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Abstract
This thesis introduces new techniques for efficiently training machine learning

models over continuously arriving data to achieve high accuracy, even under changes
in the data distribution over time, known as concept drift. First, we address the case
of IID data with STRSAGA, an optimization algorithm based on variance-reduced
stochastic gradient descent that can incorporate incrementally arriving data and
efficiently converges to statistical accuracy. Second, we address the case of non-IID
data over time with DriftSurf. Previous work on drift detection generally rely on
threshold parameters that are difficult to set, making them less practical without prior
knowledge of the magnitude and rate of change. DriftSurf improves the robustness
of traditional drift detection tests through a stable-state/reactive-state process, and
attains higher statistical accuracy whenever an efficient optimizer like STRSAGA
is used. Third, we address the case of non-IID data both over time and distributed
in space in the federated learning setting with FedDrift. We empirically show that
previous centralized drift adaptation and previous personalized federated learning
methods are ill-suited under staggered drifts. FedDrift is the first algorithm explicitly
designed for both dimensions of heterogeneity, and accurately identifies distinct
concepts by learning a time-varying clustering, which enables collaborative training
despite drifts. We show the presented algorithms are effective through theoretical
competitive analyses and experimental studies that demonstrate higher accuracy on
benchmark datasets over the prior state-of-the-art.
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Chapter 1

Introduction

We consider streaming data arrivals that continually arrive over time. From these training data,
our goal is to learn a model with highly accurate predictions at each time on unlabeled test data.
Periodically recomputing the model from scratch (i.e., batch retraining) upon the arrival of new
data points incurs significant computational cost. We seek techniques for efficient incremental
training of the model as data arrive. Furthermore, the model training should be drift-robust,
adapting to unexpected changes in the distribution of data over time.

Oblivious algorithms presume that data are drawn from a stable underlying distribution, and
that training data in the past are sufficiently similar to the test data in the future. But in real-
world data, the distribution is often non-stationary. User sentiment and preferences can change
drastically due to external environments such as the pandemic and macroeconomics [31, 52].
Data collected by passive devices such as cameras also experience various data changes due to
unexpected weather or novel objects [5, 84]. Without adaptation to concept drifts, model accuracy
degrades over time.

Adaptive algorithms can typically be classified into three major categories: weighted sampling,
ensembles, and drift detection [30], each representing different trade-offs among the desired
criteria of accuracy, efficiency, and drift-robustness. A comprehensive review can be found in
§4.1, but here we give a brief overview. Weighted sampling techniques focus the training on more
recent data points, and are guaranteed to adapt to drifts, but their myopic strategy suffers from
low statistical accuracy in the absence of drift, making them less suitable for general application.
Ensemble methods consist of both long-trained models that have high accuracy in the absence of
drift and newer models that have high accuracy after drift, but the maintenance of a full ensemble
may be inefficient in practice when training large models such as deep neural networks (or come
at a penalty in accuracy if training time is divided among the models).

The third category of adaptive algorithms is drift detection, which track the prediction accuracy
of a model over time, and signal that a drift has occurred whenever the accuracy degrades by more
than a significant threshold. After a drift is signaled, the previously-learned model can be replaced
with a model trained solely on the data going forward. Perfect drift detection would enable
efficient training for a model with high prediction accuracy both in the presence and absence of
drifts. The challenge is that drift detection is not robust to the variety of patterns, magnitudes,
and rates of change encompassed by concept drifts in practice. Different drift detection tests
are preferred depending on whether a drift is abrupt or gradual, and the user-defined threshold

1
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Figure 1.1: Simplistic drifts studied in prior work.
(left) Simultaneous timing. (right) One majority
concept.
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parameter in most tests governs a trade-off between the detection accuracy and speed [30]. But
concept drift is inherently unpredictable 1, and with no prior knowledge of the nature of change,
choosing the right tests and parameters is hard (as demonstrated in §4.8). Getting it wrong comes
at a significant cost in prediction accuracy when a false positive results in the discarding of a
long-trained model and data that are still relevant.

In addition to consideration of the classical drift adaptation problem in a centralized learning
setting, this thesis initiates a general study of distributed concept drifts in the Federated Learning
(FL) setting. FL is a popular machine learning paradigm that enables collaborative training
without sharing the raw training data generated at each individual client. Concept drift in FL
poses new fundamental challenges when data is heterogeneous both over time and across different
clients. When different clients experience the drift at different times, no single global model can
perform well for all clients. Similarly, when multiple concepts exist simultaneously, no centralized
training decision works well for all clients.

Several recent works have recognized the problem of FL under concept drift but only under
restrictive settings such as (i) drifts occurring simultaneously in time (e.g., Figure 1.1(left)) by
centrally tuning the learning rate [15], or (ii) drifts with only minor deviations from a majority
concept (e.g., Figure 1.1(right)) by tuning regularization to suppress updates from drifting clients
[18, 62].

This work is the first to study more general settings arising in distributed drifts. Consider
the distributed drift pattern depicted in Figure 1.2. This is representative of an emerging trend
(e.g., a breaking news event) that affects different clients at different times (e.g., due to their lag
in learning of the news). For example, consider a next word prediction app in the period when
“war” emerges as the popular next word after “Ukraine” or “slap” emerges after “Will Smith”.
Even for this simple case of a single staggered transition between two concepts, all classes of
centralized drift adaptation (weighted sampling, ensembles, and drift detection) and prior FL
techniques suffer in accuracy (as demonstrated in §5.6).

We also consider more challenging cases, as depicted in Figure 1.3, where multiple concepts
emerge at the same time and concept drifts may be recurring (a.k.a. periodic).

The challenge of distributed drift in real-world data is exemplified in the Functional Map

1Distribution changes that are predictable like seasonal variations may be accounted for with additional featuriza-
tion.
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Figure 1.4: Class distribution over time in FMoW. The drift viewed globally (left) is small relative
to the localized drift for Africa (right).

of the World (FMoW) dataset adapted from the WILDS benchmark [20, 52]. The task is to
classify the building type or land use from a satellite image, where images are over 5 major
geographical regions (Africa, Americas, Asia, Europe, and Oceania) and across 16 years. Concept
drift due to human activity and environmental processes degrades predictive accuracy over time.
For the 10 most common classes, Figure 1.4 shows how the class distribution in Africa changes
more rapidly over time, such as a reduction in places of worship and an increase in single-unit
residential buildings. However, the class distribution viewed globally is relatively slow-changing.
Our evaluation shows that the model trained on the global dataset only achieves 48% accuracy on
Africa after the major drift at 2014, compared to 66% on the rest of the world. This real-world
example highlights the necessity to mitigate concept drift differently across regions, and existing
centralized solutions cannot address this fundamental challenge.

Given the aforementioned challenges with prior drift adaptation, machine learning practitioners
may still resort to periodically retraining their models, which comes at high computational cost
and suffers from accuracy degradations from drifts between retraining (or even suffers perpetually
under some distributed drifts). This thesis takes a step towards ending that practice.

Thesis Statement: The efficient training of models that maintain high accuracy even in the
presence of drifts can be achieved via an incremental model update strategy, which attains risk
comparable to offline learning, while mitigating the uncertainty of traditional drift detection
through a stable-state/reactive-state process and hierarchical clustering, which accurately identify
drifts staggered across time and space.

The organization of this thesis is as follows.
• Chapter 2 introduces common notation and terminology, defines the objective of high

prediction accuracy at each time, and sets up the framework for competitive analysis by
introducing the definition of risk-competitive.

• Chapter 3 considers the case when all data points in the stream are independent and

3



identically distributed (IID), and introduces the algorithm STRSAGA. While the IID case
is of independent interest for streams known to not contain drifts, it is also an important
building block for the subsequent chapters on drift adaptation—given the accurate detection
of changepoints, a suffix of the stream of can be identified as data from a (mostly) common
concept. The challenge is that the training data points are only observed sequentially and
the optimization objective of empirical risk minimization over the expanding set of points
is a moving target. Overcoming this challenge, STRSAGA efficiently incorporates arriving
data points into the model it maintains, and risk-competitive analysis shows that STRSAGA
achieves comparable accuracy to that of an offline algorithm that has access to all training
data points in advance. Furthermore, even when data points do not arrive at a steady rate,
STRSAGA remains risk-competitive under common arrival distributions, including Poisson
arrivals and many classes of skewed arrivals. Experimental results support these analytical
findings, and also show that STRSAGA outperforms natural streaming data versions of both
SGD and SSVRG.

• Chapter 4 considers non-IID data arrivals over time, and introduces the algorithm DriftSurf.
While traditional drift detection may be brittle under a variety of types of concept drift
encountered in practice, DriftSurf robustly extends drift detection by its incorporation into
a broader stable-state/reactive-state process. DriftSurf accounts for the uncertainty in the
application of drift detection by using the trigger to transition to a reactive state, which
reacts quickly to true drifts while eliminating most false positives. The advantage to this
approach is that a small threshold can be universally applied (corresponding to aggressive
drift detection) to achieve a high detection rate, while mitigating the false positive rate of
standalone drift detection. Risk-competitive analysis shows that DriftSurf attains comparable
accuracy to an idealized algorithm with oracle access to when drift occurs (permitting that
both algorithms are trained accurately; e.g., using STRSAGA). Experimental results show
that DriftSurf generally outperforms a state-of-the-art drift-detection-based method MDDM
and a state-of-the-art ensemble methods AUE, while operating at computational efficiency
comparable to standalone drift detection.

• Chapter 5 considers non-IID data arriving over time and distributed in space in the FL
setting, and introduces the algorithm FedDrift. To adapt robustly to a broader variety of
distributed drift patterns than considered in previous work, FedDrift solves a time-varying
clustering problem to learn from data generally heterogeneous in both dimensions. FedDrift
draws upon ideas from DriftSurf to manage the uncertainty of drift detection. Local detection
is applied to quickly isolate drifted clients and hierarchical clustering is leveraged to slowly
and safely merge clients once common concepts are confidently identified. The hierarchical
clustering process in FedDrift also mitigates false positives in detection (which could occur
frequently when multiplied across clients). Experimental results show that FedDrift achieves
similar accuracy to an idealized algorithm with oracle access to when drift occurs for each
client, and that it outperforms state-of-the-art FL algorithms Adaptive-FedAvg, IFCA, and
CFL, and state-of-the-art centralized adaptive algorithms AUE and KUE.

• Chapter 6 concludes the thesis and lays out open problems and directions for future work.
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Chapter 2

Preliminaries

This chapter defines symbols and terms used in the context of the centralized learning setting
considered in Chapters 3 and 4. The notation for the extension to data and models across multiple
clients in the FL setting differs and is deferred to Chapter 5 where it is first used.

We consider a data stream setting in which the training data points arrive over time. For
t = 1, 2, . . . , let Xt be the set of labeled data points arriving at time step t. Let St1,t2 = ∪t2−1t=t1Xt

be a segment of the stream of points arriving in time steps t1 through t2 − 1. Let nt1,t2 = |St1,t2 |.
For the case t1 = 1, we omit the first subscript; e.g., St2 and nt2 .

Each Xt consists of data points drawn from a distribution (concept) It not known to the
learning algorithm. In the stationary case, It = It−1; otherwise, a concept drift has occurred at
time t. Drift is categorized as either abrupt when change occurs across a single time step, or
gradual for a transition over multiple time steps [30].

The model being trained is a member of a class of functions F . A function in this class is
parameterized by a vector of weights w ∈ Rd. Our goal is to learn a model with high prediction
accuracy at each time step t; i.e., to minimize the expected risk over the distribution It. The
expected risk of function w over a distribution I is RI(w) = Ex∼I [fx(w)], where fx(w) is the
loss of function w at point x. Thus, the objective at each time t is:

min
wt∈F

Ex∼It [fx(wt)]. (2.1)

Given a stream segment St1,t2 of training data points, the best we can do when the data are
all drawn from the same distribution is to minimize the empirical risk over St1,t2 . The empirical
risk of function w over a sample S of n elements is: RS(w) = 1

n

∑
x∈S fx(w). The optimizer of

the empirical risk is denoted as w∗S , defined as w∗S = arg minw∈F RS(w). The optimal empirical
risk isR∗S = RS(w∗S).

In order to quantify the error in the expected risk from empirical risk minimization, we use a
uniform convergence bound [10, 11]. We assume the expected risk over a distribution I and the
empirical risk over a sample S of size n drawn from I are related through the following bound:

E[sup
w∈F
|RI(w)−RS(w)|] ≤ H(n)/2 (2.2)

where H(n) = hn−α, for a constant h and 1/2 ≤ α ≤ 1. From this relation, H(n) is an upper
bound on the statistical error (also known as the estimation error) over a sample of size n [11].
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Following Bottou and Bousquet [11], we define sub-optimality as follows.
Definition 1. The sub-optimality of an algorithm A over training data S = St1,t2 is the difference
between A’s empirical risk and the optimal empirical risk:

SUBOPTS(A) := RS(w)−RS(w∗S)

where w is the solution returned by A on S and w∗S is the empirical risk minimizer over S.
In the stationary case, achieving a sub-optimality on the order of H(nt1,t2) over stream

segment St1,t2 asymptotically minimizes the total (statistical + optimization) error for F . (The
total error for F of a function w learned from a sample S drawn from a distribution I refers to
E[RI(w)] − infw′∈F RI(w

′).) Therefore, we focus on reducing the sub-optimality to balance
withH(n)—there is no guaranteeable benefit to minimizing the empirical risk further. Note that
althoughH(n) is only an upper bound on the statistical error, Bottou and Bousquet remark “it is
often accepted that these upper bounds give a realistic idea of the actual convergence rates” [11].

Given this principle, we define our notion of risk-competitiveness as follows.
Definition 2. For c ≥ 1, an algorithm A is said to be c-risk-competitive to an algorithm B at a
time step t > td if

E
[
SUBOPTStd,t(A)

]
≤ cH(nB)

where td is the time step of the most recent drift (said to be 1 if there are no drifts) and nB ≤ ntd,t
is the total number of data points read by algorithm B, all from Std,t.

The above definition in terms of a general algorithm B will be made explicit in §3.2.1 and
§4.4 for particular instances of an algorithm B. For example, in the case of IID data arrivals,
c-risk-competitiveness to the empirical risk minimizer as algorithm B at time t simplifies to
E [SUBOPTSt(A)] ≤ cH(nt). Another example is in the case of the stationary period after a
concept drift, c-risk-competitiveness to an algorithm with oracle knowledge of when the drift
occurred is the bound E

[
SUBOPTStd,t(A)

]
≤ cH(ntd,t). In both cases, the expected sub-optimality

is bounded within a constant factor of our stated goal of the statistical error boundH().
The motivating idea in the definition is that if we believe H() to be a tight bound on the

statistical error, and hence, a lower bound on the total error, thenH(nB) is a lower bound on the
error of algorithm B, and thus constant factor risk-competitiveness implies the ratio of errors of
algorithm A to algorithm B is constant.

Assumptions and Limitations Finally, we mention some broad assumptions and limitations in
the study of algorithms in this thesis.
• We consider algorithms that, at each time t, have access to all the data points so far S1,t. In

contrast to single-pass online learning, our setting permits resampling relevant older data,
enabling higher accuracy than what can be achieved in a single pass. For this reason, we
use risk-competitive analysis rather than the classic regret analysis in online learning 1. Of
course, unlimited memory is a simplifying assumption and memory is eventually bounded.
More realistically, the model can access some window of the most recent W time steps
of data, St−W,t, and the risk-competitive analyses presented in this thesis can be readily
generalized with reference to this windowed stream segment.

1Since our initial conference publication of STRSAGA, regret analysis has since been performed by other authors
[44] for the online learning setting.
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• We seek high prediction accuracy at each time (Eq 2.1), yet our high-probability risk-
competitive results are established asymptotically, providing no guarantee at some time
steps. Theoretical analyses are supplemented with experimental studies that present the
average accuracy over time, which is a natural metric, but may not be the most appropriate
in some applications. For instance, it could be preferable to have a stable accuracy that is
lower on average but with a better worst-case compared to a system with a higher average
accuracy but is susceptible to catastrophic costs at some times. Evaluation under other
metrics are considered briefly (§4.8.8), but not comprehensively studied in this thesis.

• Our criteria (§1) are accuracy, efficiency, and drift-robustness. Risk-competitive analysis
establishes high accuracy, with respect to stationary periods after drifts (and can be with
respect to a budget of gradient computations as in §3.2.1). To consider the trade-offs
between the desired criteria, experimental studies are indispensable. For algorithms that
train multiple models and incur higher cost, empirical results are also presented normalized
for training time or communication. Furthermore, while the definition of risk-competitive is
valid for drifts both abrupt and gradual, the guarantee on accuracy only after drift renders it
less interesting for slow, gradual drifts. Our experimental study measures accuracy over all
time across datasets encompassing a variety of drift magnitudes, rates, and patterns, and
we characterize drift-robustness as achieving consistent performance across datasets and
with low sensitivity of hyperparameters. We choose datasets for evaluation to match those
considered by papers on prior state-of-the-art algorithms for fair comparisons, and assume
that high performance over datasets studied in the literature corresponds to practicality.
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Chapter 3

Learning from IID data with STRSAGA

This chapter considers the maintenance of a model over IID data arrivals. At any point in time,
the goal is to fit the model to the training data points observed so far, in order to accurately predict
the labels of unobserved test data. Such a model is never “complete” but instead needs to be
continuously updated as newer training data points arrive.

We refer to algorithms that assume the set of training data are all available in advance as offline
algorithms. Upon the arrival of new data points, offline algorithms must recompute the model
from scratch, which is infeasible due to high computational costs. We refer to algorithms that can
efficiently update the model as more data arrive as streaming data algorithms. Such efficiency
should not come at the expense of accuracy—ideally, the accuracy of the model maintained
through such updates should be close to that obtained if we were to build a model from scratch
using all the training data points seen so far.

Fitting a model w is usually cast as optimization problem. For the stream of training data
points Si of ni data points observed through time i, the goal is to minimize the empirical risk
RSi(w) = 1

ni

∑
x∈Si fx(w), where fx is the loss of w at data point x. In modern machine learning,

Stochastic Gradient Descent (SGD) [9, 75] methods are widely used for optimization. Variance-
reduced SGD such as SVRG [45] and SAGA [23] have emerged more recently and attracted
interest for their faster convergence rates. These algorithms operate by iteratively sampling a
data point from the set of training data and using the gradient of its loss to determine an update
direction.

For variance-reduced SGD, simply expanding this set from which points are sampled to
include all new arrivals can result in poor convergence (discussed in §3.2), depending on the
number of arrivals. Thus, even though these algorithms use only a single data point at a time, they
still assume a fixed set of training data, and are still offline algorithms.

The optimization goal of a streaming data algorithm is to maintain a model using all the
data points that have arrived so far, such that the model’s empirical risk is close to the empirical
risk minimizer (ERM) over those data points. The challenges include (i) because the training
data is changing at each time step, the ERM on streaming data is a “moving target”; (ii) the
ERM is an optimal solution that cannot be realized in limited processing time, while a streaming
data algorithm is not only limited in processing time, but is also presented the data points only
sequentially; (iii) with increasing arrival rates, it becomes increasingly difficult for the streaming
data algorithm to keep up with the ERM; and (iv) data points may not arrive at a steady rate: the
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numbers of points arriving at different points in time can be highly skewed.
This chapter presents STRSAGA (§3.2), a streaming data algorithm that overcomes these

challenges. Risk-competitive analysis compares the accuracy of STRSAGA to a state-of-the-art
offline algorithm DYNASAGA [21] for variance-reduced SGD, which is given all the data points
in advance. We show that given the same computational power, the accuracy of STRSAGA is
competitive to DYNASAGA at each point in time, under certain conditions on the schedule of input
arrivals which we lay out in §3.3. We show that these conditions are satisfied by a number of
common arrival distributions, including Poisson arrivals and many classes of skewed arrivals.

Experimental results (§3.5) for two machine learning tasks, logistic regression and matrix
factorization, on two real data sets each, support our analytical findings: the sub-optimality of
STRSAGA on data points arriving over time (under various input arrival distributions) is almost
always comparable to the offline algorithm DYNASAGA, when each algorithm is given the same
computational power. We also show that STRSAGA significantly outperforms natural streaming
data versions of both SGD and SSVRG [27].

3.1 Related Work
Stochastic Gradient Descent (SGD) [75] and its extensions are used extensively in practice for
learning from large datasets. While an iteration of SGD is cheap relative to an iteration of a full
gradient method, its variance can be high. To control the variance, the learning rate of SGD must
decay over time, resulting in a sublinear convergence rate.

The previous decade has seen a breakthrough with variance-reduced versions of SGD that
achieve linear convergence on strongly convex objective functions, generally by incorporating a
correction term in each update step that approximates a full gradient, while still ensuring each
iteration is efficient like SGD. SAG [76] was among the first variance reduction methods proposed
and achieves linear convergence rate for smooth and strongly convex problems. SAG requires
storage of the last gradient computed for each data point and uses their average in each update.
SAGA [23] improves on SAG by eliminating a bias in the update. Stochastic Variance-Reduced
Gradient (SVRG) [45] is another variance reduction method that does not store the computed
gradients, but periodically computes a full-data gradient, requiring more computation than SAGA.
Semi-Stochastic Gradient Descent (S2GD) [54] is a variant of SVRG where the gaps between full-
data gradient computations are of random length and follow a geometric law. CHEAPSVRG [79]
is another variant of SVRG. In contrast with SVRG, it estimates the gradient through computing
the gradient on a subset of training data points rather than all the data points. However, all of
the above variance-reduced methods require O(n log n) iterations to guarantee convergence to
statistical accuracy (to yield a good fit to the underlying data) for n data points. DYNASAGA [21]
achieves statistical accuracy in only O(n) iterations.

The main observation underlying DYNASAGA is that the linear convergence rate of variance-
reduced SGD depends on the sample size n. Specifically for SAGA [23], assuming losses
are µ-strongly convex and with L-Lipschitz continuous gradients, each iteration improves the
objective by a factor of

(
1− µ

2(µn+L)

)
, which decreases in n. Given the higher optimization errors

for larger sample sizes, DYNASAGA achieves fast convergence by using a controlled schedule to
gradually increase its set of samples for SAGA iterations.
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The above algorithms for variance-reduced SGD are offline, and assume the entire dataset is
available beforehand. Streaming SVRG (SSVRG) [27] is an algorithm that handles streaming data
arrivals, and processes them in a single pass through data, using limited memory. (Underlying
their work too is that the convergence rate for SVRG varies in the number of samples.) In our
experimental study, we found STRSAGA to be significantly more accurate than SSVRG. Further,
our analysis of STRSAGA shows that it handles arrival distributions which allow for burstiness in
the stream, while SSVRG is not suited for this case. In many practical situations, restricting a
streaming data algorithm to use limited memory is overly restrictive and as our results show, leads
to worse accuracy.

Since the initial conference publication of STRSAGA, other authors [69] have adapted STR-
SAGA for multi-core parallelism, employing a lock-free strategy similar to Hogwild [73] that
works well for sparse gradients. STRSAGA has also since been applied for local client training in
the Federated Learning setting by other authors [44, 87], who also demonstrate the applicability
of STRSAGA for training other models such as CNNs.

3.2 Algorithm
We present STRSAGA for updating a model with varianced-reduced SGD over data arriving over
time. SGD and variance-reduced versions like SAGA [23] work by iteratively sampling a point
from a training set T and using the gradient of its loss to determine an update direction. We let
ρ ≥ 1 denote the number of such iterations that can be performed in a single time step.

One option to handle streaming data arrivals is to simply expand the set T from which further
sampling is conducted, by adding all the new arrivals. We consider this strategy for SGD in our
evaluation in §3.5. However, for variance-reduced SGD, the optimization error increases in the
size of T due to a slower convergence rate (as noted in §3.1). With uncontrolled increases in the
size of T (due to either a high mean arrival rate or temporary bursts in the number of arrivals), the
corresponding sub-optimality over T of the algorithm increases, so that the function that is finally
computed may have poor accuracy.

To handle this, we use an idea from DYNASAGA [21], which increases the size of the training
set T in a controlled manner, according to a schedule. Upon increasing the size of T , further
increases are placed on hold until a sufficient number of SAGA steps have been performed on the
current state of T . By using this idea, DYNASAGA was able to achieve statistical accuracy earlier
than SAGA. However, DYNASAGA is still an offline algorithm that assumes that all training data
is available in advance.

STRSAGA deals with streaming arrivals as follows. Arriving points from the next set of points
Xi are added to a buffer Buf. The effective sample set T is expanded in a controlled manner,
similar to DYNASAGA. However, instead of choosing new points from a static training set, such
as in DYNASAGA, STRSAGA chooses new points from the dynamically changing buffer Buf. If
Buf is empty, then available CPU cycles are used to perform further steps of SAGA. After any
time step, it is possible that STRSAGA may have trained over only a subset of the points that
are available in Buf, but this is to ensure that the optimization error on the subset that has been
trained is balanced with the statistical error of the effective sample size. Algorithm 1 depicts
the steps taken to process the zero or more points Xi arriving at time step i. Before any input is
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Algorithm 1 STRSAGA: Process a set of training points Xi that arrived in time step i to update
the model w.

// ρ is the number of update steps that can be performed
// η is the learning rate
// Ti is the effective sample set
Ti ← Ti−1
Add Xi to Buf {Buf is the set of training points not added to Ti yet}
for j ← 1 to ρ do

if Buf is non-empty & j is even then
Move a single point, p, from Buf to Ti
α(p)← 0 {α(p) is the prior gradient of p, initialized to 0}

else
Sample a point p uniformly from Ti

end if
A ←

∑
x∈Ti α(x)/|Ti| {A is the average of all gradients and can be maintained incremen-

tally}
g ← ∇fp(w) {fp is the loss function at p}
w← w − η(g − α(p) + A)
α(p)← g

end for

seen, the algorithm initializes buffer Buf to empty, effective sample T0 to empty, and function
w0 to random values. STRSAGA as described here uses the basic framework of DYNASAGA, of
adding one training point to Ti every two steps of SAGA (the linear schedule in [21]), and both
algorithms borrow variance-reduction steps from SAGA (lines 8-9 in Algorithm 1 and using the
running average A of all gradients).

The time complexity of Algorithm 1 is on the order of ρ times the cost of a gradient compu-
tation. Storing the samples and model parameters requires O(niD + d) space, where D is the
dimension of the data and d is the dimension of the model. Storing the prior gradients α(p) for
each data point incurs an additive O(nid); for linear models, this cost is reduced to O(ni) since
each gradient is a scalar multiple of the corresponding data point.

3.2.1 Analysis

Suppose data points Si have been seen until time step i, and ni = |Si|. We first note that the
time taken to process a set of training points Xi is dominated by the time taken for ρ iterations of
SAGA. Ideally, the empirical risk of the solution returned by STRSAGA is close to that of the
ERM over Si. However, this is not possible in general. Suppose the number of points arriving
at each time step i were much greater than ρ, the number of iterations of SAGA that can be
performed at each step. Then not even an offline algorithm such as DYNASAGA that has all points
at the beginning of time could be expected to match the ERM within the available time. In what
follows, we present a competitive analysis, where the performance of STRSAGA is compared with
that of an offline algorithm that has all data available to it in advance. We consider two offline
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algorithms, ERM and DYNASAGA(ρ), described below.
Algorithm ERM sees all of Si at the beginning of time, and has infinite computational power

to minimize the empirical risk. A streaming data algorithm has two obstacles if it has to compete
with ERM: (i) Unlike ERM, a streaming data algorithm does not have all data in advance, and
(ii) Unlike ERM, a streaming data algorithm has limited computational power. It is clear that no
streaming data algorithm can do better than ERM. We can practically approach the performance
of ERM through executing DYNASAGA until convergence is achieved.

Algorithm DYNASAGA(ρ) sees all of Si at the beginning of time, and is given ρ iterations of
gradient computations in each step. The parenthetical ρ denotes this algorithm is the extension of
the original DYNASAGA [21], parameterized by the available amount of processing time. The
algorithm DYNASAGA performs 2ni steps of gradient computations on Si and then terminates,
while DYNASAGA(ρ) performs ρi steps, where if ρi > 2ni, the additional steps are uniformly
over Si. The computational power of DYNASAGA(ρ) over i time steps matches that of a streaming
data algorithm. However, DYNASAGA(ρ) is still more powerful than a streaming data algorithm,
because it can see all data in advance. In general, it is not possible for a streaming data algorithm
to compete with DYNASAGA(ρ) either—one issue being that streaming arrivals may be very
bursty. Consider the extreme case when all of Si arrives in the ith time step, and there were
no arrivals in time steps 1 through i − 1. An algorithm for streaming data has only ρ gradient
computation steps that it can perform on ni points, and its earlier ρ(i− 1) gradient steps had no
data to use. In contrast, DYNASAGA(ρ) can perform ρi gradient steps on Si, and achieve a smaller
empirical risk.

Each algorithm STRSAGA, DYNASAGA(ρ), and ERM, after seeing Si, has trained its model
on a subset Ti ⊆ Si. We call this subset the “effective sample set”. Let tSTR

i , tDi , and tERMi denote
the sizes of the effective sample sets of STRSAGA,DYNASAGA(ρ), and ERM, respectively, after
i time steps. The following lemma shows that the expected sub-optimality of DYNASAGA(ρ) over
Si is related to tDi .
Lemma 1 (Lemma 5 in [21]). After i time steps, tDi = min{ni, ρi/2}, and tERMi = ni. The
expected sub-optimality of DYNASAGA(ρ) over Si after i time steps is O(H(tDi )).

Our goal is for a streaming data algorithm to achieve an empirical risk that is close to that of
an offline algorithm; i.e., risk-competitiveness.
Definition 3. For c ≥ 1, a streaming data algorithm A is said to be c-risk-competitive to
DYNASAGA(ρ) at time step i if E [SUBOPTSi(A)] ≤ cH(tDi ). Similarly, A is said to be c-risk-
competitive to ERM at time step i if E [SUBOPTSi(A)] ≤ cH(ni).

Note that the expected sub-optimality of A is compared with H(tDi ) and H(ni), which are
upper bounds on the statistical errors of DYNASAGA(ρ) and ERM respectively. If H() is a
tight bound on the statistical error, and hence, a lower bound on the total error, then c-risk-
competitiveness to DYNASAGA(ρ) implies that the expected sub-optimality of the algorithm A is
within a factor of c of the total risk of DYNASAGA(ρ), as illustrated in Figure 3.1. We next show
if a streaming data algorithm is risk-competitive with respect to DYNASAGA(ρ) then it is also
risk-competitive with respect to ERM, under certain conditions.
Lemma 2. If a streaming data algorithm A is c-risk-competitive to DYNASAGA(ρ) at time step
i, then A is c ·max

((
2λ̃i
ρ

)α
, 1
)

-risk-competitive to ERM at time step i, where λ̃i =
(
ni
i

)
and

1/2 ≤ α ≤ 1 is the exponent in the statistical error upper boundH(n) = hn−α.
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Figure 3.1: Depiction of the errors assuming that an algorithm A is c-risk-competitive to
DYNASAGA(ρ). The total error of DYNASAGA(ρ) is at least the statistical error bound H(tDi ),
and the sub-optimality of A is at most a factor of c ofH(tDi ).

Proof. From Definition 3, E [SUBOPTSi(A)] ≤ cH(tDi ). And by Lemma 1, tDi = min(ni, ρi/2).
In the first case tDi = ni, E [SUBOPTSi(A)] ≤ cH(tDi ) = cH(ni). Otherwise, tDi = ρi/2, and

E [SUBOPTSi(A)] ≤ cH(tDi ) = c
(

2λ̃i
ρ

)α
H(ni).

Discussion: λ̃i = (ni/i) is the average rate of arrivals in a time step. We expect the ratio
(λ̃i/ρ) to be a small constant. If this ratio is a large number, much greater than 1, the total number
of arrivals over i time steps far exceeds the number of gradient computations the algorithm
can perform over i time steps. This rate of arrivals is unsustainable, because most practical
algorithms such as SGD and variants, including SVRG and SAGA, require more than one gradient
computation for each training point. Hence, the above lemma implies that if A is O(1)-risk-
competitive to DYNASAGA(ρ), then it is also O(1)-risk-competitive to ERM, under reasonable
arrival patterns.

Finally, Lemma 3 bounds the expected sub-optimality of STRSAGA over its effective sample
set Ti. In §3.3, we will show how to apply the following result to establish the risk-competitiveness
of STRSAGA.
Lemma 3. Suppose all fx are convex and their gradients are L-Lipschitz continuous, and that
RTi is µ-strongly convex. At the end of each time step i, the expected sub-optimality of STRSAGA
over Ti is

E [SUBOPTTi(STRSAGA)] ≤ H(tSTR
i ) + 2 (R(w0)−R(w∗))

(
L

µ

)3(
1

tSTR
i

)2

.

If we additionally assume that the condition number L/µ is bounded by a constant at each time,
the above simplifies to E [SUBOPTTi(STRSAGA)] ≤ (1 + o(1))H(tSTR

i ).
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3.2.2 Proof of Lemma 3
Throughout, we assume that all fx are convex and their gradients are L-Lipschitz continuous, and
that RS is µ-strongly convex for the set of training samples S. In addition, we will use U, as
defined by Daneshmand et al. [21] in their analysis of DYNASAGA.

U(t, n) = min

ρnU(t− 1, n)

min
m<n

[U(t,m) +
n−m
n
H(m)],

(3.1)

where ρn is the convergence rate of SAGA and defines as ρn = 1−min( 1
n
, µ
L

). And, the initial
error U(0,m) = ζ is defined as:

ζ :=
4L

µ
[R(w0)−R(w∗)].

We will use the following results from Daneshmand et al. [21].
Lemma 4. (THEOREM 3 IN [21]) Suppose the expected sub-optimality of an algorithm A over
a training set T ⊆ S is bounded as E [SUBOPTT (A)] ≤ ε. Then the expected sub-optimality of A
over S is bounded by E [SUBOPTS(A)] ≤ ε+ n−m

n
H(m), where |T | = m, |S| = n.

Lemma 5. (PROPOSITION 4. IN [21]) The expected sub-optimality of DYNASAGA over a
training set S at iteration t is

E [SUBOPTS(DYNASAGA)] ≤ U(t, n).

where the expectation is taken over randomness of S.
Lemma 6. (LEMMA 5 IN [21]) ForH(n) = cn−α,where 1/2 ≤ α ≤ 1,

U(2n, n) ≤ H(n) +
ζ

2

(
L

µn

)2

.

The expected sub-optimality of STRSAGA over its effective sample set can be bounded
similarly in terms of the function U.
Lemma 7. At the end of each time step i, the expected sub-optimality of STRSAGA over Ti is

E [SUBOPTTi(STRSAGA)] ≤ U(2tSTR
i , tSTR

i ).

Proof. The proof is similar to the proof of Proposition 4 in [21]. Note that performing extra steps
of SAGA when the Buf is empty does not weaken the bound.

The proof of Lemma 3 immediately follows by substitution of Lemma 7.

Proof. The expected sub-optimality is bounded by the U function by Lemma 7, and we have a
bound on U by Lemma 6. Therefore,

E [SUBOPTTi(STRSAGA)] ≤ U(2tSTR
i , tSTR

i )

≤ H(tSTR
i ) +

ζ

2

(
L

µtSTR
i

)2

= H(tSTR
i ) + 2 (R(w0)−R(w∗))

(
L

µ

)3(
1

tSTR
i

)2

.
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Similarly, we can also prove a bound on the expected sub-optimality of DYNASAGA(ρ).
Lemma 8. At the end of each time step i, the expected sub-optimality of DYNASAGA(ρ) over Si
is

E [SUBOPTSi(DYNASAGA(ρ))] ≤

max

1,

(
2λ̃i
ρ

)1+α
+ o(1)

H(ni)

where λ̃i =
(
ni
i

)
and ni = |Si|.

Proof. According to Lemma 5, the expected sub-optimality of DYNASAGA(ρ) over the sample
set Si of size ni after t iterations is bounded by U(t, ni). As mentioned earlier, the Algorithm
DYNASAGA(ρ) has limited computational power and can performs only ρi steps of SAGA. Thus,

E [SUBOPTSi(DYNASAGA(ρ))] ≤ U(ρi, ni)

If λ̃i ≤ ρ/2, then

E [SUBOPTSi(DYNASAGA(ρ))] ≤ U(ρi, ni)

≤ U(2λ̃ii, ni) = U(2ni, ni)

≤ H(ni) +
ζ

2

(
L

µni

)2

If λ̃i > ρ/2, then ni = (λ̃i)i > (ρ/2) i. Let T be a subset of Si such that |T | = (ρ/2) i, then
Lemma 4 results

E [SUBOPTSi(DYNASAGA(ρ))] ≤ E [SUBOPTTi(DYNASAGA(ρ))] +
λ̃ii− (ρ/2) i

(ρ/2) i
H ((ρ/2)i)

≤ U(ρi, (ρ/2) i) +
λ̃ii− (ρ/2) i

(ρ/2) i
H((ρ/2) i)

≤ H((ρ/2) i) +
ζ

2

(
L

µ(ρ/2)i

)2

+

(
2λ̃i
ρ
− 1

)
H((ρ/2) i)

=

(
2λ̃i
ρ

)
H
(
ρ

2λ̃i
ni

)
+
ζ

2

(
L

µ(ρ/2)i

)2

=

(
2λ̃i
ρ

)1+α

H(ni) +
ζ

2

(
2λ̃i
ρ

)2(
L

µni

)2

.

3.3 Competitive Analysis of STRSAGA on Specific Arrival
Distributions

Lemma 3 shows that the expected sub-optimality of STRSAGA over its effective sample set Ti
is O(H(tSTR

i )) (note tSTR
i is not equal to ni the number of points so far). However, our goal
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is to show that STRSAGA is risk-competitive to DYNASAGA(ρ) at each time step i; i.e., the
expected sub-optimality of STRSAGA over Si is within a factor of H(tDi ). The connection be-
tween the two depends on the relation between tSTR

i and tDi . This relation is captured using
sample-competitiveness, which is introduced in this section. Although not every arrival distri-
bution provides sample-competitiveness, we will show a number of different patterns of arrival
distributions that do provide this property. To model different arrival patterns, we consider a
general arrival model where the number of points arriving in time step i is a random variable
xi which is independently drawn from distribution P with a finite mean λ. We consider arrival
distributions of varying degrees of generality, including Poisson arrivals, skewed arrivals, general
arrivals with a bounded maximum, and general arrivals with an unbounded maximum. The proofs
of some results about specific distributions, as well as the full statements of prior theorems and
bounds referenced below, is deferred to §3.3.1.

Throughout, we will assume that all fx are convex and their gradients are L-Lipschitz continu-
ous, that the empirical risk objectiveRS is µ-strongly convex, and that the condition number L/µ
is bounded by a constant at each time.
Definition 4. At time i, STRSAGA is said to be k-sample-competitive to DYNASAGA(ρ) if
tSTR
i /tDi ≥ k.

Lemma 9. If STRSAGA is k-sample-competitive to DYNASAGA(ρ) at time step i, then it is
c-risk-competitive to DYNASAGA(ρ) at time step i with c = k−α(2 + o(1)).

Proof. Let TiSTR and TiD denote the effective samples that were used at iteration i for STRSAGA
and DYNASAGA(ρ), respectively. We know that TiSTR, Ti

D ⊆ Si. Using Lemma 4 in §3.2.2, we
have: E [SUBOPTSi(STRSAGA)] ≤ E [SUBOPTTi(STRSAGA)] + ni−tiSTR

ni
H(ti

STR).
Using Lemma 3, we can rewrite the above inequality as

E [SUBOPTSi(STRSAGA)] ≤ (1 + o(1))H(ti
STR) +

ni − tiSTR

ni
H(ti

STR) ≤ (2 + o(1))H(ti
STR).

If STRSAGA is k-sample-competitive to DYNASAGA(ρ), then the result follows:

E [SUBOPTSi(STRSAGA)] ≤ (2+o(1))H(ti
STR) ≤ (2+o(1))H(k · tiD) = k−α(2+o(1))H(ti

D).

Constant Arrival Rate. We first consider the case where xi = λ for each i, so that the number
of arrivals in each time step is the same.
Lemma 10. For a constant arrival rate, STRSAGA is (2+o(1))-risk-competitive to DYNASAGA(ρ)
at any time step.

Proof. The result follows from Lemma 9 because STRSAGA is 1-sample-competitive to DYNASAGA(ρ)
at every time step. Recall STRSAGA moves one point from Buf (if available) every two iterations
of SAGA. In the processing-limited regime ρ/2 ≤ λ, tSTR

i = ρi/2 = tDi , and in the sample-limited
regime λ < ρ/2, tSTR

i = λi = tDi .

For non-trivial arrival distributions, our proof strategy is to first establish sample-competitiveness
through the following lemma, and then apply Lemma 9 to show risk-competitiveness.
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Lemma 11. At time step i, suppose the streaming arrivals satisfy: ni/2 ≥ kni. Then, STRSAGA
is min{k, 1

2
}-sample-competitive to DYNASAGA(ρ) at time step i.

Proof. We first bound tSTR
i . At time i/2, at least kni points have arrived. In Algorithm 1, at time

i/2, these points are either in the Buf or already in the effective sample T STR
i/2 . For every two

iterations of SAGA, the algorithm moves one point from Buf (if available) to the effective sample,
thus increasing the size of the effective sample set by 1. In the i/2 time steps from i/2 + 1, . . . , i,
STRSAGA can perform ρi/2 iterations of SAGA. Within these iterations, it can move ρi/4 points
to T STR

i , if available in the buffer. Hence, the effective sample size for STRSAGA at time i is:
tSTR
i ≥ min{ρi/4, kni}. We know tDi = min{ni, ρi/2}.

We consider four cases. In the first case, (1) if ρi/4 < ni/2 and ni < ρi/2, then tDi = ni
and tSTR

i ≥ ρi/4. In this case, we have tSTR
i ≥ ρi/4 > ni/2 = tDi /2. The other three cases,

(2) ρi/4 < ni/2 and ni ≥ ρi/2, (3) ρi/4 ≥ ni/2 and ni < ρi/2, and (4) ρi/4 ≥ ni/2 and ni ≥ ρi/2,
can be handled similarly.

Skewed Arrivals with a Bounded Maximum. We next consider an arrival distribution param-
eterized by integer M ≥ λ, where the number of arrivals per time step can either be high (M )
or zero. More precisely, xi = M with prob. λ

M
and xi = 0 with prob. 1− λ

M
. Thus, E[xi] = λ.

For M > λ, this models bursty arrival distributions with a number of “quiet” time steps with
no arrivals, combined with an occasional burst of M arrivals. We have the following result for
skewed arrivals.
Lemma 12. For a skewed arrival distribution with maximum M and mean λ, STRSAGA is
6α(2 + o(1))-risk-competitive to DYNASAGA(ρ), with probability at least 1− ε, at any time step
i > 16M

λ
ln 1

ε
.

Note that as M increases, arrivals become more bursty, and it takes longer for the algorithm to
be competitive, with a high confidence.

General Arrivals with a Bounded Maximum. We next consider a more general arrival dis-
tribution with a maximum of M arrivals, and a mean of λ. xi = j with probability pj for
j = 0, . . . ,M , such that

∑
j pj = 1 and E[xi] = λ, for an integer M > 0.

Lemma 13. For a general arrival distribution with mean λ and maximum M , at any time step
i > (16M

λ
+ 8

3
) ln 1

ε
, STRSAGA is 8α(2+o(1))-risk-competitive to DYNASAGA(ρ), with probability

at least 1− ε.

General Arrivals with an Unbounded Maximum. More generally, the number of arrivals
in a time step may not have a specified maximum. The arrival distribution can have a finite
mean, despite a small probability of reaching arbitrarily large values. We consider a sub-class of
such distributions where all the polynomial moments are bounded, as in the following Bern-
stein’s condition with parameter b: The random variable xi has mean λ, variance σ2, and
|E
[
(xi − λ)k

]
| ≤ 1

2
k!σ2bk−2 for all integers k ≥ 3 [65].

Lemma 14. For any arrival distribution with mean λ, bounded variance σ2 and satisfying Bern-
stein’s condition with parameter b, STRSAGA is 8α(2 + o(1))-risk-competitive to DYNASAGA(ρ),
with probability at least 1− ε, at any time step i > max((16(σ

λ
)2 + 8

3
) ln 1

ε
, 2((σ

λ
)2 + b

λ
) ln 1

ε
).
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Poisson Arrivals. We next consider the case where the number of points arriving in each time
step follows a Poisson distribution with mean λ, i.e., P (xi = k) = e−λλk

k!
for integer k ≥ 0.

Lemma 15. For Poisson arrival distribution with mean λ, STRSAGA is 8α(2 + o(1))-risk-
competitive to DYNASAGA(ρ) with probability at least 1− ε, at any time step i > 16

λ
ln 1

ε
.

3.3.1 Additional Proof Details
Skewed Arrivals with a Bounded Maximum. We prove concentration of ni and ni/2 using a
Chernoff bound. We use the following form of the Chernoff bound from Mitzenmacher and Upfal
[67] tailored to the Poisson distribution.
Theorem 1. (Chernoff Bound) LetX1, ..., Xn be independent Poisson trials such that P (Xi) = pi.

Let X =
n∑
i=1

Xi and µ = E [X]. Then the following bounds hold:

• For 0 < δ < 1,
P (X ≤ (1− δ)µ) ≤ e−µδ

2/2

• For 0 < δ ≤ 1,
P (X ≥ (1 + δ)µ) ≤ e−µδ

2/3

Lemma 16. For a skewed arrival distribution with mean λ and parameterized by M , for i >
3M
δ2λ

ln 1
ε
, with probability at least 1− ε, we have ni ≤ (1 + δ)λi, where 0 < δ ≤ 1.

Proof. Let Yi denotes the number of non-empty arrivals in time steps 1, . . . , i. Yi follows the
binomial distribution with parameters n = i, and p = λ/M , i.e., Yi ∼ B(i, λ/M) and E [Yi] =
λi/M . By Chernoff (Theorem 1), for 0 < δ ≤ 1:

P (Yi ≥ (1 + δ)λi/M) ≤ e−
δ2λi
3M ≤ ε

On the other hand, we have ni, the number of arrivals in the first i time steps, is M · Yi. Thus, for
i > 3M

δ2λ
ln 1

ε
with probability at least 1− ε, we have ni ≤ (1 + δ)λi.

Lemma 17. For a skewed arrival distribution with mean λ and parameterized by M , for i >
4M
δ2λ

ln 1
ε
, with probability at least 1− ε, we have ni/2 ≥ (1− δ)λi/2, where 0 < δ < 1.

Proof. Same as Lemma 16, let Yi denotes the number of non-empty arrivals in time steps 1, . . . , i.
Yi follows the binomial distribution with parameters n = i, and p = λ/M , i.e., Yi ∼ B(i, λ/M)
and E [Yi] = λi/M . By the Chernoff bound (Theorem 1), for 0 < δ < 1:

P
(
Yi/2 ≤ (1− δ) λi

2M

)
≤ e−

δ2λi
4M ≤ ε

On the other hand, we have ni/2, total number of arrivals in the first i/2 time steps, is M · Yi/2.
Thus, for i > 4M

δ2λ
ln 1

ε
with probability at least 1− ε, we have ni/2 ≥ (1− δ)λi/2.

Now we can prove Lemma 12, repeated below.
Lemma 12. For a skewed arrival distribution with maximum M and mean λ, STRSAGA is
6α(2 + o(1))-risk-competitive to DYNASAGA(ρ), with probability at least 1− ε, at any time step
i > 16M

λ
ln 1

ε
.
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Proof. By setting δ = 1/2 in Lemma 16, for i > 12M
λ

ln 1
ε
, with probability at least 1 − ε, we

have ni ≤
(
3
2

)
λi. On the other hand, by setting δ = 1/2 in Lemma 17, for i > 16M

λ
ln 1

ε
, with

probability at least 1− ε, we have ni/2 ≥ λi/4. Therefore, using union bound we can conclude
with probability at least 1−2ε, we have ni/2 ≥ 1

6
ni for i > 16M

λ
ln 1

ε
. As a result, using Lemma 11,

STRSAGA and DYNASAGA(ρ) are at least 1
6
-sample-competitive and therefore by Lemma 9,

STRSAGA is 6α(2 + o(1))-risk-competitive with DYNASAGA(ρ).

General Arrivals with a Bounded Maximum. In order to prove concentration bounds for ni
and ni/2, the plan is to use Bernstein’s inequality [65], which lets us bound the sum of independent
random variables in a more flexible manner than Chernoff bounds (for random variables that are
not necessarily binary valued), in conjunction with a bound on the variance of the distribution.
Observation 1. Let x1, x2, . . . , xn be independent random variables such that E [xi] = λ and
the range of these random variables is {0, 1, , . . . ,M}, then the variance of xi is no more than
λ(M − λ).

Proof.

V ar[xi] =
M∑
j=0

pj(j − λ)2 =

(
M∑
j=0

j2pj

)
− λ2

≤M
M∑
j=0

jpj − λ2 = Mλ− λ2

We use Bernstein’s inequality from Massart [65].
Theorem 2. (Bernstein’s Inequality) Let x1, x2, . . . , xn be independent bounded random variables

such that E [xi] = 0 and xi ≤ M with probability 1 and let σ2 = 1
n

n∑
i=1

V ar[xi]. Then for any

a ≥ 0 we have:

P

(
1

n

n∑
j=1

xi ≥ a

)
≤ e

− na2

2σ2+2Ma/3

By Bernstein’s inequality, we can show the following.
Lemma 18. For any general arrival distribution with mean λ and bounded maximum M , for
i > 2(k+2)

3(k−1)2
M
λ

ln 1
ε
, with probability at least 1− ε, we have ni ≤ kλi, for any k > 1.

Proof. According to Observation 1, we have V ar[xi] ≤ Mλ. Let’s define random variable
zi = xi − λ. We have E [zi] = 0 and V ar[zi] = V ar[xi] ≤ Mλ. By Bernstein’s inequality
(Theorem 2 ), and setting a to λ we have:
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P (ni ≥ kλi) = P
(

1

i
(ni − λi) ≥ (k − 1)λ

)
= P

(
1

i

i∑
j=1

(xj − λ) ≥ (k − 1)λ

)

= P

(
1

i

i∑
j=1

zj ≥ (k − 1)λ

)
≤ e−

i(k−1)2λ2

2Mλ+2M(k−1)λ/3 = e−
3(k−1)2

2(k+2)
λ
M
i

For i > 2(k+2)
3(k−1)2

M
λ

ln 1
ε
, this probability is at most ε.

We also make use of the following theorem from Bercu et al. [4].
Theorem 3. Let x1, x2, . . . , xn be a finite sequence of independent and non-negative random
variables with finite variances. Denote Sn = x1 + x2 + . . .+ xn and Vn = V ar(Sn). Then, for
any a ≥ 0,

P (Sn ≤ E [Sn]− a) ≤ e−
a2

2Vn+Wn

where

Wn =
1

3

n∑
k=1

(
mk

2 − vk
mk

)2

, mk = E [xk] and vk = V ar(xk)

Given the above bound, we can bound ni/2 for the bounded maximum case.
Lemma 19. For any general arrival distribution with mean λ and bounded maximum M , for
i > 12M/λ+2

3(1−2k)2 ln 1
ε
, with probability at least 1− ε, we have ni/2 ≥ kλi, for any k < 1

2
.

Proof. By Theorem 3,

P
(
ni/2 ≤ kλi

)
= P

(
ni/2 ≤

(
λ
i

2
− λi(1

2
− k)

))
≤ e−

a2

2Vn+Wn ≤ e
−λ

2i2(1/2−k)2

λMi+λ2i/6 = e−
3(1−2k)2

12M/λ+2
i

Thus, for i > 12M/λ+2
3(1−2k)2 ln 1

ε
with probability at least 1− ε, we have ni/2 ≥ kλi.

Now we can prove Lemma 13, repeated below.
Lemma 13. For a general arrival distribution with mean λ and maximum M , at any time step
i > (16M

λ
+ 8

3
) ln 1

ε
, STRSAGA is 8α(2+o(1))-risk-competitive to DYNASAGA(ρ), with probability

at least 1− ε.

Proof. Similar to the proof of Lemma 12, by setting k = 2 in Lemma 18 and k = 1/4 in
Lemma 19.

General Arrivals with an Unbounded Maximum. We will use the following theorem from
Massart [65].
Theorem 4. Let x1, x2, . . . , xn be independent random variables with mean λ and variance σ2

satisfying the Bernstein condition with parameter b, |E
[
(xi − λ)k

]
| ≤ 1

2
k!σ2bk−2 for all integers

k ≥ 3. Then for any t ≥ 0 we have:

P

(
n∑
i

(xi − λ) ≥ t

)
≤ e

− t2

2(σ2+bt)
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A bound ni follows from the above theorem.
Lemma 20. For any arrival distribution xi with E [xi] = λ and variance σ2 that satisfies
Bernstein’s condition with parameter b, for i > 2(σ2+bλ)

(k−1)2λ2 ln 1
ε
, with probability at least 1− ε, we

have ni ≤ kλi, for any k > 1.

Proof. According to Theorem 4, we have:

Pr[ni ≥ kλi] = Pr[(ni − λi) ≥ (k − 1)λi] ≤ e
− (k−1)2λ2

2(σ2+bλ)
i

when i ≥ 2(σ2+bλ)
(k−1)2λ2 ln 1

ε
, this probability is at most ε.

Lemma 21. For any arrival distribution xi with mean λ and variance σ2, for i > 12(σ/λ)2+2
3(1−2k)2 ln 1

ε
,

with probability at least 1− ε, we have ni/2 ≥ kλi for any k < 1
2
.

Proof. Similar to the proof of Lemma 19.

Now we can prove Lemma 14, repeated below.
Lemma 14. For any arrival distribution with mean λ, bounded variance σ2 and satisfying Bern-
stein’s condition with parameter b, STRSAGA is 8α(2 + o(1))-risk-competitive to DYNASAGA(ρ),
with probability at least 1− ε, at any time step i > max((16(σ

λ
)2 + 8

3
) ln 1

ε
, 2((σ

λ
)2 + b

λ
) ln 1

ε
) .

Proof. Similar to the proof of Lemma 12, by setting k = 2 in Lemma 20 and k = 1/4 in
Lemma 21.

Poisson Arrivals. The following two lemmas follow immediately from the Chernoff bound in
Theorem 1.
Lemma 22. For i > 3

λδ2
ln 1

ε
, with probability at least 1 − ε, we have ni ≤ (1 + δ)λi for any

0 < δ ≤ 1.
Lemma 23. For i > 4

λδ2
ln 1

ε
, with probability at least 1− ε, we have ni/2 ≥ (1− δ)λi/2 for any

0 < δ < 1.
Now we can prove Lemma 15, repeated below.

Lemma 15. For Poisson arrival distribution with mean λ, STRSAGA is 8α(2 + o(1))-risk-
competitive to DYNASAGA(ρ) with probability at least 1− ε, at any time step i > 16

λ
ln 1

ε
.

Proof. Similar to the proof of Lemma 12, by setting δ = 1 in Lemma 22 and δ = 1/2 in
Lemma 23.

3.4 Experimental Setup
We conduct a set of experiments on real world datasets streamed in under various arrival distribu-
tions. We consider two optimization problems that arise in supervised learning, logistic regression
(convex) and matrix factorization (nonconvex). For logistic regression, we use the A9A [24] and
RCV1.binary [58] datasets, and for matrix factorization, we use two datasets of user-item ratings
from Movielens [36]. These static training data are converted into streams, by ordering them by a
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random permutation, and defining an arrival rate λ dependent on the dataset size. Training data
arrive over the course of 100 time steps. We consider skewed arrivals parameterized by M = 8λ
and Poisson arrivals.

At each time step i, a streaming data algorithm has access to ρ gradient computations to update
the model. We examine the case for ρ/λ = 1 and ρ/λ = 5. We compare STRSAGA against
the offline algorithm DYNASAGA(ρ), which is run from scratch at each time i using ρi steps on
Si. We also compare against two streaming data algorithms, SGD, and for the case ρ/λ = 1,
the single-pass algorithm SSVRG.1 For the streaming data version of SGD under an expanding
set of points Si, at each time step i we first visit points from Si that have not been seen yet, and
spend any remaining processing time to sample uniformly from all of Si. (Across all datasets,
this strategy was either better or indistinguishable from just directly sampling from all of Si.) For
our implementation of SSVRG, we have relaxed the memory limitation of the original streaming
algorithm by introducing a buffer to store points that have arrived but not yet been processed.
With this additional storage, we allow SSVRG to make progress during time steps even when no
new points arrive, and hence make for a fairer comparison when data points do not arrive at a
steady rate.

3.4.1 Datasets and Parameters
Details of the 4 real-world datasets we used are given in Tables 3.1 and 3.2. We reserve 10% of
each dataset for testing and use the remaining 90% for training.

Table 3.1: Datasets for logistic regression

Dataset Size Number of Features

RCV1.BINARY 20242 47236
A9A 32561 123

Table 3.2: Datasets for matrix factorization

Dataset Users Movies Date Range Rating Scale Density

MovieLens100K 943 1682 9/1997-4/1998 1-5, stars 6.30%
MovieLens1M 6040 3706 4/2000-2/2003 1-5, stars 4.47%

The loss function for the binary classification task is L2-regularized logistic loss. For a
data point (x, y), the corresponding loss is f(x,y)(w) = log(1 + exp(−ywTx)) + µ

2
||w||22. For

collaborative filtering, we solve the matrix factorization problem of finding two rank-10 matrices,
w = (L,R), so that LRT approximates the known elements of the data matrixM . The regularized
loss function for the data point Mij is f(i,j)(w) = ((LRT )ij −Mij)

2 + µ
2
(||L||2F + ||R||2F ). The

1We consider SSVRG a ρ/λ = 1 algorithm, because for most data points it receives, it uses 1 gradient computation,
and only for an o(1) fraction of the data points does it require 2 gradient computations.
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rank 10 for matrix factorization was chosen for good validation set error after optimizing with
SGD after a single pass over the static dataset.

We used grid search to determine the values of the regularization factor µ and step size η
that optimized the validation set error after passing once fully over the static training set. We
searched for µ of the form 10−a for 1 ≤ a ≤ 7 and η of the form b× 10−c for b ∈ {1, 2, 5} and
1 ≤ c ≤ 5. The setting of µ for each dataset is µA9A = 10−3, µRCV = 10−5, µMovieLens = 10−1. For
SGD, we used a constant step size, which performed better than a decaying step size of the form
ηt = η0/(1 + η0µt).

3.5 Experimental Results
We empirically confirm the competitiveness of STRSAGA with the offline algorithm DYNASAGA(ρ)
under skewed arrivals and Poisson arrivals, and also find that STRSAGA outperforms SGD and
SSVRG.
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Figure 3.2: Sub-optimality under skewed arrivals with M = 8λ. Top row is processing rate
ρ = 1λ, and bottom row is ρ = 5λ. The median is taken over 5 runs.

Figure 3.2 shows the sub-optimality of each algorithm and the sample-competitive ratio
for STRSAGA under skewed arrivals. The dips in the sample-competitive ratio represent the
arrival of a large group of points, and correspondingly at those times, the sub-optimality spikes,
because there are now many new points added to Si that have yet to be processed. We observe
that the sample-competitive ratio improves over the lifetime of the stream and tends towards
1, outperforming our pessimistic theoretical analysis. Furthermore, as the sample-competitive
ratio increases, the risk-competitiveness of STRSAGA improves so that the sub-optimality of
STRSAGA is comparable to that of the offline DYNASAGA(ρ), which is the best we can do given
limited computational power. In Figure 3.2, we also observe that STRSAGA outperforms both our
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streaming data version of SGD, due to the faster convergence rate when using SAGA steps with
reduced variance, and also SSVRG, showing the benefit of revisiting data points, even when the
processing rate is constrained at ρ = 1λ.

To better understand the impact of the skewed arrival distribution on the performance of
STRSAGA, we did three experiments in Figure 3.3, showing the following results. (1) As M/λ
increases, the arrivals become more bursty and it takes longer for STRSAGA to be sample-
competitive, and as a result, risk-competitive to DYNASAGA(ρ). Note that the far left endpoint,
for skewed arrival parameterized with M = λ, is the case of constant arrivals. (2) We observe that
there is an intermediate point for ρ/λ where it is more difficult to be sample-competitive, but at
the extremes the ratio tends towards 1. This is because for large ρ/λ, whenever a big group of
points arrives they can all be processed quickly. On the other hand, for small ρ/λ, at any time
i, both STRSAGA and the offline algorithm are still processing points that arrived at some time
significantly before i, and so a large variance in the amount of fresh arrivals at the tail of the
stream can be tolerated. (3) The bound on sub-optimality we showed earlier is dependent on
the number of data points processed so far. As we see, as time passes and STRSAGA sees more
data points, its sub-optimality on Si improves. Additionally as ρ/λ increases, STRSAGA has
more steps available to incorporate newly arrived data points and becomes more resilient to bursty
arrivals.
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Figure 3.3: Sensitivity analysis. The first plot varies the skew M/λ for a fixed processing rate
ρ/λ, and the second two plots vary the processing rate for a fixed skew. Results are plotted for
time steps i = 25, 50, 75, 100 over a stream of the RCV dataset of 100 time steps. The median is
taken over 9 runs.

We also show results for sub-optimality for Poisson arrivals in Figure 3.4 and test loss in
Figure 3.6. The median sample-competitive ratio is 1 from the beginning of the stream, which
is significantly better than the ratio we showed analytically. Note that the curves for STRSAGA
and DYNASAGA(ρ) coincide for ρ/λ = 1 when STRSAGA is sample-competitive at all points in
the stream, since the two algorithms are identical in this regime. Again we find that STRSAGA
outperforms SGD and SSVRG.
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Figure 3.4: Sub-optimality under Poisson arrivals with mean λ. Top row is processing rate ρ = 1λ,
and bottom row is ρ = 5λ. The median is taken over 5 runs.

Additional Results Above, we showed only the sub-optimality. Figure 3.5 shows the test loss
under skewed arrivals, and Figure 3.6 shows the test loss under Poisson arrivals. We observe the
accuracy of STRSAGA is comparable with the offline algorithm and yields a more accurate model
than either SGD or SSVRG.

Finally, we include plots for the MovieLens100K dataset omitted above, for which results
are generally similar to those for the larger MovieLens1M dataset presented previously. Sub-
optimality is shown in Figure 3.7 and test loss in Figure 3.8.
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Figure 3.5: Test loss under skewed arrivals with M = 8λ. Top row is processing rate ρ = 1λ, and
bottom row is ρ = 5λ. The median is taken over 5 runs.
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Figure 3.6: Test loss under Poisson arrivals with mean λ. Top row is processing rate ρ = 1λ, and
bottom row is ρ = 5λ. The median is taken over 5 runs.
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Figure 3.7: Additional plots of sub-optimality for MovieLens100k.
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Figure 3.8: Additional plots of test loss for MovieLens100k.
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Chapter 4

Learning from non-IID data over time with
DriftSurf

Learning from streaming data is an ongoing process in which a model is continuously updated as
new training data arrive. We focus on the problem of concept drift, which refers to an unexpected
change in the distribution of data over time. The objective is high prediction accuracy at each time
step on test data from the current distribution. To achieve this goal, a learning algorithm should
adapt quickly whenever drift occurs by focusing on the most recent data points that represent the
new concept, while also, in the absence of drift, optimizing over all the past data points from the
current distribution for statistical accuracy.

Our contribution is DriftSurf, an adaptive algorithm that helps overcome these drift detection
challenges. DriftSurf works by incorporating drift detection into a broader two-state process. The
algorithm starts with a single model beginning in the stable state and transitions to the reactive
state based on a drift detection trigger, and then starts a second model. During the reactive state, the
model used for prediction is greedily chosen as the best performer over data from the immediate
previous time step (each time step corresponds to a batch of arriving data points). At the end of
the reactive state, the algorithm transitions back to the stable state, keeping the model that was
the best performer during the reactive state. DriftSurf’s primary advantage over standalone drift
detection is that most false positives will be caught by the reactive state and lead to continued use
of the original long-trained model and all the relevant past data—indeed, our theoretical analysis
shows that DriftSurf is statistically better than standalone drift detection. Other advantages include
(i) when restarting with a new model does not lead to better post-drift performance, the original
model will continue to be used; and (ii) switching to the new model for predictions happens only
when it begins outperforming the old model, accounting for potentially lower accuracy of the new
model as it warms up. Meanwhile, the addition of this stable-state/reactive-state process does not
unduly delay the time to recover from a drift, because the switch to a new model happens greedily
within one time step of it outperforming the old model (as opposed to switching only at the end of
the reactive state).

We present a theoretical analysis of DriftSurf, showing that it is “risk-competitive” with Aware,
an adaptive algorithm that has oracle access to when a drift occurs and at each time step maintains
a model trained over the set of all data since the previous drift. We also provide experimental
comparisons of DriftSurf to Aware and two adaptive learning algorithms: a state-of-the-art drift-
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detection-based method MDDM and a state-of-the-art ensemble method AUE [13]. Our results on
10 synthetic and real-world datasets with concept drifts show that DriftSurf generally outperforms
both MDDM and AUE.

4.1 Related Work
Most adaptive learning algorithms can be classified into three major categories: Weighted sam-
pling, ensembles, and drift detection. Weighted sampling can take the form of a step function,
such as the family of FLORA algorithms [88] that train models over a sliding window of the
recent data in the stream. Alternatively, older data can be forgotten gradually by weighting the
data points according to their age with either linear [56] or exponential [40, 51] decay. Weighted
sampling algorithms are guaranteed to adapt to drifts, but at a cost in accuracy in the absence of
drift.

Ensemble methods, such as DWM [53], Learn++.NSE [26], AUE [13], DWMIL [61], DTEL
[83], Diversity Pool [19], and Condor [90]. An ensemble is a collection of individual models,
often referred to as experts, that differ in the subset of the stream they are trained over. Ensembles
adapt to drift by including both older experts that perform best in the absence of drift and newer
experts that perform best after drifts. The predictions of each individual expert are typically
combined using a weighted vote, where the weights depend on each expert’s recent prediction
accuracy. Strictly speaking, DriftSurf is an ensemble method, but differs from traditional ensembles
by maintaining at most two models and where only one model is used to make a prediction at
any time step. The advantage of DriftSurf is its efficiency, as the maintenance of each additional
model in an ensemble comes at either a cost in additional training time, or at a cost in the accuracy
of each individual model if the available training time is divided among them. The ensemble
algorithm most similar to ours is Paired Learners (PL) [2], which also maintains just two models:
a long-lived model that is best-suited in the stationary case, and a newer model trained over a
sliding window that is best-suited in the case of drift. Their algorithm differs from DriftSurf in
that instead of using a drift detection test to switch, they are essentially always in what we call
the reactive state of our algorithm, where they choose to switch to a new model whenever its
performance is better over a window of recent data points. Their algorithm has no theoretical
guarantee, and without the stable-state/reactive-state process of our algorithm, there is no control
over false switching to the newer model in the stationary case.

Finally, there are drift detection methods, which can be further divided into two groups. There
are tests that detect degradation in prediction accuracy with respect to a given model, which
includes tests such as DDM [28], EDDM [3], ADWIN [6], PERM [35], FHDDM [70], and
MDDM [72]. Alternatively, tests can detect change in the underlying data distribution [50, 78].
The connection between the two approaches is made in [41]. In this thesis, we focus on the
subset of concept drifts that are performance-degrading, and that can be detected by the first class
of these drift detection methods. As observed in [35], under this narrower focus, the problem
of drift detection has lower sample and computational complexity when the feature space is
high-dimensional. Furthermore, this approach ignores drifts that do not require adaptation, such
as changes only in features that are weakly correlated with the label. Tests for drift detection
may also be combined, known as hierarchical change detection [1], in which a slow but accurate
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Table 4.1: Commonly used symbols pertaining to DriftSurf

Xt Data points arriving at time step t
m = |Xt|, the number of points arriving at each t
r length of the reactive state (in time steps)
W length of the windows W1 and W2 (in time steps)
α the exponent in the statistical error boundH(n) = hn−α

h the constant factor in the statistical error boundH(n) = hn−α

δ the threshold in condition 4.1 for entering the reactive state
δ′ the threshold in condition 4.2 for switching the model at the end of the reactive state
∆ the magnitude of a given sustained performance-degrading drift
ps upper bound on the probability DriftSurf

enters the reactive state in a stationary environment
pd lower bound on the probability DriftSurf

enters the reactive state in the presence of drift
qs upper bound on the probability DriftSurf

switches the model at the end of the reactive state in a stationary environment
qd lower bound on the probability DriftSurf

switches the model at the end of the reactive state in the presence of drift

second test is used to validate change detected by the first test. The two-state process of DriftSurf
has a similar pattern, but differs in that DriftSurf’s reactive state is based on the performance of a
newly created model, which has the advantage of not prolonging the time to recover from a drift
because the new model is available to use immediately.

4.2 Problem Setup

We seek an adaptive learning algorithm A with high prediction accuracy at each time step. Let w
be the solution learned by an algorithm A over stream segment S = St1,t2 . Recall from §2 that
in the stationary case, achieving a sub-optimality on the order ofH(nt1,t2) over stream segment
St1,t2 asymptotically minimizes the total (statistical + optimization) error for F .

However, suppose a concept drift occurs at time td such that t1 < td < t2. We could still define
empirical risk and sub-optimality of an algorithm A over stream segment St1,t2 . But, balancing
sub-optimality withH(nt1,t2) does not necessarily minimize the total error. Algorithm A needs to
first recover from the drift such that the predictive model is trained only over data points drawn
from the new distribution. We define recovery time as follows: The recovery time of an algorithm
A is the time it takes after a drift for A to provide a solution w that is maintained solely over data
points drawn from the new distribution.

Let td1 , td2 , . . . be the sequence of time steps at which a drift occurs, and define td0 = 1. The
goals for an adaptive learning algorithm A are (G1) to have a small recovery time ri at each tdi
and (G2) to achieve sub-optimality on the order ofH(ntdi ,t) over every stream segment Stdi ,t for
tdi + ri < t < tdi+1

(i.e., during the stationary, recovered periods between drifts).
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We formalize the latter as A being “risk-competitive” with an idealized algorithm Aware that
has oracle knowledge of when drifts occur. At each drift, Aware restarts the predictive model to a
random initial point and trains it over data points that arrive after the drift.
Definition 5. For c ≥ 1, an adaptive learning algorithm A is said to be c-risk-competitive to
Aware at time step t > td if E[SUBOPTStd,t(A)] ≤ cH(ntd,t), where td is the time step of the most
recent drift and ntd,t = |Std,t|.

Risk-competitiveness to Aware implies A is asymptotically optimal in terms of its total error,
despite concept drifts.

Table 4.1 summarizes the symbols commonly used throughout this chapter.

4.3 Algorithm

We present our algorithm DriftSurf for adaptively learning from streaming data that may experience
drift. Incremental learning algorithms like STRSAGA (§3) work by repeatedly sampling a data
point from a training set S and using the corresponding gradient to determine an update direction.
This set S expands as new data points arrive. In the presence of a drift from distribution I1 to I2,
without a strategy to remove from S data points from I1, the model trains over a mixture of data
points from I1 and I2, often resulting in poor prediction accuracy on I2. One systematic approach
to mitigating this problem would be to use a sliding window-based set S from which further
sampling is conducted. Old data points are removed when they fall out of the sliding window
(regardless of whether they are from the current or an old distribution). However, the problem
with this approach is that the sub-optimality of the model trained over S suffers from the limited
size of S. Using larger window sizes helps with achieving a better sub-optimality, but increases
the recovery time. Smaller window sizes, on the other hand, provide better recovery time, but the
sub-optimality of the algorithm over S increases. An ideal algorithm manages the set S such that
it contains as many as possible data points from the current distribution and resets it whenever a
(significant) drift happens, so that it contains only data points from the new distribution.

As noted in §4.1, prior work [3, 6, 28, 35, 70, 72] has sought to achieve this ideal algorithm
by developing better and better drift detection tests, but with limited success due to the challenges
of balancing detection accuracy and speed, and the high cost of false positives. Instead, we
couple aggressive drift detection with a stable-state/reactive-state process that mitigates the
shortcomings of prior approaches. Unlike prior drift detection approaches, DriftSurf views
performance degrading as only a sign of a potential drift: the final decision about resetting S and
the predictive model will not be made until the end of the reactive state, when more evidence has
been gathered and a higher confidence decision can be made.

Our algorithm, DriftSurf, is depicted in Algorithm 2, which is executed when DriftSurf is in
the stable state, and Algorithm 3, which is executed when DriftSurf is in the reactive state. The
algorithm starts in the stable state, and the steps are shown for processing the batch of points
arriving at time step t. When in the stable state, there is a single model, wt−1, called the predictive
model. Our test for entering the reactive state is based on dividing the time steps since the creation
of that model into windows of size W . DriftSurf enters the reactive state at the sign of a drift,
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Algorithm 2 DriftSurf-Stable-State: Processing a set of training points Xt arriving in time step t
during a stable state

// wt−1(S), w′t−1(S ′) are respectively the parameters
// (stream segments for training) of the predictive, and
// reactive models. Every W time steps starting with
// the creation of the current predictive model, we start
// a new “window” of size W .
// wb1, wb2 are the models with the best observed risk
//Rb1,Rb2 in the two most-recent windows W1, W2.
if condition 4.1 holds then {Enter reactive state}

state← reactive
T ← ∅ {T is a segment arriving during the last r/2 time steps of reactive state}
w′t−1 ← w0,S ′ ← ∅ {initialize randomly a new reactive model}
i← 0 {time steps in the current reactive state}
execute Algorithm 3 on Xt

else
wt ← Update(wt−1,S,Xt) {update w,S}

end if

given by the following condition:

RXt(wb) > Rb + δ,where b = arg min
b∈b1,b2

Rb (4.1)

and δ is a predetermined threshold that represents the tolerance in performance degradation (the
selection of δ is discussed in §4.7), and wb1 (wb2) are the parameters of the predictive model that
provided the best-observed riskRb1 (Rb2) over the most-recent window W1 (second most-recent
window W2). E.g.,Rb1 = RXb1+1

(wb1) = minj∈W1RXj
(wj−1). Although most drift detection

techniques rely on their predictive model to detect a drift, we keep a snapshot of the predictive
model that provided the best-observed risk over two jumping windows of up to W time steps
because: (i) having a frozen model that does not train over the most recent data increases the
chance of detecting slow, gradual drifts; (ii) each frozen model is at most 2W time steps old
which makes it reflective of the current predictive model; and (iii) the older of the models reflects
the best over W steps, while the younger of the models is guaranteed to have at least W steps
that it can be used for drift detection tests, which are both key factors in obtaining our theoretical
analysis.

If condition 4.1 does not hold, DriftSurf assumes there was no drift in the underlying distribution
and remains in the stable state. It calls Update, an update process that expands S to include the
newly arrived set of data points Xt and then updates the (predictive) model parameters using S
for incremental training (for example, using STRSAGA). Otherwise, DriftSurf enters the reactive
state, adds a new model w′t−1, called the reactive model, with randomly initialized parameters,
and initializes its sample set S ′ to be empty. To save space, the growing sample set S ′ can be
represented by pointers into S.

If, at time step t, DriftSurf is in the reactive state (including the time step that it has just entered
the reactive state) (Algorithm 3), DriftSurf checks that condition 4.1 still holds (to handle a corner
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Algorithm 3 DriftSurf-Reactive-State: Processing a set of training points Xt arriving in time step
t during a reactive state

// wt−1, S, w′t−1, S ′, wb1, wb2,Rb1,Rb2 are as defined
// in Algorithm 2, except that W1, W2 are the two most-
// recent windows started before the current reactive state.
if condition 4.1 does NOT hold then {Early exit}

state← stable
execute Algorithm 2 on Xt

else
i← i+ 1
wt← Update(wt−1, S, Xt) {update w, S}
w′t← Update(w′t−1, S ′, Xt) {update w′, S ′}
if i = r

2
then

w′f ← w′t−1 {take a snapshot of reactive model}
else if r

2
< i ≤ r then

add Xt to T
end if
if i = r then {Exit reactive state}

state← stable
if condition 4.2 holds then
wt← w′t, S ← S ′{change the predictive model}

end if
else ifRXt(w

′
t) < RXt(wt) then

use w′t instead of wt for predictions at the next time step {greedy policy}
end if

end if

case discussed below), adds Xt to S and S ′, the sample sets of the predictive and reactive models,
and updates wt−1 and w′t−1. During the reactive state, DriftSurf uses for prediction at t whichever
model w or w′ performed the best in the previous time step t− 1. This greedy heuristic yields
better performance during the reactive state by switching to the newly added model sooner in the
presence of drift.

Upon exiting the reactive state (when i=r), DriftSurf chooses the predictive model to use for
the subsequent stable state. It switches to the reactive model w′ if condition 4.2 holds:

RT (w′f ) < RT (wb)− δ′,where b = arg min
b∈b1,b2

Rb (4.2)

and w′f is the snapshot of reactive model (at i = r/2), wb is snapshot of the predictive model with
the best-observed performance over the last two windows and δ′ is set to be much smaller than δ
(our experiments use δ′ = δ/2). This condition checks their performance over the test set of data
points T that arrived during the last r/2 time steps of the reactive state (note that neither w′f nor
wb have been trained over this test set). This provides an unbiased test to decide on switching the
model. Otherwise, DriftSurf continues with the prior predictive model.
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Handling a corner case. Consider the case that a drift happens when DriftSurf is in the
reactive state (due to an earlier false positive on entering the reactive state). In this case, no
matter what predictive model DriftSurf chooses at the end of the reactive state, both the current
predictive and reactive models are trained over a mixture of data points from both the old and
new distributions. This will decrease the chance of recovering from the actual drift. To avoid this
problem, DriftSurf keeps checking condition 4.1 and drops out of the reactive state if it fails to
hold (because the failure indicates a false positive). Then the next time the condition holds, a
fresh reactive state is started. This way the new reactive model will be trained solely on the new
distribution.

Algorithm 2 and 3 are generic in the individual base learner. For the experimental evaluation
in §4.7, we focus on base learners where the update process is STRSAGA (§3). The time and
space complexity of DriftSurf is within a constant factor of the individual base learner.

4.4 Analysis
In this section, we show that DriftSurf achieves goals G1 and G2 from §4.2.

We assume that Aware and DriftSurf use base learners that efficiently learn to within statistical
accuracy:
Assumption 1. Let t0 be the time the base learner B was initialized. At each time step t,

E[SUBOPTSt0,t(B)] ≤ H(nt0,t).

As an example, a base learner that uses STRSAGA as the update process satisfies Assumption
1 asymptotically by Lemma 3 in §3.2.1.

We will analyze the risk-competitiveness of DriftSurf in a stationary environment and after
a drift. Additionally, we will provide high probability analysis of the recovery time after a drift
(goal G1).

Let td1 , td2 , . . . be the sequence of time steps at which a drift occurs. We assume that each drift
at tdi is abrupt and that it satisfies the following assumption of sustained performance-degradation.
Assumption 2. For the drift at time tdi , and for both frozen models wb ∈ {wb1,wb2} stored at tdi ,
we have RXt(wt−1) > Rb for each time tdi < t < tdi+1

as long as DriftSurf has not recovered.
Furthermore, we denote ∆ to be the magnitude of the drift where ∆ = minwb(RJ(wb)−RI(wb))
where I denotes the distribution at the time tdi − 1 before the drift, and J denotes the distribution
at tdi .

Typically in drift detection, the magnitude of a drift is defined as the difference in the expected
risks over the old and new distributions with respect to the current predictive model. But that
definition results in a moving target after the drift but before replacement of the model, as the
model gets updated with new data, and possibly slowly converges on the new distribution, making
the drift harder to detect. Instead in our approach in DriftSurf, detection is done on frozen model
snapshots prior to the drift, and we accordingly define the drift magnitude with respect to the
frozen models. The implication of Assumption 2 is that after a drift, the current predictive model
being continually updated with the new data does not automatically adapt to the drift for at least
W time steps and actually needs to be replaced.
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Finally, we assume that all loss functions fx are bounded [0, 1], that the optimal expected risk
R∗It = infw∈F RIt(w) = 0 for each distribution It, that the batch size m > 16/δ′, that each drift
magnitude ∆ > δ, that 2W is upper bounded by both exp(1

2
mδ2) and exp(1

2
m(∆− δ)2) for each

drift magnitude ∆, and that for each frozen model wb that yielded a minimal observed riskRb,
that its expected risk is at least as good as its expectation.

4.4.1 Stationary Environment

We will show that DriftSurf is competitive to Aware in the stationary environment during the time
1 < t < td1 before any drift happens. By Assumption 1 the expected sub-optimality of Aware and
DriftSurf are (respectively) bounded byH(n1,t) andH(nte,t), where te is the time that the current
predictive model of DriftSurf was initialized. To prove DriftSurf is risk-competitive to Aware, we
need to show that nte,t, the size of the predictive model’s sample set, is close to n1,t. To achieve
this, we first give a constant upper bound ps on the probability of entering the reactive state:
Lemma 24. In the stationary environment for 1 < t < td1 , the probability of entering the reactive
state is upper bounded by ps = 2 exp(−1

8
mδ2).

In the proof (Section 4.5.1), we use sub-Gaussian concentration in the empirical risk under a
bounded loss function.

Besides, if DriftSurf enters the reactive state in the stationary case, Lemma 25 asymptotically
bounds the probability of switching to the reactive model by qs(β) to approach 0, where β is the
age of the frozen model wb used in condition 4.2.
Lemma 25. In the stationary environment for 1 < t < td1 , if DriftSurf enters the reactive state,
the probability of switching to the reactive model at the end of the reactive state is bounded by
qs = c1/β

2 for β > c2, where β is the number of time steps between the initialization of the model
wb and the time it was frozen, and the constants c1 = (2h/mα)mrδ

′/4 and c2 = 1
m

(2h/δ′)1/α.
In the proof (Section 4.5.1), we use the convergence of the base learner and Bennett’s

inequality.
As the probability of falsely switching to the reactive model goes to 0, DriftSurf is increasingly

likely to hold onto the predictive model. Using the above results, we bound the size of the
predictive model’s sample set to at least half of the size of Aware’s sample set, with high
probability.
Corollary 1. With probability 1− ε, the size of the sample set S for the predictive model in the
stable state is larger than 1

2
n1,t at any time step 2W + c4/(ε − c3) ≤ t < td1 , where n1,t is the

total number of data points that arrived until time t, and constants c3 = c1((c2 +W )− 1/c2)ps
and c4 = (2c3 − 8)c21p

2
s + 6c1ps (where c1 and c2 are the constants in Lemma 25).

Based on the result of Corollary 1, we show that the predictive model of DriftSurf in the stable
state is 7

41−α
-risk-competitive with Aware with probability 1−ε, at any time step 2W+c4/(ε−c3) ≤

t < td1 . This is a special case of the forthcoming Theorem 5 in §4.4.2.
In addition, it follows from Lemma 24 and Corollary 1 that DriftSurf maintains an asymptoti-

cally larger expected number of samples compared to the standalone drift detection algorithm that
resets the model whenever condition 4.1 holds (this algorithm is DriftSurf without the reactive
state).
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Lemma 26. In the stationary environment for 1 < t < td1 , let β be the age of the predictive model
in DriftSurf and let γ be the age of the model of standalone drift detection. For (2W + 2c4

1−2c3 ) <
t < td1 ,E[β] > t/4 (where c3 and c4 are the constants in Corollary 1). Meanwhile, even as
t→∞ (in the absence of drifts), E[γ] > 1/ps − o(1).

When each model is trained to statistical accuracy (Assumption 1), the total (statistical +
optimization) error bound is asymptotically limited by the statistical error for the number of
samples maintained. Hence, DriftSurf is statistically better than standalone drift detection in a
stationary environment.

4.4.2 In Presence of Abrupt Drifts

Consider an abrupt drift that occurs at time tdi , and let ∆ be its magnitude. Suppose the drift
occurs while DriftSurf is in the stable state. The case of drift occurring when DriftSurf is in the
reactive state is handled in §4.5.2. We show that DriftSurf has a bounded recovery time (goal G1).
In order to do so, we first give a lower bound pd on the probability of entering the reactive state:
Lemma 27. For tdi < t < W , the probability of entering the reactive state while DriftSurf has
not yet recovered is lower bounded by pd = 1− 2 exp(−(1

8
m(∆− δ)2).

Next, we give a lower bound qd on the probability of switching to the reactive model at the
end of the reactive state:
Lemma 28. For tdi < t < W , the probability of switching to the reactive model at the end of the
reactive state while DriftSurf has not yet recovered is lower bounded by qd = 1 − 2 exp(−C2)
where C = (∆− δ′)

√
mr/2− 2α+1h/(mr)α−1/2 subject to C > 0.

The proofs of the preceding two lemmas are similar to their stationary counterparts due to the
use of frozen models: for the W time steps after the drift, by Assumption 2, the previous frozen
models will not be displaced by a newer model that has been partially trained over data after the
drift.

Following from Lemmas 27 and 28, the recovery time of DriftSurf is bounded by W with a
probability 1− εr where εr is parameterized by pd, qd, which is shown in Lemma 34 in §4.5.2.

We next show the risk-competitiveness of DriftSurf after recovery (goal G2). The time period
after recovery until the next drift is a stationary environment for DriftSurf, in which each model is
trained solely over points drawn from a single distribution, allowing for an analysis similar to the
stationary environment before any drifts occurred.
Theorem 5. With probability 1− ε, the predictive model of DriftSurf in the stable state is 7

41−α
-

risk-competitive with Aware at any time step tdi + 3W + c4/(εs− c3) ≤ t < tdi+1
, where tdi is the

time step of the most recent drift and ε = εs + εr (where c3, c4 are the constants in Corollary 1).
At a high level, εr and εs, respectively, capture the error rates in false negatives in drift

detection and false positives in the stationary period afterwards. The full proof is in §4.5.2.

4.5 Proofs

We first establish a couple of preliminary facts we will use.
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Observation 2. Suppose the base learner B trains a model w over a stream segment S ∼ In.
Then the expected risk is bounded E[RI(w)−R∗I ] ≤ 2H(n), where R∗I = infw′∈F RI(w

′).
Observation 2 follows from Assumption 1 and applying Equation 2.2 twice.
Each loss function `x is bounded in [0, 1], and hence, is sub-Gaussian with parameter σ = 1/2.

Therefore, the sum of independent losses has the following concentration.
Theorem 6. (Hoeffding Bound) Suppose a model w is trained over S ∼ In1 . The empirical risk
on the test set T ∼ Jn2 is bounded relative to the expected risk on the distribution J as

Pr[RT (w) > RJ(w) + ε] ≤ exp(−2n2ε
2)

and
Pr[RT (w) < RJ(w)− ε] ≤ exp(−2n2ε

2).

We will also use the following fact about sub-Gaussian random variables:
Theorem 7. For a sequence (not necessarily independent) of zero-mean random variables
Z1, Z2, . . . , Zk, each sub-Gaussian with parameter σ, the maximum is bounded

Pr[maxZi ≥
√

2σ2(log k + ε)] ≤ exp(−ε).

In the remainder of this section we complete the proofs for the results in §4.4 that establish the
conditions under which DriftSurf is risk-competitive with Aware both in a stationary environment
and in the presence of abrupt drifts.

4.5.1 In a Stationary Environment
In §4.4.1, we considered only the stationary environment during the time 1 < t < td1 before
any drifts. In this section, we generalize the results to the stationary environment for any time
tdi + ri ≤ t < tdi+1

, where ri is the recovery time for the drift at tdi . We refer to such a time
period as a recovered state, in which each model of DriftSurf is trained solely over points from the
newest distribution.
Lemma 29. (Generalized statement of Lemma 24.) In a recovered state, the probability of
entering the reactive state is upper bounded by bounded by ps = 2 exp(−1

8
mδ2).

Proof. Let I denote the distribution that each batch is sampled from at each time since the
beginning of the first stable state corresponding to the recovered state that DriftSurf is in. The best
observed riskRb (and the corresponding frozen model wb) is one of the observed empirical risks
RXi

(wi−1) from the latest time step i = t to at most i = t− 2W time steps ago. Each empirical
riskRXi

(wi−1) is the sum of independent sub-Gaussians and is also sub-Gaussian with σ = 1
2
√
m

.
Applying Theorem 7 on the sequence Zi = RI(wi−1) −RXi

(wi−1), we have with probability
1− exp(−ε1),

Zb = RI(wb)−Rb ≤
√

1

2m
(log 2W + ε1).

Furthermore, by Theorem 6 (Hoeffding Bound), with probability 1− exp(−2mε22),

RXt(wb) ≤ RI(wb) + ε2.
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Choosing ε1 = 2mε22 = mδ2/8, we have with probability at least 1 − ps = 1 − (exp(−ε1) +
exp(−2mε22)), thatRXt(wb)−Rb ≤ δ, using the triangle inequality and the assumption 2W <
exp(1

2
mδ2).

Corollary 2. In a recovered state, if DriftSurf enters the reactive state, then with probability at
least 1− prs it will exit the reactive state early.

Proof.

Pr[early exit] = Pr[
i=r⋃
i=1

early exit after i time steps]

≥
r∑
i=1

(1− ps)pi−1s = (1− ps)(
prs − 1

ps − 1
) = 1− prs.

The bound ps for entering the reactive state is a constant, which by itself, leads to only a
constant lower bound asymptotically on the expected age of the model for a standalone drift
detection algorithm based on condition 4.1, which we later show in Lemma 31. The key to
DriftSurf maintaining asymptotically more points is that the bound qs for switching the model at
the end of the reactive state decays as the age of the frozen model increases, which we show next
in Lemma 30. In the proof we will use the following theorem (Bennett’s inequality).
Theorem 8. (Bennett’s inequality) Let X1, X2, . . . , Xn be independent zero-mean random vari-
ables such that |Xi| ≤M and let σ2 = 1

n

∑n
i=1 Var(Xi). Then

Pr

[
1

n

n∑
i=1

Xi ≥ ε

]
≤ exp

(
−nσ

2

M2
h

(
Mε

σ2

))
,

where h(u) = (1 + u) log(1 + u)− u.
Lemma 30. (Generalized statement of Lemma 25.) In a recovered state, if DriftSurf enters
the reactive state, the probability of switching to the reactive model at the end of the reactive
state is bounded by qs = c1/β

2 for β > c2, where β is the number of time steps between the
initialization of the model wb and the time it was frozen, and the constants c1 = (2h/mα)mrδ

′/4

and c2 = 1
m

(2h/δ′)1/α.

Proof. Let I denote the distribution that each batch is sampled from in the current recovered
state. For the model wb which obtained the minimal observed risk Rb within its window, by
the assumption that its risk is less than the expectation, we have RI(wb) ≤ 2H(mβ), using
Observation 2 and the assumptionR∗I = 0.

We apply Theorem 8 (Bennett’s inequality) onRT (wb)−RI(wb). For risk bounded in [0, 1],
we have that Var(RI(wb)) ≤ E[RI(wb)] ≤ 2H(mβ). Therefore, RT (wb) < 2H(mβ) + δ′/2
with probability 1− exp

(
−mrσ2h

(
δ′

2σ2

))
≥ 1− c1/β2, using the assumption that m > 16/δ′.
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Note that for β > c2, we have 2H(mβ) < δ′/2. Therefore, with probability 1− c1/β2,

RT (w′f )−RT (wb) + δ′ ≥ RT (w′f )− (2H(mβ) + δ′/2) + δ′

> RT (w′f )− δ′ + δ′

≥ 0,

again using the fact that the risk is bounded in [0, 1].

We can now prove Corollary 3 to bound the size of the predictive model’s sample set.
Corollary 3. (Generalized statement of Corollary 1.) Let tr be the time step DriftSurf enters a
recovered state after a drift at time tdi . With probability 1− ε, the size of the sample set S for the
predictive model in the stable state is larger than ntr,t/2 at any time step tr + 2W + c4/(ε− c3) ≤
t < tdi+1

, where ntr,t is the total number of data points that arrived from time tr until time t, and
constants c3 = c1((c2 +W )− 1/c2)ps and c4 = (2c3 − 8)c21p

2
s + 6c1ps (where c1 and c2 are the

constants in Lemma 25 (same as in Lemma 30)).

Proof. Let t′ = t− tr. Let βj denote the age of the predictive model at time tr + j. For t′ < tdi+1
,

DriftSurf is in a recovered state, and so the probability of discarding the predictive model (entering
the reactive state, not exiting early, and changing to the reactive model) at each time step tr+ j can
be bounded in terms of ps and qs as Pr[discard at tr + j|βj] ≤ pr+1

s qs(max(0, βj − 2W )), since
the frozen model is at most 2W time steps behind the predictive model. To ensure the probability
of switching the model is well defined, let q′s(x) = c1/x

2 for x > c2 + 2W , and q′s(x) = 1 for
x ≤ c2 + 2W . For simplicity, we bound Pr[discard at tr + j|βj] ≤ psq

′
s(βj − 2W ). Therefore,

Pr[βt′ > t′/2] ≥ Pr[do not discard the model between t′/2 and t′]

≥
∏

j∈(t′/2,t′]

Pr[not discard at j|βj ≥ j − t′/2]

≥ 1−
t′∑

j=t′/2+1

Pr[discard at j|βj ≥ j − t′/2]

≥ 1−
t′∑

j=t′/2+1

psq
′
s(j − t′/2− 2W )

= 1−
t′/2∑
i=1

psq
′
s(i− 2W ),

where the third line is Weierstrass’ inequality. The last sum is the lower Riemann sum of a
decreasing function of the interval I = (0, t′/2] into unit subintervals, which is upper bounded by
the area over I . Continuing,

Pr[βt′ > t′/2] ≥ 1−
∫ t′/2

0

psq
′
s(x− 2W )dx

≥ 1− (c2 + 2W )ps − c1ps
[
−1

x− 2W

]t′/2
c2+2W

,
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which is lower bounded by 1− ε whenever t′ > 2W + c4/(ε− c3).

Similarly, we can compare the expected value of the age β of the predictive model of DriftSurf
to the expected value of the age γ of the predictive model in the standalone drift detection
algorithm that resets the model whenever condition 4.1 holds.
Lemma 31. (Generalized statement of Lemma 26.) Let tr be the time step DriftSurf enters a
recovered state after a drift at time tdi . At time t, let β be the age of the predictive model in
DriftSurf and let γ be the age of the model of standalone drift detection. For tr + (2W + 2c4

1−2c3 ) <

t < tdi+1
,E[β] > (t − tr)/4. Meanwhile, E[γ] ≥ 1

ps
− o(1) as t → ∞ (i.e., in the absence of

future drifts after tdi .)

Proof. Choosing ε = 1/2 in the proof of 3 gives the bound on E[β]. To show the bound for
standalone drift detection, let t′ = t− tr, and recall that at every time step in a recovered state,
the probability of detecting a drift is upper bounded by the constant ps by Lemma 29. Therefore,

E[γ] =
t′−1∑
k=0

Pr[γ > k]

≥
t′−1∑
k=0

(1− ps)k

=
1− (1− ps)t

′

ps
.

4.5.2 In Presence of Abrupt Drifts
For the case of abrupt drift, we first bound the recovery time for DriftSurf through Lemmas 32 and
34, and then establish risk-competitiveness after recovery in Theorem 5.

Consider the case where drift happens during a stable state. In this case, we could bound the
number of times DriftSurf enters reactive state:
Lemma 32. With probability 1− ε1, for any value of k > 0, the number of times DriftSurf enters
the reactive state before recovering from a drift is less than k+1

qd
where 1

ε1
≤ 1 + k2

1−qd
.

Proof. Let X be a random variable denoting the number of times DriftSurf enters the reactive state
after a drift and before recovering from it. Using Cantelli’s inequality for any real number λ > 0,
we have:

Pr[X − µ ≥ λ] ≤ σ2

σ2 + λ2

where µ = E[X] = 1
qd

and σ2 = Var [X] = 1−qd
qd2

. Let λ = k
qd

, therefore,

Pr[X ≥ (k + 1)

qd
] ≤ 1

1 + k2

1−qd

≤ ε1

41



Using Lemma 32, we can provide a high probability guarantee on the number of times DriftSurf
enters a reactive state before recovering from a drift. Given that the length of a reactive state is at
most r, we will have a high probability guarantee on the total time DriftSurf spends in reactive
states before it recovers. In addition to that, we need to investigate the total amount of time
DriftSurf will spend in stable states. Lemma 33 addresses this problem.
Lemma 33. Let Y =

∑k′

i=1 Yi, where k′ ≥ 1 and Yi for i = 1, ..., k′, are independent geometric
random variables distributed Yi ∼ Ge(pd) and E[Y ] = k′

pd
. For any λ ≥ 1, we have:

Pr

[
X ≥ λk′

pd

]
≤ e−k

′(λ
2
−ln 2)

Proof. Similar to the proof of Theorem 2.1 in [43] and by setting parameter t (defined in their
proof) to pd

2
.

Now, by putting together the results of Lemma 32 and 33, we can now provide a probabilistic
upper bound on the recovery time as follows:
Lemma 34. With probability 1 − εr, the recovery time of DriftSurf after a drift that happened

during the stable state, is bounded by W , where εr = ε1 + ε2, 1
ε1
≤ 1 +

(
Wqd
rg
−1)2

1−qd
, ε2 ≥ e−

W
rg , and

g = 4 ln 2
pdr

+ 1.

Proof. The number of time steps in recovery time can be divided into two disjoint set of time steps:
i) time steps spent in reactive state, and ii) time steps spent in stable state. Using Lemma 32, we
can bound the number of times X that DriftSurf enters reactive state before recovering from a drift.
Therefore, w.p. at least 1− ε1, for any value of k > 0, we have X < k+1

qd
, where 1

ε1
≤ 1 + k2

1−qd
.

Therefore, for the proper choice of ε1, total number of time steps spent in the reactive state is
bounded by r ×X < (k+1)r

qd
. Note that early exiting the reactive state leads to spent less than r

time steps in a reactive state, and therefore, does not change this upper bound.
On the other hand, we have Lemma 33, which bounds the number of time steps spent in the

stable state. Let Y =
∑k′

i=1 Yi, where k′ ≥ 1 and Yi for i = 1, ..., k′, are independent geometric
random variables with distributions: Yi ∼ Ge(p). In fact, each Yi denotes the number of time
steps DriftSurf spent in stable state between i− 1th and i-th times it enters reactive state before
recovering from the drift. Using Lemma 33 we have:

Pr

[
Y ≥ k′λ

pd

]
≤ e−k

′(λ
2
−ln 2)

Therefore, with probability 1− ε2, for any value k′ ≥ 1 we have Y < k′λ
pd

, where ε2 ≥ e−k
′(λ

2
−ln 2).

Note that k′ is the same as X which we bounded in before by (k+1)
qd

. Consequently, for the choice
of k = Wqd

rg
− 1 and λ = rpd(g − 1) = 4 ln 2, where g = 4 ln 2

pdr
+ 1, w.p. at least 1− ε, we have

the recovery time is bounded by W , where ε = ε1 + ε2, with the corresponding conditions on ε1
and ε2.
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So far we have discussed the case where drift happens during the stable state. For the case
that drift happens within the reactive state, then by the early-exit condition, the drift is likely to be
detected upon returning to the stable state and then later re-entering the reactive state with the
same probability bound pd, and switching the model with the same probability bound qd. We
make this precise in the following, and bound the recovery time for either case of drift in Lemma
37.

On the other hand, we have:
Lemma 35. If a drift happens during the stable state and DriftSurf enters the reactive state, then
w.p. at most 1− prd it will exit the reactive state early.

Proof.

Pr[early exiting] = Pr[
i=r⋃
i=1

early exit after i time steps] =
i=r∑
i=1

Pr[early exit after i time steps]

≥
r∑
i=1

(1− pd)pi−1d = (1− pd)(
prd − 1

pd − 1
) = 1− prd

Lemma 36. If DriftSurf enters reactive state due to a false positive, and then a drift happens after
j time steps in the reactive state, then w.p. at least 1 − pjsp

r−j
d DriftSurf exits the reactive state

early.

Proof.

Pr[early exiting] = Pr[
i=r⋃
i=1

early exit after i time steps] =
i=r∑
i=1

Pr[early exit after i time steps]

≥
j−1∑
i=1

(1− ps)pi−1s +

r−j∑
i=1

pjs(1− pd)pi−1d

= (1− pjs) + pjs(1− p
r−j
d ) = 1− pjsp

r−j
d

Using Lemma 36, and denoting the probability of not exiting the reactive state by ε3, we can
generalize Lemma 34 as follows:
Lemma 37. With probability 1− ε′r, the recovery time of DriftSurf, from a drift that occurs while
either in the stable state or in the reactive state, is bounded by W , where ε′r = ε1 + ε2 + ε3,
1
ε1
≤ 1 +

(
Wqd
rg
−1)2

1−qd
, ε2 ≥ e−

W
rg , g = 4 ln 2

pdr
+ 1, and ε3 ≤ pd.

One more fact we will use before we prove Theorem 5 on risk-competitiveness is the the
following Lemma from [21], which is a consequence of the generalization bound in Equation 2.2.
Lemma 38. (THEOREM 3 IN [21]) If E[SUBOPTT (w)] ≤ ε, then E[SUBOPTS(w)] ≤ ε +
n−m
n
H(m) where T ⊂ S, |T | = m, |S| = n, and T and S − T are drawn from the same

distribution.
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With the preceding lemmas, we can now establish the risk-competitiveness of DriftSurf in
the stationary period between abrupt drifts at times tdi and tdi+1

. Note that if two drifts occur
rapidly in succession, the condition in Lemma 5 of tdi + l < t < tdi+1

may correspond to an
empty domain if the recovery time bound of DriftSurf exceeds the gap between the drifts.
Theorem 5. With probability 1− ε, the predictive model of DriftSurf in the stable state is 7

41−α
-

risk-competitive with Aware at any time step tdi + 3W + c4/(εs− c3) ≤ t < tdi+1
, where tdi is the

time step of the most recent drift and ε = εs + εr where εr is bounded by Lemma 34 (and where c3
and c4 are the same constants in Corollary 1).

Proof. By Lemma 34, with probability 1− εr, DriftSurf recovers from drift after W time steps.
After recovering from the drift, DriftSurf is in a recovered state. Let tr be the time step that
DriftSurf recovers from the most recent drift at time td = tdi . Also, let te be the time step that the
current predictive model was initialized.

. . .

td tr te told distribution

W ×m nte,t

ntd,t

Figure 4.1: A drift happens at time td. DriftSurf recovers by time tr. The current predictive model
is initialized at time te.

To show DriftSurf is 7
41−α

-risk-competitive to Aware, we want to show nte,t ≥
ntd,t
4

. Using
Corollary 3, w.p. 1− εs we have nte,t ≥

ntr,t
2

at any time step t such that tr +2W + c4/(εs− c3) ≤
t < tdi+1

. Therefore, nte,t ≥ ntr,te . On the other hand, we have

nte,t = ntd,t − ntd,tr − ntr,te
= ntd,t −W ×m− ntr,te ≥ ntd,t −W ×m− nte,t.

Also, at any time step t such that t− td ≥ 3W + c4/(εs − c3) ≤ t < tdi+1
, we have t− td ≥ 2W .

Therefore,

2nte,t ≥ ntd,t −W ×m ≥
ntd,t

2
.

It remains to bound the expected sub-optimality over Std,t. Assumption 1 bounds the expected
sub-optimality over Ste,t as (1 + o(1))H(nte,t), and Lemma 38 relates the expected sub-optimality
over Ste,t to the expected sub-optimality over Std,t:

E[SUBOPTStd,t(DriftSurf)] ≤ H
(ntd,t

4

)
+
ntd,t − ntd,t/4

ntd,t
H
(ntd,t

4

)
≤ 7

41−αH(ntd,t).

Similar results can be proved for the case where drift happens during a reactive state. The only
difference would be that εr will be replaced by ε′r, which is defined in Lemma 37.
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4.6 Experimental Setup
We conduct experiments comparing DriftSurf against (i) Standard Drift Detection (StandardDD)
to evaluate the effectiveness of DriftSurf’s stable-state / reactive-state approach, (ii) the idealized
Aware, (iii) the state-of-the-art drift detection MDDM, and (iv) the state-of-the-art ensemble
method AUE. Both StandardDD and MDDM are standalone drift detection algorithms, with the
key difference being that StandardDD’s drift detector matches the test used by DriftSurf to enter
the reactive state, enabling us to quantify the gains of having a reactive state. More details on
these algorithms, and additional algorithm comparisons, are provided in §4.6.1.

We use five synthetic, two semi-synthetic and three real datasets for binary classification,
chosen to include all such datasets that the authors of MDDM and AUE use in their evaluations.
These datasets include both abrupt and gradual drifts. Drifts in semi-synthetic datasets are
generated by rotating data points or changing the labels of the real-world datasets that originally
do not contain any drift. We divide each dataset into equally-sized batches that arrive over the
course of the stream. More detail on the datasets is provided in §4.6.2.

In our experiments, a batch of data points arrives at each time step. We first evaluate the
performance of each algorithm by measuring the misclassification rate over this batch, and then
each algorithm gains access to the labeled data to update their model(s); i.e., test-then-train. The
base learner in each algorithm is a logistic regression model with STRSAGA (§3) as the update
process. More details on this base learner, hyperparameter settings, and additional base learners,
are provided in § 4.6.3. All reported results of the misclassification rates represent the median
over five trials.

4.6.1 Algorithms Evaluated
In our experimental evaluation, we compare our algorithm DriftSurf to MDDM [72] and AUE
[13], as representatives of state-of-the-art drift-detection-based and ensemble-based algorithms,
respectively. The MDDM algorithm maintains a sliding window over the prediction results, which
is a binary series indicating for each data point whether the model’s predicted label matches the
true label. MDDM signals a drift whenever a weighted mean over the sliding window is worse
than the best observed weighted mean so far by a specified threshold. Upon signaling a drift,
the current model is discarded and a new model is initialized starting at the current time step.
Pesaranghader et al. offer three variants of their algorithm, MDDM-A, MDDM-G, and MDDM-E,
differing in the weighting scheme applied over the sliding window. Pesaranghader et al. remark
that “all three variants had comparable levels of accuracy” across each dataset they tested and
that “the optimal shape for the weighting function is data, context and application dependent”
[72]. Generally, we do not know the type of drifts that will occur in advance, and so in our
experiments, we used the intermediate choice MDDM-G, corresponding to a geometric weighting.
(We also perform a sensitivity study among all three variants.) We reused the source code for
MDDM-G available in the Tornado framework from Pesaranghader et al., and we used their
default parameters for their algorithm: the window size n = 100, the confidence level δw = 10−6,
and the geometric weighting factor r = 1.01.

The AUE algorithm (sometimes called AUE2 to distinguish from a sec:dsurf-preliminary
published version of the algorithm) manages an ensemble of k experts that are incrementally
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trained over the stream. After each batch of arrivals, AUE updates the weight of each expert
based on its prediction error, and drops the lowest weighted expert to introduce a new expert. The
prediction output from the ensemble is a weighted vote by its experts. We used the parameter
k = 10 as the limit on the total number of experts, following the choice made by Brzezinski and
Stefanowski in their experimental evaluation [13].

Another ensemble algorithm we compare against is the Paired Learners (PL) algorithm [2]. In
PL, two models are maintained at a time, a long-lived model that is best-suited in the stationary
case, and a new model trained over a recent sliding window of size w that is best-suited in the case
of a drift. The new model is switched to based on a test as a function of the recent performance of
the two models and a threshold θ. In adapting the original point-wise algorithm to the batched
setting in our experiments, we set w to the batch size instead of being a tunable parameter. For
the value of θ, the original paper does not suggest a default choice, so we used θ = 0.2, which led
to the lowest observed misclassification rate averaged across all datasets when choosing from the
range [0.05, 0.5] in increments of 0.05.

For the implementation of our algorithm DriftSurf, we used the following parameters. The
length of the reactive state r = 4. Regarding the conditions to enter the reactive state described in
§4.3, the threshold for condition 4.1 is δ = 0.1, and the threshold for condition 4.2 is δ′ = δ/2.
The window sizeW = 50. In the experimental evaluation, we use an empirically better performing
substitute for the corner case condition than the early exit process described in the pseudocode—
instead of exiting the reactive state early when there is no observed performance degradation, the
implementation uses lack of degradation followed by degradation as a sign of potential drift to
skip the stable state and immediately re-enter the reactive state.

In our main experiment, on each dataset discussed below, we evaluate DriftSurf, MDDM (the
MDDM-G variant), StandardDD, AUE, and the Aware algorithm with oracle access to when
drifts occur (discussed in §4.4). We also run additional experiments for MDDM-A, MDDM-E,
PL, single-pass SGD, and an oblivious algorithm, which maintains a single model updated with
STRSAGA. Note that STRSAGA in the oblivious algorithm samples uniformly from its sample
set at each iteration and has no bias towards sampling more recent data arrivals.

When using STRSAGA or any other SGD-style optimization, we consider a parameter ρ that
dictates the number of update steps (specifically, gradient computations) that are available to
train the model (§3.2). The different adaptive learning algorithms maintain a different number
of models—DriftSurf uses between 1 and 2; Aware, MDDM, and StandardDD use 1; AUE uses
10; and PL uses 2. This leads us to consider two different possibilities for training at each time:
(1) each algorithm can use ρ steps per model; or (2) each algorithm has ρ steps in total that are
divided equally across its models. The second approach accounts for the varying computational
efficiency of each algorithm and lets us examine the accuracy achieved when enforcing equal
processing time.

For our evaluation under equal processing time, we also evaluate another ensemble method,
Condor [90]. Condor is a more computationally efficient ensemble method than AUE because it
only trains one newly added expert at a time. Condor manages a total of K experts, for which
weights are updated based on observed losses with exponential decay factor η, and the prediction
output is a weighted vote. After each epoch of Condor, a new model is added (deleting the
oldest if the total exceeds K) to minimize the loss over the previous epoch plus an added biased
regularization term µ

2
||w −wp||2, where wp is the weighted linear combination of the ensemble’s
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experts. In adapting the original point-wise Condor algorithm to our batch setting, we redefine
an epoch to be the batch size of the stream for consistent comparison. We set K = 25, η = 0.75
following the choice made by the authors in their experimental evaluation. Finally, we set µ to be
the same regularization constant per dataset we use for L2-regularization in training the models of
the other evaluated algorithms.

Table 4.2: Basic statistics of datasets

DATASET # INSTANCE # DIM

SYNTHETIC

SEA 100000 3
HYPERPLANE 100000 10
SINE1 10000 2
MIXED 100000 4
CIRCLES 10000 2

SEMI-
SYNTHETIC

RCV1 20242 47235
COVERTYPE 581012 54

REAL

AIRLINE 5810462 13
ELECTRICITY 45312 13
POWERSUPPLY 29928 2

4.6.2 Datasets

Our experiments use the 5 synthetic, 2 semi-synthetic and 3 real-world datasets shown in Table 4.2
and described below. The selection of datasets included all datasets for binary classification used
in the experimental evaluations by Pesaranghader et al. on their MDDM algorithm (namely, SINE1
and Electricity) and Brzezinski and Stefanowski on their AUE algorithm (SEA10, Hyperplane-
Slow, Hyperplane-Fast, Electricity, and Airlines).
• SEA [8]: This dataset is generated using the Massive Online Analysis (MOA) framework.

There are three attributes in [0, 10]. The label is determined by x1 + x2 ≤ θj where j
corresponds to 4 different concepts, θ1 = 9, θ2 = 8, θ3 = 7, θ4 = 9.5 (the third attribute x3
is not correlated with the label). We synthetically generated 25000 points from each concept
in the order 3, 2, 4, 1, following the example from the MOA manual. We experimented
on four different datasets varying the amount of noise, SEA0, SEA10, SEA20, SEA30,
corresponding to 0%, 10%, 20%, and 30% of the labels being swapped during the generation
of the dataset. SEA-gradual is generated by generating samples from two concepts (the first
two concepts discussed above) during the drift period.

• Hyperplane [8]: This dataset is generated using the MOA framework. For each data point,
the label corresponds to its half space for an underlying hyperplane, where each coordinate
of the hyperplane changes by some magnitude for each point in the stream, representing a
continually gradually drifting concept. We experimented on two variations, Hyperplane-
Slow and Hyperplane-Fast, corresponding to a 0.001 and a 0.1 magnitude of change. In
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each case, at each point in the stream, there is a 10% probability that the direction of the
change is reversed.

• SINE1 [71]: This dataset contains two attributes (x1, x2), uniformly distributed in [0, 1].
Label of each data is determined using a sine curve as follows: x2 ≤ sin(x1). Labels are
reversed at drift points.

• Mixed [71]: This dataset contains four attributes (x1, x2, x3, x4), where x1 and x2 are
boolean and x3, x4 are uniformly distributed in [0, 1]. Label of each data is determined to
be positive if two of x1, x2, and x4 < 0.5 + 0.3× sin(3πx3) hold. Labels are reversed at
drift points.

• Circles [71]: This dataset contains two attributes (x1, x2), uniformly distributed in [0, 1].
Label of each data is determined using a circle as the decision boundary as follows: (x1 −
c1)

2 + (x2 − c2)2 <= r, where (c1, c2) and r are (respectively) center and radius of the
circle. Drift happens in a gradual manner where the center and radius of decision boundary
changes over a period of time. We experimented on a generated dataset with 3 gradual drift
introduced at time 25, 50, and 75, where the transition period for each drift is 5 time steps.

• RCV1 [59]: This real world data set contains manually categorized newswire stories. The
original order of the data set we used was randomly permuted before inserting drift. At drift
points, we introduce a sharp abrupt drift by swapping each label. For the experiments on
the high-dimensional RCV1 when using the Hoeffding Tree and Naive Bayes base learners,
we add a pre-processing step to the dataset to select only 100 features, as determined by
the coordinates with the highest magnitude when fitting a logistic regression model to the
dataset before drift was added.

• Covertype [24]: This real world data set contains observation of a forest area obtained from
US Forest Service (USFS) Region 2 Resource Information System (RIS). Binary class labels
are involved to represent the corresponding forest cover type. The original order of the data
set we used was randomly permuted before inserting drift. At drift points, we introduce
an abrupt drift by rotating each data point by 180◦ along the 1st and 8th attributes. This
particular rotation was chosen because it resulted in approximately 40% misclassification
rate with respect to the current predictive model.

• Airline(2008) [42]: This real world data set contains records of flight schedules. Binary
class labels are involved to represent if a flight is delayed or not. Concept drift could appear
as the result of changes in the flights schedules, e.g. changes in day, time, and the length of
flights. In our experiments, we used the first 58100 points of the data set, and pre-processed
the data by using one-hot encoding for categorical features and scaling numerical features
to be in the range [0, 1]. The original dataset contains 13 features. But, after using one-hot
encoding the dimension increases to 679.

• Electricity [37]: This real world data set contains records of the New South Wales Electricity
Market in Australia. Binary class labels are involved to represent the change of the price
(i.e., up and down). The concept drift may result from changes in consumption habits or
unexpected events.

• Power Supply [22]: This real world data set contains records of hourly power supply of
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an Italy electricity company which records the power from two sources: power supply
from main grid and power transformed from other grids. Binary class labels are involved
to represent which time of day the current power supply belongs to (i.e. am or pm). The
concept drifting in this stream may results from the change in season, weather or the
differences between working days and weekend.

The type of drift in each dataset is detailed in Table 4.3. When working with real datasets,
precisely determining the time drift occurs is somewhat guesswork. Brzezinski and Stefanowski
remarked they “cannot unequivocally state when drifts occur or if there is any drift” on the real
datasets they considered [13]. Still, we had to mark the drift times for the implementation of
Aware, which resets the model whenever drifts occur. We chose these times by observing the
misclassification rates of an oblivious algorithm that is not designed to adapt to drift, and noting
for which time steps there was a significant increase in misclassifications on the newly arrived
batch.

Table 4.3: Details of drifts in datasets

DATASET DRIFT TYPE DRIFT TIMES

SYNTHETIC

SEA
ABRUPT [25, 50, 75]
GRADUAL [40-60]

HYPERPLANE GRADUAL -
SINE1 ABRUPT [20, 40, 60, 80]
MIXED ABRUPT [20, 40, 60, 80]
CIRCLES GRADUAL [25-30, 50-55, 75-80]

SEMI-
SYNTHETIC

RCV1 ABRUPT [30, 60]
COVERTYPE ABRUPT [30, 60]

REAL

AIRLINE - [31, 67]
ELECTRICITY - [20]
POWERSUPPLY - [17, 47, 76]

4.6.3 Training and Hyperparameters

On each dataset, the prediction task is binary classification. Each model w trained is a linear model,
using STRSAGA to optimize the L2-regularized logistic loss over the relevant stream segment. For
a data point (x, y), the corresponding loss function is f(x,y)(w) = log(1+exp(−ywTx))+ µ

2
||w||22.

Recall there are two hyperparameters relevant for STRSAGA for logistic regression, the
regularization factor µ and the constant step size η. To set them, we first took each dataset in static
form (opposed to streaming) and applied a random permutation, partitioning an 80% split for
training and 20% for validation. (For the case of the semi-synthetic datasets where we introduced
our own drift, the hyperparameter selection was done prior to modifying the data.)

As with the experiments run in §3.4, the parameter choices of µ and η were chosen by grid
search, optimizing for validation set error. The parameters we chose are given in Table 4.4. In
experiments where we used SGD for training, we used the same constant step size η.
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We also run experiments using Hoeffding Trees (HT) and Naive Bayes (NB) as base learners.
We use the implementation of HT and NB available in the scikit-multiflow package [68], using
their default hyperparameters (namely for HT, the grace period is 200, the split criterion uses
information gain, the split confidence is 10−7, and the tie-threshold is 0.05). In these experiments,
we use the following hyperparameters for DriftSurf: r = 6, δ = 0.05, δ′ = δ/10,W = 50.

Table 4.4: Hyperparameters and batch sizes

DATASET REGULARIZATION µ STEP SIZE η BATCH SIZE m

SEA (ALL) 10−2 1× 10−3 1000
HYPER-SLOW 10−3 1× 10−1 1000
HYPER-FAST 10−3 1× 10−2 1000
SINE1 10−3 2× 10−1 100
MIXED 10−3 1× 10−1 1000
CIRCLES 10−3 1× 10−1 100
RCV1 10−5 5× 10−1 202
COVERTYPE 10−4 5× 10−3 5810
AIRLINE 10−3 2× 10−2 581
ELECTRICITY 10−4 1× 10−1 1333
POWERSUPPLY 10−3 1× 10−1 299

In general, the batch size is determined by the rate of arrival of new data points, and hence
not a hyperparameter to be tuned. For simplicity, we assume that data arrive over the course
of b time steps in equally-sized batches containing m = (dataset size)/b points, where b = 100
for all datasets other than Electricity. For the case of Electricity, we defined the number of time
steps b = 34 so that one time step corresponds to 28 days of the collected data, and was a scale
where we could visually observe drift in the results. The resulting batch sizes are shown in the
last column of Table 4.4.

4.7 Main Experimental Results
In this section, we present experimental results on datasets with drifts that (i) empirically confirm
the advantage of DriftSurf’s stable-state / reactive-state approach over Standard Drift Detection
(StandardDD), (ii) empirically confirm the risk-competitiveness of DriftSurf with Aware, and
(iii) show the effectiveness of DriftSurf via comparison to two state-of-the-art adaptive learning
algorithms, the drift-detection-based method MDDM and the ensemble method AUE.

We present the misclassification rates at each time step on the CoverType, PowerSupply, and
Electricity datasets (see § 4.8.1 for other datasets) in Figure 4.2. A drift occurs at times 30 and 60
in CoverType, at times 17, 47, and 76 in PowerSupply, and at time 20 in Electricity. We observe
DriftSurf outperforms MDDM because false positives in drift detection lead to unnecessary
resetting of the predictive model in MDDM, while DriftSurf avoids the performance loss by
catching most false positives via the reactive state and returning to the older model. CoverType
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(c) Electricity

Figure 4.2: Misclassification rate over time for CoverType, PowerSupply, and Electricity
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Figure 4.5: RCV1, DriftSurf
and DriftSurf (no-greedy)

and Electricity were especially problematic for MDDM, which continually signaled a drift. We
also observe DriftSurf adapts faster than AUE on CoverType and Electricity. This is because after
an abrupt drift, the predictions of DriftSurf are solely from the new model, while for AUE, the
predictions are a weighted average of each expert in the ensemble. Immediately after a drift, the
older, inaccurate experts of AUE have reduced, but non-zero weights that negatively impact the
accuracy. In particular, on CoverType, we observe the recovery time of DriftSurf is within one
reactive state.

StandardDD also suffers from false-positive drift detection, especially on PowerSupply and
Electricity. However, it outperforms all the other algorithms on CoverType. It detects the drifts
at the right moment and resets its predictive model. Following the greedy approach during the
reactive state allows DriftSurf to converge to its newly created model with only a one time step lag.

Table 4.5 summarizes the results for all the datasets in terms of the total average of the
misclassification rate over time. In the first two rows, we observe the stability of DriftSurf in the
presence of 20% additive noise in the synthetic SEA dataset, again demonstrating the benefit of
the reactive state while MDDM’s performance suffers due to the increased false positives. We
also observe that DriftSurf performs well on datasets with gradual drifts, such as SEA-gradual and
Circles, where the stable-state / reactive-state approach is more accurate at identifying when to
switch the model, compared to MDDM and StandardDD, respectively. Overall, DriftSurf is the
best performer on a majority of the datasets in Table 4.5. For some datasets (Airline, Hyper-Slow)
AUE outperforms DriftSurf. A factor is the different computational power (e.g., number of gradient

51



Table 4.5: Average misclassification rate (equal number of update steps for each model)

ALGORITHM AUE MDDM Stand- DriftSurf Aware
DATASET ardDD

SEA0 0.093 0.086 0.097 0.086 0.137
SEA20 0.245 0.289 0.249 0.243 0.264
SEA-GRADUAL 0.162 0.165 0.160 0.159 0.177
HYPER-SLOW 0.112 0.116 0.116 0.118 0.110
HYPER-FAST 0.179 0.163 0.168 0.173 0.191
SINE1 0.212 0.176 0.184 0.187 0.171
MIXED 0.209 0.204 0.204 0.204 0.192
CIRCLES 0.379 0.372 0.377 0.371 0.368
RCV1 0.167 0.125 0.126 0.125 0.121
COVERTYPE 0.279 0.311 0.267 0.268 0.267
AIRLINE 0.333 0.345 0.338 0.334 0.338
ELECTRICITY 0.296 0.344 0.320 0.290 0.315
POWERSUPPLY 0.301 0.322 0.308 0.292 0.309

computations per time step) used by each algorithm. AUE maintains an ensemble of ten experts,
while DriftSurf maintains just one (except during the reactive state when it maintains two), and so
AUE uses at least five (up to ten) times the computation of DriftSurf. To account for the varying
computational efficiency of each algorithm, we conducted another experiment where the available
computational power for each algorithm is divided equally among all of its models. (A different
variation on AUE that is instead limited by only maintaining two experts is also studied in §4.8.2.)
The misclassification rates for each dataset are presented in Table 4.6, where we observe DriftSurf
dominates AUE across all datasets. The CoverType dataset is visualized in Figure 4.3 (compare to
Figure 4.2a for equal computational power given to each model), where we observe a significant
penalty to the accuracy of AUE because of the constrained training time per model.

Another advantage of the stable-state / reactive-state approach of DriftSurf is its robustness in
the setting of the threshold δ. In general, drift detection tests have a threshold that poses a trade-off
in false positive and false negative rates (for StandardDD, Lemmas 24 and 27 in §4.4), which can
be difficult to tune without knowing the frequency and magnitude of drifts in advance. Across a
range of δ, Figure 4.4 shows the misclassification rates for DriftSurf compared to StandardDD,
averaged across the datasets in Table 4.5 (see §4.8.3 for results per dataset). We observe that the
performance of DriftSurf is resilient in the choice of δ. We also confirm that lower values of δ,
corresponding to aggressive drift detection in the stable state, allow DriftSurf to detect subtle drifts
while not sacrificing performance because the reactive state eliminates most false positives.

We also study the impact of the design choice in DriftSurf of using greedy prediction during
the reactive state. While in the reactive state, the predictive model used at one time step is the
model that had the better performance in the previous time step, and then at the end of the reactive
state, the decision is made whether or not to use the reactive model going forward. The natural
alternative choice is that switching to the new reactive model can happen only at the end of
the reactive state; we call this DriftSurf (no-greedy). The comparison of these two choices is
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Table 4.6: Average misclassification rate (update steps divided among each model)

ALGORITHM AUE MDDM Stand- DriftSurf Aware
DATASET ardDD

SEA0 0.201 0.089 0.097 0.094 0.133
SEA20 0.291 0.283 0.253 0.249 0.266
SEA-GRADUAL 0.240 0.172 0.161 0.160 0.174
HYPER-SLOW 0.191 0.116 0.117 0.130 0.117
HYPER-FAST 0.278 0.164 0.168 0.188 0.191
SINE1 0.309 0.178 0.180 0.209 0.168
MIXED 0.259 0.204 0.204 0.204 0.191
CIRCLES 0.401 0.372 0.380 0.369 0.368
RCV1 0.403 0.131 0.128 0.143 0.120
COVERTYPE 0.317 0.313 0.267 0.271 0.267
AIRLINE 0.369 0.351 0.338 0.348 0.338
ELECTRICITY 0.364 0.339 0.319 0.308 0.311
POWERSUPPLY 0.313 0.309 0.311 0.307 0.311

visualized on the RCV1 dataset in Figure 4.5, where we observe the delayed switch of DriftSurf
(no-greedy) to the new model following the drifts at times 30 and 60. The full results for each
dataset are presented in §4.8.4, where we observe that DriftSurf performs equal or better than
DriftSurf (no-greedy) on 11 of the 13 datasets in Table 4.5, and, averaging over all the datasets,
has a misclassification rate of 0.221 compared to 0.229.

§4.8 contains additional experimental results. In §4.8.5, we report the results for single-pass
SGD and an oblivious algorithm (STRSAGA with no adaptation to drift), which are generally
worse across each dataset. §4.8.6 includes results for each algorithm when SGD is used as
the update process instead of STRSAGA. We observe that using SGD results in lower accuracy
for each algorithm, and also that, relatively, AUE gains an edge because its ensemble of ten
experts mitigates the higher variance updates of SGD. §4.8.7 studies base learners beyond logistic
regression, showing the advantage of DriftSurf’s stable-state/reactive-state approach on both
Hoeffding Trees and Naive Bayes classifiers. Finally, §4.8.8 reports additional numerical results
on the recovery time of each algorithm.

4.8 Additional Experimental Results

This section contains experimental results under both training strategies of equal computational
power for each model and equal computational power for each algorithm, which is divided among
its models. Additionally, we report results for a sensitivity analysis of the threshold in DriftSurf,
results for DriftSurf without the greedy approach during the reactive state, results for single-pass
SGD and an oblivious algorithm using STRSAGA, results for each algorithm when SGD is used
as the update process instead of STRSAGA, results when using Hoeffding Trees and Naive Bayes
classifiers as the base learners, and results of each algorithm under a 95%-recovery-time metric.

53



Table 4.7: Average misclassification rate (ρ = 2m for each model)

DATASET Aware DriftSurf StandardDD MDDM-G MDDM-A MDDM-E AUE PL 1PASS-SGD OBL

SEA0 0.137 0.086 0.097 0.086 0.090 0.087 0.093 0.085 0.131 0.110
SEA10 0.197 0.160 0.168 0.180 0.166 0.172 0.163 0.161 0.188 0.176
SEA20 0.264 0.243 0.249 0.289 0.278 0.289 0.245 0.243 0.267 0.254
SEA30 0.350 0.335 0.338 0.358 0.358 0.352 0.337 0.337 0.348 0.338
SEA-GRADUAL 0.177 0.159 0.160 0.165 0.167 0.174 0.162 0.157 0.196 0.173
HYPER-SLOW 0.116 0.118 0.116 0.116 0.117 0.116 0.112 0.118 0.139 0.170
HYPER-FAST 0.191 0.173 0.168 0.163 0.163 0.164 0.179 0.188 0.177 0.280
SINE1 0.171 0.187 0.184 0.176 0.175 0.178 0.212 0.193 0.223 0.477
MIXED 0.192 0.204 0.204 0.204 0.204 0.203 0.209 0.219 0.208 0.455
CIRCLES 0.368 0.371 0.377 0.372 0.375 0.372 0.379 0.373 0.385 0.508
RCV1 0.121 0.125 0.126 0.125 0.130 0.130 0.167 0.148 0.276 0.468
COVERTYPE 0.267 0.268 0.267 0.311 0.311 0.313 0.279 0.287 0.298 0.321
AIRLINE 0.338 0.334 0.338 0.345 0.346 0.348 0.333 0.333 0.340 0.359
ELECTRICITY 0.315 0.290 0.320 0.344 0.339 0.341 0.296 0.291 0.347 0.302
POWERSUPPLY 0.309 0.292 0.308 0.322 0.315 0.329 0.301 0.306 0.307 0.312

4.8.1 Equal Computational Power for Each Model
First, we compare each algorithm under the setting where at every time step, each algorithm uses
ρ = 2m update steps (gradient computations) to update each of its models. In this case, the total
computational power used varies per algorithm. For example, at each time step AUE maintains an
ensemble of ten models, while MDDM maintains just one (and DriftSurf maintains either one or
two), so AUE uses ten times the total computation of MDDM. (Later in §4.8.2, we will study a
different setting where the available computational power for each algorithm is divided equally
among all of its models, in order to account for the varying computational efficiency of each
algorithm.)

We present the misclassification rates at each time step over the new batch in Figure 4.6, and
the average misclassification rate over all time steps is summarized in Table 4.7. (These results are
a superset of those presented in Figure 4.2 and Table 4.5 from §4.7). The advantage of DriftSurf
over MDDM is most evident on the noisy versions of SEA (also shown in Figure 4.7), and on
CoverType, Electricity, and PowerSupply. The drift detection method MDDM (and similarly over
StandardDD) encounters false positives that lead to unnecessary resetting of the predictive model,
while DriftSurf avoids the performance loss after most of the false positives by catching them via
the reactive state. In particular, the CoverType dataset was especially problematic for MDDM,
which continually signaled a drift.

For sharp drifts when immediately switching to a new model is desirable, we observe, most
evident on SINE1, that MDDM is the fastest to adapt, followed shortly by DriftSurf, then PL, with
AUE lagging behind. CoverType also is a clear example where DriftSurf and StandardDD adapt
faster than AUE (but MDDM suffered as previously mentioned). For these drifts, MDDM and
StandardDD naturally lead because they are using a new model when they accurately detect a drift,
while DriftSurf always takes at least one time step to switch because it waits until it sees a batch
where the new (reactive) model outperforms the older (stable) model. AUE also takes at least
one time step, because its ensemble members are weighted based on the previous performance,
but it can take longer, because even if the older, inaccurate models are low-weighted, they are
not weighted zero, and shortly after a drift, most of the models in the ensemble are trained on
old data and can still negatively impact the predictions. On SINE1, we observe that the ensemble
of two models, PL, adapts faster than AUE. At every time step, PL trains a new model over the
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(b) SEA10
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(d) SEA30
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(e) SEA-gradual
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(f) SINE1
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(g) HyperPlane-slow
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(h) HyperPlane-fast
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(k) RCV1
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(l) CoverType
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(m) PowerSupply
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Figure 4.6: Misclassification rate over time (ρ = 2m for each model)
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Figure 4.7: Average misclassification rate for SEA dataset with different levels of noise

latest batch, similarly to AUE, but differs in that it the latest model is either switched to as the
predictive model, or discarded. That is, PL uses exclusively an old or new model, instead of a
weighted combination over ten models like in AUE.

There are two major advantages of DriftSurf and AUE not immediately switching to the latest
model: (i) there are drifts for which switching to a new model is not desired because the older
model can still provide good accuracy, and (ii) delaying the switch to a new model can be desired
if the new model has poor accuracy immediately after the drift while it warms up. Regarding the
first point, observe the drift in SEA10 at t = 25 and the drift in Electricity. There is a notable
degradation in accuracy of each algorithm at the time of the drift, but resetting the model as Aware
does is a poor choice. We even observe that the oblivious algorithm (OBL) (which trains a model
from the beginning of time and is not designed to adapt to drifts) outperforms Aware on these
datasets. Despite the initial degradation in accuracy at the time of drift, we find that the older
model is able to converge again after the drift, even while the older model is trained on data from
both before and after the drift. Meanwhile, training a new model from scratch as Aware does is
not worth the initial start-up cost when the older model performs well.

The reader may be skeptical specifically of Aware’s reset to a random model for predictions
at the time step drift occurs—practically, would it be preferable to use the previously-learned
model for the first time step, and then switch to the new model? We considered this alternative
implementation of Aware, and observed that across each dataset, the average misclassification
rate of the alternative Aware was better by at most 1.1 percentage points than the version of
Aware reported in Table 4.7, and was worse on SINE1 and RCV1. There was no case where the
alternative Aware outperformed any algorithm in the table that Aware did not already outperform.

The second advantage previously mentioned, of delaying the switch to the new model, is
best exemplified on Airline. Immediately after the two drifts, DriftSurf and AUE are the best
performers, followed by StandardDD and MDDM, and then Aware. Immediately after the drift,
DriftSurf continues to use the older, stable model, which outperforms a newly created model
(compare DriftSurf to Aware), because a new model needs a few time steps to train before it is
a better choice, and then DriftSurf switches later. AUE is of intermediate error in the time steps
immediately after the drift, because it does place greater weight on the better performing, older
models, but is still worse than placing unit weight on an old model.

The Hyperplane-slow and Hyperplane-fast datasets warrant their own discussion. These two
datasets represent a continually drifting concept throughout the entire stream. For Hyperplane-
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slow, AUE is the best performing algorithm, while for Hyperplane-fast, MDDM is the best
performing. The advantage that AUE and MDDM have over DriftSurf in these datasets is that
AUE adds a new model at every time step, and MDDM has the capability of switching to a new
model at any time step, and therefore, they can better fit the most recent data in the stream. On
the other hand, DriftSurf is only able to create a new model upon transitioning to the reactive
state, so DriftSurf does not have the capability of creating new models at time steps during its
reactive state. DriftSurf is not designed for the setting where creating a new model at every time
step is desirable, but nonetheless, the accuracy of DriftSurf is still comparable. Furthermore, on
the remaining datasets with gradual drift, SEA-gradual and Circles, that contain stationary periods
and drift periods instead of the continual drift of Hyperplane, DriftSurf is the best performer.

Table 4.7 includes results for MDDM-G (what we use generally for MDDM), as well as
two other MDDM variants, MDDM-A and MDDM-E, for a more thorough comparison. The
average misclassification rates were similar across each dataset, with no single MDDM variant
that consistently outperformed the others. Given the poor performance of MDDM on CoverType,
we re-did the experiment on CoverType with two other drift detection methods, DDM [28] and
EDDM [3] to investigate further. In Figure 4.8, we observed DDM accurately detected the two
drifts, but EDDM also suffered with continual false positives.
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Figure 4.8: CoverType dataset, comparing different drift detectors (ρ = 2m for each model)

Table 4.7 also includes results for PL, the ensemble of 2 models. As noted earlier, by choosing
exclusively an old or new model it can adapt faster than AUE on datasets like SINE1 or RCV1.
However, PL’s performance is still short of DriftSurf on SINE1, as well as on PowerSupply,
because PL may falsely switch to the new model in the absence of drift, while the condition
DriftSurf reduces false switches. Furthermore, PL is short of DriftSurf on RCV1 because PL only
gives the new model one time step to be switched in before being discarded, requiring multiple
tries to switch after the drift.

4.8.2 Equal Computational Power for Each Algorithm

Next, we present results for the training strategy where each algorithm has access to ρ update
steps in total that are divided among all its models so that the computation time of each algorithm
is identical. For the case ρ = 4m, the misclassification rate at each time step is shown in Figure
4.9 for the comparison of DriftSurf, Aware, MDDM, and AUE and in Figure 4.10 for the additional
algorithmic comparisons against two ensemble methods, AUE (k = 2) and Condor. The average
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Table 4.8: Average misclassification rate (ρ = 4m divided among all models of each algorithm)

DATASET Aware DriftSurf StandardDD MDDM-G AUE AUE (k=2) CONDOR PL

SEA0 0.120 0.084 0.091 0.092 0.179 0.226 0.192 0.085
SEA10 0.179 0.167 0.169 0.160 0.218 0.269 0.234 0.160
SEA20 0.256 0.247 0.247 0.258 0.280 0.320 0.283 0.242
SEA30 0.334 0.327 0.327 0.341 0.342 0.365 0.338 0.338
SEA-GRADUAL 0.170 0.159 0.162 0.160 0.215 0.267 0.232 0.161
HYPER-SLOW 0.145 0.119 0.128 0.132 0.158 0.120 0.103 0.117
HYPER-FAST 0.222 0.177 0.171 0.154 0.238 0.154 0.144 0.191
SINE1 0.149 0.176 0.158 0.157 0.263 0.181 0.159 0.192
MIXED 0.188 0.201 0.200 0.200 0.254 0.203 0.182 0.217
CIRCLES 0.345 0.365 0.357 0.341 0.372 0.424 0.360 0.370
RCV1 0.101 0.116 0.110 0.113 0.310 0.404 0.341 0.137
COVERTYPE 0.260 0.264 0.259 0.302 0.301 0.314 0.303 0.287
AIRLINE 0.335 0.330 0.333 0.337 0.360 0.366 0.353 0.332
ELECTRICITY 0.310 0.289 0.332 0.324 0.348 0.326 0.300 0.289
POWERSUPPLY 0.303 0.300 0.294 0.292 0.284 0.393 0.282 0.300

Table 4.9: Average misclassification rate (ρ = 2m divided among all models of each algorithm)

DATASET Aware DriftSurf StandardDD MDDM-G AUE AUE (k=2) CONDOR PL

SEA0 0.133 0.094 0.097 0.089 0.201 0.230 0.200 0.131
SEA10 0.197 0.161 0.163 0.183 0.237 0.275 0.238 0.194
SEA20 0.266 0.249 0.253 0.283 0.291 0.327 0.292 0.271
SEA30 0.352 0.337 0.339 0.360 0.354 0.381 0.345 0.352
SEA-GRADUAL 0.174 0.160 0.161 0.172 0.24 0.273 0.239 0.188
HYPER-SLOW 0.117 0.130 0.117 0.116 0.191 0.166 0.122 0.185
HYPER-FAST 0.191 0.188 0.168 0.164 0.278 0.211 0.166 0.222
SINE1 0.168 0.209 0.180 0.178 0.309 0.246 0.179 0.207
MIXED 0.191 0.204 0.204 0.204 0.259 0.204 0.182 0.229
CIRCLES 0.368 0.369 0.380 0.372 0.401 0.415 0.384 0.388
RCV1 0.120 0.143 0.128 0.131 0.403 0.467 0.401 0.195
COVERTYPE 0.267 0.271 0.267 0.313 0.317 0.330 0.312 0.280
AIRLINE 0.338 0.348 0.338 0.351 0.369 0.380 0.365 0.369
ELECTRICITY 0.311 0.308 0.319 0.339 0.364 0.363 0.313 0.354
POWERSUPPLY 0.311 0.307 0.311 0.309 0.313 0.463 0.338 0.342

over time is in Table 4.8. For the case ρ = 2m, the misclassification rate at each time is shown in
Figure 4.11, and the average over time is in Table 4.9.

Let us discuss a few differences from the previous case where each model was trained with
ρ steps. We generally observe lower relative accuracy for AUE, and especially so after drifts.
(The exceptions are on Circles and PowerSupply, where the extra training iterations do not matter
as much; compare to the fast convergence of Aware after a reset.) This is because AUE is an
ensemble of 10 models, and so each model is trained at most 1/5 of the steps that the models of
DriftSurf get, and only 1/10 of the models for MDDM and Aware. DriftSurf now dominates AUE in
average misclassification rate on each dataset except for PowerSupply. The relative performance
of PL to DriftSurf is generally similar in the ρ = 4m case, but in the ρ = 2m case, PL does
relatively worse, losing its edge on Electricity and the SEA datasets. Because PL only gives a new
model one chance to perform well before discarding it, the restricted training iterations of the new
model makes it significantly harder to adapt.

We observe DriftSurf compares favorably to MDDM and StandardDD on the same datasets as
it did in the undivided ρ case. However, MDDM’s and StandardDD’s advantages are magnified
on SINE1 and RCV1, the datasets with sharp drifts that were clear to detect, and when immediate
switching to the new model was desired. On PowerSupply, we observe that the false positives are
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(d) SEA30
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(e) SEA-gradual
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(f) SINE1
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(g) HyperPlane-slow
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(h) HyperPlane-fast
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(j) Mixed
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(l) CoverType
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(m) PowerSupply
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Figure 4.9: Misclassification rate over time (ρ = 4m divided among all models of each algorithm)
comparing Aware,DriftSurf, AUE, and MDDM
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(c) SEA20
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(d) SEA30
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(e) SEA-gradual
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(f) SINE1

20 40 60 80 100
Time

0.06

0.08

0.10

0.12

0.14

0.16

0.18

M
isc

la
ss

ifi
ca

tio
n 

ra
te

Candor
AUE (k=2)
StandardDD
DriftSurf

(g) HyperPlane-slow
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(h) HyperPlane-fast
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(i) Circles
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(j) Mixed
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(k) RCV1
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(l) CoverType
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(m) PowerSupply
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Figure 4.10: Misclassification rate over time (ρ = 4m divided among all models of each algorithm)
comparing Aware,DriftSurf, AUE (k = 2), and Condor
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Figure 4.11: Misclassification rate over time (ρ = 2m divided among all models of each algorithm)
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not as punitive for MDDM and StandardDD as before, because their relative additional training
per model means that their new models catch up faster. For Hyperplane-fast, the relative additional
training for MDDM was advantageous. We suspect that when fewer computational steps are
available, it is no longer desirable to create new models (which take longer to warm up) so
frequently as MDDM did in the ρ = 4m case where it outperformed DriftSurf.

In Tables 4.8 and 4.9, we present results for a variation on AUE that is limited to only two
experts, which we refer to as AUE (k = 2). In our comparison of each algorithm when enforcing
equal computation time, dividing the ρ steps equally among a total of ten experts in the original
AUE is unsurprisingly detrimental to its performance. An alternative comparison is to reduce
the total number of experts so that in AUE (k = 2), each of the two experts is updated with
ρ = 2m steps, identical to DriftSurf. We observe that AUE (k = 2) performs better than AUE on
five datasets: Hyperplane-slow, Hyperplane-fast, SINE1, Mixed, and Electricity. We previously
mentioned that for Hyperplane, the continual drift means always using the latest available model
works well, and we mentioned that for Electricity, the drift that does not require adaptation means
always using the oldest available model works well. Therefore, on these datasets, the additional
eight experts of the original AUE have little utility and AUE (k = 2) performs better. The reason
for improvement of AUE (k = 2) on SINE1 and Mixed datasets is less clear, but we suspect that
the additional experts of the original AUE penalize the accuracy immediately after the abrupt
drifts when it is desirable to assign the most weight to the newest expert.

In Tables 4.8 and 4.9, we present results for another ensemble method Condor, which is
better suited for the setting studied in this section normalizing the computational power because
it only requires training a single model at a time. Another distinctive feature of Condor is that
it uses biased regularization during training to anchor the newest model closer to the weighted
ensemble average from the previous time step. For these two factors, we expect that Condor is
better at adapting to drift at the expense of stationary performance, which is exemplified by its
high accuracy on the Mixed, PowerSupply and the continually drifting Hyperplane datasets and
its relative improvement over AUE on some other datasets including SINE1, Circles, Airline,
Electricity and PowerSupply.

4.8.3 Sensitivity Analysis of δ
Choosing the right threshold is a key challenge for any drift detection technique. However, one of
the key strengths of DriftSurf is its resilience to imprecision in detection. In this experiment, we
compared DriftSurf to StandardDD (the baseline drift detection algorithm that uses condition 4.1 to
decide whether to reset the model) under a range of settings of δ and plotted the misclassification
rate for each dataset in Figure 4.12.

As we observed in §4.7 from the results averaged over the datasets in Figure 4.4, we can
generally choose a small value of δ in DriftSurf to detect subtle drifts while not sacrificing
performance between drifts because the reactive state catches most false positives.

Over all variations of the SEA dataset, RCV1, Electricity, and Airline, larger values of δ
improve the performance since the permitted variation within the results will not be mistaken
as drifts. This is true for both StandardDD, especially, while DriftSurf’s performance is more
stable because the reactive state corrects the false positive detections either by switching to the
old model or by early exiting.
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For the Hyperplane datasets (fast and slow) with continuous gradual drifts, StandardDD
outperforms DriftSurf because resetting the model after any drift detection tends to improve the
performance. There is an exception to this for the Hyperplane-slow under very small δ, where the
reactive state length of DriftSurf limits excessive switching. As δ increases, neither DriftSurf and
StandardDD detect changes, and as a result, they perform the same.

In some other datasets with large, abrupt drifts (SINE1, Mixed, CoverType), StandardDD
outperforms DriftSurf, especially for larger values for δ. In such cases, the right thing to do is to
reset the model, but DriftSurf suffers from a delayed reaction to such drifts it has to enter reactive
state and leave the reactive state with a new model. These delays in reacting to actual drifts make
StandardDD outperform DriftSurf even for smaller choices of δ on SINE1.

4.8.4 Evaluation of Greedy Reactive State

This §includes results for the comparison of DriftSurf to DriftSurf (no-greedy). Recall that DriftSurf
uses greedy prediction in the reactive state, meaning that the predictive model used at one time
step is the model with better performance from the previous time step, while DriftSurf (no-greedy)
only uses the older model during the reactive state, and may only switch to the new model at the
end of the reactive state. In Table 4.10 we observe that DriftSurf performs similar or better across
each dataset, with the biggest improvements on the SINE1, RCV1, and Mixed datasets that we
earlier observed MDDM and Aware perform well on because it is desirable to immediately switch
to the new model after the large, abrupt drift.

Table 4.10: Average misclassification rate - DriftSurf vs DriftSurf (no-greedy) (ρ = 2m for each
model)

DATASET DriftSurf DriftSurf (NO-GREEDY)

SEA0 0.087 0.085
SEA10 0.161 0.158
SEA20 0.247 0.246
SEA30 0.335 0.336
SEA-GRADUAL 0.158 0.159
HYPER-SLOW 0.117 0.118
HYPER-FAST 0.173 0.177
SINE1 0.191 0.220
MIXED 0.204 0.238
CIRCLES 0.371 0.376
RCV1 0.134 0.158
COVERTYPE 0.267 0.273
AIRLINE 0.333 0.333
ELECTRICITY 0.284 0.287
POWERSUPPLY 0.303 0.303
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Figure 4.12: δ-sensitivity (ρ = 2m for each model)
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4.8.5 Comparison to 1PASS-SGD and Oblivious
Figure 4.13 shows the comparison to 1PASS-SGD and the oblivious algorithm (OBL) for the
RCV1 and Electricity datasets at each time. The time average misclassification rate for each
dataset are in Table 4.7. In the case of the large, abrupt drift in RCV1, we observe that 1PASS-SGD
and especially oblivious have poor performance after drift. The oblivious algorithm continues
to re-sample the data from the older distributions, and leads to a model with random, or worse
than random, accuracy on the current distribution. Even for 1PASS-SGD, which only trains over
data from the most recent time step, we observe its convergence rate is slow after a drift, where
its previous training on the old data still hinders it. On the Electricity data with a more subtle
drift, we observe that oblivious is actually the best performing algorithm, as discussed earlier,
because data from all over time can be trained and fit by a single model. However, 1PASS-SGD
still has lower accuracy because, as a single pass method, it uses only m update steps at each
time even when ρ = 2m are available to the other algorithms, and also because SGD has a slower
convergence rate than the variance-reduced method STRSAGA.
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Figure 4.13: Misclassification rate over time (ρ = 2m for each
model)

4.8.6 Using SGD as the Update Process
We primarily use the variance-reduced STRSAGA as the update process because it achieves fast
convergence in the stationary setting, as we showed both through theory and experiments in §3. We
study the impact of the choice of the update process on the performance. We re-run the previous
experiments using SGD instead of STRSAGA. Table 4.11 shows the average misclassification rate
for the case where ρ = 2m update steps are used for each model.

As the results presented in Table 4.11 suggest, AUE, unlike the previous experiment, out-
performs MDDM and DriftSurf for the majority of the studied datasets. The reason is that AUE
mitigates the high variance of SGD. MDDM, StandardDD, and DriftSurf all use performance-
degradation for drift detection. Such drift detection is sensitive to the high variance during the
training which may be mistaken for drift in the underlying distribution. However, comparing
the results of DriftSurf and MDDM shows the advantage of going though a reactive state before
restarting the model in reducing the false positive rate of drift detection. AUE, on the other hand,
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Table 4.11: Average misclassification rate - update process: SGD (ρ = 2m for each model)

DATASET Aware DriftSurf StandardDD MDDM-G AUE

SEA0 0.170 0.119 0.115 0.127 0.125
SEA10 0.217 0.186 0.191 0.197 0.184
SEA20 0.279 0.271 0.276 0.296 0.263
SEA30 0.360 0.352 0.360 0.382 0.340
SEA-GRADUAL 0.205 0.179 0.193 0.216 0.188
HYPER-SLOW 0.169 0.155 0.146 0.140 0.124
HYPER-FAST 0.272 0.201 0.203 0.179 0.204
SINE1 0.194 0.199 0.216 0.200 0.239
MIXED 0.194 0.207 0.209 0.209 0.242
CIRCLES 0.362 0.389 0.390 0.386 0.362
RCV1 0.151 0.154 0.155 0.162 0.208
COVERTYPE 0.274 0.276 0.273 0.326 0.286
AIRLINE 0.356 0.351 0.353 0.359 0.343
ELECTRICITY 0.335 0.337 0.359 0.348 0.299
POWERSUPPLY 0.350 0.321 0.390 0.365 0.300

overcomes the high variance of SGD by using a bag of experts and making ensemble based
decisions.

Similar to the previous experiments, to examine the accuracy achieved when enforcing equal
processing time, we repeated the experiment for the case where ρ = 2m steps are used by
each algorithm and divided among its models. Reported results in Table 4.12 suggest that the
variance-reduction effect of AUE is not able to overcome the limited training.

STRSAGA because of its variance-reduced update step achieves a faster convergence rate in
comparison to SGD. Difference between the reported results in Table 4.7 and Table 4.11 confirms
the advantage of using STRSAGA over SGD as the update process.

4.8.7 Using Hoeffding Trees and Naive Bayes as Base Learners

For the experiments in §4.8.1–§4.8.6, the base learner across each algorithm is a logistic regression
model using either STRSAGA or SGD as the update process. In this section, we study two
additional base learners: Hoeffding Trees (HT), and Naive Bayes (NB).

When using HT as the base learner, we also compare against an additional adaptive learning
algorithm, Hoeffding Adaptive Tree (HAT) [7]. HAT continually maintains the starting HT
throughout time, but reacts to drift by swapping out subtrees based on an internal drift detection
module. This represents a more granular approach to adapting to drift, compared to replacing
the entire model in traditional drift detection. We use the implementation of HAT available in
scikit-multiflow using their default hyperparameters [68].

The results when using HT are shown in Table 4.13 for the setting where the computation
available to each algorithm is divided among all its models. Note, however, that HAT is a single-
pass algorithm, and only used half the number of available update steps that each other algorithm
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Table 4.12: Average misclassification rate - update process: SGD (ρ = 2m divided among all
models of each algorithm)

DATASET Aware DriftSurf StandardDD MDDM-G AUE

SEA0 0.163 0.127 0.125 0.123 0.193
SEA10 0.229 0.186 0.198 0.197 0.238
SEA20 0.283 0.267 0.279 0.311 0.287
SEA30 0.366 0.353 0.355 0.376 0.358
SEA-GRADUAL 0.204 0.187 0.188 0.196 0.236
HYPER-SLOW 0.169 0.155 0.149 0.143 0.158
HYPER-FAST 0.269 0.211 0.191 0.185 0.274
SINE1 0.200 0.241 0.212 0.205 0.302
MIXED 0.195 0.207 0.206 0.209 0.262
CIRCLES 0.306 0.371 0.389 0.367 0.429
RCV1 0.146 0.168 0.156 0.161 0.437
COVERTYPE 0.275 0.282 0.275 0.323 0.316
AIRLINE 0.354 0.365 0.353 0.366 0.370
ELECTRICITY 0.343 0.316 0.342 0.350 0.354
POWERSUPPLY 0.336 0.318 0.348 0.356 0.316

used. We observe that DriftSurf is an effective algorithm for this base learner, too. As we saw with
other base learners, DriftSurf performs especially well on RCV1 and CoverType where it quickly
switches to a new model after the drift and concentrates its processing power on the new model,
but that DriftSurf loses to the large ensemble that AUE has on the continually drifting Hyperplane
datasets. We observe that HAT’s granular adaptation to drift compares favorably on the real
datasets of Airline and Powersupply, but suffers on the sharpest drifts like in SINE1 and RCV1.
For the NB base learner, the results are shown in Table 4.14. With NB, there is no advantage to
repeated sampling of earlier visited points, and so we compare each algorithm as they run a single
pass over the data. In this setting, AUE’s ensemble of 10 experts is the overall best-performer,
using more computation than DriftSurf and MDDM, although AUE was the slowest at adapting to
the sharp drifts on SINE1 and RCV1.

4.8.8 Recovery Time Analysis

In §4.2, we defined recovery time as the number of time steps after a drift before switching to
a model trained only over the new distribution. However, an alternative metric for recovery we
consider here is the 95%-recovery-time metric proposed by [80]. The 95%-recovery-time is the
length of a time interval called the recovery phase. The recovery phase starts when the predictive
model’s performance drops below 95% of the performance attained over the first distribution, and
the recovery phase ends when the model’s performance recovers up to 95% of the performance
curve that is ultimately obtained over the new distribution.

Table 4.15 shows the 95%-recovery-time over each dataset. When there is more than one drift
in a dataset, the reported recovery time is the average over all the drifts. Note that no recovery
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Table 4.13: Average misclassification rate - base learner: HT (ρ = 2m divided among all models
of each algorithm)

DATASET Aware DriftSurf StandardDD MDDM-G AUE HAT

SEA0 0.038 0.032 0.032 0.045 0.053 0.037
SEA10 0.139 0.134 0.136 0.139 0.143 0.140
SEA20 0.233 0.230 0.231 0.231 0.234 0.233
SEA30 0.327 0.324 0.329 0.329 0.327 0.326
SEA-GRADUAL 0.141 0.133 0.135 0.131 0.148 0.135
HYPER-SLOW 0.162 0.140 0.126 0.153 0.123 0.149
HYPER-FAST 0.245 0.173 0.159 0.168 0.162 0.173
SINE1 0.170 0.194 0.176 0.176 0.251 0.329
MIXED 0.178 0.192 0.193 0.191 0.240 0.195
CIRCLES 0.191 0.173 0.182 0.178 0.184 0.186
RCV1 0.139 0.158 0.142 0.177 0.171 0.188
COVERTYPE 0.226 0.221 0.238 0.261 0.251 0.221
AIRLINE 0.388 0.378 0.377 0.379 0.378 0.376
ELECTRICITY 0.260 0.255 0.274 0.265 0.248 0.268
POWERSUPPLY 0.286 0.283 0.279 0.281 0.282 0.276

time is reported for Hyperplane datasets because they contain a continually gradual drift that last
throughout the entire stream, and the metric is not defined for such drifts.

The recovery time in some cases is reported to be 0. This is because the performance never
dropped below 95% of the performance curve over the original distribution. Also, it is worth
mentioning that the recovery time of Aware is regularly longer the other algorithms (while under
our definition of recovery, Aware recovers immediately by resetting the model at the time of
drift). This occurs because restarting from scratch after a drift means that Aware always enters the
recovery phase, while the other algorithms may not enter the recovery phase if their performances
did not drop below 95% of that under the original distribution.

We observe that DriftSurf overall performs well on the 95%-recovery-time metric. On RCV1
and CoverType, DriftSurf outperforms AUE which takes several time steps to shift its weight
towards the newer models. Furthermore, on CoverType, DriftSurf outperforms MDDM, which
suffers significant false positives throughout the stream.
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Table 4.14: Average misclassification rate - base learner: NB

DATASET Aware DriftSurf StandardDD MDDM-G AUE

SEA0 0.062 0.056 0.055 0.083 0.054
SEA10 0.150 0.144 0.143 0.144 0.143
SEA20 0.239 0.235 0.233 0.233 0.234
SEA30 0.328 0.326 0.323 0.325 0.324
SEA-GRADUAL 0.154 0.147 0.148 0.147 0.147
HYPER-SLOW 0.146 0.118 0.110 0.131 0.109
HYPER-FAST 0.257 0.161 0.148 0.160 0.151
SINE1 0.166 0.203 0.176 0.171 0.238
MIXED 0.180 0.193 0.193 0.193 0.254
CIRCLES 0.187 0.174 0.174 0.177 0.178
RCV1 0.124 0.131 0.138 0.130 0.150
COVERTYPE 0.311 0.314 0.310 0.311 0.312
AIRLINE 0.386 0.379 0.377 0.378 0.376
ELECTRICITY 0.274 0.259 0.263 0.262 0.259
POWERSUPPLY 0.284 0.278 0.278 0.278 0.284

Table 4.15: 95%-recovery-time (ρ = 2m for each model)

DATASET Aware DriftSurf StandardDD MDDM-G AUE

SEA0 10.67 0.33 3.67 0.33 0.33
SEA10 9.33 0.33 0.33 6.00 0.33
SEA20 5.00 0.00 0.00 4.33 0.00
SEA30 2.33 0.33 0.33 3.00 0.33
SEA-GRADUAL 4.50 0.00 0.00 7.00 0.00
SINE1 2.75 3.00 3.25 3.00 3.50
MIXED 1.00 1.00 1.00 1.00 2.00
CIRCLES 1.00 1.00 1.00 0.83 1.00
RCV1 10.00 8.50 11.50 9.50 13.50
COVERTYPE 3.50 4.00 4.00 19.50 9.00
AIRLINE 12.50 10.50 10.50 10.50 10.50
ELECTRICITY 1.00 0.00 0.00 0.00 0.00
POWERSUPPLY 3.00 1.33 1.00 2.00 1.67

AVG 5.12 2.33 2.81 5.15 3.24
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Chapter 5

Learning from non-IID data over time and
distributed in space with FedDrift

Federated learning (FL) [55, 66] is a popular machine learning paradigm that enables collaborative
training without sharing raw training data. FL is crucial in the era of pervasive computing, where
massive IoT and mobile phones continuously generate relevant data that cannot be easily shared
due to privacy and communication constraints. FL also enables different organizations such
as hospitals [74] and retail stores [89] to jointly obtain valuable insights while preserving data
privacy. FL has become an important technology in the real world with massive deployments
(500+ million installations on Android devices) as well as a growing market with many solution
providers [64].

Concept drift in FL poses new fundamental challenges where data is heterogeneous in two
dimensions, both over time and across different clients. When different clients experience the data
drift at different times, no single global model can perform well for all clients. Similarly, when
multiple concepts exist simultaneously, no centralized training decision works well for all clients.
Several recent works have recognized the problem of concept drift in FL and proposed solutions
that adapt learning rates or add regularization terms [17, 18, 34, 62]. However, they consider only
restricted cases, shown in Figure 5.1 (repeated from §1 for convenience). Under more general
settings, such as the distributed drift patterns depicted in Figures 5.2 and 5.3 (repeated from
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Figure 5.1: Simplistic drifts studied in prior work.
(left) Simultaneous timing. (right) One majority
concept.
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Figure 5.2: Dis-
tributed drift pattern
(2 concepts).
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§1), these existing solutions suffer due to their use of a single global model, and hence fail to
generally address the aforementioned challenges. Similarly, applying any prior drift adaptation
centrally at the server also suffers due to the use of a single global model (and at best a single
global drift detection test), particularly with poor accuracy during the transition period (time steps
4–8 in Figure 5.2, see Figure 5.6(left) in §5.6). Meanwhile, centralized ensemble methods that
use multiple models for adapting to drift fare no better—in response to a localized data drift, a
newly created global model is trained over a mixture of concepts. The models in an ensemble are
distinguished solely over time, and do not account for heterogeneity across clients.

This chapter introduces the first FL solution that employs multiple models to address FL
under distributed concept drift. Our solution aims to create one model for each new concept so
that all clients under the same concept can train that model collaboratively, similar to what is
done for personalized or clustered FL [25, 32, 33, 63, 77]. We introduce two new algorithms for
model creation and client clustering so that our solution addresses all the challenges of distributed
concept drift. Our first algorithm, FedDrift-Eager, is a specialized algorithm that creates models
based on drift detection. FedDrift-Eager is effective if new concepts are introduced one at a time.
Our second algorithm, FedDrift, is a general algorithm that leverages hierarchical clustering to
adaptively determine the appropriate number of models. FedDrift isolates drifted clients and
conservatively merges clients via hierarchical clustering, so that FedDrift can effectively handle
general cases where an unknown number of new concepts emerge simultaneously.

We empirically evaluate our solution using four popular concept drift datasets, and we compare
our solution against state-of-the-art centralized concept drift solutions (KUE [14] and DriftSurf
(§4) and a recent FL solution that adapts to concept drifts (Adaptive-FedAvg [15]). Our results
show that (i) FedDrift-Eager and FedDrift consistently achieve much higher and more stable model
accuracy than existing baselines (average accuracy 93% vs. 88% for the best baseline, across
six dataset/drift combinations); (ii) FedDrift performs much better than FedDrift-Eager when
multiple new concepts are introduced at the same time; and (iii) our solution achieves a similar
model accuracy as Oracle (94% accuracy), an idealized algorithm that knows the timing and
distribution of concept drifts. On the real-world drift in the FMoW dataset [52], FedDrift achieves
64% accuracy vs. 58% accuracy for the best baselines.

5.1 Related Work
Drift in FL has so far seen only preliminary study. One line of work considers the setting where
there is one concept in the system to be learned (either like the example in Figure 5.1(right) when
a minority of clients drift, or when clients observe the main concept under random noise), and
seek to speed up the convergence of a model for that one concept by suppressing clients with
heterogeneous data via regularization [18, 34] or drift detection [62]. When it comes to adapting
to a new concept over time, we are only aware of two works, and both only consider drifts with
uniform timing (Figure 5.1(left)). First, Casado et al. [17] consider only the virtual drift setting
(where the labeling P(y|x) is fixed and only P(x) changes) and uses drift detection to partition
data from distinct concepts, in order to train a single model accurately in the course of revisiting
each partition (i.e., rehearsal). Second, Canonaco et al. [15] propose Adaptive-FedAvg, in which
the server tunes the learning rate used by all clients based on the variability across updates, with
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the goal of reacting fast when drift occurs while also achieving stable performance in the absence
of drift. We compare against Adaptive-FedAvg in our evaluation.

Our solution to drift in FL (§5.3, §5.4) relies on learning multiple models, which has been
studied in prior work on personalized FL and clustered FL. Clients with similar data can be
grouped into clusters, where each cluster trains its global model [12, 25, 32, 33, 63, 77]. As we
extend the problem of data heterogeneity in FL with the dimension of time, we train multiple
models with the algorithm in §5.3, which is inspired by the prior clustering algorithms IFCA [33]
and HypCluster [63]. This serves as the starting point of our solution, where our main contribution
is the creation of new clusters as new concepts arrive over time. Our solution in §5.4 to handle an
unknown number of concepts relies on hierarchical clustering, which has been studied in static FL
by Briggs et al. [12]. In this prior work, it is unclear how to set the distance threshold at which to
stop merging clusters. In contrast, our approach has the advantage that the stop merging criterion
is identical to the drift detection threshold, which has an intuitive interpretation of performance
loss.

5.2 Problem Setup

We consider a FL setting with P clients, assumed to be stateful and participating at each round,
and a central server that coordinates training across the clients. Training data are decentralized and
arriving over time. The data at each client c = 1, . . . , P and each time t = 1, 2, . . . are sampled
from a distribution (concept) P(t)

c (x, y). We consider that data may be non-IID in two dimensions,
varying across clients and across time. We say that there is a concept drift at time t and at client c
if P(t)

c 6= P(t−1)
c (the standard definition of drift with respect to a single node [29]).

One option is to learn a single global model h (which is a function of time but is notationally
suppressed) that is used for inference at all clients. In this case, the objective is to minimize
over all time t,

∑P
c=1 E(x,y)∼P(t)

c
[`(h(x), y)], where ` is the loss function. However, the optimal

single model may not be well-suited in the presence of concept drifts. By decomposing the joint
distribution P(x, y) = P(x)P(y|x), we distinguish between drifts where only P(x) changes
(called virtual drift or covariate drift [47, 82, 85]) versus drifts where the feature-to-label mapping
P(y|x) changes (called real drift or concept drift [85]). While the optimal single model can
perform well under the former case (although achieving fast convergence still requires a specialized
strategy; e.g., FedProx [60]), lower loss can often be obtained under the latter case by using
specialized models for different concepts.

The multiple-model option is to learn a set of global models {hm}, and a time-varying
clustering of clients. For notation, we denote the cluster identities by one-hot vectors w(t)

c ,
where w(t)

c,m = 1 when the client c at time t uses model hm for inference; we denote h
w

(t)
c

to

represent the unique model hm where w(t)
c,m = 1. The objective is to minimize over all time t,∑P

c=1 E(x,y)∼P(t)
c

[`(h
w

(t)
c

(x), y)].
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Table 5.1: Commonly used symbols pertaining to FedDrift

τ current time (prior time indexed by t)
P # clients (indexed by c)
M # global models (indexed by m)
R # communication rounds (indexed by i)
K # local steps per model per round (by j)
S
(t)
c new data arriving at client c at time t

N
(t)
c = |S(t)

c |
B minibatch size
η step size
hm global model m
hc,m local update of hm by client c
w

(t)
c,m is S(t)

c used to update hm?

5.3 Multiple-Model Training in FL

As discussed above, distributed concept drift often means that multiple concepts are present
simultaneously. Hence, our proposed solution learns multiple global models, where each model
is trained by a cluster of clients for each distinct concept. In this section, we present Algorithm
4 for multiple-model training in FL for a given input clustering, which may vary over time as
drifts occur. Then in §5.4, we will show how to learn the necessary input clustering, and how new
clusters can be created to adapt to newly appearing concepts.

We define a time step as the granularity at which new data may arrive at a client. A time step
may consist of multiple communication rounds. The set of data arriving at client c and time t is
denoted by S(t)

c . The global models being trained are denoted by hm for m ∈ [M ], where M is
the total number of models at a given time. Each model is trained by a cluster of clients, where the
clustering may vary over time as concept drifts occur. The cluster identities w(t)

c,m (§5.2) indicate
whether the data S(t)

c that arrived at client c at time t are sampled when computing a local update
to the global model hm. Further, the cluster identity of a client at a given time indicates which
model is used for inference.

Within each time, the training of the global models in Algorithm 4 is equivalent to Federated
Averaging [66], since the aggregation weight of each client within each cluster is fixed at time
τ . So the convergence of Algorithm 4 can be guaranteed by directly using previous analyses for
Federated Averaging, such as [60, 86]. The difference here is that the objective function that
clients are minimizing at time τ is replaced by the following:

F̃ (τ)
m (hm) =

P∑
c=1

w̃τc,mF
(τ)
c (hm) (5.1)

where F (τ)
c denotes the local objective function on client c, and the normalized weight is defined

as w̃τc,m =
∑τ

t=1w
(t)
c,m|S(t)

c |/
∑P

c=1

∑τ
t=1w

(t)
c,m|S(t)

c |.
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Algorithm 4 Multiple-model training at time τ

Input: Cluster identities w(t)
c,m

for each round i = 1, 2, . . . , R do
for each client c = 1, 2, . . . , P
and each model m = 1, 2, . . . ,M in parallel do
hc,m ← LOCALUPDATE(c, hm, {w(t)

c,m}τt=1)
end for
for each model m = 1, 2, . . . ,M do
hm ←

∑P
c=1 hc,m

∑τ
t=1 w

(t)
c,mN

(t)
c∑P

c=1

∑τ
t=1 w

(t)
c,mN

(t)
c

end for
end for

LOCALUPDATE(c, hm, {w(t)
c,m}τt=1):

for each local step j = 1, 2, . . . , K do
b← random minibatch of size B from ∪

t:w
(t)
c,m=1

S
(t)
c

hm ← hm − η∇`(hm; b)
end for
return hm

Algorithm 5 Clustering to the lowest loss

`
(τ)
c,m ← loss of hm on client data S(τ)

c

w
(τ)
c,m ← 1{m = arg minm′ `

(τ)
c,m′}

Run Algorithm 4

In the ideal case where each cluster maps to one concept in the system, each hm is specialized
for each concept that is sampled from a unique data distribution (P(x, y)), and these hm form
a strong solution to our overall objective in §5.2. This ideal solution is the Oracle algorithm
in our evaluation in §5.6, and we empirically demonstrate that our proposed solutions achieve
comparable accuracy.

Note that, as stated, each client c in Algorithm 4 retains its complete history of both the cluster
indicators w(t)

c,m and the local data arrivals S(t)
c . To reduce this overhead, each client could instead

maintain just a sliding window of the most recent time steps, as long as the window suffices for
the minibatch sampling in LOCALUPDATE.

Thus, we have separated the problem of concept drift in FL into two components: (i) deter-
mining the time-varying clustering of clients in response to concept drifts, which is then used as
input for (ii) the multiple-model training in Algorithm 4. Suppose, hypothetically, that there is a
global model already initialized for each concept up to some moderate accuracy. In this restrictive
setting, Algorithm 5 can be used to determine the cluster identities for each new time step. Each
client tests the global models from the previous time step over its newly arrived data and chooses
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to identify with the model with the best loss (breaking ties randomly).1 The setting considered
encompasses time steps involving drifts that occur between concepts known to the system; e.g.,
the later stages of a staggered drift from concept A to concept B after some clients have already
observed concept B (Figure 5.2). However, Algorithm 5 does not have any mechanism to spawn
new clusters or determine the number of clusters. In §5.4, we will show how to determine the
input for Algorithm 4 with clustering algorithms that can spawn clusters over time to react to
drifts to new concepts.

5.4 Clustering Algorithms
Under concept drift in FL, data are heterogeneous both over time and across clients. The concept
at each time and client is the ground-truth clustering that we seek to learn. Ideally, the models
trained by each cluster correspond 1-to-1 to the concepts present in the system. Specifically, we
want to avoid two miss-clustering problems: (P1) spawning multiple clusters that correspond to
a single concept, because then each model would be trained over only a subset of the relevant
data, not taking full advantage of collaborative training, and (P2) merging clients corresponding
to multiple concepts into a single cluster (model poisoning).

We present two clustering algorithms for adapting to concept drift. First, in §5.4.1 we handle
the case where only one new concept emerges at a time, which includes the example drift pattern
in Figure 5.2, by incorporating a straightforward drift detection algorithm. Second, in §5.4.2
we give a general algorithm that handles the general case where multiple new concepts may
emerge simultaneously, which includes the example drift pattern in Figure 5.3, by incorporating a
bottom-up technique that isolates clients that detect drift (addressing P2) and iteratively merges
clusters corresponding to the same concept (addressing P1).

In the rest of this section, we assume that the first time step starts with one concept and one
model, and that our clustering is run for each time step τ > 1 as new data arrive.

5.4.1 Special Case: One New Concept at a Time

When a new concept emerges, the clients that observe the drift should be split off to a new cluster
to start training a new model. Drift detection has been well-studied in the centralized, non-FL,
setting [3, 6, 28, 35, 70, 72]. For staggered drifts in FL, trying to apply a drift detection test
globally at the server over the aggregate error results in poor performance during the transition
period. Instead, in Algorithm 6, we apply drift detection locally at each client.

There are many drift detection tests in the literature, but the particular test is not our focus and
for simplicity we consider a test of the following form. A drift is signaled at client c at time τ
with respect to a model hm if the loss of the model over the newly arrived data, denoted as `(τ)c,m,
degrades by a threshold δ relative to the loss measured at time τ − 1:

`(τ)c,m > `(τ−1)c,m + δ. (5.2)

1If there are no new data at a particular client, then we say its cluster identity is carried over from the previous
time step so the model used for inference is well-defined.
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Algorithm 6 FedDrift-Eager at time τ

`
(τ)
c,m ← loss of model hm on client data S(τ)

c

w
(τ)
c,m ← 1{m = arg minm′ `

(τ)
c,m′}

if minm `
(τ)
c,m > minm `

(τ−1)
c,m + δ at any client c then

// create one model for all drifted clients
M ←M + 1
Initialize a new global model hM
w

(τ)
c,∗ ← 0; w(τ)

c,M ← 1
end if
Run Algorithm 4

This test checks for any drift that incurs performance degradation with respect to a given
model. However, the desired condition for creating a new model should check only for concept
drifts that correspond to a concept previously unobserved and ill-suited for all existing models.
For other drifts, such as the later stage of the staggered drift from concept A to concept B in
Figure 5.2 (after concept B has already been detected and an appropriate model created), a client
should join an existing cluster (in this case, the cluster for B). Hence, in Algorithm 6, the drift
detection test for model creation compares against the best performing model:

min
m

`(τ)c,m > min
m

`(τ−1)c,m + δ. (5.3)

We note that detection tests that compare across multiple models have been previously studied in
centralized learning in the context of adapting to recurring drifts [48]. The clustering in Algorithm
6 (FedDrift-Eager) applies this multiple-model drift detection test at each client, and creates a
new cluster for all the clients that detect a new concept; otherwise, each client identifies with
the cluster with the best-performing model. This algorithm relies on the assumption that only
one new concept occurs at a time by assigning the drifted clients to a single cluster. Despite this
limitation, Algorithm 6 still merits interest as it experimentally performs well on the non-trivial
case of the staggered drift in Figure 5.2 that has not been addressed by the prior work, as shown
in §5.6. However, for the drift in Figure 5.3 in which concepts B and C emerge simultaneously at
different clients, this algorithm creates only one cluster and sub-optimally tries to train a single
model for both new concepts (problem P2 above). Next, we extend this algorithm to address the
general case where an unknown number of new concepts can occur at a time.

5.4.2 General Case
When drifts to new concepts are detected at multiple clients, in general we do not know whether
the drifts all correspond to one concept or multiple concepts (or even zero concepts in the event
of false positives in detection). We designed Algorithm 7 (FedDrift) for clustering in the face of
this uncertainty. For each client that detects drift to a new concept, Algorithm 7 conservatively
isolates the clients to individual clusters, and then merges clusters corresponding to the same
concept slowly and safely over time by iteratively applying classical hierarchical agglomerative
clustering [46, 81].
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The generic hierarchical clustering procedure is specified by a distance function over the set
of elements to be clustered and a stopping criterion, and at each step until the stopping criterion is
met, merges the two closest clusters, where the distance between clusters of multiple elements
is commonly defined to be the maximum distance between their constituents (known as a max-
linkage clustering). In Algorithm 7, the MERGE subroutine combines two clusters i and j by
averaging their models with weight proportional to the size of each model’s training dataset (over
all clients) and unifying the cluster identities.

To specify a distance function for hierarchical clustering, Algorithm 7 first aggregates at the
server the loss estimates Lij of the model hi evaluated over a subsample of the data associated with
the cluster for model hj .2 Then the distances between each cluster are initialized as D(i, j)←
max(Lij−Lii, Lji−Ljj, 0).3 Lij−Lii measures the loss degradation of model hi when evaluated
over the data associated with hj , relative to the loss over its own data. We informally interpret
this difference as the magnitude of drift between the concept associated with hi to the concept
associated with hj , analogous to the drift detection condition in Eq (5.2) (although not identical
due to the bias of Lii measuring a model’s accuracy over its own training data). The term D(i, j)
is defined to be symmetric by also accounting for the magnitude of the drift Lji − Ljj in the
reverse direction from concept j to concept i.

In addition to defining the cluster distances D(i, j), employing hierarchical clustering also
requires setting a stopping criterion. Typically, that corresponds to specifying either the desired
number of clusters (which in our case is unknown), or an upper limit on the distance between
clusters to stop merging. By our identification of the cluster distance as a magnitude of drift, we
naturally re-use the drift detection threshold δ to also represent the tolerance level up to which
clusters can be merged, eliminating one hyperparameter.

In Algorithm 7, both creating new clusters and merging existing clusters are based on the
observed difference of the models’ accuracy across two samples of data. For the clustering to
accurately distinguish concepts, we assume that relevant changes in the concepts are manifested
in the degradation of a model’s predictive accuracy, and that the local sample size is sufficient for
statistical significance—the same assumptions necessary for prior drift detection tests [35, 70, 72].

One subtlety to Algorithm 7 is that the hierarchical clustering is iteratively run at every time
step, because the cluster distances vary with time. A simpler alternative would be to only try
merging newly created clusters of local models after one time step of training. However, at that
one time step, even models corresponding to the same concept may fail to merge given the limited
sample size and limited number of training iterations. In other words, while the models are still
warming-up, they may still be separated by a distance exceeding δ. As the models converge over
time, the distance may drop below δ, which Algorithm 7 accounts for by iteratively attempting to
merge.

The hierarchical clustering strategy of Algorithm 7 allows it to adaptively determine the
appropriate number of clusters even when an unknown number of new concepts emerge at a
time, but it also incurs additional computational resources relative to Algorithm 6. Algorithm 7

2More precisely, at client c, the data clustered to hj are subsampled proportionate to the size of the local dataset
relative to the global dataset for hj ,

∑
t w

(t)
c,jN

(t)
c /

∑
c′
∑

t w
(t)
c′,jN

(t)
c′ .

3We note that D(i, j) is not necessarily a true distance function as there is no guarantee that it satisfies the triangle
inequality.
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Algorithm 7 FedDrift at time τ

`
(τ)
c,m ← loss of model hm on client data S(τ)

c

for each client c = 1, 2, . . . , P in parallel do
if minm `

(τ)
c,m > minm `

(τ−1)
c,m + δ then

Initialize a local model at client c to be added to the set of global models at τ + 1, and
assign client c to its own cluster

else
w

(τ)
c,m ← 1{m = arg minm′ `

(τ)
c,m′}

end if
end for
for each i, j from 1, 2, . . . ,M in parallel do
Lij ← loss of model hi on sample of ∪

c,t:w
(t)
c,j=1

S
(t)
c

end for
Cluster distances D(i, j)← max(Lij − Lii, Lji − Ljj, 0)
while mini 6=j D(i, j) < δ do

MERGE(i, j,D)
end while
Run Algorithm 4

MERGE(i, j,D):

Add a new model hk ←
hi

∑
c,t w

(t)
c,iN

(t)
c +hj

∑
c,t w

(t)
c,jN

(t)
c∑

c,t w
(t)
c,iN

(t)
c +

∑
c,t w

(t)
c,jN

(t)
c

w
(t)
c,k ← w

(t)
c,i + w

(t)
c,j for all c, t

D(k, l) = max(D(i, l), D(j, l)) for all l
Delete models hi, hj

creates more global models M , adding to the communication cost of sending O(MP ) models.
Additionally, the hierarchical clustering adds an O(M2 logM) time complexity at the server at
every time step (using a heap data structure for finding the minimum pairwise distance). In §5.7,
we discuss how we can restrict Algorithm 7 to create fewer overall models for higher efficiency.
Also, similar to Algorithm 4, each client c could maintain w(t)

c,m and S(t)
c for just a sliding window

of the most recent time steps, as long as the window suffices for Algorithm 7’s subsampling step.

5.5 Experimental Setup

Prior work on FL under drifts is limited to simple cases such as in Figure 5.1, as noted in §5.
Our evaluation covers the synthetic drifts in Figures 5.2 and 5.3, which represent more complex
scenarios where drifts (i) occur across clients with staggered timing, (ii) correspond to different
concept changes across different clients, and (iii) involve recurring concepts (e.g., the sequence
A–B–C–D–A). We also evaluate on the real-world drift in the FMoW dataset, which shows
gradual concept changes staggered across clients (shown in Figure 5.4, repeated from §1).
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Figure 5.4: Class distribution over time in FMoW. The drift viewed globally (left) is small relative
to the localized drift for Africa (right).

The synthetic drift patterns are studied with respect to the following datasets: SINE [71],
CIRCLE [71], SEA [8], and MNIST [57]. SINE and CIRCLE each have 2 defined concepts, and
we generate partitions of the data under the 2-concept staggered drift of Figure 5.2, while SEA
and MNIST have more defined concepts, and we generate partitions under both the 2-concept and
4-concept drift patterns of Figures 5.2 and 5.3 for 10 clients and 10 time steps. For the real drift in
FMoW, we evaluate on a subset of the data including the 10 most common classes, and identify
each of the 5 major regions as one client and each new year as one time step. §5.5.1 has further
dataset details.

We compare our algorithms FedDrift-Eager and FedDrift against the following baselines. First,
the Oblivious algorithm learns a single model with FedAvg and has no mechanism for drift
adaptation. Second, we consider traditional (non-FL) drift adaptation algorithms applied centrally
at the server on top of FedAvg. Drift adaptation is typically classified into three categories, and
we compare against algorithms representative of each: the drift detection method DriftSurf (§4),
two ensemble methods KUE [14] and AUE [13], and a Window method that forgets data older
than one time step (more are reported in §5.7). Third, Adaptive-FedAvg [15] is an FL algorithm
that learns a single model and adapts to drifts by centrally tuning the learning rate used by all
clients as a function of the variability across updates. Fourth, we compare to static FL clustering
algorithms IFCA [33] and CFL [77], which we extend to the time-varying setting by adding a
window method (more variations reported in §5.7). Fifth, Oracle is an idealized algorithm that has
oracle access to the concept ID at training time and runs the multiple-model training of Algorithm
4 with the ground-truth clustering.

We run our experiments using the FedML framework [38]. At each time step, each client
observes a new batch of training data. For all the experiments on synthetic datasets, the models
trained under each algorithm are fully connected neural networks with a single hidden layer of
size 2d where d is the number of features. On the FMoW dataset, each algorithm trains ResNet18
models pretrained on ImageNet [39]. After training for each time step, we test each algorithm
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over the batch of data arriving at the following time step, for all time steps. Each experiment is
run for 5 trials, and we report the mean and the standard deviation. Additional algorithm details
are in §5.5.2.

5.5.1 Datasets
We consider synthetic distributed drifts with respect to the following datasets previously used in
the concept drift and personalized FL literature [12, 13, 15, 62]: SINE and CIRCLE [71] which
each have 2 defined concepts, and SEA [8] and MNIST [57], which have up to 4 concepts. In
SINE, the first concept is a decision boundary of the sine curve x2 < sin(x1) for data points
sampled from the unit square, and the second concept reverses the direction (swapping the labels).
In CIRCLE, the two concepts are each decision boundaries of two different circles in the unit
square, representing a smaller concept change than SINE. The first circle is centered at (0.2,
0.5) with radius 0.15 and the second circle is centered at (0.6, 0.5) with radius 0.25. In SEA,
each concept corresponds to a shifted hyperplane. Each point in SEA has three attributes in
[0, 10], where the label is determined by x1 + x2 ≤ θj where j corresponds to 4 concepts,
θA = 9, θB = 8, θC = 7, θD = 9.5. (The third attribute x3 is not correlated with the label.) In
SEA, at every concept there is noise in the observed labels, where the label is swapped with
10% chance for each data point independently. In MNIST, concept A corresponds to the original
labeling of the hand-drawn digits, and under each other concept, the labels of two of the digits are
swapped (B swaps digits 1 and 2, C swaps digits 3 and 4, and D swaps digits 5 and 6).

For each of the synthetic drift datasets in our experiments, the training data are distributed
across 10 clients and arrive over 10 time steps. The partition of the data at each client and time is
a constant 500 number of samples from the concept corresponding to the concept drift patterns in
Figures 5.2 and 5.3 in §5. In our experimental results, after training at each time τ we report the
test accuracy over the data at τ + 1. For clarification, in reporting the accuracy at the last time
step 10, we test over an 11th sample of data at each client that is from the same concept observed
during training at time 10.

We also evaluate on the real-world drift in the Functional Map of the World (FMoW) dataset
included in the WILDS benchmark [20, 52]. The learning task is to classify the land use or
building type from satellite images, which has significant practical relevance, “aiding policy and
humanitarian efforts in applications such as deforestation tracking, population density mapping,
crop yield prediction, and other economic tracking applications” [52]. Each image is RGB and
square with a width of 224 pixels. The WILDS benchmark is not explicitly posed as a drift
adaptation problem that we study in this thesis, but instead as a drift robustness problem, and
so they originally partitioned the data into train/validation/test splits. For our evaluation, we
re-partition the dataset, distributing training data across 5 clients arriving over 9 time steps, using
the metadata annotation of each image by region (Africas, Americas, Asia, Europe, Oceania) and
year. The first 8 years from 2002–2009 have much fewer images collected, which we group into
one time step, and then we treat each year from 2010–2017 as one time step each. The partition
of the data at each client and time step is a subsample of up to 1000 images at the 10 classes that
are the most common (counting across all regions and years). The test data evaluated for the last
time step are a disjoint subsample also from the same year 2017 as the training data. Figure 5.4 in
§5.6 depicts how the data drifts gradually over time, where the development of new infrastructure
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is a result of social, political, economic, and environmental factors. Viewed globally, the drift is
small. Koh et al. [52] write: “intriguingly, a large subpopulation shift across regions only occurs
with a combination of time and region shift.” Further, they call for solutions that “can leverage
the structure across both space and time” and also hypothesize a benefit to “potentially transfer
knowledge of other regions with similar economies and infrastructure” which we empirically
confirm where FedDrift clusters Africa and Oceania together for years 2014–2015.

5.5.2 Experimental Parameters
Across all algorithms we evaluate, the algorithms that learn a single model use FedAvg for
training, and the clustering algorithms that learn multiple models use Algorithm 4 in §5.3 for
training (which reduces to FedAvg when there is one cluster). The training parameters used in our
experiments are shown in Table 5.2. For efficiency of the larger FMoW experiments, we reduce
to 10 rounds and batch size 32—we observe that this suffices by convergence of the training
accuracy.

Regarding the learning rate selection, first we discuss all algorithms excluding Adaptive-
FedAvg. We searched for learning rates of the form 10−a for a = 1, 2, 3, 4, for each dataset, and
found that η = 10−2 was the best for SINE-2, CIRCLE-2, SEA-2, and SEA-4, that η = 10−3 was
best for MNIST-2 and MNIST-4, and that η = 10−4 was best for FMoW. (This held for both of
the two extremes among our baselines, Oblivious and Oracle, and we apply the same learning rate
across all the algorithms. For FMoW, there is no known Oracle, so we searched only using the
Oblivious baseline.) Also note that for computing the LOCALUPDATE at each client, we use the
implementation of Adam in PyTorch with the options weight decay = 10−3 and amsgrad = True.
We treat Adaptive-FedAvg separately, because it uses SGD with its own internal learning rate
scheduler as its mechanism to react to drifts. We found that the initial learning rate of 10−2 was
the best for each dataset with the exception of SINE-2, instead using 10−1. (This higher learning
rate explains the high standard deviation in the reported accuracy of Adaptive-FedAvg on SINE-2.)

Next, we report the selection of the drift detection threshold δ in the algorithms DriftSurf,
FedDrift-Eager, and FedDrift. While the optimal δ is expected to vary across datasets, even for a
fixed dataset, different algorithms can peak in performance at varying δ. The performance of each
of these three algorithms for each dataset across δ in the range 0.02, 0.04, . . . , 0.20 is shown in
Figure 5.5. To not bias towards any one algorithm, the experimental results are reported for each
algorithm and dataset using its best δ. (The δ used for the FedDrift-C variant discussed in §5.7

Table 5.2: Training parameters

Parameter Description Experimental setting Experimental setting
(all synthetic drifts) (FMoW)

R # communication rounds 100 10
K # local steps per model per round 50 50
B minibatch size 50 32
η step size varies varies
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is identical to that used for FedDrift.) However, using a fixed δ = 0.04 for FedDrift-Eager and
FedDrift makes at most a 1 pp difference in the results reported in Table 5.3 (on one trial).

For all other hyperparameters of the algorithms we evaluate, we follow the parameter choices
stated by the authors, with the following exceptions: for DriftSurf we use r = 3 (which performed
equal or better than the r = 4 used in experiments in §4 for a longer time horizon of 100 time
steps); for CFL we use γ = 0.1 (for which there is no default, but is shown to be a good setting
from Theorem 1 and Figure 3 of their paper [77] given that the number of distinct concepts
at a time is at most 5 across all evaluated datasets); and for AUE we use K = 5 as the total
ensemble size (compared to the K = 10 in their paper they consider over a significantly longer
time horizon). In reporting FMoW results, for training efficiency, we further restrict to a total
ensemble size of 4 for AUE and KUE.

Furthermore, for the FMoW dataset, which has more than one distinct data distribution at the
initial time step unlike the remaining datasets, we use a different initialization of IFCA variants
and FedDrift. For IFCA variants, clients initially self-select among 5 cluster centers instead of
being all assigned to a single cluster. For FedDrift, clients are initialized to a local model each,
which can be merged starting at the next time step. (If we instead initialize all clients to a single
model that can later be split, we observed the average test accuracy of FedDrift is 64.46%, or 0.45
pp worse.)

Finally, regarding the model training in Algorithm 4 at time τ , we apply one optimization
for efficiency to only train models that are currently clustered to. (Although note that any such
models are still retained by FedDrift-Eager and FedDrift in order to react to recurring drifts even if
they are not actively being trained.)
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(e) SEA-4
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Figure 5.5: Average accuracy of each drift detection-based algorithm under varying thresholds δ.
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5.6 Main Experimental Results

We empirically demonstrate that FedDrift-Eager and FedDrift are more effective than prior central-
ized drift adaptation and achieve high accuracy that is comparable to an oracle algorithm in the
presence of distributed concept drifts.

In Table 5.3, we report the test accuracy averaged across all clients and all time steps except
for the times of drifts (for synthetic datasets). We omit the times of drift because there is no
chance for a client to adapt to the drift yet, and we eliminate the noise from beneficial clustering
mistakes if by chance a client were clustered to the model appropriate for the test data after the
drift. (For completeness, §5.7 shows results averaged over all time steps including drifts.)

Across all the 2-concept datasets under the staggered drift, we observe that the multiple-model
algorithms FedDrift-Eager and FedDrift outperform the prior centralized solutions. In Figure 5.6,
the accuracy is broken down per time step on CIRCLE-2, where we observe that centralized
algorithms particularly suffer during the transition period. The fundamental issue is that when
both concepts simultaneously exist, no single model can accurately fit for all clients. Even the
ensemble algorithm (KUE) has poor performance because any new model added is updated by
each client, and during the transition period, there is no model trained solely over data from the
second concept. FedDrift-Eager and FedDrift learn models specialized for the second concept
immediately after it emerges, and learn to apply the appropriate model at each client during the
transition, matching the performance of Oracle.4

Another challenge that the 2-concept staggered drift poses for DriftSurf, KUE, AUE, and
Adaptive-FedAvg is that their adaptation strategies are a function of estimators that, from the
central server’s perspective, are aggregated over some clients that are drifting and others that are
not. It is muddy whether drift is truly occurring, and even the unsophisticated window-based
algorithm performs slightly better.

The clustering algorithms IFCA and CFL with a window perform relatively well on the
2-concept staggered drifts because they can flexibly employ a model specialized for the second
concept during the transition period, but are overall behind FedDrift and FedDrift-Eager. We
observe IFCA’s success in adapting to drift is dependent on its random parameter initialization for
its clusters, which works well for the sharp drift on SINE-2, but less reliably for the smaller drifts
on other datasets. For CFL, we observe that its iterative cluster splitting reacts quickly to drift, but
creates excessive models for a concept over time without unifying clients under staggered drift.
§5.7 has more details.

Regarding the 4-concept drift, Table 5.3 shows that all baselines are ill-suited, while FedDrift
performs close to Oracle, and that FedDrift-Eager has intermediate performance (due to its false
unification of simultaneously emerging concepts). To understand the performance of FedDrift,
see Figure 5.7. In the ideal case (Oracle), there would be exactly one model for each concept.
For FedDrift, at time 3 one new model is created for 5 of the 6 clients that drifted, and one false
negative where a drifted client stays on the original model. With hierarchical clustering applied at
the beginning of time 4, the 3 clusters corresponding to the green concept are correctly merged,
while all clients on the yellow concept cluster to model 4 which had the lowest test loss over

4The accuracy of FedDrift-Eager and FedDrift are higher than Oracle in a few cases but within the standard deviation,
which we attribute to randomness in the model initialization and training.
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Figure 5.6: Accuracy at each time (averaged across clients) on CIRCLE-2.
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Figure 5.7: The clustering learned by FedDrift on MNIST-4. Each cell indicates the model ID at
each client and time step, and the background color indicates the ground-truth concept.
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Table 5.3: Average test accuracy (%) across all clients and time, omitting drifts (5 trials)

SINE-2 CIRCLE-2 SEA-2 MNIST-2 SEA-4 MNIST-4 FMoW

Oblivious 50.44 ± 1.52 88.36 ± 0.27 86.37 ± 0.34 87.25 ± 0.14 85.38 ± 0.28 82.97 ± 0.04 58.46 ± 0.08
DriftSurf 83.90 ± 1.01 92.54 ± 0.67 87.27 ± 0.34 91.71 ± 1.60 85.48 ± 0.28 82.99 ± 0.05 58.42 ± 0.16
KUE 87.05 ± 0.12 93.83 ± 0.04 87.62 ± 0.42 89.74 ± 0.07 85.53 ± 0.12 79.78 ± 0.16 36.65 ± 7.64
AUE 86.06 ± 0.60 92.74 ± 0.51 87.46 ± 0.12 92.19 ± 0.07 85.55 ± 0.08 81.29 ± 0.19 54.22 ± 0.14
Window 86.42 ± 0.74 93.67 ± 0.15 88.08 ± 0.10 92.15 ± 0.34 85.76 ± 0.16 81.16 ± 0.46 58.79 ± 0.14
Adaptive-FedAvg 78.02 ± 10.73 86.26 ± 0.00 86.69 ± 0.39 92.16 ± 0.04 85.32 ± 0.25 81.62 ± 0.07 52.76 ± 0.23
IFCA+Window 98.49 ± 0.13 94.31 ± 1.62 88.04 ± 0.17 91.76 ± 0.50 86.17 ± 1.00 81.27 ± 0.43 49.40 ± 0.76
CFL+Window 95.15 ± 0.32 95.62 ± 1.14 87.66 ± 0.36 90.53 ± 0.81 85.67 ± 0.21 79.99 ± 0.58 58.70 ± 0.13

FedDrift-Eager 98.46 ± 0.03 97.86 ± 0.20 88.35 ± 0.37 95.99 ± 0.06 88.08 ± 0.24 89.21 ± 2.02 61.62 ± 0.45
FedDrift 98.48 ± 0.01 97.88 ± 0.17 88.65 ± 0.43 95.93 ± 0.01 88.41 ± 0.29 94.09 ± 0.08 64.91 ± 0.31

Oracle 98.46 ± 0.01 97.57 ± 0.59 88.53 ± 0.23 96.00 ± 0.02 88.75 ± 0.20 94.60 ± 0.04 -

the new data. Also at time 4, model 6 is created for the new orange concept. Then at time 5,
hierarchical clustering merges models 4 and 5 (due its iterative application in FedDrift, as the
distance decreases after model 4 is further trained). After time 5, FedDrift has a distinct model for
each concept, and no excess models.

One drawback of FedDrift is that it can create more models compared to FedDrift-Eager,
adding to the communication cost. §5.7 shows that restricting FedDrift to just one new global
model per time step (additional local models are still permitted) decreases its accuracy by only
0.87% on the MNIST-4 dataset, while saving communication.

Finally, we discuss the drift in the real-world FMoW dataset where we observe FedDrift
has superior performance. The authors of the WILDS benchmark primarily make note of the
performance loss of a globally trained model on data from Africa over time [52]. We observe
FedDrift successfully adapts to the local drift, switching the model applied at Africa at year 2014,
the time with a significant increase in single-unit residential buildings in Figure 5.4. Instead of
creating a new model for 2014, we find FedDrift joins the cluster for Oceania where a local model
was previously created, and stays at that cluster for 2014 and 2015, before then splitting into a
new individual cluster for 2016 and 2017. We also observe that FedDrift detects a drift at 2015 for
both Europe and the Americas, creating two more local models that contribute to higher accuracy.

Meanwhile, FedDrift-Eager similarly adapts to the change in Africa yielding a performance
benefit, but it does not adapt well to the simultaneous drift for Europe and the Americas. Both
FedDrift and FedDrift-Eager outperform the centralized adaptation baselines which fail to adapt to
the drift when viewed globally (c.f. Figure 5.4). Finally, the low accuracy of IFCA is explained by
its random initialization of model parameters for its clusters, in lieu of the pretrained ImageNet
initialization under the rest of the algorithms, and the low accuracy of KUE is explained by its
ineffective random subspace projections of the data for this task.

5.7 Additional Experimental Results

We present additional experimental results on more baseline algorithms and on variants of our
algorithms restricted to limited memory or communication.
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Additional Baseline Algorithms. The additional algorithms presented in this section are:
• Four traditional drift adaptation algorithms. AUE-PC is a variation of the ensemble

method AUE with the ensemble weights set per-client. Window-2 is a window method like
Window, except that it forgets data older than two time steps instead of one. Weighted-Linear
and Weighted-Exp also forget older data like window methods, but do so more gradually by
down-weighting older data with either linear or exponential decay.

• The FL clustering algorithm CFL [77]. In extending the original static algorithm to our
time-varying setting, we also consider a variant CFL-W, in which during training, each
client samples only from the window of the newest data arriving at each time.

• Three variations of the IFCA clustering algorithm [33] that we considered for extending
the original algorithm to the time-varying setting. First, IFCA(T) is exactly Algorithm 5 in
§5.3, which defines cluster identities for each client and each time, in order to associate
the data within a client that are heterogeneous over time across multiple clusters. IFCA(T)
chooses the cluster identity once per time step (where time steps consist of multiple com-
munication rounds)—this differs from the original algorithm described by Ghosh et al. [33],
which recomputes the cluster identity once per round. Second, IFCA does the per-round
clustering; more precisely, for each time step τ , the cluster identity w(τ)

c,m is recomputed at
every round under the same equation used at the beginning of the time step in Algorithm 5.
Third, IFCA-W is a variant of IFCA that trains only over the most recent data arrivals at each
time, and the cluster identities of data from previous time steps are forgotten. In general,
the IFCA-based algorithms require the number of clusters as input, which we provide as
oracle knowledge—either 2 or 4 depending on the total number of concepts over time in
each dataset. This gives IFCA-based algorithms an advantage over all other algorithms we
evaluate, which do not know the number of clusters a priori. For the initialization of all
three variations, at time 1 and round 1, all clients are assigned to a single cluster, matching
the assumption we made for FedDrift and FedDrift-Eager in §5.4. The exception to this
initialization strategy is on FMoW, where the total number of concepts is not known, and
the concept at time 1 across clients is not identical; for this dataset, we instead initialize
all IFCA-based algorithms with a total of 5 clusters (matching the number of regions), and
where each client identifies with the best-performing randomly initialized model (same as
the original paper).

• A more communication-efficient variant of FedDrift. FedDrift-C is the algorithm referred
to in the last paragraph of §5.4 that is restricted to introducing one new global model per
time step. More details on this algorithm are described later in this section.

• Sliding window variants of FedDrift-Eager and FedDrift. FedDrift-Eager-W and FedDrift-
W are restricted to using only the most recent time step of data S(t)

c and cluster identities
w

(t)
c,m.

• A baseline sliding window variant Oracle-W, which has oracle access to the ground-truth
clustering but only uses the most recent time step of data in training.

In general, we use the -W suffix in the name of an algorithm to indicate a limited memory
of a window of one time step. This memory restriction reduces the number of samples used
for training at a time and might reduce the accuracy achievable under ground-truth clustering

88



Table 5.4: Average test accuracy (%) across clients and time, omitting drifts (5 trials), extended
results

SINE-2 CIRCLE-2 SEA-2 MNIST-2 SEA-4 MNIST-4 FMoW

Oblivious 50.44 ± 1.52 88.36 ± 0.27 86.37 ± 0.34 87.25 ± 0.14 85.38 ± 0.28 82.97 ± 0.04 58.46 ± 0.08
DriftSurf 83.90 ± 1.01 92.54 ± 0.67 87.27 ± 0.34 91.71 ± 1.60 85.48 ± 0.28 82.99 ± 0.05 58.42 ± 0.16
KUE 87.05 ± 0.12 93.83 ± 0.04 87.62 ± 0.42 89.74 ± 0.07 85.53 ± 0.12 79.78 ± 0.16 37.46 ± 7.95
AUE 86.06 ± 0.60 92.74 ± 0.51 87.46 ± 0.12 92.19 ± 0.07 85.55 ± 0.08 81.29 ± 0.19 54.22 ± 0.14
AUE-PC 87.67 ± 1.70 93.05 ± 0.19 87.61 ± 0.08 92.22 ± 0.09 85.60 ± 0.05 81.43 ± 0.22 54.15 ± 0.10
Window 86.42 ± 0.74 93.67 ± 0.15 88.08 ± 0.10 92.15 ± 0.34 85.76 ± 0.16 81.16 ± 0.46 58.79 ± 0.14
Window-2 85.21 ± 1.67 93.03 ± 0.46 87.71 ± 0.33 92.54 ± 0.37 85.67 ± 0.16 82.16 ± 0.32 59.44 ± 0.23
Weighted-Linear 72.78 ± 1.23 89.91 ± 0.65 87.00 ± 0.01 89.70 ± 0.12 85.49 ± 0.17 82.79 ± 0.05 58.05 ± 0.17
Weighted-Exp 82.77 ± 0.64 92.69 ± 0.25 87.59 ± 0.15 92.19 ± 0.17 85.59 ± 0.09 82.55 ± 0.06 58.49 ± 0.09
Adaptive-FedAvg 78.02 ± 10.73 86.26 ± 0.00 86.69 ± 0.39 92.16 ± 0.04 85.32 ± 0.25 81.62 ± 0.07 52.76 ± 0.23
CFL 60.27 ± 4.82 88.39 ± 0.40 86.36 ± 0.28 86.97 ± 0.40 85.33 ± 0.26 81.95 ± 0.55 57.92 ± 0.32
CFL-W 95.15 ± 0.32 95.62 ± 1.14 87.66 ± 0.36 90.53 ± 0.81 85.67 ± 0.21 79.99 ± 0.58 58.70 ± 0.13
IFCA(T) 98.45 ± 0.03 91.72 ± 5.19 86.46 ± 0.23 87.33 ± 0.15 85.44 ± 0.14 82.90 ± 0.05 47.76 ± 1.98
IFCA 98.46 ± 0.02 92.20 ± 5.32 86.45 ± 0.25 87.55 ± 0.25 85.35 ± 0.09 82.89 ± 0.04 48.17 ± 1.30
IFCA-W 98.49 ± 0.13 94.31 ± 1.62 88.04 ± 0.17 91.76 ± 0.50 86.17 ± 1.00 81.27 ± 0.43 49.40 ± 0.76

FedDrift-Eager 98.46 ± 0.03 97.86 ± 0.20 88.35 ± 0.37 95.99 ± 0.06 88.08 ± 0.24 89.21 ± 2.02 61.62 ± 0.45
FedDrift 98.48 ± 0.01 97.88 ± 0.17 88.65 ± 0.43 95.93 ± 0.01 88.41 ± 0.29 94.09 ± 0.08 64.91 ± 0.31
FedDrift-C 98.51 ± 0.11 97.42 ± 0.57 88.30 ± 0.53 95.85 ± 0.05 87.46 ± 0.42 93.22 ± 0.44 61.86 ± 0.30
FedDrift-Eager-W 98.51 ± 0.12 97.34 ± 0.76 88.43 ± 0.23 94.05 ± 0.02 87.90 ± 0.25 89.31 ± 0.38 61.94 ± 0.38
FedDrift-W 98.58 ± 0.17 97.68 ± 0.09 88.43 ± 0.22 93.95 ± 0.02 88.17 ± 0.39 91.47 ± 0.07 64.22 ± 0.60

Oracle 98.46 ± 0.01 97.57 ± 0.59 88.53 ± 0.23 96.00 ± 0.02 88.75 ± 0.20 94.60 ± 0.04 -
Oracle-W 98.47 ± 0.03 97.84 ± 0.11 88.70 ± 0.17 94.04 ± 0.02 88.74 ± 0.13 91.89 ± 0.05 -

(Oracle-W vs. Oracle). Yet, the window is not strictly a drawback: (i) forgetting the older data
builds in a passive adaptation to drift and (ii) in our setting it also guarantees that each client’s
training data at a step are all drawn from the same distribution—this is why we also investigate -W
variants when extending the prior static clustering algorithms CFL and IFCA to our setting when
data arrive over time.

Test Accuracy Results. Table 5.4 (extending Table 5.3 in §5.6) shows the test accuracy of all
algorithms, averaged across all clients and time steps, but omitting the times of drifts. As noted
in §5.6, we omit the times of drift when all algorithms suffer from the performance loss. For
completeness, the test accuracy averaged over all time steps including drifts is shown in Table 5.5.
In this latter table, note that Oracle and Oracle-W suffer a performance loss too at the time of drift.
Under the test-then-train evaluation, Oracle has access to the concept ID of the data at training
time but not at test time, where at each client, the model used for inference corresponds to the
observed concept in the most recently arrived training data. Note that for the real-world gradual
drifts in FMoW, the ground-truth is unknown, so we omit results for Oracle. Furthermore, because
drifts occur gradually and there is no oracle knowledge of their timing, we report identical test
accuracy results on FMoW in Tables 5.4 and 5.5, averaging across all clients and time steps.

Based on these tables, we make the following observations on the additional algorithms. The
AUE-PC variant of AUE extends the model weights in the ensemble method to be individualized
per-client, based on the performance of each model over each client’s local data (as opposed to
weights chosen based on the aggregate performance at the server). This additional flexibility
leads to only a marginal accuracy improvement over AUE across all datasets. While it is generally
valuable for clients at different stages of a staggered drift to use different models for inference, the
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Table 5.5: Average test accuracy (%) across clients and time, including drifts (5 trials), extended
results

SINE-2 CIRCLE-2 SEA-2 MNIST-2 SEA-4 MNIST-4 FMoW

Oblivious 45.77 ± 1.52 87.12 ± 0.26 86.12 ± 0.35 86.28 ± 0.12 85.11 ± 0.24 81.60 ± 0.03 58.46 ± 0.08
DriftSurf 79.19 ± 0.88 91.16 ± 0.68 87.00 ± 0.35 90.55 ± 1.68 85.13 ± 0.19 81.62 ± 0.04 58.42 ± 0.16
KUE 87.05 ± 0.12 93.83 ± 0.04 87.62 ± 0.42 89.74 ± 0.07 85.53 ± 0.12 79.78 ± 0.16 37.46 ± 7.95
AUE 81.28 ± 0.81 91.50 ± 0.46 87.21 ± 0.11 91.07 ± 0.07 85.15 ± 0.07 79.65 ± 0.25 54.22 ± 0.14
AUE-PC 82.18 ± 2.01 91.75 ± 0.17 87.34 ± 0.08 91.07 ± 0.09 85.16 ± 0.04 79.70 ± 0.24 54.15 ± 0.10
Window 81.92 ± 0.88 92.40 ± 0.11 87.86 ± 0.08 91.35 ± 0.43 85.33 ± 0.10 78.88 ± 0.62 58.79 ± 0.14
Window-2 80.35 ± 2.02 91.73 ± 0.49 87.45 ± 0.34 91.47 ± 0.47 85.24 ± 0.15 80.06 ± 0.61 59.44 ± 0.23
Weighted-Linear 67.20 ± 1.43 88.67 ± 0.64 86.77 ± 0.02 88.56 ± 0.12 85.16 ± 0.11 81.38 ± 0.04 58.05 ± 0.17
Weighted-Exp 76.80 ± 0.88 91.30 ± 0.26 87.34 ± 0.16 91.05 ± 0.18 85.19 ± 0.06 80.96 ± 0.07 58.49 ± 0.09
Adaptive-FedAvg 73.82 ± 10.75 85.60 ± 0.00 86.55 ± 0.35 91.31 ± 0.05 85.01 ± 0.21 79.45 ± 0.06 52.76 ± 0.23
CFL 54.41 ± 4.33 87.08 ± 0.31 86.10 ± 0.30 86.00 ± 0.38 85.00 ± 0.25 80.45 ± 0.64 57.92 ± 0.32
CFL-W 86.83 ± 0.55 93.72 ± 0.93 87.36 ± 0.42 89.47 ± 0.74 85.25 ± 0.17 77.35 ± 0.81 58.70 ± 0.13
IFCA(T) 88.77 ± 0.02 90.06 ± 4.62 86.22 ± 0.22 86.36 ± 0.14 85.12 ± 0.09 81.53 ± 0.05 47.76 ± 1.98
IFCA 88.78 ± 0.02 90.49 ± 4.73 86.21 ± 0.28 86.56 ± 0.21 85.06 ± 0.04 81.51 ± 0.03 48.17 ± 1.30
IFCA-W 88.80 ± 0.12 92.84 ± 1.19 87.84 ± 0.14 90.81 ± 0.67 85.52 ± 0.50 79.17 ± 0.39 49.40 ± 0.76

FedDrift-Eager 88.76 ± 0.01 95.51 ± 0.18 87.86 ± 0.33 94.09 ± 0.05 86.64 ± 0.18 83.58 ± 0.79 61.62 ± 0.45
FedDrift 88.77 ± 0.02 95.54 ± 0.15 88.13 ± 0.39 94.03 ± 0.02 86.68 ± 0.20 85.72 ± 0.07 64.91 ± 0.31
FedDrift-C 88.82 ± 0.09 95.12 ± 0.50 87.78 ± 0.44 93.97 ± 0.05 86.21 ± 0.40 85.62 ± 0.47 61.86 ± 0.30
FedDrift-Eager-W 88.82 ± 0.12 95.05 ± 0.67 87.87 ± 0.23 92.04 ± 0.03 86.44 ± 0.20 82.15 ± 0.32 61.94 ± 0.38
FedDrift-W 88.88 ± 0.15 95.35 ± 0.08 87.95 ± 0.15 91.93 ± 0.03 86.46 ± 0.31 83.29 ± 0.06 64.22 ± 0.60

Oracle 88.77 ± 0.01 95.25 ± 0.52 87.99 ± 0.20 94.11 ± 0.02 86.89 ± 0.17 86.10 ± 0.03 -
Oracle-W 88.77 ± 0.03 95.51 ± 0.10 88.15 ± 0.14 92.03 ± 0.01 86.83 ± 0.06 83.58 ± 0.03 -

more fundamental obstacle is that each global model trained by AUE-PC is updated by all clients.
In the course of the 2-concept staggered drift, all of the models in the ensemble are trained either
over a mixture of data from both concepts or solely from the first concept, and there is no accurate
model available that is a good fit for the second concept.

The Window-2 algorithm and the weighted sampling algorithms Weighted-Linear and Weighted-
Exp are techniques for forgetting older data, but less abruptly compared to Window-1, and in
general they all perform similarly. On the sharp drift of SINE-2, the fastest forgetting algorithm
Window performs the best of these. On the other hand, on the 4-concept drift of MNIST-4 in
which the time axis does not well separate different concepts, the slowest forgetting algorithm
Weighted-Linear performs best. Meanwhile, the performance of all four algorithms are close on
the SEA datasets, which have greater overlap between the concepts.

The clustering algorithms CFL and CFL-W start with each client in one cluster, and recur-
sively split clusters over rounds and over time based on the intra-cluster similarity of their local
updates. We observe that the CFL-W variant is the better-performing of the two on each dataset
except MNIST-4 (which is also the only dataset where Oblivious outperforms Window), and is a
consequence of the passive drift adaptation of its sliding window which forgets older data. The
performance of CFL-W is relatively high on SINE-2 and CIRCLE-2. As an example, the clustering
learned on SINE-2 is shown in Figure 5.8. We observe that, for the first 6 time steps, it correctly
distinguishes the two concepts by using distinct models. The disadvantage of the clustering of
CFL-W is that it creates excess models for the same concept and does not take full advantage of
collaborative training. At time 5, it is limited to splitting its cluster for model 0 when the green
concept occurs, but cannot merge the drifted clients to the existing cluster created for the green
concept at the previous time step. This limitation of only being able to subdivide existing clusters,
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Figure 5.8: The clustering learned by CFL-
W on SINE-2. Each cell indicates the model
ID at each client and time step, and the back-
ground color indicates the ground-truth con-
cept.
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Figure 5.9: The clustering learned by
FedDrift-Eager on MNIST-4. Each cell indi-
cates the model ID at each client and time
step, and the background color indicates the
ground-truth concept.

but not merge clusters or re-assign clients to existing clusters results in poor performance on more
complex drifts.

For IFCA, IFCA-W, and IFCA(T), the clustering is pre-initialized with a random model for each
concept that can occur over time for each dataset. In general, we observe that this is not a reliable
method for reacting to drift. All the IFCA variants perform well under the sharp label-swap drift
of SINE-2. When the new concept occurs, the drifted clients cluster to the second model, and
the learned clustering matches the ground-truth. On CIRCLE-2, we found that IFCA and IFCA(T)
learned the correct clustering in 2 out of 5 trials, and otherwise used only a single model in the
other 3 trials. IFCA-W learned the correct clustering in 1 out of 5 trials. (Note the high standard
deviation in Table 5.4.) Across the SEA and MNIST datasets, none of the three algorithms ever
used more than a single model (with one exception—on SEA-4, in 1 out of 5 trials, IFCA-W used
a distinct model for the yellow concept). For the SEA and MNIST datasets, we observe that the
IFCA and IFCA(T) degrade to the Oblivious algorithm, and that IFCA-W degrades to the Window
algorithm. On the FMoW dataset, we observe again that random initialization can sometimes
address drift, but unreliably: in 1 out of 5 trials each for all IFCA variants, a separate model
is used for the Africa region at later time steps. (However, the IFCA variants are among the
worst performing in our evaluation because their random initialization precludes the pre-trained
ImageNet initialization we use for other algorithms.) The authors of the original paper on IFCA
note that the accuracy of the clustering is sensitive to the initialization of the models, and propose
random restarts to address this issue, but restarts do not translate well to the time-varying setting
we study. In our work, FedDrift-Eager and FedDrift address the initialization problem by using
drift detection to deal with new concepts as they occur and to cultivate new clusters.

For FedDrift-Eager-W and FedDrift-W, restricting to a window has minimal impact on the
accuracy for the SEA dataset. There is a significant loss of accuracy for the MNIST dataset
relative to the non-windowed versions, but note that the same significant loss occurs when going
from Oracle to Oracle-W, so this loss is a result of windowing, not specific to our algorithm.
Indeed, the accuracy of FedDrift-W is quite close to Oracle-W.

The communication-efficient FedDrift-C. As noted in §5.4, one of the drawbacks of FedDrift
is that it can create more models M compared to FedDrift-Eager, adding to the communication
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cost of sending O(MP ) models. The goal is to only use a number of global models close or equal
to the number of distinct concepts, and while FedDrift can hierarchically merge created models
of the same concept, FedDrift can observe temporary spikes in the number of global models. To
mitigate this cost, we evaluate FedDrift-C, which differs from FedDrift in that, at each time after
drift occurs, only one random client that drifted contributes its local model as a global model. In
the case that multiple new concepts occur at a time, only one of the new concepts will be learned
immediately, but clients that are still at an unlearned concept are eligible to detect drift again at
the following time step and get another chance to contribute its local model. Meanwhile, while a
concept goes unlearned globally, drifted clients do not contribute to any of the global models.

For the 4 concepts in MNIST-4, we observed that FedDrift learned a total of 7 global models
(later merged down to 4) as shown in Figure 5.7 in §5.6. FedDrift-C more efficiently maintained a
maximum of 4 global models across all time, at a penalty of 0.87% accuracy due to the delayed
learning of one of the two simultaneously arising concepts. Meanwhile, FedDrift-Eager suffers
a larger 4.88% penalty after it incorrectly merged the two simultaneous concepts, as shown in
Figure 5.9—model 1 is initially trained over the green and yellow concepts, and while the clients
at the green concept later abandon model 1 and eventually learn a separate model 2, the green
concept training data still poison both model 0 and model 1.

We quantify this accuracy-communication trade-off in Figure 5.10 where we show the average
test accuracy and total number of models sent by FedDrift-Eager, FedDrift, and FedDrift-C under
various selections of the drift detection threshold δ. Increasing the value of δ restricts cluster
splitting (increases false negative detections) and promotes cluster merging, which reduces the
number of models and concepts learned (at δ = 1, each algorithm is identical to Oblivious).
Empirically, we confirm that choosing larger settings of δ can trade-off accuracy for efficiency.
(Choosing δ too small for FedDrift can also negatively affect accuracy due to increased false
positive detections, but to a lesser degree because the hierarchical clustering of FedDrift can
correct some false positives—see below on Impact of False Positives.) We observe that, generally,
using FedDrift-C over FedDrift preserves most of the accuracy improvement over Oblivious while
saving communication—with one exception at the largest δ = 0.20 where both algorithms are
susceptible to false merging, but FedDrift has more total models added to make the mistake of
merging two concepts that FedDrift-C avoids. We also observe that the Pareto front is mostly
configurations of FedDrift and FedDrift-C over FedDrift-Eager. Finally, we observe that all variants
of FedDrift are more efficient than ensemble algorithms—relative to Oblivious, FedDrift variants
send 2–3x models compared to AUE which sends 5x—because for ensembles, clients contribute
to every model at each communication round, compared to FedDrift where clients contribute only
to the clusters they belong to (the broadcast of all models for clustering in FedDrift is only once
per time step).

Random Drift Patterns. Throughout this chapter, we have considered the 4-concept drift
pattern in Figure 5.3 in §5 as a specific concrete example in order to depict the challenges in
distributed concept drift, motivate the design of FedDrift, and discuss the experimental performance
by comparing the learned clustering matrix to the ground-truth. To examine the performance more
generally, we consider a family of datasets MNIST-R with random concept changes. Using the
same four concepts as in MNIST-4, MNIST-R is generated with all clients at the first concept to

92



1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
Models sent (normalized to Oblivious)

0.84

0.86

0.88

0.90

0.92

0.94

Te
st

 a
cc

ur
ac

y

MNIST-4
FedDrift
FedDrift-Eager
FedDrift-C
Oblivious

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 5.10: The accuracy-communication trade-off on MNIST-4 for FedDrift-Eager, FedDrift, and
FedDrift-C. Each algorithm is evaluated under various selections of the splitting/merging threshold
δ between 0.02 and 0.20, indicated by color. The vertical axis is the average test accuracy across
clients and time, omitting drifts. (1 trial)

start, and then each client independently randomly observes one of the four concepts every two
time steps (as opposed to every time step which is not possible to adapt to). Across 5 random
seeds, the average accuracy is shown in Table 5.6 (and in Table 5.7 for all time including drifts).
We generally observe the same relative performances of each algorithm as on the previously
specified MNIST-4 drift. The performance of FedDrift is close to that of Oracle, FedDrift-C is close
behind, FedDrift-Eager is lower given that it is likely to have multiple new concepts occurring
simultaneously in MNIST-R, and then all prior baselines follow.
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Figure 5.11: The clustering learned on SINE-2 when δ = 0.01. Each cell indicates the model ID
at each client and time step, and the background color indicates the ground-truth concept.

Impact of False Positives. To demonstrate the application of the hierarchical clustering in
FedDrift, in §5.6 we discussed the example of the learned clustering for MNIST-4 in Figure 5.7.
Here in Figure 5.11 we present another example on SINE-2 at a small δ = 0.01 (corresponding
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Table 5.6: Average test accuracy (%) under
random drift patterns, omitting drifts (5 trials)

MNIST-R

Oblivious 85.12 ± 1.37
DriftSurf 85.03 ± 1.36
KUE 81.56 ± 1.90
AUE 83.87 ± 1.64
AUE-PC 83.67 ± 1.66
Window 82.37 ± 1.94
Window-2 83.65 ± 1.83
Weighted-Linear 84.87 ± 1.34
Weighted-Exp 84.60 ± 1.44
Adaptive-FedAvg 83.17 ± 1.51
CFL 84.20 ± 1.54
CFL-W 82.24 ± 1.77
IFCA(T) 84.50 ± 1.21
IFCA 84.39 ± 1.45
IFCA-W 85.93 ± 3.35

FedDrift-Eager 89.85 ± 1.49
FedDrift 94.06 ± 0.38
FedDrift-C 92.76 ± 0.56
FedDrift-Eager-W 86.60 ± 2.27
FedDrift-W 90.83 ± 0.17

Oracle 95.03 ± 0.15
Oracle-W 91.66 ± 0.31

Table 5.7: Average test accuracy (%) under
random drift patterns, including drifts (5 trials)

MNIST-R

Oblivious 83.92 ± 1.23
DriftSurf 83.83 ± 1.21
KUE 79.77 ± 2.03
AUE 81.96 ± 1.03
AUE-PC 81.52 ± 1.43
Window 80.11 ± 1.45
Window-2 81.30 ± 1.58
Weighted-Linear 83.64 ± 1.21
Weighted-Exp 83.39 ± 1.29
Adaptive-FedAvg 81.41 ± 1.24
CFL 83.05 ± 1.37
CFL-W 80.58 ± 1.94
IFCA(T) 83.31 ± 1.11
IFCA 83.29 ± 1.29
IFCA-W 81.65 ± 0.67

FedDrift-Eager 85.26 ± 0.81
FedDrift 86.77 ± 0.76
FedDrift-C 86.65 ± 0.94
FedDrift-Eager-W 81.74 ± 1.60
FedDrift-W 83.70 ± 0.80

Oracle 87.32 ± 0.86
Oracle-W 84.29 ± 0.89

to more aggressive detection) to demonstrate an example of how hierarchical clustering can be
beneficial even in the case of a 2-concept drift in mitigating false positives. At time 3, in both
FedDrift-Eager and FedDrift there are three false positives, where in FedDrift-Eager, the new model
1 is retained but its underlying data forgotten, while in FedDrift, although initially 3 redundant
models are created, they are all merged back with model 0 within 2 time steps, averaging their
parameters and reincorporating their clustered data. The advantage of hierarchical clustering is
also evident at time 4 when 2 false positives and 2 true positives occur together. In FedDrift-Eager,
one new model is created for all the clients, but this new model is “poisoned” by contributions
from the blue concept and does not work well at time 5, resulting in another drift detection to
create model 3 (and forgetting about the data associated with model 2). FedDrift, on the other
hand, creates models solely trained over either the blue and green concepts, and eventually merges
all models of an identical concept, recovering all of the data. While the false positive mitigation
demonstrated in this example is not a significant contributor to the observed higher accuracy of
FedDrift in our evaluation because we use higher δ values as noted in §5.5.2, it is relevant when
there is greater uncertainty in selecting the threshold hyperparameter.
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Test Accuracy Over Time. Finally, in Figure 5.12, we include remaining plots for the accu-
racy over time for FedDrift-Eager, FedDrift, and selected baselines representing drift detection,
ensembles, and clustered FL, supplementing Figure 5.6 in §5.6. (Note the varying scales of the
y-axes.) Similarly, here we observe the same general trends: (i) the centralized drift adaptation
algorithms suffer in performance, particularly during the transition period when no one model
works well across all clients; (ii) CFL can react to the drift early on SINE-2 as with CIRCLE-2
before, but its performance degrades with excessive further splits; (iii) for the 4-concept drift in
SEA-4 and MNIST-4 centralized baselines and CFL never recover in performance with multiple
concepts present; and (iv) on SEA-4 and MNIST-4, FedDrift is close to Oracle except for a gap
at time 3 when it uses local models prior to merging, while FedDrift-Eager lags behind FedDrift
when it creates a single model for the 2 simultaneously arising concepts but can slowly recover
with further detections.
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Figure 5.12: Test accuracy of selected algorithms at each time on SINE-2, SEA-2, MNIST-2,
SEA-4, MNIST-4, and FMoW. Vertical lines represent standard deviations.
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Chapter 6

Conclusion

This thesis contributes new algorithms for efficient incremental training over continuously arriving
data in the pursuit of high prediction accuracy at all times. In increasing level of data heterogeneity:
• STRSAGA learns from IID data arrivals with efficient model updates (Chapter 3).
• DriftSurf adapts to non-IID data over time using drift detection in a more statistically accurate

stable-state/reactive-state process (Chapter 4).
• FedDrift adapts to non-IID data over time and distributed across space in the FL setting by

learning a time-varying clustering (Chapter 5).
Theoretical and experimental results establish these algorithms as the state-of-the-art. In the
following, we identify several directions for future work that complement this thesis.

Transfer learning Following drift detection in DriftSurf or FedDrift, a new model is initialized
and trained solely over data from the new distribution. This is an inefficient strategy for large
models and may suffer in accuracy in the small data regime after (subtle) drift, without transferring
what can be learned from the previous model or data. However, the use of a new model trained
from scratch is only for simplicity of presentation. Transfer learning can largely be viewed as
a complementary question to drift detection, and where existing techniques can be applied in
DriftSurf or FedDrift for the new model; e.g., weight sharing (typically retraining only the last
layers of a neural network) [16] or biased regularization [90].

Largely unexplored is how to adjust and apply these transfer learning techniques during
training in the streaming data setting, when the ratio of old to new data varies over time. For high
accuracy at all times, it may be reasonable to impose a high bias shortly after drift towards the
previous distribution, and wean off the bias as new data continue to arrive.

Furthermore, drift adaptation and transfer learning do need to be considered simultaneously in
cases where drift can be identified as affecting only a local region of the feature space, and where
the model structure can be adapted granularly. For decision trees, there are efficient strategies for
replacing only some subtrees under drifts [7, 49]. Efficient adaptation for other model classes,
such as mixture-of-experts networks, could be explored.

Hyperparameters DriftSurf and FedDrift adapt to drift by training multiple models, where
models are distinguished solely by the underlying training dataset. Our focus is entirely on the
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viewpoint that newer models trained on more recent data are better in the presence of drift, and
older models that are longer-trained using more historical data are better in the absence of drift,
which is theoretically validated by better statistical accuracy asymptotically. Yet, the problem
space for model training is much broader than identification of the training set, and the interaction
between training hyperparameters and drift adaptation is of significant practical interest. One
well-studied example is that the learning rate can be adaptive to streaming data to trade-off stability
and plasticity, which underpins the prior work on Adaptive-FedAvg that we compared against in
§5.6.

Other hyperparameters warrant more study, such as those governing the function class and
model complexity warrant more study. For example, while ensemble methods are generally robust
under a variety of drifts, their higher computational costs are in some settings prohibitive, but the
cost could be mitigated by using cheaper models. In more sophistication, the model complexity
could be set heterogeneously across models, depending on their role in the adaptation. Consider
that both DriftSurf and FedDrift manage the trade-off between drift-robustness and efficiency by
temporarily training excess models after drift is detected, and then drop or merge models after the
uncertainty is resolved. Particularly in the small data regime after drift is detected, temporarily
training lower complexity models may suffice.

Cross-device FL FedDrift is designed for the stateful FL setting and incurs communication
costs proportional to the number of models. FedDrift is practical in the cross-silo FL setting over
10–1000 clients, but the “bottom-up” hierarchical clustering over local models (even temporarily
created) will not scale to a cross-device FL setting with millions of participating clients; the
distinction between the cross-silo and cross-device settings is detailed by Kairouz et al. [47]. The
identification of distributed drift adaptation as time-varying clustering made in this thesis is still
sound, but a more practical solution may necessitate designing a “top-down” clustering. For more
communication-efficiency, it is also worth considering hybrid strategies that employ clustering
at a higher tolerance of intra-cluster heterogeneity, in combination with other personalized FL
techniques (e.g., fine-tuning, model interpolation).

Further motivation to identify other potential clustering strategies is for better privacy. While
raw data remain with each client under FedDrift, local models are still shared for hierarchical
clustering. Alternative clusterings could be amenable to rigorous privacy guarantees.

Fairness in FL Users from minority or marginalized sub-populations can observe fewer data
points and at a slower rate. In FedDrift, local drift detection could take longer to trigger, and
cluster merging could fail over lesser-trained local models. While unfairness is probably not made
worse by using FedDrift (clients elect the best existing cluster at each time and are not forced to
use worse models), it may not be alleviated either. One starting point for exploration is that cluster
splitting/merging thresholds in FedDrift could be set differently across clients depending on their
sample sizes.
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