list by a modifying vCAS 𝑉 . If
the timestamp of 𝑛 is valid, then 𝑛.ts stores the value of S.timestamp at the linearization point
of 𝑉 .

The following key lemma asserts that version lists are properly sorted.

Lemma 4.3.7. The modifying vCAS operations are linearized in the order they insert VNodes into
the version list.

Proof. Consider any two consecutive VNodes 𝑛1 and 𝑛2 in the version list, where 𝑛1 is inserted
into the list before 𝑛2, and let 𝑉1 and 𝑉2 be the vCAS operations that inserted 𝑛1 and 𝑛2 to the
list, respectively. Recall that the linearization point of a modifying vCAS is at the read of the
timestamp (Line 23) of the initTS call that validates the timestamp on the VNode that this vCAS
appended to the version list. In particular, a modifying vCAS is linearized after it inserts its VNode
into the list (since initTS cannot be called on a VNode before it is inserted, by Lemma 4.3.2(1)),
but before its VNode is assigned a valid timestamp on Line 24 of initTS. By Lemma 4.3.3, a
VNode is assigned a valid timestamp before it is replaced as the head of the version list. That is,
𝑉1 must be linearized before 𝑛1’s timestamp was valid, and 𝑛1’s timestamp became valid before
𝑛2 was added to the list. Furthermore,𝑉2 was linearized after 𝑛2 was added to the list. Therefore,
𝑉1 is linearized before 𝑉2. □

Now, we prove our main theorem which says that our versioned CAS and camera algorithms
are linearizable and have the desired time bounds.
Proof (Theorem 4.2.1). We show that the return values of each operation is correct with respect
to their linearization points. For vCAS and vRead operations, this follows from Lemma 4.3.6.
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We prove this for both takeSnapshot and readVersion simultaneously. Suppose that an
𝑆 .takeSnapshot operation 𝑇 returns a timestamp 𝑡 , which is used as the input parameter of an
𝑂 .readVersion operation 𝑅. We show that 𝑅 returns the value of 𝑂 at the linearization point
of 𝑇 . Let ℎ be the value of VHead on line 27 of 𝑅. The timestamp of ℎ is valid after line 28 of
𝑅, and by Lemma 4.3.3, the timestamps of all the nodes in the version list starting from ℎ are
valid. This means that on line 30, node->ts is never TBD. Let 𝑛 be the value of node at the last
line of 𝑅 and let 𝑉 be the modifying vCAS operation that appended 𝑛. We know that 𝑛 is the
first node in the version list starting from ℎ with timestamp less than or equal to 𝑡 . Since 𝑇 is
linearized when 𝑆 .timestamp gets incremented from 𝑡 to 𝑡 + 1, by Observation 1, 𝑉 is linearized
before the linearization point of 𝑇 . Since 𝑅 returns the value written by 𝑉 , it suffices to show
that no modifying vCAS operation gets linearized between the linearization points of 𝑉 and 𝑇 .
By Lemma 4.3.7, modifying vCAS operations are linearized in the order they appended VNodes to
the version list. Therefore, for all nodes that are older than 𝑛 in the version list, their modifying
vCAS operations are linearized before the linearization point of 𝑉 . Next, we show that all nodes
in the version list that are newer than 𝑛 are linearized after 𝑇 . From the while loop on line 30,
we can see that all nodes that lie between ℎ and 𝑛 (including ℎ, excluding 𝑛) have timestamps are
larger than 𝑡 . All nodes in the version list that are newer than ℎ also have timestamp larger than
𝑡 because they are appended after line 27 of 𝑅 and S.timestamp is already greater than 𝑡 at this
step. Therefore, by Observation 1, all nodes in the version list newer than 𝑛 are linearized after
the linearization point of 𝑇 . This means 𝑉 is the last modifying vCAS operation to be linearized
before the linearization point of 𝑇 , as required.

The bounds on the step complexity of the operations can be obtained by inspection of the
pseudocode. □

4.4 Supporting Linearizable Wait-free Queries

We use versioned CAS objects to extend a large class of concurrent data structures that
are implemented using reads and CAS primitives to support linearizable wait-free queries. Our
approach is general enough to allow transforming many multi-point read-only operations on a
sequential data structure into linearizable queries on the corresponding concurrent data structure.
To achieve this, we define the concept of a solo query, i.e., a query that only reads the shared
state, and once invoked, is correct if run to completion without any other process taking steps
during its execution. Typically, solo queries can be implemented by adapting standard sequential
queries.

The approach works as follows. Each CAS or read on a CAS object is replaced by a vCAS or
vRead (respectively) on the corresponding versioned CAS object, all of which are associated
with the same camera object. To perform a solo query operation 𝑞, a process 𝑝 first executes
takeSnapshot on the camera object, to obtain a handle 𝑡𝑠 . Then, for any CAS object that 𝑞
would have accessed in the data structure, 𝑝 performs readVersion(𝑡𝑠) on the corresponding
versioned CAS object. Intuitively, takeSnapshot takes a snapshot of shared state, and solo
queries then run on this snapshot while other threads may be updating concurrently.

Not all concurrent data structures can support solo queries. Herlihy and Wing [88] describe
an array-based queue implementation in which the linearization order of the enqueue operations
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depends on future dequeue operations. For that algorithm, it is not possible to implement a solo
query returning the state of the queue because the ordering between completed enqueues can
be undetermined. However, for most data structures it is straightforward to implement solo
queries. Here we give examples of several concurrent data structures that support solo queries.
A thorough treatment of the conditions under which solo queries are possible and a comparison
of these conditions with strong linearizability [76] are provided in [164].

FIFOQueue. Wefirst considerMichael and Scott’s concurrent queue (MSQ) [118], which supports
atomic enqueues and dequeues, as well as finding the oldest and newest elements. Our scheme
additionally provides an easy atomic implementation of more powerful operations such as
returning the 𝑖-th element, or all elements, etc. The mutable locations in a MSQ consist of a head
pointer, a tail pointer, and the next pointer of each node in a linked list of elements, pointing
from oldest to newest. The head points indirectly to the oldest remaining element, and the tail
points to the newest element, or temporarily to the element immediately before the newest. The
newest element always has a null next pointer. After applying our approach, all these pointers
become vCAS objects, and a takeSnapshot operation, 𝑇 , will atomically capture the state of
all of them. Any query can then easily reconstruct the part of the queue state it requires. For
example, the select(i) query can start at the head and follow the list (calling readVersion on
each node, using the handle returned by 𝑇 ) until it reaches the 𝑖-th element in the queue. Each
next pointer in the linked list is only successfully updated once, so each readVersion of a next
pointer takes constant time. Therefore, for example, finding the 𝑖-th element (from the head) in
a queue takes time 𝑂 (𝑖 + 𝑐) where 𝑐 denotes the number of successful dequeues between the
read of the timestamp by 𝑇 and the read of the head.

Sorted Linked List. Harris’s data structure [80] maintains an ordered set as a sorted linked list
(HLL), and supports insertions, deletions, and searches. Our approach adds atomic versions of
multi-point query operations, such as range queries, finding the first element that satisfies a
predicate, or multi-searches (i.e., finding if all or any of a set of keys is in the list). To implement
concurrent insertions and deletions properly, HLL marks a node before splicing it out of the list.
The mark is kept as one bit on the pointer to the next list node. Deletes are linearized when
the mark is set. The mutable state comprises the next pointers of each link, which contains
the mark bit. If these are versioned, a takeSnapshot captures the full state. A query can then
follow the snapshotted linked list from the head, using readVersion on each node; all marked
nodes should be skipped.

Time bounds for range query, multisearch and finding the 𝑖-th element were given in Table
1.1 in Section 1.2. Each insert or delete performs up to two successful vCAS operations and each
successful vCAS may cause a query to traverse an extra version node. So, in the worst case,
queries incur an additive cost of 𝑐 (defined in Table 1.1). Each query also incurs an additive cost
of 𝑃 since it may encounter up to 𝑃 marked nodes.

Binary Search Trees. We now consider concurrent binary search trees (BST). Many such
data structures have been designed [7, 15, 29, 33, 36, 38, 62, 152, 170]. All the BST structures
we looked into work with solo queries allowing for multi-point queries of the same type as in
HLL (e.g., range queries and multisearches), but potentially much faster since they can often
visit a small part of the tree. Queries on the structure of the tree (e.g., finding its height) can
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also be supported. Here we consider two such trees (which are also used in our experiments in
Section 4.9): the non-blocking binary search trees (NBBST) of Ellen et al. [62], and the balanced
non-blocking chromatic tree (CT) of Brown et al. [38].

The NBBST data structure is an unbalanced BST with the data stored at the leaves and the
internal nodes storing keys for guiding searches. Every insertion involves inserting an internal
node and a leaf, and similarly a delete removes an internal node and a leaf. The data structure
uses a lock-free implementation of locks, “locking” one or two nodes for each insertion or
deletion. The locks are implemented by pointing to a descriptor of the ongoing operation, so
other threads can help complete the operation if they encounter a lock. This makes the data
structure lock-free. The linearization point is at the pointer swing that splices an internal node
(along with a child) in or out. Therefore at any time the child pointers of the internal nodes
fully define the contents of the data structure. If these child pointers are kept as versioned CAS
objects, then a snapshot will capture the required state. The queries can ignore the locks and,
therefore, the descriptor pointers, although mutable, do not need to be versioned.

The chromatic tree (CT) is a balanced BST that also stores its data at the leaves. It is based on
a relaxed version of red-black trees, with colors at each node facilitating rebalancing. Concurrent
updates are managed similarly to the NBBST. In particular, updates are linearized at a single CAS
that adds or removes a key. So, obtaining a snapshot of the tree’s child pointers is sufficient to
run multi-point queries.

Any query 𝑞 on NBBST or CT takes time proportional to the number of nodes it visits plus
the write contention of 𝑞 (i.e., the number of vCAS operations concurrent with 𝑞 on memory
locations accessed by 𝑞). This assumes 𝑞 performs readVersion on each versioned CAS object
at most once. This can be ensured by caching values read from the tree. For the bounds in Table
1.1, it suffices to show that the number of vCAS operations concurrent with 𝑞 is at most the
number of inserts, deletes and rotations concurrent with 𝑞. This is because each vCAS is either
due to a rotation (only applies to CT) or is the linearization point of an insert or delete.

Importantly, our snapshot approachmaintains the time bounds of all the operations supported
by the original data structure. (For example, in the case of NBBST and CT, the original operations
would be insert, delete, and lookup).

4.5 Avoiding Indirection

In this section and the next, we present ways to optimize our snapshotting approach (and
therefore multi-point queries using such snapshots). We present these optimizations in terms
of a concurrent data structure 𝐷 to which we add snapshots and use them to run queries from
a set 𝑄 . We denote by 𝐷′ the version of 𝐷 that also supports the queries in 𝑄 . Only the CAS
objects in 𝐷 that could potentially be read by queries need to be versioned in 𝐷′.

Algorithm 4.1 has a level of indirection even when accessing the most recent version of a
vCAS object since it requires first accessing the head of the version list, and then the object it
points to. Figure 4.2(a) illustrates an example of a linked list updated as described in Algorithm 4.1
along with its version lists. Here we discuss how this indirection can be avoided. Figure 4.2(b)
illustrates the linked list after applying the optimization (more details later). This optimization
has some restrictions, which we define first.
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Figure 4.2: A simple concurrent linked list using both direct and indirect versioned CAS objects. The
state of each results from inserting keys 𝐸,𝐶 , 𝐴, and 𝐵 (in that order) into an empty list. Circles represent
linked list nodes and squares represent VNodes from Algorithm 4.1. Numbers represent timestamps,
dotted arrows represent version pointers (nextv pointers), and solid arrows represent the value field val.

1 class Node {
2 /* other fields of the Node class */
3 int ts; // initially TBD
4 Node* nextv; };

5 class DirectVersionedCAS {
6 Node* Head; Camera* S;

7 DirectVersionedCAS(Node* n,
8 Camera* s) {
9 Head = n; S = s; initTS(n); }

10 void initTS(Node* n) {
11 if(n != NULL && n->ts == TBD) {
12 int curTS = S->timestamp;
13 CAS(&(n->ts), TBD, curTS); } }

14 Node* vRead() {
15 Node* head = Head;
16 initTS(head);
17 return head; }

18 Node* readVersion(int ts) {
19 Node* node = Head;
20 initTS(node);
21 while(node != NULL &&
22 node->ts > ts)
23 node = node->nextv;
24 return node; }

25 bool vCAS(Node* oldV, Node* newV){
26 Node* head = Head;
27 initTS(head);
28 if (head != oldV) return false;
29 if (newV == oldV) return true;
30 newV->nextv = oldV;
31 if(CAS(&Head, head, newV)) {
32 initTS(newV);
33 return true; }
34 else {
35 initTS(Head);
36 return false; } } };

Algorithm 4.3: Linearizable implementation of a versioned CAS object without indirection.
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A versioned node is a node that versioned CAS objects can point to directly. We say that a
versioned node is recorded in a history 𝐻 if a pointer to it is the newV parameter of a successful
vCAS (on any versioned CAS object) in 𝐻 . When a node is recycled by the memory reclamation
scheme, it counts as a new object.

Definition 3 (Recorded-once). 𝐷′ is recorded-once if, for every history of 𝐷′, the following hold:
(1) every versioned node is recorded at most once, (2) the newV parameter of each vCAS is a pointer
to a versioned node, (3) vCAS operations (both successful and unsuccessful) with the same newV
parameter must have the same oldV parameter, and (4) versioned CAS objects are initialized with
null or a pointer to a previously recorded node.

This property allows us to overload a versioned node as both a node and a link in a version
list, thus avoiding the indirection. Conditions 2 to 4 are relatively natural to satisfy, so it is
Condition 1 that is most important.

Our approach works as follows. For each versioned CAS object 𝑂 that stores a pointer to a
node in 𝐷′, instead of creating a new VNode to store the version pointer and the timestamp, we
store this information directly in the node pointed to by𝑂 . To do this, we extend each node with
two extra fields, ts and nextv, and modify Algorithm 4.1 accordingly. The resulting algorithm
is described in Algorithm 4.3 and we call it the direct implementation of versioned CAS objects.
Naturally, we call Algorithm 4.1 the indirect implementation. Figure 4.2 gives an example using
both versions.

The correctness of Algorithm 4.3 depends heavily on the recorded-once property (Definition
3). Condition 1 ensures that every versioned node appears as a non-tail element of a version
list at most once. Note, however, that a versioned node 𝑥 can appear as the tail of the version
lists of an arbitrary number of vCAS objects since each can set their initial value to 𝑥 . In the
example in Figure 4.2, the node 𝐶 is both the tail of the version list from 𝐵 and an internal
node for the version list from the head. A timestamp is set on a versioned node when it is
recorded (Line 32, or by someone helping), and by Condition 1 this means it is set at most once.
Furthermore, by Condition 4, a node is not used as an initial value until its timestamp is set,
meaning that all timestamps stored in 𝐷′ are already set or in the process of being set (possibly
by helping). Condition 2 is required to ensure we have somewhere to record the timestamp and
next node in the version list (i.e., newV needs nextv and ts fields). Condition 3 ensures that all
vCAS operations with the same newV attempt to write the same pointer into newV->nextv on
Line 30.

The direct implementation can be applied to concurrent data structures for which, at any
point in time, every object has at most one pointer to it. Examples include tree data structures
where pointers go from parents to children, or singly-linked lists. However, this can involve
slight modifications to the original concurrent algorithm. For example, if a node being pointed
to by one object is moved to be pointed to by another object then it would be recorded more
than once. This can happen during a delete operation in HLL [80] and NBBST [62]. To avoid this,
the node can be copied and a pointer to the new node can be written into the new location. This
modification should be done with care to preserve correctness. We apply this transformation in
our NBBST implementation (Section 4.8).
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4.6 Other Optimizations

In this section, we present additional optimizations that work for both the direct versioned
CAS algorithm from Section 4.5 and the indirect algorithm from Section 4.2.

Removing redundant versions. If snapshot operations are infrequent, many consecutive
nodes in a version list may have the same timestamp. Since only the most recent such node is
needed by readVersion, we can save space by storing only nodes that have distinct timestamps.
This can be done by modifying the vCAS operation slightly. After setting the timestamp of a
newly added version list node (i.e., after Line 43 of Algorithm 4.1), we modify vCAS to splice
out the next node in the version list if it has the same timestamp as the head of the version list.
We also modify vCAS to perform this splicing step before attempting to append a new node (i.e.,
before Line 42 of Algorithm 4.1), and this ensures all nodes in a version list, except possibly the
two most recent ones, have distinct timestamps. When using this optimization in Algorithm 4.3,
Line 30 should be modified to update nextv with a CAS so that this optimization does not get
undone.

Avoiding contention. Although takeSnapshot only uses a single CAS, this CAS can be
highly contended if snapshots are frequently taken. To reduce contention, we observe that
𝐶 .takeSnapshot must only ensure that 𝐶’s timestamp is incremented at some point during its
execution interval. Thus, 𝐶 .takeSnapshot can use exponential backoff to wait for another pro-
cess to increment𝐶’s timestamp. After waiting, if no process has done so, then𝐶 .takeSnapshot
tries to do the increment itself.

4.7 Memory Reclamation

To add memory reclamation to our snapshot approach, we use Epoch Based Memory Recla-
mation (EBR) [71]. EBR splits an execution into epochs by utilizing a global epoch counter EC
(with initial value 1). Interestingly, with our direct implementation of versioning we are able
to collect exactly the same nodes as can be collected in non-versioned EBR—i.e., all nodes that
were freed prior to the last two epochs. There can still be some additional memory overhead
for versioning, however, due to the extra nextv and ts field in each node, and, as mentioned in
Section 4.5, the need in some algorithms to allocate extra nodes when deleting.

EBR supports three operations, BeginOp, EndOp and retire. A process 𝑝 executing a BeginOp
operation simply reads EC and announces the value read as its current epoch. An EndOp by 𝑝
clears any previously announced epoch by 𝑝 . EBR maintains a per-process limbo list of objects
for each epoch. An object is added to the limbo list of the most recent epoch whenever it is
passed to retire. When all processes have announced an epoch number that is at least 𝑏 (where
𝑏 is any integer greater than 2), the limbo list associated with epoch 𝑏 − 2 is collected, and the
global epoch counter, EC, is incremented. In this way, EBR maintains only the limbo lists of the
last three epochs. For our experiments, we use an efficient variation of EBR called DEBRA [39].

Using the notation of Section 4.5, let 𝐷 be a concurrent data structure and let 𝐷′ be the
snapshottable version of𝐷 that supports a set of query operations𝑄 in addition to the operations
supported by 𝐷 . In languages without automatic garbage collection, we can support memory
reclamation for 𝐷′ as follows. BeginOp is invoked at the beginning of each operation, and EndOp
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is invoked at the end. retire is called on a node whenever it is removed from the current version
of the data structure. If𝐷′ uses the indirect implementation from Algorithm 4.1, before returning
from a successful vCAS on Line 44, we also have to retire the VNode pointed to by local variable
head. Furthermore, when a data structure node 𝑦 is retired, we have to retire all the VNodes
at the head of 𝑦’s versioned CAS objects. The key observation is that all operations from 𝐷′

(including query operations) only access nodes that were in the current version of the data
structure at some point during the operation’s execution interval. This means that whenever
EBR determines that a node is retired before the start of the earliest live operation, we can free
the node without first unlinking it from any version list because it can no longer be accessed by
any live operation.

In languages with automatic garbage collection, we first use EBR to unlink nodes from
version lists and then rely on the garbage collector to clean up any unreachable nodes. We
modify the EBR algorithm so that when a limbo list is cleared and its nodes reclaimed, for each
node 𝑥 in the limbo list, instead of freeing 𝑥 , we set its version list pointer, 𝑥->nextv, to null.
We can think of this as retiring a version list pointer rather than a node. A query operation 𝑞
working on a snapshot of the data structure protects any version list pointers it may access by
calling BeginOp before taking a snapshot and calling EndOp when it is done using the snapshot.
Since 𝑞 can access version list pointers only of those nodes that were added during 𝑞’s execution
interval, it is safe to retire a version list pointer as soon as the pointer is added to the data
structure. EBR ensures that this pointer is not set to null until all operations that were live when
it was retired terminate. This means that in Algorithm 4.1 (Algorithm 4.3), we retire the pointer
newN->nextv (newV->nextv, respectively) before returning from a successful vCAS on Line 44
(Line 33, respectively).

4.8 Implementation

We implemented our snapshotting approach in both Java and C++. Using the implementa-
tions, we then implemented snapshottable versions of three existing lock-free external BST data
structures (see details below). We use all the optimizations discussed in Sections 4.5 and 4.6. To
apply our approach on top of these tree data structures, we make each node in the data structure
versionable by adding a timestamp and a version pointer field to it, use direct versioned CAS
objects for child pointers, and modify the data structure to be recorded-once if necessary. All
versioned CAS objects are associated with the same camera object so we avoid storing a pointer
to a camera object in each versioned CAS object.

The key and value fields of each node are immutable in all three tree data structures. So, a
snapshot of the child pointers completely defines the contents of the tree and can be used to
answer arbitrary multi-point queries. For our implementation in Java, we implemented the four
queries in Table 4.1, and for our implementation in C++, we implemented range queries. All are
linearizable. We reclaim memory using the EBR based technique described in Section 4.7. Our
code is publicly available on GitHub2.
Base Data Structures. We applied our snapshotting approach to the two BSTs described in
Section 4.4, NBBST and CT, and to a lock-free unbalanced BST designed using Brown, Ellen and

2https://github.com/yuanhaow/vcaslib
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Query Definition Parameters in Figure 4.4m

range(𝑠, 𝑒): All keys in range [𝑠, 𝑒] range256: 𝑒 = 𝑠 + 256
succ(𝑘, 𝑎) The first 𝑎 key-values with key succ1: 𝑎 = 1, or

greater than 𝑘 succ128: 𝑎 = 128
findif(𝑠, 𝑒, 𝑓 ) [47]: The first key-value pair in findif128:

range [𝑠, 𝑒) 𝑓 (𝑘) = (𝑘 mod 128 is 0)
multisearch(𝐿): For a list of keys in 𝐿, return multisearch4: |𝐿 | = 4

their values (null if not found)
Table 4.1: The multi-point queries and their parameters we use in experiments.

Ruppert’s Tree Update Template [38]. For the first two, we used Brown’s Java implementa-
tions [35]. For the third, we used the C++ implementation by Arbel-Raviv and Brown [7].

Batching. Previous work has shown that the performance of concurrent BSTs is improved
by batching keys. We therefore applied the same batching technique from PNB-BST [67] and
LFCA [170] to our Java implementations, storing up to 64 key-value pairs in each leaf (see [67]
for more details). We did not apply batching in our C++ code since it was also not used by the
C++ implementation [7] we compared with.

Recorded-Once. The recorded-once requirement is naturally satisfied by CT and the BST from
[7], but not by NBBST because the delete operation uses CAS to swing a pointer to a node that is
already in the data structure. To avoid this, our implementation copies the node and swings
the pointer to this new copy instead. This requires some extra marking and helping steps to
preserve correctness and lock-freedom.

Names. BST-64 and CT-64 are the non-snapshottable Java BSTs (with batching). VcasBST-64
and VcasCT-64 are our snapshottable versions. BST is the non-snapshottable C++ BST from [7],
while VcasBST is our snapshottable version.

4.9 Experimental Evaluation

In this section, we provide our experimental analysis, which has two main goals: first, to
understand the overhead that our approach introduces to concurrent data structures which
originally did not support multi-point queries, and second, to compare the performance of our
approach to that of state-of-the-art alternatives which support atomic range queries.

Other Structures that Support Range Queries. We compare with several state-of-the-art
dictionary data structures: SnapTree [33], KiWi [15], LFCA [170], PNB-BST [67], KST [36], and
EpochBST [7] using code provided by their respective authors. Arbel-Raviv and Brown [7]
presented several ways to add range queries to concurrent data structures. We use EpochBST
to refer to their most efficient range queryable lock-free BST, which is implemented in C++.
This serves as a good comparison for VcasBST because they both augment the same initial BST
with linearizable range queries. All the other data structures are written in Java. They are
all lock-free except SnapTree, which uses fine-grained locking. We classify KiWi, SnapTree,
and VcasCT-64 as balanced data structures because they have logarithmic search time in the
absence of contention, and the others as unbalanced. For the 𝑘-ary tree (KST), we use 𝑘 = 64
which was shown to perform well across a variety of workloads [36]. We used batch size 64 for
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(a) Lookup heavy - 100K Keys: (b) Update heavy - 100K Keys: (c) Update heavy with RQ - 100K Keys:
3%ins-2%del-95%find-0%rq 30%ins-20%del-50%find-0%rq 30%ins-20%del-49%find-1%rq-1024size

(d) Lookup heavy - 100M Keys: (e) Update heavy - 100M Keys: (f) Update heavy with RQ - 100M Keys:
3%ins-2%del-95%find-0%rq 30%ins-20%del-50%find-0%rq 30%ins-20%del-49%find-1%rq-1024size

(g) Update Throughput - 100K Keys: (h) RQ Throughput - 100K Keys: (i) Memory Usage - 100K keys:
36 Update Threads, 36 RQ Threads 36 Update Threads, 36 RQ Threads 36 Update Threads, 36 RQ Threads

(j) Insert Only, (k) Overhead of Vcas, 140 threads (m) Throughput of atomic queries
Sorted Sequence measured across various on VcasCT-64

workloads

Figure 4.4: Java experiments.
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(a) Update Throughput - 100K Keys: (b) RQ Throughput - 100K Keys: (c) Memory Usage - 100K keys:
36 Update Threads, 36 RQ Threads 36 Update Threads, 36 RQ Threads 36 Update Threads, 36 RQ Threads

Figure 4.5: C++ experiments.

VcasBST-64 and VcasCT-64, as well as for LFCA and PNB-BST. This batch size has been shown
to yield good range query performance for LFCA and PNB-BST in [67, 170].

We also applied the contention avoiding technique from Section 4.6 to KiWi, PNB-BST, and
EpochBST because we found that it also improved their performance by reducing contention on
the global timestamp.

Setup. Our experiments ran on a 72-core Dell R930 with 4x Intel(R) Xeon(R) E7-8867 v4 (18
cores, 2.4GHz and 45MB L3 cache), and 1Tbyte memory. Each core is 2-way hyperthreaded
giving 144 hyperthreads. We used numactl -i all, evenly spreading the memory pages across
the sockets in a round-robin fashion. The machine runs Ubuntu 16.04.6 LTS. The C++ code
was compiled with g++ 9.2.1 with -O3. Jemalloc was used for scalable memory allocation. For
Java, we used OpenJDK 11.0.5 with flags -server, -Xms300G and -Xmx300G. The latter two flags
reduce interference from Java’s GC. We report the average of 5 runs, each of 5 seconds. For Java
we also pre-ran 5 runs to warm up the JVM. The variance is small in almost all tests.

Workload. We vary four parameters: data structure size 𝑛, operation mix, range query size
rqsize, and number of threads. In most experiments, we prefill a data structure with either
𝑛 = 100𝐾 or 𝑛 = 100𝑀 keys. These sizes show the performance when fitting and not fitting into
the L3 cache. Keys for operations, and in the initial tree, are drawn uniformly at random from a
range [1, 𝑟 ], where 𝑟 is chosen to maintain the initial size of the data structure. For example, for
𝑛 = 100𝐾 and a workload with 30% inserts and 20% deletes, we use 𝑟 = 𝑛 × (30 + 20)/30 ≈ 166𝐾 .
We perform a mix of operations, represented by four values, ins, del, find, and rq, which are
the probabilities for each thread to execute an insert, delete, find, and range, respectively.
Unbalanced trees can be balanced in expectation using uniformly random keys, so we also run a
workload with keys inserted in sorted order.

Scalability. Figures 4.4a-4.4f show scalability (in Java) under a variety of workloads. Note that
in Figures 4.4c and 4.4f, although range queries are only performed with 1% probability, they
occupy a significant fraction of execution time.

Generally, VcasCT-64 and VcasBST-64 (our two implementations), and LFCA have the best
(almost-linear) scalability across all workloads. LFCA outperforms our implementation in Figure
4.4b, but it is consistently slower in the 100M-key experiments (Figures 4.4d-f). SnapTree is
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competitive with our trees in the absence of range queries, but it has no scalability with range
queries due to its lazy copy-on-write mechanism. Overall, VcasCT-64 is always among the top
three algorithms and in most cases has the best performance.

Varying Range Query Size. We show the effect of varying range query size in Figures 4.4g and
4.4h (Java), and Figures 4.5a and 4.5b (C++), in which 36 dedicated threads ran range queries and
36 ran updates. Each update thread performs 50% inserts and 50% deletes on a data structure
initialized to 100K keys. To better understand the cost of updates and range queries, we plot the
throughput of each operation separately.

In Figure 4.4g, PNB-BST has low update throughput when rqsize ≤ 1024. This is because
its update operations are forced to abort and restart whenever a new range query begins, and
thus more frequent range queries lowers update throughput. KST performs decently in most
workloads except when each range query covers a significant fraction of the key range. This is
because their range query performs a double collect of the desired range and is forced to restart
if it sees an update between the two collects.

Data structures that increment a global timestamp with every range query become bottle-
necked by this increment when range queries are frequent. This applies to our trees as well as
PNB-BST, KiWi, and EpochBST. Consequently, with rqsize = 8, LFCA has 3x faster range queries
when compared to our trees (Figure 4.4h). However, LFCA avoids using a global timestamp by
having update operations help ongoing range query operations. This helping becomes more
frequent and more costly when rqsize is large, as shown in Figure 4.4g. For rqsize = 64𝐾 (about
a third of the key range), the update throughput of our trees is 4x faster than LFCA. Other than
LFCA, all the other implementations have mostly stable update throughput with varied range
size, among which VcasCT-64 has the best overall performance.

Figure 4.5 compares the performance of the C++ version of VcasBST with that of EpochBST.
Range queries on VcasBST are 5–7x faster than EpochBST. This is because EpochBST effectively
maintains a single global version list rather than a separate version list for each object. So range
queries on EpochBST are slowed down by all concurrent updates, even ones that are outside of
the range being queried for, because they increase the cost of searching the global version list.
In contrast, a range query in VcasBST is only slowed down by updates that are within the query
range. In terms of update performance, VcasBST is at least as fast as EpochBST, and up to 60%
faster on the largest range query size.

Sorted Workload. In Figure 4.4j, we test the Java implementations under a sorted workload.
We insert an array of sorted keys into an initially empty tree by splitting the array into chunks
of size 1024 and placing the chunks on a shared work queue; when a thread runs out of work, it
grabs a new chunk from the head of the shared work queue. As expected, the balanced trees,
VcasCT-64, KiWi and SnapTree, outperform the unbalanced ones. On 140 threads, SnapTree is
1.4x faster than VcasCT-64, which is in turn 4.1x faster than KiWi.

Overhead of Our Approach. In Figure 4.4k, we compare the throughput of our Java imple-
mentations VcasBST-64 and VcasCT-64 with the original data structures, BST-64 and CT-64,
using 140 threads. The numbers in Figure 4.4k are normalized to the throughput of BST-64
and CT-64 to make the overheads easier to read. The overall overhead of our approach is low,
ranging between 2.7% and 9.1% depending on the workload. This overhead includes the time for
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epoch-based memory management and the cost of using vCAS and vRead. For VcasBST-64, it
also includes the actions we take to ensure that deletes satisfy the recorded-once property. The
overhead is low because a vRead rarely sees a node with timestamp TBD, and therefore rarely
performs a CAS to help set the timestamp. While a vRead sometimes incurs a cache miss when
checking if this helping step is required (Line 11 of Algorithm 4.3), in the data structures we
test, this cache miss would have been incured anyways when the operation follows the pointer
returned by the vRead.

We also measure the overhead of our multi-point queries, range, multisearch, succ, and
findif, with parameters shown in Figure 4.4m. We compare throughputs for VcasCT-64
with non-atomic multi-point queries on the original CT-64, which simply run their sequential
algorithms (and are not linearizable). Non-atomic multisearch, for example, simply calls find
for each key. Figure 4.4m shows the cost that our approach has to pay to provide query atomicity.

All queries other than succ1 exhibit low overhead: they are between 2.9% and 12.8% slower
than their non-atomic counterparts. For succ1, our scheme exhibits larger overheads (36.8-
41.4%) due to the bottleneck of incrementing the global timestamp when there are lots of small
fast queries.

Memory Usage. Figures 4.4i and 4.5c show memory usage graphs for the Java and C++ data
structures, respectively. In our Java experiments, we measured the amount of heap memory in
use after Java’s garbage collector cleans up all unreachable objects. We found that VcasCT-64’s
memory usage is within a factor of 2.2 of both CT-64 and LFCA, which tie for having the smallest
memory footprints. We omitted PNB-BST from Figure 4.4i because it does not allow for garbage
collection and uses significantly more memory than the rest.

For the C++ experiments, wemeasuredmemory usage bymultiplying the number of allocated
nodes by the size of each node. As discussed in Section 4.7, VcasBST has little memory overhead
with respect to the non-versioned BST because they both use EBR and keep around approximately
the same number of nodes. Most of the overhead comes from storing an extra timestamp and
version pointer in each node.

Summary. Overall, our snapshot approach has low overhead and, despite its generality, performs
well compared to existing special-purpose data structures. In particular, VcasCT-64 had the best
overall throughput among all the range queryable Java data structures we tested. VcasBST-64
is also competitive on uniform workloads.

4.10 Conclusion and Discussion

In this chapter, we show a simple and efficient approach for snapshotting and supporting
multi-point queries on a large class of concurrent data structures. Our approach maintains
the time bounds and progress properties (e.g. lock-freedom/wait-freedom) of the original
data structure, and it also ensures that the newly added multi-point queries are wait-free.
Moreover, the technique provides good time bounds, with multi-point queries taking time
proportional to their sequential complexity plus a contention term representing the number of
update operations concurrent with the query. Despite its generality, it is also extremely efficient,
often outperforming data structures specifically designed to support fast range queries.
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This chapter focuses mostly on CAS based data structures, but these ideas can be extended to
work for LL/SC based data structures as well.
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Chapter 5

Versioned Pointers

5.1 Introduction

This chapter implements a new abstraction called versioned pointers which improves upon
versioned CAS objects introduced in the previous chapter in three important ways. First, it
contains a more automated mechanism for avoiding indirection that does not require converting
the data structure to satisfy the recorded-once condition defined in Chapter 4.5. For some
data structures, converting them to be recorded-once can be tricky and add additional cost.
This chapter introduces a hybrid of the indirect and direct versioned CAS algorithms where
indirection is used only when needed (i.e., when an object is recorded more than once) and uses
shortcutting to remove the indirection when it is no longer needed. The user does not have to
know anything about being recorded-once. We refer to this as indirection on need.

Second, although versioned CAS objects can be used with locks, it is not optimized for locks,
and hence has some inefficiencies. When using locks, shared variables are typically updated
with stores instead of CASes. Using the previous chapter’s approach, a store can be implemented
by loading the value and then a CAS with the loaded value as the expected value, but this
requires several unnecessary steps. This chapter streamlines this by directly supporting a store
operation on versioned pointers, and more importantly, converts the code to be idempotent
so that versioned pointers can be used alongside lock-free locks from Chapter 3. Achieving
idempotence required several new ideas. For example, the idempotence approach from Chapter 3
does not support CAS, which is required by both versioned pointers and versioned CAS.

Third, this chapter presents a mechanism for incrementing the global timestamp. As pointed
out in Section 5.7, when snapshots are used for smallish queries this increment can be a significant
bottleneck due to contention on the stamp. One solution to this is to use synchronous (across
cores) hardware clocks for time stamps [96, 146]. However such clocks are not available on all
machines and even on machines that do appear to support them, their properties regarding
synchronization among nodes are not fully documented by the vendors [44]. This chapter
presents a timestamping mechanism that optimistically runs queries without incrementing the
time stamp. If the query runs into a timestamp that equals its own it aborts, increments the
stamp and reruns (at most once). We refer to this as optimistic timestamping.
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Based on these ideas we have developed and implemented an easy-to-use C++ library called
verlib. The library revolves around a versioned pointer type, which can be used in either
lock-based or CAS-based concurrent data structures to store a shared pointer. As with atomic
locations in many programming languages, the versioned pointer supports atomic loads, stores,
and CASes on the locations. The user can convert their existing concurrent data structure to
use verlib with only a couple changes: (1) replacing atomic locations holding pointers that
need to be part of the snapshotted state with versioned pointers, and (2) inheriting a “versioned”
class into any objects pointed to by such pointers. Then the user can just wrap a collection
of loads in the with_snapshot function provided by verlib and all loads will see an atomic
view—i.e., the state of the versioned pointers at some fixed point in time within the scope of the
with_snapshot.

Once a concurrent data structure is modified to use verlib, compiler flags can be set to run
it in several different modes. It can be used as a standard concurrent data structure with no
support for snapshots and no lock-free locks. In this case, the loads within a with_snapshot
will still work, but not be atomic with each other. Also any locks will be blocking locks instead
of lock-free locks. If versioning is turned on, the loads within with_snapshot will present a
consistent snapshot of the data structure. If lock-free locks are turned on, the locks will be
lock-free. The user can specify the type of timestamp they want, switching amongqeryTS,
optTS, and hwTS. qeryTS is the approach used in Chapter 4 while optTS uses optimistic
timestamping and is typically significantly faster, but requires that the query can be rerun a
second time. hwTS uses synchronous hardware timestamps and can only be run on machines
that properly support them. Any combination of the above settings can be used.

We have converted several state-of-the-art concurrent data structures to use the approach,
including a singly and doubly linked list, a hash table, an adaptive radix tree (ART) [104], and a
b-tree. All but the hash table are taken from the Flock library from Chapter 3, and the hash
table uses array bucket copying [48].1 In the chapter, we present several experimental results
comparing the different data structures, with the different settings of the flags mentioned above,
and under a variety of workloads. The workloads include various mixes of updates (inserts and
deletes), finds, range queries, and multi-finds. We also vary the data structure sizes and the
skewness of the distribution using a zipfian distribution. We then compare performance to some
existing data structures that directly support range queries.

The experiments show that the cost of versioning is typically small. They also show that
indirection-on-need is much more efficient than using indirection, while not requiring any
conversion to the code. The experiments show that optimistic timestamping significantly
outperforms greedy increments on smallish queries, and is almost always nearly as fast as
hardware timestamps (sometimes slightly faster). Finally they show that versioning integrates
well with lock-free locks.

The contributions of the chapter include:

• A new indirection-on-need approach for version lists that mostly avoids indirection, while
not requiring that objects are only recorded once.

1We believe our starting implementations are the fastest or competitive with the fastest current implementations
for sorted lists, unsorted sets, radix-sorted sets and unsorted-sets.
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• Efficient and full support of versioned pointers inside of both blocking and lock-free locks.
This includes a new mechanism to support an idempotent CAS.

• A easy-to-use portable library, verlib, for adding versioning to existing or new concurrent
data structures.

• The first b-tree we know of that is lock-free and versioned. It is also significantly faster
than previous data structures designed to support linearizable range queries.

• The first versioned radix tree, whether lock-free or not.
• A collection of experiments demonstrating the various tradeoffs of our approaches.

5.1.1 Example: Doubly Linked List

Here we present an example of how the verlib interface can be used to extend the doubly-
linked sorted list from Section 3.1.1 to support snapshots. The data structure uses lock-free
locks. In addition to insertions, deletions and finds, supported by the prior data structure, the
snapshots allow for atomic range queries and any other query involving a snapshot of the state
of the list. We give the code for deletions and range queries in Algorithm 5.1 and code for find
and remove in Algorithm 5.2 where changes from the original are marked in red.

Each node of the list holds a key and value, previous and next pointers, a lock, and a flag
indicating whether the node has been removed. The versioned_ptr on (line 4) indicates that
the next pointer should be versioned (i.e., used in an atomic snapshot). In verlib, the versioned
class needs to be inhereted for any class X that is used as versioned_ptr<X> (line 1). Any classes
that inherit versioned must also use the verlib epoch-based memory allocator (lines 7 and 21).

The range operation implements an atomic range query from key k1 (inclusive) to key k2
(exclusive). It finds the first key greater or equal to k1 using find_node, and then continues
traversing the list while pushing keys onto result until finding a key greater or equal to k2.
We assume the list has a sentinel infinite key at the end. The with_snapshot takes as its only
argument a thunk f (a lambda expression with no argument)2 and runs it such that all its loads
see an atomic view of the memory state (i.e. of all versioned pointers). The range query will
therefore be atomic (i.e., linearizable with updates). Note that only the next pointer needs to
be versioned since it is the only mutable shared variable read by the range query operation.
Without the with_snapshot the code is not atomic—effects of updates that are concurrent with
the query might or might not appear in the result.

The insert searches for the first node next with a key greater or equal to k and tries to
acquire a lock on its previous node (prev). If the lock is successfully acquired, prev has not been
removed, and prev->next still points to next, the algorithm allocates a new node and splices it
in. Otherwise it makes another attempt by repeating the while loop. The lck->try_lock(f) is
from the Flock library. It attempts to take the lock on lck and, if successful, runs the thunk f.
It returns true if and only if the lock was successfully acquired and the thunk returned true. It is
lock-free in the formal sense as defined in Chapter 2.

2In C++ “[=] { body }” creates a lambda with no arguments where the free variables of the body are captured
by value.
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1 struct node : verlib::versioned {
2 Key k; Value v;
3 flck::atomic<node*> prev; // not versioned
4 verlib::versioned_ptr<node> next;
5 flck::lock lck;
6 flck::atomic<bool> removed; }; // not versioned

7 verlib::memory_pool<node> nodes;

8 node* find_node(node* head, Key k) {
9 node* cur = (head->next).load();
10 while (k > cur->k) cur = (cur->next).load();
11 return cur; }

12 std::vector<Key> range(node* head, Key k1, Key k2) {
13 return verlib::with_snapshot([=] {
14 std::vector<Key> result;
15 node* cur = find_node(head, k1);
16 while (cur->k < k2) {
17 result.push_back(cur->k);
18 cur = (cur->next).load(); }
19 return result; }); }

20 bool insert(node* head, Key k, Value v) {
21 return verlib::with_epoch([=] {
22 while (true) {
23 node* next = find_node(head, k);
24 if (next->k == k) return false; // already there
25 node* prev = (next->prev).load();
26 if (prev->k < k &&
27 prev->lck.try_lock([=] {
28 if (prev->removed.load() || // validate
29 (prev->next).load() != next)
30 return false;
31 node* cur = nodes.alloc(k, v, next, prev);
32 prev->next = cur; // splice in
33 next->prev = cur;
34 return true;}))
35 return true;}});} // success

Algorithm 5.1: Using verlib to extend Flock’s sorted doubly-linked list to support atomic range queries.
Changes are marked in red.
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1 std::optional<Value> find(node* head, Key k) {
2 return verlib::with_epoch([=] {
3 node* cur = find_node(head, k);
4 if (cur->k == k) return std::optional<Value>(cur->v);
5 else return {}; });}

7 bool remove(node* head, Key k) {
8 return verlib::with_epoch([=] {
9 while (true) {
10 node* cur = find_node(head, k);
11 if (cur->k != k) return false; // not found
12 node* prev = (cur->prev).load();
13 if (prev->lck.try_lock([=] {
14 return cur->lck.try_lock([=] {
15 if (prev->removed.load() || // validate
16 (prev->next).load() != cur)
17 return false;
18 node* next = (cur->next).load();
19 cur->removed = true;
20 prev->next = next; // splice out
21 next->prev = prev;
22 nodes.retire(cur);
23 return true;});}))
24 return true; } }); } // success

Algorithm 5.2: Find and Remove for doubly-linked lists. Extends Algorithm 3.1.
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1 template <typename T>
2 struct versioned_ptr {
3 versioned_ptr(T v); // constructor with value v
4 T load(); // read the value
5 void store(T v); // store a new value
6 bool cas(T old_v, T new_v); // compare and swap
7 T operator=(T v) { // overload assignment with store
8 store(v); return v; } };

Figure 5.3: Interface for a versioned_ptr in verlib.

5.2 Background

Chapter 3 describes a library, Flock for supporting lock-free locks. Converting lock-based
codes into Flock requires replacing atomic shared variables with the flck::atomic version,
which then implements idempotence. A flck::atomic supports a load, store and cam opera-
tions. In some cases in this chapter, for efficiency, we use non-idempotent versions of load and
cas, which will be denoted as load_non_idempotent and cas_non_idempotent. These are im-
plemented by primitive load and CAS respectively. Also Flock supplies an atomic_write_once
which can be used if the location is only written to once after it is initialized and is slightly more
efficient than flck:atomic.

5.3 verlib

Here we present the rather minimal verlib interface. Although presented and implemented
in C++, it should not be hard to embed the ideas in libraries for other programming languages.
The library consists of the following two classes.

• A versioned_ptr<T> class which is used to store versioned pointers to objects of type T.
It supports the operations described in Figure 5.3.

• A versioned class thatmust be inherited by every type T that is used in a versioned_ptr<T>.
It has no user accessible fields.

The library also supports the function:
• with_snapshot(𝑓 ), which takes a thunk 𝑓 and runs it such that all calls to load() on
versioned pointers return values at a fixed point in the linearized order of updates which
falls between the invocation and response of the with_snapshot. It returns the value
returned by 𝑓 .

Finally the user needs to use the verlib memory manager. Versioned objects (that inherit
versioned) must be managed through an object flock::memory_pool<T> which supports the
two operations: alloc(...args), which given constructor arguments args allocates a new
object of type𝑇 and returns a pointer to it, and retire(T* ptr), which retires the object pointed
to by ptr. Furthermore all concurrent operations must be wrapped in flock::with_epoch(𝑓 ).

Examples of how to use all these were given in Section 5.1.1. This interface is common across
all our implementations. If the structure is to be used with lock-free locks (not required) then
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1 struct versioned {}; // empty for the indirect variant

2 struct ver_link {
3 flck::atomic_write_once<long> time_stamp;
4 ver_link* next_version;
5 void* value;
6 ver_link(long stamp,ver_link* next,void* value) // constructor
7 : time_stamp(stamp), next_version(next), value(value) {} };

8 memory_pool<ver_link> links;

9 std::atomic<long> global_stamp;

10 void increment_global_stamp(long stamp) {
11 if (global_stamp.load() == stamp)
12 global_stamp.compare_exchange_strong(stamp,stamp+1);}

13 thread_local long local_stamp = -1;

Algorithm 5.4: Helper functions and types for indirect versioned pointers implementation in Algo-
rithm 5.5.

all std::atomic<T> types (i.e. mutable shared locations holding values of type T) should be
replaced with flck::atomic<T>.

Cost Bounds The store and cas operations each take a contant number of steps. 3 The
load operation outside a with_snapshot takes a constant number of steps, and inside, the
number of steps is at most proportional to the number of store and cas operations on the same
versioned pointer that are concurrent with the containing with_snapshot. The overhead of the
with_snapshot is a constant additive number of steps and, if using optTS, then the thunk 𝑓 in a
with_snapshot(𝑓 ) might be run twice. We note that the number of steps does not tell the whole
story since the time for a memory instruction, especially timestamp increments, can depend
significantly on contention—hence the need to consider different time stamping mechanisms.

5.4 Versioning with Locks

We first describe an implementation of the interface that integrates locks, both blocking
and lock-free, with the snapshot approach from Chapter 4. The code is given in Algorithms 5.4
and 5.5. The code in red is new to this chapter and the rest implements the snapshotting approach
from Chapter 4. There are three important extensions in this section, the first two are specific to
lock-free locks and the third is useful for either blocking or lock-free locks.

The first extension is in the implementation of set_stamp (Line 22), which is used by load,
store and cas (three times) for set-stamp helping (i.e., changing a stamp from tbd to the current
stamp). Usually with lock-free locks, code needs to be made idempotent by using flck::atomic
for shared variables. Unfortunately making the global time stamp idempotent is expensive
due to the high contention, which is amplified by helping threads. The key observation in our
code is that setting the stamp does not need to be idempotent, and can use the non idempotent

3If used with Flocks lock-free locks and because of the way it avoids ABA with tagging, in the infrequent event
that the tags run out, then the store and CAS can take longer.
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14 template <typename F>
15 auto with_snapshot(F f) {
16 local_stamp = global_stamp.load();
17 increment_global_stamp(local_stamp);
18 auto r = f(); local_stamp = -1; return r;}

19 template <typename V>
20 struct versioned_ptr {
21 flck::atomic<ver_link*> v;

22 static ver_link* set_stamp(ver_link* ptr) {
23 if (ptr->time_stamp.load_non_idempotent() == tbd) {
24 long n_t = global_stamp.load();
25 if (ptr->time_stamp.load_non_idempotent() == tbd)
26 ptr->time_stamp.cas_non_idempotent(tbd, n_t);
27 } return ptr;}

28 V* read_snapshot(long timestamp) {
29 ver_link* head = set_stamp(v.load());
30 while (head->time_stamp.load() > timestamp)
31 head = head->next_version;
32 return (V*) head->value; }

33 bool cas_from_cam(ver_link* old_v, ver_link* new_v) {
34 v.cam(old_v, new_v)
35 return (v.load()==new_v || new_v->time_stamp.load() != tbd);}

36 public:
37 versioned_ptr(V* ptr) : v(links.alloc(zero, nullptr, ptr}) {}
38 ~versioned_ptr() { links.retire(v.load()); }

39 V* load() {
40 if (local_stamp != -1) return read_snapshot(local_stamp);
41 else return (V*) set_stamp(v.load())->value;}

42 void store(V* ptr) {
43 ver_link* old_link = v.load();
44 ver_link* new_link = links.alloc(tbd, old_link, ptr);
45 v = new_link;
46 set_stamp(new_link);
47 links.retire(old_link);}

48 bool cas(V* old_v, V* new_v) {
49 ver_link* old_link = set_stamp(v.load());
50 if (old_v != old_link->value) return false;
51 if (old_v == new_v) return true;
52 ver_link* new_link = links.alloc(tbd, old_link, new_v);
53 if (cas_from_cam(old_link, new_link)) {
54 set_stamp(new_link);
55 links.retire(old_link);
56 return true; }
57 set_stamp(v.load());
58 links.retire(new_link);
59 return false; }
60 } // end versioned_ptr

Algorithm 5.5: Indirect versioned pointers in C++ safe for either blocking or lock-free locks.
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versions of CAS and load. This is justified by the following theorem along with the fact than
with lock-free locks helpers run in the same epoch as the original.

Theorem 5.4.1. Any call to set_stamp on Line 22 of Algorithm 5.5 can be repeated any number
of times by helper operations invoked after the original and with the same epoch without affecting
the correctness of versioning.

Proof (outline). Since the original and all helpers are in the same epoch, the pointer ptr must
refer to the same logical object (i.e., what is pointed to has not been freed and reused). Therefore,
if ptr->time_stamp is set from tbd to a valid timestamp, it will never change again. Some
number of concurrent applications of set_stamp(ptr) could pass the first condition and run
get_global_update_stamp. Depending on the implementation of stamps, this might increment
the global timestamp multiple times. However, extra increments never change the external
behavior. Furthermore, only the first cas_non_idempotent among the original and helping
operations can succeed on Line 26 since the stamp can be set at most once. This will set the
timestamp to a global stamp that existed between the invocation and response of the original
set_stamp, or leave it as it was as a valid stamp if all fail. This is the condition required for
correct set-stamp helping. □

The second extension is a cas_from_cam function (Line 33) needed when using a CAS while
holding a lock-free lock. Recall that Flock does not supply an idempotent CAS since implementing
one is quite difficult in general. Using a CAM followed by a load to check for success does not
work since another CAM could succeed between the two operations making it appear that the
first failed. It is possible to implement an idempotent CAS using a double-word wide regular
CAS [18], but this is impractical since it would require that all versioned pointers be maintained
as double words. Instead we take advantage of the existing indirection and timestamp to detect
if the CAM was successful. cas_from_cam is idempotent because it uses idempotent load and CAM,
so all that remains is to prove it simulates a CAS.

Theorem 5.4.2. The cas_from_cam function on Line 33 and as used on Line 53 of Algorithm 5.5
implements a linearizable CAS.

Proof. We first note that two concurrent cas_from_cams must have different new values since
they both just allocated new objects on line 52. If the CAM on Line 34 failed then the first test on
Line 35 will always fail since no concurrent cas_from_cam can be writing the same value. If
the CAM succeeded but another CAM linearizes before the first check on Line 35 then this first
check will fail. However, in this case the CAS responsible for the second CAM must have loaded
the result of the first CAM into old_link on Line 49 to succeed on Line 34. In this case it must
also have set the timestamp of old_link on Line 49. Therefore the second test on Line 35 will
succeed and the cas_from_cam will properly return success. □

The third extension is to directly implement a store (line 42), which avoids several steps that
would be required if a load and CAS are used to implement the store. An important assumption
for the store is that it has no write-write races—i.e., that locks prevent two processes storing to
the same location concurrently. We do not assume this for the CAS, and we allow read-write
races. The store avoids checking and setting the timestamp on the old value (Lines 49), and
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avoids the need for a cas_from_cam (Line 53). Both of these simplifications are due to having
no write-write races. Setting the stamp on the old value is not needed since the stamp must
already be set by the previous completed write. The check if the CAS is successful is avoided
since, without a race, the write must be the only successful write.

5.5 Indirection-on-need

In this section, we optimize the versioned pointer algorithm from the previous section to
avoid indirection whenever possible. The idea is to check, on every store or CAS, if the pointer
being written is to a newly allocated object that has not been written before. If so, we can avoid
allocating an indirect ver_link by storing the timestamp and next_version fields directly
in the newly allocated object. This requires adding two new fields to each object that might
be referenced by a versioned_ptr, which is done through our library by inheriting from the
vp:versioned class (e.g. Line 1 of Algorithm 3.1). Crucially, the decision of whether or not
indirection is needed is made internally by our library and requires no additional steps by the
user. Algorithm 5.6 shows how to support this optimization. We do not show the code for CAS
but it follows a similar form.

The timestamp field of a new object is initialized to tbd to indicate it has not yet been
referenced by any versioned_ptr. The first time a pointer to an object O is stored in a
versioned_ptr, the necessary version list metadata is written directly into O (line 43), which
also sets O’s timestamp (line 45). The next time this happens, the store will see that O’s time-
stamp has already been set (line 41), so it allocates a new ver_link to store the version list
metadata, and this adds a level of indirection as before. We borrow a bit from each versioned
pointer to distinguish between a direct versioned pointer and an indirect one.

To use the approach we make one reasonable restriction: when a versioned object is allocated
by a process, a versioned pointer to it must be written using a store or CAS before any other
process can see it—i.e., no side channels can be used to communicate the pointer. This is to
avoid races among processes each trying to be the first to write a pointer to a newly allocated
object. Using this restriction, we can prove the following Lemma.

Lemma 5.5.1. Just before executing Line 44, new_v is only known to the current process and its
timestamp is tbd.

Proof. On entry to a store, if ptr is not a nullptr and its timestamp is tbd, then no other
process has this pointer. This is because any previous store or CAS on ptr would have set the
stamp, and by our restriction only the process that allocated the object has the pointer ptr to it
before such a store or CAS. In this case just before executing Line 44 new_v is the same pointer
as ptr, and it has not yet been communicated to any other process, so it satisfied the claimed
property. If, on entry, ptr is either a nullptr or its timestamp is set (something other than
tbd) then new_v is assigned a newly allocated version link (Line 42). Again the claimed property
holds. □

Theorem 5.5.2. In Algorithm 5.6 the stores properly linearize between their invocation and
response and with respect to all loads (either inside a with_snapshot or not).
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1 struct versioned {
2 flck::atomic_write_once<long> timestamp;
3 ver_link* next_version;
4 versioned(ver_link* next) : // constructor
5 timestamp(tbd), next_version(next) {} };

6 struct ver_link : versioned {
7 void* value;
8 ver_link(ver_link* next, void* value) : // constructor
9 versioned(next), value(value) {} };
10 ...

11 template <typename V>
12 struct versioned_ptr {
13 flck::atomic<ver_link*> v;

14 ver_link* add_indirect(ver_link* ptr); // adds/strips/tests bit of
15 ver_link* strip_indirect(ver_link* ptr); // pointer to mark as indirect
16 bool is_indirect(ver_link* ptr);

17 V* read_snapshot(long timestamp) {
18 ver_link* head = v.load();
19 set_stamp(strip_indirect(head));
20 while (strip_indirect(head)->timestamp.load() > timestamp)
21 head = strip_indirect(head)->next_version;
22 if (!is_indirect(head)) return (V*) head;
23 else return (V*) strip_indirect(head)->value; }

24 versioned_ptr(V* ptr) : v((ver_link*) ptr) {
25 if (ptr != nullptr && ptr->timestamp.load() == tbd)
26 ptr->timestamp = zero_stamp; }

27 ~versioned_ptr() {
28 ver_link* ptr = v.load();
29 if (is_indirect(ptr)) links.retire(strip_indirect(ptr)); }
30 ...
31 V* load() {
32 if (local_stamp != -1) return read_snapshot(local_stamp);
33 else {
34 ver_link* head = v.load();
35 set_stamp(strip_indirect(head));
36 if (!is_indirect(head)) return (V*) head;
37 else (V*) strip_indirect(head)->value; }}

38 void store(V* ptr) {
39 ver_link* old_v = v.load();
40 ver_link* new_v = (ver_link*) ptr;
41 bool indirect = (ptr==null || ptr->timestamp.load() != tbd);
42 if (indirect) new_v = add_indirect(links.alloc(old_v, ptr));
43 else ptr->next_version = old_v;
44 v = new_v;
45 set_stamp(strip_indirect(new_v));
46 if (is_indirect(old_v)) links.retire(strip_indirect(old_v));}
47 } \\ end versioned_ptr

Algorithm 5.6: Indirection-on-need optimization. Variables and functions unchanged from Algorithm 5.4
and 5.5 are omitted.
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1 // ≤ global_stamp and all local_stamps of with_snapshots
2 long done_stamp;

3 template <typename V>
4 struct versioned_ptr {
5 // call shortcut(head) before returning on line 36 of Alg. 5.6
6 void shortcut(ver_link* ptr) {
7 ver_link* ptr_ = strip_indirect(ptr)
8 if (ptr_->timestamp.load_non_idempotent() <= done_stamp)
9 if (v.cas_non_idempotent(ptr, (ver_link*) ptr_->value))
10 links.retire_non_idempotent(ptr_); }

11 void store(V* ptr) {
12 // ... lines 39-43 from Alg. 5.6 here
13 if(cas_from_cam(old_v, new_v)) {
14 if(is_indirect(old_v)) links.retire(strip_indirect(old_v));
15 } else v = new_v;
16 set_stamp(new_v);
17 if (indirect) shortcut(new_v); } } // end versioned_ptr

Algorithm 5.7: Shortcutting optimization. Variables and functions unchanged from Algorithm 5.6 are
omitted.

Proof. (Outline) Lemma 5.5.1 implies that after the set_stamp on Line 45, the timestamp will
hold a global timestamp (its linearization time) that falls between when the store on Line 44
happened, and the return of the set_stamp. This is because either the process set the stamp
itself, picking a timestamp that falls within the claimed range or a helper did. If a helper did it
must also have picked a stamp in the claimed range since it could not have see new_v before the
store on Line 44, but must have picked and set the stamp before the process did. Finally any
loads that come across the pointer new_v will run set_stamp on it forcing it to linearize before
the load. Hence the store properly linearizes between its invocation and response. □

The advantage of indirection-on-need is that in many commonly used concurrent data
structures [62, 80, 122], indirection is only potentially added when deleting a node since inserts
always write newly allocated nodes. However, the indirect version links added by deletes
eventually build up, and we need an efficient strategy for shortcutting them out.

Shortcutting. To identify indirect ver_links that can be safely shortcutted out, the idea is to
make use of the memory reclamation scheme. Memory reclamation is essentially the problem
of determining when an object or a version link is safe to garbage collect. If a versioned pointer
is stored indirectly and all of the versions in its version list are safe to collect except the current
one, then it is safe to shortcut out the version list by storing the versioned pointer directly.

In the following discussion we assume a shared done_stamp is maintained that is guar-
anteed at all times to be no greater than the minimum of the local_stamps of any ongo-
ing with_snapshots as well as the global stamp. This ensures that no current or future
read_snapshot will ask for a version older than done_stamp. At the end of the section, we
describe how to maintain the done_stamp with epoch-based memory reclamation (EBR).
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1 long cur_epoch_stamp;
2 std::atomic<long> global_epoch;

3 void update_epoch(long epoch) {
4 long cur_stamp = global_stamp.load();
5 if (global_epoch.compare_exchange_strong(epoch, epoch+1)) {
6 done_stamp = cur_epoch_stamp;
7 cur_epoch_stamp = cur_stamp; } }

Algorithm 5.8: Updating the done_stamp with EBR.

The code for shortcutting is given in Algorithm 5.7. Since all ongoing with_snapshots
have timestamps no less than done_stamp (by assumption) we can determine if a version
list is no longer needed by checking if the timestamp of the current version is no more than
done_stamp. This check is performed by the shortcut function (Line 8). If the check passes,
then no ongoing or future with_snapshot will access any of the old versions from this list, so
it safely shortcuts out the version link (line 9). The shortcut function is called each time an
indirect versioned pointer is loaded and also at the end of each store and cas. If there are
no concurrent with_snapshots, then store/cas will immediately shortcut out any indirect
nodes that it creates, in which case indirect nodes are only reachable for a brief moment of time.
Shortcutting adds an additional write operation to each store/CAS, but we see in our experiments
that the benefits almost always outweigh the cost. Note that shortcut uses non-idemptent
versions of load and cas just like set_stamp. This still ensures idempotence at a higher-level
because, even if a instance of shortcut is repeated multiple times by helpers, only the first to
execute the cas on line 9 can succeed.

Shortcutting makes versioned pointer’s store (and CAS) operation more difficult because a
store needs to know if it overwrote an indirect pointer and is thus responsible for retiring it.
Since shortcutting can be performed by concurrent processes at any moment, Algorithm 5.7
uses cas_from_cam to update v on line 9. A CAS could be used here if lock-free locks were not
being used. If the cas_from_cam succeeds and old_v is indirect then old_v is retired (line 14).
If it fails, then there was a concurrent shortcut operation changing v to a direct pointer, so we
try updating v again, this time with a low-level store since it cannot be updated concurrently
again (line 15). We sketch a proof of correctness below.

Theorem 5.5.3. The shortcutting technique in Algorithm 5.7 maintains correctness of Algorithm 5.6.

Proof. (outline) Shortcutting mostly affects read_snapshot operations, so this proof sketch will
focus on showing that it does not change the return value of any read_snapshot. Suppose a
versioned pointer is indirect (i.e. its v field points to a ver_link 𝐿), and shortcut later changes
it to directly point to an object 𝑂 . We argue that this change does not affect the return value
of any ongoing or future read_snapshot operations. This shortcut causes any read_snapshot
that would have visited 𝐿 to instead visit 𝑂 . Let 𝑆 be a read_snapshot that would have visited
𝐿 if not for the shortcut. We claim that the while loop in 𝑆 will stop on both 𝐿 and 𝑂 because
both 𝐿 and𝑂 have timestamp at most 𝑆 ’s timestamp. If 𝑆 stops on 𝐿, then it will read and return
𝐿’s value field which points to 𝑂 . If 𝑆 stops on 𝑂 , then it will also return a pointer to 𝑂 , so
shortcutting does not change 𝑆’s return value. So all that remains is to prove the claim that 𝐿
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1 thread_local bool aborted, optimistic;

2 // add after Line 21 of Algorithm 5.6, in read_snapshot
3 if (strip_indirect(head)->time_stamp.load() == timestamp)
4 aborted = optimistic;

5 template <typename F>
6 auto optimistic_with_snapshot(F f) {
7 local_stamp = global_stamp;
8 aborted = false; optimistic = true;
9 auto r = f(); // run optimistically
10 if (aborted) { // rerun with incremented stamp if aborted
11 aborted = false; optimistic = false;
12 increment_global_stamp(local_stamp);
13 r = f(); }
14 local_stamp = -1; return r; }

Algorithm 5.9: Optimistic Timestamping.

and 𝑂 have timestamp at most 𝑆 ’s timestamp. At the moment when 𝐿 is shortcut, its timestamp
is at most done_stamp. We maintain that done_stamp is less than or equal to the timestamp of
any ongoing or future read_snapshot, so it is less than or equal to 𝑆’s timestamp. Therefore
𝐿’s timestamp is at most 𝑆’s timestamp by transitivity. Next we argue that 𝑂’s timestamp is at
most 𝐿’s timestamp. This is because 𝑂’s timestamp must be set before 𝐿, which is a ver_link,
can point to it, and 𝐿’s timestamp is set after it points to 𝑂 , so 𝐿 will be assigned a timestamp at
least as high as the one in 𝑂 . This proves the claim.

□

Maintaining the done_stamp. We now describe to how to maintain the done_stamp with
epoch-based memory reclamation (EBR) [72]. Most multiversioning implementations [7, 123,
124, 171], including verlib and the versioned CAS approach from the previous chapter use EBR.
EBR divides the execution into epochs with an epoch counter specifying the current epoch.
This counter is separate from the timestamp counter. EBR ensures that all active operations
started during either the current or the previous epoch, and therefore any objects removed
during earlier epochs are safe to reclaim.

Using EBR to maintain done_stamp requires modifying the code for incrementing the global
epoch counter so that it records the timestamp at the start of each epoch. These modifications
are shown in Algorithm 5.8, and the global variables cur_epoch_stamp and done_stamp (from
Algorithm 5.7) store the timestamp at the start of the current and previous epochs, respec-
tively. With EBR, update_epoch is never called concurrently with different epoch numbers as
arguments, so there is never a race to update cur_epoch_stamp or done_stamp.

5.6 Optimistic Timestamps

A shared global timestamp is used by with_snapshot and update operations to get and
increment the current time. In Algorithm 5.5 the queries (with_snapshot) increment the
timestamp, as in Chapter 4 and other works [7, 67]. It is also possible to instead have the updates
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increment the stamps [123], or use a high-frequency hardware clock that is synchronized across
cores [96]. We call these implementations qeryTS, updateTS, and hwTS, respectively. hwTS
is not portable across machines, and qeryTS and updateTS increment the timestamp too
frequently in certain workloads resulting in poor performance due to contention on the stamp.

In the context of software transactional memory, it has been observed that transactions can
run optimistically, without incrementing the timestamp, and only increment the timestamp
if the optimistic execution aborts [55]. In this section, we describe a simplified version of the
optimistic timestamping optimization presented in TL2 [55] specialized for our setting of read-
only transactions. In our experimental evaluation, we refer to this as optTS. Using this approach,
a query only needs to abort if it comes across a timestamp equal to its own. The approach runs
the query at most twice since the second run will not abort.

The rather simple code for the approach is given in Algorithm 5.9. It uses the global_stamp
and increment_global_stamp defined inAlgorithm 5.5. The approachmodifies read_snapshot
so after locating the version with the largest timestamp less than or equal to the current local
stamp, it checks if that stamp is equal to the current stamp (Line 3). If so, and if running
optimistically, it sets the abort flag. The approach then modifies with_snapshot(f) so it first
runs the query f without incrementing the stamp (Line 9). It then checks if the query aborted
and, if so, increments the stamp and reruns (Line 13). The second run is guaranteed to produce
a linearizable return value because it is essentially the same as the old with_snapshot imple-
mentation in Algorithm 5.5. Note that this technique requires f to be safe to run twice. This is a
natural requirement since f is a read-only query on the data structure. The following theorem
gives linearization points for this new optimistic implementation of with_snapshot.

Theorem 5.6.1. If with_snapshot(f) runs f without an abort, then it is linearized when it reads
the global stamp (Line 7). Otherwise, it is linearized when it increments the global stamp (Line 12).

Proof. In the first case, all pointer versions encountered by f either have strictly larger or strictly
smaller timestamp than f. The strictly larger ones were added after the linearization point
of f, so read_snapshot in Algorithm 5.6 correctly skips them to look for older versions. The
strictly smaller ones were added before f, and read_snapshot returns the latest pointer version
with a smaller timestamp. Therefore, read_snapshot returns the version of each pointer at the
linearization point of f.

In the second case, we can ignore the optimistic execution and the non-optimistic execution
performs the same steps as with_snapshot implemented with qeryTS in Algorithm 5.5. The
linearization point is correct because it is the same as the linearization point for with_snapshot
in Algorithm 5.5. □

optTS works well in range query heavy workloads because most of the queries can proceed
optimistically. It also works well in update heavy workloads because updates never increment
the global timestamp. As an optimization, queries passed to with_snapshot can check the abort
flag and finish early if they see it set.
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5.7 Experimental Evaluation

We apply verlib to several concurrent set data structures to add support for linearizable
range queries and groups of 𝑘 find operations that act atomically (multi-finds). Our goal is to (1)
measure the overhead verlib adds to the original data structure, (2) compare the optimization
levels and timestamp implementations described in Sections 5.5 and 5.6, respectively, and (3)
compare with state-of-the-art concurrent set data structures. We plan to make verlib, as well
as the code for these experiments, publicly available.

Setup. Our experiments ran on a 64-core Amazon Web Service c6i-metal instance with 2x
Intel(R) Xeon(R) Platinum 8375C (32 cores, 2.9GHz and 108MB L3 cache), and 256GB memory.
Each core is 2-way hyperthreaded, giving 128 hyperthreads. We used numactl -i all, evenly
spreading the memory pages across the sockets in a round-robin fashion. The machine runs
Ubuntu 22.04.1 LTS. The C++ code was compiled with g++ 11 with -O3. Jemalloc was used for
scalable memory allocation. For Java, we used OpenJDK 19.0.1 with flags -server, -Xms50G and
-Xmx50G. We report the average of 3 runs, each of 5 seconds. For Java we also pre-ran 3 runs to
warm up the JVM.

Data Structures. In the section, we report on five data structures implemented in C++ with
verlib: a b-tree, an adaptive radix tree (arttree), a doubly-linked list (dlist), a singly-linked
list (list), and a hashtable. For the first four we used existing data structures from the Flock
library [22] and applied the modifications described in Section 5.3. These four are lock based
and can be run in either blocking or lock-free mode using Flock or verlib. The doubly-linked
list code is given in Section 5.1.1. The hash table is a CAS based implementation that maintains
an array per bucket, and copies the array on update [48]. We tune the number of buckets to
maintain a 1/2 load factor. For all five data structures, we implemented range queries (which
search for all integers within the range) and multi-finds, wrapping them in a with_snapshot.

All of the original data structures required recordingmore than once. However, the only place
the b-tree recorded a node more than once was at the root, so we created a strictly recorded-once
version to compare to. We also implemented a recorded-once version of the singly linked list—on
deleting a node it copies the next node. We did not create recorded once implementations of the
other structures.

We compare these verlib data structures with several state-of-the-art concurrent set data
structures: LFCA [170], Jiffy [96], EpochBST [7], BundledSkiplist [123], BundledCitrus [123],
LSKN-arttree [103, 104], SB-abtree [151]. The first three are lock-free and all except the last
two support linearizable range queries. LSKN-arttree is a concurrent radix tree and the others
are comparison based ordered set data structures. We used implementations by the original
authors for all these data structures. We use the C++ version of most data structures to be
consistent with our implementations. For LFCA and Jiffy, we were unable to find a reliable C++
implementation and had to use the Java implementation instead.
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Figure 5.10: Comparing different versioned pointer implementations. 5-25-16 to denotes a workload
where each thread performs 5% updates and 25% multi-finds of size 16. Keys are drawn from an uniform
distribution and each run uses 128 threads. List (10x) indicates that its throughput was scaled up by a
factor of 10 to make the graphs more readable.
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Figure 5.11: Comparing different timestamp implementations. 5-25-16 denotes a workload where each
thread performs 5% updates and 25% multi-finds of size 16. Keys are drawn from an uniform distribution
and each run uses 128 threads.
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Workloads. In our experiments, we vary the following parameters: (a) data structure size
(denoted by 𝑛), (b) operation mix, (c) size of range queries/multi-finds (denoted by 𝑠), (d) number
of threads, and (e) the distribution from which keys are drawn. In most experiments, we initialize
each data structure with either 𝑛 = 100𝐾 or 𝑛 = 10𝑀 keys by running a mix of inserts and
deletes on an initially empty data structure. These sizes are chosen to illustrate performance
when the data set fits and does not fit into the L3 cache. For linked lists, we instead use 𝑛 = 100
and 𝑛 = 1000 as the two sizes. In the timed portion of the code, each thread performs a mix of
operations, consisting of inserts and deletes (done in equal numbers), as well as finds and either
range queries or multi-finds. We use a universe𝑈 of 2𝑛 distinct 64-bit keys chosen uniformly at
random. Keys for all operations (including initialization) are drawn randomly from 𝑈 , which
ensures that the size of the data structure remains approximately 𝑛 throughout the experiment.
Keys are drawn using either the uniform distribution or Zipfian distribution with parameter
0.99, which is the default in the YCSB benchmark [43]. Our range queries search for all keys in
the range [𝑎, 𝑏] where 𝑎 is drawn from𝑈 as before and b is chosen so that the expected number
of keys in the range is 𝑠 .

5.7.1 Results

Indirection on need. Figure 5.10 compares the performance of the versioned pointer algo-
rithms presented in this chapter. Specifically, Indirect represents the algorithm from Section 5.4,
NoShortcut uses indirection-on-need but without shortcutting (Algorithm 5.6), and IndOnNeed
also uses shortcutting (Algorithm 5.7) and is the default implementation in verlib. We also
implemented a variant of versioned pointers, called RecOnce, which never uses indirect nodes
and only works for recorded-once data structures (as with the experiments in Chapter 4). We
applied this to our recorded once variants of b-tree and list. All these variants use the opti-
mistic timestamp technique (optTS) presented in Section 5.6. To measure the overhead of using
versioned pointers, we also show the original non-versioned data structure (Non-versioned) in
the graphs. Multi-finds on this data structure are not linearizable (each find can linearize at its
own point).

Figures 5.10(a) and 5.10(b) are run on large data structures with 1000 keys for linked lists and
10M keys for the others. Figure 5.10(c) and 5.10(d) are run on small data structures with 100 keys
for linked lists and 100K keys for the others. These are all run with uniform distribution—the
Zipf distribution follow the same the trends. Overall, when indirection-on-need is used, the
overhead of applying versioned pointers to a Non-versioned data structure is generally low.

For arttree and hashtable, indirection-on-need improves performance by 35%-72% relative
to Indirect versioned pointer. We see that the shortcutting optimization also consistently helps
on these data structures. However on small linked lists with lots of updates (Figure 5.10(d)),
shortcutting sometimes hurts performance due to the extra stores. In this case, indirection-on-
need without shortcutting is actually the fastest versioned pointer implementation.

For b-tree, IndOnNeed versioned pointers achieves essentially the same performance as
RecOnce, while not requiring the data structure to be recorded-once. The same is true for list
in Figure 5.10(c). In Figure 5.10(b), list with RecOnce is slightly faster than IndOnNeed, but
Figure 5.10(d) shows that modifying list to be recorded-once also comes with some overhead
as it requires locking additional nodes.
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The remaining experiments use the IndOnNeed implementation of versioned pointers.

Timestamps. Figure 5.11 compares four different timestamp implementations: qeryTS,
updateTS, hwTS, and optTS. We observed the same trends for both uniform and Zipfian
distribution and focus on uniform distribution in Figure 5.11.

Across these experiments, hwTS tends to perform the fastest because our machine supports
a very light-weight rdtsc instruction for reading the hardware clock. Not all machines support a
fast, synchronized hardware clock, so this implementation is not portable. Optimistic timestamp
(optTS) achieves almost the same performance as hwTS in Figures 5.11(a)- 5.11(c), indicating
that optimistic executions of multi-find often succeed without having to increment the global
timestamp. However, it is up to 22% slower for long linked lists in Figure 5.11(d). This is because
all updates to a linked list are on the same path, so it is more likely for an optimistic multi-find
to encounter one of these updates and have to restart. On long lists, this restarting can be
expensive. For linked lists of size 100 and also in most other cases, optTS is faster thanqeryTS
and updateTSwhile being more portable than hwTS.qeryTS and updateTS perform poorly in
multi-point query heavy and update heavy workloads, respectively, due to high contention when
incrementing the timestamp. This can cause them to be 2x slower than optTS (see Figure 5.11(b)).

Direct Stores. Section 5.4 described how to replace a load-then-CAS with a store, avoiding
some checks and updates. We ran experiments with and without this optimization. Onworkloads
with 50% updates we saw up to a 8% improvement in performance (e.g., on b-trees with 100K
keys and uniform distribution). On loads with 5% updates the improvement was negligible, as
might be expected since the optimization only affects the performance of updates.

Range query. Figure 5.12 compares our versioned btrees with state-of-the-art data structures
supporting linearizable range queries. Updates and especially range queries on our versioned
b-trees are significantly faster because of the increased cache locality due to the large fanout
at internal nodes and the batching of keys in each leaf. Out of the other range queriable data
structures, only LFCA stores a batch of keys in each leaf, however internal nodes still only have
fanout 2. Developing a general and easy-to-apply library allowed us to apply versioning to faster
baseline data structures than those used in previous work.

Scalability. Figure 5.13 measures the scalability of our versioned arttree and b-tree up to
oversubscription. The previous experiments were run with verlib in lock-free mode, and these
graphs also show its performance in blocking mode. Consistent with previous experiments on
lock-free locks from Chapter 3, blocking mode tends to be slightly faster before oversubscription,
but drops severely in performance after oversubscription. This motivates the importance of
supporting both persistence and lock-free locks.

We also plot the performance of LSKN-arttree and SB-abtree, which is a state-of-the-art
concurrent radix tree and B-tree, respectively. They use blocking locks, so they also slow down
after oversubscription. Our verlib arttrees and b-trees perform competitively with these data
structures while also being lock-free and supporting linearizable range queries.
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5.8 Conclusion

In conclusion, this chapter presents an efficient implementation of concurrent versioned
pointers that is compatible with both blocking and lock-free locks and is optimized to avoid
indirection whenever possible. It is significantly easier to apply than versioned CAS objects
from Chapter 4, which requires the user to often modify their data structure in non-trivial ways
to get good performance. We also present an optimistic timestamping technique and show
that it performs better than the commonly used increment on query and increment on update
approaches.

We wrap these ideas in a verlib library and apply it to several data structures to support
linearizable range queries. Experiments show that data structures are significantly faster than
existing concurrent, range queriable data structures.
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Related Work

Snapshot. Implementing a snapshot object is a classic problem in shared-memory computing
with a long history. Ellen surveyed some of this work [70]. A partial snapshot object allows
operations that take a snapshot of selected entries of the array instead of the whole array [10, 89].
An 𝑓 -array [91] is another generalization of snapshot objects that allows a query operation
that returns the value of a function 𝑓 applied to a snapshot of the array. As mentioned above,
snapshot objects have a less flexible interface than our approach to snapshotting.

We describe in Section 4.4 how to use our snapshots to support multi-point queries on a wide
variety of data structures. Previous work has focused on supporting such queries on specific
data structures. Bronson et al. [33] gave a blocking implementation of AVL trees that supports
a scan operation that returns the state of the entire data structure. Prokopec et al. [138] gave
a scan operation for a hash trie by making the trie persistent: updates copy the entire branch
of nodes that they traverse. Scan operations have also been implemented for non-blocking
queues [128, 129, 137] and deques [66]. Kallimanis and Kanellou [94] gave a dynamic graph data
structure that allows atomic dynamic traversals of a path.

Range query. Range queries, which return all keys within a given range, have been studied
for various implementations of ordered sets. Brown and Avni [36] gave an obstruction-free
range query for 𝑘-ary search trees. Avni, Shavit and Suissa [11] described how to support range
queries on skip lists. Basin et al. [15] described a concurrent implementation of a key-value map
that supports range queries. Like our approach, it uses multi-versioning controlled by a global
counter.

Fatourou, Papavasileiou and Ruppert [67] gave a persistent implementation of a binary
search tree with wait-free range queries, also based on version lists. Our work borrows some
of these ideas, but avoids the cumbersome handshaking and helping mechanism they use to
synchronize between scan and update operations. This more streamlined approach makes our
approach easier to generalize to other data structures. Winblad, Sagonas and Jonsson [170] also
gave a concurrent binary search tree that supports range queries.

Some researchers have also taken steps towards the design of general techniques for sup-
porting multi-point queries that can be applied to classes of data structures, although none are
as general as our approach.

Petrank and Timnat [134] described how to add a non-blocking scan operation to non-
blocking data structures such as linked lists and skip lists that implement a set abstract data
type; scan returns the state of the entire data structure. Updates and scan operations must
coordinate carefully using auxiliary snap collector objects. Agarwal et al. [3] discussed what
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properties a data structure must have in order for this technique to be applied. Chatterjee [42]
adapted Petrank and Timnat’s algorithm to support range queries.

Arbel-Raviv and Brown [7] described how to implement range queries for concurrent set
data structures that use epoch-based memory reclamation. They assume there exists a traversal
algorithm that is guaranteed to visit every item in the given range that is present in the data
structure for the entire lifetime of the traversal.

Concurrently with our work, Nelson-Slivon, Hassan and Palmiery [123] describe a technique
for supporting range queries on a variety of ordered data structures (e.g. linked list, skip list
and binary search tree). Kobus and Kokociński, and Wojciechowski describe a linked-list data
structure that supports arbitrary snapshots well as atomic batch updates [96] . Sheffi, Ramalhete
and Petrank avoid long version lists in snapshots by aborting long-lived queries that force the
system to hold onto to many queries [150]. All these use version lists and the last one is based
on the technique presented in Section 4.2.

Multiversioning. Within the database and software transactional memory (STM) literature
there has been a long history of having transactions capture a snapshot of the state using
multi-versioning [19, 25, 40, 53, 57, 69, 98, 124, 131, 132, 133, 136, 144, 145, 153, 171]. This avoids
conflicts between read-only transactions and write transactions. Indeed, the idea of version lists
for this purpose dates back to Reed’s thesis on transactions [144] and is implemented in many
modern-day database systems. Much of the work, especially the earlier work, is lock-based.
Fernandes and Cachopo [69] introduced a lock-free approach to transactional multiversioning.
Their approach, however, fully sequentializes transactions that require updates by adding each
successful transaction to the end of a transactional log. Other work has, for example, studied
how to make updates in the past [57] by splicing elements into the version lists.

Multiversioning using version lists dates back to the 70s [144] and is commonly used for
efficiently supporting read-only transactions in databases [25, 40, 53, 57, 69, 98, 107, 124, 131,
132, 133, 136, 144, 145, 171]. None of this work considers making concurrent data structures
persistent, and only one [69] is lock-free and it fully sequentializes commits.

Timestamps have been used for multiversioning at least since the 70s [144]. It was quickly
noticed that incrementing a global timestamp can be a bottleneck and there have been many at-
tempts at reducing this bottleneck [25, 107, 158, 172]. Bernstein and Goodman suggest removing
a global timestamp by using Lamport clocks [101] (written objects are given a stamp such that
the partial ordering of the objects is consistent with any dependences). The approach ensures
serializability but not strict serializability (i.e. linearizability). In particular read-only transaction
can return results from any previous time (including the beginning of time). TicToc [172] uses a
similar approach but not in the context of multiversioning. Other systems suggest using loosely
synchronous clocks [107], or epoch-based clocks [158], but they also do not support strict
serializability. Ruan, Lu and Spear [146] and Kobus and Kokociński, and Wojciechowski [96]
suggest using synchronous hardware clocks available in some modern architectures. The exact
guarantees of these clocks, however, is not well documented—perhaps vendors do not want to
guarantee that they will supply fast synchronous clocks in all future platforms.
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Part III

Safe Memory Reclamation
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Introduction

Safe Memory Reclamation is the problem of freeing allocated memory that is shared across
multiple threads. It is essential in any program that dynamically allocates memory. Both ease-
of-use and efficiency are critical for safe memory reclamation, as concurrent data structures
are often presented in the literature without describing how to recycle memory. It is often up
to practitioners to add this step themselves. In this part, we present several new concurrent
reference counting algorithms, which we wrap in an easy-to-use interface and release as an
efficient C++ library.
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Chapter 6

Deferred Concurrent Reference Counting

6.1 Introduction

Safe memory reclamation techniques can be broadly divided into two categories, manual
and automatic. With manual techniques, the user is responsible for freeing objects. To protect
against read-reclaim races, this is often performed with a retire operation, which defers the
reclamation until it is safe, i.e., until no other thread is reading that object. Such techniques
include read-copy-update (RCU) [79], epochs [71], hazard pointers [117], pass-the-buck [87],
interval-based reclamation [167], hazard eras [142], and others [39].

Automatic techniques are similar to what can be found in garbage collectors, but without
the ability to scan processor private root sets (registers, stacks, etc.). A common technique is
reference counting [51, 87, 102, 115, 135, 154, 160], which consists of attaching a counter to each
managed object that counts the number of pointers to it, and performing reclamation when
the counter hits zero. Both manual and automatic techniques can be implemented as library
interfaces, and both need to take care of read-reclaim races. Both can also have some advantages
over garbage collectors, such as having more control over memory layout or guaranteeing
lock-freedom.

In the context of concurrent data structures, manual techniques are often difficult to use
and can lead to subtle and hard to reproduce bugs. As evidence, we note that the use of manual
memory reclamation in several recent papers is incorrect (see Chapter 6.8 for more details).
These errors can lead to memory leaks or even memory faults. Since these data structures and
their use of memory reclamation were implemented and adopted by experts in the field, it would
be difficult for common users to get them right.

Reference counting, on the other hand, requires very few modifications for programmers to
integrate into their code, and provides memory safety and leak freedom automatically as long as
the programmer either does not create reference cycles or breaks such cycles before they become
unreachable. Owing to their ease of use, there has been an increase in interest in atomic reference-
counted pointers, as evidenced by their inclusion in the most recent C++ standard (C++20). There
also exists optimized open-source [64] and even commercial implementations [169]. However,
for many concurrent data structures, reference counting can be expensive in practice due to the
need to frequently increment and decrement shared counters [82].
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A crucial challenge when designing a concurrent reference-counting scheme is dealing with
read-reclaim races when the reference count reaches zero. In particular, if one thread decrements
the counter to zero, initiating reclamation, at the same time that another thread increments the
counter, the object will appear with a non-zero reference count, even though it is no longer
safe to access. Various techniques have been developed to overcome this, including using tools
from manual SMR to delay reclamation until there can no longer be any active reads [87, 154],
and the split reference count technique [168, Chapter 7.2.4], which involves maintaining one
internal reference count on the managed object itself and possibly several external reference
counts, one on each pointer to the object.

In this chapter, we propose an efficient approach to automatic memory reclamation based
on a novel combination of reference counting and manual SMR. We make several advances to
make library-based concurrent reference counting both theoretically efficient and more practical.
Theoretically, we show the first solution with constant expected time overhead using only single
word compare-and-swap (CAS) and only delaying 𝑂 (𝑃2) decrements. Previous approaches are
either only lock-free [46, 51, 87, 115, 160, 168], wait-free with 𝑂 (𝑃) time [154] per operation, or
use double-word fetch-and-add [102, 135], which is not available on modern machines.

Our approach is based on a new algorithm that generalizes hazard pointers to allow for
multiple retires on the same object. Standard hazard pointers would not be efficient with
multiple retires, requiring potentially much more space. This technique allows us to implement
deferred decrements that protect an object’s reference count, delaying decrements (and hence
reclamation) while an increment is in progress. This contrasts with previous reference counting
techniques [75, 87] that use hazard pointers to delay memory reclamation after a reference count
reaches zero. This is a subtle difference, but it has ramifications both in theory and practice.
This generalization of hazard pointers, which we refer to as acquire-retire, could be of interest
beyond reference counting. We further extend the approach by borrowing the idea of deferred
increments from reference-counted garbage collectors [12, 13, 26, 52, 105]. When a reference to
an object is short lived, it almost certainly doesn’t need to modify the reference count. We can
facilitate this using acquire-retire to protect the reference count during the reference’s short
lifetime. In the common case, this avoids both the increment and the decrement. Putting both
these ideas together, we call the resulting algorithm CDRC which stands for concurrent deferred
reference counting.

We have implemented our technique as a library for C++1 and show that it is more efficient
than existing optimized libraries for atomic reference-counted pointers [46, 64, 169]. Our
experiments show that deferred decrements alone lead to improved performance over classic
approaches, and that deferred increments can result in a substantial speedup–over an order of
magnitude on highly contended workloads.

Lastly, we show that our scheme performs well against state-of-the-art manual SMR tech-
niques from a recent benchmark suite [125, 167]. When applied to a range of concurrent data
structures for which reference counting previously achieved no scaling whatsoever, our tech-
nique keeps up and scales alongside the fastest manual SMR techniques. Furthermore, it manages
to achieve throughput rates within a factor of 1.2-2.5x of the fastest manual SMR techniques that

1Available at https://github.com/cmuparlay/concurrent_deferred_rc
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use an unbounded amount of memory while consuming only a modest amount itself. Its memory
consumption and performance is competitive with hazard pointers but, unlike hazard pointers, it
is not constrained to a limited class of data structures. Last but not least, our scheme is automatic
and hence easier and safer to use than manual ones. To summarize, the contributions of this
chapter are:

• A generalization of hazard pointers that supports constant-time acquire and allows multiple
concurrent retires of the same handle, which we call acquire-retire,

• the design of a theoretically efficient scheme for automatic memory reclamation based on
combining acquire-retire and reference counting,

• a practical implementation of the technique as a library for C++, evaluated on a comprehensive
set of benchmarks which show that it outperforms existing reference-counting techniques,
and is also competitive with manual SMR.

6.2 Related Work

Manual SMR Manual SMR techniques can be broadly classified as either protected-pointer-
based or protected-region-based.

Protected-pointer-based methods. These methods work by identifying specific objects or
memory locations that are currently in use and hence should not be destroyed/freed. The
collection part of the algorithm is responsible for ensuring that it never frees something that is
currently in use. Hazard-pointers [117] is one of the most widely used protected-pointer-based
techniques. The main idea is that every process has some globally visible array of “hazard
pointers”. When a process wishes to read a mutable shared pointer, it announces its intention
to do so by writing the pointer into one of the hazard pointers. This may require a retry if
the value of the pointer changes before the announcement is complete. When the process has
finished reading or manipulating the shared object, it releases the hazard pointer by clearing the
announcement. When a process removes a node from the data structure and wishes to free it, it
instead retires the node, which places it in a retired list of nodes pending deletion. A process that
wishes to reclaim memory must scan the hazard array of every process to ensure that it does
not reclaim anything currently announced. Nodes in the retired list that are not announced are
safe to free.

Several variants of hazard pointers exist, many of them designed to help implement other
memory reclamation schemes. Herlihy et al. [87] develop Pass The Buck (PTB), which is used to
implement their algorithm for lock-free reference counting. Correia et al. [46] develop pass-the-
pointer (PTP), which improves on the memory bounds of traditional hazard pointers and is used
to implement their own lock-free reference counting algorithm, OrcGC.

Protected-region-based methods Rather than protecting specific objects/memory locations,
protected-region-based methods protect groups of objects. This generally results in lower syn-
chronization cost (fewer memory barriers) and hence higher throughput, but at the cost of
wasting more memory, since many objects will be protected even when they do not need to be.
Epoch-based reclamation (EBR) [71] and Read-copy-update (RCU) [79] are the most widely used

103



protected-region-based techniques. In EBR, the algorithm maintains a global timestamp called
the epoch. Whenever a memory location is retired, it is placed in a retired list corresponding
to the current epoch. When the user wishes to begin an operation that will access or modify
shared state, the executing thread announces the value of the current epoch. When every thread
has announced the value of the current epoch, the retired list from the previous epoch can be
freed and the epoch can advance to the next value. Note that this is safe because if an object is
retired at epoch 𝑒 and every process has subsequently announced epoch 𝑒 + 1, then any thread
that was performing an operation at the time of the retire has since completed. DEBRA [39] is
an optimized implementation of EBR with better practical performance.

Hazard Eras (HE) [125, 142] is a combination of protected-pointer- and protected-region-
based methods. In HE, acquired pointers do not announce the pointer itself, but rather the epoch
on which it was read. If the epoch changes infrequently, this results in fewer memory barriers
than a full-blown protected-pointer-based scheme. In HE and Interval-based Reclamation
(IBR) [167], each object is tagged with a birth epoch when it is allocated and a retire epoch when
it is retired. In IBR, a retired object is safe to reclaim when no announced epoch intersects its
birth-retire interval.

Hyaline [127] is a protected region approach that tags each retired object with a counter
corresponding to the number of currently active operations. When an operation completes, it
can decrement one from every object that retired during its operation interval. The operation
that brings a counter to zero is responsible for freeing it. Crystalline [126] extends Hyaline with
wait-freedom.

Atomic Reference Counting Lock-free reference counting (LFRC) was first described by
Detlefs et al. [51], but their algorithm requires a DCAS operation (a CAS on two independent
words), which is not supported by any current architecture. Herlihy et al. [87] use their PTB
technique to obtain an algorithm for single-word lock-free reference counting (SLFRC). The idea
is to use PTB to protect the reference count of the object from being freed while a process is
attempting to increment it. Sundell [154] developed the first wait-free algorithm for reference
counting, however, some of their operations cost 𝑂 (𝑃) time.

In the practical world, the C++ standard recently added support for atomic shared point-
ers [113], which provide a thread-safe way for multiprocessor environments to share reference-
counted pointers. Prior implementations of atomic operations on shared pointers use a small
global hash table of locks, and hence are not scalable in practice. We know of two external
libraries that support lock-free solutions [64, 169]. Both are based on the split reference count
technique [168, Chapter 7.2.4] and are lock-free, but not wait-free. Prior to this, a similar tech-
nique was developed by Lee [102] and generalized by Plyukhin [135]. Their version is constant
time but requires atomic double-word fetch-and-add on a location containing both a pointer
and an unbounded sequence number. Unlike double-word CAS, double-word fetch-and-add is
not supported by modern machine architectures.

The split reference count technique [168] is a lock-free solution for atomic reference counting.
It involves splitting the reference count into an internal count, and an external count on each
mutable shared reference. Loads from shared references increment the corresponding external
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count, while local releases decrement the internal count instead. When a shared reference
is discarded, its accumulated external count minus one is added to the internal count. While
this technique does not rely on SMR, it tends to scale poorly in practice since loads must be
performed with a double-word CAS to increment the external count.

The major performance drawback of reference counting is the necessity to increment the
reference count each time an object is read. Recent work has addressed this by developing
solutions for reference counting that allow safe reads without incrementing the reference
count. Tripp et al. [157] implement Fast Reference Counter (FRC). FRC uses deferred reference
counting and a per-thread root set (equivalent to an announcement array of hazard pointers)
to achieve low contention and enable safe reads of managed objects without incrementing
the reference count. Correia et al. [46] develop OrcGC, which uses their PTP technique to
implement reference-counted pointers that can also be safely read without incrementing. There
has also been orthogonal work on reducing the amount of contention caused by increments and
decrements to the same reference count [1, 61]. The idea is to implement a Scalable NonZero
Indicator, or SNZI, object which is a relaxed counter that only indicates whether or not the
counter is non-zero. Taking advantage of this relaxation, increment, decrement and query
operations on SNZI objects often need not contend with each other.

Deferred Reference Counting. Deutsch and Bobrow [52] introduce deferred reference counting
for garbage collectors, which consists in eagerly counting references present in the heap, but
ignoring those in registers and on the stack. Objects that reach a heap reference count of zero
are placed in a “zero-count table”. Periodically, the garbage collector then scans the stack and
registers to determine which objects in the zero-count table are reachable, removing them from
the zero-count table, or which are unreachable, and hence can be safely destroyed. Subsequent
work by Bacon et al. [12], Levanoni and Petrank [105], and Blackburn and McKinley [26] further
build on the idea of deferred reference counting, identifying additional situations in which
reference-count updates can be deferred or elided entirely.

Unlike our method, all of this prior work focuses specifically on languages with automatic
garbage collection and require pausing processes and hence are not lock-free. Although we
borrow the name “deferred reference counting“ due to the high-level conceptual similarities, our
techniques and methods are substantially different because they apply to manually memory-
managed languages.

6.3 Overview of Our Approach

Recall that the difficulty of implementing safe concurrent reference counting is the possibility
for a race between a decrement that sets the count to zero, initiating reclamation, and an
increment, which increments the counter back above zero, giving the appearance that the
managed resource is still live. Our idea is, intuitively, that if there is an increment racing with a
decrement, to delay the decrement until after the increment has completed.

Our key insight is that this can be achieved by applying a hazard-pointers-like scheme where
the resource being protected is neither a memory block nor a managed object, but rather the
reference count itself that is attached to a managed object. This leads to a simple algorithm
for concurrent reference counting. To obtain a new pointer to a reference-counted object, our
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algorithm acquires the reference count of the object to protect it, then increments the counter
and releases the protection. To discard a pointer, the reference count of the object to which it
points is retired, which, when ejected (i.e., at some point in time when the reference count is
not acquired by any increment), decrements the reference count, deleting the managed object
and reclaiming the memory if it reaches zero. By delaying decrements until all the increments
that started before it complete, we ensure that an object is safe to collect as soon as its reference
count reaches zero. This contrasts with previous techniques [75, 87] that perform decrements
eagerly and use SMR to delay memory reclamation after a reference count reaches zero.

Note that in our algorithm, a reference count could be retired multiple times before being
ejected a single time. This could happen, for example, in an execution where three pointers
to the same reference-counted object are discarded concurrently. Traditional hazard pointers
interfaces [86, 117, 120] explicitly disallow resources from being retired more than once, which
make sense in the SMR setting, but not when managing more general resources such as reference
counts. To support these more diverse use cases, we define a generalization of hazard pointers
called acquire-retire and show how to implement it efficiently, with all operations taking only
constant time in expectation.

Lastly, we extend our reference-counting algorithm, which defers decrements, with what
we call private pointers, which can be thought of as deferring increments. When a reference
to an object is short lived, such as during the traversal of a linked data structure, a standard
reference-counting scheme would have to increment and decrement the reference count in quick
succession. Instead, we observe that we can apply acquire-retire to temporarily protect the
reference count during the private pointer’s lifetime. This avoids both the increment and the
decrement, which we show substantially improves the practical performance of our scheme.

6.3.1 Our Reference-Counting Library

To illustrate and evaluate our techniques, we implemented them as a library for C++. Our
implementation makes use of standards-compliant C++ features, including C++11 atomics and
memory orderings, and uses no OS- or architecture-dependent code. In this section, we briefly
discuss the interface of our library, compare it to the interfaces of other memory reclamation
techniques, and discuss an important practical feature that allow us to efficiently implement a
range of concurrent data structures.

Our library consists of three class templates, starting with atomic_shared_ptr<T>, which pro-
vides thread-safe management of a shared_ptr<T>, which manages a reference-counted pointer to
an object of type T. The atomic_shared_ptr<T> interface is modelled after atomic<shared_ptr<T>> in
the C++ standard, while shared_ptr<T> is designed to closely mimic shared_ptr<T>. Lastly, we pro-
vide private_ptr<T>, which facilitates low-cost reads of an objectmanaged by an atomic_shared_ptr<T>

by protecting it with a deferred increment, rather than an explicit increment of the reference
counter. We describe the usage of these types in more detail in the following sections.

atomic_shared_ptr. atomic_shared_ptr<T> is closely modelled after C++’s atomic<shared_ptr<T>>.
It provides support for all of the standard operations, such as atomic load, store, and CAS.

– load(). Atomically creates a shared_ptr to the currently managed object, returning the
shared_ptr.
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– load_private(). Atomically creates a private_ptr to the currently managed object, returning
the private_ptr.

– store(desired). Atomically replaces the currently managed pointer with desired, which may
be either a shared_ptr or a private_ptr.

– compare_and_swap(expected, desired). Atomically compares the managed pointer with
expected, and if they are equal, replaces the managed pointer with desired. The types of
expected and desired may be either shared_ptr or private_ptr, and need not be the same.

– compare_exchange_weak(expected, desired). Same as compare_and_swap but, if the managed
pointer is not equal to expected, loads the currently managed pointer into expected. This
operation may spuriously return false, i.e. it is possible that the value of expected does not
change.

The most interesting point of the interface is that it supports two flavors of load operations,
load and load_private, which return shared_ptr and private_ptr respectively.

shared_ptr and private_ptr. The shared_ptr type is closely modelled after C++’s standard
library shared_ptr. It supports all pointer-like operations, such as dereferencing, i.e. obtaining a
reference to the underlying managed object, and assignment of another shared_ptr to replace
the current one. It is safe to read/copy a shared_ptr concurrently from many threads, as long as
there is never a race between one thread updating the shared_ptr and another reading it. Such a
situation should be handled by an atomic_shared_ptr.

The private_ptr type supports all of the same operations as shared_ptr. The only differences
between the two is that while shared_ptr can safely be shared between threads, private_ptr can
only be used locally by the thread that created it and cannot be copied. The use of private_ptr
should result in better performance than shared_ptr provided that each thread does not hold too
many private_ptr at once. If a thread exceeds the soft limit on private_ptr (see Section 6.5.2), their
performance will degrade to similar to or slightly worse than shared_ptr. Therefore, private_ptr
should be used for reading typically short-lived local references, for example, reading nodes in a
data structure while traversing it.

To illustrate our library and the three types, we refer to an implementation of a concurrent
stack in Figure 6.1, which we elaborate on in the next section. The head node of the stack is
stored in an atomic_shared_ptr because it may be modified and read concurrently by multiple
threads. Each node of the stack stores its next pointer as a non-atomic shared_ptr. This is safe,
because although multiple threads may read the same pointer concurrently, the internal nodes of
the stack are never modified, only the head is. Lastly, we can use a private_ptr while performing
pop_front, since reading the head is a short-lived local reference that will never be shared with
another thread.

Support for Marked Pointers. A common optimization in concurrent data structures is to
steal some of the unused bits from a pointer to mark links in the data structure as pending
deletion. Since our reference-counted pointer algorithm uses plain single-word pointers and
does not internally steal any bits, it is possible to expose those redundant bits to the programmer
for them to use in this fashion. Our pointer types therefore include a customization point that
allows a markable pointer type to be used in place of raw pointers internally, and allows custom
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behavior to be added via a policy class. We have used this to implement markable versions
of our types that offer get_mark, set_mark, and compare_and_set_mark, which require no manual
bit twiddling from the programmer, allowing them to easily and efficiently implement data
structures with marked links.

6.3.2 Usability Comparison to Manual SMR

Our interface is closely modeled after and designed to be as easy to use as the standard C++
types. In Figures 6.1- 6.3, we depict three implementations of a concurrent stack, using our
library, hazard pointers, and RCU. Our code avoids the potential pitfalls of manual SMR, as it is
impossible to read the value stored in head without protecting it automatically, and no manual
retires are necessary. Although calling retire is quite simple in this example, it is not always so
easy. Figure 6.4 depicts a snippet of code from an implementation of the Natarajan and Mittal
tree [122]. This code cleans up deleted nodes from the tree by swinging a pointer from a node
to one of its descendants. It is a subtle but important detail to notice that in the presence of
concurrent updates, this operation may delete multiple nodes, and hence may be required to
retire many nodes, not just a single one. In Section 6.8, we discuss how this bug and others have
appeared in the artifacts of several published papers written by memory management experts.

6.4 Defining the Acquire-Retire Interface

We propose a generalization of hazard pointers for resource management called acquire-
retire. As with hazard pointers, it supports four operations: acquire, release, retire, and eject.
The generalization is that it allows multiple retires of the same handle, which is critical in
our reference-counting implementation. An acquire takes a pointer to a location containing a
resource handle, reads the handle and protects the resource, returning the handle. A later paired
release, releases the protection. A retire is used to indicate the resource is no longer needed. A
later paired eject will return the resource handle indicating it is no longer protected and safe to
destruct. We say a retire, or its corresponding destruct, is delayed between the retire and when
its handle is ejected. For our time and space bounds, we require that every retire is followed by
at least one eject. All operations are linearizable [88], i.e., must appear to be atomic.

We describe a constant-time implementation of acquire-retire, that only requires single-
word memory instructions, and for 𝑃 processors and 𝐾 protected resources has 𝑂 (𝑃𝐾) memory
overhead. Describing an efficient implementation of acquire-retire requires two insights. The
first is that hazard pointers can be combined with a recent result on atomic copy [28] to ensure
constant-time acquire. The second insight is that multiple concurrent retires of the same handle
can be supported by appropriately keeping track of multiplicity.

Allowing multiple retires of the same handle makes defining the behavior of retire and eject

more subtle. The high-level approach is to associate acquire operations with retire operations
rather than handles. In our interface, acquire(𝑝𝑡𝑟 , 𝑎𝑛𝑛) takes as input a pointer to a memory
location (𝑝𝑡𝑟 ) storing a resource handle, and a pointer to an announcement slot (𝑎𝑛𝑛). It
returns the handle stored at the memory location. The release(𝑎𝑛𝑛) operation takes as input
an announcement slot, and has no return value. In a sequential execution, we say that an
acquire(𝑝𝑡𝑟 , 𝑎𝑛𝑛) operation is active between its execution and the execution of either the next
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1 struct Node { T t; shared_ptr<Node> next; }
2 atomic_shared_ptr<Node> head;

4 void push_front(T t) {
5 shared_ptr<Node> p = make_rc<Node>(t, head.load());
6 while (!head.compare_exchange_weak(p->next, p)) {}
7 }

9 optional<T> pop_front() {
10 private_ptr<Node> p = head.load_private();
11 while (p != nullptr && !head.compare_exchange_weak(p, p->next)) {}
12 if (p != nullptr) return {p->t};
13 else return {};
14 }
15

Figure 6.1: C++ implementations of an ABA-safe, concurrent stack using our library.

1 struct Node : rcu_obj_base<Node> { T t; Node* next; };
2 atomic<Node*> head;

4 void push_front(T t) {
5 auto p = new Node{{}, t, head.load()};
6 while (!head.compare_exchange_weak(p->next, p)) {}
7 }

9 optional<T> pop_front() {
10 rcu_reader guard;
11 auto p = head.load();
12 while (p != nullptr && !head.compare_exchange_weak(p, p->next)) {}
13 if (p != nullptr) {
14 p->retire();
15 return {p->t};
16 }
17 else return {};
18 }
19

Figure 6.2: C++ implementations of an ABA-safe, concurrent stack using RCU. The syntax for RCU is
based on a C++ standards proposal [119].
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1 struct Node : hazptr_obj_base<Node> { T t; Node* next; };
2 atomic<Node*> head;

4 void push_front(T t) {
5 auto p = new Node{{}, t, head.load()};
6 while (!head.compare_exchange_weak(p->next, p)) {}
7 }

9 optional<T> pop_front() {
10 Node* p;
11 hazptr_holder h;
12 do {
13 p = h.get_protected(head);
14 if (p == nullptr) return {};
15 } while (!head.compare_exchange_weak(p, p->next)) { }
16 if (p != nullptr) {
17 p->retire();
18 return {p->t};
19 }
20 else return {};
21 }

Figure 6.3: C++ implementations of an ABA-safe, concurrent stack using hazard pointers. The syntax
for hazard pointers based on a C++ standards proposal [119], and is implemented in Folly [64].

void cleanup() {
...
/* Update the left child of ancestor to point to sibling */
if(ancestor.left->compare_and_swap(successor, sibling)) {

/* retire nodes on path from successor to sibling */
for(Node* n = successor; n != subling;) {
Node* tmp = n;
if(getFlag(n->left)) {
retire(n->left);
n = n->right;

} else {
retire(n->right);
n = n->left;

}
retire(tmp);

}

return true;
} else return false; }

Figure 6.4: Manually calling retire is easy to forget and it sometimes adds non-trivial code. The
highlighted portion of the code is not needed in our library.
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acquire(∗, 𝑎𝑛𝑛) operation or the next release(𝑎𝑛𝑛) operation, whichever comes first. After this
point, the acquire is said to be inactive. The retire(ℎ) operation takes as input a handle and the
eject operation either returns ⊥ or a handle.

Our implementation requires that acquire/release operations on the same announcement
slot are never concurrent with each other. Typically, each process will have its own private set
of announcement slots. Announcement slots can either be allocated statically, or dynamically as
threads are created and retired, in the same way as hazard pointers [117]. We formally specify
the behaviour of the interface below.

Definition 4 (Acquire-Retire). Any proper, concurrent execution can be linearized to a sequential
history with the following guarantees:

1. Each acquire(𝑝𝑡𝑟 , ∗) returns the handle currently stored in the memory location pointed to by
𝑝𝑡𝑟 .

2. Let 𝑓 be a function that maps each acquire returning ℎ to either a later retire(ℎ) or ⊥. Let 𝑔 be
an injective (one-to-one) function that maps each eject returning ℎ to an earlier retire(ℎ). For
all 𝑓 , there is a 𝑔 such that whenever 𝑓 (𝐴) = 𝑔(𝐸), the acquire 𝐴 is inactive by the time eject 𝐸
is executed.

We note that Definition 4 captures our intuition of what the interface is supposed to protect
against. In particular, it ensures that any destruct of a resource placed after the retire and eject

will happen after all processes release that resource. If there are multiple retires on the same
handle, it ensures that each is mapped to at most one eject.

Definition 4 never forces eject operations to return a handle, so for an implementation of
acquire-retire to be useful, it has to provide some guarantees on how often retires are ejected.
We say a retire is ejected if there is an eject mapped to the retire. Assuming each call to retire

is always followed by a call to eject, our algorithm ensures that there are always no more than
𝑂 (𝐾𝑃) retires that have not been ejected, where 𝐾 is the total number of announcement slots.
We defer the description of our algorithm for acquire-retire until Section 6.6.

6.5 Deferred Reference Counting

Armed with the acquire-retire technique, we now describe our algorithms for reference
counting with deferred decrements and increments. The interface supports atomically storing
to, loading from, and CASing into a mutable reference-counted pointer in a shared location.
Our algorithms support these operations with constant-time overhead, have 𝑂 (𝑃2) memory
overhead, and defer at most 𝑂 (𝑃2) reference-count decrements (see Theorem 1). We note that
deferred increments is just a practical optimization which does not affect these bounds.

Both algorithms also have the useful property that references are implemented as raw
pointers, which means two things. First, that a reference occupies just a single word, unlike
some implementations [169] which use a double-word representation and require a double-word
CAS. Second, that we do not “steal” any bits of the pointer representation, as is done by some
libraries [64]. This is important in some applications, since it leaves unused bits of the pointer
representation for the user to utilize, which is necessary in many common implementations
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of lock-free data structures that “mark” pointers. For example, the Harris linked list [80] or
Natarajan and Mittal’s binary search tree [122].

6.5.1 Deferred Decrements

Recall that the race we are trying to avoid when designing a scheme for concurrent reference
counting occurs when one thread removes a reference, decrementing the corresponding counter
to zero, at the same time that another thread creates a new reference, incrementing the counter.
Such races in which a location can be simultaneously read by one thread and updated by another
can occur in just about any lock-free data structure. Our approach solves this problem by using
acquire-retire to protect the reference count and defer decrements from being applied while
there is a potential increment in progress. We say a decrement is deferred if a reference has been
overwritten or otherwise deleted, but the count on the corresponding managed object has not
yet been decremented. The eject operation on the reference count corresponds to decrementing
the count and, if it goes to zero, reclaiming the managed object.

Algorithms andAnalysis. Figure 6.5 depicts our algorithm using a reference-counting interface
similar to the one used by Herlihy et al. [87] and Detlefs et al. [51]. We assume each reference-
counted object has a counter attached that can be atomically incremented or decremented with
addCounter, which returns the old value.

The load operation atomically loads a pointer from a shared memory location into a local
pointer and returns it. Since load creates a new reference to the object, it increments the
reference count. To protect against a potential race between this increment and a decrement
setting the count to zero, the increment is surrounded by an acquire and release.

The store operation atomically copies a local pointer into a shared memory location. Since
this creates an additional reference to desired, it first increments the reference count. Note the
subtle detail that unlike in load, this increment does not need to be protected by an acquire and
release. This is because the existence of the argument desired guarantees that the reference
count is at least one, and hence cannot race to zero during this operation. Our implementa-
tion writes into the shared memory location using a fetch-and-store operation so that it can
decrement the reference count of the pointer that was overwritten. Decrementing the reference
count immediately would introduce a race, so instead, we defer the decrement by retiring the
pointer. Each retire is always followed by an eject of a previously retired pointer, which is then
decremented. Recall that pairing each retire with an eject is what allows acquire-retire to yield
efficient time and space bounds. Notice that a process might have the same pointer in its retired
list multiple times, which is why we need the more general acquire-retire interface rather than
hazard pointers.

The cas operation works similarly to store, except that it only modifies the reference counts
if the underlying CAS succeeds. Note that for safety reasons, cas must first protect desired with
an acquire before performing the CAS. If it did not, the CAS could succeed right before another
thread stored to A, which could cause the reference count of desired to be decremented. If this
decrement took the count to zero, initiating reclamation, the object would be unsafely destroyed
before the cas had a chance to increment the reference count.
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1 using ref = Object*;

3 AnnouncementSlot announcement[P];

5 ref load(ref* A) {
6 ref ptr = acquire(A, &announcement[pid]);
7 if (ptr != nullptr) increment(ptr);
8 release(&announcement[pid]);
9 return ptr; }

11 void store(ref* A, ref desired) {
12 if (desired != nullptr) increment(desired);
13 ref current = fetch_and_store(A, desired);
14 if (current != nullptr) {
15 retire_and_eject(current); }

17 bool cas(ref* A, ref expected, ref desired) {
18 ref ptr = acquire(&desired, &announcement[pid]);
19 if (compare_and_swap(A, expected, desired)) {
20 if (desired != nullptr) increment(desired);
21 if (expected != nullptr) {
22 retire_and_eject(expected); }
23 release(&announcement[pid]);
24 return true;
25 } else {
26 release(&announcement[pid]);
27 return false; } }

29 void destruct(ref ptr){
30 if (ptr != nullptr) {
31 decrement(ptr); } }

33 void retire_and_eject(ref ptr) {
34 retire(ptr);
35 optional<|ref|> e = eject();
36 if (e != ⊥) decrement(e); }

38 void increment(ref ptr) {
39 ptr->addCounter(1); }

41 void decrement(ref ptr){
42 if (ptr->addCounter(-1) == 1) {
43 delete ptr; } }

Figure 6.5: Operations for atomic reference-counted pointers with deferred decrements. pid is the unique
id of the current processor, 0 ≤ pid < 𝑃 .
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The destruct operation takes as input a reference-counted pointer that is no longer needed
and destroys it. In an object-oriented language, such as C++ or Rust, this would be handled
automatically by the reference-counted pointer’s destructor. Note that since it would be an
unsafe race to read from a pointer while it was being destroyed, destruct does not have to call
retire but can instead eagerly decrement.

The retire_and_eject, increment and decrement operations are used internally and are not
part of the interface. The decrement operation is responsible for initiating reclamation if the
counter is decremented to zero. In our pseudocode, by delete, we mean to destroy the underlying
Object, which includes recursively calling destruct on any reference-counted pointers it owns,
and reclaiming the memory it occupies.

Result 1 (Deferred Reference Counting): On 𝑃 processes, any number of reference-counted
objects with references stored in shared mutable locations supporting atomic load, store, and CAS
can be implemented safely with:

1. references as just pointers (i.e., single-word addresses),

2. 𝑂 (1) time for load,

3. 𝑂 (1) expected time for store and CAS excluding the cost of any call to delete resulting from a
decrement

4. 𝑂 (𝑃2) space overhead and 𝑂 (𝑃2) deferred decrements,

5. only single-word read, write, CAS, fetch-and-store, and fetch-and-add.

This implies constant-time overhead since the deletion of the retired objects is required by any
non-trivial reclamation scheme.
Proof. We first consider safety. The key property we need to prove is that between Lines 6 and 8
of a load, the reference count of ptr never hits 0 and therefore the object pointed to by ptr never
gets collected while its reference count is being incremented.

To apply Definition 4 of the acquire-retire interface, we first define a function 𝑓 which
specifies a mapping from acquires to retires (or ⊥). Consider an acquire performed by Line 6 of
load operation 𝐿. This acquire was run on a shared memory location and suppose it returns the
pointer 𝑝𝑡𝑟 . If there is a subsequent store or cas on this memory location that overwrites 𝑝𝑡𝑟
and calls retire on 𝑝𝑡𝑟 , then 𝑓 maps the acquire to this retire. Otherwise, 𝑓 maps the acquire to
⊥. Suppose 𝑝𝑡𝑟 gets overwritten by a subsequent store or cas operation 𝑆 . The decrement of 𝑝𝑡𝑟
caused by 𝑆 will be delayed until after some later eject gets mapped to the retire in 𝑆 . By Item 2
of Definition 4, an eject cannot be mapped to this retire until the acquire from 𝐿 is released, so
the reference count of ptr is at least 1 as long as the acquire is active.

We now consider the four properties from Result 1. (1) References are just pointers, as
claimed. The 𝑂 (1) expected time for reading and overwriting references (2) and 𝑂 (𝑃2) space
(3) follow directly from the acquire-retire results. The number of delayed decrements is at
most 𝑂 (𝑃2) (3) because there are at most 𝑂 (𝑃2) delayed retires. The implementation uses the
primitives used by acquire-retire and a FAA for incrementing and decrementing the reference
count (4). □
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Copy versus Move Semantics. Our algorithms in Figure 6.5 implement store and cas with
copy semantics. That is, since they effectively create a new reference to desired, they increment
the corresponding reference count. In many practical situations however, the caller may have
no subsequent use for their copy of desired, which may be soon to be destructed, leading to a
decrement of the reference count. In this situation, it is favorable to implement versions of store
and cas that have move semantics, i.e., that consume the copy of desired passed as an argument.
This removes the need to increment the reference count since the caller gives up their count.
Our C++ library implements this optimization.

6.5.2 Deferred Increments / Private Pointers

A big performance bottleneck that appears when implementing concurrent data structures
using pure reference counting occurs when traversing linked nodes. On a node-based concurrent
data structure, a safe traversal requires temporarily incrementing and decrementing the reference
counts of all the nodes encountered to prevent them from being deleted while being read. This is
inefficient for multiple reasons; increments and decrements must be performed with an atomic
fetch-and-add instruction, and these may contend if multiple processors are operating on the
same node concurrently.

This contrasts with other SMR techniques such as hazard pointers, which just perform
a write to a single-writer location for each node traversed, or epoch-based methods, which
perform a single write before beginning the traversal. Neither of these methods experience any
contention. Furthermore, due to cache coherency protocols, incrementing the reference count
of a node reserves the cache line in exclusive mode, causing the other processes to experience a
cache miss the next time they access this node.

In the previous section, we gave algorithms for reference counting with deferred decrements.
Although they achieve constant-time overhead, they are still prone to the practical performance
hit of frequent increments. To improve our scheme in practice, we therefore introduce the notion
of deferred increments. Specifically, if an algorithm needs to briefly protect an object, such as
during the traversal of a linked data structure, but does not need to keep a long-lasting reference,
we observe that there is no need to eagerly increment the reference count. Instead, the algorithm
can use the existing infrastructure of acquire-retire to temporarily prevent any decrements
from being applied while the reference is held. The downside is that a pointer protected in this
manner can only be accessed by the thread that created it, so we call it a private pointer. Private
pointers prevent deferred decrements from being applied while they are held, and when they
are released the protection can be cleared, resulting in no change to the reference counter.

By using reference counting to protect long-lived references, such as links inside the data
structure, and private pointers to protect short-lived references, we obtain the best of both
worlds – the ability to traverse the data structure without introducing contention, without the
burden of having to manually retire nodes that are no longer reachable. This is not possible
with a pure reference counting or pure SMR (e.g., hazard pointers) approach.

Private Pointer Implementation. We show the implementation for private pointers in
Figure 6.6. The load_private operation is similar to load, except that it returns a private_ptr,
which is a protected local reference coupled with an AnnouncementSlot. When a private pointer

115



1 using private_ptr = pair<|ref, AnnouncementSlot*|>;
2 const int MAX_PRIVATE_PTRS_PER_THREAD = 7;

4 AnnouncementSlot announce[P][MAX_PRIVATE_PTRS_PER_THREAD];
5 thread_local int next;

7 private_ptr load_private(ref* A) {
8 AnnouncementSlot* slot = get_slot()
9 ref ptr = acquire(A, slot);
10 return {ptr, slot}; }

12 void release_private(private_ptr S) {
13 auto [ptr, slot] = S;
14 if (ptr != nullptr) {
15 if (slot->read() == ptr) release(slot);
16 else decrement(ptr); } }

18 AnnouncementSlot* get_slot() {
19 for (int i = 0; i < MAX_PRIVATE_PTRS_PER_THREAD; i++)
20 if (announce[pid][i].read() == ⊥)
21 return &announce[pid][i];
22 AnnouncementSlot* slot = &announce[pid][next];
23 increment(slot->read())
24 next = (next + 1) % MAX_PRIVATE_PTRS_PER_THREAD;
25 return slot; }

27 void destruct(ref ptr){
28 if (ptr != nullptr) {
29 retire_and_eject(ptr); } }

Figure 6.6: Interface and algorithm for private pointers. This algorithm is compatible with the reference-
counting algorithm of Figure 6.5, except that the destruct operation from Figure 6.5 must be replaced
with the one given here.
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is no longer needed, it can be released with the release_private method. Note that the same
process that acquired the private pointer must release it.

Since multiple private pointers may need to be held by a single processor, our implementation
allocates seven additional announcement slots per processor. This means that the eight total
announcement slots of a process fit on a single cache line on common architectures. By packing
them into a single cache line, the ejectAllmethod of acquire-retire does not suffer any noticeable
performance loss.

When a process wishes to acquire a private pointer, the algorithm scans its announcement
slots and selects the first empty slot it finds. If no slots are available, it selects one of the existing
slots and eagerly increments the reference count on the protected object (i.e., it applies the
deferred increment) and takes over the slot for itself. In our implementation, the slot to take
over is selected in a round-robin fashion. When a private pointer is released, it checks whether
its announcement slot has been reused, and if so, correspondingly decrements the reference
count. Otherwise, no decrement is necessary, and the announcement can simply be released.

Lastly, to safely hold private pointers, we need to slightly modify the destruct operation
for references. If a private pointer is loaded from a shared reference, and that reference is
subsequently updated, the reference count cannot be eagerly decremented, or the object protected
by the private pointer might be destroyed. Instead, the decrement must be deferred by calling
retire.

6.6 Acquire-Retire Algorithm

We now describe how to implement constant-time acquire, release, retire, and expected constant-
time eject. This algorithm uses techniques from hazard pointers [117] and pass-the-buck[87]
with some changes to support the more general acquire-retire interface.

The standard lock-free version of acquire from hazard pointers executes a loop in which the
pointer to be protected is read from a shared location and written into a local announcement slot.
Each iteration, the pointer is re-read from the shared location to check whether it still matches
the one that was announced. To reduce the complexity of acquire to constant time, we leverage
a recently proposed primitive called swcopy [28], which atomically copies from one location to
another location, but requires that the destination location is only written to by a single process.
Note that making the read of the shared location and write to the announcement slot appear to
happen atomically is precisely the purpose of the lock-free acquire loop, and hence, by replacing
it with a swcopy, we can implement acquire in constant time. Blelloch and Wei [28] present an
implementation of𝑀 Destination objects using 𝑂 (𝑀 + 𝑃2) space such that read, write and
swcopy all take constant time.

A release(ann) operation unprotects by simply clearing the announcement slot ann, and
retire(x) simply adds x to a process-local retired list called rlist. To determine which handles
are safe to eject, the ejectAll(rl) method loops through all the announcement slots and makes a
list of all the handles that it sees. We call this list of handles plist for “protected list”. If a handle
is seen multiple times in 𝐴, then it will also appear that many times in plist (this differs from
standard hazard arrays). Next, ejectAll computes a multi-set difference between rl and plist.
This step can be implemented in 𝑂 ( |𝑟𝑙 | + 𝐾) expected time using a local hash table, where 𝐾 is
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1 using AnnouncementSlot = Destination<|optional<|T|>|>;

3 thread_local list<|T|> rlist;
4 thread_local list<|T|> flist;

6 T acquire(T* ptr, AnnouncementSlot* ann) {
7 ann->swcopy(ptr);
8 return ann->read(); }

10 void release(AnnouncementSlot* ann) {
11 ann->write(⊥); }

13 void retire(T t) {
14 rlist.add(t); }

16 optional<|T|> eject() {
17 perform steps towards ejectAll(rlist);
18 if (!flist.is_empty())
19 return flist.pop();
20 return ⊥; }

22 void ejectAll(list<|T|> rl) {
23 list<|T|> plist = empty;
24 // loop through all existing AnnouncementSlots
25 for each AnnouncementSlot* ann {
26 optional<|T|> a = ann->read();
27 if(a != ⊥) plist.add(a); }
28 list<|T|> freed = multiSetDiff(rl, plist);
29 flist.add(freed);
30 rlist.remove(freed); }

Figure 6.7: Implementing acquire-retire. Destination is a destination object supporting atomic copies [28].
slots is a list of all of the announcement slots owned by all processors.
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the total number of announcement slots. The result of this multi-set difference are handles that
can be safely ejected without violating the specifications of acquire-retire. It is important that
we keep track of multiplicity and perform multi-set difference because when a handle is retired
multiple times, each occurrence of this handle in the announcement slots might be associated
with a different retire. So if a handle appears in the retired list 𝑠 times and the announcement
slots 𝑡 times, it is safe to eject only 𝑠 − 𝑡 copies of this handle.

An eject is essentially a deamortized version of ejectAll. Every time it is called, it performs
a small constant number of steps towards ejectAll(rlist), where each hash table operation
counts as a single step. Thus eject takes expected constant time. When ejectAll returns a list of
handles, they get removed from rlist and added to a local free list to be returned one at a time
by the following ejects.

Pseudocode for this implementation appears in Figure 6.7 and its properties are summarized
in Theorem 2.

Result 2 (Acquire-Retire): For an arbitrary number of resources and locations, 𝑃 processes, and
at most 𝐾 resources protected at any given time, the acquire-retire interface can be supported with:

1. 𝑂 (1) time for acquire, release, and retire,

2. 𝑂 (1) expected time for eject,

3. 𝑂 (𝐾𝑃) deferred retires,
4. 𝑂 (𝐾𝑃) space overhead assuming 𝐾 ≥ 𝑃 , and

5. only single-word read, write and CAS

Proof of Result 2. To show that Figure 6.7 is a linearizable implementation of the acquire-
retire interface, we need to prove both properties in Definition 4. The first property says that an
acquire(𝑝𝑡𝑟 , 𝑘) 𝐴 returns the current value of ∗𝑝𝑡𝑟 at the linearization point of 𝐴. This is easily
ensured by linearizing 𝐴 at the atomic copy of ∗𝑝𝑡𝑟 . Before moving on to the second property,
we first define linearization points for the remaining three operations and introduce some useful
notation. A release operation is linearized at the write instruction that clears the announcement
slot and a retire(ℎ) operation by process 𝑝 is linearized when ℎ is added to 𝑝’s local retired
list (𝑟𝑙𝑖𝑠𝑡 ). An eject returning ℎ is linearized when ℎ is removed from the process’s local free
list (𝑓 𝑙𝑖𝑠𝑡 ). We use eject(ℎ) to denote an eject operation returning ℎ and we use subscripts to
indicate the process that performed a particular operation. For example retire𝑝 denotes a retire

operation by process 𝑝 . We extend our definition of active acquires to apply to concurrent
histories by saying that an acquire(𝑝𝑡𝑟 , 𝑘) operation is active between its linearization point and
the linearization point of either the next acquire(∗, 𝑘) operation or the next release(𝑘) operation,
whichever comes first. After this point, the acquire is said to be inactive.

Now we show that our algorithm satisfies the second property of Definition 4. Let 𝑓 be any
function that maps each acquire returning ℎ to either a later retire(ℎ) (in linearization order) or
⊥We describe how to construct an injective function 𝑔 from each eject returning ℎ to an earlier
retire(ℎ) (in linearization order) such that whenever 𝑓 (𝐴) = 𝑔(𝐸), the acquire 𝐴 is inactive at
the linearization point of the eject 𝐸. To construct 𝑔, whenever a handle is added to a process’s
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local retired list, we logically tag the handle with the retire operation that added it. Given a
execution, for every write to the announcement array by an acquire operation 𝐴, we logically
tag the write with the retire operation 𝑓 (𝐴), if 𝑓 (𝐴) ≠ ⊥. Whenever a handle gets returned by
eject, this extra bookkeeping helps us determine which retire operation the handle belongs to.
Now that each occurrence of ℎ in the retired list has a different tag, when an ejectAll𝑝 operation
moves a few copies of ℎ from 𝑝’s retired list to 𝑝’s free list, we need to define which copies of ℎ
get moved as they are no longer identical. The ejectAll𝑝 operation begins by taking a snapshot
of 𝑝’s retired list and then scanning the announcement array. Suppose it sees 𝑠 copies of ℎ in
𝑝’s retired list and 𝑡 copies of ℎ in the announcement array, then it moves exactly 𝑠 − 𝑡 copies
from 𝑝’s retired list to 𝑝’s free list. Among the 𝑠 copies of ℎ that the ejectAll𝑝 sees in 𝑝’s retired
list, at least 𝑠 − 𝑡 of them are tagged with retire operations that the ejectAll𝑝 did not see in the
announcement array. These are the handles that get moved to 𝑝’s free list (if there are more
than 𝑠 − 𝑡 of such handles, an arbitrary subset of size 𝑠 − 𝑡 is chosen). Now when an eject𝑝 (ℎ) 𝐸
removes a handle from 𝑝’s free list, we define 𝑔(𝐸) to be the retire(ℎ) operation tagged to that
handle.

The function 𝑔 that we constructed is injective because each tag gets added once to a retired
list so after it is removed from the free list, it can never be removed again. Also, by the way
retires and ejects are linearized, we can see that 𝑔(𝐸) is always linearized before 𝐸. All that is
left is to verify that whenever 𝑓 (𝐴) = 𝑔(𝐸), the acquire 𝐴 is inactive at the linearization point
of the eject 𝐸. Let 𝑅 be the retire operation that both 𝐴 and 𝐸 are mapped to and let 𝑝 be the
process that performed 𝐸. Suppose for contradiction that 𝐴 is still active at the linearization
point of 𝐸. We can see from the linearization points of acquire and release that whenever 𝐴 is
active, the announcement array contains the handle announced by 𝐴. This handle is logically
tagged with 𝑅. 𝐴 is linearized before 𝑅 by definition of 𝑓 , so the handle tagged with 𝑅 appears
continuously in the announcement array between the linearization points of 𝑅 and 𝐸. This
would prevent any ejectAll operation between 𝑅 and 𝐸 from moving any handle tagged with 𝑅
from 𝑝’s retired list to its free list. Therefore 𝐸 could not have removed a handle tagged with 𝑅
from 𝑝’s free list which contradicts the fact that 𝑔 maps 𝐸 to 𝑅.

The time for acquire, release, and retire are constant. The time for eject is constant in
expectation because it may perform a constant number of operations on a process local hash
table. If an eject is called after each retire, each process can have at most 𝑂 (𝐾) in its retired list,
𝑂 (𝐾) in a partially completed ejectAll and, 𝑂 (𝐾) in the results from the previous ejectAll that
have not been ejected yet. Therefore, our algorithm ensures that there are always no more than
𝑂 (𝐾𝑃) retires that have not been ejected. Also, if eject is called after each retire, then the overall
space usage is bounded by 𝑂 (𝐾𝑃) (recall that we assume 𝐾 ≥ 𝑃 ) because 𝑂 (𝐾 + 𝑃2) space is
used to implement the 𝐾 Destination objects in the announcement array and 𝑂 (𝑃𝐾) space is
used to store handles that have been retired but not ejected. The acquire-retire implementation
only uses atomic single word read, write and CAS.

6.7 Evaluation

In this section, we provide an experimental evaluation of our C++ library across two bench-
mark setups. First, we compare its performance to other implementations of reference-counted
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pointers. Second, we compare our approach to the performance of manual SMR techniques. We
performed some preliminary experiments using the wait-free acquire algorithm, and found that
it was as fast as the lock-free one after applying a fast-path slow-path methodology [97], but
since the performance was mostly determined by the fast path, we decided to use the simpler
lock-free implementation for the rest of the experiments.

Setup. We ran our experiments on a 4-socket machine with 72 physical cores in total (Intel(R)
Xeon(R) E7-8867 v4, 2.4GHz), 2-way hyperthreading, and 45MB L3 cache. The machine’s
interconnection layout is fully connected meaning that all four sockets are equidistant from
each other. We interleaved memory across sockets using numactl -i all. For scalable memory
allocation we used the jemalloc library [63]. All of our experiments were written in C++ and
compiled with g++ version 9.2.1 on optimization level O3. Our experiments vary the number
of threads from 1 to 200, which serves to also measure the effect of oversubscription since our
hardware supports up to 144 with hyperthreading.

6.7.1 Comparison of Reference-Counting Techniques

We compare with implementations from four different libraries: the atomic_ free functions
for shared_ptr2 from libstdc++ (The GNU C++ library [106]), Anthony William’s just::thread
library [169], Facebook’s Folly library [64], and OrcGC [46]. The implementation in libstdc++ is
lock-based whereas the others are lock-free. Both just::thread and Folly use something similar
to the split reference count technique described in [168, Chapter 7.2.4]. We also implemented
two reference-counted pointers based on Herlihy et al. [87]. The first follows their approach as
closely as possible, while the second is an improved version that we optimized. Specifically, we
replaced some of the CAS loops in the original algorithm with fetch-and-add and fetch-and-store
instructions where applicable to improve performance.

Microbenchmark #1: Load/Store Throughput. We maintain an array of 𝑁 shared memory
locations, each storing an atomic reference counted pointer to a 32-byte object. The array is
padded so that each pointer is on a different cache line. Each thread picks a memory location
uniformly at random and performs either a load or a store. Threads perform a store with
probability 𝑝𝑠 and a load with probability 1 − 𝑝𝑠 . Before a store, the thread allocates a new
reference-counted pointer to a new object to be stored. After a thread performs a load, which
increments the reference count, it reads the value being pointed to, and then destructs the loaded
pointer. We show results for 𝑁 = 10, a highly contended workload, and 𝑁 = 10𝑀 , a workload
with almost no contention. We run each experiment for 5 seconds, which was sufficient for
reaching steady state performance, and report the total throughput of loads and stores averaged
across 5 runs.

Results. The results of these experiments are depicted in Figures 6.8(a)–6.8(c). In the high-
contention workloads (6.8(a)–6.8(b)) our implementation (CDRC) consistently outperforms the
others, particularly on the load-heavy workload. Though Folly and just::thread use similar a
similar technique, we found that Folly’s implementation consistently outperforms just::thread.
This is because Folly’s implementation is highly optimized. For example, they pack a 48-bit

2At the time of writing, the latest C++ standard has deprecated these free functions and replaced them with
specializations of std::atomic. However, neither libstdc++ or libc++ have yet provided an implementation.
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(a) 𝑁 = 10, 10% stores
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(b) 𝑁 = 10, 50% stores
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(c) 𝑁 = 107, 10% stores
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(f) 𝑁 = 10, 1% pushes/pops
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(g) 𝑁 = 10, 10% pushes/pops
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Figure 6.8: Benchmark results comparing reference-counted pointer implementations. Figures 6.8(a)–
6.8(d) compare raw load/store throughput and memory usage. Figures 6.8(f)–6.8(i) compare throughput
and memory when used to implement a concurrent stack.
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pointer and a 16-bit counter into a single word to avoid the double-word-width CAS used by
just::thread. The libstdc++ implementation achieves little if any observable speed up after 16
threads because it uses a set of 16 global locks. The second-best overall competitor is Herlihy’s
algorithm, our improved version of which comes close to the performance of our algorithm on
the store-heavy workload. Although it does not exhibit the strongest throughput, OrcGC shows
consistent scaling. On the read-heavy workload, it catches up to the performance of Herlihy at
144 threads, and takes over second place once oversubscription is entered. On the store-heavy
workload, however, OrcGC is consistently outperformed by both Folly and Herlihy.

On the low contention workload, Folly is the winner, while Herlihy and our algorithm
come in second. just::thread and OrcGC trail behind, and libstdc++ exhibits no scaling at all.
Folly’s performance is attributable to the fact that, under low contention, the work performed
by the deferred algorithms to acquire and protect the pointer is almost always unnecessary.
OrcGC’s performance on the store-heavy and low-contention workloads compared to its stronger
earlier performance on the load-heavy workload suggest that its store operation is particularly
expensive. This can be explained by the fact that its retire operation, which will be invoked on
each store, performs 𝑂 (𝑃) work, while ours and Herlihy perform constant expected work.

The tradeoff is that our approach and that of Herlihy use more memory. They may defer up
to 𝑂 (𝑃2) reclamations, while OrcGC defers at most 𝑂 (𝑃) reclamations, and the other schemes
perform no deferred reclamation and always reclaim immediately. In Figure 6.8(d), we show
the average memory usage in terms of the number of allocated objects against the number of
threads. The average number of objects allocated for our algorithm is approximately 0.5𝑃2,
while the number allocated by OrcGC is approximately 3𝑃 , which matches the theoretically
expected bounds.

Microbenchmark #2: Concurrent Stack. We implemented a concurrent stack using the
code shown in Figure 6.1, but also supporting a find operation that takes as input, a value, and
searches the stack, returning true if that value is present. Implementations that do not support
load_private perform a load instead. We maintain an array of 𝑁 = 10 concurrent stacks, each
padded to its own cache line. Every stack initially has 20 elements. Threads perform a find on a
uniformly random stack with probability 𝑝 𝑓 , or, with probability 1 − 𝑝 𝑓 , a pop from a uniformly
random stack followed by a push of the popped value onto another uniformly random stack
(possibly the same one). If the popped stack was empty, nothing is pushed. We show results for
𝑝 𝑓 = 0.01, 0.1, 0.5, indicating read-heavy, read-mostly, and update-mostly workloads.

Results. The results are depicted in Figures 6.8(f)–6.8(h). We test our CDRC algorithm both
with and without private pointers. The clearest takeaway from these experiments is that private
pointers provide tremendous benefits, particularly on read-heavy workloads. Recall that OrcGC
also employs a technique similar to private pointers, which is why it, too, outperforms the other
methods. CDRC without private pointers outperforms the remaining implementations, but by
a smaller margin. At 128 threads, private pointers improve the throughput of the read-heavy
workload by 1.7x compared to OrcGC, 5x compared to CDRC without private pointers, 7x
compared to our optimized implementation of Herlihy’s algorithm, and 16x compared to Folly.
On the update-mostly workload, our algorithm still outperforms the other implementations by
at least 2x, due to finds not creating contention with updates.
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Lastly, in Figure 6.8(i), we show the memory usage in terms of the number of allocated nodes
with respect to the number of live nodes (the total number of nodes in all of the stacks). The
number of threads in this experiment was fixed at 128. As the number of live nodes increases,
the number of allocated nodes is asymptotic to the number of live nodes, indicating that the
memory overhead of the schemes is indeed additive, and not proportional to the number of live
nodes.

6.7.2 Comparison to Manual SMR Techniques

We compare our reference-counting technique with four different manual SMR techniques,
hazard pointers (HP) [117], hazard eras (HE) [142], two-global-epoch IBR [167] and epoch-
based reclamaion (EBR) [71] applied to three different lock-free data structures: Harris-Michael
list [80, 116], Michael hash table [116], and Natarajan-Mittal tree [122]. When applying our
technique, we use private pointers for the short-lived references that processes hold onto while
traversing the data structure. In the Natarajan-Mittal tree, each process holds onto at most five
private pointers at a time, and in the list and hash table, each process holds onto at most three.
To measure the benefits of private pointers, we also benchmark our implementation without
them, using only shared_ptr, which increments reference counts eagerly. As a baseline, we also
measure the performance of each data structure when no memory reclamation is performed,
meaning that nodes are never freed at all.

Benchmarks. We leveraged the IBR benchmark suite [167] which contains implementations
of HP, HE, IBR and EBR applied to the three data structures. In Section 6.8, we identify some
bugs in the IBR benchmarking suite related to incorrectly applying these memory reclamation
techniques. For our benchmarks, we fixed all of them except the last one, which only applies to
the Natajaran-Mittal tree when used with HP, HE, or IBR. Fixing this would required significant
modifications to the data structure, and would only slow down the performance of these SMR
techniques due to the extra restarts. Therefore, these experiments depict a generous estimate of
how HP, HE, and IBR would perform when correctly applied to the Natarajan-Mittal tree. We
also optimized the throughput of the HP implementation by reducing the number of times the
announcement array is scanned. While this significantly improves throughput in some cases, it
does so at the cost of a slight increase in memory.

For each data structure, we tried various sizes and update frequencies. For example in Figure
6.9(c), we initialized the BST with 100K keys and each process performed 10% update operations
(half insert, and half delete) using a key chosen uniformly randomly from the range [0, 200𝐾).
The remaining 90% of operations were lookups. For the hash table experiments, we initialized
the number of buckets so that the average load factor is one.

Results. The results of these experiments are shown in Figures 6.9 and 6.10. In each pair
of graphs, throughput is plotted on the left and space overhead is plotted on the right. Space
overhead is measured by calculating the number of nodes that were removed from the data
structure and not yet freed.

We found that using private pointers is crucial for getting reference counting to scale on
many of these lock-free data structures. It improves performance by up to 40× in Figure 6.10(b)
and a minimum of 1.2× in Figure 6.9(b). This optimization is what allows automatic reference
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(a) List. N=1000, updates=10%. Throughput (L), Memory (R)
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(b) Hash table. N=100K, updates=10%. Throughput (L), Memory (R)
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Figure 6.9: Benchmark results comparing deferred reference counting with manual SMR techniques.
Figure 6.9(a) shows results for a Harris-Michael list, Figure 6.9(b) for a Michael hash table, and Figure 6.9(c)
for a Natarajan-Mittal tree.
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(a) BST. N=100M, updates=10%. Throughput (L), Memory (R)
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(b) BST. N=100K, updates=1%. Throughput (L), Memory (R)
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(c) BST. N=100K, updates=50%. Throughput (L), Memory (R)

Figure 6.10: Benchmark results comparing deferred reference counting with manual SMR techniques for
various workloads on a Natarajan-Mittal tree.
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counting to be competitive with manual SMR. Overall, our reference-counting technique tends
to closely match the throughput and space usage of optimized hazard pointers (HPopt). One
exception is in the update-heavy workload of Figure 6.10(c) where the cost of reference-count
increments and decrements during updates causes a 38% performance overhead.

We found that our technique generally performs very well on hash table workloads (one of
which is shown in Figure 6.9(b)) because on average, each lookup acquires one private pointer,
which is about as cheap as acquiring a HP or announcing an epoch during EBR. In this workload,
for thread counts of 140 or higher, our technique actually outperforms all of the manual SMR
techniques.

In general, our technique does not seem to be slowed down by over-subscription whereas
HE, IBR, and EBR are often severely impacted. The memory usage of HE, IBR and EBR spike
upwards during over-subscription because one stalled thread can prevent a lot of nodes from
being collected.

In most cases, our throughput is 1.2-2.5× slower than EBR, but we experience 3-61× less
memory overhead. The only exception is the linked list workload in Figure 6.9(a), where we
are up to 5.1× slower than EBR, but in exchange, we waste 210× less memory on 200 threads,
and 6.5× less on 140 threads. Our memory usage is always within a factor 3 of HPopt, which
indicates that having 𝑃2 delayed decrements usually translates to holding onto about 𝑃2 extra
nodes for these data structures.

These results show that automatic reference counting, when implemented efficiently, can
perform competitively with manual memory reclamation techniques. Furthermore, whenever
manual techniques outperform our algorithm, our algorithm uses significantly less space.

6.8 Usability Difficulties of Manual SMR

Applying manual memory reclamation techniques to concurrent data structures can be non-
trivial and difficult to get right, even for expert users, often leading to bugs that are not caught
for a long time. In this section, we will discuss some recurring bugs that we have discovered in
research code while working on memory reclamation. We emphasize that these bugs exist in
the applications of these memory reclamation techniques, not in the techniques themselves.

Correctly Calling Retire. While some manual techniques are more difficult to apply than
others, one thing that they have in common is the need for the user to determine when an object
is no longer reachable from the shared data structure and explicitly call retire on this object.
This can be challenging in a concurrent setting. For example, if there are two pointers in shared
memory to an object and the pointers are concurrently cleared by two different processes, it is
not clear which process should be the one to call retire or how the process even learns that
the other pointer has been cleared. Another issue is that it is easy to forget to retire a node,
especially when there are concurrent operations involved. For example, in the Natarajan and
Mittal tree [122], the delete operation marks an internal node for deletion, and then calls a
cleanup procedure which performs a CAS removing the node. A common mistake is to only
retire a single internal node after this CAS. However, in the presence of concurrent deletes, this
CAS can potentially remove a long chain of marked nodes, all of which need to be retired. This
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exact memory leak can be found in the artifacts of several papers [46, 48, 73, 125, 167], some of
which are specifically about safe memory reclamation.

Restarts. An important detail that is sometimes missed is that many of these manual reclamation
techniques (HP, HE, WHE, IBR) often require significant changes to the original concurrent data
structure in order to be applicable. To protect an object using one of these techniques, a process
has to first announce either a pointer to the object or an epoch, and then verify that the object
has not been retired. If there is no way to verify this, then the object could have already been
freed before the announcement happened, so it is not safe to access. In this case, some sort of
fall back plan is needed and this usually involves aborting and restarting the operation. The IBR
and WHE benchmark suites applied HP, HE, WHE, and IBR to the original Natarajan and Mittal
tree without additional restarting, which leads to unsafe memory accesses.

We conclude this section by reiterating our premise that manual SMR techniques are easier
to misuse than automatic ones, so most users should prefer to rely on automatic memory
reclamation.

6.9 Discussion and Conclusion

In this work, we designed, analyzed, and evaluated a new technique for automatic mem-
ory reclamation for non-garbage-collected languages based on a novel combination of SMR
techniques and reference counting. We showed that our technique is theoretically more effi-
cient than existing methods, and demonstrated that it is also practical by implementing it as a
library for C++ and comparing it to a range of existing schemes, both automatic and manual.
Our method performs strongly against existing automatic techniques, improving performance
by up to a factor of 16 when compared against state-of-the-art open source and commercial
reference-counted pointers. Against manual SMR techniques, it remains competitive, achieving
similar throughput and memory consumption to hazard pointers, and usually performing within
a factor of 1.2-2.5× against the fastest manual techniques that consume unbounded amounts of
memory.

A limitation of our automatic memory reclamation technique that we inherit from reference
counting is that an object cannot be collected while it is part of a reference cycle. There are
many approaches to deal with cycles (e.g. weak pointers) and it would be interesting to explore
incorporating those into our technique.

Lastly, although we have applied the acquire-retire framework specifically to reference
counting, we believe that the framework on its own is also important. By considering resources
in general, and supporting multiple retires on the same resource, our interface generalizes
previous ones, which focused mostly on memory-reclamation. We believe it will find a range of
applications beyond reference counting and possibly even beyond memory reclamation.
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Chapter 7

Turning Manual Memory Reclamation

into Automatic Reference Counting

7.1 Introduction

The previous chapter presents CDRC, a concurrent reference counting algorithm that is
significantly faster than previous automatic SMR schemes and achieves close to the performance
of Hazard Pointers (HP) in practice. However, it still has up to a factor of two performance
degradation relative to manual memory reclamation via EBR. The main issue is the use of
protected-pointer techniques which require extra memory barriers on every read (even if the
count is not incremented).

In this chapter, we show that reference counting can be nearly as fast as anymanual technique
while using a similar amount of memory (in most cases), thus showing that the ease-of-use
of automatic approaches comes at no significant cost to practical performance. This approach
is based on CDRC, which combines reference counting and hazard pointers in a novel way.
Unlike traditional methods which use hazard pointers to protect a block of memory from being
freed, the key insight in CDRC is that hazard pointers can be used to protect the reference count
itself from being decremented. This simple insight leads to two crucial patterns. First, deferred
decrements allow increments to proceed without fear of racing with a decrement that might set
the counter to zero, thus solving the read-reclaim race. Second, and critically for performance,
being able to temporarily protect the reference count from decrements enables readers to safely
read the managed object without fear of its destruction and without the performance cost of
incrementing the reference count.

One of the contributions of this chapter is generalizing the CDRC technique so that the
hazard pointer scheme can be replaced with just about any standard SMR scheme to yield an
automatic version of that scheme with a similar performance profile. We apply this to three (very
different) state-of-the-art manual techniques, EBR, IBR and Hyaline, to yield automatic versions
of all three. To the best of our knowledge, this is the first time reference counting has been
combined with any manual technique outside of variations of hazard-pointers. The resulting
algorithms are all lock-free, assuming that the SMR scheme being automated is lock-free.
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As a second contribution, we show how this framework can be extended even further to
support lock-free atomic weak pointers that also allow safe reads without incrementing the
reference count. We use them to implement a concurrent doubly-linked-list based queue [141],
and show that our implementation is several times faster than the only other lock-free atomic
weak pointer that we are aware of [169].

A key challenge with weak pointers is supporting the upgrade to strong pointers efficiently.
This requires being able to atomically increment the reference count only if it is not already
zero. This operation is typically implemented using a CAS-loop [106] which takes up to 𝑂 (𝑃)
amortized time per process if 𝑃 processes perform this upgrade at the same time. Instead, we
show how to implement a so-called sticky counter primitive that supports an increment-if-not-
zero operation so that reading and incrementing/decrementing take only 𝑂 (1) time in the worst
case.

Contributions.

• We show that a wide range of manual SMR techniques can be made automatic using reference
counting.

• We show experimentally that our automatic techniques have similar throughput and memory
usage to their manual counterparts. (This represents a 2x-3x throughput improvement over
existing concurrent reference counting implementations.)

• We show how to extend our reference counting techniques to efficiently support atomic weak
pointers.

• To do so, we implement a theoretically and practically efficient sticky counter primitive.
• We show that our weak pointers significantly outperform existing weak pointers in practice.

Outline. In Section 5.2, we introduce some important background information and we defer
a broader discussion of related work to the end of this part. Section 7.3 describes a general
technique for making manual memory reclamation automatic. In Section 7.4, we show how to
extend our algorithms with support for weakly reference-counted pointers to handle reference
cycles. An experimental evaluation of the techniques described in this chapter is presented in
Section 7.5. Finally, we conclude in Section 7.6.

7.2 Background

Manual SMR.Most manual SMR schemes have similar interfaces built around a common set of
operations. These operations include:
• retire(𝑥): Indicate that an allocated object 𝑥 is no longer reachable by the program, i.e., that it
is safe to delete after all readers currently reading it are finished.

• eject(): Returns a previously retired object that is now safe to delete. The caller should then
free this object.

The retire operation is the critical one; it is what replaces completely manual memory man-
agement (explicit freeing). A retire operation is essentially a “delayed free”. Rather than being
freed immediately, the object is freed once any lingering readers have finished with it. The eject
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operation is optional and is often performed implicitly by retire, but separating the two can
allow the programmer greater control over exactly when or how memory is freed.

The difference between protected-pointer and protected-region techniques is in how they
determine when the lingering readers have finished with a retired object, making it safe to free.
Protected-region techniques implement the following pair of operations:
• begin_critical_section(): Indicate the beginning of a read critical section.
• end_critical_section(): Indicate the end of the current read critical section.
For correctness, all reads of objects that are protected by the SMR scheme must be performed
while inside a read critical section. A retire operation is able to deduce that a retired object 𝑥 is
safe to eject once all critical sections that were active at the time of its retirement have ended.
Protected-pointer techniques use the following operations instead:
• acquire(𝑚): Indicate the intention to read the contents of a shared pointer located at the
memory location𝑚, and return the current value of the shared pointer.

• release(𝑝): Indicate that the pointer obtained from a shared location by acquire is no longer
being read.

All reads of objects that are protected by the SMR scheme must be done so via an acquire
operation, and ended by a corresponding release operation. A retire operation is then able to
safely deduce that a retired object 𝑥 is safe to eject once all active acquires of it at the time
of its retirement have been released. Note that in many protected pointer schemes such as
hazard-pointer and pass-the-buck, the acquire operation can fail, forcing the program to retry
or take a data structure specific fallback plan.

The difference between protected-pointer and protected-region techniques is that protected-
region techniques prevent all objects from being ejected during their read critical sections, while
protected-pointer techniques are more granular and only protect the objects actually being read.
Protected-region techniques are therefore usually faster since they require less bookkeeping,
but accumulate more garbage because they overprotect objects from being ejected.

7.3 Making Manual SMR Automatic

In this section, we describe how to make manual SMR automatic by combining it with
reference counting. This section extends the CDRC approach from Chapter 6 which uses a
hazard-pointer-like technique called acquire-retire to delay reference count decrements until
they no longer race with increments. The insight in this section is that this approach would
work for virtually any manual SMR technique, not just hazard-pointers. Note that the process
of converting from manual to automatic SMR is not automatic, but we present an easy-to-apply
framework and show examples of how to use it.

To generalize CDRC, we first generalize its acquire-retire interface and then show that this
generalized interface can be implemented from a wide range of manual techniques. Then we
show how to implement concurrent reference counting using this generalized interface.
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1 class AcquireRetire<T> {
2 // Allocate object of type T
3 Function alloc(): T*

5 // Delays destructing ptr
6 Function retire(T* ptr): void

8 // Returns a previously retired pointer
9 // that is no longer protected.
10 Function eject(): optional<T*>

12 Function begin_critical_section(): void
13 Function end_critical_section(): void

15 // Reads a pointer from shared memory and protects it.
16 // Can only protect one pointer at a time.
17 Function acquire(T** ptraddr): pair<T*, Guard>

19 // Reads a pointer from shared memory and tries to protect it
20 // Can fail and return ⊥.
21 Function try_acquire(T** ptraddr): optional<pair<T*, Guard>>

23 // Releases protection
24 Function release(Guard guard): T* };

Figure 7.1: Generalized acquire-retire interface.

7.3.1 Generalized Acquire-Retire Interface

The generalized acquire-retire interface shown in Figure 7.1 has several advantages over the
original. The original interface is well-suited for capturing protected-pointer SMR techniques
(because acquire protects a specific pointer), but not for capturing other types of SMR techniques.
We added three new methods to make the interface more general: alloc, and begin_ and
end_critical_section. Adding alloc to the interface is important for techniques like IBR
and HE, which tag each object with a birth timestamp on allocation.

Beyond generality, another benefit of the interface in Figure 7.1 is that it allows for a clean
implementation of private pointers. In CDRC, supporting private pointers requires reaching into
the internals of the acquire-retire implementation. So unlike the rest of the reference counting
algorithm from Chapter 6, the part that implements private pointers only works for the specific
implementation of acquire-retire presented in that chapter. We fix this problem by breaking their
acquire into two operations, an acquire and a try_acquire. Both operations return a pointer
as well as a guard variable that protects the pointer. The pointer can be unprotected at any point
by passing the guard variable to release. In HP and HE, this guard variable would be a pointer
to the announcement slot that protects the pointer. acquire can only protect one pointer at a
time, so the user must alternate between calling acquire and release. try_acquire on the
other hand can protect multiple pointers with different guards. However try_acquire may fail
and return ⊥ if it runs out of guards (e.g. running out of hazard-pointers). We use try_acquire
to implement private_ptrs in a black box manner in Section 7.3.4.
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1 class AcquireRetireEBR<T> {
2 using Guard = void; // empty type, never used
3 using Epoch = int;
4 Epoch ann[P]; // initialized to INT_MAX
5 Epoch curEpoch = 0;
6 thread_local List<pair<T*, Epoch>> retired;

8 T* alloc() { return new T(); }
9 void begin_critical_section() { ann[pid] = curEpoch; }
10 void end_critical_section() { ann[pid] = INT_MAX; }
11 void release(Guard guard) {}

13 pair<T*, Guard> acquire(T** ptraddr) {
14 return [*ptraddr, void]; }

16 optional<pair<T*, Guard>> try_acquire(T** ptraddr) {
17 return [*ptraddr, void>]; }

19 // retire + eject implemented as in Figure 2 of [167] };

Figure 7.2: Generalized acquire-retire implemented with epoch-based-reclamation. We assume each
process knows its process id 𝑝𝑖𝑑 .

Lastly, just like in the original acquire-retire interface, the retire operation in Figure 7.1
takes as input a pointer which will be returned by a future eject operation when it is no longer
protected.

7.3.2 Implementing Generalized Acquire-Retire

This new acquire-retire interface can be implemented from almost anymanual SMR technique.
Figures 7.2 and 7.3 show implementations from EBR and IBR, respectively. In this section, we
will discuss some general patterns in these implementations. Most manual SMR algorithms
combine the functionality of retire and eject into a single retire operation, but this is
easy to split into two operations. A more important difference is that manual SMR is typically
used to delay freeing objects. So instead of returning retired pointers to the user, their retire
function calls free on pointers that are no longer protected. We require pointers to be returned
to the user because our retire can be used to delay arbitrary operations on the pointer, for
example decrementing the pointer’s reference count. In our implementation of weak pointers
in Section 7.4, we use three instances of AcquireRetire, each delaying a different type of
operation.

Another reason for having eject return a pointer instead of directly applying the delayed
operation is to prevent eject from recursively calling itself. For example, if the delayed operation
is a reference count decrement, then this might trigger recursive reference count decrements,
which might lead to recursive calls to eject. The eject operation is not guaranteed to behave
correctly if called recursively, so we disallow this possibility by not applying the delayed
operation inside the eject. The final difference between our retire and the one supported by
existing SMR techniques is that we allow a pointer to be retired any number of times before it is
ejected a single time. Luckily, most SMR algorithms work properly in this kind of situation even
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1 class AcquireRetireIBR<T> {
2 using Guard = void; // empty type, never used
3 using Epoch = int;
4 Epoch emptyann = INT_MAX;
5 Epoch beginAnn[P], endAnn[P]; // initialized to emptyann
6 Epoch curEpoch = 0;
7 thread_local Epoch prev_epoch = emptyann;
8 thread_local int counter = 0;

10 void begin_critical_section() {
11 beginAnn[pid] = endAnn[pid] = prev_epoch = curEpoch; }
12 void end_critical_section() {
13 beginAnn[pid] = endAnn[pid] = emptyAnn; }
14 void release(Guard guard) {}
15 class Tagged<T> { Epoch birthEpoch; T t; };

17 T* alloc() {
18 Tagged<T>* taggedObj = new Tagged<T>();
19 taggedObj->birthEpoch = curEpoch;
20 if(counter++ % epoch_freq == 0) curEpoch.fetch_add(1);
21 return addressof(taggedObj->t); }

23 pair<T*, Guard> acquire(T** ptraddr) {
24 while(true) {
25 T* ptr = *ptraddr;
26 Epoch cur_epoch = curEpoch;
27 if(prev_epoch == cur_epoch) return [ptr, void];
28 else endAnn[pid] = prev_epoch = cur_epoch; } }

30 optional<pair<T*, Guard>> try_acquire(T** ptraddr) {
31 return acquire(ptraddr); }

33 // retire + eject implemented as in [167] };

Figure 7.3: Generalized acquire-retire implemented with interval-based-reclamation (specifically,
2GEIBR).
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though they were not designed with it in mind. Protected-pointer approaches sometimes need
to be modified to keep track of the number of times a pointer is retired and acquired. eject
also has to be modified so that it returns only the pointers that have been retired more times
than acquired. No such modifications are needed for protected region approaches.

Next, we focus on how to implement acquire, release, and try_acquire. For protected-
region SMR techniques like EBR, and Hyaline, these operations are trivial to implement because
the critical section on its own is enough to protect all the pointers returned by acquire. So
acquire and try_acquire simply load the pointer and release is a no-op. For protected-
pointer approaches like HP and PTB, try_acquire has to look for an empty announcement slot
to act as the guard. If all announcement slots are in use, then try_acquire fails, returning⊥. For
acquire, we reserve a special guard / announcement slot that cannot be used by try_acquire.
This ensures that acquire always succeeds but it means that only one pointer can be protected
by acquire at a time.

Finally, the operations for beginning and ending a critical section are implemented in the
exact same way as in the corresponding manual SMR technique. So for EBR, they would just
announce and unannounce an epoch, and for protected-pointer approaches, they would be
no-ops.

7.3.3 Defining Correctness

Just like with the original acquire-retire interface, the tricky part of defining correctness for
the generalized version is handling the case where a pointer gets retired multiple times before
any copy gets ejected. Fortunately, we can use the original correctness definition with just some
small modifications. The idea behind the original definition is to map acquires to retires and
ejects to retires such that if an acquire and an eject get mapped to the same retire, then the
acquire must be inactive by the time the eject is executed. This formalizes the intuition that a
pointer can only be returned by eject if it is not protected by any active acquire. We begin by
defining what it means for an acquire to be active.

Definition 5 (active vs. inactive acquires). We say that an acquire or a successful try_acquire
is active between when it was invoked and when the guard it returns is passed to release. After
its guard is released, we say it is inactive.

Our acquire-retire interface imposes some restrictions on how it can be used. These restrictions
are captured in the following definition of proper executions.

Definition 6 (proper execution). We say that a concurrent execution involving acquire-retire
operations is proper if (1) each active acquire is contained in a critical section, (2) each guard
returned by acquire or try_acquire is passed to release at most once, and (3) a process cannot
call acquire while its previous acquire is still active.

The first property in Definition 6 is easy to ensure by beginning a critical section before any
calls to acquire and making sure all acquires are inactive before ending the critical section. The
third property just says that acquire can only be used to protect a single pointer at a time. Now
we are ready to formally define the sequential specifications of acquire-retire.
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1 class private_ptr<T> { T* ptr; optional<Guard> guard; };

3 AcquireRetire<T> ar;

5 private_ptr<T> atomic_shared_ptr<T>::load_private() {
6 auto ptr, guard = ar.try_acquire(addressof(this->ptr));
7 if(guard != ⊥) return private_ptr<T>(ptr, guard);
8 ptr, guard = ar.acquire(addressof(this->ptr));
9 increment(ptr); // increment reference count
10 ar.release(guard);
11 return private_ptr<T>(ptr, ⊥); }

13 void private_ptr<T>::release() {
14 if(this->guard != ⊥) ar.release(this->guard);
15 else decrement(this->ptr); }

17 void begin_critical_section() { ar.begin_critical_section(); }
18 void end_critical_section() { ar.end_critical_section(); }

Figure 7.4: Implementing private pointers using the generalized acquire-retire interface from Figure 7.1.

Definition 7 (acquire-retire). Any proper, concurrent execution can be linearized to a sequential
history with the following guarantees:
• Successful try_acquire(pptr) and acquire(pptr) operations return the pointer currently
stored in ∗𝑝𝑝𝑡𝑟 .

• Let 𝑓 be a function that maps each acquire returning 𝑝 and each successful try_acquire
returning 𝑝 to either a later retire(p) or ⊥. Let 𝑔 be an injective (one-to-one) function that
maps each eject returning 𝑝 to an earlier retire(p). For all 𝑓 , there is a 𝑔 such that whenever
𝑓 (𝐴) = 𝑔(𝐸), the acquire or try_acquire 𝐴 is inactive by the time eject 𝐸 is executed.

7.3.4 Concurrent Reference Counting

Using the generalized acquire-retire interface, we can implement concurrent reference
counting in much the same way as CDRC. The main difference is in our implementation of
private_ptrs shown in Figure 7.4. The code for the other two reference-counted pointer types,
atomic_shared_ptr and shared_ptr, remains the same except for some minor updates to use
the new acquire-retire interface.

We support private pointers by implementing an operation called load_privatewhich loads
an atomic shared pointer and creates a private_ptr, and by implementing a release operation
which destructs a private_ptr. load_private first tries to take the fast path which consists of
protecting the pointer with just a try_acquire. If this try_acquire fails, then it reverts to the
slow path which consists of protecting the pointer using an acquire, then incrementing the
reference count of the pointer, and then releasing the previous acquire since the pointer is now
protected by the incremented reference count. In the slow path, load_private then constructs
and returns a private_ptr with its guard field set to ⊥ to indicate that the slow path was
taken. A private_ptr’s destructor calls ar.release() if it was constructed via the fast path
and decrement otherwise. As long as a process does not hold on to too many private_ptrs,
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load_private will always take the fast path and not perform any reference count updates. This
is why private_ptr can be cheaper than shared_ptrs.

This is different from CDRC’s load_private implementation which only works for a specific
acquire-retire implementation based on hazard-pointers. In CDRC, load_private first looks for
an empty announcement location and if all of them are taken, it evicts one of the announcement
hazard pointers and increments the reference count of the evicted pointer to ensure that it stays
protected. Then load_private uses the newly emptied announcement location to protect the
pointer it reads.

Another difference from CDRC’s implementation is that we require all racy1 reads and writes
on atomic shared pointers as well as all private pointer lifetimes to be contained in a critical
section. When applying our reference counting algorithm to a concurrent data structure, this
requirement can be satisfied by wrapping each data structure operation in a critical section and
only holding on to private pointers during the operation.

7.4 Weak Pointers

The second classical drawback of reference counting is its inability to clean up garbage that
contains cyclic references. A common approach to mitigate this issue at the library level is to
include a “weak pointer” type. Weak pointers complement shared pointers (or “strong pointers”)
by holding a reference to a shared object without contributing to the reference count. If the
reference count of the managed object reaches zero, it is destroyed, despite any weak pointers
that may have a reference to it.

The advantage of weak pointers over raw pointers is that, unlike raw pointers, which are
unsafe to follow if they might point to an already freed object, weak pointers can tell whether
they point to a managed object that has already been destroyed. This is usually achieved by
storing a second reference count that counts the number of weak pointers to the managed object.
When the (strong) reference count reaches zero, the managed object is destroyed, but the control
data containing the reference counts is kept intact until both the strong and weak reference
counts reach zero. This allows weak pointers to safely check that the managed object is alive by
checking that the strong reference count is non-zero.

The C++ standard library includes support for weak pointers, and, as of C++20, support
for atomic weak pointers. However, currently the only standard library implementation of
atomic weak pointers is Microsoft’s STL [121], and it is lock-based. We know of one commercial
implementation in the just::thread library [169]. We describe how our approach can be extended
to efficiently support weak pointers.

7.4.1 Library Interface

We add the following types to the reference-counted pointer library. Figure 7.5 depicts the
relationship between them.
• atomic_weak_ptr: Analogous to atomic_shared_ptr, an atomic_weak_ptr facilitates atom-
ically loading, storing, and CASing a weak_ptr into a shared mutable location. In addition to
1Two operations are said to race if they both access the same atomic shared pointer and one of them is a write.
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atomic_shared_ptr

weak_ptr

atomic_weak_ptr

raw pointer

make_shared

private_ptr shared_ptr weak_private_ptr

Figure 7.5: The managed pointer types in our library. Arrows between types denote that it is possible to
store/load one type in/from the other, or that it is possible to convert from one type to the other. The
three types private_ptr, shared_ptr, and weak_private_ptr can be safely followed/converted into
raw pointers.

load, it also supports a load_private method, which grants safe local access to the managed
object without modifying the reference count.

• weak_ptr: A weak_ptr is modeled after C++’s standard weak pointer. Unlike shared_ptr, a
weak_ptr cannot be directly followed. To access the managed object, the weak_ptr must be
upgraded to a shared_ptr. If the managed object has expired, the obtained shared_ptr will
be null to indicate this.

• weak_private_ptr: A weak_private_ptr allows safe access to the object managed by the
atomic_weak_ptr as of the time it was created, even if the reference count of the managed
object reaches zero during its lifetime. Creating and reading a weak_private_ptr does not
incur a modification to the reference count. A weak_private_ptr will be null if the managed
object has expired at the time of its creation.

The subtle difference between a weak_private_ptr and a private_ptr is that a private_ptr
guarantees that the managed object doesn’t expire (has reference count at least one) throughout
its lifetime, while a weak_private_ptr only guarantees that the managed object is safely
readable, though it may expire (reach reference count zero) during the lifetime of the private
pointer.

We first describe the main primitives needed to implement deferred reference counting with
weak pointers. We then describe how to support the main operations on the various weak
pointer types in our library.

7.4.2 Managing the Managed Object

First, to implement weak pointers, eachmanaged object is augmented with a second reference
count. We distinguish between the original (strong) reference count and the new (weak) reference
count. When the strong reference count reaches zero, themanaged object is ready to be destroyed.
However, the control data attached to the managed object (the reference counts plus any extra
scheme-specific metadata) cannot be destroyed and freed yet, because there might still exist
weak pointers that attempt to access those fields. Only once both the strong and weak reference
counters hit zero can the entire control block (the managed object plus the control data) be freed.

138



To correctly detect when both counters hit zero in the presence of concurrent updates, we use
the standard trick [106, 121] of storing

weak_cnt = #weak refs +
{
1 if #strong refs > 0
0 otherwise.

When the strong count hits zero, it can destroy the managed object and decrement one from the
weak count. To be precise, this destruction and corresponding decrement must be delayed in
the presence of weak pointers. We will discuss this in Section 7.4.4. When the weak count hits
zero, the entire control block is ready to be freed immediately.

In the strong-only setting, the reference count will only ever be incremented when there
already exists at least one reference, and hence the increment can always be performed with a
fetch-and-add operation. In the weak setting, however, it is possible that a weak pointer points
to a managed object whose strong reference count could be decremented to zero at any moment.
Attempting to increment the strong reference count with a fetch-and-add could therefore result
in incrementing the counter from zero, thus resurrecting a dead object. Our algorithms therefore
require an increment-if-not-zero operation, which can return false if the reference count is zero,
and hence should not be incremented.

The increment-if-not-zero operation is traditionally implemented as a simple CAS loop,
which continuously attempts to add one to reference count as long as it is not zero, or returns
false otherwise. This results in the increment having lock-free but not wait-free progress. In the
next section, we describe a simple, but to the best of our knowledge, novel implementation of a
constant-time wait-free counter that supports the increment-if-not-zero operation. This data
structure in general is sometimes referred to as a sticky counter. Specifically, our data structure
implements an atomic counter that supports increment-if-not-zero, decrement, and load, all in
constant time using single-word atomic instructions.

7.4.3 Wait-Free Increment-if-Not-Zero

Our algorithm can implement a 𝑏-bit wait-free counter using 𝑏 + 2 bits, that is, we use two
bits for bookkeeping purposes. The main idea is simple, we use the highest bit of the reference
counter to indicate whether the reference count is zero. Any bit pattern in which the highest bit
is set is interpreted as zero, and otherwise is not. Note importantly, that this means that the
stored value being zero is not interpreted as the reference count being zero! The implementation
is described below and depicted in Figure 7.6. This technique of using the high bits to store a flag
above a counter is similar to that of Correia and Ramalhete [45] who implement reader-writer
locks that store a count of the number of shared readers. Our technique generalizes theirs by
allowing constant-time linearizable reads of the counter.

Increment. Since the presence of the high bit indicates whether the counter is zero, the
increment operation can just perform a fetch-and-add operation, and check whether the result
has the high bit set. If so, it returns false.

Decrement. The decrement operation should decrement the reference count and return true
if the reference count was brought to zero, or false otherwise. To decrement the counter, the
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1 unsigned int zero = 1 << (b - 1);
2 unsigned int help = 1 << (b - 2);
3 unsigned int x;

5 bool increment_if_not_zero() {
6 auto val = x.fetch_add(1);
7 return (val & zero) == 0; }

9 bool decrement() {
10 if (x.fetch_sub(1) == 1) {
11 unsigned int e = 0;
12 if (x.compare_exchange(e, zero)) return true;
13 else if ((e & help) && (x.exchange(zero) & help)) return true;
14 } return false; }

16 unsigned int load() {
17 auto e = x.load();
18 if (e == 0 && x.compare_exchange(e, zero | help)) return 0;
19 return (e & zero) ? 0 : e; }

Figure 7.6: An implementation of a wait-free reference counter with constant time increment-if-not-zero,
decrement, and load. Note that the compare_exchange operation, if unsuccessful, atomically loads the
value of x into e.

algorithm uses a fetch-and-add and checks whether the counter hits zero. If it does, it must
attempt to set the high bit to indicate this. This is done with a CAS. Note that if the CAS fails, it
must be the case that an increment occurred that brought the counter back up from zero. In
this case, the decrement can simply act as if the increment occurred before it, and hence report
that it did not bring the counter to zero. A decrement that races with a load must handle one
additional case described in the next paragraph.

Load. At first glace, the algorithm could try to just load the stored value, and return zero if the
high bit is set. This however, is not necessarily correct if the stored value is zero. If the stored
value is zero, the high bit might be about to be set, but an increment might race with it and
bring the counter above zero. Reporting zero would therefore be incorrect. In order to achieve
wait-freedom, the load operation therefore attempts to help set the high bit. If it successfully
sets the high bit, it can return zero. If it fails, the unsuccessful CAS will return the current value
of the counter.

If the load operation successfully helps to store the high bit, one of the decrements still
needs to take responsibility for being the one who brought the counter to zero. To achieve this,
the helping operation additionally writes the second-highest bit, to indicate to the decrement
operation that it was helped. If a decrement operation fails to CAS the high bit but detects the
helper bit, it can then perform a fetch-and-store (exchange in C++) to remove the helper bit. If it
removes the helper bit, it takes credit for bringing the counter to zero.
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7.4.4 Primitives for Weak Reference Counting

The addition of a weak reference count requires us to make changes to the use of the acquire-
retire interface used behind our reference counting scheme. In the strong-only setting, a retired
pointer always corresponds to a delayed decrement of the reference count. In the weak setting,
our algorithm also needs to be able to delay decrements of the weak count.

Additionally, in the strong-only setting, obtaining a private pointer to a managed object
meant that the strong reference count was at least one, and since the pointer through which it
was obtained is protected, it is guaranteed to remain at least one. However, this property cannot
be guaranteed for a weak private pointer, because a thread might be about to decrement the last
remaining strong reference right as we acquire it. Therefore, to make weak private pointers safe,
an additional round of deferral is required to defer the destruction of the managed object after
its reference count reaches zero. This guarantees that after an acquire, if the strong reference
count is at least one, the object will not be destroyed until after the protection of the private
pointer is released. We refer to the destruction of the managed object as a dispose operation.

To facilitate these additional needs, instead of using a single instance of acquire-retire, our
enhanced algorithm makes use of three instances—one for strong reference count decrements,
one for weak decrements, and one for disposals.

Integrating these ideas, we extend the set of primitives for deferred reference counting
with weak pointers as follows. Pseudocode is given in Figure 7.7. The delayed_decrement,
delayed_weak_decrement, and delayed_dispose operations make use of three different
instances of acquire-retire to delay a decrement to the strong or weak reference count, or the
destruction of the managed object, until it is no longer protected by a corresponding acquire.

load_and_increment and weak_load_and_increment atomically load the value of the
pointer stored at the given location and perform a safe increment of the strong or weak reference
count respectively. Note that load_and_increment does not check whether the increment was
successful, because these functions are only ever called on a pointer location that is storing a
strong or weak reference respectively, and hence the reference count is already guaranteed to
not be zero. It is a precondition violation to call this function on a pointer location that stores
an object whose strong reference count is already zero.

increment and weak_increment attempt to increment the reference count or weak refer-
ence count respectively. The first returns true if successful. Note that weak_increment does
not need to check for success because objects with a zero weak reference count are instantly
destroyed, and hence it would be unsafe to attempt to increment the counter anyway. decre-
ment decrements the strong reference count, and if it reaches zero, queues up a delayed dispose.
A dispose destroys2 the managed object and decrements the weak reference count. Similarly,
weak_decrement decrements the weak reference count, and if it hits zero, immediately frees
the managed object and its control data. Lastly, expired checks whether the managed object is
still considered alive by checking that the reference count is not zero.

2We use destroy in the object-oriented sense to mean to recursively destroy all of its fields. If any of its fields
are themselves reference-counted pointers, this would trigger their reference count decrements.
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1 AcquireRetire<T> strongAR, weakAR, disposeAR;

3 void delayed_decrement(T* p) {
4 strongAR.retire(p);
5 auto x = strongAR.eject();
6 decrement(x); }

8 void delayed_weak_decrement(T* p) {
9 weakAR.retire(p);
10 auto x = weakAR.eject();
11 weak_decrement(x); }

13 void delayed_dispose(T* p) {
14 disposeAR.retire(p);
15 auto x = disposeAR.eject();
16 dispose(x); }

18 T* load_and_increment(T** p) {
19 auto ptr, guard = strongAR.acquire(p);
20 if (ptr) increment(ptr);
21 strongAR.release(guard);
22 return ptr; }

24 T* weak_load_and_increment(T** p) {
25 auto ptr, guard = weakAR.acquire(p);
26 if (ptr) weak_increment(ptr);
27 weakAR.release(guard);
28 return ptr; }

30 bool increment(T* p) {
31 return p->ref_cnt.increment_if_not_zero(); }

33 void weak_increment(T* p) {
34 p->weak_cnt.increment_if_not_zero(); }

36 void decrement(T* p) {
37 if (p->ref_cnt.decrement(1)) {
38 delayed_dispose(p); } }

40 void dispose(T* p) {
41 destroy(p->object);
42 weak_decrement(p); }

44 void weak_decrement(T* p) {
45 if (p->weak_cnt.decrement(1)) {
46 delete p; } }

48 bool expired(T* p) {
49 return p->ref_cnt.load() == 0; }

Figure 7.7: Primitives for implementing deferred reference counting with support for weak pointers.
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7.4.5 Algorithms for Atomic Weak Pointers

Using the primitives from Figure 7.7, the algorithms for storing and loading to/from and
CASing into an atomic weak pointer are very similar to those in CDRC. The main difference
is that we must be careful to use the correct instance of acquire-retire for protection, and the
correct kinds of increments/decrements. The algorithm that is most different from its strong
counterpart is load_private. Pseudocode is given in Figure 7.8 and described below.

Storing a weak_ptr in an atomic_weak_ptr. This works the same as storing a shared_ptr in
an atomic_shared_ptr. The algorithm first increments the weak reference count of desired,
then uses a fetch-and-store (exchange in C++) to swap the managed object with the given one,
and finally performs a delayed decrement of the weak reference count of the previously stored
object.

Loading a weak_ptr from an atomic_weak_ptr. This is essentially the same as loading from
an atomic_shared_ptr. The managed object is atomically loaded and has its weak reference
count safely incremented, returning a weak_ptr to the managed object.

CASing into an atomic_weak_ptr. Compare and swap begins by protecting the pointer owned
by desired. If the CAS is successful, it increments the weak reference count of desired and
performs a delayed decrement of the weak reference count of expected. Note that the guard
must be acquired before performing the CAS because otherwise, the CAS might succeed while
another process clobbers desired, destroying it before the reference count increment happens.

Creating a private pointer from an atomic_weak_ptr. Creating a private pointer from an
atomic_weak_ptr is slightly more complicated than taking one from an atomic_shared_ptr.
The main idea is to try to acquire a protected pointer to the managed object that prevents the
object from being disposed, and, if the managed object has not expired (the strong reference
count is at least one), return a private pointer containing the protected pointer. If the try_acquire
fails, the backup plan is to attempt to increment the reference count3. In case the managed
object has already been disposed before protecting the pointer, the algorithm first acquires
protection against a possible weak decrement, since, otherwise, the control data could be deleted
mid-operation.

If the strong reference count is zero, the obvious algorithm would just return a private
pointer containing a null pointer. However, this strategy would result in the operation not
being linearizable, because the reference count could be in the process of being decremented
right as the pointer is acquired. This would allow for situations where the atomic_weak_ptr
always points to a live object, but the load_private may return null if the object was replaced
in between the acquire and the read of the reference count. Therefore, if the reference count
is zero, the algorithm only returns a null pointer if the atomic_weak_ptr still manages the
same acquired pointer. If not, the algorithm retries from the beginning. This retrying causes
load_private to be lock-free but not wait-free.

3This only happens with the hazard pointer implementation if too many private pointers are held at once such
that the announcement array runs out of slots. EBR, IBR and Hyaline never fail.
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1 void atomic_weak_ptr<T>::store(const weak_ptr<T>& desired) {
2 if (desired.ptr) weak_increment(desired.ptr);
3 auto old_ptr = this->ptr.exchange(desired.ptr);
4 if (old_ptr) delayed_weak_decrement(old_ptr); }

6 weak_ptr<T> atomic_weak_ptr<T>::load() {
7 auto ptr = weak_load_and_increment(addressof(this->ptr));
8 return weak_ptr(ptr); }

10 bool atomic_weak_ptr<T>::compare_and_swap(
11 const weak_ptr<T>& expected, const weak_ptr<T>& desired) {
12 auto ptr, guard = weakAR.acquire(addressof(desired.ptr));
13 if (compare_and_swap(this->ptr, expected.ptr, ptr)) {
14 if (ptr) weak_increment(ptr);
15 if (expected.ptr) delayed_weak_decrement(expected.ptr);
16 weakAR.release(guard);
17 return true; }
18 else {
19 weakAR.release(guard);
20 return false; } }

22 weak_private_ptr<T> atomic_weak_ptr<T>::load_private() {
23 while (true) {
24 auto ptr, weak_guard = weakAR.acquire(addressof(this->ptr));
25 auto _, dispose_guard=disposeAR.try_acquire(addressof(ptr));
26 if (dispose_guard == ⊥ && ptr) increment(ptr);
27 if (ptr && !expired(ptr)) {
28 weakAR.release(weak_guard);
29 return weak_private_ptr(ptr, dispose_guard); }
30 else {
31 disposeAR.release(dispose_guard);
32 weakAR.release(weak_guard);
33 if (ptr == null || this->ptr == ptr)
34 return weak_private_ptr(null); } }

36 void weak_private_ptr<T>::release() {
37 if (this->guard != ⊥) disposeAR.release(this->guard);
38 else decrement(this->ptr); }

Figure 7.8: C++-like pseudo-code for atomic weak pointers.
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1 class doubly_linked_queue<V> {
2 struct Node {
3 V value;
4 atomic_shared_ptr<Node> next;
5 atomic_weak_ptr<Node> prev;
6 Node(V v) { value = v; next = null; prev = null; } };

8 atomic_shared_ptr<Node> head, tail;

10 void enqueue(V v) {
11 shared_ptr<Node> new_node = shared_ptr<Node>::make_shared(v);
12 critical_section_guard guard;
13 while (true) {
14 private_ptr<Node> ltail = tail.load_private();
15 new_node->prev.store(ltail);
16 // Help the previous enqueue set its next ptr
17 weak_private_ptr<Node> lprev = ltail->prev.load_private();
18 if (lprev && lprev->next == null) lprev->next.store(ltail);
19 if (tail.compare_and_swap(ltail, new_node)) {
20 ltail->next.store(std::move(new_node));
21 return; } } }

23 std::optional<V> dequeue() {
24 critical_section_guard guard;
25 while (true) {
26 private_ptr<Node> lhead = head.load_private();
27 private_ptr<Node> lnext = lhead->next.load_private();
28 if (!lnext) return {}; // Queue is empty
29 if (head.compare_and_swap(lhead, lnext)) {
30 return {lnext->value}; } } } };

Figure 7.9: Ramalhete and Correia’s concurrent doubly-linked queue [141] implemented using our weak
pointer interface (C++-like pseudocode).

7.4.6 Example Usage

An example of how to apply our weak_ptr interface to Ramalhete and Correia’s doubly-
linked queue [141] is shown in Figure 7.9. The prev pointer of each node is stored in an
atomic weak pointer, whereas the next pointers are stored in atomic shared pointers. The
critical_section_guard (on lines 12 and 24) is only needed if generalized acquire-retire was
implemented from a protected-region SMR technique. The critical_section_guard is respon-
sible for calling begin_critical_section in its constructor and also end_critical_section
in its destructor.

7.5 Experimental Evaluation

We implemented our techniques as a C++ library4 and evaluated them on a series of bench-
marks. Our experiments were run on a 4-socket 72-core machine (4× Intel(R) Xeon(R) E7-8867

4Available at https://github.com/cmuparlay/concurrent_deferred_rc
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v4, 2.4GHz) with 2-way hyperthreading, a 45MB L3 cache, and 1TB of main memory. Memory
was interleaved across sockets using numactl -i all, and we used the jemalloc allocator [63].
Experiments were written in C++ and compiled with GCC 9.2.1 with O3 optimization. Our
experiments vary the number of threads from 1 to 192, which allows us to measure the effect of
oversubscription, as our hardware supports 144 threads.

7.5.1 Comparing Manual and Automatic Techniques

We applied the approach in Section 7.3 to three different manual SMR techniques, EBR [71],
IBR (more specifically, 2GEIBR) [167], and Hyaline (more specifically, Hyaline-1) [127], to
construct three new concurrent reference counting implementations, which we call RCEBR,
RCIBR, and RCHyaline, respectively. The goal of this section is to understand the overhead of
making manual techniques automatic as well as to compare the performance of RCEBR, RCIBR,
and RCHyaline with the fastest existing reference counting algorithm. The two fastest existing
reference counting algorithms that we are aware of are FRC [157] and CDRC. We chose to
compare with CDRC because FRC does not support marked pointers which are required in all of
our benchmarks. For consistency, we rename CDRC to RCHP in the graphs as it is a combination
of hazard-pointers and reference counting.

As for manual techniques, we compare with HP, EBR, IBR, and Hyaline. An important
parameter to tune when using EBR and IBR is how often the global epoch gets incremented.
Incrementing too often could bottleneck scalability whereas incrementing infrequently would
increase memory usage. For EBR and RCEBR, we found a good rate to be one increment every
10 allocations and for IBR and RCIBR, we found this to be one increment every 40 allocations.

For both HP and RCHP, we found that prefetching appropriately significantly increased
throughput. In particular, before announcing a pointer in the hazard array, we prefetch the cache
line that it points to because there is a good chance we will follow the pointer after succeeding in
announcing it. The benefit of this is that we can start loading the cache line before the memory
barrier, which is an expensive operation. Note that due to this prefetching optimization, our
throughput reported here for HP and RCHP is greater than the throughput of the same schemes
in Chapter 6.

To benchmark performance, we applied these memory reclamation techniques to three
different lock-free data structures: Harris-Michael list [80, 116], Michael hash table [116], and
Natarajan-Mittal tree [122].

Chapter 6 explains why HP and IBR are not safe to use with the Natarajan-Mittal tree directly.
This is essentially because traversals in the Natarajan-Mittal tree can continue through marked
nodes. We still include these numbers in our experiments for reference, even though these
experiments occasionally crash. Modifying the Natarajan-Mittal tree to work with HP and IBR
would likely make it slower. Note that an advantage of RCHP and RCIBR is that they work with
Natarajan-Mittal tree without any such modifications.

Range query workload. We begin by analyzing the experiment shown in Figure 7.12. In
this workload, we initialized the Natarajan-Mittal tree with 100K keys randomly selected from
the key range [0, 200𝐾), and then performed update operations (half insert, half delete) and
range queries. We use a sequential range query algorithm, which is not linearizable. with equal
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Figure 7.10: Benchmark comparing manual and automatic SMR techniques. Figure 7.10(a) shows results
for a Harris-Michael list, Figure 7.10(b) for a Michael hash table, and Figure 7.10(c) for a Natarajan-Mittal
tree.
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Figure 7.11: Benchmark comparing manual and automatic SMR techniques on a Natarajan-Mittal tree.
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Figure 7.12: Natarajan-Mittal tree - Range query experiments: 50% updates, 50% range queries of size 64.

probability. Each update operation selects a uniform random key from [0, 200𝐾) to insert/delete
and each range query selects a uniform random key 𝑘 from the same range and queries for all
keys in the interval [𝑘, 𝑘 + 64). In this experiment, we found that RCEBR, RCIBR, and RCHyaline
outperform RCHP by more than 7x on 144 threads. This is because during a range query, the
entire path from the current node to the root needs to be protected by private_ptrs, so RCHP
eventually runs out of announcement locations and starts relying on reference count increments,
which is significantly more expensive. RCEBR, RCIBR, and RCHyaline also performs similarly
to their manual counterparts, performing within 10-15% at 144 threads.

Other workloads. Figure 7.10 shows the throughput and memory usage of these SMR
technique on a wide variety of workloads. These workloads only contain updates and single
point lookups. For example, Figure 7.10(c) shows a workload where the Natarajan-Mittal tree is
initialized with 100K keys, and each process performs 10% update operations and 90% lookups.
Again, all keys are chosen uniformly randomly from a key range twice the initial size of the
data structure. For the hash table experiments, we initialized the number of buckets so that the
average load factor is 1.

When update frequency is low (Figure 7.11(b)), RCEBR has almost the exact same throughput
as EBR and RCHyaline is actually slightly faster than Hyaline. However, RCIBR ends up being
about 20% slower than IBR and this overhead comes from two main factors. First, RCIBR adds
both a reference count and a birth epoch to each node, and this increase in size accounts for
about half of the performance difference. Second, each try_acquire in RCIBR requires reading
a thread local variable storing the process id and this access is surprisingly slow, accounting for
the other half of the performance difference. Overall, on the BST experiments with 144 threads,
RCEBR performs within 10% of EBR (in terms of throughput) and RCHyaline performs within
15% of Hyaline. Also, RCEBR is up to 1.7x faster than RCHP in Figure 7.10(c).

In the non-oversubscribed scenarios, the automatic version of each memory reclamation
scheme tends to use a similar amount of memory to the manual version. However in the linked
list experiment and also in oversubscribed cases, the automatic version tends to have several
times more memory overhead. This is because in reference counting techniques, each retired
pointer could recursively prevent the collection of many nodes beyond the one it directly points
to.
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Figure 7.13: Benchmark results for atomic weak pointers. Original is the optimized doubly linked
queue of Ramalhete and Correia [141] that uses a custom manual memory management technique. Our
algorithm uses atomic weak pointers powered by the hazard pointer implementation of acquire-retire.
just::thread is a commercial library of atomic shared and weak pointers.

7.5.2 Evaluation of Atomic Weak Pointers

We compare our implementation of atomic weak pointers with the best known existing lock-
free implementation, the just::thread library [169], and against amanuallymemory-managed data
structure. For our comparison we use the doubly linked queue of Ramalhete and Correia [141].
This queue is a good candidate since it uses back pointers that can be represented using weak
pointers. For this comparison, we use our reference counting library powered by the hazard
pointer implementation of acquire-retire. We found that the main bottleneck of the throughput
of the data structure is the contention on the CAS operations, and hence the different choices of
acquire-retire implementation only made minor differences to the performance.

The original implementation of the data structure does not use a general purpose memory
management scheme, but actually uses a customized version of hazard pointers specifically
engineered for it. This modified hazard pointers scheme allows announced nodes to protect
not only themselves, but also the nodes adjacent to them. This reduces the number of memory
barriers required by the algorithm. For this reason, it is not likely that a general purpose memory
management scheme would outperform it.

In our experiment, we initialize a single queue with 𝑃 elements, and have 𝑃 threads. Each
thread repeatedly pops an element from the queue and then reinserts it. We then measure the
number of such operations that were performed per second. Each benchmark is repeated five
times for stability. The results of this experiment are depicted in Figure 7.13.

The biggest difference in performance occurs at 𝑃 = 1 (not depicted on the plot due to
scale), where the original implementation is 4.5x faster than our weak pointers, and 67x faster
than just::thread. At 𝑃 = 8 threads, our weak pointer implementation is just 19% slower
than the manual approach, and 4.2x faster than just::thread. This trend roughly continues to
𝑃 = 192, where our weak pointers are 33% slower than the manual approach, but 10x faster than
just::thread. Given that the original implementation uses a memory management approach that
is customized to the data structure at hand, these results are very promising for a completely
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automatic approach. Furthermore, we substantially outperform the best existing automatic
approach at all thread counts.

7.6 Conclusion

In this work, we showed that an automatic memory reclamation technique can compete with
the best manual techniques, and showed that such a technique can also support atomic weak
pointers. Though perhaps it is not yet time to completely retire manual memory reclamation,
we believe that these results show, even more strongly than previous results, that we are getting
close, and that automatic memory management should be preferable in a majority of situations.
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Part IV

Conclusion
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Chapter 8

Conclusion

The thesis statement was that general techniques, along with appropriate abstractions and li-
brary implementations, can greatly simplify the design and implementation of efficient concurrent
algorithms. Breaking this down, this statement essentially consists of three parts: efficiency,
ease-of-use, and generality. We show how the thesis supports each of these points separately.

• Efficiency: In terms of practical performance, the general techniques we develop are com-
petitive with the best hand-optimized solutions. In Part I, we showed that lock-free locks
add very little overhead relative to traditional blocking locks and perform significantly
better in cases where threads may be paused, for example due to oversubscription. In
Part II, we showed that our snapshotting approach outperforms existing state-of-the-art
solutions. For example, applying versioned pointers to a simple B-tree resulted in signifi-
cantly faster range queries than specialized data structures designed specifically for range
queries. In Part III, we showed that our automatic safe memory reclamation schemes are
competitive with manual ones in terms of both time and space usage. On the theoretical
side, we proved worst-case time bounds for our versioned CAS and reference counting
algorithm in Chapters 4 and 6, respectively.

• Ease of use: We provide an easy-to-use library interface for our all of our techniques.
Our lock-free locks technique allows programmers to write lock-free code using just the
familiar interface of locks, avoiding many of the intricacies and subtleties of lock-free
programming. Our versioned pointer and versioned CAS approaches provide an easy
way to take snapshots of concurrent memory that just involves replacing pointers or CAS
objects with these new types. They also allow multi-point queries to be implemented by
simply running standard sequential algorithms on a snapshot of memory. Finally, our
automatic memory reclamation techniques avoid many of the usability difficulties and
common pitfalls in manual memory reclamation. Using our library just involves replacing
raw pointers with the new pointer types we provide.

• Generality: All of our techniques are applicable to a wide range of data structures. Lock-
based data structures are very common and our lock-free locks approach works for any
lock-based data structure without deadlocks or livelocks. Our snapshotting approach
works for any data structure where mutable state is stored in CAS objects or pointer
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types. It also supports a wide range of multi-point queries whereas most previous work
has focused on range queries in particular. Our automatic memory reclamation schemes
works as long as reference cycles are broken before they become unreachable. The widely
used shared pointer interface from C++ has the same requirement and most concurrent
data structures in the literature satisfy it.

Throughout this thesis, we developed new algorithms, new abstractions and new library im-
plementations. All of these advancements were important for showing the simplicity, efficiency,
and wide applicability of our techniques. We hope that they will help simplify the design of
future concurrent algorithms and data structures, and make concurrent programming easier
and more accessible to a wider audience.
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