
Efficient loss recovery for videoconferencing
via streaming codes and machine learning

Michael Rudow

CMU-CS-23-118

May 2023

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Rashmi Vinayak, Chair
Venkatesan Guruswami

Anupam Gupta
Ryan O’Donnell

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2023 Michael Rudow

This research was sponsored by Portuguese Foundation for Science and Technology and the National Science Foun-
dation under award numbers 1850483, 19101813, 1901410, and 1943409, as well as the Carnegie Mellon University
Graduate Student Assembly/Provost Conference Funds.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Streaming codes, machine learning, erasure codes, learning-augmented algo-
rithm

Abstract
Packet loss degrades the quality of experience (QoE) of live communication.

The standard approach to recovering lost packets for long-distance communication
is forward error correction (FEC). Conventional methods for FEC for real-time ap-
plications are highly inefficient at protecting against bursts of losses. Yet such bursts
frequently arise in practice. Bursts can be tamed with less redundancy via a new class
of theoretical FEC schemes, called “streaming codes,” designed to communicate a
sequence of frames over a bursty packet loss channel in real-time. Existing stream-
ing codes apply when all frames are of the same fixed size. However, many applica-
tions, including videoconferencing, involve sending compressed frames whose sizes
fluctuate dramatically. This thesis presents a generalized model for streaming codes
that incorporates frames of variable sizes, studies the fundamental limits on the op-
timal rate for the new model, designs new high-rate streaming codes using machine
learning and coding theory, and integrates streaming codes into a videoconferencing
application to assess their positive impact on the QoE.

To start, we examine the fundamental limits on the rate for “offline” communica-
tion, wherein the sizes of all future frames are known. We show that the variability
in the sizes of frames (a) induces a new trade-off between the rate and the decoding
delay under lossless transmission and (b) impacts the optimal rate of transmission.
We then design rate-optimal streaming codes for the practically relevant “online”
setting (i.e., where the sizes of the future frames are unknown) for two broad pa-
rameter regimes. We show that online schemes cannot match the optimal rate of
offline schemes for all remaining parameter regimes because the optimal way to
spread the data over multiple transmissions to alleviate the variability depends on
the future arrival pattern. To address this shortcoming, we combine algebraic cod-
ing techniques with a learning-augmented algorithm for spreading frame symbols to
design the first approximately rate-optimal streaming codes for a range of important
parameter regimes for practical applications.

However, many real-world applications experience what we dub “partial bursts”
losses of only some packets per frame, unlike the existing model, which assumes all
or no packets are lost for each frame. To address this gap, we introduce a new
streaming-codes-based approach to videoconferencing called Tambur. When as-
sessed over emulated networks, Tambur improves several key metrics of QoE com-
pared to conventional methods (e.g., it reduces the median frequency of freezes by
26%). We then extend the theoretical streaming model to accommodate partial bursts
and design an online approximately rate-optimal streaming code. The code com-
bines (a) a building block construction given any choice of how much redundancy to
allocate per frame with (b) a learning-augmented algorithm to allocate redundancy
per frame.

iv

Acknowledgments
I would not be earning my Ph.D. without the support of my family and friends.

I want to thank my parents, Bill and Jill, my sister, Alex, and my friend, Daniel,
for their love, support, and for pretending to pay attention when I told them about
my research. I also would like to thank Monty Abello, Matt Butrovich, Nate Cho-
dosh, Graham Gobieski, Isaac Grosof, Ananya Joshi, Jack Kosaian, Roger Lyengar,
Francisco Maturana, Andrii Riazanov, Han Zhang, Giulio Zhou, and countless other
friends for making Pittsburgh my home. This Ph.D. was an Odyssey; thank you for
sailing with me into the horizon!

I would also like to acknowledge my advisor, Professor Rashmi Vinayak, for
her tutelage throughout my Ph.D. journey. Rashmi taught me how to find and solve
problems with real-world impact. She guided me through research across several
different areas, helping me to become a well-rounded researcher capable of tackling
problems in new domains. Rashmi encouraged me to persevere during research
droughts and fulfill my potential during breakthroughs. She also provided me six
years’ worth of feedback on my oral and written communication to teach me to
become a better communicator. I will carry her lessons with me beyond CMU, ever
grateful for her mentorship.

My journey at CMU would not have happened without the support I received as
an undergrad. I thank Eric Allender for his tutelage during a Research Experience
for Undergraduates the summer after my junior year, which inspired me to pursue a
Ph.D. I also would like to thank my master’s thesis advisors, Brett Hemenway Falk
and Nadia Heninger, for mentoring me throughout my master’s thesis and encourag-
ing me to complete a Ph.D.

I want to additionally thank Mor, Rashmi, and Anupam for their feedback when
I was a TA for their classes, which has taught me to be a better teacher and commu-
nicator. I also would like to acknowledge Andrii Riazanov, Venkatesan Guruswami,
and Bernhard Haeupler for serving on my writing skills committee, as well as Mor
Harchol-Balter, Danny Sleator, and Pedro Paredes for serving on my speaking skills
committee. I would like to thank Venkatesan Guruswami, Anupam Gupta, and Ryan
O’Donnell for serving on my thesis committee.

I would like to acknowledge the current members and alumni of the TheSys
lab: Jack Kosaian, Francisco Maturana, Juncheng (Jason) Yang, Sanjith Athlur, and
Saurabh Kadekodi for their support and helpful feedback on my presentations. I
would like to thank Jack Kosaian for providing the video trace used in Figure 1.2. I
would like to thank Francisco for his helpful feedback on several of my papers and
talks, which was invaluable for refining them. I would also like to acknowledge my
collaborators, Ganesh Ananthanarayanan, Neophytos Charalambides, Martin Ellis,
Venkatesan Guruswami, Alfred O. Hero, III, Abhishek Kumar, and Francis Y. Yan.

Finally, I would like to thank Deb Cavlovich, Matt McMonagle, Jenn Landefeld,
and the rest of CMU’s staff for all of their help with the administrative component
of the Ph.D.

vi

Contents

1 Introduction 1
1.1 Streaming codes for variable-size frames (Chapter 2) 4
1.2 Online rate-optimal streaming codes (Chapter 3) 4
1.3 Learning-augmented approximately rate-optimal streaming codes (Chapter 4). . . 5
1.4 Streaming codes for real-world videoconferencing (Chapter 5) 6
1.5 Learning-augmented streaming codes for variable-size frames under partial bursts

(Chapter 6) . 7
1.6 Outline . 8

2 Streaming codes for variable-size frames 9
2.1 Background and related work . 9

2.1.1 Background . 9
2.1.2 Other related work . 12

2.2 A model for streaming codes with frames of variable sizes 12
2.3 General bounds on rate for streaming codes with variable-size frames 15

2.3.1 General upper bound on the rate . 15
2.3.2 General lower bound on rate . 16

2.4 Bounds on rate for specific frame-size sequences 21
2.4.1 An upper bound on the optimal rate for specific frame-size sequences. . . 22
2.4.2 A lower bound on the optimal rate for specific frame-size sequences . . . 27
2.4.3 Empirical evaluation of the bounds on rate 31

2.5 Appendix . 31
2.5.1 Proof of Lemma 4 . 31
2.5.2 Proof of Lemma 2 . 34
2.5.3 Proof of Theorem 1 . 35
2.5.4 Proof of Theorem 2 . 37

3 Online versus offline rate in streaming codes for variable-size frames 39
3.1 Modifications to model and notation . 40
3.2 Online Code Constructions with Optimal Rate 40
3.3 Infeasiblity of offline-optimal-rate for Online Schemes 47
3.4 Case τL ≥ b and τL = (τ − b) . 47
3.5 Case τL < b and τL = (τ − b) . 49
3.6 Case τL < (τ − b) . 50

vii

3.7 Appendix . 51
3.7.1 Proof of Theorem 4 . 51
3.7.2 Proof of Theorem 5 case τL ≥ b and τL = (τ − b) 54
3.7.3 Proof of Theorem 5 case τL < b and τL = (τ − b) 56
3.7.4 Proof of Theorem 5 case τL < (τ − b) 61

4 Learning-augmented streaming codes are approximately optimal for variable-size
frames 65
4.1 Model and background . 65
4.2 A Building block construction . 66
4.3 Offline-optimal streaming codes . 70
4.4 Learning-based online streaming codes . 71
4.5 Optimality for non-systematic constructions . 75
4.6 LP relaxation is almost optimal . 77
4.7 Appendix . 79

4.7.1 Proof of Lemma 11 . 79
4.7.2 Proof of Lemma 12 . 80
4.7.3 Proof of Lemma 13 . 80
4.7.4 Proof of Lemma 15 . 82
4.7.5 Proof of Theorem 7 . 84
4.7.6 Proof of Lemma 16 . 85
4.7.7 Proof of Lemma 17 . 86
4.7.8 Proof of Lemma 18 . 87

5 Streaming codes for real-world videoconferencing 91
5.1 Background on FEC for real-world videoconferencing applications 91

5.1.1 Conventional FEC and its challenges in videoconferencing 92
5.1.2 Challenges of using streaming codes for videoconferencing 93

5.2 Packet loss in the wild . 94
5.2.1 FEC metrics . 94
5.2.2 Network quality . 95
5.2.3 Potential of streaming codes . 96
5.2.4 Key findings . 97

5.3 Tambur . 98
5.3.1 Tambur’s streaming code . 98
5.3.2 Bandwidth overhead predictor . 100
5.3.3 Implementation . 102

5.4 Evaluation . 103
5.4.1 Experimental methodology and highlights 103
5.4.2 Offline evaluation . 105
5.4.3 Sensitivity analysis . 106
5.4.4 Online evaluation . 107

5.5 Appendix . 109
5.5.1 Recovering a burst with Tambur’s streaming code 109

viii

5.5.2 Tambur’s streaming code’s flow network 110
5.5.3 Parameters of the GE channel . 110
5.5.4 Encoding and decoding overheads . 110
5.5.5 Tail duration of freezes . 111
5.5.6 Analysis of recovering bursts . 112

6 Learning-augmented streaming codes for variable-size frames under partial bursts 115
6.1 System model . 116

6.1.1 Encoding and Decoding . 117
6.1.2 Notation and Conventions . 118

6.2 A Building Block Construction . 118
6.3 Offline codes . 122
6.4 Online rate-optimal codes . 124

6.4.1 Online optimal codes for Regime b1 . 124
6.4.2 Online optimal codes for Regime bτ . 126
6.4.3 Online optimal codes for Regime bτ+1 127

6.5 Gap between online and offline codes . 128
6.6 Online approximately rate-optimal codes . 129
6.7 Maximum transmittable unit . 130
6.8 Appendix . 130

6.8.1 Additional notation . 130
6.8.2 Proof of Theorem 8 . 131
6.8.3 Proof of Lemma 21 . 132
6.8.4 Proof of Lemma 22 . 133
6.8.5 Proof of Theorem 9 . 144
6.8.6 Proof of Lemma 24 . 145
6.8.7 Proof of Lemma 26 . 146
6.8.8 Proof of Theorem 10 . 147
6.8.9 Proof of Theorem 11 . 154

7 Conclusion and future directions 157
7.1 Competitive analysis . 158
7.2 Stochastic optimization . 159
7.3 Data-driven coding theory in new domains . 160
7.4 Improvements to Tambur . 161

Bibliography 163

ix

x

List of Figures

1.1 Overview of the model for streaming codes. 2
1.2 Frame size variability in a live video trace collected from the Facebook Live

application (for a 2000 Kbps live video). 3
1.3 Tambur reduces the ratio of frozen frames to total frames per-video by 78% and

26% compared to Block-Within and Block-Multi, respectively, at a lower band-
width overhead. 7

2.1 Interleaving example of a (5, 3) block code. The blue boxes labeled Sj[i] are
symbols of frame S[i], the red boxes labeled Pj[i] are parity symbols, and the
black lines connect the boxes which are part of the same block. The numbers
under the lines indicate the time slots. 11

2.2 The (7, 3, 5, 1)-separate encoding scheme is shown for a frame S[i] = (S0[i], . . . , S5[i]).
The symbols are spread evenly over channel packets X[i] and X[i + 1], thereby
satisfying the lossless-delay constraint. Additional parity symbols (P0[i], . . . , P7[i])
of a [14, 6] systematic MDS code are distributed evenly over channel packets
X[i + 4], X[i + 5], X[i + 6], and X[i + 7]. This ensures that at least 6 out of
(S0[i], . . . , S5[i], P0[i], . . . , P7[i]) are received in the event of either a burst of
length at most 5 losses or the loss of any 3 arbitrary channel packets. Thus, S[i]
is decoded within 7 time slots by properties of the MDS code. 17

2.3 The (7, 2, 3, 4)-separate encoding scheme is shown for a frame S[i] = (S0[i], . . . , S3[i]).
The symbols are spread evenly over channel packets X[i], X[i+1], X[i+3], and
X[i+4]. Parity symbols (P0[i], P1[i]) of a systematic [6, 4] MDS code are spread
evenly over channel packets X[i+6] and X[i+7]. The lossless-delay constraint
is satisfied, since the symbols of S[i] are sent by time slot X[i + 4]. At most 2
nonempty channel packets are lost with a burst of length 3 or 2 arbitrary losses.
Therefore, at least 4 of (S0[i], . . . , S3[i], P0[i], P1[i]) are received, so S[i] is de-
coded by time slot (i+ 7). 18

2.4 An example of imposing constraint #4 (in Algorithm 1) for j ∈ {i, . . . , i + b −
2}. The quantities iL, ib, and jτ represent (i − τL), (i + b − 1), and (j + τ)
respectively. The gray boxes (time slots i, . . . , ib) are lost in a burst of channel
packets X[i], . . . , X[ib]. The symbols in the gray boxes with thick blue outlines
must be recoverable using the symbols inside boxes with double red outlines.
This requirement allows for the relaxation that the symbols inside boxes with
purple dashed outlines are treated as received. 24

xi

2.5 An example imposing constraints #4, #5, and #6 for time slot i for parameters
(τ, b, τL) = (7, 3, 4). Blue boxes can hold symbols of frames. Red boxes hold
parity symbols. Gray boxes contain no symbols. Boxes above time slot j corre-
spond to symbols sent in channel packet X[j]. At least ki symbols are sent for
S[i] consisting of (a) ei symbols sent as part of the (7, 3, 4)-separate encoding
scheme (shown at the top), and (b) ki,j symbols sent in channel packet X[j] for
j ∈ {i, . . . , i + 4} (constraint #4). There are pi−3 blocks of the SBC for which
the final parity symbols are sent during time slot (i + 5). The total number of
symbols sent in channel packet X[i] corresponding to frame S[i− 2] (i.e., ki−2,i)
is at most pi−3 (constraint # 5). In addition, there are pi−1 and pi blocks of the
SBC for which the final parity symbols are sent during time slots (i + 7) and
(i+8) respectively. The number of symbols of all frames sent in channel packet
X[i] within blocks of the SBC (i.e., (ki−2,i + ki,i)) is at most (pi−3 + pi−1 + pi)
(constraint # 6). 28

2.6 Comparison over the parameter settings listed in Table 2.1 for the live video trace
shown in Figure 1.2 of the four bounds on the optimal rate for the offline setting:
the greatest lower bound (R(L))), the lower bound computed by Algorithm 2, the
upper bound computed by Algorithm 1, and the least upper bound (R(U)). 30

3.1 A toy example of the (τ = 4, b = 2)-Variable-sized Generalized MS Code. Each
frame, S[i] = (U [i], V [i]), is transmitted in the corresponding channel packet,
X[i], along with parity symbols, P [i], (when applicable). White boxes with pur-
ple dots represent symbols of U [i], white boxes with an orange grid represent
symbols of V [i], and solid red boxes represent symbols of P [i]. The numbers
under the lines at the bottom indicate the time slots. 42

3.2 Illustration for defining E[i], for time slot i ∈ [t], by placing V ∗[j] = (V [j], 0, . . . , 0),
for j ∈ {i− τ, . . . , i− 1}, into m consecutive positions of E[i] starting with po-
sition (j mod τ)m. 43

3.3 Offline construction for frame-size sequence 1 for parameters (b, τL, τ) = (3, 4, 7). 48
3.4 Offline construction for frame-size sequence 2 for parameters (b, τL, τ) = (3, 4, 7).

. 48
3.5 Offline construction for frame-size sequence 1 for parameters (b, τL, τ) = (2, 1, 3). 49
3.6 Offline construction for frame-size sequence 2 for parameters (b, τL, τ) = (2, 1, 3). 49
3.7 Offline construction for frame-size sequence 1 for parameters (b, τL, τ) = (1, 1, 3). 51
3.8 Offline construction for frame-size sequence 2 for parameters (b, τL, τ) = (1, 1, 3). 51
3.9 The offline scheme for frame-size sequence 1 for case τL ≤ b and τL = (τ −

b). Blue channel packets consist of frame symbols, and red channel packets
consist of parity symbols. The numbers under the lines at the bottom indicate the
time slots. The offline scheme sends d

a+1
symbols in each of the first e channel

packets. 55
3.10 The offline scheme for frame-size sequence 2 for case τL ≤ b and τL = (τ − b).

Blue channel packets consist of frame symbols and red channel packets consist
of parity symbols. The numbers under the lines at the bottom indicate the time
slots. The offline scheme sends d symbols in each of the first e channel packets. . 55

xii

3.11 The offline scheme for frame-size sequence 1 for case τL < b and τL = (τ − b).
Blue channel packets consist of frame symbols, and red channel packets consist
of parity symbols. The numbers under the lines at the bottom indicate the time
slots. The offline scheme sends d

2
symbols in X[b− τL]. 57

3.12 The offline scheme for frame-size sequence 2 for case τL < b and τL = (τ − b).
Blue channel packets consist of frame symbols and red channel packets consist
of parity symbols. The numbers under the lines at the bottom indicate the time
slots. The offline scheme sends d symbols in X[b− τL] 57

3.13 The offline scheme for frame-size sequence 1 for case τL < (τ − b). Blue
channel packets consist of frame symbols, and red channel packets consist of
parity symbols. The numbers under the lines at the bottom indicate the time
slots. The offline scheme sends d

2
symbols in X[b− 1]. 61

3.14 The offline scheme for frame-size sequence 2 for case τL < (τ − b). Blue
channel packets consist of frame symbols and red channel packets consist of
parity symbols. The numbers under the lines at the bottom indicate the time
slots. The offline scheme sends d symbols in X[b− 1] 61

4.1 Selecting pi+τ by considering each burst starting in time slot j ∈ {i − b +
1, . . . , i+ 1} (shown with lightening bolts). 67

4.2 Defining W [i] by placing the symbols of V [j] in positions 2m(j mod τ), . . . ,
(2m(j mod τ) + vj − 1) for j ∈ {i− τ, . . . , i− 1}. The remaining positions are
filled with 0’s. 68

4.3 An example the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS
Code recovering a burst of length b starting in time slot (i+ 1). 68

4.4 Illustration of the bound on the number of symbols sent under any streaming
code satisfying the delay constraints. For any i ∈ {3τ, . . . , t} and j ∈ {i − τ −
b + 1, . . . , i − τ + 1}, S[j − 1], . . . , S[i − τ] are recovered by time slot i when
a burst of length b starting in time slot j (shown with lightning bolts), under the
relaxation of receiving the lost symbols of S[i− τ + 1], . . . , S[j + b− 1] (boxes
with thick black outline). 69

4.5 Modeling the transmission and constraints using the variables of the integer pro-
gram. For any i ∈ {3τ, . . . , t− τ} and burst (lightning bolts) of length b starting
in j ∈ {i−τ−b+1, . . . , i−τ+1}, S[j−1], . . . , S[i−τ], are recovered by time slot
j under the relaxation of receiving the lost symbols of S[i−τ+1], . . . , S[j+b−1]
(boxes with thick black outline). 70

4.6 Illustration of the (τ, b, t)−Spread ML Code. A learning-based approach is used
to determine a policy, f (ϵ)

i , during the ith time slot, which is then used by the(
τ, b, t,

〈
f
(ϵ)
i | i ∈ [t]

〉)
−Spreading Variable-sized Generalized MS Code 72

4.7 Illustration of the learning-based approach (green) to determine how to spread
frame symbols. 73

5.1 Two approaches for employing block codes: (a) within each frame and (b) across
multiple frames. 92

xiii

5.2 CDFs over the traces from Teams of (a) how often FEC is used to encode frames
to protect against packet loss, (b) how often the lost packets are not decoded, and
(c) the bandwidth overhead of parity packets. 95

5.3 Packet loss is prominent (e.g., Fig 5.3a shows 1 − 10% packet loss for most
traces) and often occurs as bursts across consecutive packets (Fig 5.3b) or frames
(Fig 5.3c). 96

5.4 The CDFs over the traces of the (a) the multi-frame burstiness (for traces with at
least one burst over 2+ frames), and (b) the guard space sufficiency. 97

5.5 Overview of Tambur. The components in green are specific to Tambur. 98
5.6 Encoding for τ = 3. Tambur splits frame i evenly into (V [i], U [i]) and sends

them over frames . Also, Tambur sends parity packets for recovering V [i −
3], . . . , V [i], U [i] and U [i − 3] and reserves space for parity symbols of frame
(i+ 3). 99

5.7 Decoding a burst across 2 frames within τ = 3 frames delay using Tambur’s
streaming code. Data symbols labeled 1, 2, and 3 are decoded using the parity
packets with the same label. 100

5.8 CDFs for the percent of non-recoverable frames for the 55th through 95th per-
centiles and the bandwidth overhead for the offline evaluation. 105

5.9 Sensitivity analysis of the weights for the classes used in the predictive model
for the frequency of non-recoverable frames and bandwidth overhead over all of
the frames where FEC is used in the traces. 106

5.10 CDFs for the percent of non-recoverable frames and the bandwidth overhead for
the online evaluation. 107

5.11 Tambur renders significantly more frames than Block-Multi and with lower la-
tency. Tambur’s modestly higher latency than Block-Within is more than offset
by the improvement in rendering frames.1 . 108

5.12 Tambur has a higher median duration of freezes than Block-Within but a signif-
icantly smaller cumulative duration of freezes because Tambur has 78% fewer
freezes than Block-Within (Figure 1.3). Tambur has a lower cumulative and me-
dian duration of freezes than Block-Multi. 109

5.13 The encoding and decoding times are modest. 110
5.14 Tambur recovers nearly as many frames as Block-Within using no extra frames

and also recovers more overall. Block-Multi recovers an approximately equal
number of frames using 0, 1, 2, and 3 extra frames. 111

5.15 Given the same bandwidth budget as Block-Within, Tambur is more likely to
recover all or zero frames from a burst loss over production traces. 112

5.16 Given the same bandwidth budget as Block-Within/Block-Multi, Tambur pro-
vides greater improvement for longer bursts over an emulated network. 112

6.1 Overview of the proposed streaming model. Multiple packets are transmitted
over the channel for each frame. The packet loss channel allows for partial bursts. 116

6.2 Overview of encoding. 121
6.3 Illustration of loss recovery under the

(
τ, t,K,Z,L, B,W

)
-Split Code for a burst

over X[i+ 1 : i+ bi+1 − 1]. 121

xiv

List of Tables

2.1 Parameter settings used in the empirical evaluation of the bounds on the optimal
rate. 30

xv

xvi

Chapter 1

Introduction

Real-time communication with a high quality of experience (QoE) is critical for many perva-
sive streaming applications, including VoIP and videoconferencing. For example, the quality
of videoconferencing calls dictates the effectiveness of remote meetings [24], which are now
ubiquitous. Video quality depends on several key performance indicators, such as freeze, band-
width, packet loss, and latency [21, 40, 61]. At a high level, live-streaming applications such as
videoconferencing involve a sender transmitting packets of information to a receiver over a lossy
channel.

Recovering lost packets is crucial to the quality of communication [84]. Losing even a single
packet may prevent rendering the frame. It may also prohibit rendering multiple future frames
(i.e., causing freeze) because the compression introduces inter-frame dependencies. Due to this,
it is common to handle packet losses at the application level. The two broad viable solutions are
retransmissions and forward error correction (FEC). Both approaches transmit redundant data.
Consequently, there is a trade-off between bandwidth allocated for redundancy and transmit-
ting original data. Furthermore, real-time communication applications must recover lost packets
within a strict latency—preferably less than 150 ms [84]—to meet the real-time playback re-
quirement.

Retransmission involves minimal redundant data since it only resends the lost packets. Hence,
it is preferred whenever applicable [83]. However, retransmission is suitable only for scenarios
with short round trip times (e.g., short-distance communication) because of the extra delay of
feedback and retransmission. When the round trip time is high (e.g., long-distance communica-
tion), the three-way delay of transmission, feedback, and retransmission exceeds the maximum
tolerable latency [10]. When retransmission is not viable, applications must use Forward Erasure
Correction (FEC) to recover lost packets within an acceptable latency.

One natural coding-based approach uses traditional codes, such as block codes, to recover
lost packets. However, such coding schemes are ill-suited for the low-delay communication set-
ting of live-streaming applications. The loss patterns faced in streaming applications are corre-
lated (i.e., bursty). Nevertheless, conventional block codes, such as maximum-distance-separable
(MDS) codes, are inefficient for recovering from burst losses within a strict decoding delay for
the following reason. Using MDS block codes necessitates recovering all packets lost as a burst
simultaneously. As a result, all lost packets must be decoded by the playback deadline of the
first lost packet—an unnecessarily stringent requirement for most lost packets. The redundancy

1

Figure 1.1: Overview of the model for streaming codes.

sent by the deadline of the final lost packet is wasted, penalizing the rate. Finally, it is possible
to convert an MDS code into a burst-correcting code via the standard technique of interleaving.
However, such an approach is inapplicable to the live streaming setting, as it would violate the
low-delay requirement.

Convolutional coding schemes tailored to the live communication setting can outperform
traditional code constructions. Martinian and Sundberg demonstrated this fact in [62] by formal-
izing the “streaming model” of live communication and introducing specialized codes —called
“streaming codes”—with significantly higher rates than traditional block codes. During each
time slot, i, a “frame,” denoted as S[i], of size k arrives at a sender. The sender then transmits a
“channel packet,” denoted as X[i], of size n to a receiver over a burst-only loss channel. Bursts
are of length b and are followed by guard spaces of receptions. The sender must recover S[i] by
time slot (i+ τ). Streaming codes recover lost symbols from each frame τ time slots later, lead-
ing to significantly higher rates than alternatives that recover all lost symbols together by τ time
slots after the first frame for which the symbols are lost [62]. Figure 1.1 presents an overview of
the model, with the sender, channel, and receiver appearing in blue.

Numerous works [3, 7, 8, 9, 11, 12, 13, 27, 33, 35, 36, 37, 44, 49, 50, 52, 56, 57, 58, 63, 75,
82, 85] have designed streaming codes for various settings where the sizes of frames and channel
packets are fixed in advance. These regimes are suitable for applications that send fixed quantities
of data; for example, VoIP sends uncompressed audio packets. The benefits of streaming codes
for VoIP applications have been studied using simulated losses under theoretical loss models,
such as the Gilbert-Elliott channel [31] and over traces [13, 33], wherein each frame is of the
same fixed size.

In contrast, many applications, such as videoconferencing, transmit variable amounts of data.
The variability arises by compressing frames before transmission to reduce the communication
load. For example, we demonstrate the variability of compressed frame sizes for a live video
trace transmitted by Facebook Live in Figure 1.2. Variable-sized input data is incompatible with
the previously studied streaming model, motivating the need for a new model.

Motivating the problem: Given the dual importance of bandwidth and loss recovery, streaming
codes appeal to improve the QoE of live-streaming applications. However, there are two main
challenges to using streaming codes.

1. Existing streaming codes are incompatible with the variable sizes of compressed frames of
live-streaming applications such as videoconferencing.

2

0 1000 2000
Frame Number

0

10000

20000

30000

40000

50000

Fr
am

e
Si

ze
 (B

yt
es

)

Figure 1.2: Frame size variability in a live video trace collected from the Facebook Live appli-
cation (for a 2000 Kbps live video).

2. Packet loss characteristics for live streaming applications with variable-sized frames have
not yet to be shown to be suitable for the general framework of streaming codes.

Contributions of the thesis : The following five contributions of this thesis address these chal-
lenges to improve the QoE of live-streaming applications via streaming codes.

1. We introduce a new model of streaming codes for variable-size frames and evaluate the
fundamental limits on the optimal rate. One consequence of the new model is distinguish-
ing between the “offline” setting, where the sizes of future frames are known, and the
“online” setting, where such information is unavailable.

2. We design online rate-optimal streaming codes for the new model for two broad parameter
regimes (termed Regime 1 and Regime 2) and show that online streaming codes cannot
match the optimal offline rate for all other parameter regimes.

3. We present learning-augmented streaming codes with approximately optimal rates for the
new model for the most practically-relevant broad parameter regime outside Regime 1 and
Regime 2.

4. All data sent for a frame is lost or received under the above streaming model, but real-
world networks frequently involve “partial bursts” wherein only some packets sent for a
frame are lost. As a first step to exploit partial bursts, we use a heuristic to design new
streaming codes for partial bursts. We then integrate the new streaming codes into the live-
streaming application stack and evaluate their suitability to improve the QoE over emulated
networks. We establish benefits for several key metrics of the QoE, such as reducing the
median frequency of freezes by 26% compared to conventional approaches.

5. We generalize the streaming model to accommodate partial bursts and then design new ap-
proximately rate-optimal learning-augmented streaming codes for the generalized model.

3

1.1 Streaming codes for variable-size frames (Chapter 2)
We present a generalized model for streaming codes that accommodates frames of variable sizes.
The proposed streaming model differs from that of fixed-size frames in two key ways.

First, while there are rate-optimal schemes that send each frame in the corresponding chan-
nel packet for the setting of fixed-size frames, spreading frame symbols over multiple channel
packets is advantageous in the setting of variable-size frames. This is because sending a large
frame within a single channel packet leads to many lost symbols when that channel packet is
lost. Spreading frame symbols intelligently reduces the maximum number of frame symbols lost
in a burst—a lower bound on how much redundancy is needed. In contrast, when all frames are
the same size and are sent in the corresponding channel packets, all bursts drop the same number
of frame symbols. As such, spreading frame symbols over multiple channel packets does not
offer an advantage. We capture the new trade-off between the rate of the code and the minimum
decoding delay (i.e., the delay for decoding a frame when all channel packets are received) via
a new parameter in the model, which we term “lossless-delay (τL).” Specifically, when there are
no losses, the receiver must decode each frame with a delay of τL.

Second, the variability in the sizes of frames negatively impacts the optimal rate, which is
never higher than that of the setting where frames have fixed sizes. We capture the optimal rate’s
dependence on the variability by determining the least upper bound and greatest lower bound
on the optimal rate for arbitrary sequences of sizes of frames. However, the gap between these
values is wide in many settings, prompting the need to better characterize the optimal rate for
any specific sequence of sizes of frames. Thus, we introduce algorithms to compute tighter upper
and lower bounds on the optimal rate for any given sequence of sizes of frames.

The results of this section are published in [78].

1.2 Online rate-optimal streaming codes (Chapter 3)
The bounds on the optimal rate for any given sequence of sizes of frames apply to “offline”
codes, which have access to the sizes of all frames, including future ones. In contrast, real-
world streaming applications operate in an “online” setting where the sizes of future frames are
unknown. By using future information, optimal offline constructions can always match and po-
tentially significantly exceed the rate of online ones. One key challenge in realizing the benefits
of spreading for online codes is determining how best to spread frame symbols over one or more
channel packets, even though future frames’ sizes are inherently variable and unknown.

This thesis designs the first rate-optimal online coding schemes for two classes of parameter
settings. In “Regime 1,” b and τ may take any values while τL = 0, necessitating that all
constructions recover each frame immediately under lossless conditions. This broad regime
is well-suited for applications that require minimal latency during lossless conditions and can
tolerate extra latency only during occasional losses.

The rate-optimal construction is systematic and sends each frame in the corresponding chan-
nel packet. During each time slot, i, we combine two new methodologies to alleviate the vari-
ability. (a) We apply a greedy paradigm for delaying transmitting the parity symbols associated
with S[i] until the time slot (i + τ). (b) We define the number of parity symbols to be sent in

4

X[i + τ] while deferring defining the parity symbols themselves until the time slot (i + τ) to
make use of frames S[i + 1], . . . , S[i + τ − 1]. The construction is rate-optimal, even for the
offline setting. As such, the results show that non-systematic schemes provide no advantage.

In “Regime 2,” τL = (τ − b) and b|τ , so τL has its maximum value. Here, we show that
a simple scheme that encodes each frame separately matches an upper bound on the rate (see
Section 2.3.2). Thus, online coding schemes can match the rate of optimal offline coding schemes
for two broad parameter regimes even though knowledge about the sizes of future frames appears
advantageous. In addition, we demonstrate that online coding schemes necessarily have lower
rates than optimal offline coding schemes for all remaining parameter regimes.

The results of this section are published in [79].

1.3 Learning-augmented approximately rate-optimal stream-
ing codes (Chapter 4).

Maintaining a small value of τL is crucial for latency-sensitive applications, as the delay of τL
extra time slots may be incurred for decoding every frame. However, Regime 1 (i.e., τL = 0)
penalizes the optimal rate by prohibiting spreading frame symbols to smooth out the variability.
Next, we design approximately rate-optimal streaming codes for “Regime 3” of τL = 1. Regime
3 imposes the minimum extra latency (i.e., one frame) to allow spreading frame symbols over
multiple channel packets to significantly mitigate the adverse effect of variability of the sizes
of frames on the rate. As such, Regime 3 reflects a good compromise between the latency and
optimal rate for practical live-streaming applications.

We first consider the offline setting and decompose the code design into two distinct chal-
lenges. First, how can we best spread frame symbols over channel packets? Second, how can
we send the minimum necessary number of parity symbols to ensure that each frame is decoded
in time, given any choice of how to spread frame symbols? We use an integer program offline
to determine how to spread frame symbols over channel packets optimally. We then introduce
a building block for constructing a rate-optimal streaming code for any given choice of how to
spread frame symbols over channel packets.

One final challenge remains: how can we construct a rate-optimal online streaming code? We
address the problem by combining machine learning with tools from algebraic coding theory. We
take a learning-based approach, relying on techniques similar to empirical risk minimization to
convert the optimal offline solution into an approximately optimal online one that maximizes
the expected rate. Our proposed method determines how to spread symbols online, and then the
building block construction is applied. Our methodology can be viewed as using a “learning-
augmented algorithm”—a topic that has recently surged to prominence, tackling problems in
other domains, such as caching [59], metric task systems [6], bloom filters [64], learned index
structures [48], scheduling [55], etc. [5, 16, 46, 47, 65]. However, to the best of our knowledge,
the powerful paradigm of learning-augmented algorithms has not been applied to design coding
schemes until now

The results of this section are published in [77].

5

1.4 Streaming codes for real-world videoconferencing (Chap-
ter 5)

Two main obstacles prevent using the streaming codes discussed above for live-streaming ap-
plications. First, these streaming codes assume that a frame is entirely lost or received—such a
loss reflects worst-case conditions. Consequently, the streaming model introduced in Chapter 2
models sending all symbols of a frame in a single channel packet. However, live-streaming appli-
cations (e.g., videoconferencing) will often distribute a large transmission over multiple packets,
where only some may be lost. The pessimistic loss model demands extra redundancy to recover
all symbols of multiple frames lost in a burst, which can negate the potential advantage in reduc-
ing the bandwidth overhead. The parameters of this pessimistic loss model are used to set the
amount of redundancy employed by existing streaming codes. Second, streaming codes’ viability
to improve the QoE for real-world live-streaming applications has yet to be established for sev-
eral key metrics of the QoE (e.g., video freeze, frequency of rendering frames, etc.). In addition,
the packet loss characteristics of real-world videoconferencing calls have not been established as
suitable for streaming codes.

To handle the first challenge, we will introduce Tambur, a new communication scheme for
bandwidth-efficient loss recovery for live-streaming applications.1 Tambur comprises two com-
ponents:

• a new streaming code that adapts the theoretical framework discussed in Chapter 3 to
overcome its limitations for real-world live-streaming applications;

• a machine learning (ML) model to take a predictive decision on the bandwidth allocated
to streaming codes.

To address the second challenge, we analyze packet traces collected from thousands of video
calls from Microsoft Teams and present three key observations:

1. Bursts of packet losses frequently arise.

2. Losses are frequently followed by a guard space of several frames with no losses.

3. Teams uses a significant bandwidth overhead to recover lost packets in real time, depleting
the bandwidth left for the original data.

We implement and integrate Tambur, several baselines (Block-Within and “Block-Multi,” a block
code across multiple frames) and several variants of Tambur (“Tambur-full-BW,” which matches
the bandwidth overhead of Block-Within and “Tambur-0.9,” which reduces the bandwidth over-
head more at the cost of recovering fewer frames) with a videoconferencing benchmark plat-
form. We then evaluate the schemes over an emulated network to assess the impact on the QoE
(§5.4.4). Fig. 1.3 shows how Tambur, Tambur-full-BW, and Tambur-0.9 reduce the frequency
of video freezes by an average of 26%, 29%, and 17%, respectively, compared with the better
of Block-Within and Block-Multi. These benefits highlight that Tambur improves the QoE, as it
has been shown [66, 73, 86] that video freezes have a detrimental effect on user engagement.

The results of this section are published in [81].

1Named to convey that streaming codes Tame Bursts.

6

25th 50th 75th 90th
Percentile over videos

0

1

2

3

4

5

Fr
eq

ue
nc

y
of

 fr
ee

ze
s (

%
) Block-Within

Block-Multi
Tambur-0.9
Tambur
Tambur-full-BW

Figure 1.3: Tambur reduces the ratio of frozen frames to total frames per-video by 78% and 26%
compared to Block-Within and Block-Multi, respectively, at a lower bandwidth overhead.

1.5 Learning-augmented streaming codes for variable-size frames
under partial bursts (Chapter 6)

Our analysis of packet loss traces from Microsoft Teams shows that multiple packets are sent per
frame and, often, only some of them are lost (as previewed in Section 1.4). While as a first step
we used a heuristic-based design to demonstrate the viability and potential benefits of streaming
codes in real-world applications, a larger goal is to take these learnings back into the theoretical
model and improve it.

There are a few works [11, 56, 57] on theoretical streaming codes that send multiple packets
per frame. However, they apply to settings where the sizes of frames are fixed and bursts where
all consecutive packets are lost.

Chapter 6 generalizes the streaming model to accommodate sending one or more “transmitted
packets” for each encoded frame where only a fraction of the transmitted packets are lost in a
burst.We focus on the setting where τL = 0; recall that this regime is important to practical
videoconferencing applications because it ensures the smallest possible delay when there are no
losses. We employ a two-step methodology for designing streaming codes for the new model.
First, a building block construction to design a streaming code given any split of each frame into
(a) one component guaranteed to be recovered strictly before its playback deadline (i.e., within
(τ−1) time slots), and (b) another component guaranteed to be recovered at its playback deadline
(i.e., τ time slots later). Second, a policy for how to split each frame. This thesis uses a linear
program to determine a split in the offline setting. Combining the linear program for splitting
frames with the building block construction yields an approximately rate-optimal code. Online
constructions that come negligibly close to matching the rate of optimal offline constructions are
introduced for three parameter regimes: (a) Regime b1 where τ > 1 and bi = 1 for all i ∈ [t],
(b) Regime bτ where bi = τ for all i ∈ [t], and (c) Regime bτ+1 where bi > τ for all i ∈ [t]
and 1 ̸∈ L. For all parameter regimes outside of Regime b1, Regime bτ , and Regime bτ+1, we
establish a nontrivial gap between the optimal rate of online codes and offline codes. The result is
surprising because there is no such gap when the lossless-delay is 0 in the model without partial
losses (i.e., all data sent during a time slot is either lost or received) (see Chapter 3). Finally,
we employ a learning-augmented algorithm to determine the split to build an approximately

7

rate-optimal construction for the online setting where the sizes of future frames are unavailable
(Chapater 6.6).

The results of this section are published in [80].

1.6 Outline
The remainder of this document is summarized as follows:

• Chapter 2 introduces the new streaming model for variable-size frames, fundamental limits
on the rate for the new model, and designs the first online rate-optimal streaming code for
a parameter regime (i.e., Regime 2).

• Chapter 3 designs the first online rate-optimal streaming code for the most practically-
relevant broad parameter regime (i.e., Regime 1) and shows that no online streaming code
can match the optimal rate of offline ones in all settings outside of Regime 1 and Regime
2.

• Chapter 4 introduces the first online approximately rate-optimal streaming code for the
most practically-relevant parameter regime (i.e., Regime 3) where there are no online rate-
optimal streaming codes by designing a learning-augmented streaming code.

• Chapter 5 assesses a large corpus of traces from 1:1 video calls from Microsoft Teams and
shows that the losses are suitable for streaming codes. It then introduces Tambur, a new
communication scheme combining a new streaming code with machine learning. Finally,
it demonstrates the benefits of Tambur in an offline evaluation of traces from Teams and in
an online evaluation over a simulated network.

• Chapter 6 extends the streaming model to accommodate multiple packets per frame, only
some of which may be lost. It introduces new offline streaming codes that are negligibly
close to rate-optimal, as well as approximately-rate optimal learning-augmented streaming
codes. Finally, it introduces nearly rate-optimal online streaming codes for three param-
eter regimes and establishes that online schemes cannot match the optimal rate of offline
schemes for all other settings.

• Chapter 7 provides the conclusion and future works.

8

Chapter 2

Streaming codes for variable-size frames

In this chapter, we introduce a new model for streaming codes that captures the requirements of
live streaming applications that send sequences of frames of varying sizes, such as videoconfer-
encing. The variability in the sizes of frames was not present in prior works on streaming codes
(see Section 2.1). We formalize the new streaming model (Section 2.2) and find that the variabil-
ity in the sizes of messages leads to several unique challenges for streaming codes. Examples
include a new trade-off between the rate and the decoding delay under lossless transmission and
the achievable rate being a function of the sizes of frames. We examine the fundamental limits
on the rate in the best-case and worst-case (Section 2.3) and find a significant gap exists between
these to values for many parameter settings. Motivated by this gap, we then introduce algorithms
to compute upper and lower bounds on the optimal rate for any specific sequence of sizes of
frames (Section 2.4).

2.1 Background and related work
This section provides an overview of the background of streaming codes relevant to this work.
First, we will describe the previously studied streaming model in which frames have the same
fixed size. Second, we will detail a sliding-window adversarial channel model which captures
the worst-case packet loss patterns which occur in transmissions. The sliding-window adversarial
channel model will be used throughout this work. We discuss an upper bound on the rate imposed
by such a channel under the previously studied setting where all frames have the same size.
Third, we deconstruct a class of optimal code constructions for the previously studied fixed-size
streaming model. We highlight aspects of the construction that we leverage later in this work.
Fourth, we discuss alternative formulations of the streaming setting, which can form the basis
for potential future studies.

2.1.1 Background

The streaming model was first introduced by Martinian and Sundberg in [62]. Under this model,
at every time slot, i, the sender receives a frame, S[i], comprised of k symbols from a finite
field Fq for a natural number k. The sender transmits a channel packet, X[i], consisting of

9

n symbols from Fq (for a natural number n) over a packet-loss channel to a receiver. Either
X[i] is received, or a unique symbol (i.e., ∗) is received, reflecting a packet loss. Packet losses
can occur as isolated bursts of some maximal length, b, separated by guardspaces of successful
transmissions. Such loss patterns are useful representations of real-world settings where losses
occur as occasional bursts, as can be reflected by the Gilbert model [42]. In fact, burst losses
occur for various reasons, including persistent Wi-Fi interference and network congestion (when
applications overflow router buffers and cause correlated losses [41]).

The rate of the code is naturally defined as k
n

. The encoding is causal, meaning that the
channel packet X[i] can be any function of S[0], . . . , S[i] but may not depend on any future
frames. The real-time playback deadline for live communication is incorporated by requiring the
receiver to recover each frame, S[i], within a worst-case-delay of τ time slots. In other words,
the received channel packets of X[0], . . . , X[i+ τ] are sufficient to decode S[i].1 Martinian and
Sundberg presented an upper bound on the rate of τ

τ+b
as well as a rate-optimal code construction

for a large class of parameter settings. Later, Martinian and Trott in [63] designed a capacity-
achieving code construction for all parameter settings for this streaming model.

In certain real-world settings, burst (correlated) and isolated (uncorrelated) packet losses both
occur. These loss patterns are well-approximated by statistical models like the GE channel
model [31]. Yet, constructing coding schemes directly for such statistical models is believed
to be hard. An analytically tractable sliding-window adversarial channel model approximating
the worst-case conditions of models such as the GE model was introduced by Badr et al. in
[11]. The channel model is characterized using three parameters a, b, and w and is referred to as
C(a, b, w).2 For every w consecutive channel packets, one burst of no more than b consecutive
packets or up to a arbitrary packets may be lost.

A generalized streaming model incorporating a C(a, b, w) sliding-window adversarial chan-
nel was introduced by Badr et al. in [11]. The authors designed a near-optimal streaming code
construction for this streaming model. Badr et al. also showed that τ−a+1

τ+b−a+1
and w−a

w+b−a
are upper

bounds on the rate when the worst-case-delay is τ < w and τ ≥ w respectively. We will later
show that the argument used to prove these bounds extends to the setting where frames have
variable sizes.

Later, the above upper bound on the rate was attained by streaming code constructions de-
signed in the two independent concurrent works [35] and [49]. An alternative explicit capacity-
achieving streaming code for the model was presented by Dudzicz et al. in [30]. These con-
structions require an exponential field size for certain parameter settings. A capacity-achieving
streaming code and an explicit capacity-achieving streaming code with quadratic field size re-
quirements were concurrently designed by Krishnan et al. in [52] and Domanovitz et al. in [27].
The design of these streaming codes employs the technique of diagonal interleaving to convert
the problem of constructing a rate-optimal streaming code into the more tractable challenge of
designing a block code of the same rate. To design rate-optimal streaming codes for a worst-case-
delay of τ and a C(a, b, w) channel, one can design a block code which decodes each symbol
within τ symbols when either a burst of at most b consecutive symbols or up to a arbitrary sym-
bols are lost. The technique of first creating a block code and then applying interleaving has also

1In [62], the worst-case-delay parameter was called T rather than τ
2In [11], the parameters (a, b, w) were referred to as (N,B,W).

10

Figure 2.1: Interleaving example of a (5, 3) block code. The blue boxes labeled Sj[i] are symbols
of frame S[i], the red boxes labeled Pj[i] are parity symbols, and the black lines connect the boxes
which are part of the same block. The numbers under the lines indicate the time slots.

been employed in several other prior works, including [11, 38, 62, 63].
Later in this work, we will leverage existing block codes, such as from [27, 30, 35, 49, 52],

as a component of our proposed code construction. Specifically, we shall consider systematic
rate-optimal block codes presented in [27], whose field size requirement is quadratic in the delay
parameter τ . Any block code designed for the streaming model, including those presented in [30,
35, 49, 52], could likewise be used by our proposed code construction. We refer to any such code
as a Streaming Block Code (SBC). We now highlight a few relevant details for such codes, which
we will use later in this work. For any parameter setting, (τ, a, b), we denote any systematic (n, k)
SBC where n = (τ + b−a+1) and k = (τ −a+1) as ⟨s0, . . . , sτ−a, p0, . . . , pb−1⟩. Specifically,
s0, . . . , sτ−a are the (τ − a + 1) systematic symbols and p0, . . . , pb−1 are the b parity symbols.
For these codes, the ith symbol for i ∈ {0, . . . , n−1} is decoded using the first min(i+τ +1, n)
symbols in the presence of a single burst loss of b consecutive symbols or the loss of a arbitrary
symbols.

We now illustrate how to use interleaving to convert a block code into a streaming code. An
(n, k) systematic block code which maps k systematic code symbols, (s0, . . . , sk−1), into n code
symbols, (s0, . . . , sk−1, p0, . . . , pn−k−1), will be used. In the ith time slot, the sender receives
as input the frame S[i] = (S0[i], . . . , Sk−1[i]) comprising k symbols, and the channel packet
X[i] = (S0[i], . . . , Sk−1[i], P0[i−k], . . . , Pn−k−1[i−n+1]) is sent. The symbol Pn−k−1[i−n+1]
is the final symbol of a distinct block code (“block”) consisting of (S0[i − n + 1], . . . , Sk−1[i −
n+ k], P0[i− n+ 1], . . . , Pn−k−1[i− n+ 1]). This block contains a single symbol from each of
channel packets X[i − n + 1], . . . , X[i]. The channel packets X[i − n + 1], . . . , X[i − n + k]
contain S0[i− n+ 1], . . . , Sk−1[i− n+ k] respectively, and X[i− n+ k + 1], . . . , X[i] contain
P0[i−n+1], . . . , Pn−k−1[i−n+1] respectively. Next, we discuss the block which corresponds
to frame S[i]. This block comprises (a) symbols of frames S[i], . . . , S[i+ k − 1] sent in channel
packets X[i], . . . , X[i + k − 1], and (b) parity symbols, P0[i], . . . , Pn−k−1[i], sent in channel
packets X[i+ k], . . . , X[i+ n− 1]. Specifically, the jth position of the block consists of the jth
symbol of the corresponding channel packet for j ∈ {0, . . . , n− 1}. Hence, the block comprises

⟨S0[j], S1[j + 1], . . . , Sk−1[j + k − 1], P0[j], . . . , Pn−k−1[j]⟩.

11

We demonstrate an example of converting a block code into a streaming code with diagonal
interleaving for a (5, 3) block code in Figure 2.1.

During time slot i, let i′ = (i− k + 1). The block code

⟨S0[i
′], . . . , Sk−1[i], P0[i

′], . . . , Pn−k−1[i
′]⟩

is computed. The parity symbols

(P0[i
′], . . . , Pn−k−1[i

′])

are defined before they are sent in channel packets X[i + 1], . . . , X[i + n − k] respectively.
Consequently, during time slot i, the each value Pj[l] for j ∈ {0, . . . , n − k − 1} is accessible
for l ≤ (i− k + 1), since it was defined during time slot (l + k − 1) ≤ i. Finally to handle edge
conditions, for any z < 0 and j ∈ {0, . . . , k−1}, Sj[z] is defined to be an arbitrary fixed symbol.

2.1.2 Other related work
Several other variants of the streaming model have been studied in the literature. We briefly
discuss them below for the sake of completeness. Most of these models involve frames having
fixed sizes. Under a streaming model with multiplexing, a sender receives two streams of frames
as input with two different decoding delays for transmission over a burst-only channel [12, 36].
Under another model, a sender transmits a stream of frames to two different receivers over two
different burst-only channels subject to two different decoding delays [7, 9]. Another variant of
the streaming model includes unequal error protection wherein all symbols from each frame must
be recovered in the event of short bursts, but only certain symbols need to be recovered in the
presence of longer bursts [44]. Another setting considers average rather than worst-case-delay
for decoding [3]. Various other streaming models incorporate multiple channel uses between
every frame [11, 56, 57]. Another variation of the streaming model stipulates partial recovery of
certain loss patterns wherein only some of the frames are decoded by their deadlines [8]. The
setting of streaming over multi-node relay networks has been studied in several recent works [28,
37, 53]. The notion of two distinct decoding delays has also arisen in the context of VoIP in [13],
which introduces codes with a shorter delay to decode a few random packet losses than that of
recovering a longer burst of packet losses. A different streaming model formulation considers a
channel which can induce multiple burst losses within the worst-case-delay [58]. Diverging from
the above models, another streaming model considers (1) high and low priority frames, each with
a (potentially different) fixed size, which occur in a fixed periodic manner, (2) channel packets of
a fixed size, and (3) unequal error protection [85]. A formal study of incorporating frames with
arbitrary variable sizes in these models is outside of the scope of this thesis and is a potential
avenue for future work.

2.2 A model for streaming codes with frames of variable sizes
The streaming model discussed in Chapter 1 will now be generalized to incorporate frames of
variable sizes. The variability in the sizes of the frames induces a new trade-off between the

12

optimal rate and the decoding delay under a lossless transmission. A new delay parameter will
be introduced to the model to capture this trade-off. A new definition for the rate of a code is
included to reflect the varying sizes of the frames and channel packets.

Under the proposed streaming model, during the ith time slot the sender receives a frame,
S[i] = (S0[i], . . . , Ski−1[i]). The frame consists of ki symbols drawn uniformly at random
from a finite field, Fq, where ki is an arbitrary non-negative integer. A channel packet, X[i] =
(X0[i], . . . , Xni−1[i]) ∈ Fni

q , is transmitted to the receiver, where ni is an arbitrary non-negative
integer. This deviates from the prior models (such as in [11, 27, 30, 35, 49, 52, 62, 63]) where
each |S[i]| = k and |X[i]| = n for some fixed positive integers k and n. The channel packet X[i]
is a function of the current and previous frames (i.e., X[i] = Enc (⟨S[j] | j ∈ {0, . . . , i)}⟩)).
Encoding is not a function of the symbols of future frames (or their sizes), as the sender does not
have access to this information.

The channel packet X[i] is transmitted over a lossy channel, and the receiver obtains Y [i] ∈
{X[i], ∗}, where ∗ denotes a dropped packet. The lossy channel is denoted C(b, τ) and introduces
bursts of length at most b followed by guardspaces of length at least τ .

Due to the real-time playback deadline, the receiver must decode S[i] within τ time slots. We
refer to τ as the “worst-case-delay” parameter and the requirement that S[i] be decoded by time
slot (i+ τ) as the “worst-case-delay constraint.” More formally, the receiver decodes S[i] as

S[i] = Dec
(
⟨S[j] | j ∈ {i− τ, . . . , i− 1}⟩,

⟨Y [j] | j ∈ {i, . . . , i+ τ}⟩, ⟨kj | j ∈ {i, . . . , i+ τ ′}⟩
)

where τ ′ ≤ τ is the largest value such that X[i + τ ′] has been received (i.e., Y [i + τ ′] =
X[i + τ ′]). In other words, the receiver decodes frame S[i] using the (a) previously-decoded τ
frames, (S[i−τ], . . . , S[i−1]), (b) already received channel packets among (X[i], . . . , X[i+τ]),
and (c) sizes of up to (τ+1) of the frames (S[i], . . . , S[i+τ]) which may not have been decoded.
In order to inform the receiver about (c) irrespective of which channel packets are lost, the sender
adds the sizes of the current frame and previous b frames to a small header of each channel
packet. The reason that the C(b, τ) channel is used is that a streaming code that recovers all
frames within the worst-case-delay over the C(b, τ ′) channel for τ ′ > τ recovers all lost bursts
within τ time slots. Thus, such a streaming code will also satisfy the worst-case-delay over the
C(b, τ) channel. The guardspaces are relaxed to only be of length at least τ .

Under the previously studied model, the rate is k
n

. But k
n

is not well-defined in the proposed
model. Accordingly, we introduce a suitable definition of rate for the setting of frames of variable
size. To do so, we limit our attention to finite-length sequences of frames. For an arbitrary non-
negative integer, t, consider an arbitrary sequence of t frames, S[0], S[1], . . . , S[t]. We refer
to the corresponding sequence k0, . . . , kt as the “frame-size sequence.” The rate for any code
construction is defined as the ratio of the number of symbols of all frames to the total number of
transmitted symbols,

Rt =

∑t
i=0 ki∑t
i=0 ni

. (2.1)

For convenience of notation, we use the convention that t ≥ 4τ and the sizes of each of the first
and final 2τ frame is 0 (i.e., k0 = 0, . . . , k2τ−1 = 0, kt−2τ+1 = 0, . . . , kt = 0).3 This convention

3Unless otherwise indicated.

13

can be met by prepending and appending 2τ frames of size 0 to any sequence of frames to ensure
that it meets this convention without altering the rate.

The setting in which frames have variable sizes differs from where frames all have the same
fixed size in the following critical respect. When the sizes of the frames and channel packets
are fixed, there exists an optimal rate code construction in which each frame, S[i], is sent as a
part of the corresponding channel packet, X[i] ([30, 35, 49, 52]). In other words, there are rate-
optimal coding schemes where each frame S[i] can be decoded without any delay under lossless
transmission. However, this is no longer true when the sizes of frames can vary.

When the frames have variable sizes, distributing symbols of frames over multiple channel
packets can lead to a higher rate than sending each frame within its corresponding channel packet.
We illustrate this observation with a toy example. Consider the length (τ+1) sequence of frames
where the first frame S[0] is of size τ and the next τ frames have size 0. The C(b, τ) channel for
b = 1 could drop X[0]. Therefore, if S[0] were transmitted as part of channel packets X[0], at
least τ parity symbols would need to be sent in channel packets X[1], . . . , X[τ] to decode S[0]
within the worst-case-delay of τ time slots. The rate for such a scheme is at most 1

2
. Alternatively,

the symbols of frame S[0] could be transmitted evenly over X[0], . . . , X[τ − 1], and a parity of
the previous τ channel packets sent in X[τ] (i.e., X[τ] =

∑τ−1
i=0 X[i]). Such a scheme would

have a rate of τ
τ+1

while satisfying the worst-case-delay constraint.
As shown above, under the setting where frames have variable sizes, distributing the symbols

of a frame over multiple channel packets can lead to a higher rate. However, doing so will delay
decoding the frame when there are no losses. Thus, the variability in the sizes of the frames
induces a new trade-off between the rate of the code and decoding delay when all channel packets
are received. We incorporate this new trade-off into our model via a new parameter which we
call the lossless-delay, τL. The receiver must be able to decode every frame, S[i], using channel
packets X[0], . . . , X[i+ τL] if they are all received. In other words,

S[i] = Dec(L)
(〈
X[j], kj | j ∈ {0, . . . , i+ τL}

〉)
.

The newly introduced parameter τL represents the tolerable decoding delay under lossless chan-
nel conditions, whereas τ reflects the worst-case delay in the presence of packet loss. The two
parameters (τL, τ) are relevant to settings where the transmission is lossless most of the time, and
the rare worst-case channel conditions are captured via the C(b, τ) channel. In such scenarios, a
live streaming application may occasionally tolerate a decoding delay of τ time slots but benefit
from the faster decoding of τL time slots most of the time.

Due to the worst-case-delay constraint, τ , for transmission over a C(b, τ) channel, each S[i]
must be decoded with X[0], . . . , X[i + τ − b] when X[i + τ − b + 1], . . . , X[i + τ] are lost.
Therefore, under a lossless transmission setting, each S[i] is recoverable from X[0], . . . , X[i +
τ − b]. Consequently, the parameter τL is at most (τ − b), leading to

0 ≤ τL ≤ (τ − b). (2.2)

Higher values of τL enable the symbols of the frames to be spread over more channel packets,
thereby increasing both the rate of the code and decoding delay under lossless transmission.
Moreover, if it were the case that b > τ , for any time slot, i, the channel packets X[i], . . . , X[i+τ]
could all be lost. As a result, it would be impossible to decode S[i] within a delay of τ , resulting

14

in a capacity of 0. Moreover, if b = 0, the channel is lossless, and the capacity is trivially 1.
Consequently, we restrict our attention to

1 ≤ b ≤ τ (2.3)

We will refer to input parameters (τ, b, τL) satisfying Equations 2.2 and 2.3 as valid throughout
this work.

2.3 General bounds on rate for streaming codes with variable-
size frames

This section discusses general upper and lower bounds on the rate of code constructions for
the proposed model. The bounds constitute the least upper bound and greatest lower bound for
arbitrary frame-size sequences. Later, Lemma 5 shows that the optimal rate depends on the
frame-size sequence and can vary over the entire range between the aforementioned lower and
upper bounds on the optimal rate.

2.3.1 General upper bound on the rate
The optimal rate for streaming codes that satisfy the worst-case-delay constraint τ over a C(b, τ)
channel in the setting where all frames have a fixed size is τ

τ+b
[62, 63]. Next, we show that

this quantity remains an upper bound on the rate applies under the proposed model with frames
of variable sizes by using a simple extension to the proof techniques used by Martinian and
Sundberg [62].
Lemma 1. For any valid inputs (τ, b, τL), for any streaming code which satisfies the worst-case-
delay constraint over the C(b, τ) channel, the rate is at most

R(U) =
τ

τ + b
. (2.4)

Proof sketch. In [62], Martinian and Sundberg show that any streaming code satisfying the
worst-case-delay constraint over a C(b, τ) channel must recover from any erasure channel which
periodically introduces a burst of length b followed by a guard space of length τ . Let CP,i be
such an erasure channel whose bursts each begin in positions ≡ i mod (τ + b), where i mod j
is defined for a non-negative integer i and positive integer j as the remainder of i divided by
j. Even when the sizes of channel packets vary, CP,0, CP,1, . . . , CP,(τ+b−1) erase on average b

τ+b

fraction of the transmitted symbols. Therefore, there is always some CP,i∗ that erases at least b
τ+b

fraction of the transmitted symbols. Consequently, the rate cannot exceed R(U). Thus, the upper
bound on the rate provided in [62] for fixed-size frame packets continues to hold for the model
with variable-size frames as well.

The rate R(U) is attained by the constructions presented in [62, 63] when the sizes of the
frames are fixed. Thus, R(U) is the smallest general upper bound on the rate of streaming codes
for arbitrary frame-size sequences.

15

2.3.2 General lower bound on rate

Next, we present a general lower bound on the rate. Each frame can always be encoded separately
(i.e., transmitted symbols corresponding to each frame are kept independent of all other frames)
for any frame-size sequence. The optimal rate of coding schemes encoding frames separately,
thus, serves as a lower bound on the optimal rate. Moreover, this bound is tight for certain
frame-size sequences and therefore is the greatest lower bound. For example, it is tight when the
worst-case-delay is τ , and each frame of positive size is followed by at least τ frames of size 0.
For such frame-size sequences, the sender must encode each frame separately.

Next, we will present a simple code construction with the best-possible rate among code con-
structions that encode each frame separately and identify its rate. For valid inputs (τ, a, b, w, τL),
the proposed code construction is called the “(τ, a, b, τL)-separate encoding scheme.” The scheme
is presented in two cases.

Case 1: τL < (a−1). In this case, since (τL+1) < a, all symbols used to decode a frame under
lossless transmission can be lost under lossy transmission. In addition, either (a−1−τL) arbitrary
channel packets may be lost, or the next (b− τL−1) channel packets may be lost. Consequently,
the rate is at most 0.5 in this case. We present the scheme first using a toy example and then in
detail.

Toy example. An example of the (7, 3, 5, 1)-separate encoding scheme is shown in Figure 2.2
for a frame S[i] = (S0[i], . . . , S5[i]). The blue boxes contain the symbols of S[i], while the
red boxes contain parity symbols for a systematic [14, 6] MDS code. The 6 symbols of S[i] are
transmitted evenly over X[i] and X[i + 1]. The 8 parity symbols are transmitted evenly over
X[i + 4], . . . , X[i + 7]. The lossless-delay constraint is satisfied, since S[i] is transmitted over
X[i] and X[i+1]. The worst-case-delay constraint is met, since for any burst of length 5, or any
3 arbitrary losses, enough symbols are received by time slot 7 to decode S[i] using properties of
the MDS code.

Detailed description. The symbols of S[i] are sent evenly over all channel packets within the
lossless-delay (i.e., X[i], . . . , X[i + τL]). The ki symbols corresponding to S[i] are transmitted
evenly over the final (τ − b + 1) packets by time slot (i + τ) to cover the case of a burst of
length b starting in time slot i. Parity symbols are sent over the remaining channel packets to
ensure at least ki symbols are received for a arbitrary losses. For convenience of notation, let
a′ = (τL + 2 + τ − b). The following terms are used

⟨η, η′⟩ =

〈
(τL + 1)(τ − b+ 1), if a ≤ a′

(τL + 1)(τ − b− τL + a)
〉〈

(τL + 1)(τ − b+ 1)(τ − a+ 1),(
(τL + 1)(τ − b+ 1)(τ − a+ 1)+ if a > a′

(τL + 1)(τ − b+ 1)(b− τL − 1)
)〉
.

(2.5)

We assume that η|ki.4 The frame is partitioned evenly into sets of η symbols. For each such set

4It suffices to pad S[i] with strictly fewer than η extra symbols, where η ≤ τ2 or η ≤ τ3 depending on whether
a ≤ (τL + 2 + τ − b). Typically, η ≪ ki.

16

Figure 2.2: The (7, 3, 5, 1)-separate encoding scheme is shown for a frame S[i] =
(S0[i], . . . , S5[i]). The symbols are spread evenly over channel packets X[i] and X[i+1], thereby
satisfying the lossless-delay constraint. Additional parity symbols (P0[i], . . . , P7[i]) of a [14, 6]
systematic MDS code are distributed evenly over channel packets X[i + 4], X[i + 5], X[i + 6],
and X[i+ 7]. This ensures that at least 6 out of (S0[i], . . . , S5[i], P0[i], . . . , P7[i]) are received in
the event of either a burst of length at most 5 losses or the loss of any 3 arbitrary channel packets.
Thus, S[i] is decoded within 7 time slots by properties of the MDS code.

• A [η + η′, η] systematic MDS code is applied, leading to symbols c0, . . . , cη+η′−1, where
the final η′ symbols are parity symbols.

• The symbols c0, . . . , cη−1 are evenly transmitted over X[i], . . . , X[i+ τL].
• The symbols cη, . . . , c2η−1 are evenly transmitted over X[i+ b], . . . , X[i+ τ].
• The symbols c2η, . . . , cη′ are sent evenly over X[i + j], . . . , X[i + b − 1], where j =
(τL + b− a+ 1) if a ≤ (τL + 2 + τ − b) and j = (τL + 1) otherwise.

In short, the scheme involves (a) sending S[i] over (τL+1) channel packets to satisfy the lossless-
delay constraint, (b) sending parity symbols to recover S[i] when X[i], . . . , X[i+ b− 1] are lost,
and (c) sending parity symbols to recover S[i] when both X[i], . . . , X[i + τL] and (a − τL − 1)
additional channel packets of X[i+ τL + 1], . . . , X[i+ τ] are lost.
Remark 1. The rate for the (τ, a, b, τL)-separate encoding scheme for case 1 is η

η′+η
. This follows

directly from the MDS code employed.
The field size requirement is at most that of a [η′ + η, η] Reed-Solomon code. If a ≤ (τL +

2 + τ − b), the requirement is at most (τL + 1)(2τ − 2b − τL + a + 1), which is no more than
2τa. Otherwise, the field size requirement is at most

(τL + 1)(τ − b+ 1)
(
2(τ − a+ 1) + (b− τL − 1)

)
,

which is no more than 3a2b.

Case 2 : τL ≥ (a − 1). In this case, τL is large enough that the symbols of S[i] can be
distributed over (τL + 1) ≥ a channel packets such that at most ki symbols are lost by making
use of a buffer of (b − a) channel packets in which no symbols are sent, as will be described
below. This approach leads to a rate of at least 0.5 in this case. We divide the presentation of
case 2 into two sub-cases.

17

Figure 2.3: The (7, 2, 3, 4)-separate encoding scheme is shown for a frame S[i] =
(S0[i], . . . , S3[i]). The symbols are spread evenly over channel packets X[i], X[i+ 1], X[i+ 3],
and X[i + 4]. Parity symbols (P0[i], P1[i]) of a systematic [6, 4] MDS code are spread evenly
over channel packets X[i + 6] and X[i + 7]. The lossless-delay constraint is satisfied, since the
symbols of S[i] are sent by time slot X[i+4]. At most 2 nonempty channel packets are lost with
a burst of length 3 or 2 arbitrary losses. Therefore, at least 4 of (S0[i], . . . , S3[i], P0[i], P1[i]) are
received, so S[i] is decoded by time slot (i+ 7).

Sub-case 1 : either ((τL + 1) mod b) ∈ {0} ∪ {a, . . . , b − 1} or ((τL + 1) mod b) (
⌊
τL+1

b

⌋
+

1) ≥ a.
Toy example. An example of the (7, 2, 3, 4)-separate encoding scheme is shown in Figure 2.3
for a frame S[i] = (S0[i], S1[i], S2[i], S3[i]). The parity symbols, P0[i], and P1[i], are formed
using a [6, 4] systematic MDS code. The 6 symbols, (S0[i], S1[i], S2[i], S3[i], P0[i], P1[i]) are
then periodically sent over time slots i through (i + 7) by transmitting one symbol for
each of two consecutive time slots followed by not transmitting any symbols for one time
slot. Specifically, S0[i], S1[i], S2[i], S3[i], P0[i], and P1[i] are sent over X[i], X[i + 1], X[i +
3], X[i+4], X[i+6], and X[i+7] respectively. The lossless-delay constraint is satisfied, as S[i]
is transmitted over X[i], . . . , X[i+4] where τL = 4. At least 4 symbols are received by time slot
(i+ 7). Hence, S[i] can be decoded by properties of the MDS code.
Detailed description. The symbols of S[i] are periodically spread over a channel packets fol-
lowed by no symbols being sent in a buffer of (b − a) channel packet until time slot (i + τL).
Afterward, a buffer of (b− a) channel packets are sent which do not include any symbols corre-
sponding to S[i]. Parity symbols are sent in the next a channel packets. A similar interleaving
approach with empty positions (i.e., buffers) was used in [50] and [75], albeit for the streaming
model with frames all having the same fixed size, where each frame is sent in its entirety as
part of the corresponding channel packet, and the parity symbols apply to multiple frames.5 For
convenience of notation, the following term is used

ζ =

(⌊
τL + 1

b

⌋
a+min ((τL + 1) mod b, a)

)
. (2.6)

We will assume that ζ|ki.6 The frame is partitioned into sets of ζ symbols. For each such set:
• A [ζ + a, ζ] systematic MDS code is applied, leading to symbols c0, . . . , cζ+a−1, where the

final a symbols are parity symbols.

5We developed the technique first independently, although we waited to publish it until after the other work was
published.

6It suffices to pad S[i] with up to (ζ − 1 ≤ τ) extra symbols—a quantity typically negligible compared to ki.

18

• For J = {j0, . . . , jζ−1} = {j | j ∈ {i, . . . , i + τL}, j mod b < (b − a)} and l ∈
{0, . . . , ζ − 1}, cl is transmitted in X[jl].

• cζ , . . . , cζ+a−1 are transmitted in X[i+ τL + b− a+ 1], . . . , X[i+ τL + b] respectively.
Remark 2. The rate for the (τ, a, b, τL)-separate encoding scheme for case 2 sub-case 1 is ζ

ζ+a
.

This follows directly from the MDS code employed.
The field size requirement is that of a [ζ + a, ζ] Reed-Solomon code. The requirement is at

most (ζ + a), which is no more than (τ + 1 + a).

Sub-case 2 : ((τL + 1) mod b) ∈ {1, . . . , a− 1} and ((τL + 1) mod b) (
⌊
τL+1

b

⌋
+1) < a. The

construction from sub-case 1 applies to this sub-case, but its rate does not attain the greatest lower
bound on the rate. The converse proof in sub-case 1 relies on the worst-case losses correspond-
ing to either (a0 a burst of consecutive losses over between ((τL + 1) mod b) and b consecutive
channel packets, or (b) a arbitrary losses corresponding to a set of ((τL + 1) mod b) (

⌊
τL+1

b

⌋
+1)

channel packets. However, in sub-case 2, both loss scenarios comprise fewer than a arbitrary
losses. Hence, the worst-case a arbitrary losses cannot be limited to just one of these two quan-
tities. In order to design a scheme that leads to the greatest lower bound for this sub-case,
we introduce a construction based on a simple integer program (IP) that reflects minimizing the
number of symbols sent by a coding scheme while satisfying the lossless-delay and worst-case-
delay constraints. The variables of the IP are n(c)

0 , . . . , n
(c)
τ , which denote the sizes of the (τ +1)

channel packets corresponding to the frame.

IP-based construction 1 Takes as input any valid parameters and ki and uses integer program-
ming to compute the number of symbols to be sent in the next (τ + 1) channel packets.

Input: Valid values for (τ, a, b, w, τL) and ki.
Minimize

∑τ
j=0 n

(c)
j subject to:

1. ∀j ∈ {0, . . . , τ}, n(c)
j ≥ 0

2.
(∑τL

j=0 n
(c)
j

)
− ki ≥ 0.

3. ∀l ∈ {0, . . . , τ}
(∑l−1

j=0 n
(c)
j

)
+
(∑τ

j=l+b n
(c)
j

)
− ki ≥ 0.

4. ∀I ⊆ {0, . . . , τ} such that |I| = a,
(∑

j∈{0,...,τ}\I n
(c)
j

)
− ki ≥ 0

Output: n
(∗)
i =

(∑τ
j=0 n

(c)
i

)
.

The constraints of the integer program reflect the requirements that (1) the size of each channel
packet is non-negative, (2) the lossless-delay constraint is met, (3) the worst-case-delay constraint
is met for bursts of at most b consecutive channel packets, and (4) the worst-case-delay constraint
is met for a arbitrary losses. The objective function reflects minimizing the total number of
symbols which are sent. Observe that n(∗)

i is the total number of symbols sent according to the
IP subroutine of IP-based construction 1. For a frame-size sequence k0, . . . , kt, let n(∗)

0 , . . . , n
(∗)
t

be the outputs of IP-based construction 1 applied to each of k0, . . . , kt. For each i where ki > 0,
a systematic [n

(∗)
i , ki] MDS code is applied to encode S[i] into c0, . . . , cn(∗)−1. The symbols are

distributed over channel packets X[i], . . . , X[i + τ] so that the number sent for each channel

19

packet X[j] is n
(c)
j . The construction is systematic, as the first ki symbols (i.e., S[i]) are sent

over X[i], . . . , X[i + τL]. The following terms will be used to express the rate of IP-based
construction 1

⟨k(∗), n(∗)⟩ =

〈
t∑

i=0

ki,

t∑
i=0

n
(∗)
i

〉
. (2.7)

Remark 3. The rate for the (τ, a, b, τL)-separate encoding scheme for frame-size sequence
k0, . . . , kt for case 2 sub-case 2 is k(∗)

n(∗) . This follows directly from the MDS code employed.
Finally, we note that IP-based construction 1 can be used for any parameter settings. We

provide explicit constructions for case 1 and case 2 sub-case 1 because IP-based construction 1
is not explicit.

Next, we use the (τ, a, b, τL)-separate encoding scheme described above to provide a general
lower bound on the rate. Before doing so, we must verify that the (τ, a, b, τL)-separate encoding
scheme satisfies the lossless-delay constraint and worst-case-delay constraint over the C(a, b, w)
channel for any valid parameters (τ, a, b, τL) and sequence of frames. This is done below.
Lemma 2. For any valid inputs (τ, a, b, w, τL) and any sequence of frames S[0], . . . , S[t], the
(τ, a, b, τL)-separate encoding scheme satisfies the lossless-delay constraint τL and the worst-
case-delay constraint τ over the C(a, b, w) channel.

Proof sketch. The proof of Lemma 2 is included in Appendix 2.5.2.

For any valid inputs (τ, b, τL), as τL increases, the quantity R(L), is monotonically non-
decreasing and approaches the upper bound on the rate of R(U).
Corollary 1. Whenever τL = (τ − b) and b|τ , the rate of the (τ, b, τL)-separate encoding scheme
matches the least upper bound on the rate of R(U) = τ

τ+b
= R(L).

Whenever τL = (τ − b) and b|τ , the (τ, b, τL)-separate encoding scheme is also analogous to
the scheme presented in [50] for the streaming model with frames of the same fixed size.

The rate of the (τ, a, b, τL)-separate encoding scheme constitutes a lower bound on the opti-
mal rate. This quantity is summarized in Lemma 3.
Lemma 3. For any valid inputs (τ, a, b, w, τL), the optimal rate for streaming codes that satisfy
the lossless-delay constraint and worst-case-delay constraint over the C(a, b, w) channel for an
arbitrary frame-size sequence is at least R(L) =

η
η+η′

if τL < a− 1
ζ

ζ+a
if τL ≥ (a− 1) and ((τL + 1) mod b) ∈
{0} ∪ {a, . . . , b− 1} or τL ≥ (a− 1) and
((τL + 1) mod b) (

⌊
τL+1

b

⌋
+ 1) ≥ a

k(∗)

n(∗) if τL ≥ (a− 1) and
0 < ((τL + 1) mod b) < a and
((τL + 1) mod b) (

⌊
τL+1

b

⌋
+ 1) < a.

(2.8)

Proof. The (τ, a, b, τL)-separate encoding scheme exhibits this rate. This follows directly from
the parameters of the MDS code used in each case, as is noted in Remark 1, Remark 2, and

20

Remark 3. The lossless-delay constraint and worst-case-delay constraint over the channel model
are also satisfied by the code construction, as was shown in Lemma 2.

For any valid inputs (τ, a, b, w, τL), as τL increases, the quantity R(L), is monotonically non-
decreasing and approaches the upper bound on the rate of R(U). Whenever τL = (τ − b) and
either b = a or ((τ + 1) mod b) = a, the least upper bound on the rate of R(U) is equal to the
greatest lower bound on the optimal rate of R(L). For such parameter settings, the rate of the
(τ, a, b, τL)-separate encoding scheme matches the least upper bound on the rate of R(U). In such
settings, the (τ, a, b, τL)-separate encoding scheme is also analogous to the scheme presented in
[50] for the streaming model with frames of the same fixed size.

We show in Lemma 4 that R(L) is the greatest lower bound on the optimal rate for arbitrary
frame-size sequences.
Lemma 4. For any valid inputs (τ, a, b, w, τL), R(L) is the greatest lower bound on the opti-
mal rate for arbitrary frame-size sequences for streaming codes that satisfy the lossless-delay
constraint and worst-case-delay constraint over the C(a, b, w) channel.

Proof sketch. The proof of Lemma 4 is included in Appendix 2.5.1.

2.4 Bounds on rate for specific frame-size sequences
In the proposed model for streaming codes with frame packets of varying sizes, the optimal rate
for any transmission depends on the specific frame-size sequence. The optimal rate can be as
large as R(U) and as small as R(L), as was shown in Section 2.3. These general bounds are
agnostic to the sizes of the frames and apply to an arbitrary frame-size sequences. Next, we
develop a deeper understanding for the optimal rate of a streaming code for any specific frame-
size sequence. Recall that we refer to the setting in which the sender and receiver have access
to the complete frame-size sequence as the offline setting. We consider the offline setting for the
rest of this Section 2.4. This differs from the setting considered in the rest of this work (i.e., the
online setting) where the sender and receiver during time slot i do not have access to ki+1, . . . , kt.
The optimal rate for the online setting for any specific frame-size sequence is not well-defined
because there exists a coding scheme which attains the best possible rate, which is that of the
offline setting. However, the rate of that coding scheme may not be optimal for other frame-size
sequences, as is discussed in detail later in Chapter 3.

First, we show that the optimal rates for various frame-size sequences can take values over
the entire range of [R(L), R(U)]. Naturally, the general upper and lower bounds on the rate, i.e.,
R(U) and R(L), are inherently loose for many frame-size sequences, motivating the need for
tighter bounds. We then present an algorithm to compute an upper bound on the rate for linear
encoding schemes by imposing the lossless-delay constraint and worst-case-delay constraint over
the channel model for each frame. We then present an algorithm to compute the best possible rate
for a coding scheme that combines block codes such as those presented in [27, 30, 35, 49, 52]
with the separate encoding scheme presented in Section 2.3.2. The so-computed rate serves as a
lower bound on the optimal rate. Finally, we empirically evaluate these upper and lower bounds
on the optimal rate. The empirical evaluation demonstrates that the gap between the lower and

21

upper bounds computed by the two aforementioned algorithms is a significant improvement over
the gap between the bounds agnostic to the size sequence.
Lemma 5. For any valid inputs (τ, b, τL), the set of optimal rates for coding schemes that satisfy
the lossless-delay constraint and worst-case-delay constraint over any C(b, τ) channel over all
possible frame-size sequences are dense in

[
R(L), R(U)

]
.

Proof. Let v ∈
[
R(L), R(U)

]
, and ϵ > 0 arbitrarily. We will show that there is a frame-size

sequence for which the optimal rate is within ϵ of v. Let p, r ∈ Z+ ∪ {0} be chosen so that the
quantity R(p,r) = p+r

p

R(L)
+ r

R(U)
satisfies |R(p,r) − v| < ϵ. When v ∈

(
R(L), R(U)

)
, the existence of

such p and r follows from the fact that R(p,r) → v in the limit as p
r
→ R(L)v−R(L)R(U)

R(L)R(U)−R(U)v
. When

v = R(L) or v = R(U) it suffices to choose (r = 0, p > 0) and (p = 0, r > 0) respectively. Let d
be the smallest positive integer for which d

R(L) and d
R(U) are both integers. Consider the following

length (3τ + 1) frame-size sequence: k0 = pd, kj =
rd
τ

for j ∈ {τ + 1, . . . , 2τ}, and kj = 0 for
j ∈ {1, . . . , τ} ∪ {2τ + 1, . . . , 3τ}.

The proof follows from verifying that the optimal rate for this frame-size sequence is at most
R(p,r) and presenting a coding scheme with rate R(p,r), which we will show below.
Upper bound. The lossless-delay constraint and worst-case-delay constraint over the C(b, τ)
channel must be satisfied for frame S[0]. This necessitates that at least pd

R(L) symbols are sent by
time slot τ (Lemma 4). The lossless-delay constraint and worst-case-delay constraint over the
C(b, τ) channel must be met for the rd symbols corresponding to the remaining τ frames. Thus,
at least rd

R(U) additional symbols must be sent due to the upper bound on the rate of R(U). A total
of at least pd

R(L) +
rd

R(U) symbols are sent, leading to an upper bound on the rate of R(p,r).
Achievability. Applying the (τ, b, τL)-separate encoding scheme to frame S[0] involves trans-
mitting pd

R(L) symbol. The systematic [τ + b, τ] block code, presented in [27] (or alternatively
the block codes from [30, 35, 49, 52]), can be applied to frames S[τ + 1], . . . , S[2τ] by send-
ing each frame in the corresponding channel packet. Afterward, the channel packets X[2τ +
1], . . . , X[2τ + b] are defined to each contain rd

τ
parity symbols of the block code. The lossless-

delay constraint and worst-case-delay constraint over the C(b, τ) channel are met by the defini-
tion of the (τ, b, τL)-separate encoding scheme and block codes. This code construction has a
rate of R(p,r).

Hence, the quantities R(L) and R(U) are insufficient for understanding the best possible rate
for a specific frame-size sequence. As such, Lemma 5 motivates the need to compute upper
and lower bounds on the optimal rate for any specific frame-size sequence that can more tightly
bound the optimal rate. A desirable property for doing so is that the upper and lower bounds on
rate can likewise range from R(L) to R(U). We introduce algorithms to compute upper and lower
bounds on the optimal rate for any specific frame-size sequence in Sections 2.4.1 and 2.4.2 to
capture this property.

2.4.1 An upper bound on the optimal rate for specific frame-size sequences.
We now present Algorithm 1, which computes an upper bound on the rate for linear encoding
schemes for any given frame-size sequence by imposing the lossless-delay constraint and worst-

22

case-delay constraint over the channel model for each frame. To do so, Algorithm 1 will make
use of an integer program by converting the lossless-delay and worst-case-delay constraints into
constraints for the IP. In order to avoid confusion over the term “constraint,” we refer to con-
straints of the IP as “constraints” and the lossless-delay and worst-case-delay constraints as “re-
quirements” in this section and Section 2.4.2. Under Algorithm 1, (1) the lossless-delay and
worst-case-delay requirements are converted into constraints for an integer program (IP) with a
simple minimization objective function, (2) its solution is computed, and (3) its solution is con-
verted into an upper bound on the optimal rate. In Section 2.4.3, we will show empirically that
the upper bound on the optimal rate determined by Algorithm 1 can be significantly lower than
R(U).

Consider any frame-size sequence of an arbitrary length t. Consider any valid inputs (τ, b, τL).
We first model the sizes of the frame and channel packets, and the associated parameters will
serve as the variables for the IP. Each channel packet, X[i], for i ∈ {0, . . . , t} comprises
(X(0)[i], X(1)[i]). Under a lossless transmission, X(0)[0], . . . , X(0)[i + τL] are sufficient to re-
cover frames sS[0], . . . , S[i]. In contrast, X(1)[0], . . . , X(1)[i + τL] are used for decoding only
under a lossy transmission. The linear equations corresponding to the symbols of X(1)[i] are in
the span of the linear equations corresponding to the symbols of ⟨X(0)[j] | j ≤ i⟩. Each quantity
|X(1)[i]| will be a variable of the IP, whereas there will be (τL + 1) variables corresponding to
X(0)[i] defined shortly. The details of how (X(0)[i], X(1)[i]) are defined are only used in the proof
of Theorem 1 and can be found in the Appendix.

The symbols of X(0)[i] are partitioned into X
(0)
l [i] for l ∈ {i, . . . , i − τL} for convenience

of notation, where each quantity |X(0)
l [i]| will be a variable of the IP. Under a lossless trans-

mission, the symbols sent in channel packet X[j] for j ∈ {0, . . . , τL} used to decode S[0]

are called X
(0)
0 [j]. Similarly, for i = 1, . . . , t, the symbols sent in channel packet X[j] for

j ∈ {i, . . . , i+τL} that are used to decode S[i] under lossless transmission are labeled as X(0)
i [j].

Thus, X(0)[i] = ⟨X(0)
j [i]j ∈ {i − τL, . . . , i}⟩, and hence,

∑i
j=i−τL

|X(0)
j [i]| = |X(0)[i]| for any

i ∈ {0, . . . , t}.7
We next outline how the constraints for the IP reflect the worst-case-delay and lossless-delay

requirements of the streaming model. For ease of presentation, in this paragraph, we assume
that the coding scheme is systematic. Under a systematic coding scheme, the quantity X

(0)
j [i]

for i ∈ {0, . . . , t}, j ∈ {i − τL, . . . , i} corresponds to |X(0)
j [i]| distinct symbols of S[j]. Each

of |X(0)
j [i]| and |X(1)[i]| are non-negative integers to reflect that each channel packet consists

of some non-negative quantity of symbols corresponding to frame S[j] for j ∈ {i − τL, . . . , i},
along with some non-negative number of parity symbols (constraints #1 and #2 in Algorithm 1).
The lossless-delay requirement is imposed through requiring that ki symbols for frame S[i], for
each i ∈ {0, . . . , t− τ}, be transmitted over X[i], . . . , X[i+ τL] (constraint #3).8 In the proof of
Lemma 1, it was shown that satisfying the worst-case-delay requirement over any C(b, τ) chan-

7For convenience of notation, the edge conditions are handled by modeling S[−τL], . . . , S[−1], S[t +

1], . . . , S[t + τ] as frames of size 0. Furthermore, variables |X(0)
j [i]| = 0 whenever at least one of i, j is either

negative or i exceeds t. Similarly, |X(1)[i]| = 0 whenever i is negative or exceeds t.
8The final τ frames are of size 0 and, therefore, no lossless-delay requirement needs to be imposed. For i < 0 or

j < 0, as well as i > t and j ∈ {0, . . . , τL}, |X(0)
j [i]| = 0 is defined only for edge conditions.

23

Figure 2.4: An example of imposing constraint #4 (in Algorithm 1) for j ∈ {i, . . . , i + b − 2}.
The quantities iL, ib, and jτ represent (i − τL), (i + b − 1), and (j + τ) respectively. The gray
boxes (time slots i, . . . , ib) are lost in a burst of channel packets X[i], . . . , X[ib]. The symbols in
the gray boxes with thick blue outlines must be recoverable using the symbols inside boxes with
double red outlines. This requirement allows for the relaxation that the symbols inside boxes
with purple dashed outlines are treated as received.

nel necessitates satisfying the worst-case-delay requirement over all channels which periodically
drop b channel packets and allow τ successful transmissions. This implies that for each burst
of length b starting in time slot i ∈ {0, . . . , t}, S[j], for j ∈ {i − τL, . . . , i + b − 1}, must be
decoded by time slot (i+τ+b−1), while the worst-case-delay requirement necessitates that S[j]
be decoded by (j + τ) (constraint # 4). A toy example of constraint #4 is shown in Figure 2.4.
Under constraint #4, for any considered burst of length b beginning in time slot i ∈ {0, . . . , t−b}
and terminating in time slot i′ ∈ {i, . . . , t}, the following relaxation of the worst-case-delay re-
quirement is imposed. For each frame S[j] ∈ {S[i− τL], . . . , S[i

′]}, S[i− τL], . . . , S[j] must be
decoded by time slot (j+ τ). This relaxation is more restrictive than the relaxation which allows
all lost frames to be decoded within τ time slots of the final lost frame. Finally, we consider the
relaxation that each X

(0)
j′ [i′] is received even if X[i′] is lost for j′ > j.

The objective function is to minimize the sum of all variables. The summation constitutes
a lower bound on the number of transmitted symbols. The solution is easily converted into an
upper bound on the rate since the total number of symbols of the frames is fixed.

We now present Algorithm 1.
In Theorem 1, we verify that the output of Algorithm 1 is an upper bound on the rate.

Theorem 1. For any valid inputs (τ, b, τL) and any frame-size sequence k0 . . . kt, the value com-
puted by Algorithm 1 is an upper bound on the rate of streaming codes that satisfy the lossless-
delay requirement and worst-case-delay requirement over the C(b, τ) channel while employing

24

Algorithm 1 Takes as input any valid parameters and frame-size sequence and uses integer
programming to compute an upper bound on the rate of streaming codes with linear encoding
schemes for the input frame-size sequence.

Input: Valid values for (τ, b, τL) and frame-size sequence k0, . . . , kt.
Minimize

∑t+τ
i=0

(
|X(1)[i]|+

∑i
j=i−τL

|X(0)
j [i]|

)
subject to:

1. ∀i ∈ {0, . . . , t−τ}, j ∈ {i−τL, . . . , i}, |X(0)
j [i]| ≥ 0 and |X(0)

j′ [i′]| = 0 when i′ < 0, i′ > t,
or j′ < 0.

2. ∀i ∈ {0, . . . , t+ τ}, |X(1)[i]| ≥ 0.

3. ∀i ∈ {0, . . . , t− τ},
∑τL

j=0 |X
(0)
i [i+ j]| ≥ ki and

∑τL
j=0 |X

(0)
j [i+ j]| ≤ ki.

4. ∀i ∈ {0, . . . , t− b+ 1},∀j ∈ {i− τL, . . . , i+ b− 1}

min(j+τ,i+b+τ−1)∑
z=i+b

|X(1)[z]| −
j∑

l=i−τL

kl+

j∑
l=i−τL

∑
z∈{l,...,l+τL}\{i,...,i+b−1}}

|X(0)
l [z]| ≥ 0.

Output:
∑t

i=0 ki∑t+τ
i=0

(
|X(1)[i]|+

∑i
j=i−τL

|X(0)
j [i]|

) .

linear encoding.

Proof sketch. Follows from the high-level description presented above. The full details are
shown in Appendix 2.5.3.

Remark 4. The value computed by Algorithm 1 is also an upper bound on the rate for streaming
code constructions in an online setting since the offline setting involves providing the sender and
receiver additional information not available in the online setting.

Next, we show that the outputs of Algorithm 1 can tightly bound the optimal rate for various
frame-size sequences with values ranging from R(L) to R(U). Recall from Lemma 5 that this is a
desired property because the optimal rate can likewise range from R(L) to R(U). For any frame-
size sequence, (k0, . . . , kt), let Alg(1)τ,b,τL

(k0, . . . , kt) and Optτ,b,τL(k0, . . . , kt) denote the output
of Algorithm 1 and the optimal rate respectively.
Lemma 6. For any valid parameters (τ, b, τL), for all ϵ > 0 and v ∈ [R(L), R(U)], there exists a
sequence of frame packet sizes (k0, . . . , kt) such that Alg(1)τ,b,τL

(k0, . . . , kt) = Optτ,b,τL(k0, . . . , kt)

and |Alg(1)τ,b,τL
(k0, . . . , kt)− v| < ϵ.

Proof. We now introduce a frame-size sequence for which the optimal is within ϵ of v. Let p, r ∈
Z+ ∪{0} be chosen so that the quantity R(p,r) = p+r

p

R(L)
+ r

R(U)
obeys the inequality |R(p,r)− v| < ϵ.

25

Let d be the smallest positive integer such that d
R(L) and d

R(U) are integers. Consider the frame-
size sequence k0 = pd, kj =

rd
τ

for j ∈ {τ + 1, . . . , 2τ}, and kj = 0 for j ∈ {1, . . . , τ} ∪ {2τ +
1, . . . , 3τ}.

The code construction presented in the proof of Lemma 5 satisfies lossless-delay require-
ment and worst-case-delay requirement over the C(b, τ) channel and has rate R(p,r). Hence, the
optimal rate is at least R(p,r).

The lossless-delay requirement and worst-case-delay requirement over the C(b, τ) channel
are both imposed under Algorithm 1. As shown in the proof of Lemma 4, these requirements are
sufficient to show that at least pd

R(L) symbols must be sent by time slot τ due to frame S[0]. Recall
from Section 2.3 that the rate is upper bounded by R(U) = τ

τ+b
. This holds because all frames

are decoded for any lossy channels CP,i for i ∈ {0, . . . , τ + b− 1} consisting of bursts of length
b starting in positions ≡ i mod (τ + b). Furthermore, at least one such channel drops at least
b

τ+b
fraction of the transmitted symbols. Similarly, one can show that at least one such channel

drops at least b
τ+b

fraction of the symbols sent strictly after time slot τ . All such periodic packet
loss channels CP,i are accounted for under Algorithm 1, due to constraint #4. Hence, the output
of Algorithm 1 reflects that at least rd

R(U) additional symbols are sent strictly after time slot τ . The
output of Algorithm 1 is, thus, at most R(p,r).

The value computed by Algorithm 1 is an upper bound on the optimal rate, which is at least
R(p,r). Therefore, Algorithm 1 must output R(p,r); this is a tight upper bound on the rate for the
frame-size sequence, and it is within ϵ of v.

The value computed by Algorithm 1 is an upper bound on the rate, but the algorithm can be
computationally intensive. We now discuss modifications to the algorithm that trade off tightness
for runtime.

There is a simple linear program (LP) relaxation of Algorithm 1 which uses non-negative
real-valued variables |X(0)

i [j]| and |X(1)[i]| rather than integral ones. A solution to this LP can
be converted into an upper bound on the rate by setting each variable to be the floor of its previous
value. The conversion changes the size of each channel packet by at most (τL + 2) which, in
practice, is three orders of magnitude less than the average size of the frames. Finally, Lemma 6
would likewise apply to the LP relaxation of Algorithm 1.

Remark 5. Modifying Algorithm 1 to solve an LP relaxation of the underlying IP has a negligible
impact on its output.

It is simple to analyze the runtime of the modified version of Algorithm 1 that uses an LP
relaxation of the IP. For any valid inputs (τ, b, τL) and frame-size sequence k0 . . . kt, the total
number of combined constraints in Algorithm 1 is at most (b + 2τL + 2)t. Consequently, Algo-
rithm 1 with the LP relaxation of the IP runs in poly(τt) time.

Remark 6. Modifying Algorithm 1 to use an LP relaxation of the underlying IP results in a
polynomial-time algorithm. Its output is less than or equal to R(U).

26

2.4.2 A lower bound on the optimal rate for specific frame-size sequences

We now present Algorithm 2, which computes a lower bound on the optimal rate for offline
streaming codes that satisfy the lossless-delay constraint and worst-case-delay constraint over the
C(b, τ) channel. Specifically, under Algorithm 2, an integer program with a simple minimization
function is used to determine the minimum number of symbols which need to be transmitted
using a combination of two schemes. The solution to this integer program is then converted into
a lower bound on the optimal rate. The values computed by Algorithm 2 over various frame-
size sequences can vary over [R(L), R(U)]. We will later see in Section 2.4.3 that the empirically
computed lower bound on the optimal rate determined by Algorithm 2 can be significantly tighter
than that of R(L). Specifically, the gap between the output of Algorithm 2 and Algorithm 1
is shown to be small in Section 2.4.3, highlighting the utility of Algorithm 1 empirically. A
high-rate offline construction (e.g., Algorithm 2) is of interest because it lays the groundwork
for designing high-rate online constructions. For example, in Chapter 4, we will convert an
offline rate-optimal construction into an online approximately rate-optimal online construction.
A detailed discussion on the difference between the best possible rate for online and offline
streaming codes is later presented in Chapter 3. We first provide an overview of Algorithm 2
before discussing its technical details. Finally, we consider the accuracy-runtime trade-off for
the LP relaxation of the algorithm.

Similar to Section 2.4.1, we refer to constraints of an IP as “constraints” and the lossless-
delay and worst-case-delay constraints as “requirements” for convenience of notation. Each
symbol of each frame, S[i], is encoded either using the (τ, b, τL)-separate encoding scheme or
as part of a block of the systematic rate-optimal [τ + b, τ] block codes presented in [27]. These
[τ + b, τ] block codes have a field size requirement that is quadratic in the delay parameter τ .
When any b consecutive symbols are lost, they can be recovered within τ additional symbols of
the block code. Any block code designed for the streaming model, including those presented in
[30, 35, 49, 52], could likewise be used and is referred to as a Streaming Block Code (SBC). The
number of symbols corresponding to S[i] encoded using the (τ, b, τL)-separate encoding scheme
is denoted ei. For j ∈ {i, . . . , i + τL}, the variable ki,j will represent the number symbols
corresponding to S[i] sent in X[j] within blocks of the SBC. Finally, pi will reflect the number
of blocks of the SBC whose first position occurs in channel packet X[i].

The lossless-delay and worst-case-delay requirements are satisfied for symbols of frames
encoded using the (τ, b, τL)-separate encoding scheme via the properties of the (τ, b, τL)-separate
encoding scheme detailed earlier. There must be a non-negative quantity of symbols encoded in
this manner (constraint #1 in Algorithm 2). The number of symbols corresponding to frame
S[i] sent in channel packet j is non-negative (constraint #2). Similarly, the number of blocks
corresponding to each frame is non-negative (constraint #3). All symbols of frames not encoded
using the (τ, b, τL)-separate encoding scheme must be decoded within delay τL under lossless
transmission (constraint #4). Finally, under the two considered code constructions, all symbols
of frames which are not encoded using the (τ, b, τL)-separate encoding scheme must be encoded
via a block of SBC which ensures decoding within the worst-case-delay requirement under lossy
conditions (constraints #5 and #6). Specifically, all symbols of frame S[i] for i transmitted in
a time slot later than i (not as part of the (τ, b, τL)-separate encoding scheme) must be encoded
as part of blocks whose final parity symbol is transmitted by time slot (i + τ) (constraint #5).

27

Figure 2.5: An example imposing constraints #4, #5, and #6 for time slot i for parameters
(τ, b, τL) = (7, 3, 4). Blue boxes can hold symbols of frames. Red boxes hold parity sym-
bols. Gray boxes contain no symbols. Boxes above time slot j correspond to symbols sent in
channel packet X[j]. At least ki symbols are sent for S[i] consisting of (a) ei symbols sent as part
of the (7, 3, 4)-separate encoding scheme (shown at the top), and (b) ki,j symbols sent in channel
packet X[j] for j ∈ {i, . . . , i + 4} (constraint #4). There are pi−3 blocks of the SBC for which
the final parity symbols are sent during time slot (i + 5). The total number of symbols sent in
channel packet X[i] corresponding to frame S[i− 2] (i.e., ki−2,i) is at most pi−3 (constraint # 5).
In addition, there are pi−1 and pi blocks of the SBC for which the final parity symbols are sent
during time slots (i + 7) and (i + 8) respectively. The number of symbols of all frames sent in
channel packet X[i] within blocks of the SBC (i.e., (ki−2,i + ki,i)) is at most (pi−3 + pi−1 + pi)
(constraint # 6).

Furthermore, all symbols for frame S[i] sent in channel packet X[i] are encoded via blocks of
the SBC which have an open slot in position i (constraint #6). Figure 2.5 depicts a toy example
of how these constraints may be applied for a single time slot, i.

The objective function of the IP used under Algorithm 2 is the total number of symbols sent
via the solution to the IP. Minimizing this quantity ensures that the fewest number of symbols
possible are transmitted, thereby maximizing the rate. The combined number of symbols of all
frames is divided by total number of transmitted symbols to output the rate of the corresponding
coding scheme.

In Theorem 2, we show that the output of Algorithm 2 is a lower bound on the optimal rate.9

Theorem 2. For any valid inputs (τ, b, τL) and any frame-size sequence k0 . . . kt, Algorithm 2
outputs a lower bound on the optimal rate for streaming codes that satisfy the lossless-delay
requirement and worst-case-delay requirement over the C(b, τ) channel.

9The extra padding symbols needed to employ the (τ, b, τL)-separate encoding scheme is ignored. The padding
only negligibly impacts the value computed when the number of extra padding symbols is small compared to the
size of each frame, as is typical.

28

Algorithm 2 Takes as input any valid parameters and a frame-size sequence and uses integer
programming to compute a lower bound on the optimal rate for the input frame-size sequence.

Input: Valid (τ, b, τL) and frame-size sequence k0 . . . kt−τ .
Minimize

(∑t−τ
i=0

ei
R(L) + bpi

)
+
(∑t−τ

i=0

∑i+τL
j=i kj,i

)
subject to:

1. ∀i ∈ {0, . . . , t− τ}, ei ≥ 0.

2. ∀i ∈ {0, . . . , t− τ}, j ∈ {i, . . . , i+ τL}, ki,j ≥ 0.

3. ∀i ∈ {0, . . . , t− τ}, pi ≥ 0.

4. ∀i ∈ {0, . . . t− τ}, ei − ki +
∑i+τL

j=i ki,j = 0.

5. ∀i ∈ {0, . . . , t− τ}, j = τL, . . . , j = 1,
∑i+1−b−j

z=max(i−τ+1,0) pz −
∑τL

z=j ki−z,i ≥ 0

6. ∀i ∈ {0, . . . , t− τ}
∑i

z=max(i−τ+1,0) pz −
∑τL

z=0 ki−z,i ≥ 0.

Output:
∑t−τ

i=0 ki(∑t−τ
i=0

ei

R(L)
+bpi

)
+
(∑t−τ

i=0

∑i+τL
j=i kj,i

) .

Proof sketch. Follows from the ideas presented above. A complete proof is included in Ap-
pendix 2.5.4.

We now demonstrate that outputs of Algorithm 2 range from R(L) to R(U). Having outputs
vary over all possible values of the optimal rate for various frame-size sequences is a useful prop-
erty because the optimal rate can likewise range from R(L) to R(U), as was shown in Lemma 5.
For any frame-size sequence, (k0, . . . , kt), let Alg(2)τ,b,τL

(k0, . . . , kt) and Optτ,b,τL(k0, . . . , kt) de-
note the output of Algorithm 1 and the optimal rate respectively.
Lemma 7. For any valid parameters (τ, b, τL), for all ϵ > 0 and v ∈ [R(L), R(U)], there is a se-
quence of frame packet sizes, (k0, . . . , kt), such that Alg(2)τ,b,τL

(k0, . . . , kt) = Optτ,b,τL(k0, . . . , kt)

and |Alg(2)τ,b,τL
(k0, . . . , kt)− v| < ϵ.

Proof. We will introduce a frame-size sequence whose optimal rate is within ϵ of v. Let p, r ∈
Z+ ∪ {0} be chosen and the quantity R(p+r) = p+r

p

R(L)
+ r

R(U)
defined so that |R(p+r) − v| < ϵ. Let

d be the smallest positive integer such that d
R(L) and d

R(U) are integers. Consider the frame-size
sequence k0 = pd, kj = rd

τ
for j ∈ {τ + 1, . . . , 2τ}, and kj = 0 for j ∈ {1, . . . , τ} ∪ {2τ +

1, . . . , 3τ}.
The code construction presented in the proof of Lemma 5 satisfies lossless-delay requirement

and worst-case-delay requirement over the C(b, τ) channel and has rate R(p+r). Moreover, the
scheme follows from applying the (τ, b, τL)-separate encoding scheme to frame S[0] and blocks
of the SBC to frames S[τ +1], . . . , S[2τ]. Thus, the variables of the IP computed by Algorithm 2
could represent this scheme while satisfying all constraints. Therefore, Algorithm 2 will output
a value of at least R(p+r).

As was shown in Lemma 5, R(p+r) is also an upper bound on the rate. Hence, the value
computed by Algorithm 2 is a tight lower bound on the optimal rate. It is also within ϵ of v.

29

0 1 2 3 4 5 6 7 8
τ 5 5 5 5 5 5 5 5 5
b 1 1 2 2 3 3 4 4 5
τL 0 4 0 3 0 2 0 1 0

Table 2.1: Parameter settings used in the empirical evaluation of the bounds on the optimal rate.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Parameter settings (Table 2.1)

R
at

e

Greatest lower bound (R(L)) Lower bound computed by Algorithm 2
Upper bound computed by Algorithm 1 Least upper bound (R(U))

Figure 2.6: Comparison over the parameter settings listed in Table 2.1 for the live video trace
shown in Figure 1.2 of the four bounds on the optimal rate for the offline setting: the greatest
lower bound (R(L))), the lower bound computed by Algorithm 2, the upper bound computed by
Algorithm 1, and the least upper bound (R(U)).

Algorithm 2 computes a lower bound on the rate, but it can be computationally intensive. For
any valid inputs (τ, b, τL) and frame-size sequence, consider the LP relaxation of Algorithm 2
which uses non-negative real-valued variables ei, ki,j, pi for i ∈ {τ + b, . . . , t − (τ + b)}. It is
possible to transform a real-valued solution into an integral one by setting each variable to be the
ceiling of its previous value. The number of symbols transmitted corresponding to each frame
increases by at most (τL+3+b). In practice, (τL+3+b) is several orders of magnitude less than
the average size of the frames and leads to a negligible impact on the tightness of the bound. The
total number of constraints for the LP is at most t(2τL + 5). Hence, the number of constraints is
quadratic in the input parameters (and linear in the length of the frame-size sequence).

Remark 7. Modifying Algorithm 2 to use an LP relaxation of the underlying IP results in a
polynomial-time algorithm while changing the output only negligibly.

30

2.4.3 Empirical evaluation of the bounds on rate

The general upper and lower bounds on the optimal rate, R(U) and R(L), are tight for certain
frame-size sequences. Yet the optimal rate for a specific frame-size sequence varies over the
entire range of [R(L), R(U)]. Thus, R(U) and R(L) can be loose depending on the frame-size se-
quences. In contrast, the upper and lower bounds on optimal rate computed by Algorithms 1 and
2 can range over all feasible values of the optimal rate, [R(L), R(U)]. We evaluate the usefulness
of the latter two bounds by empirically evaluating them over the live video trace shown in Fig-
ure 1.2. We show that the gap is small in magnitude and a significant improvement over the gap
between R(U) and R(L).

We consider the setting of a small worst-case-delay (i.e., τ = 5) and all parameter settings
(τ = 5, b, τL) where τL takes on its minimum and maximum values of 0 and (τ−b). Algorithms 2
and 1 bound the optimal rate significantly more tightly than R(L) and R(U) for most parameter
settings. In the remaining settings, the lower and upper bounds on the optimal rate of R(L) and
R(U) are tight. Specifically, the average over the parameter settings from Table 2.1 of the size
of the gap between Algorithms 2 and 1 is 0.002, versus 0.106 between R(U) and R(L), as is
shown in Figure 2.6. The results demonstrate the effectiveness of the algorithms in bounding the
optimal rate for the offline setting.

2.5 Appendix

2.5.1 Proof of Lemma 4

Proof. The optimal rate of streaming codes that satisfy the lossless-delay and worst-case-delay
constraint over the C(a, b, w) model is no more than R(L), as was shown in Lemma 3. In order to
show that R(L) is the greatest lower bound on rate, it suffices to show for at least one frame-size
sequence that the optimal rate is at most R(L). We do so in this proof.

Consider the following length (τ +2b) frame-size sequence: ki = 0 for i ∈ {0, . . . , b−1, b+
1, . . . , τ+2b−1} and kb = (τL+1)(τ−b+1)

(⌊
τL+1

b

⌋
a+min ((τL + 1) mod b, a)

)
(τ−a+1).

The proof is divided into two cases to match the two cases of the construction. In both
cases, we show that meeting the lossless-delay constraint and worst-case-delay constraint over
the C(a, b, w) requires sending at least kb

R(L) symbols. Hence, the rate of any streaming code that
satisfies the lossless-delay and worst-case-delay constraint over the C(a, b, w) model is at most
R(L) for the considered frame-size sequence. The proof will make use of the fact that S[b] cannot
be decoded unless at least kb symbols are received.

Case 1 : τL < (a− 1).
At least kb symbols must be sent over X[b], . . . , X[b + τL] to meet the lossless-delay con-

straint. At least kb symbols must be sent over X[2b], . . . , X[b + τ] to meet the worst-case-delay
constraint when X[b], . . . , X[2b− 1] are lost.

The average number of symbols per channel packet over X[b], . . . , X[b+ τL] is at least kb
τL+1

.
The average number of symbols per channel packet over X[2b], . . . , X[b+ τ] is at least kb

τ−b+1
.

By definition, (τL + 1) ≤ (τ − b+ 1).

31

When a ≤ (τL + 1 + τ + 1 − b), a arbitrary losses can result in a loss of (1) kb symbols in
X[b], . . . , X[b + τL], and (2) at least kb

τ−b+1
(a − τL − 1) symbols in (a − τL − 1) adversarially

chosen channel packets among X[2b], . . . , X[b+ τ]. Thus, at least kb
τ−b+1

(a− τL − 1) additional
symbols must be sent. Let us combine these kb

τ−b+1
(a − τL − 1) symbols with the at least kb

symbols sent in X[b], . . . , X[b+ τL] and at least kb symbols sent in X[2b], . . . , X[b+ τ]. In total,
at least kb

(
2 + a−τL−1

τ−b+1

)
= kb

R(L) symbols are transmitted.
When a > (τL + 1+ τ + 1− b), (b− τL − 1) > (τ − a+ 1). Hence, due to arbitrary losses,

X[b], . . . , X[b+τL], X[2b], . . . , X[b+τ] may all be lost. Thus, it is possible that only (τ−a+1)
arbitrary packets of X[b+ τL + 1], . . . , X[2b− 1] to be received.

As such, any (τ+1−a) channel packets of X[b+τL+1], . . . , X[2b−1] must contain at least
kb symbols. Therefore, the channel packets X[b + τL + 1], . . . , X[2b− 1] contain on average at
least kb

τ−a+1
symbols. At least (b−τL−1) kb

τ−a+1
symbols are sent over X[b+τL+1], . . . , X[2b−1].

In total, at least kb
(
2 + b−τL−1

τ−a+1

)
symbols are transmitted.

Case 2 : τL ≥ (a− 1).
Sub-case 1 : either ((τL + 1) mod b) ∈ {0} ∪ {a, . . . , b − 1} or ((τL + 1) mod b) (

⌊
τL+1

b

⌋
+

1) ≥ a.
At least kb symbols must be sent over X[b], . . . , X[b + τL] to satisfy the lossless-delay con-

straint. We will show in several sub-cases that at least a

⌊ τL+1

b ⌋a+min((τL+1) mod b,a)
kb symbols

could be lost by time slot (b + τL). At least kb symbols must be received. Therefore, at least
kb

a

⌊ τL+1

b ⌋a+min((τL+1) mod b,a)
parity symbols are transmitted. In total, kb

R(L) symbols are sent. A

final sub-case will handle the remaining parameter settings and follows from showing the cor-
rectness of IP-based construction 1.
Sub-sub-case ((τL + 1) mod b ≥ a):

All channel packets of one of(
X [b] , . . . , X [2b− 1]

)
, . . . ,(

X
[
b+

(⌊τL
b

⌋
− 1
)
b
]
, . . . , X

[
b+

⌊τL
b

⌋
b− 1

])
,(

X
[
b+

⌊τL
b

⌋
b
]
, . . . , X [b+ τL]

)
could be dropped as part of a single burst. There are

(⌊
τL
b

⌋
+ 1
)

quantities, and at least kb
symbols are sent over X[b], . . . , X[b+τL]. By the pigeonhole principle, at least one such quantity
contains at least kb

⌊ τL+1

b ⌋+1
= akb

⌊ τL+1

b ⌋a+min((τL+1) mod b,a)
symbols.

Sub-sub-case ((τL + 1) mod b ≡ 0):
All channel packets of one of(

X [b] , . . . , X [2b− 1]
)
, . . . ,(

X
[
b+

⌊τL
b

⌋
b
]
, . . . , X

[
b+

(⌊τL
b

⌋
+ 1
)
b− 1

])
could be dropped as part of a single burst. There are

(⌊
τL
b

⌋
+ 1
)
= τL+1

b
such quantities. By

the pigeonhole principle, at least one contains at least kb

⌊ τL+1

b ⌋ = a

⌊ τL+1

b ⌋a+min((τL+1) mod b,a)
kb

symbols.

32

Sub-sub-case 0 < (τL + 1) mod b < a and ((τL + 1) mod b)
(⌊

τL+1
b

⌋
+ 1
)
≥ a:

Note that (τL + 1 ̸= b) by the sub case. Also, (τL + 1) must be strictly greater than b in
accordance with (τL ≥ a− 1).

Let e = ((τL + 1) mod b). If any b consecutive channel packets of X[b], . . . , X[b + τL]
contains at least kb a

⌊ τL+1

b ⌋a+e
symbols the proof is immediate, since all b of them could be lost.

Otherwise, let

X ′ =

⌊ τL+1

b ⌋⋃
i=0

{(X[b+ ib], . . . , X[b+ ib+ e− 1])} .

Consider any (X[j], . . . , X[j+ e−1]) ∈ X ′. The remaining channel packets of X[b], . . . , X[b+
τL] can be partitioned into

⌊
τL+1

b

⌋
groups of b consecutive channel packet. Recall that each group

of b consecutive packets contains at most kb a

⌊ τL+1

b ⌋a+e
symbols. In total, the

⌊
τL+1

b

⌋
groups con-

tain at most kb a

⌊ τL+1

b ⌋a+e

⌊
τL+1

b

⌋
symbols. In order to satisfy the lossless-delay, at least kb sym-

bols must be received over X[b], . . . , X[b + τL]. Hence, the total combined number of symbols
in X[j], . . . , X[j + e− 1] is at least the following(

1−
(
⌊
τL+1

b

⌋
)a⌊

τL+1
b

⌋
a+ e

)
kb =

e⌊
τL+1

b

⌋
a+ e

kb.

There are e
(⌊

τL+1
b

⌋
+ 1
)
≥ a channel packets in X . Each of thes channel packets lies within

X[b], . . . , X[b + τL]. In total, these channel packets contain at least
(⌊

τL+1
b

⌋
+ 1
)

e

⌊ τL+1

b ⌋a+e
kb

symbols. The channel packets in X contain on average at least 1

⌊ τL+1

b ⌋a+e
kb symbols. In ex-

pectation, if a of these channel packets are dropped uniformly at random, at least a

⌊ τL+1

b ⌋a+e
kb

symbols are lost. Thus, at least one choice of a arbitrary channel packet losses results in a total
number of lost symbols of at least a

⌊ τL+1

b ⌋a+e
kb.

In all above sub-cases for τL ≥ (a− 1), at least a

⌊ τL+1

b ⌋a+min((τL+1) mod b,a)
kb symbols could

be lost. This necessitates transmitting at least kb(1+ a

⌊ τL+1

b ⌋a+min((τL+1) mod b,a)
) = kb

R(L) symbols.

Sub-case 2 : ((τL + 1) mod b)
(⌊

τL+1
b

⌋
+ 1
)
< a.

For this case, recall that the number of symbols sent per channel packet is determined by
IP-based construction 1. Each channel packet contains a non-negative number of symbols, as
is imposed by constraint #1. At least ki symbols must be received within the first τL channel
packets due to the lossless-delay constraint. This requirement is imposed with constraint #2.
For any loss pattern under the C(a, b, w) channel, the total number of symbols over the received
channel packets must be at least ki. This requirement is imposed with constraints #3 and #4 of the
integer program. All constraints of the integer program must be met by any code construction.
The integer program solves for the minimum number of symbols to be sent subject to these three
constraints. Hence, the optimal rate is attained.

33

2.5.2 Proof of Lemma 2
Proof. Consider the encoding for a frame S[i] for i ∈ {0, . . . , t}. When i > (t − τ), ki = 0,
and S[i] is automatically known by the receiver. Otherwise, the symbols frame S[i] are sent over
X[i], . . . , X[i+ τL], thereby satisfying the lossless-delay constraint.

The proof that the worst-case-delay constraint is satisfied over the C(a, b, w) channel is di-
vided into two cases depending on whether τL ≥ (a− 1).
Case 1 : τL < (a− 1).

If a ≤ (τL + 2 + τ − b), let η = (τL + 1)(τ − b + 1) and η′ = (τL + 1)(τ − b + a − τL).
Otherwise, let η = (τL+1)(τ−b+1)(τ−a+1) and η′ = η+(τL+1)(τ−b+1)(b−τL−1). The
frame, S[i], is partitioned evenly into sets of η symbols. For an arbitrary such set, {c0, . . . , cη−1},
we verify all symbols are decoded within τ time slots. The set is encoded as part of a [η + η′, η]
systematic MDS code. Let (c′0, . . . , c

′
η+η′) be the code symbols corresponding to {c0, . . . , cη}. It

suffices to show that at least η symbols of (c′0, . . . , c
′
η+η′) are received by time slot (i+ τ).

We note that (τL + b ≤ τ) =⇒ (τ − b+ 1 ≥ τL + 1). Furthermore, X[i], . . . , X[i + τL]
and X[i + b], . . . , X[i + τ] each contain η symbols of (c′0, . . . , c

′
η+η′). The number of symbols

per channel packet in X[i], . . . , X[i+ τL] is η
τL+1

. The number of symbols per channel packet in
X[i+b], . . . , X[i+τ] is η

τ−b+1
. If a ≤ (τL+2+τ−b), the number of symbols per channel packet

in X[i+τL+1], . . . , X[b−1] is either 0 or η
τ−b+1

. If a > (τL+2+τ−b), the number of symbols
per channel packet in X[i+ τL + 1], . . . , X[b− 1] is η

τ−a+1
. Finally, η

τ−a+1
≤ η

τ−b+1
≤ η

τL+1

Burst losses: For all bursts of length b starting during or after time slot (i + τL + 1), η
symbols of (c′0, . . . , c

′
η+η′) are received via X[i], . . . , X[i+ τL]. Hence, decoding within a delay

of τ follows immediately. For any burst starting in channel packet X[i+ j] for j ∈ {0, . . . , τL},
(τL − j + 1) channel packets X[i], . . . , X[i + j − 1] are received, each of which contain η

τL+1

symbols of (c′0, . . . , c
′
η+η′). Moreover, channel packets X[i + j + b], . . . , X[i + τ] are received,

each of which contain η
τ−b+1

symbols of (c′0, . . . , c
′
η+η′). The fewest symbols are received when

j = 0, in which case exactly η symbols are received. Any η symbols are sufficient for decoding.
Arbitrary losses: The maximum number of symbols of (c′0, . . . , c

′
η+η′) are lost when the a

largest channel packets are lost, such as when

X[i], . . . , X[i+ τL], X[i+ τ − a+ τL + 2], . . . , X[i+ τ]

are lost. If a ≤ (τL+2+ τ − b), the (τ − b+1) channel packets X[i+ b−a+ τL+1], . . . , X[i+
τ − a + τL + 1] are received, each of which contains η

τ−b+1
symbols. If a > (τL + 2 + τ − b),

then the (τ − a+1) channel packets X[i+ τL +1], . . . , X[i+ τ − a+ τL +1] are received, each
of which contains η

τ−a+1
symbols. Therefore, at least η symbols of (c′0, . . . , c

′
η+η′) are received

within a delay of τ , enabling decoding.
Case 2 : τL ≥ (a− 1).
Sub-case 1 : ((τL + 1) mod b) ∈ {0} ∪ {a, . . . , b − 1}) or (0 < (τL + 1) mod b < a and
((τL + 1) mod b) (

⌊
τL+
b

⌋
+ 1) ≥ a).

Let ζ =
(⌊

τL+1
b

⌋
a+min ((τL + 1) mod b, a)

)
. Recall that each S[i], for i ∈ {0, . . . , t−τ},

is partitioned into sets of ζ symbols. Every such set is encoded separately as part of a [ζ + a, ζ]
systematic MDS code. We verify for an arbitrary such set, {c0, . . . , cζ−1}, with corresponding
code symbols, (c′0, . . . , c

′
ζ+a), that at least ζ code symbols are received within τ time slots. Any

ζ symbols suffice to decode {c0, . . . , cζ−1}.

34

Every burst of b consecutive channel packets eliminates at least (b−a) channel packets which
contain no symbols of (c′0, . . . , c

′
ζ+a). Thus, at most a symbols of (c′0, . . . , c

′
ζ+a) are lost. For any

sequence of a arbitrary losses, at least ζ of the symbols of (c′0, . . . , c
′
ζ+a) are received within τ

time slots. For either loss pattern, recovery with a delay of τ time slots follows immediately by
properties of the [ζ + a, ζ] systematic MDS code.
Sub-case 2 : (0 < (τL + 1) mod b < a and ((τL + 1) mod b)

(⌊
τL+1b

b

⌋
+ 1
)
< a.

Recall that each S[i] is encoded according to the outputs of IP-based construction 1. Con-
straints #3 and #4 of IP-based construction 1 ensure that least ki symbols of an [n

(∗)
i , ki] MDS

code are received by time slot (i + τ). Hence, S[i] is recovered within τ time slots by the MDS
property.

2.5.3 Proof of Theorem 1
Proof. We will show that each constraint corresponds to a valid requirement to impose on coding
schemes. This ensures that the solution is a lower bound on the number of symbols that must be
sent. As there are

∑t
i=0 ki symbols of the frames, the output must be an upper bound on the rate.

Before presenting the proof of correctness for the constraints, we will formally define how a
channel packet, X[i] for i ∈ {0, . . . , t}, is split into (X(0)[i], X(1)[i]). Recall that each symbol of
X[i] comprises a linear combination of the symbols of

⟨S0[0], . . . , Sk0−1[0], . . . , S0[i], . . . , Ski−1[i]⟩ . (2.9)

The symbols 〈
X0[0], . . . , X|X[0]|−1[0], . . . , X0[i], . . . , X|X[i−1]|−1[i− 1]

〉
(2.10)

correspond to linear equations over the symbols of Equation 2.9 where the linear equations for
each j ∈ {0, . . . , i − 1} of X[j] have 0 in positions corresponding to

〈
S0[j + 1], . . . , S|ki|−1[i]

〉
due to causality. Next, the symbols of channel packet X[i] are partitioned into (X(0)[i], X(1)[i]).
Initially, consider X(0)[i] and X(1)[i] as being empty. The symbols of X[i] are labeled as being
in either X(0)[i] or X(1)[i] by iterating over j ∈ {0, . . . , |X[i] − 1|} as follows. If the set of
linear equations corresponding Xj[i], the symbols of X(0)[i], and the symbols of Equation 2.10
are linearly independent, Xj[i] is added to X(0)[i]. Otherwise, Xj[i] is added to X(1)[i].

Constraints #1 and #2: For i ∈ {0, . . . , t − τL}, j ∈ {i − τL, . . . , i}, |X(0)
i [i + j]| reflects

a number of symbols sent in channel packet X[i + j] corresponding to frame S[i], so it is non-
negative. For i < 0, i > t, or j < 0, |X(0)

j [i]| is defined to be 0 to handle edge conditions of
indexing. For i ∈ {0, . . . , t + τ}, |X(1)[i]| corresponds to a number of parity symbols sent in
channel packet X[i] and similarly is non-negative.

Constraint #3: We will show that any construction satisfying the lossless-delay requirement,
even with the relaxations allowed under Algorithm 1, will satisfy constraint #3. We will prove
this by induction on i ∈ {0, . . . , t}. In the base case, i = 0 and X

(0)
0 [0], . . . , X

(0)
0 [τL] consist of

exactly k0 symbols used to decode S[0] under lossless transmission. In the inductive step, for
i = 1, . . . , t, S[0], . . . , S[i] can be decoded using channel packets X[0], . . . , X[i+ τL] by solving
a system of linear equations. Only the symbols corresponding to X(0)[0], . . . , X(0)[i + τL] need

35

to be used, since the linear equations corresponding to X(1)[0], . . . , X(1)[i+ τL] are in their span.
Moreover, the linear equations corresponding to the symbols of X(0)[0], . . . , X(0)[i+ τL] are lin-
early independent by definition. By induction,

∑i−1
j=0

∑τL
l=0 |X

(0)
j [j+l]| =

∑i−1
j=0 kj . The symbols

of X(0)
j [j + l] in the first term reflect the symbols sent in channel packet X[j + l] used to decode

frame S[j]. When S[i] is decoded, at least
∑i

j=0 kj of the symbols of X(0)[0], . . . , X(0)[i + τL]
are required to decode S[0], . . . , S[i] (along with perhaps some additional symbols of S[i +
1], . . . , S[i + τL]). For j ∈ {0, . . . , i + τL}, each symbol of X(0)[j] included reflects adding a
linearly independent equation. S[0], . . . , S[i], along with perhaps some additional symbols of
S[i + 1], . . . , S[i + τL], are decoded together. Exactly ki equations (corresponding to symbols)
used in decoding are used to decode symbols of S[i]. Since the encoding is causal, each of
these ki equations correspond to symbols are sent in channel packets X[i], . . . , X[i+ τL] and are
labeled X

(0)
i [i], . . . , X

(0)
i [i+ τL].

Constraint #4: Consider any burst starting in time slot i ∈ {0, . . . , t − b + 1}. The proof
of Lemma 1 showed that satisfaction of the worst-case-delay requirement over the C(a, b, w)
channel implies that frames S[i−τL], . . . , S[i+b−1] must be decoded by time slot (i+τ+b−a).
Moreover, for any burst loss of length b starting in channel packet i, for each of j ∈ {i −
τL, . . . , i+ b− 1}, S[i− τL], . . . , S[j] must be recoverable by time slots (i− τL+ τ), . . . , (j+ τ)
respectively. Frames S[i− τL], . . . , S[j] are therefore decoded by time slot (j + τ). We consider
the relaxation that symbols of X(0)

l [z] for l ∈ {j + 1, . . . , i + b − 1}, z ∈ {l, . . . , l + τL} are
received.

We consider the following relaxation. Each symbol corresponding to X
(0)
l [z] where l ∈

{i − τL, . . . , j}, z ∈ {l, . . . , l + τL} which are received can be used to decode one symbol of
S[i − τL], . . . , S[j]. These symbols are received during time slots (i − τL), . . . , (i − 1) and
(i + b), . . . ,min(j + τ, i + τ + b − a). Furthermore, parity symbols received during time slots
(i+ b), . . . ,min(j+ τ, i+ τ + b−a) can be used to decode frames S[i− τL], . . . , S[j]. However,
by definition any parity symbols sent before time slot i are in the span of symbols of X(0)

l [z] for
l ∈ {0, . . . , i − 1}, z ∈ {l, . . . ,min(i − 1, l + τL)}. Therefore, given access to the symbols of
X

(0)
l [z], these parity symbols are not used to decode frames S[i − τL], . . . , S[j]. All symbols

received strictly after min(j+ τ, i+ τ + b− a) are received after frames S[i− τL], . . . , S[j] have
already been decoded. Thus, the symbols of S ={

X
(0)
l [z] | l ∈ {0, . . . , t}, z ∈ {l, . . . , l + τL}\

{i, . . . , i+ b− 1}
}
∪{

X
(0)
l [z] | l ∈ {j + 1, . . . , i+ b− 1}, z ∈ {l, . . . , l + τL}

}
∪{

X(1)[z] | z ∈ {i+ b, . . . ,min(j + τ, i+ τ + b− a)}
}

must be sufficient to decode (S[0], . . . , S[t]). Therefore, |S| ≥
∑t

i=0 ki. By constraint #3,∑l+τL
z=l |X(0)

l [z]| = kl for any l ∈ {0, . . . , t− τ}. Thus, the size of{
X

(0)
l [z] | l ∈ {i− τL, . . . , j}, z ∈ {l, . . . , l + τL}\

{i, . . . , i+ b− 1}
}
∪{

X(1)[z] | z ∈ {i+ b, . . . ,min(j + τ, i+ τ + b− a)}
}

36

is at least
∑j

l=i−τL
kl.

Constraint #5: Consider any combination of a arbitrary packet losses in a sliding window of
length w = (τ + 1) which begin during some time slot i ∈ {0, . . . , t − a + 1}. Let the time
slots of the packet losses be denoted as I , and let i′ be the final time slot in I where i′ ≤ t. For
any j ∈ {0, . . . , i′}, each of S[i − τL], . . . , S[j] must be decoded by time slot (j + τ) in order
to satisfy the worst-case-delay requirement. The relaxation is used that each received symbol
of X(0)

l [z] for l ∈ {i − τL, . . . , j}, z ∈ {l, . . . , l + τL} can be used to decode one symbol of
S[i − τL], . . . , S[j]. Furthermore, the relaxation is taken that each received symbol X(1)[l] for
l ∈ {i+ 1, . . . , j + τ} can be used to decode one lost symbol of S[i− τL], . . . , S[j]. We assume
X

(0)
l [z] is received for l ∈ {0, . . . , i−1}, z ∈ {l, . . . ,min(l+τL, i−1)}, so the received symbols

of X(1)[0], . . . , X(1)[i−1] are not useful for decoding S[i− τL], . . . , S[j]. Moreover, all symbols
received strictly after time slot (j+τ) are not used in decoding S[i−τL], . . . , S[j], since they are
decoded by time slot (j+ τ). This follows from similar reasoning to that discussed for constraint
#4. Hence, the symbols of S ={

X
(0)
l [z] | l ∈ {i− τL, . . . , j}, z ∈ {l, . . . , l + τL} \ I

}
∪{

X(1)[j] | j ∈ {i+ 1, . . . , j + τ} \ I
}
∪{

X
(0)
l [z] | l ∈ {0, . . . , i− τL − 1} ∪ {i′ + 1, . . . , t},

z ∈ {l, . . . , l + τL}
}

are sufficient to decode S[0], . . . , S[t]. Consequently, the size of S must be at least
∑t

l=0 kl.
Similar to the discussion for constraint #4,

∑l+τL
z=l |X(0)

l [z]| = kl for any l ∈ {0, . . . , t − τ}.
Thus, as a relaxation of the worst-case-delay requirement for at most a arbitrary losses, the size
of {

X
(0)
l [z] | l ∈ {i− τL, . . . , j}, z ∈ {l, . . . , l + τL} \ I

}
∪{

X(1)[j] | j ∈ {i+ 1, . . . , j + τ} \ I
}

must be at least
∑j

z=i−τL
kz.

2.5.4 Proof of Theorem 2
Proof. The value computed by Algorithm 2 is the optimal rate for a coding scheme that combines
(1) blocks of the SBC with (2) the (τ, a, b, τL)-separate encoding scheme. Therefore, this rate
is feasible. The total number of symbols of all frames divided by the total number of symbols
transmitted by the scheme is returned. Hence, the rate of the corresponding coding scheme is
returned. The objective function is to compute the minimal possible value for the number of
symbols transmitted over the considered coding schemes for the frame-size sequence. For a
fixed total number of symbols of all frames, this minimizes the rate.

It remains to verify that the lossless-delay and worst-case-delay requirements are satisfied.
We do so for (a) the symbols of frames encoded as part of the (τ, a, b, τL)-separate encoding
scheme, and (b) for all remaining symbols. For i > (t− τ), the frame S[i] is of size 0 and is au-
tomatically known by the receiver. Hence, the lossless-delay and worst-case-delay requirements
are satisfied for such frames.

37

First, a non-negative number of symbols of any S[i], for i ∈ {0, . . . , t − τ}, are modeled
as being encoded using the (τ, a, b, τL)-separate encoding scheme for each frame due to con-
straint #1. The lossless-delay and worst-case-delay are met for such symbols by properties of the
(τ, a, b, τL)-separate encoding scheme.

Second, we verify that all remaining symbols are accurately modeled as being encoded within
blocks of the SBC such that the lossless-delay and worst-case-delay requirements are met.

The lossless-delay requirement: For any S[i], for i ∈ {0, . . . , t− τ}, a non-negative number
of symbols are modeled as sent in each of X[i], . . . , X[τL + 1], as is reflected by constraint #2.
Moreover, the total number of such symbols is sufficient to satisfy the lossless-delay requirement
by constraint #4.

The worst-case-delay requirement: A non-negative number of blocks starting in each channel
packet is modeled due to constraint #3. Recall that the variables pi reflect the quantity of blocks
whose first position occurs during time slot i. The first position of blocks occur between time
slot 0 and (t−τ). It remains to verify that all symbols not encoded using the (τ, a, b, τL)-separate
encoding scheme can be modeled as being placed in the corresponding blocks which ensure that
they are decoded within τ time slots. Under constraint #5, each j ∈ {τL, . . . , 1} is sequentially
considered for each channel packet X[i]. Without loss of generality, each symbol sent in channel
packet X[i] corresponding to frame (i−j) is modeled as being placed in the earliest block ending
by time slot (i− j + τ) with an available position in channel packet X[i]. Sequentially doing so
ensures that all symbols corresponding to frames (i−τL), . . . , (i−1) sent in channel packet X[i]
are modeled as being encoded as part of by blocks of the SBC whose final position occur by the
time slots (i − τL + τ), . . . , (i + τ − 1) respectively. This ensures that the worst-case-delay is
satisfied over a C(a, b, w) channel for such symbols. Finally, due to constraint #6, each symbol
corresponding to S[i] which is modeled as being transmitted without delay in X[i] is modeled
as being placed in an available block of the SBC. This ensures recovery within τ time slots over
a C(a, b, w) channel. In so doing, all blocks which have an available position in channel packet
X[i] are considered, as the recovery properties of the SBC ensure recovery within τ time slots.
Furthermore, all symbols corresponding to frames S[i− τL], . . . , S[i− 1] sent in channel packet
X[i] still must also be modeled as being placed in available blocks of the SBC, as is reflected in
constraint #6.

38

Chapter 3

Online versus offline rate in streaming
codes for variable-size frames

Recall that while there are rate-optimal schemes that send each frame in the corresponding chan-
nel packet for the setting of fixed-size frames, spreading frame symbols over multiple channel
packets is advantageous in the setting of variable-size frames (see Section 2.2). One key chal-
lenge in realizing the benefits of spreading is determining how to best spread frame symbols over
one or more channel packets despite the fact that future frames’ sizes are inherently variable and
unknown. For example, a large frame should be sent in the corresponding channel packet when
the next several frames are even larger to reduce the variability in the sizes of channel packets. In
contrast, frame symbols of a large frame should be spread over multiple channel packets when
the subsequent several frames are small. Thus, the optimal strategy for encoding depends on the
sizes of future frames. To capture this dependency introduced by the variability in the size of
frames, the coding schemes are classified into two classes: (a)“offline” schemes and (b) “online”
schemes. Offline coding schemes have access to the sizes of frames of future time slots, whereas
online schemes do not have access to such information. Online constructions are of practical
interest, as the sizes of future frames are typically unknown in live streaming applications. By
using future information, optimal offline constructions can always match, and potentially sig-
nificantly exceed, the rate of online ones. Therefore, a natural question is: “can online coding
schemes match the rate of offline coding schemes?”

This question was answered for Regime 2, where the (τ, b, τL)-separate encoding scheme
matches the optimal rate of offline constructions (see Corollary 1). More generally, we introduce
the first rate-optimal online coding scheme for Regime 1 (i.e., τL = 0 while τ and b have arbitrary
values) in Section 3.2. This setting is crucial for the most latency sensitive applications, as each
frame is recovered with no delay under lossless transmission. We then show in Section 3.3 that
no online coding scheme can match the rate of optimal offline coding schemes for all parameter
settings outside of Regime 1 and Regime 2. Before doing so, we tweak the model and provide
additional notation in Section 3.1.

39

3.1 Modifications to model and notation
Constructions that during the time slot i ∈ {0, . . . , t} can access all future frames’ sizes (i.e.,
ki+1, . . . , kt) are called “offline.” Offline schemes have access to the sizes but not the symbols of
the future frames. In contrast, code constructions that do not know the sizes of the future frames
are dubbed “online.” Specifically, during time slot i, (ki+1, . . . , kt) are unknown for an online
construction. We distinguish between the feasible rates for offline and online coding schemes.
The best possible rate for offline coding schemes is called the “offline-optimal-rate” and for
online coding schemes is called the “online-optimal-rate.”

To distinguish between online and offline decoding, we use the following quantity to denote
the last time slot for which the size of frames is available to the receiver

λi =

{
t if offline
argmaxl∈{i,...,i+τ} 1 [Y [l] == X[l]] if online.

The decoding for frame S[i] is then defined for two scenarios. First, in a lossless transmission,
S[i] is decoded using (a) the previously decoded frames, (b) the (τL+1) channel packets received
within lossless-delay, and (c) the sizes of the first (i+ τL + 1) frames as follows:

S[i] = Dec(L) (S[i− τ], . . . , S[i− 1], X[i], . . . , X[i+ τL], k0, . . . , ki+τL) .

Second, when losses occur, S[i] is decoded using (a) the previously decoded frames, (b) all
received channel packets among the (τ + 1) sent within the worst-case-delay, and (c) the sizes
of the first (λi + 1) frames as follows:

S[i] = Dec
(
S[i− τ], . . . , S[i− 1], Y [i], . . . , Y [i+ τ], k0, . . . , kλi+τ

)
.

To ensure that the receiver knows the sizes of frames, a small header containing ki−b, . . . , ki is
added to X[i].1

This work uses the following notation and conventions. The term [n] denotes {0, . . . , n}.
All vectors are row vectors. A vector V has length v and is indexed as V = (V0, . . . , Vv−1). For
I = {i0, . . . , il} ⊆ [v−1], VI = (Vi0 , . . . , Vil). Let A be an n×n matrix, and I ⊆ {0, . . . , n−1}.
Then AI is A restricted to the columns in I . For i ∈ {1−b, . . . ,−1}∪{t+1, . . . , t+b+1}, ki is
defined as 0. For i ∈ {1−b, . . . ,−1}, a burst loss of X[i], . . . , X[i+b−1] denotes a burst loss of
X[0], . . . , X[i+ b− 1]. Similarly, for i ∈ {t− b+2, . . . , t} a burst loss of X[i], . . . , X[i+ b− 1]
denotes a burst loss of X[i], . . . , X[t].

3.2 Online Code Constructions with Optimal Rate
In this section, we present the first rate-optimal online streaming codes, as well as show that they
match the offline-optimal-rate, for two broad parameter regimes: Regime 1: (τL = 0 and any b
and τ) and Regime 2: (τL = (τ − b) and b|τ).

1In the edge conditions, (i− τ) is set to 0 for i < τ and (i+ τ) is set to t for (i− τ) > (t− τ).

40

To begin, we consider Regime 1 (i.e., τL = 0 and any b and τ). In this regime, the lossless-
delay constraint, τL = 0, eliminates the choice of distributing symbols corresponding to a frame
over multiple channel packets. We introduce a systematic construction that sends each frame
within the corresponding channel packet. The construction employs an online greedy paradigm
for sending parity symbols. The approach involves (a) identifying during time slot i how many
parity symbols will be sent during time slot (i+τ) (i.e., in advance τ time slots), and (b) defining
the parity symbols only during time slot (i+ τ) based on the sizes of S[i+ 1], . . . , S[i+ τ − 1].
To show that the construction is rate-optimal, we demonstrate via induction that the cumulative
number of symbols sent by each time slot i ∈ [t] is no more than that which is sent under an
arbitrary offline construction.

We next present the rate-optimal online coding scheme for any (τ, b) under Regime 1. The
scheme builds on top of the Generalized Maximally Short Codes presented in [11] in such a way
so as to mitigate the adverse effects of the variability of the frame-size sequence. We call the
proposed scheme the (τ, b)-Variable-sized Generalized MS Code. The construction is suitable
for any field of size at least 2τm. We first provide a high-level description, then present a toy
example, and finally present the details of the code construction.
Encoding (high level description). During time slot i, each frame S[i] is partitioned into two
pieces: S[i] = (U [i], V [i]). The channel packet X[i] = (S[i], P [i]) is then sent, where P [i]
comprises parity symbols. The parity symbols are defined as P [i] = (U [i − τ] + P ′[i]) where
P ′[i] consists of carefully designed linear combinations of the symbols of (V [i−τ], . . . , V [i−1]).
The linear equations are defined so that that for all i ∈ [t− τ − b+ 1], P ′[i+ b], . . . , P ′[i+ τ −
1], V [0], . . . , V [i− 1] are sufficient to decode V [i], . . . , V [i+ b− 1], as will be fully explained in
the detailed description.2

We set V [i] to contain as many symbols of S[i] as possible while meeting the following
requirement. For any j ∈ {i− b+ 1, . . . , i} and burst loss of X[j], . . . , X[j + b− 1], the sum of
the sizes of V [j], . . . , V [i] is at most the number of parity symbols in X[j + b], . . . , X[j + τ − 1]
(i.e., the sum of the sizes of P [j + b], . . . , P [j + τ − 1]). The remaining symbols of S[i] are
allocated to U [i]. The size of P [i] is set to equal that of U [i− τ].
Decoding (high level description). A burst loss of X[i], . . . , X[i + b − 1] is recovered in two
steps. First, for j ∈ {i + b, . . . , i + τ − 1}, U [j − τ] is subtracted from P [j] to obtain P ′[j].
Then P ′[i+ b], . . . , P ′[i+ τ − 1] are used to recover V [i], . . . , V [i+ b− 1] during the time slot
(i + τ − 1). Recovery is possible because (a) P ′[i + b], . . . , P ′[i + τ − 1] contain at least as
many symbols as V [i], . . . , V [i+ b− 1] by definition, and (b) the linear equations used to define
P ′[i + b], . . . , P ′[i + τ − 1] are chosen to be linearly independent. Second, during time slot
j ∈ {i + τ, . . . , i + τ + b − 1}, V [j − τ], . . . , V [j − 1] are used to compute P ′[j]. Subtracting
P ′[j] from P [j] yields U [j − τ].
Code construction (toy example). We now present a toy example of (τ = 4, b = 2)−Variable-
sized Generalized MS Code for frame-size sequence k0 = 3, k1 = 2, k2 = 1, k3 = 2, k4 =
1, and k5 = . . . = k8 = 0, shown in Figure 3.1. For i ∈ [4], S[i] is sent in X[i]. This
satisfies the lossless-delay constraint. For i ∈ {0, 1, 4}, U [i] is defined to equal S[i], and V [i] is
defined to be empty (i.e., of size 0). For i ∈ {2, 3}, V [i] is set as S[i], and U [i] is defined to be
empty. Let P ′[4] = (S0[2], S0[3], S1[3]) and P ′[5] = (S0[3], S1[3]). Next, P [4] = (S[0] + P ′[4])

2For i < τ , P [i] is empty.

41

𝑆0[2]

𝑆2[0]

𝑆0[0]

𝑆1[0]

0 1

𝑆0[1]

𝑆1[1]

2

𝑆1[3]

3

𝑆0[4]

4 5 6

𝑆0[3]

𝑆0 0
+ 𝑆0[2]

𝑆1 0
+ 𝑆0[3]

𝑆2 0
+ 𝑆1[3]

𝑆0 1
+ 𝑆0[3]

𝑆1 1
+ 𝑆1[3]

7 8

𝑆0[4]

Figure 3.1: A toy example of the (τ = 4, b = 2)-Variable-sized Generalized MS Code. Each
frame, S[i] = (U [i], V [i]), is transmitted in the corresponding channel packet, X[i], along with
parity symbols, P [i], (when applicable). White boxes with purple dots represent symbols of U [i],
white boxes with an orange grid represent symbols of V [i], and solid red boxes represent symbols
of P [i]. The numbers under the lines at the bottom indicate the time slots.

is transmitted in X[4], and P [5] = (S[1] + P ′[5]) is sent in X[5]. Finally, P0[8] = S0[4] is
transmitted in X[8]. The lossless-delay constraint is met, since each frame is sent within the
corresponding channel packet. If any symbols of V [2] and or V [3] are lost, they are recovered
using P [4] and P [5] respectively. Any lost symbols of U [0], U [1], and U [4] are each decoded
with delay exactly 4 using P [4], P [5], and P [8] respectively (and subtracting P ′[4] and P ′[5]
from P [4] and P [5] respectively). Therefore, the worst-case-delay constraint is satisfied.

Before presenting the detailed description, we introduce some notation. For any i ≤ j ∈ [t]
and Z ∈ {S,X,U, V, P, P ′}, Z[i] is a vector of length z[i], and Z[i : j] = (Z[i], . . . , Z[j]).
Code construction (detailed description). During each time slot i, the channel packet X[i] =
(S[i], P [i]) is sent. The scheme is formally described in three parts: initialization, partitioning
S[i] into (U [i], V [i]), and defining P [i].

Initialization: For i ∈ [b−1], we set U [i] = S[i] and v[i] = 0. For i ∈ [τ −1] we set p[i] = 0.
Let A be a τm× τm Cauchy matrix, where m is the maximum possible size of a frame.

Partitioning S[i]: For any i ≥ b, we partition S[i] into S[i] = (U [i], V [i]) as follows.3 We
define an auxiliary variable zi encapsulating the minimum number of parity symbols available
for recovering S[i] when X[i] is dropped in a burst:

zi = min
j∈{i−b+1,...,i}

i+τ−1∑
l=j+b

p[l]−
i−1∑
l=j

kl. (3.1)

The first min(ki, zi) symbols of S[i] are set to V [i]:

V [i] =
(
S0[i], . . . , Smin(ki,zi)−1[i]

)
(3.2)

3Recall that partitioning was defined for i < b in initialization.

42

Figure 3.2: Illustration for defining E[i], for time slot i ∈ [t], by placing V ∗[j] = (V [j], 0, . . . , 0),
for j ∈ {i − τ, . . . , i − 1}, into m consecutive positions of E[i] starting with position (j
mod τ)m.

The remaining symbols of S[i] are set to U [i]:

U [i] =
(
Smin(ki,zi)[i], . . . , Ski−1[i]

)
. (3.3)

Finally,
p[i+ τ] = u[i] = ki −min(ki, zi) = ki − v[i] (3.4)

parity symbols are assigned to be sent in the channel packet X[i+τ], although the actual symbols
of P [i+ τ] have not yet been identified. The size of p[i+ τ] is never greater than ki (that is, the
maximum possible size of u[i]), therefore p[i+ τ] is at most m.

Defining P [i]: During time slot (i ≥ τ), we set

P [i] = (U [i− τ] + P ′[i]) (3.5)

where the symbols of P ′[i] are linear combinations of the symbols of V [i − τ], . . . , V [i − 1].4

The linear combinations are chosen from a Cauchy matrix, as described below. Let V ∗[j] be the
length m vector obtained by appending (m−v[j]) 0’s to V [j] for j ∈ {i−τ, . . . , i−1}. We define
a vector of length τm, E[i], by placing V ∗[j], for j ∈ {i − τ, . . . , i − 1}, into m consecutive
positions of E[i] starting with position (j mod τ)m, as is detailed in Figure 3.2. We use the
Cauchy matrix A to define

P ′[i] = E[i]A{(i mod τ)m,...,(i mod τ)m+p[i]−1}. (3.6)

The field size requirement is dictated by the Cauchy matrix and is at most 2τm.
In Theorem 3 below, we verify that the Variable-sized Generalized MS Code meets the re-

quirements of the model.
Theorem 3. For any parameters (τ, b) and frame-size sequence k0, . . . , kt, the (τ, b)-Variable-
sized Generalized MS Code satisfies the lossless-delay and worst-case-delay constraints over
any C(b, τ) channel.

4Recall that p[i] was defined during initialization for i < τ .

43

Proof. The lossless-delay constraint is satisfied for i ∈ [t] by sending X[i] = (S[i], P [i]).
We prove that the worst-case-delay constraint is satisfied by showing for any i ∈ [t− τ] that

each of S[i], . . . , S[i+ b− 1] are recovered within delay τ when X[i], . . . , X[i+ b− 1] are lost.5

First, we show that V [i], . . . , V [i+b−1] are recovered by time slot (i+τ−1). Second, we show
that U [i], . . . , U [i+ b− 1] are recovered by time slots (i+ τ), . . . , (i+ τ + b− 1), respectively.

First, for j ∈ {i + b, . . . , i + τ − 1} subtracting U [j − τ] from P [j] yields P ′[j] (by Equa-
tion 3.5). Combining Equations 3.2, 3.3, 3.4, and 3.5 shows that the total number of symbols in
P ′[i+ b], . . . , P ′[i+ τ − 1] is at least as many as V [i], . . . , V [i+ b− 1]:

i+τ+b−1∑
j=i+b

p′[j] ≥
i+b−1∑
j=i

kj(
i+τ−1∑
j=i+b

p′[j]

)
+

(
i+τ+b−1∑
j=i+τ

p′[j]

)
≥

(
i+b−1∑
j=i

v[j]

)
+

(
i+b−1∑
j=i

u[j]

)
i+τ−1∑
j=i+b

p′[j] ≥
i+b−1∑
j=i

v[j].

Next, we show that P ′[i + b], . . . , P ′[i + τ − 1] suffices to decode V [i], . . . , V [i + b − 1].
For j ∈ {i+ b, . . . , i+ τ − 1}, recall from Equation 3.6 and Figure 3.2 that P ′[j] is the product
of distinct columns of A with a vector consisting of (a) for l ∈ {i, . . . , i + b − 1}, V [l] in
positions (j mod τ)m, . . . , ((j mod τ)m+ v[l]− 1), (b) for l ∈ {i, . . . , i + b − 1}, zeros in
positions ((j mod τ)m+ v[l]) , . . . , ((j mod τ + 1)m− 1), and (c) a combination of symbols
of V [j−τ], . . . , V [i−1], V [i+ b], . . . , V [j−1] and zero padding in the remaining positions. For
l ∈ {i+ b, . . . , i+ τ −1}, let E ′[l] be defined by first setting it equal to E[l] and second replacing
the symbols corresponding to V [i], . . . , V [i + b − 1] with 0’s. We note that the receiver can
compute E ′[i+ b], . . . , E ′[i+ τ − 1] during time slot (i+ τ − 1). Let P ∗[i+ b], . . . , P ∗[i+ τ − 1]
correspond to (P ′[i+ b]− E ′[i+ b]A) , . . . , (P ′[i+ τ − 1]− E ′[i+ τ − 1]A). Then for some
l0, . . . , lb−1 which is a permutation of i, . . . , (i+ b− 1), P ∗[i+ b]T

...
P ∗[i+ τ − 1]T

 =

 V [l0]
T

...
V [lb−1]

T

T

A′

where T denotes transpose, and A′ is a submatrix of A with
(∑i+b−1

j=i v[j]
)

rows and at least(∑i+b−1
j=i v[j]

)
columns. As such, A′ is Cauchy and thus has full rank. Hence, P ′[i+b], . . . , P ′[i+

τ − 1] suffices to decode V [i], . . . , V [i+ b− 1].
Second, for j ∈ {i, . . . , i+ b− 1}, V [j], . . . , V [j + τ − 1] are used to compute

P ′[j + τ] = E[j + τ]A{(j mod τ)m,...,(j mod τ)m+p[j+τ]−1}.

5Each frame S[i] for i > (t−τ) is of size 0 and is known by the receiver due to the termination of the frame-size
sequence.

44

During time slot (j + τ), U [j] = (P [j + τ]− P ′[j + τ]) is then decoded.6

The following lemma essentially shows that all parity symbols sent in any channel packet
under the (τ, b)−Variable-sized Generalized MS Code are needed to satisfy the worst-case-delay
constraint. This property is later used to prove that the (τ, b)−Variable-sized Generalized MS
Code is rate-optimal in Theorem 4.
Lemma 8. Consider any parameters (τ, b) and frame-size sequence k0, . . . , kt. Under the (τ, b)-
Variable-sized Generalized MS Code, for all i ≥ τ where p[i] > 0, ∃j ∈ {i−τ−b+1, . . . , i−τ}
such that

∑i−τ
l=j kl =

∑i
l=j+b p[l].

Proof. For i ∈ {τ, . . . , τ + b− 1}, consider j = 0. Then

i−τ∑
l=j

kl =
i−τ∑
l=0

u[l] =
i∑

l=τ

p[l] =
i∑

l=b

p[l]

due to Equation 3.4 as well as the initialization defining (a) p[0], . . . , p[τ − 1] to each be 0, and
(b) u[0], . . . , u[b− 1] to be k0, . . . , kb−1 respectively.

For (i ≥ τ + b), if (p[i] = u[i − τ] > 0) then (v[i − τ] < ki−τ). By Equations 3.1 and 3.2
and the fact that (v[i − τ] < ki−τ) there is some j ∈ {i − τ − b + 1, . . . , i − τ} for which for
i′ = (i− τ)

v[i′] =
i′+τ−1∑
l=j+b

p[l]−
i′−1∑
l=j

kl

v[i− τ] =
i−1∑

l=j+b

p[l]−
i−τ−1∑
l=j

kl

v[i− τ] + u[i− τ] +
i−τ−1∑
l=j

kl = p[i] +
i−1∑

l=j+b

p[l]

i−τ∑
l=j

kl =
i∑

l=j+b

p[l].

Next, we present Theorem 4, which shows that the (τ, b)-Variable-sized Generalized MS
Code is rate-optimal for Regime 1.

The proof involves an inductive argument on the time slot. It will show that the cumulative
number of symbols sent by each time slot under any code construction, even an offline one,
must be at least as many as under the (τ, b)-Variable-sized Generalized MS Code to satisfy the
lossless-delay and worst-case-delay constraints. The proof technique synergizes with the greedy
paradigm of the (τ, b)-Variable-sized Generalized MS Code sending for each frame S[i]: (a) the

6In the edge case where i > (t− τ), S[i] is known by the decoder to have size 0 and this step is not needed.

45

minimal number of parity symbols needed to recover S[i] given any burst assuming that no future
frames needs to be recovered, and (b) deferring the transmission of the parity symbols until the
decoding deadline for S[i] (i.e., X[i + τ]). The methodology for designing a streaming code
using a greedy paradigm and inductively proving that it is rate-optimal form a suitable template
for designing new online coding schemes in other regimes, as is used later in Chapter 4 to design
approximately rate-optimal streaming codes for Regime 3 (i.e., τL = 1).
Theorem 4. For any parameters (τ, b, τL = 0), the (τ, b)-Variable-sized Generalized MS Codeis
rate-optimal for transmission over a C(b, τ) channel.

Proof sketch. We present the full proof in Appendix 3.7.1.
For an arbitrary frame-size sequence k0, k1, . . . , kt, consider any optimal offline construction

O. We prove by induction on time slot i = 0, 1, 2, . . . , t that the cumulative number of symbols
sent by O is at least as many as that of the (τ, b)-Variable-sized Generalized MS Code.

In the base case, for each i ∈ [τ − 1], the channel packet X[i] under O must contain at least
ki symbols to meet the lossless-delay constraint for frame S[i]. Under the (τ, b)-Variable-sized
Generalized MS Code, x[i] = ki.

The inductive step for i ∈ {τ, . . . , t} has two cases.
First, when no parity symbols are sent in X[i] (that is, X[i] = S[i]) under the (τ, b)-Variable-

sized Generalized MS Code, at least s[i] = ki symbols are sent in X[i] under O to meet the
lossless-delay constraint.

Second, suppose that X[i] = (S[i], P [i]) is sent under the (τ, b)-Variable-sized Generalized
MS Code where p[i] > 0. Applying Lemma 8 shows that there is a burst loss starting at time slot
j ∈ {i − τ − b + 1, . . . , i − τ} where the number of parity symbols received under the (τ, b)-
Variable-sized Generalized MS Code in X[j+ b], . . . , X[i] is the smallest for which it is possible
to decode frame S[j], . . . , S[i − τ]. We combine this fact with the lossless-delay constraint for
S[j + b], . . . , S[i]. We then show that at least as many symbols are sent under O between time
slots (j+ b) and i as are, respectively, sent under the (τ, b)-Variable-sized Generalized MS Code.
Applying the inductive hypothesis for time slot (j + b− 1) concludes the proof.

We note that for any values of τ and b, the (τ, b)-Variable-sized Generalized MS Code’s rate
(i.e., the optimal rate) is highly dependent on the precise sequence of the sizes of the frames.
Hence, a closed-form expression is not viable.

In this section, we presented a rate-optimal online streaming codes for Regime 1. We had
previously shown a rate-optimal online streaming code for Regime 2 in Section 2.3.2. We showed
in the proof of Theorem 4 that, for any (τ, b), the (τ, b)−Variable-sized Generalized MS Code
matches the rate of the best offline construction possible for Regime 1. The simple construction
for Regime 2 matches the upper bound of the rate of τ

τ+b
. Both of these constructions match

the best possible rates of the offline setting, establishing that the online-optimal-rate equals the
offline-optimal-rate in both parameter regimes. The construction for Regime 1 can be used for
any value of τL, although it is not necessarily rate-optimal for τL > 0. Next, in Section 3.3, we
show that online codes cannot match the offline-optimal-rate for all other parameter settings.

46

3.3 Infeasiblity of offline-optimal-rate for Online Schemes
In Sections 2.3.2 and 3.2, we presented online code constructions that matched the offline-
optimal-rate under the two broad settings of Regime 1 and Regime 2. A natural question is
whether there are any other parameter settings where an online coding scheme can attain the
offline-optimal-rate. In this section, we show that the online-optimal-rate is strictly less than the
offline-optimal-rate for all other parameter settings.

At a high level, the optimal approach to spreading symbols from a frame S[i] over channel
packets X[i], . . . , X[i + τL] depends on the sizes of future frames (i.e., ki+1, . . . , kt). This de-
pendency enables offline coding schemes to have higher rates than online coding schemes in all
settings besides Regime 1 and Regime 2, as we will show in Theorem 5.
Theorem 5. For any parameters (τ, b, τL) outside of Regime 1 and Regime 2, the online-optimal-
rate is strictly less than offline-optimal-rate.

Proof sketch. The proof consists of three mutually exclusive cases shown via illustrative exam-
ples in Sections 3.4, 3.5, and 3.6 and in detail in Appendix 3.7.2, 3.7.3, and 3.7.4. In each case,
we present two distinct frame-size sequences of length (t+ 1), which match for the first several
time slots. We show a lower bound on the offline-optimal-rate for the two frame-size sequences
by presenting an offline coding scheme with rates R(1)

t and R
(2)
t on the first and second frame-size

sequences, respectively. To attain a rate of at least R(1)
t on the first frame-size sequence requires

sending symbols in a manner that leads to a lower rate than R
(2)
t on the second.

Remark 8. Although Theorem 5 is proven for two specific frame-size sequences, a similar proof
holds if the sizes of the frames were only approximately the sizes corresponding to the frame-size
sequences. As such, the result establishes a broad class of frame-size sequences for which there
is a gap between the online-optimal-rate and the offline-optimal-rate.

3.4 Case τL ≥ b and τL = (τ − b)

This section presents the proof for parameters (b, τL, τ) = (3, 4, 7); the general case, which
builds closely on this example, is proven in Appendix 3.7.2.

Consider the following two frame-size sequences:
1. k

(1)
0 = 2 and k

(1)
j = 0 for j > 0.

2. k
(2)
0 = 2, k

(2)
1 = 2, k

(2)
2 = 10, and k

(1)
j = 0 for j > 2.

An offline construction for the two frame-size sequences is shown in Figures 3.3 and 3.4 respec-
tively, over Fq for any prime q ≥ 83.

For frame-size sequence 1, X[0] = S0[0], X[3] = S1[0], and X[6] = (S0[0] + S1[0]), as
shown in Figure 3.3. The lossless-delay constraint is trivially satisfied. The worst-case-delay
constraint is met, as at most one of X[0], X[3], and X[6] is lost.

For frame-size sequence 2, X[0] = S[0] and X[1] = S[1]. In addition, for i ∈ {2, . . . , 6}
X[i] =

(
S2(i−2)[2], S2(i−2)+1[2]

)
, X[7] =

(
S[0] +

∑6
i=3 X[i]

)
,X[8] =

(
S[1] +

∑6
i=4 2

i−2X[i]
)
,

and X[9] =
∑6

i=2 3
i−2X[i], as shown in Figure 3.4. The lossless-delay is clearly satisfied. The

worst-case-delay constraint is met, as will be shown next through a comprehensive case analysis.

47

Figure 3.3: Offline construction for frame-size sequence 1 for parameters (b, τL, τ) = (3, 4, 7).

Figure 3.4: Offline construction for frame-size sequence 2 for parameters (b, τL, τ) = (3, 4, 7).

For any l ∈ {0, 1} suppose that X[l] is lost. Then S[l] =
(
X[7 + l]−

∑6
j=3+l(l + 1)j−2X[j]

)
is

obtained within 7 time slots. When X[2] is lost, S[0] and S[1] are decoded. Then one can decode

(S4[2], S5[2]) = 2−2
(
X[8]− S[1]− 23X[5]− 24X[6]

)
(S2[2], S3[2]) = (X[7]− S[0]−X[4]−X[5]−X[6])

(S0[2], S1[2]) =

(
X[9]−

6∑
j=3

3j−2X[j]

)
.

When a burst starts with X[3], S[0], S[1], and S0[2] are decoded, and (S8[2], S9[2]) is received.
Combining S[0], S[1], and X[2], with X[6 : 9] yields

∑6
l=3X[i],

∑5
l=4 2

l−2X[l], as well as∑5
l=3 3

l−2X[l]. These three equations are linearly independent and yield X[3 : 5]. Thus, S[2] is
decoded by time slot 9. When a burst starts with X[4], S[0], S[1], S0[2], S1[2], S2[2], and S3[2] are
received and combined with X[7], X[8], and X[9] to determine

∑6
j=4X[j],

∑6
j=4 2

j−2X[j], and∑6
j=4 3

j−2X[j]. These three equations are linearly independent and yield X[4 : 6], which consist
of S4[2], . . . , S9[2]. When a burst starts with X[5], S[1], S0[2], . . . , S5[2] are received and com-
bined with X[8] and X[9] to determine

∑6
j=5 2

j−2X[j], and
∑6

j=5 3
j−2X[j]. These two equa-

tions are linearly independent and yield X[5] and X[6], which include S6[2], . . . , S9[2]. When
a burst starts with X[6], S0[2], . . . , S7[2] are received, so (S8[2], S9[2]) = 3−4

(∑5
j=2 3

j−2X[j]
)

.
When X[0 : 6] are received, the frames are received.

The rate of the offline construction for frame-size sequence 1 is 2/3, while its rate for frame-
size sequence 2 is 0.7. An online construction must send at most 1 symbol in X[0] to have a rate
of 2/3 on frame-size sequence 1 because X[0] can be lost. We next show that any such scheme
cannot attain the rate of 0.7 on frame-size sequence 2. If frame-size sequence 2 occurs, the online
construction must send at least 13 symbols over X[1 : 6] due to the lossless-delay constraint. At
least one of X[1 : 3] and X[4 : 6] must contain at least 7 symbols and may be lost. At least
14 symbols must be received. So the rate is at most 14/21 (i.e., less than 0.7). Therefore, any
online construction with a rate of 2/3 on frame-size sequence 1 cannot attain the rate of 0.7 on
frame-size sequence 2, unlike the proposed offline construction.

48

Figure 3.5: Offline construction for frame-size sequence 1 for parameters (b, τL, τ) = (2, 1, 3).

Figure 3.6: Offline construction for frame-size sequence 2 for parameters (b, τL, τ) = (2, 1, 3).

3.5 Case τL < b and τL = (τ − b)

This section presents the proof for parameters (b, τL, τ) = (2, 1, 3); the general case, which
builds closely on this example, is proven in Appendix 3.7.3.

Consider the following two frame-size sequences:
1. k

(1)
0 = 2, k

(1)
1 = 2, and k

(1)
j = 0 for j > 1.

2. k
(1)
0 = 2, k

(1)
1 = 2, k(1)

2 = 2, and k
(1)
j = 0 for j > 2.

An offline construction for the two frame-size sequences is shown in Figures 3.5 and 3.6 respec-
tively over any finite field, Fq.

Figure 3.5 shows the channel packets for frame-size sequence 1; specifically, X[0] = S[0],
X[1] = S0[1], X[2] = S1[1], X[3] = (S[0] + (0, S1[1])) , and X[4] = (S0[1] + S1[1]). The
lossless-delay constraint is trivially satisfied. The worst-case-delay constraint is met for S[0]
because either S[0] is received, or S1[1] and X[3] are received, yielding S[0]. When X[1] is lost,
(0, S1[1]) = (X[3]− S[0]) is obtained, leading to S0[1] = (X[4]− S1[1]). When X[2] is lost,
S0[1] is decoded, leading to S1[1] = (X[4]− S0[1]). As such, the worst-case-delay is satisfied
for S[1].

For frame-size sequence 2, X[0] = S[0], X[1] = S[1], X[2] = S[2], X[3] = (S[0] + S[2]) ,
and X[4] = (S[1] + S[2]), as shown in Figure 3.6. The lossless-delay is clearly satisfied.
The worst-case-delay constraint is met for S[0] as either X[0] = S[0] is received, or S[0] =
(X[3]−X[2]) is obtained. The worst-case-delay constraint is satisfied for S[1] since either X[1]
is received, or S[0] is decoded, leading to S[2] = (X[3]− S[0]), and S[1] = (X[4]− S[2]).
The worst-case-delay constraint is satisfied for S[2] because either X[2] is received, or S[1] is
decoded, yielding S[2] = (X[4]− S[1]).

The offline construction’s rate for frame-size sequence 1 is 4/7, while its rate for frame-size
sequence 2 is 0.6. An online construction with a rate of 4/7 on frame-size sequence 1 must send
at most 3 symbols in X[0 : 1], since at least 4 symbols are sent in X[2 : 4] in case X[0 : 1] is

49

lost. Also, the construction sends at least 2 symbols over X[0 : 1] to recover S[0] under lossless
transmission. Next, we show that any such scheme cannot attain the rate of 0.6 on frame-size
sequence 2 due to sending fewer than 4 symbols over X[0 : 2]. Thus, any online construction
with a rate of 4/7 on frame-size sequence 1 cannot attain the rate of 0.6 on frame-size sequence
2, unlike the proposed offline construction.

First, suppose that exactly 2 symbols are sent in X[0 : 1]. Then X[2 : 3] suffices to recover
S[0]. Recall that the 2 symbols in X[0 : 1] only contain information about S[0], as they suffice
to recover S[0] under a lossless transmission. Thus, X[0 : 1] are recovered as a function of S[0],
leaving the transmission lossless, so S[1 : 2] are recovered. Thus, X[2 : 3] contains at least 6
symbols. At least 6 symbols are sent outside of X[2 : 3] in case X[2 : 3] is lost, so the rate is at
most 6/12.

Second, due to the upper bound on the rate of τ
τ+b

= 3
5

and worst-case-delay, at least 10 =

6 ∗ 5
3

symbols must be sent by time slot 5. Suppose exactly 3 symbols are sent in X[0 : 1].
Consider the 5 periodic erasure channels, C0, . . . , C4, where for i ∈ [4], Ci drops packets X[j :
j + 1] for all j ≡ i mod 5. Each packet is dropped by 2 of these channels, so the channels
drop at least 2

5
∗ 10 ≥ 4 symbols on average. At least 6 symbols must be received to ensure

recovery. If any channel dropped 5 or more symbols, the rate would be at most 6/11. Thus,
each channel must drop exactly 4 symbols to attain a rate of 0.6. Therefore, C0 drops exactly
4 symbols—3 over X[0 : 1] and 1 in X[5]. Each of C4, C3, and C2 must drop 4 symbols (i.e.,
n4 + n5 = 4, n3 + n4 = 4, n2 + n3 = 4). Hence, X[4] contains 3 symbols, X[3] contains 1
symbol, and X[2] contains 3 symbols. In total, (3 + 3 + 1 + 3 + 1) = 11 symbols are sent over
X[0 : 1], X[2], X[3], X[4], and X[5], leading to a rate of 6/11, which is less than 0.6.

Therefore, any online construction that matches the rate of 4/7 on frame-size sequence 1
cannot attain the rate of 0.6 on frame-size sequence 2, unlike the offline construction.

3.6 Case τL < (τ − b)

This section presents the proof for parameter (b, τL, τ) = (1, 1, 3); the general case, which builds
closely on this example, is proven in Appendix 3.7.4.

Consider the following two frame-size sequences:
1. k

(1)
0 = 2 and k

(1)
j = 0 for j > 0.

2. k
(1)
0 = 2, k

(1)
1 = 4, and k

(1)
j = 0 for j > 1.

An offline construction for the two frame-size sequences is shown in Figures 3.7 and 3.8 respec-
tively over any finite field, Fq.

For frame-size sequence 1, X[0] = S0[0], X[1] = S1[0], and X[2] = (S0[0] + S1[0]), as is
shown in Figure 3.7. The lossless-delay constraint is trivially satisfied. The worst-case-delay
constraint is met because at most one of X[0], X[1], or X[2] is lost and X[2] = (X[0] +X[1]).

For frame-size sequence 2, X[0] = S[0], X[1] = (S0[1], S1[1]), X[2] = (S2[1], S3[1]), and
X[3] = (S[0] + (S0[1], S1[1]) + (S2[1], S3[1])), as shown in Figure 3.8. The lossless-delay is
clearly satisfied. The worst-case-delay constraint is met, since at most one of X[0], X[1], X[2],
or X[3] =

∑2
i=0X[i] is lost.

The offline construction’s rate for frame-size sequence 1 is 2/3, while its rate for frame-size

50

Figure 3.7: Offline construction for frame-size sequence 1 for parameters (b, τL, τ) = (1, 1, 3).

Figure 3.8: Offline construction for frame-size sequence 2 for parameters (b, τL, τ) = (1, 1, 3).

sequence 2 is 0.75. For an online construction to attain a rate of 2/3 on frame-size sequence 1, it
must send exactly 1 symbol in each of X[0] and X[1] due to (a) the lossless-delay constraint and
(b) ensuring at most 1 symbol is lost—a necessity to attain the rate of 2/3. Next, we show that
any such scheme cannot attain the rate of 0.75 on frame-size sequence 2. If frame-size sequence
2 occurs, at least 6 symbols are sent over X[0 : 2] due to the lossless-delay constraint. The
average number of symbols per packet is at least 2. If X[0] contains one symbol, at least one
of X[1] or X[2] contains at least 3 symbols. At least 6 symbols must be received to satisfy the
worst-case-delay constraint. Since at least 3 symbols may be lost, at least 9 symbols must be
sent in total. As such, the rate is at most 2/3, which is less than 0.75. Therefore, any online
construction that matches the rate of 2/3 on frame-size sequence 1 cannot attain the rate of 0.75
on frame-size sequence 2, unlike the offline construction.

3.7 Appendix

3.7.1 Proof of Theorem 4

In this section, we will prove Theorem 4. At a high level, the proof is inductive and shows
that the cumulative number of symbols sent by each time slot under the (τ, b)-Variable-sized
Generalized MS Code is the minimum possible. For time slots where no parity symbols are sent,
it follows immediately by the lossless-delay constraint. Otherwise, there is some burst for which
every parity symbol in the received channel packets is needed to recover the burst within the
worst-case-delay.

We begin by introducing the preliminary notation for the proof. We then include a few
auxiliary Lemmas used throughout the proof. Finally, we present the full proof itself.

Let t be an arbitrary natural number, and consider any length (t + 1) frame-size sequence
k0, . . . , kt. Let O be an arbitrary offline code construction that satisfies the lossless-delay and
worst-case-delay constraints over a C(b, τ) channel for the frame-size sequence. Let the channel
packet transmitted during time slot j ∈ [t] under construction O and under the (τ, b)-Variable-

51

sized Generalized MS Code be labeled as XO[j] and XV [j], respectively. Let the cumulative
number of symbols transmitted through time slot j under construction O and under the (τ, b)-
Variable-sized Generalized MS Code be denoted n+

O,j =
∑j

i=0 xO[i] and n+
V,j =

∑j
i=0 xV [i],

respectively. Recall that each frame comprises symbols drawn independently and uniformly at
random from the finite field Fq. Let S be a random variable representing a uniformly random
element of Fq.

Next, we show that the lossless-delay constraint necessitates transmitting at least as many
symbols as the size of the frame for each time slot.
Lemma 9. Consider any parameters (τ, b, τL = 0), any frame-size sequence k0, k1, . . . , kt, and
any code construction which satisfies the lossless-delay and worst-case-delay constraints over a
C(b, τ) channel. For any j ∈ [t], nj ≥ kj .

Proof. Follows directly from (a) the independence of frames, and (b) the lossless-delay con-
straint for τL = 0.

Next, we establish that whenever a burst of length b occurs, all frames from time slots before
the burst must be decoded before the burst to satisfy both the lossless-delay and worst-case-delay
constraints.
Lemma 10. Consider any parameters (τ, b, τL = 0), any frame-size sequence k0, k1, . . . , kt, j ∈
[t], and any code construction which satisfies the lossless-delay and worst-case-delay constraints
over a C(b, τ) channel. When X[j], . . . , X[j+ b−1] are lost in a burst, S[0 : j−1] are decoded
by time slot (j − 1).

Proof. By the worst-case-delay constraint, S[0 : j − τ − 1] are all decoded by time slot (j − 1).
Under the C(b, τ) channel, when X[j], . . . , X[j + b − 1] are lost, X[j − τ], . . . , X[j − 1] are
necessarily received.7 By the lossless-delay constraint, S[0 : j − τ − 1] and X[j − τ : j − 1]
suffice to decode S[j − τ : j − 1].

Finally, we prove Theorem 4 below.

Proof of Theorem 4. Let k0, k1, . . . , kt be an arbitrary frame-size sequence. We will show by
induction that the cumulative number of symbols sent through time slot i ∈ [t] under an arbitrary
offline construction, O, is at least as many as that of the (τ, b)−Variable-sized Generalized MS
Code (i.e., n+

O,i ≥ n+
V,i). Consequently, the (τ, b)-Variable-sized Generalized MS Code matches

the offline-optimal-rate.
In the base case, we consider j ∈ [τ − 1]. Applying Lemma 9 determines that xO[j] ≥ kj =

xV [j] ∀j ∈ [τ − 1].
For the inductive hypothesis, we assume that for some (i∗ ≥ τ − 1), for all l ∈ [i∗], n+

O,l ≥
n+
V,l.

For the inductive step, consider the time slot (i = i∗ + 1 ≥ τ). By the inductive hypothesis,
n+
O,i−1 ≥ n+

V,i−1. We will show that n+
O,i ≥ n+

V,i using two cases.
Case xV [i] = ki :

Applying Lemma 9 determines that xO[i] ≥ ki. Therefore, (n+
O,i = n+

O,i−1 + ki ≥ n+
V,i−1 +

ki = n+
V,i).

7When j < τ, X[0 : j − 1] are received.

52

Case xV [i] > ki : We first provide a high-level intuition of the proof and then the detailed
derivation.
High-level summary: Applying Lemma 8 shows that there is a burst starting in time slot j ∈
{i − τ − b + 1, . . . , i − τ} for which the (τ, b)-Variable-sized Generalized MS Code receives
minimum required number of parity symbols to decode frames S[j : i − τ] by time slot i.
Combining this fact with meeting the lossless-delay constraint for S[j + b : i] shows that the
number of symbols sent under O between time slots (j + b) and i is at least as many as that of
the (τ, b)-Variable-sized Generalized MS Code.

Detailed derivation: By Lemma 8, there is some j ∈ {i − τ − b + 1, . . . , i − τ} such that∑i
l=j+b p[l] =

∑i−τ
l=j kl. Therefore,

i∑
l=j+b

xV [l] =
i−τ∑
l=j

kl +
i∑

l=j+b

kl. (3.7)

Next, we show that at least as many symbols are sent over XO[j + b : i] as are sent over
XV [j + b : i]. Consider a burst loss of X[j], . . . , X[j + b− 1]. Applying Lemma 10 shows that
S[0 : j − 1] are known by the receiver by time slot (j − 1). By the worst-case-delay constraint,

H
(
S[j : i− τ]

∣∣XO[j + b : i], S[0 : j − 1]
)
= 0. (3.8)

We next bound the number of symbols sent over XO[j + b : i] as

H (S[j : i− τ]) +H
(
XO[j + b : i]

∣∣S[0 : i− τ]
)
= (3.9)

H
(
XO[j + b : i], S[j : i− τ]

∣∣S[0 : j − 1]
)
= (3.10)

H
(
XO[j + b : i]

∣∣S[0 : j − 1]
)
+ (3.11)

H
(
S[j : i− τ]

∣∣S[0 : j − 1], XO[j + b : i]
)
=

H
(
XO[j + b : i]

∣∣S[0 : j − 1]
)
, (3.12)

where Equation 3.10 follows from the chain rule and independence of frames, Equation 3.11
follows from the chain rule, and Equation 3.12 follows from Equation 3.8.

Combining Equations 3.10 and 3.12 with the fact that conditioning reduces entropy yields

H (XO[j + b : i]) ≥ H
(
XO[j + b : i]

∣∣S[0 : j − 1]
)
≥

H (S[j : i− τ]) +H
(
XO[j + b : i]

∣∣S[0 : j + b− 1]
)
.

(3.13)

Next, we evaluate the size of H
(
XO[j + b : i]

∣∣S[0 : j + b− 1]
)

as

H
(
S[j + b : i], XO[j + b : i]

∣∣S[0 : j + b− 1]
)
= (3.14)

H (S[j + b : i]) +H
(
XO[j + b : i]

∣∣S[0 : i]
)
= (3.15)

H (S[j + b : i]) = (3.16)

H
(
XO[j + b : i]

∣∣S[0 : j + b− 1]
)
+ (3.17)

H
(
S[j + b : i]

∣∣S[0 : j + b− 1], XO[j + b : i]
)
=

H
(
XO[j + b : i]

∣∣S[0 : j + b− 1]
)
, (3.18)

53

where Equation 3.15 follows from conditioning and independence of frames, Equation 3.16 fol-
lows from the fact that for l ∈ [t], XO[l] is a function of S[0 : l], Equation 3.17 follows from
conditioning, and Equation 3.18 follows from the lossless-delay constraint.

For any i ∈ [t],
H(S[i]) = H(S)ki (3.19)

H(X[i]) ≤ H(S)ni (3.20)

where S was defined as a random variable drawn uniformly at random from the underlying field,
Fq. This follows from the definition of frames, and the fact that the maximum possible entropy
of ni symbols is niH(S). Applying Equation 3.18 and 3.16 to Equations 3.13, 3.19, and 3.20
yields

H(S)
i∑

l=j+b

∣∣XO[l]
∣∣ ≥ H (XO[j + b : i]) ≥

H (S[j : i− τ]) +H (S[j + b : i]) =

H(S)
(i−τ∑

l=j

kl +
i∑

l=j+b

kl
)
.

(3.21)

Combining Equations 3.21 and 3.7 determines that

H (S)
i∑

l=j+b

xO[l] ≥ H (S)
i∑

l=j+b

xV [l]. (3.22)

By definition, (n+
O,i = n+

O,j+b−1 +
∑i

l=j+b xO[l]) and (n+
V,i = n+

V,j+b−1 +
∑i

l=j+b xV [l]). Ap-
plying the inductive hypothesis to (j + b− 1 < i) shows that (n+

V,j+b−1 ≤ n+
O,j+b−1). Combining

the above equations with Equation 3.22 determines that n+
V,i ≤ n+

O,i. The inductive hypothesis is
proven, and the result follows immediately.

3.7.2 Proof of Theorem 5 case τL ≥ b and τL = (τ − b)

Let (a = ⌊ τL
b
⌋) and (e ≡ τL mod b). Theorem 5 does not apply when τ = (τL − b) and b|τ ,

necessitating that (e > 0). Let d be an arbitrary multiple of (a+ 1).
Consider the following two frame-size sequences for which the offline construction will be

shown below in Figures 3.9 and 3.10 respectively:
1. k

(1)
0 = . . . = k

(1)
e−1 = d, and k

(1)
e = . . . = k

(1)
t = 0.

2. k
(2)
0 = . . . = k

(2)
b−2 = d, k(2)

b−1 = d(τL + 1), and k
(2)
b = . . . = k

(2)
t = 0.

Before going into the details of the proof, we note that the proof applies for any value of d.
When d is sufficiently large, the proof could also be extended to frame-size sequences where
the frames’ sizes may only approximately equal the ones in the frame-size sequence. More
generally, the proof also applies for any frame-size sequences for which there is a subsequence
of (a) τ frames whose sizes are ≪ d, then (b) one of the two above frame-size sequences, then
(c) another τ frames whose sizes are ≪ d.

54

Figure 3.9: The offline scheme for frame-size sequence 1 for case τL ≤ b and τL = (τ − b). Blue
channel packets consist of frame symbols, and red channel packets consist of parity symbols.
The numbers under the lines at the bottom indicate the time slots. The offline scheme sends d

a+1

symbols in each of the first e channel packets.

Figure 3.10: The offline scheme for frame-size sequence 2 for case τL ≤ b and τL = (τ − b).
Blue channel packets consist of frame symbols and red channel packets consist of parity symbols.
The numbers under the lines at the bottom indicate the time slots. The offline scheme sends d
symbols in each of the first e channel packets.

We present an offline coding scheme for frame-size sequences 1 and 2, which has rates

R
(1)
t =

a+ 1

a+ 2
, R

(2)
t =

τ

τ + b
(3.23)

on the two frame-size sequences, respectively. We describe and then validate the scheme for
each frame-size sequence.
Offline scheme for frame-size sequence 1: Each frame is encoded separately with parameters
(τ ′ = ⌊ τ

b
⌋b, b′ = b, τ ′L = τ ′ − b) as described in Section 3.2, shown in Figure 3.9, and detailed

below.
• For i ∈ [e−1], S[i] is evenly divided into (a+1) components of size d: S(0)[i], . . . , S(a)[i].

For j ∈ [a], X[i+ jb] = S(j)[i].
• For i ∈ [e− 1], X[i+ (a+ 1)b] =

∑a
z=0 X[i+ zb].

Decoding: For i ∈ [e−1], S[i] is sent evenly over X[i], X[i+b], . . . , X[i+ab] where (i+ab) ≤
(i+ τL) and at most one of X[i], X[i+ b], . . . , X[i+ab], or X[i+(a+1)b] =

∑a
j=0X[i+ jb] is

lost. Each frame is decoded within delay τL when the transmission is lossless and using a linear
combination of the relevant (a+ 1) channel packets within delay τ otherwise.
Offline scheme for frame-size sequence 2: The first (b − 1) frames are sent with no delay
and the symbols of the next frame are transmitted evenly over X[b − 1], . . . , X[τ − 1]. The
symbols of X[0 : τ − 1] are used to create d blocks of the rate τ

τ+b
systematic block code

from [51]. Each of the d blocks includes b parity symbols that are sent in X[τ], . . . , X[τ +
b − 1] respectively. The block code maps τ input symbols (s0, . . . , sτ−1) to (τ + b) codeword
symbols (s0, . . . , sτ−1, p0, . . . , pb−1). For each j ∈ [τ−1] and any burst erasing up to b codeword

55

symbols, the non-erased symbols of (s0, . . . , sτ−1, p0, . . . , pmin(b−1,j)) are sufficient to decode sj .
Therefore, each symbol is recovered within τ symbols. We note that although we use the block
code from [51], any other block code from [27, 30, 35, 49] also works. The scheme is described
in detail below and shown in Figure 3.10:

• For j ∈ [b− 2], X[j] = S[j].
• S[b− 1] is divided evenly into (τL+1) components of size d: S(0)[b− 1], . . . , S(τL)[b− 1].
• For j ∈ {b− 1, . . . , b− 1 + τL}, X[j] = S(j−b+1)[b− 1].
• For each z ∈ [d − 1], an instance of the block code from [51] is created which maps
(Xz[0], . . . , Xz[τ − 1]) to (Xz[0], . . . , Xz[τ − 1], p

(z)
0 , . . . , p

(z)
b−1).

• For j ∈ [b− 1], X[τ + j] = (p
(0)
j , . . . , p

(d−1)
j).

Decoding: Each frame is transmitted within the current and next τL channel packets and is, thus,
decoded when the transmission is lossless. Each symbol Xz[i] for z ∈ [d− 1] and i ∈ [τ − 1] is
decoded within the delay τ or by time slot (τ + b− 1) using the block code (Xz[0], . . . , Xz[τ −
1], p

(z)
0 , . . . , p

(z)
b−1). Hence, the worst-case-delay constraint is met.

Proof of the converse result : The offline-optimal-rate is at least R(1)
t and R

(2)
t (that is, the rate of

the offline scheme from Equation 3.23) for frame-size sequences 1 and 2, respectively. Next, we
show mutually exclusive conditions for the sum of the sizes of X[0], . . . , X[e − 1] to have rates
at least R(1)

t and R
(2)
t on frame-size sequences 1 and 2 respectively. All online coding schemes,

thus, fail the condition for at least one frame-size sequence since they are identical until time slot
e.
Condition for rate R(1)

t on frame-size sequence 1 : Consider any coding scheme for frame-size
sequence 1. At least de symbols are sent over X[b], . . . , X[t] since X[0], . . . , X[b− 1] could be
lost. At most d e

a+1
symbols can be sent over X[0], . . . , X[b− 1] if the rate is at least R(1)

t .

Condition for rate R
(2)
t on frame-size sequence 2 : Consider an arbitrary coding scheme for

frame-size sequence 2. At least dτ symbols are sent in X[0], . . . , X[τ − 1] to meet the lossless-
delay constraint. For each i ∈ [a], at least dτ symbols are sent outside of X[e+ib : e+(i+1)b−1]

in case X[e + ib : e + (i + 1)b − 1] is lost. Since the rate is R(2)
t , at most db symbols are sent

in X[e + ib : e + (i + 1)b − 1]. As such, at least (dτ − d(a + 1)b = de) symbols are sent in
X[0 : e− 1].

Summary : Any online scheme whose rate is at least R(1)
t on frame-size sequence 1 sends at

most d e
a+1

symbols in X[0 : b− 1]. As such, its rate is lower than R
(2)
t on frame-size sequence 2.

3.7.3 Proof of Theorem 5 case τL < b and τL = (τ − b)

Let d be an arbitrary positive even integer. Consider the following two frame-size sequences for
which the offline construction will be shown below in Figures 3.11 and 3.12 respectively:

1. k
(1)
0 = . . . = k

(1)
b−τL

= d, and k
(1)
b−τL+1 = . . . = k

(1)
t = 0.

2. k
(2)
0 = . . . = k

(2)
b−τL

= d, k(2)
b−τL+1 = . . . = k

(2)
b−1 = 0, k(2)

b = d, and k
(2)
b+1 = . . . = k

(2)
t = 0.

Before presenting the proof in detail, we observe that the proof could also be extended to similar
frame-size sequences where the sizes of each frame is perturbed by a small amount as long as

56

Figure 3.11: The offline scheme for frame-size sequence 1 for case τL < b and τL = (τ−b). Blue
channel packets consist of frame symbols, and red channel packets consist of parity symbols.
The numbers under the lines at the bottom indicate the time slots. The offline scheme sends d

2

symbols in X[b− τL].

Figure 3.12: The offline scheme for frame-size sequence 2 for case τL < b and τL = (τ − b).
Blue channel packets consist of frame symbols and red channel packets consist of parity symbols.
The numbers under the lines at the bottom indicate the time slots. The offline scheme sends d
symbols in X[b− τL]

d is large. More generally, the proof also applies to any frame-size sequence that contains one
of the two above frame-size sequences proceeded and followed by τ frames sufficiently small
relative to d.

We will present an offline coding scheme for the two frame-size sequences with rates

R
(1)
t =

b− τL + 1

2b− 2τL + 1.5
, R

(2)
t =

b− τL + 2

2b− 2τL + 3
(3.24)

on frame-size sequence 1 and 2, respectively. After presenting the scheme for each frame-size
sequence, we verify that it satisfies the lossless-delay and worst-case-delay constraints.
Offline scheme for frame-size sequence 1: The first (b−τL) frames are sent in the corresponding
channel packets. The frame S[b− τL] is divided in half to be evenly transmitted over X[b− τL]
and X[b]. Each of the next (b− τL) channel packets comprises d parity symbols used to decode
(a) the first (b−τL) frames if the corresponding channel packets are lost and (b) X[b] if X[b−τL]
and X[b] are both lost. The summation of X[b − τL] and X[b] is later sent in X[2b] to ensure
decoding of S[b− τL] within delay τ . The scheme is detailed below and shown in Figure 3.11:

• S[0] and S[b − τL] are each evenly divided into two components of d/2 symbols each:
S[0] = (S(0)[0], S(1)[0]) and S[b− τL] = (S(0)[b− τL], S

(1)[b− τL]).
• For i ∈ [b− τL − 1], X[i] = S[i].
• X[b− τL] = S(0)[b− τL].
• X[b] = S(1)[b− τL].

57

• X[b+ 1] = (S(0)[0], S(1)[0] + S(1)[b− τL]).
• For i ∈ {1, . . . , b− τL − 1}, X[i+ b+ 1] = (X[i+ b] + S[i]).
• X[b− τL + τ] = X[2b] = (S(0)[b− τL] + S(1)[b− τL]).

Decoding: Each frame is sent within the current and perhaps next τL channel packets and is
decoded when the transmission is lossless. We now discuss how frames are recovered within
a delay of τ under lossy conditions. Either X[0] = S[0] is received, or X[0] is lost. In the
latter case, both X[b] = S(1)[b− 1] and X[b + 1] = (S(0)[0], S(1)[0] + S(1)[b− 1]) are received.
Therefore, S[0] is decoded within the delay of τ . Next, for i ∈ {1, . . . , b − τL − 1}, either
X[i] = S[i] is received, or both X[i + b] and X[i + b + 1] = (X[i + b] + S[i]) are received.
Thus, S[i] is recovered within delay (b+ 1 ≤ τ). Either X[b− τL] = S(0)[b− τL] is received, or
X[2b − τL] =

(
(S(0)[0], S(1)[0] + S(1)[b− τL]) +

∑b−τL−1
i=1 S[i]

)
is received. In the latter case,

S[0], . . . , S[b − τL − 1] are decoded by time slot (2b − 1) and combined with X[2b − τL] to
decode S(1)[b− τL]. S(1)[b− τL] is then combined with X[2b] = (S(0)[b− τL] + S(1)[b− τL]) to
recover S(0)[b− τL] within a delay of τ . Therefore, S(0)[b− τL] is decoded within delay τ . Either
X[b] = S(1)[b− τL] is received, or X[2b] = (S(0)[b− τL] + S(1)[b− τL]) is received. Recall that
S(0)[b− τL] is decoded by time slot 2b. Thus, S(1)[b− τL] is recovered within delay τ .
Offline scheme for frame-size sequence 2: Each frame S[i] is transmitted in the corresponding
channel packet X[i]. The next τL channel packets each comprise d parity symbols. These dτL
symbols are used to decode (a) the first (b− τL) frames when the corresponding channel packets
are lost, and (b) S[b] when both X[b − τL] = S[b − τL] and X[b] = S[b] are lost. The sum of
S[b− τL] and S[b] is sent in X[2b] to ensure that S[b− τL] is recovered if X[b− τL] is dropped.
The scheme is described in full detail below and shown in Figure 3.12 :

• For i ∈ [b− τL] ∪ {b}, S[i] = X[i].
• X[b+ 1] = (S[0] + S[b]).
• For i ∈ {1, . . . , b− τL − 1}, X[i+ b+ 1] = (X[b+ i] + S[i]).
• X[2b] = (S[b] + S[b− τL]).

Decoding: Each frame is transmitted within the corresponding channel packet and is decoded
when the transmission is lossless. We now discuss how each frame is decoded within a delay of
τ under lossy conditions. Either X[0] = S[0] is received or both X[b] = S[b] and X[b + 1] =
(S[0] + X[b]) are received. Consequently, S[0] is decoded within delay (b + 1 ≤ τ). For
i ∈ {1, . . . , b − τL − 1}, either X[i] = S[i] is received, or both X[i + b] and X[i + b + 1] =
(X[i+ b] + S[i]) is received. Therefore, each S[i] is recovered within delay (b+ 1 ≤ τ). Either
X[b−τL] = S[b−τL] is received, or X[2b−τL] = (S[b]+

∑b−τL−1
i=0 S[i]) is received. In the latter

case, S[0], . . . , S[b−τL−1] are decoded by time slot (b−τL+τ) and combined with X[2b−τL]
to decode S[b]. Then, S[b] and X[2b] = (S[b] + S[b− τL]) used to recover S[b− τL]. Therefore,
S[b−τL] is decoded within delay τ . Either X[b] = S[b] is received, or X[2b] = (S[b]+S[b−τL])
is received. In the latter case, subtracting S[b − τL] yields S[b]. Hence, S[b] is recovered within
a delay of τ .

Proof of the converse result : The offline-optimal-rate is at least R(1)
t and R

(2)
t on frame-size

sequences 1 and 2, respectively (i.e., the rate of the offline scheme from Equation 3.24). Next,
we present necessary and mutually exclusive conditions on the total number of symbols sent

58

in X[0], . . . , X[b − 1] for a code construction to attain rates at least R(1)
t and R

(2)
t on the two

respective frame-size sequences. The two frame-size sequences are the same until time slot b.
Therefore, no online coding scheme can satisfy the condition for both frame-size sequences.

Condition for rate R
(1)
t on frame-size sequence 1 : Consider an arbitrary coding scheme for

frame-size sequence 1. At least d(b − τL + 1) symbols are transmitted in X[b], . . . , X[t] since
X[0], . . . , X[b − 1] could be dropped in a burst. At most, an additional d(b − τL + .5) symbols
can be sent over X[0], . . . , X[b− 1] if the rate is at least R(1)

t .

Condition for rate R(2)
t on frame-size sequence 2 : Consider any coding scheme for frame-size

sequence 2. We will show that if

d′ =
b−1∑
i=0

ni ≤ d(b− τL + .5) (3.25)

then the rate is strictly less than R
(2)
t . At a high level, at least d(b − τL + 2) symbols are sent

in X[0], . . . , X[b− 1], X[2b], . . . , X[t] to satisfy the worst-case-delay constraint in the event that
X[b], . . . , X[2b−1] are lost. At least d(b−τL+1.5) symbols must be sent in X[b], . . . , X[2b−1]
for the lossless-delay and worst-case-delay constraints to be satisfied, as will be shown shortly.
In total, d(2b − 2τL + 3.5) symbols are sent, whereas at most d(2b − 2τL + 3) symbols are
transmitted as part of a scheme with a rate of at least R(2)

t .

Next, the fact that sending at most d(b − τL + .5) symbols over X[0], . . . , X[b − 1] leads to
a rate of less than R

(2)
t on frame-size sequence 2 is proven in detail. Let S be a random variable

drawn uniformly at random from the finite field Fq. Recall from Appendix 3.7.1 that for any
i ∈ [t], (a) H(S[i]) = H(S)ki, and (b) H(X[i]) ≤ H(S)ni (Equations 3.19 and 3.20).

We provide an upper bound on the sizes of the channel packets as follows

d(b− τL + 2)H (S) = H (S[0 : b]) ≤ (3.26)
H (S[0 : b], X[0 : b− 1], X[2b : b+ τ]) = (3.27)

H (X[0 : b− 1], X[2b : b+ τ]) +

H
(
S[0 : b]

∣∣X[0 : b− 1], X[2b : b+ τ]
)
=

(3.28)

H (X[0 : b− 1], X[2b : b+ τ]) ≤ (3.29)

H (S)

(
b−1∑
i=0

ni +
b+τ∑
i=2b

ni

)
. (3.30)

Equation 3.26 follows from Equation 3.19, Equation 3.27 follows from the definition of entropy,
Equation 3.28 follows from the chain rule, Equation 3.29 follows from the worst-case-delay
constraint, and Equation 3.30 follows from Equation 3.20.

59

Next, we will prove that H (X[b : 2b− 1]) ≥ d(b− τL + 1.5)H (S) as follows

H (X[0 : b− 1], S[0 : b− τL − 1]) =

H (X[0 : b− 1]) +H
(
S[0 : b− τL − 1]

∣∣X[0 : b− 1]
)
=

(3.31)

H (X[0 : b− 1]) ≤ d′H (S) (3.32)

H (X[0 : b− 1], S[0 : b− τL − 1]) =

H (S[0 : b− τL − 1])+

H
(
X[0 : b− 1]

∣∣S[0 : b− τL − 1]
)
=

(3.33)

d(b− τL)H (S) +H
(
X[0 : b− 1]

∣∣S[0 : b− τL − 1]
)

(3.34)

where Equation 3.31 follows from the chain rule, Equation 3.32 follows from the lossless-delay
constraint and Equation 3.25, Equation 3.33 follows from the chain rule, and Equation 3.34
follows from applying Equation 3.19 to S[0], . . . , S[b− τ − 1].

Rearranging terms yields

H
(
X[0 : b− 1]

∣∣S[0 : b− τL − 1]
)
≤ (d′ − d(b− τL))H (S) (3.35)

Next, we bound the sizes of X[b], . . . , X[2b− 1] using

d(b− τL + 2)H (S) ≤ H (S[0 : b]) ≤ (3.36)
H (S[0 : b], X[0 : 2b− 1]) ≤ (3.37)

H (X[b : 2b− 1]) +H
(
S[0 : b− τL − 1]

∣∣X[b : 2b− 1]
)
+

H
(
X[0 : b− 1]

∣∣S[0 : b− τL − 1]
)
+

H
(
S[b− τL : b]

∣∣X[0 : 2b− 1]
)
=

(3.38)

H (X[b : 2b− 1]) +H
(
X[0 : b− 1]

∣∣S[0 : b− τL − 1]
)

(3.39)
≤H (X[b : 2b− 1]) + (d′ − d(b− τL))H (S) , (3.40)

where Equation 3.36 follows from Equation 3.19, Equation 3.37 follows from the definition of
entropy, Equation 3.38 follows from the definition of conditioning, Equation 3.39 follows from
the worst-case-delay constraint (i.e., τ = (τL + b)) and the lossless-delay (i.e., τL < b), and
Equation 3.40 follows from Equation 3.35.

Rearranging terms yields

(d(2b− 2τL + 2)− d′)H (S) ≤ H (X[b : 2b− 1])

≤ H (S)
2b−1∑
i=b

ni.
(3.41)

The total number of symbols sent in X[0 : b−1] and X[2b : b+ τ] is at least d(b− τL+2) by
Equations 3.26 through 3.30. At least (d(2b− 2τL + 2)− d′) symbols are sent in X[b : 2b − 1]
by Equation 3.41. In total, at least

d(3b− 3τL + 4)− d′ ≥
(
d(3b− 3τL + 4)− d(b− τL + .5)

)
= d(2b− 2τL + 3.5)

60

Figure 3.13: The offline scheme for frame-size sequence 1 for case τL < (τ − b). Blue channel
packets consist of frame symbols, and red channel packets consist of parity symbols. The num-
bers under the lines at the bottom indicate the time slots. The offline scheme sends d

2
symbols in

X[b− 1].

Figure 3.14: The offline scheme for frame-size sequence 2 for case τL < (τ − b). Blue channel
packets consist of frame symbols and red channel packets consist of parity symbols. The numbers
under the lines at the bottom indicate the time slots. The offline scheme sends d symbols in
X[b− 1]

symbols are sent. Thus, the rate is strictly lower than R
(2)
t .

Summary : Any online scheme with rate at least R(1)
t on frame-size sequence 1 sends at most

d(b− τL + .5) symbols over X[0], . . . , X[b− 1]. Consequently, its rate is strictly less than R
(2)
t

on frame-size sequence 2.

3.7.4 Proof of Theorem 5 case τL < (τ − b)

Let d be an arbitrary positive even integer. Consider the following two frame-size sequences for
which the offline construction will be shown below in Figures 3.13 and 3.14 respectively:

1. k
(1)
0 = . . . = k

(1)
b−1 = d, and k

(1)
b = . . . = k

(1)
t = 0.

2. k
(2)
0 = . . . = k

(2)
τ−τL−2 = d, k(2)

τ−τL−1 = d(τL + 1), and k
(2)
τ−τL = . . . = k

(2)
t = 0.

Before we present the details of the proof, we point out that a similar proof applies to when the
sizes of the frames are approximately equal to those of the frame-size sequences, as long as the
deviation is small relative to d. In addition, the proof extends to scenarios where one of the two
above frame-size sequence occurs at some point in the transmission proceeded and followed by
τ frames whose sizes are much less than d.

We will describe an offline coding scheme for frame-size sequences 1 and 2 with rates

R
(1)
t =

b

2b− .5
, R

(2)
t =

τ

τ + b
(3.42)

61

on the two respective frame-size sequences. We also verify that the lossless-delay and worst-
case-delay constraints are satisfied.
Offline scheme for frame-size sequence 1: Each of S[0], . . . , S[b−2] is transmitted immediately
as part of the corresponding channel packet. Then S[b−1] is divided in half and evenly sent over
X[b − 1] and X[b]. The next (b − 1) channel packets each comprise d parity symbols. These
d(b− 1) parity symbols are used to decode (a) frames S[0], . . . , S[b− 2] when the corresponding
channel packets are lost, and (b) X[b] when both X[b − 1] and X[b] are lost. The summation of
X[b − 1] and X[b] is sent in X[2b] to ensure that S[b − 1] is decoded within a delay of τ . The
scheme is described in detail below and shown in Figure 3.13 :

• The frames S[0] and S[b−1] are divided in half into S[0] = (S(0)[0], S(1)[0]) and S[b−1] =
(S(0)[b− 1], S(1)[b− 1]) .

• For j ∈ [b− 2], X[j] = S[j].
• X[b− 1] = S(0)[b− 1].
• X[b] = S(1)[b− 1].
• X[b+ 1] = (S(0)[0], S(1)[0] + S(1)[b− 1]).
• For i ∈ {1, . . . , b− 2}, X[i+ b+ 1] = (X[i+ b] + S[i]).
• X[2b] = (S(0)[b− 1] + S(1)[b− 1]).

Decoding: Each frame is sent within the current and perhaps next channel packets and is de-
coded when the transmission is lossless. We now discuss how each frame is decoded within
delay τ under lossy conditions. Either X[0] = S[0] is received, or both X[b] = S1[b − 1] and
X[b + 1] = (S(0)[0], S(1)[0] + S(1)[b − 1]) are received. Thus, S[0] is decoded within a delay
of (b + 1 ≤ τ). For j ∈ {1, . . . , b − 2}, either X[j] = S[j] is received, or both X[j + b]
and X[j + b + 1] = (X[j + b] + S[j]) are received. Therefore, S[j] is decoded within de-
lay (b + 1 ≤ τ). Either X[b − 1] = S(0)[b − 1] is received, or X[2b − 1] is received. In
the latter case, S[0], . . . , S[b − 2] are decoded by time slot (2b − 1) and are combined with
X[2b − 1] =

(
(S(0)[0], S(1)[0] + S(1)[b− 1]) +

∑b−2
i=1 S[i]

)
to recover S(1)[b − 1]. The receiver

then decodes S(0)[b−1] = (X[2b]−S(1)[b−1]) within delay (b+1 ≤ τ). Either X[b] = S(1)[b−1]
is received, or X[2b] = (S(0)[b − 1] + S(1)[b − 1]) is received and combined with S(0)[b − 1] to
recover S(1)[b− 1] within delay τ .
Offline scheme for frame-size sequence 2: Each of S[0], . . . , S[τ−τL−2] is transmitted within
the corresponding channel packet. The symbols of S[τ − τL−1] are evenly divided into (τL+1)
components sent over X[τ − τL − 1], . . . , X[τ − 1] respectively. Each of X[τ], . . . , X[τ + b− 1]
comprises d symbols, which creates d blocks of the [τ + b, τ] systematic block codes (described
in Section 3.7.2). The scheme is presented in detail below and shown in Figure 3.14 :

• For j ∈ [τ − τL − 2], X[j] = S[j].
• The frame S[τ − τL − 1] is evenly divided into (τL + 1) components of size d: (S(0)[τ −
τL − 1], . . . , S(τL)[τ − τL − 1]).

• For j ∈ {τ − τL − 1, . . . , τ − 1}, X[j] = S(j−τ+τL+1)[τ − τL − 1].
• For each z ∈ [d − 1], an instance of the block code from [51] is created that maps
(Xz[0], . . . , Xz[τ − 1]) to (Xz[0], . . . , Xz[τ − 1], p

(z)
0 , . . . , p

(z)
b−1).

62

• For j ∈ [b− 1], X[τ + j] = (p
(0)
j , . . . , p

(d−1)
j).

Decoding: Each frame is sent over the current and perhaps next τL channel packets and is de-
coded when the transmission is lossless. When there are losses, the block code (Xz[0], . . . , Xz[τ−
1], p

(z)
0 , . . . , p

(z)
b−1) is used for decoding. For z ∈ [d− 1]: (a) Each symbol Xz[i], for i ∈ [b− 1], is

decoded within a delay of τ . (b) Each symbol Xz[i], for i ∈ [τ − 1] \ [b− 1], is decoded by time
slot (τ + b− 1). Thus, the worst-case-delay constraint is satisfied.

Proof of the converse result : The rates R(1)
t and R

(2)
t of the above construction (Equation 3.42)

for frame-size sequences 1 and 2, respectively, serve as a lower bound on the offline-optimal-
rate for the two frame-size sequences. Next, we present mutually exclusive conditions on the
number of symbols transmitted in the first b channel packets to have rates at least R(1)

t or R(2)
t

on frame-size sequences 1 or 2, respectively. The online coding schemes cannot differentiate
between the two frame-size sequences before the time slot b. Hence, the number of symbols sent
in X[0], . . . , X[b − 1] by any online scheme violates the condition for at least one frame-size
sequence.

Condition for rate R(1)
t on frame-size sequence 1 : Consider any coding scheme for frame-size

sequence 1. At least db symbols are transmitted in X[b], . . . , X[t] in case there is a burst loss of
X[0], . . . , X[b− 1]. The rate is at least R(1)

t , so at most d(b− .5) additional symbols are sent in
X[0], . . . , X[b− 1].

Condition for rate R(2)
t on frame-size sequence 2 : Consider any coding scheme for frame-size

sequence 2. We will demonstrate that if

b−1∑
i=0

ni ≤ d(b− .5) (3.43)

then the rate is strictly less than R
(2)
t = τ

τ+b
in two steps. First, we will show that all symbols are

transmitted by X[τ + b− 1] without loss of generality. Second, we prove that strictly more than
db symbols may be lost. At least dτ additional symbols are sent to meet the worst-case-delay
constraint, leading to a lower rate than R

(2)
t .

Step 1: If X[τ + b − 1] is lost, then X[0 : τ − 1] are received, which yields S[0 : τ − τL − 1]
by the lossless-delay constraint. Thus, all symbols sent after the time slot (τ + b) can instead be
sent in X[τ + b− 1].

Step 2: Consider the following erasure channels Ci for i ∈ [τ + b − 1]. Each Ci introduces
bursts of packet losses in {X[j], . . . , X[j + b − 1] | j ≡ i mod (τ + b)} and results in li lost
(dropped) symbols.8 At least d(τ + b) symbols are sent in total due to the upper bound on the

8A similar argument was used to show the upper bound on rate of τ
τ+b in [63].

63

rate of τ
τ+b

, leading to

τ+b−1∑
i=0

li ≥ db(τ + b) (3.44)

τ+b−1∑
i=1

li ≥ db(τ + b− 1) + .5d (3.45)

1

τ + b− 1

τ+b−1∑
i=1

li ≥ db+
.5d

τ + b− 1
, (3.46)

where Equation 3.44 follows from each packet (and hence each symbol) being dropped by ex-
actly b channels, and Equation 3.45 follows from Equation 3.43.

Hence, there is some i ∈ {1, . . . , τ + b− 1} for which li ≥ (db+ .5d
τ+b−1

). In order to satisfy
the worst-case-delay constraint over channel Ci, at least dτ symbols are received outside of the
channel packets dropped by Ci. Thus, the total number of symbols sent is at least d(τ+b+ .5

τ+b−1
).

In contrast, at most d(τ + b) symbols are sent if the rate is at least R(2)
t .

Summary : Any online coding scheme with a rate of at least R(1)
t on frame-size sequence 1

sends at most d(b − .5) symbols in X[0], . . . , X[b − 1]. Consequently, its rate is strictly lower
than R

(2)
t on frame-size sequence 2.

64

Chapter 4

Learning-augmented streaming codes are
approximately optimal for variable-size
frames

Recall from Chapter 3 that the optimal rate for offline schemes exceeds that of “online” schemes
in all but two settings (i.e., Regime 2 and Regime 1). In Regime 2, τL has its maximum possible
value, and a technique for spreading the symbols of each frame over several channel packets
independently of all other frames is rate optimal. In Regime 1, τL has its minimum possible
value (i.e., 0), requiring sending the symbols of each frame in the corresponding channel packet.
Therefore, information about the sizes of the future frames does not help. Rate-optimal con-
structions, or even approximately rate-optimal constructions, are not known even for the offline
setting for all remaining parameter regimes.

Inspired by the growing field of learning-augmented algorithms, this work introduces a new
methodology for constructing online streaming codes that combines machine learning with al-
gebraic coding theory tools. Using the methodology, we design an approximately rate-optimal
streaming code for Regime 3 (i.e., τL = 1). Doing so establishes that the method is viable for the
key parameter regime of the smallest lossless-delay that allows the benefits of spreading. We be-
gin in Section 4.1 by presenting the system model used in this work, which is built on top of the
model of streaming codes used earlier in this work. We then present our approach in three steps:
(a) isolate spreading as the component that can benefit from machine learning by designing an
optimal streaming code given any choice of how to spread (Section 4.2), (b) solve the offline
version of how to spread optimally using optimization (Section 4.3), and (c) convert the offline
scheme into an online one using a learning-based approach (Section 4.4).

4.1 Model and background

Recall that a transmission occurs over (t + 1) time slots for a non-negative integer t. During
the ith time slot for i ∈ {0, . . . , t}, the sender obtains a frame, S[i] ∈ Fki , where F is a finite
field, and ki ∈ {0, . . . ,m} for a positive integer m. The sender also receives “side information,”
O[i], that captures the differences between the online and offline settings. In the offline setting,

65

which assumes knowledge of the future, the side information is the sizes of the future frames.
In the online setting, the side information is independent S samples from the distribution of the
sizes of future frames for some positive integer S. Let Dk0,...,ki be the conditional distribution of
ki+1, . . . , kt given k0, . . . , ki. Then,

O[i] =

{
(ki+1, . . . , kt) if offline〈 (

k
(j)
i+1, . . . , k

(j)
t

)
∼ Dk0,...,ki | j ∈ {0, . . . ,S − 1}

〉
if online.

(4.1)

Recall that this chapter considers τL = 1.
Encoding and decoding depends on the history of the transmission, which is summarized as

follows.
Definition 1 (State). For any t, τ, and i ∈ {2τ, . . . , t}, Xi = (k0, . . . , ki, X[0],. . . , X[i − 1])
denotes the state.

This chapter considers systematic codes for clarity, but we propose to extend the results to
general codes as part of the thesis. To meet the lossless-delay constraint, the symbols of S[i]
must be sent by time slot (i+ τL) (i.e., in X[i] and X[i+ 1]). The “policy” of a construction, as
defined below, specifies how to spread the frame symbols.
Definition 2 (Policy). The policy of a construction for any i ∈ [t] and state Xi is the num-
ber of symbols of S[i] sent in channel packet X[i]. The policy is denoted as Fi (Xi) (or fi for
conciseness) and lies in [ki].

For any i > 0, X[i] comprises (a) the first fi symbols of S[i], (b) the final (ki−1 − fi−1)
symbols of S[i− 1], and (c) pi parity symbols, denoted as P [i]. The encoding is given by X[i] =

Enc(Xi, S[i− τ], . . . , S[i− 1], S0[i], . . . , Sfi−1[i], O[i]) (4.2)

for i ≥ 2τ , and X[i] is empty for i < 2τ . This section assumes that X[i] is independent of
the frame symbols of S[i] sent in X[i + 1] for clarity. We propose to extend the results to hold
without this assumption. The receiver obtains Y [i] ∈ {X[i], ∗} depending on whether channel
packet X[i] is received or dropped.1 Under lossless transmission, S[i] is available in uncoded
form. Otherwise, S[i] is decoded as

Dec (⟨Y [j], kj, fj | j ∈ [i+ τ]⟩) . (4.3)

Finally, we use the notation that a length v vector, V , is indexed for any i ≤ j ∈ [v − 1] as
V j
i = (Vi, . . . , Vj).

4.2 A Building block construction
This section presents a rate-optimal construction, called the “(τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading
Variable-sized Generalized MS Code ,” for any given policies, i.e., choice of how to spread the

1The receiver needs the sizes of the frames and policies to decode. Thus, a small header with up to
2
∑i

j=i−b 2 log(kj) ≤ 2(b + 1) log(m) symbols containing (ki−b, . . . , ki,Fi−b, . . . ,Fi) is added to the header
of X[i].

66

Time slot

Set meets the number of lostso that

frame symbols of

Lost iff Lost iff

Figure 4.1: Selecting pi+τ by considering each burst starting in time slot j ∈ {i−b+1, . . . , i+1}
(shown with lightening bolts).

frame symbols over channel packets. Specifically, for any given ⟨fi | i ∈ [t]⟩, at least fi symbols
of S[i] will be sent in X[i] under the construction for each i ∈ [t].

The first 2τ channel packets are empty. For each i ∈ [t] \ [2τ − 1], X[i] comprises (a) the
first f ′

i symbols of S[i] for some f ′
i ≥ fi, (b) the final (ki−1 − f ′

i−1) symbols of S[i − 1], and
(c) pi parity symbols called P [i]. Next, we define f ′

i , pi, and P [i] for any frame-size sequence,
k0, . . . , kt.
Defining each f ′

i and pi. For time slots i ∈ [2τ − 1] ∪ {t − 2τ + 1, . . . , t}, f ′
i = ki = 0. For

time slots i ∈ [3τ − 1] ∪ {t− τ + 1, . . . , t}, pi = 0. For all i = 2τ, . . . , (t− 2τ), we define pi+τ

to be as small as possible while ensuring that S[i] is decoded by time slot (i+ τ) under any lossy
transmission. Specifically, pi+τ =

max
j∈{i−b+1,...,i+1}

(
0,1[j+b−1 ≥ i+1] (ki − fi)+1[j ≤ i]fi+

i∑
l=j

(kl−1−f ′
l−1)+

i−1∑
l=j

f ′
l−

i+τ−1∑
l=j+b

pl

)
,

(4.4)
as is illustrated in Figure 4.1. We then use pi+τ to define

f ′
i = max (fi, pi+τ) . (4.5)

Constructing parity symbols. The parity symbols are defined analogously to those of the
construction from Chapter 3 (which builds on the construction from [11]). For i ∈ {2τ, . . . , t−
τ}, the frame symbols sent in X[i] are partitioned into (a) symbols of S[i] that are recovered
during time slot (i+ τ) under a lossy transmission, and (b) symbols of S[i− 1] and S[i] that are
recovered by time slot (i− 1 + τ) under a lossy transmission. The two components are of sizes
ui and vi and are denoted as U [i] and V [i], respectively. Thus, X[i] = (U [i], V [i], P [i]), where

U [i] = S
pi+τ−1
0 [i] (4.6)

V [i] =
(
S
ki−f ′

i−1
pi+τ [i], S

ki−1−1

f ′
i−1

[i− 1]
)

(4.7)

P [i] = U [i− τ] + P (v)[i]. (4.8)

Each symbol of P (v)[i] is a linear combination of the symbols of (V [i− τ], . . . , V [i− 1]), where
the linear equations are chosen using a (2mτ)× (2mτ) Cauchy matrix, A, as follows. Let W [i]

67

Figure 4.2: Defining W [i] by placing the symbols of V [j] in positions 2m(j mod τ), . . . ,
(2m(j mod τ) + vj − 1) for j ∈ {i − τ, . . . , i − 1}. The remaining positions are filled with
0’s.

Time slot

Recover

using
Recover for

using

Figure 4.3: An example the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS
Code recovering a burst of length b starting in time slot (i+ 1).

be a length 2mτ vector where positions 2m(j mod τ), . . . , (2m(j mod τ) + 2m− 1) comprise
V [j] followed by (2m− vj) 0’s for j ∈ {i− τ, . . . , i− 1}, as is illustrated in Figure 4.2. Finally,
we define

P (v)[i] = W [i]A(i), (4.9)

where A(i) is A restricted to columns 2m(i mod τ), . . . , (2m(i mod τ) + pi − 1). Figure 4.3
shows recovering a burst using the

(
τ, b, t,⟨fi | i ∈ [t]⟩

)
−Spreading Variable-sized Generalized

MS Code .
Decoding. For i ∈ [t], S[i] is decoded (a) from X[i] and X[i+ 1] under lossless conditions, and
(b) by solving a system of linear equations corresponding to the symbols of S[i− τ], . . . , S[i−
1], Y [i], . . . , Y [i+ τ] when losses occur.

Next, we show the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS Code
meets the lossless-delay and worst-case-delay constraints.
Lemma 11. For any parameters (τ, b), an arbitrary frame-size sequence k0, . . . , kt, and any
policy fi for i ∈ [t], the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS Code
satisfies the lossless-delay constraint and worst-case-delay constraint.

Proof sketch. The lossless-delay constraint is met by sending S[i] over X[i] and X[i + 1]. For
any burst of length b starting in time slot i, P [i + b], . . . , P [i + τ − 1] are used to recover
V [i], . . . , V [i + b − 1]. Then U [j] is recovered using P [j + τ] for j ∈ {i, . . . , i + b − 1}. As
such, S[i], . . . , S[i+ b− 1] are recovered by time slots (i+ τ), . . . , (i+ b− 1 + τ) respectively.
A complete proof is included in Appendix 4.7.1.

68

Time slot

using received parity symbols

Recover

lost frame symbols of by time slot i
symbols of are sent in

are sent inremaining

𝟙

Figure 4.4: Illustration of the bound on the number of symbols sent under any streaming code
satisfying the delay constraints. For any i ∈ {3τ, . . . , t} and j ∈ {i− τ − b+ 1, . . . , i− τ + 1},
S[j − 1], . . . , S[i − τ] are recovered by time slot i when a burst of length b starting in time slot
j (shown with lightning bolts), under the relaxation of receiving the lost symbols of S[i − τ +
1], . . . , S[j + b− 1] (boxes with thick black outline).

Next, we provide a lower bound on the number of parity symbols sent by any streaming
code that satisfies the lossless-delay and worst-case-delay constraints. The bound is illustrated
in Figure 4.4
Lemma 12. Consider any τ, t, b, and any streaming code that satisfies the lossless-delay and
worst-case-delay constraints. Suppose for l ∈ [t], the construction sends p†l parity symbols and
uses policy fl. For any i ∈ {3τ, . . . , t} and j ∈ {i − τ − b + 1, . . . , i − τ + 1}, the number of
parity symbols satisfies

−fj−1 − 1[j + b− 1 = i− τ]
(
ki−τ − fi−τ

)
+

i−τ∑
l=j−1

kl ≤
i∑

l=j+b

p†l . (4.10)

Proof sketch. Suppose X[j], . . . , X[j + b − 1] are lost. Due to the worst-case-delay constraint,
S[j − 1], . . . , S[i− τ] must be recovered by time slot i. Thus,

∑i−τ
l=j−1 kl frame symbols must be

decoded, while fj−1 symbols of S[j−1] are received in X[j−1] and, if X[i− τ +1] is received,(
ki−τ − fi−τ

)
symbols of S[i − τ] are received. By the independence of frames, the remaining

frame symbols received in X[j+b], . . . , X[i] contain no information about S[j−1], . . . , S[i−τ].
Enough parity symbols must be received in X[j + b], . . . , X[i] to recover the lost symbols of
S[j − 1], . . . , S[i− τ]. A complete proof is included in Appendix 4.7.2.

We show the rate of the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS
Code matches that of any streaming code with policy fi for i ∈ [t].
Lemma 13. Consider any τ, t, b, frame-size sequence k0, . . . , kt, and any streaming code with
policy fi for i ∈ [t] that satisfies the lossless-delay and worst-case-delay constraints. Then
the streaming codes rate is no higher than the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized
Generalized MS Code .

69

Time slot

using received parity symbols

Recover

lost frame symbols of by time slot i
symbols of are sent in

are sent inremaining

𝟙

Figure 4.5: Modeling the transmission and constraints using the variables of the integer program.
For any i ∈ {3τ, . . . , t − τ} and burst (lightning bolts) of length b starting in j ∈ {i − τ − b +
1, . . . , i − τ + 1}, S[j − 1], . . . , S[i − τ], are recovered by time slot j under the relaxation of
receiving the lost symbols of S[i− τ + 1], . . . , S[j + b− 1] (boxes with thick black outline).

Proof sketch. Under the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS Code
,
∑t

l=0(kl + pl) symbols are sent. Consider any streaming code that satisfies the lossless-delay
and worst-case-delay constraints , and, for each i ∈ [t], employs policy fi and sends p†i parity
symbols. The code sends

∑t
l=0

(
kl + p†l

)
symbols.

We show by induction on i = 0, . . . , t that
∑i

l=0 pl ≤
∑i

l=0 p
†
l . The base case holds for

l < 3τ because p0 = 0, . . . , p3τ−1 = 0. In the inductive hypothesis, for all j < i:

j∑
l=0

pl ≤
j∑

l=0

p†l . (4.11)

The inductive step for i ≥ 3τ holds when pi ≤ p†i . Otherwise, there is a burst starting in
j∗ ∈ {i−τ−b+1, . . . , i−τ+1} so that the number of parity symbols sent over X[j∗+b], . . . , X[i]
(i.e.,

∑i
l=j∗+b p

†
l) is at least

∑i
l=j∗+b pl. Combining this with Eq. (4.11) (i.e.,

∑j∗+b−1
l=0 pl ≤∑j∗+b−1

l=0 p†l) concludes the proof. A complete proof is included in Appendix 4.7.3.

4.3 Offline-optimal streaming codes
In this section, we design the first rate-optimal offline construction for the setting of τL = 1.
We build the construction with two steps for an arbitrary frame-size sequence, k0, . . . , kt. First,
we design an integer program (IP) to use constraints to model satisfying the lossless-delay and
Lemma 12. The IP determines the optimal policy for each time slot: ⟨fi | i ∈ [t]⟩, as is illustrated
in Figure 4.5. Second, we employ the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized General-
ized MS Code given the polices. The objective function of the integer program is to minimize
the total number of parity symbols transmitted, which maximizes the rate.

70

Next, we introduce Algorithm 3 to determine an optimal policy, fi, for each time slot i ∈ [t]
and then verify that the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS Code
is rate optimal.

Algorithm 3 Computes ⟨fi | i ∈ [t]⟩ for which the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-
sized Generalized MS Code matches the offline-optimal-rate.

Input: (τ, b, t, k0, . . . , kt)

Minimize
∑t

i=0 p
(IP)
i subject to

• ∀i ∈ [t], f (IP)
i ≥ 0, f

(IP)
i ≤ ki, p

(IP)
i ≥ 0.

• ∀i ∈ {3τ, . . . , t− τ}, j ∈ {i− τ − b+ 1, . . . , i− τ + 1},

−f
(IP)
j−1 − 1[j + b− 1 = i− τ]

(
ki−τ − f

(IP)
i−τ

)
+

i−τ∑
l=j−1

kl ≤
i∑

l=j+b

p
(IP)
l .

Output: ⟨fi | i ∈ [t]⟩

Theorem 6. For any (τ, b, t) and frame-size sequence k0, . . . , kt, suppose Algorithm 3 outputs
⟨fi | i ∈ [t]⟩. Then the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS Code is
rate optimal.

Proof. Due to Lemma 13, the rate of the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Gen-
eralized MS Code is the same as a construction that for i ∈ [t] employs the policy fi and
sends p

(IP)
i parity symbols in X[i]. We will show that no coding scheme can send fewer than∑t

i=0 p
(IP)
i parity symbols.

An arbitrary rate-optimal construction must satisfy the first constraint because for all i ∈ [t]
between 0 and ki symbols of S[i] are sent in X[i] along with a non-negative number of parity
symbols. The construction must satisfy the second constraint due to Lemma 12. Using each
policy of this rate-optimal construction along with the number of parity symbols it sends is a
valid solution to the integer program. Correctness follows from minimization.

Although Algorithm 3 applies to the entire frame-size sequence, it is trivial to modify the
algorithm to apply to the remainder of a transmission after channel packets X[0], . . . , X[l] have
been sent for some l ∈ [t]. This involves adding constraints for all j ∈ [l] (a) f (IP)

j = fj and (b)
p
(IP)
j = pj . We call the modified algorithm “Algorithm 3.A.”

Corollary 2. For any (τ, b, t), frame-size sequence k0, . . . , kt, and l ∈ [t − τ], suppose that
for all j ∈ [l], policy fj was used and pj parity symbols were sent in X[j], and Algorithm 3.A
outputs ⟨fi | i ∈ [t]⟩. Then the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS
Code attains the best possible rate given the prior transmission of X[0], . . . , X[l].

4.4 Learning-based online streaming codes
We now present an online code construction, dubbed the “(τ, b, t)−Spread ML Code,” whose
expected rate is within ϵ of the online-optimal-rate. The construction uses a learning-based

71

Sender

Learning-based
approach

Side
information

Spread code

Figure 4.6: Illustration of the (τ, b, t)−Spread ML Code. A learning-based approach is
used to determine a policy, f

(ϵ)
i , during the ith time slot, which is then used by the(

τ, b, t,
〈
f
(ϵ)
i | i ∈ [t]

〉)
−Spreading Variable-sized Generalized MS Code .

approach to specify the policy of spreading the symbols of S[i], denoted f
(ϵ)
i , for each i ∈ [t],

and then applies the
(
τ, b, t,

〈
f
(ϵ)
i | i ∈ [t]

〉)
−Spreading Variable-sized Generalized MS Code

, as is shown at a high level in Figure 4.6.
To determine how to spread frame symbols, we use the side information of S samples the

distribution of the sizes of the future frames. Recall that this quantity was defined in Equation 4.1
as
〈
(k

(j)
i+1, . . . , k

(j)
t) ∼ Dk0,...,ki | j ∈ {0, . . . ,S − 1}

〉
. We use a similar technique to empirical

risk minimization over the S samples to set f (ϵ)
i to the value leading to lowest expected number of

symbols being sent by a rate-optimal offline code. Specifically, for any i = 0, . . . , t, j ∈ [S − 1]
and l ∈ [ki], let

zi,j,l =
t∑

r=i

p(IP)
r ,

where p
(IP)
i , . . . , p

(IP)
t are variables used by the IP of Algorithm 3.A given X[0], . . . , X[i − 1],

and f
(IP)
i = l. Then

f
(ϵ)
i = arg min

l∈[ki]

1

S − 1

∑
j∈[S−1]

zi,j,l. (4.12)

We demonstrate how f
(ϵ)
i is defined in Figure 4.7.

The key observation to interpret the choice of f (ϵ)
i is that the number of parity symbols sent

corresponding to frame S[i], namely pi+τ , is monotonically non-decreasing as f
(ϵ)
i increases.

Thus, smaller values of f (ϵ)
i lead to smaller values of pi+τ , which exploits the parity symbols

already sent before time slot (i + τ). This strategy is effective when the next several frames
are likely small. Therefore, a small P [i + τ] suffices to ensure that the next several frames are
recovered when some of X[i + 2], . . . , X[i + τ − 1] are lost. In contrast, larger values of f (ϵ)

i

72

SimulatorSide
information

Spread code

Minimizer

Figure 4.7: Illustration of the learning-based approach (green) to determine how to spread frame
symbols.

promote larger values of pi+τ , which is suitable when the next several frames are likely to be
large. Hence, a large P [i+ τ] will not go to waste even if a burst starts after receiving S[i].

To show that the (τ, b, t)−Spread ML Code is approximately rate optimal, we analyze the
number of extra symbols it sends compared to an optimal scheme as follows.

Definition 3 (Regret). The regret, Rki,...,kt

(
f
(ϵ)
i

)
, for the frame-size sequence k0, . . . , kt is the

number of extra symbols sent under Algorithm 3.A when f
(ϵ)
i is used compared to the best offline

policy, f ′
i .

Compared to an optimal offline scheme,
∑t

i=0 Rki,...,kt

(
f
(ϵ)
i

)
extra symbols are sent; this is

shown next for completeness.
Lemma 14. Consider the frame-size sequence k0, . . . , kt. The (τ, b, t)−Spread ML Code trans-
mits

∑t
i=0Rki,...,kt (fi) more symbols than a scheme meeting the offline-optimal-rate.

Proof. One can sequentially improve the (τ, b, t)−Spread ML Code for i = t − 2τ, . . . , 2τ .
To do so, one switches f

(ϵ)
j for j ∈ {i, . . . , t} to the one computed by Algorithm 3.A given

f
(ϵ)
0 , . . . , f

(ϵ)
i−1, p0, . . . , pi−1. For each value of i, the improvement in total number of symbols

sent is Rki,...,kt (fi) by Definition 3. After reaching i = 2τ , the output is simply Algorithm 3.A,
as k0 = 0, . . . , k2τ−1 = 0.

Next, we bound the expected regret of the (τ, b, t)−Spread ML Code from spreading frame
symbols for any time slot.

Lemma 15. For any (τ, b, t), S ≥
√
ln(8m

2

ϵ
)2

√
2m3

ϵ
samples from the side information, where m

is the maximum size of a frame, i ∈ [t], k0, . . . , ki−1, and f ′
i ∈ [ki],

Eki+1,...,kt

[
Rki,...,kt

(
f
(ϵ)
i

)
−Rki,...,kt (f

′
i)
]
≤ ϵ. (4.13)

73

Proof sketch. If ki = 0, fi = f
(ϵ)
i . Otherwise, replicating f

(ϵ)
i symbols ensures Rki,...,kt

(
f
(ϵ)
i

)
≤

m. Consequently,

Eki+1,...,kt

[
Rki,...,kt

(
f
(ϵ)
i

)]
≤ m

Varki+1,...,kt

(
Rki,...,kt

(
f
(ϵ)
i

))
≤ m2.

At a high level, the empirical mean over the S samples from the side information accurately
approximates the expected regret for each policy (Hoeffding bound [45]). The best policy over
the samples is suitable. A full proof is shown in Appendix 4.7.4.

Finally, we show that the expected online-optimal-rate, denoted as “R(E,Opt),” is within ϵ of
the expected rate of the (τ, b, t)−Spread ML Code, denoted as

R(E) = Ek0,...,kt

[∑t
i=0 ki∑t

i=0 ki + pi

]
. (4.14)

Theorem 7. For any (τ, b, t) and for S ≥
√
ln(8m

2

ϵ
)2

√
2m3

ϵ
samples from the side information,

where m is the maximum size of a frame, (R(E,Opt) −R(E)) < ϵ.

Proof sketch. By Lemma 13, there exists some online (τ, b, t, ⟨f ′
i | i ∈ [t]⟩)−Spreading Variable-

sized Generalized MS Code with optimal expected rate. In expectation, the (τ, b, t)−Spread ML
Code sends at most

t∑
i=0

Rki,...,kt

(
f
(ϵ)
i

)
−Rki,...,kt (f

′
i) ≤ ϵ

t∑
i=0

1[ki > 0],

more symbols than the optimal code does, leading to (R(E,Opt)−R(E)) < ϵ. A full proof is shown
in Appendix 4.7.5.

We have designed an online code that uses a black box algorithm to determine how to spread
frame symbols and bounded how close the rate is to optimal based on the regret due to the choices
of how to spread. To show that the code is approximately rate optimal, we presented an explicit
learning-based approach of leveraging samples to the distribution of the sizes of future frames
to spread frame symbols (i.e., Equation 4.12) and showed in Lemma 15 that it has a sufficiently
small expected regret. More generally, any criteria with a sufficiently small expected regret could
be used, leading to the following result.
Corollary 3. Theorem 7 holds when any criteria for spreading frame symbols replaces Equa-
tion 4.12 if the criteria satisfies Equation 4.13 for all i ∈ [t], k0, . . . , kt, and f ′

i ∈ [ki].

74

4.5 Optimality for non-systematic constructions
So far this work has made two assumptions. First, encoding is a function of all transmit-
ted frame symbols (i.e., encoding during time slot i is independent of the frame symbols of
S[i] sent in X[i + 1]). Second, all constructions are systematic. The streaming codes pre-
sented in this work satisfy these two assumptions. We have already shown that among codes
satisfying these two assumptions for any τ, b, and frame-size sequence k0, . . . , kt that (a) the
(τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS Code is rate-optimal for any
given policies and (b) the (τ, b, t)−Spread ML Code is approximately rate optimal. This section
extends the converse results to apply without the two assumptions.

Removing the first assumption involves redefining the encoding for i ≥ τ as X[i] =

Enc(Xi, S[i− τ], . . . , S[i], O[i]). (4.15)

Hence, symbols of X[i] can be functions of all symbols of S[i] even if some of them are not sent
until X[i + 1].2 Throughout this section, let e Uniform({1, . . . , |F|}) and H be the Shannon
entropy. For any i ∈ [t],

H(e)ki = H (S[i]) (4.16)
H(e)ni ≥ H (X[i]) . (4.17)

Without the second assumption, the notion of a policy must be adjusted to apply to non-
systematic constructions, as is done next.
Definition 4 (Non-systematic policy). The non-systematic policy of a construction for any i ∈ [t]
and state Xi is the amount of information about S[i] sent in channel packet X[i]. It is denoted
as FH

i (Xi) = H (X[i]|S[0], . . . , S[i− 1]) /H(e). For clarity of notation, fH
i will represent

FH
i (Xi).

By definition, fH
i ranges in value from 0 to ki.

The proofs in this section will refer to many different frames and channel packets, necessitat-
ing additional notation. For any frame-size sequence k0, . . . , kt, any i ≤ j ∈ [t], and Z ∈ [S,X],
Z[i : j] ≜ Z[i], . . . , Z[j].

Next, Lemma 16 provides a bound on the number of parity symbols sent by all streaming
codes.
Lemma 16. Consider any τ, t, b, and any streaming code satisfying the lossless-delay and worst-
case-delay constraints. Suppose for i ∈ [t], the construction sends ni symbols and uses policy
fH
i .3 For any i ∈ [t] \ {0},

ni ≥
⌈
ki−1 − f †,H

i−1 + f †,H
i

⌉
.

Proof sketch. At a high level, we combine Equations 4.15 and 4.44, Definition 4, and the lossless-
delay constraint to show that the amount of information that X[i] contains about S[i − 1] is at
least (ki−1 − f †,H

i−1), and the amount of information bits X[i] contains about S[i] is at least f †,H
i .

2No change is needed for i < τ , as ki is known to be 0 by the receiver.
3For the boundary condition, n0 ≜ k0 = 0.

75

This requires that ni ≥ (ki−1 − f †,H
i−1 + f †,H

i). In addition, ni is an integer, concluding the result.
A full proof is included in Appendix 4.7.6.

Similar to Lemma 12 for systematic streaming codes, Lemma 17 provides a lower bound on
the number of parity symbols sent by any streaming code.
Lemma 17. Consider any τ, t, b, and any streaming code satisfying the lossless-delay and worst-
case-delay constraints. Suppose that for i ∈ [t], the construction sends ni symbols and uses
policy fH

i , and let p(†,H)
i ≜ ni −

(
ki−1 − f †,H

i−1 + f †,H
i

)
≥ 0. For any j ∈ {3τ, . . . , t} and

i ∈ {j − τ − b+ 1, . . . , j − τ + 1},

−
⌈
fH
i−1

⌉
− 1[i = j − τ − b+ 1]

(
kj−τ − fH

j−τ

)
+

j−τ∑
l=i−1

kl ≤
j∑

l=i+b

p
(†,H)
l . (4.18)

Proof sketch. At a high level, the proof follows from the lossless-delay constraint and the worst-
case-delay constraint, similar to the proof of Lemma 12. A complete proof is included in Ap-
pendix 4.7.7.

Next, we show the rate of the
(
τ, b, t,

〈⌈
fH
i

⌉
| i ∈ [t]

〉)
−Spreading Variable-sized General-

ized MS Code matches that of any streaming code with policy fH
i for i ∈ [t] with one extra

symbol per time slot.
Lemma 18. For any frame-size sequence k0, . . . , kt, at most

∑t−τ
i=0 1[ki > 0] extra symbols are

sent under the
(
τ, b, t,

〈⌈
fH
i

⌉
| i ∈ [t]

〉)
−Spreading Variable-sized Generalized MS Code than

any streaming code with policy fH
i for i ∈ [t] satisfying the lossless-delay and worst-case-delay

constraints.

Proof sketch. At a high level, the proof follows by induction on the cumulative number of sym-
bols sent by each time slot similar to the proof of Lemma 13. A complete proof is included in
Appendix 4.7.8.

The results of this section extend the previous results to remove the assumptions of (a) X[i]
is not a function of the symbols of S[i] sent in X[i+ 1], and (b) systematic encoding, as is noted
below.
Corollary 4. Theorem 6, Corollary 2, and Theorem 7 hold with the modification of one extra
symbol being sent per time slot where the frame is of a non-zero size even for non-systematic
schemes where each X[i] for i ∈ [t] is an arbitrary function of S[0 : i].

Proof. Replacing Lemma 13 with Lemma 18 and replacing Lemma 12 with Lemma 17 extends
the proof of Theorem 6. Strengthening Corollary 2, Lemmas 15 and 14, and Theorem 7 is
immediate.

This section showed for any ϵ given sufficiently many S samples in the side information
that the (τ, b, t)−Spread ML Code has an expected rate within ϵ of the online-optimal-rate for
arbitrary non-systematic online streaming codes.

76

4.6 LP relaxation is almost optimal
This section addresses the bottleneck to the complexity of the (τ, b, t)−Spread ML Code: solving
an integer program. Although solving integer programs is not tractable, a standard solution
is to consider the linear program relaxation of the integer program, which runs in polynomial
time. Let “Algorithm 3.B” denote the result of changing Algorithm 3 as follows: (a) replace
p(IP), p(IP,1), p(IP,2), and f (IP) with p(LP), p(LP,1), p(LP,2), and f (LP), (b) relax to use real values
rather than integral values, and (c) add the constraint for all i ∈ [t − τ] where ki = 0 that
p
(LP)
i+τ = 0. We show that Algorithm 3.B runs in polynomial time with respect to tτ while nearly

matching the offline-optimal-rate.

Lemma 19. Suppose Algorithm 3.B for frame-size sequence k0, . . . , kt outputs
〈
f
(LP)
i | i ∈ [t]

〉
,

then the
(
τ, b, t,

〈⌈
f
(LP)
i

⌉
| i ∈ [t]

〉)
−Spreading Variable-sized Generalized MS Code sends at

most
∑t

i=0 1[ki > 0] more symbols than an offline rate-optimal code.

Proof. Because X[i] is a function of S[0 : i], we know H (X[i]|S[0], . . . , S[i− 1]) ≤ H(e)ki.
Therefore, the first constraint is satisfied by any construction. Due to Lemma 17 (and Equa-
tion 4.60), all constructions that satisfy the worst-case-delay and lossless-delay constraints must
satisfy the second constraint. The constraint that if ki = 0 that p(LP)

i+τ = 0 for i ∈ [t − τ] holds
without loss of generality; take any solution without this constraint. For i = 0, . . . , t − τ, if
ki = 0 and p

(LP)
i+τ = γ > 0, simply increase p

(LP)
i+τ+1 by γ and set p(LP)

i+τ to equal 0. The objective
function is unchanged and all constraints are still satisfied. Therefore,

∑t
l=0 ki+ p

(LP)
i is at most

the total number of symbols sent by a construction that matches the offline-optimal-rate.
For i ∈ [t], let us consider

p
(IP)
i =

⌈
p
(LP)
i

⌉
f
(IP)
i =

⌈
f
(LP)
i

⌉
.

All constraints of the IP from Algorithm 3 are satisfied and only integral values are used. The
change has increased the objective function by at most

∑t
i=0 1[ki > 0] because (a) if ki = 0 then

p
(LP)
i+τ = f

(LP)
i = 0 and (b) for all i where ki > 0, p(LP)

i+τ is increased by at most 1. Finally, we note
that the objective function for Algorithm 3.B at these inputs is at most the value of Algorithm 3
at the same inputs. Thus, we have obtained a solution to the IP from Algorithm 3 that involves an
extra

∑t
i=0 1[ki > 0] value in the objective function. By Lemma 13, the total number of symbols

sent under the proposed construction is
∑t

i=0 ni ≤
∑t

i=0 ki + p
(IP)
i . Combining this with the

fact that at least
∑t

i=0 ki + p
(LP)
i ≥

∑t
i=0 ki + p

(IP)
i − 1[ki > 0] symbols must be sent by any

scheme satisfying the lossless-delay and worst-case-delay constraints concludes the proof.

While Algorithm 3.B applies to the entire frame-size sequence, it is trivial to modify the
algorithm to apply to the remainder of a transmission after channel packets X[0], . . . , X[i] have
been sent for some i ∈ [t]. This involves adding constraints that for all j ∈ [i] (a) f (LP)

j = fj and
(b) p(LP)

j = pj . We call the modified algorithm “Algorithm 3.C.”

77

Corollary 5. For any (τ, b, t) and frame-size sequence k0, . . . , kt, i ∈ [t], suppose channel pack-
ets X[0], . . . , X[i] have been sent such that for j ∈ [i] policy fj was used and Algorithm 3.C
outputs ⟨fi | i ∈ [t]⟩. Then the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS
Code sends at most

∑t
l=i+1 1[kl > 0] more symbols than a construction meeting the best possi-

ble rate given the prior transmission of X[0], . . . , X[i].
One can substitute Algorithm 3.C for Algorithm 3.A in the (τ, b, t)−Spread ML Code; we

call the resulting code the “(τ, b, t)−LP-Spread ML Code.”
Remark 9. Algorithm 3.C and Algorithm 3.B run in poly(tτ) time.

We define a relaxed notion of regret.

Definition 5 (Relaxed-regret). The relaxed-regret, R(LP)
ki,...,kt

(f
(ϵ)
i), for the frame-size sequence

k0, . . . , kt is the number of extra symbols sent under Algorithm 3.C when f
(ϵ)
i is used compared

to the best offline policy, f ′
i ∈ [ki].

We will show in Lemma 20 that the (τ, b, t)−LP-Spread ML Code sends at most
∑t

i=0 1[ki >
0] more symbols than the (τ, b, t)−Spread ML Code.
Lemma 20. For frame-size sequence k0, . . . , kt, the (τ, b, t)−Spread ML Code transmits ≤∑t

i=0 1[ki > 0] +
∑t

i=0R
(LP)
ki,...,kt

(fi) more symbols than a scheme that meets offline-optimal-
rate.

Proof. Starting from the output of Algorithm 3.C, we can sequentially change the coding scheme
for i = 2τ, . . . , t − τ by setting fi to f

(ϵ)
i . Each change leads to exactly R(LP)

ki,...,kt
(f

(ϵ)
i) ad-

ditional symbols being sent. After all changes, the (τ, b, t)−Spread ML Code is used and∑t
i=0 R(LP)ki, . . . , kt(f

(ϵ)
i) more “symbols” sent where non-integral numbers of symbols may

be sent. Each time we take
⌈
f
(ϵ)
i

⌉
for i ∈ [t], the objective function of Algorithm 3.C increases

by at most one by the proof of Lemma 19 (i.e., it suffices to increase p
(LP)
i+τ by at most 1). When

ki = 0, then f
(ϵ)
i = 0 already, so the ceiling need not be taken. The total number of extra symbols

sent due to this change is at most
∑t

i=0 1[ki > 0].

The extra at most one symbol per frame is negligible compared to the sizes of frames, which
are typically on the order of thousands of symbols (e.g., bytes).

Corollary 6. For any (τ, b, t) and for S ≥
√

ln(8m
ϵ
)2

√
2m2

ϵ
samples from the side information,

where m is the maximum size of a frame, the (τ, b, t)−Spread ML Code transmits ≤
∑t

i=0 1[ki >
0](1 + ϵ) more symbols than a scheme meeting the offline-optimal-rate in expectation.

Proof. From Lemma 20, the number of additional symbols sent is, in expectation, no more than∑t
i=0 1[ki > 0] +

∑t
i=0 R

(LP)
ki,...,kt

(fi). For i ∈ [t], E[R(LP)
ki,...,kt

(f
(ϵ)
i)] ≤ ϵ by the same argument as

used in Theorem 7.

78

4.7 Appendix

4.7.1 Proof of Lemma 11
For any i ∈ [t − 1], S[i] =

(
S
f ′
i−1

0 [i], Ski−1
f ′
i

[i]
)

, where S
f ′
i−1

0 [i] is sent in X[i], and Ski−1
f ′
i

[i] is
sent in X[i+ 1]. For S[t], kt = 0 is known. Thus, the lossless-delay constraint is met.

Next, we show that the worst-case-delay is satisfied for any burst. Satisfaction is immediate
if the burst starts after (t − τ − b + 1), since kt−τ−b = 0, . . . , kt = 0 is known. Otherwise,
suppose X[i], . . . , X[i + b − 1] are lost for some i ∈ [t − τ − b + 1]. We assume that i ≥ 2τ ,
since k0 = 0, . . . , k2τ−1 = 0 is known, and no symbols are sent in X[0], . . . , X[2τ − 1]. Each
P (v)[i + b] = (P [i+ b]− U [i+ b− τ]) , . . . , P (v)[i + τ − 1] = (P [i+ τ − 1]− U [i− 1]) is
known.

We show that enough parity symbols are received after the burst by time slot (i + τ − 1) to
recover V [i], . . . , V [i+ b− 1] as follows:

fi+b−1 +
i+b−1∑
j=i

(
kj−1 − f ′

j−1

)
+

i+b−2∑
j=i

f ′
j ≤

i+b+τ−1∑
j=i+b

pj (4.19)

i+b−1∑
j=i

(
kj−1 − f ′

j−1 + f ′
j

)
≤

i+b+τ−1∑
j=i+b

pj (4.20)

i+b−1∑
j=i

vj + uj ≤
i+b+τ−1∑
j=i+b

pj (4.21)

i+b−1∑
j=i

vj ≤
i+τ−1∑
j=i+b

pj, (4.22)

where Equation 4.19 follows from Equation 4.4, Equation 4.20 follows from (a) f ′
i+b−1 = fi+b−1,

or (b) combining f ′
i+b−1 = pi+b−1+τ with Equation 4.4 to show

i+b−1∑
j=i

(
kj−1 − f ′

j−1

)
+

i+b−2∑
j=i

f ′
j = ki−1 − f ′

i−1 +
i+b−2∑
j=i

kj ≤
i+b+τ−2∑
j=i+b

pj,

Equation 4.21 follows from Equations 4.6 and 4.7, and Equation 4.22 follows from Equations 4.6
and 4.8.

Next, we show that P [i+ b], . . . , P [i+ τ − 1] suffice to recover V [i], . . . , V [i+ b− 1] Recall
that P (v)[j] = W [j]A(j) for j ∈ {i+ b, . . . , i+ τ − 1}, where W [j] contains V [l] in positions

I(i,j) =
⋃

l∈{i,...,i+b−1}

{2m(l mod τ), . . . , (2m(l mod τ) + vl − 1)},

as defined in Equation 4.9 and illustrated in Figure 4.2. Let W ′[j] be the vector of length 2mτ
with (a) 0’s in positions in I(i,j), (b) Wr[j] for positions r ∈ [2mτ − 1] \ I . The receiver can
compute W ′[j] and use it to determine P ∗[j] =

(
P (v)[j]−W ′[j]A(j)

)
. Let l0 = i, . . . , lb−1 =

79

(i + b − 1), and r = argminl∈{i,...,i+b−1}(l mod τ). Let l′0 = (i + b), . . . , lτ−b−1 = (i + τ − 1),
and r′ = argminl∈{i+b,...,i+τ−1}(l mod τ). Then

P ∗[l′r′−(i+b)]
T

...
P ∗[l′τ−b−1]

T

P ∗[l′0]
T

...
P ∗[l′r′−(i+b)−1]

T

T

=

V [l(r−i)]
T

...
V [lb−1]

T

V [l0]
T

...
V [l(r−i)−1]

T

T

A′
(i), (4.23)

where T means transpose, and A′
(i) is a submatrix of a Cauchy matrix of dimensions

(∑i+b−1
j=i vj

)
×
(∑i+τ−1

j=i+b pj

)
. As such, A′

(i) is full rank, allowing the receiver to solve for V [i], . . . , V [i+b−1].
Finally, for j = i, . . . , (i+ b− 1), the receiver uses the symbols of V [j], . . . , V [j + τ − 1] to

compute P (v)[j + τ], yielding U [j] =
(
P [j + τ]− P (v)[j + τ]

)
. As S[j] is sent over V [j], U [j],

and V [j + 1], it is recovered by time slot (j + τ).

4.7.2 Proof of Lemma 12
Suppose X[j], . . . , X[j+b−1] are lost. Due to the worst-case-delay constraint, S[j−1], . . . , S[i−
τ] must be recovered by time slot i. Thus,

∑i−τ
l=j−1 kl symbols need to be decoded. Because the

frames are independent, the symbols of X[0], . . . , X[j − 2] contain no information about S[j −
1], . . . , S[i−τ]. By definition of encoding (that is, Equation 4.2), X[j−1] contains fj−1 symbols
of S[j−1], no additional information about S[j−1], and no information about S[j], . . . , S[i−τ].
When (j + b− 1) == (i− τ), X[i− τ + 1] is received, and its frame symbols include (ki−τ −
fi−τ) symbols of S[i − τ]. The remaining frame symbols of X[j + b], . . . , X[i] correspond to
S[i − τ + 1], . . . , S[i] and cannot be used to recover S[j − 1], . . . , X[i − τ] (independence of
frames). Altogether,

−fj−1 − 1[j + b− 1 = i− τ]
(
ki−τ − fi−τ

)
+

i−τ∑
l=j−1

kl

symbols corresponding to S[j − 1], . . . , S[i − τ] need to be recovered by time slot i. These
symbols can only be recovered using the parity symbols of X[j + b], . . . , X[i], of which there
are

i∑
l=j+b

p†l .

The symbols of frames are drawn uniformly at random from the underlying field. Thus, the
total number of parity symbols must match the number of frame symbols to be decoded.

4.7.3 Proof of Lemma 13
Under the (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS Code , the total num-
ber of symbols sent is

∑t
l=0(kl + pl). Consider any streaming code construction that satisfies the

80

lossless-delay and worst-case-delay constraints, and for each i ∈ [t], employs policy fi and sends
p†i parity symbols. This streaming code construction sends

∑t
l=0

(
kl + p†l

)
symbols in total.

We show by induction on i = 0, . . . , t that
∑i

l=0 pl ≤
∑i

l=0 p
†
l . The base case holds for

j < 3τ because p0 = 0, . . . , p3τ−1 = 0. For the inductive hypothesis, we note for all j < i :

j∑
l=0

pl ≤
j∑

l=0

p†l . (4.24)

In the inductive step, consider i = 3τ, . . . , t − τ . By Equation 4.24, the proof holds if
pi ≤ p†i . Otherwise, pi > p†i ≥ 0. Due to Equation 4.24, we only need to show for j ≤ i that∑i

l=j pl ≤
∑i

l=j p
†
l .

Let i∗ = (i − τ). By Equation 4.4, there exists j∗ ∈ {i∗ − b + 1, . . . , i∗ + 1} (specifically,
taking j∗ as the value of j used to define pi) such that

i∑
l=j∗+b

pl = (4.25)

i∗+τ∑
l=j∗+b

pl =1[j∗ + b− 1 ≥ i∗ + 1] (ki∗ − fi∗) + 1[j∗ ≤ i∗]fi∗ +
i∗∑

l=j∗

(kl−1 − f ′
l−1) +

i∗−1∑
l=j∗

f ′
l

(4.26)

=

− 1[j∗ = i∗ + 1]fj∗−1 − 1[j∗ > (i∗ + 1)]f ′
j∗−1

− 1[j∗ + b− 1 = i∗] (ki∗ − fi∗) +
i∗∑

l=j∗−1

kl
(4.27)

=− f ′
j∗−1 − 1[j∗ + b− 1 = i∗] (ki∗ − fi∗) +

i∗∑
l=j∗−1

kl (4.28)

=− f ′
j∗−1 − 1[j∗ + b− 1 = i− τ] (ki−τ − fi−τ) +

i−τ∑
l=j∗−1

kl (4.29)

≤− fj∗−1 − 1[j∗ + b− 1 = i− τ] (ki−τ − fi−τ) +
i−τ∑

l=j∗−1

kl. (4.30)

Equation 4.26 follows from the fact that i∗ = (i − τ) and Equation 4.4. Equation 4.27 follows
from rearranging terms. Equation 4.28 is immediate if j∗ > i∗ and otherwise follows from
pi∗+τ ≤ fi∗ (by j∗ > i∗ and Equation 4.4) leading to f ′

i∗ = fi∗ (by Equation 4.5). Equation 4.29
follows from substituting i∗ = (i− τ). Equation 4.30 follows from Equation 4.5.

By Lemma 12,

i∑
l=j∗+b

p†l ≥ −fj∗−1 − 1[j∗ + b− 1 = i− τ]
(
ki−τ − fi−τ

)
+

i−τ∑
l=j∗−1

kl. (4.31)

81

Combining Equations 4.25, 4.30 and 4.31 leads to

i∑
l=j∗+b

p†l ≥
i∑

l=j∗+b

pl. (4.32)

Applying Equation 4.24 (for j = j∗ + b− 1) to Equation 4.32 leads to

j∗+b−1∑
l=0

p†l +
i∑

l=j∗+b−1

p†l =
i∑

l=0

p†l ≥
j∗+b−1∑
l=0

pl +
i∑

l=j∗+b−1

pl =
i∑

l=0

pl, (4.33)

proving the inductive step for l ∈ {3τ, . . . , t− τ}. Recall that pt−τ+1 = 0, . . . , pt = 0, leading to

t∑
l=0

p†l ≥
t−τ∑
l=0

p†l ≥
t−τ∑
l=0

pl =
t∑

l=0

pl.

The (τ, b, t, ⟨fi | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS Code sends
∑t

l=0(kl+
pl) symbols, which is no more than the number sent under the alternative construction (i.e.,∑t

l=0(kl + p†l)).

4.7.4 Proof of Lemma 15
If ki = 0, fi = f

(ϵ)
i , concluding the proof. Otherwise, the choice of f (ϵ)

i leads to sending at most
ki extra parity symbols in X[i+ τ] compared to an optimal scheme, so

Rki,...,kt

(
f
(ϵ)
i

)
≤ m (4.34)

and
Eki+1,...,kt

[
Rki,...,kt

(
f
(ϵ)
i

)]
≤ m, Varki+1,...,kt

(
Rki,...,kt

(
f
(ϵ)
i

))
≤ m2.

At a high level, we apply the Hoeffding bound [45] to show that the expected regret for each
possible policy is well approximated using the empirical mean over the S samples from the side
information. The unlikely event that the expected value deviates greatly from the mean will have
negligible impact due to Equation 4.34.

Next, we use O[i] to determine the values of S random variables, (zi,j,0, . . . , zi,j,S−1), equal-
ing Rki,...,kt(j) in distribution. The empirical mean is 1

S
∑S−1

l=0 zi,j,l. This value is used to estimate
Eki,...,kt [Rki,...,kt(j)]. By the Hoeffding bound [45],∣∣∣∣∣ 1S

(
S−1∑
l=0

zi,j,l

)
− Ek0,...,kt [Rki,...,kt(j)]

∣∣∣∣∣ < ϵ†

with probability at least (
1− 2e−

2S2(ϵ†)
2

m2

)
≥ (1− δ)

82

as long as

δ

2
≥ e−

2S2(ϵ†)
2

m2

2S2(ϵ†)
2

m2
≥ ln

(
2

δ

)
S2 ≥ ln

(
2

δ

)
m2

2(ϵ†)2

S ≥

√
ln

(
2

δ

)
m√
2ϵ†

.

Using ϵ† = δ = ϵ
4m2 and applying the union bound over the at most m values of ki shows

with probability (1−mδ) for all j ∈ [ki],∣∣∣∣∣ 1S
(

S−1∑
l=0

zi,j,l

)
− Ek0,...,kt [Rki,...,kt]

(
f
(ϵ)
i,j

)
]

∣∣∣∣∣ < ϵ†. (4.35)

We set f (ϵ)
i according to Equation 4.12 as

f
(ϵ)
i = argmin

j

1

S

S−1∑
l=0

zi,j,l.

With probability (1−mδ) Equation 4.35 holds, leading to

Eki,...,kt

[
Rki,...,kt

(
f
(ϵ)
i

)
−Rki,...,kt (f

′
i)
]
≤

Eki,...,kt

[
Rki,...,kt

(
f
(ϵ)
i

)
−Rki,...,kt (f

′
i)
]
+

(
1

S

(
S−1∑
l=0

zi,f ′
i ,l

)
− 1

S

(
S−1∑
l=0

z
i,f

(ϵ)
i ,l

))
≤(

Eki,...,kt

[
Rki,...,kt

(
f
(ϵ)
i

)]
− 1

S

(
S−1∑
l=0

z
i,f

(ϵ)
i ,l

))
+

((
1

S

(
S−1∑
l=0

zi,f ′
i ,l

)
− Eki,...,kt [Rki,...,kt (f

′
i)]

))
≤∣∣∣∣∣Eki,...,kt

[
Rki,...,kt

(
f
(ϵ)
i

)]
− 1

S

(
S−1∑
l=0

z
i,f

(ϵ)
i ,l

)∣∣∣∣∣+
∣∣∣∣∣
(
1

S

(
S−1∑
l=0

zi,f ′
i ,l

)
− Eki,...,kt [Rki,...,kt (f

′
i)]

)∣∣∣∣∣ ≤
2ϵ†,

(4.36)
which used the fact that Equation 4.12 led to

1

S

(
S−1∑
l=0

zi,f ′
i ,l

)
≥ 1

S

(
S−1∑
l=0

z
i,f

(ϵ)
i ,l

)
.

Otherwise, with probability mδ

Eki,...,kt

[
Rki,...,kt(f

(ϵ)
i)−Rki,...,kt (f

′
i)
]
≤ m. (4.37)

83

Combining Equations 4.36 and 4.37 leads to

Eki,...,kt

[
Rki,...,kt(f

(ϵ)
i)−Rki,...,kt (f

′
i)
]
≤ δm2 + 2ϵ† ≤ ϵ.

4.7.5 Proof of Theorem 7
We consider an online scheme with the optimal expected rate. By Lemma 13, such a scheme
of the form (τ, b, t, ⟨f ′

i | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS Code , which must
exist. Let ni be the number of symbols sent in X[i] under the optimal scheme and

nϵ =
t∑

i=0

Rki,...,kt

(
f
(ϵ)
i

)
−Rki,...,kt (f

′
i) (4.38)

be the number of additional symbols sent under the (τ, b, t, ⟨f ′
i | i ∈ [t]⟩)−Spreading Variable-

sized Generalized MS Code .
By definition

R(E,Opt) −R(E) ≤ Ek0,...,kt

[∣∣∣∣∑t
i=0 ki∑t
i=0 ni

−
∑t

i=0 ki

nϵ +
∑t

i=0 ni

∣∣∣∣] (4.39)

≤ Ek0,...,kt

[∣∣∣∣∣ |nϵ|
∑t

i=0 ki(∑t
i=0 ni

) (
nϵ +

∑t
i=0 ni

)∣∣∣∣∣
]

≤ Ek0,...,kt

[
|nϵ|∑t
i=0 ni

]
(4.40)

≤ Ek0,...,kt

[
|nϵ|∑t

i=0 1[ki > 0]

]
, (4.41)

where Equation 4.40 follows from sending
∑t

i=0 ni ≥
∑t

i=0 ki symbols to satisfy the lossless-
delay constraint, and Equation 4.41 follows from

∑t
i=0 ki ≥

∑t
i=0 1[ki > 0].

If ki = 0, then Rki,...,kt

(
f
(ϵ)
i

)
= Rki,...,kt (f

′
i) = 0. Thus, we can simplify Equation 4.38 as

nϵ =
t∑

i=0

1[ki > 0]
(
Rki,...,kt

(
f
(ϵ)
i

)
−Rki,...,kt (f

′
i)
)
. (4.42)

Applying Equation 4.42 to Equations 4.39 and 4.41 leads to

R(E,Opt) −R(E) ≤ Ek0,...,kt

∑t
i=0 1[ki > 0]

(
Rki,...,kt

(
f
(ϵ)
i

)
−Rki,...,kt (f

′
i)
)

∑t
i=0 1[ki > 0]

≤ max

i∈[t]
Ek0,...,kt

[
Rki,...,kt

(
f
(ϵ)
i

)
−Rki,...,kt (f

′
i)
]

= max
i∈[t]

Ek0,...,ki−1

[
Eki,...,kt

[
Rki,...,kt

(
f
(ϵ)
i

)
−Rki,...,kt (f

′
i)
]]

84

As such, it suffices to show for all i ∈ [t] that

Ek0,...,ki−1

[
Eki,...,kt

[
Rki,...,kt

(
f
(ϵ)
i

)
−Rki,...,kt (f

′
i)
]]

≤ ϵ. (4.43)

Because S ≥
√

ln(8m
2

ϵ
)2

√
2m3

ϵ
, Lemma 15 guarantees for any k0, . . . , ki−1,

Eki,...,kt

[
Rki,...,kt

(
f
(ϵ)
i

)
−Rki,...,kt (f

′
i)
]
≤ ϵ,

concluding the proof.

4.7.6 Proof of Lemma 16
By Equation 4.15 and Definition 4

H
(
S[i], X[i]

∣∣S[0 : i− 1]
)
= H

(
S[i]
∣∣S[0 : i− 1]

)
+H

(
X[i]

∣∣S[0 : i]
)

= H(e)ki

H
(
S[i], X[i]

∣∣S[0 : i− 1]
)
= H

(
X[i]

∣∣S[0 : i− 1]
)
+H

(
S[i]
∣∣S[0 : i− 1], X[i]

)
= H(e)fH

i +H
(
S[i]
∣∣S[0 : i− 1], X[i]

)
H
(
S[i]
∣∣S[0 : i− 1], X[i]

)
= H(e)(ki − fH

i).

(4.44)

Applying Equations 4.15 and 4.44, Definition 4, and the lossless-delay constraint yields

H(e)
i∑

j=0

kj ≤ H (S[0 : i]) +H
(
X[0 : i]

∣∣S[0 : i]
)

=H (S[0 : i], X[0 : i])

≤H (S[0 : i− 2]) +H
(
X[i− 1]

∣∣S[0 : i− 2]
)
+

H
(
X[i], S[i], S[i− 1]

∣∣S[0 : i− 2], X[i− 1]
)

≤H(e)

(
fH
i−1 +

i−2∑
j=0

kj

)
+

H
(
X[i]

∣∣S[0 : i− 2], X[i− 1]
)
+H

(
S[i]
∣∣S[0 : i− 1], X[i]

)
≤H(e)

(
fH
i−1 + ki − fH

i +
i−2∑
j=0

kj

)
+H (X[i])

(4.45)

Combining Equation 4.45 with the fact that X[i] comprises ni symbols leads to the following.

H(e)
(
ki−1 − fH

i−1 + fH
i

)
≤ H (X[i]) ≤ H(e)ni

ki−1 − fH
i−1 + fH

i ≤ ni.
(4.46)

Finally, ni is an integer, so it must be at least the ceiling on the left-hand side of Equation 4.46.

85

4.7.7 Proof of Lemma 17
We analyze the size of the channel packets

H(e)

j∑
l=i+b

nl = H(e)

j∑
l=i+b

(
kl−1 − fH

l−1 + fH
l + p

(†,H)
l

)
(4.47)

≥ H (X[i+ b : j]) (4.48)

≥ H
(
X[i+ b : j]

∣∣S[0 : i− 2], X[i− 1]
)

(4.49)

= H
(
X[i+ b : j], S[i− 1 : j − τ]

∣∣S[0 : i− 2], X[i− 1]
)

(4.50)

≥ H
(
S[i− 1]

∣∣S[0 : i− 2], X[i− 1]
)
+H (S[i : j − τ]) + (4.51)

H
(
X[i+ b : j]

∣∣S[0 : i+ b− 2 + 1[i == j − τ − b+ 1]], X[i+ b− 1]
)
,

where Equations 4.47 and Equation 4.48 follows from Equation 4.17 as well as the values of fH
l

and p
(†,H)
l for l ∈ {i+b, . . . , j}, Equation 4.49 follows from conditioning not increasing entropy,

Equation 4.50 follows from the worst-case-delay constraint, and Equation 4.51 follows from the
chain rule, independence of frames, and conditioning not increasing entropy.

By the lossless-delay constraint,

H
(
S[i+ b− 1]

∣∣S[0 : i+ b− 2 + 1[i == j − τ − b+ 1]], X[i+ b− 1 : i+ b]
)
= 0

H
(
S[i+ b : j − 1]

∣∣S[0 : i+ b− 1], X[i+ b : j]
)
= 0

Thus,

H
(
X[i+ b : j]

∣∣S[0 : i+ b− 2 + 1[i == j − τ − b+ 1]], X[i+ b− 1]
)
=

H
(
X[i+ b : j], S[i+ b− 1 : j − 1]

∣∣S[0 : i+ b− 2 + 1[i == j − τ − b+ 1]], X[i+ b− 1]
)
.

(4.52)
Combining Equations 4.51, Equation 4.52, 4.15, and 4.44 with Definition 4 leads to

H (S[i− 1]|S[0 : i− 2], X[i− 1]) +H (S[i : j − τ]) +

1[i > j − τ − b+ 1]H
(
S[i+ b− 1]

∣∣S[0 : i+ b− 2], X[i+ b− 1]
)
+

H (S[i+ b : j − 1]) +H
(
X[j]

∣∣S[0 : j − 1]
)

≥ H(e)

(
(ki−1 − fH

i−1) + 1[i > j − τ − b+ 1](ki+b−1 − fH
i+b−1) + fH

j +

j−τ∑
l=i

kl +

j−1∑
l=i+b

kl

)
.

(4.53)
To simplify the right-hand side of Equation 4.53,

(ki−1 − fH
i−1) +

j−τ∑
l=i

kl =− fH
i−1 +

j−τ∑
l=i−1

kl (4.54)

fH
j +

j−1∑
l=i+b

kl =

j∑
l=i+b

fH
j +

j−1∑
l=i+b

(kl − fH
l) (4.55)

1[i > j − τ − b+ 1](ki+b−1 − fH
i+b−1) =

(ki+b−1 − fH
i+b−1)−

1[i == j − τ − b+ 1](ki+b−1 − fH
i+b−1)

(4.56)

86

Thus, the right-hand side of Equation 4.53, is rewritten using Equations 4.54, 4.55, and 4.56
as

H(e)

(
(ki−1 − fH

i−1) + 1[i > j − τ − b+ 1](ki+b−1 − fH
i+b−1) + fH

j +

j−τ∑
l=i

kl +

j−1∑
l=i+b

kl

)
=

H(e)

(
−fH

i−1 − 1[i == j − τ − b+ 1](kj−τ − fH
j−τ) +

j−τ∑
l=i−1

kl +

j∑
l=i+b

fH
l +

j−1∑
l=i+b−1

(kl − fH
l)

)
=

H(e)

(
−fH

i−1 − 1[i == j − τ − b+ 1](kj−τ − fH
j−τ) +

j−τ∑
l=i−1

kl +

j∑
l=i+b

fH
l +

j∑
l=i+b

(kl−1 − fH
l−1)

)
(4.57)

Combining Equations 4.47 and 4.57 yields

H(e)

j∑
l=i+b

(
kl−1 − fH

l−1 + fH
l + p

(†,H)
l

)
≥ (4.58)

H(e)

(
−fH

i−1 − 1[i == j − τ − b+ 1](kj−τ − fH
j−τ) +

j−τ∑
l=i−1

kl +

j∑
l=i+b

(fH
l + (kl−1 − fH

l−1))

)
,

(4.59)

which simplifies to

j∑
l=i+b

p
(†,H)
l ≥ −fH

i−1 − 1[i == j − τ − b+ 1](kj−τ − fH
j−τ) +

j−τ∑
l=i−1

kl. (4.60)

Applying the fact that −fH
i−1 ≥ ⌈−fH

i−1⌉ to Equation 4.60 leads to

j∑
l=i+b

p
(†,H)
l ≥ −

⌈
fH
i−1

⌉
− 1[i == j − τ − b+ 1](kj−τ − fH

j−τ) +

j−τ∑
l=i−1

kl (4.61)

4.7.8 Proof of Lemma 18

Under the
(
τ, b, t,

〈⌈
fH
i

⌉
| i ∈ [t]

〉)
−Spreading Variable-sized Generalized MS Code , a total of∑t−τ

i=2τ (ki + pi) symbols are sent where pi is the number of parity symbols sent during time slot
i. Consider any streaming code construction which satisfies the lossless-delay and worst-case-
delay constraints, and for each i ∈ [t], employs policy fH

i and sends p(†,H)
i parity symbols. This

streaming code construction sends
∑t−τ

i=2τ

(
ki + p

(†,H)
i

)
symbols in total.

We show by induction on j = 3τ, . . . , (t− τ) that
∑j

i=0 pi + 1[ki > 0] ≤
∑j

i=0 p
(†,H)
i .

For the base case, consider any j < 3τ . Recall that for any l ∈ [3τ − 1], pl = 0. Therefore,∑j
i=0 pi = 0 ≤

∑j
i=0 p

(†,H)
i .

87

For the inductive hypothesis, for all l < j :

l∑
i=0

pi + 1[ki > 0] ≤
l∑

i=0

p
(†,H)
i . (4.62)

In the inductive step, let j ∈ {3τ, . . . , t− τ}.

Case pj ≤ p
(†,H)
j :

The number of parity symbols sent by time slot j can be bounded as

j−1∑
i=0

pi + 1[ki > 0] ≤
j−1∑
i=0

p
(†,H)
i (4.63)

pj +

j−1∑
i=0

pi + 1[ki > 0] ≤ p
(†,H)
j +

j−1∑
i=0

p
(†,H)
i (4.64)

j∑
i=0

pi + 1[ki > 0] ≤
j∑

i=0

p
(†,H)
i . (4.65)

where Equation 4.63 follows from the IH for l = (j − 1), and Equation 4.64 follows from the
fact that pj ≤ p

(†,H)
j .

Case pj > p
(†,H)
j :

Due to Equation 4.62, it suffices to show for some for an l < j that
∑j

i=l pi + 1[ki > 0] ≤∑j
i=l p

(†,H)
i .

By Equation 4.4, for i′ = (j − τ) and for some j∗ ∈ {i′ − b+ 1, . . . , i′ + 1}

0 < = pj (4.66)
= pi′+τ (4.67)

= 1[j∗ > i′ − b+ 1]
(
ki′ − (fH

i′)
′)+ i′∑

l=j∗

(
kl−1 − (fH

l−1)
′ + (fH

l)′
)
−

i′+τ−1∑
i=j∗+b

pi (4.68)

= kj∗−1 − (fH
j∗−1)

′ − 1[j∗ == i′ − b+ 1]
(
ki′ − (fH

i′)
′)+ i′∑

l=j∗

kl −
i′+τ−1∑
i=j∗+b

pi. (4.69)

88

Substituting (j − τ) for i′ and rearranging terms leads to

j∑
i=j∗+b

pi = 1[j∗ > j − τ − b+ 1]
(
kj−τ − (fH

j−τ)
′)+ j−τ∑

l=j∗

(
kl−1 − (fH

l−1)
′ + (fH

l)′
)

(4.70)

= −(fH
j∗−1)

′ − 1[j∗ = j − τ − b+ 1]
(
kj−τ − (fH

j−τ)
′)+ j−τ∑

l=j∗−1

kl (4.71)

≤ −
⌈
(fH

j∗−1)
′⌉− 1[j∗ = j − τ − b+ 1]

(
kj−τ − (fH

j−τ)
′)+ j−τ∑

l=j∗−1

kl (4.72)

≤
j∑

i=j∗+b

p
(†,H)
i (4.73)

Equation 4.71 follows from rearranging and applying (1[j∗ > j−τ−b+1] = 1−1[j∗ = j−τ−
b + 1]). Equation 4.72 follows from the fact that −

⌈
(fH

j∗−1)
′⌉ ≤ −fH

j∗−1. Equation 4.73 follows
from Lemma 17. Replacing (fH

j−τ)
′ with

⌈
fH
j−τ

⌉′ adds at most one extra symbol. Therefore,

j∑
i=j∗+b

pi + 1[ki > 0] ≤
j∑

i=j∗+b

p
(†,H)
i .

Applying the inductive hypothesis yields

j∑
i=j∗+b

pi + 1[ki > 0] +

j∗+b−1∑
i=0

pi + 1[ki > 0] ≤
j∑

i=j∗+b

p
(†,H)
i +

j∗+b−1∑
i=0

p
(†,H)
i (4.74)

j∑
i=0

pi + 1[ki > 0] ≤
j∑

i=0

p
(†,H)
i , (4.75)

where Equation 4.74 follows from applying Equation 4.62 (for l = j∗+ b− 1). To do so requires
(j∗ + b− 1) < j, which holds since 1 = τL ≤ (τ − b).

In both cases, the inductive step is proved, concluding the proof.

89

90

Chapter 5

Streaming codes for real-world
videoconferencing

Recall that this thesis aims to improve the QoE of real-time streaming applications like video-
conferencing. As steps to attain this goal, Chapters 2, 3, and 4 involved developing streaming
codes for a new theoretical model reflecting the requirement of applications like videoconferenc-
ing of sending frames of variable sizes. However, two main challenges prohibit directly applying
these streaming codes to videoconferencing applications. First, significant gaps between the
model and practical systems still remain, and they render the streaming codes incompatible with
videoconferencing applications. Second, streaming codes’ effectiveness for videoconferencing is
untested on large-scale real-world traces. Hence, streaming codes’ potential to improve the QoE
of videoconferencing applications is yet unknown. We address both challenges in this chapter.

To begin, we provide the background of FEC for real-world videoconferencing applications
in Section 5.1. We then assess packet-loss characteristics of real-world video calls to determine
the viability of streaming codes in Section 5.2. Building upon these packet loss characteristics
and the lessons we learned from designing the streaming codes from Chapter 3, we introduce
a new communication scheme suitable for the videoconferencing stack in Section 5.3. Finally,
we conduct an empirical evaluation of its performance in Section 5.4 and demonstrate concrete
benefits for several key metrics of the QoE (e.g., reducing the median frequency of freezes by
26%).

5.1 Background on FEC for real-world videoconferencing ap-
plications

Many applications, such as Microsoft Teams, employ traditional FEC (e.g., block codes) for
loss recovery. We start by explaining the limitations of this approach for videoconferencing
applications. We then summarize the two challenges for using the streaming codes presented in
Chapters 2, 3, and 4 for videoconferencing.

91

Frame

undecodable wasted bandwidth

i 1i+ 2i+ 3i+ 4i+

(a) Within-frame

Frame

lost packetdata parity

recover loss 3 frames later

6 parity packets cause spike in bandwidth

i 1i+ 2i+ 3i+

6×

(b) Multi-frame

Figure 5.1: Two approaches for employing block codes: (a) within each frame and (b) across
multiple frames.

5.1.1 Conventional FEC and its challenges in videoconferencing

Block codes. One of the most commonly used FECs is the so-called “block codes.” Block codes
encode k frames , ⟨S[1], . . . , S[k]⟩ to r parity packets into ⟨S[1], . . . , S[k], P [1], . . . , P [r]⟩, so
that the k frames can be recovered using a subset of the (k+r) packets. When any k of the (k+r)
packets suffice for recovery, the block code is termed “maximally distance separable (MDS).”
One of the best known examples of MDS codes is the Reed-Solomon (RS) block codes [76].
Other examples of block codes include fountain (i.e., rateless) codes [60], or two-dimensional
block codes [87].

Traditionally, FEC applies to packets, but videoconferencing involves transmitting multiple
packets for each video frame. One natural solution is to apply a block code to the frames within
each frame (Figure 5.1a). The parity packets are sent immediately after the final frame of
a frame. A second approach is to apply a block code across the frames of multiple frames
(Figure 5.1b) by sending all parity packets after the final frame of the last frame in the block.
Our analysis of the production packet loss traces (Section 5.2) from Teams shows that the packet
losses are bursty. Both approaches have significant limitations for burst losses.

Limitations of block codes for videoconferencing. When packet losses occur as bursts, the
within-frame approach wastes the redundancy sent in frames immediately following a burst be-
cause it is useless for recovering the lost frames. Although the multi-frame approach overcomes
this problem, it has two main drawbacks. First, the latency of recovering losses is high due to
waiting for the parity packets, which are sent after the final frame in the block, to recover any
packets. The length of the block code must be short lest the latency exceeds the real time dead-
line to play a frame, leading to an increased bandwidth overhead and reduced robustness to burst
losses. Second, packets sent in rapid succession may be lost if a router buffer is full. When a full
router buffer coincides with the final frame of a block, no lost packets are recovered.

The bandwidth consumed by parity packets of FEC can be substantially higher than retrans-
mission, even for modest packet loss rates. Unlike retransmission, which only resends lost pack-
ets, even an “optimal” FEC scheme does not know which packets will be lost. Hence, it must

92

send far more parity packets than lost packets. For example, to prevent a video freeze, at least
one parity packet must be sent every ≈ 150ms to cover the scenario of losing a frame . However,
this parity packet is not used if there are no losses.

5.1.2 Challenges of using streaming codes for videoconferencing

Gaps between the existing model and videoconferencing applications. The existing practical
work on streaming codes [13, 33], like the theoretical work they build upon [11, 62], is limited
to settings where the amount of data to be transmitted at each time instant is a fixed constant.
However, videoconferencing involves sending compressed video frames whose sizes vary. Only
our streaming code constructions (see Chapters 2, 3, 4) can handle this variability. However, as
discussed in Chapters 2, 3, and 4, existing streaming codes consider an adversarial loss model
that imposes bursts of length b. When applied for videoconferencing, the parameter b translates
into the number of consecutive frames for which all packets are lost. However, videoconferenc-
ing applications frequently send multiple packets per frame, and often only some of these packets
are lost, as we show in greater detail in Section 5.2 for packet loss traces from production. Exist-
ing streaming codes are overly pessimistic because they can recover from losing all packets for
multiple consecutive frames. This requirement imposes a significant bandwidth penalty, negat-
ing the potential bandwidth savings of streaming codes. Streaming codes are also vulnerable to
recovery failures if there are any losses in the guard space after a burst. But, in practice, many
bursts are not followed by such guard spaces (see Section 5.2.2).
Applicability of streaming codes in the wild. The benefits of streaming codes for VoIP ap-
plications have been studied using simulated losses under theoretical loss models, such as the
Gilbert-Elliott channel [31] and over traces [13, 33], wherein each frame is sent in one packet and
all frames/packets are of a fixed constant size. However, these results do not apply to videocon-
ferencing applications, which send (a) multiple packets for each frame and (b) varying amounts
of data per frame. Streaming codes perform best when each burst occurs across multiple frames
and is followed by a guard space of several frames without losses. A natural question is whether
such losses arise in videoconferencing and if they can be exploited via streaming codes. To the
best of our knowledge, no study of large-scale real-world packet losses establishes the applica-
bility of streaming codes in the wild. Furthermore, establishing that streaming codes are viable
to improve the QoE hinges on improving several metrics relating to the QoE. Yet an analysis of
streaming codes’ impact on such metrics is similarly lacking in the existing literature. Finally,
the effect of inter-frame dependencies on the benefits of streaming codes has yet to be assessed,
even though inter-frame dependencies are prevalent in videoconferencing.

We are addressing these challenges in three steps:
1. Analyze thousands of packet loss logs for video calls taken from a large commercial video-

conferencing application, and characterize their suitability for using streaming codes. To
the best of our knowledge, this is the first work to evaluate the potential of streaming codes
using large-scale, real-world traces.

2. Present Tambur, which bridges the gap between the theory behind streaming codes and
videoconferencing applications by (a) designing a new streaming code that is well-suited to
videoconferencing and (b) integrating it with a lightweight ML model to take a predictive

93

decision on the bandwidth allocated to streaming codes.

3. Implement a new benchmark platform to enable research on videoconferencing with an
easy-to-use interface to integrate and assess new FEC schemes. In addition, implement
Tambur, Block-Within, and Block-Multi in C++ and incorporate them into the benchmark
platform using the interface.

4. Evaluate Tambur over a large corpus of production traces through simulation, and show
that it simultaneously reduces the frequency of non-recoverable frames and bandwidth
overhead by 26.5% and 35.1%, respectively.

5. Evaluate Tambur over emulated networks and show significant improvements over key
metrics pertaining to end-to-end QoE (e.g., reducing the frequency of freezes by 26% and
the cumulative duration of freezes by 29%).

5.2 Packet loss in the wild
Logs (specifically, packet loss traces) from Microsoft Teams were collected from a random sam-
ple of 1:1 video calls over two weeks. One week’s traces were held out as a test set for the
evaluation.

Teams uses FEC only after a packet loss occurs, which is fairly standard in the industry [83]
to avoid wasting bandwidth for the many video calls that do not experience any loss. We limit
our study to traces with at least two instances of loss since our focus is on improving scenarios
after FEC is activated (i.e., FEC is turned on after the first loss and then used to recover the sec-
ond). Our analysis involves approximately 9700 traces, which constitute 16% of all the traces.
Studying these traces sheds light on the tail performance, which is crucial for real-world com-
mercial applications. Each trace corresponds to one video call and contains the size, sequence
number, and send/receive timestamps for each received packet, as well as whether it is a par-
ity packet or data packet; lost packets are identified via missing sequence numbers. Due to the
application’s data collection method, the traces are limited to the final one minute of the call.
Although the logs are for packets, we approximate frame-level information by combining the
logs with Teams’s packetization logic and have corroborated with the Teams engineers that this
approximation is good.

5.2.1 FEC metrics

Teams employs an RS block code within each frame and varies the bandwidth overhead based
on infrequent feedback from the receiver on packet losses. We will denote the FEC scheme used
by the application simply as “Block-Within.”

We evaluate three metrics over the traces. First, the percent of video frames using FEC for
each videoconferencing call (Figure 5.2a). The 25th, 50th, and 75th percentile for the percent of
video frames over each trace using FEC are 13%, 48.8%, and 70% of calls respectively, indicating
that FEC is applied to a significant portion of the frames. Second, the percent of decoding
failures for video frames over all frames for each videoconferencing call (Figure 5.2b). The
25th, 50th, and 75th percentile for the percent of decoding failures of frames are 0.6%, 1.8%,

94

0 25 50 75 100
Frames using FEC (%)

0

0.25

0.5

0.75

1.0

C
D

F

(a) FEC usage

0 25 50 75 100
Undecodable frames (%)

0

0.25

0.5

0.75

1.0

C
D

F

(b) Decoding failures

0 25 50 75 100
Bandwidth overhead (%)

0

0.25

0.5

0.75

1.0

C
D

F

(c) Redundancy

Figure 5.2: CDFs over the traces from Teams of (a) how often FEC is used to encode frames to
protect against packet loss, (b) how often the lost packets are not decoded, and (c) the bandwidth
overhead of parity packets.

and 6.1% of calls. Note that the decoding failures should be kept below around 1% to provide
high QoE [84]. As such, decoding failures are prevalent enough to tangibly negatively impact the
QoE, prompting the need for a more effective FEC mechanism. Third, the bandwidth overhead
for each call (Figure 5.2c). The 25th, 50th, and 75th percentile for the bandwidth overhead are
4.2%, 24%, and 45% of calls. Thus, reducing the bandwidth overhead will free a significant
portion of the bandwidth for these calls.

5.2.2 Network quality
We analyze the packet losses to assess streaming codes’ suitability for real-world videoconfer-
encing applications. To the best of our knowledge, this is the first work to analyze large-scale
real-world packet loss traces from this perspective. We analyze three key metrics of losses in
Figure 5.3. (1) The packet loss rate for each trace (Figure 5.3a). (2) The distribution of lengths
of bursts of packets measured over all of the calls (Figure 5.3b). (3) The distribution of the
lengths of bursts of frames (i.e., the number of consecutive frames with at least one packet lost)
measured over all of the calls (Figure 5.3c). This metric indicates streaming codes’ suitability,
as they are most effective when bursts of lost packets encompass multiple frames.

The mean percent of packets lost over the traces is 7%. It is higher than the packet loss in the
FCC report [22] since we focus on the traces where FEC is employed. If the other traces from
Teams are also considered, the mean packet loss over all traces is 1.7%, which is comparable to
the FCC measurement. In earlier studies of end-to-end Internet packet loss, loss rates tended to
vary over time and between ISPs and access network technology [15, 25, 32, 74], with ISP queue
management policies impacting the loss patterns seen by applications. As discussed in [32], in
home broadband networks, loss rates are often less than 1% for long periods, with infrequent
periods of very bursty packet loss. Similar patterns are seen in mobile networks, where loss
rates tend to increase during handovers [15], and much longer packet loss bursts are seen. Our
traces from Teams, described in this section, show similar behavior, with a large number showing
very low loss rates, with a long-tail of traces showing extremely bursty packet loss. Specifically,
38.1% of the instances of packet loss involve at least two consecutive packets being lost (Fig-
ure 5.3b), and 38.4% of instances of packet loss encompass more than one video frame. Such
loss patterns can be efficiently recovered by streaming codes (Section 5.2.3).

95

0 20 40 60 80
Packet loss rate (%)

0

0.25

0.5

0.75

1.0

C
D

F

(a) Packet loss

1 2 3 4 5−9 10+
Length of packet burst

0

20

40

60

P
er

ce
nt

 o
f

bu
rs

ts

(b) Packet bursts

1 2 3 4 5−9 10+
Length of frame burst

0

20

40

60

P
er

ce
nt

 o
f

bu
rs

ts

(c) Frame bursts

Figure 5.3: Packet loss is prominent (e.g., Fig 5.3a shows 1 − 10% packet loss for most traces)
and often occurs as bursts across consecutive packets (Fig 5.3b) or frames (Fig 5.3c).

There is also a trade-off between the bandwidth overhead (i.e., the bandwidth used for parity
packets) and the probability of decoding failure. The bandwidth overhead cannot be prohibitively
high lest there be insufficient bandwidth for the original data. Consequently, the frequency of
decoding failures for frames is non-negligible despite using FEC.

5.2.3 Potential of streaming codes

Recall that streaming codes are most effective when (a) packet loss occurs as a burst across
multiple consecutive frames and (b) the burst loss is followed by a guard space of multiple
consecutive frames with no losses. We formalize two metrics to capture these conditions. We
then show that the packet losses in the traces exhibit these features.

Measuring bursts. The bandwidth overhead needed to decode a burst depends on the fraction
of the packets being lost when losses occur across multiple frames. We introduce a new metric
to formalize this notion.
Definition 1 (Multi-frame burstiness). Suppose a burst occurs across two or more frames, i
through j, over which s packets are sent. If l of the s packets are lost, the multi-frame burstiness
is defined as l/s.

For example, suppose Tambur sends packets (D0[i], D1[i], D2[i]) and (D0[i + 1], D1[i + 1])
over frames i and (i + 1), respectively. Suppose D1[i], D2[i], and D0[i + 1] are lost. Then the
multi-frame burstiness is 3/5. The multi-frame burstiness is always positive since at least one
packet is lost for each frame in the burst. The maximum value of 1 occurs when all packets
are lost for all frames in the burst. High values correspond to situations of a high percentage of
the packets being lost for multiple consecutive frames. The value of the multi-frame burstiness
directly relates to the minimum bandwidth overhead needed for any code to decode lossy frames
in real time.

Measuring guard spaces. Streaming codes can reduce bandwidth overhead for scenarios where
a burst of packet losses is followed by a guard space of at least τ frames that experience reliable
transmission, where τ is the latency deadline parameter. We now introduce a new metric to
measure the extent to which the guard spaces exhibit this property.
Definition 2 (Guard space sufficiency). The τ -guard space sufficiency is the fraction of instances
in which one or more frames with packet loss are followed by at least τ consecutive frames which

96

0.2 0.4 0.6 0.8 1.0
Fraction of lost packets
for bursts of 2+ frames

0

0.25

0.5

0.75

1.0

C
D

F

(a) Multi-frame burstiness

0.2 0.4 0.6 0.8 1
Fraction of guard spaces

of 3+ frames

0

0.25

0.5

0.75

1.0

C
D

F

(b) Guard space sufficiency

Figure 5.4: The CDFs over the traces of the (a) the multi-frame burstiness (for traces with at least
one burst over 2+ frames), and (b) the guard space sufficiency.

experience lossless transmission.
The value of the guard space sufficiency varies from 0 to 1. It is negatively related to the band-

width overhead needed when using streaming codes. High values for the guard space sufficiency
indicate that the bandwidth overhead can be reduced.

Suitability of streaming codes. The multi-frame burstiness and 3-guard space sufficiency is
evaluated over the traces in Figure 5.4.1 In Figure 5.4a, the value of the multi-frame burstiness is
shown to vary over the range 0 to 1, with values at the 25th, 50th, and 75th percentiles of 0.32, 0.5,
and 0.67 respectively. This indicates that the bandwidth overhead needed when using streaming
codes varies over the traces, as expected. For higher values, more bandwidth must be allocated to
redundancy to decode the losses. For lower values, it is possible to make do with less bandwidth
used for redundancy. The guard space sufficiency is evaluated over the traces in Figure 5.4b, and
its values at the 25th, 50th, and 75th percentiles are 0.73, 1.0, and 1.0 respectively. These values
imply that streaming codes are often suitable. For example, for the traces with a value of 1.0,
every single time a burst occurs across multiple frames, streaming codes could have been used to
decode the losses with the optimal amount of bandwidth overhead. Yet, the low values indicate
insufficient guard spaces for using existing streaming codes to reduce the bandwidth overhead,
as they are vulnerable to losses in the guard space.

5.2.4 Key findings

Bursts of packet losses followed by guard spaces arise frequently and are conducive to streaming
codes. However, this is not always the case. Bursts are sometimes followed by short guard spaces
or involve significant packet loss, in which case the bandwidth overhead cannot be reduced via
streaming codes. Hence, integrating streaming codes into real-world applications requires (a)
predicting whether the bandwidth overhead can be reduced without incurring decoding failures,
(b) leveraging partial losses in a frame (i.e., losses of only some packets per frame rather than

1If the maximum tolerable latency is 150 ms (a standard value for real-time video communication [84]), the
one-way propagation delay is 50 ms, and a frame is encoded every 33.3 ms (i.e., at 30 fps), τ could be set as 3
(= (150− 50)/33.3). So τ = 3 applies for a realistic choice of parameters, in which case a guard space of length 3
is beneficial for loss recovery with streaming codes.

97

Video Encoder Video Decoder

Bandwidth
Overhead
Predictor

Streaming DecoderStreaming Encoder

packetized
frames

packetized
frames

loss-pattern
report

bandwidth
overhead

Se
nd
er

Receiver

Figure 5.5: Overview of Tambur. The components in green are specific to Tambur.

all packets) and (c) adding robustness to losses in the guard space.

5.3 Tambur

We present Tambur, which exploits the potential discussed in Section 5.2.3 and addresses the
challenges discussed in Section 5.1.2 by (1) using an ML model to take predictive decisions on
the bandwidth overhead, and (2) designing a new streaming code suitable for videoconferencing
given any setting for the bandwidth overhead.2 First, an ML model makes a predictive decision
on the number of parity symbols to allocate for each frame. This helps to set the bandwidth
overhead to match the network conditions. Second, the parity symbols are defined to provide (a)
sequential recovery of bursts over multiple frames while exploiting partial losses, (b) recovery
of occasional losses within a single frame immediately, and (c) robustness to a small amount
of loss in the guard space after a burst. Third, a new methodology is employed to distribute
each frame’s data and parity symbols over multiple packets. The design of the parity symbols
and their distribution across packets constitute Tambur’s streaming code. During loss recovery,
Tambur uses the received packets from the frames involved in a burst (i.e., partial losses), which
allows for a lower bandwidth overhead than is possible for existing streaming codes that ignore
such packets.

Figure 5.5 shows how Tambur fits into the stack of a videoconferencing application. The
streaming encoder encodes data from compressed frames into frames and parity packets. A
Bandwidth Overhead Predictor periodically selects bandwidth overhead for each frame using a
predictive (ML) model based on the losses observed at the decoder and sends the value to the
encoder. The streaming decoder uses parity packets to recover lost frames . We will now describe
these components in detail.

5.3.1 Tambur’s streaming code

We present the code in two parts: encoding and decoding.

2The new streaming code builds upon the theoretical streaming code from Chapter 3 while overcoming the
limitations discussed in Section 5.1.2.

98

??

?

?

reserved space?parity packet ()Pdata ()Vdata ()U

Framei 1+i 2+i 3+i

i
reserved before

frame
split data
evenly

define parity
packets

reserve parity
for frame 3i+

Figure 5.6: Encoding for τ = 3. Tambur splits frame i evenly into (V [i], U [i]) and sends them
over frames . Also, Tambur sends parity packets for recovering V [i − 3], . . . , V [i], U [i] and
U [i− 3] and reserves space for parity symbols of frame (i+ 3).

Encoding. We illustrate how Tambur encodes the ith frame. Figure 5.6 shows an example of
encoding for τ = 3. The frame symbols of this frame, S[i], are sent in frames , and the parity
symbols, P [i], are sent in parity packets. The sizes of the packets are maximized subject to (a)
not exceeding an MTU (for example, 1500 bytes in our experiments) to be equal. The previous
value of the Bandwidth Overhead Predictor determines how many parity symbols are allocated
for frame i. These parity symbols will be sent τ frames later (see “reserved space” in Figure 5.6).
The number of parity symbols sent for frame i was determined by the size of frame (i− τ).

Next, we describe how parity symbols are formed. The symbols of P [i] are linear combina-
tions of the symbols of the (τ + 1) frames, {S[i], . . . , S[i − τ]}. To define the parity symbols,
it helps to view the frame symbols of the associated (τ + 1) frames as being divided evenly into
two parts as S[j] = (V [j], U [j]), for j ∈ {i, . . . , i − τ}. Figure 5.6 shows these components in
blue and green, respectively.

The symbols of P [i] are designed linear combinations of the symbols of the following quan-
tities: V [i], . . . , V [i − τ], U [i], and U [i − τ]. Specifically, P [i] is sum of three quantities:
P [i] := P1[i] + P2[i] + P3[i]. The symbols of P1[i] are linear combinations of the symbols
of V [i − τ], . . . , V [i − 1]. The symbols of P2[i] are linear combinations of the symbols of
U [i − τ]. The symbols of P3[i] are linear combinations of the symbols of U [i] and V [i]. All
linear combinations are carefully chosen to be linearly independent linear equations.3

Decoding. We describe the decoding process in two parts: (1) occasional packet losses and (2)
burst of packet losses. Let all frames before the loss be decoded. First, suppose that packet loss
is rare, and the size of P [i] exceeds the number of symbols lost for frame i. Then P [i] suffices to
decode the ith frame (specifically, by solving a system of linear equations).

Second, consider a burst of packet losses across two consecutive frames for τ = 3, as is
shown in Figure 5.7. Packet losses (red-dashed border) span frames i and (i+1). For each frame
i, the blue, green, and brown parts represent U [i], V [i], and P [i], respectively. First, V [i] and
V [i + 1] are both decoded using P [i + 2], which consists of independent linear combinations
of (a) the symbols of V [i] and V [i + 1], and (b) the (received) symbols of V [i − 1], U [i − 1],

3It suffices to take linear equations from three different Cauchy matrices.

99

U [i+2], and V [i+2]. Second, for j ∈ {i, i+1}, U [j] is decoded using P [j+3], which consists
of independent linear combinations of (a) the symbols of U [j], and (b) the (available) symbols of
V [j−3], . . . , V [j], and U [j]. The key to this methodology is that U [i+1] is not recovered by the
latency deadline of S[i] (i.e., (i + 3)). This enables using extra parity symbols (i.e., P [i + 4]) to
recover U [i+ 1] while still decoding each frame within τ = 3 frames. Appendix 5.5.1 presents
the general case. If decoding fails, the receiver queries the sender to generate a new keyframe
(i.e., a self-sufficient frame) to handle inter-frame dependencies.

There are three key differences from existing streaming codes for videoconferencing: (1) The
frame symbols and parity symbols of a frame are sent over multiple packets instead of a single
packet. (2) Each frame’s parity packets are designed such that they are useful in recovering
its lost data packets (in addition to being useful in recovering previously sent frames). (3) The
code is flexible enough to allow per-frame bandwidth overhead to be set using the Bandwidth
Overhead Predictor.

[1] and [2] recovers lost [] and [1]P i P i V V i+ + +i1

[3] recovers lost []P i U+ i2

[4] recovers lost [1]P i U i+ +3

lost packetparity packet ()Pdata ()Vdata ()U

Frame

1

1

2

3

1

1 2 3

1

3
1
2

i 1+i 2+i 3+i 4+i

Figure 5.7: Decoding a burst across 2 frames within τ = 3 frames delay using Tambur’s stream-
ing code. Data symbols labeled 1, 2, and 3 are decoded using the parity packets with the same
label.

5.3.2 Bandwidth overhead predictor

At a high level, Tambur makes use of a predictive model to determine the bandwidth overhead
employed by its streaming code (i.e., the amount of “reserved space” in Figure 5.6). This pre-
dictive model takes as input a feature vector computed by the receiver periodically (e.g., every
two seconds), dubbed a loss-pattern report. The predictive model’s output is then sent to the
sender to set the bandwidth overhead for each frame for Tambur’s streaming code until the next

100

loss-pattern report is received. For example, a bandwidth overhead of 50% means that if frame i
comprises 1000 bytes, 500 bytes of parity symbols are allocated.

Loss-pattern report. Let P be the bitmap of packet losses since the last loss-pattern report,
where 1 denotes a loss and 0 is a reception. Let F be a bitmap over all frames since the last
loss-pattern report of whether at least one of the frame’s packets was lost. The loss-pattern report
consists of the following 13 quantities, all of which can be computed in linear time with a single
sequential pass over F and P .

• Multi-frame burstiness and guard space sufficiency (Section 5.2).
• Fraction of losses for P and F .
• Mean number of consecutive losses for P and F .
• Mean length of guard spaces for P and F .
• Burst density [19] and gap density [19] for P and F 4.
• A score employed by Teams to choose its bandwidth overhead, which is based on the ob-

served fraction of packet losses and lengths of bursts.

Bandwidth overhead prediction via weighted classification. Tambur uses an ML model to
determine the bandwidth overhead allocated per frame based on the recent loss conditions. As
discussed above in Section 5.3.1, Tambur’s streaming code enables such an approach by allow-
ing fine-grained tuning of the bandwidth overhead. To keep the model simple, we select two
options for the bandwidth overhead. This approach easily generalizes to more than two values
for bandwidth overhead by using a multiclass classifier to enable tuning the bandwidth overhead
used by Tambur. In our implementation, we use a small neural network (discussed further in
Section 5.3.3), although any methodology could be substituted.5

The ML model is trained with different weights for the two classes based on prioritization of
bandwidth savings versus minimizing decoding failures. Essentially, the higher the weight for
the class corresponding to the higher bandwidth overhead, the greater the frequency of decoding
frames, but the lower the reduction in bandwidth overhead. Videoconferencing service operators
can use these weights as a knob to prioritize reducing decoding failures or bandwidth overhead.

Neural network details. Binary classification is conducted using a small fully connected neu-
ral network with one hidden layer. The input is the values of the 13 metrics for the previous 3
loss-pattern reports. The cross-entropy loss is applied, and by default the weights for mistakenly
reducing the bandwidth overhead (i.e., causing a decoding failure) and not reducing the band-
width overhead by half (i.e., failing to save bandwidth) are 0.999 and 0.001, respectively. We
tested various number of hidden neurons (e.g., 100, 1000, and 10000) and selected 1000 as the
smallest option to reach the point of diminishing returns. The model is implemented and trained
in PyTorch offline using the traces based on the optimal decision for reducing the bandwidth
overhead without causing decoding failures. During inference, it is instantiated in C++.

4The parameter gMin [19] is set to be 1 and τ for P and F respectively.
5We found ML models to outperform heuristics empirically.

101

5.3.3 Implementation
We implemented Tambur in C++ as part of a new independent library called Tambur that any
videoconferencing application can use.6 At the sender, Tambur takes successive compressed
frames as input and outputs frames and parity packets. At the receiver, Tambur decodes lost
packets by solving a system of linear equations using the symbols of the received packets. When
packets are lost, we combine properties of streaming codes with an open-source min-cut/max-
flow algorithm [18] to determine which frame symbols can be decoded using which parity sym-
bols in negligible time (see Appendix 5.5.2). Data is then decoded by solving the smallest full-
rank systems of linear equations.

We use a small header to provide frame-level information needed for decoding. This includes
sequence numbers for packets and frames and relative positions of a packet within a frame and
amongst parity packets. The streaming decoder also needs the size of the lost frame in order
to decode it (even when all packets corresponding to the frame are lost); hence, we encode the
sequence of frame sizes using a streaming code and send one parity symbol of this code in each
packet.

The library provides an interface for rapidly prototyping new FEC schemes. We used this
interface to implement the baselines from Section 1 (i.e., Block-Within and Block-Multi).

The core arithmetic of linear encoding and solving a system of linear equations for decoding
is done using Jerasure 2.0 [70], an open-source library in C/C++ with modules for key operations
of erasure coding. Jerasure 2.0 is built on top of the GF-Complete library [71], which uses Intel
SIMD instructions to perform Galois Field arithmetic quickly. Tambur involves encoding data
into “coding blocks” of 256 bytes, each of which uses the same linear equations. Extending
Tambur to use hardware offload to encode and decode frames is a potential avenue of future
work.
Integration with videoconferencing. To validate Tambur’s effectiveness in the real world, we
integrate it with Ringmaster7, a new videoconferencing platform that emulates one-on-one video
calls for benchmarking FEC schemes. Ringmaster is implemented in ∼4000 lines of C++. Its
video sender reads raw frames from an input Y4M video file on disk at a precise frame rate (e.g.,
30 fps) and compresses them with the VP9 encoder in the libvpx [1] library using similar
codec configuration as in WebRTC [2]. A user-provided FEC scheme provides parity data for
the encoded frames, which is sent over UDP after packetization to the video receiver. Upon
receiving the frames, the video receiver applies the FEC decoder and VP9 decoder sequentially
to decode and render the original video frames. In addition, Ringmaster allows for requesting
new keyframes, e.g., when the receiver fails to recover a video frame due to excessive loss of
packets and thus requests the sender to encode a new keyframe so as to resume the video. At the
end of the automated call, QoE metrics are computed by aggregating logs from both endpoints,
which record the timestamps when each frame is encoded or decoded, along with its frame ID,
size, FEC bandwidth overhead, etc.

Ringmaster provides clean and modular interfaces that we use to integrate it into Tambur.
Combining Ringmaster with Tambur enables benchmarks of FEC schemes’ performance featur-
ing QoE metrics, e.g., video freezes, per-frame delay, rendered frame rate, for FEC schemes im-

6https://github.com/Thesys-lab/tambur
7https://github.com/microsoft/ringmaster

102

https://github.com/Thesys-lab/tambur
https://github.com/microsoft/ringmaster

plemented via Tambur’s interface. Furthermore, Ringmaster also allows researchers to isolate the
impact of FEC and disable modules that interfere with FEC, such as bandwidth estimation [20]
and packet retransmission.

5.4 Evaluation
To assess whether Tambur can improve the QoE, we ask:

• Can Tambur provide significant benefits for metrics relating to FEC on real-world losses?
• Do the benefits of Tambur lead to a higher QoE?

5.4.1 Experimental methodology and highlights

Videoconferencing application parameters. In our experiments, we aim for a maximum toler-
able latency of 150 ms to meet industry recommendations [84], which is a fairly standard value
for interactive video. The frame rate is taken to be 30 fps, which is a typical value in videoconfer-
encing. The inter-frame arrival time for 30 fps is 33.3ms. Allowing for a one-way frame delay of
50 ms leaves room for a decoding delay of around 100ms. Thus, the parameter τ can be at most
3 (frames) for the end-to-end latency (i.e., 33.3τ + 50) to be at most ≈ 150 ms. The two options
for the bandwidth overhead of Tambur are to match or use half of the bandwidth overhead of the
baseline coding scheme, Block-Within, which is introduced next.

Coding schemes. We evaluate six coding schemes. (1) Block-Within (Figure 5.1a), which
applies RS codes within a frame. This scheme is employed in production by Teams. (2) Block-
Multi (Figure 5.1b) which applies RS codes across (τ + 1) = 4 frames. RS codes are optimal
block codes, and hence the above two baselines outperform other block codes such as fountain
or rateless codes in recovering losses and bandwidth overhead. (3) Tambur-full-BW, which is a
variant of Tambur that matches Block-Within’s bandwidth overhead. (4) Tambur-0.9, which is
Tambur with the neural network trained to prioritize bandwidth savings more by decreasing the
weight of misclassification from 0.999 to 0.9 in the loss function. Thus, Tambur-0.9 prioritizes
reducing the bandwidth overhead more than Tambur. (5) Tambur-low-BW, which is a variant
of Tambur that uses 50% of the bandwidth overhead of Block-Within. (6) O, which optimally
selects between Tambur-full-BW, Tambur-low-BW, or Block-Within. Each time the sender ob-
tains feedback from the receiver, the Oselects the scheme with the smallest bandwidth overhead
among the scheme(s) that recover the most frames. This choice never causes a non-recoverable
loss. Consequently, the Oalways recovers at least as many frames as Block-Within, Tambur, and
Tambur-full-BW. The bandwidth overhead of Block-Within and Block-Multi is never reduced
to ensure a fair comparison of Tambur’s loss recovery capabilities and because both baselines
already perform worse than Tambur despite using the full bandwidth overhead. Like Tambur,
Block-Within and Block-Multi send feedback to the sender once FEC decoding has failed to
trigger a new keyframe as a fallback mechanism to handle inter-frame dependencies.

Metrics. We evaluate the following metrics: (1) Percent of non-recoverable frames, which
is the percentage of compressed frames that are not recovered. (2) Bandwidth overhead for
FEC. (3) Percent of non-rendered frames, which is the percent of frames that are not played

103

by the receiver—this includes non-recovered frames and recovered frames that depend on non-
recovered frames. (4) Latency, which is the duration between a frame being created and rendered.
(5) Frequency of freezes, which is the number of times the receiver’s video is frozen. (6) Duration
of freezes, which is the cumulative length of time where the receiver’s video is frozen.8 We
calculate these metrics only for the frames where FEC is applied (i.e., where FEC affects the
quality). We compute one value per call (e.g., median duration of freezes, bandwidth overhead,
etc.) and then consider the percentiles over these values. For latency, we consider all frames over
all calls.

QoE is difficult to measure precisely with so-called “QoE models” [88] because it depends on
video-specific properties (e.g., in sports, video quality during gameplay matters more than during
timeouts). But several works [14, 29, 54] have shown that key metrics for QoE (e.g., frequency of
freezes, duration of freezes, bandwidth, etc.) impact the mean opinion score—the gold standard
measure of QoE. These metrics also affect user interactions (e.g., users watch more video when
there are fewer freezes). In fact, [26] showed that cumulative freeze duration is crucial for QoE,
as well as the importance of bitrate and frequency of video freezes for live video.

Offline evaluation. We evaluate the performance of Block-Within, Tambur, Tambur-full-BW,
Tambur-0.9, Tambur-low-BW, and Oover the test set of traces from Teams described in Sec-
tion 5.2, which was held out from the previous analyses. The packet logs provide the perfor-
mance of Block-Within. We make two safe assumptions to evaluate the remaining schemes over
the traces: (a) modifying the payload of a packet, but not its size, would not change whether it
is lost or received; (b) reducing the size of a packet’s payloads would not incur any new packet
losses. Each frame is sent identically as in the trace, the payloads for the parity packets are
changed, the sizes of the parity packets are sometimes reduced, and the bitmap of packet losses
from the trace is used. To satisfy the assumptions, we must force Tambur to send the number
of parity symbols allocated for each frame within the frame (rather than delayed by τ frames),
which we expect to degrade Tambur’s performance. This enforcement alters the number of par-
ity packets sent under Tambur but not how their symbols are defined. Block-Multi is excluded
because it sends all parity packets after the final frame of the final frame of the block, so its
performance cannot be fairly simulated using the production traces.

Online evaluation. We evaluate prototype implementations of Block-Within, Block-Multi,
Tambur, Tambur-full-BW, and Tambur-0.9 integrated with Ringmaster (the videoconferencing
benchmark platform described in Section 5.3.3) via network emulation using Mahimahi [67]
while simulating a Gilbert-Elliott (GE) [31] loss model over a dataset of 80 videos. Specifically,
we evaluate 20 video calls from [23, 68] at four constant bitrates each (namely, 500, 1000, 1500,
and 2000 kbps) to isolate the effect of FEC. The bandwidth overhead is set to 50% for Block-
Within (likewise, for Block-Multi and Tambur-full-BW).9 The GE loss model is a standard loss
model which is a Markov model with two states: “good” and “bad,” each with an associated
probability of packet loss. For a fair and realistic comparison, different coding schemes must ex-
perience the same distribution of burst losses at the frame level even though they send differing

8We use the definition of freezes and duration of freezes from the most recent (unofficial) draft of identifiers for
WebRTC’s statistics [17].

9The bandwidth overhead is sometimes slightly higher for all schemes due to rounding and ensuring at least one
parity packet is sent per frame.

104

0.0 2.5 5.0 7.5 10.0 12.5
Non-recoverable frames per trace (%)

0.55

0.65

0.75

0.85

0.95

C
D

F

Oracle
Tambur
Tambur-low-BW
Tambur-full-BW
Block-Within

Better

(a) Non-recoverable frames

20 40 60 80 100 120 140
Bandwidth overhead per trace (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Oracle
Tambur
Tambur-low-BW
Tambur-full-BW
Block-Within (overlap)

Better

(b) Bandwidth overhead

Figure 5.8: CDFs for the percent of non-recoverable frames for the 55th through 95th percentiles
and the bandwidth overhead for the offline evaluation.

numbers of packets per frame. Therefore, we consider transitions between the states occurring
once at the start of every frame (i.e., once every 33.3 ms) rather than a transition between states
every packet, which is commonly used in the literature when only one packet is sent per frame.
Packets within each frame are lost independently with the same probability. The modified GE
channel can be viewed as a buffer overflowing for a short period, as can arise from on/off charac-
teristics of traffic [69]. Appendix 5.5.3 details how we set the parameters of the GE model based
on the losses from the traces.
Result highlights.

• In offline evaluation, Tambur reduces the frequency of non-recoverable frames by 26.5%
while using 35.1% less bandwidth overhead.

• In online evaluation, Tambur reduces frequency of non-rendered frames, frequency of freezes,
and duration of freezes by 28%, 26%, and 29%, respectively compared to Block-Multi, and
by 73%, 78%, and 77% compared to those of Block-Within. Block-Multi has a significantly
higher latency than Block-Within (see Figure 5.11b).

• Modest memory overhead and median encoding and decoding times of 575 KB, 1.7ms, and
3.4ms, respectively.

5.4.2 Offline evaluation
We assess only the frequency of non-recoverable frames and the bandwidth overhead for offline
traces because the remaining metrics are unavailable. Figure 5.8a shows the CDF of the percent
of non-recoverable frames from 55th to 95th percentiles over the traces. These percentiles cor-
respond roughly to the 92nd to 99th percentile over all traces. The Oreduces the total number
of non-recoverable frames by 44.2% compared to Block-Within and reflects an upper bound on
performance. Tambur-full-BW reduces the frequency of non-recoverable frames by 33% com-
pared to Block-Within, indicating the potential improvements of using streaming codes. In con-
trast, Tambur-low-BW increases the frequency of non-recoverable frames by 34.7% compared

105

−40 −20 0 20 40
Non-recoverable frames reduction (%)

0

10

20

30

40

50

B
an

dw
id

th
 o

ve
rh

ea
d

re
du

ct
io

n
(%

)

Oracle

Tambur

Tambur-full-BW

Tambur-low-BW

Tambur-0.9
Tambur-0.5

Block-Within

Bet
te

r

Figure 5.9: Sensitivity analysis of the weights for the classes used in the predictive model for the
frequency of non-recoverable frames and bandwidth overhead over all of the frames where FEC
is used in the traces.

to Block-Within, indicating the need for more sophisticated methods to reduce the bandwidth
overhead without incurring a significant penalty in non-recoverable frames. By using a predic-
tive model to determine the bandwidth overhead, Tambur reduces the bandwidth overhead by
35% while simultaneously reducing the number of non-recoverable frames by 26.5% compared
to Block-Within (Figure 5.8b). Section 5.4.3 summarizes the spectrum of bandwidth savings
versus recovering frames for Tambur based on tuning the associated weight parameter.

5.4.3 Sensitivity analysis

There is an inherent trade-off in performance between the non-recoverable frames and bandwidth
overhead metrics. The ML model for Tambur is trained using a loss function with a weight of
0.999 on avoiding recovery failures and the remaining weight (i.e., 0.001) on saving bandwidth
overhead (Section 5.3.3). Figure 5.9 shows the impact of this parameter on the frame recovery
performance of Tambur with the weight set to 0.9 (i.e., Tambur-0.9) and to 0.5. The improvement
in non-recoverable frames for the two schemes are respectively 21.9% and 1.7%. The reduction
in the bandwidth overhead is respectively 40.3% and 45.2%. By contrast, recall that Tambur
leads to a 26.5% improvement in non-recoverable frames and reduces the bandwidth overhead
by 35.1%. Reducing the value of the parameter reduces the frequency of recovering frames and
increases the reduction in the bandwidth overhead. Videoconferencing service operators can use
these weights as a knob to prioritize one metric over another.

106

0 2 4 6 8
Non-recoverable frames per trace (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Block-Multi
Block-Within

Tambur-0.9
Tambur
Tambur-full-BW

Better

(a) Non-recoverable frames

25 30 35 40 45 50
Bandwidth overhead per trace (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Block-Multi
Block-Within

Tambur-0.9
Tambur
Tambur-full-BW

Better

(b) Bandwidth overhead

Figure 5.10: CDFs for the percent of non-recoverable frames and the bandwidth overhead for the
online evaluation.

5.4.4 Online evaluation

Next, we establish Tambur’s potential to improve the QoE. To facilitate an easy comparison
with the offline evaluation, we show the frequency of non-recoverable losses and the band-
width overhead (as in Section 5.4.2) in Figure 5.10. On average, Tambur reduces the number of
non-recoverable frames by 69% compared to Block-Within and 34% compared to Block-Multi.
Tambur-0.9 reduces the number of non-recoverable frames by 65% compared to Block-Within
and 26% compared to Block-Multi despite Block-Multi’s much higher latency (Figure 5.11b).
The results differ slightly from the offline evaluation at the lower percentiles because of setting
the parameters of the channel based on average loss statistics over all the traces. This signifi-
cantly reduced the frequency of calls with low loss rates where any coding scheme suffices to
recover nearly all frames (i.e., sophisticated FEC schemes are unnecessary).

Tambur—which is conservative in risking recovery failures to save bandwidth—reduces the
bandwidth overhead by 3% on average of the calls. In contrast, Tambur-0.9 reduces the band-
width overhead by an average of over 8%. These results reflect both schemes reducing the
bandwidth overhead significantly on some calls but only negligibly on many others, which is
expected given the loss rates of most calls. Tambur-0.9’s bandwidth savings are especially pro-
nounced at the lower percentiles (e.g., 31% at the 10th percentile and 15% at the 20th percentile).
Tambur-0.9 provides a win-win by both recovering more frames and saving bandwidth despite
the online evaluation reflecting out-of-sample performance for its neural network, which was
trained offline over the production traces. The results further validate the trade-off between the
bandwidth overhead and recovering frames discussed in Section 5.4.3.

Next, we examine the percent of non-rendered frames in Figure 5.11a; recall that fewer
frames are rendered than recovered due to inter-frame dependencies. Tambur reduces the fre-
quency of failing to render framescompared to Block-Multi and Block-Within by an average of
28% and 73%, respectively. Tambur does worse than Block-Multi at the tail, but this only oc-
curs after all schemes have a failure rate above 23%. Thus, all schemes should employ more
redundancy. Tambur-0.9 decreases the frequency of failing to render frames by an average of

107

25th 50th 75th 90th
Percentile over videos

0

10

20

30

40
N

on
-r

en
de

re
d

fr
am

es
 (%

)
Block-Within
Block-Multi
Tambur-0.9
Tambur
Tambur-full-BW

(a) Frequency of non-rendered frames

25th 50th 75th
Percentile over video frames

0

50

100

150

200

En
d-

to
-e

nd
 la

te
nc

y
(m

s) Block-Within
Block-Multi
Tambur-0.9
Tambur
Tambur-full-BW

(b) Latency of rendered frames

Figure 5.11: Tambur renders significantly more frames than Block-Multi and with lower latency.
Tambur’s modestly higher latency than Block-Within is more than offset by the improvement in
rendering frames.10

70% and 20% compared to Block-Within and Block-Multi, respectively. Tambur-0.9 modestly
increases the frequency by 1% at the 75th percentile compared to Block-Multi. Overall, the rate
of rendering frames can be improved while simultaneously reducing the bandwidth overhead for
most calls. The results are the first to establish the benefits of streaming codes when there are
inter-frame dependencies.

Figure 5.11b shows that the end-to-end latency is within the upper limit of approximately
150ms for all schemes. Block-Within’s latency is slightly lower due to a shorter encode/decode
time and always recovering rendered frames using the parity of the same frame (see Figure 5.13
and Figure 5.14 in Appendix 5.5.4); Tambur decodes 87% of frames without extra frames ver-
sus 88% for Block-Within, so the extra latency from the waiting for extra frames should really
be compared to Block-Within failing to decode at all. We argue that Tambur’s small cost (e.g.,
an extra 1.7ms to encode and 3.4ms to decode at the median) is worthwhile due to substantial
improvements across the remaining QoE metrics. We also note that our implementation of Tam-
bur’s streaming code is not yet optimized for fast encoding/decoding; hence, we believe it can be
significantly faster. Our goal is to establish that Tambur’s streaming code is practical enough for
videoconferencing applications.

Recall from Figure 1.3 that Tambur reduces the frequency of freezes by 78% and 26% com-
pared to Block-Within and Block-Multi, respectively, and Tambur-0.9 reduces the frequency of
freezes by 75% and 17% compared to the two respective baselines. Figure 5.12a shows that
Tambur and Tambur-0.9 each reduce the median duration of freezes compared to Block-Multi by
30ms on average. Tambur and Tambur-0.9 each have a 90ms longer median duration of freezes
than theBlock-Within because Block-Within has over 300% more freezes than Tambur does.
Many of the extra freezes are short, reducing Block-Within’s median value to below Tambur’s.

Tambur-0.9 reduces the cumulative duration of freezes by an average of 69% compared to
Block-Within. The cumulative duration of freezes is 17% lower for Block-Multi than for Tambur-
0.9 despite Tambur-0.9 having on average 11% shorter median durations of freezes and 17%
fewer freezes. While the combined effect of the frequency and duration of freezes on the QoE

10We omit the 90th percentile since over 10% of frames are not rendered.

108

25th 50th 75th 90th
Percentile over videos

250

300

350

400

450
M

ed
ia

n
du

ra
tio

n
of

 fr
ee

ze
s (

m
s) Block-Within

Block-Multi
Tambur-0.9

Tambur
Tambur-full-BW

(a) Median duration of freezes

25th 50th 75th 90th
Percentile over videos

0.0

0.2

0.4

Pe
rc

en
t o

f v
id

eo
 sp

en
t f

ro
ze

n

Block-Within
Block-Multi
Tambur-0.9
Tambur
Tambur-full-BW

(b) Percent of video spent frozen

Figure 5.12: Tambur has a higher median duration of freezes than Block-Within but a sig-
nificantly smaller cumulative duration of freezes because Tambur has 78% fewer freezes than
Block-Within (Figure 1.3). Tambur has a lower cumulative and median duration of freezes than
Block-Multi.

for Block-Multi and Tambur-0.9 are similar, recall that Tambur-0.9 also improves the bandwidth
overhead and renders more frames for most traces. As such, we expect Tambur-0.9 to provide
an overall higher QoE. Tambur has an average of 77% and 28% shorter cumulative durations of
freezes than Block-Within and Block-Multi, respectively, which is a clear win. Tambur, Tambur-
0.9, and Tambur-full-BW exhibit higher cumulative durations of freezes at the tail than Block-
Multi. We argue that this matters less because the tail QoE is already bad, indicating that all
schemes needed more bandwidth overhead. Appendix 5.5.5 explains how this phenomenon is an
artifact of the implementation and includes our proposed a solution.

The benefits across QoE metrics of Tambur, Tambur-full-BW, and Tambur-0.9 suggest a
markedly improved QoE compared to Block-Within and Block-Multi. Without using ML to
reduce the bandwidth overhead, Tambur-full-BW offers a substantial improvement over the two
baselines. Tambur and Tambur-0.9 progressively trade off improvements in loss recovery with
bandwidth overhead. Overall, the results illustrate a Pareto frontier of the benefits of streaming
codes across the QoE metrics that could be studied further in future work.

5.5 Appendix

5.5.1 Recovering a burst with Tambur’s streaming code

Consider a burst of length b starting in frames i and delay constraint τ . Suppose all frames
before the burst have been decoded. First, the received symbols of P [i], . . . , P [i+ b− 1] as well
as P [i+ b], . . . , P [i+ τ] are used to decode the lost symbols of V [i], . . . , V [i+ b− 1]. Second,
each U [j] for j ∈ {i, . . . , i+ b} is decoded using P [j + τ]. In both steps, decoding follows from
solving a system of linear equations.

109

Tambur Block-Within
0.5

1.0

1.5

T
im

e
to

 e
nc

od
e

in
 m

s

(a) Encoding
Tambur Block-Within

2

4

6

T
im

e
to

 d
ec

od
e

in
 m

s

(b) Decoding

Figure 5.13: The encoding and decoding times are modest.

5.5.2 Tambur’s streaming code’s flow network

The graph of the flow network at a high level represents each P [i] that may be used in decoding
with a node with an edge into nodes corresponding to each of U [i], U [i− τ], V [i], . . . , V [i− τ],
where one unit of flow represents decoding one symbol. The flow network is small (i.e., at most
(5τ+3) vertices and (2τ 2+11τ+5) edges for τ = 3). Therefore, the time to solve it is negligible
compared to solving the system of linear equations.

5.5.3 Parameters of the GE channel

To set the parameters of the GE channel for the offline evaluation, we first identify settings
that match several aggregate statistics of the production traces as follows. The probability of
transitioning from the bad state to the good state (respectively, vice versa) is the mean over
traces of one divided by the mean length of bursts (respectively, guard spaces) in frames. The
probability of loss in the bad state equals the mean over traces of the multi-frame burstiness. The
probability of loss in the good state is then set so that the expected loss rate matches the mean loss
rate over traces given the other three parameters. To ensure our results hold for varying network
conditions, we then draw the values for each of the four parameters uniformly at random from
intervals around these values (rounded to increments of 0.05) as follows. The probability of
transitioning from the good state to the bad state and vice versa are distributed as Uniform(0,
0.05) and Uniform(.75, .9), respectively. The probability of loss in the good and bad states are
distributed as Uniform(0, 0.05) and Uniform(0.05, 1), respectively.11

5.5.4 Encoding and decoding overheads

We compare the encoding and decoding time for Tambur with that of Block-Within, which is the
fastest of all the baselines (Figure 5.13). As seen in Figure 5.13, the time to encode and decode
is comparable to Block-Within and is only a small fraction of the end-to-end latency budget
of 150 ms. The median times for encoding are 1.7ms and .6ms for Tambur and Block-Within,
respectively, whereas decoding takes 3.4ms and .7ms for Tambur and Block-Within, respectively.
Because Tambur operates over multiple frames of varying sizes, encoding and decoding times
are slightly longer and more variable. Our implementation of Tambur requires a fixed amount of
memory of approximately 575 KB during encoding and decoding.

11The results were similar when we varied the ranges.

110

0 1 2 3 Unrecovered
of extra frames used to recover a frame

0

20

40

60

80

Pe
rc

en
t o

f f
ra

m
es Block-Within

Block-Multi
Tambur-0.9
Tambur
Tambur-full-BW

Figure 5.14: Tambur recovers nearly as many frames as Block-Within using no extra frames
and also recovers more overall. Block-Multi recovers an approximately equal number of frames
using 0, 1, 2, and 3 extra frames.

But times for encoding and decoding are just a small component of the end-to-end latency.
The 50ms one-way delay and the number of extra frames used in decoding (see Figure 5.14) have
more pronounced effects. Recall that each additional frame used in adds approximately 33 ms
to the end-to-end latency, so using fewer extra frames is faster. Tambur does not decode within
the same frame only 1% more frequently than Block-Within, which cannot use extra frames in
decoding. Tambur uses extra frames to decode only 8% of the time. Block-Multi decodes 24%,
23%, 23%, and 23% of frames with 0, 1, 2, and 3 extra frames, respectively. Each extra frame
adds ≈ 33 ms to the end-to-end latency.

5.5.5 Tail duration of freezes

Recall from Figure 5.12b that Tambur, Tambur-0.9, and Tambur-full-BW have higher tail du-
rations of freezes than Block-Multi. The reason for the poor performance is threefold. First,
Tambur, Tambur-0.9, and Tambur-full-BW fail to render more frames at the tail, as was dis-
cussed in Section 5.4.2. Second, the sender generates a keyframe (often ending a freeze) once
it learns of recovery failures. Because Block-Within can only recover a frame using the parity
packets within the same frame, a keyframe is requested 3 frames sooner (i.e., ≈ 100 ms faster)
than when Tambur (or Tambur-0.9) is used. Many of the 78% of freezes under the Block-Within
where Tambur does not freeze are therefore short and shift the entire distribution of cumulative
duration of freezes for Block-Within, including the tail; if we added 0ms freezes for Tambur (or
Tambur-0.9) for these instances, their distributions would likewise shift. Third, encoding across
multiple frames can make it harder to recover a keyframe triggered by a freeze of several lost
frames. This phenomenon does not impact Block-Within and affects Block-Multi less than any
of Tambur, Tambur-0.9, and Tambur-full-BW (e.g., does not affect on Block-Multi whenever
the keyframe is in the first position within the block of (τ + 1) = 4 frames). The phenomenon
also contributes to a difference in the frequency of recovered frames (Figure 5.10a) and ren-
dered frames (Figure 5.11a). There is a natural solution that is outside of the scope of this work.
When the sender triggers a new keyframe due to a loss, it should stop taking linear combina-
tions of frames from before the new keyframe. Doing so will strictly (a) increase the frequency
of displaying frames and (b) decrease the mean and median duration of freezes. It will benefit
Tambur, Tambur-0.9, and Tambur-full-BW the most, but it will also improve Block-Multi to a
lesser extent.

111

0 1 0 1 2 0 1 2 3 0 1 2 3 40 1 0 1 2 0 1 2 3 0 1 2 3 4
... frames recovered from a burst loss of ...

0.0

0.2

0.4

0.6

0.8

P
M

F

1 frame 2 frames 3 frames 4 frames

Block-Within

Tambur
Overlap

Figure 5.15: Given the same bandwidth budget as Block-Within, Tambur is more likely to recover
all or zero frames from a burst loss over production traces.

1 2 3 4 5+
Burst length in number of lost frames

0.00

0.05

0.10

0.15

0.20

M
ea

n
no

n-
re

co
ve

re
d

fr
am

es
in

 e
ac

h
bu

rs
t

Block-Within
Block-Multi
Tambur

Figure 5.16: Given the same bandwidth budget as Block-Within/Block-Multi, Tambur provides
greater improvement for longer bursts over an emulated network.

5.5.6 Analysis of recovering bursts

Next, we evaluate Tambur’s capabilities for recovering bursts of packets across multiple frames;
to do so fairly, we must fix the bandwidth overhead, so “Tambur” refers to Tambur-full-BW for
the remainder of Section 5.5.6. Figure 5.15 shows the distribution of the number of packets
recovered for each burst length (in frames) for the offline evaluation. In Figure 5.15, the dis-
tribution of the number of packets recovered for each burst length (in frames) is shown. Bursts
encompassing 2, 3, and 4 frames constitute 23%, 7%, and 3.3% of all lossy events, respectively.
For these losses, Tambur recovers all lossy frames 66.8%, 103%, and 97.3% more frequently than
Block-Within. For the longer (less frequent) bursts of lengths 3 and 4, when the bandwidth over-
head is insufficient, Tambur fails to recover any frames 65.9% and 87% more frequently than the
Block-Within. This follows from the Block-Within being more likely to recover some (but not
all) of the frames when there is insufficient bandwidth overhead to recover all losses. In contrast,
when the bandwidth overhead is insufficient to recover a burst in its entirety, streaming codes are
likely to fail to recover all of the frames. However, note that the overall performance of Tambur
is still better than the Block-Within: Tambur recovers 21.8%, 12.4%, and 2.3% more frames than
the Block-Within for bursts of 2,3, and 4 frames, respectively. Tambur also outperforms Block-
Within in recovering losses limited to a single frame, as parity packets sent with later frames
can be used in recovery. In short, Tambur performs significantly better for bursts across up to 3
frames than Block-Within and offers more modest gains for bursts across 4 frames.

We also evaluate Tambur’s effectiveness at recovering bursts in the online evaluation. Be-

112

cause the loss of a single packet of a frame means that the frame is “lost” under our definition of
a burst, longer bursts usually only involve being in the bad state for one, two, or sometimes three
frames. We consider the mean number of frames recovered among a burst encompassing 1, 2,
3, 4, or greater than 4 frames in Figure 5.16. Tambur reduces the frequency of non-recoverable
frames by 70.5%, 68.0%, and 65.8% compared to Block-Within over bursts of 2, 3, and 4 frames
respectively. Tambur reduces the frequency of non-recoverable frames by 35.8%, 40.3%, and
47.4% compared to Block-Multi over bursts of 2, 3, and 4, respectively.

113

114

Chapter 6

Learning-augmented streaming codes for
variable-size frames under partial bursts

Recall that the streaming codes designed in Chapters 2, 3, and 4 applied to burst losses of entire
frames. However, Chapter 5 showed that network conditions that lose only some packets for
each frame in a burst are also prevalent. The streaming model for variable-size frames presented
in Chapter 2 is incompatible with such losses, motivating the need for updating the model. Thus,
we generalize the streaming model for variable-size frames to accommodate such losses in Sec-
tion 6.1. We aim to design high-rate streaming codes for the new model. To do so, we decompose
the code design into two components. First, a building block construction for a streaming code
given any choice of how to split a frame into a component recovered at its deadline and a com-
ponent recovered strictly before its deadline. We introduce such an approximately rate-optimal
building block construction in Section 6.2 Second, a policy to determine how to split the frames.
We use a linear program to determine how to optimally split frame symbols in the offline setting
in Section 6.3. Combining the linear program with the building block construction leads to an
approximately rate-optimal offline code. But the goal is to design online codes. Thus, we present
online streaming codes for three parameter regimes that are optimal up to a trivial factor in Sec-
tion 6.4. However, Section 6.5 then establishes for all remaining parameter regimes that there
is a nontrivial gap between the rate of optimal online codes and the offline-optimal-rate despite
the lossless-delay being zero. This deviates from the model studied in Chapter 3 (i.e., without
partial bursts), where we presented an online code matching the optimal rate of offline codes
for the setting where the lossless-delay is zero. To construct an online code for the remaining
parameter regimes, we replace the linear program with a learning-based approach to determine
how to split frame symbols in Section 6.6. Doing so yield an approximately rate-optimal online
code. Finally, Section 6.7 adds a constraint into the model to capture a requirement of real-world
systems: a maximum size of a transmitted packet. Section 6.7 then illustrates how to adjust our
constructions to satisfy this requirement with minimal changes in rate.

115

Sender Packet loss
channelTransmitted PacketsFrame

or

ReceiverSide
information

for

Decode

Figure 6.1: Overview of the proposed streaming model. Multiple packets are transmitted over
the channel for each frame. The packet loss channel allows for partial bursts.

6.1 System model
We now extend the streaming model for variable-size frames from Chapter 2, as illustrated in
Figure 6.1. There are a positive number, t, of time slots. During the ith time slot, the sender
obtains a frame, S[i], of ki independent random symbols of a finite field, F, where ki is a non-
negative integer between 0 and a maximum value, m. We refer to k0, . . . , kt as the “frame-
size sequence.” The sender sends ci transmitted packets, X(0)[i], . . . , X(ci−1)[i], consisting of
n
(0)
i , . . . , n

(ci−1)
i symbols, respectively. This change to the model allowing multiple packets to

be transmitted over the channel for each frame is a stepping stone toward adding partial bursts
to the loss model. We denote the transmitted packets, number of symbols sent, and number of
parity symbols as

X[i] =
〈
X(0)[i], . . . , X(ci−1)[i]

〉
,

ni =

ci−1∑
j=0

n
(j)
i

pi = ni − ki,

respectively. The rate is defined as in Chapter 2 as the ratio of frame symbols to transmitted
symbols:

Rt =

∑t
i=0 ki∑t
i=0 ni

The transmitted packets are sent over the following lossy channel.
Loss model: The loss model comprises bursty losses (affecting one or more consecutive time
slots) followed by a guard space where there are no losses. We introduce a new type of burst loss,
called a partial burst. In each time slot within a partial burst, only a fraction of the transmitted
packets are lost. Formally, for a partial burst of length b starting at time slot i, for each time slot
l within the partial burst, l ∈ {i, . . . , i + b − 1}, a ℓl ∈ (0, 1] fraction of the transmitted packets
can be lost. That is, an arbitrary ⌈ℓlcl⌉ transmitted packets of X[l] are lost.

Further, the length and the fraction of packets lost of partial bursts are allowed to vary over
time in order to enable using feedback (based on network changes) to tune the code. Formally,

116

a partial burst starting in time slot i encompasses bi consecutive time slots, where bi is a positive
integer. The partial burst is followed by a guard space of at least τ time slots where all transmitted
packets are received.

For any time slot i, we denote the ci received packets as

Y [i] =
〈
Y (0)[i], . . . , Y (ci−1)[i]

〉
,

where each received packet corresponds to either receiving the corresponding transmitted packet
intact or it being lost. That is, for j ∈ {0, . . . , ci − 1},

Y (j)[i] =

{
X(j)[i] if X(j)[i] is received
∗ if X(j)[i] is lost

.

Feedback: During any time slot, i, the sender may obtain feedback from the receiver for updat-
ing the length of a burst starting in time slot i and the fraction of transmitted packets lost during
each time slot of the burst (i.e., bi and (ℓi, . . . , ℓi+bi−1)). The feedback can be viewed as the re-
ceiver conservatively estimating how lossy the network conditions will be based on prior losses.
For most time slots, no feedback is received. In this case, the parameters are retained as is. At
times, there could be an underestimation of the losses, and that could lead to frames not being
recovered. In videoconferencing, due to compression, video frames are typically dependent on
each other. Hence not recovering a frame can lead to several subsequent packets not being useful
even though they are received intact. Thus, the receiver can send additional feedback to signal
that a reset is needed. This is modeled via a binary value ζi. It is 0 by default and set to 1 to indi-
cate that the τ frames before the reset need not be recovered if their transmitted packets are lost;
this ensures that loss recovery does not rely on having already decoded these previous frames.

6.1.1 Encoding and Decoding
Defining encoding and decoding requires understanding what information is available during the
ith time slot. In the “offline” setting, the sizes of future frames and future feedback from the
receiver are assumed to be known in advance. In contrast, the setting where this information
is unavailable is dubbed “online.” We introduce side information, Oi, to capture the available
information. Thus, in the offline setting, Oi = ⟨kl, bl, ℓl, ζl

∣∣l ∈ {i + 1, . . . , t}⟩. In the online
setting, side information is the output of a predictive model (see Section 6.6 for details). During
time slot i, the sender uses the prior frames and side information, Oi, to encode as

X[i] = Enc (S[0], . . . , S[i], Oi) .

We consider two types of decoding: (a) decoding when there are no losses, and (b) decoding
when there are losses. First, when there are no losses (or all losses have already been recovered),
the lossless-delay constraint requires decoding each frame, S[i], within the same time slot:

S[i] = Dec(L)
(
S[0], . . . , S[i− 1], Y [i], ki

)
.

117

Second, when there are losses, the worst-case-delay constraint stipulates that each frame is re-
covered within τ time slots. Specifically, for any burst starting in time slot j of length bj that
encompasses time slot i,

S[i] = Dec
(
S[0], . . . , S[j − 1], Y [j], . . . , Y [i+ τ],

k0, . . . , ki+τ

)
.

(6.1)

We note that under variable-size frames, the sizes of the frames are needed for decoding (see
Chapter 2, 3, and 4). This is handled by adding a small header containing the sizes of the
previous τ frames. We also point out that our constructions do not require the full memory
allowed under the model because they do not use any information about frames and transmitted
packets more than 2τ time slots in the past.

6.1.2 Notation and Conventions
Let [n] denote {0, . . . , n}. Any vector, V , is a column vector of length v. For any I =
{j1, . . . , ji} ⊆ [n] where j1 < . . . < ji, the values of V in the positions of I are denoted as
VI = Vj1:ji . For any time slots i ≤ j ∈ [t] and vectors Z[i], . . . , Z[j], let Z[i : j] = Z[i], . . . , Z[j],
and zi, . . . , zj denote their sizes. Let 0⟨j⟩ be a vector of j zeros.

Finally, we define a notation related to burst losses which will be used in the construction and
multiple proofs. For any time slot, i, let Bi be the set of time slots, j, for which a burst starting
in time slot j includes time slot i (i.e., i ∈ {j, . . . , j + bj − 1}).

We will next define some conventions followed in the rest of the paper. The final (τ + 1)
frames are assumed to be of size 0, and t is at least (τ + 1); this can be satisfied by appending
(τ + 1) frames of size 0 without affecting the optimal rate.

The number of transmitted packets for each frame is always an integer between 0 and 2m.
Thus, for any time slot, i, ℓi can be restricted to be a rational number. We then define natural
numbers qi and hi so that ℓi = qi/hi is in simplest form. We expect (hi − 1) to be negligible for
practical settings; this can be guaranteed by considering higher values of ℓi with smaller values
for hi. To simplify our presentation of constructions and proofs, we require hi

∣∣ki and ki ≤ m−hi;
this can be accomplished by zero-padding S[i] and increasing m by at most (hi − 1). The cost
of zero-padding is at most

∑t
i=0 2(hi − 1) (because replication could be used).

6.2 A Building Block Construction
This section develops an approximately rate-optimal construction for any parameters, τ and t,
frame-size sequence, K = (k0, . . . , kt), and feedback, L = (ℓ0, . . . , ℓt), B = (b0, . . . , bt), and
Z = (ζ0, . . . , ζt). We present a building block to construct a code given any splits of the frames
into (a) a component recovered within (τ − 1) time slots, and (b) a component recovered τ time
slots later. Specifically, for any time slot i ∈ [t−τ], let wi be the number of symbols of S[i] to be
recovered during time slot (i+τ), and let W = (w0, . . . , wt−τ). At a high level, (ki−wi) symbols
of S[i] are received or recovered using the parity symbols of X[i : i + τ − 1]. Then wi parity
symbols are sent in X[i + τ] to recover the remaining lost symbols of S[i]. The construction is
called “

(
τ, t,K,Z,L, B,W

)
-Split Code.”

118

Encoding (high-level description). During the ith time slot, S[i] is partitioned into S[i] =
(U [i], V [i]). Parity symbols P [i] are defined as P [i] = (P (∗)[i] + P ′[i]) where P ′[i] comprises
symbols that are full-rank linear combinations of the symbols of V [i − τ], . . . , V [i] and P (∗)[i]
comprises full-rank linear combinations of the symbols of U [i−τ]. The key property of the linear
equations and choices of how to split is that for any j ∈ [i] and burst of length bj starting in time
slot j, the symbols of V [j], . . . , V [j + bj − 1] can be recovered by time slot (j + τ − 1). Finally,
the symbols of U [i], V [i], P [i] are each evenly spread over hi transmitted packets. Figure 6.2
provides an overview of encoding.
Recovery (high-level description). Consider a burst of length bi starts in time slot i where
Y [i : i+ bi − 1] are received. First, for j ∈ {i, . . . , i+ τ − 1}, the received symbols of P [j] are
combined with U [j − τ] (which would have been already received) to determine P ′[j]. Then the
received symbols of P ′[i : i + τ − 1] are used to recover V [i : i + bi − 1] by solving a system
of linear equations. Second, for each j ∈ {i + τ, . . . , i + τ + bi − 1}, P ′[j] is computed using
V [j − τ : j], yielding P (∗)[j] = (P [j]− P ′[j]). Combining P (∗)[j] with the received symbols of
U [j − τ] suffices to recover U [j − τ]. Figure 6.3 provides an overview of loss recovery.
Code construction (detailed description) time slot i. The five-step encoding process com-
prises: (a) initialization, (b) splitting S[i] into V [i] and U [i], (c) defining P [i] given V [j], U [j] for
j < i, (d) allocating symbols to transmitted packets, and (e) handling resets from ζi = 1.
Initialization: For any i ∈ [τ − 1], U [i] = S[i], vi = 0, pi+τ = kiℓi, and pi = 0.
Splitting S[i]: For i ∈ {τ, . . . , t− τ}, S[i] splits into S[i] = (U [i], V [i]) where ui = 0 if ℓi = 0
and otherwise ui = wi/ℓi. For each j ∈ Bi, l ∈ {j, . . . , j + bj − 1}, we define the number of
received parity symbols for recovering V [j : j + bj − 1] as d(i,j,l) next. Since for any l > i kl
is not available, we pretend that all future frames are recovered using parity symbols sent after
time slot (i+ τ) by setting ul = kl = 0 (for Equations 6.2 and 6.3 below), leading to

d(i,j,l) =

min

(
(1− ℓl)nl, kl − ulℓl +

l−1∑
r=j

(
kl − ulℓr − d(i,j,r)

))
.

(6.2)

To ensure V [j : j + bj − 1] are recovered by time slot (j + τ − 1), we require

j+τ−1∑
l=j+bj

pl +

j+bj−1∑
l=j

d(i,j,l) ≥
j+bj−1∑
l=j

(kl − ulℓl). (6.3)

Next, ui is increased until Equation 6.3 is satisfied and hi

∣∣ui. Then S[i] is split into:

U [i] = S0:ui−1[i] (6.4)
V [i] = Sui:ki−1[i]. (6.5)

The number of parity symbols of X[i+ τ] is defined using as

pi+τ = ℓiui + padi+τ , (6.6)

119

where padi+τ is the smallest integer to ensure hi+τ

∣∣pi+τ . The symbols of P [i + τ] themselves
are not defined until time slot (i+ τ).
Defining P [i]: To start, we define matrices that we use to define parity symbols. Let H0, . . . , Hτ

be the parity check matrices of a systematic [m(τ +1),mτ] m-MDS convolutional code [39, 43]
(as from [11]). Let A be a m×m parity check matrix of a [2m,m] systematic MDS code (e.g.,
Reed-Solomon). For any i ∈ [τ − 1], pi = 0 by initialization. For i ≥ τ , P [i] is full-rank linear
combinations of the symbols of V [i− τ : i] and U [i− τ]:

U∗[i− τ] = (U [i− τ], 0⟨m−ui−τ ⟩,)

V ∗[j] = (V [j], 0⟨m−vj⟩)

P (∗)[i] = (AU∗[i− τ])0:pi−1

P ′[i] =
τ∑

j=0

HjV
∗[i− τ + j]

P [i] = (P (∗)[i] + P ′[i]). (6.7)

Allocating symbols to transmitted packets. Let ci = hi. The symbols of each of V [i], U [i],
and P [i] are evenly allocated over ci transmitted packets. Formally, for each j ∈ [ci − 1], let
the jth vi/ci, ui/ci, and pi/ci symbols of V [i], U [i], and P [i], be denoted as V (j)[i], U (j)[i], and
P (j)[i],respectively. Then let

X(j)[i] = (V (j)[i], U (j)[i], P (j)[i]).

Resets . When ζi = 1 the sender treats S[i] as the first frame of a length (t − i + 1) call and
completes initialization.

Next, Theorem 8 shows that the lossless-delay and worst-case-delay constraints are met by
the building block construction.
Theorem 8. For any τ, t,K,Z,L, B,W , the Split Code satisfies the lossless-delay and worst-
case-delay constraints over the channel.

Proof. At a high level, for any time slot i and burst over X[i : i + bi − 1], we show that V [i :
i+ bi − 1] are recovered by time slot (i+ τ − 1) using the received frame symbols and received
symbols of P ′[i : i + τ − 1]. We then show for l ∈ {i, . . . , i + bi − 1} that U [l] is recovered
during time slot (l + τ) using the received symbols of U [l] and P (∗)[l + τ].

Appendix 6.8.2 has a detailed proof.

Recall that the field size requirement of the code design is based on two components. First, it
is at least 2m to construct A. Second, it needs to be large enough for the m-MDS code, and this
field size may be large. Next, we present a randomized construction with a small field size. When
a burst loss occurs during time slot i, the probability that S[i : i + bi] will not be recovered will
be at most ϵ for a small ϵ > 0. The construction involves choosing each entry of H0, . . . , Hτ−1

independently and uniformly at random from a field of size
∣∣F∣∣≥ (τm/ϵ) (i.e., polynomial in

the input parameters and 1/ϵ). We call this construction
(
τ, t,K,Z,L, B

)
-RandomCode(ϵ) and

show it satisfies the lossless-delay and worst-case-delay constraints next.

120

Sender Side
information

Split code

Receiver

Encoding Packetization

for

Figure 6.2: Overview of encoding.

Time slot

Recover using theLose of recover with

received symbols of

Figure 6.3: Illustration of loss recovery under the
(
τ, t,K,Z,L, B,W

)
-Split Code for a burst

over X[i+ 1 : i+ bi+1 − 1].

Lemma 21. Consider any τ, t,K,Z,L, B,W . The
(
τ, t,K,Z,L, B

)
-RandomCode(ϵ) (a) satis-

fies the lossless-delay constraint for all frames, and (b) for any burst starting in time slot i ∈ [t]
satisfies the worst-case-delay constraint for S[i : i+ bi − 1 with probability at least (1− ϵ).

Proof sketch. At a high level, the proof follows from showing that the set of symbols from the
system of linear equations used to recover V [i : i+bi−1] under

(
τ, t,K,Z,L, B,W

)
-Split Code

by time slot (i + τ − 1) constraints remain full rank, thus sufficing to recover S[i : i + bi − 1]
under

(
τ, t,K,Z,L, B

)
-RandomCode(ϵ). Then recovery of U [i : i + bi − 1] follows identically

to Theorem 8. A complete proof is presented in Appendix 6.8.3

Next, we use a simple example to highlight how
(
τ, t,K,Z,L, B

)
-RandomCode(ϵ) is likely

to require a reasonable field size and provide sufficient loss-recovery capabilities for practical
videoconferencing applications. For a 2000 kbps video 30 fps, a reasonable setting of m may be

121

216. Suppose there is a a 50 ms one-way delay, then the end-to-end latency is (33.3τ + 50) ms.
One may set τ = 3 so that this latency is ≈ 150 ms to satisfy industry recommendations [84].
Therefore, if we choose ϵ = 214, we obtain a field size of 232, which requires only 4 bytes.
The recovery error probability is then less than 0.01% due to using random matrices. We argue
that 0.01% is likely to be negligible compared to the small error of unpredictable changes to the
network conditions due to real-world events.

6.3 Offline codes

In this section, we design an offline approximately rate-optimal construction in three steps. First,
we present Algorithm 4. The algorithm identifies suitable choices for w0, . . . , wt using a linear
program (LP) whose objective function is to minimize the number of parity symbols sent, which
maximizes the rate. Second, Algorithm 4 is combined with

(
τ, t,K,Z,L, B,W

)
-Split Code.

At a high level, the variables of the LP used in Algorithm 4 represent w0, . . . , wt−τ , which
equal the number of parity symbols sent during time slots τ, . . . , t, respectively. Then (ki+wi−τ)
symbols are modeled as being sent during time slot i (satisfying the lossless-delay constraint).
The frames that need not be recovered due to resets are modeled as having size zero. The LP’s
constraints impose the worst-case-delay constraint as follows. Constraint 1 ensures that no parity
symbols are sent until time slot τ . Constraint 2 ensures that a non-negative number of parity
symbols are sent. For any burst starting during time slot i, Constraint 3 bounds how much useful
information is received during the burst. Constraint 4 ensures recovery of enough symbols of
S[i : i + bi − 1] by time slot (i + τ − 1) that the remaining symbols are recoverable at their
respective decoding deadlines. Finally, Constraint 5 reflects that wi never exceeds the number of
lost symbols of S[i].

We will show that Algorithm 4 yields an upper bound on the optimal rate subject to a certain
condition on feedback introduced below. Then Theorem 9 shows that this upper bound is nearly
tight.

Condition on feedback : A reset must occur whenever increasing the fraction of transmitted
packets that could be lost. Formally, for any time slot i ∈ [t− τ] \ {0} where ℓi > ℓi−1, ζi must
be set to 1.
Lemma 22. For any τ, t,K,Z,L, B, if Algorithm 4outputs

〈
wi

∣∣i ∈ [t]
〉
, the offline optimal rate

under the condition on feedback is at most

(t∑
i=0

ki
)
/
(
− 2(t− τ)(τ − 1) +

t−τ∑
i=0

ki + wi

)
. (6.9)

Proof. The proof is shown in Appendix 6.8.4.

Remark 10. Algorithm 4 runs in O(poly(tτ)) time since the LP has O(tτ) constraints and
variables.

Combining Algorithm 4 with the building block construction (Section 6.2) yields an approx-
imately rate-optimal code.

122

Algorithm 4 Computes
〈
wi

∣∣i ∈ [t]
〉

of an approximately rate optimal code.
Input: (τ, t,K,L, B)
For i ∈ [t− τ]:

If
∑i+τ

j=i+1 ζi > 0:
Set ki = 0.

Minimize
∑t−τ

i=0 p
(IP)
i+τ subject to:

1. ∀j ∈ [τ − 1], p
(IP)
j = 0.

2. ∀j ∈ [t− τ], p
(IP)
j+τ ≥ 0.

3. ∀i ∈ [t− τ], l ∈ {i, . . . , i+ bi − 1},

0 ≤ di,l ≤ min((p
(IP)
l + kl)(1− ℓl),

kl − p
(IP)
l+τ +

l−1∑
r=i

(kr − p
(IP)
r+τ − di,r)

4. ∀i ∈ [t− τ],
i+τ−1∑
l=i+bi

p
(IP)
l +

i+bi−1∑
l=i

di,l ≥
i+bi−1∑
l=i

(kl − p
(IP)
l+τ) (6.8)

5. ∀j ∈ [t− τ], kjℓj ≥ p
(IP)
j+τ .

Output:
〈
p
(IP)
i

∣∣i ∈ [t]
〉

123

Theorem 9. For any τ, t,K,Z,L, suppose Algorithm 4 outputs
〈
wi

∣∣i ∈ [t]
〉
. For any i ∈ [t− τ]

where
∑i+τ

j=i+1 ζj ≥ 1, let wi = kiℓi. Then the rate of the corresponding Split Code is less than
the optimal rate under the condition on feedback by at most

(t−τ∑
i=0

(2τ + qi + hi+τ − 4)
)
/
(t∑

i=0

ki
)
. (6.10)

Proof. The proof is shown in Appendix 6.8.5.

As an example of applying Theorem 9, consider a videoconferencing call at 2000 kbps and
30 fps. Suppose the field size is 232, for i ∈ [t]ℓi ∈ {j/8 | j ∈ [8]}, and τ ≤ 5. Then the rate of
the Split Code is within 0.01 of optimal.

Finally, we bound the cost of removing the condition on feedback. For each time slot i that
the condition is violated (i.e., ℓi > ℓi−1 without a rest), the denominator of Equation 6.9 decreases
and numerator of Equation 6.10 increases by up to

(
(ℓi − ℓi−1)

∑i
j=i−τ+1 kjℓj

)
.

6.4 Online rate-optimal codes
This section presents online rate-optimal constructions for three parameter regimes when there
are no resets (i.e., ζi = 0 for all i ∈ [t]): (a) Regime b1 where τ > 1 and bi = 1 for all i ∈ [t],
(b) Regime bτ where bi = τ for all i ∈ [t], and (c) Regime bτ+1 where bi > τ and ℓi < 1 for all
i ∈ [t]. Later, Section 6.5 shows in all other parameter regimes that online rate-optimal codes
cannot match the optimal rate of offline ones, even without resets.

6.4.1 Online optimal codes for Regime b1

We introduce a systematic construction called “Regime b1-Code.” During the ith time slot,
X[i] = (S[i], P [i]). One symbol is sent per transmitted packet (i.e., ci = ni). All that re-
mains is to define P [i]. At a high level, P [i] is chosen to be full-rank linear combinations of all
of the symbols of S[i− τ : i]. Its size, pi, is as small as possible to ensure S[i− τ] is recovered
by time slot i.

Next, we define some notation and then use it to define P [i]. Let [Im
∣∣AT]T be the generator

matrix of a [m(τ + 2),m] systematic MDS code, where T denotes transpose. Let A comprise
m × m block submatrices, A0, . . . , Aτ . For i < τ, pi = 0, and no parity symbols are sent. For
i ∈ [t− τ] \ [τ − 1], during time slot i, we define

pi = max
(
0, ni−τ − ⌈ni−τℓi−τ⌉ − ki−τ −

i−1∑
l=i−τ+1

pl
)

(6.11)

V [j] = (S[j], 0⟨m−kj⟩) (6.12)

P [i] =
(i∑
j=i−τ

Aj−(i−τ)V [j]
)
0:pi−1

. (6.13)

124

Decoding involves solving a full-rank system of linear equations.
Next, we establish that the proposed construction satisfies the lossless-delay and worst-case-

delay constraints.
Lemma 23. For any τ, t,K,L under Regime b1, the Regime b1-Code lossless-delay and worst-
case-delay constraints over the channel.

Proof. The lossless-delay constraint is met by sending S[i] in X[i].
The final τ frames are known to be of size 0. Consider any burst loss in X[i] for some

i ∈ [t− τ]. For each l ∈ {max(τ, i), . . . , i+ τ} and j ∈ {l− τ, . . . , l} \ {i}, S[j] is received and
used to compute V [j].1 This yields

P ∗[l] =
∑

j∈{l−τ,...,l}\{i}

Aj−(l−τ)V [j].

Recall that
Ai−(l−τ)V [i] = P [l]− P ∗[l].

Overall, for l ∈ {i + 1, . . . , i + τ}, the first pl symbols of Ai−(l−τ)V [i] are available. In
addition, some (ni − ⌈niℓi⌉) symbols of [I, AT

τ]
TV [i] are received. Therefore,

(ni − ⌈niℓi⌉) +
i+τ∑

l=i+1

pl

symbols of [I, AT]TV [i] are received and (m − ki) symbols of V [i] are known in advance to be
zero-padding.

By Equation 6.11 that

(pi − ⌈piℓi⌉) + ki(1− ℓi) +
i+τ∑

l=i+1

pi ≥ ki.

By the MDS property, V [i] can be recovered, yielding S[i].

Finally, we show that the proposed construction is trivially close to having an optimal rate.
Lemma 24. Consider any τ, t,K,L under Regime b1, and let N (OPT) be the number of symbols
sent under a rate-optimal offline code. Then the Regime b1-Code’s rate is at least

(t∑
i=0

ki
)
/(N (OPT) + 3τ(t− τ) + 1).

Proof sketch. At a high level, we compare the number of symbols sent under Regime b1-Code to
the number modeled as being sent under Algorithm 4. We demonstrate how to modify the values
of p(IP)

i for i ∈ [t] to match pi for i ∈ [t] while increasing
∑t

i=0 p
(IP)
i by at most (t− τ + 1). A

complete proof is included in Appendix 6.8.6.

1For j ∈ [τ − 1], we consider V [−j] = 0⟨m⟩.

125

6.4.2 Online optimal codes for Regime bτ

We introduce a systematic construction called “Regime bτ -Code.” During the ith time slot,
(S[i], P [i]). One symbol is sent per transmitted packet, leading to ci = ni. It suffices to de-
fine P [i]. At a high level, P [i] is chosen to be full-rank linear combinations of the symbols of
S[i− τ] and S[i]. Its size, pi, is as small as possible to ensure S[i− τ] is recovered by time slot i.

Next, we define some notation and then use it to define P [i]. Let [Im
∣∣AT]T be the generator

matrix of a [3m,m] systematic MDS code. Let A0 and A1 be disjoint m×m block submatrices
of A. For i < τ, pi = 0, and no parity symbols are sent. For i ∈ [t− τ] \ [τ − 1], during time slot
i, we define

p′i = max
(
0, ni−τ − ℓi−τni−τ − ki−τ

)
(6.14)

pi = p′i + 1[p′i mod hi](hi − (p′i mod hi)) (6.15)
V [i] = (S[i], 0, . . . , 0)

P [i] =
(
A0V [i− τ] + AiV [i]

)
0:pi−1

. (6.16)

Decoding follows from solving a full-rank system of linear equations. Clearly, wi = pi.
Next, we establish that the proposed construction satisfies the lossless-delay and worst-case-

delay constraints.
Lemma 25. For any τ, t,K,L under Regime bτ , the Regime bτ -Code lossless-delay and worst-
case-delay constraints over the channel.

Proof. The lossless-delay constraint is met by sending S[i] in X[i].
The final τ frames are known to be of size 0. Consider any burst loss in X[i] for some

i ∈ [t− τ]. Then S[i+ τ] is received and used to compute V [i+ τ] and A1V [i+ τ]. Thus,(
A0V [i]

)
0:pi+τ

= P [i+ τ]−
(
A1V [i+ τ

)
0:pi+τ

.

Additionally, S[i− τ] is known and used to compute V [i− τ] and V [i− τ]A0. Suppose p′i parity
symbols of P [i] are received; for some J ⊆ [pi − 1] of size p′i, for all j ∈ J , Pj[i] is received and
used to compute (

A1V [i]
)
j
= Pj[i]−

(
A0V [i− τ]

)
j
.

Finally, k′
i = (ni − ⌈niℓi⌉ − p′i) frame symbols of S[i] are received. Recall by Equations 6.14

and 6.15 that
(pi − ⌈piℓi⌉) + ki(1− ℓi) + pi+τ ≥ ki.

By the MDS property, V [i] can be recovered, yielding S[i].

Finally, we show that the proposed construction is trivially close to having an optimal rate.
Lemma 26. Consider any τ, t,K,L under Regime bτ , N (OPT) be the number of symbols sent
under a rate-optimal offline code. Then the Regime bτ -Code’s rate is at least

(t∑
i=0

ki
)
/(N (OPT) + 2(t− τ)(τ − 1) +

t−τ∑
l=0

2(ql + hl+τ − 2)).

126

Proof sketch. Let C be the code created by
(
τ, t,K,Z,L, B, (w0, . . . , wt−τ)

)
-Split Code. By

Theorem 9, it sends at most 2(t− τ)(τ − 1) +
∑t−τ

l=0 (ql + hl+τ − 2) extra symbols compared to
an offline rate-optimal code. We iteratively adjust C so that each p

(C)
i = pi while increasing the

number of symbols sent for each time slot i by at most hi. This bounds the difference in the rates
of C and the Regime bτ -Code. A complete proof is included in Appendix 6.8.7.

6.4.3 Online optimal codes for Regime bτ+1

We introduce a systematic construction called “Regime bτ+1-Code.” During the ith time slot,
X[i] = (S[i], P [i]). Next, we will define P [i]. No parity symbols are sent for the first τ time
slots (i.e., pi = 0 for i < τ). For each i ∈ [t] \ [τ − 1], we define the number of parity symbols as

p′i = ki−τℓi−τ/(1− ℓi) (6.17)
pi = ⌈pi⌉+ 1[⌈pi⌉ mod hi](hi − ⌈pi mod hi⌉)). (6.18)

A [pi+ki−τ , ki−τ] systematic MDS code is constructed for S[i− τ], leading to pi parity symbols.
These parity symbols are evenly spread over hi transmitted packets of X[i]. The frame sym-
bols of S[i] are also evenly spread over these transmitted packets. Next, we show the proposed
construction satisfies the lossless-delay and worst-case-delay constraints.
Lemma 27. For any τ, t,K,L under Regime bτ+1, the Regime bτ+1-Code lossless-delay and
worst-case-delay constraints over the channel.

Proof. The lossless-delay constraint is satisfied by sending S[i] in X[i].
Consider any i ∈ [t]. If X[i] is lost in part of a burst, at least (1 − ℓi)ki frame symbols are

recovered in S[i] and at least (1 − ℓi+τ)pi+τ parity symbols are received τ time slots later. As
such, at least ki symbols are received of an the [pi+τ +ki, ki] MDS encoding of S[i]. By the MDS
property, these symbols to recover S[i].

Next, we show that the proposed construction sends at most (hi − 1) extra symbols per time
slot compared to a rate-optimal code (i.e., it is trivially close to being rate-optimal).
Lemma 28. Consider any τ, t,K,L under Regime bτ+1, and let N (opt) be the number of symbols
sent under a rate-optimal offline code. Then the Regime bτ+1-Code’s rate is at least

(t∑
i=0

ki
)
/(N (opt) +

t−τ∑
l=0

hi).

Proof. Recall that under Regime bτ+1, for any i ∈ [t − τ + 1], bi > τ . Any code construction
satisfying the lossless-delay and worst-case-delay constraints must recover from each S[i] within
τ time slots. So if a burst starts in time slot 0, S[0] is recovered by time slot τ . Therefore, the
code can recover from a burst of length (τ + 2) starting in time slot 0. If the code must recover
from a burst of length l ≥ (τ + 1) starting in time slot 0, then S[0 : l− τ − 1] must be recovered
by time slot (l − 1). Therefore, it is as if nothing was lost until time slot (l − τ). Therefore,
the code must be able to recover from a burst of length (l + 1) starting in time slot 0. Thus,
inductively, the code must be able to recover from a burst of length t starting in time slot 0.

127

This establishes that any code, C, that sends nC,i symbols during time slot i must be able to
recover when ℓi fraction of transmitted packets are dropped adversarially for any i ∈ [t]. The
total number of symbols lost is at least

∑t
i=0 ℓinC,i. At least

∑t
i=0 ki symbols must be received.

Therefore,
∑t

i=0(1− ℓi)nC,i ≥
∑t

i=0 ki.
Combining Equations 6.17, 6.18, and pi = 0 for i < τ , and ki = 0 for i > (t− τ) establishes

t∑
i=0

(1− ℓi)ni =
t∑

i=0

(1− ℓi)(ki + pi)

≤
τ−1∑
l=0

ki +
t∑

i=τ

hi + (1− ℓi)(ki + p′i)

=
τ−1∑
l=0

ki

+
t∑

i=τ

(hi + (1− ℓi)(ki + ki−τℓi−τ/(1− ℓi)))

≤
t−τ∑
i=0

(hi + ki) +
t∑

i=t−τ+1

ki

=
t−τ∑
i=0

(hi + ki).

This concludes the result.

The proof of Lemma 28 also establishes that Regime bτ+1 is not bursty. Specifically, there are
not bursts of losses across only a few consecutive time slots followed by guard spaces. Instead,
arbitrary losses occur during every single time slot.

6.5 Gap between online and offline codes

Recall from Theorem 4 that in the setting where an entire channel packet (i.e., all transmitted
packets) is lost or received, an online code exists that matches the optimal rate of offline codes.
However, this is no longer true when only some transmitted packets are lost. The key distinc-
tion is that the optimal choice for how much information the received symbols of a transmitted
packets should contain about the corresponding frame depends on the sizes of future frames.
Consequently, even when there are no resets, there is a gap between the optimal online rate and
offline rate for all but the three parameter regimes discussed in Section 6.4: Regime b1, Regime
bτ , and Regime bτ+1. We formalize this result next in Theorem 10
Theorem 10. For any τ and B outside of Regime b1, Regime bτ , and Regime bτ+1, the online-
optimal-rate is strictly less than offline-optimal-rate.

128

Proof sketch. We introduce two possible frame-size sequences. We show that there exists a non-
negligible ϵ > 0 so that in order to be within ϵ of the optimal offline rate on one sequence, an
online code’s rate must be lower than the optimal offline rate by at least ϵ on the second. A full
proof is included in Appendix 6.8.8.

6.6 Online approximately rate-optimal codes

We now present an online approximately rate-optimal construction. During the ith time slot,
an ML model provides side information, Oi = wi, to determine how to split the ith frame in
the building block construction (Section 6.2). If ℓi = 0 then X[i] is received, so Oi must be 0.
Otherwise, to ensure Oi can be used by the building block construction, we require it to be (a)
sufficiently large (i.e., setting ui = Oi/ℓi satisfies Equation 6.3), and (b) padded to be divisible
by qi. The construction is dubbed the “

(
τ, t,K,Z,L, B,W (O)

)
-Split ML Code.”

Our result requires a few terms. Let the outputs of the ML model over time slots 0, . . . , (t−τ)

be W (O) = O0, . . . , Ot−τ . For i = 0, . . . , (t− τ), let W (Opt)
i be the set of optimal values for p(IP)

i+τ

in Algorithm 4 with additional constraints that the variables for variables corresponding to earlier
time slots are set according to W (O) (i.e., for j ∈ [i − 1] p

(IP)
j+τ = W

(O)
j). For i ∈ [t − τ], the

regret of the outputs of the ML model compared to the optimal values is

Ri = min
w(Opt)∈W (Opt)

i

∣∣Oi − w(Opt)
∣∣,R[t] = (R0, . . . ,Rt) (6.19)

For an arbitrary frame-size sequence, K = (k0, . . . , kt), and feedback, L = (ℓ0, . . . , ℓt), B =
(b0, . . . , bt), and Z = (ζ0, . . . , ζt), (all chosen offline without access to W (O)), let R(opt) be the
offline optimal rate under the condition on feedback from Section 6.3 and R(on) be a random
variable (over the predictions of the ML model) reflecting the rate of the Split ML Code.
Theorem 11. Consider any τ, t,K,Z,L, B,W (O) and ϵ, δ, ϵ† ∈ (0, 1). Suppose for i ∈ [t] that
E[Ri] ≤ ϵki and t > log(1/δ)/(2ϵ2†). Then with probability at least (1− δ),

R(opt) −R(on) ≤ ϵ+
(t∑

i=0

ϵ† + 2τ + hi + qi − 4
)
/
(t∑

i=0

ki
)
. (6.20)

Proof. The proof is shown in Appendix 6.8.9.

Consider the example of a videoconferencing call discussed after Theorem 9. If the call is
sufficiently long, with probability (1− δ), R(on) is within (0.01 + ϵ+ 0.00048 · ϵ†) of optimal.

Finally, we note that removing the condition on feedback leads to increasing Equation 6.20
for each i ∈ {τ, . . . , t} were ℓi > ℓi−1 by at most

(
(ℓi − ℓi−1)

i∑
j=i−τ+1

kjℓj
)
/
(t∑

j=0

kj
)
.

129

6.7 Maximum transmittable unit
To match the conventions used by real-world multimedia streaming applications, we can add a
maximum transmittable unit (MTU) to the model. Specifically, we introduce a new parameter,
“M ,” wherein each transmitted packet is of size at most M .

One can modify
(
τ, t,K,Z,L, B,W

)
-Split Code to handle this extra requirement while send-

ing negligibly few extra symbols per time slot as follows: Consider the ith time slot, wherein
X(j)[i] is sent for j ∈ [ci − 1] for ci = hi,. Suppose any transmitted packet contains more than
M symbols. Let c′i be the smallest multiple of hi so that ⌈ni/c

′
i⌉ ≤ M . The symbols of X[i] are

spread over (c′i − 1) transmitted packets so that each transmitted packet contains the same ratio
of symbols of U [i], V [i], P [i] as were originally sent. This may require decreasing V [i] to equal
the nearest multiple of c′i, increasing U [i] by the same amount, and then padding U [i] until it is a
multiple of c′i. Similarly, P [i] will be padded until it is a multiple of c′i.

Next, we provide a simple example of the number of extra symbols needed to satisfy the
requirement of the M . A typical value of M may be 1500 bytes. Suppose

∣∣F∣∣≥ 8. Consider
videoconferencing at a standard 30 frames per second where the maximum possible size of a
video frame is 214 bytes. Then c′i is never more than 11. Thus, the amount of extra padding is at
most 2c′i ≤ 22 bytes per frame. The overhead per frame is at most 22 bytes in this example; for
a 2000 kbps videoconferencing call, this leads to an overhead of less than 0.27%.

6.8 Appendix

6.8.1 Additional notation
We define the set of possibilities for the received packets of X[i] as Yi. For a burst starting in
time slot j of length bj and any i ∈ {j, . . . , j + bj − 1}, we define the set of possible received
packets of X[j : i] as Yj:i = Yj × . . .× Yi.

To simplify the presentation of proofs, we also require that a burst starting in time slot i does
not end sooner than a burst starting before time slot i. Formally, we require (i + bi) ≥ (j + bj)
for all j ∈ Bi. This requirement holds without loss of generality by the satisfaction of the worst-
case-delay for any j ∈ Bi and any burst loss leading to Y [j : j+bj−1] ∈ Yj:j+bj−1. Specifically,
S[j : i− 1] are recovered by time slot (i+ τ − 1) and suffice to obtain X[j : i− 1]. The worst-
case-delay is still satisfied even though now the burst spans time slots i through (j + bj − 1).

Next, we formalize decoding in terms of the normalized Shannon Entropy (i.e., the Shannon
Entropy divided by the entropy of a random field element, log(

∣∣F∣∣)):
H(S[i]

∣∣S[0], . . . , S[i− 1], ki, Y [i]) = 0 (6.21)

H
(
S[i]
∣∣S[0], . . . , S[j − 1], Y [j], . . . , Y [i+ τ],

kj, . . . , ki+τ

)
= 0.

(6.22)

Equations 6.21 and 6.22 follow directly from the lossless-delay and worst-case-delay constraints,
respectively. The sizes of the frames are assumed to be known for loss recovery (from the
header), so they will be omitted from the entropy function henceforth. Let I(·) be the normalized
Mutual Information (MI): I(W ;Z) = H(W)−H(W

∣∣Z).
130

Finally, formally define the term to capture how frames are split into a component recovered
before its deadline and a component recovered at its deadline. For any i ∈ [t− τ], let wi =

max
Y [i]∈Yi

(
H(S[i]

∣∣S[0 : i− 1], X[i+ 1], . . . , X[i+ τ − 1],

Y [i], k0, . . . , ki+τ−1)
) (6.23)

6.8.2 Proof of Theorem 8

We start with an auxiliary Lemma.
Lemma 29. For any i ∈ [t − τ], all j ∈ Bi where

∑j+τ−1
r=j ζr = 0, and any l ∈ {j, . . . , i},

d(i,j,l) ≥ (1− ℓl)ul.

Proof. First, (1− ℓl)nl ≥ (1− ℓl)kl ≥ (1− ℓl)ul.
For l = j, combining Equation 6.2 with kl ≥ ul yields

d(i,j,l) ≥ (kl − ulℓl) ≥ (ul − ulℓl) = ul(1− ℓl) ≥ 0. (6.24)

For l ∈ {j + 1, . . . , i}, the case necessitates that j < i. First, by the inductive hypothesis on
(l − 1),

d(i,j,l−1) ≤ kl−1 − ul−1ℓl−1+

l−2∑
r=j

kr − urℓr − d(i,j,r)
(6.25)

l−1∑
r=j

d(i,j,r) ≤
l−1∑
r=j

kr − urℓr (6.26)

where Equation 6.26 follows from rearranging terms. Thus, d(i,j,l) ≥ (1− ℓl)ul by Equation 6.2
and the logic for l = j.

For any i ∈ [t], the lossless-delay is met as S[i] is in X[i].
Next, to show satisfaction of the worst-case-delay, we consider any burst starting in i ≤

[t−τ]. We need not consider i > (t−τ), as the final τ frames are known to be 0. If
∑i+τ−1

l=i+1 ζl > 0

then S[i : i+bi−1] need not be recovered, and the proof is concluded. Otherwise,
∑i+τ−1

l=i+1 ζl = 0.
We show in two steps that each S[i : i+bi−1] is recovered within τ timeslots. First, the received
symbols of Y [i : i+ bi− 1] and P [i+ bi : i+ τ − 1] are used to recover V [i : i+ bi− 1]. Second,
for j ∈ {i, . . . , i + bi − 1} where

∑j+τ−1
l=i+1 ζl = 0, U [j] is recovered in time slot (i + τ) with

P [i+ τ].

131

First, for j ∈ {i, . . . , i + τ − 1}, U [j − τ] is used to compute P (∗)[j] to determine P ′[j] =
(P [j]− P (∗)[j]) (by Equation 6.7). Recall from Equation 6.3 (and vl = (kl − ul))

i+τ−1∑
l=i+bi

p′[l] +

i+bi−1∑
l=i

d(j,i,l) ≥
i+bi−1∑
l=i

kl − ulℓl (6.27)

i+τ−1∑
l=i+bi

p′[l] +

i+bi−1∑
l=i

d(j,i,l) − (1− ℓl)ul ≥
i+bi−1∑
l=i

vl (6.28)

where for l ∈ {i, . . . , i + bi − 1} the (1 − ℓl)ul symbols of U [l] that are received are subtracted
out (valid by Lemma 29).

Without loss of generality, we pretend that each P [j] is padded with extra parity symbols to be
P (pad)[j] of size m but these extra (m − p[j]) symbols are all lost. Then each (V ∗[j], P (pad)[j])
comprises 2m symbols. The number of received parity symbols exceeds the number of miss-
ing frame symbols. Thus, combining Equation 6.28 with Lemma 1 L1 of [11] shows V [i]
is recovered by time slot (i + τ − 1) (e.g., by solving a system of linear equations). For
r = (i+ 1), . . . , (i+ bi − 1), by Lemma 29 and Equation 6.2,

r−1∑
l=i

d(i,i+bi−1,l) ≤
r−1∑
l=i

kl − ulℓl (6.29)

r−1∑
l=i

d(i,i+bi−1,l) − ul(1− ℓl) ≤
r−1∑
l=i

vl (6.30)

Combining Equations 6.28 and 6.30 shows

i+τ−1∑
l=i+bi

p′[l] +

i+bi−1∑
l=r

(d(j,i,l) − ul(1− ℓl) ≥
i+bi−1∑
l=r

vlℓl (6.31)

Combining Equation 6.31 with Lemma 1 L1 of [11], V [r] can be recovered by time slot (i+τ−1)
(e.g., by solving a system of linear equations). After finishing iteration r = (i + bi − 1), V [i :
i+ bi − 1] have been recovered.

For l = i, . . . , (i+ bi − 1) where
∑l+τ−1

r=i+1 ζr = 0, we now show that U [l] is recovered by time
slot (i+ τ). During time slot (l+ τ), V [l : l+ τ] are available and are used to compute P ′[l+ τ],
yielding P (∗)[l+τ] = (P [l+τ]−P ′[l+τ]). Then P (∗)[l+τ] comprises p[l+τ] ≥ U [l]ℓl linearly
independent linear equations of the symbols of U [l]. Combining P (∗)[l + τ], the (1 − ℓi)u[i]
received symbols of U [l], and the (m−u[l]) zeroes of U∗[l] (padding) provides at least m symbols
of the [2m,m] maximum distance separable linear code. Thus, U [l], is obtained by solving
a system of linear equations. Both V [l] and U [l] are recovered by time slot (l + τ) for any
l ∈ [i, . . . , i+ bi − 1], so the worst-case-delay constraint is satisfied.

6.8.3 Proof of Lemma 21
For i ∈ {t − τ + 1, . . . , t}, ki = 0. Hence, S[i] is known. Otherwise, consider i ∈ [t − τ]. The
lossless-delay constraint is satisfied by S[i] being sent uncoded in X[i]. If

∑i+τ−1
l=i+1 ζl > 0 then

132

S[i : i+bi−1] need not be recovered, and the proof is concluded. Otherwise,
∑i+τ−1

l=i+1 ζl = 0. We
will show for any burst starting in time slot i of length bi and any j ∈ {i, . . . , i+ bi−1} such that∑j+τ−1

l=i+1 ζl = 0 that the probability of correctly recovering S[i : j] within the worst-case-delay
using S[0 : i − 1], Y (C)[i : j + τ] is at least (1 − ϵ). Recall that if

∑j+τ−1
l=i+1 ζl > 0, S[j] need

not be recovered. It suffices to show that V [i : i + bi − 1] are correctly recovered by time slot
(i + τ − 1); afterwards, U [j] for j ∈ {i, . . . , i + bi − 1} is recovered identically to the proof of
Theorem 8 (respectively, not recovered if

∑j+τ−1
l=i+1 ζl > 0).

If
(
τ, t,K,Z,L, B,W

)
-Split Code were used, the only difference is the linear equations used

to generate the parity symbols. Recall from the proof of Theorem 8 the missing symbols of
V [i : i+bi−1] are obtained by solving a system of linear equations combining (a) received sym-
bols of S[0 : i− 1], (b) received symbols of V [i : i + bi − 1], and (c) a set of L =

∑i+bi−1
j=i ℓjvj

parity symbols. The first two quantities are available to
(
τ, t,K,Z,L, B

)
-RandomCode(ϵ). We

will show that set of l corresponding parity symbols for
(
τ, t,K,Z,L, B

)
-RandomCode(ϵ) can

be used to recover the l missing symbols of V [i : i + bi − 1]. Without loss of generality,
when

(
τ, t,K,Z,L, B,W

)
-Split Code is instead used, L = {r1, . . . , rl} where rj is used as a

pivot column in Gaussian Elimination to recover the jth missing symbol of V [i + i + bi − 1].
Suppose under

(
τ, t,K,Z,L, B

)
-RandomCode(ϵ) Gaussian Elimination is used and sequentially

r1, . . . , rl is chosen as a pivot column to recover the next missing symbol. We bound the proba-
bility of failing to recover at least one symbol. To fail, the pivot column would need to be 0 in the
position corresponding to the missing symbol. For each symbol, the probability of failure (i.e.,
that it cannot be used) is the same as the probability that it is 0 which occurs with probability at
most 1/

∣∣F∣∣. Applying a union bound shows that the probability of failing for at least one symbol
is at most l/

∣∣F∣∣. Noting that l ≤ bim ≤ τm and
∣∣F∣∣≥ (τm/ϵ) leads to a probability of failing of

at most ϵ.

6.8.4 Proof of Lemma 22
Throughout Section 6.8.4, we assume for all i ∈ [t] that bi ≤ τ . We begin by proving the result
when there are no resets (i.e.,

∑t
i=0 ζi = 0). Let code construction, C, be any offline construction

that satisfies the lossless-delay and worst-case-delay constraints. Under C, X(C)[i] is sent during
time slot i ∈ [t] of size nC,i comprising (cC,i+1) transmitted packets. Then Y (C)[i] is the vector of
received channel packets, and the total number of received symbols is nC,i,Y (C) . Appendix 6.8.4
shows some preliminary results for the proof. Appendix 6.8.4 incorporates relaxations to C and
verifies their correctness. Appendix 6.8.4 proves additional properties due to the relaxations.
Finally, Appendix 6.8.4 ties the results together to finish the proof

Proof preliminaries

We begin with defining a few terms for time slot i ∈ [t− τ]. Will use the following terms:

w
(C)
i = max

Y (C)[i]∈Yi

(
H(S[i]

∣∣S[0 : i− 1],

Y (C)[i], X(C)[i+ 1 : i+ τ − 1])
) (6.32)

p
(C)
i = ni − ki. (6.33)

133

Lemma 30. For any i ∈ [t− τ] such that Bi ̸= ∅, ℓi > 0 the number of symbols sent during the
(i+ τ)th time slot is at least

nC,i+τ ≥
⌈
w

(C)
i + ki+τ

⌉
.

Proof. At a high level, by Equation 6.32, at least w(C)[i] symbols’ worth of information are
needed to recover S[i] that are unavailable prior to time slot (i + τ). They must be recovered
during time slot (i + τ) due to the worst-case-delay, leading to at least ⌈w(C)[i]⌉ symbols being
sent in X(C)[i + τ]. The lossless-delay constraint for S[i + τ] necessitates an additional ki+τ

symbols be sent in X(C)[i+ τ].
By Equation 6.32, there is a Y (C)[i] ∈ Yi so that(

H(S[i]
∣∣S[0 : i− 1], Y (C)[i], X(C)[i+ 1 : i+ τ − 1])

)
= w

(C)
i . (6.34)

Recall that S[0 : i − 1], Y (C)[i : i + τ − 1] are available by time slot (i + τ − 1). By
Equation 6.22 and the chain rule,

H(S[i]
∣∣S[0 : i− 1], Y (C)[i], X(C)[i+ 1 : i+ τ]) = 0. (6.35)

Thus for some j ∈ Bi and Y (C)[j : j + bj − 1] ∈ Yj:j+bj−1,

nC,i+τ ≥ H(X(C)[i+ τ]) ≥ (6.36)

H(X(C)[i+ τ]
∣∣S[0 : i− 1], Y (C)[i : j + bj − 1], X(C)[j + bj : i+ τ − 1]) = (6.37)

H(X(C)[i+ τ]
∣∣S[0 : i− 1], Y (C)[i : j + bj − 1], X(C)[j + bj : i+ τ − 1])+

H(S[i]
∣∣S[0 : i− 1], Y (C)[i : j + bj − 1], X(C)[j + bj : i+ τ]) =

(6.38)

H(S[i], X(C)[i+ τ]
∣∣S[0 : i− 1], Y (C)[i : j + bj − 1], X(C)[j + bj : i+ τ − 1]) ≥ (6.39)

H(S[i]
∣∣S[0 : i− 1], Y (C)[i : j + bj − 1], X(C)[j + bj : i+ τ − 1])+

H(X(C)[i+ τ]
∣∣S[0 : i], Y (C)[i : j + bj − 1], X(C)[j + bj : i+ τ − 1]) ≥

(6.40)

H(S[i]
∣∣S[0 : i− 1], Y (C)[i], X(C)[i+ 1 : i+ τ − 1])+

H(X(C)[i+ τ]
∣∣S[0 : i], X(C)[i+ 1 : i+ τ − 1]) ≥

(6.41)

w
(C)
i +H(X(C)[i+ τ]

∣∣S[0 : i], X(C)[i : i+ τ − 1]) ≥ (6.42)

w
(C)
i +H(X(C)[i+ τ]

∣∣S[0 : i+ τ − 1]) ≥ (6.43)

w
(C)
i + ki+τ (6.44)

Equation 6.37 comes from conditioning reducing entropy; in Equation 6.38, the extra added term
is 0 due to Equation 6.35; Equation 6.39 comes from applying the chain rule to Equation 6.38;
Equation 6.40 comes from applying the chain rule to Equation 6.39; Equation 6.41 comes from
conditioning reducing entropy; Equation 6.42 comes from conditioning reducing entropy Equa-
tion 6.34; Equation 6.43 comes from X(C)[i : i+ τ − 1] being a function of S[0 : i+ τ − 1] and
conditioning reducing entropy; Equation 6.44 comes from Equation 6.21. Finally, combining
Equations 6.36 and 6.44 establishes the result.

134

Next, we bound the amount of information the parity symbols of each transmitted packet
provide about earlier frames.
Lemma 31. For any i ∈ [t], j ∈ [i − 1], the amount of information X(C)[i] can provide about
dropped symbols of earlier frames is bounded by

I(X(C)[i];S[j : min(j + bj, i)− 1]
∣∣S[0 : j − 1])

≤ (nC,i − ki)

Proof.

I(X(C)[i];S[j : min(j + bj, i)− 1]
∣∣S[0 : j − 1]) = (6.45)

H(X(C)[i]
∣∣S[0 : j − 1])−

H(X(C)[i]
∣∣min(j + bj, i)− 1) ≤

(6.46)

H(X(C)[i]
∣∣S[0 : j − 1])−H(X(C)[i]

∣∣S[0 : i− 1]) ≤ (6.47)
(nC,i − ki) (6.48)

where Equation 6.46 comes from the definition of Mutual Information; Equation 6.47 comes
from conditioning reducing information; Equation 6.48 comes from X(C)[i] having at most nC,i

symbols and Equation 6.21.

Lemma 31 will later be used to show for a burst starting in time slot j how much redundancy
transmitted packets received after the burst can provide to help in loss recovery.

We show for any i ∈ [t− τ] there is a burst starting in time slot j ∈ Bi such that all symbols
of S[j : i− 1] and all but w(C)

i symbols of S[i] must be recovered by time slot (i+ τ − 1).
Lemma 32. Consider any i ∈ [t− τ] and any j ∈ Bi. Then

min
Y (C)[j:j+bj−1]∈Yj:j+bj−1

(
I(S[j : i];Y (C)[j : j + τ − 1]

∣∣
S[0 : j − 1])

)
≤

i∑
l=j

kl − w
(C)
l .

Proof.

H(S[j : i]
∣∣S[0 : j − 1], Y (C)[j : j + τ − 1]) = (6.49)

i∑
l=j

H(S[l]
∣∣S[0 : l − 1], Y (C)[j : j + τ − 1]) ≥ (6.50)

i∑
l=j

H(S[l]
∣∣S[0 : l − 1], Y (C)[l : l + τ − 1]) ≥ (6.51)

i∑
l=j

H(S[l]
∣∣S[0 : l − 1], Y (C)[l], X(C)[l + 1 : l + τ − 1]) ≥ (6.52)

i∑
l=j

w
(C)
l . (6.53)

135

where Equation 6.50 follows from the chain rule; Equation 6.51 comes from conditioning reduc-
ing entropy; Equation 6.52 comes from conditioning reducing entropy; Equation 6.53 follows
from Equation 6.32.

We note that

I(S[j : i];Y (C)[j : j + τ − 1]
∣∣S[0 : j − 1]) = (6.54)

H(S[j : i]
∣∣S[0 : j − 1])−

H(S[j : i]
∣∣S[0 : j − 1], Y (C)[j : j + τ − 1])

(6.55)

≥
i∑

l=j

kl − w
(C)
l (6.56)

where Equation 6.55 follows from the definition of Mutual Information; Equation 6.56 follows
from the sizes of S[j : i]/independence of frames and Equation 6.53.

We rewrite the worst-case-delay constraint in terms of mutual information as follows.
Lemma 33. Consider any i ∈ [t− τ] and any j ∈ Bi. Then

min
Y (C)[j:j+bj−1]∈Yj:j+bj−1

(
I(S[j : i];Y (C)[j : i+ τ]

∣∣
S[0 : j − 1])

)
=

i∑
l=j

kl.

Proof.

I(S[j : i];Y (C)[j : i+ τ]
∣∣S[0 : j − 1]) = (6.57)

H(S[j : i]
∣∣S[0 : j − 1])−

H(S[j : i],
∣∣S[0 : j − 1], Y (C)[j : i+ τ]) =

(6.58)

i∑
l=j

kl −
i∑

l=j

H(S[l],
∣∣S[0 : j − 1], Y (C)[l : l + τ]) = (6.59)

i∑
l=j

kl. (6.60)

Where Equation 6.58 follows from the definition of mutual information; Equation 6.59 follows
from independence of frames and the fact that the Equation 6.22 shows for any l ∈ {j, . . . , i},
H(S[l],

∣∣S[0 : j − 1], Y (C)[l : l + τ]) = 0, leading to Equation 6.60.

Relaxations

We will use the following relaxations which may increase (but never decrease) the mutual infor-
mation between received symbols under C and missing information. Consider any i ∈ [t − τ]
and any j ∈ Bi.

136

Relaxation 1.

min
Y (C)[j:j+bj−1]∈Yj:j+bj−1

(
I(S[j : i];Y (C)[i]

∣∣
S[0 : j − 1], Y (C)[j : i− 1])

)
=

min
(
nC,i,Y (C) , ki − w

(C)
i +

i−1∑
r=j

kr − w(C)
r −

I(S[j : r];Y (C)[r]
∣∣S[0 : j − 1], Y (C)[j : r − 1])

)
.

Relaxation 2. For any l ∈ {j + bj, . . . , j + τ − 1},

min
Y (C)[j:j+bj−1]∈Yj:j+bj−1

(
I(S[j : i];X(C)[l]

∣∣
S[0 : j − 1], Y (C)[j : l − 1])

)
=

min
(
nC,l − kl,

i∑
r=j

kr − w(C)
r −

l−1∑
r=j

I(S[j : min(r, i)];Y (C)[r]
∣∣S[0 : j − 1], Y (C)[j : r − 1])

)
.

Lemma 34. Relaxations 1 and 2 do not cause C to send extra symbols or violate any constraints.

Proof. Relaxation 1 . By the sizes of transmitted packets and conditioning reducing entropy, we
know I(S[j : i];Y (C)[i]

∣∣S[0 : j − 1], Y (C)[j : i− 1]) ≤ H(Y (C)[i]) ≤ nC,i,Y (C) (i.e., at most the
size of Y (C)[i]). We note

i∑
l=j

I(S[j : i];Y (C)[l]
∣∣S[0 : l − 1], Y (C)[j : l − 1]) = (6.61)

i∑
l=j

I(S[j : l];Y (C)[l]
∣∣S[0 : l − 1], Y (C)[j : l − 1]) = (6.62)

I(S[j : i];Y (C)[j : i]
∣∣S[0 : j − 1]) ≤ (6.63)

I(S[j : i];Y (C)[j : j + τ − 1]
∣∣S[0 : j − 1]) ≤ (6.64)(

i∑
l=j

kl − w
(C)
i

)
(6.65)

where Equation 6.62 comes from the independence of S[l + 1 : i] from S[0 : l], Y (C)[j : l];
Equation 6.63 holds because applying the chain rule for mutual information to it yields Equa-
tion 6.61; Equation 6.64 comes from (j + τ − 1) ≥ i, the chain rule for mutual information,
and non-negativity of mutual information; Equation 6.65 comes from Lemma 32. Combining

137

Equation 6.61 with Equation 6.65 establishes that the relaxation only maintains or increases the
mutual information.
Relaxation 2 . By Lemma 31, I(S[j : i];X(C)[l]

∣∣S[0 : j − 1], Y (C)[j : l − 1]) is at most
(nC,l − kl) = p

(C)
l . Also,

l∑
r=j

(
I(S[j : i];Y (C)[r]

∣∣S[0 : j − 1], Y (C)[j : r − 1]) = (6.66)

i∑
r=j

(
I(S[j : r];Y (C)[r]

∣∣S[0 : j − 1], Y (C)[j : r − 1])+

l∑
r=i+1

(
I(S[j : i];Y (C)[r]

∣∣S[0 : j − 1], Y (C)[j : r − 1]) =

(6.67)

I(S[j : i];Y (C)[j : l]
∣∣S[0 : j − 1]) ≤ (6.68)

I(S[j : i];Y (C)[j : j + τ − 1]
∣∣S[0 : j − 1]) ≤ (6.69)(

i∑
r=j

kr − w(C)
r

)
(6.70)

where Equation 6.67 comes from the independence of S[l + 1 : i] from S[0 : l], Y (C)[j : l];
Equation 6.68 comes from the chain rule for mutual information; Equation 6.69 comes from the
chain rule of mutual information, the fact that l ≤ (j + τ − 1), and the non-negativity of mutual
information. Equation 6.70 comes from Lemma 32.

The relaxations lead to a mutual information that depends on the sizes of frames and trans-
mitted packets, not the symbols that are sent under C themselves.
Relaxation 3. For any i ∈ [t], (cC,i + 1) = nC,i.
Lemma 35. Relaxation 3 does not cause C to send extra symbols or violate any constraints.

Proof. If there are no losses, this change is irrelevant. Otherwise, all considered bounds (under
the relaxation) when X(C)[i] experiences loss apply to any choice for packetization. The only
way that packetization effects the bounds is if it changes the total number of received symbols,
with the greedy choice being to receive as many symbols as possible for each transmitted packet.

Relaxation 3 has no change for i > (t− τ). We apply the change for i = 0, . . . , (t− τ); this
does not alter the total number of symbols sent (or even the total number sent during any time
slot).

Next, we show that this change does not effect decoding. When ℓinC,i is an integer, then the
minimum possible number of symbols lost over X(C)[i] is ℓinC,i and that is what is lost in the
worst case.

Otherwise, exactly ⌈ℓinC,i⌉ symbols are lost in the worst case. For any (cC,i + 1) transmitted
packets sent in X(C)[i], the largest l = ⌈ℓi(cC,i + 1)⌉ could be lost, which contain in total at
least ⌈nC,il/(cC,i + 1)⌉ ≥ ⌈ℓinC,i⌉ symbols by the pigeonhole principle and transmitted packets

138

containing an integral number of symbols. Thus, one symbol per transmitted packet leads to as
many symbols being received as possible, which maximizes their utility.

Relaxation 4 . ∀l ∈ [t], I(S[l];X(C)[l]
∣∣S[0 : l − 1]) = kl whenever nC,l ≥ kl.

Relaxation 5 . ∀l ∈ {τ, . . . , t},

I(S[l − τ];X(C)[l]
∣∣S[0 : l − τ − 1], Y (C)[l − τ : l − 1]) =

min(p
(C)
l ,H(S[l − τ]

∣∣S[0 : l − τ − 1], Y (C)[l − τ : l − 1])

This only increases the mutual information by Lemma 31.

Useful identities of relaxed code

Corollary 7. Adjusting C so that p(C)
j = 0 for j < τ and for any i ∈ [t− τ],

p
(C)
i+τ = w

(C)
i (6.71)

leads to at most 2(t− τ)(τ − 1) extra symbols being sent.

Proof. By Equation 6.21, for all i ∈ [t], nC,i ≥ ki. For i ∈ [t], we will adjust nC,i but maintain
nC,i ≥ ki. This ensures that the lossless-delay constraint is met under relaxation 4.

When a burst of length b0 starts in X(C)[0], it is recovered by time slot (τ + b0 − 1) then
S[0 : τ + b0 − 1] are available by the same time slot (τ + b0 − 1) by Lemma 33 and relaxation 4.
In addition, nC,l ≥ kl for l ∈ [b0 − 1] by Equation 6.21, so a worst case burst drops at least klℓl
symbols of X(C)[l]. We apply relaxations 1-5.

For l ∈ [τ − 1] we move all but kl symbols of X(C)[l] to X(C)[τ]. If X(C)[τ] is received,
this move only improves loss recovery. If X(C)[τ] is involved in a loss starting during time
slot τ , S[0 : τ − 1] are available, so the move does not harm loss recovery. If a burst starts
in time slot j ∈ Bτ then the move only improves loss recovery; if an extra symbol is lost in
X(C)[τ] due to rounding, this can only occur if (a) at least one extra symbol would have been
lost in X(C)[j : τ − 1] anyway or (b) ℓτ < ℓj , in which case moving more symbols of X(C)[τ]
reduces the number lost. Given relaxation 1, the change only improves loss recovery. If a burst
starts in X(C)[0], the changes have only improved loss recovery because strictly more symbols
are received; for j ∈ [b0], any ℓjkj symbols that are lost could have been lost before and now
additional symbols are received. This also updates w(C)

0 = ℓ0k0 but does not change w(C)
j for any

j > 0.
For z = 0, . . . , b0 − 1, we move all but (kτ+z + ℓzkz) symbols of X(C)[τ + z] to X(C)[τ +

z + 1]. If a burst starts during or before time slot z then this does not change which symbols
are received.2. So loss recovery is unchanged for S[0 : z − 1], S[z + 1 : z + bz − 1]. By
Relaxation 5, the worst-case-delay is satisfied for S[z]. If a burst starts during time slot (z + 1)
then S[z] is recovered before the burst. If bz = τ then the change causes strictly more symbols
to be received and otherwise the exact same symbols are received. Either way, loss recovery will

2Except for another burst that may perhaps start in time slot (z + τ + 1), but for that symbols sent before the
burst are useless for loss recovery

139

proceed unchanged for S[z + 1 : z + b0]. If a burst starts strictly after time slot (z + 1) during
time slot l, then by relaxations 1 and 2 all received symbols of X(C)[l : l + τ − 1], including
the received symbols of X(C)[z + τ : z + τ + 1], are maximally useful for loss recovery. The
only way fewer symbols are available compared to before the change is if the burst starts by time
slot (z + τ) and is of length at least 2 time slots and extra losses occur due to rounding for how
many transmitted packets are lost in partial bursts. So we send two extra symbols in X(C)[r] for
r ∈ {z + τ + 2, . . . , z + 2τ} so that each provides one symbol’s worth of information about
S[r − τ] under relaxation 5.

The changes may have increased w
(C)
b0

but not its loss recovery (relaxation 5). They also have
not increased w

(C)
j for j > b0.

We prove by induction that we can alter C to obey Equation 6.71 at the cost of 2(τ − 1)
symbols per time slot; there is no cost for the final (τ + 1) time slots where the frames are each
of size 0.

Suppose for the inductive hypothesis that

∀j ∈ [i∗], p
(C)
j+τ = w

(C)
j (6.72)

and loss recovery for S[0 : i∗] within τ time slots is guaranteed . The inductive hypothesis has
been shown to hold for i∗ = (b0 − 1).

Now we apply induction for i = (i∗ + 1). We know by Lemma 30 that p(C)
i+τ ≥ w

(C)
i before

we altered C. During earlier time slot i′ < i, having moved symbols to X(C)[i′ + τ] could only
decrease w

(C)
i . Only moving symbols from X(C)[i + τ − 1] to X(C)[i + τ] may have increased

w
(C)
i , but doing so would maintain the inequality p

(C)
i+τ ≥ w

(C)
i . Recall that by the IH S[0 : i− 1]

are still recovered by time slot (i+ τ − 1). We set

w
(C)
i = max

Y (C)[i:i+bi−1]∈Yi:i+bi−1

(
H(S[i]

∣∣S[0 : i− 1], Y (C)[i : i+ bi − 1], X(C)[i+ bi : i+ τ − 1])
)

(6.73)
under the relaxations, which can only increase w

(C)
i , ensuring S[0 : i − 1] are still recovered by

time slot (i + τ − 1). This involves letting C potentially remove information about S[i] from
X(C)[i+ 1 : i+ τ − 1]. We will show that loss recovery is still accomplished despite the change
under the considered relaxations.

For any burst starting in time slot j ∈ Bi where j < i the change only increases loss recovery
capabilities of S[j : i−1] by time slot (i+τ−1) under our relaxations, so they are still recovered
by then. To show loss recovery for S[i : j+bj−1], it suffices to show loss recovery for the worst-
case burst starting in time slot i, as (j + bj) ≤ (i+ bi). Under such a burst, all received symbols
of Y (C)[i : i + τ − 1] are maximally useful under relaxations 1 and 2. Recall that by “worst-
case” we just mean “drops as many symbols as possible” due to relaxation 1. Before resetting
w

(C)
i , S[i] was recovered by time slot (i + τ) and w

(C)
i symbols must have been recovered at

time slot (i + τ), so p
(C)
i+τ ≥ w

(C)
i . After the change, all but w(C)

i symbols of S[i] are recovered
before time slot (i + τ). Then S[i] is still recoverable by time slot (i + τ) by relaxation 5. Now
we can condition on S[0 : i] being recovered. We want to show worst-case loss recovery for
S[i+ 1 : i+ bi − 1].

140

Before the change, for l ∈ {i, . . . , i+ bi − 1}

I(S[i : l];Y (C)[i : i+ bi − 1], X(C)[i+ bi : l + τ]
∣∣S[0 : i− 1]) =

l∑
r=i

kr

due to loss recovery under the IH. Recall

I(S[i : l];Y (C)[i : i+ bi − 1], X(C)[i+ bi : l + τ]
∣∣S[0 : i− 1]) = (6.74)

I(S[i];Y (C)[i : i+ bi − 1], X(C)[i+ bi : i+ τ]
∣∣S[0 : i− 1])+ (6.75)

I(S[i+ 1 : l];Y (C)[i+ 1 : i+ bi − 1], X(C)[i+ bi : l + τ]
∣∣S[0 : i]) (6.76)

where we have already shown Equation 6.75 remains ki after the change.
Based on Equation 6.73 and Lemma 31 and under the relaxations,

I(S[i+ 1 : l];Y (C)[i+ 1 : i+ bi − 1], X(C)[i+ bi : i+ τ − 1]
∣∣S[0 : i])

is not decreased (i.e., removing information about S[i] from Y (C)[i + 1 : i + τ − 1] does not
reduce the above expression). Both before and after the change, X(C)[i + τ] provided w

(C)
i

symbols worth of information about S[i]. The change does not effect

I(S[i+ 1 : l];X(C)[i+ τ : l + τ : i+ bi − 1]
∣∣S[0 : i])

So there is still enough information to ensure Y (C)[i + 1 : i + bi − 1] are recoverable. So loss
recovery for S[i + 1 : i + bi − 1] by their deadlines is still satisfied for this burst; For any burst
starting in time slot j > i, loss recovery for S[j : j + bj − 1] is similarly not affected.

Let δi = (p
(C)
i+τ −w

(C)
i) We now move δ symbols from X(C)[i+ τ] to X(C)[i+ τ + 1], which

increases p(C)
i+τ+1 by δ and decreases p(C)

i+τ by δ.3

Loss recovery for S[0 : i − 1] is the same because the changes occur after the deadline of
(i−1+τ). Before the change by Equation 6.73 for any j ∈ Bi and Y (C)[j : j+bj−1] ∈ Yj:j+bj−1,
H(S[i]

∣∣Y (C)[j : i + τ − 1], S[0 : j − 1]) ≤ w
(C)
i . After the change, the p

(C)
i+τ = w

(C)
i symbols of

X(C)[i+ τ] are still available to be used to recover S[i]. So S[i] is recovered by time slot (i+ τ)
(relaxation 5).

For j = (i+1), the total amount of information available to recover S[j] by time slot (j+ τ)
from received symbols has perhaps increased but not decreased from our alterations to C. It is
possible that w(C)

j has increased as a result; however, the at most δ symbols of X(C)[i + τ] that
would have been used to recover S[j] are now available in X(C)[j + τ] to recover S[j]. So S[j]

is still recovered within τ time slots, and p
(C)
j+τ ≥ w

(C)
j .

For a burst starting in j ∈ Bi ∪ {i+ 1}, or any other burst that ends during or before (i+ τ),
the total number of symbols received over X(C)[i+ τ : i+ τ +1] is not reduced, so loss recovery
of S[i + 1 : j + bj − 1] is not negatively impacted. Either X(C)[i + τ : i + τ + 1] are received
(no change) or the information about lost packets is not lowered by the relaxations. For a burst

3We do not move the extra symbols we sent due to rounding issues (if we needed to move these to move δ
symbols, then these symbols were never needed and are simply not sent).

141

starting during or after (i+ τ + 1), the symbols of X[i+ τ] would not be used anyway because
S[0 : i + τ] are available. For bursts that include X[i + τ : i + τ + 1]—therefore, starting no
sooner than X[i + 2] and also ensuring relaxation 1 applies—up to 2 extra symbols may be lost
due to a rounding issue of ⌈ℓlnC,l⌉ symbols being lost in X[l] for l ∈ {i+2, i+ τ +1}. This can
be mitigated by sending two extra symbols in X[r + τ] for r ∈ {i + 2, . . . , i + τ} that is used
to recover S[r] (relaxation 5) and increasing w

(C)
r by two (up to a max of kr). in other words, all

information about up to two symbols of S[r] are removed from the transmission, C pretends kr
was two symbols smaller, and the extra two symbols are sent via replication.

Iterating over i∗ = b0, . . . , (t− τ − 1), we add at most 2(τ − 1) symbols for each value of i∗.
Finally, we note how the proof changes without the condition on feedback. For each i ∈ [t−τ]

where ℓi+τ < ℓi+τ+1, the number of extra symbols sent associated with step i will increase by up
to (ℓi+τ+1−ℓi+τ) times the number of parity symbols moved from X(C)[i+τ] to X(C)[i+τ +1].
Consider a relaxed code, C, that was originally rate optimal. If more than

∑i+τ
j=i+1 kjℓj parity

symbols are moved, instead they can be deleted, and for j ∈ {i + 1, . . . , i + τ}, w(C)
j could be

set to ℓjkj and an extra w(C)
j parity symbols be sent in X(C)[j+ τ]. Thus, the number of symbols

moved during time slot i is at most
∑i+τ

j=i+1 kjℓj . so the increase during iteration i is at most

(ℓi+τ+1 − ℓi+τ)
i+τ∑

j=i+1

kjℓj

Corollary 8. For any i ∈ [t−τ], any j ∈ Bi, and any construction C adjusted under Corollary 7

min
Y (C)[j:j+bj−1]∈Yj:j+bj−1

(
I(S[j : i];Y (C)[j : j + τ − 1]

∣∣
S[0 : j − 1])

)
=

i∑
l=j

kl − w
(C)
l .

Proof. Follows from Lemma 32, Lemma 33, Corollary 7, and Equation 6.32.

Finishing the proof with no resets

Let C be an offline rate-optimal construction under the relaxations of Appendix 6.8.4. Recall
that without loss of generality, for all i ∈ [t− τ] then w

(C)
i = p

(C)
i+τ by Corollary 7. This causes C

to send an extra at most 2(t− τ)(τ − 1) symbols compared to a rate-optimal code.
We will show that C satisfies the constraints where p

(IP)
i+τ = w

(C)
i for all i ∈ [t − τ]. So the

objective function is at most the number of symbols sent by C; this in turn is at most

2(t− τ)(τ + 1)

more than a rate-optimal code. Essentially, we show that Constraint 4 is analogous to the worst-
case-delay constraint for a burst starting in time slot i ∈ [t−τ] where (a) for j ∈ {i, . . . , i+bi−1},
w

(C)
j symbols of S[j] are recovered during time slot (j+ τ), (b) di,j reflects the number of useful

142

symbols of Y (C)[j] for recovering the remaining symbols of S[i : j] not recovered in (a), and (c)
for all l ∈ {i+ bi, . . . , i+ τ − 1}, at most p(IP)

l symbols of X(C)[l] are useful for recovering the
remaining symbols of S[i : i+ bi − 1] not recovered in (a). Ultimately, because prove C satisfies
the constraints, the value of the objective function of the algorithm is smaller than the number of
symbols sent by C which is at most

2(t− τ)(τ + 1)

more than the that of a rate-optimal offline code.
We begin by noting that Constraint 1 holds by the proof of Corollary 7. By definition, w(C)

i ≤
ℓiki, so Constraint 5 is satisfied. Also, Constraint 2 holds by Equation 6.33 and Equation 6.21.

By Corollary 8, for any burst starting in i ∈ [t− τ] and j ∈ {i, . . . , i+ bi − 1}

min
Y (C)[i:i+bi−1]∈Yi:i+bi−1

(
I
(
S[i : j];

Y (C)[i : i+ τ − 1]
∣∣S[0 : i− 1])

)
=

j∑
l=i

kl − w
(C)
l .

(6.77)

Consequently,

I
(
S[i : i+ bi − 1];Y (C)[i : i+ τ − 1]

∣∣S[0 : i− 1])
)
= (6.78)

I
(
S[i : i+ bi − 1];Y (C)[i : i+ bi − 1]

∣∣S[0 : i− 1])+

I
(
S[i : i+ bi − 1];Y (C)[i+ bi : i+ τ − 1]

∣∣
S[0 : i− 1], Y (C)[i : i+ bi − 1])

)
≤

(6.79)

i+bi−1∑
l=i

min
(
(1− ℓl)(p

(IP)
l + kl), kl − w

(C)
l +

l−1∑
r=i

kr − w(C)
r −

I(S[i : r];Y (C)[r]
∣∣S[0 : i− 1], Y (C)[i : r − 1])

)
+

i+τ∑
l=i+bi

min
(
p
(C)
i ,

j∑
r=i

kr − w(C)
r −

l−1∑
r=i

I(S[i : j];Y (C)[r]
∣∣S[0 : i− 1], Y (C)[i : r − 1])

)
≤

(6.80)

i+bi−1∑
l=i

min
(
(1− ℓl)(p

(IP)
l + kl), kl − w

(C)
l +

l−1∑
r=i

kr − w(C)
r −

I(S[i : r];Y (C)[r]
∣∣S[0 : i− 1], Y (C)[i : r − 1])

)
+

+
i+τ∑

l=i+bi

p
(C)
i

(6.81)

where Equation 6.79 follows from the chain rule for MI; Equations 6.80 follows from relaxations
1 and 2 as well as Lemma 31 and Corollary 7; Equation 6.81 follows from the definition of the
minimum function.

143

Therefore, by Equation 6.77, for any i ∈ [t− τ], j ∈ {i, . . . , i + bi − 1} Constraints 3 and 4
are satisfied.

By the minimization of Algorithm 4, the values for p(IP)
i lead to

t−τ∑
i=0

w
(C)
i+τ ≥

t∑
i=0

p
(IP)
i+τ

where the number of symbols sent by a rate-optimal code is by Corollary 7 is at most

−2(t− τ)(τ − 1) +
t−τ∑
i=0

w
(C)
i+τ ≥ −2(t− τ)(τ − 1) +

t∑
i=0

p
(IP)
i+τ .

Extending to resets

At a high level, we prove the result by induction on the number of resets. The base case of no
resets has already been shown. If the first reset occurs in time slot r, we show that the objective
function is only 2(r)(τ − 1) more than the number of symbols sent under a rate optimal code by
time slot r. We then apply the inductive hypothesis to prove closeness to optimality for the rest
of the transmission.

We prove by induction on ζ =
∑t

l=0 ζl. The base case of ζ = 0 has already been proven.
For the inductive step, we prove the result for ζ assuming that it is been proven for all j ∈

{0, . . . , ζ − 1}. Let r be the smallest value so that ζr = 1. If r < τ then only the lossless-delay
constraint is imposed for S[0 : r − 1] so

∑r−1
l=0 kl symbols are sent and no parity need to be

sent. Otherwise, S[r − τ : r − 1] need not be recovered under lossy conditions. By considering
kr−τ , . . . , kr−1 to all be 0, the output of the algorithm through time slot (r − 1) can be viewed
as how many parity symbols to send per time slot for a code that sends at most 2r(τ − 1) more
symbols than a rate-optimal code for the transmission of S[0 : r − 1] after appending (τ + 1)
time slots with size 0 frames. Then an extra

∑r−1
l=r−τ kl symbols must also be sent under C for

the lossless-delay constraint (as with the offline code).
Either way, for time slot r and above, we can view Algorithm 4 as being applied a second time

on the remainder of the transmission given p
(IP)
l = 0 for l ∈ {r, . . . , r+τ−1} and the worst-case-

delay is not imposed for S[r −min(r, τ) : r − 1]. Then
∑t

l=r ζl = (ζ − 1), so the correctness of
Algorithm 4 holds by the inductive hypothesis. We note at most (2r(τ−1)+2(t−r−τ)(τ−1)) =
2(t− τ)(τ − 1) extra symbols are sent overall compared to a rate-optimal offline code.

6.8.5 Proof of Theorem 9
At a high level, the constraints of the algorithm ensure that Equation 6.3 is satisfied. For i ∈
[t − τ], the sizes of ui and pi+τ are then slightly increased to ensure they are divisible by qi and
hi+τ respectively, leading to the slightly lower rate than the upper bound from Lemma 22.

Equation 6.3 need only be satisfied with the correct values of ui and ki in it and Equation 6.2
(due to the structure of the proof of Theorem 8). By the minimization and Constraints 3, 4
and Equations 6.2 (and ui = ki if

∑i+τ
j=i+1 ζi > 0), Equation 6.3 is always satisfied. Thus, the

construction’s requirements are met.

144

For j ∈ [t − τ], if
∑j+τ

l=j+1 ζl > 0 then pj+τ = 0 (by the “resets” case of the construction);
also, ui = ki, so failing to decode S[i] will not hinder using parity symbols for recovering
earlier frames. Recall for any u

(LP)
j that increasing u

(LP)
j = p

(IP)
j+τ to a quantity no more than

ℓjkj retains satisfaction of all constraints of the LP. So increasing wi from p
(IP)
i+τ for i ∈ [t −

τ] (to ensure qi
∣∣wi) and likewise increasing pi+τ (i.e., p(IP)

i+τ) is still a valid solution to the LP.
Increasing pi+τ (similarly p

(IP)
i+τ) to be divisible by hi+τ for i ∈ [t − τ] likewise retains the

satisfaction of all constraints (with Constraint 5 removed). After these changes to the values of
p
(IP)
j ,

(
τ, t,K,Z,L, B,W

)
-Split Code is fully specified and sends

∑t−τ
l=0 kl + p

(IP)
l+τ . The total

increase in
∑t−τ

l=0 p
(IP)
l+τ due to the change is at most

∑t−τ
l=0 1[p

(IP)
l+τ ̸= 0](ql + hl+τ − 2).

We know the rate is(t∑
i=0

ki
)
/
(
2(t− τ)(τ − 1) +

t−τ∑
i=0

ki + wi + ql + hl+τ − 2
)
.

It also sends at most

ϵ = 2(t− τ)(τ − 1) +
t−τ∑
i=0

ki + wi + ql + hl+τ − 2

more symbols than a rate-optimal code.
Let us label the number of symbols sent as N , so the rate is (

∑t
i=0 ki)/N . Then the optimal

rate is at most (
∑t

i=0 ki)/(N − ϵ) where (N − ϵ) ≥
∑t

i=0 ki.
The difference to the optimal rate is at most

(
t∑

i=0

ki)/(N − ϵ)− (
t∑

i=0

ki)/N ≤

(ϵ
t∑

i=0

ki)/(N(N − ϵ)) ≤

ϵ/(
t∑

i=0

ki).

6.8.6 Proof of Lemma 24
Suppose Algorithm 4(τ, t,K,L) outputs

〈
p
(IP)
i

∣∣i ∈ [t− τ]
〉

. Recall from Lemma 22 that the
offline optimal rate is at most

t−τ∑
i=0

ki/

(
−2(t− τ)(τ − 1) +

t−τ∑
i=0

ki + p
(IP)
i

)

We will adjust the values of the p
(IP)
i to be p

(IP,1)
i = pi while maintaining satisfaction of all

constraints and show
t−τ∑
i=0

pi − p
(IP)
i ≤ (t− τ + 1).

145

We start by setting p
(IP,1)
i = p

(IP)
i for i ∈ [t].

We prove the result by induction on i. We start with the base case. For i ∈ [τ − 1], pi =
p
(IP,1)
i = p

(IP)
i = 0 by Constraint 1. Due to Constraint 4, p(IP)

τ = p
(IP,1)
τ = pτ = ℓ0k0.

For the inductive hypothesis, we assume that for some i∗ ≥ τ for all i ∈ [i∗] that p(IP,1)i = pi,
all constraints are satisfied (when applying p(IP,1) instead of p(IP)), and

i∗∑
i=0

pi − p
(IP)
i ≤ (i∗ + 1).

For the inductive step, we consider l = (i∗ + 1).
Case pl ≤ p

(IP,1)
l . Then let δ = p

(IP,1)
l − pl. We set p(IP,1)l = pl and increase p

(IP,1)
l+1 by δ. By

Lemma 23, the constraints are clearly still satisfied for a burst starting in time slot (l − τ). For a
burst starting in time slot (l− τ +1), . . . , l− 1, the same number of parity symbols are received,
so all constraints remain satisfied. For a loss in time slot l, the constraints are satisfied because
more parity symbols are available. For a burst starting after time slot l, the change cannot hurt
the satisfaction of the constraints, as parity symbols sent in time slot l would not be useful. In
this case,

∑l+1
j=0 p

(IP,1)
l did not change.

Case pl > p
(IP,1)
l . By Equation 6.11, p(IP,1)r = pr for r ∈ {l − τ, . . . , l − 1}, and satisfaction

of Constraint 4 (for p(IP,1)r), it must be that
∣∣pl− p

(IP,1)
l

∣∣< 1. The discrepancy comes from taking
a ceiling in Equation 6.11. Therefore, it suffices to increase p

(IP,1)
l by (pl − p

(IP,1)
l) ≤ 1. After

the change, all constraints are satisfied, p(IP,1)l = pl, and

l∑
i=0

pi − p
(IP)
i ≤ (l + 1).

6.8.7 Proof of Lemma 26
Let us define U [i], and V [i], for C according to Section 6.2. We define the number of parity
symbols as p(C)

i and the parity symbols as P (C)[i] where w
(C)
i = p

(C)
i+τ under C.

Recall that b0 = τ . By definition of the Regime bτ -Code and C, for i ∈ [τ−1], pi = p
(C)
i = 0.

For i ∈ {τ, . . . , 2τ − 1}, pi = p
(C)
i = ℓi−τki−τ .

Let us assume that pi = p
(C)
i for all i ∈ [i∗ − 1] for some i∗ ≥ 2τ . Now we consider i∗.

Under C, by Equation 6.2 (burst ending in i∗) and Equation 6.3, ℓi∗(ki∗ − w
(C)
i∗) ≤ ℓi∗p

(C)
i∗ .

Therefore, for any burst starting in time slot j ∈ Bi∗ , for any l ∈ {j, . . . , j + τ − 1} we know
P (C)[j] is used to recover all missing symbols of V [j].

Suppose pi∗ < p
(C)
i∗ . Let δ = (p

(C)
i∗ − pi∗). We reset w(C)

i∗−τ to equal pi∗/ℓi∗−τ . We reduce
p
(C)
i∗ by δ to equal pi∗ . By Equation 6.14, (ℓi∗−τki∗−τ − pi∗) ≤ ℓi∗−τp

(C)
i∗−τ . Therefore, enough

parity symbols of X(C)[i∗ − τ] are received to recover V [i∗ − τ] . We must increase w
(C)
i∗−τ to be

divisible by qi∗−τ (so that U [i∗ − τ] has w(C)
i∗−τ/ℓi∗−τ symbols). This causes p(C)

i∗ to be increased
by up to (qi∗−τ − 1) symbols. We then pad p

(C)
i∗ with up to (hi∗ − 1) symbols to be divisible by

hi∗ . The total number of extra symbols sent is at most (qi∗−τ + hi∗ − 2).

146

After the changes, V [i∗ − τ] is still recoverable with the received symbols of P (C)[i∗ − τ].
Therefore, loss recovery for S[0 : i∗ − τ − 1] is unchanged. Adjusting the size of U [i∗ − τ] does
not effect loss recovery for V [i∗ − τ + 1 : i∗ − 1] because of V [i∗ − τ] still being recovered,
U [i∗− τ] being independent of the symbols of P (C)[i∗− τ +1 : i∗−1], and V [j] being recovered
in P (C)[j] for j ∈ {i∗ − τ + 1, . . . , i∗ − 1}. Then U [i∗ − τ] is recoverable using P (C)[i∗].
In addition, P (C)[i∗] is independent of the symbols of U [i∗ − τ + 1 : i∗], so loss recovery for
these quantities is unaffected. The change ensures that the size of V [i∗] is at most p(C)

i∗ , so V [i∗]
is recoverable using the received symbols of Y (C)[i∗] for any burst where X(C)[i∗] experiences
loss. For any burst where X(C)[i∗] experiences loss for j ∈ {i∗ + 1, . . . , i∗ + τ − 1}, V [j] can
still be recovered with the received symbols of Y (C)[j]. Then U [i∗] is recovered with P [i∗ + τ],
and U [j] is recovered with P [j+ τ] for j ∈ {i∗+1, . . . , i∗+ τ − 1}. Therefore, after the change,
the lossless-delay and worst-case-delay constraints are still met. At most (qi∗ + hi∗+τ − 1) extra
symbols were sent.

Suppose pi∗ = p
(C)
i∗ . No change is needed, and we move on to (i∗ + 1).

Suppose pi∗ > p
(C)
i∗ . This case cannot occur. Recall that the changes from earlier time slots

only increased p
(C)
i∗ . Recall ni∗−τ = nC,i∗−τ . All but w(C)

i∗−τ = ui∗−τℓi∗−τ symbols of S[i∗ − τ]

are recovered during time slot (i∗ − τ). In order to have p
(C)
i∗ < pi∗ , this means that w(C)

i∗−τ < p′i∗
by Equation 6.15. But by Equation 6.14, only ni∗−τ (1 − ℓi∗−τ) < ki∗−τ − w

(C)
i∗ symbols were

received during time slot (i∗ − τ), which is a contradiction
Applying the change over all time slots leads to an extra

∑t−τ
i=0(qi + hi+τ − 2) extra symbols

being sent. The resulting scheme, C, sends the same number of symbols as the Regime bτ -Code
after the change. This concludes the result.

6.8.8 Proof of Theorem 10

Let bi be fixed as b for all i ∈ [t]. Let ℓi ∈ ℓ be fixed as ℓ = q/h ∈ (0, 1) for i ∈ [t − τ].
Recall that τ > b ≥ 2. Let ζi = 0 for all i ∈ [t]. Let d be an arbitrary positive integer where
h3(2h− q)

∣∣d. We consider two frame-size sequences:
1. k

(1)
0 = k

(1)
1 = d, k

(1)
τ = 2d(1 − ℓ), k

(1)
τ+1 = d(1 − ℓ), k

(1)
2τ+1 = d(1 − ℓ), and for all

j ∈ {2, . . . , τ − 1, τ + 2, . . . , 2τ, 2τ + 2, . . . , t} k(1)
j = 0.

2. k
(2)
0 = k

(2)
1 = d, k

(2)
τ = 2d(1 − ℓ), k

(2)
τ+1 = d(1 − ℓ), kτ+b = d(1 − ℓ), and for all j ∈

{2, . . . , τ − 1, τ + 2, . . . , τ + b− 1, τ + b+ 1, . . . , t} k(2)
j = 0.

For large d, the proof extends to frame-size sequences where the frames’ sizes approximately
equal the ones above. It also applies to longer frame-size sequences that contain the above
frame-size sequences (or approximations of them).

Let code construction, C, be any offline rate-optimal construction that satisfies the lossless-
delay and worst-case-delay constraints and w

(C)
i = p

(C)
i+τ for all i.4 Suppose C sends X(C)[i]

during time slot i ∈ [t], where X(C)[i] comprises nC,i symbols and (cC,i+1) transmitted packets.

4The construction may be slightly below rate optimal to put in the form w
(C)
i = p

(C)
i+τ . By Theorem 9, it sends at

most 2(t− τ)(τ − 1) +
∑t−τ

l=0 (ql + hl+τ − 2)) more symbols than a rate optimal code. This will have a negligible
effect on the rate for sufficiently large d.

147

Let us define w
(C)
i and p

(C)
i as in Equations 6.32 and 6.33.

We begin by proving several results towards proving the converses. We will include a few
relaxations that can only increase the rate when proving the converse.

For either frame-size sequence

w
(C)
0 = w

(C)
1 = ℓd = p(C)

τ = p
(C)
τ+1 (6.82)

∀i ∈ [τ] ∪ {2 + τ, . . . , 2τ − 1}, p(C)
i = 0 (6.83)

In addition, w(C)
τ ≤ d(1− ℓ)ℓ without loss of generality because we use relaxation

I(S[τ];Y (C)[τ]
∣∣S[0 : 1]) = nC,τ (1− ℓ)

(i.e., all parity symbols of X[τ] that are received are useful). Also, S[0 : 1] are received if X[τ]
is involved in the burst. So we take the relaxation that

I(S[τ : τ + 1];Y (C)[τ : τ + 1]
∣∣S[0 : 1]) =

(nC,τ + nC,τ+1)(1− ℓ).

As such,
w(C)

τ + w
(C)
τ+1 = 3d(1− ℓ)ℓ− d(1− ℓ)ℓ = d(1− ℓ)ℓ (6.84)

(i.e., of the 3d(1 − ℓ)ℓ lost frame symbols of S[τ : τ + 1], 2d(1 − ℓ)ℓ are recovered using the
received parity symbols of X(C)[τ : τ + 1]). By Corollary 7 for any i ∈ {τ + 2, . . . , 2τ − 1}
either nC,i = 0 or if it is the second frame-size sequence nC,τ+b = kτ+b > 0. For the second
frame-size sequence

nC,τ+b ≥
I(S[τ : τ + 1], S[τ + b];X(C)[τ + b]

∣∣S[0 : τ − 1]) =

I(S[τ : τ + 1];X(C)[τ + b]
∣∣S[0 : τ − 1])+

I(S[τ + b];X(C)[τ + b]
∣∣S[0 : τ + 1]) =

I(S[τ : τ + 1];X(C)[τ + b]
∣∣S[0 : τ − 1])+

kτ+b

Therefore,
I(S[τ : τ + 1];X(C)[τ + b]

∣∣S[0 : τ − 1]) = 0.

Also,

nC,2τ = w(C)
τ ≥

I(S[τ : τ + 1];X(C)[2τ]
∣∣S[0 : τ − 1], Y (C)[τ : 2τ − 1]) =

I(S[τ];X(C)[2τ]
∣∣S[0 : τ − 1], Y (C)[τ : 2τ − 1])+

I(S[τ + 1];X(C)[2τ]
∣∣S[0 : τ], Y (C)[τ : 2τ − 1]) =

w(C)
τ + I(S[τ + 1];X(C)[2τ]

∣∣S[0 : τ], Y (C)[τ : 2τ − 1])

148

Therefore, I(S[τ + 1];X(C)[2τ]
∣∣S[0 : τ], Y (C)[τ : 2τ − 1]) = 0. For j ∈ {0, 1} no information

about S[τ + j] is available after X(C)[τ + 1] until X(C)[2τ + j]. Therefore, without loss of
generality

(w(C)
τ + w

(C)
τ+1) = d(1− ℓ)ℓ. (6.85)

By the Equations 6.82 and 6.83 nC,0 = nC,1 = d and p
(C)
τ = p

(C)
τ+1 = dℓ. By Equation 6.21

and Lemma 33, for a burst starting in X[0], H(S[0 : 1], S[τ : τ+1]
∣∣Y (C)[0 : 1], X[τ : τ+1]) = 0

so for i ∈ {τ, τ + 1}, at least (ki + dℓ) symbols are sent in X[i]. Thus,

d(2 + 3(1− ℓ) + 2ℓ) (6.86)

symbols are sent by time slot (τ + 1). And the total number of frame symbols is

K ′ = 2d(1 + 2(1− ℓ)). (6.87)

Offline scheme for frame-size sequence 1. Select

w0 = dℓ

w1 = dℓ

wτ = 0

wτ+1 = d(1− ℓ)ℓ

w2τ+1 = d(1− ℓ)ℓ− d(1− ℓ)2ℓ = d(1− ℓ)ℓ2.

The total number of parity symbols sent is

2dℓ+ d(1− ℓ)ℓ+ d(1− ℓ)ℓ2.

We apply
(
τ, t,K,Z,L, B,W

)
-Split Code. The lossless-delay constraint is clearly satisfied.

Next, we show the worst-case-delay constraint is met. For any burst starting in i ∈ {0, 1},
(i + b − 1) ≤ b < τ , so X[τ] and X[τ + 1] are received. Thus, S[0 : 1] are recovered. Since
X[2 : τ − 1] are empty, we need not consider another burst until one that starts in X[τ]. For a
burst in X[τ], 2d(1− ℓ)ℓ symbols of S[τ] are lost, dℓ(1− ℓ) parity symbols are received in each
of X[τ] and X[τ + 1], and u[τ + 1] = kτ+1, so X[τ] is recovered by time slot (τ + 1). For a
burst starting in X[τ] or X[τ + 1], the d(1 − ℓ)ℓ parity symbols of X[2τ + 1] recover S[τ + 1].
So S[τ : τ + 1] are recovered in time. Finally, for any i ∈ B2τ+1, d(1− ℓ)2ℓ missing symbols of
S[2τ+1] are recovered using the d(1−ℓ)2ℓ received parity symbols of X[2τ+1]. The remainder
are recovered using X[3τ + 1]. In total,

Converse for frame-size sequence 1. Recall that (p(C)
τ + p

(C)
τ+1) = 2dℓ and (p

(C)
2τ + p

(C)
2τ+1) ≥

d(1− ℓ)ℓ. By Corollary 7, nC,2τ = w
(C)
τ and nC,2τ+1 = w

(C)
τ+1 + d(1− ℓ). At least (d(1− ℓ)ℓ−

w
(C)
τ+1(1− ℓ))) parity symbols are sent in X[3τ +1]. Therefore, the total number of symbols sent

is at least

K ′ + 2dℓ+ d(1− ℓ) + d(1− ℓ)ℓ− w
(C)
τ+1(1− ℓ) =

K ′ + 2dℓ+ d(1− ℓ) + d(1− ℓ)ℓ2 + w(C)
τ (1− ℓ).

149

Converse for frame-size sequence 2. By Corollary 7, nC,2τ = w
(C)
τ and nC,2τ+1 = w

(C)
τ+1. By

definition of w(C)
τ+1 there is a burst starting in time slot (τ + 1) so that

H(S[τ + 1]
∣∣S[0 : τ], Y (C)[τ + 1 : τ + b],

X(C)[τ + b+ 1 : 2τ]) = w
(C)
τ+1 =

H(S[τ + 1]
∣∣S[0 : τ], Y (C)[τ + 1], Y (C)[τ + b], X(C)[2τ])

(6.88)

since for j ∈ {i+ τ + 2, . . . , i+ τ + b− 1, i+ τ + b+ 1, . . . , i+ 2τ − 1}, nC,j = 0. Combining
Equation 6.88,Lemma 33, and the definition of Mutual Information shows

w
(C)
τ+1 = nC,2τ+1 ≥

I(S[τ + 1];X(C)[2τ + 1]
∣∣

S[0 : τ], Y (C)[τ + 1 : τ + b], X(C)[τ + b+ 1 : 2τ]) =

I(S[τ + 1];X(C)[2τ + 1]
∣∣

S[0 : τ], Y (C)[τ + 1], Y (C)[τ + b], X(C)[2τ]).

(6.89)

Also, by the fact that nC,j = 0 j ∈ {i+ τ + 2, . . . , i+ τ + b− 1, i+ τ + b+ 1, . . . , i+ 2τ − 1},

w
(C)
τ+1 = nC,2τ+1 ≥

I(S[τ + 1], S[τ + b];X(C)[2τ + 1]
∣∣

S[0 : τ], Y (C)[τ + 1 : τ + b], X(C)[τ + b+ 1 : 2τ]) =

I(S[τ + 1], S[τ + b];X(C)[2τ + 1]
∣∣

S[0 : τ], Y (C)[τ + 1], Y (C)[τ + b], X(C)[2τ]) =

I(S[τ + 1];X(C)[2τ + 1]
∣∣

S[0 : τ], Y (C)[τ + 1], Y (C)[τ + b], X(C)[2τ])+

I(S[τ + b];X(C)[2τ + 1]
∣∣

S[0 : τ + 1], Y (C)[τ + b], X(C)[2τ])

(6.90)

using the fact that Y (C)[τ + 1] is a function of S[0 : τ + 1]. Combining Equations 6.89 and 6.90
shows 0 =

I(S[τ + b];X(C)[2τ + 1]
∣∣S[0 : τ + 1], Y (C)[τ + b], X(C)[2τ]). (6.91)

Finally, we combine Equation 6.91 with the chain rule for mutual information to show

I(S[τ + b];X(C)[2τ : 2τ + 1]
∣∣S[0 : τ + 1], Y (C)[τ + b]) =

I(S[τ + b];X(C)[2τ]
∣∣S[0 : τ + 1], Y (C)[τ + b]) ≤

nC,2τ = w(C)
τ .

(6.92)

We have already established that

M = (k0 + k1)(1 + ℓ) + kτ + kτ+1 + w(C)
τ + w

(C)
τ+1 + kτ+b (6.93)

150

symbols are sent by time slot (2τ+1) to ensure the lossless-delay constraint is met and S[0 : τ+1]
are recovered within the worst-case-delay. In addition, in case of a burst starting in time slot
(τ + b), we bound the amount of information about S[τ + b] that is available; the remainder must
also be sent, and can be sent in X[2τ + b].

If τ + b+ b−1 < 2τ (i.e., 2b−1 < τ) then X(C)[2τ] is received if X[τ + b] is lost; so at least
E = (kτ+bℓ− w

(C)
τ) extra symbols must be sent. So an extra d(1− ℓ)ℓ− w

(C)
τ symbols are sent

compared to the optimal value; the optimal value is 0 and is obtained when w
(C)
τ = d(1− ℓ)ℓ.

Suppose τ + b+ b− 1 > 2τ (i.e., 2b− 1 > τ) then we note

I(S[τ + b];Y (C)[2τ : 2τ + 1]
∣∣S[0 : τ + 1], Y (C)[τ + b]) ≤

H(Y (C)[2τ : 2τ + 1]
∣∣S[0 : τ + 1], Y (C)[τ + b]) ≤

H(Y (C)[2τ : 2τ + 1]) ≤
(nC,2τ + nC,2τ+1)ℓ = (w(C)

τ + w
(C)
τ+1)ℓ = d(1− ℓ)ℓ2

(6.94)

by Equation 6.84. X(C)[2τ : 2τ + 1] is in loss if X[τ + b] is lost. Therefore, by Equation 6.94
and Equation 6.92, E = (kτ+bℓ−min(w

(C)
τ , d(1− ℓ)ℓ2)) symbols must be sent.

If τ + b+ b− 1 = 2τ (i.e., 2b− 1 = τ) then X(C)[2τ] is lost if X[τ + b] is lost but X[2τ +1]
is not. We note

I(S[τ + b];Y (C)[2τ], X(C)[2τ + 1]∣∣S[0 : τ + 1], Y (C)[τ + b]) ≤
H(Y (C)[2τ], X(C)[2τ + 1]

∣∣S[0 : τ + 1], Y (C)[τ + b]) ≤
H(Y (C)[2τ], X(C)[2τ + 1]) ≤

nC,2τℓ+ nC,2τ+1 = w(C)
τ ℓ+ w

(C)
τ+1.

(6.95)

Combining Equations 6.95 and 6.92 shows at least E = (kτ+bℓ − min(w
(C)
τ , w

(C)
τ ℓ + w

(C)
τ+1)))

symbols must be sent.
To assess this term, we observe that

min
(
w(C)

τ , w(C)
τ ℓ+ w

(C)
τ+1

)
=

min
(
w(C)

τ , d(1− ℓ)ℓ− w(C)
τ (1− ℓ)

)
by Equation 6.84. If the first term is larger, the min is increased by decreasing w

(C)
τ . If the first

term is smaller, the min is increased by increasing w
(C)
τ . The slope of the change is linear except

where the two quantities equal. So the maximum occurs at the endpoints or where the quantities
meet; recall that the maximum value minimizes E. if w(C)

τ = d(1−ℓ)ℓ, the quantity is d(1−ℓ)ℓ2.
If w(C)

τ = 0 then the quantity is 0 To meet in the middle

w(C)
τ = d(1− ℓ)ℓ− w(C)

τ (1− ℓ)

w(C)
τ = d(1− ℓ)ℓ/(2− ℓ)

We note that ℓ/(1/(2− ℓ)) = ℓ(2− ℓ); this quantity is less than 1/2 for ℓ = 1/3 and it is greater
than 1/2 for ℓ = 2/3. Therefore, the value of w(C)

τ that maximizes the desired quantity depends

151

on ℓ. Let w(C)
τ,max ∈ {d(1 − ℓ)ℓ, d(1 − ℓ)ℓ/(2 − ℓ)} be chosen to minimize E. So total sent is

(kτ+bℓ− e′ for e′ ∈ {d(1− ℓ)ℓ/(2− ℓ), d(1− ℓ)ℓ2}
Offline scheme for frame-size sequence 2. We set

w
(C)
0 = dℓ

w
(C)
1 = dℓ

w
(C)
τ+1 =

d(1− ℓ)ℓ− w(C)
τ,max if 2b− 1 = τ

0 otherwise

w(C)
τ = dℓ(1− ℓ)− wτ+1

w
(C)
τ+b =

kτ+bℓ− dℓ(1− ℓ) if 2b− 1 < τ

kτ+bℓ− e′ℓ if 2b− 1 = τ

kτ+bℓ− dℓ(1− ℓ)2 if 2b− 1 > τ.

We apply
(
τ, t,K,Z,L, B,W

)
-Split Code. The lossless-delay constraint is clearly satisfied.

Next, we show satisfaction of the worst-case-delay. For any burst starting in i ∈ {0, 1}, (i+ b−
1) ≤ b < τ , so X[τ] and X[τ + 1] are received. Thus, S[0 : 1] are recovered. Since X[2 : τ − 1]
are empty, we need not consider another burst until one that starts in X[τ]. For a burst in X[τ],
2d(1 − ℓ)ℓ symbols of S[τ] are lost, dℓ(1 − ℓ) parity symbols are received in each of X[τ] and
X[τ+1], and v[τ]+v[τ+1] = 2d(1−ℓ), so V [τ] and V [τ+1] are recovered by time slot (τ+1).
Then U [τ + j] is recovered with P [2τ + j] for j ∈ {0, 1}. For a burst starting in X[τ + 1], the
received parity symbols of X[τ + 1] recover V [τ + 1]. The symbols of X[2τ + 1] provide no
information on S[τ + b] given X[2τ] so they are used to recover X[τ + 1]. Then it immediately.
So it suffices to consider a burst dropping X[τ + b]. Sufficiently many symbols are available to
recover all but w(C)

τ+b by time slot (2τ + 1). The remainder are recovered with X[2τ + b]. The
total number of symbols sent is the term from Equation 6.93 plus E where E is minimized.

Finally, we show in a case analysis over the three possible cases that the choice for w
(C)
τ

during time slot (τ+1) must be suboptimal for one of the two frame-size sequences. This causes
a nontrivial gap between the optimal offline and online rates, concluding the proof.

Case 2b− 1 < τ

Suppose w
(C)
τ ≤ d(1 − ℓ)ℓ2/2 is chosen during time slot (τ + 1) and frame-size sequence 2

happens. Then the rate is at most(
K ′)/(
K ′ + 2dℓ+ dℓ(1− ℓ) + d(1− ℓ)ℓ/2

)
versus an optimal value of at least (

K ′)/(
K ′ + 2dℓ+ dℓ(1− ℓ)

)
152

Otherwise, suppose w
(C)
τ ≥ d(1 − ℓ)ℓ2)/2 is chosen during time slot (τ + 1) and frame-size

sequence 1 happens. Then the rate is at most(
K ′)/(
K ′ + 2dℓ+ dℓ(1− ℓ) + d(1− ℓ)ℓ2 + d(1− ℓ)2ℓ2)/2

)
whereas the optimal rate is at least(

K ′)/(
K ′ + 2dℓ+ dℓ(1− ℓ) + d(1− ℓ)ℓ2

)
.

Case 2b− 1 = τ

Suppose w
(C)
τ ≤ w

(C)
τ,max/2 is chosen during time slot (τ + 1). Then the rate is at most(

K ′)/(
K ′ + 2dℓ+ dℓ(1− ℓ)− e′/2

)
versus an optimal value of at least(

K ′)/(
K ′ + 2dℓ+ dℓ(1− ℓ)− e′

)
Otherwise, suppose w(C)

τ ≥ w
(C)
τ,max/2 is chosen during time slot (τ +1) and frame-size sequence

1 happens. Then w
(C)
τ+1 ≤ d(1− ℓ)ℓ− w

(C)
τ,max/2 Then the rate is at most(

K ′)/(
K ′ + 2dℓ+ dℓ(1− ℓ)) + d(1− ℓ)ℓ2 + w(C)

τ,max/2(1− ℓ)
)

whereas the optimal rate is at least(
K ′)/(
K ′ + 2dℓ+ dℓ(1− ℓ) + d(1− ℓ)ℓ2)

)
.

Case 2b− 1 > τ

Suppose w
(C)
τ ≤ d(1− ℓ)ℓ2/2 is chosen during time slot (τ + 1). Then the rate is at most(

K ′)/(
K ′ + 2dℓ+ dℓ(1− ℓ)− d(1− ℓ)ℓ2/2

)
153

versus an optimal value of at least(
K ′)/(
K ′ + 2dℓ+ dℓ(1− ℓ)− d(1− ℓ)ℓ2

)
Otherwise, suppose w

(C)
τ ≥ d(1 − ℓ)ℓ2/2 is chosen during time slot (τ + 1) and frame-size

sequence 1 happens. Then w
(C)
τ+1 ≤ d(1− ℓ)ℓ− d(1− ℓ)ℓ2/2 Then the rate is at most(

K ′)/(
K ′ + 2dℓ+ dℓ(1− ℓ) + d(1− ℓ)ℓ2 + d(1− ℓ)2ℓ2/2

)
whereas the optimal rate is at least(

K ′)/(
K ′ + 2dℓ+ dℓ(1− ℓ) + d(1− ℓ)ℓ2

)
.

6.8.9 Proof of Theorem 11
At a high level, the proof is divided into three steps. First, we bound how many extra symbols
are modeled as being sent under Algorithm 4 in terms of R0, . . . ,Rt−τ by adding constraints
for p(IP)

τ , . . . , p
(IP)
t to equal O0, . . . , Ot−τ , respectively (Appendix 6.8.9). We then bound the

probability that
∑t−τ

l=0 Ri exceeds its mean by a significant amount (Appendix 6.8.9). Finally, we
establish the rate in terms of these quantities (Appendix 6.8.9).

Extra symbols sent under Algorithm 4

First, we show that the increase in
∑t

l=0 p
(IP)
l due to adding the constraint p(IP)

i+τ = Oi for i ∈
[t− τ] is at most Ri.

Let w(Opt)
i ∈ W

(Opt)
i be the value that minimizes

∣∣w(Opt)
i −Oi

∣∣.
Suppose Oi ≥ w

(Opt)
i . Then using the values of p(IP)

j for all j > (i + τ) still satisfy all
constraints if p(IP)

i+τ is set to equal Oi and p
(IP)
i+τ,opt

Otherwise, suppose Oi < w
(Opt)
i . Let δ = δ′ = w

(Opt)
i − Oi. Let us set w(Opt)

i = Oi.
While δ > 0 let j = min

l∈{i,...,i+bi−1

∣∣p(IP)
l+τ <ℓlkl,

∑l+τ
r=l+1 ζr=0}

(l). At least one such j exists, since

otherwise p(IP)
i+τ could be reduced, violating the minimizing the objective function. Increase p(IP)

j+τ

by min(ℓjkj − w
(Opt)
j , δ) and decrement δ by the changed amount. The changes ensure that all

constraints are satisfied. The total number of extra symbols sent is at most δ′.

Bounding the regret

First, suppose we start with
(
τ, t,K,Z,L, B

)
-Split ML Code and then incrementally for j =

0, . . . , (t − τ) switch to
(
τ, t,K,Z,L, B,W (O,j)

)
-Split ML Code. With each switch, the total

154

number of extra symbols sent is at most Rj ≤ ℓjkj ≤ ℓjm (Appendix 6.8.9). In total, the
number of extra symbols sent compared to

(
τ, t,K,Z,L, B

)
-Split ML Code is

∑t−τ
l=0 Rj . The

proof follows from the Hoeffding Bound [45]. Formally,

P
[
1/(t+ 1)

t∑
i=0

(Ri − E[Ri]) ≥ ϵ†
]
≤ e−2(t+1)ϵ2†/m

To ensure this probability is at most δ, we require

δ ≥ e−2(t+1)ϵ2†/m

e2(t+1)ϵ2†/m ≥ 1/δ

2(t+ 1)ϵ2†/m ≥ log(1/δ)

t > log(1/δ)/(2ϵ2†).

Online approximately optimality

Let

R(+)
[t] =

t∑
i=0

Ri

Let the total number of symbols modeled as being sent under Algorithm 4 be Nτ,t,K,Z,L,B =∑t−τ
l=0 ki + p

(IP)
l+τ . Then let

N ′ = Nτ,t,K,Z,L,B − 2(t− τ)(τ − 1)−
t∑

l=0

(hi + qi − 2)

γ = 2(t− τ)(τ − 1) +
(t∑

l=0

hi + qi − 2
)
+R(+)

[t] .

Restricting to using the building block construction causes sending at most an extra up to (hi +
qi − 2) symbols per time slot i compared to an optimal scheme for the choice of O0, . . . , Ot. By
Lemma 22, defining W

(Opt)
i for i ∈ [t] as we do costs an additional at most 2(t− τ)(τ − 1). So

N ′ is at most the number of symbols sent by an offline rate-optimal scheme. By Appendix 6.8.9,
the number of extra symbols sent during time slot i due to sub optimal choice of Oi is Ri. So the
total number of extra symbols sent over an optimal coding scheme is at most γ.

Let K(+) =
∑t

i=0 ki. Then,

R(opt) −R(on) ≤ (6.96)

K(+)/N ′ −K(+)/(N ′ + γ) ≤ K(+)γ/
(
N ′(N ′ + γ)

)
≤γ/N ′ (6.97)

Recall from Appendix 6.8.9 that with probability at least (1− δ),

R(+)
[t] ≤

t∑
i=0

(ϵki + ϵ†)

155

Therefore, by the definition of K(+) and the fact that K(+) ≤ N ′,

R(opt) −R(on) ≤
(
2(t− τ)(τ − 1) +

t∑
l=0

(hi + qi − 2 + ϵki + ϵ†)
)
/N ′

≤
(
2(t− τ)(τ − 1) +

t∑
l=0

(hi + qi − 2 + ϵki + ϵ†)
)
/K(+)

= ϵ+ ϵ†(t+ 1)/K(+) +
t∑

l=0

(2τ + hi + qi − 4)/K(+)

156

Chapter 7

Conclusion and future directions

Real-time video communication applications, like videoconferencing and online gaming, are be-
coming the mainstay of communication over the Internet. Prior work on streaming codes is
insufficient to provide bandwidth-efficient loss recovery for these applications because existing
works assume the sizes of frames are fixed in advance. In contrast, real-time video communica-
tion involves transmitting a sequence of frames of varying sizes unknown in advance. Streaming
codes that can support varying frame sizes well can help such applications improve the quality
of service.

This thesis introduces a new model of streaming codes for variable-size frames and identifies
the key challenges for designing high-rate streaming codes. In particular, streaming codes oper-
ate in an “online” setting where the amount of data to be transmitted varies over time and is not
known in advance. Mitigating the adverse effects of variability requires spreading the data that
arrives at a time slot over multiple future packets and determining in real-time how much redun-
dancy to allocate for each frame. The optimal strategy depends on the arrival pattern. Algebraic
coding techniques alone are, therefore, insufficient for designing rate-optimal codes.

We address these challenges in several steps. First, we introduce a simplified model where
each frame is sent in one packet that is lost or received and analyze fundamental limits on the
rate for (a) arbitrary frame-size sequences and (b) any given frame-size sequence. Second, we
consider the regime where each frame must be sent immediately (i.e., τL = 0). We propose
a new framework for designing online rate-optimal constructions using a greedy paradigm for
sending parity symbols. Third, we introduce a new methodology for constructing online stream-
ing codes to tackle spreading frame symbols in real-time (specifically, for τL = 1) under the
same model. The approach combines machine learning with algebraic coding theory tools by
(a) isolating the component that can benefit from machine learning, (b) solving the offline ver-
sion of the problem by integrating optimization with algebraic coding theory techniques, and (c)
converting the offline scheme into an online one using a learning-based approach. Fourth, we
establish that these theoretical results can translate into practical settings. To do so, we analyze
a large corpus of traces from Microsoft Teams to determine the suitability of streaming codes.
We then design Tambur, a new communication scheme for bandwidth-efficient loss recovery
for videoconferencing comprising two components: (a) A new streaming code that bridges the
gap between theoretical streaming codes and videoconferencing applications, which takes as in-
put any given bandwidth overhead; (b) a learning-based predictive model to set the bandwidth

157

overhead. We assessed Tambur offline over a dataset of traces from Teams and online over a
simulated network. We showed improvements in QoE metrics, including 26% fewer freezes and
28% fewer non-rendered frames. The benefits establish streaming codes as a viable solution
to recovering lost packets for videoconferencing applications. The results thus also show the
promise of streaming codes for other live-streaming applications like cloud gaming. We released
our framework as open-source codebase. The framework enables easy evaluation of the QoE
benefits of new communication schemes by providing a simple interface to incorporate (a) new
FEC schemes and (b) new learning-based predictive models. Fifth, using the learnings from our
analysis of real-world loss traces, we introduce a generalized streaming model with partial bursts.
We then design offline and online approximately rate-optimal streaming codes by using a linear
program and learning-augmented algorithm, respectively, to determine how to split frames into
two components. One component is recovered using the parity symbols sent for prior frames, and
additional parity symbols are sent to recover the other component. A building block construction
is then presented to design an approximately rate-optimal code given how frame symbols are
split.

Overall, this thesis expanded the toolkit for real-time communication to include new inter-
disciplinary techniques combining algebraic coding theory with algorithms, optimization, and
machine learning. We end by presenting a few potential avenues of future direction for this
toolkit.

7.1 Competitive analysis
One of this thesis’ contributions was to show that online streaming codes cannot match the
offline-optimal-rate in several settings. Specifically, Chapter 3 (respectively, Chapter 6) showed
that the best way to spread (respectively, split) frame symbols depends on the sizes of future
frames for all but a few parameter regimes. The result was shown via a case analysis using the
following argument. Two possible frame-size sequences were introduced that were identical for
the first several time slots. An offline coding scheme was presented for the frame-size sequences.
We showed that matching the rate of the offline scheme on the first frame-size sequence required
spreading (respectively, splitting) at least some number of frame symbols during the time slots
where the two frame-size sequences were indistinguishable. Then we showed that this choice
of spreading (respectively, splitting) penalized the rate on the second frame-size sequence. This
accomplished the objective of establishing a gap between the online-optimal-rate and the offline-
optimal-rate. But several questions remain, including:

1. How large is the gap in the worst case?
2. What is the worst-case gap for a given policy for spreading (respectively, splitting) sym-

bols?
3. What policy spreading (respectively, splitting) symbols leads to the smallest gap?
To answer these open questions, one could leverage the existing literature [4, 34] on online

algorithms’ performance, which is typically called “competitive analysis.” To facilitate future
research, we translate the nomenclature of this thesis into the terminology used under competitive
analysis for the model considered in Chapter 3 for τL = 1 and any valid parameters b and τ .

An online streaming algorithm, A, receives a request sequence, σ = σ(1), σ(2), . . . , σ(t) of

158

non-negative integers reflecting the sizes of frames. For request, i ∈ [m], the online algorithm
does not have access to σ(i′) for i′ > i. Algorithm A determines how many symbols of each
frame to spread. Let the values A computes on request sequence σ be Aσ(σ1), . . . , Aσ(σt) ∈ [m].
Suppose the (τ, b, t, ⟨Aσ(σ1), . . . , Aσ(σt) | i ∈ [t]⟩)−Spreading Variable-sized Generalized MS
Code (from Chapter 4.2) sends channel packets of sizes n0, . . . , nt. The cost of A on request
sequence σ is given by costA(σ) =

∑t
i=0 ni. The cost represents the total number of symbols

sent by a rate-optimal construction given A’s choices of how to spread frame symbols. The
competitive ratio of A is given by

inf{c | costA(σ) ≤ c · costB(σ),∀σ ∈ [m]t,∀B}.

For any given request sequence, σ it may be useful to know the optimal cost. The optimal cost
can be exactly computed using Algorithm 3 and approximately computed using Algorithm 3.B.

7.2 Stochastic optimization
One of the core problems tackled by this thesis is communicating in the face of uncertainty in the
sizes of future frames. Chapter 3 used a greedy paradigm to circumvent this challenge for certain
parameter regimes and showed that no such workaround exists for all remaining settings. Instead,
Chapter 4 introduced a learning-based approach to design online approximately rate-optimal
streaming codes. Under this approach, a predictive decision is employed for the one component
that fundamentally depends on future frames’ sizes: how to spread frame symbols. We developed
an explicit approach for making these predictive decisions with sufficient accuracy; this approach
can be viewed as stochastic optimization.

Future work might further study how to use stochastic optimization to best make the decision
for spreading frame symbols. To make this direction more concrete, we discuss how this thesis’
terminology relates to an established framework for stochastic optimization [72].

Let the state, Si, comprise (a) the sizes of frames 0 through i, (b) how the symbols of the prior
τ frames were spread, (c) the number of parity symbols sent during the prior τ time slots, and
(d) the number of parity symbols allocated to be sent during time slot i through (i+ τ − 1). The
exogenous information, Wi ∈ [m] is the size of the ith frame. The decision variable is at ∈ [ki]
and reflects how to spread the symbols of S[i]. The decision is made with a policy Aπ(Si) = ai
where π contains the information about the function and parameters of the policy. The definition
of the transition function, SM(Si, ai,Wi+1), follows immediately from the definition of the state.
The objective function is

min
π

[
EW1,...,Wt

{
t∑

i=0

C(Si+1, A
π(Si+1),Wi+1)

}]
,

where

Si+1 = SM(Si, ai,Wi+1),

C(Si, ai,Wi+1) = ni,

159

and ni is the size of the ith channel packet. The objective function reflects the expected number
of symbols sent used assuming an optimal policy is applied; hence, minimizing the objective
function maximizes the communication rate.

Finally, we list a few open problems where stochastic optimization may be suitable. The
number of samples to the distribution of the sizes of future frames that are needed to design
a policy for spreading frame symbols that is within ϵ of accurate in expectation is currently
unknown. In fact, whether this number of samples can be reduced from polynomial (Chapter 4)
to linear or sublinear is as yet unknown. Recall in Chapter 4 that the choice of how to spread
S[i]’s symbols over X[i] and X[i + 1] is determined during time slot i. In contrast, how to split
S[i]’s symbols depends on the parity symbols sent during time slots i through (i + τ − 1). For
example, if no parity symbols are sent during time slots i through (i + τ − 1), then all of S[i]’s
symbols are recovered at their deadline. However, if sufficiently many parity symbols are sent
during any of time slots i through (i+τ−1), all of S[i]’s symbols can be recovered within (τ−1)
time slots. Thus, the split for frame i is not determined until after time slot i. For this reason, we
did not use stochastic optimization in Chapter 6 to determine how to split frame symbols. How
to combine stochastic optimization and coding theory to determine the best way to split frames
remains an open problem.

7.3 Data-driven coding theory in new domains

Recall that our goal was to improve the QoE for real-time streaming applications like videocon-
ferencing that involve sending variable-size data. Thus, we introduced a new streaming model
that is closely related to prior models studied in a series of related works [11, 27, 30, 35, 49,
52, 62, 63]. Unlike these prior models, our model incorporated (a) variable-size frames, and (b)
partial bursts. Addressing these two unique aspects was our main challenge.

To do so, we developed an interdisciplinary toolkit to design and analyze codes using stochas-
tic optimization, online algorithms, coding theory, and machine learning. These methods could
be applied beyond the specific domain of live communication considered in this thesis. For exam-
ple, one could expand our model to consider unequal error protection for frames using a similar
methodology to that of [44]. Two loss modes would be considered: (a) short partial bursts where
a small fraction of packets are lost per frame, and (b) long partial bursts where a large fraction of
packets are lost per frame. All frames would need to be recovered after a short partial burst, but
only keyframes would need to be recovered after a long one. Unequal error protection may be
useful in applications like videoconferencing where one type of frame (specifically, a keyframe)
is extra important to the QoE.

Future work could also expand this thesis’ streaming model to include aspects of the vari-
ous other streaming models discussed in Chapter 2.1.2 (e.g., multi-hop networks [28, 37, 53])
then apply our toolkit to design and analyze new erasure codes. More generally, the methods
developed in this thesis could be used in any scenario where coding theory is applied online over
variable-size data.

160

7.4 Improvements to Tambur
One of the contributions of Chapter 5 was to release Tambur, an open-source library integrated
with Ringmaster that handles real-time packet-loss recovery for videoconferencing applications.
There are several possible future directions here. For concreteness, we will list three.

First, recall that Tambur comprises two components: (a) a new streaming code, and (b) an
ML model to take predictive decisions on the bandwidth overhead. The second component was
a simple ML model trained offline on a dataset of traces from Microsoft Teams 1:1 video calls.
For simplicity, the ML model uses binary classification to set the bandwidth overhead. Instead,
a multi-class classification model would allow for greater flexibility to tune the bandwidth over-
head. Second, Tambur could be combined with bandwidth estimation. Using a variable bitrate for
video encoding to leverage Tambur’s bandwidth savings may enable communicating the video
at a higher resolution. Third, one could use the library’s interface to implement the learning-
augmented streaming code introduced in Chapter 6. Doing requires (a) replacing the feedback
with estimates of the two channel parameters, and (b) a new predictive model to determine how
to split frames.

161

162

Bibliography

[1] libvpx. https://chromium.googlesource.com/webm/libvpx/. 5.3.3

[2] WebRTC. https://webrtc.org/. 5.3.3

[3] N. Adler and Y. Cassuto. Burst-erasure correcting codes with optimal average delay. IEEE
Transactions on Information Theory, 63(5):2848–2865, May 2017. ISSN 1557-9654. doi:
10.1109/TIT.2017.2663110. 1, 2.1.2

[4] Susanne Albers. Online algorithms: a survey. Mathematical Programming, 97:3–26, 2003.
7.1

[5] Keerti Anand, Rong Ge, and Debmalya Panigrahi. Customizing ml predictions for online
algorithms. In International Conference on Machine Learning, pages 303–313. PMLR,
2020. 1.3

[6] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand Simon.
Online metric algorithms with untrusted predictions. In International Conference on Ma-
chine Learning, pages 345–355. PMLR, 2020. 1.3

[7] A. Badr, A. Khisti, and E. Martinian. Diversity embedded streaming erasure codes (de-
sco): Constructions and optimality. IEEE J. Sel. Areas Inf. Theory, 29(5):1042–1054, May
2011. ISSN 1558-0008. doi: 10.1109/JSAC.2011.110514. 1, 2.1.2

[8] A. Badr, A. Khisti, W. Tan, and J. Apostolopoulos. Streaming codes with partial recovery
over channels with burst and isolated erasures. IEEE Journal of Selected Topics in Sig-
nal Processing, 9(3):501–516, April 2015. ISSN 1941-0484. doi: 10.1109/JSTSP.2014.
2388191. 1, 2.1.2

[9] A. Badr, D. Lui, and A. Khisti. Streaming codes for multicast over burst erasure channels.
IEEE Trans. Inf. Theory, 61(8):4181–4208, Aug 2015. ISSN 1557-9654. doi: 10.1109/TIT.
2015.2445753. 1, 2.1.2

[10] A. Badr, A. Khisti, W. Tan, and J. Apostolopoulos. Perfecting protection for interactive
multimedia: A survey of forward error correction for low-delay interactive applications.
IEEE Signal Processing Magazine, 34(2):95–113, March 2017. ISSN 1558-0792. doi:
10.1109/MSP.2016.2639062. 1

[11] A. Badr, P. Patil, A. Khisti, W. Tan, and J. Apostolopoulos. Layered constructions for
low-delay streaming codes. IEEE Transactions on Information Theory, 63(1):111–141, Jan
2017. ISSN 1557-9654. doi: 10.1109/TIT.2016.2618924. 1, 1.5, 2.1.1, 2, 2.1.2, 2.2, 3.2,
4.2, 5.1.2, 6.2, 6.8.2, 6.8.2, 7.3

163

https://chromium.googlesource.com/webm/libvpx/
https://webrtc.org/

[12] A. Badr, D. Lui, A. Khisti, W. Tan, X. Zhu, and J. Apostolopoulos. Multiplexed coding
for multiple streams with different decoding delays. IEEE Trans. Inf. Theory, 64(6):4365–
4378, June 2018. ISSN 1557-9654. doi: 10.1109/TIT.2018.2827367. 1, 2.1.2

[13] Ahmed Badr, Ashish Khisti, Wai-tian Tan, Xiaoqing Zhu, and John Apostolopoulos. FEC
for VoIP using dual-delay streaming codes. In IEEE INFOCOM 2017-IEEE Conference on
Computer Communications, pages 1–9. IEEE, 2017. 1, 2.1.2, 5.1.2

[14] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica, and
Hui Zhang. Developing a predictive model of quality of experience for internet video.
In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM
’13, page 339–350, New York, NY, USA, 2013. Association for Computing Machinery.
ISBN 9781450320566. doi: 10.1145/2486001.2486025. URL https://doi.org/
10.1145/2486001.2486025. 5.4.1

[15] Dziugas Baltrunas, Ahmed Elmokashfi, Amund Kvalbein, and Özgü Alay. Investigating
packet loss in mobile broadband networks under mobility. In 2016 IFIP Networking Con-
ference (IFIP Networking) and Workshops, pages 225–233. IEEE, 2016. 5.2.2

[16] Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. Advances in Neural Information Processing Systems, 33:20083–
20094, 2020. 1.3

[17] Henrik Boström, Harald Alvestrand, and Varun Singh. Provisional identifiers
for WebRTC’s statistics API unofficial draft. Draft of a potential specification,
W3C, July 2022. https://w3c.github.io/webrtc-provisional-stats/
#RTCVideoReceiverStats-dict. 8

[18] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE transactions on pattern analysis and
machine intelligence, 26(9):1124–1137, 2004. 5.3.3

[19] Ramon Caceres, Alan Clark, and Timur Friedman. RTP Control Protocol Extended Reports
(RTCP XR). RFC 3611, November 2003. URL https://rfc-editor.org/rfc/
rfc3611.txt. 5.3.2, 4

[20] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. Analysis and
design of the Google congestion control for web real-time communication (WebRTC). In
Proceedings of the 7th International Conference on Multimedia Systems, pages 1–12, 2016.
5.3.3

[21] Hyunseok Chang, Matteo Varvello, Fang Hao, and Sarit Mukherjee. Can you see me now?
A measurement study of Zoom, Webex, and Meet. In Proceedings of the 21st ACM Internet
Measurement Conference, pages 216–228, 2021. 1

[22] Federal Communications Commission. Measuring Broad-
band America, 2021. https://www.fcc.gov/
reports-research/reports/measuring-broadband-america/
measuring-fixed-broadband-eleventh-report (Last accessed: 2022-
02-02). 5.2.2

164

https://doi.org/10.1145/2486001.2486025
https://doi.org/10.1145/2486001.2486025
https://w3c.github.io/webrtc-provisional-stats/#RTCVideoReceiverStats-dict
https://w3c.github.io/webrtc-provisional-stats/#RTCVideoReceiverStats-dict
https://rfc-editor.org/rfc/rfc3611.txt
https://rfc-editor.org/rfc/rfc3611.txt
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eleventh-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eleventh-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eleventh-report

[23] Mauro Conti, Simone Milani, Ehsan Nowroozi, and Gabriele Orazi. Do not deceive your
employer with a virtual background: A video conferencing manipulation-detection system.
CoRR, abs/2106.15130, 2021. URL https://arxiv.org/abs/2106.15130. 5.4.1

[24] Ross Cutler, Yasaman Hosseinkashi, Jamie Pool, Senja Filipi, Robert Aichner, Yuan Tu,
and Johannes Gehrke. Meeting effectiveness and inclusiveness in remote collaboration.
Proc. ACM Hum.-Comput. Interact., 5(CSCW1), apr 2021. doi: 10.1145/3449247. URL
https://doi.org/10.1145/3449247. 1

[25] Marcel Dischinger, Andreas Haeberlen, Krishna P. Gummadi, and Stefan Saroiu. Char-
acterizing residential broadband networks. In Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, pages 43–56, 2007. 5.2.2

[26] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam, Jibin
Zhan, and Hui Zhang. Understanding the impact of video quality on user engagement.
In Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, page 362–373,
New York, NY, USA, 2011. Association for Computing Machinery. ISBN 9781450307970.
doi: 10.1145/2018436.2018478. URL https://doi.org/10.1145/2018436.
2018478. 5.4.1

[27] E. Domanovitz, S. L. Fong, and A. Khisti. An explicit rate-optimal streaming code for
channels with burst and arbitrary erasures. In 2019 IEEE Information Theory Workshop
(ITW), pages 1–5, 2019. 1, 2.1.1, 2.2, 2.4, 2.4, 2.4.2, 3.7.2, 7.3

[28] Elad Domanovitz, Ashish Khisti, Wai-Tian Tan, Xiaoqing Zhu, and John Apostolopoulos.
Streaming erasure codes over multi-hop relay network. In 2020 IEEE International Sym-
posium on Information Theory (ISIT), pages 497–502. IEEE, 2020. 2.1.2, 7.3

[29] Zhengfang Duanmu, Kai Zeng, Kede Ma, Abdul Rehman, and Zhou Wang. A quality-of-
experience index for streaming video. IEEE Journal of Selected Topics in Signal Process-
ing, 11(1):154–166, 2017. doi: 10.1109/JSTSP.2016.2608329. 5.4.1

[30] D. Dudzicz, S. L. Fong, and A. Khisti. An explicit construction of optimal streaming codes
for channels with burst and arbitrary erasures. IEEE Transactions on Communications, 68
(1):12–25, 2020. 2.1.1, 2.2, 2.2, 2.4, 2.4, 2.4.2, 3.7.2, 7.3

[31] E. O. Elliott. Estimates of error rates for codes on burst-noise channels. The Bell Sys-
tem Technical Journal, 42(5):1977–1997, Sep. 1963. ISSN 0005-8580. doi: 10.1002/j.
1538-7305.1963.tb00955.x. 1, 2.1.1, 5.1.2, 5.4.1

[32] Martin Ellis. Understanding the performance of Internet video over residential networks.
PhD thesis, University of Glasgow, 2012. 5.2.2

[33] Salma Shukry Emara, Silas Fong, Baochun Li, Ashish Khisti, Wai-Tian Tan, Xiaoqing
Zhu, and John Apostolopoulos. Low-latency network-adaptive error control for interactive
streaming. IEEE Transactions on Multimedia, pages 1–1, 2021. doi: 10.1109/TMM.2021.
3070134. 1, 5.1.2

[34] Amos Fiat and Gerhard J Woeginger. Online algorithms: The state of the art, volume 1442.
Springer, 1998. 7.1

[35] S. L. Fong, A. Khisti, B. Li, W. Tan, X. Zhu, and J. Apostolopoulos. Optimal streaming

165

https://arxiv.org/abs/2106.15130
https://doi.org/10.1145/3449247
https://doi.org/10.1145/2018436.2018478
https://doi.org/10.1145/2018436.2018478

codes for channels with burst and arbitrary erasures. IEEE Trans. Inf. Theory, 65(7):4274–
4292, July 2019. ISSN 1557-9654. doi: 10.1109/TIT.2019.2894124. 1, 2.1.1, 2.2, 2.2, 2.4,
2.4, 2.4.2, 3.7.2, 7.3

[36] S. L. Fong, A. Khisti, B. Li, W. Tan, X. Zhu, and J. Apostolopoulos. Optimal multiplexed
erasure codes for streaming messages with different decoding delays. IEEE Trans. Inf.
Theory, 66(7):4007–4018, 2020. 1, 2.1.2

[37] Silas L. Fong, Ashish Khisti, Baochun Li, Wai-Tian Tan, Xiaoqing Zhu, and John Apos-
tolopoulos. Optimal streaming erasure codes over the three-node relay network. IEEE
Trans. Inf. Theory, 66(5):2696–2712, 2020. doi: 10.1109/TIT.2019.2940833. 1, 2.1.2, 7.3

[38] G. Forney. Burst-correcting codes for the classic bursty channel. IEEE Transactions on
Communication Technology, 19(5):772–781, October 1971. ISSN 2162-2175. doi: 10.
1109/TCOM.1971.1090719. 2.1.1

[39] EM Gabidulin. Convolutional codes over large alphabets. In Proc. Int. Workshop on Alge-
braic Combinatorial and Coding Theory, pages 80–84, 1988. 6.2

[40] Boni Garcı́a, Micael Gallego, Francisco Gortázar, and Antonia Bertolino. Understanding
and estimating quality of experience in WebRTC applications. Computing, 101(11):1585–
1607, 2019. 1

[41] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark buffers in the internet. Queue, 9(11):
40–54, 2011. 2.1.1

[42] E. N. Gilbert. Capacity of a burst-noise channel. Bell System Technical Jour-
nal, 39(5):1253–1265, 1960. doi: 10.1002/j.1538-7305.1960.tb03959.x. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.
1960.tb03959.x. 2.1.1

[43] Heide Gluesing-Luerssen, Joachim Rosenthal, and Roxana Smarandache. Strongly-mds
convolutional codes. IEEE Transactions on Information Theory, 52(2):584–598, 2006. 6.2

[44] Mahdi Haghifam, M Nikhil Krishnan, Ashish Khisti, Xiaoqing Zhu, Wai-Tian Tan, and
John Apostolopoulos. On streaming codes with unequal error protection. IEEE J. Sel.
Areas Inf. Theory, 2021. 1, 2.1.2, 7.3

[45] Wassily Hoeffding. Probability Inequalities for sums of Bounded Random Variables,
pages 409–426. Springer New York, New York, NY, 1994. ISBN 978-1-4612-
0865-5. doi: 10.1007/978-1-4612-0865-5 26. URL https://doi.org/10.1007/
978-1-4612-0865-5_26. 4.4, 4.7.4, 6.8.9

[46] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency esti-
mation algorithms. In International Conference on Learning Representations, 2019. 1.3

[47] Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P Woodruff. Learning-
augmented data stream algorithms. In International Conference on Learning Represen-
tations, 2019. 1.3

[48] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for
learned index structures. In Proceedings of the 2018 international conference on manage-
ment of data, pages 489–504, 2018. 1.3

166

https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1960.tb03959.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1960.tb03959.x
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-1-4612-0865-5_26

[49] M. N. Krishnan and P. V. Kumar. Rate-optimal streaming codes for channels with burst and
isolated erasures. In ISIT, pages 1809–1813, June 2018. doi: 10.1109/ISIT.2018.8437570.
1, 2.1.1, 2.2, 2.2, 2.4, 2.4, 2.4.2, 3.7.2, 7.3

[50] M. N. Krishnan, V. Ramkumar, M. Vajha, and P. V. Kumar. Simple streaming codes for
reliable, low-latency communication. IEEE Communications Letters, pages 1–1, 2019.
ISSN 2373-7891. doi: 10.1109/LCOMM.2019.2956500. 1, 2.3.2, 2.3.2, 2.3.2

[51] M. N. Krishnan, D. Shukla, and P. V. Kumar. A quadratic field-size rate-optimal streaming
code for channels with burst and random erasures. In 2019 IEEE International Symposium
on Information Theory (ISIT), pages 852–856, 2019. 3.7.2, 3.7.4

[52] M Nikhil Krishnan, Deeptanshu Shukla, and P Vijay Kumar. Rate-optimal streaming codes
for channels with burst and random erasures. IEEE Trans. Inf. Theory, 66(8):4869–4891,
2020. 1, 2.1.1, 2.2, 2.2, 2.4, 2.4, 2.4.2, 7.3

[53] M Nikhil Krishnan, Gustavo Kasper Facenda, Elad Domanovitz, Ashish Khisti, Wai-Tian
Tan, and John Apostolopoulos. High rate streaming codes over the three-node relay net-
work. In 2021 IEEE Information Theory Workshop (ITW), pages 1–6. IEEE, 2021. 2.1.2,
7.3

[54] S. Shunmuga Krishnan and Ramesh K. Sitaraman. Video stream quality impacts viewer
behavior: Inferring causality using quasi-experimental designs. In Proceedings of the 2012
Internet Measurement Conference, IMC ’12, page 211–224, New York, NY, USA, 2012.
Association for Computing Machinery. ISBN 9781450317054. doi: 10.1145/2398776.
2398799. URL https://doi.org/10.1145/2398776.2398799. 5.4.1

[55] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online
scheduling via learned weights. In Proceedings of the Fourteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 1859–1877. SIAM, 2020. 1.3

[56] D. Leong and T. Ho. Erasure coding for real-time streaming. In ISIT, pages 289–293, July
2012. doi: 10.1109/ISIT.2012.6284055. 1, 1.5, 2.1.2

[57] D. Leong, A. Qureshi, and T. Ho. On coding for real-time streaming under packet erasures.
In ISIT, pages 1012–1016, July 2013. doi: 10.1109/ISIT.2013.6620379. 1, 1.5, 2.1.2

[58] Z. Li, A. Khisti, and B. Girod. Correcting erasure bursts with minimum decoding delay. In
Conf. Rec. Asilomar Conf. Signals Syst. Comput., pages 33–39, Nov 2011. doi: 10.1109/
ACSSC.2011.6189949. 1, 2.1.2

[59] Thodoris Lykouris and Sergei Vassilvtiskii. Competitive caching with machine learned
advice. In International Conference on Machine Learning, pages 3296–3305. PMLR, 2018.
1.3

[60] David J. C. MacKay. Fountain codes. IEE Proceedings-Communications, 152(6):1062–
1068, 2005. 5.1.1

[61] Kyle MacMillan, Tarun Mangla, James Saxon, and Nick Feamster. Measuring the perfor-
mance and network utilization of popular video conferencing applications. In Proceedings
of the 21st ACM Internet Measurement Conference, IMC ’21, page 229–244, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450391290. doi: 10.

167

https://doi.org/10.1145/2398776.2398799

1145/3487552.3487842. URL https://doi.org/10.1145/3487552.3487842.
1

[62] E. Martinian and C. . W. Sundberg. Burst erasure correction codes with low decoding
delay. IEEE Trans. Inf. Theory, 50(10):2494–2502, Oct 2004. ISSN 1557-9654. doi:
10.1109/TIT.2004.834844. 1, 2.1.1, 1, 2.2, 2.3.1, 2.3.1, 5.1.2, 7.3

[63] E. Martinian and M. Trott. Delay-optimal burst erasure code construction. In ISIT, pages
1006–1010, June 2007. doi: 10.1109/ISIT.2007.4557355. 1, 2.1.1, 2.2, 2.3.1, 2.3.1, 8, 7.3

[64] Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching.
Advances in Neural Information Processing Systems, 31, 2018. 1.3

[65] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. arXiv
preprint arXiv:2006.09123, 2020. 1.3

[66] Anush Krishna Moorthy, Lark Kwon Choi, Alan Conrad Bovik, and Gustavo de Veciana.
Video quality assessment on mobile devices: Subjective, behavioral and objective studies.
IEEE Journal of Selected Topics in Signal Processing, 6(6):652–671, 2012. doi: 10.1109/
JSTSP.2012.2212417. 1.4

[67] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Win-
stein, James Mickens, and Hari Balakrishnan. Mahimahi: Accurate Record-and-
Replay for HTTP. In 2015 USENIX Annual Technical Conference (USENIX ATC
15), pages 417–429, Santa Clara, CA, July 2015. USENIX Association. ISBN
978-1-931971-225. URL https://www.usenix.org/conference/atc15/
technical-session/presentation/netravali. 5.4.1

[68] Ehsan Nowroozi, Ali Dehghantanha, Reza M Parizi, and Kim-Kwang Raymond Choo.
A survey of machine learning techniques in adversarial image forensics. Computers &
Security, page 102092, 2020. 5.4.1

[69] Kohong Park and Walter Willinger. Sele-Similar network traffic and performance evalua-
tion. Wiley & Son, 2000. 5.4.1

[70] James S. Plank, Scott Simmerman, and Catherine D. Schuman. Jerasure: A library in
C/C++ facilitating erasure coding for storage applications-version 1.2. University of Ten-
nessee, Tech. Rep. CS-08-627, 23, 2008. 5.3.3

[71] James S. Plank, Ethan L. Miller, Kevin M. Greenan, Benjamin A. Arnold, John A. Burnum,
Adam W. Disney, and Allen C. McBride. GF-Complete: A comprehensive open source
library for galois field arithmetic version 1.02, 2014. 5.3.3

[72] Warren B. Powell. A unified framework for stochastic optimization. European Jour-
nal of Operational Research, 275(3):795–821, 2019. ISSN 0377-2217. doi: https:
//doi.org/10.1016/j.ejor.2018.07.014. URL https://www.sciencedirect.com/
science/article/pii/S0377221718306192. 7.2

[73] Yining Qi and Mingyuan Dai. The effect of frame freezing and frame skipping on video
quality. In 2006 International Conference on Intelligent Information Hiding and Multime-
dia, pages 423–426, 2006. doi: 10.1109/IIH-MSP.2006.265032. 1.4

[74] Ramya Raghavendra and Elizabeth M. Belding. Characterizing high-bandwidth real-time

168

https://doi.org/10.1145/3487552.3487842
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://www.sciencedirect.com/science/article/pii/S0377221718306192
https://www.sciencedirect.com/science/article/pii/S0377221718306192

video traffic in residential broadband networks. In 8th International Symposium on Mod-
eling and Optimization in Mobile, Ad Hoc, and Wireless Networks, pages 597–602. IEEE,
2010. 5.2.2

[75] Vinayak Ramkumar, Myna Vajha, M. Nikhil Krishnan, and P. Vijay Kumar. Staggered
diagonal embedding based linear field size streaming codes, 2020. 1, 2.3.2

[76] Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal
of the society for industrial and applied mathematics, 8(2):300–304, 1960. 5.1.1

[77] Michael Rudow and K. V. Rashmi. Learning-augmented streaming codes are approximately
optimal for variable-size messages. In 2022 IEEE International Symposium on Information
Theory (ISIT), pages 474–479, 2022. doi: 10.1109/ISIT50566.2022.9834539. 1.3

[78] Michael Rudow and K. V. Rashmi. Streaming codes for variable-size messages. IEEE
Transactions on Information Theory, 68(9):5823–5849, 2022. doi: 10.1109/TIT.2022.
3170895. 1.1

[79] Michael Rudow and K.V. Rashmi. Online versus offline rate in streaming codes for
variable-size messages. IEEE Transactions on Information Theory, pages 1–1, 2023. doi:
10.1109/TIT.2023.3244799. 1.2

[80] Michael Rudow and K.V. Rashmi. Learning-augmented streaming codes for variable-size
messages under partial burst losses. In 2023 IEEE International Symposium on Information
Theory (ISIT), page to appear, 2023. 1.5

[81] Michael Rudow, Francis Y. Yan, Abhishek Kumar, Ganesh Ananthanarayanan, Martin El-
lis, and K.V. Rashmi. Tambur: Efficient loss recovery for videoconferencing via stream-
ing codes. In 20th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 23), pages 953–971, Boston, MA, April 2023. USENIX Association. ISBN
978-1-939133-33-5. URL https://www.usenix.org/conference/nsdi23/
presentation/rudow. 1.4

[82] Pin-Wen Su, Yu-Chih Huang, Shih-Chun Lin, I-Hsiang Wang, and Chih-Chun Wang. Ran-
dom linear streaming codes in the finite memory length and decoding deadline regime. In
ISIT, pages 730–735, 2021. doi: 10.1109/ISIT45174.2021.9518162. 1

[83] Justin Uberti. WebRTC Forward Error Correction Requirements. RFC 8854, January 2021.
URL https://rfc-editor.org/rfc/rfc8854.txt. 1, 5.2

[84] IT Union. ITU-T G. 1010: End-User Multimedia Qos Categories. G SERIES: Transmis-
sion Systems and Media, Digital System and Networks-Multimedia Quality of Service and
Performance Generic and User-Related Aspects, 2001. 1, 5.2.1, 1, 5.4.1, 6.2

[85] Yunkai Wei and Tracey Ho. On prioritized coding for real-time streaming under packet
erasures. In Allerton, pages 327–334. IEEE, 2013. 1, 2.1.2

[86] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang,
Philip Levis, and Keith Winstein. Learning in situ: a randomized experiment in video
streaming. In 17th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20), pages 495–511, Santa Clara, CA, February 2020. USENIX Associa-
tion. ISBN 978-1-939133-13-7. URL https://www.usenix.org/conference/

169

https://www.usenix.org/conference/nsdi23/presentation/rudow
https://www.usenix.org/conference/nsdi23/presentation/rudow
https://rfc-editor.org/rfc/rfc8854.txt
https://www.usenix.org/conference/nsdi20/presentation/yan
https://www.usenix.org/conference/nsdi20/presentation/yan
https://www.usenix.org/conference/nsdi20/presentation/yan

nsdi20/presentation/yan. 1.4

[87] Mo Zanaty, Varun Singh, Ali C. Begen, and Giridhar Mandyam. RTP Payload Format
for Flexible Forward Error Correction (FEC). RFC 8627, July 2019. URL https://
rfc-editor.org/rfc/rfc8627.txt. 5.1.1

[88] Xu Zhang, Yiyang Ou, Siddhartha Sen, and Junchen Jiang. SENSEI: Aligning video
streaming quality with dynamic user sensitivity. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21), pages 303–320. USENIX Asso-
ciation, April 2021. ISBN 978-1-939133-21-2. URL https://www.usenix.org/
conference/nsdi21/presentation/zhang-xu. 5.4.1

170

https://www.usenix.org/conference/nsdi20/presentation/yan
https://www.usenix.org/conference/nsdi20/presentation/yan
https://www.usenix.org/conference/nsdi20/presentation/yan
https://www.usenix.org/conference/nsdi20/presentation/yan
https://rfc-editor.org/rfc/rfc8627.txt
https://rfc-editor.org/rfc/rfc8627.txt
https://www.usenix.org/conference/nsdi21/presentation/zhang-xu
https://www.usenix.org/conference/nsdi21/presentation/zhang-xu

	1 Introduction
	1.1 Streaming codes for variable-size frames (Chapter 2)
	1.2 Online rate-optimal streaming codes (Chapter 3)
	1.3 Learning-augmented approximately rate-optimal streaming codes (Chapter 4).
	1.4 Streaming codes for real-world videoconferencing (Chapter 5)
	1.5 Learning-augmented streaming codes for variable-size frames under partial bursts (Chapter 6)
	1.6 Outline

	2 Streaming codes for variable-size frames
	2.1 Background and related work
	2.1.1 Background
	2.1.2 Other related work

	2.2 A model for streaming codes with frames of variable sizes
	2.3 General bounds on rate for streaming codes with variable-size frames
	2.3.1 General upper bound on the rate
	2.3.2 General lower bound on rate

	2.4 Bounds on rate for specific frame-size sequences
	2.4.1 An upper bound on the optimal rate for specific frame-size sequences.
	2.4.2 A lower bound on the optimal rate for specific frame-size sequences
	2.4.3 Empirical evaluation of the bounds on rate

	2.5 Appendix
	2.5.1 Proof of Lemma 4
	2.5.2 Proof of Lemma 2
	2.5.3 Proof of Theorem 1
	2.5.4 Proof of Theorem 2

	3 Online versus offline rate in streaming codes for variable-size frames
	3.1 Modifications to model and notation
	3.2 Online Code Constructions with Optimal Rate
	3.3 Infeasiblity of offline-optimal-rate for Online Schemes
	3.4 Case L b and L = (-b)
	3.5 Case L < b and L= (-b)
	3.6 Case L < (-b)
	3.7 Appendix
	3.7.1 Proof of Theorem 4
	3.7.2 Proof of Theorem 5 case L b and L =(-b)
	3.7.3 Proof of Theorem 5 case L < b and L =(-b)
	3.7.4 Proof of Theorem 5 case L < (-b)

	4 Learning-augmented streaming codes are approximately optimal for variable-size frames
	4.1 Model and background
	4.2 A Building block construction
	4.3 Offline-optimal streaming codes
	4.4 Learning-based online streaming codes
	4.5 Optimality for non-systematic constructions
	4.6 LP relaxation is almost optimal
	4.7 Appendix
	4.7.1 Proof of Lemma 11
	4.7.2 Proof of Lemma 12
	4.7.3 Proof of Lemma 13
	4.7.4 Proof of Lemma 15
	4.7.5 Proof of Theorem 7
	4.7.6 Proof of Lemma 16
	4.7.7 Proof of Lemma 17
	4.7.8 Proof of Lemma 18

	5 Streaming codes for real-world videoconferencing
	5.1 Background on FEC for real-world videoconferencing applications
	5.1.1 Conventional FEC and its challenges in videoconferencing
	5.1.2 Challenges of using streaming codes for videoconferencing

	5.2 Packet loss in the wild
	5.2.1 FEC metrics
	5.2.2 Network quality
	5.2.3 Potential of streaming codes
	5.2.4 Key findings

	5.3 Tambur
	5.3.1 Tambur's streaming code
	5.3.2 Bandwidth overhead predictor
	5.3.3 Implementation

	5.4 Evaluation
	5.4.1 Experimental methodology and highlights
	5.4.2 Offline evaluation
	5.4.3 Sensitivity analysis
	5.4.4 Online evaluation

	5.5 Appendix
	5.5.1 Recovering a burst with Tambur's streaming code
	5.5.2 Tambur's streaming code's flow network
	5.5.3 Parameters of the GE channel
	5.5.4 Encoding and decoding overheads
	5.5.5 Tail duration of freezes
	5.5.6 Analysis of recovering bursts

	6 Learning-augmented streaming codes for variable-size frames under partial bursts
	6.1 System model
	6.1.1 Encoding and Decoding
	6.1.2 Notation and Conventions

	6.2 A Building Block Construction
	6.3 Offline codes
	6.4 Online rate-optimal codes
	6.4.1 Online optimal codes for Regime b1
	6.4.2 Online optimal codes for Regime b
	6.4.3 Online optimal codes for Regime b+1

	6.5 Gap between online and offline codes
	6.6 Online approximately rate-optimal codes
	6.7 Maximum transmittable unit
	6.8 Appendix
	6.8.1 Additional notation
	6.8.2 Proof of Theorem 8
	6.8.3 Proof of Lemma 21
	6.8.4 Proof of Lemma 22
	6.8.5 Proof of Theorem 9
	6.8.6 Proof of Lemma 24
	6.8.7 Proof of Lemma 26
	6.8.8 Proof of Theorem 10
	6.8.9 Proof of Theorem 11

	7 Conclusion and future directions
	7.1 Competitive analysis
	7.2 Stochastic optimization
	7.3 Data-driven coding theory in new domains
	7.4 Improvements to Tambur

	Bibliography

