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Abstract
Machine learning (ML) is now used in many domains, such as web services and

safety-critical systems. This has led to the development of ML systems for deploying
and training ML models. Beyond achieving high accuracy, ML systems must also
use computing infrastructure efficiently and tolerate unreliable infrastructure.

Coding-theoretic tools enable many systems to operate reliably without the sig-
nificant resource overhead that accompanies replication-based approaches. These
tools are used in production storage and communication systems, and there is grow-
ing interest in their use for distributed computing.

This thesis explores the interplay between ML systems and practical applications
of coding theory. Specifically, we show how ML systems can be made more reliable
and efficient via novel uses of coding-theoretic tools, and how coding-theoretic tools
can be expanded in reach and be made more efficient through techniques from ML
and ML systems. We illustrate this interaction via multiple thrusts:

(1) We show how properties unique to ML systems can be exploited to efficiently
integrate coding-theoretic fault tolerance techniques into ML systems. First, we
reduce the execution-time overhead of fault-tolerant inference on GPUs by up to
5.3× by exploiting trends in neural network design and GPU hardware. Second,
we show how coding-theoretic tools can be coupled with the unique properties of
recommendation models to enable low-overhead fault tolerance in training.

(2) We demonstrate that co-designing coding-theoretic tools with ML systems
offers new opportunities to extend these tools beyond prior limitations. Specifically,
we enable resource-efficient fault tolerance in distributed prediction serving systems
by using ML to overcome a key barrier in prior coding-theoretic tools.

(3) We identify opportunities for ideas inspired by coding theory to be used to
improve the performance of ML systems, even when reliability is not a concern. We
show that the throughput and GPU utilization of specialized convolutional neural
network inference can be improved by up to 2.5× by combining images in a coding-
theory-inspired manner and making small modifications to the model architecture.

(4) Finally, we show that the encoding and decoding functions of one popular
class of coding-theoretic tools, linear codes, can operate at higher throughput and
with little developer effort via advancements in ML systems. We show how simi-
larities between operations in linear codes and those in ML libraries enable linear
codes to be represented via ML libraries, and thus allow libraries for computing lin-
ear codes to adopt the many optimizations that have gone into ML libraries. This
approach outperforms custom libraries for computing linear codes by up to 2.2×.

Through these thrusts, this thesis demonstrates the promise of using coding-
theoretic in ML systems and ideas from ML systems in coding-theoretic tools to
bring about the next generation of efficient and reliable systems.
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Chapter 1

Introduction

Machine learning (ML) models have become dominant workhorses in a variety of domains,
including production and user-facing services [3, 15, 21, 78], scientific applications [8], and
safety-critical systems [33]. This has led to the development of many ML systems that deploy
and train ML models. ML systems range in settings from distributed training and serving systems
in datacenters [109, 143, 244] to accelerators performing inference on edge devices [93, 115].

While the primary goal of many ML systems is to deliver high predictive performance in
terms of accuracy, many systems must meet additional application-level objectives. For example,
user-facing services must often meet strict latency objectives. Additionally, many autonomous
systems that interact with the physical world must meet safety standards regarding the frequency
of erroneous actions they take [22]. ML systems must therefore be designed both to maintain
high accuracy from while also adhering to application-level constraints.

Meeting the application-level objectives of ML systems is made challenging by additional
considerations related to the infrastructure on top of which ML systems run. This thesis focuses
on two such considerations within the context of ML systems: (1) computing infrastructure is
made of unreliable components, and (2) computing infrastructure must be used efficiently. We
next describe each of these in greater detail.

1.1 Operating reliably atop unreliable infrastructure

Computer systems are built out of unreliable components: power sources can fail, nodes/jobs can
be suddenly preempted, networks can drop packets, bits can be silently flipped, and processors
can experience transient latency spikes. Designing computer systems that can tolerate unrelia-
bility has thus become a critical aspect of building dependable services. This has become even
more important as computer systems have grown in scale [113]; as the number of components in
a system increases, the probability that a single component in the system fails also increases.

Meeting the application-level objectives of ML systems frequently necessitates alleviating the
effects of hardware unreliability. For example, prediction serving systems used for performing
inference often must return predictions with low and predictable latency so as to meet the service-
level objectives of user-facing applications. However, a transient slowdown occurring due to
multitenancy in public cloud environments or a fail-stop failure due to a preemption or power
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outage may lead to an inflation in tail latency, and thus a violation of a latency objective. Such a
system must, therefore, employ some means of alleviating the effects of slowdowns and failures.

Similarly, safety-critical systems deploying ML models, such as autonomous vehicles, must
protect against bit flips in processing logic, which have been shown to cause neural networks
to mispredict at rates that violate automotive safety standards [199]. Adhering to the safety
standards required of these settings necessitates the use of approaches to tolerating bit flips.

Finally, even if a particular ML system itself is not affected by a particular type of failure,
adding failure-detection capabilities to ML systems can assist in quickly identifying faulty hard-
ware. For example, multiple datacenter-scale companies have reported an uptick in manufactur-
ing errors that cause processors to persistently and silently produce incorrect results [121, 155].
Discovering these malfunctioning units is currently a tedious process that can take months, and
the effects of these faults have caused errors in important services, such as file decompres-
sion [121]. If ML systems were equipped with fault-detection capabilities, they could be used to
quickly flag faulty hardware to operators.

1.2 Using infrastructure efficiently

A second requirement of ML systems is to use computing infrastructure efficiently. Efficient use
of infrastructure mandates allocating as few resources as needed to meet a target performance
objective, while ensuring that those resources that have been allocated are well utilized. For
example, a service should allocate as few servers as it needs to ensure that its tail latency is lower
than its service-level objective, but should also strive to minimize the time any server is idle.

Efficiently utilizing computing infrastructure is particularly important for ML systems, as
these systems are often run within large-scale computing systems on many servers and make use
of specialized accelerators, which are often expensive and power hungry. Overallocating such
resources for a particular ML system precludes others from using them in the shared computing
infrastructures often employed by large organizations. Furthermore, poorly utilizing allocated
infrastructure leads to a poor return on investment for purchasing and deploying accelerators.
In a similar sense, ML systems operating on edge devices that poorly utilize hardware can lead
to wasted power draw, which is often a scarce resource in these environments [115]. Finally,
inefficiently utilizing infrastructure leads to wasted carbon emissions from the manufacturing of
hardware, which has been shown to be a significant fraction of the overall carbon footprint of
datacenter hardware [320].

1.3 Reliability and efficiency: a losing battle?

The presence of unreliable infrastructure and the need to use infrastructure efficiently each, in
isolation, make it challenging to meet the application-level objectives of learning systems. How-
ever, the combination of these considerations further exacerbates this challenge: techniques used
to increase reliability frequently oppose those used to increase efficiency (and vice versa). For
example, ensuring reliable operation when running atop unreliable infrastructure necessitates the
use of redundant resources to safeguard against failures (e.g., via replicating computation). How-
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Figure 1.1: Example of (a) encoding and (b) decoding in an erasure-coded storage system with k = 2 data units X1

and X2 and r = 1 parity P .

ever, during normal operation (i.e., in the absence of failures), redundant resources are wasted,
resulting in inefficient use of infrastructure. On the other hand, operating with the minimal re-
sources needed to meet an application-level objective leaves a system unable to tolerate failures.

1.3.1 Coding-theoretic tools: hope for brokering peace

To straddle the conflict between reliability and resource efficiency, computer systems have long
made use of ideas from coding theory. Erasure codes are key coding-theoretic tools used toward
this goal [220]. Erasure codes enable a system to tolerate failures/unavailability while using
significantly less redundant resources than replication-based approaches. These properties have
made erasure codes an attractive alternative to replication-based approaches to reliability in stor-
age, communication, and high-performance-computing systems (e.g., [160, 252, 263, 271, 313]).
An erasure code encodes k data units to generate r redundant “parity units” such that any k out
of the total (k+ r) data and parity units are sufficient for a decoder to recover the original k data
units.1 Therefore, erasure codes operate with a resource overhead of k+r

k
, which is less than that

of replication by setting r < k. Figure 1.1 shows an example of using an erasure code with k = 2
and r = 1 to protect against a single disk failure in a distributed storage system.

Leveraging coding-theoretic tools within ML systems has the potential to similarly enable
reliable and resource-efficient operation.

1.4 Overview of thesis

The widespread use of coding-theoretic tools in storage, communication, and computing systems
indicates promising potential for the use of such tools to enable resource-efficient reliability for
ML systems. The goal of this thesis is to explore the use of coding-theory-inspired approaches for
reliability and resource efficiency (both together and separately) across a range of ML systems.
In addition, we also investigate how techniques from ML and ML systems can be used to improve
coding-theoretic tools.

1These properties hold for a class of codes known as “maximum distance separable” (MDS codes). We focus
on MDS codes because of their optimality and because many popular erasure codes in computer systems are MDS
codes (e.g., Reed-Solomon codes).
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Thesis statement: ML systems can be made more reliable and resource efficient through ideas
inspired by coding theory, and coding-theoretic tools can be improved through the use of ideas
from ML and ML systems.

Specifically, this thesis takes steps toward these goals through the following thrusts:
1. Investigating the interplay between traditional coding-theoretic tools and ML systems to

build reliable ML systems

2. Extending the reach of coding-theoretic tools via co-design with ML systems

3. Identifying and exploiting opportunities to use coding-inspired ideas beyond reliability

4. Leveraging advancements in ML systems to accelerate erasure-coded systems

1.4.1 Investigating the interplay between traditional coding-theoretic tools
and ML systems to build reliable ML systems (§4, §5)

We begin by illustrating how traditional coding-theoretic tools can be combined with the unique
properties of ML systems to enable efficient reliability in these systems. We illustrate this
through two ML systems:

Safety-critical neural network inference (§4). We first investigate the efficient use of a tra-
ditional coding-theoretic tool, coded computation [160, 195], to detect faults causing erroneous
execution on GPUs. We focus on detecting faults caused by soft errors [134], transient errors in
combinatorial logic that can result in silently computing erroneously (e.g., 2 + 2 = 3). Soft
errors have been shown to potentially cause neural networks to violate strict safety require-
ments [22, 199]. Fault tolerance against soft errors is, thus, necessary for systems deploying
neural networks in safety-critical environments, such as autonomous vehicles [33], as well as in
environments more prone to soft errors, such as in space [92, 115]. Furthermore, Facebook and
Google have recently reported an uptick in similar events taking place in their datacenters due
to faulty hardware, with Facebook reporting that these events have caused corruption in decom-
pression workloads [120, 121, 155]. Thus, even in cases where a neural network can tolerate
soft-error-induced faults, having the ability to efficiently detect faults when training and deploy-
ing neural networks can help operators quickly identify persistently faulty hardware that can
cause other critical applications to fail.

Prior work has motivated the potential of “coded computation” to enable resource-efficient
detection and correction of silent faults in certain classes of computations. Coded computation
is a coding-theoretic approach that adds redundant computations employing carefully-designed
mathematical structures, and exploits the invariants so introduced to detect faults with signifi-
cantly lower execution-time overhead than replication-based approaches. The use of coded com-
putation has been explored for fault detection in many applications, such as matrix multiplication
(e.g., [86, 87, 160, 336]), LU decomposition [321], and sorting [202].

We show that naively applying coded computation as it has been traditionally used to the new
domain of neural network inference leaves significant room for reduction in execution-time over-
head. In particular, we show that the unique interplay between the arithmetic intensities of layers
of neural networks and the compute and memory bandwidth of inference-optimized GPUs open
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new opportunities for efficiently performing coded computation, but that traditional approaches
to coded computation do not exploit. Based on these insights, we develop intensity-guided coded
computation, a new approach to leveraging coded computation for fault detection in neural net-
work inference on GPUs that reduces execution-time overhead by 1.09×–5.3× compared to
traditional approaches to coded computation across a variety of neural networks.

Fault-tolerant recommendation model training (§5). We next study the potential use of era-
sure codes in deep-learning-based recommendation model (DLRM) training systems to reduce
the training-time overhead of fault tolerance. DLRMs are key tools in serving production, user-
facing applications, and are frequently retrained to reflect the freshest data [20]. This makes the
timeliness of DLRM training key to serving high-quality predictions to downstream applications.
DLRMs are also typically trained in a large-scale, distributed fashion due to the large sizes of
embedding tables in DLRMs [60, 169]. Given that DLRM training is resource and time inten-
sive and that failures are common in large-scale settings, it is imperative for DLRM training to
be fault tolerant [129, 221].

Checkpointing is the main approach used for fault tolerance in DLRM training [129, 221].
This involves periodically pausing training and writing the current state of training (e.g., model
parameters) to stable storage, such as a distributed file system. If a failure occurs, the entire
system resets to the most recent checkpoint and restarts training from that point. While simple,
checkpointing frequently pauses training to save DLRM state and has to redo work after failure.
Thus, checkpointing has been shown to add significant overhead to training production DLRMs;
Facebook reports that checkpointing-related overheads add an average of 12% to DLRM training
time [221]. Moreover, these overheads are expected to grow with DLRM size, posing a challenge
for the training of future DLRMs.

An alternative to checkpointing that does not require pauses is to perform in-memory replica-
tion, in which two copies of DLRM parameters are kept up-to-date throughout training. However,
given the large size of embedding tables in DLRMs (e.g., hundreds of gigabytes to terabytes),
replicating DLRMs in this manner is impractical.

We show that erasure codes offer promise for achieving pause-free fault tolerance for DLRM
training (unlike checkpointing) but with only a fraction of the memory overhead of replication.
We make the case that the unique characteristics of DLRM training systems call for careful
consideration of the use of erasure codes within these systems. For example, we show that an
asymmetry between the memory capacity and network bandwidth consumed by certain DLRM
parameters leads to it being preferable to take a hybrid approach to redundancy in which some
parameters are erasure coded and others replicated. The result of our work is ECRM: a fault-
tolerant DLRM training system that leverages erasure codes and replication in new ways to
avoid pauses, and to continue training when recovering from failure, while gracefully scaling
to larger DLRM sizes. For large DLRMs, ECRM reduces training-time overhead compared to
checkpointing by up to 64%.
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1.4.2 Extending the reach of coding-theoretic tools via co-design with ML
systems (§6, §7, §8)

Neural networks employed in user-facing applications, such as web search and translation, must
meet strict latency objectives to maintain satisfactory quality of experience. To support produc-
tion load demands, these applications are deployed in datacenter settings via prediction serving
systems. A prediction serving system contains multiple replicas of the same neural network
on separate backend servers, and a frontend that distributes incoming queries to backends in a
load-balanced fashion. However, within this highly-distributed, multi-tenant setting, a number of
events frequently occur that can jeopardize system reliability, such as failures and transient server
slowdowns. Left uncorrected, these events inflate a prediction serving system’s tail latency and
cause violations of latency objectives.

The second part of this thesis investigates the use of coded computation to protect against
slowdowns and failures in prediction serving systems in order to maintain low tail latency.

Using coded computation within prediction serving systems raises challenges. Coded com-
putation can be applied efficiently to the many linear operations within neural networks (e.g.,
matrix multiplication, convolution), but prior approaches are inapplicable for non-linear opera-
tions (e.g., activation functions, max pooling). This renders such approaches incapable of de-
tecting/correcting faults across the execution of a neural network as a whole, which would be
necessary when using coded computation in a prediction serving system.

This portion of the thesis proposes to overcome the aforementioned barrier of non-linear
operations in coded computation through a learning-based approach to coded computation. Tak-
ing prediction serving systems as a driving application, we show that machine learning can be
leveraged within the coded-computation framework to perform coded computation across neural
networks as a whole. We propose two ways in which learning can be used to co-design coded-
computation schemes with prediction serving systems to enable accurate and resource-efficient
recovery of slow or failed predictions resulting from neural networks. Beyond the application of
prediction serving, learning-based coded computation offers promising potential for the applica-
tion of coded computation to more-general non-linear functions.

1.4.3 Identifying and exploiting opportunities to use coding-inspired ideas
beyond reliability (§9)

The first two parts of this thesis focus on leveraging coding-theoretic tools to ensure the relia-
bility of ML systems, while using resources efficiently. The third part of this thesis leverages
observations made in the first two parts to show that coding-theory-inspired ideas can be used
to boost the throughput and accelerator utilization of neural network inference during normal
operation, even without any reliability concerns.

Specifically, we focus on the use of specialized convolutional neural networks (CNNs) for
high-throughput inference in datacenter vision systems [156, 178, 179]. Specialized CNNs are
small CNNs designed for highly-specific tasks (e.g., detecting whether a red truck is in a video
frame). Through a study of specialized CNNs used at Microsoft, we find that specialized CNNs
significantly underutilize accelerators even when using large batch sizes, resulting in suboptimal
throughput and a poor return on accelerator investment. Related to insights identified in the
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first part of this thesis, we find that this low utilization is due to the low arithmetic intensity of
specialized CNNs relative to the compute-to-memory-bandwidth ratios of accelerators.

To increase the accelerator utilization and throughput of specialized CNN inference, we de-
sign FoldedCNNs. FoldedCNNs take a new approach to CNN design that involves performing
inference over multiple input images combined together in a coding-inspired fashion (and moti-
vated, in part, by observations from the second part of this thesis), and widening layers of a CNN.
This new design enables FoldedCNNs to increase GPU utilization by up to 2.8× and throughput
by up to 2.5× for specialized CNN inference workloads.

1.4.4 Leveraging advancements in ML systems to accelerate erasure-coded
systems (§10)

The final part of this thesis investigates how ML systems can accelerate erasure-coded systems.
Due to the widespread use of erasure codes in many production storage systems today (e.g.,

Ceph [9], HDFS [16], Azure Storage [159]), there is significant demand for optimized erasure-
coding libraries: software platforms for performing encoding and decoding operations in an
erasure code. However, developing high-performance erasure-coding libraries is a challenging
process because it requires unique expertise in both the mathematical underpinnings of erasure
codes and in techniques for achieving high performance on a given architecture. While this
leaves the development of current erasure-coding libraries to a select few experts, we anticipate
this challenge being exacerbated in the future, given the growing trend of hardware heterogeneity.

We make the case that the rise of fast ML libraries may serve as a lifeboat for easing the de-
velopment of current and future optimized erasure-coding libraries: fast erasure-coding libraries
across various hardware platforms can be easily implemented by using existing optimized ML
libraries. We show that the computation structure of many erasure codes mirrors that common to
matrix multiplication, which is heavily optimized in ML libraries. We show one can implement
erasure codes using ML libraries in few lines of code and with little knowledge of erasure codes,
while immediately adopting the many optimizations within these libraries, without requiring in-
timate knowledge of high-performance programming. We develop prototypes of our proposed
approach using two different ML libraries targeting CPUs and GPUs. Our prototypes achieve up
to 2.2× higher encoding throughput than state-of-the-art erasure-coding libraries.

1.4.5 Summary of contributions
Through these thrusts, this thesis demonstrates how coding-theoretic tools can be efficiently
applied to ML systems, how coding-theoretic tools can be advanced by co-designing with ML
systems, how coding-theory-inspired ideas can benefit ML systems beyond reliability purposes,
and how ML systems can help accelerate traditional applications of coding-theoretic tools.

The findings of this thesis engage experts in various domains:
• To the designer of ML systems: this thesis illustrates the benefit of leveraging coding-

theoretic tools to make ML systems reliable without significant resource overhead.
• To the coding theorist: this thesis provides evidence of the potential for leveraging machine

learning to extend the reach of coded computation.
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• To the machine learning researcher: this thesis motivates the potential to leverage mixtures
of multiple inputs at inference time to improve the throughput of inference.

• To the designer of erasure-coded systems: this thesis motivates the exploration of how
advances in ML systems can accelerate and ease the development of key routines in storage
systems.

1.5 Organization
The remainder of this thesis is organized as follows:

Chapter 2 motivates the need for ML systems to operate reliably and efficiently. Various relia-
bility concerns addressed in this thesis are introduced, along with their effects on ML systems.
This chapter concludes by describing challenges and opportunities provided by jointly promot-
ing reliability and resource efficiency in ML systems.

Chapter 3 provides background on coding-theoretic tools, coded computation, and the chal-
lenges of using coded computation in ML systems. Literature related to each of the contributions
of this thesis is relegated to each of the chapters describing each contribution.

Chapter 4 presents our work on efficiently detecting silent data corruptions in neural network
inference on GPUs by adapting coded computation to trends in neural network workloads and
GPU architectures. This work was presented at the 2021 International Conference on High Per-
formance Computing, Networking, Storage and Analysis (SC) [187]. The research artifact asso-
ciated with this work is located at
https://github.com/Thesys-lab/arithmetic-intensity-guided-abft.

Chapter 5 presents our work on efficient fault tolerance for recommendation model training
by exploiting the interplay between erasure codes and the unique performance characteristics of
recommendation model training systems. This work is under submission [211].

Chapters 6, 7, and 8 present learning-based coded computation, in which machine learning
is used to overcome the challenges of performing coded computation over nonlinear functions,
and which enables efficient tolerance of slowdowns and fail-stop failures in prediction serv-
ing systems. This work was presented in part at the 2019 ACM Symposium on Operating
Systems Principles (SOSP) [188], and in part in the IEEE Journal on Selected Areas of In-
formation Theory [189]. The research artifact associated with this work is located at https:
//github.com/Thesys-lab/parity-models.

Chapter 9 presents FoldedCNNs, which leverage ideas inspired by coding-theory to increase the
GPU utilization and throughput and specialized CNN inference. This work was presented at the
2021 International Conference on Machine Learning (ICML) [186]. The research artifact asso-
ciated with this work is located at https://github.com/Thesys-lab/folded-cnns.
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Chapter 10 presents our case for using ML libraries to ease the development of optimized
erasure-coding libraries, along with supporting evidence through prototypes that outperform cus-
tom erasure-coding libraries. This work is under submission.

Chapter 11 provides concluding remarks and outlines future directions.
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Chapter 2

Motivation: need for resource-efficient and
reliable ML systems

In this chapter, we motivate the need for ML systems to be resource efficient and reliable.
We begin by describing the need for ML systems to be resource efficient, both in terms of

minimizing resource overhead as well as in maximizing utilization. ML systems operate at large
scale and with expensive, power-hungry infrastructure. Using more resources than necessary and
poorly utilizing those resources that are provisioned starves other applications from resources,
leads to wasted investments, and hinders efforts toward sustainable infrastructure.

We next describe the need for ML systems to be reliable. We describe three different un-
reliability events that affect ML systems: transient slowdowns, fail-stop failures, and silent data
corruptions. The growing scale at which ML systems operate as well as the trend toward leverag-
ing preemptible infrastructure increases the likelihood that ML systems will experience transient
slowdowns and fail-stop failures. We describe how existing techniques for handling these forms
of unreliability in ML systems are inefficient for both current and future ML systems. We then
detail the causes of silent data corruptions and their effects on ML systems. Using both existing
literature and our own experimentation, we highlight the critical effects that silent data corrup-
tions can have on neural network inference applications. We additionally describe opportunities
that could be enabled by being able to efficiently detect silent data corruptions in ML systems—
even for ML systems that may themselves be unaffected by silent data corruptions.

We conclude this chapter by discussing the interplay between the goals of resource efficiency
and reliability in ML systems. We note how these goals often act in opposition with one another,
but that carefully investigating each goal within the context of ML systems can enable new
opportunities to promote the other goal. These challenges and opportunities motivate multiple
portions in the remainder of this thesis.

2.1 Need for resource-efficient systems

We first motivate the need for ML systems to be resource efficient. We begin by describing
resource efficiency for general computer systems and then focus specifically on ML systems.
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Resources and resource efficiency Computer systems make use of many resources, such as
CPUs, memory, storage, networks, and accelerators (e.g., GPUs). Manufacturing, purchasing,
and installing these resources incurs one-time, up-front costs (i.e., capital expenses), while pow-
ering and maintaining these resources incurs recurring costs (i.e., operational expenses).

Efficiently using resources requires that a computer system strive to (1) use as few resources
as possible to meet a desired application-level objective, while (2) ensuring that those resources
that are used are well utilized. For example, if a web service’s traffic demands can be met by
using four servers, it would be less efficient to use five servers. At the same time, even if only
four servers are used, these servers will be inefficiently used if the service’s software achieves
significantly lower computational throughput (e.g., FLOPs/sec) than possible on the servers.

Throughout this thesis, we will refer to inefficiency related to item (1) above as resource
overhead. A system has resource overhead when it has been allocated more resources than it
needs to meet its application-level objective. We refer inefficiency related to item (2) above
underutilization. A system underutilizes resources if it has been allocated some set of resources,
but poorly utilizes the capabilities of these resources.1

Resource overhead has many negative effects. In a shared computing system, operating with
resource overhead results in unnecessarily occupying resources that could be used by another
service/job. For example, in a shared job scheduling system, jobs can experience significant
queueing delay if they require four servers, but only three are available [166]. Resource overhead
can also lead to wasteful operational expenses, as certain resources that are unallocated to a job
(e.g., CPU cores) can often be placed either in a low-power mode or completely shut off. Finally,
habitual resource overhead can lead to increases future capital expenses when determining the
capacity requirements of future hardware purchases and installments.

Underutilization also has many negative effects. First, underutilization leads wasted capital
expenses, as many resources are priced based on the theoretical peak performance they provide
(e.g., FLOPs/sec of a GPU). Underutilization also leads to poor return on operational expenses
for powering inefficiently utilized resources. While there are techniques to reduce energy con-
sumption during underutilization (e.g., power gating), it is often challenging to reap benefits from
these techniques when underutilization manifests in a fine-grained manner (e.g., when waiting on
data from a slower level of the memory hierarchy) [70, 165]. While context switching between
tasks can improve utilization, doing so at fine-grained time scales is also challenging [75].

In order to operate in a resource-efficient manner, computer systems must strive to minimize
resource overhead and maximize utilization.

Effects of resource inefficiency on ML systems While every computer system should ide-
ally use resources efficiently, the increasing scale at which ML systems operate makes resource
efficiency particularly important for ML systems. For example, current approaches to training

1The reader may note that there is a relationship between resource overhead and underutilization. For example,
one could say that a system underutilizes servers when it has been allocated more servers than needed to achieve its
application-level objective (i.e., when it has resource overhead). We choose to differentiate between resource over-
head and underutilization in this thesis to highlight a difference between resource allocation and usage of allocated
resources. We use resource overhead when referring to a system making allocation requests: “I need five servers
for this job.” We use underutilization when referring to the usage of allocated resources: “I have been allocated a
processor that can achieve 10 TFLOPs/sec., but I only maintain an average of 5 TFLOPs/sec.”
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large language models require up to three thousand NVIDIA A100 GPUs [236]. Inference work-
loads similarly have a growing resource footprint—the compute capacity used for inference has
grown at Facebook by 2.5× in the past 1.5 years [320]. Similarly, Google has noted that infer-
ence workloads accounted for three fifths of Google’s energy usage on machine learning from
2017–2021 [251].

Operating at this large scale requires a significant investment in infrastructure. ML systems
often use custom accelerators [172] and server setups [237]. These specialized resources are
expensive to develop and to manufacture, increasing the cost of platforms for large-scale ML
systems. Thus, operating this infrastructure inefficiently leads to a poor return on investment.

In addition to the monetary costs of deploying ML systems, ML systems also have high
environmental footprints. Of particular interest from the perspective of resource efficiency is
the environmental impact of manufacturing hardware used for ML systems, which Facebook
estimates to occupy around 50% of total carbon emissions in the ML lifecycle, and which is
expected to exceed emissions from operating resources in the future [320]. Thus, underutilizing
hardware results in a poor return on the one-time, up front manufacturing energy cost. Google has
also specifically highlighted the need to increase utilization to improve energy efficiency [251].
Alongside underutilization, resource overhead also leads to wasted manufacturing, as it requires
procuring more resources to support an organization’s overall infrastructure needs.

Beyond large-scale datacenter ML systems, resource efficiency is also important for ML sys-
tems that operate at the edge. Many edge systems have limited power sources and strive to be
inexpensive to develop and deploy [115, 139]. Operating these edge systems inefficiently can
require the procurement of additional hardware resources to meet application-level demands,
which increases the price and power draw of these devices.

Therefore, to reduce both the monetary and environmental costs of deploying ML systems,
ML systems must efficiently use resources.

2.2 Need for reliable ML systems

We now provide background on unreliability in ML systems. We describe the types of unrelia-
bility events that will be addressed in this thesis and motivate the need to address them.

We use the term “unreliability event” to characterize the event in which a computer system
deviates from its expected operation. This deviation can manifest in multiple ways:
1. Fail-stop failure: a computer system stops operating at all. For example, a fail-stop failure

occurs when the power source to a processor is cut off, causing the processor to shut down.

2. Slowdown: a system continues operating, but operates slower than expected. For example,
a processor may transiently take 30 milliseconds instead of the expected 10 milliseconds to
perform a function due to the arrival of a new tenant in a multi-tenant system.

3. Silent data corruption: a system continues operating at its expected rate, but produces incor-
rect results (e.g., computing 2 + 2 = 3). These errors are referred to as “silent” because they
are produced without any notification to the overarching application.
We first motivate and provide background on fail-stop failures and slowdowns in §2.2.1 and
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then discuss silent data corruption in §2.2.2.

2.2.1 Slowdowns and fail-stop failures
We begin by describing slowdowns and fail-stop failures. We group these two unreliability events
together because, as will be shown in §7 and §8, one can often leverage the same techniques to
remedy both slowdowns and fail-stop failures.

Transient slowdowns. Many services are built atop the expectation that a computer system will
reliably return the results of its computation within a certain time. For example, a web service
may expect a database query to complete within 10 milliseconds. However, there are many events
that can cause a computer system to transiently return results slower than expected. Examples of
these events include resource contention due to multitenancy in cloud settings [151, 161, 325] as
well as complex interactions between the application and runtime/operating system (e.g., garbage
collection [246, 328]). Within the context of ML systems, transient slowdowns have also been
shown to be caused by routines such as loading a new model in a serving system [244].

Transient slowdowns have long been a concern in large-scale services [113]. For example,
Google found that increases in search latency of only 100–400 milliseconds reduced the number
of daily searches per user by 0.2% to 0.6% [89]. Akamai has similarly reported that a 100
millisecond delay in page load times reduces website conversions by 7% [53].

Within ML systems, transient slowdowns are primarily of concern for user-facing and/or
real-time inference systems. A primary example of a platform within this domain are prediction
serving systems. Prediction serving systems host models for inference and deliver predictions for
input queries [7, 14, 23, 26, 109, 244]. We describe prediction serving systems in greater detail
in §6; what is relevant for the present discussion is that prediction serving systems operate in a
large-scale, distributed fashion in cloud/datacenter settings in order to keep up with the high load
of production web services [109].

Similar to other latency-sensitive services, prediction serving systems must adhere to strict
service-level objectives (SLOs) (e.g., return predictions within tens of milliseconds [109]). Queries
that are not completed by their SLO are often useless to applications [61]. In order to reduce
SLO violations, prediction serving systems must minimize tail latency. However, meeting SLOs
is made challenging by transient slowdowns, which can inflate tail latency in prediction serving
systems. For example, we illustrate in §8 that various forms of resource contention in a predic-
tion serving system can lead to tail latencies that are up to three times slower than median latency.
The presence of such transient slowdowns in prediction serving systems makes it challenging to
maintain predictable latency for user-facing applications.

Fail-stop failures. There are a number of events that cause fail-stop failures in computer sys-
tems. For example, a component of a computer system reaching the end of its useful lifetime and
failing to operate properly can cause a fail-stop failure [245]. Within the context of distributed
systems, a broken network connection between one node in the system and the remaining nodes
also often manifests as a fail-stop failure. Other events, such as detectable, but uncorrectable er-
rors in a device’s memory can trigger a computer system to restart, which manifests as a fail-stop
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failure for many applications [123]. Outside of hardware unreliability, bugs in software can also
cause fail-stop failures [117].

Furthermore, the use of preemptible resources also leads to fail-stop failures. Many major
cloud-service providers offer preemptible compute instances that can often be obtained for a
lower price than a dedicated instance, but that can be reclaimed by the cloud-service provider at
any time (e.g., “spot instances” in Amazon Web Services [5]). This reclamation terminates all ap-
plication logic running atop such a preemptible instance, resulting in a fail-stop failure. Similarly,
many organizations leverage preemptible scheduling when time-sharing resources [166, 324].
Preemption within such time-sharing systems results in a fail-stop failure of either part or all of
the resources used by an application.

The probability that a system will experience a fail-stop failure increases with the number
of computer nodes the system uses. This poses a challenge for the growing trend of distributing
the training of large-scale machine learning models. For example, efficient systems for training
certain large-scale language models can use over three hundred compute nodes and a total of
over three thousand GPUs [236]. Given the large number of components in such systems, fail-
stop failures due to hardware unreliability are to be expected. Furthermore, the growing trend
of training machine learning models atop preemptable infrastructure (either via “spot instances”
or within internal time-shared clusters at an organization) heightens the need for mechanisms to
tolerate fail-stop failures in ML systems.

Given the possibility of fail-stop failures and the long duration of many training jobs, dis-
tributed training jobs must implement some means of tolerating fail-stop failures. This is partic-
ularly critical for models that are frequently retrained to reflect the freshest data in a production
deployment, such as recommendation models [20].

Growing need for efficient slowdown and fail-stop-failure tolerance. While there is a press-
ing need for techniques to mitigate transient slowdowns and fail-stop failures in ML systems,
current approaches are costly both in terms of resource usage and execution-time overhead.

Within the context of distributed prediction serving systems, the defacto approach to pro-
tecting against transient slowdowns is to issue redundant requests to multiple replicas of a given
neural network. However, as we will discuss in greater detail in §8, such approaches require at
least 2× resource overhead or incur high latency in recovering from slowdowns.

Within distributed neural network training systems, the most popular means of safeguarding
against fail-stop failures is checkpointing, in which training is periodically paused so as to save
the current model parameters to a stable storage system, such as a distributed file system [221]. In
the event of a fail-stop failure, the training system reloads the most recent checkpoint from stable
storage and continues training from the point of that checkpoint. However, checkpointing can
incur significant training-time overheads incurred due to such periodic pausing during normal
training and rolling back and redoing training iterations on recovery. For example, Facebook has
reported that overheads from checkpointing account for, on average, 12% of recommendation
model training time, and that these overheads add up to over 1000 machine-years of computa-
tion [221]. Facebook has also recently reported that checkpointing can add significant strain to
shared network and storage resources [129]. Given that the overhead of checkpointing typically
grows with model size, and that popular language and recommendation models have continued
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to grow in size, the overheads of checkpointing are slated to grow in the future: for example,
current large-scale language models require checkpoints of size up to 13.8 TB [236]. Beyond
this, Google recently reported that checkpointing overheads amount to the equivalent of wasting
45 software engineer per year [46].

Takeaway. The increasing likelihood of transient slowdowns and fail-stop failures due to the
increasing scale of ML systems and trends toward leveraging preemptible resources, coupled
with the inefficiency of current approaches to mitigating these events calls for the investigation
of new, efficient approaches to tolerating transient slowdowns and fail-stop failures.

2.2.2 Silent data corruption

We next provide background on silent data corruptions. As previously described, a silent data
corruption is an event in which a particular computation is corrupted such that it returns an
incorrect result without notifying the overarching application that corruption took place.

In this section, we provide general background on silent data corruptions and their causes. We
describe how silent data corruptions have become a growing concern for large-scale datacenter
operators, such as Google and Facebook [120, 121, 155]. Through both prior work and our own
experiments, we illustrate the negative effects that silent data corruptions have on safety-critical
ML systems: prior work has shown that silent data corruptions cause many neural networks to
produce mispredictions at a rate that violates strict automotive safety requirements [199]; we
perform a fault-injection study on a set of neural networks used for air-collision control in au-
tonomous airplanes and find that, on average, a single silent data corruption reduces the accuracy
of the network from 96.9% to 93.5%, and certain bit flips reduce accuracy by as much as 20%.
We finally illustrate the many opportunities that could be opened up by providing efficient tech-
niques for tolerating silent data corruptions in ML systems: efficiently triaging faulty hardware,
safety-critical ML systems, and the use of low-cost components in space systems.

We begin by describing the causes of silent data corruptions. When describing these causes, it
is important to distinguish between their immediate effects and their long-term effects. As will
be shown below, events that can potentially trigger a silent data corruption begin by triggering a
more immediate change in hardware, such as a bit flipping in the output register of a logic unit.
These immediate effects are typically referred to as “single-event upsets” (SEUs). The overall
effect of an SEU on an application depends on application-level logic; an SEU could cause the
application to crash or experience divergent control flow, it could be masked and have no effect
on the application, or it could cause silent data corruption.

With the distinction between SEUs and silent data corruptions in mind, we will next highlight
a subset of events that cause SEUs:
1. Manufacturing defects

2. Cosmic radiation

3. Voltage and frequency scaling
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Cause: manufacturing defects. Defects in the manufacturing of devices can lead to SEUs.
For example, both Google and Facebook have recently reported an uptick in processors in
their datacenters that consistently produce an incorrect result when performing a given com-
putation [121, 155]. In some cases, these effects have been shown to corrupt file decompres-
sion [121]. The silent data corruptions considered by these organizations differ from the sources
of silent data corruptions that will be discussed below: these manufacturing defects result in
repeatable silent data corruptions, whereas other SEUs typically result in transient silent data
corruptions that are unlikely to reoccur if a computation is repeated.

Cause: cosmic radiation. Cosmic radiation is one of the most well-known causes of SEUs.
In particular, the collision of high-energy neutrons from Earth’s atmosphere with a transistor can
generate sufficient electrical charge to cause the transistor to flip [106]. These events can affect
both memory (e.g., SRAM, DRAM) and processing logic (e.g., adders, AND gates) [134] of a
broad spectrum of devices, such as CPUs [122, 243], GPUs [122, 264, 291], FPGAs [62, 122,
208], and custom ASICs (e.g., Edge TPUs [265]).

The environment in which a device operates plays a significant role in determining the fre-
quency of cosmic-radiation-induced SEUs. Of particular importance is the altitude at which a
device operates. At higher altitude, Earth’s atmosphere shields less cosmic radiation, causing
an increase in neutron flux, and thus potential cosmic-radiation-induced SEUs. For example,
devices operating at the altitude commonly flown by commercial airlines experience a rate of
SEUs 300 times higher than at sea level [106]. Certain military-grade aircraft flying at 60,000 ft.
above the North Pole experience a rate of SEUs 2,000 times higher than that at sea level [106].
Even on ground, altitude has a noticeable effect on the rate of SEUs; the first recorded SEUs on
ground occurred at Los Alamos National Laboratory, which sits 7,200 ft. above sea level [240].

Cosmic-radiation-induced SEUs are even more prevalent within outer space. For example,
for spacecraft operating in low Earth orbit, which is the orbit of the International Space Station
as well as that commonly used by nanosatellites [115], reports indicate that over one hundred
SEUs occur in a single device per day [81]. The position of a device within orbit also affects the
radiation experienced by a device. For example, devices are subject to a significantly higher rate
of SEUs when passing through Earth’s South Atlantic Anomaly [286], a region above part of
South America in which a portion of Earth’s radiation belt comes closest to Earth’s surface, and
which significantly increases particle flux. Radiation effects outside of Earth’s orbit can be even
more severe. For example, NASA’s upcoming mission to Europa, a moon of Jupiter, must cope
with radiation far more intense than that of spacecraft within low Earth orbit [13]. Finally, events
such as solar flares can lead to bursts of SEUs, with some observations showing an increase in
the rate of SEUs by as much as eight times during a solar flare [81].

Cause: voltage and frequency scaling. SEUs can additionally be caused by techniques aimed
at increasing the energy efficiency of a device. One such technique is undervolting. The basic
idea of undervolting is as follows: For a given clock frequency, processors require a specific
minimum voltage to ensure that circuits propagate signals within a clock cycle. If supplied a
voltage below this minimum, signals may not propogate within a clock cycle, which can lead to
incorrect values being saved in flip-flops, and thus causing SEUs. To ensure correct operation
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in the face of transient voltage swings that occur based on compute load, the default supply
voltage of a device is typically set well above this minimal voltage. Undervolting is the practice
of lowering the voltage supplied to a device such that it is closer to the true minimum required
supply voltage of the device [198].

By minimizing the excess voltage used in guarding against voltage fluctuations, undervolting
can enable one to operate at the same frequency, but with lower energy consumption, leading
to increased energy efficiency [198]. However, reducing this voltage guardband also leaves one
more vulnerable to SEUs due to signal-propagation-related timing violations [94, 198, 294, 336,
340]. Undervolting has also recently been exploited as a potential attack vector to inject SEUs
into specific layers of a neural network during inference [292].

We now describe the effects of SEUs on ML systems. Recall that an SEU can either:
1. Cause a program to crash or to experience divergent control flow

2. Be masked by application logic

3. Cause silent data corruption.
We next highlight each of these effects, paying closest attention to the effects of silent data
corruptions on ML systems, which will be the focus of the portions of this thesis devoted to
tolerating SEUs in ML systems.

Effect: program crashes and control flow divergence. Certain SEUs cause a program to
crash, such as one that changes the value of a pointer, resulting in a segmentation fault. Addition-
ally, systems using single-error-correction, double-error detection (SECDED) error-correcting
codes in memory often force an application to stop when a double-bit error is detected [123, 243].

An SEU can also cause divergent control flow in an application. For example, an SEU in the
device’s program counter or occurring during a jump instruction could cause the device to begin
executing instructions in an order that disobeys the correct control flow of the program.

A common approach to tolerating crashes and control-flow divergence is by leveraging watch-
dog processes that detect or restart an application upon a crash, or detect when a program violates
prespecified control-flow invariants (e.g., which basic blocks of a program can be entered after a
given basic block) [215, 242]. When a control-flow invariant is violated, an error is raised, which
may trigger a program crash. Thus, when detected, such errors can be handled by techniques that
tolerate fail-stop failures. Checking control-flow invariants is a particularly good fit for ML sys-
tems, as neural networks typically exhibit highly-predictable control flow (e.g., always execute
layer 2 after layer 1). Given the availability of these techniques, we do not focus on program
crashes and divergent control flow resulting from SEUs in this thesis.

Effect: masked errors. Other SEUs are masked by application-level logic. An SEU will only
manifest as silent data corruption if it propagates to a result of the computation being performed
by an application. There are many reasons why SEUs might be masked, and thus not result in
silent data corruption. For example, an SEU causing a bit flip in a register would be masked if the
register is next written before the value is read. Within the context of ML systems, many layers
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of neural networks mask certain SEUs. For example, an SEU that causes one output element of
a convolution to change from -1 to -2048 will be masked if the next layer of the neural network
is a ReLU (since the result of ReLU for any negative input is 0) [199].

Effect: silent data corruption. SEUs that do not result in crashes or control-flow divergence
and that are not masked by application-level logic result in silent data corruption in the output of
the application. However, the net effect of silent data corruption on an application depends on
the error tolerance of the application. For example, silent data corruptions in critical functions
such as encryption, compression, and erasure coding must be avoided, as silent data corruptions
in these applications may result in storing corrupted data. Similarly, silent data corruptions in
the linear algebra subroutines of many scientific simulations can have critical effects on the net
result of the simulation [88].

The effect of silent data corruptions on ML systems depends on the type of ML system and
its application. For example, neural network training systems are unlikely to be effected by silent
data corruptions, as the iterative optimization procedures used to train neural networks can likely
correct small perturbations caused by silent data corruptions. Thus, silent data corruptions are
more of a concern for neural network inference systems. It is within this context that we focus
the remainder of our discussion on silent data corruptions.

Even for inference systems, not all silent data corruptions are critical. Consider classification
tasks as an example. The net classification for an input is typically given as the class with maxi-
mal value in the output vector of a neural network. For such tasks, a silent data corruption only
changes the prediction made by the neural network if it causes the class with the maximal value
to change. For applications that involve predicting in a more-continuous space, such as predict-
ing a bounding box in object detection, the impact of an silent data corruption must be evaluated
based on a metric of distance between the corrupted output and the fault-free output [124].

Numerous studies have analyzed the impact of silent data corruption on neural network in-
ference by using controlled fault injection experiments as well as experiments in which a device
is placed under a neutron beam to increase the number of cosmic-radiation-induced SEUs expe-
rienced in a short experimental window (e.g., [124, 199, 214, 222, 292, 306]). Other studies have
shown that silent data corruptions can be induced via targeted voltage-scaling attacks, which can
reduce the accuracy of ResNet-18 on CIFAR-10 from around 97% to as low as 36% [292].

A popular application for studying the effects of silent data corruptions on ML systems is
safety-critical systems. These applications typically must adhere to strict functional safety stan-
dards that dictate their acceptable failure tolerances. For example, the ISO 26262 standard dic-
tates that a fully autonomous vehicle must experience fewer than 10 failures in time (FITs; fail-
ures per billion hours) in hardware components [22]. Prior work has shown that the normal rate
of silent data corruptions induced by cosmic radiation at sea level causes some popular neural
networks to mispredict at a rate that exceeds the FIT rate required by ISO 26262 [124, 199]. It
is, thus, necessary for these systems to employ some means of tolerating silent data corruptions.

Case study on autonomous aircraft systems. We study the impact of silent data corruptions on
a set of neural networks proposed for the Airborne Collision Avoidance System X for unmanned
aircraft (ACAS Xu) [173]. Specifically, we consider a recently-proposed version of the ACAS Xu
neural networks [167]. This neural network consists of five fully-connected hidden layers with

18



50 neurons each, with ReLUs after each fully-connected layer, and a final fully-connected layer
projecting onto five output classes. We exhaustively inject a single bit flip into the activations
of the neural network that follow a fully-connected layer and precede a ReLU. We use 32-bit
IEEE 754 floating point values for all activations and weights. We record whether the bit flip
results in a predicted class that differs from the correctly predicted class. We consider only those
samples which the untainted neural network correctly classifies. This experiment results in a
fault injection run for each bit in each post-fully-connected activation in each correctly-classified
sample.

On average, a single bit flip in this network reduces accuracy from 96.9% to 93.5%. As ex-
pected, bit flips in more significant bits are more likely to cause a misprediction (e.g., bit flips
in the exponent bits in a floating point); for certain bits, the misprediction rate resulting from a
bit flip exceeds 20%. While the overall drop in accuracy is significant in its own right, it is com-
pounded by the scale of aircraft systems today. Reliability studies indicate that, within a fleet
of 200 aircrafts leveraging common FPGA systems, an SEU will occur every three hours [52].
Scaling this up to the 5400 aircrafts managed by the United States Federal Aviation Administra-
tion at peak hours [1] indicates a significantly higher rate of SEUs, and thus mispredictions. The
effect of these mispredictions would be even worse when considering so-called “stuck-at faults”
in which a bit remains permanently set at either 0 or 1, thus affecting all inferences [306].

Coupling our study on the impact of silent data corruptions on autonomous aircraft with the
significant existing literature on the safety-standards-violating effects of silent data corruptions
on autonomous vehicles indicates that silent data corruptions can have significant negative ef-
fects on critical ML systems.

As described above, the criticality of SEUs depends on the usecase of a ML system. We next
describe opportunities that could be enabled by detecting/correcting SEUs in ML systems:
1. Efficiently discovering and diagnosing faulty hardware

2. Safety-critical ML systems

3. Deployment of commercial off-the-shelf (COTS) components in space

Opportunity: discovering and diagnosing faulty hardware. As described above, manufac-
turing defects can cause devices to produce silent data corruptions. This has recently been noted
by both Google and Facebook as affecting their datacenter hardware, in which a particular de-
vice consistently returns an incorrect value for a particular computation (e.g., executing 2 + 7
always produces 10 on a specific core of a specific processor) [121, 155]. These errors have
have lead to real application-level bugs, such as the inability to decompress files [121]. Simi-
lar to compression, these silent data corruptions could lead to data corruption if they occurred
in the cryptography and erasure-coding routines of a storage system. These manufacturing de-
fects are difficult to discover and triage, as evidenced from the painstaking process performed by
Facebook engineers to find the device and settings resulting in corrupted compression described
above [121]. This has led to a growing desire to have “always-on” fault detection for production
applications [120]

Adding redundancy checks to production applications—even those that are not particularly
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concerned about silent data corruptions—could enable the timely discovery and isolation of
faulty hardware by reporting more instances of silent data corruptions. However, traditional
approaches to detecting silent data corruptions, such as replication, require significant redun-
dant computation, and thus significant additional infrastructure. Thus, adding replication to all
production applications is impractical.

Efficient alternatives to replication that target broad classes of computations leveraged in
datacenter applications could allow one to detect hardware errors more quickly, without signifi-
cant infrastructure overhead. Developing such alternatives for ML systems would be particularly
useful given the large footprint of ML systems in datacenters today. Thus, even applications
of ML systems that are not particularly susceptible to silent data corruptions could take part in
discovering faulty hardware that would cause serious corruption for another application.

Opportunity: safety-critical ML systems. As described above, whether a misprediction re-
sulting from silent data corruption truly matters for a particular ML system depends on the crit-
icality of the application; a misprediction in an advertisement recommendation system is likely
less critical than one in an autonomous vehicle. However, there is an increasing push to lever-
age ML systems in autonomous safety-critical systems, such as autonomous vehicles and air-
craft [173, 214]. As we described previously, these applications must adhere to strict functional
safety standards (e.g., ISO 26262 [22]). We have previously shown through our own study, as
well as through prior work, that silent data corruptions can have significant negative effects on
ML systems employed in safety-critical domains. Thus, techniques will be needed to tolerate
silent data corruptions to enable future safety-critical ML systems.

Opportunity: deployment of commercial off-the-shelf (COTS) components in space. As
described previously, the effects of cosmic radiation are more pronounced within outer space [81].
Future space missions are expected to experience an even higher rate of SEUs than experienced
in low-Earth orbit, such as NASA’s upcoming mission to Europa [13].

At the same time, there is a growing desire to deploy more computationally-expensive ap-
plications atop spacecraft. Within the realm of ML systems, recent proposals aim to use neural
networks to perform imaging on satellites [115] and for scientific simulations on the International
Space Station to reduce the amount of data that needs to be transmitted to Earth [57, 314].

While spacecraft often leverage radiation-hardened hardware for performing control oper-
ations, such devices are not currently practical for supporting such computationally-expensive
tasks for multiple reasons: First, the rate of progress of radiation-hardened hardware significantly
lags behind the current state-of-the-art hardware. This means that space systems cannot benefit
from new edge hardware accelerators such as the Edge TPU [12] or those within the Qualcomm
Snapdragon [44]. Second, radiation-hardened hardware is typically more expensive and bulkier
than commercial hardware. This poses a challenge to the increasing trend of deploying small,
inexpensive nanosatellites [115].

Thus, recent efforts have explored the use of commercial off-the-shelf (COTS) hardware on
spacecraft [57, 191, 314]. Deploying COTS components requires employing some means of fault
tolerance to ensure reliable operation. The current approach used for fault tolerance in COTS
components is triple-modular redundancy (TMR), in which three copies of a computation are run
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on separate devices, and voting is performed to detect/correct errors. However, TMR comes with
significant up-front cost in hardware purchase and results in high energy consumption, which
limits the durations of space missions. Thus, alternative techniques are needed for efficiently
tolerating silent data corruptions in COTS components on spacecraft.

2.3 Interplay between reliability and resource efficiency
Within this chapter, we have established that ML systems must both operate in a resource efficient
manner and operate reliably. The interplay between these two requirements gives rise to both a
challenge and an opportunity.

Challenge: balancing the need for redundancy with the desire for low resource overhead.
As was briefly described in §2.2, a common technique used to make computer systems more
reliable is to leverage redundant resources. We will describe this in greater detail in §3. How-
ever, leveraging redundant resources leads to high resource overhead; by definition, “redundant”
resources are not strictly necessary. Beyond resource overhead, redundancy can also negatively
affect application-level objectives, such as latency requirements. For example, a neural network
inference system on a satellite that performs inference twice serially for each incoming image
would have 2× the latency. Thus, ML systems that leverages redundancy to improve reliabil-
ity must attempt to minimize the number of redundant resources used as well as the impact on
application-level objectives.

Opportunity: leveraging underutilization for more efficient redundancy. While the need
for redundancy and the desire for low resource overhead are often in conflict with one another,
underutilization can give rise to opportunities to employ redundancy with lower resource over-
head and with less effect on application-level objectives. As will be described in §4 and §9, it is
challenging to highly utilize many of the resources used in ML systems, even when multiplexing
these resources among multiple tenants. This opens up an opportunity for redundant operation
for reliability purposes to use the resources that a non-redundant ML system would otherwise
waste. In some cases, such resources can essentially be used “for free” and with little impact on
application-level objectives.

This chapter has motivated the need for both reliability and resource efficiency in ML sys-
tems, as well as the challenges and opportunities in achieving these requirements. These chal-
lenges and opportunities motivate some of the contributions of this thesis: we will describe novel
techniques to enable ML systems to exploit the aforementioned opportunity caused by under-
utilization to improve reliability (§4, §5); we will propose approaches to navigate the afore-
mentioned tension between redundancy and resource overhead (§7, §8); and, we will combine
insights from the first two parts of this thesis to improve the resource efficiency of ML systems
even absent reliability concerns (§9). To begin, we will provide background on the types of
redundancy-based approaches we will consider in §3.
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Chapter 3

Background: coding theoretic tools and
coded computation

Having motivated the need for both resource efficiency and reliability in ML systems, we now
provide background on the class of techniques that we will leverage and build upon in this thesis
to achieve this goal: coding-theoretic tools. We provide a high level overview of coding-theoretic
tools and their benefits, describe coded computation, one of the coding-theoretic tools we focus
on in this thesis, and finally conclude by describing the challenges in applying coded computation
to ML systems.

3.1 Leveraging redundancy for fault tolerance
As was briefly described in §2.2, a common approach to building fault-tolerant computer systems
is to leverage redundant resources. The simplest form of redundancy is replication, in which a
given routine is performed multiple times to detect or correct faults. For example, to protect
against a fail-stop failure or transient slowdown of a server in a distributed prediction serving
system, inference requests could be replicated to two identical copies of the same neural network
on separate servers. To detect a silent data corruption, a system may execute a neural network
twice and compare the results from each execution.

While simple, replication can incur significant overheads. In terms of resource overhead, a
replicated system leveraging redundant hardware requires the allocation of at least two times as
many resources as a non-replicated system. In cases where replicated execution is performed on
the same hardware as the original computation, replication can add significant execution-time
overhead. These properties make replication unattractive for building reliable ML systems both
due to the significant cost and demand for hardware in large-scale ML systems as well as due to
the tight latency requirements of many ML systems.

3.2 Coding-theoretic tools
Many computer systems have turned to the use of coding-theoretic tools for resource-efficient
fault tolerance. In this section, we provide a high-level overview of the use of coding-theoretic
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P = X1 + X2
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Figure 3.1: Copy of Figure1.1, placed here for ease of reference. Example of (a) encoding and (b) decoding in an
erasure-coded storage system with k = 2 data units X1 and X2 and r = 1 parity P .

tools in computer systems and their benefits. We specifically focus on erasure codes and error-
correcting codes, referring to these as “codes,” collectively. As this thesis deals only with appli-
cations of codes within computer systems, we avoid using formal and mathematical notation in
descriptions here, favoring examples.

Figure 3.1 shows an example of using an erasure code, a popular coding-theoretic tool, in a
distributed storage system in which one would like to reliably store two data units X1 and X2.
In this example, the erasure-coded storage system provisions an extra disk, on which it stores a
“parity unit” that is constructed as P = X1 +X2 through the erasure code’s “encoding function.”
Suppose that a single fail-stop failure of the disk storing X1 occurs. The erasure-coded storage
system could reconstruct X1 as X1 = P −X2, using the code’s “decoding function.” It is easy
to see that the system can recover from the fail-stop failure of any one of the three disks in the
system. In a similar way, the decoding function could be used to detect if silent data corruption
has occurred in any one of the three disks.

More generally, the codes and we will consider in this thesis operate over k data units and
construct r parity units, and will be able to recover from any r fail-stop failures or will be able to
detect any r silent data corruptions.

Codes are often preferable to replication-based systems because they can enable the same
level of fault tolerance, with lower resource overhead. For example, the erasure-coded storage
system in Figure 3.1 can tolerate the same number of fail-stop failures as a replication-based
system (one), but does so with only 50% additional servers. Due to this lower resource overhead,
codes have been widely deployed in many systems (e.g., [160, 252, 261, 263, 271, 313]).

3.3 Using codes for fault-tolerant computation

Leveraging coding-theoretic tools for fault-tolerant computation systems raises additional chal-
lenges compared to the use of codes for storage and communication systems. As many of the
contributions of this thesis involve the use of coding-theoretic ideas for computation systems, we
now provide additional background on this setting.

The technique of using coding-theoretic tools for fault-tolerant computation systems goes by
multiple names, typically being referred to as “coded computation” in coding theory literature
and as “algorithm-based fault tolerance” (ABFT) in high-performance-computing literature. For
uniformity, we refer to these techniques as “coded computation” throughout this thesis. Fig-
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Figure 3.2: Example of coded computation with
k = 2 and r = 1.

Table 3.1: Toy example with parity P = X1 + X2

showing the challenges of coded computation on
non-linear functions.

F(X) F(P) Desired F(P)

2X 2X1 + 2X2 2X1 + 2X2

X2 X2
1 + 2X1X2 +X2

2 X2
1 +X2

2

ure 3.2 shows an example of coded computation with k = 2 and r = 1. Under coded computa-
tion, rather than the goal being to store/retrieve data units, as in storage systems, or to transmit
data units, as in communication systems, the goal is to compute over data units. As shown in
Figure 3.2, data unitsX1 andX2 are each to be operated on by computationF in order to produce
F(X1) and F(X2).

The goal of coded computation is to make this system fault tolerant. To do so, coded compu-
tation constructs a parity unit P via an encoding function, and operates over P withF to produce
F(P ). In the example in Figure 3.2, encoding is performed as P = X1 + X2. Then, supposing
a fail-stop failure of the computation being performed over X2 occurs, the output of computa-
tion over X2 is reconstructed using the code’s decoding function. In the example in Figure 3.2,
decoding is performed as F(X2) = F(P )−F(X1).

Challenges in coded computation. Coded computation is straightforward when the underly-
ing computation F is a linear function. A function F is linear if, for any inputs X1 and X2, and
any constant a: (1) F(X1 + X2) = F(X1) + F(X2) and (2) F(aX1) = aF(X1). Many of the
codes used in traditional applications, such as Reed-Solomon codes, can recover from unavail-
ability of any linear function [195]. For example, consider having k = 2 and r = 1. Suppose
F is a linear function as in the first row of Table 3.1. Here, even a simple parity P = X1 + X2

suffices since F(P ) = F(X1) + F(X2), and the decoder can subtract the available output from
the parity output to recover the unavailable output. The same argument holds for any linear
F . However, a non-linear F significantly complicates the scenario. For example, consider F
to be the simple non-linear function in the second row of Table 3.1. As shown in the table,
F(P ) 6= F(X1)+F(X2), and, even for this simple function, F(P ) involves complex non-linear
interactions of the inputs that make decoding difficult.

Due in part to the seamless fit of existing codes to linear computations, there has been a
large body of work developing coded-computation techniques for linear computations, such as
matrix multiplication (e.g., [86, 87, 160, 195, 227, 336]), convolution [128], and other iterative
methods [99, 321]. In contrast, fewer codes have been developed that support non-linear com-
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putations. Even those that do are limited to supporting only polynomial functions and require
resource overhead that is prohibitive for many practical applications [272, 334]. Of particu-
lar note for this thesis, current approaches to coded computation are unable to support cases in
which F is a neural network. While neural networks do contain many linear operations (e.g.,
matrix multiplications, convolutions), they also contain many non-linear operations (e.g., acti-
vation functions, max pooling) that render the entire function computed by a neural network
non-linear. Thus, the existing approach used for employing coded computation to neural net-
works is to perform coded computation over the linear layers of a neural network and to replicate
the non-linear layers. While such layer-wise decomposition is applicable to detecting/correcting
faults on a single device (e.g., detecting silent data corruptions on a single GPU), it is inefficient
for settings such as prediction serving systems, in which it would require per-layer inter-server
communication that would slow down operation.

The next four chapters of this thesis focus on the use of coding-theoretic tools in ML systems.
Chapter 4 focuses on detecting silent data corruptions in neural network inference on GPUs via
novel techniques to efficiently perform coded computation for neural network inference when
using the technique described above of splitting the neural network into linear and non-linear
components. Chapter 5 then enables efficient fault tolerance for recommendation model training
by pairing coding-theoretic ideas to the unique characteristics of recommendation model training.
Chapters 6, 7, and 8 then focus on tolerating fail-stop failures in prediction serving systems by
proposing novel approaches that enable coded computation to be performed over an entire neural
network as a whole, including the non-linear layers, without layer-wise decomposition.
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Chapter 4

Efficient coded computation for neural
network inference on GPUs

This chapter provides an example of the reduction in overhead made possible by taking advan-
tage of specific properties of ML systems when employing coding-theoretic tools for reliability
purposes. We illustrate this through the example of applying coded computation to detect silent
data corruption in neural network inference on GPUs. Specifically, we focus on the setting de-
scribed in §3.3 in which coded computation is performed over linear layers of a neural network
and replication is performed for non-linear layers. We show that existing approaches to coded
computation for linear layers in neural networks fail to account for the diversity of arithmetic in-
tensity and the high compute-to-memory-bandwidth ratios (CMR) of inference-optimized GPUs.
We then develop a new approach to coded computation for linear layers that adapts the coded-
computation scheme used depending on the arithmetic intensity of the layer and the CMR of the
GPU. Compared to traditional approaches to coded computation, the proposed “intensity-guided
coded computation” reduces execution-time overhead by 1.09–5.3×.

4.1 Introduction

Chapter 2 described the many causes of soft errors in computer systems, as well as their poten-
tially adverse effects on neural networks. This description motivated the need to protect against
soft errors for safety-critical ML systems, as well as the potential benefit of being able to detect
soft errors within ML systems so as to quickly discover and triage faulty hardware.

In each of these scenarios, neural networks must be equipped with some means of detecting
faults. However, tolerating faults caused by soft errors requires performing redundant execution
(e.g., replication and comparison). For fault tolerance to be practical, it is critical that redundant
execution operate with low overhead in terms of execution time and cost.

In this work, we focus on software-based approaches for detecting faults that occur in pro-
cessing logic during neural network inference on GPUs. We focus on detection, rather than cor-
rection, as detecting a catastrophic event is often more important to an application than quickly
proceeding after such an event [149]. We focus on GPUs because they are commonly used for
neural network inference in both cluster and edge settings, including in emerging space applica-
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Figure 4.1: Toy example of coded computation for matrix multiplication with M = N = K = 2.

tions [115, 314]. We focus on faults that occur in processing logic, rather than in the memory
hierarchy, as many modern systems contain ECC-protected memory hierarchies [54]. In contrast,
processing logic is not as amenable to lightweight hardware fault tolerance [77].

We specifically focus on the use of coded computation to detect faults (see §3 for background
on coded computation). Figure 4.1 shows a toy example of coded-computation-protected matrix
multiplication between matrices A and B of size 2× 2 to produce output matrix C. Coded com-
putation constructs a column checksum vector by summing each column of matrix A and a row
checksum vector by summing each row of matrix B. It is straightforward to see that the result
of taking the dot product of these checksum vectors should, in the absence of a fault, equal the
summation of all entries of output matrix C, which we refer to as the output summation. Corre-
spondingly, comparison between the checksum dot-product result and the output summation can
detect a single fault in C.

Multiple recent works have explored leveraging coded computation to make neural networks
fault tolerant [149, 201, 247, 342]. Since existing coded-computation techniques support only
linear computations, these approaches use coded computation for the linear operations of neural
networks (e.g., fully-connected and convolutional layers, which are often executed as matrix
multiplications), and replicate nonlinear operations (e.g., activation functions). We similarly
focus on using coded computation for linear layers implemented as matrix multiplications in this
work, and use the terminology “linear layer” to refer to fully-connected and convolutional layers.

Key to efficient operation in any approach to redundant execution is identifying and exploit-
ing underutilized resources. If the computation-to-be-protected underutilizes certain compute
units, redundant execution can potentially be performed on those units without adding much
execution-time overhead. However, existing approaches to coded computation typically only
assume that computations being protected are compute bound, and thus aim to minimize the
amount of redundant computation they perform.

In this work, we first present a case for challenging this assumption based on trends in GPU
hardware and neural network design: The introduction of processing units optimized for neu-
ral networks (e.g., Tensor Cores [38]) has led to an unprecedented increase in FLOPs/sec in
inference-optimized GPUs. However, such GPUs have had a far less profound growth in mem-
ory bandwidth. This results in inference-optimized GPUs having high compute-to-memory-
bandwidth ratios (CMRs). High CMRs require kernels to have high arithmetic intensity to
keep computational units highly utilized. However, many convolutional and fully-connected
layers in neural networks have low arithmetic intensity. Furthermore, many efforts toward re-
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ducing neural network latency, such as efficient neural network design [295], model specializa-
tion [156, 178, 179, 232, 283], and pruning [83], further reduce arithmetic intensity.

These trends result in many linear layers in neural networks that have arithmetic intensity
far lower than the CMR on GPUs, rendering such layers memory-bandwidth1 bound, rather than
compute bound. Such layers are unable to keep computational units highly utilized, opening
opportunities for redundant execution to be performed for free. However, current approaches
to coded computation for neural network inference, which are well-suited for compute-bound
linear layers, cannot exploit this opportunity to squeeze in redundant execution alongside the
computation being protected.

To better exploit this nascent opportunity, we (1) investigate coded-computation schemes that
exploit the unused computation cycles of linear layers on inference-optimized GPUs, which we
refer to as thread-level CC, and (2) propose a new, adaptive approach to coded computation,
called intensity-guided CC, that selects among thread-level CC and traditional approaches to
coded computation on a per-layer basis, using the layer’s arithmetic intensity as a guide.

To design an approach to coded computation that exploits the unused computation cycles of
linear layers on inference-optimized GPUs, the key approach we leverage is to perform coded
computation at the smallest unit of the parallel subproblem performed by the matrix multiplica-
tion for a layer. As illustrated in Figure 4.2, high-performance matrix multiplication on GPUs
involves decomposing the overall matrix multiplication into a hierarchy of subproblems across
threadblocks, warps, and, at the smallest level, threads. Existing approaches to coded computa-
tion for neural network inference on GPUs, which we term “global CC,” generate checksums over
the full input matrices to minimize the amount of redundant computation performed in check-
sum dot products. In contrast, we leverage a coded-computation scheme in which each thread
performs coded computation over the small matrix multiplication subproblem it is responsible
for. We refer to this approach as thread-level CC. Under thread-level CC, each thread computes
coded-computation checksums and dot products on the fly in tandem with its computation of the
original matrix multiplication, and performs its own thread-local checksum equality check.

The approach taken in thread-level CC may at first appear counterintuitive, as it performs
more redundant computation than global CC: thread-level CC performs coded computation over
many small, thread-local matrix multiplications, whereas global CC performs coded computation
over one large matrix multiplication. In fact, thread-level CC results in multiple threads each
computing identical checksums (e.g., in Figure 4.1, identical column checksums for threads that
compute elements in the same rows in C). However, we show that, through careful design
decisions, this approach is effective in exploiting the gaps in compute utilization of bandwidth-
bound linear layers. This approach also eliminates any additional loads/stores, which would
compete with the matrix multiplication itself for memory bandwidth, which is the bottleneck
resource. The net result is low execution-time overhead for bandwidth-bound linear layers.

As described above, thread-level CC primarily benefits linear layers that are bandwidth
bound. In contrast, it is not well-suited for compute-bound linear layers, for which global CC
suffices. As we show in §4.3, neural networks contain both bandwidth- and compute-bound
linear layers, making one-size-fits-all approaches inefficient.

Therefore, we propose intensity-guided CC, an adaptive coded-computation approach that

1We refer to memory-bandwidth-bound layers as “bandwidth-bound” for short.
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Figure 4.2: Hierarchical matrix multiplication. Shaded regions show inputs/outputs used in the next level.

selects among global CC and thread-level CC for each linear layer of a neural network depending
on which approach offers the lowest execution-time overhead, letting the arithmetic intensity of
the layer and CMR of the device guide such selection.

We implement and evaluate intensity-guided CC atop CUTLASS [31], a high-performance
linear algebra and machine learning library for GPUs from NVIDIA. We evaluate execution-
time overhead on the inference-optimized NVIDIA T4 GPU when using Tensor Cores. We
consider eight popular convolutional neural networks (CNNs), two neural networks used within
recommendation models (DLRM) [237], and four CNNs developed through model specialization
and used for video analytics [179]. Compared to an optimized approach to global CC [149],
intensity-guided CC reduces execution-time overhead by up to 2.75× for popular CNNs, up to
4.55× for DLRMs, and up to 5.3× for specialized CNNs. These results show the promise of
taking an arithmetic-intensity-guided approach to coded computation to reduce the overhead of
fault tolerance in neural network inference.

The code used in this chapter is available at:
https://github.com/Thesys-lab/arithmetic-intensity-guided-abft.

4.2 Background

In this section, we provide background on matrix multiplication on GPUs and how coded com-
putation is performed and optimized for neural network inference. We refer to §2 for background
on the need for and benefits of fault detection in neural network inference.

4.2.1 Efficient matrix multiplication on GPUs

As described in §4.1, our focus is on redundant execution for the convolutional and fully-
connected layers of neural networks, which we refer to as “linear layers.” For the remainder
of this chapter, we describe these operations as matrix multiplications, as high-performance im-
plementations of these layers are often achieved through matrix multiplications [31]. However,
the approaches we propose can apply to other implementations as well.

Within this setting, we denote a linear layer as the multiplication of matrix A of size M ×K
by matrix B of size K × N to produce an output matrix C of size M × N . Matrix A contains
the inputs to the layer (e.g., activations from the previous layer). Matrix B contains the learned
weights of this layer. Weights (matrix B) are known a priori, while activations (matrix A) are
known only during computation. Output C contains the output of the layer, which will be fed to
the next layer, typically after being operated on by an activation function (e.g., ReLU).
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GPU terminology. We use NVIDIA’s terminology [11] in describing the architectural com-
ponents and programming abstractions of GPUs. A GPU consists of a number of streaming
multiprocessors (SMs), each of which has many cores on which computation is performed along
with a register file and shared memory region. Computation is executed on GPUs in kernels
consisting of many threads. Threads are grouped into threadblocks, with all threads in a thread-
block executing on the same SM and able to communicate with one another via shared memory.
Groups of 32 threads within a threadblock execute in lockstep as a so-called warp. Each thread
executes on an individual core, except when using Tensor Cores, new processing units that enable
warp-wide collaborative execution of matrix multiplications [38].

Hierarchical matrix multiplication. High-performance implementations of matrix multi-
plication on GPUs decompose the problem solved by the kernel into a number of sub-matrix
multiplications solved by threadblocks, warps, and threads. Figure 4.2 shows an example of this
decomposition: each threadblock is responsible for computing a subset of C, which it decom-
poses into subsets to be computed by warps of the threadblock, each of which in turn decomposes
the problem into subsets to be computed by individual threads. We denote the portions of A and
B used by a thread as At and Bt, respectively. At is of size Mt ×K and Bt is of size K ×Nt.

As our focus is on neural network inference, we focus on low-precision (e.g., FP16) matrix
multiplications on Tensor Cores, which are heavily used for accelerating inference. Our de-
scription follows the use of such operations in CUTLASS. We focus in particular on the FP16
m16n8k8 Tensor Core operation, though our discussion and proposed solutions apply to other
Tensor Core operations as well.

Each m16n8k8 Tensor Core operation is a warp-wide operation that multiplies a 16 × 8
matrix Atc by an 8×8 matrixBtc and accumulates results into a 16×8 output matrix Ctc (we use
subscript “tc” to denote Tensor Core operands/outputs) [37]. Each thread in the warp provides
four elements ofAtc and two elements ofBtc to the operation, and obtains four output elements of
Ctc from the operation. We refer to one such m16n8k8 matrix-multiply-accumulation operation
as an “MMA,” following NVIDIA’s terminology [37].

CUTLASS leverages MMAs within the hierarchical matrix multiplication framework de-
scribed above. Each thread walks down the K dimension of the problem and loads an Mt × 2
chunk of At and a 2×Nt chunk of Bt. These loaded chunks are then used in MtNt

2
MMAs, each

of which uses two rows of the loaded chunk of At and one column from the loaded chunk of Bt

from each thread, as shown in Figure 4.3. The results of these operations are accumulated into
the thread’s MtNt registers that store the partial accumulation of the thread’s matrix multiplica-
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tion output. CUTLASS uses standard optimizations to overlap loading the next chunks of At and
Bt while the current MMAs are performed (e.g., double buffering).

4.2.2 Fault model

We next shift our focus to fault detection for matrix multiplication. To set the stage, we first
describe the fault model we consider.

We focus on detecting a single faulty output value in matrix C. We focus on detection, rather
than correction, as being able to detect a catastrophic event is often more important than being
able to quickly continue after such an event [149]. Following prior work [100, 247, 342], we
focus on detecting a single fault because the execution of one layer in a neural network is short
enough that the likelihood of more than one soft error occurring during execution is low.

We focus on faults occurring due to soft errors in the processing logic of a GPU. We do
not focus on faults in the memory hierarchy, such as in global memory, caches, shared mem-
ory, register files, and busses, as these components are more easily protected by ECC [54]. In
contrast hardware fault tolerance for processing units is more expensive, typically requiring dual-
modular-redundant circuits [77]. As described in §2.2.2, we also assume that control logic on
the GPU is protected. This fault model is in line with prior work [100, 200].

4.2.3 Coded computation for matrix multiplication

Coded computation for matrix multiplication typically operates by (1) generating a 1 × K col-
umn checksum vector of matrixA and aK×1 row checksum vector of matrixB, (2) performing
the dot product between the column checksum vector and row checksum vector, (3) summing
all entries of the output matrix C, and (4) comparing the values generated in (2) and (3) above.
Approaches to coded computation typically generate a single column checksum for the entire
input matrix A (and similarly for B) [149, 342]. We thus term such approaches “global CC.”
Global CC results in the minimum additional dot-product computations required for fault detec-
tion in matrix multiplication, making it well-suited for compute-bound matrix multiplications.

While we focus on detecting a single fault, coded computation also supports detecting multi-
ple faults. To do so, coded computation generates multiple checksum columns and rows based on
independent linear combinations of columns/rows. In this scenario, multiple output checksums
are also generated based on these linear combinations and compared to checksum dot products.
The approaches to coded computation that we propose in this work can also handle higher fault
rates in this way.

4.2.4 Optimizing global CC for neural network inference

Recent works leverage global CC to protect the linear layers of neural networks, and add multiple
neural network-specific optimizations [149, 201, 342], which we describe next. Recall that, for
neural network inference, matrix A contains input activations and B contains layer weights. We
therefore refer to the column checksum of matrix A as the “activation checksum” and the row
checksum of matrix B as the “weight checksum.”

31



Offline construction of weight checksum. Since operandB contains the layer’s weights, which
remain the same for every inference request, the weight checksum of each linear layer in a neural
network can be constructed once offline and reused for every inference request [149, 201, 342].
The same does not hold for the activation checksum of operand A, because its contents change
for each inference request.

Checksum fusion. Recent work [149] fuses the generation of the output summation used
in the coded-computation check to the end of the matrix multiplication kernel. Kernel fusion
reduces the amount of data that must be read from memory to form the output summation, which
speeds up checksum generation. As the next layer’s input A is generated by the current layer,
the current layer can also fuse the generation of the next layer’s activation checksum to the end
of its matrix multiplication kernel (after the activation function is applied) [149].

Flow of coded computation in neural network inference. With these optimizations, the
workflow of a coded-computation-protected linear layer is as follows: (1) perform matrix mul-
tiplication to generate output C, (2) perform fused output summation generation, (3) apply the
layer’s activation function to C, (4) perform fused next-layer activation checksum generation,
(5) launch a kernel that performs the coded-computation dot product for the current layer and
compares the results to the output checksum generated in Step 3. Steps 1–4 must take place
sequentially, while Step 5 can take place in parallel with the next layer of the neural network.
Step 5 occurs in a separate kernel because it involves a global reduction over the partial check-
sums generated by threadblocks.

By minimizing redundant computation, global CC offers low execution-time overhead for
compute-bound linear layers. However, we next identify trends in GPU hardware and neural
networks that lead to many linear layers being memory-bandwidth-bound. This opens new op-
portunities for efficient redundant execution that current approaches to coded computation for
neural network inference are unable to exploit.

4.3 New opportunities for efficient redundant execution
Critical to reducing execution-time overhead for any approach to redundant execution is dis-
covering opportunities to exploit unused resources. In this section, we identify trends in GPU
hardware and neural network design that create new, currently unexploited opportunities for ef-
ficient redundant execution in neural network inference.

4.3.1 Resource bottlenecks for GPU kernels
GPU kernels are typically either bound by computational throughput or by memory bandwidth.
A popular model to determine whether a kernel is compute or memory-bandwidth bound is
comparing the the arithmetic intensity of the kernel to the compute-to-memory-bandwidth ratio
(CMR) of the device [32, 317]. Under this model, a kernel is compute bound if the theoretical
amount of time it spends performing computation is greater than the theoretical amount of time
it spends loading/storing data from/to memory:

FLOPs
Compute Bandwidth

>
Bytes

Memory Bandwidth
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Figure 4.4: FP16 aggregate arithmetic intensity of CNNs on images of size 1080× 1920 at batch size of one.

Here, “FLOPs” is the number of arithmetic operations performed by the kernel, “Bytes” is the
amount of data it transfers to/from memory, “Compute Bandwidth” is the GPU’s peak FLOPs/sec,
and “Memory Bandwidth” is the GPU’s memory bandwidth (bytes/sec). Rearranging this in-
equality to pair properties of the kernel on the left-hand side and properties of the GPU on the
right-hand gives:

FLOPs
Bytes

>
Compute Bandwidth
Memory Bandwidth

(4.1)

The left-hand ratio of Equation 4.1 is the kernel’s arithmetic intensity: the ratio between the
FLOPs the kernel performs and the bytes it transfers to/from memory. The right-hand ratio is the
GPU’s CMR.

Takeaway. From the lens of this performance model, it is clear that the arithmetic intensity
of a given kernel and CMR of a given GPU play key roles in determining opportunities for
redundant execution to leverage unused resources. For example, a kernel with low arithmetic
intensity running on a GPU with a high CMR will likely be bandwidth bound and underutilize
compute units. This leaves opportunities for redundant execution to leverage such units without
hampering the performance of the kernel itself.

We next examine trends in GPU hardware and neural network design to identify opportunities
for such efficient redundant execution.

4.3.2 Wide range of arithmetic intensities among neural network layers
We first examine the arithmetic intensities of current neural networks and their individual linear
layers under various operational settings. In this analysis, we consider only “linear layers”, such
as convolutional and fully-connected layers, which are often implemented as matrix multiplica-
tions. Other operations, such as activation functions, are typically fused to these linear layers and
contribute far less to overall arithmetic intensity and execution time.

The “aggregate arithmetic intensity” of a neural network as a whole is computed by summing
the FLOPs performed across all linear layers, summing the bytes read/written across all linear
layers, and dividing these quantities. This metric provides an estimate of whether the neural
network as a whole is more compute or memory-bandwidth bound.

Figure 4.4 shows the FP16 aggregate arithmetic intensities of eight widely-used CNNs from
the popular PyTorch Torchvision library [48].2 The figure shows a wide range of aggregate

2We replace the group convolutions in ShuffleNet and ResNext-50 with non-grouped convolutions to ease their
conversion to matrix multiplications. The reported aggregate arithmetic intensities of these neural networks are,
thus, higher than they would be with grouped convolutions, which typically decrease arithmetic intensity.
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Figure 4.5: FP16 arithmetic intensity of convolutional and fully-connected layers of ResNet-50 on HD images
(resolution 1080× 1920) with batch size of one.

arithmetic intensities among such CNNs (from 71 to 220).
Furthermore, many domains leverage neural networks that are significantly smaller than those

described above, and thus have even lower aggregate arithmetic intensities. For example, neural
networks used for recommendation serving, such as Facebook’s popular DLRM [237], leverage
small neural networks consisting of a few fully-connected layers. Consequently, these neural
networks have low aggregate arithmetic intensities (e.g., 7 in FP16).

Figure 4.5 shows the arithmetic intensities of individual convolutional and fully-connected
layers of ResNet-50. As illustrated, there is a wide range of arithmetic intensities (1–511) among
even various linear layers of the same neural network (other neural networks are similar).

Finally, arithmetic intensity also varies with settings of the applications in which neural net-
works operate, such as the size of inputs to the neural network. For example, increasing the
batch size used in inference typically increases arithmetic intensity by amortizing the overhead
of loading neural network weights from memory. Thus, the many applications that use small
batch sizes for low-latency inference are likely to have low arithmetic intensity [105, 341], while
those that can aggressively batch inputs may have higher arithmetic intensity. For example, the
FP16 aggregate arithmetic intensities of the neural networks used in DLRM increase from 7 at
batch size of 1 to 70–109 at batch size 256. For CNNs, the resolution of input images also af-
fects arithmetic intensity for similar reasons, as operating over large images amortizes the cost of
loading convolutional filters from memory. For example, the FP16 aggregate arithmetic intensity
of ResNet-50 is 72 when operating over images of resolution 224 × 224 (the resolution typi-
cally used for ImageNet [273]), but increases to 122 when operating over images of resolution
1080× 1920 (typically considered HD).

Takeaway. Neural networks exhibit wide variance in arithmetic intensity across neural net-
works, across individual linear layers within a neural network, and across application settings.
This renders some neural networks, some layers, and some application settings likely to under-
utilize computational resources.

4.3.3 Inference-optimized GPUs have high CMR
We now discuss trends in CMR, the right-hand ratio in Equation 4.1.

GPUs have been a workhorse for neural networks since the early 2010s [190]. Recent
GPUs have further bolstered neural network acceleration by adding hardware units specifically
designed for the matrix multiplications found in neural networks, such as NVIDIA’s Tensor
Cores [38]. These hardware units offer unprecedented performance in terms of FLOPs/sec,
particularly when using low-precision arithmetic (e.g., FP16), as is common in neural network
inference.
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For example, the inference-optimized T4 GPU offers 65 FP16 TFLOPs/sec [55], a marked
increase from the 11 FP16 TFLOPs/sec offered by its predecessor, the P4 [40], which did not
contain Tensor Cores. Such high performance is also offered in other server-grade GPUs, such
as the V100 and A100 GPUs, which offer 125 and 312 FP16 TFLOPs/sec, respectively [27, 54].
This trend has also made its way to edge devices, as GPUs in the NVIDIA Jetson family now
offer up to 32 INT8 TOPs/sec via Tensor Cores, whereas predecessors were bound to single-digit
INT8 TOPs/sec [35].

While the FLOPs/sec offered by inference-optimized GPUs has drastically increased, mem-
ory bandwidth has not increased at the same rate. For example, while the T4 GPU increases
FP16 FLOPs/sec by 5.9× compared to the P4 GPU, it offers only a 1.7× increase in memory
bandwidth. Similar trends hold for other GPUs.

The net result of these trends in compute and memory bandwidth is a significant increase in
the CMR of GPUs. For example, the FP16 CMR of the T4 GPU is 203, while that of the P4 was
58. Even GPUs with high-bandwidth memory (e.g., HBM2) have high CMRs (139 and 201 in
FP16 for V100 and A100, respectively [27, 54]), as do edge GPUs (235 in INT8 for Jetson AGX
Xavier [35]).

Takeaway. The introduction of specialized hardware units for matrix multiplications that
drastically increase computational throughput, paired with a significantly slower increase in
memory bandwidth, results in inference-optimized GPUs with high CMRs. This trend “raises the
bar” for GPU kernels, making them more likely to be memory-bandwidth bound and underutilize
GPU compute units.

4.3.4 Many neural network optimizations reduce arithmetic intensity

A secondary trend further exacerbates the growing bandwidth-bound nature of many neural net-
works: designing small neural networks to perform tasks with high throughput or low latency.
The neural networks shown in Figure 4.4 are large, general-purpose models designed to classify
a wide variety of objects (e.g., from ImageNet [273]). There is a growing body of work on de-
signing more efficient neural network architectures that can accomplish the same task as such
general-purpose neural networks, but with a significantly smaller model. There are many tech-
niques along these lines, including efficient neural architecture search [295, 348], pruning [83],
and model specialization [156, 178, 179, 232, 283]. These techniques often result in deploy-
ing neural networks with lower aggregate arithmetic intensity than the general-purpose neural
networks shown in Figure 4.4.

For example, in model specialization for offline video analytics, a small, specialized CNN is
designed to answers specific queries (e.g., find red trucks), and which consults a larger, general-
purpose CNN only when unsure [156, 179, 283]. By targeting a focused query, specialized
CNNs can typically be made smaller and faster than general-purpose neural networks, but have
lower aggregate arithmetic intensity: the specialized CNNs from the NoScope video analytics
system [179] have FP16 aggregate arithmetic intensities of 15–53, even with large batch size.

Takeaway. Current trends in efficient neural network design result in neural networks that
have lower arithmetic intensity, making current and future workloads likely to underutilize GPU
compute units.
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4.3.5 Takeaways and new opportunities

The previous sections have identified trends that lead to the conclusion that the current and future
landscape of neural network inference will contain a significant number of memory-bandwidth
bound linear layers: §4.3.2 illustrated that current neural networks, the linear layers within
them, and their application settings exhibit a wide range of arithmetic intensities (including
many with low arithmetic intensity), and §4.3.4 described trends in neural network design that
often reduce arithmetic intensity. Coupling this with the dramatic growth in CMR for GPUs de-
scribed in §4.3.3 drives home the conclusion that current and future neural networks will contain
bandwidth-bound linear layers that underutilize the computational capabilities of GPUs.

Such bandwidth-bound linear layers leave room open for redundant execution to fill gaps in
compute utilization during matrix multiplication. However, current approaches to coded com-
putation for neural network inference are unable to exploit these fine-grained opportunities for
efficient redundant execution. As described in §4.2.4, global CC operates at a much higher level
(specifically, kernel level), and hence is unable to exploit compute underutilization that occurs at
finer granularity within the matrix multiplication operation.

This calls for investigating approaches to redundant execution that can exploit the fine-
grained compute underutilization exhibited by current and future matrix multiplication kernels in
neural network inference. Such an approach would complement global CC, which is well-suited
for the compute-bound linear layers in neural networks.

We next turn our focus toward investigating such an approach.
Key design principle. Driven by the opportunities outlined above, we use the following

principle when considering approaches to redundant execution for memory-bandwidth-bound
matrix multiplications: avoid performing additional memory accesses whenever possible even
if doing so comes at the expense of additional computation. Adhering to this principle avoids
competing with the matrix multiplication for its bottleneck resource, memory bandwidth.

4.4 Thread-level replication?

A natural question that arises when considering options for redundant execution for bandwidth-
bound linear layers is whether it is beneficial to use thread-level replication, rather than coded
computation. After all, coded computation is primarily designed to reduce the number of redun-
dant operations performed compared to replication, while spare compute cycles are plentiful in
bandwidth-bound linear layers. Furthermore, thread-level replication easily satisfies the design
principle stated in §4.3.5, by sharing loads with the original matrix multiplication.

We began our exploration of redundant execution for bandwidth-bound linear layers with
replication for these very reasons, but ultimately found it to have higher execution-time overhead
than coded computation, as we next describe. We focus on matrix multiplications using m16n8k8
FP16 Tensor Core operations (MMAs) (described in §4.2.1). Recall that, in matrix multiplication
using this operation, each thread participates in MtNt

2
MMAs on each iteration along the K

dimension. For each MMA, a thread provides four elements from At, two elements from Bt, and
receives four output elements.

We have considered two approaches to thread-level replication:

36



M

K

K

N

A

B

C

column

checksum

row

checksum

dot

Global CC Thread-Level CC

Mt

K

K

Nt

At

Bt

Ct

column

checksum

row

checksum

MMA

(performed by every thread)

CC

result

CC

result

Figure 4.6: Global and two-sided thread-level coded computation.

Traditional replication. The traditional approach to performing thread-level replication is
to perform MtNt

2
additional MMAs per step down the K dimension, accumulate the results in a

separate set of MtNt registers, and compare these registers to the original MtNt matrix multi-
plication output registers. However, we found that the 2× increase in output register usage per
thread in this approach limits the number of threadblocks that can be co-scheduled on a single
SM (so-called “occupancy” [51]), and leads to significant slowdowns compared to the original
matrix multiplication kernel.

Replicated MMA, single accumulation. Based on this limitation, we next explored replicat-
ing MMAs, but accumulating results to a single set of four output registers. Under this approach,
one still performs MtNt

2
additional MMAs per step along the K dimension, but each redundant

MMA accumulates results to a single set of four registers. By the end of the thread-level ma-
trix multiplication, in the absence of a fault, the summation of these four registers equals the
summation of the thread’s “original” MtNt output registers.

We find that the limited additional register usage of this approach alleviates the occupancy-
related slowdowns described above, and thus significantly reduces execution-time overhead com-
pared to the traditional form of replication. However, as we will show in §4.6.5, doubling the
number of MMAs performed results in higher execution-time overhead than coded computation.

We thus turn our focus to investigating coded-computation schemes that can exploit the com-
pute underutilization identified in §4.3.

4.5 Arithmetic-intensity-guided coded computation

In this section, we first investigate approaches to coded computation that can exploit the fine-
grained compute underutilization of bandwidth-bound linear layers identified in §4.3. We then
describe the design of an adaptive approach to coded computation that selects a coded-computation
scheme for each linear layer guided by the layer’s arithmetic intensity.

4.5.1 At which level should coded computation be performed?
The hierarchical decomposition of matrix multiplications described in §4.2.1 offers multiple lev-
els at which coded computation can be performed: the kernel level (as in global CC), threadblock
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level, warp level, or thread level. However, performing coded computation at any level other than
the thread level requires performing additional loads/stores to generate checksums. For example,
performing coded computation at the level of a threadblock requires individual threads to coop-
erate to generate threadblock-wide checksums, which requires storing and loading thread-local
partial checksums. These additional loads and stores violate the design principle described in
§4.3.5 and compete for bandwidth with the matrix multiplication itself.

In contrast, performing coded computation at the level of individual threads avoids additional
loads/stores. Figure 4.6 compares one approach to thread-level CC with global CC at a high level.
Concretely, thread-level CC involves threads in the matrix multiplication kernel performing their
own, local coded computation calculations across their own, local sub-matrix multiplications.
Thread-level CC eliminates additional loads/stores by (1) sharing the loads of operands that will
be used for checksum generation with those that were already performed for thread-level matrix
multiplication in a step along the K dimension, and (2) eliminating stores of partial checksums
for use in threadblock- or warp-wide checksum generation.

Thus, we conclude that performing coded computation at the thread level is the appropriate fit
for coded computation optimized for bandwidth-bound linear layers. This conclusion is heavily
driven by the design principle established in §4.3.5 of avoiding additional loads/stores. In cases
where this principle can be relaxed, performing coded computation at other levels may be appro-
priate. Even with this somewhat-extreme stance taken, we will show in §4.6 that thread-level CC
significantly reduces execution-time overhead for bandwidth-bound linear layers.

4.5.2 Design decisions for thread-level CC
Even having narrowed our focus to performing coded computation at thread level for bandwidth-
bound linear layers, there remain multiple design decisions that affect performance, which we
discuss next. Similar to §4.4, we focus on m16n8k8 Tensor Core operations (MMAs), which are
described in detail in §4.2.1.

Online computation of weight checksums. Recall from §4.2.4 that optimized approaches to
global CC for neural networks typically compute the weight checksum ofB once offline and load
it upon every inference request. We do not employ this technique for thread-level CC, as doing
so would require threads to load weight checksums from memory, violating the design principle
described in §4.3.5. Thus, thread-level CC recomputes thread-local weight checksums alongside
the thread-level matrix multiplication.

Balancing checksum generation and redundant MMAs. Adopting the coded-computation
approach described in §4.2.3 at thread level would involve performing the following for each
step the thread takes along the K dimension: (1) computing a thread-level activation checksum
from At, (2) computing a thread-level weight checksum from Bt, and (3) performing a single
MMA over these checksums to generate coded-computation output values. These steps are il-
lustrated in the left-hand side of Figure 4.7, and are repeated for each iteration along the K
dimension, accumulating into the same coded-computation output registers. Once the thread has
completed all iterations along the K dimension, it generates a thread-local output summation
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Table 4.1: Additional Tensor Core MMAs and checksum operations done by thread-level replication, two-sided
coded computation, and one-sided coded computation per step in the K dimension.

Replication Two-sided One-sided
Tensor Core MMAs MtNt/2 1 Mt/2

Checksum operations 0 O(Mt +Nt) O(Nt)

and compares it to the final coded-computation output registers. We call this approach two-sided
thread-level CC, as it generates checksums for both At and Bt.

Two-sided thread-level CC minimizes the number of redundant MMAs performed by thread-
level CC, as it performs only one extra MMA for every step along the K dimension. However, it
maximizes the amount of computation performed in generating thread-local checksums.

It is important to note that checksum generation involves summations that will execute on
traditional arithmetic units on the GPU (e.g., using HADD2 instructions), rather than on Tensor
Cores. In contrast, redundant MMA operations will execute on Tensor Cores. Thus two-sided
thread-level CC will more significantly utilize traditional arithmetic units than Tensor Cores be-
cause it performsO(Mt+Nt) additional checksum generation operations but only one additional
MMA per step along the K dimension.

Given that Tensor Cores are the drivers behind the math performed in matrix multiplica-
tion, it is Tensor Cores that are heavily underutilized by bandwidth-bound linear layers, rather
than traditional arithmetic units. Traditional arithmetic units are likely not as underutilized in
bandwidth-bound linear layers, as they are also used by threads to carry out general control flow
(e.g., updating loop counters) and to assist in loading/storing data (e.g., computing addresses).
Thus, minimizing the number of additional MMAs performed in two-sided thread-level CC may
insufficiently exploit underutilized Tensor Cores. At the same time, our experience with replica-
tion in §4.4 indicates that adding too many additional MMAs can also lead to high overhead.

To straddle this tradeoff between added operations to Tensor Cores and added operations to
traditional arithmetic units, we leverage a one-sided thread-level CC scheme. Rather than com-
puting checksums for both At and Bt and performing a single MMA across these checksums,
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one-sided thread-level CC instead generates a checksum only for Bt and multiplies the entirety
of At with this checksum.3 As illustrated in the right-hand side of Figure 4.7 this results in per-
forming Mt

2
additional MMAs, and O(Nt) checksum generation operations for each step along

the K dimension.
As shown in Table 4.1, one-sided thread-level CC sits between thread-level replication and

two-sided thread-level CC in terms of additional MMAs and checksum operations performed.
We illustrate in §4.6.5 that this enables one-sided thread-level CC to provide the lowest execution-
time overhead among these approaches to thread-level redundant execution.

4.5.3 Per-layer, intensity-guided adaptation

As shown in §4.3, neural networks have a mix of compute- and bandwidth-bound linear layers.
The coded-computation scheme with the lowest execution-time overhead for a given layer de-
pends on the bottleneck of the layer, with global CC preferable for compute-bound layers and
thread-level CC preferable for bandwidth-bound layers.

Rather than selecting one coded-computation scheme to be applied to all linear layers of
a neural network, we propose intensity-guided CC, which selects among global CC and thread-
level CC for each individual linear layer. Prior to deploying a neural network, intensity-guided CC
measures the execution-time overhead of each linear layer under global CC and thread-level CC,
and chooses the scheme with the lowest overhead for that layer. As we show in §4.6, in con-
forming to the ideas presented in this chapter, linear layers with higher arithmetic intensity typ-
ically benefit from global CC, while those with lower arithmetic intensity typically benefit from
thread-level CC. Thus, intensity-guided CC uses arithmetic intensity as a guide in selecting the
best coded-computation scheme for each layer. Our evaluation in §4.6 shows that intensity-
guided CC significantly reduces overhead compared to either global or thread-level CC alone.

Integration with pre-deployment optimizers. Intensity-guided CC fits alongside the pop-
ular approach of pre-deployment optimization in neural network inference, as performed by
frameworks like TensorRT [39], TVM [97], cuDNN [29], and CUTLASS. This process takes
in a neural network and an input size (e.g., image resolution, batch size) that will be used during
inference and enumerates and executes many configurations of each layer in the neural network
(e.g., tile sizes, matrix layouts). The configuration with the lowest execution time for a layer is
chosen for that layer and used for all inference requests during deployment. A pre-deployment
optimizer using intensity-guided CC will include global CC and thread-level CC in its enumera-
tion of configurations of a matrix multiplication. Intensity-guided CC chooses the fastest among
these, which typically aligns with the arithmetic intensity of the layer, as we show in §4.6.

4.6 Implementation and evaluation

We now evaluate the execution-time overhead of intensity-guided CC. The highlights of the
evaluation are as follows:

3One can alternatively multiply a checksum of At with Bt.

40



• Across eight popular CNNs, two neural networks used in DLRMs, and four specialized
CNNs, intensity-guided CC reduces execution-time overhead compared to global CC by
1.09–5.3×.

• Intensity-guided CC provides the largest reductions in execution-time overhead for neural
networks that have many linear layers with low arithmetic intensity, such as DLRMs (up to
4.9× reduction) and specialized CNNs (up to 5.3× reduction).

• Even for neural networks that have many linear layers with high arithmetic intensity, intensity-
guided CC still significantly reduces execution-time overhead (e.g., 1.5× for Wide-ResNet-
50). This shows the benefit of intensity-guided CC’s adaptive approach to coded computa-
tion, as even neural networks that are primarily compute bound often have some linear layers
with low arithmetic intensity.

• Intensity-guided CC provides similar benefits across various input resolutions (§4.6.4) and
batch sizes (§4.6.4).

• The one-sided thread-level CC approach motivated in §4.5.2 significantly reduces execution-
time overhead compared to two-sided thread-level CC and thread-level replication (§4.6.5).

4.6.1 Implementation
Recall that intensity-guided CC adapts to each linear layer in a neural network by choosing be-
tween thread-level CC and global CC. We implement thread-level CC and global CC in CUDA/C++
atop CUTLASS [31], a high-performance, open-source linear algebra and machine learning li-
brary developed by NVIDIA. For thread-level CC, we modify existing thread-level inner loops
in CUTLASS to perform checksum generation, redundant MMAs, and final checksum compar-
ison. We implement the global CC scheme based on the state-of-the-art approach from Hari et
al. [149] (discussed in §4.2.4), using NVIDIA’s CUB library [28] when possible.

Recall from §4.5.3 that intensity-guided CC fits alongside common pre-deployment neural
network optimizers. We integrate intensity-guided CC into the pre-deployment workflow of the
CUTLASS profiler, which selects the fastest matrix multiplication kernel and configuration (e.g.,
tile size, layout) for a given matrix multiplication size.

4.6.2 Evaluation setup
Baselines. Our main comparison is between intensity-guided CC and the state-of-the-art ap-
proach to global CC for neural network inference on GPUs described in §4.2.4. We also evaluate
one-sided thread-level CC alone (referred to as “thread-level CC”), and in §4.6.5 compare to
two-sided thread-level CC and thread-level replication.

Metrics. Execution-time overhead is one of the primary metrics of interest for redundant
execution. For each linear layer of a neural network, we obtain the execution time of the original
matrix multiplication without redundancy (To), as well as that of the redundant version (Tr)
and report the percentage increase in execution time (Tr−To

To
∗ 100). We report execution-time

overhead for an entire neural network by summing the per-layer execution times and using these
in the equation above. We include only linear layers, as these layers typically dominate the end-
to-end execution time of a neural network. Moreover, aggregating the execution times of each
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linear layer in this fashion is representative of overall execution-time overhead for the neural
network as a whole, because, for all of the neural networks we consider, the subsequent layer of
the neural network cannot begin executing until the current layer has completed execution. We
report the mean of 10 trials of 1000 runs after 100 warmup runs. Error bars show the maximum
and minimum time overheads across trials. In many cases, error bars are imperceptible due to
their tightness. We do not plot error bars in Figure 4.8 to avoid clutter and because all error bars
for neural networks in Figure 4.8 are plotted in Figures 4.9, 4.10, and 4.11. Note that while in
some cases error bars may give the incorrect impression that intensity-guided CC performs worse
than global CC, intensity-guided CC, by design, always performs at least as well as global CC.

We also report “aggregate arithmetic intensity” (defined in §4.3.2). In each figure, the FP16
aggregate arithmetic intensity is listed in parentheses below each model.

Evaluation setting. We evaluate on an NVIDIA T4 GPU [55], which is an inference-
optimized GPU, on an AWS g4dn.xlarge instance. The T4 offers 65 FP16 TFLOPs/sec and
320 GB/sec of memory bandwidth, giving it an FP16 CMR of 203. We use CUDA 11.0 and
configure the clock rate of the GPU according to that used in CUTLASS [30]. We perform all
experiments using FP16 datatypes and we use the m16n8k8 matrix multiplications targeting Ten-
sor Cores described in §4.2.1. Note that it is standard to perform neural network inference in low
precision, such as FP16. We pad matrix dimensions M , N , and K to be multiples of eight when
needed to operate with the m16n8k8 operation. We find CUTLASS’s m16n8k8 matrix multipli-
cation with M = N = K = 2048 to achieve similar TFLOPs/sec to the highest reported on the
T4 GPU [167].

Workloads. We consider workloads from multiple domains:
General-purpose CNNs. We consider eight widely-used CNNs from the popular PyTorch

Torchvision library [48]: ResNet-50, VGG-16, AlexNet, SqueezeNet, ShuffleNet, DenseNet-
161, ResNext-50, and Wide-ResNet-50. Each of these CNNs has 1000 output classes, as is
standard for ImageNet. We primarily report performance when operating over HD images of
size 1080× 1920 with batch size of one, though we consider other image resolutions in §4.6.4.

Recommendation models. We consider Facebook’s DLRM [237], which has two neural net-
works consisting of fully-connected layers (also called multilayer perceptrons, or MLPs): MLP-
Bottom, which has three hidden layers with 512, 256, and 64 nodes each, and MLP-Top which
has two hidden layers with 512 and 256 nodes, and produces one output value. We primarily
consider DLRMs with batch size of one as this is the common case for low-latency, user-facing
inference [105, 341]. For completeness, we also consider large batch size in §4.6.4.

Specialized CNNs. We also evaluate on neural networks representative of ongoing efforts to
deploy small neural networks (described in §4.3.4). We consider four specialized CNNs used
within the NoScope system [179]: Coral, Roundabout, Taipei, Amsterdam. These CNNs act as
lightweight filters performing binary classification in front of large, general-purpose CNNs for
high-throughput offline video analytics in cluster settings. These CNNs have 2–4 convolutional
layers, each with 16–64 channels, at most two fully-connected layers, and operate over regions
of video frames of size 50 × 50 pixels. As these CNNs are used for offline analytics, we use a
large batch size of 64 for experiments.

Square matrix multiplications. We finally perform a more detailed comparison of one-sided
thread-level CC and global CC, along with two-sided thread-level CC and thread-level replication
on matrix multiplications with M = N = K of various sizes (§4.6.5).
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Figure 4.8: Execution-time overhead on all neural networks considered. To avoid clutter, error bars are not plotted
in this figure, but are plotted in Figures 4.9, 4.10, and 4.11 for each neural network.
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Figure 4.9: Execution-time overhead on general-purpose CNNs with inputs of resolution 1080× 1920.

4.6.3 Summary of results
Figure 4.8 compares the execution-time overhead of global CC to that of intensity-guided CC
on all neural networks we consider (listed in order of increasing aggregate arithmetic inten-
sity).4 Compared to global CC, intensity-guided CC reduces execution-time overhead by up
to 5.3×. For example, for the Coral specialized CNN, intensity-guided CC reduces execution-
time overhead from 17% to 4.6%. As expected, intensity-guided CC achieves the largest re-
duction in execution-time overhead for neural networks with low aggregate arithmetic intensity,
as these neural networks contain more bandwidth-bound linear layers that benefit from thread-
level CC. That said, intensity-guided CC reduces execution-time overhead even for neural net-
works with high aggregate arithmetic intensity. For example, intensity-guided CC reduces the
execution-time overhead on Wide-ResNet-50 by 1.5× compared to global CC (from 5.3% to
3.5%). Even though such neural networks have high aggregate arithmetic intensity, they still
contain bandwidth-bound linear layers, for which using thread-level CC over global CC reduces
overhead.

4.6.4 Evaluation across various neural network domains
General-purpose CNNs. Figure 4.9 shows the execution-time overhead for thread-level CC,
global CC, and intensity-guided CC on eight popular general-purpose CNNs operating over HD
images of size 1080 × 1920 at batch size one. Compared to global CC, intensity-guided CC
reduces execution-time overhead by 1.09–2.75×. As expected, thread-level CC achieves lower
execution-time overhead than global CC for CNNs with low aggregate arithmetic intensity, while
global CC has lower overhead for CNNs with higher aggregate arithmetic intensity. Intensity-
guided CC achieves the lowest execution-time overhead across all the CNNs, motivating its
per-layer, arithmetic intensity-guided approach.

4Note that the execution-time overheads do not monotonically decrease with increasing aggregate arithmetic
intensity since execution is performed layer-wise whereas aggregate arithmetic intensity is not layer-wise.
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Figure 4.10: Execution-time overheads on neural networks from DLRM. Error bars are tight to the point of being
imperceptible.
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Figure 4.11: Execution-time overheads on specialized CNNs.

Effect of image resolution. When operating on images of size 224×224 (the standard resolu-
tion in ImageNet), intensity-guided CC reduces execution-time overhead by 1.3–3.3× compared
to global CC. This larger reduction compared to operating on HD images stems from the lower
aggregate arithmetic intensity of CNNs when operating on images with smaller resolution (de-
scribed in §4.3.2). This leads to more linear layers being bandwidth-bound and benefiting from
thread-level CC in intensity-guided CC.

Recommendation models (DLRM). We next consider the neural networks used in Facebook’s
DLRM. Figure 4.10 plots execution-time overheads on MLP-Bottom and MLP-Top. At batch
size of one, which corresponds to low-latency deployments of DLRMs for user-facing ser-
vices, both MLP-Bottom and MLP-Top have low aggregate arithmetic intensity. This results
in intensity-guided CC reducing execution-time overhead compared to global CC by 4.55× and
3.24× for MLP-Bottom and MLP-Top, respectively. At a very large batch size of 2048, the ag-
gregate arithmetic intensity of both MLP-Bottom and MLP-Top increase, but at different rates.
The aggregate arithmetic intensity of MLP-Top increases from 7.7 to 175.8, resulting in the dif-
ference between global and thread-level coded computation decreasing. In contrast, the aggre-
gate arithmetic intensity of MLP-Bottom grows only from 7.4 to 92, resulting in thread-level CC
continuing to have lower overhead. In both cases, intensity-guided CC achieves the lowest over-
head, illustrating the need for coded computation to consider the resource bottlenecks of each
linear layer of a neural network.

Specialized CNNs. Figure 4.11 shows the execution-time overheads on specialized CNNs
from NoScope [179] at batch size 64. For these primarily bandwidth-bound CNNs with low ag-
gregate arithmetic intensity, intensity-guided CC reduces execution-time overhead by 1.6–5.3×.
These results are particularly promising when considering the growing trends described in §4.3
of designing lightweight neural networks, coupled with the increasing CMR of GPUs, which will
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Figure 4.12: Execution-time overhead on square matrix multiplications. Sizes left of the dashed line have arithmetic
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likely result in more neural networks being bandwidth-bound.

4.6.5 Evaluation of thread-level design decisions

To evaluate the design decisions made in leveraging thread-level CC for neural network inference
on GPUs, we now evaluate global CC and the various approaches to thread-level redundant exe-
cution described in §4.4 and §4.5. We perform such evaluation on square matrix multiplications
(i.e., M = N = K) of varying size, allowing us to control arithmetic intensity and best illustrate
the tradeoffs.

Figure 4.12 shows the execution-time overhead of each approach with M = N = K ranging
from 32 to 2048, corresponding to FP16 arithmetic intensities of 10 to 683. We first compare only
the final version of thread-level CC we leverage (one-sided) to global CC. As expected, for matrix
sizes with arithmetic intensity less than the FP16 CMR of the T4 (203), thread-level CC achieves
an execution-time overhead up to 6.5× lower than that of global CC, while for matrix sizes with
higher arithmetic intensity, global CC achieves overheads up to 14× lower than thread-level CC.
It is clear that taking a one-size-fits-all approach to coded computation will lead to suboptimal
performance on certain matrix sizes, motivating our adaptive approach in intensity-guided CC.

Figure 4.12 also shows that one-sided thread-level CC almost always exhibits lower execution-
time overhead than two-sided thread-level CC and thread-level replication. This reinforces our
decision to use one-sided coded computation for thread-level CC. The differences between repli-
cation and coded computation are particularly stark for larger sizes (512 and beyond), where the
overhead of replication sharply spikes due to increasing competition for Tensor Cores.

4.7 Related work

Fault tolerance in general programs. There are various techniques for tolerating soft-error-
induced faults in general programs:

One approach is hardware-based fault tolerance, such as through using ECC in memory, and
radiation-hardened processing units [77, 114, 290]. While certain approaches to hardware-based
fault tolerance are widely used, such as ECC-protected memory subsystems, hardware protection
for processing units is less widely used due to its high overhead. Furthermore, hardware-based
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fault tolerance is inflexible to changes in the required fault tolerance of applications or the fault
rate of operating environments. Thus, we focus on software-based fault tolerance.

Software-based fault tolerance for general programs is typically achieved through techniques
like instruction duplication [225, 268], replication of threads/warps [119, 165, 305, 330], and
compiler-driven re-execution [183, 212]. In contrast, we focus on using application-level features
of neural network inference to reduce the overhead of fault detection.

Fault tolerance in neural networks. Recent works have illustrated the potentially-catastrophic
effects of soft errors on neural networks through fault injection tools [101, 102, 199, 222] and
neutron beam experiments [122]. This has spurred many approaches for fault tolerance in neu-
ral networks, such as leveraging the “inherent robustness” of neural networks [248, 300, 340],
training neural networks to tolerate faults [185], anomalous activation suppression [100, 249],
selective hardening [74, 205, 223, 224], and learning to detect faults [204, 277, 278]. Our focus
in this work is on leveraging coded computation to detect errors in neural network inference.
Compared to the approaches listed above, coded computation provides clearer fault-tolerance
guarantees and does not require retraining a neural network or understanding its behavior.

Coded computation for neural networks. Due to the heavy use of linear algebra in neural
networks, coded computation is a natural fit for fault tolerance in neural networks, and a number
of recent works have explored using coded computation for neural networks [126, 149, 201,
247, 342]. Ozen et al. [247] leverage coded computation to protect convolutional and fully-
connected layers and propose integration of coded computation into a systolic array architecture.
Zhao et al. [342] propose a systematic workflow of coded-computation checks for CNNs to
provide a high degree of protection against faults with low execution-time overhead on CPUs.
Li et al. [201] propose optimizations for coded computation in low-bitwidth DLRM inference
on CPUs. Most closely related to our work is the work of Hari et al. [149], which proposes
the optimized global CC scheme for GPUs (described in §4.2.4), and which forms a component
of our proposed intensity-guided CC. Intensity-guided CC complements the work of Hari et
al. [149] with coded-computation schemes well-suited for bandwidth-bound linear layers, and
by adaptively selecting between the two, using arithmetic intensity as a guide.

Compared to these works, the present work is unique in multiple aspects. First, the works
listed above all focus on employing a single coded-computation scheme across all linear layers
of a neural network. In contrast, we illustrate that different linear layers within a neural net-
work have varying resource bottlenecks that benefit from per-layer-optimization in the proposed
intensity-guided CC. Second, to the best of our knowledge, our work is the first to analyze the
bottleneck of memory bandwidth for neural network inference in the context of exploiting it for
efficient redundant execution. Careful analysis of this trend lends itself to developing optimiza-
tions that have been overlooked by prior works. Finally, to the best of our knowledge, this work
presents the first thread-level approach to coded computation for neural networks on GPUs.

Coded computation in other domains. Coded computation has been widely studied for
making linear algebra routines fault tolerant [86, 87, 160, 321, 336], iterative methods [96, 99],
and other applications [202]. Our work differs from these works in its focus on the specific char-
acteristics of neural networks and GPUs, and its adaptive, intensity-guided approach of selecting
coded-computation schemes based on the resource bottlenecks of the problem.

Smith et al. [289] investigated fusing coded-computation operations alongside matrix multi-
plications on CPUs. While similar to the approach to thread-level CC that we consider as part
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of intensity-guided CC, the techniques employed by Smith et al. [289] differ in that they do not
perform coded computation at the level of the smallest unit of the parallel subproblem in the ma-
trix multiplication. Thus, this approach generates checksums collaboratively across CPU threads
(although not globally), which requires additional loads and stores, albeit, at higher levels of the
memory hierarchy. In contrast, we leverage thread-level CC specifically for bandwidth-bound
linear layers in neural networks on GPUs, and thus avoid performing any additional loads and
stores (which would compete for the layer’s bottleneck resource). This results in thread-level CC
performing coded computation at the smallest parallel sub-matrix multiplication solved (GPU
thread level), requiring no coordination between threads. Furthermore, intensity-guided CC takes
an adaptive approach to coded computation based on the resource bottleneck of a given matrix
multiplication, whereas Smith et al. [289] use a one-size-fits-all approach.

Concurrent work with ours, FT-BLAS [337], proposes to choose between replication and
coded computation in BLAS routines on CPUs depending on the BLAS level of an operation.
Specifically, FT-BLAS [337] uses replication for operations in Levels 1 and 2 (vector-vector
and matrix-vector operations), and coded computation for those in Level 3 (matrix-matrix op-
erations). However, for a given operation in a BLAS level (e.g., for all matrix-matrix multi-
plications), FT-BLAS [337] takes a one-size-fits-all approach. In contrast, we show that the
unique characteristics of neural network inference on GPUs lead to neural networks contain-
ing a mix of compute- and bandwidth-bound matrix-matrix multiplications, rendering one-size-
fits-all approaches inefficient. Moreover, as shown in §4.6.5, leveraging replication even for
bandwidth-bound matrix multiplications used in neural networks on GPUs can lead to signifi-
cant overhead, motivating intensity-guided CC’s approach of selecting between various coded
computation schemes for each matrix multiplication.

4.8 Conclusion
Intensity-guided CC illustrates the reduction in resource overhead possible by considering spe-
cific properties of ML systems and the infrastructure on which they run when leveraging existing
coding-theoretic tools. Specifically, we showed that the most efficient implementation of coded
computation for linear layers of neural networks depends on the arithmetic intensity of the layer
and the CMR of the GPU on which it is run. Leveraging this insight and the diversity of arith-
metic intensities of linear layers of neural networks, intensity-guided CC adapts the approach to
coded computation it uses on a per-layer basis to significantly reduce execution-time overheads
compared to a one-size-fits-all approach.
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Chapter 5

Efficiently using erasure codes in
recommendation model training

This chapter provides a second example making fault tolerance for ML systems more efficient
through properties specific to ML systems. We focus on the problem of fault-tolerant training of
distributed deep-learning based recommendation models (DLRMs). Prior work from Facebook
has shown that checkpointing, the current approach to fault tolerance in DLRM training, adds
an average of 12% to the total training time of production DLRMs. We investigate the potential
of using erasure codes to overcome the downsides of checkpointing. Our study reveals multiple
ways in which the unique characteristics of DLRM training call for nuance in leveraging erasure
codes in these systems. The result of our work is ECRM, a fault-tolerant DLRM training system
that leverages a hybrid redundancy scheme by selecting between erasure codes and replication
for different DLRM parameters, enables training to continue when recovering from a failure, and
correctly and maintains the consistency of recovered parameters. Compared to checkpointing,
ECRM reduces training-time overhead on large DLRMs by up to 66%, recovers from failure up
to 9.8× faster, and continues training during recovery with only a 7–13% drop in throughput
(whereas checkpointing must pause).

5.1 Introduction

Deep-learning-based recommendation models (DLRMs) are key tools in serving personalized
content to users at Internet scale [107, 237]. As the value generated by DLRMs often relies
on the ability to reflect recent data, production DLRMs are frequently retrained [20]. Reducing
DLRM training time is thus critical to maintaining an accurate and up-to-date model.

DLRMs consist of embedding tables and neural networks (NNs). Embedding tables map
sparse categorical features (e.g., location of a client) to a learned dense representation. Embed-
ding tables resemble lookup tables in which millions or billions [130, 169] of sparse features each
map to a small dense vector representation of tens/hundreds of floating-point values. We refer
to a single dense embedding vector as an “embedding table entry,” or “entry” for short. A small
NN processes dense vectors resulting from embedding table “lookups” to produce a prediction
(e.g., whether a client likes a video).
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Figure 5.1: Example of (a) normal and (b) (naive) erasure-coded training with parameters e0, e1, and e2, and
gradients∇0 and ∇1. For simplicity, only accesses and updates for embedding table entries are shown.

Embedding tables are typically large, ranging from hundreds of gigabytes to terabytes in
size [169]. Such large models are trained in a distributed fashion across tens/hundreds of nodes [60,
169], as depicted (at a small scale) in Figure 5.1a. Embedding tables and NN parameters are
sharded across servers and kept in memory for fast access. Workers operate in a data-parallel
fashion to perform NN training by accessing model parameters from servers and sending gradi-
ents to servers to update parameters via an optimizer (e.g., Adam [118]).

Since model parameters are stored in memory, any server failure requires training to restart
from scratch. Given that DLRM training is resource and time intensive and that failures are
common in large-scale settings, it is imperative for DLRM training to be fault tolerant [129, 221].
In this work, we focus on tolerating server failures. Server failures are critical to handle because
they result in the loss of a fraction of the DLRM parameters. In contrast, worker failures are less
critical because workers do not contain training state.

Checkpointing is the main approach used for fault tolerance in DLRM training [129, 221].
This involves periodically pausing training and writing the current parameters and optimizer state
to stable storage, such as a distributed file system. If a failure occurs, the entire system resets
to the most recent checkpoint and restarts training from that point. While simple, checkpointing
frequently pauses training to save DLRM state and has to redo work after failure. Thus, check-
pointing has been shown to add significant overhead to training production DLRMs, such as at
Facebook [221]. Checkpointing also consumes significant network and storage bandwidth in dat-
acenters and results in a large storage footprint [129]. This adds up to additional cost in training
DLRMs: Google recently reported that checkpointing-related overheads amount in an additional
cost per year of roughly 45 sofware engineers [46]. Even more concerning, time and resource
overheads increase with DLRM size. Given the trend of increasing model size [280, 329] (which
we describe in greater detail in §5.2.2), checkpointing is slated to incur even larger overhead for
training future DLRMs.

An alternative to checkpointing that does not require stalls, a lengthy recovery process, or
significant storage bandwidth and capacity is to replicate DLRM parameters on separate servers.
However, replication requires at least twice as much memory as a checkpointing-based system,
which is impractical given the large sizes of DLRMs. Another alternative is to reduce the over-
head of checkpointing by taking approximate checkpoints [98, 129, 221, 258]. However, this
can result in accuracy loss in training, which makes debugging production systems harder due
to uncertainty in the accuracy of the model recovered from the checkpoint. Furthermore, even
small drops in accuracy have been noted to result in a significant reduction in the business value
generated by DLRMs [343], making potential accuracy loss induced by an approach to fault
tolerance undesirable.

49



An ideal approach to fault-tolerant DLRM training would (1) operate with low training-time
and memory overhead, and (2) recover quickly from failures, while (3) not introducing potential
accuracy loss (and the associated uncertainty). Finally, such a solution should scale well with
increases in DLRM size so as to support emerging DLRMs. Designing such an approach is the
goal of this chapter.

We question the potential of using erasure codes as an efficient alternative means of fault
tolerance for DLRM training. Like replication and traditional checkpointing, erasure coding
would not alter the accuracy of training. Due to their low memory overhead, erasure codes offer
potential for efficient fault tolerance in DLRM training. As shown in Figure 5.1b, a DLRM
training system could potentially construct “parity parameters” by encoding k parameters from
separate servers. In this example, a parity p is formed from parameters e0, e1, and e2 via the
encoding function p = e0 + e1 + e2, and placed on a separate server. If a server fails, lost
parameters can be recovered by reading the k available parameters and performing the erasure
code’s decoding process (e.g., e1 = p− e0 − e2).

While erasure codes appear promising for fault-tolerant DLRM training, applying them to
this setting comes with challenges due to the interaction between erasure codes and the unique
characteristics of DLRM training. In this work, we thoroughly investigate the use of erasure
codes in DLRM training systems, uncover these challenges, and propose solutions to overcome
them. The result of our work is ECRM,1 a DLRM training system that achieves efficient fault
tolerance by leveraging insights into the unique characteristics of DLRM training along with
careful system design. We describe the challenges in this process and how ECRM overcomes
them below.

Hybrid redundancy. We show in §5.3.2 that correctly using erasure codes in DLRM training
necessitates more communication overhead than replication. Thus, ECRM must carefully deter-
mine which parameters should be erasure coded so as to straddle a tradeoff between memory
and network overhead. ECRM approaches this decision based on unique characteristics of many
DLRMs: while embedding tables account for the vast majority of the memory use of DLRMs,
gradients for NN parameters dominate the network bandwidth used in updating parameters. For
example, for the DLRM trained on the Criteo dataset [10] in MLPerf [228], embedding tables
account for 99% of the DLRM parameters, but only 35% of the network bandwidth for gradi-
ents, while NN parameters account for 1% of the DLRM parameters, but 65% of the network
bandwidth.

Based on this asymmetry of resource consumption, ECRM takes a hybrid approach to redun-
dancy by erasure coding embedding tables and replicating NN parameters. Keeping embedding
tables erasure coded ensures that ECRM has small memory overhead, while replicating NN
parameters significantly reduces the network bandwidth consumed by ECRM, without adding
much memory overhead.

Maintaining correctness and consistency. Redundant parameters in ECRM must be kept
up-to-date with DLRM parameters to ensure correct recovery. As will be shown in §5.3.2 and
§5.3.5, correctly and consistently updating parities when using optimizers that store internal
state (e.g., Adagrad, Adam) is challenging without incurring large memory overhead. ECRM
circumvents these challenges by delegating the responsibility for updating parities to servers,

1ECRM: Erasure-Coded Recommendation Model
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rather than workers, via an approach we call “difference propagation,” and by leveraging two-
phase commit to update parameters.

Pause-free recovery. An erasure code’s recovery process can be resource intensive because
it involves reading all available data to a single server and performing decoding [263, 276].
This can lead to long recovery times during which training is stalled. ECRM recovers quickly
from failure by enabling training to continue during recovery. ECRM leverages on-demand
reconstruction of failed DLRM parameters to service new training iterations while full recovery
proceeds in the background. ECRM carefully ensures that new training updates do not conflict
with the background recovery process.

We implement ECRM atop XDL [169], an open-source, industrial-scale DLRM training sys-
tem, and evaluate using variants of the Criteo DLRM in MLPerf [228]. ECRM recovers from
failures faster than checkpointing and with lower training-time overhead for large DLRMs. For
example, ECRM recovers from failure up to 9.8× faster than the average case for checkpoint-
ing, and enables training to continue during recovery with only a 7–13% drop in throughput,
while checkpointing pauses training during recovery. This improved recovery makes it easier
for DLRM training to meet tight deadlines for deploying a new model even when failures occur.
Furthermore, ECRM reduces training-time overhead for a large DLRM by up to 66% compared
to checkpointing. ECRM’s benefits increase with DLRM size, showing promise to bring efficient
fault tolerance to current and future DLRMs.

5.2 Challenges in fault-tolerant DLRM training

We first describe DLRM training, the insufficiency of current approaches to fault-tolerant DLRM
training, and opportunities for more-efficient fault tolerance in DLRM training.

5.2.1 DLRM training systems

As described in §5.1, DLRMs are large in size due to their use of embedding tables that span
hundreds of gigabytes to terabytes in size, and DLRM training is typically distributed across a
set of servers and workers (see Figure 5.1a). Model parameters (both for embedding tables and
for NNs) are sharded across server memory. In a given training iteration over a batch of data,
a worker reads embedding table entries relevant to that batch and all NN parameters, performs
a forward and backward pass to generate gradients (for both NN parameters and embedding
table entries), and sends gradients back to the servers hosting the parameters that were read. An
optimizer (e.g., Adam) on each server uses gradients received from workers to update parameters.
Finally, many systems use asynchronous training when training DLRMs (e.g., Facebook [60]
and Alibaba [169]). We thus focus on asynchronous training in this work, but the techniques we
propose could extend to synchronous training.

Stateful optimizers. Many popular optimizers use per-parameter state in updating parame-
ters (e.g., Adam [118], Adagrad [125], momentum SGD). We refer to such optimizers as “stateful
optimizers.” For example, Adagrad tracks the sum of squared gradients for each parameter over
time and uses this when updating the parameter. Per-parameter optimizer state is kept in memory
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on servers and is updated when the corresponding parameter is updated. As per-parameter state
grows with DLRM size, optimizer state for embedding tables can consume significant memory.

5.2.2 Unique characteristics of DLRMs
DLRMs contain unique characteristics compared to other deep networks. First, while many deep
networks today leverage large NNs, DLRMs typically leverage small NNs but large embedding
tables [145]. For example, a DLRM commonly used to train on the Criteo dataset contains
over 100 GB of embedding tables, but less than 1 GB of NN parameters. Second, components
of DLRMs have diverse access patterns. Each training sample typically accesses only a few
embedding table entries, but all NN parameters. For example, the average number of embedding
table entries accessed by a batch of 2048 training samples on the Criteo dataset is only 8900.
This is a small fraction of the roughly 200 million entries in the DLRM. Thus, embedding table
entries are updated sparsely, while all NN parameters are updated on every training batch.

Scaling trends. Similar to other deep models, increasing parameter count in DLRMs has led
to increased accuracy. Thus, DLRMs have drastically increased in size over the years: whereas
in 2020, Facebook used DLRMs with 100s of billions of parameters, today’s DLRMs now use
well over one trillion parameters [231]. This scaling is heavily driven by the increased number
of embedding table entries in DLRMs: Facebook reports that the number of embedding table
entries in DLRMs increased by 17.5× from 2017–2021 [280]. Moreover, this scaling trend is
expected to increase in the future [329].

5.2.3 Checkpointing and its downsides
Given the large number of nodes on which DLRMs are trained, failures are common [129, 221].
Due to the time it takes to train such models, it is critical that DLRM training be fault tolerant.

We focus on tolerating server failures. Handling server failures is critical, as failure of a
single server results in loss of fraction of embedding table entries and NN parameters, as well
as any optimizer state. In contrast, fault tolerance is not as critical for workers, as workers do
not hold DLRM parameters. Losing a worker may reduce training throughput, but will not result
in loss of training state. In the event of a worker failure, a replacement worker can be allocated
while the system continues training.

Checkpointing is the primary approach used for fault tolerance in DLRM training [129, 221].
Under checkpointing, training is periodically paused and DLRM parameters and optimizer state
are writen to stable storage (e.g., a distributed file system). Upon failure, the most recent check-
point is read from stable storage, and the entire system restarts training from this checkpoint,
redoing any training iterations that occurred between the most recent checkpoint and the failure.

Recently, Facebook reported that overheads from checkpointing account for, on average,
12% of DLRM training time, and that these overheads add up to over 1000 machine-years of
computation [221]. We next describe two primary time penalties that make up the overhead of
checkpointing on training time, which we empirically evaluate in §5.4.

1. Time penalty during normal operation. Writing checkpoints to stable storage is a slow
process given the large sizes of DLRMs, and training is paused during this time so that the saved
model is consistent. Intuitively, the overhead of checkpointing on normal operation increases the
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more frequently checkpoints are taken and the longer it takes to write a checkpoint (and thus the
larger the DLRM). This is illustrated empirically in §5.4.2.

2. Time penalty during recovery. Upon failure, a system using checkpointing must roll
back the DLRM to the state of the most recent checkpoint by reading it from stable storage, and
redo all training iterations that occurred between this checkpoint and the failure. New training
iterations are paused during this time. The time needed to read checkpoints from storage can be
significant [221] and grows with DLRM size. The expected time to redo iterations grows with
the time between checkpoints: if checkpoints are written every T time units, this time will be 0 at
best (failing just after writing a checkpoint), T at worst (failing just before writing a checkpoint),
and T

2
on average. We demonstrate the recovery performance of checkpointing in §5.4.3.

Takeaway. Checkpointing suffers a fundamental tradeoff between training-time overhead in
normal operation and that when recovering from failure. Increasing the time between check-
points reduces the fraction of time paused when saving checkpoints, but increases the expected
work to be redone in recovery. Facebook has also recently noted that reducing the storage and
network bandwidth consumed by checkpointing DLRMs is critical for reducing load on these
shared resources [129]. These overheads in training time and resource consumption increase
with model size. Given the trends of increasing model size noted in §5.2.2 checkpointing is
slated to become an even larger overhead in training future DLRMs.

This calls for alternatives for fault tolerance in DLRM training that scale to large DLRMs
without a severe tradeoff between training-time overhead and recovery performance.

5.2.4 Reducing overhead of checkpointing
Approximation? Several recent approaches aim to reduce the overheads of checkpointing by
taking approximate checkpoints or via approximate recovery [98, 129, 221, 258]. However, in
the event of a failure, such techniques roll back an approximation of the true DLRM, which
can potentially alter convergence and final accuracy. Given the significant business value gen-
erated by DLRMs, prior work has noted that even small drops in DLRM accuracy must be
avoided [343]. Furthermore, our personal conversations with multiple practitioners working on
large-scale DLRM training indicate that this potential accuracy drop introduces a source of un-
certainty that makes debugging production DLRMs difficult, and thus is less desirable. Hence,
ideally, one would reduce the overhead of checkpointing without compromising accuracy.

Asynchronous checkpointing? Another way to reduce the overhead of checkpointing is to
asynchronously write checkpoints while training progresses by writing updates to stable storage
as they are generated. This is feasible only if writing to stable storage can keep pace with the
rate at which gradients are generated. As DLRM training systems have many workers operating
asynchronously, gradients are generated at a high rate that stable storage cannot keep pace with.
In fact, if storage could keep pace, then DLRM parameters could be kept in stable storage, rather
than in memory. Thus, asynchronous checkpointing is not viable for DLRM training.

5.2.5 In-memory redundancy?
An alternative to checkpointing is to provision extra memory in the system to redundantly store
DLRM parameters and optimizer state in memory in a fault-tolerant manner.
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Replication. The simplest approach to redundancy is replication, in which a system proac-
tively stores copies of the DLRM parameters in memory on separate servers that are kept up-to-
date throughout training. Replicated DLRM training would use twice as much memory to store
copies of each parameter on two servers. Gradients for a given parameter are sent to and applied
on both copies. The system seamlessly continues training if a single server fails by accessing
the replica, avoiding the need to redo work after a failure that checkpointing requires. Similar
to traditional checkpointing, replicated training would preserve the accuracy guarantees of the
underlying training system. However, such a replicated system requires at least twice as much
memory as a non-replicated one. Given the large and growing sizes of embedding tables and
optimizer state, this memory overhead is impractical.

Erasure codes. As described in §3, erasure codes often enable one to achieve the same level
of fault tolerance as a replicated system, but with lower storage/memory overhead. It is, thus,
interesting to consider whether erasure codes could be used for DLRM training. For example,
consider the naive erasure-coded DLRM training system in Figure 5.1b in which parameters e0,
e1, and e2 are stored on three separate servers. Suppose the system must tolerate one server
failure. An erasure code with parameters k = 3 and r = 1 could do so by encoding a parity unit
as p = e0 + e1 + e2 and storing this parity unit on a fourth server. Suppose the server holding e1
fails. The system could recover e1 using the erasure code’s subtraction decoder: e1 = p−e0−e2.
This setup can recover from any one of the servers failing by using only 33% more memory, while
replication would require 100% more memory.

Takeaway. An ideal approach to fault-tolerant DLRM training would (1) avoid pauses during
both normal operation and recovery, (2) have low memory overhead, (3) introduce no potential
for accuracy loss, and (4) scale to large DLRMs. Erasure codes offer promising potential for
achieving these goals. However, there are several challenges in using erasure codes for DLRM
training. We describe these in detail and how they can be overcome in the next section.

5.3 ECRM: erasure-coded DLRM training

We propose ECRM, a system that provides efficient fault tolerance to DLRM training via a
careful design based on investigating the interplay between erasure codes and the unique charac-
teristics of DLRM training systems. ECRM requires no pausing during training nor rolling back
during recovery and provides the same accuracy guarantees as the underlying training system.

5.3.1 Overview of ECRM
Figure 5.2 shows a toy example comparing the high-level operation of traditional DLRM training
systems and that of ECRM, as well as the detailed contents of an individual server in each system.
Arrows illustrate the high-level flow of data when performing an update from a single worker.

In the original system (Figure 5.2a), a worker sends gradients for NN parameters (∇n0,∇n2)
and for embedding table entries (∇e0,∇e2) to the servers hosting these parameters. As shown in
the inset, the optimizer on a server reads optimizer state for the corresponding entries and NN
parameters and uses this with the received gradients to compute updates, which are applied to
relevant NN and embedding table parameters.
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Figure 5.2: Example of an update from a single worker with three servers (a) in a traditional DLRM training system
and (b) in ECRM with k = 3. A detailed view of a single server is shown in the inset to the left.

Hybrid redundancy. As shown in the inset of Figure 5.2b, in addition to original shards of
embedding tables and NN parameters (as well as their optimizer state), ECRM also maintains
redundant versions of each of these components (hashed boxes). ECRM selects the type of
redundancy to use for each type of parameter based on its unique resource footprint. In particular,
ECRM considers the size of a given parameter type in memory, as well as the network bandwidth
consumed for updating a parameter type.

To minimize memory overhead, all parameters in a DLRM would ideally be erasure coded.
However, as we show in §5.3.3, correctly updating parities during DLRM training necessitates
more communication than updating a replica. Thus, using erasure coding for parameters that
have a high network-bandwidth footprint may lead to considerable overhead.

ECRM efficiently balances this tradeoff based on an observation related to the asymmetry
between memory footprint and network bandwidth footprint for of parameters of many DL-
RMs: embedding tables (and their optimizer state) account for the vast majority of the memory
footprint in DLRMs, while NN parameters (and their optimizer state) account for a minor frac-
tion [145]. On the other hand, gradients for NN parameters account for the majority of network
traffic during updates, while those for embedding table entries account for a much smaller por-
tion. We discuss this in greater detail in §5.3.3.

Based on this asymmetry and the additional network traffic needed for updating erasure-
coded parameters, ECRM erasure codes embedding tables and their optimizer state, and repli-
cates NN parameter and their optimizer state. Doing so enables ECRM to operate with low
memory overhead, as the vast majority of the DLRM’s memory footprint is erasure coded, while
reducing network bandwidth overhead. We describe specifically how ECRM overcomes chal-
lenges in using erasure codes for embedding tables in §5.3.2, and why ECRM leverages replica-
tion for NNs in §5.3.3.

Updating redundant parameters. Figure 5.2b also shows how ECRM keeps redundant
parameters up-to-date. Workers send gradients for NN parameters (∇n0, ∇n2) to each server
hosting a replica of an NN parameter. However, as will be described in detail in §5.3.2, this same
process is insufficient for correctly updating parity embedding table entries and their optimizer
state. To overcome this issue, we leverage “difference propagation” in §5.3.2 (denoted with
dashed lines in Figure 5.2b), in which a server hosting an embedding table entry forwards the
differences resulting from an update for that entry and its optimizer state to the server holding
the corresponding parity.
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Figure 5.3: Example of rotating parity placement and difference propagation with k = 3, r = 1.

Recovery and consistency. Finally, ECRM enables training to continue during recovery
from a server failure, and maintains the same consistency guarantees as the underlying DLRM
training system. We describe these features in §5.3.4 and §5.3.5, respectively.

5.3.2 Erasure-coded embedding table entries

Encoding and placing embedding table entries. As described in §5.2.1, embedding tables
and optimizer state are sharded across servers. ECRM encodes k embedding table entries from
different shards to produce a “parity entry,” and places the parity entry on a separate server.
Optimizer state is similarly encoded to form “parity optimizer state,” and placed on the same
server as the corresponding parity entry.

Parities in ECRM are updated whenever any of the k corresponding embedding table entries
are updated. Hence, parities are updated more frequently than the original entries, and must be
placed carefully within the cluster so as not to introduce load imbalance among servers. ECRM
uses rotating parity placement to distribute parities among servers, resulting in an equal number
of parities per server. An example of this is shown in Figure 5.3 with k = 3: each server is chosen
to host a parity in a rotating fashion, and the entries used to encode the parity are hosted on the
three other servers. This approach is inspired by parity placement in RAID-5 systems [252].

Encoder and decoder. We focus on using erasure codes with parameter r = 1 (i.e., one parity
per k entries, and recovering from a single failure) since it represents the most common failure
scenario experienced by a cluster in datacenters [263]. Within the setting of r = 1, ECRM uses
the simple summation encoder shown in Figure 5.3, and the corresponding subtraction decoder.
For example, with k = 3, embedding table entries e0, e1, and e2 are encoded to form parity
p = e0 + e1 + e2. If the server holding e1 fails, e1 will be recovered as e1 = p− e0 − e2.

Correctly updating parities. We next describe challenges in correctly updating parities, and
how ECRM overcomes them.

Challenges in keeping up-to-date parities. The naive approach to erasure-coded DLRM
training in Figure 5.1b suffers a fundamental challenge in correctly updating parity entries when
using a stateful optimizer (e.g., Adam, Adagrad).

Consider the example in Figure 5.1b with the Adagrad [125] optimizer. Let ei,t denote the
value of embedding table entry ei after t updates, and∇i,t denote the gradient for ei,t. The update
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performed by Adagrad for e0,t with gradient∇0,t is:

e0,t+1 = e0,t −
α√

G0,t + ε
∇0,t (5.1)

where G0,t = ∇2
0,0 +∇2

0,1 + . . . +∇2
0,t, α is a constant learning rate, and ε is a small constant.

G0,t, which we call e0’s “accumulator,” is an example of per-parameter optimizer state.
As described in §5.3.1, ECRM maintains one “parity optimizer parameter” for every k orig-

inal optimizer parameters. In the example above, a “parity accumulator” would be Gp = G0 +
G1 +G2. This is easily kept up-to-date by adding to Gp the squared gradients for updates to each
of the k original entries (e.g., Gp,t+1 = Gp,t +∇2

0,t+1). However, using this parity accumulator
to update the parity entry based on ∇0,t (i.e., replacing e0 with ep and G0 with Gp in Eqn. 5.1)
would result in an incorrect parity entry, since G0,t 6= Gp,t.

The issue illustrated above arises for any stateful optimizer, such as Adagrad, Adam, and
momentum SGD. Given the popularity of such optimizers, ECRM must employ some means of
maintaining correct parities when using stateful optimizers. This could be overcome by replicat-
ing the k original optimizer parameters on the server hosting the parity. However, optimizer state
for embedding tables is large and grows with embedding tables, making replication impractical.

Difference propagation. The challenge described above stems from sending gradients di-
rectly to the servers hosting parities: servers holding parity entries receive only the gradient
for the original embedding table entry and must correctly update the parity entry and optimizer
state. To overcome this challenge, ECRM leverages difference propagation. Under difference
propagation, workers send gradients only to the servers holding embedding table entries for that
gradient. After applying the optimizer to entries and updating optimizer state, the server sends
the differences in entry and optimizer state to the server holding the corresponding parity en-
try. The receiving server adds these differences to the parity entry and optimizer state. This
is shown in Figure 5.2b with the worker sending gradients for embedding table entries (∇e0,
∇e2) to Servers 0 and 2, which then send differences in entries (δe0, δe2) and optimizer state
(δe0 opt, δe2 opt) to servers hosting the corresponding parity. By sending differences to servers,
rather than sending gradients, difference propagation updates parity entries correctly when using
stateful optimizers.

5.3.3 Replicated neural network parameters
We next describe how ECRM applies fault tolerance to neural network parameters and their
optimizer state.

Is additional fault tolerance needed for NNs? Recall from §5.2.1 that workers in DLRM
training pull all NN parameters from servers on each training iteration. Thus, each worker con-
tains an approximate replica of the current NN parameters.2 This may lead one to question
whether ECRM can simply leverage the NN parameters pulled by workers as “natural” replicas
of the NN sharded across servers.

While such a strategy may be promising for recovering NN parameters, it does not provide
fault tolerance for optimizer state used for NN parameters. Because optimizer state is kept on

2This replica is only approximate because, as described in §5.2.1, workers operate asynchronously. Thus, the
NN that a worker currently holds may not reflect the latest updates from other workers.
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servers and is not read by workers, optimizer state for NNs is lost if a server fails. Thus, an
alternative that keeps both NN parameters and their optimizer state redundant is needed.

Erasure coding NN parameters? A natural solution to keeping NN parameters and their
optimizer state fault tolerant is to leverage erasure coding in a similar fashion to that described in
§5.3.2. After all, these parameters are sharded across servers just like embedding tables, so the
same technique could be applied to all DLRM parameters.

However, we find that leveraging erasure coding as described in §5.3.2 for NN parameters
leads to significant performance overhead. Recall from §5.2.2 that, while embedding tables are
updated sparsely, all NN parameters and their optimizer state are updated on every training it-
eration. We find that this leads to an imbalance in the amount of network bandwidth consumed
for updating embedding table entries and NN parameters, with NN parameters consuming sig-
nificantly more bandwidth. For example, for the DLRM used for the Criteo dataset [10], we find
that the network traffic incurred in a given training iteration for updating NN parameters is over
1.8× higher than that for embedding table entries.

Performing erasure coding with difference propagation as described in §5.3.2 requires 200%
network bandwidth overhead for a given update, as differences for both the original parameter
and its associated optimizer state (each of which are the same size as the original gradient)
must be forwarded to the server hosting the corresponding parity. Given the aforementioned
dominance of NN parameters on network bandwidth, performing erasure coding with difference
propagation for NNs can add considerable training-time overhead for DLRM training. However,
as described in §5.3.2, difference propagation is necessary for correctly keeping parities up-to-
date.

Replicating NN parameters. ECRM exploits the asymmetry between the network band-
width consumed by gradients for NN parameters and the size of NN parameters. While gradients
for NNs account for the majority of network bandwidth during updates, NN parameters represent
a minor portion of the overall DLRM size. For example, for the DLRM used for Criteo [10], NN
parameters and their optimizer state account for less than 1% of the overall DLRM size. Thus,
NN parameters and their optimizer state can be replicated without adding significant memory
overhead to the DLRM training system.

Replicating NN parameters and their optimizer state allows ECRM to avoid performing dif-
ference propagation for updating NNs (and its associated network bandwidth overhead). In
ECRM, gradients for a given NN parameter are sent from workers to both servers hosting repli-
cas of the given parameter. Each server containing a replica locally updates the parameter and
its replica of the optimizer state. In this way, ECRM incurs half of the network bandwidth
overhead for NN parameters as that incurred by erasure coding NN parameters with difference
propagation: whereas difference propagation additionally sends both the difference for the NN
parameter and the difference for its optimizer state, replication sends only the gradient for the
NN parameters an additional time.

5.3.4 Pause-free recovery from failure
We next describe how ECRM recovers from failure without requiring training to pause.

Due to the property of erasure codes that any k out of the (k + 1) original and parity units
suffice to recover the original k units, ECRM can continue training even if a single server fails.
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For example, a worker in ECRM could access the embedding table entry e1 in Figure 5.3 even if
Server 2 fails by reading e0, e2, and p, and decoding e1 = p− e0 − e2. Such read operations that
require decoding are referred to as “degraded reads” in erasure-coded systems. Similarly, NN
parameters can be accessed via replicas on another server.

Challenges in erasure-coded recovery. Despite the ability to perform degraded reads,
ECRM must still fully recover failed servers to remain tolerant of future failures. This is straight-
forward and efficient for NN parameters, as they are simply copied from a replica server and are
small in size. However, prior work on erasure-coded storage has shown that full recovery can
be time-intensive [263, 276]. Full recovery in ECRM requires decoding all embedding table en-
tries and optimizer state held by the failed server. This consumes significant network bandwidth
in transferring entries for decoding, and server CPU in performing decoding. Given the large
sizes of embedding tables and their optimizer state, fully recovering before resuming training
can significantly pause training.

Training during recovery via granular locking. Rather than solely performing degraded
reads after a failure or pausing until full recovery is complete, ECRM enables training to continue
while full recovery takes place. Upon failure, ECRM begins full recovery of lost embedding
table entries and optimizer state. In the meantime, the system continues to perform new training
iterations, with workers performing degraded reads to access entries from the failed server.

ECRM must avoid updating an entry in parallel with its use for recovery. If the recovery
process reads the new value of the entry, but the old value of the parity entry (e.g., because
the update has not yet reached the parity), then the recovered entry will be incorrect. ECRM
uses granular locking to avoid this. The recovery process locks a fraction of the lost entries
that it will decode. While this lock is held, updates to entries that will be used in recovery for
the locked entries are buffered in memory on servers. Workers reading an updated, but locked
entry do so by reading from the buffer. When a lock is released, buffered updates are applied
to the embedding tables, and the next set of entries is locked. The number of entries covered
by each lock introduces a tradeoff between time overhead in switching locks and server memory
overhead for buffering, which can be navigated based on the requirements of a deployment.

5.3.5 Recovering a consistent DLRM
As discussed in §5.2.4, one of the goals of ECRM is to avoid introducing additional sources
of accuracy loss beyond the original DLRM training system. We next describe how ECRM
maintains the same consistency guarantees as the general asynchronous DLRM training system
it builds upon.

Under general asynchronous training, concurrent updates to parameters from different work-
ers can occur in an arbitrary order and can potentially overwrite one another. The same can occur
with the redundant parameters employed by ECRM, matching the consistency guarantees of the
original system.

However, one case requires care: server failure while an update is in flight. To better illustrate
this, first consider that each training iteration updates parameters hosted on different servers.
Suppose one server that holds the original copy of an embedding table entry used in the current
iteration fails during the update step. The erasure code’s decoding function would correctly
recover if the corresponding parity entry was updated through difference propagation before the
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failure occurred. However, if the server failed before propagating its difference, the recovered
DLRM would be inconsistent: other parameters involved in this iteration would be recovered to
the state including this iteration’s update, while the recovered version of the entry in question
would not reflect this update.

The issue underlying this example is a lack of knowledge of whether a parity entry has been
updated through difference propagation before a failure occurs.

Two-phase commit in ECRM. To avoid this potential inconsistency, ECRM employs two-
phase commit (2PC) when updating parameters. The 2PC protocol is coordinated by individual
workers and occurs for each training iteration a worker performs. 2PC in ECRM splits the
process of updating a set of parameters on separate servers into two phases: In the first phase,
updates for parameters (original and redundant) are computed and staged. In the second phase,
staged updates are applied to parameters (original and redundant). Operating in this manner
ensures that DLRM parameters are in a consistent state before recovery begins.

Leveraging 2PC in ECRM adds an extra round of communication for updating parameters.
As will be shown in §5.4, this adds training-time overhead. Given that ECRM uses 2PC solely to
protect against losing portions of an update when a failure occurs, a reader may question how im-
portant it is to preserve these full updates. After all, the training system on top of which ECRM
is built is asynchronous, which means that concurrent updates from workers can potentially over-
write one another. Nevertheless, we have chosen to implement 2PC in ECRM so as to adhere to
the design goal in §5.2.4 of introducing no additional sources of inaccuracy in training. While
potentially a heavy-handed solution, 2PC in ECRM ensures that the fault tolerance technique
used in training does not open additional sources of inconsistency (and the related uncertainty
when debugging model accuracy). We show in §5.4.2 that the overhead of ECRM can be reduced
if one is willing to forgo these guarantees by turning off 2PC.

5.3.6 Tradeoffs in ECRM

ECRM encodes k embedding table entries into a single parity entry (for r = 1) (similarly for
optimizer state). Parameter k results in the following tradeoffs in ECRM:

Increasing k decreases memory overhead and fault tolerance. As ECRM encodes one
parity entry for every k embedding table entries (and similarly for optimizer state), less memory
is required for storing parities with increased k. However, since the erasure codes employed by
ECRM can recover from any one out of (k + 1) failures, increasing k decreases the fraction of
failed servers ECRM can tolerate.

Increasing k does not change load during normal operation. As each embedding table
entry in ECRM is encoded to produce a single parity entry, each update applied to an entry is
also be applied to one parity. Thus, the total increase in load in terms of the number of updates
performed due to ECRM is 2×, regardless of the value of k. In addition to this constant load
increase, we show in §5.4.2 that ECRM balances the overall load for updates across servers.

Increasing k increases the time to fully recover. Recovering embedding tables in ECRM
involves reading k entries from separate servers and decoding. Thus, the network traffic and
computation used during recovery increases with k, which increases the time to fully recover.
However, as described in §5.3.4, ECRM allows training to continue during this time.
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5.4 Evaluation

We next evaluate ECRM. The highlights are as follows:
• ECRM recovers from failure up to 9.8× faster than the average recovery time for checkpoint-

ing. Faster recovery enables DLRM training to meet the tight deadlines for deploying new
versions of a model even when failures occur.

• ECRM enables training to proceed during recovery with only a 7%–13% drop in throughput,
whereas checkpointing requires training to completely pause.

• ECRM reduces training-time overhead on large DLRMs by up to 66% compared to check-
pointing. ECRM scales gracefully with DLRM size, showing promise for training both cur-
rent and future DLRMs.

• While ECRM introduces additional load for updating parities, the impact of this increased
load on training throughput is alleviated by improved cluster load balance.

5.4.1 Evaluation setup
We implement ECRM in C++ atop XDL, an open-source DLRM training system from Al-
ibaba [169].

Dataset. We evaluate with the Criteo Terabyte dataset [10], which is commonly used for
evaluating DLRM training systems. We randomly draw one day of samples from the dataset by
picking each sample with probability 1

24
in one pass through the dataset, and use this subset in

evaluation to reduce storage requirements. This random sampling results in a sampled dataset
that mimics the full dataset.

Models. We evaluate on various DLRMs based on the DLRM for the Criteo dataset from
MLPerf [237], which has 13 embedding tables, for a total of around 200M entries each with 128
dense features. We use SGD with momentum as the optimizer, which adds one floating point
value of optimizer state per parameter. Any other optimizer can also be used. The total size of
the embedding tables and optimizer state is 220 GB. The DLRM uses a seven-layer multilayer
perceptron with 128–1024 features per layer as a NN [25].

We evaluate on DLRMs of different size. First, we increase the number of embedding table
entries in the DLRM (i.e., sparse dimension). This increases the memory required per server
and the amount of data that must be checkpointed/kept redundant and recovered. We consider
four variants of the original Criteo DLRM described above, with one-, two-, four-, and eight-
times increase in the number of embedding table entries. We refer to each of these as Criteo-
Original, Criteo-2S, Criteo-4S, and Criteo-8S, which have size 220, 440, 880, and 1760 GB,
respectively. We primarily focus on scaling the sparse dimension of embedding tables, as this
reflects a prominent scaling trend observed today: Facebook reports that from 2017 to 2021, the
number of embedding table entries in DLRMs has increased by 17.5× [280].

For completeness, we also evaluate on a DLRM in which we increase the size of embed-
ding table entries (i.e., dense dimension). This increases the memory required per server, the
amount of data that must be checkpointed/kept redundant, the network bandwidth in transferring
entries/gradients, and the work done by workers and servers. Thus, this form of scaling com-
plements model scaling in the sparse dimension. We consider a variant of the original Criteo-2S

61



DLRM described above but in which each embedding table entry is twice as large. The width of
the input layer of the NN is also increased to accommodate the larger entry size. We refer to this
DLRM as Criteo-2S-2D, and it has a total size of 880 GB.

Coding parameters. We evaluate ECRM with k of 2 and 4, which have 50%, 25% memory
overhead, respectively. We use one lock during recovery by default (see §5.3.4), but also evaluate
finer locking granularity.

Baselines. We compare ECRM to taking checkpoints to HDFS (1) every 30 minutes (Ckpt-
30) and (2) every 60 minutes (Ckpt-60). We also compare ECRM to running (3) without any
checkpointing or fault tolerance at all (No FT). As recovery time for checkpointing depends
on when failure occurs (see §5.2.3), we additionally compare against the best-, average-, and
worst-case scenarios for checkpointing when evaluating recovery from failure. Checkpointing
to HDFS is representative of production DLRM training environments, which leverage HDFS-
like distributed file systems [60, 129]. Furthermore, the checkpointing baselines we use have
competitive performance: we find that checkpointing via HDFS is only 7%–27% slower than
a (purposely unrealistic) baseline of writing directly to a local SSD. In addition, for the Criteo-
Original DLRM, which is representative of current DLRMs, the checkpoint-writing overhead we
report is similar to that reported in production training jobs by Facebook [221].

Cluster setup. We evaluate on AWS with 5 servers of type r5n.8xlarge, each with 32 vCPUs,
256 GB of memory, and 25 Gbps network bandwidth (due to memory requirements, r5n.12xlarge
and r5n.24xlarge are used for DLRMs larger than 440 GB and 880 GB, respectively). We use
15 workers of type p3.2xlarge, each with a V100 GPU, 8 vCPUs, and 10 Gbps of network
bandwidth. This ratio of worker to server nodes is inspired by XDL [169]. Workers use batch
size of 2048. For checkpointing, we use 15 additional nodes of type i3en.xlarge as HDFS nodes,
each equipped with NVMe SSDs and 25 Gbps of network bandwidth. All instances use AWS
ENA networking.

Metrics. For performance during normal operation, we measure training throughput and
training-time overhead, which is the percent increase in the time to train a certain number of
samples. For performance during recovery, we measure the time to fully recover a failed server
and training throughput during recovery (samples/second).

5.4.2 Performance during normal operation

We first compare the performance of ECRM and checkpointing during normal operation.
Figure 5.4 shows the training-time overhead of ECRM and checkpointing as compared to a

system with no fault tolerance (and thus no overhead) in a two-hour training run. As DLRM
size increases, ECRM’s training-time overhead grows only slightly, while that of checkpointing
increases significantly. For example, going from Criteo-Original to Criteo-8S, ECRM’s training-
time overhead with k = 4 increases by only 1.2×, while those of Ckpt-30 and Ckpt-60 increase
by 7.2× and 7×, respectively. This leads to ECRM significantly reducing training-time overhead
for large DLRMs: for Criteo-8S, ECRM has training-time overhead with k = 4 of 22%, while
Ckpt-30 and Ckpt-60 have overheads of 65% and 31%, respectively. While one could checkpoint
less frequently for such large DLRMs, doing so comes with the adverse effect of prolonged
recovery times (as will be shown in §5.4.3).
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Figure 5.4: Training-time overhead.
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Figure 5.5: Throughput of training Criteo-8S.

As shown in Figure 5.4, ECRM does have higher training-time overhead than checkpointing
for smaller DLRMs. However, it is important to note that DLRMs are expected to increase in
size [280] (see §5.2.2). Furthermore, as will be shown in §5.4.3, ECRM significantly improves
performance during recovery compared to checkpointing. Thus, ECRM is poised to remain a
scalable solution for future DLRMs, without requiring one to severely trade normal-mode and
recovery performance.

Figure 5.5 shows training throughput on Criteo-8S. ECRM has slightly lower throughput
compared to No FT, while Ckpt-30 causes throughput to fluctuate from that of No FT, to zero
when writing a checkpoint. This makes the average training throughput of Ckpt-30 (dashed line)
lower than that of ECRM. The effects of this fluctuation are further shown in Figure 5.6: Ckpt-30
progresses slower than ECRM.

Effect of parameter k. As described in §5.3.6, ECRM has constant network bandwidth and
CPU overhead during normal operation regardless of the value of parameter k. This is illustrated
in Figures 5.4, 5.5, and 5.6, in which ECRM has nearly equal performance with k = 2 and k = 4.

Effect of ECRM on load imbalance. We next evaluate the effect of parity placement in
ECRM on cluster load imbalance. We measure load by counting the number of updates that
occur on each server when training Criteo-Original.

Without erasure coding, the most-heavily loaded server performs 2.28× more updates than
the least-heavily loaded server. In contrast, in ECRM with k = 2 and k = 4, this difference
in load is 1.64× and 1.58×, respectively. This indicates that the increased load introduced by
ECRM is alleviated by improved load balance. Under ECRM, parities corresponding to the
embedding table entries of a given server are distributed among all other servers. Thus, the
same amount of load that an individual server experiences for non-parity updates will also be
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Figure 5.6: Progress of training Criteo-8S.

distributed among the other servers to update parities. While all servers experience increased
load, the most-loaded (least-loaded) server in the absence of erasure coding is likely to experience
the smallest (largest) increase in load due to the addition of erasure coding because all other
servers for whom it hosts parities have lower (higher) load. Hence, the expected difference in
load between the most- and least-loaded servers decreases. Thus, while ECRM doubles the total
number of updates on the servers, its impact is alleviated by improved load balancing provided
by its approach to parity placement.

Effect of embedding table entry width. We now evaluate ECRM with an increase in the
size of each embedding table entry (i.e., the dense dimension). We compare the training-time
overhead of ECRM with k = 4 on Criteo-4S and that on Criteo-2S-2D. These DLRMs have the
same total size, but with Criteo-2S-2D having half of the embedding table entries as Criteo-4S,
and with each entry being twice as large.

While ECRM’s training-time overhead with k = 4 on Criteo-4S is 22%, that on Criteo-2S-2D
is 27%. The higher training-time overhead on Criteo-2S-2D can be explained by the increased
network traffic when training Criteo-2S-2D: because each entry in Criteo-2S-2D is twice as large
as each in Criteo-4S, transmitting embedding table entries (and their gradients) with difference
propagation consumes twice as much network bandwidth in Criteo-2S-2D as in Criteo-4S.

Ablation study. We next investigate the contributions to training-time overhead of ECRM’s
components.

We first consider the training-time overhead incurred for replicating NN parameters in ECRM.
We compare ECRM with k = 4 to ECRM-NoRep, a version of ECRM that does not replicate
NNs. On Criteo-Original, ECRM has training-time overhead of 18.2%, while that of ECRM-
NoRep is only 5.2%. This indicates that the extra network traffic of keeping NN replicas up-to-
date in ECRM adds considerable training-time overhead. Recall from §5.3.3, that replication of
NN parameters could be avoided if one uses an optimizer that does not have optimizer state (e.g.,
SGD). Users leveraging such optimizers can potentially achieve significantly reduced overhead
with ECRM by turning off NN replication.

We next consider the training-time overhead incurred by using two-phase commit (2PC) in
ECRM (see §5.3.5). On Criteo-Original, the training-time overhead of ECRM-NoRep in the
absence of 2PC further reduces from 5.2% down to only 2.6%. As described in §5.3.5, 2PC is
used in ECRM to avoid losing updates that were in-flight when a failure occurrs. Applications
that are willing to forgo this (likely small) potential hit in accuracy can turn off 2PC.
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5.4.3 Performance during recovery

We next evaluate ECRM and checkpointing in recovering from failure. Recovery performance
is best compared in Figure 5.8, which plots the throughput and training progress of ECRM and
Ckpt-30 on Criteo-4S after a single server failure at time 15 minutes. ECRM fully recovers faster
than the average case for Ckpt-30, and, critically, maintains throughput within 7%–13% of that
during normal operation during recovery. In contrast, Ckpt-30 cannot perform new iterations
during recovery. As shown in the bottom plot of Figure 5.8, ECRM’s high throughput during
recovery enables it to progress faster than the average case for Ckpt-30.

Figure 5.7 shows the time it takes for ECRM, Ckpt-30, and Ckpt-60 to recover a failed
server. ECRM with k = 4 recovers 1.2–6.7× and 0.8–3.5× faster than the average case for
Ckpt-60 and Ckpt-30, respectively (and up to 9.8× faster with k = 2). More importantly, unlike
checkpointing, ECRM enables training to continue with high throughput during recovery within
half a minute of the failure occurring.

Effect of parameter k and DLRM size. Figure 5.7 illustrates the discussion from §5.3.6 that
it takes longer for ECRM to fully recover with higher value of parameter k. However, ECRM
maintains high throughput during recovery for each value of k: after a failure occurs, ECRM
resumes training with high throughput within 30 seconds (also see Figure 5.8).

Figure 5.7 also shows that the time to fully recover increases with DLRM size for both ECRM
and checkpointing, as expected (see §5.2.3 and §5.3.6). ECRM’s recovery time increases more
quickly with DLRM size than checkpointing due to the k-fold increase in data read and com-
pute performed by a single server in ECRM when decoding. However, this does not signifi-
cantly affect training in ECRM because ECRM can continue training during recovery with high
throughput.

Effect of lock granularity. We next evaluate the recovery performance of ECRM with vary-
ing lock granularity (see §5.3.4). We compare the full recovery time of ECRM with k = 4
when using one and ten locks. Using ten locks increases recovery time by 6.5% for Criteo-8S
and 24.8% for Criteo-Original. Even when employing locks with finer granularity, and thus
having longer recovery time, ECRM continues to provide high training throughput during recov-
ery, unlike checkpointing. Switching locks involves (1) momentarily synchronizing workers and
servers, and (2) copying updated embedding table entries from buffers to the original entries.
Synchronization time is constant regardless of DLRM size, whereas the time to copy buffers
grows with DLRM size. Thus, synchronization time is better amortized on larger DLRMs, re-
ducing the overhead of lock switching for larger DLRMs.

5.5 Related Work

DLRM systems. System support for DLRM training and inference has recently received sig-
nificant attention. Solutions tailored toward improving DLRM inference range from work-
load/system analysis [145, 216], model-system codesign [130, 144], and specialized hardware
support [170, 316]. More recently, work has emerged for improving the performance of training
DLRMs. For example, recent works from organizations that train large-scale DLRMs have de-
scribed systems designed for training DLRMs [60, 169, 177, 231, 237, 280, 343]. Other works
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Figure 5.7: Time to fully recover a failed server. We also plot “ECRM continue,” which indicates the amount of
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Figure 5.8: Training throughput (top) and progress (bottom) when recovering from failure at 15 minutes on Criteo-
4S.

have focused on model-system codesign, such as reducing the sizes of embedding tables through
compression and precision-reduction techniques [137, 329, 331].

ECRM differs from these works by its focus on fault tolerance for DLRM training and its use
of erasure codes therein. ECRM could operate atop many of these works.

Checkpointing. Computer systems have long used checkpointing for fault tolerance (e.g., [112,
184, 230]). Some recent works optimize checkpointing in NN training [229, 238], but do not fo-
cus on DLRM training. In contrast, ECRM leverages the unique characteristics of DLRM train-
ing to use erasure codes for efficient fault tolerance. Other works have developed approximation-
based checkpointing techniques to reduce the overhead of checkpointing in machine learning
training [98, 258]. Unlike these approaches, ECRM does not change the accuracy guarantees of
the underlying training system.

Most closely related to ECRM are two works that focus on reducing the overhead of check-
pointing in DLRM training. Maeng et al. [221] use partial recovery to reduce the overhead of
rolling back after failure: when a failure occurs, only the failed node rolls back to its most recent
checkpoint. Eisenman et al. [129] use a combination of incremental checkpointing and reduc-
ing the numerical precision of checkpointed parameters. Both of these works potentially reduce
the accuracy of DLRM training upon recovering from failure. While both works empirically
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demonstrate only small accuracy drops, they cannot provide the same accuracy guarantees as the
underlying training system. ECRM differs from these works in two regards: (1) ECRM main-
tains the same accuracy guarantees as the underlying training system. This avoids uncertainty
about whether the fault tolerance approach will deliver a model with the accuracy needed for
deployment, and reduces effort in debugging model accuracy when there are multiple sources of
inaccuracy present. (2) ECRM leverages in-memory redundancy to reduce the overhead of fault
tolerance.

5.6 Conclusion
ECRM is a new approach to fault-tolerant DLRM training that employs erasure coding to over-
come the downsides of checkpointing. ECRM exploits the unique characteristics of DLRM train-
ing to take a hybrid approach to in-memory redundancy by erasure coding the large embedding
tables of DLRMs, while replicating the NN parameters. ECRM maintains up-to-date redundant
parameters with low overhead, and enables training to continue during recovery, while main-
taining the same accuracy guarantees as the underlying training system. Compared to check-
pointing, ECRM reduces training-time overhead by up to 66%, recovers from failures up to 9.8×
faster, and allows training to proceed without pauses both during normal operation and recovery.
ECRM scales gracefully with increased DLRM size without enforcing a severe tradeoff between
training-time overhead and recovery performance. While ECRM’s benefits come with additional
memory requirements and load on servers, the impact of these is alleviated by the fact that mem-
ory overhead is only fractional and that load gets evenly distributed. ECRM shows the potential
of erasure coding as a superior alternative to checkpointing for fault tolerance in training current
and future DLRMs.
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Chapter 6

Overcoming the nonlinearity challenge via
learning-based coded computation

Chapter 4 showed opportunities to improve the efficiency of existing coded-computation tech-
niques applied to ML systems by taking advantage of opportunities unique to the ML system at
hand. However, this approach required one to split a neural network into linear and non-linear
layers. As we will describe below, this is not possible or efficient in all ML systems. For such
ML systems, one would ideally perform coded computation over the entire neural network as a
whole. However, as described in §3.3, existing approaches to coded computation cannot support
non-linear functions, such as neural networks, without high resource overhead.

In the next three chapters of this thesis, we describe our work on expanding the reach of
coded-computation approaches to be able to operate over neural networks as a whole by co-
designing coded computation to the ML system at hand. We investigate the problem of pro-
tecting against slowdowns and fail-stop failures in distributed prediction serving systems used
for low-latency inference. We leverage the property of many of these systems that returning an
approximate prediction is better than returning no prediction at all to develop learning-based
approaches to coded computation. We propose two different ways that learning can be used
in the coded-computation framework: (1) learning encoders and decoders (§7); and (2) using
simple encoders and decoders but learning a new “parity model” that operates over encoded
data (§8). Learning-based coded computation enables accurate reconstruction of unavailable
predictions resulting from neural network inference, and, when integrated into an open-source
prediction serving system, enables significant reduction in tail latency in the presence of resource
contention.

The rest of this section motivates learning-based coded computation at a high level.

6.1 Prediction serving systems

Machine learning is widely deployed in production services and user-facing applications [3, 15,
21, 61, 78]. This has increased the importance of inference, the process of returning a prediction
from a trained machine learning model. Prediction serving systems are platforms operating in
datacenter/cluster settings that host models for inference and deliver predictions for input queries.
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Figure 6.1: Prediction serving system

We refer to a model hosted for inference as a “deployed model.” Numerous prediction serving
systems are being developed by service providers [7, 14, 23] and open-source communities [26,
109, 244].

As depicted in Figure 6.1, prediction serving systems have two types of components: a fron-
tend and model instances. The frontend receives queries and dispatches them to model instances
for inference. Model instances are containers or processes that contain a copy of the deployed
model and return predictions by performing inference on the deployed model.

Prediction serving systems employ scale-out architectures to serve predictions with low la-
tency and high throughput and to overcome the memory and processing limitations of a single
server [197]. In such a setup, multiple model instances are deployed on separate servers, each
containing a copy of the same deployed model [109]. The frontend distributes queries to model
instances according to a load-balancing strategy (e.g., single queue, round robin).

To meet the demands of user-facing production services, prediction serving systems must
deliver predictions with low latency (e.g., within tens of milliseconds [109]). Similar to other
latency-sensitive services, prediction services must adhere to strict service-level objectives (SLOs).
Queries that are not completed by their SLO are often useless to applications [61]. In order to
reduce SLO violations, prediction serving systems must minimize tail latency.

6.2 Need for slowdown and failure tolerance in prediction serv-
ing systems

As described above, prediction serving systems are often run in a distributed fashion and make
use of many cluster resources (e.g., compute, network). These systems are thus prone to the slow-
downs and failures common to cloud and cluster settings that cause inflated tail latency, such as
those described in §2. There are numerous causes of inflated tail latency in these settings, such as
multi-tenancy and resource contention [151, 161, 325], hardware unreliability and failures [66],
and other complex runtime interactions [65]. Left unmitigated, these slowdowns inflate tail la-
tency and cause violations of latency targets. Prediction serving systems must therefore employ
some means to mitigate the effects of slowdowns and fail-stop failures.
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A popular approach to tolerating slowdowns and failures in serving systems (e.g., web ser-
vices) while remaining agnostic to the cause of slowdown is to issue redundant requests to multi-
ple servers [113]. Previous work has theoretically motivated the potential for redundancy-based
techniques to reduce latency [133, 171, 207, 281]. Redundancy-based approaches commonly
navigate a tradeoff space between resource-overhead and latency. We next characterize existing
redundancy-based techniques and where they operate within this tradeoff space.

Proactive approaches. A common technique used to achieve the lowest latency in recovering
from slowdowns and failures is to proactively issue redundant requests to multiple servers and
to wait only for the first replica to respond. Under such techniques, a system that replicates each
query to d servers can tolerate (d− 1) slow/failed servers. By issuing redundant queries as soon
as a query arrives in the system, proactive approaches mitigate slowdowns and failures with low
latency. However, current proactive approaches result in high resource-overhead, as replicating
queries to d servers requires d-times as many resources to handle increased load.

Reactive approaches. Reactive approaches operate with lower resource-overhead than replication-
based approaches by issuing redundant queries only when confident that a slowdown or failure
has occurred [45, 113, 335]. Under such approaches, each query is dispatched to a single server,
and redundant requests are only issued if a certain amount of time has elapsed without receiving
the result from the server. Such waiting time is commonly chosen to be long enough such that
one is confident a server is running slowly if a result has not been returned by this time [113]. By
issuing redundant queries only when confident that a slowdown or failure has occurred, reactive
approaches reduce the amount of additional load introduced to a system, and thus the amount
of resource-overhead necessary. However, by waiting for a significant amount of time before
issuing redundant requests, reactive approaches are unable to mitigate slowdowns and failures
with latency as low as proactive approaches.

An ideal approach to slowdown and failure tolerance for prediction serving systems would, thus,
have resource efficiency similar to that of reactive approaches with recovery latency similar to
proactive approaches.

6.3 Coded computation for prediction serving systems: op-
portunities and challenges

We now describe how coded computation could ideally be performed in a prediction serving
system and challenges therein.

Recall the general coded computation setup described in §3.3 with k = 2 and r = 1. Given
inputs X1 and X2, the goal is to return F(X1) and F(X2) for a given function F , and for the
setup to be able to tolerate one of the two computations failing. Coded computation achieves this
by constructing a third “parity” unit P by encoding X1 and X2, operating over this parity using
a third copy of function F , and decoding by using any two of the three function outputs among
F(X1), F(X2), and F(P ).
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Mapping this notation to the setting of prediction serving systems, function F would be the
copies of the deployed model placed on each model instance, X1 and X2 would be input queries,
and F(X1) and F(X2) would be predictions resulting from inference over the deployed model.
Within this setup, the logical place to perform the encoding and decoding operations in coded
computation is on the prediction serving system’s frontend, as this is the entity in the system
through which all queries and predictions flow.

Leveraging coded computation in prediction serving systems has the potential to enable a
new position in the tradeoff between proactive and reactive approaches to handling slowdowns
and failures: coded computation could bring resource efficiency similar to that of reactive ap-
proaches, but with the a recovery latency similar to that of proactive approaches.

However, applying coded computation to this setting, once again, raises the challenge de-
scribed in §3.3 of handling non-linear operations within F . The setting in §4 was able to handle
this challenge by splitting a neural network F into linear and non-linear layers, and performing
coded computation over the linear layers and replication over the non-linear layers. However,
this same approach is not practical when applying coded computation to a prediction serving
system. In a prediction serving system, each copy of F executes on a separate model instance.
Thus, encoding and decoding operations in this setting require transmitting data from each model
instance to the frontend. Performing this expensive network communication following each layer
of a neural network would significantly slow down inference.

Thus, we desire a coded computation scheme that is capable of operating over a neural net-
work F as a whole. Such an approach would encode only the inputs to the neural networks and
decode using only the predictions resulting from neural networks.

6.4 Leveraging learning for coded computation

Machine learning has recently led to significant advances in complex tasks, such as image classi-
fication, natural language processing, and even in designing codes for communication [69, 182,
233]. This leads one to question: can machine learning similarly help overcome the challenges
of coded computation for non-linear functions?

We answer this question in the affirmative by proposing and evaluating a learning-based
coded-computation framework. We describe two distinct paradigms for leveraging machine
learning for coded computation: (1) Learning a code: using neural networks as encoders and
decoders to learn a code that enables coded computation over non-linear functions. (2) Learning
a parity computation: using simple encoders and decoders (e.g., addition/subtraction), and in-
stead learning a new computation over parities that enables reconstruction of unavailable outputs.
These two methods are fundamentally new approaches to coded computation.

Each of the approaches to learning-based coded computation that we propose are capable of
returning only approximations of unavailable function outputs. This is in contrast to traditional
approaches to coded computation, which aim to reconstruct the exact unavailable function out-
put. However, reconstructing approximations of unavailable predictions is often appropriate for
the specific setting of coded computation within prediction serving systems for the following
reasons: (1) Predictions resulting from inference are already approximations themselves, and
(2) Approximate reconstructions resulting from coded computation in this setting are returned
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only when a prediction from the deployed model would otherwise be slow or failed. In this
scenario, it is often preferable to return an approximate prediction rather than a late one or no
prediction at all [61]. These reasons, in part, motivated our approach of using machine learning
for coded computation in prediction serving systems.

The next two chapters describe these two approaches to learning-based coded computation.

Notational recap. Following §3.3, we consider a setting in which k copies of a neural net-
work F are performed on separate servers. Each input Xi, is sent to one of the copies of F
to compute and return F(Xi). Thus, given k inputs X1, X2, . . . , Xk, the goal is to compute
F(X1),F(X2), . . . ,F(Xk). The coded-computation schemes we consider will use an encoder
E to generate r parities P1, P2, . . . , Pr which are each computed on by some function. A decoder
D then takes in any k out of the total (k+ r) outputs from original and parity units to reconstruct
any r unavailable outputs. Within the context of a prediction serving system, each input is a
query and each output is a prediction. We focus on the scenario in which r = 1. This represents
the typical unavailability faced by groups of (k + r) servers (“stripes”) for typical values of k
and r in datacenters [263].
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Chapter 7

Learning encoders and decoders for coded
computation

This chapter describes the first of the two approaches to learning-based coded computation that
we propose: learning encoders and decoders that enable approximate coded computation over
neural networks. We thus term this “learning an erasure code.”

Learning an erasure code involves learning the encoding and the decoding functions (E and
D). Unlike the traditional approach in erasure coding, we allow the outputs of the decoding func-
tion to be an approximation of the unavailable outputs. Approximate outputs are sufficient for
many applications, such as machine learning algorithms since many of these algorithms them-
selves are approximate. For any input X and a given function F , we denote the (approximate)
reconstruction ofF(X) as F̂(X). We express encoding and the decoding functions as neural net-
works and learn to approximate reconstructions. We train the neural networks for the encoding
and the decoding functions in tandem via backpropagation through the given function F .

Our approach is applicable for designing codes for coded computation over any differentiable
non-linear function F .1 As described in §6, however, we focus our attention on learning codes
for neural networks in prediction serving systems. We use the term “base model” to refer to
F . However, we emphasize that our solution extends to any differentiable function, making it
applicable to a large class of tasks in machine learning and beyond.

We evaluate our framework using two neural-network based image classifiers as base models
(a multi-layer perceptron (MLP) and ResNet-18) using MNIST [193], Fashion-MNIST [323],
and CIFAR-10 [63] datasets. Our experimental results show that the proposed approach can
accurately reconstruct a significant fraction of the unavailable outputs: for example, 98.87%,
92.06%, and 80.84% of ResNet-18 classifier outputs are accurately reconstructed on MNIST,
Fashion-MNIST, and CIFAR-10 datasets respectively.

1Although our approach is applicable for linear functions as well, we focus primarily on non-linear functions.
There are several existing works (e.g., [127, 128, 195, 203, 227, 269, 309, 333]) that address only linear functions.
These approaches may be more suitable for linear functions as they guarantee exact reconstruction of unavailable
outputs.
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forward pass
backward pass

Figure 7.1: A forward and a backward pass in training the encoding and decoding functions for (k = 2, r = 1).

7.1 Learning a Code
In this section, we describe our proposed approach for learning erasure codes. We first present
our training methodology, and subsequently describe the neural network architectures for learn-
ing the encoding and decoding functions.

7.1.1 Training methodology
Recall that our overall architecture has three functions: the given function F whose execution is
to be protected using the learned codes, the encoding function E , and the decoding function D.
During training the goal is to train the parameters of the neural networks for the encoding and
the decoding functions. Note that the given function F is not modified during this training.

When the given function F is a machine learning algorithm, we train the encoding and the
decoding functions using the same training dataset (whenever available) that was used to train F .
When such a training dataset is not available, which will be the case for generic functions F out-
side the realm of machine learning, one can instead generate a training dataset comprising pairs
(X,F(X)) for various values of X in the domain of F . Each sample for training the encoding
and decoding functions uses a set of k (randomly chosen) inputs from the training dataset. For
any sample, we perform a forward and a backward pass for each of

(
k+r
r

)
possible unavailability

scenarios, except for the case where all unavailable outputs correspond to parity inputs (since the
only role of parities is to aid in the reconstruction of unavailable outputs corresponding to the
data inputs). Any iterative optimization algorithm, such as gradient descent and its variants, may
be used for training.

A forward and a backward pass under our training method is illustrated in Figure 7.1. A
forward pass involves the following steps. The k data inputs X1, X2, . . . , Xk are fed through
the encoding function to generate r parity inputs P1, P2, . . . , Pr. Each of the (k + r) inputs
(data and parity) are then fed through the given function F . The resulting (k + r) outputs
F(X1), . . . ,F(Xk),F(P1), . . . ,F(Pr) are fed through the decoding functionD, out of which no
more than r are made unavailable (discussed in detail in §7.1.3). The decoding function outputs
an (approximate) reconstruction for the unavailable function outputs among F(X1), . . . ,F(Xk).
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Table 7.1: Neural network architectures for encoding functions employing fully-connected (FC) and convolutional
(Conv) layers. All convolutional layers have stride of 1. In each network, ReLU activation functions are used after
all but the final layer. The activation functions are omitted above for brevity.

(a) MLPEncoder

Layer Layer Type
1 FC: kn2 × kn2

2 FC: kn2 × rn2

(b) ConvEncoder

Layer Layer Type
1 Conv: 3× 3, dilation: 1
2 Conv: 3× 3, dilation: 1
3 Conv: 3× 3, dilation: 2
4 Conv: 3× 3, dilation: 4
5 Conv: 3× 3, dilation: 8
6 Conv: 3× 3, dilation: 1
7 Conv: 1× 1, dilation: 1

The corresponding backward pass involves using any chosen loss function (discussed in detail
below) for backpropogation through D, F , and E . We train the encoding and decoding func-
tions in tandem via backpropagation of losses directly through F . In other words, the parameters
of the encoding and the decoding functions are updated by backpropagating through F . Since
training backpropagates directly through F , this approach is applicable to any given differen-
tiable function F .

We consider two types of losses when training the encoding and the decoding functions:
1. Loss with respect to function outputs: Loss is computed between the function outputF(X)

and its approximate reconstruction F̂(X) produced by the decoding function. This ap-
proach can be employed for any given function F .

2. Loss with respect to true labels: When F is a machine learning algorithm, there is an
additional option of calculating the loss using the true labels (when available in the training
dataset). For example, consider F to be a neural network for image classification, and let
Y represent the true label for an input image X . Under this approach, the loss is computed
between the true label Y and the label predicted using F̂(X).

The specific loss functions employed in our evaluation under both of the above approaches are
discussed in §7.2.

7.1.2 Encoding function architectures
We consider two neural network architectures for learning the encoding function. For concrete-
ness, we describe the proposed architectures below by setting the given function F as a neural
network for image classification over m classes, and use the term “base model” to refer to F .
For such an F , each data input X is an n × n pixel image. Each function output F(X) is an
m-length vector representing output from the last layer of the neural network classifier.

We now describe two neural network architectures for learning the encoding function. Recall
that the encoding function acts on k data inputs to create r parity inputs. We first describe the
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n2 n2

(a) MLPEncoder

r matricesk matrices

nn nn

nn nn

(b) ConvEncoder

Figure 7.2: Encoding function architecture: (a) MLPEncoder flattens inputs into n2-length vectors and produces
n2-length parity vectors. (b) ConvEncoder encodes over inputs in their original dimension, as n× n matrices. The
k input matrices are treated as k input channels.

architecture considering single-channel images as inputs, and consider multi-channel images in
§7.1.2.

MLPEncoder We first consider a simple 2-layer multilayer-perceptron (MLP) encoding func-
tion architecture, which we call MLPEncoder. Under this architecture, the n × n data inputs
are flattened into n2-length vectors, as illustrated in Figure 7.2a. The k flattened vectors from
inputs X1, X2, . . . , Xk, are concatenated to form a single kn2-length input vector to the MLP.
The first fully-connected layer of the MLP produces a kn2-length hidden vector. The second
fully-connected layer produces an rn2-length output vector, which represents the r parity inputs.
Each layer used in MLPEncoder is outlined in Table 7.1a.

The fully-connected nature of the MLP allows for computation of arbitrary combinations
from the kn2 total inputs with a small number of layers. While simple in design and effective
for many scenarios (as will be shown in §7.2.2), the high parameter count of the fully-connected
layers can lead to overfitting. We next describe an alternate encoding function architecture that
avoids overfitting, which we call ConvEncoder.

ConvEncoder The ConvEncoder architecture makes use of multiple convolutional layers as
detailed in Table 7.1b. Unlike MLPEncoder, ConvEncoder computes over data inputs in their
original n × n representation. As depicted in Figure 7.2b, the k inputs to the encoding func-
tion are treated as k input channels to the first convolution layer. This is similar to feeding the
RGB representations of an image to a convolutional neural network for image classification. We
explain how the encoder handles multi-channel inputs in §7.1.2.

The traditional use of convolutional layers for image classification involves repeated down-
sampling of an input image to gradually expand the receptive field of convolutional filters. This
approach works well when the output dimension of the network is significantly smaller than the
input dimension, which is often the case for image classification. However, the encoding func-
tion of a code produces outputs that have the same dimension as the inputs (see Figure 7.2b).
Hence, using convolutional layers with downsampling would necessitate subsequent upsampling
to bring the outputs back to the input dimension. This has been shown to be inefficient in the
context of image segmentation [132]. To overcome this issue, we employ dilated convolutions
[132]. As shown in Figure 7.3, this approach increases the receptive field of a convolutional filter
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dilation = 1 dilation = 2

Figure 7.3: (3× 3) Dilated Convolution. Traditional convolution (left) operates on adjacent cells. Dilated convolu-
tion (right) considers cells spread apart from one another.

exponentially with linear increase in the number of layers.
Table 7.1b shows each layer of ConvEncoder. The first layer has k input channels and the final

layer has r output channels, one for each parity to be produced. Each of the intermediate layers
has 20k input channels and 20k output channels. We increase the receptive field of convolutions
by increasing the dilation factor, borrowing this architecture from Yu et al. [132], where it was
used for image segmentation.

ConvEncoder uses less parameters than MLPEncoder but requires more layers to enable com-
binations of all input pixels. The lower parameter count compared to MLPEncoder helps avoid
overfitting, as will be shown in §7.2.2.

Multi-channel input It is common to represent color images as having multiple channels. For
example, a 32×32 RGB image would consist of 3 channels, each 32×32 in size, representing the
pixel values of each of the red, green, and blue components. Our encoding function architectures
handle multi-channel inputs by encoding across each channel independently. For example, an
encoding function with k RGB images as inputs would encode across the k red channels to
produce r “red” parity channels, and similarly for green and blue channels. The r “red”, “green”,
and “blue” parity channels are combined together to create r parity “RGB” images.

7.1.3 Decoding function architecture
As in §7.1.2, for concreteness, we describe our decoding function architecture by setting the
given function F as a neural network for image classification over m classes. Recall that we
refer to F as the base model. The base model output F(X) for any input X is an m-length
vector representing output from the last layer of the neural-network classifier. Further recall
that the base model F is applied on the (k + r) inputs X1, X2, . . . , Xk, P1, . . . , Pr on separate,
unreliable compute nodes that can fail or straggle arbitrarily. The decoding function D operates
on all the available base model outputs and reconstructs approximations of up to r unavailable
base model outputs among F(X1),F(X2), . . . ,F(Xk).

Figure 7.4 presents the overall architecture of our decoding process. The two key design
choices for the decoding function architecture are: (a) representation of the unavailable base
model outputs at the input layer of the neural network for the decoding function, and (b) the
neural network architecture used for learning the decoding function.

Representing unavailability A key design consideration for the decoding function is in the
representation of the unavailable base model outputs at its input layer. We design the decod-
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Figure 7.4: Decoding function architecture: The second input is unavailable and is set to a vector of zeros and the
second (bolded) output represents its reconstruction. Parity inputs are shaded.

Table 7.2: Neural network architecture for decoding function employing fully-connected (FC) layers. ReLU acti-
vation functions are used after all but the final layer. The activation functions are omitted above for brevity.

Layer Layer Type
1 FC: (k + r)m× km
2 FC: km× km
3 FC: km× km

ing function to take the (k + r) vectors of length m, F(X1), . . . ,F(Xk),F(P1), . . . ,F(Pr), as
inputs. Some of these inputs to the decoding function will be unavailable. In place of any un-
available input, we insert a vector of all zeros. Note that an alternative approach is to provide the
decoding function with only the (concatenated) available inputs. We chose the former as it allows
us to learn a decoding function that depends on the relative position of the unavailable inputs;
providing only the available inputs would hide this information. This approach is inspired by
traditional (hand-crafted) erasure codes whose decoding functions leverage positional informa-
tion. Correspondingly, the output of the decoding function maintains positional information and
consists of k vectors ̂F(X1), . . . , ̂F(Xk), each representing an approximate reconstruction of
corresponding potentially unavailable function output. Only those approximate reconstructions
corresponding to unavailable function outputs will be used.

Decoding function architecture We design the neural network for learning the decoding func-
tion as a 3-layer MLP as described in Table 7.2. We use the raw outputs of the base model F
as input to the decoding function. Note that we do not convert such outputs to a probability
distribution (via a softmax operation) as is typically done during training of classifiers.

7.2 Evaluation
As discussed in §7.1, we evaluate our approach of learning codes for coded computation over
non-linear computations by setting the base model F as inference on neural-network based im-
age classifiers. For any input X , F(X) represents the output from the last layer of the neural
network used as the base model. We start by describing our experimental setup and then present
results using two neural-network based image classifiers as base models (a multi-layer percep-
tron (MLP) and ResNet-18) on the MNIST [193], Fashion-MNIST [323], and CIFAR-10 [63]
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Table 7.3: Test accuracies for the base models used in our experiments on the MNIST, Fashion-MNIST, and
CIFAR-10 datasets.

Base Model MNIST Fashion-MNIST CIFAR-10
ResNet-18 0.9920 0.9285 0.9347
Base-MLP 0.9793 0.8947 -

datasets. Finally, we present a more detailed analysis of the accuracy attained by the learned
codes and the quality of the predictions obtained from the reconstructed outputs.

7.2.1 Experimental setup

We implement all the encoding and decoding function architectures as well as the training
methodology using PyTorch [43].

Loss functions used in training. As discussed in §7.1.1, we use two approaches for calcu-
lating the loss when training the neural networks for the encoding and the decoding functions:
(a) calculating the loss with respect to the base model output and (b) calculating the loss with
respect to the true label (when available in the training dataset). When calculating the loss with
respect to the base model output, we experiment with two different loss functions: (1) mean-
squared error (denoted by MSE-Base) and (2) KL-divergence (denoted by KL-Base) between
F̂(X) and F(X). When calculating loss with respect to the true labels of the underlying task,
we use the cross-entropy between F̂(X) and the true label of X (denoted by XENT-Label).

Overall, we find only marginal differences in the accuracies attained with these different loss
functions.

Base models. We experiment with two neural network architectures as base models: Base-
MLP and ResNet-18. Base-MLP is a 3-layer multilayer-perceptron used for the MNIST and
Fashion-MNIST datasets containing three fully-connected layers with dimensions 784 × 200,
200 × 100, and 100 × 10 with ReLU activation functions following all but the final layer. We
choose an MLP model due to its simplicity and its reported success on MNIST [193]. ResNet-
18 [153] is an 18-layer state-of-the-art neural network for image classification consisting of con-
volutional, pooling, and fully-connected layers.2. We choose to use ResNet-18 for two reasons:
(a) it has been shown to provide high classification accuracy on both CIFAR-10 and Fashion-
MNIST, and (b) it is a significantly more complex model than Base-MLP and thus provides a
good alternative evaluation point for our proposed approach. Table 7.3 shows the classification
accuracies of the base models. We do not use Base-MLP as a base model for CIFAR-10 because
it achieves low accuracy.

Encoding and decoding function architectures. Recall that, in §7.1.2 we presented two ar-
chitectures for learning the encoding function, MLPEncoder and ConvEncoder, and an MLP-

2We use the ResNet-18 model from https://github.com/zalandoresearch/fashion-mnist
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based architecture for learning the decoding function. We present experimental results for all the
proposed architectures.

Parameters and training details. We perform experiments for all combinations of the config-
uration settings discussed above for k = 2 and k = 5 with r = 1. We focus on r = 1 because this
corresponds to the case of typical unavailability faced in today’s data centers as shown from mea-
surements on Facebook’s data analytics cluster [262, 263]. With r = 1, the parameter settings
with k = 2 and k = 5 correspond to 50% and 20% redundant computation, respectively.

Training uses minibatches of 64 samples for k = 2 and 32 samples for k = 5. Each sample in
the minibatch consists of k images from the dataset drawn randomly without replacement (i.e.,
no image is used more than once per epoch). Thus each minibatch for k = 2 consists of 128
images and for k = 5 consists of 160 images from the dataset. The encoding and decoding
functions are trained in tandem using the Adam optimizer [118] with learning rate of 0.001 and
L2-regularization of 1×10−5. The weights for the convolutional layers are initialized via uniform
Xavier initialization [138] and weights for the fully-connected layer are initialized according to
N (0, 0.01). All bias values are initialized to zero.

Accuracy metrics. We measure the accuracy of the reconstructed output with respect to the
machine learning task at hand using the following two metrics:

1. Prediction accuracy: This metric measures the accuracy of the reconstructed output based
on its ability to recover the label predicted by the base model output. For example, when
F is a classifier, for any input X , a reconstructed output F̂(X) is considered accurate if
the classes predicted using F̂(X) and F(X) are identical. More formally, let C(.) denote
the argmax operator (which is typically used to predict the class label from the output
layer of a neural network classifier). For an input X , a reconstructed output F̂(X) is
considered accurate if C(F̂(X)) = C(F(X)). This metric helps decouple the accuracy
of the learned code in its ability to reconstruct unavailable base model outputs and the
classification accuracy of the base model itself.

2. Label accuracy: This metric measures the accuracy of the reconstructed output based on
the true label. For example, when F is a classifier, for any input X with true label Y , a
reconstructed output F̂(X) is considered accurate if the class predicted using F̂(X) and Y
are identical. More formally, using the terminology defined above, a reconstructed output
F̂(X) is considered accurate if C(F̂(X)) = Y .

In the results presented, for both the metrics, we calculate the aggregate accuracy by averaging
the accuracy over all unavailability scenarios. If unavailability statistics are known, one can
instead weigh different unavailability scenarios based on the statistics.

7.2.2 Experimental results
Main results. Table 7.4 presents evaluation results on test datasets for all combinations of
datasets and deployed models with values of k of 2 and 5, and r = 1. We consider a simple MLP
architecture, Base-MLP, as well as ResNet-18 on the MNIST, Fashion-MNIST, and CIFAR-10
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Table 7.4: Prediction accuracy and label accuracy for r = 1 for all configuration settings.

MLPEncoder ConvEncoder

Dataset Base Model k
Training Loss

Function
Prediction
Accuracy

Label
Accuracy

Prediction
Accuracy

Label
Accuracy

MNIST

Base-MLP

2
KL-Base 0.9769 0.9758 0.9831 0.9854

MSE-Base 0.9885 0.9776 0.9767 0.9770
XENT-Label 0.9737 0.9768 0.9769 0.9893

5
KL-Base 0.9371 0.9340 0.9485 0.9518

MSE-Base 0.9480 0.9424 0.9339 0.9357
XENT-Label 0.9251 0.9232 0.9474 0.9533

ResNet-18

2
KL-Base 0.9742 0.9760 0.9836 0.9854

MSE-Base 0.9788 0.9806 0.9887 0.9888
XENT-Label 0.9774 0.9796 0.9904 0.9925

5
KL-Base 0.9460 0.9466 0.9571 0.9585

MSE-Base 0.9349 0.9359 0.9415 0.9433
XENT-Label 0.9401 0.9407 0.9171 0.9178

Fashion-MNIST

Base-MLP

2
KL-Base 0.9215 0.8800 0.9128 0.9080

MSE-Base 0.8484 0.8196 0.8471 0.8253
XENT-Label 0.9107 0.8808 0.9036 0.9185

5
KL-Base 0.8275 0.7997 0.8300 0.8153

MSE-Base 0.7133 0.6987 0.7302 0.7193
XENT-Label 0.8259 0.8037 0.8364 0.8282

ResNet-18

2
KL-Base 0.9002 0.8845 0.9206 0.9031

MSE-Base 0.8960 0.8815 0.8982 0.8892
XENT-Label 0.8947 0.8880 0.9242 0.9164

5
KL-Base 0.8219 0.8133 0.8033 0.7960

MSE-Base 0.7726 0.7672 0.7939 0.7885
XENT-Label 0.8277 0.8203 0.8303 0.8248

CIFAR-10 ResNet-18

2
KL-Base 0.4293 0.4283 0.7889 0.8002

MSE-Base 0.4107 0.4116 0.8074 0.8204
XENT-Label 0.4284 0.4238 0.7980 0.8106

5
KL-Base 0.1889 0.1895 0.5368 0.5382

MSE-Base 0.1913 0.1936 0.6431 0.6466
XENT-Label 0.1874 0.1890 0.5224 0.5287

datasets. With k = 2, across all datasets and configurations, the best of the proposed learned
encoder and decoder pair achieve a label accuracy of no more than 11.5% lower than available
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accuracy. This is a small drop in accuracy compared to the available-mode accuracies when
considering that reconstructions only come into play when a function output would otherwise
be slow or failed. This represents a promising step forward in coded computation for neural
networks, as existing coded-computation approaches are inapplicable even for simple neural
networks.

Value of parameter k. Across all datasets, base models, and encoding function architectures,
we find that test accuracy is significantly higher when k = 2 than when k = 5. We believe this is
because for k = 5, a single parity needs to pack information about 5 input images, whereas for
k = 2, a single parity contains information about only 2 inputs images. Note that with r fixed, the
value of k controls the amount of redundant base model computation. For r = 1, having k = 2
corresponds to 50% redundant base model computation and having k = 5 corresponds to 20%
redundant base model computation. The above observation hints towards a potential fundamental
tradeoff between prediction accuracy and the amount of redundant computation. The difference
between k = 2 and k = 5 is more pronounced for the Fashion-MNIST and CIFAR-10 datasets,
which we attribute to the increased complexity of the dataset.

Effect of base model complexity. We find that the complexity of the base model does not have
an adverse effect on the accuracy of the learned code. As discussed in §7.2.1, ResNet-18 is a sig-
nificantly more complex model than Base-MLP, including many more layers of non-linearities.
Despite this higher complexity, we see that the learned codes achieve similar accuracies for both
Base-MLP and ResNet-18. This is promising, since it suggests that the proposed approach is
effective even for complex base models.

Encoding function architectures. For the MNIST and Fashion-MNIST datasets, there is little
difference in the accuracies attained by the two proposed neural network encoding function archi-
tectures, MLPEncoder and ConvEncoder. The difference between the two architectures comes to
fore in the more complex dataset CIFAR-10, where ConvEncoder greatly outperforms MLPEn-
coder. MLPEncoder’s high parameter count causes it to overfit and plateau at low accuracy on
CIFAR-10, while ConvEncoder is able to reach significantly higher accuracy.

We next take a deeper look at the prediction accuracy attained on the configurations discussed
above and analyze cases where the predicted class from reconstructed outputs does not match that
from the base model outputs.

Prediction accuracy stratified based on accuracy of the base model. We next take a deeper
look at the prediction accuracy attained on the configurations discussed above and analyze cases
where the predicted class from reconstructed outputs does not match that from the base model
outputs.

We find that the learned codes achieve a significantly higher prediction accuracy on the set
of samples that the base model classifies correctly as compared to the set of samples that the
base model classifies incorrectly. Figure 7.5 shows the prediction accuracy on these two sets of
samples in the highest-performing configurations of experiments listed in Table 7.4 (which are
highlighted in Table 7.5 for clarity). We find that the learned codes achieve, on average, 2.19
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Figure 7.5: Prediction accuracy attained on samples which the base model correctly classifies (“Base Model Cor-
rect”) and those which the base model incorrectly classifies (“Base Model Incorrect”). The configuration for each
bar is listed in Table 7.5.

Table 7.5: Highest performing configurations in terms of prediction accuracy from Table 7.4.

Cfg. Dataset Base Model k Prediction accuracy Encoder Loss function
1 MNIST Base-MLP 2 0.9885 MLPEncoder KL-Base
2 MNIST Base-MLP 5 0.9485 ConvEncoder KL-Base
3 MNIST ResNet-18 2 0.9904 ConvEncoder XENT-Label
4 MNIST ResNet-18 5 0.9571 ConvEncoder KL-Base
5 Fashion-MNIST Base-MLP 2 0.9215 MLPEncoder KL-Base
6 Fashion-MNIST Base-MLP 5 0.9364 ConvEncoder XENT-Label
7 Fashion-MNIST ResNet-18 2 0.9242 ConvEncoder XENT-Label
8 Fashion-MNIST ResNet-18 5 0.8277 MLPEncoder XENT-Label
9 CIFAR-10 ResNet-18 2 0.8074 ConvEncoder MSE-Base

10 CIFAR-10 ResNet-18 5 0.6431 ConvEncoder MSE-Base

times higher prediction accuracy on the set of samples that the base model classifies correctly
(“Base Model Correct” in Figure 7.5) as compared to the set of samples that the base model
classifies incorrectly (“Base Model Incorrect” in Figure 7.5). Thus, the prediction accuracy of
the learned codes is higher on samples where it indeed matters more to reconstruct accurately.

Analysis of errors in the learned code. Here we analyze how poor is the class predicted from
inaccurate reconstructions. Specifically, we look at the samples for which the reconstructed
output is inaccurate with respect to the base model output , and analyze how far the resulting
predicted class label is from the label predicted by the base model output. We quantify the
quality of the label predicted from an inaccurate reconstruction by its rank in the base model
output. A rank of 2 means that the class predicted using the reconstruction was ranked second in
the base model output.3 Figure 7.6 shows the fraction of inaccurate reconstructions which lead
to predicted labels that have rank 2 and rank 3 in the base model output for the configurations
considered in Table 7.5. We see that, on average, 61.29% of the inaccurate reconstructions result

3Note that rank 1 is unattainable since we are analyzing only those instances for which the predicted class from
the reconstruction does not match that of the base model output.

83



1 2 3 4 5 6 7 8 9 10
Configurations

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 In

ac
cu

ra
te

 
R

ec
on

st
ru

ct
io

ns

Rank 2 in Base Model
Rank 3 in Base Model

Figure 7.6: Fraction of inaccurate reconstructions that are rank 2 and 3 in the base model output. The configuration
for each bar is listed in Table 7.5.

in a class prediction that is the second best in the base model output. Furthermore, on average,
79.12% of the inaccurate reconstructions result in a class prediction among the top 3 predictions
of the base model output. Thus, even when the class prediction resulting from a reconstructed
output does not match that of the base model output, the predicted class is not far off.

7.3 Related Work

A host of recent works have explored using coding-theoretic approaches to fault-tolerant execu-
tion of distributed linear computations such as matrix multiplication. Lee et al. [195] use a family
of codes called “maximum-distance-separable” (MDS) codes to mitigate stragglers in distributed
matrix-vector multiplication. Dutta et al. [127] propose Short-Dot codes to decompose long dot
products that arise in certain matrix-vector multiplications into smaller products which facili-
tates parallel computation of such products. Li et al. [203] present a framework for navigating
the tradeoff between computation time and communication time in coded computation schemes
for matrix multiplication. Yu et al. [333] propose Polynomial Codes for distributed matrix mul-
tiplication, which reconstruct the full matrix multiplication result using the minimal number of
results from workers. Sparse Codes are introduced by Wang et al. [309] to exploit the sparsity
of matrix operands in order to reduce decoding complexity in coded matrix-matrix multiplica-
tion. Dutta et al. [128] employ linear codes for fault-tolerant distributed convolution between
two vectors. Reisizadeh et al. [269] propose a scheme to balance the load across compute nodes
for coded, distributed matrix-multiplication by taking into account heterogeneity of compute
resources. Mallick et al. [227] propose using rateless codes for distributed matrix-vector multi-
plication in order to make use of partial work completed by straggling nodes. In comparison to
the above works which are applicable to only linear computations, we present a learning-based
approach that learns codes that can handle any differentiable non-linear computation.

In another direction in coded computation, several recent works present approaches to us-
ing codes to bring fault tolerance to specific iterative optimization algorithms that are employed
during training of machine learning algorithms. Tandon et al. [296] propose a straggler miti-
gation scheme for data-parallel gradient descent which involves having multiple copies of the
data across the worker nodes. Under this scheme, each worker node sends a carefully con-
structed linear combination of its computed gradients to a master node such that the master node
can complete a gradient descent iteration without having to wait for results from all the worker
nodes. Karakus et al. [180, 181] propose a coded-computation approach wherein both the data
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and labels of a training set are encoded, and the original optimization algorithm is directly run
on the encoded training dataset. For specific optimization algorithms (e.g., gradient descent and
L-BFGS) and machine learning tasks (e.g., ridge regression, matrix factorization, and logistic
regression), the authors present code constructions that achieve stable convergence and reduced
runtime as compared to replication-based approaches. Maity et al. [226] encode the second mo-
ment of the data matrix using LDPC codes in order to mitigate the effect of stragglers on gradient
descent. The authors show that encoding the second moment reduces the number of aggregation
steps necessary per training iteration compared to directly encoding the data matrix. In contrast
to these lines of work that focus on specific iterative optimization algorithms that arise during
the training phase of machine learning, the focus of our work is to add fault tolerance through re-
dundant computation to any differentiable non-linear computation that arise during the inference
phase of machine learning.

Multiple recent works have explored taking a learning approach to designing decoding al-
gorithms for existing error-correcting-codes employed in the domain of communication. For
example, Nachmani et al. [233] propose using feed-forward and recurrent neural networks for
decoding a family of codes called “block codes”. Kim et al. [182] show that recurrent neural net-
works can learn close-to-optimal decoding algorithms for several classes of well known codes
employed in the domain of communication. In comparison with these works, we propose and
establish the feasibility of taking a learning-based approach to coded computation, rather than
for channel communication.

Another related line of work is on using neural networks for image compression and cryptog-
raphy [59, 297, 299]. While these lines of work are similar in spirit to learning an erasure code
(transforming input data into alternate representation for later reconstruction), the overall goal,
and thus the structure of the architecture and the training methodology differ significantly.

7.4 Conclusion
Coded computation is an emerging technique which makes use of coding-theoretic tools to pro-
tect against failures and stragglers in distributed computation. However, the applicability of
current techniques to general computation, including machine learning algorithms, is limited
due to the lack of codes that can handle non-linear functions. We propose a novel learning-based
approach for designing erasure codes that approximate unavailable outputs for any differentiable
non-linear function. We present carefully-designed neural-network architectures and a training
methodology for learning the encoding and decoding functions. We show that our learned codes
can accurately reconstruct many of the unavailable class predictions from image classifiers for
MNIST, Fashion-MNIST, and CIFAR-10 datasets, respectively. These results are highly promis-
ing as they show the potential of using learning-based approaches for designing erasure codes
and herald a new direction for coded computation by handling general non-linear computations.

Practical considerations. While the results presented above show the promise of learning en-
coders and decoders for coded computation, there are several practical challenges with deploy-
ing this approach in prediction serving systems. As described previously, within the setting of
prediction serving systems, the frontend is the logical place to perform encoding and decoding
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operations. As neural networks are often computationally expensive, using neural network en-
coders and decoders could increase the latency of recovering from a slowdown or failure. To
be feasible, this approach necessitates using hardware acceleration for encoders and decoders,
which requires using a more expensive frontend node.

We next describe a second approach to learning-based coded computation that is designed to
overcome these practical concerns.
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Chapter 8

Practical learning-based coded
computation via parity models

The previous chapter illustrated the promise of using learning to overcome the challenge of non-
linearity in coded computation, but raised practical challenges for deployment within prediction
serving systems: learned encoding and decoding functions may be too expensive to deploy on a
prediction serving system’s frontend without hardware acceleration.

In this chapter, we propose a fundamentally new approach to coded computation that over-
comes these practical challenges. Rather than designing new encoders and decoders, as done by
prior approaches to coded computation, we propose to use simple, fast encoders and decoders
(such as addition and subtraction) and instead design a new computation over parities. Within
the context of prediction serving systems, this new computation is a separate model, which we
call a “parity model.” As depicted in Figure 8.1, instead of the extra copy of the deployed neural
network used by current coded-computation approaches (F , in formal notation), we introduce
a parity model (which we denote as FP ). The challenge of this approach is to design a parity
model that enables accurate reconstruction of unavailable function outputs. We address this by
designing parity models as neural networks, and learning a parity model that enables simple
encoders and decoders to reconstruct slow or failed function outputs.

By learning a parity model and using simple, fast encoders and decoders, this approach en-
ables coded computation over non-linear computations, like neural networks, while operating
with low latency without requiring hardware acceleration for encoding and decoding. We illus-
trate these practical benefits by implementing parity models in ParM (parity models), a prediction
serving system designed to make use of erasure codes to protect against slowdowns and failures.
As depicted in Figure 8.1, ParM encodes multiple queries together into a parity query. A parity
model transforms the parity query such that its output enables a decoder to reconstruct slow or
failed predictions.

The predictions returned by ParM are the same as any prediction serving system in the ab-
sence of slowdowns and failures. When slowdowns and failures do occur, the output of ParM’s
decoder is an approximate reconstruction of a slow or failed predictions. Reconstructing ap-
proximations of unavailable predictions is appropriate for inference, as predictions are already
approximations and because ParM’s reconstructions are returned only when a prediction from
the deployed model would otherwise be slow or failed. In this scenario, it is preferable to return
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Figure 8.1: Architecture of a prediction serving system and components introduced by ParM (shown in purple).

an approximate prediction rather than a late one or no prediction at all [61].
We have built ParM atop Clipper [109], an open-source prediction serving system. We eval-

uate the accuracy of ParM’s reconstructions on a variety of neural networks and inference tasks
such as image classification, speech recognition, and object localization. We also evaluate ParM’s
ability to reduce tail latency across varying query rates, levels of background load, and amounts
of redundancy. ParM reconstructs unavailable predictions with high accuracy and reduces tail
latency while using 2-4× less additional resources than replication-based approaches. For ex-
ample, using only half of the additional resources as replication, ParM’s reconstructions from
ResNet-18 models on various tasks are within a 6.5% difference in accuracy compared to if the
original predictions were not slow or failed. This enables ParM to reign in tail latency: ParM
reduces 99.9th percentile latency in the presence of load imbalance for a ResNet-18 model by
up to 48% compared to a baseline that uses the same amount of resources as ParM, while main-
taining the same median. This brings tail latency up to 3.5× closer to median latency, enabling
ParM to maintain predictable latencies in the face of slowdowns and failures. These results show
the promise of parity models to open new doors for imparting efficient slowdown and failure
tolerance to prediction serving systems.

8.1 Design of ParM

We first describe ParM in detail for protecting against any one out of k predictions experiencing
slowdown or failure (i.e., r = 1). This setting is motivated by measurements of production clus-
ters [261, 263]. Section 8.4 describes how the proposed approach can tolerate multiple unavail-
abilities (i.e., r > 1) as well. We will continue to use the notation of F to represent the deployed
model, Xi to represent a query, F(Xi) to represent a prediction resulting from inference on F
with Xi, and ̂F(Xi) to represent a reconstruction of F(Xi) when F(Xi) is unavailable.

8.1.1 System architecture

The architecture of ParM is shown in Figure 8.2. ParM builds atop a typical prediction serving
system architecture that has m instances of a deployed model. Queries sent to the frontend are
batched (according to a batching policy) and dispatched to a model instance for inference on
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Figure 8.2: Components of a prediction serving system and those added by ParM (dotted). Queues indicate com-
ponents which may group queries/predictions (e.g., coding group).

the deployed model. Query batches1 are dispatched to model instances according to a provided
load-balancing strategy.

ParM adds an encoder and a decoder on the frontend along with m
k

instances of a parity
model. Each parity model uses the same amount of resources (e.g., compute, network) as a
deployed model. ParM thus adds 1

k
resource-overhead.

As query batches are dispatched, they are placed in a coding group consisting of k batches
that have been consecutively dispatched. A coding group acts similarly to a “stripe” in erasure-
coded storage systems: the query batches of a coding group are encoded to create a single “parity
batch.” ParM treats queries as though they are independent from one another. In particular,
the queries that form a coding group need not have been sent by the same application or user.
Encoding takes place across individual queries of a coding group: the ith queries of each of
the k query batches in a coding group are encoded to produce the ith query of the parity batch.
Encoding does not delay query dispatching as query batches are immediately handled by the load
balancer when they are formed, and placed in a coding group for later encoding. The parity batch
is dispatched to a parity model and the output resulting from inference over the parity model is
returned to the frontend. Encoding is performed on the frontend rather than on a parity model
so as to incur only 1

k
network bandwidth overhead. Otherwise, all queries would need to be

replicated to a parity model prior to encoding, which would incur 2× bandwidth overhead.
Predictions that are returned to the frontend are immediately returned to clients. ParM’s

decoder is only used when any one of the k prediction batches from a coding group is unavailable.
ParM enables flexibility in determining when a prediction is considered unavailable, and thus
when decoding is necessary. A prediction could be considered unavailable if the (k − 1) other
predictions from its coding group and the output of the parity model have been returned before
the prediction in question. Alternatively, a system could set a timeout after which a prediction is
considered unavailable if the conditions above are still not met.

When a prediction is considered unavailable, the decoder uses the outputs of the parity model
and the (k−1) available model instances to reconstruct an approximation of the unavailable pre-
diction batch. Approximate predictions are returned only when predictions from the deployed
model are unavailable. ParM thus reduces tail latency when an unavailable prediction is recon-
structed before the actual prediction for the query returns (e.g., from a slow model instance).

1We use the terms “batch” and “query batch” to refer to one or more queries dispatched to a model instance at a
single point in time.
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8.1.2 Encoder and decoder

Introducing and learning parity models enables ParM to use simple, fast erasure codes to recon-
struct unavailable predictions. ParM can support many different encoder and decoder designs,
opening up a rich design space. We will illustrate the power of parity models by using a simple
addition/subtraction erasure code, and showing that even with this simple encoder and decoder,
ParM significantly reduces tail latency and accurately reconstructs unavailable predictions. This
simple encoder and decoder is applicable to a wide range of inference tasks, including image
classification, speech recognition, and object localization, allowing us to showcase ParM’s ap-
plicability to a variety of inference tasks. A prediction serving system that is specialized to a
specific inference task could potentially benefit from designing task-specific encoders and de-
coders for use in ParM, such as an encoder that downsamples and concatenates image queries
for image classification. We evaluate an example of such a task-specific code in §8.2.2.

Under the simple addition/subtraction encoder and decoder showcased in this chapter, the
encoder produces a parity as the summation of queries in an coding group, i.e., P =

∑k
i=1Xi.

Queries are normalized to a common size prior to encoding, and summation is performed across
corresponding features of each query (e.g., top-right pixel of each image query). The decoder
subtracts (k − 1) available predictions from the output of the parity model FP (P ) to reconstruct
an unavailable prediction. Thus, an unavailable prediction F(Xj) is reconstructed as ̂F(Xj) =

FP (P )−
∑k

i 6=j F(Xi).

8.1.3 Parity model design

ParM uses neural networks for parity models to learn a model that transforms parities into a form
that enables decoding. In order for a parity model to help in mitigating slowdowns, the average
runtime of a parity model should be similar to that of the deployed model. One simple way of
enforcing this is by using the same neural network architecture for the parity model as is used
for the deployed model (i.e., same number and size of layers). Thus, if the deployed model is a
ResNet-18 architecture, the parity model also uses ResNet-18, but with parameters trained using
the procedure that will be described in §8.1.4. As a neural network’s architecture determines
its runtime, this approach ensures that the parity model has the same average runtime as the
deployed model. We use this approach in our evaluations.

In general, a parity model is not required to use the same architecture as the deployed model.
In cases where it is necessary or preferable to use a different architecture for a parity model,
such as when the deployed model is not a neural network, a parity model could be designed via
architecture search [348]. However, we do not focus on this scenario.

It is common in classification tasks to use a softmax function to convert the output of a neural
network into a probability distribution. We do not apply a softmax function to the output of
a parity model, as the desired output of a parity model is not necessarily constrained to be a
probability distribution. As we will describe in §8.1.4, we employ a loss function in training that
does not require the output of parity model to be a probability distribution.
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8.1.4 Training a parity model

A parity model is trained prior to being deployed.

Training data. The training data are the parities generated by the encoder, and training labels
are the transformations expected by the decoder. For the simple encoder and decoder described
in §8.1.2, with k = 2, training data from queries X1 and X2 are (X1 + X2) and labels are
(F(X1) + F(X2)).

Training data is generated using queries that are representative of those issued to the de-
ployed model for inference. A parity model is trained using the same dataset used for training
the deployed model, whenever available. Thus, if the deployed model was trained using the
CIFAR-10 [63] dataset, samples from CIFAR-10 are used as queriesX1, . . . , Xk that are encoded
together to generate training samples for the parity model. Labels are generated by performing
inference with the deployed model to obtain F(X1), . . . ,F(Xk) and summing these predictions
to form the desired parity model output. For example, if the outputs of a deployed model are
vectors of n floating points, as is the case in a classification task with n classes, a label would
be generated as the element-wise summation of these vectors. ParM can also use as labels the
summation of the true labels for queries.

If the dataset used for training the deployed model is not available, a parity model can be
trained using queries that have been issued to ParM for inference on the deployed model. The
predictions that result from inference on the deployed model are used to form labels for the parity
model. In this case, as expected, ParM can deliver benefits only after the parity model has been
trained to a sufficient degree.

Loss function. While there are many loss functions that could be used in training a parity
model, we use the mean-squared-error (MSE) between the output of the parity model and the
desired output as the loss function. We choose MSE rather than a task-specific loss function
(e.g., cross entropy) to make ParM applicable to many inference tasks.

Training procedure. Training a parity model involves the same optimization procedure com-
monly used for training neural networks. In each iteration, k samples are drawn at random
from the deployed model’s training dataset and encoded to form a parity sample. The parity
model performs inference over this parity query (forward pass) to generate FP (P ). A loss value
for this parity query is calculated between FP (P ) and the desired parity model output (e.g.,
F(X1) + F(X2) for the addition/subtraction code with k = 2). Parity model parameters are
updated based on this loss value using the standard backpropogation algorithm (backward pass).
This iterative process continues until a parity model reaches sufficient accuracy on a validation
dataset.

Reducing the time to train a parity model was not a goal of this work; we describe inefficien-
cies of the procedure above and their potential solutions in §8.4.
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Figure 8.3: Example of ParM (k = 3) mitigating a slowdown.

8.1.5 Example
Figure 8.3 shows an example of how ParM mitigates unavailability of any one of three model
instances (i.e., k = 3). Queries X1, X2, X3 are dispatched to three separate model instances
for inference on deployed model F to return predictions F(X1),F(X2),F(X3). The learning
task here is classification across n classes. Each F(Xi) is thus a vector of n floating-points
(n = 3 in Figure 8.3). As queries are dispatched to model instances, they are encoded (Σ) to
generate a parity P = (X1 +X2 +X3). The parity is dispatched to a parity model FP to produce
FP (P ). In this example, the model instance processingX1 is slow. The decoder reconstructs this
unavailable prediction as (FP (P )−F(X3)−F(X2)). The reconstruction provides a reasonable
approximation of the true prediction that would have been returned had the model instance not
been slow (labeled as “unavailable prediction”).

In this example, ParM protects against any one out of three model instances being unavailable
by using one extra instance to serve a parity model. To achieve the same level of failure tolerance,
a replication-based approach requires three extra model instances. Thus, in this example, ParM
operates with 3× less additional resources than replication-based approaches. More generally,
ParM operates with k-times less additional resources of replication-based approaches.

8.2 Evaluation of Accuracy
In this section, we evaluate ParM’s ability to accurately reconstruct unavailable predictions.

8.2.1 Experimental setup
We use PyTorch [43] to train separate parity models for each parameter k, dataset, and deployed
model.

Inference tasks and models. Learning a parity model to enable reconstruction of predictions
represents a fundamentally new learning task. Therefore, we evaluate ParM on popular inference
tasks and datasets to establish the potential of using parity models. Specifically, we use popular
image classification (CIFAR-10 and 100 [63], Cat v. Dog [50], Fashion-MNIST [323], and
MNIST [193]), speech recognition (Google Commands [312]), and object localization (CUB-
200 [315]) tasks. We evaluate ParM on the ImageNet dataset [273] in §8.2.2.
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As described in §8.1.3, a parity model uses the same neural network architecture as the
deployed model. We consider five different architectures: a multi-layer perception (MLP),2

LeNet-5 [194], VGG-11 [287], ResNet-18, and ResNet-152 [153]. The former two are simpler
neural networks while the others are variants of state-of-the-art neural networks.

Hyperparameters. We consider values for parameter k of 2, 3, and 4, corresponding to 33%,
25%, and 20% redundancy. We use Adam [118], learning rate of 0.001, L2-regularization of
10−5, and batch sizes between 32 and 64. Convolutional layers use Xavier initialization [138],
biases are initialized to zero, and other weights are initialized from N (0, 0.01).

Encoder and decoder. Unless otherwise specified, we use the generic addition encoder and
subtraction decoder described in §8.1.2. We showcase the benefit of employing task-specific
encoders and decoders within ParM in §8.2.2.

Metrics. Analyzing erasure codes for storage and communication involves reasoning about
performance under normal operation (when unavailability does not occur) and performance in
“degraded mode” (when unavailability occurs and reconstruction is required). These different
modes of operation are similarly present for inference. The overall accuracy of any approach is
calculated based on its accuracy when predictions from the deployed model are available (Aa)
and its accuracy when these predictions are unavailable (Ad, “degraded mode”). If f fraction of
deployed model predictions are unavailable, the overall accuracy (Ao) is:

Ao = (1− f)Aa + fAd (8.1)

ParM aims to achieve high Ad; it does not change the accuracy when predictions from the de-
ployed model are available (Aa). We report both Ao and Ad.

We report accuracies on test datasets, which are not used in training. Test samples are ran-
domly placed into groups of k and encoded to produce a parity. For each parity P , we compute
the output of inference on the parity model as FP (P ). During decoding, we use FP (P ) to re-
construct ̂F(Xi) for each Xi that was used in encoding P , simulating every scenario of one
prediction being unavailable. Each ̂F(Xi) is compared to the true label for Xi. For CIFAR-100,
we report top-5 accuracy, as is common (i.e., the fraction for which the true class of Xi is in the
top 5 of ̂F(Xi)).

8.2.2 Results
Figure 8.4 shows the accuracy of the deployed model (Aa) along with the degraded mode ac-
curacy (Ad) of ParM with k = 2 for image classification and speech recognition tasks using
ResNet-18. VGG-11 is used for the speech dataset and ResNet-152 for CIFAR-100. ParM’s
degraded mode accuracy is no more than 6.5% lower than that when predictions from the de-
ployed model are available. As Figure 8.5 illustrates, this enables ParM to maintain high overall

2The MLP has two hidden layers with 200 and 100 units and ReLUs.
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accuracy (Ao) in the face of unavailability. For this example, at expected levels of unavailabil-
ity (i.e., f less than 10%), ParM’s overall accuracy is at most 0.4%, 1.9%, and 4.1% lower
than when all predictions are available at k values of 2, 3, and 4, respectively. This indicates
a tradeoff between ParM’s parameter k, which controls resource-efficiency and resilience, and
the accuracy of reconstructed predictions, which we discuss in §8.2.2. Finally, ParM’s frame-
work enables encoders and decoders to be specialized to the inference task at hand, allowing for
further increase in degraded mode accuracy. We showcase task-specific specialization with an
image-classification-specific encoder on CIFAR and ImageNet datasets (§8.2.2).

Inference tasks. ParM achieves high degraded mode accuracy with k = 2 for the image classi-
fication and speech recognition datasets in Figure 8.4. For these tasks, degraded mode accuracy
is at most 6.5% lower than when predictions are not slow or failed. We observe similar results for
a variety of neural network architectures. For example, on the Fashion-MNIST dataset, ParM’s
degraded mode accuracy for the MLP, LeNet-5, and ResNet-18 models are only 1.7-9.8% lower
than the accuracy when predictions from the deployed model are available.

Object localization task. We next evaluate ParM on object localization, which is a regression
task. The goal in this task is to predict the coordinates of a bounding box surrounding an object
of interest in an image. As a proof of concept of ParM’s applicability for this task, we evaluate
ParM on the Caltech-UCSD Birds dataset [315] using ResNet-18. The performance metric for
localization tasks is the intersection over union (IoU): the IoU between two bounding boxes is
computed as the area of their intersection divided by the area of their union. IoU values fall be-
tween 0 and 1, with an IoU of 1 corresponding to identical boxes, and an IoU of 0 corresponding
to boxes with no overlap.

Figure 8.6 shows an example of the bounding boxes returned by the deployed model and
ParM’s reconstruction. For this example, the deployed model has an IoU of 0.88 and ParM’s
reconstruction has an IoU of 0.61. ParM’s reconstruction captures the gist of the localization and
would serve as a reasonable approximation in the face of unavailability. On the entire dataset, the
deployed model achieves an average IoU of 0.95 with ground-truth bounding boxes. In degraded
mode, ParM with k = 2 achieves an average IoU of 0.67.
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Figure 8.8: Example of an image-classification-specific encoder with k = 4 on the CIFAR-10 dataset.

Varying redundancy via parameter k. Figure 8.7 shows ParM’s degraded mode accuracy
with k = 2, 3, 4. ParM’s degraded mode accuracy decreases with increasing parameter k. As
parameter k increases, features from more queries are packed into a single parity query, making
the parity query noisier and making it challenging to learn a parity model. This indicates a
tradeoff between the value of parameter k and degraded mode accuracy.

To put these accuracies in perspective, consider a scenario in which no redundant computa-
tion is used to mitigate unavailability. In this case, when the output from any deployed model
is unavailable, the best one can do is to return a random output as a “default” prediction. The
option to provide such a default prediction is available in Clipper. The degraded mode accuracy
when returning default predictions depends on the number of possible outputs of an inference
task (e.g., the number of classes). For example, on a classification task with ten classes, the ex-
pected degraded mode accuracy of this technique would be 10%. The degraded mode accuracy
of default predictions provides a lower bound on degraded mode accuracy and an indicator of
the difficulty of a particular inference task. For all datasets in Figure 8.7, ParM’s degraded mode
accuracy is significantly above this lower bound, indicating that ParM makes significant progress
in the task of reconstructing predictions.

Inference task-specific encoders and decoders. As described in §8.1.2, ParM’s framework
enables a large design space for possible encoders and decoders. So far, all evaluation results
have used the simple, general addition encoder and subtraction decoder, which is applicable to
many inference tasks. We now showcase the breadth of ParM’s framework by evaluating ParM’s
accuracy with alternate encoders and decoders that are inference-task specific.

We design an encoder specialized for image classification which takes in k image queries,
and downsizes and concatenates them into a parity query. For example, as shown in Figure 8.8,
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given k = 4 images from the CIFAR-10 dataset (each with 32× 32× 3 features), each image is
resized to have 16 × 16 × 3 features and concatenated together. The resulting parity query is a
2×2 grid of these resized images, and thus has a total of 32×32×3 features, the same amount as
a single image query. We use the subtraction decoder alongside this encoder. In training parity
models with this encoder, we use a loss function specialized to classification: the cross entropy
between the output of the parity model and the summation of the one-hot-encoded labels for
concatenated images (after normalizing this summation to be a probability distribution).

By specializing to the task at hand, this encoder improves degraded mode accuracy com-
pared to the general addition encoder. For example, at k values of 2 and 4 on CIFAR-10, the
task-specific encoder achieves a degraded mode accuracy of 89% and 74%, respectively. This
represents a 2% and 22% improvement compared to the general encoder, respectively.

On the 1000-class ImageNet dataset (ILSVRC 2012 [273]) with k = 2 and using ResNet-50
models, this approach achieves a 61% top-5 degraded mode accuracy. To put these results in
perspective, we note that the first use of neural networks for the ImageNet classification task re-
sulted in a top-5 accuracy of 84.7% [190]. Our results similarly represent the first use of learning
and neural networks for coded computation. As the task of a parity model is considerably more
difficult than that of image classification, these results show the promise of using parity models
for coded computation, even on massive datasets. We expect that improvement in degraded mode
accuracy may be achieved by further exploring the design space for encoders, decoders, and the
model architecture used for parity models.

8.3 Evaluation of Tail Latency Reduction

We next evaluate ParM’s ability to reduce tail latency. The highlights of the evaluation results
are as follows:

• ParM significantly reduces tail latency: in the presence of load imbalance, ParM reduces
99.9th percentile latency by up to 48%, bringing tail latency up to 3.5× closer to median
latency, while maintaining the same median (§8.3.2). Even with little load imbalance, ParM
reduces the gap between tail and median latency by up to 2.3× (§8.3.2). These benefits hold
for a variety of inference hardware, query rates, and batch sizes.

• ParM’s approach of introducing and learning parity models enables using encoders and de-
coders with low latencies (less than 200 µs and 20 µs, respectively) (§8.3.2).

• ParM reduces tail latency while maintaining simpler development and deployment than other
hand-crafted approaches, such as deploying approximate models (§8.3.2).

8.3.1 Implementation and Evaluation Setup

We have built ParM atop Clipper [109], an open-source prediction serving system. We implement
ParM’s encoder and decoder on the Clipper frontend in C++. Inference runs in Docker containers
on model instances, as is standard in Clipper, and we use PyTorch [43] to implement models. We
disable the prediction caching feature in Clipper to evaluate end-to-end latency, though ParM
does not preclude the use of prediction caching. We use OpenCV [41] for pixel-level encoder
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operations. We use the addition encoder and subtraction decoder described in §8.2.2 in all latency
evaluations.

Baselines. We consider as a baseline a prediction serving system with the same number of
instances as ParM but using all additional instances for deploying extra copies of the deployed
model. We call this baseline “Equal-Resources.” For a setting of parameter k on a cluster with m
model instances for deployed models, both ParM and Equal-Resources use m

k
additional model

instances. ParM uses these extra instances to deploy parity models, whereas this baseline hosts
extra deployed models on these instances. These extra instances enable the baseline to reduce
system load, which reduces tail latency and provides a fair comparison. We compare ParM to
another baseline, deploying approximate models, in §8.3.2.

Cluster setup. All experiments are run on Amazon EC2. We evaluate ParM on two different
cluster setups to mimic various production prediction-serving settings.

• GPU cluster. Each model instance is a p2.xlarge instance with one NVIDIA K80 GPU.
We use 12 instances for deployed models and 12

k
additional instances for redundancy. With

k = 2 there are thus 18 instances.
• CPU cluster. Each model instance is a c5.xlarge instance, which AWS recommends

for inference [4]. We use 24 instances for deployed models and 24
k

additional instances for
redundancy. This emulates production settings that use CPUs for inference [152, 250, 341].
This cluster is larger than the GPU cluster since the CPU instances are less expensive than
GPU instances.

We use a single frontend of type c5.9xlarge. We use this larger instance for the frontend
to sustain high aggregate network bandwidth to model instances (10 Gbps). Each instance uses
AWS ENA networking. We observe bandwidth of 1-2 Gbps between each GPU instance and the
frontend and of 4-5 Gbps between each CPU instance and the frontend.

Queries and deployed models. Recall that accuracy results were presented for various tasks
and deployed models in §8.2. For latency evaluations we choose one of these models and tasks,
ResNet-18 [153] for image classification. We use ResNet-18 rather than a larger model like
ResNet-152, which would have a longer runtime, to provide a more challenging scenario in
which ParM must reconstruct predictions with low latency. Queries are drawn from the Cat v.
Dog [50] dataset. These higher-resolution images test the ability of ParM’s encoder to operate
with low latency.3 We modify deployed models and parity models to return 1000 values as
predictions to create a more computationally challenging decoding scenario in which there are
1000 classes in each prediction, rather than the usual 2 classes for this task.

Load balancing. Both ParM and the baseline use a single-queue load balancing strategy for
dispatching queries to model instances. This strategy is used in Clipper and is optimal in reducing
average response time [148]. The frontend maintains a single queue to which all queries are

3While CIFAR-10/100 are more difficult tasks for training a model than Cat v. Dog, their low resolution makes
them computationally inexpensive. This makes Cat v. Dog a more realistic workload for evaluating latency.
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Figure 8.9: Latencies of ParM and Equal-Resources (E.R.). The CPU
cluster has twice as many instances as the GPU cluster and thus sustains
comparable load.
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added. Model instances pull queries from this queue when they are available. Similarly, ParM
adds parity queries to a single queue which parity models pull from. Evaluation on other, sub-
optimal, load balancing strategies (e.g., round robin) revealed results that are even more favorable
for ParM than those showcased below.

Background traffic. Like any redundancy-based technique, ParM is most beneficial in op-
erating scenarios prone to unpredictable latency spikes and failures; if unavailability is absent
or entirely predictable, redundancy-based approaches are not necessary. Therefore, we focus
the evaluation of ParM on these scenarios by inducing background load on the clusters running
ParM. The main form of background load we use emulates network traffic typical of data ana-
lytics workloads. Specifically, two model instances are chosen randomly to transfer data to one
another of size randomly drawn between 128-256 MB. Unless otherwise mentioned, four shuf-
fles take place concurrently. In this setting only the cluster network is imbalanced; we do not
introduce computational multitenancy. We experiment with light multitenant computation and
varying the number of shuffles in §8.3.2.

Latency metric. Clients send 100,000 queries to the frontend using a variety of Poisson arrival
rates. All latencies measure the time between when the frontend receives a query and when the
corresponding prediction is returned to the frontend (from a deployed model or reconstructed).
We report the median of three runs of each configuration, with error bars showing the minimum
and maximum. Unless otherwise noted, all experiments are run with batch size of one, as this is
the preferred batch size for low latency [105, 341]. We evaluate ParM with larger batch sizes in
§8.3.2.

8.3.2 Results

We now report ParM’s reduction of tail latency.
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Varying query rate. Figure 8.9 shows median and 99.9th percentile latencies with k = 2 (i.e.,
both ParM and Equal-Resources have 33% redundancy) on the GPU and CPU clusters. We
consider query rates up until a point in which a prediction serving system with no redundancy
(i.e., withm instances) experiences tail latency dominated by queueing. Beyond this point, ParM
could be used alongside techniques that reduce queueing [108].

ParM reduces the gap between 99.9th percentile and median latency by 2.6-3.2× compared to
Equal-Resources on the GPU cluster, and by 3-3.5× on the CPU cluster. ParM’s 99.9th percentile
latencies are thus 38-43% lower on the GPU cluster and 44-48% lower on the CPU cluster. This
enables ParM to operate with more predictable latency. As expected from any redundancy-based
approach, ParM adds additional system load by issuing redundant queries, leading to a slight
increase in median latency (less than 0.5 ms).

Varying redundancy via parameter k. Figure 8.10 shows the latencies achieved by ParM
with k being 2, 3, and 4, when operating at 270 qps on the GPU cluster. As k increases, ParM’s
tail latency also increases. This is due to two factors. First, at higher values of k, ParM is more
vulnerable to multiple predictions in a coding group being unavailable, as the decoder requires
k− 1 predictions from the deployed model to be available (in addition to the output of the parity
model). Second, increasing k increases the amount of time ParM needs to wait for k queries to
arrive before encoding into a parity query. This increases the latency of the end-to-end path of
reconstructing an unavailable prediction.

Despite these factors, ParM still reduces tail latency, even when using less resources than the
baseline. At k values of 3 and 4, which have 25% and 20% redundancy, ParM reduces the gap
between tail and median latency by up to 2.5× compared to when Equal-Resources has 33%
redundancy.

Varying batch size. Due to the low latencies required by user-facing applications, many pre-
diction serving systems perform no or minimal query batching [105, 152, 341]. For complete-
ness, we evaluate ParM when queries are batched on the GPU cluster. ParM uses k = 2 in these
experiments and query rate is set to 460 qps and 584 qps for batch sizes of 2 and 4, respectively.
These query rates are obtained by scaling from 300 qps used at batch size 1 based on the through-
put improvement observed with increasing batch sizes. ParM outperforms Equal-Resources at
all batch sizes: at batch sizes of 2 and 4, ParM reduces 99.9th percentile latency by 43% and
47%, respectively.

Varying degrees and types of load imbalance. All experiments so far were run with back-
ground network imbalance, as described in §8.3.1. ParM reduces tail latency even with lighter
background network load: Figure 8.11 shows that when 2 and 3 concurrent background shuffles
take place (as opposed to the 4 used for most experiments), ParM reduces 99.9th percentile la-
tency over Equal-Resources by 35% and 39%, respectively on the GPU cluster with query rate of
270 qps. ParM’s benefits increase with higher load imbalance, as ParM reduces the gap between
99.9th and median latency by 3.5× over Equal-Resources with 5 background shuffles.

To evaluate ParM’s resilience to a different, lighter form of load imbalance, we run light
background inference tasks on model instances. Specifically, we deploy ResNet-18 models on
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one ninth of instances using a separate copy of Clipper, and send an average query rate of less
than 5% of what the cluster can maintain. We do not add network imbalance in this setting.
Figure 8.12 shows latencies at k = 2 on the GPU cluster with varying query rate. Even with this
light form of imbalance, ParM reduces the gap between 99.9th percentile and median latency by
up to 2.3× over Equal-Resources.

Latency of ParM’s components. ParM’s latency of reconstructing unavailable predictions
consists of encoding, parity model inference, and decoding. ParM has median encoding la-
tencies of 93 µs, 153 µs, and 193 µs, and median decoding latencies of 8 µs, 14 µs, and 19 µs for k
values of 2, 3, and 4, respectively. As the latency of parity model inference is tens of millisec-
onds, ParM’s encoding and decoding make up a very small fraction of end-to-end reconstruction
latency. These fast encoders and decoders are enabled by introducing and learning parity models.

Comparison to approximate backup models. An alternative to ParM is to replace parity mod-
els with less-computationally-expensive models that approximate the predictions of the deployed
model, and to replicate queries to these approximate models. This approach has a number of
drawbacks: (1) it is unstable at expected query rates, (2) it is inflexible to changes in hardware,
limiting deployment flexibility, and (3) it requires 2× network bandwidth. To showcase these
drawbacks of the alternative approach, we compare ParM (with k = 2) to the aforementioned
alternative using m

k
extra model instances for approximate models. We use MobileNet-V2 [274]

(with a width factor of 0.25) as the approximate models because this model has similar accuracy
(87.6%) as ParM’s reconstructions (87.4%) for CIFAR-10.

Figure 8.13 shows the latencies of these approaches on the GPU cluster with varying query
rate. While ParM’s 99.9th percentile latency varies only modestly, using approximate models
results in tail latency variations of over 36%. This variance occurs because all queries are repli-
cated to approximate models even though there are only 1

k
as many approximate models as there

are deployed models. Thus, approximate models must be k-times faster than the deployed model
for this system to be stable. The approximate model in this case is not k-times faster than the
deployed model, leading to inflated tail latency due to queueing as query rate increases.

Even if one crafted an approximate model satisfying the runtime requirement described
above, the model may not be appropriate for different hardware. We find that the speedup
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achieved by the approximate model over the deployed model varies substantially across differ-
ent inference hardware. For example, the MobileNet-V2 approximate model is 1.4× faster than
the ResNet-18 deployed model on the CPU cluster, but only 1.15× faster on the GPU cluster.
Thus, an approximate model designed for one hardware setup may not provide benefits on other
hardware, limiting deployment flexibility.

Finally, this approach uses 2× network bandwidth by replicating queries. This can be prob-
lematic, as limited bandwidth has been shown to hinder prediction-serving [109, 151].

Some of the limitations of this approach may be mitigated by reactively issuing redundant
queries to approximate backup models after a timeout. However, like other reactive approaches,
doing so reduces the potential for such an approach to reduce tail latency.

ParM does not have the drawbacks described above. As described in §8.1, ParM’s parity
models have the same average runtime as deployed models, and ParM encodes k queries into
one parity query prior to dispatching to a parity model. The m

k
parity models therefore receive 1

k

the query rate of the m deployed models, and thus naturally keep pace. This reduced query rate
also means that ParM adds only minor network bandwidth overhead. Further, by using the same
architecture for parity models as is used for deployed models, ParM does not face hardware-
related deployment issues.

8.4 Discussion
Training time. We find that the time to train a parity model can be 3-12× longer than that of a
deployed model. Reducing training time was not a goal of this work. We next describe ways in
which training time may potentially be reduced.

As described in §8.1.4, the training procedure for a parity model draws k samples from the
deployed model’s training dataset to form a single training sample for the parity model. Thus, the
number of possible combinations of k samples that could be used grows exponentially with k.
For example, training a parity model using a deployed model dataset with 1000 samples would
lead to an effective dataset size of 1000k. For large deployed model datasets, the effective parity
model dataset is too large to train on every possible combination. We currently randomly sample
combinations of k queries from the deployed model dataset without keeping track of which
combinations have been used. As was shown in §8.2, even this simple approach enables accurate
training of parity models. A more principled approach to sampling from the deployed model’s
dataset may help reduce training time and improve accuracy, especially for massive datasets and
those with imbalance in the number of samples of a particular type (e.g., fewer examples of fish
than dogs).

Throughput. Like any redundancy-based approach, the achievable throughput when using
coded computation is lower than it could be if one used all resources for serving copies of a
deployed model. Specifically, as ParM uses 1

k
of all model instances for parity models, ParM’s

maximum achievable throughput is (1− 1
k
)-times that of an approach which uses no redundancy.

However, as shown in §8.3, reserving some resources to be used for redundancy aids in reduc-
ing tail latency. ParM enables one to span this tradeoff between tail latency and throughput by
changing parameter k.
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Concurrent unavailabilities. ParM can accommodate concurrent unavailabilities by using de-
coders parameterized with r > 1. In this case, r separate parity models can be trained to produce
different transformations of a parity query. For example, consider having k = 2, r = 2 , queries
X1 and X2, and parity P = (X1 + X2). One parity model can be trained to transform P into
F(X1) + F(X2), while the second can be trained to transform P into F(X1) + 2F(X2). The
decoder reconstructs the initial k predictions using any k out of the (k + r) predictions from
deployed models and parity models.

Parity model design space. In this work, we have chosen to keep encoders and decoders sim-
ple and to specialize parity models so as to reduce the additional computation introduced on pre-
diction serving system frontends. However, as described in §8.1 and shown empirically in §8.2.2
using an image-classification-task specific encoder, ParM’s framework opens a rich design space
for encoders, decoders, and parity models. Navigating this design space by co-designing these
components may yield interesting opportunities for improving the accuracy of reconstructions.

Applicability to other workloads. We have showcased the use of parity models on image clas-
sification, speech recognition, and object localization tasks. However, the core idea of learning-
based coded computation has the potential to be applied more broadly. For example, parity
models may potentially be applicable to sequence-to-sequence models, such as those for trans-
lation, though further research is necessary to accommodate the use of parity models to these
tasks.

8.5 Related Work

Mitigating slowdowns. Many approaches target specific causes of slowdown. Examples of
such techniques include configuration selection [64, 206, 303, 327], isolation [141, 161, 219,
325], replica selection [147, 293], predicting slowdowns [326], and autoscaling [108, 142]. As
these techniques apply only to specific slowdowns, they are unable to mitigate all slowdowns. In
contrast, ParM is agnostic to the cause of slowdown.

Many techniques mitigate slowdowns in training [150, 154, 266]. These techniques exploit
iterative computations specific to training and are thus inapplicable to inference.

Accuracy-latency tradeoff. A number of systems trade accuracy for lower latency [310, 338].
This enables handling query rate variation efficiently, but may degrade accuracy. In contrast,
ParM does not proactively degrade accuracy; any inaccuracy due to ParM is incurred only when
a prediction experiences slowdown or failure.

Algorithmic techniques like cascades [304, 311] and anytime neural networks [157] enable
“early exit” during inference for queries that are easier to complete or those taking longer than a
predefined deadline. These techniques are only applicable to reducing the latency of inference,
and thus will not help mitigate tail latency induced by other sources, like network congestion or
failure. In contrast, ParM alleviates slowdowns and failures regardless of their cause.
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High performance inference. Many techniques improve the average latency and throughput
of inference [39, 97, 163, 168, 196, 213]. These techniques are complementary to ParM, which
is designed for mitigating slowdowns and failures.

8.6 Conclusion
We present a fundamentally new, learning-based approach for enabling the use of ideas from
erasure coding to impart low-latency, resource-efficient resilience to slowdowns and failures in
prediction serving systems. Through judicious use of learning, parity models overcome the limi-
tations of existing coded-computation approaches and enable the use of simple, fast encoders and
decoders to reconstruct unavailable predictions for a variety of neural network inference tasks.
We have built ParM, a prediction serving system that makes use of parity models, and shown the
ability of ParM to reduce tail latency while maintaining high overall prediction accuracy in the
face of load imbalance. These results suggest that our approach may open new doors for enabling
the use of erasure-coded slowdown and failure tolerance for a broader class of workloads.
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Chapter 9

Leveraging ideas inspired by coding theory
beyond reliability purposes

Thus far, this thesis has focused on the use and enhancement of coding-theoretic tools to build
resource-efficient, reliable ML systems. This part of the thesis focuses on the use of coding-
theory-inspired ideas for a different purpose: to improve the performance and resource utilization
of ML systems, even when reliability is not a concern.

In particular, this chapter focuses on improving the throughput and resource utilization of
high-throughput specialized CNN inference on accelerators. We provide more background on
this setting in §9.2. We identify that specialized CNNs significantly underutilize server-grade
hardware accelerators due to having low arithmetic intensity, an occurrence observed in §4 of
this thesis. To improve the accelerator utilization of specialized CNN inference, we propose
transformations to specialized CNNs that involve widening individual layers of the CNN and
operating over “stacks” of input images in a manner similar to the learned encoders described in
§7 of this thesis. A toy example of this is shown in Figure 9.2. The resultant FoldedCNNs sig-
nificantly increase the arithmetic intensity, accelerator utilization, and throughput of specialized
CNN inference. This shows the intriguing promise of leveraging coding-theory-inspired ideas to
improve ML systems beyond reliability purposes.

9.1 Introduction

Convolutional neural networks (CNNs) are widely deployed for high-throughput vision tasks.
Many such tasks target highly specific events for which general-purpose CNNs trained on diverse
data (e.g., ResNet-50 on ImageNet) are overkill; an application detecting red trucks does not need
a CNN capable of classifying animals. It has thus become popular to employ small specialized
CNNs trained only for such focused tasks [156, 178, 179, 283]. In being trained for highly
specific tasks, specialized CNNs can typically be much smaller than general-purpose CNNs, and
thus operate at higher application-level throughput (e.g., images/sec).

Specialized CNNs are heavily used for inference in both datacenters and edge clusters [82,
156, 179, 232], and occasionally on constrained devices (e.g., cameras) [93]. We focus on spe-
cialized CNNs used for high-throughput vision in datacenters/clusters. A popular usecase in
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Figure 9.1: Utilization of production specialized CNNs (see §9.2.1) at various precisions and maximum batch size
on a T4 GPU. Each bar is relative to the peak FLOPs/sec of the T4 in that precision.

this setting is offline video analytics, in which all video frames are processed by a specialized
CNN, and only frames for which the specialized CNN is uncertain are processed by a slower,
general-purpose CNN [179]. The throughput of the specialized CNN is critical to that of the
overall system, as all frames are processed by the specialized CNN and only a small fraction by
the general-purpose CNN.

Aiding the case for high-throughput CNNs, server-grade deep learning hardware accelerators
offer unprecedented performance in FLOPs/sec, and thus are used for inference in datacenters
(e.g., V100 and T4 GPUs, TPUs) and edge clusters (e.g., AWS Outposts [71] and Azure Stack
Edge [72] with T4 GPUs). It is critical that these accelerators be highly utilized, with software
running on an accelerator ideally achieving FLOPs/sec near the accelerator’s theoretical peak
FLOPs/sec. Given the high cost of accelerators and the operational costs incurred in deploying
them (e.g., power) [76], poorly utilizing an accelerator leads to a poor return on investment. From
a sustainability perspective, Google has noted that machine learning inference makes up over
half of the energy used for machine learning, and that higher utilization enables more efficient
use of infrastructure [251]. Furthermore, underutilization results in suboptimal application-level
throughput.

However, current specialized CNNs significantly underutilize server-grade accelerators: we
find that specialized CNNs used in production at Microsoft achieve less than 20% of the peak
FLOPs/sec of GPUs employed in datacenters, even with large batch sizes (which are common for
high-throughput inference), and when using techniques that improve throughput, such as reduced
precision (see Figure 9.1). While specialized CNNs might better utilize weaker devices, we find
that server-grade GPUs, such as V100 and T4, offer the highest cost-normalized throughput for
the CNNs described above, motivating their deployment in production.

The main cause for the poor accelerator utilization of specialized CNNs is low arithmetic
intensity: the ratio between the number of arithmetic operations performed by a computational
kernel (i.e., FLOPs) and the number of bytes read from or written to memory by the kernel [317].
As the bandwidth of performing arithmetic on accelerators is far higher than memory bandwidth
(e.g., over 200× on T4 [55]), a CNN with low arithmetic intensity incurs frequent memory stalls,
leaving arithmetic units idle and underutilized. High arithmetic intensity is, thus, a prerequisite to
high utilization. However, we will show in §9.2 that specialized CNNs have arithmetic intensities
far lower than needed for peak utilization on accelerators.

The arithmetic intensities of specialized CNNs must be increased to improve utilization of
server-grade accelerators, but achieving this requires care: we show that common techniques that
increase application-level throughput can reduce arithmetic intensity, while naive approaches to
increasing arithmetic intensity reduce application-level throughput.
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Figure 9.2: Abstract illustration of a FoldedCNN with f = 2.

Increasing the batch size over which inference is performed can increase arithmetic intensity,
utilization, and application-level throughput by amortizing the cost of loading a CNN’s weights
from memory. However, doing so leads to diminishing returns in these quantities: for example,
we show in §9.2 that specialized CNNs achieve at most 17% of the peak FLOPs/sec of a V100
at large batch sizes. An alternative is needed to further improve the utilization and throughput of
specialized CNNs beyond the limits of increasing batch size.

We propose FoldedCNNs, a new approach to the design of specialized CNNs that boosts
inference utilization and throughput beyond increasing batch size. We show that convolutional
and fully-connected layers in specialized CNNs at large batch size can be transformed to per-
form an equal number of FLOPs, but with higher arithmetic intensity. Our key insight is that,
once arithmetic intensity has plateaued due to increased batch size, reading/writing activations
accounts for most of the memory traffic in specialized CNNs. We show that this memory traffic
can be significantly reduced, while performing the same number of FLOPs, by jointly decreas-
ing the size of the batch of input/output activations for a layer and increasing the layer’s width.
By decreasing memory traffic while performing the same number of FLOPs, this transformation
increases arithmetic intensity.

FoldedCNNs take a new approach to structuring the inputs of a CNN to apply this transfor-
mation, inspired in part from the interplay of machine learning and coding theory in the learned
encoders described in §7. As shown in Figure 9.2, rather than operating over a batch of N im-
ages each with C channels, a FoldedCNN instead operates over a batch of N

f
“folded” inputs

each with fC channels formed by concatenating f images along the channels dimension. These
f images are jointly classified: if the original CNN had CL output classes, the FoldedCNN now
has fCL output classes. FoldedCNNs increase the number of channels for all middle layers by√
f×, while maintaining an f× reduction in batch size. This reduces memory traffic over N im-

ages by
√
f× while performing a similar number of FLOPs, thus increasing arithmetic intensity,

utilization, and throughput.
We evaluate FoldedCNNs on four specialized CNNs used at Microsoft and four from the No-

Scope video-processing system [179]. FoldedCNNs improve the GPU utilization of specialized
CNNs by up to 2.8× and throughput by up to 2.5×, while maintaining accuracy close to the
original CNN in most cases. Compared to the compound scaling used in EfficientNets [295],
FoldedCNNs achieve higher accuracy, throughput, and utilization for specialized CNNs. These
results show the promise of FoldedCNNs in increasing the utilization and throughput of special-
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ized CNNs beyond increased batch size, and open doors for future high-performance specialized
CNNs. The code used in this chapter is available at https://github.com/msr-fiddle/
folded-cnns.

9.2 Challenges in Achieving High Utilization

We now describe challenges in achieving high accelerator utilization in specialized CNN infer-
ence.

9.2.1 Specialized CNNs
As described in §9.1, specialized CNNs are small CNNs designed to target highly specific visual
tasks and to achieve higher throughput than large, general-purpose CNNs. We focus on two
motivating usecases of specialized CNNs:

Usecase 1: filters. A popular use of specialized CNNs is as lightweight filters in front
of slower, general-purpose CNNs. In such systems, all video frames/images pass through a
specialized CNN, and are processed by the general-purpose CNN only if the specialized CNN is
uncertain [179]. In other cases, the specialized CNN builds an approximate index to accelerate
later ad-hoc queries by a general CNN [156]. These applications desire high throughput, so
batching is heavily exploited. We use specialized CNNs from the NoScope video-processing
system [179] as examples of this usecase.

Usecase 2: game scraping. We also consider specialized CNNs used in production at Mi-
crosoft to classify events in video game streams by scraping in-game text appearing in frames
(e.g., score). Separate CNNs are specialized for each game and event type. The service handles
thousands of streams at once, and thus heavily batches images.

Comparison of general and specialized CNNs. General-purpose CNNs, such as those used
for ImageNet, have many convolutional layers, each with many channels. For example, ResNet-
50 has 49 convolutional layers, each with 64–2048 channels. In contrast, specialized CNNs
have far fewer layers and channels: the specialized CNNs used in NoScope (Usecase 1) have
2–4 convolutional layers, each with 16–64 channels; those used at Microsoft (Usecase 2) have
5–8 convolutional layers with at most 32 channels. Further details on these CNNs are given in
Table 9.1.

9.2.2 High utilization requires high arithmetic intensity
We now provide a brief recap on arithmetic intensity and the need for high arithmetic intensity
to achieve high utilization. Further background on this topic was previously provided in §4.

As described in §9.1, achieving high utilization of accelerators is critical for operational
efficiency. Ideally, a CNN would operate near the peak FLOPs/sec offered by an accelerator.
However, achieving this is confounded by the need to transfer data to/from memory, as cycles
stalled on memory are wasted if they cannot be masked by computation.

A computational kernel must be compute bound to achieve peak FLOPs/sec: a compute-
bound kernel uses all arithmetic units on an accelerator at all times. Under the popular Roofline
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Table 9.1: Specialized CNNs used in this work.

Group ID Name Resol. Convs. Classes Description
NoScope N1 coral (50, 50) 2 2 Classifies whether there is a person in front

of an aquarium exhibit.
NoScope N2 night (50, 50) 2 2 Classifies whether a car is in the frame.
NoScope N3 roundabout (50, 50) 4 2 Classifies whether a car is in the frame.
NoScope N4 taipei (50, 50) 2 2 Classifies whether a bus is in the frame.

Microsoft V1 lol-gold1 (22, 52) 5 11 Classifies fractional value of amount accu-
mulated (e.g., “7” in “14.7k”). Classes are
digits 0–9 and “other” indicating blank.

Microsoft V2 apex-count (19, 25) 5 22 Classifies number of members of a squad
remaining. Classes are integers 0–20 and
“other” indicating blank.

Microsoft V3 sot-coin (17, 40) 5 15 Classifies the thousands-place of a count
on the number of coins a player has (e.g.,
“10” for “10,438”). Classes are integers
0–14 and “other” indicating blank.

Microsoft V4 sot-time (22, 30) 8 27 Classifies time remaining. Classes are in-
tegers 0–25 and “other” indicating blank.

performance model [317], a kernel can only be compute bound if it theoretically spends more
time computing than it does reading/writing memory:

FLOPs
Compute Bandwidth

>
Bytes

Memory Bandwidth

Here, “FLOPs” is the number of arithmetic operations performed, “Bytes” is the amount of data
transferred to/from memory (memory traffic), “Compute Bandwidth” is the accelerator’s peak
FLOPs/sec, and “Memory Bandwidth” is the accelerator’s memory bandwidth (bytes/sec). Rear-
ranging this to pair properties of the kernel on the left-hand side and properties of the accelerator
on the right-hand gives:

FLOPs
Bytes

>
Compute Bandwidth
Memory Bandwidth

(9.1)

The left-hand ratio of Equation 9.1 is termed “arithmetic intensity”: the ratio between the FLOPs
performed by the kernel and the bytes it transfers to/from memory. The arithmetic intensity of a
given layer in a CNN is (abstractly) written as:

FLOPs
Input bytes + Weight bytes + Output bytes

(9.2)

where “Input bytes” is the size of the layer’s input activations, “Output bytes” is the size of output
activations written by the layer to memory for processing by the next layer, and “Weight bytes”
is the size of the layer’s weights. For example, using the terminology in Table 9.2, the arithmetic

108



Table 9.2: Parameters of a 2D convolution with stride of 1.

Parameter(s) Variable(s)
batch size N

output height, width H , W
input, output channels Ci, Co

conv. kernel height, width KH , KW

intensity of a 2D convolutional layer with a stride of 1 is:

2NHWCoCiKHKW

B(NHWCi + CiKHKWCo +NHWCo)
(9.3)

where B is numerical precision in bytes (e.g., 2 for FP-16).1 The aggregate arithmetic intensity
of a CNN as a whole is computed by summing the FLOPs performed by each layer of the CNN,
summing the bytes read/written by each layer, and dividing these quantities. This accounts for
optimizations like layer fusion that reduce memory traffic.

Equation 9.1 indicates that, for a kernel to achieve the peak FLOPs/sec of an accelerator,
the kernel’s arithmetic intensity must be higher than the ratio between the accelerator’s compute
bandwidth and memory bandwidth [317].2 For example, this ratio is 139 in half precision on a
V100 GPU [241], 203 on a T4 GPU [55], and 1350 on TPUv1 [172]. It is often necessary for
arithmetic intensity to be far higher than this ratio, as arithmetic intensity calculations typically
assume perfect memory reuse, which can be difficult to achieve in practice.

Specialized CNNs have low arithmetic intensity. While high arithmetic intensity is needed
for high utilization of accelerators, specialized CNNs have low arithmetic intensity due to their
small sizes. For example, the half-precision arithmetic intensities of the CNNs used in the game-
scraping tasks are 88–102 at large batch sizes, much lower than the minimum of 139 required
for peak utilization of a V100 GPU, which is used for specialized CNN inference in datacen-
ters [232]. Thus, these CNNs achieve at most 17% of the V100’s peak FLOPs/sec, even at large
batch sizes and when running on the TensorRT inference library that performs optimizations like
layer fusion. To improve their utilization of accelerators, specialized CNNs must be modified to
increase arithmetic intensity.

As described above, high arithmetic intensity alone is insufficient to achieve high utilization,
as implementations must efficiently use accelerator resources (e.g., memory hierarchy). Nev-
ertheless, high arithmetic intensity is a prerequisite for high utilization. For specialized CNNs,
increasing arithmetic intensity is thus necessary to increase utilization. We will show that sim-
ply increasing arithmetic intensity greatly increases the utilization and throughput of specialized
CNN inference atop an optimized inference library.

1Here, we show arithmetic intensity for direct- and GEMM-based convolutions, though the arguments we make
also apply to other implementations (e.g., Winograd).

2This condition is necessary, but not sufficient, as inefficiencies in implementation can limit performance [317].
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Figure 9.3: FP-16 utilization and arithmetic intensity of game-scraping CNNs on a V100 GPU. The dashed line is
the minimum arithmetic intensity needed for peak utilization of a V100 GPU.

9.2.3 Improving arithmetic intensity is non-trivial
To increase the arithmetic intensity of convolutional and fully-connected layers, one must in-
crease the ratio in Equation 9.2. For concreteness, we focus on convolutional layers in this
subsection, and thus on increasing Equation 9.3.

Low precision? One way to increase Equation 9.3 is to decrease numerical precision B, which
reduces memory traffic by representing operands/outputs using fewer bits. However, modern
accelerators have compute units that offer increased FLOPs/sec in low precision (e.g., T4 GPUs).
Reducing precision thus increases both the left-hand side of Equation 9.1 (by reducing bytes) and
the right-hand side (by increasing compute bandwidth). When these quantities change at equal
rates, as is common in accelerators [55], the inequality remains the same: kernels that did not
satisfy this inequality at a high precision will not satisfy it at low precision. Figure 9.1 illustrates
this on a T4 GPU: specialized CNNs have low utilization at both full (FP-32) and low precisions
(FP-16, INT-8). Thus, while reducing precision can accelerate inference, it does not increase
utilization.

Large batch size? Increasing batch size N can increase arithmetic intensity by amortizing
the cost of loading layer weights. However, doing so leads to diminishing returns in arithmetic
intensity (A), as (ignoring B in Equation 9.3):

A =
2NHWCoCiKHKW

NHWCi + CiKHKWCo +NHWCo

lim
N→∞

A =
2CoCiKHKW

Ci + Co

(9.4)

When batch size is large enough that arithmetic intensity is determined by Equation 9.4, we say
that a layer is in the “batch-limited regime.” Figure 9.3 shows this on the game-scraping CNNs:
arithmetic intensity and utilization plateau with large batch size at 17% of the peak FLOPs/sec
of a V100.

To further increase arithmetic intensity beyond the limits of increased batch size, Equation 9.4
indicates that one must increase Ci, Co, KH , or KW . However, doing so increases the number of
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Figure 9.4: Memory traffic of activations and weights of the N1 and folded (f = 4) CNN. Axes are in log scale.
The y-axis is in elements, rather than bytes, as the trends hold for any bitwidth.
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Figure 9.5: Total memory traffic of the N1 and folded (f = 4) CNN. As shown in the inset, weights account for
a minor fraction of memory traffic with large batch size. The y-axis is in elements, rather than bytes, as the trends
hold for any bitwidth used.

FLOPs performed by the layer per image, which typically decreases application-level through-
put.

Takeaway. To increase utilization beyond increasing batch size, while maintaining high
throughput, one must increase arithmetic intensity without greatly increasing FLOP count. We
next propose techniques to achieve this goal.

9.3 Boosting Intensity via Folding

We now propose transformations to increase the arithmetic intensity of layers of specialized
CNNs operating over large batches without increasing FLOPs. For clarity, we focus on convolu-
tional layers, though the transformations also apply to fully-connected layers (as will be shown
in §9.4).

To increase arithmetic intensity while performing the same number of FLOPs, one must de-
crease memory traffic, the denominator in Equation 9.3. Our key insight is that the total memory
traffic of specialized CNNs with large batch size is dominated by reading/writing the input/output
activations of convolutional and fully-connected layers (NHWCi and NHWCo in the denomi-
nator of Equation 9.3),3 rather than by reading layer weights (CiKHKWCo). Figures 9.4 and 9.5
(focus only on blue parts) depict this for one CNN: with batch size 1024, activations make up
over 99% of total memory traffic.

Due to the dominance of input/output activations on a layer’s total memory traffic, we note
that a joint decrease in NHW and increase in CiKHKWCo can reduce memory traffic while

3The common practice of fusing activation functions to the preceding layer eliminates their contribution to total
memory traffic.
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Table 9.3: Example of increasing arithmetic intensity by folding a convolutional layer with f = 4. The layer has
KH = KW = 3, H = 11, W = 26, and uses half precision (i.e., B = 2).

Original Original Folded Folded
Equation Value Equation Value

Batch size N 1024 N/f 256
Input, output channels Ci, Co 32, 32 Ci

√
f , Co

√
f 64, 64

Input + output elts. (Eio) NHWCi + NHWCo 18.74M
√
f
f NHWCi +

√
f
f NHWCo 9.37M

Layer elts. (El) CiKHKWCo 0.01M fCiKHKWCo 0.04M
Mem. traffic (bytes) (M ) B(Eio + El) 37.51M B(Eio + El) 18.82M
Operations (O) 2NHWCoCiKHKW 5398.07M 2NHWCoCiKHKW 5398.07M
Arithmetic intensity O/M 143.93 O/M 286.87

maintaining the same number of FLOPs. Suppose one decreased NHW by a factor of f (with
f > 1) and increased Ci and Co by a factor of

√
f . We call this transformation folding and

layers transformed by it folded. The folded layer has the following properties: (1) It performs the
same number of FLOPs: NHW

f
(Co

√
f)(Ci

√
f)(KHKW ) = NHWCoCiKHKW . (2) It decreases

the size of layer inputs/outputs by a factor of
√
f from NHWCi to

√
f
f
NHWCi (similarly for

outputs with Co). (3) It increases the number of layer weights by a factor of f from CiKHKWCo

to (Ci

√
f)KHKW (Co

√
f).

Properties 2 and 3 are shown in Figure 9.4 when folding a representative specialized CNN
from the NoScope system with f = 4: the folded convolutions have 2× lower memory traffic
for activations and 4× higher memory traffic for weights. At large batch sizes, the decrease in
memory traffic for activations is larger than the increase for weights. For example, at batch size
1024, memory traffic for activations decreases by 66.7M, while that for weights increases by
only 3.9M. The increase in memory traffic from layer weights is dwarfed by the decrease for
activations, resulting in a reduction in total memory traffic. Figure 9.5 illustrates this reduction
in memory traffic for the same CNN.

As the folded layer performs as many FLOPs as the original layer, but with reduced memory
traffic, it has higher arithmetic intensity. If a layer is in the batch-limited regime, in which arith-
metic intensity is determined by Equation 9.4, folding increases arithmetic intensity by

√
f×,

as the numerator and denominator in Equation 9.4 increase by f× and
√
f×, respectively. An

example of this is shown in Table 9.3.

Proof of reduction in memory traffic. We will now prove that the folding transformation
described in reduces total memory traffic if:

NHW >
(f − 1)CiKHKWCo

(1− 1√
f
)(Ci + Co)

(9.5)

We will first show that the new layer performs an equal number of operations as the original
layer (i.e., the numerator in Equation 9.3 stays the same) and then show that the new layer layer
has reduced memory traffic compared to the original layer (i.e., the denominator in Equation 9.3
decreases), provided that the inequality holds. These two changes will result in the new layer
having an increased arithmetic intensity.
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Equal number of operations. The initial convolutional layer performs 2NHWCoCiKHKW

operations. The transformed convolutional layer performs 2NHW
f

(
√
fCo)(

√
fCi)(KHKW ) =

2NHWCoCiKHKW operations, which is equal to that of the original model.
Reduced memory traffic. We wish to show that the inequality is equivalent to the memory

traffic of the transformed layer being lower than that of the original layer.
We first note that, ignoring the bytes per element B, the memory traffic of the original con-

volutional layer is NHWCi + CiKHKWCo + NHWCo, while that of the transformed layer is√
f
f
NHWCi + fCiKHKWCo +

√
f
f
NHWCo.

We wish to show that:

NHWCi + CiKHKWCo +NHWCo >

√
f

f
NHWCi + fCiKHKWCo +

√
f

f
NHWCo

We first rearrange the righthand side of the inequality as:
√
f

f
NHWCi + fCiKHKWCo +

√
f

f
NHWCo =

NHW√
f

Ci + fCiKHKWCo +
NHW√

f
Co

Grouping by similar terms gives:

NHWCi −
NHW√

f
Ci +NHWCo −

NHW√
f

Co > fCiKHKWCo − CiKHKWCo

Which implies:

(1− 1√
f

)NHWCi + (1− 1√
f

)NHWCo > (f − 1)CiKHKWCo

Which implies:

NHW ((1− 1√
f

)(Ci + Co)) > (f − 1)CiKHKWCo

Which ultimately leads to our desired inequality:

NHW >
(f − 1)CiKHKWCo

(1− 1√
f
)(Ci + Co)

When does folding help? As described in §9.2, increasing arithmetic intensity in this manner
has the potential to increase both the throughput and accelerator utilization of specialized CNN
inference. Additionally, because the folding transformation reduces memory accesses, it has the
potential to reduce the energy consumed during inference, which is heavily tied to the number of
memory accesses performed [251].

Folding will most heavily increase the utilization and throughput of layers that have arith-
metic intensity in the batch-limited regime that is below that needed for peak FLOPs/sec on an
accelerator. Specialized CNNs are thus ideal targets for folding, as they have low arithmetic
intensity even at large batch size. Meanwhile, large CNNs or those with small batch size are less
likely to benefit. Thus, we focus on folding specialized CNNs.
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Figure 9.6: Middle layer of a FoldedCNN with f = 4. Both the number of input and output channels increase by a
factor of

√
f .

9.4 FoldedCNNs
We now propose FoldedCNNs, a new approach CNN design based on the folding transformation
proposed in §9.3.

Folding involves (1) decreasing NHW by f× and (2) increasing CiKHKWCo by f×. There
are many ways to achieve these effects. FoldedCNNs achieve them by (1) decreasing batch size
N by f×, (2) increasing the number of input and output channels Ci and Co each by

√
f×. We

do not reduce resolution (H , W ) or increase receptive field (KH , KW ), as specialized CNNs
often operate over small images to begin with [179]; we find that such changes can decrease
accuracy compared to FoldedCNNs.

9.4.1 Applying folding to a full CNN
We now describe folding for a specialized CNN with L convolutional/fully-connected layers and
CL classes. Let Ci,l denote the number of input channels to layer l of the original CNN, and C ′i,l
that in the FoldedCNN. Similar notation is used for all parameters in Table 9.2. While we focus
on plain convolutions in this section, FoldedCNNs also apply to other convolutional variants. We
evaluate folding for group convolutions and Winograd convolutions in §9.5.5 and §9.5.6.

We first transform a layer l in the middle of the CNN, as shown in Figure 9.6. As described
above, FoldedCNNs decrease batch size: N ′ = N

f
and increase the number of input and output

channels: C ′i,l = Ci,l

√
f and C ′o,l = Co,l

√
f . Folded fully-connected layers in the middle of

the CNN also have
√
f× the number of input and output features. As folding is applied to all

convolutional and fully-connected layers, the increase in output channels in one layer naturally
fits the increase in input channels for the next layer.

Folding batches of images. As described in §9.3, each layer in a FoldedCNN performs the
same number of FLOPs as the corresponding layer of the original CNN. However, a Folded-
CNN performs these FLOPs over N

f
images, whereas the original CNN operates over N images.

Left uncorrected, FoldedCNNs would thus perform f× more FLOPs per image, and thus would
reduce application-level throughput.

To rectify this, FoldedCNNs “fold” a batch of images into “stacks” of images, as shown in
Figures 9.2 and 9.7. Suppose the original CNN takes in N images each with Ci,1 channels (e.g.,
Ci,1 = 3 for RGB). A FoldedCNN instead takes in N

f
inputs each with Ci,1f channels, formed by

concatenating f images along the channels dimension. Each folded input represents f images,
so the number of images in a batch of N

f
such inputs is equal to that of the original CNN (N ).
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Figure 9.8: Output layer of a FoldedCNN with f = 4 and 2 classes. Unlike other layers, this layer has f× the
number of outputs.

As a FoldedCNN performs inference over f images in a single input, it must return classification
results for f images. To accommodate this, the output layer of a FoldedCNN produces outputs
for fCL classes, CL for each of the f images stacked in a single input. This is illustrated in
Figure 9.8. Note that this is similar to the manner in which k image inputs were represented to
the learned encoders in §7.

These adjustments result in the first and last layers of FoldedCNNs performing slightly more
FLOPs than those of the original CNN. The first layer of a FoldedCNN setsC ′i,1 = Ci,1f , whereas
other layers have C ′i,l = Ci,l

√
f . As the number of output channels in the first layer is also

increased by
√
f×, the first layer performs

√
f× more FLOPs than the original first layer (see

Figure 9.7). This is also the case for the last layer of the FoldedCNN due to returning predictions
for f images (see Figure 9.8). All other layers in the FoldedCNN perform the same number
of FLOPs as those in the original CNN, as described previously. Despite this slight increase in
FLOPs, §9.5 will show that FoldedCNNs, in fact, achieve higher throughput than the original
CNN due to their increased arithmetic intensity.

9.4.2 Training a FoldedCNN
Training a FoldedCNN is similar to training the original CNN. Let NT denote the training batch
size. Each training iteration, NT images are sampled and transformed into NT

f
folded inputs as

described above. A forward pass through the FoldedCNN results in an output of size NT

f
× fCL,

115



as shown in Figure 9.8. This output is reshaped to be of size NT × CL, and loss is computed on
each of the NT rows.

As each folded input consists of f images, and each image belongs to one of CL classes, the
effective number of classes for a FoldedCNN is Cf

L. This large increase in the number of classes
can make it difficult to train a FoldedCNN for tasks with many classes to begin with. To combat
this issue, we use a form of curriculum learning [80] specialized for FoldedCNNs. Training
begins by sampling from only I < CL classes of the original CNN’s dataset, and introducing
∆ more classes every E epochs. We hypothesize that starting with a small number of classes
I avoids overloading the FoldedCNN with a difficult task early on in training, as If � Cf

L.
We find this form of training beneficial when CL and f are large, and it yielded only marginal
improvements in other settings.

9.5 Evaluation

9.5.1 Evaluation setup

We consider CNNs and tasks from the usecases described in §9.2.1: specialized CNNs from
NoScope4 as lightweight filters, and specialized CNNs from Microsoft. Each task and CNN is
described in [58]. While the focus of this work is on specialized CNNs, we also evaluate on the
more general ResNet-18 on CIFAR-10 and CIFAR-100.

We evaluate FoldedCNNs with f of 2, 3, and 4, which increase the channels per layer by
factors of roughly 1.41, 1.73, and 2, respectively (

√
f×).5 We compare FoldedCNNs to the

compound scaling used in EfficientNets in §9.5.3.

Training setup. When training FoldedCNNs, we randomly assign images from the training set
into groups of size f each epoch. Test sets are formed by randomly placing images from the test
data into groups of f . Such randomization at test time avoids simpler settings, such folding f
sequential frames in a video, thus providing a challenging scenario for FoldedCNNs. We also
evaluate the sensitivity of FoldedCNNs to the order in which images are folded in §9.5.3.

We train all CNNs using cross entropy loss. Training takes place for for 50 epochs with batch
size of 128 for the NoScope tasks and for 1500 epochs with batch size of 32 for the game-scraping
tasks. We use the curriculum learning in §9.4.2 for FoldedCNNs only on the game-scraping tasks.
For these scenarios that use curriculum learning, we use I = max(f, bCL/10c), ∆ = bCL/10c,
and E = 60. Such curriculum learning did not improve the accuracy of the original CNN. We
use hyperparameters from NoScope [179] to train NoScope CNNs: RMSprop with learning rate
6.6× 10−4 and Dropout of 0.25 after the second layer and before the last layer. All other models
use Adam with learning rate 10−4 and weight decay of 10−5.

4Our evaluation focuses only on specialized CNNs, and thus does not reflect the performance of the full NoScope
system.

5The number of channels resulting from folding are rounded down to avoid a non-integer number of channels
(e.g.,

⌊
Ci

√
f
⌋
).
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(a) Specialized CNNs use in NoScope
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(b) Specialized CNNs used at Microsoft

Figure 9.9: Inference performance of FoldedCNNs relative to the original CNN on a V100 GPU. Arithmetic inten-
sity is plotted in absolute numbers, and the dashed line shows the minimum arithmetic intensity required to reach
peak FLOPs/sec on a V100 GPU.

Table 9.4: Accuracy and speedup of FoldedCNNs for NoScope CNNs. Changes in accuracy are shown in paren-
theses.

Original FoldedCNN (f = 2) FoldedCNN (f = 3) FoldedCNN (f = 4)
CNN Accuracy Accuracy Speedup Accuracy Speedup Accuracy Speedup
N1 98.82 98.64 (-0.18) 1.39 98.35 (-0.47) 1.85 97.93 (-0.89) 2.51
N2 96.96 96.99 (0.03) 1.38 96.93 (-0.03) 1.85 96.75 (-0.21) 2.50
N3 94.84 94.95 (0.11) 1.07 94.82 (-0.02) 1.37 94.72 (-0.12) 1.76
N4 91.66 91.91 (0.25) 0.90 91.39 (-0.27) 1.07 91.21 (-0.45) 1.41

Inference setup. We evaluate inference on a V100 GPU (p3.2xlarge AWS instance), which is
typical of hardware used for specialized CNN inference in datacenters [232]. We also evalu-
ate on T4 GPUs (g4dn.xlarge AWS instance), which are common both in datacenters and edge
clusters. When not mentioned explicitly, inference performance is evaluated on V100. Inference
is performed in PyTorch with TensorRT [39] on CUDA 10.2. While FoldedCNNs can improve
utilization for any numerical precision, we use half precision (FP-16) to use Tensor Cores. We
report utilization (FLOPs/sec) and application-level throughput (images/sec) relative to the orig-
inal CNN via the mean of 10 trials of 10000 inferences of batch size 1024. We use other batch
sizes in §9.5.4. We call relative throughput “speedup.”

9.5.2 Evaluation on specialized CNNs used in NoScope

Utilization and throughput. Figure 9.9a shows the speedup and FLOPs/sec of FoldedCNNs
relative to the original CNN and the arithmetic intensity of each CNN on a V100 GPU. Folded-
CNNs increase FLOPs/sec by up to 2.8× and throughput by up to 2.5×. Increased throughput
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(a) Specialized CNNs used in NoScope
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(b) Specialized CNNs used at Microsoft

Figure 9.10: Inference performance of FoldedCNNs relative to the original CNN on a T4 GPU. Arithmetic intensity
is plotted in absolute numbers, and the dashed line shows the minimum arithmetic intensity required to reach peak
FLOPs/sec on a T4 GPU.

speeds up tasks like offline analytics, while increased utilization enables higher throughput on
a single accelerator and a better return on investment for deploying accelerators. FoldedCNNs
match the

√
f× theoretical increase in arithmetic intensity described in §9.3, thus increasing

utilization and throughput with higher f . Figure 9.10a illustrates similar performance on a T4
GPU.

FoldedCNNs result in larger improvements in utilization and throughput for the N1 and N2
CNNs (up to 2.8×) than for the N3 and N4 CNNs (up to 1.76×). This can be explained by
arithmetic intensity: the N1 and N2 CNNs originally have very low arithmetic intensity. Fold-
edCNNs bring this arithmetic intensity much closer to that needed for peak performance on the
V100 GPU, resulting in significantly higher utilization and throughput. In contrast, both N3 and
N4 already have arithmetic intensity above the minimum needed for peak utilization, leaving
less room for improvement. Despite this lower potential, FoldedCNNs still deliver up to 1.76×
higher utilization and throughput for these CNNs.

Effect of tile quantization. There is only one case in which FoldedCNNs decrease through-
put/utilization (N4, f = 2). This is caused by GPU tile quantization: when the problem size does
not divide evenly into a chosen tile size (i.e., the size of partitions of the overall kernel) [241].
Many deep learning libraries are best optimized for cases in which certain parameters of a con-
volutional layer, such as input and output channels, are divisible by large powers of two (e.g.,
divisible by 64 or 128) [241]. Parameters that do not meet this requirement typically use kernels
optimized for a larger tile, resulting in wasted work. For more details on the inefficiency resulting
from tile quantization, please see NVIDIA’s deep learning performance guide [241].

Many CNNs are already designed to have a number of input and output channels that are
a power of two. However, FoldedCNN’s increase the number of input and output channels by
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a factor of
√
f . For non-square values of f , such as 2 and 3, applying ParM to such a layer

may result in a number of input or output channels that is no longer a power of two or is no
longer divisible by a power of two. For example, applying ParM with f = 2 to a convolutional
layer with 64 input and output channels will result in a convolutional layer with b64

√
2c = 90

channels.
For the values of f considered in this work, we find that tile quantization primarily affects

convolutions with a number of input and output channels greater than or equal to 64; we do not
observe the negative effects often associated with tile quantization for convolutions with fewer
channels, such as 32 or 16.

The N4 CNN contains two convolutions with 64 intermediate channels, followed by a fully-
connected layer with 32 output neurons. The FoldedCNNs with f of 2 and 3 will thus lead to
the negative effects of tile quantization for the convolutions in this CNN, but not for the fully-
connected layer, which will receive the full benefits of folding. With f = 2, the benefit from
folding does not outweigh the inefficiency due to tile quantization, resulting in a net decrease
in utilization and throughput. In contrast, with f = 3, the benefits of folding outweigh the cost
of tile quantization, resulting in an increase in utilization and throughput, albeit less pronounced
than expected for f = 3.

It is important to note that this case with decreased utilization and throughput is not due to
incorrectness of the transformations performed by FoldedCNNs. FoldedCNNs with f of 2 and 3
for the N4 CNN result in the expected

√
f× improvements in arithmetic intensity.

Accuracy. Table 9.4 shows the accuracy of FoldedCNNs on the NoScope tasks. FoldedCNNs
maintain high accuracy: the accuracy of FoldedCNNs with f = 2 is, in fact, higher than that
of the original CNN for three of CNNs, and only 0.18% lower on the fourth. For these cases,
FoldedCNNs provide up to a 1.39× speedup with the same accuracy.

As f increases, a FoldedCNN classifies more images per input, making the task of the Fold-
edCNN more challenging. As shown in Table 9.4 and Figure 9.9a, increasing f reduces accuracy
but increases utilization and throughput, introducing a tradeoff that can be spanned based on the
requirements of applications. We next analyze an example of this tradeoff.

When reasoning about the potential tradeoff between accuracy and throughput/utilization
present with FoldedCNNs, it is important to consider the usecases of specialized CNNs. As de-
scribed in §9.2.1, it is common to use specialized CNNs as a lightweight filter in front of a large,
general-purpose CNN. In such systems, most inputs are processed only by the specialized CNN,
rather than by both the specialized CNN and the general-purpose CNN. Thus, the throughput of
the specialized CNN typically dominates the total throughput of the system.

Given the heavy use of the specialized CNN in this setup, improving the throughput of the
specialized CNN at the expense passing more inputs to the general-purpose CNN may increase
system throughput. For example, a FoldedCNN with f = 4 speeds up the N2 CNN by 2.50×
with a 0.21% drop in accuracy. We show below that this FoldedCNN increases system throughput
unless the general-purpose CNN is over 285× slower than the N2 CNN. Thus, the improved
utilization and throughput of specialized CNNs made possible by FoldedCNNs can compensate
for reduced their accuracy to improve total system throughput.

We now walk through this accuracy-throughput tradeoff via an abstract example. Figure 9.11
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shows an abstract example of using a specialized CNN (e.g., those from NoScope) as a lightweight
filter in front of a large, general-purpose CNN (e.g., ResNet-50). As shown in the figure, all in-
puts pass through the specialized CNN, which has a latency of Ts. The specialized CNN is
unsure about u fraction of those inputs, and thus forwards these inputs to the general-purpose
CNN, which has a latency of Tg. For the remaining (1 − u) fraction of inputs, the specialized
CNN is sure of its answer, and returns the prediction directly.

The expected latency for a given input to this system is thus:

E[T ] = Ts + uTg

Suppose that one replaced the specialized CNN used in such an application with a Folded-
CNN that increases throughput by a factor of x, but decreases accuracy by a. Under the reason-
able assumption that an increase in throughput leads to a corresponding decrease in latency, the
latency of the FoldedCNN can be given as Ts

x
. Furthermore, under the assumption that all in-

correctly classified inputs from the specialized CNN are forwarded to the general-purpose CNN
(i.e., u is equivalent to the error of the specialized CNN), then the FoldedCNN lets u+a fraction
of frames through to the general-purpose CNN. Thus, the expected latency for a given input to
the system with a FoldedCNN is:

E[T ] =
Ts
x

+ (u+ a)Tg

Clearly, for high values of x and small values a, the FoldedCNN can result in improved total
system throughput (reciprocal of latency). A secondary question of interest is: given specific
values of x and a, for what values of Ts and Tg does the FoldedCNN increase overall system
throughput?

To answer this question, we focus on the ratio Tg

Ts
. Intuitively, the higher this ratio, the larger

the effect of inaccuracy of the FoldedCNN on overall system throughput. We next calculate the
maximum value this ratio can be for a FoldedCNN to improve overall system throughput:

Ts + uTg >
Ts
x

+ (u+ a)Tg

Ts −
Ts
x
> (u+ a)Tg − uTg

Ts(1−
1

x
) > aTg

1

a
(1− 1

x
) >

Tg
Ts

Consider the FoldedCNN with f = 4 for the N2 dataset. This FoldedCNN results in an
increase in throughput of x = 2.5× and a decrease in accuracy of a = 0.0021. Plugging these
values into the inequality above shows that this FoldedCNN will result in an overall improvement
in system throughput so long as the general-purpose CNN is less than 285× slower than the
original specialized CNN. If we consider ResNet-50 as an example of a general-purpose CNN,
this is easily satisfied for the N2 CNN: ResNet-50 is 83× slower than the original specialized
CNN.
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Figure 9.11: Abstract example of the use of a specialized CNN as a lightweight filter in front of a larger, general-
purpose CNN.

Table 9.5: Performance of FoldedCNNs on specialized CNNs used at Microsoft. Differences in accuracy are listed
in parentheses. Input resolution (“Res.”) and the number of classes (“Cls.”) for each CNN are also listed.

Original FoldedCNN (f = 2) FoldedCNN (f = 3) FoldedCNN (f = 4)
CNN Res. Cls. Accuracy Accuracy Speedup Accuracy Speedup Accuracy Speedup
V1 (22, 52) 11 97.64 97.64 (0.00) 1.13 97.18 (-0.46) 1.38 95.27 (-2.37) 1.75
V2 (19, 25) 22 93.45 92.09 (-1.36) 1.15 90.00 (-3.45) 1.44 89.91 (-3.54) 1.74
V3 (17, 40) 15 98.50 97.43 (-1.07) 1.15 97.20 (-1.30) 1.43 96.87 (-1.63) 1.71
V4 (22, 30) 27 96.52 96.52 (0.00) 1.22 96.00 (-0.52) 1.40 94.41 (-2.11) 1.67

9.5.3 Evaluation on production game-scraping CNNs
Figure 9.9b and Figure 9.10b show the utilization, throughput, and arithmetic intensity of Folded-
CNNs on the production game-scraping tasks. FoldedCNNs increase FLOPs/sec by up to 1.95×
and throughput by up to 1.75× compared to the original CNN. Table 9.5 shows that FoldedCNNs
have accuracy drops of 0–1.36%, 0.46–3.45%, and 1.63–3.54% with f of 2, 3, and 4 on these
tasks. These drops are larger than those on the NoScope tasks due to the higher number of classes
in the game-scraping tasks. While the NoScope tasks have only two classes, the game-scraping
tasks have 11–27 classes. Thus, lower accuracy on the game-scraping tasks is expected from
FoldedCNNs. That said, FoldedCNNs still enable large improvements, such as a 1.22× speedup
with no accuracy loss for V4 with f = 2.

Effect of image order. As FoldedCNNs jointly classify f distinct images concatenated over
the channels dimension, a natural question is how sensitive FoldedCNNs are to the order in
which images are folded. To investigate this, we measure how often the predictions made by
FoldedCNNs for each image match for all f ! permutations of f images folded together (e.g.,
how often do predictions for image X1 match in folded inputs (X1, X2) and (X2, X1) for f = 2).
With f of 2, 3, and 4, the average percentage of matching predictions for all f ! permutations on
the V1 task is 98.8%, 98.4%, and 98.0%, showing high invariance to image order.

Comparison to EfficientNet scaling. We next compare FoldedCNNs to the techniques used
in EfficientNets [295]. EfficientNets trade FLOPs and accuracy by jointly scaling the number of
layers, the width, and the input resolution of a CNN. While such scaling can increase through-
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Table 9.6: FoldedCNNs and EfficientNet compound scaling on game-scraping tasks. Speedup, utilization, and
arithmetic intensity are relative to the original CNN.

Higher values are better
CNN Mode Accuracy Speedup Utilization Arithmetic intensity

V1
EfficientNet 93.27% 1.32 0.83 0.91
Fold (f = 4) 95.27% 1.75 1.95 2.16

V2
EfficientNet 84.91% 1.51 0.80 0.88
Fold (f = 4) 89.91% 1.74 1.93 2.15

V3
EfficientNet 96.40% 1.46 0.75 0.87
Fold (f = 4) 96.87% 1.71 1.91 2.16

V4
EfficientNet 95.19% 1.34 0.83 0.91
Fold (f = 3) 96.00% 1.40 1.46 1.78
Fold (f = 4) 94.41% 1.67 1.80 2.10

put by reducing FLOP count, reducing FLOP count in this manner can also decrease arithmetic
intensity and utilization. To illustrate this, we transform the game-scraping CNNs with Efficient-
Net compound scaling6 with the recommended parameters from the EfficientNet paper [295]:
using terminology from the paper, φ = −1, α = 1.1, β = 1.2, and γ = 1.15. This transforms a
CNN to perform roughly 2× fewer FLOPs, which increases throughput.

Table 9.6 compares FoldedCNNs and EfficientNets on the game-scraping CNNs. For each
task, a FoldedCNN achieves both higher accuracy and throughput than the EfficientNet variant.
For example, for V1, a FoldedCNN has 2% higher accuracy and 33% higher throughput than
the EfficientNet variant. Furthermore, whereas EfficientNets reduce arithmetic intensity and uti-
lization for all CNNs due to decreased FLOP count, FoldedCNNs uniformly increase arithmetic
intensity and utilization. These results show the promise of the new approaches proposed in
FoldedCNNs targeted specifically for large-batch, specialized CNN inference.

9.5.4 Varying batch size
Figure 9.12 shows the throughput improvement when using FoldedCNNs with various values of
f relative to the original CNN at varying batch sizes. As shown in the figure, the throughput im-
provement resulting from folding is largest at a batch size of 2048, and decreases with decreasing
batch size. This behavior is expected, as decreasing batch size N decreases the likelihood that
the inequality proved in §9.3 will hold, and thus that folding will benefit.

9.5.5 Folding grouped convolutions
In this section, we describe how folding is applied to group convolutions.

Background on group convolutions. In a group convolution, the input and output channels of
the convolution are split intoG groups. Each output channel in a particular group is computed via

6We do not use the EfficientNet-B0 architecture because it is significantly larger than typical specialized CNNs.
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Figure 9.12: Speedup of FoldedCNNs with varying f at various batch sizes relative to the throughput of the original
CNN at corresponding batch sizes.

convolution over only those input channels in the corresponding group. This results in a G-fold
decrease in operations and a G-fold decrease in the number of parameters in the convolutional
layer. The resultant arithmetic intensity for a group convolution is thus:

2NHWCoCiKHKW/G

B(NHWCi + CiKHKWCo

G
+NHWCo)

The arithmetic intensity of a group convolution in the batch-limited regime is determined as
follows (recalling from that calculating arithmetic intensity in the batch-limited regime involves
removing the variable B):

A =
2NHWCoCiKHKW/G

NHWCi + CiKHKWCo

G
+NHWCo

lim
N→∞

A =
2CoCiKHKW

Ci + Co

∗ 1

G

Comparing this arithmetic intensity to that in Equation 9.3, the arithmetic intensity of a group
convolution withG groups in the batch-limited regime isG× lower than a corresponding “vanilla”
convolution. This makes group convolutions a promising target for increasing arithmetic inten-
sity via folding.
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Table 9.7: Group convolutions evaluated

Name Ci Co G KH KW H W

G32 32 32
4 3 3 50 50

G64 64 64

Applying folding to group convolutions. Folding group convolutions is straightforward. Sim-
ilar to folding “vanilla” convolutions, a FoldedCNN for a group convolution with Ci input chan-
nels and Co output channels reduces batch size by a factor of f and increases Ci and Co each
by a factor of

√
f×. This results in increasing the number of channels per group in the group

convolution by a factor of
√
f , and thus also increases arithmetic intensity in the batch-limited

regime by a factor of
√
f .

Inference performance of folded group convolutions. We evaluate the throughput and uti-
lization of folding on two group convolutions shown in Table 9.7. The two group convolutions
are identical other than the number of total input and output channels, with G32 having 32 and
G64 having 64. Each setting uses 4 groups, leading to 8 and 16 channels per group for G32
and G64, respectively. We compare the throughput and utilization of these convolutions to the
corresponding folded version with f = 4. Folding results in 64 input and output channels with
16 channels per group for G32, and 128 input and output channels with 32 channels per group
for G64.

With batch size of 1024, folding with f = 4 increase throughput and utilization of these
grouped convolutions by 1.74× for G32 and by 1.59× for G64 on a V100 GPU. Folding increases
arithmetic intensity by nearly a factor of two for each convolution. The larger improvement for
G32 compared to G64 comes from the lower arithmetic intensity of G32; due to having half the
number of input and output channels of G64, G32 has half the arithmetic intensity. Thus, there
is more room for improving the utilization of G32 by increasing arithmetic intensity alone via
FoldedCNNs. These results show the effectiveness of folding on group convolutions.

9.5.6 Folding for Winograd convolutions

FoldedCNNs can benefit a wide variety of convolutional implementations, such as direct convo-
lutions, matrix-multiplication-based convolutions, and Winograd convolutions. In fact, our prior
evaluation results runs atop TensorRT, which selects among convolutional implementations, in-
cluding Winograd. To more clearly illustrate the performance of FoldedCNNs on Winograd
convolutions, we also directly run FoldedCNNs using Winograd convolutions in cuDNN. Here,
on the video scraping CNNs, FoldedCNNs with f = 4 provided a median speedup of 1.66× over
the original CNN, matching the speedups found for other CNNs above.

9.5.7 FoldedCNNs in non-target settings

As described in §9.3, our focus in FoldedCNNs is on small CNNs with low arithmetic intensity
even at large batch size, and specialized tasks with few classes. For completeness, we now
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Table 9.8: Performance of FoldedCNNs for CNNs with many classes. Differences in accuracy are listed in paren-
theses. Input resolution (“Res.”) and the number of classes (“Cls.”) for each CNN are also listed.

Original FoldedCNN (f = 2) FoldedCNN (f = 3) FoldedCNN (f = 4)
CNN Res. Cls. Accuracy Accuracy Speedup Accuracy Speedup Accuracy Speedup
V5 (22, 52) 111 93.95 92.50 (-1.45) 1.12 90.78 (-3.17) 1.42 87.51 (-6.44) 1.75
V6 (15, 35) 62 89.71 88.03 (-1.68) 1.08 85.48 (-4.23) 1.42 84.92 (-4.79) 1.71

evaluate FoldedCNNs on general-purpose CNNs and tasks, which are not in this target regime.
We also evaluate small CNNs for tasks with many classes.

Accuracy on general tasks. To evaluate the accuracy of FoldedCNNs on general-purpose
tasks, we consider ResNet-18 FoldedCNNs on CIFAR-10 and CIFAR-100.

For CIFAR-10, we train a FoldedCNN with f = 4 via distillation with the original CNN as
the “teacher” [73]. The original ResNet-18 has an accuracy of 92.98%, while the FoldedCNN
has an accuracy of 92.10%. This small accuracy drop even with high f shows the potential
applicability of FoldedCNNs to general-purpose tasks.

For CIFAR-100, we do not observe benefit from the same distillation used for CIFAR-10. The
original ResNet-18 on CIFAR-100 achieves 70.3% accuracy, while FoldedCNNs have accuracies
of 68.11% (2.19% drop), 67.44% (2.86% drop), and 65.76% (4.54% drop) with f of 2, 3, and 4.
These larger drops compared to CIFAR-10 can be attributed to the higher number of classes in
CIFAR-100, which makes the task of a FoldedCNN more challenging (see §9.4.2).

Speedup on general CNNs. We now evaluate the speedup of FoldedCNNs when the original
CNN is the general-purpose ResNet-18 operating on CIFAR-10. A FoldedCNN with f = 4
in this setup improves throughput by 8.1%. This speedup is smaller than those observed in
Figure 9.9 because ResNet-18 has arithmetic intensity of 430, much higher than the minimum
needed for peak FLOPs/sec on a V100 (139). This places ResNet-18 outside the target regime
of FoldedCNNs. FoldedCNNs still do provide 8.1% speedup, as 24% of the layers in ResNet-18
have low arithmetic intensity.

Accuracy on small CNNs with many classes. We also consider CNNs that have the same size
as specialized CNNs, but which operate over many classes. We consider two new game-scraping
tasks: a task with 111 classes (V5), and one with 62 classes (V67). We use the same CNN as that
used for V1. Table 9.8 shows that FoldedCNNs exhibit larger drops in accuracy on these tasks
due to the larger number of classes, but still increase utilization/throughput by up to 1.75×.

Takeaway. Coupling these moderate benefits in non-target settings with large benefits in target
settings, FoldedCNNs show promise for increasing the utilization and throughput of specialized
CNN inference beyond increased batch size.

7For this CNN, we find that the small input resolution and large number of classes requires using more specially-
tuned curriculum learning parameters. Specifically, when training a FoldedCNN with f = 4 on this dataset, we use
I = 4, ∆ = 3, and E = 120, and train the CNN for 3000 epochs.
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9.6 Related Work
Efficient neural architectures. There is a large body of work on designing CNNs for efficient
inference (e.g., [90, 91, 218, 295, 319, 346]). Many of these works aim to reduce latency, but of-
ten do not consider accelerator utilization, which is a primary objective of FoldedCNNs. Some of
these approaches, such as EfficientNets [295], reduce the number of FLOPs performed by a CNN
to achieve lower latency. However, we show in §9.5 that doing so can, in fact, reduce accelerator
utilization. Furthermore, compared to these approaches, FoldedCNNs employ a fundamentally
new structure to CNN inputs and classification, which could be integrated into existing architec-
ture search techniques. Finally, FoldedCNNs are designed primarily for large-batch, specialized
CNN inference, whereas existing works typically target general-purpose CNNs.

Improving throughput. Many other techniques have been proposed to accelerate inference,
but which do not target utilization. Network pruning [83] can improve throughput by reducing
the FLOP count of a CNN, but, similar to the approaches described above, can reduce utilization.
Reducing the numerical precision used during inference can increase throughput [308], but is in-
sufficient for increasing utilization on modern accelerators (as we show in §9.2.3). Folding can
be applied on top of these techniques to further improve the utilization and throughout of spe-
cialized CNN inference. In fact, our evaluation in §9.5 applies FoldedCNNs atop low-precision
specialized CNNs.

Multitenancy. There is a growing body of work on increasing accelerator utilization by per-
forming inference for multiple models on the same device [116, 164, 235, 282, 332]. These
works do not improve the utilization of individual models, which is the goal of FoldedCNNs.
Thus, these works are complementary to FoldedCNNs.

9.7 Conclusion
This section of the thesis illustrated that coding-theory-inspired ideas can be used to boost the
throughput and accelerator utilization of ML systems—a goal that falls outside the usual target
of codes of improving reliability. Specifically, following the insights developed in §4.3 of this
thesis, we show that specialized CNNs poorly utilize server-grade accelerators due to their low
arithmetic intensity, even at large batch sizes. We then show that leveraging ideas inspired by
the coding-based approaches proposed in §7 of this thesis, combined with small modifications to
CNN architecture, can boost arithmetic intensity beyond the limits of increased batch size. This
allows the resultant FoldedCNNs to significantly increase throughput and accelerator utilization,
while maintaining similar accuracy to the original CNN.
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Chapter 10

Accelerating erasure codes with little
developer expertise via ML libraries

The previous portions of this thesis have focused on ways in which coding-theoretic ideas can
benefit ML systems and how machine learning can benefit coding-theoretic tools. This chapter
explores a different, but related, interaction between these domains: ways in which advancements
in ML systems can improve the development of erasure-coded systems.

We focus on the development of high-performance erasure-coding libraries, which are crit-
ical given the widespread use of erasure codes in production many storage systems. However
developing optimized erasure-coding libraries currently requires a deep understanding of both
the mathematical underpinnings of erasure codes and techniques to achieve high performance
on a given hardware platform. The need for this unique skillset makes developing optimized
erasure-coding libraries challenging enough today, and likely even more challenging in the fu-
ture given increasing trends in hardware heterogeneity.

We make the case that the growth of fast ML libraries may serve as a lifeboat for easing
the development of current and future optimized erasure-coding libraries: fast erasure-coding
libraries for various hardware platforms can be easily implemented by using existing optimized
ML libraries. We show that the computation structure of many erasure codes mirrors that com-
mon to matrix multiplication, which is heavily optimized in ML libraries. Due to this similar-
ity, one can implement erasure codes using ML libraries with few lines of code and with little
knowledge of erasure codes, while immediately adopting the many optimizations within these
libraries, without requiring intimate knowledge of high-performance programming. We develop
prototypes of our proposed approach using two different ML libraries targeting CPUs and GPUs.
Our prototypes are up to 2.2× faster than state-of-the-art erasure-coding libraries.

10.1 Introduction

Recall that erasure codes enable storage systems to reliably store data with significantly less
storage overhead than replication [220], and, thus, are widely used in storage systems (e.g., [135,
159, 252, 263, 313]).

Significant work has been devoted to developing high-performance software libraries for
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erasure coding (e.g., [19, 253, 302, 345]). Many system-level optimizations have been used,
such as vectorization and cache optimization [256, 302, 345]. Algorithmic techniques have also
been developed, such as exploiting properties of the primitive operations performed in erasure
coding (e.g., XORs) to minimize the number of operations performed [257]. Beyond target-
ing CPUs [19, 253, 302, 345], erasure codes have also been optimized for GPUs [110, 210],
FPGAs [95], and network devices [259, 284, 285].

Developing erasure-coding libraries is challenging.
However, developing optimized erasure-coding libraries is currently challenging because

it requires expertise in both the mathematical underpinnings of erasure codes and methods to
achieve high performance on a given hardware platform. While there are individuals with this
skillset, we argue that they are few and far between. This limits the velocity with which these
libraries can be developed and leads to software fragility: relying on a select-few experts to
maintain a library threatens the library when, for example, such experts retire.

While the current state of developing optimized erasure-coding libraries is far from ideal,
we argue that trends in computer hardware will further exacerbate this problem. In particular,
as computer systems leverage increasingly heterogeneous hardware, efficient erasure-coding li-
braries will be required for a variety of hardware platforms. This requirement stems from two
observations: (1) With the rise of applications that are primarily run on accelerators, such as
deep-learning training, data that needs to be erasure coded will more frequently reside on ac-
celerators, rather than in host memory. (2) Accelerators are being equipped with enhanced I/O
paths for accessing storage and the network [260]. For example, NVIDIA’s GPUDirect Storage
technology [34] enables GPUs to bypass the CPU when accessing storage devices.

The combination of these trends gives rise to an enticing opportunity to perform erasure
coding on accelerators, rather than shipping data to CPU to perform erasure coding. However,
developing optimized erasure-coding libraries for a variety of hardware platforms only exacer-
bates the aforementioned challenge: not only do developers need to understand the mathematics
of erasure codes, they now must also understand architectural details of a variety of hardware
platforms.

To ease the development of current erasure-coding libraries and usher in future erasure-coded
systems, a new approach to developing optimized erasure-coding libraries is needed.

Toward simpler erasure-coding library development.
In this section of the thesis, we make the case that current trends in optimized machine

learning (ML) libraries offer a promising lifeboat for the development of current and future
erasure-coding libraries. Our case rests on the following observations:

Observation 1: Erasure codes have similar structure to general matrix multiplication (GEMM),
which is heavily optimized in ML libraries. However, erasure coding requires the arithmetic to
be performed over mathematical structures called finite fields which are not supported by ML
libraries. Performing arithmetic over finite fields is generally more time consuming than tra-
ditional binary arithmetic. A common optimization used by many high-performance erasure-
coding libraries is to avoid finite-field arithmetic via “bitmatrix erasure coding,” which requires
only the primitive operations of bitwise AND and XOR [85]. Although optimized implementa-
tions of bitmatrix erasure coding forgo matrix operations for high performance, one can use this
construction to decompose erasure coding into a matrix-matrix multiplication, but with multipli-
cation performed as bitwise AND and addition as bitwise XOR. The net result is a computation
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structure that matches nearly-identically with that of a GEMM, but with a different primitive
operation, as will be shown in §10.4. Thus, many of the components needed to implement high-
performance erasure codes already exist in ML libraries.

Observation 2: ML libraries are optimized to exploit the latest hardware features. Due to the
popularity of machine learning, significant effort has been undertaken to ensure that ML libraries
make the best use of the hardware on top of which they run. These libraries often achieve near-
peak performance on a given platform when executing GEMMs and are kept up-to-date with the
latest hardware advancements [56]. Thus, ML libraries are expected to continue to achieve high
performance as hardware evolves.

Observation 3: Significant effort has been devoted to making ML libraries portable across
hardware platforms. The aforementioned challenge of developing high-performance software
for multiple hardware platforms is not unique to erasure coding. In fact, this challenge is being
addressed at a rapid pace in the development of ML libraries. Because ML libraries must run on
the many ML accelerators under development, significant effort has been devoted to developing
ML libraries that achieve high performance on a variety of hardware platforms. For example,
so-called “ML compilers,” such as Apache TVM [97], aim to generate high-performance im-
plementations of ML operations for various hardware platforms. In many cases, such compilers
achieve similar performance as vendor-optimized solutions that target specific hardware plat-
forms. Thus, ML libraries are likely to be portable across the increasingly-diverse spectrum of
hardware platforms.

Combining these observations, we propose that (1) By representing erasure coding as “ma-
trix multiplication” (but replacing multiplication with AND, and addition with XOR), erasure
codes can easily be implemented via ML libraries (and, thus, require little development effort);
(2) Erasure codes implemented via ML libraries will immediately adopt the many performance
optimizations currently within ML libraries and those that will come as hardware evolves (and,
thus, require little optimization and maintenance effort); and (3) Erasure codes implemented via
ML libraries are likely to be able to execute on a variety of hardware platforms.

While this proposal appears promising for reducing development and optimization effort,
it comes with the downside of forgoing performance optimizations specific to erasure coding,
which are not included in ML libraries. However, as we show in §10.4.4, many of the most-
critical optimizations performed by erasure-coding libraries are also used in optimizing GEMMs.
Thus, erasure codes implemented via ML libraries retain the critical optimizations that would be
found in custom erasure-coding libraries. As will be shown in §10.6, even without erasure-
coding-specific optimizations, our proposed approach often outperforms custom erasure-coding
libraries.

To support these claims, we develop erasure-coding libraries using two different popular ML
libraries: Apache TVM [97] and NVIDIA CUTLASS [31]. Atop these libraries, we develop
TVM-EC and CUTLASS-EC, which leverage these respective libraries to perform erasure cod-
ing. We compare the performance of these prototypes to state-of-the-art erasure-coding libraries
targeting CPUs [19, 302] and GPUs [210]. TVM-EC and CUTLASS-EC achieve up to 1.75× and
2.2× higher encoding and decoding throughput than the state-of-the-art custom erasure-coding
libraries for CPUs and GPUs, respectively. Furthermore, these prototypes required little develop-
ment effort: (1) each prototype was implemented in only tens of lines of code, and (2) TVM-EC
enables one to develop in the user-friendly Python language and export high-performance im-
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Figure 10.1: High-level depiction of encoding operation

plementations found by TVM to lower-level languages (e.g., C++) for later use. Finally, our
prototypes show the benefit of learning-based autotuning in ML libraries to automatically dis-
cover complex system-level optimizations that developers would otherwise need to implement
by hand.

These results showcase the promise of leveraging ML libraries to easily develop optimized
erasure-coding libraries targeting current and future hardware platforms, and, thus, to usher in
the next generation of erasure-coded systems.

10.2 Background on erasure coding
An erasure code encodes k data units to produce r parity units and stores all (k + r) data units
on separate storage devices.1 Parity units are formed such that reading any k of the total (k + r)
data and parity units suffices for a decoder to recover the original k data units. Thus, an erasure
code withstands up to r lost units with storage overhead of only k+r

k
. These properties hold for a

class of codes known as “maximum distance separable” (MDS) codes. We focus on MDS codes
because many popular erasure codes in storage systems are MDS codes (e.g., Reed-Solomon
codes). However, as we show in §10.5 and §10.6, our proposal is applicable to the broader class
of “linear” erasure codes. To the best of our knowledge, all erasure codes used in storage systems
are linear.

We next describe the high-level operation of encoding and decoding in an erasure code. As is
common, we use matrix notation to illustrate these procedures. However, as we describe in §10.2,
many current high-performance erasure-coding libraries do not use matrix operations under the
hood in order to leverage several erasure-coding-specific optimizations.

Encoding. The encoding process of an erasure code takes in k data units and produces
r parity units, where each unit contains d elements. Each parity unit is formed via a linear
combination of the k data units. The encoding of a single parity element can thus be viewed as
the dot product between a vector of k coefficients and a vector of k data elements. Expanding
this to the encoding of r parity units, encoding can be viewed as a matrix-matrix multiplication
between a generator matrix E of size (r × k) and a data matrix D of size (k × d) to produce a
matrix P of size (r × d) containing parity units. This is illustrated in Figure 10.1. Using simple
matrix notation, this is represented as P = ED. However, as we describe in §10.2, erasure codes
require performing different arithmetic than normally performed in matrix multiplication.

1It is also common to describe erasure codes via parameters n and k, where n is the total number of data and
parity units (i.e., n = k + r).
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Decoding. Recall that the erasure codes we consider in this section of the thesis have the
ability to decode (i.e., reconstruct) the k original data units given any k out of the total (k + r)
data and parity units. This decoding process takes place as follows: (1) Form a new matrix C of
size ((k + r)× k) by performing a row-wise concatenation between a k × k identity matrix and
the generator matrix E of size r × k. (2) Erase from C the r rows corresponding to the missing
units. The resultant k × k matrix is labelled Ce. (3) Create a k × d matrix A consisting of the k
available data/parity units. The given operands now satisfy the following equation: A = CeD.
(4) To find D, the decoding process then computes D = C−1e A. All possible k × k matrices Ce

resulting from erasing r rows of C are guaranteed to be invertable based on the construction of
the MDS code.

The steps required to generate the inverted matrix C−1e are frequently performed offline, and
the resultant inverted matrices are stored in a lookup table. This reduces the decoding process
to one of gathering available data/parity units, and performing the matrix-matrix product for
decoding.

Implementing erasure codes. We now describe how the encoding and decoding operations
described above are implemented. Due to the similarity between the two operations, we focus
only on encoding here.

The arithmetic operations performed in erasure codes take place over finite fields (Galois
Fields). Each element in the generator matrix is from a finite field, and all multiplication and ad-
dition operations take place using the finite-field arithmetic. Finite-field arithmetic is more com-
putationally intensive than traditional arithmetic: for the fields typically used in erasure coding,
additions take place via XOR, whereas multiplication requires multiplication and modulus over
polynomials [255]. As will be described in §10.2.1, high-performance erasure-coding libraries
typically use optimizations to avoid performing such computationally-expensive multiplications.

Finally, it is important to note that, while the descriptions of encoding/decoding in an erasure
code typically use matrix notation, many high-performance erasure-coding libraries today do not
leverage matrix operations for erasure codes [253, 302]. Instead, many implementations treat
the equations for each individual parity separately. For example, such libraries may represent
the encoding of parity pi from data units X1, X2, . . . , Xk as pi = αi,1X1 + αi,2X2 + . . . +
αi,kXk, where αi,1, αi,2, . . . , αi,k are the k elements of the ith row of the generator matrix. This
enables one to reuse identical partial summations performed in encoding two distinct parities
(e.g., reusing αi,1X1 + αi,2X2 in the encoding of pj when αi,1 = αj,1 and αi,2 = αj,2).

10.2.1 Optimizing erasure code implementations

Erasure codes are heavily used in production storage systems (e.g., Ceph [9], HDFS [16], Azure
Storage [159]). Thus, it is critical that erasure-coding libraries operate with high performance.
We next describe techniques that have been used for developing high-performance erasure-
coding libraries.

Bitmatrix erasure coding. As described above, the arithmetic used in encoding and de-
coding in erasure codes is done via finite-field arithmetic, which is often far more computation-
ally expensive than traditional arithmetic. To ameliorate this expense, the so-called “bitmatrix”
erasure-coding procedure transforms an erasure code that operates over a Galois Field of size 2w

into one operating over a Galois Field of size 2, that is, binary [85]. This enables all arithmetic
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operations to be performed using computationally-inexpensive operations, such as bitwise AND
and XOR [85, 253, 345]. To do so, each element in the generator matrix is converted to a w×w
matrix of binary elements, and each entry in the data matrix is converted to a length-w column
vector of binary elements. We refer the reader to the works of Bloemer et al. [85], Plank et
al. [255], and Zhu et al. [345] for further details. The result of this conversion is an generator
matrix of size rw × kw and a data matrix of size kw × d, each of binary values.

The primary benefit of bitmatrix erasure codes is that all encoding and decoding operations
are now performed via the primitive bitwise AND and XOR operations. Recall from §10.2 that
the encoding of a single parity unit pi using a Galois Field of size 2w (GF(2w)) can be viewed as
the equation:

pi = αi,1X1 + αi,2X2 + . . .+ αi,kXk,

where each αi,j belongs to GF(2w). Transitioning this to the corresponding bitmatrix erasure
code, we now have

pi = βi,1b1 + βi,2b2 + . . .+ βi,kwbkw,

where each βi,j and bj belongs to GF(2), that is, they are binary. This results in products of the
form βi,jbj being performed as the bitwise AND between βi,j and bj , and the summations being
performed as bitwise XOR. Note that, due to the bitmatrix transformation, the equation above
now has kw data elements and coefficients, rather than the k in the original equation. Similarly,
there will bew such equations in the new construction for each parity in the original construction.

This representation enables simplification of the equation used in encoding a parity: since all
coefficients βi,j are either 0 or 1, the equation for computing a parity pi can be rewritten as the
sum (XOR) of all data units bj for which βi,j is 1. For example, encoding pi = βi,1b1 + βi,2b2 +
βi,3b3 with βi,1 = 1, βi,2 = 0, and βi,3 = 1 can be simplified as pi = b1 ⊕ b3.

Finally, while the equations above perform ANDs and XORs in a bit-by-bit fashion, bitwise
AND and XOR operations are typically implemented via the bitwise AND/XOR of two regions
of 8–512 contiguous bits for efficiency.

System-level optimizations. Many classic techniques for developing high-performance soft-
ware on CPUs have similarly been used to accelerate erasure codes on CPUs. Examples of these
include vectorization [256, 345] and techniques to make the best use of the memory hierar-
chy [217, 345]. Erasure codes have also been executed on GPUs [110, 210], FPGAs [95], Smart-
NICs [284, 285], and programmable switches [259]. These works each consider specific fea-
tures of the target hardware in implementing erasure codes, and, thus, are typically not portable
across different classes of hardware. As an example, recent Intel CPUs are equipped with Galois
Field New Instructions (GFNI) [17], which provide hardware-accelerated arithmetic over Galois
Fields. However, the same functionality is not available on AMD CPUs, which increases the
complexity of developing portable high-performance erasure-coding libraries using this func-
tionality.

Algorithmic optimizations. In addition to system-level optimizations, many optimizations
have been developed that exploit properties specific to bitmatrix erasure codes.

One such technique is to search for generator matrices that achieve the desired level of fault
tolerance with as few ones in the matrix as possible [84, 254]. As illustrated above, reducing the
number of ones in the generator matrix reduces the number of XORs that must be performed in
encoding.
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Another algorithmic technique used to accelerate bitmatrix erasure codes is to schedule the
XORs performed in encoding parities so as to minimize the total number of XORs performed.
Multiple works propose to exploit partial work completed in computing one parity to compute
other parities. While doing so can minimizes the number of XOR operations performed, this
does not always result in optimal performance on modern hardware. Nevertheless, multiple
works have shown that this heuristic is effective in accelerating bitmatrix erasure codes [158,
257, 302, 345].

Landscape of optimized erasure coding. Multiple highly-optimized erasure-coding li-
braries have been developed, such as Intel ISA-L [19], Jerasure [253], and research libraries
(e.g., [210, 302, 345]). To exploit the optimizations described above, each of these are cus-
tom erasure-coding libraries designed only to perform erasure coding.2 While this enables such
libraries to use optimizations specific to erasure coding, we will describe next how such cus-
tomization hinders the development of erasure-coding libraries.

10.3 Need for rethinking erasure-coding libraries
While erasure codes are critical to many storage systems, we argue that the current approach to
developing optimized erasure-coding libraries leaves much to be desired.

As described in §10.1 and §10.2.1, developing optimized erasure-coding libraries is currently
challenging because it requires exploiting low-level hardware features and knowledge of the
mathematical underpinnings of erasure codes. Expertise in these areas typically comes from the
disparate domains of computer architecture and information theory, respectively, which makes it
difficult to field a team of engineers well-equipped for developing an optimized erasure-coding
library.

While the current development process of optimized erasure-coding libraries leaves much to
be desired, we argue that it will be even more challenging in the future.

Hardware is becoming increasingly heterogeneous, with GPUs, FPGAs, and ASICs comple-
menting, and at times replacing, CPUs. At the same time, accelerators are gaining better access
to storage and network devices [260]. For example, NVIDIA GPUDirect enables GPUs to access
storage and network without transferring data to the host CPU [34].

Alongside, and perhaps driving, this increase in accelerators is a growth in “accelerator-
native” applications: applications that run primarily on an accelerator, rather than primarily on
a host CPU. A popular accelerator-native application is ML training, in which most application
logic and state is kept on accelerators, such as GPUs. Similarly, many scientific simulations are
increasingly run atop accelerators (e.g., [318]).

The growth of accelerator-native applications also indicates that much of the data that needs
to be erasure coded in future systems will be generated on accelerators. Consider ML training
as an example. Training ML models is a resource- and time-intensive process that often requires
hundreds of GPUs [236]. Due to the scale at which training takes place, it is common for nodes
to fail [221]. Thus, a common practice to ensure fault tolerance in ML training is to periodi-
cally checkpoint the state of training [129, 221]. High-performance checkpointing libraries often
leverage in-memory erasure coding across multiple nodes to reduce the time-overhead of writing

2While Intel ISA-L accelerates other storage functions, its implementation of erasure coding (which contains
∼33000 lines of code) is largely custom.
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checkpoints to stable storage [68, 230, 239]. Additionally, Chapter 5 showed that erasure coding
can potentially overcome overheads in checkpointing for ML systems. It would be ideal for such
applications to be able to perform erasure coding directly on the accelerator on top of which they
run, rather than transferring data to the host CPU for erasure coding.

While the rise of accelerator-native applications and fast accelerator-storage datapaths calls
for the ability to perform erasure coding on various hardware platforms, developing optimized
erasure-coding libraries for this future exacerbates the challenges described above: a developer
is now tasked with understanding the architectures of a variety of accelerators.

To usher in future erasure-coded systems in a developer-friendly way, a new approach to
developing optimized erasure-coding libraries is needed.

10.4 Case for erasure coding via ML libraries
We now make the case that developing erasure-coding libraries using machine learning (ML)
libraries offers the potential to overcome the challenges in developing optimized erasure-coding
libraries. We summarize our case as follows:
1. ML libraries are heavily optimized to support new hardware features, as well as to support

efficient execution on a variety of hardware platforms (§10.4.2). This alleviates the burden
of understanding hardware details from users of ML libraries, and eases portability across
platforms.

2. Erasure codes have a structure closely matching a key operation accelerated by ML libraries
(§10.4.3). Thus, one can easily represent erasure codes using ML libraries, and doing so
enables one to adopt existing optimizations in ML libraries and their support for hardware
heterogeneity.

3. Implementing erasure codes via ML libraries may lose opportunities to apply optimizations
specific to erasure codes, but improves performance in optimizations common to both ML
libraries and erasure codes. This often results in a net improvement in performance (§10.4.4).

10.4.1 Background on ML libraries
We classify as “ML libraries” software packages that are used for carrying out the computations
commonly performed by neural networks. There are many examples of ML libraries that sit at
different levels of the software stack:

High-level frameworks, such as PyTorch [43] and TensorFlow [47], define operators needed
to implement neural networks (e.g., matrix multiplications, convolutions) as well as routines
needed to train neural networks (e.g., automatic differentiation). They typically expose APIs in
a high-level language, such as Python, but call into lower-level libraries to achieve high perfor-
mance among individual operators.

Low-level ML libraries provide high-performance implementations of individual operators
(e.g., matrix multiplications) targeting a specific hardware platform. Examples of these include
NVIDIA CUTLASS [31] and AMD MIOpen [6]. While low-level libraries are aimed at achiev-
ing high-performance, they are typically inconvenient to use on their own for ML training and
inference because they lack support for common auxiliary methods needed in these settings, such
as differentiation and data loading.
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Finally, ML compilers translate individual ML operators, often referred to as “kernels,”
from high-level frameworks into high-performance implementations on various hardware plat-
forms. ML compilers typically sit between high-level frameworks and low-level libraries, though
they sometimes bypass low-level libraries entirely. Examples include Apache TVM [97] and
XLA [49]. ML compilers typically translate code written in high-level libraries into an interme-
diate representation, perform transformations on this intermediate representation, and generate
code targeting a hardware platform. It is common for ML compilers to leverage autotuning to
search for high-performance implementations of a given kernel [97].

10.4.2 ML libraries satisfy many of the desiderata of erasure-coding li-
braries

Recall from §10.3 that a desirable property of an erasure-coding library is the ability to achieve
high performance on a variety of hardware platforms without requiring expertise in each of these
platforms, and to keep pace with hardware as it evolves.

ML libraries are good examples of software platforms structured toward achieving these
goals. With the rise of accelerators targeting ML workloads, it has been recognized that it is
untenable to develop custom optimizations for each platform. Thus, there has been an increasing
focus on developing ML libraries that seamlessly achieve high performance on a variety of hard-
ware platforms. For example, as described previously, ML compilers generate high-performance
implementations of key ML operators and tune them for specific hardware backends. This en-
ables one to achieve high performance without having expertise in computer architecture.

Furthermore, ML libraries are frequently updated to best exploit the latest hardware features.
For example, CUTLASS is considered a go-to platform for learning how to best use new NVIDIA
hardware. Thus, users of ML libraries can expect to continue to achieve high performance on
new hardware.

10.4.3 Erasure coding via ML libraries?
The ability of ML libraries to achieve high performance across various hardware platforms and
as hardware evolves draws attention to whether similar strategies could be used in the design of
erasure-coding libraries. In this section, we move one step further: we question whether erasure
codes can be developed directly by ML libraries themselves.

We next make the case for why it is indeed possible and potentially fruitful to forgo custom
erasure-coding libraries and instead implement erasure codes via ML libraries.

ML libraries heavily optimize GEMM. General matrix multiplication (GEMM) is a fun-
damental operator in many ML libraries due to its wide use in neural networks (e.g., for fully-
connected layers and some convolutional layers). A GEMM is defined as the multiplication of
matrixA of sizeM×K by matrixB of sizeK×N to produce matrixC of sizeM×N . Listing 1
shows unoptimized pseudocode for GEMM.

Decades of effort has been devoted to optimizing implementations of GEMMs. Such im-
plementations build atop the naive version in Listing 1 by reordering loops, splitting loops into
cache-friendly chunks, performing vectorized operations, and decomposing the problem for var-
ious types of parallel execution (e.g., threads on CPUs; threadblocks, warps, and threads on
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for i in range(M):
for j in range(N):

for k in range(K):
C[i, j] += (A[i, k] * B[k, j])

Listing 1: (Unoptimized) GEMM

for i in range(ec_r * ec_w):
for j in range(ec_d):

for k in range(ec_k * ec_w):
C[i, j] ˆ= (A[i, k] & B[k, j])

Listing 2: (Unoptimized) bitmatrix erasure code encoding

GPUs). A significant amount of work has gone into making best use of the memory hierarchy
(e.g., [31, 140, 288]). These optimizations have led to GEMMs being so well optimized that they
are often used as benchmarks for determining the peak achievable performance of a hardware
platform [167].

Similarity between erasure codes and GEMMs. Recall from §10.2 that a bitmatrix erasure
code is equivalent to a GEMM, except with a bitwise XOR replacing summation and bitwise
AND replacing multiplication. This is shown in Listing 2. Comparing Listings 1 and 2 illustrates
the similarity between GEMM and bitmatrix erasure coding. The entire nested looping structure
of a bitmatrix erasure code matches that of a GEMM. The only difference comes in the innermost
operation: whereas a GEMM performs a multiply-accumulate operation, bitmatrix erasure codes
perform an AND-XOR.

Due to the similarity between GEMM and bitmatrix erasure coding, a bitmatrix erasure code
implemented via an ML library could potentially automatically exploit the many optimizations
performed in these libraries for GEMM. In particular, we note that most of the optimizations
performed in ML libraries for GEMMs target the portions of the code in Listings 1 and 2 that are
identical: the nested looping structure. Examples of such optimizations include vectorization,
loop reordering, and cache blocking. Thus, erasure codes implemented via an ML library could
immediately adopt many of the optimizations in ML libraries.

The similarities between Listings 1 and 2 lead to another important conclusion: bitmatrix
erasure codes could be implemented via ML libraries with few additional lines of code. As de-
scribed above, all that is needed to support a bitmatrix erasure code in an ML library is changing
the primitive operations performed on matrix elements from multiply-accumulate to AND-XOR.
By studying ML libraries, we find that the portions of these codebases defining such primitive
operations make up a minor fraction of the overall codebase; the vast majority of the code in
these libraries for GEMM is devoted to optimizing the nested looping structure. We illustrate
this further through our prototype implementations in §10.5, which require few lines of code that
do not interfere with the main functionality of the ML library in question.

Why not HPC libraries? It is natural to question why we choose to implement erasure codes
via ML libraries, rather than via traditional high-performance computing (HPC) libraries—after
all, GEMM has been heavily optimized within HPC libraries for decades [67]. However, ML
libraries provide multiple benefits over HPC libraries for this purpose:

First, because ML is driving many advancements in accelerators, ML libraries are better
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suited for exploiting current and future hardware platforms. In contrast, HPC libraries have often
been slower to adopt new ML-centric hardware features: it took multiple years after the release
of NVIDIA’s Tensor Cores for HPC libraries to begin using them. Implementing erasure codes
via ML libraries allows erasure codes to quickly achieve high performance on current and future
architectures.

Additionally, whereas HPC libraries are typically written in low-level languages, such as C
and Fortran, many ML libraries enable users to achieve high performance via high-level lan-
guages, such as Python. This reduces developer effort.

Finally, HPC libraries have traditionally been optimized for large, mostly-square GEMMs [270,
298], whereas erasure codes involve GEMM-like operations between a small generator matrix
and a “short-and-wide” data matrix. In contrast, such irregularly-sized GEMMs are common
in ML libraries: this pattern arises in a so-called fully-connected layer of a neural network for
which the layer’s weights are much smaller than the input/output data. Thus, ML libraries are a
better fit for the types of matrix-like operations performed in erasure coding.

10.4.4 Optimizations specific to erasure codes?
A potential downside of our proposal to implement erasure codes via ML libraries by treating
them similar to GEMMs is that doing so forgoes opportunities to perform optimizations specific
to erasure codes. Recall from §10.2.1 that many current optimized erasure-coding libraries do
not treat erasure coding as matrix multiplication so as to employ optimizations specific to erasure
coding. Since these optimizations do not apply to GEMM, they are not performed within ML
libraries. Thus, our proposed technique cannot employ such optimizations.

However, we find that the benefit of adopting optimizations within ML libraries outweighs
any performance lost by forgoing erasure-coding-specific optimizations. This is because the per-
formance of erasure codes is largely determined by those optimizations which are performed in
both ML libraries and custom erasure-coding libraries. For example, Zhou et al. [345] perform a
comprehensive evaluation of techniques for optimizing bitmatrix erasure codes and find that that
vectorization dominates other optimizations in terms of its improvement in encoding/decoding
throughput. Since vectorization is a common optimization used for GEMMs in ML libraries, our
proposed approach retains this important optimization. Section 10.6 empirically shows that the
proposed approach often achieves higher throughput than custom erasure-coding libraries that
employ erasure-coding-specific optimizations.

10.5 Implementation using ML libraries

We now describe our prototypes of erasure codes written via two different ML libraries: TVM [97]
and CUTLASS [31].

Recall from §10.4.1 that there are multiple classes of ML libraries: high-level frameworks,
low-level libraries, and ML compilers. We have chosen to focus our exploration on ML compilers
(TVM) and low-level libraries (CUTLASS). We select these classes because these are typically
the locations in which high-performance GEMMs are implemented; high-level frameworks, such
as PyTorch and TensorFlow, typically call into low-level libraries or use ML compilers to make
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1 A = te.placeholder((M, K), name="A")
2 B = te.placeholder((K, N), name="B")
3 k = te.reduce_axis((0, K), name="k")
4

5 # GEMM
6 te.compute((M, N),
7 lambda i,j: sum(A[i,k] * B[k,j], axis=k))
8

9 # Bitmatrix erasure code
10 xor = te.comm_reducer(lambda i,j: i ˆ j, name="xor")
11 te.compute((M, N),
12 lambda i,j: xor(A[i,k] & B[k,j], axis=k))

Listing 3: Python code for generating a GEMM and a bitmatrix erasure code in TVM

use of such optimized kernels. We describe within each subsection below why we chose the
specific ML library being described.

10.5.1 Erasure coding via Apache TVM
Apache TVM [97] is an open-source compilation framework for optimizing neural networks on
a variety of hardware platforms. While TVM also performs cross-kernel optimizations, we focus
on its optimization of a single GEMM-like kernel.

TVM takes as input a description of a kernel written in Python using a high-level API called
“Tensor Expressions” (represented as te in code). Given this specification, TVM performs
various autotuning steps: it (1) performs a semantics-preserving transformation on the input
expression (e.g., loop unrolling, tiling), (2) generates and compiles code for the platform in
question, and (3) measures the performance of the compiled code (e.g., latency). TVM then uses
a search procedure (e.g., genetic algorithms) based on measurements obtained so far to determine
the next transformation to perform. This process iteratively repeats to find optimized kernels.

The process of declaring a kernel and performing the search and generation procedures above
is typically carried out via Python in TVM. The kernel generated by autotuning can be exported
to a C++ module for later use. Thus, the erasure codes developed through TVM can be readily
used by storage systems developed in lower-level languages such as C++.

Why TVM? We prototype in TVM for multiple reasons:
(1) As an ML compiler, TVM can generate high-performance kernels for multiple hardware

platforms. While we focus our evaluation of the TVM-based prototype on CPUs, we consider
the cross-platform nature of TVM promising for deploying erasure codes on various platforms.

(2) TVM provides an opportunity to evaluate the benefit of learning-based autotuning in
erasure-coding libraries. Zhou et al. [345] showed the potential benefit of using a cost-function-
driven (e.g., number of XORs) search to select which optimizations to employ in erasure coding.
The search procedure used in autotuning similarly optimizes for a given cost function, but one
which involves directly measuring performance on a target platform, rather than through indirect
metrics. As we will show in §10.6.2, TVM’s autotuning generates code containing complex
system-level optimizations without the developer needing any knowledge of these features.

Implementing erasure codes via TVM. We now describe the implementation of TVM-
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1 template <typename T, typename LayoutA,
2 typename LayoutB, typename LayoutC>
3 struct Mma<cutlass::gemm::GemmShape<1, 1, 1>, 1,
4 T, LayoutA, T, LayoutB,
5 T, LayoutC, cutlass::arch::OpMultiplyAdd> {
6 using Operand = cutlass::Array<T, 1>;
7

8 void operator()(Operand &d, Operand &a,
9 Operand &b, Operand &c) {

10 d[0] = (a[0] * b[0]) + c[0];
11 }
12 };

Listing 4: C++ code defining the multiply-accumulate operation of a GEMM in CUTLASS

EC, which leverages TVM to perform bitmatrix erasure coding. To illustrate the simplicity of
implementing a bitmatrix erasure code in TVM, Listing 3 compares the Tensor Expressions
description for a GEMM in TVM, and that we have added for bitmatrix erasure coding.

In declaring a GEMM, one declares placeholder variables for matrix operands A and B and
declares the axis over which a so-called reduction operation (i.e., an operation that reduces mul-
tiple elements into a single element, typically via summation) will take place (lines 1–3). One
then defines the computation to be performed using a te.compute statement. In the case of
GEMM, the statement in lines 6 and 7 states that an output of size M ×N is to be generated in
which the element at row i and column j is formed by taking the sum of the elementwise multi-
plication of row i of matrix A and column j of matrix B (each of which contain K elements).

Declaring a bitmatrix erasure code is similar. The only difference comes in in the te.compute
statement: rather than performing a sum of pairwise multiplications, we wish to perform an XOR
of pairwise ANDs. To implement this, one needs only to declare a new reduction operator that
performs the XOR of all elements (line 10), and replace the summation performed in GEMM
with this XOR, and the multiplication performed in GEMM with AND (lines 11 and 12). Using
these declared statements, one can autotune the bitmatrix erasure code using the same process
for autotuning a GEMM.

Overall, our TVM-based prototype did not require any source-level changes to TVM; all
implementation used existing APIs in TVM, requiring only around 40 lines of code.

10.5.2 Erasure coding via NVIDIA CUTLASS

CUTLASS [31] is an open-source library developed by NVIDIA for high-performance ML oper-
ations on GPUs. CUTLASS leverages C++ templates to develop building blocks for computing
GEMMs at various levels of the GPU hierarchy (e.g., threadblocks, warps). It composes these
building blocks alongside techniques such as tiling and double buffering to make efficient use
of the GPU memory hierarchy. Finally, CUTLASS leverages the newest hardware features in
NVIDIA GPUs for efficient memory access, and achieves performance nearly equal to that of
NVIDIA’s closed-source ML libraries (e.g., cuDNN). CUTLASS is widely used by other ML
libraries, such as within TVM itself, as well as in PyTorch Geometric [42]. CUTLASS has also
seen wide adoption in industry, including at Microsoft [24] and Meta [2].
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1 template <typename T, typename LayoutA,
2 typename LayoutB, typename LayoutC>
3 struct Mma<cutlass::gemm::GemmShape<1, 1, 1>, 1,
4 T, LayoutA, T, LayoutB,
5 T, LayoutC, cutlass::arch::OpAndXor> {
6 using Operand = cutlass::Array<T, 1>;
7 cutlass::bit_xor<T> xor_op;
8 cutlass::bit_and<T> and_op;
9

10 void operator()(Operand &d, Operand &a,
11 Operand &b, Operand &c) {
12 d[0] = xor_op(and_op(a[0], b[0]), c[0]);
13 }
14 };

Listing 5: C++ code defining the AND-XOR operation of a bitmatrix erasure code in CUTLASS

1 using Gemm = cutlass::gemm::device::Gemm<
2 /* List of GEMM template parameters */
3 cutlass::arch::OpMultiplyAdd>;
4

5 using ErasureCode = cutlass::gemm::device::Gemm<
6 /* List of GEMM template parameters */
7 cutlass::arch::OpAndXor>;

Listing 6: GEMM and erasure code declarations in CUTLASS

Why CUTLASS? We prototype in CUTLASS both to provide an example of our approach
via a low-level ML library, and also because it provides a platform with which to compare against
prior GPU-based erasure-coding libraries. While TVM also could have been used to generate
erasure codes targeting GPUs, implementing a prototype via CUTLASS illustrates the generality
of our proposed approach beyond a single ML library. Furthermore, TVM is beginning to use
CUTLASS under the hood to generate GPU kernels.

Implementing erasure codes via CUTLASS. We now describe the implementation of CUTLASS-
EC. Similar to our experience with TVM, we also found implementing CUTLASS-EC to be
straightforward, and to closely follow the existing code used for GEMM in CUTLASS.

Listing 4 shows the C++ code used in CUTLASS to support the primitive operation in the
innermost loop of Listing 1 for GEMM. This listing defines a partial specialization for the Mma
(matrix-multiply-accumulate) operation performed by each thread. The struct is specialized for
the operation tag OpMultiplyAdd which indicates that the primitive operation performed in
line 11 of the listing is a multiply-accumulate.

Listing 5 shows the corresponding partial specialization we implemented to support bitmatrix
erasure coding. We add a new operation tag OpAndXor to mark that the primitive operation to be
performed is an AND-XOR. This is defined in line 13 using existing AND and XOR operations
in CUTLASS.

This thread-level AND-XOR operation can be immediately used to declare and use warp-
level, threadblock-level, or kernel-level bitmatrix erasure codes. As shown in Listing 6, doing
so simply involves uses OpAndXor in place of OpMultiplyAdd in the declarations for these
components. This enables our implementation to immediately make use of existing optimizations

140



within CUTLASS for GEMM.
Similar to TVM-EC, our implementation of CUTLASS-EC does not involve changing exist-

ing functionality within CUTLASS, and required only around 30 lines of code.

10.5.3 Supporting a variety of erasure codes
Our proposed approach supports any erasure code that can be converted to a bitmatrix via
the process described in §10.2. This encompasses all linear codes, which is a broad class of
codes. To the best of our knowledge, all erasure codes used in major storage systems are linear
(e.g., Reed-Solomon codes [267], local reconstruction codes (LRCs) [159, 276], and Hitchhiker
codes [263]). Due to their linearity property, the encoding/decoding processes for linear codes
can be represented as a matrix multiplication, and, thus, can be converted to bitmatrix erasure
coding. The proposed framework thus naturally supports a variety of codes.

For example, consider LRCs. LRCs are popular codes used in distributed storage systems
to reduce the number of nodes accessed in recovering from single-node failures, while still pro-
tecting against multi-node failures. To do so, LRCs typically introduce l “local parities” atop a
traditional MDS code, which are formed from encoding only a small subset of data units. For
example, a (6, 2, 2) LRC has 6 data units (k), generates 2 “global” parity units (r) via an MDS
code by encoding over all 6 of the data units, and generates 2 “local” parity units (l) each formed
by encoding 3 of the data units (such that local parities are formed via mutually-exclusive sets
of data units). If a single node fails, a local parity and the other 2 data units used in forming the
local parity are sufficient for recovery. This requires accessing only 3 nodes, whereas one would
need to access 6 nodes in the underlying MDS code.

Since LRCs are linear codes, they can be represented via a bitmatrix, and, thus, can be easily
supported in our approach. To represent a (k, r, l) LRC, we create a generator matrix of size
w(r+ l)×kw of bits by concatenating lw additional rows to the rw×kw bitmatrix representing
the MDS portion of the LRC. The added rows generate local parities.

10.5.4 Using ML libraries with end-to-end erasure-coding libraries
Erasure-coding libraries, such as Jerasure [253], often provide utilities for erasure coding be-
yond encoding/decoding (e.g., generating a bitmatrix). Users of these utilities can leverage our
approach by simply replacing the encoding/decoding procedures in these libraries with calls to
the ML library.

One aspect must be considered when using ML libraries within higher-level erasure-coded
systems: ML libraries typically expect that operands to GEMM-like calculations be contiguous
in memory, whereas higher-level systems may not guarantee this. For example, Jerasure repre-
sents the k data units to be encoded as k pointers to separate allocations in memory. We find
that performing memcpy operations to reorganize these distinct pointers into a contiguous buffer
adds considerable time overhead (up to 84% in our experiments).

In most cases, representing the data to be encoded/decoded as a contiguous allocation of
memory is natural and can be done easily. For example, encoding is typically performed over
fixed-size chunks of data that are smaller than the entire unit they are part of (e.g., 1 MB chunks).
The encoder waits for k such chunks to be passed to it before encoding, and keeps each chunk in
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memory. This memory must be managed by the storage system itself, rather than by the process
that passes the data in, to ensure that no chunks are deallocated before the k chunks are encoded.
Thus, the encoder must copy data into its own allocation of memory. A system can easily allocate
a contiguous region of memory sufficient for hosting k chunks, and copy incoming data chunks
to different pointer offsets in this region. The contiguous region of memory can then be passed
to the ML library once all k chunks have arrived.

Similarly, decoding requires gathering k data/parity units from k storage devices into a central
location. This requires allocating memory on the central location to hold these units. A system
can easily allocate this memory as a contiguous buffer and assign incoming data/parity units to
different pointer offsets within this buffer. This strategy also easily supports cases in which the
overall chunk of data to be reconstructed is large, as decoding is typically run on small buffers of
the overall data, and repeated many times until the entire chunk of data is reconstructed. Using
a single allocation in this manner performs the same number of copies from the storage/network
device as a system that uses separate allocations, while retaining the ability to pass a contiguous
buffer to an ML library. The same technique can also be used when encoding data that is already
stored in the storage system.

10.6 Evaluation

We now evaluate our approach of implementing erasure codes using ML libraries. The highlights
are as follows:

• TVM-EC is up to 1.75× faster than state-of-the-art erasure-coding libraries on CPUs for
Reed Solomon codes, and up to 1.9× faster for local reconstruction codes.

• CUTLASS-EC is up to 2.2× faster than state-of-the-art erasure-coding libraries on GPUs.
• Our prototypes require only tens of lines of code to implement an erasure code, and TVM-

EC in particular enables one to develop using languages that are typically considered more
user-friendly (Python) than those used in current optimized erasure-coding libraries (e.g., C,
Rust).

• TVM-EC automatically discovers complex optimizations that would otherwise need to be
implemented by hand.

10.6.1 Evaluation setup
Hardware platforms evaluated. We evaluate on CPU and GPU hardware platforms. We focus
the majority of our evaluation on CPUs because they represent the current standard platform for
erasure coding. We also evaluate on GPU to show the applicability of our approach to a variety
of hardware.

For CPU, we use an eight-core Intel Xeon D-1548 at 2.0 GHz with 64 GB of memory. For
GPU, we use an NVIDIA A10 GPU, using a g5.2xlarge AWS instance, which uses the state-
of-the-art Ampere microarchitecture.

Prototypes and baselines. We evaluate TVM-EC on the CPU platform, and compare it
to two state-of-the-art custom erasure-coding libraries optimized for CPUs: (1) the work of
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Figure 10.2: Encoding throughput in GB/s of TVM-EC and CPU-optimized erasure-coding libraries on the CPU
platform
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Figure 10.3: Decoding throughput in GB/s of TVM-EC and CPU-optimized erasure-coding libraries on the CPU
platform

Uezato [302], a recent approach to optimizing erasure codes that leverages classic techniques
from compiler theory alongside the optimizations described in §10.2.1. This work has been
shown to outperform other optimized erasure-coding libraries (e.g., [345]), which themselves
outperform popular libraries such as Jerasure [253]. (2) Intel’s ISA-L library [19], which is a
production-grade erasure-coding library optimized for CPUs. ISA-L does not convert an erasure
code to a bitmatrix, and thus provides a competitive baseline showcasing the performance of era-
sure coding with higher finite field sizes. We note that the relative performance of Uezato’s work
and ISA-L is different from that reported by Uezato [302]. After discussing with the author, we
believe that this can be attributed to a difference in evaluation platform: whereas we evaluate on
a server-grade CPU, Uezato [302] evaluates on a MacBook.

We evaluate CUTLASS-EC on the GPU platform and compare it against G-CRS [210], a
state-of-the-art approach to bitmatrix erasure coding on GPUs. G-CRS employs best-practices
in using the GPU memory hierarchy along with new techniques to exploit parallelism on GPUs.

Metrics. The primary metric used in evaluating erasure-coding libraries is encoding through-
put (in GB/s) (similarly, decoding throughput). This is calculated by dividing the size of the data
matrix by the time it takes to encode. This is also the primary metric used in the works to which
we compare. We follow the procedure for measuring throughput used by these prior works:
throughput is measured with all data to be read residing in memory (host memory for CPU ex-
periments, GPU memory for GPU experiments), and that the outputs of encoding/decoding are
written to memory. This setup helps to isolate the performance of the erasure-coding library from
other aspects of the storage system.

Erasure codes and parameters. We primarily evaluate with Reed Solomon codes, but also
evaluate with local reconstruction codes (LRCs) [159, 276] to show the generality of our ap-
proach. We use the parameters k, r, and w that encompass those used in the prior works to which
we compare. For experiments on CPU, we use k of 8–10, r of 2–4 with w fixed at 8, drawing
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Figure 10.5: Encoding and decoding throughput of CUTLASS-EC and G-CRS [210] on an NVIDIA A10 GPU

these values from the work of Uezato [302]. Each data unit is 128 KB. For the work of Uezato,
we evaluate various cache blocking factors, but typically find the performance using a blocking
factor of 2 KB to provide the highest performance, and thus report results only for this factor.
On GPU, we perform sweeps of the values of k and r, with the minimum value of w needed to
support each case, drawing this from G-CRS [210]. For GPU experiments, each data unit is 4
MB. These larger data units than the CPU experiments are used to better saturate GPU memory
bandwidth. We use the default Reed Solomon encoding/decoding matrices for a given setting of
k and r available drawn from ISA-L.

Measurement setup. Our prototypes use autotuning provided by TVM/CUTLASS to find
a high-performing implementation for a particular set of erasure-coding parameters k, r, and w
(and l for LRCs).

TVM-EC uses TVM’s learning-based Autoscheduler [344]. This is standard within TVM for
achieving high performance among any kernel. TVM-EC tunes for 20000 trials, and uses the
best configuration found in final evaluation. We report the mean of 1000 executions of encod-
ing/decoding.

CUTLASS-EC uses the cutlass profiler utility to select the fastest amongst various
configurations for a given kernel running on the GPU. This is a standard technique used for
kernels in CUTLASS. The profiler runs each configuration for a number of iterations and selects
the fastest among them. We report the average of 100 runs of the selected kernel, after ten
warmup runs, as is standard in the cutlass profiler.
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10.6.2 Results

Figure 10.2 compares the encoding throughput of TVM-EC with Uezato’s erasure-coding li-
brary [302] and ISA-L [19] for the values of k and r used by Uezato, running on the CPU
platform. TVM-EC achieves similar or higher throughput than these custom erasure-coding li-
braries for all values of k and r considered. In particular, TVM-EC achieves up to 1.75× higher
throughput than these custom-built libraries.

Effect of parameter r. All erasure-coding libraries in Figure 10.2 achieve lower encoding
throughput with higher values of parameter r (i.e., when encoding more parities). Holding k
constant, a higher value of r increases the computational intensity of the erasure code. Thus, it
takes longer to encode a given amount of data, which results in lower encoding throughput.

We also find that TVM-EC attains its most significant speedups over the baselines with higher
values of r: whereas the performance of the libraries is closer for r = 2, TVM-EC is up to 1.4×
and 1.75× faster for parameter r of 3 and 4, respectively. We attribute this improved performance
with a higher value of r to the significant optimization of ML libraries for more-computationally-
intense GEMMs. With a higher value of parameter r, and thus higher intensity, TVM-EC is able
to leverage these optimizations to achieve higher performance improvement over custom erasure-
coding libraries.

Decoding performance. Figure 10.3 compares the decoding performance of TVM-EC and
the CPU baselines: TVM-EC modestly improves performance over the baselines with r of 2, and
significantly outperforms the baselines with higher values of r. Recall from §10.2 that, similar to
encoding, decoding can be represented by the multiplication of an r×k “decoding matrix” by an
k× d matrix consisting of available data/parity units. Because TVM-EC performs encoding and
decoding directly as GEMM-like operations, encoding and decoding throughput in TVM-EC are
identical. In contrast, because many custom erasure-coding libraries depend on the number and
position of ones within the encoding/decoding matrix, the performance of ISA-L and the work
of Uezato varies.

Local reconstruction codes (LRCs). We also evaluate TVM-EC and the CPU-optimized
baselines on LRCs from Huang et al. [159] said to be employed in Azure Storage. These codes
have configuration (k, r, l) of (6, 2, 2) and (12, 2, 2) (see §10.5.3 for a description of these
parameters). We implement LRCs in TVM-EC using the process described in §10.5.3, and
follow the suggestions for representing LRCs from the ISA-L GitHub [18] for ISA-L and the
work of Uezato.

Figure 10.4 compares the encoding throughput of TVM-EC and the baselines on these LRCs.
TVM-EC significantly increases encoding throughput in this setting compared to ISA-L: TVM-
EC is 91% faster than ISA-L for the (6, 2, 2) LRC and 48% faster for the (12, 2, 2) LRC.
Compared to the work of Uezato, TVM-EC is 30% faster for the (6, 2, 2) LRC and achieves equal
encoding throughput for the (12, 2, 2) LRC. These results show the generality of leveraging ML
libraries to achieve high performance for a broad class of erasure codes.

Investigating autotuning optimizations. Recall from §10.5.1 that TVM uses a learning-
based approach to optimize kernels. To further illustrate the reduction of developer effort enabled
by our approach, we analyze the intermediate representation generated by TVM in autotuning a
bitmatrix erasure code with k = 10 and r = 4. Listing 7 shows a part of this intermediate repre-
sentation performing a parallel layout transformation on the input operands. This is an optional
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1 for (ax0.ax1.fused.ax2.fused int32, 0, 400) parallel
2 for (ax4 int32, 0, 20)
3 for (ax5 int32, 0, 5)
4 for (ax6 int32, 0, 4)
5 for (ax7 int32, 0, 64)
6 auto_scheduler_layout_transform[
7 (((((ax0.ax1.fused.ax2.fused*25600)
8 + (ax4*1280)) + (ax5*256)) + (ax6*64)) + ax7)]
9 = (uint8)B_2[(((((ax4*512000) + (ax6*128000))

10 + (ax0.ax1.fused.ax2.fused*320))
11 + (ax5*64)) + ax7)]

Listing 7: TVM intermediate representation showing parallel layout transformation optimization performed by
autotuning

step designed to enable sequential memory accesses in the loops that perform encoding/decoding.
It is clear from the listing that there are many design decisions at play: the number and extent
of loops, their order, which loops to parallelize, and whether to perform this optimization at all.
The complexity of the listing itself speaks to the challenge in performing this optimization by
hand. This challenge is only exacerbated considering that this is only one of many optimizations
performed by TVM-EC for the entire encoding kernel.

Such optimizations are entirely automated in TVM-EC: the developer writes only Python
code, and TVM generates an optimized kernel for the target hardware. This frees the developer
from understanding such optimizations, while still allowing the erasure-coding library to use
them. Noting that the optimizations used in autotuning already existed in TVM reinforces the
benefit of exploiting the similarities between operations in ML libraries and bitmatrix erasure
coding.

While autotuning does require time and resources (around 6 hours in our experiments), it is
important to note that this is a one-time, up-front cost: the configuration found via autotuning is
simply loaded by the storage system on system initialization. This autotuning time is negligible
compared to the lifetime of use of an erasure code (which, in many cases, is “always on” for
production systems). Furthermore, because TVM-EC does not perform optimizations based on
the actual values of the entries of the encoding/decoding matrices, autotuning does not need to be
repeated when different encoding/decoding matrices of the same size are used. Autotuning only
needs to be performed for every combination of k and r that will be used in a system, as these
will affect the size of the matrices used. Most storage systems today use only a handful of values
for these parameters and do not change them over time. Even recently-proposed disk-adaptive
redundancy approaches that tune the parameters over the lifetime of storage devices use few
values of k and r [174, 175, 176]. Thus, autotuning for each combination once is of negligible
cost.

Finally, we expect that the time taken by autotuning is far less than the time required to
discover and write such optimizations by hand, and that ongoing work in accelerating autotuning
for ML kernels will reduce autotuning time [136].

Results on GPU. Figure 10.5 compares the encoding/decoding throughput of CUTLASS-
EC to that of G-CRS [210] across various settings of k and r, chosen to match the evaluation
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of G-CRS.3 For erasure codes with smaller values of r, CUTLASS-EC achieves roughly equal
performance as the hand-optimized G-CRS library. The benefits of CUTLASS-EC primarily
come to fore with parameter r of eight and sixteen, for which CUTLASS-EC outperforms G-CRS
by up to 2.2×. Similar to TVM-EC, we also attribute the larger improvement of CUTLASS-EC
with higher parameter r to the many optimizations that ML libraries such as CUTLASS contain
for more computationally-intensive kernels.

10.7 Additional related work

Optimized erasure coding. Section 10.2 described work related to optimizing erasure-coding
libraries. Our proposal differs from these works by adopting ML libraries to implement high-
performance erasure codes with little development effort.

Significant effort has gone into optimizing other aspects of erasure-coded systems, such as
reducing network bandwidth used in decoding [159, 263, 276], scheduling decoding operations
to optimize network transmission [209], and efficiently changing the level of redundancy used in
an erasure code [174, 175, 322]. These techniques complement our work, as each benefit from
using high-performance erasure-coding libraries.

Performance portability. A growing body of work focuses on maintaining high perfor-
mance regardless of the hardware platform being used (e.g., Kokkos [301] and RAJA [79]).
However, implementing erasure codes within such platforms still requires a deep understanding
of erasure codes, as well as some basis of understanding how to write high-performance code. In
contrast, our approach of leveraging ML libraries to implement erasure-coding libraries requires
little understanding of erasure codes or hardware due to the significant similarities between era-
sure codes and matrix multiplication.

Broader use of ML libraries. A small set of work uses ML libraries to accelerate applica-
tions that are not the targets of ML libraries [103, 111, 234]. For example, Hummingbird [234]
casts traditional ML algorithms, such as decision trees, into dense tensor problems and uses deep
learning libraries to accelerate them. These works are similar in nature to our proposal in that
they exploit similarities between ML libraries and the algorithm in question. However, to the
best of our knowledge, the work described in this chapter is the first to exploit the similarities
between erasure codes and ML libraries.

10.8 Conclusion

Erasure codes are critical to many production storage systems, but developing high-performance
erasure-coding libraries currently requires expertise in both the mathematical underpinnings of
erasure codes as well as of computer architecture. This leaves the development of custom, opti-
mized erasure-coding libraries to a select few individuals equipped with this unique skillset. This
situation will only be exacerbated with the increasing trends of hardware heterogeneity.

3Both CUTLASS-EC and G-CRS perform nearly-identical operations for encoding and decoding, so encoding
and decoding throughput are the same.
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To ease the development of current and future optimized erasure-coding libraries, we make
the case that erasure codes should be implemented using ML libraries. We show that there
is significant similarity between erasure codes and operations common to ML libraries. This
enables one to implement erasure codes in few lines of code via existing, well-optimized ML
libraries, and thus immediately adopt the many optimizations within these libraries. We develop
two prototypes of our proposed approach in different ML libraries, targeting CPUs and GPUs.
Compared to custom, optimized erasure-coding libraries, our prototypes are up to 2.2× faster.

These results show the promise of using ML libraries to implement optimized erasure codes,
and have the potential to usher in the next generation of erasure-coded systems.
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Chapter 11

Concluding remarks and future directions

As neural networks continue to deliver value to a growing number of applications, the ML sys-
tems that deploy them will increase in scale, leverage more expensive and power-hungry special-
ized accelerators, and be subject to more-stringent latency and safety standards. Thus, current
and future ML systems must strive to both operate reliably, despite running atop unreliable in-
frastructure, while ensuring that they use infrastructure efficiently.

This thesis has studied the interplay between practical coding-theoretic tools and ML sys-
tems to address these concerns in ML systems, as well as to improve coding-theoretic tools
themselves. In doing so, we have leveraged a combination of insights from computer systems,
machine learning, and coding theory.

First, we showed how properties of neural networks and the GPUs on which they execute can
be leveraged to more efficiently apply traditional coding-theoretic tools to detect silent data cor-
ruptions during neural network inference. The resultant technique, arithmetic-intensity-guided
coded computation, significantly reduces the execution-time overhead of detecting faults during
inference. This enables safety-critical applications of neural networks to run with lower overhead
in error-prone environments and also opens the door for performing “always-on” fault-detection
in datacenters to monitor for malfunctioning hardware.

Second, we showed that erasure codes have the potential to significantly reduce the over-
head of fault tolerance for distributed recommendation model training. We show that the unique
characteristics of recommendation model training call for careful use of redundancy-based fault
tolerance, but that doing so can reduce training-time overhead compared to checkpointing-based
approaches. The results from this thrust are particularly promising, as they most significantly re-
duce training-time overhead for large recommendation models (which are expected to continue
to grow in the future).

Third, we illustrated how co-designing coding-theoretic tools with ML systems can expand
the reach of coding-theoretic tools themselves. In particular, we illustrated how the fundamen-
tal challenge of performing coded computation over non-linear functions can be overcome by
leveraging machine learning. Our proposed approach, learning-based coded computation, en-
compasses a broad framework for applying machine learning to coded computation. We have
specifically illustrated the effectiveness of learning encoders and decoders for coded computa-
tion, as well as learning a computation that operates over inputs encoded via traditional erasure
codes. When integrated into a prediction serving system, the resultant approaches enable signifi-
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cant reductions in tail latency in the presence of transient slowdowns, and accurately reconstruct
the predictions from slow servers.

Fourth, this thesis has illustrated how ideas inspired by coding theory can be used to improve
the efficiency of ML systems even in the absence of reliability concerns. Specifically, we de-
veloped FoldedCNNs, a new approach to CNN design that increases the throughput and GPU
utilization of specialized CNN inference beyond the limits of increased batch size. Motivated by
insights obtained from other parts of this thesis, FoldedCNNs increase the arithmetic intensity of
specialized CNNs through a combination of applying coding-theory-inspired transformations to
a batch of input images, while increasing the size of each layer of the CNN. The insights from
this work open new avenues for leveraging ideas inspired by coding theory beyond reliability
purposes.

Finally, this thesis has explored how advancements in ML systems can improve the perfor-
mance of erasure-coded systems themselves. We showed that similarities between computations
performed in erasure codes and those commonly performed in ML libraries enables one to eas-
ily implement erasure codes using ML libraries. Implementing erasure codes via ML libraries
enables the erasure-coded system to immediately benefit from the many optimizations already
within ML libraries, including their ability to make best use of the latest hardware features and
to target various hardware platforms.

Through these thrusts, this thesis demonstrates the promise of using coding-theoretic tools
in ML systems and ideas from ML and ML systems in coding-theoretic tools to bring about the
next generation of efficient and reliable systems.

To conclude, we highlight lessons learned in this thesis and directions for future research.

11.1 Lessons learned

We now briefly describe the lessons learned through the contributions made by this thesis.

Imbalances in system architecture and application properties call for diverse redundancy.
This thesis has challenged the notion that a one-size-fits-all approach to reliability is sufficient
for both modern computer systems and emerging applications, due to imbalances therein.

First, our work on intensity-guided coded computation (§4) identified opportunities to better
tailor redundant execution for the imbalance in compute bandwidth and memory bandwidth on
modern GPUs. We showed that, due to this imbalance, different layers of neural networks operate
most efficiently under different forms of coded computation, with compute-bound layers prefer-
ring coded-computation schemes that add minimal computation, and memory-bandwidth-bound
layers preferring coded-computation-schemes that minimize extra memory traffic.

Second, our work on ECRM (§5) leveraged imbalance in application-level characteristics
to optimize redundancy in DLRM training. Specifically, we showed that embedding tables in
DLRMs occupy the majority of a DLRM’s memory capacity, but require little network bandwidth
for updates, whereas neural network parameters in DLRMs occupy little memory capacity, but
significant memory bandwidth for updates. We showed in §4 that this imbalance calls for erasure
coding DLRM parameters, while keeping neural network parameters replicated.
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We expect that both current and future systems may benefit from considering imbalances in
both the resources available in a system and imbalances in resource usage by applications when
determining the best approach to redundancy-based fault tolerance for a given setting.

Combining inputs to CNNs opens multiple opportunities. Multiple research thrusts within
this thesis have involved some form of combining the inputs to a CNN. First, learning-based
coded computation (§6– §8) leveraged different forms of combining inputs to a CNN to enable
coded computation over a broader class of functions. Second, FoldedCNNs (§9) leveraged in-
puts combined in a style similar to that in learning-based coded computation to increase the
throughput and GPU utilization of specialized CNN inference.

The reader with background in training CNNs may find this ability somewhat unsurprising:
combinations of input images have been successfully used to improve the generalization of CNNs
via data-augmentation techniques such as mixup [339]. However, to the best of our knowledge,
this thesis contains the first work to leverage combined inputs for the purposes of coded com-
putation and improved throughput of CNNs. It is interesting to consider broader applications of
combining inputs to CNNs.

Forgoing custom optimizations for specific routines to cast such routines as ML-like op-
erations can improve performance and ease development. Our experience with developing
erasure-coding libraries by leveraging ML libraries in §10 illustrated that treating erasure codes
as matrix-multiplication-like operations can significantly improve performance, even though do-
ing so forgoes years of research in optimizations specific to erasure codes.

It is interesting to consider the extent to which other applications that are heavily domain
specific, similar to erasure codes, may benefit from being cast in a form that enables them to be
run by the given popular optimized library of the day. It may be the case that other applications
will not reap the same benefits we have found in writing erasure codes via ML libraries: perhaps
erasure codes occupy a unique “sweet spot” of containing enough similarity with ML opera-
tors such that ML libraries can provide significant benefit without needing to introduce custom
operations within them to support erasure codes. Exploring the balance between using popular
high-performance libraries for a non-target application and bespoke optimized libraries for that
application will likely benefit future applications.

11.2 Future directions
To conclude, we highlight future opportunities at the interplay of ML systems and coding-
theoretic tools.

11.2.1 Learning-based detection of silent data corruptions.
This thesis has investigated optimizations to traditional coding-theoretic tools for detecting silent
data corruptions in neural network inference (§4), and investigated learning-based approaches for
tolerating fail-stop failures and slowdowns (§6–§8). Future research may consider investigating
learning-based approaches to detecting silent data corruptions in neural networks.
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Leveraging learning-based approaches for the detection of silent data corruptions in neural
network inference has a number of potential benefits: First, doing so may enable one to differen-
tiate between silent data corruptions that are likely to result in misprediction and those that are
not. In addition, learning-based approaches to detecting silent data corruptions have the potential
to reduce the overhead of silent-data-corruption detection for neural networks due to the ability
to focus on only misprediction-causing errors.

Multiple works have explored the use of learning-based approaches to detect silent data cor-
ruptions in neural networks [204, 277, 278]. Here, we consider ways in which the techniques
proposed within this thesis could be used for learning-based detection of silent data corruptions.

Detecting silent data corruptions via learning-based coded computation. A natural follow-
on to our work on learning-based coded computation is to consider ways in which a similar
approach could be used to detect silent data corruptions. For example, consider how the frame-
work surrounding parity models could be adapted to detect silent data corruptions: inference is
performed on k separate images on separate instances of a model, and inference is performed
over a “parity input” using a parity model. Upon receiving the predictions from all k+ 1 models,
the decoder uses all images to attempt to determine whether a silent data corruption occurred in
any one of the inferences. While this framework appears to easily support detecting silent data
corruptions, additional research is needed. A particular challenge to be addressed is in being able
to differentiate between mispredictions made by a model in the absence of silent data corruption
and those that occurred due to silent data corruption.

Detecting silent data corruptions via FoldedCNNs. A second, and perhaps less obvious, po-
tential avenue for learning-based detection of silent data corruptions stemming from this thesis
is through the use of FoldedCNNs to detect silent data corruptions. Recall form §9 that a Fold-
edCNN performs inference over f distinct images concatenated along the channels dimension.

Consider what would take place if, at inference time, the FoldedCNN was instead fed as
input f copies of the same input image, concatenated along the channels dimension. Because
the FoldedCNN has been trained to make distinct inferences for each of the f images in a single
input, it should similarly treat the f replicas of the same image as separate. Thus, it may be the
case that a silent data corruption affecting one of the replicas may not affect the other replicas.
Should this be the case, the FoldedCNN is essentially performing f -modular redundancy, which
is a classic approach to fault tolerance.

Additional research is necessary to determine the feasibility of this approach. For example,
recall from §9 that a FoldedCNN occasionally achieves lower accuracy than the original CNN.
It would be interesting to determine to what extent this potential drop in accuracy may increase
the susceptibility of a FoldedCNN to mispredicting in the event of a silent data corruption. If this
were the case, one would need to carefully balance between the potential fault tolerance added
by “f -modular redundancy” in a FoldedCNN and the potential increase in number of critical
silent data corruptions experienced by a FoldedCNN.
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11.2.2 Learning-based coded computation beyond neural networks
This thesis has illustrated the potential for learning-based approaches to expand the reach of
coded computation beyond linear computations. Thus far, we have primarily evaluated learning-
based coded computation in settings in which the non-linear computation in question is a neural
network. However, the basic framework surrounding learning-based coded computation has the
potential to be applicable for more-general nonlinear functions.

There are many domains which could benefit from the resource-efficient reliability of coded
computation. More-traditional examples include applications such as stream processing or data-
parallel analytics. Integrating learning-based coded computation into these applications would
raise new challenges, as many of the computations performed in these applications are not strictly
numerical (e.g., SELECTing data in stream-processing systems). It is not immediately obvious
how to map such computations to the framework of learning-based coded computation.

Additionally, distributed neural-network training could benefit from coded-computation schemes.
Alleviating stragglers in training classical ML models was, in fact, one of the popular examples
of using traditional coded-computation schemes over linear computations (e.g., [126, 296]). Us-
ing learning-based coded computation for distributed training could potentially enable one to
perform coded computation over a neural network as a whole—without the associated overhead
of splitting the neural network into its constituent linear and non-linear components, as done by
prior work [126]. However, using learning-based coded computation for training raises inter-
esting future challenges, such as how to keep the learned components of learning-based coded
computation up to date as the neural network being trained evolves. To some extent, this could
be abstracted to a coded-computation problem in which the function F to be protected evolves
over time.

11.2.3 Arithmetic-intensity-guided fault tolerance beyond neural networks

Chapter 4 showed that trends in GPU hardware and in the design of neural networks call for
taking an approach to fault tolerance that is driven by the arithmetic intensity of a computation
in question as well as the compute-to-memory-bandwidth ratio of the target hardware.

While we have primarily explored arithmetic-intensity-guided fault tolerance for linear layers
of neural networks, the same basic principles are likely to benefit other applications. This may
be of particular interest with the growing trend of running non-deep-learning applications atop
hardware that has been specialized for neural networks (e.g., [103, 111, 131, 146]). Furthermore,
exploring the use of arithmetic-intensity-guided fault tolerance to ensure the correctness of era-
sure codes themselves in the presence of silent data corruption may be interesting, particularly
when employing the strategies we propose in §10 to leverage ML libraries to implement erasure
codes.

11.2.4 Arithmetic-intensity-guided optimizations for coding-theoretic tools
This thesis has explored multiple ways in which arithmetic intensity should guide the design of
ML systems and approaches to fault tolerance. It may be fruitful to consider leveraging these
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insights to develop the next generation of efficient coding-theoretic tools.
Consider, for example, erasure codes. At present, many erasure codes have been designed

and optimized with the goal of reducing the number of operations performed in encoding and
decoding. However, as described in §4 and §9, and well known in other domains, reducing
the number of operations performed is not always sufficient for reducing the execution time of
a computation. Taking arithmetic intensity into account in the development of future erasure
codes would be particularly interesting, given that many erasure codes are typically memory-
bandwidth-bound to begin with. Leveraging data-movement-centric optimization techniques de-
veloped primarily for neural networks [162] may prove fruitful for designing the next generation
of erasure codes for modern hardware.

11.2.5 Accelerating other aspects erasure-coded-systems via ML systems
Chapter 10 illustrated the promise of using ML libraries to implement erasure codes both to
accelerate the computation of encoding and decoding functions as well as to ease development
and optimization effort. However, performing encoding and decoding operations are only one
part of erasure-coded systems. It is interesting to consider whether advancements in other aspects
of ML systems could provide similar benefits to other aspects of erasure-coded systems.

Consider, for example, reconstructing lost data in an erasure-coded distributed storage sys-
tem. As described in §5 and §10, reconstruction involves reading available data units over the
network and performing decoding operations on this data. Among these components, transfer-
ring available data over the network is often a key bottleneck. This has led to the development
of a number of algorithm- and system-level optimizations to reconstruction that optimize data
transfer (e.g., [209, 263]).

Similar to reconstruction in an erasure-coded system, training neural networks in a distributed
fashion also requires significant network communication (e.g., to perform a reduction over gra-
dients computed by data-parallel workers). This has been the subject of a significant amount of
research, such as developing new collective-communication techniques (e.g., [36, 104, 279, 307,
347]) and taking advantage of emerging programmable network hardware [192, 275]. These ad-
vancements could potentially also be used to accelerate the reconstruction process in an erasure
code, due to similarities between the reduction operation performed in data-parallel neural net-
work training and the XOR-based “reductions” performed in decoding. In particular using ML-
based communication libraries for erasure coding could ease the transition of erasure-coded sys-
tems onto emerging hardware platforms, such as GPUs and programmable switches, for which
these ML-based libraries have already been optimized.
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[185] KOPPULA, S., OROSA, L., YAĞLIKÇI, A. G., AZIZI, R., SHAHROODI, T., KANELLOPOULOS,
K., AND MUTLU, O. EDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network
Inference Using Approximate DRAM. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 19) (2019).

[186] KOSAIAN, J., PHANISHAYEE, A., PHILIPOSE, M., DEY, D., AND VINAYAK, K. V. Boosting the
Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch
Size. In Proceedings of the 38th International Conference on Machine Learning (ICML 21) (2021).

[187] KOSAIAN, J., AND RASHMI, K. V. Arithmetic-Intensity-Guided Fault Tolerance for Neural Net-
work Inference on GPUs. In International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC 21) (2021).

[188] KOSAIAN, J., RASHMI, K. V., AND VENKATARAMAN, S. Parity Models: Erasure-Coded Re-
silience for Prediction Serving Systems. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP 19) (2019).

[189] KOSAIAN, J., RASHMI, K. V., AND VENKATARAMAN, S. Learning-Based Coded Computation.
IEEE Journal on Selected Areas in Information Theory (2020).

[190] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet Classification with Deep
Convolutional Neural Networks. In Advances in Neural Information Processing Systems (NIPS 12)
(2012).

[191] LABEL, K. A. NASA and COTS Electronics: Past Approach and Successes–Future Considera-
tions.

[192] LAO, C., LE, Y., MAHAJAN, K., CHEN, Y., WU, W., AKELLA, A., AND SWIFT, M. ATP:
In-network Aggregation for Multi-tenant Learning. In 18th USENIX Symposium on Networked

166



Systems Design and Implementation (NSDI 21) (2021).

[193] LECUN, Y. The MNIST database of handwritten digits. http://yann.lecun.com/exdb/
mnist/.

[194] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-based Learning Applied to
Document Recognition. Proceedings of the IEEE 86, 11 (1998), 2278–2324.

[195] LEE, K., LAM, M., PEDARSANI, R., PAPAILIOPOULOS, D., AND RAMCHANDRAN, K. Speeding
Up Distributed Machine Learning Using Codes. IEEE Transactions on Information Theory (July
2018).

[196] LEE, Y., SCOLARI, A., CHUN, B.-G., SANTAMBROGIO, M. D., WEIMER, M., AND INTER-
LANDI, M. PRETZEL: Opening the Black Box of Machine Learning Prediction Serving Systems.
In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18) (2018).

[197] LEE, Y., SCOLARI, A., INTERLANDI, M., WEIMER, M., AND CHUN, B.-G. Towards High-
Performance Prediction Serving Systems. NIPS ML Systems Workshop (2017).

[198] LENG, J., BUYUKTOSUNOGLU, A., BERTRAN, R., BOSE, P., AND REDDI, V. J. Safe Limits
on Voltage Reduction Efficiency in GPUs: a Direct Measurement Approach. In 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 15) (2015).

[199] LI, G., HARI, S. K. S., SULLIVAN, M., TSAI, T., PATTABIRAMAN, K., EMER, J., AND KECK-
LER, S. W. Understanding Error Propagation in Deep Learning Neural Network (DNN) Accel-
erators and Applications. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 17) (2017).

[200] LI, G., PATTABIRAMAN, K., HARI, S. K. S., SULLIVAN, M., AND TSAI, T. Modeling Soft-Error
Propagation in Programs. In 2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 18) (2018).

[201] LI, S., HUANG, J., TANG, P. T. P., KHUDIA, D., PARK, J., DIXIT, H. D., AND CHEN, Z.
Efficient Soft-Error Detection for Low-Precision Deep Learning Recommendation Models. arXiv
preprint arXiv:2103.00130 (2021).

[202] LI, S., LI, H., LIANG, X., CHEN, J., GIEM, E., OUYANG, K., ZHAO, K., DI, S., CAPPELLO, F.,
AND CHEN, Z. FT-iSort: Efficient Fault Tolerance for Introsort. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC 19) (2019).

[203] LI, S., MADDAH-ALI, M. A., AND AVESTIMEHR, A. S. A Unified Coding Framework for
Distributed Computing With Straggling Servers. In 2016 IEEE Globecom Workshops (GC Wkshps)
(2016).

[204] LI, Y., LI, M., LUO, B., TIAN, Y., AND XU, Q. DeepDyve: Dynamic Verification for Deep
Neural Networks. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS 20) (2020).

[205] LI, Y., LIU, Y., LI, M., TIAN, Y., LUO, B., AND XU, Q. D2NN: A Fine-Grained Dual Modular
Redundancy Framework for Deep Neural Networks. In Proceedings of the 35th Annual Computer
Security Applications Conference (ACSAC 19) (2019).

[206] LI, Z. L., LIANG, C.-J. M., HE, W., ZHU, L., DAI, W., JIANG, J., AND SUN, G. Metis:
Robustly Tuning Tail Latencies of Cloud Systems. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18) (2018).

[207] LIANG, G., AND KOZAT, U. C. FAST CLOUD: Pushing the Envelope on Delay Performance of

167

http://yann. lecun. com/exdb/mnist/
http://yann. lecun. com/exdb/mnist/


Cloud Storage with Coding. arXiv:1301.1294 (2013).

[208] LIBANO, F., RECH, P., NEUMAN, B., LEAVITT, J., WIRTHLIN, M., AND BRUNHAVER, J. How
Reduced Data Precision and Degree of Parallelism Impact the Reliability of Convolutional Neural
Networks on FPGAs. IEEE Transactions on Nuclear Science 68, 5 (2021), 865–872.

[209] LIN, S., GONG, G., SHEN, Z., LEE, P. P., AND SHU, J. Boosting Full-Node Repair in Erasure-
Coded Storage. In 2021 USENIX Annual Technical Conference (USENIX ATC 21) (2021).

[210] LIU, C., WANG, Q., CHU, X., AND LEUNG, Y.-W. G-CRS: GPU Accelerated Cauchy Reed-
Solomon Coding. IEEE Transactions on Parallel and Distributed Systems 29, 7 (2018), 1484–
1498.

[211] LIU, K., KOSAIAN, J., AND RASHMI, K. ECRM: Efficient Fault Tolerance for Recommendation
Model Training via Erasure Coding. arXiv preprint arXiv:2104.01981 (2021).

[212] LIU, Q., JUNG, C., LEE, D., AND TIWARI, D. Compiler-Directed Lightweight Checkpointing for
Fine-Grained Guaranteed Soft Error Recovery. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC 16) (2016).

[213] LIU, Y., WANG, Y., YU, R., LI, M., SHARMA, V., AND WANG, Y. Optimizing CNN Model
Inference on CPUs. In 2019 USENIX Annual Technical Conference (USENIX ATC 19) (2019).

[214] LOTFI, A., HUKERIKAR, S., BALASUBRAMANIAN, K., RACUNAS, P., SAXENA, N., BRAMLEY,
R., AND HUANG, Y. Resiliency of Automotive Object Detection Networks on GPU Architectures.
In 2019 IEEE International Test Conference (ITC 19) (2019).

[215] LU, D. J. Watchdog Processors and Structural Integrity Checking. IEEE Transactions on Comput-
ers 31, 07 (1982), 681–685.
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