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Abstract
Open domain question answering is a problem in NLP where a system answers

learns to answer questions based on a large corpus of documents. Commonly, a
retriever model first retrieves relevant documents and then a reader model extracts
the correct answer. We specifically seek to improve the retrieval of ”multihop ques-
tions”, which are questions that can be decomposed into multiple subquestions, mak-
ing them more complex and realistic. We explore if using gold standard annotated
explicit question decompositions in the retriever model can improve results. We de-
fine a model MEX and MEX-oracle and perform experiments on a multihop QA
dataset. Our results show that explicit decompositions are useful for sparse retrieval
models, but not for dense retrieval.
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Chapter 1

Introduction

Open domain question answering is a task for automated models to learn how to retrieve answers
to questions from a large corpus of documents/passages. A popular paradigm is the retriever-
reader model where the retriever selects relevant passages and the reader scans the passages to
find the correct answer span in the text [1].

There is a lot of preexisting work about question answering for simple questions where the
answer to the question lies in a single passage. [14]. However, the concept of multihop questions
is a more accurate reflection of questions in the wild [10]. Multihop questions are more complex
and are composed of multiple simple sub-questions where each sub-question has its own relevant
passage and answer span. For example, “Did Aristotle use a laptop” can be decomposed into the
following [3]:

• When did Aristotle live?
• When was the laptop invented?
• Is #2 before #1?

The answer to each of these sub-questions can be found in different passages in the corpus,
which is what makes retrieval for this problem challenging.

In the era of the internet, open domain question answering is more relevant than ever. As the
internet grows more saturated, it grows more important to find ways to continue to understand
and synthesize it. [9] introduces the idea of using the web as a corpus for retrieval for question
answering. For our purposes, we use a Wikipedia corpus which divides each document into mul-
tiple passages. This corpus is commonly indexed with fast indexers like FAISS or ElasticSearch
[9]. Given this corpus, we can build systems to answer questions about.
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Chapter 2

Related Work

2.1 ORQA
Before [5], an Open Retrieval Question Answering system (ORQA), retrieval was sparse, done
via word frequency . Word vectors were sparse because each index represented the presence
of its respective token in the passage, thus many indices were 0. However, [5] improved dense,
learned methods drastically using a auxiliary task called inverse cloze task (ICT). Dense methods
learn semantic word embeddings and all indices are used. Later, Dense Passage Retrieval (DPR)
improved upon ORQA and removed the need for ICT via intelligent training using positive and
negative passages [4].

2.2 MDR
One current state of the art model for multihop question answering is Multihop Dense Retrieval
(MDR) introduced in [12]. It works similarly to DPR in that it trains an RoBERTa based encoder
to encode passages and questions in a way that captures semantic meaning [4]; [6]. Then it uses a
similarity metric to output the highest scoring passages for a given question. Specifically, MDR
was evaluated on a popular QA benchmark/dataset HotpotQA [13]. The score of a passage is
given by the inner product of the query and the passage.

What makes MDR different from DPR is the focus on multihop questions. Since answers to
each sub-question may be in different passages, MDR iteratively performs this retrieval n times,
where n is a hyperparameter that implicitly denotes the number of subquestions/hops. Note,
we say “implicitly” because MDR does not actually rely on explicit question decompositions.
Instead it relies on the fact that the question has some inherent but unknown multihop structure.
At each hop, MDR reformulates and reencodes the query with added information. At the first
hop, the query is just the main question. At each next hop, the passage retrieved from the previous
hop is added to our query before encoding. These previously retrieved passages are called the
context.

The learned encoder has a shared base with the passage encoder and is trained on gold stan-
dard passages for each subquestion.

3



Figure 2.1: Probability of passage pt being the correct passage at hop t under Multihop Dense
Retrieval given the initial question q and the passages retrieved at previous timesteps up to t− 1.
This is the probability that MDR tries to maximize. Note that qt, the query at timestep t is the
question concatenated with the t− 1 previously retrieved passages.

Figure 2.1 below shows how the authors modeled the probability for choosing passage pt at
timestep t given the question q and the previously retrieved passages p1 through pt−1.

2.3 Decompositions

One common idea in the QA community that MDR does not leverage is explicit question de-
composition. The list of subquestions for a given question is called the question decomposition.
Previous work has used knowledge bases for multihop open domain question answering, but
knowledge bases require a lot of human design decisions and they can be hard to populate [2];
[7]. Thus, language models have have risen to state of the art.

[11] showed that using explicit decompositions helps when using TF-IDF as their retrieval
method. Later, [12] hypothesized that this does not hold for dense methods. In particular, they
found that for MDR, there are no performance improvements. The authors argue that the implicit
iterative retrieval alone gets enough information required at each hop.

However, we hypothesize that the reasons for this result may be because of the configuration
in which they use the question decompositions. They provide three examples of retrieval errors
made only in the decomposed version of the system, not plain MDR. In these examples, the error
can potentially be attributed to the information loss that happens from one decomposed question
to the next. In particular, consider the provided example in figure 2.2.

The red is the error and the blue is information that would be useful in finding the correct
passage. As we can see, there is some information loss between the first and second decomposed
question. In the second decomposed question, it is unclear that “Ready to Die” refers to The No-
torious B.I.G album, not The Stooges album. [12] also write that these errors could “potentially
be addressed by a different style of decomposition” and “access to the full information in the
original question or previous hop results”.

Another possible explanation for the observed lack of improvement between plain MDR
and using question decomposition is that the “decomposition is restricted to a small vocabu-
lary derived almost entirely from the original question” [3]. This explains why using question
decompositions did not add much information as compared to just using the original question.

4



Figure 2.2: From the appendix of MDR, an example query from the authors of [12] where using
explicit decomposition resulted in incorrect retrieval. The ”Decomposed Error Case” shows that
the retrieved passage for the second subquestion is wrong. The model retrieved information
about an different album with the same name.

While their results are impressive, We hypothesize that the power of explicit question decom-
positions has been underutilized. Chiefly, we want to explore if using explicit question decom-
positions can help performance for dense retrieval methods for open domain question answering.
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Chapter 3

Method

3.1 Dataset
To test this hypothesis, we analyze performance of a decomposition-based retriever on the Strat-
egyQA dataset introduced by [3] which is a dataset of multihop questions with gold annotated
passages, decompositions, and answers for each question.

The dataset is constructed via a few tasks: Creative Question Writing, Strategy Question
Decomposition, and Evidence Matching [3]. These tasks help minimize bias in crowd sourcing.
During Creating Question Writing, workers are given as much freedom as possible for question
topic and wording and are primed by Wikipedia terms to help ensure feasiability of the question.
During Strategy Question Decomposition, workers have an auxialiary task of predicting the title
of a Wikipedia article that may answer their subquestion, to further ensure feasiability. Finally,
there is Evidence Matching where workers find passages to answer subquestions.

We work with the dev split which has 229 questions. Each question has 3 annotators, each of
which write an explicit decomposition and denote each subquestion as a ”retrieval” step with its
corresponding gold-standard passages, or an ”operation step” which means the answer can’t be
retrieved and requires a logical operation. For example for the decomposition of ”Did Aristotle
use a Laptop?”,

• When did Aristotle live?
• When was the laptop invented?
• Is #2 before #1?

the 3rd subquestion is an operation step whose answer cannot be found in a passage.

3.2 Baseline Models
The baseline model for StrategyQA is coined RoBERTa*, a version of RoBERTa that was
fine-tuned on DROPQ, 20Q, and BOOLQ [3]; [6]. On top of those baseline, [3] introduced
RoBERTa* IR-Q which follows the retrieval-reader paradigm. The retrieval model was BM25, a
sparse, frequency-based, retrieval model defined in [8].

7



There are a couple reasons why improving the retrieval for RoBERTa* IR-Q is a plausible
way to increase the accuracy. These reasons are motivated by the results in Table 3.1 [3].

First, while RoBERTa* IR-Q shows no significant accuracy improvement over plain Ro-
BERTa*, [3] also analyzed the performance analysis of RoBERTa* ORA-P, an oracle version
of RoBERTa* IR-Q. Instead of using BM25 as the retrieval, the oracle model simply uses the
gold standard passages. The accuracy of RoBERTa* ORA-P is significantly higher than that of
RoBERTa*, indicating that better retrieval should improve the accuracy of RoBERTa* IR-Q [3].

Secondly, recent work has shown that dense, learned retrieval methods perform much better
than sparse methods such as BM25 or TF-IDF [5]. The rationale here is the dense methods can
link semantically similar words, even if they’re not the same exact word, like ”bad” and ”villain”
[4].

3.3 Multihop Explicit MEX
We propose a model, Multihop EXplicit (MEX), seen in Figure 3.1,extended from MDR in order
to mitigate the information loss experienced when authors when they tried to use explicit question
decomposition, as shown in Figure 2.2.

For MEX, we keep a few key ideas from MDR. In particular, we keep the sequential passage
retrieval and the concatenation to keep information from hop to hop. However, instead of using
the main question at each hop, we use the subquestion at each hop from the human-annotated
explicit question decomposition. Further, MDR assumes an equal number of subquestions for
each question. In particular, in their implementation, they assume 2 hops. This assumption in
integral to their code.

However, because we use the annotated explicit decomposition, the number of subquestions
is variable. Thus MEX dynamically creates the queries at runtime. Specifically, the query for
MEX at hop i is the ith subquestion concatenated with the the i−1 previously retrieved passages.
This query is encoded and then passed into the model.

We hypothesized that maintaining all the previous hops’ retrieved passages would mitigate
the aformentioned information loss. Consider the example in Figure 2.2. Instead of the second
query being simply ”When was the album Ready to Die released?”, as it is in Figure 2.2, the
MEX query would also include the passage retrieved at the previous hop. The gold-standard
passage is ”Unbelievable is a song by American rapper The Notorious B.I.G, recorded for his
debut studio album Ready to Die...”. Because the MEX query includes this passage, the model
should hypothetically pick up on the information that ”Ready to Die” is the The Notorious B.I.G
album, not the The Stooges album.

Further, note that when the authors of MDR tried explicit question decomposition, they filled
in the correct answers filled into the blanks in the subquestions. For example, for the decom-
position provided for “Did Aristotle use a laptop?”, we don’t know the answers to subquestions

8



Table 3.1: Results from the StrategyQA baseline models. We’ve specifically highlighted
RoBERTa* IR-Q, since that model uses BM25 for retrieval whereas the other models don’t use
any retrieval, RoBERTa* ORA-P, since that is an oracle model that uses gold-standard passages
instead of learned retrieval, and thus its results represent the best possible scenario, and RoBETa*
IR-ORA-D, since this model uses gold explicit question decomposition. You may notice that the
question answering accuracy for RoBERTa* IR-Q and RoBERTa* IR-ORA-D are comparable
of that to RoBERTa* , which uses no retrieval method. While this is discouraging, we strongly
believe that this is due to limitations of StrategyQA’s reader model because even for oracle mod-
els like RoBERTa ORA-P, the accuracy it is quite low for a binary question since 50% accuracy
can be achieved by randomization alone. In this thesis, we are mainly concerned with improving
retrieval (measured by recall) as explained in section 3.2.
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1 and 2 in advance, so they are represented as blanks in question 3 [3]. In order to use the ex-
plicit question decompositions, we need to resolve these blanks by answering questions 1 and 2.
However, we hypothesize that the contexts appended to the query from previous hops can pro-
vide enough information to the model without explicitly filling in these blanks. We have a few
reasons for making this design choice for MEX. Firstly, we don’t have gold standard answers for
each subquestion. Attempting to fill in these answers using our own annotations would add in
human bias apart from the annotators in StrategyQA. Attempting to fill in these answers using a
state of the art reader model could introduce error propagation. And further, leaving the blanks
as blanks removes any supposed advantage that explicit decompositions might have from having
access to gold standard answers at each hop.

Lastly, we limit MEX’s retrieval to subquestions for which more than half the annotators
marked it as a retrieval step as opposed to an operation step. For StrategyQA, there are 3 anno-
tators, so we only retrieve for a subquestion if at least 2 of the annotators have marked it as a
retrieval step.

10



Figure 3.1: MEX model architecture
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Chapter 4

Results

4.1 Evaluation

Our goal was to discover if explicit decompositions improved retrieval for StrategyQA. The
metric we use to evaluate retrieval is recall.

We used four models
• BM25: This represents the retrieval for StrategyQA’s baseline model RoBERTa* IR-Q.
• BM25decomp: This is a respecification of retrieval for StrategyQA’s baseline model Ro-

BERTa* IR-ORA-D as shown in Figure 3.1. This model works by performing BM25 re-
trieval on each subquestion. The top retrieved passages for each decomposition are aggre-
gated as the set of retrieved passages for the overall question. The main difference between
BM25decomp and RoBERTa* IR-ORA-D is that BM25decomp ignores operation steps. Thus
there’s more room in the top k passages for retrieval steps. Further, RoBERTa* IR-ORA-D
retrieves 10 passages per subquestion, but in BM25decomp we best try to match the number
of passages retrieved by MDR and MEX as further explained in section 4.2.

• MDR: Multihop dense retrieval
• MEX: New architecture as described in Section 3.3.

However, one thing to note is that recall is defined differently for StrategyQA’s baseline and
MDR [3] [12]. Thus we’ve defined three slightly different recall metrics as below. Note that ”My
recall” is the least forgiving while ”MDR recall” is the most.

For the formal mathematical definitions, refer to the following notation
• Q: the set of all questions in the dataset
• Rq: the set of retrieved passages for question q (for the model in question)
• Gq,i: the set of gold standard passages for question q annotated by annotator i. Note for

StrategyQA i goes from 1 to 3.
• IS: Indicator random variable that is 1 if the set S is not empty, and 0 otherwise.

13



My recall: % of gold passages (by all annotators) covered by retrieved passages, averaged
across all questions

myrecall =
1

|Q|
×
∑
q∈Q

|Rq ∩ (∪i∈{1,2,3}Gq,i)|
| ∪i∈{1,2,3} Gq,i|

(4.1)

“STQA recall”: % of gold passages covered by retrieved passages for the best annotator,
averaged across all questions. (Like “my recall” except it’s the highest out of gold passages from
each annotator)

STQArecall =
1

|Q|
×
∑
q∈Q

max
i∈{1,2,3}

(
|Rq ∩Gq,i|

|Gq,i|
) (4.2)

“MDR recall”: % of questions that have at least one true passage covered

MDRrecall =
IRq∩(∪i∈{1,2,3}Gq,i)

|Q|
(4.3)

4.2 Hyperparameters
There are two main hyperparameters of note: beam size and topk.

topk refers to the top number of paths or passages outputted by the model. This obviously
affects recall metrics since the larger topk is, the better the recall. The reason we say ”paths or
passages” is because MDR and MEX return paths, but BM25 and BM25decomp return passages.

BM25 and BM25decomp score each potential passage p for a question (or subquestion for
BM25decomp) q as

score(p) = BM25(q, p) (4.4)

Then we return the top k of the passages out of all the passages in the corpus.

4.2.1 Paths
For MDR, each path is composed of 2 passages since the authors assume a question decomposi-
tion of length 2. For MEX, the path for query q is composed of dq passages where d is the length
of the question decomposition for query q. Note that both MDR and MEX score the paths as a
sum of the scores of the passages in it.

Specifically, consider a path P , an ordered list of passages {p1, p2, ..., pdq}, and the corre-
sponding query q with a question decomposition made of the subquestions {q1, q2, ..., qdq}. That
means that at hop i, passage pi was retrieved and the query Qi was qi concatenated with the first
i− 1 passages of P . The path-score that model M gives path P is

pathscore(P ) =
∑

i∈1,...,dq

M(Qi, pi) (4.5)

14



Q2,1 Q2,2 Q2,3

Q1 (p11 , p21,1) (p12 , p22,1) (p13 , p23,1)
Q1 (p11 , p21,2) (p12 , p22,2) (p13 , p23,2)
Q1 (p11 , p21,3) (p12 , p22,3) (p13 , p23,3)

Figure 4.1: A pictorial representation of the explanation of beam size. This matrix A represents
S1 ×S2 and Ai,j is the path generated by the query pair represented by column i and row j of A.

where M(Q, p) is the passage-score (proportional to the probability given in Figure 2.1) that
model M gives the passage p given query Q.

The obvious question now, is where do we get the paths from? If we are to return the top k
paths, what is the set of paths that we choose from? This is where beam size comes into play.

Consider a question q with 2 subquestions. Let beamsize= 3. Then for hop 1, we construct
query Q1 (which is simply q1) and get the 3 best passages by passage-score. We then construct a
set 3 queries Q2,1 = (q2, p11), Q2,2 = (q2, p12), Q2,3 = (q2, p13). For each query Q2,i, we get the
3 best passages by passage-score {p2i,1 , p2i2 , p2i,3}. Then we choose the best path (p1,i, p2i,j).

For the sake of explanation, define a set Si that consists of all the queries at hop i. In this case

S1 = {Q1} (4.6)
S2 = {Q2,1, Q2,2, Q2,3} (4.7)

Now consider every pair of queries in S1 × S2. For each pair, each query brings in one passage,
thus each pair gives us a path of length 2. Now we have |S1| × |S2| paths to choose from and we
return the top k as defined by the score function in equation 4.5.

This is pictorially shown in Figure 4.1.

To generalize this to more than 2 hops, we do the same calculations, but consider every
element in S1 × S2 × ...Sdq .

One thing to note is that if we use the same topk to compare passage-scoring models (BM25
and Bm25decomp) and path-scoring models (MDR and MEX), it’s an unfair comparison since the
number of unique passages retrieved may be different. For some topk=k, the top k paths for a
query q could include anywhere between k and k × dq unique passages between them. Thus,
as seen in Table 4.1, we found the number of unique passages k′ retrieved across k top paths
(for all relevant k), averaged across all questions. Then for passage-scoring models, we used the
respective k′ for the topk hyperparameter.

One takeaway from the results in Table 4.1 is that the number of unique passages retrieved
for the top k paths is much closer to k than k×dq. Note that we only have the average number of
unique passages retrieved across all questions, but we know that all questions in the StrategyQA
dataset have at least 2 hops, so we can be confident that for most q ∈ Q, the above statement
holds.

15



topk model num. unique passages retrieved
5 MDR 6
5 MEX 7

10 MDR 10
10 MEX 11

Table 4.1: Number of unique passages retrieved, rounded to the nearest whole number, for dif-
ferent configurations of model and topk

Model My recall STQA recall MDR recall
BM25 6.9% 13.0% 21.0%

BM25decomp 15.4% 27.1% 40.4%
MDR 14.0% 24.3% 38.0%
MEX 11.8% 21.1% 34.1%

Table 4.2: Results for all 4 models described in Section 4.1 for the configuration of beamsize,
topk=5 passages/paths

Thus that means there’s a lot of overlap of passages between the k paths.

Hypothetically, increasing beam size could improve our results since it would increase the
number of paths to choose from. There is a possibility that the best overall path p∗ out of all
possible paths would not be found with a beam size too low (if the first few passages of p∗ score
low but lead to high scoring passages later in the path). However, the overlap of passages shows
that this is unlikely and increasing beam size is not an effective or efficient way significantly
improving results.

4.3 Experiments
For each of the 4 models described in section 4.1, we consider two configurations of topk
(paths/passages): 5 and 10.

For top5, see 4.2.

For top5, see 4.3.

You may notice that the STQA recall for BM25 and BM25decomp is slightly different than the
results reported in Table 3.1. This may be due to small configuration or rounding differences.

We also wrote an oracle model for MEX. Instead of using the previously retrieved passages
as the context at each hop, we followed each annotator’s path and used the gold passage they
specified (if it was not an operation step).

Note that aren’t any paths constructed for MEX-oracle, since we follow the single path of
each annotator. Thus for each subquestion at annotator path, we retrieve the top k passages for
some set k. We tuned k such that the number of uniquely retrieved passages is closest to 11,

16



Model My recall STQA recall MDR recall
BM25 10.4% 18.1% 29.7%

BM25decomp 20.2% 34.0% 52.1%
MDR 19.4% 32.4% 49.3%
MEX 15.3% 26.6% 42.8%

Table 4.3: Results for all 4 models described in Section 4.1 for the configuration of beamsize,
topk=10 passages/paths

type recall
my recall 14.3%

STQA recall 25.2%
MDR recall 40.2%

Table 4.4: Results for MEX-oracle where k = 11.

as seen in Table 4.4. We chose a k which resulted in about 11.6 uniquely retrieved passages
forMEX-oracle.

Note that the results for MEX-oracle are comparable to that in Table 4.3, despite the fact that
at each hop, the oracle uses gold-standard contexts. This is interesting because it shows that the
retrieval capabilities in MEX are up to par with the oracle at each hop.

4.3.1 Error Analysis
In order to better understand the differences between the results from MDR on StrategyQA versus
MEX, we performed some error analysis. An overall view is seen in Table 4.5.

We also performed the same analysis for MEX versus our best model, BM-25decomp, which
is seen in Table 4.6.

The first thing to note is that BM25decomp, MDR, and MEX all have their own strengths, since
none totally eclipses the other. However, note that when we switch to the top10 configuration
from the top5 configuration, the number of gold passages found by MDR and BM25decomp in-
creases significantly, and for BM25decomp, it nearly doubles. However, there is not as much of
a significant rise for MEX. While a possible explanation is that as k increases, the overlap of

topk type num gold passages found
top5 found by both 30

found only by mdr 83
found only be MEX 67

top10 found by both 57
found only by mdr 102

found only be MEX 69

Table 4.5: Error analysis statistics for MDR vs. MEX

17



topk type num gold passages found
top5 found by both 32

found only by BM25decomp 94
found only be MEX 64

top10 found by both 51
found only by BM25decomp 117

found only be MEX 74

Table 4.6: Error analysis statistics for MEX vs. BM25decomp

unique passages between paths increases more for MEX compared to MDR or BM25decomp, Ta-
ble 4.1 debunks this idea. MEX increases in the number of unique passages retrieved by around
the same factor as MDR. Another explanation could be that some of the spots for the top pas-
sages retrieved by MEX are being taken up by irrelavent passages. This is discussed further in
section 4.3.1.

Fine-grain subset analysis

In this section, we outline a few samples for more fine-grain error analysis. For example consider
the question ”Will the Albany in Georgia reach a hundred thousand occupants before the one in
New York?” with the following subquestions

• ”What is the population of Albany, Georgia?”,
• ”What is the population of Albany, New York?”,
• ”What is the difference between 100,000 and #1?”,
• ”What is the difference between 100,000 and #2?”,
• ”Is #3 smaller than #4?”

The dense methods MDR, MEX, and MEX-oracle all retrieve passages about Albany, Geor-
gia and Albany, New York, but also retrieve passages about Albany, Illinois and Albany, Oregon.
Meanwhile, the sparse methods only retrieve passages about Albany, Georgia and Albany, New
York. This corroborates the idea that spare methods do better when there is higher lexical overlap
between query and gold standard passages.

Something else we noticed is that for MEX and MEX-oracle, some of the top spots are
being taken up by passages like ”Clandestine Human Intelligence” and ”Military intelligence-
31”. These passages get retrieved multiple times across multiple questions, leading us to believe
that operation/operation-adjacent hops like hops 3, 4, and 5 in the decomposition above with
numerical values cause the wrong passages to be retrieved, taking up spots in the top k. The
solution here in the future would be to be harsher about what hops count as pure retrieval versus
operation.

On the other hand, there are cases where MEX captures passages that other models don’t.
For example, consider the question ”Is greed the most prevalent of the Seven Deadly Sins?” with
the following decomposition
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• ”Is greed a deadly sin?”
• ”Is gluttony a deadly sin?”
• ”What percent of crimes involved greed?”
• ”What percent of people are overweight?”
• ”If #1 and #2 are both yes is #3 a higher percentage than #4?”

MEX captures the gold passage ”Gluttony-2” that MDR doesn’t capture. It can easily be seen
why since ”gluttony” is in the question decomposition. Further, while the gold passages contain
passages for the other seven deadly sins, MEX only captures the one for gluttony since the other
sins aren’t explicitly in the decomposition. This is a prime example of how the performance of
MEX is completely dependent on the quality of the decomposition.

4.3.2 Discussion

Across all types of recall and across both configurations, the order in performance from best to
worst is BM25decomp, MDR, MEX, then BM25.

This differs from our prediction. Firstly, we expected the dense models, MDR and MEX,
to perform better than the sparse models, BM25 and BM25decomp. This would have been in
accordance with [5]. Secondly, we expected MEX to perform better than MDR because MEX
had access to the explicit question decomposition as explained in Section 3.3.

From their findings, [12] hypothesized that explicit question decompositions aren’t as helpful
for dense methods. Our results from MEX and MEX-oracle corroborate this idea and the results
from [11], which, seemingly contrarily, experienced improvements in using explicit question
decompositions, but did so while using the sparse model TF-IDF (similar to BM25). Thus, our
work, MDR, and [11] all corroborate the idea the explicit question decompositions are useful for
sparse retrieval models like BM25 and TF-IDF, but not for dense models like MDR.

To explain why the sparse models did overall better than dense models, we note that accord-
ing to the paper that introduced BM25, their results show that dense approaches don’t always
outperform sparse approaches. Especially for questions that require high lexical overlap detec-
tion, BM25 outperforms dense models like BERT-based models [8]. To test if this may be the
case, for our setup, we check the lexical overlap between the subquestions of StraqtgyQA and
gold standard passages against the overlap between the main questions of StrategyQA and the
gold standard passages. Our overlap metric is calculated by counting the number of tokens from
the query question or set subquestions that overlap with any gold standard passage. This is aver-
aged across the all questions. Our results can be seen in 4.7. While the difference is small, the
subquestions overall have a higher lexical overlap with the gold standard passages which could
contribute to why BM25decomp performed better than dense methods on StrategyQA.
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overlap
subquestions 60.4%

questions 57.4%

Table 4.7: Lexical overlap of subquestions with gold standard versus that of questions with gold
standard passages for StrategyQA.

4.4 Further Questions and Improvements

4.5 Limitations

4.5.1 Question Decompositions
It’s important to note that the question decompositions we use are human annotated. Thus our
results are limited by the quality of these decompositions as seen in 4.3.1. It seems unlikely if
the decompositions provided are the only way to decompose that given question. Further, the
question still remains of how good do these question decompositions need to be to replicate our
results?

4.5.2 Evidence Matching
Similarly, it’s unclear if the gold standard passages are the only and/or best passages for a given
question or sub-question. In order to avoid biased questions that seem targeted or have high
lexical overlap with passages, question writers write the question and decompositions without
seeing the corpus. As described in 3.1, gold standard evidence matching happens after. Thus it
remains to be proved that the question can be properly answered by these passages.

4.6 Future Directions
There are many directions to take this work in. Our main suggestion, corroborated by the results
in [5], is a joint sparse and dense model. As seen in in 4.3.1, BM25decomp, a sparse model, and
MDR/MEX retrieve distinct passages. A weighting scheme between BM25 and dense retrieval
at every hop would greatly benefit our results. Further, instead of simply retrieving BM25 at
each hop as in BM25decomp, a better solution would be to mimic the context-concatenation of
MDR/MEX . In other words, the query at hop i should be the concatenation of subquestion i and
the previously retrieved passages, whether they are by BM25 or dense inner product scored.

Another way to improve retrieval would be to finetune the MEX on the StrategyQA dataset.
We compiled negative passages for intelligent training, as in [4], with incorrect passages retrieved
by BM25 and MDR, but were limited by resources for finetuning. Finetuning with this and in-
batch negatives would surely improve retrieval.

[12] were able to see significant improvements when increasing k in topk and after re-ranking
the retrieved passages. Both would be an efficient way to improve MEX. In fact, retrieval for
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MDR shot up after k = 20, but we were too limited by resources to try this.

It would also be interesting to evaluate MEX on other datasets such as BREAK from [11],
a new annotation of HotpotQA with decompositions. This would allow for a good comparison
with MDR which was evaluated in HotpotQA.

Finally, as discussed in Section 4.3.1, being harsher about what hops count as retrieval would
help improve performance as well.
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