
Scaling Up Wearable Cognitive Assistance for
Assembly Tasks

Roger Iyengar

CMU-CS-23-112
April 2023

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Mahadev Satyanarayanan (Satya) (Chair)

Martial Hebert
Roberta Klatzky

Padmanabhan Pillai (Intel Labs)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2023 Roger Iyengar

This research was sponsored by Autodesk, the National Science Foundation under award numbers 1518865 and
2106862, the NSF Graduate Research Fellowship under Grants DGE1252522 and DGE1745016, and the Defense
Advanced Research Projects Agency under award number HR001117C0051.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Wearable Cognitive Assistance, Wearable Computing, Edge Computing, Split
Computing, Computer Vision, Synthetic Data

For Rajan Laddu, Sujeath Pareddy, and Joel Reidenberg.
May your memories be a blessing.

Abstract
Wearable Cognitive Assistance (WCA) applications run on wearable mobile de-

vices, to provide guidance for real world tasks. Physical assembly tasks have been a
significant focus of research on WCA. We introduce new techniques to support the
development of WCA applications for more complex assembly tasks than previous
techniques supported. In addition, our work reduces the load on developers creating
WCA applications by eliminating the need to collect and label real training images.
We accomplish this by training computer vision models on synthetically generated
images. This dissertation investigates escalation to human experts in cases when a
user is not satisfied with the automated guidance from an application. Lastly, we
develop a new version of a software framework for WCA applications, and evaluate
ways in which WCA applications can benefit from running computations directly on
mobile devices.

Acknowledgments
I am deeply indebted to my advisor Satya. Satya has taught me a lot about ap-

proaching difficult problems, conducting research, selling ideas, and communicating
results. In addition, he has been a strong advocate for me and he has done a lot to
help ensure my successful completion of the program. I also owe a great deal to the
members of my thesis committee: Martial Hebert, Roberta Klatzky, and Padman-
abhan Pillai. They have provided valuable guidance on this research, and helped
improve the quality of this document.

Satya’s research group is an extremely collaborative environment, where people
are always willing to help each other out. Thank you to Mihir Bala, Jim Blakley,
Jason Choi, Tom Eiszler, Ziqiang Feng, Shilpa George, Jan Harkes, Chanh Nguyen,
Eric Sturzinger, and Junjue Wang for making this such a productive and pleasant
place to work. Additional thanks are due to Jan and Tom for managing and support-
ing all of our group’s servers.

I was fortunate enough to mentor Qifei Dong, Max Krieger, Di Wang, and Emily
Zhang; all of whom contributed significantly to this work. I also had the privilege of
being mentored by Professors Brendan Juba, Joe Near, Norman Sadeh, Dawn Song,
and Sebastian Zimmeck prior to my work with Satya. I owe a debt of gratitude
to my other research collaborators: Steven M. Bellovin, Sushain Cherivirala, Lor-
rie Cranor, Yuanyuan Feng, Hana Habib, Margaret Hagan, Bin Liu, Vinayshekhar
Bannihatti Kumar, Namita Nisal, Truong An Pham, Joel Reidenberg, Michel Roy,
Florian Schaub, Peter Story, Om Thakkar, Abhradeep Thakurta, Haithem Turki, Lun
Wang, Ziqi Wang, Yu Xiao, Shomir Wilson, and Lieyong Zou. On top of this, I have
benefited substantially from anonymous reviews of my papers. Additional thanks
are due to the many teachers I have had throughout the course of my life.

Thank you to Wael Darwich for your development work on A3D, for your work
generating synthetic images, and for helping me get A3D set up to generate my own
synthetic images. Haley Edie was instrumental in coordinating our collaboration
with Autodesk, and getting me access to Autodesk resources. David Lovell ensured
that the phone sanitizer parts were manufactured and shipped to us, and he captured
some of our early test data.

Rod Heiple handled the Autodesk collaboration on the CMU side. Ryan Bates
3D printed parts for the toy plane. Deb Cavlovich, Catherine Copetas, Sara Golem-
biewski, Connie Herold, Chase Klingensmith, Nichole Merritt, Colleen Mollenauer,
and Linda Moreci provided fantastic administrative support and helped me navigate
several bureaucratic processes.

Writing software in the 21st century is standing on the shoulders of giants.
This work would not have been possible without the developers of GNU, Linux,
LLVM, Cuda, PyTorch, TensorFlow, Android, CPython, NumPy, SciPy, Matplotlib,
OpenCV, CVAT, fish shell, Emacs, pudb, IntelliJ, Docker, AIOHTTP, Jupyter Note-
book, ZeroMQ, and countless other software projects.

Lastly, thank you to all of my family and friends, especially my parents Arun
and Louise Iyengar. I would not be here without your love and support.

Contents

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Potential Impact . 2
1.3 Novelty . 4
1.4 Roadmap . 4

2 Background 5
2.1 Aids for Assembly Tasks . 5
2.2 Wearable Cognitive Assistance . 7
2.3 Computer Vision . 8
2.4 Synthetic Training Data . 8
2.5 Hierarchical Decomposition . 9
2.6 Development Toolchain . 9

3 Detecting Completed Steps of Complex Tasks 13
3.1 Hierarchical Decomposition . 14
3.2 Two Stage Process . 16

3.2.1 Re-Using Labels . 17
3.2.2 Training . 17
3.2.3 Error Correction . 17
3.2.4 Development Tools . 18

3.3 Our Applications . 18
3.3.1 Stirling Engine . 19
3.3.2 Ikea Cart . 20
3.3.3 Toy Car . 20

3.4 Implementation Details . 25
3.5 Guidelines for WCA Developers . 26

3.5.1 Subassemblies . 26
3.5.2 Training Data . 27

4 Accelerate WCA development with synthetic training images 29
4.1 Meccano Erector Kit . 29

4.1.1 Generating Data . 30
4.1.2 Results . 36

ix

4.2 Toy Plane . 37
4.3 Phone Sanitizer . 39
4.4 Discussion . 43

5 Escalation to Human Experts 45
5.1 Experts Without Automation . 46
5.2 Calls With Human Experts . 46
5.3 Simulating Call Centers . 49

5.3.1 A Simple Model . 49
5.3.2 Lognormal Service Times . 52
5.3.3 Simulating All Steps . 54

5.4 Extending to Real Call Centers . 59
5.5 Exploring Parameter Space . 59

5.5.1 Varying the Proportion of Feasible Steps 59
5.5.2 Varying Patience Length . 60
5.5.3 Varying Length of Feasible Steps . 60

5.6 Limiting the Number of Active Users . 62
5.7 Summary . 63

6 Device and Cloudlet Implementation 65
6.1 Software Framework . 65

6.1.1 Motivation . 65
6.1.2 Key Abstractions . 66

6.2 Leveraging Mobile Device Hardware . 69
6.2.1 Accuracy Comparisons . 69
6.2.2 On-device WCA . 72
6.2.3 Split Computing . 74
6.2.4 Thin Clients . 79

6.3 Summary . 81

7 Conclusion and Future Work 83
7.1 Contributions . 83
7.2 Future Work . 84

7.2.1 Subassembly Identification . 84
7.2.2 Detecting Environmental Issues . 84
7.2.3 Computer Vision Techniques . 84
7.2.4 Textures for 3D Models . 85
7.2.5 Device and Cloudlet Implementations 85
7.2.6 Development Tools . 85
7.2.7 Multi-Modal Sensing . 86

Bibliography 87

x

List of Figures

1.1 A comparison of gross and subtle differences in task steps 3

3.1 A stirling engine with two sub-assemblies highlighted 15
3.2 A model motorcycle from a Meccano Erector kit 15
3.3 The architecture of our WCA applications . 16
3.4 The issue with identical consecutive steps . 18
3.5 The steps detected by our Stirling Engine WCA application 19
3.6 Four states from our WCA application for a Stirling engine 20
3.7 The fully assembled utility cart . 21
3.8 The steps detected by our Ikea WCA application 22
3.9 The fully assembled model car . 23
3.10 The steps detected by our Toy Car WCA application 24
3.11 Images of the toy car and Ikea cart kits, before and after being cropped 25
3.12 Images with identical and different perceptual hash values 26

4.1 Examples of synthetically generated images . 30
4.2 The fully assembled model bike . 31
4.3 A synthetic image showing part of the bike model 32
4.4 Bounding boxes with and without padding . 33
4.5 Our first attempt at making our synthetic images look more realistic 34
4.6 Our model incorrectly detected a line in the floor as an object of interest 35
4.7 Synthetically generated images from our final set 35
4.8 Examples Images from Adobe Stock that we used as background textures 36
4.9 The fully assembled model plane kit . 38
4.10 CAD models for the individual model plane parts 38
4.11 CAD models for the model plane assembly steps 38
4.12 Synthetically generated training images for the toy plane kit 39
4.13 The fully assembled Phone Sanitizer . 40
4.14 Synthetic images of the phone sanitizer, from the Unity Perception Package . . . 41
4.15 Synthetic images of the phone sanitizer, from Autodesk A3D 42
4.16 Images generated using A3D with simple object textures 43

5.1 The design space of remote expert assistance systems for assembly tasks 47
5.2 The workflow followed to request help from a human expert 47
5.3 The components of a WCA application with human assistance 48

xi

5.4 A screenshot of the web application used by the human task expert 48
5.5 The PDFs for the distributions that Simulation 1 samples from 50
5.6 The waiting times resulting from Simulation 1 and Formula 5.1 51
5.7 The PDFs for the distributions that Simulation 2 samples from 52
5.8 The waiting times resulting from Simulation 2 and Formula 5.4 53
5.9 The PDFs for the distributions that Simulation 3 samples from 55
5.10 Inter-entrance time samples from Simulation 3 56
5.11 Inter-arrival times for help calls that resulted from Simulation 3 56
5.12 Waiting times from Simulation 3 and Formula 5.4 58
5.13 Waiting times from Simulation 3 plotted against times from Formula 5.4 58
5.14 Average wait times resulting from changing the proportion of feasible steps . . . 60
5.15 Average wait times resulting from changing users’ simulated patience 61
5.16 Average wait times resulting from changing the average step length 61
5.17 Average wait times resulting from Simulation 4 62
5.18 The number of users that were serviced under certain wait time thresholds 63

6.1 Two Gabriel clients that produce frames from multiple sensors 67
6.2 Two cognitive engines consuming frames from the same queue 68
6.3 A Gabriel workflow with two clients and three cognitive engines 69
6.4 Images showing steps from the Stirling and Meccano tasks 71
6.5 Power consumption for headsets running EfficientDet inference in a loop 73
6.6 On-device, split computing, and thin client implementations of WCA 76
6.7 The network connecting mobile devices to the cloudlet 78

xii

List of Tables

2.1 Existing systems that helped users with physical assembly tasks 6
2.2 Example Wearable Cognitive Assistance Applications 10
2.3 Resources used by example WCA applications 11

4.1 Classification results for model pairs trained on data for the Meccano kit 37
4.2 Classification results for model pairs trained on data for the toy plane 39
4.3 Classification results for model pairs trained on data for the phone sanitizer . . . 41

5.1 The variables used to compute expected wait time for users in an M/M/N queue . 50
5.2 Parameter values for the distributions that Simulation 1 samples from 51
5.3 Parameter values for the distributions that Simulation 2 samples from 53
5.4 Parameter values for the distributions that Simulation 3 samples from 57

6.1 A summary of the data used for the experiments in Chapter 6 70
6.2 Classification accuracy for standalone DNN models 70
6.3 Classification accuracy for pipelines . 71
6.4 The smart glasses that we profiled our applications on 72
6.5 Inference time for one frame, in milliseconds 72
6.6 The largest pipeline that meets tight and loose latency bounds 73
6.7 Average power consumption, in Watts . 74
6.8 The percentage increase of power consumption, above the baseline 74
6.9 The bandwidth saved by transmitting cropped images 77
6.10 Single-frame inference time of split computing pipelines 78
6.11 The largest split pipelines that meet tight and loose latency bounds 78
6.12 Accuracy of pipelines from Tables 6.10 and 6.11 78
6.13 Average power consumption of mobile devices running DNN pipelines 79
6.14 The percentage increase of power consumption, above the baseline 79
6.15 Classification accuracy for pipelines . 80
6.16 Single-frame inference time for the thin client 80
6.17 Average power consumption for thin clients, in Watts 81

xiii

xiv

Chapter 1

Introduction

Wearable Cognitive Assistance (WCA) applications provide guidance to users for a specific task.
This task could range from assembling a physical object, remembering people’s names, exercis-
ing, or playing a game or sport. These applications utilize mobile devices, such as smart glasses
or a smartphone, to capture data and interact with the user. WCA applications process captured
data in order to determine the physical state of the task, and then provide assistance based on this
physical state.

Table 2.2 lists some examples of WCA applications that have been developed prior to the
work in this dissertation. All of these applications determine a task’s physical state based on
images from an RGB camera. This camera may be mounted on glasses that the user wears,
or held in a tripod with a view of the user’s workspace. Feedback is provided in the form of
synthesized speech and images shown on the display of the mobile device.

WCA is a compelling use case for edge computing. Many of these applications utilize large
deep neural network (DNN) models that are too computationally intensive to run on a small and
lightweight mobile device. However, these applications generate large volumes of data that must
be processed quickly. Further, computation must be offloaded to a server with close network
proximity to the mobile device that is capturing the data [79]. We will henceforth refer to this
server as a cloudlet.

This work focuses on WCA applications that help users complete physical assembly tasks.
Users are given step by step instructions, which requires the application to determine when a
user has completed a step of the task. The application accomplishes this by processing frames
from an RGB camera. Prior to the work reported here, applications had been developed for a
lego kit [7], a lamp [6], and a toy sandwich [9]. These tasks all required fewer than ten steps and
used parts that had distinct shapes and colors. Taking WCA applications to the next level will
require supporting tasks with many more parts, many more steps, parts that are small relative to
the full object being assembled, and a combinatorial explosion of error states. We address these
challenges in this research.

One significant challenge is the amount of labeled data that is required for training computer
vision models. Each step of the task, and every error state that the developer would like to detect,
must be represented in the data that the models get trained on. Increasing the number of steps
thus directly increases the amount of data that is required for training the models. Collecting and
labeling all of this data is an incredibly time-consuming process. This process can take up to 2

1

or 3 hours per task step. Developing these models is an iterative process, which involves testing
under different lighting conditions, and then collecting more data in environments in which the
model performs poorly. Creating training sets is thus a significant barrier to developing WCA
applications that support large numbers of steps and large numbers of parts.

Assembly tasks might involve parts that are much smaller than the full object being assem-
bled. For example, one step might require the user to insert a screw into a large metal piece. The
application needs to be able to detect when steps involving small screws have been completed,
as well as steps involving larger parts. In addition, there are many possible ways that a user
can complete a task step incorrectly. In fact, the number of possible errors that a person can
make while completing a task is significantly larger than the number of steps that are required to
complete the task. These challenges lead to my thesis statement.

1.1 Thesis Statement
Scaling up WCA to complex assembly tasks is challenging because of (a) the difficulty of

vision-based state detection with very small parts in the context of much larger objects be-
ing assembled; (b) the combinatorial explosion of possible error states; and (c) the large
manual effort needed to create accurate DNNs that can reliably determine when task steps
have been completed. These problems can be solved by a combination of (1) hierarchi-
cal decomposition of complex assemblies into modular compositions of subassemblies, (2)
on-demand seamless escalation for live expert assistance, and (3) synthetic generation of
training sets for born-digital components. The resulting solution can be implemented in a
scalable and maintainable way using modular software components. This will enable the
development of WCA applications for more complex tasks, which is a necessary step along
the path towards making WCA applications practical for real world tasks.

1.2 Potential Impact
The following issues currently make WCA applications impractical for real world assembly
tasks:

• Current techniques do not support tasks with more than roughly ten steps, and the steps
must have gross visible differences from each other. For example, a WCA application
developed with these techniques cannot detect the presence or absence of a single screw.
Figure 1.1 shows an example of the gross differences that current techniques support, and
the subtle differences that require the techniques introduced in this work.

• A developer must collect and label training data for each error state that the application
detects. However, there are exponentially more error states than correct states for any given
task. This makes it infeasible to create a WCA application that is capable of detecting all
possible error states for a task.

• The computer vision models that we use for WCA applications require thousands of im-
ages depicting each state. All of these images must be labeled with a bounding box. Col-
lecting and labeling these images requires an immense manual effort.

2

Figure 1.1: A comparison of gross and subtle differences in task steps. The top two images
illustrate a gross difference that current WCA techniques can detect. The bottom two images
show a subtle difference that requires the new techniques from this work to support.

This work addresses all three of these issues. We present new techniques that enable the de-
velopment of WCA apps with steps that look almost identical. The changes between these steps
are subtle, such as the addition of a single screw. Our techniques also enable the development of
tasks with a larger number of steps.

Existing WCA applications for assembly tasks have no way of handling user errors that they
were not specifically developed to support. If a user makes such a mistake, the application will
either provide the user with an instruction for a different step, that it was built to recognize, or
it might not provide any guidance at all. In these cases, we allow the user to start a video call
with a human who is an expert on the task that the user is trying to complete. We call this feature
human escalation.

Lastly, reducing the time it takes for developers to build WCA applications for assembly
tasks is imperative for motivating a critical mass of developers to build them. Training computer
vision models using synthetic data entirely removes the need to manually capture images of each
task step and label these images with bounding boxes.

3

1.3 Novelty
Existing WCA applications use techniques that cannot support assembly tasks with large num-
bers of steps or subtle differences between steps. An example of a subtle difference is the inser-
tion or removal of a single screw (as depicted in Figure 1.1). The lego application developed by
Chen et al. [30] guided users to place colored blocks on a 3D grid. This application did not use
any machine learning (ML) models, and its techniques are tightly coupled to this specific task.
The Sandwich application developed by Chen et al. [30] determined the task step that was shown
using a single Faster R-CNN object detector. As we describe in §6.2.1, a single Faster R-CNN
object detector is not sufficient for more realistic tasks.

The combinatorial explosion of possible error states has not been addressed in any prior work
on WCA applications. The sandwich application from Chen et al. [30] was built to detect one
specific error. But none of our prior work has attempted to address the wide range of possible
mistakes that a well-intentioned user might make when completing an assembly task. Escalation
to a human expert is the first solution that has been proposed.

Training ML models using synthetic images has long been an area of active research. How-
ever, this work represents the first attempt to do so in the context of WCA. We offer results from
training models for real WCA applications, using synthetic data.

1.4 Roadmap
This dissertation validates the thesis as follows:

• Chapter 2 discusses prior work on WCA, other work on aids for assembly tasks, and the
computer vision research that we leverage in our work.

• Chapter 3 describes how we detect when steps of real world tasks have been completed. It
also presents the three WCA applications that we developed using our techniques.

• Chapter 4 presents and evaluates our efforts to train DNNs for WCA applications using
synthetic training images.

• Chapter 5 introduces our system for error handling with human task experts. The chapter
also presents Monte Carlo simulations that call center operators can use to determine the
number of human experts that are required to support a set of WCA application users.

• Chapter 6 describes the software framework that we built to support Gabriel applications,
and it explores how mobile device hardware can be used by WCA applications.

• Chapter 7 concludes the dissertation and offers suggestions for future work on WCA ap-
plications.

4

Chapter 2

Background

This work builds upon prior work on WCA applications, and it leverages existing work in com-
puter vision. This chapter provides an overview of this work in addition to a comparison between
WCA and other computerized aids for assembly tasks.

2.1 Aids for Assembly Tasks
We consider three types of people who are involved with WCA applications. The first are users,
who are completing a task and receiving guidance from the application. The next are experts, who
are familiar with the tasks, and the mistakes that a user might make. Some systems (including
ours) allow experts to help users with a task, over a video call. The last type of people are
developers who create a WCA application for a specific task, but developers are not involved at
the point that a user is completing the task.

A large body of work has been done by other researchers on systems to aid with assembly
tasks. However, none of these systems determined when steps were completed using computer
vision models that processed data from an RGB camera. In contrast to some previous work,
the techniques we propose do not require instrumenting parts of workspaces with sensors. Our
system also does not require the person who is completing the task to determine when a step has
been completed, and then indicate this to the system. In addition, our system does not require
the continuous attention of a task expert to observe a user for the entire duration of that task.
The application starts out providing automated guidance, and only starts a call with a task expert
when the user requests help from a human. This burdens task experts much less than a system
where the task expert must be on a call to help a user with the full task.

Fraser et al. [41] developed a system to distribute steps for an assembly task among members
of a group completing the task together. Instructions are displayed on a smartphone screen,
and users manually press a button to indicate when a step is completed. Their system has no
way to automatically detect when a step is completed, and it does not handle user errors. The
authors ran a user study where people assembled an IKEA cabinet and a Meccano bridge kit.
Requiring people completing the task to indicate when a step is completed creates an additional
burden that our system avoids. Antifakos et al. [22] developed a system that determines when
steps for assembling an Ikea wardrobe have been completed, using sensors such as gyroscopes,

5

Prior Work Detection of Step Completion Other Attributes
Fraser et al. [41] User presses a button Multiple users working on task to-

gether.
Antifakos et al. [22] Automatic, using gyroscopes,

accelerometers, force sensing
resistors, and more

Requires sensors to be installed in the
Ikea parts. Did not give instructions.

Gupta et al. [46] Automatic, using Microsoft
Kinect

Builds a full virtual model of what the
user has constructed. Only supports
large colorful duplo blocks.

Aehnelt and Urban [21] Automatic, using RFIDs and
infrared light barriers

Requires sensors to be present in
working environment.

Lafreniere et al. [60] Manually from user The final assembled object was mas-
sive. Many parts were identical.

Johnson et al. [54] Remote task expert Compared tablet with Google Glass.

Table 2.1: Existing systems that helped users with physical assembly tasks

accelerometers, force sensing resistors, and infrared distance meters. This system allows users
to complete steps of the task in different orders. However, their system was purely focused on
detecting completed steps, and it did not give the users any instructions. Gupta et al. [46] used
a Kinect sensor to guide users through assembling objects out of Duplo blocks. The system
determined when steps were completed by processing data from the Kinect sensor. Duplo blocks
have bright colors and simpler shapes than the objects that our tasks use. Aehnelt and Urban [21]
developed a system that provides instructions to users on smartwatch displays, and determines
when steps have been completed using sensors that are typically present in a factory environment,
such as RFIDs and infrared light barriers [24]. Our system does not require the presence of such
sensors.

Lafreniere et al. [60]’s system guided users through assembling a pavilion out of bamboo
sticks. The users moved around a room, picking up certain sticks and then delivering them to
a robotic arm. Users wore Apple Watches, and were given written instructions on the watches’
displays. A user swiped on the face to see the next instruction. The locations of each user
were also tracked using BLE beacons that communicated with iPhones that users carried. A
centralized system used the location information to decide the next instruction that should be
given to each user. This system requires users to manually request the next instruction, while our
system automatically gives the next instruction after the user completes a step.

Johnson et al. [54] examined systems where remote experts helped users with assembly tasks.
The people completing tasks communicated using a tablet for one task, and a Google Glass for
another. In addition, they looked at a case where where the user could stay in one place and a
case where the user had to move across different workspaces to complete the task.

Table 2.1 provides a brief summary of all of the existing systems described in this section.

6

2.2 Wearable Cognitive Assistance
A WCA application provides just-in-time guidance and error detection for a user who is per-
forming an unfamiliar task. Prompt error detection is also valuable for a user who is performing
familiar tasks, since human errors cannot be completely avoided, especially when the user is
tired or stressed. Informally, WCA is like having “an angel on your shoulder.” [48] It broadens,
the metaphor of GPS navigation tools that provide real-time step-by-step guidance, with prompt
error detection and correction.

This work builds on top of past research on WCA applications. Ha et al. [48] introduced the
first version of a programming framework called Gabriel. This framework includes networking
and runtime components for WCA applications. Chen et al. [30] developed an initial set of WCA
applications, determined how much latency was acceptable for these applications, and examined
how changes to the network, hardware, and algorithms used can affect end to end latency. Wang
et al. [87] examined how to reduce the load imposed on a cloudlet by a single WCA user, thereby
allowing many more users to share single cloudlet. Pham et al. [72] developed a toolchain that
allows people to develop WCA applications without writing any code.

Table 2.2 lists some examples of WCA applications that have developed in prior work. In
total, those researchers have developed over 15 WCA applications. This work focuses on applica-
tions that that help users assemble physical objects. Chen et al. [30] developed such applications
for an IKEA lamp, a Lego kit, and a toy sandwich. We developed applications for an IKEA cart,
a model car, a smartphone sanitizer, a model plane, a Meccano bike it, and a Stirling engine.

These applications are a compelling use case for edge computing. They first capture images
using the camera on a mobile device, such as a smartphone or head-mounted wearable device.
The images are then sent to a cloudlet for processing, using the Gabriel platform [48]. The
computational limitations of lightweight mobile devices that have acceptable battery life prevent
applications from processing images using the devices’ own hardware [78]. Table 2.3 lists the re-
source consumption and end-to-end latency bounds of five offloading-based WCA applications.
It shows that WCA applications are simultaneously compute-intensive, bandwidth-hungry, and
latency-sensitive.

Our work extends this body of research in the following ways:
• Utilizing new computer vision techniques to support more realistic assembly tasks.
• Adding live call support to WCA applications, so human experts can help users correct

errors they make with tasks.
• Training computer vision models using synthetic training images.
• Developing a new software framework for WCA applications, that allows multiple users

to share a single instance of an application running on a cloudlet.
• Exploring how well DNNs running on mobile device hardware can support WCA applica-

tions.

7

2.3 Computer Vision
Many of the aids for assembly tasks described in Section 2.1 require the user to press a button
in order to indicate that a step has been completed. However, our applications determine when
steps have been completed automatically, using computer vision.

This work’s contribution is in how computer vision (CV) is being applied, rather than devel-
oping any new CV algorithms. This section highlights the CV research that we leverage in our
work.

We follow the lead of Gebru et al. [42], who used a two step process to find and distinguish
cars that appeared in Google Street view images. Their first step was finding the regions of
images that were likely to contain cars. Then their second step was classifying the type of car
in that region. We leverage their approach to train models on our own new data using existing
neural architectures.

Image classifiers give a single class label for a full image, and do not provide a bounding
box. These are most useful when a scene has already been cropped to a region involving a single
object. Imagenet [33] is a classification dataset which contains classes for 1000 objects. Object
detectors provide bounding boxes and labels for objects in an image. This is particularly helpful
when an object might only take up part of the camera view, or there might be multiple objects
visible at once. Microsoft COCO [62] is an object detection dataset with 80 classes. Faster
R-CNN [75] is an object detector that is used in our lamp [6] and toy sandwich [9] assembly
assistants.

Imagenet has the classes “race car,” “sports car,” and “streetcar,” in addition to classes for
objects that aren’t cars. The Stanford Cars dataset [58] is more fine-grained, with images of cars
that are labeled with the year, make, and model. The fine-grained dataset requires classifying cars
based on small intricate details, while classifying cars into the three coarse-grained categories is
simpler. This increase in complexity is similar to the increase in complexity between the work
of Chen et al. [30] and the work presented in this dissertation. The Fast MPN-COV [61] image
classifier performs well on several fine-grained classification datasets.

Our work is not the first to use object detection models for tasks beyond detecting the objects
in an image and providing their coordinates. Object detectors have been used for finding screws
in pictures of aircraft parts [66] and consumer electronics [40]. Wu et al. [90] found differences
between book covers using a modified version of Faster R-CNN.

2.4 Synthetic Training Data
Training CV models in order to develop a WCA application for a specific task requires thousands
of labeled images. Collecting and labeling this data requires a substantial effort, and it must be
repeated for each new WCA application. Training models with synthetic data would eliminate or
reduce the need for WCA application developers to collect and label real images. Reducing the
amount of time it takes developers to create WCA applications helps make WCA applications
practical for real world tasks.

The idea of avoiding manual labeling has a long and rich history. Hinterstoisser et al. [52]
trained an object detector on synthetic data that outperformed an object detector trained on real

8

data. They generated backgrounds cluttered with distractor objects. In addition, they added some
distractor objects to the foreground and varied the lighting conditions that were used to render
each of the images. These images looked 3D, but they were not photo-realistic. Other works
have generated photo-realistic images to use as training data [85, 47], or used real background
images [50, 73, 84]. Dwibedi et al. [34] avoided rendering 3D graphics altogether by cropping
objects from photographs, and pasting these crops into other photographs. Their models trained
on synthetic images performed worse than their models trained on real images. However, they
also trained models using a mix of real and synthetic images, and these performed better than
models trained on real or synthetic data alone.

2.5 Hierarchical Decomposition
Simon [81] argued that all complex systems are made up of smaller systems. These smaller
systems are made up of even smaller systems, thus forming a hierarchy with several layers.
Reasoning about a smaller system on its own is easier than trying to understand a full system
all at once. We can apply this idea to state detection for WCA applications by decomposing a
large assembly task into separate smaller sub-assemblies. This limits the scope of what any one
computer vision model that we use is responsible for. It also allows multiple developers to work
on computer vision models for different parts of the task completely independently from each
other. Finally, it also simplifies performance of a task over an extended period (e.g. multiple
days). A person who has to stop work in the middle of a task will have an easier time if the task
is split into subtasks that don’t require any context from earlier subtasks. They can start work
from the beginning of a subtask every time, rather than having to recall anything about steps they
completed the last they they worked on the task.

Epshtein and Ullman [35] utilized hierarchies of visual features to recognize objects. Gong
et al. [43] automatically identified subassemblies of assembled objects based on CAD files. They
utilize features such as the number of other parts that a certain part touches, or the amount of
surface area that two touching parts share. They considered subassemblies from the perspective
of assembly sequence planning, rather than detecting completed task steps using computer vi-
sion. Separating complex tasks into subassemblies for WCA applications requires considering
how easy it is for a user to complete a task, and how easy it is for computer vision models to
detect when steps have been completed.

2.6 Development Toolchain
Pham et al. [72] created a set of tools called Ajalon, that developers can use to create WCA appli-
cations for assembly tasks. They utilized Intel’s Computer Vision Annotation Tool (CVAT) [1]
and developed Open Workflow Editor [15], a state machine editor. The authors ran a user study
with developers to show that their toolchain is effective.

9

App
Name

Example Input
Video Frame

Description Symbolic
Represen-
tation

Example
Guidance

Pool Helps a novice pool player aim correctly. Gives
continuous visual feedback (left arrow, right ar-
row, or thumbs up) as the user turns his cue stick.
The symbolic representation describes the posi-
tions of the balls, target pocket, and the top and
bottom of cue stick.

<Pocket,
object
ball, cue
ball, cue
top, cue
bottom>

Ping-
pong

Tells novice to hit ball to the left or right, de-
pending on which is more likely to beat oppo-
nent. Uses color, line and optical-flow based mo-
tion detection to detect ball, table, and opponent.

<InRally,
ball po-
sition,
opponent
position>

“Left!”

Work-
out

Counts out repetitions in physical exercises.
Classification is done using Volumetric Tem-
plate Matching on a 10-15 frame video segment.
A poorly-performed repetition is classified as a
distinct type of exercise (e.g. “good pushup”
versus “bad pushup”).

<Action,
count>

“8”

Face Jogs your memory on a familiar face whose
name you cannot recall. Detects and extracts a
tightly-cropped image of each face, and then ap-
plies a state-of-art face recognizer. Whispers the
name of the person recognized.

ASCII
text of
name

“Barack
Obama”

Lego Guides a user in assembling 2D Lego models.
The symbolic representation is a matrix repre-
senting color for each brick.

[[0, 2,
1, 1],
[0, 2, 1, 6],
[2, 2, 2, 2]]

“Put a 1x3
green piece
on top”

Draw Helps a user to sketch better. Builds on third-
party app for desktops. Our implementation pre-
serves the back-end logic. A Glass-based front-
end allows a user to use any drawing surface
and instrument. Displays the error alignment in
sketch on Glass.

Sand-
wich

Helps a cooking novice prepare sandwiches ac-
cording to a recipe. Since real food is perishable,
we use a food toy with plastic ingredients. Ob-
ject detection uses Faster-RCNN deep neural net
approach. [75]

“Lettuce
on top of
ham and
bread”

“Put a piece
of bread on
the lettuce”

Table 2.2: Example Wearable Cognitive Assistance Applications. The input frame is sent to a
cloudlet, which converts it to the symbolic representation. The symbolic representation is then
used to give guidance. (Source: Adapted from Satyanarayanan [77])

10

Pool Ping-pong Face Lego Sandwich
Cloudlet CPU load(%) 72.10 45.40 75.60 52.20 85.10
End-to-end latency bounds (tight–loose, ms)* 95–105 150–230 370–1000 600–2700
Video streaming bandwidth requirement 480p: 3.6 / 7.0

(Average / Peak, Mbps) 720p: 6.8 / 9.9
1080p: 8.1 / 12.7

Table 2.3: Resources used by example WCA applications. The implementations of the applica-
tion servers [30] were tested on a laptop (with an Intel® Core™ i7-8500Y processor and 8GB
RAM), running the frontend on an Android phone, using 480p, 720p, and 1080p video resolu-
tions. (*) End-to-end latency includes both the round trip time (RTT) from the Android phone
to the cloudlet and compute time in the cloudlet. Tight and loose bounds are adopted from
Chen, et al, [30] where they are defined: “The tight bound represents an ideal target, below
which the user is insensitive to improvements. Above the loose bound, the user becomes aware
of slowness, and user experience and performance is significantly impacted.”

11

12

Chapter 3

Detecting Completed Steps of Complex
Tasks

Many of the aids for assembly tasks described in Section 2.1 require the user to press a button in
order to indicate that a step has been completed. This section examines how applications can use
computer vision to automatically determine when steps have been completed. This frees users
from having to use their hands to press a button on a wearable device after they have completed
each step of a task.

A user wears a mobile device with a camera (such as a Google Glass). The mobile device
gives the user an instruction, waits for them to complete this, and then gives them the next
instruction. Completing a step might require adding a part to the assembly, removing a part
from the assembly, or repositioning the object in order to give the camera a certain view. The
application must determine when a step is completed based on images from the camera. It is
important to avoid false positives, which are instances where the application determines that a
step has been completed before it actually has been. False positives cause the application to give
the user a new instruction before the previous step gets completed, which results in a poor user
experience. When a false negative occurs, the application will not give the user a new instruction
after they have completed a step. However, false negatives can typically be corrected by slightly
rotating the assembly, which will give the camera a different view of the object and thus get the
classifier to assign a correct label. False negatives result in a suboptimal user experience, but
they are less disorienting than false positives.

Developers must train computer vision models to recognize when each step of the task has
been completed. They must also train the models for each error state that they want the applica-
tion to be able to recognize. Unfortunately, there is a combinatorial explosion in the number of
possible error states, which we address in Chapter 5.

This chapter presents the approaches we have developed to detect the step of a physical task
that is shown in an image, in the context of WCA. We wanted to develop something that takes
an image captured by a headset camera, and determines the step of the task that is shown in that
image. If a user has made a mistake that the application was developed to recognize, we want
the application to be able to recognize this as well.

13

3.1 Hierarchical Decomposition
Inspired by Simon’s argument that all complex systems are made up of smaller systems [81],
we argue that any object that is assembled from more than ten parts can be decomposed into
sub-assemblies. The CAD programs Autodesk Inventor and Intergraph Smart 3D both represent
assemblies as a hierarchy [23, 31]. Epshtein and Ullman [35] utilized hierarchies of visual fea-
tures to recognize objects. Gong et al. [43] automatically identified subassemblies of assembled
objects based on CAD files. They utilize features such as the number of other parts that a certain
part touches, or the amount of surface area that two touching parts share.

The lower bound of ten parts comes from our firsthand experience developing WCA appli-
cations. We have successfully developed applications for objects assembled out of ten or fewer
parts without splitting the task into subassemblies. However, for objects assembled using more
than ten parts, splitting the task into subassemblies has proven to be a useful technique.

This technique is applicable to tasks with multiple levels of sub-assembly hierarchies. An
assistant for a task involving multiple sub-assemblies is effectively a series of independent ap-
plications. Once the user completes one sub-assembly, they will automatically be taken to the
assistant for the next one. If the sub-assemblies must be connected together after that, there will
be an assistant for these steps as well. Tasks can be broken into sub-assemblies the same way
that long documents can be broken into chapters, sections, and subsections. Sub-assemblies near
the top of the hierarchy are going to be made up of multiple levels of sub-assemblies below them.
Hierarchical Decomposition can be used to split a task that requires hundreds of steps, or even
thousands of steps, into sub-assemblies that can be assembled in 10 steps or fewer. Our initial
WCA applications were all for 10 step tasks. It thus made sense to develop WCA applications
for longer tasks as a series of tasks that required 10 or fewer steps.

Figure 3.1 shows two of the sub-assemblies of a Stirling engine. Our application uses a
different pair of computer vision models for each sub-assembly. The code selects the correct pair
based on the current step that the user is working on. Each step involves attaching a piece to one
sub-assembly. None of the sub-assemblies involve more than 8 steps. Splitting the task up into
sub-assemblies thus simplifies the scope of the problem to developing a set of assistants for 8
step tasks.

The number of steps required for each sub-assembly is not something that we have any fixed
rules about. The optimal number of steps for a sub-assembly may vary based on the task. How-
ever, limiting the number of steps to 10 worked well for all of the applications that we have
developed.

Figure 3.2 shows how a model motorcycle can be broken up into three sub-assemblies. The
Stirling engine has a single large base, but the motorcycle is simply assembled from small pieces.
Therefore, assembling the motorcycle requires an additional set of steps at the end, to connect
the sub-assemblies together.

14

Figure 3.1: A stirling engine with two sub-assemblies highlighted

(a) The fully-assembled model

(b) Sub-assemblies

Figure 3.2: A model motorcycle from a Meccano Erector kit. The sub-assemblies are first
assembled from smaller components. Next, the user combines the sub-assemblies together into
the fully-assembled motorcycle. The application uses a fine-grained image classifier and an
object detector for the final steps of putting the 3 sub-assemblies together. In these final steps,
each of the 3 sub-assemblies is treated like a part that the user is attaching to the final object
being assembled.

15

Mobile
Device

Cloudlet

Faster R-CNN

Fast MPN-COV

Camera
Image

Detected
Task
Step

Figure 3.3: The architecture of our WCA applications. The dashed lines represent a Wi-Fi
connection. The solid lines represent a connection over Gigabit Lan. The dotted lines represent
data transmission between components on a single cloudlet.

3.2 Two Stage Process
An assembly task involves attaching components to form an object. The object is made up of the
components that are assembled together, so it must be larger in size than any of the individual
components. A part that gets attached in one step of the task might be a lot smaller than the
whole object. For example, one step might ask the user to insert a single screw into a large metal
engine. Having the user move their head close to the part they just attached, in order to give
the camera a better view of how the part was attached, would make it easier for computer vision
models to determine when a step has been computed. However, this would be cumbersome for a
user.

Instead, the application should work while a user keeps their head in a position that feels nat-
ural for completing a task. This requires the system to determine when a step has been completed
based on an image that contains most or all of the full object being assembled. We accomplish
this using a two stage process, where the system first finds the region of an image that contains
the sub-assembly involved in a step. It then crops the image around this region, and the next
model determines if the step has been completed based on the cropped image.

This process is similar to the two stage process used by Gebru et al. [42]. The first stage
involves finding the region of the image that contains the subassembly that a user is working on,
using Faster R-CNN [75]. Next, the image is cropped around this region, and the cropped region
is classified using Fast MPN-COV [61]. There is one Fast MPN-COV model per subassembly.
The Fast MPN-COV model has one label for each step of the task that is part of this model’s
subassembly. The classification result therefore indicates the step of the task that is shown in an
image. The application considers a step to be complete when an image from the camera feed
is classified as the label corresponding to the next step. The architecture for our applications is
shown in Figure 3.3. Chapter 6 compares the accuracy of two stage process with single object
detection and image classification DNNs.

16

3.2.1 Re-Using Labels
A single label may correspond to multiple steps of a task. For example, a kit might contain
two identical subassemblies that get assembled on their own, before being connected to the rest
of the kit. The steps required to assemble both of these subassemblies will be identical. The
subassemblies do not get connected to the rest of the kit until after they have been assembled,
so there will not be any visible differences while the user is assembling one or the other. The
application can therefore use the same sequence of outputs from a computer vision model for
both subassemblies. However, two consecutive steps cannot share the same label.

The application considers a step to be completed when images are classified with the label
corresponding to the next step. If the next step had the same label, the application would think
that the user completed a step immediately after the step was started. For example, imagine that
a developer trained a fine-grained image classifier that had a label corresponding to two curved
metal bars attached together. Creating an application with two consecutive steps that asked the
user to show the attached two bars would not work. The application would see that the second
“attached two bars” step was completed immediately after the first one, because the completion
of both steps corresponds to the same output from the image classifier. This issue is illustrated
in Figure 3.4.

The issue described in this section results from the fact that some visual change needs to
occur in order for the application to determine that a step has been completed. A developer
with two consecutive identical steps can likely combine the instructions from both steps together
into one single step. Another option is to break up the consecutive steps by adding a step in
between them that asks the user to clear everything off the table and then show the empty table
to the camera. The only requirement is that the completion of each step must cause some visual
change to occur, because this is the method the application uses to determine when a step has
been completed.

3.2.2 Training
We performed transfer learning from pre-trained models, rather than training models from scratch.
Our Fast MPN-COV models were pre-trained on ImageNet 2012 [76] and our Faster R-CNN
models were pre-trained on COCO 2017 [62]. We used a PyTorch [71] implementation of Fast
MPN-COV and a TensorFlow [20] implementation of Faster R-CNN.

3.2.3 Error Correction
Developers can train fine-grained classifiers to recognize specific mistakes that a user of a WCA
application might make when trying to complete a task. An error state requires training data, the
same way other steps of the task do. When a frame gets classified as depicting an error state, the
user is given instructions about how to correct this. Chapter 5 provides further discussion about
handling errors with WCA applications.

17

Figure 3.4: The issue with identical consecutive steps. The sequence of steps depicted in the
top row cannot be supported by our techniques because the two consecutive steps are identical.
There is no visually apparent difference between the two images in the top row. The sequence
of steps depicted in the bottom row is acceptable because the identical steps are not consecutive.
The image in the middle is different from the images on the right and left.

3.2.4 Development Tools
We expanded the Ajalon tools [72] to support the two stage process described in §3.2. Ajalon
previously only supported a single object detector, which was sufficient for toy examples such as
the sandwich described in [30]. However, more complex assembly tasks require the use of mul-
tiple object detectors and multiple fine-grained image classifiers. Our improvements to Ajalon
allow developers to have the application use different computer vision models as a user pro-
gresses through a task. This results in a single application that will automatically start giving
users instructions for the next sub-assembly after they have completed the previous one.

3.3 Our Applications
To validate our approach, we developed WCA applications for three real assembly tasks. We
trained models for these applications using real videos that were recorded using a smartphone.
The videos were manually annotated with bounding boxes using Intel’s Computer Vision Anno-
tation Tool (CVAT). We cleaned up our dataset by computing the perceptual hash values of every
image. For all sets of images with identical perceptual hash values, we removed all but one of
the images. This resulted in a set of images that all had unique perceptual hash values. We have
integrated CVAT and code to remove frames with identical perceptual hash vales into the Ajalon
toolchain.

18

A

A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8

B
B-1 B-2 B-3 B-4 B-5

C

C-1 C-2 C-3 C-4

D

D-1 D-2 D-3 D-4

Figure 3.5: The steps detected by our Stirling Engine WCA application. The blue rectangles
represent subassemblies. Each subassembly corresponds to a different Fast MPN-COV model.

We have posted1 all of the artifacts required to run these applications, along with videos
showing them being used. We describe each application below in Sections 3.3.1 to 3.3.3.

3.3.1 Stirling Engine
The Stirling Engine WCA application guides users through disassembling a Stirling engine. Fig-
ure 3.1 depicts the fully-assembled Stirling Engine. This task requires 22 steps. All of the parts
are made out of metal, with the exception of one ring that is made out of silicone. Some steps just
require removing a single screw, and the engine looks very similar before and after these steps
have been completed. We split the task into four subassemblies, which are shown in Figure 3.5.

Several steps of the task involved removing screws from the engine. The labels for these
steps indicated the number of screws visible in the frame, rather than being unique to the specific
step of the task. For example, in Figure 3.6, the first and third steps were both given the label
“2 Black Screws.” The training script for Fast MPN-COV randomly flips images horizontally, so
we did not want the label to depend on the orientation of objects. The initial steps for this task
all require removing screws or flipping the engine to show screws that were previously occluded.
Therefore, every step changes the number of screws that are visible. Designing the workflow this
way made the computer vision tractable.

We found that illuminating the engine with a table lamp increased the accuracy of the appli-
cation beyond what we could achieve with overhead room lighting. We lit the object the same
way when capturing training data and using the application.

1https://cmusatyalab.github.io/roger-thesis/

19

https://cmusatyalab.github.io/roger-thesis/

2 Black Screws 2 Black Screws1 Black Screw 1 Black Screw

Remove 1 screw Flip Engine Remove 1 screw

Figure 3.6: Four states from our WCA application for a Stirling engine. The steps look visually
similar aside from the number of screws that are visible. The text in colored boxes are the labels
that our image classifier was trained on. Note that some different steps were given the same
label, but consecutive steps must have different labels. The text in the white boxes describes
the actions users take to complete a step.

We created a second version of the Stirling Engine application to guide users through assem-
bling the engine. This version used the exact same computer vision models as our application for
disassembly. However, the application requires the labels to be observed in the opposite order,
because the order of steps is reversed.

3.3.2 Ikea Cart
Our next application provides guidance for users assembling an Ikea Raskog utility cart. The
fully assembled cart is depicted in Figure 3.7. The task requires twenty steps to complete suc-
cessfully. However, the cart has two pairs of identical components that must be assembled the
same way. Therefore, four of the steps are repeats of earlier steps. The application uses the same
label in cases where steps are identical. Thus there were 16 labels, that each corresponded to
the 16 unique steps. In addition, we developed the application to detect one error state, so there
were 17 possible labels that our models could output. We split the task into three subassemblies,
which are shown in Figure 3.8.

The repeated steps are repeated in pairs. For example, step 1 is performed, followed by step
2. Then both are repeated. Repeating steps in pairs avoids the situation where two consecutive
steps correspond to the same label from the classifier.

3.3.3 Toy Car
The last application guides users through assembling a model car. The fully assembled model car
is shown in Figure 3.9. This task requires 28 steps, which we split into 6 subassemblies. These
steps and subassemblies are shown in Figure 3.10. The computer vision models output a unique
label for each step of the task.

20

Figure 3.7: The fully assembled utility cart

21

A

A-1 A-2 A-3 A-4 A-5 A-6 A-7

B

B-1 B-2 B-3 B-4

C

C-1 C-2 C-3 C-4 C-5 C-6

Figure 3.8: The steps detected by our Ikea WCA application. The blue rectangles with rounded
corners represent subassemblies. The sequences of steps in white rectangles ([A-1, A-2] and
[A-3, A-4]) are repeated. The error state (B-4) appears in the red circle.

22

Figure 3.9: The fully assembled model car

23

A

A-1 A-2 A-3 A-4 A-5

B

B-1 B-2 B-3

C

C-1 C-2

D

D-1 D-3D-2

E

F

E-1 E-2 E-3 E-4 E-5 E-6 E-7

F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8

Figure 3.10: The steps detected by our Toy Car WCA application. The blue rectangles represent
subassemblies.

24

Figure 3.11: Images of the toy car and Ikea cart kits, before and after being cropped

3.4 Implementation Details
We captured images at 1920x1080 pixels, and transmitted these to the cloudlet at their full reso-
lution. This is the highest resolution that Android CameraX’s ImageAnalysis use case supports.
After processing the images with Faster R-CNN, the application crops them around the region
that likely contains the object. The cropped image is resized to 448x448 pixels and then classi-
fied by Fast MPN-COV. By starting with a large initial image, we ensured that the cropped image
would be at least 448x448 pixels. Figure 3.11 shows examples of images before and after being
cropped.

The code for many computer vision models is written to run inference on batches of images
that are stored on disk. The torchvision package contains functions for loading images from
disk, in batches. Using these models in WCA applications requires modifying the code to run
the models on images being transmitted over the network, one by one. The input batch size must
be set to 1, because anything larger would require building up a queue of images that would be
run through the model together as a single input. A larger batch size would improve the frame
rate for inference, but hurt the latency in an interactive application.

Live data must be as similar as possible to the data that the models are trained on. For exam-
ple, converting a JPEG image to raw pixel values using OpenCV will result in slightly different
values than using Pillow will. We observed that our Fast MPN-COV model performed signif-
icantly better with images opened using Pillow than with images opened using OpenCV. The
training images were opened using Pillow, but we did not expect opening JPEGs with OpenCV
and Pillow to result in different color values.

Processing images while a user is in the middle of a step wastes bandwidth and computing
resources on cloudlets. In addition, it might lead to an application mistakenly believing that
a step has been completed before it actually has been. We did not train our models on any

25

(a) Two Images with identical perceptual hash values

(b) An image with a perceptual hash value that is different from the images in Figure 3.12a

Figure 3.12: Images with identical and different perceptual hash values

images of the assemblies in partially completed states. We experimented with a filter that will
only run images through the DNNs when a certain number of consecutive frames have identical
perceptual hash values. This essentially means that a certain number of images in a row all had
to look very similar. This will only occur when there is no motion in the frame, and the camera is
not moving. Figure 3.12 shows examples of images with different and identical perceptual hash
values. Requiring a sequence of images to look similar reduced the number of frames that had to
be processed using DNNs, and it helped avoid cases where the application erroneously detected
completed steps. This technique worked well for WCA applications running on a smartphone
mounted to a tripod. But it was less effective for WCA applications running on a Google Glass,
due to the motion of the user’s head. Instead, we required a sequence of sequential images
to be assigned the same label by the classifier. This helped avoid cases where the application
mistakenly believed a step had been completed while a user was still in the middle of it. But it
did not save computing resources on the cloudlet, because every frame had to be processed.

3.5 Guidelines for WCA Developers
We spent a significant amount of time planning out our applications before we began any devel-
opment work. The first part of planning involved establishing what each step of the task should
be. In particular, a developer should take pictures of what each completed step should look like
and write the text for each instruction.

3.5.1 Subassemblies
Steps that begin with showing a new part to the camera should be the start of a new subassembly.
For example, steps A-1, B-1, C-1, and D-1 in Figure 3.10 all start with a new part. Steps that
involve rotating or repositioning the object being assembled were sometimes chosen as the start

26

of a new subassembly. Steps B-1 and B-4 in Figure 3.5 both involve rotating or repositioning,
but we chose to make step B-1 the start of a new subassembly while we did not make step B-4
the start of a new subassembly. None of our applications used a step that involved adding a part
to the object being assembled as the start of a new subassembly.

3.5.2 Training Data
It is important to collect training data for each step of the task using a variety of camera angles,
backgrounds, and lighting conditions. After training a model, test it on new data that was not
included in the training or validation sets. If the performance of the model is not acceptable,
create a new training set that includes test images that were classified incorrectly. Then train a
new model using this set. The new model should then be evaluated on a different fresh test set
that has not been used for anything.

27

28

Chapter 4

Accelerate WCA development with
synthetic training images

Training the DNNs that are used by WCA applications for physical assembly tasks requires
thousands of labeled images. Capturing and labeling these images requires substantial effort.
Bounding boxes must be drawn around the region of each image that contains the object being
assembled. The bounding box must then be labeled with the step of the assembly process that
is depicted in the image. Collecting and labeling a training set of images is a major barrier to
entry for anyone who wants to develop a WCA application for a new task. For example the
Ikea Cart application described in Section 3.3.2 had 17 different states. Labeling images to train
the models used by this application took over 50 person hours using Intel’s Computer Vision
Annotation Tool (CVAT). This time-consuming and labor-intensive aspect of WCA is the biggest
bottleneck to its widespread adoption. Enabling developers to build WCA applications without
collecting or labeling training images would significantly help make WCA applications practical
for real world tasks.

Previous papers have proposed the use of synthetically generated images for training sets. In
this approach, pre-labeling is done by construction [51, 85, 47, 50, 73, 84, 34]. Since programs
that generate synthetic images have information about the objects that are visible and their lo-
cations, there is no need for manual input of this information. In addition, synthetic images of
objects can easily be rendered in a wide variety of different lighting conditions and environments.
In contrast, capturing real images of objects in a variety of conditions requires the images of the
object to be captured in every such environment. Overall, the use of synthetic data may save
considerable manual effort.

This chapter presents our experience training DNNs for WCA applications for three assembly
tasks, using synthetic training images.

4.1 Meccano Erector Kit
In this section, we ask how well synthetic images work for creating a WCA application for
assembling a Meccano Erector Kit. We use the following procedure to answer this question. We
first generate a set of synthetic (pre-labeled) images using the Unity Perception package [27].
Unity is a video game engine that includes 3D graphics rendering capabilities and CAD tools.
The Perception package was created by Unity to enable the creation of object detectors from

29

Figure 4.1: Examples of synthetically generated images

CAD models instead of real images that had to be labeled with bounding boxes. This package
can create thousands of images, and it will render the subassembly in a different location in each
one. It outputs a label file with each image, that contains the coordinates that the subassembly
in that image was rendered at. This eliminates the need to manually label images with bounding
boxes.

After generating the synthetic images with Unity, we train computer vision models on this
data. Next, we collect and manually label a set of real images for the same task, and then train
computer vision models on this data. Finally, we compare the accuracy of these two families of
models on a held-out test set of real images. Our results show that models created with a training
set size of 75,000 synthetic images perform slightly better than models created with roughly
15,000 real images. However, this ordering is reversed when fewer synthetic images are used for
training.

The Meccano Kit assembles into a model bike. The fully assembled model is depicted in
Figure 4.2. It is made from over 50 parts. However, to limit the amount of work required to
separate the CAD model into subassemblies, this work will only separate the bike into three
subassemblies. The fine-grained classifiers we trained for this kit had 5 output labels. Three
of the labels were for the individual subassemblies, and the remaining two were for the steps
required to put the subassemblies together.

4.1.1 Generating Data
We found a computer-aided design (CAD) model for the Meccano kit on the community website
GrabCAD1. This CAD model appears to have been created to replicate the physical Meccano
pieces, rather than being the same model that was used to manufacture the pieces. In particular,
we noticed a number of differences between the CAD model and the actual Meccano parts. We
selected textures for each part of the model, trying to match the appearance of the physical object
as closely as possible. We generated synthetic images using the Unity Perception Package [27].
The default setup for this package fills the background of the images that are generated with
objects that the network should learn to ignore. Figure 4.3 shows an image generated using this
default setup.

1https://grabcad.com/library/meccano-9550-002-1

30

https://grabcad.com/library/meccano-9550-002-1

Figure 4.2: The fully assembled model bike

31

Figure 4.3: A synthetic image showing part of the bike model. The background is filled with
distractor objects that the network should learn not to identify. The background objects are part
of the Unity Perception package, and were not customized for the Meccano kit.

32

Figure 4.4: Bounding boxes with and without padding. The white bounding box has no
padding. The Unity perception package uses bounding boxes without padding. The green
bounding box has padding. Our dataset uses bounding boxes with padding.

The Unity Perception Package allowed us to make some of the individual parts of the CAD
model invisible. This enabled us to generate synthetic images for each step of the task. For
a given step, we specified the parts of the subassembly that were visible. We were then able
to generate thousands of synthetic images for this step. The perception package generated a
label file for each synthetic image, that specified the coordinates of a bounding box around the
subassembly and a label name corresponding to the step of the task that was shown in the image.

We trained a Faster R-CNN object detector using this data. The Unity package creates a
file with bounding box and label information, and we converted this to the format used by the
TensorFlow Object Detection API. The perception package drew bounding boxes tightly around
the objects. We added padding to these bounding boxes, to make them more like our hand-
drawn labels (which also had some padding). Figure 4.4 shows bounding boxes with and without
padding. Training the object detector on images with padding resulted in the object detector
returning bounding boxes with some padding. This resulted in higher intersection over union
scores when evaluating our object detectors on test data with hand-drawn labels.

33

Figure 4.5: Our first attempt at making our synthetic images look more realistic. This image is
meant to look like an object sitting on a wood floor. The models need to work on real images,
so the synthetic images should look as realistic as possible.

Unfortunately the training process for this model did not converge. This might have occurred
because it is difficult to differentiate the object we want to detect from the brightly colored
distractor objects in the background. We attempted to fix this issue by removing the background
objects from the image, and then we tried to make the objects look like they were sitting on
a wooden floor. We accomplished this by placing the object at the bottom of the 3D scene in
Unity and texturing the floor of the scene with an image of wood from Adobe’s collection of
stock images. Figure 4.5 shows one of these images. The Faster R-CNN model trained on this
data converged; however, it performed poorly. One issue that we noticed was the object detector
mistakenly detected lines in the wood floor as being a model bike assembly. Figure 4.6 shows an
example of such an erroneous detection.

We were able to correct this issue by using 15 additional background textures and randomiz-
ing the lighting in the scene and the position of the camera. We did not conduct an experiment
to determine the minimum number of background textures that are required to achieve good per-
formance. We have posted our code2. Figure 4.7 shows some examples of this data. Figure 4.8
shows some of the background images that we used.

After training the Faster R-CNN object detector to find the location of a subassembly, we
trained a Fast MPN-COV classifier to determine the step of the task that is shown in the region
found by the Faster R-CNN model. Henceforth, we will use the term model pair to describe a
Faster R-CNN object detector and a Fast MPN-COV classifier created using the same training
set. The two stage process was required to achieve acceptable accuracy. Section 6.2.1 examines
using a single model instead of the two stage process.

2https://github.com/exiaohuaz/data-gen

34

https://github.com/exiaohuaz/data-gen

Figure 4.6: Our model incorrectly detected a line in the floor as an object of interest. The green
bounding boxes are regions of the image in which the model detected an object.

Figure 4.7: Synthetically generated images from our final set. The models trained on this data
performed well.

35

Figure 4.8: Examples Images from Adobe Stock that we used as background textures

4.1.2 Results
We evaluated our model pipelines based on accuracy, which is the percentage of images in the
test set that were classified correctly. This is equivalent to both top-1 accuracy and micro F1
score. Classification tasks are typically evaluated using top-K accuracy, which looks at the K
labels that the model outputs as being most likely. If any of the K labels are correct, the output
is considered correct. The value of K is varied based on what seems reasonable for the specific
task. Setting K to 5 makes sense for a dataset like Imagenet, with 1000 different labels. However,
all of our models were trained on labels for a single subassembly. Each subassembly was built in
under 10 steps, so our models had fewer than 10 output labels. In addition, a WCA application
can only give a user one instruction at a time. Our classifiers must reliably output the one correct
label in order to be useful. We thus chose top-1 accuracy as our evaluation metric, rather than
selecting a larger value of K.

All of our training and testing data relates to uncluttered environments with good lighting.
We assume that a human using a WCA application can correct environmental issues to reduce
classification complexity. For example, the user can increase the amount of light shining on
an assembly, or remove clutter from the background. Assuming near-optimal environmental
conditions for a WCA assembly task is thus reasonable.

We trained one model pair on real data that was manually labeled with bounding boxes and
class labels (15,477 images). The remaining model pairs were trained on synthetic data sets
of varying size (12,000, 25,000, 50,000 and 75,000 images). The labels for these images were
generated by Unity. We compared the accuracy of these model pairs.

Our test set consists of 4490 real images that are not included in any training set. Table 4.1
presents our results. We observe that the model trained on real data performs better than the
models trained on synthetic datasets with 12,000, 25,000, and 50,000 images. However, this
relationship is reversed for a model trained on 75,000 synthetic images. Somewhere between
50,000 and 75,000 images lies the cross-over point at which the increased number of synthetic
images more than compensates for their lower realism. Changing the quality of the synthetic
data, changing the quality of the real data, or changing the amount of real data could change the
location of the cross-over point.

36

Dataset Type Training Set Size Accuracy
Synthetic 12,500 69.6%
Synthetic 25,000 79%
Synthetic 50,000 84.1%
Synthetic 75,000 89%
Real 15,477 84.5%

Table 4.1: Classification results for model pairs trained on data for the Meccano kit. Accuracy
is the percentage of our 4490 test images that the model pairs classified correctly.

4.2 Toy Plane
The next kit we generated synthetic images for was a toy plane that was made up of 3D printed
plastic parts. This kit contained six unique parts, and required four steps to assemble. Figure 4.9
shows what the physical kit looks like when it is fully assembled. Figure 4.10 shows the CAD
models for the individual parts while Figure 4.11 shows the CAD models for the assembly steps.

We downloaded the CAD file for this kit from the community website Cults3, and then 3D
printed the kit using this file. We will refer to objects generated from a CAD model that we have
access to as being “born digitally.”

We captured real images of the 3D printed parts using a smartphone camera, labeled these
images with CVAT [1], and trained a model pair on this data. A review of the labeling confirmed
that there were no errors. Next, we generated synthetic training images using the Unity Percep-
tion Package. Figure 4.12 contains examples of these images. Afterwards, we trained model
pairs on sets of these synthetic images, with varying sizes.

All of our model pairs for the toy plane were tested on a set of 14,996 real images that was
separate from any of the images used during training. The results of these tests are shown in
Table 4.2. All of our model pairs that were trained on synthetic images performed better than
the model pair trained on 39,643 real images. This was different than what we observed with
the Meccano kit. The model pair trained on 75,000 synthetic training images of the Meccano kit
outperformed the model pair trained on real images of the Meccano kit. However, the model pair
trained on real images of the Meccano kit outperformed all of the model pairs trained on fewer
than 75,000 synthetic images. One possible reason that synthetic data was more effective for
the toy plane than the Meccano kit is that training on synthetic data might be more effective for
objects with simpler surfaces. The toy plane is made out of simple plastic, while the Meccano
kit is made out of more complex metals. The model trained on 12,500 synthetic images might
have gotten high accuracy on our test set because the toy plane’s parts are all made out of non-
reflective plastic.

To further investigate why all models trained on synthetic images of the toy plane outper-
formed the model trained on real images, but the model trained on real images of the Meccano
kit outperformed some of the models trained on synthetic images, new training and test sets of
real images of both kits should be collected and labeled. The experiments should be repeated

3https://cults3d.com/en/3d-model/game/toy-plane-assembled-by-bolts-and-nu
ts

37

https://cults3d.com/en/3d-model/game/toy-plane-assembled-by-bolts-and-nuts
https://cults3d.com/en/3d-model/game/toy-plane-assembled-by-bolts-and-nuts

Figure 4.9: The fully assembled model plane kit. All parts are 3D printed plastic.

Figure 4.10: CAD models for the individual model plane parts

Figure 4.11: CAD models for the model plane assembly steps

38

Figure 4.12: Synthetically generated training images for the toy plane kit

Dataset Type Training Set Size Accuracy
Synthetic 12,500 87.7%
Synthetic 25,000 89.3%
Synthetic 50,000 90.0%
Real 39,643 76%

Table 4.2: Classification results for model pairs trained on data for the toy plane. Accuracy is
the percentage of our 14,996 test images that the pipeline of models classified correctly.

with this new data, in order to see if the same trend still occurs. If the relative performance of
the models trained on real data still differs, the experiment should be repeated with a different
pair of kits. As with the toy plane and Meccano kit, one kit should be made out of simple plastic,
while the other kit should be made out of complex metals.

As we observed with the Meccano kit, the accuracy of our models for the toy plane increased
with the size of the training set. However, the increases in accuracy were less dramatic than the
increases in accuracy for the Meccano kit, because the model pair trained on the smallest dataset
achieved a high accuracy.

4.3 Phone Sanitizer
The final kit we generated synthetic training data for was a sanitizer for a smartphone. This kit
contained a large metal base and several plastic parts. Figure 4.13 shows the kit fully assembled.
The kit contained four unique parts, and there were five steps required to assemble it. Thus there
were 9 output labels from the fine-grained classifier.

As with the toy plane, this kit was born digitally, and we had access to the CAD files that the
parts were manufactured from. We generated synthetic training images for the sanitizer using
the Unity Perception [27] package and Autodesk A3D [89]. Figure 4.14 shows images from the
training set that was generated using Unity while Figure 4.15 shows images from the training
set that was generated using A3D. Both sets of data were used to train model pairs that were
then evaluated on 60,129 real images. As with all data that we labeled in this work, we reviewed

39

Figure 4.13: The fully assembled Phone Sanitizer

40

Figure 4.14: Synthetic images of the phone sanitizer, from the Unity Perception Package

all labeling and confirmed that there were no errors. We trained model pairs on different sized
datasets, as we did with our other synthetic datasets. The results from these evaluations are
presented in Table 4.3. The results from the models trained on images from A3D were noticeably
better than the model pairs trained on the Unity data. We again observed that model pairs trained
on larger datasets performed better.

Unity A3D A3D with Simple Textures
12,500 75% 89.6% 77.3%
25,000 81.2% 91.6% 76.8%
50,000 85% 92.9% 78.84%

Table 4.3: Classification results for model pairs trained on data for the phone sanitizer. The top
row of the table indicates the software used to create the dataset. The left column of the table
indicates the size of the training set. The values in the table are the percentage of our 60,129
test images that the pipeline of models classified correctly.

The textures of the sanitizer parts in the A3D images were more realistic than the textures of
the parts in the Unity images. In particular, the metal surfaces in the A3D images reflect light
more accurately than the metal surfaces in the Unity images. We hypothesized that the realistic
textures were responsible for A3D images resulting in models that were more accurate than the
Unity images. To verify this hypothesis, we generated a set of images using A3D that used much
simpler textures. Figure 4.16 shows examples of these images. We created three different sized

41

Figure 4.15: Synthetic images of the phone sanitizer, from Autodesk A3D

42

Figure 4.16: Images generated using A3D with simple object textures

training sets using these images. Table 4.3 lists the accuracies of models trained on these sets,
tested on the test set of real images. The accuracy was considerably lower than the models trained
on our original A3D dataset, with the same number of images. This supports our hypothesis that
realistic textures were responsible for the superior performance of the models trained on the A3D
images, when compared with model pairs trained on Unity images.

The model pair trained on 12,500 images was 0.5% more accurate than the model pair trained
on 25,000 images. This is a very small difference in performance, but it is unexpected. One pos-
sible explanation for this difference is that the 25,000 image dataset contained a set of particularly
problematic images that were not in the 12,500 image dataset. The images might have been prob-
lematic due to lighting or orientation of the subassembly. These problematic images might have
eliminated any benefit that the larger dataset offered. The model pair trained on 50,000 images
was more accurate than either of the model pairs that were trained on smaller datasets.

4.4 Discussion
Capturing and labeling training images for WCA applications is a time consuming process. Us-
ing synthetic images is less labor-intensive, and would simplify development of WCA applica-
tions. We have achieved promising results with this approach for three different assembly tasks.
These results offer the tantalizing promise that using synthetic data might eliminate the need to
manually capture and label images in order to develop WCA applications for assembly tasks.

Wang et al. [89] note several ways that A3D could be improved to make images look better.
The first change they propose is increasing the variation in how objects are positioned. Currently,
Auto3D renders all objects in a scene with a single texture. Wang et al. [89] propose an improve-
ment that would allow parts to be rendered with different textures. In addition, Wang et al. [89]
propose to increase the variation in camera positions used to render the scene. We believe that
all of these proposed changes, especially the improvements to camera positioning, could result
in better training data for the types of computer vision models that we use. In addition, software
tools liked Autodesk A3D and the Unity Perception package can be made easier to use. A devel-
oper must create individual CAD files for each step of a task. For example, if the models must

43

recognize a certain kit with a screw inserted and without that screw inserted, the developer must
create a CAD file showing the kit before this screw is removed and another CAD file showing
the kit after this screw is removed. Open Workflow Editor allows a developer to specify a task
using a flowchart. Adding the ability to specify the parts of a CAD model that get inserted or
removed during a task step would make it easier to develop WCA applications for kits that are
born digitally. In addition, integrating tools for automatic Assembly sequence planning [43] into
these programs would improve WCA application development.

After a developer has generated synthetic images, the number of manual steps required to
achieve a working WCA application is still very high. Autodesk A3D and the Unity Perception
package both output annotations in different formats. The developer must convert these into
the format used by the TensorFlow Object Detection API, and create another copy in the format
used by the Fast MPN-COV implementation. Afterwards, the developer must start training object
detectors and fine-grained images classifiers needed by the application. The developer must then
create a flowchart in Open Workflow Editor that specifies the task instructions and the models
that should be used at each step of the task. We are actively working to simplify this process by
automating the workflow of transformations.

44

Chapter 5

Escalation to Human Experts

The techniques presented in the previous chapters allow WCA applications to detect states that
the developer trains models to handle. The developer can provide example images of the object
after each step has been done correctly. However, there are many possible ways that an object
can be put together incorrectly. It is not possible to collect images of every mistake that someone
completing a task might make. People using these applications in the real world are going to
reach some states that the models were not trained for. As Dr. Reynold Xin once said, “A
machine learning model is only as good as the data it is fed [67].” Our models can signal to our
application that an image “looks most similar to this set of images from the training data.” These
models are not capable of a more general understanding, such as “the long brass piece is screwed
on upside down.”

Detecting all possible error states would require us to have examples of these states in our
training data. There is a combinatorial explosion in the number of error states, compared to
the number of correct states, so collecting training data for every possible error is not practical.
Instead, we handle errors that our models were not trained to recognize by having people com-
pleting tasks call a human expert from the application. Detecting all possible error states using
the computer vision techniques described in the previous chapters is impractical. However, al-
lowing users to call human task experts to correct errors is practical. Escalation to human experts
is thus a necessary component that helps make WCA applications practical for real world tasks.

When a user calls an expert, the user’s camera feed during these calls can be recorded, and
these recordings can provide data to train models to recognize these errors in the future. This
allows us to follow a DevOps strategy when developing these applications. A team of developers
can launch an initial version of a WCA application that detects a small number of error states.
As the application gets used, and people call in to get help with new errors, the developers can
improve the application to detect these errors. Over time, this process will increase the number
of error states that our application can detect.

45

5.1 Experts Without Automation
Several commercial products allow a remote human expert to help a user through an assembly
task. Examples of such systems include Microsoft Dynamics 365 Remote Assist [4], Webex
Expert on Demand [14], AMA XpertEye [17], and Vieaura [13]. The person completing the
task wears a headset with a camera, but the expert must be on a call with a single user for the
duration of an entire task. A task expert’s time is valuable. We believe that integrating wearable
cognitive assistance with human assistance will allow products like these to scale from requiring
experts to work one on one through each step of the task to enabling experts to help multiple
users concurrently.

5.2 Calls With Human Experts
The computer vision models that our applications use are not perfect. In order to handle cases
where a model makes a mistake, our applications allow the user to start a call with a human who is
an expert on the task being completed. The human expert sees a feed from the user’s camera and
they can talk the user through correcting problems. In addition, the expert can change the step
that the application thinks the user is in the middle of, and then the user can continue to receive
guidance from the application after the call ends. The application can also be modified to suggest
calling the expert, if a user has been stuck on a step for a certain amount of time. However,
additional research is required to determine what should trigger a suggestion to call the expert.
Potential options include triggering a suggestion after the application has seen a sequence of
frames with identical perceptual hash values, or simply a certain amount of time passing without
the user advancing a step. In addition, it might not be necessary to suggest calling the expert in
the first place, as users have the option to start the call at any point. Figure 5.1 shows options for
task guidance systems that use human experts.

When we train models for WCA applications, we consider each state of a task to be one
object. Open World Object Detection [55] is an active area of research into models that can learn
to detect previously unlabeled objects. However, this does not help with recognizing such an
object the first time it is seen. WCA applications need to handle all errors, even ones that have
not been seen before. A human who is an expert on the task can do this.

Correcting error states in WCA applications can be done on the order of tens of seconds to a
few minutes, unlike driving a car which might require sub-second response times. It’s perfectly
acceptable for the user to press a button to call for help from an expert, if the application does
not detect that a step has been completed after a certain amount of time. The user will then be
connected to someone who is an expert on this task. The expert will see the camera feed from the
headset and talk back and forth with the user to help them get back to a state that the computer
vision models can handle. The expert will also have the ability to update the application’s state,
so the user can continue receiving automated guidance from an earlier or later step after the call.
This workflow is depicted in Figure 5.2.

We connect users to task experts using Zoom, which offers SDKs for several platforms [19].
The user runs an Android application on a smartphone or Google Glass, which starts a call with
the expert using Zoom’s Android SDK. The human expert uses a web application that incor-

46

Completely from human experts
WCA Application

Source of
Guidance

Calling
for help

User Presses Button Application suggests calling

Microsoft Dynamics 365,
Cisco WebEx, other
commercial products

Our Work
Potential
Future
Work

Figure 5.1: The design space of remote expert assistance systems for assembly tasks. Our
system primarily guides users with a WCA application. Users must explicitly press a button to
start a call with a human expert.

Application fails to
recognize a
completed task step

User
presses
help
button

Call with
expert
starts

Expert
corrects
application
state

User Ends
Call

Automated
guidance
resumes

Figure 5.2: The workflow followed to request help from a human expert

porates Zoom’s Web SDK. The components of the system are shown in Figure 5.3. Figure 5.4
shows a screenshot of the application used by the human expert. The expert’s web application
allows them to see the user’s camera feed, as well as the step that the user is currently working
on. The application works for any WCA task that was created with Open Workflow Editor. The
code can be modified to use a different video calling service in the future.

47

User Server

DNN

Task Expert

WebSocket

Zoom

Figure 5.3: The components of a WCA application with human assistance. The user primarily
receives guidance from a server running a DNN. If the user reaches a point where the automated
assistance fails, they can switch over to receiving guidance from a human expert over a video
call.

Figure 5.4: A screenshot of the web application used by the human task expert. The feed from
the user’s camera is shown on top. The task steps are shown on the bottom. The step that the
application believes the user is currently working on is surrounded by the blue box. Clicking
on a different step will change the current step to the one that was clicked on.

48

5.3 Simulating Call Centers
Supporting a large number of people using WCA applications at the same time would require
multiple human experts answering support calls. It is important to employ enough experts to
ensure that wait times are reasonable. However, having too many experts working at one time
will create unnecessary expenses.

We developed a simulation that people running a call center for a WCA application could
use to determine the number of experts they should have available to assist the users who call for
help.

There is a large body of work examining wait times for call centers [29, 45]. Our work is
different because we simulate a user completing a task with a WCA application. A single user
might call the expert multiple times, if they get stuck on multiple steps. In addition, we model
user patience, to determine the amount of time a user will wait before calling the expert.

5.3.1 A Simple Model
Kendall’s notation is used to describe queuing models, by specifying the arrival process, the
distribution of service times, and the number of servers [57]. The arrival process determines how
the amount of time between calls to the expert should be sampled. The amount of time that a
user and an expert spend on a call with each other is the service time. The number of servers
refers to the number of experts.

M/M/N is an example of Kendall’s notation, where the queue has a Poisson arrival process,
a Poisson service time distribution, and more than one server. The time between events for a
Poisson arrival process follows an exponential distribution. An exponential distribution has the
probability density function λ∗e−λx when x is above 0. As shown in Figure 5.5, it takes the form
of a negatively accelerated decreasing function of x, where the rate of decrease is governed by λ.

The M/M/N model is sometimes called Erlang-C. It has been used to model call centers [29].
Expected wait times for an M/M/N model can be computed using Formula 5.1 and Formula 5.2,
which appear in [82]. These formulas compute precise values rather than approximations. Wait
time is the period between when a user requests help, and when the user gets connected to the
expert. We measure this in seconds. These formulas are a function of the variables listed in
Table 5.1.

E[Wait for M/M/N] =
Lq
λ

(5.1)

Lq =

[
1

(n− 1)!

(
λ

µ

)n
λµ

(nµ− λ)2

]
∗

 1∑n−1
m=0

1
m!

(
λ
µ

)m
+ 1

n!

(
λ
µ

)n (
µn

µn−λ

)
 (5.2)

49

Figure 5.5: The PDFs for the distributions that Simulation 1 samples from. PDF stands for
probability density functions. The inter-arrival times and service times were both sampled
from exponential distributions.

Lq Expected number of people waiting for an expert
λ Average arrival rate. Equivalent to 1/(inter-arrival time). We compute inter-arrival time

by taking the average of the inter-arrival samples from our simulation. The units for λ
are 1/seconds.

µ Average service rate. Equivalent to 1/(service time). We computer service time by
taking the average of service time samples from our simulation. The units for µ are
1/seconds.

n The number of experts working in the call center.

Table 5.1: The variables used to compute expected wait time for users in an M/M/N queue

Simulation 1

We compared the wait times from Formula 5.1 with a simple Monte Carlo simulation that we
will call Simulation 1. The simulation modeled users calling in, waiting until an expert in the call
center is available to speak, and then the user and the expert are on the call for a certain amount
of time. There is a single queue for all users waiting for an expert, and it is serviced in first in,
first out (FIFO) order. An expert will service the next call from the queue as soon as they finish
their current call. The M/M/N queue assumes that all call inter-arrival times are independent of
service times and other inter-arrival times. If a user had the option to give up on waiting, this
would violate the independence assumption. Our models do not allow the simulated users to give
up on waiting. We ran the simulation with different numbers of experts. The experiment was
repeated 10 times, with different random values, for each setting of the number of experts.

50

Inter-Arrival Times
Distribution Type Exponential
λ 1 / 60 seconds
Service Times
Distribution Type Exponential
λ 1 / 180 seconds

Table 5.2: Parameter values for the distributions that Simulation 1 samples from

The inter-arrival time between calls coming in was sampled from an exponential distribution.
The lengths of calls were sampled from an exponential distribution with a lower value of λ. These
two distributions are depicted in Figure 5.5. Samples were generated using SciPy [86]. Unfor-
tunately we did not have any real data to help inform the parameter values for our distributions.
Therefore, we picked parameter values that seemed reasonable based on our experiences with
WCA applications. Table 5.2 lists the parameter values used for Simulation 1. Figure 5.6 shows
how the waiting times from our simulation and the formula vary as we increase the number of
experts. The average arrival rate and average service rate that we plugged into Formula 5.1 were
computed based on the inter-arrival times and service times that were sampled by the simulation.
The wait times from Formula 5.1 match the wait times from the simulation well. This is expected
because Formula 5.1 computes precise values, rather than approximations.

Figure 5.6: The waiting times resulting from Simulation 1 and Formula 5.1. The time values
were sampled from the distributions shown in Figure 5.5. The number of users in the system
varies as described in Section 5.3.1.

The system occupancy, which is computed according to Formula 5.3, cannot exceed 1. Oth-
erwise, calls will arrive faster than they can be answered, and the queue will continue to grow the
longer the simulation is run. We thus only report results for cases where the system occupancy
is below 1.

51

ρ =
λ

Nµ
(5.3)

The number of users in the system at any given time was not fixed. Instead, it is a function
of the arrival process, service times, and the amount of time users spend waiting in the queue.
Increasing the number of experts while leaving all other parameters the same will decrease time
spent in the queue, which will reduce the number of users in the system overall.

5.3.2 Lognormal Service Times
Service times are exponentially distributed in the M/M/N model. However, two studies of logs
from actual call centers have shown service times to be lognormally distributed [29, 45]. A
normal distribution follows a bell curve, with mean µ and standard deviation σ. If ln (X) follows
a normal distribution, this means thatX is lognormally distributed. Figure 5.7 shows an example
of a probability density function for a lognormal distribution.

Figure 5.7: The PDFs for the distributions that Simulation 2 samples from. The inter-arrival
times were sampled from an exponential distribution. The service times were sampled from a
lognormal distribution.

The probability density function for a lognormal distribution is:

1

xσ
√
2π

exp

(
−(ln(x)− µ)2

2σ2

)
Lognormal service times require an M/G/N model, which has a Poisson arrival process, more

than one server, and allows for any distribution of service times. Brown et al. [29] examined the
expected call center wait time using Formula 5.4, which is an approximation of an M/G/N queue.

E[Wait for M/G/N] ≈ E[Wait for M/M/N] ∗ 1 + (σs ∗ µ)2

2
(5.4)

E[Wait for M/M/N] is computed according to Formula 5.2. σs is the standard deviation of
service times. µ is the average service rate. Note that the average service time is 1/µ.

52

Inter-Arrival Times
Distribution Type Exponential
λ 1 / 60 seconds
Service Times
Distribution Type Lognormal
σ 0.4 log(seconds)
µ log(180 seconds)

Table 5.3: Parameter values for the distributions that Simulation 2 samples from

Simulation 2

We modified Simulation 1 to sample service times from a lognormal distribution, but we kept
the exponential distribution for inter-arrival time samples. We will refer to this version of the
simulation as Simulation 2. The distributions for Simulation 2 are depicted in Figure 5.7, and
the parameters of these distributions are listed in Table 5.3. The results from the simulation
and Formula 5.4 are shown in Figure 5.8. The average arrival rate and average service rate
for Formula 5.4 were computed based on the inter-arrival times and service times that were
sampled by the simulation. The waiting times from the simulation were slightly higher than the
waiting times from the formula in every case. We believe this difference is due to the fact that
Formula 5.4 is just an approximation. In addition, the formula is approximating a queue with an
arbitrary probability distribution for service times. Thus it is more general than our simulation,
which specifically uses a lognormal distribution for service times.

Figure 5.8: The waiting times resulting from Simulation 2 and Formula 5.4. The time values
were sampled from the distributions shown in Figure 5.7. The system occupancy was greater
than 1 when there were fewer than 4 experts, so we do not have results for these cases for the
reasons that we describe in Section 5.3.1. The number of users in the system varies as described
in Section 5.3.1.

53

5.3.3 Simulating All Steps
We expanded our simulation to model users completing an entire task with a WCA application.
We will refer to this version as Simulation 3. Rather than starting at the point that a call comes
into the call center, we also model users receiving automated guidance and calling for help if
they get stuck. The simulation includes user patience, which is the amount of time a person is
willing to spend on a step, before they give up and call the expert. Most steps of the task will be
feasible. This means that a user will eventually complete the step if they spend enough time on
it. However, a user’s patience is finite. In addition, some steps might be infeasible, which means
that the user cannot complete them without calling the expert. Infeasible steps could be a result
of incorrectly manufactured parts, bad lighting, or poorly trained machine learning models. It is
therefore in the user’s best interest to give up on a step and call the expert at some point.

Simulation 3 models users from the point they begin the task. We will refer to the time that
the user starts the task as the entrance time. The amounts of time in between sequential entrance
times (which we will henceforth call inter-entrance times) are sampled from an exponential dis-
tribution. The number of users completing the task at any given point is a function of the arrival
process, and the lengths of time that it takes users to complete the full task. The simulation mod-
els users completing the task according to the process described in Algorithm 1. This process is
repeated for each simulated user. The simulation allows users to work in parallel. However, if
a user calls for help while all experts are busy, they must wait in a queue for service. As in the
previous simulations, all users wait in a single queue that is serviced in FIFO order.

for step in task do
sample patience length;
sample step feasibility;
if step feasibility is 1 then

sample step length;
if step length ¡ patience length then

Pause for step length;
User completes step successfully;

else
Pause for patience length;
User calls expert for help;

end
else

Pause for patience length;
User calls expert for help;

end
end

Algorithm 1: The process simulating one user completing a task using a WCA application

Simulation 3 samples from distributions used in existing literature. Patience length is sam-
pled from a generalized Pareto distribution. Probability theory considers patience lengths to be
extreme values [91]. A generalized Pareto distribution can be used to model extreme values.

54

The generalized Pareto distribution has parameters for location (µ), scale (σ), and shape (ξ). µ
is equivalent to the mode of a generalized Pareto distribution, rather than the mean. σ is not
the standard deviation of a generalized Pareto distribution. The probability density function of a
generalized Pareto distribution is:

1

σ

(
1 +

(
ξ ∗ x− µ

σ

))−(1/(ξ+1))

Xiong et al. [91] found a generalized Pareto distribution to be a good fit for samples of time
that people waited before crossing streets, while the crossing signal was telling them not to cross.

Step feasibility was sampled from a Bernoulli distribution. A Bernoulli distribution models
events with two possible outcomes. It uses a single parameter p, which is the probability of one
outcome. Probability values must sum up to one, so the probability of the other outcome is 1−p.

Step length was sampled from an exponentially modified Gaussian distribution. An expo-
nentially modified Gaussian random variable is the sum of two independent random variables;
one that is exponentially distributed and one that is normally distributed. Dawson [32] suggested
sampling response times from an exponentially modified Gaussian distribution. Figure 5.9 shows
the generalized Pareto and exponentially modified Gaussian distributions that were used.

When the sampled step feasibility value is 1, and the patience length value is smaller than the
step length value, the user will call the expert for help. This represents a user giving up on a step
that is feasible. One can increase the proportion of steps that a user will give up on by shifting
the step length distribution to the right and/or shifting the patience length distribution to the left.

Figure 5.9: The PDFs for the distributions that Simulation 3 samples from. Patience length is
sampled from a generalized Pareto distribution and step length is sampled from an exponentially
modified Gaussian distribution. Sampling from these distributions resulted in users giving up
on about 2.5% of feasible steps.

55

The samples from the exponential distribution that were used to determine Inter-entrance
times for users starting the task are shown in Figure 5.10. The times at which a user in our
simulation called for help are shown in Figure 5.11. We fit an exponential curve to both of these
sets of data. The R2 for the exponential fit was 0.99 for the inter-entrance times. This strong
exponential fit is expected, because these times were drawn from an exponential distribution.
The exponential fit for the inter-arrival times of users calling for help had an R2 of 0.983. This
indicates that Simulation 2, which simply models calls coming in with exponential inter-arrival
times, might be accurate enough for modeling call centers for WCA applications.

Figure 5.10: Inter-entrance time samples from Simulation 3. The inter-entrance time samples
for users starting the task are shown in blue. These were drawn from an exponential distribution.
We fit an exponential curve to this data, which is shown in red.

Figure 5.11: Inter-arrival times for help calls that resulted from Simulation 3. We fit an expo-
nential curve to this data, which is shown in red.

56

Step Lengths
Distribution Type Exponentially modified Gaussian
µ 60 seconds
σ 12 seconds
λ 1 / 15 seconds
Patience
Distribution Type Generalized Pareto
µ 100 seconds
σ 40 seconds
ξ 0.1
Step Success
Distribution Type Bernoulli
p 0.95
Inter-Arrival Times
Distribution Type Exponential
λ 1 / 60 seconds
Service Times
Distribution Type Lognormal
σ 0.4 log(seconds)
µ log(180 seconds)

Table 5.4: Parameter values for the distributions that Simulation 3 samples from

Servicing Calls

Our simulation sampled service times from a lognormal distribution. All of the parameters for
the distributions sampled from in Simulation 3 are shown in Table 5.4. The average waiting time
for users in our simulation is shown in Figure 5.12, along with the expected waiting times from
Formula 5.4. There was a huge variation in waiting time across different runs of the simulation
with five experts. However, this variation decreased substantially when we ran the simulation
with six experts. This makes sense intuitively, as there was more of a buffer to handle bursts of
calls coming in.

The simulation results are plotted against the times from Formula 5.4 in Figure 5.13. Fitting a
linear model to these values achieves an R2 coefficient of 0.86. This fit indicates that the waiting
times from the simulation are reasonably well correlated with the waiting times from the formula.

57

Figure 5.12: Waiting times from Simulation 3 and Formula 5.4. The standard deviation of
waiting times from the simulation was large when there were five experts. However, increasing
the number of experts decreased this standard deviation. The number of users in the system
varies as described in Section 5.3.1.

Figure 5.13: Waiting times from Simulation 3 plotted against times from Formula 5.4. The
waiting times in Figure 5.12 drop significantly when the number of experts is increased from 5
to 6. Thus there is a large gap between the points in this figure.

58

5.4 Extending to Real Call Centers
We did not have data for real workers completing WCA tasks and calling experts for help. We
therefore chose parameter values for the distributions that our simulations sampled from based
on our experiences developing and using WCA applications. In order to make our work helpful
for a practitioner staffing a call center for a real WCA application, we developed a tool that runs
our simulations based on real data for a specific WCA application. In order to use this tool, a user
inputs data samples collected from a call center. The required samples are lengths of task steps,
lengths of user patience, lengths of calls, inter-entrance times of workers, and the probability of
a user completing a step correctly.

The tool is available as a Google Colab notebook. Google Colab is a web based service for
running Python code. A Colab notebook can also be downloaded and run locally as a Python
script or a Jupyter notebook. We have posted the tool publicly1 under Version 2.0 of the Apache
License. All of the source code is available at that link. There is a version of the tool that allows
users to copy and paste data samples into a web form, and a second version that allows users to
upload data as CSV files. After a user uploads data, the notebook fits distributions to this data and
runs the simulation with samples from the newly-fitted distributions. The notebook generates a
graph similar to Figure 5.12.

5.5 Exploring Parameter Space
This simulation allows us to see how average wait time changes, when we modify one variable
and leave all other variables constant. Although the quantitative outcomes will depend on the
specific source distributions, which were parameterized here based on observation of previous
WCA applications, the results of these simulations illustrate the pronounced increases in wait
time that occur given a shift in critical parameters, such as greater incidence of infeasible steps,
reduced user patience, or inclusion of more long steps that lead users to call on the expert.

We ran these simulations with nine experts. We sample from the same distributions used in
Simulation 3. The simulation was run ten times for each variable value we tested.

5.5.1 Varying the Proportion of Feasible Steps
This experiment varied the proportion of steps that a user could complete. A feasible step is one
that a user can complete if they spend enough time on it. However, a user might choose to give
up and call the expert before the step is complete. Users are guaranteed to complete a feasible
step if they spend enough time on it. However, the user might actually give up and call the expert
before they have spent the time necessary to complete the step. An infeasible step cannot be
completed unless the user calls the expert. Results are shown in Figure 5.14. As the proportion
of infeasible steps increases, the average waiting time increases. This is because an increase in
the number of infeasible steps will increase the number of calls to the expert.

1https://cmusatyalab.github.io/roger-thesis/

59

https://cmusatyalab.github.io/roger-thesis/

Figure 5.14: Average wait times resulting from changing the proportion of feasible steps. These
wait times were fit by a second-order polynomial as shown, with an R2 value of over 0.99. This
indicates a steep cost as a WCA application is penetrated by infeasible steps, for example,
due to ineffective image processing or manufacturing error. As we describe in Section 5.5.1,
feasible steps are those that are completable, but a user may still give up on a feasible step and
call the expert.

5.5.2 Varying Patience Length
Patience length is the amount of time that a user is willing to spend trying to complete a step,
before calling the expert. The average waiting time that resulted from different average lengths of
patience are shown in Figure 5.15. Increasing average patience length will increase the number
of steps that users will complete on their own without calling the expert. The number of calls to
experts therefore decreases. Thus the average waiting time decreases as average patience length
increases.

5.5.3 Varying Length of Feasible Steps
This experiment varied the average amount of time that a user must spend in order to complete
a feasible step. Figure 5.16 shows the results of this. Increasing average step length increases
the likelihood that a step will take longer than a user’s patience length. This results in more calls
being made to the expert. Therefore, increasing average step length increases the average waiting
time.

60

Figure 5.15: Average wait times resulting from changing users’ simulated patience. Given the
current parameters, with nine experts available, the waiting times move from a scale of minutes
to hours when the patience length is doubled from 40 sec to 80 sec. A Generalized Pareto
distribution, which is what we use to sample patience lengths, is parameterized by its mode.
This is thus the parameter that we vary, in order to change patience length samples.

Figure 5.16: Average wait times resulting from changing the average step length. Step length
refers to the amount of time it took to complete a step that was feasible. See Section 5.5.1
for how we define a feasible step. Given the current parameters, with nine experts available,
doubling the average step length from 80 sec to 160 sec moved waiting times from essentially
no waiting to over 2 hours.

61

5.6 Limiting the Number of Active Users
WCA applications might be licensed for use by a certain number of people at any given time. We
will henceforth use the term “active users” to refer to the number of people using an application
at a given time. For example, an organization might buy a license for a WCA application that
supports 10 active users. If 10 people from this organization are using the application, and an
11th person tries to start using it, the 11th person will be given an error message saying that
the organization only paid for a license for 10 active users. This error message will prevent the
application from starting.

This licensing strategy has the advantage of limiting the resources required to support appli-
cation users. The licenses could be specific to a particular location. In this case, a provider could
provision cloudlet resources at that location in order to support the number of active users that
a license allows. In addition, limits on the number of active users make it easier to decide how
many human experts to have available in the call center.

We created a version of our simulation that included a limit on the number of active users.
We will henceforth call this version Simulation 4. Simulation 4 is identical to Simulation 3 while
the number of active users is below the limit. Once the number of active users reaches the limit,
new users will be unable to start the task. One of the active users must complete the task, which
will cause the number of active users to drop below the limit, before a new user will be allowed
to begin the task. Users attempt to begin the task according to the same Poisson arrival process
used in Simulation 3. However, if a user attempts to begin the task while the number of active
users is equal to the limit, they will leave the simulation without starting the task.

Figure 5.17 shows the average waiting times that resulted from running Simulation 4 with
different limits on the number of users. Figure 5.18 shows the number of experts that were
required to achieve certain average wait times for users in the queue.

Figure 5.17: Average wait times resulting from Simulation 4. We varied the number of experts
and the limit on the number of active users allowed in the simulation.

62

Figure 5.18: The number of users that were serviced under certain wait time thresholds. These
numbers were obtained from Simulation 4. As expected, the number of users increased as we
increased the number of experts.

5.7 Summary
In order to help users correct mistakes that they make completing an assembly task with the help
of a WCA application, we added a call functionality to our applications. Users can press a button
to request help from a task expert, who can see the user’s camera feed and talk back and forth
with the user. We developed and evaluated Monte-Carlo based tools to predict the number of
experts that must be available to help a given set of users.

63

64

Chapter 6

Device and Cloudlet Implementation

This chapter describes a new version of the Gabriel software framework that we developed for
WCA applications. Next, it examines DNNs that can be run on mobile devices, and how these
models can be used in WCA applications to reduce the bandwidth and latency consumed by
each WCA application user. The new software framework contains modular components that
allow developers to implement WCA applications in a scalable and maintainable way. Reduc-
ing bandwidth and latency consumption are critical for the scalability and practicality of WCA
applications in real world settings.

6.1 Software Framework
We developed a new version of the Gabriel software library for WCA applications [5]. The
primary function of this library is to transmit data from mobile devices to cloudlets, and to
obtain results in a timely manner for WCA, in spite of networking delays and cloudlet load.
WCA applications require responses shortly after a user completes a step, so we always want to
process the newest frame possible. We never want to build up a queue of stale data to process.
The library accomplishes this using a flow control mechanism similar to the one proposed by Ha
et al. [48].

6.1.1 Motivation
The library we developed replaces an earlier implementation. The code for this earlier implemen-
tation had become unmanageable. It was tightly coupled around sending single image frames,
and we wanted the ability to send chunks of consecutive frames in order to support activity recog-
nition in WCA tasks. We also needed multiple clients to share one cloudlet, which the old code
did not support. Developing a new version of the platform allowed us to use modern technologies
such as Python 3, WebSockets, and asyncio. A key goal with the new version of the platform was
making it easy to work with. We published server and client libraries to package repositories,
so that developers can easily include them in Python and Android code. Our code includes a
special case for Gabriel workflows that involve a single cognitive engine, thereby lowering the
implementation complexity of simple WCA applications.

65

6.1.2 Key Abstractions
We use the abstractions of “sources” and “cognitive engines.” A source is anything that produces
data on a mobile device. It could be a stream from a sensor such as a camera or microphone. A
source might also be a filter that runs on the device, analyzes all frames produced by a sensor,
but then only forwards some of these frames to the cloudlet. We use the term “early discard” to
refer to filters like this. A cognitive engine runs on a cloudlet and processes data. A cognitive
engine will process one frame of data at a time. A frame could be a single image, a short clip of
audio or video, or set of readings from a different type of sensor. Note that a frame refers to a
reading from one sensor, not multiple sensors.

All of the WCA applications we have developed just have a single cognitive engine pro-
cessing images from a single camera source. However, our framework supports workloads with
multiple sources and multiple cognitive engines. Multiple cognitive engines may consume data
from the same source, but we restrict each cognitive engine to consuming data from one source.
This reduces the complexity of cognitive engines.

Cognitive engines are all implemented in Python. Developers implement a single function
that takes a frame as its input parameter and returns a list of results when it completes. Cognitive
engines that do not need to return results to mobile devices can just return an empty list.

Flow Control

Our flow control mechanism is based on tokens. A token represents a frame that a client is
waiting to have processed. A cloudlet operator sets the number of tokens that are given to a
client. Clients have a set of tokens for every source. For example, if a client has two sources,
and the number of tokens on the cloudlet is set to 1, the client will be given one token for each of
the two sources. The cloudlet operator sets the number of tokens based on the amount of latency
that is acceptable for a given application. When a client sends a frame to the cloudlet, it gives up
a token for this source. The cloudlet returns the relevant token when the function processing the
frame returns. A client will drop all frames from a source, until it gets a token for this source.
Clients and cloudlets communicate using the The WebSocket Protocol [16], which is built on
TCP. Therefore, tokens will never be lost due to packet loss.

Applications that are very latency sensitive, such as wearable cognitive assistance, will be run
with a single token per source. Applications that can tolerate higher latency can be run with more
tokens. Multiple tokens will allow frames to be transmitted while the cloudlet is busy processing
other frames. This may cause frames to be buffered on the cloudlet, if the cognitive engine takes
a long time to process earlier frames. As a result, there might be a significant amount of time
between when a frame is captured and when it gets processed. However, using multiple tokens
does avoid periods where the cloudlet does not have any frames to process because it is waiting
for the next frame to be sent over the network. Increasing the number of tokens thus increases
the possible delay before a frame gets processed but reduces the amount of time the cloudlet is
idle. It also reduces the number of dropped frames. The number of tokens is thus a parameter
whose increase will increase the framerate for applications that can tolerate higher latency.

Consider a network with latency so high that transmitting a frame from a client to the cloudlet
takes longer than processing the frame on the cloudlet. If the number of clients is low, the cloudlet

66

operator can increase the number of tokens that clients are given. This will cause a queue of
unprocessed frames to form on the cloudlet. It will also cause clients to send a larger number of
frames to the cloudlet, rather than dropping them. However, the amount of time between a client
sending a frame, and receiving a result back for the frame will increase. It is therefore advisable
to run latency sensitive applications, such as WCA, with a single token per client.

When multiple cognitive engines consume frames from the same source, the token for a
frame is returned when the first cognitive engine finishes processing the frame. A Client will
only receive a result from the first cognitive engine that finishes processing a frame, and it will
not get additional results or tokens when other engines finish processing the same frame. Our
server library keeps a queue of input frames for each source. When multiple clients produce
frames from the same source, such as two smartphones both capturing images with an RGB
camera, these frames are put into the same queue. Figure 6.1 shows an example of how frames
are inserted into queues.

Client - 1

RGB Camera

Client - 2

RGB Camera

Server

Infrared Camera

Infrared Camera

Microphone

RGB Camera Queue

Infrared Camera Queue

Microphone Queue

Figure 6.1: Two Gabriel clients that produce frames from multiple sensors. The arrows repre-
sent frames being inserted into queues on the server.

One of our design goals for this new version of Gabriel was to ensure that frames get con-
sumed at the rate that the fastest cognitive engine can process them. An instance of Gabriel
running with a single cognitive engine that processes camera images at 30 FPS should return
tokens to clients at a consistent rate, with or without a second cognitive engine that processes
frames at 15 FPS. In other words, the addition of a slower cognitive engine should not change
anything from the client’s perspective. The rate tokens are returned is the same if Gabriel is run
with one fast cognitive engine, or if it is run with the same fast cognitive engine and a second
cognitive engine that is slower.

Our second goal was to ensure that cognitive engines do not get stale frames because they are
slow. If a fast engine processes multiple frames in the time it takes a slow engine to process one
frame, the slow engine should not be given all of the frames that were given to the fast engine.
This would create an increasingly large queue of stale frames for the slow engine.

We accomplish these goals by having two possible things happen when a cognitive engine
finishes processing a frame.

1. If the frame that was processed is the most recently removed frame from the queue, a new
frame is removed from the queue and sent to the cognitive engine for processing.

67

2. If the processed frame is the not most recently removed frame, no new frame is removed
from the queue, and the cognitive engine is sent the existing most recently removed frame.

This process is illustrated in Figure 6.2.

Frame 36

Most recently
removed frame

Cognitive Engine 2Cognitive Engine 1

Frame 36 Frame 35

Cognitive Engine 2 finishes processing Frame 35. It is given Frame 36, which is the most recently removed frame.

Queue

Frame 39 Frame 38 Frame 37

Frame 36

Most recently
removed frame

Cognitive Engine 2Cognitive Engine 1

Frame 36

Queue

Frame 39 Frame 38 Frame 37
Frame 36

Cognitive Engine 1 finishes processing Frame 36. A token is returned to the client that sent Frame 36. Frame 37 is
removed from the queue, and becomes the most recently removed frame. Frame 37 is also given to Cognitive Engine 1.

Frame 37

Most recently
removed frame

Cognitive Engine 2Cognitive Engine 1

Frame 37

Queue

Frame 39 Frame 38
Frame 36

Tim
e

Figure 6.2: Two cognitive engines consuming frames from the same queue

A cognitive engine finishing processing the most recently removed frame represents this
cognitive engine being the fastest. However, this process still works if the amount of time that
cognitive engines take to process frames varies, and the fastest engine changes. The decision is
solely based on whether or not the frame that has just been processed is still the most recently
removed frame.

Workflow

Almost all of our applications use a single cognitive engine. Our server code runs workflows
like this as a single Python program. A WebSocket server is run in the main process, and the
cognitive engine is run in a separate process using Python’s multiprocessing module. Inter-
process communication is done using the multiprocessing module’s Pipe function. For workloads
that require multiple cognitive engines (such as the one depicted in Figure 6.3), the WebSocket
server is run as a standalone Python program and each cognitive engine is run as a different
Python program. The Python programs communicate with each other using ZeroMQ [18]. All
Python programs can be run on a single cloudlet, or they can be run on different cloudlets.

We have developed client libraries for Python and Android. These include networking com-
ponents that communicate with our server code using WebSockets. The libraries also contain

68

Client

Sensor

Client

Sensor

Filter

Server

Cognitive
Engine

Cognitive
Engine

Cognitive
Engine

Display

{
ZeroMQ

{WebSockets

Figure 6.3: A Gabriel workflow with two clients and three cognitive engines

functions to capture images with a camera and transmit the latest frame whenever a token is avail-
able. The Python library uses OpenCV [28] to capture images while the Android library uses
CameraX [3]. Our Python code has been published to The Python Package Index (PyPI) [10, 8]
and our Android code has been published to Maven Central [2].

6.2 Leveraging Mobile Device Hardware
This section considers running shifting some (or all) of the computations for WCA applications
from cloudlets to mobile devices. This leverages on-device computation to reduce bandwidth
and cloudlet usage.

6.2.1 Accuracy Comparisons
We compare the accuracy of models and model pairs that developers can use in WCA applica-
tions. Some of these models can be run directly on mobile devices or on cloudlets, while others
can only be run on cloudlets.

Running a Single Model

In an attempt to develop extremely lightweight versions of our applications, we considered using
a single DNN, rather than the pipeline described in §3.2. We used data from four of our appli-
cations, which is summarized in Table 6.1. The training set contains images that were labeled
with a bounding box around the subassembly. The test set contains images that are distinct from
the training set, but were not labeled with bounding boxes. WCA applications need to indicate
the step of a task that is shown in a camera feed, but they do not need to provide bounding box
coordinates for any parts in the image. Our evaluation thus did not examine bounding box coor-
dinates, so we did not label any test images with bounding boxes. All images in the training and
test sets were assigned a class label, indicating the step of the task that was shown in the image.

69

Set Size
Name Description Training Test
Stirling Assemble a heat engine from metal parts 9598 10010
Meccano Build a model bike from metal parts 15477 4490
Toyplane Build a model helicopter from 3D printed plastic parts 55000 14996
Sanitizer Assemble a sanitizer for a smartphone from metal and plastic

parts
49956 60129

Table 6.1: A summary of the data used for the experiments in Chapter 6. Set sizes are measured
in number of images. Each dataset corresponds to one of our WCA applications.

Meccano Stirling Sanitizer Toyplane
Resnet 50 69.8% 26.3% 68.3% 56.4%
EfficientDet-Lite0 75.2% 53.7% 79.3% 51.1%
EfficientDet-Lite1 71.1% 53.8% 84.1% 63.5%
EfficientDet-Lite2 75.2% 57.8% 84.9% 59.8%
Fast MPN-COV 73.5% 52.0% 84.0% 78.0%
Faster R-CNN 72.3% 50.7% 91.0% 67.5%

Table 6.2: Classification accuracy for standalone DNN models. Accuracy is the percentage of
images that the model classified correctly. The highest accuracy for each application is in bold.

For each application, we trained a Resnet 50 [49] image classifier, three different sized Ef-
ficientDet [83] object detectors, a Fast MPN-COV [61] classifier, and a standalone Faster R-
CNN [75] object detector. We then evaluated these models on the test set for the relevant appli-
cation. When evaluating object detection results, we ignored bounding box coordinates and just
checked if the class label for the detected object with the highest confidence score was correct.
Table 6.2 lists the accuracy of these models.

Running a Pipeline of Models

The results in Table 6.2 leave a lot of room for improvement. We next evaluated an object detector
and an image classifier used in a pipeline, as described in §3.2. Our standalone image classifiers
were trained and tested on uncropped images, while the image classifiers in our pipeline setup
were trained on images that were cropped to just contain the subassembly. When testing the
pipeline, we ran the object detector on uncropped images. Then, we cropped the image around
the bounding box returned by the object detector, and then ran the image classifier on this cropped
image. Figure 6.4 shows examples of cropped and uncropped images. The results of these
pipelines are presented in Table 6.3.

The accuracy of the best pipeline was better than the accuracy of the best standalone DNN
for all of our applications. Faster R-CNN and Fast MPN-COV was the best pipeline for all of
our applications except Stirling, where EfficientDet-Lite2 and Resnet 50 worked better. This
highlights the need for WCA application developers to determine the models that work best for
their specific application.

70

Figure 6.4: Images showing steps from the Stirling and Meccano tasks. Uncropped images are
on the left and cropped images are on the right.

Meccano Stirling Sanitizer Toyplane
EfficientDet-Lite0 and Resnet 50 75.0% 85.1% 87.9% 69.8%
EfficientDet-Lite0 and Fast MPN-COV 82.0% 78.4% 79.3% 77.2%
EfficientDet-Lite1 and Resnet 50 74.6% 70.3% 87.7% 70.9%
EfficientDet-Lite1 and Fast MPN-COV 81.7% 66.6% 79.3% 77.7%
EfficientDet-Lite2 and Resnet 50 75.0% 91.0% 89.1% 70.1%
EfficientDet-Lite2 and Fast MPN-COV 81.5% 86.0% 80.6% 76.6%
Faster R-CNN and Fast MPN-COV 84.5% 80.9% 92.9% 81.9%

Table 6.3: Classification accuracy for pipelines. Pipelines consist of an object detector, fol-
lowed by an image classifier. Accuracy is the percentage of images that the model classified
correctly. The highest accuracy for each application is in bold.

71

Device Google Glass Enter-
prise Edition 2

Magic Leap 2 Vuzix Blade 2

Year Launched 2019 2022 2022
Weight 51 g 260 g 93 g
Computing Hardware Qualcomm Snap-

dragon XR1
AMD Zen 2 and
AMD RDNA 2

Quad Core ARM
CPU

External Compute Pack No Yes No
Spatial Mapping No Yes No

Table 6.4: The smart glasses that we profiled our applications on. The values in the “Computing
Hardware” row came from the tech specs advertised by the device manufacturer.

Google Glass EE 2 Magic Leap 2 Vuzix Blade 2
EfficientDet-Lite0 and Resnet 50 480 ± 14 161 ± 3 2031 ± 27
EfficientDet-Lite1 and Resnet 50 661 ± 46 183 ± 7 2423 ± 155
EfficientDet-Lite2 and Resnet 50 958 ± 9 222 ± 3 3072 ± 73

Table 6.5: Inference time for one frame, in milliseconds. For each cell, the average comes
before the ± sign and the standard deviation comes after.

6.2.2 On-device WCA
The EfficientDet [83] object detector and Resnet 50 [49] image classifier can be run on certain
Android devices using TensorFlow Lite. This allows developers to create WCA applications that
run some or all of their computations on mobile devices instead of cloudlets. However, Fast
MPN-COV and Faster R-CNN cannot currently run on mobile devices [11, 12].

We developed versions of our applications that ran EfficientDet and Resnet 50 pipelines di-
rectly on mobile devices. We profiled our applications on the three devices listed in Table 6.4.
All three devices run Android, which allowed us to re-use our code across all of the devices.
Inference Time
We first measured the amount of time it took to process an image through the two-DNN pipeline.
We accomplished this by storing our test set on the devices, and running code that looped through
each image. Inside the loop, our code ran the pipeline of models that was being timed. The code
logged the elapsed time every 20 frames, based on Android’s uptime counter. Each pipeline was
run for five minutes. Table 6.5 lists all of these times.

Chen et al. [30] conducted user studies to determine acceptable latency bounds for WCA
applications. They found tight and loose latency bounds, which they describe as follows:

“The tight bound represents an ideal target, below which the user is insensitive
to improvements, as measured, for example, by impact on performance or ratings of
satisfaction. Above the loose bound, the user becomes aware of slowness, and user
experience and performance is significantly impacted.”

The tight latency bound for an assembly application was 600 ms, and the loose bound was 2700
ms. Table 6.6 lists the largest pipeline that meets the these latency bounds on each device.

72

Tight Bound Loose Bound
Google Glass EE 2 EfficientDet-Lite0 and Resnet 50 EfficientDet-Lite2 and Resnet 50
Magic Leap 2 EfficientDet-Lite2 and Resnet 50 EfficientDet-Lite2 and Resnet 50
Vuzix Blade 2 None EfficientDet-Lite1 and Resnet 50

Table 6.6: The largest pipeline that meets tight and loose latency bounds. “Largest” refers to
the number of parameters used for the pipeline’s version of EfficientDet. The latency bounds
were determined by Chen et al. [30]. The accuracy of these pipelines is listed in Table 6.3.

W
at

ta
ge

W
at

ta
ge

W
at

ta
ge

Time (s) Time (s) Time (s)
1 2 3 4 1 2 3 1 2 3 4

Figure 6.5: Power consumption for headsets running EfficientDet inference in a loop. The y-
axes of these graphs do not start at zero. These values were sampled every 100 ms. Each dot
on the graph represents one sample. The repeated values indicate that the current and voltage
readings that Android provides access to are updated less frequently than 100 ms. As we
describe in Section 6.2.2, the Magic Leap consumed significantly more power than the other
devices that we tested.

Power Consumption

We measured the amount of power that each of these devices used while running the pipelines in
a loop. As with our previous experiments, we ran each pipeline for five minutes. None of these
devices had user serviceable batteries, so we could not measure power consumption based on the
current and voltage that was being supplied to the device by its charger. Instead, we ran our code
with the devices unplugged, and queried for current and voltage readings from Android, using
the BatteryManager class. We multiplied the voltage and current to compute power. Our code
contained a background thread which logged the current and voltage every 100 ms. Figure 6.5
shows graphs of power for all three devices, sampled every 100 ms. Each value repeats several
times, which indicates that current and voltage values were updated less frequently than 100 ms.
Unfortunately, this means that these measurements are somewhat crude.

Table 6.7 lists the power values for each pipeline, running on all three devices. The baseline
measurements were recorded for an application that showed an empty Android activity, but did
not do anything aside from recording current and voltage values in a background thread. Ta-
ble 6.8 lists the percentage increase in power consumption above the baseline, for running each

73

Google Glass EE 2 Magic Leap 2 Vuzix Blade 2
Baseline 0.61 ± 0.13 15.1 ± 0.46 0.84 ± 0.15
EfficientDet-Lite0 and Resnet 50 1.43 ± 0.35 18.54 ± 0.37 1.18 ± 0.10
EfficientDet-Lite1 and Resnet 50 1.26 ± 0.29 18.41 ± 0.22 1.24 ± 0.16
EfficientDet-Lite2 and Resnet 50 1.26 ± 0.27 18.55 ± 0.16 1.22 ± 0.13

Table 6.7: Average power consumption, in Watts. For each cell, the average comes before the
± sign and the standard deviation comes after. These measurements were recorded while the
mobile device was running the full pipeline. The baseline application did not carry out any
computation.

Google Glass EE 2 Magic Leap 2 Vuzix Blade 2
EfficientDet-Lite0 and Resnet 50 134% 23% 41%
EfficientDet-Lite1 and Resnet 50 106% 22% 48%
EfficientDet-Lite2 and Resnet 50 107% 23% 45%

Table 6.8: The percentage increase of power consumption, above the baseline

pipeline. Percentage increase was calculated using the formula:

Pipeline Wattage− Baseline Wattage
Baseline Wattage

The Magic Leap 2 consumed over 15 watts running the baseline application. The device’s
depth sensors might have consumed some of this power, or it could have been spatial mapping
code running in the background. None of the pipelines increased the Magic Leap 2’s power
usage by more than 25% of the power consumed by the baseline. The most dramatic increase
over baseline power usage was for EfficientDet-Lite0 and Resnet 50 on Google Glass EE 2, with
an average power usage of 1.43 Watts. However, this still implies a reasonable battery life. A 3.2
Wh battery can supply 1.43 Watts for over two hours.

Our takeaway message is that the reduction in battery life is not a reason for WCA application
developers to be dissuaded from running DNNs on mobile devices. The decision should be made
strictly based on accuracy. The models that can be run on mobile devices were significantly less
accurate than the models that required cloudlets, for three out of the four applications that we
tested. WCA application developers will have to test the accuracy of models trained on data
for their specific applications, in order to determine if on-device models will provide adequate
accuracy.

6.2.3 Split Computing
Split Computing offers a middle ground between offloading all computations to a server, and
carrying out all computations locally. Instead, split computing uses a lightweight “head,” that
runs lightweight computations on the mobile device, and a heavyweight “tail,” that runs the
remainder of the computations on a more powerful server. This reduces the amount of data that

74

must be transmitted over the wireless network, and it reduces the amount of computation that is
carried out on the cloudlet.

A large body of work exists exploring split computing applications. Odyssey [69] modified
the Janus speech recognition application to operate in one of three modes. In one of the modes,
a preliminary phase of speech processing was done locally (i.e., the head), and the extracted
information was shipped to a remote server for the completion of the recognition process (i.e.,
the tail). For certain combinations of network bandwidth and device/server capabilities, this split
offered lower end-to-end latency than fully local or fully remote execution. Several subsequent
efforts in split computing [25, 37, 38, 68, 44, 92, 70, 26, 59] were surveyed in 2012 [39].

More recently, machine learning researchers have examined how DNN models can be split
across mobile devices and servers [56, 53, 36, 64]. These works partition the DNNs such that
the output from the subset of the network that runs on the mobile device (the head) is smaller
than the original input to the network. We will henceforth refer to the output from the head
as an embedding. Transmitting the embedding to the server, instead of the original input saves
bandwidth. The embedding is a compressed representation of the input, that the remainder of the
network (the tail) can process accurately. However, there is no clear way to convert an embedding
back to the original input. A 2022 survey [65] discusses a number of recent works on split
computing for DNNs. Unfortunately, modifying the architecture of a DNN for split computing
is difficult [63]. Split architectures exist for common computer vision tasks like object detection
and image classification. However, many developers lack the skills to create split architectures
for tasks that such architectures don’t already exist for.

Implementing the pipeline described in §3.2 using a split object detector is impractical. The
output from a split object detector just contains the bounding box coordinates and class labels
for detected objects. There is no way for the server to obtain a cropped image from the original
embedding that was sent to the cloudlet. Our application would either have to send the entire
image to the cloudlet along with the embedding, or it would have to send the bounding box
coordinates back to the mobile device, and have the mobile device send the cropped image in
some form to run the classifier. The former approach eliminates all of the bandwidth savings
that split computing offers; while the latter approach requires a second round trip to the mobile
device, which increases latency.

We instead realized split computing by running an EfficientDet object detector on a mobile
device, and a Fast MPN-COV classifier on a cloudlet. The client that runs on the mobile device
crops images around the bounding box with the highest confidence score, so only the detected
subassembly remains in the image. This cropped image is then sent to the cloudlet, instead of
the uncropped original. If the object detector does not find a subassembly in the image, the client
does not send anything to the cloudlet. This setup is depicted in Figure 6.6.

Bandwidth Savings

We compared the bandwidth required to transmit all images in full and the bandwidth required to
transmit the cropped images from our split computing strategy. For each of the four applications,
we ran the EfficidntDet-Lite0 object detector that was trained for this application on the full
test set. We recorded the number of bytes required to transmit the images cropped around the
subassemblies detected by the model, and compared this with the number of bytes required

75

On-device

Mobile Device

Object Detector

Image Classifier

Split
Computing

Mobile Device

Object Detector

Cloudlet

Image Classifier

Images Cropped
around subassembly

Thin Client

Mobile Device Cloudlet

Image ClassifierUncropped Images

Object Detector

Figure 6.6: On-device, split computing, and thin client implementations of WCA. The split
computing client only attempts to send an image when the object detector finds a subassembly.
The thin client sends images as rapidly as the Gabriel flow control mechanism allows.

76

Stirling Meccano Toyplane Sanitizer
79.2% 52.3% 86.8% 94.2%

Table 6.9: The bandwidth saved by transmitting cropped images. Images were cropped around
the bounding boxes returned by EfficientDet-Lite0.

to transmit the entire test set. Table 6.9 lists the bandwidth savings percentages, which were
calculated using the formula:

Bytes for full images− Bytes for cropped images
Bytes for full images

The bandwidth savings achieved by this strategy is content-dependant. The distance between
the camera and the object being assembled will change how large a subassembly appears in the
image, and this will directly impact the number of bytes required to transmit the cropped image.
The bandwidth savings of techniques such as image compression or DNN-based split computing
vary less based on the specific content in an image.

Transmitting cropped images required less than 50% of the bandwidth than the uncropped
images would have required, for all of our datasets. The savings was over 90% for the Sanitizer
dataset. In many cases, this significant bandwidth savings will be worth the reduction in accuracy
(presented in Table 6.15).

Inference Time

We measured the inference time of our split computing pipelines with code that ran the pipelines
in a loop, similar to our measurements in Section 6.2.2. The loop runs through the images in our
test set, and processes each one locally with an object detector. After an image is processed by
the object detector, it is cropped if the detector finds a subassembly with high confidence. The
crop is then sent to the cloudlet, where it is processed by the classifier. After sending a cropped
image to the cloudlet, the mobile device immediately starts processing the next image. However,
we used a single token for Gabriel’s flow control. The mobile client cannot send a new cropped
image to the cloudlet before the cloudlet finishes processing the previous cropped image. In cases
where the client is ready with the next cropped image before the cloudlet has finished processing
the last one that was sent, the client will wait for the cloudlet to finish processing the last image
before the client sends the next one.

The mobile devices were connected to the internet over Wi-Fi while the cloudlet had a wired
connection to the internet. Figure 6.7 shows this topology. The ping time between the mobile
device and the cloudlet was under 5 ms. The cloudlet had an Intel® Xeon® Processor E5–2699
CPU and an Nvidia GeForce GTX 1080 Ti GPU.

As with our other measurements, we ran each pipeline and device combination for five min-
utes. We logged the elapsed time every 20 iterations of the loop, and then divided the elapsed
time by 20 to compute the per-frame inference time. Table 6.10 lists the averages and standard
deviations of the per-frame inference times. Table 6.11 lists the largest split pipeline that meets
the latency bounds from Chen et al. [30] on each device. Table 6.12 lists the accuracies of the
pipelines from Tables 6.10 and 6.11.

77

Mobile
device Internet Cloudlet

Wi-Fi
Access
Point

Figure 6.7: The network connecting mobile devices to the cloudlet. Solid lines represent a
wired connection. The mobile device and cloudlet are in close network proximity to each other.

Google Glass EE 2 Magic Leap 2 Vuzix Blade 2
EfficientDet-Lite0 and Fast MPN-COV 308 ± 22 106 ± 7 1120 ± 47
EfficientDet-Lite1 and Fast MPN-COV 622 ± 186 133 ± 6 1778 ± 210
EfficientDet-Lite2 and Fast MPN-COV 779 ± 38 154 ± 4 2156 ± 65

Table 6.10: Single-frame inference time of split computing pipelines. The EfficientDet models
were run on the device, then crops were sent to the cloudlet, where they were processed by Fast
MPN-COV. These values include the DNN processing times on the device and cloudlet, as well
as the time to send cropped images to the cloudlet and send results back to the mobile device.
For each cell, the average comes before the ± sign and the standard deviation comes after.

Tight Bound Loose Bound
Google Glass EE 2 EfficientDet-Lite0 and Fast MPN-COV EfficientDet-Lite2 and Resnet 50
Magic Leap 2 EfficientDet-Lite2 and Resnet 50 EfficientDet-Lite2 and Resnet 50
Vuzix Blade 2 None EfficientDet-Lite2 and Resnet 50

Table 6.11: The largest split pipelines that meet tight and loose latency bounds. “Largest” refers
to the number of parameters used for the pipeline’s version of EfficientDet. The latency bounds
were determined by Chen et al. [30].

Meccano Stirling Sanitizer Toyplane
EfficientDet-Lite0 and Fast MPN-COV 82.0% 78.4% 79.3% 77.2%
EfficientDet-Lite1 and Fast MPN-COV 81.7% 66.6% 79.3% 77.7%
EfficientDet-Lite2 and Resnet 50 75.0% 91.0% 89.1% 70.1%
EfficientDet-Lite2 and Fast MPN-COV 81.5% 86.0% 80.6% 76.6%

Table 6.12: Accuracy of pipelines from Tables 6.10 and 6.11. This table is a subset of Table 6.3.

78

Google Glass EE 2 Magic Leap 2 Vuzix Blade 2
Baseline 0.61 ± 0.13 15.1 ± 0.46 0.84 ± 0.15
EfficientDet-Lite0 and Fast MPN-COV 1.37 ± 0.11 18.03 ± 0.32 1.27 ± 0.10
EfficientDet-Lite1 and Fast MPN-COV 1.23 ± 0.15 18.31 ± 0.21 1.22 ± 0.10
EfficientDet-Lite2 and Fast MPN-COV 1.21 ± 0.16 18.76 ± 0.25 1.24 ± 0.12

Table 6.13: Average power consumption of mobile devices running DNN pipelines. Power
consumption is measured in Watts. For each cell, the average comes before the ± sign and the
standard deviation comes after. These measurements were recorded while the mobile device
ran the object detector and then sent cropped images to the cloudlet, which then ran the image
classifier. The baseline application did not carry out any computation.

Google Glass EE 2 Magic Leap 2 Vuzix Blade 2
EfficientDet-Lite0 and Fast MPN-COV 125% 19% 51%
EfficientDet-Lite1 and Fast MPN-COV 102% 21% 45%
EfficientDet-Lite2 and Fast MPN-COV 98% 24% 48%

Table 6.14: The percentage increase of power consumption, above the baseline

Power Consumption

Similar to Section 6.2.2, we measured power consumption using a background thread that ob-
tained current and voltage values from Android every 100 ms. Our power measurements were
just made on the mobile devices, and the power consumed by the cloudlet was not measured. Ta-
ble 6.13 lists the averages and standard deviations of our power measurements, while Table 6.14
lists the percentage increase over the baseline.

These values are similar to the power values for the pipelines that ran entirely on mobile de-
vices. Split computing does not offer a significant reduction in power consumption compared to
running DNNs entirely on mobile devices. Our discussion about power values from Section 6.2.2
applies to these values as well. Split computing consumes more power on the device than the
thin clients discussed in Section 6.2.4.

6.2.4 Thin Clients
This section compares our on-device implementations of WCA applications with split computing
implementations, and a thin client that runs both DNNs on a cloudlet.

Accuracy

Table 6.15 lists the accuracies for the thin client and the highest accuracies for on-device and split
computing pipelines. The thin client achieved the best performance for all applications except
for Stirling. The best performing pipeline for Stirling can be run in all three configurations.

79

Meccano Stirling Sanitizer Toyplane
Best on-device pipeline 75.0% 91.0% 89.1% 70.9%
Best split computing pipeline 82.0% 91.0% 89.1% 77.7%
Thin client 84.5% 91.0% 92.9% 81.9%

Table 6.15: Classification accuracy for pipelines. Pipelines consist of an object detector fol-
lowed by an image classifier. Accuracy is the percentage of images that the model classified
correctly.

Google Glass EE 2 Magic Leap 2 Vuzix Blade 2
166 ± 8 150 ± 8 203 ± 9

Table 6.16: Single-frame inference time for the thin client. Time is measured in milliseconds.
For each cell, the average comes before the ± sign and the standard deviation comes after.

Inference Time

Table 6.16 lists the inference times for all three devices running the thin client for five minutes.
These times include transmitting images to the cloudlet, processing them there, and then trans-
mitting results back to the mobile device. As with our other time measurements, the applications
were run for five minutes, and elapsed time was recorded every 20 frames. These values were
well below the tight latency bounds on all three devices.

The Vuzix Blade 2 could not meet the tight latency bound when running any of the split
computing or on-device pipelines that we tested. The thin client was the only way we were able
to meet the tight latency bound with the Vuzix Blade 2. However, the Google Glass EE 2 and
Magic Leap 2 were able to meet the tight latency bound with some of the split computing and
on-device pipelines that we tested.

Power Consumption

Power measurements for the thin client, averaged over five minute runs, are listed in Table 6.17
along with the baseline measurements and on-device measurements from Section 6.2.2, and split
computing measurements from Section 6.2.4. The baseline application showed an empty An-
droid activity and just recorded current and voltage values in a background thread. Running the
thin client on the Vuzix Blade 2 consumed more power than running the baseline application,
but less power than running any of the on-device or split computing pipelines. The Google Glass
EE 2 consumed slightly more power running the thin client as it did when running the on-device
and split computing pipelines. However, all three of these clients consumed significantly more
power than the baseline. The thin client on the Magic Leap 2 consumed slightly less power than
the baseline application. There isn’t a clear explanation for why this would have happened, but
the difference is fairly small.

80

Google Glass EE 2 Magic Leap 2 Vuzix Blade 2
Baseline 0.61 ± 0.13 15.1 ± 0.46 0.84 ± 0.15
On-device 1.26 ± 0.27 18.41 ± 0.22 1.18 ± 0.10
Split computing 1.21 ± 0.16 18.03 ± 0.32 1.22 ± 0.10
Thin client 1.30 ± 0.41 14.26 ± 0.33 1.17 ± 0.09

Table 6.17: Average power consumption for thin clients, in Watts. For each cell, the average
comes before the ± sign and the standard deviation comes after. The baseline application did
not carry out any computation on the device, and it did not have any network communica-
tions. The on-device measurements are the smallest non-baseline value from each column in
Table 6.7, while the split computing measurements are the smallest non-baseline values from
Table 6.13. The thin client measurements were recorded while the mobile device sent an im-
age to the cloudlet, the cloudlet ran the two DNNs, and then sent the result back to the mobile
device.

6.3 Summary
Our new implementation of Gabriel is designed to be maintainable and easy to use. In addition,
it allows connections from multiple users at the same time, which was previously unsupported.

Certain DNNs can run on mobile devices. This enables WCA applications to run entirely
on a mobile device. Another option is to split the computation across a mobile device and a
cloudlet. These options reduce the amount of network bandwidth that the application consumes.
We found DNNs that can run on certain mobile devices with acceptable latency. However, these
models were often less accurate than the DNNs that require more powerful servers.

We achieved the best performance for three out of our four applications offloading all com-
putations to a cloudlet. However, cloudlet resources and bandwidth are limited resources. Split
computing offers a significant bandwidth savings, with a modest cost in accuracy. It is also pos-
sible to run WCA applications entirely on a mobile device, but this hurts accuracy significantly.

81

82

Chapter 7

Conclusion and Future Work

This chapter concludes the dissertation by summarizing our contributions and discussing open
problems and future work that will further our goal of making WCA applications practical.

7.1 Contributions
We address the problem of Scaling Up Wearable Cognitive Assistance for Assembly Tasks that
involve many parts. The thesis we validated is:

Scaling up WCA to complex assembly tasks is challenging because of (a) the difficulty
of vision-based state detection with very small parts in the context of much larger objects
being assembled; (b) the combinatorial explosion of possible error states; and (c) the large
manual effort needed to create accurate DNNs that can reliably determine when task steps
have been completed. These problems can be solved by a combination of (1) hierarchi-
cal decomposition of complex assemblies into modular compositions of subassemblies, (2)
on-demand seamless escalation for live expert assistance, and (3) synthetic generation of
training sets for born-digital components. The resulting solution can be implemented in a
scalable and maintainable way using modular software components. This will enable the
development of WCA applications for more complex tasks, which is a necessary step along
the path towards making WCA applications practical for real world tasks.

We propose computer vision techniques that make it possible to detect when steps of these
long tasks have been completed. We also demonstrate the feasibility of training computer vision
models for WCA using synthetic images. To handle the combinatorial explosion in the number
of errors states for a task, we support escalation to a human task expert, and we create tools to
determine the number of experts required to keep queuing times reasonable. We then redesign
and re-implement the Gabriel software framework for WCA applications, to improve scalability.
These contributions mark an important step towards making WCA applications practical for real
world assembly tasks. Developers need a way to support real world assembly tasks, without
spending an unreasonable amount of time collecting and labeling training images. WCA appli-
cations need some way to guide users who have made errors completing tasks. Lastly, WCA
deployments must scale to multiple users.

83

7.2 Future Work

7.2.1 Subassembly Identification
WCA application developers need to split assembly tasks up into subassemblies. This is presently
a manual process, but splitting tasks up automatically would reduce the burden on the developer.
Gong et al. [43] automatically identified subassemblies of assembled objects based on CAD files.
However, they were just concerned with making it as easy as possible for people to assemble the
objects. We are also need to detect completed task steps using computer vision. There are
many ways to split an object up into different subassemblies. The split that results in the easiest
assembly process might make the computer vision task difficult. Subassembly identification
for WCA requires making the assembly process easy, and making the computer vision problem
tractable. On top of this, WCA developers might not have access to the CAD model for a kit.
WCA developers need a way to split objects into subassemblies without using a CAD model.

7.2.2 Detecting Environmental Issues
Our computer vision models might output an incorrect label if the object being assembled is
positioned at an awkward angle, or if the lighting in a room is too dim. WCA applications
have no way of detecting when one of these issues has occurred. However, if the applications
could detect issues like this, they could alert the user. The user could then correct the issue, and
avoid the incorrect computer vision results that the issue would have caused. For example, the
application could provide audio guidance to the user that says “hold this part differently, or at a
different angle.”

Practitioners running WCA applications can record traces of real users completing a task with
the help of a WCA application. This will allow the practitioners to collect images with objects at
an angle that causes the application’s models to output an incorrect result. The practitioners can
then train the model to recognize an error state that corresponds to an instruction to correct the
issue.

7.2.3 Computer Vision Techniques
Deep Neural Networks perform best when the training, validation, and testing data are drawn
from the same distribution as the data that the trained model will be used on [74]. Unfortunately,
this will rarely be the case in practice for WCA applications. The lighting conditions that the
application is used in and defects in how parts are manufactured can introduce biases in the data
that the application will see at runtime. Biases that did not exist in the training data can cause
the DNNs used by the application to perform poorly. Each task that a developer creates a WCA
application for requires its own training set. This limits the size of the training set that would be
practical to collect in order to develop one of these applications. Computer vision models that
are robust to biases that did not exist in the original training set, or models that can be refined at
runtime to address biases, will improve the reliability of WCA applications.

The computer vision models used by our applications are trained to identify the completed
step shown in an image. But they are not trained on any data depicting incomplete steps. Our

84

applications currently avoid telling a user that a step has been completed, while the user is ac-
tually in the middle of the step, using the techniques described in §3.4. In addition, users hands
often cover up parts of an assembly while they are completing steps of a task, which prevents the
object detector from finding the subassembly in an image. However, additional work is needed
to reliably prevent the application from giving the next instruction while the user is still in the
middle of the previous step of the task.

7.2.4 Textures for 3D Models
CAD designs for born-digital objects specify the shapes of parts. However, they rarely include
information about the materials that objects are manufactured from. In fact, a single CAD design
can be used to manufacture objects out of multiple different materials. A person who wants to
generate synthetic data for a new born-digital object must specify texture information for the
material that the object was made out of. This is a time consuming process. In particular, the
person must ensure that the object looks realistic in a variety of simulated lighting conditions.
Reducing the manual effort required to specify texture information will make it easier to generate
synthetic training images.

7.2.5 Device and Cloudlet Implementations
Wearable devices that are more powerful than the ones used in our experiments are likely to be
developed. With any mobile device, there is a tension between the device’s size and weight,
its computing capability, and its battery life. As mobile devices improve, devices without such
constraints are likely to improve more [80]. For this reason, we forsee that there will continue to
be a gap between the accuracy of models that can be run directly on mobile devices, and models
that can be run on a cloudlet. WCA applications will thus still require edge computing in order to
achieve the highest possible accuracy for computer vision models. However, these applications
will benefit from improvements to future smart glasses.

In addition to hardware improvements, new computer vision techniques will be developed
that will further push the boundaries on computer vision processing that can take place on mo-
bile devices. WCA applications can leverage these improvements through thin clients and split
computing approaches similar to those detailed in Chapter 6. These applications can also run
local computations to avoid sending certain frames to the cloudlet. For example, an early discard
filter might determine that there is no way that a frame shows that the current step has been com-
pleted, so the frame will not require any further processing. If this filter can be run on a mobile
device, the device can avoid transmitting filtered frames to the cloudlet.

7.2.6 Development Tools
Open Workflow Editor can only be used to create applications that give the user instructions
and then process camera images until the application determines that the user has completed
a step or reached an error state. Certain task steps might be time consuming, which makes
it computationally expensive to process frames for the entire time a user is completing a step.
Allowing developers to limit periods when images are being processed would save on these costs.

85

For example, a user could press a button on the side of the headset, in order to indicate that they
believe that a step has been completed. The application would then only have to process images
after this button is pressed. Open Workflow Editor will have to be extended in order to support
this.

Applications created with Open Workflow Editor must determine when steps have been com-
pleted based on the output of DNNs. However, developers might want to employ other tech-
niques, such as length measurement or rules-based classifiers. In addition, Open Workflow Ed-
itor only supports applications that process images from an RGB camera. Allowing developers
to create applications with Open Workflow Editor that utilize techniques that are not DNNs and
sensors that are not RGB cameras will require a substantial software engineering effort. Almost
every WCA application that has been developed for assembly tasks exclusively utilizes RGB
cameras and DNNs for image processing. Any developer considering adding a new feature to
Open Workflow Editor should first develop new WCA applications that use this feature, with-
out using Open Workflow Editor. This will establish the value of such a feature, and help the
developer understand how it should be implemented. This experience will also inform the user
interface that Open Workflow Editor should have developers use to set up this feature in new
applications.

The tools used for synthetic training image generation require a CAD design file for the
object being assembled. Other strategies must be employed to make it feasible for developers
to create WCA applications for kits that the developers do not have CAD designs for. These
strategies might involve generating synthetic images based on 3D scans, data augmentation based
on photographs of the kit, or training computer vision models using few-shot learning [88].

7.2.7 Multi-Modal Sensing
This dissertation examines WCA applications that determine when task steps have been com-
pleted by processing images from an RGB camera. Collecting data from torque sensors and
force sensors would increase what applications can detect, beyond what is possible with RGB
cameras alone. For example, an application could determine if a user tightened a bolt too tightly,
or if a user did not attach two parts together with enough force. Sensors beyond RGB cameras
might be of particular use for the assembly of objects that are extremely large. Determining step
completion for objects like these might require a user to stand back, so that an entire object is in
view of a headset’s camera. The work of Antifakos et al. [22] represents one extreme, where an
entire Ikea wardrobe was outfitted with gyroscopes, accelerometers, force sensing resistors, and
infrared distance meters in order to determine step completion. However, multi-modal sensing
with a mix of these sensors and an RGB camera might represent the best of both worlds. An
RGB camera can be used where possible, to avoid having to install sensors on the kit being as-
sembled. But torque sensors and force sensors can be used for steps whose completion cannot
be sufficiently detected using RGB cameras.

86

Bibliography

[1] Computer vision annotation tool: A universal approach to data annotation. https://ww
w.intel.com/content/www/us/en/developer/articles/technical/c
omputer-vision-annotation-tool-a-universal-approach-to-dat
a-annotation.html.

[2] Gabriel android client. https://repo1.maven.org/maven2/edu/cmu/cs/ga
briel/.

[3] Camerax overview. https://developer.android.com/training/camerax.

[4] Dynamics 365 remote assist. https://dynamics.microsoft.com/en-us/mix
ed-reality/remote-assist/.

[5] The gabriel framework for wearable cognitive assistance using cloudlets. https://gi
thub.com/cmusatyalab/gabriel.

[6] Lamp assistant. https://github.com/cmusatyalab/gabriel-ikea.

[7] Lego assistant. https://github.com/cmusatyalab/gabriel-lego.

[8] Gabriel python client. https://pypi.org/project/gabriel-client/.

[9] Sandwich assistant. https://github.com/cmusatyalab/gabriel-sandwic
h.

[10] Gabriel server. https://pypi.org/project/gabriel-server/.

[11] Running tf2 detection api models on mobile. https://github.com/tensorflow/
models/blob/master/research/object detection/g3doc/running o
n mobile tf2.md.

[12] Autodiff for user script functions. https://github.com/pytorch/pytorch/i
ssues/22329.

[13] Vieaura. https://vieaura.com/.

[14] Webex expert on demand. https://www.webex.com/industries/frontline
.html.

[15] Openworkflow. https://github.com/cmusatyalab/OpenWorkflow.

[16] The websocket protocol. https://tools.ietf.org/html/rfc6455.

[17] Ama xperteye. https://www.amaxperteye.com/.

[18] Zeromq. https://zeromq.org/.

87

https://www.intel.com/content/www/us/en/developer/articles/technical/computer-vision-annotation-tool-a-universal-approach-to-data-annotation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/computer-vision-annotation-tool-a-universal-approach-to-data-annotation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/computer-vision-annotation-tool-a-universal-approach-to-data-annotation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/computer-vision-annotation-tool-a-universal-approach-to-data-annotation.html
https://repo1.maven.org/maven2/edu/cmu/cs/gabriel/
https://repo1.maven.org/maven2/edu/cmu/cs/gabriel/
https://developer.android.com/training/camerax
https://dynamics.microsoft.com/en-us/mixed-reality/remote-assist/
https://dynamics.microsoft.com/en-us/mixed-reality/remote-assist/
https://github.com/cmusatyalab/gabriel
https://github.com/cmusatyalab/gabriel
https://github.com/cmusatyalab/gabriel-ikea
https://github.com/cmusatyalab/gabriel-lego
https://pypi.org/project/gabriel-client/
https://github.com/cmusatyalab/gabriel-sandwich
https://github.com/cmusatyalab/gabriel-sandwich
https://pypi.org/project/gabriel-server/
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_on_mobile_tf2.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_on_mobile_tf2.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_on_mobile_tf2.md
https://github.com/pytorch/pytorch/issues/22329
https://github.com/pytorch/pytorch/issues/22329
https://vieaura.com/
https://www.webex.com/industries/frontline.html
https://www.webex.com/industries/frontline.html
https://github.com/cmusatyalab/OpenWorkflow
https://tools.ietf.org/html/rfc6455
https://www.amaxperteye.com/
https://zeromq.org/

[19] Zoom client sdks. https://marketplace.zoom.us/docs/sdk/native-sd
ks/.

[20] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software available from tensorflow.org.

[21] Mario Aehnelt and Bodo Urban. Follow-me: Smartwatch assistance on the shop floor.
In Fiona Fui-Hoon Nah, editor, HCI in Business, pages 279–287, Cham, 2014. Springer
International Publishing. ISBN 978-3-319-07293-7.

[22] Stavros Antifakos, Florian Michahelles, and Bernt Schiele. Proactive instructions for fur-
niture assembly. In Gaetano Borriello and Lars Erik Holmquist, editors, UbiComp 2002:
Ubiquitous Computing, pages 351–360, Berlin, Heidelberg, 2002. Springer Berlin Heidel-
berg. ISBN 978-3-540-45809-8.

[23] Autodesk. Assembly hierarchy in the browser. https://knowledge.autodesk.c
om/support/inventor-products/learn-explore/caas/CloudHelp/cl
oudhelp/2015/ENU/Inventor-Help/files/GUID-9C1118A3-7EEB-4479
-AEF7-BCA37F9F907F-htm.html.

[24] Sebastian Bader and Mario Aehnelt. Tracking assembly processes and providing assis-
tance in smart factories. In Proceedings of the 6th International Conference on Agents
and Artificial Intelligence - Volume 1, ICAART 2014, page 161–168, Setubal, PRT, 2014.
SCITEPRESS - Science and Technology Publications, Lda. ISBN 9789897580154. doi:
10.5220/0004822701610168. URL https://doi.org/10.5220/000482270161
0168.

[25] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H. Yang. The Case for Cyber
Foraging. In Proceedings of the 10th ACM SIGOPS European Workshop, Saint-Emilion,
France, September 2002.

[26] R. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb. Simplifying Cyber Foraging for
Mobile Devices. In Proceedings of the 5th International Conference on Mobile Systems
Applications and Services, San Juan, Puerto Rico, June 2007.

[27] Steve Borkman, Adam Crespi, Saurav Dhakad, Sujoy Ganguly, Jonathan Hogins, You-
Cyuan Jhang, Mohsen Kamalzadeh, Bowen Li, Steven Leal, Pete Parisi, Cesar Romero,
Wesley Smith, Alex Thaman, Samuel Warren, and Nupur Yadav. Unity perception: Gen-
erate synthetic data for computer vision. CoRR, abs/2107.04259, 2021. URL https:
//arxiv.org/abs/2107.04259.

[28] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[29] Lawrence Brown, Noah Gans, Avishai Mandelbaum, Anat Sakov, Haipeng Shen, Sergey

88

https://marketplace.zoom.us/docs/sdk/native-sdks/
https://marketplace.zoom.us/docs/sdk/native-sdks/
https://www.tensorflow.org/
https://knowledge.autodesk.com/support/inventor-products/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/Inventor-Help/files/GUID-9C1118A3-7EEB-4479-AEF7-BCA37F9F907F-htm.html
https://knowledge.autodesk.com/support/inventor-products/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/Inventor-Help/files/GUID-9C1118A3-7EEB-4479-AEF7-BCA37F9F907F-htm.html
https://knowledge.autodesk.com/support/inventor-products/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/Inventor-Help/files/GUID-9C1118A3-7EEB-4479-AEF7-BCA37F9F907F-htm.html
https://knowledge.autodesk.com/support/inventor-products/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/Inventor-Help/files/GUID-9C1118A3-7EEB-4479-AEF7-BCA37F9F907F-htm.html
https://doi.org/10.5220/0004822701610168
https://doi.org/10.5220/0004822701610168
https://arxiv.org/abs/2107.04259
https://arxiv.org/abs/2107.04259

Zeltyn, and Linda Zhao. Statistical analysis of a telephone call center: A queueing-science
perspective. Journal of the American Statistical Association, 100(469):36–50, 2005. ISSN
01621459. URL http://www.jstor.org/stable/27590517.

[30] Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos, Guanhang Wu, Kiry-
ong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta Klatzky, Daniel Siewiorek, and
Mahadev Satyanarayanan. An empirical study of latency in an emerging class of edge
computing applications for wearable cognitive assistance. In Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, SEC ’17, New York, NY, USA, 2017. Associ-
ation for Computing Machinery. ISBN 9781450350877. doi: 10.1145/3132211.3134458.
URL https://doi.org/10.1145/3132211.3134458.

[31] Intergraph Corporation. Learn about the assembly hierarchy. https://docs.hexag
onppm.com/r/en-US/Intergraph-Smart-3D-Planning/Version-201
6-11.0/60340.

[32] Michael RW Dawson. Fitting the ex-gaussian equation to reaction time distributions. Be-
havior Research Methods, Instruments, & Computers, 20(1):54–57, 1988.

[33] J. Deng, K. Li, M. Do, H. Su, and L. Fei-Fei. Construction and Analysis of a Large Scale
Image Ontology. Vision Sciences Society, 2009.

[34] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. Cut, paste and learn: Surprisingly
easy synthesis for instance detection. In 2017 IEEE International Conference on Computer
Vision (ICCV), pages 1310–1319, 2017. doi: 10.1109/ICCV.2017.146.

[35] Boris Epshtein and Shimon Ullman. Semantic hierarchies for recognizing objects and parts.
In 2007 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, 2007.
doi: 10.1109/CVPR.2007.383086.

[36] Amir Erfan Eshratifar, Amirhossein Esmaili, and Massoud Pedram. BottleNet: A Deep
Learning Architecture for Intelligent Mobile Cloud Computing Services. In Proceedings
of the 2019 IEEE/ACM Int. Symposium on Low Power Electronics and Design (ISLPED),
2019.

[37] J. Flinn, D. Narayanan, and M. Satyanarayanan. Self-Tuned Remote Execution for Per-
vasive Computing. In Proceedings of the 8th IEEE Workshop on Hot Topics in Operating
Systems, Schloss Elmau, Germany, May 2001.

[38] J. Flinn, S. Park, and M. Satyanarayanan. Balancing Performance, Energy Conservation
and Application Quality in Pervasive Computing. In Proceedings of the 22nd International
Conference on Distributed Computing Systems, Vienna, Austria, July 2002.

[39] Jason Flinn. Cyber Foraging: Bridging Mobile and Cloud Computing via Opportunistic
Offload. Morgan & Claypool Publishers, 2012.

[40] Gwendolyn Foo, Sami Kara, and Maurice Pagnucco. Screw detection for disassembly of
electronic waste using reasoning and re-training of a deep learning model. Procedia CIRP,
98:666–671, 2021. ISSN 2212-8271. doi: https://doi.org/10.1016/j.procir.2021.01.172.
URL https://www.sciencedirect.com/science/article/pii/S22128
27121002031. The 28th CIRP Conference on Life Cycle Engineering, March 10 – 12,

89

http://www.jstor.org/stable/27590517
https://doi.org/10.1145/3132211.3134458
https://docs.hexagonppm.com/r/en-US/Intergraph-Smart-3D-Planning/Version-2016-11.0/60340
https://docs.hexagonppm.com/r/en-US/Intergraph-Smart-3D-Planning/Version-2016-11.0/60340
https://docs.hexagonppm.com/r/en-US/Intergraph-Smart-3D-Planning/Version-2016-11.0/60340
https://www.sciencedirect.com/science/article/pii/S2212827121002031
https://www.sciencedirect.com/science/article/pii/S2212827121002031

2021, Jaipur, India.

[41] C. Ailie Fraser, Tovi Grossman, and George Fitzmaurice. Webuild: Automatically distribut-
ing assembly tasks among collocated workers to improve coordination. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems, page 1817–1830, New
York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450346559. URL
https://doi.org/10.1145/3025453.3026036.

[42] Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, and Li Fei-Fei. Fine-
grained car detection for visual census estimation. Proceedings of the AAAI Conference on
Artificial Intelligence, Feb. 2017. URL https://ojs.aaai.org/index.php/AAA
I/article/view/11174.

[43] Hanqing Gong, Lingling Shi, Dongmei Liu, Jiahui Qian, and Zhijing Zhang. Construction
and implementation of extraction rules for assembly hierarchy information of a product
based on ontostep. Procedia CIRP, 97:514–519, 2021. ISSN 2212-8271. doi: https:
//doi.org/10.1016/j.procir.2020.08.008. URL https://www.sciencedirect.
com/science/article/pii/S2212827120315006. 8th CIRP Conference of
Assembly Technology and Systems.

[44] S. Goyal and J. Carter. A Lightweight Secure Cyber Foraging Infrastructure for Resource-
constrained Devices. In Proceedings of the 6th IEEE Workshop on Mobile Computing
Systems and Applications, 2004.

[45] Stefano Gualandi and Giuseppe Toscani. Call center service times are lognormal: a fokker–
planck description. Mathematical Models and Methods in Applied Sciences, 28(08):1513–
1527, 2018.

[46] Ankit Gupta, Dieter Fox, Brian Curless, and Michael Cohen. Duplotrack: A real-time
system for authoring and guiding duplo block assembly. In Proceedings of the 25th Annual
ACM Symposium on User Interface Software and Technology, UIST ’12, page 389–402,
New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450315807.
doi: 10.1145/2380116.2380167. URL https://doi.org/10.1145/2380116.23
80167.

[47] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. Synthetic data for text localisation
in natural images. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2315–2324, 2016. doi: 10.1109/CVPR.2016.254.

[48] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and Mahadev
Satyanarayanan. Towards wearable cognitive assistance. In Proceedings of the 12th Annual
International Conference on Mobile Systems, Applications, and Services, MobiSys ’14,
page 68–81, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450327930. doi: 10.1145/2594368.2594383. URL https://doi.org/10.114
5/2594368.2594383.

[49] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[50] Stefan Hinterstoisser, Vincent Lepetit, Paul Wohlhart, and Kurt Konolige. On pre-trained

90

https://doi.org/10.1145/3025453.3026036
https://ojs.aaai.org/index.php/AAAI/article/view/11174
https://ojs.aaai.org/index.php/AAAI/article/view/11174
https://www.sciencedirect.com/science/article/pii/S2212827120315006
https://www.sciencedirect.com/science/article/pii/S2212827120315006
https://doi.org/10.1145/2380116.2380167
https://doi.org/10.1145/2380116.2380167
https://doi.org/10.1145/2594368.2594383
https://doi.org/10.1145/2594368.2594383

image features and synthetic images for deep learning. In Laura Leal-Taixé and Stefan
Roth, editors, Computer Vision – ECCV 2018 Workshops, pages 682–697, Cham, 2019.
Springer International Publishing. ISBN 978-3-030-11009-3.

[51] Stefan Hinterstoisser, Olivier Pauly, Hauke Heibel, Martina Marek, and Martin Bokeloh.
An annotation saved is an annotation earned: Using fully synthetic training for object in-
stance detection. CoRR, abs/1902.09967, 2019. URL http://arxiv.org/abs/19
02.09967.

[52] Stefan Hinterstoisser, Olivier Pauly, Hauke Heibel, Marek Martina, and Martin Bokeloh.
An annotation saved is an annotation earned: Using fully synthetic training for object de-
tection. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV) Workshops, Oct 2019.

[53] Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska. Couper: DNN Model Slicing for
Visual Analytics Containers at the Edge. In Proceedings of the 4th ACM/IEEE Symposium
on Edge Computing, Arlington, VA, 2019.

[54] Steven Johnson, Madeleine Gibson, and Bilge Mutlu. Handheld or handsfree? remote
collaboration via lightweight head-mounted displays and handheld devices. In Proceed-
ings of the 18th ACM Conference on Computer Supported Cooperative Work and Social
Computing, CSCW ’15, page 1825–1836, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450329224. doi: 10.1145/2675133.2675176. URL
https://doi.org/10.1145/2675133.2675176.

[55] K J Joseph, Salman Khan, Fahad Shahbaz Khan, and Vineeth N Balasubramanian. Towards
open world object detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR 2021), 2021.

[56] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars,
and Lingjia Tang. Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile
Edge. In ASPLOS ’17, Xi’an, China, April 2017.

[57] David G. Kendall. Stochastic processes occurring in the theory of queues and their analysis
by the method of the imbedded markov chain. The Annals of Mathematical Statistics, 24
(3):338–354, 1953. ISSN 00034851. URL http://www.jstor.org/stable/223
6285.

[58] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for
fine-grained categorization. In 4th International IEEE Workshop on 3D Representation
and Recognition (3dRR-13), Sydney, Australia, 2013.

[59] Mads Darø Kristensen. Execution Plans for Cyber Foraging. In MobMid ’08: Proceedings
of the 1st Workshop on Mobile Middleware, Leuven, Belgium, 2008.

[60] Benjamin Lafreniere, Tovi Grossman, Fraser Anderson, Justin Matejka, Heather Kerrick,
Danil Nagy, Lauren Vasey, Evan Atherton, Nicholas Beirne, Marcelo H. Coelho, Nicholas
Cote, Steven Li, Andy Nogueira, Long Nguyen, Tobias Schwinn, James Stoddart, David
Thomasson, Ray Wang, Thomas White, David Benjamin, Maurice Conti, Achim Menges,
and George Fitzmaurice. Crowdsourced fabrication. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology, UIST ’16, page 15–28, New York,

91

http://arxiv.org/abs/1902.09967
http://arxiv.org/abs/1902.09967
https://doi.org/10.1145/2675133.2675176
http://www.jstor.org/stable/2236285
http://www.jstor.org/stable/2236285

NY, USA, 2016. Association for Computing Machinery. ISBN 9781450341899. doi: 10.1
145/2984511.2984553. URL https://doi.org/10.1145/2984511.2984553.

[61] Peihua Li, Jiangtao Xie, Qilong Wang, and Zilin Gao. Towards faster training of global
covariance pooling networks by iterative matrix square root normalization. In IEEE Int.
Conf. on Computer Vision and Pattern Recognition (CVPR), June 2018.

[62] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollar, and Larry Zitnick. Microsoft coco: Common objects in context. In ECCV.
European Conference on Computer Vision, September 2014. URL https://www.mi
crosoft.com/en-us/research/publication/microsoft-coco-common
-objects-in-context/.

[63] Yoshitomo Matsubara and Marco Levorato. Split computing for complex object detectors:
Challenges and preliminary results. In Proceedings of the 4th International Workshop on
Embedded and Mobile Deep Learning, EMDL’20, page 7–12, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450380737. doi: 10.1145/3410338.34
12338. URL https://doi.org/10.1145/3410338.3412338.

[64] Yoshitomo Matsubara, Sabur Baidya, Davide Callegaro, Marco Levorato, and Sameer
Singh. Distilled Split Deep Neural Networks for Edge-Assisted Real-Time Systems. In
Proceedings of the 2019 MobiCom Workshop on Hot Topics in Video Analytics and Intelli-
gent Edges, 2019.

[65] Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split Computing and
Early Exiting for Deep Learning Applications: Survey and Research Challenges. ACM
Computing Surveys, March 2022.

[66] Julien Miranda., Stanislas Larnier., Ariane Herbulot., and Michel Devy. Uav-based inspec-
tion of airplane exterior screws with computer vision. In Proceedings of the 14th Inter-
national Joint Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications - Volume 4: VISAPP,, pages 421–427. INSTICC, SciTePress, 2019. ISBN
978-989-758-354-4. doi: 10.5220/0007571304210427.

[67] Gabriela Motroc. “a machine learning model is only as good as the data it is fed”. https:
//jaxenter.com/apache-spark-machine-learning-interview-14312
2.html.

[68] Dushyanth Narayanan and Mahadev Satyanarayanan. Predictive Resource Management for
Wearable Computing. In Proceedings of MobiSys 2003: The First International Conference
on Mobile Systems, Applications, and Services, San Francisco, CA, May 2003.

[69] B.D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn, and K.R. Walker. Agile
Application-Aware Adaptation for Mobility. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles, Saint-Malo, France, October 1997.

[70] MinHwan Ok, Ja-Won Seo, and Myong-soon Park. A Distributed Resource Furnishing to
Offload Resource-Constrained Devices in Cyber Foraging Toward Pervasive Computing.
In Tomoya Enokido, Leonard Barolli, and Makoto Takizawa, editors, Network-Based In-
formation Systems, volume 4658 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2007.

92

https://doi.org/10.1145/2984511.2984553
https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://doi.org/10.1145/3410338.3412338
https://jaxenter.com/apache-spark-machine-learning-interview-143122.html
https://jaxenter.com/apache-spark-machine-learning-interview-143122.html
https://jaxenter.com/apache-spark-machine-learning-interview-143122.html

[71] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Infor-
mation Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019. URL
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-s
tyle-high-performance-deep-learning-library.pdf.

[72] Truong An Pham, Junjue Wang, Roger Iyengar, Yu Xiao, Padmanabhan Pillai, Roberta
Klatzky, and Mahadev Satyanarayanan. Ajalon: Simplifying the authoring of wearable
cognitive assistants. Software: Practice and Experience, 51(8):1773–1797, 2021. doi:
https://doi.org/10.1002/spe.2987. URL https://onlinelibrary.wiley.com/do
i/abs/10.1002/spe.2987.

[73] Param S. Rajpura, Ravi S. Hegde, and Hristo Bojinov. Object detection using deep cnns
trained on synthetic images. CoRR, abs/1706.06782, 2017. URL http://arxiv.org/
abs/1706.06782.

[74] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet
classifiers generalize to ImageNet? In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages 5389–5400. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/recht19a.html.

[75] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.
cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pd
f.

[76] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[77] Mahadev Satyanarayanan. The Emergence of Edge Computing. IEEE Computer, 50(1),
2017.

[78] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. The Case for
VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing, 8(4), 2009.

[79] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu, Wolfgang Richter, and Pad-
manabhan Pillai. Cloudlets: at the leading edge of mobile-cloud convergence. In 6th In-
ternational Conference on Mobile Computing, Applications and Services, pages 1–9, 2014.
doi: 10.4108/icst.mobicase.2014.257757.

[80] Mahadev Satyanarayanan, Nathan Beckmann, Grace A. Lewis, and Brandon Lucia. The
role of edge offload for hardware-accelerated mobile devices. In Proceedings of the 22nd

93

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2987
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2987
http://arxiv.org/abs/1706.06782
http://arxiv.org/abs/1706.06782
https://proceedings.mlr.press/v97/recht19a.html
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

International Workshop on Mobile Computing Systems and Applications, HotMobile ’21,
page 22–29, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450383233. doi: 10.1145/3446382.3448360. URL https://doi.org/10.114
5/3446382.3448360.

[81] Herbert A. Simon. The Architecture of Complexity, pages 457–476. Springer US, Boston,
MA, 1991. ISBN 978-1-4899-0718-9. doi: 10.1007/978-1-4899-0718-9 31. URL
https://doi.org/10.1007/978-1-4899-0718-9 31.

[82] S.Maragatha Sundari and Santhanagopalan Srinivasan. M/m/c queueing model for wait-
ing time of customers in bank sectors. International Journal of Mathematical Sciences &
Applications, 1, 01 2011.

[83] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable and efficient object
detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[84] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jampani, Cem
Anil, Thang To, Eric Cameracci, Shaad Boochoon, and Stan Birchfield. Training deep
networks with synthetic data: Bridging the reality gap by domain randomization. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pages 1082–10828, 2018. doi: 10.1109/CVPRW.2018.00143.

[85] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter Fox, and Stan
Birchfield. Deep object pose estimation for semantic robotic grasping of household objects.
CoRR, abs/1809.10790, 2018. URL http://arxiv.org/abs/1809.10790.

[86] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay May-
orov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

[87] Junjue Wang, Ziqiang Feng, Shilpa George, Roger Iyengar, Padmanabhan Pillai, and Ma-
hadev Satyanarayanan. Towards scalable edge-native applications. In Proceedings of the
4th ACM/IEEE Symposium on Edge Computing, SEC ’19, page 152–165, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450367332. doi: 10.1145/
3318216.3363308. URL https://doi.org/10.1145/3318216.3363308.

[88] Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. Generalizing from a few
examples: A survey on few-shot learning. ACM Comput. Surv., 53(3), jun 2020. ISSN
0360-0300. doi: 10.1145/3386252. URL https://doi.org/10.1145/3386252.

[89] Ye Wang, Norman Mu, Daniele Grandi, Nicolas Savva, and Jacob Steinhardt. A3d:
Studying pretrained representations with programmable datasets. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,

94

https://doi.org/10.1145/3446382.3448360
https://doi.org/10.1145/3446382.3448360
https://doi.org/10.1007/978-1-4899-0718-9_31
http://arxiv.org/abs/1809.10790
https://doi.org/10.1145/3318216.3363308
https://doi.org/10.1145/3386252

pages 4878–4889, June 2022.

[90] Junhui Wu, Yun Ye, Yu Chen, and Zhi Weng. Spot the difference by object detection.
CoRR, abs/1801.01051, 2018. URL http://arxiv.org/abs/1801.01051.

[91] Hui Xiong, Lu Ma, Mengxi Ning, Xu Zhao, and Jinxian Weng. The tolerable waiting
time: A generalized pareto distribution model with empirical investigation. Computers &
Industrial Engineering, 137:106019, 2019. ISSN 0360-8352. doi: https://doi.org/10.1016/
j.cie.2019.106019. URL https://www.sciencedirect.com/science/arti
cle/pii/S0360835219304772.

[92] Su Ya-Yunn and Jason Flinn. Slingshot: Deploying Stateful Services in Wireless Hotspots.
In Proceedings of the 3rd International Conference on Mobile systems, Applications, and
Services, 2005.

95

http://arxiv.org/abs/1801.01051
https://www.sciencedirect.com/science/article/pii/S0360835219304772
https://www.sciencedirect.com/science/article/pii/S0360835219304772

	Introduction
	Thesis Statement
	Potential Impact
	Novelty
	Roadmap

	Background
	Aids for Assembly Tasks
	Wearable Cognitive Assistance
	Computer Vision
	Synthetic Training Data
	Hierarchical Decomposition
	Development Toolchain

	Detecting Completed Steps of Complex Tasks
	Hierarchical Decomposition
	Two Stage Process
	Re-Using Labels
	Training
	Error Correction
	Development Tools

	Our Applications
	Stirling Engine
	Ikea Cart
	Toy Car

	Implementation Details
	Guidelines for WCA Developers
	Subassemblies
	Training Data

	Accelerate WCA development with synthetic training images
	Meccano Erector Kit
	Generating Data
	Results

	Toy Plane
	Phone Sanitizer
	Discussion

	Escalation to Human Experts
	Experts Without Automation
	Calls With Human Experts
	Simulating Call Centers
	A Simple Model
	Lognormal Service Times
	Simulating All Steps

	Extending to Real Call Centers
	Exploring Parameter Space
	Varying the Proportion of Feasible Steps
	Varying Patience Length
	Varying Length of Feasible Steps

	Limiting the Number of Active Users
	Summary

	Device and Cloudlet Implementation
	Software Framework
	Motivation
	Key Abstractions

	Leveraging Mobile Device Hardware
	Accuracy Comparisons
	On-device WCA
	Split Computing
	Thin Clients

	Summary

	Conclusion and Future Work
	Contributions
	Future Work
	Subassembly Identification
	Detecting Environmental Issues
	Computer Vision Techniques
	Textures for 3D Models
	Device and Cloudlet Implementations
	Development Tools
	Multi-Modal Sensing

	Bibliography

