
Stable Models and

Temporal Difference Learning

Gaurav Manek

CMU-CS-23-103

April 2023

Computer Science Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

J. Zico Kolter, Chair

David Held

Deepak Pathak

Sergey Levine (UC Berkeley)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright © 2023 Gaurav Manek

This research was sponsored by Agency for Science, Technology and Research (A*STAR) Singapore and

Robert Bosch GmbH

The views and conclusions contained in this document are those of the author and should not be interpreted

as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.

government or any other entity.

Keywords: Lyapunov Stability, Regularization, Deadly Triad, Offline Reinforcement

Learning, Temporal Difference Learning, Reinforcement Learning, Neural Networks, Machine

Learning, Artificial Intelligence

Abstract

In this thesis, we investigate two different aspects of stability: the

stability of neural network dynamics models and the stability of rein-

forcement learning algorithms. In the first chapter, we propose a new

method for learning Lyapunov-stable dynamics models that are stable

by construction, even when randomly initialized. We demonstrate the

effectiveness of this method on damped multi-link pendulums and show

how it can be used to generate high-fidelity video textures.

In the second and third chapters, we focus on the stability of Rein-

forcement Learning (RL). In the second chapter, we demonstrate that

regularization, a common approach to addressing instability, behaves

counterintuitively in RL settings. Not only is it sometimes ineffective,

but it can also cause instability. We demonstrate this phenomenon in

both linear and neural network settings. Further, standard importance

sampling methods are also vulnerable to this.

In the third chapter, we propose a mechanism to stabilize off-policy

RL through resampling. Called Projected Off-Policy TD (POP-TD), it

resamples TD updates to come from a convex subset of “safe” distributions

instead of (as in other resampling methods) resampling to the on-policy

distribution. We show how this approach can mitigate the distribution

shift problem in offline RL on a task designed to maximize such shift.

Overall, this thesis advances novel methods for dynamics model sta-

bility and training stability in reinforcement learning, questions existing

assumptions in the field, and points to promising directions for stability

in model and reinforcement learning.

iv

Acknowledgments

Although it is not possible to express my gratitude to everyone who has

played a role in my academic and personal growth, I want to acknowledge

and appreciate the countless friends, family, and collaborators whose

contributions have been invaluable to me.

First and foremost, my advisor Zico Kolter. His guidance, advice,

enthusiasm, expertise, encouragement, and unwavering support have been

invaluable to me throughout this journey. His involvement has helped me

develop a deeper understanding of the subject matter and how to approach

research in a meaningful way. I also wish to thank Sergey Levine, David

Held, and Deepak Pathak, for their invaluable feedback, suggestions, and

guidance as members of my thesis committee.

I would like to express my sincere appreciation to my collaborators on

the POP-TD project Melrose Roderick and Felix Berkenkamp, for their

insight, good humor, time, patience, and tenacity.

From the department, I wish to thank Ruben Martins for engaging

with my fledgeling ideas in his field. Also, the support staff who make the

department what it is: Catherine Copetas, Deb Cavlovich, Ann Stetser,

Charlotte Yano, and the many, many others. I also owe a debt of gratitude

to Francisco Maturana, my roommate of six years, colleague in the CS

department, and friend.

From A*STAR, I wish to thank the many people in the past and

present who have molded me as researchers and supported me through my

PhD, especially Vijay Chandrasekhar and Li Xiaoli. I also wish to thank

the many senior researchers who have invested their time in me, and the

dedicated scholarship officers who have supported me for a decade. From

my undergraduate years in Brown I need to thank Shriram Krishnamurthi

and Stefanie Tellex for starting me down this journey.

And most of all, I would like to express my heartfelt thanks to my

parents Mukesh and Sonal Manek, my brother Gautam Manek, and my

extended family for their unwavering love, encouragement, and support

throughout the highs and lows of my academic journey. Their steadfast

presence, undying love, and unwavering support have been the foundation

upon which I have built my academic success, and I am forever indebted

to them.

vi

Contents

Introduction ix

1 Learning Stable Dynamics Models 1

1.1 Introduction . 2

1.2 Background and related work . 3

1.3 Joint learning of dynamics and Lyapunov functions 6

1.3.1 Properties of the Lyapunov function 7

1.4 Empirical results . 11

1.4.1 Random networks . 12

1.4.2 n-link pendulum . 12

1.4.3 Video Texture Generation . 14

1.5 Conclusion . 16

1.6 Adaptation to Stable Control and RL 16

2 The Pitfalls of Regularization in Off-Policy TD 19

2.1 Introduction . 20

2.2 Preliminaries and Notation . 23

2.3 Our Counterexamples . 26

2.3.1 Regularization cannot always mitigate the error from training

off-policy. 26

2.3.2 Small amounts of regularization can cause large increases in

training error. 33

vii

2.3.3 Emphatic approaches and our counterexample 35

2.3.4 Applied to multi-layer networks 43

2.3.5 Over-parameterization does not solve this problem 46

2.4 Related Work . 46

2.5 Relationship to modern RL algorithms 49

2.6 Conclusion . 49

3 Projected Off-Policy TD for Offline Reinforcement Learning 53

3.1 Introduction . 54

3.2 Related Work . 55

3.3 Problem Setting and Notation . 57

3.3.1 The Non-Expansion Criterion (NEC) 58

3.4 Projected Off-Policy TD (POP-TD) 60

3.4.1 I- and M-projections . 61

3.4.2 Optimizing the distribution 61

3.4.3 The structure of Z . 62

3.4.4 Update rules . 64

3.4.5 POP-Q-Learning . 65

3.5 Experiments and Discussion . 67

3.5.1 POP-Q on GridWorld . 68

3.6 Conclusion . 71

Conclusion 75

Notation and Definitions 77

Bibliography 78

viii

Introduction1

In this thesis we examine two notions of stability: that of neural network dynamics2

models and the training of reinforcement learning algorithms. There is a natural3

transition from the first notion of stability to the second is natural: the parameters4

of a stably trained model circumscribes, in parameter-space, a stable trajectory. This5

relationship between stabilities has significant precedence in the foundational work of6

Temporal Difference (TD) learning theory [54].7

In the first chapter we propose a new method for learning Lyapunov-stable dynamical8

models and the certifying Lyapunov function in a fully end-to-end manner. Instead9

of enforcing stability by some loss function, we guarantee stability everywhere by10

construction. This works by carefully constructing a neural network to act as a11

Lyapunov function, learning a separate, unconstrained dynamics model, and then12

combining these two models with a novel reprojection layer. This produces models13

that are guaranteed stable by construction everywhere in the state space, even without14

any training. We show that such learning systems are able to model simple dynamical15

systems such as pendulums, and can be combined with additional deep generative16

models to learn complex dynamics, such as video textures, in a fully end-to-end17

fashion.18

In modern Reinforcement Learning, TD is combined with function approximation19

(i.e. neural networks) and off-policy learning. However, these three are known as the20

deadly triad [48, p. 264], because they may cause severe instability in the learning21

process Tsitsiklis and Van Roy [54]. While many variants of TD will provably converge22

ix

despite the training instability, the quality of the solution at convergence is typically23

arbitrarily poor [24]. In the literature, there is a general belief that regularization can24

mitigate this instability, which is supported by basic analysis on the three standard25

examples.26

However, this is not true! In the second chapter, we introduce a series of new27

counterexamples that are resistant to regularization. We demonstrate the existence28

of “vacuous” examples, which never do better than the limiting case regardless of the29

amount of regularization. This problem persists in most TD-based algorithms, which30

covers a wide swath of the RL literature; we make our analysis concrete by showing31

how this example forces the error bounds derived by Zhang, Yao, and Whiteson [63]32

to be extremely loose in practice. We further demonstrate that regularization is not33

monotonic in TD contexts, and that it is possible for regularization to increase error34

(or cause divergence) around some critical values. We extend these examples to the35

neural network case showing that these effects are not limited to the linear case and36

making the case for greater care in regularization in practical RL applications. Finally,37

there is a line of work starting with Emphatic-TD which seeks to stabilize off-policy38

training by resampling TD updates to appear on-policy. Contemporary Emphatic39

algortihms generally use a reversed version of TD to estimate the resampling function,40

which opens them up to instability from the same source as the original TD. We show41

that these techniques are similarly vulnerable. We show that regularization is not a42

panacea for stability in TD learning.43

In the third chapter, we investigate new methods for stable TD learning that are44

resistant to off-policy divergence. Starting from an idea introduced by Kolter [24] we45

derive Projected Off-Policy TD, which reweighs TD updates to the closest distribution46

where the TD is non-expansive at the fixed point of its training. We learn the47

reweighing factors in the training loop using stochastic gradient descent (i.e. with48

time- and space-complexity comparable to learning the value function) and then49

apply those reweighing factors to each TD update. Crucially, this is distinct from50

contemporary work in the literature in that POP-TD does not resample to on-policy51

distribution, instead finding a “safe” distribution close to the data distribution.52

x

Applying this to a novel offline RL example, we can clearly demonstrate how POP-53

TD mitigates the distributional shift between the dataset and the learned policy [30]54

while resampling as little as possible.55

We conclude with a discussion on future directions that our work on stable models56

may take.57

xi

xii

Chapter 158

Learning Provably Stable Deep59

Dynamics Models60

Deep networks are commonly used to model dynamical systems, predicting how the61

state of a system will evolve over time (either autonomously or in response to control62

inputs). Despite the predictive power of these systems, it has been difficult to make63

formal claims about the basic properties of the learned systems. In this chapter, we64

propose an approach for learning dynamical systems that are guaranteed to be stable65

over the entire state space. The approach works by jointly learning an unconstrained66

dynamics model and Lyapunov function, then combining them in a novel reprojection67

layer to produce models that are guaranteed to be stable by construction everywhere68

in the state space, even without any training. We show that such learning systems are69

able to model dynamical systems such as compound pendulums and can be combined70

with additional deep generative models to learn ro generate images with complex71

dynamics such as video textures.72

From “Learning Stable Deep Dynamics Models” by Manek and Kolter (2019)73

1

1.1 Introduction74

This chapter deals with the task of learning continuous-time dynamical systems.75

Given x(t) ∈ Rn, a state at time t, we wish to model the time-derivative76

ẋ(t) ≡ d

dt
x(t) = f(x(t)) (1.1)77

for some function f : Rn → Rn. Modeling the time evolution of such dynamical78

systems (or with control inputs ẋ(t) = f(x(t), u(t)) for u(t) ∈ Rm and f : Rn×Rm →79

Rn) is a foundational problem in machine learning, with applications in reinforcement80

learning, control, forecasting, and many other settings. Owing to their representational81

power, neural networks have long been a natural choice for modeling the function82

f [14, 41, 37, 12]. However, when using a neural network to model dynamics in83

this setting very little can be guaranteed about the behavior of the learned system,84

especially about its stability. Informally, we say that a model is stable if we can85

pick a bounded set of states and guarantee that once the model enters that set it86

never leaves. While some recent work has begun to consider stability properties of87

neural networks [6, 45, 51], it has typically done so by softly enforcing stability as an88

additional loss term on the training data. Consequently, they can say little about the89

stability of the system in states outside the training data.90

In this chapter, we propose an approach to learning neural network dynamics that are91

provably Lyapunov-stable over the entirety of the state space. We do this by jointly92

learning a nominal system dynamics and the certifying Lyapunov function, and then93

reprojecting the predictions of the nominal model onto the level set of the Lyapunov94

function. This stability is a hard constraint imposed upon the model: unlike recent95

approaches, we do not enforce stability via an imposed loss function but build it96

directly into the dynamics of the model. This means that even a randomly initialized97

model in our proposed model class will be provably stable everywhere in state space.98

The key to this is the design of a proper Lyapunov function, based on input convex99

neural networks [1], which ensures global exponential stability to an equilibrium point100

while still allowing for rich dynamics.101

2

Using these methods, we demonstrate learning dynamics of physical models such as102

n-link pendulums, and show a substantial improvement over generic networks. We103

also show how such dynamics models can be integrated into larger network systems to104

learn dynamics over complex output spaces, combining the model with a variational105

auto-encoder (VAE) [23] to learn dynamic video textures [46].106

1.2 Background and related work107

Stability of dynamical systems. We consider the setting of uncontrolled1 dy-108

namics systems ẋ(t) = f(x(t)) for x(t) ∈ Rn. Such a system is globally asymptotically109

stable around the equilibrium point xe = 0 if we have x(t) → 0 as t → ∞ for any110

initial state x(0) ∈ Rn; f is locally asymptotically stable if the same holds but only111

for x(0) ∈ B where B is some bounded set containing the origin. Similarly, f is112

globally or locally exponentially stable if trajectories approach to the origin is at some113

minimum rate:114

∥x(t)∥2 ≤ m∥x(0)∥2 e−αt (1.2)115

for some constants m,α ≥ 0 for any x(0) ∈ Rn (B, respectively).116

The area of Lyapunov theory [20, 29] establishes the connection between these types117

of stability according to a Lyapunov function. Specifically, let V : Rn → R be a118

continuously differentiable positive definite function, i.e., V (x) > 0 for x ̸= 0 and119

V (0) = 0. Lyapunov analysis says that f is asymptotically stable, if and only if120

there exists some function V as above such the value of this function decreases along121

trajectories generated by f . Formally, this is the condition that the time derivative122

V̇ (x(t)) < 0, i.e.,123

V̇ (x(t)) ≡ d

dt
V (x(t)) = ∇V (x)T

d

dt
x(t) = ∇V (x)Tf(x(t)) < 0 (1.3)124

This condition must hold for all x(t) ∈ Rn or for all x(t) ∈ B to ensure global or local125

1We will discuss extending this to dynamics with control later; this is a non-trivial extension.

3

stability respectively. Similarly f is globally exponentially stable if and only if there126

exists positive definite V with a sufficiently steep gradient such that127

V̇ (x(t)) ≤ −αV (x(t)), with c1∥x∥22 ≤ V (x) ≤ c2∥x∥22. (1.4)128

Showing that these conditions imply the various forms of stability is relatively129

straightforward, but it is also true (but more complex to show) that any stable system130

must obey this property for some V . In this chapter our broad stategy is to construct131

a Lyapunov function and enforce conditions that ensure stability.132

Stability of linear systems. For a linear system with matrix A133

ẋ(t) = Ax(t) (1.5)134

it is well-known that the system is stable if and only if the real components of the135

the eigenvalues of A are all strictly negative. Equivalently, the same same property136

can be shown via a positive definite quadratic Lyapunov function137

V (x) = xTQx (1.6)138

for Q ∈ Rn×n, Q ≻ 0. In this case, by Equation 1.4, the following ensures global139

exponential stability:140

V̇ (x(t)) = x(t)TATQx(t) + x(t)TQAx(t) ≤ −αx(t)TQx(t) (1.7)141

i.e., if we can find a positive definite matrix Q ⪰ I such that ATQ+QA+ αQ ⪯ 0142

negative semidefinite. Such bounds (and much more complex extensions) for the143

basis for using linear matrix inequalities (LMIs), as a method to ensure stability of144

linear dynamical systems. The methods also have applicability to non-linear systems,145

and several authors have used LMI analysis to learn non-linear dynamical systems by146

constraining the linearized systems to have global Lyapunov functions [21, 2, 55],147

4

Even though the constraints148

Q ⪰ I, ATQ+QA+ αQ ⪯ 0 (1.8)149

are convex in A and Q separately, they are not convex in A and Q jointly. Thus, the150

problem of jointly learning a stable linear dynamical system and its corresponding151

Lyapunov function, even for the simple linear-quadratic setting, is not a convex152

optimization problem, and alternative techniques such as alternating minimization153

need to be employed instead. Past work has considered different heuristics, such as154

approximately projecting a dynamics function A onto the (non-convex) stable set of155

matrices with eigenvalues Re(λi(A)) < 0 [3]. It is no surprise, then, that learning156

stable non-linear systems is even more challenging:157

Stability of non-linear systems For general non-linear systems, establishing158

stability via Lyapunov techniques is even more challenging. For the typical task here,159

which is that of establishing stability of some known dynamics ẋ(t) = f(x(t)), finding160

a suitable Lyapunov function is often more an art than a science. Although some161

general techniques such as sum-of-squares certification [43, 42] provide methods for162

certifying stability of polynomial (or similar) systems, these are often expensive and163

don’t easily scale to high dimensional systems. Our proposed approach here is able164

to learn provably stable systems without solving this generally hard problem. While165

it is difficult to find a Lyapunov function that certifies the stability of some known166

system, we exploit the fact that it is relatively much easier to enforce some function167

to behave in a stable manner according to a Lyapunov function.168

Lyapunov functions in deep learning Finally, there has been a small set of169

recent work exploring the intersection of deep learning and Lyapunov analysis [6,170

45, 51]. Although related to our work here, the approach in this past work is quite171

different. As is more common in the control setting, these papers try to learn neural-172

network-based Lyapunov functions for control policies, but in way that enforces173

stability via a loss penalty. For instance Richards et al., [45] optimize a loss function174

5

that encourages V̇ (x) ≤ 0 for x in some training set. In contrast, our work guarantees175

stability everywhere in the state space, not just at a small set of points; but only176

for a simpler setting where the entire dynamics are to be learned (and hence can be177

‘constrained to be stable) rather than a stabilizing controller for known dynamics.178

1.3 Joint learning of dynamics and Lyapunov func-179

tions180

The intuition of the approach we propose in this paper is straightforward: instead181

of learning a dynamics function and attempting to separately verify its stability via182

a Lyapunov function, we propose to jointly learn a dynamics model and Lyapunov183

function, where the dynamics is inherently constrained to be stable (everywhere in184

the state space) according to the Lyapunov function.185

Specifically, following the principles mentioned above, let f̂ : Rn → Rn denote a186

“nominal” unconstrained dynamics model, and let V : Rn → R be a positive definite187

function: V (x) ≥ 0 for x ≠ 0 and V (0) = 0. Then in order to (provably, globally)188

ensure that a dynamics function is stable, we can simply project f̂ such that it points189

down the gradient of the Lyapunov function. This corresponds to the condition190

∇V (x)T f̂(x) ≤ −αV (x) (1.9)191

i.e., we define the dynamics192

f(x) = Proj
(
f̂(x), {f : ∇V (x)Tf ≤ −αV (x)}

)
=

f̂(x) if ∇V (x)T f̂(x) ≤ −αV (x)

f̂(x)− ∇V (x)

∥∇V (x)∥22

(
∇V (x)T f̂(x) + αV (x)

)
otherwise

= f̂(x)− ∇V (x)

∥∇V (x)∥22
ReLU

(
∇V (x)T f̂(x) + αV (x)

)
(1.10)

193

6

•xe

increasing V

•x

Trajectory and Lyapunov function

•

f̂(x)
−g(x)

f(x)

Case 1

•

g(x)

f(x) = f̂(x)

Case 2

Figure 1.1: We plot the trajectory and the contour of a Lyapunov func-
tion of a stable dynamical system and illustrate our method. Let g(x) =
∇V (x)

∥∇V (x)∥22
ReLU

(
∇V (x)T f̂(x) + αV (x)

)
. In the first case f̂(x) has a component g(x)

not in the half-space, which we subtract to obtain f(x). In the second case f̂(x) is
already in the half-space, so is returned unchanged.

where Proj(x; C) denotes the orthogonal projection of x onto the point C, and where194

the second equation follows from the analytical projection of a point onto a half-space.195

As long as V is defined using automatic differentiation tools, it is straightforward to196

include the gradient ∇V terms into the definition of f , and our final network can197

be trained just like any other function. The general approach here is illustrated in198

Figure 1.1.199

1.3.1 Properties of the Lyapunov function V200

Although the treatment above seems to make the problem of learning stable systems201

quite straightforward, the subtlety of the approach lies in the choice of the function202

V . Specifically, V needs to be positive definite and needs to have no local optima203

except the global optimum at 0. This is due to Lyapunov decrease condition: recall204

that we are attempting to guarantee stability to the equilibrium point x = 0, yet205

the decrease condition imposed upon the dynamics means that V is decreasing along206

trajectories of f . If V has a local optimum away from the origin, the dynamics may207

get stuck in this location; this manifests as the ∥∇V (x)∥22 term going to zero.208

To enforce these conditions, we make the following design decisions regarding V :209

7

No local optima. We represent V via an input-convex neural network (ICNN)210

function g : Rn → R [1], which enforces the condition that g(x) be convex in its211

inputs x. Such a network is given by the recurrence212

z1 = σ0(W0x+ b0)

zi+1 = σi(Uizi +Wix+ bi) i ∈ {1, . . . , k − 1}
g(x) ≡ zk

. (1.11)213

For layer i+1: Wi are weights mapping from the input x to the i+1 layer activations;214

Ui are positive weights mapping previously layer activations zi to the next layer; bi215

are real-valued biases; and σi are convex, monotonically non-decreasing non-linear216

activations such as the ReLU or smooth variants. It is straightforward to show that217

with this formulation, g is convex in x [1], and indeed any convex function can be218

approximated by such networks [5].219

Positive definite. The ICNN property enforces that V has only a single global220

optimum; for V to be positive definite, we must also enforce that this optimum is221

at x = 0. We could fix this by removing the bias term from Equation 1.11, but222

this would mean we could no longer represent arbitrary convex functions. We could223

also shift whatever global minimum to the origin, but that would require finding224

finding the global minimum during training, which itself is computationally expensive.225

Instead, we take an alternative approach: we shift the function such that V (0) = 0,226

and add a small quadratic regularization term to ensure strict positive definiteness.227

V (x) = σk+1(g(x)− g(0)) + ϵ∥x∥22. (1.12)228

where σk is a positive convex non-decreasing function with σk(0) = 0, g is the ICNN229

defined previously, and ϵ is a small constant. These terms together still enforce230

(strong) convexity and positive definiteness of V .231

8

σ(x)

d

σ′(x)

d

Figure 1.2: Rectified Huber Unit (ReHU), necessary for continuously differentiable
Lyapunov functions.

Continuously differentiable. Although not always required, several of the condi-232

tions for Lyapunov stability are simplified if V is continuously differentiable. ReLU233

is discontinuous around 0, and the soft-plus smoothed ReLU is not zero at the origin.234

We use a smoothed version with quadratic knee in [0, d], called the Rectified Huber235

Unit (ReHU):236

σ(x) =

0 if x ≤ 0

x2/2d if 0 < x < d

x− d/2 otherwise

. (1.13)237

An illustration of this activation is shown in Figure 1.2.238

Optionally warped input space. Our construction so far guarantees that the239

Lyapunov function has no local optima by making it convex. This is sufficient but not240

necessary, and it may even impose too strict a constraint on the learned dynamics.241

We can relax this function by allowing the input to the ICNN to be warped by any242

continuously differentiable invertible function F : Rn × Rn. i.e., using243

V (x) = σk+1(g(F (x))− g(F (0))) + ϵ∥x∥22. (1.14)244

as the Lyapunov function. Invertibility ensures that the level sets of V , which are245

convex, map to contiguous regions of the composite function g ◦ F . This allows the246

resultant Lyapunov function to be non-convex without having any optima other than247

the global.248

9

With these conditions in place, we have the following result.249

Theorem 1. The dynamics defined by250

ẋ = f(x) (1.15)251

are globally exponentially stable to the equilibrium point x = 0. Where f is from252

Eqn. 1.10 and V is from Eqn. 1.12 or Eqn. 1.14, and f̂ and V functions have finite,253

bounded weights.254

Details. The proof is straightforward, and relies on the properties of the networks255

created above. First, note that by our definitions we have, for some M ,256

ϵ∥x∥22 ≤ V (x) ≤M∥x∥22 (1.16)257

where the lower bound follows from Eqn. 1.12 and the fact that g is positive. The258

upper bound follows from the fact that the ReHU activation is linear for large x and259

quadratic around 0. This in turn implies that V (x) behaves linearly as ∥x∥ → ∞, and260

is quadratic around the origin, so can be upper bounded by some quadratic M∥x∥22.261

The fact the V is continuously differentiable means that ∇V (x) (in f) is defined262

everywhere, bounds on ∥∇V (x)∥22 for all x follows from the the Lipschitz property of263

V , the fact that 0 ≤ σ′(x) ≤ 1, and the ϵ∥x∥22 term264

ϵ∥x∥2 ≤ ∥∇V (x)∥2 ≤
k∑

i=1

k∏
j=i

∥Uj∥2∥Wi∥2 (1.17)265

where ∥ · ∥2 denotes the operator norm when applied to a matrix. This implies that266

the dynamics are defined and bounded everywhere owing to the choice of function f̂ .267

Now, consider some initial state x(0). The definition of f implies that268

d

dt
V (x(t)) = ∇V (x)T

d

dt
x(t) = ∇V (x)Tf(x) ≤ −αV (x(t)). (1.18)269

10

−2 −1 0 1 2
−2

−1

0

1

2

Nominal f̂

−2 −1 0 1 2

Lyapunov Function V

−2 −1 0 1 2

Stable f

Figure 1.3: (left) Nominal dynamics f̂ for random network; (center) Convex positive
definite Lyapunov function generated by random ICNN with constraints from Section
1.3.1; (right) Resulting stable dynamics f .

Integrating this equation gives the bound270

V (x(t)) ≤ V (x(0))e−αt (1.19)271

and applying the lower and upper bounds gives272

ϵ∥x(t)∥22 ≤M∥x(0)∥22e−αt =⇒ ∥x(t)∥2 ≤
M

ϵ
∥x(0)∥2e−αt/2 (1.20)273

as required for global exponential convergence.274

1.4 Empirical results275

We illustrate our technique on several example problems, first highlighting the inherent276

stability of the method for random networks, demonstrating learning on simple n-277

link pendulum dynamics, and finally learning high-dimensional stable latent space278

dynamics for dynamic video textures via a VAE model.279

11

−2 −1 0 1 2
−2

−1

0

1

2
Simulated

−2 −1 0 1 2

Learned f

−2 −1 0 1 2

Learned V

Figure 1.4: Dynamics of a simple damped pendulum. From left to right: the dynamics
as simulated from first principles, the dynamics model f learned by our method, and
the Lyapunov function V learned by our method (under which f is non-expansive).

1.4.1 Random networks280

As a powerful visualization of the fact that our model is stable by construction, we281

can plot the dynamics created by random networks, i.e., without any training at all.282

Because the dynamics models are inherently stable, these random networks lead to283

stable dynamics with interesting behaviors, illustrated in Figure 1.3. Specifically, we284

let f̂ be defined by a fully connected network and V be an ICNN. Both networks have285

two hidden layers with 100 nodes each, and are initialized by the Kaiming uniform286

initialization [18]. The U weights in the ICNN are further subject to a softplus unit287

to make them positive.288

1.4.2 n-link pendulum289

Next we look at the ability of our approach to model a dynamical system from290

kinematics, specifically the n-link pendulum. A damped, rigid n-link pendulum’s291

state x can be described by the angular position θi and angular velocity θi of each292

link i. As before f̂ and the Lyapunov function V have two hidden layers of 100 nodes,293

with properties described in Section 1.3.1. Models are trained with pairs of data294

(x, ẋ) produced by the symbolic algebra solver sympy, using simulation code adapted295

from [56].296

12

0 200 400 600 800 1,000
102

103

104

105

Timestamp

E
rr
o
r

Error at each time
for 8-link pendulums

Simple
Stable

1 2 4 6 8

Number of links n

Average error over 999 timesteps
for n-link pendulums

Figure 1.5: Error in predicting θ, θ̇ in 8-link pendulum at each timestep (left); and
average error over 999 timesteps as the number of links in the pendulum increases
(right).

In Figure 1.4, we compare the simulated dynamics with the learned dynamics in the297

case of a simple damped pendulum (i.e. with n = 1), showing both the vector field298

and a single simulated trajectory, and draw a contour plot of the learned Lyapunov299

function. As seen, the system is able to learn dynamics that can accurately predict300

motion of the system even over long time periods. We can also recover the laws of301

conservation of energy implicit in the data, including the fact that kinetic energy is302

lost slowly but not potential energy.303

We also evaluate the learned dynamics quantitatively varying n and the time horizon304

of simulation. Figure 1.5 presents the total error over time for the 8-link pendulum,305

and the average cumulative error over 1000 time steps for different values of n. While306

both the simple and stable models show increasing mean error at the start of the307

trajectory, our model is able to capture the loss of energy in the physical system and308

in fact exhibits decreasing error towards the end of the simulation. In comparison,309

the error in the simple model increases.310

13

e(yt)

µt

log σt
f̂(zt)

V (zt)

zt ∈ N (µt, σ
2
t)

zt+1 ← zt + f(zt)
d(zt)

d(zt+1)

KL(N (µt, σ
2
t)∥N (0, I))

∥d(zt)− yt∥22

∥d(zt+1)− yt+1∥22

Figure 1.6: Structure of our video texture generation network. The encoder e and
decoder d form a Variational Autoencoder, and the stable dynamics model f is trained
together with the decoder to predict the next frame in the video texture.

1.4.3 Video Texture Generation311

Finally, we apply our technique to stable video texture generation, using a Variational312

Auto-Encoder (VAE) [23] to learn an encoding for images, and our stable network to313

learn a dynamics model in the latent space. Given a sequence of frames (y0, y1, . . .),314

we feed the network the frame at current time t and train it to reconstruct the frames315

at the current time t and subsequent time-step t + 1. Specifically, we consider a316

VAE defined by the encoder e : Y → R2n giving mean and variance µ, log σ2
t = e(yt),317

latent state zt ∈ Rn ∼ N (µt, σ
2
t), and decoder d : Rn → Y, yt ≈ d(zt). We train the318

network to minimize both the standard VAE loss (reconstruction error plus a KL319

divergence term), but also minimize the reconstruction loss of a next predicted state.320

We model the evolution of the latent dynamics at zt+1 ≈ f(zt), or more precisely321

yt+1 ≈ d(f(zt)). In other words, as illustrated in Figure 1.6, we train the full system322

to minimize323

minimize
e,d,f̂ ,V

T−1∑
t=1

(
KL(N (µt, σ

2
t I∥N (0, I)) + Ez

[
∥d(zt)− yt∥22 + ∥d(f(zt))− yt+1∥22

])
(1.21)

324

We train the model on pairs of successive frames sampled from videos. To generate325

video textures, we seed the dynamics model with the encoding of a single frame326

14

−10 15

-2

18
Stable Model Run 1

0 25

0

20
Stable Model Run 2

-5 15

-10

8
Stable Model Run 3

−2× 1030 0

0

1.2× 1030
Naive Model

0

300

st
ep

s

Stable Frame Number
Model 0 10 20 30 40 50 100 150 200 250

Run 1

Run 2

Run 3
Naive
Model

Figure 1.7: Samples generated by our stable video texture networks, with associated
trajectories above. The true latent space is 320-dimensional; we project the trajectories
onto a two-dimensional plane for display. For comparison, we present the video texture
generated using an unconstrained neural network in place of our stable dynamics
model.

15

and numerically integrate the dynamics model to obtain a trajectory. The VAE327

decoder converts each step of the trajectory into a frame. In Figure 1.7, we present328

sample stable trajectories and frames produced by our network. For comparison,329

we also include an example trajectory and resulting frames when the dynamics are330

modelled without the stability constraint (i.e. letting f in the above loss be a generic331

neural network). For the naive model, the dynamics quickly diverge and produce332

a static image, whereas for our approach, we are able to generate different (stable)333

trajectories that keep generating realistic images over long time horizons. We control334

the “temperature” of the generation process by adding controlled amounts of random335

noise to the system at each step.336

1.5 Conclusion337

We proposed a method for learning provably stable non-linear dynamical systems using338

neural networks. The approach jointly learns a convex positive definite Lyapunov339

function along with dynamics constrained to be stable according to these dynamics340

everywhere in the state space. We show that these models can be integrated into341

other deep architectures such as VAEs, and learn complex latent space dynamics342

is a fully end-to-end manner. Although we have focused here on the autonomous343

(i.e. uncontrolled) setting, the method opens several directions for future work, such344

as integration into dynamical systems for control or for model-based reinforcement345

learning settings. Having stable dynamics as a neural-network primitive can be useful346

in many diverse contexts, and combining these stable systems with the representational347

power of deep networks offers a powerful tool in modeling dynamical systems.348

1.6 Adaptation to Stable Control and RL349

After the successes of our stable dynamics model, we attempted to extend it to also350

learn stable policies and value functions. The intuitive extension to this is to replace351

the dynamics model f̂ with fixed (known) dynamics f̃ and a learnable policy network352

16

π. That is, we train to minimize:353

ReLU
(
∇V (x)T f̃(x, π) + αV (x)

)
(1.22)354

given traces from simulated dynamics. We also transformed the dynamics so that355

the goal state was positioned at the origin, choosing suitable transformations for the356

dynamics and Lyapunov functions. As required by the approach, we attempted to357

train it from trajectory samples to minimize the error over one step.358

We were able to successfully learn stabilizing controllers for toy examples such as a359

simple damped pendulum and for the cartpole problem. Unfortunately, we were not360

able to learn a swing-up controller for either environment, or any type of controller361

for an Acrobot2 or more complex locomotion tasks. We observed that the training362

would consistently fail in the same way: the nominal dynamics function would diverge363

to the point of uselessness, followed by the learned Lyapunov function collapsing to a364

trivial function.365

This persists despite any amount of regularization, hyperparameter tuning, and366

even across a variety of environments. Contemporary efforts in the literature were367

similarly unable to scale this approach to locomotion tasks. The consistent failure368

of this method suggested that an underlying principle was being violated, and that369

regularization was not able to address that. We eventually investigated how the370

difference in distributions between the data used to train the purportedly stable371

controller and the policy the controller was attempting to learn, which led us to the372

work in the next chapter.373

2A two-link pendulum with a single actuator in the middle joint. A pendulum with an actuator
at the fixed joint is a Pendubot [52].

17

18

Chapter 2374

The Pitfalls of Regularization in375

Off-Policy TD Learning376

Temporal Difference (TD) learning is ubiquitous in reinforcement learning, where it is377

often combined with off-policy sampling and function approximation. Unfortunately,378

this combination of conditions (the deadly triad) often leads to unstable training and379

unbounded error. Modern RL methods often implicitly assume that regularization is380

sufficient to mitigate the problem and the standard deadly triad examples from the381

literature are not able to refute this. In this chapter, we introduce a series of new382

counterexamples to show that this problem is not solved by regularization. We show383

that TD methods can fail to learn a non-trivial value function under any amount of384

regularization, that regularization can itself induce divergence; and we show that one385

of the most promising mitigations (Emphatic-TD algorithms) may also diverge under386

regularization. We further demonstrate such divergence when using neural networks387

as function approximators. Thus, we argue that there needs to be much more care in388

the application of regularization to RL methods.389

From “The Pitfalls of Regularization in Off-Policy TD Learning” by Manek and390

Kolter (2022)391

19

2.1 Introduction392

Temporal Difference (TD) learning is a method for learning expected future-discounted393

quantities from Markov processes, using transition samples to iteratively improve394

estimates. This is most commonly used to estimate expected future-discounted395

rewards (the value function) in Reinforcement Learning (RL). Advances in RL allow396

us to use powerful function approximators, and also to use “off-policy” sampling397

strategies (i.e. which do not naively follow the underlying Markov process.) When TD,398

function approximation, and off-policy training are all combined, learned functions399

exhibit severe instability and divergence, as classically observed by Williams and400

Baird III [59] and Tsitsiklis and Van Roy [54]. This combination is known in the401

literature as the deadly triad [48, pg. 264], and while many contemporary variants402

of TD are designed to converge despite the instability, the quality of the solution at403

convergence may be arbitrarily poor [24].404

A common technique to avoid unbounded error is ℓ2 regularization [53], i.e. penalizing405

the squared norm of the weights in addition to the TD error. This is generally406

understood to bound the worst-case error in exchange for biasing the model and407

potentially increasing the error everywhere else. When used on three common408

examples of the deadly triad [24, 59, 48, pg. 260], regularization appears to mitigate409

the worst aspects of the divergence in practice. Consequently, it has become an410

essential assumption made by many RL algorithms [8, 33, 50, 61, 64, 63, 27] and is411

seen as routine and innocuous.412

We argue that this perspective on regularization in off-policy TD is fundamentally413

mistaken. While regularization is indeed well-behaved and innocuous in classic414

fully-supervised contexts, the use of bootstrapping in TD means that even small415

amounts of model bias induced by regularization can cause divergence. This is416

an oft-ignored phenomenon in the literature, and so we introduce a series of new417

counterexamples (summarized in Table 2.1) to show how regularization can have418

counterintuitive and destructive effects in TD. We show that vacuous solutions419

and training instability are not solved by the use of regularization; that applying420

20

regularization can sometimes induce divergence and increase worst-case error; and421

that Emphatic-TD based algorithms—which are the most promising way to correct422

stability from off-policy training—can themselves diverge when regularized. We423

finally also illustrate misbehaving regularization in the context of neural network424

value function approximation, demonstrating the general pitfalls of regularization425

possible in RL algorithms. Regularization needs to be treated cautiously in the426

context of RL, as it behaves differently than in supervised settings.427

Our counterexamples demonstrate these core ideas:428

TD learning off-policy can be unstable and/or have unbounded error even429

when it converges. Following well-established methods we show there is some430

off-policy distribution under which TD with linear value function approximation431

diverges and learns a model with unbounded error (even if it were able to converge432

to the TD fixed point). This concisely demonstrates key features of the training433

error: the error is small when the distribution is close to on-policy, but the error434

diverges around specific off-policy distributions. The intuition behind this, explained435

in Section 2.3, is that the off-policy1 TD update involves a projection operation that436

depends on the sampling distribution and can be arbitrarily far away from the true437

value. This basic fact has already been established by past work [59, 24], but our438

example is based upon a particular simple three-state MP, drawn in Figure 2.1a.439

Regularization cannot always mitigate off-policy training error. We next440

introduce regularization into our setting, and show how it changes the relationship441

between training error and off-policy training. As explained in Section 2.2, we penalize442

the ℓ2-norm of learned (linear) weights with some coefficient η; as η increases, the443

learned weights approach zero. However, in Example 1, we show that there exists444

an off-policy distribution such that for any non-negative η, the regularized TD fixed445

point attains strictly higher approximation error than the zero solution (i.e., the446

infinitely regularized point). We call such examples vacuous. In other words, vacuous447

1We consider a sampling distribution to be on-policy if it follows the stationary distribution of
the MP and off-policy otherwise; we do not explicitly consider a separate policy in this chapter.

21

value functions never do better than guessing zero for all states, for any amount of448

regularization.449

We further analyze this vacuous example in the context of the algorithm in [63].450

In this work, the authors assume the use of regularization to derive bounds on the451

learned error under off-policy sampling. Although these bounds are technically correct452

in the case of our counterexample, they are very loose, at about 2000 times the limit453

of vacuity. This highlights the challenge of formally relying on regularization to bound454

model error, and illustrates the danger of relying on regularization in theoretical RL.455

Small amounts of regularization can cause model divergence. There is a456

general implicit assumption in much ML literature that regularization monotonically457

shrinks learned weights and consequently the model output. This intuition comes458

from classic fully-supervised machine learning where it typically holds. But because459

TD bootstraps value estimates (i.e. learns values using its own output), the regularizer460

is composed arbitrarily often, and so it is possible for small amounts of bias to be461

arbitrarily magnified. We dub this phenomenon “small-eta divergence” and illustrate462

it in Example 2. We relate this to the presence of negative eigenvalues in an463

intermediate step of the solution and show that, in some settings, the error of the464

TD solution may be relatively small when applied with no regularization but adding465

regularization causes the model to have worse error than the zero solution.466

One common solution to this problem is to lower-bound η to guarantee that regular-467

ization behaves monotonically. However, we further show that such a lower bound468

may restrict the model to a domain in which the model is vacuous. That is, a model469

that is not vacuous becomes vacuous when regularized with this lower bound. We470

also show that it is not always possible to select a single η a priori, with examples471

of mutually-incompatible off-policy distributions where there is no η that achieves472

better than vacuous or nearly-vacuous results at different distributions.473

Emphatic-TD-based algorithms are vulnerable to instability from regular-474

ization. Emphatic-TD [49] attempts to solve the problem of training off-policy475

22

by resampling TD updates so they appear to be on-policy. This technique requires476

an emphasis model that decides how to scale each TD update, and learning this477

has been the key challenge preventing widespread adoption of Emphatic-TD. A478

recent paper [64] proposed learning this emphasis model using “reversed” TD while479

simultaneously learning the value model using regular TD. The resultant algorithm480

is called COF-PAC, and employs regularization to ensure that the two TD models481

eventually converge.482

We show that regularization, while necessary, can be harmful for such models in483

Example 3. Specifically, we construct a model that converges to the correct solution484

without regularization but to an arbitrarily poor solution when regularized. The485

intuition behind this is that regularizing the emphasis model changes the effective486

distribution of the TD updates to the value model, which can cause the value model487

to have arbitrarily large error. We complete the example by showing that regularizing488

the value function separately does not restore performance.489

Regularization can cause model divergence in neural networks. So far490

most analysis of the deadly triad in the literature focuses on the linear case. We491

extend our example to a nine-state Markov chain (shown in Figure 2.8), and show how492

the previously identified problems persist into the neural network case in Example 4.493

We show two key similarities: first, models trained at certain off-policy distributions494

may be vacuous. Second, small amounts of regularization counterintuitively increase495

error. This illustrates Example 2 in the NN case.496

2.2 Preliminaries and Notation497

Consider the n-state Markov chain (S, P,R, γ), with state space S, state-dependent498

reward R : S → R, and discount factor γ ∈ [0, 1]. P ∈ Rn×n is the transition matrix,499

with Pij encoding the probability of moving from state i to j. We wish to estimate500

the value function V : S → R, defined as the expected discounted future reward of501

being in each state: V (s)=̇E [
∑∞

t=0 γ
tR(st)| s0 = s]. A key property is that it follows502

23

Example 1 There exist off-policy distributions under which TD learns a vacuous
model (one which—despite any amount of regularization—never does
better than guessing zeros).

Example 2 Small values of the regularization parameter η can make TD diverge
in models that otherwise converge. This is an unavoidable effect of
bootstrapping in TD, and setting a lower-bound to exclude this may
render models vacuous.

Example 3 Emphatic-TD-inspired algorithms are a promising way to reweigh samples
and mitigate the effects of training off-policy. However, if this reweighing
is learned using TD, then regularization can bias the emphasis model
and cause the value model itself to diverge.

Example 4 Training instability and increased error due to the deadly triad also occur
when neural networks are used. We construct an empirical example and
draw qualitative comparisons.

Table 2.1: Summary of theorems.

s3

s1 s21⁄4

1⁄2
1⁄4

1⁄4

1⁄2
1⁄4

1⁄41⁄4

1⁄2

(a) Three-state MP.

1

4

1 1 2
1 1 2
1 1 2

 (2.1)

(b) Three-state MP.

Figure 2.1: Our three-state counterexample Markov Process. We use this to illustrate
how TD models can fail despite common mitigating strategies with linear function
approximation.

24

the Bellman equation:503

V = R + γPV (2.2)504

Using linear function approximation to learn V , we assume a matrix of feature-vectors

Φ ∈ Rn×k that is fixed, and a vector of parameters w ∈ Rk that is learned. The

Bellman equation is then:505

Φw = R + γ P Φw (2.3)506

When w is learned with TD, this equation is only valid if the TD updates are on-policy

(that is, they are distributed according to the steady-state probability of visiting each

state, written as π ∈ Rn). In the general case, where TD updates follow a (possibly)

different distribution µ ∈ Rn
0 , the TD solution is a fixed point of the Bellman operator

followed by a projection [24]:507

Φw = Πµ (R + γPΦw) (2.4)508

where the matrix Πµ = Φ(Φ⊤DΦ)
−1
Φ⊤D projects the Bellman backup onto the

column-space of Φ, reweighed by the state-distribution matrix D = diag(µ). This

yields the closed-form solution:509

w = A−1⃗b (2.5)510

Where A = Φ⊤D(I − γP)Φ and b⃗ = Φ⊤DR. When this solution is subject to ℓ2511

regularization, some non-negative η is added to ensure the matrix being inverted is512

positive definite:513

w∗(η) = (A+ ηI)−1⃗b (2.6)514

As will be important later, we note that as η increases it drives w∗(η) towards zero.515

25

2.3 Our Counterexamples516

Under deadly triad conditions are present, TD may learn a value function with517

arbitrarily large error even if the true value function can be represented with low518

error. Consider the three-state MP in Figure 2.1a, which we instantiate with the519

value function V = [1, 2.2, 1.05]⊤ and discount factor γ = 0.99. The reward function520

is computed as R← (I − γP)V . We choose a basis Φ with small representation error521

∥ΠµV − V ∥ ≤ ϵ:522

Φ =

 1 0

0 −2.2
1/2(1.05 + ϵ) −1/2(1.05 + ϵ)

 where ϵ > 0 (2.7)523

We first consider the unregularized (η = 0) case, closely following the derivation524

in [24]. We wish to show there is some sampling distribution µ such that error in the525

learned value function is unbounded. To do this, we set µ = [0.56(1− p), 0.56p, 0.44],526

where p ∈ (0, 1). We set ϵ = 10−4 and find p around which A is ill-conditioned by527

solving det(A) = 0:528

p = 0.102631 ∨ p = 0.807255 (2.8)529

A−1 (and consequently the TD error) can be made arbitrarily large by selecting p530

close to these values, which completes the introductory example. Now we look at the531

behavior of TD under regularization, which is the main contribution of this chapter.532

2.3.1 Regularization cannot always mitigate the error from533

training off-policy.534

There is a belief in the literature that regularization is a trade-off between reducing535

the blow-up of asymptotic errors and accurately learning the value function every-536

where else [8, 63]. However, this belief does not accurately capture the nature of537

regularization: we show that it is possible to learn models that never perform better538

26

than always guessing zero despite any amount of regularization. That is, the TD539

error at all η is at least as much as the error as η →∞. We call such models vacuous.540

Example 1. We use the same setting as in Section 2.3. When TD is regularized,541

there may exist some off-policy distribution at which TD learns a vacuous model. In542

notation:543

∥Φw∗(η)− V ∥ ≥ lim
η→∞
∥Φw∗(η)− V ∥ = ∥Φ0⃗− V ∥ = ∥V ∥ ∀η ∈ R+

0 (2.9)544

Details. We use the same setting as in Section 2.3. We observe that ŵ = [1,−1]⊤545

minimizes the least-squares error ∥Φŵ − V ∥, and further observe that a sufficient546

condition for a solution to be vacuous is that ŵ⊤w∗(η) ≤ 0. Solving:547

0 = ŵ⊤w∗(η) =
ηp− 0.233η − 0.304p2 + 0.276p− 0.025

η2 + 1.44ηp+ 0.215η − 0.193p2 + 0.175p− 0.016
(2.10)548

=⇒ p ∈ {0.102636, . . .} (2.11)549

We verify that TD is vacuous at p = 0.102636 by computing the TD error at550

convergence:551

∥Φw∗(η)− V ∥2
∣∣
p=p̃

=
η2(0.148 + 0.744η + η2)

η2(0.132 + 0.727η + η2)
∥V ∥2 ≥ ∥V ∥2 (∀η ∈ R+) (2.12)552

Since the fraction term in Equation 2.12 is obviously improper, we can conclude553

that our example will always have at least ∥V ∥ error over all η, and is therefore554

vacuous.555

We note that the error is not defined at η = 0 because this corresponds to a model556

divergence similar to our introductory example. In practice, the TD fixed point will557

still converge to a vacuous solution:558

lim
η→0
∥Φw∗(η)− V ∥2 = 0.148

0.132
∥V ∥2 > ∥V ∥2 (2.13)559

27

Geometry of vacuous linear models.560

We begin by noting that we can easily find the solution ŵ that minimizes the least-561

squares error ∥Φŵ − V ∥. If we consider this solution as a vector (as drawn in562

Figure 2.2a), we can immediately see that there is an ℓ2-ball around ŵ corresponding563

to the set of w∗(η) with no more than ∥V ∥ error.564

Similarly, we can trace the trajectory that the TD solution w∗(η) takes as η is565

increased from 0 to ∞. We know that, as η →∞, w∗(η) is crushed to zero and so566

all trajectories must eventually terminate at the origin. When regularized models567

are not vacuous, the trajectory intersects the non-vacuous-error ball. We see this in568

trajectory 2, where the error briefly dips below ∥V ∥ in Figure 2.2b.569

Intuitively, a sufficient condition for a solution to be vacuous is that it remains in the570

half-space that is tangent to and excludes the non-vacuous parameter ball. This is571

equivalent to finding some distribution µ such that ŵ⊤w∗(η) ≤ 0 for all η, which we572

numerically solve to obtain the model in trajectory 1. From Figure 2.2a we can see573

the trajectory remains in the half-space, and from Figure 2.2b we can see that the574

error is never less than ∥V ∥. Trajectory 1 is a vacuous example.575

We observe that Example 1, because it remains entirely in the half-space ŵ⊤w∗(η) ≤ 0,576

could easily be generalized to any form of convex regularization such as ℓ1, ℓ2, ℓ∞, etc.577

We leave this for future work.578

This intuition does not persist in the neural network case (discussed in Section 2.3.4).579

In that case, the relationship between parameters and error does not admit a clean580

non-vacuous ball, but instead a deeply non-linear set of states. The resultant geometry581

does not admit a clean, intuitive, explanation.582

A second example.583

We present a second example where the error is stationary with respect to the584

regularization parameter. This is worse than Example 1 because we are able to show585

that the point the model converges to is independent of regularization. This example586

28

0

ŵ

(1)

(2)

(3)

(a) As η increases, w∗(η) traces different trajectories at different µ. ŵ
minimizes the error, and we shade the area with TD error less than ∥V ∥.

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102
10−1

100

101

102

∥V ∥

ϵ

(1)

(2)

(3)

Regularization parameter η

E
rr
or

at
co
n
ve
rg
en

ce

(b) We plot the error curves corresponding to the three w∗(η) trajectories,
along with ∥V ∥. Trajectory 1 is vacuous because the error is at least ∥V ∥
for all η.

Figure 2.2: Plotting the trajectory of the parameters on above and the errors below,
we show how our counterexample 1 is never better than ∥V ∥ because it remains
in half-space where ŵ⊤w∗(η) ≤ 0. For comparison, we show trajectory 2 that is
improved by regularization, and 3, which exhibits small-η errors. (The trajectories
are distorted, so the errors in the two plots are not directly comparable.)

29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

η →∞

η = 0

p
=

0.
71

5
p in sampling distribution µ = [p/2, p/2, 1− p]

T
D

er
ro
r

Figure 2.3: We plot TD error against p for our three-state MP with ϵ = 10−4. This
shape is similar to that in [24]. There is a minima close to π (p ≈ 0.5), and an
asymptote at the singularity (p ≈ 0.715). At different levels of regularization the
error function moves between the unregularized case (η = 0) and the limiting case
(η →∞), as analyzed in Section 2.3.1. We show that there is some p at which the
error is never below the η →∞ line.

30

is the natural three-state extension to the two-state counterexample by Kolter [24].587

Details. We use the same setting as in Section 2.3, except the value function is V =588

[1, 1, 1.05]⊤ and basis Φ selected to have small representation error ∥ΠDV − V ∥ ≤ ϵ:589

Φ =

 1 0

0 −1
1/2(1.05 + ϵ) −1/2(1.05 + ϵ)

 where ϵ > 0 (2.14)590

We set ϵ = 10−4 and write down w∗(η) in terms of g, a scalar function of η and p:591

w∗(η) = (A+ ηI)−1⃗b =
(2η + p)(0.925− 1.29p)

100η2 + 47.4pη + 1.85η − 1.30p2 + 0.927p
·
[

1

−1

]
(2.15)592

≡ g(p, η)

[
1

−1

]
(2.16)593

When g(p, η) ≤ 0, the TD solution is vacuous. We show that directly:594

∥Φw∗(η)− V ∥ = ∥g(p, η)Φ ∗ [1,−1]⊤ − Φ ∗ [1,−1]⊤∥ = ∥g(η)− 1∥ · ∥V ∥ (2.17)595

When g(p, η) ≤ 0, then ∥g(p, η) − 1∥ ≥ 1 for all η and the TD solution is vacuous.596

We find such a solution by noting the numerator has two roots in p, one of which597

corresponds to a vacuous solution: g(0.715083, η) = 0 (∀η), and this completes the598

example!599

In this setting, when TD updates follow the sampling distribution p ≈ 0.715083, the600

error of the model at convergence is always ∥V ∥ regardless of regularization. Our601

example converges to the same vacuous value regardless η.602

We present this graphically in Figure 2.3, where we plot the relationship between the603

off-policy distribution and the error at the TD fixed point. We plot the error with no604

regularization (η = 0) and the limiting error (η →∞).605

We can see that the TD error intersects the η →∞ line immediately before and after606

31

the singularity. Our counterexample corresponds to the second root (that is, the607

intersection point at higher p.) That corresponds to the stationary point between the608

asymptote that is crushed and the error on the right that increases. If our simpler609

derivation proved unsatisfying, we can also derive this counterexample using this fact:610

0 =
d

dη
ŵ⊤w∗(η) =

p(p− 0.715083)

p(p− 0.714303)2
(2.18)611

From this, we can easily see that the counterexample is at p = 0.715083. And this612

completes the example! We have discovered some p at which the TD error is always613

at least ∥V ∥, regardless of regularization, and so our example learns a vacuous value614

function.615

Breaking the Deadly Triad and our counterexample.616

In light of our example we examine the work of [63] in which the authors derive a617

bound for the regularized TD error under a novel double-projection update rule. We618

apply our example to their bound and show that their method may produce loose619

bounds on TD solutions, and so doesn’t quite break the deadly triad:620

∥Φw∗(η)− V ∥ ≤ 1

ξ

(
σmax(Φ)

2

σmin(Φ)4σmin(D)2.5
· ∥V ∥η + ∥ΠDV − V ∥

)
(2.19)621

for ξ ∈ [0, 1], where σmax and σmin denote the largest and smallest singular value

respectively. Theorem 2 from [63] bounds η, and therefore also b:622

η > arg inf
η
∥Φ− C0∥ = 0.177/(1− ξ)2 (2.20)623

inf
ξ
b(ξ, η) = 5.20× 104 ≈ 2000 ∗ ∥V ∥ (2.21)624

Their method bounds the error in our example by 2000 ∗ ∥V ∥, which is tremendously625

loose.626

32

Analyzing the second example starting from Equation 2.19:627

∥Φw∗(η)− V ∥ ≤ b(η, ξ) =
1

ξ

(
σmax(Φ)

2

σmin(Φ)4σmin(D)2.5
· ∥V ∥η + ∥ΠDV − V ∥

)
(2.22)628

= 1/ξ · (38.0η + 8.07× 10−5) (2.23)629

for ξ ∈ [0, 1], where σmax and σmin denote the largest and smallest singular value

respectively. Theorem 2 from [63] bounds η, and therefore also b:630

η > arg inf
η
∥Φ− C0∥ = 0.367(6.86− 13.7ξ + 6.86ξ2)

−1
(2.24)631

inf
ξ
b(ξ, η) = 13.8 = 7.86 ∗ ∥V ∥ (2.25)632

Under our example, their method bounds the error at no more than 7.86∗∥V ∥, which633

is a very loose bound that permits vacuous solutions. This illustrates the risk of634

trying to regularize away singularities, particularly in theoretical work.635

Investigating the cause of the loose bounds reveals that the presence of σmin(D)2.5636

in 2.19 is largely responsible. As D is a diagonal matrix encoding the sampling637

distribution, σmin(D) is the smallest sampling rate of any state, and so the bound638

must be at least η
ξn2.5 for any perfectly representable n-state MP. Unfortunately, this639

appears to be fundamental limit caused by finding a linear bound to an error that640

scales non-linearly, and following their derivation does not readily admit a way to641

improve this.642

2.3.2 Small amounts of regularization can cause large in-643

creases in training error.644

There is a general assumption in the literature that ℓ2 regularization monotonically645

shrinks the learned weights. While this is true in classification, regression, and other646

non-bootstrapping contexts, this is not true in TD. Because TD bootstraps values, it647

composes the regularization over itself arbitrarily deep, and so model bias may be648

arbitrarily magnified.649

33

This can be understood in terms of the eigenvalues of the matrix A in Equation 2.6.650

By increasing values along the diagonal, ℓ2 regularization increases eigenvalues of651

the matrix (A+ ηI) to ensure it is positive definite. Under off-policy distributions,652

it is possible for A to have eigenvalues that are negative or zero. This implies that653

there are η for which det(A+ ηI) = 0, and selecting η close to these values allows us654

to achieve arbitrarily high error. We show one such case in Example 2. This is not655

merely theoretical–we demonstrate this in the neural network case in Section 2.3.4.656

Example 2. When TD is regularized, the model may diverge around (typically657

small) values of η. Lower-bounding η, a common mitigation, can make well-behaved658

models vacuous. It is not always possible to select a single value of η that makes659

models vacuous at different sampling distributions.660

Details. Using our three-state example, we set µ = [0.05, 0.05, 0.9] and solve for661

det(A+ ηI) = 0:662

0 = det(A+ ηI) = η2 + 5.45× 10−2η − 7.47× 10−3 =⇒ η = 0.0634 (2.26)663

As in the introductory example, the error grows arbitrarily large as η → 0.0634.664

The same analysis is repeated for our second example in 2.3.1. We set p = 0.9 and665

solve for det(A+ ηI) = 0:666

Details.

0 = 100η2 + 47.4pη + 1.85η − 1.30p2 + 0.927p (2.27)667

η = 0.00482577 ∨ η = −0.45 (2.28)668

Note that the denominator of g(p, η) is proportional to det(A+ ηI), and so g(0.9, η)669

and the error at the TD fixed point can be made arbitrarily large by selecting η close670

to 4.83× 10−3. As this is the only positive root, the model does not diverge at other671

values.672

This small-η divergence effect can appear in several ways, illustrated in Figure 2.4a.673

34

Typically, this appears as one or more points at which TD error diverges before the674

region at which regularization reduces the model error below ∥V ∥. The first and675

second plot in Figure 2.4a show two such cases, where the error increases sharply at676

two and one points respectively.677

“Nearly” PSD assumption. In the literature, it is commonly assumed that A is678

“nearly” positive definite, where only a few eigenvalues are non-positive, and those679

are close to zero. This gives rise to the common mitigation of setting a lower-bound680

η0 such that (A+ ηI) is positive definite for η > η0. This may render an otherwise681

well-behaved model vacuous. The third plot in Figure 2.4a illustrates this: the model682

is not vacuous when unregularized, but is vacuous in the domain η > 10−2 where683

divergence is prohibited.684

The problem of a fixed η. A common practice in the literature is to set η before685

training, without regard for the sampling distribution. This is ill advised, as the value686

may be under- or over-regularizing depending on the sampling distribution. One such687

example is illustrated in Figure 2.4b, where selecting an η that minimizes the error688

for one distribution will lead to vacuous or nearly-vacuous results in the other two.689

A second example in Figure 2.2b has no single η for which trajectories 2 and 3 are690

both non-vacuous. This is especially relevant as regularization is commonly used to691

permit distribution drift during training, as discussed in Section 2.4. If the training692

distribution changes while η is fixed, then algorithms that can be proven to converge693

to good solutions under some original distribution may converge to poor solutions as694

the distribution drifts.695

2.3.3 Emphatic approaches and our counterexample696

Emphatic-TD eliminates instability from off-policy sampling by reweighing incoming697

data so it appears to be on-policy. There is considerable interest in making this more698

practical, especially by learning the importance and value models simultaneously. A699

leading example of this work is COF-PAC [64], which uses ℓ2-regularized versions700

35

∥V ∥

∥V ∥

T
D

er
ro
r

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

∥V ∥

Regularization parameter η

(a) Different MPs at off-policy distributions selected to show small-η
error. The error may increase at multiple η, and may even occur after
the optimal η.

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

∥V ∥

ϵ

Regularization parameter η

T
D

er
ro
r

(b) Three off-policy distributions with mutually incompatible η. There is
no η at which all models are not vacuous or nearly vacuous.

Figure 2.4: We plot TD error against η to show small-η errors (above) and mutually-
incompatible η (below). We also plot the error at the limit of vacuity ∥V ∥ and the
representation error ϵ.

36

of GTD2 [50] to learn both the value and emphasis models. The authors rely on701

regularization, particularly because the target policy changes during learning. This702

makes COF-PAC vulnerable to regularization-caused error. We illustrate this with703

Example 3 in which COF-PAC learns correctly when unregularized, but has large704

error when regularized.705

Example 3. Even if unregularized COF-PAC learns the value function with low706

error, regularizing it may induce arbitrarily large errror.707

Details. Conceptually, COF-PAC maintains two separate models that are each up-708

dated by TD: the emphasis and the value models. This emphasis model is used to709

reweigh TD updates so they appear to come from the on-policy distribution. Our710

strategy is to first show how regularization biases the emphasis model and then how711

this bias causes the value model to diverge. We begin with our three-state MP, noting712

its on-policy distribution is π = [.25 .25, .5]. We wish to learn the values using713

COF-PAC while sampling off-policy at µ = [.2 .2 .6].714

Now we introduce a key conceptual tool: υ(ηm), which is the effective distribution715

seen by the TD-updates, as a function of the emphasis regularization parameter716

ηm. Unregularized, COF-PAC is able to resample off-policy updates to the on-policy717

distribution: υ(0) ≡ π. If the model is regularized, then the effective distribution718

moves away from π. Figure 2.5a illustrates the distance between υ(ηm) and π as the719

regularization parameter increases.720

We can use the effective distribution to compute the error in the value model. Plotting721

the relationship between the value function error and ηm in Figure 2.5b, we can see722

the value function has asymptotic error around ηm = 2 × 10−4. This shows how723

COF-PAC may diverge with specific regularization.724

COF-PAC also allows for the value function to be separately regularized with param-725

eter ηv. We show the effect of this in Figure 2.5c, where the value function never does726

much better than ∥V ∥ making it (nearly) vacuous. We can conclude that regularizing727

the emphasis model may cause the value model to diverge, and this cannot be fixed728

37

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1
0

0.4

2
·1
0
−
4

Emphasis ηm

∥υ
(η
)
−
π
∥

Emphasis Model Error

(a) ηm distorts the emphasis model.

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

2
·1
0
−
4

Emphasis ηm

∥Φ
v
w

∗ v
−
V
∥

Value Model Error

(b) ηm distorts value.

10−8 10−7 10−6 10−5 10−4 10−3

∥V ∥

ϵ Value ηv

∥Φ
v
w

∗ v
−
V
∥

Value Model Error

(c) ηv can’t fix this.

Figure 2.5: Regularization on the emphasis model (ηm) distorts the effective dis-
tribution (Figure 2.5a). Specific values of ηm induce the value function to diverge
(Figure 2.5b). The resultant value function is vacuous (Figure 2.5c). Under COF-PAC,
regularization can greatly increase model error.

38

March 31, 2023
DRAFT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

η = 0

η = 2 · 10−4

With Regularization

distrib. param. he

d
is
tr
ib
.
er
r.
∥υ

(η
)
−

π
∥

Emphasis Model Error

(a) distribution is [hm/2, hm/2, (1− hm)]

March 31, 2023
DRAFT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
η = 0

υ
(0
)

υ
(2
·1
0−

4
)

With Regularization

distrib. param. hv

va
lu
e
er
r.
∥Φ

v
w

∗ v
−

V
∥

Value Model Error

(b) distribution is [(1− hv)/2, hv/2, 0.5]

Figure 2.6: Regularization distorts the emphasis model (above), which induces the
value function (below) to move to a singularity. Unregularized models are shown
in green, regularized models in purple. Regularization can interact with emphasis
models to significantly worsen learned value functions.

39

by regularizing the value function separately.729

Mathematical details of example. We use an MP with the same transition730

function as in Figure 2.1a, with separate bases Φm and Φv for the emphasis and value731

stages respectively. We assume that our interest in all states is uniformly i = 1.732

We begin by setting the off-policy sampling distribution of µ = [.2 .2 .6], used as the733

diagonal matrix Dµ = diag(µ). Thanks to the simple structure of our example, we734

can directly compute the emphasis as m = i
1−γ
· πD−1

µ ∝ (5/4, 5/4, 5/6). We select a735

basis that allows us to represent this:736

Φm =

 5/4 0

0 −1/100 · 5/4
5/12 −1/100 · 5/12

 (2.29)737

We deliberately choose Φm to have a poor condition number for reasons that will

become apparent later. We can represent c · (5/4, 5/4, 5/6) exactly for any constant c:738

Φm · (1,−100) · c = c · (5/4, 5/4, 5/6) (2.30)739

Using Equation 5 from [64], we define the matrices:740

Cm = Φ⊤
mDµΦm =

[
0.417 −1.04× 10−3

−1.04× 10−3 4.17× 10−5

]
(2.31)741

Am = Φ⊤
m(I − γP⊤)DµΦm =

[
0.159 1.536× 10−3

1.536× 10−3 1.59× 10−5

]
(2.32)742

And we apply these to the formulation in Lemma 3 and compute the emphasis weights

as a function of the regularization wm : R+
0 → R+:743

w∗
m(η) = (A⊤

mC
−1
m Am + ηI)−1A⊤

mC
−1
m Φ⊤

mDi (2.33)744

40

We can then use this to compute the new apparent distribution υ(η), which is the745

effective distribution that the updates to the value model see, and it is equal to the746

emphasis multiplied by the off-policy distribution.747

υ(η) = Φm · w∗
m(η) ·D (2.34)748

Without any regularization, this should be exactly equal to the on-policy distribution.749

υ(0) = [0.25 0.25 0.5] ≡ π (2.35)750

When we compute this value with a small amount of regularization η = 2× 10−4, we

observe that the apparent distribution drifts far away from the on-policy distribution.751

υ(2× 10−4) = [0.44 0.06 0.5] (2.36)752

The proximate cause of this is the poor condition number of C, caused by the 1
100

753

scale factor applied to the second column of Φm. This allows η to affect different754

columns by different (relative) amounts in the definition of w∗(η), which pushes it755

away from the symmetric solution. This error shift is visualized in Figure 2.6a.756

So far, we have shown how regularization causes a shift in the apparent distribution757

that the TD updates see. To complete the example we show how this moves the758

fixed point of the value function away from a stable point into an asymptote where it759

may grow without bounds. This second phase follows in the same pattern as the first760

phase, starting with the desired value function: V = [1 2.69 1.05] and a basis that761

can nearly2 represent the value function:762

Φv =

 1 0

0 −2.69
1/2(ϵ+ 1.05) −1/2(ϵ+ 1.05)

 (2.37)763

ϵ = 2× 10−4 (2.38)764

2As before, this is necessary as it forces some amount of function approximation.

41

We use this basis to compute the state-rewards R = (I − γP)V = [−0.43 1.26 − 0.38]

and define the matrices Av and Cv and the solution w∗
v(η):765

Av = Φ⊤
v (I − γP⊤)DΦv (2.39)766

Cv = Φ⊤
v DΦv (2.40)767

w∗
v(η) = (A⊤

v C
−1
v Av + ηI)−1A⊤

v C
−1
v Φ⊤

v DR (2.41)768

We can use this solution to compute the error between the value function and the

true values, ∥Φvwv(η)−V ∥. First, under the correctly-resampled distribution without

regularization υ(0) ≡ π:769

Φvw
∗
v(0)|D=diag(υ(0)) = 0.000865 (2.42)770

Then, with regularization in the value function (but not in the emphasis function):771

Φvw
∗
v(2× 10−4)|D=diag(υ(0)) = 0.0162 (2.43)772

Then, under the apparent distribution υ(2× 10−4) induced by use of regularization

in the emphasis function, without and with regularization respectively:773

Φvw
∗
v(0)|D=diag(υ(2×10−4)) = 418.601 (2.44)774

Φvw
∗
v(2× 10−4)|D=diag(υ(2×10−4)) = 3.00 (2.45)775

It is immediately obvious that the use of regularization in the emphasis function776

causes the learned value function to be incorrect. Including a regularizing term in the777

value estimate is not sufficient to fix the value function. This completes the example.778

The non-expansion condition and our counterexample.779

COF-PAC makes the strong assumption that Kolter’s non-expansion condition [24,780

eqn. 10] holds in both the emphasis and value models [64, asm. 4]. This is itself a781

very strong condition because it inherently assumes that both the emphasis and value782

42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.7: The non-expansion condition holds in the shaded region of each graph.
These correspond to Figure 2.3, Figure 2.6a, and Figure 2.6b respectively.

models are not subject to runaway TD [64, asm. 4]. This condition selects a convex783

subset of distributions under which one-step transition followed by projection onto Φ is784

non-expansive. We illustrate these regions in Figure 2.7. Even in the one-dimensional785

parameterization shown, this condition only holds in a small sub-region of the space,786

which suggests that it is a very strong condition.787

2.3.4 Applied to multi-layer networks788

We use a 9-state variant of our example to study the deadly triad in multi-layer neural789

networks (NNs). The MDP and its transition function are depicted in Figure 2.9; we790

have transformed the original MDP by replacing each self-loop with two additional791

states, forming a clique with the original state. We also define a deterministic792

43

March 31, 2023
DRAFT

s3,1

s1,1 s2,1
1⁄4

1⁄2

1⁄4

1⁄2

1⁄41⁄4
s2,1

s2,2

s2,3

e⁄3

e⁄3

e⁄3

Figure 2.8: Our three-state counter-example MP is extended to nine states to illustrate
how the deadly triad problem could manifest in multi-layer neural networks. The
self-loop in the original example is replaced with a clique with uniform transitions
except as labelled with the original edge weight e.

1

12

1 1 1 3 6
4 4 4
4 4 4
3 1 1 1 6

4 4 4
4 4 4

3 3 2 2 2
4 4 4
4 4 4

(a) Transition function of the MDP.

1

2

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1

(b) Observation function of the MDP.

Figure 2.9: Our three-state counterexample Markov Process. We use this to illustrate
how TD models can fail despite common mitigating strategies with linear function
approximation.

44

observation function o : S → B6. where each state is encoded as the concatenation of793

the one-hot vector of its subscripts. The value function is assigned pseudo-randomly794

in range [−1, 1], and a consistent reward function is computed. We select the family795

of sampling distributions µ ∝ [4h, h, h, 4h, h, h, 8(1−h), 4(1−h), 4(1−h)], where796

the on-policy distribution is at h = 0.5.797

We train a simple two-layer neural network with 3 neurons in the hidden layer. The798

value function is assigned randomly in range [−1, 1].799

Example 4. Vacuous models and small-η error also occur in neural network condi-800

tions.801

Details. We train 100 models using simple semi-gradient TD updates under a fixed802

learning rate. We plot the mean and the 10th–90th percentile range in Figure 2.10a,803

with and without regularization. TD is known to exhibit high variance, and regular-804

ization is the traditional remedy for that. We corroborate this by noting that the805

performance of the unregularized model varies widely, but regularization leads to806

similar performance across initializations at the cost of increased error.807

First, we show that vacuous models may exist in the neural network case. In808

Figure 2.10a, note how there are some off-policy distributions under which both the809

regularized and unregularized models perform worse than the threshold of vacuity.810

This is numerical verification that vacuous models exist. Second, we show the small-η811

error problem in the neural network case in Figure 2.10b, where we plot the TD812

error against η at a fixed off-policy distribution. We observe that around η ≈ 10−3
813

the TD Error unexpectedly increases before decreasing, which clearly illustrates this814

phenomenon.815

We wish to learn the model with a two-layer network with k < n nodes in the inner816

layer. We define the network as f(o(si,j)) = tan−1(o(si,j) ∗ ω1) ∗ ω2. The parameters817

ω1 ∈ R6×k, ω2 ∈ Rk×1 are trained to convergence using simple TD updates with818

semi-gradient updates, a fixed learning rate, and without a target network.819

In addition to the example in Figure 2.10b, we present an additional example in820

45

Figure 2.11. The same Markov process, at a different off-policy distribution, attains821

a curve where the non-vacuous region lies before the divergent region, similar to822

the second row in Figure 2.4a. An added observation is that these two graphs are823

mutually incompatible – there is no fixed η that can simultaneously do better than824

vacuity in both, which promotes the idea of testing multiple regularization parameters825

or using an adaptive regularization scheme.826

2.3.5 Over-parameterization does not solve this problem827

Baird’s counterexample [59] shows how, in the linear case, that off-policy divergence828

can also happen with over-parameterization, as long as some amount of function829

approximation occurs. It is not obvious that this conclusion persists in the neural830

network case, so we include an additional example showing that small-η divergence is831

not solved by over-parameterization.832

In Figure 2.12 we plot models with 3 to 13 nodes in the hidden layer. For reference,833

the MDP has 9 states, so some models under-parameterize and some models over-834

parameterize. We observe that, in the low-regularization regime, increasing the835

number of parameters improves the error slightly. However, increasing the number836

of parameters in the hidden layer does not change the behavior in the the small-η837

divergence region.838

These qualitative links show a clear connection between the neural network case839

and the linear case, and highlights the importance of correctly handling off-policy840

sampling.841

2.4 Related Work842

Three examples of the deadly triad are common in the literature: the classic843

Tsitsiklis and Van Roy (w, 2w) example [48, p. 260], Kolter’s example [24], and844

Baird’s counterexample which shows how training instability can exist despite over-845

parameterization [59].846

46

March 31, 2023
DRAFT

0 0.2 0.4 0.6 0.8
10−2

10−1

100

101

∥V ∥2

Distribution parameter h

unregularized
regularized

(a) Mean and 10th–90th percentile errors of 100 NN value models trained
to convergence.

10−5 10−4 10−3 10−2 10−1 100
2

2.5

3

3.5

4

Regularization parameter η

(b) The relationship between error and η at the off-policy distribution
h = 0.31.

Figure 2.10: We illustrate how regularization interacts with NN value functions,
showing that the problems identified in this chapter persist in the NN case.

47

ℓ2 regularization is common when proving that an algorithm converges under a847

changing sampling policy. This is seen in GTD (analyzed in [61]), GTD2 [50], RO-848

TD [33], and COF-PAC [64]. This assumption may also be used to ensure convergence849

when training with a target network [63]. Despite the prevalence of regularization,850

the induced bias from using it is not well studied. It is often dismissed as a mere851

technical assumption, as in [8]. In this chapter, we contradict that and show how852

regularization may induce catastrophic bias. By showing concrete examples, this853

work hopes to inspire further investigation into regularization-induced bias in the854

same vein as [61].855

Alternatives to regularization and TD We focus on ℓ2 regularization in this856

chapter, which penalizes the ℓ2-norm of the learned weights; it is also possible to857

use ℓ1 regularization with a proximal operator/saddle point formulation as in [33],858

or any convex regularization term under a fixed target policy [61]. Instead of859

directly regularizing the weights, COP-TD uses a discounted update [13]. DisCor [25]860

propagates bounds on Q-value estimates to quickly converge TD learning in the861

face of large bootstrapping error; it is not clear if DisCor can overcome off-policy862

sampling. A separate primal-dual saddle point method has also been adapted to ℓ2863

regularization [9] and is known to converge under deadly triad conditions, and recent864

work [57] has derived error bounds with improved scaling properties in the linear865

setting, offering a promising line of research.866

Emphatic-TD [49] fixes the fundamental problem in off-policy TD by reweighing867

updates so they appear on-policy. The core idea underlying these techniques is to868

estimate the “follow-on trace” for each state, the (weighted, λ- and γ−discounted)869

probability mass of all states whose value estimates it influences. This trace is then870

used to estimate the emphasis, which is the reweighing factor for each update. While871

this family of methods is provably optimal in expectation, it is subject to tremendous872

variance in theory and practice, especially when the importance is estimated using873

Monte-Carlo sampling.3 In practice, these methods learn the follow-on trace using874

3Sutton and Barto’s textbook [48] says about Emphatic-TD applied to Baird’s example that “it
is nigh impossible to get consistent results in computational experiments.”

48

TD [19, 64] or similar [17], which makes them vulnerable to bias induced by the use875

of regularization.876

2.5 Relationship to modern RL algorithms877

It is still not obvious how strongly this instability affects modern RL algorithms,878

which are also sensitive to a variety of other failure modes. Unlike our examples,879

the sampling distribution changes during training, and regularization mechanisms880

are more complex than simple ℓ2 penalities. The exact relationship between the881

instabilities we study and RL algorithms is an open problem, but we offer two pieces882

of indirect evidence suggesting there is a link.883

First, in the offline/batch RL literature, it is well-known that online RL algorithms884

naively applied can catastrophically fail if the learned policy is not consistent with885

the data distribution. This is known as the distribution shift problem, [31, p. 26] and886

offline RL algorithms are generally constructed to explicitly address this. Second,887

when using experience replay buffers in online RL algorithms, policy quality generally888

improves when older transitions are more quickly evicted [10]. However, there are889

multiple factors at work here, and it is not possible to cleanly separate the instability890

from off-policy sampling from the remaining factors.891

2.6 Conclusion892

There is a tremendous focus in the RL literature on proving convergence of novel893

algorithms, but not on the error at convergence. Papers like [63] are laudable894

because they provide error bounds; even if the current bounds are loose, future895

work will no doubt tighten them. In this work, we show that the popular technique896

of ℓ2 regularization does not always prevent singularities and could even introduce897

catastrophic divergence. We show this with a new counterexample that elegantly898

illustrates the problems with learning off-policy and how it persists into the NN case.899

Even though regularization can catastrophically fail in the ways we illustrate, it900

49

remains a reasonable method that may offer a fair tradeoff—as long as we are careful901

to check that we are not running afoul of the failure modes we explain here. It may be902

possible to design an adaptive regularization scheme that can avoid these pathologies.903

For now, testing the model performance over a range of regularization parameters904

(spanning several orders of magnitude) is the best option we have to detect such905

pathological behavior.906

Emphatic-TD is perhaps the most promising area of research for mitigating off-policy907

TD-learning. The key problem preventing its widespread adoption is the difficulty908

in estimating the emphasis function, but future work in this area may be able to909

overcome this. Our example shows the risk of relying on regularization in practical910

implementations of such methods. It is absolutely critical that Emphatic algorithms911

correctly manage regularization to avoid the risks that we highlight here.912

50

10−5 10−4 10−3 10−2 10−1 100
1

2

3

4

Regularization parameter η

(a) h = 0.31 (From Figure 2.10b)

10−5 10−4 10−3 10−2 10−1 100
1

2

3

4

Regularization parameter η

(b) h = 0.95

Figure 2.11: The relationship between error and η at different off-policy distributions,
showing mutually incompatible regularization behavior. The shaded range indicates
the region between the 5th and 95th percentile of 100 differently-initialized models.

51

10−5 10−4 10−3 10−2 10−1 100
1

2

3

4

Regularization parameter η

(a) h = 0.31

10−5 10−4 10−3 10−2 10−1 100
1

2

3

4

Regularization parameter η

(b) h = 0.95

Figure 2.12: The relationship between η and error with different amount of model
parameterization (with 3, 5, 7, 9, 11, 13, and 64 nodes in the hidden layer, corre-
sponding to darkening colors.)

52

Chapter 3913

Projected Off-Policy TD for Offline914

Reinforcement Learning915

A key problem in offline Reinforcement Learning (RL) is the mismatch between the916

dataset and the distribution over states and actions visited by the learned policy,917

called the distribution shift. This is typically addressed by constraining the learned918

policy to be close to the data generating policy, at the cost of performance of the919

learned policy. We propose Projected Off-Policy TD (POP-TD), a new critic update920

rule that resamples TD updates to allow the learned policy to be distant from the data921

policy without catastrophic divergence. Unlike Emphatic-TD and the importance922

sampling literature, we resample to any “safe” distribution, not necessarily the on-923

policy. We show how this algorithm works on a well-understood toy example from924

the literature, and then characterize its performance with varying parameterization925

on a specially-constructed offline RL task. This is a novel approach to stabilizing926

off-policy RL, and sets the stage for future work on larger tasks.927

Paper in preparation, by Manek, Roderick, and Kolter (2023)928

53

3.1 Introduction929

Reinforcement Learning (RL) aims to learn policies that maximize rewards in Markov930

Decision Processes (MDPs) through interaction, generally using Temporal Difference931

(TD) methods. In contrast, offline RL focuses on learning optimal policies from a932

static dataset sampled following an unknown policy, possibly a policy designed for a933

different task. Thus, algorithms are expected to learn without the ability to interact934

with the environment. This is useful in environments that are expensive to explore935

(such as running a Tokamak nuclear reactor [7]), or high-dimensional environments936

with cheap access to expert or near-expert trajectories (such as video games). Levine937

et al. [30] present a comprehensive survey of the area.938

Since in offline RL the data is gathered before training begins, there is a mismatch939

between the the state-distributions implied by the learned policy and the data. When940

applying naive RL algorithms in this setting, they tend to bootstrap from regions941

with little or no data, causing runaway self-reinforcement. Offline RL algorithms like942

Conservative Q-Learning (CQL) [26] generally constrain the learned policy to remain943

within the support of the data. While this works well in practice, there still remains944

a large gap in performance between online and offline RL. One reason for this is an945

additional subtlety to distribution shift: because of the combination of off-policy RL946

and function approximation, it is possible for RL to diverge if the generating policy947

and the learned policy are sufficiently different even if the data has full support for948

the learned policy.949

We illustrate a simple case in Figure 3.1, where a simple grid environment is designed950

to elicit the shortest trajectory from start (S) to goal (G). Agents can move one step951

in each cardinal direction, reaching the goal yields a unit reward, and the episode952

ends on reaching the goal or any marked cell (X). We generate a dataset by following953

a suboptimal data policy (���) with sufficient dithering to guarantee that every state-954

action pair is represented. If we use a tabular Q-function, we can recover the optimal955

policy () and obtain the true value function. When we use a linear Q-function,956

however, the error is much larger. We find that about half of random initializations957

54

March 30, 2023
DRAFT

S

X X

X G

Figure 3.1: A simple grid environment illustrating distribution shift despite complete
support. We wish to learn the optimal trajectory () from a suboptimal data policy
(���) which is ϵ-dithered to get sufficient coverage. When we apply Q-learning methods
to this, training often diverges to arbitrarily poor values. This is a consequence of
distribution shift. In this paper, we propose a technique to solve this divergence.

lead to Q-functions that either diverge or converge to large error. This shows how958

even with full coverage of states and actions, distribution shift can be a significant959

source of error. We provide more details in Section 3.5.1.960

In this chapter, we introduce POP-TD, a novel method of mitigating the error from961

off-policy learning. We show theoretically that this method bounds the off-policy962

approximation error for TD-based RL methods. We illustrate the resampling process963

on a well-known toy example, and then demonstrate its effectiveness on an example964

of offline RL under distribution shift.965

3.2 Related Work966

Off-Policy TD Learning Instability from learning off-policy has also been studied967

in the classic RL literature. First described by Tsitsiklis and Van Roy [54], the use968

of TD learning, function approximation, and off-policy sampling may cause severe969

instability or divergence. This is known as the deadly triad [48, p. 264] and even if970

55

many variants of TD still converge, the quality of the solution at convergence may be971

arbitrarily poor [24].972

There are three existing lines of work in the literature that attempt to resolve this:973

regularization, Emphatic reweighing, and TD Distribution Optimization (TD-DO).974

The first attempts to regularize TD, typically with L2-norm weight regularization.975

Alternative regularization schemes are L1 [33], convex [61], and bounds propagation976

[25]. There are well-documented failure modes related to regularization [35]. The977

second line started with Emphatic-TD, in which Sutton, Mahmood, and White [49]978

note that it is possible to reweigh samples obtained off-policy so they appear to be979

on-policy. Such methods learn the follow-on trace using Monte-Carlo methods (in the980

original), TD [19, 64] or techniques similar to TD [17]. The third method, TD-DO,981

works by solving a small optimization problem on each TD update to reweigh samples982

to satisfy the Non-Expansion Criterion, which we introduce in the next section.983

Off-Policy and Offline Deep RL Nearly all modern TD-based deep RL methods984

perform off-policy learning in practice. To improve data efficiency and learning985

stability, an experience replay buffer is often used. This buffer stores samples from986

previous versions of the policy [38], and so the distribution of the data is not on-policy987

for the current version of the policy. Additionally, exploration policies, such as a988

epsilon greedy [48, p. 100] or Soft Actor Critic (SAC)-style entropy regularization [15]989

1, are often used, which also results in off-policy learning. In practice, the difference990

between the current policy and the samples in the buffer is limited by setting a limit to991

the buffer size and discarding old data; or by keeping the exploration policy relatively992

close to the learned policy. In practice, this is sufficient to prevent outright divergence,993

though the extent to which it decreases performance is not well-understood.994

However, in the offline RL setting where training data is static, there is usually a995

much larger discrepancy between the state-action distribution of the data and the996

distribution induced by the learned policy. This discrepancy presents a significant997

1While the original SAC algorithm is technically on-policy since it learns an entropy-regularized
value function, the entropy-regularization is often dropped from the value-function estimate in
practice to improve performance.

56

challenge for offline RL [30]. While this distributional discrepancy is often presented998

as a single challenge for offline RL algorithms, it is convenient to separate the two999

distinct aspects of this challenge and address them independently: support mismatch1000

and proportional mismatch. When the support of the two distributions differ, learned1001

value functions will have arbitrarily high errors in low-data regions. Support mismatch1002

is dealt with by either constraining the KL-divergence between the data and learned1003

policies [11, 28, 60], by penalizing or pruning low-support (or high-uncertainty) actions1004

[26, 62, 22].1005

Even when the support of the data distribution matches that of the policy distribution,1006

naive TD methods can produce unbounded errors in the value function [54]. We call1007

this challenge proportional mismatch.1008

Importance sampling (IS) [44] is one of the most widely used techniques to address1009

proportional mismatch. The idea with IS is to compute the differences between the1010

data and policy distributions for every state-action pair and re-weight the TD updates1011

accordingly. However, these methods suffer from variance that grows exponentially in1012

the trajectory length. Several methods have been proposed to mitigate this challenge1013

and improve performance of IS in practice [16, 13, 40, 39, 32], but the learning is still1014

far less stable than other offline deep RL methods. In this work, we propose a new1015

method to bound the value-function approximation errors caused by proportional1016

mismatch without the need to explicitly compute (or approximate) IS weights.1017

3.3 Problem Setting and Notation1018

Consider the n-state Markov chain (S, P, R, γ), with finite state space S, transition1019

function P : S × S → R+, reward function R : S → R, and discount factor γ ∈ [0, 1].1020

Because the state-space is finite, it can be indexed as S = {1, . . . , n}. This allows1021

us to use matrix rather than operator notation. The expected γ-discounted future1022

reward of being in each state V (s) := E [
∑∞

t=0 γ
tR(st)| s0 = s] is called the value1023

57

function. The value function is consistent with Bellman’s equation (in matrix form):1024

V = R + γPV (3.1)1025

In the linear setting, we approximate the value function as V (s) ≈ w⊤ϕ(s), where1026

ϕ : S → Rk is a fixed basis function and we estimate parameters w ∈ Rk. In matrix1027

notation, we write this as V ≈ Φw.1028

In this work, we are interested in the offline learning setting, where the sampling1029

distribution µ differs from the stationary distribution ν. In this setting, the previous1030

equation is insufficient. We need to account for the function approximation, and so1031

the TD solution is:1032

Φw = Πµ(R + γPΦw) (3.2)1033

where Πµ = Φ(Φ⊤DµΦ)
−1Φ⊤Dµ is the projection onto the column space of Φ weighted1034

by the data distribution µ through the matrix Dµ = diag(µ). This projection may be1035

arbitrarily far from the true solution, and so the error may be correspondingly large.1036

The literature bounds the error as:1037

Theorem 2. The error at the TD fixed point is ∥Φw − V ∥Dµ. Lemma 6 from [54]1038

bounds this in terms of error projecting V onto the column space of Φ:1039

∥Φw − V ∥Dµ ≤
1

1− γ
∥ΠµV − V ∥Dµ (3.3)1040

1041

3.3.1 The Non-Expansion Criterion (NEC)1042

Thus far we have left open the notion of a “safe” distribution to resample TD updates1043

to. The on-policy distribution is always safe, but we need to establish some criterion1044

for “safe” off-policy distributions. Tsitsiklis and Van Roy lay the groundwork for1045

this by analyzing the training of on-policy TD as a dynamical system and showing1046

58

that once TD reaches its fixed point, subsequent TD updates form a non-expansive1047

mapping around that fixed point (1996, lemma 4), and therefore prove that on-policy1048

TD does not diverge.1049

To do this, they begin with the fact that error bounds from on-policy TD follow1050

the property that the D−norm of any vector x ∈ Rn is non-expansive through the1051

transition matrix. That is: ∥Px∥D ≤ ∥x∥D, where D = diag(π). Kolter [24] extend1052

this analysis to the off-policy case, deriving a linear matrix inequality (LMI) under1053

which the TD updates are guaranteed to be non-expansive around the fixed point.1054

This is the Non-Expansion Criterion (2011):1055

∥Φw − V ∥D ≤
1 + γκ(D−1/2D1/2)

1− γ
∥ΠDV − V ∥D (3.4)1056

From this bound, he derives the non-expansion criterion (NEC):1057

∥ΠDPΦw∥D ≤ ∥Φw∥D (∀w ∈ Rn) (3.5)1058

This holds if and only if the matrix FD is positive semi-definite1059

FD ≡
[

Φ⊤DΦ Φ⊤DPΦ

Φ⊤P⊤DΦ Φ⊤DΦ

]
≽ 0 (3.6)1060

Equivalently, in terms of the expectation over states:1061

Es∼µ,s′∼p(·|s)

[[
ϕ(s)ϕ(s)⊤ ϕ(s)ϕ(s′)⊤

ϕ(s′)ϕ(s)⊤ ϕ(s)ϕ(s)⊤

]]
≽ 0. (3.7)1062

This constraint describes a convex subset of D. As a 2k × 2k matrix (where k is the1063

number of features), F is prohibitively large to enumerate for any real RL problem,1064

and so our algorithm is designed to make use of this without ever constructing it1065

directly. Further, we notice that the construction of FD depends on P , the transition1066

matrix of the underlying Markov process, which makes our algorithm more complex.1067

59

For convenience, we write this as:1068

Es∼q[F (s)] ≽ 0, where (3.8)1069

F (s) = Es′∼p(s′|s)

[[
ϕ(s)ϕ(s)⊤ ϕ(s)ϕ(s′)⊤

ϕ(s′)ϕ(s)⊤ ϕ(s)ϕ(s)⊤

]]
1070

NEC is an expectation over some state distribution q and transition distribution1071

p(s, s′) = p(s′|s)µ(s). Because it is an LMI, the satisfying state distributions q form1072

a convex subset.1073

Directly constructing F (s) or F (s, s′) is impossible on all but the simplest examples –1074

it would take O(k2n) or O(k2n2) memory respectively to hold all the necessary data.1075

Instead we exploit the structure inherent in the problem to make use of F (s) without1076

creating it.1077

3.4 Projected Off-Policy TD (POP-TD)1078

We propose an alternative approach to stabilizing off-policy training, based on the1079

NEC by Kolter [24]. POP-TD identifies a convex set of “safe” distributions that1080

satisfy NEC and reweighs TD updates to come from that set. In contrast to TD-DO,1081

POP-TD solves a different optimization problem using a two-timescales update with1082

fixed cost per iteration, allowing it to scale to real-world problems.1083

We begin by deriving the projected off-policy update for Markov Chains without1084

a separate policy function. We will extend this derivation to support actions and1085

Markov Decision Processes (MDPs) in Section 3.4.5. Our algorithm resamples TD1086

updates so they come from some distribution q for which the NEC holds. Given input1087

data (x1, x2, . . .), this is the same as finding a set of weights q1, q2, . . . such that1088 ∑
i

qi · F (xi) ≽ 0 (3.9)1089

60

3.4.1 I- and M-projections1090

The Kullback-Leibler divergence is an asymmetric measure, and so it is usually1091

the case that minq KL(q||µ) ̸= minq KL(µ||q). The former (“from µ to q”) is1092

an information (or I-)projection, which tends to under-estimate the support of q1093

potentially excluding possible sampling distributions to reweigh to. The latter (“from1094

q to µ”) is a moment (or M-)projection, which tends to over-estimate the support of1095

q and avoid zero solutions. In our solution, we are proposing using an I-projection1096

instead of the M-projection used by Kolter [24].1097

3.4.2 Optimizing the distribution1098

In the previous section we have characterized a convex subset of off-policy distributions1099

under which TD learning is guaranteed not to diverge. If we can discover any such1100

distribution for a particular TD problem, we can reweigh our TD updates (from any1101

distribution) so they appear consistent with this reweighing distribution. This is1102

related to the main insight in Emphatic-TD [49], with the key innovation that we1103

can take any non-expansive distribution not just the on-policy distribution.1104

We can now write down the optimization problem that we wish to solve:1105

minimize
q

KL(q||µ) s.t. Es∼q[F (s)] ≽ 0 (3.10)1106

We are searching for q, the closest distribution to the sampling distribution µ such1107

that F is PSD under q. Note that we could in principle minimize any notion of1108

“closest” to find some satisfying distribution – for example Kolter [24] explores the1109

effects of minimizing KL(µ||q).1110

We construct the dual of this problem:1111

maximize
Z≽0

minimize
q

KL(q||µ)− trZ⊤Es∼q[F (s)] (3.11)1112

61

Using the Lagrange multiplier Z ∈ R2k×2k, we solve the inner optimization problem:1113

minimize
q

−H(q)− Es∼q[log µ(s) + trZ⊤F (s)] (3.12)1114

Writing down Lagrangian and solving for the optima, we obtain:1115

q∗(s) ∝ µ(s) exp(trZ⊤F (s)) (3.13)1116

(Subject to the normalization constraint that
∑

s∈S q
∗(s) = 1.)1117

Plugging this back into our dual formulation, we obtain the optimization problem:1118

maximize
Z≽0

− logEs∼µ[exp(trZ
⊤F (s))] (3.14)1119

Which we can simplify to1120

minimize
Z≽0

Es∼µ[exp(trZ
⊤F (s))] (3.15)1121

As discussed earlier, F (s) cannot be directly constructed; instead, we assume that Z1122

holds a specific structure and optimize the problem.1123

3.4.3 The structure of Z1124

Our next goal is to transform this constrained optimization problem into an uncon-1125

strained problem over a low-rank version of Z, suitable for learning via SGD.1126

We assume (and later check!) that the solution for Z is low-rank. Intuitively, this is1127

because Es∼µ[F (s)] is PSD when µ is close to π, and for most MDPs, sampling off-1128

policy leads to only a small number of negative eigenvalues that need to be corrected1129

by Z. Kolter [24] provides a technical explanation: by the KKT conditions, Z will1130

have rank complementary to Es∼µ[F (s)], and the latter is expected to be full rank. It1131

is worth noting that this “almost-PSD” assumption is common in the field.1132

62

We make the mild assumption that Z has rank m, where m << k. We apply the1133

Burer-Montiero approach [4] to convert the constrained optimization problem over Z1134

into an unconstrained optimization over low-rank matrices A ∈ Rk×m and B ∈ Rk×m:1135

Z⋆ =

[
A

B

][
A

B

]T
(3.16)1136

This allows us to represent the rank-m PSD matrix Z∗ in terms of the unconstrained1137

matrices A and B. Substituting this into the dual formulation, we get:1138

minimize
A,B

Es∼µ

exp
tr

[
A

B

][
A

B

]T
F (s)

 (3.17)1139

We can leverage the structure of F (s) to simplify the trace term:1140

trZTF (s) (3.18)1141

= tr

[
A

B

]T [
A

B

]T
F (s) (3.19)1142

= tr

[
A

B

]T
F (s)

[
A

B

]
(3.20)1143

= tr

[
A

B

]T
Es′∼p(s′|s)

[
ϕ(s)ϕ(s)T ϕ(s)ϕ(s′)T

ϕ(s′)ϕ(s)T ϕ(s)ϕ(s)T

][
A

B

]
(3.21)1144

= tr
[
(A+B)Tϕ(s)ϕ(s)T (A+B)− 2BTEs′∼p(s′|s)

[
ϕ(s)(ϕ(s)− ϕ(s′))T

]
A
]

(3.22)1145

= ∥(A+B)Tϕ(s)∥2 − tr
[
2BTEs′∼p(s′|s)

[
ϕ(s)(ϕ(s)− ϕ(s′))T

]
A
]

(3.23)1146

This allows us to rewrite the optimization problem as:1147

minimize
A,B

Es∼µ

[
exp

(
∥(A+B)Tϕ(s)∥2
−tr

[
2BTEs′∼p(s′|s)

[
ϕ(s)(ϕ(s)− ϕ(s′))T

]
A
])] (3.24)1148

63

where the small parameters A and B can be optimized with regular gradient-descent1149

methods.1150

3.4.4 Update rules1151

We can’t directly optimize our problem because that would require us to estimate the1152

inner expectation term. Instead, we use a two-timescales approach by estimating two1153

mutually-dependent quantities separately and improving them at potentially different1154

rates. This generally converges to a valid solution with a little tuning.1155

We choose to estimate the matrices A,B ∈ Rk×m and separately the function gθ :1156

S ∈ R where1157

gθ(s) ≈ trZTF (s) (3.25)1158

which can be approximated as a linear function (or a neural network) with parameters1159

θ. The size of the weights learned by POP-TD are therefore O(k), comparable to the1160

size of vanilla Q-learning.1161

This corresponds to the auxiliary loss term for A,B:1162

LA,B(s, s
′) = exp(gθ(s))

[
∥(A+B)Tϕ(s)∥2 − tr

[
2BTϕ(s)(ϕ(s)− ϕ(s′))TA

]]
(3.26)1163

and for g:1164

Lg(s, s
′) =

(
gθ(s)−

[
∥(A+B)Tϕ(s)∥2 − tr

[
2BTϕ(s)(ϕ(s)− ϕ(s′))TA

]])2
(3.27)1165

And finally, when updating the value function weights w, we multiply the loss1166

associated with each transition by exp(g(s)) to resample it so it appears to come1167

from the “safe” distribution, which completes the description of the algorithm!1168

Computing the loss A naive implementation of the loss function will require1169

intermediate matrices of size [k × k]. We can improve speed by computing the loss in1170

64

terms of [m× 1] intermediates instead. For a transition sample (s, s′), this can be1171

done as:1172

MA = ATϕ(s) ∈ Rm
1173

M ′
A = ATϕ(s′) ∈ Rm

1174

MB = BTϕ(s) ∈ Rm
1175

LA,B(s, s
′) ≡ exp(gθ(s))

[
∥MA∥2 + ∥MB∥2 + 2M ′

A ·MB

]
(3.28)1176

Lg(s, s
′) ≡

(
gθ(s)−

[
∥MA∥2 + ∥MB∥2 + 2M ′

A ·MB

])2
(3.29)1177

where · is the dot product. With tabular g, this sequence of operations should be1178

O(mk), which is much quicker than the naive O(mk2).1179

3.4.5 POP-Q-Learning1180

Thus far, we have focused on Markov Reward Processes. For RL problems, we1181

need to extend this approach to Markov Decision Processes (MDPs). An MDP1182

is a tuple, (S,A, P, R, γ), with state space S, probabilitistic transition function1183

P : S ×A× S → R+, reward function R : S ×A → R, and discount factor γ ∈ [0, 1].1184

The goal in this setting is to find a probabilistic policy π : S×A → R+ that maximizes1185

the future discounted reward:1186

π⋆ = argmax
π

Eπ

[∞∑
t=0

γtR(st, at)

]
(3.30)1187

Many RL methods use some variation of Q-learning [58, 38, 15, 26], which involves1188

learning a state-action value function commonly called a Q-function:1189

Qπ(s, a) = Eπ

[∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]
(3.31)1190

By considering a fixed policy π, a combined state-space X = S × A, and a policy-1191

conditioned transition function P̃ π((s, a), (s′, a′)) = P (s, a, s′)π(s′, a′), any MDP1192

65

Algorithm 1 Deep POP-Q-Learning

Initialize Q-function, QθQ , g-function, gθg , dual variable vector y, and some policy
πθπ .
for step t in 1, . . . , N do
Sample mini-batch (s, a, r, s′) ∼ µ.
Sample ã ∼ πθπ(s), ã

′ ∼ πθπ(s
′).

Compute features from penultimate layer of Q-network:
ϕ← QθQ(s, a), ϕ

′ ← QθQ(s
′, ã′).

Update g-function and dual variable vectors:
θgt ← θgt−1 − ηg∇θgLg(s, s

′)
At ← At−1 − ηA∇ALA(s, s

′)
Bt ← Bt−1 − ηB∇BLB(s, s

′)
Update Q-function using re-weighted Q-loss update:
θQt ← θQt−1 − ηQ exp(gθg(s, a))∇θQLQ(θ

Q)
Update policy with SAC-style loss:
θπt ← θπt−1 − ηπ∇θπ [QθQ(s, ã)− log πθπ(ã|s)]

end for

reduces to a Markov Chain. Thus, as long as the NEC is satisfied in this modified1193

state-space, we can bound the approximation error of the Q-function. See Section 3.4.51194

for a detailed derivation.1195

Finally, for our method to applied to modern deep RL problems, we must extend our1196

approach to non-linear Q-functions. To do so, we approximate the Q-function with a1197

neural network, QθQ parameterized by θQ and consider a stochastic parameterized1198

policy πθπ . To update QθQ , we used a squared Bellman loss, LQ(θ
Q) = (QθQ(s, a)−1199

r − γQθQ(s
′, πθπ(s

′)))2, which we reweigh with exp(g(s)) as before. For our offline1200

RL experiments, we also add CQL regularization [26] to our Q-learning updates to1201

prevent over-optimism on low-support regions of the state-action space. To update1202

our linear dual variables y, we use the penultimate layer of QθQ as our feature vector.1203

Finally, we use a SAC-style entropy regularized loss to update our policy network,1204

πθπ . Algorithm 1 provides an overview of our method.1205

66

3.5 Experiments and Discussion1206

We first apply POP-TD to a well-understood example so that we can directly illustrate1207

the how it resamples TD updates to a “safe” distribution. We use the simple three-1208

state task from Figure 3.2, including the specified transition function, value function,1209

and basis. Since this is a policy evaluation task, there is no policy to be separately1210

learned.1211

For illustration purposes, we select the family of distributions π = (h/2, h/2, 1 − h)1212

parameterized by h ∈ [0, 1]. This characterizes the possible distributions of data1213

that we will present to POP-TD and naive TD in this experiment. The on-policy1214

distribution corresponds to ho ≈ 0.51, and divides the family of distributions into1215

a left subset (h ≤ ho) where the NEC holds and a right subset (h > ho) where it1216

does not. This is immediately apparent in Figure 3.2, where we plot the error at1217

convergence from running naive- and POP-TD above, and the effective distribution1218

of TD updates after reweighing below. In the left subset, where the NEC holds,1219

POP-TD does not resample TD updates at all. Therefore, the error of POP-TD1220

tracks naive TD (top), and the effective distribution of TD updates in POP-TD and1221

naive TD are the same as the data distribution (bottom).1222

In the right subset, we observe that naive TD converges to poor solutions with1223

large error while POP-TD is able to learn with low error. Directly computing the1224

effective distribution, we see that naive TD adheres to the data distribution but1225

POP-TD resamples the TD updates. Looking at the behavior of POP-TD in the1226

right subset, we see that POP-TD resamples updates to the on-policy distribution1227

po in p ∈ [po, 0.9], corresponding to the horizontal segment. This allows the learned1228

Q-function to have very low error in that domain. As the data distribution becomes1229

more extreme (p ∈ [0.9, 1)), POP-TD is not quite able to learn the resampling ratio,1230

and so the effective distribution shifts away from po. This leads to a corresponding1231

slight increase in error at extreme ratios. From this we observe that POP-TD requires1232

full support of the sampling distribution, similar to many offline RL algorithms [26,1233

47].1234

67

-5

-1

3

POP-TD

Naive TD

F (s) ≽ 0 F (s) ̸≽ 0
lo
g
1
0
E
rr
or

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

.2

.4

.6

.8

POP-TD

Naive TD

Distrib. param. h, where π = [h/2, h/2, 1− h]

eff
ec
ti
ve

d
is
tr
ib
.
p

Figure 3.2: The error in the learned value function by naive- and POP-TD, plotted
against a varying sampling distribution. In the left half of the plot, the NEC holds,
and so POP-TD tracks the error of naive TD closely. In the right half of the plot
naive TD diverges, while POP-TD resamples the data to a “safe” distribution and
does not diverge.

This simple experiment cleanly illustrates how POP-TD resamples TD updates to1235

come from a “safe” distribution, and how that can greatly reduce the error in a policy1236

evaluation task.1237

3.5.1 POP-Q on GridWorld1238

In this experiment, we consider the the simple grid environment from Figure 3.1,1239

modified to add transitions from terminating states to the starting state. Our goal1240

is to approximate the true Q-function with minimal error. Our training data is1241

sampled following the suboptimal data policy (���), adding uniform random dithering1242

to guarantee that every state-action pair is represented. We represent the Q-function1243

as a linear function with a fixed random basis Φ ∈ R64×53, training it to convergence1244

using naive Q-learning and linear POP-Q separately. For POP-Q, we also randomly1245

initialize matrices A,B ∈ R53×4 and a tabular g ∈ R64 separately. (We will later1246

68

1 2 3 4 5 6

log(Error)

0

2

4

6

8

10

12

14

C
ou

n
t

Q-Value Errors over 25 random initializations.

pop

naive

Figure 3.3: Log Q-function errors for naive and POP Q-Learning on Figure 3.1, over
25 randomly sampled bases. Errors are computed using a tabular g function, and bins
are exponentially wide. POP-Q substantially reduces error in most of the sampled
bases.

consider an approximate g.)1247

Setting the rank of A,B: We could simply set the rank of A and B as any other1248

hyperparameter, but since this problem is sufficiently small we can instead compute1249

the minimum rank directly. To do this, we compute the degree of rank deficiency of1250

the matrix Es[F (s)] from Equation (3.8) on our dataset, and set the rank of A and1251

B so the sum of the rank of Es[F (s)] and A and B is at least k. For this example,1252

for k = 53, we find that rank(A) = rank(B) = 4 is sufficient for this example.1253

69

Results with an exact, tabular g1254

Since tabular Q-learning always converges to the global optimum [58], we use that to1255

compute the ground-truth Q-function. All error reported is relative to that assumed1256

ground truth.1257

Figure 3.3 shows the distribution of errors achieved by vanilla and POP Q-learning1258

over 25 different bases on our task. Vanilla Q-learning performs consistently poorly,1259

achieving a (large) amount of error at all seeds. This is expected because we have1260

deliberately engineered the task to be unstable. In comparison, POP-TD improves1261

performance over most seeds, and in some cases enables near-perfect fitting of the1262

Q-function.1263

Throughout this chapter we have drawn a distinction between importance sam-1264

pling/Emphatic TD methods and our work. While the former attempts to resample1265

to the on-policy distribution, our work seeks to resample to the closest stable distribu-1266

tion. We illustrate this difference in Figure 3.4, where we display the rates at which1267

states are visited in our GridWorld. The distribution in our dataset (top-right) is far1268

from the on-policy distribution (top-left), which is what importance sampling and1269

Emphatic methods will attempt to resample to. In comparison, POP-Q resamples1270

minimally (bottom row), where the effective distribution reached is very close to the1271

data distribution.1272

Results with an approximate, linear g1273

The current experiments with POP-Q learning all use a tabular g. This works, but1274

takes the same memory as would learning a tabular value function, which would1275

provably converge to the global optimum (side-stepping the entire problem). A key1276

step in adopting POP-Q is ensuring that all parameters are at most order O(k) (i.e.1277

comparable to the size of the learned weights) and are therefore learnable with the1278

same order of time and space as regular TD. We also wish to (eventually) exploit the1279

generalization afforded to us by neural networks, to hopefully learn more accurate1280

models with less data.1281

70

The matrices A and B are sized k × m, where m << k, and so are sufficiently1282

small. We now need to approximate g as a linear function with fixed bases vectors1283

Φg = (ϕg,1, ϕg,2, ..., ϕg,n), ϕg,◦ ∈ Rl and learned weights wg ∈ Rl of size l < n:1284

g(s) = ϕg,s · wg (3.32)1285

To understand the relationship between the degree of approximation (as measured by1286

the size of the basis l) and the performance of our system, we initialize 25 different1287

n× n bases and report the performance as the bases are truncated down from 64 to1288

1. This is illustrated in Figure 3.5.1289

Figure 3.5 reveals that the performance of POP-Q is (as expected) sensitive to the1290

exact basis chosen. For some bases, the error increases with only a small amount of1291

approximation, but for some “lottery-ticket” bases, this continues to work even as1292

the bases are truncated to rank 1. For some bases, this continues to work despite1293

extreme approximation is because the degree of resampling required is minimal and1294

the system is fairly easy to resample.1295

A note on initialization When performing experiments, we note that the perfor-1296

mance of POP-TD depends sharply on the condition number of Φ, but not necessarily1297

that of Φg. Specifically, we see that an orthogonal initialization step on Φ is crucial for1298

performance. (In this step we set Φ to the orthogonal matrix of the QR-decomposition1299

of a matrix where entries are sampled uniformly at random.) We conjecture that this1300

happens because POP-TD seeks to stochastically learn ΦTAΦ, and a poor condition1301

number of Φ leads to values that span multiple orders of magnitude and linear1302

approximation is known to perform poorly on such data.1303

3.6 Conclusion1304

In this chapter we introduced POP-TD, a method for effective TD learning under1305

off-policy distributions, with applications to offline RL and learning under large1306

distribution shifts. Unlike existing emphatic TD and importance sampling methods1307

71

which resample to the on-policy distribution, POP-TD resamples to the closest1308

distribution under which TD will provably not diverge.1309

We present POP-TD on an existing “deadly triad” example in the literature, showing1310

how the resampling process operates in theory. We extend this to a more general1311

GridWorld-style Q-learning task which diverges under vanilla TD, but is consistently1312

solved by POP-Q-learning.1313

A key strength of POP-Q-learning is that is achieves all this with a per-loop com-1314

pute and memory overhead of the same order as Q-learning methods, and can be1315

implemented and optimized in the same loop as any TD or Q-learning method. In1316

this sense, it offers a cheap mechanism to stabilize off-policy TD, particularly in the1317

context of offline RL.1318

A possible future expansion of this project is to integrate this with an existing1319

offline RL method such as Conservative Q-Learning (CQL) and examine whether this1320

improves performance. We propose CQL specifically because it constrains actions1321

to remain within the support of the data, but does not explicitly constrain the1322

distribution of states to minimize distribution shift. POP methods require adequate1323

support (which CQL provides), and in turn are able to minimize distribution shift.1324

This suggests that the two algorithms may have some symbiotic relationship.1325

72

0% 1% 18% 18%

0% 1% 16% 2%

0% 1% 15% 14%

0% 0% 1% 12%

Optimal Policy

11% 11% 14% 16%

8% 4% 2% 3%

7% 5% 3% 2%

7% 5% 1% 1%

Data Policy

10% 9% 12% 11%

8% 5% 3% 4%

9% 6% 4% 3%

7% 7% 2% 2%

With POP (seed=7)

10% 10% 9% 12%

10% 5% 3% 4%

8% 5% 4% 3%

7% 6% 2% 2%

With POP (seed=14)

Figure 3.4: Rates at which states are visited in GridWorld. On the top row, we
show how the optimal policy (left) is very far from the data policy (right). On the
bottom row, we show the effective distribution after POP-Q resamples the data. The
effective distribution is very close to the data distribution, despite the tremendous
improvement in error.

73

102030405060

Size of basis for g

0

5

10

15

20

25

R
an
d
om

S
ee
d

Error for POP-Q with linear g

0

2

4

6

8

10

12

14

16

Figure 3.5: Error for POP-Q with linear g functions. Each row corresponds to one
starting basis, and each column corresponds to a basis size l as it is reduced from
64 to 1. The hatched cells correspond to combinations of seeds and bases in which
POP-Q performs worse than vanilla Q-learning. Under linear approximation POP-Q
greatly improves performance over vanilla TD.

74

Conclusion1326

We have examined two notions of stability with a subtle relationship: that of learned1327

dynamics models, and the training of reinforcement learning algorithms. In doing1328

so, we have introduced new techniques in both areas, as well as filled in a gap in the1329

literature on the unsuitability of regularization to solve instability in RL.1330

One key gap in the RL literature that we hope to address in the future is how we1331

should regularize deep RL in a principled manner. While our prior work shows that1332

simple ℓ2 regularization can cause divergence, the literature is ripe for either adaptive1333

regularization schemes that can detect and avoid pathological behavior, or for novel1334

non-convex regularizations that fail similarly.1335

Separately, there remains a large gap in a key area within offline RL in dealing with1336

the distributional shift problem. While there have been many recent advances in the1337

field, these advances have been largely incremental, and the field remains ripe for1338

a novel perspective that can address this. We propose that POP-TD is that novel1339

perspective. Unlike the existing literature, the key insight that POP-TD brings to1340

the field is that we can resample to “safe” off-policy distributions that are close to1341

the data distribution, instead of the on-policy distribution which may be arbitrarily1342

far. With these novel POP techniques, we hope to allow offline RL to resample the1343

data as little as possible to avoid instability from large resampling coefficients, and1344

learn to generalize from a set of diverse and possibly even adversarial experts that1345

complete tasks in mutually incompatible ways.1346

75

76

Notation and Definitions1347

Standard notation for RL concepts through this thesis.1348

Symbol Description

n ∈ Z+ Number of states.

k ∈ Z+ Number of features in the value basis.

π ∈ Rn on-policy distribution.

µ ∈ Rn sampling distribution, may be on- or off-policy.

Φ ∈ R[n×k] Feature basis for the value function

ŵ ∈ R[k×1] Linear weights for value function, fit using least-squares

regression of V on Φ.

w∗(η) ∈ R[k×1] Linear weights for value function, learned using TD.

Φw∗(η) ∈ R[n×1] Learned value function

V ∈ R[n×1] True value function

∥V ∥ ∈ R Error from guessing zeros, equivalent to the threshold for

a vacuous example

∥x∥ ∈ R+
0 ℓ2-norm of vector or matrix x, equal to

√
x⊤x

∥x∥D ∈ R+
0 ℓ2-norm of vector or matrix x under D, equal to

√
x⊤Dx

77

Regularization1349

Symbol Description

η ∈ R+
0 ℓ2 regularization parameter

h ∈ [0, 1] distribution parameter used to express a family of possible

sampling distributions.

ηm ∈ R+
0 ℓ2 regularization parameter for emphasis model in COF-

PAC (the Emphatic algorithm we analyze)

ηv ∈ R+
0 ℓ2 regularization parameter for value model in COF-PAC

(the Emphatic algorithm we analyze)

υ : R+ → Rn apparent distribution induced by η-regularizing the em-

phatic correction of off-policy µ to on-policy π

Projected Off-Policy1350

Symbol Description

m ∈ Z+ Number of features in the g-basis (for POP methods).

l ∈ Z+ Rank of A and B two-timescales parameters (for POP

methods).

g : S → R dual objective component, learned opposite A and B in

POP methods.

eg(s) ∈ R+ The resampling coefficient for TD updates from state s

Φg ∈ R[n×m] Feature basis for the learned linear g function

wg ∈ R[m×1] Linear weights for learned g function

A,B ∈ R[k×l] Two-timescales parameters learned alongside g in POP

methods, where l << k.

Φgwg ∈ R[n×1] Learned g function

78

Bibliography1351

[1] Brandon Amos, Lei Xu, and J Zico Kolter. “Input convex neural networks”. In:1352

Proceedings of the 34th International Conference on Machine Learning-Volume1353

70. JMLR.org. 2017, pp. 146–155.1354

[2] Caroline Blocher, Matteo Saveriano, and Dongheui Lee. “Learning stable dynam-1355

ical systems using contraction theory”. In: 2017 14th International Conference1356

on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE. 2017, pp. 124–1357

129.1358

[3] Byron Boots, Geoffrey J Gordon, and Sajid M Siddiqi. “A constraint generation1359

approach to learning stable linear dynamical systems”. In: Advances in neural1360

information processing systems. 2008, pp. 1329–1336.1361

[4] Samuel Burer and Renato DC Monteiro. “A nonlinear programming algorithm1362

for solving semidefinite programs via low-rank factorization”. In: Mathematical1363

Programming 95.2 (2003), pp. 329–357.1364

[5] Yize Chen, Yuanyuan Shi, and Baosen Zhang. “Optimal Control Via Neural1365

Networks: A Convex Approach”. In: arXiv preprint arXiv:1805.11835 (2018).1366

[6] Yinlam Chow et al. “A lyapunov-based approach to safe reinforcement learning”.1367

In: Advances in Neural Information Processing Systems. 2018, pp. 8092–8101.1368

[7] Jonas Degrave et al. “Magnetic control of tokamak plasmas through deep1369

reinforcement learning”. In: Nature 602.7897 (2022), pp. 414–419.1370

[8] Raghuram Bharadwaj Diddigi, Chandramouli Kamanchi, and Shalabh Bhatna-1371

gar. “A convergent off-policy temporal difference algorithm”. In: arXiv preprint1372

arXiv:1911.05697 (2019).1373

79

[9] Simon S Du et al. “Stochastic variance reduction methods for policy evaluation”.1374

In: International Conference on Machine Learning. PMLR. 2017, pp. 1049–1058.1375

[10] William Fedus et al. “Revisiting fundamentals of experience replay”. In: Inter-1376

national Conference on Machine Learning. PMLR. 2020, pp. 3061–3071.1377

[11] Scott Fujimoto, David Meger, and Doina Precup. “Off-policy deep reinforcement1378

learning without exploration”. In: International conference on machine learning.1379

PMLR. 2019, pp. 2052–2062.1380

[12] Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. “Improving PILCO1381

with Bayesian neural network dynamics models”. In: Data-Efficient Machine1382

Learning workshop, ICML. Vol. 4. 2016.1383

[13] Carles Gelada and Marc G Bellemare. “Off-policy deep reinforcement learning1384

by bootstrapping the covariate shift”. In: Proceedings of the AAAI Conference1385

on Artificial Intelligence. Vol. 33. 01. 2019, pp. 3647–3655.1386

[14] Shixiang Gu et al. “Continuous deep q-learning with model-based acceleration”.1387

In: International Conference on Machine Learning. 2016, pp. 2829–2838.1388

[15] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep1389

reinforcement learning with a stochastic actor”. In: International conference on1390

machine learning. PMLR. 2018, pp. 1861–1870.1391

[16] Assaf Hallak and Shie Mannor. “Consistent on-line off-policy evaluation”. In:1392

International Conference on Machine Learning. PMLR. 2017, pp. 1372–1383.1393

[17] Hado van Hasselt et al. “Expected eligibility traces”. In: arXiv preprint arXiv:2007.018391394

(2021).1395

[18] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level perfor-1396

mance on imagenet classification”. In: Proceedings of the IEEE international1397

conference on computer vision. 2015, pp. 1026–1034.1398

[19] Ray Jiang et al. “Learning Expected Emphatic Traces for Deep RL”. In: arXiv1399

preprint arXiv:2107.05405 (2021).1400

[20] Hassan K Khalil and Jessy W Grizzle. Nonlinear systems. Vol. 3. Prentice hall1401

Upper Saddle River, NJ, 2002.1402

80

[21] S Mohammad Khansari-Zadeh and Aude Billard. “Learning stable nonlinear1403

dynamical systems with gaussian mixture models”. In: IEEE Transactions on1404

Robotics 27.5 (2011), pp. 943–957.1405

[22] Rahul Kidambi et al. “Morel: Model-based offline reinforcement learning”. In:1406

Advances in neural information processing systems 33 (2020), pp. 21810–21823.1407

[23] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In:1408

arXiv preprint arXiv:1312.6114 (2013).1409

[24] J Kolter. “The fixed points of off-policy TD”. In: Advances in Neural Information1410

Processing Systems 24 (2011), pp. 2169–2177.1411

[25] Aviral Kumar, Abhishek Gupta, and Sergey Levine. “Discor: Corrective feed-1412

back in reinforcement learning via distribution correction”. In: arXiv preprint1413

arXiv:2003.07305 (2020).1414

[26] Aviral Kumar et al. “Conservative Q-Learning for Offline Reinforcement Learn-1415

ing”. In: Advances in Neural Information Processing Systems 33: Annual Con-1416

ference on Neural Information Processing Systems 2020, NeurIPS 2020, De-1417

cember 6-12, 2020, virtual. Ed. by Hugo Larochelle et al. 2020. url: https://1418

proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-1419

Abstract.html.1420

[27] Aviral Kumar et al. “DR3: Value-Based Deep Reinforcement Learning Requires1421

Explicit Regularization”. In: International Conference on Learning Representa-1422

tions. 2022. url: https://openreview.net/forum?id=POvMvLi91f.1423

[28] Aviral Kumar et al. “Stabilizing off-policy q-learning via bootstrapping error1424

reduction”. In: Advances in Neural Information Processing Systems 32 (2019).1425

[29] Joseph La Salle and Solomon Lefschetz. Stability by Liapunov’s Direct Method1426

with Applications by Joseph L Salle and Solomon Lefschetz. Vol. 4. Elsevier,1427

2012.1428

[30] Sergey Levine et al. “Offline Reinforcement Learning: Tutorial, Review, and1429

Perspectives on Open Problems”. In: CoRR abs/2005.01643 (2020). arXiv:1430

2005.01643. url: https://arxiv.org/abs/2005.01643.1431

81

https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://openreview.net/forum?id=POvMvLi91f
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643

[31] Sergey Levine et al. “Offline Reinforcement Learning: Tutorial, Review, and1432

Perspectives on Open Problems”. In: CoRR abs/2005.01643 (2020). arXiv:1433

2005.01643. url: https://arxiv.org/abs/2005.01643.1434

[32] Qiang Liu et al. “Breaking the curse of horizon: Infinite-horizon off-policy1435

estimation”. In: Advances in Neural Information Processing Systems 31 (2018).1436

[33] Sridhar Mahadevan et al. “Proximal reinforcement learning: A new theory of se-1437

quential decision making in primal-dual spaces”. In: arXiv preprint arXiv:1405.67571438

(2014).1439

[34] Gaurav Manek and J Zico Kolter. “Learning stable deep dynamics models”. In:1440

Advances in neural information processing systems 32 (2019).1441

[35] Gaurav Manek and J Zico Kolter. “The Pitfalls of Regularization in Off-Policy1442

TD Learning”. In: Advances in Neural Information Processing Systems. Ed.1443

by Alice H. Oh et al. 2022. url: https://openreview.net/forum?id=1444

vK53GLZJes8.1445

[36] Gaurav Manek, Melrose Roderick, and J Zico Kolter. “Projected Off-Policy TD1446

Learning Stabilize Offline Reinforcement Learning”. In: Jan. 2023.1447

[37] Nikhil Mishra, Pieter Abbeel, and Igor Mordatch. “Prediction and control with1448

temporal segment models”. In: Proceedings of the 34th International Conference1449

on Machine Learning-Volume 70. JMLR. org. 2017, pp. 2459–2468.1450

[38] Volodymyr Mnih et al. “Human-level control through deep reinforcement learn-1451

ing”. In: Nature 518.7540 (Feb. 2015), pp. 529–533. issn: 00280836. url: http:1452

//dx.doi.org/10.1038/nature14236.1453

[39] Ofir Nachum et al. “Algaedice: Policy gradient from arbitrary experience”. In:1454

arXiv preprint arXiv:1912.02074 (2019).1455

[40] Ofir Nachum et al. “Dualdice: Behavior-agnostic estimation of discounted sta-1456

tionary distribution corrections”. In: Advances in Neural Information Processing1457

Systems 32 (2019).1458

[41] Anusha Nagabandi et al. “Neural network dynamics for model-based deep1459

reinforcement learning with model-free fine-tuning”. In: 2018 IEEE International1460

Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 7559–7566.1461

82

https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://openreview.net/forum?id=vK53GLZJes8
https://openreview.net/forum?id=vK53GLZJes8
https://openreview.net/forum?id=vK53GLZJes8
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236

[42] Antonis Papachristodoulou and Stephen Prajna. “On the construction of Lya-1462

punov functions using the sum of squares decomposition”. In: Proceedings of1463

the 41st IEEE Conference on Decision and Control, 2002. Vol. 3. IEEE. 2002,1464

pp. 3482–3487.1465

[43] Pablo A Parrilo. “Structured semidefinite programs and semialgebraic geometry1466

methods in robustness and optimization”. PhD thesis. California Institute of1467

Technology, 2000.1468

[44] Doina Precup. “Eligibility traces for off-policy policy evaluation”. In: Computer1469

Science Department Faculty Publication Series (2000), p. 80.1470

[45] Spencer M Richards, Felix Berkenkamp, and Andreas Krause. “The lyapunov1471

neural network: Adaptive stability certification for safe learning of dynamic1472

systems”. In: arXiv preprint arXiv:1808.00924 (2018).1473

[46] Arno Schödl et al. “Video textures”. In: Proceedings of the 27th annual confer-1474

ence on Computer graphics and interactive techniques. ACM Press/Addison-1475

Wesley Publishing Co. 2000, pp. 489–498.1476

[47] Laixi Shi et al. “Pessimistic q-learning for offline reinforcement learning: Towards1477

optimal sample complexity”. In: arXiv preprint arXiv:2202.13890 (2022).1478

[48] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.1479

Second Edition. MIT press, 2020.1480

[49] Richard S Sutton, A Rupam Mahmood, and Martha White. “An emphatic1481

approach to the problem of off-policy temporal-difference learning”. In: The1482

Journal of Machine Learning Research 17 (2016), pp. 2603–2631.1483

[50] Richard S Sutton et al. “Fast gradient-descent methods for temporal-difference1484

learning with linear function approximation”. In: Proceedings of the 26th Annual1485

International Conference on Machine Learning. 2009, pp. 993–1000.1486

[51] Andrew J Taylor et al. “Episodic Learning with Control Lyapunov Functions1487

for Uncertain Robotic Systems”. In: arXiv preprint arXiv:1903.01577 (2019).1488

[52] Russ Tedrake. Underactuated Robotics. Algorithms for Walking, Running, Swim-1489

ming, Flying, and Manipulation. 2023. url: https://underactuated.csail.1490

mit.edu.1491

83

https://underactuated.csail.mit.edu
https://underactuated.csail.mit.edu
https://underactuated.csail.mit.edu

[53] Andrey Nikolayevich Tikhonov. “On the stability of inverse problems”. In: Dokl.1492

Akad. Nauk SSSR. Vol. 39. 1943, pp. 195–198.1493

[54] JN Tsitsiklis and B Van Roy. “An analysis of temporal-difference learning1494

with function approximation”. In: Rep. LIDS-P-2322). Lab. Inf. Decis. Syst.1495

Massachusetts Inst. Technol. Tech. Rep (1996).1496

[55] Jonas Umlauft and Sandra Hirche. “Learning stable stochastic nonlinear dynam-1497

ical systems”. In: Proceedings of the 34th International Conference on Machine1498

Learning-Volume 70. JMLR. org. 2017, pp. 3502–3510.1499

[56] Jake VanderPlas. Triple Pendulum CHAOS! http://jakevdp.github.io/1500

blog/2017/03/08/triple-pendulum-chaos/. Mar. 2017.1501

[57] Andrew J Wagenmaker et al. “First-Order Regret in Reinforcement Learning1502

with Linear Function Approximation: A Robust Estimation Approach”. In:1503

Proceedings of the 39th International Conference on Machine Learning. Ed. by1504

Kamalika Chaudhuri et al. Vol. 162. Proceedings of Machine Learning Research.1505

PMLR, July 2022, pp. 22384–22429. url: https://proceedings.mlr.press/1506

v162/wagenmaker22a.html.1507

[58] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning1508

8.3 (1992), pp. 279–292.1509

[59] Ronald J Williams and Leemon C Baird III. Analysis of some incremental1510

variants of policy iteration: First steps toward understanding actor-critic learning1511

systems. Tech. rep. Citeseer, 1993.1512

[60] Yifan Wu, George Tucker, and Ofir Nachum. “Behavior regularized offline1513

reinforcement learning”. In: arXiv preprint arXiv:1911.11361 (2019).1514

[61] Huizhen Yu. “On convergence of some gradient-based temporal-differences1515

algorithms for off-policy learning”. In: arXiv preprint arXiv:1712.09652 (2017).1516

[62] Tianhe Yu et al. “Mopo: Model-based offline policy optimization”. In: Advances1517

in Neural Information Processing Systems 33 (2020), pp. 14129–14142.1518

[63] Shangtong Zhang, Hengshuai Yao, and Shimon Whiteson. “Breaking the Deadly1519

Triad with a Target Network”. In: CoRR abs/2101.08862 (2021). arXiv: 2101.1520

08862. url: https://arxiv.org/abs/2101.08862.1521

84

http://jakevdp.github.io/blog/2017/03/08/triple-pendulum-chaos/
http://jakevdp.github.io/blog/2017/03/08/triple-pendulum-chaos/
http://jakevdp.github.io/blog/2017/03/08/triple-pendulum-chaos/
https://proceedings.mlr.press/v162/wagenmaker22a.html
https://proceedings.mlr.press/v162/wagenmaker22a.html
https://proceedings.mlr.press/v162/wagenmaker22a.html
https://arxiv.org/abs/2101.08862
https://arxiv.org/abs/2101.08862
https://arxiv.org/abs/2101.08862
https://arxiv.org/abs/2101.08862

[64] Shangtong Zhang et al. “Provably convergent two-timescale off-policy actor-1522

critic with function approximation”. In: International Conference on Machine1523

Learning. PMLR. 2020, pp. 11204–11213.1524

85

	Introduction
	Learning Stable Dynamics Models
	Introduction
	Background and related work
	Joint learning of dynamics and Lyapunov functions
	Properties of the Lyapunov function

	Empirical results
	Random networks
	n-link pendulum
	Video Texture Generation

	Conclusion
	Adaptation to Stable Control and RL

	The Pitfalls of Regularization in Off-Policy TD
	Introduction
	Preliminaries and Notation
	Our Counterexamples
	Regularization cannot always mitigate the error from training off-policy.
	Small amounts of regularization can cause large increases in training error.
	Emphatic approaches and our counterexample
	Applied to multi-layer networks
	Over-parameterization does not solve this problem

	Related Work
	Relationship to modern RL algorithms
	Conclusion

	Projected Off-Policy TD for Offline Reinforcement Learning
	Introduction
	Related Work
	Problem Setting and Notation
	The Non-Expansion Criterion (NEC)

	Projected Off-Policy TD (POP-TD)
	I- and M-projections
	Optimizing the distribution
	The structure of Z
	Update rules
	POP-Q-Learning

	Experiments and Discussion
	POP-Q on GridWorld

	Conclusion

	Conclusion
	Notation and Definitions
	Bibliography

