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Abstract

A treap is a classic randomized binary search tree data structure that is easy to implement
and supports O(log n) expected time access. However, classic treaps do not take advantage
of the input distribution or patterns in the input. Given recent advances in algorithms with
predictions, we propose pairing treaps with machine advice to form a learning-augmented
treap. We are the first to propose a learning-augmented data structure that supports
binary search tree operations such as range-query and successor functionalities. With the
assumption that we have access to advice from a frequency estimation oracle, we assign
learned priorities to the nodes to better improve the treap’s structure. We theoretically
analyze the learning-augmented treap’s performance under various input distributions and
show that under those circumstances, our learning-augmented treap has stronger guarantees
than classic treaps and other classic tree-based data structures. Further, we experimentally
evaluate our learned treap on synthetic datasets and demonstrate a performance advantage
over other search tree data structures. We also present experiments on real world datasets
with known frequency estimation oracles and show improvements as well.
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Chapter 1

Introduction

Querying ordered elements is a fundamental problem in computer science. Classically,
hash tables and various tree-based data structures such as Red-Black Trees, AVL Trees, and
Treaps have been used to efficiently solve this problem. While hash tables are very efficient
and extensively used in practice, trees are more memory-efficient and can dynamically
resize with greater convenience. Additionally, search trees can offer extra functionality
over hash tables in the form of successor/predecessor, minimum/maximum, order statistics,
and range query capabilities. In practice, self-balancing binary search trees are used in
routing tables, database indexing (B-Trees), the Linux kernel (Red-Black Trees), and various
implementations of collections, sets, and dictionaries in standard libraries.

Classic binary search tree data structures often support these functionalities in O(log n)
time. However, most binary search tree implementations, such as Red-Black Trees and AVL
Trees, do not leverage patterns in the data to improve performance; instead, they provide a
worst-case of O(log n) time per access. A natural idea that arises is to use patterns in data
to improve the efficiency of these data structures and in recent years, the field of learning-
augmented algorithms has blossomed (see [19] for a survey). Given a predictor that can
output useful properties of the dataset, we can then leverage these predictions to optimize
the performance of the algorithm based on the predicted patterns. In this paper, we present
a learning-augmented binary search tree that is the first to support efficient range queries
and order statistics.

In this thesis, the main contribution is a novel learning-augmented tree data structure
that uses advice from a rank/frequency estimation oracle to better structure the tree in
order for faster tree operations. Specifically, we seek to decrease the expected number
of comparison per operation and also maintain low constant factors associated with these
operations. In addition, we provide theoretical guarantees for the Zipfian distribution and
general distributions. We further show that our data structure is robust under reasonable
amounts of noise from the rank/frequency estimation oracle and that it performs in expectation
no worse than its non-learned counterpart for any input distribution D, up to an additive
constant. Lastly, we show experimental results of the learning-augmented data structure
over synthetic distributions and real world datasets. On synthetic distributions, we show
improvements of over 25% compared to the best classical binary search trees. On real world
datasets, we show that the performance is comparable to the best among popular classical
binary search trees and show significant improvements over its non-learned counterpart.
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1.1 Preliminaries

We use [n] to denote the set {1, . . . , n}; further, we identify the set of keys in our binary
tree with [n]. For a sequence of m queries, we let ei ∈ [n] be the ith most frequent item
with frequency fi, breaking ties randomly. In our analysis, we also assume that the input
distribution is the same throughout the duration of the query sequence and that the frequency
observed in the sequence of m queries exactly reflects its true distribution, as in element ei
occurs with probability pi =

fi
m
.

We will define the rank of element ei to be i and the ranking ordering to be e1, . . . , en.
Notice that the rank ordering is a permutation of [n].

Example 1.1.1. For elements 1, 2, 3, 4, 5 with respective frequencies 0.1, 0.2, 0.4, 0.05, 0.25,
the rank ordering is 3, 5, 2, 1, 4.

1.1.1 Treaps

Treaps are randomized binary search trees introduced by Aragon and Seidel [3]. They
differ from static binary search trees in that they hold an additional field per node that
stores the priority or weight of the node. In addition to the standard binary search tree
order invariant, Treaps also maintains the heap invariant over the priorities of the nodes
at all times. That is, if node x is an ancestor of node y, then the priority of x is greater
than that of y (i.e. the max-heap invariant). Note that it is trivially equivalent to maintain
the min-heap invariant and in fact, this thesis will make use of both version. Classically,
for each node, the Treap will set the priority to be a random real drawn from a continuous
distribution so as to not have any duplicated priorities; however, duplicated priorities are
generally not a problem if the tie is broken randomly. We denote the priority of a node i
was wi throughout this thesis.

Insertion in a Treap is simple. We insert the new node by attaching it as a leaf in the
appropriate position (i.e., satisfying the order invariant) in the Treap. Then, we repeatedly
rotate the new node and its parent until the heap invariant is satisfied. Deletion is achieved
by rotating the node down until it is a leaf and detaching the node; we pick the child with
the greater priority to perform the rotation. All other basic tree operations remain the same
since a Treap is static with the exception of insertion/deletion.

Treaps are known to have expected O(log n) comparisons per access. Furthermore, this
holds with high probability as well, as in with high probability, all nodes in the Treap has
depth at most O(log n) [3].

1.1.2 Oracles and Distributions

Learning-augmented data structure assumes the existence or at the very least, feasibility
of an oracle that gives some amount of advice for the algorithm. Here, we assume that we
have access to a rank or frequency estimation oracle; this is not a unreasonable assumption.
There has been precedence that these oracles do exist via machine learning; in fact, we used
pre-existing machine learned oracles for our experiments.
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For a rank estimation oracle, the oracle takes in as input the key i and outputs r̂i,
the predicted rank of i. Similarly, a frequency estimation oracle outputs f̂i, the predicted
frequency of i, given key i.

Throughout the analysis, we make the assumption that the rank ordering of the keys is
random, as in, e1, . . . , en is a random permutation of [n]. Section 4.0.6 shows how to remove
this assumption; however, we keep this assumption for the first part of the analysis for ease.
Furthermore, we will also assume for convenience that the frequencies of the keys are unique,
as in fi = fj if and only if i = j. To remove this assumption, we can break ties randomly. If
elements x and y have the same frequency and the tie is broken in favour of x, we will say
that x has lower rank than y.

In the analysis, we analyze the performance of our data structure under the Zipfian
distribution. Specifically, the Zipfian distribution with parameter α has frequencies fi =

m
iαHn,α

where Hn,α =
∑n

i=1
1
iα

is the nth generalized harmonic number of order α.
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Chapter 2

Related Works

2.1 Binary Search Trees

In practice, Red-Black Trees and AVL Trees are often used due to lower constant factors;
however, they oblivious to the distribution of data. On the hand, Splay Trees implicitly
take advantage of the underlying input distribution while being oblivious to the distribution
as they are, up to a constant factor, statically optimal and conjectured to be dynamically
optimal [24]. This is accomplished through rotating the accessed node to the root of the tree
every operation through via a particular rotational scheme. The downside is that there is
a larger constant factor associated with the rotations and that per access, Splay Trees have
an amortized runtime of O(log n) rather than a guaranteed O(log n) per access [24].

There has been previous work done to improve Splay Trees to lower constant factors
in practice. Most of these methods introduce randomness to the splay operations; by
using randomized splaying, studies have show that the cost of splaying can be lowered
theoretically and empirically [2][8]. Albers and Karpinski [2] showed that by splaying with
probability p and not splaying with probability 1− p after each access, randomized splaying
experimentally achieves up to a 25% reduction in wall clock time on Zipfian and uniform
distributions; however, surprisingly, there was observably no significant speedup when the
sequences was generated from a series of working sets in both cases where the sets were
distributed Zipfian and uniform. Similarly, theoretical work done by Furer [8] shows that
under various other randomized schemes, including schemes introduced randomization to the
rotations themselves, the expected cost can be reduced by a constant fraction while worst
case guarantees only blowup by a constant factor. These previous methods show that if
certain (random) keys are not splayed, then the algorithm could be improved in expectation
while worse case guarantees are asymptotically preserved.

Furthermore, there has been attempts to show the advantage of leveraging the properties
of Splay Trees over Red-Black Trees and AVL Trees. Recent studies have shown that for
specific datasets (IP classification), Splay Trees are favourable compared to Red-Black Trees
and Biased Skip List [11][22] experimentally; however, in other instances, Splay Trees were
inefficient in comparison to AVL trees [1] and skip lists [20].

If the underlying distribution is known, then one can also generate a statically optimal
tree in O(n2) time [13] or an approximately statically optimal tree in O(n log n) time [17];
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however, these methods do not allow for dynamic insertion and deletion operations.

2.2 Learning Augmented Data Structures

Learning augmented data structures are a class of data structures that are supported by
oracles to improve efficacy in practice. With the advancements in machine learning, it is now
feasible to make prediction about the input and with these predictions, one can optimize
algorithms and data structures to better suit real-life data.

This thesis follows a long line of recent research in the growing field of algorithms
with predictions. Learning-augmented algorithms have been applied to a variety of online
algorithms, such as the ski rental problem and job scheduling [21]. Further, caches [16],
Bloom filters [18], index structures [14], and Count-Min and Count-Sketch [9] are among the
many data structures that have had a learning-augmented counterpart suggested.

In particular, Kraska et al. [14] suggests replacing B-Trees (or any other index structure)
with trained models for querying databases. In their work, instead of traversing the B-
Tree to access the position of a record, they use a neural net to directly point towards the
record. Our work is different from theirs since it keeps the search tree and instead optimizes
the structure of the tree for faster queries; through this, we are able to support common
additional tree-based operations such as traversal, order statistics, merge/join, etc.

In Hsu et al. [9], a frequency estimation oracle was trained to supplement the classic
Count-Min and Count-Sketch data structure in counting frequencies in a data stream. The
goal was to use the oracle to learn the identities of heavy elements and to count the frequencies
of such elements while estimating the rest via Count-Min or Count-Sketch. Conveniently, this
thesis is one of many lines of research that have used the frequency estimation oracle trained
in Hsu et al. [9] on a search query dataset (AOL) and an IP traffic dataset; for example, Jiang
et al. [10] used this set of oracles for learned data stream structures. Furthermore,‘there has
also been efforts to improve the frequency estimation oracles on these particular datasets;
Du et al. [7] has shown an improved oracle for the IP dataset, which shows significant
improvements in accuracy.

5



Chapter 3

Motivation

In a binary search tree, more frequently accessed items should appear closer to the root
to reduce the average number of comparisons in order to retrieve the item. However, Red-
Black Trees, AVL Trees, and non-learned Treaps do not take advantage of this property,
while Splay Trees exploit this only to the extent that more recent items are placed near the
root.

Given an oracle that predicts the ranks of elements, it is natural to build a tree in which
the top-ranked items are near the root. These oracles are indeed realistic; for example, we can
use frequency estimators to approximately rank the elements. Hashing-based approaches,
such as Count-Min [6] and Count-Sketch [5], have been shown to be efficient and effective
in this regard. Further, recent advances in the learning-augmented space have spurred the
development of learning-augmented frequency estimators [9]. In our experiments, we use the
trained machine learning oracle from Hsu et al. [9] as our frequency estimator.

With the availability of such a predictor, the motivation of augmenting a classic binary
search tree data structure with a learned oracle is clear. Red-Black Trees and AVL Trees are
uniquely determined by the insertion order of the elements and while it is feasible to insert
the elements in such an order such that the top-ranked items are near the root, it is not clear
how to support insertions and deletions to maintain this property. On the other hand, the
order of insertions matters less for a Splay Tree, especially over a long sequence of operations,
as it is self-adjusting. Our attempts at producing a learning-augmented Splay Tree have been
unfruitful; this was largely due to the high overhead associated with rotations and difficulties
in determining whether to splay an element. Instead of a Splay Tree, statically optimal trees
could also be built with a frequency estimation oracle; however, these trees are unable to
support insertions or deletions after initialization.

Treaps are simpler to analyze and can naturally be adapted in the learning-augmented
setting. Indeed, Treaps are uniquely determined by the priorities of each key (given that all
priorities are unique) and elements with higher priority appear closer to the root of tree. In
this thesis, we suggest assigning learned priorities to the Treap instead of priorities being
drawn from a distribution D; specifically, we assign the learned frequency as the priority.
With this adjustment, we are able to efficiently support insertions and deletions, among other
tree operations, while improving access time. We note that in the paper that introduced
Treaps [3], a modification was suggested where every time an element was accessed, the new
priority of the element was set to be the maximum of the old priority and a new draw from
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D. We are the first to learn the priorities using a machine learning oracle.

3.1 Discussion on learning-augmented Splay Trees

The first candidate data structure that we attempted to augment was a Splay Tree. The
intuition is clear: Splay Trees are already good at adapting to various distributions and
can handle shifts in distribution as well while the tradeoff is that rotations are generally
expensive. A natural idea follows that perhaps, rotating per access is unnecessary and
perhaps, one should only perform splay steps when necessary. This intuition is somewhat
supported by previous work done on random splaying [2][8] where it was shown that Splay
Trees perform better if nodes had a chance of being splayed. The goal with our attempt at
a learning-augmented Splay Tree was to be able to identify and specifically target queries
that should be splayed/not splayed instead of leaving the decision up to randomness.

However, as mentioned previously, attempts to do so were unfruitful. While experimentally,
learned Splay Trees performed better than their non-learned counterparts, it’s unsure whether
the advice from the oracle was the main benefactor or if the main advantage came from only
splaying a subset of queries. However, the main roadblock in this endeavor was the fact
that theoretical results were hard to obtain and often, the behaviour of Splay Trees on
various sequences were hard to understand and formalize. Various attempts at formalizing
the intuition led to roadblocks where more general theorems about Splay Trees were needed.
Specifically, if Splay Trees were monotonic or approximately monotonic, then perhaps it
would be easier to formalize the theory behind learning-augmented Splay Trees; however,
approximate monotonicity implies dynamic optimality for Splay Trees [15], which is the
single biggest open question with respects to Splay Trees.
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Chapter 4

Learning-Augmented Treaps

In the following sections, we assume access to a perfect oracle and analyze the theoretical
performance of our learned Treaps versus random Treaps. In Section 4.0.4, we discuss the
robustness and performance guarantees of our learned Treaps when we are given a noisy
oracle. In Section 4.0.5, we explore performance guarantees of our oracle if given a less
powerful oracle. Finally, in Section 4.0.6 we explore a modified version of the learned Treap
that removes the assumption that the rank ordering is a random permutation.

4.0.1 Treap Operations

Treap Initialization

Given a predictor that outputs the frequency rank of an element, we assign a priority
equal to the frequency rank of the element and insert the element into the Treap. Similarly,
if we had a frequency estimation oracle instead of a rank-estimation oracle, we can insert
the element into the Treap with priority equal to the frequency estimate.

Access

We present the following theorem that bounds the expected depth of ei in a learned
Treap.

Theorem 4.0.1. The expected depth of ei in a learned Treap is 2Hi−1, where Hi is the i-th
Harmonic number.

Proof. Consider the set of elements with higher priority, i.e., S = {ek | k ≤ i}. Notice that
only elements in S can be ancestors of ei and ei cannot be an ancestor of any element in
S. Since e1, . . . , en is a random permutation of [n], e1, . . . , ei is a random permutation of
{e1, . . . , ei}.

Under these assumptions, the number of comparisons needed to access ei is equivalent to
the number of comparisons needed to correctly insert a random element x ∈ [i] in a sorted
array of elements [i] \ {x} using binary search, where pivots are chosen randomly. Here, the
pivots are analogous to the ancestors of ei.

This motivates the following recurrence for computing the expected depth of ei:
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T (i) =

{
1 i = 1

1 + 2
i−1

∑i−1
k=1

(
k
i
T (k)

)
otherwise

which simplifies to

T (i) =

{
1 i = 1
2
i
+ T (i− 1) otherwise

This recurrence evaluates to T (i) = 2Hi − 1.

Theorem 4.0.2. The expected depth of ei in a learned Treap is O(log i) with high probability.

Proof. Again, we analyze the depth of element ei by examining the number of comparisons
needed to insert a random element x ∈ [i] in a sorted array of [i] \ x use random binary
search. We employ a similar technique to the classic high probability analysis of QuickSort.

Suppose on iteration k, the size of the array being searched is Xk. With probability 1
2
, the

randomized pivot is situated in the range [1
4
Xk,

3
4
Xk]. In this case, Xk+1 ≤ 3

4
Xk. Otherwise,

if the pivot does not land in this range, we know that Xk+1 ≤ Xk trivially. We get the
following:

E[Xk] ≤
1

2
Xk−1 +

3

8
Xk−1 =

7

8
Xk−1

Since X0 ≤ i, we have

E[Xk] ≤
(
7

8

)k

X0 ≤
(
7

8

)k

i

The probability that the randomized binary search uses more than k iterations is exactly
Pr{Xk ≥ 1}. Using Markov’s Inequality and setting k = c log 8

7
i for some constant c gives

Pr{Xk ≥ 1} ≤ E[Xk] ≤
1

ic−1

Therefore, setting c ≥ 2 implies that the expected depth of ei is O(log i) with high
probability.

Theorem 4.0.3. With constant probability, for every i, ei has depth O(log i). In other
words, the entire tree is well-balanced.

Proof. Again, let Xi be the depth of element ei. Notice that X1 and X2 are 1 and 2,
respectively, with probability 1. From Theorem 4.0.1, for i ≥ 3, Xi ≤ O(log i) with
probability at most 1

ic−1 for some constant c. Applying a union bound over elements Xi

for i ≥ 3 gives

Pr{
n⋃

i=3

Xi ≤ O(log i)} ≤
n∑

i=3

1

ic−1

For c = 3,
∑n

i=3
1

ic−1 ≤ π2

6
− 1.25 ≈ 0.39.

Insertion/Deletion and Priority Updates

The expected time of an insertion, deletion or priority update is O(log n).
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Proof. Suppose during the insertion process of a node x, we attach x to node y as a leaf.
Then by Theorem 4.0.1, the depth of y is O(log n) in expectation. Similarly, suppose during
the deletion process of node x, we detach node x when it is a child of node y. By Theorem
4.0.1, the time it takes is O(log n).

Similarly, a priority update takes at most O(log n) time.

Other Operations

Our learned Treap could also be optimized for other tree-based operations. Under these
modifications, the following operations could be supported by a learned Treap with time
similar to that of an access on a learned Treap.

Range Queries: Consider the simple operation of counting the number of elements
between keys x and y. This operation is commonly implemented by augmenting every node
with a field that stores the size of the subtree rooted at the node. Counting the number
of elements in the ranges reduces to traversing from the root to x and from the root to
y, which is similar to the process of accessing x and y. Thus, the predictor can learn the
frequency distribution of the boundaries of the range query to optimize our Treap. Other
such operations may include the standard RangeSum operation, which outputs the sum of
the values stored in each key of the tree.

Successor/Predecessor: On a query to the successor of key x, the output would be
the smallest key greater than x. Among the many ways to implement this functionality, a
simple way is to keep a pointer that points to the successor/predecessor. When finding the
successor of key x, we simply access x in the Treap and use the stored pointer to access the
successor. Our predictor can learn the frequency distribution of successor queries to x and
set the priority of x accordingly in the learned Treap.

When supporting this operation, insertion and deletion become more complicated. When
inserting element x, we must change the pointers of both the successor and predecessor of x
accordingly; however, this requires at most a constant number of pointer changes.

4.0.2 General Distributions

In this section, we analyze the expected cost per access of a learned Treap and a random
Treap for an arbitrary frequency distribution D.

The expected cost of a single access on a learned Treap is
∑n

i=1 pi(2Hi − 1).

Proof. This follows immediately from Theorem 4.0.1.

Since the expected cost of a single access is known to be at most O(log n) [3], we provide
a lower bound on this expectation.

Theorem 4.0.4. The expected cost of a single access on a random Treap is at least 2Hn+1−4
for any frequency distribution.

Proof. The expected depth of key i is well-known to be Hi + Hn−i+1 − 2 [3]. Let X be
the depth of an access and let Xij be the depth of key i if it is the jth-ranked item, and 0
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otherwise.

E[X] =
n∑

i=1

1

n

n∑
j=1

E[Xij]

=
n∑

i=1

1

n

n∑
j=1

pj(Hi +Hn−i+1 − 2)

=
n∑

i=1

1

n
(Hi +Hn−i+1 − 2)

=
2

n

n∑
i=1

Hi − 1

=
2

n
((n+ 1)Hn+1 − 2n)

> 2Hn+1 − 4

4.0.3 Zipfian Distributions

In this section, we analyze the expected cost of an access of a learned Treap where pi ∝ 1
iα

for a parameter α.

Theorem 4.0.5. The expected cost of a single access on a learned Treap is
∑n

i=1
1

iαHn,α
(2Hi−

1).

Proof. From Lemma 4.0.2, it is immediate that the expected cost is
∑n

i=1
1

iαHn,α
(2Hi−1).

The expected cost of an access for α = 1 is at most Hn.

Proof. For α = 1, the expected cost is
∑n

i=1
1

iHn
(2Hi − 1) by Theorem 4.0.5.

Consider the sum C =
∑n

i=1
1
i
(Hi). Observe by expanding this summation that it

evaluates to 1
2
((Hn)

2 + Hn,2). The expected cost can then be expressed as 2C
Hn

− 1 =

Hn +
Hn,2

2Hn
− 1. This approaches Hn − 1 as n increases.

The expected cost of an access for a learned Treap on a Zipfian distribution with parameter
α = 1 is approximately a factor 2 less than that of an access on a random Treap.

The expected cost of an access for α > 1 is constant.

Proof. For α > 1, the expected cost is
∑n

i=1
1

iαHn,α
(2Hi − 1) by Theorem 4.0.5.

Consider the series ai =
Hi

iε
and bi =

1
iα−ε for some ε > 0. Observe the following properties:

• Since Hn ≤ ln(n) + 1, limn→∞ an = 0. Further, {an} is monotonically decreasing for
large n.

• Since α > 1, there exists ε such that α−ε > 1 and thus,
∑n

i=1 bi ≤ c for some constant
c.
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Recall Dirichlet’s test: if {an} is a monotonically decreasing sequence whose limit approaches
0 and {bn} is a sequence such that

∑∞
i=1 bi is bounded by a constant, then

∑∞
i=1 aibi converges

as well.
By these two observations and using Dirichlet’s test,

∑n
i=1 anbn =

∑n
i=1

Hn

nα converges to
a constant. The expected cost here is 2

Hn,α
(
∑n

i=1 anbn)− 1. Therefore, the expected cost is

bounded from above by a constant.

Theorem 4.0.6. The learned Treap is statically optimal in expectation for α ≥ 1.

Proof. First, consider α = 1. The Shannon entropy, H, of this distribution is an asymptotic
lower bound for a statically optimal tree, namely, Mehlhorn shows that for any binary tree,
the weighted path length must be at least H

3
[17]. The Shannon entropy for the Zipfian

distribution with α = 1 is

n∑
i=0

−pi log (pi) =
n∑

i=0

1

iHn

log (iHn)

=
n∑

i=0

1

iHn

(log (i) + log(Hn)) ≥
n∑

i=0

1

iHn

log (i)

Clearly, this is within a constant factor of the expected cost of our learned Treap. Since the
expected cost for the learned Treap is within a constant factor of the Shannon entropy, we
are statically optimal up to a constant factor.

For α > 1, the expected cost is constant; therefore, it is immediate that we are at most
a constant factor more than the statically optimal binary search tree.

4.0.4 Noisy Oracles and Robustness to Errors

In this section, we will prove that given an accurate rank prediction oracle subject to a
reasonable amount of noise and error, our learned Treap’s performance matches that of a
perfect rank prediction oracle up to an additive constant per access.

Given element i, let ri be the real rank of i and let r̂i be the predicted rank of i. We will
call an oracle noisy if r̂i ≤ εr + δ for some constants ε, δ ≥ 1.

Theorem 4.0.7. Using predictions from a noisy oracle, the learned Treap’s performance
matches that of a learned Treap with a perfect oracle up to an additive constant.

Proof. The expected cost of a single access on the learned Treap with a noisy oracle is at
most

∑n
i=1 pi(2Hεi+δ − 1).

The difference between the expected cost of a learned Treap with a noisy oracle and a
learned Treap with a perfect oracle is

∑n
i=1 2pi(Hεi+δ −Hi).

Using that ln(n) ≤ Hn ≤ ln(n) + 1 for the nth Harmonic number Hn, the difference
is at most

∑n
i=1 2pi

(
1 + ln

(
ε+ δ

i

))
≤

∑n
i=1 2pi (1 + ln (ε+ δ)) = 2 (1 + ln (ε+ δ)) ≤ c, for

some constant c. Therefore, under a noisy oracle, the learned Treap is at most an additive
constant worse than a learned Treap with a perfect oracle.
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We remark that for frequency estimation oracles, it might be natural to consider an
error bound of 1

∆
fi ≤ f̂i ≤ ∆fi instead; however, if the underlying distribution is Zipfian, a

frequency estimation error bound of 1
∆
fi ≤ f̂i ≤ ∆fi is equivalent to a rank estimation error

bound of r̂i ∈ ri ±∆2.
We will call an oracle inaccurate if there exist no constants ε, δ ≥ 1 such that r̂i ≤

εr + δ. Further, we will define the notion of an adversarial oracle as an oracle that outputs
a rank ordering that is adversarial; more specifically, given a distribution D with a random
rank ordering, a non-adversarial oracle would output a random rank ordering that is not
necessarily the same as the rank ordering of D.

Theorem 4.0.8. A learned Treap based on an inaccurate but non-adversarial oracle has
expected performance no worse than that of a random Treap, up to a small additive constant.

Proof. Since the oracle is non-adversarial, the expected depth of any element is still bounded
by 2Hn − 1 by Theorem 4.0.1. Therefore, the expected cost is at most

∑n
i=1 pi(2Hn − 1) =

2Hn − 1.

4.0.5 Oracles with Limited Capabilities

In certain circumstances, it may be impossible or inconvenient to obtain an oracle that
predicts the full rank ordering of the elements. Instead, it may be easier to obtain an oracle
that predicts the top k elements only.

In this case, we will assign the top k elements random positive real-valued priorities and
the remaining elements will be assigned random negative real-valued priorities. Hence, the
top k elements are ancestors of the remaining elements. Again, here, we will assume that
the underlying rank ordering is a random permutation of [n]. Further, suppose that the top
k items account for p percent of the queries.

Theorem 4.0.9. With an oracle that predicts only the top k elements, the expected depth of
an access is at most 2(pHk + (1− p)Hn)− 1.

Proof. For the top k elements, the expected depth is at most 2Hk − 1 and for the rest of
the elements, the expected depth is at most 2Hn − 1. Therefore, the expected depth of an
access is at most 2(pHk + (1− p)Hn)− 1.

For small k and significant p, this results in a large constant factor reduction in expected
access depth. Similarly, if we were given an oracle that can only accurately predict the
frequencies of the top k items, we can assign priorities of the top k items to the frequency
and assign random negative real-valued priorities to the remaining n− k items.

4.0.6 Removing Assumption of Random Rank Ordering

In real world datasets, it might not be the case that the rank ordering is a random
permutation. For example, in search queries, certain queries are lexicographically close to
misspelled versions of the query; however, misspelled versions of the query have a significantly
reduced frequency compared to the correctly spelled query. Furthermore, it may be the case

13



that the oracle is adversarial. In this case, we would want to remove the assumption that
the rank ordering is a random permutation.

One natural idea is to map the identities of the elements to a random real number. For
key i, we will use si to denote this random real. The idea is to use a random Treap (or any
other self-balancing binary search tree) and a learned Treap together. The random Treap will
use the actual identity of the element as the key and the learned Treap will use the random
real as the key. For each node in the learned Treap, we keep a pointer to the corresponding
node in the random Treap. It immediately follows that the rank ordering on the keys of
the learned Treap is equivalent to a random permutation. Furthermore, we keep a map that
maps the identity of the element to its corresponding random real. We show an example of
this modified learned treap in Figure 4.1.

5

2

1 3

6

4

7

s7

s3

s5 s2

s4

s1

s6

Figure 4.1: An example of the learned Treap modification. White nodes form the learned
Treap and grey nodes form the random Treap. The red arrows are the pointers from nodes in
the learned Treap to the corresponding node in the random Treap. One possible assignment
of [s1, . . . , s7] for this Treap could be [1, 5, 3, 6, 2, 7, 4].

We describe each tree operation below:
Access: For an access operation to element i, we query si in the learned Treap and use

the pointer to access element i in the random Treap.
Insertion: To insert element i, we generate si and store si in our map. Then we insert i

into the random Treap with a random priority and insert si into the learned Treap with the
learned priority. We set the pointer in the node containing si to point to i.

Deletions: To delete element i, we delete i from the random Treap, si from the learned
Treap, and remove i and si from the map.

Successor/Predecessor: To support successor and predecessor functionalities, we apply
the same technique as described in Section 4.0.1 on the random Treap.

Unfortunately, under this modification, there is no easy method of optimizing for range
queries; however we note that this operation still takes at most O(log n) time in expectation
because this is the expected sum of depths of the two nodes that we access. The main
issue arises from the fact that range queries require access to the path from the root to
the queried node on the random Treap; however, to remove the random rank ordering, we
intentionally circumvent this path by traversing the learned Treap instead. For all accesses
and successor/predecessor operations, we increase the cost of an operation by at most an
additive constant related to accessing the map and a constant amount of pointer accesses.
For insertions and deletions, we maintain the expected O(log n) bound since every node has
expected depth at most O(log n).
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In practice, there might be a desire to avoid implementing a map; instead, using a hash
function to implicitly store the map may be a more attractive alternative. We will show
that using a 4-wise independent hash function with range (0, 1) would suffice. We choose
to implement the hash function in poly(n) precision so that with high probability, there are
no collisions and such a hash function requires O(log n) bits to store and only increases the
cost of operations by at most an additive constant.

Theorem 4.0.10. Given si = h(ei) where h is drawn from a 4-wise universal hash family
with range (0, 1), the expected depth of si is O(log i).

To achieve this, the following observation is crucial. Suppose that sj is an ancestor of
si where j < i. Then in the ordering of {si|x ∈ {1, . . . , j, i}}, si and sj are adjacent.

Proof of Theorem 4.0.10. Since the priorities of each key do not change, only elements in
{e1, . . . , ei−1} can potentially be ancestors of ei. We proceed with an analysis similar to
Knudsen and Stöckel’s ([12]) analysis of quicksort under limited independence.

From Lemma 4 of [12], we have the following lemma: given hash function h : X −→ (0, 1)
drawn from a 4-universal hash family and disjoint sets A,B ⊆ X with |A| ≤ |B|, then

E[|{a ∈ A|h(a) ≤ min
b∈B

h(b)}|] = O(1) .

Similarly, E[|{a ∈ A|h(a) ≥ maxb∈B h(b)}|] = O(1).
Consider the set Sj = {sj|1 ≤ j ≤ i− 1}. From Fact 4.0.6 we get that if sj is an ancestor

of si for some j < i , then for all j′ < j, sj′ < min{si, sj} or sj′ > max{si, sj}.
For k = 1, 2, ..., log i, define

Bk = [2k−1] and Ak =
(
[2k] ∩ [i]

)
/[2k−1] .

Suppose that sj is an ancestor of si for some j ∈ Ak. Without loss of generality, we assume
that sj < si. Then we have that for each j′ ∈ Bk, sj′ < sj or sj′ > si. Consider the hash
function H : X −→ (−(1 − si), si) such that H(x) = h(x) if h(x) < si and H(x) = h(x) − 1
if h(x) > si. Notice that H is also a 4-wise independent hash function. This implies that
H(j) > maxb∈Bk

H(b). From the lemma above, there are an expected O(1) such elements
in Ak and since there are only O(log i) values of k for which Ak is non-empty, it follows
immediately by linearity of expectation that the expected number of ancestors of si is O(log i)
and thus, the expected depth of ei is O(log i).
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Chapter 5

Experiments

In this chapter, we present experimental results that compare the performance of our
learned Treap to classical self-balancing binary search tree data structures. Specifically, we
examined Red-Black Trees, AVL Trees, Splay Trees, B-Trees of order 3, and random Treaps.
For binary search trees sensitive to insertion order, we insert all keys in a random order.
For these experiments, we only consider query operations and report the total number of
comparisons made by each data structure. We note that although the number of comparisons
is not a precise measurement of actual runtime, with the exception of Splay Trees, traversing
the tree is extremely similar across all data structures, and for all data structures tested
except B-Trees, the number of comparisons is exactly the access depth. For Splay Trees, we
can expect a constant factor more in actual runtime due to the rotations involved.

5.0.1 Synthetic Datasets

We consider synthetic datasets where elements appear according to a Zipfian distribution
with parameter α. As with chapter 4, we assume that the rank order of the elements is a
random permutation. For each experiment, we consider a sequence of length 105.

We report experimental results where we vary n, the number of keys, for α = 1 in
Figure 5.1 and for α = 1.25 in Figure 5.2.

Notice that for both α = 1 and α = 1.25, the learned Treap performs approximately 25%
better than Splay Trees and a bit over 30% better than AVL and Red-Black Trees in terms
of the number of comparisons. For α = 1, the factor-2 savings shown in Corollary 4.0.3 is
exhibited and for α = 1.25, we can see that the cost of an access is constant, as shown in
Lemma 4.0.3.

In Figure 5.3, we show the effects of varying α; in this set of experiments, we fix
the number of keys to be 104 and only show results for the statically optimal trees, as
in Splay Trees and learned Treaps. The learned Treap performs between approximately
27% − 51% better than the Splay Tree. The greatest improvement was at α = 3 and the
least improvement was observed when α = 1.
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Figure 5.1: Total number
of comparisons of classical
binary search tree data
structures and the learned
Treap on the Zipfian
Distribution with parameter
α = 1

Figure 5.2: Total number
of comparisons of classical
binary search tree data
structures and the learned
Treap on the Zipfian
Distribution with parameter
α = 1.25.

Figure 5.3: Total number
of comparisons of Splay
Tree and learned Treaps for
varying Zipfian parameter α.

5.0.2 Real World Datasets

In this section, we used machine learning models trained by [9] as our frequency estimation
oracle. We present 4 versions of our learned Treap. We consider the performance of our
learned Treap with the trained frequency estimation oracle and with a perfect oracle; for
both of these instances, we also test the performance if we remapped the keys to a random
permutation (i.e., similar to the idea of Section 4.0.6). We call the remapped versions of
the learned Treap “shuffled”. To make the data more presentable, among classical binary
search tree data structures, we only show the results of Red-Black Trees and Treaps; we
remark that the relative performance of all classical binary search tree data structures in
these datasets was similar to that in the synthetic datasets.

Figure 5.4: Total number of comparisons
of Red-Black Trees, random Treaps, and
learned Treaps on the 20th test minute

Figure 5.5: Total number of comparisons
of Red-Black Trees, random Treaps, and
learned Treaps on the 50th day.
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Internet Traffic Data

Various forms of self-balancing binary search trees and skip lists have been suggested to
be used in routing tables [23]. In this experiment, we measure the performance of the binary
search trees if we had to query every packet in the internet traffic logs.

Data: The internet traffic data was collected by CAIDA using a commercial backbone
link (Tier 1 ISP) [4]. Following [9], we used the internet traffic recorded from Chicago
outgoing to Seattle recorded on 2016-01-21 13:00-14:00 UTC. Each minute recorded approximately
30 million and 1 million unique flows.

Model: We used the prediction made by [9]. In their paper, an RNN was used to encode
the source and destination IP addresses, ports, and protocol type, and a separate RNN was
used to predict the number of packets from the traffic flow based on the encoding. The
first 7 minutes of the dataset was used as training sets with the next 2 minutes used as the
validation sets. The rest of the dataset was used for testing. See Hsu et al. [9] for details.

Results: In Figure 5.4, we plot the performances of the various data structures. We
consider three variants of the dataset: a subset with the top 33% of the most frequent queries,
a subset of the top 50% of the most frequent queries, and the full dataset. We show the
results on the 20th test minute (2016-01-21 13:29 UTC).

In all cases, the shuffled versions of the learned Treap perform significantly better than
that of the non-shuffled versions, and the learned Treaps perform better than random Treaps.
We note that using the oracle from [9], we are unable to beat Red-Black Trees; however,
the shuffled learned Treap with the learned oracle is comparable and with a better oracle, it
could be possible to outperform a Red-Black Tree.

Search Query Data

Data: This dataset contains approximately 21 million queries on AOL collected over 90
days in 2006. The distribution follows Zipf’s Law (see Hsu et al. [9]).

Model: Again, we use the predictions from [9]. They use an RNN with LSTM cells to
encode the queries character by character. The encoding is then fed into a fully connected
layer to predict the frequency of each query. The first 5 days were used for training while
the 6th day was used as the validation set.

Results: As with the Internet traffic dataset, we show the performance of the learned
Treaps, a Red-Black Tree, and a random Treap in Figure 5.5. For this dataset, we consider
the top 1%, 2%, and 5% of the most frequent queries as our set of keys. We show the results
for the 50th day.

Similar to the internet traffic dataset, the shuffled version of the learned Treaps performed
better and all learned Treaps performed better than the random Treap. For this dataset,
the shuffled learned Treap with the frequency estimator from [9] performed well and is
comparable to the performance of a Red-Black Tree. Furthermore, unlike the internet traffic
dataset, the performance of the learned Treaps with the machine learning model was close
to that of the learned Treap with a perfect oracle.
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Figure 5.6: Performance of learned Treap under oracles with different errors

5.0.3 Performance under Oracles with Different Errors

In this section, we study the performance of the learned Treap under oracles with certain
errors on both synthetic and real-world data. In Figure 5.6 we show experimental results
on synthetic and real-world data that show a graceful degradation as error grows. Here the
prediction, f̂i, of the frequency satisfies f̂i ≤ ∆fi. We note that if the underlying distribution
is Zipfian, then the error bounds for the rank-estimation oracle are stronger than the bounds
for a frequency estimation oracle; if a given frequency estimation oracle has the error bound
of 1

∆
fi ≤ f̂i ≤ ∆fi, then under a Zipfian distribution with α ≥ 1, then r̂i ∈ ri ±∆2.
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Chapter 6

Future Work

Beyond the vast landscape of data structures that have yet to have a learning-augmented
counterpart suggested, potential future directions on learning-augmented Treaps include
adapting the modification in 4.0.6 to handle join/split operations. It is well known that
Treaps are efficient at join and split operations; however, as it stands, the modification
under 4.0.6 is limits the learning-augmented Treaps ability to do so. Of course, it may be
interesting to explore whether advanced tree data structures, such as van Emde Boas Trees
or Biased Skip Lists, can also benefit from machine learning techniques.

Another possible avenue of research is the learning-augmented Splay Tree. While in this
thesis we note that it was ultimately an unsuccessful endeavour, there is a lot of potential in
augmenting Splay Trees with machine learning advice. In general, there is a lot of potential in
Splay Tree research and it would interesting to see future advancements in our understanding
of Splay Tree behaviour.

Beyond Splay Trees, it would interesting to see if other tree-based data structure can also
implicitly conform to distributions with or without the help of oracle advice and whether
or not these data structures have benefits over the commonly AVL and Red-Black Trees
in practice. This line of research can extend to dynamically optimal binary search trees
and search trees where guarantees on expected performance is better than that of AVL and
Red-Black Trees.
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Chapter 7

Conclusion

We introduced the concept of learning-augmented algorithms into the class of binary
search tree data structures that support additional operations beyond B-trees. The learned
Treap is able to support various useful tree-based operations, such as range-queries, successor/
predecessor, and order statistic queries and can be optimized for such operations. We proved
that the learned Treap is robust under rank-estimation oracles with reasonable error and
under modifications, is no worse than a random Treap regardless of the accuracy of the
oracle and the underlying input distribution. Further, we presented experimental evidence
that suggests a learned Treap may be useful in practice.
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