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Abstract
Democracy is a natural approach to large-scale decision-making that allows

people affected by a potential decision to provide input about the outcome.
However, modern implementations of democracy are based on outdated infor-
mation technology and must adapt to the changing technological landscape.
This thesis explores the relationship between computer science and democracy,
which is, crucially, a two-way street—just as principles from computer science
can be used to analyze and design democratic paradigms, ideas from democracy
can be used to solve hard problems in computer science.

Question 1: What can computer science do for democracy?
To explore this first question, we examine the theoretical foundations of

three democratic paradigms: liquid democracy, participatory budgeting, and
multiwinner elections. Each of these paradigms broadly redistributes power
from the few to the many: For instance, liquid democracy allows people to
choose delegates more flexibly and participatory budgeting enables citizens to
directly influence government spending toward public projects. However, be-
cause these paradigms are relatively new, their theoretical properties are rel-
atively unexplored. We analyze each of these three settings from the point of
view of computational social choice, which is a mathematical framework for
collective decision-making. In particular, we focus on a combination of robust-
ness, fairness, and efficiency with the end goal of providing actionable advice
for future iterations of these paradigms.

Question 2: What can democracy do for computer science?
Toward this end, we explore two settings in which democratic principles

can be used to augment approaches to making difficult decisions—in our case,
automating ethical decision-making and hiring in online labor markets. Both
of these problems are difficult in the sense that there is no universally agreed-
upon function to optimize, making them a poor fit for traditional approaches
in computer science. Instead, we try to emulate a world in which we can get
input from people in order to arrive at a “societal” decision. In each of these
settings, we first propose and analyze a theoretical approach that leads a single
decision, and then, in collaboration with HCI researchers, run experiments in
the real world to test the efficacy and practicability of our approaches in the
real world.



vi



Acknowledgments
First and foremost, I must thank Ariel Procaccia, my advisor, for being

the best advisor anyone could hope for. You have taught me so much, not
only technically, but also with respect to writing effective papers, giving better
talks, mentoring junior students, and providing me with a sustainable example
of healthy (and productive!) work-life balance. I will strive to learn from and
emulate your unrivaled blend of brilliance, eloquence, and patience. Thank you
for everything.

To my thesis committee, Vince Conitzer, Chinmay Kulkarni, David Pen-
nock, and Nihar Shah, thank you for your insightful comments and wonderful
questions that have helped me structure and present my work. I truly appre-
ciate all the comments and questions, even if I may not have all the answers yet!

To the professors at Harvard that led me down the grad school path: David
and Yiling. Thank you for opening my eyes to the wonders of Econ-CS (or CS-
Econ here at CMU), for supervising my first attempt at independent research
(David), and for your continued support and guidance over the years.

To my collaborators: Gerdus Benadè, Allissa Chan, Rupert Freeman, Paul
Gölz, Bernhard Haeupler, Ellis Hershkowitz, Gregory Kehne, Ji Tae Kim, Yas-
mine Kotturi, Chinmay Kulkarni, David Kurokawa, Daniel Kusbit, Min Kyung
Lee, Siheon Lee, Simon Mackenzie, Ritesh Noothigattu, David Pennock, Do-
minik Peters, Ariel Procaccia, Alex Psomas, Daniel See, and Xinran Yuan. I
truly enjoyed collaborating with each and every one of you, and thank you for
bringing your expertise and hard work to the projects we worked on together.

To my friends: Ellis, Alex, Greg, Roie, Mark, Kevin, Paul, Bailey, Jalani,
Ellen, Ryan, Costin, Sidu, Ved, Kevin, Carl, Lisa, Amna, Michelle, Ramya,
Chara, Robi, Andrew, Justin, and all others. Thank you for your continued
support and companionship through this journey. Grad school would have been
an altogether different and darker time without you.

To my family: Dad, Mom, Alex, Aidan, Aunt Lyn Sue, Grandma, Halmoni,
and everyone else. Thank you for loving and supporting me since the very
beginning, and for instilling in me an innate curiosity and love of learning. I
owe you everything, and hope to make you proud.

To Soyeun. Last but certainly not least, thank you for your unwavering
support through the highs and lows of grad school. I truly could not have
done it without your invariably sage advice, spot-on presentation notes, and
emotional and moral support.



viii



Contents

0 Introduction 1
0.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Liquid Democracy 7
1.1 An Algorithmic Perspective on Liquid Democracy . . . . . . . . . . . . . . 7

1.1.1 Overview of the Model and Results . . . . . . . . . . . . . . . . . . 8
1.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.4 Impossibility for Local Mechanisms . . . . . . . . . . . . . . . . . . 12
1.1.5 Possibility for Non-Local Mechanisms . . . . . . . . . . . . . . . . . 20

1.2 Minimizing the Maximum Weight of Voters in Liquid Democracy . . . . . 29
1.2.1 Our Approach and Results . . . . . . . . . . . . . . . . . . . . . . . 30
1.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.2.3 Algorithmic Model and Results . . . . . . . . . . . . . . . . . . . . 32
1.2.4 Probabilistic Model and Results . . . . . . . . . . . . . . . . . . . . 38
1.2.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.3.1 An Algorithmic Perspective on Liquid Democracy . . . . . . . . . . 51
1.3.2 Minimizing the Maximum Weight of Voters . . . . . . . . . . . . . 52

2 District-Fair Participatory Budgeting 55
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3 Formal Problem, Notation and Definitions . . . . . . . . . . . . . . . . . . 58

2.3.1 NP-Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4 Optimal District-Fair Lottery . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.5 Optimal DF1 Outcome with Extra Budget . . . . . . . . . . . . . . . . . . 63
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Representation in Multiwinner Elections 69
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Justified Representation in VNW Elections . . . . . . . . . . . . . . . . . . 74

ix



3.5 Deterministic Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.6 Randomized Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Virtual Democracy 81
4.1 Virtual Democracy in Theory . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.3 From Predictions to Mallows . . . . . . . . . . . . . . . . . . . . . . 85
4.1.4 Robustness of Borda Count . . . . . . . . . . . . . . . . . . . . . . 87
4.1.5 Non-Robustness of PMC Rules . . . . . . . . . . . . . . . . . . . . 90
4.1.6 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Virtual Democracy in Practice: 412 Food Rescue . . . . . . . . . . . . . . 93
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.2 Governing Algorithm Design and Participation . . . . . . . . . . . . 95
4.2.3 The WeBuildAI Framework . . . . . . . . . . . . . . . . . . . . . . 98
4.2.4 Case study: Matching algorithm for donation allocation . . . . . . . 100
4.2.5 Individual Belief Model Building . . . . . . . . . . . . . . . . . . . 104
4.2.6 Collective aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.7 Explanation and decision support . . . . . . . . . . . . . . . . . . . 109
4.2.8 Findings: the impact of participatory algorithm design . . . . . . . 110
4.2.9 Evaluation of Algorithmic Outcomes . . . . . . . . . . . . . . . . . 115
4.2.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3.1 Virtual Democracy, in Theory . . . . . . . . . . . . . . . . . . . . . 122
4.3.2 Virtual Democracy, in Practice: WeBuildAI . . . . . . . . . . . . . 122

5 Impartial Ranking 125
5.1 Impartial Ranking, in Theory . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1.1 Our Approach and Results . . . . . . . . . . . . . . . . . . . . . . . 126
5.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1.4 Measures of Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.1.5 The k-Partite Algorithm . . . . . . . . . . . . . . . . . . . . . . . 130
5.1.6 The Committee Algorithm . . . . . . . . . . . . . . . . . . . . . . 133
5.1.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2 Impartial Ranking, in Practice: HirePeer . . . . . . . . . . . . . . . . . . . 136
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.3 HirePeer: System description . . . . . . . . . . . . . . . . . . . . . 139
5.2.4 Study 1: Is an impartial algorithm necessary? . . . . . . . . . . . . 139
5.2.5 Study 2: Is peer assessment for hiring accurate? . . . . . . . . . . . 142
5.2.6 Do workers benefit from peer-assessed hiring? . . . . . . . . . . . . 146

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

x



5.3.1 Impartial Peer Ranking, in Theory . . . . . . . . . . . . . . . . . . 148
5.3.2 Impartial Peer Ranking, in Practice: HirePeer . . . . . . . . . . . . 148

6 Conclusion 151

Bibliography 153

References 167

xi



xii



List of Figures

1.1 Graph G for n` = 6 leaves (shown in red), nc = 3 centers (shown in blue),
nd = 24 disconnected vertices (shown in yellow), and m = 4. . . . . . . . . 14

1.2 Auxiliary network generated from G, here for k = 16. Recreation of [68,
Fig. 2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.3 Example graphs generated by the preferential delegation model for k = 2
and d = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.4 Maximum weight averaged over 100 simulations of length 5 000 time steps
each. Maximum weight has been computed every 50 time steps. . . . . . . 48

1.5 Maximum weight averaged over 100 simulations, computed every 50 time
steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.6 Optimal maximum weight for different k averaged over 100 simulations,
computed every 10 steps. γ = 1, d = 0.5. . . . . . . . . . . . . . . . . . . . 49

1.7 Optimal maximum weight averaged over 100 simulations. Voters give two
delegations with probability p; else one. γ = 1, d = 0.5. . . . . . . . . . . . 49

1.8 Frequency of maximum weights at time t over 1 000 runs. γ = 1, d = 0.5,
k = 2. The black lines mark the medians. . . . . . . . . . . . . . . . . . . . 50

1.9 Maximum weight per algorithm for d = 0.5, γ = 1, k = 2, averaged over
100 simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.10 Running time of mechanisms on graphs for d = 0.5, γ = 1, averaged over 20
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.11 Confluent vs. splittable flow: γ = 1, d = 0.5, k = 2. . . . . . . . . . . . . . 51

4.1 p = 1 mixture of Mallows, n = 100 voters, m = 40 alternatives . . . . . . . 92
4.2 The WeBuildAI framework allows people to participate in designing algo-

rithmic governance policy. A key aspect of this framework is that individuals
create computational models that embody their beliefs on the algorithmic
policy in question and vote on the individual’s behalf. . . . . . . . . . . . . 94

4.3 Two methods of individual model building were used in our study: (a) a
machine learning model that participants trained through pairwise compar-
isons, and (b) an explicit rule model that participants specified by assigning
scores to each factor involved in algorithmic decision-making. . . . . . . . . 106

4.4 Model explanations. Both machine learning and explicit-rule models were
represented by graphs that assigned scores according to the varying levels
of input features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xiii



4.5 The decision support tool explains algorithmic recommendations, including
the nature of stakeholder participation, stakeholder voting results, and char-
acteristics of each recommendation. The interface highlights the features of
the recommended option that led to its selection (marked by A), the Borda
scores given to the recommended options in relation to the maximum pos-
sible score (marked by B), and how each option was ranked by stakeholder
groups (marked by C). All recipient information and locations are fabricated
for the purpose of anonymization. . . . . . . . . . . . . . . . . . . . . . . 109

4.6 The performance of our algorithm (AA) versus the human allocation (HA)
and a uniformly random allocation (RA), on various metrics. . . . . . . . . 117

5.1 Kemeny approximation ratio of three impartial mechanisms for φ = 0.3.
The median of each boxplot is marked with a black line, the edges of each
box denote the quartile values, and the whiskers extend to data within 1.5
times the interquartile range from the edges of each box. . . . . . . . . . . 136

5.2 HirePeer’s workflow of impartial peer-assessed hiring for expert crowdsourcing138
5.3 From Study 1, histogram of review placement for each framing condition; x:

position, y: frequency. A skew to the right suggests less strategic behavior.
Consequence explanation resulted in the least strategic behavior. . . . . . . 142

xiv



List of Tables

4.1 Participants. Sessions indicate the study sessions that they participated in:
w represents a workshop study. ∗Info excluded for anonymity. † A couple
participated together. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Factors of matching algorithm decisions. The ranges of the factors are based
on their real-world distributions. . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Accuracy of the Machine Learning (ML) model and the Explicit-Rule (ER)
model. Bold denotes the model the participant chose as the one that better
represented their belief after seeing both models’ explanations (Figure 4.4)
and their predictions on the 50 evaluation pairwise comparisons. F1 chose
the machine learning model but did not complete additional survey questions
to calculate model agreement, so the result is not included in this table. . . 108

5.1 From Study 1, consequence description leads to the least amount of strate-
gic behavior. β coefficients are the average difference in rank from control
condition (positive is less strategic behavior). . . . . . . . . . . . . . . . . . 143

5.2 From Study 2, (Naive-bipartite) aggregation led to a reduction of accu-
racy by 8%, as compared to aggregation of assessments from control condi-
tion with the Kemeny rule; each entry represents average accuracy for each
condition and related aggregation. All other rows represent aggregations of
assessments from experimental (i.e., impartial) conditions. . . . . . . . . . 146

5.3 From Study 3, average Likert scores from post-use survey; 1: strongly dis-
agree, 5: strongly agree. Even in a competitive hiring setting, expert crowd
workers perceived peer assessment to be helpful, enjoyable, and were inclined
to iterate on their job materials. . . . . . . . . . . . . . . . . . . . . . . . . 147

xv



xvi



Democracy is the worst form of government ex-
cept for all those other forms that have been tried
from time to time.

Winston Churchill

0
Introduction

Group decision-making is a fundamental challenge in human society. How should groups
of people (e.g., nations, states, cities, or neighborhoods) make collective decisions based
on heterogeneous opinions?

Democracy offers a compelling answer to this question: Let the people themselves
decide. Societies over the years have ascribed to this philosophy to varying degrees. The
ancient Greeks were early champions of democracy, and Athenians notably used democratic
processes like sortition (random selection from the public) and voting (soliciting structured
input from the public) at all levels of society. Since then, democracy has ebbed and flowed,
but mostly flowed. Global powers up until the 17th century were largely monarchies or
oligarchies, but John Locke’s liberal democratic framework espoused in his seminal work,
Two Treatises of Government [162], set in motion a democratic wave that has continued
into the 21st century.

However, although many countries have ostensibly embraced democratic principles, the
world is currently in a state of democratic retrograde, otherwise known as democratic back-
sliding. Implementations of modern democracy largely adhere to the model of representa-
tive democracy, where the general public may directly elect representatives in legislative
bodies, but these representatives may make decisions that do not accurately reflect the will
of the people. This, among other factors, has led to a marked decrease in trust in demo-
cratic systems in recent years. Notably, advances in technology have not been blameless
in this erosion of trust. In fact, social networks have led to increased division and greater
discord online by facilitating the creation of echo chambers, an increase in polarization,
and the proliferation of fake news.

All this is to say, humanity still has significant work to do in figuring out how to make
democracy “work” as a stable, harmonious decision-making paradigm in which people af-
fected by large-scale decisions get a say in what these decisions are. Luckily, despite the
rather negative picture painted by the foregoing paragraphs, not all hope is lost for demo-
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cratic ideals. In particular, as new technologies develop, academics and practitioners alike
have turned to the new frontiers of digital democracy, or e-democracy, where technology is
explicitly used to promote and strengthen democratic practices. Throughout this thesis,
we hope to contribute to work in this vein, and the first part of this thesis focuses on the
theoretical analysis of democratic paradigms that redistribute power into the hands of the
people by allowing them to directly influence decisions.

However, the relationship between computer science and democracy is not a one-way
street: Just as we can ask how tools from computer science can help evaluate and design
new democratic paradigms, we can also ask how principles of democracy can help address
difficult problems in computer science. This line of research is related to participatory
artificial intelligence, wherein human values are taken into consideration in order to design
more democratic and ethical machine learning systems.

Overall, we hope to address the following broad questions.
Question 1: How can we formally analyze existing democratic paradigms with
an eye toward creating better iterations of these paradigms in the future?
Question 2: How can we apply democratic principles to augment traditional
computer science-based approaches in order to solve difficult real-world prob-
lems?

Background: Computational Social Choice
Computational social choice is an interdisciplinary discipline that combines tools from
social choice theory and theoretical computer science. Below, we provide a short overview
of relevant topics; please see [47; 211; 197; 94; 114; 199] for a significantly more detailed
introduction.

Social choice theory formalizes the problem of aggregating individual preferences to
make a collective decision. In general, most problems in social choice can be thought of
as preference aggregation, in which a mechanism receives a collection of opinions (e.g.,
ordinal rankings of alternatives) from agents and must return a single outcome, which may
take the form of a single winner, a subset of winners, or a complete ranking, among other
formats. Within this framework, notable branches of social choice include voting theory,
which concerns the design and analysis of voting rules that take opinions as input and
apply a well-specified mechanism (which can equivalently be thought of as a function) to
make a final decision; resource allocation and fair division, where a common resource must
be divided among a set of agents with different utility functions; and ranking systems, in
which the set of agents and alternatives coincide, i.e., agents provide ranking information
among themselves. Each of these topics will be touched upon in this thesis: Chapters 1,
3 and 4 primarily concern voting theory; Chapter 2 considers resource allocation; and
Chapter 5 involves ranking systems.

Computational social choice introduces tools from theoretical science like complexity
theory, approximation algorithms, and worst-case analysis to traditional social choice the-
ory. Early work in computational social choice focused on the computational complexity
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of evaluating and manipulating voting rules; however, in this thesis, we focus on a com-
bination of the following topics, each of which is often a desideratum of mechanisms in
practice.

• Robustness: For our purposes, a voting rule is robust if it is resistant to noise. In
other words, we desire rules with guarantees that hold with high probability even
in the presence of perturbations. Chapters 1, 4 and 5 analyze mechanisms from the
perspective of formal robustness guarantees.

• Fairness and representation: Fairness has many definitions, depending on the con-
text. In the context of this thesis, we primarily consider proportionality, which
maintains that groups of people deserve some amount of representation in the out-
come of a decision in accordance with their size and/or cohesiveness. Chapters 2
and 3 explore notions of fairness and proportionality in participatory budgeting and
multiwinner elections, respectively.

• Strategyproofness: A voting rule is strategyproof if each agent is (weakly) best-off
reporting her true beliefs to the mechanism, i.e., dishonest manipulation has no
benefits. We often desire strategyproofness in order to incentivize good behavior
among agents. The work in Chapter 5 concerns the design of strategyproof peer
ranking mechanisms, both in theory and practice.

• Computability: Some problems we wish to solve are computationally intractable, and
voting rules must be computationally tractable in order to be useful. Therefore, in
some cases, we must turn our attention to polynomial-time approximation algorithms.
The work in Chapters 1 and 2 involves analysis of this flavor.

As an introductory note on voting theory, we note that many seminal results in the field
are negative. In particular, there are three fundamental impossibility results in the field
of voting theory: Condorcet’s paradox, Arrow’s Impossibility Theorem, and the Gibbard-
Satterthwaite Theorem. Condorcet’s paradox [88] states that, on a population level, ma-
jority judgments between pairs of alternatives may not be transitive; i.e., that there can
exist settings where alternative a is preferred to alternative b by at least half of the vot-
ers, b is preferred to c by at least half of the voters, but over half of the voters prefer
c to a, causing a cycle. Arrow’s Impossibility Theorem [11] states that, under mild as-
sumptions (i.e., the rule is not a dictatorship and satisfies unanimity) and in settings with
at least three alternatives, every deterministic voting rule must violate a property known
as independence of irrelevant alternatives (IIA). Finally, the Gibbard-Satterthwaite Theo-
rem [116; 203] maintains that any deterministic, non-dictatorship voting rule for three or
more candidates is not strategyproof; i.e., that agents can benefit by misreporting their
preferences. These fundamental impossibility results mean that, in our work, we must
restrict either the domain of (strategic) voter behavior or weaken the theoretical results
we hope to prove.

Finally, we note that computational social choice has limitations inherent in its model
of decision-making. For instance, it is generally assumed that voters’ utilities do not change
throughout the process, i.e., that they possess the same values before, during, and after
voting. This is not necessarily the case in practice, and work on deliberation explicitly
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takes this into account. Additionally, computational social choice does not provide guid-
ance about how to choose the set of alternatives over which voters opine, and the voting
format—e.g., approval, veto, knapsack, or ranked votes—necessarily restricts the amount
of information that voters can provide to any voting mechanism.

0.1 Structure
Part I: How computer science can help democracy

The first part of this thesis asks how computer science can help democracy. In particular,
we explore the theoretical foundations of three new democratic paradigms: liquid democ-
racy, participatory budgeting, and proportional multiwinner elections. On a high level,
both liquid democracy and participatory budgeting allow people to more directly influence
decision-making processes, and multiwinner elections allow people to choose committees
of winners instead of only a single winner.

For each of the three paradigms in this part, we focus primarily on one or more of three
theoretical desiderata of voting rules: robustness, fairness, and efficiency. In the context
of this thesis, the robustness of a voting rule is its resilience against worst-case noise,
fairness broadly refers to notions of proportionality and representation, and efficiency will
be measured in terms of utilitarian social welfare, or the sum of all agents’ utilities.

Liquid Democracy (Chapter 1) Liquid democracy is a collective decision making
paradigm that allows voters to transitively delegate their votes. Our first work on this
subject studied liquid democracy through an algorithmic lens [137]. In our model, there
are two alternatives, one correct and one incorrect, and we are interested in the probability
that the majority opinion is correct. Our main question is whether there exist delegation
mechanisms that are guaranteed to outperform direct voting, in the sense of being always
at least as likely, and sometimes more likely, to make a correct decision. Even though
we assume that voters can only delegate their votes to more informed voters, we show
that local delegation mechanisms, which only take the local neighborhood of each voter as
input (and, arguably, capture the spirit of liquid democracy), cannot provide the foregoing
guarantee. By contrast, we design a non-local delegation mechanism that does provably
outperform direct voting under mild assumptions about voters.

The above result corroborates a common critique of liquid democracy: Often, a small
subset of agents may gain massive influence. To address this, we propose to change the
current practice by allowing agents to specify multiple delegation options instead of just
one. Then, we seek to control the flow of votes in a way that balances influence as much
as possible. Specifically, we analyze the problem of choosing delegations to approximately
minimize the maximum number of votes entrusted to any agent, by drawing connections
to the literature on confluent flow. We also introduce a random graph model for liquid
democracy, and draw on prior work on the power of choice, which allows us to establish a
doubly exponential separation between the maximum weight of a voter in the case where
each voter provides a single delegation and the maximum weight of a voter in the case
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where each voter provides even two possible delegations [119].

District-Fair Participatory Budgeting (Chapter 2) Participatory budgeting is a
democratic paradigm in which local governments solicit input from their constituents to
make budget decisions about public funds. In practice, it often takes the form of cities
asking their residents to vote over a list of public projects to fund. Furthermore, cities
often use participatory budgeting on a district level, where each district in a city holds a
separate election to spend their portion of the budget (generally allocated proportionally
to population). However, district-level elections may yield poor social welfare because no
single district has enough money to fund large, widely beneficial projects. On the other
hand, making decisions solely based on global social welfare may be unfair to some districts:
A social-welfare-maximizing solution may not fund any projects preferred by a particular
district.

Thus, we study how to fairly maximize social welfare in participatory budgeting subject
to a district fairness, which is a fairness constraint that promises each district at least as
much utility as it would have received under a district-level participatory budgeting process.
We show that, although optimizing social welfare subject to district fairness is NP-hard,
we can efficiently construct a lottery over welfare-optimal outcomes that is district-fair in
expectation. Moreover, we show that, when we are allowed to slightly relax fairness, we can
efficiently compute a deterministic, almost-district-fair solution that is welfare-maximizing,
but which may overspend the budget by a small constant factor [125].

Proportionality in Multiwinner Elections (Chapter 3) Finally, we analyze mech-
anisms for multiwinner elections, where a group of agents, or voters, selects a committee
from a set of candidates based on the agents’ preferences. In our setting, each agent
expresses her preferences through an approval vote, where she designates a subset of can-
didates she approves for the committee, and all votes are then aggregated to select a
winning committee from the pool of candidates.

The property we would like to satisfy is that of proportionality, which intuitively says
that a c ≤ 1 fraction of voters who agree on a c fraction of the alternatives should be able
to guarantee themselves control over a c fraction of the committee. We propose a measure
of proportionality for elections where the size of the committee is not fixed beforehand and
hope to establish a clear separation between the theoretical guarantees of deterministic
and randomized rules under this notion of proportionality [108].

Part II: How democracy can help computer science

In the second part of this thesis, we ask how traditional democratic principles can help
solve hard problems in computer science. In particular, we explore virtual democracy,
which provides a principled approach to automating ethical decision-making, and impartial
peer ranking, in which we design mechanisms to leverage individual expertise in settings
with conflicts of interest.

In both of these settings, we try to solve problems that do not have clear objective
functions to optimize. For instance, when trying to automate ethical decision-making, the
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very concept of morality differs from person to person depending on their worldview; the
same phenomenon holds when evaluating individual expertise and fit for a job. Therefore,
standard optimization techniques are not a good fit for these types of problems because we
often cannot even identify a widely agreed-upon metric over which to optimize. Instead,
we will design mechanisms that directly ask participants for their opinions and then use
these opinions in a principled way to make a final decision.

Virtual Democracy (Chapter 4) Virtual democracy is an approach to automate de-
cisions by learning models of the preferences of individual people, and, at runtime, ag-
gregating the predicted preferences of those people on the dilemma at hand. One of the
key questions is which aggregation method — or voting rule — to use; we offer a novel
statistical viewpoint that provides guidance. Specifically, we seek voting rules that are
robust to prediction errors, in that their output on people’s true preferences is likely to
coincide with their output on noisy estimates thereof. We prove that the classic Borda
count rule is robust in this sense, whereas any voting rule belonging to the wide family of
pairwise-majority consistent (PMC) rules is not [138].

In concert with our theoretical results, we have worked closely with a local nonprofit
organization in Pittsburgh, 412 Food Rescue, to build a framework for virtual democracy
that enables people to build algorithmic policy for their communities. Through this frame-
work, we study how to design algorithmic policy in order to balance varying interests in
a moral, legitimate way. Our findings suggest that the framework successfully enabled
participants to build models that they felt confident represented their own beliefs. Par-
ticipatory algorithm design also improved both procedural fairness and the distributive
outcomes of the algorithm, raised participants’ algorithmic awareness, and helped identify
inconsistencies in human decision-making in the governing organization [155].

Impartial Aggregation (Chapter 5) We study rank aggregation algorithms that take
as input the opinions of players over their peers, represented as rankings, and output a
social ordering of the players (which reflects, e.g., relative contribution to a project or fit for
a job). To prevent strategic behavior, these algorithms must be impartial; that is, players
should not be able to influence their own position in the output ranking. We design several
randomized algorithms that are impartial and closely emulate given (non-impartial) rank
aggregation rules in a rigorous sense [136].

We complement these theoretical results with a study of impartial algorithms applied
to online labor markets through HirePeer, a novel alternative approach to hiring at scale
we created that leverages peer assessment to elicit honest assessments of fellow workers’ job
application materials, which it then aggregates using an impartial ranking algorithm [148].
Surprisingly, we find that applying peer assessment to online hiring—even without impar-
tial ranking algorithms to remove conflicts of interest—was an accurate and pedagogically
beneficial practice.
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If Internet is the new printing press, then what
is democracy for the Internet era? . . . How can
we get our representatives, our elected represen-
tatives, to represent us?

Pia Mancini.

1
Liquid Democracy

In this chapter, we examine theoretical properties of liquid democracy, a demo-
cratic paradigm that allows for transitive vote delegation. First, in a model
with a ground truth, we demonstrate that a large class of decentralized del-
egation mechanisms for liquid democracy is susceptible to the concentration
of voting power in relatively few voters. We also demonstrate that a simple
centralized delegation mechanism for liquid democracy can avoid this problem.
Second, informed by the findings above, we turn our sights to centralized del-
egation mechanisms that effectively reduce the maximum weight of any voter.
In particular, we show that allowing voters to give multiple possible delegations
leads to a significant reduction in the maximum weight of any voter.

1.1 An Algorithmic Perspective on Liquid Democracy
Liquid democracy is a modern approach to voting in which voters can either vote directly
or delegate their vote to other voters. In contrast to the classic proxy voting paradigm
[173], the key innovation underlying liquid democracy is that proxies—who were selected
by voters to vote on their behalf—may delegate their own vote to a proxy, and, in doing
so, further delegate all the votes entrusted to them. Put another way (to justify the liquid
metaphor), votes may freely flow through the directed delegation graph until they reach a
sink, that is, a vertex with outdegree 0. When the election takes place, each voter who did
not delegate his vote, but rather voted, is weighted by the total number of votes delegated
to him, including his own. In recent years, this approach has been implemented and used
on a large scale, notably by eclectic political parties such as the German Pirate Party
(Piratenpartei) and Sweden’s Demoex (short for Democracy Experiment).

One reason for the success of liquid democracy is that it is seen as a practical com-
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promise between direct democracy (voters vote directly on every issue) and representative
democracy, and, in a sense, is the best of both worlds. Direct democracy is particularly
problematic, as nicely articulated by Green-Armytage [121]:

“Even if it were possible for every citizen to learn everything they could possibly
know about every political issue, people who did this would be able to do little
else, and massive amounts of time would be wasted in duplicated effort. Or, if
every citizen voted but most people did not take the time to learn about the
issues, the results would be highly random and/or highly sensitive to overly
simplistic public relations campaigns.”

Another example is polling the audience in Who Wants to Be a Millionaire, in which the
audience would like to help but sometimes gets the question wrong because people who
don’t know the correct answer systematically favor a specific incorrect answer.

By contrast, under liquid democracy, voters who did not invest an effort to learn about
the issue at hand (presumably, most voters) would ideally delegate their votes to well-
informed voters. This should intuitively lead to collective decisions that are less random,
and more likely to be correct, than those that would be made under direct democracy.

Our goal is to rigorously investigate the intuition that liquid democracy “outperforms”
direct democracy from an algorithmic viewpoint. Indeed, we are interested in delegation
mechanisms, which decide how votes should be delegated based on how relatively informed
voters are, and possibly even based on the structure of an underlying social network. Our
main research question is:

Are there delegation mechanisms that are guaranteed to yield more accurate
decisions than direct voting?

1.1.1 Overview of the Model and Results
We focus on a (common) setting where a decision is to be made on a binary issue, i.e., one
of two alternatives must be selected. To model the idea of accuracy, we assume that one
alternative is correct, and the other is incorrect. Each voter i has a competence level pi,
which is the probability he would vote correctly if he cast a ballot himself.

Voters may delegate their votes to neighbors in a social network, represented as a
directed graph. At the heart of our model is the assumption that voters may only delegate
their votes to strictly more competent neighbors (and, therefore, there can be no delegation
cycles). Specifically, we say that voter i approves voter j if pj > pi+α, for a parameter α ≥
0; voters may only delegate to approved neighbors. In defense of this strong assumption,
we note that the first of our two theorems—arguably the more interesting of the two—
is an impossibility result, so assuming that delegation necessarily boosts accuracy only
strengthens it.

As mentioned above, we are interested in studying delegation mechanisms, which decide
how votes are delegated (possibly randomly), based on the underlying graph and the ap-
proval relation between voters. We pay special attention to local delegation mechanisms,
which make delegation decisions based only on the neighborhood of each voter. Local
mechanisms capture the spirit of liquid democracy in that voters make independent del-
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egation decisions based solely on their own viewpoint, without guidance from a central
authority. By contrast, non-local mechanisms intuitively require a centralized algorithm
that coordinates delegations.

Recall that our goal is to design delegation mechanisms that are guaranteed to be more
accurate than direct voting. To this end, we define the gain of a mechanism with respect to
a given instance as the difference between the probability that it makes a correct decision
(when votes are delegated and weighted majority voting is applied) and the probability
that direct voting makes a correct decision on the same instance. The desired guarantee
can be formalized via two properties of mechanisms: positive gain (PG), which means that
there are some sufficiently large instances in which the mechanism has positive gain that
is bounded away from 0; and do no harm (DNH), which requires that the loss (negative
gain) of the mechanism goes to 0 as the number of voters grows. These properties are both
weak; in particular, PG is a truly minimal requirement which, in a sense, mainly rules out
direct voting itself as a delegation mechanism.

In Section 1.1.4, we study local delegation mechanisms and establish an impossibility
result: such mechanisms cannot satisfy both PG and DNH. In a nutshell, the idea is that for
any local delegation mechanism that satisfies PG we can construct an instance where few
voters amass a large number of delegated votes, that is, delegation introduces significant
correlation between the votes. The instance is such that, when the high-weight voters are
incorrect, the weighted majority vote is incorrect; yet direct voting is very likely to lead to
a correct decision.

In Section 1.1.5, we show that non-local mechanisms can circumvent the foregoing
impossibility. Specifically, we design a delegation mechanism, GreedyCap, that satisfies
the PG and DNH properties under mild assumptions about voter competencies. It does so
by imposing a cap on the number of votes that can be delegated to any particular voter,
thereby avoiding excessive correlation.

In conclusion, our work highlights the significance, and potential dangers, of delegating
many votes to few voters. Importantly, there is evidence that this can happen in practice.
For example, Der Spiegel reported1 that one member of the German Pirate Party, a lin-
guistics professor at the University of Bamberg, amassed so much weight that his “vote
was like a decree.” Although recent work by Kling et al. [146] highlights the fact that,
in practice, high-weight voters vote reasonably and do not abuse their power, our results
corroborate the intuition that this situation should ideally be avoided.

1.1.2 Related Work
There is a significant body of work on delegative democracy and proxy voting [173; 221; 5].
In particular, Cohensius et al. [74] study a model where voters’ positions on an issue are
points in a metric space. In their version of direct democracy, a small subset of active
voters report their positions, and an aggregation method (such as the median or mean
when the metric space is the real line) outputs a single position. Under proxy voting,

1http://www.spiegel.de/international/germany/liquid-democracy-web-platform-makes-professor-
most-powerful-pirate-a-818683.html
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each inactive voter delegates his vote to the closest active voter. Cohensius et al. identify
conditions under which proxy voting gives a more accurate outcome than direct voting,
where the measure is proximity of the outcome to the aggregation method applied to all
voters’ positions.

To the best of our knowledge, there are only two papers prior to the initial publica-
tion of our work that provide theoretical analyses of liquid democracy. The first is the
aforementioned paper by Green-Armytage [121]. He considers a setting where, similarly
to Cohensius et al. [74], voters are identified with points on the real line, but in his model
votes are noisy estimates of those positions. Green-Armytage defines the expressive loss of
a voter as the squared distance between his vote and his position and proves that delega-
tion (even transitive delegation) can only decrease the expressive loss in his model. He also
defines systematic loss as the squared distance between the median vote and the median
position, but discusses this type of loss only informally (interestingly, he does explicitly
mention that correlation can lead to systematic loss in his model).

The second paper is by Christoff and Grossi [72]. They introduce a model of liquid
democracy based on the theory of binary aggregation (i.e., their model has a mathematical
logic flavor). Their results focus on two problems: the possibility of delegation cycles, and
logical inconsistencies that can arise when opinions on interdependent propositions are
expressed through proxies. Both are nonissues in our model (although the need to avoid
cycles is certainly a concern in practice).

Further afield, there is a rich body of work in computational social choice [47] on the
aggregation of objective opinions [76; 78; 96; 236; 235; 163; 192; 14; 15; 169; 64; 65; 193].
As in our work, the high-level goal is to pinpoint the correct outcome based on noisy votes.
However, previous work in this area does not encompass any notion of vote delegation.

One seminal result in the aggregation of objective opinions—in particular, when decid-
ing between two options, one of which is correct and the other of which is incorrect—is
the Condorcet Jury Theorem [123], which states that if voters are independent and each
have probability greater than 1/2 of choosing the correct outcome, then the probability
of choosing correctly approaches one as the size of the electorate increases. Note that the
Condorcet Jury Theorem is directly applicable to the setting of direct democracy, but not
immediately to the (weighted) setting of liquid democracy. Researchers have also stud-
ied voting rules in a networked setting, but without delegation, from the perspective of
maximum likelihood estimation [81; 80].

There are also several papers that have explored the theoretical foundations of liquid
democracy. Notably, a paper by Brill and Talmon [51] considers liquid democracy in
the setting of ordinal elections in which the electorate wishes to construct a complete
ordering over alternatives, as opposed to deciding a binary issue as in this work. In this
framework, each voter may specify a partial ordering over the alternatives and delegate
to others in order to construct a complete ranking. However, decisions made by delegates
may violate transitivity with respect to each voter’s partial ordering, and even checking
whether delegated votes satisfy transitivity is NP-hard. In order to circumvent issues of
transitivity, they introduce a novel class of voting rules for liquid democracy based on
distance rationalization, which take as input (perhaps intransitive) delegation graphs and
output the “closest” consensus profile.
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Bloembergen et al. [36] consider a game-theoretic version of liquid democracy in which
voters must determine whether or not it is rational to delegate their votes to others. They
introduce a delegation game in which each voter has a hidden true “type” that she knows
imperfectly, and the goal of each voter is to communicate her true type to the mechanism
either directly (by voting) or indirectly (by delegating). While this setting distills the
problem of finding delegates that represent one’s own opinion, it focuses on proving the
existence of Nash equilibria under certain assumptions and provides only weak performance
bounds in the setting we consider.

Finally, Abramowitz and Mattei [2] propose a variant of representative democracy that
incorporates ideas of liquid democracy by allowing voters to alter the voting weights of their
representatives depending on the issue at hand. Although this circumvents some issues of
liquid democracy—for instance, because delegations are no longer transitive, delegation
cycles cannot occur—the proposed system is considerably more constrained than general
liquid democracy.

1.1.3 The Model
We represent an instance of our problem using a directed, labeled graph G = (V,E, ~p).
V = {1, . . . , n} is a set of n voters, also referred to as vertices (we use the two terms
interchangeably). E represents a (directed) social network in which the existence of an
edge (i, j) means that voter i knows (of) voter j. We denote the neighborhood of voter i
to be the set of neighbors that i knows of, or NG(i) = {j ∈ V : i knows of j}.

We assume that the voters vote on a binary issue; there is a correct alternative and an
incorrect alternative. Each voter i ∈ V is labeled by his competence level pi. This is the
probability that i has the correct opinion about the issue at hand, i.e., the probability that
i will vote correctly.

Our setting is also parameterized by α ∈ (0, 1). Given this parameter and a labeled
graph G = (V,E, ~p), we define an approval relation between voters: i ∈ V approves j ∈ V
if (i, j) ∈ E and pj ≥ pi + α. In words, i approves his neighbor j if the difference in their
competence levels is at least than α. Note that the approval relation is acyclic because
α > 0. Denote

AG(i) = {j ∈ V : i approves j}.

Delegation Mechanisms

The liquid democracy paradigm is implemented through a delegation mechanism M , which
takes as input a labeled graph G, and outputs, for each voter i, a delegation probability
distribution over AG(i)∪{i} that represents the probability that i will delegate his vote to
each of his approved neighbors, or to himself (which means he does not delegate his vote).

To determine whether a delegation mechanismM makes a correct decision on a labeled
graph G = (V,E, ~p), we use the following 4-step process (which is described in words to
avoid introducing notation that will not be used again):

1. Apply M to G to output a delegation probability distribution for each voter i.
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2. Sample the probability distribution for each vertex to obtain an acyclic delegation
graph. Each sink i of the delegation graph (i.e., vertex with no outgoing edges) has
weight equal to the number of vertices with directed paths to i, including i itself.

3. Each sink i votes for the correct alternative with probability pi, and for the incorrect
alternative with probability 1− pi.

4. A decision is made based on the weighted majority vote.2
We denote the probability that the mechanism M makes a correct decision on graph G via
this 4-step process by PM(G).

Local Mechanisms

We are particularly interested in a special class of delegation mechanisms that we call local
mechanisms. Intuitively, local mechanisms capture the natural setting where each voter
makes an independent delegation decision without central coordination or knowledge of
global properties about the delegation graph. Formally, a local delegation mechanism is
a delegation mechanism such that the probability distribution of each vertex i depends
only on (a) the subset AG(i) of neighbors that i approves, (b) an arbitrary ranking πi over
AG(i), and (c) NG(i), or i’s neighborhood. Note that the ranking πi does not have any
inherent meaning; it is simply a way to distinguish specific neighbors. In particular, local
mechanisms assume that each voter has knowledge of the identities of his approved and
non-approved neighbors; a local delegation mechanism is applied to πi and NG(i) in order
to output a delegation probability distribution for voter i.

For instance, say that in a setting with α = 0.15, Alice (pAlice = 0.6) has four neighbors:
Bob (pBob = 0.8), Carla (pCarla = 0.9), Dean (pDean = 0.5), and Evelyn (pEvelyn = 0.7).
Alice approves of Bob and Carla, and let πAlice = Carla � Bob. Then, the local dele-
gation mechanism takes πAlice and the set of Alice’s neighbors, and returns a probability
distribution over delegating to Bob, delegating to Carla, and voting directly.

Let us give some examples of local delegation mechanisms:
• Voters do not delegate their votes. This direct voting mechanism plays a special role
in our model, and we denote it by D.

• Each voter delegates his vote to a random approved neighbor, if he has any.
• Each voter delegates his vote to a random approved neighbor, if he has approved
neighbors but has even more non-approved neighbors.

• Each voter delegates his vote deterministically to a single approved neighbor (e.g.,
the first in his local ordering πi), if he has any. The ranking πi is needed only in
order to enable this type of mechanism.

By contrast, the following delegation mechanisms are not local:
• Each voter delegates his vote to his most competent approved neighbor. (Voters
cannot distinguish between their approved neighbors, except through the information
given by the “arbitrary” ranking πi.)

2Ties can be broken arbitrarily.
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• Let there exist a distinguished voter with global identifier V1. If V1 appears in the
approval set of any voter, that voter delegates to V1 with probability 1.

• Each voter delegates his vote only if all agents in his approval set have global iden-
tifiers that are even integers.

Desiderata

Recall that we are interested in comparing the likelihood of making correct decisions via
delegative voting with that of direct voting. To this end, define the gain of delegation
mechanism M on labeled graph G as

gain(M,G) = PM(G)− PD(G).

We would like to design delegation mechanisms that have positive gain (bounded away
from zero) in some situations, and which never lose significantly to direct voting. Formally,
we are interested in the following two desirable axioms:
• A mechanism M satisfies the positive gain (PG) property if there exist γ > 0, n0 ∈ N
such that for all n ≥ n0 there exists a graph Gn on n vertices such that gain(M,Gn) ≥
γ.

• A mechanismM satisfies the do no harm (DNH) property if for all ε > 0, there exists
n1 ∈ N such that for all graphs Gn on n ≥ n1 vertices, gain(M,Gn) ≥ −ε.

The choice of quantifiers here is of great significance. PG asks for the existence of
(large enough) instances where the gain is at least γ, for a constant γ. By contrast, DNH
essentially requires that any loss would go to 0 as the size of the graph goes to infinity.
That is, there may certainly be small instances where delegative voting loses out to direct
voting, but that should not be the case in the large.

We note that PG and DNH are defined over worst-case instances. Another natural ques-
tion to ask is about the expected gain of delegation mechanisms: For a random graph and
choice of competence levels, is a given mechanism expected to outperform direct voting?
However, we leave this to future work.

1.1.4 Impossibility for Local Mechanisms
In our model, we make the strong assumption that voters can only delegate their vote to
other voters who are more competent than they are, and, in particular, delegation chains
can significantly boost the competence of any particular vote. Under this assumption, it
seems natural to expect that delegative voting will always do at least as well as direct
voting in every situation, and strictly better in some situations. This should intuitively
be true under local mechanisms, say, when each voter delegates his vote to an arbitrary
approved neighbor (if he has any). The following example helps build intuition for what
can go wrong.

Example 1. Consider the labeled graph Gn = (V,E, ~p) over n vertices, where E = {(i, 1) :
i ∈ V \ {1}}, i.e., G is a star with 1 at the center. Moreover, p1 = 4/5, pi = 2/3 for all
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i ∈ V \ {1}, and α = 1/10. Then, as n grows larger, PD(Gn) goes to 1 by the Law of Large
Numbers, or, equivalently, by the Condorcet Jury Theorem [123]. By contrast, all leaves
approve the center, and a naïve local delegation mechanism M would delegate all their
votes. In that case, the decision depends only on the vote of the center, so PM(Gn) = 4/5
for all n ∈ N, and gain(M,Gn) converges to −1/5. We conclude that M violates the DNH
property.

One might hope that there are “smarter” local delegation mechanisms, that, say, recog-
nize that when a voter only has one approved neighbor, his vote should not be delegated.
However, our first result shows that this is not the case: local delegation mechanisms
cannot even satisfy the two minimal requirements of PG and DNH.

Theorem 1.1. For any α0 ∈ (0, 1) such that i ∈ V approves j ∈ V if (i, j) ∈ E and
pj > pi + α0, there is no local mechanism that satisfies the PG and DNH properties.

The first step in the proof is to better understand the way in which local mechanisms
are constrained. This is captured by the following lemma.

Lemma 1.2. Let M be a local mechanism. Then M satisfies the PG property only if there
exist k,m, ρ > 0 such that, if a voter approves k out of his m total neighbors, then the total
probability of delegation to any of these approved neighbors is exactly ρ.

Proof. Suppose that PG holds. Let γ > 0 and fix a labeled graph G such that gain(M,G) ≥
γ > 0. In order for this to be the case, there must exist some vertex i that delegates with
positive probability ρ. Let k be the number of neighbors in G that i approves, and let m
be his total number of neighbors in G; this yields the desired tuple (k,m, ρ).3

The crux of the theorem’s proof is the construction of a graph that, from the local
viewpoint of many of the vertices, looks like the neighborhood prescribed by Lemma 1.2.
Specifically, a k-center m-uniform star consists of vertices called leaves that are each con-
nected to k central vertices (the centers) as well as m−k other leaves. Each leaf vertex has
competence level p`, and each center vertex has competence level pc, such that pc > p`+α.
We set the value of k and m to be the values whose existence is guaranteed by Lemma 1.2,
which means that the construction of a k-center m-uniform star satisfies the property that
each leaf delegates to some center vertex with probability ρ. Throughout the proof, we
will let nc = k be the number of centers, and n` will denote the number of leaves.

At a high level, we show that the loss of any local mechanism can approach (1− pc)k,
which is constant given k. We do this by constructing a graph that consists of a k-center
m-uniform star with an independent disconnected component consisting of nd vertices
of competence level pd. We set the parameters so that the direct voting mechanism D
decides correctly with high probability. By contrast, under the local delegation mechanism
M , enough leaves delegate their votes to the centers so that if all centers were to vote
incorrectly, which happens with probability (1 − pc)k, then M would decide incorrectly.
While the basic idea is simple enough, the formal construction is quite delicate, as many
different parameters must be carefully balanced.

3Note that the conclusion is invariant to the ranking πi.
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Figure 1.1: Graph G for n` = 6 leaves (shown in red), nc = 3 centers (shown in blue),
nd = 24 disconnected vertices (shown in yellow), and m = 4.

Proof of Theorem 1.1. LetM be a local mechanism that satisfies PG. By Lemma 1.2, there
must exist at least one (k,m, ρ) tuple for M that satisfies the lemma’s conclusion. For any
n1 prescribed by DNH and any α0, we can construct a graph Gn with n ≥ n1 such that
DNH does not hold.

Let G be a graph of size n = nc+n`+nd that consists of a k-center m-uniform star and
a disconnected component containing nd disconnected points (see Figure 1.1). Each center
has competence level pc, each leaf in the star has competence level p`, and each point in
the disconnected component has competence level pd. Given (k,m, ρ), n1, and α0, note
that the following constraints must hold.

n` ≥ m− nc (1.1)
n = n` + nc + nd ≥ n1 (1.2)
pc > p` + α0 (1.3)

We will prove that the construction above instantiated with the following parameter
values violates DNH for any input of (k,m, ρ), n1, and α = α0 + ε′ for ε′ = 1−α0

2 > 0, for
sufficiently small δ (i.e., as δ → 0).

We begin by defining the sizes of each component: nc, n`, and nd.

nc = k (1.4)

n` = n1m

αδ
(1.5)

nd = C1
n1m

αδ
(1.6)
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Note that nd depends on a constant C1, which, along with another constant σ, is defined
next.

C1 =

(( p`ρσ n`−p`
√
n`)

2

)2
− nc

n`
− 1 (1.7)

σ =

√√√√− ln
(
δ
2

)
2 (1.8)

Now, we define the competency values for each component, pc, p`, and pd. Note that there
is a range of acceptable compentency values for pd.

pc = 1 + α

2 (1.9)

p` = 1− α
2 (1.10)

pd ∈
[(
n/2− n`p`

nd

)
+ σ
√
n

nd
,

(
n/2− n`p`

nd

)
+ (n`ρ− τ)p` − σ

√
n

nd

]
(1.11)

Finally, we define τ , another constant that will be useful for establishing concentration
guarantees in the proof.

τ =

√√√√−
(
ln δ

2

)
n`

2 (1.12)

The following claim asserts that the construction is feasible.
Claim 1. C1 > 0 and the range of values for pd in (1.11) is nonempty.

Proof. From above, we have

C1 =

(( p`ρσ n`−p`
√
n`)

2

)2
− k

n`
− 1

and rearranging terms yields

2
√

(C1 + 1)n` + k = p`ρ

σ
n` − p`

√
n`.

Now, note that nd = C1n` and therefore (C1 + 1)n` + k = nd + n` + k = n. Additionally,
note that √n` = τ

σ
. Substituting this in, we have

2
√
n = p`ρn` − p`τ

σ

and therefore

σ
√
n = p`(ρn` − τ)− σ

√
n. (1.13)
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Now, we note that σ
√
n− kpc < σ

√
n and

√
n >

√
n− k − (ρn` − τ)

because both k and ρn` − τ = 2σ
√
n/p` are greater than 0, and n − k − (ρn` − τ) >

n− k − n` ≥ 0. Now, from (1.13), we can conclude that

σ
√
n− kpc < σ

√
n = p`(ρn` − τ)− σ

√
n

< (ρn` − τ)p` − σ
√
n− k − (ρn` − τ),

which means

pd ∈
[(

n/2− n`p`
nd

)
+ σ
√
n− kpc
nd

,

(
n/2− n`p`

nd

)
+ (n`ρ− τ)p` − σ

√
n− k − (n`ρ− τ)
nd

]

is non-empty, and our value for pd is admissible.
Lastly, we have to show that C1 is itself admissible; i.e., that the following holds:(( p`ρσ n`−p`

√
n`)

2

)2
− k

n`
− 1 > 0.

Rearranging and expanding, we obtain

p`n`ρ

σ
− p`
√
n` ≥ 2

√
n` + k.

Now, note that both sides are positive as δ → 0. Indeed, the right hand side consists of
positive terms and the left hand side simplifies to p`

√
n`(ρ
√
n`/σ− 1), which is positive iff

ρ
√
n` > σ, which is true as δ → 0 because 1/δ grows more quickly than ln(2/δ). Therefore,

squaring both sides yields
(
p`n`ρ

σ

)2
+ (p`)2n` − 2(p`)2ρ(n`)3/2

σ
≥ 4(n` + k).

Now, substituting in our value for n`, we obtain[(
p`ρ

σ

)(
n1m

αδ

)]2
+ (p`)2

(
n1m

αδ

)
− 2(p`)2ρ

σ

(
n1m

αδ

)3/2
− 4

(
n1m

αδ

)
− 4k. (1.14)

As δ → 0, (1.14) becomes dominated by the highest-order 1/δ term, and therefore is
always positive for any assignment to the other variables because the rest of them are
constrained to be strictly positive.

Because α, δ ∈ (0, 1), the value of n` in (1.5) is greater than both n1 and m, hence
constraints (1.1) and (1.2) are immediately satisfied. Moreover, constraint (1.3) is satisfied
by (1.9) and (1.10).
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Turning to the proof that DNH is violated, let corD, delM , and nondelM be the random
variables corresponding to the number of correct votes under D, the number of delegated
correct votes under M , and the number of non-delegated correct votes under M . Addi-
tionally, let ε, τ (defined again below), and ξ be as follows.

ε =

√√√√−
(
ln δ

2

)
n

2 ,

τ =

√√√√−
(
ln δ

2

)
n`

2 , and

ξ =

√√√√−
(
ln δ

2

)
(n− nc − (ρn` − τ))

2 .

Our goal is to bound the expectations of corD, delM , and nondelM . First, we examine
E[corD]. We would like to show that

E[corD] ≥ n/2 + ε. (1.15)

Expanding out the expected value, this is equivalent to

pcnc + p`n` + pdnd ≥ n/2 + ε.

From (1.11), we have

pd ≥
n/2− p`n` + ε

nd
,

so it is sufficient to show that

pcnc + p`n` + nd

(
n/2− p`n` + ε

nd

)
≥ n/2 + ε,

and simplifying yields pcnc ≥ 0. This is true by Equation (1.9), because α and k are both
constrained to be strictly positive.

Next, we examine E[delM ]. We would like to show that

E[delM ] = n`ρ. (1.16)

This is trivial to see, as delM is a sum of n` Bernoulli random variables with “success”
probability ρ.

Finally, we examine the “typical case” over nondelM , or E[nondelM |delM = v] for all
integers v ∈ [n`ρ− τ, n`ρ+ τ ]. Intuitively, this case considers the number of correct votes
cast by still-independent vertices after “enough” leaf vertices have delegated their votes.
If these votes do not make up a majority, then all centers voting incorrectly will cause the
entire graph to vote incorrectly. We would like to show that

E[nondelM |delM = v] ≤ n/2− ξ. (1.17)
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for all integers v ∈ [n`ρ− τ, n`ρ+ τ ]. Conditionally on delM being in the prescribed range
above, we see that in the worst case, delM = n`ρ − τ , meaning the fewest possible voters
delegate under this assumption. Given this, we would like to show that

pdnd + p`(n` − (ρn` − τ)) ≤ n/2− ξ.

From Equation (1.11) we have

pd ≤
n/2− p`n` + (n`ρ− τ)p` − ξ

nd
,

which yields (
n/2− p`n` + (n`ρ− τ)p` − ξ

nd

)
nd + p`(n` − (ρn` − τ))

≤ n/2− ξ.

Simplifying yields 0 ≤ 0—a tautology. This establishes Equation (1.17).
We now wish to bound the probability of corD, delM , and nondelM deviating by too

much. We use Hoeffding’s inequality [127], which states that given n independent Bernoulli
random variables Xi ∈ [0, 1] and X = ∑

iXi, the following concentration bound holds:

Pr [|X − E[X]| ≥ ε] ≤ 2 exp
(
−2ε2

n

)
. (1.18)

First, we examine corD. From (1.18) and a straightforward substitution for ε, we obtain

Pr (|corD − E[corD]| ≥ ε) ≤ 2 exp
(
−2ε2

n

)

= 2 exp

−
2
[√
−(ln δ

2)n
2

]2

n


= δ.

(1.19)

Likewise, for delM , from (1.18) and a straightforward substitution for τ , we obtain

Pr [|delM − E[delM ]| ≥ τ ] ≤ 2 exp
(
−2τ 2

n`

)

= 2 exp

−
2
[√
−(ln δ

2)n`
2

]2

n`


= δ.

(1.20)
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Finally, for nondelM , we are interested in upper-bounding

Pr[|nondelM − E[nondelM |delM = v]| ≥ ξ | delM = v],

for every integer v ∈ [n`ρ − τ, n`ρ + τ ]. As before, we apply Equation (1.18), and, as it
turns out, we can derive an upper bound when delM = n`ρ− τ . Therefore, we obtain that
for every v ∈ [n`ρ− τ, n`ρ+ τ ],

Pr [|nondelM − E[nondelM |delM = v]| ≥ ξ | delM = v]

≤ 2 exp
(

−2ξ2

n− nc − (ρn` − τ)

)

= 2 exp

−
2
[√
−(ln δ

2)(n−nc−(ρn`−τ))
2

]2

n− nc − (ρn` − τ)


= δ,

(1.21)

where the denominator comes from the (worst-case) total number of non-delegated votes
under M .

From the above, we see that

Pr[corD > n/2] ≥ 1− δ, (by (1.15) and (1.19))
Pr[delM ∈ (n`ρ− τ, n`ρ+ τ)] ≥ 1− δ, (by (1.16) and (1.20))

Pr[nondelM < n/2 | delM = v] ≥ 1− δ, (by (1.17) and (1.21))

where the last inequality holds for all integers v ∈ [n`ρ− τ, n`ρ+ τ ].
Therefore, the lower bound on the probability of D deciding correctly is pd(G) ≥ 1− δ.

We can lower-bound the probability of M deciding incorrectly in order to upper-bound
PM(G). We slightly overload notation and let M be the event that M decides correctly,
and ¬M be the event that M decides incorrectly. Moreover, denote by V the event that
delM ∈ [n`ρ− τ, n`ρ+ τ ]. By definition, we have

Pr[¬M ] = Pr[¬M |V ] Pr[V ] + Pr[¬M |¬V ] Pr[¬V ],

and because probabilities cannot be negative,

Pr[¬M ] ≥ Pr[¬M |V ] Pr[V ].

Now, because Pr[V ] ≥ 1− δ,

Pr[¬M ] ≥ Pr[¬M |V ](1− δ).

Furthermore, we know that Pr[¬M |V ] is also lower-bounded by (1− pc)nc(1− δ) because
one setting under which M decides incorrectly is exactly when all centers vote incorrectly
and nondelM < n/2. It follows that

Pr[¬M ] ≥ (1− pc)nc(1− δ)(1− δ).
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Therefore, taking the complement, we have an upper bound on the probability ofM voting
correctly of

Pr[M ] ≤ 1− (1− pc)nc(1− δ)2,

and the total loss can be lower-bounded by

(1− δ)− (1− (1− pc)nc(1− δ)2) = (1− pc)nc(1− δ)2 − δ.

As δ → 0, this tends to (1− pc)nc = (1− pc)k, which is constant and bounded away from
0. We conclude that M violates the DNH property.

We note that even if each voter had access to a ranking of his approved neighbors by
competence, this impossibility still holds because the construction is such that all approved
vertices have equal competence.

1.1.5 Possibility for Non-Local Mechanisms
The main idea underlying Theorem 1.1 is that liquid democracy can correlate the votes to
the point where the mistakes of a few popular voters tip the scales in the wrong direction.
As we show in the theorem’s proof, this is unavoidable under local delegation mechanisms,
which, intuitively, cannot identify situations in which certain voters amass a large number
of votes. However, non-local delegation mechanisms can circumvent this issue. Indeed,
consider the following delegation mechanism.

input: labeled graph G with n vertices, cap C : N→ N
1: V ′ ← V
2: while V ′ 6= ∅ do
3: let i ∈ argmaxj∈V ′ |A−1

G (j) ∩ V ′|
4: J ← A−1

G (i) ∩ V ′
5: if |J | ≤ C(n)− 1 then
6: J ′ ← J
7: else
8: let J ′ ⊆ J such that |J ′| = C(n)− 1
9: end if
10: vertices in J ′ delegate to i
11: V ′ ← V ′ \ ({i} ∪ {J ′})
12: end while

Algorithm 1: GreedyCap

In words, the mechanism GreedyCap, given as Algorithm 1, receives as input a labeled
graph G, and a cap C which is a function of n. It iteratively selects a voter with maximum
approvals, and delegates votes to him, so that no more than C(n)−1 votes are delegated to
a single voter (that is, no voter can have weight more than C(n)). All voters involved in the
current iteration are then eliminated from further consideration, which is why delegations
under this mechanism are only 1-hop.
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It is obvious that GreedyCap satisfies the PG property. Intuitively, for any value of
α, it is always possible to construct large instances of graphs where a few voters delegate
to more competent voters in a way that increases the probability of making the correct
decision overall. However, although it seems at first glance that it should satisfy DNH
as well (as it solves the excessive correlation problem), the following example shows that,
without further assumptions, it does not.

Example 2. Assume for ease of exposition that α < 1/3. For any odd n = 2k+1, consider
the labeled graph Gn = (V,E, ~p) on n vertices, defined as follows: E = {(1, 2)} (i.e., the
only edge in the graph is from 1 to 2), p1 = 1/3, p2 = 2/3, there are k vertices with pi = 1,
and k − 1 vertices with pi = 0. Even if C(n) ≡ 2, GreedyCap would delegate the vote of
voter 1 to voter 2. Therefore, the mechanism decides correctly if and only if voter 2 votes
correctly, which happens with probability 2/3. By contrast, under direct voting, it is enough
for either voter 1 or voter 2 to vote correctly, which happens with probability 7/9. It follows
that the loss of GreedyCap is 1/9—a constant. We conclude that GreedyCap violates
DNH.

The reason the example works is that the outcome completely depends on voters 1 and
2, as the others vote deterministically (competence level 0 or 1). To avoid this problem,
we make the natural assumption that competence levels are bounded away from 0 and
1, i.e., voters are never horribly misinformed or perfectly informed. It turns out that
this additional assumption is sufficient to guarantee that GreedyCap satisfies the DNH
property.

Theorem 1.3. Assume that there exists β ∈ (0, 1/2) such that all competence levels are
in [β, 1− β]. Then for any difference in competencies α ∈ (0, 1− 2β), GreedyCap with
cap C : N → N such that C(n) ∈ ω(1) and C(n) ∈ o(

√
log n) satisfies the PG and DNH

properties.
We begin with a proof sketch, focusing on the DNH property (as PG is rather simple).

Given n voters, we denote the number of correct votes under direct voting and GreedyCap
by XD and XM , respectively, and consider two cases.

1. |E[XD]− n
2 | >

n
logn .

2. |E[XD]− n
2 | ≤

n
logn .

In Case 1, the direct voting mechanism has mean far away from n/2. When E[XD] <
n/2−n/ log n, we can show that PD goes to 0 as n goes to infinity. This means that DNH
is satisfied for any value of PM . In the case where E[XD] > n/2 + n/ log n, we can show
that PM goes to 1 as n goes to infinity, which means that DNH is satisfied for any value
of PD.

In Case 2, the direct voting setting has mean close to n/2. From here, we consider two
subcases.

1. The number of voters who delegate is greater than n/g(n), where g(n) ∈ o(log n)
and g(n) ∈ ω(C(n)2). Note that this yields—hence the upper bound on C(n) in the
statement of Theorem 1.3.

2. The number of voters who delegate is at most n/g(n).
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In Subcase 1, because a relatively large fraction of voters delegate their votes to more
competent neighbors, E[XM ] − E[XD] is large enough to offset the simultaneous increase
in the variance of XM , and, in the limit, PM goes to 1. In Subcase 2, we again have
E[XM ] ≥ E[XD] due to delegation. Additionally, because so few voters delegate, the ratio
of the variance of XM and that of XD converges to 1 as n approaches infinity, which means
that (in the worst case) the difference between PD and PM converges to 0.

Before presenting the theorem’s detailed proof, we establish three useful lemmas that
establish uniform convergence as n grows large.

The first lemma is the Lindeberg Central Limit Theorem [161], reproduced below.
Lemma 1.4 (Lindeberg Central Limit Theorem [161]). Let {Xni : n ≥ 1; i = 1, . . . , kn} be
a triangular array of random variables with Xn1, . . . , Xnkn independent for each n, E[Xni] =
0, and ∑kn

i=1 E[X2
ni] = 1. If for each fixed ε > 0,

lim
n→∞

kn∑
i=1

E
[
X2
ni1{|Xni| > ε}

]
= 0,

where 1 is an indicator random variable, then

Zn =
kn∑
i=1

Xni → N(0, 1).

In our proof, we will use the Lindeberg Central Limit Theorem to prove the following
key lemma, which states that we can treat arbitrary instances of liquid democracy like
normal distributions as the number of voters increases.
Lemma 1.5. For all β ∈ (0, 1/2) and C(n) ∈ o(

√
n), for all ε > 0, there is a constant n2 ∈

N such that for all n ≥ n2, given arbitrary competencies p1, . . . , pn where each pi ∈ (β, 1−β)
for β ∈ (0, 1/2) and weights b1, . . . , bn such that each bi ∈ [0, C(n)] and ∑n

i=1 bi = n, we
have ∣∣∣∣∣∣Pr[X > n/2]− Φ

E[X]− n/2√
Var[X]

∣∣∣∣∣∣ < ε,

where X represents the number of correct votes in liquid democracy with these competencies
and weights, and E[X] = ∑n

i=1 bi · pi and Var[X] = ∑n
i=1 b

2
i pi(1− pi).

Proof. Let {Ynk : 1 ≤ k ≤ n} be a triangular array of independent Bernoulli random
variables where Yni has success probability pnk ∈ [β, 1− β] for β ∈ (0, 1/2). Furthermore,
define {bnk : 1 ≤ k ≤ n} be a triangular array of nonnegative integers such that 0 ≤
bnk ≤ C(n) for all 1 ≤ k ≤ n and ∑n

k=1 bnk = n. Lastly, define the triangular array
Xnk := bnk · Ynk.

We will first show that the sum of all theXnk random variables is approximately normal,
or

Zn =
n∑
k=1

Xnk → Z ∼ N

(
n∑
k=1

bnk E[Yk],
n∑
k=1

b2
nk Var[Yk]

)
. (1.22)
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In order to show Equation (1.22), define s2
n = ∑n

k=1 Var[Xnk] = ∑n
k=1 b

2
nk Var[Ynk]. Let

Wnk := Xnk − E[Xnk]
sn

= Xnk − E[Xnk]√∑n
k=1 b

2
nk Var[Ynk]

.

Wemust first show that the triangular arrayWnk satisfies the preconditions of Lemma 1.4.
Note that Xn1, . . . , Xnn are independent because the {Ynk} are independent. Also, by def-
inition, E[Wnk] = 0. Furthermore, we have

n∑
k=1

E[W 2
nk] =

n∑
k=1

E
[

(Xnk − E[Xnk])2

s2
n

]

= 1
s2
n

n∑
k=1

E[(Xnk − E[Xnk])2]

= 1
s2
n

n∑
k=1

b2
nk E[(Ynk − E[Ynk])2]

= 1∑n
k=1 b

2
nk Var[Ynk]

n∑
k=1

b2
nk Var[Ynk]

= 1.

Now, we must check whether the last precondition holds, i.e., whether

lim
n→∞

n∑
k=1

E
[
W 2
nk1{|Wnk| > ε}

]
= 0.

We have

lim
n→∞

n∑
k=1

E
[
W 2
nk1{|Wnk| > ε}

]
= lim

n→∞

n∑
k=1

E
[

(Xnk − E[Xnk])2

s2
n

1 {|bnk(Ynk − E[Ynk])| > ε · sn}
]

= lim
n→∞

1
s2
n

n∑
k=1

b2
nk E

[
(Ynk − E[Ynk])2

1 {|bnk(Ynk − E[Ynk])| > ε · sn}
]
.

Let us now examine the 1 {|bnk(Ynk − E[Ynk])| > ε · sn} term. On the left side of the
inequality, we have that

|bnk(Ynk − E[Ynk])| ∈ o(
√
n)

because bnk ∈ o(
√
n), and |Ynk − E[Ynk]| ≤ max(β, 1 − β) ≤ 1 − β because we consider

β ∈ (0, 1/2). Furthermore, on the right side, we have

sn =
√√√√ n∑
k=1

b2
nkpnk(1− pnk)

≥

√√√√ n∑
k=1

b2
nkβ(1− β) (pnk ∈ (β, 1− β))

≥
√
nβ(1− β) (∑n

k=1 bnk = n)
∈ Ω(

√
n).
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Therefore, as n approaches infinity, the probability that the left hand side exceeds
the right hand side goes to 0, satisfying the final precondition. We may now apply the
Lindeberg Central Limit Theorem to see that

Z ′n =
n∑
k=1

Wnk → N(0, 1) as n→∞.

By straightforward scaling and shifting arguments, as above, we see that this implies
that

Zn =
n∑
k=1

Xnk → N

(
n∑
k=1

bnk E[Yk],
n∑
k=1

b2
nk Var[Yk]

)
as n→∞,

as desired.
This means that all instances with arbitrary competence and weight values approach

a normal distribution as the size of the instance grows. We now must show uniform
convergence. In order to do so, first assume toward a contradiction that there exists an ε
such that for infinitely many n, there exist bn and pn such that the resulting instance is
not within ε of normal. Then, we may construct a sequence including all of these failing
instances, which would violate Equation (1.22).

We also require the following simple lemma.

Lemma 1.6. Given a normally distributed variable X ∼ N (E[X],Var[X]) with E[X] ∈
[µmin, µmax] and Var[X] ∈ [σ2

min, σ
2
max], then the following is true.

Case 1: if µmax > k :
Pr[X > k] ≤ Pr[Y ∼ N (µmax, σ2

min) > k]
Pr[X > k] ≥ Pr[Y ∼ N (µmin, σ2

max) > k]
Case 2: if µmax < k :

Pr[X > k] ≤ Pr[Y ∼ N (µmax, σ2
max) > k]

Pr[X > k] ≥ Pr[Y ∼ N (µmin, σ2
min) > k]

Proof. For both upper bounds, we want to minimize the value of Φ
(
k−E[X]
Var[X]

)
. Because Φ

is monotonically increasing, this is equivalent to minimizing the value of k−E[X]
Var[X] . It is clear

that k − µmax < k − µmin. Now, if k − µmax < 0, then

k − µmax
σmin

<
k − µmax
σmax

.

However, if k − µmax > 0, then

k − µmax
σmax

<
k − µmax
σmin

.
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For both lower bounds, we want to maximize the value of Φ
(
k−E[X]
Var[X]

)
. Because Φ is

monotonically increasing, this is equivalent to maximizing the value of k−E[X]
Var[X] . As in the

above case, it is clear that k − µmin > k − µmax. Now, if k − µmin < 0, then

k − µmin
σmax

>
k − µmin
σmin

.

However, if k − µmin > 0, then

k − µmin
σmin

>
k − µmin
σmax

.

Finally, by definition, Erf (∞) = 1 and Erf (−∞) = −1, where Erf (·) denotes the
(Gauss) error function,

Erf (z) = 2√
π

∫ z

0
e−t

2
dt.

We will use this fact repeatedly throughout the proof of the theorem, which we now turn
to.

Proof of Theorem 1.3. Given a total number of voters n, let us define two random vari-
ables, XD and XM , where XD denotes the number of correct votes under the direct voting
mechanism D, and XM represents the (weighted) number of correct votes under Greedy-
Cap. We are interested in comparing PD = Pr[XD > n/2] and PM = Pr[XM > n/2].

Let V = {V1, . . . , Vn, . . . } be a sequence of independent Bernoulli random variables in
which Vi represents the vote of voter i; i.e., each Vi has success probability pi ∈ [β, 1− β]
for β ∈ (0, 1/2). Using V , we define a sequence of instances indexed by n, where each
instance consists of the first n voters in V . Let {bDni : 1 ≤ i ≤ n} and {bMni : 1 ≤ i ≤ n} be
triangular arrays of nonnegative integers that denote the weight of each voter under direct
voting and GreedyCap, respectively. Under direct voting, bDni = 1 for all 1 ≤ i ≤ n. Note
that, in this case, 0 ≤ bDni ≤ C(n) for all voters i, and ∑n

i=1 b
D
ni = n. Now, in the delegative

case, let bMni = wni for all 1 ≤ i ≤ n, where wni ∈ Z≥0 is the total weight accumulated by
voter i in instance n (note that voters who choose to delegate have weight zero). Because
each voter cannot accumulate weight greater than C(n), we have that 0 ≤ wni ≤ C(n) for
all voters i, and ∑n

i=1wni = n.
Note that, given a population of voters of size n, XD = ∑n

i=1 b
D
niVi = ∑n

i=1 Vi and
XM = ∑n

i=1 b
M
niVi = ∑n

i=1wniVi. Now, because XD and XM both satisfy the conditions
under which Lemma 1.1.5 holds, we may apply Lemma 1.1.5 to establish that XD and XM

are approximately normally distributed as n goes to infinity; i.e.,

XD =
n∑
i=1

Vi → N

(
n∑
i=1

E[Vi],
n∑
i=1

Var[Vi]
)

as n→∞

and
XM =

n∑
i=1

wniVi → N

(
n∑
i=1

wni E[Vi],
n∑
i=1

w2
ni Var[Vi]

)
as n→∞.
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Therefore, we can use the following formulas.

PD ≈
∫ n

n/2

1√
2πVar[XD]

exp
(
−(x− E[XD])2

2 Var[XD]

)
dx (1.23)

PM ≈
∫ n

n/2

1√
2πVar[XM ]

exp
(
−(x− E[XM ])2

2 Var[XM ]

)
dx (1.24)

Indeed, throughout this proof, we will assume that PD and PM are exactly equal to these
quantities; this is because Lemma 1.1.5 says that as n goes to infinity, this approximation
becomes arbitrarily accurate.

Note that, from above, the PG property means that there exists ε such that PM−PD > ε
for at least one graph Gn on n vertices for all suitably large n. Similarly, the DNH property
corresponds to PD − PM < ε for all graphs Gn on n vertices for suitably large n and all
values of ε. We show that these two properties hold.

For the PG property, we construct a simple family of examples where the property is
satisfied. Let the social graph G be composed of pairs of nodes with one competent voter
and one incompetent voter with an edge pointing to the competent voter. The competent
voters have competence 1−β and the incompetent voters have competence β. If the voters
vote independently, the symmetry between the competent and incompetent voters makes
it clear that PD = 1/2. Under Algorithm 1, the incompetent voters all delegate to the
competent voters. We now have n

2 independent voters who each have one vote of weight
two and competence 1 − β. By the Condorcet Jury Theorem [123], it follows that PM
approaches 1.

In the remainder of the proof, therefore, we focus on establishing the DNH property.
We first show that

Var[XD] ∈ [β(1− β)n, n/4]. (1.25)
Indeed, XD = ∑n

i=1 Vi, where Vi is the Bernoulli random variable representing the vote of
voter i. In particular, Vi ∼ Bernoulli(pi), where pi ∈ [β, 1 − β] is the competence level of
voter i. Because all voters vote independently, Var[XD] = ∑n

i=1 Var[Vi], and

Var[Vi] = pi(1− pi) ∈ [β(1− β), (1/2)2].

This establishes Equation (1.25).
Now, let us separate the instances into two cases:
1. |E[XD]− n

2 | >
n

logn .
2. |E[XD]− n

2 | ≤
n

logn .

Case 1. In this case, we can give strong lower bounds on both PD and PM .
Subcase 1: E[XD] < n/2− n/ log n. By Equation (1.25), Var[XD] ≤ n/4 < n. Because

E[XD] < n/2, by Lemma 1.6 we have

PD <
∫ n

n
2

1√
2πn2

e
−(x−n2 + n

logn)2

2n dx. (1.26)
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This is equivalent to

PD <
1
2

(
Erf

(√
n(2 + log n)
2
√

2 log n

)
− Erf

( √
n√

2 log n

))
.

As n approaches infinity, both arguments go to infinity, and therefore (as Erf (∞) = 1)
PD approaches 0. This means that, no matter the value of PM , DNH is satisfied.

Subcase 2: E[XD] > n/2 + n/ log n. We now examine the maximum possible value of
Var[XM ] = ∑n

i=1w
2
ni Var[Vi], where wni is the total weight accumulated by voter i and,

again, Vi is the Bernoulli random variable representing the vote of voter i. Additionally,
Var[Vi] ∈ [β(1− β), 1/4], and applying this yields

Var[XM ] ≤ 1
4 ·

n∑
i=1

w2
ni.

Because each voter can accumulate at most weight C(n), by the convexity of x2, we can
see that this is maximized when the maximum number of voters have weight exactly C(n).
Therefore, we have

Var[XM ] ≤ 1
4 ·
dn/C(n)e∑
i=1

C(n)2 < nC(n).

Because E[XD] > n/2, by Lemma 1.6 we have

PM >
∫ n

n
2

1√
2πnC(n)

e
−(x−n2 + n

logn)2

2nC(n) dx. (1.27)

This simplifies to

PM >
1
2

(
Erf

( √
n(logn− 2)

2
√

2C(n) logn

)
+ Erf

( √
n√

2C(n) logn

))
.

As n approaches infinity, both arguments go to infinity, and PM approaches 1. There-
fore, no matter what the value of PD, DNH is satisfied.

Case 2. In this case, we split the argument into two further subcases:

1. The number of voters who delegate is greater than n/g(n), where g(n) is o(log n) and
ω(C(n)2).

2. The number of voters who delegate is less than or equal to n/g(n).

Subcase 1: Due to delegation, we have E[XM ]−E[XD] ≥ nα/g(n). We can now bound
the mean by

E[XM ] ≥ n

2 −
n

log n + nα

g(n) .
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Therefore, because g(n) = o(log n), E[XM ] > n/2 as n increases. As before, we also know
that Var[XM ] is bounded from above by nC(n), and therefore, by Lemma 1.6,

PM ≥
∫ n

n
2

1√
2πnC(n)

e
−(x−n2− n

logn−
nα
g(n))

2

2nC(n) dx. (1.28)

We would like to show that this integral goes to 1 as n goes to infinity.
This is equivalent to

1
2

Erf( n
2 −

nα
g(n) + n

logn√
2nC(n)

)
− Erf

√n
(
− α
g(n) + 1

logn

)
√

2C(n)

 .
Note that as n goes to infinity, the first argument goes to infinity and the second

argument goes to negative infinity when g(n) = o(log n). Therefore, PM goes to 1, satisfying
DNH.

Subcase 2: In this case, most voters remain independent. We will argue that although
the delegation does impact the variance, this impact will get arbitrarily small as n grows
larger, implying that the loss will get arbitrarily small.

Let us index the voters according to what happens in the delegation scheme. Let the
first n1 indexed voters represent those who remain independent and do not get delegated
a vote. Let the next n2 indexed voters be those who got delegated at least one vote.
Finally, the last n− n1 − n2 indexed voters are those who delegated their vote to another
voter. Based on our assumption above, we know that limn→∞

n1
n

= 1; most voters remain
independent and unaffected by the delegation scheme.

Additionally, note that the mean will be slightly different in the two schemes, but this
to our advantage because the mean will improve in the delegation scheme due to “uphill”
delegation.

Therefore, given

PD =
∫ n

n
2

1√
2πVar[XD]

e
−(x−E[XD ])2

2 Var[XD ] dx

and

PM =
∫ n

n
2

1√
2πVar[XM ]

e
−(x−E[XM ])2

2 Var[XM ] dx,

because E[XM ] ≥ E[XD], we can say that

PM ≥
∫ n

n
2

1√
2πVar[XM ]

e
−(x−E[XD ])2

2 Var[XM ] dx.

Now, we have to relate Var[XM ] and Var[XD]. Ideally, we want to show that they are
multiplicatively close to each other.
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We can decompose the variance of XD.

Var[XD] =
n1∑
i=1

pi(1− pi) +
n∑

i=n1+1
pi(1− pi).

Likewise, we can decompose the variance of XM .

Var[XM ] =
n1∑
i=1

pi(1− pi) +
n1+n2∑
i=n1+1

w2
nipi(1− pi) +

n∑
i=n1+n2+1

0.

Therefore, we have

Var[XM ]− Var[XD] =
n1+n2∑
i=n1+1

(w2
ni − 1)pi(1− pi)

−
n∑

i=n1+n2+1
pi(1− pi)

≤
n1+n2∑
i=n1+1

(w2
ni − 1)pi(1− pi)

≤ n2

4 (maxwni2 − 1)

≤ 1
4 ·

n

g(n)(C(n)2 − 1),

where the last inequality holds because wni ≤ C(n), and n2, the number of voters who are
delegated to, is at most the number of voters who delegate, which is at most n/g(n) by
assumption.

This means that

Var[XM ] ≤ Var[XD] + 1
4 ·

n

g(n)(C(n)2 − 1)

and therefore

Var[XM ]
Var[XD] ≤

Var[XD] + 1
4 ·

n
g(n)(C(n)2 − 1)

Var[XD]

= 1 +
n
g(n)(C(n)2 − 1)

4 Var[XD] .

Now, note that by Equation (1.25),

Var[XD] ≥ nβ(1− β)

and therefore

Var[XM ] ≤ Var[XD]
1 +

n
g(n)(C(n)2 − 1)

4nβ(1− β)


= Var[XD]

(
1 + 1

g(n) ·
C(n)2 − 1
4β(1− β)

)
.
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Let
η = 1

g(n) ·
C(n)2 − 1
4β(1− β)

and note that as n goes to infinity, η goes to 0 because we chose g(n) to grow asymptotically
more quickly than C(n)2.

Therefore, revisiting the original integrals, we have

PD =
∫ n

n
2

1√
2πVar[XD]

e
−(x−E[XD ])2

2 Var[XD ] dx

and

PM ≥
∫ n

n
2

1√
2πVar[XD](1 + η)

e
−(x−E[XD ])2

2 Var[XD ](1+η) dx.

Simplifying the above yields

PD = 1
2

(
Erf

(
n− E[XD]√

2 Var[XD]

)
− Erf

(
n− 2E[XD]
2
√

2 Var[XD]

))
(1.29)

and

PM ≥
1
2

Erf
 n− E[XD]√

2 Var[XD](1 + η)


−Erf

 n− 2E[XD]
2
√

2 Var[XD](1 + η)

 (1.30)

Furthermore, again by Equation (1.25), we know that Var[XD] ∈ [β(1− β)n, n/4] and
therefore

√
Var[XD] =

√
cn, where c ∈ [β(1 − β), 1/4]. From this, note that as n goes to

infinity, the argument to the first error function in each expression goes to infinity.
Let

h1(n) = n− 2E[XD]
2
√

2 Var[XD]
(1.31)

be the argument to the second error function in (1.29), and let

h2(n) = n− 2E[XD]
2
√

2 Var[XD](1 + η)
(1.32)

be the argument to the second error function in (1.30). As n goes to infinity, note that
the argument to (1.31) must go to one of four states: infinity, negative infinity, zero, or a
constant. In the case that it goes to infinity, negative infinity, or zero, the presence of the
extra 1√

1+η term in (1.32) does nothing to change the sign of the arguments, and therefore
they each converge to the same state (infinity, negative infinity, or zero) as n approaches
infinity. When the argument to (1.31) goes to a constant, note that as n goes to infinity,
η goes to 0, and therefore the two converge once again.

We conclude that (an upper bound on) the difference between PD and PM converges
to 0, and hence DNH is satisfied.
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1.2 Minimizing the Maximum Weight of Voters in
Liquid Democracy

The foregoing section indicates that, even if delegations go only to more competent agents,
a high concentration of power might still be harmful for social welfare, by neutralizing
benefits corresponding to the Condorcet Jury Theorem. Concentration of power is also a
concern in real-world implementations of liquid democracy: Certain individuals, the so-
called super-voters, seem to amass enormous weight, whereas most agents do not receive
any delegations. As Kling et al. [147] describe, super-voters in the Pirate Party were so
controversial that “the democratic nature of the system was questioned, and many users
became inactive.” Besides the negative impact of super-voters on perceived legitimacy,
super-voters might also be more exposed to bribing. Although delegators can retract their
delegations as soon as they become aware of suspicious voting behavior, serious damage
might be done in the meantime. Furthermore, if super-voters jointly have sufficient power,
they might find it more efficient to organize majorities through deals between super-voters
behind closed doors, rather than to try to win a broad majority through public discourse.

While all these concerns suggest that the weight of super-voters should be limited, the
exact metric to optimize for varies between them and is often not even clearly defined. For
the purposes of this chapter, we choose to minimize the weight of the heaviest voter. As
is evident in the Spiegel article, the weight of individual voters plays a direct role in the
perception of super-voters. But even beyond that, we are confident that minimizing this
measure will lead to substantial improvements across all presented concerns.

Just how can the maximum weight be reduced? One approach might be to restrict the
power of delegation by imposing caps on the weight. However, as argued by Behrens et
al. [26], delegation is always possible by coordinating outside of the system and copying the
desired delegate’s ballot. Pushing delegations outside of the system would not alleviate the
problem of super-voters, just reduce transparency. Therefore, we instead adopt a voluntary
approach: If agents are considering multiple potential delegates, all of whom they trust,
they are encouraged to leave the decision for one of them to a centralized mechanism. With
the goal of avoiding high-weight agents in mind, our research challenge is twofold:

First, investigate the algorithmic problem of selecting delegations to minimize
the maximum weight of any agent, and, second, show that allowing multiple
delegation options does indeed provide a significant reduction in the maximum
weight compared to the status quo.

1.2.1 Our Approach and Results
We formally define our problem in Section 1.2.3. In addition to minimizing the maximum
weight of any voter, we specify how to deal with delegators whose vote cannot possibly reach
any voter. In general, our problem is closely related to minimizing congestion for confluent
flow as studied by Chen et al. [68]. Not only does this connection suggest an optimal
algorithm based on mixed integer linear programming, but we also get a polynomial-time
(1 + ln |V |)-approximation algorithm, where V is the set of voters. In addition, we show
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that approximating our problem to within a factor of 1
2 log2 |V | is NP-hard.

In Section 1.2.4, to evaluate the benefits of allowing multiple delegations, we propose
a probabilistic model for delegation behavior— inspired by the well-known preferential
attachment model [25]— in which we add agents successively. With a certain probability
d, a new agent delegates; otherwise, she votes herself. If she delegates, she chooses k many
delegation options among the previously inserted agents. A third parameter γ controls
the bias of this selection towards agents who already receive many delegations. Assuming
γ = 0, i.e., that the choice of delegates is unbiased, we prove that allowing two choices
per delegator (k = 2) asymptotically leads to dramatically lower maximum weight than
classical liquid democracy (k = 1) using an argument based on the “power of choice.” In
the latter case, with high probability, the maximum weight is at least Ω(tβ) for some β > 0,
whereas the maximum weight in the former case is only O(log log t) with high probability,
where t denotes simultaneously the time step of the process and the number of agents. Our
analysis draws on a phenomenon called the power of choice that can be observed in many
different load balancing models. In fact, even a greedy mechanism that selects a delegation
option to locally minimize the maximum weight as agents arrive exhibits this asymptotic
behavior, which upper-bounds the maximum weight for optimal resolution.

In Section 1.2.5, we complement our theoretical findings with empirical results. Our
simulations demonstrate that our approach continues to outperform classical preferential
attachment for higher values of γ. We also show that the most substantial improvements
come from increasing k from one to two, i.e., that increasing k even further only slightly
reduces the maximum weight. We continue to see these improvements in terms of maximum
weight even if just some fraction of delegators give two options while the others specify
a single delegate. Finally, we compare the optimal maximum weight with the maximum
weight produced by the approximation algorithm and greedy heuristics.

1.2.2 Related Work
Kling et al. [147] conduct an empirical investigation of the existence and influence of super-
voters. The analysis is based on daily data dumps, from 2010 until 2013, of the German
Pirate Party installation of LiquidFeedback. As noted above, Kling et al. find that super-
voters exist, and have considerable power. The results do suggest that super-voters behave
responsibly, as they “do not fully act on their power to change the outcome of votes, and
they vote in favour of proposals with the majority of voters in many cases.” Of course, this
does not contradict the idea that a balanced distribution of power would be desirable.

In recent years, there has been an increasing number of theoretical analyses of liquid
democracy. In the field of political theory, Blum and Zuber [38] give a normative justifi-
cation of liquid democracy. They consider two accounts of democracy, which differ in the
stated goal of a democratic system. In the epistemic framework, the success of a demo-
cratic system should lead to good decisions with respect to some objective notion of quality,
whereas, in the egalitarian framework, a democratic system should allow each individual to
impose her particular interests to the same degree. Blum and Zuber conclude that liquid
democracy improves upon purely representative democracy with respect to both metrics.
They see unequal voting weights as problematic and suggest public deliberation before a
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vote to attenuate this problem.
In the spirit of the egalitarian framework, Green-Armytage [121] justifies liquid democ-

racy in a spatial model of political preferences similar to facility placement. When an
agent has incomplete information about a topic, transitive delegations can help to express
her preferences more accurately by harnessing the expertise of like-minded, more qualified
agents.

In this paper, we consider a single delegation network. Other works allow agents to
specify different delegations for multiple interconnected issues, where the binary preferences
and outcomes are restricted to satisfy a propositional formula [72] or to correspond to bi-
nary comparisons in a ranking [51]. Both papers propose ways of reconciling contradictory
choices made by different delegates.

We also highlight related work that considers models of network formation and influence
attenuation in the context of liquid democracy. Bloembergen et al. [37] introduce a game-
theoretic model of delegation in order to study rational delegation behavior in liquid-
democracy networks. In their model, delegation networks might be formed by a best-
response dynamic or as Nash equilibria of a delegation game. Escoffier et al. [98] study a
similar delegation game with different incentives.

Boldi et al. [40] study a variant of liquid democracy in which a voter’s weight decreases
by a discount factor every time her vote is transitively delegated, penalizing long delegation
chains. They argue that this variant is more appropriate in online communities, where trust
relationships are typically less deep than in the real world. While not intended as such,
this variant of liquid democracy can also reduce the weight of super-voters, at least of
those who receive most of their delegations indirectly. However, such a variant violates the
principle of “one person, one vote” and incentivizes delegation outside of the system [26].
By contrast, our approach reduces the weight of super-voters while preserving each voter’s
individual influence.

1.2.3 Algorithmic Model and Results
Let us consider a delegative voting process where agents may specify multiple potential
delegations. This gives rise to a directed graph, whose nodes represent agents and whose
edges represent potential delegations. In the following, we will conflate nodes and the
agents they represent. A distinguished subset of nodes corresponds to agents who have
voted directly, the voters. Since voters forfeit the right to delegate, the voters are a subset
of the sinks of the graph. We call all non-voter agents delegators.

Each agent has an inherent voting weight of 1. When the delegations will have been
resolved, the weight of every agent will be the sum of weights of her delegators plus her
inherent weight. We aim to choose a delegation for every delegator in such a way that the
maximum weight of any voter is minimized.

This task closely mirrors the problem of congestion minimization for confluent flow
(with infinite edge capacity): There, a flow network is also a finite directed graph with a
distinguished set of graph sinks, the flow sinks. Every node has a non-negative demand.
If we assume unit demand, this demand is 1 for every node. Since the flow is confluent,
for every non-sink node, the algorithm must pick exactly one outgoing edge, along which
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the flow is sent. Then, the congestion at a node n is the sum of congestions at all nodes
who direct their flow to n plus the demand of n. The goal in congestion minimization is to
minimize the maximum congestion at any flow sink. (We remark that the close connection
between our problem and confluent flow immediately suggests a variant corresponding to
splittable flow; we discuss this variant at length in Section 1.3.)

In spite of the similarity between confluent flow and resolving potential delegations, the
two problems differ when a node has no path to a voter / flow sink. In confluent flow, the
result would simply be that no flow exists. In our setting however, this situation can hardly
be avoided. If, for example, several friends assign all of their potential delegations to each
other, and if all of them rely on the others to vote, their weight cannot be delegated to
any voter. Our mechanism cannot simply report failure as soon as a small group of voters
behaves in an unexpected way. Thus, it must be allowed to leave these votes unused.
At the same time, of course, our algorithm should not exploit this power to decrease the
maximum weight, but must primarily maximize the number of utilized votes. We formalize
these issues in the following section.

Problem Statement

All graphs G = (N,E) mentioned in this section will be finite and directed. Furthermore,
they will be equipped with a set V of distinguished sinks in the graph. For the sake of
brevity, these assumptions will be implicit in the notion “graph G with V ”.

Some of these graphs represent situations in which all delegations have already been
resolved and in which each vote reaches a voter: We call a graph (N,E) with V a delegation
graph if it is acyclic, its sinks are exactly the set V , and every other vertex has outdegree
one. In such a graph, define the weight w(n) of a node n ∈ N as

w(n) := 1 +
∑

(m,n)∈E
w(m).

This is well-defined because E is a well-founded relation on N .
Resolving the delegations of a graph G with V can now be described as the Min-

MaxWeight problem: Among all delegation subgraphs (N ′, E ′) of G with voting vertices
V of maximum |N ′|, find one that minimizes the maximum weight of the voting vertices.

Connections to Confluent Flow

We recall definitions from the flow literature as used by Chen et al. [68]. We slightly
simplify the exposition by assuming unit demand at every node.

Given a graph (N,E) with V , a flow is a function f : E → R≥0. For any node n, set
in(n) := ∑

(m,n)∈E f(m,n) and out(n) := ∑
(n,m)∈E f(n,m). At every node n ∈ N \ V , a

flow must satisfy flow conservation:

out(n) = 1 + in(n).

Note that all nodes in V are sinks in the graph, and thus have no outflow. The congestion
at any node n is defined as 1 + in(n). A flow is confluent if every node has at most one
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outgoing edge with positive flow. We define MinMaxCongestion as the problem of
finding a confluent flow on a given graph such that the maximum congestion is minimized.

To relate the two presented problems, we need to refer to the parts of a graph (N,E)
with V from which V is reachable: The active nodes activeV (N,E) are all n ∈ N such
that there exists a path from n to a sink v ∈ V using edges in E. The active subgraph is
the restriction of (N,E) to activeV (N,E). In particular, V is part of this subgraph.
Lemma 1.2.1. Let G = (N,E) with V be a graph. Its delegation subgraphs (N ′, E ′) that
maximize |N ′| are exactly the delegation subgraphs with N ′ = activeV (N,E). At least one
such subgraph exists.

Proof. First, we show that all nodes of a delegation subgraph are active. Indeed, consider
any node n1 in the subgraph. By following outgoing edges, we obtain a sequence of nodes
n1 n2 . . . such that ni delegates to ni+1. Since the graph is finite and acyclic, this sequence
must end with a vertex nj without outgoing edges. This must be a voter; thus, n1 is active.

Furthermore, there exists a delegation subgraph of (N,E) with nodes exactly activeV (N,E).
Indeed, the shortest-paths-to-set-V forest (with edges pointed in the direction of the paths)
on the active subgraph is a delegation graph.

By the first argument, all delegation subgraphs must be subgraphs of the active sub-
graph. By the second argument, to have the maximum number of nodes, they must include
all nodes of this subgraph.

Lemma 1.2.2. Let (N,E) with V be a graph and let f : E → R≥0 be a confluent flow (for
unit demand). By eliminating all zero-flow edges from the graph, we obtain a delegation
graph.

Proof. We first claim that the resulting graph is acyclic. Indeed, for the sake of contra-
diction, suppose that there is a cycle including some node n. Consider the flow out of n,
through the cycle and back into n. Since the flow is confluent, and thus the flow cannot split
up, the demand can only increase from one node to the next. As a result, in(n) ≥ out(n).
However, by flow conservation and unit demand, out(n) = in(n)+1, which contradicts the
previous statement.

Furthermore, the sinks of the graph are exactly V : By assumption, the nodes of V
are sinks in the original graph, and thus in the resulting graph. For any other node, flow
conservation dictates that its outflow be at least its demand 1, thus every other node must
have outgoing edges.

Finally, every node not in V must have outdegree 1. As detailed above, the outdegree
must be at least 1. Because the flow was confluent, the outdegree cannot be greater.

As a result of these three properties, we have a delegation graph.

Lemma 1.2.3. Let (N,E) with V be a graph in which all vertices are active, and let
(N,E ′) be a delegation subgraph. Let f : E → R≥0 be defined such that, for every node
n ∈ N \V with (unique) outgoing edge e ∈ E ′, f(e) := w(n). On all other edges e ∈ E \E ′,
set f(e) := 0. Then, f is a confluent flow.

Proof. For every non-sink, flow conservation holds by the definition of weight and flow. By
construction, the flow must be confluent.
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Algorithms

The observations made above allow us to apply algorithms—even approximation algo-
rithms— for MinMaxCongestion to our MinMaxWeight problem; that is, we can
reduce the latter problem to the former.
Theorem 1.7. Let A be an algorithm for MinMaxCongestion with approximation ratio
c ≥ 1. Let A′ be an algorithm that, given (N,E) with V , runs A on the active subgraph,
and translates the result into a delegation subgraph by eliminating all zero-flow edges. Then
A′ is a c-approximation algorithm for MinMaxWeight.

Proof. By Lemma 1.2.1, removing inactive parts of the graph does not change the solutions
to MinMaxWeight, so we can assume without loss of generality that all vertices in the
given graph are active.

Suppose that the optimal solution for MinMaxCongestion on the given instance
has maximum congestion α. By Lemma 1.2.2, it can be translated into a solution for
MinMaxWeight with maximum weight α. By Lemma 1.2.3, the latter instance has
no solution with maximum weight less than α, otherwise it could be used to construct a
confluent flow with the same maximum congestion. It follows that the optimal solution to
the given MinMaxWeight instance has maximum weight α.

Now, A returns a confluent flow with maximum congestion at most c · α. Using
Lemma 1.2.2, A′ constructs a solution to MinMaxWeight with maximum weight at
most c · α. Therefore, A′ is a c-approximation algorithm.

Note that Theorem 1.7 works for c = 1, i.e., even for exact algorithms. Therefore, it is
possible to solve MinMaxWeight by adapting any exact algorithm for MinMaxFlow.
In particular, congestion minimization for confluent flow can be expressed as a mixed
integer linear program (MILP).

To stress the connection to MinMaxWeight, denote the congestion at a voter i by
w(i). For each potential delegation (u, v), f(u, v) gives the amount of flow between u and
v. This flow must be nonnegative (1.34) and satisfy flow conservation (1.35). Congestion
is defined in Equation (1.36). To minimize maximum congestion, we introduce a variable
z that is higher than the congestion of any voter (1.37), and minimize z (1.33).

So far, we have described a Linear Program for optimizing splittable flow. To restrict
the solutions to confluent flow, we must enforce an ‘all-or-nothing’ constraint on outflow
from any node, i.e. at most one outgoing edge per node can have positive flow. We express
this using a convex-hull reformulation. We introduce a binary variable xu,v for each edge
(1.38), and set the sum of binary variables for all outgoing edges of a node to 1 (1.39). IfM
is a constant larger than the maximum possible flow, we can then bound f(u, v) ≤M xu,v
(1.40) to have at most one positive outflow per node.

The final MILP is thus
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minimize z (1.33)
subject to f(m,n) ≥ 0 ∀(m,n) ∈ E, (1.34)∑

(n,m)∈E
f(n,m) = 1 +

∑
(m,n)∈E

f(m,n) ∀n ∈ N \ V, (1.35)

w(v) = 1 +
∑

(n,v)∈E
f(n, v) ∀v ∈ V, (1.36)

z ≥ w(v) ∀v ∈ V, (1.37)
xm,n ∈ {0, 1} ∀(m,n) ∈ E, (1.38)∑
(n,m)∈E

xn,m = 1 ∀n ∈ N \ V, (1.39)

f(m,n) ≤M · xm,n ∀(m,n) ∈ E. (1.40)
Since the foregoing algorithm is based on solving an NP-hard problem, it might be

too inefficient for typical use cases of liquid democracy with many participating agents.
Fortunately, it might be acceptable to settle for a slightly non-optimal maximum weight if
this decreases computational cost. To our knowledge, the best polynomial approximation
algorithm for MinMaxCongestion is due to Chen et al. [68] and achieves an approxi-
mation ratio of 1 + ln |V |. Their algorithm starts by computing the optimal solution to
the splittable-flow version of the problem, by solving a linear program. The heart of their
algorithm is a non-trivial, deterministic rounding mechanism. This scheme drastically out-
performs the natural, randomized rounding scheme, which leads to an approximation ratio
of Ω(|N |1/4) with arbitrarily high probability [67].

Hardness of Approximation

In this section, we demonstrate the NP-hardness of approximating the MinMaxWeight
problem to within a factor of 1

2 log2 |V |. On the one hand, this justifies the absence of an
exact polynomial-time algorithm. On the other hand, this shows that the approximation
algorithm is optimal up to a multiplicative constant.
Theorem 1.8. It is NP-hard to approximate the MinMaxWeight problem to a factor
of 1

2 log2 |V |, even when each node has outdegree at most 2.
Not surprisingly, we derive hardness via a reduction from MinMaxCongestion, i.e.,

a reduction in the opposite direction from the one given in Theorem 1.7. As shown by
Chen et al. [68], approximating MinMaxCongestion to within a factor of 1

2 log2 |V | is
NP-hard. However, in our case, nodes have unit demands. Moreover, we are specifically
interested in the case where each node has outdegree at most 2, as in practice we expect
outdegrees to be very small, and this case plays a special role in Section 1.2.4.

We begin with a lemma that slightly strengthens a hardness result by Fortune et
al. [106]:
Lemma 1.2.4. Let G be a directed graph in which all vertices have an outdegree of at most
2. Given vertices s1, s2, t1, t2, it is NP-hard to decide whether there exist vertex-disjoint
paths from s1 to t1 and from s2 to t2.

38



Proof. Without the restriction on the outdegree, the problem is NP-hard [106]. We reduce
the general case to our special case.

Let G′ be an arbitrary directed graph; let s′1, s′2, t′1, t′2 be distinguished vertices. To
restrict the outdegree, replace each node n with outdegree d by a binary arborescence
(directed binary tree with edges facing away from the root) with d sinks. All incoming
edges into n are redirected towards the root of the arborescence; outgoing edges from n
instead start from the different leaves of the arborescence. Call the new graph G, and let
s1, s2, t1, t2 refer to the roots of the arborescences replacing s′1, s′2, t′1, t′2, respectively.

Clearly, our modifications to G′ can be carried out in polynomial time. It remains to
show that there are vertex-disjoint paths from s1 to t1 and from s2 to t2 in G iff there are
vertex-disjoint paths from s′1 to t′1 and from s′2 to t′2 in G′.

If there are disjoint paths in G′, we can translate these paths into G by visiting the
arborescences corresponding to the nodes on the original path one after another. Since
both paths visit disjoint arborescences, the new paths must be disjoint.

Suppose now that there are disjoint paths in G. Translate the paths into G′ by visiting
the nodes corresponding to the sequence of visited arborescences. Since each arborescence
can only be entered via its root, disjointness of the paths in G implies disjointness of the
translated paths in G′.

Now, we can strengthen the hardness of approximation for MinMaxCongestion by
Chen et al. [68]. We believe the lemma is of independent interest, as it shows a surprising
separation between the case of outdegree 1 (where the problem is moot) and outdegree 2,
and that the asymptotically optimal approximation ratio is independent of degree. But it
also allows us to prove Theorem 1.8 almost directly.
Lemma 1.2.5. It is NP-hard to approximate the MinMaxCongestion problem to a
factor of 1

2 log2 k, where k is the number of sinks, even when each node has unit demand
and outdegree at most 2.

Proof of Lemma 1.2.5. We adapt the proof of Theorem 1 of Chen et al. [68].
Let G = (V,E), s1, s2, t1, t2 be given as in Lemma 1.2.4. Without loss of generality, G

only contains nodes from which t1 or t2 is reachable, t1 and t2 are sinks and all four vertices
are distinct. Let ` = dlog2 |V |e and k = 2`. Build the same auxiliary network as that built
by Chen et al. [68], which consists of a binary arborescence whose k − 1 nodes are copies
of G. The construction is illustrated in Figure 1.2. For more details, refer to [68].

For ease of exposition, we describe our reduction as returning a flow network with
polynomially-bounded positive integer demands. Implicitly, the described network is sub-
sequently translated into one with unary demand; to express a demand of d at a node n
in our unit-demand setting, add d− 1 fresh nodes with a single outgoing edge to n.

Denote the number of nodes in the network by φ := (k−1)·|V |+k, and set Φ := `·φ+1.
In [68], every copy of s2 and t2 has demand 1, the copy of s1 at the root has demand 2,
and all other nodes have demand 0. Instead, we give these nodes demands of Φ, 2Φ and
1, respectively. Note that the size of the generated network4 is polynomial in the size of
G and that the outdegree of each node is at most 2. From every node, one of the sinks

4Even after unfolding our non-unitary-demand nodes.
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Figure 1.2: Auxiliary network generated from G, here for k = 16. Recreation of [68, Fig. 2].

S displayed as rectangles in Figure 1.2 is reachable. Since the minimum-distance-to-S
spanning forest describes a flow, a flow in the network exists.

Suppose that G contains vertex-disjoint paths P1 from s1 to t1 and P2 from s2 to t2.
In each copy of G in the network, route the flow along these paths. We can complete the
confluent flow inside of this copy in such a way that the demand of every node is routed
to t1 or t2: By assumption, each of the nodes can reach one of these two path endpoints.
Iterate over all nodes in order of ascending distance to the closest endpoint and make sure
that their flow is routed to an endpoint. For the endpoints themselves, there is nothing to
do. For positive distance, a node might be part of a path and thus already connected to an
endpoint. Else, look at its successor in a shortest path to an endpoint. By the induction
hypothesis, all flow from this successor is routed to an endpoint, so route the node’s flow
to this successor. If we also use the edges between copies of G and between the copies
and the sinks, we obtain a confluent flow. Each sink except for the rightmost one can only
collect the demand of two nodes with demand Φ plus a number of nodes with demand 1.
The rightmost sink collects the demand from the single node with demand 2Φ plus some
unitary demands. Thus, the congestion of the system can be at most 2Φ + φ.

Now, consider the case in which G does not have such vertex-disjoint paths. In every
confluent flow and in every copy, there are three options:
• the flow from s1 flows to t2 and the flow from s2 flows to t1,
• the flow from s1 and s2 flows to t1, or
• the flow from s1 and s2 flows to t2.

In each case, the flow coming in through s1 is joined by additional demand of at least
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Φ. Consider the path from the copy of s1 at the root to a sink. By a simple inductive
argument, the congestion at the endpoint of the ith copy of G on this path is at least
(i+ 1) · Φ. Thus, the total congestion at the sink must be at least (`+ 1) · Φ. The lemma
now follows from the fact that

log2 k

2 (2Φ + φ) = `

2(2Φ + φ) < (`+ 1) · Φ.

Proof of Theorem 1.8. We reduce (gap) MinMaxCongestion with unit demand and out-
degree at most 2 to (gap) MinMaxWeight with outdegree at most 2. First, we claim
that if there are inactive nodes, there is no confluent flow. Indeed, let n1 be an inactive
node. For the sake of contradiction, suppose that there exists a flow f . Follow the positive
flow to obtain a sequence n1 n2 . . . . By definition, none of the nodes reachable from n1 can
be a voter. Since, by flow conservation and unit demand, each node must delegate, the
sequence must be infinite. As detailed in the proof of Lemma 1.2.2, a confluent flow with
unit demand cannot contain cycles. Thus, the sequence contains infinitely many different
nodes, which contradicts the finiteness of G.

Therefore, we can assume without loss of generality that in the given instance of Min-
MaxCongestion, all nodes are active (as the problem is still NP-hard). The reduction
creates an instance of MinMaxWeight that has the same graph as the given instance
of MinMaxCongestion. Using an argument analogous to the proof of Theorem 1.7 (re-
versing the roles of Lemma 1.2.2 and Lemma 1.2.3 in its proof), we see that this is a strict
approximation-preserving reduction.

1.2.4 Probabilistic Model and Results

Our generalization of liquid democracy to multiple potential delegations aims to decrease
the concentration of weight. Accordingly, the success of our approach should be measured
by its effect on the maximum weight in real elections. Since, at this time, we do not know of
any available datasets,5 we instead propose a probabilistic model for delegation behavior,
which can serve as a credible proxy. Our model builds on the well-known preferential
attachment model, which generates graphs possessing typical properties of social networks.

The evaluation of our approach will be twofold: In Sections 1.2.4 and 1.2.4, for a certain
choice of parameters in our model, we establish a striking separation between traditional
liquid democracy and our system. In the former case, the maximum weight at time t is
Ω(tβ) for a constant β with high probability, whereas in the latter case, it is in O(log log t)
with high probability, even if each delegator only suggests two options. For other parameter
settings, we empirically corroborate the benefits of our approach in Section 1.2.5.

5There is one relevant dataset that we know of, which was analyzed by Kling et al. [147]. However, due
to stringent privacy constraints, the data privacy officer of the German Pirate Party was unable to share
this dataset with us.
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(a) γ = 0 (b) γ = 1

Figure 1.3: Example graphs generated by the preferential delegation model for k = 2 and
d = 0.5.

The Preferential Delegation Model

Many real-world social networks have degree distributions that follow a power law [153;
180]. Additionally, in their empirical study, Kling et al. [147] observed that the weight of
voters in the German Pirate Party was “power law-like” and that the graph had a very
unequal indegree distribution. In order to meld the previous two observations in our liquid
democracy delegation graphs, we adapt a standard preferential attachment model [25] for
this specific setting. At a high level, our preferential delegation model is characterized by
three parameters: 0 < d < 1, the probability of delegation; k ≥ 1, the number of delegation
options from each delegator; and γ ≥ 0, an exponent that governs the probability of
delegating to nodes based on current weight.

At time t = 1, we have a single node representing a single voter. In each subsequent
time step, we add a node for agent i and flip a biased coin to determine her delegation
behavior. With probability d, she delegates to other agents. Else, she votes independently.
If i does not delegate, her node has no outgoing edges. Otherwise, add edges to k many
independently selected, previously inserted nodes, where the probability of choosing node
j is proportional to (indegree(j) + 1)γ. Note that this model might generate multiple edges
between the same pair of nodes, and that all sinks are voters. Figure 1.3 shows example
graphs for different settings of γ.

In the case of γ = 0, which we term uniform delegation, a delegator is equally likely
to attach to any previously inserted node. Already in this case, a “rich-get-richer” phe-
nomenon can be observed, i.e., voters at the end of large networks of potential delegations
will likely see their network grow even more. Indeed, a larger network of delegations is
more likely to attract new delegators. In traditional liquid democracy, where k = 1 and
all potential delegations will be realized, this explains the emergence of super-voters with
excessive weight observed by Kling et al. [147]. We aim to show that for k ≥ 2, the resolu-
tion of potential delegations can strongly outweigh these effects. In this, we profit from an
effect known as the “power of two choices” in load balancing described by Azar et al. [13].

For γ > 0, the “rich-get-richer” phenomenon additionally appears at the degrees of
nodes. Since the number of received potential delegations is a proxy for an agent’s com-
petence and visibility, new agents are more likely to attach to agents with high indegree.
In total, this is likely to further strengthen the inherent inequality between voters. For
increasing γ, the graph becomes increasingly flat, as a few super-voters receive nearly all
delegations. This matches observations from the LiquidFeedback dataset [147] that “the
delegation network is slowly becoming less like a friendship network, and more like a bi-
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partite networks of super-voters connected to normal voters.” The special case of γ = 1
corresponds to preferential attachment as described by Barabási and Albert [25].

The most significant difference we expect to see between graphs generated by the pref-
erential delegation model and real delegation graphs is the assumption that agents always
delegate to more senior agents. In particular, this causes generated graphs to be acyclic,
which need not be the case in practice. It does seem plausible that the majority of delega-
tions goes to agents with more experience on the platform. Even if this assumption should
not hold, there is a second interpretation of our process if we assume—as do Kahng et
al. [137]— that agents can be ranked by competence and only delegate to more competent
agents. Then, we can think of the agents as being inserted in decreasing order of compe-
tence. When a delegator chooses more competent agents to delegate to, her choice would
still be biased towards agents with high indegree, which is a proxy for popularity.

It may be useful to note that the MinMaxWeight approach based on confluent flow
does not require the underlying delegation graph to be acyclic, as the objective tries to
minimize the maximum weight of any voter over all possible delegation choices that max-
imize the total number of utilized votes. In this sense, unavoidable cycles result in lost
voting power.

In our theoretical results, we focus on the cases of k = 1 and k = 2, and assume γ = 0
to make the analysis tractable. The parameter d can be chosen freely between 0 and 1.
Note that our upper bound for k = 2 directly translates into an upper bound for larger k,
since the resolution mechanism always has the option of ignoring all outgoing edges except
for the first two. Therefore, to understand the effect of multiple delegation options, we can
restrict our attention to k = 2. This crucially relies on γ = 0, where potential delegations
do not influence the probabilities of choosing future potential delegations. Based on related
results by Malyshkin and Paquette [167], it seems unlikely that increasing k beyond 2 will
reduce the maximum weight by more than a constant factor.

Lower Bounds for Single Delegation (k = 1, γ = 0)

As mentioned above, we first assume uniform delegation and a single delegation option
per delegator, and derive a lower bound on the maximum weight. To state our results
rigorously, we say that a sequence (Em)m of events happens with high probability if Pr[Em]→
1 for m→∞. Since the parameter going to infinity is clear from the context, we omit it.
Theorem 1.9. In the preferential delegation model with k = 1, γ = 0, and d ∈ (0, 1), with
high probability, the maximum weight of any voter at time t is in Ω(tβ), where β > 0 is a
constant that depends only on d.

Proof. It suffices to show that, with high probability, there exists a voter at every time t
whose weight is bounded from below by a function in Ω(tβ).

For ease of exposition, we pretend that imax := log2
t

ln t is an integer.6 We divide the t
agents into imax + 1 blocks B0, . . . , Bimax . The first block B0 contains agents 1 to τ := ln t,
and every subsequent block Bi contains agents (τ 2i−1, τ 2i].

6The same argument works for imax :=
⌊
log2

t
ln t

⌋
if we appropriately bound the term.
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We keep track of the total weight Si of all voters in B0 after the entirety of block Bi

has been added. Furthermore, we define an event Xi saying that a high enough number
of agents in block Bi transitively delegate into B0. If all Xi hold, Simax scales like a power
function. Then, we show that, as t increases, the probability of any Xi failing goes to
zero. Thus, our bound on Simax holds with high probability. The total weight of B0 and
the weight of the maximum-weight voter in B0 can differ by at most a factor of τ , which
is logarithmic in t. Thus, with high probability, there is a voter in B0 whose weight is a
power function.

In more detail, let ε := 1
2 and let d′ := (1− ε) d = d

2 . For each i ≥ 0, let Yi denote the
number of votes from block i transitively going into B0. Clearly, Si = ∑i

j=0 Yi. For i > 0,
let Xi denote the event that

Yi > d′
τ
(
1 + d′

2

)i−1

2 .

Bounding the Expectation of Yi We first prove by induction on i that, if X1 through
Xi hold, then

Si ≥ τ

(
1 + d′

2

)i
. (1.41)

For i = 0, S0 = τ and the claim holds. For i > 0, by the induction hypothesis, Si−1 ≥
τ
(
1 + d′

2

)i−1
. By the assumption Xi,

Yi > d′
τ
(
1 + d′

2

)i−1

2 .

Thus,

Si = Si−1+Yi ≥ τ

(
1 + d′

2

)i−1

+d′
τ
(
1 + d′

2

)i−1

2 = τ

(
1 + d′

2

)i−1 (
1 + d′

2

)
= τ

(
1 + d′

2

)i
.

This concludes the induction and establishes Equation (1.41).
Now, for any agent j in Bi, the probability of transitively delegating into B0 is

d

∑
v∈V ∩B0 wj−1(v)

j − 1 ≥ d
Si−1

τ 2i .

Conditioned onX1, . . . , Xi−1, we can thus lower-bound Yi by a binomial variable Bin
(
τ 2i−1, d Si−1

τ 2i
)

to obtain

E[Yi | X1, . . . , Xi−1] ≥ τ 2i−1 d
Si−1

τ 2i = d
Si−1

2 ≥ d
τ
(
1 + d′

2

)i−1

2 .

Denoting the right hand side by

µ :− d
τ
(
1 + d′

2

)i−1

2 ,

note that Xi holds if Yi > (1− ε)µ.

44



Failure Probability Goes to 0 Now, we must show that, with high probability, all Xi

hold. By underapproximating the probability of delegation by a binomial random variable
as before and by using a Chernoff bound, we have for all i > 0

Pr[Xi | X1, . . . , Xi−1] ≥ Pr
[
Bin

(
τ 2i−1, d

τ (1 + d′/2)i−1

τ 2i

)
> (1− ε)µ

]
≥ 1− e−

ε2 µ
2 .

By the union bound,

Pr[∃i, 1 ≤ i ≤ imax such that Xi fails] ≤
imax∑
i=1

e−
ε2 d τ (1+d′/2)i−1

4 .

We wish to show that the right hand side goes to 0 as t increases. We have
imax∑
i=1

e−
ε2 d τ (1+d′/2)i−1

4 ≤ imax

(
e−

ε2 d τ
4

)
(by monotonicity)

=
(

log2
t

ln t

)(
t−

ε2 d
4

)
, (by definitions of imax , τ)

which indeed approaches 0 as t increases.

Bounding the Maximum Weight Note that the weight of B0 at time t is exactly Simax .
Set x := 1 + d′/2 > 1, which is a constant. With high probability, by Equation (1.41),

Simax

τ
≥
(

1 + d′

2

)imax

= xlog2
t

ln t =
(
t

ln t

)log2 x

.

Since x > 1, log2 x > 0. For any 0 < β < log2 x,
Simax
τ
∈ Ω(tβ) with high probability.

Since B0 has weight Simax and contains at most τ voters, with high probability there is
some voter in B0 with that much weight.

Before proceeding to the upper bound and showing the separation, we would like to
point out that—with a minor change to our model— these lower bounds also hold for
γ = 1. Consider a model in which the probability of attaching to a delegator n remains
proportional to (1 + indegree(n))γ, but the probability for voters n is now proportional
to (2 + indegree(n))γ.7 If we represent voters with a self-loop edge, both terms just equal
degree(n)γ, which arguably makes this implementation of preferential attachment cleaner to
analyze (e.g., [41]). Thus, we can interpret preferential attachment for γ = 1 as uniformly
picking an edge and then flipping a fair coin to decide whether to attach the new node
to the edge’s start or endpoint. Since every node has exactly one outgoing edge, this is
equivalent to uniformly choosing a node and then, with probability 1

2 , instead picking its
successor. This has the same effect on the distribution of weights as just uniformly choosing
a node in uniform delegation, so Theorem 1.9 also holds for γ = 1 in our modified setting.
Real-world delegation networks, which we suspect to resemble the case of γ = 1, should
therefore exhibit similar behavior.

7Clearly, our results for γ = 0 hold for both variants.

45



Upper Bound for Double Delegation (k = 2, γ = 0)

Analyzing cases with k > 1 is considerably more challenging. One obstacle is that we do
not expect to be able to incorporate optimal resolution of potential delegations into our
analysis, because the computational problem is hard even when k = 2 (see Theorem 1.8).
Therefore, we give a pessimistic estimate of optimal resolution via a greedy delegation
mechanism, which we can reason about alongside the stochastic process. Clearly, if this
stochastic process can guarantee an upper bound on the maximum weight with high proba-
bility, this bound must also hold if delegations are optimally resolved to minimize maximum
weight.

In more detail, whenever a new delegator is inserted into the graph, the greedy mech-
anism immediately selects one of the delegation options. As a result, at any point during
the construction of the graph, the algorithm can measure the weight of the voters. Suppose
that a new delegator suggests two delegation options, to agents a and b. By following al-
ready resolved delegations, the mechanism obtains voters a∗ and b∗ such that a transitively
delegates to a∗ and b to b∗. The greedy mechanism then chooses the delegation whose voter
currently has lower weight, resolving ties arbitrarily.

This situation is reminiscent of a phenomenon known as the “power of choice.” In its
most isolated form, it has been studied in the balls-and-bins model, for example by Azar
et al. [13]. In this model, n balls are to be placed in n bins. In the classical setting, each
ball is sequentially placed into a bin chosen uniformly at random. With high probability,
the fullest bin will contain Θ(log n/ log log n) balls at the end of the process. In the choice
setting, two bins are independently and uniformly selected for every ball, and the ball is
placed into the emptier one. Surprisingly, this leads to an exponential improvement, where
the fullest bin will contain at most Θ (log log n) balls with high probability.

We show that, at least for γ = 0 in our setting, this effect outweighs the “rich-get-richer”
dynamic described earlier:
Theorem 1.10. In the preferential delegation model with k = 2, γ = 0, and d ∈ (0, 1), the
maximum weight of any voter at time t is log2 ln t+ Θ(1) with high probability.

Because the proof of Theorem 1.10 is quite intricate and technical, we only present a
sketch of its structure here. In our proof we build on work by Malyshkin and Paquette [167],
who study the maximum degree in a graph generated by preferential attachment with the
power of choice. In addition, we incorporate ideas by Haslegrave and Jordan [124]. Proofs
for the individual lemmas can be found in the full version of the paper [120].

For our analysis, it would be natural to keep track of the number of voters v with a
specific weight wj(v) = k at a specific point j in time. In order to simplify the analysis,
we instead keep track of random variables

Fj(k) :=
∑
v∈V

wj(v)≥k

wj(v),

i.e., we sum up the weights of all voters with weight at least k. Since the total weight

46



increases by one in every step, we have

∀j. Fj(1) = j, and (1.42)
∀j, k. Fj(k) ≤ j. (1.43)

If Fj(k) < k for some j and k, the maximum weight of any voter must be below k.
If we look at a specific k > 1 in isolation, the sequence (Fj(k))j evolves as a Markov

process initialized at F1(k) = 0 and then governed by the rule

Fm+1(k)− Fm(k) =


1 with probability d

(
Fm(k)
m

)2

k with probability d
((

Fm(k−1)
m

)2
−
(
Fm(k)
m

)2
)

0 else

. (1.44)

In the first case, both potential delegations of a new delegator lead to voters who already
had weight at least k. We must thus give her vote to one of them, increasing Fm(k) by
one. In the second case, a new delegator offers two delegations leading to voters of weight
at least k − 1, at least one of which has exactly weight k − 1. Our greedy algorithm will
then choose a voter with weight k − 1. Because this voter is counted in the definition of
Fj(k), Fm(k) increases by k. Finally, if a new voter appears, or if a new delegator can
transitively delegate to a voter with weight less than k − 1, then Fm(k) does not change.

In order to bound the maximum weight of a voter, we first need to get a handle on the
general distribution of weights. For this, we define a sequence of real numbers (αk)k such
that, for every k ≥ 1, the sequence Fj(k)

j
converges in probability to αk. Set α1 := 1. For

every k > 1, let αk be the unique root 0 < x < αk−1 of the polynomial

ak(x, p) := d x2 + k d (p2 − x2)− x (1.45)

for p set to αk−1.8 Since ak(0, αk−1) > 0 and ak(αk−1, αk−1) < 0, such a solution exists
by the intermediate value theorem. Because the polynomial is quadratic, such a solution
must be unique in the interval. It follows that the αk form a strictly decreasing sequence
in the interval (0, 1].

The sequence (αk)k converges to zero, and eventually does so very fast. However, this
is not obvious from the definition and, depending on d, the sequence can initially decrease
slowly. In the full proof, we demonstrate convergence to zero, as well as show that the
sequence decreases at a rate in O(k−2). Based on this, we choose an integer k0 such that
the sequence decreases very fast from there. In the same lemma, we define a more nicely
behaved sequence (f(k))k≥k0 that is a strict upper bound on (αk)k≥k0 and that is contained
between two doubly-exponentially decaying functions.
Lemma 1.2.6. For all k ≥ 1, ε > 0 and functions ω(m) such that ω(m) → ∞ and
ω(m) < m (for sufficiently large m),

Pr
[
∃j, ω(m) ≤ j ≤ m s.t. Fj(k)

j
> αk + ε

]
→ 0.

8The equation 0 = ak(x, p) can be obtained from Equation (1.44) by naïvely assuming that Fj(k−1)
j

converges to a value p and Fj(k)
j converges to x, then plugging these values in the expectation of the

recurrence.
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Proof sketch. The proof proceeds by induction on k. For k = 1, the claim directly holds.
For larger k, we use a suitably chosen δ in place of ε and ω0 in place of ω for the induction
hypothesis. With the induction hypothesis, we bound the Fm(k−1)

m
term in the recurrence

in Equation (1.44). Furthermore, all increments Fj(k)− Fj−1(k) where Fj−1(k)
j−1 ≥ αk holds

can be dominated by independent and identically distributed random variables η′j.
Denote by π the first point j ≥ ω0(m) such that Fj(k)

j
≤ αk + ε

2 . The η
′
j then dominate

all increments Fj(k) − Fj−1(k) for ω0(m) < j ≤ π. Using Chernoff’s bound and suitably
chosen δ and ω0, we show that, with high probability, π ≤ ω(m).

Because of this, if Fj(k)
j

> αk + ε for some j ≥ ω(m), the sequence
(
Fj(k)
j

)
j
must

eventually cross from below αk + ε
2 to above αk + ε without in between falling below αk.

On this segment, we can overapproximate the sequence by a random walk with increments
distributed as η′j. Since the sequence might previously decrease below αk an arbitrary
number of times, we overapproximate the probability of ever crossing αk + ε for j ≥ ω(m)
by a sum over infinitely many random walks. This sum converges to 0 for m→∞, which
shows our claim.

The above lemma gives us a good characterization of the behavior of (Fj(k))j for any
fixed k (and large enough j). To prove an upper bound on the maximum weight, however,
we are ultimately interested in statements about Fj(k(m)), where k(m) ∈ Θ(log2 lnm)
and the range of j varies with m. In order to obtain such results, we will first show in
Lemma 1.2.7 that whole ranges of k simultaneously satisfy bounds with high probability.

As in the previous lemma, we can only show our bounds with high probability for
j past a certain period of initial chaos. We will define a function, φ(m, k), that takes
a role similar to ω(m) in Lemma 1.2.6. The function φ(m, k) gives each k a certain
amount of time to satisfy the bounds, depending on m: Let ρ(m) := (ln lnm) 1

3 and define
φ(m, k) := ρ(m)C2k+1 , where C is an integer that is sufficiently large to satisfy

lnC > max
(

1, c1, ln
( 2

1− d

)
+ c1

2

)
. (1.46)

In the above, c1 is a postive constant defining the lower bound on f(k).
Additionally, let k∗(m) be the smallest integer such that

C2k∗(m)+1 ≥
√
m. (1.47)

Note that C2k∗(m)+1
< m because increasing the double exponent in increments of 1 is

equivalent to squaring the term. By applying logarithms to C2k∗(m)+1 ≥
√
m and C2k∗(m)+1

<
m, we obtain log2 logCm − 2 ≤ k∗(m) < log2 logCm − 1, from which it follows that
k∗(m) = log2 lnm+ Θ(1).
Lemma 1.2.7. With high probability, for all k0 ≤ k ≤ k∗(m), and for all φ(m, k) ≤ j ≤ m,

Fj(k)
j
≤ f(k).
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Proof sketch. Let Gk be the event

Gk :=
{
∀j, φ(m, k) ≤ j ≤ m.

Fj(k)
j
≤ f(k)

}
.

Our goal is to show that Gk holds for all k in our range. In the spirit of an inductive
argument, we begin by showing Gk0 with high probability and then give evidence for how,
under the assumption Gk, Gk+1 is likely to happen. Instead of an explicit induction, we
piece together these parts in a union bound.

The base case Gk0 follows from Lemma 1.2.6 with ω(m) := φ(m, k0) and ε := f(k0)−αk0 .
For the step, fix some k ≥ k0, and assume Gk. We want to give an upper bound on

the probability that Gk+1 happens. We split this into multiple substeps: First, we prove
that, given Gk, some auxiliary event E(k + 1) happens only with probability converging to
0. Then, we show that E(k + 1) ⊆ Gk+1 where E denotes the complement of an event E .
This means that, whenever the unlikely event does not take place, Gk+1 holds. This allows
the step to be repeated.

If Gk does not hold for any k0 ≤ k ≤ k∗(m), then Gk0 or one of the E(k) must have
happened. The union bound converges to zero for m→∞, proving our claim.

As promised, the last lemma enables us to speak about the behavior of Fj(k(m)). We
will use a sequence of such statements to show that, with high probability, Fj(k(m)) for
some k(m) does not change over a whole range of j:
Lemma 1.2.8. There exists M > 0 and an integer r > 0 such that, for j0(m) :=
(ln lnm)M , Fm(k∗(m) + r) = Fj0(m)(k∗(m) + r) holds with high probability. In addition,
there is β > 1

2 such that, with high probability,

Fj0(m)(k∗(m) + r − 1) ≤ j0(m)1−β. (1.48)

Proof sketch. We finally get a statement about Fj(k∗(m)): By choosing different k for
different j in Lemma 1.2.7, we obtain a constant β0 > 0 such that, with high probability,

∀j, ln lnm ≤ j ≤ m.
Fj(k∗(m))

j
≤ j−β0 .

We now increase β0 until it is larger than 1
2 . Set r

′
0 := 0 andM0 := 1. In fact, we obtain

a stronger proposition of the form

∀j, (ln lnm)Mi ≤ j ≤ m.
Fj(k∗(m) + r′i)

j
≤ j−βi

holding with high probability to obtain, for some Mi+1 > 0 and with high probability,

∀j, (ln lnm)Mi+1 ≤ j ≤ m.
Fj(k∗(m) + r′i + 1)

j
≤ j−

3
2 βi .

If we set r′i+1 := r′i + 1 and βi+1 := 3
2 βi, we can repeatedly apply this argument until some

βi >
1
2 . Let M , r′ and β denote Mi, r′i and βi, respectively, for this i. If, furthermore,

r := r′ + 1, Equation (1.48) follows as a special case.
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We then simply union-bound the probability of Fj(k∗(m) + r) increasing for any j
between j0(m) and m. Using the above over-approximation in Equation (1.44) gives us an
over-harmonic series, whose value goes to zero with m→∞.

We can now prove Theorem 1.10. Let Qi denote the maximum weight after i time
steps.

Proof of Theorem 1.10. By Lemma 1.2.8, with high probability, Fm(k∗(m)+r) = Fj0(m)(k∗(m)+
r). Therefore, we have that with high probability

Fm(k∗(m) + r) = Fj0(m)(k∗(m) + r)
≤ Fj0(m)(k∗(m) + r − 1) (by monotonicity)
≤ j0(m)1−β (by Equation (1.48))

=
(
(ln lnm)M

)1−β

≤ (ln lnm)M+1.

For any j and k, Qj ≤ max{k, Fj(k)}. Since, for large enough m, k∗(m) + r <
(ln lnm)M+1, the maximum weight Qm is at most (ln lnm)M+1 with high probability. This
result holds for general m, so we are allowed to plug in j0(m) for m. Then, Qj0(m) ≤
(ln ln j0(m))M+1. Moreover, (ln ln j0(m))(M+1)2

< j0(m) for sufficiently large m because
M is a constant and polylogarithmic terms grow asymptotically slower than polynomial
terms. Rewriting this yields

Qj0(m) ≤ (ln ln j0(m))M+1 < j0(m)1/(M+1). (1.49)

Now, note that k∗(m) + r ≥
(
j0(m)1/(M+1)

)
for large enough m. Therefore, Equa-

tion (1.49) implies that, with high probability, a graph generated in j0(m) time steps
has no voters of weight k∗(m) + r or higher. In other words, with high probability,
Fj0(m)(k∗(m)+r) = 0, so with high probability Fm(k∗(m)+r) = 0 (again by Lemma 1.2.8).
This means that the maximum weight afterm time steps is also upper-bounded by k∗(m)+
r = log2 lnm+ Θ(1).

1.2.5 Simulations
In this section, we present our simulation results, which support the two main messages of
this paper: that allowing multiple delegation options significantly reduces the maximum
weight, and that it is computationally feasible to resolve delegations in a way that is close
to optimal. x Our simulations were performed on a MacBook Pro (2017) on MacOS 10.12.6
with a 3.1 GHz Intel Core i5 and 16 GB of RAM. All running times were measured with
at most one process per processor core. Our simulation software is written in Python 3.6
using Gurobi 8.0.1 to solve MILPs. All of our simulation code is open-source and available
at https://github.com/pgoelz/fluid.
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Multiple vs. Single Delegations

For the special case of γ = 0, we have established a doubly exponential, asymptotic sepa-
ration between single delegation (k = 1) and two delegation options per delegator (k = 2).
While the strength of the separation suggests that some of this improvement will carry
over to the real world, we still have to examine via simulation whether improvements are
visible for realistic numbers of agents and other values of γ.

To this end, we empirically evaluate two different mechanisms for resolving delegations.
First, we optimally resolve delegations by solving the MILP for confluent flow with the
Gurobi optimizer. Our second mechanism is the greedy “power of choice” algorithm used
in the theoretical analysis and introduced in Section 1.2.4.

In Figure 1.4, we compare the maximum weight produced by a single-delegation process
to the optimal maximum weight in a double-delegation process, for different values of γ
and d. Since our theoretical analysis used a greedy over-approximation of the optimum,
we also run the greedy mechanism on the double-delegation process.

These simulations show that our asymptotic findings translate into considerable dif-
ferences even for small numbers of agents, across different values of d. Moreover, these
differences remain nearly as pronounced for values of γ up to 1, which corresponds to clas-
sical preferential attachment. This suggests that our mechanism can outweigh the social
tendency towards concentration of votes; however, evidence from real-world elections is
needed to settle this question. Lastly, we would like to point out the similarity between
the graphs for the optimal maximum weight and the result of the greedy algorithm, which
indicates that a large part of the separation can be attributed to the power of choice.

If we increase γ to large values, the separation between single and double delegation
disappears. In Figure 1.5a, for γ = 2, all three curves are hardly distinguishable from
the linear function d · time, meaning that one voter receives nearly all the weight. The
reason is simple: In the simulations used for that figure, 99% of all delegators give two
identical delegation options, and 99.8% of these delegators (98.8% of all delegators) give
both potential delegations to the heaviest voter in the graph. There are even values of
γ > 1 and d such that the curve for single delegation falls below the ones for double
delegation. This can be seen in Figure 1.5b, where 87.7% of voters give two identical
delegation options. Since adding two delegation options per step makes the indegrees grow
faster, the delegations concentrate toward a single voter more quickly, and again lead to
a wildly unrealistic concentration of weight. Thus, it seems that large values of γ do not
actually describe our scenario of multiple delegations.

As we have seen, switching from single delegation to double delegation greatly improves
the maximum weight in plausible scenarios. It is natural to wonder whether increasing k
beyond 2 will yield similar improvements. As Figure 1.6 shows, however, the returns to
increasing k quickly diminish, which is common to many incarnations of the power of
choice [13].

Evaluating Mechanisms

Already the case of k = 2 appears to have great potential; but how easily can we tap it?

51



0 1000 2000 3000 4000 5000

time

0

5

10

15

20

av
er

ag
e

m
ax

im
u

m
w

ei
gh

t

single delegation

greedy power of choice

optimal confluent flow

(a) γ = 0, d = 0.25
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(b) γ = 1, d = 0.25
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(c) γ = 0, d = 0.5
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(d) γ = 1, d = 0.5
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(e) γ = 0, d = 0.75
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(f) γ = 1, d = 0.75

Figure 1.4: Maximum weight averaged over 100 simulations of length 5 000 time steps each.
Maximum weight has been computed every 50 time steps.
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(a) γ = 2, d = 0.5
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(b) γ = 1.5, d = 0.5

Figure 1.5: Maximum weight averaged over 100 simulations, computed every 50 time steps.
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Figure 1.6: Optimal maximum weight for
different k averaged over 100 simulations,
computed every 10 steps. γ = 1, d = 0.5.
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Figure 1.7: Optimal maximum weight
averaged over 100 simulations. Voters
give two delegations with probability p;
else one. γ = 1, d = 0.5.

We have observed that, on average, the greedy “power of choice” mechanism comes
surprisingly close to the optimal solution. However, this greedy mechanism depends on
seeing the order in which our random process inserts agents and on the fact that all
generated graphs are acyclic, which need not be true in practice. If the graphs were acyclic,
we could simply first sort the agents topologically and then present the agents to the greedy
mechanism in reverse order. On arbitrary active graphs, we instead proceed through the
strongly connected components in reverse topological order, breaking cycles and performing
the greedy step over the agents in the component. To avoid giving the greedy algorithm
an unfair advantage, we use this generalized greedy mechanism throughout this section.
Thus, we compare the generalized greedy mechanism, the optimal solution, the (1+ln |V |)-
approximation algorithm9 and a random mechanism that chooses a uniformly chosen option
per delegator.

At a high level, we find that both the generalized greedy algorithm and the approxi-
mation algorithm perform comparably to the optimal confluent flow solution, as shown in

9For one of their subprocedures, instead of directly optimizing a convex program, Chen et al. [68]
reduce this problem to finding a lexicographically optimal maximum flow in O(n5). We choose to directly
optimize the convex problem in Gurobi, hoping that this will increase efficiency in practice.
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Figure 1.8: Frequency of maximum weights at time t over 1 000 runs. γ = 1, d = 0.5,
k = 2. The black lines mark the medians.

Figure 1.8 for d = 0.5 and γ = 1. As Figure 1.9 suggests, all three mechanisms seem to
exploit the advantages of double delegation, at least on our synthetic benchmarks. These
trends persist for other values of d and γ.

The similar success of these three mechanisms might indicate that our probabilistic
model for k = 2 generates delegation networks that have low maximum weights for arbi-
trary resolutions. However, this is not the case: The random mechanism does quite poorly
on instances with as few as t = 100 agents, as shown in Figure 1.8a. With increasing t, the
gap between random and the other mechanisms only grows further, as indicated by Fig-
ure 1.9. In general, the graph for random delegations looks more similar to single delegation
than to the other mechanisms on double delegation. Indeed, for γ = 0, random delegation
is equivalent to the process with k = 1, and, for higher values of γ, it performs even slightly
worse since the unused delegation options make the graph more centralized. Because of
the poor performance of random delegation, if simplicity is a primary desideratum, we
recommend using the generalized greedy algorithm instead.

As Figure 1.10 demonstrates, all three other mechanisms, including the optimal solu-
tion, easily scale to input sizes as large as the largest implementations of liquid democracy
to date. Whereas the three mechanisms were close with respect to maximum weight, our
implementation of the approximation algorithm is typically slower than the optimal so-
lution (which requires a single call to Gurobi), and the generalized greedy algorithm is
blazing fast. These results suggest that it would be possible to resolve delegations almost
optimally even at a national scale.

1.3 Conclusions

1.3.1 An Algorithmic Perspective on Liquid Democracy
How realistic is the model? We revisit an important point, which has already come
up several times. Our assumption that voters only delegate their votes to more competent
voters is clearly restrictive. But we feel it allows us, in a sense, to distill the essence of
liquid democracy (e.g., by avoiding complications that have to do with delegation cycles)
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Figure 1.9: Maximum weight per algo-
rithm for d = 0.5, γ = 1, k = 2, averaged
over 100 simulations.
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and focus on central issues such as vote correlation. Moreover, as noted earlier, our nega-
tive result—Theorem 1.1—is especially powerful in this model, that is, it holds despite the
foregoing assumption. And the positive result—Theorem 1.3—should (informally speak-
ing) still hold in a relaxed model where voters may delegate their votes to less competent
voters, as long as the average competence level increases by a constant due to delegation.
We view this as a realistic assumption.

Beyond binary issues. In our model, there are only two alternatives, one correct and
one incorrect. While this setting is of practical importance, it is natural to ask whether
our results extend to the case of three or more alternatives. However, there are several
obstacles.

First, a representation of the ground truth, and of voters’ perceptions thereof, is re-
quired. A popular option is theMallows [166]Model, where the ground truth is a ranking of
the alternatives, and the probability that a voter cast a given ranking as his vote decreases
exponentially with its “distance” from the ground truth, in a way that depends on a (com-
petence) parameter φi. This model coincides with ours (using a suitable transformation
between φi and pi) when the number of alternatives is 2.

Second, we have assumed that votes are aggregated using the majority rule, which is the
only reasonable voting rule when there are two alternatives. By contrast, when choosing
among three or more alternatives, there are many voting rules one can use.

Additionally, we assumed that the probability of each voter choosing the correct alter-
native is an independent Bernoulli parameterized by that voter’s competence. However,
our negative result would likely go through if we relaxed the independence assumption and
allowed for bounded covariance between voters by using a similar construction.
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Figure 1.11: Confluent vs. splittable flow: γ = 1, d = 0.5, k = 2.

1.3.2 Minimizing the Maximum Weight of Voters
The approach we have presented and analyzed revolves around the idea of allowing agents
to specify multiple delegation options, and selecting one such option per delegator. As
mentioned in Section 1.2.3, a natural variant of this approach corresponds to splittable—
instead of confluent—flow. In this variant, the mechanism would not have to commit
to a single outgoing edge per delegator. Instead, a delegator’s weight could be split into
arbitrary fractions between her potential delegates. Indeed, such a variant would be com-
putationally less expensive, and the maximum voting weight can be no higher than in our
setting. However, we view our concept of delegation as more intuitive and transparent:
Whereas, in the splittable setting, a delegator’s vote can disperse among a large number
of agents, our mechanism assigns just one representative to each delegator. As suggested
in the introduction, this is needed to preserve the high level of accountability guaranteed
by classical liquid democracy.

We find that this fundamental shortcoming of splittable delegations is not counterbal-
anced by a marked decrease in maximum weight. Indeed, representative empirical results
given in Figure 1.11 show that the maximum weight trace is almost identical under split-
table and confluent delegations. Figure 1.11a plots a single run of the two solutions over
time and suggests that the confluent solution is very close to the ceiling of the fractional
LP solution. Figure 1.11b averages the optimal confluent and splittable solutions over 100
traces to demonstrate that, in our setting, the solution for confluent flow closely approxi-
mates the less constrained solution to splittable flow on average.

Furthermore, note that in the preferential delegation model with k = 1, splittable
delegations do not make a difference, so the lower bound given in Theorem 1.9 goes through.
And, when k ≥ 2, the upper bound of Theorem 1.10 directly applies to the splittable
setting. Therefore, our main technical results in Section 1.2.4 are just as relevant to
splittable delegations.

To demonstrate the benefits of multiple delegations as clearly as possible, we assumed
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that every agent provides two possible delegations. In practice, of course, we expect to
see agents who want to delegate but only trust a single person to a sufficient degree. This
does not mean that delegators should be required to specify multiple delegations. For
instance, if this was the case, delegators might be incentivized to pad their delegations
with very popular agents who are unlikely to receive their votes. Instead, we encourage
voters to specify multiple delegations on a voluntary basis, and we hope that enough voters
participate to make a significant impact. Fortunately, as demonstrated in Figure 1.7, most
of the benefits of multiple delegation options persist even if only a fraction of delegators
specify two delegations.

The question remains whether sufficiently many agents will indeed be sufficiently close
to indifferent between multiple delegates for these benefits to be relevant in practice. Leav-
ing individual incentives aside, how should one trade off the limitation of super-voters
against the level of trust in realized delegations? Such questions can be posed in models
like the one by Kahng et al. [137], which we leave for future work.

Without doubt, a centralized mechanism for resolving delegations wields considerable
power. Even though we only use this power for our specific goal of minimizing the maximum
weight, agents unfamiliar with the employed algorithm might suspect it of favoring specific
outcomes. To mitigate these concerns, we propose to divide the voting process into two
stages. In the first, agents either specify their delegation options or register their intent
to vote. Since the votes themselves have not yet been collected, the algorithm can resolve
delegations without seeming partial. In the second stage, voters vote using the generated
delegation graph, just as in classic liquid democracy, which allows for transparent decisions
on an arbitrary number of issues. Additionally, we also allow delegators to change their
mind and vote themselves if they are dissatisfied with how delegations were resolved. This
gives each agent the final say on their share of votes, and can only further reduce the
maximum weight achieved by our mechanism. We believe that this process, along with
education about the mechanism’s goals and design, can win enough trust for real-world
deployment.

Beyond our specific extension, one can consider a variety of different approaches that
push the current boundaries of liquid democracy. For example, in a recent position paper,
Brill [50] raises the idea of allowing delegators to specify a ranked list of potential represen-
tatives. His proposal is made in the context of alleviating delegation cycles, whereas our
focus is on avoiding excessive concentration of weight. But, at a high level, both proposals
envision centralized mechanisms that have access to richer inputs from agents. Making and
evaluating such proposals now is important, because, at this early stage in the evolution
of liquid democracy, scientists can still play a key role in shaping this exciting paradigm.
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Being good is easy, what is difficult is being just.
Victor Hugo

2
District-Fair Participatory Budgeting

In this chapter, we study participatory budgeting, which is a method used by
city governments to select public projects to fund based on residents’ votes.
Typically, cities that use participatory budgeting divide their budget among
districts proportionally to their population. Each district then holds an election
over local projects and uses its budget to fund the projects most preferred by
its voters. However, district-level participatory budgeting can yield poor social
welfare because it does not necessarily fund projects supported across multiple
districts. On the other hand, decision making that only takes global social
welfare into account can be unfair to districts: A social-welfare-maximizing
solution might not fund any of the projects preferred by a district, despite the
fact that its constituents pay taxes to the city. Thus, we study how to fairly
maximize social welfare in a participatory budgeting setting with a single city-
wide election. We propose a notion of fairness that guarantees each district at
least as much welfare as it would have received in a district-level election. We
show that, although optimizing social welfare subject to this notion of fairness
is NP-hard, we can efficiently construct a lottery over welfare-optimal outcomes
that is fair in expectation. Moreover, we show that, when we are allowed to
slightly relax fairness, we can efficiently compute a fair solution that is welfare-
maximizing, but which may overspend the budget.

2.1 Introduction
Participatory budgeting is a democratic approach to the allocation of public funds. In the
participatory budgeting paradigm, city governments fund public projects based on con-
stituents’ votes. In contrast to budget committees, which operate behind closed doors,
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participatory budgeting promises to directly take the voices of the community into ac-
count. Since 2014, Paris has allocated more than e100 million per year using constituents’
votes. Many other cities around the globe—including Porto Alegre, New York City, Boston,
Chicago, San Francisco, Lisbon, Madrid, Seoul, Chengdu, and Toronto—employ partici-
patory budgeting [60; 62; 20].

Typically, participatory budgeting is used at a district-level. Each district of the city
is allotted a budget proportional to its size. Constituents living in a given district vote on
projects such as park, road or school improvements local to the district, using some version
of approval voting. Then, the district’s budget is spent according to these votes. For in-
stance, in Paris a participatory budget is split between 20 districts (a.k.a. arrondissements),
constituents vote and then each district runs a greedy algorithm to maximize the total so-
cial welfare—i.e., the total number of votes—of the funded projects. In this algorithm,
projects are selected in descending order of vote count until the budget runs out.

Having separate elections for each district leads to several problems. Foremost, projects
that are not local to a single district cannot be accommodated. For this reason, Paris must
run an additional election for city-wide projects. However, this splits the available budget
for participatory budgeting between district-level and city-wide elections in an ad hoc
manner, which is not informed by votes.1 Further, people may have interests in multiple
districts, such as those who live and work in different districts. For this reason, Paris has to
allow residents to choose the district in which they vote. Lastly, a project that only benefits
voters at the edge of a district may receive a number of votes that is not proportional to
the number of potential beneficiaries.

A simple solution to these problems is a single city-wide election. However, such a
voting scheme may result in unfair outcomes. For instance, if votes are aggregated to
maximize social welfare (i.e., as is presently done in Paris on the district level) then it
is possible that some districts might have none of their preferred projects funded despite
deserving a large proportion of the budget. Such outcomes are likely when some districts
are much more populous than others, in which case projects local to small districts cannot
gather sufficiently many votes. Ideally, we would like a system that balances the tradeoff
between social welfare and fairness without an arbitrary, pre-determined split between
district-specific and city-wide funding. This motivates our central research question:

How can we maximize social welfare in a way that is fair to all districts?
Intuitively, a solution that is fair to all districts should somehow represent each districts’

constituents. One way to formalize this intuition is to stipulate that no district should be
able to obtain higher utility by purchasing projects with its proportional share of the
budget. In particular, each district should receive at least as much utility as it would have
received had it held a district-level election with its proportional share of the budget. We
call this guarantee district fairness.2 A district-fair allocation of funds always exists, since
an outcome obtained by holding separate district elections is district fair. We aim to find

1In 2016, this split in Paris was e64.3 million for district elections and e30 million for city-wide
elections [61].

2Our notion of district fairness can be thought of as a form of individual rationality where every district
is seen as an “individual.”
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district-fair outcomes that maximize social welfare. Such an outcome will be a Pareto-
improvement on the status quo of district-level participatory budgeting, in the sense that
each district’s welfare has increased.

Our Results. In our model we think of (utilitarian) social welfare as induced by a given
value assigned by each district to each project; our goal is to maximize the sum of these
values over districts and selected projects. Note that this model captures the setting of
approval votes, where each voter decides on a collection of projects to vote for; the social
welfare of a district for a project would then be interpreted as the project’s overall number
of approvals from voters in that district. This observation is important because some
variant of approval voting is used in most real-world participatory budgeting elections,
including in Paris.

We also assume that each district is endowed with an arbitrary fraction of the total
budget. Clearly this captures, as a special case, the common setting where the endowment
of each district is proportional to its size. Moreover, the reasoning behind the existence of
district-fair outcomes immediately applies to the more general setting.

We first show that it is NP-complete to compute an allocation that is welfare-maximizing
subject to district fairness. This result holds even for the case of approval votes and pro-
portional budgets, and therefore the generality of our model only strengthens our positive
(algorithmic) results without weakening the main negative (hardness) result. We also show
that the natural linear program (LP) formulation of the problem has an unbounded in-
tegrality gap. Since participatory budgeting elections can be large—hundreds of projects
are proposed and hundreds of thousands of votes are cast in Paris—computational com-
plexity can become a problem in practice. Thus, we seek polynomial-time solutions with
reasonable approximation guarantees.

There are several ways one might relax our problem or trade-off between parameters
in our problem. In this work, we design polynomial-time algorithms that work when we
relax or approximate some of the following: (1) the achieved social welfare; (2) the spent
budget; (3) the fairness of the solution; and (4) the absence of randomization.

We first relax (4) by considering distributions over outcomes, a.k.a. “lotteries”. We show
that using a multiplicative-weights-type algorithm, one can efficiently find a lottery that
guarantees budget feasibility (ex post), optimum social welfare (ex post), and district-
fairness in expectation up to an ε (ex ante). Since the fairness guarantee only holds in
expectation, some districts may be underserved once the lottery is realized. However,
since participatory budgeting typically happens repeatedly (e.g., annually), such districts
could be compensated in the next election, for example by increasing their share of the
budget in the next year. Additionally, conducting the lottery in a completely transparent
way would help in practice.

We next consider what sort of deterministic guarantees are achievable. To this end,
we show how to use techniques from submodular optimization to find an outcome that is
district fair “up to one project” and which achieves optimum social welfare with the caveat
that the outcome may need to spend 64.7% more money than was originally budgeted.
We also give a randomized algorithm with the same guarantees but which overshoots the
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budget by only a 1/e (≈ 37%) fraction with high probability. Additionally, as a corollary
of these results, we give both deterministic and randomized algorithms that achieve weaker
utility and fairness guarantees but do not overspend the available budget.

2.2 Related Work
The social choice literature on participatory budgeting has both studied the voting rules
used in practice, and designed original voting schemes. Goel et al. [118] study knapsack
voting, used for example in Madrid [62], where voters cannot approve more projects than
fit into the budget constraint. Talmon and Faliszewski [213] axiomatically study a variety
of approval-based rules that maximize social welfare, both greedy and optimal ones.

The unit cost case (where all projects have the same cost) is best-studied, as multi-
winner or committee elections [101]. For example, this setting models the election of a
parliament. A main focus of that literature is the computational complexity of the winner
determination of various voting rules. More relevant for our purposes are fairness axioms
used in this setting. The most prominent such axioms are variants of justified representation
[18]. These axioms are formulated for approval votes, and require that arbitrary subgroups
of the electorate need to be represented in the outcome if they are cohesive, in the sense
that there are a sufficient number of projects that are approved by every member of the
subgroup. Several voting rules are known to satisfy these conditions, including Phragmén’s
rule and Thiele’s Proportional Approval Voting [132; 201; 52; 19]. By contrast, district-
fairness gives guarantees to a specific selection of subgroups (i.e., disjoint districts) but
does not require these groups to be cohesive.

A very strong fairness axiom that is sometimes discussed in the context of committee
elections and participatory budgeting is the core [99; 18; 100]. It insists that every subgroup
(or coalition) must be represented (in the sense that it should not be possible for the
subgroup to propose an alternative use of their proportional share of the budget that
each group member prefers to the chosen outcome), without a cohesiveness requirement.
For approval-based elections, it is a major open question whether there always exists a
core outcome. For general additive utilities, there are instance where no core outcome
exists [100], but several researchers have proved the existence of approximations to the
core [135; 100; 69; 188]. A district-fair outcome is, in a sense, in the core: no subgroup
which coincides with a district can block the outcome. Thus, our work shows that for
general utilities, a core-like outcome exists if we only allow a specific collection of (disjoint)
coalitions to block.

The problem of knapsack sharing [56] has a similar motivation to our problem. The
knapsack sharing problem supposes that the projects are separated into districts (instead
of, in our case, the voters), and each project comes with a cost and a value. The aim
is to find a budget-feasible set of projects that maximize the minimum total value of the
projects in a district. Note that in this formulation all districts are treated equally (there is
no weighting by district population) and that there is no notion of the value of a project to
a specific district. The literature contains a variety of algorithms for solving this NP-hard
problem [e.g., 237; 238; 126; 110].
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2.3 Formal Problem, Notation and Definitions
Formally, the setting we consider is as follows. We are given a budget b ∈ Z≥1. There are
m possible projects P = {x1, . . . , xm} with associated nonnegative costs c : P → Z≥0. We
refer to a subsetW ⊆ P as an outcome. The cost of an outcomeW is c(W ) := ∑

xj∈W c(xj).
We say that a subset W is budget-feasible if c(W ) ≤ b.

There are k districts d1, . . . , dk. The social welfare (or utility) that project xj provides
to district di is swi(xj) ∈ Z≥0. We assume that utilities are additive; i.e., the utility that
an outcome W ⊆ P provides to district di is swi(W ) := ∑

xj∈W swi(xj). Furthermore, the
total social welfare of W ⊆ P is sw(W ) := ∑

i∈[k] swi(W ).
Throughout this work we assume that sw(xj) and c(xj) are both poly(k,m) for each j.

(A function f is poly(x, y) if there exists a k ≥ 0 such that f = O((xy)k).) We can relax
this assumption using well-known bucketing techniques at the cost of an arbitrarily small ε
in the guarantees of our algorithms. See the fully polynomial time approximation scheme
for the knapsack problem [66] for an example of this technique.

To model the participatory budgeting setting, we assume that each district deserves
some portion of the budget and, in turn, deserves at least the utility it could achieve if
it spent its budget on its most preferred projects. Specifically, each district di deserves
some budget bi ≥ 0 where ∑i bi = b. District di deserves utility fi := swi(Wi), where
Wi := arg maxW :c(W )≤bi swi(W ) is di’s favorite outcome costing at most bi.
Definition 2.1 (District-Fair Outcome). We say that an outcome W is district-fair (DF)
if swi(W ) ≥ fi for all i.

Computing fi is precisely an instance of the knapsack problem; by our assumption
that utilities and costs are polynomially bounded, this knapsack instance is solvable in
polynomial time [66]. Thus, we will assume fi is known.

Note that the outcome ⋃iWi is both budget-feasible and district-fair, so an outcome
with both properties always exists. Our goal is to find a budget-feasible and district-
fair outcome W which maximizes social welfare sw(W ). We call our problem district-fair
welfare maximization. Throughout this paper, we let W ∗ := arg maxW sw(W ) be some
optimal solution, where the argmax is taken over budget-feasible and district-fair solutions.
Similarly, we let OPT := sw(W ∗).

We consider two relaxations of district fairness. The first relaxation extends the concept
to lotteries over outcomes. We require that each district only needs to be approximately
satisfied in expectation. We give an efficient algorithm to compute optimal district-fair
lotteries in Section 2.4.
Definition 2.2 (ε-District-Fair Lottery). Given ε > 0, we say that a probability distribution
W over outcomes of cost at most b is an ε-district-fair (ε-DF) lottery if EW∼W [swi(W )] ≥
fi − ε for every district di.

The second relaxation is district-fairness up to one good (DF1). Intuitively, an alloca-
tion is DF1 if each district would be satisfied if one additional project was funded.
Definition 2.3 (DF1). An outcome W is DF1 if for every di,

swi(W ) + max
xj∈(P\W )

swi(xj) ≥ fi.
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DF1 is inspired by the well-studied notion of EF1 (envy-freeness up to one good) from
the private goods setting [58]. This relaxation is mild, and unlike relaxations that require
district-fairness to hold on average over districts, it is a uniform relaxation which provides
guarantees for all districts. We study DF1 outcomes in Section 2.5.

2.3.1 NP-Hardness
Our first result shows that the problem of optimizing social welfare subject to district-
fairness is NP-hard even in the restricted setting of approval votes (i.e., voters provide
binary yes/no opinions over projects) and budgets proportional to district sizes. In fact,
our problem remains NP-hard in this restricted setting even when each district contains
only one voter and projects have unit costs.

We reduce from exact 3-cover (X3C), which is known to be NP-hard [115]. The idea
of our reduction is as follows. Given an instance of X3C, we define a district for each of
the elements in the universe, and then add a large amount of dummy districts. We then
define a project for each set in our problem instance which gives one utility to the districts
corresponding to the elements which it covers. We also define a large set of dummy projects
that are approved by all dummy districts. We then ask whether there exists a district-fair
outcome that attains high social welfare. An optimal solution for our district-fair welfare
maximization problem, then, will first try to solve the X3C instance as efficiently as possible
so that it can spend as much of its budget as possible on high-utility dummy projects. We
formalize this idea in the following proof.
Theorem 2.4. It is NP-complete to decide, given an instance of district-fair welfare maxi-
mization and an integer M , whether there exists a budget-feasible and district-fair outcome
W such that sw(W ) ≥ M . NP-hardness holds even in the restricted setting of approval
votes and budgets proportional to district sizes, and when each district contains one voter
and all projects have unit cost.

Proof. The stated problem is trivially in NP. For NP-hardness we reduce from X3C. In an
instance of X3C, we are given a universe U = {e1, . . . , e3n} and a collection {S1, . . . , Sm}
of 3-element subsets of U . It is a “yes”-instance if there exists a selection Sj1 , . . . , Sjn such
that Sj1 ∪ · · · ∪ Sjn = U .

Given an instance of X3C, we construct an instance of our problem as follows. Let
M = 3mn+ 1. We have 3n+M districts, D∪D′. Let D = {d1, . . . , d3n}, where each di in
D corresponds to element ei. Additionally, let D′ = {d3n+1, . . . d3n+M}, where each di ∈ D′
is a dummy district. We have m+ 2n+M projects, X ∪X ′. Let X = {x1, . . . , xm}, where
xj ∈ X corresponds to set Sj, and let X ′ = {xm+1, . . . , xm+2n+M}, where each xj ∈ M ′ is
a dummy project. Utilities are as follows: every dummy district approves every dummy
project, so swi(xj) = 1 for each i ≥ 3n + 1 and xj ∈ X ′. Also, each non-dummy district
approves of non-dummy sets to reflect the structure of the X3C instance: that is, for each
i ≤ 3n we have swi(xj) = 1 if xj ∈ X and ei ∈ Sj. All other utilities are 0: that is,
swi(xj) = 0 for all other i and j. Each project has cost 1, and our budget is b = 3n + M .
We assume all districts contain 1 voter, so bi = 1 for every district di. Clearly, fi = 1 for
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each i. We ask whether there exists a district fair committee with social welfare at least
3n+ (2n+M)M .

If there exists a solution Sj1 , . . . , Sjn to the X3C instance, thenW = {xj1 , . . . , xjn}∪X ′
is an outcome with cost n + (2n + M) = 3n + M = b. Clearly, W is district-fair, and its
social welfare is 3n + (2n + M)M , so this is a “yes”-instance for the district-fair welfare-
maximization problem.

Conversely suppose that there exists a district-fair budget-feasible outcome W with
social welfare at least 3n + (2n + M)M . Note that all projects in X together give overall
welfare at most 3mn < M . Thus, we must have X ′ ⊆ W since otherwise the total
welfare of W is less than (2n + M)M . Hence |X ∩W | ≤ n. By district-fairness, for each
i = 1, . . . , 3n, there must be some xj ∈ W such that ei ∈ Sj. These two facts together
imply that {Sj : xj ∈ W} is a solution to the X3C instance.

This NP-hardness result holds even if each district consists of a single voter and all
projects have unit cost. As we show in the full paper, this special case admits a polynomial-
time 1

2 -approximation. Our algorithm is based on a greedy algorithm and a combinatorial
argument which “matches away” high utility goods of the optimal solution. One might
hope to achieve an approximation result for the general case. A natural approach would
be to round the optimal solution to the LP relaxation of the natural ILP formulation of
our problem. However, a simple example in the full paper shows that the integrality gap
of that formulation is unboundedly large, so this approach will not work.

2.4 Optimal District-Fair Lottery
In this section, we allow randomness and consider lotteries over outcomes. Our main result
for the lottery setting is an ε-DF lottery which always achieves the optimal social welfare
subject to district fairness. The welfare guarantee is ex post, so that every outcome in the
lottery’s support achieves optimal welfare. For the remainder of this section we let ε > 0
refer to the ε in the ε-DF definition.
Theorem 2.5. There is an algorithm which, in poly

(
m, k, 1

ε

)
time, returns an ε-DF lottery

W such that for all outcomes W in the support of W, we have sw(W ) ≥ OPT.
The intuition for our algorithm is as follows. We begin by showing that our problem is

polynomial-time solvable if the number of districts k is constant. Such an algorithm is useful
because we can artificially make the number of districts constant by convexly combining
all districts into a single district d̃. We can, then, compute as our solution a utility-optimal
outcome W which is fair for d̃ but not necessarily fair for each di individually. However,
we can bias our solution to try and satisfy fairness for certain districts by increasing the
weights of these districts in our convex combination. Thus, ifW is not fair for di, we might
naturally increase the proportional share of di in the convex combination and recompute
W in the hopes that the new outcome we compute will be fair for di. We obtain our lottery
by repeatedly increasing the weight of districts that do not have their fairness constraint
satisfied, and then take a uniform distribution over the resulting outcomes.
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Turning to the proof, we begin by describing how to solve our problem in polynomial
time when k is a constant. Our algorithm will solve the natural dynamic program (DP).
Specifically, consider the true/false value R(sw(1), . . . , sw(k), j, b) which is the answer to
the question, “Does there exists an outcome of cost at most b using projects x1, x2, . . . , xj
wherein district di achieves social welfare at least sw(i)?” If the answer to this question
is yes, then either the desired utilities are possible with the stated budget without using
xj or there is an outcome which uses at most b − c(xj) budget that doesn’t use xj in
which every district gets at least its specified utility minus how much it values xj. Thus,
R(sw(1), . . . , sw(k), j, b) is true if and only if either R(sw(1), . . . , sw(k), j − 1, b) is true or
R(sw(1) − sw1(xj), . . . , sw(k) − swk(xj), j − 1, b − c(xj)) is true, giving us a definition by
recurrence.

By our assumption that all costs and utilities are polynomially bounded, we can easily
solve the dynamic program (DP) for the above recurrence, giving the following result.
Lemma 2.6. There is an algorithm that finds a budget-feasible district-fair outcome W
with sw(W ) = OPT in mO(k) time.

Proof. Our algorithm simply fills in the DP table and returns the outcome corresponding
to the entry in our DP table which is true, satisfies sw(i) ≥ fi for all i and which maximizes∑
i sw(i). The recurrence is correct by the above reasoning.
To see why we can fill in the DP table in the stated time, note that we can trivially

solve our base case, R(sw(1), . . . , sw(k), j, 1), for each j and possible value for each sw(i) in
polynomial time. Since maxi,j swi(xj) is polynomially bounded in m, we need only check
polynomially-many in m values for each sw(i). Lastly, since j and b are bounded by a
polynomial in m, we conclude that our DP table has mO(k) entries, giving the desired
runtime.

We now describe our multiplicative-weights-type algorithm to produce our lottery using
the above algorithm.3 We let w(t)

i ≥ 0 be the “weight” of district i in iteration t and let
w(t) := ∑

iw
(t)
i be the total weight in iteration t. Initially, our weights are uniform: w(1)

i = 1
for all i.

For any iteration t and district di we let p(t)
i := w

(t)
i

w(t) be the proportion of the weight
that district i has in iteration t. These p

(t)
i will induce our convex combination over

districts; in particular we let d̃(t) be a district which values project xj to extent s̃w(t)(xj) :=∑
i p

(t)
i ·swi(xj) and which deserves f̃ (t) := ∑

i p
(t)
i ·fi utility. Also, let swmax be the maximum

welfare of an outcome.
With the above notation in hand, we can give our instantiation of multiplicative weights

where T := 4 ln k
ε2
· sw2

max is the number of iterations of our algorithm.
1. For all iterations t ∈ [T ]:

(a) Let Wt be an outcome that maximizes sw(Wt) subject to s̃w(t)(Wt) ≥ f̃ (t) and
c(Wt) ≤ b. We can compute Wt using Lemma 2.6.

3We will only need to invoke the above algorithm for the case k = 1. This amounts to solving the
knapsack problem with a single covering constraint, which to our knowledge is not one of the standard
variants of the knapsack problem.
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(b) Let m(t)
i := swi(Wt)− fi be our “mistakes”, indicating how far off a district was

from getting what it deserved.
(c) Update weights: w(t+1)

i ← w
(t)
i · exp(−εm(t)

i ).
2. Return lottery W , the uniform distribution over {Wt}t.
We now restate the usual multiplicative weights guarantee in terms of our algorithm.

This lemma guarantees that, on average, the multiplicative weights strategy is competitive
with the best “expert.” In the following 〈p(t),m(t)〉 := ∑

i p
(t)
i · m

(t)
i is the usual inner

product.
Lemma 2.7 (9). For all i we have

1
T

∑
t≤T
〈p(t),m(t)〉 ≤ ε+ 1

T

∑
t≤T

m
(t)
i .

We can use this lemma to show the desired guarantees.

Proof of Theorem 2.5. We use the algorithm described above.
Our algorithm is polynomial time since it runs for polynomially-many iterations and in

each iteration we compute a solution for a problem on only one district which is solvable
in polynomial time by Lemma 2.6. Also, note that by Lemma 2.6 we know that c(Wt) ≤ b
for all t, so all outcomes in the lottery are budget-feasible.

We now argue that the above lottery is utility-optimal. Fix an iteration t. Notice that
since W ∗ is fair for all districts then it is fair for d̃(t). In particular,

s̃w(t)(W ∗) =
∑
i

pi · swi(W ∗) ≥
∑
i

pifi = f̃ (t)

Thus, W ∗ is a budget-feasible solution for the problem of finding a max-utility outcome
which is fair for d̃(t). Thus, sw(Wt) can only be larger than sw(W ∗), meaning that sw(Wt) ≥
OPT.

We now argue that the above lottery is ε-DF in expectation. Fix a district di. By
Lemma 2.7 we know that

1
T

∑
t≤T
〈p(t),m(t)〉 ≤ ε+ 1

T

∑
t≤T

m
(t)
i . (2.1)

Now notice that by definition of m(t)
i and since our lottery is uniform over all Wt we

know that the right-hand-side of Equation (2.1) is

ε+ 1
T

∑
t≤T

m
(t)
i = ε+ 1

T

∑
t

(swi(Wt)− fi)

= ε− fi + 1
T

∑
t

swi(Wt)

= ε− fi + E
W∼W

[swi(W )]

Thus, to show that fi − ε ≤ EW∼W [swi(W )], it suffices to show that the left-hand side
of Equation (2.1) is at least 0. That is, we must show 0 ≤ 1

T

∑
t≤T 〈p(t),m(t)〉. However,
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this amounts to simply showing that Wt is fair for d̃(t); in particular, we have that the
left-hand-side is

1
T

∑
t≤T
〈p(t),m(t)〉 = 1

T

∑
t≤T

∑
i

p
(t)
i · (swi(Wt)− fi)

= 1
T

∑
t≤T

s̃w(t)(Wt)− f̃ (t).

It holds that s̃w(t)(Wt) − f̃ (t) ≥ 0 since we always choose a solution which is fair for d̃(t),
and so we conclude that the left-hand-side of Equation (2.1) is at least 0.

2.5 Optimal DF1 Outcome with Extra Budget
We now study how well we can do if we allow ourselves to overspend the available budget.
Certainly it is possible to achieve district fairness and optimal fairness-constrained utility
OPT if the algorithm can spend double the available budget: we can compute an outcome
W1 with c(W1) ≤ b that is welfare-maximizing without attempting to satisfy district-
fairness, and we can compute some outcome W2 with c(W2) ≤ b that is district-fair (see
Section 2.3); then W1 ∪W2 satisfies district fairness and we clearly have c(W1 ∪W2) ≤ 2b
and sw(W1 ∪ W2) ≥ OPT. In this section, we show that we can find a solution that
requires less than twice the budget, if we slightly relax the district fairness requirement
to DF1. Our main result for the DF1 setting shows that, under DF1 fairness, there is a
deterministic algorithm which achieves DF1 and optimal social welfare if one overspends
a 0.647 fraction of the budget.
Theorem 2.8. For any constant ε > 0, there is a poly(m, k)-time algorithm which, given
an instance of district-fair welfare maximization, returns an outcome W such that W is
DF1, c(w) ≤ (1.647 + ε) b, and sw(W ) ≥ (1− ε)OPT.

Overspending by 64.7% is a worst-case result, and the algorithm may often overspend
less. If the context does not permit any overspending, one can run the same algorithm
with a reduced budget; then the output will be feasible for the true budget, yet will satisfy
weaker fairness and social welfare guarantees. More precisely, given an instance I and a
multiplier β < 1, we define an instance I ′(β), which is identical to I but in which each
district di contributes only β · bi and thus deserves utility f ′i := swi(W ′

i ), where W ′
i is

di’s favorite outcome which costs at most β · bi. Additionally, let OPT′(β) represent the
maximum achievable social welfare over all district-fair solutions in I ′ using a budget of at
most b′ := β · b. Then, applying Theorem 2.8 to I ′(β) results in an outcome which is DF1
and utility-optimal on this reduced instance and does not overspend the original budget b.
Corollary 2.9. For any constant ε > 0, there is a poly(m, k)-time algorithm which, given
an instance I of district-fair welfare maximization, returns an outcome W such that W is
DF1 for I ′( 1

1.647), c(W ) ≤ (1 + ε) b, and sw(W ) ≥ (1− ε)OPT′( 1
1.647).

Our result uses a submodular optimization as a subroutine. If one allows randomization
in this subroutine, algorithms with better approximation ratios are known. Thus, we can
prove a similar theorem (and corollary) with a randomized algorithm which achieves DF1
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and optimal social welfare while overspending its budget by only a 1
e
≈ .37 fraction of

the budget, with high probability (i.e., with probability 1 − 1
p(m,k) where p(m, k) is some

polynomial in m and k). We defer details of our randomized algorithm to the full paper.
In the remainder of this section, we will prove Theorem 2.8. Our main tool is a notion

of the “coverage” of a partial outcome. An outcome has high coverage if we do not need
to spend much more money to make it district-fair. On a high level, our proof consists of
two main steps. First, we show how to complete an outcome with good coverage into a
DF1 outcome. Second, we will show how to frame the problem of finding a solution with
good coverage and social welfare as a submodular maximization problem subject to linear
constraints, allowing us to use a result by Mizrachi et al. [174].

We begin by formalizing the coverage of a solution. Roughly, if we imagine that initially
every district requires its portion of the budget for fairness, then fractional coverage cap-
tures how much less districts must spend to satisfy their own fairness constraints. Thus,
if we imagine that our algorithm first spends its budget to satisfy fairness as efficiently as
possible, and then spends the remainder of its budget on the highest utility projects, then
the coverage of a collection of projects is roughly how much budget this collection “frees
up” for the algorithm to spend on the highest utility projects. More formally, we define
coverage by way of the notions of fractional outcomes and residual budget requirements.
Definition 2.10 (fractional outcomes). A fractional outcome is a vector p ∈ Rm where
0 ≤ pj ≤ 1. We overload notation and let the social welfare of p for district di be swi(p) :=∑
j swi(xj) · pj. Similarly the social welfare of p is ∑i swi(p). Lastly, we define the cost of

p as ∑j c(xj) · pj.
We now define the residual budget requirement of a district, given an outcome, which

can be understood as the minimum amount of additional money that must be spent to
satisfy the district, if fractional outcomes are allowed.
Definition 2.11 (residi(W )). The residual budget requirement of district di given (integral)
outcome W is the minimum cost of a fractional outcome p such that swi(W ) + swi(p) ≥ fi
and pj = 0 for all xj ∈ W .

We can now define the coverage of an outcome for a particular district i in terms of the
total amount of budget they deserve and their residual budget requirement.
Definition 2.12 (coveri(W )). The coverage of an outcome W for district di is the differ-
ence between the amount of budget they deserve, bi, and their residual budget requirement:
coveri(W ) := bi − residi(W ).

Lastly, we define the coverage of an outcome.
Definition 2.13 (cover(W )). The overall coverage of an outcome W is the sum over all
districts di of the coverage W affords di: coveri(W ) := ∑

i coveri(W ).
Next, we establish a useful property of DF1 solutions. In particular, given a set of

projects that achieves relatively good fairness on average, we can then buy a small subset
of projects that results in fairness up to one good for all districts. In particular, given a
collection of projects that covers a 1 − β fraction of all fairness constraints, we can use
at most an extra β fraction of our budget in order to complete this to a DF1 solution.
Moreover, this completion is quite intuitive: purchase all projects whose total coverage
exceed their cost, until there are no such projects remaining.
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Formally, we state the following DF1 completion lemma.
Lemma 2.14 (DF1 Completion). Given an outcome W with cover(W ) = b − r, one can
compute in polynomial time a set W ′ ⊇ W such that W ′ is DF1 and c(W ′) ≤ c(W ) + r.

Proof. We first prove that for every non-DF1 outcomeW , there exists a project that we can
add toW which increases its coverage by at least c(xj). Suppose thatW is an outcome that
fails DF1, and let di be a district such that swi(W ) + swi(xj) < fi for all xj 6∈ W . Let p be
the fractional outcome witnessing residi(W ); thus swi(W ) + swi(p) ≥ fi. We may assume
without loss of generality that all but at most one project is integral in pj (because there
is always some optimal p with this property by additivity of swi). Since W fails DF1 for
di, there is some xj 6∈ W such that p(xj) = 1. Then residi(W ∪ {xj}) = residi(W )− c(xj)
(witnessed by the fractional outcome obtained from p by removing xj from it). Thus,
from definitions, coveri(W ∪ {xj}) = coveri(W ) + c(xj), and hence cover(W ∪ {xj}) ≥
cover(W ) + c(xj).

Now suppose we are given an outcome W with cover(W ) = b − r, which fails DF1.
We can identify a project xj as above, add it to W , and increase the coverage by at least
c(xj). We repeat this until the outcome is DF1. This process must stop, since at each
step the coverage increases by c(xj) but by definition the coverage can never exceed b. For
the same reason, the cost of the projects we have added to W cannot exceed r, and thus
c(W ′) ≤ c(W ) + r.

With this lemma in hand, we now turn to the problem of finding high-coverage outcomes
with good welfare. Let B ≥ 0 be a lower bound on the social welfare we desire. We rephrase
our problem as an optimization problem in which we maximize the coverage of an outcome
subject to a linear knapsack constraint and a linear covering constraint. The knapsack
constraint enforces budget feasibility, and the covering constraint encodes the requirement
that the total utility of the outcome is at least B.

max
W⊆P

cover(W )

s.t. sw(W ) ≥ B,

c(W ) ≤ b.

(DF1P)

The main tool we apply is a theorem on the maximization of nondecreasing submodular
functions of Mizrachi et al. [174]. Recall that a set function is nondecreasing if its value
never decreases as elements are added to its input, and submodular if it exhibits diminishing
returns.
Definition 2.15. Given a finite set Ω, a set function f : Ω → R≥0 is nondecreasing
and submodular if for every A,B ⊆ Ω such that A ⊆ B we have f(A) ≤ f(B) and
f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B) for all x ∈ Ω \B.

The theorem we apply is as follows.
Theorem 2.16 (174, Theorem 5). For each constant ε > 0, there exists a deterministic
algorithm for maximizing a nondecreasing submodular function subject to one packing con-
straint and one covering constraint that runs in time O(nO(1)), where n = |Ω| is the size
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of the support of the set function, satisfies the covering constraint up to a factor of 1 − ε
and the packing constraint up to a factor of 1 + ε, and achieves an approximation ratio of
0.353.

We apply this theorem to find a solution that satisfies a 0.353 fraction of coverage
and achieves optimal fairness-constrained utility. Then, we apply Lemma 2.14 to augment
our solution using an additional 1 − 0.353 + ε fraction of our budget in order to obtain
a final solution which satisfies full DF1. However, in order to apply Theorem 2.16, we
must first establish that cover(W ) is a nondecreasing submodular function. In particular,
note that the coverage functions coveri(W ) for each district are clearly nondecreasing and
submodular. It follows that their sum, cover(W ) is also nondecreasing and submodular,
yielding the following lemma.
Lemma 2.17. The function cover(W ) is nondecreasing and submodular.

We are now ready to prove Theorem 2.8, which applies the DF1 completion lemma to
an approximately optimal solution for the problem DF1P.

Proof of Theorem 2.8. Recall that we have assumed that the maximum utility of an out-
come is polynomially bounded in m and k and that the maximum utility is integral. Thus,
the value of OPT falls in a polynomial range. For each value B in this range, solve the
problem DF1P using the algorithm from Theorem 2.16. Now consider all values of B for
which the algorithm returned a solution with cover(W ) ≥ 0.353b; such a value must exist
since we are guaranteed this condition when B = OPT (since for this value, the optimum of
problem (DF1P) is b). Among all solutions we found that satisfy cover(W ) ≥ 0.353b, take
the one that maximizes sw(W ). This solution provides social welfare at least (1− ε)OPT.

We have obtained an outcome W with

cover(W ) ≥ 0.353b = b− 0.647b,

and sw(W ) ≥ (1− ε)OPT and c(W ) ≤ (1 + ε)b. Now apply Lemma 2.14 to W to obtain a
DF1 outcome W ′ ⊇ W with

c(W ′) ≤ c(W ) + 0.647b ≤ (1 + 0.647 + ε)b.

This outcome W ′ satisfies the requirements of Theorem 2.8.

2.6 Conclusions
Our results extend to the special case of unit costs, also known as committee selection. In
committee selection, we elect a committee to represent voters in a larger governmental body
such as a parliament. Often, to ensure local representation, the electorate is split into voting
districts, which elect their representatives separately. The districts may be apportioned
different numbers of representatives, for example based on district size. While this scheme
guarantees each district representation, it may well be possible to increase the welfare of
the voters in a district, for example by electing a diverse array of candidates with expertise
in various areas who can gather votes from across the electorate. Thus, it is natural for
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all districts to elect the committee together if we impose district-fairness constraints. This
way, we can maximize social welfare of the final committee while guaranteeing each district
fair representation. This gives a more holistic view of committee selection in exactly the
same way we addressed participatory budgeting, only instead of pooling the budget between
districts, we now pool seats on a committee.

Our model implicitly treats districts as atoms, and so district fairness is a kind of
individual rationality property. In turn, individual rationality is a type of strategyproofness:
it incentivizes districts not to leave the central election and instead hold a separate one.
Is it possible to design a voting scheme that is fully strategyproof for districts, so that
districts do not have incentives to misreport the utilities of their residents? Unfortunately
not: Peters [186] proves an impossibility theorem about committee elections which implies
that there does not exist a voting rule that is efficient, district-fair, and also strategyproof.
This result holds even for approval votes.

Several open questions remain. Most obvious is the question of whether can we achieve
welfare maximization and DF1 in polynomial time while guaranteeing to overspend the
budget by less than 1/e. More broadly, it would be interesting to study our problem with
more general utility functions such as submodular or even general monotone valuation
functions. Additionally, it would be exciting to study approximation algorithms which
promise full district fairness. Inthe full version of the paper, we present an algorithm
which satisfies district fairness and provides a 1/2-approximation to optimal district-fair
social welfare in the special case of unanimous districts; it would be interesting to extend
this result to the general case.

One thing to note is that the algorithm proposed in Corollary 2.9, which satisfies the
original budget constraints but only guarantees scaled-down optimal social welfare, is not
guaranteed to result in higher social welfare than the independent-district setting. It would
be very interesting to run further empirical experiments to evaluate the performance of the
scaled-down DF1 algorithm against the standard district-only setting.
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The greatest care should be employed in consti-
tuting this representative assembly . . . it should
be an equal representation, or, in other words,
equal interests among the people should have
equal interests in it.

John Adams.

3
Representation in Multiwinner Elections

In this chapter, we study proportionality in approval-based multiwinner elec-
tions with a variable number of winners, where both the size and identity of
the winning committee are informed by voters’ opinions, which are expressed
as binary approval votes over candidates. While proportionality has been stud-
ied in multiwinner elections with a fixed number of winners, it has not been
considered in the variable number of winners setting. The measure of propor-
tionality we consider is average satisfaction (AS), which intuitively measures
the number of agreements on average between sufficiently large and cohesive
groups of voters and the output of the voting rule. First, we show an upper
bound on AS that any deterministic rule can provide, and that straightforward
adaptations of deterministic rules from the fixed number of winners setting do
not achieve better than a 1/2 approximation to AS even for large numbers of
candidates. We then prove that a natural randomized and strategyproof rule
achieves a 29/32 approximation to AS.

3.1 Introduction
We study multiwinner approval-based elections, where a group of agents, or voters, selects a
committee from a set of candidates based on the agents’ preferences. Each agent expresses
her preferences through an approval vote, where she designates a subset of candidates she
approves for the committee, and all votes are then aggregated to select a winning committee
from the pool of candidates.

Some multiwinner elections include a fixed committee size: the outcome must fill exactly
k seats on a committee. This is known as the fixed number of winners (FNW) setting, and
there is a large body of work on the complexity and proportionality of various voting rules
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in the FNW setting [21; 202; 22; 53; 187; 210]. In contrast, we are interested in the setting
in which there is no a priori fixed committee size, also known as the variable number of
winners (VNW) setting. In this case, both the size of the committee and the candidates
chosen to sit on the committee are informed by agents’ votes.

We present a setting where VNW elections are a natural fit; Faliszewski et al. [102]
discuss others.

Consider an election that consists of a series of ballot measures, where each ballot
question can easily be reversed such that “Yes” becomes “No” and “No” becomes “Yes”.
This is a practical concern, as ballots are often deliberately constructed such that a “Yes”
on one question represents a vote in favor of upholding a current statute, while a “Yes”
on another question down the ballot represents a vote in favor of repealing a current
statute [178]. In this case, voters derive utility from every decision they agree with, whether
it is an approval vote or a disapproval vote. Note that, because there is no set number of
measures that must be “elected” (i.e., passed), this constitutes a VNW election.

It can be important to ensure that the selected alternatives are chosen in a proportional
manner. For instance, in the case of ballot measures, we may want to ensure that all groups
in the electorate are satisfied with at least some of the outcomes. In other words, a small
majority of the electorate should not be able to overrule a sizable minority on every ballot
measure.

In order to study proportionality in FNW elections, researchers have proposed the ax-
ioms of justified representation (JR), proportional justified representation (PJR), extended
justified representation (EJR), and average satisfaction (AS) [21; 202], which capture the
intuition that all sufficiently large groups that agree on sufficiently many candidates should
achieve some measure of satisfaction. However, to our knowledge, we are the first to study
representation in VNW elections.

Our Contributions. Our main research goal is to study proportionality in multiwinner
elections with a variable number of winners. In particular, we study the proportionality
measure of average satisfaction (AS) and show that there is a separation between the
performance of deterministic and randomized voting rules.

As our first contribution, we develop a framework for thinking about proportionality
in VNW elections. Previous work on proportionality in FNW elections is largely based on
the concept of justified representation (and extensions thereof). However, as we discuss
in Section 3.4, JR-based notions of proportionality are less compelling in VNW elections
than in FNW elections. Therefore, we instead base our approach on the concept of average
satisfaction, which is arguably a more robust version of justified representation.

Second, in Section 3.5, we consider the proportionality guarantees of deterministic rules
in the VNW setting. We extend three existing deterministic rules for the FNW setting
to the VNW setting, and show that these rules do not guarantee good approximations to
average satisfaction. We also prove upper bounds on the level of average satisfaction that
any deterministic rule can provide.

Finally, in Section 3.6, motivated by the shortcomings of deterministic rules, we turn
our attention to randomized rules and show that a natural randomized rule provides a

74



good approximation to average satisfaction.

3.2 Related Work
There is a significant body of work studying proportionality in FNW elections. As men-
tioned above, [21] put forward the compelling axiom of justified representation (JR), as
well as a stronger version of this axiom, extended justified representation (EJR) to capture
the notion that any sufficiently large and cohesive group of voters deserves some measure
of representation in the elected committee. Sánchez-Fernández et al. [202] build on this
idea by introducing the intermediate axiom of proportional justified representation (PJR),
a relaxation of EJR that is more stringent than JR.

Average satisfaction (AS) was first defined by Sánchez-Fernández et al. [202], who study
the average satisfaction guaranteed by extended justified representation (EJR). Further
work by Aziz et al. [22] shows that Proportional Approval Voting (PAV) guarantees a level
of average satisfaction that implies EJR. Additionally, Skowron et al. [208] extend the
notion of average satisfaction to the context of complete rankings as opposed to committee
selection. Further work by Skowron [209] studies the proportionality degree of various
multiwinner rules by considering the average satisfaction of all groups of a certain size.

There is also a significant body of work studying VNW elections; however, to the best
of our knowledge, none of the proposed rules satisfy proportionality (and, in general, that
is not their goal). Kilgour [141] proposes a multitude of rules for VNW elections, including
satisfaction approval voting and variants thereof. In a related vein, Kilgour et al. [143]
and Brams et al. [45] study the minimax and minisum rules for selecting a committee
in the VNW setting. Fishburn and Pekeč [105] study threshold approaches to committee
selection, which are VNW rules in the sense that the size of the selected committee depends
on the approval votes. Additionally, the Mean Rule [92] and Borda Mean Rule [46] can be
seen as VNW rules when given approval votes.

Finally, Faliszewski et al. [102] study the computational complexity of various VNW
rules, but do not consider proportionality in their analysis.

3.3 Preliminaries
Let N = {v1, . . . , vn} be a set of n voters and C = {c1, . . . , cm} be a set of m candidates.
For every voter vi, denote by Ai ⊆ C the set of candidates that are approved by vi. A
preference profile A = {A1, . . . , An} is the set of all voter preferences Ai.

A variable number of winners (VNW) voting rule f takes as input a preference profile A
and outputs some set of candidates f(A) ⊆ C. Note that we allow f(A) = ∅ or f(A) = C.
We will also consider randomized VNW voting rules that output a distribution over sets
of candidates.

Throughout this paper, we will denote by W the set of candidates included in the
committee, and we will denote by C\W the set of candidates excluded from the committee.

We say that a group of voters V ⊆ N is `-large if |V | ≥ ` · n
m
, and `-cohesive if

| ∩i∈V Ai| + | ∩i∈V C \ Ai| ≥ `. We will also say that a group of voters V agrees on a
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candidate cj if cj ∈ Ai for all i ∈ V or cj 6∈ Ai for all i ∈ V . Otherwise, we say that V
disagrees on cj. Intuitively, a group of voters is `-large and `-cohesive if they constitute an
`/m fraction of all voters who agree on ` out of m candidates.

In our work, we consider a different measure of representation than in the FNW setting.
In the FNW setting, voters derive utility from the number of their approved candidates
elected to the committee. However, this definition cannot be easily adapted to the VNW
setting because then a rule could maximally satisfy all voters by including all candidates
on the committee. Therefore, we assume that voters derive utility from agreeing with the
placement of candidates either on the committee or not on the committee. For instance,
in an election with two candidates, c1 and c2, if a voter i has approval set Ai = {c1}
(i.e., she approves c1 and disapproves c2), then she receives one unit of utility for the
output committee {c1, c2} because she agrees with the inclusion of c1 but disagrees with
the inclusion of c2.

With this in mind, the following definition of average satisfaction is adapted from the
definition of Sánchez-Fernández et al. [2017] in the FNW setting.
Definition 3.1. Given a set of candidates W ⊆ C, the average satisfaction of a group of
voters V ⊆ N is

avsW (V ) = 1
|V |

∑
i∈V

(|Ai ∩W |+ |(C \ Ai) ∩ (C \W )|).

We can now define AS in the VNW setting.1 The intuition behind the following defi-
nition is that any sufficiently large and cohesive group of voters deserves to be adequately
represented on average, which is a departure from justified representation-based axioms
that have been studied in the FNW setting. Intuitively, JR-like notions of proportional-
ity only require that some member of each cohesive group is represented to some extent,
whereas average satisfaction requires all members of each cohesive group to be represented
(at least on average).
Definition 3.2. A set of candidates W ⊆ C satisfies α-AS if, for all `-large and `-cohesive
groups of voters V ⊆ N , avsW (V ) ≥ α · ` for all ` ∈ [m]. For brevity, we refer to the
special case of 1-AS as AS.

The following example demonstrates cohesiveness and average satisfaction.
Example 3. Consider the following profile with n = 8 voters, v1, . . . , v8, and m = 4
candidates, c1, . . . , c4, with preferences

A1 = A2 = {c1, c2, c3, c4} A6 = {c2, c3}
A3 = A4 = {c1, c2} A7 = {c3}

A5 = {c1, c3} A8 = {c4}.

Now, consider the output W = {c4}. Note that each voter agrees with the output on
the placement of at least one candidate, so for any 1-large and 1-cohesive group V(1) (i.e.,
a group of 1 · n

m
= 2 voters who agrees on the placement of 1 candidate), avsW (V(1)) ≥ 1.

1Note that we overload the use of the term “average satisfaction” to refer to both the numerical quantity
from Definition 3.1 (average satisfaction) as well as the axiomatic property in Definition 3.2 (AS).
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Furthermore, note that there is only one 2-large and 2-cohesive group of voters: v1, v2,
v3, and v4 agree on the placement of c1 and c2, but disagree on the placement of c3 and
c4, so they constitute a 2-large group of voters who agree on 2 candidates. Let V(2) =
{v1, v2, v3, v4}. Note that avsW (V(2)) = 1 because each v ∈ V agrees with W on exactly one
placement, but because this group of voters is 2-large and 2-cohesive, we see that W only
satisfies 1/2-AS in this scenario.

Given our definition of voter satisfaction, we can straightforwardly extend the following
deterministic multiwinner rules from the FNW setting to the VNW setting.

Proportional Approval Voting (PAV). Under the PAV rule [218], voter i derives
utilityHk = 1+1/2+· · ·+1/k from a committeeW , where k = |Ai∩W |+|(C\Ai)∩(C\W )|
is the number of candidate placements that i agrees with. The goal of PAV is to maximize
the sum of all voters’ utilities, and thus PAV outputs the subset W ⊆ C with highest
PAV-score.

Sequential Phragmén (seq-Phragmén). The seq-Phragmén rule [189; 133; 53] is de-
fined as follows. Each candidate carries a load of one unit, and this load is distributed
among voters who agree with the placement of this candidate in either the included set or
excluded set. The seq-Phragmén rule proceeds iteratively by, in each round, placing the
candidate that results in the smallest increase in the maximal load of any voter.

Let x(t)
i denote the load of voter i, and s(t) the maximal load, after t candidates have

been placed. All voters start out with no load, x(0)
i = 0. Furthermore, let Nj = {i ∈ N :

cj ∈ Ai} represent the set of voters that approve of candidate cj. The maximal voter load
if, on the tth placement, candidate cj is included in the committee is

s(t)(cj) =
1 +∑

i∈Nj x
(t−1)
i

|Nj|
,

and the maximal voter load if candidate cj is excluded from the committee is

s(t)(cj) =
1 +∑

i∈N\Nj x
(t−1)
i

|N \Nj|

because the load is distributed so as to equalize the loads of all voters who agree with
the placement of cj. At each step t, seq-Phragmén places the candidate cj that minimizes
min(s(t)(cj), s(t)(cj)) and updates voter loads accordingly: in the case that cj is included
in the committee,

x
(t)
i =

s(t)(cj) if i ∈ Nj

x
(t−1)
i otherwise,

and in the case that cj is excluded from the committee,

x
(t)
i =

s(t)(cj) if i ∈ N \Nj

x
(t−1)
i otherwise.
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This rule proceeds until all candidates have been placed, and then returns the included
and excluded candidates.

Rule X. Rule X [187] allocates each voter a budget of one dollar, which they then spend
on placing candidates either in the included set or excluded set. Placing a candidate costs
n/m dollars, and the set of voters who agree on the placement of this candidate must be
able to collectively afford the placement. The rule starts with an empty included set W
and an empty excluded set W , and it iteratively places candidates in the committee or its
complement as follows.

Let bi(t) be the amount of money that voter i has remaining after the tth candidate
is placed; i.e., bi(0) = 1 for all voters vi ∈ N . At the tth step, we say that a candidate
c 6∈ W ∪W is q-affordable for some q ≥ 0 if

max

 ∑
i:c∈Ai

min(q, bi(t− 1)),
∑

i:c∈C\Ai

min(q, bi(t− 1))

 ≥ n/m.
In other words, candidate c is q-affordable if it can be placed in either the included or
excluded set while voters who approve or disapprove of c each pay a maximum of q dollars.
If no candidate is q-affordable for any q ≥ 0, then the rule stops, placing the current set of
included candidates intoW , the current set of excluded candidates into C \W , and placing
arbitrarily any candidates not already put into W or into C \W . Else, the rule places the
candidate which is q-affordable for the minimum value q in the approved or disapproved
committee, according to voter preferences. Each voter who agrees with this placement has
their budget updated to bi(t) = bi(t− 1)−min(q, bi(t− 1)), and the process continues.

3.4 Justified Representation in VNW Elections
In order to build intuition about why we focus on AS instead of (E/P)JR, we begin by
defining JR, PJR, and EJR for VNW elections. In each case, the definition is a straightfor-
ward adaptation of the corresponding definition for the FNW setting, where we intuitively
replace “agreement with members on the committee” with “agreement on the placement
of each candidate.” We slightly overload notation—namely, JR, PJR, and E JR—from the
FNW setting in the following definitions.
Definition 3.3 (JR). Consider a ballot profile A. A set of candidates W ⊆ C satisfies
justified representation (JR) with respect to A if, for all sets of 1-large and 1-cohesive
voters N∗, there exists an i ∈ N∗ such that |Ai ∩W |+ |(C \ Ai) ∩ (C \W )| ≥ 1.
Definition 3.4 (PJR). Consider a ballot profile A. A set of candidates W ⊆ C satisfies
proportional justified representation (PJR) with respect to A if, for all `-large and `-
cohesive groups of voters N∗, |⋃i∈N∗ Ai ∩W | + |(⋃i∈N∗(C \ Ai)) ∩ (C \W )| ≥ ` for all
` ∈ [m].
Definition 3.5 (EJR). Consider a ballot profile A. A set of candidates W ⊆ C satisfies
extended justified representation (EJR) with respect to A if, for all `-large and `-cohesive
groups of voters N∗, there exists an i ∈ N∗ such that |Ai ∩W |+ |(C \ Ai) ∩ (C \W )| ≥ `
for all ` ∈ [m].
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The following example illustrates these definitions.
Example 4. Consider the same profile as in Example 3 with n = 8 voters, v1, . . . , v8, and
m = 4 candidates, c1, . . . , c4.

Again, consider the output W = {c4}. W satisfies JR because each voter agrees with the
output on the placement of at least one candidate. Furthermore, W satisfies PJR because,
on the only 2-large and 2-cohesive group of voters, {v1, v2, v3, v4}, two of them agree with
the placement of c3 and two of them agree with the placement of c4. However, W does not
satisfy EJR because no voter in the coalition agrees with two placements of W—they all
agree with exactly one placement.

We also study the relationship between the extensions of PAV, seq-Phragmén, and Rule
X, and different notions of justified representation in the VNW setting. The proofs of the
following propositions are omitted due to space constraints.2
Proposition 1. PAV satisfies PJR.
Proposition 2. Seq-Phragmén satisfies PJR.
Proposition 3. Rule X satisfies PJR but not EJR.

Notably, in the VNW setting, JR and PJR are less compelling notions of representation
than in the FNW setting. In particular, whenever an `-cohesive group of voters does not
agree on the placement of a particular candidate, PJR automatically counts that candidate
toward the group’s representation quota, since at least one member of the group agrees
with the candidate’s placement. In other words, any disagreement within an `-cohesive
group results in partial representation, no matter the outcome of the election. This is
particularly problematic for JR: any 1-large, 1-cohesive group of voters that disagrees on
even a single candidate will never be witness to a violation of JR.

Proposition 3 is also notable because Rule X satisfies EJR for FNW elections, but the
straightforward extension of this rule does not satisfy EJR for VNW elections, demon-
strating a qualitative difference between proportionality properties in the FNW and VNW
settings. It is still an open question whether or not PAV and seq-Phragmén satisfy EJR
for VNW elections.

3.5 Deterministic Rules
We begin by showing an upper bound on the level of average satisfaction that deterministic
rules can provide.
Theorem 3.6. No deterministic rule satisfies (m−1

m
+ ε)-AS for any m and any ε > 0.

Proof. First, suppose that m is odd. Then set n = 2, with A1 = {c1, . . . , cm} and A2 = ∅.
Without loss of generality, suppose that the output W is such that |W | > m

2 . But then
voter v2 is an m

2 -large,
m
2 -cohesive group with average satisfaction at most m−1

2 , which
yields an (m−1

m
)-AS approximation.

Next, suppose m is even, and set n = 4m. Consider the profile

2All omitted proofs can be found in the full version of the paper on the authors’ websites.
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A1 = {c1, . . . , cm} A3 = {cm}
A2 = {c1, . . . , cm−1} A4 = ∅

Again, without loss of generality, suppose that the output W is such that |W | ≥ m
2 .

We consider two cases. In the first case, suppose that the output W has |W | ≥ m
2 + 1.

Consider the m
2 -large,

m
2 -cohesive group of voters V = {v3, v4}. We have

avsW (V ) ≤ 1
2(m− |W |+m− |W |+ 1) ≤ m− 1

2

which yields at most an (m−1
m

)-AS approximation.
In the second case, suppose that the output W has |W | = m

2 . Suppose that cm 6∈ W
(the case of cm ∈ W follows symmetrically). Then again consider V = {v3, v4}. We have

avsW (V ) ≤ 1
2

(
m

2 − 1 + m

2

)
= m− 1

2

again yielding an (m−1
m

)-AS approximation. This completes the proof.

Theorem 3.6 leaves open the possibility that there exists a deterministic rule that
provides quite good average satisfaction guarantees when the number of candidates is
large. Finding such a rule or lowering the upper bound is an interesting open question.
However, we show that none of the natural adaptations of FNW rules that we consider is
able to guarantee better than a 0.5 approximation to AS even when m is large.
Theorem 3.7. PAV does not satisfy (0.5 + ε)-AS, for any ε > 0 for m ≥ 2.

Proof. Consider a profile with n = 2m voters with preferences

A1 = . . . = Am−1 = {c1, . . . , cm}
Am = . . . = A2m−2 = {c1, . . . , cm−1}

A2m−1 = {cm}
A2m = ∅.

This profile is symmetric in cm, so without loss of generality suppose that cm is included.
Suppose that some k − 1 < m − 1 of the candidates c1, . . . , cm−1 are included. Then, the
change in PAV score that would result from including an additional candidate is

m− 1
k + 1 + m− 1

k
− 1
m− k

− 1
m− k + 1

≥ m− 1
m

+ 1− 1− 1
2 ≥ 0,

where the first inequality holds because k < m.
Therefore, the maximum PAV score is achieved when all candidates c1, . . . , cm−1 are

included. But then the group N∗ = {v2m−1, v2m} is 1-large and 1-cohesive but is only
satisfied 0.5 times on average.

Theorem 3.8. seq-Phragmén does not satisfy (0.5 + ε)-AS, for any ε > 0 for m ≥ 2.

80



Proof. Consider the same profile as in the proof of Theorem 3.7. It is easy to check that
seq-Phragmén begins by including candidates c1, . . . , cm−2, after which each voter of the
first and second type has load m−2

2(m−1) . In the (m − 1)-th round, the algorithm has four
choices: to include or exclude cm−1, or to include or exclude cm.

Including cm−1 results in a load of m−1
2(m−1) = 1

2 on voters v1, . . . , v2m−2. Excluding
cm−1 results in a load of 1

2 to voters v2m−1 and v2m. Including cm (which is symmetric to
excluding cm) results in a load x to voters v1, . . . , vm−1, v2m−1, where x is the solution to
mx− (m− 1) m−2

2(m−1) = 1, which yields a solution of x = 1
2 .

The algorithm is therefore indifferent between all possible actions; breaking ties adver-
sarially yields the inclusion of cm−1. Regardless of the inclusion or exclusion of candidate
cm, the group N∗ = {v2m−1, v2m} is 1-large and 1-cohesive but is only satisfied 0.5 times
on average.

We note that the dependence on tiebreaking in the proof of Theorem 3.8 can be removed
by taking multiple copies of the profile used in the proof and changing the preference of a
single voter.
Theorem 3.9. Rule X does not satisfy (0.5 + ε)-AS, for any ε > 0 for m ≥ 3.3

Proof. Consider the same profile used in the proof of Theorem 3.7. Rule X begins by
including each of candidates c1, . . . , cm−1. Each of these candidates costs n

m(2m−2) = 1
m−1

for each voter v1, . . . , v2m−2. In comparison, placing the last candidate at any point costs
n/2 voters n/m

n/2 = 2
m
, which is a greater cost than 1

m−1 when m ≥ 3. Including each of
c1, . . . , cm−1 therefore costs v1, . . . , v2m−2 one dollar each. Regardless of the placement of
cm, the 1-large and 1-cohesive group of voters N∗ = {v2m−1, v2m} is satisfied only 0.5 times
on average.

3.6 Randomized Rules

We now turn our attention to randomized rules in order to achieve better average satis-
faction guarantees. A randomized rule is one that outputs a distribution over committees
rather than a single committee, and our approximation guarantee will hold in expectation
over the possible committees.4 We consider a simple and natural randomized rule that,
for each candidate cj, includes cj in the set of winners W with probability equal to the
fraction5 of the voters who approve cj.

3When m = 2, we know from Theorem 3.6 that no deterministic rule, including Rule X, can achieve
better than a 0.5 approximation.

4Recent work by Cheng et al. [69] has applied randomization to proportionality in the FNW setting as
well.

5The marginal probabilities for each candidate being included in the committee are the same under
this rule as the random dictatorship rule. The distribution over committees induced by the two rules is
different, however.
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Definition 3.10. Given a preference profile A, the Proportional Random Rule (PRR)
independently includes each cj ∈ C in the winning committee W with probability

pj = |{vi ∈ N s.t. cj ∈ Ai}|
n

.

Theorem 3.11. PRR satisfies 29/32-AS in expectation for any m.
In the proof of Theorem 3.11, it will be helpful to think about the effect that an

individual candidate has on the satisfaction of a group G. For an outcome W , a group of
votersG, and a candidate cj, we say that the contribution from cj to the average satisfaction
of G is avscj(G) = |{i : cj ∈ Ai}|/|G| if cj ∈ W or avscj(G) = |{i : cj 6∈ Ai}|/|G| if cj 6∈ W .
Note that avsW (G) = ∑m

j=1 avscj(G).

Proof. We prove the result in two steps. First, we show that when ` ≤ m/3, PRR achieves
an average satisfaction of `; second, we show that when ` > m/3, PRR achieves an average
satisfaction of (29/32)`.

Case 1: ` ≤ m/3. Consider an `-cohesive group, G, of size `n/m, and a candidate cj.
Note that it is sufficient to consider groups of size exactly `n/m because if there exists
an `-cohesive larger group that violates the desired guarantee, there must exist a subset
of size `n/m that also violates the guarantee. Let kA = |{vi ∈ G : cj ∈ Ai}| denote the
number of voters in G who approve cj, and kD = `n/m− kA denote the number of voters
in G who disapprove cj. Without loss of generality, let kA ≤ kD. Further, suppose that x
of the voters in N \G approve cj and y = n− `n/m− x voters in N \G disapprove cj.

The expected contribution from cj to the average satisfaction of G is

E[avscj(G)] = kA
|G|

(
kA + x

n

)
+ kD
|G|

(
kD + y

n

)
.

Because kA ≤ kD and x+y is fixed, this expression is minimized when y = 0. We therefore
have

E[avscj (G)] ≥ kA
|G|

(
kA + n− `n/m

n

)
+ kD
|G|

(
kD
n

)
= 1
n|G|

(
|G|2 + kA(n− `n/m− 2kD)

)
≥ |G|

n
= `

m
,

where the inequality holds because kD ≤ `n/m by definition, and we can assume m ≥ 3
because ` must be at least 1.

Case 2: ` > m/3. Consider an `-cohesive group, G, of size `n/m, and a candidate cj.
Let kA = |{vi ∈ G : cj ∈ Ai}| denote the number of voters in G who approve cj, and
kD = `n/m − kA denote the number of voters in G who disapprove cj. Without loss of
generality, let kA ≤ kD. As in the previous case, it is easy to show that the expected
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contribution from cj to G’s average satisfaction is minimized when all voters in N \ G
approve cj.

We therefore have that

E[avscj(G)] = kA
|G|

(
kA + n− `n/m

n

)
+ kD
|G|

(
kD
n

)
.

Substituting kD = `n/m− kA, taking the derivative with respect to kA, and setting to
0 yields

1
n

(4kA − 3(`n/m) + n) = 0 =⇒ kA = 3`n/m− n
4 > 0,

where the inequality follows from the assumption that ` > m/3. Furthermore, the second
derivative with respect to kA is 4/n > 0, and therefore kA = (3`n/m − n)/4 is a local
minimum.

The expected contribution from cj to G’s average satisfaction can therefore be as low
as

E[avscj(G)] = kA
|G|

(
kA + n− `n/m

n

)
+ kD
|G|

(
kD
n

)

= −`8m + 3
4 −

m

8`.

We also note that, because G is `-cohesive, there exist at least ` candidates that G
agrees on. Each of these candidates has

avscj(G) ≥ |G|/n ≥ `/m,

where the first inequality follows from G being `-cohesive and the second from G being
`-large.

Summing over the contributions of all candidates, the average satisfaction of G is at
least

`
`

m
+ (m− `)

(3
4 −

`

8m −
m

8`

)
=
(

9`
8m −

m2

8`2 −
7
8 + 7m

8`

)
`. (3.1)

Our goal is to lower bound the term in parentheses by 29
32 , thus providing the desired

approximation guarantee. Setting ` = αm, where α ∈ (1
3 , 1), and differentiating with

respect to α yields
d

dα

(9α
8 −

1
8α2 −

7
8 + 7

8α

)
= 9

8 + 2
8α3 −

7
8α2 .

Setting equal to 0 yields

9α3 − 7α + 2 = (1 + α)(3α− 2)(3α− 1) = 0,

so the only critical point in the interval α ∈ (1/3, 1] is α = 2/3. It is easy to check that the
second derivative is positive at α = 2/3, so average satisfaction is minimized at this point.
Plugging ` = 2m/3 into Equation 3.1 yields a 29/32 approximation to AS, as desired.
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Guided by Theorem 3.11, we show that the bound is tight.
Theorem 3.12. PRR does not satisfy (29/32 + ε)-AS for any ε > 0.

Proof. Let m = 3 and n = 12. Consider the profile

A1 = A2 = A3 = A4 = A5 = {c1, c2, c3}
A6 = A7 = A8 = {c1, c2}

A9 = A10 = A11 = A12 = ∅.

In particular, note that the first 8 voters form a 2-large and 2-cohesive group. Then the
expected satisfaction of the first five voters is 2

3 + 2
3 + 5

12 = 21
12 and the expected satisfaction

of the next three voters is 2
3 + 2

3 + 7
12 = 23

12 . Taking the average yields 1
8(521

12 +323
12) = 29

16 = 29
32`

for ` = 2.

Whether there exists a randomized rule that achieves better than a 29/32-AS approxi-
mation remains an open problem.

Before concluding this section, we note a final interesting and desirable property of
PRR: strategyproofness. Since decisions are made on each candidate independently, voters
maximize their expected satisfaction by reporting their true approval preferences.

3.7 Conclusions
We have initiated the study of representation in approval elections with a variable number
of winners. We believe that this topic, and the study of VNW elections more generally,
deserves further research.

Many open problems remain. In particular, we do not have matching upper and lower
bounds for the average satisfaction guarantees that can be provided by deterministic and
randomized rules. Determining the existence of rules that satisfy EJR is also an interesting
question; while we have argued that natural extensions of JR and PJR make less sense for
VNW elections than for FNW, EJR remains a compelling property.

More broadly, we have assumed that voters gain utility whenever they agree with the
placement of a candidate, either included or excluded. This is a natural model when the
notions of inclusion and exclusion are symmetric, as in the ballot measure example. In
other settings it makes sense to consider other utility models. For instance, a natural
extension of our model would consider voters who derive different levels of utility for an
approved candidate being selected and a disapproved candidate being excluded, or even
negative utility from an approved candidate not being selected or a disapproved candidate
being included. The latter utility model is reminiscent of rules such as net satisfaction
approval voting (NSAV) [142], and precision and recall metrics in information retrieval.
Extending our results to this setting appears nontrivial.
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Doing what’s right isn’t the problem. It’s know-
ing what’s right.

Lyndon B. Johnson

4
Virtual Democracy

Virtual democracy is an approach to automating decisions, by learning models
of the preferences of individual people, and, at runtime, aggregating the pre-
dicted preferences of those people on the dilemma at hand. One of the key
questions is which aggregation method — or voting rule — to use; we offer a
novel statistical viewpoint that provides guidance. Specifically, we seek voting
rules that are robust to prediction errors, in that their output on people’s true
preferences is likely to coincide with their output on noisy estimates thereof. In
this chapter, we prove that the classic Borda count rule is robust in this sense,
whereas any voting rule belonging to the wide family of pairwise-majority con-
sistent rules is not. Our empirical results further support, and more precisely
measure, the robustness of Borda count.
Furthermore, we present WeBuildAI, a collective participatory framework based
on the theoretical findings above. We applied this framework to a matching
algorithm that operates an on-demand food donation transportation service in
order to adjudicate equity and efficiency trade-offs. The service’s stakeholders—
donors, volunteers, recipient organizations, and nonprofit employees—used the
framework to design the algorithm through a series of studies in which we
researched their experiences. Our findings suggest that the framework success-
fully enabled participants to build models that they felt confident represented
their own beliefs. Participatory algorithm design also improved both procedu-
ral fairness and the distributive outcomes of the algorithm, raised participants’
algorithmic awareness, and helped identify inconsistencies in human decision-
making in the governing organization. Our work demonstrates the feasibility,
potential and challenges of community involvement in algorithm design.
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4.1 Virtual Democracy in Theory
One of the most basic ideas underlying democracy is that complicated decisions can be
made by asking a group of people to vote on the alternatives at hand. As a decision-making
framework, this paradigm is versatile, because people can express a sensible opinion about
a wide range of issues. One of its seemingly inherent shortcomings, though, is that voters
must take the time to cast a vote—hopefully an informed one—every time a new dilemma
arises.

But what if we could predict the preferences of voters—instead of explicitly asking
them each time—and then aggregate those predicted preferences to arrive at a decision?
This is exactly the idea behind the work of Noothigattu et al. [182], who are motivated by
the challenge of automating ethical decisions. Specifically, their approach consists of three
steps: first, collect preferences from voters on example dilemmas; second, learn models
of their preferences, which generalize to any (previously unseen) dilemma; and third, at
runtime, use those models to predict the voters’ preferences on the current dilemma, and
aggregate the predicted preferences to reach a decision. The idea is that we would ideally
like to consult the voters on each decision, but in order to automate those decisions we
instead use the models that we have learned as a proxy for the actual voters. In other
words, the models serve as virtual voters, which is why we refer to this paradigm as virtual
democracy.

Since 2017, we have been building on this approach in a collaboration with a Pittsburgh-
based non-profit, 412 Food Rescue, that provides on-demand food donation distribution
services. The goal is to design and deploy an algorithm that would automatically make
the decisions they most frequently face: given an incoming food donation, which recipient
organization (such as a housing authority or food pantry) should receive it? The voters
in our implementation are stakeholders: donors, recipients, volunteers (who pick up the
food from the donor and deliver it to the recipient), and employees. We have collected
roughly 100 pairwise comparisons from each voter, where in each comparison, the voter is
provided information about the type of donation, as well as seven relevant features of the
two alternatives that are being compared; for example, the distance between donor and
recipient, and when the recipient last received a donation. Using this data, we have learned
a model of the preferences of each voter, which allows us to predict the voter’s preference
ranking over hundreds of recipients. And given a predicted ranking for each voter, we map
them into a ranking over the alternatives by applying a voting rule.

While this implementation sounds simple enough, the choice of voting rule can have
a major impact on the efficacy of the system. In fact, the question of which voting rule
to employ is one of the central questions in computational social choice [47], and in social
choice theory more broadly. A long tradition of impossibility results establishes that there
are no perfect voting rules [10], so the answer, such as it is, is often context-dependent.

The central premise of this theoretical body of work is that, in the context of virtual
democracy, certain statistical considerations should guide the choice of voting rule. Indeed,
the voting rule inherently operates on noisy predictions of the voters’ true preferences, yet
one might hope that it would still output the same ranking as it would in the ‘real’ election
based on the voters’ true preferences (after all, this is the ideal that virtual democracy is
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trying to approximate). Our theoretical research question, therefore, is
... which voting rules have the property that their output on the true preferences
is likely to coincide with their output on noisy estimates thereof?

In addition to answering this theoretical question, we work with 412 Food Rescue in
order to study the effects of virtual democracy as a tool for algorithmic governance. Our
work makes three contributions. First, we offer a framework and tools that enable partici-
patory algorithm design, contributing to emerging research on human-centered algorithms
and participatory design for technology. Second, through a case study with stakeholders
of a real-world nonprofit, we demonstrate the feasibility, potential, and challenges of com-
munity involvement in algorithm design. Finally, our work provides insights on the effects
of procedurally-fair algorithms and tools that can further understanding of algorithmic
fairness and moral expectations.

Our Approach and Results. Our technical approach relies on the observation that the
classic Mallows [166] model is an unusually good fit with our problem. Typically the Mal-
lows model describes situations where there is a true ranking of the alternatives σ∗. The
probability that voter i would be associated with a given ranking σi decreases exponentially
with the number of pairs of alternatives on which σi and σ∗ disagree (formally known as
the Kendall tau distance). The model is parameterized by a parameter φ ∈ (0, 1], which
is directly related to the probability that σi agrees with σ∗ on any particular pair of alter-
natives. This model is very well studied (see Section 4.1.1), but, even in situations where
there is a ground-truth ranking, the Mallows model may not be an accurate representation
of reality [169]. This observation has motivated a body of work on generalized [65; 64] and
adversarial [193; 27] noise models.

In our setting each voter has a (possibly different) true ranking σ∗i , and the voter’s
predicted ranking σi is drawn from a Mallows distribution around σ∗i . Crucially, since
the learning algorithm is, in fact, trying to predict pairwise comparisons (which make up
the training set), the accuracy of the predictor can be directly mapped to the Mallows
parameter φ. In other words, instead of making the classic assumption that voters may
fail to identify the ordering of some pairs of alternatives with some probability, we are
essentially observing that the machine learning algorithm fails to accurately predict some
of the pairwise comparisons, and mapping that to a separate Mallows model for each voter.
To drive the point home, although the Mallows model is widely believed to be a tenuous fit
with previously studied applications (as discussed earlier), it is intuitively the correct way
of reasoning about the errors that arise when machine learning algorithms predict rankings
based on pairwise comparisons. This insight is a key part of our conceptual contribution.

Our main positive result (Theorem 4.3) is that the classic Borda count rule is robust to
random noise, that is, it satisfies the property stated earlier, in a precise sense. Specifically,
we establish an upper bound on the probability that two alternatives are ranked differently
when Borda count is applied to the true preferences and to their noisy estimates. The
bound depends on the parameters of the model, as well as on the difference between the
scores of the two alternatives in the true profile. On a high level, the theorem implies that
if one alternative is stronger than another by a moderate margin under the true profile,
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Borda count is highly unlikely to swap the two when given noisy preferences.
By contrast, we show that voting rules belonging to the wide family of pairwise-majority

consistent rules are not robust (Theorem 4.6). We do this by constructing an instance
where there are significant margins between alternatives, yet any voting rule belonging to
this family is likely to flip a pair of alternatives.

Finally, we provide empirical results that further strengthen our case for the robustness
of Borda count. Specifically, these results suggest that the probability of making a mistake
on a pair of alternatives decreases very quickly with their average Borda score difference,
independently of the distribution used to generate the underlying true preferences.

4.1.1 Related Work

A number of recent papers have explored the idea of automating ethical decisions via
machine learning and social choice [79; 107; 182]. As mentioned above, our work builds on
the framework proposed by Noothigattu et al. [182]. However, it is important to clarify why
the questions we explore here do not arise in their work. Since they deal with 1.3 million
voters, and split-second decisions (what should a self-driving car do in an emergency?), they
cannot afford to consult the individual voter models at runtime. Hence, they have added
an additional summarization step, whereby the individual voter models are summarized as
a single, concise model of societal preferences (with possibly significant loss to accuracy).
The structure of the summary model is such that, for any given set of alternatives, almost
all reasonable voting rules agree on the outcome (this is their main theoretical result),
hence the choice of voting rule is a nonissue under that particular implementation. By
contrast, our work is motivated by the food bank application of the virtual democracy
framework, where the number of voters is small and speed is not of the essence, hence we
predict the preferences of individual voters at runtime.

It is worth mentioning that another prominent approach to the allocation of food dona-
tions is based on (online) fair division [4]. That said, it is important to emphasize that we
study a general question about the foundations of the virtual democracy paradigm, that
is, our work is not technically tied to any particular application.

Furthermore, the Mallows model underlies a large body of work in computational social
choice [76; 78; 96; 95; 236; 235; 163; 192; 134; 14; 15; 16; 169; 64; 65; 234]. Our model
is loosely related to that of Jiang et al. [134], where individual rankings are derived from
a single ground truth ranking via a Mallows model, and then a second Mallows model
is applied to obtain a noisy version of each voter’s ranking. Our technical question is
completely different from theirs.

Finally, there is a large body of work in social choice on finding aggregation rules that
satisfy axiomatic properties that formally capture notions of fairness or efficiency [10; 215].
However, many common axiomatic properties in social choice do not apply to standard
applications of virtual democracy, including the autonomous vehicle domain of Noothigattu
et al. [182] and our setting of food rescue, although they may be relevant in other differently-
constrained domains.
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4.1.2 Preliminaries
We deal with a set of alternatives A such that |A| = m. Preferences over A are represented
via a ranking σ ∈ L, where L = L(A) is the set of rankings (or permutations) over A. We
denote by σ(j) the alternative ranked in position j in σ, where position 1 is the highest,
and m the lowest. We denote by σ−1(x) the position in which x ∈ A is ranked. We use
x �σ y to denote that x is preferred to y according to σ, i.e., that σ−1(x) < σ−1(y).

The setting also includes a set of voters N = {1, . . . , n}. Each voter i ∈ N is associated
with a ranking σi ∈ L. The preferences of N are represented as a preference profile
σ = (σ1, . . . , σn) ∈ Ln.

Given a preference profile σ ∈ Ln, we say that x ∈ A beats y ∈ A in a pairwise
comparison if a majority of voters prefer x to y, that is,

|{i ∈ N : x �σi y}| > n/2.
The profile σ induces a weighted pairwise majority graph Γ(σ), where we have a vertex for
each alternative in A. For each x ∈ A and y ∈ A \ {x}, there is an edge from x to y if x
beats y in a pairwise comparison; the weight on this edge is

w(x,y)(σ) , |{i ∈ N : x �σi y}| − |{i ∈ N : y �σi x}|.

Voting Rules A voting rule (formally known as a social welfare function) is a function
f : Ln → L, which receives a preference profile as input, and returns a ‘consensus’ ranking
of the alternatives. We are especially interested in two families of voting rules.
• Positional scoring rules. Each such rule is defined by a score vector (α1, . . . , αm).
Given a preference profile σ, the score of alternative x is

n∑
i=1

ασ−1
i (x).

In words, each voter who ranks x in position p gives αp points to x. The positional
scoring rule returns a ranking of the alternatives by non-increasing score, with ties
broken arbitrarily.
Our main positive result pertains to the classic Borda count voting rule, which is the
positional scoring rule defined by the score vector (m− 1,m− 2, . . . , 0). Denote the
Borda count score of x ∈ A in σ ∈ Ln by

B(x,σ) ,
n∑
i=1

(
m− σ−1

i (x)
)
.

• Pairwise-majority consistent (PMC) rules [65]: These rules satisfy a fairly weak
requirement that extends the classic notion of Condorcet consistent social choice
functions: Given a profile σ, if the pairwise majority graph Γ(σ) = (A,E) is such
that for all x ∈ A, y ∈ A\{x}, either (x, y) ∈ E or (y, x) ∈ E (i.e., it is a tournament),
and, moreover, Γ is acyclic, then f(σ) = τ for the unique ranking τ induced by Γ(σ).
Caragiannis et al. [65] give many examples of prominent voting rules that are PMC,
including the Kemeny rule, the Slater rule, the ranked pairs method, Copeland’s
method, and Schulze’s method.
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The Mallows Model Let the Kendall tau distance between two rankings σ, σ′ ∈ L be

dKT(σ, σ′) , |{(x, y) ∈ A2 : x �σ y ∧ y �σ′ x}|.

In words, it is the number of pairs of alternatives on which σ and σ′ disagree. For example,
if σ = (a, b, c, d), and σ′ = (a, c, d, b), then dKT(σ, σ′) = 2.

In the Mallows [166] model, there is a ground truth ranking σ?, which induces a prob-
ability distribution over perceived rankings. Specifically, the probability of a ranking σ,
given the ground truth ranking σ?, is given by

Pr[σ | σ?] , φdKT(σ,σ?)

Z
,

where φ ∈ (0, 1] is a parameter, and

Z ,
∑
σ′∈L

φdKT(σ′,σ?)

is a normalization constant. Note that for φ = 1 this is a uniform distribution, whereas the
probability of σ? goes to 1 as φ goes to 0. For ease of exposition, we assume that φ < 1.

4.1.3 From Predictions to Mallows
In the virtual democracy framework, we are faced at runtime with a dilemma that induces
a set of alternatives A. For example, when a food bank receives a donation, the set of
alternatives is the current set of recipient organizations, each associated with information
specific to the current donation, such as the distance between the donor and the recipient.
Each voter i ∈ N has a ranking σ?i ∈ L over the given set of alternatives; together these
rankings comprise the true preference profile σ?.

One of the novel components of this paper is the assumption that, for each voter i ∈ N ,
we obtain a predicted ranking σi drawn from a Mallows distribution with parameter φ and
true ranking σ?i . We emphasize that, in contrast to almost all work on the Mallows Model,
in our setting each voter has her own true ranking.

Why is the Mallows Model a good choice here? Recall that we are building preference
models using pairwise comparisons as training data. When validating a model, we therefore
test its accuracy on pairwise comparisons. And the Mallows model itself, because it is
defined via the Kendall tau distance, is essentially determined by pairwise comparisons.
In fact, the Mallows model (with parameter φ and true ranking σ?) is equivalent to the
following generative process: for each pair of alternatives x and y such that x �σ? y,
x is preferred to y with probability 1/(1 + φ), and y is preferred to x with probability
φ/(1 + φ); if this preference relation corresponds to a ranking (i.e., it is transitive), return
that ranking, otherwise restart.

In more detail, let β be the average probability that we predict a pairwise comparison
correctly; in our food bank implementation, β ≈ 0.9. Based on the preceding discussion,
one might be tempted to set β = 1/(1 + φ), i.e., set β to be the probability of getting
the relative ordering of two adjacent alternatives correctly. While this is not unreasonable
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(and would have been very convenient for us), for β ≈ 0.9 it would lead to extremely
high probability of correctly ranking alternatives that are, say, 30 positions apart in the
ground truth ranking. In order to moderate this effect, we define another parameter
κ ∈ {2, . . . ,m}, and assume that our observed pairwise comparisons are between σ?i (1)
(the top-ranked alternative in the true ranking of i) and σ?i (κ) (the alternative ranked in
position κ). Formally, the parameters β and κ are such that, for the ranking σi sampled
from a Mallows Model with φ and σ?i ,

Pr [σ?i (1) �σi σ?i (κ)] = β. (4.1)

It is worth noting that the implicit assumption that we are observing comparisons between
σ?i (1) and σ?i (κ) specifically is not meant to be realistic. Rather, the idea is that there
is some appropriate value of κ such that the observed accuracy β can be related to the
underlying Mallows model through Equation (4.1), and, if we can establish results that are
general with respect to the choice of κ, they would carry over to the real world.

Moving from conceptual issues to novel technical results, we start with the following
lemma, which expresses the probability on the right hand side of Equation (4.1) in terms
of the Mallows parameter φ.
Lemma 4.1. Let σi be sampled from a Mallows Model with parameter φ and true ranking
σ?i . Then

Pr [σ?i (1) �σi σ?i (κ)] = κ

1− φκ −
κ− 1

1− φκ−1 .

Equation (4.1) and Lemma 4.1 imply that

β = κ

1− φκ −
κ− 1

1− φκ−1 ,

but for subsequent results we need to express φ in terms of β and κ, and it is unclear
whether this can be done in closed form. Nevertheless, we are are able to derive a bound
that suffices for our purposes.
Lemma 4.2. For β and κ defined as in Equation (4.1), it holds that

φ ≤
(

1− β
β

) 1
2κ−1

.

We relegate the proofs of both lemmas to the full version of the paper. Note that
Lemma 4.1 can be proved via a theorem of Désir et al. [89]. Their theorem gives a closed
form for the probability that an alternative x is ranked first out of a subset of alternatives
S. This closed form is complex, and requires quite a bit of additional notation, so we
instead derive the probability we are interested in, i.e., the probability that σ?i (κ) is ranked
above σ?i (1), from scratch.

4.1.4 Robustness of Borda Count
In this section, we rigorously establish the robustness of Borda count to prediction error
by showing that it satisfies a formal version of the desired property stated in Section 4.1.
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We do this by building on the machinery developed in Section 4.1.3, as well as additional
lemmas that we will state and prove momentarily.

As we have already discussed, we do not have access to the Mallows parameter φ.
Instead, we can measure β, the probability that we correctly predict a pairwise comparison
of alternatives that are κ positions apart. On a very high level, the theorem bounds the
probability that the noisy Borda ranking (based on the sampled profile) would disagree
with the true Borda ranking (based on the true profile) on a given pair of alternatives.
Theorem 4.3. For any β > 1/2 and ε > 0 there exists a universal constant T = T (β, ε)
such that for all n,m, κ ∈ N such that n,m ≥ 2, for all s ≥ Tκ log κ, for all σ? ∈ Ln, and
for all x, x′ ∈ A such that 1

n
B(x,σ?) ≥ 1

n
B(x′,σ?) + 2s, it holds that

Pr
[ 1
n
B(x,σ) > 1

n
B(x′,σ)

]
≥ 1− εn,

where the probability is taken over the sampling of σ.
Let us discuss the statement of the theorem. First, note that the probability of mistake,

εn, converges to 0 exponentially fast as n grows, so the theorem immediately implies a
“with high probability” statement. Moreover, one can easily derive such a statement
with respect to all pairs of alternatives (whose Borda scores are sufficiently separated)
simultaneously, using a direct application of the union bound. Second, it is intuitive that
the separation in Borda scores has to depend on κ, but it is encouraging (and, to us,
surprising) that this dependence is almost linear. In particular, even if κ is almost linear
in m, i.e., κ ∈ o(m/ logm), the theorem implies that our noisy Borda ranking is highly
unlikely to make mistakes on pairs of alternatives whose average score difference is linear
in m.

Turning to the proof, we start by bounding the probability that the Borda count score
B(x,σ) of an alternative x ∈ A in the observed profile σ is far from the Borda count score
B(x,σ?) in the true profile σ?. The proof of the following lemma adapts that of a lemma
of [49], which deals with average rank (instead of average Borda count score), but in the
case of a single true ranking, i.e., σ?i = σ?j , for all i, j.
Lemma 4.4. For all alternatives x ∈ A, and all s ≥ 0

Pr
[ 1
n
B(x,σ) ≤ 1

n
B(x,σ?)− s

]
≤
(

2e(n+ ns− 1)
n− 1 · φs

1− φ

)n
,

Pr
[ 1
n
B(x,σ) ≥ 1

n
B(x,σ?) + s

]
≤
(

2e(n+ ns− 1)
n− 1 · φs

1− φ

)n
.

Proof. We prove the first inequality; the proof of the second is analogous. Given a subset
of voters S ⊆ N and a non-negative vector b = (bi)i∈S ∈ N|S|, let ES,b be the event that

B(x, σi) ≤ B(x, σ?i )− bi
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for all voters i ∈ S, where we abuse notation by using

B(x, σi) , m− σ−1
i (x)

to denote the Borda count score of alternative x in the ranking σi. A lemma in the full
version of the paper implies that for all s ≥ 0,

Pr[B(x, σi) ≤ B(x, σ?i )− s] ≤
φs

1− φ. (4.2)

Therefore,

Pr[ES,b] =
∏
i∈S

Pr[B(x, σi) ≤ B(x, σ?i )− bi]

≤
∏
i∈S

φbi

1− φ = φ
∑

i∈S bi

(1− φ)|S| ,

where the inequality follows from Equation (4.2).
Let E be the event that 1

n
B(x,σ) ≤ 1

n
B(x,σ?)− s. Notice that

E ⊂
⋃

S⊆N,b∈N|S|:
∑

i∈S bi=ns
ES,b,

as there must exist a subset of voters who contribute sufficiently to the difference in Borda
scores. Moreover, for a fixed S, the number of vectors b ∈ N|S| such that ∑i∈S bi = ns is
exactly

(
|S|+ns−1
|S|−1

)
. Therefore,

Pr[E ] ≤
∑
S⊆N

∣∣∣∣∣
{

b ∈ N|S| :
n∑
i=1

bi = ns

}∣∣∣∣∣ · φns

(1− φ)|S|

≤ 2n ·
(
n+ ns− 1
n− 1

)
· φns

(1− φ)n

≤ 2n ·
(
e(n+ ns− 1)

n− 1

)n−1

·
(

φs

1− φ

)n

≤
(

2e(n+ ns− 1)
n− 1 · φs

1− φ

)n
,

where we used the fact that
(
n
t

)
≤ ( en

t
)t.

Using Lemma 4.4 we can bound, given the Mallows parameter φ, the probability that
two alternatives, whose Borda count scores in the true profile σ? are sufficiently far apart,
are ranked by the Borda count voting rule in the correct order (in the sampled profile σ).
Lemma 4.5. Let x, x′ ∈ A such that 1

n
B(x,σ?) ≥ 1

n
B(x′,σ?) + 2s. Then

Pr
[ 1
n
B(x,σ) > 1

n
B(x′,σ)

]
≥ 1− 2

(
2e(n+ ns− 1)

n− 1 · φs

1− φ

)n
.
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Proof. Let E1 be the event that

1
n
B(x,σ) ≤ 1

n
B(x,σ?)− s,

and E2 be the event that
1
n
B(x′,σ) ≥ 1

n
B(x′,σ?) + s.

By Lemma 4.4 and a union bound we have that

Pr [E1 ∪ E2] ≤ 2
(

2e(n+ ns− 1)
n− 1 · φs

1− φ

)n
.

Next, notice that every time the Borda count scores of x and x′ in the sampled preference
profile are in the wrong order (or tied), then at least one of E1, E2 occurred, i.e.,

Pr
[ 1
n
B(x,σ) ≤ 1

n
B(x′,σ)

]
≤ Pr[E1 ∪ E2].

The lemma directly follows.

Recall that Lemma 4.2 gives an upper bound on φ as a function of β and κ. Combining
with Lemma 4.5, we can bound the probability of getting the correct ranking as a function
of β and κ, and prove our main result.

Proof of Theorem 4.3. By Lemma 4.5,

Pr
[ 1
n
B(x,σ) > 1

n
B(x′,σ)

]
≥ 1− 2

(
2e(n+ ns− 1)

n− 1 · φs

1− φ

)n

≥ 1− 2
(

4en
n− 1 ·

sφs

1− φ

)n

≥ 1− 2
(

8e · sφ
s

1− φ

)n
.

It suffices to give a bound on s such that

sφs

1− φ ≤
ε

16e. (4.3)

By Lemma 4.2,

φ ≤
(

1− β
β

) 1
2κ−1

.
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Since β > 1/2, there is a universal constant c > 1 such that 1−β
β

= 1
c
. Therefore,

sφs

1− φ ≤ s ·

(
1−β
β

) s
2κ−1

1−
(

1−β
β

) 1
2κ−1

= s · c−
s

2κ−1

1− c−
1

2κ−1

= s

c
s

2κ−1 − c
s−1

2κ−1
= s

c
s−1

2κ−1
(
c

1
2κ−1 − 1

)
≤ s

c
s−1

2κ−1 · c
1

2κ−1 (c−1)
c(2κ−1)

≤ c

c− 1 ·
s(2κ− 1)
c

s
2κ−1

,

where for the penultimate inequality we use the inequality

rz(z1/r − 1) > z1/r(z − 1),

which holds for all z, r ≥ 1,1 with z = c and r = 2κ− 1. It is now easy to verify that there
is a universal constant T > 0 such that if s ≥ Tκ log κ then Equation (4.3) holds.

It is important to note that it should be possible to extend Theorem 4.3 to other
positional scoring rules defined by a score vector (α1, . . . , αm) where αj > αj+1 for all
j = 1, . . . ,m− 1. However, Borda count is especially practical and easy to explain, which
is why we focus on it for our positive result.

4.1.5 Non-Robustness of PMC Rules
Theorem 4.3 shows that Borda count is robust against noisy perturbations of the preference
profile. It is natural to ask whether ‘many’ voting rules satisfy a similar property. In this
section we answer this question in the negative, by proving that any voting rule that
belongs to the important family of PMC rules is not robust in a similar sense.

Specifically, recall that under a PMC rule, when the weighted pairwise majority graph
is acyclic, the output ranking is the topological ordering of the pairwise majority graph.
We show that there exist profiles in which the pairwise majority graph is acyclic and all

1To see this, let

f(z, r) , rz(z1/r − 1)− z1/r(z − 1)
z

= (r − 1)z1/r + z1/r−1 − r.

Taking the partial derivative with respect to z, we have

∂

∂z
f(z, r) = (r − 1)(z − 1)z1/r−2

r
,

which is clearly non-negative for z, r ≥ 1. Also, f(1, r) = 0. So, we have shown that f(z, r) ≥ 0 for all
z, r ≥ 1, which implies the claim.
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edge weights are large, but, with high probability, the noisy profile also has an acyclic
pairwise majority graph which induces a different ranking. This means that any PMC rule
would return different rankings when applied to the true profile and the noisy profile.
Theorem 4.6. For all δ > 0, φ ∈ (0, 1), and m ∈ N such that m ≥ 3, there exists n0 ∈ N
such that for all n ≥ n0, there exists a profile σ? ∈ Ln such that Γ(σ?) is acyclic and all
edges have weight Ω(n), but with probability at least 1−δ Γ(σ) is acyclic and there is a pair
of alternatives on which the unique rankings induced by Γ(σ?) and Γ(σ) disagree, where
the probability is taken over the sampling of σ.

Proof Sketch. The proof of Theorem 4.6 is rather technical, and appears in the full version
of the paper. In a nutshell, we construct a preference profile σ? with αn voters whose
preferences are x? � x1 � · · · , and (1 − α)n voters whose preferences are x1 � · · · � x?,
for α > 1/2. This profile induces a ranking where x? is first and x1 is second. However, it
can be seen that, in the sampled profile σ, many voters from the first group would flip x?
and x1, leading to a majority who prefer x1 to x?. Furthermore, we prove the nontrivial
claim that Γ(σ) is likely to be acyclic (‘nontrivial’ because it is unclear there would not be
a cycle involving x?), which completes the argument.

It is instructive to contrast our positive result, Theorem 4.3, with this negative result.
On a very high level, the former result asserts that “if Borda count says that the gaps
between alternatives are significant, then the alternatives will not flip under Borda count,”
whereas the latter says “even if a PMC rule says that the gaps between alternatives are
very significant, some alternatives are likely to flip under that rule.” On a technical level, a
subtle difference is that Theorem 4.3 is stated for β and κ, whereas Theorem 4.6 is stated
directly for φ. This actually strengthens the negative result, because a constant β and
κ ∈ ω(1) lead to φ = 1− o(1), i.e., very noisy distributions — and still the positive result
of Theorem 4.3 holds. By contrast, the negative result of Theorem 4.6 is true even when
φ is constant, i.e., for settings that are not nearly as noisy. That said, the two results are
not directly comparable, as Borda count and PMC rules deal with very different notions
of score or weight. Nevertheless, the take-home message is that the notion of score that
defines Borda count is inherently more robust to random perturbations of the preference
profile.

4.1.6 Empirical Results
In Section 4.1.4 we have established that Borda count is robust to prediction error. How-
ever, our positive theoretical result, Theorem 4.3, only provides asymptotic guarantees. In
this section, we evaluate the performance of Borda count on profiles of size that is more
representative of real-world instances. For our evaluation metric, we consider the probabil-
ity of the rule flipping alternatives when aggregating noisy rankings against their difference
in Borda score in the underlying true profile.

All of our code is open-source and can be found at https://github.com/akahng/VirtualDemocracy-
ICML2019.
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(a) φ = 0.4
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(b) φ = 0.5
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(c) φ = 0.6
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(d) φ = 0.7
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(e) φ = 0.8
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(f) φ = 0.9

Figure 4.1: p = 1 mixture of Mallows, n = 100 voters, m = 40 alternatives

Methodology

Given n voters, m alternatives, a Mallows parameter φ ∈ (0, 1), and a probability p ∈
[0, 1], we generate a true profile σ? = (σ?1, . . . , σ?n) from a mixture of Mallows models.
Specifically, each ranking is drawn with probability p from a Mallows model with base
ranking x1 � x2 � · · · � xm and parameter φ, and with probability 1− p from a Mallows
model with base ranking xm � xm−1 � · · · � x1 and parameter φ.

We then repeatedly generate noisy profiles σ = (σ1, . . . , σn) where each σi is generated
by a Mallows model centered at σ?i with parameter φ. For every pair of alternatives (xi, xj)
such that B(xi,σ?) > B(xj,σ?) — that is, xi beat xj when Borda count was applied to
the true profile — we calculate the percentage of noisy profiles that flipped the order of
xi and xj, i.e., those where B(xj,σ) > B(xi,σ). Based on the true difference in Borda
scores B(xi,σ?)−B(xj,σ?), we place this data point in the appropriate bucket, where the
width of each bucket corresponds to an average Borda score difference of 1. This way we
can relate the Borda score difference to the probability of making a pairwise prediction
error. Note that starting from a mixture of ‘opposite’ ranking models allows us to vary
the distribution over score differences in σ? by varying p.
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Results

Throughout our experiments, we let n = 100,m = 40, φ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9},
and p ∈ {1, 0.7, 0.5}. Our results for p = 1, shown in Figure 4.1, plot the average probability
of flipping the order of alternatives as a function of the difference in average Borda scores of
the alternatives, where comparisons are bucketed by the difference in average Borda score.
For φ ∈ {0.1, 0.2, 0.3}, the observed probability of flipping any two alternatives, regardless
of average Borda score difference, is 0; i.e., there are no mistakes.

At a high level, error rate decreases with true average Borda score distance in all
experiments. Note that the maximum observed error rate increases with the Mallows
parameter φ, which is intuitive because higher values of φ imply noisier (more uniformly
random) rankings, so the probability of swapping alternatives should increase. However,
for all values of φ and under all methods of generating profiles, the probability of making
errors quickly decreases with average Borda score difference in the true profile.

Similar plots for p = 0.7 and p = 0.5 are included in the full version of the paper;
these plots support the observation that the probability of making a mistake depends on
the average Borda score difference, and not on the particular methods used to sample the
underlying true profile.

4.2 Virtual Democracy in Practice: 412 Food Rescue
In concurrent work to the above, we apply the theoretical findings above to the real-world
scenario of food rescue [155] in order to see how people perceive, participate in, and react
to algorithmic governance. Through a collaboration with 412 Food Rescue, a nonprofit
that matches food donations with needy recipients, we build a platform based on virtual
democracy that suggests possible destinations for donations based on the learnt preferences
of various stakeholders (donors, recipients, volunteers who deliver donations, and 412 Food
Rescue employees).

Throughout the process, we solicited stakeholder participation to adjudicate the trade-
offs involved in the algorithm’s design, balancing equity and efficiency in donation dis-
tribution and managing the associated disparate impacts on different stakeholders. Over
the course of a year, we had the stakeholders use the WeBuildAI framework to design
the matching algorithm, and researched their experiences through a series of studies. The
findings suggest that our framework successfully enabled participants to build models that
they felt confident represented their own beliefs. In line with our original goals, participa-
tory algorithm design also impacted both procedural fairness and distributive outcomes:
participants trusted and perceived as fair the collectively-built algorithm, and developed an
empathetic stance toward the organization. Compared to human dispatchers, the resulting
algorithm improved equity in donation distribution without hurting efficiency when tested
with historic data. Finally, we discovered that the individual model-building raised par-
ticipants’ algorithmic awareness and helped identify inconsistencies in human managers’
decision-making in the organization, and that the design of the individual model-building
method may influence the elicited beliefs.
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Figure 4.2: The WeBuildAI framework allows people to participate in designing algorithmic
governance policy. A key aspect of this framework is that individuals create computational
models that embody their beliefs on the algorithmic policy in question and vote on the
individual’s behalf.

4.2.1 Introduction

Emerging work has called for greater involvement of stakeholders and affected communi-
ties in the development of algorithmic systems. These projects have sought to understand
the public’s expectations of moral behaviors [42; 181; 165] and varying concepts of fair-
ness [158; 157; 233], as well as stakeholders’ needs and requirements [241; 7] around Artifi-
cial Intelligence (AI) systems; yet translating the results into actual algorithms is difficult,
as these studies have often relied on hypothetical moral dilemmas or collected qualitative
expectations and opinions that developers and designers need to interpret in order to build
the algorithm.

Our vision is to empower people to design algorithmic governance mechanisms for their
own communities. We argue that this participatory algorithm design process is a step
toward creating algorithmic governance that is effective yet also moral. In traditional par-
ticipatory governance, stakeholder participation in policy-making improves the legitimacy
of a governing institution in a democratic society [111; 113].2 Participating in service
creation has also been shown to increase trust and satisfaction, thereby increasing moti-
vation to use the services [28]. In addition, participation can increase effectiveness. For
certain problems, people themselves know the most about their unique needs and prob-
lems [111; 171]; participation can help policymakers and platform developers leverage this
knowledge pool. Finally, stakeholder participation can help operationalize moral values

2By “legitimacy,” we refer to Weber’s notion that “persons or systems exercising authority are lent
prestige” [230]. A policy or action is legitimate when constituents have good reason to support it [112]. In
western democratic societies, the legitimacy of governing systems is often established through the public
practice of democracy that seeks to earn the consent of the governed by soliciting their input, often through
elections, to influence government and public policy.
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and their associated trade-offs, such as fairness and efficiency [111]. Even people who
agree wholeheartedly on certain high-level moral principles tend to disagree on the specific
implementations of those values in algorithms—the objectives, metrics, thresholds, and
trade-offs that need to be explicitly codified rather than left up to human judgment.

Enabling stakeholder participation in algorithmic governance raises several fundamen-
tal research questions. First, what socio-technical methods will effectively elicit individual
and collective beliefs about policies and translate them into computational algorithms?
Second, how should the resulting algorithms be explained so that participants understand
their roles and administrators can make decisions using the algorithms? How does partici-
pation influence participants’ perceptions of and interactions with algorithmic governance?
Finally, how does the resulting collectively-built algorithm perform?

Our Approach and Contributions

In order to address these research questions, we propose a framework called WeBuildAI
that enables people to collectively design an algorithmic policy for their own community
(Figure 4.2).3 By “design,” we mean having the community members and stakeholder
themselves define the optimization goals of the algorithms, the benefits and costs of the al-
gorithmic governance decisions, and the value principles that they believe their community
should embody and operate on. The key aspect of this framework is that individuals cre-
ate computational models that embody their beliefs on the algorithmic policy in question,4
and then these models vote on their individuals’ behalf. This works like a group of people
making a decision together: computational models of each individual’s decision-making
process make a collective choice for each policy decision. The individual models rank pos-
sible alternatives, and the individual rankings are then aggregated via the classic Borda
rule. The resulting algorithmic recommendations are explained to support administrative
decision-makers.

As a case study, we applied this framework to develop a matching algorithm that dis-
tributes donations through collaboration with 412 Food Rescue, a nonprofit that provides
an on-demand donation transportation service with volunteer support. The algorithm
matches donors with recipient organizations, determining who receives donations and how
far volunteers need to drive to deliver donations. We solicited stakeholder participation
to adjudicate the tradeoffs involved in the algorithm’s design, balancing equity and effi-
ciency in donation distribution and managing the associated disparate impacts on different
stakeholders. Over the course of a year, we had the stakeholders—donors, recipient or-
ganizations, volunteers, and the 412 Food Rescue staff—use the WeBuildAI framework to
design the matching algorithm, and researched their experiences through a series of studies.
The findings suggest that our framework successfully enabled participants to build models
that they felt confident represented their own beliefs. In line with our original goals, partic-
ipatory algorithm design also impacted both procedural fairness and distributive outcomes:

3We define “community” according to the Merriam-Webster dictionary as a “unified body of individu-
als,” particularly a group linked by a common interest or policy.

4By “belief,” we mean a “positional attitude,” in other words, ”the mental state of having some attitude,
stance, take, or opinion about a proposition” [205].
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participants trusted and perceived as fair the collectively-built algorithm, and developed an
empathetic stance toward the organization. Compared to human dispatchers, the resulting
algorithm improved equity in donation distribution without hurting efficiency when tested
with historic data. Finally, we discovered that the individual model-building process raised
participants’ algorithmic awareness and helped identify inconsistencies in human managers’
decision-making in the organization, and that the design of the individual model-building
method may influence the elicited beliefs.

Our paper makes three contributions. First, we offer a framework and methods that en-
able participatory algorithm design, contributing to emerging research on human-centered
algorithms and participatory design for technology. Second, through a case study with
stakeholders in a real-world nonprofit, we demonstrate the feasibility, potential, and chal-
lenges of community involvement in algorithm design. Finally, our work provides insights
on the effects of procedurally-fair algorithms that can further understanding of algorithmic
fairness.

4.2.2 Governing Algorithm Design and Participation
Our framework draws from social choice and participatory governance literature to en-
able participatory algorithm design. In this section, we first lay out normative choices
in algorithm design. We then review and identify gaps in participatory design literature
and emerging work to introduce stakeholder participation in algorithm design. Finally,
we discuss how we leveraged participatory governance literature to inform our framework
design.

Normative Choices in Algorithm Design

In line with Aneesh’s definition of “algocracy,” when “authority becomes embedded in the
technology itself” [8] rather than traditional forms of governance, and Danaher’s elabora-
tions, we define “governing algorithms” as algorithms that “nudge, bias, guide, provoke,
control, manipulate and constrain human behaviour” [84]. All algorithm design choices
cannot be addressed by a purely technical approach [130; 232]; particularly in governing
algorithms, some design choices require a normative decision, as they affect multiple stake-
holders and need to codify critical social values and associated tradeoffs. We describe three
such design choices below.

First, increasingly more research has investigated computational techniques to encode
social and moral values in algorithms, yet many still rely on fundamental measures and
algorithmic “objective functions” that humans must define. Defining these terms is com-
plex. Fairness, for example, broadly defined as treating everyone equally, has multiple
definitions and theoretical roots. In prior work, fairness has been defined as equitable dis-
tributive outcomes and just, unbiased, non-discriminatory decision-making processes [32].
Fairness is an important value in governing algorithms as algorithms can perpetuate unfair
treatment of different populations or stakeholders [84; 239; 109]. Emerging work develops
computationally fair algorithms [48; 103], yet applying these techniques to real-world set-
tings still requires human judgment. For example, individual fairness, or treating similar
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individuals similarly, requires a definition for “similar individuals” [93].
Second, multiple social values and objectives cannot be satisfied to the same degree,

which necessitates making tradeoff decisions. For example, all fairness principles cannot
be guaranteed simultaneously [71; 145], so a human decision-maker must determine which
fairness definitions an algorithm should use. Similarly, operational efficiency and fairness
are often competing values in modern capitalist democracies [183]. Algorithms that aim
to achieve both require human judgments about how to balance the two, because there is
no fundamental “right” balance and one cannot be determined purely through optimiza-
tion [30].

Finally, these definitions and values are context-dependent. Recent empirical work on
perceptions of “fair” algorithms suggests that different social groups believe in different
fairness principles, and even algorithms that embody a fairness principle may not be per-
ceived as fair if the implemented principle is not in accordance with the affected group’s
beliefs [157]. For example, some groups in the study preferred random allocation that
treated everyone equally, and did not consider individual differences to be relevant to task
allocation. Other groups desired equity-based allocation, in which the tasks are allocated
to satisfy everyone’s preferences to a similar degree. Some other groups wanted to con-
sider both preferences and task completion time as fairness factors, so that people work
for a similar amount of time and their preferences are satisfied similarly. These findings
suggest people believe in epistemically different fairness principles or desire varying ways
of operationalizing fairness principles. Real-world examples also suggest that algorithmic
software will fail to be adopted if it uses features or objective functions that do not fit
the context of the affected community. For example, a “fair” algorithmic school start time
scheduling software in Boston received pushback from the community and was ultimately
not adopted, because the policymakers’ and developers’ efforts to decrease racial dispari-
ties did not consider important values and constraints of the stakeholders [231]. This body
of work suggests that fairness principles must be context-specific, and that algorithmic
systems should embody fairness notions derived from the community.

These normative choices in algorithm design are fundamental; how do we understand
and formalize context-dependent values? Who should determine these important values
and tradeoffs in governing algorithms, and how? Our approach to these questions is inspired
by the long line of research on participatory design.

Gaps in Participatory Design and Human-Centered Research on AI

Participatory design originated in Scandinavia in the 1960s with the intention of involving
workers in planning job design and work environments. Participatory design was subse-
quently adopted in the fields of human-computer interaction and engineering [227; 179],
and researchers and designers have included “end-users” in design activities for computing
systems in a wide range of domains such as workspaces [39], healthcare [23], and robots [90].
In participatory design, the researchers and users of a technology share power and control in
determining its technological future [227; 179; 43], so that the stakeholders or populations
that the technology will influence have a say in the resulting design, and the technology
can better reflect their needs, values, and concerns. More recently, several scholars have
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argued that one needs to be more cognizant of the agency and influence of the researchers
and designers in “configuring the process participation,” and more critical analysis must
be done in terms of who initiates participation and who benefits from it [227].

While participatory design has been applied to diverse forms of technology, the re-
search on involving users in the process of designing algorithms or AI is still in its infancy.
Rahwan [194] argues for “society-in-the-loop,” which stresses the importance of creating
infrastructure and tools to involve societal opinions in the creation of AI. Emerging work
has also started to explore societal expectations of algorithmic systems such as self-driving
cars [42; 181] and robots [165]. This line of work offers an understanding of the public’s
general moral values around AI through thought experiments, but it is difficult to trans-
late them into actual AI technology as they have often been done in hypothetical moral
dilemma situations.

Emerging work seeks to understand participants’ values with regard to the fairness
of actual AI products, with the goal of representing these values in the final AI design.
For example, Zhu et al. proposed Value Sensitive Algorithm Design [241], a five-step
design process that starts with understanding the stakeholders and ends with evaluating
algorithms’ acceptance, accuracy, and impacts, in the context of Wikipedia bots. In this
process, designers interpret stakeholder opinions and make the necessary trade-off deci-
sions. Alvarado and Waern organized a participatory workshop for social media curation
algorithms in which people were asked to imagine ideal “algorithmic experiences” [7]. Lee
et al. and Woodruff et al. conducted interview and workshop studies on what people think
“fair” algorithms are in the contexts of donation allocation [158] and online ads [233].
Other scholars systematically investigated perceived fairness of algorithmic decisions in
hiring [156], recidivism [91], child welfare services [55], and resource allocation such as task
assignment [157] and goods division [159].

To our knowledge, however, little work has sought to formalize subjective concepts
of fairness. Furthermore, while these studies provide us with a better understanding of
general public and user perceptions of justice and fairness, they do not close the loop on
algorithmic developments that respond to these concerns. Our work proposes a method
for directly involving end-users or stakeholders of algorithmic services in determining how
the algorithms should make decisions. One aspect that differentiates our work is that we
offer a tool through which people without algorithmic knowledge can directly specify or
“sketch” [59] how they would like the algorithm to behave; we couple this with a method
for aggregating different stakeholders’ points of view.

Participatory Governance

Our framework draws on the literature on participatory governance. A first step in partic-
ipatory governance is to determine what governance issues participants will consider and
how participation will influence final policy outcomes. User groups, or mini-publics [111],
can be configured as open forums where people express their opinions on policies; focus
groups can be arranged for specific purposes such as providing advice or deriving design
requirements. In full participatory democratic governance, citizen voices are directly incor-
porated into the determination of the policy agenda. Our framework focuses on this last
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form: direct participation in designing algorithmic governance. By “direct participation,”
we mean that people are able to specify “objective functions” and behaviors in order to
create desirable algorithmic policies. This direct approach can minimize potential errors
and biases that occur when codifying policy ideas into computational algorithms, which
has been highlighted as a risk in algorithmic governance [144].

A key aspect of governance is collective decision-making. Our framework builds on
social choice theory. Social choice theory involves collectively aggregating people’s prefer-
ences and opinions by creating quantitative definitions of individuals’ opinions, utilities, or
welfare and then aggregating them according to certain desirable qualities [206]. Voting is
one of the most common aggregation methods, in which individuals choose a top choice or
rank alternatives, and the alternatives with the most support are selected. Social choice
theory is typically built on an axiomatic approach, formally defining desirable axiomatic
qualities and studying voting rules that satisfy them. Indeed, the Borda voting rule satis-
fies a number of such properties, including monotonicity (pushing an alternative upwards
in the votes should not hurt it) and consistency (if two electorates elect the same alterna-
tive, their union does too). We adopted a social choice approach specifically because our
ultimate design outcome is an algorithm. While we know ”quantification” has limitations
in capturing nuances in the real world, quantification is an inevitable step in algorithms
as they need quantitative inputs. Social choice theory provides a framework for formally
reasoning about collective decisions at scale.

Implementing participation in algorithmic governance requires addressing the following
challenges. First, how can we enable individuals to form beliefs about policies through de-
liberation and express these beliefs in a format that the algorithm can implement? Second,
how do we consolidate individuals’ models? Finally, how do we explain the final decisions
so that people can understand the influence of their participation on the resulting policy,
and administrators can use the collectively-built governing algorithm? In the next section,
we describe our framework and how it addresses these challenges.

4.2.3 The WeBuildAI Framework
Here we lay out the basic building blocks of the WeBuildAI framework, which enables par-
ticipation in building algorithmic governance through a novel combination of individual
belief learning, voting, and explanation. Our framework design draws on the field of polit-
ical theory, which investigates collective decision-making and effective citizen participation
in governance.

The key idea of the framework is to build a computational model representing each
individual stakeholder, and to have those models vote on their individuals’ behalf. This
works like a group of people making a decision together: computational models of each
individual’s decision-making process make a collective choice for each policy decision.

Individual Belief Model Building

Building a model that embodies an individual’s beliefs on policy gives rise to three chal-
lenges. First, people need to determine what information, or features, should be used in

104



algorithms. Second, the individual needs to form a stable policy that applies across a
broad spectrum of situations. This process requires people to examine their judgments in
different contexts until they reach an acceptable coherence among their beliefs, or reflec-
tive equilibrium [85; 196]. Third, people without expertise in algorithms need to be able
to express their beliefs in terms of an algorithmic model. We address these challenges by
deriving a set of features from people’s inputs, and then using both bottom-up machine
learning training and top-down explicit rule making.

Feature Selection: The first step is to determine features that people believe should
be used by the algorithm to make decisions. People’s opinions can be solicited through
interviews or surveys. The derived set of features will be used to construct pairwise com-
parisons between alternatives, or allow people to directly specify weights for each of the
features.

Model Building: We use both machine learning and explicit rule specification. By
allowing people to use both types of models iteratively, we seek to support deliberation.
By building a machine learning model via pairwise comparisons, people can develop a
policy that works across various contexts; by explicitly specifying a policy that they have
been implicitly forming, participants can consolidate and externalize their beliefs; then by
answering new pairwise comparisons questions, they can evaluate whether the rules they
have in mind work consistently across contexts.
• Machine Learning Model. To train an algorithm that reflects people’s decision cri-
teria, the machine learning method uses pairwise comparisons between a pair of
alternatives that vary along the features derived from the previous step. Pairwise
comparisons have been used to encourage moral deliberation and reach a reflective
equilibrium in determining fairness principles [196], and have been used as a way to
understand people’s judgments in social and moral dilemmas in psychology and eco-
nomics [83]. This method allows people to become familiar with different contexts,
and develop and refine their beliefs.
We utilize random utility models, which are commonly used in social choice settings

to capture choices between discrete objects [168]. In a random utility model, each
participant has a true “utility” distribution for each object, and, when asked to
compare two potential objects, she samples a value from each distribution. For each
participant i, we learn a single vector βi such that the mode utility of each potential
decision x is µi(x) = βTi x. We then learn the relevant βi vectors via standard gradient
descent techniques using Normal loss.

• Explicit Rule Model. In this method, participants directly specify their principles and
decision criteria as used in expert system design [86]. Human-interpretable algorith-
mic models [240] such as decision trees, rule-based systems, and scoring models have
been used to allow people to specify desired algorithmic behaviors. This approach
allows people to have full control over the rules and to specify exceptional cases or
constraints. Specifically, for each of the features, participants can specify scores to
express how much the algorithm should weight different features.

Model Selection: Once people build their models using the two methods, we visualize
the models and show example decisions that each model has made so that people can
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understand each model and select the one that best reflects their beliefs.

Collective Aggregation

Once participants have built their models, the next challenge is to construct a collective
rule that consolidates the individual models. We address this challenge by leveraging social
choice, one of the main theories of collective decision-making, which aggregates peoples’
opinions according to certain desirable qualities [206]. Voting is one of the most common
aggregation methods. In voting, individuals can specify a top choice or rank alternatives,
and the alternatives with the most support are selected. In our framework, we use the
Borda voting method due to its relative simplicity and robust theoretical guarantees in the
face of noisy estimates of true preferences, as shown in a paper by some of the authors [139].

The Borda rule is defined as follows. Given a set of voters and a set of m potential
allocations, where each voter provides a complete ranking over all allocations, each voter
awards m− k points to the allocation in position k, and the Borda score of each allocation
is the sum of the scores awarded to that allocation in the opinions of all voters. Then,
in order to obtain the final ranking, allocations are ranked by non-increasing score. For
example, consider the setting with two voters and three allocations, a, b, and c. Voter 1
believes that a � b � c and voter 2 believes that b � c � a, where x � y means that x is
better than y. The Borda score of allocation a is 2 + 0 = 2, the Borda score of allocation
b is 1 + 2 = 3, and the Borda score of allocation c is 0 + 1 = 1. Therefore, the final Borda
ranking is b � a � c.

Once stakeholders create their models, the models are embedded in the AI system to
represent the stakeholders; for each algorithmic decision task, each individual model ranks
all alternatives, and the ranked lists of all participants are aggregated using the Borda rule
to generate the final ranked list.

Algorithm Explanation and Human Decision Support

Finally, the ranked recommendations must be explained to stakeholders to communicate
how their participation has influenced the final policy and supported operational decision-
making. Communicating the impact of participation can reward people for their effort and
encourage them to further monitor how the policy unfolds over time. While the importance
of communication is highlighted in the literature, it has been recognized as one of the
components of human governance least likely to be enacted [111]. Algorithmic governance
offers new opportunities in this regard because the aggregation of individual models and
resulting policy operations are documented. A new challenge is how to explain collectively-
built algorithmic decisions, an area in which little prior research has been done. We address
this challenge by displaying each recommended option’s Borda score, its average ranking
per stakeholder group, and its “standout” features in order to support the administrators
enacting the algorithmic policies.
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4.2.4 Case study: Matching algorithm for donation allocation
We applied the WeBuildAI framework in the context of on-demand donation matching in
collaboration with 412 Food Rescue [1].

Goals of Participation in Matching Algorithm Design

Organizational Context: 412 Food Rescue is a non-profit that provides a “food res-
cue” service: donor organizations such as grocery and retail stores with extra expiring
food call 412 Food Rescue, and then 412 Food Rescue matches the incoming donations to
non-profit recipient organizations. Once the matching decision is made, they post this “res-
cue” on their app so that volunteers can sign up to transport the donations to the recipient
organizations. The service’s success depends on the participation of all stakeholders–a con-
tinuous stream of donations, recipient organizations’ willingness to accept the donations,
volunteers’ efforts to transport donations, and 412 Food Rescue’s operational support and
monitoring. The organization has grown successfully for the past few years. They have
rescued over three million pounds of food and are expanding their model into food rescue
organizations in four other cities, including San Francisco and Philadelphia. The donation
allocation policy is at the core of their service operation; while each individual decision
may seem inconsequential, over time, the accumulated decisions impact the welfare of the
recipients, the type of work that volunteers can sign up for, and the carbon footprint of
the rescues.

412 Food Rescue wanted to introduce an algorithmic donation allocation system for
two reasons. First, they currently have a few employees per day, known as dispatchers,
manually allocating all donations that come in that day. On a busy day, each dispatcher
has to manage over 100 donations, which is too many, so the organization wants to reduce
dispatcher workload. Second, 412 Food Rescue wishes to improve equity in their donation
distribution. The current donation distribution is quite skewed, with 20% of recipient
organizations receiving 70% of donations (Figure 4.6a), because allocation decisions are
often made for convenience.

Equity-Efficiency Tradeoff and Stakeholder Motivation: In designing this match-
ing algorithm, we used participation to determine the tradeoff between equity and efficiency.
In this context, we define “equity” as giving donations to recipients with greater need and
“efficiency” in terms of the distance each donation travels from donor to recipient. Bal-
ancing equity and efficiency is challenging as this design choice has different impacts on
different stakeholders. For example, if the matching algorithm prioritizes efficiency and
gives donations to recipients closest to donors, volunteers will benefit from shorter driving
times, but the donation distribution may be skewed and recipients in wealthier areas may
receive more donations, as donors are often located in wealthier areas. On the other hand,
if the matching algorithm prioritizes equity, recipients with greater need may receive more
donations, but this may increase the distance that volunteers need to drive, as well as
the effort 412 Food Rescue must spend in recruiting the volunteers. Finding a collective
solution to this problem is critical to the success of the service, because all stakeholders
will be more motivated to continue participating in the service if they feel their needs are
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respected.

Stakeholder Participants

Volunteer-Based Participation: We used our framework to build the matching algo-
rithm collectively with 412 Food Rescue’s stakeholders. One of the important consider-
ations in participatory governance is determining who participates. A widely-used and
accepted method is volunteer-based participation [111], which accepts input from people
who will be governed by the system and who choose to participate. Many democratic
decisions, including elections, participatory forums, and civic engagement, are volunteer-
based. In our application, we used a volunteer-based method with stakeholders directly
influenced by the governing algorithm. As our first evaluation of the framework, we chose
to work with a small focus group of stakeholders who volunteered to participate in order
to get in-depth feedback.

Participation Recruiting and Information: Our research took place over a period
of one year. We solicited stakeholder participation to determine how the matching algo-
rithm should weight the factors used to recommend recipient organizations. The stake-
holders included donor organizations, recipient organizations, volunteers, and 412 Food
Rescue staff. We included the governing entity as a stakeholder because they have a holis-
tic viewpoint on logistics: how the donation is collected, handled and delivered to the
recipient organization. The mission of the organization is to reduce food waste and serve
food-insecure populations, which overlaps with other stakeholders’ goals.

The entire staff that oversees donation matching at the organization participated in
the study. Recipients, volunteers, and donors were recruited through an email that 412
Food Rescue staff sent out to their contact list.5 We replied to inquiry emails in the order
in which they arrived, and collected information about respondents’ experience with 412
Food Rescue and organizational characteristics in order to ensure diversity. We limited
the number of participants from each stakeholder group to 5–8 people, which resulted in
an initial group of 23 participants (including V4a and V4b, who participated together)
with varying organizational involvement (Table 4.1). Fifteen were female (nine males)
and everyone, except one Asian, was white.6 Sixteen participants answered our optional
demographic survey. Two attended at least some college and 14 had attained at least a
bachelor’s degree. The average age was 48 (Median=50 (SD=16.4); Min-Max:30-70). The

5We did not include recipient organizations’ clients for several reasons. First, we asked about service
operation in this study. Our previous interviews with clients [158] suggest that recipient organizations
do not display where their food comes from at the time of distribution. Thus clients generally have no
experience with or knowledge of the food rescue process and lack the hands-on experience required to
consider disparate impacts on different stakeholders. Because of this, we represented clients’ interests via
feedback from the staff of recipient organizations who know and serve client populations. Additionally,
412 Food Rescue did not have recipient client contact information for privacy reasons. In the discussion
section, we explain how we will seek out a way to expand participation to include groups, including clients,
that are not directly involved in the food rescue process.

6Our participants were mostly white, which reflects the population of volunteers and non-profit staff
in Pittsburgh. This is the result of a volunteer-based method [111]. In our next step, we will implement
targeted recruiting of minority populations.
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average household income was $65,700 (Median=$62,500 (SD=$39,560); Min-Max:$25,000-
$175,000).

Research Process Overview

Our research goal was threefold: we sought to apply the framework to build a matching
algorithm, evaluate the usability and efficacy of the framework, and understand the effects
of participation. To this end, we used our framework to allow participants to build their own
individual models. We conducted think-alouds throughout the data collection procedure
to understand participants’ thinking processes. We also showed participants the method
and results from each step of our framework—for example, how we aggregate individual
models and explain the decisions—and conducted interviews to study their understanding
and responses to the method. Once participants completed all stages of the framework, we
conducted interviews to understand participants’ attitudes toward the resulting algorithm
and the governing organization, 412 Food Rescue.

Overall, our research resulted in 4–5 individual sessions for each participant and a
workshop over the course of a year. Because of the extended nature of the community
engagement, 15 participants completed all the individual study sessions, while 8 could par-
ticipate only in the first couple of sessions due to changes in their schedules or jobs (Table
4.1). Because participants provided research data through think-alouds and interviews in
addition to their input for the matching algorithm, we offered them $10 per hour.

Researcher Stance

Our research team included people with diverse backgrounds in human-computer inter-
action, artificial intelligence, theoretical computer science, information systems, decision
science, ethics and design, affiliated with Carnegie Mellon University and University of
Texas at Austin. We had a constructive design stance and sought to bring about posi-
tive change through the creation of artifacts or systems. Two researchers have conducted
research with 412 Food Rescue in the past and one researcher regularly volunteered in
homeless shelters and food pantries in Pittsburgh. This relationship and familiarity with
public assistance work helped us gain access to the research site.

Analysis

We report how we analyzed qualitative data from all sessions in this section to avoid rep-
etition. All interviews were audio-recorded and transcribed, and researchers took notes
throughout the think-alouds and workshop. The data was analyzed following a qualitative
data analysis method [185; 82]. Two researchers read all of the notes and interview tran-
scripts and conducted open coding of the transcripts at the sentence or paragraph level
on Dedoose.7 The rest of the research team met every week to discuss emerging themes
and organize them into higher levels. As we progressed in our analysis, we drew from
the literature on participatory governance [111] and procedural fairness [160; 159] to see

7https://www.dedoose.com

109



whether the themes that we observed were consistent with or different from previous work.
After all sessions were completed, we revisited the themes from each session and further
consolidated them into the final themes we present in this paper. In Section 4.2.8, we
report the number of participants associated with different themes in order to note the rel-
ative frequency of different opinions and behaviors in our study. However, as a qualitative
study with a small sample size, we note that this should not be taken as an exact weight
of whether one opinion is more significant or representative.

4.2.5 Individual Belief Model Building
The first step in building individual belief models is to determine which factors (or features)
are relevant and important; we derived these factors from the authors’ previous study [158]
that examined the 412 Food Rescue stakeholders’ concepts of fair donation allocation. A
factor that was mentioned most frequently is the distance between donors and recipient
organizations. Participants mentioned various other factors that represent the needs of
recipient organizations, such as the income level of recipient clients, the food access levels
of their neighborhoods, and the size of the recipient organization. Additional factors that
were also deemed important were the distributional capabilities of recipient organizations,
i.e., how fast they can distribute to their clients, and the temporal regularity in incoming
donations. From the factors that participants mentioned, we selected the ones that came up
most frequently and had reliable data sources.8 The selected factors capture transportation
efficiency, recipient needs, and temporal allocation patterns (Table 4.2). For example,
poverty rate is an indicator of recipients’ needs; distance between recipients and donors
is a metric of efficiency; and when each recipient last received a donation is a measure of
allocation patterns over time.

We conducted three sessions to develop a model to represent each individual in the
final algorithm. Participants first completed pairwise comparisons (Figure 4.3a, Session
1) to train algorithms using machine learning. Participants who wanted to elaborate on
their models participated in the explicit rule specification session (Figure 4.3b, Session 2).
If their belief changed after Session 2, they provided a new set of pairwise comparisons to
retrain the algorithm. Participants were later asked to choose one of the two models that
represented their beliefs more accurately (Figure 4.4, Session 3).

Machine Learning Model (Session 1)

Pairwise Comparison Scenarios: We developed a web application to generate two
potential recipients at random according to the factors (Table 4.2), and asked people
to choose which recipient should receive the donation (Figure 4.3a).9 All participants

8We did not use organization types (e.g., shelters and food pantries) or addresses because these aspects
may communicate the racial, gender, or age characteristics of recipients and elicit biased answers based on
inaccurate assumptions or discrimination.

9Improbable combinations of income and poverty (e.g., very high income coupled with very high
poverty) were excluded according to the census data. All factors were explained in a separate page that
participants could refer to.
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completed a one-hour, in-person session where they answered 40-50 randomly generated
questions. They were asked to think aloud as they made their decisions, and sessions
concluded with a short, semi-structured interview that asked them for feedback about their
thought process and their views of algorithms in general. During the research process, the
link to the web application was sent to the participants who wished to update their models
on their own. In fact, 13 participants chose to answer an additional 50–100 questions after
Session 2 to retrain their machine learning models.

Learning Individual Models:
In order to learn individual models, we utilize random utility models, which are com-

monly used in social choice settings to capture choices between discrete objects [168]. This
fits our setting, in which participants evaluate pairwise comparisons between potential
recipients. In order to apply random utility models to our setting, we use the Thurstone-
Mosteller (TM) model [219; 176], a canonical random utility model from the literature. In
this model, the distribution of each alternative’s observed utility is drawn from a Normal
distribution centered around a mode utility. Furthermore, as in work by Noothigattu et
al. [181], we assume that each participant’s mode utility for every potential match is a
linear function of the match’s feature vector. Therefore, for each participant i, we learn a
single vector βi such that the mode utility of each potential match x is µi(x) = βTi x. We
then learn the relevant βi vectors via standard gradient descent techniques using Normal
loss.10 We also experimented with more complicated techniques for learning utility models,
including neural networks, SVMs, and decision trees, but linear regression yielded the best
accuracy and is the simplest to explain.

Explicit Rule Model (Session 2)

To allow participants to explicitly specify matching rules, we asked them to create a scoring
model using the same factors shown in Table 4.2. We used scoring models because they
capture the “balancing” of factors that people identified when answering the pairwise
questions.11 We asked participants to create rules to score potential recipients so that
recipients with the highest scores would be recommended. Participants assigned values to
different features using printed-out factors and notes (Figure 4.3b). We did not restrict the
range of scores but used 0-30 in the examples in our instruction. Once participants created
their models, they tested how their scoring rule worked with 3-5 pairwise comparisons
generated from our web application, and adjusted their models in response. At the end
of the session, we conducted a semi-structured interview in which we asked participants
to explain the reasoning behind their scoring rules, and describe their overall experience.
The sessions took about one hour. Two participants wanted to further adjust their models
and scheduled 30 minute follow-up sessions to communicate their changes.

10For participants who consider donation type, we learn two machine learning models, one for common
donations and one for uncommon donations.

11We also experimented with manually-created decision trees, but the models quickly became pro-
hibitively convoluted.

111



Figure 4.3: Two methods of individual model building were used in our study: (a) a
machine learning model that participants trained through pairwise comparisons, and (b)
an explicit rule model that participants specified by assigning scores to each factor involved
in algorithmic decision-making.

Machine Learning versus Explicit-Rule Models (Session 3)

We asked participants to compare and choose between their machine learning and explicit-
rule models, selecting one that best represented their beliefs. To evaluate the performance
of the models on fresh data that was not used to train the algorithm, we asked participants
to answer a new set of 50 pairwise comparisons12 before the study session and used them
to test how well each model predicted the participants’ answers.

To explain the models, we represented them both in graph form that showed the as-
signed scores along with the input range for each feature (Figure 4.4). In order to prevent
any potential bias in favor of a particular method, we anonymized the models (“Model X”
or “Model Y”), normalized the two models’ parameters (beta values) and scoring rubric
using the maximum assigned score in each model, and introduced both models as objects
of their creation. In a 60-90 minute session, a researcher walked through the model graphs
with the participants, showed the prediction agreement scores between the two models,
and presented all pairwise comparison cases in which the two models disagreed with each
other or disagreed with participants’ choices. For each case, the researcher illustrated on
paper how the two models assigned scores to each alternative.

At the completion of these three activities, participants were asked to choose which
model they felt best represented their thinking. The models were only identified after their
choice was made. A semi-structured interview was conducted at the end asking about their
experience and reasons for their final model choice. We also analyzed individual models
in terms of the beta values assigned to each factor, or the highest score assigned to each
factor. As all the feature inputs were normalized (from 0 to 1), we used the strength of
the beta values to rank the importance of factors for each individual.

12We used the same set of comparisons for all participants for consistency.
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Figure 4.4: Model explanations. Both machine learning and explicit-rule models were
represented by graphs that assigned scores according to the varying levels of input features.

Final Individual Models

In total, we trained 23 machine learning models13 and obtained 15 explicit-rule models.
Of the 15 participants who completed all studies and were asked to choose models that
better represented their belief, 10 of them chose the machine learning models trained on
their pairwise comparisons; the other five chose the models that they explicitly specified.

The machine learning models had higher overall agreement with participant’s survey
answers than the explicit rule models when tested on 50 new pairwise comparisons provided
by each participant, as seen in Table 4.3. However, as our sample size is small, we do not
aim to make general claims on which model has better accuracy. In addition, for many,
the machine learning model was the one they had built last and therefore reflected their
current thinking at the time of comparison; we further elaborate on this in Section 8.1. We
also note that we did not observe any differences in participants’ perceived accountability
in the creation of these models. Both models took an equal amount of participants’ time
and attention, and participants told us that they felt responsible when making choices and
assigning scores.

4.2.6 Collective aggregation

Our framework uses a voting method to aggregate individuals’ beliefs. When presented
with a new donation decision, each individual’s model generates a complete ranking of
all possible recipient organizations. The Borda rule aggregates these rankings to derive a
consensus ranking and suggest recommendations. We conducted a workshop and interviews
to understand participants’ perceptions of this method.

13We note that there were 8 participants who participated in the first stage of the study but not
subsequent stages (Table 4.1). The average cross-validation accuracy of their linear models was quite high,
at 0.819.
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Method (Workshop)

In an early stage of our research, we conducted a workshop in order to gauge participants’
perceptions of the Borda aggregation method and determine the method’s appropriateness
from a social perspective. Five participants (Table 4.1) who had built their individual mod-
els at that time attended the one-hour workshop. All stakeholder groups were represented.
We prepared a handout that showed individuals’ and stakeholders’ average models at the
time, and a diagram that explained how the Borda rule worked. The description of the
Borda rule given to participants was: “Individuals rank options according to belief. Each
option receives a number of points determined by its ranking, with higher-ranked options
receiving more points. The points are added up, and the winner is whichever option has
the greatest number of points.” The words “democratic” or “equal” were not used to avoid
potential biases. We facilitated a discussion of how individuals reacted to the similarities
and differences between their model and other groups’ models, and had individuals discuss
whether all the stakeholders’ opinions should be weighted equally or differently. For par-
ticipants who joined our research after this workshop, we asked the same questions about
the Borda rule and stakeholder opinion weight in the interview in Session 4.

Varying Stakeholders’ Voting Influence

All participants but one believed that the weight given to different stakeholders in the
final algorithm should depend on their roles. On average, participants assigned 46% of the
voting power to 412 Food Rescue, 24% to recipient organizations, 19% to volunteers, and
11% to donors.14 Nearly all participants weighted 412 Food Rescue staff as the highest
group (n=13 out of 15), as people recognized that they manage the operation and have the
most knowledge of the whole system. Donors were weighted the least (or tied for least) by
nearly all participants (n=14 out of 15) including the donors themselves, as they are not
involved in the process once the food leaves their doors. Recipients and volunteers were
weighted similarly because participants recognized that recipient opinions are important
to the acceptance of donations, and volunteer drivers have valuable experience interacting
with both donors and recipients. In order to translate these weights to Borda aggregation,
we allocated each stakeholder group a total number of votes that was commensurate with
their weight, and divided up the votes evenly within each group. For example, 412 Food
Rescue employees are assigned 46% of the weight; this translates to allocating them 46
votes out of 100 total as a group, where each employee’s vote is “replicated” 46/3 times
because three 412 Food Rescue employees participated in our study.

4.2.7 Explanation and decision support
Once recommendations are generated, the decision support interface presents the top twelve
organizations, accompanied by explanations, to support the human decision-maker who
matches incoming donations to recipients. We used the explanations to demonstrate to par-
ticipants how their opinions had been incorporated into the algorithm’s decision-making.

14This is based on the input from participants that participated in the workshop and/or Session 4.
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Figure 4.5: The decision support tool explains algorithmic recommendations, including the
nature of stakeholder participation, stakeholder voting results, and characteristics of each
recommendation. The interface highlights the features of the recommended option that
led to its selection (marked by A), the Borda scores given to the recommended options in
relation to the maximum possible score (marked by B), and how each option was ranked by
stakeholder groups (marked by C). All recipient information and locations are fabricated
for the purpose of anonymization.

We also explained average stakeholder models to participants so that they could learn
about others’ models.

Design of Decision-Support Tool

The interface of our decision support tool is shown in Figure 4.5. The tool was designed
with other considerations, such as choice architecture [217], but they are beyond the scope
of this paper. We focus instead on the explanation of decisions made by collectively-built
algorithms.
• Decision Outcome Explanation (marked by A in Figure 4.5): We used an “input
influence” style explanation [33]. Features are highlighted in yellow when an or-
ganization is in the top 10% of recipient organizations ranked by that factor. For
example, poverty rate is highlighted because the selected organization is in the top
10% of recipients when ranked from highest to lowest poverty rate.

• Voting Score (marked by B in Figure 4.5): The Borda score for each organization is
displayed. It shows this option’s score in relation to the maximum possible score that
an option could receive (i.e., scores when every individual model picks this option
as its first choice). This voting score can indicate the degree of consensus among
participants.

• Stakeholder Rankings (marked by C in Figure 4.5): Stakeholder rankings show how
each stakeholder group ranked the given organization on average. It is a visual re-
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minder that all stakeholder groups are represented in the final algorithm and gives the
decision-maker additional information about the average opinion of each stakeholder
group.

We implemented the interface by integrating it into a customer relations management
system currently in use at 412 Food Rescue. Algorithms were coded in Ruby on Rails,
the front-end interface used Javascript and Bootstrap, and the database was built with
Postgres. The distances and travel times between donors and recipients were pre-computed
using the Google Maps API and Python. We used donor and recipient information from the
past five months of donation records in the database. On average, the algorithm produced
recommendations for each donation in five seconds.

Method (Session 4)

We conducted a one-hour study with each participant to understand how the decision
support and explanation influenced their perceptions of the matching algorithms and their
attitude toward 412 Food Rescue. In order to generate summary beta vectors for each
stakeholder group, we normalized the beta vectors for all stakeholders in the group and
took the pointwise average. This yields a summary beta vector where the value of each
feature roughly reflects the average weight that stakeholders in the same group give to that
feature.

We first showed participants the graphs of their individual models and graphs of the
averaged models for each stakeholder group, and asked participants to examine similarities
and differences among these models. We next had participants interact with the decision
support tool run on a researcher’s laptop. The researcher walked participants through the
interface, explaining the information and recommendations, and asked them to review the
recommendations and pick one to receive the donation. After each donation, participants
were asked their opinions of the recommendations, the extent to which they could see
their models reflected in the results, and their general experience. We concluded with a
30 minute semi-structured interview in which we asked how participation influenced their
attitude toward algorithms and 412 Food Rescue. We also asked participants to reflect on
the overall process of giving feedback throughout our studies.

4.2.8 Findings: the impact of participatory algorithm design
In the previous sections, we described how stakeholders used the WeBuildAI framework to
build the matching algorithm for 412 Food Rescue over multiple sessions and a workshop.
We now report the qualitative findings from observations, think-alouds, and interviews to
describe the impacts of the WeBuildAI framework and participation.

Participants’ Experience with the WeBuildAI Framework

Overall, the individual belief-elicitation step of the framework—using both machine learn-
ing and explicit rule specification methods and visualizing the learned models—successfully
enabled participants to build an individual model that represented their beliefs on how the

116



algorithm should make a matching decision. Participants perceived the automatic aggre-
gation method based on the Borda rule as a nuanced, democratic approach; the decision
support tool and explanation allowed them to understand how algorithmic recommen-
dations were made. Effects of Individual Model Building Methods on Elicited
Beliefs:

Participants told us that performing pairwise comparisons and subsequently specifying
explicit rules helped them develop and consolidate their beliefs into a set of principles
that they could apply consistently in different decision contexts. Answering pairwise com-
parison questions helped familiarize participants with the problem setting; however, some
participants commented that they felt like they were applying internal rules inconsistently,
particularly in their first few questions. Explicitly specifying scores for each feature helped
them reconcile their conflicting beliefs. For example, V1 told us that she originally used
organization size inconsistently, sometime favoring smaller organizations or bigger organi-
zations, but when creating a rule, she determined that organization size should not matter.
When she answered the new set of pairwise comparison questions to retrain the machine
learning model, she further evaluated whether she could consistently apply her belief, i.e.,
that the organization size does not matter, to different contexts and whether she encoun-
tered any new situations in which she would need to further refine her rule.

In choosing the model to use in the final matching algorithm, the most important factor
for all participants, except one, was how closely each model represented their beliefs. In
Session 3, 10 out of 15 participants chose their machine learning models. For many, this
was the model they had built last and therefore that reflected their thinking at the time of
comparison. Others felt that the machine learning model had more nuance in the way dif-
ferent factors were weighted, and some valued the linearity of the model compared to their
manual rules, which were often step-wise functions. Explicit-rule models were chosen by
five participants. For four of these participants, their explicit-rule model did a better job of
weighing all of the factors that mattered to them and screening off unimportant factors. In
other words, machine learning models learned rules that they disagreed with—for example,
a machine learning model may give linearly increasing weight to larger organization sizes.

On the contrary, for one participant, the procedural difference in the two methods was
why he chose the explicit-rule model. R2 trusted the reflective process of specifying a
model and did not trust his pairwise answers nor the machine learning model built from
them, even though the accuracy of the machine learning model was 90%, compared to 76%
for the model that he created. He believed that determining policy should be based on
defining principles, rather than case-by-case decisions; for this reason, he wanted to build
a rule and follow the outcomes from the rule.

An unexpected finding was that the methods’ procedural differences seemed to influence
which aspects participants focused on at the time of decision-making and, in some cases, the
rules that participants made. Creating a scoring model from a top-down approach seemed
to evoke a higher level of construal [220], eliciting an abstract level of thinking that was
absent when answering pairwise comparisons. Many participants stated answering pairwise
comparisons felt emotional because it made them think of real-world organizations. For
example, V1 said that developing explicit scoring rules felt “robotic”; R3 said that he
felt that creating the scoring model was easier than the pairwise comparisons because
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it took the emotion out of the decision-making process. For an administrative decision-
maker, F3, answering pairwise questions made her focus on day-to-day operational issues
like travel time because she related the questions to real-world decision-making. This
contrasted with her explicit-rule model, which favored equity-related factors like income
and poverty. When comparing the models in Session 3, she told us that she focused on
idealistic matching that prioritized equity when she was specifying scoring rules. In the
end, she chose her machine learning model, stating that while her explicit-rule model was
appealing as a way of pushing herself beyond her operational thinking, she deemed travel
time and last donation date most important in practice.

Responses to the Borda-Based Aggregation: Participants appreciated that the
Borda method gave every recipient organization a score (n=5) and that it embodied demo-
cratic values (n=4).15 In the workshop, F1 felt that giving every organization a score
captured the subtleties of her thinking better than other methods, such as considering
only the top-ranked organization: “I appreciate the adding up [of] scores. Recognize the
subtleties.” V3 also stated that being able to rank all recipients is “more true to...[being]
able to express your beliefs.” R1 approved of the method, saying, “It’s very democratic,”
relating it to a form of human governance. Two other individuals, D2 and D4, also related
the method to voting systems in the US. D4 recognized that some US cities in California
recently used a similar voting method for their mayoral election. It is worthwhile to note
that, when we asked about potential alternatives, participants expressed difficulty thinking
of them (n=3). For example, R2 said, “I guess I don’t know what the alternative way to
do it would be, so I’m okay with it.”

Responses to the Decision Support Interface: Participants were almost univer-
sally appreciative of the fact that the system keeps a human dispatcher in the loop to make
the final decision rather than automating the decision entirely. While some participants
(F1 and R5) acknowledged that full automation could be more efficient than a human-in-
the-loop process, most participants expressed that having a human dispatcher overseeing
the process was important as they might have knowledge of additional decision factors
outside the scope of the algorithm. F3 expressed that the combination of human and com-
puter decision-making elements was “magical” in that it combined the objective data of
an algorithm with human elements “that the computer will never know... like so and so at
this place loves peaches and they make peach pies.” Others (e.g., R2) expressed that the
algorithm could enable human decision-making in a way that reduces bias or favoritism on
the part of the dispatcher, thereby making the decisions of the organization more fair and
objective.

Participants were interested in the stakeholder rankings and asked to see more infor-
mation. Given that the top twelve results often did not show the first choice for any
stakeholder group, several participants wanted to see the first choice for each stakeholder
group in addition to the voting aggregation scale (n=7). Participants appreciated that the
stakeholder rankings showed opinions that might differ from those of 412 Food Rescue dis-
patchers (n=4). V6, who was concerned that 412 Food Rescue staff did not heavily weight

15We note that the description of Borda given to participants described a scoring process and did not
include words such as “voting” and “democracy” as reported in Section 6.1.
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factors that were important to her, was pleased that the voter preference scale illustrated
the difference between her stakeholder group’s average model and 412 Food Rescue’s av-
erage model. She hoped that the staff would see that their thinking differed from other
stakeholders and perhaps reconsider their decisions in order to be more inclusive of other
groups’ opinions. 412 Food Rescue staff were interested in the information as well and
F3 mentioned that, while she would not solely base her decisions on stakeholder ranking
information, she might use it as a tiebreaker between two similar organizations.

Participation and Perceptions of Algorithmic Governance

In a manner consistent with theories on procedural justice [160; 159] and participatory
policy-making [111], participants believed that having control over the algorithm through
participatory algorithm design made the resulting algorithm fair, and this process improved
their attitudes toward the organization as a whole.

Procedural Fairness in Participatory Algorithm Design: All participants men-
tioned that the fact that the organization was putting a priority on fairness, being open
to new ideas, and including multiple stakeholder groups improved their perceived fairness
and trust of both the matching algorithm and the organization itself. For example, one
participant said, “These are everybody’s brain power who were deemed to be important
in this decision... it should be the most fair that you could get." Some expressed that
participation expanded the algorithm’s assumptions beyond those of the organization and
developers (n=6). V6 noted that it is easy for organizations to remain isolated in their
own viewpoints and that building an algorithm based on collective knowledge was more
trustworthy to her than “412 [Food Rescue] in a closed bubble coming up with the algorithm
for themselves.” V3 echoed this sentiment, stating that participation was “certainly more
fair than somebody sitting at a desk trying to figure it out on their own.” At 412 Food
Rescue, F2 stated that “getting input from everyone involved is important” to challenge
organizational assumptions and increase the effectiveness of their work. Other participants
noted that all stakeholders have limited viewpoints that can be overcome with collective
participation (n=3). R1 felt the algorithm would be fair only “if you took the average of
everybody. ...[My model] is only my experience. And I view my experience differently than
the next place down the road. And my experience is subjective.”

Empathetic Stance toward the Governing Organization: Participation in algo-
rithm design led many participants to increase the degree to which they viewed 412 Food
Rescue positively and develop a more empathetic stance toward the organization (n=8).
For some participants, this happened because participation exposed the difficulty of mak-
ing donation matching decisions and made them realize that there might not be a perfect
solution, which in turn made them thankful for the work of the organization (n=4). For
example, after experiencing the burden of making the matching decision and seeing how
similar the recommended recipients can be in the interface, D2 and V3 both expressed
gratitude for 412 Food Rescue. Participants also expressed appreciation for the organiza-
tion’s concern for fairness and the effort needed to continually make such decisions. This
shift in perception is particularly important because it can improve people’s tolerance for
and understanding of tradeoffs in governance decisions.
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The participatory algorithm design also increased some participants’ motivation to
engage with the organization (n=4). Many participants appreciated that their opinions
were valued by the organization enough to be considered in the algorithm building process
and expressed that they may increase their involvement with the organization in the future
either through increased volunteer work (V3 and V6) or donation acceptance (R2).

Reactions to Other Stakeholders’ Models: While sharing other stakeholders’ mod-
els is not a requirement of our framework, in this work, we showed the models to partici-
pants in order to get feedback on the fully transparent implementation of our framework.16

We report how participants responded to similarities and differences in stakeholder models.
In individual models, all participants considered efficiency and equity factors. For

example, all stakeholder group models valued distance as one of the top three factors and
favored organizations that were deemed to be in greater need. Reviewing the models,
participants expressed feeling assured that they shared these guiding principles with other
participants (n=8). For example, all prioritized higher as opposed to lower poverty, and
lower as opposed to higher food access. R7 was pleased to note that all participants were
“on the same page” and concluded that “no matter what group or individuals we’re feeding,
[we] have the same regard for the food and the individuals that we’re serving.”

A main source of disagreement among models was how the factors were balanced.
412 Food Rescue Staff tended to weight travel time and last donation significantly more
than the other factors. Donors, recipients, and volunteers tended to give all factors other
than organization size relatively equal importance. Participants also had divided views on
organization size, arguing for larger or smaller organizations, and did not prioritize this
factor compared to others. In responses, participants acknowledged these differences and
sought to make sense of others’ assumptions. For example, R1, referencing how important
travel time was to her, mentioned that hers is more of a “business model” whereas others
were more altruistic, more heavily weighting factors like income and food access. Some
participants were even pleased to see differences in the models (n=3). R3 was pleased that
other participants were considering unique viewpoints. Likewise V4 and R1 both stated
that it was natural to expect differences between stakeholders, as everyone has unique
experiences, and that “this is the point of democracy” (V4).

However, one participant, V6, was concerned that 412 Food Rescue staff did not weight
heavily her most important factors such as food access, income, and poverty. While she said
that the algorithm was “fair” as it was collectively created, her trust in the organization
was lowered as a result, because she inferred that they believe in different principles. She
also raised a concern about other participants’ input qualities. It took her significant effort
to develop a model that accurately represented her views, and she could not judge whether
other participants were “thoughtful enough to really put the effort into their models and
capture their own emotions with it.” She concluded that she still trusted the algorithm,
but appreciated having human oversight of the final decision.

16Participants also told us that they were curious about other stakeholders’ beliefs.
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Participation and Awareness of Algorithms and Organizational Decision-Making

Our findings suggest that participating in algorithm design improved algorithmic awareness
at an individual level, as well as awareness of inconsistencies in decision-making practices
at an organizational level.

Increased Algorithmic Awareness: At an individual level, participating in algo-
rithm design changed participants’ attitudes toward algorithms.17 They felt they better
understood what an algorithm was and had more appreciation for the kinds of decisions
that algorithms could make. For some participants, seeing how the two models predicted
their answers in our study session made them rethink their initial skepticism and begin to
trust the algorithm. V1, who in earlier studies expressed doubt that an algorithm could
be of any use in such a complex decision space, stated at the end of Session 3 that he
now “wholeheartedly” trusted the algorithm, a change brought about by seeing the work
that went into developing his models and how they performed. F3 expressed that before
participating, “the process of building an algorithm seemed horrible” given the complexities
of allocation decisions. Seeing how the process of building the algorithm was broken down
“into steps ... and just taking each one at a time” made the construction of an algorithm
seem much more attainable. For D2, interacting with the researchers who were building
the algorithm gave him an awareness of the role human developers play in determining
algorithms. He said that, after this process, his judgment of an algorithm’s fairness in
other algorithmic systems would be based on “how it was developed and who’s behind it
and programmed [it] and how it’s influenced.” D2 felt that the final algorithm for 412 Food
Rescue was fair because he came to know and trust the researchers over the course of his
participation.

Improved Awareness of Inconsistency in Organizational Decision-Making:
The process of eliciting individual models allowed participants from the governing orga-
nization to be more aware of internal inconsistencies in decision-making within their or-
ganization, and provided an opportunity for them to revisit their own assumptions about
other stakeholders. Guided only by the broad goals of the organization’s mission, the
employees previously made matching decisions according to their own criteria and inter-
pretations of that mission. By externalizing their decision-processes into computational
belief models, the employees were able to formalize their own decision-making processes,
and see how their models meshed with or differed from other employees’ processes, which
brought hidden assumptions to the surface. For example, after seeing other employees’
models, they discovered that some employees prioritized mid-sized organizations whereas
others prioritized larger organizations, and employees differed in the ways they weighted
poverty, income, and food access.

Moreover, seeing other stakeholders’ models allowed employees to compare their as-
sumptions about other stakeholders with the models actually made by the stakeholders.
One common assumption held by the staff was that volunteers would prioritize travel time,
but our volunteer stakeholders had diverse models, varying from one that predominantly
weighted travel time to one that gave equal weights to travel time and recipient organi-
zations’ needs. When F2 saw that volunteers did not weight travel time as highly as she

17None of our participants had a background in programming.
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had thought, she questioned her evaluation of travel time: “Maybe [volunteers] don’t care
as much. I think you end up hearing from the people who care... It’s like that saying with
customer service: Only complain when something’s happened.” This reflection opens up
the possibility that the organization could seek to appeal to diverse volunteer motivations
and tailor recruiting methods accordingly.

4.2.9 Evaluation of Algorithmic Outcomes
Our qualitative findings in the previous section show the procedural effect of participatory
algorithm design, but what outcomes do collectively-built algorithms produce? In this
section, we evaluate the algorithm’s performance on various metrics.

Evaluation Goal

In the literature on policy-related algorithmic systems, the status quo—current human
decision-making practice—is deemed to be an appropriate baseline for comparison to mea-
sure the algorithmic tool’s efficacy; thus, we compare our algorithm with current human
decision-making at 412 Food Rescue. One major reason that the organization wanted to
introduce the algorithmic allocation system was to improve equity in donation allocation
made by organizational staff and distribute the donations to a larger set of recipients.
Indeed, the skewness of their current distribution of donations (i.e., 20% of the organiza-
tions receiving 70% of the donations (Figure 4.6a)) is not the result of conscious strategy,
but rather the result of, for example, the memory bias of human decision-makers selecting
recipients that they have given donations to recently.

Dataset

The final matching algorithm included 23 individual models (Section 4.2.5) that generated
complete rankings of possible recipients for each incoming donation; the rankings were then
aggregated using the Borda method with the stakeholder weights provided in Section 6.
We ran this collectively-built algorithm on historical allocation data from 412 Food Rescue
containing a total of 1,760 donations from 169 donors over the course of five months
(March–August 2018).18 There were 380 eligible recipient organizations in the database,
and 277 of those received donations in the timeframe we considered.19 We compared
our algorithm (AA) with two benchmarks: human allocations recorded in historical data
(HA), and a random algorithm that selected a recipient uniformly at random (RA). In
the simulations for our algorithm and the random algorithm, we applied some of the real-
world constraints that influenced human dispatchers’ decisions: for any given donation, we
filtered out recipients that did not handle the donation type or were not open for at least
2 hours between the incoming donation time and 6 pm.

18The original data set had 1,862 donations from 177 donors given to 305 recipient organizations. 412
Food Rescue staff told us that 28 of the recipient organizations were either backup recipient organizations
or became inactive at the time of the evaluation, thus we excluded them from the data.

1946 recipients were added during the course of the five months, and for each day, we filtered out
organizations based on the date when the recipient organizations were added in algorithm testing.
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Figure 4.6: The performance of our algorithm (AA) versus the human allocation (HA) and
a uniformly random allocation (RA), on various metrics.

Results

The results indicate that our algorithm can make donation allocations more equitable
compared to human allocation without hurting efficiency (Figure 4.6).

Number of Donations Allocated to Recipient Organizations: Our algorithm
resulted in a more equal donation distribution compared to human allocation, as illustrated
in Figure 4.6b. As the human donation distribution is skewed, we conducted a Mann-
Whitney U test, a nonparametric test that does not require the data to be normally
distributed, to compare the number of donations allocated to recipient organizations.20

The results show that algorithmic allocation was significantly more equally distributed than
human allocation (AA Median = 4 donations (SD = 3.73), Min-Max:0-20; HA Median =
2 donations (SD = 7.26) Min-Max:0-59, U = 57814, p <.00000001).

We also conducted a Gini coefficient analysis, a standard economic inequality measure
of income [117] or other kinds of resources [12]. A Gini index of zero means perfect equality,
with everyone getting the same number of donations, and an index of 100 means maximum
inequality, with one organization receiving all donations. Algorithmic allocation resulted
in a Gini index of 42, which was lower than the Gini index of 68 in human allocation; this
indicates that the algorithmic allocation was more equal. The random allocation algorithm
achieved a Gini index of 32, which intuitively is close to the minimum possible, subject

20The convention is to report medians as the data is not normally distributed.
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to the constraints. Graphically, as seen in Figure 4.6a, the closer the allocation line is to
the diagonal line y = x, the fairer the allocation. Additionally, the x-axis is ordered from
lowest to highest, so, for instance, our results show that the lowest 50% of all recipient
organizations received about 5% of all donations under a human dispatcher, but received
about 20% of all donations under our algorithm.

Poverty, Income, and Food Access of Recipients: When considering poverty,
income, and food access levels, random allocation can be seen as uniformly sampling from
the poverty, median income, and food access rates of all recipients because these features
are completely recipient-specific. As illustrated in Figure 4.6d, Figure 4.6e, and Figure 4.6f,
the human dispatcher’s decisions closely followed the underlying population distributions,
but our algorithm donated to recipients with higher poverty rates, lower median incomes,
and worse food access. A Mann-Whitney U test shows that the algorithmic allocation gave
donations to areas with higher poverty rates (Median = 21.6%, SD = 14.44%) significantly
more than human allocation (Median = 18.3%, SD = 13.73%, U = 1303400, p < .00000001).
Indeed, Figure 4.6d shows that the human and the random algorithm gave more donations
to areas with 10%-15% poverty rates, whereas our algorithms gave more donations to
areas with about 50% poverty rates. Algorithmic allocation also gave more donations to
recipients with lower income (Median = $40,275, SD = $16,312) than human allocation
did (Median = $42,255, SD = $22,037, U = 1773200, p < .00000001), and the same
pattern is observed to a lesser degree in the recipients’ access to food levels (AA Median:
1.15 (SD=0.42), HA Median: 1.06 (SD=0.44), U=1414400, p =.0002; 0=Normal access,
2=Extremely low access).

Distance and Efficiency: One of the concerns of the organization was that distribut-
ing the donations more equitably could lead to longer and less efficient donation allocation.
Our simulation results suggest that algorithmic allocation did not increase rescue distance,
as illustrated in Figure 4.6c. A Mann-Whitney U test shows that the distance of rescues
under algorithmic allocation, whose median is 5.5 miles, is significantly shorter than under
human allocation, whose median is 6.15 miles (U = 1646900, p = 0.001).

4.2.10 Discussion
In this paper, we envision a future in which people are empowered to build algorithmic
governance mechanisms for their own communities. Our framework, WeBuildAI, represents
one way to realize this goal. We have implemented and evaluated a system of collective
algorithmic decision-making, contributing to the emerging research agenda on algorithmic
fairness and governance by advancing understanding of the effects of participation.

Summary of the Research Questions and Results

We summarize our results in response to the research questions raised in the introduction.
What socio-technical methods will effectively elicit individual and collective beliefs

about policies and translate them into computational algorithms? How should the resulting
algorithms be explained so that participants understand their roles and administrators
understand their decisions?
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• The WeBuildAI framework successfully enabled participants to build models that
they felt confident represented their own decision-making patterns. Participants un-
derstood graphical representations of individual models (Figure 4.4) and felt that
collective aggregation via the Borda rule was fair. The decision support helped
organizational administrators and other stakeholders understand how the final rec-
ommendations were made.

• Our findings suggest the elicitation method design could influence elicited beliefs.
The top-down explicit-rule method may have promoted idealistic beliefs, while the
bottom-up pairwise comparison-based machine learning method may have promoted
realistic beliefs that accounted for emotions and constraints associated with tasks.

How does participation influence participants’ perceptions of and interactions with
algorithmic governance?
• Participation not only resulted in new technology design but also affected partici-
pating individuals and organizations [227; 111]. Our participants reported greater
trust in and perceived fairness of the matching algorithm, the governing institution,
and administrative decisions after participating. Some participants were more moti-
vated to use the services, felt respected and empowered by the governing institution,
and reported a greater empathy for difficulties in the organization’s decision-making
process.

• Our participatory algorithm design, particularly the individual model building method,
increased participants’ algorithmic awareness and literacy. Through the process of
translating their judgments into algorithms, they gained a new understanding and
appreciation of algorithms. The method also revealed inconsistencies in employee
decision-making in the governing organization, and made employees revisit their as-
sumptions of other stakeholders.

How does the resulting collectively-built algorithm perform?
• The comparisons of the collectively-built matching algorithm and human allocation,
using five months of historic data, suggest that the matching algorithm makes do-
nation allocations more even, and gives more donations to recipient organizations in
areas with higher poverty, lower income, and low access to food, without increasing
the transportation distance.

Contributions to Research on Human-Centered Algorithmic Systems

Fairness and Moral Behavior in AI: In response to recent scholarly and journalistic
work that has pointed out the need for “fair” algorithms, much research has been done
to devise computational techniques that guarantee fairness in algorithmic outcomes. Our
work offers a method for building procedurally-fair governing algorithms [159]. Our findings
also offer empirical evidence of the effects of procedural fairness from the perspectives of
both those who are affected by algorithms and those who use algorithms; the framework
not only increased perceived fairness and trust of the algorithm but also influenced the
organization by making the disparate effects of the algorithm more salient in their daily
operation.
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Our work also suggests that ongoing research seeking to understand people’s moral
concepts for algorithms and AI needs to be more cognizant of the design of the stimuli.
(Some studies use more illustrative, vivid descriptions, whereas others use abstract textual
descriptions.) Previous work in experimental moral psychology suggests that the vividness
and realism of stimuli influences participants’ answers. Consistent with this literature, our
work suggests that the top-down versus bottom-up approach of building an algorithm may
elicit different levels of construal, resulting in qualitatively different algorithmic models.
It is important to choose an elicitation method and level of abstraction appropriate for
the task context, and to take a reflective approach so that people can be aware of those
situational effects and build a model in accordance with their beliefs.

Community Engagement in Algorithm Design: Our work contributes to recent
research that calls for community engagement in AI design by offering a method to lever-
age varying stakeholders’ participation directly in the design of the algorithm. By working
with real-world stakeholders with various educational and economic backgrounds to build
an algorithm that operates a service, we demonstrate the feasibility and potential of com-
munity involvement in algorithm design. At the outset of our research, we were unsure
whether participants would feel confident and comfortable enough to express their beliefs
on algorithms, and were concerned they might mistrust AI due to negative representations
in popular media. It has been a rewarding experience to see participants not only express-
ing their beliefs, but also gaining trust in and becoming empowered through algorithmic
systems. AI systems should be designed to facilitate these changes.

Levels of Participation in Algorithmic Governance

In this section, we define levels of participation in algorithmic governance. We discuss the
upsides and downsides of different forms of governance and when collective participation
is appropriate, reflecting on our research.

Closed, Non-Participatory Governance: Institutions can design a governing algo-
rithm without involving stakeholders by drawing from their existing data and assumptions.
This form of governance is cost-effective compared to participatory governance, which re-
quires effort and resources in soliciting and synthesizing participation. Closed governance
is appropriate when there are legitimate metrics for algorithm design. For example, it
might be appropriate if the goal is solely to minimize the volunteers’ travel time. In our
research, the organization was open to stakeholder participation because the staff were
unclear on how to balance efficiency and equity in their daily operations. Additionally,
closed governance may not inherently earn stakeholders’ trust; it works best when the
governing institution has already established trust with those being governed. Otherwise
the algorithmic decisions may be challenged, mistrusted, or not adopted.

Mediated, Indirect Participatory Governance: Another form of governance is
the mediated use of participants’ input, resulting in participants’ indirect influence on fi-
nal algorithmic policy. In this form, stakeholders provide input to inform the designers
and policymakers, who later design and implement the governing algorithms. The input
can be collected through interviews or tools such as individual belief modeling, as in our
framework. This form allows the governing organizations to operate on more accurate
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stakeholder assumptions, and communicating about the stakeholders’ involvement can cul-
tivate trust and increase the chances of adoption by those who are governed. This form is
most appropriate when the organization seeks to use participatory feedback while retaining
full control of the algorithm’s design.

Direct Participatory Governance: In fully participatory algorithmic governance,
stakeholders’ participation is directly implemented in the final algorithm. In this form,
participants feel most empowered and responsible, according to both existing literature
and our work. However, the governing organization has less control over the final algorithm
design. Direct participatory governance is most appropriate in contexts where stakeholders’
trust and motivation to participate in the governing organization are critical, when a high
level of procedural fairness is required, or in organizations and communities that are already
self-governed, such as Reddit.

Extension of the WeBuildAI Framework and Future Work

Our application of the framework to 412 Food Rescue is a case study that implements par-
ticipatory governance in one context. Our framework can be used and extended to support
both mediated and direct participatory governance, and potentially for other algorithmic
governance situations that involve normative design decisions and associated tradeoffs. For
example, our framework could be used to create governing algorithms that allocate public
resources or contribute to smart planning services, placement algorithms in school districts
or online education forums, or hiring recommendation algorithms that balance candidate
merit with equity issues. Extending our framework to new contexts requires addressing
several challenges.

Individual Model Building as a Design Tool: Our findings suggest that the process
of building individual models of algorithmic policy has many benefits. Externalized models
provide a concrete place for starting a conversation about similarities and differences among
the stakeholders or staff members of the organization. Designers and policymakers can use
the models to inform algorithm design, or as an auditing or evaluation metric to assess
the algorithm’s effects from diverse stakeholders’ perspectives. However, our research only
used about 8-10 features that people could understand. Further research will be needed
to apply the individual modeling method to algorithms with hundreds of features or more
complex features. New techniques will be needed to explain and combine the features into
a set that people can process.

Collectively Aggregated Decisions for Direct Participatory Governance: Our
framework can be applied to enable direct participatory governance, particularly in con-
texts in which trust, motivation, and perceived fairness matter, and, in its current imple-
mentation, contexts that do not require instantaneous decisions (within, say, less than a
second).

One challenge, though, is to determine who participates and whether participation
needs to be regulated. Opening up an algorithm to participation means that some partic-
ipants may potentially hold opinions that are not socially acceptable. One way to avoid
this is to limit participation so that democratic control of algorithms is subject to the con-
straints of public reason [195; 31]. This ensures that the behavior of algorithms is justified
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by a universally agreed-upon subset of principles. Future work would need to investigate
how to broaden participation while respecting diversity within public reason, and devise
an ethical way to determine the boundaries of participation.

Another challenge is ensuring the quality of participation, particularly when partici-
pation occurs at scale. Techniques used in crowdsourcing for quality assurance could be
adopted to judge the quality of participation based on the amount of time and number of
iterations people use in creating their models. Anecdotally, in our study, we observed that
the machine learning model’s accuracy was low when participants told us that they were
applying rules inconsistently. Further work needs to investigate whether model accuracy
can be another metric.

When people participate in building systems, those systems become more transparent
to them and they gain a deeper understanding of how the systems work. While this is one
of the main sources of trust, one potential concern is that people will use this knowledge to
game and strategically manipulate the system. To clarify, we do not mean that the potential
manipulation of the systems by the disempowered is a risk. We aim to create benefits for
all those in need, and we believe the system could be at risk if some individual parties skew
the results to maximize their own benefits when all participating individuals have a similar
level of need. Indeed, one of the main topics of research in computational social choice [48]
is the design of voting rules that discourage strategic behavior—situations where voters
report false preferences in order to sway the election towards an outcome that is more
favorable according to their true preferences. However, this is not likely to be an issue for
our framework because each individual does not have direct control over the final algorithm
behavior. One may try to manipulate one’s pairwise comparisons or specify preferences to
obtain a model that might lead to preferred outcomes in very specific situations, but the
same model would play a role in multiple, unpredictable decisions. The relation between
their models and future outcomes is so indirect that it is virtually impossible for individuals
to benefit by behaving strategically. That said, future work would need to evaluate this
question in the real world.

Promoting Representative Participation: One of our goals in designing this par-
ticipatory framework is to empower stakeholders who typically do not have a say in the
algorithms that govern their services, communities, or organizations. By empowering, we
mean providing a method or tool that allows people to influence and control a system that
they themselves use or an institution to which they belong [75; 97]. This shared power
between users and developers, or individuals and governing parties, could increase the self-
efficacy [24] and motivation [75] of stakeholders. Empowerment is one of the traditional
values of HCI research and practice [198].

However, recently scholars have also pointed out that “material empowerment,” or the
technical tool itself [198] is not enough to enable people to make positive effects on social
problems; one needs to devise solutions that also account for legal, social, and economic
constraints [198; 175]. Our framework provides a tool that can enable stakeholders to
participate in algorithm design, but it in and of itself will not necessarily result in equal
empowerment of all stakeholders. Including representation from communities that are
underserved or disadvantaged is a critically important challenge to address in future work.
While many in these communities may technically have the opportunity to participate, they
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may face barriers like time or resource constraints that limit their access to participation.
For our context with 412 Food Rescue, we acknowledge for example that volunteers must
have access to at least two relatively scarce commodities: access to a private vehicle and free
time. Furthermore, recipient organizations often do not have reliable contact information
for their clients, who may not have regular access to email or cell phone service. This
poses a practical barrier to participant recruitment. In addition to technological design
interventions like those we put forward in this paper, social and economic infrastructure
will be necessary to ensure equal participation of all stakeholders.

Limitations

Like any study, our work has limitations that readers should consider. Our study evaluated
people’s experiences with participation, as well as their attitudes toward and perceptions
of the resulting algorithmic systems. As our next step, we will deploy the system in the
field in order to understand long-term effects and behavioral responses. In the deployment,
we will also consider additional evaluation measures for the algorithm, such as stakeholder
satisfaction. Additionally, in developing our framework, we intentionally used a focused
group of participants to get in-depth insights and feedback on our tools and framework.
As we implement our next version, we will examine participation with a larger group of
people, including recipient organizations’ clients, by developing an educational component
and targeted recruiting methods. We will also explore the possibility of running an open
system, where people can join at any time or update their models by providing more
data. We also acknowledge that despite our best efforts to base our design choices on
participants’ input gained through interviews (for example, who the stakeholders are, what
factors to use), our views might have influenced our analysis of participants’ inputs. Our
plan to have an online system where participants can further comment on the selected
features, stakeholders, and evaluation measures may mitigate this in the future. Finally,
our framework needs to be tested with other contexts and tasks that involve different
cultures and group dynamics. We are particularly interested in the effects of participation
when collective opinions are polarized. On the one hand, it might be the case that a
participatory, voting-based approach would be the only way to find a consensus solution.
On the other hand, additional techniques—such as public deliberation through an open
forum—might be needed to bring together polarized parties to ensure the efficacy of the
resulting algorithms. Future work would need to investigate this question further.

4.3 Conclusions

4.3.1 Virtual Democracy, in Theory
Our theoretical and empirical results identify Borda count as an especially attractive voting
rule for virtual democracy, from a statistical viewpoint. However, Borda count is also
compelling in terms of usability and explainability.

In more detail, in our implemented donor-recipient matching system, clicking on a
recommended alternative displays an explanation for why it was ranked highly by Borda
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count, which consists of two components. First, we show the alternative’s average position
in the predicted preferences of each of the four stakeholder groups. Note that this infor-
mation determines the Borda score of the alternative, given the weight of each stakeholder
group.21 Second — this is the more novel component — we show specific features in which
the recommended alternative stands out. This is interesting because classic social choice
theory does not have features for alternatives, and we are able to give this type of expla-
nation precisely because our alternatives are represented as vectors of features (which is
crucial for the application of learning-to-rank algorithms).

Based on the results presented in this paper, as well as these additional insights, we
use Borda count in our implemented virtual-democracy-based system.

4.3.2 Virtual Democracy, in Practice: WeBuildAI
Increasingly, algorithms make decisions influencing multiple stakeholders in government
institutions, private organizations, and community services. We envision a future in which
people are empowered to build algorithmic governance mechanisms for their own com-
munities. Toward this goal, we proposed the WeBuildAI framework. In this framework,
stakeholders build an algorithmic model that represents their beliefs about ideal algorithm
operation. For each decision task, each individual’s model votes on alternatives, and the
votes are aggregated to reach a final decision.

As a case study, we designed a matching algorithm that operates 412 Food Rescue’s
on-demand transportation service, implementing the framework with their stakeholders:
donors, volunteers, recipient organizations, and 412 Food Rescue’s staff. We then evalu-
ated the resulting algorithm with historical donation data, which showed that our algorithm
leads to a more even donation distribution that prioritizes organizations with lower income,
higher poverty rate, and lower food access clients compared to human allocation decisions.
Our findings suggest that the framework improved the perceived fairness of the alloca-
tion method. It also increased individuals’ awareness of algorithmic technology as well
as the organization’s awareness of the algorithm’s impact and employee decision-making
inconsistencies.

Our study demonstrates the value and promise of using the WeBuildAI framework as a
design tool in order to achieve human-centered algorithmic governance. Future work needs
to investigate mechanisms to expand the application of the framework and its boundary
conditions, as well as ways to overcome existing socioeconomic and institutional barriers
to enabling wider participation.

However, there are some limitations to our case study. First, although the staff appre-
ciated the implementation of our virtual democracy framework with the Borda count, it is
unclear whether this is because of the well-designed interface or the use of the Borda count
as the aggregation method. While the Borda count is easy to explain in certain ways (e.g.,
in the Borda count, the sum of scores is all that matters, and we can easily compute the
average Borda scores for each group of stakeholders individually), perhaps using another
reasonable algorithm would also lead to an explainable and practicable interface.

21These weights were decided by the stakeholders themselves.
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Additionally, we noticed that some participants viewed features non-monotonically. In
particular, multiple participants had single-peaked preferences with respect to recipient
size, where they valued mid-size organizations the highest due to the amount of food
(one carload) that would be delivered, and their utilities tapered off on both sides. This
suggests that linear models are inappropriate. Indeed, because of this feedback, we explored
polynomial models as well as decision trees, SVMs, and neural networks, but found that
linear models performed the best due to the relative scarcity of data we collected.

One other area for improvement is in the data collection stage. We allowed partici-
pants to only choose their more preferred destination in each pairwise comparison, but
it could be more instructive to allow them to express a wider range of preferences. For
instance, allowing them to specify the strength of their preference (strong, weak, indiffer-
ent) could significantly reduce cognitive load and result in more informative and consistent
preferences.

Finally, we note that although we included recipient organizations in our stakeholder
groups, we did not source comparisons from the people who consume the food donations.
It would be interesting and valuable to include them in future work to get a more holistic
set of opinions from all stakeholders in the 412 Food Rescue ecosystem.
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Role Studies Involved

412 Food Rescue.∗

F1 Sessions 1-4
F2 Sessions 1-4
F3 Sessions 1-4, w

Recipient organizations. (Clients served monthly, client neighborhood poverty rate)

R1 Human services program manager (N=150, 13%) Sessions 1-4
R2 Shelter & food pantry center director (N=50, 20%) Sessions 1-4
R3 Food pantry employee (N=200, 53%) Sessions 1-4
R4 Animal shelter staff Session 1
R5 Food pantry staff (N=500, 5%) Sessions 1-4
R6 After-school program employee (N=20, 33%) Session 1, w
R7 Home-delivered meals delivery manager (N=50, 11%) Sessions 1-4
R8 Food pantry director (N=200, 14%) Sessions 1-2

Volunteers.

V1 White male, 60s Sessions 1-4, w
V2 White female, 30s Session 1
V3 White female, 70s Sessions 1-4, w
V4 White female, 70s (V4a), white male, 70s (V4b) † Sessions 1-4
V5 White female, 60s Sessions 1-4
V6 White female, 20s Sessions 1-4

Donor organizations.

D1 School A dining service manager Session 1
D2 School B dining service manager Sessions 1-4
D3 Produce company marketing coordinator Session 1
D4 Grocery store manager Sessions 1-4
D5 Manager at dining and catering service contractor Session 1
D6 School C dining service employee Session 1, w

Table 4.1: Participants. Sessions indicate the study sessions that they participated in:
w represents a workshop study. ∗Info excluded for anonymity. † A couple participated
together.
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Factor Explanation

Travel Time The expected travel time between a donor and a recipient organiza-
tion. Indicates time that volunteers would need to spend to complete
a rescue. (0-60+ minutes)

Recipient Size The number of clients that a recipient organization serves every
month. (0-1000 people; AVG: 350)

Food Access USDA-defined food access level in the client neighborhood that a
recipient organization serves. Indicates clients’ access to fresh and
healthy food. (Normal (0), Low (1), Extremely low(2)) [225]

Income Level The median household income of the client neighborhood that a recip-
ient organization serves (0-100K+, Median=$41,283) [224]. Indicates
access to social and institutional resources [200].

Poverty Rate Percentage of people living under the US Federal poverty threshold
in the client neighborhood that a recipient organization serves. (0-60
%; AVG=23% [224])

Last Donation The number of weeks since the organization last received a donation
from 412 Food Rescue. (1 week–12 weeks, never)

Total Donations The number of donations that an organization has received from 412
Food Rescue in the last three months. (0-12 donations) A unit of
donation is a carload of food (60 meals).

Donation Type Donation types were common or uncommon. Common donations
are bread or produce and account for 70% of donations. Uncommon
donations include meat, dairy, prepared foods, etc.

Table 4.2: Factors of matching algorithm decisions. The ranges of the factors are based on
their real-world distributions.

D2 D4 F2 F3 R1 R2 R3 R5 R7 V1 V3 V4 V5 V6

ML 0.86 0.78 0.92 0.92 0.90 0.90 0.78 0.94 0.74 0.90 0.92 0.78 0.56 0.68
ER 0.68 0.68 0.68 0.86 0.80 0.76 0.70 0.92 0.74 0.76 0.82 0.82 0.80 0.88

Table 4.3: Accuracy of the Machine Learning (ML) model and the Explicit-Rule (ER)
model. Bold denotes the model the participant chose as the one that better represented
their belief after seeing both models’ explanations (Figure 4.4) and their predictions on
the 50 evaluation pairwise comparisons. F1 chose the machine learning model but did not
complete additional survey questions to calculate model agreement, so the result is not
included in this table.
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Human beings, who are almost unique in having
the ability to learn from the experience of others,
are also remarkable for their apparent disinclina-
tion to do so.

Douglas Adams.

5
Impartial Ranking

In this chapter, we study rank aggregation algorithms that take as input the
opinions of players over their peers, represented as rankings, and output a
social ordering of the players (which reflects, e.g., relative contribution to a
project or fit for a job). To prevent strategic behavior, these algorithms must be
impartial, i.e., players should not be able to influence their own position in the
output ranking. We design several randomized algorithms that are impartial
and closely emulate given (non-impartial) rank aggregation rules in a rigorous
sense. Experimental results further support the efficacy and practicability of
our algorithms.
Based on our theoretical findings, we also develop HirePeer, a novel alternative
approach to hiring at scale. HirePeer leverages peer assessment to elicit honest
assessments of fellow workers’ job application materials, which it then aggre-
gates using an impartial ranking algorithm. We perform three studies that
investigate both the costs and the benefits to workers and employers of im-
partial peer-assessed hiring. We find, to solicit honest assessments, algorithms
must be communicated in terms of their impartial effects. Second, in practice,
peer assessment is highly accurate, and impartial rank aggregation algorithms
incur a small accuracy cost for their impartiality guarantee. Third, workers re-
port finding peer-assessed hiring useful for receiving targeted feedback on their
job materials.

5.1 Impartial Ranking, in Theory
We now turn to designing voting rules that satisfy certain axiomatic desiderata. First,
we examine a setting in which the set of voters exactly corresponds to the set of alterna-
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tives; that is, voters must evaluate themselves in order to return a complete ranking. In
this setting, we wish to design voting rules that do not incentivize voters to strategically
misreport their preferences in order to alter the results of the aggregation in their favor.

Our work is primarily motivated by online labor markets, such as Upwork or Freelancer.
In the bigger markets, employers typically receive dozens of applications for a job, but
employers do not have the knowledge required to accurately evaluate applicants. For the
past year we have been building a prototype of a new online labor market, where applicants
for a job—who are well-suited to evaluate applications for that same job—rank each other.
We would like to implement a mechanism that aggregates these rankings into a single
ranking that is then shown to the employer.

However, the foregoing application has a clear problem, which gets in the way of ap-
plying standard rank aggregation rules: strategic behavior. Specifically, in these relatively
high-stakes scenarios, it is likely that a player would try to improve his own position in the
output ranking by manipulating his reported ranking. For example, he might weaken a
strong contender for the top position by ranking him last. Our goal, therefore, is to design
rank aggregation rules that are impartial, in the sense that the position of a player in the
output ranking is completely independent of the report of that player. However, it is easy
to prove that there are no deterministic rank aggregation rules that are both impartial
(according to our definition) and Pareto efficient [177].1 Therefore, we restrict our design
space to randomized algorithms.

5.1.1 Our Approach and Results
On a high level, our approach is to design randomized rank aggregation rules that are
impartial and closely emulate standard rank aggregation rules that are not impartial.
Specifically, we focus on providing impartial approximations to the important class of
pairwise rules, which, as input, only require information about the fraction of players
ranking any one player above another. Our theoretical results crucially depend on the
notion of approximation—or measure of error—in question.

In Section 5.1.5, we introduce the k-partite algorithm, which, in a nutshell, randomly
partitions the players into subsets, builds a probability distribution over the positions of
members of one subset based on the aggregate opinion of members of other subsets, and
then generates a distribution over rankings that is consistent with these distributions over
positions. We prove that k-partite is impartial, and, when used in conjunction with
any pairwise rule, it provides small backward error with respect to that rule: With high
probability, k-partite places each player in the same position that the given pairwise rule
would have placed him had the input rankings been slightly perturbed.

In Section 5.1.6, we present the Committee algorithm. It randomly chooses a subset
of players, who serve as the eponymous committee. Each committee member is positioned
based on the opinions of other committee members, and then all other players are ordered
by the committee. The key idea is that, to avoid conflicts and achieve impartiality, each
committee member has slots that are reserved for him, and he is inserted into the reserved

1The latter property means that if everyone ranks one player above another, so does the output ranking.
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slot that most closely matches the aggregate opinion of other committee members. We
prove that Committee provides mixed error guarantees with respect to any given pairwise
rule, that is, with high probability, Committee places each player in a position that is
close to where the given pairwise rule would have placed him had the input rankings been
slightly perturbed. Taking on some forward error—a mismatch between the positions—
allows for improved backward error compared to k-partite.

In Section 5.1.7, we empirically measure the performance of our impartial algorithms
with respect to the popular Kemeny rule, which is defined via a natural optimization objec-
tive. The experimental results demonstrate that our impartial algorithms, when coupled
with the Kemeny rule, output near-optimal rankings with respect to the Kemeny objective,
despite the impartiality constraint.

5.1.2 Related Work
At this point there is a significant body of work on the design of impartial mechanisms [87;
6; 128; 44; 214; 29; 104; 164; 35], including several papers in major AI conferences [154; 17].
We only elaborate on the papers that are most closely related to ours.

The paper of de Clippel et al. [87] introduced the notion of impartiality, in the context
of dividing credit for a joint project. Specifically, the output of their mechanism is the
fraction of the total credit each player receives, and impartiality means that a player cannot
affect his own share of the credit. This mechanism is deployed on the fair division website
Spliddit.org, where one of the suggested applications is ordering authors on scientific
papers. However, an impartial credit division mechanism does not induce an impartial
ranking mechanism, because, when players are sorted by credit, a player can improve his
own position by decreasing another player’s share.

Berga and Gjorgjiev [29] study the impartial rank aggregation problem from an ax-
iomatic viewpoint, but focus on deterministic rules and a stronger notion of impartiality.
Their results suggest that deterministic impartial rank aggregation methods are severely
limited, and support our focus on randomized algorithms.

On a technical level, our k-partite algorithm is reminiscent of an algorithm of Alon et
al. [6], in that it randomly partitions the players into subsets, and the outcome of players in
one subset is only determined by players in other subsets. But the details of the algorithm,
and its analysis, are completely different.

5.1.3 Preliminaries
In this section we introduce terminology and notations that are standard in computational
social choice [47], as well as the formal instantiation of the concept of impartiality in our
setting.

Rankings and Aggregation

For any k ∈ N, let [k] = {1, . . . , k}. Our setting involves a set of players [n] = {1, . . . , n}.
The opinions of players are represented as rankings over [n], which we think of as permu-
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tations. Let Π represent the set of all permutations of [n], and let Πn represent the set of
all input profiles. For any σ ∈ Π, let σ(j) be the player at position j in σ and let σ−1(i)
be the position of player i in the ranking σ (where position 1 is the highest and position n
is the lowest).

A deterministic rank aggregation rule (also known as a social welfare function) is a
function f : Πn → Π, which takes in an input profile and returns a ranking. A randomized
rank aggregation rule returns a probability distribution over rankings. We sometimes find
it convenient to slightly abuse notation and think of the domain of a rank aggregation rule
as Πn × 2[n]—for ~σ = (σ1, . . . , σn) and X ⊆ [n], f(~σ,X) is the application of the rule to
the input profile (σi)i∈X .

Pairwise Rank Aggregation Rules

An input profile ~σ = (σ1, . . . , σn) induces a pairwise comparison matrix A(~σ), where

A(~σ)ij = |{k ∈ [n] : σ−1
k (i) < σ−1

k (j)}|
n

.

In words, the (i, j) entry is the fraction of players who rank i above j. Let Ω be the set
of pairwise comparison matrices. Therefore, we can think of A : Πn → Ω as a function
that takes in an input profile and returns its associated pairwise comparison matrix. As
before, we will also use the notation A(~σ,X), for a subset of players X ⊆ [n], to denote
the pairwise comparison matrix associated with the rankings of the players in X.

Some rank aggregation rules only require the information encoded in the pairwise com-
parison matrix to compute their output. Formally, a deterministic pairwise rank aggrega-
tion rule is a function f : Ω → Π. We denote the class of all deterministic pairwise rules
by P .2

We pay special attention to two popular pairwise rules:

• The Borda Rule: Given ~σ ∈ Πn, the score of each player i is ∑n
j=1(n− σ−1

j (i)) (that
is, each player awards n − k points to the player in position k), and the players are
ranked by non-increasing score. It may not be immediately apparent that Borda is
a pairwise rule—proving this well-known fact is left to the curious reader as an easy
exercise.

• The Kemeny Rule: The Kendall tau distance dKT between two rankings σ, τ ∈ Π is
the number of pairs of players on which the two rankings disagree. Given ~σ ∈ Πn, the
Kemeny rule returns a ranking in argminτ∈Π

∑n
i=1 dKT (τ, σi). Computing the output

of the Kemeny rule is hard, but can be done in practice using integer programming
or heuristic algorithms [77].

Other well-known rules, such as Copeland and Maximin, are also pairwise.

2We do not consider randomized pairwise rules in this section. Strictly speaking, we do not require this
determinism, but we assume it as it makes the proofs more transparent.
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Impartiality

Recall that we are interested in designing rank aggregation rules that are impartial, that
is, no player i can affect his probability of being ranked in position j, for all i, j ∈ [n].
Formally:
Definition 5.1. A (possibly randomized) rank aggregation rule f is impartial if for all
i ∈ [n], all input profiles (σ1, . . . , σn) ∈ Πn, and all σ̃i ∈ Π, it holds that ~x = ~y, where xj
is the probability i is ranked in position j in f (σ1, . . . , σi−1, σi, σi+1, . . . , σn), and yj is the
probability i is ranked in position j in f (σ1, . . . , σi−1, σ̃i, σi+1, . . . , σn).

In an alternative model, we may assume that each player i has a value vij for being
ranked in position j, and then impartiality would mean no player can affect his expected
value for the outcome, regardless of his value function. Although this definition may seem
weaker than Definition 5.1 at first glance, it is easy to verify that the two definitions are,
in fact, equivalent.

5.1.4 Measures of Error
Given that our goal is to approximate rank aggregation rules, the measure of error is critical
to the statement of the formal problem. To define appropriate notions, we adapt concepts
that are standard in scientific computing (e.g., in numerical stability analysis): forward
error, backward error, and mixed error. We view these imported definitions as part of our
conceptual contribution.
Definition 5.2. Let f be a rank aggregation rule. A rank aggregation rule g is said to have
(∆P ,∆F ) forward error with respect to f if for every input profile ~σ ∈ Πn, the probability
that for all i ∈ [n] it holds that

|f(~σ)−1(i)− g(~σ)−1(i)|
n

< ∆F

is at least 1−∆P .
Intuitively, a low amount of forward error implies that every player i is placed near

his correct rank (as determined by f) with high probability. Unfortunately, as the next
theorem states, impartial rank aggregation rules cannot approximate the Borda rule. Since
Borda is a pairwise rule, the theorem rules out the possibility of approximating all pairwise
rules.
Theorem 5.3. For all n ≥ 2 and ε > 0, there exists no impartial rank aggregation rule g
that gives a (1/2− ε, 1/3) forward error with respect to the Borda rule f .

Proof. For n = 2, a direct analysis (which we omit) gives the result. Let us therefore
consider only the case n ≥ 3. Let g be an impartial rank aggregation rule.

Suppose we have the input profile ~σ where i 6= 2 gives the ranking (i−1, . . . , n, 1, . . . , i−
2). Note that if player 2 continued this trend and gave the ranking 1, . . . , n then all players
would have the same Borda score.

Now let us consider player 2 in more depth, and define the probability vector ~x ∈ [0, 1]n,
where xi denotes the probability player 2 will be in position i when g determines the
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ranking. By impartiality we know that ~x does not depend on the ranking of player 2. As
~x is a probability vector, we must have one of the following.

Case 1 : The first bn/2c entries of ~x sum to at most 1/2. In this case, if player 2 has
the ranking (2, 1, 3, 4, 5, . . . , n) in ~σ, then f(~σ)−1(2) = 1.

Case 2 : The last bn/2c entries of ~x sum to at most 1/2. In this case, if player 2 has
the ranking (1, 3, 2, 4, 5, . . . , n) in ~σ, then f(~σ)−1(2) = n.

In either case, we find that with probability at least 1/2, g will place 2 in a position at
distance at least bn/2c from f ’s placement. That is, with probability at least 1/2 we have
|f(~σ)−1(2)− g(~σ)−1(2)| ≥ bn/2c ≥ n/3, giving at best a forward error of (1/2, 1/3).

With this impossibility in hand, we set our sights on an alternate error measure, which
is well defined only with respect to pairwise rank aggregation rules. For this definition and
throughout this section, we use the Frobenius norm and denote ‖A‖∞ = maxi,j |Ai,j|.
Definition 5.4. Let f ∈ P. A rank aggregation rule g is said to have (∆P ,∆B) backward
error with respect to f if for every input profile ~σ ∈ Πn the probability that for all i ∈ [n]
there exists a matrix Ã ∈ Ω such that

1.
∥∥∥A(~σ)− Ã

∥∥∥
∞
< ∆B, and

2. f(Ã)−1(i) = g(~σ)−1(i),
is at least 1−∆P .

Intuitively, a low amount of backward error implies that every player i is placed in a
rank that had the players altered their opinions slightly, i would be in the correct rank
(according to f) with high probability.

Finally, we define a third measure of error, which, in a sense, is a union of the two
previous notions.
Definition 5.5. Let f ∈ P. A rank aggregation rule g is said to have (∆P ,∆B,∆F ) mixed
error with respect to f if for every input profile ~σ ∈ Πn, the probability that for all i ∈ [n]
there exists a matrix Ã ∈ Ω such that

1.
∥∥∥A(~σ)− Ã

∥∥∥
∞
< ∆B, and

2. |f(Ã)−1(i)−g(~σ)−1(i)|
n

< ∆F ,
is at least 1−∆P .

5.1.5 The k-Partite Algorithm
We now introduce and analyze our first impartial rule, k-partite, which is formally given
as Algorithm 2. As it appears somewhat opaque, it is best to understand its ideas when
we assume that all the Xi are the same size, i.e., k divides n, |Xi| = n/k, and γi = k for
all i ∈ [k]. Slight adjustments are made when this is not the case, which for purposes of
intuition can be safely ignored.

First, players are randomly split into k groups of equal size X1, . . . , Xk, and then
each such group separately ranks all n players producing rankings τi. The crux of the
algorithm is the construction of the matrix Z, which, in turn, is the sum of Z(i) matrices.
Intuitively, the Z(i) matrix represents Xi’s contribution to Z, and its (a, b) entry indicates
the probability that a should be placed in position b overall. Specifically, each player not
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in Xi is placed in his exact position dictated by τi with probability 1/k, and in all positions
that the players in Xi themselves were assigned to in τi with probability 1/(n(k−1)). This
information is encoded as the only non-zero entries in Z(i)—each column then sums to 1/k,
each row representing a player in Xi is zero, and all other rows sum to 1/(k − 1). As we
show in the full version of the paper, Z is doubly stochastic (its rows and columns sum to
1); hence we can apply the Birkhoff-von Neumann Theorem [34; 228] to sample from this
distribution and remain faithful to the probabilities.

input: f ∈ P and ~σ ∈ Πn

1: Randomly split all n players into k groups X1, . . . , Xk where |Xi| ∈ {bn/kc , dn/ke}
2: for i = 1, . . . , k do
3: τi ← f(~σ,Xi)
4: γi ← n/ |Xi|
5: Let Z(i) ∈ Rn×n where

Z
(i)
a,b ←


1
γi

if a 6∈ Xi and τi(b) = a
1

γi(γi−1)|Xi| if a 6∈ Xi and τi(b) ∈ Xi

0 otherwise

6: end for
7: Z ← ∑

i∈[k]

n
|Xi|
−1

k−1 Z(i)

8: Sample a ranking σ such that a is ranked in position b with probability Za,b
9: return σ

Algorithm 2: k-partite

Our goal is to prove the following theorem, which states the guarantees of k-partite.
Theorem 5.6. k-partite is impartial, and, for every f ∈ P and ~σ ∈ Πn, if k =
b(n/ lnn)1/3c, it gives at most

(4/k, 4/k) ∈
O

( lnn
n

)1/3
 , O

( lnn
n

)1/3


backward error with respect to f .
Note that, in particular, the error goes to 0 as n grows. Turning to the proof, it is clear

that the algorithm is impartial because of the inability of any player i to affect the ith row
of the Z matrix. We therefore focus on establishing the error bound. To this end, we first
prove several lemmas.
Lemma 5.7. If t players X = {x1, . . . , xt} are sampled without replacement from [n] with
input profile ~σ ∈ Πn, then

P [‖A(~σ)− A(~σ,X)‖∞ ≥ ε] < n2 exp
(
−tε

2

2

)
.
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Proof.

P [‖A(~σ)− A(~σ,X)‖∞ ≥ ε]
≤
∑
i<j

P [|A(~σ)i,j − A(~σ,X)i,j| ≥ ε]

≤
∑
i<j

2 exp
(
−tε

2

2

)
= 2

(
n

2

)
exp

(
−tε

2

2

)

< n2 exp
(
−tε

2

2

)
,

where the first transition follows from the union bound, and the second transition follows
from Hoeffding’s Inequality.

Lemma 5.8. For every f ∈ P, ~σ ∈ Πn, and ε > 0, k-partite gives at most

(
1−

(
k − 2
k − 1

)(
1− n2k exp

(
−bn/kc ε

2

2

))
, ε

)

backward error to f .

Proof. Observe that

P [∃i ∈ [k] s.t. ‖A(~σ)− A(~σ,Xi)‖∞ ≥ ε]

≤
k∑
i=1

P [‖A(~σ)− A(~σ,Xi)‖∞ ≥ ε]

≤
k∑
i=1

n2 exp
(
−|Xi| ε2

2

)

≤
k∑
i=1

n2 exp
(
−bn/kc ε

2

2

)

= n2k exp
(
−bn/kc ε

2

2

)
,

where the second inequality follows from Lemma 5.7.
Further observe that, by Lines 5 and 7 of k-partite, for any player a he is placed
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directly where one of the Xi places him with probability

∑
i∈[k]: a6∈Xi

n
|Xi| − 1
k − 1

1
γi

=
∑

i∈[k]: a6∈Xi

n
|Xi| − 1
k − 1

1
n
|Xi|

= 1− 1
n(k − 1)

∑
i∈[k]: a6∈Xi

|Xi|

≥ 1− 1
n(k − 1)

k∑
i=1
|Xi|

= 1− 1
n(k − 1)n

= k − 2
k − 1 .

Now, if for all i ∈ [n], ‖A(~σ)− A(~σ,Xi)‖∞ < ε, and each player a is placed in the
position that some Xia places him, then we can set Ã = A(~σ,Xia) for all a ∈ [n] to satisfy
the conditions of backward error. Moreover, these events are independent. We conclude
that k-partite gives at most(

1−
(
k − 2
k − 1

)(
1− n2k exp

(
−bn/kc ε

2

2

))
, ε

)

backward error, as stated.

Proof of Theorem 5.6. From Lemma 5.8 it suffices to show that if we have ε = 4/k,

1−
(
k − 2
k − 1

)(
1− n2k exp

(
−bn/kc ε

2

2

))
≤ 4
k
.

Observe that

n2k exp
(
−bn/kc ε

2

2

)

≤ n2k exp
(
−(n/k − 1)ε2

2

)

= n2k exp
(
−(n/k − 1)(4/k)2

2

)

= n2k exp
( 8
k2

)
exp

(
−8n
k3

)
≤ n2

(
n1/3

)
exp

( 8
22

)
exp

(
− 8n

n
lnn

)
= e2n−17/3

≤ n−2.
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Thus we see that

1−
(
k − 2
k − 1

)(
1− n2k exp

(
−bn/kc ε

2

2

))

= 1
k − 1 +

(
k − 2
k − 1

)(
n2k exp

(
−bn/kc ε

2

2

))

≤ 1
k − 1 + n−2

≤ 2/k + 2/k
= 4/k.

A natural question is why we insist on what appears to be a somewhat convoluted
algorithm, instead of a more natural approach such as the impartial Naive-bipartite,
formally given as Algorithm 3. The reason is that this algorithm does not even guaran-
tee tolerable mixed error in general. Indeed, consider f ∈ P that is defined as follows.
Let X ⊆ {2, . . . , n} be the set of players such that at least one player ranks i above 1;
return the ranking starting with the players of X ordered lexicographically, followed by
the players of [n] \ ({1} ∪X) ordered lexicographically, and player 1 inserted into position
bn/3c overall (shifting appropriately). Now consider the input profile where i reports the
ranking (i, 1, 2, . . . , i−1, i+1, . . . , n). Then Naive-bipartite will always return a ranking
where player 1 is placed first or second—as he will always top his set. This means that the
algorithm cannot even provide a mixed error of (1/2, 1, 1/4).

input: f ∈ P and ~σ ∈ Πn

1: Randomly split the n players into two sets X and Y where |X| =
⌈
n
2

⌉
and |Y | =

⌊
n
2

⌋
2: τ1 ← f(~σ,X) restricted to the players only in Y
3: τ2 ← f(~σ, Y ) restricted to the players only in X
4: σ interlaces τ1 and τ2, that is,

σ(i)←

τ1 ((i+ 1)/2) if i is odd
τ2 (i/2) if i is even

5: return σ

Algorithm 3: Naive-bipartite

5.1.6 The Committee Algorithm
k-partite demonstrates that there exist impartial rules that accurately imitate any f ∈ P .
Observe, however, that the algorithm is somewhat hamstrung by the fact that a player must
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be (with high probability) ranked in exactly the location that a small perturbation of the
input rankings would give.

To allow more flexibility, we focus on mixed error, and consider Committee, given
as Algorithm 4. Intuitively, this algorithm selects a random committee X = {x1, . . . , xk},
which then determines the entire ranking. First, for each committee member xi, we deter-
mine their rank using only the rankings given by the remaining k−1 members. However, as
directly placing each committee member in this fashion may cause collisions (i.e., multiple
members may be assigned the same rank) we restrict placement of xi to only the positions
i, i+ k, i+ 2k, . . . Specifically, we assign xi to the closest such position to the rank given to
xi by the other committee members. There are then k of the n positions assigned. Second,
the committee ranks all of the n players, and the non-committee members are placed in
the order ranked by the committee in the remaining n− k slots.

input: f ∈ P and ~σ ∈ Πn

1: Randomly select a subset X = {x1, . . . , xk} ⊆ [n]
2: for i = 1, . . . , k do
3: c← arg minj∈{i,i+k,...}

∣∣∣j − f (~σ,X \ {xi})−1 (xi)
∣∣∣

4: σ(c)← xi
5: end for
6: τ ← f(~σ,X)
7: j ← 1
8: for i = 1, . . . , n do
9: if τ(i) 6∈ X then
10: while σ(j) is occupied do
11: j ← j + 1
12: end while
13: σ(j)← τ(i)
14: end if
15: end for
16: return σ

Algorithm 4: Committee

The algorithm yields the following guarantees
Theorem 5.9. Committee is impartial, and, for every f ∈ P, ~σ ∈ Πn, and ε > 0, if
k = 1 + 2

ε2 ln
(
n3

ε

)
, it gives at most (ε, ε, (k + 1) /n) mixed error with respect to f .

Importantly, this theorem allows for an incomparable error to Theorem 5.6. That is,
we can reduce the backward error so long as we are willing to take on some forward error.
For example, setting ε appropriately gives at most

(
n−2/5, n−2/5, 2/n+ (34/5)n−1/5 lnn

)
mixed error.

As in the case of k-partite, the impartiality of Committee is obvious, because the
position of each committee member is only determined by other committee members, and
the position of non-committee members is determined by committee members. The proof
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of Theorem 5.9 therefore focuses on establishing the stated mixed error guarantee; it is
relegated to the full version of the paper.

5.1.7 Experiments
Our theoretical results indicate that impartial rules like k-partite and Committee are
likely to yield rankings that are close, in a sense (backward error or mixed error), to the
output of a given rank aggregation rule. In this section we investigate a more natural
metric, which is beyond the reach of our theory, and empirically demonstrate that our
rules perform well with respect to this metric, too.

In our experiments, we focus on the Kemeny rule (see Section 5.1.3), as it is defined via
an optimization problem, so we can use its objective function as our measure. Specifically,
we interpret the Kemeny rule as maximizing the number of agreements with the input
rankings, that is, given ~σ ∈ Πn, it chooses a ranking τ ∈ Π that maximizes

Kem(τ, ~σ) =
n∑
i=1

((
m

2

)
− dKT (τ, σi)

)
. (5.1)

We quantify the error of an impartial rule by comparing how well it does with respect to
measure (5.1) with the performance of the optimal ranking returned by the Kemeny rule.
In more detail, let f be the Kemeny rule, and let g be an impartial rule; given an input
profile ~σ, we are interested in the Kemeny approximation ratio Kem(g(~σ), ~σ)/Kem(f(~σ), ~σ);
this ratio is upper-bounded by 1 due to the definition of the Kemeny rule. We use the
number of agreements, instead of the number of disagreements, as our measure because
in cases where the number of disagreements is very small, the ratio would be misleadingly
large.

The input profiles are generated according to the popular Mallows model [166]. In this
model, there is a base ranking of the alternatives τ ∗, and rankings are drawn i.i.d. from a
probability distribution over Π, defined by

Pr[σ | τ ∗] = φdKT (σ,τ∗)∑
σ′∈Π φdKT (σ′,τ∗) ,

for a dispersion parameter φ ∈ [0, 1]. Note that φ = 1 corresponds to uniformly random
rankings (and therefore input rankings disagree on pairs of alternatives with probability
1/2), whereas φ = 0 means, by convention, that all rankings coincide with the base ranking,
that is, there is unanimous agreement. We empirically study the Kemeny approximation
ratio of the impartial rules Naive-bipartite, Committee, and k-partite, for multiple
values of φ, each of which represents a different level of agreement.

Throughout our experiments, we let k = n/4, n/8 for Committee and let k = 4, 8
for k-partite. The intuition behind these choices is that the size of the initial committee
and each subset in the partition should grow with n, and choosing these values of k works
reasonably in practice. We ran experiments with n ∈ {8, 16, 24, 32, 40} players and φ ∈
{0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}.
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Figure 5.1: Kemeny approximation ratio of three impartial mechanisms for φ = 0.3. The
median of each boxplot is marked with a black line, the edges of each box denote the
quartile values, and the whiskers extend to data within 1.5 times the interquartile range
from the edges of each box.

Our results for the three impartial rules—Naive-bipartite, Committee, and k-
partite–and φ = 0.3 are shown in Figures 5.1a, 5.1b, and 5.1c, respectively; the results
for other values of φ, which can be found in the full version of the paper, are qualitatively
similar. In each figure, the x axis shows the values of n, and the y axis shows the Kemeny
approximation ratio obtained by the impartial rule. All three impartial rules perform
well as n increases. As a baseline, a straightforward calculation shows that with φ =
0.3, a ranking drawn from the Mallows model would agree with the base ranking (which
is typically the output of Kemeny when the input profile is drawn from Mallows) with
probability 0.77 on any given pair of alternatives, and that probability is 0.5 if the latter
ranking is replaced with a uniformly random ranking, so the (impartial) rule that chooses
a ranking uniformly at random gives a Kemeny approximation ratio of 0.5/0.77 = 0.65.

On a high level, the three impartial rules achieve excellent Kemeny approximations
despite their very different theoretical guarantees. But k-partite has by far the highest
variance. This phenomenon is due to the fact that if the position of a player is chosen
from a setting in which he was not placed in his exact place as prescribed by players
in some partition, he is essentially placed in a random location in the final ranking. In
Naive-bipartite and Committee, this is not an issue, as players are always placed in
some sense close to a position in which a subset of players believes they belong. As can
be seen in the full version of the paper, this phenomenon is more pronounced for lower
values of φ because placing players in a random location is penalized more heavily when
the population is generally sharply clustered around a certain ranking.

Furthermore, the performance of our impartial algorithms depends on the specific choice
of k (except for Naive-bipartite, which does not depend on any parameter k). The
following observations can be seen in the full version of the paper. Committee performs
better with the smaller value of k, but this effect lessens as φ increases (i.e., it helps more
when players have generally similar opinions). With small φ, because most committees
will agree on a consistent ranking, the additional error from inserting players into larger
buckets leads to a noticeable difference. However, as players start to disagree more, the
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benefit of getting better estimates from larger committees counteracts the insertion error.
k-partite acts similarly: the larger value of k leads to better performance for low φ, but
this effect again lessens as φ increases. This is because each player is placed exactly where
one of the groups places him with probability (k − 2)/(k − 1), which increases with k,
but being placed in one of these positions is most beneficial when players generally agree.
As opinions become increasingly random and diffuse, groups disagree more strongly about
where to place a specific player.

5.2 Impartial Ranking, in Practice: HirePeer
Expert crowdsourcing (e.g., Upwork.com) provides promising benefits such as productiv-
ity improvements for employers, and flexible working arrangements for workers. However,
to realize these benefits, a key persistent challenge is effective hiring at scale. Current
approaches, such as reputation systems and standardized competency tests, develop weak-
nesses such as score inflation over time, thus degrading market quality. In conjunction with
the theoretical work described above, we develop HirePeer, a novel alternative approach
to hiring at scale that leverages peer assessment to elicit honest assessments of fellow
workers’ job application materials, which it then aggregates using an impartial ranking
algorithm [148]. We perform three studies that investigate both the costs and the benefits
to workers and employers of impartial peer-assessed hiring. We find, to solicit honest as-
sessments, algorithms must be communicated in terms of their impartial effects. Second,
in practice, peer assessment is highly accurate, and impartial rank aggregation algorithms
incur a small accuracy cost for their impartiality guarantee. Third, workers report finding
peer-assessed hiring useful for receiving targeted feedback on their job materials.

5.2.1 Introduction
Expert crowdsourcing is on the rise. From 2009 and 2013, one of the largest platforms
for expert crowdsourcing, Upwork.com (previously oDesk), witnessed an 800% increase
in the number of paying employers [3]. Yet as more employers and workers move to
expert crowdsourcing, a critical challenge remains: employers struggle to hire effectively
and efficiently at scale. On Upwork, for instance, it takes employers approximately three
days to screen, interview, and hire every candidate [223]. Relative to the duration of an
expert crowdsourcing task, this cost in time and effort is enormous, encouraging employers
to adopt a satisficing strategy (i.e., hiring workers who are “good enough” instead of finding
the most qualified candidate overall) [216]. This cost also damages workers’ prospects:
when employers cannot confidently identify qualified applicants, they offer lower wages
to offset their risk of low-quality results; such depressed wages consequently turn away
qualified workers, or workers may respond to lower payment with lower quality work [207].
Indeed, in other markets, such large costs for hiring have been shown to dissuade employers
from hiring workers entirely [212]. This may cause online crowdsourcing markets to degrade
over time. This section investigates a new scalable method to hire expert workers quickly
and accurately.
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Perhaps the most widely adopted method today to address the large costs of screening
applicants is reputation systems. These systems aggregate a candidate’s prior task perfor-
mance, as assessed by past employers, into a score. Although reputation systems are widely
adopted by platforms, they bring with them their own set of challenges to effective hiring
at scale, which worsen over time. For instance, online reputations become inflated over
time: the (social) cost of giving negative feedback is higher than positive feedback [129].
As a result, norms shift over time, and reputation inflation worsens, reducing reliability.

While ongoing work continues to improve existing approaches to address some of these
limitations, this section instead presents an entirely new approach to hiring at scale. Our
approach is based on a widely used technique to address the need for accurate assessments
of open-ended material at massive scale: peer assessment. To date, peer assessment re-
mains the gold standard of review, as seen in its use to assess quality in top-tier academic
conferences [229], grant reviewing [73], and more recently massive online classrooms [151].
We investigate: can crowd experts peer-assess each others’ job materials to identify qual-
ified candidates? Specifically, we investigate if peer assessment can generate a ranked list
of all job applicants from which the employer can make final hiring decisions.

As might be apparent, the conflicts of interest that arise in a hiring setting are the
central challenge in realizing this approach. Specifically, because all crowd experts applying
to a task presumably would like to take the job, they have an incentive to rate other
applications strategically, to make themselves look more attractive to the employer. This
section describes a system, HirePeer, that overcomes these conflicts. Overcoming conflicts
requires both algorithms that can aggregate judgments such that participants derive no
benefit from strategic assessments (impartial algorithms), and a careful consideration of
human-centered components of this process.

First, we investigate whether automatic impartial aggregation of worker assessments
of open-ended work is necessary in real-world hiring settings with conflicts of interest.
Our first study creates an environment within Amazon Mechanical Turk with conflicts of
interest through carefully designed incentives. It then demonstrates the need for impartial
algorithms, and the necessity of communicating the presence of such impartial algorithm
to participants. We find an effective introduction does not need rely on explaining a
complicated randomized algorithm, but rather on the psychology of choice. In a between-
subjects randomized experiment (n = 170), we find a consequence explanation results in
the least amount of strategic behavior [172]. On the other hand, we find communication
based on a “policing” framing to be ineffective.

Second, we investigate HirePeer’s real-world implications for employers. Importantly,
we find peer assessment is feasible for hiring in expert crowdsourcing, with accuracies
of more than 90% compared to non-conflicted expert judgments (such as those made by
employers). We then examine the cost of impartial peer assessment by analyzing the accu-
racy of three impartial aggregation algorithms [136] and find that, in practice, impartiality
comes at a small price. In a between-subjects randomized experiment (n = 150), we find
impartial peer assessment, in a setting that utilizes the consequence explanation introduced
in this section, results in a 8% decrease in accuracy compared to peer assessment where
impartiality is not guaranteed.

Finally, we explore worker-oriented implications of peer-assessed hiring. Specifically we
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look at, if, and how, expert crowdworkers might benefit from peer assessment and feedback.
We conduct a case study to deploy HirePeer in a real-world expert crowd hiring setting,
where crowd experts complete an open-ended, complex task. This case study suggests
peer-assessed hiring benefits crowd experts by a) exposing them to how other applicants
assembled resumés and applications, b) introducing them to new skills to develop in the
future, and c) giving them targeted feedback on their job materials.

In short, this section has three contributions. First, it introduces peer assessment as
a new, scalable, and accurate approach to hiring in expert crowdsourcing marketplaces,
instantiated in a system HirePeer. Second, through a real-world deployment of three
impartial mechanisms, it quantifies the tradeoff between guaranteeing impartiality and
accurate ranking. Third, it presents a brief exploration of how workers may benefit from
peer-assessed hiring.

Requester submits 
job posting

Workers 
apply for job

Workers review 
peers’ applications

Impartial 
aggregation

Requester receives 
ranked list

Figure 5.2: HirePeer’s workflow of impartial peer-assessed hiring for expert crowdsourcing

5.2.2 Related Work

This section primarily draws on three bodies of literature: a) existing interventions for
large-scale hiring on online marketplaces, b) online peer assessment in education, and c)
impartial mechanism design.

Platform-specific reputation systems are perhaps the most widely-adopted approach
to facilitate hiring in expert crowdsourcing. Although reputation systems are intended
to signal worker trustworthiness and facilitate transactions between strangers, they suffer
from reputation inflation [129]—eventually, employers almost always award high feedback
scores to employees.

Peer review remains the gold standard for assessing open-ended materials, as evinced by
its wide adoption in academia to judge paper submissions [229] and by the NSF to review
grants [73]. More recently, online peer assessment has been introduced in educational
settings; in both massive online open courses (MOOCs) and in large physical classrooms,
peer assessment has proved to be an effective way to scale accurate assessments of open-
ended complex work [70; 226]. However, applications of scalable online peer assessment
outside of the classroom remain limited.

Realizing peer-assessed hiring requires careful consideration for how to effectively han-
dle conflicts of interest at scale (all workers who apply to a task would like to be chosen
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for the task). Recently, Kahng et al. presented three impartial3 algorithms (called Naive-
bipartite, Committee, and k-partite) which aggregate pairwise comparisons to gen-
erate a ranked list [136]. While all three impartial mechanisms have strong theoretical
guarantees, we explore their performance in a real-world setting.

5.2.3 HirePeer: System description

A requester using HirePeer posts her task to the labor platform (e.g., Upwork) as usual.
However, instead of applying to the job directly, workers who are interested in the task are
notified to apply to the task on the HirePeer website (see Figure 5.2). When applicants
have completed their job application, they are then asked to review a machine-selected
set of other applications. To reduce inadvertent biases in evaluation, reviewing is double-
blind [151]. Before workers start reviewing, they are notified their assessments will be
aggregated with an impartial mechanism.

Because prior work shows pairwise comparisons encourage attention to non-superficial
features and lead to more accurate assessment [63], workers conduct pairwise comparisons
of peers’ anonymized job materials. An expert-generated rubric for the specific task type
guides evaluation—our current system has rubrics for web design, data visualization, etc.
The rubric contains a) domain-specific criteria, b) more general criteria that are important
in an expert crowdsourcing context like communication and timeliness of task completion,
and c) qualitative textual feedback on job materials. An expert rubric allows us to collect
accurate assessments from both novice and expert workers [54]. Feedback on application
materials is later shown to both the task requester and to the applicant.

Once peer assessments have been collected, they are aggregated by the impartial mech-
anism. Importantly, our mechanisms aggregate assessments into a ranked list (rather than
merely choosing a subset of qualified candidates). Armed with this ranked list and the
qualitative feedback on each application, the requester can hire the best suited applicant
on the crowdsourcing platform.

5.2.4 Study 1: Is an impartial algorithm necessary?

While there have been many theoretical papers on the design of impartial algorithms [87;
136], little work has been done on effectively communicating the presence of impartial
algorithms to users. Such an introduction is not only important given increased calls
for algorithmic transparency across the community, but also because participants may
behave strategically (i.e., attempt to boost their own position) if they do not realize their
assessments are aggregated impartially.

If participants behave non-strategically in general, then it may be unnecessary to com-
municate the impartial mechanism at all (in fact, the mechanism itself may be unnecessary
except to thwart the occasional strategic behavior). But if participants engage in strategic
behavior, it is important to investigate:

3A ranking mechanism is impartial if no participant can affect her position in the final ranking [136].
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Research Question 1: For accurate assessments, should the presence of an
impartial algorithm be communicated to participants?

If strategic behavior is commonplace, then communicating an impartial mechanism
may discourage it if participants believe that strategic behavior has no benefit to them.
It is likely that different ways of communicating impartial mechanisms may differ in their
effectiveness at discouraging strategic behavior; so our study also investigates:

Research Question 2: Which framing of impartial algorithms best discour-
ages strategic participant behavior?

Changing behavior without technical explanations

If impartial mechanisms are to be deployed widely to non-experts, it would be desirable for
explanations to not rely on mathematical understanding. We consider two ways of doing
so: a) by describing consequences, and b) by leveraging psychological theories of choice to
nudge behavior. In particular, we leverage the effects of different “framings,” or methods
to describe the same situation, that emphasize different attributes. Different framings
of game-theoretic tasks result in drastically different outcomes: Tversky and Kahneman
found basic tenets of rational behavior can be violated with simple word changes in task
instructions [222]. These results were later corroborated in diverse, real-world applications
on Amazon Mechanical Turk [184]. Thus, we investigate whether using a framing approach
is even more beneficial than describing potential consequences, as it not only it does not
require participants to have knowledge of algorithms or mathematics, but also it relies on
fundamental and systematic human biases.

Three Ways to Communicate Impartiality

We consider three different ways to communicate impartiality. First, we consider a con-
sequential explanation. To discourage strategic behavior, we describe the consequences
of using an impartial algorithm: “The ranking you generate will not affect the final ag-
gregated ranking of your item as we use an impartial algorithm.” Note that prior work
suggests that such an approach may not completely prevent strategic behavior, but may
reduce it. For example, Mazar et al. suggest that when consequences of “dishonest” (i.e.,
strategic) actions are well-known, such as while claiming exaggerated income tax exemp-
tions, people only behave dishonestly to a small extent, as doing so allows them to preserve
their positive self-image [172].

We also consider two framing-based approaches. First, we consider a policing approach,
which is the most common technique in the related literature [57]. Participants in this con-
dition were told, “To prevent you from cheating, we implemented an impartial algorithm.”
Second, we consider an responsibility externalization framing, based on Greenwald’s theory
of the totalitarian ego, specifically beneffectance [122]. This theory suggests while people
perceive themselves to be responsible for desired outcomes (such as performing a kind act),
but responsibility for undesired outcomes is externalized to others (e.g., traffic leading to
aggressive driving). As such, this theory suggests participants see themselves to be honest,
but may be concerned that others may behave strategically. Participants in this setting
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were told, “For your protection, we prevent other workers from cheating using an impartial
algorithm.”

Participants and experimental setup

We conducted a between-subjects randomized experiment on Amazon Mechanical Turk
(AMT) to test which of three communications of an impartial mechanism minimized strate-
gic behavior compared to our control condition (n = 170). We used AMT as an exper-
imental setting for two reasons: first, it can be challenging to discern strategic behavior
from low quality work on AMT [131], providing a rich experimental setting to evaluate
decision making; second, AMT is a representative sample of a typical online labor market,
and has been shown to be a reliable environment for behavioral studies [170].

Participants were randomly assigned to one of four between-subjects conditions. The
control condition made no mention of an impartial mechanism, and instead simply re-
minded participants to read instructions carefully (this has been shown in previous crowd
work to have no effect). The other three conditions described the algorithm as above
(with consequences, policing, or responsibility externalization). We displayed each in a
reminder (in bold) at the bottom of the task instructions on AMT, depending on which
condition a participant was randomly assigned. We also included this reminder a second
time, immediately before the task.

Task structure and strategic behavior

The experiment used a simple task with known ground truth, to simplify evaluation, while
still leaving room for well-defined strategic behavior.

Task We collected eight product reviews from Amazon for the bestselling mobile phone
when this study was conducted: the Samsung Galaxy. The reviews were collected to have
large differences in quality (the numbers of upvotes for the reviews differed by orders of
magnitude). We then introduced typos into each review. Unbeknownst to the participants,
all participants edited the same review across all conditions, which was at position #6 in
ground-truth (where product review #8 was lowest in quality).

Participants were first asked to proof-read these reviews, and fix typos. Each participant
then ranked eight product reviews from the Amazon product page (i.e., without introduced
typos), and their edited review, in terms of quality. The product reviews, including their
own, were presented to participants in order of true quality, measured by the number of
upvotes on Amazon.

The task took at most 15 minutes, and participants were paid $10 USD per hour (before
bonuses, described below).

Incentives for strategic behavior Participants were notified the rankings provided
by all study participants would be aggregated (similar to peer-assessed hiring), and they
would receive a bonus if their review landed in one of the top five positions in the ag-
gregated ranking (a similar incentive structure to peer-assessed hiring). Specifically, the
bonus structure was $5 USD if their review landed in position 1, $4 USD for position 2,
and so on, and bonuses were awarded as promised. Because most workers in AMT’s labor
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pool participate to earn money, this task’s incentive structure aligns with participant mo-
tivations, and is therefore an ecologically valid way to create a similar incentive structure
to peer-assessed hiring [131]. Each participant edited the same review, compared it to the
the same ground truth ranking of reviews, and had the same incentive to manipulate their
report.

This incentive structure also allows for only one kind of strategic behavior: exaggerating
the ranking for the edited review, by placing it above position #6. It also allows for a
measure of strategic behavior: how much higher than position #6 they placed their review
(as reviews differed in quality by orders of magnitude).

Comparison to peer-assessed hiring This task design has critical similarities to
hiring. First, ranking edited reviews is similar to ranking job materials, e.g., resumes; and
the ranking is similarly subjective, allowing for strategic interpretation. Similarly, there is
a strong incentive to rank oneself higher.

The task differs from peer-assessed hiring in that participants are only comparing one
artifact, instead of the multiple used in hiring, such as resumes, work experience, etc. Such
a comparison would be even more subjective, but allows for similar strategic behavior.
Second, our task has bonuses for even small strategic behaviors. The hiring scenario would
be more analogous to having a very large bonus for position #1 (i.e., being hired), and
vanishing bonuses for other positions. Our task design is necessary because we seek to
measure the degree of strategic behavior.

Result: Need for introduction of impartial algorithm

Participants spent a median duration of 9.5 minutes to complete this task. In the control
condition, participants had a significantly lower average rank (mean = 4.2, ground truth =
6, F (1, 166) = 15.3, p < 0.001). In other words, control participants exaggerated their
assessment by 30%, suggesting an impartial algorithm (and its effective communication)
are necessary.

Result: Consequence explanation most effective

As shown in Figure 5.3, participants exposed to the consequence explanation exaggerated
the ranking of their product review an average of 10% (p < 0.01), far less than the total
possible, and lower than both the control and other framing-based explanations. This is
similar to the reuslts of Mazar et al., where participants engaged only in limited strategic
behavior when consequences were known.

5.2.5 Study 2: Is peer assessment for hiring accurate?
Study 1 demonstrated the need to communicate an impartial framing, and an effective way
to do so. Study 2 investigates the real-world performance of impartial ranking. Impartial
rank-aggregation methods guarantee their outcomes are resilient to strategic assessments
(i.e., artificially inflating a worker’s own position), but in theory, impartiality comes at
a cost to accuracy [136]. This is because an impartial aggregation algorithm, by design,
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Figure 5.3: From Study 1, histogram of review placement for each framing condition; x:
position, y: frequency. A skew to the right suggests less strategic behavior. Consequence
explanation resulted in the least strategic behavior.

ignores some information (for instance, Naive-bipartite disregards 75% of comparisons
in expectation to ensure impartiality).

In practice, the effect on overall accuracy is context dependent. On the one hand,
the final ranking may be more accurate if participants report more accurate assessments
(because manipulation is no longer beneficial). However, if the strategic manipulation
without such a mechanism is small enough, the loss of information may result in lower
real-world accuracy. Furthermore, if participant outcomes are not dependent on their own
assessments, some participants may put in less effort in creating accurate assessments. In
this study, we investigate:

Research Question 3: Does peer assessment result in more accurate ranking
of applicants in an expert hiring setting?

Research Question 4: What is the net cost in accuracy for impartial guar-
antees of ranked aggregation?

Coefficients β F p-
value

Intercept (con-
trol)

4.2667 15.336 <2e-
16

Police 0.1083 0.267 0.78971
Responsibility
Externalization

0.7333 1.783 0.07630

Consequence 1.2333 3.216 0.00156

Table 5.1: From Study 1, consequence description leads to the least amount of strategic
behavior. β coefficients are the average difference in rank from control condition (positive
is less strategic behavior).
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Participants and recruitment

We conducted a two-condition between-subjects experiment on AMT with 50 participants
per condition. Workers who had previously taken part in our studies were not allowed to
participate. This study was conducted on AMT because the platform allowed us to readily
hire a large number of workers, as required for our experimental design below.

Task structure

Study 1 used a simplified task structure to make strategic behavior readily apparent.
This study uses our HirePeer system introduced before, and asks for multiple paired-
comparisons, instead of a ranking task.

Since multiple comparisons can be composed into a (partial) ranking, the two tasks are
similar in the strategic behavior they support. (However, we acknowledge that participants
may not see as readily how best to behave strategically while comparing two artifacts
created by peers.)

To simulate the hiring scenario, we wanted a “job” that most AMT workers would
believe they were qualified for, and had subjective selection criteria but did not require
specific domain skills. Furthermore, because AMT is a micro-task market where workers
are not looking for long-term employment, we wanted tasks that did not require workers
to commit to long-term work, yet offered a significant monetary reward.

Therefore, our task asks crowd-workers to write feedback to newcomers to AMT. This
is a task that is subjective, does not require specialized domain skills, and is something
expert AMT workers might believe they are qualified for. To ensure participants felt they
were qualified, participants were required to have a Master’s Qualification on AMT: an
indication of consistently high quality performance and familiarity with AMT. Along with
potential bonuses, the task paid up to $20, which is a significant monetary reward on the
platform.

Task design: Participants were first asked to write several paragraphs of advice for
AMT newcomers. The task instructions stated, “In your advice paragraphs, share tips
on how to be successful, mistakes you made that you recommend they avoid, and other
information you think a new Turker would find helpful.”

Then, they assessed a randomly selected subset of other peers’ work (i.e., their peers’
advice). Concretely, at most four hours after the first phase, participants completed 50
randomly-generated pairwise comparisons among pieces of advice written by peers in the
same condition, deciding which piece of advice in each comparison was higher quality
(where quality was defined as more actionable and specific). Repeated pairwise compar-
isons were permitted (and outputs were used for quality control). At the end of both
phases, participants were asked to complete a 13-question survey to understand percep-
tions of trust, fairness, and effort. We also captured how long they spent writing advice.

Incentive structure: Participants received a bonus if their advice piece placed in the
top ten spots of the overall ranking, out of 50 total spots ($10 USD for position one, $9
USD for position two, and so on). There were two conditions. The impartial condition
used the consequence explanation from Study 1. The control condition did not include
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this explanation, and instead reminded participants to pay attention to instructions (as in
Study 1).

Collecting ground truth: Ground-truth ranking for each condition’s advice was gen-
erated by asking 50 non-conflicted workers—25 per condition—to compare pieces of ad-
vice. This is similar to ground-truth collection in other peer assessment evaluations [151].
Non-conflicted participants were both Master Turkers and completed over 10,000 accepted
human intelligence tasks (HITs) to establish a high level of expertise in the task. Non-
conflicted participants conducted 50 pairwise comparisons for which piece of advice (gen-
erated from conflicted participants) was of higher quality, where quality was defined as
actionable and specific. All non-conflicted participants evaluated the same 50 comparisons
to generate ground-truth. Note that this method yields ground truth comparisons, rather
than a ground-truth ranking. Ranking the 50 pieces of advice would be a prohibitively
time- and effort-intensive task.

Data analysis

First, we read all responses to ensure they were sensible; all but three responses across
conditions were grammatically correct and included actionable advice. These responses
were kept for the following analysis. The quality of advice was similar across conditions:
1,044 characters in control vs. 1,143 characters in impartial; length is correlated with
quality [150]. Median time spent writing advice (9.5 minutes control vs. 6.5 minutes
impartial) did not differ in a statistically significant manner. This suggests no differences
in participant recruitment across conditions.

To create rankings, we used jackknife resampling, similar to other peer assessment
evaluation work [151]. In each condition, first we chose 35 of the 50 conflicted partic-
ipants without replacement and sampled 25 of their pairwise comparisons, also without
replacement. Because impartial algorithms are randomized, we ran each impartial rank-
aggregation algorithm 50 times on each set of assessments to capture the variability of
results. Similarly, we repeated the process of choosing participants and assessments 25
times for each condition to capture the variability caused by choosing particular assess-
ments. This process as a whole resulted in 1250 bootstrapped rankings across conditions.
We then used bootstrap significance tests introduced by Politis and Romano [190] for
accuracy measures.

To evaluate the accuracy of our ranking mechanisms, we measured the agreement be-
tween the complete ranking output by each mechanism and the non-conflicted comparisons.
First, given the output of a ranking mechanism, we extracted the 50 pairwise comparisons
seen by non-conflicted participants from the output of the peer assessment process. Then,
we assigned the output a score that measures how well the ranking agrees with the non-
conflicted comparisons. The score is equal to the total number of non-conflicted partici-
pants who agree with the relative ordering of the 50 pairwise comparisons in the output
ranking divided by the total number of non-conflicted participants in the majority opinion
for all 50 pairwise comparisons. Note that the score is calculated relative to the majority
of non-conflicted participants; this allows us to penalize mechanisms less for confusing the
order of alternatives that non-conflicted participants are less sure about (i.e., which have
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only a slim majority among expert opinions) and to penalize mechanisms more for dis-
agreeing with the order of alternatives that non-conflicted participants heavily agree with
(i.e., alternatives with a solid majority consensus among non-conflicted participants).

Result: Peer assessment with conflicts of interest is accurate

To generate rankings without guaranteeing impartiality, we used the Kemeny rule [140], a
standard method to generate rankings from an incomplete set of comparisons. Overall, the
aggregated peer assessed ranking was highly similar to non-conflicted participant judge-
ments. Even without aggregating peer assessments in an impartial manner, the accuracy
was 96.6% using our metric above; see Table 5.2. This suggests peer assessed hiring could
form the basis for scalable expert hiring.

Result: Guaranteeing impartiality leads to a modest loss in ranking accuracy

We compared the performance of the Kemeny rule with no framing (the control condi-
tion) to rankings generated from data from the impartial framing condition with impartial
aggregation. The accuracy of ranked aggregation decrease by 8% (96.6% in control/non-
impartial, vs. 88.8% in impartial); see Table 5.2. In other words, the theoretical guarantees
of impartiality come at a cost of 8% in accuracy in our experimental setup.

What is an 8% loss in practice? If non-conflicted participants generating ground-truth
assessments are 75% in agreement on average, as was the case in our study, and perform
20 comparisons each, then with 20 candidates a 6.67% loss in accuracy corresponds to
two switches in the true ranking (e.g., switching candidates in the 10th and 11th position
with each other, and the third and fourth positions with each other), and a 10% loss is
equivalent to three such switches. Depending on the stakes, this loss in accuracy (and the
resulting increase in employer time to hire) may be acceptable.

Aggregation Mechanism Average Accuracy
Kemeny 0.9665*
Naive-bipartite 0.8884
Committee 0.8044
k-partite 0.7831

Table 5.2: From Study 2, (Naive-bipartite) aggregation led to a reduction of accuracy
by 8%, as compared to aggregation of assessments from control condition with the Kemeny
rule; each entry represents average accuracy for each condition and related aggregation.
All other rows represent aggregations of assessments from experimental (i.e., impartial)
conditions.
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Question Average Likert Score
I will make changes to resumé 4.6
I will learn a new skill 3.6
The feedback helped me 5.0
I put in effort 4.2
I was honest 4.8
My peers put in effort 3.6
My peers were honest 4.0
My effort affects my ranking 4.0
I enjoyed the process 5.0

Table 5.3: From Study 3, average Likert scores from post-use survey; 1: strongly disagree,
5: strongly agree. Even in a competitive hiring setting, expert crowd workers perceived
peer assessment to be helpful, enjoyable, and were inclined to iterate on their job materials.

Result: Consequence explanations catalyze beliefs that assessment effort is
unrelated to final ranking

Participants in the impartial condition were significantly more likely to believe their effort
did not impact the final ranking of their advice piece (Control median: 4, Impartial median
rating: 2, 7-point Likert scale; Wilcoxon Z = 612.5, p < 0.01) (No other survey responses
differed significantly across conditions). This is interesting because the impartial framing
makes no mention of how effort affects ranking. In fact, to be effective, the impartial mech-
anism relies on worker assessments to be honest and effort-full. It seems likely that because
of this belief, participants in the impartial condition put in less effort into comparisons,
slightly decreasing accuracy.

In sum, Study 2 suggests peer assessment is an accurate alternative to hiring based
on expert assessment. The benefits to employers, such as decreased time to hire, and
lesser reliance on worker reputations are potentially enormous. Employers can also guard
themselves against individual strategic assessment at a small cost (8%) to accuracy. Next,
we turn to how peer-assessed hiring may affect workers.

5.2.6 Do workers benefit from peer-assessed hiring?
In the classroom, peer assessment improves students’ self-reflection [151], iteration on
work [152], and development of criteria for goodness that are better aligned with ex-
perts [63]. Do these benefits transfer to workers in peer-assessed hiring? Furthermore,
what reactions do expert crowd workers have to peer-assessed hiring more generally? In
short, we investigate:

Research Question 5: What benefits of peer assessment in education transfer
to peer-assessed hiring?

To address this research question, we conducted a case study for hiring on Upwork.com;
an expert crowdsourcing platform for programmers, designers, and other expert professions.
Note this case study is meant to be suggestive, rather than evaluative. If participants
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reported none of the benefits of classroom peer-assessment, then this may not be an aspect
to study further in future work. On the other hand, if participants reported some benefits
(as we found), these findings may better inform and focus further research. First, to inform
the design of this study, we ran two small pilots: hiring for a data visualization project and
a Django development task. For this present case study, we hired expert crowd workers for
the task of creating a banner ad for one of our research group’s software tools, and included
details about this study alongside the job description. Eleven Upwork professionals applied
to this task. We describe results from the five participants who completed every stage in
our protocol. We acknowledge that because of the high attrition rate, collected feedback
may be biased.

Consenting participants submitted their anonymized applications to HirePeer (witness-
ing the impartial framing). Then, they conducted three randomly generated pairwise
comparisons among their peers’ job application materials. Since our system asks for com-
parisons, we modified the comparison-based user interface developed by Cambre et al., to
ensure that assessment was scaffolded effectively [63]. After submitting these comparisons,
each participant filled out a post-use survey similar to Study 2 to gather their feedback on
HirePeer. The survey consisted of Likert questions to measure perceptions of effort and
truthfulness of both themselves and their peers and free-response questions about overall
experiences from the process.

Additionally, workers were rewarded for ranking their peers, and we ran impartial
algorithms on their comparisons in order to select a winner who was invited to the task
and paid for it separately.

Result: Feedback generation and reception helpful to identify new skills and
improve job materials

Consistent with peer assessment literature in the classroom, multiple participants stressed
the peer assessment process made them more mindful about writing a coherent and con-
vincing application [204]. One participant stated HirePeer “helped me a lot to organize
my mind and write the right things,” and another wrote HirePeer “was a good exercise in
application writing.” Interestingly, all participants were receptive to feedback received from
peers (selection bias may factor into this). Concretely, participants reported they “liked
comparing proposals,”, that “receiving feedback of other freelancers is a great one”, and
also noted no other platforms integrate this feature. One participant reported “topics that
were included on the proposal [peer’s resumés]...helped me a lot.” Additionally, participants
were slightly more likely to want to learn a new skill after this process (table 5.3).

Result: Not all participants completed assessment

Five of the 11 participants completed all steps of the review process and the post-use survey.
This attrition rate is similar to peer-assessment in large-scale online courses [149], yet could
be explored in more detail in future work. In addition, while our sample size is too small
to draw statistical conclusions, participants who did complete our task “somewhat agreed”
their effort did in fact impact their final placement (average Likert 4.0). We explore the
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emergent relationship between effort and impartiality in the discussion section, and how
future work might rigorously investigate this.

5.3 Conclusions

5.3.1 Impartial Peer Ranking, in Theory
Pairwise comparisons.

In practice, players would often be asked to compare pairs of players, rather than giving a
complete ranking. Crucially, our results seamlessly extend to that setting. Indeed, standard
measure concentration inequalities show that a small number of random caparisons are
sufficient to accurately estimate the pairwise comparison matrix (see, e.g., Procaccia and
Shah 2016). Because we focus on pairwise rank aggregation rules, this means that the
input to the rule is qualitatively unaffected by the transition from complete rankings to
pairwise comparisons.

Strong impartiality.

A natural notion of impartiality that is stronger than ours (call it strong impartiality)
requires that a player would not be able to affect the subset of players that are ranked
above himself. In the context of online labor markets, for example, the rationale is that an
employer is more likely to select the applicant in position k if the applicants in positions
1, . . . , k − 1 are relatively weak, so it is not just the applicant’s position that determines
his chances of getting the job. Unfortunately, strong impartiality seems too stringent
to admit reasonable rules. In fact, we can prove that no strongly impartial rule can
give a (1/3, 1/7, 1/10) mixed error with respect to Borda, but this statement requires
the additional assumption that strongly impartial randomized rules are distributions over
strongly impartial deterministic rules.4 We believe that a similar statement holds without
the additional assumption.

Flipping the quantifiers.

Our definitions of backward error and mixed error include the words “for all i ∈ [n] there
exists a matrix Ã ∈ Ω.” That is, for each player we can find a pairwise comparison matrix
close to the original one, such that our rule puts i in a position that is identical or close
to that in which the given rule would put i on the input Ã. The definitions would be even
more compelling if the quantifiers were flipped, i.e., “there exists a matrix Ã ∈ Ω such that
for all i ∈ [n].” Under this alternative formulation, we are not allowed to tailor Ã to i, but
rather there is one pairwise comparison matrix that achieves the desired property for every
i. It remains an open problem whether our theorems (or variants thereof) still hold under

4Note that Committee and Naive-bipartite can be represented as distributions over impartial (not
strongly impartial) deterministic rules, but k-partite cannot.
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these more demanding notions of error, and, if not, whether these notions are feasible at
all.

5.3.2 Impartial Peer Ranking, in Practice: HirePeer
Peer-assessed hiring in expert crowdsourcing is a novel alternative approach to hiring that
is likely to engender many emergent effects that future work could investigate.

Practical peer-assessed hiring of experts

Even in the conflicted setting of hiring, we found scalable peer assessment can be accurate.
While Study 1 shows that workers are likely to inflate their own assessment without im-
partial framing, Study 2 shows that the aggregated assessment of peers is highly correlated
with non-conflicted expert assessors, even without using impartial aggregation. With such
high agreement (96%), it seems reasonable to suggest that peer-assessed hiring can offer
an alternate, scalable method to hiring crowd-experts. In particular, peer-assessed hiring
can even empower non-expert employers to accurately hire qualified employees.

Collusion and privacy concerns

This work is limited in its notion of strategic behavior: although impartial mechanisms
ensure any participant cannot affect her final position, it is still possible to manipulate the
order of other applicants by reporting strategically. For instance, a coalition of workers
(e.g., friends) could collectively manipulate their final placement by always selecting each
others’ proposals. Future work may investigate mechanisms that are resilient to collusion
in their guarantees.

Another salient concern is that of anonymity. When the pool of applicants is small
enough, participants may be able to identify competitors from their de-identified profiles.
However, these concerns are less applicable to the expert crowdsourcing space, where the
applicant pool is large, and typically has no means of communicating with each other.

Amplifying pedagogical benefits of peer review in hiring

We present initial observations that peer assessment benefits from the classroom may trans-
fer to expert crowdsourcing. Future work may incorporate several existing interventions to
improve feedback quality, such as providing tiered rubrics and banks of exemplar feedback
to reuse. Furthermore, while the small sample for the case study allowed initial, qualitative
observations, future work could study these benefits at larger scale with a more diverse
population and investigate if pedagogical benefits evolve over time: if a crowd expert is
not selected for a job, can peer-assessed hiring help them land the next job?

Incentivizing Effort

Importantly, impartial algorithms do not necessarily incentivize effort on the part of par-
ticipants. Because any agent’s report does not affect the distribution of her ranking, purely
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self-interested agents do not have any incentive to put effort into evaluating pairwise com-
parisons and could, theoretically, be just as well off reporting random noise as their true
opinions. We did not observe this phenomenon in our (small) pilot study, and agents in
general invested effort into their comparisons, but this requires further study.

One potential approach to incentivizing effort in impartial mechanisms is to offer small
monetary bonuses for accurate comparisons, where accuracy is evaluated based on a small
set of ground-truth comparisons performed by an impartial and knowledgeable party. As
long as these monetary bonuses are not too large (i.e., the maximum bonus is less than the
perceived difference between positions in the final ranking), agents will be incentivized to
put in effort and impartial guarantees would still hold. However, implementing this scheme
requires additional funds on the part of the mechanism designer as well as specialized
expertise on the part of the “spot-checker.”
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Democracy cannot be static. Whatever is static
is dead.

Eleanor Roosevelt.

6
Conclusion

The word “democratize” has multiple meanings. One potential definition is “introduce
democratic principles to;” another is “make broadly accessible.” In this thesis and beyond,
I hope to conduct research that encapsulates both of these meanings. This involves ex-
ploring how computer science can help make democracy more efficient, fair, and robust; it
also includes incorporating democratic ideas in new settings in order to address difficult
problems in computer science and beyond.

Broadly, all projects presented in this thesis can be thought of as partial answers to the
question, “How can we give people more direct and provably robust control over decision-
making processes?” For instance, liquid democracy allows voters to choose delegates whose
opinions, at least in theory, align more directly with their own, participatory budgeting
allows citizens to allocate a portion of their city’s budget toward public projects they
deem to be personally important to them, and multiwinner elections allow citizens to
elect more broadly representative committees instead of choosing one person to represent
a heterogeneous electorate. Virtual democracy and impartial peer ranking each provide
a framework for incorporating peoples’ opinions in arenas where they were previously ill-
suited due to a lack of infrastructure or misaligned incentives.

The technical contributions throughout this thesis can be viewed as an attempt to
design democratic systems with theoretical properties that align with traditional desider-
ata in computer science. For liquid democracy, we explore how an increased flexibility of
delegation changes the robustness and weight distribution of the voting system; for par-
ticipatory budgeting, we examine how to ensure fairness and efficiency in a more flexible
budgeting system; in the case of multiwinner elections, we attempt to ensure proportion-
ality while allowing for variable-sized committees that are responsive to voters’ opinions.
Likewise, for virtual democracy, we seek to find a voting rule that is robust to the sort of
machine learning errors that are inevitable when trying to predict peoples’ opinions, and
for impartial peer ranking, we design a system that balances impartiality and accuracy in
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order to convince rational and self-interested parties to report actionable information for
peer ranking.

It is also important to note that none of the democratic paradigms exist in a vacuum.
While we have focused our attention on each individually, there is significant room for
synergistic interactions among them. For instance, using liquid democracy in conjunc-
tion with participatory budgeting could allow for additional flexibility in allocating funds
toward public projects, and the general approach central to virtual democracy—namely,
learning models of people and letting the models vote—is broadly applicable in many dif-
ferent contexts where voting is expensive but individual opinions are the best source of
information, which is a theme in participatory design in artificial intelligence.

Limitations and Future Work
However, there exists a gap between theory and practice, and the work in this thesis is
not yet implementable in the real world. Although our work in virtual democracy and
impartial peer ranking has a significant HCI component that shows promise, further work
must be done in order to implement and deploy our results. Part of this divide stems from
the assumptions necessary for theoretical approaches. In order to prove theorems, we must
assume a well-defined model of human behavior and identify clear objectives to optimize;
in practice, humans are often irrational, do not have clear objective functions in mind, or
may not even know their own utility function for various alternatives. However, theoretical
results are still a useful tool for directional analysis, and I hope to continue working on
theoretical projects that will have a tangible impact on the world.

In a sense, there is also a gap between theory and theory. Computational social choice
provides a useful and robust theoretical framework in which to study human decision-
making that intuitively operates in two stages. In the first stage, voters are allowed to
express preferences over a predetermined, fixed set of alternatives in a specific format (e.g.,
approval votes, complete rankings, or partial rankings). In the second stage, a prede-
termined, fixed mechanism aggregates the reported preferences and produces an output.
However, computational social choice assumes that voters’ utilities are fixed throughout
the process (i.e., it cannot take deliberation into account), provides no guidance about
how the set of alternatives is to be chosen, and only allows voters to communicate their
opinions to the mechanism in very specific formats. While some simplification is necessary
in order to obtain tractable and clean mathematical results, the scope of computational
social choice is quite limited. In particular, I am particularly interested in exploring models
of deliberation that take into account the dynamics of changing opinions based on social
interaction among voters, which traditional computational social choice approaches does
not encapsulate.

Finally, I would like to stress that the distinction between using computer science to
help democracy and using democracy to help computer science is not, by any means,
well-defined, and the topics discussed in this thesis are by no means an exhaustive set of
topics at the intersection of democracy and computer science. Rather, there are many
other democratic processes and problems in computer science that would benefit from
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cross-pollination, and I am excited to continue exploring this line of work in the future.
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