
ROBUST HEURISTICS: Attacks and Defenses
for Job Size Estimation in WSJF Systems

Erica Chiang, Nirav Atre, Hugo Sadok,
Weina Wang, Justine Sherry

June 2022
CMU-CS-22-117

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Packet scheduling algorithms control the order in which a system serves network packets, which
can have significant impact on system performance. Recent work in adversarial scheduling has
shown that Weighted Shortest Job First (WSJF) – scheduling packets by the ratio of job size to
packet size – significantly mitigates a system’s susceptibility to algorithmic complexity attacks
(ACAs), a particularly dangerous class of Denial-of-Service (DoS) attacks. WSJF relies on knowl-
edge of a packet’s job size, information that is not available a priori. In this work, we explore the
theoretical implications of using heuristics for job size estimation. Further, we consider preemp-
tion as another technique that may help protect systems when job sizes are unknown. We find that
heuristics with certain properties (e.g., estimated job-size-to-packet-size ratios increasing mono-
tonically with the actual ratios, step function-based job categorization) can protect systems against
ACAs with varying guarantees, while preemption alone does not.



Keywords: algorithmic complexity attacks, adversarial scheduling, robust heuristics



1 Introduction
Packet scheduling algorithms control the order in which a system serves network packets,

which can have significant impact on system performance. Many systems rely on Shortest Job
First (SJF), an important packet scheduling algorithm with many desirable properties. Classic re-
sults show that SJF provably minimizes the average job completion time [2], and recent work [1]
shows that a variant of SJF also protects systems against algorithmic complexity attacks (ACAs),
a particularly dangerous class of Denial-of-Service (DoS) attacks [3]. In an ACA, an adversary
exploits the worst-case behavior of an algorithm in order to induce a large amount of work in the
target system, causing a significant drop in goodput despite using only a small amount of attack
bandwidth. SurgeProtector [1] demonstrated that using Weighted SJF (WSJF) – scheduling pack-
ets by the ratio of job size to packet size – significantly mitigates the impact of ACAs on any
networked system.

There is just one problem: how do we determine a packet’s job size without running the job?
A common technique is to estimate job sizes using heuristics. In an adversarial setting, however,
inaccuracies in job size estimation may be exploitable, re-opening the door to ACA vulnerabilities.
In this work, we explore three strategies for using WSJF in practice, and bound their vulnerability
against ACAs. Our key findings are: (1) any heuristic that results in estimated job-size-to-packet-
size ratios increasing monotonically with the actual ratios will lead to perfect scheduling, thereby
maintaining SurgeProtector’s guarantees; (2) a heuristic that accurately separates jobs into job size
categories can also protect a system against ACAs, but the guarantees are not as strong; and (3)
preempting jobs that run for longer than their estimates does not maintain bounds on an adversary’s
damage if the estimates are inaccurate.

2 Background and Motivation
Atre et al. [1] argue that in the absence of job size information, we can use heuristics to estimate

job sizes. In this context, a heuristic h is a mapping from packets to estimated job sizes.1 However,
in an adversarial setting, it is conceivable that incorrect estimates could undermine guarantees of a
system’s protection against attacks. Besides heuristics, we also explore preemption (i.e., pausing a
job while it is in service, then resuming it at a later point), another technique that may be able to
help protect systems when job sizes are unknown.

2.1 Mathematical Framework
We first build a mathematical framework for analyzing the impact of adversarial traffic on a

system. Each packet can be characterized by a packet size, s(p) (the amount of data sent over the
wire, in bits), and a job size, c(p) (the time required to process the packet, in seconds). We define
a packet’s z-ratio as the ratio of its job size to packet size, noting that WSJF schedules packets
by increasing z-ratio. Finally, we quantify the vulnerability of the system using the Displacement
Factor (DF) [1], defined as the adversary’s payoff relative to the amount of resources they invest

1Here, we assume direct correspondence between real and estimated job sizes for simplicity. However, our analysis
admits more sophisticated mappings (e.g., probability distributions) as well.

1



into the attack:
DF =

Innocent traffic displaced (Gbps)
Attack bandwidth used (Gbps)

2.2 WSJF and ACAs
In this section, we summarize the results of SurgeProtector [1] in the context of our heuristic-

based approach to packet scheduling. SurgeProtector uses the DF to quantify the severity of an
ACA, and shows that WSJF scheduling imposes an upper-bound of 1 on the DF. This implies that
in order to displace 1 bps of innocent traffic, an adversary must invest at least 1 bps of their own
bandwidth into the attack. Given the practical limitations of crafting and sending large volumes of
data, a bounded DF greatly reduces the harm that an adversary can do to a system. In this paper,
we aim to understand how these theoretical findings extend to practical settings where job sizes are
not known a priori.

2.3 Incorrect Estimates
The accuracy of heuristics is crucial to maintaining DF guarantees. To gain intuition as to why

poorly designed heuristics can lead to an unbounded DF, we consider a heuristic that incorrectly
estimates packets of a certain real job size, while all other packets are estimated correctly. Figure 1
demonstrates why incorrect estimates can be dangerous; in this example, we assume that all packets
have unit size, such that WSJF orders packets by job size (represented by the packet width).

More formally, consider a heuristic that estimates the job size for adversarial packets as ϵ,
allowing adversarial packets to have an arbitrarily small z-ratio as ϵ goes to 0. This implies that
an attacker can push the system into overload using an infinitesimally small amount of their own
bandwidth, displacing all innocent traffic in the process, and leading to an unbounded DF. Thus,
incorrect job size estimates in a scheduling policy that relies on the job sizes of packets (e.g.,
WSJF) can lead to arbitrarily bad DFs.

Figure 1: WSJF should de-prioritize the attack packet, but with incorrect estimates, innocent packets are
displaced.

3 Novel Theoretical Findings
In this section, we present three novel theoretical findings regarding protection against ACAs

when job sizes are unknown. Proofs for all theorems can be found in Appendix A.

2



3.1 Strictly Monotonically Increasing Heuristics Yield Perfect Scheduling
We first develop the concept of a ‘perfect’ heuristic, meaning that all packets are scheduled

correctly when using estimated job sizes. Since correctly ordering all packets is equivalent to
preserving the relative ordering between any pair of packets, a perfect heuristic must estimate
job sizes such that between any two packets, the packet with smaller z-ratio will have a smaller
estimated z-ratio. We can visualize this as any function mapping actual ratios to estimated ratios
that is strictly monotonically increasing, as seen in Figure 2.

Figure 2: Strictly monotonically increasing ratios lead to perfect scheduling.

Any such heuristic preserves the relative ordering of packets as they are scheduled according
to WSJF, which in turn maintains all guarantees from [1] and yields an upper-bound of 1 on the
DF. In §A.1, we prove the following:

Theorem 1 (DF of Monotonic Heuristic). Under WSJF, a heuristic h is perfect if and only if
h(p)
s(p)

is strictly monotonically increasing relative to c(p)
s(p)

; such heuristics result in the DF being
upper-bounded by 1.

3.2 Step Functions Guarantee a Constant DF
In this section, we consider ‘step function’ heuristics in which packets are correctly classified

into job size categories, but packets within each category (‘step’) are indistinguishable. In particu-
lar, we consider heuristics where the range of actual job sizes that each step covers has some upper
bound that is a constant multiplicative factor, k, times the lower bound, and estimates of each step
increase by the same factor k, as depicted in Figure 3.

Figure 3: Step function heuristic.

Despite categorizing job sizes on a coarse level, the discrete steps still enforce some lower

3



bound on how small each packet’s job size estimate can be, protecting all jobs below a certain
threshold. As we show in §A.2, this yields an upper-bound of k on the DF.

Theorem 2 (DF of Step Function Heuristic). A heuristic of the form h(p) = a · k⌊logk c(p)⌋, where
a is some arbitrary constant, results in the DF being upper-bounded by k.

3.3 Preemption Can’t Guarantee DF Bounds
Finally, we consider preemption as an additional aid to protecting systems against ACAs. The

setup is as follows: each incoming job is assigned an estimated job size of Jp; if the job does not
finish running within the allocated Jp time, the system preempts it and reinserts the job (with saved
state) back into the scheduling queue, with an increased estimated job size of 2Jp. The preemption
model is depicted in Figure 4.

Figure 4: Preeemption system model.

Since job sizes are unknown, this allows us to systematically allocate resources to each packet
and ensures that packets finish according to job size order. However, even if there is no preemption
cost – an overly optimistic assumption – this setup can result in an unbounded DF. As we show in
§A.3, preemption alone cannot guarantee any bound on the DF:

Theorem 3 (DF of Preemptive Model). Under WSJF with preemption but without heuristics,
there exist some regimes of system parameters for which the DF is lower bounded by ρ

1−ρ
, where

ρ ≤ 1 is the load on the system due to innocent traffic.

4 Next Steps
Having identified desirable properties for heuristics and a framework for reasoning about their

vulnerability, the main unanswered question is: how to design data structures and corresponding
heuristics such that we see these properties in practice? In addition, while we do not see theoretical
bounds on the DF as a result of preemption alone, is it possible that some level of preemption could
still be beneficial in practice?

References
[1] Nirav Atre, Hugo Sadok, Erica Chiang, Weina Wang, and Justine Sherry. SurgeProtector: Mit-

igating temporal algorithmic complexity attacks using adversarial scheduling. In Proceedings
of the 2022 Conference of the ACM Special Interest Group on Data Communication (SIG-
COMM), New York, NY, USA, 2022. Association for Computing Machinery.

[2] Alan Cobham. Priority Assignment in Waiting Line Problems. Journal of the Operations
Research Society of America, 2(1):70–76, 1954.

4



[3] Scott A. Crosby and Dan S. Wallach. Denial of Service via Algorithmic Complexity Attacks.
In 12th USENIX Security Symposium (USENIX Security 03), Washington, D.C., August 2003.
USENIX Association.

5



A Proofs for DF Analysis
A.1 Proof of Theorem 1 (Perfect Heuristic)
Proof. We first prove that a heuristic with strictly monotonically increasing ratios must be a perfect
heuristic. Consider two arbitrary packets pA and pB, and a heuristic h with strictly monotonically
increasing ratios. c(pA)

s(pA)
< c(pB)

s(pB)
=⇒ h(pA)

s(pA)
< h(pB)

s(pB)
, which means that if pA has a smaller true

z-ratio then it must be served first in a WSJF system, and thus the heuristic is optimal.
Next, we show that if a heuristic does not estimate z-ratios to be strictly monotonically in-

creasing, then the heuristic is not optimal, meaning that it is not guaranteed to schedule all packets
correctly. If a function h is not strictly monotonically increasing in ratio estimates, there must exist
packets pA, pB such that c(pA)

s(pA)
< c(pB)

s(pB)
and h(pA)

s(pA)
≥ h(pB)

s(pB)
. Then it is possible for the system to

serve pB before pA, an exploitable point that makes the heuristic imperfect.

We also provide an example of a class of perfect heuristic: Any heuristic of the form h(p) =
k · c(p) for some k ∈ R+ will ensure perfect scheduling under WSJF.

We first prove that a heuristic of this form is, in fact, perfect. Given that the expected service
order (priority under WSJF scheduling) is in increasing value of c(p)

s(p)
, while the heuristic’s service

order will be in increasing value of h(p)
s(p)

, we want to show that these orderings will always be the
same. Consider 2 packets pA and pB. It holds that

c(pA)

s(pA)
<

c(pB)

s(pB)
⇐⇒ k · c(pA)

s(pA)
< k · c(pB)

s(pB)

⇐⇒ h(pA)

s(pA)
<

h(pB)

s(pB)

A perfect scheduling order ensures that all of the assumptions from SurgeProtector are main-
tained, allowing WSJF to provide the same DF upper bound of 1.

A.2 Proof of Theorem 2 (Step Function Heuristic)
Proof. In order for an adversary to achieve a DF greater than k, it must be able to displace innocent
packets such that for every byte of data transmitted by the adversary, k times the amount of innocent
data is displaced. Equivalently, the innocent packet job size to packet size ratio is a factor of k less
than the adversary’s. We will prove that the step function guarantees this property by showing the
contrapositive to be true.

We first consider an adversarial packet pA and innocent packet pI , and assume that c(pA)
s(pA)

>

k · c(pI)
s(pI)

, and we want to show that then the packets cannot be swapped by the scheduler, i.e.
h(pA)
s(pA)

> h(pI)
s(pI)

.

h(pA) = a · k⌊logk c(p))⌋

≥ a · k⌊logk(k·c(pI)·
s(pA)

s(pI )
)⌋ (By assumption)

6



= a · k⌊1+logk c(pI)+logk(
s(pA)

s(pI )
)⌋

≥ a · k1+⌊logk c(pI)⌋+logk(
s(pA)

s(pI )
)

= a · k · k⌊logk c(pI)⌋ · klogk(
s(pA)

s(pI )
)

= k · h(pI) ·
s(pA)

s(pI)

=⇒ h(pA)

s(pA)
≥ k · h(pI)

s(pI)
=⇒ h(pA)

s(pA)
>

h(pI)

s(pI)

Given that an adversarial packet cannot displace innocent packets with a job size to packet size
ratio more than a factor of k smaller than the adversarial packet’s, we see that the step function
heuristic upper bounds the DF at the fixed value of k.

A.3 Proof of Theorem 3 (Preemption)
Proof. We consider a system that starts with estimated job size Jp = ϵ for all packets, in order to
complete analysis with no assumptions about the quality of job size estimates. We also assume no
preemption cost. We first look at a period of T seconds, during which N innocent packets arrive.
We can represent the true job sizes ji of incoming packets in scheduled order, as S = [j1, j2, ..., jN ]
where ji ≤ ji+1∀i. The main insight here is that an attacker can exploit the system by injecting
adversarial packets such that all innocent packets are partially served but displaced (preempted and
then never fully served). An adversary’s goal thus becomes to ”weaponize” innocent packet work
by causing the system to serve each innocent packet for some amount of time that is less than its
true job size.

Since job estimates for all packets increase by factors of 2 of the initial estimate ϵ, for a packet
of job size c, the maximum work the adversary can weaponize is w = maxk∈Z+(ϵ · 2k) such that
w < c. We see worst-case behavior when the value of c−w is minimized for all innocent packets,
such that practically all of the innocent work can be weaponized. So, for a fixed k ∈ Z+ (and
thus a fixed w = ϵ · 2k), we consider a scenario where all innocent packets have the same job size
c = w + δ, with δ → 0. For simplicity, we assume that all packets have a packet size of 1.

Assume that the attacker pushes the system to capacity by using l adversarial packets, each of
packet size 1 and a true job size of JA. In order to minimize l, it is in the attacker’s interest to
encode as much work as possible in each attack packet. Observe that, as long as service capacity
is available, each adversarial packet is guaranteed at lease w service time (equivalent to the work
served in each innocent packet). Thus, we choose JA ≥ w. Since the system must be at capacity
in order to displace any traffic, we have:

Weaponized work︷ ︸︸ ︷
w ·N +

Adversarial work︷︸︸︷
w · l = T

l =
T − w ·N

w
= lim

δ→0

T − (c− δ)N

c− δ
=

T − cN

c
=

(T − t)N

t

7



where t = cN is the cumulative true service time for innocent traffic alone. We also note that
given the uniform-sized packets in innocent traffic, we can express the load due to innocent traffic
as ρ = t

T
. We are now able to bound the DF for preemptive WSJF, the innocent traffic displaced

relative to the adversarial traffic sent:

DF = lim
T→∞

N
(T−t)N

t

= lim
T→∞

t

T − t
= lim

T→∞

t
T

1− t
T

=
ρ

1− ρ
,

which becomes unbounded as ρ → 1.

8


	1 Introduction
	2 Background and Motivation
	2.1 Mathematical Framework
	2.2 WSJF and ACAs
	2.3 Incorrect Estimates

	3 Novel Theoretical Findings
	3.1 Strictly Monotonically Increasing Heuristics Yield Perfect Scheduling
	3.2 Step Functions Guarantee a Constant DF
	3.3 Preemption Can't Guarantee DF Bounds

	4 Next Steps
	A Proofs for DF Analysis
	A.1 Proof of Theorem 1 (Perfect Heuristic)
	A.2 Proof of Theorem 2 (Step Function Heuristic)
	A.3 Proof of Theorem 3 (Preemption)


