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Abstract
Machine learning algorithms now play a major role in all kinds of decision-making

scenarios, such as college admissions, credit approval, and resume screening. When
the stakes are high, self-interested agents — about whom decisions are being made —
are increasingly tempted to manipulate the machine learning algorithm, in order to bet-
ter fulfill their own goals, which are generally different from the decision maker’s. The
fact that many machine learning algorithms can be manipulated also raises a fairness
concern, since algorithms that are manipulable tend to be manipulated most effectively
by those who have more resources and who are already entrenched in the system. All
this highlights the importance of making machine learning algorithms robust against
manipulation. The main focus of this dissertation is on designing and analyzing ma-
chine learning algorithms that are robust against strategic manipulation, which is
different from the relatively well-studied notion of adversarial robustness.

This dissertation sets the foundations for several key problems in machine learning
in the presence of strategic behavior:

• Empirical risk minimization and generalization in classification problems [66,
111, 115]: Traditional wisdom suggests that a classifier trained on historical ob-
servations (i.e., an empirical risk minimizer) usually also works well on future
data points to be classified. Is this still true in the presence of strategic manipu-
lation?

• Distinguishing distributions with samples [113, 114, 116]: Due to various con-
straints, often we have to judge the “quality” of an agent based on a few samples
(e.g., screening job candidates based on a few selected papers). How should we
calibrate our judgment when these samples are strategically selected or trans-
formed?

• Planning in Markov decision processes [110, 117, 118]: Dynamic decision-
making problems (traditionally modeled using Markov decision processes) can
be solved efficiently when the decision maker always has complete and reliable
information about the state of the world, as well as full control over which ac-
tions to take. What happens when the state of the world is reported by a strategic
agent, or when a self-interested agent may interfere with the actions taken?
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Chapter 1

Overview

Machine learning algorithms now play a major role in all kinds of decision-making scenarios,
such as college admissions, credit approval, and resume screening. When the stakes are high,
self-interested agents — about whom decisions are being made — are increasingly tempted to
manipulate the machine learning algorithm, in order to better fulfill their own goals, which are
generally different from the decision maker’s. The fact that many machine learning algorithms
can be manipulated also raises a fairness concern, since algorithms that are manipulable tend to be
manipulated most effectively by those who have more resources and who are already entrenched
in the system. All this highlights the importance of making machine learning algorithms robust
against manipulation. The main focus of this dissertation is on designing and analyzing machine
learning algorithms that are robust against strategic manipulation, which is different from the
relatively well-studied notion of adversarial robustness (see, e.g., [22, 50, 58, 120]).

This dissertation sets the foundations for several key problems in machine learning in the pres-
ence of strategic behavior:

• Empirical risk minimization and generalization in classification problems [66, 111, 115]:
Traditional wisdom suggests that a classifier trained on historical observations (i.e., an em-
pirical risk minimizer) usually also works well on future data points to be classified. Is this
still true in the presence of strategic manipulation?

• Distinguishing distributions with samples [113, 114, 116]: Due to various constraints, often
we have to judge the “quality” of an agent based on a few samples (e.g., screening job
candidates based on a few selected papers). How should we calibrate our judgment when
these samples are strategically selected or transformed?

• Planning in Markov decision processes [110, 117, 118]: Dynamic decision-making prob-
lems (traditionally modeled using Markov decision processes) can be solved efficiently when
the decision maker always has complete and reliable information about the state of the world,
as well as full control over which actions to take. What happens when the state of the world
is reported by a strategic agent, or when a self-interested agent may interfere with the actions
taken?

While significant progress has been made towards making machine learning algorithms robust,
the predominant notion of robustness considered in the literature is adversarial robustness. The

1



idea is to consider the worst-case situation, where every agent’s only goal is to prevent the decision
maker from making the right decisions, where “right” means “best serving the decision maker’s
purposes”. One shortcoming of this notion is it is often too pessimistic: In reality, not all agents’
goals are always the exact opposite of the decision maker’s. For example, if an agent’s most
desired decision happens to be the right decision, then that agent actually has incentives to help the
machine learning algorithm make the right decision. An alternative notion of robustness that more
accurately captures such behavior is robustness against strategic manipulation, which requires that
the machine learning algorithm should work well when each agent reacts rationally to the algorithm
in a way that best serves that agent’s own goal. This is the main focus of this dissertation.

1.1 Foundations of Strategic Classification

Classification is a central topic in machine learning whose importance cannot be overstated. Strate-
gic manipulation of classification algorithms has drawn attention since more than a decade ago
(see, e.g., [73]). However, most prior research on classification in the presence of stategic behavior
had focused on various special cases of the problem, e.g., linear classifiers and/or separable cost
functions. In particular, a unifying framework agnostic to specific models or assumptions had been
missing when strategic manipulation is involved. Perhaps the most significant example of such a
framework is the principle of empirical risk minimization (ERM): The ERM principle states that in
general, the decision-maker should simply find the classifier that works best on training data (e.g.,
historical observations), and it is expected that the good performance of such a classifier also gener-
alizes to test data (e.g., future data points to be classified). Backed by rigorous theoretical analysis,
the ERM principle underlies most successful machine learning algorithms currently in use, and is
almost taken for granted by practitioners. However, in the presence of strategic manipulation, it
was unclear whether such a fundamental principle is still well founded.

In a series of papers, I establish and empirically validate the ERM principle in the presence
of strategic manipulation. In particular, I prove the first generic generalization bound for strate-
gic classification [111], which can be viewed as a strategic counterpart of the celebrated Vap-
nik–Chervonenkis theory that characterizes generalization in traditional settings without strategic
behavior. This very recent result has already been generalized and adapted into numerous related
settings [47, 67, 70, 71, 78, 98]. Moreover, I give an efficient algorithm for finding an empiri-
cal risk minimizer among classifiers that are immune to strategic manipulation, even in general,
unstructured environments [115]. I show that classifiers found in such a way are in a sense automat-
ically regularized, and generalize well as long as the possible ways of strategic manipulation are
rich enough [111]. This, together with complete robustness against strategic manipulation, makes
such classifiers particularly desirable. Together with my collaborators, I empirically confirm the
above theoretical findings in a classification setting using credit approval data where features can
be strategically withheld [66].
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1.2 Distinguishing Strategic Agents with Few Samples
One of the most basic problems in machine learning and statistics is distinguishing distributions
with samples. Consider the following concrete setting: A company wants to evaluate an intern
for potential conversion into full-time employment. Within the duration of the internship, the
company observes the intern’s performance in a few (say 3) tasks, and must decide whether to
make a full-time offer accordingly. The chance that an outstanding candidate performs well in a
task is higher than that of an average candidate performing well. So, for example, in order to hire
as many outstanding candidates and as few average candidates as possible, one reasonable policy
is to make an offer to the intern if and only if they perform well in at least 2 tasks.

From a more abstract perspective, the performance of the intern in each task is a sample of their
true capability, where the latter can also be viewed as a probability distribution; the company’s goal
is to distinguish interns with outstanding capability from those with average capability, by observ-
ing samples from the distribution under evaluation. This is an extremely basic and well-studied
problem in machine learning and statistics, with applications going well beyond the problem it-
self, since many more sophisticated algorithms in complex environments also solve the problem
of distinguishing distributions from samples as a subroutine. Despite the importance of the prob-
lem, it had been barely studied in the presence of strategic manipulation. My work is among the
first to provide fundamental algorithms and characterizations for distinguishing distributions with
samples, when strategic agents may select or transform samples before submitting them to the
algorithm [113, 114], or when strategic agents may decide whether to participate in the algorithm
based on their own capability [116].

1.3 Dynamic Decision-Making with Strategic Agents
Markov decision processes (MDPs) are the canonical tool for modeling dynamic decision-making
problems. The idea is to describe all relevant information at any time using a state, and consider all
available actions in each state. Each action results in a reward, and changes the state in a possibly
random way. To make optimal dynamic decisions, one only needs to solve the planning problem in
the corresponding MDP — which is to find a policy which maximizes the total reward by choosing
actions in an optimal way. Intuitively, such a policy should balance between immediate reward and
long-term effects, which makes the planning problem nontrivial.

While numerous successful algorithms have been proposed for planning in variants of MDPs
in the past decades, the strategic aspect had been largely overlooked. In many real-world decision-
making scenarios, there are multiple self-interested parties involved, and the actions taken may
affect these parties in different ways. In particular, the decision maker (i.e., the principal) may
have different interests from the other participants’ (i.e., the agent’s). If participating in a policy
hurts the agent’s utility (for example, compared to the best outside option), then the agent may
rationally choose to stop participating, leaving the principal in a difficult situation. Therefore, the
principal needs to prevent the agent from quitting while maximizing the principal’s own utility.
Moreover, the principal may need to rely on the agent to report their private information in order to
take the optimal actions, and the principal needs to encourage the agent to report truthfully. Such
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strategic considerations introduce new challenges to the classical problem of planning in MDPs.
One real-world example is a ride-sharing platform assigning tasks to drivers: It might benefit the
platform in the long run to assign a driver an undesirable task, but the driver may respond to that
by turning off the app and going home, which is a situation that the platform would like to avoid.

My work addresses these challenges posed by the presence of strategic behavior, by introduc-
ing novel methodologies and techniques. I show that even when the agent does not have any private
information, the planning problem with participation constraints is already significantly different
from, and in fact, harder than planning in classical MDPs — for example, in classical MDPs, opti-
mal policies are without loss of generality deterministic and history-independent, while with partic-
ipation constraints, optimal policies may necessarily be randomized and history-dependent [118].
Nonetheless, I give an efficient algorithm for planning with participation constraints [117], which
is fundamentally different from existing planning algorithms for the classical problem. With pri-
vate information, the problem becomes even harder: I show that the planning problem is hard to
approximate when the time horizon is long, and at the same time, give an efficient and practical
algorithm when the time horizon is constant [110].

1.4 Organization
The first part of the dissertation, consisting of Chapters 2, 3 and 4, focuses on foundations of
strategic classification. Chapter 2, based on our AAAI 2021 paper [111], establishes a powerful
and generic theory of generalization for strategic classification, and discusses the generalization
behavior of incentive-compatible classifiers. Chapter 3, based on our AAAI 2021 paper [115],
gives an efficient algorithm for the empirical risk minimization problem with incentive-compatible
classifiers, i.e., the problem of computing the optimal incentive-compatible classifier on a finite
set of training examples, or in Bayesian settings. Chapter 4, based on our AAAI 2021 paper [66],
presents an empirical study of strategic classification on credit approval datasets, which shows how
the theoretical results in Chapters 2 and 3 can be applied in practice.

The second part of the dissertation, consisting of Chapters 5, 6 and 7, focuses on sample-based
classification of strategic agents. Chapter 5, based on our ICML 2019 paper [114], presents charac-
terizations of optimal sample-based classification policies when strategic agents can sub-select the
samples used for classification from a private pool of samples in response to the decision maker’s
policy. Chapter 6, based on our NeurIPS 2019 paper [113], presents structural and computational
results in a similar setting, where strategic agents can transform private samples into signals before
presenting them to the decision maker. Chapter 7, based on our AAAI 2021 paper [116], studies a
setting where samples are costly to obtain, and shows how this can help the decision maker classify
strategic agents with very few samples.

The third part of the dissertation, consisting of Chapters 8 and 9, focuses on dynamic decision-
making with strategic agents. Chapter 8, based on our EC 2022 paper [117], studies a principal-
agent planning problem where the principal (i.e., the decision maker) must incentivize the agent to
keep participating, and gives an efficient algorithm for such dynamic decision-making problems.
Chapter 9, based on our NeurIPS 2021 paper [110], studies a more challenging setting where the
agent also has private information, and presents various computability and hardness results.
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Finally, in Chapter 10, we summarize the main contributions of the dissertation and discuss
several important future directions.

More broadly, I have also made contributions in:
• Other sub-areas of machine learning, including learning valuations and preferences [104,

107, 109, 112], and learning influence propagation [27, 28].
• Other sub-areas of mechanism design, including ad auctions and autobidding [32, 34, 35,

48], combinatorial auctions and matching [19, 33, 105, 106, 108], and scientific peer re-
view [60, 61].

To stay focused, these results are not covered in this dissertation.
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Chapter 2

Incentive-Aware PAC Learning

2.1 Introduction

Consider the following scenario. A financial institution plans to offer a product to a selected group
of customers, and decides that the only thing that should matter in the selection process is the
amount of money the customer currently owns in savings (possibly held at a different financial
institution). Each customer may prove her savings balance by submitting a bank statement, and
the number shown therein will be used for the selection. However, customers may choose to
underreport their balance, by, for example, temporarily transferring their money to another account
before the statement date. (We assume for the purpose of this example that overreporting is not
possible.) The question is, how does this ability of customers to strategically underreport their
balance affect the selection process?

The answer, as one would expect, depends on the specific criteria of the selection, which are
presumably determined by the nature of the product. For instance, the product could be a secured
loan that requires the customer to use the savings for collateral. In that case, customers will benefit
from their balance being as high as possible, which means they would submit a statement with the
full balance. As a result, the fact that customers can underreport would not affect the selection at
all. Alternatively, the financial institution could be a non-profit entity that aims to make a product
available only to those with low savings. In that case, every customer who wants access to this
product would underreport her balance in order to be approved, and this would make the selection
effectively meaningless.

More generally, often the right criteria for the selection may not be clear a priori, but have to
be learned from observations. In such cases, the decision maker (e.g., the institution) has access
to labeled historical data (e.g., the amount of savings owned by some customer, and whether the
product was successful for the same customer). A classifier (e.g., selection criteria) is derived from
the data and implemented, to which future data points (e.g., new customers) to be classified respond
in a strategic way. The goal, naturally, is to classify future data points as accurately as possible,
taking into account that their features may be strategically modified. The key challenge is for the
classifier derived to generalize from past unmodified observations to future strategic data points.
Such problems are partially captured by the PAC learning model (discussed in detail below), but
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also exhibit additional complexity from strategic manipulation of the features, where the nature
of this manipulation is affected by the choice of classifier. In this chapter, we investigate novel
phenomena in PAC learning introduced by the presence of strategic manipulation.

Our results. Two central questions in PAC learning are the following: statistically, how many
labeled data points does one need to observe in order to derive a classifier of a desired quality,
and computationally, given this many labeled data points, how can one compute such a classifier?
We answer these questions for arbitrary feature spaces and structures of strategic manipulation, by
presenting an adapted version of the empirical risk minimization (ERM) principle, which roughly
says that one should simply pick a classifier that has the best quality on the unmodified labeled data
points that are observed. We show that our incentive-aware version of the ERM principle requires
asymptotically the minimum possible number of labeled data points for any specific problem setup.
This can be viewed as a strategic version of the VC theory, one of the central results in traditional
PAC learning.

We further consider incentive-compatible classifiers, which provably prevent any kind of strate-
gic manipulation by making revealing one’s true features always optimal for any data point. Here,
our most remarkable result is a hypothesis-class-independent bound on the number of labeled data
points required to compute an incentive-compatible classifier of a desired quality. In traditional
PAC learning, it is well known that without any prior knowledge about the ground truth (typically
modeled by a hypothesis class consisting of possible classifiers to be considered), it is impossible
to learn anything nontrivial, unless the number of labeled data points observed is trivially large
or even infinite. By contrast, we show that in the presence of strategic manipulation, it is possi-
ble to learn a nontrivial classifier via our strategic version of the ERM principle without any such
prior knowledge, except that the classifier learned has to be incentive-compatible. In other words,
incentive-compatibility acts as a means of regularization, which provides nontrivial learning guar-
antees in and of itself.

Moreover, when the structure of strategic manipulation is transitive (i.e., if A can pretend to
be B and B can pretend to be C, then A can pretend to be C), considering incentive-compatible
classifiers is without loss of generality — this is commonly known as the revelation principle in
economic theory. This, together with our results for incentive-compatible classifiers, implies that
ERM-type learning in the presence of transitive strategic manipulation is automatically regular-
ized. That is, the hypothesis-class-independent bound discussed above applies even without any
exogenous requirement of incentive compatibility (since requiring this condition is without loss of
generality), or any other prior knowledge.

2.2 Preliminaries

In this section, we review relevant definitions and results in PAC learning, and formulate the notion
of strategic manipulation in classification.
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2.2.1 Background on PAC Learning
Our problems of interest fit well with the probably approximately correct (PAC) learning model
[100]. In PAC learning, there is a feature space X , a label space Y , and a joint population distri-
bution D ∈ ∆(X × Y) over the feature space and the label space. For a classifier f : X → Y , the
population loss `D(f) is defined as the probability that f assigns a wrong label to a random point
with respect to D, i.e.,

`D(f) = Pr
(x,y)∼D

[f(x) 6= y].

The goal of PAC learning, with target relative loss ε > 0 and failure probability δ > 0, is to find
a classifier f ∈ H from a predetermined hypothesis class H ⊆ YX , by observing m = m(ε, δ)
iid samples from D, such that with probability at least 1− δ, the population loss of f , `D(f), is at
most `D(H) + ε, where `D(H) is the population loss of the best classifier inH, i.e.,

`D(H) = min
f ′∈H

`D(f ′).

`D(H) is sometimes called the approximation error, which models how well the hypothesis class
H approximates the ground truth classifier. Throughout this chapter, we focus on binary labels,
i.e., Y = {0, 1}. With binary labels, a classifier f : X → {0, 1} corresponds bijectively to a subset
of X to which f assigns label 1, i.e.,

{x ∈ X | f(x) = 1}.

It is sometimes more convenient to deal with the subset of X associated with f . We will treat a
classifier f and the subset associated with f interchangeably in the rest of the chapter.

The two central questions of PAC learning discussed earlier are partially answered by the ERM
principle, formally defined below. Givenm iid samples S = {(xi, yi)}i ∼ Dm,1 the ERM principle
finds a classifier f ∈ H which minimizes the empirical loss `S(f) on S, defined as

`S(f) =
1

|S|
∑
i∈[|S|]

|f(xi)− yi|.

That is, the ERM principle finds

f ∈ argminf ′∈H `S(f ′).

This gives a concrete, though not always efficient, way of computing a classifier — it is known that
with sufficiently many samples, the classifier found by the ERM principle achieves the desired loss
and failure probability. Moreover, the number of samples (also known as the sample complexity
— see below for a formal definition) required by the ERM principle is optimal up to a constant
factor.2 This sample complexity is asymptotically determined by the so-called VC dimension of
the hypothesis classH, defined below.

1We treat S as an unordered set, since the order does not carry information.
2This is true only in the agnostic setting where `D(H) > 0, on which we focus our attention throughout the chapter.

Similar results can be established for the realizable setting where `D(H) = 0.
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Definition 2.1 (VC Dimension). A subset S of the feature space X is shattered by a hypothesis
class H, if for any T ⊆ S, there is a classifier f ∈ H such that f ∩ S = T . The VC dimension of
H, dVC(H), is the cardinality of the largest subset of X that is shattered byH, i.e.,

dVC(H) = max
{
|S|
∣∣ |{f ∩ S | f ∈ H}| = 2|S|

}
.

The VC dimension captures the capacity of the hypothesis class H. The larger the capacity
is, the more samples it takes to find an approximately optimal classifier in H. More precisely, the
sample complexity of ERM is given by the following theorem (see, e.g., [93]).
Theorem 2.1 (Sample Complexity of ERM). Fix a feature space X , a population distribution D,
and a hypothesis classH. For any ε > 0, δ > 0, given

m = O
(
(dVC(H) + log(1/δ))/ε2

)
iid samples S ∼ Dm, with probability at least 1−δ, any classifier f ∈ H minimizing the empirical
loss on S, i.e., f ∈ argminf ′∈H `S(f ′), has population loss at most `D(f) ≤ `D(H) + ε. More-
over, finding any classifier achieving the same relative loss ε and failure probability δ requires
Ω ((dVC(H) + log(1/δ))/ε2) iid samples.

The above theorem says that the ERM principle finds an approximately optimal (up to an
additive loss ε) classifier within H, with an asymptotically optimal number of samples. In other
words, the low empirical loss of the classifier found by the ERM principle generalizes with respect
to the population distribution D.

2.2.2 Strategic Manipulation in Classification
In the classical PAC learning model, the classifier always observes the real feature of the point
being classified. However, as argued above, this is often not the case in real-life scenarios, where
the point being classified may strategically modify its feature in order to receive a more desirable
outcome. In this chapter, we model the data point’s ability to modify its feature using a binary
relation →, which captures the reporting structure over the feature space. For x1, x2 ∈ X , we
say x1 → x2 if a point with feature x1 can pretend to have (i.e., report) feature x2. For any
x ∈ X , we always have x → x, corresponding to the fact that the point may choose not to
modify its feature.3 Throughout the chapter, we assume that all points being classified prefer label
1 (corresponding to, e.g., acceptance) to 0. As a result, fixing a misreporting structure → and a
classifier f : X → {0, 1}, a point with feature x will pretend to have feature x′ such that f(x′) = 1
whenever possible, i.e., it will report x′ ∈ argmaxx′′:x→x′′ f(x′′). Note that it is possible that
x′ = x. This can happen when f(x) = 1, or f(x′′) = 0 for all x′′ such that x → x′′, including x
itself.4

In the rest of the chapter, we focus on the following variant of the PAC learning model. The
learning algorithm has access to m iid unmodified samples {(xi, yi)}i ∼ Dm, based on which a

3Note that this is not a technical requirement — all results in this chapter still hold without this assumption.
4A seemingly more general model is one in which there is a cost c(x, x′) ≥ 0 for a point with feature x to report

feature x′. We remark that with binary labels, it is without loss of generality to ignore this cost, since a way of reporting
is feasible iff the gain of receiving label 1 is larger than the cost of reporting.
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classifier f ∈ H is computed.5 The classifier f is then deployed, and random points drawn from
D modify their features strategically in response to the classifier. The strategic population loss of
f , taking into consideration strategic manipulation, can be computed as

̂̀D(f) = Pr
(x,y)∼D

[
max
x′:x→x′

f(x′) 6= y
]
.

Again, the goal is to find a classifier f ∈ H with strategic population loss at most ̂̀D(H) + ε, with
probability at least 1− δ, where ̂̀D(H) = min

f ′∈H
̂̀D(f ′).

2.3 Incentive-Aware Empirical Risk Minimization
In this section, we investigate the ERM principle in the presence of strategic manipulation. We
first give an example, showing that the vanilla ERM principle, which ignores the strategic aspect
of the problem, has poor performance in general. We then consider an incentive-aware variant of
ERM, and analyze its generalization behavior.

2.3.1 How Vanilla ERM Fails
Consider the following example. The feature space X = {x1, x2, x3}, the hypothesis class H =
2X , and the population distribution D assigns probability 0.5 to feature-label pair (x1, 0), and
probability 0.5 to (x2, 1). The reporting structure allows (1) x → x for any x ∈ X , and (2)
x1 → x2 and x2 → x3. Note that since the feature space is extremely simple, even the power set
H = 2X (which has VC dimension dVC(H) = 3) exhibits decent generalization behavior without
strategic manipulation. Recall that the vanilla ERM principle finds an arbitrary classifier which
minimizes the empirical loss based on the unmodifed sample set. Suppose the number of samples
m = ω(1). Then with high probability, the sample set consists of copies of (x1, 0) and (x2, 1)
and nothing else. Any classifier f satisfying f(x1) = 0 and f(x2) = 1 achieves 0 empirical
loss. However, with strategic manipulation, such an f ends up assigning label 1 to all (new) points
whose (true) feature is x1, since those points can report x2 to fool the classifier. As a result, the
strategic population loss is

̂̀D(f) = Pr
(x,y)∼D

[
max
x′:x→x′

f(x′) 6= y
]

≥ 0.5 ·
∣∣∣∣ max
x′:x1→x′

f(x′)− 0

∣∣∣∣ = 0.5 · |f(x2)− 0|

= 0.5.

5We consider scenarios where observed data points have no interest in manipulating the learning process, and thus
will not modify their features — this is a standard assumption, and appears also in, e.g., [31]. It is definitely true that
in many other scenarios, the samples observed may be strategically modified too. However, we do not consider this in
the current chapter.
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In other words, with high probability, any classifier found using the vanilla ERM principle is no
better than random guessing. But in fact, the classifier f ′ with f ′(x1) = f ′(x2) = 0 and f ′(x3) = 1
would have 0 loss with strategic behavior, because maxx′:x1→x′ f

′(x′) = 0 and maxx′:x2→x′ f
′(x′) =

f ′(x3) = 1. Hence it is possible to do much better than vanilla ERM.
The above example shows that with strategic manipulation, the vanilla ERM principle fails

spectacularly even in extremely simple cases that would be trivial without strategic manipulation.
This observation aligns with the intuition that any learning procedure achieving nontrivial perfor-
mance must exploit the reporting structure.

2.3.2 The Incentive-Aware ERM Principle
Below we present an incentive-aware version of the ERM principle (henceforth IA ERM), and
show that (1) IA ERM finds a classifier with the desired properties, and (2) the sample complexity
of IA ERM is asymptotically optimal. These properties of IA ERM closely resemble those of its
classical counterpart without strategic manipulation, and suggests that IA ERM is the right version
of the ERM principle in the strategic setting that we consider.

Incentive-aware ERM. The idea is to minimize the strategic empirical loss ̂̀S(f) on the sample
set S = {(xi, yi)}i, computed by replacing the true feature of every sample point with the most
beneficial feature that the point can report, i.e.,

̂̀
S(f) =

1

|S|
∑
i∈[|S|]

∣∣∣∣ max
x′:xi→x′

f(x′)− yi
∣∣∣∣ .

The strategic empirical loss is a natural quantity to consider, since the expectation of ̂̀S(f) over
S is precisely the strategic population loss ̂̀D(f), which we aim to minimize. Given the notion
of strategic empirical loss, IA ERM simply finds any classifier f in the hypothesis class H which
minimizes ̂̀S(f), i.e.,

f ∈ argminf ′∈H ̂̀S(f ′).

We now analyze the generalization behavior of IA ERM. Recall that in the classical PAC setting
without strategic manipulation, the sample complexity of ERM depends on the VC dimension of
the hypothesis classH. Here, with strategic manipulation, it appears that the VC dimension ofH is
no longer the right capacity measure to consider. Instead ofH, we consider the effective hypothesis
class Ĥ, defined below.
Definition 2.2 (Effective Classifier / Hypothesis Class). Fixing a feature space X and a reporting
structure→, for each classifier f ⊆ X , the effective classifier f̂ consists of the set of features to
which f effectively assigns label 1, i.e.,

f̂ = {x ∈ X | ∃x′ : x→ x′, f(x′) = 1}.

Fixing a hypothesis class H, the effective hypothesis class Ĥ consists of the effective classifier of
every classifier inH, i.e., Ĥ = {f̂ | f ∈ H}.
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One may intuitively interpret the effective hypothesis class in the following way. Any classifier
f in the presence of strategic manipulation is equivalent to the effective classifier f̂ without strate-
gic manipulation. Therefore, by considering the effective hypothesis class Ĥ, we can effectively
ignore strategic manipulation, and reduce the generalization analysis to that in the classical PAC
setting, i.e., Theorem 2.1. This gives us the following theorem.
Theorem 2.2 (Sample Complexity of IA ERM). Fix a feature space X , a population distribution
D, a reporting structure→, and a hypothesis classH. For any ε > 0, δ > 0, given

m = O
(

(dVC(Ĥ) + log(1/δ))/ε2
)

iid samples S ∼ Dm, with probability at least 1 − δ, any classifier f ∈ H minimizing the
strategic empirical loss on S, i.e., f ∈ argminf ′∈H ̂̀S(f ′), has strategic population loss at most̂̀D(f) ≤ ̂̀D(H) + ε. Moreover, finding any classifier achieving the same relative loss ε and failure
probability δ requires Ω

(
(dVC(Ĥ) + log(1/δ))/ε2

)
iid samples.

The proof of Theorem 2.2, as well as all other proofs, are in Section 2.6. In words, the above
theorem says that IA ERM finds a classifier whose strategic population loss is close to the best
classifier in the hypothesis classH, and the sample complexity of finding such a classifier is deter-
mined by the VC dimension of the effective hypothesis class Ĥ, rather than that ofH itself.

We make a few remarks regarding IA ERM. First, when the reporting structure → is trivial,
i.e., a point with feature x can only report x itself, then the effective class Ĥ = H, and IA ERM
reduces to vanilla ERM. In such cases, Theorem 2.2 reduces precisely to the classical Theorem 2.1.
Second, in general, the VC dimension dVC(Ĥ) of the effective class Ĥ may be smaller or larger
than that of H. Below we give two examples, showing that either of the two quantities can be
arbitrarily larger than the other.

We first give an example where dVC(H) = ∞ and dVC(Ĥ) = 1. Consider the example dis-
cussed in the introduction. There, the feature space X = R+ = [0,∞), and the reporting structure
→ satisfies for any x1, x2 ∈ R+,

x1 → x2 ⇐⇒ x1 ≥ x2.

Consider H = 2R+ . Clearly dVC(H) = ∞, since any S ⊆ R+ is shattered by H. On the other
hand, for any f ∈ H, f̂ is essentially determined by a threshold θf , where

θf = inf{x | f(x) = 1}.

f̂ is then defined by

f̂(x) =


0, x < θf

1, x > θf

f(x), x = θf .

In other words, Ĥ is the class of threshold classifiers over R+. It is well-known that dVC(Ĥ) = 1.
Now we show that dVC(Ĥ) can be arbitrarily larger than dVC(H). Let the feature space be

X = N, andH = {{i} | i ∈ N}, i.e., the set of all singletons. It is clear that dVC(H) = 1. Now for
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any d ∈ N, we construct→ such that dVC(Ĥ) = d.6 Let→ be such that (1) i → i for any i ∈ N,
and (2) for any i ∈ {d, . . . , d+ 2d − 1} and j ∈ {0, . . . , d− 1}, j → i if the (j + 1)-th digit in the
binary representation of i−d is 1. Now we argue that Ĥ shatters {0, . . . , d−1}. In fact, any subset
S ⊆ {0, . . . , d− 1} can be viewed as the binary representation of an integer iS in {0, . . . , 2d − 1},
where the (j + 1)-th digit of iS is 1 iff j ∈ S. Consider the classifier fS = {iS + d} ∈ H. Clearly
f̂S ∩ {0, d − 1} = S, since precisely the points in S can report iS + d, which is the only point
assigned label 1 by fS .

2.4 Incentive-Compatible Empirical Risk Minimization
The IA ERM principle, together with Theorem 2.2, provides a rather general solution for PAC
learning in the presence of strategic manipulation. Still, one may wonder whether it is possible
to achieve more desirable properties, e.g., enhanced robustness against strategic manipulation and
better generalization guarantees, by further refining / regularizing IA ERM. In this section, we pro-
pose incentive compatibility as a means of regularization, which leads to the incentive-compatible
ERM principle (henceforce IC ERM).

We first present the IC ERM principle and provide a general analysis of its sample complexity
in Section 2.4.1. In particular, we show that IC ERM generalizes no worse than IA ERM when
applied to the same hypothesis class. In Section 2.4.2, we consider a special case of IC ERM,
free IC ERM, where the hypothesis class H is implicitly all possible classifiers over the feature
space X , i.e.,H = 2X . We give an efficient algorithm for free IC ERM, and more importantly, we
show that, somewhat surprisingly, it is still possible to derive nontrivial generalization bounds for
free IC ERM. Based on the generalization analysis of free IC ERM, we provide a hypothesis-class-
independent sample complexity bound for IC ERM, which further illustrates the power of incentive
compatibility as a means of regularization. Finally, in Section 2.4.3, we discuss an important class
of reporting structures, i.e., transitive reporting structures, on which IC ERM is equivalent to the
more general IA ERM. Based on this equivalence, we give a hypothesis-class-independent sample
complexity bound for IA ERM that applies whenever the reporting structure is transitive.

2.4.1 The Incentive-Compatible ERM Principle
First we introduce the notions of incentive-compatible classifiers and hypothesis classes. Incentive
compatibility is a standard concept in mechanism design and straightforwardly applying it in our
context results in the following definition.
Definition 2.3 (Incentive-Compatible Classifiers / Hypothesis Classes). Fixing a feature space
X and a reporting structure →, a classifier f : X → {0, 1} is incentive compatible if for any
x1, x2 ∈ X ,

x1 → x2 =⇒ f(x1) ≥ f(x2).

In other words, no point can receive a better outcome by pretending to have a different feature. A
hypothesis classH is incentive compatible if it contains only incentive-compatible classifiers.

6Similar constructions could also give dVC(Ĥ) =∞.
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The intuition behind the definitions is simple: when an incentive-compatible classifier is de-
ployed, no point is motivated to strategically modify its feature, since it is impossible to obtain a
better outcome by doing so. As a result, the effective classifier induced by any incentive-compatible
classifier f is itself, i.e., f̂ = f , and the strategic (empirical) loss of an incentive-compatible clas-
sifier f is the same as the (empirical) loss of the same classifier without strategic manipulation,
i.e., ̂̀D(f) = `D(f) and ̂̀

S(f) = `S(f).

Incentive-compatible classifiers therefore provide arguably the strongest robustness one may hope
for against strategic manipulation — they eliminate strategic manipulation. The IC ERM principle
presented below always finds a classifier that is incentive compatible.

Incentive-compatible ERM. For any hypothesis class H, let the incentive-compatible subclass
HIC(→) be the largest subset ofH that is incentive compatible under→, i.e.,

HIC(→) = {f ∈ H | f is incentive compatible under →}.

We omit the parameter → when it is clear from the context. Given a hypothesis class H, the
IC ERM principle finds any classifier f in the incentive-compatible subclass HIC minimizing the
empirical loss `S(f) on the sample set S, i.e.,

f ∈ argminf ′∈HIC `S(f ′) = argminf ′∈HIC
̂̀
S(f ′).

We now analyze the sample complexity of IC ERM. Observe that IC ERM with hypothesis
classH is equivalent to vanilla ERM with hypothesis classHIC. Therefore, applying Theorem 2.1
toHIC, we immediately obtain the following asymptotically optimal sample complexity bound for
IC ERM.
Theorem 2.3 (Sample Complexity of IC ERM). Fix a feature space X , a population distribution
D, a reporting structure→, and a hypothesis classH. For any ε > 0, δ > 0, given

m = O
(
(dVC(HIC) + log(1/δ))/ε2

)
iid samples S ∼ Dm, with probability at least 1 − δ, any classifier f ∈ HIC minimizing the
empirical loss on S, i.e., f ∈ argminf ′∈HIC `S(f ′), has strategic population loss at most ̂̀D(f) ≤̂̀D(HIC) + ε. Moreover, finding any incentive-compatible classifier within H achieving the same
relative loss ε and failure probability δ requires Ω

(
(dVC(HIC) + log(1/δ))/ε2

)
iid samples.

Theorem 2.3 is but a direct application of the classical Theorem 2.1. To obtain further insights
into the sample complexity of IC ERM, we need to take a closer look at the VC dimension of the
incentive-compatible subclassHIC, which dictates the sample complexity. As discussed above, IC
ERM can be viewed as a regularized version of IA ERM. Below we formalize this intuition, by
showing that the sample complexity of IC ERM is in fact no larger than that of IA ERM, or that
of vanilla ERM, when applied to the same hypothesis classH. This is done in the following claim
via upper bounding the VC dimension ofHIC by that of Ĥ, as well as that ofH.
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Proposition 2.1. Fixing a feature space X and a reporting structure→, for any hypothesis class
H over X ,

HIC ⊆ H ∩ Ĥ.

As a result,
dVC(HIC) ≤ min{dVC(H), dVC(Ĥ)}.

In many natural scenarios, the VC dimension ofHIC is significantly smaller than dVC(Ĥ). Be-
low we give an example where dVC(H) =∞ and dVC(HIC) = 1. Consider again the introductory
example, where X = R+. As argued above, when H = 2R+ , Ĥ is all threshold classifiers, and
dVC(Ĥ) = 1. On the other hand, by Proposition 2.1, HIC ⊆ Ĥ. In fact, one may show that every
classifier in Ĥ is incentive-compatible, andHIC = Ĥ. As a result, dVC(HIC) = dVC(Ĥ) = 1.

So, in addition to the highly desirable property of incentive compatibility, IC ERM also has at
most the same, and often much better sample complexity than IA ERM, which translates to better
generalization fixing the number of samples. We also remark that IC ERM finds an approximately
optimal classifier in the incentive-compatible subclass HIC, which may have a worse approxima-
tion error thanH. In other words, to achieve incentive compatibility, one in general has to sacrifice
some accuracy in the form of a larger approximation error. We will see more desirable properties
of IC ERM in the rest of this section.

2.4.2 Free IC ERM and Generalization from Incentive Compatibility
We now consider free IC ERM, which is a special case of IC ERM where the hypothesis class
consists of all possible classifiers over X , i.e., H = H0 = 2X . At first glance this may appear
senseless — in the classical PAC setting without strategic manipulation, no (nontrivial) general-
ization is possible if nothing is known about the ground truth a priori, i.e., when the hypothesis
class consists of all possible classifiers. However, as we show below, the reporting structure, to-
gether with the requirement of incentive compatibility, in fact induces nontrivial structure over the
incentive-compatible subclassHIC

0 , which allows nontrivial sample complexity and generalization
bounds. These structures are captured by the following complexity measure, which we term the
intrinsic VC dimension.
Definition 2.4 (Intrinsic VC Dimension). Fix a reporting structure→ over a feature space X . For
any x, x′ ∈ X , we say x can reach x′ (denoted x ⇒ x′) if there exists a sequence of features
x1, . . . , xk for some integer k > 0, such that x1 = x, xk = x′, and for any i ∈ [k − 1], xi → xi+1.
A set of features S ⊆ X is independent if for any x, x′ ∈ S where x 6= x′, x cannot reach x′. The
intrinsic VC dimension of→ over X , dVC(X ,→), is the cardinality of any maximum subset of X
that is independent, i.e.,

dVC(X ,→) =

max{|S| | S ⊆ X : 6 ∃x, x′ ∈ S s.t. x 6= x′ and x⇒ x′}.

It turns out that the intrinsic VC dimension of the reporting structure is precisely the VC di-
mension of the incentive-compatible subclass HIC

0 of the null hypothesis class H0, as formalized
in the following proposition.
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Proposition 2.2 (VC Dimension of Null Hypothesis Class). For any feature spaceX and reporting
structure→ over X ,

dVC(X ,→) = dVC(HIC(→)
0 ),

whereH0 = 2X is the null hypothesis class.
Note that for any hypothesis classH ⊆ 2X = H0 over X , the incentive-compatible subclass of

H is a subclass of that of the null hypothesis class H0, i.e., HIC ⊆ HIC
0 . As a result, we always

have
dVC(HIC) ≤ dVC(HIC

0 ) = dVC(X ,→).

This, together with Theorem 2.3, immediately implies the following hypothesis-class-independent
sample complexity bound for IC ERM, which, in particular, applies to free IC ERM.
Theorem 2.4 (Hypothesis-Class-Independent Sample Complexity Bound for IC ERM). Fix a fea-
ture space X , a population distribution D, a reporting structure→, and a hypothesis classH. For
any ε > 0, δ > 0, given

m = O
(
(dVC(X ,→) + log(1/δ))/ε2

)
iid samples S ∼ Dm, with probability at least 1− δ, any classifier f ∈ HIC minimizing the empir-
ical loss on S, i.e., f ∈ argminf ′∈HIC `S(f ′), has strategic population loss ̂̀D(f) ≤ ̂̀D(HIC) + ε.
Moreover, when the hypothesis class H is the null hypothesis class H0, finding any incentive-
compatible classifier achieving the same relative loss ε and failure probability δ requires

Ω
(
(dVC(X ,→) + log(1/δ))/ε2

)
iid samples.

We also present an efficient algorithm for free IC ERM in Section 2.5.

2.4.3 Transitive Reporting and the Revelation Principle
Finally, we investigate an important family of reporting structures, transitive reporting structures.
It turns out that with transitivity, the so-called revelation principle from mechanism design holds:
if one accounts for strategic reporting, then without loss of generality one may focus on incentive-
compatible classifiers. That is, IC ERM is as general as IA ERM. As a result, with transitivity,
the hypothesis-class-independent sample complexity bound extends to IA ERM applied to any
hypothesis class. We first give the formal definition of transitive reporting structures, which is
essentially the same as that of transitive binary relations.
Definition 2.5 (Transitive Reporting Structures). A reporting structure → over X is transitive if
for any x1, x2, x3 ∈ X ,

(x1 → x2 and x2 → x3) =⇒ x1 → x3.

One example of transitive reporting structures is the example from the introduction, where
X = R+, and→ is precisely the same as ≥, which is clearly transitive. It turns out that transitivity
of reporting structures is equivalent to the revelation principle holding, which roughly says that
any classifier is equivalent to a (possibly different) incentive-compatible classifier. Formally:
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Proposition 2.3 (Revelation Principle for PAC Learning). The following is true if and only if
the reporting structure is transitive: for any classifier f : X → {0, 1}, the effective classifier
f̂ is incentive compatible, and as a result, for any hypothesis class H, the effective class Ĥ is
incentive-compatible (i.e., (Ĥ)IC = Ĥ).

In light of Proposition 2.3, when the reporting structure is transitive, for any H, IA ERM with
hypothesis class H is equivalent to IC ERM with hypothesis class Ĥ, in the sense that they yield
the same effective classifier given any sample set, with the same sample complexity. This gives us
a way to translate the hypothesis-class-independent sample complexity bound for IC ERM to IA
ERM, and obtain the following theorem.
Theorem 2.5 (Hypothesis-Class-Independent Sample Complexity Bound for IA ERM). Fix a fea-
ture space X , a population distribution D, a transitive reporting structure →, and a hypothesis
classH. For any ε > 0, δ > 0, given

m = O
(
(dVC(X ,→) + log(1/δ))/ε2

)
iid samples S ∼ Dm, with probability at least 1− δ, any classifier f ∈ H minimizing the strategic
empirical loss on S, i.e., f ∈ argminf ′∈H ̂̀S(f ′), has strategic population loss ̂̀D(f) ≤ ̂̀D(H)+ε.
Moreover, when the hypothesis class H is the null hypothesis class H0, finding any classifier
achieving the same relative loss ε and failure probability δ requires Ω ((dVC(X ,→) + log(1/δ))/ε2)
iid samples.

To develop intuition, consider again the introductory example. As discussed above, there,
X = R+ and the reporting structure→ = ≥ is transitive. Moreover, the intrinsic VC dimension of
→ is dVC(X ,→) = 1. This is because any singleton set is independent, and for any x1 6= x2, either
x1 < x2 or x2 < x1, so {x1, x2} cannot be independent. On the other hand, as argued above, any
classifier f ∈ 2X effectively implements a threshold θf , where f(x) = 1 iff x ≥ θf or x > θf . It
is well-known (see, e.g., [93]) that Θ(log(1/δ)/ε2) samples suffice to learn such a threshold with
relative loss ε and failure probability δ, which coincides with the above sample complexity bound
based on the intrinsic VC dimension.

2.5 Algorithm for Free IC ERM
In this section we present an efficient algorithm, Algorithm 2.1, for free IC ERM. We show be-

low that Algorithm 2.1 does compute an empirical risk minimizer among all incentive-compatible
classifiers.
Theorem 2.6. Algorithm 2.1 finds a classifier f which satisfies

f ∈ argminf ′∈HIC
0
`S(f ′).

2.6 Omitted Proofs
Proof of Theorem 2.2. First observe that for any classifier f ∈ 2X , the strategic population losŝ̀D(f) = `D(f̂), and the strategic empirical loss ̂̀S(f) = `S(f̂). The plan is to apply Theorem 2.1
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Algorithm 2.1: Algorithm for Free IC ERM
Input: A reporting structure→ over feature space X , a sample set S = {(xi, yi)}i ∼ Dm of
size m.
Output: An incentive-compatible classifier f minimizing the empirical loss `S(f) on S.

Let G = (V,E) be a capacitated directed graph, where V = {xi}i∈[m] ∪ {s, t} and E = ∅.
for 1 ≤ i < j ≤ m do

if xi → xj then
Let E ← E ∪ {(xj, xi,∞)}, i.e., add an edge from xj to xi with capacity∞.

end if
end for
for i ∈ [m] do

if yi = 0 then
Let E ← E ∪ {(xi, t, 1)}, i.e., add an edge from xi to t with capacity 1.

else
Let E ← E ∪ {(s, xi, 1)}, i.e., add an edge from s to xi with capacity 1.

end if
end for
Compute an s-t mincut (C,C) on G, where C is the set of vertices on the s side of the cut.
Let f be such that for any x ∈ X , f(x) = 1 iff there exists x′ ∈ C \{s} where x⇒ x′; return f .

to the effective hypothesis class Ĥ. Let

f ∈ argminf ′∈H ̂̀S(f ′) = argminf ′∈H `S(f̂ ′).

We then have
f̂ ∈ argminf ′∈Ĥ `S(f ′).

That is, f̂ is a minimizer of `S in Ĥ. By Theorem 2.1, with m samples, with probability at least
1− δ,

`D(f̂) ≤ `D(Ĥ) + ε = ̂̀D(H).

On the other hand, Theorem 2.1 states that finding such an f̂ in Ĥ with relative loss ε and failure
probability δ requires asymptotically the same number of samples. This conlcudes the proof of the
theorem.

Proof of Theorem 2.3. Theorem 2.3 is a direct corollary of Theorem 2.1 (or Theorem 2.2 which is
more general). Applying Theorem 2.1 with hypothesis classHIC, we immediately obtain that with
m samples, for any

f ∈ argminf ′∈HIC `S(f ′),

with probability 1− δ,
`D(f) ≤ `D(HIC) + ε.
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And moreover, the number of samples is asymptotically tight. On the other hand, since HIC is
incentive-compatible,

argminf ′∈HIC `S(f ′) = argminf ′∈HIC
̂̀
S(f ′),

and ̂̀D(f) ≤ ̂̀D(HIC) + ε.

This concludes the proof.

Proof of Proposition 2.1. For any f ∈ HIC, since f is incentive-compatible, we have

f = f̂ ∈ Ĥ,

and therefore HIC ⊆ Ĥ. On the other hand, by definition, HIC ⊆ H. This implies that HIC ⊆
H ∩ Ĥ.

Proof of Proposition 2.2. First we show dVC(HIC
0 ) ≥ dVC(X ,→). Let S ⊆ X be an independent

subset of X with cardinality dVC(X ,→). Such a subset exists by the definition of dVC(X ,→). We
argue that S can be shattered byHIC

0 . For any T ⊆ S, we construct a classifier fT ∈ HIC
0 such that

for any x ∈ S, fT (x) = 1 ⇐⇒ x ∈ T . Let fT be such that

fT (x) =

{
1, if there exists x′ ∈ T : x⇒ x′

0, otherwise.

We only need to check that fT is incentive-compatible. Suppose otherwise, i.e., there exist x1, x2 ∈
X , such that x1 → x2, fT (x1) = 0, and fT (x2) = 1. It must be the case that for some x3 ∈ T ,
such that x2 ⇒ x3. Then, by definition, we have x1 ⇒ x3, and therefore it should be the case that
fT (x1) = 1, a contradiction.

Now we show dVC(HIC
0 ) ≤ dVC(X ,→). That is, for any subset S ⊆ X where |S| > dVC(X ,→

), S cannot be shattered by HIC
0 . By the definition of dVC(X ,→), S cannot be independent. Let

x, x′ ∈ S be such that x⇒ x′. Furthermore, let

x = x1, x2, . . . , xk−1, xk = x′ ∈ X

be a sequence through which x can reach x′, i.e., for any i ∈ [k − 1], xi → xi+1. We show that for
any incentive-compatible f , it cannot be the case that f(x) = 0 and f(x′) = 1. Suppose otherwise.
Let t ∈ [k − 1] be the largest integer such that f(xt) = 0. t exists since f(x1) = 0 and f(xk) = 1.
Then we have xt → xt+1, but f(xt) = 0 < 1 = f(xt+1), a contradiction. This concludes the proof
of the proposition.

Proof of Theorem 2.4. The theorem is a direct corollary of Theorem 2.3 and Proposition 2.2. Ob-
serve that HIC ⊆ HIC

0 , and dVC(HIC) ≤ dVC(HIC
0 ) = dVC(X ,→). Applying Theorem 2.3, the

number of samples required for IC ERM onH is

O

(
dVC(HIC) + log(1/δ)

ε2

)
= O

(
dVC(X ,→) + log(1/δ)

ε2

)
.

This concludes the proof.
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Proof of Proposition 2.3. Fix any f ∈ H, we show f̂ is incentive-compatible. First observe that
since→ is transitive,

f̂(x) = 1 ⇐⇒ ∃x′ : x→ x′ and f(x′) = 1 ⇐⇒ ∃x′ : x⇒ x′ and f(x′) = 1.

For any x1, x2 ∈ X where x1 → x2, if f̂(x2) = 1, then there exists x′ such that x2 ⇒ x′ and
f(x′) = 1. Then since x1 → x2, we have x1 ⇒ x′, and as a result, f̂(x1) = 1. This immediately
implies the proposition.

Proof of Theorem 2.5. The theorem is a corollary of Theorem 2.4 and Proposition 2.3. By Proposi-
tion 2.3, when→ is transitive, IA ERM with hypothesisH is equivalent to IC ERM with hypothesis
Ĥ. By Theorem 2.4, the number of samples required for the latter is

O

(
dVC(X ,→) + log(1/δ)

ε2

)
.

This concludes the proof.

Proof of Theorem 2.6. First observe that given an incentive-compatible classifier f |S restricted to
{xi}i, one can always extend the classifier by assigning label 1 to x ∈ X iff there exists x′ ∈ {xi}i
where f |S(x′) = 1 and x⇒ x′. Such an extension assigns label one only if incentive-compatibility
is violated otherwise.

Given the above observation, we only need to show that f minimizes the empirical loss among
incentive-compatible classifiers restricted to the sample set S. We argue that each incentive-
compatible classifier f ′ : {xi}i → {0, 1} corresponds bijjectively to a finite capacity s-t cut in
the graph G constructed in Algorithm 2.1. Recall that a classifier f ′ is incentive-compatible (re-
stricted to {xi}i) iff for any i, j ∈ [m],

xi → xj =⇒ f(xi) ≥ f(xj).

Consider the cut (C ′, C ′) corresponding to f ′ defined such that xi ∈ C ′ ⇐⇒ f ′(xi) = 1. Per
the construction in Algorithm 2.1, xi → xj iff there is an edge from xj to xi with infinite capacity,
and f ′(xi) < f ′(xj) iff xi /∈ C ′ and xj ∈ C ′. The condition for f ′ being incentive-compatible is
therefore equivalent to: no infinite capacity edge is cut byC ′. In other words, C ′ has finite capacity.

Now since f found by the algorithm corresponds to a min-cut, it has to be incentive-compatible.
We show below that f also minimizes the empirical loss on S. We rewrite the empirical loss of f ′

in the following way.

`S(f ′) =
1

m

∑
i∈[m]

|f ′(xi)− yi|

=
1

m

∑
i∈[m]:yi=0

f ′(xi) +
1

m

∑
i∈[m]:yi=1

(1− f ′(xi))

=
1

m

 ∑
i∈[m]:yi=0

I[xi ∈ C ′] +
∑

i∈[m]:yi=1

I[xi /∈ C ′]

 .
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Observe that the last line multiplied by m is exactly the capacity of C ′, since for each i where
yi = 0, xi ∈ C ′ iff the edge from s to xi with capacity 1 is cut, and for each i where yi = 1,
xi /∈ C ′ iff the edge from xi to t with capacity 1 is cut. Therefore, minimizing the capacity of
the cut is equivalent to minimizing the empirical loss of f ′ on S. We conclude that f found by
Algorithm 2.1 is in fact an incentive-compatible classifier with minimum empirical loss on S.
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Chapter 3

Automated Mechanism Design for
Classification with Partial Verification

3.1 Introduction

As discussed in previous chapters, agents are often classified into a variety of categories, some
more desirable than others. Loan applicants might be classified in various categories of risk, deter-
mining the interest they would have to pay. University applicants may be classified into categories
such as “rejected,” “wait list,” “regular accept,” and “accept with honors scholarship.” Meanwhile
universities might themselves be classified into categories such as “most competitive,” “highly
competitive,” etc. In Chapter 2, we have primarily focused on the statistical aspect of such clas-
sification problems, i.e., how well a classifier trained on a few samples generalizes to the entire
population. In this chapter, we turn to the computational aspect of the problem. In line with the
language of mechanism design (often considered part of game theory), we assume that each agent
(i.e., the entity being classified) has a type, corresponding to the agent’s true financial situation,
ability as a student, or competitiveness as a university. This type is information that is private to
the agent. In most applications of mechanism design, the type encodes the agent’s preferences.
For example, in an auction, an agent’s type is how much he values the outcome where he wins
the auction. In contrast, in our setting, the type does not encode the agent’s preferences: in the
examples above, typically any agent has the same preferences over outcomes, regardless of the
agent’s true type. Instead, the type is relevant to the objective function of the principal (the entity
doing the classification), who wants to classify the agents into a class that fits their type.

Often, in mechanism design, it is assumed that an agent of any type can report any other type
(e.g., bid any value in an auction), and outcomes are based on these reports. Under this assumption,
our problem would be hopeless: every agent would always simply report whatever type gives the
most favorable outcome, so we could not at all distinguish agents based on their true type. But in
our context this assumption is not sensible: while an agent may be able to take some actions that
affect how its financial situation appears, it will generally not be possible for a person in significant
debt and without a job to successfully imitate a wealthy person with a secure career. This brings us
into the less commonly studied domain of mechanism design with partial verification [51, 103], in
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which not every type can misreport every other type. That is, each type has certain other types that
it can misreport. A standard example in this literature is that it is possible to have arrived later than
one really did, but not possible to have arrived earlier. (In that case, the arrival time is the type.) In
this chapter, however, we are interested in more complex misreporting (in)abilities.

What determines which types can misreport (i.e., successfully imitate) which other types? This
is generally specific to the setting at hand. Zhang et al. [114] consider settings in which different
types produce “samples” (e.g., timely payments, grades, admissions rates, ...) according to dif-
ferent distributions. They characterize which types can distinguish themselves from which other
types in the long run, in a model in which agents can either (1) manipulate these samples before
they are submitted to the principal, by either withholding transforming some of them in limited
ways, or (2) choose the number of costly samples to generate [113, 114, 116]. Such sample-based
settings are discussed in more detail later in Chapters 5, 6, and 7. In this chapter, we will take
as given which types can misreport which other types; this relation may result from applying the
above characterization result, or from some other model.

Our goal is: given the misreporting relation, agents’ preferences, and the principal’s objective,
can we efficiently compute the optimal (single-agent) mechanism/classifier, which assigns each
report to an outcome/class? This is a problem in automated mechanism design [24, 25], where the
goal is to compute the optimal mechanism for the specific setting (outcome space, utility and ob-
jective functions, type distribution, ...) at hand. Quite a bit is already known about the complexity
of the automated mechanism design problem, and with partial verification, the problem is known to
become even harder [5, 64, 65, 103]. The structural advantage that we have here is that, unlike that
earlier work, we are considering settings where all types have the same preferences over outcomes.
This allows us positive results that would otherwise not be available.

3.1.1 Our Results and Techniques

Throughout the chapter, we assume agents have utility functions which they seek to maximize, and
the principal has a cost function which she seeks to minimize.

General vs. truthful mechanisms. We first set out to investigate the problem of automated
mechanism design with partial verification in the most general sense, where there is no restriction
on each type’s utility function. In light of previously known hardness results, although the most
general problem is unlikely to be efficiently solvable, one may still hope to identify maximally
nontrivial special cases for which efficient algorithms exist. In order to determine the boundary
of tractability, our first finding, Theorem 3.1, shows that when the revelation principle does not
hold, it is NP-hard to find an optimal (randomized or deterministic) mechanism even if (1) there
are only 2 outcomes and (2) all types share the same utility function.1 In other words, without
the revelation principle, no efficient algorithm exists even for the minimally nontrivial setting. We

1The revelation principle states that if certain conditions hold on the reporting structure, then it is without loss
of generality to focus on truthful mechanisms, in which agents are always best off revealing their true type. We will
discuss below a necessary and sufficient condition for the revelation principle to hold in our setting.
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therefore focus our attention on cases where the revelation principle holds, or, put in another way,
on finding optimal truthful mechanisms.

General vs. structured utility functions. The above result, as well as prior results on mecha-
nism design with partial verification [5, 64, 65, 103], paints a clear picture of intractability when the
revelation principle does not hold. But prior work also often suggests that this is indeed the bound-
ary of tractability. This is in fact true if we consider optimal randomized truthful mechanisms,
which can be found by solving a linear program with polynomially many variables and constraints
if the number of agents is constant [24]. However, as our second finding (Theorem 3.2) shows, the
case of deterministic mechanisms is totally different — even with 3 outcomes and single-peaked
preferences over outcomes, it is still NP-hard to find an optimal deterministic truthful mechanism
(significantly improving over earlier hardness results for deterministic mechanisms [24, 25]). In
other words, optimal deterministic truthful mechanisms are almost always hard to find whenever
types have different preferences over outcomes. This leads us to what appears to be the only
nontrivial case left, i.e., where all types share the same preference over outcomes. But this case
is important: as discussed above, it in fact nicely captures a number of real-world scenarios of
practical importance, and will be the focus in the rest of our results.

Efficient algorithm for deterministic mechanisms. Our first algorithmic result (Theorem 3.3)
is an efficient algorithm for finding optimal deterministic truthful mechanisms with identical pref-
erences in the presence of partial verification. The algorithm works by building a directed ca-
pacitated graph, where each deterministic truthful mechanism corresponds bijectively to a finite-
capacity s-t cut. The algorithm then finds an s-t min-cut in polynomial time, which corresponds
to a deterministic truthful mechanism with the minimum cost.

Condition for deterministic optimality and faster algorithm for randomized mechanisms.
We then consider randomized mechanisms. We aim to answer the following two natural questions.

• In which cases is there a gap between optimal deterministic and randomized mechanisms,
and how large can this gap be?

• While LP formulations exist for optimal randomized truthful mechanisms in general, is it
possible to design theoretically and/or practically faster algorithms when types share the
same utility function?

The answers to these questions turn out to be closely related.
For the first question, we show that the gap in general can be arbitrarily large (Example 3.1). On

the other hand, there always exists an optimal truthful mechanism that is deterministic whenever
the principal’s cost function is convex with respect to the common utility function (Lemma 3.1).
In order to prove this, we show that without loss of generality, an optimal truthful mechanism
randomizes only between two consecutive outcomes (when sorted by utility) for each type, and
present a way to round any such mechanism into a deterministic truthful mechanism, preserving
the cost in expectation.

For the second question, we give a positive answer, by observing that with randomization, es-
sentially only the convex envelope of the principal’s cost function matters. This implies a reduction
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from finding optimal randomized mechanisms with general costs, to finding optimal randomized
mechanisms with convex costs, and – via our answer to the first question (Lemma 3.1) – to find-
ing optimal deterministic mechanisms with convex costs. As a result, finding optimal randomized
truthful mechanisms is never harder than finding optimal deterministic truthful mechanisms with
convex costs. Combined with our algorithm for the latter problem (Theorem 3.3), this reduction
implies a theoretically and practically faster algorithm for finding optimal randomized truthful
mechanisms when types share the same utility function.

Generalizing to combinatorial costs. With all the intuition developed so far, we then proceed
to a significantly more general setting, where the principal’s cost is a function of the combination
of outcomes for each type, i.e., the principal’s cost function is combinatorial. This further captures
global constraints for the principal, e.g., budget or headcount constraints. We present combinatorial
counterparts of essentially all our results for additive costs in Section 3.3.

3.2 Additive Cost over Types
Consider the classical setting of Bayesian (single-agent) mechanism design, which is as follows.
The agent can have one of many possible types. The agent reports a type to the principal (which
may not be his true type), and then the principal chooses an outcome. The principal does not know
the type of the agent, but she has a prior probability distribution over the agent’s possible types.
The principal has a different cost for each combination of a type and an outcome. The goal of the
principal is to design a mechanism (a mapping from reports to outcomes) to minimize her expected
cost assuming the agent best-responds to (i.e., maximizes his utility under) the mechanism. The
principal aims to minimize her total cost over this population of agents, which is equal to the sum
of her cost over individual agents.

In this section, we focus on the traditional setting where the principal’s cost is additive over
types. In Section 3.3, we generalize our results to broader settings where the principal’s cost
function can be combinatorial (e.g., submodular) over types.

Notation. Let Θ be the agent’s type space, andO the set of outcomes. Let n = |Θ| and m = |O|
be the numbers of types and outcomes respective. Generally, we use i ∈ Θ to index types, and
j ∈ O to index outcomes. Let R+ = [0,∞). We use ui : O → R+ to denote the utility of a type
i agent, and ci : O → R+ to denote the cost of the principal of assigning different outcomes to a
type i agent.

Let R ⊆ Θ×Θ denote all possible ways of misreporting, that is, a type i agent can report type
i′ if and only if (i, i′) ∈ R. We assume each type i can always report truthfully, i.e., (i, i) ∈ R. The
principal specifies a (possibly randomized) mechanism M : Θ → O, which maps reported types
to (distributions over) outcomes. The agent then responds to maximize his expected utility under
M .

Let ri denote the report of type i when the agent best responds:

ri ∈ argmaxi′∈Θ,(i,i′)∈R E[ui(M(i′))].
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Without loss of generality, the principal’s cost function can be scaled so that the prior distribution
over possible types is effectively uniform. The principal’s cost under mechanism M is then given
by

c(M) =
∑
i∈Θ

E [ci (M (ri))]

where both expectations are over the randomness in M . Throughout the chapter, given a set S, we
use ∆(S) to denote the set of all distributions over S.

3.2.1 Hardness without the Revelation Principle
The well-known revelation principle states that when any type can report any other type, there
always exists a truthful direct-revelation mechanism that is optimal for the principal.2 However,
this is not true in the case of partial verification (see, e.g., [51, 65, 103]). In fact, it is known (see
Theorem 4.10 of [65]) that in our setting, the revelation principle holds if and only if the reporting
structure R is transitive, i.e., for any types i1, i2, i3 ∈ Θ,

(i1, i2) ∈ R and (i2, i3) ∈ R =⇒ (i1, i3) ∈ R.3

We begin our investigation by presenting a hardness result, which states that when the revelation
principle does not hold, it is NP-hard to find any optimal mechanism (even in the minimal nontrivial
setting).
Theorem 3.1 (NP-hardness without the Revelation Principle). When partial verification is allowed
and the revelation principle does not hold, it is NP-hard to find an optimal (randomized or deter-
ministic) mechanism, even if there are only 2 outcomes and all types share the same utility function.

We postpone the proof of Theorem 3.1, as well as all other proofs in this section, to Section 3.6.
In light of Theorem 3.1, in the rest of the chapter, we focus on finding optimal truthful direct-
revelation mechanisms. That is, we consider only mechanisms M where for any (i1, i2) ∈ R,

E[ui1(M(i1))] ≥ E[ui1(M(i2))].

3.2.2 General vs. Structured Utility Functions
Following the convention in the literature, we assume agents always break ties by reporting truth-
fully. As a result, for a (possibly randomized) truthful mechanism M , the cost of the principal can

2A direct-revelation mechanism is a mechanism in which agents can only report their type, rather than sending
arbitrary messages. A mechanism is truthful if it is always optimal for agents to report their true types.

3To get some intuition for this characterization, suppose that (i1, i2) ∈ R, (i2, i3) ∈ R, but (i1, i3) /∈ R, and we
would like to accept i2 and i3 but not i1. That is, higher types are better, and each type (except for the top one) can
make itself look a bit, but not much, better than it is. There is no truthful mechanism that achieves what we want: if we
accept a report of i2, we will end up accepting i1 as well because it can misreport i2. On the other hand, if we accept
only i3, then we get what we want, by relying on i2 to non-truthfully report i3 (whereas i1 cannot). Hence, our goal
can be achieved in a non-truthful implementation while it cannot be achieved in a truthful implementation, showing
that the revelation principle does not hold in this case.
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be written as
c(M) =

∑
i∈Θ

E[ci(M(i))].

Our first finding establishes a dichotomy between deterministic and randomized mechanisms when
agents can have arbitrary utility functions. On one hand, it is known that an optimal randomized
mechanism can be found in polynomial time by formulating the problem as a linear program [24].
On the other hand, finding an optimal deterministic mechanism is NP-hard even in an extremely
simple setting as described below.
Theorem 3.2 (NP-hardness with General Utility Functions). When partial verification is allowed,
even when the revelation principle holds, it is NP-hard to find an optimal deterministic mechanism,
even if there are only 3 outcomes and the utility functions are single-peaked (see Section 3.5 for a
definition).

Although Theorem 3.2 establishes hardness for finding optimal deterministic mechanisms in
most nontrivial cases, it leaves the possibility of efficient algorithms when all types have the same
utility function — which, as discussed in the introduction, is the setting we focus on in this chapter.

3.2.3 Finding Optimal Deterministic Mechanisms
In light of the previously mentioned hardness results, for the rest of this section, we focus on the
setting where the revelation principle holds and all types have the same utility function.

We recall and simplify some notations before we state the main result of this section (Theo-
rem 3.3). Let u : O → R+ be the common utility function of all types. Recall that n = |Θ| is the
number of types and m = |O| is the number of outcomes. Let Θ = [n] = {1, . . . , n}. For brevity,
we use O = {o1, . . . , om} ⊆ R+ to encode the utility function u. That is, for all j ∈ [m], oj ∈ R+

is the utility of the agent under the j-th outcome. Without loss of generality, assume o1 = 0, and
oj < oj+1 for all j ∈ [m− 1].

We give an efficient algorithm (Algorithm 3.1) for finding an optimal deterministic mechanism
when partial verification is allowed. Our algorithm first builds a (capacitated) directed graph based
on the principal’s cost function and the reporting structure, then finds an s-t min-cut in the graph,
and then constructs a mechanism based on the found min-cut. The idea is finite-capacity cuts in the
graph constructed correspond bijectively to truthful mechanisms, where the capacity is precisely
the cost of the principal. In particular, we use edges with ∞ capacity to ensure that if one type
gets an outcome, any type that can misreport the former must get at least as good an outcome. See
Figure 3.1 for an illustration of Algorithm 3.1. The following theorem establishes the correctness
and time complexity of Algorithm 3.1.
Theorem 3.3 (Fast Algorithm for Finding Optimal Deterministic Mechanisms). Suppose for any
i ∈ [n] and j ∈ [m], ci(oj) ∈ N. Let W = maxi,j ci(oj). Algorithm 3.1 outputs an optimal
deterministic truthful mechanism in time O(TMinCut(mn,mn

2,W )), where TMinCut(n
′,m′,W ′) is

the time it takes to find an s-t min-cut in a graph with n′ vertices, m′ edges, and maximum capacity
W ′.

We note that Algorithm 3.1 only finds an optimal deterministic mechanism subject to truthful-
ness — when the revelation principle does not hold, Algorithm 3.1 may not find an unconditionally
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Figure 3.1: An example of the graph constructed in Algorithm 3.1. As highlighted in the left
graph, each row corresponds to an outcome and each column corresponds to a type. The horizontal
edges with infinite capacity correspond to the fact that type 2 can misreport as type 1. The right
graph gives a possible s-t min-cut, which corresponds to a mechanism where M(1) = o2, M(2) =
(o3), and M(3) = o3. The horizontal edges make sure that type 1 never gets a more desirable
outcome than type 2, so type 2 never misreports. The cost of the mechanism M is equal to the
value of the min-cut, which is c1(o2) + c2(o3) + c3(o3).

optimal mechanism (and indeed finding that is NP-hard given Theorem 3.1). The same applies for
all our algorithmic results.

3.2.4 Optimality of Deterministic Mechanisms with Convex Costs
In the previous subsection, we showed that when the revelation principle holds and all types have
the same utility function, there is a min-cut-based algorithm (Algorithm 3.1) that finds an optimal
deterministic truthful mechanism.

In this subsection, we identify an important special case where there exists an optimal truthful
mechanism that is deterministic (even when randomized mechanisms are allowed). Consequently,
we have an algorithm (Algorithm 3.1) for finding the optimal truthful mechanism that runs faster
than solving a linear program. More importantly, as we will show in Section 3.2.5, we can es-
sentially reduce the general case to this special case, and consequently obtain an algorithm for
computing the optimal truthful mechanism whose runtime is asymptotically the same as Algo-
rithm 3.1.

We first show (in Example 3.1) that, in general, there can be an arbitrarily large gap between
the cost of the optimal deterministic mechanism and that of the optimal randomized mechanism,
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Algorithm 3.1: Finding an optimal deterministic mechanism.
Input: The set of types Θ, the principal’s cost function {ci}i∈Θ for each type, the set of

outcomes O (which encodes the agents’ common utility function), and the
reporting structure R.

Output: A deterministic truthful mechanism M : Θ→ O minimizing the principal’s cost.
1 Let V ← (Θ×O) ∪ {s, t}, E ← ∅;
2 Replace R with its transitive closure (using the Floyd–Warshall algorithm):
3 for i2, i1, i3 ∈ Θ where (i1, i2) ∈ R and (i2, i3) ∈ R do
4 R← R ∪ {(i1, i3)} ;
5 end
6 for each type i ∈ Θ do
7 E ← E ∪ {(s, (i, o1),∞)} (add an edge from s to (i, o1) with capacity∞) ;
8 for each outcome j ∈ [m− 1] do
9 E ← E ∪ {((i, oj), (i, oj+1), ci(oj))} (add an edge from (i, oj) to (i, oj+1) with

capacity ci(oj));
10 end
11 E ← E ∪ {((i, om), t, ci(om))} (add an edge from (i, om) to t with capacity ci(om));
12 end
13 for each pair of types (i1, i2) where i1 6= i2 and (i1, i2) ∈ R, and each outcome oj ∈ O do
14 E ← E ∪ {((i2, oj), (i1, oj),∞)} (add an edge from (i2, oj) to (i1, oj) with capacity

∞);
15 end
16 Compute an s-t min-cut (S, S) on graph G = (V,E) ;
17 for each type i ∈ Θ do
18 Let M(i) = oj where j = max{j′ ∈ [m] | (i, oj′) ∈ S};
19 end
20 return M ;

even when restricted to truthful mechanisms and when all types share the same utility function.
Example 3.1 (Gap between Deterministic and Randomized Mechanisms). There are 2 types Θ =
{1, 2} and 3 outcomes O = {o1 = 1, o2 = 2, o3 = 3}, which encode the common utility func-
tion. The principal’s cost is given by c1(o1) = c1(o3) = ∞, c1(o2) = 0, c2(o1) = c2(o3) = 0,
and c2(o2) = ∞. The reporting structure R allows any type to report any other type, i.e., R =
{(1, 1), (2, 2), (1, 2), (2, 1)}. Consider first the optimal truthful randomized mechanism, which as
we argue below has cost 0. To make the principal’s cost finite, the optimal truthful mechanism
must assign outcome o2 to type 1 with probability 1, which gives type 1 utility 2. To prevent mis-
reporting, the mechanism must give type 2 the same expected utility. And again, to make the cost
finite, it must never assign outcome o2 to type 2. The unique way to satisfy the above is to assign
to type 2 outcome o1 with probability 1/2, and o3 with probability 1/2.

Now consider any deterministic truthful mechanism. Any truthful mechanism must give both
types the same utility to prevent misreporting. The only way to achieve this deterministically is to
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assign the same outcome to both types. However, all 3 possibilities result in infinite total cost, so
all deterministic truthful mechanisms have cost infinity.

Example 3.1 shows that Algorithm 3.1 in general does not find an (approximately) optimal
truthful mechanism when randomized mechanisms are allowed. In such cases, one has to fall
back to significantly slower algorithms, e.g., solving the straightforward LP formulation of the
problem with mn variables and n2 constraints. It is worth noting that the LP formulation does not
utilize the fact that types share an identical utility function. To address this issue, we identify an
important special case where there does exist an optimal truthful mechanism that is deterministic:
when the principal’s cost is convex in the common utility function. More importantly, as we will
show in Section 3.2.5, we can reduce the problem of finding the optimal randomized mechanism
under general costs to the problem of finding the optimal mechanism with convex costs. First we
formally define the notion of convex costs we use.
Definition 3.1 (Convex Costs). For any i ∈ Θ, let the piecewise linear extension c`i : [o1, om]→ R+

of ci be such that (1) for any x ∈ O, c`i(x) = ci(x), and (2) for any x ∈ [o1, om] \ O,

c`i(x) =
oj+1 − x
oj+1 − oj

· ci(oj) +
x− oj
oj+1 − oj

ci(oj+1),

where j = max{j′ ∈ [m] | oj′ ≤ x}. The principal’s cost function {ci}i∈Θ is convex if for every
i ∈ Θ, the piecewise linear extension c`i of ci is convex.
Lemma 3.1 (Optimality of Deterministic Mechanisms with Convex Costs). When all types share
the same utility function, and the principal’s cost function is convex, there is an optimal truthful
mechanism that is deterministic even with partial verification allowed.

3.2.5 Reducing General Costs to Convex Costs
Lemma 3.1 together with Algorithm 3.1 provides an efficient way for finding optimal truthful
mechanisms with convex costs (even when randomized mechanisms are allowed). One may still
wonder if it is possible to design faster algorithms in general than solving the standard LP for-
mulation, presumably by exploiting the additional structure that the agents share the same utility
function. To this end, we observe that for computing optimal mechanisms, only the convex enve-
lope of the principal’s cost function matters. Given this observation, we show that finding optimal
truthful mechanisms can be reduced very efficiently to finding optimal deterministic mechanisms.

We present Algorithm 3.2, which computes the optimal truthful mechanism and has the same
asymptotic runtime as Algorithm 3.1. Algorithm 3.2 first computes the convex envelope of the
principal’s cost function, and then finds an optimal “deterministic” mechanism by calling Algo-
rithm 3.1 with the same types and outcomes, but replacing the principal’s cost function with its
convex envelope. Algorithm 3.2 then recovers an optimal randomized mechanism from the “deter-
ministic” one, by interpreting each “deterministic” outcome as a convex combination of outcomes
in an optimal way. The following theorem establishes the correctness and time complexity of
Algorithm 3.2.
Theorem 3.4. Algorithm 3.2 finds an optimal (possibly randomized) truthful mechanism, in asymp-
totically the same time as Algorithm 3.1.
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Algorithm 3.2: Finding an optimal (possibly randomized) truthful mechanism.
Input: The set of types Θ, the principal’s cost function {ci}i∈Θ for each type, the set of

outcomes O (which encodes the common utility function), and the reporting
structure R.

Output: A truthful mechanism M : Θ→ O minimizing the principal’s cost.
1 for each type i do
2 Compute the convex envelope c−i : [o1, om]→ R+ of ci, defined such that for any

x ∈ [o1, om],
c−i (x) = min

o∈∆(O),E[o]=x
E[ci(o)].

Let ĉi be c−i restricted to O;
3 end
4 Run Algorithm 3.1 on input (Θ, {ĉi}i∈Θ,O, R). Let M̂ be the resulting deterministic

mechanism;
5 for each type i do
6 M(i)← argmino∈∆(O),E[o]=M̂(i) E[ci(o)] ;
7 end
8 return M ;

Below we give a comparison between the time complexity of our algorithm, Algorithm 3.2, and
that of the LP-based approach.4 The current best algorithm for LP [23] takes time that translates to
Õ(n2.37m2.37 + n4.74)5 in our setting (this is, for example, at least Õ(n3.24m1.5)). The current best
algorithm for s-t min-cut [68] takes time that translates to Õ(n2.5m1.5) in our setting. Moreover, in
a typical classification setting, it is the number of outcomes (corresponding to “accept”, etc.) m that
is small, and the number of types (e.g., “(CS major, highly competitive, female, international, . . . )”,
“(math major, acceptable, male, domestic, . . . )”) n is much larger. In such cases, the improvement
becomes even more significant. Our results are theoretical, but practically, while there are highly
optimized packages for LP, there are also highly optimized packages for max-flow / min-cut that
are still much faster. Last but not least, in many practical settings, the principal has to implement
a deterministic policy (it is hard to imagine college admissions explicitly made random), in which
case our Algorithm 3.1 can be applied while LP generally does not give a solution.

3.3 Generalizing to Combinatorial Costs

In this section, we generalize the problem considered in the previous section, allowing the principal
to have a combinatorial cost function over outcomes for each type. See Section 3.4 for a more
detailed exposition.

4We note that a conclusive comparison is unrealistic since algorithms for both LP and min-cut keep being improved.
5Õ hides a poly-logarithmic factor.
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The combinatorial setting. As before, let Θ = [n] be the set of types, O = {oj}j∈[m] ⊆ R+

be the set of outcomes encoding the common utility function, and R ⊆ Θ × Θ be the reporting
structure. The principal’s cost function c : OΘ → R+ now maps a vector O = (Oi)i of outcomes
for all types to the principal’s cost c(O). This subsumes the additive case, since one can set the
cost function c to be

c((Oi)i) =
∑
i∈Θ

ci(O
i).

Because the cost function is now combinatorial, it matters how the mechanism combines outcomes
for different types. We therefore modify the definition of a randomized mechanism M ∈ ∆(Θ→
O) = ∆(OΘ), so that it allows correlation across different types. The principal’s cost from using
a truthful mechanism M is then c(M) = E[c((M(i))i)]. For type i, the utility from executing
mechanism M is still ui(M) = E[M(i)]. M is truthful iff for any (i1, i2) ∈ R, ui1(M) ≥ ui2(M).
In the rest of the section, we present combinatorial generalizations of all our algorithmic and
structural results given in the previous section.

General vs. submodular cost functions. Combinatorial functions in general are notoriously
hard to optimize, even ignoring incentive issues. To see the difficulty, observe that a combinatorial
cost function c : OΘ → R+ over OΘ generally does not even admit a succinct representation
(e.g., one whose size is polynomial in m and n). It is therefore infeasible to take the entire cost
function as input to an algorithm. To address this issue, the standard assumption in combinatorial
optimization is that algorithms can access the combinatorial function through value queries. That
is, we are given an oracle that can evaluate the combinatorial function c at any point O ∈ OΘ,
obtaining the value c(O) in constant time. For the rest of the chapter, we assume that our algorithm
can access the cost function only through value queries.

Still, in order to minimize an arbitrary combinatorial function, in general one needs Ω(mn)
queries to obtain any nontrivial approximation. Despite that, there exist efficient algorithms for
combinatorial minimization for an important subclass of cost functions, namely submodular func-
tions.
Definition 3.2 (Submodular Functions). For any O1 = (Oi

1)i ∈ OΘ and O2 = (Oi
2)i ∈ OΘ, let

O1 ∧O2 = (min(Oi
1, O

i
2))i and O1 ∨O2 = (max(Oi

1, O
i
2))i.

A combinatorial cost function c : OΘ → R+ is submodular if for any O1, O2 ∈ OΘ,

c(O1) + c(O2) ≥ c(O1 ∧O2) + c(O1 ∨O2).

In the rest of this section, we focus on submodular cost functions. For this important special
case, we give efficient algorithms for finding optimal truthful deterministic / randomized mecha-
nisms, as well as a sufficient condition for the existence of an optimal mechanism that is determin-
istic.

Finding optimal deterministic mechanisms. First we present a polynomial-time combinatorial
algorithm for finding optimal truthful deterministic mechanisms with partial verification, when the
cost function is submodular.
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Theorem 3.5. There exists a polynomial-time algorithm which accesses the cost function via value
queries only, and computes an optimal deterministic truthful mechanism when partial verification
is allowed and the cost function is submodular.

Sufficient condition for the optimality of deterministic mechanisms. Restricted to additive
cost functions, Lemma 3.1 gives a sufficient condition under which there exists an optimal mecha-
nism that is deterministic. We present below a combinatorial version of this structural result when
the outcome space is binary, i.e., when m = 2.
Theorem 3.6 (Optimality of Deterministic Mechanisms with Binary Outcomes). When the out-
come space is binary, i.e., |O| = 2, and the principal’s cost function is submodular, there is an
optimal truthful mechanism that is deterministic, even when partial verification is allowed.

Computing optimal randomized mechanisms. Finally we give an algorithm for finding an
optimal mechanism with arbitrary submodular cost functions.
Theorem 3.7. When the cost function c is submodular and bounded, for any desired additive error
ε > 0, there is an algorithm which finds an ε-approximately optimal (possibly randomized) truthful
mechanism6 in time poly(n,m, log(1/ε)), even if partial verification is allowed.

3.4 Generalizing to Combinatorial Costs

In this section, we generalize the problem considered in the previous section, allowing the principal
to have a combinatorial cost function over outcomes for each type. The problem studied in the
previous section can be viewed as a special case (where the principal’s cost function is additive
over types) of this general problem. Before we proceed to the formal definition of the problem, to
better motivate combinatorial cost functions, consider the following example.
Example 3.2. Suppose in addition to an additive cost function {ci}i∈Θ, the principal has to pay an
overhead cost c0 > 0 as long as any type receives a nontrivial outcome, i.e., if there exists i ∈ Θ,
such that M(i) ∈ O \ {o1}. In such cases, the principal’s overall cost from executing a truthful
deterministic mechanism M can be written as

c(M) =
∑
i∈Θ

ci(M(i)) + c0 · I[∃i ∈ Θ : M(i) 6= o1],

where I[·] is the indicator of a statement.
In the above rather natural example, the principal’s cost is no longer additive over types. As

a result, there is no way to properly formulate Example 3.2 using our previous definitions. We
generalize the principal’s cost function, as well as the definition of mechanisms, as follows.

6An ε-approximately optimal truthful mechanism is a truthful mechanism whose expected cost is at most ε larger
than the minimum possible cost of any truthful mechanism.
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Notation. As before, let Θ = [n] be the set of types,O = {oj}j∈[m] ⊆ R+ be the set of outcomes
encoding the common utility function, and R ⊆ Θ×Θ be the reporting structure. The principal’s
cost function c : OΘ → R+ now maps a vector O = (Oi)i of outcomes for all types to the
principal’s cost c(O). This subsumes the additive case, since one can set the cost function c to be

c((Oi)i) =
∑
i∈Θ

ci(O
i).

Because the cost function is now combinatorial, it matters how the mechanism combines outcomes
for different types. We therefore modify the definition of a (possibly randomized) mechanism
M ∈ ∆(Θ→ O) = ∆(OΘ), such that it allows correlation across different types. The principal’s
cost from executing a truthful mechanism M is then

c(M) = E[c((M(i))i)].

We treat M as a distribution or a random variable over OΘ interchangeably. Note that each type’s
utility is still independent of what other types get. So for type i, the utility from executing mecha-
nism M is still

ui(M) = E[M(i)].

And M is truthful iff for any (i1, i2) ∈ R,

ui1(M) ≥ ui2(M).

In the rest of the section, we present combinatorial generalizations of all our algorithmic and
structural results given in the previous section.

3.4.1 General vs. Submodular Cost Functions

Combinatorial functions in general are notoriously hard to optimize, even ignoring incentive issues.
To see the difficulty, observe that a combinatorial cost function c : OΘ → R+ over OΘ generally
does not even admit a succinct representation (e.g., one whose size is polynomial in m and n). It
is therefore infeasible to take the entire cost function as input to an algorithm.

To address this issue, the standard assumption in combinatorial optimization is that algorithms
can access the combinatorial function through value queries. That is, we are given an oracle
that can evaluate the combinatorial function c at any point O ∈ OΘ, obtaining the value c(O) in
constant time. For the rest of the chapter, we assume that our algorithm can only access the cost
function only through value queries.

Now suppose we are to design an algorithm to minimize an arbitrary combinatorial cost func-
tion, without any additional constraint. That is, given a combinatorial cost function c : OΘ → R+,
we wish to find a point O ∈ OΘ, such that c(O) is minimized overOΘ. The example below shows
that any algorithm which interacts with c only through value queries needs Ω(mn) queries to obtain
any nontrivial approximation to the above seemingly basic problem.
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Example 3.3. Let the cost function c be generated in the following random way. A point O∗ is
drawn from OΘ uniformly at random. c is then constructed such that c(O∗) = 0, and c(O) = 1 for
any O 6= O∗. To minimize c, the algorithm has to find O∗. This is equivalent to guessing a uni-
formly random number among mn numbers. To guess O∗ successfully with constant probability,
one has to make Ω(mn) guesses.

The above issue has been identified in combinatorial optimization since decades ago. Despite
the fact that general combinatorial cost functions are hard to minimize, researchers have developed
efficient algorithms for combinatorial minimization for an important subclass of cost functions,
namely submodular functions, defined below.
Definition 3.3 (Submodular Functions). For any O1 = (Oi

1)i ∈ OΘ and O2 = (Oi
2)i ∈ OΘ, let

O1 ∧O2 = (min(Oi
1, O

i
2))i and O1 ∨O2 = (max(Oi

1, O
i
2))i.

A combinatorial cost function c : OΘ → R+ is submodular, if for any O1, O2 ∈ OΘ,

c(O1) + c(O2) ≥ c(O1 ∧O2) + c(O1 ∨O2).

In the rest of the section, we focus on submodular cost functions. For this important special
case, we give efficient algorithms for finding optimal truthful deterministic/randomized mecha-
nisms, as well as a sufficient condition for the existence of an optimal mechanism that is determin-
istic.

3.4.2 Finding Optimal Deterministic Mechanisms
First we present a polynomial-time combinatorial algorithm for finding optimal truthful determin-
istic mechanisms with partial verification, when the cost function is submodular. The algorithm is
based on the key observation that the space of truthful deterministic mechanisms is a distributive
lattice (defined below in Lemma 3.2). Given this observation, it is known that the problem can be
reduced to minimizing a submodular function without additional constraints, which can be solved
efficiently.
Lemma 3.2. Fix the set of types Θ, the set of outcomes O, and the reporting structure R. Let
T ⊆ OΘ be the space of all possible ways of assigning outcomes to types, such that no type has
the incentive to misreport. That is,

T = {O = (Oi)i ∈ OΘ | ∀(i1, i2) ∈ R, Oi1 ≥ Oi2}.

Then T is a distributive lattice, i.e., T satisfies the following conditions.
• For any O1, O2 ∈ T , O1 ∧O2 ∈ T , and O1 ∨O2 ∈ T .
• For any O1, O2, O3 ∈ T , O1 ∨ (O2 ∧O3) = (O1 ∨O2) ∧ (O1 ∨O3).

Proof. Consider the first property. Fix anyO1, O2 ∈ T , and letO− = O1∧O2, andO+ = O1∨O2.
For any (i1, i2) ∈ R, since Oi1

1 ≥ Oi2
1 and Oi1

2 ≥ Oi2
2 , we have

Oi1
− = min(Oi1

1 , O
i1
2 ) ≥ min(Oi2

1 , O
i2
2 ) = Oi2

− .

36



This implies O− ∈ T . Similarly we may show O+ ∈ T . In other words, the first property holds.
For the second property, simply consider the i-th coordinate for any i ∈ Θ. FixO1, O2, O3 ∈ T ,

we have
max(Oi

1,min(Oi
2, O

i
3)) = min(max(Oi

1, O
i
2),max(Oi

1, O
i
3)).

Since this is true for any i, the second property follows immediately.

Given Lemma 3.2, we can apply the algorithm and the reduction by Schrijver [92] to obtain an
efficient algorithm directly.
Corollary 3.1. There exists a polynomial-time algorithm which accesses the cost function via value
queries only, and computes an optimal deterministic truthful mechanism when partial verification
is allowed and the cost function is submodular.

Proof. Let T be the family of truthful assignments defined in Lemma 3.2. The problem of find-
ing an optimal deterministic truthful mechanism can be equivalently formulated as the following
optimization problem.

min
O∈T

c(O).

This can be solved by applying the reduction in Section 6 of [92]7 to any algorithm for minimizing
submodular functions (e.g., the one given in [92]).

We remark that the algorithm by Schrijver [92] can be applied as well in the classical additive
setting, but due to its generality, is significantly less efficient than Algorithm 3.1.

3.4.3 Sufficient Condition for the Optimality of Deterministic Mechanisms
We have shown in Example 3.1 that the gap between deterministic and randomized mechanisms
can be arbitrarily large. Restricted to additive cost functions, Lemma 3.1 gives a sufficient con-
dition under which there exists an optimal mechanism that is deterministic. We present in this
subsection a combinatorial version of this structural result when the outcome space is binary, i.e.,
when m = 2.
Lemma 3.3 (Optimality of Deterministic Mechanisms with Binary Outcomes). When the outcome
space is binary, i.e., |O| = 2, and the principal’s cost function is submodular, there is an optimal
truthful mechanism that is deterministic, even when partial verification is allowed.

Proof. The overall plan is similar to that of the proof of Lemma 3.1. We begin with a (possibly ran-
domized) optimal truthful mechanismM , and show that without loss of generality, we may assume
its support has some monotone structure. We then round this mechanism, such that the resulting
deterministic mechanism is always truthful, and the expected cost of the rounded mechanism is
equal to the cost of M .

Without loss of generality, suppose O = {0, 1}. Observe that OΘ is isomorphic to 2Θ, so in
the rest of the proof, we interchangeably represent an outcome vector O as a subset of Θ, i.e., the
set

{i ∈ Θ | Oi = 1}.
7Although the reduction presented therein is for ring families, one may check it also works for distributive lattices.
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Let M be any (possibly randomized) optimal truthful mechanism. Below we treat M as a random
variable distributed over OΘ, or interchangeably, a random subset of Θ. For any O ∈ OΘ, let
p(O) = Pr[M = O] be the probability that M assigns outcomes O to types. We further require M
to maximize the following potential function among all optimal truthful mechanisms.

E[|M |2] =
∑
O∈OΘ

p(O) · |O|2.

We argue below that for such an M , no two outcome vectors in the support of M “cross.”
We say two outcome vectors O1 and O2 (represented as sets) cross, if O1 6⊆ O2 and O2 6⊆

O1. Toward a contradiction, suppose O1 and O2 cross, where without loss of generality p(O1) ≥
p(O2) > 0. Let p = p(O2). We show that moving probability mass from O1 and O2 to O1∩O2 and
O1 ∪ O2 simultaneously preserves truthfulness, does not increase the cost, and strictly increases
the potential of M , which contradicts the choice of M .

To be precise, we decrease p(O1) and p(O2) simultaneously by p, and increase p(O1 ∩O2) and
p(O1 ∪ O2) simultaneously by p. To see why truthfulness is preserved, observe that the expected
utility of any type does not change after the modification. The change of the cost can be written as

∆c(M) = p · (c(O1 ∩O2) + c(O1 ∪O2)− c(O1)− c(O2))

≤ p · (c(O1) + c(O2)− c(O1)− c(O2)) (submodularity of c)
= 0,

so the cost does not increase. Finally, the change of the potential is

p · (|O1 ∩O2|2 + |O1 ∪O2|2 − |O1|2 − |O2|2).

It is easy to check the above is strictly positive as long as O1 and O2 cross.
From now on we assume no two outcomes in the support of M cross, or equivalently, the

support of M is a family of nested subsets of Θ. For any r ∈ [0, 1], let Mr ⊆ Θ be such that

Mr = {i ∈ Θ | ui ≥ r}.

Observe that Mr is truthful for any r ∈ [0, 1]. In fact, for any (i1, i2) ∈ R, we always have

i2 ∈Mr =⇒ i1 ∈ R.

Truthfulness then follows.
Consider the random (but not randomized) mechanismMr when r is uniformly distributed over

[0, 1]. We argue below that the expected cost of Mr is precisely that of M . In fact, Mr and M are
even identically distributed. For any i ∈ Θ, let the expected utility of type i be ui = Pr[i ∈ M ].
Without loss of generality, suppose M satisfies ui ≥ ui+1 for any i ∈ [n− 1]. To show Mr and M
are identically distributed, we only need to show that

p(O) > 0 =⇒ ∃i ∈ Θ, O = [i].
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In other words, M only assigns outcomes that are prefixes of Θ. Given this, Mr is the only
distribution that gives each type i expected utility ui simultaneously.

To see why the above claim is true, suppose there exists some O ⊆ Θ where 1 /∈ O and
p(O) > 0. Then since the support of M is a nested family of subsets of Θ, for any i ∈ O,
regardless of the realization of M , we always have

1 ∈M =⇒ i ∈ O.

As a result,

ui =
∑

O′⊆Θ:i∈O′
p(O′) ≥ p(O) +

∑
O′⊆Θ:1∈O′

p(O′) = p(O) + u1 > u1,

a contradiction. This concludes the proof.

We make the following remarks regarding Lemma 3.3.
• The binary outcomes assumption, despite being more restrictive than the general model, still

captures many real-life applications. In particular, it models binary classification problems
where one label is more desirable than the other for all agents. Common examples include
hiring decisions, university admissions, etc. Moreover, such decisions are generally corre-
lated over types (e.g., universities cannot admit too many students) — this is captured by the
principal’s submodular cost function.

• The proof of Lemma 3.3 can be alternatively interpreted in the following way. Without loss
of generality, any optimal mechanism corresponds to a point on the convex envelope of the
principal’s cost function. And for submodular cost functions particularly, this convex enve-
lope happens to coincide with the Lovász extension (see [52]), which can be derandomized
into deterministic mechanisms preserving truthfulness. We will further develop this intuition
in the next result, which is an efficient algorithm for finding optimal truthful mechanisms for
any submodular function.

3.4.4 An Efficient Algorithm for Computing Optimal Randomized Mecha-
nisms

In this subsection, we present an algorithm for finding an optimal mechanism with arbitrary sub-
modular cost functions.

Our algorithm, Algorithm 3.3, again builds on the intuition that for optimal mechanisms, only
the convex envelope of the cost function matters. The problem of finding optimal mechanisms can
therefore be formulated as a convex program. However, unlike in Algorithm 3.2, with submodular
cost functions, it is not clear how one can efficiently evaluate the convex envelope of the cost
function.

To get around this issue, instead of parametrizing by the target utilities, we parametrize the
convex envelope by the marginal probabilities {pi,j}i∈Θ,j∈[m], where pi,j is the probability that type
i gets outcome oj . One of the key ingredients of Algorithm 3.3 is a subroutine (Algorithm 3.4)
which efficiently interprets each point on the convex envelope as a convex combination of integral
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Algorithm 3.3: Finding an optimal mechanism with submodular cost functions.
Input: The set of types Θ, the principal’s submodular cost function c, the set of outcomes

O (which encodes the common utility function), the reporting structure R, and a
precision parameter ε.

Output: An optimal truthful mechanism M ∈ ∆(Θ→ O).
1 Compute an ε-approximately optimal solution p∗i,j to the following convex program using

the ellipsoid method (see, e.g., [15]), and call Algorithm 3.4 with parameters {pi,j} for
evaluating prob(· | {pi,j})

min
∑
O∈OΘ

prob(O | {pi,j}i∈Θ,j∈[m]) · c(O)

s.t.
∑
j∈[m]

pi1,j · oj ≥
∑
j∈[m]

pi2,j · oj ∀(i1, i2) ∈ R

∑
j∈[m]

pi,j = 1 ∀i ∈ Θ

pi,j ≥ 0 ∀i ∈ Θ, j ∈ [m];

2 for each O ∈ OΘ do
3 Pr[M = O]← prob(O | {p∗i,j});
4 end
5 return M ;

points, corresponding to a distribution over combinations of outcomes. In other words, given the
desired marginal probabilities, Algorithm 3.4 finds a randomized truthful mechanism realizing
these marginal probabilities which minimizes the principal’s expected cost.
Theorem 3.8. When the cost function c is submodular and bounded, for any desired additive error
ε > 0, Algorithm 3.3 finds an ε-approximately optimal (possibly randomized) truthful mechanism 8

in time poly(n,m, log(1/ε)), even if partial verification is allowed.

Proof. Consider the program in Algorithm 3.3. Observe there aremn variables, namely {pi,j}, and
O(n2 + mn) linear constraints in the program. In order for the program to be efficiently solvable,
we only need to show the following three claims hold.

• The subroutine for evaluating the convex envelope, Algorithm 3.4, runs in polynomial time.
• The objective is convex in {pi,j}.
• A first-order oracle, which computes a (sub)gradient of the objective function at any point,

can be efficiently implemented. (The ellipsoid method also requires an efficient separation
oracle, which for our program exists straightforwardly, since there are only poly(n,m) linear
constraints.)

8An ε-approximately optimal truthful mechanism is a truthful mechanism whose expected cost is at most ε larger
than the minimum possible cost of any truthful mechanism.
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Algorithm 3.4: Algorithm for interpreting the convex envelope.
Input: Marginal probabilities {pi,j}i,j , where pi,j is the desired probability that type i gets

outcome oj .
Output: A distribution {prob(O | {pi,j})}O∈OΘ over combinations of outcomes.

1 Let prob(O)← 0 for all O ∈ OΘ;
2 while there is some pi,j > 0 do
3 for each i ∈ Θ do
4 ti ← max{j ∈ [m] | pi,j > 0};
5 end
6 δ ← mini pi,ti; prob((ti)i∈[n])← δ;
7 for each i ∈ Θ do
8 pi,ti ← pi,ti − δ;
9 end

10 return {prob(O)}O∈OΘ;
11 end

The second claim and the third claim also imply the correctness of the Algorithm. Below we prove
the three claims.

Consider the first claim. We only need to show that the while-loop at line 2 repeats only
polynomially many times. Consider the following potential function φ.

φ({pi,j}) =
∑
i∈Θ

max{j ∈ [m] | pi,j > 0}.

Before line 2, the value of φ is at most mn. Observe that φ is monotone in {pi,j}, and the latter
never increase during the execution of the loop. Moreover, in each repetition of the loop, φ de-
creases at least by 1. This is because after the update in line 9, for some i ∈ Θ, pi,ti becomes 0,
and as a result, max{j ∈ [m] | pi,j > 0} decreases at least by 1. When φ becomes 0, it must be the
case that pi,j = 0 for any i ∈ Θ, j ∈ [m], so the loop terminates. Therefore the while-loop repeats
at most mn times, which implies the first claim.

Now consider the second claim. We show that in Algorithm 3.4, the output distribution {p(O)}
minimizes the expected cost ∑

O∈OΘ

p(O) · c(O)

among all distributions whose marginals are {pi,j} — this is equivalent to the second claim. We
first prove the following characterization of the output distribution {p(O)}.

Lemma 3.4. The output distribution {p(O)} of Algorithm 3.4 is the only distribution over OΘ

satisfying the following properties.

• {p(O)} induce the input marginal probabilities {pi,j} over type-outcome pairs.
• For any O1, O2 ∈ OΘ, if O1 ∧O2 /∈ {O1, O2}, then either p(O1) = 0 or p(O2) = 0. In other

words, no two combinations of outcomes in the support of {p(O)} cross.

41



Proof. The first bullet point is clear from the construction of {p(O)}. We therefore focus on
the second bullet point. We first show that for any marginal probabilities {pi,j} and distribution
{p′(O)}, if (1) {p′(O)} induce {pi,j} and no two combinations of outcomes in the support of
{p′(O)} cross, then the topmost combination of outcomes Ot, where

Oi
t = max{oj | j ∈ [m], pi,j > 0},

must have probability exactly
p′(Ot) = min

i∈Θ
pi,ti ,

where ti = max{j ∈ [m] | pi,j > 0}.
Let δ = mini∈Θ pi,ti . Observe that p′(Ot) ≤ δ. Suppose toward a contradiction that p′(Ot) < δ.

Since no two combinations of outcomes in the support of {p′(O)} cross, we can order the support
of {p′(O)} as O1, . . . , O`, where ` is the size of the support, such that for any i ∈ [`− 1],

Oi ∧Oi+1 = Oi+1.

Clearly we have Ot ∧O1 = O1. Consider the following two cases.

• Ot 6= O1. In other words, there is some i∗ ∈ Θ, such that Oi∗
t > Oi∗

1 . As a result, for any
k ∈ [`],

Oi∗

k ≤ Oi∗

1 < Oi∗

t ≤ oti∗ .

Then we have
0 < δ ≤ pi∗,ti∗ =

∑
k∈[`]

p′(Ok) · I[Oi∗

k = oti∗ ] = 0,

a contradiction.
• Ot = O1. There is some i∗ ∈ Θ, such that Oi∗

1 > Oi∗
2 . As a result, for any 2 ≤ k ≤ `,

Oi∗

k ≤ Oi∗

2 < Oi∗

1 = oti∗ .

So we have
δ ≤ pi∗,ti∗ =

∑
k∈[`]

p′(Ok) · I[Oi∗

k = oti∗ ] ≤ p′(O1) < δ,

a contradiction.

So in any case, we must have p′(Ot) = δ.
Now observe that the above argument does not depend on the fact that for any i ∈ Θ,

∑
j∈[m] pi,j =

1. Therefore, we can repeatedly apply the characterization of the probability of the topmost com-
bination. That is, we first compute the probability of the topmost combination, and subtract the
marginal probabilities contributed by this topmost combination from {pi,j}. For the new marginal
probabilities, the characterization still applies to the new topmost combination, by which we can
determine the probability of that combination. This is precisely the procedure implemented in
Algorithm 3.4. By repeatedly applying the characterization, we obtain the unique distribution
over OΘ satisfying the conditions of the lemma, which is the output distribution {p(O)} of Algo-
rithm 3.4.
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Given Lemma 3.4, we then consider any distribution {p′(O)}which (1) induces marginal prob-
abilities {pi,j}, (2) minimizes the expected cost, and (3) among all distributions satisfying (1) and
(2), maximizes the potential function w, defined as

w(p′) =
∑
O∈OΘ

p′(O) ·

(∑
i∈Θ

Oi

)2

.

The goal is to show such a distribution {p′(O)} satisfies the conditions of Lemma 3.4, and there-
fore coincides with {p(O)}, the output of Algorithm 3.4. Moreover, such a distribution has the
additional property, that it minimizes the expected cost. In other words, the output distribution of
Algorithm 3.4 minimizes the expected cost, which is equivalent to the second claim at the begin-
ning of the proof.

To achieve the above goal, we only need to show that the distribution {p′(O)} chosen above
has the property, that no two combinations of outcomes in the support of {p′(O)} cross. Suppose
otherwise, i.e., there exist O1, O2 ∈ OΘ, such that O1 ∧O2 /∈ {O1, O2} and p′(O1) > p′(O2) > 0.
Let q = p′(O2). We show that subtracting q from p′(O1) and p′(O2) simultaneously and adding q
to p′(O1 ∧ O2) and p′(O1 ∨ O2) simultaneously (1) preserves the marginal probabilities, (2) does
not increase the expected cost of {p′(O)}, and (3) strictly increases the potential function w, thus
leading to a contradiction. (1) clearly holds. (2) follows from the submodularity of c, i.e.,

q · (c(O1) + c(O2)) ≥ q · (c(O1 ∧O2) + c(O1 ∨O2)).

And finally, (3) follows from elementary calculation, i.e., whenever O1 and O2 cross,(∑
i∈Θ

Oi
1

)2

+

(∑
i∈Θ

Oi
2

)2

<

(∑
i∈Θ

min(Oi
1, O

i
2)

)2

+

(∑
i∈Θ

max(Oi
1, O

i
2)

)2

.

This establishes the second claim.
As for the third claim, i.e., the existence of an efficient first-order oracle, observe that the

distribution {prob(O | {pi,j})} output by Algorithm 3.4 is piecewise linear in {pi,j}. On the other
hand, the objective function is linear in the output distribution, and is therefore piecewise linear
in {pi,j}. This implies that (sub)gradients of the objective function can be easily computed, and
concludes the proof of the theorem.

We make a few remarks regarding Algorithm 3.3.
• In addition to the ellipsoid method, one may also apply gradient-based methods, e.g., pro-

jected gradient descent, to solve the convex program in Algorithm 3.3. Gradient-based meth-
ods generally perform better in practice, and they usually have better dependence on m and
n but worse (polynomial) dependence on 1/ε.

• Observe that Algorithm 3.3 outputs a randomized mechanism such that, in its support, no two
combinations of outcomes cross. Therefore, when restricted to binary outcomes (m = 2),
Lemma 3.3 gives a way to round the randomized mechanism output by Algorithm 3.3 into a
deterministic one. This gives an alternative way (in addition to Corollary 3.1) of computing
optimal deterministic mechanisms restricted to binary outcomes.
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3.5 Omitted Definitions and Remarks in Section 3.2

3.5.1 Single-Peaked Preferences
Below we give a definition of single-peaked preferences.
Definition 3.4. LetO be the space of outcomes, Θ the space of types, and for each i ∈ Θ, ui : O →
R+ the utility function of an agent of type i. {ui}i are single-peaked if there exists an ordering
≺ over O, such that for each type i the following holds: there exists a most preferred outcome oi.
Moreover, for any two outcomes oj1 ≺ oj2 ,

• if oj2 ≺ oi, then ui(oj1) ≤ ui(oj2) ≤ ui(o
i);

• if o∗ ≺ oj1 , then ui(oi) ≥ ui(oj1) ≥ ui(oj2).
In words, the above definition says that the outcomes can be ordered in a line, such that for

each type, there exists a most preferred outcome. Moreover, on both sides of this most preferred
outcome, the closer an outcome is to the most preferred the outcome, the higher the utility is for
that outcome.

3.5.2 Remarks on Algorithm 3.1
We make two remarks regarding Algorithm 3.1.

• For finding an optimal deterministic mechanism, the precise values of the agents’ utility
functions do not matter. Consequently, Algorithm 3.1 works as long as all types order the
outcomes in the same way.

• With minor modifications, Algorithm 3.1 can handle costly misreporting, in which there is
a fixed (non-negative) cost for type i to report as type i′. Partial verification is a special
case of costly misreporting: reporting either costs the agent 0 or∞, and the reporting struc-
ture R is the set of all reporting actions which cost 0. The key modification which allows
Algorithm 3.1 to handle costly misreporting is that the edges used to model the reporting
structure can be diagonal (as opposed to horizontal), where the slope of the edge depends on
each type’s utility function and the cost of misreporting. We will not expand on this in the
current chapter.

3.5.3 Remarks on Lemma 3.1
We make a few remarks regarding Lemma 3.1.

• The proof we present is a combination of several concrete arguments. There is an alterna-
tive relatively high-level, and sometimes more useful, interpretation of the lemma, which is
based on a convex program formulation of the problem. We will make heavy use of this
alternative interpretation in the rest of the chapter, especially when dealing with randomized
mechanisms.

• Throughout the chapter we assume payments are not allowed. One may show that with
payments, there always exists an optimal truthful mechanism that is deterministic, as long
as both agents and the principal value payments linearly. Moreover, there exist relatively
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simple algorithms for computing an optimal mechanism with payments. We will not expand
on this in the current chapter.

3.5.4 Remarks on Algorithm 3.2

We make a few remarks regarding Algorithm 3.2.
• Algorithm 3.2 gives a constructive proof that finding an optimal truthful mechanism is al-

ways no harder than finding an optimal truthful deterministic mechanism with convex costs.
As a result, a faster algorithm for the latter problem would imply a faster algorithm for the
former.

• As a byproduct, Algorithm 3.2 shows that in general, to achieve the minimum cost, it suffices
to randomize only between two outcomes for each type, .

3.6 Omitted Proofs in Section 3.2
Proof of Theorem 3.1. We give a reduction from MinSAT. Fix a MinSAT instance with n variables,
{xi}i∈[n], and m clauses, {Cj}j∈[m], and let `j,k ∈ Cj be the k-th literal in clause Cj . We construct
an AMD instance as follows.

• Create a type for each variable, each literal, and each clause, i.e., Θ = {xi, x+
i , x

−
i }i∈[n] ∪

{Cj}j∈[m].
• There are two possible outcomes,O = {o+, o−}. Moreover, for any type θ ∈ Θ, uθ(o+) = 1

and uθ(o−) = 0.
• The principal’s cost is as follows.

For each literal `, c`(o+) = c`(o
−) = 0.

For each variable xi, cxi(o
+) = 0 and cxi(o

−) = m + 1, so any optimal mechanism
never assigns o− to a variable.
For each clause Cj , cCj(o

+) = 1 and cCj(o
−) = 0, so any optimal mechanism mini-

mizes the number of clauses which get outcome o+.
• The reporting structure R is as follows.

Each literal ` can only report itself.
Each variable xi can report itself and its two literals x+

i and x−i .
Each clause Cj can report itself, all variables, and all literals `j,k ∈ Cj contained in Cj .

Now consider the structure of optimal solutions for the above AMD instance. First observe
that without loss of generality, any optimal solution assigns o+ only to types which report literals.
Moreover, for each variable xi, any optimal solution assigns o+ to exactly one of x+

i and x−i . So
the problem boils down to choosing between the two literals for each variable.

On the other hand, each clause Cj will report any literal that is contained in Cj and assigned
outcome o+, as long as possible. Whenever this happens, the principal incurs cost 1 from this
clause. In other words, the principal incurs cost 1 from a clause iff one of the literals contained in
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the clause is assigned outcome o+, i.e., iff the clause is satisfied. The total cost of the mechanism
is k, where k is the number of clauses satisfied. This encodes precisely the MinSAT instance.

Proof of Theorem 3.2. Consider the following reduction from MinSAT. Fix a MinSAT instance
with n variables, {xi}i∈[n], and m clauses, {Cj}j∈[m], and let `j,k ∈ Cj be the k-th literal in clause
Cj . We construct an AMD instance as follows.

• Create a type for each variable, each literal, and each clause, i.e., Θ = {xi, x+
i , x

−
i }i∈[n] ∪

{Cj}j∈[m].
• There are three possible outcomes, O = {o+, o−, o0}.
• Let N1 >> N2 > m be large (but polynomial in n and m) numbers. The principal’s cost is

as follows.
For each variable xi, cxi(o

+) = cxi(o
−) = 0, and cxi(o

0) = N1. As a result, an optimal
mechanism never assigns o0 to a variable.
For each positive literal `+, c`+(o+) = N2, c`+(o0) = 0, and c`+(o−) = N1. For each
negative literal `−, c`−(o+) = N1, c`−(o0) = 0, and c`−(o−) = N2. We will see later
that for any variable xi, an optimal mechanism assigns precisely one of its literals the
outcome with cost N2, and the other outcome o0 with cost 0.
For each clause Cj , cCj(o

+) = cCj(o
−) = 0, and cCj(o

0) = 1.
• The types’ utility functions are as follows.

For each variable xi, uxi(o
+) = uxi(o

−) = uxi(o
0). Note that the numerical values of

the utility functions do not matter for deterministic mechanisms.
For each positive literal `+, u`+(o+) > u`+(o0) > u`+(o−). For each negative literal
`−, u`−(o+) < u`−(o0) < u`−(o−).
For each clause Cj , uCj(o

0) > uCj(o
+) = uCj(o

−).
• The reporting structure R is as follows.

Each variable xi can only report itself.
Each literal ` can report itself or the variable it corresponds to.
Each clause Cj can report itself, any literal ` ∈ Cj contained in the clause, or the
variable ` corresponds to.

Now consider the structure of optimal deterministic mechanisms. For each variable xi, an
optimal mechanism assigns either o+ or o−. Moreover, for xi’s two literals, if xi is assigned o+

(resp. o−), then the mechanism always assigns x+
i o+ (resp. o0) and x−i o0 (resp. o−). One may

check this is the only way to minimize cost subject to incentive compatibility. So conceptually,
the mechanism chooses exactly one value for each variable, where assigning o0 to x+

i (resp. x−i )
corresponds to choosing value 1 (resp. 0) for xi.

For each clause Cj , if any of the literals contained in Cj is chosen (i.e., is assigned outcome
o0), then to prevent Cj from misreporting that literal, the mechanism must assign Cj outcome o0,
at a cost of 1. This corresponds to the case where the clause is satisfied. Otherwise, if none of
the literals in Cj is chosen, the mechanism assigns either o+ or o− to Cj , at a cost of 0. The total
cost of the mechanism is then nN2 + k, where k is the number of clauses satisfied. This encodes
precisely the MinSAT instance.
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Proof of Theorem 3.3. First consider the runtime of Algorithm 3.1. The bottleneck is finding an s-
tmin-cut on the graphG, which hasmn+2 vertices and at mostmn2 +(m+1)n edges. Therefore,
it is sufficient to show that one can replace the infinite capacities with capacity W + 1.

We first prove that any horizontal edge with capacity W + 1 does not belong to any min-cut.
Suppose in some min-cut, for some j ∈ [m], a horizontal edge from (i1, oj) ∈ S to (i2, oj) /∈ S is
cut. We argue that including all out-neighbors of (i1, oj) through horizontal edges into S strictly
decreases the capacity of the cut. For each of these horizontal out-neighbors, by including it in S,
we decrease the cut value by W + 1 (from one horizontal edge), and possibly incur an additional
cost from the edge between that neighbor and its vertical out-neighbor, whose capacity is at most
W . Because we take the transitive closure of R, the newly included vertices do not have any
horizontal out-neighbor out of S, so the total cost decreases at least by 1. A similar argument
shows that edges leaving S can be replaced to have capacity W + 1 as well.

Now we move on to proving the correctness of Algorithm 3.1. We assume the infinite-capacity
edges still have capacity ∞ (rather than W + 1), which simplifies our argument. Observe that
with infinite capacities, taking the transitive closure of R in Line 3-5 of Algorithm 3.1 makes no
difference. We prove the correctness for the algorithm without this step.

The argument consists of two parts. First we show there is a one-to-one correspondence
between all finite-capacity downward-closed s-t cuts and all deterministic truthful mechanisms,
where the capacity of the cut is the same as the cost of the mechanism. We then show that taking
the downward closure of any cut does not increase its capacity, and as a result, we only need to
consider downward-closed cuts. These two claims together imply the correctness of Algorithm 3.1.

Formally, a cut (S, S) is downward closed, if for any i ∈ Θ and 1 ≤ j1 < j2 ≤ m,

(i, oj2) ∈ S =⇒ (i, oj1) ∈ S.

Fix a downward closed cut (S, S), we construct a mechanism M : Θ → O in the same way as in
Line 17-19 of Algorithm 3.1. That is, for all i ∈ Θ,

M(i) = max{oj′ ∈ O | (i, oj′) ∈ S}.

The one-to-one correspondence follows immediately from the definition of M . We now argue
(S, S) has finite capacity iff M is truthful. Notice that (S, S) has finite capacity iff no horizontal
edge is cut, i.e., iff M(i1) ≥ M(i2) for all (i1, i2) ∈ R, which is precisely the condition for the
truthfulness of M . Moreover, whenever (S, S) has finite capacity, the capacity is equal to the cost
of the truthful mechanism M .

Now we prove the second claim, i.e., taking the downward closure does not increase the ca-
pacity of the cut. We first define the downward closure. Given any s-t cut (S, S), the downward
closure (C(S), C(S)) is defined such that for all i ∈ Θ,

(i, oj) ∈ C(S) ⇐⇒ j ≤ max{j′ ∈ [m] | (i, oj′) ∈ S}.

We show below that the capacity of C(S) is no larger than that of S.
If some horizontal edge is cut in S, then the cut has capacity∞ and the claim is trivial. Sup-

pose no horizontal edge is cut in S. Because the set of vertical edges cut in C(S) is a subset of
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those cut in S, we only need to show that no horizontal edge is cut in C(S). Suppose for con-
tradiction that some horizontal edges are cut in C(S). Let i1, i2 ∈ Θ and j ∈ [m] be such that
e = ((i1, oj), (i2, oj)) is one of the highest horizontal edges being cut in C(S). By the choice of
e, it must be the case that (i1, oj) ∈ S, and since S ⊆ C(S), we have (i2, oj) /∈ S. Therefore, the
same edge e is also cut in S, which leads to a contradiction.

Proof of Lemma 3.1. We prove the lemma by construction. Let M be any (possibly randomized)
optimal truthful mechanism. We construct a deterministic truthful mechanism from M whose cost
is no larger than that of M .

First we show it suffices for M to randomize between only two consecutive outcomes for each
type i. Let pi(oj) be the probability that type i receives outcome oj . Suppose for some type i, there
exist j1, j2 ∈ [m], where j2 − j1 > 1, pi(oj1) > 0, and pi(oj2) > 0. We argue that one can move
probability mass from oj1 and oj2 to oj3 , where j3 = j1 +1 lies between j1 and j2, without violating
truthfulness or increasing the total cost.

Let 0 < α < 1 be such that oj3 = αoj1 + (1 − α)oj2 . Without loss of generality suppose
pi(oj1)/α ≤ pi(oj2)/(1 − α). For brevity let p = pi(oj1). We show that the following operation
achieves the above goal.

• Decrease pi(oj1) by p.
• Decrease pi(oj2) by (1− α) · p/α ≤ pi(oj2).
• Increase pi(oj3) by p/α.

Observe that (1) after the operation, the probabilities of each outcome still sum to 1, and (2) type i
receives exactly the same expected utility. The principal’s cost changes by

p

α
· ci(oj3)− p · ci(oj1)− (1− α) · p

α
· ci(oj2)

=
p

α
· (ci(oj3)− α · ci(oj1)− (1− α) · ci(oj2))

=
p

α
·
(
c`i(oj3)− α · c`i(oj1)− (1− α) · c`i(oj2)

)
(c`i extends ci)

≤ p

α
·
(
c`i(oj3)− c`i(α · oj1 + (1− α) · oj2)

)
(convexity of c`i)

=
p

α
·
(
c`i(oj3)− c`i(oj3)

)
= 0. (oj3 = α · oj1 + (1− α) · oj2)

In other words, the total cost does not increase.
We then apply the above operation in the following way. Fix i, and let j− = min{j | pi(oj) >

0}, and j+ = max{j | pi(oj) > 0}. As long as j+ − j− > 1, apply the operation to i, j− and j+.
Observe that each time we apply the operation, j+ − j− decreases by at least 1, so eventually we
must stop and j+− j− ≤ 1. Performing this for each i yields a mechanism which randomizes only
between two consecutive outcomes for each type, without increasing the total cost. Without loss
of generality, from now on, we assume M has this property.

Now we show there is a way to round M , producing a distribution over deterministic truthful
mechanisms, such that the expected cost of this distribution is precisely the cost of M . As a result,
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there exists one mechanism in the support of the distribution, whose cost is upper bounded by that
of M , which is our desired deterministic truthful mechanism.

For each type i, let ji = min{j | pi(j) > 0} and αi = pi(ji + 1). Note that 0 ≤ αi < 1 for all
i. For any r ∈ [0, 1], let Mr be the deterministic mechanism defined such that for each type i,

Mr(i) =

{
oji+1, r ≤ αi,

oji , otherwise.
.

We first argue that Mr is truthful for any r ∈ [0, 1]. Fix any pair (i1, i2) ∈ R. Given that M itself
is truthful, we proceed by considering the following two cases.

• ji1 > ji2 . In such cases, we always have Mr(i1) ≥ Mr(i2), so i1 has no incentive to report
i2.

• ji1 = ji2 and αi1 ≥ αi2 . For any r ∈ [0, 1], we have

r ≤ αi1 ⇐= r ≤ αi2 .

So again, regardless of r, Mr(i1) ≥Mr(i2).

Applying the above argument to each pair (i1, i2) ∈ R establishes the truthfulness of Mr for any
r ∈ [0, 1].

Now consider the distribution over deterministic mechanisms Mr when r is uniformly dis-
tributed over [0, 1]. We show that the expected cost of Mr is equal to the cost of M :

Er[c(Mr)] =
∑
i∈Θ

(Pr[r ≤ αi] · ci(oji+1) + Pr[r > αi] · ci(oji))

=
∑
i∈Θ

(αi · ci(oji+1) + (1− αi) · ci(oji))

=
∑
i∈Θ

(pi(ji + 1) · ci(oji+1) + pi(ji) · ci(oji))

=
∑
i∈Θ

EM [ci(M(i))]

= c(M),

which concludes the proof.

Proof of Theorem 3.4. We prove the correctness first. Observe that the problem of finding a (ran-
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domized) optimal mechanism can be written as the following linear program.

min
∑

i∈Θ=[n],j∈[m]

pi,j · ci(oj)

subject to ui =
∑
j

pi,j · oj ∀i ∈ Θ

ui1 ≥ ui2 ∀(i1, i2) ∈ R∑
j

pi,j = 1 ∀i ∈ Θ

pi,j ≥ 0 ∀i ∈ Θ, j ∈ [m].

Here, ui is the expected utility of type i, and pi,j is the probability of assigning type i outcome
oj . This is not the most succinct LP formulation of the problem, but it capture the structure of the
problem in a way that is more useful for our analysis.

Now fix {ui}i and consider the optimal choice of {pi,j}i,j . This can be solved separately for
each type i, by considering the following linear program (with the additional constraints that {pi,j}j
are nonnegative and sum up to 1 for all i).

min
∑
j

pi,j · ci(oj)

s.t.
∑
j

pi,j · oj = ui.

This is precisely evaluating the convex envelope c−i of ci at ui ∈ [o1, om]. Consequently, the
problem of finding a (randomized) optimal mechanism can be rewritten as the following convex
program.

min
∑
i∈Θ

c−i (ui)

s.t. ui1 ≤ ui2 , ∀(i1, i2) ∈ R,
ui ∈ [o1, om], ∀i ∈ Θ.

Now observe that the reformulated program cannot distinguish between {ci}i∈Θ and {ĉi}i∈Θ,
where ĉi is c−i restricted to O as in Algorithm 3.2 — the two cost functions simply induce exactly
the same program. Moreover, observe that the newly constructed cost function {ĉi}i∈Θ is convex,
according to Definition 3.1. Given this convexity, Lemma 3.1 implies that there exists a determin-
istic mechanism for {ĉi}i which is optimal. In other words, there exists an optimal solution {ui}i
to the reformulated program in which ui ∈ O for each i ∈ Θ. Algorithm 3.2 finds such a solution
{ui}i by calling Algorithm 3.1.

Now the only problem left is to recover {pi,j}j from ui for each type i. This is done in Line 6 of
Algorithm 3.2. Since the output mechanism M implements {ui}i in an optimal way, it is a truthful
mechanism that minimizes the principal’s cost. This establishes the correctness of Algorithm 3.2.

Now we consider the time complexity. Compared to Algorithm 3.1, the additional steps in
Algorithm 3.2 include (1) computing {ĉi}i in Line 2, and (2) interpreting M̂(i) as an optimal
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convex combination of outcomes in Line 6. We will show that both operations can be done in time
O(mn), i.e., linear in the size of the input. The time complexity of Algorithm 3.2 then follows
immediately.

For computing the convex envelope of ci, one may use the classical algorithm by Andrew [2],
which scans O from left to right, and maintains a stack containing the partial convex envelope of
ci on {o1, . . . , oj} for every j ∈ [m]. The algorithm runs in time O(m).

Once we know {ĉi}, to find an optimal convex combination for a target utility ui, we first find in
timeO(m) the largest integer ` ∈ [m] such that o` ≤ ui and ci(o`) = ĉi(o`), and the smallest integer
r ∈ [m] such that or ≥ ui and ci(or) = ĉi(or). If ` = r, then we output o` = or. Otherwise, there is
a unique α ∈ (0, 1) such that randomizing between o` and or gives expectation α ·o`+(1−α)·or =
ui. The convex envelope is linear between ol and or, and hence α ·ci(o`)+(1−α) ·ci(or) = ĉi(ui).
Then, we can set M(i) to o` with probability α and to or with probability (1− α). Performing the
above for every type i takes O(mn) time.
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Chapter 4

Classification with Strategically Withheld
Data

4.1 Introduction

In Chapters 2 and 3, we have established a series of theoretical results for strategic classification.
Now we investigate the applied aspects of strategic classification in this chapter. Consider the
following setting: Applicants to most colleges in the US are required to submit their scores for at
least one of the SAT and the ACT. Both tests are more or less equally popular, with close to two
million taking each in 2016 [1]. Applicants usually take one of these two tests – whichever works
to their advantage.1 However, given the growing competitiveness of college admissions, many
applicants now take both tests and then strategically decide whether to drop one of the scores (if
they think it will hurt their application) or report both.2 The key issue here is that it is impossible
to distinguish between an applicant who takes both tests but reports only one, and an applicant that
takes only one test—for example because the applicant simply took the one required by her school,
the dates for the other test did not work with her schedule, or for other reasons that are not strategic
in nature.3

Say a college wants to take a principled machine learning approach to making admission de-
cisions based on the scores from these two tests. For simplicity, assume no other information is
available. Assume that the college has enough historical examples that contain the scores of in-
dividuals (on whichever tests are taken, truthfully reported) along with the corresponding ideal
(binary) admission decisions.4 Based on this data, the college has to choose a decision function
that determines which future applicants are accepted. If this function is known to the applicants,
they are bound to strategize and use their knowledge of the decision function to decide the scores
they report.4 How can the classifier be trained to handle strategic reporting of scores at prediction
time?

1https://www.princetonreview.com/college/sat-act
2https://blog.collegevine.com/should-you-submit-your-sat-act-scores/
3https://blog.prepscholar.com/do-you-need-to-take-both-the-act-and-sat
4We make these assumptions more generally throughout the chapter.
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To see the intricacies of this problem, let us consider a simple example.
Example 4.1. Say the scores for each of the two tests (SAT and ACT) take one of two values:
h (for high) or l (for low). Let ∗ denote a missing value. Then there are eight possible inputs
(excluding (∗, ∗) since at least one score is required): (h, h), (h, l), (l, h), (l, l), (h, ∗), (∗, h), (l, ∗)
and (∗, l). Assume the natural distribution (without any withholding) over these inputs is known,
and so are the conditional probabilities of the label Y ∈ {0, 1}, as shown below:

X (h, h) (h, l) (l, h) (l, l) (h, ∗) (∗, h) (l, ∗) (∗, l)
Pr(X) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Pr(Y = 1 | X) 0.9 0.7 0.3 0.1 0.6 0.6 0.2 0.2
Pr(Y = 0 | X) 0.1 0.3 0.7 0.9 0.4 0.4 0.8 0.8

Table 4.1: True distribution of inputs and targets

Assume Y = 1 is the more desirable ”accept” decision. Then, ideally, we would like to predict
Ŷ = 1 whenever X ∈ {(h, h), (h, l), (h, ∗), (∗, h)}. However, the strategic reporting of scores at
prediction time effectively means, for example, that an input (∗, h) cannot be assigned the accept
decision of Ŷ = 1 unless the same is done for (l, h) as well; otherwise, someone with (l, h) would
simply not report the first test, thereby misreporting (∗, h) and being accepted. Taking this into
account, the classifier with minimum error is given by Ŷ = 1 wheneverX ∈ {(h, h), (h, l), (h, ∗)}.

There are many other settings where a similar problem arises. Many law schools now allow
applicants to choose between the GRE and the traditional LSAT.5 Recently, as a result of the
COVID-19 pandemic, universities have implemented optional pass/fail policies, where students
can choose to take some or all of their courses for pass/fail credit, as opposed to a standard letter
grade that influences their GPA. They are often able to decide the status after already knowing
their performance in the course. For credit scoring, some individuals might not report some of
their information, especially if it is not mandatory by law [44].

The ability of strategic agents to withhold some of their features at prediction time poses a
challenge only when the data used to train the classifier has some naturally missing components to
begin with. For if not, the principal – e.g., the entity deciding on admissions – can reject all agents
that withhold any of their features, thereby forcing them to reveal all features. We focus on how a
principal can best train classifiers that are robust even when there is strategic withholding of data
by agents. Our methods produce classifiers that eliminate the incentive for agents to withhold data.

Our contributions We now describe the key questions we are facing, and how we answer them.
Our model is described formally in Section 4.2. All proofs are defered to the end of the chapter.

If the true input distribution is known, can we compute the optimal classifier? (Section 4.3)
We answer this question in the affirmative by showing that the problem of computing the optimal
classifier (Theorem 4.1) in this setting reduces to the classical Min-cut problem [29]. This analysis
gives us the MINCUT classifier (a special case of the general algorithm presented in Chapter 3),
which can be computed on the empirical distribution, estimated using whatever data is available.
However, since it can potentially give complex decision boundaries, it might not generalize well.

5https://www.ets.org/gre/revised_general/about/law/
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Are there simpler classifiers that are robust to strategic withholding of features? (Section 4.4)
We first characterize the structure of classifiers that are “truthful”, i.e., give no incentive to strate-
gically hide features at prediction time (Theorem 4.2). Using this characterization, we devise a
hill-climbing procedure (HC) to train a hierarchical ensemble of out-of-the-box classifiers and
show that the procedure converges (Theorem 4.4) as long as we have black-box access to an ag-
nostic learning oracle. We also analytically bound the generalization error of HC (Theorem 4.3).
The ensemble of HC can be populated with any of the commonly used classifiers such as logistic
regression, ANNs, etc.

Another truthful classifier we present is a modification of Logistic Regression. This method,
called IC-LR (Incentive Compatible Logistic Regression), works by encoding all features with
positive values, and using positive regression coefficients – whereby it is in every agent’s best
interest to report all features truthfully. IC-LR uses Projected Gradient Descent for its training.
The advantage of this method is that it can be directly to a large number of features.

How do our methods perform on real data sets? (Section 4.6) We conduct experiments on
several real-world data sets to test the performance of our methods, comparing them to each other,
as well as to other methods that handle missing data but ignore the strategic aspect of the problem.
We see that our methods perform well overall, and uncover some interesting insights on their
relative performance:

1. When the number of features is small, HC is the most reliable across the board.

2. When the number of features is small, and many of them are discrete/categorical (or suitably
discretized), MINCUT and IC-LR perform better.

3. If a large number of features must be used, IC-LR gives the best performance, although HC
performs reasonably well with some simple feature selection techniques.

4.2 Preliminaries
Model with strategically withheld features: We have an input space X , a label space Y =
{0, 1}, and a distribution D over X × Y which models the population. A classifier f : X → Y
maps a combination of features to a label. Let F = [k] = {1, . . . , k} be the set of features, each
of which a data point may or may not have. For x ∈ X , let xi denote the value of its i-th feature
(xi = ∗ if x does not have feature i ∈ [k]). For any S ⊆ [k], define x|S to be the projection of x
onto S (i.e., retain features in S and drop those not in S):

(x|S)i =

{
xi, if i ∈ S
∗, otherwise.

We assume that data can be strategically manipulated at prediction (test) time in the following
way: an agent whose true data point is x can report any other data point x′ such that x|S = x′ for
some S ⊆ [k]. We use→ to denote the relation between any such pair x, x′ (x → x′ ⇐⇒ ∃S ⊆
[k] : x|S = x′). Note that→ is transitive, i.e., for any x1, x2, x3 ∈ X , x1 → x2 and x2 → x3 =⇒
x1 → x3.
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We assume agents prefer label 1 to 0: in response to a classifier f , an agent with data point
x will always withhold 6 features to receive label 1 if possible, i.e., the agent will report x′ ∈
argmaxx′′:x→x′′ f(x′′). Incorporating such strategic behavior into the loss of a classifier f , we get

`D(f) = Pr
(x,y)∼D

[
y 6= max

x′:x→x′
f(x′)

]
.

Truthful classifiers We will also be interested in truthful classifiers, which provably eliminate
incentives for such strategic manipulation. A classifier f is truthful if for any x, x′ ∈ X where
x → x′, f(x) ≥ f(x′). In other words, not withholding any features is always an optimal way to
respond to a truthful classifier. As a result, the loss of any truthful classifier f in the presence of
strategically withheld features has the standard form: `D(f) = Pr(x,y)∼D[f(x) 6= y].

Note that the so-called Revelation Principle – which states that in the presence of strategic
behavior, any classifier f is equivalent to a truthful classifier f ′ – holds in this case because the
reporting structure is transitive.7 In other words, we are guaranteed that, for any classifier f , there
exists a truthful classifier f ′, such that for any x ∈ X , maxx′:x→x′ f(x′) = f ′(x). Therefore, we
focus on truthful classifiers in our model, without loss of generality.

4.3 The MINCUT Classifier
We first present a method for computing an optimal classifier when the input distribution is fully
known. Assuming X is finite, our goal is to characterize a classifier f ∗ which minimizes the loss
`D(.), for a known input distribution D. As shorthand, define, for all x ∈ X ,
Definition 4.1. D+(x) := Pr(x′,y′)∼D[x′ = x ∧ y′ = 1],
D−(x) := Pr(x′,y′)∼D[x′ = x ∧ y′ = 0].

The basic idea here is simple: to partition X into two sides, one labeled 1 and the other 0,
where the error accrued for each x ∈ X is given by D−(x) or D+(x), according as x is labeled 1
or 0. Such a partition should crucially respect the constraints imposed by the strategic behavior of
agents : if x→ x′, then either x is labeled 1 or x′ is labeled 0.
Definition 4.2. Given X and D, let G(D,X ) be a directed capacitated graph with vertices V =
X ∪ {s, t}, where the edges E and edge capacities u are defined as follows:

• For each x ∈ X , there are edges (s, x) and (x, t) in E, with capacities u(s, x) = D−(x) and
u(x, t) = D+(x).

• For all pairs x, x′ ∈ X such that x → x′, there is an edge (x, x′) ∈ E with capacity
u(x, x′) =∞.

In terms of the graph defined above, computing the optimal classifier f ∗ we seek is equivalent
to finding a minimum s-t cut on G(D,X ). The intuition is that the edges from s and to t reflect the
value gained from labeling an example 0 or 1, respectively; one of the edges must be cut, reflecting

6In practice, f might not be perfectly known, and agents might not be able to best respond. This problem does not
arise for our methods, since they are truthul. For other classifiers, their accuracy may go up or down if agents fail to
best-respond; but the assumption that agents best-respond is common in many such contexts.

7More details, including a formal proof, can be found in the Supplement of [66].
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the loss of not assigning it to the corresponding side. Moreover, if x→ x′, then the corresponding
edge with infinite capacity prevents the assigning of 0 to x and 1 to x′.
Theorem 4.1. If (S, S̄) is a minimum s-t cut of G(D,X ) (where S is on the same side as s), then
for the classifier f ∗(x) := 1(x ∈ S̄), we have `D(f ∗) = minf `D(f).

We note that, consequently, the optimal classifier can be computed in poly(|X |) time. In prac-
tice, it is natural to expect that we do not know D exactly, but have a finite number of samples
from it. A more practical option is to apply Theorem 4.1 to the empirical distribution induced
by the samples observed, and hope for the classifier computed from that to generalize to the true
population distribution D.

Implementing MINCUT Given a set X̂ of m i.i.d. samples from D, let D̂ be the corresponding
empirical distribution over X̂ , and X̄ := X̂ ∪ {x′ : x′ → x,∃x ∈ X̂}. The MINCUT classifier is
then obtained by applying Theorem 4.1 to G(D̂, X̂ ), and extending it to X̄ as and when required.
Here, note that MINCUT runs in time poly(m) (and not poly(|X |)), since G(D̂, X̂ ) has m nodes,
and checking if a test point is in X̄ takes poly(m) time.

In light of traditional wisdom, the smaller m is relative to X , the larger the generalization error
will be. While not attempting a theoretical analysis in this regard, we note that when X is large,
the generalization error can be extremely large (see Example 2 in the Supplement of [66]). The
reason for this is two-fold:

1. MINCUT can give complicated decision boundaries.

2. MINCUT is indecisive on samples not in X̄ .8

Therefore, a suitable discretization of features is sometimes useful (see Section 4.6). Note that
MINCUT is truthful, by virtue of the infinite capacity edges in Definition 4.2.

4.4 Truthful Classifiers and HILL-CLIMBING

The other drawback of MINCUT, related to the issue of generalization just discussed, is that it can
be hard to interpret meaningfully in a practical setting. In this section, we devise a simpler alterna-
tive called HILL-CLIMBING. To help introduce this algorithm, we first present a characterization
of truthful classifiers in our setting, since we can limit our focus to them without loss of generality
(as discussed in Section 4.2). For shorthand, we use the following definition:
Definition 4.3 (F ′-classifier). For a subset of features F ′ ⊆ F , a classifier f is said to be an F ′-
classifier if for all x ∈ X , we have f(x) = f(x|F ′), and if there exists i ∈ F ′ such that xi = ∗,
then f(x) = 0.

In other words, an F ′-classifier depends only on the features in F ′, rejecting all x where any of
these is empty. We collect many such classifiers into an ensemble as follows:
Definition 4.4 (MAX Ensemble). For a collection of classifiers C = {fj}, its MAX Ensemble
classifier is given by MAXC(.) := maxj fj(.).

8This is more likely to happen when using a large number of features.
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This is equivalent to getting each agent to pick the most favorable classifier from among those
in {fj}. Now we have the following characterization of truthful classifiers:
Theorem 4.2. A classifier f is truthful iff f(.) = MAXC(.) for a collection of classifiers C = {fj}
such that, for some {Fj} ⊆ 2F , each fj is an Fj-classifier .

For any truthful classifier f , we seek to bound the gap between its population loss `D(f) and
its empirical loss on samples in X̂ defined by `X̂ (f) := 1

m

∑
i∈[m] |f(xi) − yi|. Before stating a

theorem to this end, we define the following entities: Let H be a base hypothesis space over X ,
and n ∈ {1, . . . , 2k} be a parameter. Define d := dVC(H), the VC dimension of H, and H̄ is the
set of all classifiers that can be written as the MAX Ensemble of n classifiers inH.
Theorem 4.3. Let X̂ = {(xi, yi)}i∈[m] be m i.i.d. samples from D. For any f ∈ H̄, for any δ > 0,

with probability at least 1− δ, we have `D(f) ≤ `X̂ (f) +O

(√
dn·log dn·logm+log(1/δ)

m

)
.

It is easy to see that for any of the commonly used hypothesis spaces – sayH consists of linear
hypotheses – if a truthful classifier f is in H, then so are the components of the MAX Ensemble
version of f as in Theorem 4.2. We have, however, stated Theorem 4.3 in slightly more general
terms.

The HILL-CLIMBING classifier We now present a hill-climbing approach with provable conver-
gence and generalization guarantees. The HILL-CLIMBING classifier (henceforth HC) is of the
same form as given by the characterization of truthful classifiers in Theorem 4.2.9 Intuitively, the
approach works by considering a hierarchy of classifiers, organized by the features involved. For
example, consider a setting with k = 3 features. We make a choice as to what classifiers we use
— say f1 for input of the form (x1, ∗, ∗), f2 for input of the form (x1, x2, ∗), and f3 for input of
the form (x1, x2, x3). Any agent with features 1 and 2 (but not 3), for example, should be able to
report both features so as to be classified by f2, or feature 2 to be classified by f1 instead. So in
effect, assuming full knowledge of the classifiers, each agent can check all of the classifiers and
choose the most favorable one. Without loss of generality, we assume that when a data point does
not have all the features required by a classifier, it is automatically rejected.

In short, HC (defined formally in Algorithm 4.1) works as follows: first choose a hypothesis
space H, in order for Theorem 4.3 to apply. Then select n subsets of F (where n is a parameter),
say F1, F2, . . . , Fn. For each Fj , we learn a Fj-classifier, say fj , from among those in H . Start
by initializing these classifiers to any suitable {f 0

1 , . . . , f
0
n}. In each iterative step, each of the

subclassifiers is updated to minimize the empirical loss on the samples that are rejected by all
other classifiers. We next show that such an update procedure always converges. To do so, as
far as our theoretical analysis goes, we assume we have black-box access to an agnostic learning
oracle (Line 6 in Algorithm 4.1). After convergence, the HC classifier is obtained as the MAX

Ensemble of these classifiers. The generalization guarantee of Theorem 4.3 applies directly to the
HC classifier.
Theorem 4.4. Algorithm 4.1 converges.

9And, therefore, is truthful, and inherits Theorem 4.3.
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Algorithm 4.1: HILL-CLIMBING (HC) Classifier

Input: data set X̂ = {(xi, yi)}i∈[m], n subsets F1, F2, . . . , Fn of F.
Initialize: t← 0, {f 0

1 , . . . , f
0
n}.

while ∆ > 0 do
for i = 1, 2, . . . , n do
Si ← {(x, y) ∈ X̂ : f tj (x|Fj) = 0, ∀j 6= i}.
f t+1
i = argminf∈H

∑
(x,y)∈Si |f(x|Fi)− y|.

end for
f ∗ ← MAX{f t+1

1 ,...,f t+1
n }; `t = `X̂ (f ∗)

∆← `t − `t−1; t← t+ 1
end while
Return: f ∗.

Connection with MINCUT The HC formulation given above can be thought of as a less com-
plicated version of MINCUT: some of the edge constraints are ignored with respect to learning
the individual classifiers, and are instead factored in via the MAX function. Say F1 ⊂ F2. For
some x, it is possible that f1(x|F1) = 1 and f2(x|F1) = 0. In other words, the individual classifiers
could violate the MINCUT constraints, in order to learn classification functions that generalize well
individually, and also collectively thanks to the combined HC training procedure.

Implementation The set of classifiers {f1, f2, . . . , fn} in HC can be populated with any stan-
dard out-of-the-box methods such as logistic regression or neural networks, the choice of which
can influence the performance of f . In Section 4.6, we test HC with a few such options. The
assumption of having access to an agnostic learning oracle does not play a crucial role in practice,
with standard training methods performing well enough to ensure convergence.

Also, HC will converge in at most m (number of training examples) iterations, because in each
iteration the number of correctly classified examples increases by at least one. (An iteration may
need to train n individual classifiers.) This also means there is no difference between checking
whether ∆ > 0 or ∆ ≥ 1/m. In our experiments, we run HC using ∆ ≥ 10−4, and convergence is
achieved pretty quickly (see the Supplement of [66] for exact details).

Choosing subsets Note that we are free to choose any F1, F2, . . . , Fn to define HC. Its general-
ization (via Theorem 4.3), will depend on the choice of n. As more and more subsets of features
are included (and further binning them based on their values), HC starts behaving more and more
like MINCUT. In addition, using a large number of subsets increases the computational complexity
of HC. In practice, therefore, the number of subsets must be limited somehow – we find that some
simple strategies like the following work reasonably well: (a) selecting a few valuable features and
taking all subsets of those features, (b) taking all subsets of size smaller than a fixed number k,
say k = 2. In many practical situations, a few features (possibly putting their values in just a few
bins) are often enough to get close to optimal accuracy, also improving interpretability (e.g., see
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Wang and Rudin [101] or Jung et al. [62]) The question of devising a more nuanced algorithm for
selecting these subsets merits a separate investigation, and we leave this to future work.

4.5 Incentive-Compatible Logistic Regression
As we just mentioned, it is challenging to directly apply HC and MINCUT to a large number of
features. As we will see, we can address this challenge in various ways to still get very strong per-
formance with HC. Moreover, HC enjoys remarkable generality, generalization and convergence
guarantees. Nevertheless, we would like to have an algorithm that tries to make use of all the
available features, while still being truthful. In this section, we present such an approach, which,
as we show later in Section 4.6, indeed performs comparably to – and in some cases better than –
MINCUT and HC.

Below we present a simple and truthful learning algorithm, Incentive-Compatible Logistic Re-
gression (IC-LR), which is a truthful variant of classical gradient-based algorithms for logistic
regression. Recall that in logistic regression, the goal is to learn a set of coefficients {βi}, one for
each feature i ∈ F , as well as an intercept β0, such that for each data point (x, y), the predicted
label ŷ given by

ŷ = 1

[
σ(β0 +

∑
i∈F

xi · βi) ≥ 0.5

]
fits y as well as possible, where σ(t) = 1/(1 + e−t) is the logistic function. Roughly speaking,
IC-LR. (formally defined in Algorithm 4.2) works by restricting the coefficients {βi} in such a
way that dropping a feature (i.e., setting xi to 0) can never make the predicted label larger. If,
without loss of generality, all feature values xi are nonnegative (or suitably translated), then this is
equivalent to: for each feature i ∈ F , the coefficient βi ≥ 0. IC-LR. enforces this nonnegativity
constraint throughout the training procedure, by requiring a projection step after each gradient step,
which projects the coefficients to the feasible nonnegative region by setting any negative coefficient
to 0 (equivalently, an `1 projection).

One potential issue with IC-LR is the following: if a certain feature xi ≥ 0 is negatively corre-
lated with the positive classification label, then IC-LR is forced to ignore it (since it is constrained
to use positive coefficients). To make good use of this feature, we can include an inverted copy
x′i = λ−xi (where λ is chosen such that x′i ≥ 0). We could also choose an apt discretization of such
features (using cross-validation) and translate the discretized bins into separate binary variables.
Such a discretization can account for more complex forms of correlation, e.g., a certain feature’s
being too high or too low me makes the positive label likelier. In practice, we find that the latter
method does better. If such transformations are undesirable, perhaps for reasons of complexity or
interpretability, HC methods are a safer bet.

4.6 Evaluation
In this section, we show that, when strategic withholding is at play, MINCUT, HC and IC-LR
perform well and provide a significant advantage over several out-of-the-box counterparts (that do
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Algorithm 4.2: Incentive-Compatible Logistic Regression

Input: data set X̂ = {(x, y)}, learning rate {ηt}, δ ≥ 0.
Initialize: t← 0, {β0, β1, . . . , βk}.
while ∆ > δ do
gi ← 0 for all i ∈ {0, 1, . . . , k}
for (x, y) ∈ X̂ do
g0 ← g0 + σ

(
β0 +

∑
i∈F xi · βi

)
− y

for i ∈ F do
gi ← gi + (σ

(
β0 +

∑
i∈F xi · βi

)
− y) · xi

end for
end for
∀i ∈ {0, 1, . . . , k}, βi ← max{βi − ηt · gi, 0}
f ∗(x) := 1

(
σ
(
β0 +

∑
i∈F βi · xi

)
≥ 0.5

)
`t = `X̂ (f ∗); ∆← `t − `t−1; t← t+ 1

end while
Return: f ∗.

not account for strategic behavior).

Datasets Four credit approval datasets are obtained from the UCI repository [37], one each from
Australia, Germany, Poland and Taiwan. As is common for credit approval datasets, they are
imbalanced to various degrees. In order to demonstrate the performance of classifiers in a standard,
controlled setting, we balance them by random undersampling. There is a dedicated community
[18] that looks at the issue of imbalanced learning. We do not delve into these issues in this chapter,
and evaluate our methods on both balanced and imbalanced datasets (see the Supplement of [66]
for the latter). In addition, to demonstrate the challenge of high-dimensional data imposed on some
of the classification methods, the experiments are run on the datasets (a) restricted to 4 features,10

and (b) with all available features. The basic characteristics of the datasets are summarized in
Table 4.2 – note that there is enough variation in terms of the types of features present. We then
randomly remove a fraction ε = 0, 0.1, . . . , 0.5 of all feature values in each dataset to simulate data
that is missing “naturally” – i.e., not due to strategic withholding.

Testing We test all methods under two ways of reporting: “truthful”, i.e., all features are reported
as is, and “strategic”, i.e., some features might be withheld if it leads to a better outcome. We
measure the test accuracy of each classifier, averaged over N=100 runs, with randomness over the
undersampling and the data that is randomly chosen to be missing, to simulate data missing for
non-strategic reasons. Other metrics, and details about implementing and training the classifiers,
are discussed in the Supplement of [66]. It is important to note that for testing any method, we have
to, in effect, compute the best response of each data point toward the classifier. Since the methods

10According to ANOVA F-value evaluated before dropping any feature values.
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Data set Size
Total # of
features

Size after
balancing

Features after
restriction

Australia 690 15 614 2 num., 2 cat.
Germany 1000 20 600 1 num., 3 cat.
Poland 5910 64 820 4 num.
Taiwan 30,000 23 13,272 4 ordinal

Table 4.2: Data set summary statistics (num. = numerical, cat. = categorical)

we propose are truthful, this is a trivial task. But for other methods, this might not be easy, thereby
limiting what baselines can be used.

Classifiers We evaluate our proposed methods, MINCUT, HC with logistic regression (HC (LR))
and neural networks (HC (ANN)) as subclassifiers, and incentive-compatible logistic regression
(IC-LR), against several baseline methods.

First, they will be compared against three out-of-the-box baseline classifiers: logistic regression
(LR), neural networks (ANN) and random forest (RF). We select LR for its popularity in credit
approval applications; we select ANN for it being the best-performing individual classifier on
some credit approval datasets [69]; we select RF for it being the best-performing homogeneous
ensemble on some credit approval datasets [69], as HC can be viewed as a homogeneous ensemble
method. For the sake of exposition, we present numbers just for baselines based on LR, as they
perform relatively better.

Second, for the purposes of comparison, we include MAJ – predict the majority label if exam-
ples with the exact same feature values appeared in the training set, and reject if not – which can be
thought of as a non-strategic counterpart of MINCUT. We also include k-nearest neighbors (KNN)
as a baseline, since it is closely related to MAJ.

These out-of-the-box classifiers need help dealing with missing data, whether they are missing
naturally at training and test time or strategically at test time, and to this end, we employ (a) IMP:
mean/mode imputation [69], and (b) R-F: reduced-feature modeling [89], for each of them.

When the dataset has a large number of features, MINCUT and IC-LR can be directly applied.
For HC, we assist it in two ways: (a) by selecting 4 features based on the training data, denoted
by FS (feature selection),11 and (b) by choosing a limited number of small subsets (30 with 1
feature and 30 with 2 features), denoted by APP (approximation). Note that since our proposed
methods are truthful, we can assume that features are reported as is. However, for all out-of-the-
box classifiers, except IMP(LR), it is infeasible to simulate strategic withholding of feature values,
due to the enormous number of combinations of features.

Last but not least, we test all methods with the discretization of continuous features (into cate-
gorical ones) [42], for reasons given in earlier sections.

11Such a technique can be applied to other methods too – the results (see the Supplement of [66]) are not very
different from those in Tables 4.4.
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Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) .792 .792 .639 .639 .659 .659 .648 .648
MINCUT .770 .770 .580 .580 .501 .501 .652 .652
IC-LR .788 .788 .654 .654 .639 .639 .499 .499
IMP(LR) .796 .791 .663 .580 .714 .660 .670 .618
R-F(LR) .808 .545 .631 .508 .670 .511 .665 .590

Table 4.3: Our methods vs. the rest: mean classifier accuracy for ε = 0.2, balanced datasets, 4
features

Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HC(LR) w/ disc. .794 .794 .641 .641 .692 .692 .650 .650
MINCUT w/ disc. .789 .789 .629 .629 .692 .692 .649 .649
IC-LR w/ disc. .800 .800 .651 .651 .698 .698 .646 .646
IMP(LR) w/ disc. .799 .762 .652 .577 .719 .631 .686 .541
R-F(LR) w/ disc. .796 .542 .633 .516 .708 .522 .684 .587

Table 4.4: Our methods vs. the rest: mean classifier accuracy for ε = 0.2, balanced datasets, 4
features (“w/ disc.” stands for “with discretization of features”)

Results Here, we report results only for ε = 0.2. We also limit our exposition of HC, IMP and R-
F methods to those based on logistic regression, as these perform better than their ANN/RF/KNN
counterparts. For a comprehensive compilation of all results, along with standard deviation num-
bers, please refer to the Supplement of [66].

With a small number of features (Table 4.3): As expected, the out-of-the-box baselines perform
well under truthful reporting, but not with strategic reporting. Our methods are robust to strategic
withholding, and in line with the earlier discussion on the potential issues faced by MINCUT and
IC-LR (in Sections 4.3 and 4.5), we see that (a) HC(LR) performs most consistently, and (b) in
some cases, MINCUT (e.g., Poland) and IC-LR (e.g., Taiwan) do not do well.

With discretization (Table 4.4): As expected, discretization of numerical features into binary
categories improves the performance of MINCUT and IC-LR, for reasons explained in Sections 4.3
and 4.5 respectively. We also see some benefit from discretization for HC(LR) when the features
are mostly continuous (e.g., Poland), and less so when they are already discrete (e.g., Taiwan).

With a large number of features (Table 4.5): We see broadly similar trends here, except that
in the case with discretization, IC-LR performs much better than before (e.g., Poland). The rea-
son for this is that IC-LR is able to use all the available features once they are discretized into
binary categories. However, without discretization, HC methods are more reliable (e.g., Poland
and Taiwan).

On the out-of-the-box baselines:
• Imputation-based methods are sensitive vis-á-vis the mean/mode values used. There is in-

centive to drop a certain feature if the imputed value is a positive signal. If there are many
such features, then these methods perform poorly, as seen in Table 4.5 (cf. Table 4.3, Aus-
tralia). If the imputed values do not give a clear signal (e.g., when the distribution of each
feature value is not skewed), there is a high variance in the performance of these methods

63



Classifier
Australia Germany Poland Taiwan

Tru. Str. Tru. Str. Tru. Str. Tru. Str.

HCFS(LR) .795 .795 .625 .625 .678 .678 .648 .648
HCAPP(LR) .777 .777 .617 .617 .658 .658 .638 .638
MINCUT .496 .496 .499 .499 .499 .499 .499 .499
IC-LR .798 .798 .654 .654 .607 .607 .588 .588
HCFS(LR) w/ disc. .794 .794 .632 .632 .694 .694 .649 .649
HCAPP(LR) w/ disc. .782 .782 .620 .620 .724 .724 .644 .644
MINCUT w/ disc. .534 .534 .503 .503 .499 .499 .550 .550
IC-LR w/ disc. .805 .805 .653 .653 .773 .773 .667 .667
IMP(LR) .802 .701 .663 .523 .729 .507 .657 .501
IMP(LR) w/ disc. .809 .723 .659 .554 .783 .503 .697 .501

Table 4.5: Our methods vs. the rest: mean classifier accuracy for ε = 0.2, balanced datasets, all
features

(see the Supplement of [66]). In some cases, the benchmarks perform as well as, or slightly
better than, our incentive-compatible classifiers. For example, in Table 4.3, for the Australia
and Poland data sets, the accuracy of IMP(LR) and that of HC(LR) are within 0.001 of
each other. This happens because the imputed values are, in these cases (but not in most of
our other cases), negative indicators of the positive label, and therefore there is generally no
incentive to strategically drop features.

• Reduced-Feature modeling, despite performing well under truthful reporting, allows too
many examples to be accepted under strategic reporting, which hurts its performance. This
is true especially for smaller ε, as each subclassifier has fewer examples to train on, giving
several viable options for strategic withholding.

We note here that the variance (in the accuracy achieved) produced by our methods, since
they are robust to strategic withholding, is much smaller than that of the baseline methods (exact
numbers can be found in the Supplement of [66]).

4.7 Conclusion
In this chapter, we studied the problem of classification when each agent at prediction time can
strategically withhold some of its features to obtain a more favorable outcome. We devised clas-
sification methods (MINCUT, HC and IC-LR) that are robust to this behavior, and in addition,
characterized the space of all possible truthful classifiers in our setting. We tested our methods on
real-world data sets, showing that they outperform out-of-the-box methods that do not account for
the aforementioned strategic behavior.

An immediate question that follows is relaxing the assumption of having access to truthful
training data – for example, one could ask what the best incentive-compatible classifier is given
that the training data consists of best responses to a known classifier f ; or, one could consider
an online learning model where the goal is to bound the overall loss over time. A much broader
question for future work is to develop a more general theory of robustness to missing data that
naturally includes the case of strategic withholding.
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Chapter 5

When Samples Are Strategically Selected

5.1 Introduction

In previous chapters, we have investigated various aspects of classification in the presence of strate-
gic behavior. Now let us deviate from this classical model of classification, and consider a sample-
based setting, where each data point is associated with multiple samples, each of which provides
some information about the true qualifications of the data point. In such classification problems,
the common assumption is that we have access to all the samples. However, in many contexts, we
either do not have direct access to the samples, or we can inspect only a limited set of samples
and do not know which are the most relevant ones. In such cases, we must rely on another party
(the agent) to either provide the samples or point out the most relevant ones. This agent may have
different incentives, which raises several concerns. One is that the individual samples cannot even
be trusted—e.g., we ask for images but the agent manipulates the images with editing software
before sending them. This is an issue that we do not consider in this chapter (in fact, this will be
the main focus of the next chapter, Chapter 6); we assume that the agent cannot modify samples
or create fake samples. (In the related research discussion below, we list some work that does not
make this assumption.) But even in a context where the individual samples can be trusted (e.g.,
using cryptographic tools like digital signatures [45, 49]), there is still the concern that the agent
sends only a biased collection of samples. If we do not know how many samples n the agent has
available, then we cannot know whether the agent has submitted all of them. Moreover, we may
have capacity to deal with only a fixed number m of samples.

Consider the following scenario. A faculty member (the agent) wishes to convince the chair of
the department (the principal) to interview a particular candidate, while the chair wants to interview
the strongest candidates.1 The principal has time to read exactly three of the candidate’s papers,
and asks the agent, who is familiar with all of the candidate’s work, which three she should read.
Naturally, the agent chooses the best three papers. The principal, when reading them, then knows
that these three papers may not be representative of all the candidate’s work, and should make her
decision with this in mind.

1Of course the decision may not rest with the chair (alone); if so, we may think of the body of people that needs to
be convinced as the principal.
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In fact, it is not clear that the principal should just ask for the three best papers according to a
single metric. For example, she could also say: “Of the three papers, at least one must have at most
two authors.” Or: “At least one of the papers must introduce a new problem.” Or: “In at least one
of the papers, the 42nd letter must be a vowel.” They also do not need to be hard constraints; she
could just announce that she would appreciate it if one of the papers has at most two authors, but
if that is not the case and the three papers are spectacular she would still interview the candidate.
In general, the principal will set a policy for when she would interview a candidate, and the agent
will base his choice of papers on this policy.2

Similar examples abound where an agent aims to convince a principal based on limited data.
The above example can be generalized to hiring in many other professions: for example, in sports,
high school coaches may want to convince a college scout to come out and take a look at a player.
As before, the scout (the principal) has limited time, and she must make a decision of taking the
trip or not, based on the limited video footage of that player provided by the coach (the agent). The
scout can specify a policy and the coach will choose the footage accordingly. For example, the
scout may just wish to see the best moments, or have a policy that she prefers to see footage of the
player in multiple roles (offense, defense, . . .). The decisions do not need to be hiring decisions,
of course. For example, a city may make a bid to host an event based (in part) on a few selected
photographs of the surroundings. The committee deciding on the location will probably appreciate
having photographs of both the venue and of the nearby beach, rather than multiple photographs
of just one of these.

5.1.1 Our Results

In this section, we highlight some of our structural and computational results.
We study the problem of designing an optimal classification policy when the samples are pro-

vided by a strategic agent. The agent has n samples, and while she cannot modify the samples, she
can choose which m samples to submit. Our work is motivated by questions such as the following:

1. How does strategic sample selection affect the principal’s classification problem? Is it easier
or harder compared to when she has direct access to m samples?

2. Are there conditions under which she should just ask for the best m samples according to a
single metric? Are there conditions under which this is not optimal?

3. What is an optimal policy for the principal?
To answer question (1), we give two examples (Examples 5.1 and 5.2) that show that, depend-

ing on the instance, classification based on strategically selected samples could be easier or harder
for the principal compared to when she has direct access to the samples.

For question (2), we prove several structural results. We show that when a single sample is
reported (m = 1) or when all samples are reported (m = n), any optimal policy should accept
reports whose good vs. bad likelihood ratio (i.e., a single metric) exceeds a certain threshold (The-
orems 5.1 and 5.2). However, such a characterization fails to hold for the general 1 < m < n case
(Proposition 5.3).

2Note that the candidate is not a strategic player; the candidate takes no actions in the game.
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For question (3), for the case of one good and one bad distribution, we show that for any value
of m, we can design a policy that has good behavior in the limit (Corollary 5.2 and Theorem 5.3).
When there are multiple good and bad distributions, we show that if m = 1 and the distributions
are piecewise constant, we can efficiently compute policies with target accepting probabilities
(Theorem 5.6).

5.2 Preliminaries

The principal is interested in the underlying type θ ∈ Θ of the entity about which she is making
the decision. For example, in much of the chapter we will consider a binary type space Θ = {g, b}
(“good” and “bad”). The entity generates n samples from a sample space X ,3 where samples
x are drawn i.i.d. (so with replacement) according to P (x|θ). We sometimes use the shorthand
θ(x) = P (x|θ). These n samples constitute a multiset4 D which is the dataset available to the
agent. The agent must select a multiset R ⊆ D 5 with |R| = m as his report to the principal.
The principal must decide to accept or reject, based on the report. She commits to a policy. A
randomized policy Πm : Rm → [0, 1] assigns to each report a probability of acceptance. HereRm

is the set of all possible reports of size m. A deterministic policy has Πm(R) ∈ {0, 1} for all R; it
is equivalently defined by the set of accepted reports, Sm = {R : Πm(R) = 1}.

The agent aims to maximize the probability of acceptance regardless of the true type. He will
choose to report some R? in argmaxR⊆D Πm(R). The principal, taking into account the strategic
behavior by the agent, chooses her policy Πm to attain her own objectives. For example, she may
have a utility u(θ) for accepting θ; when Θ = {g, b}, u(b) < 0 < u(g). When combined with
a prior over Θ, this creates a well-defined optimization problem for the principal. Alternatively,
she may have target acceptance probabilities for each type; for example, she may want to accept
b with probability at most pb and g with probability at least pg (corresponding to limits on the two
types of errors). This does not require a prior over Θ.

For simplicity, we use the following notation in proofs interchangeably. For one-sample poli-
cies (m = 1), we sometimes denote the policy by its accepted set of samples S (instead of S,
which is a family of singleton multisets). That is, S = {x | {x} ∈ S}. For a type, e.g., g ∈ Θ,
we abuse notation and use g(S) to denote the total probability mass of g on a set S ⊆ X . That is,
g(S) = Prx∼g[x ∈ S].

5.2.1 Illustrative Examples

We now present a few examples that illustrate some of the key issues. The first example illus-
trates that the strategic selection sometimes helps the principal. In the language of our motivating

3For simplicity, we assume the sample space X is in some Euclidean space, i.e., X ⊆ Rd for some integer d > 0.
4Recall that a multiset is a set in which an element may occur more than once. One could also think of this as a

vector, but the order of the elements does not matter in our context.
5We use “⊆” for the standard subset notion on multisets. For multisets A and B, A ⊆ B iff cB(x) ≤ cA(x) for all

x ∈ B, where cS(x) is the number of occurrences of x in S.
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example, this is the case where the principal and the agent can only classify papers as high- or
low-quality, and high-quality papers are rare.
Example 5.1. Let Θ = {g, b} and X = {0, 1}. Let g(1) = 0.05 and b(1) = 0.005. Let n = 50
and m = 1. The natural policy is to accept iff the agent submits report {1}. In other words, the
agent can convince the principal to accept iff at least one of the n papers has high-quality. The
probability a good type is accepted is 1 − 0.9550 ≈ 0.92; for a bad type it is 1 − 0.99550 ≈ 0.22.
In this example, thanks to the agent’s strategic selection, the principal can classify quite effectively
while only observing a single sample; in contrast, if she had to observe samples directly, a single
sample would give her very little information.

However, the next example (where high-quality papers are less rare) shows that the opposite can
also happen. Strategic selection can make it much harder for the principal to distinguish between
good and bad types.
Example 5.2. Let Θ = {g, b} and X = {0, 1}. Let g(1) = 0.95 and b(1) = 0.05. Let n = 50
and m = 1. Again, the natural policy is to accept iff the agent submits {1}. The probability that a
good type is accepted is 1− 0.0550 ≈ 1; for a bad type it is 1− 0.9550 ≈ 0.92. In this example, the
strategic selection of samples by the agent makes it very difficult for the principal to distinguish
between g and b; in contrast, if she could observe samples directly, a single sample would allow
her to classify quite effectively.

Fortunately, there’s a workaround: the principal can effectively reduce n by specifying an
irrelevant (i.e., uncorrelated with the type) requirement, such as that the 42nd letter of the paper
should be a vowel.6 Since there will generally be nearly infinitely many irrelevant attributes of
the samples, we assume that each sample is associated with a real number drawn uniformly7 from
(0, 1), representing the irrelevant information.
Example 5.3. Let Θ = {g, b} and X = {0, 1} × (0, 1) (where the first number represents the
relevant information and the second number the irrelevant information). Let g({1}×(0, 1)) = 0.95
and b({1} × (0, 1)) = 0.05. Note that this is the same example as Example 5.2, except for the
additional irrelevant information. Let n = 50 and m = 1. Now consider the policy that accepts
S = {{x} : x ∈ {1} × (0, 0.05)}. That is, the principal accepts only samples with good relevant
information and irrelevant information that has a 1 in 20 chance of occurring. The probability that a
good type is accepted is 1−(1−0.95·0.05)50 ≈ 0.92; for a bad type it is 1−(1−0.05·0.05)50 ≈ 0.12.
Thus, the addition of irrelevant information allows the principal to classify much more effectively.

Example 5.3 illustrates that the difficulty of Example 5.2 is primarily due to the discreteness of
the sample space.

Our last example shows that with multiple bad distributions, the optimal policy does not eval-
uate the quality of samples individually, but rather considers them in combination. One of the
questions of interest later in this chapter is under which circumstances this can happen.
Example 5.4. Let Θ = {g, b1, b2} and X = {0, 1}. Let g(1) = 0.5, b1(1) = 0.99, b2(1) = 0.01.

6One may wonder whether this creates an incentive for candidates to write their papers in a particular way; this
can be avoided by choosing this requirement close to the decision. In any case, we do not consider the process that
originally produces the n samples as a strategic entity in this chapter.

7Any continuous distribution can be transformed to a uniform one, using the standard trick of applying the CDF to
the drawn number first.
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Let n = 10 and m = 2. Consider the policy that accepts S = {{0, 1}}, i.e., it accepts if both
possible samples are reported. The probability that a good type is accepted is 1−2 ·0.510 ≈ 0.998;
the probability that a bad type is accepted is less than 1− 0.9910 ≈ 0.10. In contrast, if we accept
reports that have the same sample twice, then one of the two bad types is extremely likely to
succeed.

5.3 Basic Results
In this section, we provide some basic results that justify why we focus on deterministic policies
and continuous distributions in the rest of the chapter.

5.3.1 Deterministic vs. Randomized Policies
In this subsection, we discuss the relative power of deterministic and randomized policies, justify-
ing our focus on deterministic policies in the rest of the chapter.

We first show that in our setting, randomized policies can be decomposed into a distribution
over deterministic policies.
Proposition 5.1. Any randomized policy can be decomposed into a distribution over deterministic
policies, such that the accepting probability of any report remains the same.

As a simple corollary, if the principal is trying to maximize her utility, one of the deterministic
policies must be optimal.
Corollary 5.1. Assume there is a prior over Θ and the principal has a utility u(θ) for accepting
type θ ∈ Θ. If the principal wishes to maximize her expected utility, there exists a deterministic
policy that is optimal.

We defer the proofs of Proposition 5.1 and Corollary 5.1 to the appendix.
It should be noted that Corollary 5.1 is generally not true in mechanism design. For example,

for designing revenue-maximizing auctions, it is well-known that the optimal mechanism may
require randomization [54]. In fact, even in our problem, if the principal has target acceptance
probabilities for each type, for example “I want to accept at least 90% of good candidates and at
most 10% of bad candidates,” then it is possible that only randomized policies obtain these goals
simultaneously, as the following example demonstrates.
Example 5.5. Let Θ = {g, b} and X = {0, 1}. Let g(0) = 1/2, g(1) = 1/2, b(0) = 1, b(1) = 0,
and n = m = 1. If we wish to accept the good distribution at least 3/4 of the time, and accept the
bad distribution at most 1/2 of the time, we have to use a randomized policy: always accept {1}
and accept {0} with probability 1/2.

On the other hand, this example heavily relies on the discrete nature of the sample space; if
we make the sample space continuous—say, {0, 1} × (0, 1) where the second number is drawn
uniformly at random, as in Example 5.3—then we can achieve the same result with a deterministic
mechanism, by effectively using the second number to generate the randomness.

In practice, deterministic policies have several other advantages as well. They are straight-
forward to implement, transparent, fair, and not subject to willful manipulation of the random
numbers. For all these reasons, we focus on deterministic policies in the rest of this chapter.
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5.3.2 Continuous vs. Discrete Distributions
In this subsection, we compare continuous and discrete distributions, justifying our focus on con-
tinuous distributions in the rest of the chapter. As we will prove in the next proposition, given
our focus on deterministic policies, for discrete distributions we face NP-hardness, simply due to
having to solve a knapsack problem. We defer the proof of Proposition 5.2 to the appendix.
Proposition 5.2. Given two discrete distributions g and b, and two target acceptance probabilities
pg and pb, it is NP-hard to decide if there exists a deterministic policy that accepts g with probability
at least pg and accepts b with probability at most pb. This is true even when n = m = 1.

In contrast, Theorem 5.6 states that for continuous distributions, we can solve the decision
problem of Proposition 5.2 efficiently in much more general settings.

As we discussed in Example 5.3, in practice, we can often make the distribution over the
sample space effectively continuous, by considering irrelevant information. For example, when
considering video footage of an athlete, we may be able to summarize all the relevant information
in discrete terms (did the athlete make the shot or not, etc.). Meanwhile, the background of the
video provides almost unlimited irrelevant information (is someone eating popcorn in the back-
ground, etc.). Imagine that we can only watch a single video clip of a basketball player. If our
policy is to only accept if the player (say) makes a 3-pointer, then even mediocre players will be
able to produce such a clip. But if our policy is to only accept if the player makes a 3-pointer
while a girl is eating popcorn in the background, then only players who frequently score 3-pointers
are likely to be able to produce such a clip. From a technical viewpoint, we can assume that each
sample is associated with a random real number drawn uniformly from (0, 1), as in Example 5.3.

For all these reasons, we focus on continuous distributions in the rest of this chapter. We now
move on to study strategic sample selection in these more restricted settings.

5.4 One Good and One Bad Distribution
In this section, we consider the setting in which the type space is binary: Θ = {g, b}.

5.4.1 One Sample
We first consider the special case where the agent submits only one sample (m = 1). Our main
structural result (Theorem 5.1) states that any Pareto optimal policy takes the following form:
accept all reports {x} such that the likelihood ratio g(x)/b(x) is greater than some threshold.

As a corollary of Theorem 5.1, when the agent has sufficiently many samples (m = 1 and
n → ∞), we can characterize the optimal tradeoff between the accepting probabilities pg and pb
(Corollary 5.2). This tradeoff is quantitatively governed by the maximum likelihood ratio max g(x)

b(x)

over the entire sample space x ∈ X . This is in contrast to the distribution learning literature [10, 17,
84], where this tradeoff is often determined by some global measure (e.g., total variation distance)
between the two distributions.

Let Π, Π′ be two policies that accept the good distribution with probability pg and p′g, and
accept the bad distribution with probability pb and p′b respectively. We say Π′ is strictly better than
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Π if p′g ≥ pg and p′b ≤ pb and at least one of the two inequalities holds strictly. We say Π is Pareto
optimal if there is no other policy Π′ strictly better than Π.
Theorem 5.1. Supposem = 1 and we have continuous distributions g and b. Consider any optimal
deterministic policy Π. Let S ⊆ X be the accepting region of Π. Then, for any point x1 strictly
inside S and any x2 strictly outside of S,

g(x1)/b(x1) ≥ g(x2)/b(x2).

Before proving Theorem 5.1, we first discuss its conditions and implications. We can always
change the policy on a set of measure zero, and the resulting policy is equivalent to the original
one. Therefore, the condition in Theorem 5.1 only applies to the interior of S andX \S. An imme-
diate consequence of Theorem 5.1 is that, if the principal’s utility only depends on the accepting
probabilities, and is strictly monotonically increasing in pg and strictly monotonically decreasing
in pb, then the optimal policy must be Pareto optimal and hence it must satisfy the condition in
Theorem 5.1.

Proof. Let pg, pb be the probabilities that Π accepts the good and bad distributions respectively.

pg = Pr
D∼gn

[D ∩ S 6= ∅] = 1− (1− g(S))n,

pb = Pr
D∼bn

[D ∩ S 6= ∅] = 1− (1− b(S))n.

Suppose there is x1 strictly in S and x2 strictly outside S, where

g(x1)/b(x1) < g(x2)/b(x2).

Pick neighborhoods N1 and N2 of x1 and x2, in S and X \ S respectively, such that g(N1) =
g(N2) > 0 and g(N1)/b(N1) < g(N2)/b(N2). Such neighborhoods exist because the likelihood
ratio g(x)/b(x) is a continuous function, and both x1 and x2 are not on the boundary of S.

We will show that a different policy Π′ with accepting region S ′ = (S \ N1) ∪ N2 is a better
policy. Let p′g and p′b be the accepting probabilities of Π′. Since g(S ′) = g(S) and b(S ′) =
b(S)− b(N1) + b(N2) < b(S), we have

p′g = 1− (1− g(S ′))n = 1− (1− g(S))n = pg, and

p′b = 1− (1− b(S ′))n < 1− (1− b(S))n = pb.

Corollary 5.2. Fix continuous distributions g and b. Let r = supx∈X(g(x)/b(x)) be the maximum
likelihood ratio over the entire sample space X .8 When m = 1 and n → ∞, any Pareto optimal
deterministic policy Π satisfies

pg + (1− pb)r = 1,

where pg and pb are the probabilities that Π accepts g and b respectively.
8For simplicity, we assume the maximum likelihood ratio r = supx(g(x)/b(x)) exists and is finite. A similar

argument shows that when r =∞, we can get policies with pg = 1 and pb = 0.
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Proof. Fix any 0 < ε < 1. Because the likelihood ratio function g(x)/b(x) is continuous and its
supremum is r, there exists a small neighborhood S ⊆ X such that g(x)/b(x) ≥ (1 − ε)r for all
x ∈ S. Recall that g(S) = Prx∼g[x ∈ N ] > 0 is the probability that a random sample from the
good distribution x ∼ g is in S. By the definition of S, we know that b(S) ≤ g(S)/(r(1− ε)).

Consider the policy that accepts iff the agent reports a sample in S. We will show that S
is essentially optimal as n → ∞. Let pg and pb denote the accepting probabilities of S. For
notational convenience let δ = g(S). We have

pg = (1− (1− g(S))n) = 1− (1− δ)n, and

pb = (1− (1− b(S))n) ≤ 1−
(

1− δ

r(1− ε)

)n
.

We can rewrite the inequality on pb by substituting δ. Because the inequality holds for any ε and
n, we can let ε→ 0 and n→∞ and get

pb ≤ 1−
(

1− 1− (1− pg)1/n

r(1− ε)

)n
→ 1− (1− pg)1/r.

On the other hand, the upper bound on pb is tight when ε = 0. This is because the acceptance
region S ′ of any deterministic policy can have likelihood ratio at most r, and thus b(S ′) ≥ g(S ′)/r
and a similar calculation gives the same lower bound on pb. Therefore, we can conclude that for
any Pareto optimal policy, pg + (1− pb)r = 1 as n→∞.

5.4.2 Multiple Samples
We now move on to the case where the agent submits m samples (m > 1). We first generalize the
notion of the likelihood ratio to reports of multiple samples.
Definition 5.1. We define the likelihood ratio of a report R to be the product of the samples’
likelihood ratios

∏
x∈R

g(x)
b(x)

, as if the samples in R are drawn i.i.d. from the distribution.
The following theorem states that when m = n, any Pareto optimal policy essentially accepts

reports whose likelihood ratio exceeds some threshold.
Theorem 5.2. Suppose m = n and we have continuous distributions g and b. Consider any Pareto
optimal deterministic policy Π which accepts all and only reports in S. Then, for any report R1

strictly inside S and any R2 strictly outside of S, we have∏
x∈R1

g(x)/b(x) ≥
∏
x∈R2

g(x)/b(x).

We defer the proof of Theorem 5.2 to the appendix.
Note that for the case m = 1, Theorem 5.1 states that in that case, too, the agent should report

the sample that maximizes the likelihood ratio. Thus, it is natural to conjecture that this continues
to hold when m < n. This, however, is false. In fact, we can show that the optimal policy does not
admit even the following weaker structural property.
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Definition 5.2. A policy orders the sample space if there exists an ordering on the elements of the
sample space, such that an optimal response for the agent is to always report his highest samples
in this ordering.

In the m = 1 and m = n cases, the optimal policy based on the likelihood ratio clearly satisfies
this property, ordering the sample space by likelihood ratio. (In the m = n case, this is because the
likelihood ratio is the product of the likelihood ratios of the individual samples, and this product
is maximized by choosing the samples that maximize that ratio.) The following proposition shows
that this does not hold in general for 1 < m < n.
Proposition 5.3. When 1 < m < n, sometimes a Pareto optimal policy does not order the sample
space.

Proof. For simplicity, we present a counter example that is a discrete distribution. It can be easily
changed to a continuous distribution without affecting any part of the argument.

Let Θ = {g, b}, X = {0, 1, 2}, and

g(0) = 0, g(1) = 0.1, g(2) = 0.9, and
b(0) = 0.8, b(1) = 0.1, b(2) = 0.1.

Let m = 2 and n = 3, i.e., the agents has 3 i.i.d. samples and chooses 2 of them to submit.
We claim a policy Π that accepts reports {1, 1} and {2, 2} is Pareto optimal. First notice that

Π accepts g with probability 1. Since an agent does not draw {0} from g, so by the pigeonhole
principle, among the n = 3 samples there must be either two copies of {1} or two copies of {2}.
On the other hand, the principal must accept these two reports with probability 1 if she wants to
always accept g. This is because when θ = g, the agent’s data D could be {1, 1, 1} (or {2, 2, 2}),
in which case he is forced to report R = {1, 1} (or resp. {2, 2}). Therefore, among all policies, Π
has the smallest probability of accepting b.

The above example rules out structural results in the form of Theorems 5.1 and 5.2, because the
report {1, 2} has higher likelihood ratio than {1, 1}. Furthermore, note that any policy that accepts
{1, 1} and {2, 2} but not {1, 2} cannot order the sample space; for example, if 1 were ordered at
least as high as 2, then an agent with data {1, 2, 2} can report {1, 2} instead of {2, 2} according to
the ordering, but this is suboptimal because {1, 2} is rejected while {2, 2} is accepted.

It of course remains possible that there is an elegant way to describe the optimal policy in this
context, but Proposition 5.3 rules out many natural possibilities. However, if we are willing to
give up on exact optimality, then we can still define a policy that performs reasonably well in the
limit. Theorem 5.3 gives a policy whose error probability (probability of rejecting g or accepting
b) decreases exponentially in m. This error guarantee is similar to the setting where the principal
has direct access to m samples, in which case the failing probability also decreases exponentially
in m. The difference is that, as in Corollary 5.2, the coefficient in the exponent depends on the
maximum likelihood ratio r rather than (say) the total variation distance between g and b.
Theorem 5.3. Fix m ≥ 1 and two continuous distributions g and b. Let r = supx

g(x)
b(x)

> 1 denote
the maximum likelihood ratio. As n → ∞, there is a deterministic policy whose error probability
is at most exp

(
−1

2
(1− r−1/2)2m

)
.
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The policy that achieves Theorem 5.3 focuses on a small region S where g(S) � m/n and
b(S) � m/n. This way, for n samples drawn from g, in expectation, ng(S) � m samples are
from S; and for n samples drawn from b, nb(S)� m samples are from S. Therefore, if we accept
all reports withm samples from S, we can distinguish g from b. We defer the proof of Theorem 5.3
to the appendix.

5.5 One Good and Multiple Bad Distributions

For men are good in but one way, but bad in many.

— Aristotle, Nicomachean Ethics

We now consider the case where there are multiple bad distributions, but still only a single
good one.

5.5.1 One Sample

Again, we first investigate the single-sample case (m = 1). We first show there are cases in which
no policy can perform well across all possible priors over Θ.
Example 5.6. Let Θ = {g, b1, b2} andX = {0, 1}×(0, 1). Let g({0}×(0, 1)) = g({1}×(0, 1)) =
0.5, b1({0} × (0, 1)) = 1, and b2({1} × (0, 1)) = 1. There is no policy which makes the right
decision with probability larger than 0.5 against any prior. This is because any deterministic policy
has the following form: for some p, q ∈ [0, 1], the policy accepts all reports in S = {{x} | x ∈
({0} × (0, p)) ∪ ({1} × (0, q))}. To accept g w.p. larger than 1/2, we need p + q > 1. W.l.o.g.
assume p > 1/2, but then the policy accepts b1 w.p. p > 1/2.

When there is a prior over Θ and the principal has utilities for accepting each type θ ∈ Θ, the
next theorem characterizes the behavior of optimal policies in the limit. Note that Theorem 5.4
does not hold if we have specific target acceptance probabilities for individual bad distributions.
Theorem 5.4. Fix m = 1 and a partition of the sample space X into t pieces. Let Θ =
{g, b1, . . . , bk}. Assume every distribution is constant on every piece, the principal has utility u(θ)
for accepting type θ, and there is a prior q over Θ. Then, for sufficiently large n, there is a utility-
maximizing policy that accepts only reports in a subset of one single piece (modulo accepting any
report that has measure zero).

Proof. Suppose the optimal policy accepts all reports in S and S overlaps with multiple pieces
P1, . . . , Pt. Let (g(Sj), b1(Sj), . . . , bk(Sj)) denote the “cumulative” probabilities of the types in
Sj = S ∩ Pj . Let αθi be the density of distribution θ on Pi, and let βij = bi(Sj)/g(Sj) = αbij /α

g
j

be the likelihood ratio bi(x)/g(x) on piece j. We argue that moving all the mass, measured by g,
to one of the k pieces achieves at least the same probability of success. Since n is large enough,
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∑
j g(Sj) can be contained in any of the t pieces. The expected utility of S is

qgu(g)

(
1−

(
1−

∑
j

g(Sj)
)n)

+
∑
i

qbiu(bi)

(
1−

(
1−

∑
j

βijg(Sj)
)n)

.

Let βi = (βi1, . . . , βi`), γ = (g(S1), . . . , g(St)). The principal’s expected utility can be written as

u(g)qg(1− (1− ‖γ‖1)n) +
∑
i

u(bi)qbi(1− (1− β>i γ)n).

Note that since 0 ≤ β>i γ ≤ 1, (1− β>i γ)n is convex in γ for any i. Fixing ‖γ‖1, Since qbi ≥ 0 and
u(bi) < 0, the overall utility is also convex in γ. Therefore, the maximum utility is achieved when
γ has only one non-zero entry. Equivalently, the optimal policy should focus on a single piece.

Theorem 5.4 crucially relies on there being only a single good distribution, as the following
example demonstrates.
Example 5.7 (non-locality with multiple good distributions). Let Θ = {g1, g2, b} and X =
{0, 1, 2} × (0, 1). Let b({0} × (0, 1)) = g1({1} × (0, 1)) = g2({2} × (0, 1)) = 1. Let m = 1.
Even as n→∞, we will need to accept points from both the pieces {1} × (0, 1) and {2} × (0, 1)
in order to accept both good distributions.

5.5.2 Multiple Samples
When m > 1 and there are multiple bad distributions, it turns out that sometimes the agent faces
an NP-hard problem. This is because an individual sample may rule out several bad distributions,
and to convince the principal to accept, the agent may have to judiciously choose his m reported
samples to cover all the bad distributions, in terms of ruling them out. The following theorem
makes this precise.
Theorem 5.5. With one good distribution and k bad distributions, it is NP-hard for the agent to
determine, given dataset D, whether it is possible to report R ⊆ D, such that the optimal policy
accepts R.

Proof. We reduce from the decision version of Set Cover. Given a set cover instance with elements
U , n′ sets {Sj}j∈[n′], and a target number m′, we know it is NP-hard to decide whether all elements
can be covered with m′ sets.

We construct a strategic sample selection instance as follows. We partition the sample space
into n′ pieces. Each piece Pj corresponds to a set Sj in the set cover instance. The good distribution
g is the uniform distribution. For each element i ∈ U , we create a bad distribution bi. We set the
probability density of bi to 0 on Pj if Sj 3 i, and set it equally on all other pieces. (W.l.o.g., we
can assume there is no element that is contained in all sets.)
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Consider an agent with n = n′ samples, one for each piece. Let m = m′ be the number
of samples he can report. Suppose that the principal will accept if and only if she is sure the
underlying distribution is g (say she has extremely negative utility for accepting a bad type).

Suppose a set cover of size m exists. Then, the agent can report the corresponding samples.
For each bi, there is a sample in the report that has probability 0 under bi. Hence the principal can
rule out every bad distribution.

Conversely, suppose the agent has a report that will get accepted. For each bi, there must be
a sample in the report that has probability density 0 under bi; this sample corresponds to some
Sj 3 i. Hence, the agent’s report produces a set cover of size m.

5.6 Multiple Good/Bad Distributions
We now allow multiple good and multiple bad distributions. The hardness result from Theorem 5.5
still applies here whenm > 1, so we focus onm = 1. Even so, Example 5.7 shows that we will get
nonlocality in the optimal policy, so we do not prove a structural result. This leaves the question
of whether we can efficiently compute policies with target accepting probabilities when m = 1.
Theorem 5.6. Fix m = 1, n ≥ 1, and a partition of the sample space X into t pieces. Assume we
are given distributions g1, . . . , gk, and b1, . . . , b` such that every distribution is constant on every
piece. Then, given a vector of target accepting probabilities (pg1 , . . . , pgk , pg1 , . . . , pb`), we can de-
cide in mathrmpoly(k, `, t, n) time whether there is a policy that can achieve these requirements.

We defer the proof of Theorem 5.6 to the appendix.

5.7 Conclusion
We have introduced the problem of designing an optimal classification policy when the samples
are selected by a strategic agent who favors a specific outcome.

We proved several basic structural results. If the principal aims to maximize expected utility,
where she associates utilities with individual outcomes, then there is no benefit to randomization
(Corollary 5.1). When distinguishing a single good from a single bad distribution, if only a single
sample is reported, then the optimal policy is to accept samples whose good/bad likelihood ratio
exceeds some threshold (Theorem 5.1). Moreover, in the limit as n→∞, our success probability
is solely determined by the highest likelihood ratio in the sample space (Corollary 5.2). While a
result similar to Theorem 5.1 holds whenm = n (Theorem 5.2), unfortunately nothing like it holds
for the case 1 < m < n (Proposition 5.3). Still, we can design a policy that has good behavior in
the limit for this case (Theorem 5.3). Moving on to the case of multiple bad distributions, we show
that for m = 1, in the limit our optimal policy focuses on a single piece (Theorem 5.4)—but this
is not true with multiple good distributions (Example 5.7).

We also proved basic computational results. In the discrete, deterministic case, determining
whether a combination of a given false positive and a given false negative rate can be obtained is
NP-hard even with m = n = 1 (Proposition 5.2). However, if we restrict ourselves to piecewise-
constant distributions, then we can obtain an efficient algorithm even with multiple good and bad
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distributions (but still m = 1; Theorem 5.6). When 1 < m < n and there are multiple bad
distributions, the agent’s problem of best-responding to the optimal policy becomes NP-hard (The-
orem 5.5).

There are several open questions. Perhaps the most significant open questions are in the setting
where there is a single good and a single bad distribution, and 1 < m < n. We have shown that
for optimal policies in this case, it is not always true that the agent should just report the “best”
samples according to a single criterion. Still, do optimal policies in this case have some natural
structure? Can they be computed efficiently?

5.8 Missing Proofs from Section 5.3

Proof of Proposition 5.1. For a randomized policy Πr, consider the following distribution Πd over
deterministic policies: Let Πd = Πd(q) where q ∼ U [0, 1] is a uniformly random number from
[0, 1], and Πd(q) is a deterministic policy that accepts the following reports

Sd(q) = {R | Πr(R) ≥ q}.

For any report R, PrΠd(Πd(R) = 1) = Prq[R ∈ Sd(q)] = Πr(R). In other words, when the
principal runs Πd, any report R is accepted with probability Πr(R).

Proof of Corollary 5.1. Take any optimal policy Π?. If Π? is deterministic then we are done, oth-
erwise we decompose Π? into a distribution Πd over deterministic policies using Proposition 5.1.
The distribution Πd is highly structured: every deterministic policy in the support of Πd orders the
space of reports by Πr(R), and accepts some prefix of this order. The agent can best respond to all
these deterministic policies simultaneously, by submitting the report R with the highest Πr(R).

This reporting strategy is optimal against all deterministic policies in the support of Πd. As a
result, if the principal switches from Π? to Πd, all reports are accepted with the same probability,
and therefore, the principal’s expected utility remains the same. Because the utility of Πd is a
weighted average of the utilities of deterministic policies, one of these deterministic policies must
be optimal.

Proof of Proposition 5.2. Consider an instance of the Knapsack problem: we are given s items
with weights w1, . . . , ws and values v1, . . . , vs, a maximum weight W , and a minimum value V .
We are asked whether there is a subset T of {1, . . . , s} such that

∑
i∈T wi ≤ W and

∑
i∈T vi ≥ V .

By normalization, w.l.o.g, we may assume
∑s

i=1wi =
∑s

i=1 vi = 1.
We reduce this to an instance of our problem with n = m = 1 as follows. Let the sample space

be {1, . . . , s}. Let g(i) = vi and b(i) = wi. Let pg = V and pb = W . A deterministic policy
will accept a subset T ⊆ {1, . . . , s}. Then, the probability that we accept g is

∑
i∈T vi and the

probability that we accept b is
∑

i∈T wi. Hence, the two instances are equivalent.
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5.9 Proof of Theorem 5.2
Proof of Theorem 5.2. Suppose there are two reports R1 ∈ S and R2 /∈ S, both are not on the
boundary of S, such that ∏

x∈R1

g(x)/b(x) <
∏
x∈R2

g(x)/b(x).

For notational convenience, in this proof we view a report as a sequence of samples (rather than a
multiset). We consider only policies that are permutation-invariant, i.e., if a policy accepts a vector,
it also accepts any permutation of that vector. Because a permutation-invariant vector-based policy
is equivalent to a multiset-based policy and m = n, we can assume the agent always submits her
entire data in the order she receives them. It follows that the (conditional) density of a report R is
precisely

∏
x∈R θ(x), where θ ∈ {g, b}.

Suppose all entries of R1 and R2 are distinct.9 Pick neighborhoods N1 of R1 and N2 of R2,
such that

Pr
R∼gm

[R ∈ N1] = Pr
R∼gm

[R ∈ N2] > 0,

Pr
R∼bm

[R ∈ N1] > Pr
R∼bm

[R ∈ N2],

and the permutations of all vectors in N1 (resp. N2) do not overlap. Such neighborhoods exist
because of continuity of g and b and our assumption on R1 and R2.

Now consider the permutation closures P1 ofN1 (resp. P2 forN2)10. Because the permutations
of N do not overlap, we have Pr[R ∈ P1] = m! · Pr[R ∈ N1]. Therefore,

Pr
R∼gm

[R ∈ P1] = Pr
R∼gm

[R ∈ P2] > 0,

Pr
R∼bm

[R ∈ P1] > Pr
R∼bm

[R ∈ P2].

Note that the policy (S \P1)∪P2 is permutation-invariant, since S, P1 and P2 are all permutation-
invariant. A similar argument as the one used in the proof of Theorem 5.1 shows that the policy
(S \ P1) ∪ P2 is better than S.

5.10 Proof of Theorem 5.3
Proof of Theorem 5.3. Fix any 0 < ε < 1. Because g(x)/b(x) is a continuous function with
supreme r, there exists some S ′ ⊆ X such that g(x)/b(x) ≥ (1 − ε)r for all x ∈ S ′. Let
δ′ = g(S ′). For sufficiently large n, we can pick a subset S ⊆ S ′ such that δ = g(S) = m

√
r

n
.

Because S ⊆ S ′, we know that b(S) ≤ δ/(r(1− ε)). Similar to the proof of Corollary 5.2, we will
eventually let ε→ 0, so for convenience we continue the proof assuming b(S) = δ/r = m√

rn
.

9By the continuity of g(x)/b(x), we can always pickR′
1 (resp. R′

2) in a small neighborhood ofR1 (resp. R2), such
that all conditions specified in the theorem are satisfied and all entries of R′

1 (resp. R′
2) are distinct.

10The permutation closure of N is the set of all permutations of all vectors in N .
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Consider the policy that accepts the report iff all m samples are in S. We chose the values
of g(S) and b(S) so that in expectation, if the agent takes n samples from g, m

√
r of them will

be in S; and for n samples from b, (m/
√
r) of them will be in S. The rest of the proof uses the

(multiplicative) Chernoff bound to show that the actual number of samples in S concentrations
around its expectation.

We first consider the probability of rejecting g. Let Y1, . . . , Yn be binary random variables such
that Yi = 1 iff the i-th sample drawn from g is in S. Observe that Yi are i.i.d. Bernoulli random
variable where Pr[Yi = 1] = δ and E [

∑n
i=1 Yi] = mr1/2. By the Chernoff bound,

Pr[reject g] = Pr

[
n∑
i=1

Yi < m

]

= Pr

[
n∑
i=1

Yi < r−1/2 · E

[∑
i

Yi

]]

≤ exp

(
−1

2

(
1− r−1/2

)2
r1/2m

)
.

Similarly, for n samples drawn from b, let Z1, . . . , Zn be Bernoulli random variable where
Zi = 1 iff the i-th sample is in S. Note that Pr[Zi = 1] = δ/r and E [

∑n
i=1 Zi] = mr−1/2. Again

by Chernoff bound,

Pr[accept b] = Pr

[
n∑
i=1

Zi ≥ m

]

= Pr

[
n∑
i=1

Zi ≥ r1/2 · E

[∑
i

Zi

]]

≤ exp

(
− 1

r1/2 + 1

(
r1/2 − 1

)2
r−1/2m

)
.

The theorem follows from taking the maximum of the two upper bounds on the error probability.

5.11 Proof of Theorem 5.6

Proof of Theorem 5.6. We use P1, . . . , Pt to denote the t pieces and assume w.l.o.g. that each piece
has measure |Pi| = 1. Let αθj be the density of distribution θ on Pj . For example, the “cumulative”
probability of gi on a subset S ⊆ Pj is αgij |S|.

We will write a mathematical program to decide whether the target accepting probabilities are
achievable. The variables xj denote the fraction of piece j that a policy Π will accept. We can
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write out the accepting probabilities of Π explicitly, and put constraints on them. 11

1−
(

1−
∑

j α
gi
j xj

)n
≥ pgi , ∀i ∈ [k],

1−
(

1−
∑

j α
bi
j xj

)n
≤ pbi , ∀i ∈ [`],

0 ≤ xj ≤ 1, ∀j ∈ [t].

Observe the above is equivalent to the following linear program (LP):

1−
∑

j α
gi
j xj ≤ (1− pgi)1/n, ∀i ∈ [k],

1−
∑

j α
bi
j xj ≤ (1− pbi)1/n, ∀i ∈ [`],

0 ≤ xj ≤ 1, j ∈ [t].

The theorem follows immediately from the fact that we can write down this LP and check its
feasibility in mathrmpoly(k, `, t, n) time.

11we use [n] to denote the set of integers {1, . . . , n}.
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Chapter 6

Distinguishing Distributions When Samples
Are Strategically Transformed

6.1 Introduction
In Chapter 5, we have discussed classification based on strategically selected samples. In this
chapter, we investigate an equally natural and important setting, where agents can transform private
samples into signals, which are to be reported to the principal.

Why should we consider classification based on transformed samples? First, anyone can have
a bad day, or a lucky one. Thus, in general, to determine with reasonable confidence who are
the highly capable agents—whether they be people, companies, or anything else—we need to
observe their output over an extended period of time. Moreover, capability is generally not one-
dimensional, and who should be considered highly capable depends on what it is that we are
looking for. Finally, the policy that we set to evaluate agents’ output will in general affect how
they strategically try to shape that output. Thus, we must choose our policy to enable the agents
that are highly capable (according to our definition) to distinguish themselves from others.

Example. Suppose that there are researchers of different types. Specifically, suppose we have
the following set of types:

Θ = {TML-H,TML-L,AML-H,AML-L}

where “TML” stands for “theoretical machine learning,” “AML” for “applied machine learning,”
and “L” and “H” for “low quality” and “high quality,” respectively. Each researcher generates high-
quality ideas (which we will in this chapter refer to as samples) according to some probabilistic
process. Suppose here the sample space is

S = {T,A,B}

where “T” stands for a purely theoretical idea without immediate applied significance, “A” for an
applied idea without immediate theoretical significance, and “B” for an idea that has both theo-
retical and applied significance. Finally, suppose there are only 3 conferences: COLT, KDD, and
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NeurIPS (we will in this chapter refer to papers published in these conferences as “signals”).

Σ = {COLT,KDD,NeurIPS}

A T or a B idea (sample) can be turned into a COLT paper (signal);1 an A or a B idea can be turned
into a KDD paper; and a T, A, or B idea can be turned into a NeurIPS paper.2 Each idea, of course,
can be published in only one conference.

Suppose a university would like to hire an AML-H researcher (but none of the other types).
The faculty recruiting committee, unfortunately, is excessively lazy and only looks at the publi-
cation counts in the various venues. While the candidate researchers of course are committed to
improving this terrible process once they get the job, for now their only concern is getting the job.
In particular, everyone will attempt to pretend to be an AML-H researcher by sending their papers
to the appropriate venues. But what exactly does this mean?

Suppose an AML-H researcher generates ideas at the following rates: 0.5 B, 0.4 A, 0.1 T.
Moreover suppose that a TML-H researcher generates ideas at the following rates: 0.5 B, 0.1 A,
0.4 T. If the AML-H researcher sends all her papers to NeurIPS, then, even in the long run, she
cannot distinguish herself from the TML-H researcher, who could do the same. On the other hand,
if she sends strictly more than 0.6 of her ideas to KDD, then in the long run she will be able to
distinguish herself from the TML-H researcher, because 0.4 of the latter’s ideas cannot go to KDD.

Now consider the AML-L researcher. First, an easy case: suppose he generates ideas at the
following rates: 0.4 B, 0.3 A, 0 T. (These numbers do not sum to 1, but this is not necessary, since
they are rates. Equivalently, we can suppose him to have “the empty idea” ∅ with the remaining
probability 0.3, which can be sent only to “the empty conference” where anything can be sent. This
“empty signal” can also be used to model that the researchers sometimes only have ideas that they
do not consider worth publishing, i.e., that they strategically select only a subset of their samples
to pursue.) Clearly the AML-H researcher will in the long run distinguish herself from the AML-L
researcher simply by the overall number of papers published (as long as the AML-H researcher
does not unnecessarily send papers to the empty conference!). Alternatively, suppose the AML-L
researcher generates ideas at the following rates: 0.4 B, 0.5 A, 0.1 T (so that the only weakness
of the AML-L researcher relative to the AML-H researcher is that fewer of his ideas have both
theoretical and applied significance). In this case, the AML-H researcher can, in the long run,
distinguish herself from the AML-L researcher by sending strictly more than 0.5 of her ideas to
COLT. Of course, this conflicts with what she needs to do distinguish herself from the TML-H
researcher. Still, she can distinguish herself from both the TML-H and the AML-L researcher in
the long run by, in odd-numbered years, sending strictly more than 0.6 of her ideas to KDD, and,
in even-numbered years, sending strictly more than 0.5 of her ideas to COLT.

In the long run we are all dead. —John Maynard Keynes
1Of course, having the basic idea is generally only a small part of the work that needs to be done for a conference

paper; but for our purposes here, we may imagine that the idea incorporates all the work that needs to be done.
2We use the names of actual conferences strictly for amusement value, and while we think our example roughly

aligns with the focus of these conferences, we do not mean to imply anything about their selectivity (all these ideas
are high-quality) or open-mindedness. We also do not mean to imply anything about other conferences—e.g., ICML
could just as well have been used instead of NeurIPS—or (in what follows) about different types of researchers or the
priorities and effort levels of actual hiring committees.
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Figure 6.1: Illustration of the example.

In reality, the candidates will have only finite time to prove themselves. Still, the lazy com-
mittee may hope to distinguish them with high probability. How many years suffice for this (and,
therefore, should be the length of a typical Ph.D. program, potentially extended with a postdoctoral
appointment)?

While this is example is a bit tongue-in-cheek, it is not hard to see that this basic phenomenon
frequently occurs in society. People select from their opportunities and craft them to fit what they
think will appeal to future employers. A start-up company may select from its opportunities and
craft them to fit what they think will impress future backers. In this chapter, we introduce a general
model that captures all these and other cases. Within this model, we characterize conditions under
which agents of certain types can distinguish themselves from others, as well as how many samples
are needed for this.

6.2 Preliminaries

For a set S, we use ∆(S) to denote the set of probability distributions over S. Given a distribution
x ∈ ∆(S), we use x(i) to denote the probability mass on the element i ∈ S, and x(A) to denote
the total probability mass on the set A ⊆ S. We are generally interested in distinguishing one or
more good distributions from one or more bad distributions (where good and bad are determined
by what we are looking for). We use g to denote the good distribution, and b to denote the bad
distribution. (We use (gi)i and (bi)i when there are multiple good/bad distributions.) The agent,
depending on his type being either good or bad, draws n samples i.i.d. from either g or b. How
samples can be turned into signals is represented by a bipartite graph G = (S ∪Σ, E) between the
(discrete) sample space S and the (discrete) signal space Σ. An agent must convert each sample
into a signal and then submit all n signals to the principal. E specifies which signals are valid for
each sample: a sample s ∈ S can be converted into a signal σ ∈ Σ iff (s, σ) ∈ E.

Note that our model generalizes each of the following models:
1. The agent can choose to omit samples. We can add an “empty signal” to Σ, where converting

a sample s to the empty signal corresponds to not reporting s.

2. The agent may or may not receive a sample in each round. E.g., in the example where
samples correspond to ideas and signals correspond to papers, in some rounds the agent may
not have any (worthwhile) idea. We can add an “empty sample” in S which can only be
converted to the empty signal.

3. The signal space is the same as the sample space: S = Σ. In this case it is more natural to
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replace the bipartite graph by one that has only one copy of each sample/signal, is no longer
bipartite, and that represents the possibility of changing sample/signal u to sample/signal v
by a directed edge (u, v).

We will be interested in the probability of accepting good or bad types after T rounds (i.e.,
after the agent draws T samples). We call the T signals submitted a report R ∈ ΣT . The principal
gets to choose an acceptance function (or policy, which could be randomized) f : R → {0, 1} that
maps the report into a binary decision. Her goal is to accept the good agent and reject the bad agent.
The agent wants to be accepted regardless of his type. The principal can thus make two types of
mistakes: false-positive (or type 1 error) when she accepts a bad agent, and false-negative (type 2
error) when she rejects a good agent. The principal wants to minimize the maximum probability
of making either type of mistakes.

We recall the following definition of the total variation distance:
Definition 6.1 (Total Variation Distance). The total variation distance between two distributions
x, y ∈ ∆(Σ) over support Σ is defined to be

dTV(x, y) =
1

2
‖x− y‖1 =

1

2

∑
σ∈Σ

|x(σ)− y(σ)| = max
A⊆Σ

(x(A)− y(A)).

In our setting, the total variation distance provides a good way to measure the closeness be-
tween two signal distributions, which are observable by the principal. We will generalize this
definition to our strategic setting, to measure how close two distributions over the sample space are
to each other.

6.3 Basic Structural Results
In this section, we define a notion that we term “directed total variation distance” dDTV. For two
distributions x and y over samples, dDTV(x, y) measures how well x can distinguish itself from
y in our strategic setting. As we will see in the later sections, dDTV is a central notion in this
chapter, and often dictates the number of samples we need to distinguish the two distributions
under strategic reporting.

We first give the formal definitions of reporting strategies and the directed total variation dis-
tance dDTV(x, y). Then we define another notion MaxSep(x, y) that measures how well x can
distinguish itself from y from the principal’s perspective, using separating sets instead of reporting
strategies. Given these definitions, we present one of our key structural results (Proposition 6.1),
which shows that the two notions are equivalent.

Before investigating distinguishing distributions under strategic reporting, we first generalize
the classical measure of how close two distributions are, dTV, to our strategic setting. We first give
a formal definition the reporting strategy used by the agents.
Definition 6.2 ((Single-Round) Reporting Strategy). Given x ∈ ∆(S), α ∈ ∆(Σ), we say x can
report α (x→ α), if there exist a reporting strategy R = {rs,σ}(s,σ)∈E satisfying:

• rs,σ ≥ 0 for all (s, σ) ∈ E.
• For each s ∈ S,

∑
σ:(s,σ)∈E rs,σ = 1.
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• For each σ ∈ Σ,
∑

s:(s,σ)∈E x(s) · rs,σ = α(σ).
We say x reports α by strategy R (x→R α).

In other words, when each sample s ∈ S is drawn from the distribution x and given this sample
the agent is reporting σ ∈ Σ with probability rs,σ, the resulting distribution over the signal space is
exactly α. For a fixed sample or a random variable s, we use R(s) ∈ ∆(Σ) to denote the random
variable whose distribution over the signal space is induced by {Rs,σ}σ∈Σ.

Given the definition of reporting strategies, we are ready to generalize dTV to our setting.
Intuitively, x chooses a report first, and then y chooses a report in response; they play a zero-sum
game where x wants the reports to be as far away from each other as possible. dDTV(x, y) is
the value of this two-player game when x must choose a report (i.e., a pure strategy) first, which
measures how far x can stay away from y.
Definition 6.3 (Directed Total Variation Distance). Given (S,Σ, E), the directed total variation
distance between two distributions x, y ∈ ∆(S) over the sample space S is defined to be

dDTV(x, y) = max
α:x→α

min
β:y→β

dTV(α, β).

Directed total variance distance nicely characterizes the distance between two distributions
from the agent’s perspective, but it is not immediately clear how that might help the principal.
In particular, are two distributions easily separable by setting an appropriate policy if they have
large directed total variation distance? To study this, we introduce several concepts to model the
problem from the principal’s perspective.
Definition 6.4 (Preimage of Signals). For any set of signals A ⊆ Σ, the preimage pre(A) of A is
defined to be the set of samples which can be mapped to a signal in A. That is

pre(A) = {s ∈ S | ∃σ ∈ A, s.t. (s, σ) ∈ E}.

The principal could label a set A of signals as “good” signals and simply measure how many
good signals the agent is able to send. Ideally, this A is chosen so that a good agent can send
(significantly) more signals in A than a bad agent. This inspires the following definitions.
Definition 6.5 (Separation). For any A ⊆ Σ, if x(pre(A)) − y(pre(A)) = ε > 0, then we say A
separates x from y by a margin of ε.
Definition 6.6 (Max Separation). The max separation of x ∈ ∆(S) from y ∈ ∆(S) over the
sample space S is defined to be MaxSep(x, y) = maxA⊆Σ(x(pre(A))− y(pre(A))).

We now draw the connection between the agent’s and the principal’s perspectives. The fol-
lowing proposition can be viewed as a generalization of the classic Hall’s Marriage Theorem.
Proposition 6.1 states that g can distinguish itself from b under strategic reporting iff there exists
a subset A∗ of signals so that g can generate more signals in A∗ than b. Equivalently, the best
reporting strategy for g is to focus on a subset A∗ of the signal space, and try to convert samples
into signals in A∗ whenever possible.
Proposition 6.1. For any x, y ∈ ∆(S), dDTV(x, y) = MaxSep(x, y).

The proof of the proposition, as well as all other proofs, is deferred to the appendix. This
equivalence between dDTV and MaxSep not only is a nice structural result; Proposition 6.1 plays a
substantial part in our main algorithmic results.
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It is worth noting that dDTV(x, y) in general is not equal to dDTV(y, x). However, the triangle
inequality still holds for dDTV, which also enables some of our main results.
Proposition 6.2. For any x, y, z ∈ ∆(S), dDTV(x, y) + dDTV(y, z) ≥ dDTV(x, z).

6.4 Structural and Computational Results in the General Case
In this section, we define adaptive and non-adaptive reporting strategies (Definition 6.7), and the
accepting probabilities of the optimal reporting strategies after T rounds (Definition 6.8). At a high
level, we give a tight characterization result on when there exists a policy that can distinguish g
from b under strategic reporting, and provide an asymptotically tight bound on the sample com-
plexity of the optimal policy. Moreover, we show that while our structural result is clean and tight,
it is computationally hard to check if the condition holds. That is, in the general case, it is NP-hard
to determine whether there is a policy that can distinguish g from b.

More specifically, we first show that there exists a policy that can distinguish g from b in
the limit (when T →∞) iff dDTV(g, b) > 0 (Theorem 6.1). Next, we give an asymptotically tight
sample complexity bound of T = Θ(1/ε2) when dDTV(g, b) = ε and we want to distinguish g from
bwith high constant probability (Theorem 6.3). We then extend the existence result to more general
settings when there are multiple good and bad distributions (Theorem 6.4). Finally, we show that
it is NP-hard to decide if we are in the case where dDTV(g, b) = 0 or dDTV(g, b) > 1

poly(m,n)

(Theorem 6.2).
We start with the definition of adaptive reporting strategies.

Definition 6.7 (Adaptive Reporting Strategy). An adaptive reporting strategy R = (R1, . . . , RT )
is a sequence of (different) reporting strategies. The signal σi at time i is obtained by applying
Ri to the sample si at time i. Ri = Ri(σ1, . . . , σi−1) may depend on all past signals. A reporting
strategy is non-adaptive if Ri = R1 for any i and (σ1, . . . , σi−1), and adaptive otherwise. For
an adaptive policy R = (R1, . . . , RT ), we interchangeably write σi = Ri(si | σ1, . . . , σi−1) to
indicate the dependence of Ri on σ1, . . . , σi−1.

When we analyze the quality of a fixed T -round policy f , we are interested in the probability
that f accepts g or b after T rounds, when the agent (of either type) best-responds to f .
Definition 6.8 (Acceptance Probabilities of the Best Reporting Strategies). Given x ∈ ∆(S),
T ∈ N, and the principal’s policy f , let the acceptance rate under adaptive / non-adaptive reporting
respectively be

pada(f, x, T ) = max
R=(R1,...,RT )

E[f((Ri(si))i∈[T ])],

pnon(f, x, T ) = max
R=(R,...,R)

E[f((Ri(si))i∈[T ])]

where the expectations are taken over T i.i.d. samples (si)i drawn from x. Observe that pada(f, x, T ) ≥
pnon(f, x, T ) for any f , x and T .

Intuitively, if dDTV(g, b) = 0, then the bad distribution can mimic the good distribution per-
fectly in the signal space, no matter what reporting strategy g uses. Therefore, it is impossible to
distinguish g from b. The next theorem formalizes this intuition. In particular, even if g reports
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adaptively, b can still mimic g’s conditional reporting strategy in every situation (i.e., for every
combination of previously reported signals).
Theorem 6.1 (Separability in the Limit). Given good and bad distributions g and b:

(i) If dDTV(g, b) > 0, then there exists a policy f such that

lim
T→∞

(pnon(f, g, T )− pada(f, b, T )) = 1.

That is, f accepts g and rejects b with probability 1 in the limit.
(ii) If dDTV(g, b) = 0, then for any policy f and any T ,

pada(f, g, T ) ≤ pada(f, b, T ), pnon(f, g, T ) ≤ pnon(f, b, T ).

That is, no policy can separate g from b, regardless of whether the setting is adaptive.
The next theorem states that while our characterization result (Theorem 6.1) is clean and tight

(we can distinguish iff dDTV(g, b) > 0), it is in fact computationally hard to check if this condition
holds. Intuitively, Theorem 6.2 constructs an instance where the good distribution needs to focus
on as few signals as possible. The parameters are chosen carefully so that it is crucial that g finds
a subset of signals A ⊆ Σ with minimum cardinality that covers the support of g.
Theorem 6.2 (hardness of checking separability). Given x, y ∈ ∆(S), it is NP-hard to distinguish
between the following two cases: (1) dDTV(x, y) = 0 and (2) dDTV(x, y) ≥ 1

poly(m,n)
, or equiva-

lently, to determine the existence of a set A ⊆ Σ such that x(pre(A))− y(pre(A)) ≥ 1
poly(m,n)

.
Note that the hardness of checking the existence of separating sets implies the hardness of

finding any separating set given that dDTV(x, y) > 0. This is because given an algorithm for the
latter problem, one could run that algorithm without knowing whether dDTV(x, y) > 0 and see
if it succeeds. Either the algorithm returns a separating set, or we know it must be the case that
dDTV(x, y) = 0 and no separating set exists.

Next, we focus on the case when there are finitely many samples. Theorem 6.3 is more refined
than Theorem 6.1, in that it gives a tight sample complexity bound instead of only talking about
distinguishing g and b in the limit.
Theorem 6.3 (Sample Complexity with Two Distributions). For any g and b such that dDTV(g, b) ≥
ε:

• There is a policy f such that for any δ > 0 and T ≥ 2 ln(1/δ)/ε2, pnon(f, g, T ) ≥ 1− δ and
pada(f, b, T ) ≤ δ.

• When dDTV(g, b) = ε and T = o(1/ε2), for any f , pnon(f, g, T )− pnon(f, b, T ) < 1
3
.

Theorem 6.3 can be generalized to the case where there are multiple good and bad distribu-
tions. First, suppose there is one good distribution and multiple bad distributions. As long as
dDTV(g, bj) ≥ ε for every bad distribution bj , we can use the testing algorithm in Theorem 6.3 to
distinguish them in T = O(1/ε2) rounds (with high constant probability). We potentially need to
do so separately for every bad distribution, paying an extra factor of Ω(`) in the sample complexity
if there are ` bad distributions. If there are k good distributions, then we can run the k testers
in parallel, paying an additional factor of log(k) in the sample complexity to boost the success
probability so that we can take a union bound.
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Theorem 6.4 (Multiple Good and Bad Distributions, the General Case). For any g1, . . . , gk and
b1, . . . , b` such that dDTV(gi, bj) ≥ ε for any i ∈ [k] and j ∈ [`], there is a policy f such that: For
any δ > 0 and T ≥ 2` ln(k`/δ)/ε2, pada(f, gi, T ) ≥ 1 − δ for any i ∈ [k], and pada(f, bj, T ) ≤ δ
for any j ∈ [`].

We note that the policy in Theorem 6.4 requires the good distribution to report in different
ways, which is not possible with a non-adaptive strategy according to our definition. In particular,
the good distribution must know which bad distribution it is up against in each phase, and report
accordingly. As our introductory example shows, this is in fact necessary when there are multiple
bad distributions.

6.5 When Signals Are Partially Ordered
In many real-world situations, the sample and signal spaces are structured. For example, when
a band is recruiting new members, applicants may be asked to submit video recordings of them-
selves playing. An applicant would probably videotape herself playing for an entire event as a
sample, and then crop the recording to create a signal that demonstrates only her best performance.
This cropping procedure is irreversible: the complete recording may be cropped to keep a part, but
from a part, it is impossible to recover the full recording. The signal space in this scenario is par-
tially ordered by the cropping procedure—the samples/signals can be transformed in one direction
(shortening), but never the other. Also, there is a “default” signal for each sample, which is simply
to submit the complete recording without cropping. The default signal can be transformed into any
signal that can be reported from this sample. In this section, we consider the following abstraction
of such scenarios:

• S = Σ,
• (s, s) ∈ E for any s ∈ S,
• (s, t) ∈ E and (t, u) ∈ E =⇒ (s, u) ∈ E, and
• E is acyclic except for self-cycles.

This abstraction also covers, for example, scenarios where the agent can choose to hide certain
samples—any sample can be transformed into a non-sample, but not reversely. Note that given
the above conditions, the sample/signal space is essentially a partially ordered set, where a sample
can only be transformed according to this partial order. Let n = |S| be the cardinality of the
sample/signal space.

We first show some useful structural results in the partially ordered case. The following propo-
sition demonstrates that the revelation principle holds in this case.
Proposition 6.3 (Revelation Principle). For any policy f :

• There exists a policy f ′ such that for any x ∈ ∆(S), T ∈ N,

pnon(f, x, T ) = pnon(f ′, x, T ) = E[f ′((si)i)].

• There exists a policy f ′′ such that for any x ∈ ∆(S), T ∈ N,

pada(f, x, T ) = pada(f ′′, x, T ) = pnon(f ′′, x, T ) = E[f ′′((si)i)].
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In other, non-learning contexts in mechanism design, whether the revelation principle holds is
often an aspect that determines whether the computational problems therein are tractable. We will
see that this is also the case for our problem—the revelation principle enables efficient computation
of the max separation, and therefore efficient policies in a quite natural way.

The next proposition simplifies the definition of dDTV in the partially ordered case, based on
the insight that, per the revelation principle, the best way for x to avoid being mimicked by y is to
always report the unmodified samples.
Proposition 6.4 (dDTV Simplified). In the transitive case, dDTV(x, y) = miny→y′ dTV(x, y′).

This also gives us an efficient algorithm for finding the set that supports the max separation
MaxSep(x, y) of x from y:
Corollary 6.1 (Efficient Computation of Max Separation). Given any x, y ∈ ∆(S), there is a poly-
time algorithm which computes a set A∗ satisfying x(pre(A∗))− y(pre(A∗)) = MaxSep(x, y).

We show in Theorem 6.5 that in the partially ordered case we can separate multiple good
distributions from multiple bad ones with much smaller overhead. The proof of Theorem 6.5 is
similar to that of Theorem 6.4. The only difference is that, because of the revelation principle, we
no longer require good distributions to report adaptively.
Theorem 6.5 (Multiple Good and Bad Distributions: The Partially Ordered Case). For any g1, . . . , gk
and b1, . . . , b` where dDTV(gi, bj) ≥ ε for any i ∈ [k], j ∈ [`], there is a policy f such that: For
any δ > 0 and T ≥ 2 ln(k`/δ)/ε2, pnon(f, gi, T ) ≥ 1 − δ for any i ∈ [k], and pada(f, bj, T ) ≤ δ
for any j ∈ [`].

In the partially ordered case, we cannot only deal with multiple good and bad distributions
much more efficiently, but also deal with any bad distribution using a single sample-efficient policy.
Before stating the result, recall the following definition of the width of a partially ordered set.
Definition 6.9 (Width of Partially Ordered Sets). The width ρ(G) of a partially ordered set repre-
sented as graph G = (S,E) is defined to be ρ(G) = max{|A| | A ⊆ S, ∀s1, s2 ∈ A, (s1, s2) /∈
E}. In other words, the width is the maximum size of a set A ⊆ S where any two elements in A
are not comparable. Such a set A is called an anti-chain.

We now provide our generic policy, whose sample complexity, quite surprisingly, depends
roughly linearly on the width of the sample space.
Theorem 6.6 (Efficient Policy against Any Bad Distribution). For any g ∈ ∆(S), there is a policy
f such that for any δ > 0, and T ≥ 2ρ ln(1+n/ρ) ln(1/δ)

ε2
: (1) pnon(f, g, T ) ≥ 1− δ, and (2) for any b

such that dDTV(g, b) ≥ ε, pada(f, b, T ) ≤ δ. Moreover, the outcome of the policy can be computed
in polynomial time.

The above policy is able to detect any bad distribution with adaptive reporting. For bad distri-
butions without adaptive reporting, when ρ = Ω(

√
n/ log n), the following policy achieves even

better sample complexity.
Theorem 6.7 (Efficient Policy against Non-adaptive Bad Distributions). For any g ∈ ∆(S), there
is a policy f such that for any δ > 0, with T = O

(√
n ln(1/δ)
ε2

)
samples: (1) pnon(f, g, T ) ≥ 1− δ,

and (2) for any b such that dDTV(g, b) ≥ ε, pnon(f, b, T ) ≤ δ. Moreover, the outcome of the policy
can be computed in polynomial time.
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6.6 Future research
In this chapter, we have focused on distinguishing good and bad types with near certainty. In
reality, the number of available samples may not always be sufficient for this. If so, it may be
worthwhile to move beyond simple acceptance and rejection decisions to a more general mecha-
nism design setup. For example, when the signals we receive from an agent are not decisive one
way or another, perhaps an intermediate outcome between rejection and acceptance allows us to
improve our objective, by avoiding the damage of either accepting a bad type or rejecting a good
type. One may also consider settings in which signaling is costly (or at least sending high-quality
signals comes at an effort cost, in line with traditional signaling models [97]) or in which agents
can in fact improve their actual types via some investment cost. Any of these directions would
further enrich the specific connections between mechanism design and learning theory that we
have begun to explore in this chapter (and that in turn complement other fascinating connections
between these topics that have earlier been established by others [6, 14, 20, 21, 36, 57, 59, 72]).

6.7 Omitted Proofs From Section 6.3
We need the following fact:
Proposition 6.5 (Saturation). If x→ α, then for any A ⊆ Σ,

x(pre(A)) ≥ α(A).

Moreover, there exists αA where x→ αA, such that

x(pre(A)) = αA(A).

We call the corresponding reporting strategy that achieves x→ αA “saturating” for A.

Proof of Proposition 6.5. Let R = {rs,σ}(s,σ)∈E be the reporting strategy by which x reports α.

x(pre(A)) =
∑

s∈pre(A))

x(s)

≥
∑

s∈pre(A)

∑
σ∈A

rs,σx(s) (
∑

σ∈A rs,σ ≤ 1)

=
∑
σ∈A

∑
s:(s,σ)∈E

rs,σx(s)

=
∑
σ∈A

α(σ) (definition of R)

= α(A).

Now we show αA exists by constructing the corresponding reporting strategy. Let R′ = {r′s,σ}
be any reporting strategy satisfying: if s ∈ pre(A), r′s,σ = 0 for all σ /∈ A. Such an R′ exists
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because by the definition of pre(A), for every s ∈ pre(A), there is at least one σ ∈ A that connects
to s.

Now for any s ∈ pre(A), ∑
σ∈A

r′s,σ = 1.

Hence, for this reporting strategy, the single inequality in the derivation above becomes an equality,
allowing us to conclude x(pre(A)) = αA(A).

Proof of Proposition 6.1. We first show MaxSep(x, y) ≤ dDTV(x, y). LetA∗ = argmaxA(x(pre(A))−
y(pre(A))).

dDTV(x, y) = max
α:x→α

min
β:y→β

dTV(α, β)

≥ max
α:x→α

min
β:y→β

∑
σ∈A∗

max{α(σ)− β(σ), 0} (Definition 6.1 of dTV )

≥ max
α:x→α

min
β:y→β

(α(A∗)− β(A∗))

≥ max
α:x→α

(α(A∗)− y(pre(A∗))) (Proposition 6.5)

= x(pre(A∗))− y(pre(A∗)) (Proposition 6.5, existence of saturating distribution)
= MaxSep(x, y).

Now we show MaxSep(x, y) ≥ dDTV(x, y). Let α∗ be a signal distribution reported by x that
achieves dDTV(x, y). Let β∗ be a signal distribution reported by y that best-response to α∗, where
we require as a tie-breaker that β∗ minimizes the number of signals σ with α∗(σ) ≥ β∗(σ).

Let A∗ = {σ | α∗(σ) ≥ β∗(σ)}. We will show that A∗ separates x from y by a margin of
dDTV(x, y).

We first show that β∗(A∗) = y(pre(A∗)). Suppose otherwise β∗(A∗) < y(pre(A∗)). Let R =
{rs,σ} be the reporting strategy that gives y → β∗. We know that there exists some s0 ∈ pre(A∗)
with y(s0) > 0 where R does not convert all probability mass on s0 into signals in A∗. Formally,
we have

∑
σ∈A∗:(s0,σ)∈E rs0,σ < 1. Consider any σ1, σ2 ∈ Σ satisfying: σ1 /∈ A∗, (s0, σ1) ∈ E,

rs0,σ1 > 0, σ2 ∈ A∗, and (s0, σ2) ∈ E. We have α∗(σ1) < β∗(σ1) and α∗(σ2) ≥ β∗(σ2). Now we
discuss the following two cases and show there is a contradiction in both cases.

• If α∗(σ2) > β∗(σ2), then by moving

min{rs0,σ1y(s0), β∗(σ1)− α∗(σ1), α∗(σ2)− β∗(σ2)} > 0

mass from σ1 to σ2, y can report β′ such that dTV(α∗, β′) < dTV(α∗, β∗), a contradiction.
• If α∗(σ2) = β∗(σ2), then by moving

min{rs0,σ1y(s0), (β∗(σ1)− α∗(σ1))/2} > 0

mass from σ1 to σ2, y can report β′ such that dTV(α∗, β∗) = dTV(α∗, β′). But now α∗(σ2)−
β′(σ2) < 0, and for any σ 6= σ2, the sign of α∗(σ)−β′(σ) is the same as that of α∗(σ)−β∗(σ).
So we have

|{σ | α∗(σ) ≥ β∗(σ)}| > |{σ | α∗(σ) ≥ β′(σ)}|,
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which contradicts the choice of β∗.

Now given that y(pre(A∗)) = β∗(A∗), we have

MaxSep(x, y) = max
A

(x(pre(A))− y(pre(A))

≥ x(pre(A∗))− y(pre(A∗))

≥ α∗(A∗)− y(pre(A∗)) (Proposition 6.5)
= α∗(A∗)− β∗(A∗)
= dTV(α, β)

= dDTV(x, y).

Proof of Proposition 6.2. Let A∗ = argmaxA(x(pre(A))− z(pre(A))). We have

dDTV(x, y) + dDTV(y, z) = MaxSep(x, y) + MaxSep(y, z)

= max
A

(x(pre(A))− y(pre(A))) + max
A

(y(pre(A))− z(pre(A)))

≥ (x(pre(A∗))− y(pre(A∗))) + (y(pre(A∗))− z(pre(A∗)))

= x(pre(A∗))− z(pre(A∗))

= MaxSep(x, z)

= dDTV(x, z).

6.8 Omitted Proofs From Section 6.4
Proof of Theorem 6.1. Part (i) follows from Theorem 6.3.

For part (ii), suppose dDTV(g, b) = 0. Let sig (resp. sb) be a random variable that denotes the
sample drawn from g (resp. b) at time i. Abusing notation, for two random variables X and Y , we
write dTV (X, Y ) for the dTV between the underlying distributions of X and Y .

We show that given an adaptive / non-adaptiveRg, there is an adaptive / non-adaptiveRb, such
that

dTV((Ri
g(s

i
g))i∈[T ], (R

i
b(s

i
b))i∈[T ]) = 0. (6.1)

Because the good and bad distributions have identical distributions over the signal space, and this
holds for all possible reporting strategiesRg, part (ii) follows immediately.

Consider first non-adaptive reporting. Fix Rg = (R1
g, . . . , R

T
g ) where Ri

g = Rg for all i, let
Rb = (R1

b , . . . , R
T
b ), where

dTV(Ri
g(s

i
g), R

i
b(s

i
b)) = 0.

The existence of such an Rb follows from the fact that dDTV(g, b) = 0. Now since Ri
g(s

i
g) and

Ri
b(s

i
b) are i.i.d., Equation (6.1) holds.

Now consider adaptive reporting. For any adaptive reporting strategyRg, we will construct an
adaptiveRb inductively, such that for any k,

dTV((Ri
g(s

i
g))i∈[k], (R

i
b(s

i
b))i∈[k]) = 0.
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For the base case when k = 1, observe that since dDTV(g, b) = 0, for any R1
g, there exists R1

b such
that

dTV(R1
g(s

1
g), R

1
b(s

1
b)) = 0.

For the inductive case, suppose that dTV((Ri
g(s

i
g))i∈[k], (R

i
b(s

i
b))i∈[k]) = 0. Given (R1

b , . . . , R
k
b ), we

construct Rk+1
b in the following way. Let Rk+1

b be such that

Rk+1
b (sk+1

b | σ1, . . . , σk) = Rk+1
g (sk+1

g | σ1, . . . , σk),

for any (σ1, . . . , σk). Now for any (σ1, . . . , σk+1),

Pr[(R1
b(s

1
b), . . . , R

k+1
b (sk+1

b )) = (σ1, . . . , σk+1)]

= Pr[(R1
b(s

1
b), . . . , R

k
b (s

k
b )) = (σ1, . . . , σk)] · Pr[Rk+1

b (sk+1
b | σ1, . . . , σk) = σk+1]

= Pr[(R1
g(s

1
g), . . . , R

k
g(s

k
g)) = (σ1, . . . , σk)] · Pr[Rk+1

b (sk+1
b | σ1, . . . , σk) = σk+1]

(induction hypothesis)

= Pr[(R1
g(s

1
g), . . . , R

k
g(s

k
g)) = (σ1, . . . , σk)] · Pr[Rk+1

g (sk+1
g | σ1, . . . , σk) = σk+1]

(construction of Rk+1
b )

= Pr[(R1
g(s

1
g), . . . , R

k+1
g (sk+1

g )) = (σ1, . . . , σk+1)].

In other words, we have

dTV((Ri
g(s

i
g))i∈[k+1], (R

i
b(s

i
b))i∈[k+1]) = 0,

which concludes the inductive proof for Equation (6.1) in the adaptive case.

Proof of Theorem 6.2. We reduce from Set Cover. More specifically, we use the following decision
version of Set Cover: given ground set X = [n], family of sets F = {F1, . . . , Fm} where Fi ⊆ X ,
and integer k = m/2, determine whether there are k sets in F whose union is X . Note that it
is without generality to set k = m/2, since given any Set Cover instance with an arbitrary k, we
could always pad the instance by adding at most m elements into X and m sets into F , to obtain
an equivalent new instance with k′ = m′/2. Fixing a Set Cover instance, we construct S, Σ, E, x
and y in the following way.

• S = U ∪ V , where U = {u1, . . . , un+1}, V = {v1, . . . , vm+2}, and U ∩ V = ∅.
• Σ = {σ1, . . . , σm+1}.
• x(ui) = 1

2n
for i ∈ [n], and x(un+1) = 1

2
.

• y(vi) = (1/2 + 1/(2n) − t)/m for i ∈ [m], y(vm+1) = 1
2
− 1

2n
, and y(vm+2) = t, where

t ∈ [0, 1/2 + 1/(2n)] is a constant to be determined later.
• For i ∈ [m] and j ∈ Fi, let (uj, σi) ∈ E. Let (un+1, σm+1) ∈ E.
• For any i ∈ [m], let (vi, σi) ∈ E. For any i ∈ [m+2], let (vi, σm+1) ∈ E. For any i ∈ [m+1],

let (vm+1, σi) ∈ E.
• E contains only edges that mentioned above.
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Now consider the problem of finding a set that separates x from y with a positive margin. First
observe that such a set A would never include σm+1, since y(pre({σm+1})) = 1. Our goal is to set
t, such that iff |A| ≤ k and pre(A) = {u1, . . . , un}, A separates x from y with a positive margin.
Such an A in the Set Cover instance would correspond to at most k sets in F whose union cover
X . Note that if σm+1 /∈ A,

y(pre(A)) =
1/2 + 1/(2n)− t

m
· |A|+ 1

2
− 1

2n
≥ 1

2
− 1

2n
.

If pre(A) covers {u1, . . . , un}, then x(pre(A)) = 1
2
. Otherwise, x(pre(A)) ≤ 1

2
− 1

2n
≤ y(pre(A)).

So if pre(A) does not cover {u1, . . . , un}, A cannot be a separating set. We set t such that
y(pre(A)) = 1

2
if |A| = k + 1 = (m + 2)/2. Such a t always exists. Moreover, observe that

such a value of t guarantees that whenever |A| ≤ k, y(pre(A)) ≤ 1
2
− 1

poly(m,n)
. Now iff |A| ≤ k

and A covers {u1, . . . , un}, A separates x from y with a margin of 1
poly(m,n)

. In other words, there
is a separating set with a positive margin iff there are at most k sets that cover X in the Set Cover
instance. Our NP-hardness result follows.

Proof of Theorem 6.3. For the first bullet point, let A∗ be a set which separates g from b by a
margin of ε. Consider the following policy: accept (σ1, . . . , σT ) iff

1

T

∑
i∈[T ]

I[σi ∈ A∗] ≥ g(pre(A∗))− 1

2
ε.

That is, the policy accepts the distribution iff ᾱ(A∗) ≥ g(pre(A∗))− 1
2
ε, where ᾱ is the empirical

distribution of the reported signals. We now bound the probability of g being accepted. Using
some saturating reporting strategy RA∗ for A∗ (Proposition 6.5), we have

sig ∈ pre(A∗) ⇐⇒ RA∗(s
i
g) ∈ A∗.

So by the Chernoff-Hoeffding bound, f rejects g with probability

Pr

[
1

T

∑
i

I[sig ∈ pre(A∗)]− g(pre(A∗)) < −1

2
ε

]
≤ exp(−Tε2/2) ≤ δ.

On the other hand, by Proposition 6.5 for any reporting strategy Rb of b,

Pr[Rb(s
i
b) ∈ A∗] ≤ b(pre(A∗)) ≤ g(pre(A∗))− ε.

So f accepts b with probability at most

Pr

[
1

T

∑
i

I[sib ∈ pre(A∗)]− b(pre(A∗)) ≥ 1

2
ε

]
≤ exp(−Tε2/2) ≤ δ.

For the second bullet point, consider the following instance: S = Σ = (s1, s2), g(s1) =
1
2

+ ε, g(s2) = 1
2
− ε, b(s1) = b(s2) = 1

2
, and E = {(s1, s1), (s2, s2)}. In words, s1 is a

good sample/signal, and s2 is a bad one. Agents must report the sample drawn as is. The good
distribution draws good samples with slightly higher probability than the bad distribution. For this
instance, distinguishing between g and b is exactly equivalent to distinguishing a coin with bias ε
with a fair coin. In the latter problem, it is well-known that Ω(1/ε2) samples are required.
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Proof of Theorem 6.4. Consider the following policy which uses the policy in Theorem 6.3 as a
building block. Let the policy in Theorem 6.3 be fg,b for good distribution g and bad distribution b.
Let T0 = 2 ln(k`/δ)/ε2, where `T0 = T . Given the T reported signals (σi), our policy f proceeds
in the following way:

• For each i ∈ [k], j ∈ [`], feed the T0 signals

σ(j−1)T0+1, . . . , σjT0

to policy fgi,bj , and let the output be oi,j = fgi,bj(σ
(j−1)T0+1, . . . , σjT0).

• f outputs 1 iff ∨
i∈[k]

∧
j∈[`]

oi,j = 1.

To see the correctness of the policy, observe that for each any i, j, with probability 1 − δ
k`

, fgi,bj
accepts gi and rejects bj given the signals fed in. Taking a union bound over all such (i, j), with
probability at least 1−δ, all these policies succeed simultaneously. Now for some good distribution
gi∗ , as long as the above event happens, we have oi∗,j = 1 for all j ∈ [`], so∨

i∈[k]

∧
j∈[`]

oi,j ≥
∏
j∈[`]

oi∗,j = 1.

On the other hand, for some bad distribution bj∗ , we have oi,j∗ = 0 for any i ∈ [k], and therefore∨
i∈[k]

∧
j∈[`]

oi,j ≤
∑
i

∏
j

oi,j = 0.

6.9 Omitted Proofs From Section 6.5
Proof of Proposition 6.3. Consider f ′ (resp. f ′′) which first applies the optimal non-adaptive (resp.
adaptive) reporting strategy for x to the original samples, and then applies f to the transformed
samples. Now the optimal reporting strategy for x given policy f ′ (or f ′′) is simply reporting the
original sample received from x. The proposition follows.

Proof of Proposition 6.4. We show that MaxSep(x, y) = miny→y′ dTV(x, y′), which implies the
proposition given Proposition 6.1.

Consider the following flow network G = (V,E ′, w):

• V = S ∪ {ss, st}, where ss is the source and st is the sink.
• E ′ = E ∪ {(ss, s)}s∈S ∪ {(s, st)}s∈S .
• w(s1, s2) = ∞ for any (s1, s2) ∈ E, w(ss, s) = b(s) for s ∈ S, and w(s, st) = g(s) for
s ∈ S.

See Figure 6.2 for illustration of an example network. Now observe that
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Figure 6.2: Illustration of Proposition 6.4. Vertices in the frame are from S, and the rest of
the network is constructed as described in the proof. The dashed edges are saturated in the max
flow. The boldface vertices are cut to st, and therefore constitute the prefix supporting the max
separation.

• 1 − MaxSep(x, y) is the ss-st min-cut of this network. This is because every set A ⊆ S
corresponds to a cut, where S \ pre(A) is cut to ss and pre(A) is cut to st. The value of
1− (x(pre(A))− y(pre(A))) is exactly the value of the cut. Similarly, any cut corresponds
to a separating set. It follows that MaxSep(x, y) corresponds to the min-cut.

• 1−miny→y′ dTV(x, y′) is the ss-st max-flow of the network. This is because every y′ corre-
sponds to a feasible flow in the network, whose capacity is∑

s

min{x(s), y′(s)} = 1− dTV(x, y′).

Taking max over y′, we see that the max-flow has capacity

max
y→y′

(1− dTV(x, y′)) = 1− min
y→y′

dTV(x, y′).

Strong duality immediately gives the desired statement.

Proof of Corollary 6.1. Run max-flow on the flow network constructed in the proof of Proposi-
tion 6.4, compute the min-cut on the residual network, and return the subset of S on the same side
as ss.

Proof of Theorem 6.5. Let the policy in Theorem 6.3 be the truthful version of fg,b for good dis-
tribution g and bad distribution b.3 Given the T reported signals (σi), our policy f proceeds in the
following way:

3The policy in Theorem 6.3 is itself truthful, but the construction here works even if it is not.
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• For each i ∈ [k], j ∈ [`], feed all T signals reported to policy fgi,bj , and let the output be
oi,j = fgi,bj(σ

1, . . . , σT ).
• f outputs 1 iff ∨

i∈[k]

∧
j∈[`]

oi,j = 1.

The rest of the proof is essentially the same as that of Theorem 6.4.

Our policy against any adaptive bad distribution in Theorem 6.6 uses an efficient learner as a
building block, which generalizes classical results for learning discrete distributions.
Theorem 6.8 (Efficient Learner). Let ρ = ρ(G) be the width of graph G = (S,E). For any
x ∈ ∆(S), ε > 0, δ > 0, and T = ρ ln(1+n/ρ) ln(1/δ)

2ε2
, for any valid reporting strategy that satisfies

(si, σi) ∈ E, with probability at least 1− δ, dDTV(ᾱ, x) ≤ ε, where ᾱ is the empirical distribution
given by the reports (σi)i, i.e., ᾱ(s) =

∑
i I[σi=s]
T

.
The following well-known fact about the width is used in the analysis of our learner:

Theorem 6.9 (Dilworth’s Theorem). A chain in a partially ordered set G = (S,E) is an ordered
set C = (c1, . . . , c`), where ci ∈ S for i ∈ [`] and (ci, ci+1) ∈ E for any i ∈ [` − 1]. Dilworth’s
Theorem states that for any partially ordered set G = (S,E), the width of ρ(G) is equal to the
minimum number of chains whose union covers S.

Proof of Theorem 6.8. We show that MaxSep(ᾱ, x) ≤ ε w.p. 1− δ. More specifically, if for all A
where A = pre(A), ᾱ(A) − x(A) ≤ ε, then duality gives immediately that dDTV(ᾱ, x) ≤ ε. We
will show that this happens with probability 1− δ.

Let x̄ be the empirical distribution of (si)i. Fix A ⊆ S where A = pre(A). Observe that
x̄(A) ≥ ᾱ(A), so x(A) = E[x̄(A)] ≥ E[ᾱ(A)]. The Chernoff bound gives

Pr[ᾱ(A) ≥ x(A) + ε] ≤ exp(−2Tε2) ≤ δ

(1 + n/ρ)ρ
.

We only need to show that the number of different sets A where A = pre(A) is at most (1+n/ρ)ρ.
We call such sets prefixes of graph (S,E). Dilworth’s Theorem (Theorem 6.9) states that the width
ρ of (S,E) is equal to the minimum number of chains whose union covers S. Let C = {Ck}k∈[ρ]

be such a covering family, where for any k, Ck = (sk,1, . . . , Sk,`k) is a chain (i.e., (sk,i, sk,i+1) ∈ E
for i ∈ [`k−1]. For any prefix A, let pk(A) = |A∩Ck|. Observe that if two prefixes A1 and A2 are
distinct, then there is some k ∈ [ρ] such that pk(A1) 6= pk(A2). On the other hand, consider vector
(p1(A), . . . , pρ(A)). The number of possible values of this vector is

∏
k(`k + 1) ≤ (1 + n/ρ)ρ,

which is an upper bound of the number of different prefixes. Taking union bound over all these
prefixes, we have

Pr[∀A where A = pre(A), ᾱ(A) ≥ x(A) + ε] ≤ δ

(1 + n/ρ)ρ
· (1 + n/ρ)ρ = δ.

The theorem follows.

Given the efficient learner constructed above, we are ready to prove Theorem 6.6.
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Proof of Theorem 6.6. Consider the following policy: compute the empirical distribution ᾱ of the
reported signals. Accept iff dDTV(g, ᾱ) < 1

2
ε. Note that since g is known, dDTV(g, ᾱ) can be

computed in polynomial time using the algorithm in Corollary 6.1.
We first show that pnon(f, g, T ) ≥ 1 − δ). In particular, we show that if g reports truthfully,

then with probability 1 − δ, dDTV(g, ḡ) < 1 − 1
2
ε. The argument is similar to that in the proof of

Theorem 6.8. For any A ⊆ S where A = pre(A), the Chernoff bound implies

Pr[g(A)− ḡ(A) ≥ ε/2] ≤ δ

(1 + n/ρ)ρ
.

Since there are at most (1 + n/ρ)ρ such sets, from a simple union bound, with probability 1 − δ,
dDTV(g, ḡ) = MaxSep(g, ḡ) ≤ 1

2
ε.

Now we show that pada(f, b, T ) ≤ δ for any b where dDTV(g, b) ≥ ε. No matter what adaptive
reporting strategy b uses, the signals reported by b must satisfy (sib, σ

i
b) ∈ E for all i. By Theo-

rem 6.8, with probability 1− δ, the empirical distribution ᾱ satisfies dDTV(ᾱ, b) ≤ 1
2
ε. Now since

dDTV satisfies the triangle inequality (Proposition 6.2),

dDTV(g, ᾱ) ≥ dDTV(g, b)− dDTV(ᾱ, b) ≥ ε− 1

2
ε =

1

2
ε.

Whenever this happens, b is rejected by f , which means pada(f, b, T ) ≤ δ.

Proof of Theorem 6.7. We use the algorithm by Valiant and Valiant [99] for testing identity of
discrete distributions as a building block. Given a distribution x ∈ ∆([n]), with T = O

(√
n ln(1/δ)
ε2

)
samples to an unknown distribution y, their algorithm distinguishes between the following two
cases: (1) y = x and (2) dTV(x, y) ≥ ε. Our policy for non-adaptive reporting is simply running
the algorithm by Valiant and Valiant on the good distribution g and the signals reported (σi)i.

The good distribution g, in order to be accepted with high probability, simply reports truthfully.
The distribution of signals of g is therefore exactly g, which with probability 1− δ passes the test.

As for the bad distribution, observe that any non-adaptive reporting strategyRb = (Rb, . . . , Rb)
induces a distribution αb of signals reported, where b →Rb αb. No matter how b reports, because
dDTV(g, b) ≥ ε, we always have dTV(g, αb) ≥ ε, in which case αb fails the test with probability at
least 1− δ.
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Chapter 7

Classification with Few Samples through
Self-Selection

7.1 Introduction

In previous chapters, we have discussed sample-based classification in settings where samples
can either be strategically selected, or strategically transformed by self-interested agents. In this
chapter, we investigate a closely related setting, where samples are not exogenous, but endogenous.
That is, the agent can choose how many samples they want to generate. This corresponds to
classification based on the outcomes of tests.

In a narrow sense, tests can take the form of exams, with numerical scores as outcomes. For
example, a course often has one or more midterm exams and one final exam, and the intructor
uses the outcomes of these exams to decide the final grades of (i.e., to classify) students. More
generally, a test can be any activity that takes a certain amount of effort and produces a verifiable
outcome. Examples include job interviews, research paper submissions, etc. These outcomes,
presumably correlated with the true skills of the test takers (henceforth the agents), are then used
by a principal to classify them — the collective feedback from different interviewers determines
whether the interviewee gets the job, and the list of papers one has published strongly affects one’s
future opportunities as a researcher.

An agent’s performance on tests is inevitably random — on any given day, a capable student
may not perform well due to being tired or sick, due to bad luck in which questions were selected,
or for reasons that we cannot identify. For this reason, a principal generally is willing to take
into consideration multiple test outcomes when making decisions. It then matters how these tests
are offered to agents. Oversimplifying, there are two ways of offering tests: mandatory tests and
optional tests. With mandatory tests, the principal decides which tests each agent should take
and/or how many times they should take them, as well as which (combinations of) outcomes an
agent needs to have in order to be classified into a certain category. A straightforward example
of mandatory tests is students taking exams in school, where typically all students are required to
take all exams in a course, whose outcomes together determine the final grade of the student. On
the other hand, with optional tests, the principal decides the latter (i.e., which outcomes suffice for
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classification into a certain category) but not the former (i.e., which and/or how many tests each
agent should take). One example is (an oversimplified version of) the academic job market, where
agents’ publication records determine whether they are invited for an onsite interview, but agents
can decide how often to put in the effort to prepare a new paper for submission to a conference
or journal (i.e., to “take” and optional “test”). At first glance, it may appear that mandatory tests
allow the principal tighter control over the classification process, and therefore would benefit the
principal more than optional tests. As a consequence, the principal should enforce mandatory tests
whenever possible (or economically feasible). However, the above intuitive reasoning does not
appear to be fully backed by evidence from reality: optional tests continue to be implemented in
high-stakes classification tasks such as US college admissions.1 This raises the following question:

Are there any advantages of optional tests for classification over mandatory ones?

On top of that, in many other scenarios mandatory tests are simply unrealistic, and the principal
has to rely on optional tests for decision-making — for example, it is impossible for an academic
hiring committee to require job applicants to submit their work to certain conferences in a pre-
scribed way, e.g., one paper to NeurIPS’20 and one paper to ICML’21. In such cases, the principal
would still like the classification process to be as accurate and efficient as possible. This leads us
to the following question:

How can one design a classification process with optional tests in the most accurate
and/or efficient way?

Our results. We give somewhat surprising answers to the above two questions in the case of
binary classification of binary agents (elaborated below): we characterize the optimal design of a
classification process with optional tests, and based on this show that classification with optional
tests can be arbitrarily more efficient than optimal classification with mandatory tests for the same
task.

To be more specific, we consider a setting where a principal either accepts or rejects agents
based on the set of test outcomes that they get. Before tests are taken, the principal commits to a
policy, which consists of all sets of outcomes that lead to acceptance. Each agent is modeled by a
distribution over the space of possible outcomes, corresponding to how the agent tends to perform
in a test. When an agent takes a test, he pays a cost and receives an independent sample from his
distribution as the outcome. Agents can always choose between taking another test, and stopping.
They maximize their expected utility, which is the value of acceptance if the principal’s policy
accepts the set of outcomes they have and 0 otherwise, minus the total cost of tests taken.

We focus on the case where agents can be either “good” or “bad” (corresponding to two differ-
ent distributions over test outcomes), and the principal’s goal is to accept good agents and reject
bad ones. We first characterize the optimal strategy of an agent in response to the principal’s pol-
icy. Fixing the principal’s policy, each agent faces a Markov Decision Process (MDP), where the
state is the set of test outcomes that he has collected. In general, at any state of the MDP, the
agent can always choose between taking another test and stopping, and the optimal strategy could
be any function mapping each combination of outcomes to one of the two actions. Our first key

1As discussed in Chapter 4, applicants may take SAT and/or ACT tests, among others, as many times as they want.
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observation is that without loss of generality, the agent’s optimal strategy is either to keep taking
tests until acceptance, or to leave immediately without taking any test. This is because intuitively,
after taking some tests, the agent must have received some outcomes, which makes his situation at
least as good as when he started in terms of the expected number of future tests he needs to take
in order to be accepted; the cost of the tests already taken is sunk. So, if an agent ever chooses to
start taking tests, he must be willing to keep taking tests until acceptance, since the cost of past
tests should not affect his decision. This is making two assumptions: (1) the agent can choose not
to submit some of the test outcomes, and (2) the agent already knows his own type (good or bad)
at the beginning, and hence is not learning about himself from the test outcomes.

With agents’ optimal strategy characterized, we consider the principal’s problem, i.e., the de-
sign of her classification policy. We first study the case where the principal controls the cost of a
test, by, for example, charging a registration fee. We show that in this case, as long as the good and
bad agents have different distributions (which can be arbitrarily close to each other), the principal
can always achieve perfect accuracy, meaning good agents are accepted with probability 1, and
bad ones are rejected with probability 1. The key technique is to choose the policy so that agents
self-select into (not) taking tests. Moreover, among perfectly accurate policies, we characterize the
one with stochastically dominant efficiency in terms of the number of tests a good agent needs to
take in order to be accepted. We show that quite surprisingly, under this policy, no agent ever has
to take more than 2 tests. One may contrast this with the mandatory tests case, where the principal
directly observes as many samples as she wants from agents’ distributions — there, in order to
classify correctly with probability 2/3, the number of tests required can be arbitrarily large, as the
distance between the good and bad distributions diminishes.

We then proceed to the case where the cost per test is fixed externally. With discrete outcomes,
we show that perfect accuracy in general is no longer possible. We then consider the special case
with continuous outcome distributions, or equivalently, where outcomes are associated with rich
noise that is effectively continuous. We show that in a continuous world, with different good and
bad distributions, perfect accuracy is again always possible. Moreover, we construct a perfectly
accurate policy under which the maximum number of tests a good agent needs to take is b1/cc+ 1
where c is the fixed cost per test, and show this is essentially best possible for perfectly accurate
policies. We also provide evidence that the above bound cannot be significantly improved even if
we consider the expected number of tests.

7.2 Preliminaries
In this section, we formally define the problem of test-based classification.

Agents, tests, and outcomes. Each agent is modeled by a distribution D over a space O of pos-
sible test outcomes (e.g., integers between 0 and 100, corresponding to numerical scores). Agents
can choose to take as many tests as they want. When an agent with distribution D takes a test, he
receives an outcome drawn from D independently of past test outcomes, and can then choose to
continue taking tests, or to stop. The outcomes of all the tests taken (which form a multiset whose
elements are from the outcome space O) will then be used by the principal for classification.
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The principal and the policy. The principal, before agents decide whether or not to take tests,
announces a policy P for classification. The policy in general is a collection of multisets, each of
which consists of certain test outcomes from the outcome space O. For an agent with outcomes S,
the policy P accepts the agent iff there is a multiset T ∈ P such that T ⊆ S (i.e., the multiplicity
of any element in T is no larger than that of the same element in S). In other words, the policy P
provides a collection of options to agents, each of which is a multiset T of outcomes. An agent is
accepted iff his multiset of test outcomes contains any of these options as a subset. A simple and
natural example is when O is the set of integers between 0 and 100, and P contains a number of
singleton multisets, each of which is an integer between 60 and 100, i.e.,

P = {{i} | 60 ≤ i ≤ 100}.

This corresponds to the case where agents can repeatedly take exams, and are accepted (i.e., pass)
iff they ever get a score of at least 60. Another example would be

P = {{i} | 60 ≤ i ≤ 100} ∪ {{i, j} | 50 ≤ i, j < 60},

which is the same policy as before, except it now also suffices to score at least 50 twice.

How rational agents act in response to a policy. Fixing a policy P , each agent faces an MDP,
where the goal is to maximize his expected utility. Below we describe this MDP. Without loss of
generality, being accepted gives agents value 1, and each test has a cost of 0 ≤ c ≤ 1 (otherwise
agents would never want to take any test). The states of the MDP, denoted S, are all multisets
over the outcome space O, corresponding to the set of outcomes the agent has collected so far.
Initially, the state of the agent is the empty set ∅. At any state S ∈ S , the agent can choose
between two actions, taking another test (T) or leaving (L). If the agent chooses T, he pays cost
c (i.e., receives reward −c), and transitions to a new state S ∪ {o} (note that this is a union of
two multisets, where the multiplicity of any element in the union is the sum of those of the same
element in the two operands), where o ∼ D is a random outcome drawn from D. If the agent
chooses L, he receives reward 1 if his current multiset of outcomes S is accepted by the policy
P , and 0 otherwise; in either case, the MDP terminates immediately. Throughout the paper, we
assume agents are perfectly rational and always play the utility-maximizing action. For simplicity,
we assume agents always break ties in favor of leaving, i.e., when the two actions result in equal
expected utility, they always play L. Our results still hold (with minor modifications) even if agents
break ties adversarially.

The principal’s goals. We consider two goals of the principal, accuracy and efficiency. We focus
on the case where agents are either good (with distribution G) or bad (with distribution B), and the
principal aims to accept as many good agents as possible, and reject as many bad ones as possi-
ble. The specific definition of accuracy is immaterial — as we will show, the principal can always
achieve perfect accuracy (i.e., good agents are always accepted, and bad ones always rejected) as
long as G and B are not identical. Given perfect accuracy, the principal may further hope to imple-
ment the classification in an efficient way, where agents take as few tests as possible. We consider
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two types of efficiency measures, the expected number of tests and the worst-case number of tests.
The goal is to design perfectly accurate policies which (approximately) minimize either/both of
these two measures (though in Section 7.4.3 we do consider how to minimize expected cost in our
model under the constraint of perfect accuracy).

Control over the costs. In some scenarios, the cost of a test is controlled by the principal (e.g.,
when the dominant part of the cost is a registration fee set by the principal), while in others it is
fixed externally (e.g., when the dominant part of the cost is time invested in traveling to the test
site). We consider both cases in this paper. The flexible-cost case allows the principal refined
control of the classification procedure, which, as we will show, implies more efficient policies in
general.

7.3 Agents’ Optimal Strategy: Self-Selection
We first characterize agents’ best response to a policy, which effectively makes their decision space
binary, and greatly simplifies the principal’s problem.
Lemma 7.1. Fixing a policy P and a cost per test c, the optimal expected reward of any agent is
achieved by one of the following two strategies:

• Take no test (i.e., play L immediately) and leave with reward 0.
• Keep taking tests (i.e., playing T) until the set of outcomes collected is accepted by P , and

then play L.
Moreover, the optimal strategy is unique iff the above two strategies result in strictly different
expected rewards.

The proof of Lemma 7.1, as well as all other proofs, is deferred to the appendix. Again, the
intuition is that if an agent ever wants to start taking tests, then after taking some tests, he will be
in at least as favorable a position as at the beginning in terms of tests passed, and it was worth it
to start then, so it must certainly be worth it to continue now (the cost of previous tests is sunk,
and therefore irrelevant). One important implication is that, depending on the policy, the cost per
test, and the agent’s distribution, each agent either does not attempt to get accepted at all, or keeps
trying and eventually gets accepted with probability 1. This indicates that, when provided the
right incentives, self-selecting agents may perform the classification for the principal in a perfectly
accurate way.

More specifically, for any policy P and distribution D over the outcome space O, let T (P , D)
denote the (random) number of tests an agent with distribution D needs to take in order to be
accepted by P , i.e.,

T (P , D) = min{t | P accepts {o1, . . . , ot}},

where {ot}t≥1 are iid draws from D. We have the following claim.
Lemma 7.2. Fix a policy P and a cost per test c. An agent with distribution D will always keep
taking tests until acceptance if

c · E{ot}∼DZ+ [T (P , D)] < 1,
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and leave immediately otherwise.
In the rest of the chapter, we will heavily exploit Lemma 7.2.

7.4 The Flexible-Cost Case

We begin our investigation with the case where the cost of a test is set by the principal, which turns
out to be simpler. For simplicity, we assume the outcome space O = [k] = {1, . . . , k} for some
integer k > 0. For any distribution D over O (which can be either G or B), for any S ⊆ O, let
D(S) = Pro∼D[o ∈ S]. As a shorthand, for any o ∈ O, let D(o) = D({o}). All the results in this
section can be easily generalized to arbitrary outcome spaces.2

7.4.1 Memoryless Policies Suffice for Accurate Classification

We first consider the possibility of accurate classification. In particular, for reasons that will be
clear momentarily, we are interested in policy-cost pairs that achieve perfect accuracy, as defined
below.
Definition 7.1 (Perfect Accuracy). A policy-cost pair (P , c) is perfectly accurate for a good distri-
bution G and a bad distribution B if the optimal strategies for good agents and bad agents respec-
tively are to keep taking tests until acceptance and to leave immediately.

As a corollary of Lemma 7.2, a pair (P , c) is perfectly accurate iff

c · E[T (P , G)] < 1 ≤ c · E[T (P , B)].

When the cost per test is controlled by the principal, we are further interested in policies that are
perfectly implementable.
Definition 7.2 (Perfect Implementability). A policy P is perfectly implementable for a good dis-
tribution G and a bad distribution B if there exists a cost per test c, such that the policy-cost pair
(P , c) achieves perfect accuracy.

Given Lemma 7.2, we immediately have the following necessary and sufficient condition for
perfect implementability.
Lemma 7.3. Fix a good distribution G and a bad distribution B. A policy P is perfectly imple-
mentable iff

E[T (P , G)] < E[T (P , B)].

Based on the above characterization, we show that as long as the good agents’ distribution G is
different from the bad agents’ distribution B, there always exists a perfectly implementable policy
which consists of only singleton sets of outcomes. In other words, the policy is memoryless, in
that a new test outcome either immediately makes the agent accepted, or will be entirely ignored.

2For example, when O is an infinite, possibly continuous space (e.g., O = R), one can discretize O into a fi-
nite number (which may depend on the desired precision) of regions such that the good and bad distributions after
discretization are arbitrarily close to the respective original distributions.
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Theorem 7.1. For any good distributionG and bad distributionB over the outcome spaceO = [k]
where G 6= B, there exists a set of outcomes P ⊆ O such that the policy

P = {{o} | o ∈ P}

is perfectly implementable.
We remark that such memoryless policies are widely deployed in practice, where the most

common form is to set a threshold and accept an agent iff the highest score he ever gets passes that
threshold. However, as we will show later, this is not the most efficient form of perfectly accurate
policies.

7.4.2 Policy with Stochastically Dominant Efficiency
We now proceed to efficient policies. Below we characterize the perfectly implementable policy
P with stochastically dominant efficiency for any good distribution G and bad distribution B. The
number of tests required for a good agent to be accepted under this policy, T (P , G), stochastically
dominates the same number, T (P ′, G), of any other perfectly implementable policy P ′. Further-
more, under this policy, any good agent is guaranteed to be accepted after taking at most 2 tests. As
a result, this policy achieves the optimal expected number of tests, the optimal worst-case number
of tests (which is 2), and optimality with respect to almost any reasonable measure of efficiency.
Theorem 7.2. Let P ⊆ O = [k] be a set of outcomes such that

P ∈ argmaxS⊆O:G(S)>B(S) G(S).

The policy
P = {{o} | o ∈ P} ∪ {{o1, o2} | o1, o2 ∈ O}

is perfectly implementable, and stochastically dominates any other perfectly implementable policy
P ′, in the sense that for any t ∈ Z+,

Pr[T (P , G) ≤ t] ≥ Pr[T (P ′, G) ≤ t].

The policy P constructed in Theorem 7.2 accepts any set of outcomes which either contains
some outcome in P ⊆ O, or has cardinality at least 2. In other words, P accepts an agent if the first
outcome he receives is in P , or he ever takes 2 tests. One may contrast Theorem 7.2 with the setting
where the principal, rather than the agent himself, chooses the number of tests each agent needs to
take. Suppose, rather than deploying a policy and letting agents themselves choose whether or not
to take tests, we directly observe iid samples from an unknown distribution D, which can be either
G or B — this corresponds to the case where we simply ask each agent to take as many tests as we
want. There, how many samples one needs to observe in order to tell with confidence whether D
is G or B depends on the total variation distance between G and B, defined below.
Definition 7.3 (Total Variation Distance). The total variation distance dTV(D1, D2) between two
distributions D1 and D2 over O is defined as

dTV(D1, D2) = sup
S⊆O

(D1(S)−D2(S)).

105



Observe that G 6= B iff dTV(G,B) > 0. It is folklore that in order to identify D with probabil-
ity at least 2/3, one needs Ω(dTV(G,B)−2) iid samples from D. Moreover, it is easy to see that as
long as the supports of G and B overlap, one can never be completely sure with any finite number
of samples. Theorem 7.2, on the other hand, essentially says that whenever dTV(G,B) > 0, the
principal never needs to observe more than 2 samples in order to distinguish G and B, and good
agents never need to take more than 2 tests. In other words, by incentivizing self-selection, the
principal is able to reduce the number of tests required dramatically, from Ω(dTV(G,B)−2) to 2,
and at the same time improve the accuracy to 1. Perhaps even more surprisingly, this is done by
giving agents more freedom to choose the number of tests they take. Of course, this is feasible only
because agents themselves know their distribution at the outset; if nobody knows the distribution,
Ω(dTV(G,B)−2) tests would still be required. This partially explains the practical success of clas-
sification with optional tests: they can be arbitrarily more efficient than mandatory tests enforced
by the principal, especially when good and bad agents’ distributions are closer to each other and
therefore are harder to distinguish.

7.4.3 Cost Efficiency of Policies
While the policy in Theorem 7.2 is efficient in terms of the number of tests, it could impose a total
expected cost on good agents that is quite close to the benefit of being accepted. Depending on the
circumstances, cost efficiency may be considered more important, and indeed, often the classifica-
tion procedure can be implemented in much less costly ways, intuitively for the following reasons.
First, when G and B are hard to distinguish, it is natural that good agents need to spend significant
effort in order to distinguish themselves from bad ones. But, in many real-world scenarios, (most)
good agents are considerably different from (most) bad ones. In such cases, good agents pay much
less cost, since the principal only needs to make bad agents marginally unwilling to take tests.
Second, there can be a tradeoff between efficiency (i.e., the number of tests taken) and cost. If the
principal is willing to make good agents take more than 2 tests, then she can design a more selec-
tive policy (i.e., making it hard to pass) that creates a sharper separation between good and bad
agents, and set a lower cost per test to achieve perfect accuracy. Below we formalize this intuition,
and characterize the optimal cost efficiency possible, subject to perfect accuracy, for memoryless
policies.
Theorem 7.3. Fix any good distributionG and bad distributionB over the outcome spaceO = [k]
where G 6= B. There exists a memoryless policy

P = {{o} | o ∈ P}

for some P ⊆ O, and a cost per test c, such that (P , c) is perfectly accurate, and the expected total
cost paid by good agents is

c · E[T (P , G)] = min
o∈O

B(o)/G(o).

Moreover, no policy-cost pair (P ′, c′) satisfies (1) P ′ is memoryless, and (2) the expected total cost
paid by good agents is

c′ · E[T (P ′, G)] < min
o∈O

B(o)/G(o).
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The above theorem says that the optimal cost efficiency achievable by memoryless policies is
determined by the minimum ratio between B and G over the test outcome space. We also remark
that cost efficiency directly implies robustness against bad agents who value acceptance more than
good agents.3 Fixing any good distributionG and bad distributionB, when good agents have value
1 and bad agents have value v ≥ 1 for acceptance, there exists a perfectly implementable policy
iff the optimal cost efficiency achievable when all agents have value 1 is better than v−1, i.e., there
exists a policy-cost pair (P , c) such that

c · E[T (P , G)] < v−1 and c · E[T (P , B)] ≥ 1.

In fact, given such a cost efficient pair (P , c), (P , v · c) is a perfectly accurate pair when bad agents
have value v ≥ 1 for acceptance.

7.5 The Fixed-Cost Case
Now we proceed to the more challenging setting where the cost per test c is fixed externally. We
show that in such cases, perfect accuracy in general requires stronger conditions on the good and
bad distributions. However, as we argue below, these conditions are still rather reasonable for
practical purposes.

7.5.1 Accurate Classification Requires Continuous Information
When the cost per test is set by the principal, Theorem 7.1 states that perfect accuracy can be
achieved by some policy-cost pair as long as the good and bad distributions are different. However,
this is not true when the cost 0 < c < 1 is fixed, as illustrated in the following example.
Example 7.1. Suppose the cost per test is fixed at c = 0.9. The outcome space O = {1, 2}, the
good distribution G assigns probability G(1) = G(2) = 0.5, and the bad distribution B assigns
B(1) = 0 and B(2) = 1. Suppose there is a policy P such that (P , c) is perfectly accurate. Then,
in order for good agents to take tests, by Lemma 7.2,

E[T (P , G)] < 10/9,

and since T (P , G) is distributed over Z+, elementary calculation gives

Pr[T (P , G) = 1] > 8/9.

As a result, it must be the case that {1} ∈ P and {2} ∈ P simultaneously. However, this implies

Pr[T (P , B) = 1] = 1 =⇒ E[T (P , B)] < 10/9.

So bad agents will also take tests and get accepted under (P , c), a contradiction. In other words,
no policy P exists such that (P , c) is perfectly accurate.

3The case where good agents value acceptance more is no harder than the case where all agents have the same
value for acceptance.
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The above example shows that perfect accuracy cannot be achieved with an infeasibly high
cost per test, even if the outcome space is extremely simple (i.e., binary) and the good and bad
distributions are clearly different. Nevertheless, the impossibility of perfect accuracy comes almost
solely from the discreteness in the outcomes — intuitively, accepting only one of the two outcomes
does not provide enough motivation for good agents to take tests, while accepting both provides
too much motivation, so that every agent wants to take tests regardless of his distribution.

Real-world tests, however, are often intrinsically (approximately) continuous. In a narrow
sense, test outcomes, in the form of numerical scores, usually range from 0 to 100, where presum-
ably an agent can get any integer score in between with positive probability. As argued above, in
a broader sense, a test could be any activity which takes a certain effort and produces a verifiable
outcome. Besides numerical test scores, such an outcome could take the form of a course project,
a research paper, or an oral presentation. These outcomes are essentially continuous, in the sense
that, for example, no two oral presentations are exactly the same, even if they are given by the same
presenter using the same slides. Even for relatively discrete outcome spaces, an outcome is often
accompanied by arbitrarily rich noise, which makes outcomes effectively continuous.4 For exam-
ple, in a simplistic model, a paper submitted to a conference can be either accepted or rejected, so
one could argue the outcome of such a submission is binary. However, it is extremely unlikely that
two different papers (as PDF files) share the same hash value, which can effectively be viewed as
continuous noise that we can add to the outcome, thereby making the outcome space continuous.
This (hash value) part of the enriched outcome may not be correlated with the type of the agent,
but that will not matter for our purposes.

Based on the above observations, in the rest of this section, we assume the outcome space O,
as well as the good distribution G and the bad distribution B, is continuous. This could model
continuity in the outcome distribution itself, or noise, or the two aspects in combination. More
specifically, without loss of generality, we assume O = [0, k] for some positive integer k ∈ Z+,
and the good distribution G (resp. the bad distribution B) is constant when restricted to the interval
[i − 1, i] for any i ∈ [k] = {1, . . . , k}. We call such distributions piecewise constant.5 One way
to interpret this is that there are k possible outcomes. A good (resp. bad) agent receives the i-th
outcome with probability G([i − 1, i]) (resp. B([i − 1, i])). Moreover, there is continuous noise
x independent of the outcome and the agent type, uniformly distributed over [0, 1], so the final
combination of the outcome and the noise, i − x, has distribution G (resp. B). As a shorthand,
for any i ∈ [k], let G(i) = G([i − 1, i]), and B(i) = B([i − 1, i]). While for ease of presentation
we focus on this specific model, in fact, our results apply to general distributions satisfying certain
continuity conditions.6

4This has also been observed, e.g., in [114].
5While this appears to be a more restrictive definition than the common notion of piecewise constant distributions,

observe that without loss of generality, one can always scale the pieces and the distributions simultaneously, such that
the pieces are of the same length.

6For example, it is known that all Lebesgue measurable functions (including all continuous ones) are approximated
by step functions (i.e., piecewise constant ones) up to any precision. This gives a way of generalizing our results to all
Lebesgue measurable density functions.
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7.5.2 Accurate Classification with Continuous Outcomes
Under the continuity assumption, we now show that perfect accuracy is possible with fixed cost
per test, whenever the good and bad distributions, G and B, are not identical. Moreover, as in the
variable cost case, perfect accuracy again can be achieved using a memoryless policy.
Theorem 7.4. When the outcome space O = [0, k], for any cost per test 0 < c < 1, and good and
bad distributions G and B (where G 6= B) that are constant on [i − 1, i] for any i ∈ [k], there
exists a policy P such that (P , c) is perfectly accurate for G and B. Moreover, P consists of only
singleton sets of outcomes.

7.5.3 Nearly Optimal Policies
As illustrated by Theorem 7.2, memoryless policies do not generally achieve optimal efficiency
when the cost per test is set by the principal. The same intuition applies to the fixed cost case as
well. Below, we construct a policy for any piecewise constant and distinct good and bad distribu-
tions which requires at most b1/cc + 1 tests, where c is the cost per test. We then show that the
policy we construct has (1) optimal worst case efficiency, and (2) approximately optimal expected
efficiency when the good and bad distributions are not trivially different.
Theorem 7.5. When the outcome space is O = [0, k], for any cost per test 0 < c < 1, and good
and bad distributions G and B (where G 6= B) that are constant on [i− 1, i] for any i ∈ [k], there
exists a policy P such that (P , c) is perfectly accurate for G and B. Moreover,

Pr[T (P , G) ≤ b1/cc+ 1] = 1.

Unlike Theorem 7.2, the above policy-cost pair is not guaranteed to dominate all other perfectly
accurate pairs. However, it is in fact optimal in terms of the maximum number of tests a good agent
may have to take before getting accepted, as long as the good and bad distributions share the same
support.
Proposition 7.1. For any piecewise constant good and bad distributions G and B where G and B
share the same support, if a policy-cost pair (P , c) is perfectly accurate, then

Pr[T (P , G) < b1/cc+ 1] < 1.

In other words, the maximum number of tests a good agent may have to take is at least b1/cc+ 1.
Proposition 7.1 states that the policy constructed in Theorem 7.5 is in fact optimal in terms of

the maximum number of tests any good agent may have to take. However, it is unclear whether one
can do significantly better7 in terms of the expected number of tests, especially when the good and
bad distributions are sufficiently different. We do show that, even when good and bad distributions
are far apart (i.e., when dTV(G,B) = Ω(1)), there still exist good and bad distributions G and
B such that the expected number of tests required is at least 1/2c. In other words, the policy

7It is certainly possible to do somewhat better. For example, when G([0, 1]) = B([1, 2]) = 0.9, G([1, 2]) =
B([0, 1]) = 0.1, and the cost per test c = 0.5, P = {{o} | o ∈ [0, 1]} accepts a good agent after 10/9 < b1/cc+1 = 3
tests in expectation. (P, c) is perfectly accurate, because a bad agent will require 10 tests in expectation, so a bad agent
will not attempt the test.
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constructed in Theorem 7.5 is also asymptotically optimal (in a worst-case sense) in terms of the
expected number of tests.
Proposition 7.2. There exist piecewise constant good and bad distributionsG andB where dTV(G,B) ≥
0.1, such that if a policy-cost pair (P , c) is perfectly accurate, then

E[T (P , G)] ≥ 1

2c
.

Again, one can contrast Theorem 7.5 with the case where the principal directly determines how
many tests an agent takes. In that case, as discussed above, the number of tests required to correctly
identify an agent’s distribution D is Ω(dTV(G,B)−2), whereas Theorem 7.5 requires good agents
to take at most about 1/c tests and guarantees perfect accuracy, regardless of how close G and B
are to each other. In other words, unless G and B are far away and a small error probability is
acceptable, allowing agents to choose between taking tests and leaving immediately is far more
efficient than enforcing a certain number of tests.

Finally, we remark that with a fixed cost per test, there is no tradeoff between efficiency (i.e.,
the number of tests taken by good agents) and cost efficiency (i.e., the expected total cost paid by
good agents) — they are always proportional to each other.

7.6 Conclusion and Future Research
In this chapter, we characterize the accuracy and efficiency of classification with optional tests.
Our results partially explain the practical success of optional tests, and provide a principled way of
designing accurate and efficient classification processes. In particular, we show how much better
one can do with self-selection than in comparable settings without self-selection that were studied
recently, even when we augment those models with self-selection in the simplest possible way. Our
results also easily generalize to some richer settings. For example, if taking the test might make
one better at the test next time (due to practice), this retains the key property that once an agent
starts taking tests, that agent will continue until the agent succeeds. For future directions, one could
relax some of the assumptions to obtain more robustness in the design of classification processes.
For example, test outcomes might be strategically transformed (as studied in [113], Chapter 6 of
this dissertation), the cost per test might be unknown, and agents might not be completely sure
about their own distributions before taking tests.

7.7 Omitted Proofs
Proof of Lemma 7.1. Suppose the agent’s distribution is D. Let π : S → {T, L} be any strategy
of the agent (which specifies the action to take at each state), and V : S → R+ be the expected
onward utility of the agent by playing π, i.e.,

V (S) =

{
I[P accepts S], if π(S) = L

−c+ Eo∼D[V (S ∪ {o})], otherwise.
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I[·] above denotes the indicator of a statement. Suppose π does not play L immediately, or keeps
playing T till the set of outcomes can be accepted. Formally, suppose V (∅) > 0 (which is possible
only when π(∅) = T), and there exists S not accepted by P , where π(S) = L (so V (S) = 0).8

Without loss of generality, let S be a state with the smallest cardinality among those satisfying this
condition, which implies that for any S ′ ( S, π(S ′) = T. We show that such a policy cannot be
optimal, which implies the claim to be proved.

Consider an extended version of the original MDP, where the state space is all ordered se-
quences of outcomes. At state (o1, . . . , ot) (here the notation (. . . ) emphasizes the fact that the
sequence of outcomes is ordered), if action L is played, the MDP terminates and the agent gains
reward I[P accepts {o1, . . . , ot}]. If action T is played, the agent gains reward−c and transitions to
state (o1, . . . , ot, ot+1), where ot+1 ∼ D. Observe that the optimal expected reward in the extended
MDP is the same as that in the original MDP. So, to show that π is suboptimal in the original MDP,
we only need to construct a strategy in the extended MDP with higher expected reward. Consider
the following policy π′ in the extended MDP, which mimicks π unless the first |S| outcomes are
exactly S, in which case it drops these outcomes and starts over.

π′((o1, . . . , ot)) =

{
π({o1, . . . , ot} \ S), if {o1, . . . , o|S|} = S

π({o1, . . . , ot}), otherwise.

Consider the expected reward V ′ of π′. First observe that for any state (o1, . . . , ot), if t ≥ |S| and
{o1, . . . , o|S|} 6= S, then V ′((o1, . . . , ot)) = V ({o1, . . . , ot}). We now argue V ′((o1, . . . , ot)) >
0 = V ({o1, . . . , ot}) when {o1, . . . , ot} = S. We couple the onward outcomes from (o1, . . . , ot)
in the extended MDP with the sequence of outcomes in the original MDP (both are iid draws from
D), and argue that for any such sequence ot+1, . . . , ot′ , the reward collected by π′ on this sequence
is at least the reward collected by π starting from the initial state ∅. There are essentially two cases.

• π keeps taking tests on ot+1, . . . , ot′ . Here, both π and π′ gain reward −c× (t′ − t− 1).
• π decides to leave after receiving outcome ot′′ , where t+ 1 ≤ t′′ ≤ t′. Here, π gains reward

−c× (t′′ − t− 1) + I[P accepts {ot+1, . . . , ot′′}].

On the other hand, π′ gains reward

−c× (t′′ − t− 1) + I[P accepts {o1, . . . , ot′′}],

which is at least the reward π gains, since {o1, . . . , ot′′} ⊇ {ot+1, . . . , ot′′}.

So in any case π′ collects no less reward than π on ot+1, . . . , ot′ , and as a result,

V ′((o1, . . . , ot)) ≥ V (∅) > 0.

Summarizing the above, for any state (o1, . . . , ot) where t = |S|, we have V ({o1, . . . , ot}) ≤
V ′((o1, . . . , ot)), and the inequality is strict when {o1, . . . , ot} = S. Now we can apply backward

8This leaves the case where V (∅) = 0 and π(∅) = T. However, in that case, playing L immediately is also an
optimal strategy.
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induction, and show that for any (o1, . . . , ot) where t < |S|, V ({o1, . . . , ot}) ≤ V ′((o1, . . . , ot)),
and the inequality is strict when {o1, . . . , ot} ⊆ S. This is possible since by the choice of S, for
any such state, π({o1, . . . , ot}) = π′((o1, . . . , ot)) = T. In particular, we have V (∅) < V ′(())
(i.e., V ′ of the empty sequence of outcomes), as desired. This implies that π is suboptimal in the
original MDP, and concludes the proof.

Proof of Lemma 7.2. Consider the optimal strategy of an agent with distribution D. In light of
Lemma 7.1, we only need to consider the expected reward when the agent keeps taking tests until
he is accepted, and compare that against 0, which is the reward of leaving immediately. If the agent
keeps taking tests, his expected cumulative reward is precisely

E{ot}[1− c · T (P , D)].

So, taking tests until acceptance is more preferable iff this number is strictly greater than 0, i.e.,

c · E{ot}[T (P , D)] < 1,

which is precisely the condition in the claim.

Proof of Lemma 7.3. When the condition holds, one may choose any

c ∈ (1/E[T (P , B)], 1/E[T (P , G)]) .

Lemma 7.2 then guarantees that (P , c) is perfectly accurate. When the condition does not hold, for
any c ≥ 0, we always have

c · E[T (P , G)] ≥ c · E[T (P , B)],

and by Lemma 7.2 such a pair (P , c) cannot be perfectly accurate.

Proof of Theorem 7.1. We prove the theorem by construction. The idea is to focus on some partic-
ular outcome o∗ where G(o∗) > B(o∗) and let P = {{o∗}}. So for each test, the probability that a
good agent gets outcome o∗ and therefore gets accepted is strictly greater than the same probability
for a bad agent. The principal can then set the cost per test c properly so that good agents strictly
prefer taking tests, while bad agents strictly prefer leaving directly.

First, since G 6= B and O = [k] is finite, there exists some o∗ ∈ O such that G(o∗) > B(o∗) ≥
0. Let P = {o∗} as stated above. Consider the situation of good agents. Each time a good agent
takes a test, the probability that he receives outcome o∗ is G(o∗), so T (P , G) follows a geometric
distribution with parameter G(o∗), and we have

E[T (P , G)] = G(o∗)−1.

Similarly, for bad agents we have

E[T (P , B)] = B(o∗)−1 > G(o∗)−1 = E[T (P , G)].

By Lemma 7.3, this immediately implies that P is perfectly implementable.
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Proof of Theorem 7.2. We first show the easy part, i.e.,P is perfectly implementable. By Lemma 7.3,
this is equivalent to

E[T (P , G)] < E[T (P , B)].

Below we compute both. Observe that for any distribution D over O,

Pr[T (P , D) ≤ 2] = 1.

For G,
Pr[T (P , G) = 1] = Pr

o∼G
[o ∈ P ] = G(P ).

So
E[T (P , G)] = G(P ) + 2(1−G(P )) = 2−G(P ).

Similarly,
E[T (P , B)] = 2−B(P ),

which by the choice of P is strictly larger than 2 − G(P ). This guarantees that P is perfectly
implementable.

Now consider any perfectly implementable policy P ′. We show that for any t ∈ Z+,

Pr[T (P , G) ≤ t] ≥ E[T (P ′, G) ≤ t].

Since
Pr[T (P , G) ≤ 2] = 1,

we only need to show that

Pr[T (P , G) = 1] ≥ E[T (P ′, G) = 1].

Suppose towards a contradiction the opposite. We argue below that P ′ cannot be perfectly imple-
mentable.

Let
P ′ = {o | P ′ accepts {o}}.

By our assumption on P ′,

G(P ) = Pr
o∼G

[P accepts {o}] = Pr[T (P , G) = 1]

< E[T (P ′, G) = 1] = Pr
o∼G

[P ′ accepts {o}] = G(P ′).

Then by the choice of P , we have G(P ′) ≤ B(P ′). We argue below that this implies

E[T (P ′, G)] ≥ E[T (P ′, B)],

and as a result, P ′ is not perfectly implementable.
In fact, we show an even stronger claim, i.e., for any t ∈ Z+,

Pr[T (P ′, G) ≤ t] ≤ Pr[T (P ′, B) ≤ t].
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First observe that

G(P ′) = Pr[T (P ′, G) = 1] ≤ Pr[T (P ′, B) = 1] = B(P ′).

To analyze Pr[T (P ′, G) = t] and Pr[T (P ′, B) = t] for t > 1, we need to take a closer look at
P ′, G and B. Without loss of generality, assume P ′ = [k′] = {1, . . . , k′} for some k′ ≤ k = |O|.
Moreover, if k′ = k, then

Pr[T (P ′, G) = 1] = Pr[T (P ′, B) = 1] = 1,

and we are done. From now on we assume k′ < k. Observe that for any i ∈ {k′ + 1, . . . , k},
G(i) ≥ B(i). This is because otherwise the set S−i = [k] \ {i} satisfies G(S−i)) > B(S−i) and
G(S−i) ≥ G(P ′) > G(P ), violating the choice of P .

Consider two sequences of iid random outcomes, {gt}t and {bt}t, drawn from G and B re-
spectively. We couple {gt}t and {bt}t such that, when defined as functions of the two outcome
sequences respectively, we always have

T (P ′, G) ≥ T (P ′, B).

Let {θt}t be iid real numbers distributed uniformly at random over [0, 1], and

α =
∑
i∈[k]

min(G(i), B(i)).

Let gt be defined in the following way.

gt =

min
{
i ∈ [k]

∣∣∣∑j∈[i] min(G(j), B(j)) ≥ θt

}
, if θt ≤ α

min
{
i ∈ [k]

∣∣∣∑j∈[i] max(G(j)−B(j), 0) + α ≥ θt

}
, otherwise.

And similarly,

bt =

min
{
i ∈ [k]

∣∣∣∑j∈[i] min(G(j), B(j)) ≥ θt

}
, if θt ≤ α

min
{
i ∈ [k]

∣∣∣∑j∈[i] max(B(j)−G(j), 0) + α ≥ θt

}
, otherwise.

For any t ∈ Z+, gt and bt satisfy the following properties.

• If θt ≤ α, then gt = bt.
• If θt > α, then bt ∈ [k′] = P ′. This is because for any i > k′, G(i) ≥ B(i).

This immediately implies the desired claim. In fact, let T be the smallest integer such that θT > α,
so gt = bt for any t < T . There are two cases.

• P ′ accepts {g1, . . . , gT−1} = {b1, . . . , bT−1} (and maybe also some prefix of this sequence
of outcomes). In such cases, T (P ′, G) = T (P ′, B).

• Otherwise, we have T (P ′, G) ≥ T . On the other hand, bT ∈ P ′, so T (P ′, B) = T ≤
T (P ′, G).

114



So in any case, we have
T (P ′, B) ≤ T (P ′, G).

This concludes the proof.

Proof of Theorem 7.3. First we construct (P , c). Let P = {{o∗}} where o∗ ∈ O is an outcome
such that B(o∗)/G(o∗) = mino∈O B(o)/G(o). Note that whenever G 6= B, B(o∗)/G(o∗) < 1.
Below we show that setting c = B(o∗) gives the desired cost efficiency. First observe that

c · E[T (P , B)] = c ·B(o∗)−1 = B(o∗) ·B(o∗)−1 = 1.

So by Lemma 7.2, bad agents never take tests. For good agents,

c · E[T (P , G)] = B(o∗) ·G(o∗)−1 < B(o∗) ·B(o∗)−1 = 1.

So good agents always take tests, and pay expected cost B(o∗)/G(o∗) < 1.
Now consider any memoryless policy P ′ = {{o} | o ∈ P ′}, where P ′ ⊆ O. We have

B(P ′)/G(P ′) ≥ min
o∈O

B(o)/G(o).

Suppose (P ′, c′) is perfectly accurate. By Lemma 7.2, in order to make bad agents unwilling to
take tests, we have

c′ ≥ B(P ′).

Then for good agents, the expected total cost can be bounded in the following way.

c′ · E[T (P ′, G)] ≥ B(P ′)/G(P ′) ≥ min
o∈O

B(o)/G(o),

which is the second half of the theorem.

Proof of Theorem 7.4. Without loss of generality, suppose for any i ∈ [k−1], G(i)/B(i) ≥ G(i+
1)/B(i + 1). (If this assumption does not hold, we can reorder the outcome space by G(i)/B(i)
and renumber the outcomes in the new order.) Note that since G 6= B, we must have G(1) > B(1)
and G(k) < B(k), and as a result, for any θ ∈ (0, k), G([0, θ]] > B([0, θ]). Consider the family of
policies P(θ) parametrized by a threshold θ ∈ O, defined as follows.

P(θ) = {{o} | o ∈ [0, θ]}.

Observe that for any θ ∈ (0, k),

Pr
o∼G

[P(θ) accepts {o}] = G([0, θ]) > B([0, θ]) = Pr
o∼B

[P(θ) accepts {o}].

Since P(θ) is memoryless, this further implies that for any θ ∈ (0, k),

E[T (P(θ), G)] = G([0, θ])−1 < B([0, θ])−1 = E[T (P(θ), B)].
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Our goal is to show that there exists some θ ∈ (0, k), such that (P(θ), c) is perfectly accurate,
which by Lemma 7.2 is equivalent to

c · E[T (P(θ), G)] < 1 ≤ c · E[T (P(θ), B)].

Observe that
E[T (P(θ), B)] = B([0, θ])−1

is continuous in θ on O. Since B([0, 0])−1 = ∞ and B([0, k])−1 = 1, there must be some θ∗ ∈
(0, k), such that

B([0, θ∗])−1 = c−1.

Moreover, the same θ∗ satisfies

G([0, θ∗])−1 < B([0, θ∗])−1 = c−1.

As a result, P(θ∗) satisfies the desired conditions. This concludes the proof.

Proof of Theorem 7.5. The plan is to consider a family of policies parametrized by some threshold,
each of which has the desired worst-case efficiency, and argue some policy in this family together
with the cost per test c achieves perfect accuracy.

Let T = b1/cc+1. Again, without loss of generality, suppose for any i ∈ [k−1], G(i)/B(i) ≥
G(i+ 1)/B(i+ 1), and therefore for any θ ∈ (0, k), we have G([0, θ]] > B([0, θ]). For θ ∈ O, let

P(θ) = {{o} | o ∈ [0, θ]} ∪ {{o1, . . . , oT} | ∀t ∈ [T ], ot ∈ O}.

That is, P(θ) accepts any set of outcomes which contains some outcome from [0, θ], or has cardi-
nality at least T . Observe that E[T (P(θ), B)] is continuous in θ. Moreover,

E[T (P(0), B)] = T > c−1 and E[T (P(k), B)] = 1 < c−1.

So, there must be some θ∗ ∈ (0, k) such that

E[T (P(θ∗), B)] = c−1.

And since G([0, θ∗]) > B([0, θ∗]), for any t < T ,

Pr[T (P(θ∗), G) ≤ t] > Pr[T (P(θ∗), B)].

This is because T (P(θ∗), G) and T (P(θ∗), B) follow geometric distributions on {1, . . . , T − 1},
with parameters G([0, θ∗]) and B([0, θ∗]) respectively. And as a result,

E[T (P(θ∗), G)] < E[T (P(θ∗), B)] = c−1.

By Lemma 7.2, (P(θ∗), c) is perfectly accurate.
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Proof of Proposition 7.1. Without loss of generality assume the support of G is O = [0, k]. Sup-
pose, towards a contradiction, that

Pr[T (P , G) < b1/cc+ 1] = 1.

We show (P , c) cannot be perfectly accurate.
Let T = b1/cc+ 1. Consider the first T − 1 outcomes a good agent receives, (g1, . . . , gT−1) ∼

GT−1. Note that the distribution of (g1, . . . , gT−1), GT−1, is piecewise constant over OT−1, and its
support is OT−1. By our assumption, P accepts (g1, . . . , gT−1) with probability 1. As a result, P
must accept everything in OT−1, potentially taking away a zero-measure set S (where the measure
is GT−1, i.e., GT−1(S) = 0).

Now since B is piecewise constant over O, BT−1 is also piecewise constant over OT−1. We
then have BT−1(S) = 0. As a result, P accepts (b1, . . . , bT−1) ∼ BT−1 with probability 1. In other
words, we have

Pr[T (P , B) < T ] = 1.

We then proceed by two cases. When 1/c > b1/cc, we have

E[T (P , B)] ≤ b1/cc · Pr[T (P , B) ≤ b1/cc] ≤ b1/cc · Pr[T (P , B) < T ] < 1/c.

When 1/c = b1/cc = T − 1, since

E[T (P , G)] < 1/c = T − 1,

there must exist a multiset T ∈ P where |T | ≤ T − 2. Then for bad agents, since G and B share
the same support, we have BT−2(T ) > 0, and therefore

E[T (P , B)] ≤ (T − 2) ·BT−2(T ) + (T − 1) · (1−BT−2(T )) < T − 1 = 1/c.

So in any case, we have
E[T (P , B)] < 1/c.

Lemma 7.2 then implies that bad agents have the incentive to take tests till acceptance, and (P , c)
is not perfectly accurate, a contradiction.

Proof of Proposition 7.2. Below we construct G and B. Let k = 2, and G and B be such that
G(1) = 0.4, G(2) = 0.6, and B(1) = B(2) = 0.5. Observe that dTV(G,B) = 0.1. We argue that
for any policy P , we always have

E[T (P , B)] ≤ 2E[T (P , G)].

This directly implies the proposition, since if (P , c) is perfectly accurate, then by Lemma 7.2,

E[T (P , G)] ≥ 1

2
E[T (P , B)] >

1

2
· c−1 =

1

2c
.

In order to bound E[T (P , B)], again we consider the sequences of outcomes a good agent and
a bad agent get respectively, {gt}t and {bt}t. We again couple {gt} and {bt} such that

Pr[T (P , B) ≤ T (P , G)] = 1,
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which implies the desired bound. Let {θt}t be iid uniform numbers in [0, 1]. For any t ∈ Z+, let
bt = 2θt. The construction of {gt}t is more involved. Each gt is determined collectively by θ2t−1

and θ2t. For any t ∈ Z+, let

gt =


θ2t/0.8, if θ2t−1 ≤ 0.5 and θ2t ≤ 0.8

1 + (θ2t − 0.8)/1.2, if θ2t−1 ≤ 0.5 and θ2t > 0.8

1 + (θ2t + 0.2)/1.2, otherwise.

One may check that {gt} are iid, and each gt has distributionG. More importantly, we always have

gt ∈ {b2t−1, b2t}.

As a result, for any t ∈ Z+ we always have

{g1, . . . , gt} ⊆ {b1, . . . , b2t},

as multisets. Therefore, whenever P accepts {g1, . . . , gt}, it also accepts {b1, . . . , b2t}. This con-
cludes the proof.

118



Chapter 8

Efficient Algorithms for Planning with
Participation Constraints

8.1 Introduction

In the previous two parts of the dissertation, we have investigated two important topics in strategic
machine learning: strategic classification and distinguishing strategic agents with samples. In the
last part of the dissertation (Chapters 8 and 9), we investigate a third important topic in this domain:
dynamic decision-making with strategic agents.

How do we keep users from leaving? That is the question asked daily by service providers
such as banks, phone carriers, cable networks, and internet streaming companies. Much of the
depth of the question originates from its dynamic nature: services last over (normally an extensive
period of) time, users can leave at almost any moment, and the cost and benefit of leaving vary
depending on the situation. Consider cable networks: when a new user signs their first contract,
the network typically offers a discounted rate for 6 or 12 months, and if the user switches to another
network during that time, there will be an early termination fee. However, after the first several
months, when the user has become attached to the network, the monthly rate increases to the
normal amount. Similar strategies (free trials, sign-up bonuses, etc.) are used by almost all service
providers, especially those conducting business over the internet, where it is easier for users to
leave a provider and switch to another. While there are certainly many other considerations behind
such strategies, arguably the main objective is to keep users around while generating as much
revenue as possible.

Even in the simple example of cable networks, the dynamic nature of the problem already
introduces some delicate tradeoffs: a low (or 0) early termination fee would make it harder to
keep the user in the first several months, but would also encourage the user to start the service
in the first place (equivalently, prevent the user from leaving at the very beginning); similarly, a
higher normal rate (which means higher revenue) may still be acceptable once the user becomes
sufficiently attached, but anticipating this eventual higher normal rate at the outset, a new user
may not sign the contract in the first place, or may leave before becoming attached to the network.
In other words, the network’s policy in a “state” not only affects whether the user would leave
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in that state, but also affects the user’s decision in all “previous” states. Moreover, although the
network and the user have misaligned interests, they are by no means in a zero-sum situation:
the network may spend extra effort on improving the quality of the service, which would cost the
network, but benefit the user even more, so they have less incentive to leave — the question is, is
that worthwhile?

The presence of these issues suggests that designing a business strategy should be viewed as a
planning problem, where the network is the planner (or the principal), and the user is the agent.
The principal decides what action to take in each possible situation (i.e., each state). The action
gives the principal and the agent possibly different rewards, and brings the state to a possibly ran-
dom new state, where another action will be taken. The agent does not have a voice in which
actions to take in which states, but always has the option to leave, which is the rational move to
make when the agent’s expected onward utility is below 0 (where without loss of generality, 0 is the
utility induced by the best outside option, taking into consideration the cost of leaving). The goal
of the principal is to design a policy that maximizes the principal’s utility subject to participation
constraints, which require that the agent’s expected onward utility in every possible state should
be at least 0.1 Such participation constraints introduce a mechanism design flavor to the prob-
lem, which distinguishes it from the classical problem of planning in Markov Decision Processes
(MDPs). In fact, the latter can be viewed as a special case of the former, where conceptually, the
agent does not have the ability to leave. We can bring the classical case into the formalism here by
making sure the agent’s reward is always nonnegative, so the agent would never want to leave.

In this chapter, we study the problem of planning with participation constraints from a compu-
tational point of view. Our goal is to answer the following question:

Given all parameters of a dynamic environment (i.e., reward functions and transition
probabilities), can we efficiently compute a policy that maximizes the principal’s utility
subject to participation constraints?

8.1.1 Equivalent Variants
For further motivation, we now present some variants that result in the same technical problem, so
that our techniques apply to them as well. The reader who is satisfied to keep the above motivation
in mind can safely skip this subsection, as the remainder of the chapter is written in line with the
above motivation.

Equivalently, we can also consider problems where the goal is not to prevent the agent from
leaving, but rather the goal is to prevent the agent from entering. Such examples are reminiscent
of problems in the security games literature [63, 96]. For example, suppose we wish to discourage
young people from joining a gang. We consider a representative agent (young person) and assume

1Of course, sometimes it is more desirable for the principal to simply let the agent leave. Still, technically, the
assumption that the principal never allows the agent’s expected onward utility to be negative is without loss of gener-
ality. This is because we can extend the MDP with an “end” action from each state (where it is possible for the agent
to have negative onward utility), which deterministically leads to an additional, absorbing state corresponding to the
process having ended. From this state, no additional rewards will be obtained by either party. With these extensions,
a policy that would result in the agent actually leaving the MDP at some point is equivalent to the policy that is the
same except for, at that point, taking the “end” action within the MDP, ensuring zero onward utility.
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that once he joins the gang, he can no longer leave it. We can plan various, generally costly,
enforcement measures that reduce the expected onward utility of being in the gang. (Note that
we cannot condition these actions on whether the agent has joined the gang, as we are generally
unable to observe gang membership; we have to commit to taking the actions even if we believe
the agent was successfully deterred from joining the gang.) In this case, the goal is to ensure that
this expected onward utility always stays nonpositive, so the agent will not join the gang. Simply
negating the agent’s rewards thus brings us back to the problem considered before.

In this example, our actions do not affect the agent’s utility before the agent enters (joins the
gang), whereas in the original problem we introduced, our actions do not affect the agent’s utility
after the agent leaves. A natural generalization is that our actions may affect the agent’s utility
both before and after the agent has left or entered. In the previous example, the most effective
way to prevent the agent from joining the gang may not be to reduce the utility of being in the
gang through enforcement, but rather to increase the utility of not being in the gang, for example
by investing in after-school programs. Or, perhaps a combination of both is optimal. In this
case, there is no longer a sharp distinction between entering and leaving — entering the gang is
equivalent to leaving the alternative activities. What matters is the difference in reward between
having entered/left and not yet having done so. If we normalize the rewards to the agent so that
leaving results in onward rewards of 0, we arrive back at the problem considered before.2 Thus,
in the remainder of this chapter, we focus on the original problem where leaving results in onward
utility zero, in the understanding that this problem captures the full generality of such problems
where rewards may be received both before and after leaving/entering.

8.1.2 Our Results

Our main result is an affirmative answer to our main question: there is a polynomial-time al-
gorithm that computes an optimal policy subject to participation constraints (see Theorem 8.1).
Simple as it may appear, we find the existence of such an algorithm highly counterintuitive. In
classical MDPs, it is well known that optimal policies are without loss of generality deterministic
and history-independent. Given this, an optimal policy can be found by a simple backward induc-
tion procedure. Unfortunately, this is no longer true in the presence of participation constraints.
In fact, as we show in Section 8.2.2, restricting the policy to be either deterministic or history-
independent may lead to an enormous loss in the principal’s utility. In other words, to solve our
problem, we need to optimize over randomized and history-dependent policies. Such optimization
problems are often extremely hard (i.e., APX-hard or PSPACE-hard), which is the case for, e.g.,
partially observable MDPs and various special cases thereof [75, 81]. Another concrete example
is that computing an optimal dynamic mechanism (a problem closely related to ours, which can
be viewed as our setting with additional incentive-compatibility constraints) is APX-hard [115]. In
fact, to the best of our knowledge, no other planning problem of a similar level of generality (i.e.,
generalizing planning in classical MDPs) where history-dependence is required admits efficient

2Indeed, previously, when we assumed staying out of the gang gave rewards of 0, and we then negated the rewards
of being in the gang, this corresponded exactly to this normalization step: the negated rewards of being in the gang are
the normalized rewards of staying out of the gang in that case.
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exact algorithms — this phenomenon is famously known as the curse of history [85, 95, 102].
Moreover, the fact that optimal policies may be history-dependent also rules out the possibility
of computing the flat representation of an optimal policy efficiently, since the size of such a rep-
resentation is already exponential in the number of states. (Our algorithm computes a succinct
and implicit representation that encodes an optimal policy.) Given all the above, at least we were
surprised that an efficient algorithm exists for planning with participation constraints.

Technically, our algorithm operates over the concept of Pareto frontier curves (formally defined
in Section 8.2.3). Roughly speaking, the Pareto frontier curve associated with a state specifies, for
each given onward utility that we may wish to guarantee the agent, the maximum onward utility
for the principal that is achievable by a policy that satisfies: (1) it gives the agent exactly the
desired onward utility and (2) it satisfies all future participation constraints. If we were able to
somehow compute the Pareto frontier curves in all states, then it would be possible (although
probably still nontrivial) to construct an optimal policy given these curves, or at least find the
principal’s optimal utility subject to participation constraints. However, although these curves are
piecewise linear, in general they have exponentially many pieces, which makes computing them
explicitly impossible. Our algorithm instead only tries to evaluate these curves in specific ways. In
particular, we make two types of evaluations: evaluations at specific points, and evaluations along
specific directions. While none of these evaluations can be done in a straightforward way (because
we cannot compute the curves), we show that they can be recursively reduced to each other, through
binary searching over the direction of an evaluation. Then, by scheduling all recursive evaluations
in the right order, the algorithm is able to perform all essential evaluations using only polynomial
computation, given that the binary searches only require polynomially many iterations. Bounding
the number of iterations then requires a careful analysis of the numerical precision of the algorithm
and the numerical “resolution” of the Pareto frontier curves, which turns out to work exactly in the
way we want. As a result, we obtain a weakly polynomial-time algorithm (similar to all currently
known polynomial-time algorithms for linear programming), whose time complexity depends on
the number of bits required to encode the input numbers. A more detailed overview is given in
Section 8.3.1.

The algorithm discussed above is for finite-horizon (episodic) environments, but it is not too
hard to adapt it into an algorithm for infinite-horizon discounted environments. As a byproduct of
our main result, we also give an algorithm that computes a policy that is additively suboptimal by
at most ε for any ε > 0 in infinite-horizon discounted environments, which runs in time polynomial
in log(1/ε) and the size of the input. This is discussed in Section 8.3.4, together with other remarks
and extensions of the finite-horizon algorithm.

8.2 Preliminaries

We first formally introduce the problem setup, discuss why the problem is challenging, and in-
troduce the notion of Pareto frontier curves which will be instrumental in the algorithm and the
analysis thereof.
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8.2.1 Problem Setup
The environment. We mostly focus on finite-horizon environments in this chapter. There are n
states S = [n] = {1, . . . , n} and m actionsA.3 For each state s ∈ S and action a ∈ A, let rP (s, a)
and rA(s, a) be the rewards of the principal and the agent respectively when action a is played in
state s. Moreover, let P (s, a) ∈ Rn be the transition probabilities when action a is played in state
s, where P (s, a, s′) is the probability that the next state is s′ ∈ S.

Without loss of generality, we assume that the states are ordered by reachability. Formally, for
any s, s′ ∈ S where s ≥ s′, we have P (s, a, s′) = 0 for all a ∈ A.4 We assume sinit = 1 is the
initial state, and sterm = n is the terminal state where no action is available.

Histories and policies. A history of length t ∈ N is a tuple (s1, a1, . . . , st, at). Let Ht be the
set of all histories of lengths t for each t ∈ N. In particular, H0 = {∅}, where ∅ denotes the
empty history. Let H =

⋃
t∈NHt. For history h = (s1, a1, . . . , st, at) ∈ H and state-action pair

(s, a) ∈ S ×A, we write h+ (s, a) for the history obtained by appending (s, a) to the end of h:

h+ (s, a) = (s1, a1, . . . , st, at, s, a).

Define (s, a)+h similarly. For two history-state pairs (h, s) and (h′, s′) where h = (s1, a1, . . . , st, at)
and h′ = (s′1, a

′
1, . . . , s

′
t′ , a

′
t′), we say (h′, s′) extends (h, s), or (h′, s′) ⊇ (h, s), if t′ > t, and

(s1, a1, . . . , st, at, s) is a prefix of (s′1, a
′
1, . . . , s

′
t′ , a

′
t′ , s

′).
Let ∆(A) denote the probability simplex overA. A policy π : H×S → ∆(A) maps a history

h ∈ H and a state s ∈ S to a random action a ∈ A, where π(h, s, a) is the probability that π
plays action a at history-state pair (h, s). Let Π be the set of all (randomized, history-dependent)
policies, which may or may not satisfy participation constraints (defined below).

Utility and participation constraints. Under a policy π, the expected onward utility uπP (h, s)
of the principal at history-state pair (h, s) can be defined in the following recursive way.

uπP (h, s) =

{
0 if s = sterm,

Ea∼π(h,s),s′∼P (s,a)[rP (s, a) + uπP (h+ (s, a), s′)] otherwise.
(8.1)

The onward utility of the agent rπA(h, s) can be defined similarly, with uP and rP replaced by
uA and rA respectively. We say a policy is feasible if it satisfies participation constraints in all
states. Throughout the chapter, we assume that there exists a feasible policy (e.g., the policy that
maximizes the agent’s utility). Our goal is to find a feasible policy that maximizes the principal’s
overall utility. Formally, we want to compute a policy π that maximizes uπP (∅, sinit), subject to the
participation constraints that uπA(h, s) ≥ 0 for all (h, s) ∈ H × S. 5

3We assume all actions are available in every non-terminal state. This is without loss of generality because if an
action a is not available in a state s, we can set a’s rewards and transition probabilities to be the same as any available
action in s.

4This is without loss of generality for finite-horizon (episodic) environments because one can make a copy of each
state for each time step. Then, copies of states at earlier times can only transition into copies at later times.

5Note that some history-state pairs may not be reachable with positive probability under a policy. For consistency,
we enforce participation constraints for such pairs as well. This is without loss of generality, since if (h, s) is not
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Figure 8.1: Examples where deterministic/history-independent policies are far from optimal.

Encoding the input. In order to properly formulate the computational problem, we assume that
all parameters of the problem (including n, m, rP (s, a), rA(s, a), and P (s, a, s′)) are given in
binary representations. Moreover, we assume that −1 ≤ rP (s, a) ≤ 1 and −1 ≤ rA(s, a) ≤ 1 for
all s and a, and each of the input numbers has at most L bits.

8.2.2 Some Natural Approaches and Why They Fail
Before diving into our algorithm, we first discuss some natural approaches and why they do not
work. In classical MDPs, it is well known that optimal policies are without loss of generality
deterministic and history-independent. Given this, an optimal policy can be found by a simple
backward induction procedure. Unfortunately, this is no longer true in the presence of partici-
pation constraints. As we illustrate in the following examples, restricting the policy to be either
deterministic or history-independent may lead to a significant loss in the principal’s utility.
Example 8.1. Consider the left environment in Figure 8.1. This environment has n = 4 states,
where sinit = 1 and sterm = 4. All states have at most 1 available action except for state 1. In state
1 there are two actions available, the upper (blue) one and the lower (red) one, leading to state 2
and state 3 respectively. The optimal (randomized) policy is to play the upper action and the lower
action each with probability 1/2 in state 1, which gives the principal overall utility 1/2, and the
agent onward utility 0 in all states. However, restricted to deterministic policies, the only feasible
policy is to play the lower action in state 1, which gives the principal overall utility 0.
Example 8.2. Consider the right environment in Figure 8.1. This environment has n = 7 states,
where sinit = 1 and sterm = 7. All states have at most 1 available action except for state 4. In
state 4, there are two actions available, the upper (blue) one and the lower (red) one, leading to
states 5 and 6 respectively. Moreover, in state 1, the only available action randomly transits to state
2 or 3 with equal probability. The optimal (history-dependent) policy is to play the upper action
in state 4 if the previous state is state 3, and play the lower action if the previous state is state 2,
which gives the principal overall utility 1/2, and the agent nonnegative onward utility in all states.
However, restricted to history-independent policies, the only feasible policy is to play the lower
action in state 4, which gives the principal overall utility 0. In particular, note that in state 4 we
cannot play one of the two actions uniformly at random, because then the agent’s onward utility in

reachable, then the policy from this point onward does not affect the principal’s utility, so we can run the policy that
maximizes the agent’s utility to satisfy participation constraints.
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state 2 would be −1/2.
Optimizing over history-dependent policies is often computationally intractable. This phe-

nomenon is famously known as the curse of history [85, 95, 102]. For instance, the problem of
finding optimal policies for partially observable MDPs (as well as various special cases thereof [75,
81]) is PSPACE-hard. Another concrete example is that computing an optimal dynamic mecha-
nism (which can be viewed as our setting with additional incentive-compatibility constraints) is
APX-hard [115]. Another difficulty that arises from history-dependence is that we cannot effi-
ciently describe an optimal policy in the flat representation, since the optimal policy may need to
specify which action to take in each of exponentially many histories.

We conclude this section by showing that it is computationally hard to find an optimal determin-
istic policy. While the best deterministic policy could perform worse than the optimal randomized
policy, there are situations where one may want to focus on deterministic policies. More impor-
tantly, this further illustrates the complexity of our problem. We reduce from the 0-1 knapsack
problem.
Claim 8.1. It is NP-hard to find an optimal deterministic policy that satisfies participation con-
straints.

Proof. Consider a knapsack instance with k items and size limit S, where item i has size si and
value vi. The goal of the knapsack problem is to pick a subset of items with maximum total value,
subject to the constraint that their total size does not exceed S. Without loss of generality, assume
si ≤ S for each i ∈ [k]. We construct an environment with n = k + 2 states that encodes the
knapsack instance, where sinit = 1, sterm = n, and state i+ 1 corresponds to item i.

There is a single action a0 available in state sinit = 1 with rP (sinit, a0) = 0, rA(sinit, a0) =
1−k
k
· S, and P (sinit, a0, i + 1) = 1

k
for each i ∈ [k]. For each item i, there are two actions

ai,0, ai,1 available in the corresponding state i + 1. Intuitively, ai,0 corresponds to not taking
item i, where rP (i+ 1, ai,0) = 0, rA(i+ 1, ai,0) = S; and ai,1 corresponds to taking item i, where
rP (i+1, ai,1) = vi, rA(i+1, ai,1) = S−si. Both actions lead to the terminal state deterministically,
i.e., P (i+ 1, ai,0, sterm) = P (i+ 1, ai,1, sterm) = 1.

We show that this encodes the knapsack instance. Due to the structure of the environment we
construct, all policies are without loss of generality history-independent, so we omit the depen-
dence on h. For a deterministic policy π, let T π ⊆ [k] be the set of items that π decides to pick,
that is, i ∈ T π iff π(s, ai,1) = 1. Then we have

• rπP (sinit) =
1

k

∑
i∈Tπ

vi.

• For each i ∈ [k], we always have rπA(i+ 1) ≥ 0.
• rπA(sinit) ≥ 0 ⇐⇒

∑
i∈Tπ

si ≤ S.

It follows immediately that an optimal deterministic policy subject to participation constraints
corresponds to an optimal solution to the knapsack instance.
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8.2.3 Pareto Frontier Curves

Now we define the notion of Pareto frontier curves, which is instrumental in designing and an-
alyzing our algorithm. Intuitively, these curves capture the Pareto optimal tradeoffs between the
principal’s and the agent’s (onward) utilities at different states.

We associate a Pareto frontier curve with each state s ∈ S. For state s, we consider all policies
starting at s (as if s is the initial state) and the onward utilities of the principal and the agent uπA
and uπP as defined in Equation (8.1). We say a policy π is feasible in the future iff π satisfies the
participation constraints at all later history-state pairs.

Let Ds = [u−A(s), u+
A(s)] be the range of onward utility of the agent that is achievable by

policies that are feasible in the future. Formally,

u−A(s) = min{uπA(∅, s) | π ∈ Π : uπA(h′, s′) ≥ 0, ∀(h′, s′) ⊇ (∅, s)},
u+
A(s) = max{uπA(∅, s) | π ∈ Π : uπA(h′, s′) ≥ 0, ∀(h′, s′) ⊇ (∅, s)}.

Note that we consider policies that satisfy participation constraints after leaving state s, and put no
restrictions on the agent’s onward utility in state s.

The Pareto frontier curve fs : Ds → R in state s ∈ S maps the agent’s onward utility x ∈ Ds to
the maximum principal’s onward utility y that is achievable by some feasible-in-the-future policy
π, such that the agent’s onward utility is exactly x under π. Formally, for each s ∈ S and x ∈ Ds,

fs(x) = max{uπP (∅, s) | π ∈ Π : uπA(∅, s) = x and uπA(h′, s′) ≥ 0, ∀(h′, s′) ⊇ (∅, s)}. (8.2)

The following property of Pareto frontier curves, which was observed in [118], plays an im-
portant role in our algorithm and analysis.
Lemma 8.1. For each s ∈ S , the Pareto frontier curve fs defined in Equation (8.2) is concave on
Ds.

The concavity of these curves is a direct consequence of the fact that randomizing between
feasible-in-the-future policies always results in a feasible-in-the-future policy.

8.3 Our Algorithm and Analysis

Our main result is a polynomial-time exact algorithm for the problem of planning with participation
constraints.
Theorem 8.1. There is an algorithm that runs in time poly(n,m,L) and computes an optimal
policy satisfying participation constraints, where n, m, and L are the number of states, number of
actions, and number bits required to encode each input number (rewards and transition probabili-
ties) respectively.

The proof of the theorem is deferred to Section 8.3.5, and the next subsection is dedicated to a
more friendly presentation of the algorithm and the analysis.

126



Figure 8.2: The two types of evaluation subroutines of our algorithm.

8.3.1 Overview of the Algorithm

Given the definition of Pareto frontier curves, the maximum overall utility of the principal that can
be achieved by a feasible policy is equal to maxx∈Dsinit∩R+ fsinit

(x). 6 So, the problem of plan-
ning with participation constraints immediately reduces to computing the Pareto frontier curve at
the initial state sinit — which, unfortuantely, turns out to be a highly challenging (if not impos-
sible) task. In particular, although each fs is piecewise linear, there may be exponentially many
pieces in each curve, which makes explicitly computing the curves infeasible. In [118], the authors
circumvent this issue by allowing approximation — they give an approximation algorithm (which
achieves an additive ε-approximation in poly(1/ε) time) for planning with participation constraints
by recursively computing approximations of the Pareto frontier curves, from later states to earlier
ones. Their main technical contribution is identifying a computationally feasible recursive relation
between the curves, and coming up with a way to approximate the curves using only a small num-
ber of pieces. However, it seems unlikely that similar approaches could lead to an efficient exact
algorithm.

In contrast to their approach, our algorithm does not try to compute (or approximate) the entire
Pareto frontier curves. Instead, we only evaluate the curves “at specific points” and “along specific
directions” (see Figure 8.2). The left side of Figure 8.2 illustrates evaluating fs at a given point,
where we want to compute fs(x) for a given x. The right side of Figure 8.2 shows an evaluation
along a specific direction α ∈ R2, which returns a point (x, fs(x)) that maximizes the inner product
α · (x, fs(x)). These two types of evaluations correspond to the two major conceptual subroutines
of our algorithm.

If these subroutines can be implemented efficiently, then we can immediately compute the
maximum overall utility of the principal: it is equal to the y-coordinate of the point found by
evaluating fsinit

along the direction (0, 1) if the x-coordinate of the returned point is nonnegative;
otherwise it is equal to fsinit

(0). This is true because fsinit
is concave: if a point with the largest

y-coordinate on fsinit
is to the left of x = 0, then the optimal feasible point must have x-coordinate

0.
Based on these observations, we only need to efficiently implement these two subroutines.

6We use R+ to denote the set of nonnegative real numbers.
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Below we discuss how this is possible. We will refrain from being fully formal, and focus on the
intuition instead. For the full description of the algorithm, see Algorithm 8.1.

Evaluations at specific points. Suppose we want to evaluate fs at x. We show that this can be
reduced to multiple evaluations along specific directions of fs. Consider the left side of Figure 8.3.
To find the (gray) point (x, fs(x)), we only need to find the two endpoints of the piece contain-
ing it, namely the (blue) point (x1, fs(x1)) and the (green) point (x2, fs(x2)). Then, taking the
convex combination of these two endpoints with the right coefficients gives us (x, fs(x)). These
coefficients can be computed using x (given as input), x1 and x2, as illustrated in Figure 8.3. So it
suffices to find the two endpoints.

Consider, for example, the left endpoint (x1, fs(x1)). There exists some direction α (e.g., α1 in
the figure) such that

α · (x1, fs(x1)) = max
x∈Ds

α · (x, fs(x)).

We only need to find such an α and evaluate fs along that direction. To this end, observe that
the maximizer found by evaluating along α moves on the curve monotonically as we rotate α
(consider, from the left to the right, α3, α1, α2 and the corresponding maximizers, which are the
red, blue, and green points respectively). Again this is because the curve is concave. So, we need
to find the “rightmost” α such that the maximizer found by evaluating along α is to the left of x,
i.e., the x-coordinate of that maximizer is no larger than x.

To achieve this, we perform a binary search over α. We defer the discussion on the numerical
issues of this binary search to Section 8.3.2. For now, we assume the number of iterations this
binary search requires is poly(n,m,L), which is in fact the case, as we will show later.

Evaluations along specific directions. Now consider the other subroutine where we want to
evaluate fs along a given direction α. We show that this can be reduced to multiple evaluations
of both types, of the Pareto frontier curves in later states. At a high level, evaluating fs along
α can be viewed as a planning problem, where the goal is to find a policy π that maximizes
α · (uπP (∅, s), uπA(∅, s)), subject to participation constraints in the future (and not in state s).

Since the policy is unconstrained in state s, without loss of generality, an optimal policy π
has the Markovian property in state s only: consider the behavior of the policy right after taking
action a in s, leaving s, and entering a later state s′ > s. The subpolicy from this point on
must maximize α · (uπP ((s, a), s′), uπA((s, a), s′)) subject to participation constraints (including in
state s′). In particular, the subpolicy at s′ does not depend on the action a taken in state s or the
subpolicy in other later states.7 This subpolicy corresponds to a point on fs′ , which can be found by
evaluating fs′ twice: along direction α and at x = 0 respectively, and then picking the point with
the larger x-coordinate (again because fs′ is concave). In other words, the planning subproblem
in each state s′ > s can be reduced to two evaluations of fs′ . After solving these subproblems for
each s′ > s, the policy in state s should choose an action a which maximizes

α · (rP (s, a), rA(s, a)) + Es′∼P (s,a) [α · (uπP ((s, a), s′), uπA((s, a), s′))] .

7Note that the subpolicy in state s′ is in effect only if s′ is the first state reached after leaving s. In the case where
we reach some s′′ immediately after leaving s and then later reach s′, it is the subpolicy in s′′ that should apply.
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Figure 8.3: Recursive (naı̈ve) implementations of the two subroutines.

The above procedure is illustrated in the right side of Figure 8.3, where the action a is a maximizer
of the above expectation. The two cases inside the expectation in the figure correspond to the two
cases of the subproblem in each later state s′. The upper case is when evaluating fs′ along α returns
the (gray) point (x′, fs′(x

′)) with x′ ≥ 0, so it corresponds to the subpolicy at s′. The lower case
is when evaluating fs′ along α gives a point with a negative x-coordinate, in which case the (gray)
point (0, fs′(0)) corresponds to the subpolicy in state s′.

Putting everything together. The above discussion already describes a way to perform both
types of evaluations in finite time. This is because evaluations at specific points reduce to only
evaluations along specific directions in the same state; and evaluations along specific directions
reduce to only evaluations in later states (one evaluation of each type for each later state). However,
a problem is that it generally takes exponential time if we recursively perform the evaluations for
subproblems in the naı̈ve way, because for both types of evaluations there can be polynomially
many subproblems (i.e., the number of iterations in the binary search for evaluations at specific
points, and the number of later states for evaluations along specific directions).

So, to evaluate fsinit
at x = 0 and along (0, 1) efficiently, we need to schedule and handle all

the evaluations involved (most of which originate from recursive calls) in a more global manner.
Intuitively, for any state s ∈ S , we only ever need to calculate fs(0) and evaluate fs along a
polynomial number of directions α. This is because each direction α can be traced back to one of
n states that first queries for this α; at the same time, each state only queries a polynomial number
of different α’s. Below we give an informal hierarchical description of the schedule, together with
inline annotations.

• First observe that evaluations at x = 0 appear repeatedly in the naı̈ve implementation. We
therefore center our schedule around these evaluations.

• We will compute fs(0) for all states s ∈ S one by one from later states to earlier ones (i.e.,
from sterm = n to sinit = 1), since the recursive dependence (as discussed above) never goes
backwards. We call this the outer loop.

Consider some state s in the outer loop, and suppose we have already computed fs′(0)
for all s′ > s. As discussed above, to compute fs(0), it suffices to perform a binary
search on α in state s.
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− In each iteration of the binary search, we need to perform an evaluation of fs
along α. As discussed above, we only need to evaluate fs′ along α for each s′ > s,
since we already know fs′(0). This can be done in a single backward pass (from
sterm = n to s+ 1) without nested recursive calls, which we call the inner loop.

· For each s′ > s in the inner loop, the evaluation of fs′ along α reduces to the
evaluation of fs′′ along α and fs′′(0) for all s′′ > s′.

· The former has already been computed in previous iterations of the inner loop,
and the latter has already been computed in previous iterations of the outer
loop. We only need to retrieve the two points for s′′ = s′ + 1, . . . , n, which
means every iteration of the inner loop takes O(n) time.

− The inner loop has O(n) iterations, so the total time is O(n2), which is also the
runtime of one iteration of binary search.

Now as discussed before, the binary search has poly(n,m,L) iterations (we will come
back to this not-yet-substantiated claim momentarily), so the total time is poly(n,m,L).

• The outer loop has O(n) iterations, so the total time of computing fs(0) for all s ∈ S is
poly(n,m,L).

• Finally, we need one last evaluation of fsinit
along the direction (0, 1). This can be done by a

single call to the inner loop above, which takes time O(n2).
A formal description of our algorithm is given in Algorithm 8.1.

8.3.2 Handling Numerical Issues
Finally, we come back to the number of iterations required in the binary search in an evaluation
at a specific point (used in the algorithm to compute fs(0) for each state s). We show that under
appropriate parametrization of the direction α, it suffices to perform the binary search up to some
singly exponential precision, which implies the number of iterations is polynomial. In particular,
we search over the slope of the perpendicular direction to α. The intuition is that we only need
to distinguish between the slopes of two consecutive pieces on fs, which cannot be too close to
each other. In fact, we will establish a stronger claim: the coordinates of all turning points on fs
must be integral multiples of some singly-exponentially small quantity. Since these coordinates
are bounded between −n and n, the slope of the line between any two turning points (which do
not even need to be adjacent) cannot take too many values. Moreover, the magnitude of the slope
is upper bounded by some not too large quantity. This allows the binary search to terminate in not
too many steps. We elaborate in the following paragraph.

To see why the above is true, we consider a specific procedure of recursively constructing the
entire fs for all s from later states to earlier ones, and treat all quantities involved in the construc-
tion as fractions. Fix some s, and assume fs′ for any s′ > s has the desired property, i.e., the
denominator of any quantity used to represent fs′ is not too large. We argue that fs also has this
property (where the denominator may be moderately larger than the denominators in later states
— in fact, it is the blowup that we try to bound).

Recall that any turning point on fs can be found by evaluating along some direction. So fix a
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turning point (x, y) on fs, and consider any direction α which gives this point. As discussed earlier
(see the right side of Figure 8.3), there exists some action a ∈ A such that

(x, y) = Es′∼P (s,a)[(xs′ , ys′)] + (rA(s, a), rP (s, a))

=
∑
s′>s

P (s, a, s′) · (xs′ , ys′) + (rA(s, a), rP (s, a)),

where (xs′ , ys′) is either a turning point on fs′ or (0, fs′(0)). Among all quantities on the right
hand side of the above equation, P (s, a, s′), rA(s, a), and rP (s, a) have at most L bits in the binary
representation, so the denominators of these quantities are at most 2L. Moreover, when (xs′ , ys′)
is a turning point on fs′ , by the induction hypothesis, the denominators of both coordinates are
not too large. So if all (xs′ , ys′) are turning points, then we immediately know that (x, y) has the
desired property: the denominator of both coordinates can only blow up by a factor of 2L. And
importantly, in any case, the denominator of xs, or xs′ for any s′ > s, can be at most 2nL, because
the x-coordinates of turning points in any state only depend on the x-coordinates of turning points
in later states.

The problematic case is when (xs′ , ys′) = (0, fs′(0)). To handle this case, we need to argue
that the denominator of ys′ is not too large either, compared to those of the turning points on fs′ .
Recall that there exist turning points (x`, y`) and (xr, yr) on fs′ , where x` < 0 and xr > 0, such
that

ys′ =
xr · y` − x` · yr

xr − x`
.

So the denominator of ys′ (compared to that of y` or yr) can blow up by at most a factor of 2nL

(which is the maximum denominator of x` and xr), times the numerator of xr − x` (which is
upper bounded by 2n · 2nL because −n ≤ x` < xr ≤ n). So in any case, assuming n ≥ 2, the
maximum blowup incurred in the construction of fs is 23nL, and consequently, the denominator of
the y-coordinate of any turning point on the curve of any state is 23n2L. The above discussion on
numerical issues is formalized as Lemma 8.3, which is stated and proved in Section 8.3.5.

8.3.3 Decoding the Policy
Algorithm 8.1 outputs only an implicit representation of an optimal policy. In this subsection, we
describe how to efficiently decode the output of Algorithm 8.1, so that we can execute the corre-
sponding policy. The idea is to keep track of the current “objective direction”, which is initially
(0, 1) and may randomly change (and in particular, rotate to the right) as the state evolves. This
objective direction essentially corresponds to how much we need to compensate the agent from
this point on in order to satisfy participation constraints. In other words, the objective direction
succinctly encodes the relevant part of the history.

According to Algorithm 8.1, at any time, the onward policy in the current state (given the his-
tory) corresponds to either the maximizer along the objective direction, or the intersection of the
Pareto frontier curve with x = 0. In the former case, the agent is satisfied with the current level of
compensation, so we do not need to compensate more. In this case, we can take an action deter-
ministically, and the objective direction does not change. In the latter case, we need to compensate
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the agent more to satisfy participation constraints, so we rotate the objective direction to the right.
In this case, we need to randomize between the two actions corresponding to the two endpoints
of the piece containing the intersection point. Depending on which action is actually chosen, the
new objective direction is the one for which the corresponding endpoint is the maximizer. Since
all these points and directions (along with many other auxiliary points and directions) have been
computed in Algorithm 8.1, we only need to read them from the output. The full algorithm is given
as Algorithm 8.2, which maps each history-state pair to a (random) action. Algorithm 8.2 can be
easily adapted into a dynamic procedure that plays the optimal policy on the fly while interacting
with the environment (by updating α), rather than re-analyzing the history from scratch at each
point in time.

Note that the behavior of the policy output by Algorithm 8.1 is unspecified for some history-
state pairs. However, if one strictly follows the specified part of the policy, then the unspecified
part can never be reached (i.e., the probability that we arrive at such a history-state pair is 0). For
such unreachable pairs, the behavior of the decoding algorithm can be arbitrary.

8.3.4 Remarks and Extensions

Structure of optimal policies. Our algorithm also directly implies some structural properties of
optimal policies with participation constraints. In particular:

• Although there might be exponentially many turning points on the Pareto frontier curves, for
the optimal policy we compute, there are only polynomially many of them for which it is
possible that the policy visits them. These points are maximizers for the polynomially many
directions we queried during the computation of an optimal policy.

• Optimal policies are almost deterministic. In fact, an optimal policy randomizes between
precisely 2 actions when the participation constraint in the current state (given the history) is
binding. This is also where the policy branches and history-dependence is introduced. In all
other situations, the policy deterministically chooses an action. This aligns well with intu-
ition: when no participation constraints are binding, it suffices to simply maximize the prin-
cipal’s utility, which naturally leads to a completely deterministic and history-independent
policy.

Extensions to richer constraints. Our algorithm can be generalized to the case where the agent’s
onward utility in each state must be in one of several disjoint intervals (instead of a single interval
[0,∞)). Moreover, these feasible intervals can be different for each state. In order to handle multi-
ple feasible intervals in a state s, we evaluate fs at the endpoints of all these intervals, which can be
done by binary search. Once we have computed these points, to evaluate a curve along a direction
α, we only need to handle subproblems where we evaluate later curves restricted to feasible inter-
vals. This can be done since if the unconstrained maximizer is infeasible, then the optimal feasible
point must be one of the two endpoints that are closest to the unconstrained maximizer. Since we
have already computed all endpoints, we can simply try the two points and choose the better one.
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Infinite-horizon environments with discounted reward. Now we discuss how to extend our
algorithm to the infinite-horizon case with discounted reward. For such environments, we describe
an algorithm that computes a policy subject to participation constraints that is optimal up to an
additive error of ε > 0, in time poly(n,m,L, log(1/ε)) for any ε > 0. This is done by reducing to
the finite-horizon case and running Algorithm 8.1.

First we briefly define infinite-horizon environments. As in the finite-state case, there are n
states S = [n] andm actionsA, and rP , rA and P denote the principal’s reward, the agent’s reward,
and the transition probabilities respectively. There is an initial state sinit = 1, but no terminal state.
We also do not require transitions to be from earlier states to later ones. In addition, there are
discount factors δP ∈ (0, 1) and δA ∈ (0, 1) (which we treat as constants) for the principal and the
agent respectively. Define histories similarly as in finite-horizon environments. The onward utility
uπP (h, s) of the principal under policy π in state s given history h is defined recursively such that

uπP (h, s) = Ea∼π(h,s),s′∼P (s,a)[rP (s, a) + δP · uπP (h+ (s, a), s′)].

The onward utility uπA of the agent is defined similarly, with uπP and rP replaced with uπA and rA.
Participation constraints require that for all (h, s) ∈ H × S , uπA(h, s) ≥ 0. We say a policy π is
feasible if it satisfies participation constraints. The goal is to find a feasible policy that maximizes
the principal’s overall utility uπP (∅, sinit).

Note that the finite-horizon case can be viewed as a special case of the infinite-horizon case
with discounted reward, by scaling the rewards appropriately and replacing the terminal state with
an absorbing state from which there are no more rewards. As a result, optimal policies in the
infinite-horizon case in general also need to be randomized and history-dependent, so traditional
methods are unlikely to work for the problem. This is true even for approximately optimal policies,
as illustrated in the examples in Section 8.2.2. Therefore, to handle the infinite-horizon case, it is
necessary to incorporate the ideas developed in our algorithm for the finite-horizon case.

Our algorithm consists of two parts. Based on the principal’s discount factor δP and the desired
accuracy ε, we first compute a cutoff time

T = O(log(1/(ε · (1− δP )))/ log(1/δP )).

The idea is that the contribution to the overall utility after the first T stages is at most 1
1−δP
·δTP ≤ ε.

After the T -th stage, we run a stationary policy that is optimal for the agent, which can be computed
in polynomial time (through linear programming, or any other algorithm for computing optimal
policies for standard infinite-horizon MDPs with discounted rewards). Then we treat the first T
stages as a finite-horizon environment, and run Algorithm 8.1 for this environment.

Since T = O(log(1/ε)), this blows up the size of the problem at most by a O(log(1/ε))
factor (as we make a copy of every state for every period). Two aspects of how this finite-horizon
version is set up deserve mention. First, to match the infinite-horizon version, we have to discount
the rewards in this finite-horizon version. This is a straightforward modification: as every state
in the finite-horizon version is already indexed by time, we can simply adjust the rewards for
those time-indexed states by the appropriate discount factors. Second, we still have to account
for the discounted utility that the agent receives after T , as this may make it easier to satisfy the
participation constraints before T . To do so, we can simply add the total expected discounted
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utility after T (from the agent-optimal stationary policy) as a single lump-sum reward to the final
non-terminal state in the finite version. The overall policy is then to run the output of Algorithm 8.1
in the first T stages, and to run the agent-optimal stationary policy after the T -th stage.

To see why this policy is only suboptimal by at most ε, observe that the expected discounted
principal utility that it obtains from the first T stages is at least the expected discounted principal
utility that the overall-optimal policy obtains from those stages. This is because Algorithm 8.1
explicitly optimizes for the first T stages only, and the participation constraints it faces in these first
T stages cannot be tighter than those faced by the optimal policy, as the participation constraints
for the finite-horizon version correspond to being as generous as possible to the agent after T .
Furthermore, the expected discounted principal utility that our algorithm obtains from the stages
after T can be at most ε lower than that for the optimal policy, by our choice of T .

8.3.5 Proof of Theorem 8.1
In this section, we present the proof of our main result (Theorem 8.1). We start by proving several
key technical lemmas. We first prove the following lemma, which provides a tractable interpreta-
tion of evaluations along specific directions.
Lemma 8.2. For any state s ∈ S and direction α ∈ (R× R+),

max
x∈Ds

α · (x, fs(x)) = max
a∈A

(
α · (rA(s, a), rP (s, a)) + Es′∼P (s,a)

[
max

x′∈Ds′∩R+

α · (x′, fs′(x′))
])

.

Proof. We first show the left hand side is greater than or equal to the right hand side. Let a∗ and
xs′ ≥ 0 for each s′ > s be the maximizers on the right hand side. By the definition of fs′ , each
(xs′ , fs′(xs′)) corresponds to a subpolicy π∗s′ starting from state s′. We have

(xs′ , fs′(xs′)) = (u
π∗
s′
A (∅, s′), uπ

∗
s′
P (∅, s′)).

Moreover, for any (h, s′′) ⊇ (∅, s′), u
π∗
s′
A (h, s′′) ≥ 0. Now consider the policy π defined such that

π(∅, s) = a∗, and for each h = (s, a∗, s′, a2, s3, . . . , st, at) and s′′ ∈ S,

π(h, s′′) = π∗s′((s
′, a2, s3, . . . , st, at), s

′′).

That is, π follows the recommendations of π∗s′ whenever the first state reached after leaving s is s′.
For any unspecified history-state pair, π always maximizes the agent’s utility. It is easy to show
that

(uπA(∅, s), uπP (∅, s)) = (rA(s, a∗), rP (s, a∗)) + Es′∼P (s,a)[(xs′ , fs′(xs′))].

And moreover, because each π∗s′ is feasible in the future and xs′ ≥ 0, uπA(h, s′′) ≥ 0 for any
(h, s′′) ⊇ (∅, s). This means

max
x∈Ds

α · (x, fs(x)) ≥ α · (uπA(∅, s), uπP (∅, s))

= α · (rA(s, a∗), rP (s, a∗)) + α · Es′∼P (s,a)[(xs′ , fs′(xs′))].
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Now consider the other direction. Let x∗ be the maximizer on the left hand side, and π∗ be the
corresponding policy. Without loss of generality, π∗(∅, s) = a∗ is deterministic (because otherwise
we can simply choose the best action in the support). For each s′, let πs′ be such that

πs′(h, s
′′) = π((s, a∗) + h, s′′).

That is, πs′ is the subpolicy starting from s′ induced by π∗. Then because π∗ is feasible in the
future, each πs′ is also feasible in the future, and moreover, rπs′A (∅, s′) ≥ 0. So we have:

α · (x∗, fs(x∗)) = α · (rA(s, a∗), rP (s, a∗)) + Es′∼P (s,a∗)[α · (r
πs′
A (∅, s′), rπs′P (∅, s′))]

≤ max
a∈A

(
α · (rA(s, a), rP (s, a)) + Es′∼P (s,a)

[
max

x′∈Ds′∩R+

α · (x′, fs′(x′))
])

.

This concludes the proof.

The next lemma states that the denominators of the x and y coordinates returned by any eval-
uation of any Pareto curve throughout the algorithm are never too large, which is useful for upper
bounding the number of iterations of binary search.
Lemma 8.3. Consider all coordinates as fractions. Then we have: (1) the least common denomi-
nator of the x-coordinates of the turning points on {fs}s∈S is at most 2nL, and (2) the least common
denominator of both the x-coordinates and the y-coordinates of the turning points on {fs}s∈S is
at most 23n2L.

Proof. We start by proving the first statement by mathematical induction. For sterm = n, each
turning point on fsterm is (rA(sterm, a), rP (sterm, a)) for some a ∈ A, and since each rA(sterm, a)
has at most L bits, 2L is a denominator of the x-coordinate of each turning point.

Now fix some s < sterm = n and suppose for any s′ > s and any turning point on fs′ , 2(n−s)L

is a denominator of the x-coordinate of that point. We argue that for any turning point on fs,
2(n−s+1)L is a denominator of the x-coordinate of the point. Consider any turning point (x, fs(x)).
Observe that there is a direction α ∈ R× R+ such that

α · (x, fs(x)) = max
x′∈Ds

α · (x′, fs(x′)).

So by Lemma 8.2, there exists an action a ∈ A and some xs′ ∈ Ds ∩ R+, such that

x = rA(s, a) +
∑
s′>s

P (s, a, s′) · xs′ .

Moreover, since xs′ is a maximizer, without loss of generality, either xs′ = 0 or xs′ is a turning
point on fs′ . In both cases, by the induction hypothesis, 2(n−s)L is a denominator of xs′ . Since
2L is a denominator of both rA(s, a) and P (s, a, s′), 2(n−s+1)L must be a denominator of x. This
establishes the first half of the lemma.

Now consider the second statement. We inductively show that for any state s ∈ S, we can use
23(n−s+1)nL to upper bound some common denominator of both coordinates of all points on fs′ , as

135



well as fs′(0), for all s′ ≥ s. Given the first half of the lemma, we only need to argue about the
y-coordinates.

First consider sterm = n. For the turning points, each rP (sterm, a) has at most L bits, and 2L is
a denominator. As for fsterm(0), let (x−, y−) and (x+, y+) be the endpoints of the piece containing
(0, fsterm(0)) on fsterm . Observe that

fsterm(0) =
y− · x+ − y+ · x−

x+ − x−
.

So the product of the denominator of y−·x+−y+·x− and the numerator of x+−x− is a denominator
of fsterm(0). The former is at most 22L, and the latter is at most 2× 2L, so something no larger than
23L+1 ≤ 23nL is a common denominator of all the y-coordinates.

Now suppose for all s′ > s, some D ≤ 23(n−s)nL is a denominator of all the y-coordinates
used to represent all fs′ (including all turning points and fs′(0)). We first argue that some 2L · D
is a common denominator of all the y-coordinates used to represent all fs′ for all s′ ≥ s, exclud-
ing fs(0) (we will handle fs(0) separately). Fix a turning point (x, fs(x)), and again consider a
direction α ∈ R× R+ such that (x, fs(x)) is a maximizer. By Lemma 8.2, there exists a ∈ A and
xs′ ∈ Ds ∩ R+ such that

fs(x) = rP (s, a) +
∑
s′>s

P (s, a, s′) · fs′(xs′).

And each xs′ is either a turning point or 0. By the induction hypothesis, 2L · D is a denominator
of all fs(x) where (x, fs(x)) is a turning point. Finally consider fs(0). Again, let (x−, y−) and
(x+, y+) be the endpoints of the piece containing (0, fs(0)) on fs. Observe that

fs(0) =
y− · x+ − y+ · x−

x+ − x−
.

So the product of the denominator of y−·x+−y+·x− and the numerator of x+−x− is a denominator
of fs(0). The former, as discussed above, is at most 2nL·2L·D ≤ 2L+nL+3(n−s)nL, and the latter is at
most 2n×2nL ≤ 2nL+n (because the denominator of x+−x− is at most 2nL, and x+−x− ≤ 2n), so
there exists a number that is at most 23(n−s)nL+2nL+n+L ≤ 23(n−s+1)nL as a common denominator
of all the y-coordinates that we care about. This finishes the proof of the lemma.

Now we are ready to prove the correctness of Algorithm 8.1.

Proof of Theorem 8.1. As discussed in the overview in Section 8.3.1, Algorithm 8.1 runs in time
poly(n,m,L). We focus on proving the correctness of Algorithm 8.1.

In particular, for each pair (s, α) reached in the execution of the algorithm, (xs,α, ys,α) satisfies

α · (xs,α, ys,α) = max
x∈Ds∩R+

α · (x, fs(x)).

Moreover, for each s ∈ S, ys = fs(0). The claim regarding (xs,α, ys,α) can be proved inductively.
In particular, for those points computed in the inner loop (lines 7 and 9) where s′ > s, the prop-
erty of (xs′,α, ys′,α) follows from the same property of each (xs′′,α, ys′′,α) and Lemma 8.2. As for
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(xs,α, ys,α), the only difference is that when it is first computed in line 7, it is possible that xs,α < 0.
However, this is fixed in line 15 given that ys = fs(0).

To show ys = fs(0), we only need to show that the binary search is accurate enough. In par-
ticular, (xs,−, ys,−) and (xs,+, ys,+) are in fact the two endpoints of the piece containing (0, fs(0)).
Suppose that this is not the case. That is, without loss of generality, suppose there exists a turning
point (x, y) to the right of (xs,−, ys,−) where x ≤ 0. Let α = (t, 1) be a direction for which (x, y)
is the maximizer. It must be the case that αs,+ is to the right of α, which is to the right of αs,−.
In other words, at line 11, it must be the case that ` < t < r. Consider the slopes of the piece
containing (0, fs(0)), and the piece immediately to the left of that piece, and let k1 and k2 be the
two slopes respectively where k1 > k2. We must have −r ≤ k2 ≤ −t ≤ k1 ≤ −`, which in
particular implies that r − ` ≥ k1 − k2. Now by Lemma 8.3, the least common denominators of
the two coordinates of all turning points are at most 2nL and 23n2L respectively. Moreover, all x-
coordinates are between−n and n. So, the minimum possible difference between the slopes of two
consecutive pieces is at least 1/(2n · 2nL · 23n2L) ≥ 2−5n2L. This means r− ` ≥ k1− k2 ≥ 2−5n2L,
which contradicts the stopping criterion of the binary search (line 3).

One final concern is that the initial r (line 2) may not be large enough. But this is impossible,
because the smallest slope (which is negative) that we need to consider is −2n · 2nL > −23nL, so
the initial r = 23nL is in fact large enough.

8.4 Future Research
In a followup paper [119], we significantly generalize the techniques presented in this chapter,
and develop polynomial-time algorithms for (approximately) computing (Stackelberg) extensive-
form correlated equilibria in turn-taking stochastic games. This further illustrates the power of the
technical framework, which may trigger even more progress.

Throughout, we have considered a setting where the only decision the agent is able to make is
to quit, and the decision to quit is irreversible. As we argued at the outset, the case where the agent
only decides whether to enter (and this decision is irreversible) leads to the same problem. How-
ever, we could consider richer models where an agent is able to quit, but then has an opportunity
to re-enter at certain later times, under certain conditions.

We have also assumed throughout that the agent has no private information. If the agent has
private information, for example about how the agent values different outcomes, we arrive in a
dynamic mechanism design context. As mentioned earlier, in general, in this context we face NP-
hardness results [80, 115]. Still, we may ask whether the techniques developed in this chapter can
be generalized to that context, perhaps resulting in polynomial-time algorithms for special cases to
which the NP-hardness results do not apply.

One aspect of our approximation of the discounted infinite-horizon case is that it explicitly
optimizes only for the first T rounds, and consequently, it might, for example, unsustainably use up
all the world’s resources by round T . Formally, this is not a problem because, due to the nature of
exponential discounting, the remaining rounds are simply not worth much. Still, one may wonder
whether this fails to value long-term sustainability appropriately. Of course, this issue is not at all
unique to our specific setting, but rather a fundamental aspect of exponential discounting.
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Algorithm 8.1: A polynomial-time algorithm for computing a principal-optimal policy
subject to participation constraints.

Input: state space S = [n], action space A, reward functions rP and rA, and transition
probabilities P .

Output: an implicit representation of a principal-optimal policy subject to participation
constraints.

/* the outer loop */
1 for s = n, n− 1, . . . , 1 do

/* binary search for the endpoints of the piece
containing (0, fs(0)) */

2 let `← 0, r ← 23nL;
3 while r − ` ≥ 2−5n2L do
4 let α← ((r + `)/2, 1) ∈ R2 ;

/* the inner loop */
5 for s′ = n, n− 1, . . . , s do
6 let as′,α ← argmaxa∈A α ·

(
(rA(s′, a), rP (s′, a)) + Es′′∼P (s′,a)[(xs′′,α, ys′′,α)]

)
;

7 let (xs′,α, ys′,α)← (rA(s′, as′,α), rP (s′, as′,α)) + Es′′∼P (s′,as′,α)[(xs′′,α, ys′′,α)] ;
/* replace (xs′,α, ys′,α) with (0, fs′(0)) if xs′,α < 0; this is

possible only for s′ > s, where fs′(0) = ys′ has
already been computed */

8 if xs′,α < 0 and s′ > s then
9 let (xs′,α, ys′,α)← (0, ys′);

10 end
11 end
12 let `← α if xs,α ≤ 0, and r ← α otherwise;
13 end
14 let αs,− ← (`, 1), αs,+ ← (r, 1);
15 let (xs,−, ys,−)← (xs,αs,− , ys,αs,−), (xs,+, ys,+)← (xs,αs,+ , ys,αs,+);

/* compute ys = fs(0) as a linear combination of ys,− and ys,+
*/

16 let ys ← (xs,+ · ys,− − xs,− · ys,+)/(xs,+ − xs,−);
/* fix infeasible points reached during the binary search

*/
17 for each α tried in the above binary search where xs,α < 0 do
18 let (xs,α, ys,α)← (0, ys);
19 end
20 end
21 let ey = (0, 1);
22 for s = n, n− 1, . . . , 1 do
23 let as,ey ← argmaxa∈A ey ·

(
(rA(s, a), rP (s, a)) + Es′∼P (s,a)[(xs′,ey , ys′,ey)]

)
;

24 let (xs,ey , ys,ey)← (rA(s, as,ey), rP (s, as,ey)) + Es′∼P (s,a)[(xs′,ey , ys′,ey)];
/* this time we do not need to handle sinit = 1 separately */

25 if xs,ey < 0 then
26 let (xs,ey , ys,ey)← (0, ys);
27 end
28 end
/* the principal’s optimal reward is ysinit,ey = y1,ey */

29 return all {(xs,−, xs,+)}, {xs,α}, {(αs,−, αs,+)}, and {as,α} computed above;
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Algorithm 8.2: An polynomial-time algorithm for decoding and executing (one step of)
the optimal policy found by Algorithm 8.1.

Input: the output of Algorithm 8.1 and a history-state pair (h, s) where
h = (s1, a1, . . . , st, at).

Output: a possibly random action corresponding to the optimal policy found by
Algorithm 8.1.

1 let α← ey = (0, 1);
/* trace the history and compute the current internal state

of the policy */
2 for i = 1, 2, . . . , t do
3 if xsi,α = 0 then
4 if ai = asi,αsi,− then let α← αsi,−; otherwise let α← αsi,+;
5 end
6 end
7 if xs,α = 0 then

/* optimal onward policy corresponds to point (0, fs(0)),
which requires randomization in state s */

8 return as,αs,− with probability xs,+/(xs,+ − xs,−), and as,αs,+ with probability
−xs,−/(xs,+ − xs,−);

9 end
10 else

/* optimal onward policy corresponds to the maximizer
along direction α */

11 return as,α;
12 end
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Chapter 9

Automated Dynamic Mechanism Design

9.1 Introduction

In Chapter 8, we have studied a dynamic decision-making problem where the only strategic action
that the agent is capable of is quitting — and importantly, the agent does not have any private
information. Now let us consider a more general (and harder) decision-making problem, where the
agent does have private information and can choose to misreport such information in order to max-
imize their own utility. This gives us a planning problem with incentive-compatibility constraints,
in addition to individual rationality constraints considered in Chapter 8.

For concreteness, consider the following scenario. A company assembles an internal research
group to develop key technologies to be used in the company’s next-generation product in 5 years.
The more progress the group makes, the more successful the product is likely to be. Since research
progress is hard to monitor, the company manages the group based on its annual reports. At the
beginning of each year, the group submits a report, summarizing its progress in the preceding year,
as well as its needs for the current year. Taking into consideration this report (and possibly also
reports from previous years), the company then decides the compensation level and the headcount
of the group in the current year. Moreover, after the product launches, the company may also pay
a bonus to members of the group, depending on how successful the product is.

For simplicity, suppose an annual report consists of two items: research progress (satisfac-
tory/unsatisfactory), and need to expand (no request/request for an intern/request for a full-time
employee). The company’s goal is to encourage and facilitate research progress while keeping the
expenses reasonable. So, a natural managing strategy is to increase (resp. decrease) the compensa-
tion level when the reported research progress is satisfactory (resp. unsatisfactory), and to allow the
group to expand only when necessary, i.e., when the reported research progress is unsatisfactory.
However, the research group may have a different goal than the company’s. Suppose members
of the group do not care about the success of the product per se. Instead, their primary goal is
to maximize the total compensation received from the company, and for this reason, they may be
incentivized to misreport the situation. In other words, the company faces a dynamic mechanism
design problem, where the principal (i.e., the company) needs to implement (and commit to) a
mechanism (i.e., a managing strategy) that achieves its goal through repeated interactions, in the
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presence of strategic behavior of the agent (i.e., the research group).
Indeed this problem is nontrivial. For example, if the company implements the above strategy,

then the group will report satisfactory progress regardless of the actual situation, which maximizes
the group’s total compensation over the 5 years, but also causes greater expenses for the company
and jeopardizes the success of the product. To counter this, the company may additionally promise
a significant bonus contingent on the success of the product. This creates incentives for the group to
make more progress, and discourages overreporting the progress, because the group is not allowed
to expand when the reported progress is satisfactory. That is, if actual progress is unsatisfactory,
this introduces an incentive to report this truthfully so that the group may expand. However, this
also runs the risk of encouraging the group to report unsatisfactory progress in order to expand
even if actual progress is satisfactory, because more members always make more progress, which
leads to a higher (chance of) bonus, whereas the cost of expanding is paid by the company and
therefore irrelevant to the group.

One may try to fix this by introducing more rules, possibly replacing existing ones. For ex-
ample, the company may allow the group to recruit an intern, but not a full-time employee, when
the reported progress is unsatisfactory. Then, in the next year, if the reported progress improves,
the company allows the group to make a return offer to the intern as a full-time employee. Or
alternatively, the company may unconditionally allow the group to recruit interns (which are less
costly), but never full-time employees. In addition to the above, the company could also temporar-
ily decrease the compensation level when a new member joins, and later adjust the compensation
based on how the reported progress improves. While all these ad hoc rules make intuitive sense,
it is not immediately clear which (combinations of) rules are better, how to optimize parameters
of these rules (e.g., the number of new members allowed per year and the amount by which the
compensation is adjusted), or whether there is a better set of rules that look totally different.

As demonstrated by the foregoing discussion, in general, the problem of finding an optimal
mechanism in unstructured dynamic environments, such as the above example, turns out to be ex-
tremely rich and challenging. In such environments, the actions of the principal may go beyond the
allocation of items to the agent, and affect the state of the world in arbitrary ways. Moreover, both
the principal and the agent may have arbitrary valuations for these actions, which also depend on
the current state of the world. In economic theory, the characterize-and-solve approach [30, 76, 83]
to mechanism design has achieved spectacular success in both static and dynamic environments,
by exploiting structure of the environment to construct a characterization of optimal mechanisms,
often leading to closed-form or computationally tractable solutions. However, since the environ-
ments under consideration here are loosely structured at best, the classical characterize-and-solve
approach does not seem particularly suited. When disregarding the agent’s incentives, one could
treat the problem of finding an optimal strategy as a planning problem, which is known to be solv-
able efficiently [11, 56, 86]. However, as discussed above, the agent’s strategic behavior can ruin
the performance of such a strategy. From a computational perspective, while numerous methods
for automated mechanism design, which efficiently compute optimal mechanisms without heavily
exploiting structures of the environment, have been proposed [24, 25, 26], all existing methods
work only for static environments with one-time interactions, and it is not immediately clear how
to generalize these methods to dynamic environments. All this brings us to the following question:
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Can we efficiently compute optimal mechanisms in unstructured dynamic environments?

9.1.1 Our Results
In this chapter, we study the problem of computing optimal mechanisms in single-agent, discrete-
time dynamic environments with a finite time horizon, without any further structural assumptions.
Our main results (presented in Section 9.3) can be summarized as follows:

• Efficient algorithm: when the time horizon is fixed, there is a polynomial-time algorithm
for computing optimal mechanisms, with or without payments, that maximize the principal’s
utility facing a strategic agent.

• Inapproximability: when the time horizon can be large, it is NP-hard to approximate the
principal’s optimal utility within a factor of (7/8 + ε) for any ε > 0.

To the best of our knowledge, our algorithm for constant time horizons is the first that efficiently
computes optimal mechanisms in unstructured dynamic environments. The fact that our algorithm
cannot scale beyond constant time horizons is by no means surprising: optimal dynamic mech-
anisms generally depend on the entire history, and as a result, the straightforward description of
such a mechanism is exponentially large in the time horizon. Our inapproximability result further
rules out the possibility of computing succinct representations of approximately optimal mech-
anisms that can be efficiently evaluated. These results together paint a complete picture of the
computational complexity of dynamic mechanism design in unstructured environments.

9.1.2 Further Related Work
Dynamic mechanism design. The problem we study can be situated in the broad area of dy-
namic mechanism design, and below we discuss some representative related work. For a more
comprehensive exposition, see, e.g., the survey by Pavan [82] and the one by Bergemann and
Välimäki [13]. In the context of efficient (i.e., welfare-maximizing) mechanisms, Bergemann and
Välimäki [12] propose the dynamic pivot mechanism, which generalizes the VCG mechanism
in static environments, and Athey and Segal [4] propose the team mechanism, which focuses on
budget-balancedness. As for optimal (i.e., revenue-maximizing) mechanisms, which are more
closely related to our results, following earlier work [9, 30, 41], Pavan et al. [83] generalize the
classical characterization by Myerson [76] into dynamic environments, unifying previous results
with continuous type spaces. Ashlagi et al. [3] study ex-post individual-rational dynamic mecha-
nisms for repeated auctions, and give an efficient (1− ε)-approximation to the optimal revenue for
a single agent with independent valuations across items. Mirrokni et al. [74] study non-clairvoyant
dynamic mechanism design, where future distributional knowledge is unavailable to the princi-
pal. All these results for optimal mechanisms follow the characterize-and-solve approach, which
is quite different from the computational approach that we take.

Particularly related to our results is the work by Papadimitriou et al. [80], who study a setting
where one item is sold at each time, and agents’ valuations can be correlated across items. They
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show that designing an optimal deterministic mechanism is computationally hard even when there
is only one agent and two items (thereby ruling out the possibility of efficiently computing op-
timal deterministic mechanisms in our model, which is more general). And moreover, they give
a polynomial-size linear program formulation for optimal randomized mechanisms for indepen-
dent agents when the number of agents and the time horizon are both constant. Restricted to a
single agent, their LP formulation can be viewed as a special case of our main result: they focus
on revenue maximization with a single item to be allocated at each time, in a model where the
principal’s actions cannot affect the future valuations of the agent; on the other hand, we allow the
principal to care about actions as well as revenue, with actions being general and unstructured (as
opposed to allocation/no allocation), where the future state of the world can depend arbitrarily on
the principal’s actions as well as the current state.

Automated Mechanism Design. There is a rich body of research regarding automated mech-
anism design (AMD) in (essentially) static environments. Conitzer and Sandholm [24, 25] initi-
ated the study of automated mechanism design. They consider various specific static setups, and
show that computing optimal deterministic mechanisms, even with a single agent, is often NP-hard
(which also rules out the possibility of efficiently computing optimal deterministic mechanisms in
our model, since the 1-period case is a special case), while computing optimal randomized mech-
anisms is often tractable. Conceptually related to our model, Hajiaghayi et al. [53] consider a
model where agents enter and leave the mechanism online (but still have one-time interactions
with the mechanism), and provide an algorithm for computing mechanisms that are competitive
against the optimal allocation from hindsight. Sandholm et al. [91] study automated design of
multistage mechanisms, but these are not for dynamic settings; instead, the motivation is to imple-
ment static mechanisms using multiple rounds of queries in order to minimize the communication
cost. Sandholm and Likhodedov [90] study automated design of combinatorial auction mecha-
nisms, and Balcan et al. [7, 8] study the sample complexity thereof. Kephart and Conitzer [64, 65]
and Zhang et al. [115] (Chapter 3 of this dissertation) study AMD with partial verification and/or
reporting costs. More recently, various methods have been proposed for automated mechanism
design via machine learning [38, 79], and in particular, deep learning [39, 43, 87, 94]. All these
results are essentially for static environments, whereas in this chapter, we focus solely on AMD in
dynamic environments. Another emerging research direction is Bayesian persuasion in dynamic
environments [40, 88]. In particular, Celli et al. [16] study an algorithmic persuasion problem in
extensive-form games, where a single signal is sent at the very beginning, and Gan et al. [46] study
an algorithmic persuasion problem in infinite-horizon discounted MDPs, where a new signal is
sent at every time. These persuasion problems can be viewed as a dual problem of ours: in our
problem, the principal has the commitment power, and tries to encourage the agent to truthfully
report their private information, whereas in (dynamic) Bayesian persuasion, the agent has the com-
mitment power, and tries to induce the principal to act in favor of the agent by selectively revealing
their private information.
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9.2 Preliminaries
Dynamic environments. Throughout this chapter, we consider single-agent, discrete-time en-
vironments with a finite time horizon. Below, we give a general definition of such a dynamic
environment. Let T be the time horizon, S be the state space, and A be the action space. The
agent observes the state, but the principal controls the action that is taken. For each t ∈ [T ], let
vPt : S × A → R be the principal’s valuation function, where for each state s ∈ S and action
a ∈ A, vPt (s, a) is the value of the principal when playing action a in state s, at time t; similarly,
let vAt : S × A → R be the agent’s value function. Let P0 ∈ ∆(S) be the initial distribution over
states, and for each s ∈ S, denote by P0(s) the probability that the initial state is s. Moreover, for
each t ∈ [T ], let Pt : S × A → ∆(S) be the transition operator, which maps a state-action pair
(s, a) at time t to the distribution of the next state at time t + 1, Pt(s, a) ∈ ∆(S). We denote by
Pt(s, a, s

′) the probability that the next state is s′ when playing action a in state s at time t ∈ [T ].
For notational simplicity, let P0(s, a, s′) = P0(s′) for all s, s′ ∈ S and a ∈ A. (Note that the first
actual action is taken at t = 1 — not t = 0 — possibly based on the state at t = 1.)

Histories. A t-step history is a sequence of states and actions (s1, a1, s2, . . . , at−1, st, at), where
for each i ∈ [t], it is the case that si ∈ S and ai ∈ A. For each t ∈ [T ], let Ht be the set of all
possible t-step histories, i.e.,

Ht = {(s1, a1, . . . , st, at) | si ∈ S, ai ∈ A for all i ∈ [t]}.

For each h = (s1, a1, . . . , st, at) ∈ H, let |h| = t, and moreover, for any st+1 ∈ S, at+1 ∈ A,
let h + (st+1, at+1) = (s1, a1, . . . , st+1, at+1). Let H0 = {∅}, where ∅ corresponds to the empty
history with |∅| = 0. Let H = H0 ∪

⋃
t∈[T−1]Ht be the set of all possible histories of length at

most T − 1 in the dynamic environment. Note thatH does not contain histories of length T .

Dynamic mechanisms. Dynamic mechanisms are more powerful than static ones, in that they
may depend on the entire history, rather than only the current state. A (randomized) dynamic
mechanism M = (π, p) consists of an action policy π and a payment function p. The action policy
π : H× S → ∆(A) maps each history h ∈ H, extended with the reported current state s ∈ S , to
a distribution over actions π(h, s) ∈ ∆(A). We denote by π(h, s, a) the probability that the action
taken by the mechanism is a for (h, s). The payment function p : H× S → R maps the extended
history (h, s) to a real number, i.e., the payment, made from the agent to the principal (but it can be
negative). We remark that in principle, one can absorb payments into the action space. However,
doing so would make the action space uncountable, introducing subtleties into the computational
problem (which is the main focus of this chapter). Here, we keep payments separate and explicit
to avoid such issues. Also, our algorithm allows linear constraints on feasible payments, including
but not limited to: nonnegative payments, no payments, etc. See Section 9.3.2 for more details.

Utilities. Fixing a mechanism M = (π, p), we can then define the onward utility of the principal
and the agent. Let uMP : H × S → R be the principal’s onward utility function under mechanism
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M , defined inductively such that

uMP (h, s) =
∑
a

π(h, s, a) ·

(
vP|h|+1(s, a) +

∑
s′

P|h|+1(s, a, s′) · uMP (h+ (s, a), s′)

)
+ p(h, s),

with the boundary condition that uMP (h, s) = 0 for all h ∈ HT and s ∈ S. Here, all summations
are over the entire state/action space. Let uMP (∅) be the overall utility of the principal, i.e.,

uMP (∅) =
∑
s

P0(s) · uMP (∅, s).

Similarly, let uπA : H×S → R be the agent’s onward utility function under mechanismM , defined
such that

uMA (h, s) =
∑
a

π(h, s, a) ·

(
vA|h|+1(s, a) +

∑
s′

P|h|+1(s, a, s′) · uMA (h+ (s, a), s′)

)
− p(h, s),

where uMA (h, s) = 0 for all h ∈ HT and s ∈ S . And let uMA (∅) be the overall utility of the agent,
i.e.,

uMA (∅) =
∑
s

P0(s) · uMA (∅, s).

We remark that while the above definition assumes that the principal cares about payments as
much as the agent does, in fact, our algorithm allows for the principal to care about payments in
an arbitrary linear way (including possibly not at all). See Section 9.3.2 for a detailed discussion.

Incentive-compatible mechanisms. We say a mechanism M is incentive-compatible (IC) if the
agent can never achieve a higher overall utility by misreporting the state, even in sophisticated
ways. Formally, a reporting strategy r : H × S → S maps each history h extended with the
current state s to a reported state s′, which is possibly different from s. Note that the agent
only (mis)reports the current state, since the principal can memorize all historical reports. This
reporting strategy induces a reported history r(h) = (s′1, a1, . . . , s

′
t, at) for each actual history

h = (s1, a1, . . . , st, at), where for each i ∈ [t],

s′i = r((s1, a1, . . . , si−1, ai−1), si).

Note that we abuse notation here: in particular, r(h, s) denotes a reported state, whereas r(h)
denotes a reported history. And without loss of generality, we only consider deterministic reporting
strategies. Given a mechanism M and a reporting strategy r, we can define the agent’s utility
function uM,r

A under M and r inductively such that

uM,r
A (h, s) =

∑
a

π(r(h), r(h, s), a) ·

(
vA|h|+1(s, a) +

∑
s′

P|h|+1(s, a, s′) · uM,r
A (h+ (s, a), s′)

)
− p(r(h), r(h, s)),

146



where uM,r
A (h, s) = 0 for all h ∈ HT and s ∈ S. And let uM,r

A (∅) be the overall utility of the agent,
i.e.,

uM,r
A (∅) =

∑
s

P0(s) · uM,r
A (∅, s).

In words, uM,r
A is the utility function of the agent applying the reporting strategy r in response to

the mechanism M . The mechanism M is IC iff for any such reporting strategy r,

uMA (∅) ≥ uM,r
A (∅).

Since the revelation principle holds in dynamic environments (see, e.g., [77]), we focus on IC
mechanisms in the rest of the chapter.1

Individually-rational mechanisms. When payments are allowed, it is standard to impose individual-
rationality (IR) (also known as voluntary-participation) constraints on the mechanism, which roughly
say that the agent should never be made worse off by participating in the mechanism. In this chap-
ter, we consider two versions of IR constraints:

• A mechanism M is overall IR if the overall utility of the agent is nonnegative, i.e., uMA (∅) ≥
0. This ensures that the agent is willing to participate in the overall mechanism.

• A mechanism M is dynamic IR if the onward utility of the agent is nonnegative for every
history h and current state s, i.e., uMA (h, s) ≥ 0 for all h ∈ H and s ∈ S . This stronger
notion of IR further ensures that the agent has no incentive to leave the mechanism at any
time.

As discussed in later sections, our algorithms work for all 3 cases regarding IR constraints: no
IR (which results in an unbounded objective value if payments are allowed and valued by the
principal), overall IR, and dynamic IR.

9.3 Computation of Optimal Mechanism
In this section, we investigate the computational problem of finding an optimal dynamic mecha-
nism, which maximizes the principal’s overall utility. For concreteness, we assume that all com-
ponents of the dynamic environment, including the time horizon T , state and action spaces S and
A, valuation functions vP and vA, and transition operator P , are given explicitly as input.

9.3.1 Hardness Result for Long-Horizon Environments
First we show that the problem with an arbitrarily large time horizon T is intractable. In general, it
takes exponentially many parameters in T to describe a dynamic mechanism, which immediately

1Of course, the revelation principle will not hold in our dynamic setting if we allow it to generalize a static setting
in which the revelation principle does not hold. For example, in the case of partial verification — not every type being
able to misreport every other type — or costly misreporting, the revelation principle is known to hold only under
certain conditions [65]. In this chapter, we only consider the standard mechanism design setting in which every type
can freely misreport any other type, but our techniques can be generalized to the other settings as well.
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rules out the possibility of computing a flat representation of an optimal mechanism in polynomial
time. However, this leaves the possibility of computing succinct representations, e.g., an oracle
which maps extended histories to distributions over actions. Our hardness result shows that it is
hard to approximate the principal’s maximum utility within a constant factor, which rules out the
possibility of such succinct representations that can be efficiently evaluated, assuming P 6= NP.
The proof of the theorem, as well as all other proofs, are deferred to the appendices.
Theorem 9.1. When the time horizon T can be arbitrarily large, it is NP-hard to approximate the
principal’s maximum utility within a factor of 7/8 + ε for any ε > 0.

9.3.2 Algorithm for Short-Horizon Environments
Now we give a polynomial-time algorithm for computing an optimal mechanism when T is a
constant. Our algorithm is based on a delicate linear program (LP) formulation, which relies on
the following notation and concepts.

Feasible history-state pairs. A history-state pair (h, s), where h = (s1, a1, . . . , st, at), is i-
feasible if Pj(sj, aj, sj+1) > 0 for every j ∈ {i, i + 1, . . . , t − 1}, and Pt(st, at, s) > 0. In other
words, starting from si and taking the actions specified in h, there is a positive probability that the
rest of the history and the state s are generated from the transition operator. We say a pair (h, s) is
feasible if it is 1-feasible.

Feasible extensions. For two history-state pairs (h, s) and (h′, s′) where h = (s1, a1, . . . , st, at)
and h′ = (s′1, a

′
1, . . . , s

′
t′ , a

′
t′), we say that (h′, s′) feasibly extends (h, s), i.e., (h, s) ⊆ (h′, s′), if

(h, s) = (h′, s′), or the following conditions hold simultaneously:
• t = |h| < |h′| = t′.
• For any i ∈ [t], (si, ai) = (s′i, a

′
i) (this holds automatically when h = ∅ and therefore

|h| = 0).
• s = s′t+1.
• (h′, s′) is (|h|+ 1)-feasible (note that this does not require h itself to be feasible).

Extended transition operator. For notational simplicity we define the following extended tran-
sition operator PE

t : S ×A → ∆(S) for all t ∈ {0} ∪ [T ], such that

PE
t (s, a, s′) =

{
Pt(s, a, s

′), if Pt(s, a, s′) > 0

1, otherwise
.

In words, the extended transition operator assigns phantom probability 1 to each way of transition-
ing that happens with probability 0 (so PE

t (s, a) does not always normalize to 1). As a shorthand,
let PE

0 (s′) = PE
0 (s, a, s′) for some s ∈ S and a ∈ A (the specific choice does not matter). The

extended transition operator helps in constructing the flow and IC constraints below and simplifies
the formulation. In particular, we always have PE

t (s, a, s′) > 0.
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Last state-action pair. For a history h ∈ H where h = (s1, a1, . . . , st, at), we use last(h) as a
shorthand for the last state-action pair, i.e., last(h) = (st, at). In particular, when h = ∅, last(h)
can be any state-action pair (the choice does not affect our results — it is merely a simplifying
shorthand).

Now we are ready to describe the LP formulation. The complete formulation is given in Fig-
ure 9.1. The formulation is for nonnegative payments and dynamic IR constraints — we will
discuss later how the formulation can be modified to allow other types of constraints. Below, we
describe each of its components.

Variables, flow constraints, and the corresponding mechanism. There are 5 classes of vari-
ables in the LP:

• x(h, s, a): the absolute, unconditional probability that the mechanism reaches state s via
history h, and takes action a.

• y(h, s): the payment for history-state pair (h, s), scaled by the probability that the mecha-
nism reaches s via h (i.e., z(h, s)).

• z(h, s): the probability that the mechanism reaches state s via history h, which by definition
satisfies

z(h, s) =
∑
a∈A

x(h, s, a).

• u(h, s): the onward utility of the agent at state s with history h assuming truthful reporting,
scaled by the probability that the mechanism reaches s via h (i.e., z(h, s)).

• u(h, s, s′): the onward utility of the agent at state s with history h if the agent misreports
s′, assuming truthful reporting in the future, scaled by the probability that the mechanism
reaches s′ via h (i.e., z(h, s′)).

The flow constraints (Eq. (9.2)-(9.4)) enforce roughly the above interpretation of variables to
x(h, s, a) and z(h, s), except for ways of transition that have probability 0. For each way of tran-
sition with probability 0, the extended transition operator assigns phantom probability 1. This
phantom probability is not counted in the objective function (because only feasible history-state
pairs are counted) or in the utility variables u(h, s) (because only feasible extensions are counted).
So, the phantom probability does not affect the principal’s or the agent’s utility assuming truthful
reporting. Instead, together with other constraints, it guarantees that the mechanism behaves well
even for history-state pairs that appear with probability 0 under truthful reporting, which is nec-
essary for the mechanism to be IC (see later paragraphs). Under the above interpretation, the LP
variables (and in particular, x(h, s, a), y(h, s) and z(h, s)) naturally correspond to a mechanism
M = (π, p). Formally, for each h ∈ H, s ∈ S:

• If z(h, s) > 0, then
p(h, s) = y(h, s)/z(h, s),

and for each a ∈ A,
π(h, s, a) = x(h, s, a)/z(h, s).

• If z(h, s) = 0, then let π(h, s) be an arbitrary distribution over A, and p(h, s) = 0.
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The feasibility of the mechanism (i.e., every π(h, s) is a distribution over A and every p(h, s) is
nonnegative) is guaranteed by constraints (9.2), (9.9) and (9.10). We remark that while the mech-
anism constructed from the LP variables may not be unique, effectively this makes no difference,
since the parts of the mechanism that are chosen arbitrarily can never be accessed when executing
the mechanism. This is because z(h, s) = 0 only if at some point in the history h, there is an action
that the mechanism would never play given the reported states and actions before that. In particu-
lar, the above does not simply apply to all history-state pairs (h, s) that are reached with probability
0 under truthful reporting, in which case z(h, s) may still be positive due to the extended transi-
tion operator. Moreover, given any mechanism, one can construct LP variables in a similar way,
such that the mechanism constructed from these variables is the same as the original mechanism
(modulo the unreachable parts). In other words, the above correspondence is effectively bijective.

The objective. The objective function of the LP (Eq. (9.1)) is precisely the overall utility of the
principal under the mechanism constructed above, assuming truthful reporting. This is captured
by the following lemma.
Lemma 9.1. Let M = (π, p) be the mechanism constructed from variables x(h, s, a), y(h, s), and
z(h, s) which satisfy the flow constraints. Then

uMP (∅) =
∑

h∈H,s∈S:(h,s) is feasible

(∑
a∈A

vP|h|+1(s, a) · x(h, s, a) + y(h, s)

)
.

From this lemma, it is clear that the objective of the LP is the natural quantity to maximize.

Utility. The utility constraints (Eq. (9.5)) collect the agent’s onward utility, where u(h, s) is equal
to the agent’s onward utility in state s from history h, assuming truthful reporting, scaled by z(h, s).
This is captured by the following lemma.
Lemma 9.2. Let M = (π, p) be the mechanism constructed from variables x(h, s, a), y(h, s), and
z(h, s) which satisfy the flow and utility constraints. For all h ∈ H, s ∈ S,

u(h, s) = z(h, s) · uMA (h, s).

The proof of Lemma 9.2 is essentially the same as that of Lemma 9.1. Given the correspon-
dence to the agent’s utility uMA (h, s), the utility variables u(h, s) act as auxiliary variables in IC
constraints.

IC constraints. IC constraints are a key component of the LP formulation. There are two fami-
lies of IC constraints: collecting the agent’s scaled utility from single-step misreporting (Eq. (9.6)),
and subsequently restricting the mechanism such that there is no incentive for misreporting (Eq. (9.7)).
In Eq. (9.6), we build variables u(h, s, s′), which is supposed to be the onward utility of the agent in
state s from history h misreporting s′, assuming truthful reporting in the future, scaled by z(h, s′)
(rather than z(h, s)). This is captured by the following lemma.
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Lemma 9.3. Let M = (π, p) be the mechanism constructed from variables x(h, s, a), y(h, s), and
z(h, s) which satisfy the flow constraints, the utility constraints, and Eq. (9.6). Then the following
statement holds: for all h ∈ H, s, s′ ∈ S, let reporting strategy rh,s,s′ be such that

rh,s,s′(h
′, s′′) =

{
s′, if h = h′ and s = s′′

s′′, otherwise
.

That is, rh,s,s′ misreports s′ only in state s from history h, and reports truthfully otherwise. Then
for all h ∈ H, s, s′ ∈ S,

u(h, s, s′) = z(h, s′) · uM,rh,s,s′

A (h, s).

Given Lemma 9.3, Eq. (9.7) then guarantees that the mechanismM is robust against single-step
misreporting for all reachable history-state pairs.
Lemma 9.4. Let M = (π, p) be the mechanism constructed from variables x(h, s, a), y(h, s), and
z(h, s) which satisfy the flow constraints, the utility constraints, and Eq. (9.6). The following is
true if and only if the LP variables also satisfy Eq. (9.7): for all h ∈ H, s, s′ ∈ S where (h, s) is
reachable by the mechanism M ,

uMA (h, s) ≥ u
M,rh,s,s′

A (h, s).

We then show that a mechanism is IC if and only if there is no incentive for single-step mis-
reporting, which directly implies that the mechanism M constructed from the LP variables is IC.
This is captured by the following lemma.
Lemma 9.5. Let M = (π, p) be the mechanism constructed from variables x(h, s, a), y(h, s), and
z(h, s) which satisfy the flow constraints, the utility constraints, and Eq. (9.6). Then M is IC if and
only if the LP variables also satisfy Eq. (9.7).

IR constraints, feasible actions, and feasible payments. These constraints are straightforward
given the correspondence between the LP variables and the mechanism that we have discussed
above. Note that while Eq. (9.8) is for dynamic IR (i.e., the agent has no incentive to leave the
mechanism at any point) and Eq. (9.10) is for nonnegative payments, it is easy to replace them
with similar constraints that correspond to overall IR or no payments. See Appendix C for more
details.

Optimality of LP solution. Given the above facts, we are ready to state and prove the main
result of the chapter.
Theorem 9.2. There is an algorithm which computes an optimal IC and (optionally) IR dynamic
mechanism, with or without payments, in time O(poly(|S|T , |A|T , L)), where L is the number
of bits required to encode each of the input parameters. In particular, when T is constant, the
algorithm runs in polynomial time.
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9.4 The Case of Myopic Agents: Characterization and Faster
Algorithm

In this section, we briefly discuss a special case of the problem of computing optimal dynamic
mechanisms, namely the case where the agent is myopic, or, equivalently, the agent has a discount
factor of 0. While our LP-based algorithm still applies, as we will see below, optimal mechanisms
for myopic agents enjoy a succinct representation in this case, which also enables a faster algorithm
that scales only linearly in the time horizon T . See Section 9.7 for more details, including the
formal definition of myopic agents and the complete description of the algorithm.

9.4.1 Characterization of Optimal Mechanisms

We first show that when the agent is myopic, without loss of generality, the actions and payments
specified by an optimal mechanism depend only on the time, the previous state, the previous ac-
tion and the current state (we call such a mechanism a succinct mechanism), instead of the entire
history-state pair.
Lemma 9.6. Fix a dynamic environment. When the agent is myopic, for any IC mechanism M =
(π, p), there is another IC mechanism M ′ = (π′, p′) (which is IR whenever M is) such that

• uM
′

P (∅) ≥ uMP (∅), and
• for all h ∈ H, s ∈ S, π′ and p′ depend only on |h|, sp, ap and s, where (sp, ap) = last(h).

Moreover, the above is true regardless of whether payments are allowed, or which IR constraints
are required.

9.4.2 Faster Algorithm for Myopic Agents

Based on the above characterization, we present a faster algorithm for computing an optimal mech-
anism in the face of a myopic agent. In particular, the time complexity of this algorithm depends
only linearly on the time horizon T , making it feasible for dynamic environments with a long time
horizon. This is in contrast with the case of patient agents, for which, as we have seen, the long-
horizon problem is hard to approximate. The algorithm uses as a subroutine a blackbox algorithm
that computes an optimal IC (and optionally IR) mechanism in static environments, with or with-
out payments. It is known that such an algorithm can be implemented using linear programming,
and in some cases in more efficient ways [24, 26, 115].
Theorem 9.3. When the agent is myopic, Algorithm 9.1 computes an optimal IC and (optionally)
IR dynamic mechanism, with or without payments, in time

O(T |S||A| · Tstat(|S|, |A|, L)) = O(T · poly(|S|, |A|, L)),

where Tstat is the time complexity of the blackbox algorithm used for computing an optimal IC (and
optionally IR) mechanism in static environments, and L is the number of bits required to encode
each of the input parameters.
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9.5 Conclusion
We studied automated dynamic mechanism design and showed that, while it is computationally
hard to find (even approximately) optimal mechanisms when (1) facing a patient agent and (2) the
horizon is long, when either of these two conditions is dropped, an optimal mechanism can be
found efficiently. An interesting future direction is to generalize our results to related problems
with a stronger learning flavor, e.g., reinforcement learning with IC and/or IR constraints.

Besides using our algorithms directly for appropriate applications, the experimental results
that they enable (including those that we presented in Appendix F) can guide new theory. For
example, can we rigorously prove the benefit of facing a patient agent when the setting is not all
too adversarial, and perhaps even characterize the transition point at which facing a patient agent
becomes better than facing a myopic one? Analytically derived mechanisms can also be compared
to these experimental results to see how close to optimal in performance they are. Finally, close
inspection of the actual mechanisms generated by our algorithms may reveal insights that can be
used to analytically design new mechanisms.

9.6 Customizing the LP Formulation.
The LP formulation in Figure 9.1 allows for nonnegative payments, assumes that the principal
cares about payments as much as the agent, and enforces dynamic IR constraints. As mentioned
above, one can customize all these components by modifying the corresponding parts of the LP
formulation. Below we discuss several ways of customization.

• Unequal valuations for payments: in the case where the principal has utility c for one unit
of payment (whereas without loss of generality the agent has utility 1), one may replace the
objective function (Eq. (9.1)) with

max
∑

h∈H,s∈S:(h,s) is feasible

(∑
a∈A

vP|h|+1(s, a) · x(h, s, a) + c · y(h, s)

)
.

Note that our formulation works only when the principal cares linearly about payments.
Notably, the principal may not care about payments at all (as in the case of paying the agent
in “brownie points”), or even dislike payments made by the agent (as in the case where the
agent is asked to expend useless effort or “burn money” and the principal cares in part about
the resulting loss of welfare).

• No payments: to forbid payments in the mechanism, one can simply replace Eq. (9.10) with

y(h, s) = 0, ∀h ∈ H, s ∈ S.

• Feasible intervals of payments: more generally, one may wish to specify a feasible interval
[ah,s, bh,s] for the payment at each history-state pair (h, s) such that ah,s ≤ p(h, s) ≤ bh,s,
which subsumes both nonnegative payments and no payments as special cases. This can be
done by replacing Eq. (9.10) with

ah,s · z(h, s) ≤ y(h, s) ≤ bh,s · z(h, s), ∀h ∈ H, s ∈ S.
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• Overall/no IR: when the agent can choose whether to participate in the mechanism, but
cannot leave halfway (corresponding to an overall IR constraint), one can replace Eq. (9.8)
with ∑

s∈S

u(∅, s) ≥ 0.

Also, when leaving the mechanism is not an option for the agent from the very beginning
(corresponding to no IR constraint), one may remove IR constraints simply by removing
Eq. (9.8).

• Discount factors: to accommodate the case where the agent has a discount factor 0 ≤ δ < 1,
one can modify the LP formulation in the following way:

Replace Eq. (9.5) with

u(h, s) =
∑

h′∈H,s′∈S:(h,s)⊆(h′,s′)

δ|h
′|−|h| ·

(∑
a∈A

vA|h′|+1(s′, a) · x(h′, s′, a)− y(h′, s′)

)
,

∀h ∈ H, s ∈ S.

Replace Eq. (9.6) with

u(h, s, s′) =
∑
a∈A

vA|h|+1(s, a) · x(h, s′, a)− y(h, s′)

+ δ ·
∑

a∈A,s′′∈S

P|h|+1(s, a, s′′)

PE
|h|+1(s′, a, s′′)

· u(h+ (s′, a), s′′), ∀h ∈ H, s, s′ ∈ S

• Deterministic mechanisms: the problem of computing an optimal deterministic mechanism
is NP-hard even in static environments [24, 25]. Nevertheless, given our LP formulation, one
can restrict the mechanism to be deterministic by introducing Boolean variables, resulting
in a mixed integer LP. While integer LPs are hard to solve in a worst-case sense, real-world
problems often admit certain structures which can be exploited by commercial solvers such
as CPLEX and Gurobi. To be specific, we introduce a Boolean variable c(h, s, a) which
controls x(h, s, a) for all h ∈ H, s ∈ S , and a ∈ A, and ensures that fixing h and s,
x(h, s, a) can be positive for at most one action a ∈ A. This is implemented by the following
constraints (in addition to the existing ones):

x(h, s, a) ≤ c(h, s, a) ∀h ∈ H, s ∈ S, a ∈ A∑
a∈A

c(h, s, a) = 1 ∀h ∈ H, s ∈ S

c(h, s, a) ∈ {0, 1} ∀h ∈ H, s ∈ S, a ∈ A.

We also remark that the above discussion is non-exhaustive: one can impose richer restrictions by
modifying the LP formulation in other linear ways, and/or combining the above modifications.
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9.7 The Case of Myopic Agents: Characterization and Faster
Algorithm

In this section, we consider a special case of the problem of computing optimal dynamic mecha-
nisms, namely the case where the agent is myopic, or, equivalently, the agent has a discount factor
of 0. While our LP-based algorithm still applies, as we will see below, optimal mechanisms for
myopic agents enjoy a succinct representation in this case, which also enables a faster algorithm
that scales only linearly in the time horizon T .

Myopic agents. The utility uMA of a myopic agent under mechanism M is such that

uMA (h, s) =
∑
a

π(h, s, a) · vA|h|+1(s, a)− p(h, s),

where uMA (h, s) = 0 for all h ∈ HT and s ∈ S. Given a reporting strategy r, the utility uM,r
A of the

agent under mechanism M and reporting strategy r is

uM,r
A (h, s) =

∑
a

π(r(h), r(h, s), a) · vA|h|+1(s, a)− p(r(h), r(h, s)).

M is IC if and only if for all h ∈ H and s ∈ S , there are no future reporting strategies that lead to
better utility, i.e., for every reporting strategy r where r(h′, s′) = s′ whenever |h′| < |h|,

uMA (h, s) ≥ uM,r
A (h, s).

Note that since the agent is myopic, it is insufficient to simply require uMA (∅) ≥ uM,r
A (∅). Also,

it is necessary to restrict misreporting to the future, since otherwise the agent would be allowed
and sometimes incentivized to change the past, leading to unrealistically strong IC requirements.
Again, since the revelation principle holds, we focus only on IC mechanisms.

9.7.1 Characterization of Optimal Mechanisms

We first show that when the agent is myopic, without loss of generality, the actions and payments
specified by an optimal mechanism depend only on the time, the previous state, the previous ac-
tion and the current state (we call such a mechanism a succinct mechanism), instead of the entire
history-state pair.
Lemma 9.7. Fix a dynamic environment. When the agent is myopic, for any IC mechanism M =
(π, p), there is another IC mechanism M ′ = (π′, p′) (which is IR whenever M is) such that

• uM
′

P (∅) ≥ uMP (∅), and
• for all h ∈ H, s ∈ S, π′ and p′ depend only on |h|, sp, ap and s, where (sp, ap) = last(h).

Moreover, the above is true regardless of whether payments are allowed, or which IR constraints
are required.
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Algorithm 9.1: Algorithm for computing an optimal mechanism against a myopic agent.
Input: Time horizon T , transition probabilities {Pt}t∈[T ], principal’s valuation functions

{vPt }t∈[T ], agent’s valuation functions {vAt }t∈[T ].
Output: An optimal IC (for a myopic agent) mechanism M = (π, p).

1 for t = T, T − 1, . . . , 1 do
2 for s ∈ S, a ∈ A do
3 let u(t, s, a)← vPt (s, a) +

∑
s′∈S Pt(s, a, s

′) · uMP (t+ 1, s, a, s′);
/* the above operation is well-defined, in particular

because uMP (t+ 1, s, a, s′) depends only on the part of M
that has already been computed */

4 end
5 for sp ∈ S, ap ∈ A do
6 let (π′, p′)← OptStatMech(S,A, {Pt−1(sp, ap, s)}s, {u(t, s, a)}s,a, {vAt (s, a)}s,a);

/* call OptStatMech to compute an optimal static
mechanism (π′, p′), in a static environment with type
space S, action space A, population distribution
{Pt−1(sp, ap, s)}s, principal’s utility function
{u(t, s, a)}s,a, and agent’s utility function {vAt (s, a)}s,a */

7 for s ∈ S do
8 let π(t, sp, ap, s)← π′(s), and p(t, sp, ap, s)← p′(s);
9 end

10 end
11 end
12 return M = (π, p);

9.7.2 Faster Algorithm for Myopic Agents
Based on the above characterization, we present below a faster algorithm for computing an optimal
mechanism in the face of a myopic agent. In particular, the time complexity of this algorithm
depends only linearly on the time horizon T , making it feasible for dynamic environments with a
long time horizon. This is in contrast with the case of patient agents, for which, as we have seen,
the long-horizon problem is hard to approximate.

To improve readability, we use the following shorthand notation for succinct mechanisms. For
a succinct mechanism M = (π, p), for any h ∈ H and s ∈ S , let π(t, sp, ap, s) = π(h, s) be
the action policy at (h, s), and p(t, sp, ap, s) = p(h, s) be the payment function, where (sp, ap) =
last(h) and t = |h| + 1. Also, observe that the principal’s onward utility at any history-state pair
(h, s) depends only on the previous state sp, the previous action ap, and the current state s. In such
cases, we also denote this utility by uMP (t, sp, ap, s) = uMP (h, s).

The full algorithm is given as Algorithm 9.1. It uses as a subroutine an algorithm OptStatMech
which computes an optimal IC (and optionally IR) mechanism in static environments, with or with-
out payments. It is known that such an algorithm can be implemented using linear programming,
and in some cases in more efficient ways [24, 26, 115]. Algorithm 9.1 proceeds in an inductive
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fashion, building a succinct mechanism backwards, one layer at a time. It repeatedly solves the
problem of maximizing the principal’s expected onward utility over the current state s, given the
previous state sp and the previous action ap. Since sp and ap together induce a roll-in distribu-
tion over the state space, this problem can be reduced to computing an optimal static mechanism,
where the valuation function of the principal depends on the optimal mechanism in the following
layers. This can then be solved by calling OptStatMech, the algorithm for computing an opti-
mal static mechanism. Below we state and prove the correctness and computational efficiency of
Algorithm 9.1.
Theorem 9.4. When the agent is myopic, Algorithm 9.1 computes an optimal IC and (optionally)
IR dynamic mechanism, with or without payments, in time

O(T |S||A| · Tstat(|S|, |A|, L)) = O(T · poly(|S|, |A|, L)),

where Tstat is the time complexity of OptStatMech, and L is the number of bits required to encode
each of the input parameters.

Customizing Algorithm 9.1. We remark that Algorithm 9.1 can also be customized to allow for
unequal valuations of payments, feasible intervals of payments, etc. Moreover, it can be adapted to
compute an optimal deterministic mechanism, by requiring OptStatMech to compute an optimal
deterministic static mechanism. Again, while this is generally hard to compute, for practical pur-
poses, it is reasonable to expect that OptStatMech implemented using commercial mixed integer
LP solvers (or in other practically efficient ways) can find an optimal mechanism efficiently.

9.8 Infeasibility of Memoryless Mechanisms
From a planning perspective, automated dynamic mechanism design can be viewed equivalently
as planning in MDPs where the current state cannot be directly observed, but instead, has to be
reported by a strategic agent whose interest may not align with the planner’s. In particular, when
the planner and the agent share the same valuation function, automated dynamic mechanism de-
sign degenerates to the classical problem of planning in episodic MDPs with a finite planning
horizon. In the latter problem, it is well known that without loss of generality, any optimal policy
depends only on the time and the current state, i.e., it is memoryless. And moreover, such optimal
policies can be computed in polynomial time. In light of the above facts, the following questions
arise naturally: are there (approximately) optimal mechanisms that are also memoryless, and can
we find optimal memoryless mechanisms efficiently? In this section, we give negative answers
to both questions, which means memoryless mechanisms are generally infeasible for dynamic en-
vironments. We first show that memoryless mechanisms can be arbitrarily worse than general,
history-dependent mechanisms, against both patient and myopic agents.
Theorem 9.5. Regardless of whether the agent is myopic, for any ε > 0, there is a dynamic
environment where the principal’s utility under an optimal memoryless mechanism is at most an ε
fraction of the principal’s optimal utility.

Now we show that on top of the suboptimality, optimal memoryless mechanisms are computa-
tionally hard to approximate.
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Theorem 9.6. Regardless of whether the agent is myopic, it is NP-hard to approximate the princi-
pal’s maximum utility under memoryless mechanisms within a factor of 7/8 + ε for any ε > 0.

9.9 Experimental Results
In this section, we present experimental results where our algorithms are applied to synthetic dy-
namic environments of different characteristics. The main goals of the experiments are

• to provide a proof of concept for the methods proposed in this chapter,
• to illustrate the necessity of considering incentives when planning in dynamic environments

(as opposed to disregarding the agent’s valuations and treating the problem simply as an
MDP based on the principal’s valuations),

• to study the effect of cooperation and competition in dynamic mechanism design, and
• to understand the difference between patient and myopic agents from the principal’s per-

spective, especially when the parameters of the environment vary.

9.9.1 Setup of Experiments
Mechanisms/models of the agent under consideration. For each dynamic environment exam-
ined, we consider the following quantities from different combinations of mechanisms and models
of the agent:

• Naı̈ve mechanisms facing a naı̈ve agent: the principal’s optimal utility facing a naı̈ve agent
who always reports truthfully, i.e., the optimal utility when treating the problem simply as
an MDP based on the principal’s valuations.

• Naı̈ve mechanisms facing a patient agent: the principal’s utility, when executing the opti-
mal mechanism/policy for naı̈ve agents, facing a strategic agent who is patient.

• Naı̈ve mechanisms facing a myopic agent: the principal’s utility, when executing the opti-
mal mechanism/policy for naı̈ve agents, facing a strategic agent who is myopic.

• Patient mechanisms facing a patient agent: the principal’s optimal utility facing a strategic
agent who is patient.

• Myopic mechanisms facing a myopic agent: the principal’s optimal utility facing a strate-
gic agent who is myopic.

For simplicity, payments are not allowed in any of our experiments.

Dynamic environments. To manifest the effect of cooperation and competition, we generate
synthetic dynamic environments in the following way:

• Fix the time horizon T , number of states |S|, number of actions |A|, and correlation param-
eter η ∈ [−1, 1] (explained below).

• Let the initial distribution P0 be a random distribution generated in the following way: for
each state s, we generate a uniformly random real number rand(s) between 0 and 1, which
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is proportional to P0(s). That is, P0(s) = rand(s)/ (
∑

s′ rand(s′)).
• For each t ∈ [T ], s ∈ S and a ∈ A, we generate the transition distribution Pt(s, a) indepen-

dently in the same way that P0 is generated.
• For each t ∈ [T ], s ∈ S and a ∈ A, let vPt (s, a) be an independent, uniformly random real

number between 0 and 1.
• For each t ∈ [T ], s ∈ S and a ∈ A, let vAt (s, a) = η · vPt (s, a) + (1 − |η|) · rand(t, s, a),

where rand(t, s, a) is an independent, uniformly random real number between 0 and 1.
The correlation parameter η controls the extent to which the interests of the principal and the agent
are (mis)aligned. In particular, if η = 1, then the principal and the agent have exactly the same
valuations, corresponding to full cooperation. If η = −1, then the principal and the agent are in a
zero-sum situation, corresponding to full competition.

9.9.2 Summary of Experimental Results

Suboptimality of naı̈ve mechanisms. As we can see from Figure 9.2, even when the state and
action spaces are extremely simple, i.e., there are only 2 states and 2 actions, when the correlation
parameter η = −1 (i.e., when the agent acts adversarially), naı̈ve mechanisms facing a strategic
agent can only achieve about 75% of the naı̈ve benchmark, i.e., the optimal utility when the agent
is naı̈ve. When η = 0 (i.e., when the agent’s and principal’s valuations are independent), naı̈ve
mechanisms facing a strategic agent still achieve only 85% of the naı̈ve benchmark. On the other
hand, the respective optimal mechanisms facing a patient or myopic agent consistently achieve
about 95% of the naı̈ve benchmark. This gap is further amplified in Figure 9.3: as the environment
becomes more and more complex (i.e., the numbers of states and actions become larger and larger),
the utility of naı̈ve mechanisms facing a strategic agent drops below 20% of the naı̈ve benchmark
when η = −1, and to about 50% when η = 0. In contrast, the respective optimal mechanisms fac-
ing a patient or myopic agent still achieve about 70% of the naı̈ve benchmark even when η = −1.
These phenomena suggest that when the agent is not fully cooperative, taking strategic behavior
into consideration significantly improves the principal’s utility, even in extremely simple dynamic
environments. Moreover, the more complex the environment is, the larger this gap becomes.

Another interesting fact to note is that even when the principal’s and the agent’s valuations are
exactly the same (i.e., when η = 1), naı̈ve mechanisms are still suboptimal facing a myopic agent,
since the agent may sacrifice greater long-term gain in exchange for smaller immediate value.
This phenomenon is more significant in Figure 9.2, especially in environments with longer time
horizons. In such cases, taking into consideration the fact that the agent is myopic mitigates the
loss, and recovers almost all the utility of the naı̈ve benchmark.

Effect of cooperation and competition. As the correlation parameter increases, both Figure 9.2
and Figure 9.3 show clear upward trends in all the quantities that we consider (except for the
naı̈ve benchmark which is always normalized to 1), as one would expect. Nevertheless, we note
the following facts from the figures: compared to naı̈ve mechanisms, optimal mechanisms facing
a strategic agent are much less affected by the correlation parameter. Moreover, as Figure 9.2
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shows, the performance of optimal mechanisms facing a strategic agent is remarkably stable as the
time horizon grows. In other words, in random dynamic environments, the utility loss caused by
competing interests of the principal and the agent is only mildly amplified by long time horizons.

Difference between patient and myopic agents. As can be seen from the figures, regardless of
whether the agent is patient or myopic, the principal’s optimal utility is almost the same. Neverthe-
less, the difference appears to be amplified as the time horizon grows (see Figure 9.2). When the
correlation parameter η = −1, the optimal utility facing a myopic agent is noticeably larger than
that facing a patient agent — which makes sense as only the patient agent has interests truly op-
posite those of the principal. This gap shrinks as η becomes larger, and vanishes when η is around
−0.25. Then, as η continues to grow, the optimal utility facing a myopic agent falls behind and
never catches up. In particular, when η = 1, the optimal utility facing a patient agent is the same as
the naı̈ve benchmark, whereas that facing a myopic agent is slightly smaller. The above phenom-
ena indicate that in environments with a long time horizon, myopic agents are easier to exploit,
while patient agents are easier to cooperate with. Interestingly, the critical value of η, where the
optimal utility facing a patient agent catches up, is about −0.25 instead of 0, which suggests that
even when the principal’s and the agent’s valuations are mildly negatively correlated, it is possible
to find a middle ground where cooperation is more beneficial than exploitation in the long run.

9.10 Omitted Proofs from Section 9.3
Proof of Theorem 9.1. We consider the case where payments are not allowed, i.e., pt(h, s) = 0
for all h ∈ H and s ∈ S. The case with payments and dynamic IR constraints is essentially the
same. We use a similar reduction from MAX-SAT to the ones in [75, 81] for partially observable
Markov decision processes (POMDPs). Given a MAX-SAT instance with n variables x1, . . . , xn
and m clauses c1, . . . , cm where ci = {`i,j}j∈[ki] and each `i,j is a literal, we construct a dynamic
environment where T = n, |S| = m + 1, and |A| = 2. The goal is to show that the maximum
utility is precisely the fraction of clauses that can be simultaneously satisfied. Without loss of
generality, we assume that no clause contains both the positive literal and the negative literal of a
same variable. We first describe S and A. Each clause ci corresponds to a unique state in S, si. In
addition to these m states, there is another state s0. A consists of two actions: apos and aneg. The
transition operator and the principal’s valuation function are such that:

• The initial distribution is uniform over {si}i∈[m], i.e., P0(si) = 1/m for each i ∈ [m].
• For each t ∈ [T ] and a ∈ A,

Pt(s0, a, s0) = 1 and vPt (s0, a) = 0.

Moreover, for each t ∈ [T ] and i ∈ [m]:
If x+

t ∈ ci, then
Pt(si, apos, s0) = Pt(si, aneg, si) = 1,

and
vPt (si, apos) = 1 and vPt (si, aneg) = 0.
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if x−t ∈ ci, then
Pt(si, apos, si) = Pt(si, aneg, s0) = 1,

and
vPt (si, apos) = 0 and vPt (si, aneg) = 1.

otherwise,
Pt(si, apos, si) = Pt(si, aneg, si) = 1,

and
vPt (si, apos) = vPt (si, aneg) = 0.

• The principal and the agent are in a zero-sum situation, i.e., for any t ∈ [T ], s ∈ S, a ∈ A,

vAt (s, a) = 1− vPt (s, a).

Now we show that the maximum utility is precisely the fraction of clauses that can be simul-
taneously satisfied. First observe that without loss of generality, an optimal mechanism depends
only on time (and not on the reported states). This is because of the zero-sum situation: if the
mechanism depends on the reports, then the agent can always choose the worst sequence of ac-
tions, which can only make the principal’s utility smaller. Moreover, given the above observation,
without loss of generality, an optimal mechanism is deterministic. This is because the overall util-
ity of the principal is linear in the action at any time t, so one can always round a randomized
mechanism into a deterministic one with at least the same overall utility.

Given the above observations, an optimal mechanism corresponds precisely to a way of assign-
ing values to variables in the MAX-SAT instance: for each t ∈ [T ], the action at time t is apos iff
the variable xt = 1 (i.e., the literal x+

t is chosen). Moreover, when the initial state is si, the onward
utility is 1 if the clause ci is satisfied by the above assignment, and 0 otherwise. Since the initial
state is uniformly at random among {si}i∈[m], the maximum utility is precisely the maximum frac-
tion of clauses that are satisfiable by some assignment. The theorem then follows from the fact that
MAX-SAT is hard to approximate within a factor of 7/8 + ε for any ε > 0 [55].

Proof of Lemma 9.1. For brevity, let obj denote the objective, i.e.,

obj =
∑

h∈H,s∈S:(h,s) is feasible

(∑
a∈A

vP|h|+1(s, a) · x(h, s, a) + y(h, s)

)
.

Moreover, for each h ∈ H, s ∈ S, let

obj(h, s) =
∑

h′∈H,s′∈S:(h,s)⊆(h′,s′)

(∑
a∈A

vP|h′|+1(s′, a) · x(h′, s′, a) + y(h′, s′)

)
.

Observe that
obj =

∑
s∈S

obj(∅, s).
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We first prove inductively that for each h ∈ H, s ∈ S,

obj(h, s) = z(h, s) · uMP (h, s).

When |h| = T − 1, by the definition of feasible extensions and the construction of the mechanism,

obj(h, s) =
∑
a∈A

vPT (s, a) · x(h, s, a) + y(h, s)

= z(h, s) ·

(∑
a∈A

vPT (s, a) · π(h, s, a) + p(h, s)

)
= z(h, s) · uMP (h, s).

When |h| < T − 1, for similar reasons,

obj(h, s) =
∑

h′,s′:(h,s)⊆(h′,s′)

(∑
a∈A

vP|h′|+1(s′, a) · x(h′, s′, a) + y(h′, s′)

)
=
∑
a∈A

vP|h|+1(s, a) · x(h, s, a) + y(h, s)

+
∑

h′,s′:(h,s)⊆(h′,s′),|h′|>|h|

(∑
a∈A

vP|h′|+1(s′, a) · x(h′, s′, a) + y(h′, s′)

)

= z(h, s) ·

(∑
a∈A

vP|h|+1(s, a) · π(h, s, a) + p(h, s)

)

+
∑

a′,s′′:P|h|+1(s,a′,s′′)>0

∑
h′,s′:(h+(s,a′),s′′)⊆(h′,s′)

(∑
a∈A

vP|h′|+1(s′, a) · x(h′, s′, a) + y(h′, s′)

)

By the induction hypothesis, the second sum above is equal to∑
a′,s′′:P|h|+1(s,a′,s′′)>0

obj(h+ (s, a′), s′′)

=
∑

a′,s′′:P|h|+1(s,a′,s′′)>0

z(h+ (s, a′), s′′) · uMP (h+ (s, a′), s′′)

=
∑

a′,s′′:P|h|+1(s,a′,s′′)>0

x(h, s, a′) · PE
|h|+1(s, a′, s′′) · uMP (h+ (s, a′), s′′)

=
∑

a∈A,s′∈S

x(h, s, a) · P|h|+1(s, a, s′) · uMP (h+ (s, a), s′)

= z(h, s) ·
∑
a∈A

(
π(h, s, a) ·

∑
s′∈S

P|h|+1(s, a, s′) · uMP (h+ (s, a), s′)

)
.
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Putting this back into the above expression for obj(h, s), we get

obj(h, s)

= z(h, s)

(∑
a∈A

vP|h|+1(s, a) · π(h, s, a) + p(h, s)

)

+ z(h, s)
∑
a∈A

(
π(h, s, a) ·

∑
s′∈S

P|h|+1(s, a, s′) · uMP (h+ (s, a), s′)

)

= z(h, s)

(∑
a∈A

π|h|+1(h, s, a)

(
vP|h|+1(s, a) +

∑
s′∈S

P|h|+1(s, a, s′) · uMP (h+ (s, a), s′)

)
+ p(h, s)

)
= z(h, s) · uMP (h, s).

So for any h ∈ H, s ∈ S, obj(h, s) = z(h, s) · uMP (h, s). Then we immediately have

uMP (∅) =
∑
s∈S

P0(s) · uMP (∅, s) =
∑
s∈S

z(∅, s) · uMP (∅, s) =
∑
s∈S

obj(∅, s) = obj.

Proof of Lemma 9.3. By Eq. (9.4) and Lemma 9.2, for all h, s, s′,

u(h, s, s′)

=
∑
a∈A

vA|h|+1(s, a) · x(h, s′, a)− y(h, s′)

+
∑

a∈A,s′′∈S

P|h|+1(s, a, s′′)

PE
|h|+1(s′, a, s′′)

· z(h+ (s′, a), s′′) · uMA (h+ (s′, a), s′′) (Lemma 9.2)

=
∑
a∈A

vA|h|+1(s, a) · x(h, s′, a)− y(h, s′) +
∑

a∈A,s′′∈S

P|h|+1(s, a, s′′) · x(h, s′, a) · uMA (h+ (s′, a), s′′)

(Eq. (9.4))

Now by rearranging the above expression and applying the construction of the mechanism M and
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the single-step reporting strategy rh,s,s′ , we have

u(h, s, s′)

=
∑
a∈A

x(h, s′, a)

(
vA|h|+1(s, a) +

∑
s′′∈S

P|h|+1(s, a, s′′) · uMA (h+ (s′, a), s′′)

)
− y(h, s′)

(rearranging)

= z(h, s′)

(∑
a

π(h, s′, a)

(
vA|h|+1(s, a) +

∑
s′′

P|h|+1(s, a, s′′) · uMA (h+ (s′, a), s′′)

)
− p(h, s′)

)
(construction of mechanism)

= z(h, s′)

(∑
a

π(h, s′, a)

(
vA|h|+1(s, a) +

∑
s′′

P|h|+1(s, a, s′′) · uM,rh,s,s′

A (h+ (s′, a), s′′)

)
− p(h, s′)

)
(construction of rh,s,s′)

= z(h, s′) · uM,rh,s,s′

A (h, s), (definition of u
M,rh,s,s′

A )

as desired.

Proof of Lemma 9.4. Fix h ∈ H, s, s′ ∈ S, and let (sp, ap) = last(h). When h = ∅, by Lem-
mas 9.2 and 9.3 and Eq. (9.3),

u(h, s) ≥
PE
|h|(sp, ap, s)

PE
|h|(sp, ap, s

′)
· u(h, s, s′)

⇐⇒ z(∅, s) · uMA (∅, s) ≥ PE
0 (sp, ap, s)

PE
0 (sp, ap, s′)

· z(∅, s′) · uM,r∅,s,s′

A (∅, s)

⇐⇒ z(∅, s) · uMA (∅, s) ≥ PE
0 (s)

PE
0 (s′)

· z(∅, s′) · uM,r∅,s,s′

A (∅, s)

⇐⇒ uMA (∅, s) ≥ u
M,r∅,s,s′

A (∅, s).

When |h| > 0, suppose h = (s1, a1, . . . , st, at), and let hp = (s1, a1, . . . , st−1, at−1). By Lem-
mas 9.2 and 9.3 and Eq. (9.2),

u(h, s) ≥
PE
|h|(sp, ap, s)

PE
|h|(sp, ap, s

′)
· u(h, s, s′)

⇐⇒ z(h, s) · uMA (h, s) ≥
PE
|h|(sp, ap, s)

PE
|h|(sp, ap, s

′)
· z(h, s′) · uM,rh,s,s′

A (h, s)

⇐⇒ x(hp, sp, ap) · uMA (h, s) ≥ x(hp, sp, ap) · u
M,rh,s,s′

A (h, s).

Note that when x(hp, sp, ap) = 0, (h, s) cannot be reached, because (1) if z(hp, sp) > 0, then
when the (reported) history-state pair is (hp, sp), the mechanism never takes action ap, and (2) if
z(hp, sp) = 0, then such an impossible action exists somewhere in hp. In such cases, π(h, s) and
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p(h, s) will never be accessed, since it is impossible for the (reported) history to be h. In other
words, when (h, s) is reachable, we must have x(hp, sp, ap) > 0, in which case the last inequality
is equivalent to uMA (h, s) ≥ u

M,rh,s,s′

A (h, s).

Proof of Lemma 9.5. We only need to show that IC is equivalent to robustness against single-step
misreporting. We prove this inductively, aiming to eliminate misreporting one step at a time. To be
more specific, consider the following partial reporting strategy. For a reporting strategy r, t ∈ [T ],
let r|≥t denote the reporting strategy restricted to time t, t+ 1, . . . , T , i.e., for any h′ ∈ H, s′ ∈ S,

r|≥t(h′, s′) =

{
s′, if |h′|+ 1 < t

r(h′, s′), otherwise
.

Similarly, let r|<t denote r restricted to time 1, 2, . . . , t− 1, and r|=t denote r restricted to time t.
We show inductively that for any reachable history-state pair (h, s), and any reporting strategy r,

u
M,(r|<|h|+1)

A (h, s) ≥ uM,r
A (h, s).

Without loss of generality, we assume that for any unreachable pair (h′, s′), r simply reports truth-
fully, i.e., r(h′, s′) = s′.

Recall that r(h) is the reported history given by r when the true history is h. When |h| = T−1,
the above claim is implied by Lemma 9.4, because

uM,r
A (h, s) = u

M,(r|≥T )

A (r(h), s) ≥ uMA (r(h), s) = u
M,(r|<T )
A (h, s).

Now suppose |h| < T − 1. By the induction hypothesis, we have

uM,r
A (h, s) = u

M,(r|≥|h|+1)

A (r(h), s) ≤ u
M,((r|≥|h|+1)|<|h|+2)

A (r(h), s) = u
M,(r|=|h|+1)

A (r(h), s).

Now again by Lemma 9.4, we have

uM,r
A (h, s) ≤ u

M,(r|=|h|+1)

A (r(h), s) ≤ uMA (r(h), s) = u
M,(r|<|h|+1)

A (h, s),

which establishes the above claim.
Now observe that as a special case of the claim, for any s ∈ S,

uM,r
A (∅, s) ≤ u

M,(r|<1)
A (∅, s) = uMA (∅, s).

Now summing over s, this implies that for any reporting strategy r,

uM,r
A (∅) =

∑
s∈S

P0(s) · uM,r
A (∅, s) ≤

∑
s∈S

P0(s) · uMA (∅, s) = uMA (∅).

Proof of Theorem 9.2. Given the correspondence between mechanisms and LP variables, by Lemma 9.5,
it is easy to see that (modulo the unreachable parts) every IC and IR mechanism corresponds bijec-
tively to a feasible solution to the LP in Figure 9.1. Moreover, by Lemma 9.1, the objective value
of this solution is precisely the principal’s overall utility, which directly implies that an optimal so-
lution to the LP corresponds to an IC and IR mechanism which maximizes the principal’s overall
utility.

Now observe that the number of variables and the number of constraints in the LP are both
O(|S|T+1|A|T ). Moreover, all relevant coefficients in the LP can be encoded using O(L) bits. It is
well-known that such an LP can be solved in time poly(|S|T , |A|T , L).
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9.11 Omitted Proofs from Section 9.4

Proof of Lemma 9.7. We construct M ′ explicitly based on M . Let π′(t, sp, ap, s, a) be the proba-
bility that M ′ chooses action a at time t in state s when the previous state-action pair is (sp, ap).
Similarly, let p′(t, sp, ap, s) be the payment specified by M ′ at time t in state s when the previous
state-action pair is (sp, ap). We construct M ′ from M inductively as follows. For each t ∈ [T ],
sp ∈ S and ap ∈ A, let h∗(t, sp, ap) ∈ Ht−1 be any history such that

h∗(t, sp, ap) ∈ argmaxh∈Ht−1:(sp,ap)=last(h)

∑
s∈S

Pt−1(sp, ap, s)

(
p(h, s) +

∑
a∈A

π(h, s, a)

(
vP|h|+1(s, a)

+
∑
s′∈S

Pt(s, a, s
′)uMP (h+ (s, a), s′)

))
.

Then, for all s ∈ S, let

π′(t, sp, ap, s) = π(h∗(t, sp, ap), s) and p(t, sp, ap, s) = p(h∗(t, sp, ap), s).

This finishes the construction of M ′.

We first show that uM ′P (∅) ≥ uMP (∅), by inductively showing a stronger claim: for all h ∈ H,

∑
s

P|h|(sp, ap, s) · uM
′

P (h, s) ≥
∑
s

P|h|(sp, ap, s) · uMP (h, s),

where (sp, ap) = last(h). For all h ∈ HT−1, letting (sp, ap) = last(h), by the construction of M ′,
we have

∑
s

PT−1(sp, ap, s) · uM
′

P (h, s) =
∑
s

PT−1(sp, ap, s) · uMP (h∗(T, sp, ap), s)

≥
∑
s

PT−1(sp, ap, s) · uMP (h, s).

Now for all h ∈ H where |h| < T − 1, letting (sp, ap) = last(h) and h∗ = h∗(|h| + 1, sp, ap), we

166



have∑
s

P|h|(sp, ap, s) · uM
′

P (h, s)

=
∑
s

P|h|(sp, ap, s)

(
p(h∗, s) +

∑
a∈A

π(h∗, s, a)

(
vP|h|+1(s, a) +

∑
s′∈S

Pt(s, a, s
′) · uM ′P (h+ (s, a), s′)

))

=
∑
s

P|h|(sp, ap, s)

(
p(h∗, s) +

∑
a∈A

π(h∗, s, a)

(
vP|h|+1(s, a) +

∑
s′∈S

Pt(s, a, s
′) · uM ′P (h∗ + (s, a), s′)

))
(property of M ′)

≥
∑
s

P|h|(sp, ap, s)

(
p(h∗, s) +

∑
a∈A

π(h∗, s, a)

(
vP|h|+1(s, a) +

∑
s′∈S

Pt(s, a, s
′) · uMP (h∗ + (s, a), s′)

))
(induction hypothesis)

≥
∑
s

P|h|(sp, ap, s)

(
p(h, s) +

∑
a∈A

π(h, s, a)

(
vP|h|+1(s, a) +

∑
s′∈S

Pt(s, a, s
′) · uMP (h+ (s, a), s′)

))
(choice of h∗)

=
∑
s

P|h|(sp, ap, s) · uMP (h, s).

Then in particular, we have

uM
′

P (∅) =
∑
s

P0(s) · uM ′P (∅, s) ≥
∑
s

P0(s) · uMP (∅, s) = uMP (∅).

Finally we prove that M ′ is IC. By the proof of Lemma 9.5, we only need to show that M ′

is robust against any single-step reporting strategy rh,s,s′ . In fact, letting (sp, ap) = last(h) and
h∗ = h∗(|h|+ 1, sp, ap),

uM
′

A (h, s) =
∑
a

π(h∗, s, a) · vA|h|+1(s, a) + p(h∗, s) = uMA (h∗, s).

Moreover,

u
M ′,rh,s,s′

A (h, s) =
∑
a

π(h∗, s′, a) · vA|h|+1(s, a) + p(h∗, s) = u
M,rh,s,s′

A (h∗, s).

Since M is IC, we have

uM
′

A (h, s) = uMA (h∗, s) ≥ u
M,rh,s,s′

A (h∗, s) = u
M ′,rh,s,s′

A (h, s).

Now by the argument in the proof of Lemma 9.5, we know that for all reporting strategy r, h ∈ H,
s ∈ S,

uM
′,r

A (h, s) ≤ u
M ′,(r|<|h|+1)

A (h, s),
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so

u
M ′,(r|≥|h|+1)

A (h, s) ≤ u
M ′,((r|≥|h|+1)|<|h|+1)

A (h, s) = uM
′

A (h, s),

which is precisely the IC requirement for myopic agents. Similar arguments guarantee that M ′ has
the same IR property as M .

Proof of Theorem 9.4. We first argue the easy part, i.e., the time complexity. Observe that calls
to OptStatMech dominates the time complexity. Moreover, the algorithm makes T |S||A| calls to
OptStatMech, so the overall time complexity is as stated.

Now we show the optimality of the computed mechanism M . We prove inductively a stronger
claim, i.e., for any t ∈ [T ], sp ∈ S, ap ∈ A,

∑
s

P0(sp, ap, s) · uMP (t, sp, ap, s) = max
M ′

P0(sp, ap, s) · uM
′

P (t, sp, ap, s),

where the maximum is over all succinct mechanisms M ′ that are IC and (optionally) IR. First
observe that for all s ∈ S, a ∈ A,

u(T, s, a) = vPT (s, a).

So, for all sp ∈ S, ap ∈ A,

∑
s

P0(sp, ap, s) · uMP (T, sp, ap, s)

=
∑
s

P0(sp, ap, s) ·

(
p(T, sp, ap, s) +

∑
a

π(T, sp, ap, s, a) · vPT (s, a)

)

= max
M ′=(π′,p′)

∑
s

P0(sp, ap, s) ·

(
p′(T, sp, ap, s) +

∑
a

π′(T, sp, ap, s, a) · vPT (s, a)

)
(optimality of M at time T as a static mechanism)

= max
M ′

∑
s

P0(sp, ap, s) · uMP (T, sp, ap, s).

Again, the maximum is over all succinct mechanisms M ′ that are IC and (optionally) IR.
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Now for t ∈ [T − 1], by the construction of M ,∑
s

P0(sp, ap, s) · uMP (t, sp, ap, s)

=
∑
s

P0(sp, ap, s) ·

(
p(t, sp, ap, s) +

∑
a

π(t, sp, ap, s, a) ·

(
vPt (s, a)

+
∑
s′

Pt(s, a, s
′) · uMP (t+ 1, s, a, s′)

))

= max
M ′=(π′,p′)

∑
s

P0(sp, ap, s) ·

(
p′(t, sp, ap, s) +

∑
a

π′(t, sp, ap, s, a) ·

(
vPt (s, a)

+
∑
s′

Pt(s, a, s
′) · uMP (t+ 1, s, a, s′)

))
. (optimality of M at time t as a static mechanism)

By the induction hypothesis and the fact that M ′ is succinct,∑
s

P0(sp, ap, s) · uMP (t, sp, ap, s)

= max
M ′=(π′,p′)

∑
s

P0(sp, ap, s) ·

(
p′(t, sp, ap, s) +

∑
a

π′(t, sp, ap, s, a) ·

(
vPt (s, a)

+ max
M ′′

∑
s′

Pt(s, a, s
′) · uM ′′P (t+ 1, s, a, s′)

))
(induction hypothesis)

= max
M ′=(π′,p′)

∑
s

P0(sp, ap, s) ·

(
p′(t, sp, ap, s) +

∑
a

π′(t, sp, ap, s, a) ·

(
vPt (s, a)

+
∑
s′

Pt(s, a, s
′) · uM ′P (t+ 1, s, a, s′)

))
(M ′ is succinct)

= max
M ′

∑
s

P0(sp, ap, s) · uM
′

P (t, sp, ap, s).

All maxima are over all succinct mechanisms that are IC and (optionally) IR. As a result, we have

uMP (∅) =
∑
s

P0(s) · uMP (∅, s) = max
M ′

∑
s

P0(s) · uM ′P (∅, s) = max
M ′

uM
′

P (∅).

9.12 Omitted Proofs from Section 9.8
Proof of Theorem 9.5. First suppose the agent is patient and without loss of generality has a dis-
count factor of 1. Let T = 2 and S = A = [n] where n ≥ ε−1. The initial distribution is uniform
over [n], i.e., P0(i) = 1/n for all i ∈ [n], i.e., no matter what action is played, all states always
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transition to state 1. The transition operator is such that P1(i, j, 1) = 1 for all i, j ∈ [n]. At time
T = 2, the principal’s valuations are vPT (i, j) = 0 for all i, j ∈ [n]. At time 1, the principal’s
valuation function is such that for all i, j ∈ [n], vP1 (i, j) = 1 if i = j, and vP1 (i, j) = 0 if i 6= j.
For t ∈ [T ], the agent’s valuation function is such that for all i, j ∈ [n], vAt (i, j) = 0 if i = j, and
vAt (i, j) = 1 if i 6= j.

Consider the principal’s optimal utility, which is clearly upper bounded by 1 (1 at time 1 and 0
at time 2). The following mechanism is IC and achieves this upper bound:

• At time 1, play action i for each state i ∈ [n].
• At time T = 2, play action (i mod n) + 1 iff the state at time 1 is i.

The mechanism is IC because regardless of the (reported) initial state, the agent achieves overall
utility 1. It is easy to check this mechanism achieves utility 1.

On the other hand, any memoryless IC mechanism can achieve utility at most 1/n ≤ ε. This is
because at time T = 2, the current state provides absolutely no information, so the mechanism has
to perform the same (randomized) action regardless of the initial state. As a result, in order to be IC,
the mechanism has to satisfy the following condition at time 1: for all i, j ∈ [n], π(i, i) ≤ π(j, i),
where π(a, b) is the probability that action b is played in state a at time 1. So the principal’s utility
can be bounded as follows:

1

n

∑
i

π(i, i) ≤ 1

n

∑
i

(
1

n

∑
j

π(j, i)

)
=

1

n2

∑
i,j

π(j, i) =
1

n
.

This concludes the proof when the agent is patient.
Now consider the case with a myopic agent. Again, let T = 2 and S = A = [n] where

n ≥ ε−1. The initial distribution is again uniform over [n], i.e., P0(i) = 1/n for all i ∈ [n].
The transition operator is such that P1(i, j, i) = 1 for all i, j ∈ [n], i.e., no matter what action is
played, state i always transitions to state i. At time 1, the principal’s and the agent’s valuations are
vP1 (i, j) = vA1 (i, j) = 0 for all i, j ∈ [n]. At time T = 2, the principal’s valuation function is such
that for all i, j ∈ [n], vPT (i, j) = 1 if i = j, and vPT (i, j) = 0 if i 6= j. And the agent’s valuation
function is such that for all i, j ∈ [n], vAT (i, j) = 0 if i = j, and vAT (i, j) = 1 if i 6= j.

The principal’s optimal utility, 1, is achieved by the following succinct (but not memoryless)
IC mechanism:

• At time 1, play action 1 for all states.
• At time 2, play action i iff the state at time 1 is i.

The mechanism is IC in particular because the agent is myopic and cannot change the past. It is
easy to check this mechanism achieves utility 1.

On the other hand, any memoryless IC mechanism can achieve utility at most 1/n ≤ ε. This is
because at time T = 2, the mechanism cannot memorize anything before, so it has to be IC based
only on the current state, which puts the mechanism in a situation that is essentially the same as at
time 1 in the hard instance for patient agents. Similar arguments then guarantee that the principal’s
utility is at most 1/n, which concludes the proof for myopic agents. Finally, we note that the above
constructions work even if payments are allowed.
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Proof of Theorem 9.6. We use reductions from MAX-SAT similar to that in Theorem 9.1 for both
myopic and patient agents. First consider the case where the agent is patient with a discount factor
of 1. In this case, the reduction in Theorem 9.1 applies without any modification. In particular,
since the principal and the agent are in a zero-sum situation, without loss of generality, any optimal
memoryless mechanism does not depend on the reported states. And again, since the principal’s
utility is multilinear in the actions at each time, there is a deterministic mechanism which is opti-
mal. As argued in the proof of Theorem 9.1, such a mechanism corresponds precisely to an optimal
assignment of variables in the MAX-SAT instance, which implies the 7/8 + ε inapproximability.

Now consider the case where the agent is myopic. Here we slightly modify the reduction, and
in particular, the agent’s valuation functions. That is, for each t ∈ [T ] and i ∈ [m], we let

vAt (s, apos) = c and vAt (s, aneg) = 0,

for all s ∈ S, where c > 0 is an arbitrarily small constant. This guarantees that at any time t,
in order to be IC, the (randomized) actions for all states have to be exactly the same. Then since
the principal’s utility is multilinear, again it is without loss of generality to consider deterministic
mechanisms, which correspond to assignments of variables. The ratio of 7/8 + ε follows immedi-
ately. Finally, we remark that the above reductions still work when payments are allowed.
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objective: max
∑

h∈H,s∈S:(h,s) is feasible

(∑
a∈A

vP|h|+1(s, a) · x(h, s, a) + y(h, s)

)
(9.1)

flow constraints: z(h, s) =
∑
a∈A

x(h, s, a) ∀h ∈ H, s ∈ S (9.2)

z(∅, s) = PE
0 (s) ∀s ∈ S (9.3)

z(h+ (s, a), s′) = PE
|h|+1(s, a, s′) · x(h, s, a) ∀h ∈ H, s, s′ ∈ S, a ∈ A

(9.4)

utility: u(h, s) =
∑

h′∈H,s′∈S:(h,s)⊆(h′,s′)

(∑
a∈A

vA|h′|+1(s′, a) · x(h′, s′, a)− y(h′, s′)

)
∀h ∈ H, s ∈ S

(9.5)

IC constraints: u(h, s, s′) =
∑
a∈A

vA|h|+1(s, a) · x(h, s′, a)− y(h, s′)

+
∑

a∈A,s′′∈S

P|h|+1(s, a, s′′)

PE
|h|+1(s′, a, s′′)

· u(h+ (s′, a), s′′) ∀h ∈ H, s, s′ ∈ S

(9.6)

u(h, s) ≥
PE
|h|(sp, ap, s)

PE
|h|(sp, ap, s

′)
· u(h, s, s′),where (sp, ap) = last(h) ∀h ∈ H, s, s′ ∈ S

(9.7)

IR constraints: u(h, s) ≥ 0 ∀h ∈ H, s ∈ S (9.8)

feasible actions: x(h, s, a) ≥ 0 ∀h ∈ H, s ∈ S, a ∈ A (9.9)

feasible payments: y(h, s) ≥ 0 ∀h ∈ H, s ∈ S (9.10)

Figure 9.1: Linear program for computing an optimal dynamic mechanism.
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Figure 9.2: Performance of different mechanisms facing different types of agents when |S| =
|A| = 2 and the time horizon T varies. All numbers are normalized by the optimal utility facing a
naı̈ve agent. Every point is an average of 10 independent runs using different random seeds.
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Figure 9.3: Performance of different mechanisms facing different types of agents when T = 2 and
the numbers of states and actions, |S| and |A|, vary. All numbers are normalized by the optimal
utility facing a naı̈ve agent. Every point is an average of 10 independent runs using different
random seeds.
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Chapter 10

Conclusion and Future Directions

In this dissertation, I presented structural, computational, and experimental results for a number
of key problems in strategic machine learning. Conceptually, these results show the possibility
of, and provide high-level guiding pinciples for, designing efficient and accurate machine learning
algorithms in the presence of strategic behavior. Technically, these results combine techniques
in machine learning and mechanism design, which highlights the importance of interdisciplinary
expertise in the design and analysis of machine learning algorithms in strategic environments.
The principles and techniques presented in the dissertation will likely be useful in other problems
in strategic machine learning, as well as real-world applications. Below we also discuss a few
important future directions.

Generic and modular tools for incentive-aware machine learning. One of the most pressing
issues in real-world machine learning in the presence of strategic behavior is the following: How
to make machine learning algorithms already in use — many of which do not take users’ incentives
into consideration — robust against strategic manipulation, while keeping the cost of migration ac-
ceptable? While we do have satisfactory solutions for various applications already, deploying these
solutions would often involve abandoning the existing infrastructure and rebuilding the entire sys-
tem from scratch, which we would like to avoid in practice. An alternative, more realistic approach
is to design add-on solutions that work in a generic and modular way, and then implement them on
top of existing ones. For example, such add-on solutions could be procedures that preprocess the
training data, so the existing model, when trained on the preprocessed data, becomes more robust
against strategic manipulation; or, they could be procedures that postprocess the output of the ex-
isting model, so the combined pipeline becomes more robust. Designing such solutions will likely
require deep understanding of both how existing systems work, and key techniques for achieving
robustness against strategic manipulation.

Reinforcement learning in the presence of strategic behavior. In Section 1.3, Chapter 8 and
Chapter 9, I have discussed how to make optimal decisions in dynamic environments in the pres-
ence of strategic behavior. It is then natural to ask the following question: What if the decision
maker does not even have enough information about the environment itself, but instead has to
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explore it by taking actions? For example, consider ride-sharing again: In order to optimally as-
sign tasks, the ride-sharing platform needs to know the frequency of tasks between any pair of
locations, as well as the traffic conditions at any time of the day. It is unrealistic to assume the
platform has all this information, especially when it first starts off. So, the platform has to explore
the environment as it operates, and gradually improve its decisions as more and more information
becomes available. Importantly, the process of exploration is also affected by strategic behavior.
Such problems are traditionally studied in the area of reinforcement learning. However, most (if
not all) known approaches fail in the presence of strategic behavior. To design good algorithms for
reinforcement learning in the presence of strategic behavior, one needs to combine techniques in
reinforcement learning with insights from dynamic mechanism design.
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