|
CMU-CS-21-147
Computer Science Department
School of Computer Science, Carnegie Mellon University
CMU-CS-21-147
Machine Learning: Metrics and Embeddings
Timothy Chu
Ph.D.. Thesis
December 2021
CMU-CS-21-147.pdf
Keywords:
Machine learning, Computational Geometry, Clustering, Kernels, Group Theory,
Theoretical Foundations
In this thesis, we analyze new theories of clustering, one of the most fundamental tasks in machine learning. We use methods drawing from multiple disciplines, including metric embeddings, spectral algorithms, and group representation theory.
-
We propose a metric that adapts to the shape of data, and show how to quickly
compute it. These metrics may be useful for improving k-means clustering methods.
- We build a spectral partition method with provable theoretical guarantees. This
may lead to more theoretically principled spectral clustering methods, as existing methods do not have any such guarantees. Spectral clustering is one of the
most popular methods of clustering.
- We classify all Manhattan distance kernels. Kernel methods are one of the oldest and most established methods of clustering data. This result is a Manhattan distance analog of one of the fundamental results on machine learning kernels.
Each of these contributions answers natural questions in machine learning theory. We develop multidisciplinary tools from disciplines ranging from linear algebra to group theory, and combine these with key ideas from metric embeddings and computational geometry.
228 pages
Thesis Committee:
Gary L. Miller (Chair)
Anupam Gupta
Daniel Slater
Satish Rao (University of California, Berkeley)
Srinivasan Seshan, Head, Computer Science Department
Martial Hebert, Dean, School of Computer Science
|