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Abstract

The invention of logical frameworks enables computers to check formal

proofs. The main methodology of the logical framework LF and various exten-

sions of LF is to reduce proofs to terms and proof checking to type checking.

Formally, we define an encoding relation between the objects of the informal

proof system and the objects of the logical framework, and we prove that the

encoding is adequate in the sense that the encoding relation is a compositional

bijection. Then, to check whether the proof is valid, we just need to check

whether the encoded proof term is of the correct judgment type.

Despite the success of the logical framework LF and its extensions, there

is one class of proofs that present difficulties when one tries to encode them.

Infinitary proof systems, and circular proof systems in particular, provide nat-

ural ways to carry out induction and coinduction. However, since terms of LF

and its extensions are all finite, there cannot be a direct natural encoding of

infinitary proofs into those systems.

In order to solve this problem, we designed CoLF1, the first order fragment

of a novel mixed inductive and coinductive logical framework. We develop

two type theories in succession, one with non-dependent types and the other

with simple-dependent types. Each type theory consists of three components, a

semantic theory of infinite terms, a semantic theory of rational terms in which

type checking is decidable, and a syntactic theory, in which type checking is

implementable. We then present two case studies, one on a subtyping system

for recursive types, and the other on a calculus for circular proofs with inductive

and coinductive definitions, and we explore to which extent that these systems

have natural representations in CoLF1.
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Chapter 1

Background and Introduction

1.1 Background

1.1.1 Logical Frameworks

Logical frameworks provide convenient ways for proof checking of various logics. The first

logical framework, LF, was proposed by Harper et al. [HHP93]. To encode a logic in LF,

one encodes the judgment forms as types and one encodes derivations as terms. In this

way, a proof of a given judgment in the object logic can be represented by a term of the

corresponding type in the framework. The encoding must be adequate in the sense that

there must be a bijection between proofs of that judgment and the canonical terms of the

corresponding type. Furthermore, the encoding must commute with substitution, such

that substitutions of proofs in an object logic can be represented by substitutions of terms

of the logical framework. Ultimately, the LF logical framework automates proof checking

by reducing the problem to type checking. A proof for a judgment is valid if and only if

the term corresponding to the proof has the correct type. Furthermore, LF is carefully

designed so that the type-checking is decidable.

1.1.2 Extensions of the Logical Framework LF

Since the LF logical framework, other logical frameworks are proposed. On one line of

work, the logical framework LF is given an interpretation in the style of proof search as

a logical program [Pfe94]. The resulting logical framework is called Elf. In Elf, one can

check whether a judgment is provable by asking the framework to search for a proof term

of the encoded judgment.
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Built on the top of Elf, Twelf is a meta-logical framework in which meta-theorems of

the underlying logic can be specified and verified [PS98, PS99, Pfe01, HL07]. In Twelf,

one can verify whether the judgment with an operational interpretation as defined in Elf is

total. This effectively allows one to establish forall-exists statements about the deductive

systems encoded in LF.

On another line of research, since LF’s derivability consequence relation is structural,

ultimately limiting its representability to structural proof systems, LF has been extended

with capability to encode various substructural logics. The linear logic framework LLF

[CP96] is the logical framework LF extended with linear implications and linear connectives.

The concurrent logical framework CLF [Wat+02, Cer+02], and implementation of those

[Sch11] enable direct encoding of linear and affine logics and the encoding of concurrent

systems.

Research on logical frameworks has generated deep theoretical results and techniques

for implementing proof systems. For instance, Harper and Pfenning proposed a normal-

ization algorithm based on the structure of types [HP05]. The technique of canonizing

substitutions, the observation that there is a way of avoiding redexes when substituting

one λ-term into another, is discovered as part of the research on CLF [Wat+02, Cer+02,

HL07].

1.1.3 Infinitary Proof Systems

Infinitary proof systems provide an alternative method for standard inductive reasoning.

For purely the coinductive fragment, the validity of functions defined on infinite structures

requires the output to be guarded [Coq93]. When mixing coinduction with induction, an

additional validity condition must be in place as neither the pure guardedness condition for

the coinduction nor the pure subterm check for induction nor a combination of them can

guarantee validity. The usual condition involves assigning each inductive and coinductive

constructors a natural number priority and checking the validity condition.

Charatonik et al. proposed a priority assignment for the µ-calculus [Cha+98]. Brother-

ston and Simpson presented an infinitary proof system for inductive proofs [Bro05, BS11].

Fortier and Santocanale designed a system with mixed inductive and coinductive defini-

tions and proposed a similar validity condition that guarantees cut elimination [FS13].

Furthermore, when adapting a similar proof system for proving the liveness property of

session-typed processes, Derakhshan and Pfenning proved that similar validity conditions

ensure that the system would not admit processes that keep running without communi-
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cating [DP19, DP20].

1.2 The Research Question

The long term goal is to apply the methodology of logical frameworks to enable represen-

tation and checking of infinitary proofs. In this thesis, we address the first order fragment

of the framework. Given any circular proof that has a representation in the first order

fragment, we expect the framework to be able to check whether the proof has the correct

form and whether the proof satisfies the validity condition.

1.3 Contributions

The contribution of this thesis will be CoLF1, the first order fragment of a mixed inductive

and coinductive logical framework. We present the type theories of CoLF1 with simple

terms and no λ-abstractions. We exemplify the use of the framework by showing that some

coinductive proofs and mixed inductive and coinductive proofs can be directly encoded,

and their validity can be effectively decided by the type checking algorithm of CoLF1.

This thesis is structured as follows:

• In Chapter 2, we introduce mathematical preliminaries including the method of “depth

indexing”.

• In Chapter 3, we introduce SemTT, a semantic infinitary type theory for simple terms

with no dependent types.

• In Chapter 4, we introduce SemTTR, a restriction of the SemTT to rational proof

terms.

• In Chapter 5, we introduce SynTT, a practical implementable infinitary type theory

restricted to rational terms.

• In Chapter 6, we extend the previous three type theories with dependent types. The

resulting type theories are called SemTTDT, SemTTDT
R , and SynTTDT.

• In Chapter 7, we carry out a case study on formalizing a subtyping algorithm for iso-

recursive types [LBN17]. We demonstrate that the framework leads to a direct and

natural theoretical framework of the subtyping algorithm.

• In Chapter 8, we carry out a case study on encoding of various sub-fragments of a

circular proof system [FS13]. We demonstrate that in most of the cases, the framework

3



will result in a natural encoding of infinitary circular proofs.

In Chapter 9, we provide a concluding review of this thesis and mention some of the

future work that could be carried out.
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Chapter 2

Mathematical Preliminaries

We will introduce the fundamental building blocks of our proposed type theories in this

chapter.

2.1 Depth Indexing

Originally introduced by Appel and McAllester [AM01], step indexing is a technique that

can be applied to reason about infinite and non-terminating computations [Ahm04]. Using

step indexing, one can prove a property of an infinite sequence of reductions e0 → e1 →
e2 → . . . , by induction on the number of reduction steps that we’re allowed to observe

on the given computation. Definitions by step indexing usually postulate that the given

property will always hold on computations of zero depth, i.e. computations that we are

not allowed to observe further. Then, we define the condition for the property to hold

on k + 1 depth in terms of one step of the reduction step and whether the property hold

on computations of depth k. The definition needs to satisfy an additional property called

“downward closure” such that the set of terms characterized monotonically decreases as

the observation depth increases. In this way, we may use induction to prove a property of

a computation with an infinite sequence of reductions.

Because we don’t consider λ-abstractions in the entirety of this thesis, there are no

reductions involved as in the typical settings where the step indexing technique is applied.

Computations in the usual sense will correspond to the observations of infinite terms in the

proposed type theories. We use the term “depth indexing” as the fundamental technique

in proving properties of infinite terms. That is, we stratify and define the property by

induction on the observation depth of the term. In order to prove a property of an infinite

term, we prove it by induction on all finite observation depths of the term. By the principle
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of depth indexing, the given property will hold on the infinite term.

2.1.1 Characterizing Possibly Infinite Terms

We demonstrate the use of depth indexing to characterize possibly infinite terms of CoLF1.

Informally, a possibly infinite terms characterize the greatest set of terms consistent

with the following grammar:

Terms (Infinite) M ::= cM1 . . . Mn

Formally, we can give the following characterization of infinite terms:

(1) any term is a possibly infinite term of observation depth zero.

(2) a possibly infinite term of observation depth k + 1 is a constant applied to a finite

list of possibly infinite terms of observation depth k.

M inftermk (M is a possibly infinite term of depth k)

M infterm0

minf0
∀1 ≤ i ≤ n. Mi inftermk

cM1 . . . Mn inftermk+1

minf1

Then, when speaking of a possibly infinite term, we mean a possibly infinite term of

any observation depth.

Terms (Infinite) M = {M | ∀k.M inftermk}

We write the judgmentM(k) to meanM inftermk. It will usually be the case any property

holds of a term of observational depth zero, so M(0) for any possible object M . In this way,

we further abbreviate the syntax, similar to the BNF format, as follows

Terms M(k+1) ::= cM1(k) . . . Mn(k)

That is, any metavariable M which satisfies M(k+1) is of the form cM1(k) . . . Mn(k)

where each Mi satisfies the predicate Mi(k).

We may use the notation M(∞) to mean M(k) for all k.

Furthermore, if we insist that the step index will go down by one whenever the same

syntactic category reappears in the body of the definition, e.g. in this case the infinite

term M appears in its definition, then we can omit the step index and claim the definition

to be infinite.

Terms (Infinite) M ::= cM1 . . . Mn

This shall be the methodology we use throughout this thesis.

We also note that a possibly infinite term is finite when all the “leaf” nodes are just a

head constant c with no arguments. That is, only the rule minf1 is used to prove M inftermk
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for sufficiently large k. A possibly infinite term is infinite if the term is not finite. From

now on, we may use the phrases ‘a term’, or ‘an infinite term’ to refer to a possibly infinite

term.

We verify the downward-closure property of the definition of (possibly) infinite terms.

Downward closure is a required property of definitions by depth indexing.

Theorem 2.1.1 (Downward Closure of Infinite Terms). If M is a (possibly) infinite term

of observation depth k + 1, then M is a (possibly) infinite term of observation depth k.

Proof. Directly by induction on k.

When k = 0, the conclusion holds by clause (1).

When k > 0, by definition, M = cM1 . . . Mn, where each Mi is an infinite term of

observation depth k. By IH, each Mi is of observation depth k − 1. By rule M is of

observation depth k.

2.2 Tarski’s Fixed Point Theorem

We demonstrate the use of Tarski’s fixed point theorem by considering the infinite number

∞ (or ω) an example of an infinite term.

2.2.1 Example: Infinity as an Infinite Term

Informally, we write infinity as an infinite stack of successors:

∞ = succ (succ (succ . . . ))

Informally, we could also write ∞ = succ∞.

Formally, the term ∞ may be characterized by induction on observation depth:

∞(k+1) = succ∞(k)

Spelled out, the above notation defines a sequence of predicates Pk for each natural

number k such that:

(1) P0 may characterize any term at observation depth zero.

(2) Pk+1 characterizes a term succM at observation depth k + 1 if Pk at observation

depth k characterize the term M at observation depth k.

We verify that if a term M is characterized by Pk for all k, then the term is a possibly

infinitary term, i.e. M inftermk for all k. The fact may be proved by proving that Pk(M)

implies that M inftermk by induction.
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We may prove that the informal characterization,∞ = succ∞ satisfies Pk by induction

on k. However, it is unclear that∞ = succ∞ is the unique term that satisfies Pk for all k.

The uniqueness follows from the fact that the definition Pk makes an observation on

the underlying object being defined and postulates its head constant and is thus guarded.

The reader may consult the details of the formulation in [AC93].

And thus, we say that Pk is an inductive characterization of the term ∞ = succ∞.

2.2.2 Equality of Infinite Terms

Equality may be defined by using the same methodology of depth indexing.

M =k M
′ (M and M ′ are equal up to depth k, defined by induction on k)

M =0 M
′

∀1 ≤ i ≤ n. Mi =k M
′
i

cM1 · · · Mn =k+1 cM
′
1 · · · M ′

n

Note that as in the previous example, the definition of equality presupposes the terms

under comparison have the required observation depth. That is, in order to derive Mi =k

Mj, it has to be the case that k ≤ max(i, j). In other words, is the observation depth of the

equality must be less than the observation depth of the term. For instance, the judgment

M(3) =5 N(4) is not derivable because when we get to compare M ′
(0) =2 N

′
(1), we’re not

allowed to observe the head of the left-hand side as the term has zero observation depth.

Theorem 2.2.1 (Downward Closure of Equality). If M =k+1 M
′, then M =k M

′.

Proof. Straightforwardly by induction on k.

Theorem 2.2.2. =k is an equality, i.e. reflexive, symmetric, transitive, and congruent.

Proof. Straightforwardly by induction on k.

We say two infinite terms M and M ′ are equal, denoted M = M ′ if M =k M
′ for all k.

2.3 The Priority Assignment

When some terms are required to be finite while others may be infinite, it has been a long

observed phenomenon that we need to assign priorities to the term constructors [Cha+98,

Sim06, FS13, DP19, DP20]. The motivation is that semantic ambiguities will arise if a

term involves both inductive and coinductive constructors. Without a priority assignment,

it is unclear whether some given terms are valid or not. Consider the term:
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E = f (g E)))

The above equation stands for the infinite term, E = f (g (f (g (f . . . )))), where f

is a constructor for some inductive datatype and g is a constructor for some coinductive

datatype. Intuitively, we would not say F = f F = f (f (f . . . )) is a valid inductive

term because inductive terms need to be “smaller” when observing the arguments of the

constructor, and the decrease in the size of the term justifies the inductive principle. On

the other hand, we are fine with saying that G = g (g (g . . . )) is a valid coinductive term.

However, it is unclear whether E is a valid term or not. As we could have either one

of the following mental pictures about what E actually is:

(1) Valid:

E = f (g (f (g (f (g . . . )))))))

(2) Not Valid:

E = f (g (f (g (f (g . . . )))))))

That is, in the first case, we view the term E as an infinite stack of g’s where the f ’s

are secondary. The term is valid because it is viewed essentially as an infinite stack of

coinductive constructors. In the second case, we view the term E as an infinite stack of

f ’s where the g’s are secondary. The term is invalid because it is viewed essentially as a

stack of inductive constructors.

To distinguish between the above two cases, we need a priority assignment. Following

the intuition, assigning a higher priority to g than f will result in a valid term just as in

(1), and assigning a higher priority to f than to g will result in an invalid term as in (2).

2.4 Proving Universal and Existential Quantifications

We would like the ability to use quantification in our statement of the type theories rules.

A universal statement is to be understood in the following form:

For finite domains:

J (1) J (2) . . . J (n)

∀1 ≤ k ≤ n.J (k)

For infinite domains:

9



J (0) J (1) . . . J (n) . . .

∀k.J (k)

An existential statement is to be understood in the following form:

For finite and infinite domains:

J (n)

∃k.J (k)
(where n is a natural number)

In this way, the derivation tree of any judgment would be finitely deep but may be

infinitely wide.
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Chapter 3

Semantic Type Theory with Simple

Types

In this chapter, we introduce semantic type theory for non-dependent types.

3.1 The Extended Signature with Priorities

We extend the kind declaration of LF with an additional constant cotype, which denotes

coinductive types. The kind declaration now involves a priority assigned to every type

family declaration. A natural design choice of CoLF1 is to assign priorities to type families,

such that all constructor of that type family will have the same priority. The priority is

a natural number marked in the top right corner of the kind declaration, i.e. either type

or cotype declaration. Furthermore, following the convention set forth in [Cha+98] and

[FS13], we require type to have odd priority and cotype to have even priority. To simplify

the proof of adequacy, we require that no two type families share the same priority.

Kind K ::= typeN | cotypeN | P → K

The whole SemTT syntax now looks like follows:

Signature Σ ::= · | Σ, a : K | Σ, c : A

Kind K ::= typeN | cotypeN | P → K

Canonical Type Families A ::= P | P → A

Atomic Type Families P ::= a | P M
Terms M(k+1) ::= cM1(k) . . . Mn(k)

We use the priority function p to map from a constructor, a type or a kind into their

priority, defined inductively as follows, with respect to signature Σ:

11



p(K)

p(typek) = k

p(cotypek) = k

p(P → K) = p(K)

p(A) and p(P )

p(P → A) = p(A)

p(P M) = p(P )

p(a) = p(K) where a : K ∈ Σ

p(c)

p(c) = p(A) where c : A ∈ Σ

We writemaxP (Σ) to mean the maximum priority (of any type/cotype) in the signature

Σ. It may be inductively defined as follows:

maxP (Σ)

1. p(·) = 0

2. p(Σ, a : K) = max(maxP (Σ), p(K))

3. p(Σ, c : A) = maxP (Σ)

We use the predicate pOccurs(Σ) to denote the set of all priorities occurring in the

signature Σ. It may be inductively defined as follows:

pOccurs(Σ)

1. pOccurs(·) = ∅

2. pOccurs(Σ, a : K) = pOccurs(Σ) ∪ {p(K)}

3. pOccurs(Σ, c : A) = pOccurs(Σ)

We note that maxP (Σ) will be the unique greatest element of the set pOccurs(Σ) with

the usual ordering on natural numbers.

3.1.1 Higher and Lower Priorities

We say that A has a higher priority than B if p(A) < p(B). For example, a constructor

with priority 2 has a higher priority than a constructor with priority 4. A constructor

with priority 0 has the highest priority. We note that the ordering on priority numbers is

exactly the opposite of the ordering on priorities, i.e., A has a higher priority than B iff

p(A) < p(B).
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3.2 The Depth Indexing Context D

During proof construction, we want to track the current depths of all occurring priorities.

The tracking is done through a mathematical structure called “the depth indexing context”.

Intuitively the depth indexing context tracks the current observation depth for all types

(and cotypes) occurring in Σ, and admits a lexicographical ordering. Formally, a depth

contextD is a partial function from natural number to natural numbers with finite domains.

D : N⇀ N

We let D be the set of all partial functions from N ⇀ N with finite domains, then

D ∈ D.

The set D admits a lexicographic order < defined as follows:

D < D′ for D,D′ ∈ D iff

(1) dom(D) = dom(D′),

(2) there exists an index (natural number), called the principal index, n ∈ dom(D), such

that D(n) < D′(n) and for all 0 ≤ k < n, D(k) ' D′(k).

Intuitively, the principal index is the index at which D < D′ lexicographically.

We say that D < D′ on principal index n if n is the index satisfying the condition (2)

above.

The notation ‘'’ expresses the Kleene equality, which means that either both sides are

undefined or both sides are defined and equal.

For each size of the domain, the ordering < on D is well-founded and is the same as

the lexicographic ordering on N|dom(D)|.

3.2.1 Representing D using the list index

We write D down using the following notation:

[D(0), D(1), D(2), . . . , D(n)]

n is the D(k) is undefined for k > n. We write − if D(i) is undefined.

We write the empty depth context as ·, [] or [−].

As an example, [2,−, 3, 4] represents a depth context D that maps 0 to 2, 2 to 3 and 3

to 4. An example of ordering would be [2,−, 3, 4] < [2,−, 4, 2] on principal index 2.
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3.2.2 Extension Operations on D

We define the extension of D with x mapped to N , written as D[x 7→ N ], to be the

depth indexing context that maps x to N and maps other values i to D(i). When writing

D[x 7→ N ], we implicitly require that x /∈ dom(D). In this way, [2,−, 3, 4] may be written

as

[2,−, 3, 4] = [−][0 7→ 2][2 7→ 3][3 7→ 4]

Because we required that when writing D[x 7→ N ], x /∈ dom(D), any D may be

represented as an empty context with an unordered list of extension operations. And thus,

we also have

[2,−, 3, 4] = [−][0 7→ 2][3 7→ 4][2 7→ 3]

[2,−, 3, 4] = [−][3 7→ 4][2 7→ 3][0 7→ 2]

3.3 Type Checking rules

The type checking rules are listed as follows for SemTT.

Signature Σ ::= · | Σ, a : K | Σ, c : A

Kind K ::= typeN | cotypeN | P → K

Canonical Type Families A ::= P | P → A

Atomic Type Families P ::= a | P M
Terms M(k+1) ::= cM1(k) . . . Mn(k)

We simultaneously define the following judgments

Σ ok Signature Σ is type correct

`Σ K ⇐ kind Kind K is a valid kind

`Σ A⇐ type Type A is a canonical type family

`Σ P ⇒ K Atomic type family P synthesizes kind K

`Σ M ⇐ P Term M checks against type P

`DΣ M ⇐ P Term M checks against type P in the depth context D

Σ ok : Σ is a valid signature.

· ok

Σ ok `Σ K ⇐ kind

Σ, a : K ok

Σ ok `Σ A⇐ type

Σ, c : A ok

14



`Σ K ⇐ kind : K is a valid kind, assuming that Σ ok.

n /∈ pOccurs(Σ)

`Σ typen ⇐ kind
(n is an odd natural number)

n /∈ pOccurs(Σ)

`Σ cotypen ⇐ kind
(n is an even natural number)

`Σ P ⇒ K ′ K ′ = type / cotype `Σ K ⇐ kind

`Σ P → K ⇐ kind

`Σ A⇐ type : A is a good type, assuming that Σ ok.

`Σ P ⇒ K K = typen / cotypen `Σ A⇐ type

`Σ P → A⇐ type

`Σ P ⇒ K K = typen / cotypen

`Σ P ⇐ type

`Σ P ⇒ K : P has kind K, assuming that Σ ok.

a : K ∈ Σ

`Σ a⇒ K

`Σ P ⇒ P ′ → K `Σ M ⇐ P ′

`Σ P M ⇒ K

`Σ M ⇐ P is defined to be:

∀k0.∀k2. . . .∃j1.∃j3. . . . . `[k0,j1,k2,j3,... ]
Σ M ⇐ P

The length of the depth context is constrained by the largest priority number occurring in

Σ.

To be more specific, `Σ M ⇐ P is defined to be:

When maxP (Σ) is even :

∀k0.∀k2.∀k4 . . . ∀kmaxP (Σ).∃j1.∃j3.∃j5. . . .∃jmaxP (Σ)−1. `
[k0,j1,k2,j3,...,kmaxP (Σ)]

Σ M ⇐ P

When maxP (Σ) is odd

∀k0.∀k2.∀k4 . . . ∀kmaxP (Σ)−1.∃j1.∃j3.∃j5. . . .∃jmaxP (Σ). `
[k0,j1,k2,j3,...,jmaxP (Σ)]

Σ M ⇐ P
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`DΣ M ⇐ P : M checks against type P in the depth indexing context D, assuming

that Σ ok.

(Require: p(P ) is even and D(p(P )) = 0)

`DΣ M ⇐ P
cM0

(cM1 Requires: (1) D′ < D on principal index p(P ), (2) D′(p(P )) + 1 = D(p(P )), and (3)D′(k) = D(k) for all k > p(P ) and k is an even number if p(P ) is even

D′(k) = D(k) for all k > p(P ) if p(P ) is odd
)

c : P1 → P2 → · · · → Pn → P ′ ∈ Σ P = P ′ ∀1 ≤ i ≤ n. `D′Σ Mi ⇐ Pi

`DΣ cM1 . . . Mn ⇐ P
cM1

Note that to simplify the presentation, we require all objects that enter type checking

to be possibly infinitary terms, i.e. M inftermk for any k.

The judgment `DΣ M ⇐ A is well-defined by induction on D. The axioms of the system

are (1) cM0 and (2) cM1 where we’re checking constants with no arguments. For the

soundness theorems, we have to impose constraints on the values of D′(k) for k > p on the

premise of the rule cM1.

As we show in the next section (Theorem 3.4.6), eagerly instantiating all for-all quan-

tifiers before existential quantifiers guarantees the soundness and completeness of priority

correctness.

3.4 Validity of terms

The type checking rule ensures two properties of the term. One is “form-correctness” and

the other is “priority-correctness”.

3.4.1 Form-Correctness

Form-correctness concerns whether inductive and coinductive constructors construct a cor-

rect term. All terms that are typeable on SemTT are form-correct but not all form-correct

terms are typeable in SemTT. Informally, every form correct term corresponds to some

pre-proof in an infinitary object logic if this logic admits infinitary proofs.

Formally, form-correctness is defined as:
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Definition 3.4.1 (Form-Correctness). (Infinite) A term cM1 . . . Mn is form-correct of

type P if c : P1 → · · · → Pn → P and for all 1 ≤ i ≤ n, Mi is form-correct of type Pi.

Note that the above definition could be rewritten as a definition by depth indexing, and

we expect the reader to perform such translation when a definition is marked (infinite).

We repeat the translation here:

1. Any term is form-correct of type P at depth 0.

2. A term cM1 . . . Mn is form-correct at depth k + 1 of type P if c : P1 → · · · → Pn → P

and for all 1 ≤ i ≤ n, Mi is form-correct at depth k of type Pi.

Theorem 3.4.2. If `Σ M ⇐ P , then M is form-correct of type P .

Proof. After quantifier instantiations, we have a set S of derivations of the judgment `DΣ
M ⇐ P , one for some instantiation of universal quantifiers and existential quantifiers. We

add to this set all sub-derivations of every derivation having the form `D′Σ M ′ ⇐ P ′.

To show M is form-correct of type P , we proceed by induction on the observation depth

of form-correctness of M .

M is form-correct of type P at zero depth.

When depth k is greater than 0, M is of the form cM1 . . . Mn. There must exist

derivation `DΣ M ⇐ P in set S ends with an application of the rule cM1. The premises

of the rule include the fact c : P1 → · · · → Pn → P , and derivations `D′Σ M ⇐ Pi. By

induction, all Mi are form-correct of type P at depth k − 1. Then by definition, M is

form-correct of type P at depth k.

The reason that there must exist derivation `DΣ M ⇐ P in set S ends with an appli-

cation of the rule cM1 for all subcomponents [Coq93] M ′ = cM1 . . . Mn of the term M is

as follows: if c is an inductive constructor, then the corresponding derivation cannot use

cM0. If c is a coinductive constructor, and if cM0 is used, then the depth context at the

use of cM0 rule must map p(c) to 0. However, since the mapped to value p(c) is quantified

with a universal quantifier, we can pick the same derivation that is exactly the same as

this one but instantiates p(c) with a higher value. Then, the rule cM1 will be used at the

spot where cM0 is originally used.

3.4.2 Priority Correctness

Informally, A term M is priority correct iff the highest priority constructor that occurs

infinitely often along any trace is not inductive. The validity is only defined on a term of
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infinite observation depth, M(∞). To make the statement mathematically rigorous, there

are a few definitions leading up to the validity of a SemTT term.

A pretrace T is an infinite word over N. A prefix p of a pretrace T is a finite word over

N, such that T begins with p, e.g. T can be written as p T ′ where T ′ is another pretrace.

For instance, 121 is a prefix of the pretrace 12134211139023420123 . . . . An empty word is

denoted ε, and is the prefix of any pretrace.

The denotation of any prefix of a pretrace in M is a unique constructor or is undefined.

We denote this denotation det, defined as follows (by induction on the length of the prefix)

det(ε, cM1 . . .Mn) = c

det(mT, cM1 . . .Mn) =

det(T,Mm+1) if 0 ≤ m < n

undefined if m ≥ n

Definition 3.4.3 (Trace). A trace T in M is a pretrace T in M where all prefixes of T

determine a constructor, i.e., det(p,M) 6= undefined for all possible prefixes of T , p.

A symbol c occurs infinitely often in M along a trace T , iff there are infinitely many

prefixes of T , p, such that det(p,M) = c.

We note that an object M is finite, iff for any pretrace T , there exists a natural number

l, called the depth of M , such that for all prefixes of T , pT , if the length of pT is greater

than l, then det(pT,M) is undefined.

Definition 3.4.4 (Priority Correctness). An object M is priority correct iff either

(a) M is finite,

or (b) for all traces T in M , if c occurs infinitely often in M along T , then either (1)

there exists a coinductive constructor c′ of higher priority than that of c, (p(c′) > p(c)) and

c′ occurs infinitely often in M along T , or (2) c is coinductive.

Theorem 3.4.5 (Soundness: Typeability Implies Priority Correctness). If `Σ M ⇐ P ,

then M is priority correct.

Proof. We first note that the derivation of `Σ M ⇐ P consists of a sequence of quantifier

instantiations and derivations of the form `DΣ M ⇐ P , where D = [n0, n1, n2, . . . , nm].

Next, we show M is priority correct. Either M is finite, or M is infinite. If M is finite,

then it is priority correct. Consider the case where M is infinite.

For a trace T , since there are finitely many constructors in Σ, let S be the set of all

constructors that occurred along that trace.

For any constructor c ∈ S, either p(c) is even or odd (i.e., either c is an inductive

constructor or a coinductive constructor). If p(c) is even (i.e., c is coinductive), then the
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priority correctness condition (b)(2) is satisfied for c. If p(c) is odd (i.e., c is inductive),

we show that there exists a constructor c′ with a higher priority.

Assume towards a contradiction that c is the highest priority constructor that occurs

infinitely often along that trace. Then the derivation of `DΣ M ⇐ P consists of an infinite

number of rule cM0 where the premises have depth contexts that are smaller on principal

index p(c).

Consider the term where any finite occurrences of all constructors in S with higher

priorities than c have been observed, the depth indexing context will map p(c) to a finite

natural number N that is decremented by one each time the constructor c is encountered

along that path. Upon N + 1 occurrences of c, the derivation will have the form `D[p(c)7→0]
Σ

cM1 . . . Mn ⇐ P ′, and there is no rule in the system that has this form of conclusion.

This is a contradiction.

Therefore, there must exist some constructor that has higher priority than c that occurs

infinitely often.

Theorem 3.4.6 (Completeness: Priority Correctness Implies Typeability). For some sig-

nature Σ, if a term M is form-correct of type P , and M is priority correct, then `Σ M ⇐ P .

Proof. To show `Σ M ⇐ P , we need to construct derivations with conclusions of the form

`Σ
[k0, j1, k2, j3, . . . , (k/j)maxP (Σ)]M ⇐ P

where (k/j)maxP (Σ) denotes kmaxP (Σ) if maxP (Σ) is even and jmaxP (Σ) otherwise.

Due to the nature of universal and existential quantifiers, the values for ki’s are given,

and we are free to pick any value for ji’s.

Since M is form-correct, we have a skeleton proof of the conclusion

`DΣ M ⇐ P

where D is a not-yet-filled depth context of the form [k0, j1, k2, j3, . . . , (k/j)maxP (Σ)]. It

remains to figure out how to pick the priorities for j’s and how to handle known values of

k’s. We note that the ability to instantiate existentially quantified variables after knowing

the instantiations of all universally quantified variables is crucial for this proof.

We pick j by assigning each of them a temporary variable, and we instantiate those

variables after the construction is complete. Each temporary variable ji has an associated

“minimum value” that is zero when first created.

(?) For an arbitrary M with the yet-to-construct derivation with the conclusion,
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`Σ
[k0, j1 −m1, k2, j3 −m3, . . . , kj]M ⇐ P

where kj denotes kmaxP (Σ) if maxP (Σ) is even and jmaxP (Σ) −mmaxP (Σ) otherwise.

An observation of M reveals that M is of the form cM1 . . . Mn. Either p(c) is even or

odd.

(a) If p(c) is even, then check whether kp(c) is zero or not. If kp(c) is zero, we cut off the

remaining derivation and close the derivation with the rule cM0. Otherwise, we apply the

rule cM1 decrement this index, set all odd indexes with lower priority to map to a fresh

unknown variable with the associated minimum value, and proceed to construct derivation

for the terms Mi for each i, by following the same procedure (starting at (?)).

(b) On the other hand, if p(c) is odd, we know that jp(c) −mp(c) contains an unknown

variable. We add one to the minimum value mp(c) associated with the unknown variable

jp(c). We update the context by setting p(c) to map to the updated value of jp(c) −mp(c).

Then, we proceed to construct a derivation in the updated context for the terms Mi for

each i, by following the same procedure (starting at (?)).

Next, we prove the termination of the above construction.

First, we show that we are unable to keep adding one to the minimum value associated

with an unknown variable. For an arbitrary unknown variable, the priority correctness of

M ensures we cannot come back through branch (b) forever and keep incrementing the min-

imum value associated the same variable. We prove this fact by proving the contrapositive.

Suppose we kept adding one to the minimum value of some unknown variable ji mapped

to by index i forever, since we instantiate a new variable at index i when encountering

a coinductive constructor of higher priority, there must be no coinductive constructors of

higher priority along the specific trace where we keep adding one to ji. However, since i is

an odd index, the term is not priority correct.

Second, we show that only finitely many fresh variables will be created in the above

construction. Since a fresh variable is created when encountering some coinductive con-

structor of a higher priority, it is sufficient to show that only finitely many constructors of

any given priority will be encountered in the above construction. We show this by induc-

tion on the priority p that only finitely many constructors of priority p will be encountered

in the above algorithm.

Case p is even, the values corresponding to the even indexes in the depth indexing

context are “given” by the universal quantifier and are all finite. Since the corresponding

value in the depth context can be decremented only finitely many times until it reaches

zero, we only encounter finitely many constructors of priority p.
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Case p is odd, by the induction hypothesis, only finitely many constructors will be

encountered for all priorities < p, and thus only finitely many fresh variables will be created

at p. Whenever we encounter a constructor at priority p, we increment the minimum

value associated with a specific unknown variable. As proved previously, the number of

increments is finite, and since there are only finitely many unknown variables, we will

encounter only finitely many constructors at priority p.

Since the maximum priority is bounded, we will encounter finitely many constructors

in the above construction, and therefore the construction will terminate.

Once the construction terminates, we instantiate all unknown variables with their as-

sociated minimum values. Thus, we have constructed a proof of

`Σ
[k0, j1, k2, j3, . . . , (k/j)mapxP (Σ)]M ⇐ P

for all given values of k and have computed the suitable values of j. From this proof, we

can apply the quantifier rules to get a proof of `Σ M ⇐ P .

3.5 Metatheorems

Sometimes, terms of a given type we are interested in do not involve constructors of some

other type. For instance, terms of type nat do not contain constructors of type natlist.

In other words, the type nat does not depend on the type natlist and therefore the depth

of type natlist is not involved in the type checking of terms of the type nat. Then, when

writing out the adequacy theorems for nat, we may omit the depth index corresponding

to the type natlist. We make this intuition precise through the following definitions and

theorems.

Definition 3.5.1 (Type Dependency). For a fixed signature Σ, we say that a type P

directly depends on a type Q if there exists a constructor c : · · · → P → · · · → Q in Σ.

We take “ depends on” relation to be the reflective transitive closure of “ directly de-

pends on”. That is, we say that a type P depends on a type Q if there exists a chain of

dependencies R1, R2, . . . , Rn such that Ri directly depends on Ri+1, R1 = P , and Rn = Q.

Theorem 3.5.2 (Depth Weakening). When M does not involve constructors of priority

n, or when P does not depend on a type with priority n, if `DΣ M ⇐ P , then for all k,

`D[n7→k]
Σ M ⇐ P .

Proof. Directly by induction on the given derivation.
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Theorem 3.5.3 (Depth Strengthening). When M does not involve constructors of priority

n, or when P does not depend on a type with priority n, if for some k, `D[n7→k]
Σ M ⇐ P ,

then `DΣ M ⇐ P .

Proof. Directly by induction on the given derivation.

Theorem 3.5.4 (Depth Shift). If `DΣ M ⇐ A, then `D′Σ M ⇐ A, where D′(n+2k) ' D(n)

for all natural numbers n, and some integer k, such that n+ 2k ≥ 0.

Proof. Directly by induction on the given derivation.

3.6 Examples

In this section, we present a few examples that illustrate the use of SemTT to encode

some infinite structures.

3.6.1 Conatural Numbers

Conats can be easily defined in a signature Σ =

conat : cotype0.

cozero : conat.

cosucc : conat→ conat.

The infinity ω = cosucc (cosucc . . . ) maybe checked against conat as follows:

`0
Σ ω ⇐ conat

{
cosucc : conat→ conat

. . . until we reach 0

`[l−1]
Σ ω ⇐ conat

`[l]
Σ ω = cosucc ω ⇐ conat

}l∈N≥1

∀k. `[k]
Σ ω ⇐ conat

`Σ ω ⇐ conat

The canonical terms a type A are terms M where `Σ M ⇐ A.

Lemma 3.6.1 (Canonical Forms of Conats). If k > 0 and `[k]
Σ M ⇐ conat, then either

M = cozero or M = cosuccM ′ and `[k−1]
Σ M ′ ⇐ conat.

Proof. M must be of the form cM1 . . . Mn, where c : P1 → · · · → Pn → conat ∈ Σ. We

only have two choices for c, c = cozero and n = 0 or c = cosucc and n = 1.

In the first case we have M = cozero, and in the second case we have M = cosuccM ′

and `[k−1]
Σ M ′ ⇐ conat.
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Theorem 3.6.2. There is a compositional bijection between conat and the canonical forms

of type conat.

To facilitate the proof of this theorem, we first need to state it precisely.

Γ `Σ M ⇐ conat iff ∀k.Γ `[k]
Σ M ⇐ conat.

Informally we say

- anything is a conat of depth 0

- Z is a conat of depth k + 1

- S(X) is a conat of depth k + 1 if X is a conat of depth k.

We need to define the association from conat to LF term by the following predicate

(�k):

- X �0 M always

- Z �k+1 cozero always

- S(X)�k+1 cosucc(Y ) iff X �k Y

We say that X �M iff ∀k.X �k M .

Theorem 3.6.3. (1) If X �M , then X is a conat and `Σ M ⇐ conat

(2) If `Σ M ⇐ conat there exists unique X such that and X �M

(3) If X is a conat, there exists unique M such that and X �M .

Proof. The theorem follows from the next one, where the depth index is made explicit.

Theorem 3.6.4. For all k,

(1) If X �k M , then X is a conat up to depth k and `[k]
Σ M ⇐ conat.

(2) If `[k]
Σ M ⇐ conat, there exists unique conat X up to depth k such that and X �k M

(3) If X is a conat up to depth k, there exists unique term M up to depth k such that

and X �k M .

Proof. By induction on k,

Case k = 0,

(1) any X is a conat up to depth 0 and any M satisfies `[0]
Σ M ⇐ conat.

(2) given M , any X satisfies X �0 M , and any two conats are equal conats up to

depth 0.

(3) given X, any M satisfies X �0 M , and any two terms are equal terms up to depth

0.

Case k > 0,

(1) Suppose X �k M ,

we have either (a) X = Z and M = cozero or (b) X = S(X ′) and M = cosucc(M ′),

where X ′ �k−1 M
′.
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If it is former (a), then Z is a conat and `[k]
Σ cozero⇐ conat.

If it is latter (b), then by IH X ′ is a conat of depth k − 1 and `[k−1]
Σ M ′ ⇐ conat.

Then by definition S(X ′) is a conat of depth k and by rule `[k]
Σ cosucc(M ′)⇐ conat.

(2) By the canonical forms lemma (3.6.1), either M = cozero or M = cosuccM ′ where

`[k−1]
Σ M ′ ⇐ conat.

Case (a) M = cozero, let X be Z, then we have Z �k cozero, and if X ′ �k cozero,

we have X ′ = Z by cases.

Case (b) M = cosuccM ′, and `[k−1]
Σ M ′ ⇐ conat. By IH there exists X ′ �k−1 M

′ such

that X ′ is the unique conat up to depth k − 1. Let X be S(X ′). X is a conat of depth k.

Suppose Y �k M is also a conat up to depth k, then by case analysis Y = S(Y ′),

where Y ′ �k−1 M
′, since X ′ is unique X ′ = Y ′ and Y = X.

(3) Given X up to depth k, either X = Z or X = S(X ′) and X ′ is a conat up to depth

k − 1. In the former case, M = cozero is the unique term. In the latter case, by IH, there

exists unique M ′ such that X ′ �k−1 M
′. Let M = cosucc(M ′), and we verify that M is

the unique term such that X �k M .

3.6.2 Infinite Streams of Natural Numbers with Finite Paddings

A stream of natural numbers with finite paddings in between can be defined in a signature

Σ =
pstream : cotype0.

padding : type1.

nat : type3.

zero : nat.

succ : nat→ nat.

stream cons : nat→ padding → pstream.

pad : padding → padding.

next : pstream→ padding.
To satisfy the validity condition, the priority of pstream should be higher than the

priority of padding. Lower priority numbers indicate higher priority.

We write the natural number 0 to mean zero, 1 to mean succ zero and 2 to mean

succ (succ zero). We present an example of a stream of 2’s with two paddings in between.

The stream S satisfying

S = stream cons 2 (pad (pad (next S)))

is an element of pstream.
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Lemma 3.6.5 (Canonical Forms of pstream and padding). For all j, for k > 0, for some

l,

(1) if `Σ
[k, j,−, l]M ⇐ pstream, then M = stream consM1M2 where `Σ

[k − 1, j′,−, l′]M1 ⇐
nat, and `Σ

[k − 1, j′,−, l′]M2 ⇐ padding, for some j′, l′.

(2) if `Σ
[j, k,−, l]M ⇐ padding, then either (a) M = padM1 where `Σ

[j, k − 1,−, l]M1 ⇐
padding, or (b) M = nextM1 where `Σ

[j, k − 1,−, l]M1 ⇐ pstream.

Proof. Directly by induction over given derivation.

Theorem 3.6.6 (Adequacy of Representation). There is a bijection between stream of

natural numbers with finite padding in between and canonical forms of pstream.

Proof. Informally, we abbreviate a stream of natural numbers using the following notation:

N1, P11, P12, . . . , P1p1 , N2, P21, P22, . . . , P2p2 , N3, . . . , where Ni represents natural numbers

for all natural numbers i, and Pij represents paddings, with pi being a natural number

denote the length of the padding.

And this padding corresponds to the canonical term:

stream cons pN1q (padp1 (next (stream cons pN2q (padp2 (next (stream cons pN3q . . . ))))))

Formally, streams are defined as follows,

1. A stream S of depth 0 is anything.

2. A stream S of depth k + 1 is of the form N,P1, P2, . . . , Pn, S
′ where S ′ is a stream of

depth k, and Pi’s are paddings.

With the following encoding relation: (as usual, �0 holds always)

- stream N,P1, . . . , Pn, S
′ �k+1 stream cons pNq (padn (nextMS′)) where S ′ �k MS′

Then we need to prove the following theorem:

(1) For all j, for some l, for all k, if S a stream of depth k, then there exists unique

term M up to depth k such that `Σ
[k, j,−, l]M ⇐ pstream and S �k M .

(2) For all k, for all j, for some l, if `Σ
[k, j,−, l]M ⇐ pstream, then there exists unique

stream S up to depth k such that and S �k M .

We prove all claims simultaneously by induction on k.

Base case k = 0, the conclusions are trivially satisfied.

Case k > 0,

(1) Suppose S is a stream of depth k, S = N,P1, . . . , Pn, S
′ where S ′ is a stream

of depth k − 1 and N is a natural number. By IH, there exists unique MS′ up to

depth k − 1 such that S ′ �k−1 MS′ , and `Σ
[k − 1, j,−, l′]MS′ ⇐ padding. Let M =
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stream cons pNq (padn (nextMS′)) where pNq is the adequate encoding of N , and by the

rules (shown below) `[k,j,−,l]
Σ M ⇐ stream, and by definition S �k M . Uniqueness follows

by cases on S �k M .

1. `[k−1,j,−,l′]
Σ MS′ ⇐ padding IH (Assumption)

2. `[k−1,j+1,−,l′]
Σ nextMS′ ⇐ padding by rule cM1

3. `[k−1,j+1+n,−,l′]
Σ padn (nextMS′)⇐ padding by the rule cM1 applied n times

4. `[k−1,j,−,l′]
Σ pNq⇐ nat adequacy for nat and weakening

5. `[k,j,−,l]
Σ stream cons pNq (padn (nextMS′))⇐ padding by rule cM1

(2) If `Σ
[k, j,−, l]M ⇐ pstream, by the canonical form lemma (3.6.5), M = stream consM1M2,

where `Σ
[k − 1, j′,−, l′]M1 ⇐ nat and `Σ

[k − 1, j′,−, l′]M2 ⇐ padding for some j′, l. By

adequacy for nat, we have a natural number N such that pNq = M1.

For `[k−1,j′,−,l′]
Σ M2 ⇐ padding, we do an induction on j′ to show that for some n,

M2 = padn (nextM ′) where `[k−1,j′−1−n,−,l′]
Σ M ′ ⇐ pstream.

Case j′ = 0. This case is not possible because the type padding is an inductive type.

Case j′ > 0. By canonical forms lemma 3.6.5, either (a) M2 = nextM ′ where

`[k−1,j′−1,−,l′]
Σ M ′ ⇐ pstream, or (b) M2 = padM ′ where `[k−1,j′−1,−,l′]

Σ M ′ ⇐ padding

If it is former (a), then we have n = 0 and M2 = nextM ′ where `[k−1,j′−1,−,l′]
Σ M ′ ⇐

pstream.

If it is latter (b), then by IH we have for some n′, M ′ = padn
′
(nextM ′) where

`[k−1,(j′−1)−1−n′,−,l′]
Σ M ′ ⇐ pstream, we let n = n′ + 1, and we have M2 = pad (M ′) =

padn (nextM ′), and `[k−1,j′−1−n,−,l′]
Σ M ′ ⇐ pstream.

Then by IH, there exists a unique stream S ′ up to depth k − 1 such that S ′ �k−1 M
′,

then by rule, we let S = N,P1, . . . , Pn, S
′, and we verify that S �k M , where M is

stream cons pNq (padn (nextM2)).

The uniqueness follows by cases on S �k M .
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Chapter 4

Semantic Type Theory with Simple

Types and Rational Terms

In this chapter, we present SemTTR, the system where the terms of SemTT are restricted

to rational terms. The system SemTTR mimics circular proof systems in the literature

[BS11].

4.1 Preliminaries

A term is rational if the set of its subterms is finite [Cou83]. Formally, we may represent

a set of subterms using a system of equation. In the following sections, I shall informally

write T = M(T ) for a rational term T = M (M (M . . . )). For instance, I shall write

∞ = cosucc∞ for ∞ = cosucc (cosucc (cosucc . . . )).

We now allow parameters to appear in the context. For example, given symbols k and

j, [k, j] is a depth context. The ordering on the depth context naturally extends to depth

contexts with symbols. For instance, we have [k − 3, j] < [k − 1, j] on principal index 0.

4.2 Type Checking Rules

The signature and judgment forms of SemTTR are the same as that of SemTT, except

that terms are required to be rational, and that depth contexts range over symbols besides

natural numbers.
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Signature Σ ::= · | Σ, a : K | Σ, c : A

Kind K ::= typeN | cotypeN | P → K

Canonical Type Families A ::= P | P → A

Atomic Type Families P ::= a | P M
Terms (Required to be rational) M(k+1) ::= cM1(k) . . . Mn(k)

We simultaneously define the following judgments

Σ ok Signature Σ is type correct

`Σ K ⇐ kind Kind K is a valid kind

`Σ A⇐ type Type A is a canonical type family

`Σ P ⇒ K Atomic type family P synthesizes kind K

`Σ M ⇐ P Term M checks against type P

`DΣ M ⇐ P Term M checks against type P in the depth context D

Σ ok : Σ is a valid signature.

· ok

Σ ok `Σ K ⇐ kind

Σ, a : K ok

Σ ok `Σ A⇐ type

Σ, c : A ok

`Σ K ⇐ kind : K is a valid kind, assuming that Σ ok.

n /∈ pOccurs(Σ)

`Σ typen ⇐ kind
(n is an odd natural number)

n /∈ pOccurs(Σ)

`Σ cotypen ⇐ kind
(n is an even natural number)

`Σ P ⇒ K ′ K ′ = type / cotype `Σ K ⇐ kind

`Σ P → K ⇐ kind

`Σ A⇐ type : A is a good type, assuming that Σ ok.

`Σ P ⇒ K K = typen / cotypen `Σ A⇐ type

`Σ P → A⇐ type

`Σ P ⇒ K K = typen / cotypen

`Σ P ⇐ type
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`Σ P ⇒ K : P has kind K, assuming that Σ ok.

a : K ∈ Σ

`Σ a⇒ K

`Σ P ⇒ P ′ → K `Σ M ⇐ P ′

`Σ P M ⇒ K

`Σ M ⇐ P is defined to be:

`[k0,k1,k2,...,kn]
Σ M ⇐ P

where

(1) ki is a fresh symbol ki if i is even

(2) ki is a concrete number if i is odd

(3) n = maxP (Σ)

`DΣ M ⇐ P : M checks against type P in the depth indexing context D, assuming

that Σ ok.

c : P1 → P2 → · · · → Pn → P ′ ∈ Σ P = P ′ ∀1 ≤ i ≤ n. `D[p(P )7→k]
Σ Mi ⇐ Pi

`D[p(P )7→k+1]
Σ cM1 . . . Mn ⇐ P

cM

`DΣ M ⇐ P
bud

The derivation `DΣ M ⇐ P may be circular by the bud rule, which points to a prior

point in the derivation tree.

When writing down an application of the bud rule, we must explicitly specify which

judgment prior in the derivation that the bud rule “points to”. We say that the application

of the rule bud on judgment `DΣ M ⇐ A is valid if the “pointed to” judgment prior in the

derivation tree is of the form `D′Σ M ⇐ A, and D < D′ on an even principal index.

Due to the structure of the proof system, it must be the case that D[p(P )] = ki − n,

D′[p(P )] = ki − n′ and n > n′, where n, n′ are concrete natural numbers. For example,

when checking that ω = cosucc (cosucc (. . . )) has type conat in the following signature,

conat : cotype0.

cozero : conat.

cosucc : conat→ conat.
The following proof demonstrates a valid application of the bud rule.

cosucc : conat→ conat

(∗)
`[l−1]

Σ ω ⇐ conat
bud

(∗) `[l]
Σ ω = cosucc ω ⇐ conat
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The bud rule “points” to the judgment at (∗), which is a judgment prior in the deriva-

tion. The application of the bud rule is valid because [l − 1] < [l] on principal index 0,

which is an even number.

4.3 Metatheorems

Theorem 4.3.1 (Soundness). If `Σ M ⇐ A in SemTTR, then `Σ M ⇐ A in SemTT.

Proof. To show the conclusion, first we perform quantifier instantiations.

For every instantiation of the universally quantifications, we construct a symbol sub-

stitution where the symbol ki for each even i is mapped to a concrete value (given by

the universal quantifier). The existential quantifiers at the topmost level can be directly

provided the corresponding value of ki for odd i.

Then we proceed to map the proof of `DΣ M ⇐ P in SemTTR to a proof of `DΣ M ⇐ P

in SemTT by induction on the proof.

Case rule cM . Either p(P ) is even or odd.

When p(P ) is odd, we translate the rule to cM1 and proceed to translate the premises.

When p(P ) is even, we check whether the symbol substitution yields 0 for p(P ). If

so, we apply the cM0 rule. If not, we apply the cM1 rule and instantiate a new variable

for all odd index positions that have lower priority. The values of those variables will be

instantiated either at the translation of the bud rule, or can be safely set to zero.

Case rule bud. We “jump” to the derivation (before the translation) where bud points

to and instantiate all unknown variables (created during the translation of the rule cM)

by unifying the expressions at each index.

We check that the translation is productive in the sense that each application of the

bud must be preceded with some application of the cM rule because the bud rule must

point a depth context that is strictly larger.

4.4 Examples

We illustrate how the system SemTTR provides a natural way of writing down type

checking proofs of rational objects in SemTT. Furthermore, we illustrate how priorities

affect the interpretation of the underlying signature.
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4.4.1 A Stream of Natural Numbers

When the stream has a higher priority than natural numbers:

Σ =

stream : cotype0.

nat : type1.

zero : nat.

succ : nat→ nat.

s cons : nat→ stream→ stream.

To prove that the infinite term S satisfying the equation S = s cons 2 (s cons 3S) has

type stream,

`[k0−1,2] 0⇐ nat
`[k0−1,3] 1⇐ nat
`[k0−1,4] 2⇐ nat

`[k0−2,1] 0⇐ nat
`[k0−2,2] 1⇐ nat
`[k0−2,3] 2⇐ nat
`[k0−2,4] 3⇐ stream

(∗)
`[k0−2,4] S ⇐ stream

bud

`[k0−1,4] s cons 3S ⇐ stream
(∗) `[k0,4] S = s cons 2 (s cons 3S)⇐ stream

It could also be the case that streams have lower priorities than natural numbers.

Σ =

stream : cotype2.

nat : type1.

zero : nat.

succ : nat→ nat.

s cons : nat→ stream→ stream.

`[−,2,k2−1] 0⇐ nat
`[−,3,k2−1] 1⇐ nat
`[−,4,k2−1] 2⇐ nat

`[−,1,k2−2] 0⇐ nat
`[−,2,k2−2] 1⇐ nat
`[−,3,k2−2] 2⇐ nat
`[−,4,k2−2] 3⇐ stream

(∗)
`[−,4,k2−2] S ⇐ stream

bud

`[−,4,k2−1] s cons 3S ⇐ stream
(∗) `[−,4,k2] S = s cons 2 (s cons 3S)⇐ stream

4.4.2 Four Kinds of Streams

Assume the auxiliary definition:
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P : type5.

p : P.

nat : type3.

zero : nat.

succ : nat→ nat.

1. Left-fair streams, written in the fixed point notation of

νX.µY.N⊗X ⊕ P ⊗ Y

Left-fair streams could be defined in the following signature (X stands for stream

and Y stands for padding)

pstream : cotype0.

padding : type1.

next : padding → pstream.

num : nat→ pstream→ padding.

pad : P → padding → padding.

Let term S represent a stream of 2’s with one padding in between, i.e., S satisfies the

equation S = next (pad p (num 2S)). We can show that S has type pstream. Here’s

the derivation.

`[k0−1,1,k2,1,k4,3] p⇐ P

`[k0−1,0,k2,1,k4,1] 0⇐ nat
`[k0−1,0,k2,1,k4,2] 1⇐ nat
`[k0−1,0,k2,1,k4,3] 2⇐ nat

(∗)
`[k0−1,0,k2,1,k4,3] S ⇐ pstream

bud

`[k0−1,1,k2,1,k4,3] num 2S ⇐ padding

`[k0−1,2,k2,1,k4,3] pad p (num 2S)⇐ padding

(∗) `[k0,2,k2,1,k4,3] S = next (pad p (num 2S))⇐ pstream

2. Empty type.

In the previous example, the priority of induction and coinduction may not be

switched. If the stream has a lower type than that of the paddings, the resulting

type would be empty.

pstream : cotype2.

padding : type1.

next : padding → pstream.

num : nat→ pstream→ padding.

pad : P → padding → padding.
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A stream of 2’s with one padding in between, i.e., S satisfies the equation S =

next (pad p (num 2S)) can no longer be typed:

`[k0,1,k2−1,1,k4,3] p⇐ P

`[k0,0,k2−1,1,k4,1] 0⇐ nat
`[k0,0,k2−1,1,k4,2] 1⇐ nat
`[k0,0,k2−1,1,k4,3] 2⇐ nat

(∗)Cannot apply the bud rule!

`[k0,0,k2−1,1,k4,3] S ⇐ padding

`[k0,1,k2−1,1,k4,3] num 2S ⇐ padding

`[k0,2,k2−1,1,k4,3] pad p (num 2S)⇐ padding

(∗) `[k0,2,k2,1,k4,3] S = next (pad p (num 2S))⇐ pstream

We cannot apply the bud rule at (∗) because the contexts [k0, 0, k2, 1, k4, 3] < [k0, 2, k2 − 1, 1, k4, 3]

on principal index 1, which is an odd index.

3. Stream of freely mixed numbers and paddings

µX.νY.N⊗X ⊕ P ⊗ Y

When the induction has the priority over coinduction, the above expression corre-

sponds to the following signature (X stands for pstream and Y stands for padding)

pstream : type1.

padding : cotype0.

next : padding → pstream.

num : nat→ pstream→ padding.

pad : P → padding → padding.

The term presenting a stream of 2’s with one padding in between, i.e., S satisfying

S = next (pad p (num 2S)), can be type-checked:

`[k0−1,1,k2,1,k4,3] p⇐ P

`[k0−2,1,k2,1,k4,1] 0⇐ nat
`[k0−2,1,k2,1,k4,2] 1⇐ nat
`[k0−2,1,k2,1,k4,3] 2⇐ nat

(∗)
`[k0−2,1,k2,1,k4,3] S ⇐ padding

bud

`[k0−1,1,k2,1,k4,3] num 2S ⇐ padding

`[k0,1,k2,1,k4,3] pad p (num 2S)⇐ padding

(∗) `[k0,2,k2,1,k4,3] S = next (pad p (num 2S))⇐ pstream

4. With the same expression as the previous case,

µX.νY.N⊗X ⊕ P ⊗ Y
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When priorities are switched such that induction has a higher priority than coin-

duction, the expression corresponds to streams with finitely many numbers and then

only paddings. Therefore, the previous stream is no longer well-typed.

pstream : type1.

padding : cotype2.

next : padding → pstream.

num : nat→ pstream→ padding.

pad : P → padding → padding.

`[k0,1,k2−1,1,k4,3] p⇐ P

`[k0,1,k2−2,1,k4,1] 0⇐ nat
`[k0,1,k2−2,1,k4,2] 1⇐ nat
`[k0,1,k2−2,1,k4,3] 2⇐ nat

(∗)Cannot apply the bud rule!

`[k0,1,k2−2,1,k4,3] S ⇐ padding

`[k0,1,k2−1,1,k4,3] num 2S ⇐ padding

`[k0,1,k2,1,k4,3] pad p (num 2S)⇐ padding

(∗) `[k0,2,k2,1,k4,3] S = next (pad p (num 2S))⇐ pstream

We cannot close the derivation by applying the bud rule because the depth context

[k0, 1, k2 − 2, 1, k4, 3] < [k0, 2, k2, 1, k4, 3] on principal index 1, an odd principal index.

However, streams of finitely many numbers followed by only paddings are well typed.

An example would be the term representing a stream where pads occur infinitely

after an occurrence of 2, i.e., next (num 2 (nextM))), where M is a term satisfying

the equation M = pad pM .

`[k0,1,k2−1,1,k4,1] 0⇐ nat
`[k0,1,k2−1,1,k4,2] 1⇐ nat
`[k0,1,k2−1,1,k4,3] 2⇐ nat

`[k0,0,k2−2,1,k4,3] p⇐ P

(∗)
`[k0,0,k2−2,1,k4,3] M ⇐ padding

bud

(∗) `[k0,0,k2−1,1,k4,3] pad pM ⇐ padding

`[k0,1,k2−1,1,k4,3] next (pad pM)⇐ pstream

`[k0,1,k2,1,k4,3] num 2 (nextM))⇐ padding

`[k0,2,k2,1,k4,3] next (num 2 (nextM))⇐ pstream
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Chapter 5

Syntactic Type Theory with Simple

Types

In this chapter, we introduce SynTT, an easily implementable type theory for SemTTR.

Type checking is decidable in this system. We further prove the soundness and complete-

ness of this system with respect to SemTTR.

5.1 Function Definitions by Depth Indexing

Functions could be defined using the same methodology of depth indexing. We may inter-

pret a function as a binary relation satisfying the function condition: every unique term

on the left corresponds to a unique term on the right, and the productivity condition: the

right-hand side must be productive. For instance, equality, as a binary relation, is also the

identity function.

We could use clauses of the following form when defining a function (one clause for

each form of M),

fk+1(M) =k+1 E(fk(M
′))

The above expression can be understood to define an inductive binary relation on the

set of terms, such that

- any two terms are related at level 0

- M is related to E(X) at level k + 1 when M ′ is related to X at level k.

That is, the above expression defines a relation R such that M RM ′ iff ∀k.M RkM
′,

where
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N R0N
′

M ′RkX

M Rk+1E(X)

When E is guarded (aka productive), the above binary relation satisfies the productivity

condition (since E is guarded), and the function condition (since if M relates to M ′ at every

level, then such M ′ will be unique). Because we intend the relation to be interpreted as

a function, we use the functional notation fk+1(M) =k+1 E(fk(M
′)) when writing out the

relation. We say that the function f sends an object M to the unique object M ′ if M RM ′.

An example of this definition would be substitution operations of infinite terms defined in

the next section.

Theorem 5.1.1 (Downward Closure of Functions). fk+1(M) =k fk(M)

Proof. By induction on k.

Case k = 0, the equality is trivial. When k > 0, By definition fk(M) =k−1 E(fk−1(M ′)),

and fk+1(M) =k+1 E(fk(M
′)).

By the induction hypothesis, fk(M
′) =k−1 fk−1(M ′).

Because equality is a congruence and E is guarded, fk+1(M) =k+1 E(fk(M
′)).

5.2 Extending Terms with Variables

The terms so far do not have the notion of variables and substitution. In order to develop a

practical theory, it is important to consider terms with variables for not-yet-known terms.

And therefore, we develop the theory of adding variables to the syntax of the terms.

Terms M(k+1) ::= cM1(k) . . . Mn(k) | x

With the new extended equality rules:

M =k M
′ (M and M ′ are equal up to depth k, defined by induction on k)

M =0 M
′ x =k+1 x

∀i. Mi =k M
′
i

cM1 · · · Mn =k+1 cM
′
1 · · · M ′

n

Variables must be depth correct when presented as part of a term, and they also

enjoy downward closure properties. Substitutions must respect the observation depths

of variables. For instance, if M(k) = c x then x will have depth k − 1, and when writing

down any substitution instance [M2(j)/x]M(k) we require that j ≥ k − 1. Otherwise, the
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substituted object will not have enough observation depth. We denote the maximum depth

of variable x in M , max(x ∈ M). For instance, if M(k) = c x (d x) (c y), max(x ∈ M(k)) =

k − 1 and max(y ∈M(k)) = k − 2.

We also note that due to the syntax of the terms, variables cannot be applied to

arguments, x M ′ is not a well-formed term.

We define [M ′/x]kM first by induction on k, then by cases on M . That is, we are

defining a function of the form [M ′/x](−). In order for the substitution to be well-defined,

we require the observation depth of M ′ to be ≥ max(x ∈ M). Moreover, the substituted

term [M ′/x]kM will have the same observation depth as M , and that depth is equal to k.

We recall that [M ′/x]0M =0 M
′′ for any term M ′′.

[M ′/x]k+1x =k+1 M
′

[M ′/x]k+1y =k+1 y (y 6= x)

[M ′/x]k+1(cM1 . . . Mn) =k+1 c [M ′/x]kM1 . . . [M ′/x]kMn (y 6= x)

Lemma 5.2.1 (Downward Closure of Substitution). If max(x ∈ M(k)) ≤ j ≤ k, then

[N(k)/x]kM(k) =k [N(j)/x]kM(k).

Proof. By downward closure, if N(k), then N(j), then by downward closure of the equality,

N(k) =l N(j) for all l ≤ j. By reflexivity, Mk =k Mk, call this equality proof D. Then we

replace all the proofs in D of the form xl =l xl by appropriate N(k) =l N(j), and then we

get a proof of [N(k)/x]kM(k) =k [N(j)/x]kM(k).

Lemma 5.2.2 (Maximum Depth of Variables in an Object). If M(k) = c . . . and x ∈
free(M(k)), then max(x ∈M(k)) ≤ k − 1.

Proof. Observation will decrease observation depth.

Since the observation depth of M is k, the observation depth of all arguments is k− 1,

and x is either one of the arguments, in which case it has depth k − 1, or it occurs as a

subterm of one of the arguments, in which case it has depth ≤ k − 1.

Lemma 5.2.3. If M(k), then max(x ∈M(k)) ≤ k.

Proof. Directly by the definition of observation depth.

Lemma 5.2.4 (Equality of Substitution). If M1 =j M2 and max(x ∈ M) ≤ j, then

[M1/x]kM =k [M2/x]kM .

Proof. We have M =k M by reflexivity, whose derivation includes derivation of the form

x = x
. We substitute those derivations with M1 =j M2, and the resulting derivation is a

derivation of [M1/x]kM =k [M2/x]kM
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Theorem 5.2.5 (Equality Commutes with Substitution). If M1 =j M2 and M3 =k M4,

and max(max(x ∈M3),max(x ∈M4)) ≤ j, then [M1/x]kM3 =k [M2/x]kM4.

Proof. Given a derivation of M3 =k M4, we have subderivations of the form
x = x

. Sub-

stitute those rules with the derivation of the M1 =j M2. After performing necessary cut

down of derivation at depth 0, we get a derivation of [M1/x]kM3 =k [M2/x]kM4.

5.3 Representation of Terms and Fixed Points

The terms in this language are rational terms given by the following grammar. Again, we

disallow application of variables to arguments.

Terms M ::= x | cM1 . . . Mn | fixx.M

We implicitly require M to be well-formed by preventing fixed points that aren’t pro-

ductive.

M wellformed

xwellformed

∀1 ≤ i ≤ n.Mi wellformed

cM1 . . . Mn wellformed

M guarded M wellformed

fixx.M wellformed

M guarded

(variables are not guarded)
cM1 . . . Mn guarded

M guarded

fixx.M guarded

Now, we define the fixed point expansion from well-formed terms of SynTT to terms

of SemTT (with variables), expk : Mwellformed
(SynTT) →M(k)(SemTT)

expk+1(x) =k+1 xk+1

expk+1(cM1 . . .Mn) =k+1 c expk(M1) . . . expk(Mn)

expk+1(fixx.M) =k+1 [expk(fixx.M)/x]k+1expk+1(M)

We did not choose to define the last clause as expk+1(fixx.M) =k+1 expk([fixx.M/x]M)

because we want the resulting object to have observation depth at least k + 1. We check

that the right-hand side of exp is productive because of guardedness. Let exp denotes the

function that maps M to M ′ such that expk(M) =k M
′ for every k.

Through a series of theorems, we prove that substitution commutes with exp.
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Lemma 5.3.1 (Downward Closure of exp). If j ≥ k, then expj(M) =k expk(M).

Proof. We show this by showing expk+1(M) =k expk(M), then the result follows by apply-

ing the proof k − j times.

To show expk+1(M) =k expk(M),

by induction on k, k = 0 is trivial, k > 0, then by cases on M ,

- M = x, then we have x =k x directly by rule

- M = cM1 . . . Mn, then expk+1(M) =k+1 c expk(M1) . . . expk(Mn), by IH on, for all

1 ≤ i ≤ n, expk(Mi) =k−1 expk−1(Mi), then by the equality rules, c expk(M1) . . . expk(Mn) =k

c expk−1(M1) . . . expk−1(Mn), since c expk−1(M1) . . . expk−1(Mn) =k expk(M), and expk+1(M) =k

c expk(M1) . . . expk(Mn) by downward closure of =k+1, we have expk+1(M) =k expk(M).

- M = fixx.M ′, we have

1. expk+1(M) =k+1 [expk(M)/x]k+1expk+1(M ′) by definition

2. expk+1(M) =k [expk(M)/x]kexpk+1(M ′) by downward closure of =k+1, functions on 1

3. expk(M) =k [expk−1(M)/x]kexpk(M
′) by definition

4. expk(M) =k−1 expk−1(M) by IH on k

5. expk+1(M ′) =k expk(M
′) by IH on M ′

6. max(x ∈ expk(M ′)) ≤ k − 1 by guardedness of M and 5.2.2

7. expk+1(M) =k expk(M) by 2 3 and 5.2.5

Theorem 5.3.2. Properties of exp:

1. If exp(M) = M ′, then expk(M) =k M
′

2. exp(x) = x

3. exp(cM1 . . . Mn) = c exp(M1) . . . exp(Mn)

4. expk(fixx.M) =k [expk(fixx.M)/x]expk(M)

5. exp(fixx.M) = [exp(fixx.M)/x]exp(M)

Proof. 1. Directly by definition

2.

1. exp(x)0 =0 x by definition of =0

2. exp(x)k+1 =k+1 x by definition of expk+1

3. ∀k.exp(x)k =k x from previous two steps

4. exp(x) = x by definition

3. For any k:
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1. ∀1 ≤ i ≤ n.∀k.exp(Mi) =k expk(Mi) by definition of exp

2. ∀1 ≤ i ≤ n.exp(Mi) =k−1 expk−1(Mi) instantiate ∀k. with k − 1

3. c expk−1(M1) . . . expk−1(Mn) =k c exp(M1) . . . exp(Mn) by definition

4. expk(cM1 . . . Mn) =k c exp(M1) . . . exp(Mn) by definition and transitivity

5. exp(cM1 . . . Mn) = c exp(M1) . . . exp(Mn) by definition

4. To show expk(fixx.M) =k [expk(fixx.M)/x]expk(M)

By induction on k, the case for k = 0 is trivial, for k > 0,

1. expk(fixx.M) =k [expk−1(fixx.M)/x]kexpk(M) definition

2. expk(fixx.M) =k−1 expk−1(fixx.M) downward closure of expk

3. max(x ∈ expk(M)) ≤ k − 1 guardedness of M

4. [expk−1(fixx.M)/x]expk(fixx.M) =k [expk(fixx.M)/x]kexpk(M) substitution lemma

5. expk(fixx.M) =k [expk(fixx.M)/x]kexpk(M) transitivity, 1, 4

5. Directly follows from 4. since k is generic in 4.

Theorem 5.3.3 (exp commutes with substitution). expk([M2/x]M1) =k [expk(M2)/x]kexpk(M1),

for all k. Consequently, exp([M2/x]M1) = [exp(M2)/x]exp(M1).

Proof. To show expk([M2/x]M1) =k [expk(M2)/x]kexpk(M1), for all k,

by induction on k, then on the structure of M1.

The case for k = 0 is trivial. Case k > 0, by cases on M1

1. M1 = x, then

expk([M2/x]x) =k expk(M2) = [expk(M2)/x]kexpk(x).

2. M1 = y 6= x, then

expk([M2/x]y) =k expk(y) = [expk(M2)/x]kexpk(y).

3. M1 = cM ′
1 . . . M

′
n

expk([M2/x](cM ′
1 . . . M

′
n))

=k expk(c [M2/x]M ′
1 . . . [M2/x]M ′

n)

=k c expk−1([M2/x]M ′
1) . . . expk−1([M2/x]M ′

n)

=k c [expk−1(M2)/x]k−1expk−1(M ′
1) . . . [expk−1(M2)/x]k−1expk−1(M ′

n) by IH

=k [expk−1(M2)/x]k(c expk−1(M ′
1) . . . expk−1(M ′

n))

=k [expk−1(M2)/x]kexpk(cM
′
1 . . . M

′
n)

=k [expk(M2)/x]kexpk(cM
′
1 . . . M

′
n) by the substitution lemma and guardedness,

since expk−1(M2) =k−1 expk(M2).
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4. M1 = fix y.M ′

LHS: expk([M2/x] fix y.M ′)

=k expk(fix y.[M2/x]M)

=k [expk−1(fix y.[M2/x]M)/y]kexpk([M2/x]M)

=k [expk−1([M2/x] fix y.M)/y]kexpk([M2/x]M)

=k [expk−1([M2/x] fix y.M)/y]k[expk(M2)/x]kexpk(M) by IH

=k [[expk−1(M2)/x]expk−1(fix y.M)/y]k[expk(M2)/x]kexpk(M) by IH

RHS: [expk(M2)/x]kexpk(fix y.M)

=k [expk(M2)/x]k[expk−1(fix y.M)/y]kexpk(M)

=k [[expk(M2)/x]kexpk−1(fix y.M)/y]k[expk(M2)/x]kexpk(M)

By Downward closure, expk−1(M2) =k−1 (M2), since max(x ∈ expk−1(fix y.M)) ≤ k−
1, by substitution lemma,[expk−1(M2)/x]expk−1(fix y.M) =k−1 [expk(M2)/x]kexpk−1(fix y.M).

Since y is guarded in [expk(M2)/x]kexpk(M), by substitution lemma again we get

the equality.

5.4 Type Checking Rules

The syntax of SynTT signature is as follows:

Signature Σ ::= · | Σ, a : K | Σ, c : A

Context Γ ::= · | Γ, x : P

Kind K ::= type | cotype | P → K

Canonical Type Families A ::= P | P → A

Atomic Type Families P ::= a | P M
Terms M ::= x | cM1 . . . Mn | fixx.M

As an optimization, we remove concrete priority assignment annotations on type and

cotype, and instead rely on the ordering of declarations of family constants in Σ to determine

their ordering. Specifically, type level constants that are declared earlier in the signature

have lower priorities (higher priority numbers) than those declared later in the signature.

The assignment procedure could be described as:

1. Initialize a variable kP for current priority and set it to 0.

2. Iterate through the list of type level constants in reverse order, i.e., a : K ∈ Σ:

3. If K ends with cotype and kP is even, or if K ends with type and kP is odd, set the

priority of a to kP , increment kP and proceed.
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4. If K ends with cotype and kP is odd, or if K ends with type and kP is even, set the

priority of a to kP + 1, set kP = kP + 1 and proceed.

We may now use our old definition of p that assigns the priorities to every constructor

after performing the above procedure.

Because the typing rules enjoy the depth shift property, type checking is sound as long

as the relative priority between types are fixed during introductions of new types and term

constructors.

We simultaneously define the following judgments.

Σ ok Signature Σ is type correct

`Σ K ⇐ kind Kind K is a valid kind

`Σ A⇐ type Type A is a canonical type family

`Σ P ⇒ K Atomic type family P synthesizes kind K

Γ `Σ M ⇐ P Term M checks against type P in context Γ

P1 = P2 P1 and P2 are equal atomic types.

S `M1 = M2 M1 and M2 are equal terms under constraint S

M valid∆ M is priority correct with respect to ∆

Cs good A list of constructors Cs are priority correct

Σ ok : Σ is a valid signature.

· ok

Σ ok `Σ K ⇐ kind

Σ, a : K ok

Σ ok `Σ A⇐ type

Σ, c : A ok

`Σ K ⇐ kind : K is a valid kind, assuming Σ ok

`Σ type⇐ kind `Σ cotype⇐ kind

`Σ P ⇒ K ′ K ′ = type / cotype `Σ K ⇐ kind

`Σ P → K ⇐ kind

`Σ A⇐ type : A is a good type, assuming Σ ok

`Σ P ⇒ K K = type / cotype `Σ A⇐ type

`Σ P → A⇐ type

`Σ P ⇒ K K = type / cotype

`Σ P ⇐ type

`Σ P ⇒ K : A has kind K, assuming Σ ok, A constant or application

a : K ∈ Σ

`Σ a⇒ K

`Σ P ⇒ P ′ → K M wellformed · `Σ M ⇐ P ′ M valid·

`Σ P M ⇒ K
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Γ `Σ M ⇐ P : M checks against type P , assuming M wellformed, M valid·

P ′ = P

Γ, x : P ′ `Σ x⇐ P
refl

Γ, x : P `Σ M ⇐ P

Γ `Σ fixx.M ⇐ P
fix

c : P1 → · · · → Pn → P ′ P ′ = P ∀1 ≤ i ≤ n.Γ `Σ Mi ⇐ Pi

Γ `Σ cM1 . . . Mn ⇐ P
cM

P1 = P2 : P1 and P2 are equal atomic types

a = a

P = P ′ · `M = M ′

P M = P ′M ′

S `M1 = M2 : M1 and M2 are equal canonical terms, modulo equalities in S (un-

ordered)

S `Σ x = x S,M = M ′ `Σ M = M ′ S,M ′ = M `Σ M = M ′

S, fixx.M = M ′ `Σ [fixx.M/x]M = M ′

S `Σ fixx.M = M ′

S,M = fixx.M ′ `Σ M = [fixx.M ′/x]M ′

S `Σ M = fixx.M ′

∀1 ≤ i ≤ n.S `Mi = M ′
i

S ` cM1 . . . Mn = cM1 . . . Mn

To define validity, we need to check each trace modeled by the recurrence of fixed-point

bound variables. Thus, we let Cs be a list of constructors and let ∆ ::= · | ∆, x ↪→ Cs

denote a mapping from variables to a set of constructors. Implicit α-renaming of fixpoint-

bound variables are used to avoid potential name conflicts.

Define the operation of appending a constructor to a context by appending the con-

structor to every list that is in the context.

∆ + c = ∆′

·+ c = ·

∆ + c = ∆′

(∆, x ↪→ Cs) + c = ∆′, x ↪→ Cs ∪ {c}

Then define
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M valid∆ : M is valid with respect to ∆

Cs good

x valid∆,x↪→Cs

M valid∆,x↪→∅

fixx.M valid∆

Mi valid∆+c

cM1 . . . Mn valid∆

Recall that p(c) denotes the priority of the constructor c. Define

Cs good iff ∀c ∈ Cs. either (a) ∃c′ ∈ Cs , p(c′) is even and p(c′) > p(c) or (b) c is

coinductive.

5.5 Metatheorems

In this section, we prove the decidability of type checking, soundness and completeness of

SynTT with respect to SemTTR.

5.5.1 Decidability of Type Checking

Theorem 5.5.1 (Decidability of Term Equality). Given any M and M ′ in SynTT, it is

decidable whether · `Σ M = M ′.

Proof. By analyzing the type checking rules of S `Σ M1 = M2, it either (a) checking each

argument subterms or (b) it adds one clause to the set of constraints. Due to the identity

rules (
S,M = M ′ `Σ M = M ′

,
S,M ′ = M `Σ M = M ′

), no two equalities in S are the

same, because if so, we could immediately close the derivation by one of the identity rules.

It is known that for any rational term, the set of its subterms when viewed as rational

trees are finite. Since S contains only subterms of the initial term, S will only contain

finitely many equality constraints, and thus canonical term checking is decidable.

Corollary 5.5.2. Given any two atomic type families P1 and P2, it is decidable whether

`Σ P1 = P2.

Proof. Directly follows from Theorem 5.5.1.

Theorem 5.5.3 (Decidability of Type Checking). For any term M type A, it is decidable

whether Γ `Σ M ⇐ A.

Proof. The rules are syntax directed and the premise terms are always smaller than the

conclusion term. Family level equalities are decidable by Theorem 5.5.2
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Corollary 5.5.4 (Decidability of Signature Checking). For any signature Σ, it is decidable

whether Σ ok.

Proof. Directly follows from previous theorems.

5.5.2 Soundness

Theorem 5.5.5 (Soundness of validity checking). If M valid, then exp(M) is priority

correct.

Proof. Either exp(M) is infinite or finite.

If exp(M) is finite, then it is valid.

If exp(M) is infinite, we may annotate the derivation ofM valid∆ with trace information.

The trace annotation is complete in the sense that if T is an infinite trace in exp(M),

then it must be introduced by one of the fixed point expressions, which is the only way to

introduce non-finiteness.

Since exp(fixx.M) = [exp(fixx.M)/x]exp(M), exp(M) could be thought of as a context

for iteratively constructing the infinite object, and the constructors that occur infinitely

often on the path will just involve the constructors in between exp(M) and x.

And thus, the conditions on Cs mirror and ensure the desired validity on traces of

exp(M).

To present the soundness of the type checking of SynTT, we need to extend the

derivations of SemTT with variables, that is, hypothetical derivations to be replaced by

actual derivations. We use the notation V∆(R), where R is the “name” of the variable and

∆ is the custom data associated with the variable that may be accessed later when actual

substitution occurs. When a variable carries no custom data, we write V(R).

We use the translation EXP to map SynTT derivations to SemTT derivations with

variables. EXP is also defined by step indexing as SemTT derivations are usually infinite.

Theorem 5.5.6 (Soundness of Object Equality). If · `M = M ′, then exp(M) = exp(M ′).

Proof. EXP maps derivations of the form S `M = M ′ to derivations of exp(M) = exp(M ′).

Here, we choose to build an infinite proof of exp(M) = exp(M ′) instead of a circular proof.

- EXPj+1(
S ` x = x

) =
x = x
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- EXPj+1(
∀1 ≤ i ≤ n.

Di
S `Mi = M ′

i

S ` cM1 · · · Mn = cM ′
1 · · · M ′

n

)

=
∀1 ≤ i ≤ n.

EXPj(
Di

S `Mi = M ′
i)

expk−1(Mi) = expk−1(M ′
i)

c expk−1(M1) · · · expk−1(Mn) = c expk−1(M ′
1) · · · expk−1(M ′

n)

- EXPj+1(
S,M = M ′ `M = M ′

) = V(M = M ′ `M = M ′)

- EXPj+1(
S,M = M ′ `M ′ = M

) = V(M = M ′ `M ′ = M)

- EXPj+1(

D
S, fixx.M = M ′ ` [fixx.M/x]M = M ′

S ` fixx.M = M ′
)

=

[SYM(EXPj(

D
S, fixx.M = M ′ ` [fixx.M/x]M = M ′

S ` fixx.M = M ′
))/V(

fixx.M = M ′ `M ′ = fixx.M
)

][EXPj(

D
S, fixx.M = M ′ ` [fixx.M/x]M = M ′

S ` fixx.M = M ′
)/V(

fixx.M = M ′ ` fixx.M = M ′
)

] EXPj+1(D)

exp([fixx.M/x]M) = exp(M ′)

We show that exp(fixx.M) = [exp(fixx.M)/x]exp(M) = exp([fixx.M/x]M) by Theorem

5.3.3 and Theorem 5.3.3.

SYM denotes the symmetric transformation of the equality proof of SemTT terms (The-

orem 2.2.2).

- Similarly, we define

EXPj+1(

D
S,M = fixx.M ′ `M = [fixx.M ′/x]M ′

S `M = fixx.M ′
)

=

[SYM(EXPj(

D
S,M = fixx.M ′ `M = [fixx.M ′/x]M ′

S `M = fixx.M ′
))/V(

M = fixx.M ′ ` fixx.M ′ = M
)

][EXPj(

D
S,M = fixx.M ′ `M = [fixx.M ′/x]M ′

S `M = fixx.M ′
)/V(

M = fixx.M ′ `M = fixx.M ′
)

] EXPj+1(D)

exp(M) = exp([fixx.M ′/x]M ′)

Again, we have exp(fixx.M ′) = [exp(fixx.M ′)/x]exp(M ′) = exp([fixx.M ′/x]M ′) by The-
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orem 5.3.3 and Theorem 5.3.3.

Since M is guarded, the defined translation EXP is productive because of the guarded-

ness of M in fixx.M . Thus, EXP denotes a unique SemTT object equality proof given a

SynTT equality proof.

The function exp can be naturally extended to expand type families, kinds and signa-

ture.

exp(P → A) = exp(P )→ exp(A)

exp(P M) = exp(P ) exp(M)

exp(a) = a

Similarly, EXP naturally extends to type family equalities.

Theorem 5.5.7 (Soundness of Typing). If · `Σ M ⇐ P in SynTT, then `exp(Σ) exp(M)⇐
exp(P ) in SemTTR

Proof. To show `exp(Σ) exp(M)⇐ exp(P ) in SemTTR, it is sufficient to show `[k0,k1,...,kn]
exp(Σ)

exp(M) ⇐ exp(A) in SemTTR, where kn’s are fresh symbols when n is even and kn’s

are concrete numbers when n is odd. Following a similar method as the proof or Theorem

3.4.6, we let ki’s (where i is odd) be fresh unknown variables ji along with their associated

minimum values mi.

Then we translate the proof by induction on the derivation of Γ `Σ M ⇐ P . When

encountering the rule cM, if p(P ) is even, we decrement the value mapped by p(P ) in the

depth indexing context, and proceed to translate the premises. If p(P ) is odd, we decrement

the unknown variable mapped by p(P ) int depth context, add one to the minimum value

associated with that variable, and proceed to analyze the premises.

When encountering the rule fix, we just directly proceed to analyze the premise. When

encountering the rule refl, we may close the derivation with bud, and make it point to the

derivation Γ `Σ fixx.M ⇐ P where the fixed-point bound variable x is first introduced in

the context. We set the term M of the bud rule to be exp(fixx.M). The bud rule can always

satisfy the closure condition. The validity of the terms ensures that the highest priority

predicate along the path is coinductive, and guardedness ensures that some constructor

must have been encountered. Thus, the depth context must be smaller on an even principal

index.

Since the above procedure is defined by the structure induction on the derivation, it

will terminate. We then instantiate all unknown variables ji (where i is odd) and evaluate
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all corresponding arithmetic expressions associated with ji. We then would have a proof

of `exp(Σ) exp(M)⇐ exp(P ) in SemTTR.

Formally, the translation procedure maybe realized using the EXP function defined by

induction on the argument derivation as follows.

We extend EXP to act on derivations of Γ `M ⇐ A, and now EXP carries the current

depth indexing context in the top left corner, written as D EXP.

- D EXP(
P ′ = P

Γ, x : P ′ `Σ x⇐ P
) = VD(

x ` x
)

- D[p(A)7→k+1] EXP(
c : P1 → · · · → Pn ∈ P ′ ∈ Σ

E
P = P ′ ∀1 ≤ i ≤ n.

Di
Γ `Σ Mi ⇐ Pi

Γ `Σ cM1 · · · Mn ⇐ P
)

=

c : exp(P1)→ · · · → exp(Pn)→ exp(P ′) ∈ exp(Σ)

EXP(
E

P = P ′)
exp(P ) = exp(P ′) ∀1 ≤ i ≤ n.

D[p(A)7→k] EXP(
Di

Γ `Σ Mi ⇐ Pi)

`D[p(P )7→k]
exp(Σ) exp(Mi)⇐ exp(Pi)

`D[p(A)7→k+1]
exp(Σ) c exp(M1) . . . exp(Mn)⇐ exp(P )

- D EXP(

D
Γ, x : P `Σ M ⇐ P

Γ `Σ fixx.M ⇐ P
)

=

[
`D′exp(Σ) exp(M)⇐ exp(P )

bud/VD′(
x ` x

)] EXP(
D

Γ, x : P `Σ M ⇐ P )

`Dexp(Σ) [exp(fixx.M)/x]exp(M)⇐ exp(P )

We have [exp(fixx.M)/x]exp(M) = exp(fixx.M) by Theorem 5.3.3.5. Note that the

recursive call’s data argument D′ is retrieved from the variable declaration.

5.5.3 Completeness

We note that every rational term can be written as a fixed point expression. For instance,

Amadio and Cardelli outlined a detailed procedure of translating a rational term to a fixed

point expression [AC93]. Let exp−1 denote this translation.

Theorem 5.5.8 (Completeness of Typing). If · `Σ M ⇐ P in SemTTR,

then `exp−1(Σ) exp
−1(M)⇐ exp−1(P ) in SynTT.

Proof. The proof of · `Σ M ⇐ P consists of a single derivation with the conclusion

· `[k0,k1,k2,...,kn]
Σ M ⇐ P .
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We construct the derivation of `exp−1(Σ) exp
−1(M) ⇐ exp−1(P ) in SynTT iteratively

as follows:

1. Erase all the depth contexts and replace all cM of SemTTR rule by cM rule of

SynTT.

2. For all leaf rules of bud, we replace the rule with one of the identity rules and insert

(if we have not done so already) the fix rule at the position where the bud rule points to.

It is always possible to write the expression as a fixed point because the bud rule requires

two terms to be identical.

49



50



Chapter 6

Type Dependencies on Simple Terms

Dependent types provide mechanisms of formalizing judgments about infinite terms. They

can encode “rule schemes” that rely on the notion of metavariables. In this chapter, we

explore SemTTDT, SemTTDT
R , SynTTDT, the extension of SemTT, SemTTR, SynTT

with dependent Π-types.

6.1 Type Checking Rules

6.1.1 Semantic Type Theory with Dependent Types

The system SemTTDT is the extension of SemTT with dependent types.

Syntax:

Signature Σ ::= · | Σ, a : K | Σ, c : A

Context Γ ::= · | Γ, x : P

Kind K ::= typeN | cotypeN | Πx : P. K

Canonical Type Families A ::= P | Πx : P. A

Atomic Type Families P ::= a | P M
Terms Mk+1 ::= x | cM1(k) . . . Mn(k)

The priority assignment function p just ignores type dependencies and remains as be-

fore. We still maintain the requirement that the priorities for each type family level constant

are different. We replicate the definitions here.

p(K)

p(typek) = k

p(cotypek) = k

51



p(Πx : P.K) = p(K)

p(A) and p(P )

p(Πx : P.A) = p(A)

p(P M) = p(P )

p(a) = p(K) where a : K ∈ Σ

p(c)

p(c) = p(A) where c : A ∈ Σ

We simultaneously define the following judgments

Σ ok Signature Σ is type correct

`Σ Γ ok Context Γ is well-formed

Γ `Σ K ⇐ kind Kind K is a valid kind

Γ `Σ A⇐ type Type A is a canonical type family

Γ `Σ P ⇒ K Atomic type family P synthesizes kind K

Γ `Σ M ⇐ P Term M checks against type P

Γ `DΣ M ⇐ P Term M checks against type P in the depth context D

Σ ok : Σ is a valid signature.

` · ok

` Σ ok `Σ K ⇐ kind

` Σ, a : K ok

` Σ ok `Σ A⇐ type

` Σ, c : A ok

`Σ Γ ok : Γ is a valid context, assuming that Σ ok.

`Σ · ok

`Σ Γ ok Γ `Σ P ⇒ K K = typen / cotypen

`Σ Γ, x : P ok

Γ `Σ K ⇐ kind : K is a valid kind, assuming that Σ ok, `Σ Γ ok.

n /∈ pOccurs(Σ)

Γ `Σ typen ⇐ kind
(n is an odd natural number)

n /∈ pOccurs(Σ)

Γ `Σ cotypen ⇐ kind
(n is an even natural number)

Γ `Σ P ⇒ K ′ K ′ = typen / cotypen Γ, x : P `Σ K ⇐ kind

Γ `Σ Πx : P. K ⇐ kind
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Γ `Σ A⇐ type : A is a good type, assuming that Σ ok, `Σ Γ ok.

Γ `Σ P ⇒ K K = typen / cotypen Γ, x : P `Σ B ⇐ type

Γ `Σ Πx : P. B ⇐ type

Γ `Σ P ⇒ K K = typen / cotypen e

Γ `Σ P ⇐ type

Γ `Σ P ⇒ K : P has kind K, assuming that Σ ok, `Σ Γ ok.

a : K ∈ Σ

`Σ a⇒ K

Γ `Σ P ⇒ Πx : P ′. K Γ `Σ M ⇐ P ′

Γ `Σ P M ⇒ [M/x]K

Γ `Σ M ⇐ P is defined to be:

When maxP (Σ) is even :

∀k0.∀k2.∀k4 . . . ∀kmaxP (Σ).∃j1.∃j3.∃j5. . . .∃jmaxP (Σ)−1.Γ `
[k0,j1,k2,j3,...,kmaxP (Σ)]

Σ M ⇐ P

When maxP (Σ) is odd

∀k0.∀k2.∀k4 . . . ∀kmaxP (Σ)−1.∃j1.∃j3.∃j5. . . .∃jmaxP (Σ).Γ `
[k0,j1,k2,j3,...,jmaxP (Σ)]

Σ M ⇐ P

Γ `DΣ M ⇐ P : M checks against type P in the depth indexing context D, assuming

that Σ ok, `Σ Γ ok.

(Require: p(P ) is even and D(p(P )) = 0)

Γ `DΣ M ⇐ P
cM0

(cM1 Requires: (1) D′ < D on principal index p(P ), (2) D′(p(P )) + 1 = D(p(P )), and (3)D′(k) = D(k) for all k > p(P ) and k is an even number if p(P ) is even

D′(k) = D(k) for all k > p(P ) if p(P ) is odd
)

c : Πx1 : P1. Πx2 : P2. . . . Πxn : Pn. P
′ ∈ Σ [M1, . . . ,Mn/x1, . . . , xn]P ′ = P

∀1 ≤ i ≤ n.Γ `D′Σ Mi ⇐ [M1, . . . ,Mi−1/x1, . . . , xi−1]Pi

`DΣ cM1 . . . Mn ⇐ P
cM1
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6.1.2 Semantic Type Theory with Rational Terms and Depen-

dent Types

Syntax:

Signature Σ ::= · | Σ, a : K | Σ, c : A

Context Γ ::= · | Γ, x : P

Kind K ::= typeN | cotypeN | Πx : P. K

Canonical Type Families A ::= P | Πx : P. A

Atomic Type Families P ::= a | P M
Terms Mk+1 ::= x | cM1(k) . . . Mn(k)

We simultaneously define the following judgments

Σ ok Signature Σ is type correct

`Σ Γ ok Context Γ is well-formed

Γ `Σ K ⇐ kind Kind K is a valid kind

Γ `Σ A⇐ type Type A is a canonical type family

Γ `Σ P ⇒ K Atomic type family P synthesizes kind K

Γ `Σ M ⇐ P Term M checks against type P

Γ `DΣ M ⇐ P Term M checks against type P in the depth context D

The priority assignment function p just ignores type dependencies and remains un-

changed.

Σ ok : Σ is a valid signature.

` · ok

` Σ ok `Σ K ⇐ kind

` Σ, a : K ok

` Σ ok `Σ A⇐ type

` Σ, c : A ok

`Σ Γ ok : Γ is a valid context, assuming that Σ ok.

`Σ · ok

`Σ Γ ok Γ `Σ P ⇒ K K = typen / cotypen

`Σ Γ, x : P ok

54



Γ `Σ K ⇐ kind : K is a valid kind, assuming that Σ ok, `Σ Γ ok.

n /∈ pOccurs(Σ)

Γ `Σ typen ⇐ kind
(n is an odd natural number)

n /∈ pOccurs(Σ)

Γ `Σ cotypen ⇐ kind
(n is an even natural number)

Γ `Σ P ⇒ K ′ K ′ = type / cotype Γ, x : P `Σ K ⇐ kind

Γ `Σ Πx : P. K ⇐ kind

Γ `Σ A⇐ type : A is a good type, assuming that Σ ok, `Σ Γ ok.

Γ `Σ P ⇒ K K = typen / cotypen Γ, x : P `Σ B ⇐ type

Γ `Σ Πx : P. B ⇐ type

Γ `Σ P ⇒ K K = type / cotype

Γ `Σ P ⇐ type

Γ `Σ P ⇒ K : P has kind K, assuming that Σ ok, `Σ Γ ok.

a : K ∈ Σ

`Σ a⇒ K

Γ `Σ P ⇒ Πx : P ′. K Γ `Σ M ⇐ P ′

Γ `Σ P M ⇒ [M/x]K

Γ `Σ M ⇐ P is defined to be:

Γ `[k0,k1,k2,...,kn]
Σ M ⇐ P

where

(1) ki is a fresh symbol ki if i is even

(2) ki is a concrete number if i is odd

(3) n = maxP (Σ)

Γ `DΣ M ⇐ P : M checks against type P in the depth indexing context D, assuming

that Σ ok, `Σ Γ ok.
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c : Πx1 : P1. Πx2 : P2. . . . Πxn : Pn. P
′ ∈ Σ [M1, . . . ,Mn/x1, . . . , xn]P ′ = P

∀1 ≤ i ≤ n. `D[p(P )7→k]
Σ Mi ⇐ [M1, . . . ,Mi−1/x1, . . . , xi−1]Pi

`D[p(P )7→k+1]
Σ cM1 . . . Mn ⇐ P

cM

Γ `DΣ M ⇐ P
bud

The closure condition of bud remains unchanged.

6.1.3 Syntactic Type Theory with Dependent Types

Syntax:

Signature Σ ::= · | Σ, a : K | Σ, c : A

Context Γ ::= · | Γ, x : P

Kind K ::= type | cotype | Πx : P. K

Canonical Type Families A ::= P | Πx : P. A

Atomic Type Families P ::= a | P M
Terms M ::= x | cM1 . . . Mn | fixx.M

We still use the automatic priority assignment from before. We require terms to be

well-formed. Since the syntax of the terms is not changed, the well-formedness definition

is the same as before. The equality checking rules for atomic families and terms remain

the same as well.

We adapt the type checking rules to include type dependencies. We have the following

judgments.

Σ ok Signature Σ is type correct

`Σ Γ ok Context Γ is well-formed

Γ `Σ K ⇐ kind Kind K is a valid kind

Γ `Σ A⇐ type Type A is a canonical type family

Γ `Σ P ⇒ K Atomic type family P synthesizes kind K

Γ `Σ M ⇐ P Term M checks against type P in context Γ

M validΓ;∆ M is priority correct with respect to ∆ and Γ

Σ ok : Σ is a valid signature.

· ok

Σ ok `Σ K ⇐ kind

Σ, a : K ok

Σ ok `Σ A⇐ type

Σ, c : A ok
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`Σ Γ ok : Γ is a valid context, assuming that Σ ok.

`Σ · ok

`Σ Γ ok `Σ P ⇒ K K = typen / cotypen

` Γ, x : P ok

Γ `Σ K ⇐ kind : K is a valid kind, assuming that Σ ok, `Σ Γ ok.

Γ `Σ type⇐ kind Γ `Σ cotype⇐ kind

Γ `Σ P ⇒ K ′ K ′ = typen / cotypen Γ, x : P `Σ K ⇐ kind

Γ `Σ Πx : P. K ⇐ kind

Γ `Σ A⇐ type : A is a good type, assuming that Σ ok, `Σ Γ ok.

Γ `Σ P ⇒ K K = typen / cotypen Γ, x : P `Σ B ⇐ type

Γ `Σ Πx : P. B ⇐ type

Γ `Σ P ⇒ K K = type / cotype

Γ `Σ P ⇐ type

Γ `Σ P ⇒ K : P has kind K, assuming that Σ ok, `Σ Γ ok.

a : K ∈ Σ

Γ `Σ a⇒ K

Γ `Σ P ⇒ Πx : P.K · `Σ M ⇐ P M validΓ;· M wellformed

Γ `Σ P M ⇒ [M/x]K

Γ `Σ M ⇐ P : M checks against type P , assuming that Σ ok, `Σ Γ ok, M wellformed,

M validΓ;·,

P ′ = P

Γ, x : P ′ `Σ x⇐ P
refl

Γ, x : P `Σ M ⇐ P

Γ `Σ fixx.M ⇐ P
fix

c : Πx1 : P1. Πx2 : P2. . . . Πxn : Pn. P
′ ∈ Σ

[M1, . . . ,Mn/x1, . . . , xn]P ′ = P ∀1 ≤ i ≤ n.Γ `Σ Mi ⇐ [M1, . . . ,Mi−1/x1, . . . , xi−1]Pi

Γ `Σ cM1 . . . Mn ⇐ P
cM

The validity checking is updated to accommodate both fix-bound and Π-bound vari-

ables. The condition for Cs good remains the same.
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M validΓ;∆ : M is valid with respect to ∆ (fix-bound variables) and Γ (Π-bound

variables). Γ and ∆ should be disjoint.

x ∈ Γ x /∈ ∆

x validΓ;∆

x /∈ Γ Cs good

x validΓ;∆,x↪→Cs

M validΓ;∆,x↪→∅

fixx.M validΓ;∆

Mi validΓ;∆+c

cM1 . . . Mn validΓ;∆

6.1.4 Metatheorems

Because the structure of the terms has not changed, we expect all parallel counterparts of

the metatheorems for the simply typed case to hold in the dependently typed case.

6.2 An Example of Bitstreams

Informally, a bit stream is an infinite word over 0, 1. For instance, the following is a

bitstream:

1010010101001011110111010001011 . . . . . . . . . . . .

Informally, we may define the bitstream by induction on the observation depth:

- Anything is a bit stream at observation depth zero.

- 1S and 0S are bitstreams of depth k + 1 if S is a bitstream of depth k.

We have the following SemTTDT signature:

Σ =

bitstream : cotype2.

b0 : bitstream→ bitstream.

b1 : bitstream→ bitstream.
There is a bijection between canonical forms of the type bitstream and bitstreams

defined informally evidenced by the following encoding defined by induction on the obser-

vation depth:

- 0S �k+1 b0M if S �k M

- 1S �k+1 b1M if S �k M

- S �0 M always

Theorem 6.2.1 (Adequacy of the Definition). If S � M , then S is a bitstream and

· `M ⇐ bitstream.

Proof. Direct by induction on the index k.

Theorem 6.2.2 (Adequacy of Encoding). 1. If S is a bitstream, then there exists a unique

M such that S �M , and · `Σ M ⇐ bitstream.
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2. If · `Σ M ⇐ bitstream, then there exists a unique S such that S � M , and S is a

bitstream.

Proof. In the proof, we shall omit Σ under the ` where appropriate to reduce visual clutter.

We prove the following theorems for all k, then the results follow. 1. If S is a bitstream

of observation depth k, then there exists a unique M (up to depth k) such that S �k M ,

and · `[−,−,k] M ⇐ bitstream.

2. If · `[−,−,k] M ⇐ bitstream, then there exists a unique bitstream S (up to depth k)

such that S �k M .

We prove both by induction on k.

When k = 0, both results hold trivially.

When k > 0,

1. Suppose S is a bitstream of observation depth k, then S = 0S ′ or S = 1S ′ where

S ′ is a bitstream of observation depth k − 1, by IH, there exists unique M ′ such that

S ′ �k−1 M
′, and · `[−,−,k−1] M ′ ⇐ bitstream.

If S = 1S ′, we let M = b1M ′, we have S �k M by definition, and · `[−,−,l] b1M ′ ⇐
bitstream by rule. Uniqueness follows by the induction hypothesis and cases on �k.

The case for S = 0S ′ is similar.

2. when · `[−,−,k] M ⇐ bitstream, we see that M cannot be variable and has to be

cM1 . . . Mn, by typing rules, c must have type Πx1 : P1. . . . Πxn : Pn.bitstream (note

that the head of the atomic family doesn’t participate in substitution).

Thus, c is either b0 and b1 and M is either b0M ′ or b1M ′, with · `[−,−,k−1] M ′ ⇐
bitstream.

By IH, there exists a unique bitstream up to depth k − 1 S ′ such that S ′ �k−1 M
′.

If M = b1M ′, then we let S = 1S ′, we have S �k M by definition, and moreover S

is a bitstream by definition. Uniqueness follows by the induction hypothesis and cases on

�k.

The case for M = b0M ′ is similar.

Operations on bitstreams can be defined using coinduction. For instance, the relation

flip(A,B) on bitstream may be defined by coinduction:

flip(S, S ′)

flip(0S, 1S ′)

flip(S, S ′)

flip(1S, 0S ′)
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As usual, the coinduction definition can be written by induction on the observational

depth:

flipk(S, S
′)

flipk+1(0S, 1S ′)

flipk(S, S
′)

flipk+1(1S, 0S ′) flip0(S, S ′)

To encode this in SemTTDT, we first encode the judgment flip indexed by two bit-

stream objects, then encode the rules which are general in bitstream S and S ′.

flip : bitstream→ bitstream→ cotype0.

f lip0 : ΠS : bitstream. ΠS ′ : bitstream. flip S S ′ → flip (b0S) (b1S ′).

f lip1 : ΠS : bitstream. ΠS ′ : bitstream. flip S S ′ → flip (b1S) (b0S ′).

We define the encoding � as usual:

-
flip0(S, S ′)

�0 M always

-

D
flipk(S, S

′)

flipk+1(0S, 1S ′)
�k+1 flip0MSM

′
SMD if

D
flipk(S, S

′)�k MD, S �MS, S ′ �M ′
S

-

D
flipk(S, S

′)

flipk+1(1S, 0S ′)
�k+1 flip0MSM

′
SMD if

D
flipk(S, S

′)�k MD, S �MS, S ′ �M ′
S

Theorem 6.2.3 (Adequacy of Encoding). For any stream S and S ′, there is a bijec-

tion between (infinite) derivations ending in flip(S, S ′) and canonical forms of the type

flipMSM
′
S, where S �MS and S ′ �M ′

S.

Proof. We show a series of lemmas, that entail the original theorem in the end.

1. ⇒: If
D

flipk(S, S
′), then there exists unique M such that,

D
flipk(S, S

′) �k M and

· `[k,−,j] M ⇐ flipMSM
′
S for all j, where S �MS and S ′ �M ′

S.

Given a derivation
D

flipk(S, S
′),

we want to show that there exists M such that,
D

flipk(S, S
′) � M and · `[k,−,j] M ⇐

flipMSM
′
S for all j, where S �MS and S ′ �M ′

S.

By induction on k, k = 0 is trivial, then suppose k > 0,

then by cases,
D

flipk(S, S
′) is either

E
flipk−1(S1, S

′
1)

flipk(0S1, 1S
′
1)

or

E
flipk−1(S1, S

′
1)

flipk(1S1, 0S
′
1)

. Suppose it is

former, then by IH on
E

flipk−1(S1, S
′
1) we have M ′ where

E
flipk−1(S1, S

′
1) �k−1 M

′, and

· `[k−1,−,j] M ′ ⇐ flipMS1 M
′
S′1

for all j, where S1 �MS1 and S ′1 �M ′
S′1

.
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By rule, we have S = 0S1 � b0MS1 = MS and S ′ = 1S ′1 � b1M ′
S′1

= M ′
S′ , which

follows from the correctness of step indexing.

Thus, let M = flip (b0MS1) (b1M ′
S′1

)M ′.

By rule, we have
D

flipk(S, S
′) =

E
flipk−1(S1, S

′
1)

flipk(0S1, 1S
′
1)
�k M , and we check (for all j)

(1) flip0 : ΠS1 : bitstream. ΠS ′1 : bitstream. flip S1 S
′
1 → flip (b0S1) (b1S ′1).

(2) [MS1 ,M
′
S′1
/S1, S

′
1]flip (b0S1) (b1S ′1) = flipMSM

′
S′

(3) · `[k−1,−,j] MS ⇐ bitstream by adequacy for bitstream

(4) · `[k−1,−,j] M ′
S′ ⇐ bitstream

(5)· `[k−1,−,j] M ′ ⇐ flipMS1 M
′
S′1

Then by rule we have · `[k,−,j] M ⇐ flipMSM
′
S′ .

The other case is analogous.

2. ⇐: For all j, if · `[k,−,j] M ⇐ flipMSM
′
S′ then there exists unique derivation

D
flipk(S, S

′), where S �MS and S ′ �M ′
S′ , such that

D
flipk(S, S

′)�k M .

Given · `[k,−,j] M ⇐ flipMSM
′
S′ ,

By induction on k. k = 0 is trivial. Now suppose k > 0.

Then by observation, M must be cM1 . . . Mn, where c : Πx1 : P1. . . .Πxn : Pn.P ∈ Σ,

where [M1, . . . ,Mn/x1, . . . , xn]P = flipMSM
′
S′ .

Since substitution doesn’t change the head of the family, we know that head of the

family is flip and c must be either flip0 or flip1.

If c is flip0, M = cM1M2M3

Since

flip0 : ΠS1 : bitstream. ΠS ′1 : bitstream. flip S1 S
′
1 → flip (b0S1) (b1S ′1).

By inversion on the derivation,

we have (1) [M1,M2/S1, S
′
1](flip (b0S1) (b1S ′1)) = flipMSM

′
S′ . Then MS = b0M1 and

M ′
S′ = b1M2

(2) · `[k−1,−,j] M3 ⇐ flipM1M2

By IH, there exists a derivation
E

flipk−1(S1, S
′
1) such that S1 � M1, S ′1 � M2 and

E
flipk−1(S1, S

′
1)�k−1 M3.

Let S = 0S1 and S ′ = 0S ′1, by properties of �, we have S �MS and S ′ �M ′
S′ .

Let D be

E
flipk−1(S1, S

′
1)

flipk(S, S
′)

, i.e.

E
flipk−1(S1, S

′
1)

flip(0S1, 1S
′
1)

,
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and we check that indeed

E
flipk−1(S1, S

′
1)

flip(0S1, 1S
′
1)
�k flip0M1M2M3 = M

The case for c = flip1 is analogous.
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Chapter 7

Case Study: Subtyping Algorithms of

Isorecursive Types

The type equality and subtyping algorithm has been extensively studied in the literature,

[AC93, BH98, DA10, LBN17]. It is recognized to be an example of mixed induction and

coinduction.

Here, we present a formalization of Ligatti’s subtyping system for isorecursive types

[LBN17].

7.1 The Iso-Recursive Types and Their Representa-

tion

Types are divided into two categories. Open types are types with (possibly) free variables,

and they are denoted τ̄ . Open types τ̄ are the least set of objects generated using the

following grammar.

τ̄ ::= nat | real | τ̄1 → τ̄2 | τ̄1 + τ̄2 | τ̄1 × τ̄2 | µt.τ̄ | t

Closed types are a subset of open types without free variables, and they are denoted τ .

Since the subtyping algorithm is only considered on closed types, we only consider the

set of closed types τ for encoding into CoLF1’s SynTTDT (and the sound and complete

SemTTDT
R ). We identify isorecusive types with their appropriate unfolding, in such a way

that the “iso” aspect is preserved of the isorecursive types.

We rectify the types to their infinite representation. In particular, we add a constructor

µ, τ ::= · · · | µτ , and define the type expansion on closed types by structural induction,
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expk+1(µt.τ) = µ([expk(µt.τ)/t]expk+1(τ)). For example, a type µt.1 + t is viewed as the

infinitary rational term T = µ(1 + T ) = µ(1 + µ(1 + µ(. . . ))).

We define the following signature:

tp : type.

tpµ : cotype.

nat : tp.

real : tp.

arr : tp→ tp→ tp.

sum : tp→ tp→ tp.

prod : tp→ tp→ tp.

fromµ : tpµ→ tp.

µ : tp→ tpµ.

Because we’re working in SynTT, tpµ is assumed to have higher priority (lower priority

number) than tp,

We have the following encoding relation:

p−q sends an object from τ to a term of type tp, defined as follows:

pnatq = nat

prealq = real.

pτ1 → τ2q = arr pτ1q pτ2q.

pτ1 + τ2q = plus pτ1q pτ2q.

pτ1 × τ2q = prod pτ1q pτ2q.

pµτq = fromµ (µ (pτq))
We also have the following equality

pµt.τq = fix t.fromµ (µ (pτq))

where ptq = t

We note that the constructors fromµ and µ always go together because of the design

of our systems.

Theorem 7.1.1 (Adequacy of Encoding). p−q is a bijection between closed types and

rational terms of type tp (up to term unfolding).

Proof. Formally this is provable using a depth indexing argument, by establishing a corre-

spondence between the depth of the isorecursive type (the number of µ’s we’re allowed to

observe under) and the depth of the type tpµ.

That is, we prove that there is a bijection between types τ with µ-depth (the number

of µ′s we’re allowed to observe under) k and M = pτq such that `[k,j]
Σ pτq⇐ tp (for some
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j), by induction on k.

Then since `[k,j]
Σ pτq⇐ tp implies `Σ pτq⇐ tp, we have the adequacy.

7.2 Encoding of the Emptiness Proof

The emptiness predicate checks whether a type is empty (that is, when there are no values of

that type). Ligatti et al. [LBN17] gave an inductive proof with an explicit context. Such

proof can be directly encoded coinductively (without a context). The rules of Ligatti’s

system are copied below.

U ` val(τ) = ∅

U ` val(τ1) = ∅ U ` val(τ2) = ∅

U ` val(τ1 + τ2) = ∅
U-SUM

U ` val(τ1) = ∅

U ` val(τ1 × τ2) = ∅
U-PROD-1

U ` val(τ2) = ∅

U ` val(τ1 × τ2) = ∅
U-PROD-2

µt.τ̄ ∈ U

U ` val(µt.τ̄) = ∅
U-REC-1

U ∪ {µt.τ̄} ` val([µt.τ̄/t]τ̄) = ∅

U ` val(µt.τ̄) = ∅
U-REC-2

The emptiness proof can be directly encoded coinductively, and thus removing the need

for an explicit context. We append the following to the signature:

empty : tp→ cotype.

empty/usum : Πτ1 : tp.Πτ2 : tp.empty τ1 → empty τ2 → empty (sum τ1 τ2)

empty/uprod1 : Πτ1 : tp.Πτ2 : tp.empty τ1 → (prod τ1 τ2)

empty/uprod2 : Πτ1 : tp.Πτ2 : tp.empty τ2 → (prod τ1 τ2)

empty/urec : Πτ : tp.empty τ → (fromµ (µ τ))
To state adequacy, we first modify the proof to act on infinitary type expressions.

Specifically, we replace U-REC-1 and U-REC-2 with the following rule U-REC, and let the

resulting proof system be infinitary. Since the terms are rational and the rules are syntax

directed, the resulting system is also a rational system. After the removal of the U-REC-1

rule and the U-REC-2 rule, the context will always be empty.

· ` val(τ) = ∅

· ` val(µ(τ)) = ∅
U-REC
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Then we establish the following encoding relation (as a coinductive definition).

1. p
· ` val(τ1) = ∅ · ` val(τ2) = ∅

· ` val(τ1 + τ2) = ∅
U-SUMq

= empty/usum (pτ1q) (pτ2q) (p· ` val(τ1) = ∅q) (p· ` val(τ1) = ∅q)

2. p
· ` val(τ1) = ∅

· ` val(τ1 × τ2) = ∅
U-PROD-1q = empty/uprod1 (pτ1q) (pτ2q) (p· ` val(τ1) = ∅q)

3. p
· ` val(τ2) = ∅

· ` val(τ1 × τ2) = ∅
U-PROD-2q = empty/uprod2 (pτ1q) (pτ2q) (p· ` val(τ2) = ∅q)

4. p
· ` val(τ) = ∅

· ` val(µ(τ)) = ∅
U-RECq = empty/urec (pτq) (p· ` val(τ) = ∅q)

Theorem 7.2.1 (Adequacy). For any isorecursive type τ , there is a bijection between the

proof that τ is empty and the canonical terms of type empty (pτq).

Proof. Both proofs and terms are infinitary and rational. We can establish a correspon-

dence between an infinitary proof of depth k and the derivation `[k,−,l,j] M ⇐ empty (pτq)

(where l is the depth index of type tpµ, j is the depth index of type tp). Then the bijection

follows from this correspondence.

7.3 Encoding of the Subtyping Proof

The subtyping rules are copied below.

S ` τ ≤ τ ′

S ` nat ≤ real
S-BASE

S ` nat ≤ nat
S-NAT

S ` real ≤ real
S-REAL

val(τ) = ∅

S ` τ ≤ τ ′
S-⊥

val(τ ′1) = ∅

S ` τ ≤ τ ′1 → τ ′2
S->

S ` τ ′1 ≤ τ1 S ` τ2 ≤ τ ′2

S ` τ1 → τ2 ≤ τ ′1 → τ ′2
S-FUN

S ` τ1 ≤ τ ′1 S ` τ2 ≤ τ ′2

S ` τ1 + τ2 ≤ τ ′1 + τ ′2
S-SUM

S ` τ1 ≤ τ ′1 S ` τ2 ≤ τ ′2

S ` τ1 × τ2 ≤ τ ′1 × τ ′2
S-PROD

µt.τ̄ ≤ µt′.τ̄ ′ ∈ S

S ` µt.τ̄ ≤ µt′.τ̄ ′
S-REC-1

S ∪ {µt.τ ≤ µt′.τ ′} ` [µt.τ̄/t]τ̄ ≤ [µt′.τ̄ ′/t′]τ̄ ′

S ` µt.τ̄ ≤ µt′.τ̄ ′
S-REC-2
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We can again modify the proof to act on infinitary type expressions by combining the

rule S-REC-1 and the rule S-REC-2 into one rule. We also note that the context S will

always be empty after the rule S-REC-1 and the rule S-REC-2 are removed.

· ` τ ≤ τ ′

· ` µ(τ) ≤ µ(τ ′)
S-REC

We can encode the above proof rules into the following SynTTDT signature.

subtp : tp→ tp→ cotype.

sbase : subtp nat real.

snat : subtp nat nat.

sreal : subtp real real.

s⊥ : Πt : tp.Πt′ : tp.empty t→ subtp t t′.

s> : Πt : tp.Πt′1 : tp.Πt′2 : tp.empty t′1 → subtp t (arr t′1 t
′
2).

sfun : Πt1 : tp.Πt2 : tp.Πt′1 : tp.Πt′2 : tp.subtp t′1 t1 → subtp t2 t
′
2 → subtp (arr t1 t2) (arr t′1 t

′
2).

ssum : Πt1 : tp.Πt2 : tp.Πt′1 : tp.Πt′2 : tp.subtp t1 t
′
1 → subtp t2 t

′
2 → subtp (sum t1 t2) (sum t′1 t

′
2).

sprod : Πt1 : tp.Πt2 : tp.Πt′1 : tp.Πt′2 : tp.subtp t1 t
′
1 → subtp t2 t

′
2 → subtp (prod t1 t2) (prod t′1 t

′
2).

srec : Πt : tp.Πt′ : tp.subtp t t′ → subtp (µ t) (µ t′)
We have the following proof encoding relations.

1. p
· ` nat ≤ real

S-BASEq = sbase

2. p
· ` nat ≤ nat

S-NATq = snat

3. p
· ` real ≤ real

S-REALq = sreal

4. p
val(τ) = ∅

· ` τ ≤ τ ′
S-⊥q = s⊥ (pτq) (pτ ′q) (pval(τ) = ∅q)

5. p
val(τ ′1) = ∅

· ` τ ≤ τ ′1 → τ ′2
S->q = s> (pτq) (pτ ′1q) (pτ ′2q) (pval(τ ′1) = ∅q)

6. p
· ` τ ′1 ≤ τ1 · ` τ2 ≤ τ ′2

· ` τ1 → τ2 ≤ τ ′1 → τ ′2
S-FUNq

= sfun (pτ1q) (pτ2q) (pτ ′1q) (pτ ′2q) (p· ` τ ′1 ≤ τ1q) (p· ` τ2 ≤ τ ′2q)

7. p
· ` τ1 ≤ τ ′1 · ` τ2 ≤ τ ′2

· ` τ1 + τ2 ≤ τ ′1 + τ ′2
S-SUMq

= ssum (pτ1q) (pτ2q) (pτ ′1q) (pτ ′2q) (p· ` τ1 ≤ τ ′1q) (p· ` τ2 ≤ τ ′2q)
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8. p
· ` τ1 ≤ τ ′1 · ` τ2 ≤ τ ′2

· ` τ1 × τ2 ≤ τ ′1 × τ ′2
S-PRODq

= sprod (pτ1q) (pτ2q) (pτ ′1q) (pτ ′2q) (p· ` τ1 ≤ τ ′1q) (p· ` τ2 ≤ τ ′2q)

9. p
· ` τ ≤ τ ′

· ` µ(τ) ≤ µ(τ ′)
S-RECq = srec (pτq) (pτ ′q) (p· ` τ ≤ τ ′q)

Theorem 7.3.1 (Adequacy). For any type τ1 and τ2, there is a bijection between the

subtyping proof and canonical terms of the type sub (pτ1q) (pτ2q)

Proof. We recognize that both sides to be infinitary and rational. We can directly establish

a correspondence between a subtyping proof of depth k and the derivation `[k,−,u,−,l,j] M ⇐
subtp (pτ1q) (pτ2q), where k is the index for type sub, u is the index for type empty, l is

the index for type tpµ and j is the index for type tp.
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Chapter 8

Case Study: Circular Proof Systems

with Fixed Points

Fortier and Santocanale [FS13] presented a circular proof system with mixed inductive and

coinductive fixed points. We explore to what extent the system is encodable in CoLF1.

Specifically, we report that the cut-free purely inductive fragment and the purely cut-free

coinductive fragment are representable. We encountered some difficulties when trying to

encode the cut-free mixed inductive and coinductive fragment. We think that further work

is needed in order to encode the full system.

Fortier and Santocanale’s system is parametrized by a system of equations, {x =ρ(π(x))

τ(x)}x∈X , where X is a set of variables, π is the priority function, ρ maps even priorities to

the symbol ν and odd priorities to the symbol µ, and τ maps a type variable to a concrete

type. Therefore, we also parametrize CoLF1 signature by the same system of equations.

8.1 Encoding of the Terms

Terms are given by the following grammar.

t ::= x | t1 + t2 | t1 × t2 | 0 | 1

Since the terms in this system is finite, we can encode the terms as follows.

69



V ar : type.

{x : V ar}x∈X
term : type.

var : V ar → term.

sum : term→ term→ term.

prod : term→ term→ term.

0 : term.

1 : term.
We have the following encoding relation.

pxq = V ar x

p0q = 0

p1q = 1

pt1 + t2q = sum (pt1q) (pt2q)

pt1 × t2q = prod (pt1q) (pt2q)

Theorem 8.1.1 (Adequacy of Encoding). There is a compositional bijection between the

informal terms and canonical forms of the type term.

Proof. By depth shift and depth weakening, it is sufficient to show

(1) If t is a term, then there exists a unique term M = ptq, and `[−,j,−,1] M ⇐ term

for some j.

(2) If for some j, `[−,j,−,1] M ⇐ term, then there exists a unique term t such that

ptq = M .

To show (1), we proceed by induction on t.

Case t = 0, 1, x, we let j = 1, and we directly have the corresponding encoding.

Uniqueness follows by cases on the translation.

Case t = t1 + t2, by IH, we have `[−,j1,−,1] pt1q ⇐ term for some j1, `[−,j2,−,1] pt1q ⇐
term for some j2. We let j = max(j1, j2)+1, and we have `[−,j,−,1] ptq⇐ term. Uniqueness

follows from the induction hypothesis.

The case or t = t1 × t2 is analogous.

To show (2), we proceed by induction on the derivation `[−,j,−,1] M ⇐ term.

By rules, j must be sufficiently large such that for any subderivation `D M ⇐ term,

D(1) > 0.

M must be of the form cM1Mn, and c : P1 → . . . Pn → term. Then c can only be var,

sum, prod, 0, 1.

1. Case c = var, then `[−,j−1,−,1] M1 ⇐ V ar, and by similar arguments, M1 must be

one of the variables, x, then the resulting term t = x.
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2. Case c = 0, then t = 0.

3. Case c = 1, then t = 1.

4. Case c = sum, then `[−,j−1,−,1] M1 ⇐ term, `[−,j−1,−,1] M2 ⇐ term, by induction

hypothesis, there exists t1, t2, such that pt1q = M1 and pt2q = M2. Then t = t1 + t2,

5. the case for c = prod is exactly similar.

8.2 Encoding of the Proof Rules

Because Fortier and Santocanale’s system admits cut elimination, and we encountered a

number of difficulties when trying to represent the cut rule. In particular, the cut rule

introduces the complications into the validity condition that are difficult to encode with

our current design of CoLF1. We choose to represent the cut-free fragment. The cut-free

fragment of the system consists of the following basic proof rules:

t ` t
Id

s0 ` t

s0 × s1 ` t
L×0

s1 ` t

s0 × s1 ` t
L×1

s ` t0 s ` t1
s ` t0 × t1

R×
t ` 1

RAx

0 ` t
LAx

s0 ` t s1 ` t

s0 + s1 ` t
L+

s ` t0
s ` t0 + t1

R+0

s ` t1
s ` t0 + t1

R+1

The inductive fragment contains the following two additional rules.

τ(x) ` t

x ` t
Lµx

s ` τ(x)

s ` x
Rµx

The coinductive fragment contains the following two additional rules.

τ(x) ` t

x ` t
Lνx

s ` τ(x)

s ` x
Rνx

The validity condition states that any cycle in the infinitary rational derivation in the

cut-free fragment must satisfy one of the following conditions: (1) it contains a left fixed
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point rule and the highest priority (the lowest number) of the left fixed point rules is odd

or (2) it contains a right fixed point rule and the highest priority (the lowest number) of

the right fixed point rules is even. When restricted to the purely inductive systems, only

condition (1) applies and when restricted to the purely coinductive systems, only condition

(2) applies.

We then encode the provability of s ` t as follows.

We first encode the common clauses of both the inductive and the coinductive fragment.

Σ0 =

seq : term→ term→ type.

Id : Πt : term.seq t t.

L×0 : Πs0 : term.Πs1 : term.Πt : term.seq s0 t→ seq (prod s0 s1) t.

L×1 : Πs0 : term.Πs1 : term.Πt : term.seq s1 t→ seq (prod s0 s1) t.

R× : Πs : term.Πt0 : term.Πt1 : term.seq s t0 → seq s t1 → seq s (prod t0 t1).

RAx : Πt : term.seq t 1.

LAx : Πt : term.seq 0 t.

L+ : Πs0 : term.Πs1 : term.Πt : term.seq s0 t→ seq s1 t→ seq (sums0 s1) t.

R+0 : Πs : term.Πt0 : term.Πt1 : term.seq s t0 → seq s (sum t0 t1).

R+1 : Πs : term.Πt0 : term.Πt1 : term.seq s t1 → seq s (sum t0 t1).

For the purely inductive fragment, we append the following clause. Note that both

lseq’s and rseq’s have higher priorities (lower priority number) than seq. In order to

represent different priorities, we have one new type per fixed point definition.

Σ1 =

{Rµx : Πs : term.seq s (pτ(x)q)→ seq s (V ar x).}x∈X
{lseqx : term→ term→ cotypeπ(x).}x∈X
{shiftLx : Πs : term.Πt : term.lseqx s t→ seq s t.}x∈X
{Lµx : Πt : term.seq (pτ(x)q) t→ lseq (V ar x) t.}x∈X

For the purely coinductive fragment, we append the following clause

Σ2 =

{Lνx : Πt : term.seq (pτ(x)q) t→ seq (V ar x) t.}x∈X
{rseqx : term→ term→ cotypeπ(x).}x∈X
{shiftRx : Πs : term.Πt : term.rseqx s t→ seq s t.}x∈X
{Rνx : Πs : term.seq s (pτ(x)q)→ rseq s (V ar x).}x∈X

That is, the signature of the proof system encoding for the purely inductive fragment

consists of clauses Σ0 ∪ Σ1, and for the purely coinductive fragment consists of clauses

Σ0 ∪ Σ2.

72



1. p
t ` t

Idq = Id (ptq)

2. p
s0 ` t

s0 × s1 ` t
L×0q = L×0 (ps0q) (ps1q) (ptq) (ps0 ` tq)

3. p
s1 ` t

s0 × s1 ` t
L×1q = L×1 (ps0q) (ps1q) (ptq) (ps1 ` tq)

4. p
s ` t0 s ` t1
s ` t0 × t1

R×q = R× (psq) (pt0q) (pt1q) (ps ` t0q) (ps ` t1q)

5. p
t ` 1

RAxq = RAx (ptq)

6. p
0 ` t

LAxq = LAx (ptq)

7. p
s0 ` t s1 ` t

s0 + s1 ` t
L+q = L+ (ps0q) (ps1q) (ptq) (ps0 ` tq) (ps1 ` tq)

8. p
s ` t0

s ` t0 + t1
R+0q = R +0 (psq) (pt0q) (pt1q) (ps ` t0q)

9. p
s ` t1

s ` t0 + t1
R+1q = R +1 (psq) (pt0q) (pt1q) (ps ` t1q)

10. p
τ(x) ` t

x ` t
Lµxq = shiftLx (pxq) (ptq) (Lµxx (ptq) (pτ(x) ` tq))

11. p
s ` τ(x)

s ` x
Rµxq = Rµxx (psq) (ps ` τ(x)q)

12. p
τ(x) ` t

x ` t
Lνxq = Lµxx (ptq) (pτ(x) ` tq)

13. p
s ` τ(x)

s ` x
Rνxq = shiftRx (pxq) (psq) (Rµxx (psq) (ps ` τ(x)q))

Theorem 8.2.1 (Adequacy). The encoding of the inductive cut-free fragment and the

coinductive cut-free fragment is adequate. That is, given two terms s and t, there is a

bijection between valid circular proofs s ` t of Fortier and Santocanale’s system (of each

fragment) and the canonical terms of the type seq (psq) (ptq).

Proof. The adequacy of signature Σ0 is immediate by induction on both sides.
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For the inductive fragment, we want to show the proofs of s ` t are in one-to-one corre-

spondence to M = ps ` tq, such that ` [x0,−, x1,−, . . . , xn, s,−, j,−, k]M ⇐ seq (psq) (ptq),

where xi denotes the current index of ith variable in the depth context, s denotes the

current index of the sequent, j denotes the current index of the type term and k denotes

the current index of the type var.

If the proofs of Fortier and Santocanale’s system are rational, and the encoding is

syntax-directed, then the corresponding term of CoLF1 is rational.

For the forward direction, we can directly verify that M = ps ` tq satisfies the corre-

sponding typing rules by induction on the number of Lµ rules we could observe under.

For the reverse direction, we do the proof by induction on the lexicographic order of

[x0,−, x1,−, . . . , xn, s,−, j,−, k]. In particular, there is exactly one shiftL rule immedi-

ately followed by an application of the Lµ rule per variable definition. Once we make the

observation, the step context will get smaller, and we can retrieve the corresponding infor-

mal proof object from the induction hypothesis and use the retrieved proof to synthesize

the goal.

The validity of Fortier and Santocanale’s system exactly corresponds to the validity of

CoLF1, in the sense that we must encounter a left rule (and thus decreasing the index of

one of xi’s), before we can close the derivation.

The case for the coinductive fragment is exactly similar.
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Chapter 9

Conclusion and Future Work

In this thesis, we investigated the preliminary questions in building a mixed inductive and

coinductive logical framework. We proposed CoLF1, the first order fragment of a mixed

inductive and coinductive logical framework. We iteratively designed a semantic type the-

ory in which all infinitary objects can be adequately represented, a semantic type theory

on rational terms where type checking is decidable, and a syntactic type theory which can

be easily implemented. Through the case study on the subtyping algorithms of isorecur-

sive types and the circular proof systems with inductive and coinductive definitions, we

showed that when dealing with systems that have internal notions of circularity, CoLF1 can

adequately encode a decent fragment of those systems and the proof checking is decidable.

This work is only a first step towards a full-fledged mixed inductive and coinductive

logical framework. As part of the future work, the proposed type theories can be extended

with quantification over function types, automatic proof search capabilities and constructs

for representing and proving metatheorems.
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