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Abstract

Visual analytics on recently-captured data from video cameras has emerged as an important class
of workloads in edge computing. These workloads make intense processing demands on cloudlets,
whose elasticity is limited by their smaller physical and electrical footprint relative to exascale
cloud data centers. In this paper, we show how cloudlet elasticity can be improved by offloading
visual data decoding. We define a new data access API that embodies decode offload, thereby
avoiding application-level decoding of visual data. Using thermal, power density and data copying
considerations, we identify cloudlet storage as the optimal location for placement of the decode
function. Using a proof-of-concept implementation, we show that this approach can lower cloudlet
CPU utilization by up to 50–80%, and deliver up to 3.5x improvement in the elapsed time of a
typical visual analytics pipeline.
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1 Introduction
Edge computing has limited elasticity, which is the ability to dynamically increase the supply of
computing resources to meet demand. Unlike an exascale cloud data center with an inexhaustible
supply of server hardware to activate as load rises, a cloudlet is designed for a modest-sized
physical space and electric load. A flash crowd can easily overwhelm cloudlet resources. Elasticity
is vital to scalability, because it ensures acceptable queueing delays for cloud-native applications
under a wide range of operating conditions.

In this paper, we show how edge elasticity can be improved for visual data analytics, which
is one of the “killer apps” of edge computing [1, 2]. A typical setting involves a 24x7 flood
of incoming high-resolution data from video cameras, limited bandwidth between cloudlet and
cloud, and substantial cloudlet storage that allows data retention on the order of days or weeks [3,
4, 5]. In this setting, the ability to pose ad hoc visual queries is valuable. Handling these queries
involves re-processing of stored visual data on cloudlets.

We show that the very first step of such re-processing, namely decoding visual data, is a
surprisingly large burden on edge elasticity. As a solution, we propose the well-known mobile
computing technique of offloading computation [6, 7, 8], but apply it to a local rather than
remote accelerator. Based on thermal, energy density and data copying considerations, we identify
cloudlet storage as the optimal location for placement of the accelerator. Synergistically, we also
incorporate batch operations and scheduling into the storage system to reduce stalls and disk seek
overheads. We show that this approach can lower CPU utilization on a cloudlet by up to 50–80%,
and deliver up to 3.5X improvement in the elapsed time of a typical visual analytics pipeline.

This paper makes the following contributions:
• It highlights the heavy burden of decoding visual data in a new class of visual data analytics

applications that are enabled by edge computing and deep learning.

• It defines an API for this new application class that avoids application-level decoding of
visual data.

• It shows how this new API can be mapped to an NVMe-attached storage system that
combines object-store disks with ASIC-accelerated streaming decode of objects.

• It describes a timing-accurate emulator-based proof-of-concept implementation that we have
open-sourced.

• It experimentally validates the performance benefits of this approach on both micro-
benchmarks and application-level benchmarks.

2 Background and Related Work

2.1 Attributes of Visual Data
The quantity of visual data captured each year is staggering. In 2017 alone, over one trillion (1012)
photographs were captured on smartphones [9]. In 2019, an estimated 300 GB of new data
were uploaded to YouTube every minute [10]. Even more visual data is generated by dense
IoT camera deployments. Visual data is large but highly compressible, as shown in Figures 1
and 2 for the widely-used YFCC100M [11] and VIRAT [12] datasets. Encoded object sizes
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Figure 1: Storage Efficiency of Encoding: YFCC100M

0 500
Compression Ratio

0.0

0.5

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Mean = 294.6
Median = 300.6

0 200 400
Encoded file size (M Bytes)

0.0

0.5

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Mean = 117 MB
Median = 29 MB

353 MP4 Videos

Figure 2: Storage Efficiency of Encoding: VIRAT

will increase over time due to improving camera resolution. As data volumes are high even with
compression, the higher capacity and lower cost per bit of spinning disks relative to SSDs make
compressed data on disks the only cost-effective storage strategy. Thus, we expect cloudlets to be
multi-processor, GPU-enabled machines with multiple direct-attached disks to provide storage and
compute capacity for visual data processing.

2.2 Cheap-to-Expensive Forensic Pipelines
Deep neural networks (DNNs) have dominated computer vision since 2012 [13]. Of particular
interest to our use case is image forensics, where the user aims to detect interesting events in a
large amount of archival visual data. The search criteria are often ad-hoc and context-sensitive,
such as “red tour buses from company X” or “a man in blue shirt running.” For such unique
queries, pre-indexing is unlikely to be useful, and the system has to execute analytics directly on
the raw data. Since DNNs are computationally expensive, running them on every single image or
video frame can be very slow.

To avoid the high cost of running DNNs on each visual data item, prior work such as
NoScope [14], BlazeIt [15], Focus [16], and FilterForward [17] use early discard filters that
embody a computationally-cheap subset of the full search predicate. Careful choice of this subset
can eliminate the vast majority of data items, leaving only a few for expensive DNN processing. In
the above examples, “red” and “blue” can be tested with cheap color filters, while “bus” and “man”
require DNNs. A pipeline in which the color filter precedes the DNN can have high throughput if
most data items are dropped by the color filter. This “cheap-to-expensive” method was originally
described in 2004 by Huston et al [18], and is used today by virtually all visual data analytics
systems.
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Figure 3: “Search for Red Buses” from BlazeIt [15]

Figure 3 illustrates an example pipeline of “searching for red buses” from the BlazeIt
system [15]. Compressed images are read from the disk, decoded, and then examined by a
“redness” color filter, which discards images with a below-threshold number of red pixels. The
color filter runs several orders of magnitude faster than the bus detection DNN, but is able to drop
a large percentage of images that do not match the query. Thus, the pipeline preserves the accuracy
of the DNN while delivering high throughput. Figure 4 summarizes the early-discard filters used
in this paper. These have been used in the published work mentioned above, and have been proven
to be highly effective.

3 Problem: High Cost of Decoding
The analytics pipeline shown in Figure 3 consists of four main operations: (R) reading encoded
images from disk, (D) decoding into pixel arrays, (C) execution of color-based filtering, and (B)
execution of the bus detection DNN. Figure 5 shows the average per-image CPU cost of these four
steps in processing 50,000 images from the YFCC100M dataset. The experiments were run on a
cloudlet (4-core slice of a server with two Intel R© Xeon R© E5-2699v3 processors at 2.30 GHz and
an NVIDIA GTX 1080 Ti GPU) with a Seagate 4TB hard disk drive (7200 RPM, SATAv3). This
configuration reflects the typical per-drive resources of a 2-socket server with 8–12 direct-attached
disks.

In Figure 5, the four steps are added incrementally from left to right. Initially (label “R”), the
process is I/O-bound as the read data is discarded immediately. As soon as decoding of visual
data is added (label “R+D”), CPU time jumps dramatically. In fact, image decoding (Step D
alone) consumes 70% of the CPU cost of the full pipeline. The third step (label “R+D+C”) shows
that applying a color detection filter on all data items only increases total CPU usage modestly,
relative to the cost of decoding. What this implies is that the color filter (Step C) can operate
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Frame sampling. Useful when event of interest takes some time [14], e.g., pedestrian
crossing street.

Color filter. Counts pixels in given RGB range; can cheaply detect sky (blue), vegetation
(green), etc.

Face detection. Finds faces in images. Computationally expensive, but is an effective
early-discard filter when finding human activities or recognizing individuals.

Image difference. Computes mean square error (MSE) between current and prior image; if
MSE is small, can assume identical results of later processing stages. Useful in video
processing.

Perceptual hashing. Like image difference, but more robust to pixel noise, minor lighting
differences, etc.

Tiny DNNs. Much smaller, faster, but less accurate versions of standard DNNs [14, 15].
Useful as early discard filters prior to running an expensive DNN.

Figure 4: Early Discard Filters Used in This Paper
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Figure 5: High Scalability Cost of Image Decode

at much higher throughput than JPEG decoding (Step D). The small difference between the bars
labeled “R+D+C” and “R+D+C+B” shows the benefit of early discard. The expensive DNN for
bus detection (Step B) only has to be applied to about 3% of the images that pass the color filter. We
seek a way to reduce cost (D) that is simple, effective and future-proof. Figure 6, which previews
our experimental results from Section 7, confirms the effectiveness of the solution described in the
rest of this paper. Comparing Figure 6 to Figure 5, we see that the average per-image CPU cost of
decoding is reduced to a half (2.3 ms vs 4.7 ms), indicating potential improvement of scalability.

4 Solution: Decode-Enabled Storage
Our solution is developed from an application viewpoint, rather than a systems viewpoint. All
that a typical visual analytics application desires is to obtain RGB arrays of the visual data in
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Figure 6: Impact of Our Solution on Figure 5’s Workload

its virtual memory. The application does not care exactly how these arrays materialize. This
leads to a simple question: “Why doesn’t the storage subsystem return the decoded data when it is
read?” In Sections 4.1 and 4.2 below, we propose a decode-enabled storage API that embodies this
abstraction. The API simultaneously simplifies application development and allows for placement
of functionality close to their optimal position (discussed in Section 5). Our APIs let an application
obtain the decoded version of a visual data object stored on the disk. Beyond that, it supports a
high-value subset of image processing functions and multi-object read optimization. In Section 5,
we consider alternative approaches to implementing the abstraction of decode-enabled storage.

4.1 Extending the Object Store API
Decode-enabled storage extends the well-known object store concept [19] that allows an applica-
tion to create, read, write, and delete logical objects. Our extensions let the calling application
specify operations and transformations to perform on an object as it is read. This is embodied in
the FetchAndDecodeObject call as follows:

FetchAndDecodeObject(
int64 object_id,
int32 opcode,
void* params,
iovec* where_to_put_decoded_object,
iovec* where_to_put_original_object)

Each object is addressed by an integer Object ID. The opcode field indicates whether to fetch
the original compressed object, the decoded version, or both. Fetching both is useful in a server
context, where images may need to be transmitted across a network after local filtering: decoded
objects improve analytics performance and reduce CPU load, while the original versions can be
sent without re-encoding. The final two vectors indicate memory regions into which the fetched
data will be placed using a scatter-gather approach.

Other operations may also be requested using opcode. In this paper, we focus on image
decoding and (content-based) cropping (e.g., face detection), which can be accelerated with ASICs
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and will remain useful long into the future. Parameters for operations can be provided through the
params pointer.

Partial read or write of an object is not supported. This enables additional disk optimizations,
reduces internal fragmentation, and maximizes sequential reads. These semantics are a natural fit
for compressed image data, but work well for video, too. For example, B-frames in H.264 are
encoded using information from both past and future frames. Thus, to successfully decode a single
frame, the decoder needs to retrieve large amounts of surrounding data, possibly the whole object.
We suggest keeping the size of individual objects moderate, on the order of several MBs. Very
large videos (GBs to TBs) can be stored as a sequence of objects, for which the mapping can be
stored in a separate object.

4.2 Multi-Object Batch Iteration
The above single-object API can be seen as offloading computation (e.g., decode) at the granularity
of an image. This granularity can be increased to reap additional benefits. Visual data analytics
is typically a form of batch processing, applied on thousands to millions of images, with no
requirements on order. Performance can be improved by re-ordering the objects, which, for
example, reduces disk seeks or exploits parallel read heads. Although it is well known that access
pattern can have a great impact on I/O performance, the most efficient read order varies from
device to device. On traditional disks, it primarily depends on physical block location and disk
geometry, but this can be obscured by logical block addressing and remapping. On object store
disks such as Seagate’s Kinetic HDD [20], it is further complicated by the firmware’s approach to
storing, fetching, and caching metadata. Access to this information is obscure in the application,
but straightforward inside the disk. Moreover, a system may use a heterogeneous set of disks that
further complicates application-level optimization.

Therefore, it is more intuitive to optimize this within the storage subsystem, behind a unified
batch-oriented API call. Note that this is different from request scheduling on current disks, which
only re-order requests on short work queues. Our decode-enabled storage API provides an iterator-
style batch operation as follows:

IterateCollection(
int64 collection_id,
int32 opcode,
void* params,
int64 logical_index,
int64* flags,
int64* returned_object_id,
iovec* where_to_put_decoded_object,
iovec* where_to_put_original_object)

The list of Object IDs to fetch are created a priori in an object of some custom format,
referenced by collection id. The application iteratively calls this API to retrieve another
object. The returned object id tells which object was fetched. The API guarantees exactly-
once semantics of objects — exhaustive and non-repeating, but makes no promise of the order.
The logical index tracks the iterator cursor. A flag COLLECTION LAST is set in flags
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Architecture Efficiency (GFLOP / J)
CPU (Core i7) 1.14

FPGA (Xilinx LX760) 3.62
GPU (NVIDIA GTX285) 6.78

GPU (AMD R5870) 9.87
ASIC 50.73

Source: Table 4 in Chung et al [21]

Figure 7: Energy Efficiency of Hardware Accelerators

to terminate iteration when the last object is returned. The other fields are the same as in the
single-object API.

5 Implementation
The API described in Section 4 discloses application intent to the system. Using a hardware
accelerator to implement the most compute-intensive parts of this API is clearly the way to
reduce CPU demand, and thereby improve scalability. On cloudlets without the accelerator, a
pure software implementation of the API can provide compatibility. Applications can be written to
this API today, and will continue to work unmodified over the long period of time that it typically
takes for hardware optimizations to gain market share. This is the same strategy that has been used
for GPU acceleration in popular open-source libraries such as OpenGL and DirectDraw.

Two questions follow from this decision. First, what type of accelerator should we use?
Second, where should it be placed? We discuss below the design rationale that leads to our
recommended solution of ASICs within storage devices.

5.1 Energy and Thermal Considerations
As mentioned in Section 1, energy efficiency is a key consideration for a cloudlet. This is especially
true for a hyperconverged multi-tenant cloudlet that must fit into very limited space, yet support
many CPU cores and at least one high-end GPU for visual data analytics. The tight thermal
envelope and limited electrical power budget of such a cloudlet requires very careful attention
to energy and cooling efficiency.

Figure 7 from Chung et al [21] shows the relative energy efficiency (expressed in GigaFLOPs
per Joule) of different hardware accelerators. These specific measurements are for matrix
multiplication, but the trend holds across applications [22]. Energy efficiency improves as one
moves down the rows of Figure 7, but comes at the cost of flexibility. When flexibility is
paramount, CPUs are optimal; when it is not important, ASICs are optimal. Intermediate points in
this spectrum correspond to programmable accelerators such as GPUs.

In our setting, flexibility is not important. The formats used by visual data such as JPEG, PNG,
JPEG2000, and MP4 are well standardized today. These will remain unchanged forever, because of
vast archives of precious data stored worldwide in these formats. If new formats arise in the future,
support for them can be software-only on legacy cloudlets. New accelerators can support the new
formats, in addition to all the old formats. Use of the APIs described in Section 4 insulates legacy
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applications from this discontinuity in hardware implementations. They only deal with decoded
data, and are thus impervious to lower-level changes. What is unlikely to ever change is the need
for decoding data as the first step in visual data processing pipelines.

ASICs, which are fixed-function (i.e., non-programmable), thus emerge as the best type of
hardware accelerator to use. Their lack of versatility is not a handicap for our use case, and their
superior energy efficiency is a major advantage.

The placement of the ASIC is also guided by energy and thermal considerations. Figure 8
shows the thermal heat maps of a typical rackmount cloudlet and a typical standalone cloudlet
while they are processing a visual data pipeline. The brightest areas (in white, yellow and orange)
represent the current “thermal bottleneck” of the system. Adding new hardware to any of these
areas will only worsen this bottleneck, and make cooling the system more difficult. The power
density in these areas is already high, and delivering more power there will also be difficult. As
long as performance is not compromised, adding new hardware to the coolest parts of this heat map
(in blue or black) that are furthest from the current thermal bottleneck is the wise path to follow.
Storage devices are among the coolest parts of Figure 8, and located furthest from the thermal
bottleneck. They also represent the starting points of all visual data pipelines. They are thus the
logical choice for placement of the ASIC.
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5.2 Minimizing Data Copying
A well-known design principle for scalability from “big data” systems and database systems is to
minimize data copying [23, 24, 25]. Locating the decode-acceleration ASIC in a storage device
aligns well with this principle. No new data copies are needed; rather, data is decoded in a
streaming operation as it is read off the disk surface. This may seem to be a counterintuitive
optimization at first glance, because early decoding greatly increases the bandwidth demand on
the SATA interconnect from disk. However, this can be overcome by replacing SATA by the
modern NVMe host-storage interconnect [26]. NVMe was originally created to support the much
higher bandwidth demand of SSDs. There is industry speculatation that NVMe will become the
unified interface for all storage types in the near future, including SSD and disks [27]. By fortunate
coincidence, this trend aligns well with our proposal to place decoding functionality on disks.

Figure 9(a) illustrates the placement of a decode ASIC directly on disk. A cloudlet can be
attached to multiple such disks to exploit parallel storage bandwidth and decode throughput. In
other words, compute and storage scale together when one adds more disks to a system with this
configuration.

An alternative approach, shown in Figure 9(b), is to separate the ASIC from storage and place it
on the I/O bus (typically PCIe). Similar to (a), this strategy makes it easy to add more accelerators
to the system. However, it has at least two deficiencies relative to Figure 9(a). First, it requires
some host mediation of the decoding process, incurring context-switching overheads. Specifically,
the host must initiate reads of encoded objects from disk into DRAM; once complete, it triggers the
decoding of these objects and sends them to the accelerator. While the overhead of this mediation
can be reduced by batching over many objects, it can never be reduced to zero. Second, it incurs
two more round trips of the encoded data over the system bus. Assuming a compression ratio of
15, this amounts to 2/15 = 13% additional cost in terms of bus data transfer and energy. Decode
in GPU (e.g., NVIDIA’s NVDEC) is an instantiation of this strategy, but GPUs are more expensive
and less energy-efficient than an ASIC, and are already a thermal bottleneck (Figure 8).

A third alternative, shown in Figure 9(c), avoids data copying by integrating the ASIC directly
on a CPU die. An example of this approach is Intel’s Quick Sync Video (QSV) feature. With this
approach, decoded data completely bypasses the system bus and possibly even DRAM (if it can
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SATA 500 – 700 MByte/s
NVMe 1,000 – 6,000 MByte/s

HDD “internal” 100 – 300 MByte/s
SSD “internal” > 500 MByte/s

Table 1: Host-Device Bus Technologies and Storage Devices Internal Read Throughput

be written directly to CPU cache). However, as discussed in Section 5.1, there are strong thermal
considerations that argue against adding an accelerator to the already-hot CPU die if an alternative
placement can perform just as well. In addition, it is difficult to scale the CPU-integrated decoder.
Most processors have many CPU cores, but just one (if any) hardware decoder block. Such a
decoder typically can handle hundreds of frames or images per second, more than sufficient for
the vast majority of real-world use cases. Thus, there is little incentive to add more than one
such decoder to a general-purpose processor. However, as our experiments in Section 7 show,
we may need many times the decode capability to fully utilize all of the compute cores and disk
bandwidth in a reasonably-sized cloudlet. Finally, a CPU-integrated solution provides a fixed
decode capability that cannot be scaled up easily (adding processors or additional servers is not
feasible in a cloudlet context); in contrast, a solution with one appropriately-sized ASIC decoder
per disk will naturally scale up decode capability as more storage is added to a system.

5.3 Technical Feasibility
Decoding on disk critically depends on the use of NVMe host-storage interconnects. Table 1 lists
reference speeds of SATA and NVMe, as well as the internal transfer speeds of disks and SSDs.
With an average compression ratio of 15x for JPEG, a disk that delivers 200 MB/s from its platters
will produce 3000 MB/s of decoded data. This is well above what SATA can sustain, but well
within the bandwidth supported by current NVMe products [28].

Fixed-function hardware and FPGAs have already been adopted on hard disks for other
functions [29, 30, 31, 32]. Low-power, low-cost hardware accelerator or FPGA for image decoding
has been studied, prototyped, and validated in both academia and industry (e.g., [33, 34, 35,
36]). Table 2 compares the published performance of two FPGA-based JPEG decoders with
experimental measurements of software decode on a single host CPU core and an embedded
CPU core of an active disk (ARM Cortex A53 on Seagate Kinetic HDD). For reference, we also
benchmarked with Intel Quick Sync Video (QSV), a hardware-accelerated decoder integrated on
certain Intel processors. We see large performance gains with accelerators compared to software
decode on CPUs.

Unlike many previous designs of intelligent storage or active disk [37, 38, 39, 40, 41, 42, 43],
our design precludes the execution of arbitrary code within a disk. This greatly reduces the disk’s
cost, complexity, and security risk. In addition, it avoids putting the cost-, power-, and memory-
limited on-disk computational capabilities in competition against well-provisioned host processors,
which are designed for computational throughput. Any advantage of on-disk general computation
is often rendered obsolete by rapid improvements of the host system driven by Moore’s Law.
Decoding, in contrast, represents a very constrained form of application-level logic that is well
standardized, and is unlikely to become obsolete even if the workload evolves in the long term.
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Device JPEG Decode Speed
Disk CPU (ARM-based, 1.0 GHz) 15 MPixel/s
Host CPU (Intel-based, 2.3 GHz) 60 MPixel/s

FPGA 1 [36] 73 MPixel/s
FPGA 2 [35] 140 MPixel/s

Intel Quick Sync Video 600 – 1,000 MPixel/s

Table 2: JPEG Decode: Software vs HW Acceleration

Another advantage of on-drive decoders is that they can be co-designed with the disk’s specs
in order to fully utilize its internal throughput and outbound bandwidth. A decode-enabled disk
can be equipped with multiple hardware decoders. Under a simple system model, we can bound
the number of decoders by the minimum between its internal (encoded) object throughput and
outbound (decoded) object throughput:

min
(

Disk Internal Read Speed
Avg Encoded Object Size ,

NVMe Speed
Avg Decoded Object Size

)
Object Throughput Per Decoder

(1)

The arguments for images apply similarly to video decoding. IP cores exist that can decode 4K
resolution H.264 video at 60 – 120 frames per second (FPS) [44, 45]. We will explore how much
on-disk decoding capability is needed to deliver performance gains in Section 7.

5.4 Beyond Decoding on Drive
Beyond hardware-assisted decode, it is difficult to justify running computer vision operations on
a disk CPU. Computer vision algorithms tend to be both compute- and memory-intensive, and
have been changing at a rapid pace. They are more suited to execution on powerful host CPUs or
GPUs. General compute capacity in drives is typically modest, and it is usually not worthwhile to
implement new hardware for rapidly evolving workloads.

The one exception we consider here is image cropping on disk. Concretely, we consider two
types of cropping. In the first type, the application provides a bounding box. Cropping based
on pixel coordinates incurs data movement, but only trivial computation, and can be performed
efficiently on disk. This is particularly useful for static cameras where the application has a
priori knowledge about regions of interest, e.g., portion of a traffic camera view covering a
crosswalk [17].

The second type uses dynamic coordinates based on image content analysis. While this can
be expensive in general, we consider operations that can be accelerated through hardware, for
example, face detection. Prior research on face detection accelerators achieved between 30 and
600 FPS [46, 47, 48, 49, 50]. These accelerators output the coordinates of the faces, which the
disk processor uses to perform cropping.

Cropping is possible only after decoding, but offers the opportunity to reduce the amount
of data transferred on the bus. Only the cropped patches are returned, and the other bytes are
discarded. This has the potential to reduce the bandwidth requirement, depending on the crop size
or sparsity of faces in the data set.
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Figure 10: Decode-Enabled Storage Emulator used in Experimental Evaluation

Although we only consider cropping here, as other computer vision algorithms become
standardized and implemented in low-cost hardware, they can be added to the list supported by
a decode-enabled storage device.

6 Timing-Accurate Emulated Prototype
We implement timing-accurate emulation of an NVMe-attached decode-enabled disk that allows
execution of real application code and measurement of wall-clock time and real OS-level statistics
(e.g., CPU time, bandwidth). The emulation allows us to experiment with a wide range of
parameters that are otherwise unavailable in existing hardware products (Section 7). This section
describes our discrete event-driven simulation that uses pre-computation and modeling to emulate
HW decoders, while disk timing is based on a real HDD. 1

6.1 HW/SW-based Emulation Framework
Figure 10 depicts the architecture of our emulator, implemented in a similar way to DiskSim [51]
and Memulator [52]. Application programs are largely unchanged except for the use of the new
APIs to fetch (decoded) data. It includes critical components of a decode-enabled storage device –
the host-disk interconnect bus, potentially parallel HW accelerators for decoding, and mechanical
disk timings. The controller implements the logic to control data flow and coordinate different
components in order to service a request from applications.

For each software-emulated component, we construct (1) a model to calculate the (content-
dependent) completion time for operations, and (2) a mechanism to generate the actual results
produced (e.g., the actual decoded pixel arrays). The latter mechanism must execute faster than
the modeled time; this is achieved by serving pre-computed results from memory. As this generally
runs faster than needed, the system inserts high resolution sleep to achieve the modeled latency.

1 Our emulation and evaluation code is available at https://github.com/fzqneo/smartssd-image
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Following DiskSim, we use a discrete event-driven approach to model complex interactions
between components. For example, requests to the decode ASICs are serialized through a priority
queue sorted by the simulation timestamp. Thus, requests are ordered “correctly” even if generated
out of order by the concurrently executing components. The simulation clock is continually
updated to match the real world time. When a request’s computed completion time is reached
by the simulation, we send the response back to the application.

6.2 Emulating Specialized Hardware
Prototypes ASIC- and FPGA-based image decoders [33, 34, 35, 36] are typically characterized
by a metric specified in MegaPixels per second (MPixel/s). Hence, we parameterize our emulated
decoder with a targeted MPixel/s. With RGB format, 1 MPixel/s is equivalent to 3 MByte/s of
output. In practice, decoding time may vary based on content and compression level of images.
Our emulator accounts for such variability, while maintaining a target speed. We compute a global
scaling factor that scales the average software decode time for an entire image dataset to the target
rate; we apply this factor to the software decode time of each image to obtian its simulated HW
decode time. More concretely, suppose the data set has N images, the software decode time of
image i is tswi , and its decoded size is ri MPixel. When simulating an image decoder parameterized
at M sim MPixel/s, the simulated decode time of image i is calculated as:

tsimi =

∑N
k=0 rk∑N
k=0 t

sw
k

· tswi
M sim

To emulate real-time hardware decode, we pre-decode all images and store them in a ram-disk.
At run time, the decoded data is rapidly returned to the application.

We emulate video decoding and face detection hardware in a similar fashion. For simplicity,
we parameterize them using a target frame per second (FPS), and scale individual elapsed times
based on profiled software times.

6.3 Emulating Disk Hardware Timing
We emulate mechanical disk timing factors, such as seeks, platter rotations, and block cache by
reading files from a real hard disk. Although this will include overheads of the OS, filesystem,
and bus, we find that these are small by performing similar tests on a fast SSD. We were careful to
clear the OS page cache before each experiment.

6.4 Emulating the Bus
We parameterize the emulated bus by a maximum bandwidth (MByte/s). Each (decoded) object
exclusively occupies the bus during its transmission and other objects must wait for the bus to
be relinquished. We assume that the bus operates at the maximum rate when in use, and is
idle otherwise. This simplified model is sufficient to estimate transfer rates for different bus
technologies.
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Host
CPU (cgroup) 4 cores/8 threads, 2.30 GHz

DRAM (cgroup) 64 GB
GPU NVIDIA GTX 1080 Ti

Decode-Enabled Disk (Emulated)
Host-Disk Bus 2,000 MB/s

HW JPEG Decoder 140 MPixel/s ×5
HW Face Detector 30 FPS ×1
HW Video Decoder 480 FPS @ 720p

Standard SATA Disk (Real, baseline)
Specs 3.6 TB, 7200 RPM, SATAv3

Throughput Bulk: 187 MB/s; JPEG: 98 MB/s

Table 3: Default Experiment Setup and Parameters

7 Evaluation
We ran experiments on a workstation with two Intel R© Xeon R© E5-2699v3 processors (total of 36
cores/ 72 threads @ 2.3 GHz), 128 GB DRAM, and an NVIDIA GTX 1080 Ti. Because our
emulator pre-stages decoded data in DRAM to emulate fast HW-accelerated decode, we randomly
sampled 50,000 images from the YFCC100M data set [11]. The corresponding decoded data totals
51 GB, fitting comfortably in DRAM. Likewise, we sampled 6 videos from the VIRAT Release
2.0 Ground data set [12], which are encoded in H.264 format at 1080p / 720p @ 30 FPS. We ran
real visual analytics application code, adapted from published visual analytics systems [14, 15]
and written in OpenCV, TensorFlow, and PyTorch. The emulator was run on a different NUMA
node than the application programs to avoid interference.

Table 3 summarizes the setup and default parameters used in experiments. To saturate a 2,000
MB/s bus, we used Formula 1 to calculate that we need about 5 JPEG decoders at 140 MPixel/s
each (ref. Table 2). We first report results under these default settings, and then study the effect
of varying different host and disk parameters. The preview results presented earlier in Figure 6
hinted at the potential for greatly improved scalability based on CPU utilization, here we delve
into a more detailed study based on wall-clock time, disks supported per server, and end-to-end
throughput, by addressing the following questions:

• Can decode-enabled storage improve application-level performance metrics?

• Can decode-enabled storage reduce processing load on the cloudlet CPU?

• Is NVMe necessary and sufficient for transmitting decoded data from the disk?

• How much processing is needed on the disk?

• How many disks and accelerators can be connected to a cloudlet before saturating the host
system’s resource?

• How does decode-enabled storage compare to alternative solutions to reducing decode
overhead?
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Figure 11: Application Throughput of Micro Benchmarks

7.1 Micro Benchmarks on Images
We first evaluate a series of micro benchmarks of the initial early-discard filters of partial analytics
pipelines. As described in Section 2, such filters are effective in quickly dropping irrelevant data
and greatly reducing per-image computation cost. We run the following on our dataset of 50K
images from YFCC100M:

• Color finds images with many red pixels.

• PHash calculates an image’s perceptual hash value.

• ResNet10[15] is a tiny DNN based on ResNet [53], with 65 × 65 input and 10 layers
(reduced from 224× 224 input, 50–100 layers).

• Face detects faces in an image, annotates the bounding boxes, and drops images with no
faces.

Color and PHash offload image decode operations to the disk. ResNet10 offloads image
decoding to the disk, runs resizing and normalization on the CPU, and runs the neural network
on the GPU. Face offloads both image decode, face detection, and cropping to the on-disk
accelerators. Only the list of cropped patches containing faces, or a null list if there are none,
is returned.

Effects on Application Throughput

Figure 11 reports the benchmark throughputs (image/s) for three systems: (a) Baseline: uses
standard SATA-connected disk and software decode; (b) Batch Iteration Only: optimizes multi-
object batch read order (Section 4.2) on a standard disk; (c) Decode-enabled Storage: combines
batch iteration, on-disk decode, and NVMe. The data labels show improvement factors relative to
Baseline.

Batch Iteration Only is approximated by accessing files sorted by the starting blocks of the
file extents returned by Linux system call FIEMAP. This does not fully account for a hardware
implementation, but provides a partial estimate of the potential gain. This optimization mainly
improves wall-clock time, but slightly improves CPU cost as well.

We see batch iteration alone is effective (up to 2.5x improvement) by improving I/O efficiency,
but is not responsible for all performance gains. Adding on-disk decode HW and NVMe achieves
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up to 4.9x improvement over Baseline. Face is much slower than the others, because face
detection is computationally expensive. However, even a single face detection chip at 30 FPS
delivers 2x gain over software detection on the 4 CPU cores used in this experiment.

Is NVMe Necessary and Sufficient?

Figure 12 measures the data transfer rate on the bus for Baseline and Decode-enabled Storage.
With decode-enabled storage, up to 1,400 MB/s is transferred to the host, clearly exceeding SATA
bandwidth. This increase reflects two factors: (1) the transfer of decoded, rather than compressed
images; (2) the host CPU, freed from decode tasks, can process images at higher throughput
(Figure 11).

With Face, decode-enabled storage actually consumes less bandwidth than baseline (0.6 vs. 1.1),
despite running 2x faster (recall Figure 11). This is due to cropping-on-disk (Section 5.4) that only
sends cropped faces. In YFCC100M, only 23% of images contain human faces, with an average
size of 97.5 × 126.9 pixels. Hence, even though they are sent as uncompressed pixels, the face
crops require less bandwidth than whole-image JPEG files for the entire dataset.

To study how the bus speed impacts performance, we throttle the emulated bus’s bandwidth
between 500 MB/s (SATA speed) and 4,000 MB/s (high-end NVMe speed), and measure
throughput for Color, PHash and ResNet10 (Figure 13). We see that bus bandwidth has
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almost linear impact on application throughput up to 2,000 MB/s, again confirming the importance
of NVMe for our design.

Alternative Solution: Storing Decoded Data

An alternative approach to completely eliminating the decode cost is to store the decoded data
directly on the disk, at the expense of reading more data from the disk platters. Figure 14 reports the
host-disk transfer rate and application throughput of this approach. As expected the data transfer
rate increases significantly by up to 3.7x over baseline, limited by the internal read speed of the disk
(Table 1). This increase is due to larger sequentially accessed files, resulting in fewer seeks, and
the fact that the decode bottleneck is removed from the CPU. Unfortunately, this increase is offset
by the 15x inflation in object sizes, resulting in a net decrease in application-level throughput.
Furthermore, this in effect reduces the disk’s capacity by 15x as well. Overall, storing decoded
images on the disk is a losing proposition due to poor performance and poor cost-efficiency.

Scaling on A Large Cloudlet

In a realistic edge deployment, a cloudlet typically has dozens of CPU cores that process data from
a dozen disks in parallel. Among others, general-purpose compute cycles are a precious resource.
Utilizing decode-enabled storage is a more economic way to improve elasticity than adding more
CPU hosts. This leads to a question: “For a given cloudlet, how many disks should be used?”

We first investigate how many CPU cores the application utilizes when saturating a single disk’s
throughput. Figure 15 shows the application throughput on a single decode-enabled disk, as we
vary the number of physical cores allocated to the processes. The “kinks” of the curves indicate
when the CPU cores start being underutilized, as the bottleneck shifts to I/O. For Color, PHash,
and ResNet10, the sweet spot appears to be 4 cores / 8 threads. Face is not limited by CPU, as
the processing running on CPU is negligible.

Based on measured CPU/GPU utilization at that point of saturation, we extrapolate the scaled-
out performance as more standard or decode-enabled disks are connected to our 36-core cloudlet.
This machine has 136 GB/s DRAM bandwidth, well above the bandwidth demands calculated
in this scenario. Besides, we benchmarked the GTX 1080 Ti GPU can run ResNet10 at
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Figure 16: Extrapolated Application Throughput with Varying Number of Disks

40,000 images/sec, and should not be a bottleneck in our scaling range. Figure 16 shows the
extrapolated application throughput as the number of disks is increased. For all cases, decode-
enabled storage achieves more than 2x higher throughput than standard disks. It also suggests
connecting up to 20 decode-enabled disks to a cloudlet, requiring up to 20× 1.5 = 30 GB/s of
data transfer rate. Can a modern machine support this required I/O bandwidth? With 40 lanes of
PCIe 3.0 per socket, and two sockets, the benchmark machine has a theoretical peak I/O bandwidth
of 80 GB/s, so it should be feasible to support more than 20 decode-enabled disks in one system.

Figure 16 also shows that the general-purpose CPU cores, when freed from the decode task,
can execute the early-discard filters at more than 15,000 image/s. This is approximately 15–20x
higher than the JPEG decode throughput we can obtain from the Intel Quick Sync Video accelerator
(Table 2). In other words, on-die accelerators need to be scaled up by 15–20x to meet the whole
CPU’s processing speed. The thermal, engineering, and business challenges associated with this
were discussed in Section 5.

7.2 Micro Benchmarks on Video
We run experiments on the VIRAT video data set using the pipeline from [14]. Here, we sample
video frames at fixed intervals; then compute the mean squared error (MSE) between the sampled
frame and the frame one second (30 frames) earlier. If MSE is lower than a threshold, we consider
the frame to have the same content as the prior one and suppress further processing. The baseline
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Figure 17: Video Decode on CPU (Baseline) vs ASIC

solution decodes video in software as fast as it can when running the pipeline. With decode-
enabled storage, decoding is performed on the disks and skipped frames are not transmitted. MSE
computation always runs on the host.

Processing video shows two key differences from processing image. First, because of the very
high compression ratios and large file sizes of video, disk read is not as much of a bottleneck as
with images, and the use of batch iteration makes little difference. Second, the frame sampling rate
greatly affects the relative cost of decode. When frames are sampled more frequently, more CPU
cycles need to be devoted to MSE calculation, while the decode costs remain constant, because
skipped frames may also be decoded due to the sequential nature of modern video encoding
schemes like H.264.

In Figure 17, we vary the decoding speed of our emulated on-disk ASIC (240/480/960 FPS)
and compare it to the baseline. We use two sampling rates: 10% and 50%. Higher video decoding
capacity in the disk leads to higher application-level throughput, but not proportionally, due to
overheads of MSE computation. When sampling rate is high (Figure 17b), application throughput
is lower (600 vs. 800), because more MSE computation is needed. Meanwhile, host-disk transfer
rate will be higher (800 vs. 300 MB/s), as more decoded frames are sent over the bus. Overall,
we observe that decode-enabled storage must have decode capability of over 480 FPS (at 720p) to
outperform baseline on this task.
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YFCC/Red bus YFCC/Obama VIRAT/Pedestrian
Figure 18: Example Results from Full Visual Pipelines

7.3 Full End-to-End Pipelines
Finally, we evaluate the following full analytics pipelines applicable to real image/video search
tasks:

• RedBus runs the pipeline in Figure 3 to find red buses in YFCC100M. It first runs a redness
color filter, and then passes the candidates to an SSD-MobileNet [54] running on the GPU
to detect the presence of buses.

• RedBus-fast trades off accuracy for speed by replacing object detection with image
classification (MobileNet [55]). Classification is faster, but may miss images where the
bus is not the dominant object.

• Obama searches for Barack Obama in YFCC100M. It first runs face detection to discard
images without faces, and then runs face recognition on the face patches.

• Pedestrian detects humans in VIRAT videos. It performs frame sampling and uses image
difference to filter sampled frames. Because the VIRAT videos are captured from wide
angles and far distances, the candidate frames are passed to Faster R-CNN ResNet101 to
detect humans, a more expensive but accurate DNN than SSD-MobileNet for this kind of
task. We evaluate this with two frame-sampling rates: 10% and 50%.

Figure 18 gives a search result example of each application. The selectivity — fraction of
images/frames that contain the search target — is 0.01% for RedBus, 0.004% for Obama, and
2.45% for Pedestrian.

We compare the performance of these tasks on (1) a standard SATA HDD; (2) a standard SATA
SSD — today’s go-to choice for fast but expensive storage; and (3) our proposed NVMe-connected
Decode-enabled Storage. Figure 19 reports the application throughput and CPU cost per image
for each application and storage type. The annotated numbers are improvements relative to the
standard SATA HDD.

Overall, decode-enabled storage shows greater throughput with lower host CPU cost than
standard HDD and standard SSD. Comparing RedBus and RedBus-fast, we observe that
this commonly used classification-detection tradeoff is effective only when the disk and decode
overhead is removed. With Obama, throughput is limited by face detection either in software or
hardware. Similarly, Pedestrian is largely limited by video decode speed, which is similar in
software and hardware. Nonetheless, offloading decode reduces the host CPU cost by 50–80%,
allowing more apps to run in parallel on an edge node.
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Figure 19: Full End-to-End Visual Pipeline Performance

8 Related Work
Edge computing is an emerging computing paradigm in which miniature cloud-like compute
infrastructure is deployed close to mobile and IoT devices [56]. Prior work on edge computing has
focused on network and CPU/GPU resources [57, 58, 17, 59, 60, 61]. They have not investigated
storage optimizations for the edge.

Decode-enabled storage complements improvements in other layers of multimedia systems,
such as visual data encoding [62, 63, 64], hardware accelerators [33, 34, 35, 36, 46, 47, 48,
49, 50], computer vision algorithms [65, 53, 55, 66], and distributed data processing systems,
including some optimized for multimedia data [67, 68, 69, 70, 71, 72].

Embedding application-level processing inside storage, to create intelligent or active disks [41],
has a long and distinguished history. An excellent account of the origin and history of the active
disk concept is provided by Riedel [73]. That work attributes the roots of this concept to research
on database machines from the mid-1970s through the early 1990s [74, 75, 76, 77, 78, 79, 80].
Riedel’s work confirmed the significant performance benefits of this approach for systems of the
late 1990s to early 2000s.
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Various other researchers have also investigated this concept, including Acharya et al [37],
Keeton et al [38], Ma et al [39], Memik et al [40], Rubio et al [42], and Wickremesinghe et al [43].
Closely-related work on optimal function placement at different levels of the memory hierarchy
include Abacus [81], Coign [82], River [83], and Eddies [84]. By the mid-2000s, interest in active
disks had faded. Their predicted wins were muted by the onward march of commodity hardware
performance through Moore’s Law. By the late 2000s, active disks appeared to be an idea whose
time had come and gone.

There has recently been renewed interest in executing application code close to storage in
SSDs [85, 86, 87, 88, 89, 90]. Most of this work focuses on file system and database workloads
rather than multimedia processing. For magnetic disks, we are not aware of any published work
on active disks in the past 15 years. Our work thus represents a revisit of fundamental questions
concerning the optimal placement of processing in a long pipeline that originates on disk.

9 Closing Thoughts
Edge computing faces difficult business challenges as it makes the journey from concept to
reality. We will soon see the emergence of small, standalone cloudlets with WiFi or small-cell
5G wireless connectivity that can be easily deployed on premises, at remote outdoor work sites,
or on board vehicles, seacraft and aircraft. These standalone cloudlets will enable an explosion
of visual data analytics applications. This paper shows how the scalability (and, hence, business
viability) of these cloudlets can be greatly improved. Our work provides the storage industry with
a unique opportunity to create decode-enabled disks. However, application writers incur little
risk in adopting the API proposed in Section 4. If the storage industry fails to capitalize on this
opportunity, the competition can step in by providing one of the alternative implementations that
were discussed in Section 5. In either case, the bigger point of this paper holds: i.e., hardware
acceleration of visual data decode is valuable for edge computing.

Our abstraction of decode-enabled storage embodies a new API that consolidates and optimizes
common read and decode steps. We have designed, emulated, and validated this new storage
abstraction. Our experiments show that use of this abstraction can lower CPU utilization on a
cloudlet by up to 50–80%, thereby significantly improving scalability. In addition, we show up to
3.5X improvement in the total elapsed time for processing a typical visual analytics pipeline.

Embedding application-level processing inside storage, to create intelligent storage [38] or
active disks [41] is an old idea. There has recently been renewed interest in this idea for SSDs [85,
86, 87, 88, 89, 90]. Most of that work focuses on file system and database workloads rather than
visual data analytics. For magnetic disks, we are not aware of any relevant published work in the
past 15 years. Our work thus revisits fundamental questions concerning the optimal placement of
processing in a long pipeline that originates on disk.
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