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Abstract
Image Classification is a fairly mature domain in Machine Learning (ML) today.

All the way from the automobile industry to retail supply chains, image recogni-
tion and classification enable industry processes everywhere. The one big drawback
when it comes to using ML in a lot of industries is the black-box nature of ML al-
gorithms. Historically, it’s been almost impossible to figure out why a neural net
classifies a particular image as something.

On the other hand, Explainable AI (XAI) is an emerging domain in ML that
aims to give people more insight into why an ML algorithm does something par-
ticular. This allows for more transparency into AI-made decisions, in turn allowing
them to enter industries like healthcare and criminal justice, where a black box with
99% accuracy is just not enough. In recent times, a lot of XAI techniques have been
proposed to help explain the image classification problem in specific, but few have
been evaluated beyond anecdotal evidence. It usually just comes down to the au-
thors saying that the explanations ”look good”. Many of these XAI techniques are
designed for people with the intuition of a data scientist or ML engineer, with very
few ways to evaluate them for non-experts.

In this work, we present a novel method for human evaluation of XAI techniques.
We do this via a Game With a Purpose (GWAP) called Eye into AI that will allow
researchers to crowd-source human evaluations of XAI techniques focussed on ex-
plaining deep learning models trained for image classification. In addition, we use
this game to evaluate LIME, Grad-CAM, and Feature Visualizations, the first evalua-
tion of its kind. We find that our game is able to provide a clear ranking of these XAI
techniques, and provide meaningful insights into the kind of use cases they would
each be most useful in.
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Chapter 1

Introduction

Machine Learning, in recent times, has seen some fascinating innovations. The design and com-
position of neural network architectures is ever-changing, achieving state-of-the-art accuracy for
numerous tasks. In particular, deep neural nets (DNNs) have been performing remarkably well
in a lot of real-world applications, ranging from natural language processing [7] [18], to image
classification [6] [23] [21].

DNNs have gotten exceptionally good at extracting features from large high dimensional data,
making them highly desirable in industry. However, a big drawback that has emerged in recent
times is that as DNNs get more complex, they function more and more as a high-level black
box. It is almost impossible to derive relationships between their inputs and outputs. In low-risk
environments, like some sort of recommendation system, this is not a big deal since the impact of
making an error is not very high. However, in industries like healthcare and the judicial system,
where predictions can be life altering for someone, the impact of a single error is much higher.
This is a big reason why adoption of ML in these industries has been extremely slow, there is a
demand for explainability - a meaningful way to understand why the model is making the pre-
diction it is.

In addition, even in non mission-critical industries, trust is very important for fast and widespread
adoption of intelligent systems. Previous work has shown that meaningful explanations can
greatly increase trust in intelligent systems [16] [19].

To satisfy this recent demand for XAI (Explainable Artificial Intelligence), a lot of techniques
have emerged that aim to provide explanations and interpretations for black-box predictions
made by complex DNNs. However, while a variety of XAI techniques have been suggested, there
is no standardized way to evaluate them. It is surprisingly hard to answer the question, ”Given a
list of XAI techniques, which will provide the best explanations”, even when the dataset and the
model in question are fixed. While there is an emerging body outlining new XAI techniques and
ways to implement them, there have been far fewer contributions focused on evaluating these
techniques (less than 5% of the total body of work, as of 2018) [1].

In addition, of the evaluation techniques that have been suggested for XAI techniques in the
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past, a lot of them have taken an automated approach at evaluating these techniques [15] [20]
[8]. However, recent work has shown that an explanation classified as highly interpretable by a
machine might not necessarily be interpretable at all by humans [14]. This motivates the need
for human-based XAI evaluation techniques.

In this work, we propose a scalable, easy to use way, to crowd- source quality metrics about an
XAI technique, specifically for image classification problems, allowing XAI techniques to be
evaluated on an even playing field with real humans and data. We do this by proposing a ”Game
with a Purpose” (GWAP) called Eye into AI. The goal of these games is to make boring tasks
more interesting, allowing easier data generation [29] [30].

We build off of an initial version of this game created in a previous body of work [5]. Our focus
here is to alter the game to allow it to work with more XAI techniques in addition to making
it more scalable and easier to run trials with. In addition, we also use this game to evaluate
two state-of-the-art XAI techniques, LIME [19] and Grad-CAM [22], in order to meaningfully
compare the two. We believe this to be the first such comparison between LIME and Grad-CAM.
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Chapter 2

Background and Related Work

2.1 Image Classifiers
Image classification, in the last decade, has evolved at a dramatic pace. With the inception of
convolutional neural networks [12], and the creation of datasets like ImageNet [4], ML image
classification algorithms are performing extremely well right now.

From the first LeNet architecture in 1998, there have been several milestones in CNN develop-
ment for Image Classification over the last decade, like AlexNet [11], VGGNet [24], GoogleNet
[26], and ResNet [6].

For the purposes of our research, we chose GoogleNet for all classification predictions. While
GoogleNet is not the absolute state-of-the-art anymore, it still performs quite well, with an error
of just 6.7% on ImageNet. The good performance, coupled with the relative ease of running our
explainibility techniques on GoogleNet, compared to something like ResNet, was our reasoning
behind using GoogleNet. Any compatible architecture could have been used instead.

2.2 Explainibility Techniques
In this section, we’ve provided brief introductions to the XAI techniques that have been used in
our evaluation of Eye into AI.

2.2.1 LIME
Local Interpretable Model-Agnostic Explanations (LIME) [19] is a technique that approximates
any black box machine learning model with a local, interpretable model to explain each individ-
ual prediction.

On a high level, LIME perturbs the original input data points for a model, feeds them back into
the black-box model, and then observes the corresponding outputs. LIME then weighs those new
data points as a function of their proximity to the original point. Ultimately, it fits a surrogate
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Figure 2.1: An example of how LIME fits a surrogate model on the dataset.
(Image from Ribeiro et al. [19])

model such as linear regression (see figure 2.1) on the dataset with variations using those sam-
ple weights. Each original data point can then be explained with the newly trained explanation
model.

LIME outputs, for the image classification task, is in the form of overlays on the the input image,
highlighting positive and negative superpixels of the image (see figure 3.4d).

2.2.2 GradCam

Grad-CAM [22], like most saliency map XAI techniques, attribute the output of a DNN to parts
of its input.

Unlike the simpler Vanilla Gradient [25], in Grad-CAM, the gradient is not backpropagated all
the way back to the image, but instead to the last convolutional layer, in order to create a coarse
localization map that highlights the important regions of the image.

Unlike traditional gradient based approached, Grad-CAM relies on both, the gradients and the
feature maps of the convolutional layer, resulting in a less ”edge-driven” explanation as opposed
to other saliency based approaches. We recieve the output of Grad-CAM in the form of a heatmap
overlayed on the input image, highlighting the important areas of the image (see figure 3.4b).

2.2.3 Feature Visualizations

Feature visualizations [17] aim to make a neural net’s interpretation of images visible. CNNs are
able to learn abstract features and concepts from raw image pixels, radically reducing the need
for feature engineering.

Making these learned features explicit is called feature visualizations. For CNNS, this usually
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Figure 2.2: Visualizations of features learned by a CNN (Inception V1)
(Image from Olah et al. [17])

involves visualising an entire layer, since a CNN usually contains millions of neurons and visu-
alizing each neuron would quickly become futile.

Figure 2.2 illustrates feautres learned by a CNN on ImageNet Data [4]. We can see that the fea-
tures range from simpler features in the lower convolutional layers (left) to more abstract features
in the higher convolutional layers (right).

2.3 Human-based evaluation of XAI techniques
A variety of crowd-sourced techniques for evaluating XAI techniques have been suggested in the
past. Jeyakumar et al. [10] asked participants to directly choose between explanations generated
by XAI techniques for a variety of tasks across domains. Hutton et al. [9] took a different ap-
proach, asking user to compare human- and computer-generated explanations and indicate which
they preferred and why.

Few past works have taken a human computation game focused approach for crowd-sourced
evaluation of XAI. One past body of work that did take this approach focused solely on saliency
maps [13] and found encouraging results.
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Chapter 3

The Setup

Our research involved two major components. The first involved designing the actual Eye into
AI game to crowd source data on the quality of these XAI techniques, and the second involved
creating the actual explanations for our dataset using some state-of-the-art XAI techniques.

3.1 EyeIntoAI - a tool to crowd-source explanation quality
Before diving into the explanation generation process, let’s do a quick overview of the actual
game itself.

3.1.1 The Game - Overview
The game was built in Javascript, using the React library. We built off of an earlier iteration of
the game that was also built here at CMU [5]. The current code can be found here.

The game has 2 major rounds for each XAI technique being evaluated.
• Explainer Round: In this round, the ”explainer” selects the top explanations, in a ranked

manner, that they believe will allow someone to guess the entire image as quickly as pos-
sible. This can be seen in 3.1. Note that we only ask the user to pick the top 4. We found
that ranking all the explanations shown can get cumbersome since they all become equally
non-useful after a point.
The explanations being shown are picked randomly from the top 5 and the bottom 5 expla-
nations, as ranked by the XAI technique in order of importance for the image prediction.
The goal is to be able to identify if a human’s ranking of importance of the explanations
for the image prediction correlate with that of the XAI technique.

• Guessing Round: In the guessing round, the user receives one visual explanation to start
with. A new explanation is revealed every 15 seconds (with a total of 4 explanations
revealed in total), and is super imposed on the older explanations, so that the user can
easily contextualize the newly revealed visual information. This can be seen in 3.2
Note that in this round, the explanations are always revealed in the order that the XAI
technique ranked them. Specifically, the user starts of with the most important explanation

7
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(a) Explainer picks a category for the
explainer round.

(b) Explainer selects the top explanations,
in a ranked manner

Figure 3.1: Explainer Round

(a) Guesser can see explanations being
revealed every 15 seconds. They type

their guesses in the chatbox on the right.

(b) If the guesser is unable to guess the
image after the 4 explanations are
revealed, they receive a text hint.

Figure 3.2: Guessing Round
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Figure 3.3: Old Guessing Round

as deemed by the XAI technique, i.e top 0 . 15 seconds in, top 1 is also revealed, 15
more seconds and top 2 is revealed, and finally top 3 is revealed. Thus for each XAI
technique, the user has the opportunity to see the top 4 most important explanations.

Both these rounds happen for all the XAI techniques that we’re testing, namely - LIME, Grad-
Cam, and FeatureViz. We also run the same rounds for a baseline that is outlined in more detail
in 3.3. The order in which these techniques are shown to the User is randomized, to prevent any
sort of biasing.
Some quick background: In the guessing round, we were initially revealing these images sepa-
rately, and out of order, as opposed to in a ranked fashion (see figure 3.3). This was an artifact
from the original version of this game [5]. However, after a few trials of that, we realized that
there 2 major issues with that approach -

• We observed that showing explanations out of order didn’t let us compare quality of the
techniques themselves, since we would see people usually always getting it right once
top 0 was revealed, irrespective of what was shown earlier.
In addition, the random order didn’t let us compare how effective the top X% of one
technique’s output was, compared to another technique.

• In addition, showing explanation side-by-side, as opposed to superimposed just demanded
extra cognitive effort from the participants for something that we were not testing.
Participants reported having to just superimpose the different explanations in their head
which requires effort and is not always perfect, meaning that we could arbitrarily lose in-
formation from explanations depending on the participants’ ability to put the explanations
together in their head.
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3.1.2 Data Collection

The game generates data that can be used to evaluate the quality of the XAI techniques in 2 major
ways -

• Explainer Round: In this round, we log the explanations chosen by the explainer, as well
as their ranking according to the XAI technique being evaluated. This allows us to look at
correlations between what parts of the image a human deems important vs what the XAI
technique thought was important.

• Guessing Round: In this round, we log all the guesses made by the user, the time taken
for each guess, as well the number of explanations available to the user at the time of the
guess. In addition, we also log whether the user needed the final textual hint.
Using this information, we’re able to draw conclusions about the efficacy of the XAI tech-
nique, when it comes to isolating the most important parts of the image. One example
analysis is to look at the number of guesses and the number of explanations a user needed
to finally guess the original image.

We show how this data can be used to evaluate current state-of-the-art XAI techniques in Section
4 as a reference for anyone looking to crowd source quality metrics about other XAI techniques
in the future.

3.2 Experimental Parameters

Dataset: We selected 50 images as our dataset. The main criteria for our selection was that
ImageNet [4] had a clear unambiguous class for the image, and the image featured only one
object. Our dataset can be viewed here.

Model: We used GoogLeNet [27], pretrained on the ImageNet dataset [4], as our ML model
for all the XAI techniques. This architecture was able to correctly classify all the images in our
dataset. There is no reason to choose GoogleNet over any other architecture. Any architecture
that would support both LIME and Grad-CAM could be used.

3.3 Explanation Generation Process

For the explanation generation process, we tried out a variety of different XAI techniques. In
specific, the ones we ran on our data set were LIME, GradCam, SmoothGrad, and Guided Grad-
cam. In addition, we also ran the Marr Hildreth Edge Detection algorithm on our dataset. Sample
outputs from all these techniques are shown in figure 3.4.
We envision all of these being pitted against each other through Eye into AI in the future. How-
ever, for the purposes of our research, we decided to use a subset of these, namely - LIME, and
Gradcam, in our actual trials. We did this due to two main reasons -
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(a) Original Image (b) Gradcam (c) SmoothGrad

(d) LIME (e) Guided Gradcam (f) Edge Detection - Marr
Hildreth

Figure 3.4: Various XAI Techniques tried out by us
All the techniques were run with the classification target as the ImageNet label 199 (Human

Readable Label - ’Scotch terrier, Scottish terrier, Scottie’)

11



• Game length was a concern. Gradcam and LIME, in addition to our baseline as well as
a feature vizualization round (a legacy remnant we decided to keep) already made our
GWAP quite long. We wanted to make sure our users were engaged to the very end.

• Ease of ranked image segmentation based on the XAI technique. While possible with
every XAI technique, by definition, LIME and Gradcam were the easiest to work with for
our purposes.

Our approach for explanation generation was to create explanations that reveal 10% of the image
per explanation. The desired output was 4 ranked explanations (revealing, in total, 40% of the
image), each revealing 10% in order of importance, as deemed by the XAI technique.

Outlined below are our explanation generation processes, in detail, for LIME, GradCAM, and
our Baseline. In addition, we also mention our feature visualization explanations even though
they were not created by us since they have been carried over from the original version of Eye
into AI [5].

3.3.1 LIME

As mentioned in Section 2.2, LIME is model-agnostic, meaning that it can be applied to any ma-
chine learning model. The technique attempts to understand the model by perturbing the input
of data samples and understanding how the predictions change.For the case of images, LIME
generates perturbations by turning on and off some of the super-pixels in the image.

LIME supports a variety of different segmentation algorithms to create these superpixels. We
used Quickshift - a relatively recent 2D image segmentation algorithm [28], based on an approx-
imation of the kernelized mean-shift. [3]

LIME then uses weighted local surrogate model to fit these perturbations, ultimately giving us a
list of superpixels, ranked in order of importance for the final prediction. (See figure 3.5)

For our dataset, we found that with LIME (using QuickShift), the average no. of generated
superpixels was 50 with a standard deviation of 8.22. Thus, in order to reveal around 10% of
the image in each explanation, we revealed 5 superpixels per explanation, starting from the top 5
(top 0), then the next 5 (top 1), and so on. See figure 3.6 for a visual example.

3.3.2 Grad-CAM

As talked about in more detail in Section 2.2, Gradient-weighted Class Activation Mapping
(Grad-CAM), uses the gradients of any target concept (say ‘dog’ in a classification network
or a sequence of words in captioning network) flowing into the final convolutional layer to pro-
duce a coarse localization map highlighting the important regions in the image for predicting the
concept. This localization map is presented as a heatmap marking the regions deemed important

12



Figure 3.5: Superpixels for a Scotty Terrier (see figure 3.4a for the original image)
Blue is positive, and red is negative - one can observe that the head of the Scotty Terrier is the

most blue, meaning it was the highest ranked superpixel by LIME

(a) top 0
(x < 10%)

(b) top 1
(10% < x < 20%)

(c) top 2
(20% < x < 30%)

(d) top 3
(30% < x < 40%)

Figure 3.6: LIME Explanations for a Scotty Terrier
(x is percentage ranking from the top as determined by LIME)
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(a) top 0
(x < 10%)

(b) top 1
(10% < x < 20%)

(c) top 2
(20% < x < 30%)

(d) top 3
(30% < x < 40%)

Figure 3.7: Grad-CAM Explanations for a Scotty Terrier
(x is percentage ranking from the top as determined by Grad-CAM)

by the model (see figure 3.4b) [22].

Note that in Grad-CAM, there is no segmentation into superpixels. So in order to create our
explanations, we worked solely with the heatmap. The heatmap assigns a value to each pixel of
the image, so in order to create the 4 explanations, we simply sorted the heatmap values and took
the top 10%, then 10-20%, 20-30% and so on for each explanation. (see figure 3.7)

3.3.3 Baseline

As mentioned in subsection 3.1.1, we also generate baseline explanations for each image in our
dataset that are also shown to a user in every game run. The goal of the baseline here is to get
random pixels with no assigned importance to them, i.e to understand how much simply reveal-
ing random parts of the image helps in guessing the image.

For these baseline explanations, we use QuickShift, exactly like LIME, to first segment the im-
age. As mentioned in 3.3.1, the number of superpixels for our dataset were approximately 50.

Thus, to get 10% of the image revealed per explanation, just like in the LIME setting, we used
5 superpixels per explanation. The difference, however, was that we chose those superpixels
randomly, as opposed to using LIME’s rankings (see figure 3.8 for a visual example).

14



(a) top 0 (b) top 1

(c) top 2 (d) top 3

Figure 3.8: Baseline Explanations for a Scotty Terrier
(For the baseline, there is no ranking, each explanation is just randomly chosen superpixels such

that 10% of the image is revealed)

3.3.4 Feature Visualization
We didn’t implement feature visualizations and generate them ourselves for this work, but we
carried over the explanations used in the original version of the game, created using the Lucid
library 1. More details about the explanation generation process for feature visualizations can be
found in the original paper on Eye into AI [5].

The goal was to be able to see how feature visualizations, a completely different style of ex-
planations, stacked up against Grad-CAM, LIME, and our baseline. See figure 3.9 for a visual
example of Feature Visualisations.

1https://github.com/tensorflow/lucid
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(a) Original Image

(b) top 0 (c) top 1 (d) top 2 (e) top 3

Figure 3.9: Feature Visualisations
(top 0 is the most positive channel, top 1 is the next most positive channel, and so on)

16



Chapter 4

Evaluation

4.1 Evaluation approach + process

For our evaluation, we focused our trials and data collection on trying to understand if we could
use Eye into AI as a viable tool for crowd-sourcing quality metrics about XAI techniques and
pitting techniques against each other to meaningfully compare completely different techniques.

In total, we got 71 participants to play our game as a part of their classes at CMU.

Note: For these trials, we also had an additional round in our game, along with the LIME, Grad-
CAM, and Baseline rounds that were mentioned in section 3.1. This is a remnant of the last
iteration of the game [5] and was left in there for legacy purposes, and as an additional analysis
vector.

4.2 Insights - Crowd Sourcing Viability

We’ve laid out our insights from our trials below. Our current analysis scripts can be found here.
To understand if Eye into AI is a viable tool for crowd-sourcing quality metrics about XAI tech-
niques, we wanted to see if we could get some meaningful information about how effective LIME
and Grad-CAM were, in their ability to identify which parts of the image were the most impor-
tant for the model.

We derived these insights from the two major parts of the game - the guessing round, and the
explainer round.

4.2.1 Guessing Round

From the guessing round, we’re able to isolate the efficacy of the top 40% of the image (in 10%
increments), as ranked by an XAI technique, in being able to identify the subject of the entire
image.

17
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4.2.1.1 Comparison Insights:

By looking at the performance of users across the entire dataset for different techniques, in com-
parison to the baseline, we can meaningfully derive insights about whether they add any value at
all, and also about which ones potentially add more value.

Looking at figure 4.1, we can observe some interesting trends.

Feature Visualizations (featureViz) : It’s clear that feature visualizations are unable to com-
pete with Grad-CAM and LIME at all. Even our baseline, by virtue of simply revealing random
parts of the image, performs much better than feautureViz.

We concede that the argument can be made that comparing featureViz, an abstract visualiza-
tion, to XAI techniques that actually reveal part of the original image is not a fair comparison.
However, even looking at featureViz in isolation, we see poor performance, with a correct guess
percentage of just 9%. This is quite interesting as it highlights the fact that a well known and
well regarded XAI technique might actually not be useful to humans at all.

Baseline: As one would expect, our random baseline performs worse than both LIME and
Grad-CAM across the board. Avg time for the right guess, as well as the avg number of guesses
taken by users are substantially higher for the baseline. In addition, the correct guess percentage
is also lower than both LIME, and Grad-CAM. This tells us that both LIME and Grad-CAM are
indeed helpful to some degree.

Grad-CAM and LIME: Looking at the performances of Grad-CAM and LIME. We can see
that Grad-CAM has markedly better performance than LIME. Users, on average, take 3̃ more
seconds to arrive at the right guess, take 1̃ more guess (i.e, need to see 10% more of the image),
and only get the right answer 80% of the times, as opposed to a 100% in the case of Grad-CAM.

This last statistic is arguably the most important, as it signifies that 20% of the times, the 40%
of the image isolated by LIME is just not enough for the user to identify the image. In mission
critical scenarios that require explainibility, a few extra seconds to correctly identify the image
might not matter too much but failure to identify the image (or in other words, explain the model
correctly) can be catastrophic.

Finally, as a sanity check, we find that our result here is consistent with previous work done in
a similar vein. Though we’re not aware of any work that tried comparing a saliency map tech-
nique with a surrogate model approach like LIME, previous work done on solely saliency based
approaches has seen Grad-CAM outperform other methods [13] [2].

One reason why Grad-CAM performs so well with humans might be the fact that Grad-CAM
produces low-resolution feature maps that are then linearly interpolated to fit the resolution of
the original image, resulting in mostly connected regions as opposed to more distributed regions.
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(a) Average Number of guesses to get the right
answer

(b) Average time taken for the right guess

(c) Percentage of trials in which the user was able
to guess correctly

Figure 4.1: Guessing Round - Comparision Insights
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4.2.1.2 Isolated Image Insights:

In addition, data from the guessing round also allows us to isolate images that a particular tech-
nique might have been particularly bad or good at explaining, thereby giving us insight into
wrong and right use-cases for the technique.

For instance, for an image of a ”cucumber” in our dataset, using Eye into AI, we were able to
realize that LIME did much worse than Grad-CAM when it came to isolating the best parts of
the image. Only 25% of the users got cucumber right when shown the LIME explanations, but a
100% of them got it right when shown the grad-CAM explanations.

Looking at the actual explanations themselves, we can see that for an image style like this one,
Grad-CAM’s explanation style (of a heat-map centered at the most important part of the image)
seems better suited. We believe this might be because the more connected nature of Grad-CAM
explanations does a better job at allowing humans to contextualize the image and arrive at the
right answer.

4.2.2 Explainer Round

Looking at the data from the explainer round, our insights from the guessing round are backed
up. As we’ve talked about in 3.1.1, in the explainer round, users pick the top 4 out of the 8 shown
explanations as their top 4 (see figure 3.2a). We compared the 4 images picked by humans with
the rankings attributed to them by the XAI techniques.

Our hypothesis was that a high correlation between what the humans thought was important and
what the XAI technique thought was important would imply high interpretability for the tech-
nique.

To start off, looking at figure 4.5, we can see that for featureViz, the rank of the explanation ac-
cording to the XAI technique had almost no bearing on the amount of times the explanation was
picked, giving us an almost uniform distribution. This hints towards poor human interpretability
of feature visualizations.

For Grad-CAM, we can see that the users’ top 4 ranking and the technique’s top 4 ranking are
quite similar. For LIME, however, while a large percentage of people did pick from top 0
to top 3 as their top 4, in 32% of the trials users also picked an image from bottom 0 to
bottom 3. In comparison, this only happened in 8% of the trials in Grad-CAM.

We believe that this is again due to the difference in the style of explanations between LIME
and Grad-CAM. Since LIME employs intelligent segmentation, even the explanations deemed
the least important by LIME can have some level of coherency making it more likely for it to be
found important by a cognitive human. Grad-CAM explanations, on the other hand, have a ring
like structure due to the heatmap which makes the less important explanations almost entirely
useless for a human.
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(a) Top 40% according to LIME (b) Top 40% according to Grad-CAM

Figure 4.2: Isolated Image Insights

(a) Original Image

Figure 4.3: Isolated Image Insights
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Taking a specific example from our dataset, we looked at the explanations for an image of a
strawberry. In the case of LIME, users chose one of the bottom 4 explanations as their top four
16 times. On the other hand, in the case of Grad-CAM, users chose one of the bottom 4 explana-
tions only once. Looking at the top most explanation and the bottom most explanation in figure
4.4, we can see why this 16x difference might exist.

In the case of LIME, one could argue that the bottom most explanation gives just as much, if
not more, useful information for classification than the top most image. In the case of grad-cam
however, the top most explanation is unequivocally more useful than the bottom most explana-
tion because the bottom explanation only contains the background part of the image.
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(a) Original Image

(b) Gradcam - bottom 0 (c) Gradcam - top 0

(d) LIME - bottom 0 (e) LIME - top 0

Figure 4.4: LIME explanations VS Grad-CAM explanations - Strawberry
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Figure 4.5: Human Rankings vs XAI Rankings
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Chapter 5

Conclusion

In this work, we investigated a novel approach to conducting human evaluation of XAI tech-
niques with a GWAP. In addition, we used our proposed approach to conduct an analysis and
comparative evaluation of LIME, Grad-CAM, and Feature Visualization. We conducted a total
of 71 trials across 2 different CMU classes.

Our results showed a clear ranking of the XAI techniques, with Grad-CAM performing the best,
LIME coming second, and Feature Visualizations performing the worst. In addition, our analysis
also shed some light on how the explanation styles of Grad-CAM, and LIME affect the use cases
where they peform the best.

Our results also pointed at Grad-CAM’s higher interpretability than LIME and Feature Visual-
izations for non-experts. Our users were able to pick out the explanations deemed by Grad-CAM
to be the most important much more easily than other XAI techniques.

Going forward, it would be very interesting to see Eye into AI applied to more XAI techniques.
In addition, a lot of future work can also be done in evaluating re-playability, and ease of use of
this game, and in improving those aspects of the game so that users truly enjoying playing it and
providing data. During our trials, we received some very good suggestions, such as introducing
better scoring, and a way for users to see how well they’re doing in the game, as a way to
increase user engagement and re-playability. It would be very interesting to see these features
implemented and analyse improvements in engagement.
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