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Abstract
Privacy policies are long, complex documents that end-users seldom read. Pri-

vacy labels aim to ameliorate these issues by providing succinct summaries of salient
data practices. In December 2020, Apple began requiring that app developers submit
privacy labels describing their apps’ data practices. Yet, research suggests that app
developers often struggle to do so. In this paper, we automatically identify possible
discrepancies between mobile app privacy policies and their privacy labels. Such
discrepancies could be indicators of potential privacy compliance issues.

We introduce the Automated Privacy Label Analysis System (ATLAS). ATLAS
includes three components: a pipeline to systematically retrieve iOS App Store list-
ings and privacy policies; an ensemble-based classifier capable of predicting privacy
labels from the text of privacy policies with 91.3% accuracy using state-of-the-art
NLP techniques; and a discrepancy analysis mechanism that enables a large-scale
privacy analysis of the iOS App Store.

Our system has enabled us to analyze 354,725 iOS apps. We find several in-
teresting trends. For example, only 40.3% of apps in the App Store provide easily
accessible privacy policies, and only 29.6% of apps provide both accessible privacy
policies and privacy labels. Among apps that provide both, 88.0% have at least one
possible discrepancy between the text of their privacy policy and their privacy label,
which could be indicative of a potential compliance issue. We find that, on average,
apps have 5.32 such potential compliance issues.

We hope that ATLAS will help app developers, researchers, regulators, and mo-
bile app stores alike. For example, app developers could use our classifier to check
for discrepancies between their privacy policies and privacy labels, and regulators
could use our system to help review apps at scale for potential compliance issues.
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Chapter 1

Introduction

Notice is a cornerstone of privacy: entities collecting information are expected to disclose the
types of data collected, and how it is used. Privacy policies serve as the primary mechanism
for notice, yet research has shown that privacy policies are long, complex documents that users
seldom read [28] [36] [35].

Privacy labels aim to ameliorate this issue by providing succinct descriptions of salient data
practices in an easy to consume format. In December 2020, Apple began requiring that devel-
opers include privacy labels for the apps they publish on the iOS App Store. However, recent
research suggests that mobile app developers often struggle to understand and disclose their data
practices. [24] [44].

In this work, we provide a detailed analysis of privacy policies and privacy labels in the
iOS App Store by analyzing 354,725 iOS apps. We explore the state of privacy in the App
Store, develop an ensemble-based classifier to automatically generate privacy labels from the
text of privacy policies, and we provide a thorough compliance analysis by comparing the text
of privacy policies to privacy labels.

1.1 Research Questions

In this paper, we pose three categories of research questions concerning privacy policies and
privacy labels in the United States iOS App Store. These questions guide us in creating the
Automated Privacy Label Analysis System (ATLAS). Details and capabilities of ATLAS are
discussed in the next section.

1. What is the state of privacy policy and privacy label adoption among iOS apps? Can app
privacy policies be easily accessed – specifically, how many apps have direct links to their
privacy policies in the App Store? What percentage of apps have privacy labels? What
percentage have both?

2. Is it possible to predict privacy labels from the text of privacy policies? Prior research
indicates that developers struggle to create accurate labels. As a result, privacy labels may
not always reflect true data collection [24], [22]. So, despite privacy labels being noisy, is
it possible to train reliable classifiers?
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3. Finally, are privacy labels consistent with the text of privacy policies? What types of
discrepancies occur between privacy policies and labels? How many discrepancies do
apps have on average? Is there a correlation between these rates and the popularity of
mobile apps?

1.2 Key Contributions

To enable us to answer the research questions posed in the prior section, we developed the Auto-
mated Privacy Label Analysis System (ATLAS). Our system analyzed iOS app metadata, privacy
policies, and privacy labels. It then flagged instances where privacy labels were not consistent
with the text of their privacy policies, which we characterized as potential compliance issues.
This was done using state-of-the-art natural language processing techniques involving unsuper-
vised and supervised machine learning. ATLAS was designed to be highly scalable, and has
enabled us to analyze 354,725 iOS apps. This paper makes several key contributions:

1. A scalable pipeline that enables systematically scraping iOS metadata, including privacy
policies URLs and privacy labels. We include a machine learning model that determines
if the app’s privacy policy URL actually leads to an English-language privacy policy. We
also include tools to download the text of the policy.

2. An ensemble-based classifier that can effectively generate privacy labels from the text of
privacy policies. We formulated this as a multi-class, multi-label document classification
problem. This enabled our classifier to identify if a privacy policy “Collects” or “Does Not
Collect” a data type, for 32 separate data types.

3. A privacy analysis of the iOS App Store. We provided an extensive analysis of data prac-
tice disclosure discrepancies between the text of privacy policies and their corresponding
privacy labels in the iOS App Store. We also include metrics such as privacy policy acces-
sibility, privacy label adoption, and potential compliance issue existence.

We hope that ATLAS will help app developers, researchers, regulators, and mobile app stores
alike. For example, app developers could use our classifier to check for discrepancies between
their privacy policies and privacy labels. Meanwhile, app store operators and regulators could
use our system to monitor discrepancy trends to effectively focus efforts on apps likely to have
potential compliance issues.

1.3 Outline

Chapter 2 provides additional background information on privacy labels, as well as a comprehen-
sive overview of related literature. Chapter 3 discusses the data collection pipeline that ATLAS
uses, which enabled us to answer the first set of research questions. Chapter 4 describes the
methodology used for training a set of classifiers used to generate privacy labels from the text of
privacy policies, enabling us to answer the second set of research questions. Chapter 5 discusses
the consistency of privacy policies and their privacy labels, enabling us to answer the third set of
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research questions. Chapter 6 provides a detailed discussion of our results. Chapter 7 provides
guidance for future work. And finally, Chapter 8 concludes this document.
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Chapter 2

Background and Related Work

2.1 Privacy Labels

2.1.1 History of Privacy Labels
Privacy policies are long, complex documents that end-users seldom read. Seminal work in 2008
by McDonald et al demonstrated that reading every privacy policy a user encountered in a year
would take approximately 244 hours – an impractical amount [28]. Attempts to make privacy
policies more digestible included P3P – a method for websites to convey their privacy policies
in a machine readable format – and P3P Expandable Grid – a user-agent program designed to
assist users in viewing P3P compatible policies [9] [34]. However, the P3P standard was only
loosely adopted, due to the lack of limited functionality provided by widely available user-agents
and complexity of the standard [10]. Multilayered Privacy Policies, such as those proposed by
the law firm Hunton & William LLP in conjunction with The Center for Information Policy
Leadership, included summaries with standardized section headings; however, section content
still contained free-form legal text [27].

To address shortcomings of prior approaches, Kelley et al. developed the “Privacy Label”
to succinctly describe privacy policies in 2009, akin to nutritional labels found on food in 2009
[18]. The approach was largely successful, as research released the next year conducted a user
study that found privacy labels had significant positive effects on accuracy, information retrieval
speed, and reader enjoyment with privacy policies [19].

With the burgeoning mobile application markets on iOS and Android in 2013, further work by
Kelley et al. proposed bringing privacy labels to mobile app stores [20]. The authors conducted
a user study where participants could view a “Privacy Checklist” for an app before downloading
it; they found that the inclusion of such a checklist affected user decisions in downloading apps,
“especially when choosing between otherwise similar apps” [20].

2.1.2 iOS Privacy Labels
In December 2020, Apple began requiring all developers include “App Privacy Details” describ-
ing their apps’ data collection practices when uploading new versions of their apps, arguably the
largest adoption of privacy labels to date [16]. App Privacy Details are included within an app’s
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Figure 2.1: An example of a privacy label within the iOS App Store. The image on the left shows
an overview of the app’s privacy label. The image on the right depicts a more detailed summary
of the app’s data collection.

listing in the iOS App Store, enabling users to view data collection practices before downloading
an app. The implementation is largely similar to the model proposed by researchers in [20].

Figure 2.1 shows an example of an iOS privacy label available within the iOS App Store. Ap-
ple takes a multilayered approach to privacy labels: users first encounter a summarized version,
but can choose to “See Details,” which provides a more comprehensive overview of the app’s
data collection. Developers are required to report data collected from the user, which refers to
any data that is transmitted “off the device in a way that allows [developers] or third-party part-
ners to access [the data] for a period longer than what is necessary to service the transmitted
request in real time” [16].

The iOS privacy label consists of four parts. First, developers declare the data type(s) being
collected by their app, as summarized in Table 2.1. Then, for each data type, developers are
required to report how the data type is being used, as summarized in Table 2.2. Next, developers
must specify if the data type is “Linked to You,” which indicates that it is being collected non-
anonymously. Finally, if the developer declares that the data type is “Linked to You,” then they
must declare if it is “Used to Track You,” which indicates linking collected data “from your app
about a particular end-user or device, such as a user ID, device ID, or profile, with Third-Party
Data for targeted advertising or advertising measurement purposes, or sharing data collected
from your app about a particular end-user or device with a data broker” [16].
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Table 2.1: The following table summarizes the data types that an app can collect and report on
its privacy label.

Data Type Description

Name Such as first or last name

Email Address Including but not limited to a hashed email address

Phone Number Including but not limited to a hashed phone number

Physical Address Such as home address, physical address, or mailing address

Other User Contact Info Any other information that can be used to contact the user outside the app

Health Health and medical data, including but not limited to data from the Clinical Health
Records API, HealthKit API, MovementDisorderAPIs, or health-related human subject
research or any other user provided health or medical data

Fitness Fitness and exercise data, including but not limited to the Motion and Fitness API

Payment Info Such as form of payment, payment card number, or bank account number. If your app
uses a payment service, the payment information is entered outside your app, and you
as the developer never have access to the payment information, it is not collected and
does not need to be disclosed.

Credit Info Such as credit score

Other Financial Info Such as salary, income, assets, debts, or any other financial information

Precise Location Information that describes the location of a user or device with the same or greater
resolution as a latitude and longitude with three or more decimal places

Coarse Location Information that describes the location of a user or device with lower resolution than a
latitude and longitude with three or more decimal places, such as Approximate Loca-
tion Services

Sensitive Info Such as racial or ethnic data, sexual orientation, pregnancy or childbirth information,
disability, religious or philosophical beliefs, trade union membership, political opinion,
genetic information, or biometric data

Contacts Such as a list of contacts in the user’s phone, address book, or social graph

Emails or Text Messages Including subject line, sender, recipients, and contents of the email or message

Photos or Videos The user’s photos or videos

Audio Data The user’s voice or sound recordings

Gameplay Content Such as saved games, multiplayer matching or gameplay logic, or user-generated con-
tent in-game

Customer Support Data generated by the user during a customer support request

Other User Content Any other user-generated content

Browsing History Information about content the user has viewed that is not part of the app, such as web-
sites

Search History Information about searches performed in the app

User ID Such as screen name, handle, account ID, assigned user ID, customer number, or other
user- or account-level ID that can be used to identify a particular user or account

7



Device ID Such as the device’s advertising identifier, or other device-level ID

Purchase History An account’s or individual’s purchases or purchase tendencies

Product Interaction Such as app launches, taps, clicks, scrolling information, music listening data, video
views, saved place in a game, video, or song, or other information about how the user
interacts with the app

Advertising Data Such as information about the advertisements the user has seen

Other Usage Data Any other data about user activity in the app

Crash Data Such as crash logs

Performance Data Such as launch time, hang rate, or energy use

Other Diagnostic Data Any other data collected for the purposes of measuring technical diagnostics related to
the app

Other Data Types Any other data types not mentioned

Table 2.2: Developers must also report how each data type is being used, by specifying one or
more purposes.

Purpose Definition

Third-Party Advertising Such as displaying third-party ads in your app, or sharing data with entities who display
third-party ads

Developer’s Advertising or
Marketing

Such as displaying first-party ads in your app, sending marketing communications di-
rectly to your users, or sharing data with entities who will display your ads

Analytics Using data to evaluate user behavior, including to understand the effectiveness of ex-
isting product features, plan new features, or measure audience size or characteristics

Product Personalization Customizing what the user sees, such as a list of recommended products, posts, or
suggestions

App Functionality Such as to authenticate the user, enable features, prevent fraud, implement security
measures, ensure server up-time, minimize app crashes, improve scalability and per-
formance, or perform customer support

Other Purposes Any other purposes not listed

2.1.3 Issues with iOS Privacy Labels

While iOS privacy labels are intended to help inform end-users about apps’ data practices, they
are not without issue. Recent research suggests that developers face challenges in creating ac-
curate privacy labels [24] [15]. After conducting interviews with iOS developers, the authors
found that misconceptions about privacy labels often resulted in under- or over-reporting data
collection [24]. Koch et al. conducted an “exploratory statistical evaluation” of 11,074 iOS apps,
and found that only a “small number of apps provide privacy labels” [22]. They also conducted
a dynamic analysis of a small subset of 1,687 apps, finding that 276 (16%) violated their own
privacy labels by transmitting data without declaration [22]. This work expands on Koch et al.
by conducting a broader statistical evaluation on a much larger dataset, and by investigating to
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what extent privacy labels are inconsistent with the text of their privacy policies.

2.1.4 Generating iOS Privacy Labels

While iOS privacy labels have several issues, Li et al. suggest that auto-generating privacy labels
might help increase their accuracy [24]. Tools such as PrivacyFlash Pro, and its successor Privacy
Label Wiz, aid developers in creating privacy policies and privacy labels for iOS apps [47] [15].
These tools statically analyze iOS app source code for signatures such as plist permission strings,
import statements, and class instantiations. These code signatures are then used as evidence of
privacy practices, which are then converted into privacy policies and iOS privacy labels [50]
[15]. Importantly, these tools can help developers comply with regulations, such as GDPR,
which require accurate privacy notices [48].

Whereas Gardner et al. only focused on a small subset of iOS privacy labels (9 of 32), this
work aims to analyze data collection disclosure for all 32 data types [15]. Moreover, while [50]
and [15] used static code analysis, this work uses state-of-the-art natural language processing
techniques to generate privacy labels directly from the text of privacy policies and compare the
predicted labels with those reported within the App Store.

2.2 Applicable Legislation

Regulatory requirements for privacy disclosures vary by jurisdiction. However, the state of Cal-
ifornia and the European Union – two of the largest digital markets – have stringent privacy
disclosure requirements. California requires compliance through the CCPA and the European
Union through GDPR. Failure to provide accurate privacy disclosures in both jurisdictions could
have significant legal ramifications.

2.3 Automated Mobile App Privacy Analyses

With millions of mobile apps, automation is the only way to analyze privacy practices at scale.
Automating this type of analysis has been extensively studied. Early work by Enck et al. pro-
posed TaintDroid, an instrumented version of Android that analyzes potential misuses of user
data in realtime [13]. The researchers discovered 68 potential instances of user data being mis-
ued across 20 of the 30 apps analyzed [13]. Dynamic analysis systems, such as TaintDroid,
actively run apps and monitor their behavior [13] [33]. While this gives a true representation
of an app’s behavior, it has significant overhead – limiting scale. Dynamic analysis on mobile
platforms is also largely limited to Android, as the iOS operating system is closed-source and
unable to be instrumented, though recent systems have focused on iOS as well [42].

A larger analysis of 17,991 Android apps was conducted by Zimmeck et al. by comparing
privacy policies to static analyses of apps [47]. Static analysis was done by first decompiling
apps [47]. Then, the researchers looked at permissions and call graphs to determine what types
of user data were accessed and used by those apps [47]. The researchers found, that on average,
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apps exhibited 1.83 potential privacy requirement inconsistencies – that is, apps tended to not
disclose some types of behaviors in their policies [47].

A later study by Zimmeck et al. drastically increased the number of analyzed Android apps
to over one million [49]. In their study, the authors found that 49.1% of apps do not have privacy
policies; however, statically analyzing decompiled app binaries indicated that 88.6% of apps
engage in behaviors requiring policies. Moreover, the researchers found an average of 2.89
potential compliance issues per app.

While the majority of studies have focused on the Android operating system, more recent
research has been conducted on iOS. Kollnig et al. found that Apple’s recent change to require
user permission for apps to access device identifiers (i.e. the IDFA), combined with increased
transparency through the use of privacy labels, makes tracking more difficult [23]. However, apps
still engage in tracking using other methods, such as fingerprinting, whereby individual users are
identified probabilistically [23]. Balash et al. conducted a large-scale longitudinal analysis of
the App Store [4]. Over the course of 36 weeks, the researchers analyzed weekly snapshots of
1.6 million apps and their associated privacy labels [4]. They found that only 60.5% of apps
provided privacy labels, and that 42.1% of apps with labels indicated they did not collect any
data. However, the researchers concluded that since many apps that reported no data collection
were likely to do so, the privacy labels were likely inaccurate [4]. Xiao et al. conducted a small
scale privacy analysis by comparing the privacy labels and binaries of 5,102 iOS apps, finding
many instances of non-compliance [42].

2.4 Natural Language Processing Techniques for Document
Classification

Natural Language Processing (NLP) has been a cornerstone in semantically understanding and
parsing privacy policies. Automated compliance systems, such as MAPS and ATLAS, require
the use of NLP to analyze hundreds of thousands of privacy policies that would otherwise take
human annotators years to accomplish. Past research has detailed the effectiveness of using NLP
techniques to analyze privacy policies. In particular, Story et al. explores how using established
techniques for processing privacy policies – such a TF-IDF vectorization and logistic regres-
sion – can achieve state-of-the-art results when used for compliance analysis [38]. The authors
formulate the identification of privacy practice statements as a classification problem using an
ensemble of classifiers (i.e. one classifier per privacy practice) [38]. Specifically, the authors fo-
cus on assigning annotation labels to policy segments (which roughly correspond to paragraphs)
– with labeled data being pulled from the APP-350 corpus [38].

This paper replicates the approach, with several key differences. First, instead of focusing
on policy segments, this work formulates identification of data collection as a document clas-
sification problem. Second, instead of using annotator labeled data (such as from the APP-350
corpus), we use developer reported iOS privacy labels to describe the text of privacy policies.
Unlike annotator labeled data, privacy labels may not be consistent with the text of privacy poli-
cies because developers struggle to accurately create them [15] [24]. Finally, we experiment with
additional state-of-the-art model architectures for document classification. Similar to the paper,
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we use an ensemble-based approach where each data type is identified using its own classifier.
Document classification is an extensively researched field. Early research in the field yielded

model architectures utilizing convolutional layers such as KimCNN and Char-CNN [21] [45].
Later work utilized recurrent neural networks (RNNs) with attention mechanisms, such as Hier-
archial Attention Networks, which were able to achieve state-of-the-art results [43]. In extreme
multi-label document classification scenarios, where each document can be assigned a set of
labels numbering in the hundreds or thousands, XML-CNN has been shown to produce state-of-
the-art results [25]. However, since the search space for this paper is relatively small (32 labels),
we use a simpler approach: training individual models for each label.

Current state-of-the-art techniques in NLP are largely based on the transformer model, which
sidesteps traditional methods such as recurrence [40]. Instead it relies entirely on using attention
mechanisms to learn global dependencies between inputs and outputs [40]. Transformer based
models, such as BERT and RoBERTa have been shown to achieve incredible results in NLP [11]
[26]. In the field of document classification, a tailored version of BERT, dubbed DocBERT, has
been shown to achieve state-of-the-art results on popular document classification datasets [1].
However, documents are typically longer than the maximum token length allowed by BERT,
RoBERTa, and DocBERT: 512 tokens, where each token roughly corresponds to one word. To
alleviate this, the Longformer model was proposed. Longformer increased the maximum token
length to eight-fold what previous models were capable of [5]. This is particularly useful, as
the median length of privacy policies – 2500 words – is quite large [28]. In an application of
transformer based models to privacy, Ravichander et al. fine tuned BERT to answer privacy
related questions about mobile app privacy policies [32].

While transformer based models are able to achieve incredible results, they come with tremen-
dous computational overhead. Recognizing this, Adhikari et al. proposed the RegLSTM, a reg-
ularized LSTM that was able to outperform several transformer models in popular document
classification tasks [2]. Importantly, RegLSTM requires fewer resources to run, resulting in a
far lower overhead than transformer based models [2]. Moreover, the reduced overhead enables
RegLSTM to process documents far larger than even the Longformer model. In our experimen-
tation, we were able to process privacy policies in excess of 9000 words. More information about
the formulation of our ensemble-based classifier will be presented in Chapter 4.
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Chapter 3

A Distributed Pipeline for Automated
Analysis

3.1 iOS App Sampling Strategy
We first began by identifying a candidate list of apps to analyze. Prior work has relied on crawling
mobile app stores for app discovery; however, we found that not to be necessary for this work
[49]. Fortunately, Apple publishes a categorized, alphabetical list of all available iOS Apps,
including popular apps per category [17]. On January 29th, 2023, we systematically crawled and
scraped the website to assemble a list of 918,293 unique apps available on the United States iOS
App Store. Of those apps, 4,846 are classified as popular apps.

Next, we devised a sampling strategy to pick a subset of apps to analyze. Conducting a
simple random sample of the entire App Store is the easiest way to generate a representative
sample of the entire App Store; however, this approach is likely to miss heavy-hitters: frequently
downloaded apps that are more likely to be present on users’s devices – popular apps. Conversely,
sampling only popular apps leads to a biased representation of the App Store, as many apps are
missed. We devised a hybrid sampling strategy to create a set of apps likely to be present on user’s
devices and an unbiased representation of apps available on the iOS App Store: we sampled all
4,846 popular apps in addition to a randomly selected set of 350,000 non-popular apps. In total,
our final dataset comprised of 354,725 apps, as some app listings were unable to be loaded.

3.2 Identifying Privacy Policies
iOS apps are required to provide a URL to their privacy policy. However, in many cases, these
URLs would lead to landing pages, or other unrelated webpages. To accurately obtain privacy
policies, we developed a logistic regression classier to determine if pages were English-language
privacy policies, similar to prior work [49]. We collected 918 webpages linked to by iOS app
privacy policies, of which 618 (67.3%) where legitimate policies, and 300 were unrelated web-
pages. Beautiful Soup 4 (BS4) was used to extract text from the downloaded pages, which were
then vectorized using scikit-learn’s TF-IDF implementation. We used k-fold cross validation to
grid search over several regularization values (C = [1.0, 2.0, 512, 1024]).
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We then evaluated our trained classifier on a separate unseen test set, with 64 positive exam-
ples and 42 negative examples. Our classifier was able to achieve 98.1% accuracy with an F1
score of 98.4% (precision = 100%, recall = 96.9%).

To run our system within a reasonable amount of time, we only classified pages directly
linked to by the provided privacy policy URL. We did not crawl websites to discover privacy
policies.

3.3 Design of a Distributed Infrastructure

Figure 3.1: A diagram of the ATLAS data collection pipeline.

The scale of our study necessitated the design, development, and deployment of a highly
parallelizable and distributed data collection pipeline. This enabled us to collect all data within
a relatively short window. To this end, we created an infrastructure as depicted in Figure 3.1.
We utilized a driver node to coordinate work between N worker nodes. Each worker node ran
a headless Firefox browser to replicate a real-world browser. This gave us the ability to capture
dynamically loaded content and follow any webpage redirects – emulating the experience of a
real user. Since we continuously hit the same base domain (https://apps.apple.com) to
scrape app pages, rate-limiting was a concern. To mitigate that, we utilized a pool of N proxy
servers (one per worker) to increase the number of available IP addresses. The SOCKS5 protocol
was used to connect worker nodes to proxies. After webpages were retrieved, they were saved in
a shared database.

We began data collection on January 29th, 2023, and our system ran until January 31st, 2023.
We completed data collection in two phases. Phase 1 focused on downloading app listings from
the iOS App Store, and Phase 2 focused on downloading privacy policies. We used slightly
different configurations for each phase. Phase 1 utilized one driver node with 49 worker nodes
and 49 proxies; whereas Phase 2 used one driver node with 80 worker nodes and no proxies.
Proxies were not required in Phase 2 since privacy policies were hosted on different domains, so
rate-limiting was not a concern.
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Figure 3.2: A diagram of the number of processed apps over time. Data collection began on
January 29th, 2023 and ended on January 31st, 2023.

As depicted in Figure 3.2, Phase 1 ran at a rate of approximately 21,000 apps per hour.
Around the 7.5 hour mark, our proxy servers initiated a nightly-reboot cycle, which caused the
rate to diminish. After manual intervention, our system picked back up around the 15 hour mark.
9 proxy servers were no longer responsive, so our rate slowed to approximately 19,000 apps per
hour. Phase 2 began around hour 26 at an average rate of 20,500 apps per hour.

At around hour 45, we reran Phases 1 and 2 in an attempt to re-download app listings and
privacy policies that timed out. We reran Phase 2 once more around the 60 hour mark to collect
the final set of privacy policies. In total, we were able to collect 345,725 apps.

Figure 3.3: A depiction of the number of apps per category.
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Through the use of our system, we were able to collect a total of 345,725 apps. This number
was slightly lower than the total number of sampled apps, as some apps were unreachable. We
then conducted a preliminary analysis of downloaded data. As depicted in Figure 3.3, Games
were the most popular app within our sample and Developer Tools was the least popular. Addi-
tionally, popular apps were approximately uniformly distributed among all categories; however,
the Stickers category was an exception, with no popular apps.

3.4 Privacy Policy and Privacy Label Adoption

(a) Proportion of Privacy Policies (b) Proportion of Privacy Policies and Privacy Labels

Figure 3.4: Figure 3.4a depicts the proportion of webpages linked to by reported privacy policy
URLs in the iOS App Store. Figure 3.4b depicts the proportion of apps providing privacy policies
and privacy labels in the iOS App Store.

We found several interesting trends upon analysis of downloaded apps. Even though apps
are required to link to privacy policies, a substantial number of apps provided extraneous links
instead. As depicted in Figure 3.4b, 5.0% of apps provided dead links. Moreover, 54.7% of apps
provided links that led to extraneous webpages, such as landing pages, home pages, and 404s.
Only 40.3% of apps provided direct links to legitimate privacy policies, which we characterized
as accessible privacy policies.

Next, we analyzed the adoption rate of privacy labels. Apple began requiring apps published
or updated after December 2020 include privacy labels. Interestingly, we discovered that 62.5%
of sampled apps provided privacy labels. A number substantially higher than those that provided
accessible privacy policies. As depicted in Figure 3.4b, only 29.6% of apps (105,131 apps)
provided both accessible privacy policies and privacy labels. We focused on this subset of apps
to conduct our compliance analysis.

Finally, we analyzed the most common types of reported data collection, as show in Figure
3.5. Unsurprisingly, the most common data type collected was Crash Data, followed by Product
Interaction and Email Address. Interestingly, Gameplay Content was the second least reported
type of data collected, even though Games were the most common type of app in our dataset
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Figure 3.5: A depiction of the number of apps using declaring collection of each data type.

(and in the App Store), as shown in Figure 3.3. Also indicated is the number of popular apps
reporting collection of each data type: the distribution of collection across data types for popular
apps approximately follows the same distribution as apps available in the broader App Store.
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Chapter 4

Autogenerating Privacy Labels from
Privacy Policies

We next focused our efforts on predicting privacy labels from privacy policies. We formulated the
task as a supervised multi-class, multi-label document classification problem, where the input is
a privacy policy, and the output is a set of collected data types, as indicated by the privacy policy.
We targeted the same 32 data types included in iOS privacy labels (2.1.2).

iOS privacy labels include what data types are collected, and require developers to indicate
how each data type is used (up to six purposes), if it is linked to the user, and if it can be used
to track the user. Instead, we focused only on identifying which data types were collected. This
enabled us to more precisely focus efforts by reducing search space complexity by a factor of
eight.

To avoid challenges associated with single model multi-label classification, we treated pre-
dicting each data type as an independent binary classification problem. That is, we created 32
models, where each model would be responsible for predicting a single data type. While this did
increase overall runtime, it greatly simplified model complexity.

4.1 Dataset Construction
Unlike prior research, which used high quality annotator labeled privacy policies, we relied solely
on developer reported privacy labels to learn from privacy policies [38] [49]. We began by
filtering our downloaded set of apps to those which provided both privacy policies and privacy
labels. This left us with 105,131 iOS apps. However, upon analysis, we found many privacy
policies to be shared among apps – developers likely reused the same privacy policy among
many of their apps. We determined policy uniqueness by comparing privacy policy URLs for
exact matches, though a more sophisticated system that looks at the cosine similarity of privacy
policy text would likely find matches among identical policies with different URLs. However,
we found our system to be adequate, as its simplicity yielded performant runtime. In total, we
found 34.5% of policies to be duplicates, leaving us with 68,863 unique privacy policies.

Care was taken to preserve the structure of differing privacy labels for identical privacy poli-
cies. We assumed that shared privacy policies are written generally, so as to be applicable to
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multiple apps. Privacy labels, however, are constructed on a per app basis; therefore, they only
represent a subset of the privacy policy. As a result, we reasoned that when duplicate policies
were merged together, their privacy labels needed to be combined by taking the union of collected
data types. For example, if the same privacy policy was associated with one privacy label that
declared collection of {Name, Email Address, Precise Location} while another
declared {Name, Physical Address}, the resulting merged privacy label would declare
{Name, Email Address, Physical Address, Precise Location}.

4.2 Sampling Procedure
While using developer reported privacy labels enabled us to build a training corpus almost a
hundred times larger than previous work, our data was expected to be somewhat “noisy” [38]
[49]. Smaller scale analyses in the past suggest that privacy labels may not be accurate [24]
[15]. While much work has been dedicated to learning from noisy, mislabeled data ([37], [46]),
it is “unfair and unreasonable to have noise in the” testing data [6]. We outline a technique for
importance sampling to help reduce noise when creating training and testing datasets. For clarity,
we define the following terms used within this section:

• A Positive instance is a privacy policy associated with a privacy label that reported a par-
ticular data type as being collected.

• A Negative instance is a privacy policy associated with a privacy label that reported a
particular data type as not being collected.

Figure 4.1: Random samples of Name (left), Precise Location (middle), and Credit Info (right).
Each point is a t-SNE representation of a privacy policy TF-IDF embedding. Point colors cor-
respond to developer reported values for data collection where “Positive” indicates the data type
was collected and “Negative” indicates the particular data type was not collected.

Figure 4.1 characterizes how noisy the underlying data was. We provided random samples
for three data types: Name, Precise Location, and Credit Info. For each data type, we ran-
domly sampled 500 policies with positive instances, and 500 policies with negative instances.
We then extracted an embedding from each policy using TF-IDF vectorization and created a
two-dimensional representation using t-SNE [39]. For the Name and Precise Location data types,
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there is significant overlap between positive and negative instances and no clear distinction be-
tween the two groups; this suggests that many policies might be mislabeled. Credit Info, on the
other hand, has a much clearer distinction between the two groups, likely because accurately
disclosing collection and processing of financial information is mandated by law [8].

Figure 4.2: Clusters appearing in random samples of Name (left), Precise Location (middle), and
Credit Info (right). Each point is a t-SNE representation of a privacy policy TF-IDF embedding.
Point colors correspond to DBSCAN clusters, where light grey points are outliers, and all other
colored points are cluster inliers.

However, as depicted in Figure 4.2, natural clusters tended to appear within the randomly
sampled data. Points were clustered using DBSCAN – since the number of clusters was not
known a priori and the underlying data contains some noise – after performing Latent Semantic
Analysis (LSA) on the high dimensional TF-IDF embeddings [14] [12]. LSA was performed by
using TruncatedSVD to project the high-dimensional data onto 10 components. We reasoned that
these clusters are semantically similar privacy policies, and should therefore all have the same
privacy label (either positive or negative). For example, if a cluster had 20 positive instances
and 5 negative instances, then the negative instances could potentially be mislabeled, since the
content of their privacy policies were similar to many positive instances.

We assigned clusters a positive or negative label by conducting a two-proportion z-test that
compared the incidence of positive to negative labels within a cluster. If a cluster had a statis-
tically significantly larger proportion (i.e. p < 0.05) of one class than the other, we assigned
the cluster the label of the more prominent class. In cases where determining cluster labels was
inconclusive (i.e. p ≥ 0.05), we disregarded the cluster entirely. We then computed centroids for
all positive and negative clusters.

Finally, to construct a dataset of size N , with N
2

positive and N
2

negative examples, we con-
ducted a random oversample of N instances per class. Then, for each class, we selected the
N
2

examples closest to the class centroids, effectively sampling points closer to centroids with
higher probability than those farther away. We also equally weighted the contribution of each
class centroid. Each of the C centroids had approximately N

2C
examples associated with it. To

account for edge cases where no clusters were identified, we fell back to a simple random sample.
This process was used to construct the test (N = 150), validation (N = 150), and training

sets (N = 1000), for each data type. We had 4,376 unique examples within the test sets, 4,262
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unique examples within the validation sets, and 22,262 unique examples within the training sets.
In total, we used 30,900 unique privacy policies to train and evaluate our classifiers.

Figure 4.3: Importance samples of Name (left), Precise Location (middle), and Credit Info
(right). Points are visualized using the same methodology as in Figure 4.1.

Intuitively, our sampling procedure can be thought of focusing on high-density areas with
large amounts of information more likely to be labeled correctly. Points on the edge have a lower
probability of being selected: they are assumed to be less likely to be labeled correctly, therefore
contributing less useful information. Figure 4.3 demonstrates how importance sampling creates a
clear separation between the positive and negative classes, in contrast to random sampling shown
in Figure 4.1.

4.3 Model Selection
After constructing the datasets, we trained using several model architectures. We used logistic
regression as our baseline architecture, with a similar configuration to prior work [38]. We then
graduated to using more complex architectures: multilayer perceptron (MLP), RegLSTM, BERT,
RoBERTa, and Longformer. We conducted extensive hyperparameter tuning for each model, per
data type. Since we were training a separate model per data type, we created a final “ensemble”
model utilizing a combination of architectures that maximized validation Macro F1 Score.

Models were trained using PyTorch on four NVIDIA GeForce RTX 2080 Ti GPUs [30].
In total, it took approximately 48 hours to hyperparameter tune and train 32 models across 6
different architectures.
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4.3.1 Logistic Regression (Baseline)
We first began with logistic regression, our baseline model. We vectorized privacy policies us-
ing scikit-learn’s TF-IDF vectorizer using English stop words stop words=‘english’ with
unigrams and bigrams (ngram range=(1,2)), similar to prior work [38] [49]. We hyperpa-
rameter tuned by grid searching across batch sizes of 50 and 100; weight decay of 0 and 10-5;
and TF-IDF binary term counts (binary=True and binary=False). Hyperparameter tun-
ing was performed per data type. After finding optimal configurations, we trained for 20 epochs
per data type.

Figure 4.4: Logistic Regression (baseline) validation results per data type.

As shown in Figure 4.4, logistic regression served as a strong baseline, with an average Macro
F1 score across data types of 93.4%. In fact, several data types – Emails or Text Messages, User
ID, Purchase History, and Product Interaction – had Macro F1 scores of 100%.
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4.3.2 Multilayer Perceptron
We next trained using a slightly more complex architecture: a multilayer perceptron (MLP)
with a single hidden layer. Privacy policy vectorization was identical to the baseline model
(4.3.1). However, we performed a more extensive hyperparameter tuning step by grid search-
ing across batch sizs of 50 and 100; weight decay of 0 and 10-5; TF-IDF binary term counts
(binary=True and binary=False); hidden layer sizes of 128 and 256; and dropout prob-
abilites of 0.4 and 0.6. Similar to the baseline model, hyperparameter tuning was performed per
data type. After finding optimal configurations, we trained for 20 epochs per data type.

Figure 4.5: MLP validation results per data type are shown on the left, and improvement over
the baseline model is shown on the right.

As shown in Figure 4.5, using an MLP introduced modest performance improvements (mea-
sured by percentage improvement over baseline Macro F1 scores) across several data types, with
the largest increases being among Health, Other Financial Info, and Contacts.
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4.3.3 RegLSTM
Next, we evaluated the RegLSTM model. Introduced by Adhikari et al., the RegLSTM falls into
the category of recurrent neural networks [2]. Importantly, RegLSTM has lower computational
overhead than more complex models (such as BERT), yet is still able to achieve state-of-the-art
results on popular benchmark datasets [2]. We use the implementation of RegLSTM provided by
the Hedwig toolkit [3]. We made one change from the provided implementation: instead of using
word2vec embeddings, we utilized GloVe, finding that the latter embedding method to have
broader support within PyTorch [29] [31]. While the maximum sequence length for RegLSTM
is unbounded, we chose to use 5,000 words. This struck a balance between runtime and privacy
policy length (the median policy length was close to 2,000 words).

We then performed hyperparameter tuning using grid search across 1 and 2 network layers;
static and non-static embed modes; and weight decay of 0, 10-5, and 10-4. Similar to
prior architectures, hyperparameter tuning was performed per data type. After finding optimal
configurations, we trained for 20 epochs per data type.

Figure 4.6: RegLSTM validation results per data type are shown on the left, and improvement
over the baseline model is shown on the right.

As shown in Figure 4.6, the RegLSTM shows substantial improvement in several categories,
such as Fitness, Other Financial Info, Contacts, and Other Usage Data. However, several cat-
egories, such as Other User Contact Info and Advertising Data, perform notably worse than
baseline.

25



4.3.4 BERT
We next move onto transformer based models. We fine-tuned BERT for sequence classifica-
tion, using the implementation provided by HuggingFace and the bert-base-uncased base
model [41]. BERT has been shown to achieve state-of-the-art results on popular NLP bench-
mark datasets, and we hope to replicate similar performance in the context of this work [11].
As before, we perform hyperparameter tuning by grid searching across weight decays of 10-5,
2×10-4, and 10-3. Hyperparameter tuning was performed per data type, and after finding optimal
configurations, we trained for 10 epochs.

Since BERT has a maximum token length of 512, we truncated privacy policies to the first
512 tokens.

Figure 4.7: BERT validation results per data type are shown on the left, and improvement over
the baseline model is shown on the right.

Figure 4.7 shows that BERT perfoms significantly better than baseline in several categories,
including Fitness, Payment Information, and Audio Data. However, like the RegLSTM, it also
performs notably worse on several data types, such as Search History.
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4.3.5 RoBERTa
We also evaluated RoBERTa on our dataset. RoBERTa is robustly optimized version of BERT
that outperforms it on standard NLP benchmarks [26]. We a fine-tuned RoBERTa for sequence
classification using the implementation provided by HuggingFace and the roberta-base base
model [7]. As before, we perform hyperparameter tuning by grid searching across weight decays
of 10-5, 2×10-4, and 10-3. Hyperparameter tuning was performed per data type, and after finding
optimal configurations, we trained for 10 epochs.

Since RoBERTa has a maximum token length of 512, we truncated privacy policies to the
first 512 tokens.

Figure 4.8: RoBERTa validation results per data type are shown on the left, and improvement
over the baseline model is shown on the right.

As shown in Figure 4.8, RoBERTa outperforms the baseline model in several categories,
such as Contacts and Crash Data. However, similar to BERT, it underperforms in several other
categories, such as Search History.

27



4.3.6 Longformer
Finally, we evaluated Longformer on our dataset. While BERT and RoBERTa are able to out-
perform the baseline model for several data types, they are limited by their token length of 512
tokens. Since a token approximately corresponds to a single word (although typically it is a sub-
word), BERT and RoBERTa exclude large chunks of privacy policies, since the median length
is approximately 2,000 words. Longformer aims to solve this by expanding the maximum token
length to 4096. However, due to computational constraints (i.e. exceeding GPU memory con-
straings), we had to limit token length to 1536 (triple that of BERT / RoBERTa). As before, we
perform hyperparameter tuning by grid searching across weight decays of 10-5, 2×10-4, and 10-3.
Hyperparameter tuning was performed per data type, and after finding optimal configurations,
we trained for 8 epochs.

Figure 4.9: Longformer validation results per data type are shown on the left, and improvement
over the baseline model is shown on the right.

Figure 4.9 shows that Longformer was able to outperform the baseline model considerably
in several categories. Of note, it was the only model to outperform baseline for the Name and
Other Data Type categories. However, like previous transformer models, it underperformed for
several data types, such as Device ID.
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4.3.7 Ensemble

Figure 4.10: Ensemble validation results per data type are shown on the left, and improvement
over the baseline model is shown on the right.

Our final model was constructed with an ensemble of architectures. Since each data type
was trained separately, we selected the architecture that maximized the Macro F1 score for that
data type. In the case that multiple models have identical Macro F1 scores, we selected the
simplest model. Figure 4.10 shows the selection of architecture per data type, as well as overall
improvement over baseline. No singular data model dominated; however, the baseline model
was highly competitive compared to more complex models.
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4.4 Model Performance

Figure 4.11: Ensemble test results per data type

Finally, we evaluated our ensemble of models on an unseen set of test data. Figure 4.11
shows the test Macro F1 score achieved per data type. Overall, we were able to achieve an
average accuracy of 91.3% and an average Macro F1 score of 91.3% across all classes. Notably,
we were able to achieve a Macro F1 score of 100% for Credit Info, with several other data types
being the high-90s.

Table 4.1 provides detailed statistics about model performance on the test dataset.
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Table 4.1: The following table summarizes the performance of the final ensemble model on the
test dataset.

Test Acc Acc Macro F1 F1 Prec Recall

Name 0.95 [0.99, 0.92] 0.95 [0.95, 0.95] [0.93, 0.99] [0.99, 0.92]
Email Address 0.93 [0.89, 0.96] 0.93 [0.92, 0.93] [0.96, 0.90] [0.89, 0.96]
Phone Number 0.93 [0.91, 0.95] 0.93 [0.93, 0.93] [0.94, 0.91] [0.91, 0.95]
Physical Address 0.97 [0.95, 1.00] 0.97 [0.97, 0.97] [1.00, 0.95] [0.95, 1.00]
Other User Contact Info 0.98 [0.96, 1.00] 0.98 [0.98, 0.98] [1.00, 0.96] [0.96, 1.00]
Health 0.95 [0.92, 0.97] 0.95 [0.95, 0.95] [0.97, 0.92] [0.92, 0.97]
Fitness 0.93 [0.93, 0.92] 0.93 [0.93, 0.93] [0.92, 0.93] [0.93, 0.92]
Payment Info 0.97 [0.99, 0.96] 0.97 [0.97, 0.97] [0.96, 0.99] [0.99, 0.96]
Credit Info 1.00 [1.00, 1.00] 1.00 [1.00, 1.00] [1.00, 1.00] [1.00, 1.00]
Other Financial Info 0.99 [0.97, 1.00] 0.99 [0.99, 0.99] [1.00, 0.97] [0.97, 1.00]
Precise Location 0.97 [0.96, 0.99] 0.97 [0.97, 0.97] [0.99, 0.96] [0.96, 0.99]
Coarse Location 0.84 [0.79, 0.89] 0.84 [0.83, 0.85] [0.88, 0.81] [0.79, 0.89]
Sensitive Info 0.93 [0.89, 0.96] 0.93 [0.92, 0.93] [0.96, 0.90] [0.89, 0.96]
Contacts 0.99 [1.00, 0.99] 0.99 [0.99, 0.99] [0.99, 1.00] [1.00, 0.99]
Emails or Text Messages 0.94 [0.88, 1.00] 0.94 [0.94, 0.94] [1.00, 0.89] [0.88, 1.00]
Photos or Videos 0.93 [0.91, 0.95] 0.93 [0.93, 0.93] [0.94, 0.91] [0.91, 0.95]
Audio Data 0.97 [0.96, 0.97] 0.97 [0.97, 0.97] [0.97, 0.96] [0.96, 0.97]
Gameplay Content 0.93 [0.92, 0.93] 0.93 [0.93, 0.93] [0.93, 0.92] [0.92, 0.93]
Customer Support 0.92 [0.92, 0.92] 0.92 [0.92, 0.92] [0.92, 0.92] [0.92, 0.92]
Other User Content 0.94 [0.89, 0.99] 0.94 [0.94, 0.94] [0.99, 0.90] [0.89, 0.99]
Browsing History 0.71 [0.73, 0.69] 0.71 [0.72, 0.71] [0.71, 0.72] [0.73, 0.69]
Search History 0.85 [0.80, 0.89] 0.85 [0.84, 0.85] [0.88, 0.82] [0.80, 0.89]
User Id 0.97 [0.96, 0.97] 0.97 [0.97, 0.97] [0.97, 0.96] [0.96, 0.97]
Device Id 0.85 [0.77, 0.93] 0.85 [0.84, 0.86] [0.92, 0.80] [0.77, 0.93]
Purchase History 0.89 [0.80, 0.99] 0.89 [0.88, 0.90] [0.98, 0.83] [0.80, 0.99]
Product Interaction 0.99 [1.00, 0.99] 0.99 [0.99, 0.99] [0.99, 1.00] [1.00, 0.99]
Advertising Data 0.88 [0.88, 0.88] 0.88 [0.88, 0.88] [0.88, 0.88] [0.88, 0.88]
Other Usage Data 0.75 [0.67, 0.83] 0.75 [0.72, 0.77] [0.79, 0.71] [0.67, 0.83]
Crash Data 0.94 [0.92, 0.96] 0.94 [0.94, 0.94] [0.96, 0.92] [0.92, 0.96]
Performance Data 0.77 [0.68, 0.87] 0.77 [0.75, 0.79] [0.84, 0.73] [0.68, 0.87]
Other Diagnostic Data 0.97 [0.93, 1.00] 0.97 [0.97, 0.97] [1.00, 0.94] [0.93, 1.00]
Other Data Types 0.70 [0.77, 0.63] 0.70 [0.72, 0.68] [0.67, 0.73] [0.77, 0.63]
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Chapter 5

Compliance Analysis

After training our ensemble-based classifier, we used it to predict privacy labels for the remain-
ing privacy policies. After removing training data, we were left with a set of privacy policies
corresponding to 61,596 iOS apps. The following analysis is presented for those apps.

5.1 Characterizing Potential Compliance Issues

(a) Probability Distribution for Name (b) Probability Distribution for Precise Location

Figure 5.1: Shown here are two probability distributions (Name and Precise Location) after
running our ensemble-based classifier on the entire set of privacy policies (excluding training
data). This figure characterizes classifier confidence for each data type.

We first begin by characterizing a potential compliance issue. For an arbitrary app, let P be
the set of data types collected as disclosed by an app’s privacy policy, and let L be the set of data
types collected as disclosed by its privacy label. Let D represent the set of all data types, and
let d ∈ D be a single data type. We use d̂ to denote a predicted data type. For our purposes,
|D| = 32. By definition, we can write P ⊆ D and L ⊆ D.
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The first type of potential compliance issue is an Incomplete Privacy Policy (often shortened
to Incomplete Policy in the rest of the section):

∃ d ∈ D, such that (d̂ 6∈ P ) ∧ (d ∈ L)

Intuitively, an incomplete policy means that a privacy policy does not disclose the collection
of a data type, while its developer reported privacy label does. While, this type of discrepancy
can be interpreted as an over-reported privacy label disclosure, privacy labels in iOS default to
non-disclosure. That is, developers have to manually indicate their app collects a particular data
type, which is indicative of an underlying reason for disclosure. As a result, we believe that
characterizing this type of discrepancy as an “Incomplete Privacy Policy” is more reasonable.

The second type of potential compliance issue is an Incomplete Privacy Label (often short-
ened to Incomplete Label):

∃ d ∈ D, such that (d̂ ∈ P ) ∧ (d 6∈ L)

Intuitively, an incomplete label is when collection of a data type is disclosed within a privacy
policy, but not within the developer reported privacy label. Similar to before, this type of dis-
crepancy can be interpreted as an over-reported privacy policy; however, we reason that the effort
to include legal text about data collection within a policy is indicative of an underlying reason.
Therefore, we believe it to be more appropriate to characterize this type of discrepancy as an
“Incomplete Privacy Label.”

Potential compliance issues are on a per data type basis. This means that the total number of
potential compliance issues per app is capped at 32 (one per data type).

We also took care to ensure that we only identified potential compliance issues with high
probability. Figure 5.1, shows the probability that a policy collects a particular data type (i.e.
pd̂∈P ). Since we formulated this as a binary classification problem for each data type, pd̂6∈P =
1 − pd̂∈P . For example, as shown in 5.1a, most policies have a high probability of collecting
name, or a high probability of not collecting Name; however, for many policies, it is uncertain
that they collect Precise Location (Figure 5.1b), as many probabilities are near 50%. So, we only
considered

(d̂ 6∈ P )⇐⇒ (pd̂∈P < 0.25)

(d̂ ∈ P )⇐⇒ (pd̂∈P > 0.75)

which is depicted by the two vertical lines in Figures 5.1a and 5.1b. Intuitively, we only consid-
ered predictions with high probability; otherwise, we classify the prediction as “Inconclusive.”
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5.2 Potential Compliance Issues by Data Type

(a) Incomplete Policies (b) Incomplete Labels

Figure 5.2: Potential compliance issues by data type.

We offer a breakdown of compliance issues by data type, as show in Figure 5.2. Figure 5.2a,
shows the rate of incomplete policies by data type. The percentage for each data type, d ∈ D, is
the total number of incomplete policies for d divided by the total number of apps where L⇒ d1.
For example, 27.7% of apps have privacy policies that do not declare collection of Name, even
when their privacy labels do.

Similarly, Figure 5.2b shows the rate of incomplete labels by data type. The percentage for
each data type, d ∈ D, is the total number of incomplete labels for d divided by the total number
of apps where L ⇒ d0. For example, 42.9% of apps have privacy labels that do not declare
collection of Name, even when their privacy policies do.

Of particular note are the high rates of incomplete policies within financial disclosures:
62.4% of apps declaring Credit Info and 63.9% of apps declaring Other Financial Info on their
privacy labels have incomplete privacy policies. This particular set of potential compliance issues
could be a violation of the Gramm-Leach-Bliley Act [8].

While it may seem that incomplete policies are more prevalent than incomplete labels, it is
important to note that for most data types, d, the number of apps declaring they do not collect d
is typically higher than the number of apps declaring they do collect d. We discuss this more in
Section 5.4.
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5.3 Potential Compliance Issues by Category

(a) Incomplete Policies (b) Incomplete Labels

Figure 5.3: Potential compliance issues by category.

Next, we characterize the rates of potential compliances by app category, as shown in Figure
5.3. Figure 5.3a depicts the percentage of apps per category with at least one incomplete policy
discrepancy. Figure 5.3b similarly depicts the percentage of apps per category with at least one
incomplete label discrepancy.

As is shown within the two graphs, both types of potential compliance issues are approxi-
mately uniformly distributed across categories, with the notable exception of the Stickers cate-
gory, when analyzing incomplete privacy policies (likely due to many errors being inconclusive).
Interestingly, the rates between the two types of errors are quite different: apps are far less likely
to have incomplete policies (the maximum discrepancy rate per category is 40.75%) than incom-
plete labels (where all categories have discrepancy rates between 80% and 100%).
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5.4 Distribution of Potential Compliance Issues

(a) Distribution of Potential Compliance Issues (b) CDF of Potential Compliance Issues

Figure 5.4: On the left is a graph of the distribution of the different types of potential compliance
issues, and on the right is a CDF of the different types of potential compliance issues.

Table 5.1: This table provides a cumulative distribution of potential compliance issues.

Incomplete Policies (%) Incomplete Labels (%) Both (%)

1 or more discrepancies 26.8 85.7 88.0
2 or more discrepancies 14.3 72.9 76.1
3 or more discrepancies 8.5 61.3 65.0

Figure 5.4 shows the distribution and cumulative distribution of potential compliance issues.
In particular, incomplete policies are far less common than incomplete labels, with apps having
an average of 0.62 incomplete policy discrepancies and 4.698 incomplete label discrepancies.
When looking at the combination of incomplete policy and label errors, apps have 5.32 potential
compliance issues on average. The lower rate of incomplete policy errors is clearly represented
by Figure 5.4a, as the bucket for 0 compliance issues is far larger than for incomplete labels (note
that there is a break in the graph between 10,000 and 42,000 on the y-axis, so the depiction is
less exaggerated).

Figure 5.4b depicts the CDF for each data type, which makes it much clearer to examine
differences between distributions. Of note, 26.8% of apps have at least one incomplete policy
discrepancy and 85.7% of apps have at least one incomplete label discrepancy. When analyzing
both incomplete policies and labels, 88.0% of apps have at least one discrepancy. We provide
additional percentages in Table 5.1.
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5.5 App Rating vs Number of Potential Compliance Issues

(a) Rating vs Incomplete Policy Discrepancies (b) Rating vs Incomplete Label Discrepancies

Figure 5.5: The graph on the left depicts the correlation with respect to incomplete policy dis-
crepancies, and the graph on the right depicts the correlation with respect to incomplete label
discrepancies. Darker points represent a larger number of apps (iOS App Store ratings are dis-
cretized in tenths and discrepancies are integers). The shaded region around each line represents
a 95% confidence interval.

We also compared the trend between app rating and number of potential compliance issues,
as shown in Figure 5.5. Surprisingly, for incomplete policy compliance issues, we found a weak,
significant positive correlation (r = 0.04, p < 0.05) between app rating and number of incom-
plete policy discrepancies. That is, as the number of incomplete policy discrepancies increase,
the app rating tends to increase.

While the previous result was surprising, the relationship between app rating and incom-
plete label discrepancies is as expected: we found a weak, significant negative correlation (r =
−0.011, p < 0.05). That is, as the number of incomplete label discrepancies increase, the app
rating tends to decrease.
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5.6 Potential Compliance Issues Among Popular vs Other Apps

Figure 5.6: A depiction of the average number of discrepancies among popular and other apps.
Discrepancies types are categorized by Incomplete Policies, Incomplete Labels, and Both.

Table 5.2: This table provides the average number of discrepancies among popular and other
apps, categories by discrepancy type. Discrepancy types with significant difference (p < 0.05)
are signified with ∗

Avg Discrepancies for Popular Apps Avg Discrepancies for Other Apps p value

Incomplete Policies 0.67 0.66 0.877
Incomplete Labels 4.48 4.78 0.005∗

Both 5.15 5.44 0.004∗

Finally, we compared the incidence of discrepancies between popular and other apps. As
shown in Figure 5.6 and Table 5.2, other apps (i.e. unpopular apps), tend to have a statistically
significantly higher number of incomplete label discrepancies, on average, than popular apps
(p < 0.05). Consequently, when looking across all discrepancies, other apps also have a higher
number of discrepancies, on average, than popular apps (p < 0.05). There is no significant
difference between the incidence of incomplete policy discrepancies between popular and other
apps (p > 0.05).

We conclude from this comparison that popular apps, on average, have fewer discrepancies
than their counterparts. As popular apps represent apps likely to be on user’s devices, this trend
is reassuring; however, the incidence of discrepancies among popular apps is still high, at an
average of 5.15 discrepancies per app.
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Chapter 6

Discussion

In Section 3, we outlined the development of a pipeline to systematically download and analyze
iOS App Store listings. We found 62.5% of apps to provide privacy labels. This is approximately
the same, albeit slightly higher than reported by Balash et al. in their work [4]. The slightly
higher percentage in our study likely reflects our study being conducted several months after
Balash et al.’s, allowing more time for apps to include privacy labels.

We also introduced a mechanism to identify if a webpage linked to by a privacy policy URL
was a legitimate policy. For efficiency reasons, we chose not to perform a limited crawl in cases
where the webpage was a landing page, and required further navigation to the privacy policy.
While this likely reduced the reported number of apps with privacy policies, we believe that
our approach mimics the actions of the average consumer, who is unlikely to navigate complex
webpages to find a privacy policy.

In Chapter 4, we outlined a technique for predicting iOS privacy labels from the text of
privacy policies. To our knowledge, this is the first work that has attempted such a task. However,
it is not without limitations. For one, we relied on noisy data to train our classifiers. To mitigate
this we used an importance sampling approach to reduce variance within the data. However, this
may have had the effect of biasing the training data towards similar policies, lowering effective
recall in cases where outlier policies were labeled correctly, but were not included due to lack of
similarity.

Moreover, in certain cases, Apple stipulates that privacy labels may optionally disclose cer-
tain data collection, but are not required to do so [16]. This could lead to results that overestimate
potential discrepancies when looking at optional privacy label disclosures. In principle, because
less data collection is typically seen as desirable, developers would typically be expected to only
disclose collection when required to do so. So, assuming that our training data is biased towards
required disclosures, our resulting classifiers could be expected to indicate positive instances
only if they are truly required.

In Chapter 5, we described a large-scale analysis of apps available on the iOS App Store.
Prior work had already provided evidence that iOS privacy labels can be inaccurate [24], [44].
Our study adds to this evidence by comparing disclosures made in privacy policies to those in
privacy labels. To the extent that discrepancies are indicative of potential compliance issues, we
find that as many as 88% of apps have at least one potential compliance issue, with apps having
an average of 5.32 potential compliance issues. These results appear generally consistent with
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prior work, albeit in slightly different contexts. For example, Zimmeck et al. report a mean
of 2.89 potential compliance issues per app in their large-scale analysis of Android apps; how-
ever, they characterized potential compliance issues as discrepancies between the text of privacy
policies and static code analysis of Android apps [49]. Our work, on the other hand, compares
disclosures within privacy policies to those in privacy labels. We also find that Incomplete Label
discrepancies were more common that Incomplete Policy discrepancies. This could likely be a
byproduct of privacy policies being written to be more general and permissive than privacy la-
bels. In particular, some policies are known to apply to multiple apps, whereas all privacy labels
are specific to a given app. In addition, privacy labels may often be created by developers and
may be authored with the intent to only disclose those practices an app actually engages in. In
contrast, privacy policies are known to often be ”written by lawyers, for lawyers” and, as a result,
can be expected to be more general.

Additionally, Balash et al. found in a review of 1.6 million apps available on the App Store
that 42.1% of apps with labels indicate they do not collect any data, which they claim is unlikely
to be true. Our work provides concrete evidence for their claim by showing that incomplete
privacy labels are the primary source of errors, which is consistent with their results [4].
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Chapter 7

Future Work

Several avenues exist to continue this work in the future. We offer three potential areas of explo-
ration that naturally extend this work: a detailed privacy policy prevalence analysis, predicting
more detailed privacy labels, and combining our analysis with static and dynamic code analysis.

7.1 A Detailed Privacy Policy Analysis

First, we could explore the prevalence of privacy policies within the iOS App Store in more
detail. For example, we currently only determine if the webpage linked to by the privacy policy
URL provided by apps is a legitimate privacy policy; however, in some cases, the URL leads to
a privacy landing page, and the actual privacy policy can be found by clicking a link somewhere
on that page. Future work could examine the “depth” of these privacy policies – how many pages
from the root do users need to navigate to arrive at a privacy policy?

7.2 Predicting Detailed Privacy Labels

Another avenue for exploration involves predicting more detailed privacy labels from privacy
policies. We currently only predict if a privacy policy declares collection of a particular data
type. However, iOS privacy labels go further, providing information on how collected data types
are used, if they are linked to the user, and if they can be used to track the user. Future work
could investigate if it is possible to accurately determine how collected data is used from the text
of privacy policies. One approach could be to formulate privacy label prediction as a two-step
process. First, future work could use our classifiers to determine if a privacy policy collected
a particular data type. Then, they could implement an additional set of classifiers to determine
how the data type was used.

Moreover, providing textual evidence to corroborate predicted data types could also be in-
vestigated. For example, users might have questions about how data is being used beyond the
capabilities of privacy labels, such as “How long does this app retain my data?” Prior work has
focused on answering these types of questions [32]. Future work could combine [32] with our
classifiers to produce more detailed summaries of privacy policies.
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7.3 Static and Dynamic Code Analysis
Finally, future research could combine this work with static and dynamic code analysis. These
types of mechanisms enables analyses that provide concrete evidence to ground claims about
data collection practices by analyzing app code and app behavior upon execution. This evidence
can then be compared to the text of privacy policies to determine potential compliance issues
more concretely. For example, Privacy Label Wiz is able to conduct static analyses on iOS apps
to determine certain types of data collection [15]. Future work could combine our techniques –
determining data collection within privacy policies – to determine if the text of privacy policies
matches the code of iOS apps.

7.4 Conclusion
Privacy labels have been proposed as usable mechanisms to help users better understand salient
data practices found within privacy policies. In December 2020, Apple began requiring that all
iOS apps include privacy labels, arguably the largest adoption of privacy labels to date; however,
prior work has questioned the accuracy of such labels [24] [15].

In this work, we introduced the Automated Privacy Label Analysis System (ATLAS). ATLAS
enabled us to provide a detailed analysis of 354,725 iOS apps available on the United States App
Store. We found that privacy policy accessibility and privacy label adoption is relatively low, with
only 62.5% of apps providing privacy labels. We also developed an ensemble-based classier that
was able to accurately predict privacy labels from privacy policies with 91.3% accuracy. We then
used our classifier to conduct a compliance analysis, finding several interesting trends. For ex-
ample, 88% of apps had at least one discrepancy between the text of their privacy policy and their
privacy label. On average, we found iOS apps to have 5.32 discrepancies. These discrepancies
could potentially be indicative of compliance issues. We hope that our work enables a thorough
review of privacy labels to help promote accurate privacy disclosures in the future.
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