
Sketching and Sampling Algorithms for
High-Dimensional Data

Rajesh Jayaram

CMU-CS-21-118

July 2021

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
David Woodruff, Chair

Anupam Gupta
Andrej Risteski

Alexandr Andoni (Columbia)
Jelani Nelson (Berkeley)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2021 Rajesh Jayaram

This research was sponsored by the partial support from the Office of Naval Research (ONR) grant Number N00014-
18-1-2562, and the National Science Foundation (NSF) under Grant Number CCF-1815840.

Keywords: Sketching, Streaming, Sampling, Numerical Linear Algebra

For my mother,
who loved the stars...

Und einer von allen Sternen
müßte wirklich noch sein.
Ich glaube, ich wüßte,
welcher allein
gedauert hat, –
welcher wie eine weiße Stadt
am Ende des Strahls in den Himmeln steht . . .

And one of all the stars
must surely still remain.
I think I know
which alone
endures –
which, at the end of its beam in the sky,
stands like a white city . . .

Klage, Das Buch der Bilder
-Rilke

Abstract

Sketching is a powerful technique which compresses high-dimensional datasets
into lower-dimensional sketches, while preserving properties of interest. Sampling is
a quintessential form of sketching, where one generates samples from the data to use
as the basis for a sketch. Sketching and sampling methods have become ubiquitous
across computer science, and are a central component of modern algorithm design.

This thesis studies the design and analysis of sketching and sampling algorithms
for a variety of computational tasks. In particular, we make contributions to three
closely related areas: Streaming and Distributed Algorithms, Numerical Linear Al-
gebra, and Database Query Evaluation. Our contributions to these areas include:

Streaming and Distributed Algorithms:

• The first perfect Lp samplers, near-optimal algorithms for Lp estimation for p ∈
(0, 1), improved sketches for the Earth Mover’s Distance, and the introduction
of the adversarially robust and bounded deletion streaming models.

Numerical Linear Algebra:

• The first property testing algorithms for matrix positive semi-definiteness, and
the first input-sparsity solvers for linear regression on design matrices which
are (1) a Kronecker product of several smaller matrices or (2) a database join
of several smaller tables.

Database Query Evaluation:

• A characterization of the classes of conjunctive queries for which approximate
counting and uniformly sampling can be accomplished in polynomial time.
Along the way, we obtain the first polynomial time algorithm for estimating the
number of strings of length n accepted by a non-deterministic finite automaton.

viii

Contents

1 Introduction 1

1.1 Streaming Algorithms . 6

1.2 Numerical Linear Algebra . 29

1.3 Query Evaluation and Automata Theory . 40

1.4 Roadmap of the Thesis . 46

2 Background and Preliminaries 49

2.1 Notation and Basic Preliminaries . 49

2.2 Probability Background for Sketching . 53

2.3 Streaming Background . 59

2.4 Numerical Linear Algebra . 66

I Streaming and Distributed Algorithms 69

3 Perfect Lp Sampling in Data Streams 71

3.1 Background . 72

3.2 Primer on Precision Sampling and Overview . 82

3.3 The Sampling Algorithm . 93

3.4 Time and Space Complexity . 105

ix

3.5 Approximating the Sampled Coordinate . 132

3.6 Truly Perfect Sampling for General Measures 134

3.7 Lower Bounds . 141

4 Moment Estimation in Streaming and Distributed Models 149

4.1 Background . 151

4.2 Communication Complexity and the Message Passing Model 161

4.3 Message Passing Fp Estimation for p > 1 . 163

4.4 Fp Estimation for p < 1 . 174

4.5 Entropy Estimation . 184

4.6 Approximate Matrix Product in the Message Passing Model 187

4.7 Lower Bounds . 190

5 Sampling from Distributed Streams 193

5.1 Background . 195

5.2 Overview of the Sampling Algorithm and Techniques 199

5.3 Basic Results on Distributed Sampling . 202

5.4 Weighted SWOR via Precision Sampling . 205

5.5 Tracking Heavy Hitters with Residual Error . 217

5.6 L1 tracking . 221

6 Data Streams with Bounded Deletions 231

6.1 Background . 232

6.2 Frequency Estimation via Sampling . 238

6.3 L1 Heavy Hitters . 257

6.4 L1 Sampling . 259

6.5 L1 estimation . 265

x

6.6 L0 Estimation . 272

6.7 Support Sampling . 285

6.8 Lower Bounds . 289

7 Adversarially Robust Streaming 299

7.1 Background . 301

7.2 Tools for Robustness . 313

7.3 Robust Fp-Estimation . 320

7.4 Robust Distinct Elements Estimation . 323

7.5 Robust Heavy Hitters . 327

7.6 Robust Entropy Estimation . 330

7.7 Adversarial Robustness in the Bounded Deletion Model 332

7.8 Adversarial Attack Against the AMS Sketch . 334

7.9 Optimal Distinct Elements via Cryptographic Assumptions 337

8 Streaming Algorithms for Earth Movers Distance 341

8.1 Background . 343

8.2 Technical Overview . 348

8.3 Quadtrees and Compressed Quadtrees . 358

8.4 Analysis of Compressed Quadtrees . 360

8.5 Two-Round Linear Sketch . 373

8.6 One-Round Linear Sketch . 383

8.7 Analysis of COMPUTEEMD via Tree Embeddings 410

8.8 Tightness of COMPUTEEMD . 413

8.9 Lower Bound for Quadtree Approximation via Tree Embeddings 416

8.10 Sampling with Meta-data . 420

xi

8.11 Embedding `dp into {0, 1}d′ . 422

8.12 Relationship between Linear Sketching, Distributed Communication Protocols,
and Streaming . 425

II Numerical Linear Algebra 431

9 Testing Positive Semi-Definiteness 433

9.1 Background . 435

9.2 Overview of the Testing Algorithms . 444

9.3 PSD Testing with `∞ Gap . 452

9.4 PSD Testing with `2
2 Gap . 473

9.5 Lower Bounds . 481

9.6 Proof of Eigenvalue Identity . 501

10 Kronecker Product Regression and Low-Rank Approximation 503

10.1 Background . 505

10.2 Kronecker Product Regression . 511

10.3 All-Pairs Regression . 532

10.4 Low Rank Approximation of Kronecker Product Matrices 542

10.5 Evaluation . 546

11 In-Database Regression 549

11.1 Background . 550

11.2 Preliminaries on Database Joins and Relevant Sketches 555

11.3 Subspace Embeddings for Two-Table Database Joins 559

11.4 General Join Queries . 571

11.5 Evaluation . 576

xii

III Database Query Evaluation 583

12 Approximate Counting and Uniform Sampling from Database Queries 585

12.1 Background . 587

12.2 Primer on Automata Theory . 594

12.3 From Conjunctive Queries to Tree Automata . 598

12.4 Technical Overview of the Tree Automata FPRAS 609

12.5 An FPRAS and Uniform Sampler for Tree Automata 619

12.6 Estimating Partition Sizes via Succinct NFAs 632

12.7 Applications of the FPRAS . 652

12.8 Open Problems and Future Work . 661

Bibliography 663

xiii

Acknowledgments

To begin, I must express how deeply grateful I am to my advisor, David Woodruff,
who has been the center of my academic life. David consistently goes above and be-
yond any expectation for involvement with and attention to his students. He never
hesitates to jump into the weeds to work with students through onerous technical
challenges, or to spend hours explaining ideas and techniques. As a mentor, he has
always put his students first—I am extremely grateful for his unwavering support
and encouragement. Working with David has been a life-changing experience, and I
am heartened by the knowledge that I will carry with me all that I have learned from
him for the rest of my career.

In addition, I am especially thankful for my collaborations with Xi Chen, Amit
Levi, and Erik Waingarten. Particularly amidst the tumultuous period of the COVID
pandemic, our meetings were a beacon of encouragement and conviviality, wherein
we laughed, lamented, thought deeply, and learned. Xi, whose contagious smile
inevitably brings liveliness to each meeting, is one of the kindest people I know,
and I am grateful for his support and invaluable perspective on research. To Amit,
whose unabating compassion and thoughtfulness transforms a job focused on study-
ing objects with “a beauty cold and austere” to one which feels warm, congenial,
and human. To Erik, who taught me to slow down, enjoy the process of research,
search for beautiful mathematics, and not sweat the anxieties of academia.

I would like to extend a special and warm gratitude towards my collaborators
Marcelo Arenas, Luis Alberto Croquevielle, and Cristian Riveros. Marcelo, Alberto,
and Cristian introduced me to new vistas in computer science, fostered fruitful con-
nections, and served as invaluable mentors. The time I spent with them in Santiago
while visiting PUC Chile was especially formative for me—it was here that I learned
how deeply one can appreciate life in congruence to, and not in spite of, the academic
career.

I am also extremely grateful to MohammadHossein Bateni, Hossein Esfandiari,
and Vahab Mirrokni for mentoring and hosting me as an intern at Google Research,
which was an especially rewarding summer; I am excited to continue our work full
time as part of their team.

In addition, I am immensely grateful for having had many other incredible col-
laborators and mentors over the past years: Ainesh Bakshi, Omri Ben-Eliezer, Nadiia
Chepurko, Huaian Diao, John Kallaugher, Yi Li, Vasileios Nakos, Barna Saha,
Alireza Samadian, Gokarna Sharma, Zhao Song, Wen Sun, Srikanta Tirthapura,

xiv

Eli Upfal, Peng Ye, Eylon Yogev, Qiuyi Zhang, and Samson Zhou. I also owe a
great deal to the faculty in the Computer Science Department at CMU for their sup-
port and invaluable advice, especially Anupam Guptam, Andrej Risteski, and Ryan
O’Donnell.

Thank you to Paul Valiant for introducing me to the world of algorithms, where
he taught me how each algorithm and its proof is an heroic struggle between op-
posing forces which must be balanced (runtime, approximation, failure probability,
ect.)—a view which has been both intellectually fruitful and truly inspiring.

In addition to great collaborators, I am tremendously lucky to have had the best

friends in Pittsburgh during my time here: Ainesh Bakshi, Pedro Paredes, Roie
Levin, Greg Kehne, Marina DiMarco, Nadiia Chepurko, Tim Chu, Liting Chen,
Emily Black, Klas Leino, Aria Wang, Goran Zuzic, Nic Resch, David Wajc, Kevin
Pratt, Costin Bădescu, Samson Zhou, and Zoe Wellner. A special thanks to Ainesh
for being my academic brother and collaborator, among many more things I cannot
begin to list. These people have meant the world to me during my time here, and
I am exceptionally grateful to have had each of them in my life. I am also grateful
to Mike Jehn, with whom I have hiked, camped, canoed, and explored all across
Western Pennsylvania, and whose friendship I deeply cherish. Finally, I thank my
lifelong friend Calyl, for being with me through the ceaseless ebb and flow of life —
he is the most selfless and loyal individual I know, and I will greatly miss our many
Pittsburgh adventures.

While much more could be said of the matter, I owe the world, and express my
deepest gratitude, to Patrick McAuliffe and Mirjam Lord. They made me into the
person I am today, and were a pivotal force in my life.

Lastly, I must thank my family, without whom my path to the present would have
been surely impossible. To my father Mohan, who has incessantly and fearlessly
fought to support me throughout, and despite, every imaginable circumstance in my
life. To my brother Kailash, who is truly my best friend, and who I hope will never
tire of hearing how lucky I am to have him. To my step-father Al, who is one of the
most respectable men I know, and who has always been there for me. Lastly, I thank
my mother, for instilling in me a passion for the unknown, and a love of the world.

xv

xvi

Chapter 1

Introduction

This thesis concerns the design and analysis of sketching algorithms, known more generally as
dimensionality reduction. Sketching is a powerful technique which compresses high-dimensional
objects into lower-dimensional sketches, while preserving properties of interest. These sketches
are more efficient to work with, and can stand in place of the original data. Growing out of
classic results in mathematics from the 1980s, such as the Johnson-Lindenstrauss Lemma [JL84]
and Bourgain’s Theorem [Bou85], sketching techniques are now a ubiquitous part of algorithm
design in both theory and practice.

While historically rooted in theoretical fields such as functional analysis, the current explo-
sion of sketching techniques over the past decades is due to the proliferation of massive datasets.
Namely, the advent of “big data”, where companies such as Facebook and Google now process
petabytes of data on a daily basis [DG08, fac16], has necessitated the reevaluation of our models
for algorithm design. For instance, while the classical theory of algorithms established polyno-
mial time as the baseline for efficiency, the sheer size of modern datasets renders polynomial-
and often even linear-time and space algorithms to be impractical. In addition to these new de-
mands for hyper-efficiency, the traditional algorithmic query models, such the random access

model, often no longer apply to modern datasets. For instance, data may arrive in real-time as a
stream, or may be partitioned across multiple distributed machines.

Amid these developments, the sketching paradigm has emerged as an attractive approach to
address the manifold challenges posed by modern computational demands. The central tenant of
this paradigm is to compress, or sketch, the input to a computational problem via an extremely
efficient (often randomized) transformation, and then recover a solution to the problem from the
sketch. This sketch-and-solve method yields algorithms with space, and often runtime, usage

1

significantly smaller than storing the original dataset. In many cases, the size of the sketch can
be made to grow only logarithmically, or polylogarithmically, in the size of the data. Once a
sketch has been generated, due to its hyper-compact size, ultrafast algorithms can be run on the
sketch to recover approximations.

The sketching paradigm is best illustrated by an example. A canonical one is the usage of
random projections, where one takes a set of high dimensional vectors x(1), . . . , x(m) ∈ Rn and
projects them onto a random k-dimensional subspace spanned by a matrix S ∈ Rk×n, where k �
n. The celebrated Johnson-Lindenstrauss Lemma tells us that that distances between all pairs of
vectors are approximately preserved even when k is independent of the ambient dimension n.
Hence, from the considerably smaller k-dimensional sketches Sx(1), . . . ,Sx(m), we can recover
significant geometric information about the original vectors.

The contributions of this thesis to the area of sketching are twofold. Firstly, we develop a
range of new algorithms and techniques for fundamental sketching problems that have been pre-
viously studied in the literature. These results represent fundamental contributions to established
fields such as dimensionality reduction, streaming, distributed algorithms, and numerical linear
algebra. Secondly, a major focus of this thesis is the introduction of new application areas and
computational models for the study of sketching. This includes both the application of sketching
to areas beyond its traditional reach, such as utilizing sketching to resolve a fundamental count-
ing problem in automata theory, as well as developing fresh perspectives on classical sketching
domains, such as the adversarially robust streaming model.

Sampling as a Building Block for Sketches. A unifying theme of the algorithms in this thesis
is the usage of sampling methods. Namely, many sketching tasks can be addressed by generating
samples from some underlying distribution over the data. By an appropriate choice of distribu-
tion, statistical properties about the original dataset can be inferred from the samples. In other
words, these samples form a sketch of the data.

For example, an internet search engine provider may want to compute statistics about the
billions of terms searched each day, such as the most commonly searched keywords, or more
complicated queries such as the empirical entropy of the distribution of searches. Storing such
a large dataset in memory, or sending it across a distributed network, is extremely inefficient.
Instead, the machines serving the requests can store a random sample of the searches to send
back to a central machine to aggregate. These samples themselves are a small-space sketch of the
entire dataset, and one could hope, for instance, to find the most commonly searched keywords
or approximate the entropy from this sketch.

2

In the simplest traditional settings where data is available via random access, such as stored
on a fixed array in memory, generating a uniform sample is trivial. However, with the advent
of the aforementioned computational paradigms, even generating uniform samples has become a
complicated and sometimes intractable task. In particular, data may only be implicitly accessible,
such as via an online data stream, distributed over multiple machines, or the result of a database
query. In these scenarios, aggregating all the data in a central machine, or fully evaluating the
query, is computationally infeasible for modern datasets. These challenges demand a new theory
of versatile sampling methods.

This thesis develops a variety of novel sampling techniques in addition to refining several
known techniques—an example of the latter is precision sampling.1 The focus will be both on
the design of algorithms which can efficiently generate samples from a desired distribution, as
well as the analysis of properties of these samples once generated. Throughout, we will see how a
core set of mathematical tools, such as scaling by exponential variables and p-stable distributions,
can be applied across application domains to generate samples from various distributions.

Starting Point: High-Dimensional Objects, Low-Dimensional Representations. We begin
our foray into sketching by describing the following overarching scenario: there is a high-
dimensional dataset, usually denoted x, which we are only implicitly given access to, and our
goal is to answer some query Q(x) about the object. Whereas traditionally a centralized algo-
rithm would be run on the full dataset x, the defining characteristic of the sketching approach
is to approximately answer Q(x) without ever fully storing x. Examples include data streams,
where x ∈ Rn is represented by a sequence of updates to its coordinates, distributed computa-
tion, where one has a network of k machines, each containing some vector x(i) ∈ Rn so that
x = ∑k

i=1 x
(i), and relational database queries, where x = X ∈ Rn×d is the result of a query on

several smaller tables (e.g., X is a database join of k tables T(1), . . . ,T(k)).

This thesis studies the above setting within the context of three central application areas:
Streaming and Distributed Algorithms, Numerical Linear Algebra, and Database Query
Evaluation. The thesis is split into three parts, Part I, II and III, with one part dedicated to each
of the three respective areas. In what follows, we give an brief description of these areas, before
delving deeper in Sections 1.1, 1.2, and 1.3.

Streaming and Distributed Computation. The streaming model of computation has become
increasingly important for the analysis of massive datasets, where the sheer size of the data and
speed of arrival poses significant challenges for algorithm design. Examples of such streams

1This elegant technique, introduced in Section 3.2, will be central in Chapters 3, 5, 6, 8, and 10.

3

include real-time internet traffic, distributed sensor networks, and enormous streams of files read
from an external memory device. The goal of a streaming algorithm is to generate and store a
compact sketch of the stream as it arrives, which is then used to answer queries about the data.
Given their ubiquity, a large field of research is devoted to designing hyper-efficient algorithms
for these streams. Part I of this thesis will be devoted to this goal.

Streaming algorithms can be viewed as a particularly strong form of sketching algorithms,
since they must be able to maintain their sketch as the underlying dataset is modified or updated.
This property also means that streaming sketches are generally mergable — given a sketch of
x(1) and a sketch of x(2), one can often obtain a sketch of x(1) + x(2). This mergability property
is extremely useful, and establishes an intimate connection to the field of distributed computa-

tion, such as the MapReduce (MPC) or message-passing models, where the primary objective
is to minimize communication across a network. Here, each machine in a distributed network
generates a sketch of their local data via a streaming algorithm, and sends the compressed sketch
across the network to be merged; as in streaming, the goal is to minimize the size of the sketch.
As we will also see, many such sketches which originated in the streaming literature have also
proved to be exceptionally applicable to the field of numerical linear algebra.

Due to the generality of streaming sketches and their applicability to many other areas of
computation, it is often useful to study the field of sketching as a whole through the lens of

streaming. Namely, given a large vector x ∈ Rn and a query Q(x), our first question is whether
Q(x) can be approximated when x is observed in a stream. This is an approach which is advo-
cated by this thesis. A small set of examples of our contributions in this area include

• The first sublinear, and in fact optimal, space algorithm to sample a coordinate i ∈ [n] of
x ∈ Rn with probability proportional to |xi|, up to variation distance 1/poly(n), when x
is given by a stream of positive and negative updates to its coordinates.

• The first optimal space algorithm2 to estimate the Fp-moment ‖x‖pp = ∑
i |xi|p to (1 ± ε)

error for p ∈ (0, 1) in a stream of positive updates to the coordinates of x.

• The introduction of the Adversarially Robust Streaming Model and the Bounded Deletion

Streaming Model, and the design of the first algorithms many streaming tasks in both
models.

Numerical Linear Algebra (NLA). The modern field of numerical linear algebra has a distin-
guished history dating back to the work of von Neumann and Turing [Tur48, VNG47], although
algorithmic methods in linear algebra date back considerably farther to the work of Chinese

2Up to log logn and log ε−1 factors

4

mathematicians employing Gaussian elimination two millennia ago [CBW99]. Conversely, the
usage of randomization, and particularly sketching methods, for NLA is a fairly recent phe-
nomenon which, nevertheless, has already been tremendously successful in revolutionizing the
field. Randomized sketching methods now yield the best algorithms for various fundemental
tasks, such as solving linear systems, regression, and linear programs [PV20, W+14, CLS19,
BLSS20].

The common theme of the approach to NLA taken in this thesis is the following: given
a computational task on a large matrix A, one first compresses A into a lower-dimensional
sketched matrix A′. From A′, one solves the original computational task significantly faster
with traditional algorithms. This template adheres to the previously described sketch-and-solve
approach, and is the primary focus of Part II of this thesis. Specialized to this thesis, and keeping
with the unifying theme of low-dimensional representations, is scenarios where the matrix A
itself is defined only implicitly, and we would like to compute the sketch A′ without even reading
the full matrix A. Examples include:

• The matrix A is a Kronecker product A = A(1)⊗A(2)⊗ · · · ⊗A(m) of much smaller ma-
trices A(i). We give sketching algorithms for solving linear regression, when the constraint
matrix is given by such a product A, in time linear only in the factors A(i).

• A is a database join A = T(1) 1 T(2) 1 · · · 1 T(m) of much smaller tables T(i).
Similarly, we give the first sketching algorithms for solving regression on such matrices in
time linear in the size of the tables T(i), without ever computing the join A.

Database Queries and Automata Theory. Databases queries are a classic example of high-
dimensional objects with small representations. In this setting, we have a relational database D,
which is a set of tables D = {T(1), . . . ,T(m)}, and a query Q, which is a logical expression
taking as input a database D and outputting a new database Q(D), which is a set of “answers”
to the query. A quintessential example of a query Q is a database join on the tables T(i). Query
evaluation is the task of computing Q(D) given as input (Q,D).

One of many challenges in query evaluation is that the number of answers, namely the size
of Q(D), can grow exponentially in the size of the input (Q,D).3 Traditionally, to perform data
mining on the result of a queryQ on a databaseD, one would first fully computeQ(D), store the
result, and run a centralized algorithm on the data. With the massive scale of modern databases
and SQL queries, this direct approach is no longer computationally feasible. On the other hand,

3There are numerous other challenges as well; for instance, even determining whether Q(D) is empty or not is
NP-Hard for many of the common classes of queries studied in the literature.

5

notice that the high-dimensional database Q(D) admits a lower-dimensional representation via
the small-scale tables {T(1), . . . ,T(m)} and the description of the query Q. This elegantly po-
sitions query evaluation as a candidate for sketching methods. In particular, one could hope to
generate a sketch ofQ(D) by, for instance, generating uniform samples fromQ(D) without ever
computing it. This program is carried out in Part III of this thesis.

The central contribution in Part III is the characterization of the classes of conjunctive queries

(CQ) for which sampling from Q(D) or approximating the size of Q(D) can be accomplished
in polynomial time. Conjunctive queries are the most common class of queries used in database
systems (e.g., they are equivalent to select-from-where queries in SQL), and the best studied
in the literature. Perhaps surprisingly, the main ingredient in this result is the resolution of a
long-standing open problem in automata theory—an area where sketching and dimensionality
reduction are not commonly utilized. Nevertheless, our approach is based fundamentally upon
sketching techniques, especially the method of sampling to generate compact sketches.

1.1 Streaming Algorithms

Data streams are ubiquitous in modern computing, and have been now for several decades. Ex-
amples of data streams include internet traffic logs, sensor networks, financial transaction data,
database logs, and scientific data streams (such as huge experiments in particle physics, ge-
nomics, and astronomy). The motivating foundation for streaming is that the sheer size of
modern datasets renders traditional algorithms requiring random access to the data infeasible;
instead, streaming algorithms must answer queries about the data while seeing it sequentially,
using as little working memory as possible. This situation epitomizes the sketching paradigm:
streaming algorithms must maintain a small sketch of a high-dimensional object, by processing
low-dimensional pieces of that object.

An illustrative example is an internet search engine, which receives tens of thousands of
queries each second, and billions every day.4 These queries contain many pieces of data, such
as search terms, timestamps, location, and other meta-data. A local machine receiving a subset
of this stream of data for statistical analysis will have to process the queries at a breakneck
pace. In particular, it will be unable to store and aggregate all of the queries into main memory.
Instead, such a machine would have to process updates on the fly, maintaining a sketch of the
data small enough to fit in memory. Additionally, because such a large stream will be distributed

4See https://trends.google.com/

6

https://trends.google.com/

over multiple machines, one needs a way of merging such sketches together in order to perform
aggregate queries.

A second and equally important class of example are those where the data is fixed. Consider
an enormous collection of unstructured data, such as experiments from partial physics or bio-
logical data, stored on massive external hard-drives. Traditional algorithms that assume random
access to the data will be exceedingly slow, since such hard drives have poor random access rates.
In this setting, streaming algorithms excel, as they can process the data in a sequential fashion,
which is a significantly faster access pattern for many devices.

The data stream model is a mathematical abstraction of the above scenarios, which captures
the core constraints of data stream computation: namely, sequential access to the data. Specif-
ically, the streaming model consists of a sequence of updates (the stream) to the coordinates of
an underlying, high-dimensional vector x ∈ Rn. The formal model is stated below.

Definition 1.1.1 (The Streaming Model.). Fix integers n,m,M > 0 such that log(mM) =
O(log n). In the streaming model, a vector x ∈ Rn, known as the frequency vector, is initialized

to ~0. Then, it receives a sequence of updates (i1,∆1), (i2,∆2), . . . , (im,∆m), where it ∈ [n] and

∆ ∈ {−M, . . . ,M}. Each update (i,∆) causes the change:

xit ← xit + ∆

At the end of the stream, the vector x ∈ Rn is given by xi = ∑
t:it=i ∆t for all i ∈ [n].

The goal of a streaming algorithm is to observe the updates (it,∆t) sequentially, and at the

end of the stream answer a query Q(x) about the final frequency vector, using as little space and

update time as possible.5

Since storing the vector x entirely would trivially require O(n logmN) = O(n log n) bits
of space, the goal of streaming algorithms is to maintain a sublinear space sketch of the data.
Specifically, the gold standard in streaming is generally to design algorithms with polylogarith-

mic, instead of polynomial, dependency on the ambient dimension n.

Models of Streaming. Two prominent variants of the streaming model studied in the literature
are the insertion-only and turnstile models. In the insertion-only model, we are promised that
∆t ≥ 0 for every update ∆t, whereas in the turnstile model updates may be positive or negative.

5Note that all space complexity bounds in this thesis will be stated in terms of the number of bits required by the
algorithm.

7

The latter is more general, and is the model which is stated in Definition 1.1.1. The turnstile
model can be further subdivided into the the general turnstile and the strict turnstile models,
where in the latter updates may be positive or negative, but we are always promised that xi ≥ 0
at all points in the stream. The turnstile model captures a wider array of applications than the
insertion only model. For instance, turnstile streams can model differences between streams, such
as the Internet traffic discrepancy between separate routers in different geographical locations.
Turnstile algorithms are also useful for dynamic data, such as financial data streams, where prices
can fluctuate up and down [BBD+02, M+05].

Since the turnstile model of streaming is more general, the space complexity of streaming
tasks is often higher for turnstile streams. In fact, many important streaming problems provably
require a Θ(log n) multiplicative factor more space for turnstile streams than for insertion-only
streams. This complexity gap motivates having an intermediate model, which allows deletions,
but only a limited number. This intermediate model is known as the bounded deletion model, and
it provides a continuous link between the turnstile and streaming models. The bounded deletion
model was first formalized in our paper [JW18a], and is the primary topic of Chapter 6.

History. The space complexity of a multitude of different queries in both the above models has
been of tremendous interest in the algorithms community over the past three decades. Perhaps the
first example of a streaming algorithm is the the work of Morris [Mor78], who demonstrated that
it is possible to approximately maintain a counter during a stream of n (unit) increments in only
O(log log n) space, as opposed to the O(log n) space required to exactly store such a counter.
Another foundational result is the work of Flajolet and Martin [FM85], which demonstrated an
extremely efficient algorithm for estimating the number of distinct elements in a stream (this
corresponds to the number of non-zero entries in the stream vector x). Also noteworthy is the
work of Munro and Paterson [MP80], who gave sublinear space searching algorithms for finding
the k-th largest value of a dataset given in a stream

The field of streaming algorithms did not truly explode until several decades later, due to the
seminal paper of Alon, Matias, and Szegedy [AMS96], who tackled the problem of approximat-
ing the moments of a data stream. This explosion was additionally fueled by the growth of the
internet in the late 1990s and early 2000s, which necessitated the development of space-efficient,
real-time streaming algorithms. Since then, the field has grown enormously, and the space com-
plexity of many fundamental tasks is now understood. An incomplete and informal list of such
fundamental streaming problems is given in Figure 1.1.

8

Common Streaming Tasks

Given a stream vector x ∈ Rn, accuracy ε ∈ (0, 1), and parameter p > 0.

• Lp Estimation. Output an estimate L̃p such that, with probability at least 3/4, we
have

(1− ε)‖x‖pp ≤ L̃p ≤ (1 + ε)‖x‖pp
where ‖x‖pp = ∑n

i=1 |xi|p.

• Lp Sampling. Sample a coordinate i ∈ [n] with probability proportional to |xi|p.

• Lp-Heavy hitters. Output a set S ⊂ [n] containing all i with |xi| > ε‖x‖p and
containing no j ∈ [n] with |xj| < (ε/2)‖x‖p.

• Inner Product Estimation. Given two vectors x, y ∈ Rn in a stream, estimate their
inner product 〈x, y〉.

• Entropy Estimation. Estimate the empirical entropy

H(x) = −
n∑
i=1

|xi|
‖x‖1

log
(
|xi|
‖x‖1

)

Figure 1.1: An informal list of streaming tasks.

Connection to Distributed Computation and Linear Sketching. One important property of
many streaming sketches is mergability, meaning that two sketches of distinct streams can be
merged to form a sketch of the union of these streams. Consequently, streaming algorithms are
especially well-suited for distributed computation. Here, each machine in a large distributed
network can compute a sketch of its local data, and then aggregate the small space sketches
at a centralized location. By sketching the data, this results in dramatically smaller amounts
of communication between machines, which is the central resource of interest in distributed
algorithms. Common models where such mergable sketches apply are the MapReduce (MPC)
model and the coordinator model. Additionally, mergable sketches are useful for distributed

streams, such as the distributed functional monitoring model [CMYZ12] (see Section 1.1.3).

A central example of a mergable sketch is that of a linear sketch. Specifically, a streaming
algorithm is said to be a linear sketch if it generates a matrix S ∈ Rk×n (called a sketching

matrix) from some distributionD over k×nmatrices. It then maintains the matrix-vector product
S · x ∈ Rk in the stream (called a sketch), and outputs its response to a query as a function only
of the sketch Sx. Naturally, setting S to be the identity matrix would allow for total recovery

9

of x. However, one generally wants significant compression of the dimension, so that k � n.
A classic example is the Johnson-Lindenstrauss Lemma [JL84], which says that the Euclidean
norm can be estimated to (1± ε) error using a Gaussian sketching matrix with k = O(ε−2) rows.

Notice that linear sketches can be easily maintained in a stream, since an update (i,∆) can
be processed by setting Sx ← Sx + ∆ · S∗,i, where S∗,i is the i-th column of S. Furthermore,
notice that linear sketches can be easily merged by simply summing them, since Sx + Sy =
S(x + y). We remark that essentially all turnstile streaming algorithms in the literature are
linear sketches, and in fact there is a formal equivalence between the two (with some minor
caveats) [LNW14b, AHLW16]. For some linear sketching algorithms, the output of the algorithm
may also depend on the entries of the sketching matrix S in addition to the sketch Sx. For such
algorithms, the matrix S is generally specified in very small space, such as through the usage of
hash functions with limited independence. In other cases, such algorithms are only correct in the
random oracle model (see below).

Remark 1 (The Random Oracle Model). An nuanced yet important consideration in streaming
is whether the algorithm is charged for storing random bits. In the random oracle model of
streaming, this is not the case, and the algorithm is given random access to an arbitrarily long
string of random bits which do not count against the space. In the standard model, algorithms
are not given this power, and must pay for storing random bits. The random oracle model is very
well studied, as it corresponds to the public coin model of communication complexity, which is
the model most commonly used to prove lower bounds for the space complexity of streaming
algorithms. Thus, most streaming lower bounds apply to the random oracle model [BYJKS04,
Woo04, KNP+17].

However, having a random oracle is mostly a theoretical concern—in practice, any random
bits which are consistently used by the algorithm must necessarily be stored by the algorithm.
Thus, we often would like to ensure that our algorithms hold in the standard model. The process
of transforming a random oracle algorithm into a standard algorithm is known as derandomiza-

tion, and will be an important concern in this thesis. Unless otherwise stated, all space upper
bounds in this thesis hold in the standard model.

Overview of Our Contributions in Streaming. This thesis focuses extensively on the de-
velopment of streaming algorithms. Streaming is by now a relatively mature field in computer
science, and the space complexity of many fundamental tasks in the standard streaming model
(Definition 1.1.1) is fully understood. However, in the decades since the popularization of the
standard model, many significant developments have occurred in both the theory and practice

10

which motivated the model to begin with. Such developments include the explosion of machine
learning algorithms, massive graph databases (such as social networks), and AI-driven applica-
tions such as recommendation systems and autonomous vehicles. Unsurprisingly, the classical
model often fails to capture important aspects of these modern developments, necessitating the
development of new models in addition to the continual study of existing ones.

The contributions of this thesis to streaming have two distinct flavors. Firstly, we develop
new algorithms and improved analyses for core streaming tasks, whose complexity has been the
topic of intensive study for decades. The second flavor of results concern the development of
new models and perspectives on the streaming literature. These latter results address the afore-
mentioned developments in practice by designing sketches which handle scenarios important to
modern computation, but not considered by the original models of streaming.

An example of the first flavor is the task of Lp norm estimation in a stream. Norm estima-
tion is one of the oldest problems in the streaming literature, dating back to the AMS sketch
[AMS96] and Indyk’s celebrated p-stable estimator [Ind06], which, nevertheless, is still not fully
understood in the insertion-only case. In Chapter 4, we resolve the complexity of Lp estimation
in insertion-only streams for p < 1 (up to log log n and log ε−1 factors). As another example,
in Chapter 3 we give the first sublinear space algorithms for perfect Lp sampling in turnstile
streams—a central streaming task whose study dates back to the reservoir sampling algorithm of
Vitter [Vit85a]–thereby answering a decade old open question of Cormode, Murthukrishnan, and
Rozenbaum [CMR05]. Additionally, in Chapter 8, we improve the approximation of the clas-
sic Quadtree algorithm for estimating the Earth Mover’s Distance between sets of points in Rd,
yielding the first improved streaming algorithms for the task since the work of Andoni, Indyk,
and Krauthgamer [AIK08a].

Examples of results which fit into the second catagory of contributions include the introduc-
tion of the Bounded Deletion Streaming Model in Chapter 6. This model considers constrained
turnstile streams which satisfy the often more realistic property that not all of the insertions to
a stream are deleted by the end, allowing for improved algorithms as a result. Another example
is the Adversarially Robust Streaming Model, introduced in Chapter 7, where the updates to the
stream are chosen adaptively by a potentially malicious adversary, and the algorithm must nev-
ertheless be correct at all time steps. Such adaptive streams are now ubiquitous in practice, yet
classical streaming algorithms were unable to handle any amount of adaptivity. Both of these
models introduced in this thesis have spurred a flurry of follow-up work, fostering the continual
evolution and modernization of sketching as a field.

11

1.1.1 Chapter 3: Perfect Sampling in Data Streams

A central theme of this thesis is the generation of samples from an underlying distribution. The
task of generating samples from data streams is a fundamental primitive for data analysis, and
is the backbone for many approximation and statistical tasks. Given a high-dimensional stream
vector x ∈ Rn and a non-negative measure function G : R → R≥0, the goal of is to sample
a coordinate i ∈ [n] with probability proportional to G(xi). The most widely widely studied
measure in the literature is the Lp distribution Dp(x), obtained by setting G(x) = |x|p, so that
Pr [i] = |xi|p/‖x‖pp. Sampling from the Lp distribution is a powerful primitive which can be
utilized to solve many important streaming problems (discussed below).

Ideally, we would like to design a small-space streaming algorithm which, after observing
the stream (i1,∆1), . . . , (im,∆m) which defines the vector x ∈ Rn, outputs a random variable
X ∼ Dp(x). In the special case of the insertion only model and p = 1, such an idealistic goal is
indeed possible. In fact, the solution for this case has been well-known for several decades, and
is the classic reservoir sampling algorithm of Vitter [Vit85a], which uses O(log n) total bits of
space to maintain a sample.

However, when negative updates are allowed (i.e., the turnstile model), or when p 6= 1,
reservoir sampling fails, and the problem becomes more complicated. In fact, the question of
whether such samplers using sublinear space even exist was posed by Cormode, Murthukrishnan,
and Rozenbaum in 2005 [CMR05]. In 2010, Monemizadeh and Woodruff made partial progress
towards this open question by demonstrating that, if one permits the sampler to be approximately

correct, such samplers are indeed possible [MW10]. This latter notion is known as approximate

Lp sampling, defined below.

Definition 1.1.2 (Approximate Lp Sampler). Fix any p ∈ [0, 2],6 parameters ε, δ ∈ (0, 1), and

let x ∈ Rn be a non-zero vector. Then an (ε, δ)-approximate Lp sampler is an algorithm which

outputs a random variable Z ∈ [n] ∪ {⊥} such that Pr [X = ⊥] ≤ δ, and such that for every

i ∈ [n]:

Pr [X = i | X 6= ⊥] = (1± ε) |xi|
p

‖x‖pp
±O(n−c)

where c ≥ 1 is an arbitrarily large constant. If ε = 0, we say that the algorithm is a perfect Lp
sampler.

6We note that for p > 2, any approximate Lp sampler (even with constant error ε) must use polynomial space
Ω(n1−2/p). This follows from the fact that O(1) copies of an Lp sampling sketches can be used to solve the Ω(1)
Lp-heavy hitters problem, and the latter admits a well known Ω(n1−2/p) lower bound [BYJKS04, Jay09]. Thus, we
are most interested in the regime 0 < p ≤ 2.

12

The ⊥ symbol allows the algorithm to produce no output with some probability δ. However,
conditioned on not outputting ⊥, the distribution of the algorithm must be close to the true Lp
distribution. The small additive error n−c is seen as a “catastrophic failure” event, and is allowed
by a perfectLp sampler. While one might hope to remove this additive error, we show in Theorem
29 of Chapter 3 that this is impossible to accomplish in sublinear space.

Since their introduction in [MW10], Lp samplers have been utilized to develop alternative
algorithms for important streaming problems, such as the heavy hitters problem, Lp estima-
tion, cascaded norm estimation, and finding duplicates in data streams [AKO11, MW10, JST11,
BOZ12]. The importance of Lp sampling sketches extends far beyond these applications, and
have since been applied as a fundamental tool in distributed computation [WZ18, JSTW19,
BMRT20], graph algorithms [AGM12a, AGM12c, Jin18, CLP18, KKP18, CKP+21, CFCHT20,
MV20, KMM+20, FKN21, AD21, FKN21], metric approximation [CJLW20a], numerical linear
algebra [LNW19, DJS+19, MRWZ20a], computational social choice [MSW20], data analysis
[CPW20], and differential privacy [CGSS20], among many other applications.

The one-pass turnstile approximateLp sampler introduced in [MW10] requires poly(ε−1, log n)
space, with large exponents. Following [MW10], several further improvements were made to the
complexity of approximate Lp samplers by Andoni, Krauthgamer, and Onak, [AKO11], and
finally by Jowhari, Sağlam, and Tardos [JST11], resulting in the following theorem.

Theorem 2 (Approximate Lp sampling [JST11]). Fix 0 < p ≤ 2, and ε, δ ∈ (0, 1). Then there

is a (ε, δ)-approximate Lp sampler for turnstile streams using O(1
εmax{1,p} log2 n log δ−1) bits of

space for p ∈ (0, 2)\{1},O(log ε−1

ε
log2 n log δ−1) bits of space for p = 1, andO(1

ε2
log3 n log δ−1)

bits of space for p = 2.

Furthermore, given that the algorithm produces a sampler i ∈ [n], it can also produce an

estimate x̃i such that x̃i = (1± ε)xi with probability at least 1− δ in the same space.

The work of Jowhari, Sağlam, and Tardos additionally gave an Ω(log2 n)-bit lower bound for
(ε, δ)-approximate Lp samplers for any p ≥ 0 and constants ε, δ. Recently, this lower bound was
extended to Ω(log2 n log δ−1) [KNP+17] bits for any constant ε and δ > 2−n.99 . By Theorem
2, this closed the space complexity dependence on n, δ for p ∈ (0, 2) \ {1}, and nearly closed
the complexity for p ∈ {1, 2} in these parameters. However, a large gap in the dependency
on ε remained. In fact, no lower bound in terms of ε was known, leaving open the possibility
of a perfect Lp sampler. Such perfect samplers are necessary for many statistical tasks which
generate multiple samples from the distribution, thus requiring high accuracy, such as the task of
simulating random walks on graphs [Jin18, CKP+21].

13

Contribution: Perfect Lp Sampling

In Chapter 3, based on the results in our paper [JW18b], we explain the phenomenon of the
lack of a lower bound in terms of ε by showing that ε need not enter the space complexity of
an Lp sampler at all. In other words, we demonstrate the existence of perfect Lp samplers using
O(log2 n log δ−1)-bits of space for p ∈ (0, 2), thus resolving the space complexity of the problem.
This space bound holds in the random oracle model, however, we show that the random oracle
assumption can be removed with only a (log log n)2 factor increase in the space.

For p = 2, our space is O(log3 n log δ−1)-bits, which matches the best known upper bounds
in terms of n, δ, yet again has no dependency on ε. In addition, for p < 2 and the high probability
regime of δ < 1/n, we obtain an O(log3 n)-bit perfect Lp sampler, which also tightly matches
the lower bound. Our main theorem is as follows:

Theorem 3 (Perfect Lp sampling). Fix any p ∈ (0, 2], and δ ∈ (0, 1). Then there is a perfect Lp
sampler (Definition 1.1.2) which outputs ⊥ with probability at most δ. For p = 2, the sampler

uses space O(log3 n log δ−1). For p < 2 the space is O(log2 n log δ−1) in the random oracle

model, and without a random oracle the space is:

O
(

min
{

log2 n log 1
δ

(log log n)2, log2 n log n
δ

})

Moreover, for any ν, δ2 ∈ (0, 1), conditioned on outputting a sample i ∈ [n], the algorithm

can output an estimate x̃i such that x̃i = (1 ± ν)xi with probabiliaty at least 1 − δ2, using an

additive

O
(

min
{
ν−2, ν−p log 1

δ2

}
log n log 1

δ2

)
bits of space.

The space complexity of providing an estimate of the frequency xi of the sampled coor-
dinate should be compared to the previous best known result of Theorem 2, which required
O(ν−p log2 n) bits of space. Our algorithm from Theorem 3 has since been applied several times
towards developing high-accuracy statistical algorithms for data streams. In particular, our al-
gorithm has been applied to improve the state of the art bounds for simulating random walks
on graphs, where the graph is given in a stream or distributed over multiple machines [Jin18,
CKP+21].7

7Specifically, the usage of our perfect samplers, as opposed to prior approximate samplers, has improved the
space dependency on the variational distance ε of the walk from poly(1/ε) to log(1/ε).

14

Precision Sampling. The algorithm of Theorem 3 is based on a powerful and elegant technique
known as precision sampling. Precision sampling was introduced by Andoni, Krauthgamer,
and Onak [AKO11, AKO10], and later refined by Jowhari, Sağlam, and Tardos [JST11], to
develop approximate Lp samplers. At a high-level, precision sampling reduces the problem of
sampling a coordinate from a high-dimensional vector x ∈ Rn to the problem of finding the
largest coordinate in another high-dimensional vector z ∈ Rn. Since finding large coordinates,
or the heavy hitters problem, is well studied in streaming and admits small space algorithms, this
reduction is extremely useful. The main contribution of Chapter 3 is a further refinement of the
precision sampling technique to produce perfect samplers. The precision sampling framework,
along with the new insights from Chapter 3, are a central tool in this thesis, and will be applied
for a variety of purposes in Chapters 3, 5, 6, 8, and 10.

General Derandomization. One of several main technical challenges involved in the proof of
Theorem 3 is the removal of the random oracle assumption. To accomplish this derandomiza-
tion, we develop a generic technique which allows for the black-box derandomization of a large
class of linear sketches. This theorem will not be sufficient alone to derandomize our algorithm,
but is suitable for a number of other applications. For instance, it provides the first efficient de-
randomization of the count-sketch variant of Minton and Price [MP14], a discussion of which
can be found in Section 3.4.2. Additionally, it gives an alternative and arguably simpler deran-
domization of the classic Indyk p-stable sketch [Ind06] than that of Kane, Nelson, and Woodruff
[KNW10a].

General Measure Functions. In Theorem 29, we demonstrate that the additive n−c error was
necessary for sublinear space Lp samplers in the turnstile model. Specifically, we show that any
Lp sampler with additive error γ > 0 requires at least Ω(min{n, log 1

γ
}) bits of space. However,

this does not rule out the possibility of truly perfect samplers, with γ = 0, in the insertion only
model. In Section 3.6, we address this discrepancy by demonstrating that sublinear space truly
perfect Lp samplers do exist in the insertion only streaming model. Specifically, we develop a
framework for truly-perfect sampling in insertion only streams for general measure functions G.
The framework applies for a wide class of measure functions G, including Lp sampling, concave
functions, and a large number of specific measure functions, such as the L1 − L2, Fair, Huber,
and Tukey estimators.

15

1.1.2 Chapter 4: Moment Estimation in Streaming and Distributed Mod-
els

A closely related area to streaming is the field of distributed computation. Sketching plays a
fundamental role for distributed computation as well, especially due to the ability for sketches
to be merged together across different machines. Dual to distributed algorithms is the field of
communication complexity, which is, in some sense, the study of the amount of communication
required to solve a distributed computational task. In fact, nearly all known lower bounds for
the space complexity of streaming algorithms arise through the field of communication complex-

ity [Woo04, WZ18, KNW10a, JST11, KNP+17, BCWY16, CKS03, WW15, LW13, MPTW16,
JW09]. In Chapter 4, based on a joint work with David Woodruff [JW19], we study the funda-
mental problem of moment estimation in both streaming and distributed models, making progress
towards resolving a long-standing open question in the area.

The problem of estimating the p-th moment of a stream vector x ∈ Rn is perhaps the most
central in the streaming literature, beginning with the seminal work of Alon, Matias, and Szegedy
[AMS96]. Recall that this problem is to estimate ‖x‖pp = ∑n

i=1 |xi|p, a quantity which we de-
note by Fp, to a multiplicative error of (1 + ε), for some error parameter ε > 0. Since it was
first studied, nearly two decades of research have been devoted to understanding the space and
time complexity of this problem [CKS03, IW05, BYJKS04, Woo04, Ind06, KNW10a, BO10,
KNPW11a, BKSV14, CCM16, BKSV14, BDN17, BVWY18].

For p ∈ (0, 2],8 the space complexity of Fp estimation in the turnstile model is now un-
derstood, with matching upper and lower bounds of Θ(ε−2 log n). For insertion only streams,
however, there is a gap: the best known lower bound is Ω(ε−2 + log n) bits [Woo04], and in the
random oracle model it is only Ω(ε−2), whereas the best upper bound is to just run the turnstile
O(ε−2 log n)-space algorithm. This means that there is a O(log n) gap in our understanding of
the space complexity of one of the most fundamental streaming tasks.

In Chapter 4, we make progress towards understanding the complexity of insertion-only Fp
estimation, as well as other important tasks such as entropy estimation and finding the heavy
hitters, in both the streaming and distributed models of computation. Specifically, for p < 1, we
resolve the space complexity by giving an Õ(ε−2 + log n)-bits of space upper bound, which is
tight up to log ε−1 and log log n factors. In the random oracle model, our upper bound is Õ(ε−2),9

8For p > 2, it is known that polynomial in n (rather than poly-logarithmic) space is needed [CKS03, IW05], so
we focus instead on the case of p ∈ (0, 2].

9This space complexity is measured between updates. To read and process the Θ(logn)-bit identity of an update,
the algorithm will use an additionalO(logn)-bit working memory tape during an update. Note that all lower bounds

16

which also matches the lower bound in this setting. For 1 < p ≤ 2, we prove an Õ(ε−2)-bits of
max-communication upper bound in the distributed models most frequently used to prove lower

bounds for streaming. This result rules out a large and very commonly used class of approaches
for proving lower bounds against the space complexity of streaming algorithms.

To formalize these contributions slightly, we must first introduce the Message Passing Model,
which is one of the most general distributed models of computation [CRR14, PVZ12, WZ12,
BEO+13]. In this model, there are m players, each positioned at a unique vertex in a graph
G = (V,E). The i-th player is given as input an integer vector Xi ∈ Zn. The goal of the
players is to work together to jointly approximate some function f(X) of the aggregate vec-
tor X = ∑n

i=1Xi, such as the p-th moment f(X) = Fp = ‖X‖pp = ∑n
i=1 |Xi|p. The players

are only allowed to communicate with each other by sending messages over the edges of G.
The goal is for at least one player to output the approximation to f(X), while minimizing the
max-communication, which is the total number of bits sent over any edge of G.

We point out that the streaming model is just a special case of one-shot multi-party commu-
nication, where the graphG is the line graph, and if (it,∆t) is the t-th stream update then the t-th
player gets input Xt = eit ·∆t ∈ Rn. Note that the space complexity of a streaming algorithm
is just the max-communication used by a corresponding communication protocol. Since we are
interested in insertion only stream, we will consider the distributed analogue known as the non-

negative data model, where Xi ∈ {0, 1, . . . ,M}n for all input vectors Xi, for some M > 0 (as
in streaming, we assume M = poly(n,m)).

Chapter 4 Contributions. We can now describe the main results of Chapter 4. Let d =
diam(G) be the diameter of the communication graph G. Our first result is a protocol for Fp
estimation when p ∈ (1, 2] which uses a max communication of Õ(ε−2 log d) bits.

Theorem 30 For p ∈ (1, 2], there is a protocol for (1± ε) approximating Fp in the non-negative

data message passing model, which succeeds with probability 3/4, using a max communication

of O(1
ε2

(log log n+ log d+ log 1/ε)) bits.

Theorem 30 has interesting implications for any attempts to prove lower-bounds for stream-
ing algorithms that estimate Fp. Namely, nearly all lower bounds in streaming come from com-
munication topologies with constant diameter d (e.g., 2-party communication or the complete
graph). Theorem 30 completely rules out these approaches for improving lower bounds for Fp
estimation in a stream; in particular, any improved lower bound will need to use a graph with
Ω(n) diameter, such as the line.

only apply to the space complexity between updates, and allow arbitrary space to process updates.

17

On the other hand, for the regime p ∈ (0, 1), we improve the upper bound for Fp estimation,
giving an algorithm that is independent of d – specifically, the complexity of our algorithm is
always Õ(ε−2). Notice that this is independent of the graph topology, and thus holds for the line
graph. Consequently, we obtain an algorithm for Fp estimation on insertion-only streams using
Õ(ε−2) bits of space in the random oracle model, and Õ(ε−2 + log n) bits after derandomizing.
Both bounds are optimal, closing a long line of research on the problem for this range of p
[Woo04, Ind06, KNW10a, KNPW11a, CCM16, BVWY18]. Specifically, we prove

Theorem 33 There is an insertion only streaming algorithm for Fp estimation, p ∈ (0, 1),

which outputs a (1± ε) approximation to ‖x‖pp with probability at least 2/3. The algorithm uses

O((1
ε2

(log log n+ log 1/ε) + log 1/ε
log log 1/ε log n)-bits of space. In the random oracle model, the space

is O(1
ε2

(log log n+ log 1/ε)).

As an application of our protocol for Fp estimation, we give a Õ(ε−2)-bits of space, insertion
only streaming algorithm for entropy estimation in the random oracle model, and also prove a
matching Ω(ε−2) lower bound. This also closes the complexity of the task of entropy estimation
in the random oracle streaming model.

1.1.3 Chapter 5: Sampling from Distributed Streams

An important theme of Chapter 4, described above in Section 1.1.2, is the connection between
streaming algorithms, where the data is distributed across multiple updates which arrive con-
secutively in time, and distributed algorithms, where the data is distributed across multiple
machines, which must communicate to aggregate sketches of the data. A natural and practi-
cally motivated extension is to combine the models, and study distributed streams. This is pre-
cisely the focus of Chapter 5, based on a joint work with Gokarna Sharma, Srikanta Tirthapura,
and David P. Woodruff [JSTW19], where we consider the continuous, distributed, streaming

model [CMYZ12], also known as the distributed functional monitoring model.

Formally, in this model, there are k physically distributed sites, each of which is connected to
a central coordinator, to which they can send and recieve messages. Each site i receives a local
stream of data Si, consisting of a sequence of items of the form (e, w) where e is an item identifier
and w ∈ R>0 is a positive weight. Queries are posed to the coordinator, asking for an aggregate
over S = ∪ki=1Si, the union of all streams observed so far. The goal is to minimize the number
of messages sent over the network, over the entire observation. Oftentimes, the predominant
bottleneck for distributed data processing is the network bandwidth, and so it is highly desirable
to have algorithms that communicate as few messages as possible. In particular, as the volume

18

of the data and the number of distributed sites observing the streams scale, it becomes infeasible
to communicate all of the data points observed to a central coordinator. Thus, it is necessary to
develop algorithms which send significantly fewer messages than the total number of data points
received.

As we have already seen, many streaming tasks can be reduced to sampling from the un-
derlying data. For instance, a search engine that uses multiple distributed servers can maintain
the set of “typical” queries posed to it through continuously maintaining a random sample of all
the queries seen thus far. It follows that having extremely efficient sampling algorithms is an
invaluable primitive for more complicated data mining tasks. In Chapter 5, we study the devel-
opment of such primitives. Specifically, we consider the fundamental problem of maintaining
a weighted sample from distributed streams, which generalizes the classic reservoir sampling

problem [Knu97b, Vit85a] from a centralized to a distributed setting.

Formally, in the distributed weighted random sampling problem, the task is for the coordina-
tor to continuously maintain, at every time step t ≥ s, a weighted random sample of size s from
S. Here, a single weighted random sample is item (e, w) sampled with probability proportional
to w. There are two important variations of weighted sampling: sampling with replacement
(SWR) and sampling without replacement (SWOR). In the latter, once an item is sampled, it
is removed from the set and cannot be sampled again. Thus, for streams containing a skewed
distribution of weights, such as a stream with several heavy hitters, the resulting samples can be
drastically different.

The problem of unweighted distributed sampling, where all weights are equal, is well studied
and admits tight upper and lower bounds on message complexity [TW11, CMYZ12, CTW16].
Moreover, for weighted SWR, there is a simple (and tight) reduction to the unweighted case.
Thus, for distributed SWR, the complexity of the problem is understood both for the weighted
and unweighted cases. However, in many applications the stream has only a few heavy items
which may dominate a random sample when chosen with replacement. For instance, in a large
database of internet traffic logs, a small set of domains will dominate the overall traffic, and a
weighted SWR would likely consist only of samples from this set. Weighted sampling without

replacement (weighted SWOR) eludes this issue, since such heavy items can be sampled at most
once. The design of efficient, distributed weighted SWOR algorithms is therefore a critical task
for many data processing applications.

Main Contributions for Chapter 5. The main contribution of Chapter 5 is the first message-
optimal algorithm for weighted SWOR from a distributed stream. In addition, the algorithm has

19

optimal space and time complexity. Formally

Theorem 41. There is an algorithm for distributed WSWOR that uses an expectedO
(
k log(W/s)

log(1+k/s)

)
messages between the sites and the coordinator, and continuously maintains at every point in the

stream a WSWOR of size s from the items seen so far. Moreover, this communication is optimal

up to a constant factor.

The space required for the coordinator is O(s) machine words, and the space required for

each site is O(1) words. Each site requires O(1) processing time per update, and the total

runtime of the coordinator is O
(
k log(W/s)

log(1+k/s)

)
.

The algorithm of Theorem 41 crucially utilizes the precision sampling framework from Chap-
ter 3 to maintain the sample. Specifically, the framework assigns a key v to each item (e, w) by
setting v = w/t where t is exponentially distributed. One then seeks to maintain the items with
the top s largest keys. By taking this approach, we ensure that the sites only send a message to
the coordinator when they generate a key which is “very likely” to be among the top s.

As an application of our sampling algorithm, we derive the first distributed streaming algo-
rithms for tracking heavy hitters with residual error. Here the goal is to output a set U ⊂ S
with |U | = O(1/ε), such that U contains all items (e, w) with w at least an ε fraction of the total
weight in the stream after the top 1/ε heaviest items are removed. We prove upper and lower
bounds for this problem which are tight up to a log(1/ε) factor (Section 5.5).

Finally, we apply our sampling algorithm to improve the message complexity of distributed
L1 tracking, also known as count tracking, which is a widely studied problem in distributed
streaming (Section 5.6). Here, if S = (e1, w1), . . . , (en, wn), the L1 tracking problem is to, after
the first τ updates for any τ ∈ [n], return a (1± ε) approximation to Wτ = ∑τ

i=1 wi. In addition
to an upper bound for this problem, we also derive a tight message lower bound, which closes
the message complexity of this fundamental problem.

1.1.4 Chapter 6: Data Streams with Bounded Deletions

As discussed in Section 1.1, the two most prevalent models in the data stream literature are the
insertion-only and turnstile models. Unfortunately, since the turnstile model is more general and
expressive, many important streaming problems provably require a Θ(log n) multiplicative factor
more space for turnstile streams than for insertion-only streams. For one example, identifying a
coordinate i ∈ [n] for which |xi| > 1

10
∑n
j=1 |xj| can be accomplished using only O(log n)-bits

of space in the insertion-only model [BDW16], but requires Ω(log2 n) bits in the turnstile model

20

[JST11].

This dichotomy leaves a perhaps unsatisfactory resolution to the matter for both theory and
practice. Specifically, in practice, one often does not expect an unlimited number of deletions
in the stream, thus a natural question is whether we need to pay this additional log n factor in
such cases. In Chapter 6, based on a joint work with David Woodruff [JW18a], we introduce an
intermediate model, known as the bounded-deletion model, which bridges the complexity of the
insertion-only and turnstile models. Since our introduction of this model, a flurry of work has
studied the complexity of various streaming tasks therein, and discovered surprising properties
and benefits of the model [BGW20, KP20, HKM+20b, ZMW+21].

In the bounded deletion model, we are given a parameter α ≥ 1, and we are then promised
that the L1 norm ‖x‖1 of the stream is at least a 1/α-fraction of the norm of the stream had
all updates been positive. Formally, we define the insertion vector I ∈ Rn to be the frequency
vector of the substream of positive updates (∆t ≥ 0), and the deletion vector D ∈ Rn to be the
entry-wise absolute value of the frequency vector of the substream of negative updates. In other
words, we have:

Ij =
∑

t : it=j
∆t≥0

∆t and Dj =
∑

t : it=j
∆t<0

|∆t|

for each j ∈ [n] on a stream with updates (i1,∆1), (i2,∆2), . . . , (im,∆m). Notice that x = I−D
by definition. We then define the bounded deletion model as follows:

Definition 6.1.1 (α-Bounded Deletion Model). For α ≥ 1, a stream satisfies the Lp α-property

if

‖I +D‖p ≤ α‖x‖p

Definition 6.1.1 states that, at the end of the stream, at least an α fraction of the “Lp mass”
contained in the updates of the stream must actually contribute to the norm of x. Observe for
α = 1, we recover the insertion-only model, whereas for α = mM we recover the turnstile model
(excluding streams with x = ~0). The choice of p in Definition 6.1.1 depends on the application
of interest, e.g. for estimating the Lp norm, one would generally consider the Lp α-property. In
Chapter 6, we focus primarily on the important cases of p ∈ {0, 1}.

The main contribution of Chapter 6 is to demonstrate that, for many streaming tasks, the
extra log n factor required by turnstile algorithms can be replaced with a logα factor. This
is a significant improvement for moderate values of α. In addition to upper bounds, we give

21

matching or nearly matching lower bounds in the α-property setting for all the problems we
consider. The problems for which we obtain these results include L1-Heavy Hitters, L1 & L0

estimation, L1 & L0 sampling, and inner product estimation. For instance, we give upper and
lowers bounds of Θ̃(ε−1 log n logα) bits for theL1 Heavy Hitters problem, whereas the same task
requires Θ(ε−1 log2 n) space in the turnstile model [JST11, CCFC02a] and Θ(ε−1 log n) space in
the insertion-only model [MG82]. A complete table of these results can be found in Figure 6.1
in Chapter 6.

At a high level, the main insights of Chapter 6 can be summarized as follows. Informally,
streams with the α-property have a ratio of at most α between the “noise” in the stream (i.e.,
insertions that are later removed by a deletion), and the “signal” (insertions that are not deleted).
Thus, we can hope to recover information about the “signal” by uniformly sampling at most
poly(α) updates in the stream, and then running a standard turnstile algorithm on the subsampled
stream. The advantage of this is that the effective stream length is now only poly(α) instead of
poly(n), so the counters stored in a turnstile algorithm can be maintained inO(logα) bits instead
of O(log n), resulting in the desired space savings. This main conceptual contribution can then
be summarized by the following statement:

For bounded deletion streams, sampling updates before running turnstile

algorithms is an effective method to reduce space while maintaining correctness.

This message demonstrates the utility of sampling as a pre-processing tool to efficiently re-
duce the space complexity of algorithms before applying other data-analytic procedures. It is
important to note that this technique is generally not helpful for linear sketching algorithms,
which are equivalent to turnstile algorithms under some restrictions [LNW14a], and constitute
nearly all turnstile algorithms in the literature. Specifically, linear sketches cannot sample up-
dates in a stream.

1.1.5 Chapter 7: Adversarially Robust Streaming Algorithms

Up until this point, the focus of this thesis has been on the design of sketching algorithms for
compressing static datasets. Here, by static, we mean that the content of the data is independent
of the behavior of the algorithm. Specifically, in the static setting the data is first fixed in ad-
vance (although it is not known to the algorithm), and then the randomness for the algorithm is
generated. The guarantee of randomized sketching algorithms in the static setting is that they are
correct with good probability for any such fixed dataset.

22

While randomized streaming algorithms are very well-studied, the vast majority of them
provide no provable guarantees whatsoever if the “static” assumption is dropped. However,
assuming that the stream is independent of the randomness of the sketch, and in particular that
future elements of the stream do not depend on previous outputs of the streaming algorithm, may
not be realistic [MNS11, GHR+12, GHS+12, HW13, NY15a, BY20]. The failure to handle any
amount of adaptivity is a major limitation of many known randomized sketching algorithms.

One potential solution to the above limitation is to use deterministic algorithms, since they
are guaranteed to be correct on all possible inputs. Unfortunately, many central problems in
the streaming literature provably do not admit sublinear-space deterministic algorithms, so for
such problems randomization is necessary. Thus, a natural and important problem is whether it
is possible to design randomized sketching algorithms that are robust to adaptive streams. We
remark that such adaptive streams are very common. For example, in machine learning, an ad-
versary can use maliciously chosen examples to fool a trained model [SZS+14, MHS19]. More-
over, in the field of online learning [Haz16], adversaries are typically adaptive [SS17, LMPL18].
Another example comes from recommendation systems, where an online store suggests recom-
mended items based on a sample of previous purchases, which in turn influences future sales
[SS+11, GHR+12].

A streaming algorithm that is correct at all time steps even when the stream is adaptively
chosen by an adversary is said to be adversarially robust. The focus of Chapter 7 is the design
of randomized, adversarially robust streaming algorithms, with space complexity only slightly
larger than that of their static counter-parts.

Chapter 7 is based on a joint work with Omri Ben-Eliezer, David Woodruff, and Eylon Yogev
[BJWY20], where the adversarial streaming model was first introduced. The paper appeared in
PODS 2020, where it received the Best Paper Award. The paper also received a 2021 ACM
SIGMOD Research Highlight Award, an invitation to Highlights of Algorithms (HALG) 2021,
and was invited to the Journal of the ACM.

The Adversarial Streaming Model. In order to capture the unlimited number of scenarios
where future updates to the stream depend in some way on past outputs of the algorithm, we
study perhaps the most general non-degenerate model, where the adversary is allowed unbounded
computational power and resources. At each point in time, the streaming algorithm publishes its
output to a query for the stream. The adversary observes these outputs one-by-one, and can
choose the next update to the stream adaptively, depending on the full history of the outputs and
stream updates.

23

Formally, the model is defined via a two-player game between a STREAMINGALGORITHM

and an ADVERSARY. At the beginning, a queryQ is fixed, which the STREAMINGALGORITHM

must reply to after every time step. The game proceeds in rounds, where in the t-th round:

Round t in game between STREAMINGALGORITHM and ADVERSARY

1. ADVERSARY chooses an update ut = (at,∆t) for the stream, which can depend on
all previous stream updates and outputs of STREAMINGALGORITHM.

2. STREAMINGALGORITHM processes the new update ut and outputs its current re-
sponse Rt to the query Q.

3. ADVERSARY observes Rt (stores it) and proceeds to the next round.

The goal of the ADVERSARY is to make the STREAMINGALGORITHM output an incorrect
response Rt to Q at some point t in the stream. For example, in the distinct elements problem,
the adversary’s goal is that on some step t, the estimate Rt will fail to be a (1 + ε)-approximation
of the true current number of distinct elements ‖x‖0 = |{i ∈ [n] : x(t)

i 6= 0}|.

Attack on AMS. Given the adversarial model defined above, the first and most natural question
is whether we even require new algorithms to handle it. In particular, a priori it is not clear
that the well-known static algorithms from the streaming literature are not already adversarially
robust. Unfortunately, we demonstrate that this is not the case. In particular, we begin by showing
that the classic Alon-Matias-Szegedy sketch (AMS sketch) [AMS96], the first and perhaps most
well-known sublinear space L2 estimation algorithm, is not adversarially robust, even in the
insertion only model (Theorem 92). We remark that the failure of the AMS-sketch, and in fact
all linear-sketches, for robust L2 estimation was already known for the turnstile model [HW13].
Our proof of this fact involves a relatively simple adversary which, furthermore, can be used to
attack several other well-known algorithms from the literature. This failure of standard static
streaming algorithms, even under simple attacks, demonstrates that new solutions are required
for the adversarial streaming model.

Main Contribution of Chapter 7. The main contribution of Chapter 7 is to design the first ad-
versarially robust randomized streaming algorithms for many fundamental streaming problems,
including distinct element (L0) estimation, Lp-norm estimation, heavy hitters, entropy estima-
tion, and several others. Moreover, the space complexity of all our algorithms is only a small
factor larger than that of the best non-robust (static) algorithm for the same problem. Specifically,

24

for a problem with precision parameter ε > 0, the complexity of our robust algorithm is usually
at most a 1

ε
log n factor larger than that of the best possible static algorithm for the problem, and

we often reduce this blow-up to only 1
ε

log 1
ε
. A full summary of our results can be found in Table

7.1 in Chapter 7.

Instead of developing ad-hoc solutions separately for each problem, our central contribution
is the introduction of a generic framework for adversarially robust algrorithms, which can
applied to nearly any streaming problem. Namely, we give a highly general framework which
allows one to take any static (i.e., non-robust) steaming algorithm, and transform it into a robust
algorithm with minor space and runtime overhead.

Our robustification methods rely on the fact that functions of interest do not drastically change
their value too many times along the stream. Specifically, the transformed algorithms have space
dependency on the flip-number λ of the function which is being estimated by the algorithm.
Informally, for a function g : Rn → R, the flip number is a bound on the number of times the
function g(x(t)) can change by a factor of (1± ε) in the stream. This is formalized below:

Definition 1.1.3 (ε-flip number.). Fix any m ≥ 1, and consider any stream of length m with

intermediate frequency vectors x(1), . . . , x(m). Let g : Rn → R be any function. Then the ε-flip

number of g, denoted λε,m(g) is the maximum size of any sub-sequence 1 ≤ i1 < i2 < · · · <
ik ≤ m such that g(x(ij)) 6= (1± ε)g(x(ij+1)) for all j = 1, 2, . . . , k − 1.

We present two distinct and incomparable methods for transforming a static algorithm into an
adversarially robust one. The first method, called sketch switching, maintains multiple instances
of the non-robust algorithm and switches between them in a way that cannot be exploited by the
adversary. The second technique bounds the number of computation paths possible in the two-
player adversarial game after small modifications to the output, and sets the failure probability
small enough to be correct on all of them. We state here an informal version of the first technique,
demonstrating the utility of a small flip number.

Lemma 7.2.5 (Sketch Switching, Informal). Fix any function g : Rn → R and 0 < ε, δ < 1.

Suppose there exists a static streaming algorithm that uses space L(ε, δ) to (1± ε)-approximate

g(x(t)) for all time steps t with probability 1 − δ, for any particular fixed stream. Then there is

an adversarially robust algorithm for (1 + ε)-approximating g(f (t)) at every step t ∈ [m] with

success probability 1− δ, whose space is O
(
L(ε, δ

λε,m(g)) · λε,m(g)
)
.

It is not hard to see that many standard functions g admit small flip number in the insertion-

only model. For instance, if g(x) = ‖x‖pp for any constant p ≥ 0, then λε,m(g) = O(ε−1 log(nm))

25

because ‖x‖pp is monotone, and can only increase by a factor of (1 + ε) at most O(ε−1 log(nm))
times. This allows us to apply our transformation to static streaming algorithms, in addition to
some further techniques which we develop along the way, to obtain adversarially robust algo-
rithms with very small space overhead.

Open Problem and Follow-up Work: Extensions to the Turnstile Model.

Since the introduction of the adversarially robust streaming model and the framework in our
paper [BJWY20], several follow up results have been made [HKM+20a, KMNS21, WZ20b].
Notably, Hassidim, Kaplan, Mansour, Matias, and Stemmer [HKM+20a] developed a transfor-
mation which improves the dependency on the flip number to

√
λ, as opposed to linear in λ, but

at the cost of additional poly((log n)/ε) factors. So far, this is still the best known bound on the
dependency of robust algorithms on λ when ε is a constant (some improvements for subconstant
ε were made in [WZ20b]).

Unfortunately, it is easy to see that most streaming tasks in the turnstile model can have
unbounded flip number. Thus, despite the above progress, to date, there are no known sublinear
space streaming algorithms for any important turnstile streaming problem, such as Lp estimation.
Furthermore, in [KMNS21], the authors demonstrated the existence of a specialized streaming
task for which any adversarial robust algorithm requires space Ω(

√
λ), whereas O(log2 λ) space

is possible in the non-robust model. This demonstrates that, in general, one cannot hope to
improve the λ-dependency of transformation type theorems. However, one could still hope for
sublinear space algorithms for problems such as Lp estimation in the turnstile model, motivating
the following question:

Do sublinear space turnstile streaming algorithms exist for typical streaming

problems, such as Lp estimation or heavy hitters?

A negative answer to the above would generate significant new insight into the power of the
adversarial model, and represent a strong limitation on the robustness of sketching general data
streams. Such a result may also motivate new models or additional restrictions on an adversary
to obtain notions of robustness which are both reasonable and feasible.

26

1.1.6 Chapter 8: Streaming Algorithms for Earth Movers Distance

Chapter 8 of this thesis concerns the development of geometric streaming algorithms, where
points p lying in some underlying metric space are inserted and deleted, and one seeks to approx-
imate some geometric function of the active dataset. In particular, we focus on the fundemental
Earth Movers Distance (EMD), which is a classic geometric distance function. Given two multi-
sets A,B ⊂ Rd, each of size s, the EMD between A and B is the minimum cost of a perfect
bipartite matching between the points in A and B, where cost is measured by distance in Rd –
most commonly, the L1 distance is used. Formally:

EMD(A,B) = min
matching
M⊂A×B

∑
(a,b)∈M

‖a− b‖1

EMD is an extremely popular distance measure in practice, such as for computer vision
[BVDPPH11, SDGP+15], image retrival [RTG00a], biology [NW70], document similarity [KSKW15a],
machine learning [ACB17, MJ15, FCCR18], among other areas. However, computing EMD ex-
actly is notoriously computationally inefficient: the best known general algorithms run inO(s2.5)
time, and any exact algorithm likely require Ω(s2) time even for simple metrics [Roh19]. In
what follows, we focus on the case of A,B ⊂ {0, 1}d, since all results extend naturally by
low-distortion metric embeddings from Rd to {0, 1}d′ .

Due to the computational resources required for exact computation, a common approach,
especially for modern applications, is to quickly approximate the EMD between two multisets
using the method of randomized tree embeddings [Bar96, Bar98, CCG+98, FRT04]. In this
method, the points A ∪ B are embedded into a random tree via recursive space partitions, and
then a matching is greedily computed bottom-up in the tree. The resulting data structure is
broadly referred to as a quadtree, which has a long history of study in geometric algorithms
[Sam84]. Quadtree is an extremely efficient algorithm for approximating the EMD; for instance,
if A,B ⊂ {0, 1}d are points in the hypercube, then the quadtree runs in linear time, and is the
best known linear time algorithm for EMD. Moreover, one particularly important property is
that, for certain types of quadtree embeddings, one can often sketch the output of the quadtree in
small space, allowing one to compute the approximation while observing A,B in a stream.

In Chapter 8, based on a join work with Amit Levi, Xi Chen, and Erik Waingarten [CJLW20b],
we demonstrate that the approximation factor achieved by the quadtree algorithm for EMD
is substantially better than what was previously known. Specifically, we show that the ap-
proximation is Θ̃(log s), instead of the prior best known bound O(min{log s, log d} · log s)

27

[AIK08b, BDI+20]. In particular, this demonstrates that the approximation factor of the quadtree
is independent of the dimension, and immediately improves the state of the art for linear time
approximations of high-dimensional EMD.

From the perspective of streaming, note that the previous best approximation obtained by
any sublinear space streaming algorithm (in any number of passes over the data), was also
O(min{log s, log d} log s), which was obtained by sketching the quadtree cost[AIK08b]. Us-
ing our improved analysis, one could hope to immediately obtain streaming algorithms with
the improved approximation factor. Unfortunately, our improved analysis does not immedi-
ately or obviously result in a streaming algorithm; roughly, this is due to the fact that the edge
weights utilized in the quadtree data structure we consider are data-dependent, as in prior work
[BDI+20]. Nevertheless, by extending the Lp sampling techniques developed in Chapter 3, we
design streaming algorithms for EMD with the new Θ̃(log s) approximation. Specifically, we
show that, given two passes over the data, a Θ̃(log s) approximation can always be obtained.

Theorem 95. There is a two-round linear sketch using poly(log s, log d) bits of space which,

given a pair of size-s multi-sets A,B ⊂ {0, 1}d, outputs η̂ ∈ R satisfying

EMD(A,B) ≤ η̂ ≤ Õ(log s) · EMD(A,B)

with probability at least 2/3.

The algorithm from the above theorem requires one pass to run Lp sampling algorithms, and
a second pass to compute meta-data associated with the samples obtained from the first pass. By
developing new specialized algorithms for a problem known as Sampling with Meta-Data, we
show that it is possible to compress these two phases into a single pass. Formally:

Theorem 96. Given ε ∈ (0, 1), there is a (one-round) linear sketch usingO(1/ε)·poly(log s, log d)
bits of space which, given a pair of size-s multi-sets A,B ⊂ {0, 1}d, outputs η̂ ∈ R satisfying

EMD(A,B) ≤ η̂ ≤ Õ(log s) · EMD(A,B) + εsd

with probability at least 2/3.

Notice that EMD(A,B) ≥ s when A∩B = ∅, in which case Theorem 96 yields an Õ(log s)
approximation in Õ(d) space. More generally, if the Jaccard Index of A and B is bounded away
from 1, we have the following corollary.

Corollary 8.1.1. Given ε ∈ (0, 1) there is a (one-round) linear sketch usingO(d/ε)·poly(log s, log d)

28

space which, given size-s A,B ⊂ {0, 1}d such that |A∩B|/|A∪B| ≤ 1− ε, outputs a Õ(log s)
multiplicative approximation to EMD(A,B) with probability at least 2/3.

1.2 Numerical Linear Algebra

Sketching as a tool for randomized Numerical Linear Algebra (NLA) has a distinguished history,
and has been the central ingredient in a number of breakthrough results in the past few decades
[FKV04, W+14, CW17]. The core approach employed by sketching for linear algebra is the
following: given a computational task on a large matrix A, one first compresses A into a lower-
dimensional matrix A′. From A′, one solves the original computational task with traditional
algorithms, and hopes that the resulting solution is a good approximation. This template is
known as the sketch-and-solve paradigm, and is the primary focus of Part II of this thesis.

The sketch-and-solve paradigm is best illustrated by an example, and perhaps the most canon-
ical example is that of linear regression. Here, we are given a design matrix A ∈ Rn×d, and a
vector b ∈ Rn of observations. The goal is to discover an underlying linear relationship between
the design matrix A and the vector of observations b, so that b ≈ A · x for some vector x ∈ Rd.

We will focus primarily on the over-constrained case for linear regression, where A contains
more rows that columns: namely n � d. The over-constrained setting is extremely common
in practice [W+14], as the rows of A generally represent distinct data-points, each living in an
ambient dimension of d, and the size of the data-set often exceeds the ambient dimension. For
instance, each row could correspond to a given customer’s movie ratings, or the purchasing habits
of a user across d different product categories. In both such scenarios, the number of customers
(data points) will generally significantly exceed the ambient dimension.

Given a design matrix A and observation vector b, we are tasked with finding a good linear
relationship between the two. In the over-constrained case, because there are more constraints
than variables in the linear system, there often will not exist an exact solution x such that Ax = b.
Instead, one seeks to find a “good enough” solution x. The most common measure of fit is the
least squares loss, which tasks one with solving the optimization problem:

min
x∈Rd
‖Ax− b‖2

2 (1.1)

where ‖y‖2
2 = ∑

i y
2
i is the squared-Euclidean norm. The optimal solution x∗ to the least squares

loss objective has a clear geometric interpretation: Ax∗ is the orthogonal projection of b onto

29

the column span of A. Due to this geometric interpretation, a closed form solution exists to the
optimization problem 1.1, and is given by x∗ = A+b, where A+ is the Moore-Penrose psuedo-
inverse of A.10 Unfortunately, computing A+ is a costly operation, requiring O(nd2) time in
general.

Instead of computing the solution directly, the sketch-and-solve paradigm seeks to first reduce
the dimension of the problem, while approximately maintaining the solution space. In other
words, the goal of the sketch-and-solve method is to produce a vector x̂ such that

‖Ax̂− b‖2
2 ≤ (1 + ε) min

x∈Rd
‖Ax− b‖2

2

for some specified error parameter ε > 0. The key steps in the paradigm for obtaining such a
solution to linear regression are as follows:

Sketch-and-Solve Template for Least Squares Regression

1. Initialization: Sample a random matrix S ∈ Rk×n from some distribution, where
k � n.

2. Sketching Step: Computer SA and Sb.

3. Solving Step: Output x′ ∈ Rd, where

x′ = arg min
x∈Rd
‖SA− Sb‖2

2

Notice that the last step requires only O(kd2) time, since the sketched design matrix satisfies
A ∈ Rk×d. Consequentially, if k � n, this step is significantly faster than computing the
pseduoinverse A+. Moreover, as we will see multiples times in this thesis (and as is now standard
in sketching theory), one can choose a family of random matrices S such that the product SA can
be computed extremely efficiently: namely in nnz(A) time, where nnz(A) < nd is the number
of non-zero entries in A. This is achieved either through usage of very sparse sketching matrices
S, or matrices S with special structure that allows for fast computation of matrix products. Taken
together, the total runtime is O(nnz(A) + poly(kd)), which is dominated by the first term in the
over-constrained case. The primary challenge in this approach is showing that the solution space
of the problem is approximately preserved after the sketching step. The key property which the
sketch should satisfy for this to occur is known as the subspace embedding:

10Recall that if A = UΣVT is the singular value decomposition of A, we have A+ = VΣ+UT , where Σ+ is
the diagonal matrix with Σ+

i,i = 1/Σi,i if Σi,i > 0, and Σ+
i,i = 0 otherwise.

30

Definition 1.2.1 (Subspace Embedding). Fix any matrix A ∈ Rn×d and parameter ε > 0. Then

a matrix S ∈ Rk×d is said to be an ε-subspace embedding for A if simultaneously for all x ∈ Rd

we have

‖SAx‖2 = (1± ε)‖Ax‖2

Notice that if S is a subspace embedding for the augmented matrix [A, b], then the solution
space of the objective 1.1 is pointwise approximately preserved, namely:

‖S(Ax− b)‖2
2 = (1± ε)‖Ax− b‖2

2

for all x ∈ Rd. This follows since the vector (Ax− b) can always be written the the form [A, b]y
for a vector y ∈ Rd+1. Subspace embeddings are therefore a crucial ingredient in sketching
based approaches to least squares regression, as well as in a variety of other computational tasks,
such as low-rank approximation.

The natural question that remains, of course, is whether families of random matrices exist
which satisfy the subspace embedding guarantee with good probability. As it happens, many
families of matrices will work for this purpose. Such families often do not even depend on the
matrix A (these are known as oblivious sketches)! For instance, it turns out that the count-sketch

matrix ([CCFC02b] Section 2.3.2) developed in the streaming literature, and crucially utilized
throughout Part I of this thesis, satisfies the subspace embedding property with good probability,
so long as the number of rows satisfies k = Ω(d2/ε2). This fact is one of the many celebrated
connections between streaming and numerical linear algebra.

Lp-norm Linear Regression. The least squares loss function in 1.1, although popular, is some-
what arbitrary, and there are many situations where other loss functions would be preferable.
In particular, the least squares loss is often overly sensitive to outliers in the data. A common
method which is more robust to outliers is least-absolute deviation regression, which corresponds
to using the L1 norm instead of the L2. Namely, the optimization problem is the following:

min
x∈Rd
‖Ax− b‖1 (1.2)

The linear, instead of quadratic, dependency on the coordinates of the residual error Ax − b

results in a significantly lower sensitivity to outliers in the data than least squares regression.
More generally, if one desires a finer calibration of the sensitivity to outliers, one may replace
the L1 norm with any Lp norm for p ∈ [1, 2].

While there is no closed-form solution to Equation 1.2, the optimizer can be solved for in

31

polynomial time via linear programming. Unfortunately, this runtime is even worse than the
O(nd2) needed to solve least squares regression. Fortunately, beginning with the work of Sohler
and Woodruff [SW11], it is known how the same high-level sketching template can be used to
significantly speed up algorithms for least-absolute deviation regression. A selection of the wide-
array of sketching techniques utilized to solve Lp norm regression will be introduced in Chapter
10, where we attack the problem for an important class of structured matrices A.

Low Rank Approximation. In addition to regression, another fundamental linear algebraic
optimization task which has benefitted considerably from sketching techniques is low-rank ap-

proximation. Here, one is given a large matrix A ∈ Rn×d as well as an integer k ≥ 1. The goal
is to find a rank-k matrix B which is a good approximation to A. The most common “goodness-
of-fit” measure is the Frobenius norm error, which is equivalent to the Euclidean loss when the
matrices are thought of as vectors. Specifically, one solves the optimization problem:

min
B rank-k

‖A−B‖2
F

Where ‖A‖2
F = ∑

i,j Ai,j is the squared Euclidean norm of A thought of as a vector in Rnd.
Low-rank approximation is a classical task in machine learning and statistics, allowing one to
uncover latent low dimensional structure inside of a high-dimensional dataset. Additionally, a
rank-k approximation B can be written in the form B = UV, where U,Rn×k and V ∈ Rk×d;
thus, storing B requires one to store only (n+ d)k entires, rather than the nd entries required to
store the original matrix A. Compressing a matrix in this way is particularly useful for distributed
and streaming algorithms, as well as for faster matrix multiplication.

Sublinear Algorithms. Sketching is a remarkable tool for speeding up the approximate com-
putation of linear algebraic tasks, which otherwise would require large polynomial runtimes.
The sketch-and-solve paradigm involves reading the input matrix, compressing it, and solving
the compressed problem. However, there are circumstances under which one may be able to
sketch the input without even reading all of it, resulting in algorithms with runtime sublinear in
the size of the matrix. Specifically, the field of sublinear algorithms is concerned with the de-
velopment of such procedures where, given a large matrix A, one approximately answers some
query about the matrix while querying only a small number of entries of A.

A motivating example, related to the task of low-rank approximation, is estimating the rank
of a large matrix A ∈ Rn×n without reading the entire matrix. Rank estimation is essential for
many applications in statistics and machine learning; for instance, before attempting to produce
a low-rank approximation of A, one would first like to know whether the matrix A is in fact

32

low-rank (or close to low-rank). In general, computing the rank of a matrix requires O(n3) time
for an eigenvalue decomposition.11 Surprisingly, however, recent results in the field of matrix
property testing have demonstrating that one can test whether A has rank at most d, or requires
changing an ε-fraction of its entries to have rank at most d, using at most O(d2/ε) non-adaptive
queries to the entries of A [PR03, KS03, LWW14, BBG18, BLWZ19]. Such a non-adaptive
set of queries naturally yields a small space sketch of the matrix. For small values of d, this
represents a significant compression in the amount of information required to test rank.

An important and related model is the linear sketching model, where one designs a distribu-
tion over matrices S ∈ Rk×n2 such that from S ·vec(A) one can recovery information about the
matrix A. Here vec(A) ∈ Rn2 is the vectorization of the matrix A, and the size of the sketch
is the number of rows k in the matrix S. Notice that this is precisely the same notion of linear
sketching used for streaming algorithms (discussed in Section 1.1). Thus, such linear sketches
have many of the same benefits and motivating applications as streaming algorithms, such as
message compression for distribution computation, and enabling the usage of algorithms which
only require sequential access to the data. The sketching complexity, namely the minimum num-
ber of entries k required of such a sketch, has been investigated for many fundamental properties
in NLA, such as stable rank12 and Schatten p-norms13 [ACK+16, SWYZ19, BLWZ19].

While many impressive results such as the above have been established over the past decade,
the field of sublinear matrix algorithms is still rather nascent, and there are many important
estimation tasks for which it is not known whether sublinear algorithms exist. An important
and long-standing problem is whether small space oblivious sketches exist for estimating the
Schatten 1 norm of a matrix. In Chapter 9 of this thesis, we make strides towards developing
the theory of sublinear linear algebra by studying, amoung other tasks, the problem of testing
whether a matrix is positive semi-definite.

Contributions to Sublinear Numerical Linear Algebra. Since the landmark papers which
first established the sketch-and-solve paradigm [Sar06, FKV04, CW17] as a means to speed up
general approximation tasks on matrices, an important line of work has been to design sublin-
ear NLA algorithms for matrices which admit nice structural properties. While in the general
case one must read every entry of an input matrix for common tasks such as regression and
low-rank approximation, in structured cases which arise frequently in practice, this may not be

11In theory, this can be reduced to O(nω) time where ω < 2.373 is the exponent of fast matrix multiplication.
12Stable rank is a smooth generalization of the rank of a matrix. Specifically, for a matrix A, it is defined as

‖A‖2
F

‖A‖2
2

, where ‖A‖2
2 is the squared spectral norm of the matrix A.

13The Schatten-p norm of a matrix A is defined as ‖A‖Sp
= (
∑
i σ

p
i)1/p is the `p norm of the vector of singular

values of A.

33

the case. Common examples of such matrices including positive semi-definite (PSD) matrices,
Vandermonde Matrices, and various matrix products such as Kronecker products and database
joins.

In Part II of this thesis, we design sublinear NLA algortihms for several important classes of
such structured matrices. Specifically, in Chapter 9, we design sublinear algorithms for testing
whether a matrix is positive semi-definite, an important spectral property which allows for the
usage of specialized sublinear algorithms for regression and low-rank approximation [MW17,
BCW20]. In Chapters 10 and 11, we design sublinear algorithms for linear regression and low
rank approximation on important classes of structured matrices: namely, for Kronecker product

matrices and database joins respectively. These results serve to further establish the field of
sublinear NLA, and to develop the sketching toolkit needed for such algorithms. Throughout,
there will be substantial technical connections between the sketching and sampling primitives
which were developed in Part I, such as precision sampling, heavy hitters data structures, and the
spectral analysis of random matrices and submatrices.

1.2.1 Chapter 9: Testing Positive Semi-Definiteness via Randomly Sam-
pled Submatrices

We begin Part II with the development of sublinear algorithm for testing whether a real-valued
matrix A ∈ Rn×n is positive semi-definite (PSD). Recall that a symmetric matrix A ∈ Rn×n

is said to be PSD if all its eigenvalues are non-negative, and we write A � 0 to denote this
property. Certifying whether a matrix is PSD is a central task algorithm design, and continues to
be utilized extensively in optimization, spectral graph theory, numerical linear algebra, statistics,
and dynamical systems, and many other areas [GW95, VB96, ST04, AHK05, Ste10, DL09,
Wai19, DK19].

In general, testing whether a matrix is PSD requires reading the entire matrix, and incurs a
runtime ofO(n3) in practice andO(nω) in theory to compute an eigenvalue decomposition. How-
ever, if we allow ourselves some flexibility in our notion of testing, it is possible that significantly
more efficient algorithms exist. Specifically, in the property testing model [GGR98, Gol17], one
need only distinguish between A being, or being far from any PSD matrix under an appropriate
metric. This flexibility can be seen as a “robust” variant of testing, since we allow A to lightly
violate the PSD constraint without requiring a tester to notice this.

The starting point for our testers is a simple fact: a matrix A is PSD if and only if all prin-

34

PSD Testing in the Bounded Entry Model

Given ε ∈ (0, 1] and a matrix A ∈ Rn×n such that ‖A‖∞ ≤ 1, distinguish with probability
at least 2/3 whether A satisfies:

(1) A is PSD.
(2) A is “ε-far” from the PSD cone in either the spectral norm, meaning:

min
B�0
‖A−B‖2 ≥ εn

or “ε-far” from the PSD in squared Euclidean norm distance, meaning:

min
B�0
‖A−B‖2

F ≥ εn2 (1.3)

If A satisfies neither (1) or (2), the algorithm can return either “PSD” or “not PSD”.

Figure 1.2: The PSD Testing Gap Problems.

cipal14 submatrices of A are PSD. This equivalence raises the natural question: if A is far from
being PSD, does that mean that many submatrices of A are not PSD? Examining the question
lead to a natural algorithm to test definiteness: sample multiple principal submatrices and test if
they are PSD; if any are not, then A is also not PSD. Moreover, this raises the following broader
question:

Can we test spectral properties of matrices by sampling small, random

submatrices?

In Chapter 9, we answer this question in the affirmative for the property of positive semi-
definiteness. In order to avoid degenerate and unlikely instances where an arbitrarily large
entry is hidden in A, rendering sublinear testing impossible, we work in the bounded-entry

model, where the input matrix has bounded entries: ‖A‖∞ ≤ 1. Originally proposed by Bal-
can, Li, Woodruff, and Zhang [BLWZ19] to test spectral properties of matrices, boundedness is
often a natural assumption in practice, and has numerous real world applications, such as rec-
ommended systems as in the Netflix Challenge [KBV09], or for adjacency matrices of graphs
[Gol10, GGR98]. Given this single restriction, we can now formalize the PSD testing problem
in Figure 1.2.

We call the first “gap” instance PSD testing with spectral norm gap, and the latter PSD testing

with Euclidean norm gap. Notice that both problems result in a “robust” form of testing, as one
14Recall that a principal submatrix AT×T for T ⊆ [n] is the restriction of A to the rows and columns indexed by

T .

35

need only return “not PSD” if there is a non-negligible separation between A and the nearest
PSD matrix. Such robust variants of testing are widely applicable, as oftentimes in practice one
need only ensure that the input does not violate the PSD constraint too grossly (see Section 9.1.3
for a further discussion). Also note that, by definition, if A is ε-far from PSD in spectral norm,
then it is ε2-far in the squared Euclidean norm. This means that the latter is, in some sense, a
more general problem, as the converse is clearly not true.

Contribution: PSD Testing

In Chapter 9, we provide matching upper and lower bounds for the spectral norm gap, and nearly
matching bounds for the Euclidean norm gap. These represent the first study of sublinear algo-
rithms for testing positive semi-definiteness, and moreover they demonstrate the utility of random
submatrix sampling for determining spectral properties of matrices. Specifically, our two main
results are as follows:

Theorem 4 (Theorems 116 and 120). There is a non-adaptive sampling algorithm which solves

the PSD Testing with spectral norm gap problem using at most Õ(1/ε2) queries to the entries of

A. Moreover, any adaptive or non-adaptive algorithm must query Ω̃(1/ε2) entries of A.

Theorem 5 (Theorems 119 and 123). There is a non-adaptive sampling algorithm which solves

the PSD Testing with Euclidean Norm gap problem using at most Õ(1/ε4) queries to the entries

of A. Moreover, such algorithmm must query Ω̃(1/ε2) entries of A.

Since ε-gap in spectral norm implies ε2-gap in the squared Euclidean norm, the lower bound
of Ω̃(1/ε2) for the latter implies a separation between the complexity of spectral norm and Eu-
clidean norm testing. Both of the testers have the simple aforementioned structure: they ran-
domly sample principal submatrices and check if they are PSD. The main challenge, therefore, is
to analyze the spectrum of random submatrices. We develop an array of new tools and sketching-
based arguments for this task.

In addition to the testers, our lower bound for the Euclidean norm gap is highly general,
and is based on a new construction of “locally indistinguishable” graphs. Exemplifying the
applicability of the construction, we obtain as an immediate corollary new lower bounds for
estimating the Schatten-1 norm of A, as well as the Ky-Fan norms, both of which are important
measures of intrinsic dimensionality of a matrix, and are used extensively throughout machine
learning and statistics.

36

This Chapter is based on a joint work with Ainesh Bakshi and Nadiia Chepurko [BCJ20],
and appeared in FOCS 2020.

1.2.2 Chapter 10: Kronecker Product Regression and Low-Rank Approx-
imation

In Chapter 10, we study sublinear algorithms for regression and low-rank approximation for Kro-

necker Product matrices. Kronecker product regression is a special case of ordinary regression
in which the design matrix is a product of several smaller matrices. Such matrices naturally
arise in applications such as spline regression, signal processing, and multivariate data fitting
[VL92, VLP93, GVL13, DSSW18]. Specifically, we consider the over-constrained Lp regres-
sion task:

min
x∈Rd
‖Ax− b‖p

where the design matrix A is a Kronecker product of several smaller matrices; namely, we have
A = A1 ⊗A2 ⊗ · · · ⊗Aq ∈ Rn×d, and one is given as input the matrices Ai ∈ Rni×di , with
ni � di for each i ∈ [q]. Note that n = n1 · · ·nq and d = d1 · · · dq; namely, the design matrix
grows exponentially in the number of factors. Consequentially, even computing the Kronecker
product is extremely expensive. However, Kronecker products are a quintessential example of
the driving theme of this thesis: they are high-dimensional objects which admit significantly
lower dimensional representations via their individual factors. Thus, they are a ripe target for the
application of sketching techniques.

The study of fast regression on Kronecker products was initiated by Diao, Song, Sun, and
Woodruff [DSSW18], who gave an algorithm which runs in time sublinear in the size of the
design matrix A ∈ R

n1···nq×d1···dq . Specifically, for p = 2 they achieve a running time of
O(∑q

i=1 nnz(Ai) + nnz(b)), which is sublinear in the sparsity of A, but may still require Ω(n)
time due to the depenedency on nnz(b). For 1 ≤ p < 2, their runtime is suffers additional polyno-
mial factors; for instance, when p = 1, q = 2 and n1 = n2, their runtime is O(n3/2

1 poly(d1d2) +
nnz(b)).

In Chapter 10, we provide significantly faster algorithms for Kronecker product regression.
For p = 2, our running time is O(∑q

i=1 nnz(Ai)), which has no dependence on nnz(b). For
1 ≤ p < 2, our running time is O(∑q

i=1 nnz(Ai) + nnz(b)), which matches the prior best
running time for p = 2. Recently, by applying new analyses of Lewis Weights as well as a
rejection-sampling technique, follow-up work [CD21, PPP21, CM21] has demonstrated that the

37

nnz(b) term can also be removed for all p ≥ 1.

In addition, we study the related all-pairs regression problem. Given A ∈ Rn×d, b ∈ Rn, the
goal is to approximately solve the Lp regression problem

min
x
‖Āx− b̄‖p

where Ā ∈ Rn2×d is the matrix formed by taking all pairwise differences of the rows of A (and b̄
is defined similarly). For p = 1, this is known as the rank regression estimator, which has a long
history in statistics [WKL09, WL09, WPB+18, Wan19]. Note that one can rewrite Ā ∈ Rn2×d

as the difference of Kronecker products Ā = A ⊗ 1n − 1n ⊗A where 1n ∈ Rn is the all ones
vector. However, since Ā is not a Kronecker product itself, our algorithm for Kronecker product
regression is not directly applicable. Therefore, we develop new sketching techniques to obtain
an Õ(nnz(A) + poly(d/ε)) time algorithm for p ∈ [1, 2], which improves substantially on the
O(n2d) time required to even compute Ā, by a factor of at least n.

Lastly, we initiate the study of Kronecker product low-rank approximation, where the goal
is to output a low-rank matrix B which is a good approximation to a Kronecker product matrix
A = A1 ⊗ · · · ⊗Aq. Specifically, the goal is to output a rank-k matrix B ∈ Rn×d such that

‖B−A‖2
F ≤ (1 + ε) min

B rank-k
‖B−A‖2

F

Note that the fastest general purpose algorithms for this problem run in time Ω(nnz(A)) [CW17].
Since the sparsity of the product nnz(A) grows exponentially in the number of tables, such
algorithms quickly become inefficient. To remedy this, we develop algorithms which run in
input sparsity time, namely with runtime bounded by O(∑q

i=1 nnz(Ai)). It is easy to see that this
runtime is the best possible up to constants, which resolves the complexity of Kronecker product
low-rank approximation.

This Chapter is based on a joint work with Huain Diao, Zhao Song, Wen Sun, and David
Woodruff [DJS+19], which appeared in NeurIPS 2019.

1.2.3 Chapter 11: Regression on Database Joins

In Chapter 11, we consider another important class of structured matrices: database joins. To
introduce joins, we will first need some light notation. Let C be a finite universe of attributes.
Recall that a relation R over a set of attributes S ⊆ C is just a subset R ⊆ RS , so that each

38

r ∈ R is of the form (ai1 , ai2 , . . . , ai|S|). Given two relations R1 ⊆ RS1 and R2 ⊆ RS2 with
S1 ∩ S2 6= ∅, we define the join R1 1 R2 as follows:

R1 1 R2 = {a ∈ RS1∪S2 : a|S1 ∈ R1, a|S2 ∈ R2}

where for a set S ⊂ C we define a|S ∈ RS to be the projection of a onto the attributes (coordi-
nates) in S. Notice that if |R1| = n1 and |R2| = n2, then the size of the join R1 1 R2 can be
as large as n1n2. Also note that the join itself is a relation over (R1 1 R2) ⊂ RS1∪S2 . So more
generally, given relations R1, . . . ,Rk with Ri ⊂ RSi , one can define a join of many tables

J = R1 1 R2 1 · · · 1 Rk = {a ∈ R∪iSi : a|Si ∈ Ri, ∀i = 1, 2, . . . , k}

In this case, if |Ri| = ni the size of the join can be as large as n1n2 · · ·nk. Consequentially,
constructing the join can be extremely expensive compared to the time required to read the indi-
vidual relations Ri. On the other hand, in keeping with a common theme of this thesis, notice
that J admits a lower-dimensional representation as a “product” of many smaller components.
Thus, one may hope to perform computational tasks on J in time significantly sublinear in its
size.

In Chapter 11, we do precisely this, by developing sublinear algorithms for linear regres-
sion when the design matrix is a database join. Specifically, we are given as input q relations
R1,R2, . . . ,Rq, where Ri ∈ Rni×di can be thought of as a matrix with di columns (i.e., at-
tributes) and ni rows (i.e., size of the relation). One can then define the join J = R1 1 R2 1

· · · 1 Rq ∈ RN×d over some specified set of attributes,15 and ask to solve the optimization
problem:

min
x∈Rd
‖Jx− b‖2

2

where b ∈ Rn is a vector specified as input.

Previously, the fastest known algorithms for this task were based on so-called Functional Ag-

gregation Queries (FAQ) methods [AKNR16, AKNN+18]. For instance, given a join on two rela-
tions R1 1 R2, the runtime of this method is Õ(nd2), where n = max(n1, n2), d = max(d1, d2).
While sublinear in the size of J, this runtime is still polynomially larger than the input to the prob-
lem. This polynomial blow-up is exacerbated by the presence of categorical features. Namely,
it is a common practice to convert categorical data to their so-called one-hot encoding before
optimizing any statistical model. Such an encoding creates one column for each possible value

15Notice that the set of columns being joined on, namely the structure of the join query, is not specified in the
above notation, and must therefore be specified contextually.

39

of the categorical feature, blowing up the number of attributes d by the number of categories.
Thus, especially in the presence of categorical features, one would ideally have input sparsity

algorithms, with runtime bounded by the number of non-zero entries in the input relations.

We demonstrate that this idealistic goal is in fact possible for the important case of two-table
joins. We note that the two-table case is very well-studied [AMS96, AGMS99, GWWZ15], and
moreover one can always reduce to the two-table case by first precomputing part of a general
join. Specifically, we give input-sparsity algorithms which produce a value x̂ ∈ Rd satisfying

‖Jx̂− b‖2 ≤ (1 + ε) min
x∈Rd
‖Jx− b‖2

in runtime which is the minimum of Õ(((n1+n2)d+d3) log log ε−1) and Õ((nnz(T1)+nnz(T2)+
d5) log ε−1). Notice that the second runtime is preferable for sparse matrices, whereas the former
is preferable for dense matrices. When n1, n2 are polynomially larger than d, this runtime is
linear in the sparsity of the input. This demonstrates a substantial improvement over prior FAQ
based methods, which perform poorly as the number of attributes grows.

In addition, we consider regression for arbitrary joins on more than two tables, and introduce
a general framework to apply sketching methods to obtain faster regression algorithms than those
obtained by prior FAQ-based methods. We empirically evaluate our algorithms on various real-
world databases, and compare them to the previous best FAQ-based algorithm. Our experiments
demonstrate significant speedups over the latter, with only a small sacrifice in accuracy. For
example, for the join of two tables in the MovieLens data set, which has 23 features, we obtain a
10-fold speedup over the FAQ-based algorithm, while suffering only 0.66% relative error.

Chapter 11 is based on a paper with Alireza Samadian, David P. Woodruff, and Peng Ye
[JSWY21] in ICML 2021.

1.3 Query Evaluation and Automata Theory

The quintessential problem in database systems and theory is that of query evaluation. A rela-
tional databaseD over a universe U is given by a set of relationsD = {R1, . . . ,Rm}, where each
Ri ⊂ Uki is a ki-ary relation taking values in U . A queryQ is a logical expression which takes as
input a relational database D, and outputs a new relation Q(D) of “answers” to the query Q over
the database D. Query evaluation is the task of computing Q(D), given as input the database D
and the query Q.

40

The most common class of queries used in database systems, and the best studied in the
literature, are the conjunctive queries (CQ). Conjunctive queries are formulas which express
a significant fragment of first-order logic. They are equivalent to select-project-join queries
in relational algebra, select-from-where queries in SQL, and are closely related to constraint

satisfaction problems (CSPs). Moreover, they are ubiquitous in practice, and their evaluation is
crucial for modern data analysis [CMN99a]. Therefore, the majority of the literature on query
evaluation is focused on CQs and subsets thereof [CM77a, GMUW09, Abi95, PS13a].

In addition to query evaluation, an important problem is to approximately count the num-
ber of answers to a query (i.e., approximate |Q(D)|). The counting problem for CQ’s is of
fundamental importance for query optimization [RGG03, PS13b]. Specifically, relational query
engines decide the order in which to evaluate a complicated query by utilizing estimates of the
sizes of intermediate solutions to the query. To take an example from Chapter 11 (see Section
1.2.3), a complicated database join J = R1 1 R2 1 · · · 1 Rm, which is a type of conjunctive
query, can in general be equivalently evaluated in up to m! distinct orders. Different relations
Ri,Rj,Rk may share different subsets of attributes, so if Ri 1 Rj is significantly larger than
Ri 1 Rk, it would generally be faster to first evaluate J1 = Ri 1 Rk and then J1 1 Rj , rather
than to evaluate J2 = Ri 1 Rj and then J2 1 Rk. Thus, having estimates of the sizes of the
queries |J1|, |J2| is invaluable to a query optimizer.

Due to its significance in database applications, the problem of counting the number of dis-
tinct answers to a query, also known as the count-distinct problem, has been studied considerably
from the perspective of streaming [FM85, BYJK+02, IW03, Woo09, KNW10b]. In this setting,
the entries of the database query are seen (or computed16) sequentially, possibly with duplicates,
and one must estimate the number of unique entries in small space. This is precisely the problem
of L0 estimation studied throughout Part I of this thesis; for instance, we design improved and
robust L0 estimation algorithms in Chapters 6 and 7. This connection between streaming and
databases has been particularly fruitful, and as we will see the technical approaches employed in
L0 sketches will be useful for approximating counting for CQ’s

In many ways dual to approximate counting, and equally as important, is the task of uniformly
sampling answers from Q(D). Sampling is used to efficiently generate representative subsets of
the data, instead of computing the entire query, which are often sufficient for data mining and
statistical tasks [AD20]. Due to the high computational complexity of query evaluation, fast

16Constant delay enumeration algorithms, which compute and output the answers to a query sequentially, each
in constant or near-constant time, are a topic of intensive study in the database literature [Seg13, Seg14, Seg15].
The existence of constant delay enumeration algorithms for a variety of queries further strengthens the connection
between databases and streaming.

41

algorithms for uniform sampling are central to the analysis of modern databases. Starting with
the work of Chaudhuri, Motwani and Narasayya [CMN99b], the study of random sampling from
queries has attracted significant attention from the database community [ZCL+18, CY20].

Unfortunately, even the most basic tasks related to conjunctive queries, including approx-
imate counting and uniform sampling, are computationally intractable. For instance, given
a 3-satisfiability instance φ(x1, . . . , xn), one can easily construct a polynomially sized CQ Q

and database D such that Q(D) coincides with the set of satisfying assignments to φ. Con-
sequentially, deciding whether Q(D) = ∅ (known as the decision problem), and thus multi-
plicatively approximating |Q(D)|, is NP-Hard. Moreover, exactly computing |Q(D)| is #P-
Hard. Thus, a major focus of investigation in the area has been to find tractable special cases of
CQs [Yan81, CR97, GLS98, GSS01, GLS02, FG06, GGLS16].

Part III of this thesis is concerned with a sequence of two papers [ACJR19, ACJR21] which
characterize the classes of conjunctive queries for which approximate counting and uniform sam-
pling can be accomplished in polynomial time. In particular, the main result is a fully polynomial
time randomized approximation scheme (FPRAS) and polynomial time sampler for the class of
conjunctive queries with so-called bounded hypertree-width. By previous impossibility results
[GSS01], this class is roughly the largest for which an FPRAS can exist.

The main ingredient in this result is the resolution of a fundamental counting problem from
automata theory via sketching techniques. Specifically, the answers to a class of CQs can be
modeled by the accepting inputs to families of finite automata. In [ACJR19], we demonstrate the
first FPRAS for counting the number of words of length n accepted by a non-deterministic finite

automton (NFA). In [ACJR21], we extend this algorithm to the class of tree automaton, which
significantly generalize NFAs, and can express the answers to CQs with bounded hypertree-
width. Previously, the best known algorithm for either task was a quasi-polynomial time ran-
domized approximation scheme (QPRAS) of Gore, Jerrum, Kannan, Sweedyk, and Mahaney
[GJK+97].

1.3.1 Chapter 12: Approximate Counting and Uniform Sampling from
Conjunctive Queries

In order to describe the main result of Chapter 12, it will help to formally define the conjunc-
tive query. Let C and V be two disjoint sets of constants and variables, respectively. Then a

42

conjunctive query (CQ) is an expression of the form:

Q(x̄) ← R1(ū1), . . . , Rn(ūn), (1.4)

where for every i ∈ [n], Ri is a ki-ary relation symbol (ki ≥ 1), ūi ∈ (C ∪V)ki is a ki-ary tuple
of variables and constants, and x̄ = (x1, . . . , xm) is a tuple of variables such that each variable
xi in x̄ occurs in at least one ūi. A database D is an instantiation D = {RD

1 , R
D
2 , . . . , R

D
n }

of the relations, so that each RD
i ⊂ Cki is a finite subset of ki-ary tuples ā of constants. A

homomorphism from Q to D is a function h : V → C such that for every i ∈ [n], we have
h(ūi) ∈ RD

i , where h(ūi) is applied coordinate-wise and acts as the identity on C. Given such a
homomorphism h, the tuple h(x̄) is called an answer toQ overD, and the set of all such answers
is denoted Q(D).

As mentioned earlier, evaluating conjunctive queries Q(D) is an intractible task in general.
Beginning work in [Yan81], a fruitful line of research for finding tractable cases has been to
study the degree of acyclicity of a CQ. Specifically, given a CQ Q, one can define a graph
G(Q) = (V,E), known as the constraint-graph, by setting V to be the set of variables in Q,
and connecting by an edge any two variables that appear in the same relation (constraint) Ri.
More generally, one can define the constraint hypergraph H(Q), with the same set of vertices,
and each hyperedge corresponding to the subset of variables that appears in a relation Ri. Given
these two definitions, one can define the treewidth tw(Q) of Q [CR97, GSS01], and more gener-
ally the hypertree width hw(Q) of Q [GLS02], by the treewidth (resp. hypertree width) of G(Q)
(resp. H(Q)).

It is known that many computational tasks on databases are easier for queries with bounded
(i.e., constant) tree or hypertree width. For instance, deciding if Q(D) = ∅ can be accom-
plished in polynomial time for every such class C of CQs [CR97, GSS01, GLS02]. Unfortu-
nately, uniform generation and exact counting are more challenging tasks. Specifically, given
as input a conjunctive query Q and database D, computing |Q(D)| is #P-complete even when
tw(Q) = 1 [PS13b]. Moreover, recall that even multiplicative approximations are intractable in
general. On the other hand, these facts do not preclude the existence of polynomial time approx-
imation algorithms for classes of CQs with bounded treewidth, as the associated query decision
problem is in P. Despite this possibility, prior to our work, no such approximation algorithms
were known.

The main result of Chapter 12 is precisely such an algorithm. Specifically, we demonstrate
the existence of a fully polynomial-time randomized approximation scheme (FPRAS) and a fully

43

polynomial-time almost uniform sampler (FPAUS) for every class of CQs with bounded hyper-
tree width. Here, an FPAUS is an sampler which returns each element e ∈ Q(D) with probability
(1 ± ε)|Q(D)|−1, and has poly(log ε−1) dependency on ε. Since hw(Q) ≤ tw(Q) for every CQ
Q [GLS02], our result also includes every class of CQs with bounded treewidth. Formally, we
show the following.

Theorem 140 Let C be a class of CQs with bounded hypertree width. Then there exists a fully

polynomial-time randomized approximation scheme (FPRAS) that, given Q ∈ C and a database

D, estimates |Q(D)| to multiplicative error (1 ± ε). Moreover, there is a fully polynomial-time

almost uniform sampler (FPAUS) that generates samples from Q(D).

Our algorithm of Theorem 140 in fact holds for a larger class of queries, including unions

of conjunctive queries with bounded hypertree width, which are a well-studied generalization of
CQs.

Still, one may ask whether our algorithm is suboptimal, and if there exists an even larger
class of queries C that admit an FPRAS. As it turns out, this cannot be the case in general, and
the algorithm of Theorem 140 is essentially optimal. Specifically, a seminal result of Grohe,
Schwentick, and Segoufin [GSS01] demonstrates that given a class G of graphs, the evaluation
of all conjunctive queries Q whose constraint graph is in G is tractable if, and only if, all graphs
in G have bounded treewidth. Since multiplicative approximations solve the decision problem,
we obtain the following corollary, which characterizes the class of all conjunctive queries for
which approximate counting and uniform sampling is tractable.

Corollary 12.1.1. Let G be a class of graphs and C be the class of all CQs whose constraint

graph is in G. Then assuming W[1] 6= FPT and BPP = P,17 the following are equivalent:

1. The problems of approximately computing |Q(D)| and of almost uniform sampling from

Q(D), given as input Q ∈ C and a database D, admit an FPRAS and an FPAUS, respec-

tively.

2. G has bounded treewidth.

In other words, Corollary 12.1.1 demonstrates that, for classes of conjunctive queries of the
form C = {Q | CONSTRAINTGRAPH(Q) ∈ G}, the existence of an FPRAS for C is equivalent

17Recall that BPP is the class of problems solvable in polynomial time by a randomized algorithm with error
at most 1/3; a common conjecture in complexity theory is that BPP = P. Also recall that FPT is the class of
fixed parameter tractable (FPT) problems, which, given a parameter k and input size n, can be solved in time
f(k) · poly(n) for some computable function f . Lastly, W[1] is the class of parameterized problems reducible in
time f(k) · poly(n) to the problem of deciding if a graph has a k-clique. A common conjecture in paramaterized
complexity is that k-clique does not admit a FPT algorithm, and therefore that W[1] 6= FPT.

44

to G having bounded treewidth. This extends the seminal hardness result of [GSS01] from query
evaluation to the counting problem for CQ’s.

Approximate Counting in Automata Theory

As previously mentioned, the key ingredient in our result is the development of the first FPRAS
for counting accepting inputs to fundamental classes of automata. By accomplishing this for a
family of automata which can express precisely the class of answersQ(D) to a conjunctive query
with bounded hypertree-width, the result of Theorem 140 follows immediately.

The first step towards this end is the main result of our paper [ACJR19], which considered
the family of non-deterministic finite automton (NFA). Specifically, in [ACJR19], we developed
an algorithmic template, based on sketching techniques, which resulted in the first FPRAS for
counting words accepted by an NFA. This improved on the prior best known quasi-polynomial
time algorithm of [GJK+97]. We focus on approximate counting in the following theorem state-
ments, noting that (almost) uniform sampling follows as a corollary. Formally:

Theorem 6 (Main result, [ACJR19]). Given an NFA N and n ≥ 1, there is an algorithm which

runs in time poly(|N |, n, ε−1) and with probability 2/3, outputs an estimate Ñ with:

(1− ε)|Ln(N)| ≤ Ñ ≤ (1 + ε)|Ln(N)|

Where Ln(N) is the set of words of length n accepted by N .

We remark that for the case of a deterministic finite automata (DFA)M, which is an NFA
where each x ∈ Ln(M) admits exactly one accepting computation in the automata, exact count-
ing and uniform sampling are both possible in polynomial time via a simple dynamic program.
However, due to their non-determinism, the case of NFA’s is significantly more challenging – in
particular, the task of computing |Ln(N)| exactly is #P-Hard, so polynomial time exact algo-
rithms are unlikely (and would imply, for instance, that P = NP).

In contrast to the QPRAS of [GJK+97], the algorithmic template developed in [ACJR19]
is based on sketching. Specifically, given an NFA N , one can write down a natural dynamic
program (DP) to compute the set Ln(N). The intermediate states of this DP consist of sets of
substrings which can be composed together via unions and concatenations to ultimately form
Ln(N). However, since |Ln(N)| can be exponential in n, the intermediate states are also ex-
ponentially large. Our approach in [ACJR19] is to compress these states, by replacing each set

45

with a sketch consisting of i.i.d. uniform samples from the set. These sketches can then be
used to estimate the size of unions between non-disjoint subsets corresponding to states of the
DP. The main challenge is generating the samples required to form these sketches, and doing
so bottom-up through the DP. To the best of our knowledge, this is the first example of a core
automata-theoretical problem being solved via sketching techniques.

Building on this framework, in our subsequent work [ACJR21] we extended the FPRAS
from NFAs to the significantly more general class of tree automata . Roughly speaking, a tree
automata T accepts a language of trees as inputs; they can be seen as running many NFAs
simultaneously along separate branches of a tree, allowing for “splitting” of branches. Moreover,
given a CQ Q and a database D with bounded hypertree-width, one can construct a polynomial
sized tree automata T with Ln(T) = Q(D) (up to a natural bijection), where Ln(T) is the set of
trees of size n accepted by T . Formally, we show:

Theorem 141 (Main result, [ACJR21]). Given a tree automaton T and n ≥ 1, there is an

algorithm which runs in time poly(|T |, n, ε−1) and with probability 2/3, outputs an estimate Ñ

with:

(1− ε)|Ln(T)| ≤ Ñ ≤ (1 + ε)|Ln(T)|

Theorem 141 is proven across the two sections 12.5 and 12.6. While built on the same
sketching-based template as the NFA FPRAS, the algorithm of Theorem 141 is significantly
more involved. In particular, the procedure for generating the samples used in the sketches of the
states of the DP is considerably more challenging, and is the main focus of Section 12.6.

1.4 Roadmap of the Thesis

This thesis is divided into three parts, each focusing on one of the distinct application areas
of sketching discussed in this section. While the goals and motivations of the problems stud-
ied in separate parts varies, the techniques utilized across these parts share substantial similari-
ties. Chapter 2 presents important mathematical background and notation which will be useful
throughout the thesis, with a special emphasis placed on the techniques which will span multiple
chapters. While we will refer to results from Chapter 2 throughout the thesis, each individual
chapter is designed to be self-contained; therefore, results which are required for a chapter will
be restated in that chapter.

46

The results presented in this thesis are drawn from a variety of papers, cataloged below.

Part I: Streaming and Distributed Algorithms

• Chapter 3: Perfect Lp Sampling in Data Streams, is based on the following two works:

I [JW18b] Perfect Lp Sampling in a Data Stream, with David P. Woodruff. FOCS
2018.

II [JWZ21] Truly Perfect Samplers for Data Streams and Sliding Windows, with David
P. Woodruff and Samson Zhou.

• Chapter 4: Moment Estimation in Streaming and Distributed Models, is based on:

[JW19] Towards Optimal Moment Estimation in Streaming and Distributed Models

with David P. Woodruff. APPROX 2019.

• Chapter 5: Sampling from Distributed Streams, is based on:

[JSTW19] Weighted Reservoir Sampling from Distributed Streams with Gokarna
Sharma, Srikanta Tirthapura, and David P. Woodruff. PODS 2019.

• Chapter 6: Data Streams with Bounded Deletions, is based on:

[JW18a] Data Streams with Bounded Deletions, with David P. Woodruff. PODS
2018.

• Chapter 7: Adversarially Robust Streaming, is based on:

[BJWY20] A Framework for Adversarially Robust Streaming Algorithms, with Omri
Ben-Eliezer, David Woodruff, and Eylon Yogev. PODS 2020

• Chapter 8: Streaming Algorithms for Earth Movers Distance, is based on:

[CJLW20a] An Improved Analysis of the Quadtree for High Dimensional EMD, with
Xi Chen, Amit Levi, and Erik Waingarten.

Part II: Numerical Linear Algebra

• Chapter 9: Testing Positive Semi-Definiteness, is based on:

[BCJ20] Testing Positive Semi-Definiteness via Random Submatrices, with Ainesh
Bakshi and Nadiia Chepurko. FOCS 2020.

• Chapter 10: Kronecker Product Regression and Low-Rank Approximation, is based
on:

[DJS+19] Optimal Sketching for Kronecker Product Regression and Low Rank Ap-

proximation, with Huain Diao, Zhao Song, Wen Sun, and David Woodruff. NeurIPS

47

2019.

• Chapter 11: In-Database Regression, is based on:

[JSWY21] In-Database Regression in Input Sparsity Time, with Alireza Samadian,
David P. Woodruff, and Peng Ye. ICML 2021.

Part III: Database Query Evaluation

• Chapter 12: Approximate Counting and Uniform Sampling from Database Queries,
is based on the two papers:

I [ACJR19] Efficient Logspace Classes for Enumeration, Counting, and Uniform Gen-

eration, with Marcelo Arenas, Luis Alberto Croquevielle, and Cristian Riveros. PODS
2019.

II [ACJR21] When is Approximate Counting for Conjunctive Queries Tractable? with
Marcelo Arenas, Luis Alberto Croquevielle, and Cristian Riveros. STOC 2021.

48

Chapter 2

Background and Preliminaries

In this chapter, we introduce the fundamental mathematical tools and techniques which will be

used throughout the thesis. While the basic notation and results presented here will be assumed

as background in the remainder of the thesis, all of the more involved results will be restarted

and described where needed, so that the individual chapters are as self-contained as possible.

Beyond establishing basic sketching tools, a important role served by this chapter is presentation

of several tools, such as the count-sketch algorithm, which exist in the literature in various equiv-

alent and non-equivalent formulations, in a unified fashion. This will allow us to speak of these

concepts in a well-defined and cohesive manner in the chapters that follow.

2.1 Notation and Basic Preliminaries

We begin with several basic definitions, as well as an introduction to the notational conventions

used throughout the thesis.

General Notation. For a, b, ε ∈ R, we write a = b ± ε to denote the containment a ∈ [b −

ε, b + ε]. For positive integer n, we use [n] to denote the set {1, 2, . . . , n}. For any function

f : Rk → R≥0, we use the notation Õ(f(x)) and Ω̃(f(x)) to hide poly(log(f(x)) factors.

Throughout the thesis, given a function f : Rk → R≥0, we use the notation Õ(f(x)) and

49

Ω̃(f(x)) to hide poly(log(f(x)) factors. In other words, for any constant c ≥ 1 we have f(x) ·

logc(f(x)) = Õ(f(x)) and f(x) · log−c(f(x)) = Ω̃(f(x)). We use the term with high probability

(w.h.p.) to describe events that occur with probability 1− n−c, where n is the input size and c is

a constant independent of n.

All space bounds in the thesis will be stated in the unit of bits (as opposed to words). For our

run-time complexity, we assume the unit cost RAM model, where a word of O(log n)-bits can

be operated on in constant time, where n is the size of the input to the problem. For instance, in

the streaming model where updates to an implicit vector x are being made, n can be taken as the

dimension of x.

Vectors and Vector Lp Norms. For a vector x ∈ Rn and any integer k ∈ [n], we define

xtail(k) to be x but with the top k coordinates (in absolute value) set equal to 0. We also write

|x| to denote the entry-wise absolute value of x, so |x|j = |xj| for all j ∈ [n]. Given a subset

S ⊂ [n], we will also write xS ∈ Rn to denote the vector obtained after setting equal to zero all

coordinates xi with i /∈ S.

For any real p > 0, the Lp norm1 of a vector x is defined as Lp = ‖x‖p = (∑i |xi|p)1/p, and

the p-th moment, denoted Fp, is defined as Fp = ‖x‖pp = ∑
i |xi|p, so that Fp = Lpp. For the case

of p = 0, we define L0 norm of a vector x ∈ Rn as L0 = ‖x‖0 = |{i ∈ [n] | xi 6= 0}|. Note that

the L0 norm (which is in fact a norm) is the same as the and F0 moment and the Hamming norm

of a vector, and is given by the support size of the vector in question.

We remark that the difference between estimating the quantity Lp and Fp up to a factor of

(1± ε) is often negligible so long as p is bounded by a constant. The justification for the separate

notations is due primarily to historical reasons. Generally speaking, in the streaming literature

the notation Fp is used in the insertion-only model, whereas one often seeks to estimate Lp in the

turnstile model (of course, up to a constant in the space complexity, one could have as easily done

the opposite). In the insertion-only literature, Fp is sometimes referred to as the p-th frequency

moment. In this thesis, we will use both notations, generally keeping with this convention where

1Note that this is only a norm for p ≥ 1, although we will sometimes abuse terminology and call Lp a norm for
p < 1.

50

possible.

2.1.1 Linear Algebra Preliminaries.

The usage of concepts from linear algebra plays a critical role in this thesis, even beyond Part II.

Therefore, it will be important to unify our treatment of the subject here.

Matrices and Submatrices. Throughout the thesis, matrices will always be displayed using

boldface capital notation, e.g., A,B,X ,Σ. Given a positive integer n ≥ 1 we write II ∈ Rn×n

to denote the n× n identity matrix. Additionally, we will write nnz(A) to denote the number of

non-zero entries of a matrix A.

Given a matrix A ∈ Rn×d, and given subsets S ⊂ [n], T ⊆ [d], we denote the matrix

AS×T ∈ R|S|×|T | as the matrix A restricted to the submatrix of the rows in S and the columns

in T . If n = d and S = T , then the square submatrix AS×T = AS×S is called a principal

submatrix of A. We will use the notation Ai,∗ to denote the i-th row of A, and A∗,i to denote the

i-th column of A.

Singular Values and Eigenvalues. Let A ∈ Rn×d be any real-valued matrix. We can then

denote the min{n, d} singular values of A via

σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin{n,d}(A) = σmin(A)

and write κ(A) = σmax(A)
σmin(A) to denote the condition number of A. We refer to singular matrices A,

having σmin(A) = 0, as having an infinite condition number. In the case that A is a symmetric

matrix, requiring that n = d, it follows that A has n real-valued eigenvalues. In this case, we can

order these eigenvalues, and denote them similarly via

λmax(A) = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) = λmin(A)

51

We note that the majority of matrices in this thesis will not necessarily be symmetric, and there-

fore singular values will often by considered when this is the case.

Matrix Norms. We now define the matrix norms which will be used in the thesis. The spectral

norm of a matrix A ∈ Rn×d is defined by its maximum singular value, namely ‖A‖2 = σmax(A).

Equivalently, the spectral norm of A is the maximum of the modified Rayleigh–Ritz quotient:

‖A‖2 = max
x∈Rd

‖Ax‖2

‖x‖2

Next, the Frobenius norm of A is just the L2 norm of A thought of as a vector in Rnd, namely

‖A‖F =
∑

i,j

A2
i,j

1/2

=
(

n∑
i=1

σ2
i (A)

)1/2

where the latter inequality is an easy consequence of the singular value decomposition (see the

following paragraph) and the Pythagorean theorem. For p ≥ 1, we write define the Schatten

p-norm of A by ‖A‖Sp = (∑n
i=1 σ

p
i (A))1/p, and the (p, k)-Ky-Fan norm of A by ‖A‖KF(p,k) =

(∑k
i=1 σ

p
i (A))1/p. If p is not specified for a Ky-Fan norm, it is assumed to be 1, namely ‖A‖KF(k) =

‖A‖KF(1,k). We remark that the latter is what is usually referred to in the literature as a Ky-Fan

norm.

Singular Value Decomposition (SVD) Suppose the matrix A ∈ Rn×d is rank r ≤ min{n, d}.

Then we can consider the singular value decomposition (SVD) of A, which we denote by A =

UΣV>, where both matrices U ∈ Rn×r,V ∈ Rd×r have orthonormal columns, and Σ ∈ Rr×r

is a diagonal matrix with the (non-zero) singular values σi on the diagonal (i.e, Σi,i = σi(A)).

Recall that the columns of U are the left singular vectors of the matrix A, and the rows of V are

the right singular vectors of A. Given the SVD, we can define the Moore-Penrose pseudoinverse

of A, which is denoted by A+, and defined via A+ = VΣ−1UT .

Given a diagonal matrix D ∈ Rn×n and an integer 0 ≤ k ≤ n, we define D−k to be the

diagonal matrix resulting from setting the top k (in magnitude) largest entries in D equal to 0.

Further, we write Dk = D − D−k, i.e., Dk is the result of setting the bottom n − k smallest

52

(in magnitude) entries to 0. Using this notation, for any matrix A ∈ Rn×d we can introduce

truncated SVD of A, denoted by Ak, by defining Ak = UΣkV>. An important fact about the

truncated SVD is that it is the best rank-k approximation to A under the Frobenius norm error:

‖A−Ak‖2
F =

∑
i>k

σ2(A) = min
B rank-k

‖A−B‖2
F

We remark that the truncated SVD is also the best rank-k approximation to A under the spectral

norm. Similarly, we define the matrix A−k = UΣ−kV>.

For the special case when A ∈ Rn×n is symmetric, we can define its eigenvalue decomposi-

tion via UΛU>, where Λ ∈ Rn×n is the diagonal matrix containing the eigenvalues of A, i.e.,

Λi,i = λi(A). A real-symmetric matrix A is said to be Positive Semi-Definite (PSD) if λmin ≥ 0,

which is equivalent to having x>Ax ≥ 0 for all x ∈ Rn. Given this definition, we introduce the

Loewner ordering on symmetric matrices.

Definition 2.1.1 (Loewner Ordering). For symmetric matrices B,D, we write B � D if B−D

is PSD.

Notice that if B � D, then by definition x>Bx ≥ x>Dx for all x ∈ Rn. Then by an application

of the Courant-Fischer variational principle for eigenvalues, we have that λi(B) ≥ λi(D) for all

i ∈ [n].

2.2 Probability Background for Sketching

In this section, we describe classic tools, as well as recent developments, from probability that

will be commonly applied in the thesis. We begin in Section 2.2.1 with results for the concentra-

tion of random scalar variables, as well as matrix concentration inequalities, and then in Section

2.2.2, we introduce the central family of p-stable distributions,

53

2.2.1 Concentration Inequalities

We will use several concentration inequalities in this thesis. For completeness, we begin by stat-

ing the standard Chernoff-Hoeffding bound for sums of independent, bounded random variables.

Proposition 2.2.1 (Chernoff-Hoeffding, [Hoe94]). Let X1, . . . , Xn be independent variables,

and {ai}i∈[n], {bi}i∈[n] reals satisfying ai ≤ Xi ≤ bi for each i ∈ [n] almost surely. Let X =∑n
i=1Xi, µ = E [X], and fix any δ > 0. Then we have the upper tail

Pr [X ≥ (1 + δ)µ] ≤ exp
(
− 2δ2µ2∑n

i=1(bi − ai)2

)

and the lower tail

Pr [X ≤ (1− δ)µ] ≤ exp
(
− 2δ2µ2∑n

i=1(bi − ai)2

)

Additionally, we will utilize several other common concentration inequalities: Khintchine’s

ineqality, McDiarmid’s inequality (also known as the method of bounded differences), and Bern-

stein’s inequality.

Proposition 2.2.2 (Khintchine’s inequality [Haa81]). Let x ∈ Rn and let ϕ1, . . . , ϕn be inde-

pendent and uniformly distributed on {1,−1}. Then for any t > 0, setting Q = ∑n
i=1 ϕixi we

have

Pr [|Q| > t‖x‖2] < 2e−t2/2

Proposition 2.2.3 (McDiarmid’s inequality [McD89]). Let X1, X2, . . . , Xn be independent ran-

dom variables, and let ψ(x1, . . . , xn) by any function that satisfies

sup
x1,...,xn,x̂i

∣∣∣ψ(x1, x2, . . . , xn)− ψ(x1, . . . , xi−1, x̂i, xi+1, . . . , xn)
∣∣∣ ≤ ci for 1 ≤ i ≤ n

Then for any ε > 0, we have Pr
[∣∣∣∣ψ(X1, . . . , Xn)− E [ψ(X1, . . . , Xn)]

∣∣∣∣ ≥ ε
]
≤ 2 exp

(
−2ε2∑n

i=1 c
2
i

)
.

Proposition 2.2.4 (Bernstein’s inequality [McD89]). Let X1, X2, . . . , Xn be independent mean-

zero random variables, such that |Xi| ≤ M almost surely for each i ∈ [n]. Then for any t > 0,

54

we have

Pr
[∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ t

]
≤ exp

(
−

1
2t

2∑n
i=1 E [X2

i] +1
3Mt

)

Matrix Concentration. A common tool in sketching theory is the application of random linear

transformations to project high dimensional objects onto lower dimensional subspaces. However,

the analysis of such random projections often require bounding properties of the spectrum of

the random matrices which result from these transformations. This is particularly the case in

numerical linear algebra.

For an example, given a matrix A ∈ Rn×d, we will often want to generate a random matrix

S ∈ Rk×n with the strong property that ‖SAx‖2 = (1 ± ε)‖Ax‖2 for all x ∈ Rd.2 While

proving this fact for a single x ∈ Rn can be accomplished via the usage of standard scalar-value

concentration bounds as described above, demonstrating such results simultaneously for all x

will be more easily accomplished by bounding the spectrum of SA.

In order to bound the spectrum of random matrices, we will need results from the theory

of random matrix concentration. We state only one such result here, which is the matrix-valued

extension of the Chernoff bound, as it will be referred to several times in the thesis. More detailed

results in the theory of random matrices, such as the interior eigenvalue matrix Chernoff bounds

(117, due to Gittens and Tropp [GT11]), will be introduced where needed.

Theorem 7 (Matrix Chernoff, Chapter 5 [Tro15]). Consider a finite sequence {Xj} of indepen-

dent, random, positive-semidefinite matrices with dimension d× d, and assume that ‖Xj‖2 ≤ L

for some value L almost surely. Given an integer k ≤ n, define

µmax = λmax

∑
j

E [Xj]

µmin = λmin

∑
j

E [Xj]

2This is known as a subspace embedding, see Section 2.4.

55

then for any δ ∈ [0, 1) and ε ≥ 0, we have the tail inequalities

Pr

λmin(
∑
j

Xj) ≤ (1− δ)µmin

 ≤ d ·
[

e−δ

(1− δ)1−δ

]µmin/L

Pr

λmax(
∑
j

Xj) ≥ (1 + ε)µmax

 ≤ d ·
[

eε

(1 + ε)1+ε

]µmax/L

2.2.2 Stable Distributions

A particular important class of distributions utilized in this thesis are the stable distribution.

Formally, a distribution D is said to be stable if for any constants a, b, then whenever X, Y, Z ∼

D we have that aX + bY
d= cZ + d for some constants c, d, where the symbol d= denotes

equality in distribution. In fact, a full characterization of such random variables is known. As

it happens, every such stable distribution D is a p-stable distribution (to be defined shortly) for

some parameter p ∈ (0, 2]. In fact, a stable distribution is fully parameterized by its stability

parameter p ∈ (0, 2], a skewness parameter β ∈ [−1, 1], a scale parameter γ > 0, and a location

parameter δ ∈ R. Following Nolan [Nol], we denote this distribution as S(p, β, γ, δ), and refer

the reader to [Nol] and [UZ11] for a further discussion on the parameterization and behavior of

stable distributions.

Definition 2.2.5 (Stable distribution, general). A random variable X is said to be p-stable if it

is drawn from the distribution S(p, β, γ, δ) for some p ∈ (0, 2], β ∈ [−1, 1], γ > 0, and δ ∈ R,

where S(p, β, γ, δ) is defined via its characteristic function:

E
Z∼S(p,β,γ,δ)

[
e−itZ

]
=

exp

(
−γp|t|p

[
1− iβ tan(πp2)sign(t)

]
+ iδt

)
if p 6= 1

exp
(
−γ|t|

[
1 + iβ 2

π
sign(t) log(|t|)

]
+ iδt

)
if p = 1

where sign(t) ∈ {1,−1} is the sign of a real t ∈ R.

We will be mostly concerned with a particular class of p-stable distributions, known as the

56

standard p-stable distribution, which result when one sets β = δ = 0 and γ = 1. For p ∈

(0, 2], we denote this distribution by Dp. Standard p-stable distributions are central to many

algorithms in streaming and numerical linear algebra. Two prominent examples of standard p-

stable distributions are the cases of p ∈ {1, 2}: for p = 2 the distribution D2 is the well-known

Gaussian distribution N (0, 1), and for p = 1 the distribution D1 is the Cauchy distribution. The

formal definition follows.

Definition 2.2.6 (Standard p-stable Distribution). Fix any p ∈ (0, 2]. Then the standard p-stable

distribution, denoted Dp, is the distribution with characteristic function

E
Z∼Dp

[
eitZ

]
= e−|t|

p

The distribution Dp has the property that if X1, . . . , Xn, Z ∼ Dp, and a ∈ Rn is a fixed vector,

we have
n∑
i=1

aiXi
d= ‖a‖pZ

Standard methods for generating p-stable random variables are discussed in [Nol] and [UZ11]

. We present a particularly elegant method for generation here, which is due to Chambers

[CMS76].

Proposition 2.2.7 ([CMS76]). Fix any p ∈ (0, 1). Then X ∼ Dp can be generated as follows:

1. Generate θ ∼ Uniform[−π
2 ,

π
2].

2. Generate r ∼ Uniform[0, 1].

3. Set

X ← sin(pθ)
cos1/p(θ) ·

(
cos(θ(1− p))

ln(1/r)

) 1−p
p

An peculiar and important property of p-stable distributions for p < 2 is that they heavy tails

– namely we have the following fact.

Fact 2.2.8 (Tail behavior of standard p-stable, Theorem 1.12 [Nol]). Fix p ∈ (0, 2), and let Dp

57

be the standard p-stable distribution. Then we have

lim
t→∞

Pr
X∼S(p,β,γ,0)

[|X| > t] · t
p

cp
= 1

where cp = 1
π

sin
(
π·p
2

)
Γ(p).

As a consequence of Fact 2.2.8, for p < 2 the variance of p-stable variables infinite, and for

p ≤ 1 the expectation of p-stable variables is undefined.

Indyk’s p-Stable Sketch We now state a celebrated and central application of p-stable vari-

ables to sketching tasks, known as Indyk’s p-stable estimator, introduced in the paper [Ind06].

Theorem 8 (Indyk’s p-Stable Sketch [Ind06]). Fix any p ∈ (0, 2] bounded away from 0 by a

constant, ε ∈ (0, 1), and let x ∈ Rn be a fixed vector. Let θp = median(|Dp|) be the median of

the random variable |Z| where Z ∼ Dp. Let S ∈ Rk×n be a matrix consisting of independent

identically distributed variables fromDp, where k = Θ(1
ε2

log(1/δ)). Then with probability 1−δ

over the draw of S, we have

(1− ε)‖x‖p < mediani∈[k]

{
|(Sx)i|
θp

}
< (1 + ε)‖x‖p

Notice that the above theorem immediately gives rise to a O(1
ε2

log n)-bits of space algo-

rithm for estimating ‖x‖p in the random oracle turnstile streaming model. One generates S to

γ = 1/poly(n) precision, and outputs the estimator above from the sketch Sx. The resulting

estimate will be within γn‖x‖∞ < 1/poly(n) of the estimate had it been generated to infinite

precision, and moreover Sx requires only O(1
ε2

log n)-bits of space to store. The task of deran-

domizing this algorithm is more nuanced, and was accomplished in [Ind06] by usage of Nisan’s

Pseudorandom Generator [Nis92], albiet with an increased space complexity of O(1
ε2

log2 n).

This derandomization was later improved to an optimal O(1
ε2

log n)-bits by Kane, Nelson, and

Woodruff [KNW10a] by utilizing limited independence.

58

2.3 Streaming Background

The Data Stream Model. We begin by restating, in more detail, the formal definition of the

data stream model, as first introduced in Section 1.1.

Definition 1.1.1 (The Streaming Model). Fix integers n,m,M > 0 such that log(mM) =

O(log n). In the streaming model, a vector x ∈ Rn, known as the frequency vector, is initialized

to ~0. Then, it received a sequence of updates (i1,∆1), (i2,∆2), . . . , (im,∆m), where it ∈ [n] and

∆ ∈ {−M, . . . ,M}. Each update (i,∆) causes the change:

xit ← xit + ∆

At the end of the stream, the vector x ∈ Rn is given by xi = ∑
t:it=i ∆t for all i ∈ [n]. This model

is known as the general turnstile model. If we are also promised that xi ≥ 0 for all i ∈ [n] and

at all points in the stream, this is known as the strict turnstile model. Furthermore, if we are

promised that ∆t ≥ 0 for all t ∈ [m], this is known as the insertion-only model.

The goal of a streaming algorithm is to observe the updates (it,∆t) sequentially, and at

the end of the stream answer a query about the final frequency vector, using as little space and

update time as possible.

Given a stream (i1,∆1), (i2,∆2), . . . , (im,∆m) of length m, for any time step t ∈ [m] we

write x(t) to denote the state of the frequency vector after the first t updates. In other words,

x(t) ∈ Rn is the vector defined by:

x
(t)
i =

∑
τ≤t : iτ=i

∆τ

for all i ∈ [n]. More generally, if g : Rn → Ω is any function of the stream taking values in some

set Ω, we write g(t) to denote the value of g(x) after the first t updates, namely: g(t) = g(x(t)).

Bounded Deletion Model. In addition to the turnstile and insertion-only models defined above,

we also formally introduced the bounded deletion model, which is introduced and the primary

59

subject of Chapter 6, and which will be referred to in several other chapters in this thesis. Given

a stream of updates (i1,∆1), (i2,∆2), . . . , (im,∆m) for a stream vector x ∈ Rn, we define the

insertion vector I ∈ Rn to be the frequency vector of the substream of positive updates (∆t ≥ 0),

and the deletion vector D ∈ Rn to be the entry-wise absolute value of the frequency vector of

the substream of negative updates. More formally:

Ij =
∑

t : it=j
∆t≥0

∆t and Dj =
∑

t : it=j
∆t<0

|∆t|

for each j ∈ [n]. Notice that x = I − D by definition. We then define the bounded deletion

model as follows:

Definition 6.1.1 (α-Bounded Deletion Streams). For α ≥ 1 and p ≥ 0, a data stream satisfies

the Lp α-property if

‖I +D‖p ≤ α‖x‖p

Notice that for p = 1, the definition simply asserts that the final L1 norm of x must be no

less than a 1/α fraction of the total weight of updates in the stream
∑m
t=1 |∆t|. For strict turnstile

streams, this is equivalent to the number of deletions being less than a (1− 1/α) fraction of the

number of insertions, hence a bounded deletion stream. For p = 0, the α-property simply states

that ‖x‖0, the number of non-zero coordinates at the end of the stream, is no smaller than a 1/α

fraction of the number of distinct elements seen in the stream.

Observe for α = 1, we recover the insertion-only model, whereas for α = mM in the L1

case or α = n in the L0 case we recover the turnstile model (with the minor exception of streams

with ‖x‖p = 0). So α-property streams are a natural parameterized intermediate model between

the insertion-only and turnstile models.

Random Oracle Model. We now state again the random oracle model of streaming. In several

cases, we will first develop algorithms or intuition for the random oracle case, before later re-

moving this assumption (i.e., derandomizing the algorithm). We also remark that lower bounds

60

proved in the public coin model of communication immediately apply to the random oracle

streaming model. Since many lower bounds in the streaming literature indeed derive from the

public coin model, most known lower bounds additionally apply to the random oracle model.

Definition 2.3.1 (Random Oracle Model). In the random oracle model of streaming, an algo-

rithm A is given oracle access to an arbitrarily arbitrarily long string r ∈ {0, 1}∗ of random

bits, which is generated once at the start of the stream. At any time, the algorithm can query the

value for ri for any i ∈ N, without counting against the space complexity of the algorithm.

2.3.1 Some Standard Streaming Problems and their Complexity

We now introduce three central streaming tasks in the literature, which will be referred to through-

out Part I of the thesis. In all the following, we fix some vector x ∈ Rn which is defined by a

stream of updates (i1,∆1), (i2,∆2), . . . , (im,∆m). For different classes of streams—such as

turnstile, insertion only, and bounded deletion streams—we obtain distinct streaming stream-

ing problems for the same task defined below. For instance, the heavy hitters problem in turn-

stile streams will have a different complexity than the heavy hitters problem for insertion-only

streams.

In all of the following, we fix some precision parameter ε ∈ (0, 1). We begin with the task of

norm estimation.

Definition 2.3.2 (Lp norm estimation). Given a parameter p > 0, the Lp-norm3 estimation

problem is to output a value L̃ at the end of the stream satisfying

(1− ε)‖x‖p ≤ L̃ ≤ (1 + ε)‖x‖p

with probability at least 2/3.

For p > 2, it is known that polynomial space is required for Lp estimation [CKS03, IW05],

even in the insertion-only model. For turnstile streams and p ∈ (0, 2], the complexity of Lp norm
3Note that the following is only a norm for p ≥ 1, and we abuse terminology for the case of p ∈ (0, 1).

61

estimation is understood, with tight upper and lower bounds of Θ(1
ε2

log n) given in [KNW10a].

For the insertion-only case and p ∈ (1, 2], however, thus far there is still a gap in our understand-

ing of the space complexity. Namely, the best known lower bound is Ω(ε−2 + log n) [Woo04],

and in the random oracle model the lower bound is only Ω(ε−2). On the other hand, the best up-

per bound for p ∈ (1, 2] is simply to run the Θ(1
ε2

log n) turnstile algorithm. We resolve the space

complexity of Lp norm estimation for p ∈ (0, 1), up to log log n, log(1/ε) factors, in Chapter 4,

where we give bounds of Õ(1
ε2

) in the random oracle model and Õ(1
ε2

+ log n) in the standard

model.

We often treat the case of p = 0 for Lp estimation separately; this task is also referred to as

the distinct elements problem.

Definition 2.3.3 (Distinct elements/L0 estimation). The distinct elements, orL0, estimation prob-

lem is to output a value L̃ at the end of the stream satisfying

(1− ε)‖x‖0 ≤ L̃ ≤ (1 + ε)‖x‖0

with probability at least 2/3, where ‖x‖0 = |{i ∈ [n] | xi 6= 0} is the number of non-zero

coordinates in x.

Tight bounds for L0 estimation in the insertion-only model were given by Kane, Nelson, and

Woodruff [KNW10b], usingO(1
ε2

+log n) bits of space, matching known lower bounds [AMS96,

IW03, Woo04]. For the turnstile model, the same paper [KNW10b] gave an upper bound of

Õ(1
ε2

log n), which matches the lower bounds of [AMS96, KNW10a] up to log log n, log(1/ε)

factors.

We now state the well-known heavy hitters problem, which is to find the largest coordinates

in the frequency vector x.

Definition 2.3.4 (Lp Heavy Hitters). Fix a parameter p > 0. The heavy hitters problem is to

output a set S ⊂ [n] such that with probability at least 2/3:

1. For every i ∈ [n] with |xi| ≥ ε‖x‖p we have i ∈ S, and

62

2. For every j ∈ S we have |xi| ≥ (ε/2)‖x‖p.

A coordinate i satisfying |xi| ≥ ε‖x‖p is known as an ε-heavy hitter (for the Lp norm).

A slightly weaker version of the heavy hitters problem only requires the first condition

that i ∈ S for all i such that |xi| ≥ ε‖x‖p, and instead adds the secondary condition that

|S| = O(1/εp)—note that this is weaker since at most O(1/εp) coordinates can satisfy |xi| ≥

(ε/2)‖x‖p. Almost always the case of either p = 1 or p = 2 is treated in the literature, with the

case of p = 2 being slightly more common in theory.

For the case of p = 2 and the insertion only model, an algorithm usingO(ε−2 log(1/ε) log n)-

bits of space was given, which is optimal up to the factor of log(1/ε) simply since the set S of

ε-heavy hitters itself can require Ω(ε−2 log n) bits to store. For the turnstile case, the classic

count-sketch algorithm [CCFC02b] (described in the following section), achieves O(ε−2 log2 n)-

bits of space, tightly matching the lower bound of [JST11].

2.3.2 Count-Sketch

We now describe the well-known streaming algorithm known as count-sketch, introduced by

Charikar, Chen, and Farach-Colton [CCFC02b] in the streaming literature, which will play a

prominent role in many of the results in this thesis. The core idea of count-sketch is excep-

tionally elegant: given a high-dimensional vector x ∈ Rn, randomly hash the coordinates xi

of x into k � n buckets, multiply each coordinate by a random sign, sum up the coordinates

in each bucket with their signs, and repeat (some number of times). Since its introduction in

since [CCFC02b], this concept has been rediscovered at least three times in machine learning,

numerical linear algebra, and compressed sensing [WDL+09, CW17, Don06], and also goes un-

der the name of feature hashing and the sparse Johnson-Lindenstrauss transformation. In what

follows, we present a unified and comprehensive introduction to count-sketch, which will serve

as a foundation for its various applications throughout the thesis.

Count-sketch is a linear sketch, meaning it stores the matrix-vector product Sx, where x ∈

R
n is a vector—often it will be the frequency vector of a stream—and S ∈ Rt×n is a randomized

63

sketching matrix. The matrix S can be broken into d blocks with k rows each, where t = dk,

with the property that each of the blocks are drawn independently from the same distribution

(i.e., each of the blocks is an independent repetition of the aforementioned hashing process).

For this reason, it will often be convenient to think of reshaping the product Sx ∈ Rt into a

matrix A ∈ Rd×k, where each row of A corresponds to one of the d independent blocks. This

interpretation is often taken in the literature, and is the one we will follow in the subsequent

exposition.

Formally, the (reshaped) count-sketch data structure is a matrix A with d rows and k columns.

When run on a stream x ∈ Rn, for each row i ∈ [d], count-sketch picks a uniform random

mapping hi : [n] → [k] and gi : [n] → {1,−1}. In general, hi and gi need only be 4-wise

independent hash functions, but in this chapter we will use fully-independent hash functions

(and later relax this condition when derandomizing). Whenever an update ∆ to item v ∈ [n]

occurs, count-sketch performs the following updates:

Ai,hi(v) ← Ai,hi(v) + ∆ · gi(v) for i = 1, 2, . . . , d

Thus, at the end of the stream, the state of the count-sketch table A ∈ Rd×k is given by:

Ai,j =
∑

v∈[n] : hi(v)=j
gi(v) · xv (2.1)

for every i ∈ [d] and j ∈ [k]. Note that while we will not implement the hi’s as explicit hash

functions, and instead generate i.i.d. random variables hi(1), . . . , hi(n), we will still use the

terminology of hash functions. In other words, by hashing the update (v,∆) into the row Ai of

count-sketch, we mean that we are updating Ai,hi(v) by ∆ · gi(v). By hashing the coordinate xv

into A, we mean updating Ai,hi(v) by gi(v)xv for each i = 1, 2, . . . , d. Using this terminology,

each row of count-sketch corresponds to randomly hashing the indices in [n] into k buckets,

and then each bucket in the row is a sum of the frequencies xi of the items which hashed to it

multiplied by random ±1 signs. As noted, the entries of A are given by the entries of the matrix

vector product Sx ∈ Rdk for a matrix S ∈ {−1, 1, 0}dk×n. By indexing into the rows of S by

64

tuples (i, j) ∈ [d]× [k], the entries of S are given by

S(i,j),v = 1 (hi(v) = j) · gi(v)

One of the main features of count-sketch is that given A and knowledge of the hash functions

hi, gi, one can obtain an estimate vector y ∈ Rn of the frequency vector x such that ‖y − x‖∞ is

small. Formally, this vector y satisfies the following guarantee:

Theorem 9 ([CCFC02b]). If d = Θ(log 1
δ
) and k = 6/ε2, then for a fixed v ∈ [n] we have

|yv − xv| < ε‖xtail(1/ε2)‖2

with probability at least 1− δ, where y is given

yv = mediani∈[d]
{
gi(v) ·Ai,hi(v)

}
(2.2)

Moreover, setting d = 1, the result holds with probability at least 2/3. Consequentially, if c ≥ 1

is any constant, and we set d = Θ(log n), we have

‖y − x‖∞ < ε‖xtail(1/ε2)‖2

with probability at least 1 − n−c, where y is as defined in Equation 2.2. Furthermore, if we

instead set yv = mediani∈[d]|Ai,hi(v)|, then the same bounds above above hold replacing x with

|x|.

As we will see later in Section 2.4.1, count-sketch features prominently in the application of

sketching to numerical linear algebra. In particular, the count-sketch matrix S, with d = 1 rep-

etitions of the hashing process, satisfies a powerful property known as the subspace embedding

guarantee. This guarantee is crucial for both linear regression and low-rank approximation, and

will be utilized in Chapters 10 and 11 for this purpose.

65

2.4 Numerical Linear Algebra

We now introduce several concepts and tools from linear algebra which will be particularly useful

for the design and analysis of sketches in Part II. We begin with the notion of the leverage scores

of a matrix A.

Definition 2.4.1 (Leverage Scores). Given a matrix A ∈ Rn×d, let A = UΣV> be its singular

value decomposition. For each i ∈ [n], we define the i-th leverage score of A, denoted τi(A) =

τi, by

τi = ‖Ui,∗‖2
2

The leverage scores can be equivalently defined in terms of quadratic forms with the psuedo-

inverse of ATA. Namely, for each i ∈ [n], we have:

τi(A) = Ai,∗(ATA)+AT
i,∗

Intuitively, the i-th leverage score of a matrix A can be interpreted as the “uniqueness” of

the i-th row of A—namely, rows that “stick out” from the rest of A have high leverage. Conse-

quently, if one would like to sample a subset of the rows of A while approximately preserving

important geometric information about A, then rows Ai,∗ with large leverage score should be

sampled with higher probability. We will see one way in which this can be formalized to obtain

subspace embeddings below.

2.4.1 Subspace Embeddings

We now formally define the notion of a subspace embedding (SE), which was informally de-

scribed and introduced in Section 1.2.

Definition 2.4.2 (Subspace Embedding). Fix a matrix A ∈ Rn×d, and fix ε ∈ (0, 1). Then a

matrix S ∈ Rn×k is said to be an ε-subspace embedding for A if simultaneously for all x ∈ Rd

66

we have

‖SAx‖2 = (1± ε)‖Ax‖2

Moreover, a distribution D over matrices S ∈ Rn×k is said to be a ε-subspace embedding for A

if S ∼ D is an ε-subspace embedding for A with probability 2/3 over the draw of S.

In Section 1.2 we described at a high level how subspace embeddings are a crucial ingredient

in solving optimization problems in linear algebra via sketching. We recall here how they can

be utilized for linear regression, where one wants to solve minx ‖Ax − b‖2 for a tall matrix

A ∈ Rn×d with n � d. Note that directly solving for x requires computing the covariance

matrix of A, which takes O(ndω−1) time for general A, where ω ≈ 2.376 is the exponent of fast

matrix multiplication. Instead, one can first compute SA and Sb, where S ∈ Rk×n is a random

matrix. Then if S is an ε-subspace embedding for [A, b], since the vector (Ax− b) is in the span

of [A, b] for any x ∈ Rd, it follows that the solution x̂ to minx ‖SAx − Sb‖2 will be within a

(1 + ε) factor of the optimal solution cost. However, if k � n, then solving for x̂ can now be

accomplished much faster—in O(ndω−1) time.

Note that the bottleneck in the above procedure is computing the product SA, which requires

(dωn) time even if k = O(d).4 Thus, we will often try to find subspace embeddings S which can

be applied to A very quickly, ideally in O(nnz(A)) time. This will be possible when S is very

sparse, or has special structure.

It turns out that there are many classes of random matrices which will satisfy the subspace

embedding guarantee with good probability. We state three of the most common classes here.

The simplest example is the distribution of matrices with independent Gaussian entries.

Theorem 10 (Theorem 2.3 [W+14]). Fix A ∈ Rn×d, and let S = 1√
k
· R ∈ Rk×n, where R

is a matrix of independent standard Gaussian random variables (i.e., N (0, 1)). Then if k =

Ω(1
ε2

(d+ log(1/δ))), the matrix S is a subspace embedding for A with probability at least 1− δ.

4It is not hard to see that k ≥ d is necessary for any subspace embedding. The reason for this is that if k < d,
then for a rank-d matrix A there is a non-zero vector x such that Ax is in the kernel of S, meaning that SAx = 0
but Ax 6= 0, thus violating the subspace embedding guarantee.

67

The downside of setting S to be a dense matrix of Gaussian random variables is that com-

puting the product SA is expensive — it requires time O(ndω−1). Instead, we will often like to

use random matrices which are sparse enough so that SA can be computed quickly. In fact, we

have already seen a family of random matrices which will satisfy this property: the count-sketch

matrix from Section 2.3.2. Namely, we will set S ∈ Rk×n to be the linear sketching matrix from

Section 2.3.2 such that a streaming algorithm, on stream vector x, stores the sketch Sx. Setting

the parameters of S so that there is only one “block” (or repetition) of the hashing scheme, we

will obtain a subspace embedding with k = Ω(d2/ε2). This fact is one of the many celebrated

connections between the streaming literature and numerical linear algebra.

Theorem 11 ([CW17]). Fix A ∈ Rn×d, and let S = R
k×n be a matrix such that for each

i ∈ [n] we have S∗,i = αi · e>ji , where ji ∼ [k] is drawn uniformly at random, and {αi}i∈[n] are

independent random signs (i.e., drawn uniformly from {1,−1}). Then, if k = Ω̃(d2

ε2
), we have

that S is an ε-subspace embedding for A with probability at least 9/10.

Notice that, because each column of S has only one non-zero entry, the product SA can be

computed in O(nnz(A)) time, resulting in huge speed-ups for linear regression via the above

sketch-and-solve method.

Finally, as hinted earlier, we demonstrate that by sampling rows of A according to their

leverage scores, we obtain a subspace embedding as well. To implement this procedure, one first

needs to approximately compute the leverage scores of A; methods for doing this in Õ(nnz(A))

time are demonstrated in [CW17].

Theorem 12 (Leverage score sampling is a subspace embedding, see [MI10] or Section 2.4 of

[W+14]). Fix any matrix A ∈ Rn×d and ε, δ ∈ (0, 1). Let q = (q1, . . . , qn) be a distribution

over the rows of A such that there exists a real β > 0 satisfying qi ≥ β τi(A)∑n

j=1 τj(A) for all i ∈ [n].

Consider a random matrix S ∈ Rk∈n generated as follows: initally S is the zero-matrix, and

then for each i = 1, 2, . . . , k, we sample a random ji ∈ [n] from the distribution q, and set

Si,ji = 1√
qjik

. Then, assuming k = Ω(1
βε2
d log(k/δ)), we have that S is a ε-subspace embedding

for A with probability at least 1− δ.

68

Part I

Streaming and Distributed Algorithms

69

Chapter 3

Perfect Lp Sampling in Data Streams

We begin this thesis by studying the problem of sampling from a stream of data. Given a
high-dimensional vector x ∈ Rn updated in a stream, and a non-negative measure function

G : R → R≥0, the goal of is to sample a coordinate i ∈ [n] with probability proportional to
G(xi). Of particular interest is the Lp Distribution, obtained by setting G(x) = |x|p. Sketches
for Lp sampling are the most widely studied sampling algorithms for data streams, and have
been used to great success in a multitude of data analytic tasks. Examples include applications
in distributed computation [WZ18, JSTW19, BMRT20], graph algorithms [AGM12a, AGM12c,
Jin18, CLP18, KKP18, CKP+21, CFCHT20, MV20, KMM+20, FKN21, AD21, FKN21], met-
ric approximation [CJLW20a], numerical linear algebra [LNW19, DJS+19, MRWZ20a], com-
putational social choice [MSW20], data analysis [CPW20], and differential privacy [CGSS20],
among many other applications.

Despite their considerable importance, for many decades the only case of Lp sampling which
admitted small spaces sketches was when p = 1 and the stream contained only positive updates
(i.e, the insertion-only model). Here, the well known reservoir sampling scheme of Vitter can be
applied [Vit85a]. On the other hand, when negative updates are allowed (i.e., turnstile streams),
or if p 6= 1, the task becomes significantly more challenging. In fact, the question of whether sub-
linear spaceLp samplers even exist for turnstile streams was posed by Cormode, Murthukrishnan,
and Rozenbaum in 2005 [CMR05]. Subsequent work made partial progress on this question, by
demonstrating the existence of small space approximate Lp samplers [MW10, AKO11, JST11],
which sampled a coordinate i with probability proportional to (1± ε)|xi|p for some error param-
eter ε > 0.

In this Chapter, we discuss the resolution of this open question of over a decade. In particular,

71

we describe the first perfect Lp samplers in data streams, which have no space dependency on
ε, i.e, ε = 0. Our algorithms are moreover are space optimal for p < 2, and optimal up to a
log n factor for p = 2. For p > 2, the task is known to require polynomial space, thus our result
essentially resolves the space complexity of Lp sampling in data streams, and has since been
applied to design statistical algorithms with improved accuracy, such as for simulating random
walks on graphs [Jin18, CKP+21].

Highlighted Contributions

The materials from this chapter are drawn from our paper [JW18b], and the manuscript [JWZ21].
The main contributions therein are as follows:

• The first perfect Lp sampling for turnstile data streams, p ∈ (0, 2], using an optimal space
for p < 2 and matching the best known dependency on n for prior approximate samplers
when p = 2.(Section 3.3).

• A general derandomization technique for linear sketches, which gives the first efficient
derandomization of the count-sketch variant of Minton and Price [MP14], (Section 3.4.2).

• A new framework for sampling from insertion-only streams for general measure functions
G, including Lp sampling, concave functions, and a large number of specific measure
functions, such as the L1 − L2, Fair, Huber, and Tukey estimators (Section 3.6).

3.1 Background

A core component of this thesis concerns the problem of generating and analyzing samples. As
previously mentioned, sampling is an incredibly powerful and versatile method for data analysis,
and this is particularly true for the analysis of streaming. Substantial literature has been de-
voted to the study of sampling for problems in big data [Vit85a, Knu98, GM98a, EV03, M+05,
CMR05, GLH06, GLH08, CDK+09, CCD11, CCD12, MM12, CDK+14, Coh15, Haa16, CJ19,
CGP20], with applications to network traffic analysis [GKMS01, Duf04, MCS+06, HNG+07,
TLJ10], databases [LNS90, Olk93, HS92, LN95, HNSS96, Haa16], distributed computation
[CMYZ10, TW11, CMYZ12, WZ16], and low-rank approximation [FKV04, DV06, WZ16].

Sketches for generating samples from data streams are a fundamental primitive, and are uti-

72

lized as a subroutine in more complicated approximation and statistical tasks. Given a stream
vector x ∈ Rn and a non-negative measure function G : Rn → R≥0, the goal of is to sample a
coordinate i ∈ [n] with probability proportional to G(xi). The most widely used measure func-
tion, and more generally the most widely studied form of sampling in data streams, is to sample
from the Lp Distribution, obtained by setting G(x) = |x|p, which we now formally introduce.

Definition 3.1.1 (Lp Distribution). Fix 0 ≤ p, and let x ∈ Rn be a non-zero vector. Then the Lp
distribution over x, denoted Dp(x), is a distribution over {1, 2, . . . , n} given by:

Pr
X∼Dp(x)

[X = i] = |xi|
p

‖x‖pp

For p = 0, we define D0(x) to be the uniform distribution over the support of x.

Ideally, one would like to design a small-space streaming algorithm which, after observing
the stream updates (i1,∆1), . . . , (im,∆m) defining the frequency vector x ∈ Rn, outputs a ran-
dom variable X ∼ Dp(x) from the Lp distribution over x. In the special case of the insertion
only model and p = 1, such an idealistic goal is indeed possible. In fact, the solution for this
case has been known for several decades, and is the well-known reservoir sampling algorithm of
Vitter [Vit85a], which uses O(log n) total bits of space to maintain a sample. This algorithm and
the analysis are so simple that they bears stating here:

Reservoir Sampling:
Initialize counter C ← 0, and current sample s← null.
On update (i,∆):

1. Set C ← C + ∆

2. With probability ∆
C

, set s← i.

To analyze the algorithm, let st = ∑t
i=1 ∆i be the sum of all updates up to time step t. For any

i ∈ [n], the probability that an update (i,∆t) causes the current sample to change s ← i is ∆t

st
,

and the probability that the sample never changes again thereafter is:

(
1− ∆t+1

st+1

)(
1− ∆t+2

st+2

)
· · ·

(
1− ∆m

sm

)
=
(
st+1 −∆t+1

st+1

)(
st+2 −∆t+2

st+2

)
· · ·

(
sm −∆m

sm

)

=
(
st
st+1

)(
st+1

st+2

)
· · ·

(
sm−1

sm

)
= st
sm

73

Taken together, the probability that the update (i,∆t) causes s = i at the end of the stream is
∆t

st
· st
sm

= ∆t

sm
. Summing over all updates to i, we have that Pr [s = i] = ∑

t:it=i
∆t

sm
= xi
‖x‖1 as

needed.

Unfortunately, when negative updates are allowed in the stream, or p 6= 1, the problem
becomes significantly harder. In 2005, it was posed as an open question by Cormode, Murthukr-
ishnan, and Rozenbaum whether sublinear space Lp samplers even existed for turnstile streams
[CMR05]. Several years later, Monemizadeh and Woodruff made partial progress on this ques-
tion, by demonstrating that, if we allow the sampler to be approximately correct, small space
samplers indeed exist [MW10]. We now formally state the guarantee given by an approximate
Lp sample. We note that the following definition is stated more generally than the earlier Defini-
tion 1.1.2 in Section 1.1.1, as it includes the additional additive error parameter γ, and considers
the edge case of zero-valued streams.

Definition 3.1.2 (Lp Sampler). Fix any p ≥ 0, values ε, δ, γ ∈ (0, 1), and let x ∈ Rn be a non-

zero vector. Then a (ε, δ, γ)-approximate Lp sampler is an algorithm which, when run on x, out-

puts a random variable Z ∈ [n] ∪ {⊥,ZERO} such that Pr [Z = ⊥] ≤ δ, Pr [Z = ZERO] ≤
γ, and such that for every i ∈ [n]:

Pr [Z = i | Z /∈ {⊥,ZERO}] = (1± ε) |xi|
p

‖x‖pp
± γ

Moreover, when run on the zero vector x = ~0 ∈ Rn, a (ε, δ, γ)-approximate Lp sampler should

output Z = ZERO with probability at least 1− γ.1

We say that an algorithm is a (ε, δ)-approximate Lp sampler if, for any constant c ≥ 1, it is a

(ε, δ, n−c)-approximate Lp sampler. A (0, δ)-approximate sampler called a perfect Lp sampler,

and a (0, δ, 0)-approximate sampler is called a truly perfect Lp sampler.2

The one-pass approximateLp sampler introduced in [MW10] requires poly(ε−1, log n) space,
albeit with rather large exponents. Later on, in [AKO11], the complexity was reduced signifi-
cantly to O(ε−p log3 n log δ−1)-bits for p ∈ [1, 2], using a technique known as precision sam-

pling. Using a tighter analysis of this technique, Jowhari, Sağlam, and Tardos reduced the space
complexity of Lp sampling for p < 2 to O(ε−max{1,p} log2 n log δ−1)-bits for p ∈ (0, 2) \ {1},

1We remark that prior works, including our paper [JW18b], did not explicitly consider the case when the input
stream x was the zero-vector. The definition shown here captures this case, and the correct behavior of a sampler on
such a stream.

2We will refer to an algorithm as being a approximate Lp Sampler if it is a (ε, δ)-approximate sampler for ε 6= 0.
Otherwise, we will refer to such a sampler as a perfect or truly perfect sampler.

74

Lp sampling upper bound (bits) p range Notes Citation

O(log3 n) p = 0
perfect L0 sampler,

δ = 1/poly(n)
[FIS08]

O(log2 n log δ−1) p = 0 perfect L0 sampler [JST11]

poly log(ε−1, n) p ∈ [0, 2] δ = 1/poly(n) [MW10]

O(ε−p log3 n log δ−1) p ∈ [1, 2] (1± ε)-relative error [AKO11]

O(ε−max{1,p} log2 n log δ−1) p ∈ (0, 2) \ {1} (1± ε)-relative error [JST11]

O(ε−1 log(ε−1) log2 n log δ−1) p = 1 (1± ε)-relative error [JST11]

O(log2 n log δ−1) p ∈ (0, 2)
perfect Lp sampler,

random oracle model,

matches lower bound

*

O(log2 n log δ−1(log log n)2) p ∈ (0, 2) perfect Lp sampler *

O(log3 n log δ−1) p = 2 perfect L2 sampler *

O(log3 n) p ∈ (0, 2) δ = 1/poly(n) *

Figure 3.1: Evolution of one pass Lp sampling upper bounds for p ∈ [0, 2]. The last four results
marked with * are our contributions from [JW18b]. Note that the best known lower bound for
p ∈ [0, 2] is Ω(log2 n log δ−1) for p ≥ 0 [KNP+17], which holds in the random oracle model (see
also [JST11] for a lower bound for constant δ).

and O(ε−1 log(ε−1) log2 n log δ−1) bits of space for p = 1 [JST11]. In addition, they give an
O(log2 n log δ−1) perfect L0 sampler. The historical evolution of Lp sampling algorithms is
given in Table 3.1.

In addition to upper bounds, in the same paper, Jowhari, Sağlam, and Tardos demonstrated
an Ω(log2 n)-bit lower bound for Lp samplers for any p ≥ 0. Recently, this lower bound was
extended to Ω(log2 n log δ−1) [KNP+17] bits for all δ ≥ 1/poly(n), which closes the complexity
of the problem for p = 0. Moreover, for p ∈ (0, 2), this means that the upper and lower bounds
for Lp samplers are tight in terms of the parameters n, δ, but a gap exists in the dependency on ε.
Being the case, it would seem natural to search for an Ω(ε−p log2 n log δ−1) lower bound to close
the complexity of the problem. It is perhaps surprising, therefore, that no lower bound in terms
of ε exists – not even an Ω(ε−1) bound is known. This raises the following question:

Is the Ω(log2 n log δ−1) lower bound for Lp sampling tight? Namely, does ε need to

75

factor into the space complexity of an Lp sampler?

3.1.1 Contributions for Perfect Sampling

The main result of this chapter is an answer to the prior question. Specifically, we demonstrate
the existence of a perfect Lp sampler for p ∈ (0, 2], which moreover is space optimal for p < 2,
and matches the prior dependency on n, δ for p = 2, but has no dependency on ε. Our main
theorem is as follows.

Theorem 3 (Perfect Lp sampling). Fix any p ∈ (0, 2], and δ ∈ (0, 1). Then there is a

perfect Lp sampler, meaning a (0, δ)-approximate Lp sampler (Definition 3.1.2), using space

O(log2 n log δ−1) for p < 2 in the random oracle model, and O(log3 n log δ−1) for p = 2 in

general. If the random oracle assumption is dropped for p < 2, the space changes to

O
(

min
{

log2 n log 1
δ

(log log n)2, log2 n log n
δ

})

Moreover, for any ν, δ2 ∈ (0, 1), conditioned on outputting a sample i ∈ [n], the algorithm can

additionally output an estimate x̃i such that x̃i = (1± ν)xi with probability at least 1− δ2, using

an additive

O
(

min
{
ν−2, ν−p log 1

δ2

}
log n log 1

δ2

)
bits of space.

Due tor the Ω(log2 n log δ−2)-bit lower bound for approximately Lp sampling even with con-
stant ε [KNP+17], which moreover holds in the random oracle model, Theorem 3 closes the
space complexity of Lp sampling for p ∈ (0, 2). We remark that the log n gap between upper and
lower bounds for the case of p = 2 was present in prior works which developed approximate Lp
samplers [AKO11, JST11]. Specifically, prior to our contribution in Theorem 3, the state of the
art complexity for (ε, δ)-approximate Lp sampling was O(1

εmax{1,p} log2 n log δ−1) bits of space
for p ∈ (0, 2)\{1}, O(log ε−1

ε
log2 n log δ−1) bits of space for p = 1, and O(1

ε2
log3 n log δ−1) bits

of space for p = 2 (Theorem 2, [JST11]). It is an outstanding open problem whether this extra
log n factor for the case of p = 2 is necessary.

In addition to our upper bound, we also demonstrate a new lower bound for algorithms which,
in addition to being an approximate Lp sampler and returning an index i ∈ [n], also output
an estimate of the magnitude of the coordinate xi with relative error (1 ± ν), where ν > 0
is an error parameter. Specifically, in Theorem 27, we demonstrate that any such algorithm

76

requires Ω(ν−p log n log δ−1
2) bits of space. We remark that previously, the best upper bounds

for estimating a coordinate in addition the sampling was to simply run the previous approximate
samplers (Theorem 2) with ε = ν.

A natural complaint about the above sampler is that while it is perfect (i.e, ε = 0), it is not
truly perfect, in the sense that it still succumbs to an additive γ = O(n−c) error. This raises the
question of whether it is possible to design truly perfect Lp samplers in the turnstile streaming
model, which have no additive error γ in their distribution. While such a sampler would be
useful, we demonstrate in Theorem 29 that this is in fact impossible impossible. Specifically, we
show the following:

Theorem 29 (Abbreviated) Fix any constant ε0 ∈ [0, 1), let p > 0, and let 2−n/2 < γ < 1/2.

Then any (ε0, 1
2 , γ)-approximate Lp sampler must use Ω

(
min

{
n, log 1

γ

})
bits of space.

Theorem 29 demonstrates that sublinear space truly perfect samplers, which have no additive
error γ, cannot exist in the turnstile model, motivating the need to study perfect samplers.

Generic Derandomization of Linear Sketches. Along the way to derandomizing the main Lp
sampling algorithm from Theorem 3, we develop a generic technique which allows for the black-
box derandomization of a large class of linear sketches. This theorem will not be sufficient alone
to derandomize the algorithm of Theorem 3, but is suitable for a number of other applications.
For instance, it provides the first efficient derandomization of the count-sketch variant of Minton
and Price [MP14], a discussion of which can be found in Section 3.4.2. We state the generic
theorem here. In what follows, for a matrix A, let vec(A) denote the vectorization of A,
obtained by stacking the columns of A together.

Theorem 17 (Generic Derandomization of Linear Sketches). Fix n, t, k ≥ 1, and fix x ∈
{−M, . . . ,M}n, where M = poly(n). Let X ∈ Rt×nk be any fixed matrix with entries con-

tained within {−M, . . . ,M}, and let D be any distribution over matrices A ∈ Rk×n such that

the entries A ∼ D are i.i.d. and can be sampled using O(log n)-bits.

Let σ : Rk × Rt → {0, 1} be any function, and fix any constant c ≥ 1. Then there is a

distributionD′ over matrices A′ ∈ Rk×n such that A′ ∼ D′ can be generated via a random seed

of length O((k + t) log(n)(log log n)2), such that:

|Pr [σ(Af,X · vec(A)) = 1]−Pr [σ(A′f,X · vec(A′)) = 1]| < n−c(k+t)

and such that each entry of A′ can be computed in time Õ(1) using working space linear in the

seed length.

77

In the above theorem, σ can be defined as a tester with σ(Ax,X · vec(A)) = 1 whenever
a streaming algorithm depending only on Ax and X · vec(A) succeeds. Note that the matrix
X allows an algorithm to also depend lightly on A, in addition to the linear sketch Ax. For
instance, X · vec(A) could store a entire column of A, as is needed for count-sketch. Thus,
Theorem 17 can be seen as a step towards a universal derandomization of streaming algorithms.

We remark that many streaming algorithms, such as the p-stable sketches of Indyk [Ind06]
for Lp estimation, depend only on a linear sketch Ax. Specifically, for 0 < p ≤ 2, to esti-
mate ‖x‖pp = ∑

i∈[n] |xi|p to relative error (1 ± ε), the algorithm of [Ind06] generates a matrix
A with O(ε−2) rows and entries drawn independently from a p-stable distribution. The origi-
nal derandomization of [Ind06] applied Nisan’s pseudo-random generator [Nis92], resulting in
a log n blow-up in the space; namely, the algorithm required O(ε−2 log2 n) bits of space. This
blow-up was shown to be unnecessary by Kane, Nelson, and Woodruff [KNW10a], who gave
an involved argument demonstrating that it suffices to generate the entries of A with limited
independence, requiring a total of O(ε−2 log n) bits. Theorem 17, therefore, gives an alterna-
tive derandomization of Indyk’s p-stable sketches, although it requires a slightly suboptimal
O(ε−2 log n(log log n)2) bits of space.

Sampling from General Measures. While Theorem 29 demonstrated that the additive γ error
was necessary for sublinear space Lp samplers in the turnstile model, it does not rule out the
possibility of truly perfect samplers, with γ = 0, in the insertion only model. In Section 3.6, we
address this discrepancy by demonstrating that sublinear space truly perfect Lp samplers do exist
in the insertion only streaming model. Specifically, we develop a framework for truly-perfect
sampling in insertion only streams for general measure functions G. First, we formalize the
appropriate generalization of Definition 3.1.2 to general measure functions.

Definition 3.1.3. Fix any non-negative function G : R → R≥0 satisfying G(0) = 0, and fix

values ε, δ, γ ∈ (0, 1). Let x ∈ Rn be a non-zero vector. Then a (ε, δ, γ)-approximate G-sampler

is an algorithm which, when run on x, outputs a random variable Z ∈ [n] ∪ {⊥,ZERO} such

that Pr [Z = ⊥] ≤ δ, Pr [Z = ZERO] ≤ γ, and such that for every i ∈ [n]:

Pr [Z = i | Z /∈ {⊥,ZERO}] = (1± ε) G(xi)∑
j∈[n] G(xj)

± γ

Moreover, when run on the zero vector x = ~0 ∈ Rn, a (ε, δ, γ)-approximate G-sampler should

output Z = ZERO with probability at least 1− γ.

Notice that setting G(x) = |x|p, we recover the definition of an approximate Lp sampler.

78

We inherent the same terminology as in Definition 3.1.2 for (ε, δ)-approximate G-samplers, and
perfect and truly perfect G-samplers.

Our framework for truly perfect sampling is developed in Section 7.2, wherein several in-
stantiations of the framework are given for specific functions G. Our theorem in its most general
form is as follows, although we remark that for several applications, such as for Lp estimation,
significant additional work is needed to apply the theorem.

Theorem 22 LetG be a function such thatG(x)−G(x−1) ≤ ζ for all x ≥ 1. Given a lower

bound F̂G on FG = ∑
i∈[n] G(xi), then there exists a truly perfect G sampler for an insertion-

only stream that outputs ⊥ with probability at most δ and uses O
(
ζm

F̂G
log n log 1

δ

)
bits of space.

Further, the time to process each update is O (1) in expectation.

The main barrier to applying Theorem 22 to any arbitrary measure function G is obtaining
a “good” lower bound F̂G to FG = ∑

i∈[n] G(fi). Moreover, this lower bound must be obtained
correctly with probability 1, as any possibility of failure of a randomized algorithm would nec-
essarily contribute to additive error to the distribution of the samples, resulting in only a perfect,
but not truly perfect, sampler

Interestingly, our samplers are based on a time-stamp based reservoir sampling scheme, as
opposed to the common precision sampling framework utilized for other Lp samplers [AKO11,
JST11, JW18b, JSTW19, CJLW20a]. This property of our samplers makes our framework partic-
ularly versatile, and for instance allows it to be applied to the sliding window model of streaming.

As specific applications of our framework, we obtain the first truly perfect samplers for many
fundamental sampling problems, including Lp sampling, concave functions, and a large number
of measure functions, including the L1 − L2, Fair, Huber, and Tukey estimators. For p ≥ 1, our
results for Lp sampling are as follows.

Theorem 24 Fix any p ∈ [1, 2] and value δ ∈ (0, 1). Then there exists a truly perfect Lp-

sampling algorithm, namely a (0, δ, 0)-Lp Sampler, which uses O
(
n1−1/p log n log δ−1

)
bits of

space.

The above theorems show a strong separation between turnstile and insertion-only truly
perfect Lp samplers; surprisingly, for every p > 1, a truly perfect Lp sampler exists with
O
(
n1−1/p polylog(n)

)
bits of memory in the insertion-only model, while in the turnstile model

this requires Ω(n) bits of memory. For p < 1, our bounds are as follows

Theorem 25 Fix p ∈ (0, 1] and δ ∈ (0, 1). Then there exists a truly perfect Lp-sampling algo-

79

rithm, namely a (0, δ, 0)-Lp Sampler, which uses O (m1−p log n log δ−1) bits of space.

Applications of Perfect Samplers

As discussed in Section 1.1.1, approximate Lp samplers can be used as a building block in al-
gorithms for many important streaming problems, such as finding heavy hitters, Lp-norm es-
timation, cascaded norm estimation, and finding duplicates in data streams [AKO11, MW10,
JST11, BOZ12]. Lp samplers, particularly for p = 1, are often used as a black-box subrou-
tine to design representative histograms of x on which more complicated algorithms are run
[GMP, GM98b, Olk93, GKMS02, HNG+07, CMR05]. For these black-box applications, the
only property of the samplers needed is the distribution of their samples. Samplers with rela-
tive error are statistically biased and, in the analysis of more complicated algorithms built upon
such samplers, this bias and its propagation over multiple samples must be accounted for and
bounded. The analysis and development of such algorithms would be simplified dramatically,
therefore, with the assumptions that the samples were truly uniform (i.e., from a perfect L1 sam-
pler). In this case, no error terms or variational distance need be accounted for. Our results show
that such an assumption is possible without affecting the space complexity of the sampler.

Another important application ofLp sampling is for the analysis of massive graphs [AGM12a,
AGM12c, Jin18, CLP18, KKP18, CKP+21, CFCHT20, MV20, KMM+20, FKN21, AD21, FKN21].
One particularly important example is the problem of simulating random walks on graphs [Jin18,
CKP+21], which can be used for connectivity testing [Rei08], clustering [COP03, ACL07, AP09,
ST13], sampling [JVV86b] generating random spanning tree [Sch18], and approximate count-
ing [JS89]. An important component of the state of the art random walk simulation algorithms
for graph streams [Jin18, CKP+21], is that they use the Lp sampling algorithm of Theorem 3
to obtain walks with small variation distance from a true random walk. Note, importantly, that
using a (ε, δ)-approximate Lp sampler from prior works [MW10, AKO11, JST11] would result
in at least ε-variational distance from the true random walk distribution with polynomial depen-
dency in the space on ε, whereas usage of a perfect sampler results in only log(1/ε) dependency
in the space to obtain variation distance ε [CKP+21].

Another motivation for utilizing perfect Lp samplers comes from applications in privacy.
Here x ∈ Rn is some underlying dataset, and we would like to reveal a sample i ∈ [n] drawn from
the Lp distribution over x to some external party without revealing too much global information
about x itself. Using an approximate Lp sampler introduces a (1± ε) multiplicative bias into the
sampling probabilities, and this bias can depend on global properties of the data. For instance,

80

such a sampler might bias the sampling probabilities of a large set S of coordinates by a (1 + ε)
factor if a certain global property P holds for x, and may instead bias them by (1−ε) if a disjoint
property P ′ holds. Using only a small number of samples, an adversary would then be able to
distinguish whether P or P ′ holds by determining how these coordinates were biased. On the
other hand, the bias in the samples produced by a perfect Lp sampler is polynomially small, and
thus the leakage of global information could be substantially smaller when using one.

One formalization of what it means to “leak” global information comes from the literature
in private approximations [FIM+01, Woo11], where given a non-negative real-valued function
g(x) for some input x, the goal is to output a (1 ± ε) approximation R to g(x), such that the
value R reveals no more information about the input x than the actual value of g(x) reveals
about x. Specifically, to do this, one must show that the distribution of the value R can be
simulated given only knowledge of the value g(x). In our setting, g(x) = |xi|p/‖x‖pp could
be the probability that an exact Lp sampler should output a fixed coordinate i ∈ [n] on input
frequency vector x ∈ Rn, and the corresponding goal of a private sampler would be to output
i with probability R = (1 ± ε)g(x) without reveling any more information about x than the
value g(x). In this setting, a perfect Lp sampler will allow for a simulation which has 1/poly(n)
variational distance to the true distribution of R resulting from the sampler (just by adding small
1/poly(n)-sized noise), whereas an approximate (1 + ε) relative error sampler would only allow
for a simulation that is correct up to variational distance ε. This results in approximate samplers
being substantially less private than perfect samplers.

Roadmap of the Chapter

In Section 3.2, we introduce the precision sampling framework, as well as an overview of our
techniques in developing the main results of the paper [JW18b]. In Section 3.3, we prove the
correctness of the distributional portion of the perfect Lp sampling algorithm of Theorem 3,
which is summarized in Theorem 14. In Section 3.4, we provide the space and runtime analysis
of the algorithm, including the derandomization and the proof of Theorem 17. In Section 3.5, we
prove the second component of Theorem 3, which gives an estimate of the sampled coordinate
(Theorem 21). In Section 3.6, we introduce our framework for truly perfect G-samplers, for
general measure functions G, in the insertion only model. Finally, in Section 3.7, we prove the
lower bound from Theorem 27, and the truly perfect sampling lower bound from Theorem 29.

81

3.2 Primer on Precision Sampling and Overview

The perfect Lp sampler from Theorem 3 is based on a powerful framework known as the preci-

sion sampling framework, which we will now discuss in detail. This technique was introduced
by Andoni, Krauthgamer, and Onak [AKO11, AKO10] for Lp sampling, among other applica-
tions. It was later refined by Jowhari, Sağlam, and Tardos specifically for the purpose of Lp
sampling [JST11]. However, the precision sampling technique utilized in [AKO11, JST11] was
only capable of developing approximate Lp samplers, which had polynomial space dependency
on the error parameter ε. One of the main technical challenges in the proof of Theorem 3 is to
further refine and adapt the precision sampling framework to produce perfect Lp samplers.

Precision Sampling At a high level, precision sampling is a technique which reduces the prob-
lem of sampling a coordinate xi from a vector x ∈ Rn to the problem of finding the largest co-
ordinate of another vector z ∈ Rn. Since, in the streaming model, one cannot exactly determine
the identity arg maxi |zi| of the largest coordinate in small space, one instead obtains an estimate

y ∈ Rn of the vector z, and sets i∗ = arg maxi |yi|. Finally, one performs a statistical test to
determine whether this estimate was good, in which case the algorithm returns the coordinate
i∗ ∈ [n], or not good, in which case the failure symbol ⊥ is returned. A high level template with
these three main steps in the precision sampling framework is given in Figure 3.2.

The first step of transforming x into z in the precision sampling framework consists of scaling
each of the coordinates xi by a random variable αi as the updates arrive. By setting zi = αixi,
we obtain a new stream vector z ∈ Rn, simply by the transformation (i,∆) → (i, αi∆) to the
updates.3

In the prior works [AKO11, JST11], the scaling variables were set to αi = 1
t
1/p
i

where ti ∼
[0, 1] is uniform random variable drawn from [0, 1]. Supposing that the algorithm was given a
value T > ‖x‖p, then one could simply return any i ∈ [n] with |zi| ≥ T . Observe that for a fixed
i ∈ [n], the probability this occurs is given by:

Pr [|zi| ≥ T] = Pr [ui < |xi|p/T p]

= |xi|p/T p ∝ |xi|
(3.1)

It follows that the probability that |zi| ≥ T is proportional to |xi|p, which is what is desired

3In order to avoid the O(n) space required to store the random variables (α1, . . . , αn), the algorithm must
generate these random variables with limited independence. In prior works [AKO11, JST11], it sufficed to generate
these variables from k-wise independent hash functions for small k. This will not be sufficient for the algorithm
presented in this chapter, and a more involved derandomization procedure (discussed later) will be required.

82

Precision Sampling

Input: x ∈ Rn

Output: a sampled index i∗ ∈ [n]
1. Perform a transformation of the stream vector x into a new vector z.

2. Run instance A of count-sketch on z to obtain an estimate y of z.

3. Find i∗ = arg maxi |yi|. Then run a statistical test on y to decide whether to output i∗

or ⊥.

Figure 3.2: Precision Sampling Template

of an Lp sampler. The algorithms of [AKO11, JST11] then attempted to find any such coor-
dinate i ∈ [n] which passed this statistical test |zi| ≥ T , and return that coordinate. These
heavy coordinates can be found using a heavy-hitters streaming algorithm, which produces the
required estimate y of z. Specifically, one can use the count-sketch of Charikar, Chen, and
Farach-Colton [CCFC02b], which we now introduce.

Primer on Count-Sketch To describe how we handle these technical challenge, we begin
by describing the high-level precision sampling template that all Lp sampling algorithms since
[AKO11] have adhered to (shown in Figure 3.2). This template employs the classic count-sketch

algorithm of [CCFC02b] as a subroutine, which is introduced in the thesis preliminaries in Sec-
tion 2.3.2. For clarity of exposition and completeness, we briefly reintroduce the count-sketch
algorithm here.

Given a precision parameter η, count-sketch maintains a data structure A ∈ Rd×k, where
d = Θ(log n) and k = Θ(1/ε2). The table is constructed as follows: first, one selects 4-wise
independent hash functions hj : [n] → [6/η2] and gj : [n] → {1,−1}, for j = 1, 2, . . . , d. Then
for all i ∈ [d], j ∈ [k], it computes the following linear function Ai,j = ∑

k∈[n],hi(k)=j gi(k)zk,
where z ∈ Rn is the vector which count sketch is being applied to. Notice that, because the
function is linear, count-sketch can be maintained in a stream of updates to z. Given the table A
and the hash functions hi, gi, one can then construct an approximation y ∈ Rn of the vector x,
given by:

yv = mediani∈[d]{gi(k)Ai,hi(k)} (3.2)

for any v ∈ [n]. The estimation guarantee of count-sketch is as follows:

Theorem 9 (Count-Sketch). Fix η > 0, and let d = Θ(log n) and k = Θ(1/ε2). Then if y ∈ Rn

83

is defined as in Equation 3.2, we have

‖y − z‖∞ < η‖ztail(1/η2)‖2

with probability 1− n−c.

In the above, recall that for a vector x and real t ≥ 1, the vector xtail(t) is the result of setting
equal to zero the t largest coordinates (in magnitude) of x.

Prior Algorithms. In the following discussion we consider the algorithm of [JST11] (which
refined several components of the sampler in [AKO11]). Recall that in this algorithm, the vector
z is defined via zi = xi/t

1/p
i where ti ∼ [0, 1]. Firstly, to obtain the threshold T > ‖x‖p, one

can run an Lp estimation algorithm, such as the streaming algorithm of Indyk [Ind06], to obtain
an estimate R ∈ [‖x‖p, 2‖x‖p] with high probability. The sampler then sets the threshold to be
T = ε−1R. By scaling up the threshold by a factor of ε−1, this minimizes the chance that two

or more coordinates i exceed the threshold T , which would contribute error to the distribution
of the sampler.4 The only remaining task of the algorithm is to find a coordinate i ∈ [n] that
crosses the threshold |zi| > T . By using the count-sketch data structure, it obtains an estimate
y of z satisfying ‖y − z‖∞ < η‖xtail(1/η2)‖2 for some parameter η. It then finds the maximum
coordinate i∗ = arg maxi |yi|, checks if |yi∗| > T . If this is not the case, the algorithm returns⊥.

Now the algorithm runs into trouble when it incorrectly identifies zi∗ as crossing the threshold
when it has not, or fails to identify any coordinate which crosses the threshold when one exists.
However, if the count-sketch error η‖ztail(1/η2)‖2 is at most O(‖x‖p), then since ti is a uniform
variable the probability that zi∗ is close enough to the threshold to be misidentified isO(ε), which
results in at most (1± ε) relative error in the sampling probabilities. Thus, it will suffice to prove
that the event η‖ztail(1/η2)‖2 = O(‖x‖p) occurs with probability 1− ε.

To show that this is the case, consider the level sets

Ik =
{
zi

∣∣∣∣ ‖x‖p
2(k+1)/p ≤ zi ≤

‖x‖p
2k/p

}

One can show that E [|Ik|] = 2k. Now for p < 2, the total contribution Θ
(
‖x‖2p
22k/p |Ik|

)
of the

level sets to ‖z‖2
2 decreases geometrically with k, and so with constant probability we have

‖z‖2 = O(‖x‖p). Moreover, if one removes the top log(1/ε) largest items, the contribution of

4Specifically, the probability that this occurs is at most ε, which is one of several sources of relative error in the
approximate sampler of [JST11].

84

the remaining items to the L2 is O(‖x‖p) with probability 1 − ε. So taking η =
√

log(1/ε), the
tail error ‖ztail(1/η2)‖2 has the desired size. For p = 2, as we will later discuss, one can only show
that ‖ztail(1/η2)‖2 = O(log n‖x‖p), which will require one to take η =

√
log n.

Now with probability ε the guarantee on the error from the prior paragraph does not hold, and
in this case one cannot still output an index i, as this would result in a ε-additive error sampler.
Thus, as in Step 3 of Figure 3.2, the algorithm must implement a statistical test to check that the
guarantee holds. To do this, using the values of the largest 1/η2 coordinates of y, they produce
an estimate of the tail-error and output ⊥ if it is too large. Otherwise, the item i∗ = arg maxi |yi|
is output if |yi∗| > T . The whole algorithm is repeated O(ε−1 log δ−1) times independently, so
that an index is output with probability at least 1− δ.

Our Algorithm. Our first observation is that, in order to obtain a truly perfect sampler, one
needs to use different scaling variables ti. Notice that the approach of scaling by inverse uniform
variables and returning a coordinate which reaches a certain threshold T faces the obvious issue
of what to return when more than one of the variables |zi| crosses T . This is solved by simply
outputting the maximum of all such coordinates. However, the probability of an index becoming
the maximum and reaching a threshold is drawn from an entirely different distribution, and for
uniform variables ti this distribution does not appear to be the correct one.

To overcome this, we must use a distribution where the maximum index i of the variables
(|x1t

−1/p
2 |, |x2t

−1/p
2 |, . . . , |xnt−1/p

n |) is drawn exactly according to the Lp distribution |xi|p/‖x‖pp.
We observe that the distribution of exponential random variables has precisely this property,
and thus to implement Step 1 of Figure 3.2 we set zi = xi/t

1/p
i where ti is an exponential

random variable. We remark that exponential variables have been used in the past, such as for xp
moment estimation, p > 2, in [AKO11] and regression in [WZ13]. However it appears that their
applicability to sampling has never before been exploited.

Next, we similarly run an instance A of count-sketch on the vector z. Because we are only
interested in the maximizer of z, we develop a modified version of count-sketch, called count-

max. Instead of producing an estimate y such that ‖y − z‖∞ is small, count-max simply checks,
for each i ∈ [n], how many times zi hashed into the largest bucket (in absolute value) of a row of
A. If this number is at least a 4/5-fraction of the total number of rows, count-max declares that zi
is the maximizer of z. We show that with high probability, count-max never incorrectly declares
an item to be the maximizer, and moreover if zi > 20(∑j 6=i z

2
j)1/2, then count-max will declare

i to be the maximizer. Using the min-stability property of exponential random variables, we can
show that the maximum item |zi∗| = max{|zi|} is distributed as ‖x‖p/E1/p, where E is another

85

exponential random variable. Thus |zi∗ | = Ω(‖x‖p) with constant probability. Using a more
general analysis of the L2 norm of the level sets Ik, we can show that (∑j 6=i∗ z

2
j)1/2 = O(‖x‖p).

If all these events occur together (with sufficiently large constants), count-max will correctly
determine the coordinate i∗ = arg maxi{|zi|}. However, just as in [JST11], we cannot output an
index anyway if these conditions do not hold, so we will need to run a statistical test to ensure
that they do.

The Statistical Test. To implement Step 3 of the template, our algorithm tests whether count-
max declares any coordinate i ∈ [n] to be the maximizer, and we output ⊥ if no coordinate is
declared as the maximizer. This approach guarantees that we correctly output the maximizer
conditioned on not failing to output a coordinate (i.e., outputting ⊥) The primary technical chal-
lenge will be to show that, conditioned on i = arg maxj{|zj|} for some i, the probability of
failing the statistical test does not depend on i. In other words, conditioning on |zi| being the
maximum does not change the failure probability. Let zD(k) be the k-th order statistic of z (i.e.,
|zD(1)| ≥ |zD(2)| ≥ · · · ≥ |zD(n)|). Here the D(k)’s are known as anti-ranks of the distribution
(z1, . . . , zn). To analyze the conditional dependence, we must first obtain a closed form for zD(k)

which separates the dependencies on k and D(k). Hypothetically, if zD(k) depended only on k,
then our statistical test would be completely independent of D(1), in which case we could safely
fail whenever such an event occurred.

Of course, in reality this is not the case. Consider the vector x = (100n, 1, 1, 1, . . . , 1) ∈ Rn

and p = 1. Clearly we expect z1 to be the maximizer, and moreover we expect a gap of Θ(n)
between z1 and zD(2). On the other hand, if you were told that D(1) 6= 1, it is tempting to think
that zD(1) just barely beat out z1 for its spot as the max, and so z1 would not be far behind. Indeed,
this intuition would be correct, and one can show that the probability that zD(1) − zD(2) > n

conditioned on D(1) = i changes by an additive constant depending on whether or not i = 1.
Conditioned on this gap being smaller or larger, we are more or less likely (respectively) to output
⊥. In this setting, the probability of conditional failure can change by an Ω(1) factor depending
on the value of D(1).

To handle scenarios of this form, our algorithm will utilize an additional linear transformation
in Step 1 of the template. Instead of only scaling by the random coefficients 1/t1/pi , our algorithm
first duplicates the coordinates xi to remove all heavy items from the stream. If x is the vector
from the example above and F is the duplicated vector, then after poly(n) duplications all copies
of the heavy item x1 will have weight at most |x1|/‖F‖1 < 1/poly(n). By duplication, this
washes out the dependency of |zD(2)| on D(1), since ‖x−D(1)‖pp = (1 ± n−Ω(c))‖x−j‖pp after nc

duplications, for any j ∈ [nc]. Notice that this transformation blows-up the dimension of x by

86

a poly(n) factor. However, since our space usage is always poly log(n), the result is only a
constant factor increase in the complexity.

After duplication, we scale x by the coefficients 1/t1/pi , and the rest of the algorithm pro-
ceeds as described above. Using expressions for the order statistics zD(k) which separate the
dependence into the anti-ranks D(j) and a set of exponentials E1, E2, . . . En independent of the
anti-ranks, after duplication we can derive tight concentration of the zD(k)’s conditioned on fixed
values of the Ei’s. Using this concentration result, we decompose our count-max data structure
A into two component variables: one independent of the anti-ranks (the independent compo-
nent), and a small adversarial noise of relative weight n−c. In order to bound the effect of the
adversarial noise on the outcome of our tests we must 1) randomize the threshold for our fail-
ure condition and 2) demonstrate the anti-concentration of the resulting distribution over the
independent components of A. This will demonstrate that with high probability, the result of
the statistical test is completely determined by the value of the independent component, which
allows us to fail without affecting the conditional probability of outputting i ∈ [n].

Derandomization The correctness of our sampler crucially relies on the full independence of
the ti’s to show that the variable D(1) is drawn from precisely the correct distribution (namely,
the Lp distribution |xi|p/‖x‖pp). Being the case, we cannot directly implement our algorithm
using any method of limited independence. In order to derandomize the algorithm from requir-
ing full-independence, we will use a combination of Nisan’s pseudorandom generator (PRG)
[Nis92], as well as an extension of the recent PRG of [GKM18] which fools certain classes of
Fourier transforms. We first use a closer analysis of the seed length Nisan’s generator requires
to fool the randomness required for the count-max data structure, which avoids the standard
O(log n)-space blowup which would be incurred by using Nisan’s as a black box. Once the
count-max has been derandomized, we demonstrate how the PRG of [GKM18] can be used to
fool arbitrary functions of d halfspaces, so long as each of the half-spaces can be specified by a
normal vector with bounded bit-complexity. Specifically, we require that each coordinate vi of
the normal vector v ∈ Rm that specifies an m-dimensional halfspace has bounded bit complex-
ity; for our application, each coordinate vi is specified using O(log n) bits. We use this result
to derandomize the exponential variables ti with a seed of length O(log2(n)(log log n)2), which
will allow for the total derandomization of our algorithm for δ = Θ(1) and p < 2 in the same
space.

Our derandomization technique is in fact fairly general, and can be applied to streaming algo-
rithms beyond the sampler in this work. Namely, we demonstrate that any streaming algorithm
which stores a linear sketch A · x, where the entries of A are independent and can be sam-

87

pled from with O(log n)-bits, can be derandomized with only a O((log log n)2)-factor increase
in the space requirements (see Theorem 17). This improves the O(log n)-blow up incurred from
black-box usage of Nisan’s PRG.

As an application of our technique, we derandomize the count-sketch variant of Minton and
Price [MP14] to useO(ε−2 log2 n(log log n)2)-bits of space, which gives improved concentration
results for count-sketch when the hash functions are fully-independent. The problem of improv-
ing the derandomization of [MP14] beyond the black-box application of Nisan’s PRG was an
open problem. We remark that using O(ε−2 log3 n)-bits of space in the classic count sketch of
[CCFC02b] has strictly better error guarantees that those obtained from derandomizing [MP14]
with Nisan’s PRG to run in the same space. Our derandomization, in contrast, demonstrates a
strong improvement on this, obtaining the same bounds with an O((log log n)2) instead of an
O(log n) factor blowup.

Case of p = 2. Recall for p < 2, we could show that the L2 norm of the level sets Ik decays
geometrically with k. More precisely, for any γ ≥ 1 we have ‖ztail(γ)‖2 = O(‖F‖pγ−1/p+1/2)
with probability 1−O(e−γ), where now z is a scaling of the duplicated vector F . Using this, we
actually do not need the tight concentration of the zD(k)’s, since we can show that the top nc/10

coordinates change by at most (1±n−Ω(c)) depending onD(1), and the L2 norm of the remaining
coordinates is only an O(n−c/10(1/p−1/2)) fraction of the whole L2, and can thus be absorbed into
the adversarial noise. For p = 2 however, each level set Ik contributes weight O(‖F‖2

p) to ‖z‖2
2,

so ‖ztail(γ)‖2 = O(
√

log n‖F‖p) even for γ = poly(n). Therefore, for p = 2 it is essential
that we show concentration of the zD(k)’s for nearly all k. Since ‖z‖2

2 will now be larger than
‖F‖2

2 by a factor of log n with high probability, count-max will only succeed in outputting the
largest coordinate when it is an O(

√
log n) factor larger than expected. This event occurs with

probability 1/ log n, so we will need to run the algorithm log n times in parallel to get constant
probability, for a total O(log3 n)-bits of space. Using the same O(log3 n)-bit Nisan PRG seed
for all O(log n) repititions, we show that the entire algorithm for p = 2 can be derandomized to
run in O(log3 n log 1/δ)-bits of space.

Optimizing the Runtime. In addition to our core sampling algorithm, we show how the linear
transformation step to construct z can be implemented via a parameterized rounding scheme
to improve the update time of the algorithm without affecting the space complexity, giving a
run-time/relative sampling error trade-off. By rounding the scaling variables 1/t1/pi to powers
of (1 + ε), we discretize their support to have size O(ε−1 log n). We then simulate the update
procedure by sampling from the distribution over updates to our count-max data-structure A of

88

duplicating an update and hashing each duplicate independently into A. Our simulation utilizes
results on efficient generation of binomial random variables, through which we can iteratively
reconstruct the updates to A bin-by-bin instead of duplicate-by-duplicate. In addition, by using
an auxiliary heavy-hitter data structure, we can improve our query time from the naïve O(n) to
O(poly log n) without increasing the space complexity.

Estimating the Frequency. We show that allowing an additional additive O(min{ε−2, ε−p

log(1
δ2

)} log n log δ−1
2) bits of space, we can provide an estimate x̃ = (1 ± ε)xi of the outputted

frequency xi with probability 1 − δ2 when p < 2. To achieve this, we use our more general
analysis of the contribution of the level sets Ik to ‖z‖2, and give concentration bounds on the
tail error when the top ε−p items are removed. When p = 2, for similar reasons as described in
the sampling algorithm, we require another O(log n) factor in the space complexity to obtain a
(1± ε) estimate. Finally, we demonstrate an Ω(ε−p log n log δ−1

2) lower bound for this problem,
which is nearly tight when p < 2. To do so, we adapt a communication problem introduced in
[JW13], known as Augmented-Indexing on Large Domains. We weaken the problem so that it
need only succeed with constant probability, and then show that the same lower bound still holds.
Using a reduction from this problem, we show that our lower bound for Lp samplers holds even
if the output index is from a distribution with constant additive error from the true Lp distribution
|xi|p/‖x‖pp.

3.2.1 The Count-Max Data Structure

We now describe the count-max data structure, which is a slight variant of the count-sketch
algorithm of [CCFC02b]. The count-sketch algorithm is formally described in the thesis prelim-
inaries in Section 2.3.2, thus we direct the reader to this section for the definition of count-sketch
and the relevant notation. Recall that, in the precision sampling framework, we are only in-
terested in determining the index of the largest coordinate of x, that is i∗ = arg maxv∈[n] |xv|.
This motivates the design of a simpler reporting algorithm based on the same count-sketch data
structure A that tests whether a fixed v ∈ [n], if v = i∗. Specifically, given a count-sketch ta-
ble A ∈ Rd×k, we will define a reporting produced Report(A), and returns either a coordinate
i ∈ [n] or a symbol ⊥.

We will make several small modifications to the construction of the table A and the reporting
procedure of count-sketch as defined in Section 2.3.2. First, instead of having the hash functions
gi’s map to {−1, 1}, we we instead draw them independently from the Gaussian distribution,
namely gi(v) ∼ N (0, 1) for all v ∈ [n] and i ∈ [d]. Thus, we can think of gi as functions

89

gi : [n]→ R. An entry of count-max is given by:

Ai,j =
∑

v∈[n] : hi(v)=j
gi(v) · xv (3.3)

for any i ∈ [d] and j ∈ [k]. Notice that Equation 3.3 is the same as Equation 2.1 for count-sketch,
however the gi(v)′s are different functions in the case of count-max.

The second fundamental change we make is to the reporting procedure. Firstly, before re-
porting a maximizer, we will we will scale each bucket Ai,j of count-max by a uniform random
variable µi,j ∼ Uniform(99

100 ,
101
100). This scaling step will be used for technical reasons in our

analysis of Lemma 3.3.3. Namely, we will need it to ensure that our failure threshold of our
algorithm is randomized, which will allow us to handle small adversarial error.

Formally, for all (i, r) ∈ [d]× [k] we draw i.i.d. variables µi,j ∼ Uniform(99
100 ,

101
100). Next,

for any v ∈ [n], we set

αv =
∣∣∣{i ∈ [d] | hi(v) = arg max

r∈[k]
|µi,r ·Ai,r|}

∣∣∣
Our goal will be to declare that v = i∗ to be the maximizer if αv > 4

5d. Specifically, the algorithm
computes αv for all v ∈ [n], and outputs Report(A) = v, where v ∈ [n] is the first index that
satisfies αv > 4

5d. We will show that there will only be at most one such coordinate with high
probability. If no such v exists, the algorithm sets Report(A) = ⊥. To distinguish this modified
querying protocol from the classic count-sketch, we refer to this algorithm as count-max. To refer
to the data structure A itself, we will use the terms count-sketch and count-max interchangeably.

Lemma 3.2.1. Let c ≥ 1 be an arbitrarily large constant, set d = Θ(log n) and k = 2, and let A
be a d×k instance of count-max run on input x ∈ Rn using fully independent hash functions hi :
[n]→ [k], Gaussian random variables gi(v) ∼ N (0, 1), and scalings µi,j ∼ Uniform(99

100 ,
101
100)

as described above. Then with probability 1− n−c the following holds:

• For every i ∈ [n], if |xi| > 20‖x−i‖2, then Report(A) = i.

• If |xi| ≤ maxj∈[n]\{i} |xj|, then Report(A) 6= i.

Proof. First suppose |xi| > 20‖x−i‖2, and consider a fixed row j of A. WLOG i hashes to
Aj,1, thus using the 2-stability of Gaussians (Definition 2.2.6), we have Aj,1 = µj,1g

1‖x1‖2 and
Aj,2 = µj,2g

2‖x2‖2, where xk is x restricted to the coordinates that hash to bucket Aj,k, and
g1, g2 ∼ N (0, 1). Since ‖x1‖2 > 20|x2‖2 and µi,j ∼ Uniform(99

100 ,
101
100), the probability that

90

|Aj,2| > |Aj,1| is less than probability that oneN (0, 1) Gaussian is 19 times larger than another,
which can be bounded by 15/100 by direct computation. Thus i hashes into the max bucket in a
row of A with probability at least 85/100, so by Chernoff bounds, taking d = Ω(c log n), with
probability 1 − n−2c we have that xi is in the largest bucket at least a 4/5 fraction of the time,
which completes the first claim.

Now suppose i is not a unique max, and let i∗ be such that |xi∗| is maximal. Then conditioned
on i, i∗ not hashing to the same bucket, the probability that xi hashes to a larger bucket than xi∗ is
at most 1/2. To see this, note that conditioned on this, one bucket is distributed as µ(gj(i∗)xi∗ +
G) and the other as µ′(gj(i)xi + G′), where G,G′ µ, µ′, and gj(i∗)xi∗ , gj(i)xi are identically
distributed random variables. Thus the probability that xi is the in maximal bucket is at most
3/4, and so by Chernoff bounds xi will hash to strictly less than (4d/5) of the maximal buckets
with probability 1− n−2c. Union bounding over all j ∈ [n] gives the desired result.

Corollary 3.2.2. In the setting of Lemma 3.2.1, with probability 1− O(n−c), if Report(A) = i

for some i ∈ [n], then |xi| > 1
100‖x‖2.

Proof. Suppose |xi| < 1
100‖x‖2, and in a given row WLOG i hashes to Aj,1. Let x−i be x with

the coordinate i set equal to 0. Then we have Aj,1 = µj,1g
1‖x1‖2 and Aj,2 = µj,2g

2‖x2‖2,
where xk is x restricted to the coordinates that hash to bucket Aj,k, and g1, g2 ∼ N (0, 1). Since
x1
−i, and x2

−i = x2 are identically distributed, with probability 1/2 we have ‖x2
−i‖2 ≥ ‖x1

−i‖2.
Conditioned on this, we have

‖x2
−i‖2

2 ≥ ‖x1‖2
2 − |x2

i |2

≥ ‖x1‖2
2 −
‖x2
−i‖2

2
50

(3.4)

Giving
‖x2
−i‖2(1 + 1/50)1/2 ≥ ‖x1‖2

2

So conditioned on ‖x2
−i‖2 > ‖x1

−i‖2, we have |Aj,1| < |Aj,2| whenever one Gaussian is 101
100(1 +

1
50)1/2 times larger than another in magnitude, which occurs with probability greater than 1

2 −
1
25 .

So i hashes into the max bucket with probability at most 1
2 + 1

2(1
2 + 1

25) = 77
100 , and thus by

Chernoff bounds, taking c sufficiently large and union bounding over all i ∈ [n], i will hash into
the max bucket at most a 79

100 <
4
5 fraction of the time with probability 1−O(n−c), and thus will

not be reported.

91

3.2.2 Exponential Order Statistics

In this section, we discuss several useful properties of the order statistics of n independent non-
identically distributed exponential random variables. Let (t1, . . . , tn) be independent exponential
random variables where ti has mean 1/λi (equivalently, ti has rate λi). Recall that ti is given by
the cumulative distribution function Pr [ti < x] = 1 − e−λix. Our perfect Lp sampling algo-
rithm will require a careful analysis of the distribution of values (t1, . . . , tn), which we will now
describe. We begin by noting that constant factor scalings of an exponential variable result in
another exponential variable.

Fact 3.2.3 (Scaling of exponentials). Let t be exponentially distributed with rate λ, and let α > 0.

Then αt is exponentially distributed with rate λ/α

Proof. The cdf of αt is given by Pr [t < x/α] = 1− e−λx/α, which is the cdf of an exponential
with rate λ/α.

We would now like to study the order statistics of the variables (t1, . . . , tn), where ti has rate
λi. To do so, we introduce the anti-rank vector (D(1), D(2), . . . , D(n)), where for k ∈ [n],
D(k) ∈ [n] is a random variable which gives the index of the k-th smallest exponential.

Definition 3.2.4. Let (t1, . . . , tn) be independent exponentials. For k = 1, 2, . . . , n, we define

the k-th anti-rank D(k) ∈ [n] of (t1, . . . , tn) to be the values D(k) such that tD(1) ≤ tD(2) ≤
· · · ≤ tD(n).

Using the structure of the anti-rank vector, it has been observed [Nag06] that there is a simple
form for describing the distribution of tD(k) as a function of (λ1, . . . , λn) and the anti-rank vector.

Fact 3.2.5 ([Nag06]). Let (t1, . . . , tn) be independently distributed exponentials, where ti has

rate λi > 0. Then for any k = 1, 2, . . . , n, we have

tD(k) =
k∑
i=1

Ei∑n
j=i λD(j)

Where the E1, E2, . . . , En’s are i.i.d. exponential variables with mean 1, and are independent of

the anti-rank vector (D(1), D(2), . . . , D(n)).

92

Fact 3.2.6 ([Nag06]). For any i = 1, 2, . . . , n, we have

Pr [D(1) = i] = λi∑n
j=1 λj

We now describe how these properties will be useful to our sampler. Let x ∈ Rn be any vector
presented in a turnstile stream (note that x must have integral valued coordinates by definition
of the model). We can generate i.i.d. exponentials (t1, . . . , tn), each with rate 1, and construct
the random variable zi = xi/t

1/p
i , which can be obtained in a stream by scaling updates to xi

by 1/t1/pi as they arrive. By Fact 3.2.3, the variable |zi|−p = ti/|xi|p is exponentially distributed
with rate λi = |xi|p.

Now let (D(1), . . . , D(n)) be the anti-rank vector of the exponentials (t1/|x1|p, . . . , tn/|xn|1/p).
By Fact 3.2.6, we have

Pr [D(1) = i] = Pr
[
i = arg min{|z1|−p, . . . , |zn|−p}

]
= Pr [i = arg max{|z1|, . . . , |zn|}]

= λi∑
j λj

= |xi|
p

‖f‖pp

(3.5)

In other words, the probability that |zi| = arg maxj{|zj|} is precisely |xi|p/‖x‖pp, so for a
perfect Lp sampler it suffices to return i ∈ [n] with |zi| maximum. Now note |zD(1)| ≥ |zD(2)| ≥
· · · ≥ |zD(n)|, and in this scenario the statement of Fact 3.2.5 becomes:

zD(k) =
(k∑
i=1

Ei∑N
j=i λD(j)

)−1/p
=
(k∑
i=1

Ei∑N
j=i x

p
D(j)

)−1/p

Where Ei’s are i.i.d. exponential random variables with mean 1, and are independent of the
anti-rank vector (D(1), . . . , D(n)). We call the exponentials Ei the hidden exponentials, as they
do not appear in the actual execution of the algorithm, and will be needed for analysis purposes
only.

3.3 The Sampling Algorithm

We now provide intuition for the workings of the perfect Lp sampling algorithm. The algorithm
scales the input stream by inverse exponentials to obtain a new vector z. Namely, we scale xi

93

by 1/t1/pi to obtain zi. Let D = (D(1), . . . , D(n)) be the indices such that |zD(1)| ≥ |zD(2)| ≥
· · · ≥ |zD(n)|. Note that D is precisely the anti-ranks of the variables (t1, . . . , tn) where ti is
exponential with rate |xi|p, because we have |zi|p = 1/ti and tD(1) ≤ tD(2) ≤ · · · ≤ tD(n). Due
to this correspondence, we will also refer to D as the anti-rank vector of z.

By the results of Section 3.2.2, we can write the order statistics zD(k) as a function of the
anti-rank vector D and the hidden exponentials Ei, which describe the “scale" of the order statis-
tics. Importantly, the hidden exponentials are independent of the anti-ranks. We would like
to determine the index i for which D(1) = i, however this may not always be possible. This
is the case when the largest element |zD(1)| is not sufficently larger than the remainig L2 mass∑
j>1

(
|zD(j)|2

)1/2
. In such a case, count-max will not declare any index to be the largest, and we

would therefore like to output the failure symbol⊥. Note that this event is more likely when there
is another element |zD(2)| which is very close to |zD(1)| in size, as whenever the two elements do
not collide in count-max, it is less likely that |zD(1)| will be in the max bucket.

Now consider the trivial situation where x1 = x2 = · · · = xn. Here the variables zD(k)

have no dependence at all on the anti-rank vector D. In this case, the condition of failing is
independent of D(1), so we can safely fail whenever we cannot determine the maximum index.
On the other hand, if the values |xi| vary wildly, the variables zD(k) will depend highly on the
anti-ranks. In fact, if there exists xi with |xi|p ≥ ε‖x‖pp, then the probability that |zD(1)| − |zD(2)|
is above a certain threshold can change by a (1±ε) factor conditioned onD(1) = i, as opposed to
D(1) = j for a smaller |xj|. Given this, the probability that we fail can change by a multiplicative
(1± ε) conditioned on D(1) = i as opposed to D(1) = j. In this case, we cannot output⊥ when
count-max does not report a maximizer, lest we suffer a (1± ε) error in outputting an index with
the correct probability.

To handle this, we must remove the heavy items from the stream to weaken the dependence
of the values zD(k) on the anti-ranks, which we carry out by duplication of coordinates. For
the purposes of efficiency, we carry out the duplication via a rounding scheme which will allow
us to generate and quickly hash updates into our data-structures (Section 3.4). We will show
that, conditioned on the fixed values of the Ei’s, the variables zD(k) are highly concentrated,
and therefore nearly independent of the anti-ranks (zD(k) depends only on k and not D(k)). By
randomizing the failure threshold to be anti-concentrated, the small adversarial dependence of
zD(k) on D(k) cannot non-trivially affect the conditional probabilities of failure, leading to small
relative error in the resulting output distribution.

94

The Lp Sampler. We now describe our sampling algorithm, Lp-Sampler, as shown in Figure
3.3. Let x ∈ Rn be the input vector of the stream. As the stream arrives, we duplicate updates
to each coordinate xi a total of nc−1 times to obtain a new vector F ∈ Rnc . More precisely, for
i ∈ [n] we set ij = (i − 1)nc−1 + j for j = 1, 2, . . . , nc−1, and then we will have Fij = xi for
all i ∈ [n] and j ∈ [nc−1]. We call the coordinate Fij a duplicate of xi. Whenever we use ij as
a subscript in this way it will refer to a duplicate of i, whereas a single subscript i will be used
both to index into [n] and [nc]. Note that this duplication has the effect that |Fi|p ≤ n−c+1‖F‖pp
for all p > 0 and i ∈ [nc].

We then generate independent exponential rate 1 random variables (t1, . . . , tnc), and define
the vector z ∈ Rnc by zi = Fi/t

1/p
i . As shown in Section 3.2.2, we have

Pr
[
ij = arg max

i′,j′
{|zi′

j′
|}
]

=
|Fij |p

‖F‖pp

Since
∑
j∈[nc−1]

|Fij |
p

‖F‖pp
= |xi|p
‖x‖pp

, it will therefore suffice to find ij ∈ [nc] for which ij = arg maxi′,j′{|zi′
j′
|},

and return the index i ∈ [n]. The assumption that the ti’s are independent will later be relaxed
in Section 3.4 while derandomizing the algorithm. In Section 3.4, we also demonstrate that all
relevant continuous distributions will be made discrete without affecting the perfect sampling
guarantee.

Now fix any sufficiently large constant c, and fix some error parameter ε > n−c. To speed
up the update time, instead of explicitly scaling Fi by 1/t1/pi to construct the stream z, our
algorithm instead scales Fi by rndε(1/t1/pi), where rndε(x) rounds x > 0 down to the nearest
value in {. . . , (1 + ε)−1, 1, (1 + ε), (1 + ε)2, . . . }. In other words, rndε(x) rounds x down to the
nearest power of (1 + ε)j (for j ∈ Z). This results in a separate stream vector ζ ∈ Rnc where
ζi = Fi · rndε(1/t1/pi). Note ζi = (1 ± O(ε))zi for all i ∈ [nc]. Importantly, note that this
rounding is order preserving. Thus, if ζ has a unique largest coordinate |ζi∗ |, then |zi∗| will be
the unique largest coordinate of z.

We remark that this rounding procedure will introduce (1± ε) relative error into the sampler,
resulting in a (Õ(ε), δ)-approximate Lp sampler. However, as we will see, ε will not factor into
the spatial complexity of the sampler (so long as ε > n−c for some constant c), thus by setting
ε = 1/poly(n) and absorbing the (1± 1/poly(n)) relative error into the γ = 1/poly(n) additive
error allow for in a perfect sampler, the result will be a perfect Lp sampler.

Having constructed the transformed stream ζ , we then instatiate a d×2 instance A ∈ Rd×2 of
count-max (from Section 3.2.1), with d = Θ(log(n)), and run it on the input vector ζ ∈ Rnc .Now

95

Lp-Sampler

Input: Error parameter ε ∈ (0, 1).

1. Set d = Θ(log n), and instantiate a d× 2 count-max data structure A (Section 3.2.1).

2. Duplicate updates to x to obtain the vector F ∈ Rnc so that xi = Fij for all i ∈ [n]
and j = 1, 2, . . . , nc−1, for some fixed constant c.

3. Choose i.i.d. exponential random variables t = (t1, t2, . . . , tnc), and define the vector
ζ ∈ Rnc by ζi = Fi · rndε(1/t1/pi).

4. Run count-max A on the scaled stream vector ζ , and compute the output Report(A).

5. If Report(A) = ij ∈ [nc] for some j ∈ [nc−1], output i ∈ [n]. If Report(A) = ⊥,
then return ⊥.

Figure 3.3: Our main Lp sampling algorithm

recall that count-max will output as the maximizer Report(A) = ij for some index ij ∈ [nc],
or output the symbol Report(A) = ⊥. If an index ij is returned, where ij is the j-th copy of
index i ∈ [n], then our overall sampling algorithm outputs the index i. If count-max outputs
Report(A) = ⊥, we return ⊥.

Let i∗ = arg maxi |ζi| = D(1) (where D(1) is the first anti-rank as in Section 3.2.2). By
the guarantee of Lemma 3.2.1, we know that if |ζi∗| ≥ 20‖ζ−i∗‖2, then with probability 1− n−c

count-max will report the index i∗ ∈ [nc]. Moreover, with the same probability, count-max
will never report an index which is not the unique maximizer. To prove correctness, therefore,
it suffices to analyze the conditional probability of failure given D(1) = i. Let N = |{i ∈
[nc] | Fi 6= 0}|; in other words, N is the support size of F . We can assume that N 6= 0 (to
check this one could run, for instance, the O(log2 n)-bit support sampler of [JST11]). Note that
nc−1 ≤ N ≤ nc. The following fact is straightforward.

Fact 3.3.1. For p ∈ (0, 2], suppose that we choose the constant c such that mM ≤ nc/20, where

note we have |Fi| ≤ mM for all i ∈ [N]. Then if S ⊂ {i ∈ [nc] | Fi 6= 0} is any subset, then∑
i∈S |Fi|p ≥ |S|

N
n−c/10‖F‖pp

Proof. We know that |Fi|p ≤ (mM)p ≤ nc/10 using p ≤ 2. Then each non-zero value |Fi|p is at
most an n−c/10 fraction of any other item |Fj|p, and in particular of the average item weight. It
follows that |Fi|p ≥ n−c/10 ‖F‖

p
p

N
for all i ∈ [N], which results in the stated fact.

96

As in Section 3.2.2, we now use the anti-rank vector D(k) to denote the index of the k-th
largest value of zi in absolute value. In other words, D(k) is the index such that |zD(k)| is the
k-th largest value in the set {|z1|, |z2|, . . . , |znc |}. Note that the D(k)’s are also the anti-ranks
of the vector ζ , since rounding z into ζ preserves partial ordering. For the following lemma,
it suffices to consider only the exponentials ti with Fi 6= 0, and we thus consider only values
of k between 1 and N . Thus |zD(1)| ≥ |zD(2)| ≥ · · · ≥ |zD(N)|. Moreover, we have that
|zD(k)|−p = tD(k)

|FD(k)|p
is the k-th smallest of all the ti

|Fi|p ’s, and by the results of Section 3.2.2 can be
written as |zD(k)|−p = ∑k

τ=1
Eτ∑N

j=τ |FD(j)|p
where the Eτ are i.i.d. exponentials and independent

of the anti-rank vector D. We will make use of this in the following lemma.

Lemma 3.3.2. For every 1 ≤ k < N − n9c/10, we have

|zD(k)| =
(1±O(n−c/10))

k∑
τ=1

Eτ

E
[∑N

j=τ |FD(j)|p
]
−1/p

with probability 1−O(e−nc/3).

Proof. Let τ < N−n9c/10. We can write
∑N
j=τ |FD(j)|p as a deterministic function ψ(t1, . . . , tN)

of the random scaling exponentials t1, . . . , tN corresponding to Fi 6= 0. We first argue that

|ψ(t1, . . . , tN)− ψ(t1 . . . , ti−1, t
′
i, ti+1, . . . , tN)| < 2 max

j
{F p

j } < 2n−c+1‖F‖pp

This can be seen from the fact that changing a value of ti can only have the effect of adding
(or removing) |Fi|p to the sum

∑N
j=τ |FD(j)|p and removing (or adding) a different |Fl| from the

sum. The resulting change in the sum is at most 2 maxj{|Fj|p}, which is at most 2n−c+1‖F‖pp
by duplication. Set T = N − τ + 1. Since the ti’s are independent, we apply McDiarmid’s
inequality (Proposition 2.2.3) to obtain that for any λ > 0:

Pr

| N∑
j=τ
|FD(j)|p − E

 N∑
j=τ
|FD(j)|p

 | > λTn−c‖F‖pp

 ≤ 2 exp
(
−2λ2T 2n−2c‖F‖2p

p

nc(2n−c+1‖F‖pp)2

)

≤ 2 exp
(
−1

2λ
2T 2n−c−2

) (3.6)

Setting λ = Θ(n−c/5) and using T > n9c/10, this is at most 2 exp(−1
2n

2c/5−2). To show
concentration up to a (1 ± O(n−c/10)) factor, it remains to show that E

[∑N
j=τ |FD(j)|p

]
=

97

Ω(Tn−11c/10‖F‖pp). This follows from the Fact 3.3.1, which gives

T∑
j=0
|FD(−j)|p ≥ n−c/10(Tn−c‖F‖pp)

Now recall |zD(k)| = [∑k
τ=1

Eτ∑N

j=τ |FD(−j)|p
]−1/p, and we have just shown

∑N
j=τ |FD(j)|p = (1 ±

O(n−c/10)) E
[∑N

j=τ |FD(j)|p
]
, so we can union bound over all τ = 1, 2, . . . , N −n9c/10 to obtain

|zD(k)| =
(1±O(n−c/10))

k∑
τ=1

Eτ

E
[∑N

j=τ |FD(j)|p
]
−1/p

for all k ≤ N − n9c/10 with probability 1−O(nce−n2c/5−2) = 1−O(enc/3).

We use this result to show that the event where our algorithm outputs the failure symbol ⊥ is
nearly-independent of the random variableD(1). In what follows, let E1 be the event that Lemma
3.3.2 holds.

Lemma 3.3.3. For p ∈ (0, 2] a constant bounded away from 0 and any ε ≥ n−c/60 and any index

` ∈ [nc], we have:

Pr [Report(A) 6= ⊥ |D(1) = `] = Pr [Report(A) 6= ⊥]± Õ(ε)

Proof. Let

UD(k) =
 k∑
τ=1

Eτ

E
[∑N

j=τ |FD(j)|p
]
−1

and note that UD(k) is independent of the anti-rank vector D; in fact, it is totally determined
by k and the hidden exponentials Ei). Then by Lemma 3.3.2, conditioned on E1, for every
k < N − n9c/10 we have

|zD(k)| = U
1/p
D(k)(1±O(n−c/10))1/p = U

1/p
D(k)(1±O(1

p
n−c/10))

where we used the identity (1 + x) ≤ ex and the Taylor expansion of ex. Then for c sufficiently
large, we have |ζD(k)| = U

1/p
D(k)(1±O(ε)), and so for all p ∈ (0, 2] and k < N − n9c/10, we have:

98

|ζD(k)| = U
1/p
D(k) + U

1/p
D(k)VD(k)

where VD(k) is some random variable that satisfies |VD(k)| = O(ε).

Now consider a bucket Ai,j for some (i, j) ∈ [d]× [2]. Let σk = sign(zk) = sign(ζk) for
k ∈ [nc]. We can write

Ai,j

µi,j
=

∑
k∈Bij

σD(k) · |ζD(k)| · gi(D(k)) +
∑
k∈Sij

σD(k) · |ζD(k)| · gi(D(k))

where

Bij = {k ≤ N − n9c/10 | hi(D(k)) = j}, and Sij = {nc ≥ k > N − n9c/10 | hi(D(k)) = j}

Note that here we define {D(N + 1), . . . , D(nc)} to be the set of indices i with Fi = 0 (in any
ordering, as they contribute nothing to the sum). Also recall that gi(D(k)) ∼ N (0, 1) is the i.i.d.
Gaussian coefficent associated to item D(k) in row i of A. So

Ai,j

µi,j
=

∑
k∈Bij

gi(D(k))σD(k)U
1/p
D(k) +

∑
k∈Bij

gi(D(k))σD(k)U
1/p
D(k)VD(k) +

∑
k∈Sij

gi(D(k))ζD(k)

Importantly, observe that since the variables hi(D(k)) are fully independent, the sets Bi,j, Si,j

are independent of the anti-rank vector D. In other words, the values hi(D(k)) are independent
of the values D(k) (and of the entire anti-rank vector). This follows from the fact that the hash
values {hi(1), . . . , hi(nc)} = {hi(D(1)), . . . , hi(D(nc))} are fully independent.5 So we can
condition on a fixed set of values {hi(D(1)), . . . , hi(D(nc))} now, which fixes the sets Bi,j, Si,j .
Now let U∗i,j = |∑k∈Bij gi(D(k))σD(k)U

1/p
D(k)|. We claim the following:

Claim 3.3.4. For all i, j ∈ [d]× [2] and p ∈ (0, 2], we have

∣∣∣∣∣∣
∑
k∈Bij

gi(D(k))σD(k)U
1/p
D(k)VD(k) +

∑
k∈Sij

gi(D(k))ζD(k)

∣∣∣∣∣∣ = O (ε(|Ai,1|+ |Ai,2|))

with probability 1−O(log(n)n−c/60).

5Note that this would not necessarily be the case if {hi(1), . . . , hi(nc)} were only `-wise independent for some
` = o(nc).

99

Proof. By the 2-stability of Gaussians (Definition 2.2.6), we have∣∣∣∣∣∣
∑
k∈Sij

gi(D(k))ζD(k)

∣∣∣∣∣∣ = O(
√

log(n)(
∑
k∈Si,j

(2zD(k))2)1/2)

with probability at least 1− n−c. This is a sum over a subset of the n9c/10 smallest items |zi|, so

∑
k∈Si,j

z2
D(k) <

n9c/10

N
‖z‖2

2

giving ∣∣∣∣∣∣
∑
k∈Sij

gi(D(k))ζD(k)

∣∣∣∣∣∣ = O
(√

log(n)n−c/30‖z‖2

)

Now without loss of generality, the value Ai,1 satisfies
∑
k∈Bi,1∪Si,1 ζ

2
D(k) >

1
2‖ζ‖

2
2. Then we have

|Ai,1| ≥ |g|‖z‖2
2/3, where g ∼ N (0, 1). Via the cdf of a Gaussian, it follows with probability

1−O(n−c/60) that

|Ai,1| > n−c/60‖z‖2
2 = Ω

 nc/60√
log(n)

·

∣∣∣∣∣∣
∑
k∈Sij

gi(D(k))ζD(k)

∣∣∣∣∣∣

Rescaling the parameter ε down by a log n factor yields |∑k∈Sij gi(D(k))ζD(k)| = O(ε|Ai,1|).
Next, using that |VD(k)| = O(ε), we have

∣∣∣∣∣∣
∑
k∈Bij

gi(D(k))σD(k)U
1/p
D(k)VD(k)

∣∣∣∣∣∣ = O

ε ·
∣∣∣∣∣∣
∑
k∈Bij

gi(D(k))σD(k)U
1/p
D(k)

∣∣∣∣∣∣
 = O(εU∗i,j)

Combined with the prior paragraph, we have U∗i,j = O(|Ai,1| + |Ai,2|). Note there are only
O(log n) terms i, j to union bound over, and from which the claim follows.

Call the event where the Claim 3.3.4 holds E2. Conditioned on E2, we can decompose
|Ai,j|/µi,j for all i, j into U∗i,j + Vij where Vij is some random variable satisfying |Vij| =
O(ε(|Ai,1| + |Ai,2|)) and U∗i,j is independent of the anti-rank vector D (it depends only on the
hidden exponentials Ek, and the uniformly random gaussians gi(D(k))). Now fix any realiza-
tion of the count-max randomness, Let E = (E1, . . . , EN) be the hidden exponential vector,
µ = {µi,1, µi,2}i∈[d], D = (D(1), D(2), . . . , D(N)), and let ¬⊥ be shorthand for the event
Report(A) 6= ⊥. Now observe that for any given value of D(1) ∈ [nc] that we could condition

100

on, we have

Pr [¬⊥ |D(1)] =
∑
E,µ

Pr [¬⊥ | D(1), E, µ] ·Pr [E, µ]

Here we have used the fact that E, µ are independent of the anti-ranks D. Thus, it will suffice to
bound the probability of obtaining E, µ such that the event of failure can be determined by the
realization of D. So consider any row i, and consider the event Qi that |µi,1U∗i,1 − µi,2U

∗
i,2| <

2(|V∗i,1|+ |V∗i,2|) = O(ε(|Ai,1|+ |Ai,2|) (where here we have conditioned on the high probability
event E2). WLOG, U∗i,1 ≥ U∗i,2, giving U∗i,1 = Θ(|Ai,1|+ |Ai,2|). Since the µi,j’s are uniform, we
have

Pr [Qi] = O

(
ε · |Ai,1|+ |Ai,2|

U∗i,1

)
= O(ε)

and by a union bound Pr
[
∪i∈[d]Qi

]
= O(ε log n). Thus conditioned on E1∩E2 and ¬(∪i∈[d]Qi),

the event of failure is completely determined by the values E, µ, and in particular is independent
of the anti-rank vector D. Thus

Pr
[
¬⊥ |D(1), E, µ,¬(∪i∈[d]Qi), E1 ∩ E2

]
= Pr

[
¬⊥ |E, µ,¬(∪i∈[d]Qi), E1 ∩ E2

]
So averaging over all E, µ:

Pr [¬⊥ |D(1)] = Pr
[
¬⊥ |D(1),¬(∪i∈[d]Qi), E1 ∩ E2

]
+O(log(n)ε)

= Pr
[
¬⊥ |¬(∪i∈[d]Qi), E1 ∩ E2

]
+O(log(n)ε)

= Pr [¬⊥] +O(log(n)ε)

as needed.

In Lemma 3.3.3, we demonstrated that the probability of failure can only change by an addi-
tive Õ(ε) term given that any one value of i ∈ [N] achieved the maximum (i.e., D(1) = i). This
property will translate into a (1±Õ(ε))-relative error in our sampler, where the space complexity
is independent of ε. One can then set ε = 1/poly(n) to obtain a perfect Lp sampler.

To complete the proof of correctness of our algorithm, we now need to bound the probability
that we fail at all. To do so, we first prove the following fact about ‖ztail(s)‖2, or the L2 norm of z
with the top s largest (in absolute value) elements removed.

Proposition 3.3.5. For any s = 2j ≤ nc−2 for some j ∈ N, then with probability 1 − 3e−s, we

101

have
N∑
i=4s

z2
D(i) = O

(
‖F‖2

p

s2/p−1

)

if p ∈ (0, 2) is a constant bounded below 2, and if p = 2 we have

N∑
i=4s

z2
(i) = O

(
log(n) · ‖F‖2

p

)

Proof. Let Ik = {i ∈ [N] | zi ∈
(
‖F‖p

2(k+1)/p ,
‖F‖p
2k/p

)
} for k = 0, 1, . . . , p log(‖F‖p), where we have

log(‖F‖pp) = O(log(n)). Note that

Pr [i ∈ Ik] = Pr
[
ti ∈ (2kF p

i

‖F‖pp
,
2k+1F p

i

‖F‖pp
)
]
<

2kF p
i

‖F‖pp

where we used fact that the pdf e−x of the exponential distribution is upper bounded by 1, and
then integrating the pdf over a interval of size at most 2kF pi

‖F‖pp
. Thus E [|Ik|] < 2k, so for every

k ≥ log(s) = j, we have Pr
[
|Ik| > 4(2k)

]
< e−s2

k−j by Chernoff bounds. By a union bound,

the probability that |Ik| > 4(2k) for any k ≥ log(s) is at most e−s
∑O(log(n))
i=0 e2i ≤ 2e−s.

Now observe Pr
[
zi > ‖F‖p/s1/p

]
<

sF pi
‖F‖pp

, so E
[
|{i|zi > ‖F‖p/s1/p}|

]
< s, and as before

the number of such i with zi > ‖F‖p/s1/p is at most 4s with probability 1 − e−s. Conditioning
on this,

∑N
i=4s z

2
(i) does not include the weight of any of these items, so

N∑
i=4s

z2
(i) ≤

O(log(n))∑
k=log(s)

|Ik|
(
‖F‖p
2k/p

)2

≤ 4
O(log(n))∑
k=0

‖F‖2
p

2(log(s)+k)(2/p−1)

First, if p < 2, the above sum is geometric and converges to at most 4 ‖F‖2p
1−2−2/p+1

1
s2/p−1 =

O(‖F‖2
p/s

2/p−1) for p a constant bounded below by 2. If p = 2 or is arbitrarily close to 2,
then each term is at most ‖F‖2

p, and the sum is upper bounded by O(log(n)‖F‖2
p) as stated.

Altogether, the probability of failure is at most 1− 3e−s by a union bound.

Lemma 3.3.6. For 0 < p < 2 a constant bounded away from 0 and 2, the probability that Lp
Sampler outputs ⊥ is at most 1− Ω(1), and for p = 2 is 1− Ω(1/ log(n)).

Proof. By Proposition 3.3.5, with probability 1 − 3e−4 > .9 we have ‖ztail(16)‖2 = O(|F‖p)
for p < 2, and ‖ztail(16)‖ = O(

√
log(n)‖F‖p) when p = 2. Observe that for t = 2, 3, . . . , 16,

we have |zD(t)| < ‖F‖p(2∑t

τ=1 Eτ
)1/p, and with probability 99/100 we have Et > 1/100, which

implies that |zD(t)| = O(‖F‖p) for all t ∈ [16]. Conditioned on this, we have ‖ztail(2)‖2 < q‖F‖p

102

where q is a constant when p < 2, and q = Θ(
√

log(n)) when p = 2. Now |zD(1)| = ‖F‖p
E

1/p
1

, and
using the fact that the pdf exponential random variables around 0 is bounded above by a constant,
we will have |zD(1)| > 20‖z−D(1)‖2 with probability Ω(1) when p < 2, and probability Ω(1

log(n))
when p = 2. Conditioned on this, by Lemma 3.2.1, count-max will return the index D(1) with
probability 1− n−c, and thus the Sampling algorithm will not fail.

Putting together the results of this section, we obtain the correctness of our algorithm as
stated in Theorem 13. In Section 3.4, we will show that the algorithm can be implemented to
have Õ(ε−1) update and Õ(1) query time, and that the entire algorithm can be derandomized to
use O(log2 n(log log n)2) bits of space for p ∈ (0, 2) and O(log3(n)) bits for p = 2.

Theorem 13. Fix any constant c ≥ 2, and values ε ≥ n−c, δ ∈ (0, 1), and 0 < p ≤ 2. Then

there is a one-pass (Õ(ε), δ, O(n−c))-approximate Lp sampler. The space used is:

• O(log2 n log δ−1(log log n)2) bits for p < 2.

• O(log3 n) bits when p < 2 and δ = 1/poly(n).

• O(log3 n log δ−1) bits for p = 2

The update time is Õ(ε−1), and the query time is Õ(1).

Proof. First note that if x = ~0, we can estimate ‖x‖1 to error (1± 1/2) with probability 1− n−c

using space O(log2 n) via the norm estimation algorithm of [KNW10a]. This allows us to de-
termine whether or not x = ~0 correctly with probability 1 − n−c, and we can output ZERO
whenever the algorithm gives an estimate of 0 for ‖x‖1. This satisfies the distributional assump-
tions on outputting ZERO from Definition 3.1.2. Thus, in what follows, we assume x 6= ~0.

Conditioned on not reporting ⊥, by Lemma 3.2.1, with probability 1− n−c we have that the
coordinate ij ∈ [nc] reported of count-max will in fact be equal to arg maxi{|ζi|}. Recall that
ζi = (1 ± O(ε))zi for all i ∈ [nc] (and this rounding of z to ζ is order preserving). By Lemma
3.2.1 count-max only outputs a coordinate which is the unique maximizer of ζ . Now if there was
unique maximizer of ζ , there must also be a unique maximizer in z, from which it follows that
ij = arg maxi{|zi|} .

Lemma 3.3.3 states for any ij ∈ [nc] that

Pr
[
¬⊥ | ij = arg max

i′,j′
{|zi′

j′
|}
]

= Pr [¬⊥]± Õ(ε) = q ± Õ(ε)

103

where q = Pr [¬⊥] = Ω(1) for p < 2, and q = Ω(1
log(n)) for p = 2, both of which follow

from Lemma 3.3.6, which does not depend on any of the randomness in the algorithm. Recall
that ¬⊥ be shorthand for the event Report(A) 6= ⊥. Since conditioned on ¬⊥, the coordinate
ij reported by count-max satisfies ij = arg maxi{|zi|}, the probability we output ij ∈ [nc] is
Pr [¬⊥ ∩ ij = arg max{|zi|}], so the probability our final algorithm outputs i ∈ [n] is

∑
j∈[nc−1]

Pr
[
¬⊥ | ij = arg max

i′,j′
{|zi′

j′
|}
]
Pr

[
ij = arg max

i′,j′
{|zi′

j′
|}
]

=
∑

j∈[nc−1]

|xi|p

‖F‖pp
(q ± Õ(ε))

= |xi|
p

‖x‖pp
(q ± Õ(ε))

Note that we can scale the c value used in the algorithm by a factor of 60, so that the statement
of Lemma 3.3.3 holds for any ε ≥ n−c. The potential of the failure of the various high proba-
bility events that we conditioned on only adds another additive O(n−c) term to the error. Thus,
conditioned on an index i being returned, we have Pr [i = j] = |xj |p

‖f‖pp
(1 ± Õ(ε))) ± n−c for all

j ∈ [n], which is the desired result after scaling ε by a poly(log(n)) term. Running the algorithm
O(log(δ−1)) times in parallel for p < 2 and O(log(n) log(δ−1)) for p = 2, it follows that at least
one index will be returned with probability 1− δ.

For the complexity, the update time of count-max data structure A follows from the routine
Fast-Update of Lemma 3.4.3, and the query time follows from Lemma 3.4.12. Theorem 19
shows that the entire algorithm can be derandomized to use a random seed withO(log2 n(log log(n))2)
bits, so to complete the claim it suffices to note that using O(log n)-bit precision as required by
Fast-Update (Lemma 3.4.3), it follows that our whole data structure A can be stored with
O(log2 n) bits, which is dominated by the cost of storing the random seed. This gives the stated
space after taking O(log δ−1) parallel repetitions for p < 2. For p = 2, we only need a random
seed of length O(log3 n) for all O(log n log δ−1) repetitions by Corollary 3.4.11, which gives
O(log3 n log δ−1 + log3 n) = O(log3 n log δ−1) bits of space for p = 2 as stated. Similarly for
the case of p < 2 and δ = 1/poly(n), the stated space follows from Corollary 3.4.11.

In particular, by setting ε = 1/poly(n,M), we obtain the following:

Theorem 14. Given 0 < p ≤ 2, for any constant c ≥ 2 there is a one-pass perfect Lp sampler,

i.e. a (0, δ, O(n−c))-approximate Lp sampler. The space used is:

• O(log2 n log δ−1(log log n)2) bits for p < 2.

• O(log3 n) bits when p < 2 and δ = 1/poly(n).

104

• O(log3 n log δ−1) bits for p = 2

Proof. By Theorem 13 with ε = n−c, the output X ∈ [n] of the sampler satisfies

Pr [X = i] = (1± Õ(ε)) |xi|
p

‖x‖pp
±O(n−c)

= |xi|
p

‖x‖pp
±O(n−c + ε)

= |xi|
p

‖x‖pp
±O(n−c)

(3.7)

Thus the algorithm is a (0, δ, O(n−c))-approximate sampler, making it a perfect Lp sampler via
Definition 3.1.2.

Finally, we note that the cause of having to pay an extra (log log n)2 factor in the space com-
plexity for p < 2 is only due to the derandomization. Thus, in the random oracle model where the
algorithm has access to a poly(n)-length random tape which does not count against its space re-
quirement, the space is an optimal O(log2(n) log(1/δ)). We remark that the Ω(log2(n) log(1/δ))
of [KNP+17] lower bound also holds in the random oracle model.

Corollary 3.3.7. For p ∈ (0, 2), in the random oracle model, there is a perfect Lp sampler which

fails with probability δ > 0 and uses O(log2(n) log(1/δ)) bits of space.

Remark 15. Note that for p arbitrarily close to 2, the bound on ‖z‖2 of Proposition 3.3.5 as used
in Lemma 3.3.6 degrades, as the sum of the L2 norms of the level sets is no longer geometric,
and must be bounded by O(

√
log(n)‖F‖2). In this case, the failure probability from Lemma

3.3.6 goes to Θ(1
log(n)), and so we must use the upper bound for p = 2. Similarly, for p arbitrarily

close to 0, the bound also degrades since the values VD(k) in Lemma 3.3.3 blow-up. For such
non-constant p arbitrarily close to 0, we direct the reader to theO(log2(n))-bit perfect L0 sampler
of [JST11].

3.4 Time and Space Complexity

In this section, we will show how the Lp sampling algorithm Lp-Sampler from Section 3.3 can
be implemented with the space and time complexity as stated in Theorem 13. First, in Section
3.4.1, we show how the sampler can be implemented with the update procedure Fast-Update to
result in Õ(ε−1) update time. Next, in Section 3.4.2, we show that the algorithm Lp-Sampler with

105

Fast-Update can be derandomized to use a random seed of length O(log2(n)(log log n)2)-bits,
which will give the desired space complexity. Finally, in Section 3.4.3, we show how using an
additional heavy-hitters data structure as a subroutine, we can obtain Õ(1) update time as well.
This additional data structure will not increase the space or update time complexity of the entire
algorithm, and does not need to be derandomized.

3.4.1 Optimizing the Update Time

In this section we prove Lemma 3.4.3, which demonstrates that the sampling algorithm can be
implemented with a fast update procedure. Our algorithm utilizes a single data structure run on
the stream ζ , which is count-max matrix A ∈ Rd×2 where d = Θ(log n). We will introduce an
update procedure Fast-Update which updates the count-max data structure A of Lp-Sampler in
Õ(ε−1) time.

Throughout this section, we will refer to the original algorithm as the algorithm which imple-
ments Lp-Sampler of section Section 3.3 by individually generating each scaling exponential ti
for i ∈ [nc], rounding them to create the vector ζ , and hashing them individually into A (naïvely
taking nc update time). Our procedure will utilize the following result about efficiently sampling
binomial random variables which can be found in [BKP+14].

Proposition 3.4.1. For any constant c > 0 and integer n ≥ 1, there is an algorithm that can

draw a sample X ∼ Bin(n, 1/2) in expected O(1) time in the unit cost RAM model. Moreover,

it can be sampled in time Õ(1) with probability 1− n−c. The space required is O(log n)-bits.

Proof. The proof of the running time bounds and correctness can be found in [BKP+14]. Since
they do not analyze the space complexity of their routine, we do so here. Their algorithm is as
follows. We can assume n is even, otherwise we could sample Bin(n, q) ∼ Bin(n − 1, q) +
Bin(1, q), where the latter can be sampled in constant time (ion the unit cost RAM model) and
O(log(n))-bits of space. The algorithm first computes ∆ ∈ [

√
n,
√
n + 3], which can be done

via any rough approximation of the function
√
x, and requires only O(log(n))-bits. Define the

block Bk = {km, km+ 1, . . . , km+m− 1} for k ∈ Z, and set

f(i) = 4
2max{k,−k−1}m

s.t. i ∈ Bk

p(i) = 2−n
(

n

n/2 + i

)

106

Note that given i, f(i) can be computed in constant time and O(log(n)) bits of space. The
algorithm then performs the following loop:

1. Sample i via the normalized probability distribution f̄ = f/16.

2. Return n/2 + i with probability p(i)/f(i)

3. Else, reject i and return to Step 1.

To compute the first step, the symmetry around n/2 of f is utilized. We flip unbiased coins
C1, C2, . . . until we obtain Ct+1 which lands tails, and pick i uniformly from block Bt or B−t
(where the choice is decided by a single coin flip). The procedure requires at mostO(log(n))-bits
to store the index t. Next, to perform the second step, we obtain 2−L additive error approxima-
tions q̃ of q = (p(i)/f(i)) for L = 1, 2, . . . , which (using the fact that 0 ≤ q ≤ 1) can be done
by obtaining a 2−L-relative error approximation of q. Then we flip L random bits to obtain a
uniform R̃ ∈ [0, 1], and check if |R̃ − q̃| > 2−L. If so, we can either accept or reject i based on
whether R̃ > q̃ + 2−L or not, otherwise we repeat with L← L+ 1.

To obtain q̃, it suffices to obtain a 2−L−1 relative error approximation of the factorial function
x!. To do so, the 2−L approximation

x! ≈ (x+ L)x+1/2e−(x+L)
[√

2π +
L−1∑
k=1

ck
x+ k

]

is used, where ck = (−1)k−1

(k−1)! (L− k)k−1/2eL−k. This requires estimating the functions ex,
√
x and

π, all of which, as well as each term in the sum, need only be estimated to O(L)-bits of accuracy
(as demonstrated in [BKP+14]). Thus the entire procedure is completed in O(L) = O(log(n))-
bits of space (L can never exceedO(log(n)), as q is specified with at mostO(log(n)) bits), which
completes the proof.

We now utilize a straightforward reduction from the case of sampling from Bin(n, q) for any
q ∈ [0, 1] to sampling several times from Bin(n′, 1/2) where n′ ≤ n. This reduction has been
observed before [FCT15], however we will state it here to clearly demonstrate our desired space
and time bounds.

Lemma 3.4.2. For any constant c > 0, integer n ≥ 1, and real q ∈ [0, 1], there is an algorithm

that can draw a sample X ∼ Bin(n, q) in expected O(1) time in the unit cost RAM model.

Moreover, it can be sampled in time Õ(1) with probability 1 − n−c, and the space required is

O(log n)-bits.

107

Proof. The reduction is as follows (for a more detailed proof of correctness, see [FCT15]). We
sample Bin(n, q) by determining how many of the n trials were successful. This can be done by
generating variables u1, . . . , un uniform on [0, 1], and determining how many are less than q.

We do this without generating all the variables ui explicitly as follows. First write q in binary
as q = (0.q1q2, . . .)2. Set b← 0, j ← 1, nj ← n and sample bj ∼ Bin(nj, 1/2). If qj = 1, then
set b = b + bj , as these corresponding bj trials ui with the first bit set to 0 will all be successful
trials given that qj = 1. Then set nj+1 ← nj − bj and repeat with j ← j + 1. Otherwise, if
qj = 0, then we set nj+1 ← nj− (nj− bj) = bj , since this represents the fact that (nj− bj) of the
variables ui will be larger than q. With probability 1− n−100c, we reach the point where nj = 0
within O(log(n)) iterations, and we return the value stored in b at this point. By Proposition
3.4.1, each iteration requires Õ(1) time, and thus the entire procedure is Õ(1).

For space, note that we need only store q to its first O(log(n)) bits, since the procedure
terminates with high probability within O(log(n)) iterations. Then the entire procedure requires
O(log(n)) bits, since each sample of Bin(nj, 1/2) requires onlyO(log(n)) space by Proposition
3.4.1.

The Fast-Update procedure. We are now ready to describe the implementation of our algo-
rithms update procedure. Specifically, our goal is to show that the update time of the (ε, δ)-
approximate sampling algorithm Lp-Sampler can be made Õ(1/ε). Recall that for our perfect

Lp sampler we require ε = 1/poly(n), thus the Fast-Update procedure will not improve the
update time of our perfect Lp sampler (beyond the naïve poly(n)). However, if one allows the
relative error ε to be larger, then a Õ(1/ε) update time is now much faster. Thus, the Fast-Update
procedure allows for a trade-off between the update time and the relative error of the sampler.
Note that all prior works had a dependency on the relative error ε in both the spacial complexity
and the update time of the sampler.6

Recall that our algorithm utilizes just a single data structure on the stream ζ: the d× 2 count-
max matrix A (where d = Θ(log(n))). Upon receiving an update (i,∆) to a coordinate xi for
i ∈ [n], we proceed as follows. Our goal is to compute the set

rndε
 1
t
1/p
i1

 ,rndε
 1
t
1/p
i2

 , . . . ,rndε
 1
t
1/p
inc−1

6Note that our algorithm has no dependency on ε in the spacial complexity so long as 1/ε = O(poly(n)).

108

and update each row of A accordingly in Õ(ε−1) time, Naïvely, this could be done by comput-
ing each value individually, and then updating each row of A accordingly, however this would
require O(nc−1) time. To avoid this, and obtain speed-ups when the relative error ε is made
larger than 1/poly(n), we exploit the fact that the support size of rndε(x) for 1/poly(n) ≤ x ≤
poly(n) is Õ(ε−1), so it will suffice to determine how many variables rndε(1/t1/pij) are equal to
each value in the support of rndε(x).

Our update procedure is then as follows. Let Ij = (1+ ε)j for j = −Π,−Π+1, . . . ,Π−1,Π
where Π = O(log(n)ε−1). We utilize the c.d.f. ψ(x) = 1− e−x−p of the 1/p-th power of the in-
verse exponential distribution t−1/p (here t is exponentially distributed). Then beginning with j =
−Π,−Π + 1, . . . ,Π we compute the probability qj = ψ(Ij+1) − ψ(Ij) that rndε(1/t1/p) = Ij ,
and then compute the number of valuesQj in {rndε(1/t1/pi1),rndε(1/t1/pi2), . . . ,rndε(1/t1/pinc−1)}
which are equal to Ij . With probability 1 − n100c, we know that 1/poly(n) ≤ ti ≤ poly(n) for
all i ∈ [N], and thus conditioned on this, we will have completely determined the values of the
items in {rndε(1/t1/pi1),rndε(1/t1/pi2), . . . ,rndε(1/t1/pinc−1)} by looking at the number equal to Ij
for j = −Π, . . . ,Π.

Now we know that there areQj updates which we need to hash into A (along with i.i.d. Gaus-
sian scalings), each with the same value ∆Ij . This is done by the procedure Fast-Update-CS
(Figure 3.5), which computes the number bk,θ that hash to each bucket Ak,θ by drawing binomial
random variables. Once this is done, we know that the value of Ak,θ should be updated by the
value

∑bk,θ
t=1 gt∆Ij , where each gt ∼ N (0, 1). Naïvely, computing the value

∑bk,θ
t=1 gt∆Ij would

involve generating bk,θ random Gaussians. To avoid this, we utilize the 2-stability of Gaussians
(Definition 2.2.6), which asserts that

∑bk,θ
t=1 gt∆Ij ∼ g

√
bk,θ∆Ij , where g ∼ N (0, 1). Thus we

can simply generate and store the Gaussian g associated with the item i ∈ [n], rounding Ij , and
bucket Ak,θ, and on each update ∆ to xi we can update Ak,θ by g

√
bk,θ∆Ij .

Finally, once the number of values in {rndε(1/t1/pi1),rndε(1/t1/pi2), . . . ,rndε(1/t1/pinc−1)}which
are left to determine is less than K for some K = Θ(log(n)), we simply generate and hash each
of the remaining variables individually. The generation process is the same as before, except that
for each of these at most K remaining items we associate a fixed index ij for j ∈ [nc−1], and
store the relevant random variables h`(ij), g`(ij) for ` ∈ [d]. Since the value of j which is chosen
for each of these coordinates does not affect the behavior of the algorithm – in other words the
index of the duplicate which is among the K largest is irrelevant – we can simply choose these
indices to be i1, i2, . . . , iK ∈ [N] so that the first item hashed individually via step 3 corresponds
to ζi1 , the second to ζi2 , and so on.

Note that the randomness used to process an update corresponding to a fixed i ∈ [n] is stored

109

Fast-Update (i,∆,A)

Set L = nc−1, and fix K = Θ(log(n)) with a large enough constant.
For j = −Π,−Π + 1, . . . ,Π− 1,Π:

1. Compute qj = ψ(Ij+1)− ψ(Ij).

2. Draw Qj ∼ Bin(L, qj).

3. If L < K, hash the Qj items individually into each row A` using explicitly stored
uniform i.i.d. random variables h` : [nc]→ [2] and Gaussians g`(j) for ` ∈ [d].

4. Else: update count-max table A by via Fast-Update-CS(A, Qj, Ij,∆, i)
5. L← L−Qj .

Figure 3.4: Algorithm to Update count-max A

Fast-Update-CS (A, Q, I,∆, i)

Set Wk = Q for k = 1, . . . , d
For k = 1, . . . , d,

1. For θ = 1, 2:

(a) Draw bk,θ ∼ Bin(Wk,
1

2−θ+1).

(b) Draw and store gk,θ,I,i ∼ N (0, 1). Reuse on every call to Fast-Update-CS with
the same parameters (k, θ, I, i).

(c) Set Ak,θ ← Ak,θ + gk,θ,I,i
√
bk,θ∆I

(d) Wk ← Wk − bk,θ.

Figure 3.5: Update A via updates to Q coordinates, each with a value of ∆I

so it can be reused to generate the same updates to A whenever an update to i is made. Thus, each
time an update +1 is made to a coordinate i ∈ [n], each bucket of count-max is updated by the
same value. When an update of size ∆ comes, this update to the count-max buckets is scaled by
∆. For each i ∈ [n], letKi denote the size of Lwhen step 3 of Figure 3.4 was first executed while
processing an update to i. In other words, the coordinates ζi1 , . . . , ζiKi were hashed into each row
` ∈ [d] of A using explicitly stored random variables h`(ij), g`(ij). Let K = ∪i∈[n] ∪Kij=1 {ij}.
Then on the termination of the algorithm, to find the maximizer of ζ , the count-max algorithm
checks for each i ∈ K, whether i hashed to the largest bucket (in absolute value) in a row at
least a 4

5 fraction of the time. Count-max then returns the first i which satisfies this, or ⊥ if no
such coordinate exists. In other words, the count-max algorithm decides to output ⊥ or output
an index i based on computing the fraction of rows for which i hashes into the largest bucket,
except now it only computes these values for i ∈ K instead of i ∈ [nc], thus count-max can only

110

return a value of i ∈ K. We now argue that the distribution of our algorithm is not changed by
using the update procedure Fast-Update. This will involve showing that arg max{|ζi|} ∈ K if
our algorithm was to return a coordinate originally.

Lemma 3.4.3. Running the Lp-Sampler with the update procedure given by Fast-Update re-

sults in the same distribution over the count-max table A as the original algorithm. Moreover,

conditioned on a fixed realization of A, the output of the original algorithm will be the same

as the output of the algorithm using Fast-Update. For a given i ∈ [n], Fast-Update requires

Õ(ε−1)-random bits, and runs in time Õ(ε−1).

Proof. To hash an update ∆ to a coordinate xi, the procedure Fast-Update computes the number
Qj of variables in the set {rndε(1/t1/pi1),rndε(1/t1/pi2), . . . ,rndε(1/t1/pinc−1)} which are equal to
Ij for each j ∈ {−Π, . . . ,Π}. Instead of computing Qj by individually generating the variables
and rounding them, we utilize a binomial random variable to determine Qj , which results in
the same distribution over {rndε(1/t1/pi1),rndε(1/t1/pi2), . . . ,rndε(1/t1/pinc−1)}. As noted, with
probability 1 − n100c none of the variables rndε(1/t1/pij) will be equal to Ik for |k| > Π, which
follows from the fact that n−101c < ti < O(log(n)) with probability 1 − n−101c and then union
bounding over all nc exponential variables ti. So we can safely ignore this low probability event.

Once computed, we can easily sample from the number of items of the Qj that go into each
bucket Ak,θ, which is the value bk,θ in Fast-Update-CS (Figure 3.5). By 2-stability of Gaussians
(Definition 2.2.6), we can update each bucket Ak,θ by gk,θ,Ij ,i

√
bk,θ∆Ij , which is distributed

precisely the same as if we had individually generated each of the bk,θ Gaussians, and taken their
inner product with the vector ∆Ij~1, where~1 is the all 1’s vector. Storing the explicit values h`(ij)
for the top K largest values of rndε(1/t1/pij) does not effect the distribution, but only allows the
algorithm to determine the induces of the largest coordinates ij corresponding to each i ∈ [n]
at the termination of the algorithm. Thus the distribution of updates to A is unchanged by the
Fast-Update Procedure.

We now show that the output of the algorithm run with this update procedure is the same as
it would have been had all the random variables been generated and hashed individually. First
observe that for ε < 1/2, no value qj = ψ(Ij+1)−ψ(Ij) is greater than 1/2. Thus at any iteration,
if L > K then L − Bin(L, qj) > L/3 with probability 1 − n−100c by Chernoff bounds (using
that K = Ω(log(n))). Thus the first iteration at which L drops below K, we will have L > K/3.
So for each i ∈ [n] the top K/3 values ζij will be hashed into each row A` using stored random
variables h`(ij), so Ki > K/3 = Ω(log(n)) for all i ∈ [n]. In particular, Ki > 0 for all i ∈ [n].

Now the only difference between the output procedure of the original algorithm and that of

111

the efficient-update time algorithm is that in the latter we only compute the values of αij =
∣∣∣{t ∈

[d] | |At,ht(ij)| = maxr∈{1,2} |At,r|}
∣∣∣ for the ij ∈ [nc] corresponding to the Ki largest values

t
−1/p
ij in the set {t−1/p

i1 , . . . , t
−1/p
inc−1}, whereas in the former all values of αij are computed to find

a potential maximizer. In other words, count-max with Fast-Update only searches throguh the
subset K ⊂ [nc] for a maxmizer instead of searching through all of [nc] (here K is as defined
earlier in this section). Since count-max never outputs a index ij that is not a unique maximizer
with high probability, we know that the output of the original algorithm, if it does not output
⊥), must be ij such that j = arg maxj′{tij′}, and therefore ij ∈ K. Note the n−c failure
probability can be safely absorbed into the additive n−c error of the perfect Lp sampler. Thus
the new algorithm will also output ij . Since the new algorithm with Fast-Update searches over
the subset K ⊂ [nc] for a maximier, if the original algorithm outputs ⊥ then certainly so will
Fast-Update. Thus the output of the algorithm using Fast-Update is distributed identically (up
to n−c additive error) as the output of the original algorithm, which completes the proof.

Runtime & Random Bits For the last claim, first note that it suffices to generate all continuous
random varaibles used up to (nmM)−c = 1/poly(n) precision, which is 1/poly(n) additive error
after conditioning on the event that all random variables are all at most poly(n) (which occurs
with probability 1 − n−c), and recalling that the length of the stream m satisfies m < poly(n)
for a suitably smaller poly(n) then as in the additive error. More formally, we truncate the
binary representation of every continuous random variable (both the exponentials and Gaussians)
after O(log(n))-bits with a sufficiently large constant. This will result in at most an additive
1/poly(n) error for each bucket Ai,j of A, which can be absorbed by the adversarial error Vi,j
with |Vi,j| = O(ε(|Ai,1| + |Ai,2|)) that we incur in each of these buckets already in Lemma
3.3.3. Thus each random variable requires O(log(n)) bits to specify. Similarly, a precision of
at most (nmM)−c is needed in the computation of the qj’s in Figure 3.4 by Lemma 3.4.2, since
the routine to compute Bin(n, qj) will terminate with probability 1 − n−100c after querying at
most O(log(n)) bits of qj . Now there are at most 2Π = O(ε−1 log(n)) iterations of the loop
in Fast-Update. Within each, our call to sample a binomial random variable is carried out in
Õ(1) time with high probability by Lemma 3.4.2 (and thus use at most Õ(1) random bits), and
there are Õ(1) entries in A to update (which upper bounds the running time and randomness
requirements of Fast-Update-CS).

Note that since the stream has length m = poly(n), and there are at most Õ(ε) calls made
to sample binomial random variables in each, we can union bound over each call to guarantee
that each returns in Õ(1) time with probability 1 − n−100c. Since K = Õ(1), we must store an
additional Õ(1) random bits to store the individual random variables h`(ij) for ij ∈ {i1, . . . , iKi}.

112

Similarly, we must store Õ(ε) independent Gaussians for the procedure Fast-Update-CS, which
also terminates in Õ(1) time, which completes the proof.

3.4.2 Derandomizing the Algorithm

We now show that the algorithm Lp-Sampler with Fast-Update can be derandomized without
affecting the space or time complexity. Recall that Lp-Sampler utilizes two main sources of
randomness. Firstly, it uses randomness to generate the exponential random scaling variables
(t1, . . . , tnc) (the “exponential randomness”), and secondly, it uses randomness to generate the
Gaussian coefficients gi(j) and fully random hash functions hi(j) needed for count-max (the
“count-max randomness”). To derandomize both these sources of randomness, we will need to
use a combination of Nisan’s pseudorandom generator (PRG) [Nis92], and the PRG of Goplan,
Kane, and Meka [GKM18]. Specifically, we will derandomize the exponential randomness with
the PRG of Goplan, Kane, and Meka, and we will derandomize the count-max randomness with
Nisan’s PRG.

We begin by introducing Nisan’s PRG, which is a deterministic map G : {0, 1}` → {0, 1}T ,
where T � ` (for instance, one can think of T = poly(n) and ` = O(log2(n))). Let σ :
{0, 1}T → {0, 1} be a tester (a function computable under some specified restrictions). For the
case of Nisan’s PRG, σ must be a tester which reads its random T -bit input in a stream, left to
right, and outputs either 0 or 1 at the end. Nisan’s PRG can be used to fool any such tester, which
means: ∣∣∣Pr [σ(UT) = 1]−Pr [σ(G(U`)) = 1]

∣∣∣ < 1
T c

Where Ut indicates t uniformly random bits for any t, and c is a sufficiently large constant.
Here the probability is taken over the choice of the random bits UT and U`. In other words, the
probability that σ outputs 1 is nearly the same when it is given random input as opposed to input
from Nisan’s generator. Note that since σ(UT) is a 0, 1 random variable, the left hand side of the
above equation can be rewritten as |E [σ(UT)]−E [σ(G(U`))] |. Nisan’s theorem states if σ can
be computed by an algorithm with at most poly(T) states and which uses a working memory
tape of size at most O(log T), then a seed length of ` = O(log2 T) suffices for the above result
[Nis92]. More generally, if σ can be computed by an algorithm with poly(T) states and which
uses a working memory of tape of size S = Ω(log T), then a seed length of ` = O(S log T)
suffices for the above result. Thus Nisan’s PRG fools space bounded testers σ that read their
randomness in a stream.

113

Why Nisan’s PRG alone is insufficient. We remark that it is possible to derandomize our
entire algorithm with Nisan’s PRG, albeit with suboptimal seed length. Since our algorithm is a
linear sketch and is therefore independent of the ordering of the stream, one can assume for the
sake of the derandomization that the stream is ordered so that all updates to a single coordinate
occur consecutively (this is a fairly standard argument, e.g. [Ind06]). Reading the exponential
and count-max randomness in a stream, one can then fully construct the state of the algorithm’s
data structure at the end of the stream, by adding the contribution of each coordinate to the whole
data structure one by one. The space required to do this is the size of the data structure, which
is O(log2 n) bits. Then to derandomize with Nisan’s PRG, we would require a seed length of
O(log3 n)-bits, which does not match our desired space complexity. Thus to improve the seed
length to O(log2 n(log log n)2), we will need the approach followed here.

We remark that the main difficulty in applying Nisan’s PRG alone is that, for a given i, to
test if i is returned by count-max, one must check for each pair of buckets in count-max whether
i hashes to the larger bucket. Since each bucket depends on the same exponential randomness,
one would either need to make multiple passes over the exponential randomness (which is not
allowed by Nisan’s), once for each bucket, or one would need to store all the buckets simulta-
neously. On the other hand, if the exponential randomness was fixed, and hard-coded into the
tester σ, then one could construct the buckets one at a time, reading only the count-max random-
ness in a stream, and thus only using O(log n) bits of space. We make use of this latter fact, by
generating the exponential randomness with a separate PRG from [GKM18], to obtain our main
result.

Road-map for the Derandomization

We now briefly lay out the structure of this section. First, in Section 3.4.2, we introduce the
PRG of Goplan, Kane, and Meka [GKM18], along with the notion of a half-space tester which
will be crucial for us. We then demonstrate in Lemma 3.4.7 how the PRG of [GKM18] can be
used to fool such half-space testers with a small seed length. Recall the PRG is just a function
G : {0, 1}` → {−M, . . . ,M}n for some M = poly(n). However, in order to use this PRG for
our streaming algorithm, we must show not only that the seed length is small, but also that given
a random seed r, one can compute each coordinate of G(r) in small space and small runtime,
which we do in Proposition 3.4.8. We then use this fact thatG can fool half-space testers to prove
a set of general results about derandomizing streaming algorithms, which is captured in Theorem
17. As a corollary, we obtain a novel and improved derandomization of the count-sketch variant
of [MP14]. Finally, in Section 3.4.2, we present our main theorem, Theorem 19, which uses a

114

combination of the PRG of Goplan, Kane, and Meka as well as Nisan’s PRG to derandomize our
streaming algorithm.

Half Space Fooling PRG’s.

Our derandomization crucially uses the PRG of Goplan, Kane, and Meka [GKM18], which
fools a certain class of fourier transforms. Utilizing the results of [GKM18], we will design
a PRG that can fool arbitrary functions of λ = O(log(n)) halfspaces, using a seed of length
O(log2(n)(log log(n))2). We remark that in [GKM18] it is shown how to obtain such a PRG for a
function of a single half-space. Using extensions of the techniques in that paper, we demonstrate
that the same PRG with a smaller precision ε can be used to fool functions of more half-spaces.
We now introduce the main result of [GKM18]. Let C1 = {c ∈ C | |c| ≤ 1}.

Definition 3.4.4 (Definition 1 [GKM18]). An (m,n)-Fourier shape f : [m]n → C1 is a function

of the form f(x1, . . . , xn) = ∏n
j=1 fj(xj) where each fj : [m]→ C1.

Theorem 16 (Theorem 1.1 [GKM18]). There is a PRG G : {0, 1}` → [m]n that fools all

(m,n)-Fourier shapes f with error ε using a seed of length ` = O(log(mn/ε)(log log(mn/ε))2),

meaning:

|E [f(x)]−E [f(G(y))]| ≤ ε

where x is uniformly chosen from [m]n and y from {0, 1}`.

For any a1, . . . , aλ ∈ Zn and θ1, . . . , θλ ∈ Z, let Hi : Rn → {0, 1}, be the function given by
Hi(X1, . . . , Xn) = 1[ai1X1 + ai2X2 + · · · + ainXn > θi], where 1 is the indicator function. We
now define the notion of a λ-halfspace tester, and what it means to fool one.

Definition 3.4.5 (λ-halfspace tester). A λ-halfspace tester is any function σH : Rn → {0, 1}
which, on input X = (X1, . . . , Xn), outputs σ′H(H1(X), . . . , Hλ(X)) ∈ {0, 1} where σ′H is any

fixed function σ′H : {0, 1}λ → {0, 1}. In other words, the Boolean valued function σH(X) only

depends on the values (H1(X), . . . , Hλ(X)). A λ-halfspace tester is said to be M bounded if all

the half-space coefficents aij and θi are integers of magnitude at most M , and each Xi is drawn

from a discrete distrubtion D with support contained in {−M, . . . ,M} ⊂ Z.

Definition 3.4.6 (Fooling a λ-halfspace tester). Fix any ε > 0. A PRG G : {0, 1}` → R
n is

said to ε-fool the class of λ-halfspace testers under a distribution D over Rn if for every set of λ

115

halfspaces H = (H1, . . . , Hλ) and every λ-halfspace tester σH : Rn → {0, 1}, we have:

∣∣∣EX∼D[σH(X) = 1
]
− Ey∼{0,1}`

[
σH(G(y)) = 1

]∣∣∣ < ε

Here ` is the seed length of G.

We will consider only product distributions D. In other words, we assume that each coor-
diante Xi is drawn i.i.d. from a fixed distribution D over {−M, . . . ,M} ⊂ Z. We consider
PRG’s G : {0, 1}` → {−M, . . . ,M}n which take in a random seed of length ` and output a
X ′ ∈ {−M, . . . ,M}n such that any M -bounded λ-halfspace tester will be unable to distinguish
X ′ from X ∼ Dn (where Dn is the product distribution of D, such that each Xi ∼ D inde-
pendently). The following Lemma demonstrates that the PRG of [GKM18] can be used to fool
M -bounded λ-halfspace testers. The authors would like to thank Raghu Meka for providing us
a proof of Lemma 3.4.7.

Lemma 3.4.7. Suppose Xi ∼ D is a distribution on {−M, . . . ,M} that can be sampled from

with log(M ′) = O(log(M)) random bits. Then, for any ε > 0 and constant c ≥ 1, there is

a PRG G : {0, 1}` → {−M, . . . ,M}n which ε(nM)−cλ-fools the class of all M -bounded λ-

halfspace testers on input X ∼ Dn with a seed of length ` = O(λ log(nM/ε)(log log(nM/ε))2)
(assuming λ ≤ n). Moreover, if G(y) = X ′ ∈ {−M, . . . ,M}n is the output of G on random

seed y ∈ {0, 1}`, then each coordinate X ′i can be computed in O(`)-space and in Õ(1) time,

where Õ hides poly(log(nM)) factors.

Proof. Let X = (X1, . . . , Xn) be uniformly chosen from [M ′]n for some M ′ = poly(M), and
let Q : [M ′]→ {−M, . . . ,M} be such that Q(Xi) ∼ Dn for each i ∈ [n]. Let a1, . . . , aλ ∈ Zn,
θ1, . . . , θλ ∈ Z be log(M)-bit integers, whereHi(x) = 1[〈ai, x〉 > θi]. Let Yi = 〈Q(X), ai〉−θi.
Note that Yi ∈ [−2M2n, 2M2n]. So fix any αi ∈ [−2M2n, 2M2n] for each i ∈ [λ], and let
α = (α1, . . . , αλ). Let hα(x) = 1(Y1 = α1) · 1(Y2 = α2) · · · 1(Yλ = αλ), where 1(·) is the
indicator function. Now define f(x) = ∑λ

j=1(2M2n)j−1〈ai, x〉 for any x ∈ Zn. Note that
f(Q(X)) ∈ {−(Mn)O(λ), . . . , (Mn)O(λ)}. We define the Kolmogorov distance between two
integer valued random variables Z,Z ′ by dK(Z,Z ′) = maxk∈Z(|Pr [Z ≤ k]−Pr [Z ′ ≤ k]|).
Let X ′ ∈ [M ′]n be generated via the (M ′, n)-fourier shape PRG of [GKM18] with error ε′

(Theorem 1.1 [GKM18]). Observe E [hα(Q(X))] = Pr
[
f(Q(X)) = ∑λ

j=1(Mn)j−1αj
]
, so

|E [hα(Q(X))]−E [hα(Q(X ′)]| ≤ dK(f(Q(X)), f(Q(X ′)))

116

Now by Lemma 9.2 of [GKM18], we have

dK(f(Q(X)), f(Q(X ′))) = O
(
λ log(Mn)dFT

(
f(Q(X)), f(Q(X ′))

))
where for integer valued Z,Z ′, we define

dFT (Z,Z ′) = max
β∈[0,1]

|E [exp(2πiβZ)]−E [exp(2πiβZ ′)]|

Now exp(2πiβf(Q(X))) = ∏n
i=1((∑λ

j=1(2M2n)j−1aji)Q(Xi)), which is a (M ′, n)-Fourier shape
as in Definition 3.4.4. Thus by Theorem 16 (Theorem 1.1 of [GKM18]), we have

dFT (f(Q(X)), f(Q(X ′))) ≤ ε′

Thus
|E [hα(Q(X))]−E [hα(Q(X ′)]| = O(λ log(Mn)ε′)

Now let σH(x) = σ′H(H1(x), . . . , Hλ(x)) be any M -bounded λ-halfspace tester on x ∼ Dn.
Since the inputs to the halfspaces Hi of σ′H are all integers in {−2M2n, 2M2n}, let A ⊂
{−2M2n, 2M2n} be the set of α ∈ A such that Y = (Y1, . . . , Yλ) = α implies that σH(Q(X)) =
1, where Q(X) ∼ Dn as above. Recall here that Yi = 〈Q(X), ai〉 − θi. Then we can think of a
σH(X) = σ′′H(Y1, . . . , Yλ) for some function σ′′H : {−2M2n, . . . , 2M2n}λ → {0, 1}, and in this
case we have A = {α ∈ {−2M2n, 2M2n} | σ′′H(α) = 1}. Then

|E [σH(Q(X))]−E [σH(Q(X ′))]| ≤
∑
α∈A
|E [hα(Q(X))]−E [hα(Q(X ′)]|

≤
∑
α∈A

O(λ log(Mn)ε′)

Now note that |A| = (nM)O(λ), so setting ε′ = ε(nM)−O(λ) with a suitably large constant,
we obtain |E [σH(Q(X))]−E [σH(Q(X ′))]| ≤ ε(nM)−cλ as needed. By Theorem 16, the seed
required is ` = O(λ log(nM/ε)(log log(nM/ε))2) as needed. The space and time required to
compute each coordinate follows from Proposition 3.4.8 below.

Proposition 3.4.8. In the setting of Lemma 3.4.7, if G(y) = X ′ ∈ {−M, . . . ,M}n is the output

of G on random seed y ∈ {0, 1}`, then each coordinate X ′i can be computed in O(`)-space and

in Õ(1) time, where Õ hides poly(log(nM)) factors.

117

Proof. In order to analyze the space complexity and runtime needed to compute a coordinateX ′i,
we must describe the PRG of Theorem 16. The Goplan-Kane-Meka PRG has 3 main compo-
nents, which themselves use other PRGs such as Nisan’s PRG as sub-routines. Recall that the
PRG generates a psuedo-uniform element from X ∼ [M]n that fools a class of Fourier shapes
f : [M]n → C on truly uniform input in [M]n. Note that because of the definition of a Fourier
shape, if we wish to sample from a distribution X ∼ D over {−M, . . . ,M}n that is not uni-
form, but such that Xi can be sampled with log(M ′)-bits, we can first fool Fourier shapes f ′ :
[M ′]n → C, and then use a function Q : [M ′] → {−M, . . . ,M} which samples Xi ∼ D given
log(M ′) uniformly random bits. We then fool Fourier shapes F = ∏n

j=1 f
′
j(x) = ∏n

j=1 fj(Q(y))
where x, y are uniform, and thus Q(y) ∼ D. Thus it will suffice to fool (M ′, n)-Fourier shapes
on uniform distributions. For simplicity, for the most part we will omit the parameter ε in this
discussion.

The three components of the PRG appear in Sections 5,6, and 7 of [GKM18] respectively. In
this proof, when we write Section x we are referring to the corresponding Section of [GKM18].
They consider two main cases: one where the function f has high variance (for some notion of
variance), and one where it has low variance. The PRGs use two main pseudo-random primitives,
δ-biased and k-wise independent hash function families. Formally, a family H = {h : [n] →
[M]} is said to be δ-biased if for all r ≤ n distinct indices i1, . . . , ir ∈ [n] and j1, . . . , jr ∈ [M]
we have

Prh∼H [h(i1) = j1 ∧ · · · ∧ h(ir) = jr] = 1
M r
± δ

The function is said to be k-wise independent if it holds with δ = 0 for all r ≤ k. It is standard
that k-wise independent families can be generated by taking a polynomial of degree k over a
suitably large finite field (requiring space O(k log(Mn))). Furthermore, a value h(i) from a δ-
biased family can be generated by taking products of twoO(log(n/δ))-bit integers over a suitable
finite field [Kop13] (requiring space O(log(n/δ))). So in both cases, computing a value h(i) can
be done in space and time that is linear in the space required to store the hash functions (or
O(log(n/δ))-bit integers). Thus, any nested sequence of such hash functions used to compute a
given coordinate X ′i can be carried out in space linear in the size required to store all the hash
functions.

Now the first PRG (Section 5 [GKM18]) handles the high variance case. The PRG first sub-
samples the n coordinates at log(n) levels using a pair-wise hash function (note that a 2-wise
permutation is used in [GKM18], which reduces to computation of a 2-wise hash function). In
each level Sj of sub-sampling, it uses O(1)-wise independent hash functions to generate the co-
ordinates Xi ∈ Sj . So if we want to compute a value Xi, we can carry out one hash function

118

computation h(i) to determine j such that Xi ∈ Sj , and then carry out another hash function
computation hj(i) = Xi. Instead of using log(n) independent hash functions hj , each of size
O(log(nM)), for each of the buckets Sj , they derandomize this with the PRG of Nisan and
Zuckerman [NZ96] to use a single seed of length O(log n). Now the PRG of Nisan and Zuck-
erman can be evaluated online, in the sense that it reads its random bits in a stream and writes
its pseudo-random output on a one-way tape, and runs in space linear in the seed required to
store the generator itself (see Definition 4 of [NZ96]). Such generators are composed to yield
the final PRG of Theorem 2 [NZ96], however by Lemma 4 of the paper, such online generators
are composable. Thus the entire generator of [NZ96] is online, and so any substring of the pseu-
dorandom output can be computed in space linear in the seed of the generator by a single pass
over the random input. Moreover, by Theorem 1 of [NZ96] in the setting of [GKM18], such a
substring can be computed in Õ(1) time, since it is only generating Õ(1) random bits to begin
with.

On top of this, the PRG of Section 5 [GKM18] first splits the coordinates [n] via a limited
independence hash function into poly(log(1/ε)) buckets, and applies the algorithm described
above on each. To do this second layer of bucketing and not need fresh randomness for each
bucket, they use Nisan’s PRG [Nis92] with a seed of length log(n) log log(n). Now any bit of
Nisan’s PRG can be computed by several nested hash function computations, carried out in space
linear in the seed required to store the PRG. Thus any substring of Nisan’s can be computed in
space linear in the seed and time Õ(1). Thus to compute X ′i, we first determine which bucket
it hashes to, which involves computing random bits from Nisan’s PRG. Then we determine a
second partitioning, which is done via a 2-wise hash fucntion, and finally we compute the value
of X ′i via an O(1)-wise hash function, where the randomness for this hash function is stored in
a substring output by the PRG of [NZ96]. Altogether, we conclude that the PRG of Section 5
[GKM18] is such that value X ′i can be computed in space linear in the seed length and Õ(1)
time.

Next, in Section 6 of [GKM18], another PRG is introduced which reduces the problem to the
case of M ≤ poly(n). Assuming a PRG G1 is given which fools (M,n)-Fourier shapes, they
design a PRG G2 using G1 which fools (M2, n)-Fourier shapes. Applying this O(log log(M))
times reduces to the case of m ≤ n4. The PRG is as follows. Let G1, . . . , Gt be the iteratively
composed generators, where t = O(log log(M)). To compute the value of (Gi)j ∈ [M], where
(Gi)j is the j-th coordinate of Gi ∈ [M]n, the algorithm first implicitly generates a matrix Z ∈
[M]

√
M×M . An entry Zp,q is generated as follows. First one applies a k-wise hash function h(q)

(for some k), and uses the O(logM)-bit value of h(q) as a seed for a second 2-wise indepedent

119

hash function h′h(q). Then Zp,q = h′h(q)(p). Thus within a column q of Z, the entries are 2-wise
independent, and separate columns ofZ are k-wise independent. This requiresO(k logM)-space
to store, and the nested hash functions can be computed in O(k logM)-space. Thus computing
Zi,j is done in Õ(1) time and space linear in the seed length. Then we set (Gi)j = Z(Gi−1)j ,j

for each j ∈ [n]. Thus (Gi)j only depends on (Gi−1)j , and the random seeds stored for two
hash functions to evaluate entries of Z. So altogether, the final output coordinate (Gt)j can be
computed in space linear in the seed length required to store all required hash functions, and
in time Õ(1). Note importantly that the recursion is linear, in the sense that computing (Gi)j
involves only one query to compute (Gi)j′ for some j′.

Next, in Section 7 of [GKM18], another PRG is introduced for the low-variance case, which
reduces the size of n to

√
n, but blows up m polynomially in the process. Formally, it shows

given a PRG G′1 that fools (poly(n),
√
n) Fourier shapes, one can design a PRG G′2 that fools

O(M,n)-Fourier shapes with M < n4 (here the poly(n) can be much larger than n4). To do so,
the PRG first hashes the n coordinates into

√
n buckets k-wise independently, and then in each

bucket uses k-wise independence to generate the value of the coordinate. A priori, this requires
√
n independent seeds for the hash function in each of the buckets. To remove this requirement,

it uses G′1 to generate the
√
n seeds required from a smaller seed. Thus to compute a coordinate

i of G′2, simply evaluate a k-wise independent hash function on i to determine which bucket
j ∈ [

√
n] the item i is hashed into. Then evaluate G′1(j) to obtain the seed required for the

k-wise hash function hj , and the final result is given by hj(i). Note that this procedure only
requires one query to the prior generator G′1. The space required to do so is linear in the space
required to store the hash functions, and the space required to evaluate a coordinate of the output
of G′1, which will be linear in the size used to store G′1 by induction.

Finally, the overall PRG composes the PRG from Section 6 and 7 to fool larger n,M in the
case of low variance. Suppose we are given a PRG G0 which fools (M ′′,

√
n′)-Fourier shapes

for some M ′′ < (n′)2. We show how to construct a PRG G1 which fools (M ′, n′)-Fourier shapes
for any M ′ ≤ (n′)4. Let G6+7 be the PRG obtained by first applying the PRG from Section
6 on G0 as an initial point, which gives a PRG that fools (poly(n′),

√
n′)-Fourier shapes, and

then applying the PRG from section 7 on top which now fools (M ′, n′)-Fourier shapes (with
low variance). Let G5 be the generator from Section 5 which fools (M ′, n′)-Fourier shapes with
high variance. The final algorithm for fooling the class of all (M ′, n′)-Fourier shapes given G0

computes a generator G1 such that the i-th coordinate is (G1)i = (G6+7)i ⊕ (G5)i, where ⊕ is
addition mod M ′. This allows one to simultaneously fool high and low variance Fourier shapes
of the desired M ′, n′. If M > (n′)4, one can apply the PRG for Section 6 one last time on top of

120

G1 to fool arbitrary M . Thus if for any i, the i-th coordinate of G6+7 and G5 can be composed
in Õ(1) time and space linear in the size required to store the random seed, then so can Gi. Thus
going from G0 to G1 takes a generator that fools (M ′′,

√
n′) to (M ′, n′)-Fourier shapes, and

similarly we can compose this to design a G2 that fools (M ′, (n′)2)-Fourier shapes. Composing
this t = O(log log n)-times, we obtain Gt which fools O(M,n) Fourier shapes for any M,n. As
a base case (to define the PRGG0), the PRG of [NZ96] is used, which we have already discussed
can be evaluated on-line in space linear in the seed required to store it and time polynomial in
the length of the seed.

Now we observe an important property of this recursion. At every step of the recursion, one
is tasked with computing the j-th coordinate output by some PRG for some j, and the result
will depend only on a query for the j′-th coordinate of another PRG for some j′ (as well as
some additional values which are computed using the portion of the random seed dedicated to
this step in the recursion). Thus at every step of the recursion, only one query is made for a
coordinate to a PRG at a lower level of the recursion. Thus the recursion is linear, in the sense
that the computation path has only L nodes instead of 2L (which would occur if two queries
to coordinate j′, j′′ were made to a PRG in a lower level). Since at each level of recursion,
computing G6+7 itself uses O(log log(nM)) levels of recursion, and also has the property that
each level queries the lower level at only one point, it follows that the total depth of the recursion
is O((log log(nM))2). At each point, to store the information required for this recursion on
the stack requires only O(log(nM))-bits of space to store the relevant information identifying
the instance of the PRG in the recursion, along with its associated portion of the random seed.
Thus the total space required to compute a coordinate via these O(log log(nM))2) recursions is
O(log(nM)(log log nM)2), which is linear in the seed length. Moreover, the total time Õ(1),
since each step of the recursion requires Õ(1).

We use the prior technique to derandomize a wide class of linear sketches A · x such that
the entries of A are independent, and can be sampled using O(log(n))-bit, and such that the
behavior of the algorithm only depends on the sketch Ax. It is well known that there are strong
connections between turnstile streaming algorithms and linear sketches, insofar as practically all
turnstile streaming algorithms are in fact linear sketches. The equivalence of turnstile algorithms
and linear sketches has even been formalized [LNW14b], with some restrictions. Our results
show that all such sketches that use independent, efficiently sampled entries in their sketching
matrix A can be derandomized with our techniques. As an application, we derandomize the
count-sketch variant of Minton and Price [MP14], a problem which to the best of the authors
knowledge was hitherto open.

121

Lemma 3.4.9. Let Alg be any streaming algorithm which, on stream vector x ∈ {−M, . . . ,M}n

for someM = poly(n), stores only a linear sketch A·x such that the entries of the random matrix

A ∈ Rk×n are i.i.d., and can be sampled using O(log(n))-bits. Fix any constant c ≥ 1. Then

Alg can be implemented using a random matrix A′ using O(k log(n)(log log n)2) bits of space,

such that for every vector y ∈ Rk with entry-wise bit-complexity of O(log(n)),

|Pr [Ax = y]−Pr [A′x = y]| < n−ck

Proof. We can first scale all entries of the algorithm by the bit complexity so that each entry
in A is a O(log(n))-bit integer. Then by Lemma 3.4.7, we can store the randomness needed
to compute each entry of A′ with O(k log(n)(log log n)2)-bits of space, such that A′ n−ck-fools
the class of all O(k)-halfspace testers, in particular the one which checks, for each coordinate
i ∈ [k], whether both (A′x)i < y + 1 and (A′x)i > yi − 1, and accepts only if both hold of
all i ∈ [k]. By Proposition 3.4.8, the entries of A′ can be computed in space linear in the size
of the random seed required to store A′. Since we have scaled all values to be integers, n−ck

fooling this tester is equivalent to the theorem statement. Note that the test (A′x)i < y + 1 can
be made into a half-space test as follows. Let X i ∈ Rnk be the vector such that X i

j+(i−1)n = xj

for all j ∈ [n] and X i
j = 0 otherwise. Let vec(A) ∈ Rnk be the vectorization of A. Then

(Ax)i = 〈vec(A), X i〉, and all the entries of vec(A) are i.i.d., which allows us to make the
stated constraints into the desired half-space constraints.

Observe that the above Lemma derandomized the linear sketch Ax by writing each coor-
dinate (Ax)i as a linear combination of the random entries of vec(A). Note, however, that
the above proof would hold if we added the values of any O(k) additional linear combinations
〈Xj,vec(A) to the Lemma, where each Xj ∈ {−M, . . . ,M}kn. This will be useful, since
the behavior of some algorithms, for instance count-sketch, may depend not only on the sketch
Af but also on certain values or linear combinations of values within the sketch A. This is
formalized in the following Corollary.

Corollary 3.4.10. Let the entries of A ∈ Rk×n be drawn i.i.d. from a distribution which can be

sampled using O(log n)-bits, and let vec(A) ∈ Rnk be the vectorization of A. Let X ∈ Rt×nk

be any fixed matrix with entries contained within {−M, . . . ,M}, where M = poly(n). Then

there is a distribution over random matrices A′ ∈ Rk×n which can be generated and stored

using O(t log(n)(log log n)2) bits of space, such that for every vector y ∈ Rt with entry-wise

122

bit-complexity of O(log(n)),

|Pr [X · vec(A) = y]−Pr [X · vec(A′) = y]| < n−ct

Proof. The proof is nearly identical to Lemma 3.4.9, where we first scale entries to beO(log(n))-
bit integers, and then apply two half-space tests to each coordinate of X · vec(A′).

Theorem 17. Let Alg be any streaming algorithm which, on stream vector x ∈ {−M, . . . ,M}n

and fixed matrix X ∈ R
t×nk with entries contained within {−M, . . . ,M}, for some M =

poly(n), outputs a value that only depends on the sketches A · x and X · vec(A). Assume

that the entries of the random matrix A ∈ Rk×n are i.i.d. and can be sampled using O(log(n))-

bits. Let σ : Rk × Rt → {0, 1} be any tester which measures the success of Alg, namely

σ(Ax,X · vec(A)) = 1 whenever Alg succeeds. Fix any constant c ≥ 1. Then Alg can be im-

plemented using a random matrix A′ using a random seed of lengthO((k+t) log(n)(log log n)2),

such that:

|Pr [σ(Ax,X · vec(A)) = 1]−Pr [σ(A′x,X · vec(A′)) = 1]| < n−c(k+t)

and such that each entry of A′ can be computed in time Õ(1) and using working space linear in

the seed length.

Proof. As in the Lemma 3.4.9, we first scale all entries of the algorithm by the bit complexity so
that each entry in A is O(log(n))-bit integer. Then there is a M ′ = poly(n) such that each entry
of A · x and X · vec(A) will be a integer of magnitude at most M ′. First note that the sketch
A · x and X · vec(A) can be written as one linear sketch X0 · vec(A) where X0 ∈ Rk+t×kn.
Then σ can be written as a function σ : Rk+t → {0, 1} evaluated on σ(X0 · vec(A)). Let
S = {y ∈ {−M ′, . . . ,M ′}k+t | σ(y) = 1}. Then by Corollary 3.4.10, we have

|Pr [X0 · vec(A) = y]−Pr [X0 · vec(A′) = y]| < n−c(k+t)

for all y ∈ S. Taking c sufficiently large, and noting |S| = n−O(k+t), we have

Pr [σ(X0 · vec(A)) = 1] =
∑
y∈S

Pr [X0 · vec(A) = y]

=
∑
y∈S

(Pr [X0 · vec(A′) = y]± n−c(k+t))

= Pr [σ(X0 · vec(A′)) = 1] + n−O(k+t)

(3.8)

123

as desired. The final claim follows from Proposition 3.4.8.

Derandomizing the Count-Sketch of Minton and Price

We now show how this general derandomization procedure can be used to derandomize the
count-sketch variant of Minton and Price [MP14]. Our discussion will utilize the notation for
count-sketch as defined in Section 3.2.1. Minton and Price’s analysis shows improved concen-
tration bounds for count-sketch when the random signs gi(k) ∈ {1,−1} are fully independent.
They demonstrate that in this setting, if y ∈ Rn is the count-sketch estimate of a stream vector x,
where the count-sketch table A has k columns and d rows, then for any t ≤ d and index i ∈ [n]
we have:

Pr
[
(xi − yi)2 >

t

d

‖xtail(k))‖2
2

k

]
≤ 2e−Ω(t)

Notice that by setting t = d = Θ(log 1/δ), one recovers the standard count-sketch result of The-
orem 9. However, in order to apply this algorithm in o(n) space, one must first derandomize it
from using fully independent random signs, which are not required for the original count-sketch
of [CCFC02b]. To the best of the authors’ knowledge, the best known derandomization proce-
dure was a black-box application of Nisan’s PRG which results in O(ε−2 log3(n))-bits of space
when k = O(1/ε2) and d = O(log n). Due to this log n blow-up in the space, the guarantees of
this count-sketch variant, if derandomized with Nisan’s PRG, are strictly worse than using the
original count sketch of [CCFC02b]. Our derandomization, in contrast, demonstrates a strong
improvement on this, obtaining the same bounds with an (log log n)2 instead of an log n factor
blowup. For the purposes of the theorem, we replace the notation 1/ε2 with k (the number of
columns of count-sketch up to a constant).

Theorem 18. The count-sketch variant of [MP14] can be implemented so that if A ∈ Rd×k is a

count-sketch table, then for any t ≤ d and index i ∈ [n] we have:

Pr
[
(xi − yi)2 >

t

d

‖ftail(k))‖2
2

k

]
≤ 2e−Ω(t)

and such that the total space required is O(kd log(n)(log log n)2).

Proof. We first remark that the following modifcation to the count-sketch procedure does not
effect the analysis of [MP14]. Let A ∈ Rd×k be a d×k count-sketch matrix. The modification is
as follows: instead of each variable hi(`) being uniformly distributed in {1, 2, . . . , k}, we replace
them with variables hi,j,` ∈ {0, 1} for (i, j, `) ∈ [d] × [k] × [n], such that hi,j,` are all i.i.d. and

124

equal to 1 with probability 1/k. We also let gi,h,` ∈ {1,−1} be i.i.d. Rademacher variables (1
with probability 1/2). Then Ai,j = ∑n

`=1 x`gi,j,`hi,j,`, and the estimate y` of f` for ` ∈ [n] is
given by:

y` = median{gi,j,`Ai,j | hi,j,` = 1}

Thus the element x` can be hashed into multiple buckets in the same row of A, or even be hashed
into none of the buckets in a given row. By Chernoff bounds, |{gi,j,`Ai,j | hi,j,` = 1}| = Θ(d)
with high probability for all ` ∈ [n]. Observe that the marginal distribution of each bucket is the
same as the count-sketch used in [MP14], and moreover seperate buckets are fully independent.
The key property used in the analysis of [MP14] is that the final estimator is a median over
estimators whose error is independent and symmetric, and therefore the bounds stated in the
theorem still hold after this modification [Pri18].

Given this, the entire sketch stored by the streaming algorithm is B · x, where

Bj =

1 with prob 1

2k

−1 with prob 1
2k

0 otherwise

Thus the entries of B are i.i.d., and can be sampled with O(log(k)) ≤ O(log(n)) bits, and
vec(A) = B · x, where vec(A) is the vectorization of the count-sketch table A. Here B ∈
R
dk×n.

Now note that for a fixed i, to test the statement that (xi−yi)2 > t
d

‖xtail(k))‖22
k

, one needs to know
both the value of the sketch Bx, in addition to the value of the i-th column of B, since the estimate
can be written as yi = medianj∈[kd],Bj,i 6=0{Bj,i · (Bx)j}. Note that the i-th column of B (which
has kd entries) can simply be written as a sketch of the form X ·vec(B), where X ∈ Rkd×dkn is
a fixed matrix such that X·vec(B) = Bi, so we also need to store X·vec(B) Thus by Theorem
17, the algorithm can be derandomized to use O(kd log(n)(log log n)2) bits of space, and such

that for any t ≤ d and any i ∈ [n] we have Pr
[
(xi − yi)2 > t

d

‖xtail(k))‖22
k

]
≤ 2e−Ω(t) ± n−Ω(dk).

Derandomizing the Lp Sampling Algorithm

We now introduce the notation which will be used in our derandomization.The Lp sampler uses
two sources of randomness which we must construct PRG’s for. The first, re, is the randomness

125

needed to construct the exponential random variables ti, and the second, rc, is the randomness
needed for the fully random hash functions and signs used in count-max. Note that re, rc both
require poly(n) bits by Lemma 3.4.3. From here on, we will fix any index i ∈ [n]. In what
follows, the symbols u, v will denote random seeds given as input to PRG’s. The Lp sampler
can then be thought of as a tester A(re, rc) ∈ {0, 1}, which tests on inputs re, rc, whether the
algorithm will output i ∈ [n]. Let G1(u) be Nisan’s PRG, and let G2(v) be the half-space PRG.
For two values b, c ∈ R, we write a ∼ε b to denote |a− b| < ε. Our goal is to show that

Prre,rc
[
A(re, rc)

]
∼n−c Pru,v

[
A(G2(v), G1(u))

]
where u, v are seeds of length at mostO(log2 n(log log n)2), and c is an arbitrarily large constant.

Theorem 19. A single instance of the algorithm Lp-Sampler using Fast-Update as its update

procedure can be derandomized using a random seed of length O(log2(n)(log log n)2), and thus

can be implemented in this space. Moreover, this does not affect the time complexity as stated in

Lemma 3.4.3.

Proof. First note that by Lemma 3.4.3, we require Õ(ε−1) random bits for each i ∈ [n], and
thus we require a total of Õ(nε−1) = poly(n) random bits to be generated. Since Nisan’s PRG
requires the tester to read its random input in a stream, we can use a standard reordering trick of
the elements of the stream, so that all the updates to a given coordinate i ∈ [n] occur at the same
time (see [Ind06]). This does not effect the output distribution of our algorithm, since linear
sketches do not depend on the ordering of the stream. Now let c′ be the constant such that the
algorithm Lp-Sampler duplicates coordinates nc′ times. In other words, the count-max is run on
the stream vector ζ ∈ Rnc

′
, and let N = nc

′ . Now, as above, we fix any index i ∈ [N], and
attempt to fool the tester which checks if, on a given random string, our algorithm would output
i. For any fixed randomness re for the exponentials, let Are(rc) be the tester which tests if our
Lp sampler would output the index i, where now the bits re are hard-coded into the tester, and
the random bits rc are taken as input and read in a stream. We first claim that this tester can be
implemented in O(log(n))-space.

To see this, note that Are(rc) must simply count the number of rows of count-max such that
item i is hashed into the largest bucket (in absolute value) of that row, and output 1 if this number
is at least 4d

5 , where d is the number of rows in count-max. To do this, Are(rc) can break rc into
d blocks of randomness, where the j-th block is used only for the j-th row of count-max. It can
then fully construct the values of the counters in a row, one row at a time, reading the bits of
rc in a stream. To build a bucket, it looks at the first element of the stream, uses rc to find the

126

bucket it hashes to and the Gaussian scaling it gets, then adds this value to that bucket, and then
continues with the next element. Note that since re is hardcoded into the tester, we can assume
the entire stream vector ζ is hardcoded into the tester. Once it constructs a row of count-max, it
checks if i is in the largest bucket by absolute value, and increments a O(log(d))-bit counter if
so. Note that it can determine which bucket i hashes to in this row while reading off the block of
randomness corresponding to that row. Then, it throws out the values of this row and the index
of the bucket i hashed to in this row, and builds the next row. Since each row has O(1) buckets,
Are(rc) only uses O(log(n))-bits of space at a time. Then using G1(u) as Nisan’s generator with
a random seed u of length O(log2(n))-bits, we have Pr [Are(rc)] ∼n−c0 Pr [Are(G1(u))], where
the constant c0 is chosen to be sufficiently larger than the constant c1 in the n−c1 additive error of
our perfect sampler, as well as the constant c′ Moreover:

Pr [A(re, rc)] =
∑
re

Pr [Are(rc)] Pr [re]

=
∑
re

((Pr [Are(G1(u))]± n−c0) Pr [re]

=
∑
re

(Pr [Are(G1(u))] Pr [re]±
∑
re

n−c0 Pr [re]

∼n−c0 Pr [A(re, G1(u))]

Now fix any random seed u for input to Nisan’s PRG, and consider the tester AG1(u)(re),
which on fixed count-max randomness G1(u), tests if the algorithm will output i ∈ [n] on the
random input re for the exponential variables.

We first observe that it seems unlikely that AG1(u)(re) can be implemented in log(n) space
while reading its random bits re in a stream. This is because each row of count-max depends on
the same random bits in re used to construct the exponentials ti, thus it seems AG1(u)(re) would
need to store all log2(n) bits of count-max at once. However, we will now demonstrate that
AG1(u)(re) is in fact a poly(n) bounded O(d)-halfspace tester (as defined earlier in this section)
where d is the number of rows of count-max, and therefore can be derandomized with the PRG
of [GKM18].

By the Runtime & Random bits analysis in Lemma 3.4.3, it suffices to take all random vari-
ables in the algorithm to be O(log(n))-bit rational numbers. Scaling by a sufficiently large
poly(n), we can assume that 1/t1/pj is a discrete distribution supported on {−T, . . . , T} where
T ≤ poly(n) for a sufficiently large poly(n). We can then remove all values in the support which

127

occur with probability less than poly(n), which only adds an a n−c0 additive error to our sampler.
After this, the distribution can be sampled from with poly(T) = poly(n) random bits, which is
as needed for the setting of Lemma 3.4.7. Note that we can also apply this scaling the Gaussians
in count-max, so that they too are integers of magnitude at most poly(n).

Given this, the distribution of the variables 1/t1/pj satisfy the conditions of Lemma 3.4.7, in
particular being poly(n)-bounded, thus we must now show that AG1(u)(re) is indeed a O(d)-
halfspace tester, with integer valued half-spaces bounded by poly(n). First consider a given row
of count-max, and let the buckets be B1, B2. WLOG i hashes into B1, and we must check if
|B1| > |B2|. Let gj be the random count-max signs (as specified by G1(u)), and let S1, S2 ⊂ [n]
be the set of indices which hash to B1 and Bt respectively. We can run the following 6 half-space
tests to test if |B1| > |B2|: ∑

j∈S1

gj
Fj

t
1/p
j

> 0 (3.9)

∑
j∈S2

gj
Fj

t
1/p
j

> 0 (3.10)

a1
∑
j∈S1

gj
Fj

t
1/p
j

+ a2
∑
j∈S2

gj
Fj

t
1/p
j

> 0 (3.11)

where a1, a2 range over all values in {1,−1}2, and recall that F is the duplicated vector con-
structed in the procedure Lp-Sampler. The tester can decide whether |B1| > |B2| by letting a1

be the truth value (where −1 is taken as fail) of the first test 3.9 and a2 the truth value of 3.10. It
then lets b2 ∈ {0, 1} be the truth value of 3.11 on the resulting a1, a2 values, and it can correctly
declare |B1| > |B2| iff b2 = 1. Thus for each pair of buckets, the tester uses 6 halfspace testers to
determine if |B1| > |B2|, and so can determine if i hashed to the max bucket withO(1) halfspace
tests. SoAG1(u)(re) can test if the algorithm will output i by testing if i hashed to the max bucket
in a 4/5 fraction of the d rows of count-max, using O(d) = O(log(n)) halfspace tests.

Note that by the scaling performed in the prior paragraphs, all coefficents of these half-spaces
are integers of magnitude at most poly(n). So by Lemma 3.4.7, the PRG G2(v) of [GKM18]
fools AG1(u)(re) with a seed v of O(log2(n)(log log n)2)-bits. So

Pr
[
AG1(u)(re)

]
∼n−c0 Pr

[
AG1(u)(G2(v))

]
and so by the same averaging argument as used in for the Nisan PRG above, we have

Pr [A(re, G1(u))] ∼n−c0 Pr [A(G2(v), G1(u))]

128

and so Pr [A(re, rc)] ∼n−c0 Pr [A(G2(v), G1(u))] as desired. Now fixing any i ∈ [n], let
A′(re, rc) be the event that the overall algorithm outputs the index i. In other words,A′i(re, rc) =
1 if Aij(re, rc) = 1 for some j ∈ [nc′−1], where Aij(re, rc) = 1 is the event that count-max de-
clares that ij is the maximum in Algorithm Lp-Sampler. Thus, the probability that the algorithm
outputs a non-duplicated coordinate i ∈ [n] is given by:

Pr [A′i(re, rc)] =
nc
′∑

j=1
Pr

[
Aij(re, rc)

]

=
nc
′∑

j=1
Pr

[
Aij(G2(v), G1(u))

]
± n−c0

= Pr [A′i(G2(v), G1(u))]± n−c1

(3.12)

where in the last line we set c0 > c′+ c1, where recall c1 is the desired additive error in our main
sampler. In conclusion, replacing the count-max randomness with Nisan’s PRG and the expo-
nential random variable randomness with the half-space PRG G2(v), we can fool the algorithm
which tests the output of our algorithm with a total seed length of O(log2(n)(log log n)2).

To show that the stated update time of Lemma 3.4.3 is not affected, we first remark that
Nisan’s PRG simply involves performing O(log(n)) nested hash computations on a string of
length O(log(n)) in order to obtain any arbitrary substring of O(log(n)) bits. Thus the runtime
of such a procedure is Õ(1) to obtain the randomness needed in each update of a coordinate
i ∈ [nc]. By Lemma 3.4.7, the PRG of [GKM18] requires Õ(1) time to sample the O(log(n))-bit
string needed to generate an exponential, and moreover can be computed with working space
linear in the size of the random seed (note that this is also true of Nisan’s PRG, which just
involves O(log(n))-nested hash function computations). Thus the update time is only blown up
by a Õ(1) factor, which completes the proof.

Corollary 3.4.11. Given any ε > n−c, for p = 2, the entire (ε, δ)-approximate Lp sampling

algorithm can be derandomized to run using O(log3 n log δ−1) bits of space. For p < 2, the

algorithm can be derandomized to run using O(log3 n)-bits of space with δ = 1/poly(n).

Proof. We can simply derandomize a single instance of our sampling algorithm using Nisan’s
PRG as in Theorem 19, except that we derandomize all the randomness in the algorithm at once.
Since such an instance requires O(log2 n)-bits of space, using Nisan’s blows up the complexity
to O(log3 n) (the tester can simply simulate our entire algorithm in O(log2 n)-bits of space,
reading the randomness in a stream by the reordering trick of [Ind06]). Since the randomness for

129

separate parallel instances of the main sampling algorithm is disjoint and independent, this same
O(log2 n)-bit tester can test the entire output of the algorithm by testing each parallel instance
one by one, and terminating on the first instance that returns an index i ∈ [n]. Thus the same
O(log3 n)-bit random seed can be used to randomize all parallel instances of our algorithm.

For p < 2, we can run O(log n) parallel instances to get 1/poly(n) failure probability
in O(log3 n)-bits of space as stated. For p = 2, we can run O(log n log δ−1) parallel repe-
titions needed to get δ failure probability using the same random string, for a total space of
O(log3 n log δ−1 + log3 n) = O(log3 n log δ−1) as stated. As noted in the proof of Theorem 19,
computing a substring of O(log n)-bits from Nisan’s PRG can be done in Õ(1) time and using
space linear in the seed length, which completes the proof.

3.4.3 Query Time

We will now show the modifications to our algorithm necessary to obtain Õ(1) query time.
Recall that the algorithm must maintain a count-max data A. Thealgorithm then searches over
all indices i ∈ K to check if i hashed into the maximum bucket in a row of A at least a 4/5
fraction of the time. Since |K| = Õ(n), running this procedure requires Õ(n) time to produce
an output on a given query. To avoid this, and obtain Õ(1) running time, we will utilize the
heavy hitters algorithm of [LNNT16], which has Õ(1) update and query time, and which does
not increase the complexity of our algorithm.

Theorem 20 ([LNNT16]). For any precision parameter 0 < ν < 1/2, given a general turnstile

stream x ∈ Rn there is an algorithm, ExpanderSketch, which with probability 1 − n−c for any

constant c, returns a set S ⊂ [n] of size S = O(ν−2) which contains all indices i such that

|xi| ≥ ν‖x‖2. The update time is O(log n), the query time is Õ(ν−2), and the space required is

O(ν−2 log2 n)-bits.

Using ExpanderSketch to speed up query time. The modifications to our main algorithm
Lp-Sampler with Fast-Update are as follows. We run our main algorithm as before, maintaining
the same count-max data structures A. Upon initialization of our algorithm, we also initialize an
instance ExSk of ExpanderSketch as in Theorem 20, with the precision parameter ν = 1/100.

Now recall in our Fast-Update procedure, for each i ∈ [n] we hash the top Ki = O(log(n))
largest duplicates ζij corresponding to xi individually, and store the random variables h`(ij)
that determine which buckets in A they hash to. While processing updates to our algorithm at
this point, we make the modification of additionally sending these top Ki items to ExSk to be

130

sketched. More formally, we run ExSk on the stream ζK, where ζK is the vector ζ projected
onto the coordinates of K. Since Ki = Õ(1), this requires making Õ(1) calls to update ExSk on
different coordinates, which only increases our update time by an Õ(1) additive term.

On termination, we obtain the set S containing all items ζi such that i ∈ K and ζi ≥ 1
100‖ζK‖2.

Instead of searching through all coordinates of K to find a maximizer, we simply search through
the coordinates in S, which takes Õ(|S|) = Õ(1) time. We now argue that the output of our
algorithm does not change with these new modifications. We refer collectively to the new algo-
rithm with these modifications as Lp-Sampler with Fast-Update and ExSk, and the algorithm
of Section 3.4.1 as simply Lp-Sampler with Fast-Update.

Lemma 3.4.12. For any constant c > 0, with probability 1 − n−100c the algorithm Lp-Sampler
with Fast-Update and ExSk as described in this section returns the same output (an index i ∈ [n]
or ⊥) as Lp-Sampler using Fast-Update but without ExSk. The space and update time are not

increased by using ExSk, and the query time is now Õ(1).

Proof. We condition on the event that S contains all items i such that i ∈ K and |ζi| ≥
1/100‖ζK‖2, which occurs with probability 1 − n−100c by Theorem 20. Since Lp-Sampler al-
ready uses at least O(log2 n) bits of space, the additional O(log2 n) bits of overhead required to
run an instance ExSk of ExpanderSketch with sensitivity parameter ν = 1/100 does not
increase the space complexity. Furthermore, as mentioned above, the update time is blown-up by
a factor of Õ(1), since we make Ki = Õ(1) calls to update ExSk, which has an update time of
Õ(1) by Theorem 20. Furthermore, our algorithm does not require any more random bits, as it
only uses ExpanderSketch as a subroutine, and thus no further derandomization is required.
Thus the complexity guarantees of Lemma 3.4.3 are unchanged.

For the query time, we note that obtaining S requires Õ(1) time (again by Theorem 20), and
querying each of the |S| = O(1) items in our count-max A requires Õ(1) time. To complete
the proof, we now consider the output of our algorithm. Since we are searching through a strict
subset S ⊂ [nc], it suffices to show that if the original algorithm output an ij ∈ [nc], then so will
we. As argued in Lemma 3.4.3, such a coordinate must be contained in K. By Corollary 3.2.2,
we must have

|ζij | >
1

100‖ζ‖2 ≥
1

100‖ζK‖2

with probability 1− n−100c (scaling c by 100 here), thus ij ∈ S, which completes the proof.

131

3.5 Approximating the Sampled Coordinate

In this section, we will show how given a precision parameter ν > 0, conditioned on our algo-
rithm Lp-Sampler returning a sampled index i ∈ [n], we can obtain an estimate x̃i = (1 ± ν)xi
with probability 1− δ2. Given a failure parameter δ2 > 0, we set d′ = O(log δ−1

2) and

γ = O
(

min
{
ν−2, ν−p log

(1
δ2

)})

Then our algorithm, in addition to the count-max matrix A used by Lp-Sampler, stores a count-
sketch matrix A′ ∈ Rd×γ with d rows and γ columns.

Recall in the Fast-Update procedure, for each i ∈ [n] we hash the top Ki = O(log(n))
largest duplicates ζij corresponding to xi individually into A, and store the random variables
h`(ij) that determine which buckets in A they hash to. Thus if count-max outputs an ij ∈ [nc] we
know that ij ∈ K, whereK = ∪i∈[n]∪Kij=1{ij} as in Section 3.4 (since our algorithm only searches
throughK to find a maximizer). Thus it suffices to run the count-sketch instance A′ on the stream
ζK, where ζK is the vector ζ with the coordinates not inK set to 0. Since Ki = Õ(1), we perform
at most Õ(1) updates to count-sketch at every step in the stream. This requires making Õ(1)
calls to update count-sketch on each stream update, which only increases our update time by an
Õ(1) additive term.

Now if Lp-Sampler returns ij ∈ [nc] (corresponding to some duplicate ij of i), then we must
have ij ∈ K. Thus we can query A′ for a value ỹij such that

|ỹij − ζij | <
√

1/γ‖ζtail(γ)‖2

with probability 1 − δ2 by Theorem 9. Furthermore, since ij ∈ K, we can compute the value
Ik such that Ik = (rndε(1/tij)) by simulating the Fast-Update procedure on an update to i.
We will argue that the estimate x̃ = ỹij(rndε(1/t

1/p
ij))−1 satisfies x̃ = (1 ± ν)xi. Putting this

together with Theorem 13, we will obtain the following result.

Theorem 21. Given parameters ε, δ1, δ2, ν ∈ (0, 1) and any constant c > 0, there is an algorithm

A which is a (ε, δ1, n
−c)-approximate Lp sampler. Conditioned on the sampler outputting some

index i ∈ [n] (and not ⊥), the algorithm A will then output x̃ such that

(1− ν)xi < x̃ < (1 + ν)xi

132

with probability 1− δ2. The space required is

O
((

log2 n(log log n)2 + β log(n) log δ−1
2

)
log δ−1

1

)
for p ∈ (0, 2), and

O
((

log3 n+ ν−2 log2(n) log δ−1
2

)
log δ−1

1

)
for p = 2, where

β = min
{
ν−2, ν−p log

(1
δ2

)
}
}

The update time is Õ(ν−1) and the query time is Õ(1)

Proof. We first consider the complexity. The first term in each of the upper bounds follows from
Theorem 13, as well as the log δ−1

1 term which comes from repeating the entire algorithm log δ−1
1

times for p < 2, and log(n) log δ−1
1 times for p = 2. The second term in the space bound results

from storing the d′ × γ count-sketch table A′, which is O(γ log(n) log δ−1
2) as stated. Moreover,

the update time for the new data structure is at most Õ(1), since the only additional work we do
on each update is to hash Ki = O(log(n)) items into d′ = O(log(n)) rows of A′. Furthermore,
the query time just requires computing a median ofO(log(n)) entries of A′. Each of these actions
is Õ(1) time in the unit cost RAM model, so the additional update and query time is Õ(1). The
remaining Õ(ν) update time follows from Lemma 3.4.3.

For correctness, note that if Lp-Sampler does not fail and instead outputs ij ∈ [nc], we know
that |ζij | > 1/100‖ζ‖2. Furthermore, we have

|ỹij − ζij | <
√

1/γ‖ζtail(γ)‖2 ≤
√

1/γ‖ζ‖2

with probability 1 − δ2, so setting γ = Θ(1/ν2) sufficiently large, it follows that ỹij = (1 ±
O(ν))ζij . Then ỹij(rndε(1/t

1/p
ij))−1 = (1 ± ν)xi follows immediately from the fact that xi =

ζij(rndε(1/t
1/p
ij))−1 (and a rescaling of ν by a constant). This shows that O(ν−2) bits is always

an upper bound for the value of γ = Θ(β) needed for p ∈ (0, 2].

To show the other upper bound in the definition of β (for cases when p < 2), first define
Tγ ⊂ [nc] as the set of nc − γ smallest coordinates (in absolute value) of z. In other words
zTγ = ztail(γ), where for any set S ⊆ [nc] zS denotes z projected onto the coordinates of S. Note
that if S is any set of size nc − s and v ∈ Rnc any vector, we have ‖vtail(s)‖2 ≤ ‖vS‖2. Then by

133

Proposition 3.3.5, using the fact that ζi = (1±O(ν))zi for all i ∈ [nc], we have

‖ζtail(γ)‖2 ≤ ‖ζTγ‖2

≤ 2‖ztail(γ)‖2

= O(‖F‖p(γ)−1/p+1/2)

(3.13)

for p < 2 with probability 1−O(e−γ) > 1−δ2, where now we are setting γ = Θ(max{ν−p, log(1/δ2)}).
Condition on this now. Then we obtain error

|ỹij − ζij | <
√

1/γ‖ζtail(γ)‖2

= O(‖F‖pγ−1/p)

= O(ν(log δ−1
2)−1/p‖F‖p)

(3.14)

from our second count-sketch A′. Now zD(1) = ‖F‖p/E1/p
1 , which is at least Ω(‖F‖p/(log δ−1

2)1/p)
with probability greater than 1−δ2 using the pdf of an exponential. Conditioned on this, the error
from our second count-sketch A′ gives, in fact, a (1±O(ν)) relative error approximation of ζij ,
which is the desired result. Note that we conditioned only on our count-sketch giving the desired
|ỹij−ζij | <

√
1/γ‖ζtail(γ)‖2 error, on ‖ztail(γ)‖2 = O(‖F‖p(γ)−1/p+1/2), and onE1 = O(log δ−1

2),
each of which holds with probability at least 1 − O(δ2), so the Theorem follows after a union
bound.

3.6 Truly Perfect Sampling for General Measures

In this section, we provide a framework for truly perfect sampling for some measure function
G : R→ R≥0 such that G(x) = G(−x), G(0) = 0 and G is non-decreasing in |x|. As we show
in Section 3.7, any such algorithm in the turnstile model needs linear space. Thus, in this section,
we will focus on the insertion only model of streaming, and develop algorithms for this model.
By duplicating updates, one can assume that each update in the stream is of the form (i, 1) for
some i ∈ [n]. Therefore, we will abbrivate notation below, and think of an update as simply
being a unit increment to some coordinate i ∈ [n].

If we define FG = ∑n
i=1G(xi), recall from Definition 3.1.3 that a truly perfect G sampler

outputs index i ∈ [n] with probability exactly G(xi)
FG

, conditioned on not outputting the failure
symbol⊥ (which it can do with probability at most δ). We then show how to apply the framework

134

to Lp sampling whereG(x) = |x|p and to variousM -estimators, such as the L1−L2, Fair, Huber,
and Tukey estimators.

3.6.1 Algorithmic Framework

Our algorithm is based on running parallel instances of a single sampler. Each instance uses
log n bits of space, but only succeeds with small probability and thus we need to run multiple
instances to ensure that some instance succeeds with sufficiently high probability. Each instance
uses reservoir sampling to sample an item s and keeps a counter c of how many times s appears
in the stream after it is sampled.

We first describe the Sampler algorithm. Given a stream of elements u1, . . . , ut, where each
ui ∈ [n], Sampler selects an index j ∈ [t] uniformly at random and outputs uj as well as the
number of instances of uj that appear after time j. The algorithm uses reservoir sampling to
ensure that each item is selected with probability 1

t
. A counter is also maintained to track the

number of instances of the sample. Each time a new sample replaces the existing sample in the
reservoir sampling procedure, the counter is reset to zero.

Algorithm 1: Sampler: Reservoir sampling, counting number of times item has ap-
peared afterwards.
1 Input: A stream of updates u1, u2, . . . , um, where each ui ∈ [n] represents a single

update to a coordinate of the underlying vector x.
2 Output: Sample each coordinate ui with probability 1

m
and output the number of

occurrences that appears afterwards.
3 s← ∅, c← 0
4 for each update ur do
5 s← ur with probability 1

r

6 if s is updated to ur then
7 c← 0 //Reset counter
8 if ur = s then
9 c← c+ 1 //Increment counter

10 Sample s and counter c

By outputting s with probability G(c)−G(c−1)
ζ

, where ζ is a parameter such that G(x)−G(x−
1) ≤ ζ for all possible coordinates x in the y vector, i.e., x ∈ {x1, . . . , xn}, then it can be
shown by a telescoping argument that the probability of outputting each i ∈ [n] is “corrected” to
roughly G(xi)

ζ·m , where m is the length of the stream. Hence if the sampler successfully outputs a
coordinate, it follows the desired distribution.

135

Algorithm 2: Truly perfect G-sampler algorithm for insertion only streams.
1 Input: A stream of updates u1, u2, . . . , um, where each ui ∈ [n] represents a single

update to a coordinate of the underlying vector f , a measure function G.
2 Initialize an instance of Sampler. Algorithm 1
3 for each update ut ∈ [n] do
4 Update Sampler.
5 Let s be the sampled output of Sampler and let c be the number of times s has appeared

afterwards.
6 Let ζ be a parameter such that G(x)−G(x− 1) ≤ ζ for all x ≥ 1.
7 Return: s with probability G(c+1)−G(c)

ζ
.

Theorem 22. Let G be a function such that G(x)−G(x− 1) ≤ ζ for all x ≥ 1. Given a lower

bound F̂G on FG = ∑
i∈[n] G(xi), then there exists a truly perfect G sampler for an insertion-

only stream that outputs ⊥ with probability at most δ and uses O
(
ζm

F̂G
log n log 1

δ

)
bits of space.

Further, the time to process each update is O (1) in expectation.

Proof. The probability that s is the j-th particular instance of item i inside the stream is 1
m

. Since
the number of instances of i appearing after j is xi − j then the probability that i is output is

xi∑
j=1

1
m

G(xi − j + 1)−G(xi − j)
ζ

= G(xi)
ζm

.

We note that G(xi − j + 1) − G(xi − j) ≤ ζ for all j ∈ [xi], so returning s with probability
G(c+1)−G(c)

ζ
is valid.

Hence the probability that some index is returned by Algorithm 2 is
∑
i∈[n]

G(xi)
ζm

= FG
ζm

, where
FG = ∑

G(xi). Thus by repeating the sampler O
(
ζm
FG

log 1
δ

)
times, the algorithm will output a

sample s with probability at least 1− δ. Although the algorithm does not actually have the value
of FG, given a lower bound F̂G on FG, then it suffices to repeat the sampler O

(
ζm

F̂G
log 1

δ

)
times.

Moreover, the sample s will output each index i ∈ [n] with probability G(xi)
FG

. Each instance only
requires O (log n) bits to maintain the counter c, assuming logm = O (log n). Thus the total

space used is O
(
ζm

F̂G
log n log 1

δ

)
bits of space.

3.6.2 Applications to Specific Measures

In this section, we show various applications of Algorithm 2 in the streaming model. The main
barrier to applying 22 to any arbitrary measure function G is obtaining a “good” lower bound F̂G

136

to FG = ∑
i∈[n] G(xi).

Truly Perfect Lp Sampling on Insertion-Only Streams

We first consider truly perfect Lp sampling, where G(x) = |x|p, for p ≥ 1. Note that reservoir
sampling is already a perfect L1 sampler for p = 1 and it uses O (log n) bits of space on a stream
of length m = poly(n). For p ∈ (1, 2], we first require the following norm estimation algorithm
on insertion-only streams.

We now introduce an algorithm that for truly perfect Lp sampling using the above frame-
work. We first describe the case of p = 2. Before describing the algorithm, we first recall the
MisraGries data structure for finding heavy-hitters.

Theorem 23 ([MG82]). There exists a deterministic one-pass streaming algorithm MisraGries
that uses O

(
1
ε

logm
)

space on a stream of length m and outputs a list L of size 1
2ε that includes

all items i such that xi > 2εm. Moreover, the algorithm returns an estimate x̂i for each i ∈ L
such that xi − εm ≤ x̂i ≤ xi.

Although we could obtain a perfect Lp sampler using any Lp estimation algorithm that suc-
ceeds with high probability, by using the deterministic data structure from Theorem 23, we can
further remove the additive γ = 1

poly(n) error in the sampler to obtain truly perfect samplers.

Theorem 24. Fix any p ∈ [1, 2] and value δ ∈ (0, 1). Then there exists a truly perfect Lp-

sampling algorithm, namely a (0, δ, 0)-Lp Sampler, which uses O
(
n1−1/p log n log δ−1

)
bits of

space.

Proof. By Theorem 23, using a single MisraGries data structure with O
(
n1−1/p log n

)
allows

us to obtain a number Z such that

‖x‖∞ ≤ Z ≤ ‖x‖∞ + m

n1−1/p .

Note that for p ∈ [1, 2], we have (xi)p − (xi − 1)p ≤ 2‖x‖p−1
∞ for any i ∈ [n], so that ζ = 2Zp−1

induces a valid sampling procedure. Hence each instance outputs some index i ∈ [n] with
probability at least Fp

2Zp−1m
. If ‖x‖∞ ≥ m

n1−1/p , then we have 2Z ≤ 4‖x‖∞ ≤ 4‖x‖p, so that

Fp
2Zp−1m

≥ Fp

4Lp−1
p ·m

= Lp
4F1
≥ 1

4n1−1/p .

137

On the other hand, if ‖x‖∞ ≤ m
n1−1/p , then we have 2Z ≤ 4m

n1−1/p , so that

Fp
2Zp−1m

≥ Fp · n(p−1)2/p

4mp
= Fp · n(p−1)2/p

4F p
1

≥ Fp · n(p−1)2/p

4Fp · n(p−1)

= 1
4n1−1/p

Therefore, the probability that an instance outputs some index i ∈ [n] is at least 1
4n1−1/p , and

it suffices to use O
(
n1−1/p log(1/δ)

)
such instances, with total space O

(
n1−1/p log n

)
bits of

space, so that a coordinate is returned with probability at least 1−δ. By Theorem 23, conditioned
on an index being returned by the algorithm, the probability that each coordinate i ∈ [n] is output
is xpi

Fp
.

Finally, we remark that the runtime of the algorithm can be optimized to constant time per
update by storing a hash table containing a count and a list of offsets. Specifically, when item
i is first sampled by some repetition of the algorithm, then we start counting the number of
subsequent instances of i in the stream. If i is subsequently sampled by another independent
instance of the reservoir sampling at some time t, then it suffices to store the value of the counter
at the time t as an offset. This value does not change and can now be used to correctly recover
the correct count of the number of instances of i after time t by subtracting this offset from the
largest count. Finally, we can maintain a hash table with pointers to the head and tail of the list,
so that when an item i is sampled, we can efficiently check whether that item is already being
tracked by another repetition of the sampler. Hence the update time is O (1) worst-case once
the hash bucket for i is determined and O (1) in expectation overall given the assignment of the
bucket by the hash function. Finally, note that by design of the offsets, we can build the correct
counters at the end of the stream to determine the corresponding sampling probabilities.

Theorem 25. Fix p ∈ (0, 1] and δ ∈ (0, 1). Then there exists a truly perfect Lp-sampling

algorithm, namely a (0, δ, 0)-Lp Sampler, which uses O (m1−p log n log δ−1) bits of space.

Proof. Note that for p ∈ (0, 1], we have (xi)p − (xi − 1)p ≤ 1 for any i ∈ [n], so that ζ = 1
induces a valid sampling procedure. Hence each instance outputs some index i ∈ [n] with
probability at least Fp

m
≥ 1

m1−p . Therefore, it suffices to use O (m1−p log δ−1) such instances so
that a coordinate is returned with probability at least 1−δ, with total spaceO (m1−p log n log δ−1)
bits of space.

138

M -estimators on Insertion-Only Streams

We generalize the paradigm of Algorithm 2 to sampling from general statistical M -estimator
distributions.

Corollary 3.6.1. Fix any δ ∈ (0, 1). Then there exist truly perfect G samplers for the insertion-

only streaming model, namely (0, δ, 0) G-Samplers, that use O
(
log n log 1

δ

)
bits of space when

G is the L1 − L2 estimator, the Fair estimator, or the Huber estimator.

Proof. For the L1−L2 estimator, we haveG(x) = 2
(√

1 + x2

2 − 1
)

so thatG(x)−G(x−1) < 3
for x ≥ 1. Moreover, G(x) > |x| so FG > m. Hence by Theorem 22, there exists a perfect G
sampler that uses O (log n) bits of space when G is the L1 − L2 estimator.

For the Fair estimator, we have G(x) = τ |x| − τ 2 log
(
1 + |x|

τ

)
for some constant τ > 0 so

that G(x)− G(x− 1) < τ for x ≥ 1. Since G(x) > τ |x| and thus FG > τm, then by Theorem
22, there exists a perfectG sampler that usesO (log n) bits of space whenG is the Fair estimator.

For the Huber measure function, we have G(x) = x2

2τ for |x| ≤ τ and G(x) = |x| − τ
2

otherwise, where τ > 0 is some constant parameter. Hence, G(x)−G(x− 1) < 1 and G(x) >
τ
2 ·m, so there exists a perfect G sampler that uses O (log n) bits of space when G is the Huber
estimator by Theorem 22.

Matrix Norms on Insertion-Only Streams

We now consider the problem of sampling row Mi,∗ from a matrix M ∈ Rn×d with probability
G(Mi,∗)
FG

for some non-negative function G : Rd → R≥0, where we define FG = ∑
j∈[n] G(Mj,∗).

We consider a insertion-only stream, where each update is a positive update to some coordinate
of M. Note that this is equivelant to the standard insertion only streaming model, thinking of M
as a vector in Rnd.

We generalize the approach of Algorithm 2 by first using reservoir sampling to sample an
update to a coordinate c to a row r of M. We then maintain a vector v that consists of all the
updates to row r and choose to output r with probability G(v + ec)−G(v), where ec represents
the elementary vector in Rd with a single 1 in coordinate c and zeros elsewhere. The correctness
of Algorithm 3 follows from a similar proof to that of Theorem 22.

Theorem 26. Fix any non-negative function G : Rd → R≥0 satisfying G(~0) = 0. Let ζ be a

parameter such that G(x)−G(x− ei) ≤ ζ for all x ∈ Rd
≥0, i ∈ [d]. Given a lower bound F̂G on

139

Algorithm 3: Truly perfect G-sampler algorithm for vectors and matrices in insertion
only streams.
1 Input: A stream of updates u1, u2, . . . , um, where each ui ∈ [n]× [d] represents a single

update to a coordinate of a underlying matrix M, a measure function G.
2 Initialize an instance of Sampler. Algorithm 1
3 for each update ut ∈ [n]× [d] do
4 Update Sampler.
5 Let r be the row and c be the column sampled by Sampler and let v be the vector

induced by the subsequent updates to row r.
6 Let ζ be a parameter such that G(x)−G(x− ei) ≤ ζ for all x ≥

(
R≥0

)d
, i ∈ [d].

7 Return: r with probability G(v+ec)−G(v)
ζ

.

FG, then there exists a truly perfect G sampler, which outputs⊥ with probability at most δ for an

insertion-only streams. The space required is O
(
ζdm

F̂G
log n log 1

δ

)
bits.

Proof. The probability that the update to (r, c) is the j-th particular update to row r inside the
stream is 1

m
. Let xj be the sum of the updates to row r after the j-th update and let ecj be the

coordinate of row r incremented in the j-th update, so that the probability that i is output is

∑
j

1
m

G(xj + ecj)−G(xj)
ζ

=
∑
j

1
m

G(xj−1)−G(xj)
ζ

= G(Mi,∗)
ζm

where the final equality results from the observations that x0 = Mr,∗ and that G(~0) = 0, since
v must be the all zeros vector after the last update to row r. Thus conditioned on some row
being output, the algorithm outputs each row i ∈ [n] with probability G(xi)

FG
. We again note

that G(xj + ecj) − G(xj) ≤ ζ for all x ∈
(
R≥0

)d
, i ∈ [d], so returning r with probability

G(xj+ecj)−G(xj)
ζ

is well-defined. Therefore, the probability that some row is returned by Algorithm
3 is

∑
i∈[n]

G(Mi,∗)
ζm

= FG
ζm

, where FG = ∑
G(Mi,∗). By repeating the sampler O

(
ζm
FG

log 1
δ

)
times,

the algorithm successfully outputs a sample s with probability at least 1− δ.

We again note that although the algorithm does not know the value of FG, it suffices to
repeat the sampler O

(
ζm

F̂G
log 1

δ

)
times for some lower bound F̂G on FG. Each instance only

140

requires O (d log n) bits to maintain the vector v, assuming logm = O (log n) and each update
is bounded by poly(n), which can be expressed using O (log n) bits. Thus the total space used is

O
(
ζdm

F̂G
log n log 1

δ

)
bits of space.

For example, when G(x) = ∑
i∈[d] |xi|, then FG is the L1,1 norm. Then we have FG = m, so

that by Theorem 26, so we can sample a row Mi,∗ with probability proportional to its L1 norm,
using O

(
d log n log 1

δ

)
bits of space. We can also apply Theorem 26 when G(x) =

√∑
i∈[d] x

2
i

is the L2 norm of each row, so that FG is the L1,2 norm crucially used in many adaptive sampling
techniques (see [MRWZ20b] and references therein).

3.7 Lower Bounds

In this section, we obtain a lower bound for providing relative error approximations x̃ = (1±ν)xi
of the frequency of a sampled item i ∈ [n]. Our lower bound is derived from one-way two-party
communication complexity, which we now give a primer for.

Two-Party Communication. Let X ,Y be input domains to a two party communication com-
plexity problem. Alice is given x ∈ X and Bob is given y ∈ Y . Their goal is to solve some rela-
tional problem Q ⊆ X ×Y×O, where for each (x, y) ∈ X ×Y the set Qxy = {z|(x, y, z) ∈ Q}
represents the set of correct solutions to the communication problem.

In the one-way communication protocol P , Alice must send a single message M to Bob
(depending on her input X), from which Bob must output an answer in o ∈ O depending on
his input Y and the message M . The maximum possible length (in bits) of M over all inputs
(x, y) ∈ X × Y is the communication cost of the protocol P . Communication protocols are
allowed to be randomized, where each player has private access to an unlimited supply of random
bits. The protocol P is said to solve the communication problem Q if Bob’s output o belongs
to Qxy with failure probability at most δ < 1/2. The one-way communication complexity of Q,
denoted R→δ (Q), is the minimum communication cost of a protocol which solves the protocol Q
with failure probability δ.

Now a similar measure of complexity is the distributional complexity D→µ,δ(Q), where µ is
a distribution over X × Y , which denotes the minimum communication cost of the best deter-
ministic protocol of Q with failure probability at most δ when the inputs (x, y) ∼ µ. By Yao’s
Lemma, we have that R→δ (Q) = maxµD→µ,δ(Q). We first review some basic facts about entropy
and mutual information (see Chapter 2 of [CT12] for proofs of these facts). Recall that for a

141

discrete random variable X supported on a finite domain Ω, the entropy H(X) of X is given by
H(X) = −∑a∈Ω Pr [X = a] log(Pr [X = a]).

Proposition 3.7.1.

1. Entropy Span: if X takes on at most s values, then 0 ≤ H(X) ≤ log s

2. I(X : Y) := H(X)−H(X|Y) ≥ 0, that is H(X|Y) ≤ H(X)

3. Chain Rule: I(X1, X2, . . . , Xn : Y |Z) = ∑n
i=1 I(Xi : Y |X1, . . . , Xi−1, Z)

4. Subadditivity: H(X, Y |Z) ≤ H(X|Z) +H(Y |Z) and equality holds if and only if X and

Y are independent conditioned on Z

5. Fano’s Inequality: LetM be a predictor ofX . In other words, there exists a function g such

that Pr [g(M) = X] > 1−δ where δ < 1/2. Let U denote the support ofX , where U ≥ 2.

Then H(X|M) ≤ δ log(|U| − 1) + h2(δ), where h2(δ) := δ log(δ−1) + (1− δ) log(1
1−δ) is

the binary entropy function.

We now define the information cost of a protocol P:

Definition 3.7.2. Let µ be a distribution of the input domain X ×Y to a communication problem

Q. Suppose the inputs (X, Y) are chosen according to µ, and let M be Alice’s message to Bob,

interpreted as a random variable which is a function of X and Alice’s private coins. Then the

information cost of a protocol P for Q is defined as I(X : M).

The one-way information complexity ofQ with respect to µ and δ, denoted by IC→µ,δ(Q), is the

minimum information cost of a one-way protocol under µ that solves Q with failure probability

at most δ.

Note that by Proposition 3.7.1, we have

I(X : M) = H(M)−H(M |X) ≤ H(M) ≤ |M |

where |M | is the length of the message M in bits. This results in the following proposition.

Proposition 3.7.3. For every probability distribution µ on inputs,

R→δ (Q) ≥ IC→µ,δ(Q)

142

3.7.1 Lower Bound for Estimating Sampled Coordinate

We now introduce the following communication problem, known as Augmented Index on Large
Domains. Our communication problem is derived from the communication problem (of the same
name) introduced in [JW13], but we modify the guarantee of the output required so that constant
probability of error is allowed. The problem is as follows.

Definition 3.7.4. Let U be an alphabet with |U| = k ≥ 2. Alice is given a string X =
(X1, . . . , Xd) ∈ Ud, and Bob is given i ∈ [d] along with the values Xi+1, Xi+2, . . . , Xd. Al-

ice must send a message M to Bob, and then Bob must output the value Xi ∈ U with probability

3/4. We refer to this problem as the augmented-index problem on large domains, and denote it

by INDdU .

Note that in [JW13], a correct protocol is only required to determine whetherXi = a for some
fixed input a ∈ U given only to Bob, however such a protocol must succeed with probability 1−δ.
For the purposes of both problems, it is taken that |U| = Θ(1/δ). In this scenario, we note that
the guarantee of our communication problem is strictly weaker, since if one had a protocol that
determined whether Xi = a for a given a ∈ U with probability 1 − δ, one could run it on all
a ∈ U and union bound over all |U| trails, from which the exact value of xi could be determined
with probability 3/4, thereby solving the form of the communication problem we have described.
We show, nevertheless, that the same lower bound on the communication cost of our protocol
holds as the lower bound in [JW13].

Let X = Ud be the set of all possible inputs to Alice, let Y = [d], and define µ to be the
uniform distribution over X × Y .

Lemma 3.7.5. Suppose |U| ≥ c for some sufficiently large constant c. We have IC→µ,3/4(INDdU) ≥
d log(|U|)/2.

Proof. Fix any protocol P for INDdU which fails with probability at most 1/4. We now draw
Alice’s input X = (X1, X2, . . . , Xd) ∼ X via the uniform distribution µ, and let M be Alice’s
message to Bob given X . By Proposition 3.7.1

I(X : M) =
d∑
i=1

I(Xi : M |X1, . . . , Xi−1)

=
d∑
i=1

(
H(Xi|X1, . . . , Xi−1)−H(Xi|M,X1, . . . , Xi−1)

)

143

First note that since Xi is independent of Xj for all j 6= i, we have H(Xi|X1, . . . , Xi−1) =
H(Xi) = log(|U|). Now since the protocolP is correct on INDdU , then the variablesM,X1, . . . , Xi−1

must be a predictor forXi with failure probability 1/4 (since Bob outputsXi with probability 3/4
given only M,X1, . . . , Xi−1 and his private, independent randomness). So by Fano’s inequality
(Proposition 3.7.1), we have

H(Xi|M,X1, . . . , Xi−1) ≤ 1
4 log(|U| − 1) + h2(1

4)

≤ 1
2 log(|U|)

which holds when |U| is sufficiently large. Putting this together, we obtain

I(X : M) ≥ d log(|U|)
2

Corollary 3.7.6. We have R→3/4(INDdU) = Ω(d log(|U|)).

We now use this lower bound on INDdU to show that, even when the index output is from a
distribution with constant additive error from the true Lp distribution, returning an estimate with
probability 1− δ2 still requires Ω(ν−p log(n) log(1/δ2)) bits of space.

Theorem 27. Fix any p > 0 constant bounded away from 0, and let ν < 1/3 with ν−p = o(n).

Then any Lp sampling algorithm that, on stream input x ∈ Rn, outputs ⊥ with probability at

most 1/100, and otherwise returns an item ` ∈ [n] such that Pr [` = l] = |xl|p/‖x‖pp ± 1/50 for

all l ∈ [n], along with an estimate x̃` such that x̃` = (1± ν)f` with probability 1 − δ2, requires

Ω(ν−p log(n) log(1/δ2)) bits of space.

Proof. We reduce via INDdU . Suppose we have a streaming algorithm A which satisfies all the
properties stated in the theorem. Set |U| = 1/(10δ2), and letX ∈ Ud be Alice’s input, where d =
rs where r = 1

10p+1νp
and s = log(n). Alice conceptually divides X into s blocks X1, . . . , Xs,

each containing r items X i = X i
1, X

i
2, . . . , X

i
r ∈ U . Fix some labeling U = {σ1, . . . , σk}, and

let π(X i
j) ∈ [k] be such that X i

j = σπ(Xi
j). Then each X i

j can be thought of naturally as a binary
vector in Rrsk with support 1, where (X i

j)t = 1 when t = (i − 1)r + (j − 1)k + π(X i
j), and

(X i
j)t = 0 otherwise. Set n′ = rsk < n for ν−p = o(n). Using this interpretation of X i

j ∈ Rrsk,

144

we define the vector x ∈ Rrsk by

x =
s∑
i=1

r∑
j=1

BiX i
j

Where B = 101/p. Alice can construct a stream with the frequency vector x by making the
necessary insertions, and then send the state of the streaming algorithm A to Bob. Now Bob
has some index i∗ ∈ [d] = [rs], and his goal is to output the value of X i′

j′ = Xi∗ such that
i∗ = (i′ − 1)r + j′. Since Bob knows Xj

i for all (i, j) with i > i′, he can delete off the
corresponding values of BiX i

j from the stream, leaving the vector x with the value

x =
i′∑
i=1

r∑
j=1

BiX i
j

For j ∈ [k], let γj ∈ Rrsk be the binary vector with γj(i′−1)r+(j′−1)k+j = Bi′/(10ν) and γjt = 0 at
all other coordinates t 6= (i′ − 1)r + (j′ − 1)k + j. Bob then constructs the streams xj = x+ γj

for j = 1, . . . , k sequentially. After he constructs xj , he runs A on xj to obtain an output
(`j, x̃j`j) ∈ ([n′]×R) ∪ ({⊥} × {⊥}) from the streaming algorithm, where if the algorithm did
not fail we have that `j ∈ [n′] is the index output and x̃j`j is the estimate of xj`j . By union bounding
over the guarantee of A we have that if `j 6= ⊥ then x̃`j = (1± ν)xj`j for all j = 1, 2, . . . , k with
probability 1 − kδ2 > 9/10. Call this event E1. Conditioned on E1, it follows that if for each `j
with `j = (i′ − 1)r + (j′ − 1)k + j, if X i′

j′ = σj then

x̃j`j > Bi′(1 + 1
10ν)(1− ν) > Bi′

10ν + 9
10B

i′ − νBi′

On the other hand, if X i′
j′ 6= σj , then we will have

x̃j`j < (Bi′/(10ν))(1 + ν) = Bi′

10ν + Bi′

10

<
Bi′

10ν + 9
10B

i′ − νBi′

using that ν < 1/3. Thus if `j = (i′−1)r+(j′−1)k+j, Bob can correctly determine whether or
not X i′

j′ = σj . Now suppose that, in actuality, Alice’s item was X i′
j′ = στ ∈ U for some τ ∈ [k].

Set λ = (i′−1)r+(j′−1)k+τ . To complete the proof, it suffices to lower bound the probability
that `τ 6= λ.

Thus we consider only the event of running A on xτ . We know that with probability 99/100,
`τ 6= ⊥. We write E2 to denote the event that `τ 6= ⊥. Let x−λ be equal to f everywhere except

145

with the coordinate λ set equal to 0. Then

‖xτ−λ‖pp <
i′∑
i=1

r∑
j=1

(Bp)i

≤ r
i′∑
i=1

10i ≤ (1
10p+1νp

)10i′+1

9

So
|xτλ|p

‖xτ−λ‖
p
p
≥

10i′(1
10ν)p

(1
10p+1νp

)10i′+1

9

≥
9(1

10ν)p

(1
10ν)p ≥ 9

Since A has 1/50-additive error, we conclude Pr [`τ = λ] > 9/10 − 1/50 = 22/25, and call
the event that this occurs E3. Then conditioned on E = E1 ∩ E2 ∩ E3 Bob sucsessfully recovers
the value of X i′

j′ = Xi∗ , and thus solves the communication problem. Note that the probability
of success is Pr [E] > 1 − (1/10 + 1/100 + 3/25) > 3/4, and thus this protocol solves INDdU .
So by Corollary 3.7.6, it follows that any such streaming algorithm A requires Ω(rs log(|U|)) =
Ω(ν−p log(n) log(1/δ2)) bits of space. Note that the stream x in question had length n′ < n for p
constant bounded from 0, and no coordinate in the stream ever had a value greater than poly(n),
and thus the stream in question is valid in the given streaming model.

3.7.2 Lower Bound for Truly Perfect Sampling

In this section, we demonstrate that the truly perfect G-samplers cannot exist in sublinear space
in the turnstile model, for nearly any measure G : R → R≥0. Specifically, we show that any
perfect sampler with additive error γ = n−c requires space at least Ω(c log n). This demonstrates
that no sublinear space truly perfect sampler can exist in the turnstile model, and demonstrates
the tightness (up to log n factors), of the previously known approximate Lp samplers [MW10,
AKO11, JST11] as well as the perfect Lp described earlier in this chapter.

Our lower bound is based on the fine-grained hardness of the EQUALITY problem from two-
party communication complexity [BCK+14]. Specifically, consider the boolean function EQn :
{0, 1}n×{0, 1}n → {0, 1} given by EQn(X, Y) = 1 ⇐⇒ X = Y . Recall in the two party, one
way communication model, there are two parties: Alice and Bob. Alice is given a input string
X ∈ {0, 1}n and Bob is given Y ∈ {0, 1}n. Then Alice must send a single message M to Bob,
who must then output whether EQn(X, Y) correctly with some probability. A communication
protocol P is a randomized two-party algorithm which takes the input (X, Y) and decides on
a message M and output procedure for Bob given (M,Y). The communication cost of P is

146

denoted cost(P , X, Y), and defined as the maximum number of bits sent in the message M over
all coin flips of the algorithm, on inputs (X, Y).

We now define the randomized refutation complexity of a communication protocol for com-
puting a Boolean function f . We define the refutation cost, refutation error, and verification

error as:

rcost(P) = max
(X,Y)∈f−1(0)

cost(P , X, Y)

rerr(P) = max
(X,Y)∈f−1(0)

Pr out(P(X, Y)) = 1

verr(P) = max
(X,Y)∈f−1(1)

Pr out(P(X, Y)) = 0

We define the randomized refutation complexity of a function f for an integer r ≥ 1 as

R
(r),ref
ε,δ (f) = min

P
{rcost(P) : rerr(P) ≤ ε, verr(P) ≤ δ}

where the minimum is restricted to r-round communication protocols P . Finally, we define the
effective instance size as

n̂ = min
{
n+ log(1− δ), log

(
(1− δ)2

ε

)}
.

Theorem 28 (Theorem 44 [BCK+14]). We have R(r),ref
ε,δ (EQn) ≥ 1

8(1− δ)2(n̂+ log(1− δ)− 5).

Theorem 29. Fix constant ε0 < 1, integer r ≥ 1, and let 2−n/2 ≤ γ < 1
2 . Let G : R → R≥0

be any function satisfying G(x) > 0 for x 6= 0, and G(0) = 0. Then any (ε0, 1
2 , γ)-approximate

G-sampler A in the r-pass turnstile streaming model must use Ω
(
min

{
n, log 1

γ

})
bits of space.

Proof. Given such a samplerA, we give an algorithm for the two-party, r-round equality problem
as follows. Alice is givenX ∈ {0, 1}n, and Bob is given Y ∈ {0, 1}n. Alice first creates a stream
with frequency vector given by x = X , and sends the state of the algorithm to Bob. Bob then
adds the vector −Y into the stream so that the final state of the frequency vector induced by the
stream is x = X − Y . Alice and Bob each run A on their stream and repeatedly pass the state of
the algorithm between each other over the course of r rounds. Bob then finally obtains the output
of the streaming algorithmA(x) after r rounds. If the output is ⊥ or any coordinate i ∈ [n], then
Bob declares EQn(X, Y) = 0. If the output is ZERO, Bob declares EQn(X, Y) = 1. Notice by
definition of a (ε0, 1

2 , γ)–G sampler (Definition 3.1.3), if we actually had X = Y , then x = ~0,
so A must output ZERO with probability at least 1 − γ. Moreover, if X 6= Y , then a correct

147

sampler can output ⊥ with probability at most γ.

The above protocol therefore satisfies that if EQn(X, Y) = 0, Bob outputs 1 with probability
at most γ, thus the refutation error is at most ε < γ. Moreover, if EQn(X, Y) = 1, thenA outputs
0 with probability at most γ. Thus, the verification error is at most γ < 1/2. Then we have
n− log(1− δ) > n/2, and log((1−δ)2

ε
) > log(1

16γ). So the effective input size is given by:

n̂ > min
{
n

2 , log 1
4γ

}

By Theorem 28:

R
(r),ref
ε,δ (EQn) ≥ 1

8(1− δ)2(n̂+ log(1− δ)− 5)

≥ 1
8 · 4(n̂− 7)

= Ω(n̂)

(3.15)

which completes the proof of the lower bound.

148

Chapter 4

Moment Estimation in Streaming and
Distributed Models

The study of streaming algorithms has often been closely linked to the field of distributed algo-
rithms. Dual to the latter is the field of communication complexity, which studies of the amount
of communication required to solve a distributed task. One significant component of the rela-
tionship between streaming and distributed algorithms is the fact that nearly all known lower
bounds for the space complexity of streaming algorithms arise through the field of communica-

tion complexity [Woo04, WZ18, KNW10a, JST11, KNP+17, BCWY16, CKS03, WW15, LW13,
MPTW16, JW09]. In this Chapter, we investigate the fundamental problem of Fp moment esti-
mation in both streaming and distributed models.

The study of frequency moments in the streaming model was initiated by the seminal 1996
paper of Alon, Matias, and Szegedy [AMS96]. Since then, nearly two decades of research have
been devoted to understanding the space and time complexity of this problem. An incomplete list
of works which study frequency moments in data streams includes [CKS03, IW05, BYJKS04,
Woo04, Ind06, KNW10a, BO10, KNPW11a, BKSV14, CCM16, BKSV14, BDN17, BVWY18].
For p > 2, it is known that polynomial in n (rather than logarithmic) space is required for Fp
estimation [CKS03, IW05]. In the regime of p ∈ (0, 2], the space complexity of Fp estimation
in the turnstile model is now understood, with matching upper and lower bounds of Θ(ε−2 log n)
bits to obtain a (1 ± ε) approximation of Fp. For insertion only streams, however, the best
known lower bound is Ω(ε−2 + log n) [Woo04]. Moreover, in the random oracle model, then the
lower bound is only Ω(ε−2). On the other hand, the best upper bound is to just run the turnstile
O(ε−2 log n)-space algorithm.

149

This Chapter, based on our paper [JW19], makes progress towards resolving this fundamental
problem. For p < 1, we resolve the space complexity by giving an Õ(ε−2 + log n)-bits of space
upper bound. In the random oracle model, our upper bound is Õ(ε−2)1, which also matches the
lower bound in this setting. Previously, an Õ(ε−2 + log(n)) upper bound for Fp estimation was
only known in the restricted random-order model, where it is assumed that the stream updates
are in a uniformly random ordering [BVWY18]. Additionally, we apply our techniques to obtain
a space optimal algorithm for insertion-only entropy estimation.

For the range of p ∈ (1, 2], we prove an Õ(ε−2)-bits of max-communication upper bound
in the distributed models most frequently used to prove lower bounds for streaming. This result
rules out a large and very commonly used class of approaches for proving lower bounds against
the space complexity of streaming algorithms for Fp estimation. Our approach is based on a new
randomized rounding scheme for p-stable sketches. Along the way, we will prove some useful
inequalities to bound the heavy-tailed error incurred from rounding non-i.i.d. p-stable variables
for p < 2 (Lemmas 4.3.3 and 4.4.7). We show that our rounding scheme can be additionally
applied to design improved protocols for the distributed heavy hitters and approximate matrix
product problems.

Highlighted Contributions

The materials from this chapter are drawn from our paper [JW19]. The main contributions therein
are as follows:

• We design improved Fp-moment estimation algorithm for p ∈ (1, 2], using Õ(ε−2)-bits of
max-communication, in the distributed models most frequently used to prove lower bounds

for streaming, ruling out a wide class of approaches for improving lower bounds for this
range of p (Section 4.3).

• We resolve the space complexity of Fp-estimation in insertion-only streams for p < 1.
Specifically, we give an algorithm that uses Õ(ε−2 + log n) bits of space in general, and
Õ(ε−2) bits in the random oracle model, both of which match their respective lower bounds
up to log log n, log ε−1 factors (Section 4.4).

1This space complexity is measured between updates. To read and process the Θ(log(n))-bit identity of an
update, the algorithm will use an additional O(log(n))-bit working memory tape during an update. Note that all
lower bounds only apply to the space complexity between updates, and allow arbitrary space to process updates.

150

• We resolve the space complexity of entropy estimation in the random oracle insertion only
model, by giving a Õ(1

ε2
) upper bound (Section 4.5).

4.1 Background

In this Chapter, we study a more general model than streaming, known as the message passing
multi-party communication model, which we now introduce. All of our upper bounds apply to
this model, and our streaming algorithms are just the result of special cases of our communication
protocols. In the message passing model, there are m players, each positioned at a unique vertex
in a graph G = (V,E). The i-th player is given as input an integer vector Xi ∈ Zn. The goal
of the players is to work together to jointly approximate some function f : Rn → R of the
aggregate vector X = ∑n

i=1Xi, such as the p-th moment f(X) = Fp = ‖X‖pp = ∑n
i=1 |Xi|p.

We use the notation X , X instead of x to distinguish the distributed from streaming models; in
particular, in this Chapter the symbol x is not reserved for the frequency vector of a data stream,
as the results primarily concern the more general message passing model.

In the message passing model, as opposed to the broadcast model of communication, the
players are only allowed to communicate with each other over the edges of G. Thus player i
can send a message to player j only if (i, j) ∈ E, and this message will only be received by
player j (and no other). At the end of the protocol, it is assumed that at least one player holds the
approximation to f(X). The goal of multi-party communication is to solve the approximation
problem using small total communication between all the players over the course of the execu-
tion. More specifically, the goal is to design protocols that use small max-communication, which
is the total number of bits sent over any edge of G. The protocols described in this Chapter hold
in an even more restricted setting, known as the one-shot setting, where each player is allowed
to communicate exactly once over the course of the entire protocol.

The message passing setting is often used to model distributed computation, where there
are m distributed machines, arranged in some network topology G, and their goal is to jointly
compute some function of the aggregate data X . Oftentimes, the predominant bottleneck in
distributed data processing is the network bandwidth and the energy cost of communication
[JOW+02, MFHH05], and so it is desirable to have algorithms that use as little communication
over any edge as possible.

We now observe that data streams can be modeled as a special case of one-shot multi-party
communication. Here, the graph G in question is the line graph on m vertices. If the updates

151

to the data stream vector are (i1,∆1), . . . , (im,∆m), then the t-th player has input Xt ∈ Zn,
where (Xt)it = ∆t and (Xt)j = 0 for j 6= it. The aggregate vector X = ∑m

i=1Xi is just the
frequency vector x at the end of the stream, and the space complexity of any algorithm is just the
max-communication used over any edge of the corresponding communication protocol. Since
we are primarily interested in insertion only streams, in this Chapter we will consider the non-

negative data model, where Xi ∈ {0, 1, . . . ,M}n for all input vectors Xi, for some M > 0 (as
in streaming, we assume M = poly(n,m) for simplicity). Note that an equivalent condition is
that each Xi ∈ Rn

≥0 such that the entries of Xi can be stored in O(logM)-bits.

We are now ready to introduce our results for moment estimation in the message passing
model. Let d be the diameter of the communication graph G. Our first result is a protocol for Fp
estimation when p ∈ (1, 2] which uses a max communication of Õ(ε−2 log d) bits. Using similar
techniques, we also obtain a (optimal for d = Θ(1)) bound of Õ(ε−2 log n log d) for the heavy
hitters problem, which is to find the coordinates of X which contribute at least an ε fraction of
the total

√
F2 = ‖X‖2 of X . For p ∈ (0, 1), we give an Õ(ε−2) upper bound for Fp estimation.

Notice that this is independent of the graph topology, and thus holds for the line graph, where
we derive our Õ(ε−2) upper bound for Fp estimation in the random oracle streaming model. We
then show how the streaming algorithm can be derandomized to not require a random oracle,
now using an optimal Õ(ε−2 + log(n))-bits of space. Our techniques also result in an Õ(ε−2)
upper bound for additively approximating the empirical entropy of the vector X .

Our results for p ∈ (1, 2] have interesting implications for any attempts to prove lower-

bounds for streaming algorithms that estimate Fp, which we now describe. The link between
streaming and communication complexity is perhaps one of the most fruitful sources of space
lower bounds for algorithms in computer science. Namely, nearly all lower bounds for the space
complexity of randomized streaming algorithms are derived via reductions from communication
problems. For an incomplete list of such reductions, see [Woo04, WZ18, KNW10a, JST11,
KNP+17, BCWY16, CKS03, WW15, LW13, MPTW16, JW09] and the references therein. Now
nearly all such lower bounds (and all of the ones that were just cited) hold in either the 2-party
setting (G has 2 vertices), the coordinator model, or the black-board model. In the coordinator
model there are m players, each with a single edge to a central coordinator (i.e., G is a star graph
on m + 1 vertices). Note that the diameter d of the coordinator graph is 2. In the multi-player
black-board model, every message that is sent is written to a shared blackboard that can be read
by all players. Observe that any one-way protocol for the coordinator model immediately results
in a protocol with the same communication for the blackboard model. Namely, each player
simply writes what it would have sent to the coordinator on the blackboard, and at the end of

152

the protocol the blackboard contains all the information that the coordinator would have had.
For these three settings, our protocol gives an Õ(ε−2) max-communication upper bound for Fp
estimation, p ∈ (1, 2]. This completely rules out the approach for proving lower bounds against
Fp estimation in a stream via any of these three techniques. In particular, it appears that any
lower bound for Fp estimation via communication complexity in this regime of p will need to
use a graph with Ω(n) diameter, such as the line graph, without a black-board.

The coordinator and black-board models have also been studied in many other settings than
for proving lower bounds against streaming. For instance, in the Distributed Functional Moni-

toring literature [CMY11, YZ13, WZ12, HYZ12, TW11, JSTW19], each player is receiving a
continuous stream of updates to their inputsXi, and the coordinator must continuously update its
approximation to f(X). The black-board model is also considered frequently for designing com-
munication upper bounds, such as those for set disjointness [BYJKS04, CKS03, Gro09]. Finally,
there is substantial literature which considers numerical linear algebra and clustering problems
in the coordinator model [WZ18, CSWZ16, BLS+16, WZ16]. Thus, our upper bounds can be
seen as a new and useful contribution to these bodies of literature as well.

Numerical Linear Algebra The study of numerical linear algebra in the distributed model
has become increasingly important [FSS13, LBKW14, Lib13, GP14, KVW14, BJS15, WZ18,
BWZ16], especially as frameworks like Hadoop [had] and Spark [spa] become critical for ana-
lyzing massive datasets. These works prioritize designing protocols to compute linear algebraic
primitives of matrices distributed over multiple servers, using as little communication as possi-
ble. Motivated by this, we apply the techniques developed for our Fp estimation problems to the
linear algebraic primitive of approximate matrix product.

The setting is as follows. Instead of vector-valued inputs Xi ∈ Zn≥0, the players are given
Xi ∈ Z

n×t1
≥0 , and they would like to compute statistics of the aggregate data matrix X =∑m

i=1 Xi. We remark that in the domain of application, we generally assume n >> t1, t2 (how-
ever this is not, strictly speaking, a requirement). So, for instance, they may want to estimate the
t1 × t2 dimensional product of X T with another matrix Y ∈ Rn×t2 . In this case, each player
also gets as input a Yi ∈ Zn×t2 , and we set Y = ∑m

i=1 Yi. The goal of the approximate matrix
product problem is for the players to jointly compute an approximation to X TY . Specifically,
they would like to obtain a R ∈ Rt1×t2 such that ‖R −X TY‖F ≤ ε‖X‖F‖Y‖F , where recall
that the Frobenius norm ‖X‖F of a matrix X is just the square root of the sum of squares of en-
tries in X . We note that a special and important case of interest is covariance estimation, where
Xi = Yi. Here, each player i has some subset of a positive data matrix X, and the goal is to
compute the empirical covariance X TX of the data.

153

Using similar techniques as our Fp estimation algorithm for p > 1, we design an Õ((t1 +
t2)ε−2 log d)-bit max communication protocol for the problem. We note here that a O((t1 +
t2)ε−2 log n) upper bound is a standard and well-known result from sketching, and our main
contribution here is to reduce the log n to a log d. Since the majority of works in the distributed
linear algebra literature consider the coordinator model, our results demonstrate an improvement
of a log(n) factor in the communication for approximate matrix product in this setting.

Linear Sketches Our results are closely related to the theory of linear sketching, which is
the standard approach used to solve many problems which involve approximating functions of
extremely high dimensional data X . Formally, a linear sketch is a randomized matrix S ∈ Rk×n,
where k << n, such that given SX ∈ Rk, one can approximate the desired function of X . To
estimate Fp, p ∈ (0, 2], such a sketch S exists with k = Θ(ε−2) rows ([Ind06, KNW10a]). If
p = 2, then S is a matrix of i.i.d. Gaussian random variables, and for general p ∈ (0, 2], so called
p-stable distributions, Dp, are used (Definition 2.2.6). These distributions have the property that
if Z1, . . . , Zm ∼ Dp, then

∑m
i=1 ZiXi ∼ Z‖X‖p, where Z ∼ Dp again.

To solve the multi-party Fp estimation problem using sketches, each player can locally com-
pute SXi and pass it along to some centralized vertex, who can then compute SX = ∑

i SXi.
Given SX , the central vertex can then compute the desired approximation. If the players sum up
their sketches along the way, as they travel up to the central vertex, the per-player communication
of this protocol isO(ε−2 log n), where the log n factor is required to store each coordinate of SX .
As noted, however, the extra log n factor does not match the Ω(ε−2) lower bound. Thus, the main
challenge for each of the protocols in this paper will be to avoid sending the entire O(log n)-bit
counter needed to store a coordinate of the sketch SXi.

4.1.1 Contributions

As noted, the upper bounds in this Chapter all hold in the general non-negative data multi-party
message passing model, over an arbitrary topology G. The algorithms also have the additional
property that they are one-shot, meaning that each player is allowed to communicate exactly
once. Our protocols pre-specify a central vertex C ∈ V of G. Specifically, C will be a center of
G, which is a vertex with minimal max-distance to any other vertex. Our protocols then proceed
in d rounds, where d is the diameter of G. Upon termination of the protocols, the central vertex
C will hold the estimate of the protocol. We note that C can be replaced by any other vertex v,
and d will then be replaced by the max distance of any other vertex to v. A summary of the result
in this Chapter is given in Figure 4.1.

154

Problem Prior best upper bound Upper bound (this work) Notes
Fp, 1 < p ≤ 2 O(ε−2 log(n)) [KNW10a] Õ(ε−2 log(d))
Fp, p < 1 O(ε−2 log(n))[KNW10a] Õ(ε−2)

Fp Streaming, p < 1 O(ε−2 log(n))[KNW10a] Õ(ε−2)
Entropy – Õ(ε−2)

Entropy Streaming O(ε−2 log2(n)) [CC13] Õ(ε−2) random oracle
Point Estimation O(ε−2 log2(n)) [CCFC02b] Õ(ε−2 log(d) log(n))

Approx Matrix Prod. – Õ(1) per coordinate
of sketch

Figure 4.1: For the communication problems above, the bounds are for the max-communication
(in bits) across any edge. For the streaming problems, the bounds are for the space requirements
of the algorithm. Here, d is the diameter of the communication network G. For all problems ex-
cept point estimation, there is a matching Ω(ε−2) lower bound. The problem of point estimation
itself has a matching Ω(ε−2 log n) lower bound for graphs with constant d.

We first formally state our general result for Fp estimation, 1 < p ≤ 2. Note that, while we
state all our results for constant probability of success, by repeating log(1/δ) times and taking
the median of the estimates, this is boosted to 1− δ in the standard way.

Theorem 30 For p ∈ (1, 2], there is a protocol for (1 ± ε) approximating Fp which succeeds

with probability 3/4 in the message passing model. The protocol uses a max communication of

O(1
ε2

(log log n+ log d+ log 1/ε)) bits, where d is the diameter of G.

For graphs with constant diameter, such as the coordinator model, our max communica-
tion bound of Õ(ε−2) matches the Ω(ε−2) lower bound [Woo04, CR12], which follows from a
2-player reduction from the Gap-Hamming Distance problem. For p = 2, our total communi-

cation in the coordinator model matches the Ω(mp−1/ε2) total communication lower bound (up
to log log(n) and log(1/ε) terms) for non-one shot protocols [WZ12]. For one shot protocols,
we remark that there is an Ω(m/ε2) total communication lower bound for any p ∈ (0, 2] \ {1}
(see Section 4.7.1). As discussed previously, our result also has strong implications for stream-
ing algorithms, demonstrating that no Ω(ε−2 log n) lower bound for Fp estimation, p ∈ (1, 2],
can be derived via the common settings of 2-party, coordinator, or blackboard communication
complexity.

Our main technique used to obtain Theorem 30 is a new randomized rounding scheme for
p-stable sketches. Suppose we are in the coordinator model, Z = (Z1, . . . , Zn) are i.i.d. p-stable,
and the players want to jointly compute 〈Z,X〉 = ∑m

i=1〈Z,Xi〉. Then, roughly speaking, they

155

could each round their values 〈Z,Xi〉 to (1± γ) relative error, using O(log log n+ log 1/γ) bits
of communication, and send it to the coordinator. The error for each player would be at most
γ|〈Z,Xi〉|, for a total error of γ

∑m
i=1 |〈Z,Xi〉|. For p > 1, however, the final counter value

〈Z,X〉 will be much smaller than γ
∑m
i=1 |〈Z,Xi〉| – in fact it will by polynomial smaller. To

see this, note that 〈Z,X〉 ∼ z‖X‖p, where z is p-stable, thus 〈Z,X〉 = O(‖X‖p) with good
probability. On the other hand, each |〈Z,Xi〉| will be Ω(‖Xi‖p) with good probability, and so∑m
i=1 |〈Z,Xi〉| can be as large as Ω(m1−1/p‖X‖p) (and in fact larger due to the heavy tails), so

the error is too great.

Our solution is to randomly round the values 〈Z,Xi〉 to relative error (1 ± γ) so that the er-
ror is zero mean. The total error can then be bounded via the variance. This is proportional
to
∑m
i=1 |〈Z,Xi〉|2, which behaves like

∑m
i=1 z

2
i ‖Xi‖2

p, where the zi’s are non-i.i.d. p-stable.
Note that if each z2

i was constant, by the positivity of the vectors Xi, we have
∑m
i=1 z

2
i ‖Xi‖2

p =
O(‖X‖2

p) for any 1 ≤ p ≤ 2. However, since p-stables have heavy tails, many of the z2
i ’s will be

super-constant, and in fact many will be polynomially sized in m. By a careful analysis of the
tail behavior of this sum, we are able to still bound the variance by (roughly) γ‖X‖2

p, where γ is
the precision to which the randomized rounding is carried out, which will give us our protocol
for the coordinator model. Our general protocol is the result of iterative applying this rounding
and merging scheme until all sketches reach a central vertex. By a judicious analysis of how the
variance propagates, we can demonstrate that γ need only be O(1/d), where d is the diameter of
G, to sufficiently bound the overall error of the protocol.

We then show that this randomized rounding protocol can be applied to give improved com-
munication upper bounds for the point-estimation problem. Here, the goal is to output a vector
X̃ ∈ Rn that approximates X well coordinate-wise. The result is formally given below in Theo-
rem 31.

Theorem 31 Consider a message passing topology G = (V,E) with diameter d, where the i-th

player is given as input X i ∈ Zn≥0 and X = ∑m
i=1X

i. Then there is a communication protocol

which outputs an estimate X̃ ∈ Rn of X such that

‖X̃ − X‖∞ ≤ ε‖Xtail(ε−2)‖2

with probability 1 − 1/nc for any constant c ≥ 1. Here Xtail(ε−2) is X with the ε−2 largest

(in absolute value) coordinates set equal to 0. The protocol uses a max communication of

O(1
ε2

log(n)(log log n+ log d+ log 1/ε)).

156

For graphs with small diameter, our protocols demonstrate an improvement over the pre-
viously best known sketching algorithms, which use space O(ε−2 log2(n)) to solve the point
estimation problem [CCFC02b]. Note that there is an Ω(ε−2 log n)-max communication lower
bound for the problem. This follows from the fact that point-estimation also solves the L2 heavy-

hitters problem. Here the goal is to output a set S ⊂ [n] of size at most |S| = O(ε−2) which
contains all i ∈ [n] with |Xi| ≥ ε‖X‖2 (such coordinates are called heavy hitters). The lower
bound for heavy hitters is simply the result of the space required to store the log(n)-bit identities
of all possible ε−2 heavy hitters. Note that for the heavy hitters problem alone, there is an optimal
streaming O(ε−2 log(n))-bits of space upper bound called BPTree [BCI+16]. However, BPTree
cannot be used in the general distributed setting, since it crucially relies on the sequential natural
of a stream.

Next, we demonstrate that Fp estimation for p < 1 is in fact possible with max commu-
nication independent of the graph topology. After derandomizing our protocol, this results in
a optimal streaming algorithm for Fp estimation, p < 1, which closes a long line of research
on the problem for this particular range of p [Woo04, Ind06, KNW10a, KNPW11a, CCM16,
BVWY18].

Theorem 32 For p ∈ (0, 1), there is a protocol for Fp estimation in the message passing model

which succeeds with probability 2/3 and has max-communication of O(1
ε2

(log log n+ log 1/ε)).

Theorem 33 There is an insertion only streaming algorithm for Fp estimation, p ∈ (0, 1),

which outputs a (1± ε) approximation to ‖x‖p with probability at least 2/3. The algorithm uses

O((1
ε2

(log log n+ log 1/ε) + log 1/ε
log log 1/ε log n)-bits of space. In the random oracle model, the space

is O(1
ε2

(log log n+ log 1/ε)).

The above bound matches the Ω(ε−2) max communication lower bound of [Woo04] in the
shared randomness model, which comes from 2-party communication complexity. Moreover, our
streaming algorithm matches the Ω(log n) lower bound for streaming when a random oracle is not
allowed. Our results are derived from observations about the behavior of p-stable distributions
for p < 1, followed by a careful analysis of their tail-behavior. Namely, if Z1, . . . , Zn ∼ Dp
are p-stable for p ≤ 1, and if X1, . . . , Xm ∈ Rn are non-negative, then

∑m
i=1 |ZiXi| is roughly

on the same order as
∑m
i=1 ZiXi, which allows us to approximate the latter in small space via

157

approximate counters.

We also point out an alternative approach for deriving the upper bound of Theorem 32, which
is to use maximally-skewed p-stable distributions [Nol, Li09, LZ11]. These distributions have
the property for that they are always positive (or negative) for p < 1, and one could then follow
a similar analysis to that provided in this Chapter. We chose instead to consider general p-stable
variables, and not specifically maximally skewed variables, for several reasons. Firstly, for the
purposes of streaming, our derandomization utilizes ideas from [KNW10a], which only consider
un-skewed symmetric stable variables. Thus, to utilize maximally skewed distributions, one
would need to adapt the arguments of [KNW10a]. Moreover, our arguments give general results
for the behavior of p-stables, and therefore also apply to the maximally-skewed case.

We remark that Fp estimation in the range p ∈ (0, 1) is useful for several reasons. Firstly,
for p near 1, Fp estimation is often used as a subroutine for estimating the empirical entropy of
a stream, which itself is useful for network anomaly detection ([LZ11], also see [HNO08a] and
the references therein). Moment estimation is also used in weighted sampling algorithms for
data streams [MW10, JST11, JW18b] (see [CJ19] for a survey of such samplers and their appli-
cations). Which can be used as subroutines for other tasks, such as finding heavy-hitters in the
stream, estimating cascaded norms [AKO11, MW10], and designing representative histograms
of the data on which more complicated algorithms are run [GMP, GM98b, Olk93, GKMS02,
HNG+07, CMR05]. Furthermore, moment estimation for fractional p, such as p = .5 and
p = .25, has been shown to be useful for data mining [CIKM02].

As another application of our protocol for Fp estimation, p < 1, we demonstrate a commu-
nication optimal protocol for additive approximation of the empirical Shannon entropy H(X)
of the aggregate vector X . Here, H = H(X) is defined by H = ∑n

i=1 pi log(1/pi) where
pi = |Xi|/‖X‖1 for i ∈ [n]. The goal of our protocols is to produce an estimate H̃ ∈ R of H
such that |H̃ −H| ≤ ε. Our result is as follows.

Theorem 35 There is a multi-party communication protocol in the message passing model that

outputs a ε-additive error of the Shannon entropy H . The protocol uses a max-communication of

O(1
ε2

(log log(n) + log(1/ε))-bits.

Note that for a multiplicative approximation of the Shannon entropy, there is a Ω̃(ε−2) lower
bound [CCM10]. For additive estimation, [KN14] gives a Ω(ε−2 log(n)) lower bound in the turn-
stile model. Using a similar reduction, we prove a matching Ω(ε−2) lower bound for additive ε

158

approximation in the insertion only model (see Section 4.7.2 for the proof). Furthermore, our
protocol directly results in an Õ(ε−2)-bits of space, insertion only streaming algorithm for en-
tropy estimation in the random oracle model. We note that most lower bounds in communication
complexity (and all of the bounds discussed in this paper except for the Ω(log n) term in the lower
bound for Fp estimation) also apply to the random oracle model. Previously, the best known algo-
rithm for the insertion only random oracle model used O(ε−2 log n)-bits [LZ11, CC13], whereas
the best known algorithm for the non-random oracle model uses O(ε−2 log2 n)-bits (the extra
factor of log n comes from a standard application of Nisan’s pseudo-random generator [Nis92]).

Theorem 36 There is an insertion only streaming algorithm for ε-additive approximation of the

empirical Shannon entropy of an insertion only stream in the random oracle model, which suc-

ceeds with probability 3/4. The space required by the algorithm is O(1
ε2

(log log(n) + log(1/ε))
bits.

Finally, we show how our techniques can be applied to the important numerical linear alge-
braic primitive of approximate matrix product, which we now define.

Definition 4.1.1. The multi-party approximate matrix product problem is defined as follows. In-

stead of vector valued inputs, each player is given Xi ∈ {0, 1, . . . ,M}n×t1 and Yi ∈ {0, 1, . . . ,M}n×t2 ,

where X = ∑
i Xi and Y = ∑

i Yi. Here, it is generally assumed that n >> t1, t2 (but not re-

quired). The players must work together to jointly compute a matrix R ∈ Rt1×t2 such that

‖R −X TY‖F ≤ ε‖X‖F‖Y‖F

Where for a matrix A ∈ Rn×m, ‖A‖F = (∑n
i=1

∑m
j=1 A2

i,j)1/2 is the Frobenius norm of A.

Theorem 37 There is a protocol which outputs, at the central vertex C, a matrix R ∈ Rt1×t2

which solves the approximate communication protocol with probability 3/4 2. The max commu-

nication required by the protocol is O (ε−2(t1 + t2)(log log n+ log 1/ε+ log d)), where d is the

diameter of the communication topology G.

We remark that an upper bound ofO (ε−2(t1 + t2) log n) was already well-known from sketch-
ing theory [W+14], and our main improvement is removing the log n factor for small diameter

2We remark that there are standard techniques to boost the probability of the matrix sketching results to 1 − δ,
using a blow-up of log(δ) in the communication. See e.g. Section 2.3 of [W+14]

159

graphs, such as the coordinator model where distributed numerical linear algebra is usually con-
sidered.

4.1.2 Related Work for Moment Estimation in Streaming and Distributed
Models

As mentioned, a closely related line of work is in the distributed functional monitoring model.
Here, there are m machines connected to a central coordinator (the coordinator topology). Each
machine then receives a stream of updates, and the coordinator must maintain at all time steps an
approximation of some function, such as a moment estimation or a uniform sample, of the union
of all streams. We note that there are two slightly different models here. One model is where the
items (coordinates) being updated in the separate streams are considered disjoint, and each time
an insertion is seen it is to a unique item. This model is considered especially for the problem of
maintaining a uniform sample of the items in the streams [CMY11, HYZ12, TW11, JSTW19].
The other model, which is more related to ours, is where each player is receiving a stream of
updates to a shared overall data vector X ∈ Rn. This can be seen as a distributed streaming
setting, where the updates to a centralized stream are split over m servers, and is considered
in [WZ12, CMY11, ABC09a]. For the restricted setting of one-way algorithms, which only
transmit messages from the sites to the coordinators, any such algorithm can be made into a one-
shot protocol for the multi-party message passing model. Here, each machine just simulates a
stream on their fixed input vectors Xi, and sends all the messages that would have been sent by
the functional monitoring protocol.

Perhaps the most directly related result to our upper bound for for Fp estimation, p ∈ (1, 2],
is in the distributed functional monitoring model, where Woodruff and Zhang [WZ12] show a
O(mp−1poly(log(n), 1/ε) +mε−1 log(n) log(log(n)/ε))3 total communication upper bound. We
remark here, however, that the result of [WZ12] is incomparable to ours for several reasons.
Firstly, their bounds are only for total communication, whereas their max communication can be
substantially larger than O(1/ε2). Secondly, while it is claimed in the introduction that the pro-
tocols are one way (i.e., only the players speak to the coordinator, and not vice versa), this is for
their threshold problem and not for Fp estimation4. As remarked before, there is an Ω(m/ε2) to-

3We remark that the poly(log(n), 1/ε) terms here are rather large, and not specified in the analysis of [WZ12].
4The reason for this is as follows. Their algorithm reduces Fp estimation to the threshold problem, where for a

threshold τ , the coordinator outputs 1 when the Fp first exceeds τ(1 + ε), and outputs 0 whenever the Fp is below
τ(1− ε). To solve Fp estimation, one then runs this threshold procedure for the log(mMn)/ε thresholds τ = (1 +
ε), (1+ε)2, . . . , (mMn)2 in parallel. However, the analysis from [WZ12] only demonstrates a total communication

160

tal communication lower bound for one-way protocols, which demonstrates that their complexity
could not hold in our setting (we sketch a proof of this in Section 4.7.1).

The message passing model itself has been the subject of significant research interest over the
past two decades. The majority of this Chapter is concerned with exact computation of Boolean
functions of the inputs. Perhaps the canonical multi-party problem, and one which has strong ap-
plications to streaming, is set disjointness, where each player has a subset Si ⊂ [n] and the play-
ers want to know if ∩mi=1Si is empty. Bar-Yossef et al. [BYJKS04] demonstrated strong bounds
for this problem in the black-board model. This lower bound resulted in improved (polynomially
sized) lower bounds for streaming Fp estimation for p > 2. These results for disjointness have
since been generalized and improved using new techniques [CKS03, Gro09, Jay09, BEO+13].
Finally, we remark that while most results in the multi-party message passing model are not
topology dependent, Chattopadhyay, Radhakrishnan, and Rudra have demonstrated that tighter
topology-dependent lower bounds are indeed possible in the message passing model [CRR14].

Road Map for the Chapter. In Section 4.2, we formally introduce the message passing model.
In Section 4.3, we give our main Fp estimation algorithm in the message passing model for p > 1.
In Section 4.3.2, we provide our algorithm for point-estimation and heavy hitters in the message
passing model. In Section 4.4 we give our Fp estimation algorithm for p < 1 in the message
passing and streaming model. In Section 4.5, we give our algorithm for entropy estimation, and
in Section 4.6 we give our algorithm for approximate matrix product.

4.2 Communication Complexity and the Message Passing Model

In this section we introduce the relevant preliminaries on Communication Complexity and the
Message Passing Model. Let f be a function f : Rn → R. Let G = (V,E) be a connected
undirected graph with m vertices, i.e. V = {1, . . . ,m}. In the message passing model on the
graph topology G, there are m players, each placed at a unique vertex of G, with unbounded
computational power. Player i is given as input only a vector Xi ∈ Zn, which is known as the
Number in Hand (NIH) model of communication. Let X = ∑n

i=1Xi be the aggregate vector
of the players inputs. The goal of the players is to jointly compute or approximate the function
f(X) by carrying out some previously unanimously agreed upon communication protocol. It is

of O(k1−ppoly(log(n), ε−1)) for the time steps before the threshold τ is reached. Once the threshold is reached,
the communication would increase significantly, thus the coordinator must inform all players when a threshold τ is
reached so that they stop sending messages for τ , violating the one-way property. This step also requires an additive
k messages for each of the O(ε−1 log(n)) thresholds, which results in the O(mε−1 log(n) log(log(n)ε))) term.

161

assumed that the graph topology of G is known to all players.

In this paper, we are concerned with the non-negative input model. Namely, the inputs Xi

satisfy Xi ∈ {0, 1, . . . ,M}n for all players i. Note an equivalent assumption to is that (Xi)j ≥ 0
for all i, and that the (Xi)j’s can be specified in O(log(M)) bits. As in the streaming model, we
assume that m,M = O(nc) for some constant c, which allows us to simplify complexity bounds
and write log(nmM) = O(log n).

During execution of the protocol, a player i ∈ V is only allowed to send a message to a
player j if (i, j) ∈ E. Thus, players may only communicate directly with their neighbors in the
graph G. In contrast to the broadcast and blackboard models of communication, in the message
passing model the message sent by player i to player j is only received by player j, and no other
player. Upon termination of the protocol, at least one player must hold an approximation of the
value f(X). For the protocols considered in this paper, this player will be fixed and specified
by the protocol beforehand. We use C ∈ V to denote the distinguished player specified by the
protocol to store the approximation at the end of the execution.

Every such communication protocol in this model can be divided into rounds, where on the
j-th round some subset Sj ⊆ V of the players simultaneously send a message across one of
their edges. Although it is not a restriction in the message passing model, our protocols satisfy
the additional property that each player communicates exactly once, across one of its edges, and
that each player will receive messages from its neighbors in exactly one round. Specifically,
for each player i, there will be exactly one round j where some subset of its neighbors send
player i a message, and then player i will send a single message in round j + 1, and never again
communicate. Such protocols are called one-shot protocols.

The total communication cost of a protocol is the total number of bits sent in all the mes-
sages during its execution. The max-communication of a protocol is the maximum number of
bits sent across any edge over the execution of the protocol. Communication protocols can be
either deterministic or randomized. In this paper we consider the standard public-coin model
of communication, where each player is given shared access to an arbitrarily long string of ran-
dom bits. This allows players to jointly utilize the same source of randomness without having to
communicate it.

162

4.3 Message Passing Fp Estimation for p > 1

In this section, we provide our algorithm for Fp estimation, 1 ≤ p ≤ 2, in the message passing
model with max communication O(1

ε2
(log d+ log log + log 1/ε)), where d is the diameter of the

graph G. We begin by specifying the distinguished vertex C ∈ V which will hold and output
the Fp approximation at the end of the protocol. For a vertex v ∈ G, define its eccentricity
ecc(v) = maxu∈V d(v, u), where d(v, u) is the graph distance between v, u. We then set C ∈ V
to be any vertex with minimal eccentricity. Such a vertex is known as a center of G. We now fix
a shortest path spanning tree T for G, rooted at the distinguished player C. The spanning tree T
has the property that the path between C and any vertex v ∈ V in the tree T is also a shortest
path between C and v in G. Thus the distance between C and any vertex v ∈ V is the same in T
as it is in G. The fact that the depth of T is at most d, where d is the diameter of G, now follows
naturally. Such a shortest path spanning tree T can be easily obtained via a breath first search.

Our algorithms for Fp estimation and heavy hitters are based on a sketching step, followed by
a randomized rounding procedure. Specifically, the players jointly generate a randomized matrix
S ∈ Rk×n, such that one can first compute

∑
i SXi = SX ∈ Rk, where k << n, and deduce

the desired properties of X from this small sketch. Thus, for each coordinate j ∈ [k], the players
could all sketch their data SXi, and send it up the tree T to the distinguish vertex C. To improve
the communication complexity required to send each coordinate of SXi, the players randomly
round the entries in SXi and send these instead, using only O(log log(mM)+log(1/ε)+log(d))
bits of space.

Before we introduce the randomized rounding protocol, we will need a technical Lemma
about the behavior of p-stable random variables (see Definition 2.2.6). To prove it, we first use
the following fact about the tails of p stable distributions, which can be found in [Nol].

Proposition 4.3.1. If Z ∼ Dp for 0 < p < 2, then Pr [|Z| ≥ λ] ≤ O(1
λp

).

Also, we use the straightforward fact that ‖Xi‖pp ≤ ‖
∑m
i=1Xi‖pp for non-negative vectors Xi and

p ≥ 1.

Fact 4.3.2. If X1, . . . , Xm ∈ Rn are entry-wise non-negative vectors and 1 ≤ p ≤ 2, then∑m
i=1 ‖Xi‖pp ≤ ‖

∑m
i=1Xi‖pp.

Proof. It suffices to consider the values coordinate-wise. If x, y ≥ 0 and 1 ≤ p ≤ 2, then
xp−1 ≤ (x+ y)p−1, so xp + yp ≤ x(x+ y)p−1 + y(x+ y)p−1 = (x+ y)p, and the general result

163

then follows from induction on the number of vectors m.

This following lemma will be fundamental to our analysis. Recall by the p-stability of the
distribution Dp, if Z ∼ Dnp and Xi ∈ Rn is a vector, then we have 〈Z,Xi〉 ∼ z‖Xi‖p, where
z ∼ Dp. Thus, we have then that

∑m
i=1 |〈Z,Xi〉|q ∼

∑m
i=1 z

q
i ‖Xi‖qp for any q > 0 and vectors

X1, . . . , Xm ∈ Rn. We would like to use the fact that for 1 ≤ p ≤ q, we have
∑m
i=1 ‖Xi‖qp ≤

‖∑m
i=1Xi‖qp = ‖X‖qp if the Xi’s are non-negative, and then bound the whole sum by O(‖X‖qp)

with good probability. However, there are several complications. First, note that the zi’s are not
independent, since they are all generated by the same Z. Second, note that the zi’s have heavy
tails, so E [zqi] will generally be infinite (e.g., if p < 2 and q = 2). Thus, we must be careful when
attempting to bound the overall probability that this sum is large. To do so, we use a level-set
analysis for variables with power-law tails.

Lemma 4.3.3. Fix 1 ≤ p ≤ q ≤ 2, and let Z = (Z1, Z2, . . . , Zn) ∼ Dmp . SupposeX1, . . . , Xm ∈
R
n are non-negative vectors, with X = ∑

j Xj . Then for any λ ≥ 1, if either q − p ≥ c > 0 for

some constant c independent of m, or if p = 2, we have

Pr

 m∑
j=1
|〈Z,Xj〉|q ≥ Cλq‖X‖qp

 ≤ 1
λp

Otherwise, we have

Pr

 m∑
j=1
|〈Z,Xj〉|q ≥ C log(λm)λq‖X‖qp

 ≤ 1
λp

where C is some constant (depending only on c in the first case)5.

Proof. First note, for p = 2, each term
∑m
j=1 |〈Z,Xj〉|2 is distributed as g2‖Xj‖2

2, where g is
Gaussian, thus g2 is χ2 distributed with E [g2] = 1. It follows that E

[∑m
j=1 |〈Z,Xj〉|2

]
=∑m

j=1 ‖Xj‖2
2 ≤ ‖X‖2

2, where the inequality follows from the Fact 4.3.2, and the result then
follows from Markov’s inequality.

Now suppose p ∈ [1, 2). Again, by p-stability we have
∑m
j=1 |〈Z,Xj〉|q = ∑m

j=1 ‖Xj‖qpẐ
q
j ,

where Ẑj ∼ Dp. Note though that the Ẑj’s are not independent. Define Ik = {j ∈ [m] | 2−k‖X‖qp ≤
5Observe that the extra log(m) factor is necessary in general when p = q. Note that if the support of all the X ′is

are distinct indicator vectors ei, then the sum is the sum of the p-th powers of independent p-stables. If p = 1, this
is a sum of m Cauchy random variables, which we expect to be Ω(m log(m)). For 1 6= p < 2 and p = q, the tail
behavior of p-stables raised to the p-th power is asymptotically similar to that of Cauchy’s, so the result is the same
here.

164

Ẑq
j ‖Xj‖qp ≤ 2−k+1‖X‖qp}. So if j ∈ Ik, then we have Ẑq

j ≥ 2−k ‖X‖
q
p

|Xj |qp
. For each k, the goal is to

bound the contribution of the terms in the set Ik to the overall sum. By Proposition 4.3.1, there
is some constant c ≥ 1 such that

Pr [j ∈ Ik] ≤ c

(
2k
‖Xj‖qp
‖X‖qp

)p/q

= c2pk/q
‖Xj‖pp
‖X‖pp

(4.1)

By Fact 4.3.2, we have
∑
j ‖Xj‖pp ≤ ‖X‖pp. So we obtain E [|Ik|] ≤ c2pk/q∑j

‖Xj‖pp
‖X‖pp

≤ c2pk/q for
any k ∈ Z.

Now consider the event E0 that Ik = ∅ for all k ≤ − q
p

log(10C ′λ). We first analyze Pr [E0].
Note that for a fixed j, the probability that j ∈ Ik for some k ≤ − q

p
log(10C ′λ) is at most

λ−1 ‖Xj‖
p
p

‖X‖pp
/10. So the expected number of j ∈ [n] with j ∈ Ik for some k ≤ − q

p
log(10C ′λ) is at

most λ−1∑
j
‖Xj‖pp
‖X‖pp

/10 ≤ λ−1/10. So by Markov’s inequality, we conclude that Pr [E0] ≤ 1
10λ .

Now note that for any k ∈ Z, the contribution of the items j ∈ Ik is at most |Ik|2−k+1‖X‖qp.
Thus, an upper bound on the expected contribution of the items in sets Ik for − q

p
log(10C ′λ) ≤

k ≤ 4 log(mλ) is given by

4 log(mλ)∑
j=− q

p
log(10C′λ)

E
[
|Ik|2−k+1‖X‖qp

]
≤

4 log(mλ)∑
j=− q

p
log(10C′λ)

c2−k(1−p/q)‖X‖qp

Now if q − p > c′ for some constant c′ independent of m, then the above sum is geometric, and
at most O(2(q

p
−1) log(10C′λ)‖X‖qp) = O((10C ′λ)q/p−1‖X‖qp). If p/q is arbitrarily small, the above

can be bounded by O(log(mλ)(10C ′λ)q/p−1‖X‖qp). Setting δ = O(log(mλ)) if this is the case,
and δ = 1 otherwise, we can apply Markov’s to obtain:

Pr

 4 log(mλ)∑
j=− q

p
log(10C′λ)

|Ik|2−k+1‖X‖qp > δ(10C ′λ)q/p‖X‖qp

 < 1
10C ′λ

Call the above event E1. Conditioned on E0∪E1 not occurring, which occurs with probability
at least 1− 1

λ
, it follows that the contribution of the items in level sets Ik for k ≤ 4 log(mλ) is at

most O(δλq/p‖X‖qp). Now for k ≥ 4 log(mλ), note that the contribution of any term j ∈ Ik is at
most 1

m2‖X‖2
p, and so the contribution of all such items to the total sum is at most 1

m
‖X‖2

p. Thus∑m
j=1 |〈Z,Xj〉|q = O(δλq/p‖X‖qp) with probability at least 1/λ, which is the desired result after

165

replacing λ with λp as needed.

While the above result was described to specifically hold only for p-stable random variables,
it is straightforward to show that the result for p = 2 holds when Gaussian random variables are
replaced with Rademacher random variables: i.e., variables Zi that are uniform over {1,−1}.

Corollary 4.3.4. Suppose Z = (Z1, . . . , Zm) where the Zi’s are uniform over {1,−1} and

pairwise independent, and let X1, . . . , Xm be non-negative vectors with X = ∑
j Xj . Then for

any λ ≥ 1, we have

Pr

 m∑
j=1
|〈Z,Xj〉|2 ≥ λ‖X‖2

2

 ≤ 1
λ

Proof. We have E [|〈Z,Xj〉|2] = ‖Xj‖2
2, so the result follows from an application of Markov’s

inequality and using the fact that
∑
j ‖Xj‖2

2 ≤ ‖X‖2
2.

We now note that for p = 2, we obtain much stronger concentration. We will need this for
the approximate matrix product section.

Corollary 4.3.5. Let Z = (Z1, Z2, . . . , Zn) ∼ Dm2 be i.i.d. Gaussian. Suppose X1, . . . , Xm ∈
R
n are non-negative vectors, with X = ∑

j Xj . Then for any λ ≥ c log(m) for some sufficiently

large constant c, we have

Pr

 m∑
j=1
|〈Z,Xj〉| ≥ λ‖X‖2

2

 ≤ exp(−Cλ)

where C is some universal constant.

Proof. Recall for j ∈ [m], |〈Z,Xj〉|2 is distributed as g2
j‖Xj‖2

2, where gj is Gaussian, thus g2
j is

χ2 distributed with E
[
g2
j

]
= 1. Now if z is χ2 distributed, we have Pr [z > λ] < e−Cλ for some

absolute constant C. So Pr [|〈Z,Xj〉|2 > log(m)λ] < e−Cλ/m for a slightly different constant
C. We can union bound over allm terms, so we have

∑m
j=1 |〈Z,Xj〉|2 ≤

∑m
j=1 λ‖Xj‖2

2 ≤ λ‖X‖2
2

with probability 1− exp(−Cλ) as needed.

166

4.3.1 Randomized Rounding of Sketches

We now introduce our randomized rounding protocol. Consider non-negative integral vectors
X1, X2, . . . , Xm ∈ Zn≥0, with X = ∑n

i=1Xi. Fix a message passing topology G = (V,E), where
each player i ∈ V is given as input Xi. Fix any vertex C that is a center of G, and let T be a
shortest path spanning tree of G rooted at C as described at the beginning of the section. Let d be
the depth of T . The players use shared randomness to choose a random vector Z ∈ Rn, and their
goal is to approximately compute 〈Z,X〉 = 〈Z,∑m

i=1Xi〉. The goal of this section is to develop
a d-round randomized rounding protocol, so that at the end of the protocol the approximation to
〈Z,X〉 is stored at the vertex C.

We begin by introducing the rounding primitive which we use in the protocol. Fix ε > 0, and
let γ = (εδ/ log(nm))C , for a sufficiently large constant C > 1. For any real value r ∈ R, let
ir ∈ Z and αi ∈ {1,−1} be such that (1 + γ)ir ≤ αir ≤ (1 + γ)ir+1. Now fix pr such that:

αir = pr(1 + γ)ir+1 + (1− pr)(1 + γ)ir

We then define the rounding random variable Γ(r) by

Γ(r) =

0 if r = 0

αi(1 + γ)ir+1 with probability pr

αi(1 + γ)ir with probability 1− pr

The following proposition is clear from the construction of pr and the fact that the error is
deterministically bounded by γ|r|.

Proposition 4.3.6. For any r ∈ R, We have E [Γ(r)] = r and Var(Γ(r)) ≤ r2γ2

We will now describe our rounding protocol. We partition T into d layers, so that all nodes
at distance d − t from C in T are put in layer t. Define Lt ⊂ [n] to be the set of players at layer
t in the tree. For any vertex u ∈ G, let Tu be the subtree of T rooted at u (including the vertex
u). For any player i, let Ci ⊂ [n] be the set of children of i in the tree T . The procedure for all
players j ∈ V is then given in Figure 4.2.

For each player i in layer 0, they take their input Xi, and compute 〈Z,Xi〉. They then round
their values as ri = Γ(〈Z,Xi〉), where the randomness used for the rounding function Γ is
drawn independently for each call to Γ. Then player i sends ri to their parent in T . In general,

167

Procedure for node j in layer i

1. Choose random vector Z ∈ Rn using shared randomness.

2. Receive rounded sketches rj1 , rj2 , . . . , rjtj ∈ R from the tj children of node j in the
prior layer (if any such children exist).

3. Compute xj = 〈Xj, Z〉+ rj1 + rj2 + · · ·+ rjt ∈ R.

4. Compute rj = Γ(xj). If player j 6= C, then send rj it to the parent node of j in T . If
j = C, then output rj as the approximation to 〈Z,X〉.

Figure 4.2: Recursive Randomized Rounding

consider any player i at depth j > 0 of T . At the end of the j-th round, player i will receive a
rounded value r` for every child vertex ` ∈ Ci. They then compute xi = 〈Z,Xi〉+

∑
`∈Ci r`, and

ri = Γ(xi), and send ri to their parent in T . This continues until, on round d, the center vertex
C receives r` for all children ` ∈ CC . The center C then outputs rC = 〈Z,XC〉 +∑

`∈CC r` as the
approximation.

We will now demonstrate that if the entries Zi of Z are drawn independently from a p-
stable distribution, we obtain a good estimate of the product 〈Z,X〉. For any player i, let Qi =∑
u∈Ti Xu, and yi = 〈Z,Qi〉. Then define the error ei at player i as ei = yi − ri. We first prove

a proposition that states the expectation of the error ei for any player i is zero, and then the main
lemma which bounds the variance of ei. The error bound of the protocol at C then results from
an application of Chebyshev’s inequality.

Proposition 4.3.7. For any player i, we have E [ei] = 0. Moreover, for any players i, j such that

i /∈ Tj and j /∈ Ti, the variables ei and ej are statistically independent.

Proof. We prove the first claim by induction on the layer j such that i ∈ Lj . For the base case of
j = 0, player i has no children, so ei = r − Γ(r) for some r ∈ R, from which the result follows
from the fact that Γ(r) being an unbiased estimate of r. Now supposing the result holds for all
players in Lj , and let i ∈ Lj+1 with children i1, . . . , ik ∈ [n]. Then

168

E [ei] = E [yi − Γ(yi + ei1 + · · ·+ eik)]

= Eei1 ,...,eik
[
E
[
yi − Γ(yi + ei1 + · · ·+ eik)

∣∣∣ ei1 , . . . , eik]]
= Eei1 ,...,eik [ei1 + · · ·+ eik]

= 0

(4.2)

which completes the first claim. The second claim follows from the fact that the randomness
used to generate ei and ej is distinct if the subtrees of player i and j are disjoint.

Lemma 4.3.8. Fix p ∈ [1, 2], and let Z = (Z1, Z2, . . . , Zn) ∼ Dnp . Then the above procedure

when run on γ = (εδ/(d log(nm)))C for a sufficiently large constant C, produces an estimate rC
of 〈Z,X〉, held at the center vertex C, such that E [rC] = 〈Z,X〉. Moreover, over the randomness

used to draw Z, with probability 1− δ for p < 2, and with probability 1− e−1/δ for Gaussian Z,

we have E [(rC − 〈Z,X〉)2] ≤ (ε/δ)2‖X‖p. Thus, with probability at least 1−O(δ), we have

|rC − 〈Z,X〉| ≤ ε‖X‖p

Moreover, if Z = (Z1, Z2, . . . , Zn) ∈ Rn where each Zi ∈ {1,−1} is a 4-wise independent

Rademacher variable, then the above bound holds with p = 2 (and with probability 1− δ).

Proof. Set N = poly(n,m)poly(d/(δε)) to be sufficiently large, and let γ = (εδ/(d log(nm)))C

so that 1/γ is a sufficiently large polynomial in log(N). Let γ0 = γ(log(N)
ε

)c for a constant
c < C that we will later choose. For the remainder of the proof, we condition on the event
Ei for i ∈ [d] that

∑
i∈Lt y

2
i ≤ log2(N)‖∑i∈Lt Qi‖2

p. By Lemma 4.3.3 (or Corollary 4.3.4 for
Rademacher variables) and a union bound, we have Pr

[
∪j∈[d]Ej

]
≤ log−1(N). For Gaussian Z,

we have Pr
[
∪j∈[d]Ej

]
≤ 1/N ≤ exp(−1/δ) by Corollay 4.3.5. Note that Ei depends only on the

randomness used to sample Z, and not on the randomnesses used in the rounding protocol.

We now prove by induction that for any player i ∈ Lj , we have:

E
[
e2
i

]
≤ (j + 1)γ2

0
∑
v∈Ti
|〈Qv, Z〉|2

For the base case, if i ∈ L0 by definition of the rounding procedure we have e2
i ≤ γ2|〈Qi, Z〉|2 ≤

γ2
0 |〈Qi, Z〉|2. Now suppose the result holds for layer j, and let i ∈ Lj+1, and let Ci ⊂ [n] be

the children of player i. Then ei = ηi +∑
v∈Ci ev, where ηi is the error induced by the rounding

carried out at the player i. Then ηi is obtained from rounding the value
(
〈Qi, Z〉+∑

v∈Ci ev
)
,

169

thus

E
[
η2
i

]
≤ γ2 E

〈Qi, Z〉+

∑
v∈Ci

ev

2

= γ2

|〈Qi, Z〉|+ E

∑
v∈Ci

e2
v

≤ γ2

|〈Qi, Z〉|+ (j + 1)γ2
0
∑
v∈Ci

∑
u∈Tv
|〈Qu, Z〉|2

(4.3)

Where the first equality holds by the independence and mean 0 properties of the errors ev, and
the last inequality holds by induction. Thus

E
[
e2
i

]
= E

(ηi +
∑
v∈Ci

ev)2)

= E
[
η2
i

]
+ E

∑
v∈Ci

e2
v

≤ γ2

|〈Qi, Z〉|+ (j + 1)γ2
0
∑
v∈Ci

∑
u∈Tv
|〈Qu, Z〉|2

+ E

∑
v∈Ci

e2
v

≤ γ2

0 |〈Qi, Z〉|+ γ2
0
∑
v∈Ci

∑
u∈Tv
|〈Qu, Z〉|2 + (j + 1)γ2

0
∑
v∈Ci

∑
u∈Tv
|〈Qu, Z〉|2

≤ (j + 2)γ2
0 |〈Qi, Z〉|+ (j + 2)γ2

0
∑
v∈Ci

∑
u∈Tv
|〈Qu, Z〉|2

= (j + 2)γ2
0
∑
u∈Ti
|〈Qu, Z〉|2

(4.4)

which is the desired result. The variance bound then follows after conditioning on ∩jEj . It
follows that:

|rC − 〈Z,X〉|2 ≤
2
δ
γ2

0(d+ 1)
∑
u∈T
|〈Qu, Z〉|2

with probability at least 1− δ/2 by Chebyshev’s inequality. We now condition on this and ∩jEj ,
which hold together with probability 1− δ by a union bound. Since we conditioned on ∩jEj , we

170

have

|rC − 〈Z,X〉|2 ≤
1
δ
γ2

0(d+ 1)
∑
u∈T
|〈Qu, Z〉|2

= 1
δ
γ2

0(d+ 1)
d∑
i=1

∑
u∈Li

yu

≤ 1
δ
γ2

0(d+ 1)
d∑
i=1

log2(N)‖
∑
u∈Li

Qu‖2
p

≤ 1
δ
γ2

0(d+ 1)
d∑
i=1

log2(N)‖X‖2
p

≤ ε2‖X‖2
p

(4.5)

which completes the proof. Note here, in the second to last inequality, we used the fact that since
Qu are positive vectors, for p ≤ 2 we have

∑d
i=1 ‖

∑
u∈Li Qu‖2

p ≤ ‖
∑d
i=1

∑
u∈Li Qu‖2

p ≤ ‖X‖2
p.

Theorem 30. For p ∈ (1, 2], there is a protocol for Fp estimation which succeeds with probability

3/4 in the non-negative data message passing model, which uses a total of O(m
ε2

(log(log(n)) +
log(d) + log(1/ε))) communication, and a max communication of O(1

ε2
(log(log(n)) + log(d) +

log(1/ε))), where d is the diameter of the communication network.

Proof. We use Indyk’s classic p-stable sketch S ∈ Rk×n, where k = Θ(1/ε2), and each entry
Si,j ∼ Dp. It is standard that computing mediani{|(SX)i|} gives a (1 ± ε) approximation
to ‖X‖p with probability 3/4 [Ind06]. By running the randomized rounding protocol on each
inner product 〈Sj,X〉 independently with error parameter ε′ = poly(ε) and failure parameter
δ′ = poly(ε) (rounding to powers of (1 + γ) where γ is as defined in this section in terms of
ε′, δ′, d), it follows that the central vertex C recovers SX up to entry-wise additive ε′‖X‖p error
with probability 1 − O(ε), after union bounding over all k repetitions using Lemma 4.3.8. This
changes the median by at most ε′‖X‖p, which results in an ε′‖X‖p additive approximation of
‖X‖p, which can be made into a ε‖X‖p additive approximation after a rescaling of ε.

For the communication bound, note that for each coordinate of SX , exactly one message is
sent by each player. Set K = Mnm/γ, where γ is as in the rounding procedure. By Proposition
4.3.1, we can condition on the fact that |Zi| ≤ cK3 for all i ∈ [n] and for some constant c > 0,
which occurs with probability at least 1 − 1/K2. Now by the proof of Lemma 4.3.8, we have

171

that
E
[
e2
i

]
≤ (j + 1)γ2

0
∑
v∈Ti
|〈Qv, Z〉|2 ≤ K5

where ei = ∑
u∈Ti Xu− ri, where ri is the message sent by the i-th player for a single coordinate

of SXi. By Markov’s with probability 1− 1/K2 we have |ei| < K4, and thus |ri| ≤ K6 for all i.

Now for any ri for player i in layer ` with |ri| < 1/(mK)d+3−`, we can simply send 0
instead of ri. Taken over all the potential children of a player j in layer ` + 1, this introduces
a total additive error of 1/Kd+3−` in xj (where xj is as in Figure 4.2). Now if xj originally
satisfies |xj| > 1/Kd+2−`, then the probability that this additive error of 1/Kd+3−` changes the
rounding result rj = Γ(xj) isO(1/K), and we can union bound over allm vertices that this never
occurs. Thus, the resulting rj is unchanged even though xj incurs additive error. Otherwise, if
|xj| ≤ 1/Kd+2−`, then since Player j is in layer (` + 1), we round their sketch xj down to 0
anyway. The final result is an additive error of at most 1/K2 to rC . Note that we can tolerate this
error, as it is only greater than γ‖X‖p when X = 0, which is a case that can be detected with
O(1) bits of communication per player (just forwarding whether their input is equal to 0). With
these changes, it follows that 1/(mK)d+3 ≤ rj ≤ K6 for all players j. Thus each message rj
can be sent in O(log(log((mK)d+3))) = O(log log(n) + log(d) + log(1/ε)) as needed.

4.3.2 Heavy Hitters and Point Estimation

In this section, we show how our randomized rounding protocol can be used to solve the L2

heavy hitters problem. For a vector X ∈ Rn, let Xtail(k) be X with the k largest (in absolute
value) entries set equal to 0. Formally, given a vector X ∈ Rn, the heavy hitters problem is to
output a set of coordinates H ⊂ [n] of size at most |H| = O(ε−2) that contains all i ∈ [n] with
|Xi| ≥ ε‖Xtail(1/ε2)‖2. Our protocols solve the strictly harder problem of point-estimation. The
point estimation problem is to output a X̃ ∈ Rn such that ‖X̃ − X‖∞ ≤ ε‖Xtail(1/ε2)‖2.

To solve this task, we will use the count-sketch matrix S ∈ Rt×n [CCFC02b], introduced in
Section 2.3.2. By Theorem 9, given the matrix vector product SX ∈ Rt with t = Θ(1

ε2
log n),

one can solve the point-estimation problem. Thus, it will suffice to maintain the product SX in
the message passing model.

We remark that there is a O(1
ε2

log(n))-space streaming algorithm for the heavy hitters prob-
lem in insertion only streams, known as BPTree [BCI+16]. However, this streaming algorithm

172

does not produce a linear sketch, and is not mergeable. The BPTtree algorithm crucially relies on
sequentially learning one bit of the identity of each heavy hitter at a time. However, in the mes-
sage passing model, the data cannot be sequentially accessed unless a path P was fixed running
through all the players in G. Such a path may cross the same edge more than once, thus cannot
be one-way, and also will require as many as m rounds (instead of the d given by our algorithm).
Thus constructions such as BPTtree cannot be used as is to solve the heavy hitters problem in the
message passing model. Moreover, BPTtree does not solve the frequency estimation problem,
which our protocol does in fact accomplish.

Theorem 31. Consider a message passing topology G = (V,E) with diameter d, where the i-th

player is given as input Xi ∈ Zn≥0 and X = ∑m
i=1Xi. Then there is a communication protocol

which outputs an estimate X̃ ∈ Rn of X such that

‖X̃ − X‖∞ ≤ ε‖Xtail(1/ε2)‖2

with probability 1− 1/nc for any constant c ≥ 1. The protocol uses O(m
ε2

log(n)(log(log(n)) +
log(d)+log(1/ε))) total communication, and a max communication ofO(1

ε2
log(n)(log(log(n))+

log(d) + log(1/ε))).

Proof. Note that, by construction, the non-zero entries of each row of S are 4-wise independent
Rademacher variables. So by Lemma 4.3.8, for each entry (SX)j of SX , we can obtain an
estimate rC at the central vertex C such that |rC − (SX)j| ≤ ε‖Xsupp(j)‖2, where supp(j) ⊂ [n] is
the support of the j-th row of S.

We will now utilize the count-sketch table A notation as introduced in Section 2.3.2, where
we reshape the matrix-vector product SX ∈ Rt into a table A ∈ Rd×6/ε2 with d rows and 6/ε2

columns, where t = d · (6/ε2). We first go through the standard analysis of count-sketch which
results in the statement of Theorem 9. Consider the estimate of a fixed entry k ∈ [n]. Consider
a given entry gi(k)Ai,hi(k) for a given row i of A. With probability 5/6, none of the top 1/ε2

largest items in X (in absolute value) collide with k ∈ [n] in this entry. Call this event E , and
condition on it now. Now note that E

[
gi(k)Ai,hi(k)

]
= Xk, and

E
[
(gi(k)Ai,hi(k))2

]
= E

 ∑
`:hi(`)=hi(k)

X 2
`

+ E

 ∑
u6=v:hi(u)=hi(v)=hi(k)

XuXvgi(u)gi(v)

= E

 ∑
`:hi(`)=hi(k)

X 2
`

 (4.6)

173

which is at most ε2‖Xtail(1/ε2)‖2
2/6 after conditioning on E . Thus with probability 5/6, we have

|gi(k)Ai,hi(k) −Xk| ≤ ε‖Xtail(1/ε2)‖2. Note that we conditioned on E , so altogether we have that
|gi(k)Ai,hi(k) −Xk| ≤ ε‖Xtail(1/ε2)‖2 with probability at least 2/3. Thus with probability at least
1− 1/n2, the above bound holds for the median of the estimates mediani∈[d]{gi(k)Ai,hi(k)} , and
we can then union bound over all k ∈ [n] to obtain the desired result.

Now consider the changes that occur to this argument when we add an additional ε‖Xsupp(j)‖2

error to each Ai,hi(k). Let ri,hi(k)
C be the estimate held by the central vertex of Ai,hi(k). As noted

above, after conditioning on E , we have E
[
‖Xsupp(j)‖2

2

]
≤ ε2‖Xtail(1/ε2)‖2

2, so with probability
15/16 we have ‖Xsupp(j)‖2 ≤ 4ε‖Xtail(1/ε2)‖2. Taken together with the event that |gi(k)Ai,hi(k) −
Xk| ≤ ε‖Xtail(1/ε2)‖2, which occurred with probability 5/6 after conditioning on E , it follows that
|gi(k)ri,hi(k)

C −Xk| ≤ ε‖Xtail(1/ε2)‖2 with probability 1− (1/6 + 1/6 + 1/16) > 3/5. The result
now follows now by the same argument as above (note that it only required this probability to be
at least 1/2 + Ω(1)).

The message complexity analysis is identical to that of Theorem 30, except instead of apply-
ing Proposition 4.3.1 to bound the probability that |Zi| ≤ c(Mnm/γ)3 for all i ∈ [n] (Where Z
is the non-zero entries in some row of S), we can use the deterministic bound that |Zi| ≤ 1. By
the same argument as in Theorem 30, each rounded message rj requires O(log log(n)+ log(d)+
log(1/ε)) bits to send with high probability. Since each player sends 6d/ε2 = O(log(n)/ε2)
messages (one for each row of S), the claimed communication follows.

4.4 Fp Estimation for p < 1

In this section, we develop algorithms for Fp estimation for p < 1 in the message passing model,
and in the process obtain improved algorithms for entropy estimation. Our algorithms require a
max communication of O(1

ε2
(log log n + log 1/ε)), which is independent of the diameter of the

graph topology. In particular, these results hold for the directed line graph, where communication
is only allowed in one direction. As a consequence, we improve upon the best known algorithms
for the space complexity of insertion only streaming algorithms.

We begin by reviewing the fundamental sketching procedure used in our estimation protocol.
The sketch is known as a Morris counter. We point out that, in fact, our rounding algorithm from
Section 4.3.1 reduces to being a Morris counter when run on insertion only streams.

174

4.4.1 Morris Counters

We begin by describing the well known approximate counting algorithm, known as a Morris
Counter [Mor78, Fla85]. The algorithm first picks a base 1 < b ≤ 2, and initalizes a counter
C ← 0. Then, every time it sees an insertion, it increments the counter C ← C + δ, where δ = 1
with probability b−C , and δ = 0 otherwise (in which case the counter remains unchanged). After
n insertions, the value n can be estimated by ñ = (bC − b)/(b− 1) + 1.

Definition 4.4.1. The approximate counting problem is defined as follows. Each player i is given

a positive integer value Xi ∈ Z≥0, and the goal is for some player at the end to hold an estimate

of X = ∑
iXi.

Proposition 4.4.2 (Proposition 5 [Fla85]). If Cn is the value of the Morris counter after n up-

dates, then E [ñ] = n, and Var(ñ) = (b− 1)n(n+ 1)/2.

Corollary 4.4.3. If Cn is the value of a Morris counter run on a stream of n insertions with base

b = (1 + (εδ)2), then with probability at least 1 − δ, we have ñ = (1 ± ε)n with probability at

least 1 − δ. Moreover, with probability at least 1 − δ, the counter Cn requires O(log log(n) +
log(1/ε) + log(1/δ))-bits to store.

Proof. The first claim follows immediately from Proposition 4.4.2 and Chebyshev’s inequality.
Conditioned on ñ = (1 ± ε)n, which occurs with probability at least 1 − δ, we have that ñ =
(bC − b)/(b − 1) < 2n, so C = O(1

1−b log(n)) = O(log(n)
(εδ)2), which can be stored in the stated

space.

Next, we demonstrate that Morris counters can be merged. That is, given one Morris counter
X run on a stream of length n1 (of only insertions or deletions), and a Morris counter Y run on
a stream of length n2, we can produce a Morris counter Z which is distributed identically to a
Morris counter run on a stream of n1 + n2 updates. The procedure for doing so is given below.

A sketch of the proof of the correctness of the above merging procedure is given by Cohen
[Coh13]. For completeness, we provide a proof here as well.

Lemma 4.4.4. Given Morris counters X, Y run on streams of length n1, n2 respectively, The

above merging procedure produces a Morris counter Z which is distributed identically to a

Morris counter that was run on a stream of n1 + n2 insertions.

Proof. Let u1, . . . , un1 be the updates that X is run on, and let v1, . . . , vn2 be the updates that

175

Merging Morris Counters

Input: Morris counters X, Y with base b.
• Set Z ← X .
• for i = 1, 2, . . . , Y , set:

Z ←

Z + 1 with probability b−Z+i−1

Z with probability

Output: Morris counter Z

Y is run on. Consider the distribution of a random variable Z ′ run on u1, . . . , un1 , v1, . . . , vn2 .
We show that Z ′, Z have the same distribution. We associate with each ui, vi a uniform random
variable pi, qi ∈ [0, 1] respectively. First, fix pi exactly for all i ∈ [n1], and now condition on the
set of vi which increment Y during the execution. We now consider the condition distribution of
the qi’s given the updates vi which incremented Y . We show that the conditional distribution of
executions of Z ′ is the same as the merging procedure.

To see this, conditioned on some counter value y, items vi that incremented y has qi < b−y,
otherwise they had qi ≥ b−y. We will prove via induction that the items that: 1) the items vi
that did not increment Y do not increment Z ′, 2) the item vj that had the i-th increment of Y ,
conditioned on the value of Z ′ so far, increments Z ′ with probability b−Z+i−1, and 3) at any point
during the processing of the vi’s we have Z ′ ≥ Y .

Note that at the beginning, we have Z ′ ≥ 0 and Y = 0, so Z ′ ≥ Y . Moreover, v1 increments
Y with probability 1, so conditioning on this does not affect the distribution of q1. So the condi-
tional probability that Z ′ is incremented is just b−Z′ as needed. If Z ′ = 0 initially, then b−Z′ = 1,
so we maintain Z ′ ≥ 1 = Y at this point.

Now consider any update vj that did not cause an increment to Y . We must have had qj ∈
[b−Y , 1], and since we maintained Z ′ ≥ Y by induction, it follows that vj did not cause an update
to Y , and neither Z ′ or Y was affected by the update vj , so we maintain Z ′ ≥ Y . Now consider
the item vj that caused the i-th increment to Y . This conditioning implies qj ∈ [0, b−(i−1)].
Conditioned on the value of Z ′ so far, the probability vj increments Z ′ is the probability that
qj ∈ [0, b−Z′] conditioned on qj ∈ [0, b−(i−1)], which is b−Z′+i−1 as desired. Moreover, if we had
that Z ′ = Y at this time step, then Z ′ = Y = (i − 1), so b−Z′+i−1 = 1 and Z ′ is incremented
with probability 1 conditioned on the fact that Y was incremented. So we maintain the property
that Z ′ ≥ Y at all steps, which completes the induction proof.

176

Corollary 4.4.5. There is a protocol for F1 estimation of non-negative vectors, equivalently for

the approximate counting problem, in the message passing model which succeeds with probabil-

ity 1− δ and uses a max-communication of O((log log(n) + log(1/ε) + log(1/δ))-bits.

Proof. First note that the F1 of X is simply
∑
i ‖Xi‖1, so each player can run a Morris counter

on ‖Xi‖1 and send them up a tree to a center vertex C as in Section 4.3.1. Since Morris counters
can be merged without affecting the resulting distribution, the center player C at the end holds a
Morris counter Z which is distributed identically to a Morris counter with base b run on ‖X‖1 =∑
i ‖Xi‖1 updates. Then by Corollary 4.4.3, we have that ñ = (bZ−b)/(b−1)+1 = (1±ε)‖X‖1

with probability 1 − δ, and moreover that Z is at most O(log log(n) + log(1/ε) + log(1/δ) bits
long. Since Z is at least as large as the size of any other counter sent across an edge, it follows
that the max communication in the protocol was at mostO(log log(n)+log(1/ε)+log(1/δ) bits,
and the proof of the total communication concludes from the fact that each player communicates
exactly once.

We now note that Morris counters can easily used as approximate counters for streams with
both insertions and deletions (positive and negative updates), by just storing a separate Morris
counter for the insertions and deletions, and subtracting the estimate given by one from the other
at the end. The error is then proportional to the total number of updates made.

Corollary 4.4.6. Using two Morris counters separately for insertions and deletions, on a stream

of I insertions and D deletions, there is an algorithm, called a signed Morris counter, which

produces ñ with |ñ − n| ≤ ε(I + D), where n = I − D, with probability 1 − δ, using space

O(log log(I +D) + log(1/ε) + log(1/δ)).

Hereafter, when we refer to a Morris counter that is run on a stream which contains both
positive and negative updates as a signed Morris counter. Therefore, the guarantee of Corollary
4.4.6 apply to such signed Morris counters, and moreover such signed Morris counters can be
Merged as in Lemma 4.4.4 with the same guarantee, but just Merged separately the counters for
insertions and deletions.

4.4.2 The Fp Estimation Protocol, p < 1

We now provide our algorithm for Fp estimation in the message passing model with p ≤ 1.
Our protocol is similar to our algorithm for p ≥ 1. We fix a vertex C which is a center of
the communication topology: i.e., the distance of the farthest vertex from C in G is minimal

177

among all such vertices. We then consider the shortest path tree T rooted at C, which has depth
at most d, where d is the diameter of G. The players then choose random p-stable vectors
Si,∗ ∈ Rn for i ∈ [k], where k = Θ(1/ε2) and the j-th player computes 〈Si,∗, Xj〉, and adds
this value to a Morris counter. Each player receives Morris counters from their children in T ,
and thereafter merges these Morris counters with its own. Finally, it sends this merged Morris
counter, containing updates from all players in the subtree rooted at j, to the parent of j in T .
At the end, the center C holds a Morris counter Ci which approximates

∑
j〈Si,∗, Xj〉. The main

algorithm for each player j is given formally in Figure 4.3.

We first prove a technical lemma which bounds the total number of updates made to the
Morris counters. Since the error of the signed Morris counters is proportional to the number
of updates made, and not to the actual value that is being approximated, it is important that the
number of updates does not exceed the desired quantity of estimation by too much.

Lemma 4.4.7. Let Z1, . . . , Zn each be distributed via some distribution D, but not necessarily

independently, such that D has the property that if Z ∼ D then there is a universal constant

c > 0 such that for every λ > 1 we have Pr [|Z| > cλ] < λ−p for some 0 < p ≤ 1. Note that

this is true of the p-stable distribution Dp. Fix any positive vector X ∈ Rn, and let Yi = ZiXi
for i ∈ [n]. Then for any λ ≥ 1, if 1− p > θ > 0 for some constant θ, then

Pr
[
‖Y ‖1 ≥ Cλ1/p‖X‖p

]
≤ 1
λ

otherwise

Pr
[
‖Y ‖1 ≥ Cλ1/p log(nλ)‖X‖p

]
≤ 1
λ

Where C > 0 is a fixed constant independent of λ, n, p.

Proof. We proceed similarly as in Lemma 4.3.3. For k ∈ Z, let Ik = {i ∈ [n]
∣∣∣ 2−k‖X‖p ≤

Yi ≤ 2−k+1‖X‖p}. Note that for any i ∈ [n]

Pr

i ∈ ⋃
k′≥k

Ik′

 ≤ Pr
[
Zi ≥ 2−k‖X‖p/Xi

]

≤ c2kp X
p
i

‖X‖pp
For some constant c > 0, where in the last inequality we used Proposition 4.3.1 for Dp (or the
fact that D has tails of order λ−p by assumption). Thus E

[∑
k′≥k |Ik′ |

]
≤ c2pk. Let E0 be the

178

Procedure for player j

k ← Θ(1/ε2)
ε′ ← Θ(ε δ1/p

log(n/δ))
δ ← 1/(200k)

1. Using shared randomness, choose sketching matrix S ∈ Rk×n of i.i.d. p-stable ran-
dom variables. Generate S up to precision η = poly(1/(n,m,M)), so that η−1S has
integral entries.

2. For each i ∈ [k], receive signed Morris counters yj1,i, yj2,i, . . . , yjt,i from the t ∈
{0, . . . ,m} children of node j in the prior layer.

3. Compute η−1〈Si,∗, Xj〉 ∈ Z, where Si,∗ is the i-th row of S, and run a new signed
Morris counter C on η−1〈Si,∗, Xj〉 with parameters (ε′, δ′).

4. Merge the signed Morris counters yj1,i, yj2,i, . . . , yjt,i, C into a counter yj,i.

5. Send the merged signed Morris counter yj,i to the parent of player j. If player j is the
root node C, then set Ci to be the estimate of the signed Morris counter yj,i, and return
the estimate

η ·median
{
|C1|
θp

, . . . ,
|Ck|
θp

}
Where θp is the median of the distribution Dp.

Figure 4.3: Multi-party Fp estimation protocol, p < 1

event that Ik = ∅ for all k ≤ −1
p

log(10cλ) for some sufficiently large constant c. By Markov’s
inequality, we have Pr [E0] ≥ 1 − 1

10λ . Now for any k ≥ 1
p

log(n2/λ), the contribution of any
coordinate of Yi to ‖Y ‖1 with i ∈ Ik is at most λ

n2‖X‖p, thus the total contribution of all such
items is at most λ

n
‖X‖p, which we can safely disregard. Finally, the expected contribution of the

coordinates Yi for i ∈ Ik with −d1
p

log(10cλ)e ≤ k ≤ d1
p

log(n2/λ)e is at most

E

 ∑
−d 1

p
log(10cλ)e≤k≤d 1

p
log(n2/λ)e

2−k+1‖X‖p|Ik|

 ≤ c
∑

−d 1
p

log(10cλ)e≤k≤d 1
p

log(n2/λ)e

2−k(1−p)+1‖X‖p

If p is constant bounded from 1, this sum is geometric and bounded above by

O
(
2log(10cλ)(1/p−1)+1‖X‖p

)
= O

(
(10cλ)1/p−1‖X‖p

)
179

otherwise we can upper bound each term by this quantity, giving a total bound of

O

(
(10cλ)1/p−1 log(nλ)

p
‖X‖p

)
= O

(
(10cλ)1/p−1 log(nλ)‖X‖p

)

where the equality holds because 1/p = Θ(1) if p is close to 1. In the first case, by Markov’s
inequality, we have

Pr

 ∑
−d 1

p
log(10cλ)e≤k≤d 1

p
log(n2/λ)e

2−k+1‖X‖p|Ik| ≥ 2(10cλ)1/p‖X‖p

 ≤ 1
2λ

Union bounding over the above event and E0, we obtain the desired result with probability at
least 1− (1

2λ + 1
10λ) > 1− 1

λ
in the case that p is constant bounded from 1. In the event that it is

not, Markov’s inequality gives:

Pr

 ∑
−d 1

p
log(10cλ)e≤k≤d 1

p
log(n2/λ)e

2−k+1‖X‖p|Ik| ≥ 2(10cλ)1/p log(nλ)‖X‖p

 ≤ 1
2λ

as needed. Applying the same union bound gives the desired result for p arbitrarily close or equal
to 1.

Theorem 32. For p ∈ (0, 1), there is a protocol for Fp estimation in the non-negative data

message passing model which succeeds with probability 2/3 and uses a total communication of

O(m
ε2

(log log(n)+log(1/ε))-bits, and a max-communication ofO(1
ε2

(log log(n)+log(1/ε))-bits.

The protocol requires a total of at most d rounds, where d is the diameter of the communication

topology G.

Proof. By Lemma 4.4.4, the Merging procedure has the effect that at the end, the player C has
a signed Morris counter I,D ∈ Z≥1, such that I is distributed as a Morris counter run on the
updates η−1∑

j:〈Si,∗,Xj〉≥0〈Si,∗, Xj〉, and D is distributed as a Morris counter run on the updates
η−1∑

j:〈Si,∗,Xj〉<0〈Si,∗, Xj〉. Then By Corollary 4.4.6, the estimate of this signed Morris counter
is a value Ĩ − D̃ such that

|(Ĩ − D̃)− η−1∑
j

〈Si,∗, Xj〉| ≤ ε′η−1∑
j

|〈Si,∗, Xj〉|

≤ ε′η−1
n∑
j=1
|Si,jXj|

(4.7)

180

holds with probability 1− δ. Call this event E1
i . Now by Lemma 4.4.7, with probability at least

1− δ, we have that
n∑
j=1
|Si,jXj| ≤ Cδ−1/p log(nδ)‖X‖p

for some constant C. Note that while Lemma 4.4.7 held for random variables Si,j that were not
generated to finite precision, note that generating up to precision η only changes each term in the
sum by at most ηM , and since ‖X‖p ≥ 1 (because X 6= 0, and if it was it could be tested with
O(1) bits of communication per player), this additive error can be absorbed into the constant
C. So call the event that this inequality holds E2

i , and let Ei be the event that both E1
i and E2

i

hold. Note Pr [Ei] > 1 − 2δ. We now condition on ∩ki=1Ei, which occurs with probability
1− 2kδ > 99/100.

Now, conditioned on ∩ki=1Ei, it follows that for each i ∈ [k], the center C has an estimate Ci
of η−1〈Si,∗,X〉 such that

|ηCi − 〈Si,∗,X〉| ≤ ε′
n∑
j=1
|Si,jXj|

≤ Cε′δ−1/p log(n/δ)‖X‖p
≤ ε‖X‖p/4

(4.8)

Now by [Ind06], setting k = Θ(1/ε2), if we define

F̃p = mediani∈[k]

{
|〈Si,X〉|

θp

}

then the bound
|F̃p − ‖X‖p| < (ε/2)‖X‖p

holds with probability at least 4/5. Since |ηCi−〈Si,∗,X〉| < (ε/4)‖X‖p for all i ∈ [k], it follows
that ∣∣∣∣∣η ·mediani∈[k]

{
|Ci|
θp

}
− ‖X‖p

∣∣∣∣∣ ≤ ε‖X‖p

with probability at least 1− (1/100 + 1/5) > 3/4, which completes the proof of correctness.

For message complexity, note that conditioned on ∩ki=1Ei, every Morris counter in question is
a (1+ε) relative error approximation of the quantity (insertions or deletions) that it is estimating.
Thus by Corollary 4.4.6, noting that at most poly(n,m,M) updates are every made to any Morris
counter, the space to store any Morris counter is O(log log(n) + log(1/ε)), which is an upper
bound on the size of any message in the protocol. Note that we can safely fail if any message

181

becomes larger than this threshold, since this would mean that ∩ki=1Ei failed to hold. The total
message complexity follows from the fact that each player sends at most one message during the
entire protocol, and the round complexity follows from the depth of the shortest path tree rooted
at the center C.

4.4.3 The Streaming Algorithm for Fp Estimation, p < 1

As discussed earlier, the insertion-only streaming model of computation is a special case of the
above communication setting, where the graph in question is the line graph, and each player
receives vector Xi ∈ Rn which is the standard basis vector ej ∈ Rn for some j ∈ [n]. This
immediately implies an improved streaming algorithm for insertion only Fp estimation in the
random oracle model. The only step remaining to fully generalize the result to the non-random
oracle streaming setting is an adequate derandomization of the randomness required to generate
the matrix S.

Our derandomization will follow from the results of [KNW10a], which demonstrate that, us-
ing a slightly different estimator known as the log-cosine estimator (discussed below), the entries
of each row Si,∗ can be generated with only Θ(log(1/ε)/ log log(1/ε))-wise independence, and
the seeds used to generate separate rows of Si,∗ need only be pairwise independent. Thus, storing
the randomness used to generate S requires only O(log(1/ε)

log log(1/ε) log(n))-bits of space.

We now discuss the estimator of [KNW10a] precisely. The algorithm generates a matri-
ces S ∈ R

k×n and S′ ∈ R
k′×n with k = Θ(1/ε2) and k′ = Θ(1), where each entry of

S,S′ is drawn from the p-stable distribution Dp. For a given row i of S, the entries Si,j are
Θ(log(1/ε)/ log log(1/ε))-wise independent, and for i 6= i′, the seeds used to generate {Si,j}nj=1

and {Si′,j}nj=1 are pairwise independent. S′ is generated with only Θ(1)-wise independence be-
tween the entries in a given row in S′, and pairwise independence between rows. The algorithm
then maintains the vectors y = SX and y′ = S′X throughout the stream, where X ∈ Zn≥0 is
the stream vector. Define y′med = median{|y′i|}k

′
i=1/θp, where θp is the median of the distribution

Dp ([KNW10a] discusses how this can be approximated to (1 ± ε) efficiently). The log-cosine
estimator R of ‖X‖p is then given by

R = y′med ·
(
− ln

(
1
k

k∑
i=1

cos
(

yi
y′med

)))

182

Theorem 33. There is a streaming algorithm for insertion only Fp estimation for any p ∈ (0, 1),

which outputs a value R̃ such that with probability at least 2/3, we have that

|R̃− ‖x‖p| ≤ ε‖x‖p

where x ∈ Rn is the state of the stream vector at the end of the stream. The algorithm uses

O((1
ε2

(log log(n) + log(1/ε)) + log(1/ε)
log log(1/ε) log(n))-bits of space.

Proof. In [KNW10a], they first condition on the fact that y′med is a constant factor approximation
of ‖x‖p. Namely, they condition on the event that |y′med − ‖x‖p| ≤ ‖x‖p/10, which occurs with
probability 7/8 for sufficiently large k′ = Θ(1) (this is just the standard p-stable median estimator
of Indyk [Ind06]). Note that y′ can be computed exactly by our algorithm using only O(log(n))
bits of space. Using our protocol from Theorem 32, applied to the line graph on m updates
(corresponding to a streaming algorithm), it follows that we can approximate y by a vector ỹ ∈
R
k such that |ỹ − y|∞ < ε′‖x‖p with probability 99/100 (here we have boosted the probability

by a constant by running Θ(1) copies in parallel and taking the median for each coordinate),
for some sufficiently small ε′ = Θ(ε), and such that computing and storing ỹ requires only
O(k(log log(n)+ log(1/ε)))-bits of space. Since cosine has bounded derivatives everywhere, we
have

∣∣∣∣∣ ỹiy′med
− yi
y′med

∣∣∣∣∣ ≤ ε′‖x‖p
y′med

= O(ε′)

so ∣∣∣∣∣cos
(

ỹi
y′med

)
− cos

(
yi
y′med

)∣∣∣∣∣ < O(ε′)

for all i ∈ [k]. This gives

∣∣∣∣∣1k
k∑
i=1

cos
(

ỹi
y′med

)
− 1
k

k∑
i=1

cos
(

yi
y′med

)∣∣∣∣∣ = O(ε′)

Furthermore, conditioned on the success of the estimator of [KNW10a] (which occurs with
probability 3/4, and includes the conditioning on the event that y′med = Θ(‖x‖p)), we have

| 1
k

∑k
i=1 cos

(
yi

y′
med

)
| = Θ(1) (see Lemma 2.6 in [KNW10a]), and since ln(·) has bounded deriva-

tives for values Θ(1), it follows that if

R̃ = y′med ·
(
− ln

(
1
k

k∑
i=1

cos
(

ỹi
y′med

)))

183

then |R̃− R| < O(ε′y′med) = O(ε′‖x‖p). Taking k = Θ(1/ε2) with a small enough constant, we
have |R−‖x‖p| < ε‖x‖p/2, and setting ε′ = Θ(ε) small enough, we obtain |R̃−‖x‖p| < ε‖x‖p
as needed.

4.5 Entropy Estimation

In this section, we show how our results imply improved algorithms for entropy estimation in
the message-passing model. Recall that, for a vector X ∈ Rn, the Shannon entropy is given by
H = ∑n

i=1
|Xi|
‖X‖1 log(‖|X‖1|Xi|).

While we primarily have focused on the standard p-stable distribution Dp from Definition
2.2.6 in this thesis, which is the distribution with characteristic function E

[
eitZ

]
= e−|t|

p , in
this section we will utilize a different family of p-stable distributions. Specifically, we follow
the approach taken by [CC13, LZ11, HNO08a, HNO08b] for entropy estimation in data streams,
which is to use maximally-skewed stable distributions. Formally, a maximally skewed stable
distribution is a stable distribution with skewness parameter β ∈ {1,−1} in the more general
parameterization of stable distributions from Definition 2.2.5. For convince, we restate this more
general definition of stable distributions below.

Definition 2.2.5 (Stable distribution, general). A random variable X is said to be p-stable if it

is drawn from the distribution S(p, β, γ, δ) for some p ∈ (0, 2], β ∈ [−1, 1], γ > 0, and δ ∈ R,

where S(p, β, γ, δ) is defined via its characteristic function:

E
Z∼S(p,β,γ,δ)

[
e−itZ

]
=

exp
(
−γp|t|p

[
1− iβ tan(πp2)sign(t)

]
+ iδt

)
if p 6= 1

exp
(
−γ|t|

[
1 + iβ 2

π
sign(t) log(|t|)

]
+ iδt

)
if p = 1

where sign(t) ∈ {1,−1} is the sign of a real t ∈ R.

In what follows, we will utilize the maximally-skewed 1-stable distribution S(1,−1, π/2, 0),
along with the algorithm of [CC13], which is given formally in Figure 4.4. The guarantee of the
algorithm is given in Theorem 34.

Theorem 34 ([CC13]). The above estimate H̃ satisfies |H̃ − H| < ε with probability at least

9/10.

184

Sketching Algorithm for Entropy Estimation

Input: X ∈ Rn

1. Generate S ∈ Rk×n for k = Θ(1/ε2) of i.i.d. S(1,−1, π/2, 0) random variables to
precision η = 1/poly(M,n).

2. Compute SX ∈ Rk.

3. Set yi ← (SX)i/‖X‖1 for i ∈ [k]

4. Return

H̃ = − log
(

1
k

k∑
i=1

eyi
)

Figure 4.4: Entropy Estimation algorithm of [CC13]

Lemma 4.5.1. Fix 0 < ε0 < ε. Let S ∈ R
k×n with k = Θ(1/ε2) be a matrix of i.i.d.

S(1,−1, π/2, 0) random variables to precision η = 1/poly(M,n). Then there is a protocol

in the message passing model that outputs Y ∈ Rk at a centralized vertex with ‖Y − SX‖∞ ≤
ε0‖X‖1 with probability 9/10. The protocol uses a total communication of O(m

ε2
(log log(n) +

log(1/ε0))-bits, and a max-communication of O(1
ε2

(log log(n) + log(1/ε0)))-bits.

Proof. Note that in the proof of Theorem 32, the only property of the distribution of S that
was needed to obtain a ε0‖X‖1 additive error estimate of 〈Si,∗,X〉 = (SX)i for every i ∈ [k]
was that Lemma 4.4.7 hold for this distribution. Namely, we need the property that if Z ∼
S(1,−1, π/2, 0), then there is a constant c such that for every λ ≥ 1 we have Pr [|Z| ≥ cλ] <
λ−1. This tail bound is indeed true for 1-stable distributions of any skewness (Theorem 1.12
[Nol]). Thus the conditions of Lemma 4.4.7 hold for S(1,−1, π/2, 0), and the result follows
from the proof of Theorem 32.

Theorem 35. There is a multi-party communication protocol in the non-negative data message

passing model that outputs a ε-additive error of the Shannon entropy H . The protocol uses a

max-communication of O(1
ε2

(log log(n) + log(1/ε))-bits.

Proof. By Lemma 4.5.1, the central vertex C (as in Section 4.3.1) can obtain a vector Y ∈ Rk

with ‖Y − SX‖∞ ≤ ε0‖X‖1 with probability 9/10. By Corollary 4.4.5, there is also a multi-
party protocol which gives an estimate R ∈ R such that R = (1 ± ε0)‖X‖1 with probability
9/10, where each player communicates once, sending at most O(log log(n) + log(1/ε))) bits,
and the estimate is held at C at the end. Now note that each (SX)i/‖X‖1 is distributed as

185

S(1,−1, π/2, H), where H is the Shannon entropy of X ([CC13] Lemma 2.2 or [Nol] Proposi-
tion 1.17).

By anti-concentration of all stable random variables, we have that if Z ∼ S(p, β, γ, δ) then
Pr [|Z| < ε0γ] < Cε0 for some constant C. Thus

Pr [|(SX)i| < ε0‖X‖1] ≤ Cε0

for some constant C, so we can condition on the event E that |(SX)i| > ε0/ε
3‖X‖1 for all

i ∈ [k], which occurs with probability at least 99/100 after a union bound and setting ε0 = O(ε6)
sufficiently small. Given this, we have Yi = (1 ± ε3)(SX)i for all i ∈ [k]. Setting Yi = Yi/R

for i ∈ [k], we obtain Yi = (1± O(ε3))yi, where yi = (SX)i/‖X‖1 as in Figure 4.4. Moreover,
we can condition on the event that |(SX)i| < C ′/(ε2)‖X‖1 for all i ∈ [k], which occurs with
probability at least 99/100 after a union bound and applying the tail bounds for 1-stable random
variables (Theorem 1.12 [Nol]). Given this, we have |yi| = O(1/ε2) for all i ∈ [k], so eY i =
eyi±O(ε3)yi = eyi±O(ε) = (1±O(ε))eyi . Thus

− log
(

1
k

k∑
i=1

eYi
)

= − log
(

(1±O(ε))1
k

k∑
i=1

eyi
)

= − log
(

1
k

k∑
i=1

eyi
)

+O(ε)

= H +O(ε)

(4.9)

Where in the first equality, we use the fact that each summand
∑k
i=1 e

Yi is non-negative, so∑k
i=1(1±O(ε))eyi = (1±O(ε))∑k

i=1 e
yi , and the last inequality follows from applying Theorem

34. The central vertex C can then output− log
(

1
k

∑k
i=1 e

Yi
)

as the estimate, which completes the
proof.

Since our protocol does not depend on the topology of G, a direct corollary is that we obtain
a Õ(ε−2)-bits of space streaming algorithm for entropy estimation in the random oracle model.
Recall that the random oracle model allows the streaming algorithm query access to an arbitrarily
long tape of random bits. This fact is used to store the random sketching matrix S.

Theorem 36. There is a streaming algorithm for ε-additive approximation of the empirical

Shannon entropy H(x) of a vector x ∈ Rn presented in an insertion only stream in the ran-

dom oracle model. The algorithm succeeds with probability 3/4, and the space required is

O(1
ε2

(log log(n) + log(1/ε)) bits.

186

4.6 Approximate Matrix Product in the Message Passing Model

In this section, we consider the approximate regression problem in the message passing model
over a topology G = (V,E). Here, instead of vector valued inputs, each player is given as input
two integral matrices Xi ∈ {0, 1, 2, . . . ,M}n×t1 , Yi ∈ {0, 1, 2, . . . ,M}n×t2 . It is generally
assumed that n >> t1, t2, so the matrices Xi, Yi are rectangular. Let X = ∑m

i=1 Xi and Y =∑
i Yi. The goal of the players is to approximate the matrix productX TY ∈ Rt1×t2 . Specifically,

at the end of the protocol one player must output a matrix R ∈ Rt1×t2 such that

‖R −X TY‖F ≤ ε‖X‖F‖Y‖F

We now describe a classic sketching algorithm which can be used to solve the approximate
regression problem. The algorithm is relatively straightforward: it picks a random matrix S ∈
R
k×n. For instance, S can be a matrix of i.i.d. Gaussian variables with variance 1/k, or even the

count-sketch matrix from Section 4.3.2. It then computes SX and SY , and outputs (SX)TSY .
In this work, we will use a Gaussian sketch S. The following fact about such sketches will
demonstrate correctness.

Lemma 4.6.1 ([KN14]). Fix matrices X ∈ Rn×t1 ,Y ∈ Rn×t2 and 0 < ε0. Let S ∈ Rk×n be

a matrix of i.i.d. Gaussian random variables with variance 1/k, for k = Θ(1/(δε20)). Then we

have

Pr
[
‖X TSTSY −X TY‖F ≤ ε0‖X‖F‖Y‖F

]
≥ 1− δ

Moreover, with the same probability we have ‖SX‖F = (1 ± ε0)‖X‖F and ‖SY‖F = (1 ±
ε0)‖Y‖F

Proof. We first claim that dense Gaussian matrices S ∈ Rk×n satisfy the (ε, δ, 2)-JL moment
property (Definition 20 [KN14]) with k = Θ(1/(δε2)). To see this, note that

‖Sx‖2
2 =

k∑
i=1

g2
i ‖x‖2

2/k

by 2-stability of Gaussians, where gi’s are i.i.d. Gaussian. Thus k‖Sx‖2
2 is the sum of squares

of k i.i.d. normal Gaussians, and therefore has variance 3k (since Gaussians have 4-th moment
equal to 3). It follows that the variance of ‖Sx‖2

2, which is precisely E [(‖Sx‖2
2 − 1)2], is Θ(1/k).

Setting k = 1/(δε2), it follows that S has the (ε, δ, 2)-JL moment property. So by Theorem 21 of
[KN14], we obtain the approximate matrix product result.

187

Recall now by Lemma 4.3.8, with probability 1 − exp(−1/δ) for a fixed i, j, taken over the
randomness used to draw a row Si,∗ of S, we have that the central vertex C can recover a value
ri,jC such that E

[
ri,jC
]

= (SX)i,j and Var(ri,jC) ≤ (ε/δ)2‖X ∗,j‖2, where X ∗,j is the j-th column

of X . Setting δ = Ω(log n), we can union bound over this variance holding for all i, j. Recall
the δ here just goes into the log(1/δ) communication bound of the algorithm. Altogether, the
central vertex obtains a random matrix RTX ∈ Rk×t1 such that E

[
RTX

]
= (SX) and

E
[
‖RTX − SX‖2

F

]
≤ k(ε/δ)2

t1∑
j=1
‖X ∗,j‖2

Setting ε = poly(1/k) = poly(1/ε0) small enough, we obtain

E
[
‖RTX − SX‖2

F

]
≤ (ε0/δ)2‖X‖F

Similarly, we can obtain a RTY at the central vertex C, such that

E
[
‖RTY − SY‖2

F

]
≤ (ε0/δ)2‖Y‖F

Let ∆TX = RTX − SX and ∆TY = RTY − SY . By Chebyshev’s inequality, we have
‖∆TX‖F ≤ ε20‖X‖F and ‖∆TY‖F ≤ ε20‖Y‖F with probability 1− δ, so

‖(RTX)TRTY −X TY‖F = ‖X TSTSY + (∆TX)TSY +X TST∆TY −X TY‖F
≤ ‖X TSTSY −X TY‖F + ‖X TST∆TY‖F + ‖(∆TX)TSY‖F
≤ ε0‖X‖F‖Y‖F + ‖X TST‖F‖∆TY‖F + ‖(∆TX)T‖F‖SY‖F
≤ ε0‖X‖F‖Y‖F + 2ε20‖Y‖F‖X‖F
≤ O(ε0)‖X‖F‖Y‖F

(4.10)

where we applied Cauchy-Schwartz in the second inequality, giving the desired result. Taken
together, this gives the following theorem.

Theorem 37. Given inputs X = ∑m
i=1 Xi,Y = ∑m

i=1 Yi as described above, there is a protocol

which outputs, at the central vertex C, a matrix R ∈ Rt1×t2 such that with probability 3/4 we

have

‖R −X TY‖F ≤ ε‖X‖F‖Y‖F

188

The max communication required by the protocol isO (ε−2(t1 + t2)(log log n+ log 1/ε+ log d)),

where d is the diameter of the communication topology G.

Proof. Correctness follows from the above discussion. The communication complexity bound is
nearly identical to the proof of Theorem 30. First note that for each coordinate of SX , exactly
one message is sent by each player. Set K = (Mnm)2/γ, where γ = (εδ/(d log(nm)))C is
the rounding parameter as in Lemma 4.3.8. We can condition on the fact that |Si,j| ≤ cK3 for
all i, j and for some constant c > 0, which occurs with probability at least 1 − 1/K2. Now by
Lemma 4.3.8, using the notation of Section 4.3.1, for a fixed coordinate of SX , we have that
E [e2

i] ≤ (j + 1)γ2
0
∑
v∈Ti |〈Qv, Z〉|2 ≤ K5, where ei = ∑

u∈Ti Xu − ri, where ri is the message
sent by the i-th player that coordinate of SXi. By Markov’s inequality with probability 1−1/K2

we have |ei| < K4. Thus |ri| ≤ K6 for all i.

Now for any ri for player i in layer ` with |ri| < 1/(mK)d+3−`, we can simply send 0 instead
of ri. Taken over all the potential children of a player j in layer ` + 1, this introduces a total
additive error of 1/Kd+3−` in xj (where xj is as in Figure 4.2). Now if xj originally satisfies
|xj| > 1/Kd+2−`, then the probability that this additive error of 1/Kd+3−` changes the rounding
result rj = Γ(xj) is O(1/K), and we can union bound over all m vertices that this never occurs,
and then union bound over all t1k < n2 coordinates of SX . Thus, the resulting rj is unchanged
even though xj incurs additive error. Otherwise, if |xj| ≤ 1/Kd+2−`, then since Player j is in
layer (`+ 1), we round their sketch xj down to 0 anyway. The final result is an additive error of
at most 1/K2 to rC . Note that we can tolerate this error, as it is only greater than γ‖X‖p when
X = 0, which is a case that can be detected with O(1) bits of communication per player (just
forwarding whether their input is equal to 0). With these changes, it follows that 1/(mK)d+3 ≤
rj ≤ K6 for all players j. Thus each message rj can be sent in O(log(log((mK)d+3))) =
O(log log(n) + log(d) + log(1/ε)) as needed, and the same bound holds for estimating SY .

189

4.7 Lower Bounds

4.7.1 Sketch of the Lower Bound for Fp Estimation in the One-Way Coor-
dinator Model

We now sketch the proof of the Ω(m/ε2) lower bound that was remarked upon at the beginning
of the Chapter. First, consider the following problem Alice is given a vector x ∈ Rt, and bob
y ∈ Rt, such that xi ≥ 0, yi ≥ 0 for all i ∈ [t]. Alice and Bob both send a message to Eve, who
must then output a (1±ε) approximation to ‖x+y‖p, for p ∈ (0, 2]\{1}. Via a reduction from the
Gap-Hamming communication problem, there is an Ω(1/ε2)-bit communication lower bound for
this problem [Woo04]. More specifically, there is a distribution D over inputs (x, y) ∈ Rt ×Rt,
such that any communication protocol that solves the above problem on these inputs correctly
with probability 3/4 must send Ω(1/ε2) bits.

Now consider the one-way coordinator model, where there are m players connected via an
edge to a central coordinator. They are given inputs x1, . . . , xm, and must each send a single
message to the coordinator, who then must estimate ‖x‖p = ‖x1 + x2 + · · · + xm‖p. Consider
two distributions, P1, P2 over the inputs (x1, . . . , xm). In the first, two players i, j are chosen
uniformly at random, and given as inputs (x, y) ∼ D, and the rest of the players are given the
0 vector. In P2, we draw (x, y) ∼ D, and every player is given either x or y at random. The
players are then either given input from P1 or P2, with probability 1/2 for each. In the first
case, if the two players with the input do not send Ω(1/ε2) bits, then they will not be able to
solve the estimation problem via the 2-party lower bound. However, given only their input, the
distributions P1 and P2 are indistinguishable to a given player. So the players cannot tell if the
input is from P1 or P2, so any player that gets an non-zero input must assume they are in case
P1 if they want to solve the communication problem with sufficiently high constant probability,
and send Ω(1/ε2) bits of communication. This results in Ω(m/ε2) total communication when the
input is from P2, which is the desired lower bound.

4.7.2 Lower Bound for Entropy Approximation in Insertion-Only Streams

We now prove the Ω(1/ε2)-bits of space lower bound for any streaming algorithm that produces
an approximation H̃ such that |H̃−H| < εwith probability 3/4. HereH is the empirical entropy
of the stream vector X , namely H = H(X) = −∑n

i=1
|Xi|
F1

log |Xi|
F1

. To prove the lower bound,
we must first introduce the GAP-HAMDIST problem. Here, there are two players, Alice and

190

Bob. Alice is given x ∈ {0, 1}t and Bob receives y ∈ {0, 1}t. Let ∆(x, y) = |{i | xi 6= yi}| be
the Hamming distance between two binary strings x, y. Bob is promised that either ∆(x, y) ≤
t/2 −

√
t (NO instance) or ∆(x, y) ≥ t/2 +

√
t (YES instance), and must decide which holds.

Alice must send a single message to Bob, from which he must decide which case the inputs are
in. It is known that any protocol which solves this problem with constant probability must send
Ω(t)-bits in the worst case (i.e., the maximum number of bits sent, taken over all inputs and
random bits used by the protocol).

Proposition 4.7.1 ([Woo04, JKS08]). Any protocol which solves the GAP-HAMDIST problem

with probability at least 2/3 must send Ω(t)-bits of communication in the worst case.

We remark that while a Ω(1/ε2) lower bound is known for multiplicative-approximation of
the entropy, to the best of our knowledge there is no similar lower bound written in the literature
for additive approximation in the insertion only model. We note that for the turnstile model, a
lower bound of Ω̃(1/ε2 log(n)) for additive approximation is given in [KNW10a]. The proof of
the following theorem is an adaptation of the proof in [KNW10a], where we restrict the hard
instance to have no deletions.

Theorem 38. Any algorithm for ε-additive approximation of the entropy H of a stream, in the

insertion-only model, which succeeds with probability at least 2/3, requires space Ω(ε−2)

Proof. Given a x, y ∈ {0, 1}t instance of GAP-HAMDIST, for t = Θ(1/ε2), Alice constructs a
stream on 2t items. Let x′ be the result of flipping all the bits of x, and let x′′ = x ◦ 0t + 0t ◦ x′ ∈
{0, 1}2t where ◦ denotes concatenation. Define y′, y′′ similarly. Alice then inserts updates so
that the stream vector X = x′′, and then sends the state of the streaming algorithm to Bob, who
inserts his vector, so that now X = x′′ + y′′. We demonstrate that the entropy of H differs by an
additive term of at least ε between the two cases. In all cases case, we have

H = t−∆
t

log(t) + ∆
2t log(2t)

= log(t) + ∆
(

2 log(t)− log 2t
2t

) (4.11)

We can assume t ≥ 4, and then 2 log(t) − log(2t) = C > 0, where C is some fixed value
known to both players that is bounded away from 0. So as ∆ increases, the entropy increases.

191

Thus in a YES instance, the entropy is at least

H ≥ log(t) + (t/2 +
√
t)C2t

= log(t) + (1/4 + 1/2
√
t)C

= log(t) + C/4 + Θ(ε)

(4.12)

In addition, in the NO instance, the entropy is maximized when ∆ = t/2−
√
T . so we have

H ≤ log(t) + (t/2−
√
t)C2t

= log(t) + C/4−Θ(ε)
(4.13)

Therefore, the entropy differs between YES and NO instances by at least an additive Θ(ε) term.
After sufficient rescaling of ε by a constant, we obtain our Ω(t) = Ω(1/ε2) lower bound for
additive entropy estimation via the linear lower bound for GAP-HAMDIST from Proposition
4.7.1.

192

Chapter 5

Sampling from Distributed Streams

In this chapter, we consider the fundamental problem of maintaining a weighted random sample
from a data stream that is partitioned into multiple physically distributed streams. This task
generalizes the classic reservoir sampling problem [Knu97b, Vit85a] from a centralized to a
distributed setting. The results of this chapter are drawn from a joint work with Gokarna Sharma,
Srikanta Tirthapura, and David P. Woodruff [JSTW19].

Specifically, we consider the continuous, distributed, streaming model, also known as the
distributed functional monitoring model, first introduced in [CMYZ12]. In this model, there are
k physically distributed sites, numbered 1 through k. Each site i receives a local stream of data
Si. The sites are connected to a central coordinator, to which they can send and recieve messages.
Queries are posed to the coordinator, asking for an aggregate over S = ∪ki=1Si, the union of all
streams observed so far. We assume that there is a total ordering over the updates in S, which
agrees with the ordering of each individual sequence of updates Si. In other words, all updates
(e, w) which arrives at one of the sites can be though of as arriving at a distinct moment in time,
which induces the ordering over S .

Since, oftentimes, the predominant bottleneck in distributed data processing is the network
bandwidth, it is highly desirable to have algorithms that communicate as few messages as pos-
sible. Thus, the goal of the distributed streaming model is to minimize the message complexity,
which is the total number of messages sent over the network over the execution of the protocol.1

As we have already seen, many streaming tasks can be reduced to sampling from the un-
derlying data. For instance, a search engine that uses multiple distributed servers can maintain

1Note that we do not assume a bound on the size (bit complexity) of any given message.

193

the set of “typical” queries posed to it through continuously maintaining a random sample of all
the queries seen thus far. Another application is network monitoring, one of the primary moti-
vations for the streaming model, which deploys multiple monitoring devices within a network.
Each device receives extremely high rate data streams, and one of the most commonly desired
aggregates is a random sample over all data received so far [DLT04, DLT03b]. It follows that
having extremely efficient sampling algorithms is a invaluable primitive for more complicated
data mining tasks.

The goal of a distributed weighted sampling protocol is for the coordinator to continuously
maintain a weighted random sample of size s from S. Here, a single weighted random sample
is item (e, w) sampled with probability proportional to w. There are two important variations of
weighted sampling: sampling with replacement (SWR) and sampling without replacement
(SWOR). In the latter, once a item is sampled, it is removed from the set and cannot be sampled
again. Thus, for streams containing a skewed distribution of weights, such as a stream with
several heavy hitters, the resulting samples can be drastically different.

The problem of unweighted distributed sampling, where all weights are equal, is well studied
and admits tight upper and lower bounds on message complexity [TW11, CMYZ12, CTW16].
Moreover, for weighted SWR, there is a simple (and tight) reduction to the unweighted case.
Thus, for distributed SWR, the complexity of the problem is understood both for the weighted
and unweighted cases. However, the same is not true of weighted SWOR. Moreover, in many
applications the stream has only a few heavy items which may dominate a random sample when
chosen with replacement. Weighted sampling without replacement (weighted SWOR) eludes this
issue, since such heavy items can be sampled at most once. The design of efficient, distributed
weighted SWOR algorithms is therefore a critical task for many data processing applications.

The main result of this chapter is the development of the first message-optimal algorithm for
weighted SWOR from a distributed stream, which additionally has optimal space and time com-
plexity. As an application of our sampler, we provide the first distributed streaming algorithm
with small message complexity for continuously monitoring heavy hitters with a residual error
guarantee, and prove a nearly matching lower bound (tight up to log(1/ε) factors). Here, the
residual error guarantee allows one identify heavy hitters in the residual stream after the largest
elements are removed, which is especially useful for streams where the weight of items is highly
skewed [BICS09]. Finally, we consider the well-studied problem of L1 tracking (or count track-
ing) in distributed streams,which requires the coordinator to maintain a (1± ε)-approximation of
the total weight of all updates seen so far. We introduce an improved algorithm and lower bound
for the problem, which resolves the space complexity of this fundamental problem

194

Highlighted Contributions

The materials from this chapter are drawn from our paper [JSTW19]. The main contributions
therein are as follows:

• We design the the first message-optimal algorithm for weighted SWOR from a distributed
stream, which uses an optimal expectedO

(
k log(W/s)

log(1+k/s)

)
messages between the sites and the

coordinator, and continuously maintains at every point in the stream a weighted SWOR of
size s from the items seen so far (Section 5.4).

• We design the first algorithm for distributed monitoring of heavy hitters with residual error,
which uses an expected O

(
k log(W)

log(k) + log(ε−1) log(W)
ε

)
messages. We also prove that our

algorithm is nearly optimal, by deriving a Ω
(
k log(W)

log(k) + log(W)
ε

)
lower bound (Section 5.5).

• We resolve the message complexity of L1 tracking in distributed streams, by providing
both improved upper and lower bounds (Section 5.6).

5.1 Background

We begin by formalizing the distributed weighted random sampling problem.

Definition 5.1.1. Fix k streams S1, . . . ,Sk, each consisting of a sequence of items of the form

(e, w) where e is an item identifier and w ∈ R>0 is a positive weight. Let S = ∪ki=1Si, let n =
|S|, and fix a sample size s ≤ n. In the distributed weighted random sampling problem, the task

is for the coordinator to continuously maintain, at every time step τ , a weighted random sample

of size min{s, τ} from S. Note that the same identifier e can occur multiple times, perhaps in

different streams and with different weights, and each such occurrence is to be sampled as if it

were a different item.

We consider two variations of weighted random sampling – sampling with replacement and
sampling without replacement. In what follows, a single weighted random sample from S is
defined to be an item chosen from S where the probability of choosing item (e, w) is proportional

to w, i.e., equal to w∑
(e′,w′)∈S w

′ .

Definition 5.1.2. A weighted random sample without replacement (weighted SWOR) from S is

a set S generated according to the following process. Initially S is empty. For i from 1 to s, a

195

single weighted random sample is chosen from (S \ S) and added to S.

Definition 5.1.3. A weighted random sample with replacement (weighted SWR) from S is a set

S generated according to the following process. Initially S is empty. For i from 1 to s, a single

weighted random sample is chosen from S and added to S.

Definition 5.1.4. A distributed streaming algorithm P is a weighted sampler without (with) re-

placement if for each t > 0, the coordinator maintains a set S of size min{t, s} such that

S is a weighted random sample chosen without (with) replacement from all items seen so far,

{(e1, w1), . . . , (et, wt)}.

Distributed random sampling generalizes the classic reservoir sampling problem [Knu97b,
Vit85a] from a centralized to a distributed setting. Random sampling also serves as a build-
ing block in other aggregation tasks, such as estimation of the number of distinct elements
[CG05, CMY11] and identifying heavy hitters [BO03, KCR06, MSDO05, YZ13]. Distributed
random sampling has also been used in approximate query processing in big data systems such
as BlinkDB [AMP+13]. The problem of unweighted distributed sampling, where all weights
are equal, is well studied and admits tight upper and lower bounds on message complexity
[TW11, CMYZ12, CTW16]. However, prior to our work [JSTW19], the problem of weighted
SWOR fromk distributed streams had not been studied, though there is prior work in the central-
ized setting [ES06, BOV15].

Challenges. We remark that designing a message-efficient distributed sampler is a non-trivial
task. One challenge is that the state of the system is distributed across multiple sites. It is not pos-
sible to keep the distributed state tightly synchronized, since this requires a significant message
overhead. Since the states of the sites are not synchronized with the coordinator, sites may send
updates to the coordinator even though the sample at the coordinator does not change. A sec-
ond challenge is that the traditional metrics for a centralized sampling algorithm, such as space
complexity and time per item, do not affect the message complexity of a distributed algorithm.
For instance, a centralized algorithm that uses O(1) update time and optimal O(s) space need
not lead to a distributed algorithm with optimal messages, since the number of messages sent de-
pends on how many times the random sample changes according to the views of the sites and the
coordinator. Finally, we emphasize the fact that, in Definition 5.1.4, the protocol must maintain
a weighted SWOR at all times in the stream. There is no notion of failure in the definition of
a weighted sampler – the protocol can never fail to maintain the sample S. These two features
make the problem substantially more challenging.

196

Contributions of this Chapter

The main contribution of this Chapter is the design of the first message-optimal algorithm for
weighted SWOR from a distributed stream, which additionally has optimal space and time com-
plexity. In what follows, recall that k is the number of sites (and thus the number of streams Si),
s is the desired sample size, and define W = ∑k

i=1
∑

(e,w)∈Si w to be the total weight received
across all sites.

•We present an algorithm for weighted SWOR that achieves an optimal expected message com-
plexity ofO

(
k log(W/s)

log(1+k/s)

)
. The algorithm uses an optimal Θ(1) space at each site, and an optimal

Θ(s) space at the coordinator. The update time of our algorithm is also optimal: Θ(1) for a site to
process an update, and O

(
k log(W/s)

log(1+k/s)

)
total runtime at the coordinator. This algorithm is the first

message-optimal algorithm for distributed weighted SWOR. We note that a message-efficient
algorithm for weighted SWR follows via a reduction to the unweighted case, and obtaining an
algorithm for SWOR is significantly harder, as in Section 5.2. A crucial technique used in the
development of this algorithm is the precision sampling framework [AKO11, JW18b], which is
further developed and central to the perfect Lp sampler developed in Chapter 3.

• As an application of our weighted SWOR, we provide the first distributed streaming algo-
rithm with small message complexity for continuously monitoring heavy hitters with a residual

error guarantee. This allows us to identify heavy hitters in the residual stream after extremely
heavy elements are removed. A residual error guarantee is stronger than the guarantee provided
by `1 heavy hitters, and is especially useful for streams where the weight of items is highly
skewed [BICS09]. The expected message complexity of our algorithm is:

O

(
k log(W)

log(k) + log(ε−1) log(W)
ε

)

We prove that our algorithm is nearly optimal, by also giving a

Ω
(
k log(W)

log(k) + log(W)
ε

)
)

lower bound, which is tight up to a log(1/ε) factor in the second term.

•We demonstrate another application of our sampling algorithms to the well-studied problem of
L1 tracking (or count tracking) in distributed streams, which requires the coordinator to maintain
a (1 ± ε) relative error approximation of the total weight seen so that at any given time, with

197

constant probability, the estimate is correct.

For the case k ≥ 1/ε2, the best known upper bound was O(k logW) messages in expectation
[HYZ12]. Our algorithm for L1 tracking uses

O

(
k log(W)

log(k) + log(εW)
ε2

)

messages in expectation, which improves on the best known upper bound when k ≥ 1/ε2. In this
setting, we also improve the lower bound from Ω(k) to Ω(k log(W)

log(k)).

For the case k ≤ 1/ε2, matching upper and lower bounds of Θ(
√
k
ε

logW) were known
[HYZ12]. When k ≥ 1/ε2, the lower bound of [HYZ12] becomes Ω(log(W)/ε2). So if k ≥ 1/ε2

and k log(W)
log(k) < log(W)/ε2, our upper bound is O(log(W)/ε2), which is tight, and otherwise

our upper bound is O(k log(W)/ log(k)), which is also tight. Thus, combined with the upper
and lower bounds of [HYZ12], our results close the complexity of the distributed L1 tracking
problem.

Roadmap. We present additional preliminaries and basic results in Section 5.3, followed by an
optimal algorithm for weighted SWOR in Section 5.4, applications to residual heavy hitters and
lower bounds in Section 5.5, and applications to L1 tracking and lower bounds in Section 5.6.

Other Work on Basic Random Sampling in Streams

Random sampling from a stream is a fundamental problem and there has been substantial prior
work on it. The reservoir sampling algorithm (attributed to Waterman [Knu97b]) has been known
since the 1960s. There has been much follow-up work on reservoir sampling including methods
for speeding up reservoir sampling [Vit85a], sampling over a sliding window [BOZ12, GT02,
XTB08, BDM02, GL08], and sampling from distinct elements in data [GT01, Gib01].

The sequential version of weighted reservoir sampling was considered by Efraimidis and
Spirakis [ES06], who presented a one-pass O(s) algorithm for weighted SWOR. Braverman et
al. [BOV15] presented another sequential algorithm for weighted SWOR, using a reduction to
sampling with replacement through a “cascade sampling” algorithm. Unweighted random sam-
pling from distributed streams has been considered in prior works [CMYZ12, CTW16, TW11],
which have yielded matching upper and lower bounds on sampling without replacement. Contin-
uous random sampling for distinct elements from a data stream in a distributed setting has been
considered in [CT15].

198

There has been a significant body of research on algorithms and lower bounds in the contin-
uous distributed streaming model. This includes algorithms for frequency moments, [CMY11,
CG05], entropy estimation [ABC09b, CZ17], heavy hitters and quantiles [YZ13], distributed
counts [HYZ12], and lower bounds on various statistical and graph aggregates [WZ17].

5.2 Overview of the Sampling Algorithm and Techniques

For the problem of sampling with replacement, there is a relatively straightforward reduction
from the weighted to the unweighted case, which we elaborate on in Section 5.3.2. The reduction
involves duplicating a item (e, w) a total ofw times into unweighted updates, and does not require
an increase in message complexity. On the other hand, there are inherent difficulties in attempting
to carry out a similar reduction for sampling without replacement, which we will now discuss.

On the Difficulty of a Reduction from Weighted SWOR to Unweighted SWOR: We now
examine the difficulties which arise when attempting to reduce the problem of weighted SWOR
to unweighted SWOR. We consider the following natural candidate reduction. Given a weighted
stream of items S = {(ei, wi)|i = 1 . . . n}, consider an unweighted stream S ′ where for each
(ei, wi) ∈ S , there are wi copies of ei in S ′. Note that S ′ can be constructed in a streaming
manner as items of S are seen.

Let S ′ be an unweighted SWOR of s items from S ′. We remark that if S ′ consists of s distinct

identifiers, then those distinct identifiers are in fact a weighted SWOR of S. The difficulty
of using this reduction is that of ensuring s distinct items within S ′. One could consider a
method that maintains an unweighted SWOR of size greater than s in S ′, expecting to get at
least s distinct identifiers among them. However, this is not straightforward either, due to the
presence of heavy-hitters (items with very large weight) which may contribute to a large fraction
of the total weight in S. For instance, if there are s/2 items that contribute to a more than
1 − 1/(100s) fraction of the total weight within S, then S ′ is likely to contain only identifiers
corresponding to these items. This makes it very unlikely that S ′ has s distinct identifiers, even
if the size of S ′ is much larger than s. If the number of distinct items in S ′ falls below s, then
one could invoke a “recovery” procedure that samples further items from the stream to bring
the sample size back to s, but this itself will be a non-trivial distributed algorithm. Moreover,
re-initializing or recovering the algorithm would be costly in terms of message complexity, and
introduce unintended conditional dependencies into the distribution of the output. Note that one
cannot apply distinct sampling [GT01, Gib01] to maintain s distinct items from S ′, since distinct

199

sampling completely ignores the frequency of identifiers in S ′ (which correspond to weights in
S), while we do not want this behavior – items with a greater weight should be chosen with a
higher probability.

Thus, one of the primary difficulties with an algorithm for weighted SWOR is to handle
heavy hitters. One could next consider a method that explicitly maintains heavy hitters within the
stream (using a streaming algorithm). On the remainder of the stream excluding the heavy hitters,
one could attempt to apply the reduction to unweighted SWOR as described above. However, this
does not quite work either, since after removing the heavy hitters from the stream, the remaining
weight of the stream may still be dominated by just a few items, and the same difficulty persists.
One has only swapped one set of heavy hitters for another. Such “residual heavy hitters” may not
be heavy hitters in the original stream, and may have evaded capture when the first heavy hitters
were identified. This may proceed recursively, where the weight of the stream is still dominated
by only a few items after removing the heavy hitters and the residual heavy hitters. Therefore,
heavy hitter identification does not solve our problem and further ideas are needed.

Algorithmic Ideas for Weighted SWOR: Our main algorithm for weighted SWOR combines
two key ideas. Our first key technical contribution is to divide the items into multiple “level
sets” according to the magnitude of their weights. All items within a single “level set” have
weights that are close to each other. Our algorithm withholds an item from being considered by
the sampler until the level set that the item belongs to has a (pre-specified) minimum number of
items. This property ensures that when an item is considered for sampling, there are at least a
minimum number of items of the same (or similar) weight, so that the difficulty that we faced
with extreme heavy hitters does not surface. When a level set reaches a certain size, all items
within the level set are released for further sampling. By choosing the weights of different levels
to increase geometrically, we ensure that the number of level sets remains small, and the overhead
of additional messages for filling up the level sets is small. While an item is withheld, we also
run a procedure so that, at every time step, it will still be output in the sample at that time with the
correct probability. Thus, the notion of withholding an item applies means only that it is withheld
from an internal sampling algorithm (a subroutine), and not the overall sampler. Note that, for a
distributed sampler to be correct, it cannot entirely withhold an item from being sampled, even
for a single time step.

Precision Sampling The second idea is the precision sampling framework, which was dis-
cussed at length in Section 3.2. Originally developed by Andoni, Krauthgamer, and Onak [AKO11]
for sampling in non-distributed data streams, and then extended by [JST11, JW18b], the idea

200

of precision sampling is to scale each weight wi by an i.i.d. random variable xi, which gen-
erates a “key” vi = wixi for each item (ei, wi). One then looks at the resulting vector v =
(v1, v2, . . . , vn) of keys, and returns the largest coordinates in v. In particular, the results of our
work [JW18b], as discussed in Chapter 3, use the random variables xi = 1/t1/pi where ti is ex-

ponentially distributed, to develop perfect Lp samplers. A similar idea is also used in “priority
sampling” [DLT07] which was developed in the context of network monitoring to estimate sub-
set sums. We use precision sampling to generate these keys for each item, such that the items
with the s largest keys form the weighted SWOR of the stream.

It is not difficult to see that if each site independently ran such a sampler on its input–storing
the items with the s largest keys–and sent each new sample to the coordinator, who then stores
the items with the overall s largest keys, one would have a correct protocol with O(ks log(W))
expected communication. This could be carried out by generating the keyswi/ti with exponential
variables ti, or also by using the keys u1/wi

i with ui uniform on (0, 1), as used for non-distributed
weighted sampling without replacement in [ES06]. Thus, a key challenge addressed by our work
is to improve the naïve multiplicative bound of Õ(ks) to an additive bound of Õ(k + s).

We also remark that by duplicating weighted items in combination with our new level set
technique, it may be possible to adapt the message-optimal unweighted sampling algorithms
of [TW11, CMYZ12] to yield a weighted SWOR. The approach would nonetheless require the
use of level sets, along with a similar analysis as provided in this work, to remove extremely
heavy items from the stream which would cause issues with these samplers. We believe that
our approach by scaling an entire weight by a random variable, rather than manually duplicat-
ing weighted items (e, w) into w unweighted items, is more natural and simpler to understand.
Moreover, it is likely that we obtain improved runtime bounds at the sites by using the algorithm
presented in this paper (which are runtime optimal).

Residual Heavy Hitters: For the problem of monitoring heavy hitters, the technique of sampling
with replacement has been frequently applied. By standard coupon collector arguments, taking
O(log(1/ε)/ε) samples with replacement is enough to find all items which have weight within an
ε fraction of the total. On the other hand, it is possible and frequently the case that there are very
few items which contain nearly all the weight of the stream. This is precisely the domain where
SWOR achieves remarkably better results, since a with replacement sampler would only ever
see the heavy items. Using this same number of samples without replacement, we demonstrate
that we can recover all items which have weight within an ε fraction of the total after the top
1/ε largest items are removed. This is residual error guarantee is much stronger in the case of
skewed distributions of weights, and is a important application of SWOR.

201

L1 Tracking: Finally, we observe that the following desirable property of our weighted SWOR:
namely that, once the heavy hitters are withheld, the values of the keys stored by the algorithm
at any time provide good estimates of the total L1 (the sum of all the weights seen so far). By
taking enough samples, we can show that the s-th order statistic, that is the s-largest key overall,
concentrates around the valueW t/s, up to a (1±ε) factor, whereW t is the sum of all the weights
up to a given time t. Unfortunately, withholding heavy items alone is not sufficient for good mes-
sage complexity, as one must naively withhold an extra Θ(1/ε) factor more heavy items than the
size of s to obtain good concentration. To avoid a Θ(1/ε) blow-up in the complexity, we must re-
move heavy hitters in another way. To do this, we duplicate updates instead of withholding them,
a trick used in [JW18b] for a similar sampler. This observation yields an optimal algorithm for
distributed L1 tracking for k ≥ 1/ε2, by using our weighted SWOR as a subroutine. Previously
an optimal algorithm for L1 tracking was known only for k < 1/ε2.

5.3 Basic Results on Distributed Sampling

5.3.1 The Continuous Distributed Streaming Model

As in prior work in the continuous distributed streaming model, we assume a synchronous com-
munication model, where the system operates in rounds, and in each round, each site can observe
(at most) one item, and send a message to the coordinator, and receive a response from the coor-
dinator. We assume that the messages are delivered in FIFO order (no overtaking of messages),
there is no message loss, and the sites and the coordinator do not crash. We make no assumption
on the sizes of the different local streams received by different sites, the order of arrival, and the
interleaving of the streams at different sites. The only assumption we have is a global ordering
of the stream items by their time of arrival onto one of the sites. If n is the total number of items
observed in the system, then for j = 1 . . . n, oj = (ej, wj) is the jth item observed in the total
order. The partitioning of the items across different processors is carried out by an adversary.

Our space bounds are in terms of machine words, which we assume are of size Θ(log(nW))
bits, and that arithmetic operations on machine words can be performed in O(1) time. We also
assume that an element identifier and weight fits in a constant number of words. In our algo-
rithms, the length of a message is a constant number of words, so that the number of messages is
of the same order as the number of words communicated over the network. For simplicity (but
without loss of generality), in the following sections we assume each weight wj satisfies wj ≥ 1.
Since each weight wj can be written in a constant number of machine words by assumption, it

202

follows that we could always scale the weights by a polynomial factor to ensure wj ≥ 1, which
blows up the complexity of our algorithms only by a constant, since we only have logarithmic
dependency on the total weight.

5.3.2 Basic Results

We first present some basic results for weighted SWR and weighted SWOR. Let n denote the
number of items received in the stream.

Algorithm for Weighted SWR: We first derive a message-efficient algorithm for weighted SWR
using a reduction to unweighted SWR. For this reduction, we assume that the weights wi are
integers. We first note the following result, from [CMYZ12].

Theorem 39 ([CMYZ12]). There is a distributed algorithm for unweighted SWR with mes-

sage complexity O((k + s log s) logn
log(2+k/s)). The coordinator needs O(s) space and O((k +

s log s) logn
log(2+k/s)) total time; each site needs O(1) space and O(1 + s

n
log s logn

log(2+k/s)) time per

item amortized.

Corollary 5.3.1. There is a distributed algorithm for weighted SWR with message complexity

O((k+s log s) logW
log(2+k/s)) whereW is the total weight received so far. The coordinator needsO(s)

space and O((k + s log s) logW
log(2+k/s)) total time. Each site needs O(1) space and the amortized

processing time per item at a site is O(1 + 1
n
(k + s log s) logW

log(2+k/s)).

Proof. We reduce weighted SWR to unweighted SWR as follows. Given stream of items with
weights S = (ei, wi), i = 1 . . . n, consider an unweighted stream S ′ where for each (ei, wi) ∈ S,
there are wi copies of ei in S ′. Note that S ′ can be constructed in a streaming manner as items of
S are seen.

Note that an unweighted SWR of s items chosen from S ′ is a weighted SWR of s items
chosen from S. To prove this, let S ′ denote an unweighted SWR of size s from S ′. Consider
an arbitrary item in S ′. Since there are wi copies of ei in S ′, this item is likely to be ei with
probability wi/

∑
j wj , and hence obeys the distribution we desire of a single item in a weighted

SWR of S. Since the items of S ′ are chosen independent of each other, the entire sample S ′ has
the same distribution as a weighted SWR of s items from S. The number of items in S ′ is equal
to W , the total weight of S. The message complexity, as well as the space complexity at the sites
and the coordinator follow from Theorem 39.

203

The processing time per item at the site needs additional work. An unweighted SWR sampler
simulates the execution of s independent copies of a single element sampler. Each element (e, w)
in the weighted input stream leads to w elements into each of the s samplers. Naively done, this
reduction leads to a total runtime of O(sw), which can be very large. To improve on this, we
speed up the sampling as follows. We note that in the algorithm in Section 3.2 of [CMYZ12] for
a single element unweighted SWR, in round j, an element is sent to the coordinator with proba-
bility 2−j 2 When w elements are inserted, as in our reduction, the probability that at least one of
them is sent to the coordinator is α(w, j) = 1−(1− 2−j)w. The site can simply send the element
(e, w) to the coordinator with probability α(w, j). Repeating this s times leads to a runtime of
O(s) per element. To further improve on this, note that across all the s single element samplers,
the number of samplers that send a message to the coordinator is a binomial random variable
B(s, α(w, j)). In the improved algorithm, the site samples a number X from this distribution. If
X > 0, it chooses a random size X subset of the s samplers, and send (e, w) to the coordinator
for each chosen sampler – as also noted in [CMYZ12], this leads to the same distribution as mak-
ing an independent decision for each sampler. The total time taken at the sites is now of the same
order as the number of messages sent to the coordinator, which is O

(
(k + s log s) logW

log(2+k/s)

)
.

The amortized time per element at the site is thus O
(
1 + 1

n
(k + s log s) logW

log(2+k/s)

)
.

Lower Bound for Weighted SWOR: We next present a lower bound on the message complexity
of weighted SWOR, which follows from prior work on the message complexity of unweighted
sampling without replacement. Let s denote the desired sample size and k the number of sites.

Theorem 40 ([TW11]). For a constant q, 0 < q < 1, any correct algorithm that continuously

maintains an unweighted random sample without replacement from a distributed stream must

send Ω
(

k log(n/s)
log(1+(k/s))

)
messages with probability at least 1− q and where the probability is taken

over the algorithm’s internal randomness, and where n is the number of items.

Corollary 5.3.2. For a constant q, 0 < q < 1, any correct algorithm that continuously maintains

a weighted random sample without replacement from S must send Ω
(
k log(W/s)

log(1+(k/s))

)
messages with

probability at least 1−q, where the probability is taken over the algorithm’s internal randomness,

and W is the total weight of all items so far.

Proof. This lower bound follows since unweighted SWOR is a special case of weighted SWOR.
We consider an input stream of W items, each with a weight of 1, and apply Theorem 40.

2The algorithm in [CMYZ12] divides execution into rounds; the exact definition of a round does not impact our
analysis here, and is hence not provided.

204

5.4 Weighted SWOR via Precision Sampling

We now present an algorithm for weighted SWOR on distributed streams. Our algorithm utilizes
the general algorithmic framework of precision sampling, as discussed in Section 3.2 (and more
generally used throughout Chapter 3). We recall the basic components of this framework, as it
related to sampling from distributed streams, now. When an update (ei, wi) is received at a site,
the site generates a “key” vi = wi/ti, where ti is a generated exponential random variable. The
coordinator then keeps the stream items (ei, wi) with the top s largest keys vi. We first state a
result on exponential scaling that allows for the basic correctness of our sampling algorithm.

Proposition 5.4.1 ([Nag06], Equation 11.7 and Remark 1). Let S = {(e1, w1), . . . , (en, wn)} be

a set of items, where each item has an identifier ei and a weight wi. Suppose for each i ∈ [n] we

generate a key vi = wi/ti, where the tis are i.i.d. exponential random variables with rate 1 (i.e.,

with pdf p(x) = e−x for x ≥ 0). For k ∈ [n], let the anti-ranks D(k) be defined as the random

variable indices such that vD(1) ≥ vD(2) ≥ · · · ≥ vD(n). For s ≤ n, let S(s) ⊂ [n] be the set of

items (ei, wi) such that i = D(k) for some k ∈ [s] (i.e. vi is among the top s largest keys). Then,

• S(s) is a weighted SWOR from the set of items S.

• We have the distributional equality:

vD(k) =
 k∑
j=1

Ej∑n
q=j wD(q)

−1

where the random variables E1, . . . , En are i.i.d. exponential random variables with rate

1, and are independent of the anti-rank vector (D(1), D(2), . . . , D(n)).

The above remark demonstrates that taking the items with the top s largest keys indeed gives
a weighted sample without replacement. The distributional equality given in the second part of
Proposition 5.4.1 will be used soon in our analysis. Note that while the above results require
continuous random variables to be used, we show that our results are not effected by limiting
ourselves to a machine word of precision when generating the exponentials (Proposition 5.4.11).
Thus our expected message complexity and runtime take into account the complexity required to
generate the exponentials to the precision needed by our algorithm.

To reduce the number of messages sent from the sites to the coordinator, each site locally
filters out items whose keys it is sure will not belong to the globally s largest keys. In order
to achieve this, our algorithm divides the stream into epochs. The coordinator continuously

205

maintains a threshold u, equal to the value of the smallest key v of an item (e, w, v) held in
its sample set S, where S always holds the items (ei, wi, vi) with the s largest values of vi. For
r = max{2, k/s}, whenever u ∈ [rj, rj+1), the coordinator declares to all sites that the algorithm
is in epoch i (at the beginning, the epoch is 0 until u first becomes equal to or larger than r). Note
that this announcement requires k messages to be sent from the coordinator, and must be done
once per epoch.

If the algorithm is in epoch j, and a site receives an update (ei, wi), it generates key vi and
sends (ei, wi, vi) to the coordinator if and only if vi > rj . The coordinator will add the update
(ei, wi, vi) to the set S, and if this causes |S| > s, it removes the item (e, w, v) from S which has
the smallest key v of all items in S. This way, at any time step t, the coordinator holds the items
with the s-largest key values vi = wi/ti, and outputs the set S as its weighted sample.

A complication in analyzing this algorithm is that it is not possible to directly connect the
total weight received so far to the number of epochs that have progressed. For instance, it is not
always true that the larger the total weight, the more epochs have elapsed (in expectation). For
instance, if a few (fewer than s) items with a very large weight are received, then the total weight
received can be large, but the sth largest key is still 0, so that we are still in the zeroth epoch.

To handle this situation, we introduce a level set procedure. The idea is to withhold heavy
items seen in the stream from being sent to the sampler until they are no longer heavy. Here,
by releasing an update (ei, wi) to the sampler we mean generating a key vi for the item (ei, wi)
and deciding whether to accept (ei, wi, vi) into the sample set S. Specifically, we only release
a heavy item to the sampler when its weight is no more than a 1/4s fraction of the total weight
released to the sampler so far. We now defined the level of an update (e, w) below (Definition
5.4.2).

Definition 5.4.2. The level of an item (e, w) is the integer j ≥ 0 such that w ∈ [rj, rj+1). If

w ∈ [0, r), we set j = 0.

For j > 0, the level set Dj will consist of the first 4rs items in the stream that are in level j.
We do this for all j ≥ 0, but note that we can clearly stop at j = log(W)/ log(r), and we do not
need to explicitly initialize a level set until at least one item is sent to the set. The coordinator
stores the setDj . As long as |Dj| < 4rs, if a site received an item (e, w) that is in level j, the item
is sent directly to the coordinator without any filtering at the site, and then placed intoDj . We call
such a message an “early” message, as the item (e, w) is withheld from the sampling procedure.
We call all other messages which send an item (e, w, v) from the site to the coordinator “regular”
messages. Similarly, we call an update that resulted in an early message as an “early update”,

206

and all other updates as “regular updates”. Note that a regular update may not result in a regular
message, if the key of the regular update is smaller than the threshold for the current epoch.

We call the level set Dj unsaturated if |Dj| < 4rs at a given time, and saturated otherwise.
Each site stores a binary value saturatedj , which is initialized to false, indicating that
|Dj| < 4rs. Once |Dj| = 4rs, the level set is saturated, and the coordinator generates keys
vi = wi/ti for all items (ei, wi) ∈ Dj . For each new item-key pair, it then adds (ei, wi, vi) to S
if vi is in the top s largest keys in S ∪ {(ei, wi, vi)}. At this point, the coordinator announces to
all the sites that the level set Dj has been saturated (who then set saturatedj = true), and
thereafter no early updates will be sent for this level set.

Note that in this procedure, the set S will only be a weighted sample over the updates in
level sets that are saturated. Since our algorithm must always maintain a weighted sample over
all stream items which have been received so far, we can simply simulate generating the keys
for all items in the unsaturated level sets Dj , and take the items with the top s largest keys in
S ∪ (∪j≥0Dj) as the weighted sample (see the description of this in the proof of Theorem 41).
The algorithm for weighted SWOR is described in Algorithm 5.1 (algorithm at the site), and
Algorithms 5.2, 5.3 (algorithm at the coordinator).

We now observe the following result of this level-set procedure.

Lemma 5.4.3. At any time step, let (e1, w1), . . . , (et, wt) be all items so far that are in saturated

level sets. For any i ∈ [t], wi ≤ 1
4s
∑
p∈[t] wp.

Proof. The reason is that for each item (ei, wi) in a saturated level set, there are at least 4rs items
in the same level set, whose weights are within a factor of r of wi. Thus wi can be no more than
1
4s of the total weight of this level set, and hence no more than 1

4s of the total weight.

5.4.1 Analysis of the Sampling Protocol

We now analyze the message complexity of the algorithm. Let r = max{2, k/s}, and let u be
the s-th largest value of the keys vj’s given to the coordinator. As described, we define an epoch
i as the sequence of updates such that u ∈ [ri, ri+1). Set W = ∑n

i=1wi, where n is the total
number of updates at the end of the stream.

Let (e1, w1), . . . , (en, wn) be the set of all stream items. For the sake of analysis, we consider
a new ordering of the stream items, which corresponds to the order in which the keys vi are

207

Weighted SWOR: Algorithm at Site i

//Initialization
For each level j ≥ 0:

• Set saturatedj ← false.
//we will have ui = rj whenever the algorithm is in epoch j

ui ← 0, r ← max{2, k/s}
//End Initialization

If receive update (e, w):
1. Let j be the level set of (e, w), i.e. the integer j such that w ∈ [rj, rj+1). If w ∈ (0, 1),

we set j = 0.

2. If saturatedj = false, send (early, e, w) to the coordinator.

3. Otherwise, we have saturatedj = true, and we generate an exponential variable
t. Set v ← w/t.

4. If v > ui, Send (regular, e, w, v) to the coordinator

If receive (“level saturated”, j) from coordinator:
• Set saturatedj ← true

If receive (“update epoch”, rj) from coordinator:
• Set u← rj

Figure 5.1: Description of the Protocol at Site i

208

Weighted SWOR: Algorithm at Coordinator

//Initialization
For each level j ≥ 0: s:

1. Set saturatedj ← false.

2. Dj ← ∅
u← 0 //sth max of keys of regular items
S ← ∅ //the current sample at the coordinator
r ← max{2, k/s}
//End Initialization

If receive (early, e, w) from site i:
1. Let j be the level set of (e, w), i.e. the integer j such that w ∈ [rj, rj+1). If w ∈ (0, 1),

we set j = 0.

2. Generate key v = w/i, and add (e, w, v) to Dj .

3. |Dj| ≥ 4sr:
(a) For each (e′, w′, v′) ∈ Dj: call Add-to-Sample(S, (e′, w′, v′)).

(b) Dj ← ∅, saturatedj ← true

(c) Broadcast (“level saturated”, j) to all sites

If receive (regular, e, w, v) from site i:
• If v > u, call Add-to-Sample(S, (e, w, v))

If receive query for sample of s items:
• Return items with the s largest keys in S ∪ (∪jDj)

Figure 5.2: Algorithm at Coordinator

Weighted SWOR: Add-to-Sample(S, (ei, wi, vi))

Input: S is the current sample at the coordinator, and (ei, wi, vi) the item to be inserted
S ← S ∪ {(ei, wi, vi)}
If |S| > s:

1. Let vjmin = arg minvt{vt | (et, wt, vt) ∈ S}
2. S ← S \ {(ejmin , wjmin , vjmin)}

uold ← u
u← min(e,w,v)∈S v
If u ∈ [rj, rj+1) and uold /∈ [rj, rj+1) for some j:

• Broadcast (“update epoch”, rj) to all sites.

Figure 5.3: The Add-to-Sample routine

209

generated for the items ei in our algorithm. In other words, we assume the items are ordered
(e1, w1), . . . , (en′ , wn′), such that the key vi for ei was generated before the key for ei+1, and so
on. This reordering is simply accomplished by adding each regular item to the ordering as they
arrive, but withholding each early item, and only adding an early item to the ordering once the
level set Dj that it was sent to is saturated. Note that at the end of the stream, some level sets
may not be saturated, thus n′ ≤ n. The remaining n − n′ items will have already been sent
to the coordinator as early messages, and since no exponentials ti will have been generated for
them when the stream ends, we can ignore them when analyzing the message complexity of the
regular stream items. Note that this ordering is a deterministic function of the original ordering
and weights of the stream, and has no dependency on the randomness of our algorithm.

Now let (ep1 , wp1), (ep2 , wp2), . . . , (epτ , wpτ) be the subsequence of the regular items in the
sequence (e1, w1), . . . , (en′ , wn′), so that p1 ≤ p2 ≤ · · · ≤ pτ . We group the regular items
ep1 , ep2 , . . . , epτ into sets Ωj

i as follows. For any t ∈ [n′], let Wt be the total weight seen in the
stream up to time t under the new ordering. Thus Wt = ∑t

i=1wi. We know by construction of
the level sets, at any point in time that if epi is a regular item then wpi ≤ ε0Wpi−1, where ε0 = 1

4s .
For any i ≥ 1, let Ωj be the set of all regular items (epi , wpi) such that Wpi ∈ (srj−1, srj).
Note that by definition, Ωj = ∅ for all j > z, where z = dlog(W/s)/ log(r)e. We now further
break Ωi into blocks Ω1

i ,Ω2
i , . . . ,Ω

qi
i , such that Ωt

i consists of all regular items (epi , wpi) such that
Wpi ∈ (sri−1(1 + ε)t−1, sri−1(1 + ε)t), for some value ε = Θ(1) which we will later fix. Note
that qi < ε−1 log(r).

Let Yi indicate the event that the i-th regular item caused a message to be sent, where we
order the items via the new ordering as above. If p is the total number of regular items, then we
would like to bound E

[∑p
i=1 Yi

]
. Note that the property of an item being regular is independent

of the randomness in the algorithm, and is defined deterministically as a function of the ordering
and weights of the stream. Thus p is a fixed value depending on the stream itself. Then E [Yi] =∑∞
j=1 E [Yi|Ei,j] Pr [Ei,j] where Ei,j is the event that we are in epoch j when the i-th update is

seen. Note that since Ei,j only depends on the values t1, . . . , ti−1, it follows that E [Yi|Ei,j] =
Pr [ti < wi/r

j] ≤ wi/r
j . Thus

E [Yi] ≤ wi
∞∑
j=1

r−j Pr [Ei,j]

Our goal will now be to bound the above quantity. We will only concern ourselves with Ei,j when
ei is a regular message, since the early messages will be sent to the coordinator deterministically.

To bound Pr [Ei,j], we must bound the probability that we are in an epoch j much longer

210

than expected. To do this, we develop a tail bound on the probability that the s-th largest key
vi = wi/ti is much smaller than expected. To do so, we will first need the following standard tail
bound on sums of exponential random variables.

Proposition 5.4.4. Let E1, . . . , Ek be i.i.d. mean 1 exponential random variables, and let E =∑k
i=1Ei. Then for any c ≥ 1/2,

Pr [E > ck] < λe−Cc

where λ,C > 0 are fixed, absolute constants.

Proof. The moment generating function of an exponential Ei with mean 1 is given by E
[
etEi

]
=

1
1−t for t < 1. Thus E

[
etE
]

= E
[
et
∑k

i=1 Ei

]
= ∏k

i=1 E
[
etEi

]
= (1

1−t)
k. Setting t = 1/2, then

by Markov’s inequality, Pr [E > ck] < Pr
[
etE > etck

]
≤ 2k

e1/2ck
≤ e−1/2ck+k = λe−Ω(c) for any

c ≥ 1/2 and a fixed constant λ > 0 as needed.

We now introduce our main tail bound on the behaviour of the s-th largest key vi.

Proposition 5.4.5. Let w1, . . . , wt be any fixed set of weights, and let W = ∑t
i=1wi. Fix ` ∈ [t],

and suppose that wi ≤ 1
2`W for all i ∈ [t]. Let vi = wi/ti where the ti’s are i.i.d. exponential

random variables. Define the anti-ranks D(k) for k ∈ [t] as the random variables such that

vD(1) ≥ vD(2) ≥ · · · ≥ vD(t). Then for any c ≥ 1/2, we have

Pr
[
vD(`) ≤

W

c`

]
≤ O(e−Cc)

where C > 0 is a fixed constant.

Proof. We note that 1/vi is distributed as an exponential with rate wi. The exponential order
statistics of independent non-identical exponential random variables were studied by Nagaraja
[Nag06], who demonstrates that the `-th largest value of vk in {v1, v2, . . . , vt} is distributed as
(see Proposition 5.4.1, or equation 11.7 in [Nag06]):

vD(`) =
∑̀
j=1

Ej

W −∑j−1
q=1wD(q)

−1

≥ W

2

∑̀
j=1

Ej

−1

where the Ei’s are i.i.d. exponential random variables with mean 1 that are independent of the
anti-ranks D(1), . . . , D(t). Here, for the inequality, we used the fact that each regular item is
at most a 1/(2`) heavy hitter at every intermediary step in the stream. It follows that if vD(`) ≤

211

W/(c`), then
∑`
j=1Ej ≥ `c/2 Which occurs with probability O(e−Cc) for some fixed constant

C > 0 by Proposition 5.4.4.

Proposition 5.4.6. Let (ei, wi) be any regular stream item, and let ai, bi be such that ei ∈ Ωbi
ai

.

Then we have:
∞∑
j=1

r−j Pr [Ei,j] ≤ O

(
r−ai+2e

−C (1+ε)bi−1
(1+ε0) + r−ai+1

)

where C > 0 is some absolute constant.

Proof. First note for j ≥ ai − 1, we have
∑∞
j≥ki r

−j Pr [Ei,j] ≤ 2r−ai+1. So we now bound
Pr [Ei,j] for j < ai. Let vq = wq/tq for q ∈ [i − 1], and let D(p) be the anti-ranks of the set
{v1, . . . , vi−1}. We note then that if Ei,j holds, then vD(s) < rj+1 by definition. Thus Pr [Ei,j] ≤
Pr

[
vD(s) ≤ rj+1

]
. Note that by definition of the level sets Ωbi

ai
, the total weight of all items seen

up to time i − 1 is Wi−1 > Wi
1

(1+ε0) > srai−1 (1+ε)bi−1

(1+ε0) . Here we have used the fact that, by
construction of the ordering, no item wi has weight greater than ε0Wi where ε0 = 1

4s . This fact
will also be needed to apply Proposition 5.4.5.

It then suffices to bound Pr
[
vD(s) < rj+1

]
= Pr

[
vD(s) <

1
c
Wi−1/s

]
, where

c = Wi−1

rj+1s
≥ (1 + ε)bi−1

(1 + ε0) rai−j−2

Note that since j ≤ i− 2, bi ≥ 1 and ε0 = 1
4s < 1/2, we have c > 1/2. So by Proposition 5.4.5,

we have

Pr [Ei,j] ≤ Pr
[
vD(s) <

Wi−1

c · s

]
= O(e−Cc)

= O

(
e
−C (1+ε)bi−1

(1+ε0) rai−j−2
) (5.1)

where C > 0 is some absolute constant. Thus

r−j Pr [Ei,j] ≤ O

(
e
−C (1+ε)bi−1

(1+ε0) rai−j−2
r−j

)
.

If j = ai − 2, this is O(r−ai+2e
−C(1+ε)bi−1

(1+ε0)). In general, if j = ai − 2− ` for any ` ≥ 1, then this

212

bound becomes:

O

(
r−ai+2+`e

−C(1+ε)bi−1
(1+ε0) r`

)
= O

(
r−ai+2−`e

−C(1+ε)bi−1
(1+ε0)

)

where here we used the fact that (e−x)y = O(e−yx−2) for any x ≥ 2 and y ≥ τ where τ > 0

is some constant. Thus
∑ai−1
`=0 r−ai+2−` Pr [Ei,j] = O(r−ai+2e

−C (1+ε)bi−1
(1+ε0)) since r ≥ 2, which

completes the proof.

Lemma 5.4.7. Let p be the number of regular items in the stream. If Y1, Y2, . . . are such that

Yi indicates the event that the i-th regular stream item (in the ordering defined above) causes a

message to be sent, then:

E
[p∑
i=1

Yi

]
= O

(
sr

log(W/s)
log(r)

)
.

Proof. Let Wj
i be the weight in set Ωj

i . In other words, Wj
i = ∑

wpt∈Ωji
wpt . Recall we set

z = dlog(W/s)/ log(r)e, and note that Ωi = ∅ for i > z. Also note that by construction we
have W j

i < sri−1(1 + ε)j . Recall qi is the number of sets of the form Ωj
i for some j, and that

qi ≤ O(ε−1 log(r)) by construction. Using Proposition 5.4.6, we have:

E
[∑

i

Yi

]
≤

z∑
i=1

qi∑
j=1

∑
epi∈Ωji

wpiO

(
r−i+2e

−C(1+ε)j−1
(1+ε0) + r−i+1

)

≤
z∑
i=1

qi∑
j=1
Wj

iO

(
r−i+2e

−C(1+ε)j−1
(1+ε0) + r−i+1

)

≤ O(s)
z∑
i=1

qi∑
j=1

(1 + ε)j
(
re
−C(1+ε)j−1

(1+ε0) + 1
)

= O(rs)
z∑
i=1

qi∑
j=1

(1 + ε)je−
C(1+ε)j−1

(1+ε0)

+O(s)
 z∑
i=1

qi∑
j=1

(1 + ε)j

Setting ε = .5, we have (1 + ε0) < (1 + ε), this is

≤ O(sr)
z∑
i=1

qi∑
j=1

1.5j
exp (C(1.5)j−2) + s

(
z∑
i=1

O(r)
)

Now by the ratio test
∑∞
j=1

(1.5)j
exp(C(1.5)j−2) converges absolutely to a constant (recalling C > 0 is

213

just some absolute constant), so the whole sum is:

≤ sr
z∑
i=1

O(1) + sr

(
z∑
i=1

O(1)
)

= O

(
sr

log(W/s)
log(r)

)

where we used z = dlog(W/s)/ log(r)e.

We now bound the number of epochs used in the algorithm. We let the random variable ζ
denote the total number of epochs in the algorithm.

Proposition 5.4.8. If ζ is the number of epochs in the algorithm, then if z = d log(W/s)
log(r) e, then

E [ζ] ≤ 3
(

log(W/s)
log(r) + 1

)
.

Proof. After epoch z + ` for any ` ≥ 0, we have that u > r`W , where u is the value of the s-th
largest key at the coordinator. Let Y = |{i ∈ [n] | vi ≥ r`W}|. Since the pdf of an exponential
random variable is upper bounded by 1, it follows that Pr

[
vi ≥ r`W/s

]
= Pr

[
tj ≤ sr−` wj

W

]
≤

sr−` wj
W

, thus E [Y] ≤ sr−`. Thus Pr [ζ ≥ z + `] ≤ Pr [Y ≥ s] ≤ r−`, where the last inequality
follows by a Markov bound. Thus

E [ζ] ≤ z +
∑
`≥1

(z + `) Pr [ζ ≥ z + `]

≤ z +
∑
`≥1

(z + `)r−` ≤ 3z.

Lemma 5.4.9. The total expected number of messages sent by the algorithm is O
(
sr log(W/s)

log(r)

)
,

where r = max{2, k/s}. Thus this can be rewritten as

O

(
k

log(W/s)
log(1 + k/s)

)
.

Proof. For each level set Bt for t < log(W/s)/ log(r), at most 4rs + k messages are sent,
corresponding to the 4rs messages sent by sites to saturate the set, and then k messages coming
from the reply from the coordinator to all k sites announcing that the set Bt is full. This gives
a total of (4rs + k) log(W/s)/ log(r) messages. Finally, there are at most s items with weight
greater than W/s, and thus we pay one message for each of these when they arrive at a site. The

214

level sets corresponding to values greater than W/s will never be saturated, so the total message
complexity to handle the early messages is O(sr log(W/s)/ log(r)) as needed.

Next, we pay k messages at the end of every epoch. Thus if ζ is the number of epochs in the
algorithm, the expected number of messages sent due to the end of epochs is

E

 ζ∑
i=1

k

 = kE [ζ] < k
log(W/s)

log(r) = O(sr log(W/s)
log(r))

by Proposition 5.4.8. Finally, the expected number of messages sent due to regular stream items
is O(sr log(W/s)/ log(r)) due to Lemma 5.4.7, which completes the proof of the message com-
plexity.

Proposition 5.4.10. The algorithm described in this section can be implemented, without chang-

ing its output behavior, to use O(s) memory and O
(
k log(W/s)

log(1+k/s)

)
expected total runtime at the

coordinator, and O(1) memory and O(1) processing time per update at each site. Note that all

four of these bounds are optimal.

Proof. We first consider the sites. Note that each site only generates a random variable, checks a
bit to see if a level set is saturated, and then makes a single comparison to decide whether to send
an item, all in O(1) time. For space, note that each site only needs to store a bit that determines
whether level setDj is full for j ≤ log(W)/ log(r). For all level sets j with j ≥ log(W)/ log(r),
no item will ever arrive in this level since no item has weight more thanW . Thus, to store the bits
saturatedj , it suffices to store a bit string of length log(W)/ log(r), which is at most O(1)
machine words.

We now consider the coordinator. For space, we demonstrate how the level-set procedure can
be carried out using less than O(sr log(W)/ log(r)) space (which is the total numer of items that
can be sent to level sets). For each item that arrives at a level set, we generate its key right away.
Now note that the items in the level sets with keys that are not among the s largest keys in all of the
level sets will never be sampled, and thus never change the set S or the behavior of the algorithm,
thus there is no point of keeping them. So at any time, we only store the identities of the items in
the level sets with the top s keys (and which level they were in). Call this set Slevel To determine
when a level set becomes saturated, we keep an O(log(rs))-bit counter for each level set Dj ,
which stores |Dj|. Note that we only need to store this for the levels j ≤ log(W/s)/ log(r),
since at most s items have weight more than W/s, and such level sets will never be saturated.
When a level setDj becomes saturated, for each item (e, w, v) ∈ Slevel such that (e, w) is in level
j, we send this item to the main sampler (i.e., we decide whether or not to include it in S based

215

on the size of its key). The result is the same had the entire level set been stored at all times,
and only O(s) machine words are required to store Slevel, and O(log(sr) log(W)/ log(r)) =
O(log(s) log(W))-bits for the counters, which is O(log(s)) < O(s) machine words, so the total
space is O(s) machine words.

For the runtime of the coordinator, each early item and regular item is processed inO(1) time.
When a set is saturated, it takes at mostO(s) work to send these new items into the main sampler,
and this occurs at most O(log(W/s)/ log(r)) times, for a total of O(s log(W/s)/ log(r)) work.
Since every other message the coordinator recieves requires O(1) work, the result follows from
Lemma 5.4.9.

We now remark that, up until this point, we have not considered the bit complexity of our
messages, or the runtime required to generate the exponentials to the required precision. We
address this issue now.

Proposition 5.4.11. The algorithm for weighted SWOR can be implemented so that each message

requires an expected O(1) machine words, and moreover, for any constant c ≥ 1 uses O(1)
machine words with probability at least 1 −W−c. Each exponential can be generated in time

O(1) in expectation, and, for any constant c ≥ 1, time O(1) with probability at least 1−W−c.

Proof. To see this, we note that a site only needs to generate enough bits to determine whether
a given key is large enough to be sent. Recall that the quantile function for the exponential
distribution is given by F−1(p) = − ln(1 − p) and, since 1 − p and p are distributed the same
for a uniform variable, an exponential variable ti can be generated by first generating a uniform
random variable U , and outputting − ln(U) [Knu97a]. Thus, if the algorithm is in epoch j, one
can simply generate U bit by bit, until one can determine whether wi/ti > rj or not. So each
bit of U generated cuts the remaining probability space by a factor of 2. So for any threshold
τ , it requires only O(1) bits to be generated in expectation to determine whether − ln(U) < τ ,
and since the probability space is cut by a constant factor with each bit, only O(log(W)) bits (or
O(1) machine words) are needed with high probability in W . Thus the coordinator generates
the message in expected O(1) time and with high probability, and the size of the message is an
expected O(1) machine words with high probability. Similarly, when the coordinator decides
whether to accept a sample into the set, it again needs only to check the exponential against
a threshold, which requires generating at most an additional expected O(1) bits and with high
probability, which completes the proof.

Theorem 41. The algorithm of this section for weighted sampling without replacement uses an

216

expected O
(
k log(W/s)

log(1+k/s)

)
messages and maintains continuously at every point in the stream a

uniform weighted sample size s of the items seen so far in the stream.

The space required for the coordinator is O(s) machine words, and the space required for

each site is O(1) words. Each site requires O(1) processing time per update, and the total

runtime of the coordinator is O
(
k log(W/s)

log(1+k/s)

)
.

Proof. The message complexity follows from Lemma 5.4.9, and the space and time complexity
follow from Proposition 5.4.10. The bit complexity issues which arise from dealing with expo-
nentials are dealt with in Proposition 5.4.11. For correctness, note that at any point in time, the
coordinator maintains two kinds of sets: the set S which consists of the top s samples, and the
level sets D = ∪j≥0Dj . To obtain a true weighted SWOR of the stream up to any point i, the
coordinator can simply generate an exponential tj for each (ej, wj) ∈ D, and set vj = wj/tj . It
then constructs D′ = {(ej, wj, vj)|(ej, wj) ∈ D}, and returns the identifiers ej in D′ ∪ S with
the s largest keys vj . The result is that at any point in time, the coordinator can output the set S
of the entries (ej, wj, vj) with the top s largest values of vj .

Let ∆` be the identifiers ej with the top ` values of vj . Since 1/vj is exponentially distributed
with rate wj , for any ` ≥ 1, if vj /∈ ∆`−1 then it follows that the probability that 1/vj is the `-th
smallest (or vj is the `-th largest) is wj∑

et /∈∆`−1
wt

(via Proposition 5.4.1). Thus the coordinator

indeed holds a uniform weighted sample of the stream continuously at all points in time. Note
that this sample may contain items in a level set Dj which has not yet been filled at the time of
query. However, this does not affect the behavior of the algorithm, since an exponential can be
generated for such an item early and used as the sample (see proof of Proposition 5.4.10). By
this, we mean that when the algorithm is queried for a weighted sample S over all stream items
seen so far, it can simply generate a key for each item that is held in an unsaturated level set Dj ,
and keep the items with the top s largest keys in S ∪ (∪j≥0Dj). Note, however, that the true set
S will not be modified by this procedure, and the actual items will not be sent into the set S to
potentially be sampled until the level set Dj is full.

5.5 Tracking Heavy Hitters with Residual Error

In this section, we demonstrate that the sampling algorithm developed in Section 5.4 can be
used to obtain a new algorithm for continuously monitoring heavy hitters with a residual error

217

guarantee. This is also known as the heavy hitters tracking problem. We show an

O

((
k

log(k) + log(1/(εδ))
ε

)
log(εW)

)

upper bound for the message complexity of the problem, along with a nearly tight lower bound
Ω
((

k
log(k) + 1

ε

)
log(εW)

)
.

While the monitoring of heavy hitters has been studied substantially in the streaming and
distributed streaming literature, to date no distributed algorithm has been designed which obtains
heavy hitters with a residual error guarantee. We first formalize these variations of the heavy
hitters problem. For a vector x ∈ Rn, and any t ∈ [n], recall that we define xtail(t) ∈ Rn to be
the vector which is equal to x except that the top t largest coordinates |xi| of x are set to 0. The
following is the standard notion of the heavy hitters tracking problem.

Definition 5.5.1. Let S = (e1, w1), . . . , (en, en), and let xt ∈ Rn be the vector with xi = wi

for i ≤ t, and xi = 0 otherwise. Then an algorithm P solves the (ε, δ) heavy hitters tracking

problem if, for any fixed t ∈ [n], with probability 1− δ, it returns a set S with |S| = O(1/ε) such

that for every i ∈ [t] with xi ≥ ε‖xt‖1, we have xi ∈ S.

Now, we introduce the variant of the heavy hitters tracking problem that requires residual
error.

Definition 5.5.2. Let S = (e1, w1), . . . , (en, en), and let xt ∈ Rn be the vector with xi = wi

for i ≤ t, and xi = 0 otherwise. Then an algorithm P solves the (ε, δ) heavy hitters tracking

problem with residual error if, for any fixed t ∈ [n], with probability 1− δ it returns a set S with

|S| = O(1/ε) such that for every i ∈ [t] with xi ≥ ε‖xttail(1/ε)‖1, we have xi ∈ S.

Note that the residual error guarantee is strictly stronger, and captures substantially more
information about the data set when there are very large heavy items.

Theorem 42. There is a distributed streaming algorithm P which solves the (ε, δ) heavy hitters

problem with residual error, and sends an expected O
((

k
log(k) + log(1/(εδ))

ε

)
log(εW)

)
messages.

The algorithm uses O(1) space per site, O(1) update time per site, O(log(1/(δε))
ε

) space at the

coordinator, and O
((

k
log(k) + log(1/(εδ))

ε

)
log(εW)

)
overall runtime at the coordinator.

Proof. To obtain the bound, we run our weighted SWOR of Theorem 41 with s = 6 log(1/(δε))
ε

,
where C > 0 is a sufficently large constant. Fix a time step t, and let St be the sample

218

obtained by the weighted SWOR at that time. We know that St is a weighted SWOR from
(e1, w1), . . . , (et, wt). Let xt be the vector corresponding to these weights, and let T ⊂ [t] be the
set of coordinates such that xi ≥ ε‖xttail(1/ε)‖1. Let T0 ⊂ T be the subset of i such the xti is one of
the 1/ε largest values in xt. Now fix any i ∈ T , and break S into blocks S1, S2, . . . , S2 log(1/(δε)),
each of size 3/ε. Now for each j ∈ [2 log(1/(δε))], there are at least 2/ε items which are not
in T0 (which follows since |T0| ≤ 1/ε). Conditioned on a sample s ∈ Sj not being in T0, since
xj ≥ ε‖xttail(1/ε)‖1 by assumption, the probability that s = i is at least ε. Thus the probability
that i /∈ Sj ≤ (1 − ε)2/ε < 1/2. Repeating 2 log(1/ε) times, the probability that i ∈ S is at
least 1 − (1

2)2 log(1/(δε)) < 1 − (εδ)2. We can then union bound over all |T | < 2/ε items, so that
T ⊂ S with probability at least 1− δ. To restrict the set S to O(1/ε) items, we simply order the
items in S by weight and output the top 2/ε, which will contain T if S does, which completes the
proof of correctness. The remainder of the Theorem then follows from the complexity bounds of
Theorem 41.

5.5.1 Lower Bound for Tracking Heavy Hitters

We now demonstrate an Ω(k log(W)/ log(k)+log(W)/ε)) lower bound on the expected message
complexity of any distributed algorithm that monitors the heavy hitters in a weighted stream
(Definition 5.5.1). Since the residual error guarantee is strictly stronger, this lower bound extends
to monitoring heavy hitters with residual error.

Theorem 43. Fix any constant 0 < q < 1, and let ε ∈ (0, 1/2). Then any algorithm which

(ε/2, δ) = (ε, q2/64) solves the heavy hitters tracking problem (Definition 5.5.1), must send at

least Ω(k log(W)/ log(k) + ε−1 log(W)) messages with probability at least 1 − q (assuming

1/ε < W 1−ξ for some constant ξ > 0). In particular, the expected message complexity of such

an algorithm with δ = Θ(1) is Ω(k log(W)/ log(k) + ε−1 log(W)).

Proof. Create s = Θ(1
ε

log(W)) global stream updates (ei, wi), such that wi = (1 + ε)iε and
w0 = 1. Then note for each i ≥ 0, we have that wi is an ε/(1 + ε) > ε/2 heavy hitter in
w1, w2, . . . , wi. Note that the total weight of the stream is

∑s
i=1wi = W .

Now consider any algorithm P for (ε/2, q2/64) heavy hitter tracking, and at any time step
t let S denote the set of heavy hitters held by P ,). On a given time step t ∈ [n], let St denote
the value of S at time t. and let R denote the concatenation of all random coin flips used by the
algorithm P for both the sites and the coordinator. We first claim the following:

219

Claim 5.5.3. Let 0 < q < 1 be any constant. Suppose P is a randomized algorithm which

(ε/2, q/64)-solves the heavy hitter tacking problem. Suppose the set of heavy hitters it maintains

at all times is called S. Then there is a constant C ′ = C ′(q) > 0 such that:

• The set S changes at least C
′

ε
log(n) times with probability at least 1− q.

Proof. Consider the above stream instance. Note that on each time step, the new update (ei, wi)
becomes an ε/2 heavy hitter, and therefore should be accepted into the set S. Note moreover
that at any time step t, the total weight is (1 + ε)t. Suppose there is a randomized algorithm
P which for each t ∈ T , succeeds in outputting all the ε heavy hitters in a set S at time t with
probability 1− q/64. Let Xt be a random variable that indicates that P is correct on t. We have
E [Xt] > 1− q/64, and clearly E [XtXt′] ≤ 1 for any t, t′. Thus

Var

1
ε

log(n)∑
i=1

Xi

 ≤ 1
ε

log(n)(1− q/64) + 1
ε2

log2(n)− 1
ε2

log2(n)(1− q/64)2

≤ (q/30) 1
ε2

log2(n)

(5.2)

for n larger than some constant. By Chebyshev’s inequality:

Pr

∣∣∣∣∣∣1ε log(n)(1− q/64)−
∑

i≤ε−1 log(n)
Xi

∣∣∣∣∣∣ > 1
q

√
q/30log(n)

ε

 < q

Thus with probability at least 1 − q, P is correct on at least a C′

ε
log(n) number of the points in

T , for C ′ = (1 − q/64 − 1√
30−) > 1/2. Now suppose that, conditioned on this, the algorithm

changed S fewer than C′

ε
log(n) times. Note that every time a new item (ei, wi) arrives, if P is

correct on time i, it must be the case that (ei, wi) ∈ S once update i is done processing. Thus if
S did not change, but (ei, wi) ∈ St, this means (ei, wi) ∈ St−1 – the coordinator contained ei in
its set before the item arrived! By having ei’s being O(log(W)) bit identifiers and randomizing
the identities in the stream, it follows that the probability that this could occur at any time step t
is less than (W/ε)(1/poly(W)) < W−100 for ei’s with O(log(W)) bits and a sufficiently large
constant. So we can safely condition on this event not occurring without affecting any of the
claims of the theorem. It follows that S must change on every time step t on which it is correct,
which completes the first claim that S must change at least C′

ε
log(n) times with probability at

least 1− q.

Observe that the lower bound of of Ω(log(W)/ε) messages being sent with probability at

220

least 1 − q follows directly from the last claim. For the Ω(k log(W)/ log(k)) lower bound, we
construct a new weighted stream. Define η = Θ(log(W)

log(k)) epochs, as follows. In the i-th epoch,
each site j receives one weighted update (eji , ki). Note then at the very beginning of the i-th
epoch (for any i), the total weight seen in the stream so far is at most 2ki. Thus the first update
(eji , ki) that arrives in the i-th epoch will be a 1/2 heavy hitter, and thus must be accepted into S
for the protocol to be correct on that time step.

Now consider any epoch i, and letXi be the number of sites which sent or received a message
from the coordinator in epoch i. Note that Xi is a lower bound on the number of messages sent
in epoch i. Let Xj

i indicate that site j sent or recieved a message from the coordinator in epoch
i, so that Xi = ∑

j∈[k] X
j
i . We claim E [Xi] = Ω(k). To demonstrate this, consider the first site

j∗ which recieves an update in epoch i. Since item (ej
∗

i , k
i) is immediately a 1/2 heavy hitter, it

must be sent to be correct. Since the protocol is correct on the ki+1’st time step with probability
at least 1− q/64, it follows that site j∗ must send a message after receiving its update in epoch i
with probability 1− q/64, so E

[
Xj∗

i

]
> 1− q/64.

But note that when a site j receives its update in the i-th epoch, if it has not communicated
to the coordinator since the start of the epoch, it does not know the order in which it recieved
the item. In particular, it does not know whether it was the first site to receive an item. Since
the randomized protocol must be correct on any advesarial fixing of the ordering, it follows that
if site j does not know if it recieved the first update, it must nevertheless send it with proba-
bility at least 1 − q/64 to be a correct protocol. In other words E

[
Xj
i

]
> 1 − q/64 for all

j ∈ [k], from which E [Xi] > (1 − q/64)k, and therefore E [∑η
i=1Xi] > (1 − q/64)k fol-

lows. Thus E [kη −∑η
i=1Xi] < kηq/64, and so by a Markov bound over the last expectation,

Pr [∑η
i=1Xi < (1− 1/64)kη] < q. Since Xi lower bounds the number of messages sent in the

i-th epoch, this completes the proof.

5.6 L1 tracking

In this section, we demonstrate how our sampling algorithm from Section 5.4 can be used to de-
sign a message-optimal L1 tracking algorithm, which will close the complexity of this problem.
We first recall the definition of an L1 tracking algorithm.

Definition 5.6.1. Given a distributed weighted data stream S = (e1, w1), (e2, w2), . . . , (en, wn)
and parameters ε, δ > 0, a distributed streaming algorithm (ε, δ) solves the L1 tracking problem

if the coordinator continuously maintains a value W̃ such that, at any fixed time t ∈ [n], we have

221

W̃ = (1± ε)Wt with probability 1− δ, where Wt = ∑t
i=1wi.

In [CMYZ12], an L1 tracker was given that had O(k log(W) log(1/δ)) expected messages.
An improved bound ofO((k+

√
k log(1/δ)/ε) log(W)) expected messages was then provided in

[HYZ12], along with a lower bound of Ω(
√
k
ε

log(W)) for all k ≤ 1
ε2

. We remark that while the
bounds of [HYZ12] are stated as O(

√
k/ε log(W)) (for constant δ), the actual expected message

complexity of their algorithm isO((k+
√
k log(1/δ)/ε) log(W)) (in [HYZ12] the authors assume

that k < 1/ε2). Nevertheless, the aforementioned bound is, up to this point, the current best
known distributed algorithm for L1 tracking.

In this section, we give tight bounds for the case k > 1/ε2. More specifically, we prove an
L1 tracking algorithm with expected message complexity:

O

(
k log(εW)

log(k) + log(εW) log(1/δ)
ε2

)

In the following section, we also provide an Ω(k log(W)
log(k)) lower bound for the problem. We remark

that the results of [HYZ12] show an Ω(
√
k
ε

log(W)) lower bound assuming that k < 1
ε2

, and
they give a matching upper bound in this regime. When k > 1

ε2
, the lower bound becomes

Ω(1
ε2

log(W)), which can be seen by simply applying the same lower bound on a subset of
1/ε2 of the sites. Then when k > 1/ε2, if k log(W)/ log(k) < log(W)/ε2, our upper bound
is O(log(W)/ε2), which is tight. Otherwise, our upper bound is O(k log(W)/ log(k)), which
matches our lower bound of Ω(k log(W)/ log(k)). Thus our protocol is optimal whenever k >
1/ε2. Since tight upper and lower bounds were known for the case of k < 1/ε2 by [HYZ12], this
closes the complexity of the problem.

We also note that our lower bound assumes 1/ε < W 1−ξ for some fixed constant ξ > 0. Thus
our lower bound does not contradict our upper bound of Ω(k log(εW)/ log(k)+log(εW)/ε2) (for
δ = Θ(1)). Observe that for 1/ε = Θ(W), one can simply send every stream update for O(W)
communication, which is also clearly a lower bound since any stream update not immediately
sent would cause the coordinator to no longer have a (1± ε) approximation.

Note that to obtain an L1 tracking algorithm, where the coordinator has a value W̃ such that
(1− ε)Wt ≤ W̃ ≤ (1 + ε)WT for every step t = 1, 2, . . . , n with probability 1− δ, our algorithm
uses

O

k log(εW)
log(k) +

log(W/ε) log(log(W)
εδ

)
ε2

expected message complexity. This fact simply follows from setting δ to be small enough to

222

union bound over the log(W)
εδ

points in the stream where the L1 increases by a factor of (1 + ε).

The known upper and lower bounds for L1 tracking on a single time step with failure prob-
ability δ = Θ(1) are summarized below. Note again, constant L1 tracking at all points in the
stream is accomplished in all cases by setting δ = log(W)/ε, and note that the log(1/δ) does not
multiply the O(k log(W)/ log(k)) term in our upper bound. With the combination of the upper
and lower bounds of [HYZ12], this completely closes the complexity of the problem.

Citation Message Complexity (upper or lower
bound)

[CMYZ12] + folklore O
(
k
ε

log(W)
)

[HYZ12] O
(
k log(W) +

√
k log(W) log(1/δ)

ε

)
This work O

(
k log(εW)

log(k) + log(εW)
ε2

)
[HYZ12] Ω

(√
min{k,1/ε2}

ε
log(W)

)
This work Ω

(
k log(W)

log(k)

)
Our algorithm for L1 tracking is described formally in Algorithm 16 below. To show cor-

rectness, we first prove Proposition 5.6.2, which is a standard tail bound for sums of exponential
random variables. We utilize the techniques from our weighted SWOR algorithm to assign an
key to each item (e, w) in the stream. Then, by the concentration of sums of exponential random
variables, we will demonstrate that the s-th largest key can be used to obtain a good approxima-
tion to the current L1 of the stream, where s = Θ(1

ε2
log(1

δ
))

Algorithm 16: Tracking L1

Input: Distributed stream S
Output: a value W̃ such that W̃ = (1± ε)Wt at any step time t with probability 1− δ.
Initalization:
Instantiate weighted SWOR algorithm P of Theorem 41 with s = Θ(1

ε2
log(1

δ
))

On Stream item (e, w)

1. Duplicate (e, w), a total of ` = s
2ε times, to yield (e1, w), (e2, w), . . . , (e`, w). Insert

each into the algorithm P .

On Query for L1 at time t:

1. Let u be the value stored at the coordinator of the s-th largest key held in the sample
set S.

223

2. Output W̃ = su
`

.

Proposition 5.6.2. Let E1, E2, . . . , Es be i.i.d. exponential random variables with mean 1. Then

for any ε > 0, we have:

Pr

∣∣∣∣∣∣
s∑
j=1

Ej − s

∣∣∣∣∣∣ > εs

 < 2e−ε2s/5

Proof. The moment generating function of
∑s
j=1Ej is given by (1

1−t)
s for t < 1,

Pr

 s∑
j=1

Ej > (1 + ε)s
 < (1

1−t)
s

et(1+ε)s

≤ exp
(
−t(1 + ε)s+ s log(1

1− t)
)

Setting t = ε and taking ε < 1/2 we obtain

≤ exp
(
−ε2s− εs− s log(1− ε)

)
≤ exp

(
−ε2s− εs+ s(ε+ ε2/2 + ε3/3 + . . .)

)
≤ exp

(
−ε2s/5

)
as needed. Next, we have

Pr

 s∑
j=1

Ej < (1− ε)s
 < Pr

[
e−t

∑s

j=1 Ej > e−t(1−ε)s
]

≤
(1

1+t)
s

exp(−t(1− ε)s)
≤ exp (t(1− ε)s− s log(1 + t))

setting t = ε:

≤ exp
(
−ε2s+ εs− s(ε+ ε2/2 + ε3/3 + . . .)

)
≤ exp

(
−ε2s/5

)
and union bounding over the upper and lower tail bound gives the desired result.

Theorem 44. There is a distributed algorithm (Algorithm 16), where at every time step the

224

coordinator maintains a value W̃ such that at any fixed time τ ∈ [n], we have

(1− ε)Wτ ≤ W̃ ≤ (1 + ε)Wτ

with probability 1−δ, whereWτ = ∑τ
i=1wi is the total weight seen so far at step τ . The expected

message complexity of the algorithm is O
((

k
log(k) + ε−2 log(1/δ)

)
log

(
εW

log(δ−1)

))

Proof. If Wτ is the total weight seen so far in the stream, then after duplication the weight of
the new stream S ′ that is fed into P is Wτ

2s
ε

. Call the total weight seen up to time τ of the
new stream W τ . The duplication has the effect that at any time step τ in the original stream,
every item (eij, wj) ∈ S ′, corresponding to a duplicate of (eij, wj) ∈ S, is such that wj ≤ ε

2sW τ .
Thus once an update to S is finished being processed, no item in S ′ is more than an ε

2s heavy
hitter. Since there are ` > s duplications made to each update, the level sets used in P will be
immediately saturated the moment the first update in S with a weight in that level set arrives.
Thus there is never any intermediate point in the stream S where some of the weight of the
stream is being withheld in the level sets used by P . Thus the total weight of the stream seen so
far at any given time has already been sent to the sample, so each item (ei, wi) seen so far in the
stream has had a key vi generated for it.

Now the coordinator holds the value u such that u is the s-th largest value in {v1, v2, . . . , v`τ},
where ` was the number of duplications. Here vi = wi/ti, where ti is an exponetial variable and
wi is a weight of one of the duplicates sent to the stream S ′. By results on the order statistics of
collections of exponential variables ([Nag06]), we have the distributional equality

u =
 s∑
j=1

Ej

W τ −
∑j−1
q=1wD(q)

−1

where E1, E2, . . . , Es are i.i.d. exponential random variables, and D(q) are the random variable
indices such that vD(1) ≥ VD(2) ≥ · · · ≥ VD(τ`) (the D(q)’s are known as anti-ranks). Since
wD(q) ≤ ε

2sW τ , it follows that

225

u =
(1± ε)

s∑
j=1

Ej
W τ

−1

= (1±O(ε))W τ

 s∑
j=1

Ej

−1

= (1±O(ε))`Wτ

 s∑
j=1

Ej

−1

Now by Proposition 5.6.2, we have Pr
[
|∑s

j=1Ej − s| > εs
]
< 2e−ε2s/5 < δ, where here we

set s = 10 log(δ−1)/ε2. Conditioned on this not occurring, we have u = (1 ± O(ε))`Wτ
1
s
, thus

u s
`

= (1 ± O(ε))Wτ as required, and the expected message complexity follows by Theorem 41
setting s = Θ(1

ε2
log(1

δ
)).

Corollary 5.6.3. There is a distributed algorithm where at every time step the coordinator main-

tains a value W̃ such that

(1− ε)Wτ ≤ W̃ ≤ (1 + ε)Wτ

for every τ ∈ [n] with probability 1− δ. The expected message complexity of the algorithm is

O

((
k

log(k) + ε−2 log(log(W)
δε

)
)

log
(

εW

log(δ−1)

))
.

Proof. The result follows from running Theorem 44 with δ′ = log(W)/(δε), and union bounding
over the log(W)/ε time steps t in the stream where Wt increases by a factor of (1 + ε).

5.6.1 Lower Bound for L1 Tracking

We now demonstrate an Ω(k log(W)/ log(k) + log(W)/ε)) lower bound on the expected mes-
sage complexity of any distributed L1 tracker. We remark again that our lower bound does not
contradict out upper bound ofO(k log(εW)/ log(k)+log(εW)/ε2), since it requires 1/ε < W 1−ξ

for some constant ξ.

Note that the lower bound holds for both weighted and unweighted streams, as the hard ex-
ample in the proof is a stream where all weights are equal to 1. We remark that the Ω(log(W)/ε)
portion of the bound is only interesting when k < 1

ε
, and in this regime a better lower bound

of Ω(
√
k
ε

log(W)) is given by [HYZ12]. We include this portion of the bound in the Theorem

226

for completeness, but remark that the main contribution of the Theorem is the lower bound of
Ω(k log(W)/ log(k)).

Theorem 45. Fix any constant 0 < q < 1. Then any algorithm which (ε, δ) = (ε, q2/64)
solves the L1 tracking problem (Definition 5.6.1), must send at least Ω(k log(W)/ log(k) +
ε−1 log(W)) messages with probability at least 1 − q (assuming 1/ε < W 1−ξ for some con-

stant ξ > 0). In particular, the expected message complexity of such an algorithm with δ = Θ(1)
is Ω(k log(W)/ log(k) + ε−1 log(W)).

Proof. We proceed much in the way of Theorem 43. We define η = Θ(log(W)
log(k)) epochs as follows:

at the end of the the i− th epoch, for i = 0, 1, 2, . . . , η−1, there will have been exactly ki global
stream updates processed since the start of the stream, each with weight 1. Thus each epoch i is
deterministically defined, and contains ki+1 − ki global updates. Let the unweighted updates be
e1, e2, . . . , en (we can make these weighted by simply adding a weight of 1. Here n = W , so the
stream is both weighted and unweighted. In each epoch, we partition the updates arbitrarily over
the sites k.

Now consider any algorithm P for L1 tracking, and at any time step t let u denote the value
held by P which tracks the L1 (total weight seen so far in the stream). On a given time step
t ∈ [n], let ut denote the value of u at time t, and let R denote the concatination of all random
coin flips used by the algorithm P for both the sites and the coordinator. We first claim the
following:

Claim 5.6.4. Let 0 < q < 1 be any constant. Suppose P is a randomized algorithm which

(ε, q/64)-solves the L1 tracking problem. Suppose the value it maintains for the L1 approxima-

tion at all times is called u. Then there is a constant C ′ = C ′(q) > 0 such that the following

holds:

• The value u changes at least C
′

ε
log(W) times with probability at least 1− q.

Proof. Consider the time steps T = {1,rnd(1 + ε),rnd((1 + ε)2), . . . , . . . , n}, where the L1

changes be a factor of (1 + ε), where rnd rounds the vaue to the nearest integer (note we can
assume n is a power of (1+ε) by construction). Suppose there is a randomized algorithmP which
for each t ∈ T , succeeds in outputting a (1 ± ε) approximation to t at time t with probability
1 − q2/64. Assuming that 1/ε < W 1−ξ for some constant ξ > 0, we have |T | > 1

ε
log(W)

distinct such points. Let Xt be a random variable that indicates that P is correct on t. We have

227

E [Xt] > 1− q/64, and clearly E [XtXt′] ≤ 1 for any t, t′. Thus

Var

1
ε

log(W)∑
i=1

Xi

 ≤ 1
ε

log(W)(1− q/64) + 1
ε2

log2(W)− 1
ε2

log2(W)(1− q/64)2

≤ (q/30) 1
ε2

log2(n)

(5.3)

for n larger than some constant. By Chebyshev’s inequality:

Pr

∣∣∣∣∣∣1ε log(W)(1− q/64)−
∑

i≤ε−1 log(W)
Xi

∣∣∣∣∣∣ > 1
√
q

√
q/30log(W)

ε

 < q

Thus with probability at least 1− q, P is correct on at least a C′

ε
log(W) number of the points in

T , for C ′ = (1 − q/64 − 1√
30−) > 1/2. Now suppose that, conditioned on this, the algorithm

changed u less than C′

ε
log(W) times. But each time u changes, it can be correct for at most one

of the values in T , which contradicts the fact that P is correct on at least a C′

ε
log(W) of these

points. So with probability at least 1 − q, the value of u must change at least C′

ε
log(W) times,

as needed.

Note that the lower bound of Ω(log(W)/ε) messages being sent with probability at least
1 − q follows directly from the last claim. Note moreover, that our lower bound reduces to
Ω(log(W)/ε) when k < 8/ε, so we can now assume that k > 8/ε.

Now consider any epoch i, and letXi be the number of sites which sent or received a message
from the coordinator in epoch i. Let Xj

i indicate that site j sent or recieved a message from the
coordinator in epoch i, so that Xi = ∑

j∈[k] X
j
i . We claim E [Xi] = Ω(k). To demonstrate this,

first note that at the beginning of an epoch, the current L1 of the stream is ki. First condition
on the event Ei that the estimate of the algorithm is correct at the beginning of the epoch. Note
Pr [Ei] > 1− q/64. By the law of total expectation: E [Xi] ≥ E [Xi | Ei](1− q/64).

Now consider the stream of updates σji in epoch iwhich send exactly 2ki consecutive updates
to each site j. Consider any stream σi constructed by composing σji ’s for any arbitrary permu-
tation of the j’s. Note that if site j∗ recieved the first set of updates in σi and does not send a
message after these updates, the algorithm will have an incorrect L1 estimate at time 3ki. Since
this does not occur with probability at least 1 − q/64, it follows that E

[
Xj∗

i

]
≥ (1 − q/64).

But note that this must hold for all sites j, and once a site j receives its set of 2ki updates,

228

since it could have been the first one to recieve the updates (unless it hears otherwise from the
coordinator). In other words, since the randomized protocol must maintain the same guarantee
for any ordering of the stream, it follows that every site j must also send a message to the co-
ordinator with probability at least 1 − q/64 after it sees its 2ki updates (unless the coordinator
sends a message to it first). Thus E

[
Xj
i

]
≥ (1− q/64) for all j, which completes the claim that

E [Xi] ≥ (1− q/64)k, giving E [∑η
i=1Xi] > kη(1− q/64). Thus E [kη −∑η

i=1Xi] < kηq/64,
and so by a Markov bound over the last expectation, Pr [∑η

i=1Xi < (1− 1/64)kη] < q. Since
Xi lower bounds the number of messages sent in the i-th epoch, this completes the proof.

229

230

Chapter 6

Data Streams with Bounded Deletions

As introduced in Section 1.1, the two prevalent models in the data stream literature are the
insertion-only and turnstile models. The turnstile model, being the more general of the two, cap-
tures a significantly wider array of applications. Unfortunately, many important streaming prob-
lems require a Θ(log n) multiplicative factor more space for turnstile streams than for insertion-
only streams. For instance, identifying a coordinate i ∈ [n] for which |xi| > 1

10
∑n
j=1 |xj| can be

accomplished using only O(log n)-bits of space in the insertion-only model [BDW16], whereas
the same task requires Ω(log2 n) bits in the turnstile model [JST11]. This “complexity gap” natu-
rally motivates the study of an intermediate streaming model which avoids the extra log n factor
provably required for turnstile algorithms, but still maintains sufficient expressivity to model
many real-world data streams.

In this Chapter, we introduce such an intermediary model, known as the bounded deletion

model, which was first proposed in our work [JW18a]. The bounded deletion model avoids the
lower bounds for turnstile streams by bounding the number of deletions that are allowed. While
similar notions of bounded deletion streams have been appeared in the past for their practical
applicability [GGR16a],1 prior to our work, no comprehensive theoretical study of data stream
algorithms in this setting existed.

Specifically, in the bounded deletion model we are given a parameter α ≥ 1, and promised
that, at the end of the stream, the norm ‖x‖p is at least a 1/α-fraction of the Lp norm of the
hypothetical stream had all updates been positive. Here, the value of p we choose depends on
the application. This gives a fluid medium between insertion only streams (with α = 1), and

1See also [CJMM16], where a bound on the maximum number of edges that could be deleted in a graph stream
was useful.

231

turnstile streams (with α = poly(n)).

We show that for streams with this α-property, for many fundamental streaming problems
we can replace a O(log n) factor in the space usage for algorithms in the turnstile model with
a O(logα) factor. This is true for identifying heavy hitters, inner product estimation, L0 es-
timation, L1 estimation, L1 sampling, and support (L0) sampling. For each problem, we will
provide matching or nearly matching lower bounds for α-property streams. We note that in prac-
tice, many important turnstile data streams are in fact α-property streams for small values of
α. For such applications, our results represent significant improvements in efficiency for all the
aforementioned problems.

Highlighted Contributions

The materials from this chapter are drawn from our paper [JW18a]. The main contributions
therein are as follows:

• We introduce the bounded deletion model, which is an intermediate model between the
insertion-only and turnstile model (Section 6.1).

• We give improved algorithms for many fundamental streaming problems in the bounded
deletion model, with space complexity usually a logα instead of a log n factor larger than
the corresponding required complexity in the insertion-only model. This continuously
links the complexity of the insertion-only and turnstile models (Sections 6.2-6.7).

• For each of the streaming problems we consider, we prove matching or nearly-matching
lower bounds in the bounded deletion model (Section 6.8).

6.1 Background

We begin by formally introducing the bounded deletion model. First, we define the insertion

vector I ∈ Rn to be the frequency vector of the substream of positive updates (∆t ≥ 0), and
the deletion vector D ∈ Rn to be the entry-wise absolute value of the frequency vector of the

232

substream of negative updates. In other words, we have:

Ij =
∑

t : it=j
∆t≥0

∆t and Dj =
∑

t : it=j
∆t<0

|∆t|

for each j ∈ [n] on a stream with updates (i1,∆1), (i2,∆2), . . . , (im,∆m). Notice that x = I−D
by definition. We then define the bounded deletion model as follows:

Definition 6.1.1 (α-Bounded Deletion Streams). For α ≥ 1 and p ≥ 0, a data stream satisfies

the Lp α-property if

‖I +D‖p ≤ α‖x‖p

For p = 1, the definition simply asserts that the final L1 norm of x must be no less than a
1/α fraction of the total weight of updates in the stream

∑m
t=1 |∆t|. For strict turnstile streams,

this is equivalent to the number of deletions being less than a (1 − 1/α) fraction of the number
of insertions, hence a bounded deletion stream.

For p = 0, the α-property simply states that ‖x‖0, the number of non-zero coordinates at the
end of the stream, is no smaller than a 1/α fraction of the number of distinct elements seen in the
stream. Importantly, note that for both cases this constraint need only hold at the time of query,
and not necessarily at every point in the stream.

Observe for α = 1, we recover the insertion-only model, whereas for α = mM in the L1

case or α = n in the L0 case we recover the turnstile model (with the minor exception of streams
with ‖x‖p = 0). So α-property streams are a natural parameterized intermediate model between
the insertion-only and turnstile models. For clarity, in this Chapter we use the term unbounded

deletion stream to refer to a (general or strict) turnstile stream which do not satisfy the α property
for any α = o(n).

For many applications of turnstile data streaming algorithms, the streams in question are in
fact α-property streams for small values of α. For instance, in network traffic monitoring it is
useful to estimate differences between network traffic patterns across distinct time intervals or
routers [M+05]. If x1

i , x
2
i represent the number of packets sent between the i-th [source, destina-

tion] IP address pair in the first and second intervals (or routers), then the stream in question is
x1 − x2. In realistic systems, the traffic behavior will not be identical across days or routers, and
even differences as small as 0.1% in overall traffic behavior (i.e. ‖x1 − x2‖1 > .001‖x1 + x2‖1)
will result in α < 1000 (which is significantly smaller than the theoretical universe size of
n ≈ 2256 potential IP addresses pairs in IPv6).

233

A similar case for small α can be made for differences between streams whenever these
differences are not arbitrarily small. This includes applications in streams of financial transac-
tions, sensor network data, and telecommunication call records [Ind04, CJK+04], as well as for
identifying newly trending search terms, detecting DDoS attacks, and estimating the spread of
malicious worms [PDGQ05, EVF03, Moo01, LCD05, WP05].

A setting in which α is likely even smaller is database analytics. For instance, an impor-
tant tool for database synchronization is Remote Differential Compression (RDC)[TBG+06,
ABFS02], which allows similar files to be compared between a client and server by transmit-
ting only the differences between them. For files given by large data streams, one can feed these
differences back into sketches of the file to complete the synchronization. Even if as much as a
half of the file must be resynchronized between client and sever (an inordinately large fraction
for typical RDC applications), streaming algorithms with α = 2 would suffice to recover the
data.

For the L0-norm, there are important applications of streams with bounded value of α. For
example, L0 estimation is applicable to networks of cheap moving sensors, such as those mon-
itoring wildlife movement or water-flow patterns [Ind04]. In such networks, some degree of
clustering is expected (in regions of abundant food, points of water-flow accumulation), and
these clusters will be consistently occupied by sensors, resulting in a bounded ratio of inactive to
active regions. Furthermore, in networking one often needs to estimate the number of distinct IP
addresses with active network connections at a given time [GGR16b, M+05]. Here we also ob-
serve some degree of clustering on high-activity IP’s, with persistently active IP’s likely resulting
in an value pf α much larger than 1/n (where n is the universe size of IP addresses).

In many of the above applications, α can even be regarded as a constant when compared
with n. For such applications, the space improvements detailed in Figure 6.1 are considerable,
and reduce the space complexity of the problems nearly or exactly to known upper bounds for
insertion-only streams [BDW16, Mor78, KNW10b, JST11].

Finally, we remark that in some cases it is not unreasonable to assume that the magnitude of
every coordinate would be bounded by some fraction of the updates to it. For instance, in the
case of RDC it is seems likely that none of the files would be totally removed. We summarize
this stronger guarantee as the strong α-property.

Definition 6.1.2. For α ≥ 1, a data stream satisfies the strong α-property if

Ii +Di ≤ α|xi|

234

for all coordinates i ∈ [n].

Note that this property is strictly stronger that the Lp α-property for any p ≥ 0. In particular,
it forces xi 6= 0 if i is updated in the stream. In this Chapter, however, we focus primarily on
the more general α-property of Definition 6.1.1, and use α-property to refer to Definition 6.1.1
unless otherwise explicitly stated. Nevertheless, we show that our lower bounds for Lp heavy
hitters, L1 estimation, L1 sampling, and inner product estimation, all hold even for the more
restricted strong α-property streams.

Contributions for Bounded Deletion Streams

As promised, we demonstrate that for many well-studied streaming problems, we can replace
a log(n) factor in algorithms for general turnstile streams with a log(α) factor for α-property
streams. This is a significant improvement for small values of α. Our upper bound results, along
with the lower bounds for the unbounded deletion case, are given in Figure 6.1. Several of our
results come from the introduction of a new data structure, CSSamplingSimulator (Section 6.2),
introduced in Section 6.2, which produces estimates of the frequencies xi with small additive er-
ror. The data structure CSSamplingSimulator, roughly, is the result of first subsampling updates
to the data stream, and then applying the classic count-sketch algorithm (Section 2.3.2).

Importantly, our improvements from CSSamplingSimulator and other L1 problems are the
result of applying sampling techniques, where we sample individual updates, to α-property
streams While sampling individual updates to data streams has been studied in many papers,
most have been in the context of insertion only streams (see, e.g., [Coh15, CDK+09, CDK+14,
CCD11, EV03, GM98a, Knu98, MM12, Vit85b]). Notable examples of the use of sampling
in the presence of deletions in a stream are [CCD12, GLH08, Haa16, GLH06, GLH07]. We
note that these works are concerned with unbiased estimators and do not provide the (1 ± ε)-
approximate relative error guarantees with small space that we obtain. They are also concerned
with unbounded deletion streams, whereas our algorithms exploit the α-property of the underly-
ing stream to obtain considerable savings.

In addition to upper bounds, we give matching or nearly matching lower bounds in the α-
property setting for all the problems we consider. In particular, for the L1-related problems
(heavy hitters, L1 estimation, L1 sampling, and inner product estimation), we show that these
lower bounds hold even for the stricter case of strong α-property streams. The statements and
proofs of these lower bounds can be found in Section 6.8.

235

Problem Turnstile L.B. α-Property U.B. Citation Notes

ε-Heavy Hitters Ω(ε−1 log2(n)) O(ε−1 log(n) log(α)) [JST11]
Strict-turnstile
succeeds w.h.p.

ε-Heavy Hitters Ω(ε−1 log2(n)) O(ε−1 log(n) log(α)) [JST11]
Gen.-turnstile
δ = O(1)

Inner Product Ω(ε−1 log(n)) O(ε−1 log(α)) Theorem 69 Gen.-turnstile
L1 Estimation Ω(log(n)) O(log(α)) Theorem 64 Strict-turnstile

L1 Estimation Ω(ε−2 log(n)) O(ε−2 log(α))
+ log(n)) [KNW10a] Gen.-turnstile

L0 Estimation Ω(ε−2 log(n)) O(ε−2 log(α))
+ log(n)) [KNW10a] Gen.-turnstile

L1 Sampling Ω(log2(n)) O(log(n) log(α)) [JST11] Gen.-turnstile (∗)
L0 Sampling Ω(log2(n)) O(log(n) log(α)) [KNP+17] Strict-turnstile

Figure 6.1: The best known lower bounds (L.B.) for classic data stream problems in the turnstile
model, along with the upper bounds (U.B.) for α-property streams from this paper. The notes
specify whether an U.B./L.B. pair applies to the strict or general turnstile model. For simplicity,
we have suppressed log log(n) and log(1/ε) terms, and all results are for δ = O(1) failure
probability, unless otherwise stated. (∗) L1 sampling note: strong α-property, with ε = Θ(1) for
both U.B. & L.B.

We also demonstrate that for general turnstile streams, obtaining a constant approximation
of the L1 still requires Ω(log(n))-bits for α-property streams. For streams with unbounded dele-
tions, there is an Ω(ε−2 log(n)) lower bound for (1 ± ε)-approximation [KNW10a]. Although
we cannot remove this log n factor for α-property streams, we are able to show an upper bound
of Õ(ε−2 logα + log n) bits of space for strong α-property streams, where the Õ notation hides
log(1/ε) + log log n factors. We thus separate the dependence of ε−2 and log n in the space
complexity, illustrating an additional benefit of α-property streams, and show a matching lower
bound for strong α-property streams.

Overview of Techniques

Our results for L1 streaming problems in Sections 6.2 to 6.5 are built off of the observation
that for α property streams, the number of insertions and deletions made to any given coordinate
i ∈ [n] is upper bounded by α‖x‖1. This simply follows from the fact that |Ii+Di| ≤ ‖I+D‖1 ≤
α‖x‖1 by definition of the α-property. Thus, if we were to uniformly sample poly(α/ε) updates
to such a coordinate i, we would obtain an unbiased estimator of xi with standard deviation at
most ε‖x‖1. On the other hand, the new, sub sampled, coordinate only requires log(α/ε)-bits of

236

space to store, instead of log n.

To exploit this fact, in Section 6.2 we introduce a data structure CSSamplingSimulator in-
spired by the classic Countsketch of [CCFC02b], which simulates running each row of Counts-
ketch on a small uniform sample of stream updates. Our data structure does not correspond to
a valid instantiation of Countsketch on any stream since we sample different stream updates for
different rows of Countsketch. Nevertheless, we show via a Bernstein inequality that our data
structure obtains the Countsketch guarantee plus an ε‖x‖1 additive error, with only a logarithmic
dependence on ε in the space. This results in more efficient algorithms for the L1 heavy hitters
problem (Section 6.3), and is also used in our L1 sampling algorithm (Section 6.4). We are able
to argue that the counters used in our algorithms can be represented with much fewer than log n
bits because we sample a very small number of stream updates.

Additionally, we demonstrate that sampling poly(α/ε) updates preserves the inner product
between two α-property streams f, g ∈ Rn up to an additive ε‖f‖1‖g‖1 error. Then by hashing
the sampled universe down modulo a sufficiently large prime, we show that the inner product
remains preserved, allowing us to estimate it in O(ε−1 log(α)) space (Section 6.2.2).

Our algorithm for L1 estimation (Section 6.5) utilizes our biased coin observation to show
that sampling will recover the L1 of a strict turnstile α-property stream. To carry out the sampling
in o(log(n)) space, give a alternate analysis of the well known Morris counting algorithm, giving
better space but worse error bounds. This allows us to obtain a rough estimate of the position
in the stream so that elements can be sampled with the correct probability. For L1 estimation
in general turnstile streams, we analyze a virtual stream which corresponds to scaling our input
stream by Cauchy random variables, argue it still has the α-property, and apply our sampling
analysis for L1 estimation on it.

Our results for the L0 streaming problems in Sections 6.6 and 6.7 mainly exploit the α-
property in sub-sampling algorithms. Namely, many data structure for L0 streaming problems
subsample the universe [n] at log(n) levels, corresponding to log(n) possible thresholds which
could be O(1)-approximations of the L0. If, however, an O(1) approximation were known in
advance, we could immediately subsample to this level and remove the log(n) factor from the
space bound. For α property streams, we note that at any given point in time, the total number
of non-zero coordinates seen after t updates, given by ‖I(t) + D(t)‖0, must be bounded in the
interval [‖x(t)‖0, α · ‖x‖0]. Thus, by employing an O(1) estimator Rt of ‖I(t) +D(t)‖0, we show
that it suffices to sub-sample to only the O(log(α/ε)) levels which are closest to log(Rt) at time
t, from which our space improvements follows.

237

Transformation to Unit Update Streams

Let (i1,∆1), . . . , (it,∆t) be the updates to the stream. For Sections 6.2 to 6.5, we now remark
that it will suffice to assume that each update ∆t satisfies ∆t ∈ {−1, 1}. For general updates,
we can implicitly consider them to be several consecutive updates in {−1, 1}, and our analysis
will hold in this expanded stream. This implicit expanding of updates is only necessary for our
algorithms which sample updates with some probability p. If an update |∆t| > 1 arrives, we
update our data structures with the value sign(∆t) ·Bin(|∆t|, p), where Bin(n, p) is the binomial
random variable on n trials with success probability p, which has the same effect.

In this unit-update setting, the L1 α property simply reduces to the statement m ≤ α‖x‖1.
Thus, in the remainder of the Chapter, this is the definition which we will use for the L1 α

property.

Roadmap of the Chapter

In Section 6.2, we introduce the data-structure CSSamplingSimulator, which will be used cen-
trally for several streaming tasks in this chapter. In Section 6.2.2, we show how the data structure
CSSamplingSimulator can be used to solve the inner product estimation task, and in Section 6.3
we show how the data structure CSSamplingSimulator can be used to solve the heavy hitters
problem. In Section 6.4, we consider the L1 sampling problem, and in Section 6.5 we consider
the problem of L1 Estimation. For these Sections 6.2 to 6.5, which all concern the L1 norm, we
will consider only the L1 α-property, and thus drop the L1 in these sections for simplicity.

Next, in Section 6.6, we consider the problem of L0, or distinct elements estimation, and in
Section 6.7 we consider the problem of L0, or support, sampling. For these latter two sections,
namely Sections 6.6 and 6.7, we will consider only the L0 α-property, and similarly drop the
prefix of L0 there when referring to the α property.

6.2 Frequency Estimation via Sampling

In this section, we will develop many of the tools needed for answering approximate queries
about α property streams. Primarily, we develop a data structure CSSamplingSimulator, in-
spired by the classic count-sketch of [CCFC02b] (Section 2.3.2), that computes frequency es-
timates of items in the stream by sampling. This data structure will immediately result in an

238

improved heavy hitters algorithm in Section 6.3, and is at the heart of our L1 sampler in Section
6.4. Recall that in this section, we will write α-property to refer to the L1 α-property.

Firstly, for α-property streams, the following observation is crucial to many of our results.
Given a fixed item i ∈ [n], by sampling at least poly(α/ε) stream updates we can preserve xi
(after scaling) up to an additive ε‖x‖1 error.

Lemma 6.2.1 (Sampling Lemma). Let x be the frequency vector of a general turnstile stream

with the α-property, and let x∗ be the frequency vector of a uniformly sampled substream scaled

up by 1
p
, where each update is sampled uniformly with probability p > α2ε−3 log(δ−1)/m. Then

with probability at least 1− δ for i ∈ [n], we have

|x∗i − xi| < ε‖x‖1

Moreover, we have
∑n
i=1 x

∗
i = ∑n

i=1 xi ± ε‖x‖1.

Proof. Assume we sample each update to the stream independently with probability p. Let
x+
i , x

−
i be the number of insertions and deletions of element i respectively, so xi = x+

i −x−i . Let
X+
j indicate that the j-th insertion to item i is sampled. First, if ε‖x‖1 < x+

i then by Chernoff
bounds:

Pr

∣∣∣∣∣∣∣
1
p

x+
i∑

j=1
X+
j − x+

i

∣∣∣∣∣∣∣ ≥ ε‖x‖1

 ≤ 2 exp
(−px+

i (ε‖x‖1)2

3(x+
i)2

)
≤ exp

(
− pε3m/α2

) (6.1)

where the last inequality holds because x+
i ≤ m ≤ α‖x‖1. Taking p ≥ α2 log(1/δ)/(ε3m) gives

the desired probability δ. Now if ε‖x‖1 ≥ x+
i , then

Pr

1
p

x+
i∑

j=1
X+
j ≥ x+

i + ε‖x‖1

 ≤ exp
(
− px+

i ε‖x‖1

x+
i

)

≤ exp
(
− pεm

α

)
≤ δ

(6.2)

for the same value of p. Applying the same argument to x−i , we obtain

x∗i = x+
i − x−i ± 2ε‖x‖1 = xi ± 2ε‖x‖1

239

as needed after rescaling ε. For the final statement, we can consider all updates to the stream as
being made to a single element i, and then simply apply the same argument given above.

6.2.1 Count-Sketch Sampling Simulator

In this section, we will extensively use concepts relating to the count-sketch data structure
A, see Section 2.3.2 for an introduction. Our algorithm CSSamplingSimulator will attempt to
simulate running count-sketch on a uniform sample of the stream of size poly(α log(n)/ε). The
full data structure is given in Figure 6.2. Note that for a fixed row of the count-sketch table A,
each update is chosen with probability at least

2−p ≥ S

2m = Ω
(
α2T 2 log(n)

ε2m

)

where S = Θ(α2

ε2
T 2 log(n)), is as defined in Figure 6.2. We will use this fact to apply Lemma

6.2.1 with ε′ = (ε/T) and δ = 1/poly(n). The parameter T will be poly(log(n)/ε), and we
introduce it as a new symbol purely for clarity.

Now the updates to each row in CSSamplingSimulator are sampled independently from the
other rows, thus CSSamplingSimulator may not represent running count-sketch on a single valid
sample. However, each row independently contains the result of running a row of count-sketch
on a valid sample of the stream. Since the count-sketch guarantee from Theorem 9 holds with
probability 2/3 for each row, and we simply take the median of O(log n) rows to obtain high
probability, it follows that the output of CSSamplingSimulator will still satisfy an additive error
bound w.h.p. if each row also satisfies that error bound with probability 2/3.

By Lemma 6.2.1 with sensitivity parameter (ε/T), we know that we preserve the weight of
all items xi with |xi| ≥ 1/T‖x‖1 up to a (1 ± ε) factor w.h.p. after sampling and rescaling.
For all smaller elements, however, we obtain error additive in ε‖x‖1/T . This gives rise to the
natural division of the coordinates of x. Let big ⊂ [n] be the set of i with |xi| ≥ 1/T‖x‖1, and
let small ⊂ [n] be the complement. Let E ⊂ [n] be the top k heaviest coordinates in f , and let
s ∈ Rn be a fixed sample vector of f after rescaling by p−1.We have

Err s2 ≤ ‖sbig\E‖2 + ‖ssmall‖2

240

CSSamplingSimulator

Input: sensitivity parameters k ≥ 1, ε ∈ (0, 1).
1. Set S = Θ(α2

ε2
T 2 log(n)), where T ≥ 4/ε2 + log(n).

2. Instantiate d × 6k count-sketch table A (Section 2.3.2), for d = O(log n). For each
table entry Aij ∈ A, store two values A+

ij and A−ij , both initialized to 0.

3. Select 4-wise independent hash functions hi : [n] → [6k], gi : [n] → {1,−1}, for
i ∈ [d] as needed for count-sketch

4. Set p← 0, and start log(n) bit counter to store the position in the stream.

5. On Update (it,∆t):
(a) if t = 2r log(S) + 1 for any r ≥ 1, then for every entry Aij set

A+
ij ← Bin(A+

ij, 1/2), A−ij ← Bin(A−ij, 1/2)

and p← p+ 1

(b) On Update (it,∆t): Sample (it,∆t) with probability 2−p. If sampled, then for
i ∈ [d]

i. if ∆tgi(it) > 0, set A+
i,hi(it) ← A+

i,hi(it) + ∆tgi(it).

ii. else set A−i,hi(it) ← A−ihi(it) + |∆tgi(it)|

6. On Query for xj: return

y∗j = median
i∈[d]

{
2p · gi(j) · (A+

i,hi(j) −A−i,hi(j)) | i ∈ [d]
}

Figure 6.2: Our data structure to simulate running count-sketch on a uniform sample of the
stream.

241

Furthermore, by Lemma 6.2.1, we may bound

‖sbig\E‖2 ≤ (1 + ε)‖xbig\E‖2 ≤ (1 + ε) Errx2

So it remains to upper bound ‖ssmall‖2
2, which we do in the following technical lemma.

The intuition for the Lemma is that ‖xsmall‖2 is maximized when all the L1 weight is concen-
trated in T elements, thus ‖xsmall‖2 ≤ (T (‖x‖1/T)2)1/2 = ‖x‖1/T

1/2. By the α property, we
know that the number of insertions made to the elements of small is bounded by α‖x‖1. Thus,
computing the variance of ‖ssmall‖2

2 and applying Bernstein’s inequality, we obtain a similar
upper bound for ‖ssmall‖2.

Lemma 6.2.2. If s is the rescaled frequency vector resulting from uniformly sampling with prob-

ability p ≥ S/(2m), where S = Ω(α2T 2 log(n)) for T = Ω(log(n)), of a general turnstile

stream f with the α property, then we have ‖ssmall‖2 ≤ 2T−1/2‖x‖1 with high probability.

Proof. Fix x ∈ Rn, and assume that ‖x‖1 > S (otherwise we could just sample all the updates
and our counters in count-sketch would never exceed log(αS)). For any i ∈ [n], let xi = x+

i −x−i ,
so that x = x+ − x−, and let si be our rescaled sample of xi. By definition, for each i ∈ small
we have xi < 1

T
‖x‖1. Thus the quantity ‖xsmall‖2

2 is maximized by having T coordinates equal
to 1

T
‖x‖1. Thus ‖xsmall‖2

2 ≤ T (‖x‖1
T

)2 ≤ ‖x‖21
T

. Now note that if we condition on the fact
that si ≤ 2/T‖x‖ for all i ∈ small, which occurs with probability greater than 1 − n−5 by
Lemma 6.2.1, then since E [∑i |si|4] = O(n4), all of the following expectations change by
a factor of at most (1 ± 1/n) by conditioning on this fact. Thus we can safely ignore this
conditioning and proceed by analyzing E [‖ssmall‖2

2] and E [‖ssmall‖4
4] without this condition,

but use the conditioning when applying Bernstein’s inequality later.

We have that |si| = |1
p

∑x+
i +x−i
j=1 Xij|, where Xij is an indicator random variable that is ±1 if

the j-th update to xi is sampled, and 0 otherwise, where the sign depends on whether or not the
update was an insertion or deletion and p ≥ S/(2m) is the probability of sampling an update.

242

Then E [|si|] = E
[
|1
p

∑x+
i +x−i
j=1 Xij|

]
= |xi|. Furthermore, we have

E
[
s2
i

]
= 1
p2 E

(
x+
i +x−i∑
j=1

Xij)2

= 1
p2 (

x+
i +x−i∑
j=1

E
[
X2
ij

]
+
∑
j1 6=j2

E [Xij1Xij2])

= 1
p

(x+
i + x−i) + ((x+

i)(x+
i − 1) + (x−i)(x−i − 1)− 2x+

i x
−
i)

(6.3)

Substituting x−i = x+
i − xi in part of the above equation gives

E
[
s2
i

]
= 1
p

(x+
i + x−i) + x2

i + xi − 2x+
i

≤ 1
p

(x+
i + x−i) + 2x2

i

(6.4)

So

E

 ∑
i∈small

s2
i

 ≤ 1
p

(‖x+
small‖1 + ‖x−small‖1) + 2‖xsmall‖2

2

which is at most α
p
‖x‖1 + 2‖x‖

2
1

T
by the α-property of x and the upper bound on ‖xsmall‖2

2. Now

E [s4
i] = 1

p4 E
[
(∑x+

i +x−i
j=1 Xij)4

]
, which we can write as

E

∑
j

X4
ij + 4

∑
j1 6=j2

X3
ij1Xij2 + 12

∑
j1,j2,j3
distinct

X2
ij1Xij2Xij3 +

∑
j1,j2,j3,j4

distinct

Xij1Xij2Xij3Xij4

 1
p4 (6.5)

We analyze Equation 6.5 term by term. First note that

E

∑
j

X4
ij

 = p(x+
i + x−i)

and

E

 ∑
j1 6=j2

X3
ij1Xij2

 = p2
(
(x+

i)(x+
i − 1) + (x−i)(x−i − 1)− 2(x+

i x
−
i)
)

Substituting x−i = x+
i − xi, we obtain E

[∑
j1 6=j2 X

3
ij1Xij2

]
≤ 2p2x2

i . Now for the third term we

243

have

E

 ∑
j1 6=j2 6=j3

X2
ij1Xij2Xij3

 = p3
(
(x+

i)(x+
i − 1)(x+

i − 2) + (x−i)(x−i − 1)(x−i − 2) + x+
i (x−i)(x−i − 1)

+ x−i (x+
i)(x+

i − 1)− 2(x+
i x
−
i)(x+

i − 1)− 2(x+
i x
−
i)(x−i − 1)

)
(6.6)

which after the same substitution is upper bounded by

10p3 max{x+
i , |xi|}x2

i ≤ 10p3α‖x‖1x
2
i

where the last inequality follows from the α-property of f . Finally, the last term is

E

 ∑
j1 6=j2 6=j3 6=j4

Xij1Xij2Xij3Xij4

 = p4
(
x+
i (x+

i − 1)(x+
i − 2)(x+

i − 3) + x−i (x−i − 1)(x−i − 2)(x−i − 3)

+ 6(x+
i (x+

i − 1))(x−i (x−i − 1))

− 4
(
x+
i (x+

i − 1)(x+
i − 2)x−i + x−i (x−i − 1)(x−i − 2)x+

i

))
(6.7)

Making the same substitution allows us to bound this above by

p4(24x4
i − 12xix+

i + 12(x+
i)2) ≤ p4(36(xi)4 + 24(x+

i)2)

Now x satisfies the α property. Thus ‖x+
small‖1 + |x−small‖1 ≤ α‖x‖1, so summing the above

bounds over all i ∈ small we obtain

E
[

1
p4‖ssmall‖

4
4

]
≤ 1
p3α‖x‖1 + 8

p2‖xsmall‖
2
2

+120α
p
‖xsmall‖2

2 |f‖1 + 36‖xsmall‖4
4 + 24α2‖x‖2

1

Now 1/p ≤ 2m
S
≤ 2α

S
‖x‖1 by the α-property. Applying this with the fact that ‖xsmall‖2

2 is
maximized at ‖x‖

2
1

T
, and similarly ‖xsmall‖2

2 is maximized at T (‖x‖1/T)4 = ‖x‖4
1/T

3 we have
that E

[
1
p4‖ssmall‖4

4

]
is at most

8α4

S3 ‖x‖
4
1 + 36α2

S2T
‖x‖4

1 + 240α2

ST
‖x‖4

1 + 36
T 3‖x‖

4
1 + 24α2‖x‖2

1

244

Since we have ‖x‖1 > S > α2T 2, the above expectation is upper bounded by 300
T 3 ‖x‖4

1. We now
apply Bernstein’s inequality. Using the fact that we conditioned on earlier, we have the upper
bound 1

p
si ≤ 2‖x‖1/T , so plugging this into Bernstein’s inequality yields:

Pr
[∣∣∣‖ssmall‖2

2 − E
[
‖ssmall‖2

2

] ∣∣∣ > ‖x‖2
1

T

]
≤ exp

(
− ‖x‖4

1/(2T 2)
300‖x‖4

1/T
3 + 2‖x‖3

1/(3T 2)
)

≤ exp
(
− T/604

) (6.8)

Finally, T = Ω(log(n)), so the above probability is poly(1
n
) for T = c log(n) and a sufficiently

large constant c. Since the expectation E [‖ssmall‖2
2] is at most

α

p
‖x‖1 + 2‖x‖2

1/T ≤ 3‖x‖2
1/T

it follows that ‖ssmall‖2 ≤ 2‖x‖1√
T

with high probability, which is the desired result.

Applying the result of Lemma 6.2.2, along with the bound on Err s2 from the previous
paragraphs, we obtain the following corollary.

Corollary 6.2.3. With high probability, if s is as in Lemma 6.2.2, then

Err s2 ≤ (1 + ε) Errx2 + 2T−1/2‖x‖1

Now we analyze the error from CSSamplingSimulator. Observe that each row in A contains
the result of hashing a uniform sample into 6k buckets. Let si ∈ Rn be the frequency vector,
after scaling by 1/p, of the sample hashed into the i-th row of CSSamplingSimulator, and let
yi ∈ Rn be the estimate of si taken from the i-th row of CSSamplingSimulator. Let σ(i) : n→
[O(log(n))] be the row from which count-sketch returns its estimate for xi, meaning y∗i = y

σ(i)
i .

Theorem 46. For ε > 0, k > 1, with high probability, when run on a general turnstile stream

x ∈ Rn with the α property, CSSamplingSimulator with 6k columns, O(log(n)) rows, returns

y∗ such that, for every i ∈ [n] we have

|y∗i − xi| ≤ 2
(1
k1/2 Errx2 + ε‖x‖1

)

245

It follows that if ŷ = y∗ − y∗tail(k), then

Errx2 ≤ ‖x− ŷ‖2 ≤ 5(k1/2ε‖x‖1 + Errx2)

with high probability. The space required is O
(
k log n log(α logn

ε

)
.

Proof. Set S = Θ(α2

ε2
T 2 log(n)) as in Figure 6.2, and set T = 4/ε2 + O(log(n)). Fix any

i ∈ [n]. Now CSSamplingSimulator samples updates uniformly with probability p > S/(2m),
so applying Lemma 6.2.1 to our sample sji of xi for each row j and union bounding, with high
probability we have sji = xi ± ε

T
‖x‖1 = sqi for all rows j, q. Then by the count-sketch guarantee

(Theorem 9), for each row q of the table A, we have

yqi = xi ±
(
ε

T
‖x‖1 + k−1/2 max

j
Err sj2

)

with probability 2/3. Thus

y∗i = y
σ(i)
i = xi ±

(
ε

T
‖x‖1 + k−1/2 max

j
Err sj2

)

with high probability. Now noting that
√
T ≥ 2/ε, we apply Corollary 6.2.3 to Err sj2 and

union bound over all j ∈ [O(log(n))] to obtain

max
j

Err sj2 ≤ (1 + ε) Errx2 + ε‖x‖1

w.h.p., and union bounding over all i ∈ [n] gives

|y∗i − xi| ≤ 2
(1
k1/2 Errx2 + ε‖x‖1

)

for all i ∈ [n], again with high probability.

For the second claim, note that Errx2 ≤ ‖x− z‖2 for any k-sparse vector z, from which the
lower bound on ‖x− ŷ‖2 follows. For the upper bound, note that if the top k largest coordinates
are the same in y∗ as they are in x, then ‖x − ŷ‖2 is at most Errx2 plus the L2 error from
estimating the top k elements, which is at most

(
4k(ε‖x‖1 + k−1/2 Errx2)2

)1/2
≤ 2(k1/2ε‖x‖1 + Errx2)

In the worst case the top k coordinates of y∗ are disjoint from the top k in x. Applying the

246

triangle inequality, the error is at most the error on the top k coordinates of y∗ plus the error on
the top k in x. Thus ‖x− ŷ‖2 ≤ 5(k1/2ε‖x‖1 + Errx2) as required.

For the space bound, note that the count-sketch table A has O(k log(n)) entries, each of
which stores two counters which together hold O(S) samples in expectation. So the magnitude
of the counters never exceed poly(S) = poly(α

ε
log(n)) w.h.p. by Chernoff bounds, and so can

be stored using O(log(α logn
ε

) bits each (we can simply terminate if a counter gets too large).

We now address how the error term of Theorem 46 can be estimated so as to bound the
potential error. This will be necessary for our L1 sampling algorithm. We first state the following
well known fact about norm estimation [TZ], and give a proof for completeness.

Lemma 6.2.4. Let R ∈ Rk be any row Ai,∗ of a count-sketch matrix A with k columns, run on

a stream with frequency vector x. Then with probability 99/100, we have

k∑
i=1

R2
i = (1±O(k−1/2))‖x‖2

2

Proof. Let 1(E) be the indicator function that is 1 if the event E is true, and 0 otherwise. Let
h : [n] → [k] and g : [n] → {0, 1} be 4-wise independent hash functions which specify the row
of count-sketch. Then

E
[
k∑
i=1

R2
i

]
= E

 k∑
j=1

(
n∑
i=1

1(h(i) = j)g(i)xi
)2

= E
[
n∑
i=1

x2
i

]
+ E

 k∑
j=1

∑
i1 6=i2

1(h(i1) = j)1(h(i2) = j)g(i1)g(i2)xi1xi2

2

(6.9)

By the 2-wise independence of g, the second quantity is 0, and we are left with ‖x‖2
2. By a similar

computation using the full 4-wise independence, we can show that

Var
(

k∑
i=1

R2
i

)
= 2‖x‖

4
2 − ‖x‖4

4
k

≤ 2
k
‖x‖4

2

Then by Chebyshev’s inequality, we obtain

Pr

∣∣∣∣∣
k∑
i=1

R2
i − ‖x‖2

2

∣∣∣∣∣ > 10
√

2
k
‖x‖2

2

 < 1
100

as needed.

247

Lemma 6.2.5. For k > 1, ε ∈ (0, 1), given a α-property stream x, there is an algorithm that can

produce an estimate v such that

Errx2 ≤ v ≤ 45k1/2ε‖x‖1 + 20 Errx2

with high probability. The space required is the space needed to run two instances of the data

structure CSSamplingSimulator with parameters k, ε.

Proof. By Lemma 6.2.4, the L2 of row i of CSSamplingSimulator with a constant number
of columns will be a (1 ± 1/2) approximation of ‖si‖2 with probability 99/100, where si is
the scaled up sampled vector corresponding to row i. Our algorithm is to run two copies of
CSSamplingSimulator on the entire stream, say CSSS1 and CSSS2, with k columns and sensi-
tivity ε. At the end of the stream we compute y∗ and ŷ from CSSS1 where ŷ = y∗− y∗tail(k) is the
best k-sparse approximation to y∗. We then feed −ŷ into CSSS2. The resulting L2 norm of the
i-th row of CSSS2 is (1 ± 1/2)‖si2 − ŷ‖2 (after rescaling of si) with probability 99/100, where
si2 is the sample corresponding to the i-th row of CSSS2.

Now let T = 4/ε2 as in Theorem 46, and let si be the sample corresponding to the i-th row
of CSSS1 . Then for any i, ‖sismall‖2 ≤ 2T−1/2‖x‖1 w.h.p. by Lemma 6.2.2, and the fact that
‖xsmall‖2 ≤ T−1/2‖x‖1 follows from the definition of small.

Furthermore, by Lemma 6.2.1, we know w.h.p. that |sij−xj| < ε|xj| for all j ∈ big, and thus
‖sibig − xbig‖2 ≤ ε‖x‖1. Then by the reverse triangle inequality we have

∣∣∣‖si − ŷ‖2 − ‖x− ŷ‖2

∣∣∣ ≤ ‖si − f‖2

≤ ‖sismall − xsmall‖2 + ‖sibig − xbig‖2

≤ 5ε‖x‖1

(6.10)

Thus
‖si − ŷ‖2 = ‖x− ŷ‖2 ± 5ε‖x‖1

for all rows i w.h.p, so the L2 of the i-th row of CSSS2 at the end of the algorithm is the value vi
such that

1
2(‖x− ŷ‖2 − 5ε‖x‖1) ≤ vi ≤ 2(‖x− ŷ‖2 + 5ε‖x‖1)

with probability 9/10 (note that the bounds do not depend on i). Taking v = 2·median(v1, . . . , vO(log(n)))+
5ε‖x‖1, it follows that

‖x− ŷ‖2 ≤ v ≤ 4‖x− ŷ‖2 + 25ε‖x‖1

248

with high probability. Applying the upper and lower bounds on ‖x − ŷ‖2 given in Theorem
46 yields the desired result. The space required is the space needed to run two instances of
CSSamplingSimulator, as stated.

6.2.2 Inner Products

Given two vectors f, g ∈ Rn which are each updated in a stream, the inner-product estimation

problem is to estimate their product

〈f, g〉 =
n∑
i=1

figi

Inner product estimation has been studied for estimating the size of join and self-join relations for
databases [AGMS99, RD08, RD07]. For unbounded deletion streams, to obtain an ε‖f‖1‖g‖1-
additive error approximation the best known result requires O(ε−1 log(n)) bits with a constant
probability of success [CM05]. We show in Theorem 69 that Ω(ε−1 log(α)) bits are required
even when f, g are strong α-property streams. This also gives a matching Ω(ε−1 log(n)) lower
bound for the unbounded deletion case

In Theorem 47, we give a matching upper bound for α-property streams up to log log(n) and
log(1/ε) terms. We first prove the following technical Lemma, which shows that inner products
are preserved under a sufficiently large sample.

Lemma 6.2.6. Let f, g ∈ Rn be two α-property streams with lengths mf ,mg respectively. Let

f ′, g′ ∈ Rn be unscaled uniform samples of f and g, sampled with probability pf ≥ s/mf and

pg ≥ s/mg respectively, where s = Ω(α2/ε2). Then with probability 99/100, we have

〈p−1
f f ′, p−1

g g′〉 = 〈f, g, 〉 ± ε‖f‖1‖g‖1

Proof. We have
E
[
〈p−1
f f ′, p−1

g g′〉
]

=
∑
i

E
[
p−1
f f ′i

]
E
[
p−1
g g′i

]
= 〈f, g〉

Now the random variables {f ′ig′i}i∈[n]’s are independent, so it suffices to compute the variance
Var

(
p−1
f p−1

g f ′ig
′
i

)
of a single coordinate. We can write

Var
(
p−1
f p−1

g f ′ig
′
i

)
= (p−1

f p−1
g)2 E

[
(f ′i)2

]
E
[
(g′i)2

]
−(figi)2

LetXi,j ∈ {1,−1, 0} be a signed indicator variable, indicating if the j-th update to fi is sampled,

249

where the sign indicates whether the update was an insertion or deletion. Let f+, f− be the
insertion and deletion vectors of f respectively (see Definition 6.1.1), and let F = f+ + fi. Then
f = f+− f−, and f ′i = ∑f+

i +f−i
j=1 Xij . Similarlly define the vectors g+, g− and G = g+ + g−. We

have

E
[
p−2
f (f ′i)2

]
= E

p−2
f

f
+
i +f−i∑
j=1

X2
ij +

∑
j1 6=j2

Xij1Xij2

≤ p−1
f Fi + (f+

i)2 + (f−i)2 − 2f+
i f
−
i

= p−1
f Fi + f 2

i

(6.11)

Note that the α-property states that mf = ‖F‖1 ≤ α‖f‖1 and mg = ‖G‖1 ≤ α‖g‖1.
Moreover, it gives

p−1
f ≤

mf

s
≤ ε2‖f‖1

α
, and p−1

g ≤
mg

s
≤ ε2‖g‖1

α

Then

Var
(
〈p−1
f f ′, p−1

g g′〉
)

=
n∑
i=1

Var
(
p−1
f p−1

g f ′ig
′
i

)
≤

n∑
i=1

(
p−1
g f 2

i Gi + p−1
f g2

i Fi + p−1
f p−1

g FiGi

)
]

(6.12)

We can bound the first term via:

n∑
i=1

p−1
g f 2

i Gi ≤ p−1
g ‖G‖1‖f‖2

1 ≤ ε2‖g‖2
1‖f‖2

1 (6.13)

and similarly
n∑
i=1

p−1
f g2

i Fi ≤ ε2‖g‖2
1‖f‖2

1 (6.14)

Finally, we can bound the last term as follows:

n∑
i=1

p−1
f p−1

g FiGi ≤ p−1
f p−1

g ‖F‖1‖G‖1

≤ ε4‖f‖2
1‖g‖2

1

(6.15)

Putting together equations 6.12, 6.13, 6.14, and 6.15, we can bound the variance by 3ε2‖f‖2
1‖g‖2

1.

250

Applying Chebyshev’s inequality:

Pr
[∣∣∣〈p−1

f f ′, p−1
g g′〉 − 〈f, g〉

∣∣∣ > 30ε‖f‖1‖g‖1
]
≤ 1/100

and rescaling ε by a constant gives the desired result.

Our algorithm obtains such a sample as needed for Lemma 6.2.6 by sampling in exponentially
increasing intervals. Next, we hash the universe down by a sufficiently large prime to avoid
collisions in the samples, and then run a inner product estimator in the smaller universe. Note
that this hashing is not pairwise independent, as that would require the space to be at least log n
bits; rather the hashing just has the property that it preserves distinctness with good probability.
We now prove a fact that we will need for our desired complexity.

Lemma 6.2.7. Given a log(n) bit integer x, the value x (mod p) can be computed using only

log log(n) + log(p) bits of space.

Proof. We initialize a counter c ← 0. Let x1, x2, . . . , xlog(n) be the bits of x, where x1 the least
significant bit. Then we set y1 = 1, and at every step t ∈ [log(n)] of our algorithm, we store
yt, yt−1, where we compute yt as yt = 2yt−1 (mod p). This can be done in O(log(p)) space.
Our algorithm then takes log(n) steps, where on the t-th step it checks if xt = 1, and if so it
updates c ← c + yt (mod p), and otherwise sets c ← c. At the end we have c = ∑log(n)

i=0 2ixi
(mod p) = x (mod p) as desired, and c never exceeds 2p, and can be stored using log(p) bits of
space. The only other value stored is the index t ∈ [log(n)], which can be stored using log log(n)
bits as stated.

We now observe how the count-sketch data structure (Section 2.3.2) can be used to estimate
inner products. To do this, we instantiate two instances of count-sketch, whose tables we will
denote A,B, each with only a single row with k buckets; thus, we can think of A,B ∈ Rk. Next,
we run the first count-sketch A on the vector f , and run the second count-sketch on the vector
g, and report as an estimate the value 〈A,B〉 of 〈f, g〉. In the following Lemma, we show that
if we first subsample the vectors f, g of two α-property streams, before running count-sketch,
then 〈A,B〉 is still a good approximation of 〈f, g〉 after rescaling A and B by the inverse of the
sampling probability.

Lemma 6.2.8. Let f ′, g′ be uniformly sampled rescaled vectors of general-turnstile α-property

streams f, g with lengths mf ,mg and sampling probabilities pf , pg respectively. Suppose that

pf ≥ s/mf and pg ≥ s/mg, where s = Ω(α2 log7(n)T 2ε−10). Then let A ∈ Rk be a single row

251

of count-sketch run on f ′, and let B ∈ Rk be a single row of count-sketch run on g′, where A,B
share the same hash function h and k = Θ(1/ε) Then

k∑
i=1

AiBi = 〈f, g〉 ± ε‖f‖1‖g‖1

with probability 11/13.

Proof. Set k = 1002/ε. Let Yij indicate h(i) = h(j), and let Xij = σ+iσ+jf
′
ig
′
jYij . We have

k∑
i=1

AiBi = 〈f ′, g′〉+
∑
i 6=j

Xij

Let ε0 = Θ(log2(n)/ε3) and let T = Θ(log(n)/ε2), so we can write s = Ω(α2 log(n)T 2/ε20) (this
will align our notation with that of Lemma 6.2.2). Define the sets

F = {i ∈ [n] | |fi| ≥ ‖f‖1/T}, and G = {i ∈ [n] | |gi| ≥ ‖g‖1/T}

We first bound the term
|

∑
i 6=j,(i,j)∈F×G

Xij| ≤
∑

(i,j)∈F×G
Yij|f ′ig′j|

Now by Lemma 6.2.1 and union bounding over all i ∈ [n], we have

‖f ′ − f‖∞ ≤ ε0‖f‖1/T, and ‖g′ − g‖∞ ≤ ε0‖g‖1/T

with high probability, and we condition on this now. Thus for every (i, j) ∈ F × G, we have
f ′i = (1± ε0)fi and g′j = (1± ε0)gj . It follows that

∑
(i,j)∈F×G

Yij|f ′ig′j| ≤ 2
∑

(i,j)∈F×G
Yij|fi||gj|

where we used that ε0 < 1/4. Since E [Yij] = 1/k, we have

E

 ∑
(i,j)∈F×G

Yij|fi||gj|

 ≤ 1
k
‖f‖1‖g‖1

252

By Markov’s inequality with k = 1002/ε, it follows that

∣∣∣∣∣∣
∑

i 6=j,(i,j)∈F×G
Xij

∣∣∣∣∣∣ ≤ 2
∑

(i,j)∈F×G
Yij|fi||gj| ≤ ε‖f‖1‖g‖1

with probability greater than 1− (1/1000 + O(n−c)) > 99/100, where the O(n−c) comes from
conditioning on the high probability events from Lemma 6.2.1. Call this event E1.

Now define the complement sets FC = [n] \ F and GC = [n] \ G, and let A ⊂ [n]2 be the
set of all (i, j) with i 6= j and such that either i ∈ FC or j ∈ GC . We now consider the variables
{|Xij|}i<j , and let Xij, Xpq be two such distinct variables. Then

E [XijXpq] = E
[
f ′ig
′
if
′
pg
′
qYijYpqσ+iσ+jσ+pσ+q

]
Note that the variables σ are independent from YijYpq, which are determined by h. Since i < j

and p < q and (i, j) 6= (p, q), it follows that one of i, j, p, q is unique among them. WLOG it is
i, so by 4-wise independence of σ we have

E
[
f ′ig
′
if
′
pg
′
qYijYpqσ+iσ+jσ+pσ+q

]
= E

[
f ′ig
′
if
′
pg
′
qYijYpqσ+jσ+pσ+q

]
E [σ+i]

= 0

= E [Xij] E [Xpq]

Thus the variables {|Xij|}i<j (and symmetrically {|Xij|}i>j) are uncorrelated so

Var

 ∑
i<j,(i,j)∈A

Xij

 =
∑

i<j,(i,j)∈A
Var (Xij) ≤

∑
(i,j)∈A

(f ′ig′j)2/k

Since E
[∑

i<j,(i,j)∈AXij

]
= 0, by Chebyshev’s inequality with k = 1002/ε, we have

∣∣∣∣∣∣
∑

i<j,(i,j)∈A
Xij

∣∣∣∣∣∣ ≤ (ε
∑

(i,j)∈A
(f ′ig′j)2)1/2

with probability 99/100. So by the union bound and a symmetric arguement for j > i, we have

∣∣∣∣∣∣
∑

(i,j)∈A
Xij

∣∣∣∣∣∣ ≤ |
∑

i<j,(i,j)∈A
Xij|+ |

∑
i>j,(i,j)∈A

Xij|

≤ 2(ε
∑

(i,j)∈A
(f ′ig′j)2)1/2

253

with probability 1− (2/100) = 49/50. Call this event E2. We have

∑
(i,j)∈A

(f ′ig′j)2 =
∑

(i,j)∈F×GC
i 6=j

(f ′ig′j)2 +
∑

(i,j)∈FC×G
i 6=j

(f ′ig′j)2

+
∑

(i,j)∈FC×GC
i 6=j

(f ′ig′j)2

Now the last term is at most ‖f ′FC‖2
2‖g′GC‖2

2, which is at most 16‖f‖2
1‖g‖2

1/T
2 ≤ ε4‖f‖2

1‖g‖2
1

w.h.p. by Lemma 6.2.2 applied to both f and g and union bounding (note thatFC ,GC are exactly
the set small in Lemma 6.2.2 for their respective vectors). We hereafter condition on this w.h.p.
event that ‖f ′FC‖2

2 ≤ 4‖f‖2
1/T and ‖g′GC‖2

2 ≤ 4‖g‖2
1/T (note T > 1/ε2).

Now as noted earlier, w.h.p. we have f ′i = (1 ± ε0)fi and f ′j = (1 ± ε0)fj for i ∈ F and
j ∈ G. Thus ‖f ′F‖2

2 = (1±O(ε0))‖fF‖2
2 < 2‖f‖2

1 and ‖g′G‖2
2 ≤ 2‖g‖2

1. We have

∑
(i,j)∈F×GC

i 6=j

(f ′ig′j)2 ≤
∑
i∈F

(f ′i)2‖g′Gc‖2
2

≤ O(ε2)‖f ′F‖2
2‖g‖2

1

≤ O(ε2)‖f‖2
1‖g‖2

1

Applying a symmetric argument, we obtain
∑
i 6=j,(i,j)∈FC×G(f ′ig′j)2 ≤ O(ε2)‖f‖2

1‖g‖2
1 with high

probability. Thus each of the three terms is O(ε2)‖f‖2
1‖g‖2

1, so

∑
(i,j)∈A

(f ′ig′j)2 = O(ε2)‖f‖2
1‖g‖2

1

with high probability. Call this event E3. Now by the union bound, Pr [E1 ∪ E2 ∪ E3] > 1 −

254

(1/50 + 1/100 +O(n−c)) > 24/25. Conditioned on this, we can bound the error term via:

∣∣∣∣∣∣
∑
i 6=j

Xij

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
i 6=j,(i,j)∈F×G

Xij

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

(i,j)∈A
Xij

∣∣∣∣∣∣
≤ ε‖f ||1‖g‖1 + 2ε

√ ∑
(i,j)∈A

(f ′ig′j)2

= ε‖f ||1‖g‖1 + 2
√
O(ε3)‖f‖2

1‖g‖2
1

= O(ε)‖f‖1‖g|1

as desired. Thus with probability 24/25 we have

k∑
i=1

AiBi = 〈f ′, g′〉 ±O(ε)‖f‖1‖g‖1

By Lemma 6.2.6, noting that in the notation of this Lemma the vectors f ′, g′ have already
been scaled by p−1

f and p−1
g , we have 〈f ′, g′〉 = 〈f, g〉 ± ε‖f‖1‖g‖1 with probability 99/100.

Altogether, with probability 1 − (1/25 + 1/100) > 11/13 we have
∑k
i=1 AiBi = 〈f, g〉 ±

O(ε)‖f‖1‖g‖1, which is the desired result after a constant rescaling of ε.

We will apply Lemma 6.2.8 to complete our proof of our main Theorem.

Theorem 47. Given two general-turnstile stream vectors f, g with the α-property, there is a

one-pass algorithm which with probability 11/13 produces an estimate IP(f, g) such that

IP(f, g) = 〈f, g〉 ±O(ε)‖f‖1‖g‖1

using O(ε−1 log(α log(n)
ε

)) bits of space.

Proof. Let s = Θ(α2 log(n)7/ε10), and let Ir = [sr, sr+2]. Then for every r = 1, 2, . . . , logs(n),
we choose a random prime P = [D,D3] where D = 100s4. We then do the following for the
stream f (and apply the same following procedure for g). For every interval Ir and time step
t ∈ Ir, we sample the t-th update (it,∆t) to f with probability s−r (we assume ∆t ∈ {1,−1},
for bigger updates we expand them into multiple such unit updates.). If sampled, we let i′t be the
log(|P |) bit identity obtained by taking it modulo P . We then feed the unscaled update (i′t,∆t)
into an instance of count-sketch with k = O(1/ε) buckets. Call this instance CSfr . At any time
step t, we only store the instance CSfr and CSfr+1 such that t ∈ Ir ∩ Ir+1. At the end of the stream
it is time step mf , and fix r such that mf ∈ Ir ∩ Ir+1.

255

Now let f ′ ∈ Rn be the (scaled up by sr) sample of f taken in Ir. Let f ′′ ∈ Rp be the
(unscaled) stream on |P | items that is actually fed into CSfr . Then CSfr is run on the stream f ′′

which has a universe of |P | items. Let F ∈ Rk be the count-sketch vector from the instance CSfr .

Let f̂ be the frequency vector f restricted to the suffix of the stream sr, sr + 1, . . . ,mf (these
were the updates that were being sampled from while running CSr). Since mf ∈ Ir+1, we have
mf ≥ sr+1, so ‖f (sr)‖1 ≤ m/s < ε‖f‖1 (by the α property), meaning the L1 mass of the prefix
of the stream 1, 2, . . . , sr is an ε fraction of the whole stream L1, so removing it changes the
L1 by at most ε‖f‖1. It follows that ‖f̂ − f‖1 ≤ O(ε)‖f‖1 and thus ‖f̂‖1 = (1 ± O(ε))‖f‖1.
If we let ĝ be defined analogously by replacing f with g in the previous paragraphs, we obtain
‖ĝ − g‖1 ≤ O(ε)‖g‖1 and ‖ĝ‖1 = (1±O(ε))‖g‖1 as well.

Now with high probability we sampled fewer than 2sj+2/sj = 2s2 distinct identities when
creating f ′, so f ′ is 2s2-sparse. Let J ⊂ [n] × [n] be the set of pairs pf indices i, j with f ′i , f

′
j

non-zero. Then |J | < 2s4. Let Qi,j be the event that i − j = 0 (mod P). For this to happen,
P must divide the difference. By standard results on the density of primes, there are s8 primes
in [D,D3], and since |i − j| ≤ n it follows that |i − j| has at most log(n) prime factors. So
Pr [Qi,j] < log(n)/s8, Let Q = ∪(i,j)∈JQi,j , then by the union bound Pr [Q] < s−3. It follows
that no two sampled identities collide when being hashed to the universe of p elements with
probability 1− 1/s3.

Let supp(f ′) ⊂ [n] be the support of f ′ (non-zero indices of f ′). Conditioned on Q, we have
p−1
f f ′′i (mod p) = f ′i for all i ∈ supp(f ′), and f ′′i = 0 if i 6= j (mod p) for any j ∈ supp(f ′). Thus

there is a bijection between supp(f ′) and supp(f ′′), and the values of the respective coordinates
of f ′, f ′′ are equal under this bijection. Let g, g′′, ĝ,mg, pg be defined analogously to f, f ′′ by
replacing f with g in the past paragraphs, and let G ∈ Rk be the count-sketch vector obtained
by running count-sketch on f just as we did to obtain F ∈ Rk.

Conditioned on Q occurring (no collisions in samples) for both f ′′ and g′′ (call these Qf and
Qg respectively), which together hold with probability 1 − O(s−3) by a union bound, the non-
zero entries of p−1

f f ′′ and f ′ and of p−1
g g′′ and g′ are identical. Thus the scaled up count-sketch

vectors p−1
f F and p−1

g G of F,G obtained from running count-sketch on f ′′, g′′ are identical in
distribution to running count-sketch on f ′, g′. This holds because count-sketch hashes the non-
zero coordinates 4-wise independently into k buckets A,B ∈ Rk. Thus conditioned on Qf , Qg,
we can assume that p−1

f F and p−1
g G are the result of running count-sketch on f ′ and g′. We claim

that p−1
f p−1

g 〈F,G〉 is the desired estimator.

Now recall that f ′ is a uniform sample of f̂ , as is g′ of ĝ. Then applying the count-sketch

256

error of Lemma 6.2.8, we have

p−1
f p−1

g 〈F,G〉 = 〈f̂ , ĝ〉+ ε‖f̂‖1‖ĝ‖1

= 〈f̂ , ĝ〉+O(ε)‖f‖1‖g‖1

with probability 11/13. Now since ‖f̂ − f‖1 ≤ O(ε)‖f‖1 and ‖ĝ − g‖1 ≤ O(ε)‖g‖1, we have

〈f̂ , ĝ〉 = 〈f, g〉 ±
n∑
i=1

(εgi‖f‖1 + εfi‖g‖1) + ε2‖f‖1‖g‖1

= 〈f, g〉 ±O(ε)‖f‖1‖g‖1

Thus
p−1
f p−1

g 〈F,G〉 = 〈f, g〉 ±O(ε)‖f‖1‖g‖1

as required. This last fact holds deterministically using only the α-property, so the probability of
success is 11/13 as stated.

For the space, at most 2s2 samples were sent to each of f ′′, g′′ with high probability. Thus the
length of each stream was at most poly(α log(n)/ε), and each stream had P = poly(α log(n)
/ε) items. Thus each counter in the count-sketch data structures A,B ∈ Rk can be stored with
O(log(α log(n)/ε)) bits. So storing A,B requires O(ε−1 log(α log(n)/ε)) bits. Note we can
safely terminate if too many samples are sent and the counters become too large, as this happens
with probability O(poly(1/n)) . The 4-wise independent hash function h : [P] → [k] used to
create A,B requires O(log(α log(n)/ε)) bits.

Next, by Lemma 6.2.7, the space required to hash the log(n)-bit identities down to [P] is
log(P) + log log(n), which is dominated by the space for count-sketch. Finally, we can assume
that s is a power of two so p−1

f , p−1
g = poly(s) = 2q can be stored by just storing the exponent q,

which takes log log(n) bits. To sample we then flip log(n) coins sequentially, and keep a counter
to check if the number of heads reaches q before a tail is seen.

6.3 L1 Heavy Hitters

As an application of the CSSamplingSimulator algorithm presented in the last section, we give
an improved upper bound for the classic L1 ε-heavy hitters problem in the α-property setting.
Formally, given ε ∈ (0, 1), the L1 ε-heavy hitters problem asks to return a subset of [n] that
contains all items i such that |xi| ≥ ε‖x‖1, and no items j such that |xj| < (ε/2)‖x‖1.

257

The heavy hitters problem is one of the most well-studied problems in the data stream lit-
erature. For general turnstile unbounded deletion streams, there is a known lower bound of
Ω(ε−1 log(n) log(εn)) (see [BIPW10], in the language of compressed sensing, and [JST11]), and
the Countsketch of [CCFC02b] gives a matching upper bound (assuming ε−1 = o(n)). In the
insertion only case, however, the problem can be solved using O(ε−1 log(n)) bits [BDW16], and
for the strictly harder L2 heavy hitters problem (where ‖x‖1 is replaced with ‖x‖2 in the problem
definition), there is an O(ε−2 log(1/ε) log(n))-bit algorithm [BCI+16]. In this section, we beat
the lower bounds for unbounded deletion streams in the α-property case. We first run a subrou-
tine to obtain a value R = (1±1/8)‖x‖1 with probability 1− δ. To do this, we use the following
algorithm from [KNW10a].

Fact 6.3.1 ([KNW10a]). There is an algorithm which gives a (1±ε) multiplicative approximation

with probability 1− δ of the value ‖x‖1 using space O(ε−2 log(n) log(1/δ)).

Next, we run an instance of CSSamplingSimulator with parameters k = 32/ε and ε/32 to
obtain our estimate y∗ of f . This requires space O(ε−1 log(n) log(α log(n)

ε
)), and by Theorem 46

gives an estimate y∗ ∈ Rn such that

|y∗i − xi| < 2
(√

ε/32 Errx2 + ε‖x‖1/32
)

for all i ∈ [n] with high probability. We then return all items i with |y∗i | ≥ 3εR/4. Since the top
1/ε elements do not contribute to Errx2, the quantity is maximized by having k elements with
weight ‖x‖1/k, so Errx2 ≤ k−1/2‖x‖1. Thus

‖y∗i − x‖∞ < (ε/8)‖x‖1

Given this, it follows that for any i ∈ [n] if |xi| ≥ ε‖x‖1, then

|y∗i | > (7ε/8)‖x‖1 > (3ε/4)R

Similarly if |xi| < (ε/2)‖x‖1, then

|y∗i | < (5ε/8)‖x‖1 < (3ε/4)R

So our algorithm correctly distinguishes ε heavy hitters from items with weight less than ε/2.
The probability of failure is O(n−c) from CSSamplingSimulator and δ for estimating R, and
the space required is O(ε−1 log(n) log(α log(n)

ε
)) for running CSSamplingSimulator and another

258

O(log(n) log(1/δ)) to obtain the estimate R. This gives the following theorem.

Theorem 48. Given ε ∈ (0, 1), there is an algorithm that solves the ε-heavy hitters prob-

lem for general turnstile α-property streams with probability 1 − δ using space O(ε−1 log(n)
log(α log(n)

ε
) + log(n) log(1/δ)).

Now note for strict turnstile streams, we can compute R = ‖x‖1 exactly with probability 1
using an O(log(n))-bit counter. Since the error bounds from CSSamplingSimulator holds with
high probability, we obtain the following result.

Theorem 49. Given ε ∈ (0, 1), there is an algorithm that solves the ε-heavy hitters problem for

strict turnstile α-property streams with high probability using spaceO(ε−1 log(n) log(α log(n)/
ε)).

6.4 L1 Sampling

In this section, we consider the problem of designing approximate Lp samplers (see Chapter 3
for further introduction to this history of this problem). We begin by recalling the definition of a
Lp Sampler here.

Definition 3.1.2 (Lp sampler). Fix p ≥ 0, values ε, δ, γ ∈ (0, 1), and let x ∈ Rn be a non-zero

vector. Then a (ε, δ, γ)-approximate Lp sampler is an algorithm which outputs a random variable

Z ∈ [n] ∪ {⊥} such that Pr [X = ⊥] ≤ δ, and such that for every i ∈ [n]:

Pr [X = i | X 6= ⊥] = (1± ε) |xi|
p

‖x‖pp
± γ

We say that an algorithm is an (ε, δ)-approximate Lp sampler if, for any constant c ≥ 1, it is a

(ε, δ, n−c)-approximate Lp sampler.

In this section, using the data structure CSSamplingSimulator of Section 6.2, we will design
an L1 sampler for strict-turnstile strong L1 α-property streams using

O

(
ε−1 log(ε−1) log(n) log(α log(n)

ε
) log(δ−1)

)

bits of space. Recall that throughout the section we use α-property to refer to the L1 α-property.

259

6.4.1 The L1 Sampler

Our algorithm employs the precision sampling framework, as described in Section 3.2, although
with several simplifications since we are only interested in approximate rather than perfect sam-
plers. In particular, we will scale every item xi by 1/ti where ti ∈ [0, 1] is a uniform random
variable, and return any index i such that zi = |xi|/ti > 1

ε
‖x‖1, since this occurs with probability

exactly ε |xi|‖x‖1 . One can then run a traditional count-sketch on the scaled stream z to determine
when an element passes this threshold.

In this section, we will adapt this idea to strong α-property streams (Definition 6.1.2). The
necessity of the strong α-property arises from the fact that if x has the strong α-property, then
any coordinate-wise scaling z of x still has the α-property. Thus the stream z given by zi = xi/ti

has the α-property (in fact, it again has the strong α-property, but we will only need the fact that
z has the α-property). Our full L1 sampler is given in Figure 6.3.

By running CSSamplingSimulator to find the heavy hitters of z, we introduce error additive
inO(ε′‖z‖1) = O(ε3/ log2(n)‖z‖1), but as we will see the heaviest item in z is an Ω(ε2/ log2(n))
heavy hitter with probability 1 − O(ε) conditioned on an arbitrary value of ti, so this error will
only be an O(ε) fraction of the weight of the maximum weight element. Note that we use the
term c-heavy hitter for c ∈ (0, 1) to denote an item with weight at least c‖z‖1. Our algorithm
then attempts to return an item zi which crosses the threshold ‖x‖1/ε, and we will be correct in
doing so if the tail error Err z2 from CSSamplingSimulator is not too great.

To determine if this is the case, since we are in the strict turnstile case we can compute
r = ‖x‖1 and q = ‖z‖1 exactly by keeping a log(n)-bit counter (note however that we will
only need constant factor approximations for these). Next, using the result of Lemma 6.2.5 we
can accurately estimate Err z2, and abort if it is too large in Recovery Step 4 of Figure 6.3. If
the conditions of this step hold, we will be guaranteed that if i is the maximal element, then
y∗i = (1 ± O(ε))zi. This allows us to sample ε-approximately, as well as guarantee that our
estimate of zi has relative error ε. We now begin our analysis our L1 sampler. First, the proof of
the following fact can be found in [JST11].

Lemma 6.4.1. Given that the values of ti are k = log(1/ε)-wise independent, then conditioned

on an arbitrary fixed value t = tl ∈ [0, 1] for a single l ∈ [n], we have

Pr
[
20 Err z2 > k1/2‖x‖1

]
= O(ε+ n−c)

260

αL1Sampler: L1 sampling algorithm for strict-turnstile strong α-property streams:

Initialization
1. Instantiate CSSamplingSimulator with k = O(log(ε−1)) columns and parameter ε′ =
ε3/ log2(n).

2. Select k = O(log(1
ε
))-wise independent uniform scaling factors ti ∈ [0, 1] for i ∈ [n].

3. Run CSSamplingSimulator on scaled input z where zi = xi/ti.

4. Keep log(n)-bit counters r, q to store r = ‖x‖1 and q = ‖z‖1.

Recovery
1. Compute estimate y∗ via CSSamplingSimulator.

2. Via algorithm of Lemma 6.2.5, compute v such that

Err z2 ≤ v ≤ 45 k1/2ε3

log2(n)
‖z‖1 + 20 Err z2

3. Find i with |y∗i | maximal.

4. If v > k1/2r + 45 k1/2ε3

log2(n)q, or |y∗i | < max{1
ε
r, (c/2)ε2

log2(n)q} where the constant c > 0 is as
in Proposition 6.4.2, output ⊥. Otherwise output i and tiy∗i as the estimate for xi.

Figure 6.3: Our L1 sampling algorithm with sucsess probability Θ(ε)

261

The following proposition shows that the ε/ log2(n) term in the additive error of the data
structure CSSamplingSimulator will be an ε fraction of the maximal element with high proba-
bility.

Proposition 6.4.2. There exists some constant c > 0 such that conditioned on an arbitrary fixed

value t = tl ∈ [0, 1] for a single l ∈ [n], if j is such that |zj| is maximal, then with probability

1−O(ε) we have |zj| ≥ cε2/ log2(n)‖z‖1.

Proof. Let x′i = xi, z
′
i = zi for all i 6= l, and let x′l = 0 = z′l. Define the level setts

It = {i ∈ [n] \ l | zi ∈ [‖x
′‖1

2t+1 ,
‖x′‖1

2t)}

Then
Pr [i ∈ It, i 6= l] = 2t |xi|

‖x′‖1

so E [|It|] = 2t and by Markov’s inequality Pr [|It| > log(n)ε−12t] < ε/ log(n). By the union
bound: ∑

t∈[log(n)]

∑
i∈It
|zi| ≤ log2(n)‖x′‖1/ε

with probability 1− ε. Call this event E . Now for i 6= l let Xi indicate zi ≥ ε‖x′‖/2. Then

Var (Xi) = (2/ε)|xi|/‖x′‖1 − ((2/ε)|xi|/‖x′‖1)2

< E [Xi]

and so by pairwise independence of the ti is enough to conclude that Var
(∑

i 6=lXi

)
< E

[∑
i 6=lXi

]
=

2/ε. So by Chebyshev’s inequality,

Pr

∣∣∣∣∣∣
∑
i 6=l

Xi − 2ε−1

∣∣∣∣∣∣ > ε−1

 < 2ε

so there is at least one and at most 3/ε items in z′ with weight ε‖x′‖1/2 with probability 1−O(ε).
Call these “heavy items”. By the union bound, both this and E occur with probability 1− O(ε).
Now the largest heavy item will be greater than the average of them, and thus it will be an ε/3-
heavy hitter among the heavy items. Moreover, we have shown that the non-heavy items in z′

have weight at most log2(n)‖x′‖1/ε with probability 1− ε, so it follows that the maximum item
in z′ will have weight at least ε2

2 log2 n
‖z‖1 with probability 1−O(ε).

Now if zl is less than the heaviest item in z′, then that item will still be an ε2/(4 log2(n))

262

heavy hitter. If zl is greater, then zl will be an ε2/(4 log2(n)) heavy hitter, which completes the
proof with c = 1/4.

Lemma 6.4.3. The probability that αL1Sampler outputs the index i ∈ [n] is

(ε±O(ε2)) |xi|
‖x‖1

+O(n−c)

The relative error of the estimate of xi is O(ε) with high probability.

Proof. Ideally, we would like to output i ∈ [n] with |zi| ≥ ε−1r, as this happens if ti ≤ ε|xi|/r,
which occurs with probability precisely ε|xi|/r. We now examine what could go wrong and
cause us to output i when this condition is not met or vice-versa. We condition first on the fact
that v satisfies Err z2 ≤ v ≤ (45k1/2ε3/ log2(n))‖z‖1 + 20 Err z2 as in Lemma 6.2.5 with
parameter ε′ = ε3/ log2(n), and on the fact that |y∗j − zj| ≤ 2(k−1/2 Err z2 + (ε3/ log2(n))‖z‖1)
for all j ∈ [n] as detailed in Theorem 46, each of which occur with high probability.

The first type of error is if zi ≥ ε−1‖x‖1 but the algorithm outputs ⊥ instead of i. First,
condition on the fact that 20 Err z2 < k1/2‖x‖1 and that |zj∗| ≥ cε2/ log2(n)‖z‖1 where j∗ ∈ [n]
is such that |zj∗| is maximal, which by the union bound using Lemma 6.4.1 and Proposition 6.4.2
together hold with probability 1−O(ε) conditioned on any value of ti. Call this conditional event
E . Since v ≤ 20 Err z2 + (45k1/2ε3/ log2(n))‖z‖1 w.h.p., it follows that conditioned on E we
have v ≤ k1/2‖x‖1 + (45k1/2ε3/ log2(n))‖z‖1. So the algorithm does not fail and outbut ⊥ due
to the first condition in Recovery Step 4. of Figure 6.3. Since v ≥ Err z2 w.h.p, we now have

1
k1/2 Err z2 ≤ ‖x‖1 + 45 ε3

log2(n)‖z‖1, and so

|y∗j − zj| ≤ 2(1
k1/2 Err z2 + ε3

log2(n)
‖z‖1)

≤ 2‖x‖1 + 92 ε3

log2(n)
‖z‖1

for all j ∈ [n].

The second way we output ⊥ when we should not have is if |y∗i | < ((c/2)ε2/ log2(n))‖z‖1

but |zi| ≥ ε−1‖x‖1. Now E gives us that |zj∗| ≥ cε2/ log2(n)‖z‖1 where |zj∗ | is maximal in z,
and since |y∗i | was maximal in y∗, it follows that |y∗i | ≥ |y∗j∗| > |zj∗| − (2‖x‖1 + 92 ε3

log2(n)‖z‖1).

263

But |zj∗| is maximal, so |zj∗| ≥ |zi| ≥ ε−1‖x‖1. The two lower bounds on |zj∗ | give us

(2‖x‖1 + 92 ε3

log2(n)
‖z‖1) = O(ε)|zj∗ | < |zj∗|/2

so |y∗i | ≥ |zj∗|/2 ≥ ((c/2)ε2/ log2(n))‖z‖1 So conditioned on E , this type of failure can never
occur. Thus the probability that we output ⊥ for either of the last two reasons when |zi| ≥
ε−1‖x‖1 is O(ε2 |xi|‖x‖1) as needed. So we can now assume that y∗i > ((c/2)ε2/ log2(n))‖z‖1.

Given this, if an index i was returned we must have y∗i >
1
ε
r = 1

ε
‖x‖ and y∗i >

cε
2 log2 n

‖z‖1.
These two facts together imply that our additive error from CSSamplingSimulator is at most
O(ε)|y∗i |, and thus at most O(ε)|zi|, so |y∗i − zi| ≤ O(ε)|zi|.

With this in mind, another source of error is if we output i with y∗i ≥ ε−1r but zi < ε−1r, so
we should not have output i. This can only happen if zi is close to the threshold rε−1. Since the
additive error from our count-sketch is O(ε)|zi|, it must be that ti lies in the interval |xi|

r
(1/ε +

O(1))−1 ≤ ti ≤ |xi|
r

(1/ε− O(1))−1, which occurs with probability O(1)
1/ε2−O(1)

|xi|
r

= O(ε2 |xi|‖x‖1) as
needed.

Finally, an error can occur if we should have output i because zi ≥ ε−1‖x‖1, but we output
another index i′ 6= i because y∗i′ > y∗i . This can only occur if ti′ < (1/ε − O(1))−1 |xi′ |

r
, which

occurs with probability O(ε |xi′ |‖x‖1). By the union bound, the probability that such an i′ exists is
O(ε), and by pairwise independence this bound holds conditioned on the fact that zi > ε−1r. So
the probability of this type of error is O(ε2 |xi|‖x‖1) as needed.

Altogether, this gives the stated ε |xi|‖x‖1 (1±O(ε)) +O(n−c) probability of outputting i, where
the O(n−c) comes from conditioning on the high probability events. For the O(ε) relative error
estimate, if we return an index iwe have shown that our additive error from CSSamplingSimulator
was at most O(ε)|zi|, thus tiy∗i = (1±O(ε))tizi = (1±O(ε))xi as needed.

Theorem 50. For ε, δ > 0, there is an O(ε)-relative error one-pass L1 sampler for α-property

streams which also returns an O(ε)-relative error approximation of the returned item. The al-

gorithm outputs ⊥ with probability at most δ, and the space is O(1
ε

log(1
ε
) log(n) log(α log

(n)/ε) log(1
δ
)).

Proof. By the last lemma, it follows that the prior algorithm fails with probability at most 1 −
ε + O(n−c). Conditioned on the fact that an index i is output, the probability that i = j is
(1 ± O(ε)) |xi|‖x‖1 + O(n−c). By running O(1/ε log(1/δ)) copies of this algorithm in parallel and
returning the first index returned by the copies, we obtain an O(ε) relative error sampler with

264

αL1Estimator

Input: (ε, δ) to estimate L1 of an α-property strict turnstile stream.

1. Initialization: Set s ← O(α2δ−1 log3(n)/ε2), and initialize Morris-Counter vt
with parameter δ′. Define Ij = [sj, sj+2].

2. Processing: on update ut, for each j such that vt ∈ Ij , sample ut with probability s−j .

3. For each update ut sampled while vt ∈ Ij , keep counters c+
j , c

−
j initialized to 0. Store

all positive updates sampled in c+
j , and (the absolute value of) all negative updates

sampled in c−j .

4. If vt /∈ Ij for any j, delete the counters c+
j , c

−
j .

5. Return: s−j∗(c+
j∗ − c−j∗) for which j∗ is such that c+

j∗ , c
−
j∗ have existed the longest (the

stored counters which have been receiving updates for the most time steps).

Figure 6.4: L1 Estimator for strict turnstile α-property streams.

failure probability at most δ. The O(ε) relative error estimation of xi follows from Lemma 6.4.3.

For space, note that CSSamplingSimulator requires

O

(
k log(n) log

(
α log n
ε

))
= O

(
log(n) log(1/ε) log

(
α log(n)

ε

))

bits of space, which dominates the cost of storing r, q and the cost of computing v via Lemma
6.2.5, as well as the cost of storing the randomness to compute k-wise independent scaling factors
ti. Running O(1/ε log(1/δ)) copies in parallel gives the stated space bound.

Remark 51. Note that the only action taken by our algorithm which requires more space in
the general turnstile case is the L1 estimation step, obtaining r, q in step 2 of the Recovery in
Figure 6.3. Note that r, q, need only be constant factor approximations in our proof, and such
constant factor approximations can be obtained with high probability using O(log2(n)) bits (see
Fact 6.3.1). This gives an O(1

ε
log(1

ε
) log(n) log(α log(n)

ε
) + log2(n))-bit algorithm for the general

turnstile case.

6.5 L1 estimation

265

We now consider the L1 estimation problem in the α-property setting (in this section we write
α-property to refer to the L1 α-property). We remark that in the general turnstile unbounded
deletion setting, an O(1) estimation of ‖x‖1 can be accomplished in O(log n) space [KNW10a].
We show in Section 6.8, however, that even for α as small as 3/2, estimating ‖x‖1 in general
turnstile α-property streams still requires Ω(log n)-bits of space. Nevertheless, in 6.5.2 we show
that for α-property general turnstile streams there is a Õ(ε−2 log(α) + log(n)) bits of space
algorithm, where Õ hides log(1/ε) and log log(n) terms, thereby separating the ε−2 and log n
factors. Furthermore, we show a nearly matching lower bound of Ω(1

ε2
log(ε2α)) for the problem

(Theorem 62).

6.5.1 Strict Turnstile L1 Estimation

Now for strict-turnstile α-property streams, we show that the problem can be solved with Õ(log(α))-
bits. Ideally, to do so we would sample poly(α log(n)/ε) updates uniformly from the stream and
apply Lemma 6.2.1. To do this without knowing the length of the stream in advance, we sam-
ple in exponentially increasing intervals, throwing away a prefix of the stream. At any given
time, we will sample at two different rates in two overlapping intervals, and we will return the
estimate given by the sample corresponding to the interval from which we have sampled from
the longest upon termination. We first give a looser analysis of the well known Morris counting
algorithm [Mor78].

Lemma 6.5.1. There is an algorithm, Morris-Counter, that given δ ∈ (0, 1) and a sequence

of m events, produces non-decreasing estimates vt of t such that

δ/(12 log(m))t ≤ vt ≤ 1/δt

for a fixed t ∈ [m] with probability 1− δ. The algorithm uses O(log log(m)) bits of space.

Proof. The well known Morris Counter algorithm is as follows. We initialize a counter v0 = 0,
and on each update t we set vt = vt−1 + 1 with probability 1/2vt , otherwise vt = vt−1. The
estimate of t at time t is 2vt − 1. It is easily shown that E [2vt] = t + 1, and thus by Markov’s
bound, Pr [2vt − 1 > t/δ] < δ.

For the lower bound consider any interval Ei = [2i, 2i+1]. Now suppose our estimate of
t = 2i is less than 6(2iδ/ log(n)). Then we expect to sample at least 3 log(n)/δ updates in Ei at
1/2 the current rate of sampling (note that the sampling rate would decrease below this if we did

266

sample more than 2 updates). Then by Chernoff bounds, with high probability w.r.t. n and δ we
sample at least two updates. Thus our relative error decreases by a factor of at least 2 by the time
we reach the interval Ei+1. Union bounding over all log(m) = O(log(n)) intervals, the estimate
never drops below δ/12 log(n)t for all t ∈ [m] w.h.p. in n and δ. The counter is O(log log(n))
bits with the same probability, which gives the stated space bound.

Our full L1 estimation algorithm is given in Figure 6.4. Note that the value s−j∗ can be
returned symbolically by storing s and j∗, without explicitly computing the entire value. Also
observe that we can assume that s is a power of 2 by rescaling, and sample with probability
s−i by flipping log(s)i fair coins sequentially and sampling only if all are heads, which requires
O(log log(n)) bits of space.

Theorem 52. The algorithm αL1Estimator gives a (1± ε) approximation of the value ‖x‖1

of a strict turnstile stream with the α-property with probability 1− δ using

O
(

log α
ε

+ log δ−1 + log log n
)

bits of space.

Proof. Let ψ = 12 log2(m)/δ. By the union bound on Lemma 6.5.1, with probability 1 − δ the
Morris counter vt will produce estimates vt such that t/ψ ≤ vt ≤ ψt for all points t = si/ψ and
t = ψsi for i = 1, . . . , log(m)/ log(s). Conditioned on this, Ij will be initialized by time ψsj

and not deleted before sj+2/ψ for every j = 1, 2, . . . , log(n)/ log(s). Thus, upon termination,
the oldest set of counters c+

j∗ , c
−
j∗ must have been receiving samples from an interval of size at

least m − 2ψm/s, with sampling probability s−j∗ ≥ s/(2ψm). Since s ≥ 2ψα2/ε2, it follows
by Lemma 6.2.1 that s−j∗(c+

j∗ − c−j∗) = ∑n
i=1 x̂i ± ε‖x̂‖1 w.h.p., where x̂ is the frequency vector

of all updates after time t∗ and t∗ is the time step where c+
j∗ , c

−
j∗ started receiving updates. By

correctness of our Morris counter, we know that t∗ < 2ψm/s < ε‖x‖1, where the last inequality
follows from the size of s and the the α-property, so the number of updates we missed before
initializing c+

j∗ , c
−
j∗ is at most ε‖x‖1. Since x is a strict turnstile stream,

∑n
i=1 x̂i = ‖x‖1 ± t∗ =

(1 ± O(ε))‖x‖1 and ‖x̂‖1 = (1 ± O(ε))‖x‖1. After rescaling of ε we obtain s−j∗(c+
j∗ − c−j∗) =

(1± ε)‖x‖1 as needed.

For space, conditioned on the success of the Morris counter, which requires O(log log(n))-
bits of space, we never sample from an interval Ij for more than ψsj+2 steps, and thus the
maximum expected number of samples is ψs2, and is at most s3 with high probability by Chernoff
bounds. Union bounding over all intervals, we never have more than s2 samples in any interval

267

with high probability. At any given time we store counters for at most 2 intervals, so the space
required is O(log(s) + log log(m)) = O(log(α/ε) + log(1/δ) + log log(n)) as stated.

Remark 53. Note that if an update ∆t to some coordinate it arrives with |∆t| > 1, our algorithm
must implicitly expand ∆t to updates in {−1, 1} by updating the counters by Sign(∆t)·Bin(|∆t|, s−j)
for some j. Note that computing this requires O(log(|∆t|)) bits of working memory, which is
potentially larger than O(log(α log(n)/ε)). However, if the updates are streamed to the algo-
rithm using O(log(|∆t|)) bits then it is reasonable to allow the algorithm to have at least this
much working memory. Once computed, this working memory is no longer needed and does not
factor into the space complexity of maintaining the sketch of αL1Estimator.

6.5.2 General Turnstile L1 Estimator

In [KNW10a], an O(ε−2 log n)-bit algorithm is given for general turnstile L1 estimation. We
show how modifications to this algorithm can result in improved algorithms for α-property
streams. We state their algorithm in Figure 6.5, along with the results given in [KNW10a].
Let D1 be the standard 1-stable distribution (Definition 2.2.6).

Lemma 6.5.2 (A.6 [KNW10a]). The entries of A,A′ can be generated to precision δ = Θ(ε/m)
using O(k log(n/ε)) bits.

Theorem 54 (Theorem 2.2 [KNW10a]). The algorithm above can be implemented using preci-

sion δ in the variables Ai,j,A′i,j , and thus precision δ in the entries yi, y′i, such that the output

L̃ satisfies L̃ = (1 ± ε)‖x‖1 with probability 3/4, where δ = Θ(ε/m). In this setting, we have

y′med = Θ(1)‖x||1, and ∣∣∣∣∣
(

1
r

r∑
i=1

cos(yi
y′med

)
)
− e

−(‖x‖1
y′
med

)
∣∣∣∣∣ ≤ O(ε)

.

We demonstrate that this algorithm can be implemented with reduced space complexity for
α-property streams by sampling to estimate the values yi, y′i. We first prove an alternative version
of Lemma 6.2.1.

Lemma 6.5.3. Suppose a sequence of I insertions and D deletions are made to a single item,

and let m = I + D be the total number of updates. Then if X is the result of sampling updates

268

General Turnstile L1 Estimator

1. Initialization: Generate random matrices A ∈ Rr×n and A ∈ Rr′×n of variables
drawn from D1, where r = Θ(1/ε2) and r′ = Θ(1). The variables Aij are k-wise
independent, for k = Θ(log(1/ε)/ log log(1/ε)) , and the variables A′ij are k′-wise
independent for k′ = Θ(1). For i 6= i′, the seeds used to generate the variables
{Ai,j}nj=1 and {Ai′,j}nj=1 are pairwise independent

2. Processing: Maintain vectors y = Ax and y′ = A′x.

3. Return: Let y′med = median{|y′i|}r
′
i=1. Output L̃ = y′med

(
− ln

(
1
r

∑r
i=1 cos(yi

y′
med

)
))

Figure 6.5: L1 estimator of [KNW10a] for general turnstile unbounded deletion streams.

with probability p = Ω(γ−3 log(n)/m), then with high probability

X = (I −D)± γm

Proof. Let X+ be the positive samples and X− be the negative samples. First suppose I > εm,
then Pr [|p−1X− − I| > γm] < 2 exp

(
− γ2pI

3

)
< exp

(
− γ3pm

3

)
= 1/poly(n). Next, if

I < γm, we have Pr [p−1X+ > 2γm] < exp
(
− (γmp/3

)
< 1/poly(n) as needed. A similar

bound shows that X− = D ± O(γ)m, thus X = X+ −X− = I −D ± O(γm) as desired after
rescaling γ.

Theorem 55. There is an algorithm that, given a general turnstile α-property stream x, produces

an estimate L̃ = (1±O(ε))‖x‖1 with probability 2/3 using

O

(
ε−2 log(α log n

ε
) +

log(1
ε
) log(n)

log log(1
ε
)

)

bits of space.

Proof. Using Lemma 6.5.2, we can generate the matrices A,A′ using

O

(
k log n
ε

)
= O

(
log ε−1 log(n/ε)

log log ε−1

)

bits of space, with precision δ = Θ(ε/m). Every time an update (it,∆t) arrives, we compute the
update ηi = ∆tAi,it to yi for i ∈ [r], and the update η′i′ = ∆tA′i′,it to y′i′ for i′ ∈ [r′].

269

Let X ∼ D1 be drawn from the standard 1-stable distribution. We think of yi and y′i′ as
streams on one variable, and we will sample from them and apply Lemma 6.5.3. We condition
on the success of the algorithm of Theorem 54, which occurs with probability 3/4. Conditioned
on this, this estimator L̃ of Figure 6.5 is a (1± ε) approximation, so we need only show we can
estimate L̃ in small space.

Now the number of updates to yi is
∑n
q=1 |Aiq|Fq, where Fq = Iq + Dq is the number of

updates to xq. Conditioned on maxj∈[n] |Aij| = O(n2), which occurs with probability 1−O(1/n)
by a union bound, E [|Aiq|] = Θ(log(n)) (see, e.g., [Ind06]). Then

E

 n∑
q=1
|Aiq|Fq

 = O(log(n))‖F‖1

is the expected number of updates to yi, so by Markov’s inequality

n∑
q=1
|Aiq|Fq = O(log(n)/ε2‖F‖1)

with probability 1−1/(100(r+r′)), and so with probability 99/100, by a union bound this holds
for all i ∈ [r], i′ ∈ [r′]. We condition on this now.

Our algorithm then is as follows. We then scale ∆i up by δ−1 to make each update ηi, η′i an
integer, and sample updates to each yi with probability p = Ω(ε−3

0 log(n)/m) and store the result
in a counter ci. Note that scaling by δ−1 only blows up the size of the stream by a factor of m/ε.
Furthermore, if we can (1 ± ε) approximation the L1 of this stream, scaling our estimate down
by a factor of δ gives a (1 ± ε) approximation of the actual L1, so we can assume from now on
that all updates are integers.

Let ỹi = p−1ci. We know by Lemma 6.5.3 that

ỹi = yi ± ε0(
n∑
q=1
|Aiq|Fq)

= yi ±O(ε0 log(n)‖F‖1/ε
2)

with high probability. Setting ε0 = ε3/(α log(n)), we have |ỹi − yi| < ε/α‖F‖1 ≤ ε‖x‖1

by the α-property for all i ∈ [r]. Note that we can deal with the issue of not knowing the
length of the stream by sampling in exponentially increasing intervals [s1, s3], [s2, s4], . . . of size
s = poly(α/ε0) as in Figure 6.4, throwing out a ε0 fraction of the stream. Since our error is an

270

additive ε0 fraction of the length of the stream already, our error does not change. We run the
same routine to obtain estimates ỹ′i of y′i with the same error guarantee, and output

L′ = ỹ′med

(
− ln

(1
r

r∑
i=1

cos(ỹi
ỹ′med

)
))

where ỹ′med = median(ỹi′). By Theorem 54, we have that y′med = Θ(‖x‖1), thus ỹ′med = y′med ±
ε‖x‖1 since |ỹ′i − y′i| < ε‖x‖1 for all i. Using the fact that y′med = Θ(‖x‖1) by Theorem 54, we
have:

L′ = (y′med ± ε‖x‖1)
(
− ln

(
1
r

r∑
i=1

cos(yi
y′med(1±O(ε)) ±

ε‖x‖1

y′med(1±O(ε)))
))

= (y′med ± ε‖x‖1)
(
− ln

(
1
r

r∑
i=1

cos(yi
y′med

)±O(ε)
))

Where the last equation follows from the angle formula cos(ν + β) = cos(ν) cos(β) −
sin(ν) sin(β) and the Taylor series expansion of sin and cos. Next, since

∣∣∣∣∣
(

1
r

r∑
i=1

cos(yi
y′med

)
)
− e

−(‖x‖1
y′
med

)
∣∣∣∣∣ < O(ε)

and y′med = Θ(‖x‖1) by Theorem 54, it follows that
(

1
r

∑r
i=1 cos(yi

y′
med

)
)

= Θ(1), so using the

fact that ln(1±O(ε)) = Θ(ε), this is (y′med±ε‖x‖1)
(
− ln

(
1
r

∑r
i=1 cos(yi

y′
med

)
)
±O(ε)

)
, which is

L̃±O(ε)‖x‖1, where L̃ is the output of Figure 6.5, which satisfies L̃ = (1± ε)‖x‖1 by Theorem
54. It follows that our estimate L′ satisfies L = (1±O(ε))‖x‖1, which is the desired result. Note
that we only conditioned on the success of Figure 6.5, which occurs with probability 3/4, and
the bound on the number of updates to every yi, y′i, which occurs with probability 99/100, and
high probability events, by the union bound our result holds with probability 2/3 as needed.

For space, generating the entries of A,A′ requires O(log(1
ε
) log(n/ε)/ log log(1

ε
)) bits as

noted, which dominates the cost of storing δ. Moreover, every counter ỹi, ỹ′i is at most

poly(p
n∑
q=1
|Aiq|Fq) = poly(α log(n)/ε)

with high probability, and can thus be stored with O(log(α log(n)/ε)) bits each by storing a
counter and separately storing p (which is the same for every counter). As there are O(1/ε2)

271

counters, the total space is as stated.

6.6 L0 Estimation

Recall that the problem of estimating the support size of a stream is known as L0 estimation,
i.e. L0 = |{i ∈ [n] | xi 6= 0}|. L0 estimation is a fundamental problem for network traffic
monitoring, query optimization, and database analytics [SD, AGPR99, FST88]. The problem
also has applications in detecting DDoS attacks [ABRS] and port scans [EVF03].

For general turnstile streams, Kane, Nelson, and Woodruff gave an O(ε−2 log(n)(log(ε−1) +
log log(n)))-bit algorithm with constant probability of success [KNW10b], which nearly matches
the known lower bound of Ω(ε−2 log(ε2n)) [KNW10a]. For insertion only streams, they also
demonstrated an O(ε−2 + log(n)) upper bound. In this section we show that the ideas of
[KNW10b] can be adapted to yield more efficient algorithms for general turnstile L0 α-property
streams. Recall that in this section, we will write α-property to refer to the L0 α-property.

The idea of the algorithm stems from the observation that if A = Θ(K), then the number
of non-empty bins after hashing A balls into K bins is well concentrated around its expectation.
Treating this expectation as a function of A and inverting it, one can then recover A with good
probability. By treating the (non-zero) elements of the stream as balls, we can hash the universe
down intoK = 1/ε2 bins and recover L0 if L0 = Θ(K). The primary challenge will be to ensure
this last condition. In order to do so, we subsample the elements of the stream at log(n) levels,
and simultaneously run an O(1) estimator R of the L0. To recover a (1 ± ε) approximation, we
use R to index into the level of subsampling corresponding to a substream with Θ(K) non-zero
elements. We then invert the number of non-empty bins and scale up by a factor to account for
the degree of subsampling.

6.6.1 Review of Unbounded Deletion Case

For sets U, V and integer k, let Hk(U, V) denote some k-wise independent hash family of
functions mapping U into V . Assuming that |U |, |V | are powers of 2, such hash functions can be
represented using O(k log(|U |+ |V |)) bits [CW79] (without loss of generality we assume n, ε−1

are powers of 2 for the remainder of the section). For z ∈ Z≥0, we write lsb(z) to denote the
(0-based index of) the least significant bit of z written in binary. For instance, lsb(6) = 1 and
lsb(5) = 0. We set lsb(0) = log(n). In order to fulfill the algorithmic template outlined above,

272

L0Estimator: L0 estimation algorithm

1. Set K = 1/ε2, and instantiate log(n)×K matrix B to 0.

2. Fix random h1 ∈ H2([n], {0, . . . , n − 1}), h2 ∈ H2([n], [K3]), h3 ∈ Hk([K3], [K]),
and h4 ∈ H2([K3], [K]), for k = Ω(log(ε−1)/ log log(ε−1)).

3. Randomly choose prime p ∈ [D,D3], for D = 100K log(mM), and vector ~u ∈ FKp .

4. On Update (i,∆): set

Blsb(h1(i)),h3(h2(i)) ←
(
Blsb(h1(i)),h3(h2(i)) + ∆ · ~uh4(h2(i))

)
(mod p)

5. Return: run RoughL0Estimator to obtain R ∈ [L0, 110L0]. Set T = |{j ∈
[K] | Bi∗,j 6= 0}|, where i∗ = max{0, log(16R/K)}. Return estimate:

L̃0 = 32R
K

ln(1− T/K)
ln(1− 1/K)

Figure 6.6: L0 Estimation Algorithm of [KNW10b]

we need to obtain a constant factor approximation R to L0. This is done using the following
result which can be found in [KNW10b].

Lemma 6.6.1. Given a fixed constant δ > 0, there is an algorithm, RoughL0Estimator,

that with probability 1 − δ outputs a value R = L̃0 satisfying L0 ≤ R ≤ 110L0, using space

O(log(n) log log(n)).

The main algorithm then subsamples the stream at log(n) levels. This is accomplished by
choosing a hash function h1 : [n]→ {0, . . . , n−1}, and subsampling an item i at level lsb(h1(i)).
Then at each level of subsampling, the updates to the subsampled items are hashed into K =
1
ε2

bins k = Ω(log(ε−1/ log(log(ε−1))))-wise independently. The entire data structure is then
represented by a log(n)×K matrix B. The matrix B is stored modulo a sufficiently large prime
p, and the updates to the rows are scaled via a random linear function to reduce the probability
that deletions to one item cancel with insertions to another, resulting in false negatives in the
number of buckets hit by items from the support. At the termination of the algorithm, we count
the number T of non-empty bins in the i∗-th row of B, where i∗ = max{0, log(16R

K
)}. We then

return the value L̃0 = 32R
K

ln(1−T/K)
ln(1−1/K) . The full algorithm is given in Figure 6.6. First, the following

Lemma can be found in [KNW10b].

273

Lemma 6.6.2. There exists a constant ε0 such that the following holds. Let A balls be mapped

into K = 1/ε2 bins using a random h ∈ Hk([A], [K]) for k = c log(1/ε)/ log log(1/ε) for

a sufficiently large constant c. Let X be a random variable which counts the number of non-

empty bins after all balls are mapped, and assume 100 ≤ A ≤ K/20 and ε ≤ ε0. Then

E [X] = K(1− (1−K−1)A) and

Pr
[∣∣∣X − E [X]

∣∣∣ ≤ 8εE [X]
]
≥ 4/5

Let A be the log(n) ×K bit matrix such that Ai,j = 1 iff there is at least one v ∈ [n] with
xv 6= 0 such that lsb(h1(v)) = i and h3(h2(v)) = j. In other words, Ai,j is an indicator bit
which is 1 if an element from the support of x is hashed to the entry Bi,j in the above algorithm.
Clearly if Bi,j 6= 0, then Ai,j 6= 0. However, the other direction may not always hold. The proofs
of the following facts and lemmas can be found in [KNW10b]. However we give them here for
completeness.

Fact 6.6.3. Let t, r > 0 be integers. Pick h ∈ H2([r], [t]). For any S ⊂ [r], E
[∑s

i=1

(
|h−1(i)∩S|

2

)]
≤

|S|2/(2t).

Proof. Let Xi,j be an indicator variable which is 1 if h(i) = j. Utilizing linearity of expectation,
the desired expectation is then t

∑
i<i′ E [Xi,1] E [Xi′,1] = t

(
|S|
2

)
1
t2
≤ |S|2

2t .

Fact 6.6.4. Let Fq be a finite field and v ∈ Fdq be a non-zero vector. Then, if w ∈ Fdq is selected

randomly, we have Pr [v · w = 0] = 1/q where v · w is the inner product over Fq.

Proof. The set of vectors orthogonal to v is a linear subspace V ⊂ Fdq of dimension d − 1, and
therefore contains qd−1 points. Thus Pr [w ∈ V] = 1/q as needed.

Lemma 6.6.5 (Lemma 6 of [KNW10b]). Assuming that L0 ≥ K/32, with probability 3/4, for

all j ∈ [K] we have Ai∗,j = 0 if and only if Bi∗,j = 0. Moreover, the space required to store

each Bi,j is O(log log(n) + log(1/ε)).

Proof. The space follows by the choice of p ∈ O(D3), and thus it suffices to bound the proba-
bility that Bi∗,j = 0 when Ai∗,j 6= 0. Define Ii∗ = {j ∈ [n] | lsb(h1(j)) = i∗, xj 6= 0}. This
is the set of non-zero coordinates of x which are subsampled to row i∗ of B. Now conditioned
on R ∈ [L0, 110L0], which occurs with arbitrarily large constant probability δ = Θ(1), we have
E [|Ii∗|] ≤ K/32, and using the pairwise independence of h1 we have that Var(|Ii∗|) < E [|Ii∗|].
So by Chebyshev’s inequality Pr [|Ii∗ | ≤ K/20] = 1 − O(1/K), which we now condition on.

274

Given this, since the range of h2 has size K3, the indices of Ii∗ are perfectly hashed by h2 with
probability 1−O(1/K) = 1− o(1), an event we call Q and condition on occurring.

Since we choose a prime p ∈ [D,D3], with D = 100K log(mM), for mM larger than some
constant, by standard results on the density of primes there are at least (K2 log2(mM)) primes
in the interval [D,D3]. Since each xj has magnitude at most mM and thus has at most log(mM)
prime factors, it follows that xj 6= 0 (mod p) with probability 1−O(1/K2) = 1− o(1). Union
bounding over all j ∈ Ii∗ , it follows that p does not divide |xj| for any j ∈ Ii∗ with probability
1 − o(1/K) = 1 − o(1). Call this event Q′ and condition on it occurring. Also let Q′′ be the
event that h4(h2(j)) 6= h4(h2(j′)) for any distinct j, j′ ∈ Ii∗ such that h3(h2(j)) = h3(h2(j′)).

To bound Pr [¬Q′′], let Xj,j′ indicate h3(h2(j)) = h3(h2(j′)), and let X = ∑
j<j′ Xj,j′ . By

Fact 6.6.3 with r = K3, t = K and |S| = |Ii∗| < K/20, we have that E [X] ≤ K/800. Define
the set

Z = {(j, j′) | h3(h2(j)) = h3(h2(j′))}

For (j, j′) ∈ Z, let Yj,j′ indicate h4(h2(j)) = h4(h2(j′)), and let Y = ∑
(j,j′)∈Z Yj,j′ . By the

pairwise independence of h4 and our conditioning on Q, we have

E [Y] =
∑

(j,j′)∈Z
Pr [h4(h2(j)) = h4(h2(j′))] = |Z|/K = X/K

Now conditioned on X < 20 E [X] = K/40 which occurs with probability 19/20 by Markov’s
inequality, we have E [Y] ≤ 1/40, so Pr [Y ≥ 1] ≤ 1/40. So we have shown that Q′′ holds with
probability (19/20)(39/40) ≥ 7/8.

Now for each j ∈ [K] such that Ai∗,j = 1, we can view Bi∗,j as the dot product of the vector
v, which is x restricted to the coordinates of Ii∗ that hashed to j, with a random vector w ∈ Fp
which is u restricted to coordinates of Ii∗ that hashed to j. Conditioned on Q′ it follows that v
is non-zero, and conditioned on Q′′ it follows that w is indeed random. So by Fact 6.6.4 with
q = p, union bounding over all K counters Bi∗,j , we have that Bi∗,j 6= 0 whenever Ai∗,j 6= 0
with probability 1−K/p ≥ 99/100. Altogether, the success probability is then (7/8)(99/100)−
o(1) ≥ 3/4 as desired.

Theorem 56. Assuming that L0 > K/32, the value returned by L0Estimator is a (1 ± ε)
approximation of theL0 using spaceO(ε−2 log(n)(log(1

ε
)+log(log(n)) log(1

δ
)), with 3/4 success

probability.

Proof. By Lemma 6.6.5, we have shown that TA = |{j ∈ [K] | Ai∗,j 6= 0}| = T with probability

275

3/4, where T is as in Figure 6.6. So it suffices to show that L̃A
0 = 32R

K
ln(1−TA/K)
ln(1−1/K) is a (1 ± ε)

approximation.

Condition on the event E where R ∈ [L0, 110L0], which occurs with large constant probabil-
ity δ = Θ(1). Define the set

Ii∗ = {j ∈ [n] | lsb(h1(j)) = i∗, xj 6= 0}

Then E [|Ii∗|] = L0/2i
∗+1 = L0K/(32R) (assuming L0 > K/32) and Var(|Ii∗|) < E [|Ii∗|] by

the pairwise independence of h1. Then K/3520 ≤ E [|Ii∗|] ≤ K/32 by E , and by Chebyshev’s
inequality K/4224 ≤ |Ii∗| ≤ K/20 with probability 1 − O(1/K) = 1 − o(1). Call this event
E ′, and condition on it. We then condition on the event E ′′ that the indices of Ii∗ are perfectly
hashed, meaning they do not collide with each other in any bucket, by h2. Given E ′, then by the
pairwise independence of h2 the event E ′′ occurs with probability 1−O(1/K) as well.

Conditioned on E ′ ∧ E ′′, it follows that TA is a random variable counting the number of bins
hit by at least one ball under a k-wise independent hash function, where there are C = |Ii∗| balls,
K bins, and k = Ω(log(K/ε)/ log log(K/ε)). Then by Lemma 6.6.2, we have

TA = (1± 8ε)K(1− (1− 1/K)C)

with probability 4/5. So

ln (1− TA/K) = ln
(
(1− 1/K)C ± 8ε(1− (1− 1/K)C)

)
Since we condition on the fact that K/4244 ≤ C ≤ K/32, it follows that (1 − 1/K)C = Θ(1),
so the above is

ln
(
(1±O(ε))(1− 1/K)C

)
= C ln(1− 1/K)±O(ε)

and since ln(1 + z) = O(|z|) for any real z ∈ R with |z| < 1/2, we have L̃A
0 = 32RC

K
+ O(εR).

Now the latter term is O(εL0), since R = Θ(L0), so it suffices to show the concentration of C.
Now since Var(C) ≤ E [C] by pairwise independence of h1, so Chebyshev’s inequality gives

Pr
[
|C − L0K/(32R)| ≥ c/

√
K
]
<

E [C]
(c2/K) E [C]2

≤
(16
c

)2

and this probability can be made arbitrarily small big increasing c, so set c such that the probabil-

276

ity is 1/100. Note that 1/
√
K = ε, so it follows that C = (1± O(ε))L0K/(32R). From this we

conclude that L̃A
0 = (1±O(ε))L0. By the union bound the events E∧E ′∧E ′′ occur with arbitrarily

large constant probability, say 99/100, and conditioned on this we showed that L̃A
0 = (1± ε)L0

with probability 4/5− 1/100 = 79/100. Finally, L̃A
0 = L̃0 with probability 3/4, and so together

we obtain the desired result with probability 1− 21/100− 1/100− 1/4 = 53/100. Running this
algorithm O(1) times in parallel and outputting the median gives the desired probability.

6.6.2 Dealing With Small L0

In the prior section it was assumed that L0 ≥ K/32 = ε−2/32. We handle the estimation when
this is not the case the same way as [KNW10b]. We consider two cases. First, if L0 ≤ 100
we can perfectly hash the elements into O(1) buckets and recovery the L0 exactly with large
constant probability by counting the number of nonzero buckets, as each non-zero item will be
hashed to its own bucket with good probability (see Lemma 6.6.11).

Now for K/32 > L0 > 100, a similar algorithm as in the last section is used, except we use
only one row of B and no subsampling. In this case, we set K ′ = 2K, and create a vector B′ of
length K ′. We then run the algorithm of the last section, but update Bj instead of Bi,j every time
Bi,j is updated. In other words, B′j is the j-th column of B collapsed, so the updates to all items
in [n] are hashed into a bucket of B′. Let I = {i ∈ [n] | xi 6= 0}. Note that the only fact about
i∗ that the proof of Lemma 6.6.5 uses was that E [|Ii∗|] < K/32, and since I = L0 < K/32, this
is still the case. Thus by the the same argument given in Lemma 6.6.5, with probability 3/4 we
can recover a bitvector A from B satisfying Aj = 1 iff there is some v ∈ [n] with xv 6= 0 and
h3(h2(v)) = j. Then if TA is the number of non-zero bits of A, it follows by a similar argument
as in Theorem 56 that

L̃′0 = ln(1− TA/K ′)/ ln(1− 1/K ′) = (1± ε)L0

for 100 < L0 < K/32. So if L̃′0 > K ′/32 = K/16, we return the output of the algorithm from
the last section, otherwise we return L̃′0. The space required to store B is O(ε−2(log log(n) +
log(1/ε))), giving the following Lemma.

Lemma 6.6.6. Let ε > 0 be given and let δ > 0 be a fixed constant. Then there is a subroutine

using O(ε−2(log(ε−1) + log log(n)) + log(n)) bits of space which with probability 1 − δ either

returns a (1± ε) approximation to L0, or returns LARGE, with the guarantee that L0 > ε−2/16.

277

αL0Estimator: L0 estimator for α-property streams.

1. Initialize instance of L0Estimator, constructing only the top 2 log(4α/ε) rows of
B. Let all parameters and hash functions be as in L0Estimator.

2. Initialize αStreamRoughL0Est to obtain a value L̃(t)
0 ∈ [L(t)

0 , 8αL0] for all t ∈
[m], and set L(t)

0 = max{L̃(t)
0 , 8 log(n)/ log log(n)}

3. Update the matrix B as in Figure 6.6, but only store the rows with index i such that
i = log(16L(t)

0 /K)± 2 log(4α/ε).

4. Return: run αStreamConstL0Est to obtain R ∈ [L0, 100L0], and set

T = |{j ∈ [K] | Bi∗,j 6= 0}|

where i∗ = log(16R/K). Return the estimate

L̃0 = 32R
K

ln(1− T/K)
ln(1− 1/K)

Figure 6.7: Our L0 estimation algorithm for α-property streams with L0 > K/32

6.6.3 The Algorithm for α-Property Streams

We will give a modified version of the algorithm in Figure 6.6 for L0 α property streams. Our
algorithm is given in Figure 6.7. We note first that the return value of the unbounded deletion
algorithm only depends on the row i∗ = log(16R/K), and so we need only ensure that this row
is stored. Our L0 α-property implies that if L(t)

0 is the L0 value at time t, then we must have
Lm0 = L0 ≥ 1/αL(t)

0 . So if we can obtain an O(α) approximation R(t) to L(t)
0 , then at time t we

need only maintain and sample the rows of the matrix with index within c log(α/ε) distance of
i(t) = log(16R(t)/K), for some small constant c.

By doing this, the output of our algorithm will then be the same as the output of L0Estimator
when run on the suffix of the stream beginning at the time when we first begin sampling to the
row i∗. Since we begin sampling to this row when the current L(t)

0 is less than an ε fraction of the
final L0, it will follow that the L0 of this suffix will be an ε-relative error approximation of the
L0 of the entire stream. Thus by the correctness of L0Estimator, the output of our algorithm
will be a (1± ε)2 approximation. For the remainder of the Chapter, we define

F0 = ‖I +D‖0 (6.16)

278

and similarly define F (t)
0 via F (t)

0 = ‖I(t) +D(t)‖0, where I(t), D(t) are the insertion and deletion
vectors after the first t updates. We remark that this notation is slightly different from its usage
as the F0-moment of the stream vector (as defined in Chapter 2), and instead aligns with the
alternative usage of F0 in the literature as referring to insertion only streams. Notice then, that
F0 is the number of distinct elements had all updates to the stream been positive.

To obtain an O(α) approximation to L(t)
0 at all points t in the stream, we employ another

algorithm of [KNW10b], which gives an O(1) estimation of the F0. By definition for any time
t ∈ [m] we have

F
(t)
0 ≤ F0 = ‖I +D‖0 ≤ α‖x‖0 = αL0

by the α-property, and also by definition F (t)
0 ≥ L

(t)
0 at all times t. These two facts together

imply that [F (t)
0 , 8F (t)

0] ⊆ [L(t)
0 , 8αL0].

Lemma 6.6.7 ([KNW10b]). There is an algorithm, RoughF0Est, that with probability 1 − δ
outputs non decreasing estimates F̃0

(t)
such that F̃0

(t) ∈ [F (t)
0 , 8F (t)

0] for all t ∈ [m] such that

F
(t)
0 ≥ max{8, log(n)/ log log(n)}, where m is the length of the stream. The space required is

O(log(n) log(1
δ
))-bits.

Corollary 6.6.8. There is an algorithm, αStreamRoughL0 Est, that with probability 1 − δ
on an α-deletion stream outputs non-decreasing estimates L̃0

(t)
such that L̃0

(t) ∈ [L(t)
0 , 8αL0] for

all t ∈ [m] such that F (t)
0 ≥ max{8, log(n)/ log log(n)}, where m is the length of the stream.

The space required is O(log(n) log(1
δ
)) bits.

Note that the approximation is only promised for t such thatF (t)
0 ≥ max{8, log(n)/ log log(n)}.

To handle this, we give a subroutine which produces the L0 exactly for F0 < 8 log(n)/ log log(n)
using O(log(n)) bits. Our main algorithm will assume that F0 > 8 log(n)/ log log(n), and ini-
tialize its estimate of L0

0 to be L0
0 = 8 log(n)/ log log(n), where L̃(t)

0 ∈ [L(t)
0 .8αL0] is the estimate

produced by αStreamRoughL0 Est.

Lemma 6.6.9. Given c ≥ 1, there is an algorithm that with probability 49/50 returns the L0

exactly if F0 ≤ c, and returns LARGE if F0 > c. The space required isO(c log(c)+c log log(n)+
log(n)) bits

Proof. The algorithm chooses a random hash function h ∈ H2([n], [C]) for some C = Θ(c2).
Every time an update (it,∆t) arrives, the algorithm hashes the identity it and keeps a counter,
initialized to 0, for each identity h(it) seen. The counter for h(it) is incremented by all updates
∆τ such that h(iτ) = h(it). Furthermore, all counters are stored mod p, where p is a random

279

prime picked in the interval [P, P 3] for P = 1002c log(mM). Finally, if at any time the algorithm
has more than c counters stored, it returns LARGE. Otherwise, the algorithm reports the number
of non-zero counters at the end of the stream.

To prove correctness, first note that at most F0 items will ever be seen in the stream by
definition. Suppose F0 ≤ c. By the pairwise independence of h, and scaling C by a sufficiently
large constant factor, with probability 99/100 none of the F0 ≤ c identities will be hashed to
the same bucket. Condition on this now. Let I ⊂ [n] be the set of non-zero indices of x. Our
algorithm will correctly report |I| if p does not divide xi for any i ∈ I . Now for mM larger then
some constant, by standard results on the density of primes there are at least 100c2 log2(mM)
primes in the interval [P, P 3]. Since each xi has magnitude at most mM , and thus at most
log(mM) prime factors, it follows that p does not divide xi with probability 1 − 1/(100c2).
Since |I| = L0 < F0 ≤ c, union bounding over all i ∈ I , it follows that p - xi for all i ∈ I with
probability 99/100. Thus our algorithm succeeds with probability 1−(1/100+1/100) > 49/50.

If F0 > c then conditioned on no collisions for the first c+1 distinct items seen in the stream,
which again occurs with probability 99/100 for sufficiently large C = Θ(c2), the algorithm will
necessarily see c + 1 distinct hashed identities once the (c + 1)-st item arrives, and correctly
return LARGE.

For the space, each hashed identity requiresO(log(c)) bits to store, and each counter requires
O(log(P)) = log(c log(n)) bits to store. There are at most c pairs of identities and counters, and
the hash function h can be stored using O(log(n)) bits, giving the stated bound.

Finally, to remove the O(log(n) log log(n)) overhead of running RoughL0Estimator to
determine the row i∗, we show that the exact same O(1) approximation of the final L0 can be
obtained using O(log(α log(n)) log(log(n)) + log(n)) bits of space for α-property streams. We
defer the proof of the following Lemma to Section 6.6.4

Lemma 6.6.10. Given a fixed constant δ, there is an algorithm, αStreamConstL0Est that

with probability 1 − δ when run on an α property stream outputs a value R = L̂0 satisfying

L0 ≤ R ≤ 100L0, using space O(log(α) log log(n) + log(n)).

Theorem 57. There is an algorithm that gives a (1±ε) approximation of theL0 value of a general

turnstile stream with the α-property, using spaceO(1
ε2

log(α
ε
)(log(1

ε
)+log log(n))+log(n)), with

2/3 success probability.

Proof. The case of L0 < K/32 can be handled by Lemma 6.6.6 with probability 49/50, thus

280

we can assume L0 ≥ K/32. Now if F0 < 8 log(n)/ log log(n), we can use Lemma 6.6.9 with
c = 8 log(n)/ log log(n) to compute theL0 exactly. Conditioning on the success of Lemma 6.6.9,
which occurs with probability 49/50, we will know whether or not F0 < 8 log(n)/ log log(n),
and can correctly output the result corresponding to the correct algorithm. So we can assume that
F0 > 8 log(n)/ log log(n). Then by the α-property, it follows that L0 > 8 log(n)/(α log log(n)).

Let t∗ be the time step when our algorithm initialized and began sampling to row i∗. Condi-
tioned on the success of αStreamRoughL0Est and αStreamConstL0Est, which by the
union bound together occur with probability 49/50 for constant δ, we argue that t∗ exists

First, we know that

i∗ = log(16R/K)

> log(16L0/K)

> log(16 · (8 log(n)/(log log(n)))/K)− log(α)

by the success of αStreamConstL0Est. Moreover, at the start of the algorithm we initialize
all rows with indices

i = log(16 · (8 log log(n)/ log(n))/K)± 2 log(4α/ε)

so if i∗ < log(16 ·(8 log log(n)/ log(n))/K)+2 log(4α/ε) then we initialize i∗ at the very begin-
ning (time t∗ = 0). Next, if i∗ > log(16·(8 log log(n)/ log(n))/L)+2 log(4α/ε), then we initial-
ize i∗ at the first time t when L(t)

0 ≥ R(ε/(4α))2. We know by termination that L̃0
m ∈ [L0, 8αL0]

since F0 > 8 log(n)/ log log(n) and therefore by the end of the stream αStreamRoughL0

Est will give its promised approximation. So our final estimate satisfies

L0
m ≥ L̃0

m ≥ L0 ≥ R/8 > R(ε/(4α))2

. Thus i∗ will always be initialized at some time t∗.

Now because the estimates L̃(t)
0 are non-decreasing and we have L̃0

m ∈ [L0, 8αL0], it follows
that L̃0

(t)
< 8αL0 for all t. Then, since

L
(t)
0 < max{8αL0, 8 log(n)/ log log(n)} < L0(4α/ε)2

it follows that at the termination of our algorithm the row i∗ was not deleted, and will therefore
be stored at the end of the stream.

281

Now, at time t∗−1 right before row i∗ was initialized we have Lt
∗−1

0 ≤ Lt
∗−1

0 < R(ε/(4α))2,
and since R < 110L0 we have Lt

∗−1
0 /L0 ≤ O(ε2). It follows that the L0 value of the stream

suffix starting at the time step t∗ is a value L̂0 such that L̂0 = (1 ± O(ε2))Lm0 . Since our
algorithm produces the same output as running L0Estimator on this suffix, we obtain a (1±
ε) approximation of L̂0 by the proof of Theorem 56 with probability 3/4, which in turn is a
(1± ε)2 approximation of the actual L0, so the desired result follows after rescaling ε. Thus the
probability of success is 1− (3/50 + 1/4) > 2/3.

For space, note that we only ever store O(log(α/ε)) rows of the matrix B, each with entries
of value at most the prime p ∈ O((K log(n))3), and thus storing all rows of the matrix requires
O(1/ε2 log(α/ε)(log(1/ε)+log log(n))) bits. The space required to run αStreamConstL0Est
is an additional additiveO(log(α) log log(n)+log(n)) bits. The cost of storing the hash functions
h1, h2, h3, h4 isO(log(n)+log2(1/ε)) which dominates the cost of running αStreamRoughL0Est.
Along with the cost of storing the matrix, this dominates the space required to run the small L0

algorithm of Lemma 6.6.6 and the small F0 algorithm of Lemma 6.6.9 with c on the order of
O(log(n)/ log log(n)). Putting these together yields the stated bound.

6.6.4 Our Constant Factor L0 Estimator for α-Property Streams

In this section we prove Lemma 6.6.10. Our algorithm αStreamConstL0Est is a modifi-
cation of the RoughL0Estimator of [KNW10b], which gives the same approximation for
turnstile streams. Their algorithm subsamples the stream at log(n) levels, and our improvement
comes from the observation that for α-property streams we need only consider O(log(α)) levels
at a time. Both algorithms utilize the following lemma, which states that if the L0 is at most
some small constant c, then it can be computed exactly using O(c2 log log(mM)) space. The
lemma follows from picking a random prime p = Θ(log(mM) log log(mM)) and pairwise in-
dependently hashing the universe into [Θ(c2)] buckets. Each bucket is a counter which contains
the sum of frequencies modulo p of updates to the universe which land in that bucket. The L0

estimate of the algorithm is the total number of non-zero counters. The maximum estimate is
returned after O(log(1/η)) trials.

Lemma 6.6.11 (Lemma 8, [KNW10b]). There is an algorithm which, given the promise that

L0 ≤ c, outputs L0 exactly with probability at least 1 − η using O(c2 log log(n)) space, in

addition to needing to store O(log(1/η)) pairwise independent hash functions mapping [n] onto

[c2].

282

We now describe the whole algorithm RoughL0Estimator along with our modifications
to it. The algorithm is very similar to the main algorithm of Figure 6.7. First, a random hash
function h : [n]→ [n] is chosen from a pairwise independent family. For each 0 ≤ j ≤ log(n), a
substream Sj is created which consists of the indices i ∈ [n] with lsb(h(i)) = j. For any t ∈ [m],
let St→j denote the substream of S restricted to the updates t, t+ 1, . . . ,m, and similarly let Lt→0
denote the L0 of the stream suffix t, t+ 1, . . . ,m. Let L0(S) denote the L0 of the substream S.

We then initialize the algorithm RoughαStreamL0-Estimator, which by Corollary
6.6.8 gives non-decreasing estimates L̃(t)

0 ∈ [L(t)
0 , 8αL0] at all times t such that F0 >

8 log(n)
log log(n)

with probability 99/100. Let

L
(t)
0 = max

{
L̃

(t)
0 ,

8 log(n)
log log(n)

}

and let Ut ⊂ [log(n)] denote the set of indices i such that i = log(L(t)
0) ± 2 log(α/ε), for some

constant ε later specified.

Then at time t, for each Sj with j ∈ Ut, we run an instantiation of Lemma 6.6.11 with
c = 132 and η = 1/16 on Sj , and all instantiations share the same O(log(1/η)) hash functions
h1, . . . , hΘ(log(1/η)). If j ∈ Ut but j /∈ Ut+1, then we throw away all data structures related to Sj
at time t+ 1. Similarly, if j enters Ut at time t, we initialize a new instantiation of Lemma 6.6.11
for Sj at time t.

To obtain the final L0 estimate for the entire stream, the largest value j ∈ Um with j < 2Lm0
such that Bj declares L0(Sj) > 8 is found. Then the L0 estimate is L̂0 = 20000/99 · 2j , and if
no such j exists the estimate is L̂0 = 50. Note that the main difference between our algorithm
and RoughL0Estimator is that RoughL0Estimator sets Ut = [log(n)] for all t ∈ [m], so
our proof of Lemma 6.6.10 will follow along the lines of [KNW10b].

Proof of Lemma 6.6.10 . The space required to store the hash function h is O(log(n)) and each
of the O(log(1/η)) = O(1) hash functions hi takes log(n) bits to store. The remaining space to
store a single Bj is O(log log(n)) by Lemma 6.6.11, and thus storing all Bjs for j ∈ Ut at any
time t requires at most O(|Ut| log log(n)) = O(log(α) log log(n)) bits (since ε = O(1)), giving
the stated bound.

We now argue correctness. First, for F0 ≤ 8 log(n) log log(n), we can run the algorithm
of Lemma 6.6.9 to produce the L0 exactly using less space than stated above. So we condi-
tion on the success of this algorithm, which occurs with probability 49/50, and assume F0 >

283

8 log(n)/ log log(n). This gives L0 > 8 log(n)/(α log log(n)) by the α-property, and it follows
that Lm0 ≤ 8αL0.

Now for any t ∈ [m], we have E
[
L0(St→j)

]
= Lt→0 /2j+1 if j < log(n), and E

[
L0(St→j)

]
=

Lt→0 /n if j = log(n). At the end of the algorithm we have all data structures stored for Bj’s with
j ∈ Um. Now let j ∈ Um be such that j < log(2Lm0), and observe that Bj will be initialized
at time tj such that Ltj0 > 2Lm0 (ε/α)2, which clearly occurs before the algorithm terminates. If
j = log(8 log(n)/ log log(n))± 2 log(α/ε), then j ∈ U0 so tj = 0, and otherwise tj is such that

L
tj
0 ≤ L

tj
0

≤ (ε/α)22j

≤ (ε/α)2Lm0

< 8(ε2/α)L0

So Ltj0 /L0 = O(ε2). This means that when Bj was initialized, the value Ltj0 was at most an
O(ε2) fraction of the final L0, from which it follows that Ltj→0 = (1 ± ε)L0 after rescaling ε.
Thus the expected output of Bj (if it has not been deleted by termination) for j < log(2L0) is
E
[
L0(Stj→j)

]
= (1± ε)L0/2j+1.

Now let j∗ be the largest j satisfying E
[
L0(Stj→j)

]
≥ 1. Then j∗ < log(2L0) < log(2Lm0),

and observe that 1 ≤ E
[
L0(Stj∗→j∗)

]
≤ 2(1 + ε) (since the expectations decrease geometrically

with constant (1± ε)/2). Then for any log(2Lm0) > j > j∗, by Markov’s inequality we have

Pr
[
L0(Stj→j) > 8

]
< (1 + ε)1/(8 · 2j−j∗−1)

By the union bound, the probability that any such j ∈ (j∗, log(2Lm0)) has L0(Stj→j) > 8 is

at most (1+ε)
8
∑log(2Lm0)
j=j∗+1 2−(j−j∗−1) ≤ (1 + ε)/4. Now let j∗∗ < j∗ be the largest j such that

E
[
L0(Stj→j)

]
≥ 50. Since the expectations are geometrically decreasing by a factor of 2 (up to a

factor of (1±ε)), we have 100(1+ε) ≥ E
[
L0(Stj∗∗→j∗∗)

]
≥ 50, and by the pairwise independence

of h we have Var[L0(Stj∗∗→j∗∗)] ≤ E
[
L0(Stj∗∗→j∗∗)

]
, so by Chebyshev’s inequality we have

Pr
[∣∣∣L0(Stj∗∗→j∗∗)− E

[
L0(Stj∗∗→j∗∗)

] ∣∣∣ < 3
√

E
[
L0(Stj∗∗→j∗∗)

]]

> 8/9

284

Then assuming this holds and setting ε = 1/100, we have

L0(Stj∗∗→j∗∗) > 50− 3
√

50 > 28

L0(Stj∗∗→j∗∗) < 100(1 + ε) + 3
√

100(1 + ε) < 132

What we have shown is that for every log(2Lm0) > j > j∗, with probability at least 3/4(1− ε/3)
we will have L0(Stj→j) ≤ 8. Since we only consider returning 2j for j ∈ Um with j < log(2Lm0),
it follows that we will not return L̂0 = 2j for any j > j∗. In addition, we have shown that
with probability 8/9 we will have 28 < L0(Stj∗∗→j∗∗) < 132, and by our choice of c = 132 and
η = 1/16, it follows that Bj∗∗ will output the exact value L0(Stj∗∗→j∗∗) > 8 with probability at least
1 − (1/9 + 1/16) > 13/16 by Lemma 6.6.11. Hence, noting that ε = 1/100, with probability
1 − (3/16 + 1/4(1 + ε)) < 14/25, we output 2j for some j∗∗ ≤ j ≤ j∗ for which j ∈ Um.
Observe that since Um contains all indices i = log(Lm0)±2 log(α/ε), and along with the fact that
L0 < Lm0 < 8αL0, it follows that all j ∈ [j∗∗, j∗] will be in Um at termination for sufficiently
large ε ∈ O(1).

Now since (1 + 1/100)L0/2 > 2j∗ > (1 − 1/100)L0/4, and (1 + 1/100)L0/100 > 2j∗∗ >
(1−1/100)L0/200, it follows that (99/100)L0/200 < 2j < 99L0/200, and thus 20000/99 ·2j ∈
[L0, 100L0] as desired. If such a j∗∗ does not exist then L0 < 50 and 50 ∈ [L0, 100L0]. Note that
because of the α property, unless the stream is empty (m = 0), then we must have L0 ≥ 1, and
our our approximation is always within the correct range. Finally, if F0 ≤ 8 log(n) log log(n)
then with probability 49/50 Lemma 6.6.9 produces theL0 exactly, and for larger F0 we output the
result of the algorithm just stated. This brings the overall success probability to 14/25−49/50 >
13/25. Running O(log(1/δ)) = O(1) copies of the algorithm and returning the median, we can
amplify the probability 13/25 to 1− δ.

6.7 Support Sampling

The problem of support sampling asks, given a stream vector x ∈ Rn and a parameter k ≥ 1,
return a set U ⊂ [n] of size at least min{k, ‖x‖0} such that for every i ∈ U we have xi 6=
0. Support samplers are needed crucially as subroutines for many dynamic graph streaming
algorithms, such as connectivity, bipartitness, minimum spanning trees, min-cut, cut sparsifiers,
spanners, and spectral sparsifiers [AGM12b]. They have also been applied to solve maximum
matching [Kon15], as well as hyperedge connectivity [GMT15]. A more comprehensive study
of their usefulness in dynamic graph applications can be found in [KNP+17].

285

α-SupportSampler

Initialization:
1. Set s ← 205k, and initialize linear sketch function J : Rn → Rq for q = O(s) via

Lemma 6.7.1.

2. Select random h ∈ H2([n], [n]), set Ij = {i ∈ [n] | h(i) ≤ 2j}, and set ε = 1/48.

Processing:
1. Run αStreamRoughL0Est of Corollary 6.6.8 with δ = 1/12 to obtain non-

decreasing R(t) ∈ [L(t)
0 , 8αL0].

2. Define

Bt =
{
j ∈ [log(n)]

∣∣∣∣ j = log(ns/3R(t))± 2 log(α/ε)

OR j ≥ log
(
ns log log(n)

24 log(n)

)}

3. Let tj ∈ [m] be the first time t such that j ∈ Bt (if one exists). Let t′j be the first time
step t′ > tj such that j /∈ Bt′ (if one exists).

4. For all j ∈ Bt, maintain linear sketch yj = J(xtj :t′j |Ij).

Recovery:
1. For j ∈ Bm at the end of the stream, attempt to invert yj into xtj :m|Ij via Lemma

6.7.1. Return all strictly positive coordinates of all successfully returned xtj :m|Ij ’s.

Figure 6.8: Our support sampling algorithm for α-property streams.

286

For strict turnstile streams, an Ω(k log2(n/k)) lower bound is known [KNP+17], and for gen-
eral turnstile streams there is an O(k log2(n)) algorithm [JST11]. In this section we demonstrate
that for L0 α-property streams in the strict-turnstile case, more efficient support samplers exist.
For the rest of the section, we write α-property to refer to the L0 α-property, and we use the
notation defined at the beginning of Section 6.6.1. Also recall that we define The F0 value of the
stream via F0 = ‖I +D‖0.

First consider the following template for the unbounded deletion case (as in [JST11]). First,
we subsample the set of items [n] at log(n) levels, where at level j, the set Ij ⊆ [n] is subsampled
with expected size |Ij| = 2j . Let x|Ij be the vector x restricted to the coordinates of Ij (and 0
elsewhere). Then for each Ij , the algorithm creates a small sketch yj of the vector x|Ij . If x|Ij
is sparse, we can use techniques from sparse recovery to recover x|Ij and report all the non-zero
coordinates. We first state the following well known result which we utilize for this recovery.

Lemma 6.7.1 ([JST11]). Given 1 ≤ s ≤ n, there is a linear sketch and a recovery algorithm

which, given x ∈ Rn, constructs a linear sketch J(x) : Rn → R
q for q = O(s) such that if x is

s-sparse then the recovery algorithm returns x on input J(x), otherwise it returns DENSE with

high probability. The space required is O(s log(n)) bits.

Next, observe that for L0 α-deletion streams, the value F (t)
0 is at least L(t)

0 and at most αL0

for every t ∈ [m]. Therefore, if we are given an estimate of F (t)
0 , we show it will suffice to

only subsample at O(log(α))-levels at a time. In order to estimate F (t)
0 we utilize the estimator

αStreamRoughL0Est from Corollary 6.6.8 of Section 6.6. For t′ ≥ t, let xt:t′ ∈ Rn be the
frequency vector of the stream of updates t to t′. We use the notation given in our full algorithm
in Figure 6.8. Notice that since R(t) is non-decreasing, once j is removed from Bt at time t′j it
will never enter again. So at the time of termination, we have yj = J(xtj :m|Ij) for all j ∈ Bm.

Theorem 58. Given a strict turnstile stream x with the L0 α-property and k ≥ 1, the algorithm

α-SupportSampler outputs a set U ⊂ [n] such that xi 6= 0 for every i ∈ U , and such that

with probability 1− δ we have |U | ≥ min{k, ‖x‖0} . The space required is O(k log(n) log(δ−1)
(log(α) + log log(n))) bits.

Proof. First condition on the success of αStreamRoughL0Est, which occurs with probability
11/12. Set i∗ = min(d(log(ns

3L0
))e, log(n)). We first argue that ti∗ exists. Now yi∗ would

be initialized as soon as R(t) ≥ L0(ε/α)2, but R(t) ≥ L
(t)
0 , so this holds before termination

of the algorithm. Furthermore, for yi∗ to have been deleted by the end of the algorithm we
would need R(t) > (α/ε)2L0, but we know R(t) < 8αL0, so this can never happen. Finally, if

287

L0 ≤ F0 < 8 log(n)/ log log(n) and our αStreamRoughL0Est fails, then note i∗ ≥ dlog(ns
log log(n)/(24 log(n)))e, so we store i∗ for the entire algorithm.

Now we have Lti∗0 ≤ Rti∗ < (ε/α)L0, and thus Lti∗0 /L0 < ε. Since x is a turnstile stream, it
follows that the number of strictly positive coordinates in xti∗ :m is at least L0 − Lti∗0 and at most
L0. Thus there are (1± ε)L0 strictly positive coordinates in xti∗ :m. By same argument, we have
‖xti∗ :m‖0 = (1± ε)L0.

Let Xi indicate the event that xti∗ :m
i |Ii∗ 6= 0, and X = ∑

iXi. Using the pairwise indepen-
dence of h, the Xi’s with xti∗ :m

i 6= 0 are pairwise independent, so we obtain

Var (X) < E [X] = ‖xti∗ :m‖0 E [|Ii∗ |] /n

First assume L0 > s. Then ns/(3L0) ≤ E [|Ii∗|] < 2ns/(3L0), so for ε < 1/48, we have
E [X] ∈ [15s/48, 33s/48]. Then

√
E [X] < 1/8 E [X], so by Chebyshev’s inequality we have

Pr [|X − E [X] | > 1/4 E [X]] < 1/4

and thus
‖xti∗ :m

i |Ii∗‖0 ≤ 15/16s

with probability 3/4. In this case, xti∗ :m
i |Ii∗ is s-sparse, so we recover the vector w.h.p. by

Lemma 6.7.1. Now if L0 ≤ s then F0 < αs, so the index i′ = log(n) will be stored for the entire
algorithm. Thus yi′ = J(f) and since x is s sparse we recover x exactly w.h.p., and return all
non-zero elements. So we can assume that L0 > s.

It suffices now to show that there are at least k strictly positive coordinates in xti∗ :m
i |Ii∗ . Since

this number is also (1±L0), letting X ′i indicate xti∗ :m
i |Ii∗ > 0 and using the same inequalities as

in the last paragraph, it follows that there are at least s/15 > k strictly positive coordinates with
probability 3/4. Since the stream is a strict-turnstile stream, every strictly positive coordinate of
a suffix of the stream must be in the support of x, so we successfully return at least k coordinates
from the support with probability at least 1 − (1/4 + 1/4 + 1/12 + 1/12) = 1/3. Running
O(log(δ−1)) copies in parallel and setting U to be the union of all coordinates returned, it follows
that with probability 1− δ at least min{k, ‖x‖0} distinct coordinates will be returned.

For memory, for each of the O(log(δ−1)) copies we subsample at O(log(α) + log log(n))
different levels, and each to a vector of size O(k) (and each coordinate of each vector takes
log(n) bits to store) which gives our desired bound. This dominates the additive O(log(n)) bits
needed to run αStreamRoughL0Est.

288

6.8 Lower Bounds

In this section, we show matching or nearly matching lower bounds for all problems considered
in this Chapter. Our lower bounds all follow via reductions from one-way randomized commu-
nication complexity. We consider both the public coin model, where Alice and Bob are given
access to infinitely many shared random bits, as well as the private coin model, where they do
not have shared randomness.

Remark 59 (Notation for Frequency Vector). Since the notation x, y are often reserved to denote
the input to the communication protocol, in this section only we will use the notation f ∈ Rn to
represent the frequency vector of a data stream.

Communication Protocols

We first state the communication complexity problems we will be reducing from. The first such
problem we use is the Augmented-Indexing problem (IND), which is defined as follows. Alice is
given a vector y ∈ {0, 1}n, and Bob is given a index i∗ ∈ [n], and the values yi∗+1, . . . , yn. Alice
then sends a message M to Bob, from which Bob must output the bit yi∗ correctly. A correct
protocol for IND is one for which Bob correctly outputs yi∗ with probability at least 2/3. The
communication cost of a correct protocol is the maximum size of the messageM that the protocol
specifies to deliver. This problem has a well known lower bound of Ω(n) (see [MNSW95], or
[KNW10a]).

Lemma 6.8.1 (Miltersen et al. [MNSW95]). The one-way communication cost of any protocol

for Augmented Indexing (IND) in the public coin model that succeeds with probability at least

2/3 is Ω(n).

We present the second communication complexity result which we will use for our reduc-
tions. We define the problem EQUALITY as follows. Alice is given y ∈ {0, 1}n and Bob is
given x ∈ {0, 1}n, and are required to decide whether x = y. This problem has a well known
Ω(log(n))-bit lower bound when shared randomness is not allowed (see e.g., [AMS96] where it
is used).

Lemma 6.8.2. The one way communication complexity in the private coin model with 2/3 suc-

cess probability of EQUALITY is Ω(log(n)).

289

Heavy Hitters Lower Bound

We begin with the hardness of the heavy hitters problem in the strict-turnstile setting. Our hard-
ness result holds not just for α-property streams, but even for the special case of strong α-property
streams (Definition 6.1.2). The result matches our upper bound for normal α-property streams
from Theorem 49 up to log log(n) and log(ε−1) terms.

Theorem 60. For p ≥ 1 and ε ∈ (0, 1), any one-pass Lp heavy hitters algorithm for strong L1

α-property streams x ∈ Rn in the strict turnstile model which returns a set containing all i ∈ [n]
such that |xi| ≥ ε‖x‖p and no i ∈ [n] such that |xi| < (ε/2)‖x‖p with probability at least 2/3
requires Ω(ε−p log(nεp) log(α)) bits.

Proof. Suppose there is such an algorithm which succeeds with probability at least 2/3, and con-
sider an instance of augmented indexing. Alice receives y ∈ {0, 1}d, and Bob gets i∗ ∈ [d] and yj
for j > i∗. Set D = 6, and let X be the set of all subsets of [n] with b1/(2ε)pc elements, and set
d = log6(α/4)blog(|X|)c. Alice divides y into r = log6(α/4) contiguous chunks y1, y2, . . . , yr

each containing blog(|X|)c bits. She uses yj as an index into X to determine a subset Uj ⊂ [n]
with |Uj| = b1/(2ε)pc. Thinking of Uj as a binary vector inRn, Alice defines the vector v ∈ Rn

by.
v = (αD + 1)U1 + (αD2 + 1)U2 + · · ·+ (αDr + 1)Ur

She then creates a stream and inserts the necessary items so that the current frequency vector
of the stream is v. She then sends the state of her heavy hitters algorithm to Bob, who wants
to know yi∗ ∈ yj for some j = j(i∗). Knowing yi∗+1, . . . , yd already, he can compute u =
αDj+1Uj+1 + αDj+2Uj+2 + · · ·+ αDrUr. Bob then runs the stream which subtracts off u from
the current stream, resulting in a final stream frequency vector of f = v − u. He then runs his
heavy hitters algorithm to obtain a set S ⊂ [n] of heavy hitters.

We now argue that if correct, his algorithm must produce S = Uj . Note that some items in
[n] may belong to multiple sets Ui, and would then be inserted as part of multiple Ui’s, so we
must deal with this possibility. For p ≥ 1, the weight ‖f‖pp is maximized by having U1 = U2 =
· · · = Uj , and thus

‖f‖pp ≤ 1/(2ε)p(
j∑
i=1

αDi + 1)p

≤ ε−p(αDj+1/10 + 1)p

≤ ε−pαpDjp

290

and for every k ∈ Uj we have |fk|p ≥ (αDj + 1)p ≥ εp‖f‖pp as desired. Furthermore, ‖f‖pp ≥
|Uj|αpDjp = b1/(2ε)pcαpDjp, and the weight of any element k′ ∈ [n] \ Uj is at most

j−1∑
i=1

αDi + 1
p ≤ (αDj/5 + (j − 1))p < Djp/4p

for α ≥ 3, so fk′ will not be a ε/2 heavy hitter. Thus, if correct, Bob’s heavy hitter algorithm
will return S = Uj . So Bob obtains S = Uj , and thus recovers yj which indexed Uj , and can
compute the relevant bit yi∗ ∈ yj and return this value successfully. Hence Bob solves IND with
probability at least 2/3.

Now observe that at the end of the stream each coordinate has frequency at least 1 and re-
ceived fewer than 3α2 updates (assuming updates have magnitude 1). Thus this stream on [n]
items has the strong (3α2)-property. Additionally, the frequencies of the stream are always non-
negative, so the stream is a strict turnstile stream. It follows by Lemma 6.8.1 that any heavy
hitters algorithm for strict turnstile strong α-property streams requires

Ω(d) = Ω(log(
√
α/3) log(|X|)) = Ω(ε−p log(α) log(nεp))

bits as needed.

L1 Norm Estimation Lower Bounds

Next, we demonstrate the hardness of estimating the L1 norm in the α-property setting. First,
we show that the problem of L1 estimation in the general turnstile model requires Ω(log(n))-bits
even for α property streams with α = O(1). We also give a lower bound of Ω(1/ε2 log(α)) bits
for general turnstile L1 estimation for strong α-property streams.

Theorem 61. For any α ≥ 3/2, any algorithm that produces an estimate L̃1 ∈ (1±1/16)‖f‖1 of

a general turnstile stream with frequency vector f ∈ Rn with the L1 α property with probability

2/3 requires Ω(log(n)) bits of space.

Proof. Let G be a family of t = 2Ω(n/2) = 2n′ subsets of [n/2], each of size n/8 such that no two
sets have more than n/16 elements in common. As noted in [AMS96], the existence of G follows
from standard results in coding theory, and can be derived via a simple counting argument. We
now reduce from EQUALITY, where Alice has y ∈ {0, 1}n′ and Bob has x ∈ {0, 1}n′ . Alice can
use y to index into G to obtain a subset sy ⊂ [n/2], and similarly Bob obtains sx ⊂ [n/2] via x.

291

Let y′, x′ ∈ {0, 1}n be the characteristic vectors of sy, sx respectively, padded with n/2 0’s at the
end.

Now Alice creates a stream f ∈ Rn on n elements by first inserting y′, and then inserting the
vector v where vi = 1 for i > n/2 and 0 otherwise. She then sends the state of her streaming
algorithm to Bob, who deletes x′ from the stream. Now if x = y, then x′ = y′ and ‖f‖1 =
‖y′+v−x′‖1 = n/2. On the other hand, if x 6= y then each of sx, sy have at least n/16 elements
in one and not in the other. Thus ‖y′−x′‖1 ≥ n/8, so ‖f‖1 ≥ 5n/8. Thus a streaming algorithm
that produces L̃1 ∈ (1± 1/16)‖f‖1 with probability 2/3 can distinguish between the two cases,
and therefore solve EQUALITY, giving an Ω(log(n′)) lower bound. Since n′ = Ω(n), it follows
that such an L1 estimator requires Ω(log(n)) bits as stated.

Finally, note that at most 3n/4 unit increments were made to f , and ‖f‖1 ≥ n/2, so f indeed
has the α = 3/2 property.

Theorem 62. Any algorithm that produces an estimate L̃ ∈ (1± ε)‖f‖1 with probability 11/12
of a general turnstile stream f ∈ Rn with the strong L1 α property requires Ω(1

ε2
log(ε2α)) bits

of space.

To prove Theorem 62, we first define the following communication complexity problem.

Definition 6.8.3. In the GAP-HAM communication complexity problem, Alice is given x ∈
{0, 1}n and Bob is given y ∈ {0, 1}n. Bob is promised that either ‖x − y‖1 < n/2 −

√
n

(NO instance) or that ‖x − y‖1 > n/2 +
√
n (YES instance), and must decide which instance

holds.

Our proof of Theorem 62 will use the following reduction. Our proof is similar to the lower
bound proof for unbounded deletion streams in [KNW10a].

Theorem 63 ([JKS08], [Woo07] Section 4.3). There is a reduction from IND to GAP-HAM

such that deciding GAP-HAM with probability at least 11/12 implies a solution to IND with

probability at least 2/3. Furthermore, in this reduction the parameter n in IND is within a

constant factor of that for the reduced GAP-HAM instance.

We are now ready to prove Theorem 62.

Proof. Set k = b1/ε2c, and let t = blog(αε2)c. The reduction is from IND. Alice receives
x ∈ {0, 1}kt, and Bob obtains i∗ ∈ [kt] and xj for j > i∗. Alice conceptually breaks her string x

292

up into t contiguous blocks bi of size k. Bob’s index i∗ lies in some block bj∗ for j∗ = j∗(i∗), and
Bob knows all the bits of the blocks bi for i > j∗. Alice then applies the reduction of Theorem 63
on each block bi separately to obtain new vectors yi of length ck for i ∈ [t], where c ≥ 1 is some
small constant. Let β = c2ε−2α. Alice then creates a stream with frequency vector f ∈ Rckt

on ckt items by inserting the update ((i, j), β2i + 1) for all (i, j) such that (yi)j = 1. Here we
are using (i, j) ∈ [t] × [ck] to index into [ckt]. Alice then computes the value vi = ‖yi‖1 for
i ∈ [t], and sends {v1, . . . , vt} to Bob, along with the state of the streaming algorithm run on the
frequency vector f .

Upon receiving this, since Bob knows the bits yz for z ≥ i∗, Bob can run the same reductions
on the blocks bi as Alice did to obtain yi for i > j∗. He then can make the deletions ((i, j),−β2i)
for all (i, j) such that i > j∗ and (yi)j = 1, leaving these coordinate to be f(i,j) = 1. Bob then
performs the reduction from IND to GAP-HAM specifically on the block bj∗ to obtain a vector
y(B) of length ck, such that deciding whether ‖y(B)− yj∗‖1 > ck/2 +

√
ck or ‖y(B)− yj∗‖1 <

ck/2−
√
ck with probability 11/12 will allow Bob to solve the instance of IND on block bj∗ with

index i∗ in bj∗ . Then for each i such that y(B)i = 1, Bob makes the update ((j∗, ji),−β2j∗)
to the stream f . He then runs an L1 approximation algorithm to obtain L̃ = (1 ± ε)‖f‖1 with
probability 11/12. LetA be the number of indices such that y(B)i > (yj∗)i. LetB be the number
of indices such that y(B)i < (yj∗)i. LetC be the number of indices such that y(B)i = 1 = (yj∗)i,
and let D be the number of indices (i, j) with i > j∗ such that (yi)j = 1. Then we have

‖f‖1 = β2j∗A+ (β2j∗ + 1)B + C +D +
∑
i<j∗

vi(β2i + 1)

Let Z = C +D +B, and note that Z < ckt < β. Let η = ∑
i<j∗ vi(β2i + 1). Bob can compute

η exactly knowing the values {v1, . . . , vt}. Rearranging terms, we have

‖y(B)− yj∗‖1 = (‖f‖1 − Z − η)/(β2j∗) = (‖f‖1 − η)/(β2j∗)± 1

Recall that Bob must decide whether ‖y(B)− yj∗‖1 > ck/2 +
√
ck or ‖y(B)− yj∗‖1 < ck/2−√

ck. Thus, in order to solve this instance of GAP-HAM it suffices to obtain an additive
√
ck/8

approximation of ‖f‖1/(β2j∗). Now note that

‖f‖1/(β2j∗) ≤ ckt(β2j∗)−1 + (β2j∗)−1
j∗∑
i=1

β2j · ck

≤ 1 + 4ck

293

where the ckt < β term comes from the fact that every coordinate that is ever inserted will
have magnitude at least 1 at the end of the stream. Taking ε′ =

√
ck/(40ck) = 1/(40

√
ck) =

O(1/ε), it follows that a (1 ± ε′) approximation of ‖f‖1 gives a
√
ck/8 additive approxima-

tion of ‖f‖1/(β2j∗) as required. Thus suppose there is an algorithm A that can obtain such a
(1 ± O(1/ε2)) approximation with probability 11/12. By the reduction of Theorem 63 and the
hardness of IND in Lemma 6.8.1, it follows that this protocol just described requires Ω(kt) bits
of space. Since the only information communicated between Alice and Bob other than the state
of the streaming algorithm was the set {v1, . . . , vt}, which can be sent with O(t log(k)) = o(kt)
bits, it follows that A must have used Ω(kt) = Ω(ε−2 log(αε)) bits of space, which is the desired
lower bound.

Now note that every coordinate i that was updated in the stream had final magnitude |fi| ≥ 1.
Furthermore, no item was inserted more than β2t + 1 < α2c2 + 1 times, thus the stream has the
strong O(α2) property. We have proven that any algorithm that gives a (1± ε) approximation of
‖f‖1 where f is a strong α-property stream with probability 11/12 requires Ω(ε−2 log(ε2

√
α))

= Ω(ε−2 log(ε2α)) bits, which completes the proof.

We now give a matching lower bound for L1 estimation of strict-turnstile strong α-property
streams. This exactly matches our upper bound of Theorem 52, which is for the more general
α-property setting.

Theorem 64. For ε ∈ (0, 1/2) and α < n, any algorithm which gives an ε-relative error approx-

imation of the L1 of a strong L1 α property stream in the strict turnstile setting with probability

at least 2/3 must use Ω(log(α) + log(1/ε) + log log(n)) bits.

Proof. The reduction is from IND. Alice, given x ∈ {0, 1}t where t = log10(α/4), constructs
a vector u ∈ Rt such that ui = α10ixi + 1. She then inserts the vector u into the stream
so that the frequency vector is give nby f = u, and sends the state of the stream f to Bob
who, given j ∈ [n] and xj+1, . . . , xt, subtracts off v where vi = α2ixi for i ≥ j + 1, and 0
otherwise. He then runs the L1 estimation algorithm on the final frequency vector f = u − v,
and obtains the value L such that L = (1 ± ε)‖f‖1 with probability 2/3. We argue that if
L = (1 ± ε)‖f‖1 (for ε < 1/2) then L > (1 − ε)(α10j) > α10j/2 iff xj = 1. If xj = 1 then
(uj − vj) = α10j + 1, if L > (1 − ε)‖f‖1 the result follows. If xj = 0, then the total L1 is
at most α/4 + α

∑j−1
i=1 10i < α10i

9 + α/4 < α10i/3, so L < (1 + ε)‖f‖1 < α10j/2 as needed
to solve IND. Note that each coordinate has frequency at least 1 at the end of the stream, and
no coordinate received more than α2 updates. Thus the stream has the strong α2-property. By

294

Lemma 6.8.1, it follows that any one pass algorithm for constant factor L1 estimation of a strict
turnstile strong α-property stream requires Ω(log(

√
α)) = Ω(log(α)) bits.

Finally, note that in the restricted insertion only case (i.e. α = 1), estimating the L1 norm
means estimating the value m given only the promise that m ≤M for some value M = poly(n).
There are log(M)/ε powers of (1 + ε) that could potentially be a (1 ± ε) approximation of m,
so to represent the solution requires requires log(log(M)/ε) = O(log log(n) + log(1/ε)) bits of
space, which gives the rest of the stated lower bound.

L0 Norm Estimation Lower Bound

We now prove a lower bound on L0 estimation. Our lower bound matches our upper bound of
Theorem 57 up to log log(n) and log(1/ε) multiplicative factors, and a log(n) additive term. To
do so, we use the following Theorem of [KNW10a], which uses a one way two party communi-
cation complexity lower bound.

Theorem 65 (Theorem A.2. [KNW10a]). Any one pass algorithm that gives a (1±ε) multiplica-

tive approximation of the L0 of a strict turnstile stream with probability at least 11/12 requires

Ω(ε−2 log(ε2n)) bits of space.

Setting n = O(α) will give us:

Theorem 66. For ε ∈ (0, 1/2) and α < n/ log(n), any one pass algorithm that gives a (1 ± ε)
multiplicative approximation of the L0 of a L0 α-property stream in the strict turnstile setting

with probability at least 11/12 must use Ω(ε−2 log(ε2α) + log log(n)) bits of space.

Proof. We can first construct the same stream used in the communication complexity lower
bound of Theorem 65 on n = α − 1 elements, and then allow Bob to insert a final dummy
element at the end of the stream with frequency 1. The stream now has α elements, and the L0 of
the resulting stream, call it R, is exactly 1 larger than the initial L0 (which we will now refer to
as L0). Moreover, this stream has the L0 α property since the final frequency vector is non-zero
and there α items in the stream. If we then obtained an estimate R̃ = (1±ε)R = (1±ε)(L0 +1),
then the original L0 = 0 if R̃ < (1 + ε). Otherwise R̃ − 1 = (1 ± O(ε)L0, and a constant
factor rescaling of ε gives the desired approximation of the initial L0. By Theorem 65, such an
approximation requires Ω(ε−2 log(ε2α)) bits of space, as needed. The Ω(log log(n)) lower bound
follows from the proof of Lemma 64, replacing the upper bound M ≥ m with n.

295

Sampling Lower Bounds

Next, we give lower bounds for L1 and support sampling. Our lower bound for L1 samplers
holds in the more restricted strong α-property setting, and for such streams we show that even
those which return an index from a distribution with variation distance at most 1/6 from the
L1 distribution |fi|/‖f‖1 of a frequency vector f ∈ Rn, requires Ω(log(n) log(α)) bits. In this
setting, taking ε = o(1), this bound matches our upper bound from Theorem 50 up to log log(n)
terms. For α = o(n), our support sampling lower bound matches our upper bound in Theorem
58.

Theorem 67. Any one pass L1 sampler of a strong L1 α-property stream f in the strict turnstile

model with an output distribution that has variation distance at most 1/6 from the L1 distribution

|fi|/‖f‖1 and succeeds with probability 2/3 requires Ω(log(n) log(α)) bits of space.

Proof. Consider the same strict turnstile strong O(α2)-property stream constructed by Alice and
Bob in Theorem 60, with ε = 1/2. Then X = [n] is the set of all subsets of [n] with 1 item.
If i∗ ∈ [n] is Bob’s index, then let j = j(i∗) be the block yj such that yi∗ ∈ yj . The block yj

has log(|X|) = log(n) bits, and Bob’s goal is to determine the set xj ⊂ [n] of exactly one item
which is indexed by yj . Then for the one sole item k ∈ xj will be a 1/2-heavy hitter, and no
other item will be a 1/4-heavy hitter, so Bob can run O(1) parallel L1 samplers and find the item
k′ that is returned the most number times by his samplers. If his sampler functions as specified,
having at most 1/6 variational distance from the L1 distribution, then k′ = k with large constant
probability and Bob can recovery the bit representation xj of k, from which he recovers the bit
yi∗ ∈ yj as needed. Since Alice’s string had length Ω(log(α) log(|X|)) = Ω(log(α) log(n)), we
obtain the stated lower bound.

Theorem 68. Any one pass support sampler that outputs an arbitrary i ∈ [n] such that fi 6= 0, of

anL0 α-property stream with probability of outputting⊥ at most 1/3, requires Ω(log(n/α) log(α))
bits of space.

Proof. The reduction is again from IND. Alice receives y ∈ {0, 1}d, for d = blog(n/α) log(α/4)c,
and breaks it into blocks y1, . . . , ylog(α/4), each of size blog(n/α)c. She then initializes a stream
vector f ∈ Rn, and breaks f into b4n/αc blocks of size α/4, say B1, . . . , Bb4n/αc. She uses yi
as an index into a block Bj for j = j(i), and then inserts 2i distinct items into block Bj , each
exactly once, and sends the state of her algorithm over to Bob. Bob wants to determine yi∗ for
his fixed i∗ ∈ [n]. Let k be such that yi∗ ∈ yj and Bk be the block indexed by yj . He knows

296

yj+1, . . . , ylog(α/4), and can delete the corresponding items from f that were inserted by Alice.
At the end, the block Bk has 2j items in it, and the total number of distinct items in the stream is
less than 2j+1. Moreover no other block has more than 2j−1 items.

Now suppose Bob had access to an algorithm that would produce a uniformly random non-
zero item at the end of the stream, and that would report ⊥ with probability at most 1/3. He
could then run O(1) such algorithms, and pick the block Bk′ such that more than 4/10 of the
returned indices are in Bk′ . If his algorithms are correct, we then must have Bk′ = Bk with large
constant probability, from which he can recover yj and his bit yj∗ , thus solving IND and giving
the Ω(d) = Ω(log(n/α) log(α)) lower bound by Lemma 6.8.1.

We now show how such a random index from the support of f can be obtained using only
a support sampler. Alice and Bob can used public randomness to agree on a uniformly random
permutation π : [n] → [n], which gives a random relabeling of the items in the stream. Then,
Alice creates the same stream as before, but using the relabeling and inserting the items in a
randomized order into the stream, using separate randomness from that used by the streaming
algorithm. In other words, instead of inserting i ∈ [n] if i was inserted before, Alice inserts
π(i) at a random position in the stream. Bob the receives the state of the streaming algorithm,
and then similarly deletes the items he would have before, but under the relabeling π and in a
randomized order instead.

Let i1, . . . , ir ∈ [n] be the items inserted by Alice that were not deleted by Bob, ordered
by the order in which they were inserted into the stream. If Bob were then to run a support
sampler on this stream, he would obtain an arbitrary i = g(i1, . . . , ir) ∈ {i1, . . . , ir}, where g
is a (possibly randomized) function of the ordering of the sequence i1, . . . , ir. The randomness
used by the streaming algorithm is separate from the randomness which generated the relabeling
π and the randomness which determined the ordering of the items inserted and deleted from the
stream. Thus, even conditioned on the randomness of the streaming algorithm, any ordering and
labeling of the surviving items i1, . . . , ir is equally likely. In particular, i is equally likely to be
any of i1, . . . , ir. It follows that π−1(i) is a uniformly random element of the support of f , which
is precisely what Bob needed to solve IND, completing the proof.

Inner Product Estimation Lower Bound

Finally, we show that estimating inner products even for strong α-property streams requires
Ω(ε−1 log(α)) bits of space. Setting α = n, we obtain an Ω(ε−1 log(n)) lower bound for un-
bounded deletion streams, which our upper bound beats for small α.

297

Theorem 69. Any one pass algorithm that runs on two strong L1 α-property streams f, g in the

strict turnstile setting and computes a value IP(f, g) such that IP(f, g) = 〈f, g〉 + ε‖f‖1‖g‖1

with probability 2/3 requires Ω(ε−1 log(α)) bits of space.

Proof. The reduction is from IND. Alice has y ∈ {0, 1}d where y is broken up into log10(α)/4
blocks of size 1/(8ε), where the indices of the i-th block are called Bi. Bob wants to learn yi∗

and is given yj for j ≥ i∗, and let j∗ be such that i∗ ∈ Bj∗ . Alice creates a stream f on d items,
and if i ∈ Bj , then Alice inserts the items to make fi = bi10j + 1, where bi = α if yi = 0,
and bi = 2α otherwise. She creates a second stream g = ~0 ∈ Rd, and sends the state of her
streaming algorithm over to Bob. For every yi ∈ Bj = Bj(i) that Bob knows, he subtracts off
bi10j , leaving fi = 1. He then sets gi∗ = 1, and obtains IP(f, g) via his estimator. We argue that
with probability 2/3, IP(f, g) ≥ 3α10j∗/2 iff yi∗ = 1. Note that the error is always at most

ε‖f‖1‖g‖1 = ε‖f‖1

≤ ε

d+ (8ε)−1(2α10j∗) +
∑
j<j∗

∑
i∈Bj

(2α10j)

≤ ε

(
1
8ε ·

log(α)
4 + (4ε)−1α10j∗ + ε−1α10j∗/32

)
< α10j∗/3

Now since 〈f, g〉 = (yi∗ + 1)α10j∗ + 1, if yi∗ = 0 then if the inner product algorithm succeeds
with probability 2/3 we must have IP(f, g) ≤ α10j + 1 + α10j/3 < 3α10j∗/2, and similarly if
yi∗ = 1 we have IP(f, g) > 2α10j + 1− α10j/3 > 3α10j/2 as needed. So Bob can recover yi∗

with probability 2/3 and solve IND, giving an Ω(d) lower bound via Lemma 6.8.1. Since each
item in f received at most 5(α2) updates and had final frequency 1, this stream has the strong
5α2-property, and g was insertion only. Thus obtaining such an estimate of the inner product
between strong α-property streams requires Ω(ε−1 log(

√
α)) = Ω(ε−1 log(α) bits, as stated.

298

Chapter 7

Adversarially Robust Streaming

Our focus in Part I of this thesis has been on the design of randomized algorithms for streaming
and distributed data. This preoccupation with randomization is not a coincidence. Specifically,
many central problems in the streaming literature provably do not admit sublinear-space deter-
ministic algorithms, so for such problems randomization is necessary. On the other hand, even
for problems where sublinear space deterministic algorithms exists, randomized solutions are
often more efficient and simpler to implement than their deterministic counterparts. Thus, ran-
domization is a core component of sketching both in theory and practice.

While randomized streaming algorithms are very well-studied, the vast majority of them are
defined and analyzed in the static setting, where the stream is first fixed in advance, and only
then the randomness of the algorithm chosen. This has been the case for all sketching results
described in this thesis so far. However, assuming that the stream sequence is independent of the
randomness of the sketch, and in particular that future elements of the stream do not depend on
previous outputs of the streaming algorithm, may not be realistic [MNS11, GHR+12, GHS+12,
HW13, NY15a, BY20], even in non-adversarial settings. The failure to handle any amount of
adaptivity is a major limitation of many known randomized sketching algorithms.

Scenarios where future inputs to an algorithm adaptively depend on past decisions of the algo-
rithm are very common, and arise in many settings. For example, an adversary uses maliciously
chosen examples to fool a trained machine learning model [SZS+14, MHS19]. Another example
comes from recommendation systems, where an online store suggests recommended items based
on a sample of previous purchases, which in turn influences future sales [SS+11, GHR+12].
In networking, a device routes traffic according to statistics pulled from a sampled substream of
packets [DLT03a], and an adversary that observes the network’s traffic learns the device’s routing

299

choices might cause a denial-of-service attack by generating a small amount of adversarial traffic
[NY15a]. Furthermore, in the field of autonomous vehicles, a vehicle receives physical signals
from its immediate environment (which might be adversarial [SBM+18]) and has to decide on a
suitable course of action, which in turn influences the future environment of the vehicle.

A streaming algorithm that works even when the stream is adaptively chosen by an adver-
sary is said to be adversarially robust. Deterministic algorithms are inherently adversarially
robust, since they are guaranteed to be correct on all possible inputs. However, the large gap
in performance between deterministic and randomized streaming algorithms for many problems
motivates the need for designing adversarially robust randomized algorithms, if they even exist.
In particular, we would like to design adversarially robust randomized algorithms which are as
space and time efficient as their static counterparts, and yet as robust as deterministic algorithms.

The focus of this chapter is precisely the study of such adversarially robust algorithm. In par-
ticular, we develop a generic framework for transforming any non-robust algorithm for a stream-
ing problem into a robust one, with only a small space overhead. We apply this transformation
to obtain the first adversarially robust algorithms for many fundamental streaming problems, in-
cluding distinct element (L0) estimation, Lp-norm estimation, heavy hitters, entropy estimation,
and several others. In each case, the space complexity of all our algorithms is only a small factor
larger than that of the best non-robust (static) algorithm for the same problem. Specifically, for
a problem with precision parameter ε > 0, the complexity of our robust algorithm is usually at
most a 1

ε
log n factor larger than that of the best possible static algorithm for the problem, and we

often reduce this blow-up to only 1
ε

log 1
ε
. Lastly, we demonstrate the necessity of such a frame-

work by designing an adversary which breaks one of the most well-known streaming algorithms
from the literature: the AMS sketch for L2 estimation.

Highlighted Contributions

The materials from this chapter are drawn from a joint work with Omri Ben-Eliezer, David
Woodruff, and Eylon Yogev [JSTW19]. The main contributions therein are as follows:

• We introduce a generic framework for robustification, which transforms any non-robust
algorithm for a streaming problem into a robust one, with small space overhead. Our
framework consists of two distinct and incomparable transformations: the sketch-switching

technique and the computation paths technique (Section 7.2).

300

• We utilize this framework, along with several additional techniques and modifications, to
obtain the first adversarially robust streaming algorithms for a wide array of fundemental
streaming problems, each requiring only a small factor more in their space complexity than
the best non-robust algorithms (Sections 7.3 to 7.7).

• We demonstrate the necessity of designing new algorithms by proving that the classical
AMS sketch is not adversarially robust (Section 7.8).

7.1 Background

There are several ways to define the adversarial streaming setting, which depend on how much
information the adversary (who chooses the stream) can observe from the streaming algorithm,
and on any restrictions imposed on the computational resources of the adversary. We consider
perhaps the most general non-trivial model, where the adversary is allowed unbounded compu-
tational power and resources, though we do discuss the case later when the adversary is com-
putationally bounded. At each point in time, the streaming algorithm publishes its output to a
query for the stream. The adversary observes these outputs one-by-one, and can choose the next
update to the stream adaptively, depending on the full history of the outputs and stream updates.
The goal of the adversary is to force the streaming algorithm to eventually produce an incorrect

output to the query, as defined by the specific streaming problem in question.1

Specifically, let x ∈ Rn be the frequency vector of a data-stream (see Chapter 2 for streaming
preliminaries, and Section 1.1 for further introduction to the streaming model). The general task
posed to a streaming algorithm is to correctly respond to some query Q about the frequency
vector x(t) at each point in time t ∈ [m]. For instance, this query could be to approximate some
function g : Rn → R≥0 of x(t)„ such as counting the number of distinct elements in a data
stream, i.e. g(x(t)) = ‖x(t)‖0 = |{i ∈ [n] | x(t)

i 6= 0}|.

Formally, the adversarial setting is modeled by a two-player game between a (randomized)
STREAMINGALGORITHM and an ADVERSARY. At the beginning, a queryQ is fixed, which the
STREAMINGALGORITHM must continually reply to. The game proceeds in rounds, where in the
t-th round:

1In the streaming literature, and in the majority of this thesis, an algorithm is often required to be correct on a
query made only once, at the end of the stream. This is a one-shot guarantee, as opposed to the tracking guarantee as
defined here. However, the two settings are nearly equivalent. Indeed, for almost all streaming problems, a one-shot
algorithm can be made into a tracking algorithm with at most an O(logn) blow-up in space, by simply setting the
failure probability small enough to union bound over all points in the stream.

301

Round t in game between STREAMINGALGORITHM and ADVERSARY

1. ADVERSARY chooses an update ut = (at,∆t) for the stream, which can depend on
all previous stream updates and outputs of STREAMINGALGORITHM.

2. STREAMINGALGORITHM processes the new update ut and outputs its current re-
sponse Rt to the query Q.

3. ADVERSARY observes Rt (stores it) and proceeds to the next round.

The goal of the ADVERSARY is to make the STREAMINGALGORITHM output an incorrect
response Rt to Q at some point t in the stream. For example, in the distinct elements problem,
the adversary’s goal is that on some step t, the estimate Rt will fail to be a (1 + ε)-approximation
of the true current number of distinct elements |{i ∈ [n] : x(t)

i 6= 0}|.

Streaming algorithms in the adversarial setting It was shown by Hardt and Woodruff [HW13]
that linear sketches are inherently non-robust in adversarial settings for a large family of prob-
lems, thus demonstrating a major limitation of such sketches. In particular, their results imply
that no linear sketch can approximate the Euclidean norm of its input to within a polynomial
multiplicative factor in the adversarial (turnstile) setting. Here, a linear sketch is an algorithm
whose output depends only on values Ax and A, for some (usually randomized) sketching ma-
trix A ∈ Rk×n. This is quite unfortunate, as the vast majority of turnstile streaming algorithms
are in fact linear sketches.

On the positive side, a recent work of Ben-Eliezer and Yogev [BY20] showed that random

sampling is quite robust in the adaptive adversarial setting, albeit with a slightly larger sample
size. While uniform sampling is a rather generic and important tool, it is not sufficient for solving
many important streaming tasks, such as estimating frequency moments (Fp-estimation), finding
F2 heavy hitters, and various other central data analysis problems. This raises the natural question
of whether there exist efficient adversarially robust randomized streaming algorithms for these
problems and others, which is the main focus of this work. Perhaps even more importantly, we
ask the following.

Is there a generic technique to transform a static streaming algorithm into an

adversarially robust streaming algorithm?

The focus on this chapter is to answers the above question affirmatively for a large class of
algorithms.

302

7.1.1 Results and Techniques

We devise adversarially robust algorithms for various fundamental insertion-only streaming prob-
lems, including distinct element estimation, Fp moment estimation, heavy hitters, entropy esti-
mation, and several others. In addition, we give adversarially robust streaming algorithms which
can handle a bounded number of deletions as well. The required space of our adversarially
robust algorithms matches that of the best known non-robust ones up to a small multiplicative
factor. Our new algorithmic results are summarized in Table 7.1. In contrast, we demonstrate
that some classical randomized algorithms for streaming problems in the static setting, such as
the celebrated Alon-Matias-Szegedy (AMS) sketch [AMS96] for F2-estimation, are inherently
non-robust to adaptive adversarial attacks in a strong sense.

The adversarially robust algorithms introduced in this chapter make use of two generic ro-
bustification frameworks that we develop, allowing one to efficiently transform a non-robust
streaming algorithm into a robust one in various settings. Both of the robustification methods
rely on the fact that functions of interest do not drastically change their value too many times
along the stream. Specifically, the transformed algorithms have space dependency on the flip-

number of the stream, which is a bound on the number of times the function g(x(t)) can change
by a factor of (1± ε) in the stream (see Section 7.2).

The first method, called sketch switching, maintains multiple instances of the non-robust al-
gorithm and switches between them in a way that cannot be exploited by the adversary. The
second technique bounds the number of computation paths possible in the two-player adver-
sarial game. This technique maintains only one copy of a non-robust algorithm, albeit with an
extremely small probability of error δ. We show that a carefully rounded sequence of outputs
generates only a small number of possible computation paths, which can then be used to ensure
robustness by union bounding over these paths. The framework is described in Section 7.2.

The two above methods are incomparable: for some streaming problems the former is more
efficient, while for others, the latter performs better, and we show examples of each. Specifi-
cally, sketch switching can exploit efficiency gains of strong-tracking, resulting in particularly
good performance for static algorithms that can respond correctly to queries at each step with-
out having to union bound over all m steps. In contrast, the computation paths technique can
exploit an algorithm with good dependency on δ (the failure probability). Namely, algorithms
that have small dependency in update-time or space on δ will benefit from the computation paths
technique.

For each of the problems considered in this chapter, we show how to use the framework, in

303

Problem Static Rand. Deter. Adversarial Comments
Distinct elem.

Õ(ε−2 + log n) Ω(n) Õ(ε−3 + ε−1 logn)
(F0 est.) Õ(ε−2 + logn) crypto/rand. oracle
Fp estimation, O(ε−2 log n) Ω̃(cpn) Õ(ε−3 logn)
p ∈ (0, 2] \ {1} O(ε−3 log2 n) Õ(ε−3 log3 n) δ = Θ(n−

1
ε logn)

Fp estimation, O(n1− 2
p (ε−3 log2 n Ω(n) O(n1−2

p (ε−3 log2 n
δ = Θ(n−

1
ε logn)

p > 2 +ε−
6
p log

4
p

+1
n)) +ε−

6
p log

4
p
+1 n))

`2 Heavy Hit. O(ε−2 log2 n) Ω(
√
n) Õ(ε−3 log2 n)

Entropy O(ε−2 log3 n) Ω̃(n) O(ε−5 log6 n)
estimation Õ(ε−2) O(ε−5 log4 n) crypto/rand. oracle
Turnstile Fp, O(ε−2λ log2 n) Ω(n) O(ε−2λ log2 n) λ-bounded Fp flip
p ∈ (0, 2] num., δ = Θ(n−λ)
Fp, p ∈ [1, 2] Õ(log2 n+ Ω̃(cpn) O(αε−(2+p) log3 n) static only
α-bounded del. ε−2 logα log n) for p = 1

Table 7.1: A summary of the adversarially robust algorithms (in bold) introduced in our pa-
per [BJWY20], as compared to the best known upper bounds for randomized algorithms in the
static setting and lower bounds for deterministic algorithms. Note that all stated algorithms
provide tracking. All results except for the last two (which hold in restricted versions of the
turnstile model) are for insertion only streams. We write Õ, Ω̃ to hide log ε−1 and log log n
factors. The static randomized upper bounds are proved, respectively, in [Bła18], [BDN17],
[KNW10a], [GW18], [BCI+16], [CC13], [JW19], [KNW10a], and [JW18a]. All lower bounds
for Fp-estimation are proved in [CK16], except for the turnstile bound, proved in [AMS96]; the
lower bound for heavy hitters is from [KPW20]. Finally, the lower bound for deterministic en-
tropy estimation follows from a reduction from estimating Fp for p = 1 + Θ̃(ε

log2 n
) to entropy

estimation [HNO08a].

304

addition to some further techniques which we develop along the way, to solve it. Interestingly,
we also demonstrate how cryptographic assumptions (which previously were not commonly used
in a streaming context) can be applied to obtain an adversarially robust algorithm against compu-
tationally bounded adversaries for the distinct elements problem at essentially no extra cost over
the space optimal non-robust one. See Table 7.1 for a summary of our results in the adversarial
setting compared to the state-of-the-art in the static setting, as well as to deterministic algorithms.

Distinct elements and Fp-estimation Our first suite of results provides robust streaming al-
gorithms for estimating Fp, the pth frequency moment of the frequency vector, which recall is
defined as Fp = ‖x‖pp = ∑n

i=1 |xi|p, where we interpret 00 = 0. Estimating frequency mo-
ments has a myriad of applications in databases, computer networks, data mining, and other
contexts. Efficient algorithms for estimating distinct elements (i.e., estimating F0) are important
for databases, since query optimizers can use them to find the number of unique values of an
attribute without having to perform an expensive sort on the values. Efficient algorithms for F2

are useful for determining the output size of self-joins in databases, and for computing the sur-
prise index of a data sequence [Goo89]. Higher frequency moments are used to determine data
skewness, which is important in parallel database applications [DNSS92].

We remark that for any fixed p 6= 1,2 including p = 0, any deterministic insertion-only
algorithm for Fp-estimation requires Ω(n) space [AMS96, CK16]. In contrast, we will show
that randomized adversarially robust algorithms exist for all p, whose space complexity either
matches or has a small multiplicative overhead over the best static randomized algorithms.

We begin with several results on the problem of estimating distinct elements, or F0 estima-
tion. The first of them utilizes an optimized version of the sketch switching method to derive an
upper bound. The result is an adversarially robust F0 estimation algorithm whose complexity is
only a Θ(1

ε
log ε−1) factor larger than the optimal static (non-robust) algorithm [Bła18].

Theorem 70 (Robust Distinct Elements by Sketch Switch; see Theorem 86). There is an algorithm

which, when run on an adversarial insertion only stream, with probability at least 1−δ produces

at every step t ∈ [m] an estimate Rt such that Rt = (1 ± ε)‖x(t)‖0 . The space used by the

algorithm is

O

(
log(1/ε)

ε

(
log ε−1 + log δ−1 + log log n

ε2
+ log n

))
.

The second result utilizes a different approach, by applying the computation paths method.
The space complexity is slightly worse, which is a result of setting the failure probability δ <

2Note that there is a trivial O(logn)-bit insertion only F1 estimation algorithm: keeping a counter for
∑
t ∆t.

305

n−
1
ε

logn for any given static algorithm. However, we introduce a new static algorithm for F0 esti-
mation which has very small update-time dependency on δ, and nearly optimal space complexity.
As a result, by applying our computation paths method to this new static algorithm, we obtain
an adversarially robust F0 estimation algorithm with extremely fast update time (note that the
update time of the above sketch switching algorithm would be O(ε−1 log n) to obtain the same
result, even for constant δ).

Theorem 71 (Fast Robust Distinct Elements; see Theorem 87). There exists a streaming algorithm

which, with probability 1−n−(C/ε) logn for any constant C ≥ 1, when run on an adversarial cho-

sen insertion-only data stream, returns a (1± ε) multiplicative estimate of the number of distinct

elements at every step in the stream. The space required is O(1
ε3

log3 n), and the algorithm runs

in O((log2 log logn
ε

) · (log log log logn
ε

)) worst case time per update.

The third result takes a different approach: it shows that under certain standard cryptographic
assumptions, there exists an adversarially robust algorithm which asymptotically matches the
space complexity of the best non-robust tracking algorithm for distinct elements. The crypto-
graphic assumption is that an exponentially secure pseudorandom function exists (in practice
one can take, for instance, AES as such a function). While our other algorithms in this Chapter
hold even against an adversary which is unbounded computationally, in this particular result we
assume that the adversary runs in polynomial time. See Section 7.9 for more details.

Theorem 72 (Distinct Elements by Crypto Assumptions; see Theorem 93). In the random oracle

model, there is an F0-estimation (tracking) streaming algorithm in the adversarial setting, that

for an approximation parameter ε uses O(ε−2(log 1/ε+ log log n) + log n) bits of memory, and

succeeds with probability 3/4.

Moreover, under a suitable cryptographic assumption, assuming the adversary has bounded

running time of nc, where m is the stream length and c is a constant, the random oracle can be

replaced with a concrete function and the total memory is O(ε−2(log 1/ε+ log log n) + c log n).

Here, the random oracle model means that the algorithm is given read access to an arbitrarily
long string of random bits.

Our next set of results provides adversarially robust algorithms for Fp-estimation with p >
0. The following result concerns the case 0 < p ≤ 2. It was previously shown that for p
bounded away from one, Ω(n) space is required to deterministically estimate ‖x‖pp, even in the
insertion only model [AMS96, CK16]. On the other hand, space-efficient non-robust randomized
algorithms for Fp-estimation exist. We leverage these, along with an optimized version of the

306

sketch switching technique to save a log n factor, and obtain the following.

Theorem 73 (Robust Fp-estimation for 0 < p ≤ 2; see Theorem 82). Fix 0 < ε, δ ≤ 1 and 0 < p ≤ 2.

There is a streaming algorithm in the insertion-only adversarial model which outputs at each step

a value Rt such that Rt = (1 ± ε)‖x(t)‖p at every step t ∈ [m], and succeeds with probability

1− δ. The algorithm uses O(ε−3 log n log ε−1(log ε−1 + log δ−1 + log log n)) bits of space.

We remark that the space complexity of Theorem 73 is within a Θ(ε−1 log ε−1) factor of the
best known static (non-robust) algorithm [BDN17] . While for most values of δ, the above the-
orem using sketch switching has better space complexity than the computation paths reduction,
for the regime of very small failure probability δ it is actually preferable to use the latter, as we
now state.

Theorem 74 (Robust Fp-estimation for small δ; see Theorem 83). Fix any 0 < ε < 1, 0 < p ≤ 2,

and δ < n−C
1
ε

logn for a sufficiently large constant C > 1. There is a streaming algorithm for

the insertion-only adversarial model which, with probability 1 − δ, successfully outputs at each

step t ∈ [m] a value Rt such that Rt = (1 ± ε)‖x(t)‖p. The space used by the algorithm is

O
(

1
ε2

log n log δ−1
)

bits.

In addition, we show that for turnstile streams with bounded Fp flip number (defined formally
in Section 7.2), efficient adversarially robust algorithms exist. Roughly speaking, the Fp flip
number is the number of times that the Fp moment changes by a factor of (1+ε). Our algorithms
have extremely small failure probability of δ = n−λ, and have optimal space among turnstile
algorithms with this value of δ [JW13].

Theorem 75 (Robust Fp-Estimation in turnstile streams; See Theorem 84). Let Sλ be the set of all

turnstile streams with Fp flip number at most λ ≥ λε,m(‖ · ‖pp) for any 0 < p ≤ 2. Then there

is an adversarially robust streaming algorithm for the class Sλ of streams that, with probability

1−n−Cλ for any constantC > 0, outputs at each time step a valueRt such thatRt = (1±ε)‖x‖pp.
The space used by the algorithm is O(ε−2λ log2 n).

The next result concerns Fp-estimation for p > 2. Here again, we provide an adversarially
robust algorithm which is optimal up to a small multiplicative factor. This result applies the
computation paths robustification method as a black box. Notably, a classic lower bound of
[BYJKS04] shows that for p > 2, Ω(n1−2/p) space is required to estimate ‖x‖pp up to a constant
factor (improved lower bounds have been provided since, e.g., [LW13, GW18]). By using our
computation paths technique, we obtain adversarially robust Fp moment estimation algorithms

307

as well for p > 2.

Theorem 76 (Robust Fp-estimation for p > 2; see Theorem 85). Fix any ε > 0, and fix any p > 2.

There is a streaming algorithm for the insertion-only adversarial model which, with probability

1 − n−(c logn)/ε for any constant c > 1, successfully outputs at each step a value Rt such that

Rt = (1± ε)‖x(t)‖p at every step t ∈ [m]. The space used by the algorithm is

O
(
n1−2/p

(
ε−3 log2 n+ ε−6/p

(
log2 n

)2/p
log n

))

Attack on AMS On the negative side, we demonstrate that the classic Alon-Matias-Szegedy
sketch (AMS sketch) [AMS96], the first and perhaps most well-known F2 estimation algorithm
(which uses sub-polynomial space), is not adversarially robust. Specifically, we demonstrate
an adversary which, when run against the AMS sketch, fools the sketch into outputting a value
which is not a (1 ± ε) estimate of the F2. The non-robustness of standard static streaming
algorithms, even under simple attacks, is a further motivation to design adversarially robust al-
gorithms.

In what follows, recall that the AMS sketch computes Sx throughout the stream, where S ∈
R
t×n is a matrix of uniform {t−1/2,−t−1/2} random variables. The estimate of the F2 is then the

value ‖Sx‖2
2.

Theorem 77 (Attack on AMS sketch; see Theorem 92). Let S ∈ Rt×n be the AMS sketch, 1 ≤ t ≤
n/c for some constant c > 1. There is an adversary which, with probability 99/100, succeeds

in forcing the estimate ‖Sx‖2
2 of the AMS sketch to not be a (1± 1/2) approximation of the true

norm ‖x‖2
2. Moreover, the adversary needs to only make O(t) stream updates before this occurs.

Heavy Hitters We also show how our techniques can be used to solve the popular heavy-hitters

problem. Recall that the heavy-hitters problem tasks the streaming algorithm with returning a
set S containing all coordinates i such that |xi| ≥ τ , and containing no coordinates j such that
|xj| < τ/2, for some threshold τ . Generally, the threshold τ is set to τ = ε‖x‖p, which is known
as the Fp heavy hitters guarantee.

For F1 heavy hitters in insertion-only streams, a deterministic O(1
ε

log n) space algorithm
exists [MG82]. However, for p > 1, specifically for the highly popular p = 2, things become
more complicated. Note that since we can have ‖x‖2 � ‖x‖1, the F2 guarantee is substantially
stronger. For sketching-based turnstile algorithms, an Ω(n) lower bound for deterministic algo-
rithms was previously known [Gan09]. Since ‖x‖1 ≤

√
n‖x‖2, by setting ε = n−1/2, one can

308

obtain a deterministic O(
√
n log n) space insertion only F2 heavy hitters algorithm. Recently, a

lower bound of Ω(
√
n) for deterministic insertion only algorithms was given, demonstrating the

near tightness of this result [KPW20]. Thus, to develop a more efficient adversarially robust F2

heavy hitters algorithm, we must employ randomness.

Indeed, by utilizing our sketch switching techniques, we demonstrate an adversarially robust
F2 heavy hitters (tracking) algorithm which uses only an O(ε−1 log ε−1) factor more space than
the best known static F2 heavy hitters tracking algorithm [BCI+17].

Theorem 78 (Robust F2 heavy hitters: see Theorem 88). Fix any ε > 0. There is a streaming

algorithm in the adversarial insertion only model which solves the F2 heavy hitters problem at

every step t ∈ [m] with probability 1 − n−C (for any constant C > 1). The algorithm uses

O(log ε−1

ε3
log2 n) bits of space.

Entropy Estimation Additionally, we demonstrate how our sketch switching techniques can
be used to obtain robust algorithms for empirical Shannon Entropy estimation. Here, the Shan-
non Entropy H(x) of the stream is defined via H(x) = −∑n

i=1
|xi|
‖x‖1 log

(
|xi|
‖x‖1

)
. Our results

follow from an analysis of the exponential of α-Renyi Entropy, which closely approximates the
Shannon entropy, showing that the former cannot rapidly change too often within the stream. Our
result is an adversarially robust algorithm with space complexity only a small polylogarithmic
factor larger than the best known static algorithms [CC13, JW19].

Theorem 79 (Robust Entropy Estimation; see Theorem 90). There is an algorithm for ε-additive

approximation of the Shannon entropy in the insertion-only adversarial streaming model using

O(1
ε5

log4 n)-bits of space in the random oracle model, and O(1
ε5

log6 n)-bits of space in the

general insertion only model.

We remark that by making the same cryptographic assumption as in Theorem 72, we can
remove the random oracle assumption in [JW19] for correctness of the entropy algorithm in the
static case. Then, by applying the same techniques which resulted in Theorem 79, we can obtain
the same stated bound for entropy with a cryptographic assumption instead of a random oracle
assumption.

Bounded Deletion Streams Lastly, we show that our techniques for Fp moment estimation
can be extended to the bounded deletion model of streaming (See Chapter 6, based on the model
introduced in our paper [JW18a]). Rcall that, given some α ≥ 1, the model enforces the restric-
tion that at all points t ∈ [m] in the stream, we have ‖x(t)‖pp ≥ 1

α
‖y(t)‖pp, where y is the frequency

309

vector of the stream with updates u′i = (ai,∆′i) where ∆′i = |∆i| (i.e., the absolute value stream).
In other words, the stream does not delete off an arbitrary amount of the Fp weight that it adds
over the course of the stream.

We demonstrate that bounded deletion streams have the desirable property of having a small
flip number, which, as noted earlier, is a measurement of how often the Fp can change substan-
tially (see Section 7.2 for a formal definition). Using this property and our sketch switching
technique, we obtain the following.

Theorem 80 (Fp-estimation for bounded deletion; see Theorem 91). Fix p ∈ [1, 2] and any

constant C > 1. Then there is an adversarially robust Fp estimation algorithm which, with

probability 1 − n−C , returns at each time step t ∈ [m] an estimate Rt such that Rt = (1 ±
ε)‖x(t)‖pp. The space used by the algorithm is O(αε−(2+p) log3 n).

7.1.2 Prior Work on Adversarial Sketching

The need for studying adversarially robust streaming and sketching algorithms has been noted
before in the literature. In particular, [GHR+12, GHS+12] motivate the adversarial model by
giving applications and settings where it is impossible to assume that the queries made to a
sketching algorithm are independent of the prior outputs of the algorithm, and the randomness
used by the algorithm. One particularly important setting noted in [GHS+12] is when the privacy

of the underlying data-set is a concern.

In response to this, in [HW13] the notion of adversarial robustness for linear sketching algo-
rithms is studied. Namely, it is shown how any function g : Rn → R, defined by g(x) = f(Ax)
for some A ∈ Rk×n and arbitrary f : Rk → R cannot approximate the F2 moment ‖x‖2

2 of its
input to an arbitrary polynomial factor in the presence of an adversary who is allowed to query
g(xi) at polynomial many points (unless k is large). Since one can insert and delete off each xi in
a turnstile stream, this demonstrates a strong lower bound for adversarially robust turnstile linear
sketching algorithms, at least when the stream updates are allowed to be real numbers.

We remark that other work has observed the danger inherent in allowing adversarial queries to
a randomized sketch with only a static guarantee [AGM12a, AGM12c]. However, the motivation
of these works is slightly different, and their setting not fully adversarial. In [MNS11], adversar-
ial robustness of sketching in a distributed, multi-player model is considered, which is incompa-
rable to the centralized streaming problem considered in this work. Finally, in [GGMW20], it
was asked if there are randomized streaming algorithms whose output is independent of its ran-

310

domness, making such algorithms natural candidates for adversarial robustness; unfortunately
a number of their results are negative, while their upper bounds do not apply to the problems
studied here.

7.1.3 Subsequent Work and Open Questions

Since the introduction of the adversarial streaming model in our paper [BJWY20], several follow-
up works have made progress in improving the complexity of several adversarially robust stream-
ing problems, and answering several important questions about the model. Hassidim, Kaplan,
Mansour, Matias, and Stemmer [HKM+20a] use techniques from differential privacy to obtain
a generic robustification framework in the same mold as ours, where the dependency on the flip
number is the improved

√
λ as opposed to linear in λ, however this improvement is at the cost

of additional poly((log n)/ε) factors. Similar to our construction, they run multiple independent
copies of the static algorithm with independent randomness and feed the input stream to all of
the copies. Unlike our construction, when a query comes, they aggregate the responses from
the copies in a way that protects the internal randomness of each of the copies using differential
privacy. Using their framework, one may construct an adversarially robust algorithm for Fp-
moment estimation that uses Õ(log4 n

ε2.5
) bits of memory for any p ∈ [0, 2]. This improves over our

Õ(logn
ε3

) bound for some parameter regimes.

Woodruff and Zhang [WZ20b] obtain further improvements for specific problems which in
some cases are (almost) optimal even for the static case. For example, they give an adversarially
robust algorithm for Fp-moment estimation that uses Õ(logn

ε2
) bits of memory for any p ∈ [0, 2].

This improves upon both our work and [HKM+20a]. Interestingly, the way they achieve this
leads them to a new class of (classical) streaming algorithms they call difference estimators,
which turn out to be useful also in the sliding windows (classical) model. Kaplan, Mansour,
Nissim, and Stemmer [KMNS21] demonstrate the first separation between the static and adver-
sarial model of streaming. Specifically, they show the existence of a (albeit highly-engineered)
insertion-onlystreaming problem for which a polylogarithmic space static algorithm exists, but
such that polynomial space is required for any adversarially robust algorithm.

Despite considerable progress having been made in a small amount of time, many problems
remain open. Firstly, an important question is to achieve optimal bounds for important streaming
problems in the insertion-only adversarial setting, such as moment estimation and heavy hitters.
Furthermore, thus far nearly nothing is known about the turnstile model. Specifically, there are no
known sublinear space streaming algorithms for any important turnstile streaming problem, such

311

as Fp estimation. On the other hand, proving lower bounds against the robustness of sublinear
space algorithms is a non-trivial task, motivating the following question:

Do sublinear space turnstile streaming algorithms exist, such as for Lp
estimation or finding the heavy hitters?

A negative answer to the above would represent a strong extension of the lower bound of
[HW13], which held only against the restricted class of linear sketches. Moreover, it would
represent a strong limitation on the robustness of sketching general data streams, and potentially
motivate new models or additional restrictions on an adversary.

7.1.4 Tracking Algorithms

The robust streaming algorithms we design in this Chapter satisfy the tracking guarantee. Namely,
they must output a response to a query at every step in time t ∈ [m]. For the case of estimation
queries, this tracking guarantee is known as strong tracking.

Definition 7.1.1 (Strong tracking). Let x(1), x(2), . . . , x(m) be the frequency vectors of a stream

(a1,∆1), . . . , (am,∆m), and let g : Rn → R be a function on frequency vectors. A randomized

algorithm A is said to provide (ε, δ)-strong g-tracking if at each time step t ∈ [m] it outputs an

estimate Rt such that

|Rt − g(x(t))| ≤ ε|g(x(t))|

for all t ∈ [m] with probability at least 1− δ.

In contrast, weak tracking replaces the error term ε|g(x(t))| by maxt′∈[m] ε·|g(x(t′))|. However,
for the purposes of this paper, we will not need to consider weak tracking. We now state two
results for strong tracking of Fp moments for p ∈ [0, 2]. Both results are for the static setting,
i.e., for a stream fixed in advance (and not for the adaptive adversarial setting that we consider).

Lemma 7.1.2 ([BDN17]). For 0 < p ≤ 2, there is an insertion only streaming algorithm which

provides (ε, δ)-strong Fp-tracking using O(logn
ε2

(log ε−1 + log δ−1 + log log n)) bits of space.

Lemma 7.1.3 ([Bła18]). There is an insertion-only streaming algorithm which provides (ε, δ)-

strong F0-tracking using O(log logn+log δ−1

ε2
+ log n) bits of space.

312

7.1.5 Roadmap

In Section 7.2, we introduce our two general techniques for transforming static streaming algo-
rithms into adversarially robust algorithms. In Section 7.3, we give our results on estimation of
Fp moments, and in Section 7.4 we give our algorithms for adversarially robust distinct elements
estimation. Next, in Section 7.5, we introduce our robust L2 heavy hitters algorithm, and in Sec-
tion 7.6 we give our entropy estimation algorithm. In Section 7.7, we provide our algorithms for
Fp moment estimation in the bounded deletion model. In Section 7.8, we give our adversarial at-
tack on the AMS sketch. Finally, in Section 7.9, we give our algorithm for optimal space distinct
elements estimation under cryptographic assumptions.

7.2 Tools for Robustness

In this section, we establish two methods, sketch switching and computation paths, allowing one
to convert an approximation algorithm for any sufficiently well-behaved streaming problem to
an adversarially robust one for the same problem. The central definition of a flip number, bounds
the number of major (multiplicative) changes in the algorithm’s output along the stream. As we
shall see, a small flip number allows for efficient transformation of non-robust algorithms into
robust ones.3

7.2.1 Flip Number

Definition 7.2.1 (flip number). Let ε ≥ 0 and m ∈ N, and let ȳ = (y0, y1, . . . , ym) be any

sequence of real numbers. The ε-flip number λε(ȳ) of ȳ is the maximum k ∈ N for which there

exist 0 ≤ i1 < . . . < ik ≤ m so that yij−1 /∈ (1± ε)yij for every j = 2, 3, . . . , k.

Fix a function g : Rn → R and a class C ⊆ ([n] × Z)m of stream updates. The (ε,m)-flip

number λε,m(g) of g over C is the maximum, over all sequences ((a1,∆1), . . . , (am,∆m)) ∈ C,

of the ε-flip number of the sequence =̄(y0, y1, . . . , ym) defined by yi = g(x(i)) for any 0 ≤ i ≤ m,

where as usual x(i) is the frequency vector after stream updates (a1,∆1), . . . , (ai,∆i) (and x(0)

is the n-dimensional zeros vector).

3The notion of flip number we define here also plays a central role in subsequent works ([HKM+20a], [WZ20b]);
for example, the main contribution of the former is a generic robustification technique with an improved (square
root type instead of linear) dependence in the flip number. The latter improves the poly(1/ε) dependence on the flip
number.

313

The class C may represent, for instance, the subset of all insertion only streams, or bounded-
deletion streams. For the rest of this section, we shall assume C to be fixed, and consider the flip
number of g with respect to this choice of C.4

Note that the flip number is clearly monotone in ε: namely λε′,m(g) ≥ λε,m(g) if ε′ < ε. One
useful property of the flip number is that it is nicely preserved under approximations. As we
show, this can be used to effectively construct approximating sequences whose 0-flip number is
bounded as a function of the ε-flip number of the original sequence. This is summarized in the
following lemma.

Lemma 7.2.2. Fix 0 < ε < 1. Suppose that ū = (u0, . . . , um), v̄ = (v0, . . . , vm), w̄ =
(w0, . . . , wm) are three sequences of real numbers, satisfying the following:

• For any 0 ≤ i ≤ m, vi = (1± ε/8)ui.

• w0 = v0, and for any i > 0, if wi−1 = (1± ε/2)vi then wi = wi−1, and otherwise wi = vi.

Then wi = (1± ε)ui for any 0 ≤ i ≤ m, and moreover, λ0(w̄) ≤ λε/8(ū).

In particular, if (in the language of Definition 7.2.1) u0 = g(x(0)), u1 = g(x(1)), . . . , um =
g(x(m)) for a sequence of updates ((a1,∆1), . . . , (am,∆m)) ∈ C, then λ0(w̄) ≤ λε/8,m(g).

Proof. The first statement, that wi = (1 ± ε)ui for any i, follows immediately since vi = (1 ±
ε/8)ui and wi = (1± ε/2)vi and since ε < 1. The third statement follows by definition from the
second one. It thus remains to prove that λ0(w̄) ≤ λε/8(ū).

Let i1 = 0 and let i2, i3, . . . , ik be the collection of all values i ∈ [m] for which wi−1 6= wi.
Note that k = λ0(w̄) and that vij−1 = wij−1 = wij−1+1 = · · · = wij−1 6= vij for any j = 2, . . . , k.
We now claim that for every j in this range, uij−1 /∈ (1 ± ε/8)uij . This would show that k ≤
λε/8(ū) and conclude the proof.

Indeed, fixing any such j, we either have vij−1 > (1 + ε/2)vij , or wij−1 < (1 − ε/2)vij . In
the first case (assuming uij 6= 0, as the case uij = 0 is trivial),

uij−1

uij
≥

vij/(1 + ε
8)

vij−1/(1− ε
8) ≥

(
1 + ε

2

)
·

1− ε
8

1 + ε
8
> 1 + ε

8 .

4A somewhat reminiscent definition, of an unvarying algorithm, was studied by [DNPR10] (see Definition 5.2
there) in the context of differential privacy. While their definition also refers to a situation where the output under-
goes major changes only a few times, both the motivation and the precise technical details of their definition are
different from ours.

314

In the second case, an analogous computation gives uij−1/uij < 1− ε/8.

Note that the flip number of a function g critically depends on the model in which we work, as
the maximum is taken over all sequences of possible stream updates; for insertion-only streams,
the set of all such sequences is more limited than in the general turnstile model, and correspond-
ingly many streaming problems have much smaller flip number when restricted to the insertion
only model. We now give an example of a class of functions with bounded flip number.

Proposition 7.2.3. Let g : Rn → R be any monotone function, meaning that g(x) ≥ g(y) if

xi ≥ yi for each i ∈ [n]. Assume further that g(x) ≥ T−1 for all x > 0, and g(M · ~1) ≤ T ,

where M is a bound on the entries of the frequency vector and ~1 is the all 1’s vector. Then the

flip number of g in the insertion only streaming model is λε,m(g) = O(1
ε

log T).

Proof. To see this, note that g(x(0)) = 0, g(x(1)) ≥ T−1, and g(x(m)) ≤ g(~1 ·M) ≤ T . Since
the stream has only positive updates, g(x(0)) ≤ g(x(1)) ≤ · · · ≤ g(x(m)). Let y1, . . . , yk ∈ [m]
be any set of points such that g(x(yi)) < (1 + ε)g(x(yi+1)) for each i. Since there are at most
O(1

ε
log T) powers of (1 + ε) between T−1 and T , by the pigeonhole principle if k > C

ε
log(T)

for a sufficiently large constant C, then at least two values must satisfy (1 + ε)j ≤ g(x(yi)) ≤
g(x(yi+1)) ≤ (1 + ε)j+1 for some j, which is a contradiction.

Note that a special case of the above are the Fp moments of a data stream. Recall here
‖x‖0 = |{i : xi 6= 0}| is the number of non-zero elements in a vector x.

Corollary 7.2.4. Let p > 0. Then the (ε,m)-flip number of ‖x‖pp in the insertion only streaming

model is λε,m(‖ · ‖pp) = O(1
ε

logm) for p ≤ 2, and λε,m(‖ · ‖pp) = O(p
ε

logm) for p > 2. For

p = 0, we also have λε,m(‖ · ‖0) = O(1
ε

logm)

Proof. We have ‖~0‖pp = 0, ‖z‖pp ≥ 1 for any non-zero z ∈ Z, and ‖x(m)‖pp ≤ (Mm)pn ≤ ncp for
some constant c, where the second to last inequality holds because ‖x‖∞ ≤Mm for whereM =
poly(n) is the bound on the size of updates by assumption in the streaming model. Moreover,
for p = 0 we have ‖x(m)‖0 ≤ n. The result then follows from applying Proposition 7.2.3 with
T = nc·max{p,1}.

Another special case of Proposition 7.2.3 concerns the cascaded norms of insertion-only
data streams [JW09]. Here, the frequency vector f is replaced with a matrix A ∈ Zn×d, which
receives coordinate-wise updates in the same fashion, and the (p, k) cascaded norm of A is given
by ‖A‖(p,k) = (∑i(

∑
j |Ai,j|k)p/k)1/p. In other words, ‖A‖(p,k) is the result of first taking the

315

Lk norm of the rows of A, and then taking the Fp norm of the result. Proposition 7.2.3 similarly
holds with T = poly(n) in the insertion only model, and therefore the black-box reduction
techniques introduced in the following sections are also applicable to these norms (using e.g.,
the cascaded algorithms of [JW09]).

Having a small flip number is very useful for robustness, as our next two robustification
techniques demonstrate.

7.2.2 The Sketch Switching Technique

Our first technique is called sketch switching, and is described in Algorithm 15. The technique
maintains multiple instances of a static strong tracking algorithm, where each time step only one
of the instances is “active”. The idea is to change the current output of the algorithm very rarely.
Specifically, as long as the current output is a good enough multiplicative approximation of the
estimate of the active instance, the estimate we give to the adversary does not change, and the
current instance remains active. As soon as this approximation guarantee is not satisfied, we
update the output given to the adversary, deactivate our current instance, and activate the next
one in line. By carefully exposing the randomness of our multiple instances, we show that the
strong tracking guarantee (which a priori holds only in the static setting) can be carried into the
robust setting. By Lemma 7.2.2, the required number of instances, which corresponds to the 0-
flip number of the outputs provided to the adversary, is controlled by the (Θ(ε),m)-flip number
of the problem.

Algorithm 4: Adversarially Robust g-estimation by Sketch Switching
1 λ← λε/8,m(g)
2 Initialize independent instances A1, . . . , Aλ of (ε8 ,

δ
λ
)-strong g-tracking algorithm

3 ρ← 1
4 g̃ ← g(~0)
5 while new stream update (ak,∆k) do
6 Insert update (ak,∆k) into each algorithm A1, . . . , Aλ
7 y ← current output of Aρ
8 if g̃ /∈ (1± ε/2)y then
9 g̃ ← y

10 ρ← ρ+ 1
11 Output estimate g̃

Lemma 7.2.5 (Sketch Switching). Fix any function g : Rn → R and let A be a streaming

316

algorithm that for any 0 < ε < 1 and δ > 0 uses space L(ε, δ), and satisfies the (ε/8, δ)-strong

g-tracking property on the frequency vectors x(1), . . . , x(m) of any particular fixed stream. Then

Algorithm 15 is an adversarially robust algorithm for (1+ ε)-approximating g(x(t)) at every step

t ∈ [m] with success probability 1− δ, whose space is O (L(ε/8, δ/λ) · λ), where λ = λε/8,m(g).

Proof. Note that for a fixed randomized algorithm A we can assume the adversary against A is
deterministic without loss of generality (in our case, A refers to Algorithm 15). This is because
given a randomized adversary and algorithm, if the adversary succeeds with probability greater
than δ in fooling the algorithm, then by a simple averaging argument, there must exist a fixing of
the random bits of the adversary which foolsA with probability greater than δ over the coin flips
of A. Note also here that conditioned on a fixing of the randomness for both the algorithm and
adversary, the entire stream and behavior of both parties is fixed.

We thus start by fixing such a string of randomness for the adversary, which makes it deter-
ministic. As a result, suppose that yi is the output of the streaming algorithm on step i. Then
given y1, y2, . . . , yk and the stream updates (a1,∆1), . . . , (ak,∆k) so far, the next stream update
(ak+1,∆k+1) is deterministically fixed. We stress that the randomness of the algorithm is not
fixed at this point; we will gradually reveal it along the proof.

Let λ = λε/8,m(g) and let A1, . . . , Aλ be the λ independent instances of an (ε/8, δ/λ)-strong
tracking algorithm for g. Since δ0 = δ/λ, later on we will be able to union bound over the
assumption that for all ρ ∈ [λ], Ai satisfies strong tracking on some fixed stream (to be revealed
along the proof); the stream corresponding toAρ will generally be different than that correspond-
ing to ρ′ for ρ 6= ρ′.

First, let us fix the randomness of the first instance, A1. Let u1
1, u

1
2, . . . , u

1
m be the updates

u1
j = (aj,∆j) that the adversary would make if A were to output y0 = g(~0) at every time

step, and let x(t),1 be the stream vector after updates u1
1, . . . , u

1
t . Let A1(t) be the output of

algorithm A1 at time t of the stream u1
1, u

1
2, . . . , u

1
t . Let t1 ∈ [m] be the first time step such

that y0 /∈ (1 ± ε/2)A1(t1), if exists (if not we can set, say, t1 = m + 1). At time t = t1,
we change our output to y1 = A1(t1). Assuming that A1 satisfies strong tracking for g with
approximation parameter ε/8 with respect to the fixed stream of updates u1

1, . . . , u
1
m (which holds

with probability at least 1 − δ/λ), we know that A1(t) = (1 ± ε/8)g(x(t)) for each t < t1 and
that y0 = (1 ± ε/2)A1(t). Thus, by the first part of Lemma 7.2.2, y0 = (1 ± ε)g(x(t)) for
any 0 ≤ t < t1. Furthermore, by the strong tracking, at time t = t1 the output we provide
y1 = A1(t1) is a (1± ε/8)-approximation of the desired value g(x(t1)).

At this point, A “switches” to the instance A2, and presents y1 as its output as long as y1 =

317

(1 ± ε/2)A2(t). Recall that randomness of the adversary is already fixed, and consider the
sequence of updates obtained by concatenating u1

1, . . . , u
1
t1 as defined above (these are the updates

already sent by the adversary) with the sequence u2
t1+1, . . . , u

2
m to be sent by the adversary if

the output from time t = t1 onwards would always be y1. We condition on the ε/8-strong g-
tracking guarantee on A2 holding for this fixed sequence of updates, noting that this is the point
where the randomness of A2 is revealed. Set t = t2 as the first value of t (if exists) for which
A2(t) = (1± ε/2)y1 does not hold. We now have, similarly to above, y1 = (1± ε)g(x(t)) for any
t1 ≤ t < t2, and y2 = (1± ε/8)g(x(t2)).

The same reasoning can be applied inductively for Aρ, for any ρ ∈ [λ], to get that (provided
ε/8-strong g-tracking holds for Aρ) at any given time, the current output we provide to the ad-
versary yρ is within a (1± ε)-multiplicative factor of the correct output for any of the time steps
t = tρ, tρ + 1, . . . ,min{tρ+1− 1,m}. Taking a union bound, we get that with probability at least
1 − δ, all instances provide ε/8-tracking (each for its respective fixed sequence), yielding the
desired (1± ε)-approximation of our algorithm.

It remains to verify that this strategy will succeed in handling all m elements of the stream
(and will not exhaust its pool of algorithm instances before then). Indeed, this follows immedi-
ately from Lemma 7.2.2 applied with ū = ((g(x(0)), . . . , g(x(m))), v̄ = (g(x(0)), A1(1), . . . , A1(t1), A2(t1+
1), . . . , A2(t2), . . .), and w̄ being the output that our algorithm A provides (y0 = g(x(0)) until
time t1 − 1, then y1 until time t2 − 1, and so on). Observe that indeed w̄ was generated from v

exactly as described in the statement of Lemma 7.2.2.

7.2.3 The Bounded Computation Paths Technique

With our sketch switching technique, we showed that maintaining multiple instances of a non-
robust algorithm to estimate a function g, and switching between them when the rounded output
changes, is a recipe for a robust algorithm to estimate g. We next provide another recipe, which
keeps only one instance, whose success probability for any fixed stream is very high; it relies on
the fact that if the flip number is small, then the total number of fixed streams that we should
need to handle is also relatively small, and we will be able to union bound over all of them.
Specifically, we show that any non-robust algorithm for a function with bounded flip number can
be modified into an adversarially robust one by setting the failure probability δ small enough.

Lemma 7.2.6 (Computation Paths). Fix g : Rn → R and suppose that the output of g uses log T
bits of precision (see Remark 81). Let A be a streaming algorithm that for any ε, δ > 0 satisfies

318

the (ε, δ)-strong g-tracking property on the frequency vectors x(1), . . . , x(m) of any particular

fixed stream. Then there is a streaming algorithm A′ satisfying the following.

1. A′ is an adversarially robust algorithm for (1 + ε)-approximating g(x(t)) in all steps t ∈
[m], with success probability 1− δ.

2. The space complexity and running time of A′ as above (with parameters ε and δ) are of the

same order as the space and time of running A in the static setting with parameters ε/8
and δ0 = δ/

((
m
λ

)
TO(λ)

)
, where λ = λε/8,m(g).

Remark 81 (Bit precision of output). For the purposes of this paper, we typically think of the bit
precision as O(log n) (for example, in Fp-estimation, there are poly(n) possible outputs). Since
we also generally assume that m = poly(n), the expression for δ0 is of the form δ0 = δ/nΘ(λ) in
this case. We note that while reducing the bit precision of the output slightly improves the bound
on δ0, this improvement becomes negligible for any streaming algorithm whose dependence in
the error probability δ is logarithmic or better; this covers all situations where we apply Lemma
7.2.6 in this paper.

Proof. The algorithm A′ that we construct runs by emulating A with the above parameters, and
assuming that the output sequence of the emulated A up to the current time t is v0, . . . , vt, it
generates wt in exactly the way described in Lemma 7.2.2: set w0 = v0, and for any i > 0, if
wi−1 ∈ (1± ε/2)vi then wi = wi−1, and otherwise wi = vi. The output provided to the adversary
at time t would then be wt.

As in the proof of Lemma 7.2.5, we may assume the adversary to be deterministic. This
means, in particular, that the output sequence we provide to the adversary fully determines its
stream of updates (a1,∆1), . . . , (am,∆m). Take λ = λε/8,m(g). Consider the collection of all
possible output sequences (with log T bits of precision) whose 0-flip number is at most λ, and
note that the number of such sequences is at most

(
m
λ

)
TO(λ). Each output sequence as above

uniquely determines a corresponding stream of updates for the deterministic adversary; let S be
the collection of all such streams.

Pick δ0 = δ/|S|. Taking a union bound, we conclude that with probability 1 − δ, A (instan-
tiated with parameters ε/8 and δ0) provides an ε/8-strong g-tracking guarantee for all streams in
S. We fix the randomness of A, and assume this event holds.

At this point, the randomness of both parties has been revealed, which determines an output
sequence v0, . . . , vm for the emulated A and the edited output, w0, . . . , wm, that our algorithm
A′ provided to the adversary. The proof now follows by induction over the number t of stream

319

updates that have been seen. The inductive statement is the following:

1. The sequence of outputs that the emulated algorithm A generates in response to the stream
updates up to time t, v0, . . . , vt, is a (1 ± ε/8)-approximation of g over the stream up to
that time.

2. The sequence of outputs that the adversary receives from A′ until time t, (w0, . . . , wt), has
0-flip number at most λ (and in particular, is a prefix of a sequence in S).

The base case, t = 0, is obvious; and the induction step follows immediately from Lemma
7.2.2.

7.3 Robust Fp-Estimation

In this section, we introduce our adversarially robust Fp moment estimation algorithms. Recall
that Fp is given by ‖x‖pp = ∑

i |xi|p for p > 0. For p = 0, the F0 norm, or the number of distinct
elements, is the number of non-zero coordinates in f , that is, ‖x‖0 = |{i ∈ [n] : xi 6= 0}|.
Recall that in Corollary 7.2.4, we bounded the flip number of the Fp moment in insertion only
streams for any fixed p > 0 by O(pε−1 log n). By using our sketch switching argument, the
strong Fp tracking guarantees of [BDN17] as stated in Lemma 7.1.2, we obtain our first result
for 0 < p ≤ 2.

Theorem 82 (Fp-estimation by sketch switching). Fix any 0 < ε, δ ≤ 1 and 0 < p ≤ 2. There

is a streaming algorithm for the insertion-only adversarial model which, with probability 1− δ,
successfully outputs at each step t ∈ [m] a value Rt such that Rt = (1 ± ε)‖x(t)‖p. The space

used by the algorithm is

O
(1
ε3

log n log ε−1(log ε−1 + log δ−1 + log log n)
)

Proof. By an application of Lemma 7.2.5 along with the flip number bound of Corollary 7.2.4
and the strong tracking algorithm of Lemma 7.1.2, we immediately obtain a space complexity of

O
(1
ε3

log2 n(log ε−1 + log δ−1 + log log n)
)

We now describe how the factor of 1
ε

log n, coming from running λε,m = Θ(1
ε

log n) independent
sketches in Lemma 7.2.5, can be improved to 1

ε
log ε−1.

320

To see this, we change Algorithm 15 in the following way. Instead of Θ(1
ε

log n) independent
sketches, we use λ← Θ(1

ε
log ε−1) independent sketches, and change line 10 to state ρ← ρ+ 1

(mod λ). Each time we change ρ to ρ + 1 and begin using the new sketch Aρ+1, we completely

restart the algorithm Aρ with new randomness, and run it on the remainder of the stream. The
proof of correctness in Lemma 7.2.5 is completely unchanged, except for the fact that now Aρ

is run only on a suffix aj, aj+1, . . . , of the stream, if j is the time step where Aρ is reinitialized.
Specifically, at each time step t ≥ j, Aρ will produce a (1±ε) estimate of ‖x(t)−x(j−1)‖p instead
of ‖x(t)‖p. However, since the sketch will not be used again until a time step t′ where ‖x(t)‖p ≥
(1 + ε)λ‖x(j)‖p = 100

ε
‖x(j)‖p, it follows that only an ε fraction of the `p mass was missed by

Aρ. In particular, ‖x(t′) − x(j−1)‖p = (1 ± ε/100)‖x(t′)‖p, and thus by giving a (1 ± ε/10)
approximation of ‖x(t′) − x(j−1)‖p, the algorithm Aρ gives the desired (1± ε) approximation of
the underlying Fp moment, which is the desired result after a constant factor rescaling of ε. Note
that this argument could be used for the F0 moment, or any p-th moment for p ≥ 0, using a Fp
strong tracking algorithm for the relevant p.

While for most values of δ, the above theorem has better space complexity than the compu-
tation paths reduction, for the regime of very small failure probability it is actually preferable to
use the latter, as we now state.

Theorem 83 (Fp-estimation for small δ). Fix any 0 < ε < 1, 0 < p ≤ 2, and δ < n−C
1
ε

logn

for a sufficiently large constant C > 1. There is a streaming algorithm for the insertion-only

adversarial model which, with probability 1 − δ, successfully outputs at each step t ∈ [m] a

value Rt such that Rt = (1± ε)‖x(t)‖p. The required space is O
(

1
ε2

log n log δ−1
)

bits.

The proof is a direct application of Lemma 7.2.6, along with the flip number bound of Corol-
lary 7.2.4, and the O(ε−2 log n log δ−1) static Fp estimation algorithm of [KNW10a]. Indeed,
note that the flip number is λ = O(log n/ε) and that for small enough values of δ as in the
lemma, one has log(mλ/δ) = Θ(log(1/δ)).

We remark that the below complexity is optimal up to a log n term for insertion only streams.
The reason is that the O(1/ε2 log n log 1/δ) lower bound of [JW13] degrades to O(1/ε2 log 1/δ)
when deletions are not allowed.5

Next, we show that for turnstile streams with Fp flip number λ, we can estimate Fp with error
probability δ = n−λ. The space requirement of the algorithm is optimal for algorithms with

5Specifically, one may not apply the augmented indexing step in the reduction of [JW13] to delete off coordinates
in logn levels, which loses this factor in the lower bound.

321

such failure probability δ, which follows by an Ω(ε−2 log n log δ−1) lower bound for turnstile
algorithms [JW13], where the hard instance in question has small Fp flip number.6

Theorem 84 (Fp-estimation for λ-flip number turnstile streams). Let Sλ be the set of all turnstile

streams with Fp flip number at most λ ≥ λε,m(‖ · ‖pp) for any 0 < p ≤ 2. Then there is

an adversarially robust streaming algorithm for the class Sλ of streams that, with probability

1−n−Cλ for any constantC > 0, outputs at each time step a valueRt such thatRt = (1±ε)‖x‖pp.
The space used by the algorithm is O(ε−2λ log2 n).

Proof. The proof follows by simply applying Lemma 7.2.6, along with the O(ε−2 log n log δ−1)
bit turnstile algorithm of [KNW10a].

In addition, we show that the Fp moment can also be robustly estimated for p > 2. In this
case, it is preferable to use our computation paths reduction, because the upper bounds for Fp
moment estimation for large p yield efficiency gains when setting δ to be small.

Theorem 85 (Fp-estimation, p > 2, by Computation Paths). Fix any ε, δ > 0, and any constant

p > 2. Then there is a streaming algorithm for the insertion-only adversarial model which, with

probability 1 − n−(c logn)/ε for any constant c > 1, successfully outputs at every step t ∈ [m] a

valueRt such thatRt = (1±ε)‖x(t)‖p. The space used by the algorithm isO(n1−2/p(ε−3 log2 n+
ε−6/p(log2 n)2/p log n)).

Proof. We use the insertion only Fp estimation algorithm of [GW18], which achieves

(
n1−2/p

(
ε−2 log δ−1 + ε−4/p log2/p δ−1 log n

))
bits of space in the turnstile (and therefore insertion only) model. We can set δ = δ/m to union
bound over all steps, making it a strong Fp tracking algorithm with

O
(
n1−2/p

(
ε−2 log(nδ−1) + ε−4/p log2/p(nδ−1) log n

))
bits of space. Then by Lemma 7.2.6 along with the flip number bound of Corollary 7.2.4, the
claimed space complexity follows.

6The hard instance in [JW13] is a stream where O(n) updates are first inserted and then deleted, thus the flip
number is at most twice the Fp flip number of an insertion only stream.

322

7.4 Robust Distinct Elements Estimation

We now demonstrate how our sketch switching technique can be used to estimate the number
of distinct elements, also known as F0 estimation, in an adversarial stream. In this case, since
there exist static F0 strong tracking algorithms [Bła18] which are more efficient than repeating
the sketch log δ−1 times, it will be preferable to use our sketch switching technique.

Theorem 86 (Robust Distinct Elements by Sketch Switching). There is an algorithm which,

when run on an adversarial insertion only stream, produces at each step t ∈ [m] an estimate Rt

such that Rt = (1± ε)‖x(t)‖0 with probability at least 1− δ. The space used by the algorithm is

O(log ε−1

ε
(log ε−1+log δ−1+log logn

ε2
+ log n)) bits.

Proof. We use the insertion only distinct elements strong tracking algorithm of [Bła18]. Specifi-
cally, the algorithm of [Bła18] uses space O(log δ−1

0 +log logn
ε2

+ log n), and with probability 1− δ0,
successfully returns an estimate Rt for every step t ∈ [m] such that Rt = (1 ± ε)‖x(t)‖0 in the
non-adversarial setting. Then by application of Lemma 7.2.5, along with the flip number bound
ofO(log n/ε) from Corollary 7.2.4, we obtain the space complexity with a factor of logn

ε
blow-up

after setting δ0 = Θ(δ ε
logn). This gives a complexity ofO(logn

ε
(log ε−1+log δ−1+log logn

ε2
+log n)). To

reduce the extra log n-factor to a log ε−1 factor, we just apply the same argument used in the proof
of Theorem 82, which shows that by restarting sketches it suffices to keep only O(ε−1 log ε−1)
copies.

7.4.1 Fast and Robust Distinct Elements Estimation

As noted earlier, there are many reasons why one may prefer one of the reductions from Section
7.2 to the other. In this section, we will see such a motivation. Specifically, we show that
adversarially robust F0 estimation can be accomplished with extremely fast update time using
the computation paths reduction of Lemma 7.2.6.

First note that the standard approach to obtaining failure probability δ is to repeat the esti-
mation algorithm log δ−1 times independently, and take the median output. However, this blows
up the update time by a factor of log δ−1. Thus black-box applying Lemma 7.2.6 by setting δ to
be small can result in a larger update time. To improve upon this, we will introduce an insertion
only distinct elements estimation algorithm, with the property that the runtime dependency on
δ−1 is very small (roughly log2 log δ−1). Thus applying Lemma 7.2.6 on this algorithm results in
a very fast robust streaming algorithm.

323

Lemma 7.4.1. There is a streaming algorithm which, with probability 1 − δ, returns a (1 ± ε)
multiplicative estimate of the number of distinct elements in an insertion only data stream. The

space required is O(1
ε2

log n(log log n + log δ−1)),7 and the worst case running time per update

is O
((

log2 log logn
δ

)
·
(
log log log logn

δ

))
.

Before presenting our proof of Lemma 7.4.1, we state the following proposition which will
allow for the fast evaluation of d-wise independent hash functions.

Proposition 7.4.2 ([vzGG13], Ch. 10). LetR be a ring, and let p ∈ R[x] be a degree d univariate

polynomial overR. Then given distinct x1, x2, . . . , xd ∈ R, all the values p(x1), p(x2), . . . , p(xd)
can be computed using O(d log2 d log log d) operations over R.

of Lemma 7.4.1. We describe the algorithm here, as stated in Algorithm 5.

Algorithm 5: Fast non-adversarial distinct elements estimation.
1 Initialize Lists L0, L1, . . . , Lt ← ∅, for t = Θ(log n)
2 B ← Θ(ε−2 log δ−1), d← Θ(log log n+ log δ−1)
3 Initialize d-wise independent hash function H : [n]→ [2`] such that n2 ≤ 2` ≤ n3.
4 while Receive update (at,∆t) ∈ [n]× Z do
5 Let j be such that 2`−j−1 ≤ H(at) < 2`−j
6 if Lj has not been deleted then
7 Add at to the list Lj if it is not already present.
8 If |Lj| > B for any j, delete the list Lj , and never add any items to it again.
9 Let i be the largest index such that |Li| ≥ 1

5B.
10 Return 2i+1|Li| as the estimate of ‖x‖0

We initialize lists L0, L1, . . . , Lt ← ∅, for t = Θ(log n), and hash functions H : [n] → [2`],
where ` is set so that n2 ≤ 2` ≤ n3. The lists Li will store a set of identities Li ⊂ [n] which have
occurred in the stream. We also set B ← Θ(1

ε2
(log log n+ log δ−1)). For now, assume that H is

fully independent.

At each step when we see an update ai ∈ [n] (corresponding to an update which increments
the value of xi by one), we compute j such that 2`−j−1 ≤ H(ai) ≤ 2`−j . Note that this event
occurs with probability 2−(j+1). Then we add the O(log n)-bit identity ai to the list Lj if |Lj| <
B. Once |Lk| = B for any k ∈ [t], we delete the entire list Lk, and never add an item to Lk

7We remark that it is possible to optimize the logn factor to O(log δ−1 + log ε−1 + log logn) by hashing the
identities stored in the lists of the algorithm to a domain of size poly(δ−1, ε−1, logn). However, in our application
we will be setting δ � 1/n, and so the resulting adversarially robust algorithm would actually be less space efficient.

324

again. We call such a list Lk saturated. At the end of the stream, we find the largest value i such
that 1

5B ≤ |Li|, and output 2i+1|Li| as our estimate of ‖x‖0.

We now analyze the above algorithm. Let i0 be the smallest index such that E [|Li0|] ≤
‖x‖02−(i0+1) < 1

5(1+ε)B. Note here that E [|Lk|] = 2−(k+1)‖x‖0 for any k ∈ [t]. By a Cher-
noff bound, with probability 1 − exp(−Ω(−ε2B)) < 1 − δ2/ log(n) we have that |Li0| < 1

5B.
We can then union bound over all such indices i ≥ i0. This means that we will not out-
put the estimate used from any index i ≥ i0. Similarly, by a Chernoff bound we have that
|Li0−1| = (1 ± ε)‖x‖02−i0 < 2

5B and |Li0−2| = (1 ± ε)‖x‖02−i0+1, and moreover we have
2

5(1+ε)B ≤ ‖x‖02−i0+1 ≤ 4
5B, meaning that the output of our algorithm will be either |Li0−1|2i0

or |Li0−2|2i0−1, each of which yields a (1 ± ε) estimate. Now note that we cannot store a
fully independent hash function H , but since we only needed all events to hold with proba-
bility 1 − Θ(δ2/ log(n)), it suffices to choose H to be a d-wise independent hash function for
d = O(log log n + log δ−1), which yields Chernoff-style tail inequalities with a decay rate of
exp(−Ω(d)) (see e.g. Theorem 5 of [SSS95]).

Next we analyze the space bound. Trivially, we store at most O(log n) lists Li, each of
which stores at most B identities which require O(log n) bits each to store, yielding a total
complexity of O(1

ε2
log2 n(log log n + log δ−1)). We now show however that at any given step,

there are at most O(B log log n) many identities stored in all of the active lists. To see this, let
i0 < i1 < · · · < is be the time steps such that ‖x(ij)‖0 = 2j+1 · B, and note that s ≤ log(n) + 1.
Note that before time i0, at most B identities are stored in the union of the lists. First, on time
step ij for any j ∈ [s], the expected size of |Lj−2| is at least 2|B| (had we never deleted saturated
lists), and, with probability 1 − (δ/ log n)10 after a union bound, it holds that |Lj′| is saturated
for all j′ ≤ j − 2. Moreover, note that the expected number of identities written to lists Lj′

with j′ ≥ j − 1 is ‖x(ij)‖0
∑
ν≥1 2−j+1+ν ≤ 2B, and is at most 4B with probability at least

1 − (δ/ log n)10 (using the d-wise independence of H). We conclude that on time step tj , the
total space being used is O(B log n) with probability at least 1 − (δ/ log n)10, so we can union
bound over all such steps ij for j ∈ [s].

Next, we must analyze the space usage at steps τ for ij < τ < ij+1. Note that the num-
ber of new distinct items which occur over all such time steps τ is at most 2j+1 · B by def-
inition. Since we already conditioned on the fat that |Lj′| is saturated for all j′ ≤ j − 2, it
follows that each new item is written into a list with probability at most 2−j . Thus the ex-
pected number of items which are written into lists within times τ satisfying ij < τ < ij+1 is
2j ·B · 2−j = B in expectation, and at most 4B with probability 1− (δ/ log n)10 (again using the
d-wise Independence of H). Conditioned on this, the total space used in these steps is at most

325

O(B log n) = O(1
ε2

log n(log log n + log δ)) in this interval, and we then can union bound over
all such O(log n) intervals, which yields the desired space.

Finally, for the update time, note that at each stream update ai ∈ [n] the first step of the
algorithm. Naïvely, computing a d-wise independent hash function requires O(d) arithmetic op-
erations (in the standard RAM model), because H in this case is just a polynomial of degree
d over Z. On the other hand, we can batch sequences of d = O(log log n + log δ−1) compu-
tations together, which require an additive O(d log n) = O(log n(log log n + log δ−1)) bits of
space at any given time step to store (which is dominated by the prior space complexity). Then
by Proposition 7.4.2, all d hash function evaluations can be carried out in O(d log2 d log log d) =
O(d log2(log logn

δ
) log log log log n

δ
) time. The work can then be evenly distributed over the fol-

lowing d steps, giving a worst case update time of O(log2(log logn
δ

) log log log log n
δ
). Note that

this delays the reporting of the algorithm for the contribution of updates by a total of d steps,
causing an additive d error. However, this is only an issue if d ≥ ε‖x‖0, which occurs only when
‖x‖0 ≥ 1

ε
d. Thus for the first D = O(ε−1d) distinct items, we can store the non-zero items

exactly (and deterministically), and use the output of this deterministic algorithm. The space
required for this is O(ε−1 log(n)(log log n + log δ−1), which is dominated by the space usage of
the algorithm overall. After D distinct items have been seen, we switch over to using the output
of the randomized algorithm described here. Finally, the only other operation involves adding an
identity to at most one list per update, which is O(1) time, which completes the proof.

We can use the prior result of Lemma 7.4.1, along with our argument for union bounding
over adversarial computation paths of Lemma 7.2.6 and the flip number bound of Corollary 7.2.4,
which results in an adversarially robust streaming algorithm for distinct elements estimation with
extremely fast update time.

Theorem 87. There is a streaming algorithm which, with probability 1−n−(C/ε) logn for any con-

stantC ≥ 1, when run on an adversarial chosen insertion-only data stream, returns a (1±ε) mul-

tiplicative estimate of the number of distinct elements at every step in the stream. The space re-

quired isO(1
ε3

log3 n), and the worst case running time isO
((

log2 log logn
ε

)
·
(
log log log logn

ε

))
per update.

326

7.5 Robust Heavy Hitters

In this section, we study robust algorithms for the heavy-hitters problem. Recall that the heavy
hitters problem tasks the algorithm with recovering the most frequent items in a data-set. Stated
simply, the goal is to report a list S of items xi that appear least τ times, meaning xi ≥ τ , for
a given threshold τ . Generally, τ is parameterized in terms of the Lp norm of the frequency
vector x, so that τ = ε‖x‖p. For p > 2, this problem is known to take polynomial space
[AMS96, BYJKS04]. Thus, the strongest such guarantee that can be given in sub-polynomial
space is known as the L2 guarantee:

Definition 7.5.1. A streaming algorithm is said to solve the (ε, δ)-heavy hitters problem with the

L2 guarantee if the algorithm, when run on a stream with frequency vector x ∈ Rn, outputs a

set S ⊂ [n] such that with probability 1− δ the following holds: for every i ∈ [n] if |xi| ≥ ε‖x‖2

then i ∈ S, and if |xi| ≤ (ε/2)‖x‖2 then i /∈ S.

We also introduce the related task of (ε, δ)-point queries.

Definition 7.5.2. A streaming algorithm is said to solve the (ε, δ) point query problem with the

L2 guarantee if with probability 1 − δ, at every time step t ∈ [m], for each coordinate i ∈ [n]
it can output an estimate x̂ti such that |x̂ti − x

(t)
i | ≤ ε‖x(t)‖2. Equivalently, it outputs a vector

x̂t ∈ Rn such that ‖x(t) − x̂t‖∞ ≤ ε‖x(t)‖2.8

Notice that for any algorithm that solves the (ε, δ)-point query problem, if it also has estimates
Rt = (1 ± ε/10)‖x(t)‖2 at each time step t ∈ [m], then it immediately gives a solution to the
(ε, δ)-heavy hitters problem by just outputting all i ∈ [n] with x̃ti > (3/4)εRt. Thus solving
(ε, δ)-point queries, together with F2 tracking, is a stronger property. In the following, we say
that x̂t is ε-correct at time t if ‖x(t) − x̂t‖∞ ≤ ε‖x(t)‖2.

In this section, we demonstrate how this fundamental task of point query estimation can
be accomplished robustly in the adversarial setting. Note that we have already shown how F2

tracking can be accomplished in the adversarial model, so our focus will be on point queries.
Our algorithm relies on a similar sketch switching technique as used in Lemma 7.2.5, which
systematically hides randomness from the adversary by only publishing a new estimate x̂t when
absolutely necessary. To define what is meant by “absolutely necessary", we will first need the
following proposition.

8We note that a stronger form of error is possible, called the tail guarantee, which does not count the contribution
of the top 1/ε2 largest coordinates to the error ε‖x‖2. We restrict to the simpler version of the L2 guarantee.

327

Proposition 7.5.3. Suppose that x̂t ∈ Rn is ε-correct at time t on an insertion only stream, and

let t1 > t be any time step such that ‖x(t1) − x(t)‖2 ≤ ε‖x(t)‖∞. Then x̂t is 2ε-correct at time t1.

Proof. ‖x̂t− x(t1)‖∞ ≤ ‖x̂t− x(t)‖∞+ ‖x(t1)− x(t)‖∞ ≤ ε‖x(t)‖2 + ε‖x(t)‖2 ≤ 2ε‖x(t1)‖2.

To prove the main theorem of Section 4.3.2, we will need the classic count-sketch algorithm
for finding L2 heavy hitters [CCFC02b] (see Section 2.3.2), which solves the more general point
query problem in the static setting with high probability.

Lemma 7.5.4 ([CCFC02b]). There is a streaming algorithm in the non-adversarial insertion

only model which solves the (ε, δ)-point query problem, using O(1
ε2

log n log n
δ
) bits of space.

We are now ready to prove the main theorem of this section.

Theorem 88 (L2 point query and heavy hitters). Fix any ε, δ > 0. There is a streaming algo-

rithm in the adversarial insertion only model which solves the (ε, n−C) point query problem,

and also the O(ε, n−C)-heavy hitters problem, for any constant C > 1. The algorithm uses

O(log ε−1

ε3
log2 n) bits of space.

Proof. Since we already know how to obtain estimates Rt = (1 ± ε/100)‖x(t)‖2 at each time
step t ∈ [m] in the adversarial insertion only model within the required space, it will suffice to
show that we can obtain estimates x̂t which are ε-correct at each time step t (i.e., it will suffice
to solve the point query problem).

Let 1 = t1, t2, . . . , tT = m for T = Θ(ε−1 log n) be any set of time steps such that ‖x(at+1)−
x(at)‖2 ≤ ε‖x(at)‖2 for each i ∈ [T − 1]. Then by Proposition 7.5.3, we know that if we output
an estimate x̂i on time ti which is ε-correct for time ti, then x̂i will still be 2ε correct at time
ti+1. Thus our approach will be to output vectors x̂1, x̂2, . . . , x̂T , such that we output the estimate
x̂i ∈ Rn at all times τ such that ti ≤ τ < ti+1, and such that x̂i is ε-correct for time ti.

First, to find the time steps ti, we run the adversarially robust F2 estimator of Theorem 82,
which gives an estimate Rt = (1 ± ε/100)‖x(t)‖2 at each time step t ∈ [m] with probability
1−n−C for any constant C > 1, and uses space O(ε−3 log2 n log ε−1). Notice that this also gives
the required estimates Rt as stated above. By rounding down the outputs Rt of this F2 estimation
algorithm to the nearest power of (1 + ε/2), we obtain our desired points ti. Notice that this also
gives T = Θ(ε−1 log n) as needed, by the flip number bound of Corollary 7.2.4.

Next, to obtain the desired ε point query estimators at each time step ti, we run T independent
copies of the point query estimation algorithm of Lemma 7.5.4. At time ti, we use the output

328

vector of the i-th copy as our estimate x̂i, which will also be used without any modification
on all times τ with ti ≤ τ < ti+1. Since each copy of the algorithm only reveals any of its
randomness at time ti, at which point it is never used again, by the same argument as Lemma
7.2.5 it follows that each x̂i will be ε-correct for time ti. Namely, since the set of stream updates
on times 1, 2, . . . , ti are independent of the randomness used in the i-th copy of point-estimation
algorithm, we can deterministically fix the updates on these time steps, and condition on the i-th
copy of the non-adversarial streaming algorithm being correct on these updates. Therefore this
algorithm correctly solves the 2ε point query problem on an adversarial stream. The total space
used is

O
(
ε−3 log2 n log ε−1 + Tε−2 log2 n

)
.

We now note that we can improve the space by instead running only T ′ = O(ε−1 log ε−1) in-
dependent copies of the algorithm of Lemma 7.5.4. Each time we use one of the copies to
output the desired estimate x̂i, we completely restart that algorithm on the remaining suffix of
the stream, and we loop modularly through all T ′ copies of the algorithm, at each step using
the copy that was least recently restarted to output an estimate vector. More formally, we keep
copies A1, . . . ,AT ′ of the algorithm of Lemma 7.5.4. Each time we arrive at a new step ti and
must produce a new estimate x̂i, we query the algorithmAj that was least recently restarted, and
use the estimate obtained by that algorithm, along with the estimates Rt.

The same correctness argument will hold as given above, except now each algorithm, when
used after being restarted at least once, will only be ε-correct for the frequency vector defined
by a suffix of the stream. However, by the same argument used in Theorem 82, we can safely
disregard the prefix that was missed by this copy of the algorithm, because it contains only an
ε/100-fraction of the total Lp mass of the current frequency vector when it is applied again.
Formally, if an algorithm is used again at time ti, and it was last restarted at time τ , then by the
correctness of our estimates Rt, the L2 norm must have gone up by a factor of (1+ ε)T ′ = 100

ε
, so

‖x(τ)‖2 ≤ ε/100‖x(ti)‖2. Moreover, we have that the estimate x̂i produced by this copy satisfies
‖x̂i − (x(ti) − x(τ))‖∞ ≤ ε‖x(ti)− x(τ)‖2. But then

‖x̂i − x(ti)‖∞ ≤ ‖x̂i − (x(ti) − x(τ))‖∞ + ‖x(τ)‖∞
≤ ε‖x(ti) − x(τ)‖2 + ‖x(τ)‖2

≤ ε
(
‖x(ti)‖2 + ‖x(τ)‖2

)
+ ε/100‖x(ti)‖2

≤ ε‖x(ti)‖2(1 + ε) + ε/100‖x(ti)‖2

≤ 2ε‖x(ti)‖2

(7.1)

329

Thus x̂i is still 2ε-correct at time ti for the full stream vector x(ti). So by the same argument
as above using Proposition 7.5.3, it follows that the output of the overall algorithm is always
4ε-correct for all time steps τ ∈ [m], and we can then re-scale ε by a factor of 1/4. Substituting
the new number T ′ of copies used into the above equation, we obtain the desired complexity.

7.6 Robust Entropy Estimation

We now show how our general techniques developed in Section 7.2 can be used to approximate
the empirical Shannon entropy H(x) of an adversarial stream. Recall that for a non-zero vector
f , we have that H(x) = −∑i,(x)i 6=0 pi log(pi), where pi = |xi|

‖x‖1 . For α > 0, we define the
α-Renyi Entropy Hα(x) of x is given by

Hα(x) = 1
1− α log

(
‖x‖αα
‖x‖α1

)

We begin with the following observation, which will allow us to consider multiplicative ap-
proximation of 2H(x). Then, by carefully bounding the flip number of the Renyi entropy Hα for
α close to 1, we will be able to bound the flip number of H .

Remark 89. Note that any algorithm that gives an ε-additive approximation of the Shannon
Entropy H(x) : Rn → R gives a (1 ± ε) multiplicative approximation of g(x) = 2H(x), and
vice-versa.

Proposition 7.6.1 (Theorem 3.1 of [HNO08a]). Let x ∈ Rn be a probability distribution whose

smallest non-zero value is at least 1
m

, where m ≥ n. Let 0 < ε < 1 be arbitrary. Define µ =
ε/(4 logm) and ν = ε/(4 log n logm), α = 1 + µ/(16 log(1/µ)) and β = 1 + ν/(16 log(1/ν)).

Then

1 ≤ Hα

H
≤ 1 + ε and 0 ≤ H −Hβ ≤ ε

where H(x) = H and Hα(x) = Hα.

Proposition 7.6.2. Let g : RN → R be g(x) = 2H(x), i.e., the exponential of the Shannon

entropy. Then the (ε,m)-flip number of g for the insertion only streaming model is λε,m(g) =
O(1

ε3
log3m).

The proof of the above proposition is given later in this section. We now state the main result
on adversarially robust entropy estimation. An improved result is stated for the random oracle

330

model in streaming, which recall implies that the algorithm is given random (read-only) access
to an arbitrarily large string of random bits.

Theorem 90 (Robust Additive Entropy Estimation). There is an algorithm for ε-additive approx-

imation of entropy in the insertion-only adversarial streaming model using O(1
ε5

log4 n)-bits of

space in the random oracle model, and O(1
ε5

log6 n)-bits of space in the general insertion-only

model.

To obtain our entropy estimation algorithm of Theorem 90, we will first need to state the
results for the state of the art non-adversarial streaming algorithms for additive entropy estima-
tion. The first algorithm is a O(ε−2 log2 n)-bit streaming algorithm for additive approximation
of the entropy of a turnstile stream, which in particular holds for insertion only streams. The
second result is a Õ(1/ε2) upper bound for entropy estimation in the insertion only model when
a random oracle is given.

Lemma 7.6.3 ([CC13]). There is an algorithm in the turnstile model that gives an ε-additive

approximation to the Shannon Entropy H(x) of the stream. The failure probability is δ, and the

space required is O(1
ε2

log2 n log δ−1) bits.

Lemma 7.6.4 ([JW19]). There is an algorithm in the insertion-only random oracle model that

gives an ε-additive approximation to the Shannon Entropy H(x) of the stream. The failure prob-

ability is δ, and the space required is O(1
ε2

(log δ−1 + log log n+ log ε−1))

We now give the proof of Proposition 7.6.2, and then the proof of Theorem 90.

Proof of Proposition 7.6.2. By Proposition 7.6.1, it suffices to get a bound on the flip number
of Hβ for the parameters β = 1 + ν/(16 log(1/ν)) and ν = ε/(4 log n logm). Recall g(x) =
2Hβ(x) = (‖x‖ββ/‖x‖

β
1)1/(1−β). Now to increase g(x) by a factor of (1 + ε), one must increase

‖x‖ββ/‖x‖
β
1 by a factor of 1 + Θ(ε(1− β)). For this to happen, ‖x‖β must increase by a factor of

1 + Θ(ε(1 − β)). It holds that ‖x‖β ≤ ‖x‖1 ≤ n1−1/β‖x‖1 = (1 + O(ε/ log n))‖x‖1, and thus
‖x‖1 must also increase by a factor of 1 + Θ(ε)(1− β).

Similarly, for g(x) to decrease by a factor of 1 + ε, this requires ‖x‖1 to increase by a factor
of 1 + Θ(ε(1 − β)). In summary, if for time steps 1 ≤ t1 < t2 ≤ m of the stream we have
g(x(t2)) > (1 + ε)g(x(t1)) or g(x(t2)) < (1 − ε)g(x(t1)), then it must be the case that ‖x(t2)‖1 >

(1 + Θ(ε(1 − β)))‖x(t1)‖1 = (1 + τ)‖x(t1)‖1, where τ = Θ̃(ε2/ log2 n). Since ‖x(m)‖1 ≤ Mn

and ‖ · ‖1 is monotone for insertion only streams, it follows that this can occur at most O(log3 n
ε2

)
times, which completes the proof since log n = Θ(logm).

331

Proof of Theorem 90. The proof follows directly from an application of Lemma 7.2.5, using
the non-adversarial algorithms of Lemmas 7.6.3 and 7.6.4, as well as the flip number bound of
Lemma 7.6.2. Note that to turn the algorithms of Lemmas 7.6.3 and 7.6.4 into tracking algo-
rithms, one must set δ < 1/m, which yields the stated complexity.

7.7 Adversarial Robustness in the Bounded Deletion Model

In this section, we show how our results can be used to obtain adversarially robust streaming
algorithms for the bounded-deletion model, introduced in our paper [JW18a], and the subject of
Chapter 6. Recall that intuitively, a bounded deletion stream is one where the Fp moment of the
stream is a 1

α
fraction of what the Fp moment would have been had all updates been replaced

with their absolute values. We recall that formal definition here:

Definition 7.7.1. Fix any p ≥ 1 and α ≥ 1. A data stream u1, . . . , um, where ui = (ai,∆i) ∈
[n]× {1,−1} are the updates to the frequency vector f , is said to be an Fp α-bounded deletion

stream if at every time step t ∈ [m] we have ‖x(t)‖pp ≥ 1
α

∑n
i=1(∑t′<t:at′=i |∆t′|)p.

Specifically, the α-bounded deletion property says that the Fp moment ‖x(t)‖p of the stream is
at least 1

α
‖y(t)‖p, where y is the frequency vector of the stream with updates u′i = (ai,∆′i) where

∆′i = |∆i| (i.e., the absolute value stream). Note here that the model assumes unit updates, i.e.,
we have |∆i| = 1 for each i ∈ [m], which can be accomplished without loss of generality with
respect to the space complexity of algorithms, by simply duplicating integral updates into unit
updates.

In Chapter 6, we saw that for α-bounded deletion streams, a factor of log n in the space com-
plexity of turnstile algorithms can be replaced with a factor of logα for many important stream-
ing problems. In this section, we show another useful property of bounded-deletion streams:
norms in such streams have bounded flip number. We use this fact to design adversarially robust
streaming algorithms for data streams with bounded deletions.

Lemma 7.7.2. Fix any p ≥ 1. The λε,m(‖ · ‖p) flip number of the Lp norm of a α-bounded

deletion stream is at most O(p α
εp

log n)

Proof. Let y be the frequency vector of the stream with updates u′i = (ai,∆′i) where ∆′i = |∆i|.
Note that y is then the frequency vector of an insertion only stream. Now let 0 ≤ t1 < t2 <

· · · < tk ≤ m be any set of time steps such that ‖x(ti)‖p /∈ (1± ε)‖x(ti+1)‖p for each i ∈ [k − 1].

332

Since by definition of the α-bounded deletion property, we have ‖x(t)‖p ≥ 1
α1/p‖y(t)‖p for each

t ≥ T , it follows that

‖x(ti+1) − x(ti)‖p ≥
∣∣∣‖x(ti+1)‖p − ‖x(ti)‖p

∣∣∣ ≥ ε‖x(ti+1)‖p ≥
ε

α1/p‖y
(ti+1)‖p ≥

εp

α1/p‖y
(ti)‖p

(7.2)

where in the last inequality we used the fact that y is an insertion only stream. Now since the
updates to y are the absolute value of the updates to x, we also have that ‖y(ti+1) − y(ti)‖pp ≥
‖x(ti+1) − x(ti)‖pp ≥ εp

α
‖y(ti)‖pp. Thus

‖y(ti+1)‖pp = ‖y(ti) +
(
y(ti+1) − y(ti)

)
‖pp ≥ ‖y(ti)‖pp + ‖y(ti+1) − y(ti)‖pp ≥ (1 + εp

α
)‖y(ti)‖pp

(7.3)

where in the second inequality, we used the fact that ‖X+Y ‖pp ≥ ‖X‖pp+‖Y ‖pp for non-negative
integral vectors X, Y when p ≥ 1. Thus ‖y(ti+1)‖pp must increase by a factor of (1 + εp/α) from
‖y(ti)‖pp whenever ‖x(ti)‖p /∈ (1 ± ε)‖x(ti+1)‖p. Since ‖0‖Pp = 0, and ‖y(m)‖pp ≤ Mpn ≤ ncP

for some constant c > 0, it follows that this can occur at most O(p α
εp

log n) many times. Thus
k = O(p α

εp
log n), which completes the proof.

We now use our computation paths technique of Lemma 7.2.6, along with the space optimal
turnstile Fp estimation algorithm of [KNW10a], to obtain adversarially robust algorithms for
α-bounded deletion streams. Specifically, we show that we can estimate the Fp moment of a
bounded deletion stream robustly. We remark that once F2 moment estimation can be done, one
can similarly solve the heavy hitters problem in the robust model using a similar argument as
in Section 4.3.2, except without the optimization used within the proof of Theorem 88 which
restarts sketches on a suffix of the stream. The resulting space would be precisely an (α

ε
log n)-

factor larger than the space stated in Theorem 88.

Theorem 91. Fix p ∈ [1, 2] and any constant C > 1. Then there is an adversarially robust

Fp estimation algorithm which, with probability 1 − n−C , returns at each time step t ∈ [m] an

estimateRt such thatRt = (1±ε)‖x(t)‖pp. The space used by the algorithm isO(αε−(2+p) log3 n).

of Theorem 91. We use the turnstile algorithm of [KNW10a], which gives an estimateRt = (1±
ε)‖x(t)‖pp at a single point t ∈ [m] with probability 1−δ, usingO(ε−2 log n log δ−1) bits of space.
We can set δ = 1/poly(m), and union bound over all steps, to obtain that Rt = (1± ε)‖x(t)‖pp at
all time steps t ∈ [m] with probability 1 − n−C . Thus this gives a strong Fp tracking algorithm

333

using O(ε−2 log n log(n/δ)) bits of space. The theorem then follows from applying Lemma
7.2.6, along with the flip number bound of Lemma 7.7.2.

7.8 Adversarial Attack Against the AMS Sketch

It was shown by [HW13] that linear sketches can in some cases be vulnerable to adaptive ad-
versarial attacks (see Subsection 7.1.2). In this section, we show another instance of this phe-
nomenon, demonstrating that the classic Alon-Matias-Szegedy (AMS) sketch [AMS96] for esti-
mating the L2 norm of a data stream is inherently non-robust. To this end, we describe an attack
fooling the AMS sketch into outputting a value which is not a good approximation of the norm
‖x‖2

2 of the frequency vector. Our attack provides an even stronger guarantee: for any r ≥ 1 and
an AMS sketch with r/ε2 rows, our adversary needs to only create O(r) adaptive stream updates
before it can fool the AMS sketch into outputting an incorrect result.

We first recall the AMS sketch for estimating the L2 norm. The AMS sketch generates (im-
plicitly) a random matrix A ∈ Rt×n such that the entries Ai,j ∼ {−1, 1} are i.i.d. Rademacher.9

The algorithm stores the sketch Ax(j) at each time step j, and since the sketch is linear it can
be updated throughout the stream: Ax(j+1) = Ax(j) + A · eij+1∆j+1 where (ij+1,∆j+1) is the
j+1-st update. The estimate of the sketch at time j is 1

t
‖Ax(j)‖2

2, which is guaranteed to be with
good probability a (1± ε) estimate of ‖x(j)‖2

2 in non-adversarial streams if t = Θ(ε−2).

We now describe our attack. Let S be a t×n Alon-Matias-Szegedy sketch. Equivalently, Si,j
is i.i.d. uniformly distributed in {−t−1/2, t−1/2}, and the estimate of AMS is ‖Sx(j)‖2

2 at the j-th
step. The protocol for the adversary is as follows. In the following, we let ei ∈ Rn denote the
standard basis vector which is zero everywhere except the i-th coordinate, where it has the value
1.

Note that the vector w in the above algorithm is always equal to the current frequency vector
of the stream, namely w = x(j) after the j-th update. Note that the above algorithm can be
implemented by an adversary who only is given the estimate ‖Sw‖2

2 = ‖Sx(j)‖2
2 of the AMS

sketch after every step j in the stream. To see this, note that the algorithm begins by inserting
the first item (i1,∆1) = (1, C ·

√
t) for a sufficiently large constant C. Next, for i = 2, . . . , n,

it inserts the item i ∈ [n] once if doing so increases the estimate of AMS by more than 1. If the
estimate of AMS is increased by less than 1, it inserts the item i twice (i.e., it inserts an update

9In fact, the AMS sketch works even if the entries within a row of A are only 4-wise independent. Here, we
show an attack against the AMS sketch if it is allowed to store a fully independent sketch A.

334

Algorithm 6: Adversary for AMS sketch
1 w ← C ·

√
t · e1

2 for i = 2, . . . ,m do
3 old← ‖Sw‖2

2
4 w ← w + ei
5 new← ‖Sw‖2

2
6 if new− old < 1 then
7 w ← w + Sei
8 else if new− old = 1 then
9 with probability 1/2, set w ← w + Sei

(i, 2) ∈ [n] × Z). Lastly, if inserting the item i ∈ [n] increases the estimate of AMS by exactly

1, the adversary chooses to insert i ∈ [n] once with probability 1/2, otherwise it inserts i ∈ [n]
twice.

We now claim that at the end of a stream of m = O(t) updates, with good probability
‖w‖2

2 = ‖Sx(m)‖2
2 /∈ (1± ε)‖x(m)‖2

2. In fact, we show that regardless of the number of rows t in
the AMS sketch, we force the AMS to give a solution that is not even a 2-approximation.

Theorem 92. Let S ∈ Rt×n be an AMS sketch (i.i.d. Rademacher matrix scaled by t−1/2), where

1 ≤ t < n/c for some constant c. Suppose further that the adversary performs the adaptive

updates as described in Algorithm 6. Then with probability 9/10, by the m-th stream update

for some m = O(t), the AMS estimate ‖Sx(m)‖2
2 of the norm ‖x(m)‖2

2 of the frequency vector

x ∈ Rn defined by the stream fails to be a (1 ± 1/2) approximation of the true norm ‖x(m)‖2
2.

Specifically, we will have ‖Sx(m)‖2
2 <

1
2‖x

(m)‖2
2.

Proof. For j = 2, 3 . . . we say that the j-th step of Algorithm 6 is the step in the for loop where
the parameter i is equal to j, and we define the first step to just be the state of the stream after
line 1 of Algorithm 6. Let wi be the state of the frequency vector at the end of the i-th step of
the for loop in Algorithm 6, let yi = Swi be the AMS sketch at this step, and let si = ‖Swi‖2

2

be the estimate of AMS at the same point. Note that we have w1 = C ·
√
t · e1 for a sufficiently

large constant C, and thus s1 = C2t. That is, already on the first step of the algorithm we have
‖w1‖2

2 = C2t, and moreover since the stream is insertion only, we always have ‖wi‖2
2 ≥ C2t.

Thus, it suffices to show that with good probability, at some time step i ≥ 2 we will have
si < C2t/2.

First, note that at any step i = 2, 3, . . . , if we add Sei+1 once, we have si+1 = ‖yi+Sei+1‖2
2 =∑t

j=1((yij)2 + 2yijSj,i+1 + 1/t) = si + 1 + 2∑t
j=1 y

i
jSj,i+1. If we add Sei+1 twice, we have

335

si+1 = ‖yi + 2e
¯i+1‖2

2 = si + 4 + 4∑t
j=1 y

i
jSj,i+1. By definition of the algorithm, we choose

to insert Sei+1 twice if ‖yi + Sei+1‖2
2 − si = 1 + 2∑t

j=1 y
i
jSj,i+1 < 1, or more compactly

whenever
∑t
j=1 y

i
jSj,i+1 < 0. If

∑t
j=1 y

i
jSj,i+1 > 0, we insert Sei+1 only once. Finally, if

∑t
j=1

yijSj,i+1 = 0, we flip an unbiased coin, and choose to insert Sei+1 either once or twice with equal
probability 1/2. Now observe that the random variable

∑t
j=1 y

i
jSj,i+1 is symmetric, since for any

fixed yi the Sj,i+1’s are symmetric and independent. Thus, we have that

E

∣∣∣∣ t∑
j=1

yijSj,i+1

∣∣∣∣
 = E

 t∑
j=1

yijSj,i+1 | Sei+1 inserted once

= −E

 t∑
j=1

yijSj,i+1 | Sei+1 inserted twice

 (7.4)

Now recall that the vector S∗,i+1 given by the (i+1)-st column of S is just an i.i.d. Rademacher
vector scaled by 1/

√
t. Thus by the classic Khintchine inequality [Haa81], we have that

E

| t∑
j=1

yijSj,i+1|

 = 1√
t
· α · ‖yi‖2 = α

√
si/
√
t

for some absolute constant α > 0 (in fact, α ≥ 1/
√

2 suffices by Theorem 1.1 of [Haa81]).
Putting these pieces together, the expectation of the estimate of AMS is then as follows:

E[si+1] = 1
2(si + 1 + 2α

√
si√
t

) + 1
2(si + 4− 4α

√
si√
t

)

= si + 5/2− α
√
si/t

≤ si + 5/2−
√
si/2t

(7.5)

Where again the last line holds using the fact that α ≥ 1/
√

2. Thus E [si+1] = E [si] +5/2 −
E
[√
si/2t

]
. First, suppose there exists some i ≤ C2t + 2 such that E

[√
si
]
< C

√
t/200. This

implies by definition that
∑
j

√
j ·Pr [si = j] < C

√
t/200, thus

√
C2t/2 ·Pr

[
si ≥ C2t/2

]
≤

∑
j≥C2t/2

√
j ·Pr [si = j] <

√
C2t/200 (7.6)

Which implies that Pr [si ≥ C2t/2] ≤ 1/10. Thus, on that step i, we have Pr [si < C2t/2] >
9/10, and thus by time step i we have fooled the AMS sketch with probability at least 9/10.
Thus, we can assume that for all i = 2, 3, . . . , (C2t + 2) we have E

[√
si
]
≥ C

√
t/200. Setting

C > 200, we have that E [si+1] < E [si]−1 for all steps i = 2, 3, . . . , (C2t + 2) However,

336

since s1 = C2t, this implies that E [sC2t+2] < −1, which is impossible since sj is always the
value of a norm. This is a contradiction, which implies that such an i with i ≤ C2t + 2 and
Pr [si ≥ C2t/2] ≤ 1/10 must exist, demonstrating that we fool the AMS sketch by this step
with probability 9/10, which completes the proof.

7.9 Optimal Distinct Elements via Cryptographic Assump-
tions

Estimating the number of distinct elements (F0-estimation) in a data stream is a fundamental
problem in databases, network traffic monitoring, query optimization, data mining, and more.
After a long line of work, [Woo04, KNW10b] settled space (and time) complexities of F0-
estimation by giving an algorithm using O(ε−2 + log n) bits of space (with constant worst-case
update time). Recall that the tracking version of this algorithm (where it outputs a correct esti-
mate at each time step) takes memoryO(ε−2(log ε−1 +log log n)+log n) bits and is also optimal
[Bła18].

However, these results only hold in the (standard) static setting. We show that using crypto-
graphic tools (pseudorandom functions), we can transform this algorithm, using the same amount
of memory to be robust in the adversarial setting as well, where the adversary is assumed to be
computationally bounded (as opposed to our other results which have no assumptions on the
adversary whatsoever).

The transformation actually works for a large class of streaming algorithms. Namely, any
algorithm such that when given an element that appeared before, does not change its state at
all (with probability 1). Since the F0 tracking algorithm of [Bła18] has this property, we can
black-box apply our results to this algorithm.

First, we show how this transformation works assuming the existence of a truly random
function, where the streaming algorithm has access to the function without needing to store
it explicitly (the memory is free). This is known as the random oracle model. The model is
appealing since we have different heuristic functions (e.g., SHA-256) that behave, as far as we
can tell in practice, like random functions. Moreover, there is no memory cost when using
them in an implementation, which is very appealing from a practical perspective. Nevertheless,
we discuss how to implement such a function with cryptographic tools (e.g., pseudorandom
functions) while storing only a small secret key in the memory.

337

Theorem 93 (Distinct Elements by Cryptographic Assumptions). In the random oracle model,

there is an F0-estimation (tracking) streaming algorithm in the adversarial setting, that for an

approximation parameter ε usesO(ε−2(log 1/ε+log log n)+log n) bits of memory, and succeeds

with probability 3/4.

Moreover, under a suitable cryptographic assumption, assuming the adversary has bounded

running time of nc, wherem is the stream length and c is fixed, the random oracle can be replaced

with a concrete function and the total memory is O(ε−2(log 1/ε+ log log n) + c log n).

Proof. For simplicity, in the following proof, we assume that we have a random permutation.
We note that the proof with a random function is exactly the same conditioned on not having
any collisions. If the random function maps the universe to a large enough domain (say of size
at least m2) then there will be no collisions with high probability. Thus, it suffices to consider
permutations.

The solution is inspired by the work of [NY15b] (which had a similar adaptive issue in the
context of Bloom filters). Let Π be a truly random permutation, and let S be a tracking steaming
algorithm with parameter ε. Let L(ε, n) be the memory consumption of the algorithm. We
construct an algorithm S ′ that works in the adversarial setting as follows. Upon receiving an
element e ∈ [n] (thought of as an insertion to the e-th coordinate of the underlying frequency
vector x ∈ Rn) the algorithm S ′ computes e′ = Π(e) and feeds it to S. The output of S ′ is
exactly the output of S. Notice that applying Π to the stream does not change the number of
distinct elements.

We sketch the proof. Assume towards a contradiction that there is adaptive adversary A′ for
S ′. Consider the adversary A′ at some point in time t, where the stream is currently e1, . . . , et.
It has two options: (i) it can choose an element ei, where i ∈ [t] that appeared before, or (ii)
it could choose a new element e∗ /∈ {e1, . . . , ei}. Since the state of S ′ does not change when
receiving duplicate items, and also does not change the number of distinct elements, option (i)
has no effect on the success probability of A′. Thus, in order to gain a chance of winning, A′

must submit a new query. Thus, we can assume without loss of generality that A′ submits only
distinct elements.

For such an adversary A′ let Dt be the distribution over states of S ′ at time t. Let D′t be the
distribution over states of S ′ for the fixed sequence 1, 2, . . . , t. We claim that Dt ≡ D′t (identical
distributions) for every t ∈ [m]. We show this by induction. The first query is non-adaptive,
denote it by e1. Then, since Π is a random permutation, we get that Π(1) ≡ Π(e1) which is what
is fed to S. Thus, the two distribution are identical. Assume it holds for t− 1. Consider the next

338

query of the adversary (recall that we assumed that this is a new query). Then, for any et (that
has not been previously queried by Π) the distribution of Π(et) ≡ Π(t), and therefore we get that
Dt ≡ D′t.

Given the claim above, we get that A′ is equivalent to a static adversary A that outputs
1, 2, . . . , k for some k ∈ [m]. However, the choice of k might be adaptive. We need to show that
S ′ works for all k simultaneously. Here we use the fact that S was a tracking algorithm (and thus
also S ′), which means that S ′ succeeds on every time step. Thus, for the stream 1, 2, . . . ,m, the
algorithm S ′ succeeds at timestamp k, which consists of k distinct elements. Thus, if there exists
an adaptive choice of k that would make S ′ fail, then there would exist a point in time, k, such
that S ′ fails at 1, . . . , k. Since S is tracking, such a point does not exist (w.h.p.).

For the second part of the theorem, we note that we can implement the random function
using an exponentially secure pseudorandom function (see [Gol05] for the precise definition
and discussion). For a key K of size λ, the pesudorandom function FK(·) looks random to an
adversary that has oracle access to FK(·) and runs in time at most 2γλ for some constant γ > 0.
Let A be an adversary that runs in time at most nc. Then, we set O(λ = 1/γ · c · log n) and get
that A cannot distinguish between FK(·) and the truly random function except when a negligible
probability event occurs (i.e., the effect on δ is negligible and hidden in constants). Indeed, if
A would be able to succeed against S ′ when using the oracle FK(·), but, as we saw, it does not
succeed when using a truly random function, then A′ could be used to break the security of the
pseudorandom function.

There are many different ways to implement such a pseudorandom function with exponential
security and concrete efficiency. First, one could use heuristic (and extremely fast) functions
such as AES or SHA256 (see also [NY15b] for a discussion on fast implementations of AES in
the context of hash functions). Next, one can assume that the discrete logarithm problem (see
[McC90] for the precise definition) over a group of size q is exponentially hard. Indeed, the
best-known algorithm for the problem runs in time O(√q). Setting q ≥ 2λ gets us the desired
property for γ = 1/2.

To complete the proof, we note that the only property ofA we needed was that when given an
element in the stream that has appeared before, A does not change its state at all. This property
holds for many F0 estimation algorithms, such as the one-shot F0 algorithm of [KNW10b], and
the F0 tracking algorithm of [Bła18]. Thus we can simply use the F0 tracking algorithm of
[Bła18], which results in the space complexity as stated in the theorem.

339

340

Chapter 8

Streaming Algorithms for Earth Movers
Distance

In this chapter, we study streaming algorithms for the Earth Movers Distance (EMD), which is a
classic geometric distance function. The EMD between two multi-sets A,B ⊂ Rd, each of size
s, is the minimum cost of a perfect bipartite matching between the points in A and B, where cost
is measured by distance in the metric – most commonly, the L1 metric is used.1 In a streaming
context, the algorithm sees the points in A = {a1, . . . , as}, B = {b1, . . . , bs} one at a time, in an
arbitrary order; we allow points to be both inserted and deleted. For simplicity, we now restrict
our attention to points lying the in hypercube {0, 1}d.2

Computational aspects of EMD, and more generally geometric minimum cost matchings,
consistently arise in multiple areas of computer science [RTG00b, PC19]. Efficient computation
of EMD, however, has been a well-known bottleneck in practice [Cut13, GCPB16, AWR17,
LYFC19, BDI+20]. In particular, exact computation or even (1 + ε) approximations of the
EMD between points, even lying in Euclidean space, is known require Ω(s2) runtime under
common fine-grained complexity assumptions [Roh19]. This has motivated many works from
the theoretical perspective to study approximation and sketching algorithms for EMD [Cha02,
IT03, AIK08b, ABIW09, AS14, BI14, ANOY14, She17, KNP19, BDI+20].

The primary and most successful analytical framework for developing fast offline approxi-

1More generally, one can define EMD between weighted multisets, lying in general metric spaces. For our
purposes, we can assume the sets are equi-sized without loss of generality, and we will focus on the case ofRd.

2This step will be without loss of generality for our purposes, due to isometric embeddings from (Rd, `1) into
{0, 1}d′ . Although the dimension can increase significantly here, our results demonstrate Õ(log s) approximations,
which are therefore independent of the ambient dimension.

341

mation algorithms, as well as streaming algorithms, is the so called method of randomized tree

embeddings [Bar96, Bar98, CCG+98, FRT04]. In this method, one recursively and randomly
partitions the ambient space {0, 1}d, creating a recursion tree T . The points in A ∪ B are then
mapped to leaves of the tree based on which pieces of the space partition they lie in. One then
assigning positive weights to the edges of T to define a tree metric. Finally, one computes the
EMD in the resulting tree metric. Crucially, the EMD between sets of points in a tree metric
can be isometrically embedded into the L1-norm, and therefore one obtains extremely efficient
sketching and streaming algorithms (due to the existence efficient L1 sketches). The resulting
data structure is broadly referred to as a quadtree [Sam84].

It is known that, when run on s-point multisets A,B ⊂ {0, 1}d, the quadtree algorithm yields
a O(min{log s, log d} log s) approximation to the EMD; moreover, it is known that the cost of
the quadtree can be maintained in a stream using at most O(log ds) bits of space [AIK08b,
BDI+20]. Besides sketching, the quadtree algorithm itself is useful from the perspective of
offline algorithms, since it is the best known linear time approximation algorithm for computing
EMD. Prior to our results, this approximation was the state of the art known for computing EMD
in a stream, or in linear time in an offline setting.

In this chapter, we present an improved analysis of the quadtree, showing that the approxima-
tion achieved is in fact Θ̃(log s), instead of the prior known O(min{log s, log d} log s). This im-
mediately improves the state of the art for linear time approximations of high-dimensional EMD.
On the other hand, it does not immediately result in streaming algorithms with the improved ap-
proximation; roughly, this is due to the fact that the edge weights utilized in the quadtree data
structure we consider are data-dependent (precisely the same edge weights have been previously
considered in the literature [BDI+20]). Nevertheless, by extending the Lp sampling techniques
developed in Chapter 3, we design streaming algorithms for EMD with the new Θ̃(log s) approx-
imation.

Specifically, we give a two-pass streaming algorithm that gives a Õ(log s) approximation
in poly(log s, log d)-bits of space. With several additional technical insights, we demonstrate
how this algorithm can be compressed to a single, one-pass streaming algorithm, at the cost of
a small additive error of εs, in space O(1

ε
) · poly(log s, log d). Since the distance between any

two non-identical points is least 1, this algorithm gives a multiplicative Õ(log s) approximation
in Õ(d · poly(log s)) space, so long as |A ∩ B| ≤ (1 − ε)s. The main technical contribution
for the sketch is the development of specialized algorithms for a generalization of Lp sampling,
known as sampling with meta-data. Specifically, our algorithm builds on the precision sampling
framework introduced in Chapter 3,

342

The materials in this chapter are based on a manuscript with Xi Chen, Amit Levi, and Erik
Waingarten [CJLW20b].

Highlighted Contributions

The main contributions of this chapter are as follows:

• An improved analysis of the classic, offline quadtree Algorithm, demonstrating that it
yields a Θ̃(log s)-approximation for EMD, instead of a O(min{log s, log d} log s) approx-
imation (Section 8.4).

• A two-pass streaming algorithm for approximating EMD to multiplicative error Θ̃(log s),
using poly(log s, log d)-bits of space (Section 8.5).

• A one-pass streaming algorithm for approximating EMD to multiplicative error Θ̃(log s)
and additive error εs, using d · poly(log s, log d, 1

ε
)-bits of space (Section 8.6).

8.1 Background

Let (X, dX) be a metric space. Given two (multi-)sets A,B ⊆ X of size |A| = |B| = s, the
Earth Mover distance (EMD) between A and B is

EMDX(A,B) = min
matching
M⊂A×B

∑
(a,b)∈M

dX(a, b).

Computational aspects of EMD, and more generally, geometric minimum cost matchings con-
sistently arise in multiple areas of computer science [RTG00b, PC19], and its non-geometric
version is a classic algorithms topic [Kuh55, Mun57, EK72, AMO93]. Efficient computation
of EMD, however, has been a well-known bottleneck in practice [Cut13, GCPB16, AWR17,
LYFC19, BDI+20] which motivated many works from the theoretical perspective to study ap-
proximation and sketching algorithms for EMD [Cha02, IT03, AIK08b, ABIW09, AS14, BI14,
ANOY14, She17, KNP19, BDI+20] in both low- and high-dimensional settings. A particularly
relevant example of EMD in high dimensions comes from document retrieval and classification,
a topic that received a remarkable amount of attention [KSKW15b]. Each document is repre-
sented as a collection of vectors given by embedding each of its words into a geometric space

343

[MSC+13, PSM14], and the distance between documents (as their similarity measure) is high-
dimensional EMD, aptly named the Word Mover’s Distance.

8.1.1 Contributions

We study a natural “divide-and-conquer” algorithm for estimating EMDX(A,B), when the un-
derlying metric space is the high-dimensional hypercube {0, 1}d with `1 distance. The algorithm
and analysis will be especially clean in this setting, since random coordinate sampling gives a
simple partitioning scheme for the hypercube. Our analysis extends, via metric embeddings, to
approximating EMDX(A,B) when X = (Rd, ‖ · ‖p) is an `p space with p ∈ [1, 2] (see Sec-
tion 8.11; we focus on {0, 1}d with `1 distance in the rest of the chapter due to its simplicity).3

At a high level, the algorithm recursively applies randomized space partitions and builds a
rooted (randomized) tree. Each point of A and B then goes down to a leaf of the tree, and
the matching is formed with a bottom-up approach. The description of the algorithm, named
COMPUTEEMD, is presented in Figure 8.1. More formally, COMPUTEEMD(A,B, h) takes
three inputs, where h specifies the depth of the tree left and A,B ⊆ {0, 1}d but their sizes do
not necessarily match. It returns a triple (M,A′, B′) where M is a maximal partial matching
between A and B, and A′ ⊂ A and B′ ⊂ B are the unmatched points. (Note that A′ and B′ will
be empty whenever |A| = |B| since M is maximal, and this will be the case in the initial call.)
The algorithm samples a random coordinate i ∼ [d] in order to partition {0, 1}d into two sets
(according to the value of coordinate i), recursively solves the problem in each set, and matches
unmatched points arbitrarily.

Our first result is an improved analysis of the approximation the algorithm achieves.

Theorem 94. Let A,B ⊂ {0, 1}d be any two multi-sets of size s. Then, with probability at least

0.9, COMPUTEEMD(A,B, d) outputs a tuple (M, ∅, ∅), where M is a matching of A and B

satisfying

EMD(A,B) ≤
∑

(a,b)∈M
‖a− b‖1 ≤ Õ(log s) · EMD(A,B).

Moreover, COMPUTEEMD runs in time linear in the input size sd.

3In particular, [KSKW15b] considers high-dimensional EMD over Rd with `2. Our results also extend to com-
puting EMDX(µA, µB), where µA and µB are arbitrary distributions supported on size-s setsA andB, respectively,
and the goal is to approximate the minimum expectation of ‖a − b‖1, where (a, b) ∼ µA,B for a coupling of µA
and µB .

344

COMPUTEEMD (A,B, h)

Input: Two multi-sets A,B ⊆ {0, 1}d and a nonnegative integer h.
Output: A tuple (M,A′, B′), where M is a maximal matching between A and B, and
A′ ⊂ A and B′ ⊂ B are points not participating in the matching M .

1. Base Case: If |A| = 0 or |B| = 0 or h = 0, or there is a single point x ∈ {0, 1}d
where A = {x, . . . , x} and B = {x, . . . , x}, return (M,A′, B′), where M is an
arbitrary maximal partial matching between A and B, and let A′ ⊂ A and B′ ⊂ B be
the left-over points. When h = 0, M should match as many identical pairs of points
of A and B as possible.

2. Divide: Otherwise, sample i ∼ [d] uniformly at random, and consider the four
subsets

A1 = {a ∈ A : ai = 1} A0 = {a ∈ A : ai = 0}
B1 = {b ∈ B : bi = 1} B0 = {b ∈ B : bi = 0} .

Make two recursively calls: run COMPUTEEMD(A1, B1, h− 1) to obtain
(M1, A

′
1, B

′
1) and COMPUTEEMD(A0, B0, h− 1) to obtain (M0, A

′
0, B

′
0).

3. Conquer: Find an arbitrary maximal matching ML between A′1 ∪ A′0 and B′1 ∪B′0,
and return (M1 ∪M0 ∪ML, A

′, B′), where A′, B′ are unmatched points of A,B,
respectively.

Figure 8.1: The COMPUTEEMD algorithm.

The above algorithm is not new, and falls within the framework of hierarchal methods for ge-
ometric spaces, building on what is broadly referred to as a quadtree [Sam84]. In fact, essentially
the same tree structure is studied in [AIK08b, BDI+20]. In the rest of the chapter we will follow
this convention and name the tree a quadtree, in which each node corresponds to a recursive call
and is associated with a subcube of {0, 1}d. Leaves of this tree correspond to the base case in
COMPUTEEMD.

Prior to our work, the analytical framework for studying tree-based algorithms for EMD
is the method of randomized tree embeddings [Bar96, Bar98, CCG+98, FRT04]. For example,
[AIK08b] consider sampling a random quadtree and assigning positive weights to its edges to de-
fine a tree metric. By studying the worst-case distortion of the original points in the randomized
tree metric (given by the quadtree and weights), the analysis shows that the cost of the bottom-
up matching achieves an O(min{log s, log d} log s)-approximation to EMD.4 We note that this

4In particular, [AIK08b] proves a O(log d log s)-distortion bound for embedding into `1, which would naively
result in a O(log d log s)-approximation to EMD. We note that even though the expected cost of the matching
output by the bottom-up approach is an O(log d log s)-approximation to EMD(A,B), the matching output is an
O(min{log d, log s} log s)-approximation with probability 0.9. See Section 8.7.

345

method of randomized tree embeddings is the de-facto technique for analyzing tree-based al-
gorithms for EMD in both low- and high-dimensions [Cha02, IT03, Ind07, AIK08b, ABIW09,
BI14, BDI+20]. It has the added benefit of producing an embedding of EMD into `1, which
immediately implies sketching and nearest neighbor search algorithms.

Our work directly improves on [BDI+20] (their Theorem 3.5 is analogous to Theorem 94
with a bound of O(log2 s)), who (essentially) study COMPUTEEMD in the context of similarity
search. Especially compelling are their experimental results, which show that the quality of
the matching output by the quadtree significantly outperforms the cost of that same matching
when measured with respect to distances in the tree embedding. This empirical observation
is immensely useful in practice, since computing the cost of the matching incurs a relatively
minor overhead. From a theoretical perspective, the observation suggests an avenue for improved
analyzes, which in particular, should not heavily rely on the worst-case distortion of randomized
tree embeddings. Theorem 94 gives a sound theoretical explanation to this empirical observation.

Theorem 94 is tight for COMPUTEEMD up to poly(log log s) factors (see Section 8.8). Con-
ceptually, our analysis goes beyond worst-case distortion of randomized tree embeddings and
implies the best linear time approximation for EMD over the hypercube. We note that the proof
will not give an embedding into `1. Rather, Theorem 94 suggests an approach to improved ap-
proximations by linear sketches; implementing this approach, however, will require additional
work, which we discuss next. Besides algorithms based on the quadtree, another class of algo-
rithms proceed by sampling a geometric spanner [HPIS13] and utilizing min-cost flow solvers
[She17]; these algorithms may achieve O(1/ε)-approximations but require ds1+ε · polylog(s, d)
time. It is also not clear whether these algorithms and their analysis imply efficient sketching
algorithms.

Streaming Algorithms for EMD

We first recall the notion of linear sketches, which recall from Section 1.1 imply the existence of
turnstile streaming algorithms. Given an input vector f ∈ Rn and a function ϕ(f) : Rn → R that
we would like to approximate, a (one-round) linear sketch generates a random matrix S1 ∈ Rk×n

and outputs an approximation ϕ̃ = ϕ̃(S1,S1f) to ϕ(f) based only on the matrix S1 and vector
S1f . A two-round linear sketch is allowed to generate a second random matrix S2, from a
distribution depending on (S1,S1f), and output ϕ̃ = ϕ̃(S1,S1f,S2,S2f). The space of a linear
sketch (resp. two-round linear sketch) is the number of bits needed to store S1f (resp. S1f and

346

S2f).5

For sketching EMD over {0, 1}d, we encode two size-s multi-sets A,B ⊂ {0, 1}d as an input
vector f = fA,B ∈ R2·2d , where for x ∈ {0, 1}d, fx and fx+2d contains the number of occurrences
of x ∈ A and x ∈ B, respectively. We let ϕ(fA,B) = EMD(A,B). One- and two-round
linear sketches immediately result in one- and two-pass streaming algorithms in the turnstile

model (where insertions and deletions of points are allowed), as well as one- and two-round two-
party communication protocols, and one- and two-round MPC algorithms. (See Section 8.5 and
Section 8.12 for more detail.)

Our first result for sketching EMD shows that it is possible to losslessly capture the approxi-
mation of Theorem 94 with a two-round linear sketch.

Theorem 95. There is a two-round linear sketch using poly(log s, log d) bits of space which,

given a pair of size-s multi-sets A,B ⊂ {0, 1}d, outputs η̂ ∈ R satisfying

EMD(A,B) ≤ η̂ ≤ Õ(log s) · EMD(A,B) (8.1)

with probability at least 2/3.

Theorem 95 implies a two-pass streaming algorithm as well as a two-round communication
protocol for approximating EMD with the same space and approximation factors. Previously, the
best sublinear space linear sketch (or streaming algorithm) for any number of rounds (or passes)
utilizes the `1-embedding [AIK08b] and achieves approximation O(min{log s, log d} log s).

Next we show that the two-round linear sketch of Theorem 95 can be further compressed into
a single round, albeit at the cost of a small additive error.

Theorem 96. Given ε ∈ (0, 1), there is a (one-round) linear sketch usingO(1/ε)·poly(log s, log d)
bits of space which, given a pair of size-s multi-sets A,B ⊂ {0, 1}d, outputs η̂ ∈ R satisfying

EMD(A,B) ≤ η̂ ≤ Õ(log s) · EMD(A,B) + εsd

with probability at least 2/3.

5For now, consider the random oracle model, where the algorithm is not charged for the space required to store
the random matrices S1,S2. Using standard techniques and an application of Nisan’s pseudo-random generator, we
show that (in our application) this random oracle assumption can be dropped with a small additive Õ(d) in the space
complexity (see Corollaries 8.12.1 and 8.6.10). The Õ(d) is a minor overhead given that each update of A ∪ B in
the streaming model requires d+ 1 bits to store.

347

Notice that EMD(A,B) ≥ s when A∩B = ∅, in which case Theorem 96 yields an Õ(log s)
approximation in Õ(d) space. More generally, if the Jaccard Index of A and B is bounded away
from 1, we have the following corollary.

Corollary 8.1.1. Given ε ∈ (0, 1) there is a (one-round) linear sketch usingO(d/ε)·poly(log s, log d)
space which, given size-s A,B ⊂ {0, 1}d such that |A ∩ B|/|A ∪ B| ≤ 1 − ε, outputs η̂ ∈ R
satisfying

EMD(A,B) ≤ η̂ ≤ Õ(log s) · EMD(A,B)

with probability at least 2/3.

Theorem 96 implies a one-pass streaming and a one-round communication protocol using the
same space and achieving the same approximation. The proof of Theorem 96 involves the design
of several new sketching primitives, which may be of broader interest. Specifically, our linear
sketch needs to address the problem of sampling with meta-data (see Section 8.2), which can be
used to approximate data-dependent weighted `1-distances. Its analysis extended and generalized
error analysis of the precision sampling framework [AKO11, JST11?] to multivariate sampling,
and provides new insights into the power of this framework.

8.2 Technical Overview

Analysis of Quadtrees

We start with an overview of the proof of Theorem 94. The running time analysis is straightfor-
ward so we focus on (8.1). The first inequality of (8.1) holds trivially. It suffices to show that
the matching M returned by COMPUTEEMD has cost in the original metric upperbounded by
Õ(log s) · EMD(A,B) with probability at least 0.9.

Compressed Quadtree and Worst-Case Analysis. The execution of COMPUTEEMD in-
duces a complete binary tree T0 of depth d which we refer to as a Quadtree6. Each internal node
is labelled by a coordinate i sampled from [d]; its two children correspond to further subdividing
{0, 1}d in half by fixing coordinate i to be either 0 or 1. We use Su ⊂ {0, 1}d for each node u to
denote the subcube associated with it. After sampling a Quadtree T0, each point of A and B is
assigned to the leaf that contains it and the matching M is obtained in the bottom-up fashion as

6Note that the definition given here is slightly different from its formal definition at the beginning of Section 8.4,
where a Quadtree will have depth 2d. This difference is not important for the overview.

348

in Figure 8.1.

The first step is a simple compression of the Quadtree T0. To this end, we only keep the root
of T0 (at depth 0) and its nodes at depths that are powers of 2; we also keep subcubes Su associ-
ated with them. All other nodes are deleted and their adjacent edges are contracted (see Figure
8.2). The resulting “compressed Quadtree” T has depth h = O(log d), where each node u at
depth i has 22i−1 children and is associated with a subcube Su ⊆ {0, 1}d. An execution of COM-
PUTEEMD can now be viewed as first drawing a random compressed Quadtree T, assigning
points to its leaves, and then building M from bottom up.

Compressed Quadtrees are essentially the same as tree structures used in [AIK08b, BDI+20].
It will be helpful to begin with a recap of the analysis of tree embedding of [AIK08b] before
presenting an overview of our new techniques.7 [AIK08b] assigns a weight of d/2i to each edge
from a node at depth i to a node at depth i+1 in a compressed Quadtree T. This defines a metric
embedding ϕ : A ∪ B → T by mapping each point to a leaf of T. Their analysis bounds (from
both sides) the cost of the bottom-up matching in the resulting tree metric. Their choice of edge
weights is motivated by the observation that two points x, y ∈ {0, 1}d with ‖x− y‖1 = d/2i are
expected to have their paths diverge for the first time at depth i. If this is indeed the case then
dT(ϕ(x), ϕ(y)) would be ‖x− y‖1 up to a constant.

To analyze the cost of the bottom-up matching in T, one studies the distortion of this embed-
ding. Firstly, for any λ > 1 and x, y ∈ {0, 1}d, it is easy to verify that

Pr
T

[
dT(ϕ(x), ϕ(y)) < 1

λ
· ‖x− y‖1

]
≤
(

1− ‖x− y‖1

d

)1+2+···+2

⌊
log2

(
λd

‖x−y‖1

)⌋
≤ 2−Ω(λ).

Thus by a union bound, for all x, y ∈ A ∪B we have

dT(ϕ(x), ϕ(y)) ≥ Ω
(

1
log s

)
· ‖x− y‖1 (8.2)

with probability at least 1− 1/poly(s), which essentially means that we can assume (8.2) in the
worst case. Thus, the cost of the bottom-up matching in the tree metric is at least Ω(1/ log s) ·
EMD(A,B). Furthermore, given points x, y with ‖x − y‖1 = Θ(d/2j), the probability that
paths of x, y diverge at level j − k is at Θ(2−k) for each k, and when it does, dT(ϕ(x), ϕ(y)) =

7We refer the reader to a formal treatment of COMPUTEEMD via tree embeddings in Section 8.7.

349

‖x− y‖1 ·Θ(2k). Since j ≤ h = O(log d),

E
[
dT(ϕ(x), ϕ(y))

]
≤ ‖x− y‖1 +

j∑
k=0

Θ(2−k) · ‖x− y‖1 ·Θ(2k) = O(log d) · ‖x− y‖1. (8.3)

This, combined with the fact that the bottom-up matching is optimal for a tree metric, implies that
the expected cost of the bottom-up matching in the tree metric is at mostO(log d) ·EMD(A,B).8

Together they yield the aforementioned O(log s log d) approximation [AIK08b]. In fact, the
analysis is tight: see Section 8.9 for instances where the cost of the matching in the tree metric
can be both a (log d)-factor larger and a (1/ log s)-factor smaller than the EMD.

The Challenge of Worst-Case Distortion. Let Av = {a ∈ A : a ∈ Sv} be the set of points
in A that pass through v, and let Bv be defined similarly. Then (8.2) upperbounds the diameter of
Av ∪Bv in the original metric with high probability, i.e., every x, y ∈ Av ∪Bv has their distance
‖x− y‖1 bounded by O(log s) · (d/2i) with high probability if v is at depth i. Intuitively, upper
bounds on diameters of Av ∪ Bv can be very helpful for bounding the cost of the bottom-up
matching in the original metric: If a ∈ A and b ∈ B are matched by COMPUTEEMD and their
root-to-leaf paths diverge first at v, then we can use the diameter of v to bound their contribution
‖a − b‖1. However, as suggested by instances in Section 8.9, the loss of O(log s) in (8.2) is the
best one can hope for in the worst-case.

Since the approximation we aim for is Õ(log s), it seems considering worst-case diameter
may be sufficient; however, (8.3) naively results in an additional O(log d)-factor loss in the ap-
proximation. Suppose that a ∈ A and b ∈ B are matched by the optimal matching and are at
distance ‖a−b‖1 = Θ(d/2j). As in (8.3), for every k ≤ j the root-to-leaf paths of a and bmay di-
verge at depth j−k with probability Θ(2−k). If, once a and b diverge at depth j−k, a is matched
to a point within distance d/2j−k · O(log s) (using the worst-case bound on the radii at depth
j− k), then once we evaluate the expectation of ‖a−M(a)‖1, where M(a) ∈ B is the matching
produced by COMPUTEEMD, we would get O(log d log s) · d/2j = O(log d log s) · ‖a− b‖1.

Inspector Payments. We setup the analytical framework to go beyond worst-case distortion,
and give the main geometric insights next. Our analytical strategy is similar, in spirit, to the
“accounting method” in amortized analysis. We consider a protocol carried out by an Inspec-

tor, who knows A,B, as well as the optimal matching M∗, and the Algorithm, who executes
COMPUTEEMD(A,B, d), building the compressed Quadtree T and the bottom-up matching M.

8The reason that this analysis can achieve approximation O(min{log s, log d} log s), as opposed to
O(log d log s) is that with probability 1−1/s, every x, y ∈ A∪B with ‖x− y‖1 = Θ(d/2j) diverges at depth after
j −O(log s).

350

As the algorithm executes, the inspector monitors the execution, and makes payments to the al-
gorithm using knowledge of M∗. Specifically, the inspector will track each pair (a, b) ∈ M∗,
and pays PAYT(a) for a as well as a payment PAYT(b) for b. The protocol effectively pro-
duces a coupling between the cost of the bottom-up matching M from T, and the payments the
inspector makes; we show that total payment can always cover the cost of M, and is at most
Õ(log s) · EMD(A,B) with probability 0.9.

Formally we let (v0(x), v1(x), . . . , vh(x)) denote the root-to-leaf path of x in T . For each
(a, b) ∈M∗,

PAYT (a) def=
∑
i∈[h]

1{vi(a) 6= vi(b)}
(
‖a− cvi(a)‖1 + ‖a− cvi−1(a)‖1

)
, (8.4)

where cv denotes the center-of-mass of Av ∪Bv:

cv
def= 1
|Av ∪Bv|

∑
x∈Av∪Bv

x,

and PAYT (b) is defined similarly. Intuitively, this payment strategy corresponds to an inspector
who tracks each pair (a, b) ∈ M∗, and whenever a and b first diverge in the tree at node v, pays
twice the distance between a (as well as b) and to the center-of-mass along the v-to-leaf paths of
a (as well as b).

In Lemmas 8.4.3 and 8.4.4, we show that for any T , the total inspector payments is sufficient
to cover the cost of the matching M produced by the Quadtree:

cost(M) =
∑

(a,b)∈M
‖a− b‖1 ≤

∑
(a,b)∈M∗

PAYT (a) + PAYT (b). (8.5)

The inspector payments (8.4) depend on the data A,B, as well as a compressed tree T in two
ways. The first is the depth when (a, b) ∈ M∗ first diverge, captured by the indicator 1{vi(a) 6=
vi(b)}. The second is the distance between a to centers-of-mass, which not only depends on
(a, b), but also on global properties of A∪B. At a high level, incorporating this second aspect is
the main novelty, since the distance between a and the center-of-mass of Av ∪ Bv is an average

notion of radii at v. In particular, the distance between a and the center-of-mass at v is at most
the average distance between a and points in Av ∪ Bv.9 Therefore, if the inspector pays a large
amount, then an average point in Av ∪ Bv is far from a (as opposed to the farthest point implied
by worst-case radii).

9This used the fact that `1 is a normed space.

351

Bounding Inspector Payments. The technically most challenging part is upperbounding the
expected total inspector payment (8.5), over a random compressed T, by Õ(log s) ·EMD(A,B).
For the remainder of this subsection, consider a fixed (a, b) ∈M∗ at distance ‖a−b‖1 = Θ(d/2j),
and we will upperbound the expectation of PAYT(a) + PAYT(b) for random T; furthermore,
consider the payment in PAYT(a) incurred from depth i after a and b have diverged. Namely,
by linearity of expectation, we want to upper bound E

[
‖a− cvi(a)‖1

]
for each depth i, where

the expectation is over T conditioned on already having diverged from b (the conditioning will
not heavily influence the geometric intuition, so we will forget about this for the rest of this
overview). Let vi = vi(a) be the vertex at depth i containing a, and let ci = cvi .

Similar to the worst-case bounds on radii, E [‖a− ci‖1] may still be d/2i · Ω(log s). For
instance, let i1 be a relatively large depth and for small ε ≈ 10−6, consider a set P1 of sε points
at distance ε log s · d/2i1 around a. Then, at depth i1 of a random tree T, a point in P1 traverses
down to node vi1 with non-negligible probability, roughly 1/s−ε. If no other points lie closer to
a than P1, then E [‖a− ci1‖1] = d/2i1 · Ω(ε log s), since in expectation, some points from P1

make it to vi1 and move the center-of-mass ci1 away from a. If this happened for every depth i,
the inspector would be in trouble, as there are O(log d) levels and a similar argument to that of
worst-case radii would mean they would pay O(log d log s) · ‖a− b‖1 in expectation.

However, we claim that if the arrangement of P1 resulted in E [‖a− ci2‖1] = d/2i1·Ω(ε log s),
the same situation will be more difficult to orchestrate for depth i2 ≤ i1−O(log log s). In partic-
ular, at depth i2, in order to have E [‖a− ci2‖1] = d/2i2 ·Ω(ε log s), there must be a set of points
P2 at distance d/2i2 · Ω(ε log s) which will cause ci2 to be far from a. However, it is no longer
enough to have |P2| = sε. The reason is that points of P1 in vi2 move the center-of-mass towards
a. Since points in P1 are at distance ε log s ·d/2i1 � d/2i2 from a, there will oftentimes be Ω(sε)
points from P1 in vi2 . In order to significantly affect the center-of-mass ci2 , vi2 must oftentimes
have at least sε/polylog(s) points from P2; otherwise, ci2 will be mostly an average of points in
P1. Since any given point from P2 traverses down to vi2 with probability roughly 1/sε, we must
have |P2| ≥ s2ε/polylog(s). This argument can only proceed for at most O(1/ε) depths before
|PO(1/ε)| > 2s, in which case we obtain a contradiction, since the points P1, . . . , PO(1/ε) must be
in A ∪B.

Generally, in order to move the center-of-mass ci of a vertex vi away from a multiple times

as the depth i goes down, the number of points around a at increasing distances must grow very
rapidly. More specifically, we show that if a depth i is “bad,” meaning that E [‖a− ci‖1] ≥
α · d/2i for some α = ω(log log s), then the number of points within a ball of radius d/(2i log s)
around a and within a larger ball of radiusO(log s·d/2i) around amust have increased by a factor

352

of exp(Ω(α)); this means the number of such depths i is at most ((log s)/α) · poly(log log s).
Combining this analysis and the fact that a and b must diverge in order to incur payment from
the inspector, we obtain our upper bound E [PAYT(a) + PAYT(b)] = Õ(log s) · ‖a− b‖1.

Sketching Algorithms

At a high level, our approach to sketching will involve sampling a compressed Quadtree T and
sketching approximations to the inspector payments. As demonstrated by Theorem 94, these
provide a good approximation to EMD(A,B). The first step is to consider a modified inspector
strategy I which is oblivious to M∗, while still achieving

EMD(A,B) ≤ I ≤ Õ(log s) · EMD(A,B) (8.6)

with probability at least 0.9 over T, and approximate I instead. (This I will be what we call the
cost of a compressed Quadtree in Section 8.4.) More specifically, letEi denote the set of directed
edges from depth i− 1 to i in a compressed Quadtree T, and let I = ∑

i∈[h] I i where

I i
def=

∑
(u,v)∈Ei

∣∣∣|Av| − |Bv|
∣∣∣ · ‖cv − cu‖1. (8.7)

The upper bound in (8.6) follows from upper bounding I by
∑

(a,b)∈M∗(PAYT(a) + PAYT(b)),10

and the lower bound follows from Lemma 8.4.3. Intuitively I measures the cost of moving all
unmatched points in Av∪Bv from the center-of-mass cv up to the center-of-mass cu of the parent
of v. A consequence of the proof of Theorem 94 is that we can truncate ‖cv − cu‖1 and consider

wu,v
def=

d log s

2i ‖cv − cu‖1 � d log s
2i

d
2i ‖cv − cu‖1 � d

2i

‖cv − cu‖1 o.w.

, (8.8)

since replacing ‖cv− cu‖1 with wu,v in (8.7) will still satisfies (8.6) with probability at least 0.89.
Every edge (u, v) satisfies ‖cv−cu‖ = O(d log s

2i) with high probability over a random compressed
Quadtree T, and considering d/2i whenever ‖cv − cu‖1 � d/2i only adds an additive O(log s) ·
EMD(A,B) to I (both are consequences of a simple analysis using worst-case distortion).

Both our one and two round sketching algorithms proceed as follows. First, consider drawing
10This can be seen by two applications of the triangle inequality, one to upper bound ||Av| − |Bv|| by∑
(a,b)∈M∗ 1{vi(a) 6= vi(b) and vi(a) = v or vi(b) = v}, and the second by ‖cvi(a)−cvi−1(a)‖1 ≤ ‖a−cvi(a)‖1 +

‖a− cvi−1(a)‖1.

353

a random compressed Quadtree T, and then for each i ∈ {0, . . . , h − 1} define the (implicit)
vector ∆i ∈ REi , indexed by directed edges from depth i− 1 to depth i, given by

∆i
u,v

def= |Av| − |Bv|.

Now consider the distribution Di, supported on edges Ei, given by sampling (u, v) ∈ Ei with
probability |∆i

u,v|/‖∆i‖1. Then for every i ∈ {0, . . . , h− 1}, we have

I i = ‖∆i‖1 · E
(u,v)∼Di

[wu,v] . (8.9)

Note that we can estimate ‖∆i‖1 with an L1-sketch (Theorem 8), and produce a sample (u,v) ∼
Di via the L1-sampling sketches described in Chapter 3. Furthermore, once we fix a sample
(u, v) ∈ Ei, we may estimatewu,v with L1-sketches as well. Specifically, the sketch of ‖cu−cv‖1

proceeds by storing |Au|, |Av|, |Bu|, and |Bv| using O(log s) bits, and storing L1-linear sketches
of

χA,u
def=

∑
a∈Au

a, χA,v
def=

∑
a∈Av

a, χB,u
def=

∑
b∈Bu

b, and χB,v
def=

∑
b∈Bv

b. (8.10)

Since cu = (χA,u+χB,u)/(|Au|+ |Bu|) and cv = (χA,v+χB,v)/(|Av|+ |Bv|), L1-linear sketches
of the above quantities suffice for estimating ‖cu − cv‖1.

We notice that by definition (8.8), wu,v is always bounded within d/2i and d log s/2i, so
that we may estimate (8.9) by sampling polylog(s) times from Di and computing the empirical
average of wu,v. This plan is straight-forward to implement with two-rounds of linear sketching.
In the first round, we produce the t = polylog(s) samples (u1,v1), . . . , (ut,vt) ∼ Di, as well
as an estimate of ‖∆i‖1. Then in the second round, we produce estimates of wu1,v1 , . . . , wut,vt

given knowledge of (u1,v1), . . . , (ut,vt) by the linear sketches of the vectors in equation (8.10).

The remaining challenge, however, is to produce (u,v) ∼ Di and an estimate of wu,v simul-

taneously. We call this problem sampling with meta-data, since the L1-linear sketches of (8.10)
will be the meta-data of the sample (u,v) ∼ Di needed to reconstruct wu,v.

Sampling with Meta-Data and One-Round Sketching. The key task of sampling with
meta-data is the following: for n, k ∈ N, we are given a vector x ∈ Rn and collection of meta-

data vectors λ1, λ2, . . . , λn ∈ Rk, and the goal is to sample i ∈ [n] with probability |xi|/‖x‖1 (or
more generally, |xi|p/‖x‖pp), and output both i and an approximation λ̂i ∈ Rk of the vector λi.
The challenge is to solve this problem with a small-space linear sketches of x and the meta-data

354

vectors λ1, . . . , λn. Notice that sampling with meta-data is a generalization of Lp sampling.

It is not hard to see that sampling with meta-data is exactly the problem we seek to solve
for linear sketching of EMD.11 We refer the reader to Section 8.10 for generic bounds on sam-
pling from meta-data. However, our application to EMD for Theorem 96 will require significant
additional techniques, which we detail next.

Our algorithm utilizes the precision sampling framework from Chapter 3 for Lp sampling.
Recall that the idea is to produce, for each i ∈ [n] an independent exponential random variable
ti ∼ Exp(1), and construct a “scaled vector” z ∈ Rn with coordinates zi = xi/ti. One then
attempts to return the index imax = argmaxi∈[n] zi, since

Pr
t1,...,tn∼Exp(1)

[
argmax
i′∈[n]

|xi′ |
ti′

= i

]
= |xi|
‖x‖1

.

To find the the index imax with a linear sketch, we can use a “heavy-hitters” algorithm, specifi-
cally the Count-Sketch from Section 2.3.2. Recall that Count-Sketch with error ε ∈ (0, 1) allows
us to recover an estimate z̃ to z satisfying (roughly) ‖z̃ − z‖∞ ≤ ε‖z‖2. Then one can show
that argmaxi′∈[n] |z̃i′ | is close to being distributed as |xi|/‖x‖1.12

In order to sample with meta-data, our sketch similarly samples independent exponential
t1, . . . , tn ∼ Exp(1) and applies a Count-Sketch data structure on z ∈ Rn, where zi = xi/ti,
and obtains an estimate z̃ of z. In addition, for each ` ∈ [k], we apply a Count-Sketch data struc-
ture with error ε for the vector w` ∈ Rn given by the `-th coordinates of the meta-data vectors
λi/ti, namelyw`

i = (λi)`/ti.13 From this we obtain an estimate w̃` ofw`. The insight is the fol-
lowing: suppose the sample produced is i∗ ∈ [n], which means it satisfies z̃i∗ ≈ maxi∈[n] |xi|/ti.
Then the value ti∗ should be relatively small: in particular, we expect ti∗ to be Θ(|xi∗|/‖x‖1).
When this occurs, for each ` ∈ [k], the guarantees of Count-Sketch imply that the estimate
ti∗ · w̃`

i∗ satisfies

∣∣∣ti∗ · w̃`
i∗ − (λi∗)`

∣∣∣ = ti∗
∣∣∣w̃`

i∗ −w`
i∗

∣∣∣ ≤ εti∗‖w`‖2

(
= O

(
ε|xi∗| ·

‖(λ·)`‖1

‖x‖1

)
in expectation

)

11Namely, x is the vector ∆i (after hashing the universe Ei to size poly(s), since ∆i is a 2s-sparse vector), and
the meta-data vectors are the L1-linear sketches of (8.10) for each (u, v) ∈ Ei. In other words, n = poly(s), and
k = polylog(s, d).

12We remark that prior works [AKO11, JST11, JW18b] using this framework for `p sampling require an additional
statistical test, where the algorithm outputs FAIL when the test fails. The statistical test adds a layer of complexity
to the presentation of an otherwise elegant algorithm, and we observe in Lemma 8.6.4 that such a statistical test is
unnecessary, up to minor errors in sampling distribution.

13Since the Count-Sketch data structures will be of size polylog(n), the final size of the sketch is k · polylog(n).

355

where (λ·)` ∈ Rn is the vector of `-th coordinates of the meta-data λ1, . . . , λn. In other words,
if the size of (λi∗)` is comparable to |xi∗|, and if the ratio ‖(λ·)`‖1/‖x‖1 of the meta-data norms
to the norm of x is bounded, then ti∗w̃`

i∗ is a relatively good approximation to (λi∗)`. Repeating
the above argument for every ` ∈ [k] recovers an approximation for λi∗ ∈ Rk.

In our application, the vector x ∈ Rn is given by ∆i, and the meta-data are the L1-linear
sketches of (8.10), as well as counts |Av|, |Au|, |Bv|, and |Bu| needed to reconstruct wu,v. At a
high level, applying the above algorithm results in an L1-sample (u,v) ∼ Di, and an approxi-
mation to the L1-linear sketches of (8.10) and approximations to the counts |Au|, |Av|, |Bu|, and
|Bv|, where the error guarantee is additive and linearly related to the ratio between the sum of
magnitudes of the coordinates we seek to recover and ‖∆i‖1 (this plan will runs into a technical
issue, which we will soon expand on).

In order to see how this may be implemented, consider the problem of recovering the L1-
linear sketch of χA,v. Recall that Indyk’s L1-sketch [Ind06] (Theorem 8) has coordinates given
by inner products of (8.10) with vectors of independent Cauchy random variables, which means
that the `-th coordinate in the L1-linear sketch of χA,v is given by

1
median(|C|)

d∑
j=1

Cj

∑
a∈Av

aj

 ,
where C1, . . . ,Cd are independent Cauchy random variables C and median(|C|) is the median
of the distribution.14 From the fact that C1, . . . ,Cd are Cauchy random variables, the above sum
is expected to have magnitude O(log d) · O(d) · |Av|. Since the error guarantee depends on the
sum of magnitudes across the `-th coordinate of all meta-data vectors (one for each edge in Ei),
if we sample (u,v) ∼ Di, the additive error on the `-th coordinate of the L1-sketch of χA,v we
recover becomes

ε ·
|∆i

u,v|
‖∆i‖1

·O(log d) ·O(d) ·
∑
v

|Av| = O

(
ε · sd log d ·

|∆i
u,v|

‖∆i‖1

)
, (8.11)

where we used the fact that {Av}v partitions A in order to say
∑
v |Av| = s. Furthermore, if

‖∆i‖1 � ε0s2i/(log d log s), then from (8.9) and the fact wu,v ≤ d log s/2i, we can already
conclude that I i � ε0sd/ log d, which is a negligible (since we allow ε0sd additive error, and
there are at most O(log d) depths), so that we may assume ‖∆i‖1 = Ω̃(εs2i). For these depths
where ‖∆i‖1 is sufficiently large, the additive error in (8.11) incurred will be smaller than a
typical `-th coordinate of the sketch of χA,v, giving us a coordinate-wise relative error of the

14Namely, median(|C|) = sup{t ∈ R : PrC∼C [|C| ≤ t] ≤ 1/2.

356

sketch.

The above is sufficient for recovering a relative error approximation to the L1-linear sketch
of χA,v and χB,v for the vertices v at depth i, by setting ε to be a small enough 1/polylog(s, d).
However, the same argument loses additional O(s)-factors when recovering approximations to
L1-linear sketches of χA,u and χB,u for the vertices u at depth i − 1. The reason is that the size
of ‖(λ·)`‖1 becomes O(log d) · O(d) ·∑v |Aπ(v)|, where π(v) is the parent of v; in some cases,
this is Ω(s2d log d). Intuitively, the problem is that while the the multi-sets {Av}v and {Bv}v
partition A and B, the multi-sets {Aπ(v)}v and {Bπ(v)}v may duplicate points s times, causing
the magnitudes of coordinates in the L1-linear sketches to much larger. This additional factor of
O(s) would require us to make ε = 1/(s · polylog(s, d)), increasing the space complexity of the
sketch to Õ(s), effectively rendering it trivial.15

To get around this issue, we utilize a two-step precision sampling with meta-data algorithm.
We first sample u∗ with probability proportional to the L1-norm of ∆i restricted to coordinates
corresponding to the children of u∗; namely, we sample u∗ with probability proportional to∑
v:π(v)=u∗ |∆i

u∗,v|.16 Since the multi-sets {Au}u and {Bu}u partition A and B, and we can
recover L1-linear sketches for χA,u∗ and χB,u∗ up to relative error, as well as approximations to
the counts for |Au∗| and |Bu∗|. Once we have u∗, we apply precision sampling with meta-data
once more, to sample a child v∗ from u∗ proportional to |∆i

u∗,v∗ |. Specifically, we generate a
second set of exponentials {tv}v, one for each child node v. In order to ensure that the sample
produced by the second sketch actually returns a child v∗ of u∗, and not a child of some other
node, we crucially must scale the vector ∆i by both the child exponentials {tv}v as well as the
parent exponentials {tu}u from the first sketch. Thus, we analyze the twice-scale vector z with
coordinates zv = ∆i

u,v/(tutv), and attempt to find the largest coordinate of z. Importantly, notice
that this makes the scaling factors in zv no longer independent: two children of the same parent
share one of their scaling factors. Moreover, the Cauchy random variables used in the L1-linear
sketches must also be the same for children with the same parent. Executing this plan requires a
careful analysis of the behavior of norms of vectors scaled by several non-independent variables,
as well as a nested Count-Sketch to support the two-stage sampling procedure.

15In particular, a Õ(s/ε2)-size sketch may proceed by taking L1-sketches of the s vectors in A and B such that
all pairwise distances are preserved, giving a (1 + ε)-approximation to EMD(A,B).

16This value must be approximated via a Cauchy sketch, since the L1 norm of the children is norm of u∗ is not a
linear function.

357

8.3 Quadtrees and Compressed Quadtrees

Fix s, d ∈ N, and consider two multi-sets A,B ⊂ {0, 1}d of size |A| = |B| = s. We write

cost(M) =
∑

(a,b)∈M
‖a− b‖1

to denote the cost of a matching M between A and B (in the original `1 distance). For conve-
nience, we will assume without loss of generality that d is a power of 2 and write h = log 2d =
log d+ 1. Given a vertex v in a rooted tree T , if v is not the root then we use the notation π(v) to
denote the parent of v in T .

We start with a formal definition of Quadtrees used in this paper:

Definition 8.3.1 (Quadtrees). A Quadtree is a complete binary tree T0 of depth 2d. We say a

node v is at depth j if there are j + 1 nodes on the root-to-v path in T0 (so the root is at depth

0 and its leaves are at depth 2d). Each internal node of T0 is labelled a coordinate i ∈ [d], and

we refer to its two children as the “zero” child and the “one” child. A random Quadtree T0 is

drawn by sampling a coordinate i ∼ [d] uniformly and independently for each internal node of

depth at most d as its label; every internal node of depth d+ j, j ∈ [d], is labelled j.

Given a Quadtree T0, each point x ∈ {0, 1}d can be assigned to a leaf of T0 by starting at the
root and repeatedly going down to the “zero” child if xi = 0 for the label i of the current node, or
to the “one” child if xi = 1. Alternatively one can define a subcube Sv ⊆ {0, 1}d for each node
v: The set for the root is {0, 1}d; If (u, v) is an edge, u is labelled i, and v is the “zero” (or “one”)
child of u, then Sv = {y ∈ Su : xi = 0} (or Sv = {y ∈ Su : xi = 1}). Each point x ∈ {0, 1}d

is then assigned to the unique leaf v with x ∈ Sv. Given a Quadtree T0, we write Av to denote
A ∩ Sv and Bv to denote B ∩ Sv for each node v of T0 (thus Av contains all points a ∈ A such
that v is on its root-to-leaf path in T0, and the same holds for Bv).

Next we define the compressed version of a Quadtree. Roughly speaking, we compress a
Quadtree T0 by contracting all nodes of T0 at depths that are not powers of 2, and keeping every
other node as well as its subcube Sv (including the pair of multi-sets Av and Bv).

Definition 8.3.2 (Compression). Given any Quadtree T0 of depth 2d, we write T = COMPRESS(T0)
to denote the following rooted tree of depth h = log 2d. For each i = 1, . . . , h, there is a one-

to-one correspondence between nodes of T at depth i and nodes of T0 at depth 2i; the root of

T corresponds to the root of T0. Node v is a child of u in T if the corresponding node of v is

358

Figure 8.2: The Compression Operation. The Quadtree T0 on the left-hand side is a complete
binary tree, and its COMPRESS(T0) is represented on the right-hand side. The compression
contracts nodes which are not at a depth that is a power of 2, which in this case, corresponds
to nodes at depth 3 (labeled in blue). Note that every node of T naturally corresponds with a
node of T0 (in particular, we have displayed nodes as remaining in the same relative position to
illustrate this point).

a descendant of the corresponding node of u in T0. Each node v in T is labelled a subcube Sv
and a pair of multi-sets Av and Bv, copied from its corresponding node in T0. See Figure 8.2 for

an example of COMPRESS(T0). A random compressed Quadtree T is drawn by first drawing a

random Quadtree T0 and then setting T = COMPRESS(T0).

The key property we use about a random compressed Quadtree is summarized in the lemma
below (which follows directly from its definition):

Lemma 8.3.3. Fix any point x ∈ {0, 1}d. Let T be a random compressed Quadtree and

v0,v1, . . . ,vh be the root-to-leaf path of x in T. Then (Sv1 , . . . , Svh−1) can be drawn equiv-

alently as follows17: First draw I0, I1, . . . , Ih−2 where I0, I1 ∼ [d] and Ii ∼ [d]2i−1
for each i ≥ 1

independently and uniformly at random, and set Svi to be the subcube of {0, 1}d that agrees with

x on all coordinates in I0, . . . , Ii−1.

Remark 97. Both works of [AIK08b, BDI+20] use a tree structure that is very similar to a com-
pressed Quadtree as defined above. They consider a slightly different divide-and-conquer algo-
rithm which at depth i, samples 2i coordinates from [d] and divides into 22i branches according
to settings of {0, 1} to these 2i coordinates. The resulting tree structure is akin to a compressed
Quadtree, in which each node at depth i has 22i children. As we will see, our analysis apply to
trees of [AIK08b, BDI+20] as well given that the lemma above also holds trivially for their trees.

17Note that Sv0 is trivially {0, 1}d and Svh
is trivially {x}.

359

8.4 Analysis of Compressed Quadtrees

Let A,B be multi-sets of {0, 1}d of size s, and let M∗ ⊂ A×B be an optimal matching so that

EMD(A,B) =
∑

(a,b)∈M∗
‖a− b‖1.

We prove Theorem 94 in this section. For the time complexity of COMPUTEEMD(A,B, d),
we note that the running time of each call with h > 1 (excluding running time from its recursive
calls) is linear in |A| + |B|, the total size of its two input sets. On the other hand, the running
time of each call with h = 0 can be bounded by O((|A| + |B|)d). (Recall that we need to find
a maximal partial matching M that matches as many identical pairs of points of A and B as
possible. This can be done by first sorting A∪B and noting that given there are only 2d points in
the space, we only need to pay O(d) for each insertion instead of O(log(|A|+ |B|)) which could
be larger than d.) Equivalently, one can charge O(1) running time to each point in the two input
sets of an internal node and O(d) to each point at each leaf of the recursion tree. Therefore, each
point pays at mostO(d) given that COMPUTEEMD has depth at most d. It follows that its overall
running time isO(sd). Given the cost of any matching is trivially at least EMD(A,B), it suffices
to upperbound the cost of the matching returned by COMPUTEEMD by Õ(log s) · EMD(A,B)
with probability at least 0.9, which we focus on in the rest of the section.

To this end, we first note that COMPUTEEMD can be viewed as first drawing a random
compressed Quadtree T and then returning a matching M built in the bottom-up fashion as
described in Figure 8.1. Given a fixed compressed Quadtree T , the following definition captures
the class of matchings that COMPUTEEMD may return; basically these are matchings that satisfy
a “depth-greedy” property:

Definition 8.4.1. Let T be a compressed Quadtree. For any a ∈ A and b ∈ B, let

depthT (a, b) def= depth of the least-common ancestor of leaves of a, b in T .

The class of depth-greedy matchings, denoted byMT (A,B), is the set of all matchings M ⊆
A×B which maximize the sum of depthT (a, b) over all pairs (a, b) ∈M .

Fixing a compressed Quadtree T , every matching COMPUTEEMD may return when running
with T belongs toMT (A,B) (indeedMT (A,B) can contain strictly more matchings in general).
Therefore the goal is now to show that with probability at least 0.9 over T, cost(M) of every

360

M ∈MT(A,B) is upperbounded by Õ(log s) · EMD(A,B).

Our plan consists of three steps. First we introduce the cost of a compressed Quadtree T
(Definition 8.4.2 below), denoted by cost(T), and show that cost(M) of any matching M ∈
MT (A,B) can be bounded from above by cost(T) (Lemma 8.4.3). (Looking ahead, cost(T)
will be the quantity our linear sketches estimate in Sections 8.5 and 8.6; see Remark 98.) Next
we define payments PAYT (a) and PAYT (b) of the inspector as mentioned in the overview earlier,
and show that cost(T) is bounded from above by the total inspector payment (Lemma 8.4.4).
The final and most challenging step is to bound the expected total inspector payment. The key
technical lemma, Lemma 8.4.5, will be proved in Section 8.4.1.

We start with the cost of a compressed Quadtree. We need a couple of definitions used
throughout the rest of the paper. Given a compressed Quadtree T and a point x ∈ {0, 1}d, we let
the sequence

v0,T (x), v1,T (x), . . . , vh,T (x)

denote the root-to-leaf path of x in the tree T . For any node v at depth i ∈ {0, . . . , h}, we let

Av,T
def= {a ∈ A : vi,T = v} and Bv,T

def= {b ∈ B : vi,T = v},

and we let
cv,T

def= 1
|Av,T ∪Bv,T |

∑
x∈Av,T∪Bv,T

x

be the center-of-mass of points inAv,T∪Bv,T at v; we set cv,T to be the all-0 point by default when
Av,T = Bv,T = ∅. For notational simplicity, we will usually suppress T from the notation when
it is clear from context (this will also be the case for notation introduced later in this section).
We are now ready to define the cost of a compressed Quadtree:

Definition 8.4.2. Let T be a compressed Quadtree. Then its cost is defined as18

cost(T) def=
∑

(u,v)∈ET

∣∣∣|Av| − |Bv|
∣∣∣ · ‖cv − cu‖1. (8.12)

Notice that the right-hand side of (8.12) is data-dependent in two respects: 1) each edge of
the tree contributes the discrepancy between A and B proceeding down that edge, and 2) the
amount each edge pays times the discrepancy between A and B is given by the distance between
centers-of-mass of the point set of A ∪B mapped to u and v.

18Whenever we refer to an edge (u, v) in T , u is always the parent node and v is the child node.

361

We prove the following lemma for the first step of the proof.

Lemma 8.4.3. Let T be a compressed Quadtree. Then cost(M) ≤ cost(T) for all M ∈
MT (A,B).

Proof. Given a matching M ∈MT (A,B) and a pair (a, b) ∈M , we write v and w to denote the
leaves of a and b and use u to denote their least-common ancestor. We also write u, v1, . . . , vk = v

and u,w1, . . . , wk = w to denote the paths from u to v andw, respectively. By triangle inequality,

‖a− b‖1 ≤ ‖a− cvk‖1 + ‖cvk − cvk−1‖1 + · · ·+ ‖cv1 − cu‖1

+ ‖cu − cw1‖+ · · ·+ ‖cwk−1 − cwk‖1 + ‖cwk − b‖1

= ‖cvk − cvk−1‖1 + · · ·+ ‖cv1 − cu‖1 + ‖cu − cw1‖+ · · ·+ ‖cwk−1 − cwk‖1,

where the equation follows from the fact that all points at a leaf of T must be identical and so
is their center. Summing up these inequalities over (a, b) ∈ M gives exactly cost(T). For this,
note that every M inMT (A,B) has the property that, for any edge (u, v) in T , the number of
(a, b) ∈M such that the path between their leaves contains (u, v) is exactly ||Av| − |Bv||.

Now it suffices to upperbound cost(T) by Õ(log s) ·EMD(A,B) with probability at least 0.9
for a random compressed Quadtree T. For this purpose, we define an inspector payment for each
point in A ∪B based on an optimal matching M∗ between A and B and a compressed Quadtree
T . Given a point a ∈ A, if b ∈ B is the point matched with a in M∗ (i.e., (a, b) ∈M∗), we let

PAYT (a) def=
∑
i∈[h]

1{vi,T (a) 6= vi,T (b)}
(
‖a− cvi,T (a))‖1 + ‖a− cvi−1,T (a)‖1

)
. (8.13)

Intuitively PAYT (a) pays for the distance between a and centers-of-mass along its root-to-leaf
path but the payment only starts at the least-common ancestor of leaves of a, b. The payment
PAYT (b) is defined similarly (with a and b switched). Note that PAYT (a) = PAYT (b) = 0 if
a = b.

We show that the total inspector payment from points of A ∪B is enough to cover cost(T):

Lemma 8.4.4. Let T be any compressed Quadtree. Then we have

cost(T) ≤
∑
a∈A

PAYT (a) +
∑
b∈B

PAYT (b). (8.14)

362

Proof. Using the definition of cost(T), it suffices to show that

∑
(u,v)∈ET

∣∣∣|Av| − |Bv|
∣∣∣ · ‖cv − cu‖1 ≤

∑
a∈A

PAYT (a) +
∑
b∈B

PAYT (b).

By triangle inequality,

PAYT (a) ≥
∑
i∈[h]

1{vi,T (a) 6= vi,T (b)}
(
‖cvi−1,T (a)− cvi,T (a))‖1

)
,

i.e., PAYT (a) is enough to cover ‖cu − cv‖ for every edge (u, v) along its leaf-to-root path until
the least-common ancestor with b is met. The lemma then follows from the following claim: For
every edge (u, v) in T , ||Av|− |Bv|| is at most the number of points a ∈ Av such that its matched
point in M∗ is not in Bv plus the number of points b ∈ Bv such that its matched point in M∗ is
not in Av. This follows from the simple fact that every (a, b) ∈ M∗ with a ∈ Av and b ∈ Bv

would get cancelled in |Av| − |Bv|. This finishes the proof of the lemma.

By Lemma 8.4.4 the goal now is to upperbound the total inspector payment by Õ(log s) ·
EMD(A,B) with probability at least 0.9 over a randomly picked compressed Quadtree T. We
consider a slight modification of the payment scheme given in (8.13) which we define next; the
purpose is that the latter will be easier to bound in expectation, and most often exactly equal to
(8.13).

Specifically, given a pair (a, b) ∈M∗ and i0 ∈ [h], we let P̃AYi0,T (a) = 0 if a = b and let

P̃AYi0,T (a) def=
h∑

i=i0
1{vi,T (a) 6= vi,T (b)}

(
‖a− c̃T (i, a))‖1 + ‖a− c̃T (i− 1, a)‖1

)
(8.15)

when a 6= b, where

c̃T (i, a) def= 1
|CT (i, a)|

∑
x∈CT (i,a)

x

is the center-of-mass of a subset CT (i, a) of Avi,T (a) ∪Bvi,T (a) that are not too far away from a:

CT (i, a) def=
{
x ∈ Avi,T (a) ∪Bvi,T (a) : ‖x− a‖1 ≤

10d log s
2i

}
.

Roughly speaking, two points in A ∪ B that share the same node vi,T are expected to have
distance around d/2i (given that they agreed so far on roughly 2i random coordinates sampled);

363

this is why we referred to points in CT (i, a) as those that are not too far away from a. Similar to
PAYT (a), we define CT (i, b) and c̃T (i, b) for each b ∈ B and use them to define P̃AYT (b).

The following is the crucial lemma for bounding the total expected payment from points in
A ∪B. We delay its proof to Section 8.4.5 and first use it to prove Theorem 94.

Lemma 8.4.5. For any (a, b) ∈M∗ with a 6= b and i0 ∈ [h] that satisfies

i0 ≤ min
{

1,
⌊
log2

(
d

‖a− b‖1

)⌋}
, (8.16)

we have

max
{
E
T

[
P̃AYi0,T(a)

]
,E

T

[
P̃AYi0,T(b)

]}
≤
(
Õ(log s) +O(log log s)

(
log

(
d

‖a− b‖1

)
− i0

))
· ‖a− b‖1,

where the randomness is over a random compressed Quadtree T.

Proof of Theorem 94 assuming Lemma 8.4.5. Let T be a random compressed Quadtree. Then

cost(T) ≤
∑
a∈A

PAYT(a) +
∑
b∈B

PAYT(b) =
∑

(a,b)∈M∗
a6=b

PAYT(a) + PAYT(b) (8.17)

given that PAYT(a) = PAYT(b) = 0 for every pair (a, b) ∈ M∗ with a = b. We focus on the
subset M ′ of M∗ with (a, b) ∈M∗ and a 6= b. For each pair (a, b) ∈M ′, let

`min(a, b) def= min
{

1,
⌊
log2

(
d

‖a− b‖1

)⌋
− 2dlog2 se

}
.

We show that with probability at least 1− o(1) over the draw of T, every (a, b) ∈M ′ satisfies

PAYT(a) = P̃AY`min(a,b),T(a) and PAYT(b) = P̃AY`min(a,b),T(b). (8.18)

Combining (8.17) and (8.18), we have that with probability at least 1− o(1) over the draw of T,

cost(T) ≤
∑

(a,b)∈M ′
P̃AY`min(a,b),T(a) + P̃AY`min(a,b),T(b). (8.19)

By applying Lemma 8.4.5 to every (a, b) ∈ M ′ with i0 = `min(a, b), as well as Markov’s in-

364

equality, we have that with probability at least 0.99 over T, the right hand side of (8.19) is at
most

Õ(log s)
∑

(a,b)∈M ′
‖a− b‖1 = Õ(log s) · EMD(A,B).

By a union bound, cost(T) ≤ Õ(log s) · EMD(A,B) with probability at least .99− o(1) ≥ 0.9.

It suffices to define an event that implies (8.18) and then bound its probability. The first part
of the event requires that for every pair (a, b) ∈ M ′, vi,T(a) = vi,T(b) for every i : 1 ≤ i <

`min(a, b). The second part requires that for any two distinct points x, y ∈ A∪B (not necessarily
as a pair in M∗ and not even necessarily in the same set), we have vi,T(x) 6= vi,T(y) for all i with

2i ≥ 10d log s
‖x− y‖1

. (8.20)

By the definition of P̃AY`min(a,b),T(a) in (8.15) the first part of the event makes sure that we don’t
miss any term in the sum (8.15); the second part of the event makes sure that every CT(i, a) is
exactly the same as Avi,T(a) ∪ Bvi,T(a) (and the same holds for b). It follows that this event
implies (8.18).

Finally we show that the event occurs with probability at least 1 − o(1). First, for every
(a, b) ∈M ′, the probability of vi,T(a) 6= vi,T(b) for some i : 1 ≤ i < `min(a, b) is at most

1−
(

1− ‖a− b‖1

d

)2`min(a,b)

≤ 2`min(a,b) · ‖a− b‖1

d
≤ 1
s2 .

Hence, by a union bound over the at most s pairs (a, b) ∈ M ′, the first part of the event holds
with probability at least 1− o(1). Furthermore, for any two distinct points x, y ∈ A ∪B, let

`max(x, y) =
⌊
log2

(
10d log s
‖x− y‖1

)⌋
.

Then vi,T(x) = vi,T(y) for some i that satisfies (8.20) would imply v`max(x,y),T(x) = v`max(x,y),T(y) and
`max(x, y) ≤ log d (as vh,T(x) 6= vh,T(y) given x 6= y). The event above happens with probabil-
ity

(
1− ‖x− y‖1

d

)2`max(x,y)−1

≤ exp(−5 log s) = 1
s5 .

365

Via a union bound over at most (2s)2 many pairs of x, y, we have that the second part of the
event also happens with probability at least 1− o(1). This finishes the proof of the theorem.

Remark 98 (Looking toward Section 8.5 and 8.6). Before moving on to the proof of Lemma
8.4.1 we define a quantity that is slightly different from cost(T) which will be used in our linear
sketches of Section 8.5 and 8.6 to estimate EMD(A,B).

An inspection of the proof of Theorem 94 reveals that with probability 1−o(1) over T (which
we skip in subscripts below), every non-empty node v (Av ∪ Bv 6= ∅) at depth i with parent u
satisfies

‖cv − cu‖1 ≤
30d log s

2i .

The reason is that we have argued, with probability at least 1 − o(1) over T, for all x ∈ A ∪ B
and all depth i, all points in Avi(x) ∪ Bvi(x) are within distance 10d log s/2i of x. This implies
that every non-empty node v (say x ∈ Av ∪Bv) at depth i and its parent u satisfy

‖cv − cu‖1 ≤ ‖cv − x‖1 + ‖cu − x‖1 ≤
10d log s

2i + 10d log s
2i−1 = 30d log s

2i .

In particular, with probability at least 0.9 over T, we have

EMD(A,B) ≤
∑

(u,v)∈ET

∣∣∣|Av| − |Bv|
∣∣∣ ·min

{
‖cv − cu‖1,

30d log s
2i

}
≤ Õ(log s) · EMD(A,B).

(8.21)

Furthermore, recall from the embedding into `1, we have with probability at least 0.99 over T,

∑
(u,v)∈ET

∣∣∣|Av| − |Bv|
∣∣∣ · d2i ≤ O(log s) · EMD(A,B). (8.22)

This follows from an analysis similar to (8.3) (although (8.3) only gives O(log d) on the right
hand side instead of the O(log s) we need, one can improve it to min(log s, log d); see footnote
8 and an example of implementing this idea in Lemma 8.7.2).

Combining (8.21) and (8.22), we have that with probability at least 0.9 over the draw of T,

EMD(A,B) ≤
∑

(u,v)∈ET

∣∣∣|Av| − |Bv|
∣∣∣ · qu,v ≤ Õ(log s) · EMD(A,B), (8.23)

366

where qu,v is defined as the following truncation of ‖cu − cv‖1:

qu,v
def=

d
/

2i if ‖cu − cv‖1 ≤ d
/

2i

30d log s
/

2i if ‖cu − cv‖1 ≥ 30d log s
/

2i

‖cu − cv‖1 otherwise.

The sum in the center of (8.23) will be crucial in later sections; this will be the quantity we
estimate in our linear sketches in Section 8.5 and 8.6.

8.4.1 Proof of Lemma 8.4.5

Recall h = log 2d is the depth of a compressed Quadtree. Let (a, b) ∈ M∗ with a 6= b and
i0 ∈ [h] that satisfy (8.16). We need to bound the expectation of P̃AYi0(a) over the draw of a
random compressed Quadtree T; the upper bound for P̃AYi0(b) is analogous. In what follows, all
expectations are taken with respect to a random choice of T so we skip T in subscripts (just as
in P̃AYi0(a)). In particular, we write vi(a) to denote vi,T(a) just to emphasize that it is a random
variable that depends on T.

Given that we always have ‖a−c̃(i, a)‖1 ≤ 10d log s/2i by definition, P̃AYi0(a) = O(d log s);
hence, we assume that ‖a − b‖1 ≤ d/2, since otherwise the lemma is trivially true. To under-
stand P̃AYi0(a) for a random compressed Quadtree T, we need to examine Avi(a) and Bvi(a)

where v0(a), . . . ,vh(a) is the root-to-leaf path of a in T. Let τ0 = 1 and τi = 2i−1 when i ≥ 1.
Recall from Lemma 8.3.3 that to drawAvi(a) andBvi(a), it suffices to consider independent draws

I0, I1, . . . , Ih−2

with Ii ∼ [d]τi , and then use them to define Avi(a) and Bvi(a) as follows:

Avi(a) = {x ∈ A : xj = aj for all j that appears in I0, . . . , Ii−1}

Bvi(a) = {x ∈ B : xj = aj for all j that appears in I0, . . . , Ii−1}

for each i = 1, . . . , h − 1; Av0(a) = A and Bv0(a) = B since v0(a) is always the root; Avh(a)

contains all copies of a in the multi-set A and Bvh(b) contains all copies of a in B. We let

D =
{

(i, `) : i ∈ {0, . . . , h− 2} and ` ∈ [τi] such that j = (Ii)` satisfies aj 6= bj
}

367

be the set of index pairs of sampled coordinates where a and b disagree, and let

(i(s), `(s)) def=

 min D D 6= ∅
(∗, ∗) D = ∅

,

where the ordering in min D is lexicographic.19 Note, in particular, that the node vi(s)(a) =
vi(s)(b) is the least common ancestor of a and b in T.20 The coordinate which is the first to
satisfy aj 6= bj is specified by the random variable

j(s) def=

 (Ii(s))`(s) if (i(s), `(s)) 6= (∗, ∗)
∗ otherwise

,

where, notice that, j(s) = ∗ only if a and b always satisfy vk(a) = vk(b) for all k ∈ {0, . . . , h−
1}. A trivial consequence of the above definitions is that for any k ∈ {0, . . . , h− 1},

1{vk(a) 6= vk(b)} =
k−1∑
i=0

τi∑
`=1

∑
j∈[d]
aj 6=bj

1
{

(i(s), `(s), j(s)) = (i, `, j)
}
. (8.24)

From the definition of P̃AYi0(a) in (8.15), letting

ha,b
def=
⌊
log2

(
d

‖a− b‖1

)⌋
≤ log2 d = h− 1

and we have

E
[
P̃AYi0(a)

]
≤

ha,b∑
k=i0

E
[
1{vk(a) 6= vk(b)}

(
‖a− c̃(k, a)‖1 + ‖a− c̃(k − 1, a)‖1

)]
+O(log s) · ‖a− b‖1,

where we used the fact that ‖a − c̃(k, a)‖1 ≤ 10d log s/2k always holds. As a result O(log s) ·
‖a − b‖1 as in the last term is enough to cover the sum over k > ha,b skipped in the above

19All (i′, `′) with i′ < i(s) satisfy aj = bj for j = (Ii′)`′ ; all (i(s), `′) with `′ < `(s) satisfy aj = bj for
j = (Ii(s))`′ .

20Hence, the “s” in i(s) and `(s) stands for “split.”

368

expression. Using (8.24), we may re-write the first summand above as

ha,b∑
k=i0

E
[
1{vk(a) 6= vk(b)}

(
‖a− c̃(k, a)‖1 + ‖a− c̃(k − 1, a)‖1

)]
(8.25)

=
ha,b∑
k=i0

k−1∑
i=0

τi∑
`=1

∑
j∈[d]
aj 6=bj

Pr
[
(i(s), `(s), j(s)) = (i, `, j)

]E
[
‖a− c̃(k, a)‖1

∣∣∣ (i(s), `(s), j(s)) = (i, `, j)
]

+ E
[
‖a− c̃(k − 1, a)‖1

∣∣∣ (i(s), `(s), j(s)) = (i, `, j)
].

Notice that for i ∈ {0, . . . , h− 2}, ` ∈ [τi], and j ∈ [d] with aj 6= bj ,

Pr
[
(i(s), `(s), j(s)) = (i, `, j)

]
= 1
d

(
1− ‖a− b‖1

d

)τ0+···+τi−1+`−1

. (8.26)

Consider, for each k ∈ {i0 − 1, . . . , ha,b} and j ∈ [d] with aj 6= bj , the value

Qk,j
def= sup

i∈{0,...,k}
`∈[τi]

E
[
‖a− c̃(k, a)‖1

∣∣∣ (i(s), `(s), j(s)) = (i, `, j)
]
,

so that invoking (8.26), we may upper bound (8.25) by

∑
j∈[d]
aj 6=bj

ha,b∑
k=i0

(
Qk,j +Qk−1,j

) k−1∑
i=0

τi∑
`=1

1
d

(
1− ‖a− b‖1

d

)τ0+···+τi−1+`−1

≤ 4
d

∑
j∈[d]
aj 6=bj

ha,b∑
k=i0−1

Qk,j · 2k.

Therefore, it remains to show that for all j ∈ [d] with aj 6= bj ,

ha,b∑
k=i0−1

Qk,j · 2k = O(d) ·
(
Õ(log s) + (ha,b − i0) · log log s

)
. (8.27)

To prove this, we start with a lemma that shows that if Qk,j is large, then it must be the case
that there are many points of distance between (roughly) d/(2k log s) and d log s/2k from a in
A ∪B.

Lemma 8.4.6. Fix j ∈ [d] which satisfies aj 6= bj and k ∈ {2, . . . , ha,b}. Let L ⊂ Aj ∪ Bj ⊂

369

A ∪B be the muti-sets given by

Aj = {x ∈ A : xj = aj} , Bj = {x ∈ B : xj = aj} and

L =
{
x ∈ Aj ∪Bj : ‖a− x‖1 ≤

d

2k ·
1

log s

}
.

Suppose that for some i = {0, . . . , k} and some ` ∈ [τi], as well as some α ≥ 300, we have

E
[
‖a− c̃(k, a)‖1

∣∣∣ (i(s), `(s), j(s)) = (i, `, j)
]
≥ d

2k · α. (8.28)

Then, the set

H =
{
x ∈ Aj ∪Bj : ‖a− x‖1 ≤

10d log s
2k

}
satisfies |H| ≥ |L| exp (α/8)

log s .

Proof. Let E be the event that (i(s), `(s), j(s)) = (i, `, j). For simplicity in the notation, let

v = vk(a), C = C(k, a) and c = c̃(k, a).

Every x ∈ L is of distance at most d/(2k log s) from a. Since x ∈ C whenever vk(x) = v, we
have

E
[
|L \C|

∣∣∣E] =
∑
x∈L

Pr
[
vk(x) 6= v

∣∣∣E] ≤ |L| · 2k−1 · d/(2
k log s)

d− ‖a− b‖1
≤ |L|log s, (8.29)

because there are 2k−1 coordinates sampled up to (but not including) depth k. The last inequality
above also used the assumption that ‖a− b‖1 ≤ d/2. Then, we have

Pr
[
|C| ≥ |L|10

∣∣∣∣E
]
≥ Pr

[
|L ∩C| ≥ |L|10

∣∣∣∣E
]

= 1−Pr
[
|L \C| ≥ 9|L|

10

∣∣∣∣E
]
≥ 1− 10

9 log s,

(8.30)

where the last inequality follows by applying Markov’s inequality to (8.29). Hence, by an appli-
cation of triangle inequality, as well as the fact that |C| ≥ 1 (since it always contains a),

‖a− c‖1 ≤
1
|C|

∑
x∈C
‖a− x‖1 ≤

dα

2k+1 + 1
|C|

∑
x∈C

1
{
‖a− x‖1 ≥

dα

2k+1

}
· ‖a− x‖1.

Thus, we have (by splitting into two cases of |C| ≥ |L|/10 and |C| < |L|/10 and applying

370

(8.30))

E
[
‖a− c‖1

∣∣∣E] ≤ dα

2k+1 + E
[

1
|C|

∑
x∈C

1
{
‖a− x‖1 ≥

dα

2k+1

}
‖a− x‖1

∣∣∣∣E
]

≤ dα

2k+1 + 10
|L|
· E

[∑
x∈C

1
{
‖a− x‖1 ≥

dα

2k+1

}
‖a− x‖1

∣∣∣∣E
]

+ 10
9 log s ·

10d log s
2k ,

where the final term used the fact that ‖a−c‖1 is always at most 10d log s/2k. Combining (8.28)
and the inequality above, we have

d

2k+1

(
α

10 −
20
9

)
|L| ≤ E

[∑
x∈C

1
{
‖a− x‖1 ≥

dα

2k+1

}
‖a− x‖1

∣∣∣∣E
]
, (8.31)

and we next upperbound the right-hand side above in terms of the size of H . In particular, let H ′

be the set of points x ∈ H with ‖a− x‖1 ≥ dα/2k+1. Then

E
[∑
x∈C

1
{
‖a− x‖1 ≥

dα

2k+1

}
‖a− x‖1

∣∣∣∣E
]
≤
∑
x∈H′

Pr
[
x ∈ C

∣∣∣E] · (10d log s
2k

)
. (8.32)

We consider two cases: i = k and i < k. For the easier case when i = k, in order for x ∈ C
to occur conditioned on E , we have that all 2k−1 coordinates sampled before depth k avoid
separating x and a conditioning on not separating a and b. The conditional probability is at most

d− ‖a− x‖1

d− ‖a− b‖1
= 1− ‖a− x‖1 − ‖a− b‖1

d− ‖a− b‖1
≤ 1− ‖a− x‖1 − ‖a− b‖1

d
.

Therefore in this case we have

Pr
[
x ∈ C

∣∣∣E] ≤ (1− ‖a− x‖1 − ‖a− b‖1

d

)2k−1

.

Notice that by definition of ha,b, and the fact that k ≤ ha,b, we have

‖x− a‖1 − ‖a− b‖1 ≥
d

2k+1 (α− 2) (8.33)

which implies that Pr[x ∈ C |E] is at most exp(−α/8) using α ≥ 300.

Next we deal with the case when i < k. In order for x ∈ C to occur conditioned on E , it
needs to be the case that all coordinates sampled before (i, `), of which there are 2i−1 + ` − 1
many (or none if (i, `) = (0, 1)), avoid separating x and a conditioning on not separating a and b;

371

the (i, `)-th sample is j (which better not separate x and a; otherwise the probability is trivially
0); and the remaining 2k−1 − 2i−1 − ` (or 2k−1 − 1 if (i, `) = (0, 1)) coordinates do not separate
x and a (but there will be conditioning on not separating a and b). Hence,

Pr
[
x ∈ C

∣∣∣E] ≤ (1− ‖x− a‖1 − ‖a− b‖1

d

)2i−1+`−1 (
1− ‖x− a‖1

d

)2k−1−2i−1−`

≤
(

1− ‖x− a‖1 − ‖a− b‖1

d

)2k−1−1

≤
(

1− α− 2
2k+1

)2k−1−1
, (8.34)

which is at most exp(−α/8) using k ≥ 2 and α ≥ 300. Hence, we can combine (8.31) and
(8.32) to get

d

2k+1

(
α

10 −
20
9

)
|L| ≤ |H| · exp

(
−α8

)
· 10d log s

2k .

Re-arranging the inequality, the lemma follows using α ≥ 300.

The next lemma helps bound the number of large Qk,j’s.

Lemma 8.4.7. Fix any j ∈ [d] with aj 6= bj . For any α ≥ 20 log log s, the set

Gj(α) =
{
k ∈ {0, . . . , ha,b} : Qk,j ≥

d

2k · α
}

satisfies
∣∣∣Gj(α)

∣∣∣ ≤ O

(⌈
16 log(2s)

α

⌉
· log log s

)
.

Proof. Assume for a contradiction that

∣∣∣Gj(α)
∣∣∣ ≥ β ·

⌈
log2(10 log2 s)

⌉
+ 2, where β

def=
⌈

16 log(2s)
α

⌉
.

Then there must be k1, . . . , kβ ∈ {2, . . . , ha,b} with k1 > k2 > · · · > kβ and every t ∈ [β − 1]
satisfies

kt − kt+1 ≥
⌈

log2(10 log2 s)
⌉
.

This implies that every t ∈ [β − 1] satisfies

10d log s
2kt ≤ d

2kt+1 log s.

372

If we consider for each t ∈ [β], the following two multi-sets

Lt =
{
x ∈ Aj ∪Bj : ‖a− x‖1 ≤

d

2kt log s

}
and Ht =

{
x ∈ Aj ∪Bj : ‖a− x‖1 ≤

10d log s
2kt

}
,

they satisfy

L1 ⊆ H1 ⊆ L2 ⊆ H2 ⊆ · · · ⊆ Hβ−1 ⊆ Lβ ⊆ Hβ, (8.35)

but then invoking Lemma 8.4.6 (and using 20 log log s ≥ 300), we have that every t ∈ [β] satisfy

|Ht| ≥
|Lt| exp(α/8)

log s .

Using |L1| ≥ 1 (since it contains a) and (8.35), we have

|Hβ| ≥
exp(αβ/8)

(log s)β > 2s,

using exp(αβ/8) ≥ (2s)2, and (log s)β ≤ 2s, by our settings of β and α. This is a contradiction,
as we have Hβ ⊆ A ∪B and thus, |Hβ| ≤ 2s.

Finally we finish the proof of (8.27). Let α0 = 20 log log s. Use Lemma 8.4.7 we have

ha,b∑
k=i0−1

Qk,j · 2k ≤ (ha,b − i0 + 2) · α0d+
dlog2(10 log s)e∑

κ=0

∣∣∣Gj(α02κ)
∣∣∣ · α02κ+1 · d

≤ O(d) ·
(

(ha,b − i0) · log log s+ log s · (log log s)3
)
,

where the upper limit of κ ≤ dlog2(10 log s)e comes from the fact that Gj(10 log s) is empty be-
cause ‖a− c̃(k, a)‖1 is always at most 10d log s/2k by definition. This completes Lemma 8.4.5.

8.5 Two-Round Linear Sketch

In this section and the following, we leverage our improved analysis to design linear sketches for
EMD over {0, 1}d; the extension to EMD over (Rd, ‖ · ‖p) for p ∈ [1, 2] follows from a standard
application of metric embeddings (see Section 8.11). Specifically, we first demonstrate how a
Õ(log s) approximation can be obtained using polylog(s, d) bits of space in a two-round linear
sketching model (we give a formal description shortly). In the subsequent section, we implement

373

the linear sketch in a single round, at the cost of a small additive error. In cases where sets A,B
do not substantially overlap, the one-round protocol yields the same multiplicative guarantee. As
is relatively standard in the sketching literature, the two-round and one-round linear sketch may
be used for two-round and one-round communication settings, as well as two-pass and one-pass
streaming algorithms (see Section 8.12 for a more thorough explanation of the model).

Linear Sketching for EMD over {0, 1}d. For some m ∈ N, we encode the inputs of a compu-
tational problem as a vector f inRm. For that encoding and a parameter k ∈ N, a linear sketch is
a distribution over k×m matrices S, where ideally k � m, accompanied by an algorithm AlgS,
which receives an input Sf ∈ Rk and outputs an answer to the computational problem. The algo-
rithm maintains the vector Sx in k words of space and utilizes AlgS to produce an output. In the
public coin model, storing the random matrix S is not counted against the space complexity of
the algorithm (S can often be stored in small space, such as for streaming, see Corollary 8.12.1).
In order to define linear sketching for EMD over size-s subsets of {0, 1}d, we must specify the
encoding in Rm, as well as the space complexity k, and the distribution over k ×m matrices S
and decoding algorithms.

A pair of multi-sets A,B ⊂ {0, 1}d is encoded as a vector fA,B ∈ R2·2d , where the first
2d coordinates represent the indicator vector of A in {0, 1}d, and the second 2d coordinates
represent the indicator vector of B in {0, 1}d. More precisely, for i ∈ {0, 1}d, the i-th coordinate
(in standard binary encoding) of fA,B is the number of points in A at i; the (2d + i)-th coordinate
of fA,B is the number of points in B at i.

The two-round linear sketch is defined by a linear sketch which produces an intermediate
output for the first round, and another linear sketch (parametrized by the output of the first round)
which produces the final output. Specifically, we have distribution D(1) supported on k × 2 · 2d

matrices, as well a decoding algorithm for a vector y1 = S1fA,B ∈ Rk. In one-round sketching,
the output is produced by the decoding algorithm. For two-round round linear sketching, we
consider another distribution D(2), parametrized by the decoding of y1, as well as S1, supported
on k× 2 · 2d matrices S2, as well as a decoding algorithm for a vector y2 = S2fA,B ∈ Rk which
produces the output.

8.5.1 The Two-Round Linear Sketching Algorithm

In this section, we give a two-round linear sketching algorithm for approximating the Earth
Movers distance. Recall that for a linear sketch, the multisets A,B ⊂ {0, 1}d are implicitly

374

encoded as a vector fA,B ∈ R2d+1 which indicates the members and frequencies of the points in
A,B. Specifically, we prove the following theorem.

Theorem 99. For d, s ∈ N, there exists a 2-round linear sketching algorithm such that given

multi-sets A,B ⊂ {0, 1}d with |A| = |B| = s, computes an approximation Î to EMD(A,B)
with

EMD(A,B) ≤ Î ≤ Õ(log s) EMD(A,B)

with probability at least 3/4. Moreover, the space of the linear sketch is polylog(s, d) bits.

The protocol will proceed by sampling a compressed quadtree T of depth h = log2(2d), and
for each depth i ∈ {0, . . . , h− 1}, using L1-sampling and L1-sketching to estimate

I i
def=

∑
v∈Vi

∣∣∣|Av| − |Bv|
∣∣∣ · qπ(v),v,

up to a constant factor. We recall that for a node v in the tree, the multi-sets

Av = {a ∈ A : vi(a) = v} and Bv = {b ∈ B : vi(b) = v}

are the points from A and B which are mapped to node v in the compressed quadtree T. The
point

cv = 1
|Av ∪Bv|

∑
x∈Av∪Bv

x,

is the center of mass among all points which map to node v. We have that

qu,v =

d
2i ‖cu − cv‖1 ≤ d

2i

30d log s
2i ‖cu − cv‖1 ≥ 30d log s

2i

‖cu − cv‖1 o.w.

. (8.36)

Recall that by Remark 98,

EMD(A,B) ≤
h−1∑
i=0
I i ≤ Õ(log s) · EMD(A,B),

with probability at least 0.89 over the draw of T. Hence, the protocol produces an estimate
Î i ∈ R where Ii ≤ Î i ≤ O(1) · Ii with probability at least 1 − 1/(100h). Via a union bound

375

Vi−1 :

Vi :

V ′i−1 :

V ′i :

Figure 8.3: An example of the universe reduction from the bipartite graph defined on (Vi−1,Vi)
to the bipartite graph defined on (V ′i−1,V ′i), as well as the corresponding mapping from hi−1 and
hi. The shaded regions correspond to pre-images of the node mappings.

over all h levels of the tree as well as the good draw of T, we have that with probability at least
0.88,

∑h−1
i=0 Î i satisfies the requirements of Theorem 99. See Figure 8.4 for a description of the

protocol which estimates I i up to constant factor with high (constant) probability.

Universe Reduction

Observe that I i is a sum over |Vi| = 22i vertices of T. However, since |A| = |B| = s, at most
2s of these summands will be non-zero. Thus, we perform a standard universe reduction on the
layer (Vi−1,Vi) as follows. Select two fully independent hash functions hi−1 : [Vi−1]→ [s′],hi :
[Vi]→ [s′], where s′ = O(s3). We then define

V ′i−1 = [s′], and V ′i = [s′]× [s′],

and construct the bipartite graph (V ′i−1,V ′i) corresponding to layers i − 1 and i of T after a
universe reduction. The nodes of V ′i−1 represent groups of nodes in V ′i−1 under the mapping
hi−1. The nodes of V ′i are indexed by pairs (y, z) ∈ [s′] × [s′], where the index y specifies the
group of the parent node (under hi−1), and z represents group of child nodes in Vi. The edges
are added to preserve parent-child relationships in V ′i−1 and V ′i: (x, (y, z)) ∈ V ′i−1 × V ′i is added
as an edge if x = y for x, y, z ∈ [s′]. (See Figure 8.3.)

For x ∈ V ′i−1 and (y, z) ∈ V ′i, we can naturally define

Ax = {a ∈ A : hi−1(vi−1(a)) = x} A(y,z) = {a ∈ A : hi(vi(a)) = z,hi−1(vi−1(a)) = y}

We similarly define Bu, Bv for u ∈ V ′i−1, v ∈ V ′i. We can also define centers c′v, c′u of the sets
Au ∪ Bu, Av ∪ Bv where u ∈ V ′i−1, v ∈ V ′i, and define q′π(v),v identically to q′π(v),v but using the

376

centers c′v. Altogether, we can set

I ′i
def=

∑
v∈V ′i

∣∣∣|Av| − |Bv|
∣∣∣ · q′π(v),v

where π(v) ∈ V ′i−1 is the parent of v in the new tree. Notice that since both Vi,Vi−1 have at
most 2s non-empty nodes each, with probability 1 − 1/s we have that hi−1 and hi are injective
into [s′] and [s′]2 respectively on the non-empty nodes (i.e., the non-empty nodes perfectly hash).
Since I i is just a sum over edges, if the non-empty edges perfectly hash, the construction of I ′i
just amounts to a renaming of the non-zero edges.

Proposition 8.5.1. With probability 1 − 1/s over the choice of hi−1,hi, we have I i = I ′i.
Moreover, the hash functions hi−1,hi need only be 2-wise independent.

Proof. This simply follows from the fact that s′ is at least 8s3, and there are at most 2s nodes
v ∈ Vi−1 where Av ∪ Bv 6= ∅. Hence, the probability that two non-empty nodes collide in hi−1

is at most 1/(8s3) (where we use 2-wise independence), and we may union bound over at most
4s2 pairs of non-empty nodes. The same argument can be made that hi perfectly hashes all non-
empty nodes in Vi with probability 1− 1/(2s). Conditioned on this, there is a bijection between
non-zero terms in I i and I ′i, where terms mapped to each other are equal.

Proposition 8.5.1 demonstrates that it will be sufficient to estimate I ′i. Thus, we condition on
the success of this universe reduction step now. Since conditioned on this step the non-zero edges
(Vi−1,Vi) are in bijective correspondence with the non-zero edges of (V ′i−1,V ′i), and moreover
since under this equivelance the points contained in Av, Bv and the centers cv are equivalant, in
the following we will abuse notation and drop the prime notation in I ′i,V ′i,V ′i−1, and simply write
I i,Vi,Vi−1, with the understanding that the universe reduction step has already been carried out.

Sketching Tools

We recall two standard sketching tools occurring in this thesis: theL1 sketch of [Ind06] (Theorem
8), and the perfect L1 sampler from Chapter 3. Further recall that both of these algorithms are
linear sketches. In order to simplify the notation involved in the recovery procedures of these
two algorithms, we black-box the recovery procedures via notation, and reformulate these two
results with this simplified notation.

Theorem 100 (L1-sketch, reformulation of Theorem 8). For m ∈ N and δ ∈ (0, 1/2), let

377

t = O(log(1/δ)). There exists a distribution S1
k(m, t) supported on t×m matrices C, as well as

a recovery algorithm Alg1 which receives a vector y ∈ Rt and outputs a real number. For any

fixed x ∈ Rm,

‖x‖1 ≤ Alg1(Cx) ≤ 2‖x‖1,

with probability at least 1− δ over the draw of C ∼ S1
k(m, t).21

Theorem 101 (Perfect L1-sampling, reformulation of Theorem 3). For m ∈ N, let c > 1 be an

arbitrarily large constant and t = O(log2m). There exists a distribution S1
a(m, t) supported on

pairs (S,Alg1
S) where S is an t ×m matrix and Alg1

S is an algorithm which receives as input a

vector y ∈ Rt and outputs a failure symbol ⊥ with probability at most 1/3, otherwise it returns

an index j ∈ [m]. For any x ∈ Rm and j ∈ [m],
∣∣∣∣∣ Pr
(S,Alg1

S)∼S1
a(m,t)

[
Alg1

S(Sx) = j | Alg1
S(Sx) 6= ⊥

]
− |xj|
‖x‖1

∣∣∣∣∣ ≤ 1
mc

.

Description and Analysis of Two-Round Sketch

We give a description of the two-round protocol, and the precise formulation is given in Fig-
ure 8.4. As we explain the protocol we specify some claims, which are then combined to prove
Theorem 99.

Round 0. We begin by mapping the vector fA,B ∈ R2d+1 to a vector f i ∈ R|Vi|×{A,B} indexed
by vertices v ∈ Vi and {A,B} via

f iv,A =
∑

~x∈{0,1}d
vi(~x)=v

(fA,B)x = |Av| and f iv,B =
∑

~x∈{0,1}d
vi(~x)=v

(fA,B)x+2d = |Bv|

where ~x ∈ {0, 1}d and x ∈ [2d] is the index in [2d] that ~x encodes. In other words, f iv,A and f iv,B
hold the frequency counts of points in A and B, respectively, at vertex v ∈ Vi, which is a linear
mapping of the input fA,B. Recall we assume the universe reduction has already been performed,
so |Vi| = O(s6). At this point, we initialize sketches to perform L1-sampling and L1-sketching.

21The notation for the distribution S1
k , is for L1-sketching; the 1 in the superscript for the L1 aspect, and k in the

subscript is for “sketching”. Later, we will see analogous S∞k for “`∞-sketching” (i.e., Count-Sketch), and S1
a for

L1-sampling.

378

Round 1. At the end of round 1, the estimate β̂ ∈ R is the result of an L1-sketch on the vector
F i. In other words, we will have that β̂ is a constant factor approximation to ‖F i‖1. Furthermore,
the indices v1, . . . , vk ∈ Vi ∪ {⊥} represent L1-samples from F i; while the L1-sample does not
fail (i.e., vt 6= ⊥), the sample vt ∈ Vi is meant to be distributed proportional to F i

vt . Specifically,
we have the following two claims:

Claim 8.5.2 (Round 1 Claim A). Let E1 be the event, defined over the randomness of the sample

C ∼ S1
k((s′)3, O(1)) in Line 3 of Round 0 that in Line 2 of Round 1,

∑
v∈Vi

∣∣∣|Av| − |Bv|
∣∣∣ ≤ β̂ ≤ 2

∑
v∈Vi

∣∣∣|Av| − |Bv|
∣∣∣. (8.37)

Then, E1 occurs with probability at least 0.99.

Proof. This is a consequence of Theorem 100 with m = (s′)2, δ = .01, applied to the vector F i

which has L1 norm ‖F i‖1 = ∑
v∈Vi ||Av| − |Bv||

Claim 8.5.3 (Round 1 Claim B). The random variables v1, . . . , vk defined in Line 2 are indepen-

dent and identically distributed. We have that vt = ⊥ with probability at most 1/3 for each t.

Otherwise, for any v ∈ Vi we have

∣∣∣∣∣∣Pr [vt = v]−

∣∣∣|Av| − |Bv|
∣∣∣∑

v′∈Vi

∣∣∣|Av′ | − |Bv′|
∣∣∣
∣∣∣∣∣∣ ≤ 1

s10 .

Proof. We first note that independence follows from the fact that the random variables v1, . . . , vk

depend on the independent samples (St,Alg1
St) ∼ S1

a((s′)2, O(log2 s)) for t ∈ [k] of Line 2 of
Round 0. The distributional bound then follows from Theorem 101 with c = 10, applied to the
input vector F i.

Round 2. The second round is meant to communicate, for each t ∈ [k], the information neces-
sary to estimate qπ(vt),vt . In order to do this, the players must jointly approximate ‖cπ(vt)− cvt‖1.
For each t ∈ [k], nt is the number of points in A and B which lie in π(vt), and notice that, once
both players know vt, nt can be computed exactly by communicating |Aπ(vt)| and |Bπ(vt)| with

379

O(log s) bits. The centers of mass, cvt and cπ(vt) are given by the vectors

cvt = 1
f ivt,A + f ivt,B

∑
~x∈{0,1}d
vi(~x)=vt

~x ((fA,B)x + (fA,B)x+2d)

cπ(vt) = 1
nt

∑
~x∈{0,1}d

vi−1(~x)=π(vt)

~x ((fA,B)x + (fA,B)x+2d) .

Therefore, χit is an L1-sketch of (f ivt,A + f ivT ,B)cvt and χi−1
t an L1-sketch of ntcπ(vt) such that

‖cπ(vt)−cvt‖1 can be approximated, and q̂t becomes an approximation of qπ(vt),vt . This last point
is captured by the following claim.

Claim 8.5.4 (Round 2 Claim). Let vt ∈ Vi be any sample returned by Line 2 in Round 1,

and suppose vt 6= ⊥. Let E2,t be the event, defined over the randomness of the sample Ct ∼
S1
k(d,O(log log s)) in Line 3 of Round 0 that in Line 3 of Round 2,

‖cv∗ − cu∗‖1 ≤ Alg1
(
χi−1
t

nt
− χit
f ivt,a + f ivt,b

)
≤ 2 ‖cv∗ − cu∗‖1 .

Then, E2,t occurs with probability at least 1− 1/(100k).

Proof. We apply Theorem 100 with m = d, t = O(log log s), and notice by definition

χi−1
t

nt
=

∑
~x∈{0,1}d

vi−1(x)=π(vt)
(Ct~x) · ((fA,B)x + (fA,B)x+2d)

|Aπ(vt)|+ |Bπ(vt)|
=
∑
x∈Aπ(vt)∪Bπ(vt)

Ctx

|Aπ(vt)|+ |Bπ(vt)|
= Ct · cπ(vt)

similarly

χit
f ivt,a + f ivt,b

=

∑
~x∈{0,1}d
vi(x)=vt

(Ct~x) · ((fA,B)x + (fA,B)x+2d)

|Avt |+ |Bvt |
=
∑
x∈Avt∪Bvt Ctx

|Avt |+ |Bvt |
= Ct · cvt

thus, by linearity
χi−1
t

nt
− χit
f ivt,a + f ivt,b

= Ct(cvt − cπ(vt))

where Ct ∼ S1
k(d,O(log log s)), and noting that k = O(log s) so the failure probability of

Theorem 100 is 1/poly(k).

Proof of Theorem 99. As mentioned in the paragraph subsequent to stating Theorem 99, we

380

Two-round Sketch (fA,B, T, i)

Input: Vector fA,B ∈ R
2d+1 encoding two multi-sets A,B ⊂ {0, 1}d, a compressed

quadtree T , and index i ∈ {0, . . . , h− 1}.
Output: A real number Î i.

• Round 0: Perform the universe reduction step (Proposition 8.5.1) so that |Vi−1| =
s′, |Vi| = (s′)2, where s′ = O(s3). Set k = O(log2 s).

1. Define the linear functions f i ∈ R|Vi|×{A,B} and F i ∈ R|Vi| of fA,B via

f iv,A =
∑

~x∈{0,1}d
vi(~x)=v

(fA,B)x = |Av| and f iv,B =
∑

~x∈{0,1}d
vi(~x)=v

(fA,B)x+2d = |Bv|

F i
v = f iv,A − f iv,B = |Av| − |Bv|

2. For each t ∈ [k], initialize linear sketch (St,Alg1
St) ∼ S1

a((s′)2, O(log2 s)).

3. For each t ∈ [k], initialize linear sketch Ct ∼ S1
k(d,O(log log s)), and initialize

C ∼ S1
k((s′)2, O(1)).

• Round 1:
1. Construct the linear sketch β def= CF i, and for each t ∈ [k], construct the linear

sketches αt
def= StF i.

2. Generate k samples v1, . . . , vk ∈ Vi ∪ {⊥} obtained from

vt
def= Alg1

St(αt), and let β̂
def= Alg1(β).

• Round 2: Let L ⊂ [k] be the set of indices such that vt 6= ⊥. For each t ∈ L:

1. Compute the value nt
def= ∑

v∈Vi
π(v)=π(vt)

f iv,A + f iv,B = |Aπ(vt)|+ |Bπ(vt)|.

2. Compute the vectors χit
def= ∑

~x∈{0,1}d
vi(~x)=vt

(Ct~x) · ((fA,B)x + (fA,B)x+2d) and χi−1
t

def=∑
~x∈{0,1}d

vi−1(~x)=π(vt)
(Ct~x) · ((fA,B)x + (fA,B)x+2d).

3. Let

q̂t
def= max

{
min

{
Alg1

(
χi−1
t

nt
− χit
f ivt,A + f ivt,B

)
,
30d log s

2i

}
,
d

2i

}
,

if all nt and f ivt,A + f ivt,B are non-zero. Output

Î i
def= β̂ · 1

|L|
∑
t∈L
q̂t.

Figure 8.4: The Two-round Protocol.

381

show that for any compressed quadtree T and any i ∈ {0, . . . , h − 1}, with probability at least
3/4 over the execution of the sketching algorithm, the output Î i satisfies I i/8 ≤ Î i ≤ 8I i. Re-
peating the protocol for O(log log d) iterations and outputting the median (in order to decrease
the error probability), and repeating it for all i ∈ {0, . . . , h− 1} obtains the desired theorem.

For the rest of the proof, consider a fixed i ∈ {0, . . . , h − 1} and T . We consider the
distribution ν supported on Vi where

Pr
v∼ν

[v = v∗] ∝
∣∣∣|Av∗| − |Bv∗|

∣∣∣, and Z
def=

∑
v∈Vi

∣∣∣|Av| − |Bv|
∣∣∣

is the normalizing constant. We have

I i = Z · E
v∼ν

[
qv,π(v)

]
≥ Z · d2i .

To complete the proof, we show the following:

1. The random variable β̂ satisfies Z ≤ β̂ ≤ 2Z, with probability at least 0.99 over the
randomness in C ∼ S1

k((s′)3, O(1)). This follows immediately from Claim 8.5.2.

2. For every t ∈ L, consider the sample vt ∈ Vi in Line 2 of Round 1. Then, with probability
at least 1− 1/(100k) over the draw of Ct ∼ S1

k(d,O(log log s)),

d

2i ≤ qvj ,uj ≤ q̂t ≤ 2qvj ,uj ≤
60d log s

2i ,

which follows from Claim 8.5.4.

3. We have |L| > k/2 with probability 1 − 1/s. This follows from a Chernoff bound on the
number of vt such that vt = ⊥.

4. The random variables vi for i ∈ [L] in Line 2 are independent and identically distributed,
depending on the draw of (St,Alg(L1-sa)

St) ∼ S1
a((s′)2, O(log2 s)). Specifically, they are

drawn from a distribution D′ over Vi, such that we have dTV(D′, ν) ≤ 1/s. This follows
from Claim 8.5.3.

From 1 and 4 above, we have that with probability at least 0.99,

I i/2 ≤ I i −O
(
Z · d log s

s2i

)
≤ E

v∼D′

[
β̂ · qv,π(v)

]
≤ I i +O

(
Z · d log s

s2i

)
≤ 2I i

382

and by 2, with probability 0.99·0.99 over the draws of C ∼ S1
k((s′)2, O(1)) and all C1, . . . ,Ck ∼

S1
k(d,O(log log s)),

1
4 · I i ≤ E

v∼D′

[
β̂ · q̂t

]
≤ 4I i

Thus, the output q̂ of the sketching algorithm has expectation between I i/4 and 4I i, and by the
boundedness of q̂t and independence across t ∈ [k],

Var

 β̂
k

k∑
t=1
q̂t

 = O

(
Z2d2 log2 s

k · 22i

)

which is less than cI2
i for arbitrarily small constant c > 0, given large enough k = O(log2 s). As

a result, we apply Chebyshev’s inequality to conclude that the output q̂ is between I i/8 and 8I i
with probability at least 0.99 · 0.99 · 0.99 > 3/4 as needed, and we conclude the theorem.

8.6 One-Round Linear Sketch

In this section, we demonstrate how the two-round sketch of Section 8.5 can be compressed into
a single round, albeit with the addition of a small additive error. Recall that a one-round linear
sketch first implicitly generates a random matrix S ∈ Rk×2d+1 , and stores only the matrix vector
product Sf , where f ∈ R2d+1 is the vectorized representation of the two multi-sets A,B ⊂
{0, 1}d. The space used by a linear sketch is the number of bits required to store Sf . In our
setting, since S will have small bit complexity and f is 2s sparse, the space complexity will be a
log s factor larger than the number of rows of S. Specfically, the goal of this section is to prove
the following Theorem.

Theorem 102. For d, s ∈ N, there exists a 1-round linear sketching algorithm such that given

multi-sets A,B ⊂ {0, 1}d with |A| = |B| = s, computes an approximate Î to EMD(A,B) with

EMD(A,B) ≤ Î ≤ Õ(log s) EMD(A,B) + εds

with probability at least 3/4. Moreover, the space used by the linear sketch isO(1/ε)·polylog(s, d).

Rescaling ε by a factor of d yields a additive εs approximation inO(d/ε)·polylog(s, d) space.
Whenever, the size-smulti-setsA,B ⊂ {0, 1}d do not intersect drastically, i.e., |A∩B|/|A∪B| <
1− ε where ∪,∩ are multi-set unions and intersections, then EMD(A,B) > εs. This instances,
also known as those having Jaccard index bounded away from 1, have been studied for EMD in

383

low-dimensions [YO14], and in this case, we obtain the following corollary.

Corollary 8.6.1. For d, s ∈ N and ε ∈ (0, 1), there exists a 1-round linear sketching algorithm

such that given multi-setsA,B ⊂ {0, 1}d with |A| = |B| = s satisfying |A∩B|/|A∪B| ≤ 1−ε,
computes an approximate Î to EMD(A,B) with

EMD(A,B) ≤ Î ≤ Õ(log s) EMD(A,B)

with probability at least 3/4. Moreover, the space used by the linear sketch isO(d/ε)·polylog(s, d).

The goal is similar to the two-round protocol. We begin by sampling a compressed quadtree
T if depth h = log2(2d), as well as a universe reduction step of Proposition 8.5.1 in Section 8.5,
using public randomness. For each depth i ∈ {0, . . . , h− 1}, we estimate the quantity

I i
def=

∑
v∈Vi

∣∣∣|Av| − |Bv|
∣∣∣ · qπ(v),v.

To estimate I i, we first sample a vertex v ∼ Vi with probability proportional to
∣∣∣|Av| − |Bv|

∣∣∣. In

addition, we obtain an estimate ∆̂i of ∆i = ∑
v∈Vi

∣∣∣|Av| − |Bv|
∣∣∣. Once we have such a sample

v, we approximate compute the cost qπ(v),v via a value q̂π(v),v, and output ∆̂i · q̂π(v),v as an ap-
proximation of I i. Repeating the process poly(log s) times, we will obtain our desired estimate.
While in Section 8.5, we could use one round to produce the sample v, and another round to
estimate q̂π(v),v, the main challenge here is to procedure the sample and estimate simultaneously.
The approach is based on a new technique we call precision sampling with meta-data, building
on the precision sampling framework from Chapter 3 and prior works [AKO11, JST11].

8.6.1 Precision Sampling Lemma

The goal of this section is to prove a useful Precision Sampling Lemma, which results in a
significantly simplified sampling algorithm than the one described in Chapter 3 and prior works
[AKO11, JST11]. Specifically, the simplified reporting algorithm always returns the maximum
coordinate from the count-sketch estimate of the scaled stream vector; in other words, it has no
failure procedure (it never outputs ⊥, in the language of Definition 3.1.2). This Lemma does not
supercede prior work, since from the perspective of typical streaming algorithms, the complexity
of the sampler will be a log n factor worse than the approximate Lp samplers of [AKO11, JST11],
and will not be a perfect sampler like the one from Chapter 3.

384

We begin by recalling several useful properties of the order statistics of n independent non-
identically distributed exponential random variables (see Section 3.2.2 for a further discussion).
Let (t1, . . . , tn) be independent exponential random variables where ti has mean 1/λi (equiva-
lently, ti has rate λi), abbreviated asExp(λ). Recall that ti is given by the cumulative distribution
function Pr [ti < x] = 1 − e−λix. Our algorithm will require an analysis of the distribution of
values (t1, . . . , tn), which we will now describe. Recall earlier from Fact 3.2.3 that constant
factor scalings of an exponential variable result in another exponential variable.

Fact 3.2.3 (Scaling of exponentials). Let t be exponentially distributed with rate λ, and let α > 0.

Then αt is exponentially distributed with rate λ/α.

Definition 8.6.2. Let t = (t1, . . . , tn) be independent exponentials. For k = 1, 2, . . . , n, we

define the k-th anti-rank Dt(k) ∈ [n] of (t1, . . . , tn) to be the values Dt(k) such that tDt(1) ≤
tDt(2) ≤ · · · ≤ tDt(n).

Recall that using the structure of the anti-rank vector, one can derive a simple formula fo the
distribution of tDt(k) as a function of (λ1, . . . , λn) and the anti-rank vector. This formula is
presented in Fact 3.2.5, and crucially utilized in Chapter 3 to bound the dependency of failure
event (outputting ⊥) of the sampler on the identity of D(1). For this chapter, we will only need
to apply the formula to the first two order statistics D(1), D(2), thus we present, with proof, a
reformulation of Fact 3.2.5 here, which will be more directly applicable for our purposes.

Fact 8.6.3 (Reformulation of Fact 3.2.5, derived by [Nag06]). Let (t1, . . . , tn) be independently

distributed exponentials, where each ti has rate λi > 0. Then, Dt(1) is i with probability

λi/
∑
j∈[n] λj . Furthermore, the following two sampling procedures produce the same distribu-

tion over pairs in R2:

1. We sample (t1, . . . , tn), where ti ∼ Exp(λi), and output (tDt(1), tDt(2) − tDt(1)).

2. We sample i1 ∈ [n] where Pr[i1 = i] = λi/
∑n
j=1 λi, and independently sample E1,E2 ∼

Exp(1). We output (
E1∑
j∈[n] λj

,
E2∑

j∈[n]\{i1} λj

)
.

385

Proof. This is a simple computation. We have that for any r, r′ ∈ R≥0 and i ∈ [n],

Pr
t

Dt(1) = i,

tDt(1) ≥ r,

tDt(2) − tDt(1) ≥ r′

 =
∫ ∞
y:r

λi exp (−λiy)
∏

j∈[n]\{i}
Pr

tj∼Exp(λj)
[tj − y ≥ r′] dy

= λi exp
−r′ ∑

j∈[n]\{i}
λj

∫ ∞
y:r

exp
−y n∑

j=1
λj

 dy
= λi∑n

j=1 λi
· exp

−r′ ∑
j∈[n]\{i}

λj

 · exp
−r n∑

j=1
λi

= Pr

[
i1 = i ∧ E1∑

j∈[n] λj
≥ r ∧ E2∑

j∈[n]\{i1} λj
≥ r′

]
.

We are now ready to present the simplified precision sampling lemma which we will centrally
apply in this section.

Lemma 8.6.4. Let x ∈ Rn be any vector, and let z ∈ Rn be the random vector given by letting

zi = xi
ti
, where ti ∼ Exp(1).

Let ε ∈ (0, 1), and suppose z̃ is an adversarially corrupted vector satisfying ‖z̃−z‖∞ ≤ ε‖x‖1,

and define the random variable i∗ = arg maxi |z̃i|. Then we have for all i ∈ [n]:

Pr
t1,...,tn∼Exp(1)

[i∗ = i] = (1±O(ε)) |xi|
‖x‖1

±O(e− 1
4ε) (8.38)

Proof. Consider the random variable t′ = (t′1, . . . , t′n) where t′i ∼ Exp(|xi|), and notice, by
Fact 3.2.3, that t′i is distributed as 1/|zi|. Hence, i∗ is set to iwheneverDt′(1) = i and 1/t′Dt′ (1)−
1/t′Dt′ (2) ≥ 2ε‖x‖1. Thus, by Fact 8.6.3,

Pr
t1,...,tn
∼Exp(1)

[i∗ = i] ≥ Pr
t′=(t′1,...,t′n)
t′i∼Exp(|xi|)

Dt′(1) = i ∧ 1
t′Dt′ (1)

− 1
t′Dt′ (2)

≥ 2ε‖x‖1

≥ Pr

i1,E1,E2

[
i1 = i ∧ 1

E1
− 1
E1 +E2

≥ 2ε
]

= |xi|
‖x‖1

(
1−

∫ 1/(2ε)

r:0
exp (−r) ·Pr

E2

[
E2 ≤

2εr2

1− 2εr

]
dr − exp

(
− 1

2ε

))
,

386

and we have

∫ 1/(2ε)

r:0
exp(−r) Pr

E2

[
E2 ≤

2εr2

1− 2εr

]
dr ≤

∫ 1/(4ε)

r:0
4εr2 exp(−r)dr + 1

4ε exp(−1/(4ε)) . ε,

which results in the lower bound in (8.38). In order to upper bound the probability we pick
i∗ = i, we notice that

Pr
t1,...,tn
∼Exp(1)

[i∗ = i] ≤ |xi|
‖x‖1

+ Pr
t′=(t′1,...,t′n)
t′i∼Exp(|xi|)

Dt′(1) 6= i ∧ 1
t′Dt′ (1)

− 1
t′i
≤ 2ε‖x‖1

 ,
and

Pr
t′=(t′1,...,t′n)
t′i∼Exp(|xi|)

Dt′(1) 6= i ∧ 1
t′Dt′ (1)

− 1
t′i
≤ 2ε‖x‖1

≤
∑

j∈[n]\{i}

∫ 1
2ε‖x‖1

r:0
|xj| exp

−r ∑
j′∈[n]\{i}

|xj′ |

 Pr
t′i∼Exp(|xi|)

[
r

1− 2ε‖x‖1r
≥ t′i ≥ r

]
dr + exp

(
− 1

2ε

)
,

where the first term bounds the probability that 1
t′i

is not the maximum value, but is large enough
to be corrupted in z̃ to appear as the maximum, and the second term bounds the probability that
the maximum value is less than 2ε‖x‖1 (in which case a corruption index i may make it the
maximum). Then, we have

∑
j∈[n]\{i}

∫ 1
2ε‖x‖1

r:0
|xj| exp

−r ∑
j′∈[n]\{i}

|xj′ |

 Pr
t′i∼Exp(|xi|)

[
r

1− 2ε‖x‖1r
≥ t′i ≥ r

]
dr

≤
∑

j∈[n]\{i}

∫ 1
4ε‖x‖1

r:0
|xj| exp (−r‖x‖1)

(
1− exp

(
−2ε‖x‖1|xi|r2

1− 2ε‖x‖1r

))
dr + exp

(
− 1

4ε

)

. ε‖x‖1 · |xi|
∑

j∈[n]\{i}
|xj|

∫ 1
4ε‖x‖1

r:0
r2 exp (−r‖x‖1) dr + exp

(
− 1

4ε

)
.
ε|xi|
‖x‖1

+ exp
(
− 1

4ε

)
,

where in the second inequality, we have 1 − exp
(
−2ε‖x‖1|xi|r2

1−2ε‖x‖1r

)
. ε‖x‖1|xi|r2 when r ≤

1/(4ε‖x‖1).

We will also need the following Lemma, which generalizes Proposition 3.3.5 from Chapter
3 to scalings beyond exponential random variables.

Lemma 8.6.5 (Generalization of Proposition 3.3.5, Chapter 3). Fix n ∈ N and α ≥ 0, and let

387

{Di}i∈[n] be a collection of distributions over R satisfying

Pr
y∼Di

[|y| ≥ t] ≤ α

t
for all i ∈ [n] and all t ≥ 1.

For any fixed vector x ∈ Rn and integer β ≥ 1, consider the random vector z ∈ Rn given by

letting

zi
def= ti · xi, where ti ∼ Di independently for all i ∈ [n].

Then, ‖z−2β‖2 ≤ 12α‖x−β‖1/
√
β and ‖z−β‖1 ≤ 9α‖x‖1dlog2 ne with probability at least

1− 3e−β/4 over the draws of ti ∼ Di.22

Proof. Define the random sets

Ik =
{
i ∈ [n] : α‖x‖1

2k+1 ≤ |zi| ≤
α‖x‖1

2k

}
for k = 0, 1, 2, . . . , dlog2 ne,

and notice that, for any i ∈ [n],

Pr
ti∼Di

[i ∈ Ik] ≤ Pr
ti∼Di

[
|ti| ≥

α‖x‖1

2k+1|xi|

]
≤ 2k+1|xi|
‖x‖1

implying E
t1,...,tn

[|Ik|] def= µk ≤ 2k+1.

Let E1 denote the event that there exists k ≥ dlog2(β/4)e such that |Ik| > 4 · 2k+1. Since all
draws ti ∼ Di are independent, we let δk = 4·2k+1

µ
− 1 ≥ 3,

Pr
t1,...,tn

[E1] ≤
dlog2 ne∑

k=dlog2(β/4)e
Pr

t1,...,tn

[
|Ik| > 4 · 2k+1

]
=

dlog2 ne∑
k=dlog2(β/4)e

Pr
t1,...,tn

[|Ik| > (1 + δk)µk]

≤
dlog2 ne∑

k=dlog2(β/4)e
exp

(
−2k

)
≤ 2 exp(−β/4),

by a Chernoff bound. Similarly, every i ∈ [n] satisfies |zi| ≥ 4α‖x‖1/β with probability at most
β|xi|/(4‖x‖1) over the draw of ti ∼ Di. The event E2 that more than β indices i ∈ [n] satisfy
|zi| ≥ 4α‖x‖1/β occurs with probability at most exp(−β/4). Thus, whenever E1 and E2 do not

22For any vector x ∈ Rn and any integer β ≥ 1, recall that we define x−β ∈ Rn be the vector given by x where
the β highest magnitude coordinates are set to 0. When β ≥ 1 is not an integer, x−β is interpreted as x−bβc.

388

occur, (which happens with probability at least 1− 3e−β/4), we have

‖z−β‖2
2 ≤

dlog2 ne∑
k=dlog2(β/4)e

|Ik| ·
α2‖x‖2

1
22k + n · α

2‖x‖2
1

n2 ≤ 128α2‖x‖2
1

β
,

‖z−β‖1 ≤
dlog2 ne∑

k=dlog2(β/4)e
|Ik| ·

α‖x‖1

2k + n · α‖x‖1

n
≤ α‖x‖1 (8dlog2 ne+ 1)

since once β ≥ n, the bound becomes 0. Hence, it follows that ‖z−β‖2 ≤ 12α‖x‖1/
√
β with

probability at least 1− 3e−β/4. Consider applying the above argument with the vector x−β with
z′i = (x−β)i · ti to bound ‖z′−β‖2 ≤ 12α‖x−β‖1/

√
β, and then note that ‖z−2β‖2 ≤ ‖z′−β‖2.

Remark 103. Using Lemmas 8.6.4 and 8.6.5, along with the standard Count-Sketch from Sec-
tion 2.3.2, one obtains a O(log3(n)) bits of space algorithm for `1 sampling with relative error
(1/ log n) and additive error 1/poly(n) which never outputs FAIL. This can be naturally ex-
tended to p ∈ (0, 2], where the space increases by a log(n) factor for p = 2. While this is still
much weaker than the perfect sampler from Chapter 3, it matches the complexity of the best
known approximate sampler of [JST11] prior to the results of Chapter 3, which yields the same
space and error guarantee. The advantage of the algorithm resulting from Lemmas 8.6.4 is that
it is perhaps simpler to state and present, and may be useful for pedagogic purposes.

8.6.2 Additional Sketching Tools

In this section, we recall some classical tools from the sketching literature, and also develop
some augmentations to them. We begin by restating the count-sketch guarantees from Section
2.3.2 in a notation which avoids defining the recovery procedure precisely.

Theorem 104 (Theorem 9). Fix any ε > 0 and n ∈ N, and let k = O(log n/ε2). There is a

distribution S∞k (n, ε) supported on pairs (S,Alg∞S), where S ∈ Rk×n is a matrix encoded with

O(k log n) bits of space, and Alg∞S is an algorithm which receives a vector in Rk and outputs a

vector in Rn. For any x ∈ Rn,

‖x− Alg∞S (Sx)‖∞ ≤ ε‖x−1/ε2‖2

with probability at least 1− 1/poly(n) over the draw of (S,Alg∞S) ∼ S∞k (n, ε).

For notational simplicity, notice that count-sketch may be applied to an n × m matrix X, by

389

multiplying SX and applying AlgS to each column of SX. If m ≤ poly(n), we may apply a
union bound over all m columns and obtain analogous point-wise estimates of all entries of X.
The error obtained for an entry Xi,j naturally depends on the (tail)-`2 norm of the j-th column
of X as per the above theorem. Our algorithm will use the count-sketch from Section 2.3.2, but
also a more general version will be needed.

Theorem 105 (Nested Count-Sketch). Let n,m, k ∈ N, η ∈ (0, 1), and consider a partition

U = {U`}`∈[m] of [n], k ≤ m, as well as s = O(k(log n)2/η2). There exists a distribution

S∞,Uk (n, η) supported on pairs (S,Alg∞,US), where S ∈ Rs×n is a matrix encoded withO(s log n)
bits of space, and Alg∞,US is an algorithm which receives a vector in Rs and outputs a vector in

R
n. Fix any vector x ∈ Rn, any subset J ⊂ [m] of size at most k, and any j ∈ J , and let y ∈ Rn

be the vector given by letting for i ∈ [n],

yi =

 0 i ∈ ⋃`∈J\{j} U`
xi o.w.

.

Then, with probability at least 1 − 1/poly(n) over the draw of (S,Alg∞,US) ∼ S∞,Uk (n, k, η),

every i ∈ Uj satisfies

∣∣∣xi − Alg∞,US (Sx)i
∣∣∣ ≤ η‖y−1/η2‖2.

Proof. Let h : [m] → [10k] be a 4-wise independent hash function. For each t ∈ [10k], we let
z(t) ∈ Rn be the vector given by setting, for each i ∈ [n]

z
(t)
i =

 xi i ∈ Uj where h(j) = t

0 o.w.
.

Instantiate a Count-Sketch data structure by sampling from (St,Alg∞St) ∼ S∞k (n, η), and stor-
ing Stz(t). Letting t = h(j), notice that whenever h(j′) 6= t for all j′ ∈ J \ {j} (which
occurs with probability at least (1 − 1/(10k))k−1 ≥ 0.9), then z(t) = y. Hence, the algorithm
Alg∞S (Stz(t)) recovers y up to `∞ error at most η‖y−1/η2‖2. We note that the nested application
of h and S1, . . . ,S10k may be represented as a matrix multiplication of x, and we may boost error
probability by repeating O(log n) times and taking the median.

We will sometimes use the following shorthand notation to represent the error yielded from
Theorem 105.

390

Definition 8.6.6. Given a dimension n, t ≥ 0, and a partition U = {U`}`∈[m] of [n], let x ∈ Rn.

Let J ⊂ [m] be a subset of the partition indices. Then we write x−(J,t) = (yJ)−t, where yJ is

defined via

yJi =

xi if i /∈ ∪`∈JU`
0 otherwise

We now restate Theorem 106 once more, itself a simplification of Indyk’s p-stable sketch,
with the addition of an error parameter ε.

Theorem 106 (L1-sketch, reformulation of Theorem 8). Fix n ∈ N, ε, δ ∈ (0, 1), and k =
O(log(1/δ)/ε2). Let S1

k(n) be the distribution on k × n matrices Ω with independent Cauchy

random variables C, and let Alg1 be the algorithm which takes a vector y ∈ Rk , and outputs

Alg1(y) def= median
{

|yi|
median(|C|) : i ∈ [k]

}
, where median(|C|) def= sup

{
t : Pr

ω∼C
[|ω| ≤ t] ≤ 1

2

}
.

Then, for any vector x ∈ Rn,

Pr
Ω∼S1

k
(n)

[∣∣∣Alg1(Ωx)− ‖x‖1

∣∣∣ ≤ ε‖x‖1
]
≥ 1− δ.

8.6.3 Construction of the Sketch

Fix any i ∈ [h], we now describe the sketching algorithm to estimate Ii. We include a table of
notation used in this section and the following in Figure 8.1. As we will see, we will not always
be able to obtain a good approximation to Ii for all levels i. Specifically, for the levels i for
which Ii is not sufficiently large, we will not obtain an estimate of Ii, however we will be able
to safely ignore such “small” levels. Moreover, we will be able to easily determine when a level
is small, and avoid obtaining an estimate for it. Thus, we now describe the construction for the
sketch for level i. Recall that the input to the EMD(A,B) sketching problem can be represented
as a vector fA,B ∈ R2·2d , where the first 2d coordinates describe the multi-set A ⊂ {0, 1}d and
the last 2d coordinates describeB ⊂ {0, 1}d. We design a linear sketch which can be represented
as S · fA,B for some matrix S.

As discussed earlier, our approach will be to first sample a vertex v∗ from Vi, such that

Pr [v∗ = v] ∝̃ ||Av| − |Bv|| ,

391

Table 8.1: Table of Notation

η , precision for Count-Sketch
ρ , Θ(1

ε20
log s) number of Cauchy Sketches

X , matrix Encoding parents in Vi−1
Y , matrix Encoding children in Vi
∆i ,

∑
v∈Vi ||Av| − |Bv||

∆i(u) ,
∑
v : π(v)=u ||Av| − |Bv||

λu , vector with coordinates λu,v = |Av| − |Bv|
ωu,j , vector of i.i.d. Cauchy random variables
Ωu , ρ× d matrix of i.i.d. Cauchy random variables

D1,D2 , Diagonal exponential scaling matrices
Z1 , D1X
Z2 , D2Y
S1 , Count-Sketch Matrix from Theorem 104
S2 , Nested Count-Sketch Matrix from Theorem 105
Z̃j , estimate of Zj from Count-Sketch and Nested

Count-Sketch

where ∝̃ is meant to indicate that the relationship is approximately proportional (since we en-
counter some errors). Letting u∗ be the parent of v∗, the sketch will estimate qu∗,v∗ . If we can
produce polylog(s, d) samples from such a distribution and obtain estimates of qu∗,v∗ , the empir-
ical mean will produce an estimate to Ii. We design a linear data-structured based on precision
sampling that will allow us to both sample v∗ and simultaneously recover an estimate of qu∗,v∗ .
To do this, we define two matrices X,Y whose entries will be linear combinations of the entries
of f . The first matrix X encodes information about the nodes in the level Vi−1, and Y will encode
information about the children nodes in Vi.

The rows of X will be indeed by nodes u ∈ Vi−1, and for each row Xu we will store several
pieces of information: (1) an approximation of the total discrepancy of its children, namely∑
v:π(v)=u ||Av| − |Bv||, and (2) sufficient meta-data to compute the center cu. Similarly, in Y,

each row is indexed by a vertex v ∈ Ti, and will store the discrepancy ||Av| − |Bv|| at that node,
as well as sufficient information to compute the center cv. The complete details now follow.

Let η be the precision parameter for count-sketch which we will soon fix, and let ε0 be
another precision parameter for Cauchy-sketches that set to ε0 = Θ(1/log s). In what follows,
let ∆i be the total discrepancy at level i, namely ∆i = ∑

v∈Vi |||Av|− |Bv||. For each parent node

392

u ∈ Vi−1, define the vector λu ∈ R22i indexed by the children of u. Specifically, for each v ∈ Vi
with π(v) = u, we have an entry λu,v, with the value λu,v = |Av| − |Bv|. Thus, λu is the vector
of discrepancies at u, and we have

∑
u∈Vi−1 ‖λu‖1 = ∆i.

Construction of the Matrices. We first define the matrix X ∈ R|Vi|×D1 , where D = 2ρ + 1,
and ρ = Θ(ε−2

0 log s). Each row, denoted Xu, of X corresponds to a unique vertex u ∈ Vi−1

(i.e., the rows of X are indexed by vertices in Vi−1). Let Xu,i denote the i-th entry in the v-th
row of A. Ideally, we would like to set Xu,1 = ∑

v:π(v)=u ||Av| − |Bv|| = ‖λu‖1. However, this
will not be possible to do in the linear sketching setting, because ‖λu‖1 cannot be expressed as
a linear function of the input vector f . Instead, we will try to approximate this value `1 norm of
‖λu‖1 with a Cauchy sketch. Specifically, for i = 1, 2, . . . , ρ, we generate a vector ωu,i ∈ R22i

of i.i.d. Cauchy random variables C. Note that the algorithm will only need to actually generate
at most 2s random variables in the vector ωu,i, and moreover ωu,i can be stored in small space
using limited independence [KNW10a]. Next, for i = 1, 2, . . . , ρ, we set Xu,i = 〈λu, ωu,i〉. Note
that by Theorem 106, we have 1

median(|C|)mediani∈[ρ]|Xu,i| = (1± ε0)‖λu‖1.

Next, for the remaining ρ+1 coordinates in each row Xu, we set Xu,ρ+1 = |Au|+|Bu|, which
can be accomplished exactly via an linear combination of the entries in f . Lastly, we generate
an i.i.d. Cauchy matrix Ωu ∈ Rρ×d, and e set the final ρ entries to be Ωu ·

(∑
p∈Au∪Bu p

)
, where

p ∈ {0, 1}d is thought of as a column vector. Thus, the information in the row Xu contains a
(1±ε0) approximation of the total discrepancy at the vertex u, the number of points in |Au∪Bu|,
and the sum of the points in u after being multiplied by a Cauchy sketch.

We now describe the construction of the matrix Y, which will be similar but simpler since
we will not need the Cauchy sketch for the discrepancies. For each v ∈ Vi, we similarly have a
assigned row Yv. We set Yv,1 = ||Av| − |Bv||, and we set Yv,2 = |Av| + |Bv|, and the last ρ
coordinates of Yv will be set to Ωπ(v) ·

(∑
p∈Av∪Bv p

)
. In summary, we have

Xu =
[
〈λu, ωu,1〉, . . . , 〈λu, ωu,ρ〉, |Au|+ |Bu|,

(
Ωu ·

∑
p∈Au∪Bu

p

)
1
, . . . ,

(
Ωu ·

∑
p∈Au∪Bu

p

)
ρ

]

Yv =
[
||Av| − |Bv||, |Av|+ |Bv|,

(
Ωπ(v) ·

∑
p∈Av∪Bv

p

)
1
, . . . ,

(
Ωπ(v) ·

∑
p∈Av∪Bv

p

)
ρ

]

393

Construction of the sketch. The sketch is now as follows. We generate two count-sketch
matrices S1 ∈ Rk×n1 ,S2 ∈ Rk′×n2 with precision parameter η, where S1 ∼ S∞k (n1, η) is a
standard count-sketch matrix from Theorem 104, and S2 ∼ S∞,Uk (n2, η) is a nested-count sketch

from Theorem 105 (applied with ε = ε0 = Θ(1/ log s)), so that k = O(1/η2 log(n1 + n2)) and
k′ = O(η−2 log(n1 + n2) log s), and where n1 = |U1| = Õ(s2) and n1 = |U1 × U2| = Õ(s4).
We also generate two diagonal precision scaling matrices D1,D2, where D1

u,u = 1/t1u, and
D2
v,v = 1

t1
π(v)t

2
v
, where tji ∼ Exp(1) are independent exponential random variables. In the sequel,

we will drop the superscript and write tv for some vertex v, since v will be in exactly one of
Vi or Vi−1 it will be clear whether tv was from the first or second set of exponential variables.
Next, we store a Cauchy sketch ΩY∗,1 with O(log(s)/ε20) rows, which by Theorem 106 gives a
estimate s̃ = (1 ± ε0)∆i with probability 1 − 1/poly(s). Altogether, our algorithm stores the
three linear sketches S1D1X, S2D2Y, and ΩY∗,1. To define how the error for the nested-count
sketch S2D2Y is applied, we need to define a partition of the rows of Y, which we do naturally
by partitioning Vi into the subsets of children v which share the same parent in u ∈ Vi−1. Notice
that if Z̃2 is the estimate of D2Y produced by the nested count-sketch, we have for any fixed
subset U ⊂ Vi−1 of size |U | = 1/ε0, for any v ∈ Vi we have

‖Z̃2
v,j − (D2Y)v,j| ≤ η‖((D2Y)∗,j)−(U\π(v),1/η2)‖2

where for a vector x, (x)−(U,c) is defined as in Theorem 105. Notice that ‖((D2Y)∗,j)−(U,1/η2)‖2 ≤
‖((D2Y)∗,j)−1/η2‖2, so we will sometimes use this weaker bound when the tighter one is not re-
quired.

8.6.4 Analysis of the Algorithm.

We begin this section with a table of notation for reference, followed by the full algorithm.
The algorithm proceeds in two main steps. First, it samples a parent u∗ ∼ Vi−1 with probability
proportional to ∆i(u∗). It does this by first scaling a vector whose coordinates are approximations
of ∆i(u), for u ∈ Vi−1, by independent inverse exponentials. By returning an approximation of
the maximum coordinate after scaling, we can apply Lemma 8.6.4 to demonstrate that the parent
u∗ obtained is indeed from the correct distribution. We then iterate the process, searching over
all children v ∈ Vi of u∗, and finally sampling v∗ with π(v∗) = u∗ with probability proportional
to ||Av∗| − |Bv∗||, again by the same procedure using Lemma 8.6.4. Once we have obtained
our desired samples (u∗, v∗), we would like to output the quantity ∆i · qu∗,v∗ , where qu∗,v∗ is as
defined as in Equation 8.36. We can easily obtain an approximation ∆̃i of ∆i using a Cauchy

394

Sketch of Lemma 106. To obtain an approximation of qu∗,v∗ , we utilize the metadata contained
within the rows Xu∗,∗,Yv∗,∗, of which we have approximations of due to count-sketch.

We prove two main Lemmas which will yield the correctness of our algorithm. First Lemma
8.6.7 demonstrates that the pair (u∗, v∗) is sampled from the correct distribution. Second, the
more involved Lemma 8.6.8 demonstrates that our approximation of qu∗,v∗ is sufficiently accu-
rate. The first demonstrates that the sample v∗ ∼ Vi is drawn from the correct distribution. The
second demonstrates that conditioned on sampling a (u∗, v∗) ∼ Vi−1 × Vi, we can recover good
approximations to the centers cu∗ , cv∗ if the parent u∗ is not among a small set of “bad parents”.

Procedure to Estimate Ii

Input: (S1D1X,S2D2Y), an estimate ∆̃i = (1± ε0)∆i.

Parameters: ε > 0, count-sketch precision η = Ω
(√

ε
log d log` s

)
for ` = O(1), and

ε0 = Θ(1/log s).

1. Via S1D1X and S2D2Y recover approximate matrices Z̃1, Z̃2 such that

‖Z̃1
∗,j − (D1X)∗,j‖∞ ≤ η‖(D1X∗,j)−1/η2‖2

‖Z̃2
∗,j − (D2Y)∗,j‖∞ ≤ η‖(D2Y∗,j)−1/η2‖2

for all columns j.

2. For each row u of Z̃1, compute

∆̃i(u) = medianj∈[ρ]|Z̃1
u,j, and u∗ = arg max

u
∆̃i(u)

3. Compute v∗ = arg maxv:π(v)=u∗ |Z̃2
v,1|, and output

Q = ∆̃i

median(|C|) ·min
{

max
{

medianj
∣∣∣∣∣Z̃

1
u∗,ρ+j+1

Z̃1
u∗,ρ+1

−
Z̃2
v∗,j+2

Z̃2
v∗,2

∣∣∣∣∣ , d2i
}
,
30d log s

2i

}

Figure 8.5: Main Sketching Primitive to Estimate Ii

We state Lemmas 8.6.7 and 8.6.8 below, and proceed to prove our main Theorem 102 given
these Lemmas. The proofs of Lemmas 8.6.7 and 8.6.8 will then be given in Section 8.6.4.

Lemma 8.6.7. Let v∗ ∈ Vi be the vertex which is sampled in Figure 8.5. Then for any v ∈ Vi,
we have Pr [v∗ = v] = (1± ε0) ||Av |−|Bv ||∆i

± s−c, where c > 1 is an arbitrarily large constant.

395

Lemma 8.6.8. Fix η, ε0 as in Figure 8.5, and let (u∗, v∗) be the samples accepted by Figure

8.5. Then assuming that 2s
∆i

< log s log d
ε2i , and moreover that |Au∗ |+|Bu∗ |∆i(u∗) ≤ log s log d

εν2i , where ν =
Θ(1/ log s), then with probability 1− 1/poly(s), we have

1
median(|C|) ·medianj∈[ρ]

∣∣∣∣∣Z̃
1
u∗,ρ+j+1

Z̃1
u∗,ρ+1

−
Z̃2
v∗,j+2

Z̃2
v∗,2

∣∣∣∣∣ = (1± ε0)‖cu∗ − cv∗‖1 ± ε1
d

2i

where ε1 is an arbitrarily small constant.

Finally, we will need a brief fact that allows us to disregard a small fraction u ∈ Vi−1 which
are in a subset of “bad parents”.

Fact 8.6.9. Fix γ > 1 and ν ∈ (0, 1), and suppose that we have 2s
∆i

< γ. Let W ⊂ Vi−1 be the

set of u ∈ Vi−1 such that |Au∗ |+|Bu∗ |∆i(u) ≤ γ
ν
. Then

∑
u∈W ∆i(u) ≥ (1− ν)∆i

Proof. Suppose otherwise. Then for each u /∈ W , we have ∆i(u)
||Au∗ |+|Bu∗ ||

< ν
γ

, so

∆i

2s <
1

2sν
∑
u/∈W

∆i(u) ≤ 1
2γs

∑
u/∈W
||Au∗|+ |Bu∗|| ≤

1
γ

(8.39)

Thus ∆i/(2s) < γ, a contradiction.

We now restate Theorem 102, and prove it given Lemmas 8.6.7 and 8.6.8.

Theorem 102 For d, s ∈ N, there exists a 1-round linear sketching algorithm such that given

multi-sets A,B ⊂ {0, 1}d with |A| = |B| = s, computes an approximate Î to EMD(A,B) with

EMD(A,B) ≤ Î ≤ Õ(log s) EMD(A,B) + εds

with probability at least 3/4. Moreover, the space used by the linear sketch is Õ(1/ε).

Proof. Fix any level i ∈ [h] (where h = O(log d)). First note that setting the Cauchy Sketch
ΩY∗,1 to be derandomized by [KNW10a], the matrix ΩY∗,1 and Ω can be stored usingO(1/ε20 log2(s))
bits of space, and yields the approximation ∆̃i = (1± ε0)∆i = (1± ε0)‖Y∗,1‖1 with probability
1 − 1/poly(s). We condition on this correctness now, which is independent of the randomness
of the rest of the algorithm, and use the same estimate ∆̃i for all repetitions of the sampling

396

algorithm in Figure 8.5. Now note that if 2s
∆i
> log s log d

4ε2i , then

Ii ≤ ∆i
30d log s

2i ≤ O

(
εds

1
log d

)

so the total contribution of all such i ∈ [log d] is at most O(εds), which we absorb into the
additive error (after rescaling ε by a constant). We can then use our estimate ∆̃i = (1 ± ε0)∆i

to test if this is the case. Specifically, if we have 2s
∆̃i

> log s log d
2ε2i , then we can be sure that

log s log d
ε2i > 2s

∆i
> log s log d

4ε2i , and in this case we set Îi = 0. Otherwise, we will attempt to estimate
Ii via the algorithm in Figure 8.5. Notice that if we happened to choose ε > Ω(log s log d

d
), then

necessarily there will be some levels i (lower in the tree) such that 2s
∆i
> log s log d

4ε2i no matter what,
since for such a setting of ε the right hand side is less than 1. For smaller ε, however, every level
i ∈ [h] may have a chance to contribute.

We apply Lemma 8.6.8 with ν = Θ(1/ log s) as small enough constant, and note by Fact
8.6.9, that the setW of u ∈ Vi−1 that satisfy the assumption of Lemma 8.6.13 satisfies

∑
u∈W ∆i(u) >

(1−ν)∆i. By the setting of ν and the fact that qu,v/qu′,v′ < 30 log s for any non-empty v, v′ ∈ Vi,
it follows that

∑
u∈W

∑
v:π(v)=u qu,v = (1± 1/100)Ii. By Lemma 8.6.8, conditioned on sampling

u∗ ∈ W , our estimate satisfies

1
median(|C|) ·medianj∈[ρ]

∣∣∣∣∣Z̃
1
u∗,ρ+j+1

Z̃1
u∗,ρ+1

−
Z̃2
v∗,j+2

Z̃2
v∗,2

∣∣∣∣∣ = (1± ε0)‖cu∗ − cv∗‖1 ± ε1
d

2i

with probability 1 − s−c. Conditioned on this, and using that qπ(v),v ≥ d/2i for all v ∈ Vi by
definition, we then have Z = (1 ± 8ε1)∆i · qu∗,v∗ . Thus the expectation of Z conditioned on
sampling (u∗, v∗) with u∗ ∈ W is (1± 8ε1)∆i(qu∗,v∗ ± s−c(30d log s/2i)) = (1± 10ε1)∆iqu∗,v∗ .
Moreover, by Lemma 8.6.7, we know that v∗ = v with probability (1±ε0)||Av|−|Bv||/∆i±s−c.
It follows that the probability that we sample v∗ = v ∈ Vi with π(v) /∈ W is at most (3/2)ν.

397

Putting these facts together, we have that

E [Q] =
∑
u∈W

∑
v:π(v)=u

(1± ε0)
(
||Av| − |Bv||

∆i

± s−c
)

(1± 10ε1)∆i · qu,v

± 60ν∆i
d log s

2i

E [Q] = (1± 12ε1)
∑
u∈W

∑
v:π(v)=u

||Av| − |Bv||qu,v

± (60ν∆i
d log s

2i + s−c+3 d

2i

)

≤ (1± 1/50))Ii ±∆i
d

100 · 2i

≤ (1± 1
20)Ii

(8.40)

where we used that Ii ≥ ∆i
d
2i by definition. Similarly, since Q ≤ ∆i

20d log s
2i (conditioned on

the high probability success of our estimate for ∆i), it follows that Var[Q] < (∆i
20d log s

2i)2.
Thus, repeating the procedure O(log2 s) times and obtaining Q1, Q2, . . . , QO(log2 s), we have that√

Var
[∑O(log2 s)

j=1 Qj

]
< ∆i

d
100·2i ≤ Ii/100. By Chebyshev’s inequality, we have

∑O(log2 s)
j=1 Qj =

(1± 1/10)Ii with probability at least 99/100. Thus, after scaling Îi up by a factor of (1 + 1/3),
we can set Î = ∑

i Îi+O(εs), and after scaling ε down by a constant we have I ≤ Ii ≤ 2I+ εs.
By Remark 98, we know that EMD(A,B) ≤ I ≤ Õ(log s) EMD(A,B) with probability at
least .89 over the draw of the tree, which completes the proof of the claimed approximation
after a union bound over all aforementioned events. To see the space complexity, note for each
of the h = O(log d) levels, and for each of the Õ(1) samples used in that level, we the size
of the count-sketch and nested count-sketch is Õ(η−2) by Theorems 104 and 105. Notice that
to apply Theorems 104 and 105, we used the fact that, after the universe reduction step from
Proposition 8.5.1, both X,Y have at most poly(s) rows. This completes the proof after noting
that η = Õ(

√
ε/d).

A Streaming Algorithm. Next, we demonstrate how this linear sketching algorithm results
in a one-pass streaming algorithm for the turnstile model. Recall in this model, a sequence of at
most poly(s) updates arrives in the stream, where each update either inserts or deletes a point
p ∈ {0, 1}d from A, or inserts or deletes a point from B. Noticed that the t-th update can be
modeled by coordinate-wise updates to fA,B of the form (it,∆t) ∈ [2 · 2d] × {−1, 1}, causing
the change (fA,B)it ← (fA,B)it + ∆t. At the end of the stream, we are promised that fA,B is a
valid encoding of two multi-sets A,B ⊂ {0, 1}d with |A| = |B| = s.

Corollary 8.6.10. For d, s ∈ N, there exists a one-pass turnstile streaming algorithm which, on

398

a stream vector fA,B encoding multi-sets A,B ⊂ {0, 1}d with |A| = |B| = s, the algorithm then

computes an approximate Î to EMD(A,B) with

EMD(A,B) ≤ Î ≤ Õ(log s) EMD(A,B)

with probability at least 3/4, and uses O(d+ 1/ε) · polylog(s, d) bits of space.

Proof. As in Corollary 8.12.1, we explicitly store the O(d log d) bits of randomness required to
specify the entire Quadtree T , which we now fix. Also, as in the proof of Corollary 8.12.1, we
use O(d) bits of space to generate the 2-wise independent hash functions hi, hi−1 needed for
the universe reduction step of Proposition 8.5.1. Moreover, the randomness used in the Cauchy
sketch ΩY∗,1 can be derandomized by the results of [KNW10a] to use only O(1/ε20 log2 s) bits
of space and succeed with probability 1− 1/poly(s).

We now note that there are several other sources of randomness that must be deranndomzied:
namely the parent and child exponentials {tu}u∈Vi−1 , {tv}v∈Vi , the Cauchy sketches {Ωu}u∈Vi−1 ,
and {ωu,j}u∈Vi−1,j∈[ρ]. We remark that the randomness needed for the count-sketch and nested
count sketch matrices S1,S2 of Theorems 104 and 105 use 4-wise independent hash functions,
and therefore do not need to be derandomized. We first remark that we can apply a standard
truncation of these continuous distributions to be stored inO(log sd) bits of space (by simply only
storing generating them to O(log sd) bits of accuracy). This introduced a 1/poly(sd) additive
error into each coordinate of the linear sketch. First note that this additional error can be absorbed
into the error of the count sketch estimates Z̃1, Z̃2, increasing the error bounds by at most a
(1 + 1/poly(sd))) factor. The analysis from Lemmas 8.6.7 and 8.6.8 apply with this (slightly)
larger error after scaling the precision parameter η by the same factor.

We demonstrate how to derandomize these (now discrete) distributions. We adapt a standard
argument due to Indyk [Ind06] based on Nisan’s PRG [Nis92]. Since the algorithm is a linear
sketch, we can reorder the stream so that for every u ∈ Vi−1 all updates to points x ∈ {0, 1}d

with vi−1(x) = u occur in a consecutive block Bu of updates, and Bu is broken up further into
blocks Bv for all children v of u, such that all updates to points x ∈ {0, 1}d with vi(x) = v occur
in the consecutive block Bv. We now describe a small space tester which computes the output
of our algorithm while reading the randomness for the exponentials {tu}u∈Vi−1 , {tv}v∈Vi , the
Cauchy sketches {Ωu}u∈Vi−1 , and {ωu,j}u∈Vi−1,j∈[ρ], in a stream. When the block Bu begins for
any u ∈ Vi−1, the algorithm reads and stores the randomness needed for tu,Ωu and {ωu,j}j∈[ρ],
which is a total of Õ(dρ) = Õ(d) bits of space. Within the block Bu, when the updates for
a block Bv begin for any child v of u, we also store the random variable tv. We then can fully

399

process all updates to the linear sketches S1D1X,S2D2Y due to the updates inBv in space Õ(d)
using only the randomness stored within the blocks Bu, Bv.

After the block Bv is complete, we can discard tv, since it will never be needed for to process
any other update. Similarly, once Bu is complete, we can discard the stored randomness tu,Ωu

and {ωu,j}j∈[ρ], since it will not be needed to process updates to any other point in the stream.
The total space required to compute the entire sketches S1D1X,S2D2Y is Õ(d + 1/ε), where
the Õ(d) comes from storing the randomness in the blocksBu, the Quadtree randomness, and the
hash functions hi, hi−1, and Õ(1/ε) is the space required to store the sketches S1D1X,S2D2Y.
Since after the universe reduction step we have |Vi−1|, |Vi| = poly(s), our algorithm requires a
total of poly(s, d) bits of randomness, and can be tested in by a space Õ(d+ 1/ε) algorithm that
reads the random bits to be deradnomized in a stream. Thus, applying Nisans PRG [Nis92], it
follows that the algorithm can be derandomized with a multiplicative increase of O(log sd) bits
of space over the space of the tester, which completes the proof.

Proofs of Lemmas 8.6.7 and 8.6.8

We now provide the proofs of Lemmas 8.6.7 and 8.6.8. We restate the Lemmas again here for
convenience.

Lemma 8.6.7 Let v∗ ∈ Vi be the vertex which is sampled in Figure 8.5. Then for any v ∈ Vi,
we have Pr [v∗ = v] = (1± ε0) ||Av |−|Bv ||∆i

± s−c, where c > 1 is an arbitrarily large constant.

Proof. We first condition on the success of the count-sketch matrices S1,S2 on allO(ρ) columns
of X,Y, which by a union bound occurs with probability 1− s−c for any constant c by Theorem
104 and Theorem 105. The possibility of the failure of this event will only introduce an addi-
tive s−c into the variation distance of the distribution of the sampler, which is safely within the
guarantees of the theorem. In the following, C,C ′, C ′′ will be sufficiently large constants.

It will now suffice to bound our error in estimating the target vectors, since we can then apply
Lemma 8.6.4. First, we show that |Z̃1

v,j − (D1X)v,j| ≤ η∆i with probability 1 − 1/poly(s)
for each of the first j ∈ [ρ] columns. By the Count-Sketch guarantee, we know that |Z̃1

v,j −
(D1X)v,j| ≤ η‖(D1X∗,j)−1/η2‖2. First, since inverse exponentials satisfies Pr [1/x > t] <
1/t for all t > 1, by Lemma 8.6.5 we have ‖(D1X∗,j)−1/η2‖2 ≤ Cη‖(X∗,j)−1/(2η2)‖1 with
probability 1 − 1/poly(s) for some constant C. Next, recall that Xu,j = 〈λu, ωu,j〉, where
ωu,j is a vector of independent Cauchy random variables, which by 1-stability of the Cauchy

400

distribution is itself distributed as ω‖λu‖1 = ω∆i(u) where ω is a Cauchy random variable.
Thus the column vector X∗,j is the result of scaling the column vector with coordinates equal to
∆i(u) for each u ∈ Vi−1 by independent Cauchy random variables, which also satisfy the tail
bound Pr [1/x > t] < 1/t for all t > 1. So applying Lemma 8.6.5 on the non-zero rows of X
(of which there are at most 2s), we have

‖(X∗,j)−1/(2η2)‖1 ≤ C log s
∑

u∈Vi−1

∆i(u) = (C log s) ·∆i

with probability 1−s−c. Butting these bounds together, we have |Z̃1
u,j−(D1X)u,j| ≤ (C ′η2 log s)∆i

for all u ∈ Vi−1 and j ∈ [ρ]. It follows that setting ∆̃i(u) = medianj∈[ρ]|Z̃1
u,j|, the median can

change by at most the error (2C ′η2 log s)∆i, so

∣∣∣∣∆̃i(u)− 1
tu

medianj∈[ρ]|Xu,j|
∣∣∣∣ ≤ (2C ′η2 log s)∆i

Thus, if we define a vector a ∈ R|Vi−1| via the coordinates au = medianj∈[ρ]|Xu,j|, we obtain
an entry-wise approximation ∆̃i(u) to the scaling D1a with error at most (2C ′η2 log s)∆i. By
standard arguments for p-stable variables (Indyk’s p-stable sketch [Ind06], see Theorem 8), we
have that medianj∈[ρ]|Xu,j| = (1±ε0)∆i(u) with probability 1−s−c, thus ‖a‖1 = (1±ε0)∆i after
a union bound over all 2s non-zero coordinates. So by Lemma 8.6.4 applied to the starting vector
a, we have that if u∗ = arg maxu .∆̃i(u) then we have Pr [u∗ = u] = (1±O(log sη2)) |au|‖a‖1 ±s

−c.
Moreover, since |au| = (1 ± ε0)|∆i(u)| for all u, and η < ε0, it follows that Pr [u∗ = u] =
(1± 2ε0)∆i(u)

∆i
± s−c as needed.

Next, we move on to the sampling of v∗ given u∗. We begin by bounding the tail ‖(D2Y∗,1)−1/η2‖2.
Similarly as before, we can bound this by Cη

∑
v∈Vi

(
|Yv,1|/tπ(v)

)
with probability 1−s−c using

Lemma 8.6.5 applied to the exponential tv for the children. Note that
∑
v∈Vi

(
|Yv,1|/tπ(v)

)
=

‖b‖1, where b is the vector with coordinates bu = ∆i(u)/tu. Next, we will prove that ‖b‖1 ≤
C ′′ log s(∆i(u∗)/tu∗ + ∆i) with high probability. To see this, notice ‖b‖1 ≤ log s‖b‖∞ +
‖b− log s‖1, so we can apply Lemma 8.6.5 to bound ‖b− log s‖1 ≤ (C log s)∆i with probability
1− s−c. Since our algorithm choose u∗ as the maximizer of b, we have∣∣∣∣∣∆i(u∗)

tu∗
− ‖b‖∞

∣∣∣∣∣ ≤ (1 +O(ε0))2C ′η2 log s∆i <
∆i

100c log s

where c is a constant, which follows due to our count-sketch error in estimating Z as argued
above, after setting η = Ω

(√
ε

log d log` s

)
with a small enough constant, where ` ≥ 2. Given this, it

401

follows that ‖b‖∞ < ∆i(u∗)/tu∗+∆i/(log s), from which the bound ‖b‖1 ≤ C ′′ log s(∆i(u∗)/tu∗+
∆i) follows. Now notice that since ‖b‖∞ is the max order statistic of a set of independent expo-
nential, by the results of Section 8.6.1 we have the distributional equality ‖b‖∞ = ∆i/E1 where
E1 is an exponential random variable, so with probability 1− s−c we have ‖b‖∞ > ∆i/(c log s),
thus we also have

∆i(u∗)
tu∗

>
1
2‖b‖∞ >

∆i

2c log s (8.41)

Thus, plugging everything into the Count-Sketch guarantee, we obtain

∣∣∣Z̃2
v,1 −D2Yv,1

∣∣∣ ≤ C ′′η2 log s
(

∆i(u∗)
tu∗

+ ∆i

)

≤ O

(
η2 log2 s

(
∆i(u∗)
tu∗

)) (8.42)

for all v ∈ Vi. Recall that we sample v∗ by choosing v∗ = arg maxv:π(v)=u∗ |Z̃2
v,1|. We already

have a bound on the error of the estimation given by Z̃2
∗,1. Thus, to apply Lemma 8.6.4, the

only remaining piece is to notice that the original `1 norm of the vector we are sampling from is∑
v:π(v)=u∗ Yv,1 = 1

tu∗

∑
v:π(v)=u∗ ||Av|−|Bv|| = ∆i(u)

tu
after first fixing the parent exponentials tu.

Thus we can apply Lemma 8.6.4 with the error parameter O(η2 log2 s), which is at most ε0 after
setting η with a small enough constant, to obtain that Pr [v∗ = v | u∗] = (1± ε0) ||Av |−|Bv ||∆i(u∗) ±s

−c.
Noting that the randomness for which this event is determined only depends on the randomness
in the second set of exponentials t2v, we have that

Pr [v∗ = v] =
(

(1± ε0) ||Av| − |Bv||
∆i(u∗)

± s−c
)(

(1± 2ε0)∆i(u∗)
∆i

± s−c
)

= (1± 4ε0) ||Av| − |Bv||
∆i

± 3s−c
(8.43)

which yields the desired theorem after rescaling of c and ε0 by a constant.

To prove the next main Lemma, Lemma 8.6.8, we will need a few minor technical proposi-
tions.

Proposition 8.6.11. Let X be an inverse exponential random variable, and let Y be a random

402

variable supported on [1,∞) with the property that for all t ≥ 1:

Pr [Y > t] < f(t)
t

for some non-decreasing function f : [1,∞) → [1,∞) with f(t) = o(t). Then there is a

universal constant C such that Pr [XY > t] ≤ C f(t) log(t+1)
t

for all t ≥ 1.

Proof. Note that X has the probability density function p(x) = 1
x2 e
− 1
x . Thus, we have

Pr [XY > t] ≤
∫ t

x=0
Pr

[
Y >

t

x

] 1
x2 e

− 1
xdx+

∫ ∞
x=t

1
x2 e

− 1
xdx

≤
∫ 1

x=0
Pr [Y > t] dx+

∫ t

x=1
Pr

[
Y >

t

x

] 1
x2 e

− 1
xdx+O(1

t
)

≤ O

(
f(t)
t

)
+ f(t)

t

∫ t

x=1

1
x
e−

1
xdx

≤ O

(
f(t) log(t+ 1)

t

)
(8.44)

where in the second line, we used that e−1/x/x2 < 1 for all x > 0.

Proposition 8.6.12. Let x ∈ Rn be any vector with ‖x‖1 = s. Let X be an inverse expo-

nential random variable, and let Y1, Y2, . . . , Yn be independent random variables supported on

[1,∞),with the property that Pr [Yi > t] < f(t)/t for each i and all t > 1, where f(t) =
logO(1)((t + 1)poly(s)). Let λ1, λ2, . . . , λn be independent variables, where λi ∼ XiYi, and

Xi is an independent copy of X . Let z ∈ R
n be defined via zi = xiλi. Then we have

‖z−β‖1 ≤ C(log s)(log n)f(s)‖x‖1 for a fixed constant C, with probabiltiy 1− e−β/8.

Proof. We have Pr [zi > C log sf(s)‖x‖1] ≤ xi
10‖x‖1 by Proposition 8.6.11, for some sufficiently

large constantC. By Chernoff bounds, with probability 1−s−β there are at most β/2 coordinates
i ∈ [n] with zi > C log sf(s)‖x‖1. Thus if we truncate the variables λi into new variables λ′i by
enforcing that

λ′i < 100 log sf(s)‖x‖1

xi

for all i ∈ [n], and set z′ = λ′ixi, the we have ‖z−β‖1 ≤ ‖z′−β/2‖1. We can then apply
Lemma 8.6.5 on the truncated variables to bound ‖z′−β/2‖1, noting that for all t ≥ 1 we have
Pr [λ′i > t] < α

t
where α = O(f(s) log s), to obtain the proposition.

We will also need the following technical lemma. It appears as a special case of Lemma 4.3.3

403

from Chapter 4, but with the assumption that Xi’s are non-negative vectors, and a tighter bound
of ‖∑iXi‖1 instead of

∑
i ‖Xi‖1 (note that this is only tighter if the Xi’s are not non-negative).

Our vectors will in fact be non-negative, but we provide a simple proof for version of the lemma
where the vectors may have negative coordinates.

Proposition 8.6.13 (Special case of Lemma 4.3.3 from Chapter 4). Let Z ∈ Rd be a vector of

i.i.d. Cauchy random variables. Let X1, . . . , Xk ∈ Rd be fixed vectors. Then there is a fixed

constant C, such that for any t ≥ 1, we have

Pr
[
k∑
i=1
|〈Z,Xi〉| ≥ C log(tk)t ·

k∑
i=1
‖Xi‖1

]
≤ 1
t

Proof. The quantity 〈ω, pi〉 is distributed as αi‖pi‖1 where the αi’s are non-independent Cauchy
random variables. Let Ei be the event that |αi| ≤ 1/δ, which occurs with probability 1 − δ by
the tails of Cauchy variables. Let E = ∩iEi, and note Pr [E] > 1−O(kδ) by a union bound. We
have

E [|ai| | Ei] ≤ 3
∫ 1/δ

x=0

x

π(1 + x2) ≤ log(1/δ)/2

It follows that E [|ai| | E] ≤ 2 E [|ai| | Ei] since Pr [E|Ei] > 1− 2, and so:

E
[
k∑
i=1
|αi|‖pi‖1 | E

]
≤ C log(1/δ)

k∑
i=1
‖pi‖1

Setting δ < 1
2tk , by Markov’s inequality.

Pr
[
k∑
i=1
|〈Z,Xi〉| ≥ 2C log(2tk)t ·

k∑
i=1
‖Xi‖1

]
≤ 1

2t + Pr [E] < 1
t

Which yields the proposition after rescaling C by constant.

Lemma 8.6.8 Fix η = Θ
(√

ε
log d log` s

)
, ε0 = Θ(1/ log s), and let (u∗, v∗) be the samples

accepted by Figure 8.5. Then assuming that 2s
∆i

< log s log d
ε2i , and moreover that |Au∗ |+|Bu∗ |∆i(u∗) ≤

log s log d
εν2i , where ν = Θ(1/ log s), then with probability 1− 1/poly(s), we have

1
median(|C|) ·medianj∈[ρ]

∣∣∣∣∣Z̃
1
u∗,ρ+j+1

Z̃1
u∗,ρ+1

−
Z̃2
v∗,j+2

Z̃2
v∗,2

∣∣∣∣∣ = (1± ε0)‖cu∗ − cv∗‖1 ± ε1
d

2i

where ε1 is an arbitrarily small constant.

404

Proof. First suppose that our output was actually medianj∈[ρ]

∣∣∣∣Z1
u∗,ρ+j+1
Z1
u∗,ρ+1

− Z2
v∗,j+2
Z2
v∗,2

∣∣∣∣, and let us see

that this would be a good approximation. Noticed that since each row u of Z1 is scaled by the
same value 1/tu, and similarly with Z2, this is the same as the quantity medianj∈[ρ]

∣∣∣∣Xu∗,ρ+j+1
Xu∗,ρ+1

− Yv∗,j+2
Yv∗,2

∣∣∣∣.
Plugging in definitions, this is just

= medianj∈[ρ]

∣∣∣∣∣∣∣
(
Ωu

(∑
p∈Au∪Bu p

))
j

||Au|+ |Bu||
−

(
Ωu

(∑
p∈Au∪Bu p

))
j

||Av|+ |Bv||

∣∣∣∣∣∣∣
= medianj∈[ρ]

∣∣∣(Ωu(cu − cv))j
∣∣∣

(8.45)

By standard concentration for medians of p-stables ([Ind06], see Theorem 8), it follows that

medianj∈[ρ]

∣∣∣(Ωu(cu − cv))j
∣∣∣

median(|D1|)
= (1± ε0)‖cu − cv‖1 (8.46)

with probability 1− s−c.

Claim 8.6.14. To prove the Lemma, it suffices to prove that both

∣∣∣∣∣Z̃
1
u∗,ρ+j+1

Z̃1
u∗,ρ+1

−
Z1
u∗,ρ+j+1

Z1
u∗,ρ+1

∣∣∣∣∣ ≤ ε1
d

2i+2 ,

∣∣∣∣∣Z̃
2
v∗,j+2

Z̃2
v∗,2

−
Z2
v∗,j+2

Z2
v∗,2

∣∣∣∣∣ ≤ ε1
d

2i+2 (8.47)

hold with probability at least 1− 1/ζ independently for each j ∈ [ρ], where ζ = Θ(1/ε0) with a

large enough constant.

Proof. Let

θj =

∣∣∣(Ωu(cu − cv))j
∣∣∣

median(|C|) , θ̂j =

∣∣∣∣ Z̃1
u∗,ρ+j+1
Z̃1
u∗,ρ+1

− Z̃2
v∗,j+2
Z̃2
v∗,2

∣∣∣∣
median(|C|) ·

By the assumption and triangle inequality, we have that |θ̂j − θj| < ε2d/2i+1, where ε2 =
ε1

median(|D1|) is within a fixed constant of ε1, with probability at least 1 − ζ−1. Since there are ρ
repetitions, it follows by Chernoff bounds that there will be at most 2ρ/ζ values of j ∈ [ρ] such
that this approximation does not hold, with probability at least 1 − 1/poly(s). Let W ⊂ [ρ] be
the subset of indices where this guarantee fails, where |W | ≤ 2ρ/ζ . Let θ′j = θj for j /∈ W ,
and let θ′j = θ̂j for j ∈ W . Then we have |θ̂j − θ′j| < ε2d/2i+1 for all j ∈ [ρ]. It follows that
|medianj∈[ρ]θ̂j − medianj∈[ρ]θ

′
j| ≤ ε2d/2i. Thus, it will suffice to show that medianj∈[ρ]θ

′
j is a

good approximation of ‖cu − cv‖1.

To see this, first note by Lemma 2 of [Ind06], for any φ > 0 smaller than a constant,

405

if C is Cauchy we have that Pr [|C| < (1− φ) ·median(|C|)] < 1/2 − φ/4, and similarly
Pr [|C| > (1 + φ) ·median(|D1|)] < 1/2 + φ/4. Then by Chernoff bounds, the number j for
which θj is less than (1 − ε0)‖cu − cv‖1 is at most (1 − ε0/4)ρ/2, and similarly the number
of j for which this value is at least (1 + ε0)‖cu − cv‖1 is at most (1 − ε0/4)ρ/2, both with
probability 1 − s−c. Now θ′1, . . . , θ

′
ρ is the result of arbitrarily corrupting the value of an ar-

bitrary subset of 2ρ/ζ < ερ/10 of the values in θ1, . . . , θρ. After any such corruption, it fol-
lows that there must still be at most ρ/2 − ε0ρ/8 + ε0ρ/10 < ρ/2 − ε0ρ/40 indices j with
θ′j < (1 − ε0)‖cu − cv‖1, and at most ρ/2 − ε0ρ/40 indices j with θ′j > (1 + ε0)‖cu − cv‖1. It
follows that medianj∈[ρ]θ

′
j = (1±ε0)‖cu−cv‖1, thus medianj∈[ρ]θ̂j = (1±ε0)‖cu−cv‖1 +ε2d/2i,

which is the desired result after scaling ε2 down by a constant 1/median(|D1|).

We now prove that Equation 8.47 holds with probability at least 1 − 1/ζ .We show that
it holds for each of the two terms with probability at least 1 − 1/(2/ζ), and the result will
then follow by a union bound. In what follows, we let C,C ′, C ′′ be sufficiently large con-
stants. We begin with the first term. First, note that by the count-sketch guarantee, we have
|Z̃1

u∗,ρ+1 − Z1
u∗,ρ+1| ≤ η‖(Z∗,ρ+1)1

−1/η2‖2. Applying Lemma 8.6.5, we have ‖(Z∗,ρ+1)−1/η2‖2 ≤
Cη‖(X∗,ρ+1)−1/(2η2)‖1 ≤ 2Cηs, where the last inequality uses the fact that each Xu,ρ+1 =
|Au| + |Bu| so ‖X∗,ρ+1‖1 = 2s. Thus |Z̃1

u,ρ+1 − Z1
u,ρ+1| ≤ 2Cη2s. Moreover, by Equation 8.41

in the proof of Lemma 8.6.7, we have that ∆i <
10c log s∆i(u∗)

tu∗
with probability at least 1 − s−c,

which recall followed from the observation that our error from count-sketch on the first column
of Z1 was at most Õ(η2∆i) and that the maximum value of ∆i(u)/tu for u ∈ Vi−1 is distributed
like ∆i/E1 where E1 is an exponential random variable, and then we conditioned on the event
E1 < 5c log s. Since |Au∗|+ |Bu∗| ≥ ∆i(u∗), it follows that Z1

u∗,ρ+1 > ∆i/(2c log s). Using that
2s
∆i
< log s log d

ε2i , we have 2Cη2s < εs
log d log` s <

∆i

2i+1 log`−1 s
, so

Z̃1
u∗,ρ+1 = 1

tu∗
(1± ε202−i) (|Au∗|+ |Bu∗|)

Next, we consider Z̃1
u∗,ρ+j+1 for j = 1, 2, . . . , ρ. Applying the same argument as above, we

have |Z̃1
u∗,ρ+j+1−Z1

u∗,ρ+j+1| ≤ Cη2‖(X∗,ρ+1)−1/(2η2)‖1. Note by 1-stability that ‖(X∗,ρ+1)−1/(2η2)‖1

is distributed as
∑
u∈Vi−1 αu,j‖

∑
p∈Au∪Bu p‖1 where αu,j are i.i.d. Cauchy random variables.

Thus we can apply Lemma 8.6.5 to obtain ‖(X∗,ρ+1)−1/(2η2)‖1 ≤ C log s(2sd) with probability
1−1/poly(s), where we used that that

∑
u∈Vi−1 ‖

∑
p∈Au∪Bu p‖1 ≤ 2sd. Taken together, we have

406

|Z̃1
u∗,ρ+j+1 − Z1

u∗,ρ+j+1| ≤ C ′η2 log s · (sd)

for all j ∈ [ρ] with probability 1 − 1/poly(s) after a union bound. Now let Q1
j denote the

event that |(Ωucu)j| ≤ Cdζ , where ζ = Θ(1/ε0), (where C is taken as a large enough constant)
Because (Ωucu)j is distributed as ω‖cu‖1, where ω is a Cauchy random variable, and because
‖cu‖1 ≤ d, we have Pr

[
Q1
j

]
> 1 − 1/(2ζ) independently for separate j ∈ [ρ]. Conditioned on

this, we have

Z̃1
u∗,ρ+j+1

Z̃1
u∗,ρ+1

= (1± 2ε12−i)tu∗ ·
Z̃1
u∗,ρ+j+1

|Au∗ |+ |Bu∗|

= (1± 2ε202−i)tu∗ ·
Z1
u∗,ρ+j+1 ± C ′η2 log s · (sd)

|Au∗ |+ |Bu∗ |

= (1± 2ε202−i)(Ωucu)j ± 2tu∗
C ′η2 log s · (sd)
|Au∗|+ |Bu∗|

= (Ωucu)j ± C ′
(
ε202−i|(Ωucu)j|+ η2 log2 s · sd∆i

)

= (Ωucu)j ±
(
ε1

d

2i+2 + C ′η2 log3 s · d log d
ε2i

)

= (Ωucu)j ± ε1
d

2i+1

(8.48)

Where we used the the fact that |Au∗ |+|Bu∗ |
tu∗

≥ ∆i(u∗)
tu∗

≥ ∆i/(2c log s), and the assumptions
2s
∆i

< log s log d
ε2i of the Lemma. Noting that (Ωu∗cu∗)j = Z1

u∗,ρ+j+1
Z1
u∗,ρ+1

, we have proven the first
inequality with the desired probability.

To prove the second inequality from Claim 8.6.14, we first analyze |Z̃2
v∗,2 − Z2

v∗,2|. Let U0 ⊂
Vi−1 be the top 1/ε0 coordinates in magnitude of the vector Z1

∗,ρ+1, which recall has coordinates
Z1
u,ρ+1 = ∑

v∈Vi
1

tπ(v)
(|Av| + |Bv|). Applying the stronger nested count-sketch guarantee of

Theorem 105, we have:
|Z̃2

v∗,2 − Z2
v∗,2| ≤ ‖(Z2

∗,2)−(U0\u∗,η−2)‖2

with probability 1−s−c, where recall (Z2
∗,2)−(U0\u∗,η−2) is the notation from Definition 8.6.6, and

is defined as the result of first zero-ing out all rows v of Z2
∗,2 with parents π(v) ∈ U0 \ u∗, and

then removing the top η−2 largest of the remaining coordinates. We can now apply Lemma 8.6.5

407

on the exponential scalings tv for the children to obtain

‖(Z2
∗,2)−(U0\u∗,η−2)‖2 ≤ Cη

 ∑
u∈(Vi−1\U0)∪u∗

1
tu

∑
v:π(v)=u

|Av|+ |Bv|

= Cη

(
‖
(
Z1
∗,ρ+1

)
−1/ε0

‖1 + 1
tu∗

(|Au∗|+ |Bu∗ |)
) (8.49)

We can apply then Lemma 8.6.5 to obtain ‖
(
Z1
∗,ρ+1

)
−1/ε0

‖1 ≤ C log s‖X1
∗,ρ+1‖1 = (2C log s)·

swith probability 1−s−c, where we used that ‖X1
∗,ρ+1‖1 is simply the number of points inA∪B.

This yields

∣∣∣Z̃2
v∗,2 − Z2

v∗,2

∣∣∣ ≤ Cη2
(

log s · s+ 1
tu∗

(|Au∗|+ |Bu∗ |)
)

≤ Cη2
(
·∆i log2 s log d

ε2i + 1
tu∗
· ∆i(u∗) log s log d

εν2i

)

≤ C ′η2
(
c

tu∗
· ∆i(u∗) log3 s log d

εν2i

)

≤ ε20

(
∆i(u∗)
tu∗2i

·
)

(8.50)

Where in the second inequality we used the two assumptions 2s
∆i
< log s log d

ε2i and |Au∗ |+|Bu∗ |∆i(u∗) ≤
log s log d
εν2i of the Lemma, and in the third inequality we again used the earlier fact from Equation

8.41 in the proof of Lemma 8.6.7 that ∆i <
10c log s∆i(u∗)

tu∗
with probability at least 1 − s−c.

Similarly, we know that ||Av∗ |−|Bv∗ ||
tu∗ tv∗

≥ ∆i(u∗)
2ctu∗ log s with probability 1 − s−c, applying the lower

bound on the top scaled coordinate as in the proof of the last Lemma. Thus Z2
v∗,2 = ||Av∗ |+|Bv∗ ||

tu∗ tv∗
≥

||Av∗ |−|Bv∗ ||
tu∗ tv∗

≥ ∆i(u∗)
2ctu∗ log s , so using our bound on the error and ε0 = Θ(1/ log s), we have

Z̃2
v∗,2 = 1

tu∗tv∗
(1± ε02−i) (|Av∗|+ |Bv∗ |)

Next, we must consider the estimates Z̃2
v∗,j+2. Let Mj ∈ R|Vi−1| be the vector given by

Mj
u = 1

tu

∑
v : π(v)=u |Yv,j+2| for u ∈ Vi−1 and j ∈ [ρ]. By Lemma 8.6.13, we can write

Mj
u = αu

∑
v : π(v)=u

C

∥∥∥∥∥∥
∑

p∈Av∪Bv
p

∥∥∥∥∥∥
1

where C is a constant, αu = 1
tu
βu, and {βu} are positive independent (non-identical) variables

408

with tails Pr [βi > t] ≤ log(ts)
t

. Now define U ⊂ Vi−1 to be the set of 1/ε0 largest coordinates u
of M. We can then apply Theorem 105 on U . This yields

|Z̃2
v∗,j+2 − Z2

v∗,j+2| ≤ η‖(D2Y∗,j+2)−(U\u∗,η−2)‖2

for any j ∈ [ρ] with high probability. Recall that (D2Y∗,j+2)−(U\u∗,η−2) first zeros out all rows
corresponding to children of u ∈ U \{u∗}, and then removes the top 1/η2 remaining coordinates.
Using this fact, we can apply Lemma 8.6.5, to obtain

|Z̃2
v∗,j+2 − Z2

v∗,j+2| ≤ Cη2‖(D2Y∗,j+2)−(U\u∗,0)‖1 = Cη2
(
‖Mj

−1/ε0‖1 + |Mj
u∗ |
)

Now notice that Mj has coordinates Mj
u = αu

∑
v : π(v)=uC‖

∑
p∈Av∪Bv p‖1, where αu are inde-

pendent, so we can apply Proposition 8.6.12 to the at most 2s non-zero rows of Mj using the
function f(t) ≤ log(ts), to obtain

‖Mj
−1/ε0‖1 ≤ C log3(s)

∑
v∈Vi
‖

∑
p∈Av∪Bv

p‖1

 ≤ C0 log3(s)sd

for some constant C0 with probability 1 − s−c. Now let Q2
j be the event that, for the random

variables β defined by the vector Mj , we have βu∗ < Cζ log(sζ) for some large enough constant
C, where recall ζ = Θ(1/ε0) is chosen with a large enough constant as earlier. By Lemma 8.6.13,
we have Pr

[
Q2
j

]
< 1/(4ζ), and note that Q2

j is only a function in the randomness of the j-th
rows of the sketches Ωu for u ∈ Vi−1. In particular, the events Q2

j are independent for separate
j ∈ [ρ]. Now letQ3

j be the event that |(Ωucv)j| ≤ Cdζ , which, as in the earlier case ofQ1
j , holds

with probability at least 1− 1/(4ζ). Letting Q4
j = Q2

j ∪ Q3
j , we have Pr

[
Q4
j

]
> 1− 1/(2ζ) by

a union bound. The event Q4
j will then be the desired event, depending only on the j-th row of

the sketch Ωu, which holds with probability at least 1 − 1/(2ζ). Conditioned on Q4
j ., we have

409

|Mj
u∗| ≤ 1

tu∗
ζ2d||Au∗|+ |Bu∗||, and:

Z̃2
v∗,j+2

Z̃2
v∗,2

= (1± 2ε02−i)tu∗tv∗ ·
Z̃2
v∗,j+2

|Av∗|+ |Bv∗ |

= (1± 2ε02−i)
Z2
v∗,ρ+j+1

Z2
v∗,2

± tu∗tv∗η2C ′
(log3 s)s+ 1

tu∗
ζ2d||Au∗|+ |Bu∗||

|Av∗|+ |Bv∗ |

= (1± 2ε02−i)
Z2
v∗,ρ+j+1

Z2
v∗,2

± η2C ′
(
tu∗tv∗

(log3 s)s
|Av∗|+ |Bv∗|

+ tv∗ζ2d||Au∗ |+ |Bu∗ ||
|Av∗|+ |Bv∗ |

)

= (1± 2ε02−i)
Z2
v∗,ρ+j+1

Z2
v∗,2

± η2C ′′
(

(log5 s)s
∆i

+ (log s)ζd||Au∗ |+ |Bu∗||
∆i(u∗)

)

= (1± 2ε02−i)
Z2
v∗,ρ+j+1

Z2
v∗,2

± η2C ′′
(

log6 s · (log d)d
ε2i + ζ(log s)2(log d) · d

εν2i

)

=
Z2
v∗,ρ+j+1

Z2
v∗,2

±
(

2ε02−i|(Ωucv)j|+ ε1
d

2i+2

)

=
Z2
v∗,ρ+j+1

Z2
v∗,2

±
(
ε1

d

2i+2 + ε1
d

2i+2

)

=
Z2
v∗,ρ+j+1

Z2
v∗,2

± ε1
d

2i+1

(8.51)

with probability 1− s−c, where C ′, C ′′ are constants, and where we used several facts including
the bound on η. Chiefly, we used that tv∗

|Av∗ |+|Bv∗ |
≤ tv∗
||Av∗ |−|Bv∗ ||

≤ O(log s
∆i(u∗)) with probability

1 − s−c, using that the maximum value of tv
||Av |−|Bv || over children v of u∗ will be at least this

large, and the error from count-sketch in finding v∗ is more than a constant factor smaller than
this value (as in the proof of the last lemma, and used earlier in this lemma). The same fact is be
applied again to show tu∗

∆i(u∗) < O(log s
∆i

) with the same probability. We also used the assumptions
that 2s

∆i
< log s log d

ε2i , and moreover that |Au∗ |+|Bu∗ |∆i(u∗) ≤ log s log d
εν2i . Finally, we used the bound on η2 by

definition, setting ` = 6 as the exponential of log(s) in η2. Thus, we have demonstrates Equation
8.47 holds with probability at least 1− 1/ζ independently for each j ∈ [ρ], which completes the
proof of the lemma.

8.7 Analysis of COMPUTEEMD via Tree Embeddings

We sketch how the natural analysis of COMPUTEEMD(A,B, d) yields aO(min{log s, log d} log s)-
approximation. The analysis proceeds via the method of randomized tree embeddings, and im-

410

mediately gives a (randomized) embedding f : ({0, 1}d)s → `1 satisfying

EMD(A,B) ≤ ‖f(A)− f(B)‖1 ≤ O(min{log s, log d} log s) EMD(A,B),

with probability 0.9 over the draw of f . Specifically, let A,B ⊂ {0, 1}d be two multi-sets of size
s, and let M∗ ⊂ A×B be the matching such that

EMD(A,B) =
∑

(a,b)∈M∗
‖a− b‖1.

Consider the execution tree T0 in described the beginning of Section 8.4, where we execute the
algorithm for at most O(d) rounds of recursion. We assign weights to the edges, where an edge
connecting a node at depth i and i + 1 is given weight d/(i + 1)2, which defines a tree metric
(A ∪B, dT0) given by the sum of weights over the paths connecting two points in the tree.

The following claim is a simple observation, which follows from a greedy construction of the
matching over a tree. See Figure 8.6.

Claim 8.7.1 (Greedy Bottom-Up Approach is Optimal for a Tree). Let M ⊂ A × B be the

matching that the execution tree T0 outputs, then

∑
(a,b)∈M

dT0(a, b) ≤
∑

(a,b)∈M∗
dT0(a, b).

Figure 8.6: Proof sketch of Claim 8.7.1. The matching M satisfies that for any node v in the
tree, the pairs (a, b) ∈M within the subtree rooted at v forms a maximal matching of nodes in A
and B within the subtree rooted at v. In order to see why this is optimal for a tree with positive
edge weights, suppose the red point is in A and the blue point in B. These meet at the (lower)
black node v, but if they both remain unmatched at the upper-black node u, then both must pay
the black edge.

411

Lemma 8.7.2. With probability 0.9 over the draw of T0,

∑
(a,b)∈M∗

dT0(a, b) ≤ O(min{log s, log d}) · EMD(A,B),

and every a ∈ A and b ∈ B satisfies dT0(a, b) ≥ Ω (‖a− b‖1/ log s).

Proof. For (a, b) ∈ A×B with a 6= b, let

imin(a, b) =
⌊

d

‖a− b‖1 · s3

⌋
imax(a, b) = max

{⌈
10d log s
‖a− b‖1

⌉
, d

}
.

Then, we consider the random variable

D(a, b) def= 2
imax(a,b)∑
i=imin(a,b)

1 {(a, b) first split in T0 at depth i}
∑
j≥i

d

(i+ 1)2 ·,

and notice that this is equal to dT0(a, b) whenever (a, b) are first split between depth imin(a, b)
and imax(a, b). Then, we have

E
T0

[D(a, b)] ≤ 2
imax(a,b)∑
i=imin(a,b)

Pr
T0

[(a, b) first split at depth i]
∑
j≥i

d

(j + 1)2 .
imax(a,b)∑
i=imin(a,b)

‖a− b‖1

d
· d

i+ 1

= ‖a− b‖1 ·O
(

log
(

imax(a, b)
imin(a, b) + 1

))
= ‖a− b‖1 ·O (min{log s, log d}) .

Furthermore, the probability that there exists some (a, b) ∈ A × B such that (a, b) are not split
between levels imin(a, b) and imax(a, b) is at most

∑
a∈A

∑
b∈B
a6=b

Pr
T0

[(a, b) first split outside depths imin(a, b) and imax(a, b)]

≤
∑
a∈A

∑
b∈B
a6=b

imin(a, b) · ‖a− b‖1

ds3 +
(

1− ‖a− b‖1

d

)imax(a,b)
 ≤ 2

s
.

Hence, with probability 1 − 2/s, every a ∈ A and b ∈ B, with a 6= b, satisfies dT0(a, b) &

d/imax(a, b) = Ω(‖a− b‖1/ log s), and

∑
(a,b)∈M∗

dT0(a, b) =
∑

(a,b)∈M∗
D(a, b).

412

By Markov’s inequality,

∑
(a,b)∈M∗

D(a, b) ≤ 100 ·O(min{log s, log d})
∑

(a,b)∈M∗
‖a− b‖1 = O(min{log s, log d}) EMD(A,B),

with probability 99/100, so that with probability 99/100−2/s, we obtain the desired lemma.

In order to see that Claim 8.7.1 and Lemma 8.7.2, notice that with probability 0.9, we have
the following string of inequalities:

∑
(a,b)∈M

‖a− b‖1 . log s
∑

(a,b)∈M
dT0(a, b) ≤ log s

∑
(a,b)∈M∗

dT0(a, b)

. O(min{log s, log d} log s) EMD(A,B),

where the first and last inequality follow from Lemma 8.7.2, and the middle inequality is Claim 8.7.1.

8.8 Tightness of COMPUTEEMD

We show that we cannot improve the approximation factor of COMPUTEEMD beyond O(log s).

Lemma 8.8.1. Fix s, d ∈ N. There exists a distribution over inputs A,B ⊂ {0, 1}d of size s such

that with probability at least 0.9 over the draw of A,B, and an execution of COMPUTEEMD(A,B)
which outputs the matching M,

∑
(a,b)∈M

‖a− b‖1 ≥ Ω(log s) · EMD(A,B).

For s, d ∈ N and α ∈ (0, 1/2), we letDs,d(α) be the distribution over pairs of subsets (A,B)
with A,B ⊂ {0, 1}d of |A| = |B| = s given by the following procedure (think of α as being set
to 1/ log s):

• For t = 1, . . . , s, we generate the pair (a(t), b(t)) where a(t), b(t) ∈ {0, 1}d are sampled by
letting, for each i ∈ [d],

a
(t)
i ∼ {0, 1} and b

(t)
i ∼

 a
(t)
i w.p 1− α

1− a(t)
i w.p α

. (8.52)

413

• We let A =
{
a(1), . . . ,a(s)

}
and B =

{
b(1), . . . , b(s)

}
.

Notice that for α ∈ (0, 1/2), we have

E
(A,B)∼Ds,d(α)

[EMD(A,B)] ≤
s∑
t=1

E
(a(t),b(t))

[∥∥∥a(t) − b(t)
∥∥∥

1

]
= sdα,

and by Markov’s inequality, EMD(A,B) ≤ 100sdα with probability at least 0.99.

On the other hand, let T be the (random) binary tree of depth h naturally produced by
the execution of COMPUTEEMD(A,B), and let M be the matching between A and B that
COMPUTEEMD(A,B) outputs. Fix t ∈ [s], and consider the probability, over the randomness
in A,B and the execution of COMPUTEEMD(A,B) that a(t) is not matched to b(t). Notice that
this occurs whenever the following event E t occurs: there exists a depth j ∈ {0, . . . , h− 1} such
that

• At depth j, the two points a(t) and b(t) are split in the recursion, which occurs whenever
a node v of T at depth j, corresponding to an execution of COMPUTEEMD(A(v),B(v))
with a(t) ∈ A(v) and b(t) ∈ B(v) samples a coordinate i ∼ [d] where a(t)

i = 1 and b(t)
i = 0.

• Furthermore, considering the subsets which are split

A(v)
0 =

{
a ∈ A(v) : ai = 0

}
A(v)

1 =
{
a ∈ A(v) : ai = 1

}
B(v)

0 =
{
b ∈ B(v) : bi = 0

}
B(v)

1 =
{
b ∈ B(v) : bi = 1

}
,

we happen to have |B(v)
1 | ≥ |A

(v)
1 |.

In order to see why this forces M(a(t)) 6= b(t), notice that a(t) ∈ A(v)
1 by definition that i satisfies

a
(t)
i = 1, yet b(t)

i = 0, so that b(t) /∈ B(v)
1 . Notice that since COMPUTEEMD(A(v)

1 ,B(v)
1) returns

a maximal matching M(v,1) between A(v)
1 and B(v)

1 . Since |B(v)
1 | ≥ |A

(v)
1 |, a(t) participates in

the matching M(v,1), and hence is not matched with b(t). In order to lower bound this probability,
consider the following sampling process:

1. We first sample the pair of points (a(t), b(t)) according to (8.52).

2. We then sample the tree T.

3. We sample ` ∈ [s− 1] pairs of points (a(`), b(`)) similarly to (8.52).

Consider a fixed (a(t), b(t)), as well as a fixed sequence of coordinates which are sampled

414

i1, . . . , ij ∈ [d] such that

a
(t)
ik

= b
(t)
ik

for all k < j, and a
(t)
ij

= 1, b(t)
ij

= 0.

We have then

Pr
(a(`)b(`))

[
b(`) ∈ B(v)

1 ∧ a(`) /∈ A(v)
1

]
= 1

2j
(
1− (1− α)j

)
,

and since b(`) and a(`) are symmetric,

Pr
(a(`),b(`))

[
a(`) ∈ A(v)

1 ∧ b(`) /∈ B(v)
1

]
= 1

2j
(
1− (1− α)j

)
.

We note that event E t occurs if (a(t), b(t)) are split at depth j at a coordinate i with a(t)
i = 1, and

when there exists a unique pair (a(`), b(`)) which satisfy b(`) ∈ B(v)
1 and a(`) /∈ A(v)

1 . Hence,

Pr [E t] ≥ (8.53)

E
(a(t),b(t))

(1− ‖a
(t) − b(t)‖1

d

)j−1 ‖a(t) − b(t)‖1

d

(
(s− 1)(1− (1− α)j)

2j

)(
1− (1− (1− α)j)

2j−1

)s−2

If we consider j = blog2 sc and α = 1
log2 s

, we have

s− 1
2j

(
1− (1− α)j

)(
1− 1

2j−1

(
1− (1− α)j

))s−2
= Ω(1),

so the probability in (8.53) is at least

Ω(1) · E
(a(t),b(t))

(1− ‖a
(t) − b(t)‖1

d

)j−1 ‖a(t) − b(t)‖1

d

 = Ω(1),

since ‖a(t) − b(t)‖1 is distributed as Bin(d, α), and α = 1
log2 s

, and j = blog2 sc. If we let

m = min
t1 6=t2
‖a(t1) − b(t2)‖1,

then, we have that M is a matching of cost at leastm times the number of pairs t ∈ [s] where E t
occurs, and each E t occurs with constant probability. By Markov’s inequality, with probability
0.99 over the draw of A,B and COMPUTEEMD(A,B), there are Ω(s) indices t ∈ [s] where E t
occurs. Furthermore, since for any t1 6= t2, a(t1) and b(t2) are distributed as uniformly random

415

points, we have that with a Chernoff bound m ≥ Ω(d) with probability at least 0.99 whenever
d ≥ c0 log s (for a large fixed constant c0).

Putting everything together with a union bound, we have that with probability at least 0.97
over the draw of A,B and COMPUTEEMD(A,B), EMD(A,B) ≤ 100sd/ log2 s, yet the match-
ing output has cost at least Ω(sd).

8.9 Lower Bound for Quadtree Approximation via Tree Em-
beddings

In this section, we show that the analysis in Section 8.7 is tight. This, along with Theorem 94,
demonstrates that the approximation given by evaluating the matching produced by Quadtree
is strictly better in the original metric, rather than the tree metric, demonstrating the necessity
of considering the former. Specifically, let T0 be the execution tree described the beginning
of Section 8.4, where we execute the algorithm for at most 2d rounds of recursion. We assign
weights to the edges, where an edge connecting a node at depth i and i+1 is given weight d/(i+
1)2. This defines a tree metric (A∪B, dT0) given by the sum of weights over the paths connecting
two points in the tree. We remark that the following analysis applies in a straightforward way
to the depth O(log d) compressed quadtree also described in Section 8.7, which is the same tree
considered in [AIK08b].

Let MT (A,B) ⊂ A × B be any the greedy bottom-up matching. By Claim 8.7.1, we know
that MT is an optimal cost matching in the tree metric on T0. Fix s, d larger than some constant,
so that d = sΘ(1) are polynomial related, and let d.01 < α < d.99 be a parameter which decides
the cost of EMD(A,B). We will define two distributions, D1, and D2, over pairs of multisets
A,B ⊂ {0, 1}d of size s, such that

Pr
(A,B)∼D1,T0

[cost(MT0(A,B)) < c

log s · EMD(A,B)] > 99/100

and
Pr

(A,B)∼D2,T0
[cost(MT0(A,B)) > c log s · EMD(A,B)] > 99/100

416

and finally

Pr
(A,B)∼D1

[EMD(A,B) = (1± 1/3)αs] > 1− 1/s

Pr
(A,B)∼D2

[EMD(A,B) = αs] > 1− 1/s

for some fixed constants c, C ′. This will demonstrate that the cost of the matching given by
the embedding into the tree metric is a Ω(log2 s) approximation.

The First Distribution. We first describe D1. To draw (A,B) ∼ D1, we set d′ = α, and pick
2s uniformly random points a′1, a

′
2, . . . , a

′
s, b
′
1, b
′
2, . . . , b

′
s ∼ {0, 1}d

′ , and setA = {a1, . . . , as}, B =
{b1, . . . , bs}, where ai is a′i padded with 0’s, and similarly for bi.

The Second Distribution. We now describe the second distributionD2. To draw (A,B) ∼ D2,
we set a1, . . . , as ∼ {0, 1}d uniformly at random. Then, for each i ∈ [s], we set bi to be a
uniformly random point at distance α from ai. In other words, given ai, the point bi is obtained
by selecting a random subset of α coordinates in [d], and having bi disagree with ai on these
coordinates (and agree elsewhere).

Proposition 8.9.1. There exists a fixed constant c > 0 such that

Pr
(A,B)∼D1,T0

[
cost(MT0(A,B)) < c

log s EMD(A,B)
]
> 99/100

And moreover,
αs

3 < EMD(A,B) ≤ 2αs
3

with probability at least 1− 1/s over the draw of (A,B) ∼ D1.

Proof. Notice that for all a, b, we have d′/3 ≤ dT0(a, b) ≤ 2d′/3 with probability 1 − 2−Ω(d),
thus by a union bound this holds for all s2 = poly(d) pairs with probability at least 1− 1/s2. In
this case, αs/3 < EMD(A,B) ≤ (2/3)αs with probability 1− 1/s.

Now consider any fixed point a ∈ A. We compute the expected cost of matching a in
MT0(A,B). Specifically, let cost(a) = dT0(a, ba), where (a, ba) ∈ MT0 . To do this, we must
first define how the matching MT0(A,B) breaks ties. To do this, in the algorithm of Figure 8.1,
we randomly choose the maximal partial matching between the unmatched points in a recursive
call to COMPUTEEMD.

417

Now let X = A ∪ B, and begin generating the randomness needed for the branch which
handles the entire set of points in X . Namely, consider following down the entire set of points
X down T0, until the first vertex r which splits X up into two non-empty subsets in its children.
Namely, Ar ∪ Br = X , but at r an index i ∈ [d′] is sampled which splits X . First note that we
expect the depth of r to be ` = d/α, since d′/d = 1/

√
d. Moreover, with probability 199/200

we have d/(2000α) < ` < 2000d/α. Call this event E0, and condition on this now, which does
not fix the affect randomness used in any of the subtree of r. Conditioned on E0, we have that
cost(a) conditioned on E0 is at most

∑2d
i=`

d
i2

= Θ(d/`) = Θ(α), since all points are matched
below depth `.

Now consider the level `1 = `+ (1/2) log s(d/α). Notice the the vertex v which contains the
point a at depth `1 as a descendant of r in expectation samples between (1/2)(1− 1

1000) log s and
(1/2)(1 + 1

1000) log s unique coordinates i ∈ [α] on the (1/2) log s(d/α) steps between r and v
(we have not fixed the randomness used to draw the coordinate a yet). By independence across
samples, by Chernoff bounds we have that v sampled between (1/3) log s and (2/3) log s unique
coordinates i ∈ [α] with probability 1 − s−c for some fixed constant c = Ω(1). Let Ea be the
event that this occurs. Say that it samples exactly γ unique coordinates. Now E [|Av ∪Bv|] =
(2s)/2γ ≥ s1/3, where the randomness is taken over the choice of random points in A,B. By
Chernoff bounds applied to both the size of |Av|, |Bv|, we have

Pr
[
||Av| − |Bv|| > c1 log(s)

√
s/2γ ≥

]
< 1/sc

for a sufficiently large constant c1. Call the event that the above does not occur E1, and condition
on it now. Note that conditioned on E1, only a c1 log s

√
2γ/s < s−1/7 fraction of the points in v

remain unmatched. Since the distribution of the path a point x ∈ Av ∪Bv takes in the subtree of
v is identical to every other x′ ∈ Av ∪Bv even conditioned on E0, E1, Ea, it follows that

E [cost(a) | E0, E1, Ea] ≤ O(d
`1

) + s−1/7O(d
`

)

≤ O(α

log s)
(8.54)

Thus

418

E [cost(a) | E0] ≤ O(α

log s) + s−cO(α)

≤ O(α

log s)
(8.55)

Then by Markov’s inequality, using that αs/3 < EMD(A,B) ≤ (2/3)αs with probability 1 −
1/s, we have

Pr
[∑
a∈A

cost(a) > c

log s EMD(A,B) | E0

]
≤ 10−4

By a union bound:

Pr
(A,B)∼D1,T0

[
cost(MT0(A,B)) < c

log s EMD(A,B)
]
> 1− 10−4 − 1/200−O(1/s)

> 99/100
(8.56)

which completes the proof.

Proposition 8.9.2. There exists a fixed constant c > 0 such that

Pr
(A,B)∼D2,T0

[cost(MT0(A,B)) < c log s · EMD(A,B)] > 99/100

And moreover,

EMD(A,B) = α · s

with probability at least 1− 1/s over the draw of (A,B) ∼ D2.

Proof. Set β = 20 log s. We first claim that the event E0, which states that every non-empty
vertex v ∈ T0 at depth β satisfies either Av ∪Bv = {ai, bi}, Av ∪Bv = {ai}, or Av ∪Bv = {bi}
for some i ∈ [s], occurs with probability 1 − 2/s2. To see this, note that first for each i 6= j,
d(ai, bj), d(ai, aj), d(bi, bj) are each at least d/3 with probability 1−2−Ω(d), and we can the union
bound over all s2 pairs so that this holds for all i 6= j with probability 1 − 1/s2. Given this, for
any ai to collide at depth β with either aj or bj when i 6= j, we would need to avoid the set of
d/3 points where they do not agree. The probability that this occurs is (2/3)β < 1/s4, and we
can union bound over all s2 pairs again for this to hold with probability 1− 1/s2. We condition
on E0 now. First note that the probability that ai is split from bi at or before level β is at most

419

3β
d

. Thus the expected number of i ∈ [s] for which this occurs is 3sβ
d

, and is at most 304sβ
d

with
probability 1 − 10−4. Call this latter event E1, and let S ⊂ [s] be the set of points i for which
ai, bi are together, with no other points, in their node at depth β. Conditioned on E0 and E1, we
have |S| > s− 304sβ

d

Now for j = log(β), . . . , log(d/α), let Sj ⊂ S be the set of i ∈ [s] for which ai and
bi split before level 2j . We have that E [|Sj|] > s2jα

10d . Notice that since each branch of the
quadtree is independent, and all (ai, bi) are together in their own node at depth β when i ∈ S,
we can apply Chernoff bounds to obtain |Sj| > s2jα

20d with probability at least 1− 1/s2 for every
j > log(d/α) − (1/10) log s, and we can then union bound over the set of such j. Note that
for each i ∈ Sj , the point ai pays a cost of at least Θ(d2j), thus the total cost of all points in Sj
is at least Ω(sα), and summing over all log(d/α) − (1/10) log s < j < log(d/α), we obtain
cost(MT0(A,B)) = Ω(log sα).

We finally show that EMD(A,B) = α · s with probability at least 1 − 1/(2s). To see this,
note that conditioned on E0, the optimal matching is (ai, bi). Since d(ai, bi) = α, this completes
the proof.

8.10 Sampling with Meta-data

In this section, We demonstrate how the tools developed in Section 8.6 can be easily applied to
obtain a linear sketching algorithm for the problem of Sampling with Meta-Data, which we now
define.

Definition 8.10.1. Fix any constant c > 1, and fix k, n with k ≤ nc, and let ε, δ > 0. Fix any

x ∈ Rn, and meta-data vectors λ1, . . . , λn ∈ Rk, such that the coordinates of x and all λi are

can be stored in O(log n) bits. In the sampling with meta-data problem, we must sample i∗ ∼ [n]
from the distribution

Pr [i∗ = i] = (1± ε)|xi|/‖x‖1 ± n−c

for all i ∈ [n]. Conditioned on returning i∗ = i ∈ [n], the algorithm must then return an

approximation λ̂i to λi with probability 1− δ.

Remark 107. A natural generalization of Definition 8.10.1 is to `p sampler for p ∈ (0, 2], where
we want to sample i ∈ [n] proportional to |xi|p. We remark that the below precision sampling
framework easily generalizes to solving `p sampling with meta-data, by replacing the scalings
1/ti by 1/t1/pi , and appropriately modifying Lemma 8.6.4 to have error ε‖x‖p instead of ε‖x‖1.

420

One can then apply the `p variant of Lemma 8.6.5 from Proposition 3.3.5 from Chapter 3, and
the remainder of the proof follows similarly as below.

We given a linear sketching algorithm for the problem in Definition 8.10.1. The algorithm is
similar, and simpler, to the algorithm from Section 8.6. Specifically, given x ∈ Rn, λ1, . . . , λn ∈
R
k, we construct a matrix X ∈ Rn×(k+1), where for each i ∈ [n] the row Xi,∗ = [xi, λi,1, λi,2, . . . , λi,k].

We then draw a random matrix D ∈ Rn×n, where Di,i = 1/ti and {ti}i∈[n] are i.i.d. exponential
random variables. We then draw a random count-sketch matrix (Theorem 2.3.2) S and compute
the sketch SDX, and recover an estimate Z̃ of DX from Count-sketch. To sample a coordinate,
we output i∗ = arg maxi Z̃i,1, and set our estimate (λ̂i∗)j = ti∗Z̃i,j+1. This simple algorithm
obtains the following guarantee.

Theorem 108. Fix any ε > 0 and constant c > 1. Then given x ∈ Rn and λ1, . . . , λn ∈ Rk,

as in Definition 8.10.1, the above linear sketching algorithm samples i ∈ [n] with probability

(1±ε) |xi|‖x‖1 ±n
−c. Once i is sampled, it returns a value λ̂i such that ‖λ̂i−λi‖1 ≤ ε|xi|

∑
j∈[n] ‖λj‖1
‖x‖1

with probability 1− n−c. The total space required to store the sketch is O(k
ε

log3(n)) bits.

Proof. Let Z = DX. We instantiate count-sketch with parameter η = Θ(
√
ε/ log(n)) with a

small enough constant. By Theorem 2.3.2, for every j ∈ [n] we have |Z̃i,1−Zi,1| < η‖(Z∗,1)−1/η2‖2

with probability 1−n−2c. By Lemma 8.6.5, we have ‖(Z∗,1)−1/η2‖2 ≤ η‖X∗,1‖1 with probability
1− n−2c, and thus |Z̃i,1 − Zi,1| < η2‖X∗,1‖1, so by Lemma 8.6.4, the coordinate i∗ satisfies

Pr [i∗ = i] = (1± ε) |xi|
‖x‖1

± n−c

for all i ∈ [n], where we used the fact that the n−2c failure probabilities of the above events can
be absorbed into the additive n−c error of the sampler. Now recall by Fact 8.6.3 that maxi Zi,1 =
‖X∗,1‖1/E, where E is an independent exponential random variable. With probability 1− n−c,
using the tails of exponential variables we have maxi Zi,1 > ‖X∗,1‖1/(10c log s), which we
condition on now. Notice that given this, since our error satisfies |Z̃i,1 − Zi,1| < η2‖X∗,1‖1, we
have Zi∗,1 > ‖X∗,1‖1/(20c log s), from which it follows by definition that ti <

20c log s|xi|
‖x‖1 .

Now consider any coordinate j ∈ [k]. By the count-sketch error, we have |Z̃i,j+1 −Zi,j+1| <
η‖(Z∗,j+1)−1/η2‖2, and moreover by Lemma 8.6.5, we have ‖(Z∗,1)−1/η2‖2 ≤ η‖X∗,j+1‖1 =
η
∑
i∈[n] |λi,j| with probability 1− n−2c. Thus

421

|tiZ̃i,j+1 − tiZi,j+1| < tiη
2 ∑
i∈[n]
|λi,j|

≤ η2 20c log s|xi|
∑
i∈[n] |λi,j|

‖x‖1

≤ ε
|xi|

∑
i∈[n] |λi,j|
‖x‖1

(8.57)

Summing over all j ∈ [k] (after a union bound over each j ∈ [k]) completes the proof of the error.
For the space, note that SDX had O(1/η2 log n) = O(log2 n/ε) rows, each of which has k + 1
columns. Note that we can truncating the exponential to be O(log n) bit discrete values, which
introduces an additive n−10c to each coordinate of SDX (using that the values of X are bounded
by nc = poly(n)), which can be absorbed into the additive error from count-sketch without
increasing the total error by more than a constant. Moreover, assuming that the coordinates of
x and all λi are integers bounded by poly(n) in magnitude, since the entries of S are contained
in {0, 1,−1}, each entry of SDX can be stored in O(log n) bits of space, which completes the
proof.

8.11 Embedding `dp into {0, 1}d′

Lemma 8.11.1. Let p ∈ (1, 2]. There exists a distribution Dp supported on R which exhibits

p-stability: for any d ∈ N and any vector x ∈ Rd, the random variables Y1 and Y2 given by

Y1 =
d∑
i=1

xizi for z1, . . . ,zd ∼ Dp independently,

Y2 = z · ‖x‖p for z ∼ Dp,

are equal in distribution, and Ez∼Dp [|z|] is at most a constant Cp.

Consider fixed R ∈ R≥0 which is a power of 2, and for p ∈ [1, 2], let f : Rd → {0, 1} be the
randomized function given by sampling the following random variables

• z = (z1, . . . ,zd) where z1, . . . ,zd ∼ Dp. In the case p = 1, we let D1 be the distribution
where zi ∼ D1 is set to 1 with probability 1/d and 0 otherwise.

• h ∼ [0, R], and

422

• a uniformly random function g : Z→ {0, 1}.

and we evaluate

f(x) = g

(⌊∑d
i=1 xizi − h

R

⌋)
∈ {0, 1}.

If x, y ∈ Rd with ‖x− y‖p ≤ R/tp (for a parameter tp which we specify later). When p = 1, we
consider ‖x− y‖∞ ≤ R/t1. Then

Pr
z,h,g

[f(x) 6= f(y)] = 1
2 ·Pr

z,h

[⌊∑d
i=1 xizi − h

R

⌋
6=
⌊∑d

i=1 yizi − h
R

⌋]
.

Consider a fixed z = (z1, . . . ,zd) and let

w =
d∑
i=1

(xi − yi)zi.

Then, we have

Pr
h∼[0,R]

[⌊∑d
i=1 xizi − h

R

⌋
6=
⌊∑d

i=1 yizi − h
R

⌋]
= max

{
|w|
R
, 1
}
,

so that

Pr
z,h,g

[f(x) 6= f(y)] = 1
2 E
z

[
max

{
|w|
R
, 1
}]

.

When p ∈ (1, 2], we notice that by Jensen’s inequality and Lemma 8.11.1,

E
z

[
max

{
|w|
R
, 1
}]
≤ max

{
Cp‖x− y‖p

R
, 1
}

= Cp‖x− y‖p
R

,

and similarly, Ez [max{|w|/R, 1}] ≤ ‖x − y‖1/(dR) when p = 1. Furthermore, for p ∈ (1, 2],
we lower bound the above quantity by

E
z

[
max

{
|w|
R
, 1
}]
≥ ‖x− y‖p

R
· E
z∼Dp

[max {|z|, tp}] ≥
‖x− y‖p

R
· Cp2 ,

since Ez∼Dp [max{|z|, tp}] → Cp as tp → ∞, which means that for some constant setting of
high enough tp, we obtain the above inequality. In particular, for p ∈ (1, 2], we may choose tp to

423

be a large enough constant depending only on p. When p = 1,

E
z

[
max

{
|w|
R
, 1
}]
≥

d∑
i=1

1
d

(
1− 1

d

)d−1
max

{
|xi − yi|

R
, 1
}

= 1
d

(
1− 1

d

)d−1 ‖x− y‖1

R
,

by setting t1 = 1.

For p ∈ (1, 2], we consider concatenating m independent executions of the above construc-
tion and consider that as an embedding of ϕ : Rd → {0, 1}m, we have that for any x, y ∈ Rd

with ‖x− y‖p ≤ R/tp,

E
ϕ

[‖ϕ(x)−ϕ(y)‖1] = m ·Pr
f

[f(x) 6= f(y)]

� m · ‖x− y‖p
R

,

where the notation � suppresses constant factors. Suppose A∪B ⊂ Rd is a subset of at most 2s
points with aspect ratio

Φ def= maxx,y∈A∪B ‖x− y‖p
minx,y∈A∪B

x 6=y
‖x− y‖p

.

Then, we let R = tp ·maxx,y∈A∪B ‖x− y‖p, and

m = O (tpΦ log s) .

For any fixed setting of x, y ∈ A ∪ B, the distance between ϕ(x) and ϕ(y) is the number of
independent of executions of f where f(x) 6= f(y). Since executions are independent, we apply
a Chernoff bound to say that with probability 1−1/s100 every x, y ∈ A∪B has ‖ϕ(x)−ϕ(y)‖1

concentrating up to a constant factor around its expectation, and therefore, we apply a union
bound over 4s2 many pairs of points in A∪B to conclude ϕ is a constant distortion embedding.
The case p = 1 follows similarly, except that

E
ϕ

[‖ϕ(x)−ϕ(y)‖1] � m · ‖x− y‖1

dR
,

and R = 2 maxx,y∈A∪B ‖x− y‖∞. In summary, we have the following lemmas.

Lemma 8.11.2. Fix any p ∈ (1, 2], n, d ∈ N, and a parameter Φ ∈ R≥0. There exists a

distribution Ep over embeddings ϕ : Rd → {0, 1}d′ , where

d′ = O(Φ log n),

424

such that for any fixed set X ⊂ Rd of size at most n and aspect ratio in `p at most Φ, a draw

ϕ ∼ Ep is a constant distortion embedding of X into the hypercube with Hamming distance with

probability at least 1− 1/n10.

Lemma 8.11.3. Fix any n, d ∈ N, and a parameter r, R ∈ R≥0. There exists a distribution E1

over embeddings ϕ : Rd → {0, 1}d′ , where

d′ = O

(
dR log n

r

)
,

such that for any fixed set X ⊂ Rd of size at most n and `∞ distance at most R and `1 distance

at least r, a draw ϕ ∼ E1 is a constant distortion embedding of X into the hypercube with

Hamming distance with probability at least 1− 1/n10.

8.12 Relationship between Linear Sketching, Distributed Com-
munication Protocols, and Streaming

In this chapter, we developed linear sketching algorithms for the problem of computing EMD.
We now describe how these linear sketching algorithms result in streaming and distributed com-
munication protocols. To do so, we briefly re-introduce these models, with further details which
allow us to relate several nuances between the models.

Two-Party Communication. In the two-party communication problem, there are two parties,
Alice and Bob. Alice is given as input a multi-set A ⊂ {0, 1}d, and Bob is also given a multi-
set B ⊂ {0, 1}d, where |A| = |B| = s. Their goal is to jointly approximate the value of
EMD(A,B). To do this, Alice and Bob exchange messages in rounds, where in each round one
player sends exactly one message to the other player. Without loss of generality, we assume that
Alice sends a message first. Thus, in a one-round protocol, Alice sends exactly one message M1

to Bob, and then givenM1 and his inputB, Bob must output an approximation R̃ to EMD(A,B).
In a two-round protocol, Alice sends exactly one message M1 to Bob. Given M1 and B, Bob
decides on a message M2, and sends M2 to Alice. After receiving M2, Alice must then output an
approximation R̃ to EMD(A,B). We work in the public-coin model of communication, where
Alice and Bob have access to a shared infinite random string.

A protocol P for the two-party Earth-Mover Distance approximation problem is the proce-
dure by which Alice and Bob compute the messages and their output. A protocol P is said to

425

be correct if it achieves a desired approximation with probability at least 2/3 over the coin flips
of P and the shared random string. For a protocol P , the communication complexity of P is the
maximum total length of all exchanged messages.

The Streaming Model. In the steaming model, points arrive from A ∪ B in a stream. Specif-
ically, at each time step in the stream, a point p ∈ {0, 1}d is inserted into the stream, along with
an identifier of whether p ∈ A or p ∈ B. At the end of the stream, the algorithm must output an
approximation to EMD(A,B). Recall that in the turnstile model of streaming, points p can also
be deleted from the stream (not necessarily having been inserted before), so long as at the end of
the stream the sets A,B defined by the stream satisfy |A| = |B| = s. This geometric stream can
in fact be modeled as a typical data stream, where the updates are coordinate-wise updates to a
“frequency vector” f . Here, we let f ∈ Rn, where n = 2 · 2d be a vector initalized to 0. At each
time step t, the vector f received a coordinate-wise update (it,∆t), where it ∈ [n] and ∆t is a
integer, which causes the change fit ← fit + ∆t. To see the equivalence, if we want to insert a
point p into A a total of z times, we can make the update (p, z), where p indexes into [2d] in the
natural way. Similarly, to add a point p into B a total of z times, we make the update (p+ 2d, z),
and deletions are handled similarly. We make the common assumption that |∆t| = poly(s) for
all t, and that the length of the stream is at most poly(s), so that the coordinates of the vector f
can be represented with log(s) bits of space at any intermediate point in the stream.

The goal of the streaming model is to maintain a small space sketch of the vector f , so
at the end of the stream an algorithm can produce a good approximation to the earth-mover
distance EMD(A,B). When discussing the space complexity of streaming algorithms, there are
two separate notions: working space and intrinsic space. We remark that generally these two
notations of space are the same (up to constant factors) for streaming algorithms, however for
our purposes it will be useful to distinguish them. The working space of a streaming algorithmA
is the space required to store an update (it,∆t) in the stream and process it. The intrinsic space is
the space which the algorithm must store between updates. The intrinsic space coincides with the
size of a message which must be passed from one party two another, if each party, for instance,
holds some fraction of the data stream. Thus, streaming computation is generally focused on the
intrinsic space, which we will hereafter just refer to as the space of the algorithm. Notice that the
working space must necessarily be sufficient to read the index it. In the case of EMD, it must be
represented with d bits of space, meaning that Ω(d) is a lower bound on the working memory of
a streaming algorithm in this model. However, the space complexity of streaming algorithms for
EMD may be smaller than this required working space.

In the streaming model, the corresponding notation for the public coin model is the random

426

oracle model of computation. This simply establishes that the steaming algorithm is given ran-
dom access to an infinitely long string of random bits, whose size does not count against the space
complexity of the algorithm. As show below, linear sketching immedately implies a streaming
algorithm with the same space in the random oracle model. To remove this assumption, the us-
age of pseudo-random generators or limited independence is generally required. In the one-pass

streaming model, the algorithm only sees the sequence of updates a single time, whereas in the
two-pass model the algorithm sees the sequence of updates exactly twice, one after the other.

Linear Sketching We now recall the concept of a linear-sketch. Linear sketching results in
algorithms both for the streaming and two-party communication models. In this model, the
multiset inputs A,B ⊂ {0, 1}d are implicitly encoded by a vector fA,B ∈ R2·2d . A linear sketch
stores only the value S · fA,B, where S is a (possibly random) matrix with k � 2d rows. The
algorithm then outputs an estimate of EMD(A,B) given only knowledge of SfA,B and S. The
space of a linear sketch is the space required to store SfA,B, since S is generated with public
randomness which is not charged against that algorithm. This coincides with the space of a
public coin communication protocol, or the space of a streaming algorithm in the random oracle
model.

Given an update (it,∆t), one can update the sketch SfA,B ← SfA,B + S∗,it∆t. This allows a
linear sketch to be maintained in a stream. Moreover, since the sketch Sf is linear, the order or
sequence of updates in a stream do not matter. Given a linear sketching algorithm for earth-mover
distance with sketch size SfA,B with k rows, this yields a O(k log s) communication protocol
for two-party one-round communication. This follows from the fact that the matrix S can be
generated with shared randomness. Alice can then compute the vector fA which is induced by
her set A, and Bob can similarly compute fB, such that fA,B = fA + fB. Alice then sends SfA
to Bob, who can compute SfA,B = SfA+SfB, and therefore solve the communication problem.

There is a corresponding notion of linear sketching for the two-round communication and
two-pass streaming models, which we call a two-round sketching algorithm. A two round sketch-
ing algorithm first (with no knowledge of fA,B) generates a matrix S1 from some distributionD1,
and computes S1fA,B. Then, given knowledge only of S1 and S1fA,B, it generates a second ma-
trix S2 from a distribution D2(S1,S1fA,B), and computes S2fA,B. Finally, given as input only
the values (S1,S2,S1fA,B,S2fA,B), it outputs an approximation to EMD(A,B). The space of
the algorithm is the number of bits required to store S1fA,B and S2fA,B.

It is easy to see that a two-round linear sketching algorithm results in both a two-pass stream-
ing algorithm and a two-round communication protocol. For the former, on the first pass the

427

algorithm maintains S1f and S1 using shared randomness. At the end of the first pass, it can
generate S2 based on S1fA,B and S1, and compute S2fA,B as needed. For a two-round com-
munication protocol, Alice and Bob jointly generate S1, then Alice sends S1fA to Bob, who
computes himself S1fA,B, and then using shared randomness and his knowledge of S1,S1fA,B

can compute S2. Bob then sends S1fA,B,S2fB back to Alice, who can now fully determine
S1,S2,S1fA,B,S2fA,B and output the approximation.

Two-Pass Streaming. We now demonstrate that this two-round linear sketch of Section 8.5
can be applied to obtain a two-pass streaming algorithm in the turnstile (insertion and deletion)
model. Here, a stream of at most poly(s) updates arrives in the stream, where each update either
inserts or deletes a point from A, or inserts or delets a point from B. Noticed that the t-th update
can be modelled by coordinate-wise updates to fA,B of the form (it,∆t) ∈ [2 ·2d]×{−M,−M+
1, . . . ,M}, where M = poly(s), causing the change (fA,B)it ← (fA,B)it + ∆t. At the end of
the stream, we are promised that fA,B is a valid encoding of two multi-sets A,B ⊂ {0, 1}d with
|A| = |B| = s. A two-pass streaming algorithm is allowed to make two passes over the stream
before outputting an estimate.

Corollary 8.12.1. For d, s ∈ N, there exists a 2-pass turnstile streaming algorithm which, on a

stream vector fA,B encoding multi-sets A,B ⊂ {0, 1}d with |A| = |B| = s, the algorithm then

computes an approximate Î to EMD(A,B) with

EMD(A,B) ≤ Î ≤ Õ(log s) EMD(A,B)

with probability at least 3/4, and uses O(d log d) + polylog(s, d) bits of space. Moreover, the

algorithm stores its own randomness (i.e., does not required the random oracle model).

Proof. The only step remaining is to derandomize the algorithm (i.e., modify the algorithm so
that it can store its randomness in small space). First note that the universe reduction step requires
the generation of two hash functions hi, hi−1 mapping a universe of size at most 2d to a universe
of size s. Moreover, for the proof of Proposition 8.5.1, all that is needed is 2-wise independence,
since the proof only argues about the probability of a collision of a fixed pair and applies a union
bound. Since a 2-wise independent hash function h : U1 → U2 can be stored in O(log(|U1| +
|U2|)) bits of space, this only adds an additiveO(d) bits to the space complexity of the algorithm.

Next, note that the linear sketching algorithms of [Ind06] and Chapter 3 used in the first
and second passes are both are already derandomized in poly(log s)-bits of space. Thus, it will
suffice to consider the randomness needed to store the Quadtree T . By Remark 97, in each depth

428

t ∈ [h] of the Quadtree we can sample the same set (i1, i2, . . . , i2t) ∼ [d] of coordinates for each
vertex at that depth (instead of independently sampling coordinates in every vertex at the same
depth). Since h = log 2d, the total number of bits we must sample to define an entire quadtree is
2d log d. Thus, after sampling such a quadtree T with O(d log d) bits, and storing these bits, the
remainder of the algorithm is already stores its randomness. Moreover, because there are at most
poly(s) updates to fA,B, the coordinates of each linear sketch can be stored in O(log s) bits of
space, which completes the proof.

429

430

Part II

Numerical Linear Algebra

431

Chapter 9

Testing Positive Semi-Definiteness

The second part of this thesis is concerned with the application of sketching techniques to ran-
domized numerical linear algebra (NLA). Sketching as a tool for randomized NLA has a distin-
guished history, leading to breakthrough results in the past decade such as the fastest regression
and low-rank approximation algorithms [CW17, W+14]. A thorough treatment of the funda-
mental results in sketching for NLA can be found in the surveys [W+14, KV17, Mah11]. The
material which follows is based on our work [BCJ20].

In this chapter, we study the problem of testing whether a square matrix A ∈ Rn×n is posi-
tive semi-definite (PSD). Recall that A is said to be PSD if it defines a non-negative quadtratic
form: namely if x>Ax ≥ 0 for all vectors x ∈ Rn. If A is symmetric, this is equivalent to all its
eigenvalues λi(A) being non-negative. PSD matrices are central objects of interest in algorithm
design, and are studied extensively in optimization, spectral graph theory, numerical linear al-
gebra, statistics, and dynamical systems, among many others [VB96, WSV12, GW95, ARV09,
AHK05, Ste10, ST04, DL09, Wai19, DK19, SL+91].

Matrices which are positive semi-definite have particularly interesting and intricate struc-
ture, and admit a plethora of nice algebraic and algorithmic properties. Given a matrix A, the
problem of testing whether A is PSD is, therefore, a fundamental task in numerical linear al-
gebra. For instance, certifying whether a matrix is PSD often provides crucial insights into the
structure of metric spaces [Sch35], arises as a separation oracles in Semi-Definite Programming
(SDP) [VB96], and leads to faster algorithms for solving linear systems and linear algebra prob-
lems [ST04, KOSZ13, MW17, BCW20].

In general, efficient, numerically stable algorithms for computing the spectrum of a matrix
A have been known since Turing [Tur48]. However, such algorithms require reading the entire

433

matrix and require cubic O(n3) running time in practice or O(nω) in theory, where ω < 2.373
is the exponent of matrix multiplication. This spectrum computation is often the bottleneck
in applications, especially when just determining the existence of negative eigenvalues suffices.
For instance, checking embeddability of a finite metric into Euclidean space, feasibility of a SDP,
convexity of a function, and if specialized solvers are applicable for linear algebraic problems,
all only require knowledge of whether a given matrix is PSD.

The focus of this Chapter is to study when the property of being PSD can be tested sublinear

time and queries, without reading the entire matrix. This algorithmic perspective is known as the
property testing framework [GGR98, Gol17]. Property testing is a natural model for sketching,
as a small subset of queries which allow one to determine properties of a high-dimensional object
is itself a low-dimensional sketch of that object.

More specifically, in the property testing model we are given as input a matrix A ∈ Rn×n,
which is promised to either satisfy the desired property (i.e., A is PSD), or it is promised that
A is “far”, under an appropriate notion of distance (discussed in the following), from any PSD
matrix. The goal is to distinguish between these two cases making as few queries to the entries
of A as possible. In order to avoid trivialties, such as having arbitrarily large entries hidden in
A which would force any algorithm to queries all the entries, some condition of boundedness
is necessary. Consequentially, we choose to work in the natural bounded entry model proposed
by Balcan, Li, Woodruff, and Zhang [BLWZ19], where the input matrix has bounded entries:
‖A‖∞ ≤ 1.

In this chapter, we initiate the study of testing postive semi-definiteness in the property testing
model. We give algorithms for two related variants of the task, depending on how one defines
the “far” case (discussed in further detail below in Section 9.1). The first, known as the `2

2 gap,
promises that in the far case, we have minB-PSD ‖A−B‖2

F ≥ εn2 for some parameter ε ∈ (0, 2).
The second is known as the `∞-gap, and promises that minB-PSD ‖A − B‖2 ≥ εn. Our main
results are the design of a query-optimal algorithm for the latter task, and nearly matching upper
and lower bounds for the former. Both our testers randomly sample a collection of principal
submatrices and check whether these submatrices are PSD. Thus, our results can be seen as
a intensive investigation into the eigenvalues of random submatrices. Specifically, the main
technical challenge which follows is to demonstrate that random submatrices of a matrix which
far from PSD is very likely itself not PSD.

434

Highlighted Contributions

The main contributions of this chapter as as follows:

• A non-adaptive tester which solves the `∞-gap problem using only Õ(1/ε2) queries to the
entries of A, and a matching lower bound of Ω(1/ε2) even for any algorithm (Section 9.3).

• A non-adaptive tester which solves the `2
2-gap problem using only Õ(1/ε4) queries to the

entries of A (Section 9.4).

• A lower bound of Õ(1/ε2) for any non-adaptive algorithm (Section 9.5).

9.1 Background

The goal of this chapter is to provide property testing algorithms for positive semi-definiteness.
As discussed earlier, we work in the bounded-entry model, proposed by Balcan, Li, Woodruff,
and Zhang [BLWZ19], where the input matrix has bounded entries: ‖A‖∞ ≤ 1. Bounded-
ness is often a natural assumption in practice, and has numerous real world applications, such
as recommender systems as in the Netflix Challenge [KBV09], unweighted or bounded weight
graphs [Gol10, GGR98], correlation matrices, distance matrices with bounded radius, and others
[LWW14, KIDP16, BLWZ19]. Further, as noted, the boundedness of entries avoids degener-
ate instances where an arbitrarily large entry is hidden in A, thereby drastically changing the
spectrum of A, while being impossible to test without reading the entire matrix.

The work [BLWZ19] introduced the bounded entry model specifically to study the query
complexity of testing spectral properties of matrices, such as stable rank (the value ‖A‖2

F/‖A‖2
2)

and Schatten p norms. A previously studied model, known as the bounded row model, which re-
quires that rows instead of entries be bounded, was studied by Li, Wang, and Woodruff [LWW14],
who gave tight bounds for testing stable rank in this model. The problem of testing the rank of a
matrix has also been very well studied [PR03, KS03, LWW14, BBG18], and admits tight bounds
without the requirement of boundedness. This is a consequence of the fact that matrix rank is
not a smooth spectral property, so hiding an unbounded value in a single entry of A cannot
drastically alter the rank. Thus, for testing rank, the condition of boundedness is not required.

The starting point for this chapter is a simple fact: a matrix A is PSD if and only if all

435

principal1 submatrices of A are PSD. However, a much more interesting direction is: if A is not
PSD, what can be said about the eigenvalues of the submatrices of A? Specifically, if A is far
from PSD, how large of a submatrix must one sample in order to find a negative eigenvalue? Note
that given a principal submatrix AT×T with x>AT×Tx < 0 for some x ∈ R|T |, this direction
x can be used as a certificate that the input matrix is not PSD, since y>Ay = x>AT×Tx < 0,
where y is the result of padding x with 0’s. Further, it leads us to a natural algorithm to test
definiteness: sample multiple principal submatrices and compute their eigenvalues. If any are
negative, then A must not be PSD. Determining the query complexity of this task is the principal
focus of this chaoter. Specifically, we ask:

Can the positive semi-definiteness of a bounded matrix be tested via the

semi-definiteness of a small random submatrix?

9.1.1 Property Testing PSD Matrices in the Bounded Entry Model

The distance from A to the PSD cone is given by minB�0 ‖A −B‖, where ‖ · ‖ is a norm, and
B � 0 denotes that B is PSD. To instantiate ‖ · ‖, we consider two natural norms over n × n
matrices: the spectral norm (‖ · ‖2) and the Euclidean norm (‖ · ‖F). Perhaps surprisingly, the
distance of a symmetric matrix A to the PSD cone under these norms can be characterized in
terms of the eigenvalues of A. In particular, let λ ∈ Rn be the vector of eigenvalues of A.
Then, the spectral norm distance corresponds to the `∞ distance between λ and the positive
orthant. Similarly, the squared Frobenius distance corresponds to the `2

2 distance between λ and
the positive orthant.

Therefore, we will refer to the two resulting gap problems as the `∞-gap and the `2
2-gap,

respectively. This connection between matrix norms of A and vector norms of eigenvalues λ
will be highly useful for the analysis of random submatrices. Next, we formally define the
testing problems:

Problem 1 (PSD Testing with Spectral norm/`∞-gap). Given ε ∈ (0, 1] and a symmetric matrix

A ∈ Rn×n such that ‖A‖∞ ≤ 1, distinguish whether A satisfies:

(1) A is PSD.

(2) A is ε-far from the PSD cone in Spectral norm: minB�0 ‖A−B‖2 = maxi:λi<0 |λi(A)| ≥
εn.

1Recall that a principal submatrix AT×T for T ⊆ [n] is the restriction of A to the rows and columns indexed by
T .

436

The fact that the spectral norm distance from A to the PSD cone (minB�0 ‖A − B‖2) is
equivalent to the magnitude of the smallest negative eigenvalue of A is a consequence of the
variational principle for eigenvalues. For general non-symmetric matrices A, one can replace
(2) above with the condition x>Ax < −εn for some unit vector x ∈ Rn, which is equivalent to
(2) if A is symmetric (again by the variational principle). We note that our results for the `∞-gap
hold in this more general setting.2

Next, if we instantiate ‖ · ‖ with the (squared) Euclidean norm, we obtain the `2
2 gap problem.

Problem 2 (PSD Testing with `2
2-gap). Given ε ∈ (0, 1] and a symmetric matrix A ∈ Rn×n such

that ‖A‖∞ ≤ 1, distinguish whether A satisfies:

(1) A is PSD.

(2) A is ε-far from the PSD cone in squared Euclidean norm:

min
B�0
‖A−B‖2

F =
∑

i:λi(A)<0
λ2
i (A) ≥ εn2 (9.1)

Note that the identity minB�0 ‖A − B‖2
F = ∑

i:λi(A)<0 λ
2
i (A) in equation 9.1 also follows

from a simple application of the variational principle for eigenvalues (see Section 9.6). Similarly
to the `∞-gap, if A is not symmetric one can always run a tester on the symmetrization (A +
A>)/2. Also observe that ‖A‖2

F ≤ n2 and ‖A‖2 ≤ n for bounded entries matrices, hence the
respective scales of n, n2 in the two gap instances above. Notice by definition, if a symmetric
matrix A is ε-far from PSD in `∞ then A is ε2-far from PSD in `2

2. However, the converse is
clearly not true, and as we will see the complexity of PSD testing with ε2-`2

2 gap is strictly harder
than testing with ε-`∞ gap.3

We note that there are several important examples of matrices which are far from the PSD
cone in `2

2, but which are not far in `∞.

Example 109. Let A ∼ {−1, 1}n×n be a random sign matrix with independent entries. Then
as a consequence of Wigner’s Semicircle Law A will be Ω(1)-far in `2

2 distance. However,
‖A‖2 = O(

√
n) with high probability, so A will only be O(1/

√
n)-far in `∞ distance. The same

holds true when the entries of A are drawn independently from the Gaussian distribution, or any

2Also note that given query access to any A ∈ Rn×n, one can always run a tester on the symmetrization
B = (A+A>)/2, which satisfies x>Ax = x>Bx for all x, with at most a factor of 2 increase in query complexity.

3The difference in scaling of ε between the `∞ and `2
2 gap definitions (ε is squared in the latter) is chosen

for the sake of convenience, as it will become clear the two problems are naturally studied in these respective
paramaterizations.

437

distribution with bounded moments.

Intuitively, random examples like the above should be very “far” from being PSD, and the `2
2

distance captures this fact.

9.1.2 Contributions in the Bounded Entry Model

We now introduce our main contributions. Our algorithms for PSD testing randomly sample
principal submatrices and check if they are PSD. Thus, all our algorithms have one-sided error;
when A is PSD, they always return PSD, and whenever our algorithms return Not PSD, they
output a certificate in the form of a principal submatrix which is not PSD. In what follows,
ω < 2.373 is the exponent of matrix multiplication. We first state our result for the `∞ gap
problem in its most general form, which is equivalent to Problem 1 in the special case when A
is symmetric.

Theorem 116 (`∞-gap Upper Bound) There is a non-adaptive sampling algorithm which, given

A ∈ Rn×n with ‖A‖∞ ≤ 1 and ε ∈ (0, 1), returns PSD if x>Ax ≥ 0 for all x ∈ Rn, and with

probability 2/3 returns Not PSD if x>Ax ≤ −εn for some unit vector x ∈ Rn. The algorithm

make Õ(1/ε2) queries to the entries of A, and runs in time Õ(1/εω).

We demonstrate that the algorithm of Theorem 116 is optimal up to log(1/ε) factors, even
for adaptive algorithms with two-sided error. Formally, we show:

Theorem 120 (`∞-gap Lower Bound) Any adaptive or non-adaptive algorithm which solves the

PSD testing problem with ε-`∞ gap with probability at least 2/3, even with two-sided error and

if A is promised to be symmetric, must query Ω̃(1/ε2) entries of A.

Next, we present our algorithm for the `2
2-gap problem. Our algorithm crucially relies on first

running our tester for the `∞-gap problem, which allows us to demonstrate that if A is far from
PSD in `2

2 but close in `∞, then it must be far, under other notions of distance such as Schatten
norms or residual tail error, from any PSD matrix.

Theorem 119 (`2
2-gap Upper Bound) There is a non-adaptive sampling algorithm which, given

a symmetric matrix A ∈ Rn×n with ‖A‖∞ ≤ 1 and ε ∈ (0, 1), returns PSD if A is PSD, and

with probability 2/3 returns Not PSD if minB�0 ‖A−B‖2
F ≥ εn2. The algorithm make Õ(1/ε4)

queries to A, and runs in time Õ(1/ε2ω).

438

We complement our upper bound by a Ω̃(1
ε2

) lower bound for PSD-testing with ε-`2
2 gap,

which holds even for algorithms with two sided error. Our lower bound demonstrates a separation
between the complexity of PSD testing with

√
ε-`∞ gap and PSD testing with ε-`2

2-gap, showing
that the concentration of negative mass in large eigenvalues makes PSD testing a strictly easier
problem.

Theorem 123 (`2
2-gap Lower Bound) Any non-adaptive algorithm which solves the PSD test-

ing problem with ε-`2
2 gap with probability at least 2/3, even with two-sided error, must query

Ω̃(1/ε2) entries of A.

Our lower bound is built on discrete hard instances which are “locally indistinguishable”,
in the sense that the distribution of any small set of samples is completely identical between
the PSD and ε-far cases. At the heart of the lower bound is a key combinatorial Lemma about
arrangements of paths on cycle graphs (see discussion in Section 9.2). Our construction is highly
general, and we believe will likely be useful for proving other lower bounds for matrix and graph
property testing problems. Exemplifying the applicability of our construction, we obtain as an
immediate corollary a new lower bound for testing the Schatten-1 norm of A. Recall, that the
Schatten-1 norm is defined via ‖A‖S1 = ∑

i σi(A), where σ1(A) ≥ · · · ≥ σn(A) are the singular
values of A.

Theorem 124 (Schatten-1 Lower Bound) Fix any 1/
√
n ≤ ε ≤ 1. Then any non-adaptive

algorithm in the bounded entry model that distinguishes between

1. ‖A‖S1 ≥ εn1.5,

2. ‖A‖S1 ≤ (1− ε0)εn1.5

with probability 2/3, where ε0 = 1/ logO(1)(1/ε), must make at least Ω̃(1/ε4) queries to A.

Note that one always has ‖A‖S1 ≤ n1.5 in the bounded entry model (‖A‖∞ ≤ 1), which
accounts for the above scaling. Theorem 124 extends a lower bound of Balcan et. al. [BLWZ19],
which is Ω(n) for the special case of ε, ε0 = Θ(1). Thus, for the range ε = Õ(n−1/4), our lower
bound is an improvement. To the best of our knowledge, Theorem 124 gives the first Ω̃(n2)
sampling lower bound for testing Schatten-1 in a non-degenerate range (i.e., for ‖A‖S1 > n).

Remark 110. We note that the lower bound of [BLWZ19] is stated for a slightly different version
of gap (a “ε-`0”-gap), where either ‖A‖S1 ≥ c1n

1.5 for a constant c1, or at least εn2 of the
entries of A must be changed (while respecting ‖A‖∞ ≤ 1) so that the Schatten-1 is larger

439

than c1n
1.5. However, their lower bound construction itself satisfies the “Schatten-gap” version

as stated in Theorem 124, where either ‖A‖S1 ≥ c1n
1.5, or ‖A‖S1 ≤ c2n

1.5 and c1 > c2 are
constants. From here, it is easy to see that this gap actually implies the `0-gap (and this is used
to obtain the `0-gap lower bound in [BLWZ19]), since if ‖A‖S1 ≤ c2n

1.5 then for any E with
‖E‖∞ ≤ 2 and ‖E‖0 ≤ εn2 for a small enough constant ε < c2

2, we have ‖A + E‖S1 ≤
‖A‖S1 + ‖E‖S1 ≤ n1.5(c2 + 2

√
ε) < c1n

1.5. So Theorem 124 implies a lower bound of Ω̃(1/ε2)
for distinguishing ‖A‖S1 ≥

√
εn1.5 from the case of needing to change at least Ω̃(εn2) entries of

A so that ‖A‖S1 ≥
√
εn1.5. Thus, our lower bound also extends the `0-gap version of the results

of [BLWZ19] for the range ε = Õ(1/
√
n).

In addition to Schatten-1 testing, the same lower bound construction and techniques from
Theorem 123 also result in new lower bounds for testing the Ky-Fan s norm ‖A‖KF(s) = ∑s

i=1 σi(A),
as well as the cost of the best rank-s approximation ‖A−As‖2

F = ∑
i>s σ

2
i (A), stated below. In

the following, s is any value 1 ≤ s ≤ n/(poly log n), and c is a fixed constant.

Theorem 125 (Ky-Fan Lower Bound) Any non-adaptive algorithm in the bounded entry model

which distinguishes between

1. ‖A‖KF(s) >
c

log sn

2. ‖A‖KF(s) < (1− ε0) · c
log sn

with probability 2/3, where ε0 = Θ(1/ log2(s)), must query at least Ω̃(s2) entries of A.

Theorem 126 (Residual Error Lower Bound) Any non-adaptive algorithm in the bounded entry

model which distinguishes between

1. ‖A−As‖2
F >

c
s log sn

2. ‖A−As‖2
F < (1− ε0) · c

s log sn

with probability 2/3, where ε0 = 1/ logO(1)(s), must query at least Ω̃(s2) entries of A.

Our lower bound for the Ky-Fan norm complements a Ky-Fan testing lower bound of [LW16],
which is Ω(n2/s2) for distinguishing 1) ‖A‖KF (s) < 2.1s

√
n from 1) ‖A‖KF (s) > 2.4s

√
nwhen

s = O(
√
n). Note their bound decreases with s, whereas ours increases, thus the two bounds

are incomparable (although they match up to log(s) factors at s = Θ(
√
n)).4 We also point

out that there are (not quite matching) upper bounds for both the problems of Ky-Fan norm and
4The bound from [LW16] is stated in the sketching model, however the entries of the instance are bounded, thus

it also applies to the sampling model considered here.

440

s-residual error testing in the bounded entry model, just based on a standard application of the
Matrix Bernstein Inequality.5 We leave the exact query complexity of these and related testing
problems for functions of singular values in the bounded entry model as subject for future work.

9.1.3 Connections to Optimization, Euclidean Metrics and Linear Algebra

We now describe some explicit instances where our algorithms may be useful for testing positive
semi-definiteness. We emphasize that in general, the distance between A and the PSD cone may
be too small to verify via our testers. However, when the input matrices satisfy a non-trivial
gap from the PSD cone, we can speed up some basic algorithmic primitives. The first is testing
feasibility of the PSD constraint in a Semi-Definite Program (SDP) with sublinear queries and
time, so long as the variable matrix has bounded entries. Importantly, our algorithms also output
a separating hyperplane to the PSD cone.

Corollary 9.1.1 (Feasibility and Separating Hyperplanes for SDPs). Given a SDP S, let X ∈
R
n×n be a symmetric matrix that violates the PSD constraint for S. Further, suppose ‖X‖∞ ≤ 1

and X is εn2-far in entry-wise `2
2 distance to the PSD cone. Then, there exists an algorithm that

queries Õ(1/ε4) entries in X and runs in Õ(1/ε2ω) time, and with probability 9/10, outputs a

vector ṽ such that ṽTXṽ < 0. Moreover, if λmin(X) < −εn, then there is an algorithm yielding

the same guarantee, that queries Õ(1/ε2) entries in X and runs in Õ(1/εω) time.

While in the worst case, our algorithm may need to read the whole matrix to exactly test
if X is PSD, there may be applications where relaxing the PSD constraint to the convex set of
matrices which are close to the PSD cone in Euclidean distance is acceptable. Moreover, our
algorithm may be run as a preliminary step at each iteration of an SDP solver to check if the PSD
constraint is badly violated, resulting in speed-ups by avoiding an expensive eigendecomposition
of X whenever our algorithm outputs a separating hyperplane [VB96].

Next, we consider the problem of testing whether an arbitrary finite metric d over n points,
x1, . . . xn ∈ Rd is embeddable into Euclidean Space. Testing if a metric is Euclidean has a
myriad of applications, such as determining whether dimensionality reduction techniques such
as Johnson-Lindenstrauss can be used [PR03], checking if efficient Euclidean TSP solvers can
be applied [Aro98], and more recently, computing a low-rank approximation in sublinear time

5See Theorem 6.1.1 of [Tro15], applied to Sk = a(k)(a(k))>, where a(k) is the k-th row sampled in A; for the
case of residual error, one equivalently applies matrix Bernstein inequality to estimate the head

∑
i≤k σ

2
i (A). These

bounds can be tightened via the usage of interior Chernoff bounds [GT11].

441

[BW18, IVWW19]. It is well known (Schoenberg’s criterion [Dat10]) that given a distance
matrix D ∈ Rn×n such that Di,j = d(xi, xj), the points are isometrically embeddable into
Euclidean space if and only If G = 1 ·D1,∗ + D>1,∗ · 1> −D � 0, where D1,∗ is the first row
of D. Notice that embeddability is scale invariant, allowing one to scale distances to ensure
boundedness. Furthermore, since our algorithms sample submatrices and check for non-positive
semi-definiteness, the tester need not know this scaling in advance, and gives guarantees for
distinguishing definiteness if the necessary gap is satisfied after hypothetically scaling the entries.

Corollary 9.1.2 (Euclidean Embeddability of Finite Metrics). Given a finite metric d on n points

{x1, . . . , xn}, let D ∈ Rn×n be the corresponding distance matrix, scaled so that ‖D‖∞ ≤ 1/3,

and let G = 1D1,∗ + D>1,∗1> −D. Then if minB�0 ‖G−B‖2
F ≥ εn2, there exists an algorithm

that queries Õ(1/ε4) entries in A and with probability 9/10, determines the non-embeddability

of {x1, . . . , xn} into Euclidean space. Further, the algorithm runs in time Õ(1/ε2ω).

Remark 111. An intriguing question is to characterized geometric properties of finite metrics
based on the `2

2-distance of the Schoenberg matrix G from the PSD cone. For instance, given a
finite metric with Schoenberg matrix G that is close to being PSD in `2

2-distance, can we conclude
that the metric has a low worst or average case distortion embedding into Euclidean space?

Remark 112. Since rescaling entries to be bounded only affects the gap parameter ε, in both of
the above cases, so long as the magnitude of the entries in X,D do not scale with n, the running
time of our algorithms is still sublinear in the input.

Finally, several recent works have focused on obtaining sublinear time algorithms for low-
rank approximation when the input matrix is PSD [MW17, BCW20]. However, such algorithms
only succeed when the input is PSD or close to PSD (in `2

2), and it is unknown how to verify
whether these algorithm succeeded in sublinear time. Therefore, our tester can be used as a pre-
processing step to determine input instances where the aforementioned algorithms provably will
(or will not) succeed.

9.1.4 Open Problems and a Remark on the `2
2-Gap.

In this chapter, we present an optimal (up to log(1/ε) factors) algorithm for testing if a matrix is
PSD, or far in spectral norm distance from the PSD cone. In addition, we present query efficient
algorithm for the more general `2

2 gap problem. However, there is still a gap of 1/ε2 between the
upper and lower bounds for PSD testing with `2

2 gap.

442

We note here that there appear to be several key barriers to improving the query complexity
of PSD testing with `2

2-gap beyond O(1/ε4), which we briefly discuss here. First, in general,
to preserve functions of the squared singular values of A up to error εn2, such as ‖A‖2

F =∑
i σ

2
i (A) or ‖A‖2

2 = σ2
1(A), any algorithm which samples a submatrix must make Ω(1/ε4)

queries (see Lemma 9.5.15 for estimating
∑
i≤k σ

2
i for any k). In other words, detecting εn2-

sized perturbations in the spectrum of a matrix in general requires Ω(1/ε4) sized submatrices.
This rules out improving the query complexity by detecting the εn2 negative mass in A via, for
instance, testing if the sum of squares of top k = 1/ε singular values has Θ(εn2) less mass than
it should if A were PSD (even this may require Ω(k2/ε4) queries, see the discussion in Section
9.2).

The key issue at play in the above barrier appears to be the requirement of sampling subma-
trices. Indeed, notice for the simplest case of ‖A‖2

F , we can easily estimate ‖A‖2
F to additive

εn2 via O(1/ε2) queries to random entries of A. On the other hand, if these queries must form a
submatrix, then it is easy to see that Ω(1/ε4) queries are necessary, simply from the problem of
estimating ‖A‖2

F whose rows (or columns) have values determined by a coin flip with bias either
equal to 1/2 or 1/2 + ε. On the other hand, for testing positive semi-definiteness, especially with
one-sided error, the requirement of sampling a principal submatrix seems unavoidable.

In addition, a typical approach when studying spectral properties of submatrices is to first pass
to a random row submatrix AS×[n], argue that it preserves the desired property (up to scaling), and
then iterate the process on a column submatrix AS×T . Unfortunately, these types of arguments
are not appropriate when dealing with eigenvalues of A, since after passing to the rectangular
matrix AS×[n], any notion of negativity of the eigenvalues has now been lost. This forces one
to argue indirectly about functions of the singular values of AS×[n], returning to the original
difficulty described above. We leave it as an open problem to determine the exact non-adaptive
query complexity of PSD testing with `2

2-gap. Indeed, it seems that perhaps the main tool that is
lacking is a concentration inequality for the eigenvalues of random principal submatrices. Since
most such decay results apply only to norms [Tro08, RV07], progress in this direction would
likely result in important insights into eigenvalues of random matrices.

In addition to our techniques for analyizing the eigenvalues of random submatrices, an impor-
tant contribution of this chapter is a new technique for proving lower bounds based on designing
“subgraph-equivelant” matrices (Section 9.5). This technique is quite general, as shown by its
immediate application to lower bounds for the Schatten-1 norm, Ky-Fan norm, and tail error
testing. Our construction could also likely be useful for proving lower bounds against testing
of graph properties, which is a well studied area [Gol10]. We pose the open problem to design

443

(or demonstrate the non-existence of) additional subgraph-equivalent matrices beyond the cycle
graph construction utilized in this work, which have gaps in their spectral or graph-theoretic
properties.

Finally, we note that the complexity of the testing problems for several matrix norms, specif-
ically the Schatten p and Ky-Fan norms, are still open in the bounded entry model. In particular,
for the Schatten 1 norm, to the best of our knowledge no non-trivial algorithms exist even for
estimation with additive error Θ(n1.5), thus any improvements would be quite interesting.

9.2 Overview of the Testing Algorithms

In this section, we describe the techniques used in our non-adaptive testing algorithms for the
`∞ and more general `2

2 gap problem, as well as the techniques involved in our lower bound
construction for the `2

2-gap.

PSD Testing with `∞ Gap

Recall in the general statement of the `∞-gap problem, our task is to distinguish between A ∈
R
n×n satisfying x>Ax ≥ 0 for all x ∈ Rn, or x>Ax ≤ −εn for some unit vector x ∈ Rn. Since

if x>Ax ≥ 0 for all x ∈ Rn the same holds true for all principal submatrices of A, it suffices to
show that in the ε-far case we can find a k×k principal submatrix AT×T such that y>AT×Ty < 0
for some y ∈ Rk.6

Warmup: A O(1/ε3) query algorithm. Since we know x>Ax ≤ −εn for some fixed x, one
natural approach would be to show that the quadratic form with the same vector x, projected
onto to a random subset T ⊂ [n] of its coordinates, is still negative. Specifically, we would like
to show that the quadratic form QT (x) = x>TAT×TxT , of x with a random principal submatrix
AT×T for T ⊂ [n] will continue to be negative. If QT (x) < 0, then clearly AT×T is not PSD.
Now while our algorithm does not know the target vector x, we can still analyze the concentration
of the scalar random variableQT (x) over the choice of T , and show that it is negative with good
probability.

Proposition 9.3.6 and Lemma 9.3.7 (informal) Suppose A ∈ Rn×n satisfies ‖A‖∞ ≤ 1 and

x>Ax ≤ −εn where ‖x‖2 ≤ 1. Then if k ≥ 6/ε, and if T ⊂ [n] is a random sample of expected

6This can be efficiently checked by computing the eigenvalues of AT×T + A>T×T .

444

Figure 9.1: Hard instances for `∞ testing. On the left, the negative mass is highly concentrated
in |S| = ε2n rows and columns, and on the right it more spread out over |S| = αn, where
ε2 ≤ α ≤ ε.

size k, we have E [QT (x)] ≤ − εk2

4n and Var(QT (x)) ≤ O(k3

n2).

By the above Proposition, after setting k = Θ(1/ε2), we have that |E [QT (x)] |2 = Ω(Var(QT (x)),
and so by Chebyshev’s inequality, with constant probability we will have QT (x) < 0. This re-
sults in a k2 = O(1/ε4) query tester. To improve the complexity, we could instead set k = Θ(1/ε)
and re-sample T for k times independently to reduce the variance. Namely, one can sample sub-
matrices T1, T2, . . . , Tk, and analyze 1

k

∑k
i=1QTi(x). The variance of this sum goes down to

O(k2

n2), so, again by Chebyshev’s inequality, the average of these quadratic forms will be neg-
ative with constant probability. If this occurs, then at least one of the quadratic forms must be
negative, from which we can conclude that at least one of ATi×Ti will fail to be PSD, now using
only O(1/ε3) queries.

A Family of Hard Instances One could now hope for an even tighter analysis of the concen-
tration of QT (x), so that O(1/ε2) total queries would be sufficient. Unfortunately, the situation
is not so simple, and in fact the two aforementioned testers are tight in the query complexity
for the matrix dimensions they sample. Consider the hard instance A in the left of Figure 9.1,
which is equal to the identity on the diagonal, and is zero elsewhere except for a small subset
S ⊂ [n] of |S| = ε2n rows and columns, where we have AS×S = AS×S = −1, where S is the
complement of S. Notice that if we set x2

i = 1/(2n) for i /∈ S and x2
i = 1/(2ε2n) for i ∈ S, then

x>Ax ≤ −εn/4. However, in order to even see a single entry from S, one must sample from at
least Ω(1/ε2) rows or columns. In fact, this instance itself gives rise to a Ω(1/ε2) lower bound
for any testing algorithm, even for adaptive algorithms (Theorem 120).

445

The difficulty of the above instance is that the negative mass of x>Ax is hidden in only a
ε2-fraction of A. On the other hand, since the negative entries are so large and concentrated, one
need only sample O(1) entries from a single row i ∈ S in order for AT×T to be non-PSD in
the prior example. Thus, an algorithm for such instances would be to sample O(1/ε2) principal
submatrices, each of constant size. On the other hand, the set S could also be more spread out;
namely, we could have |S| = αn for any ε2 ≤ α ≤ ε, but where each entry in AS×S is set to
−ε/
√
α (see the matrix in the right side of Figure 9.1). If instead, we define x2

i = 1/(2αn) for
i ∈ S, we still have x>Ax < −εn/4. However, now any submatrix AT×T with |T ∩S| = 1 must
have at least |T | ≥ α/ε2 rows and columns, otherwise AT×T would be PSD due to the identity
on the diagonal.

The aforementioned instances suggest the following approach: query matrices at O(log 1
ε
)

different scales of subsampling. Specifically, for each ε2 ≤ α = 2i ≤ ε, we sample Õ(ε2
α2)

independent k × k submatrices, each of size k = Õ(α/ε2), giving a total complexity of Õ(1
ε2

).
The analysis now proceeds by a complete characterization of the ways in which x>Ax can be
negative. Specifically, we prove the following: either a substantial fraction of the negative mass
is hidden inside of a small set of rows and columns S with |S| < εn, or it is the case that
Var(QT (x)) is small enough so that a single k × k submatrix will already be non-PSD with
good probability when k & 1/ε. Given this classification, it suffices to demonstrate a level of
subsampling which will find a non-PSD submatrix when the negative mass is concentrated inside
inside a small set S.

Eigenvector Switching. To analyze this case, ideally, one would like to demonstrate that con-
ditioned on T intersecting S at some level of subsampling, we will have QT (x) < 0 with good
probability. Unfortunately, the approach of analyzing the quadratic form with respects to x will
no longer be possible; in fact, QT (x) may never be negative conditioned on |T ∩ S| = 1 (unless
|T | > 1/ε, which we cannot afford in this case). The complication arises from the fact that the
coordinates of xi in the small set S can be extremely large, and thus the diagonal contribution of
x2
iAi,i will dominate the quadratic form of a small submatrix. For instance, if AT×T is a sample

with k = |T | = O(1) which intersects the set S in the leftmost matrix in Figure 9.1, where
xi = 1/(ε

√
n) for i ∈ S and xi = 1/

√
n otherwise, then QT (x) ≈ k/n − (k/

√
n)xi + Ai,ix

2
i ,

which is dominated by the diagonal term Ai,ix
2
i = 1/(ε2n). Thus, while AT×T itself is not PSD,

we have that QT (x) > 0.

To handle this, we must and analyze the quadratic form QT (·) with respect to another direc-
tion y. The vector y may not even satisfy y>Ay < 0, however conditioned on |T ∩ S| ≥ 1, we
will have QT (y) < 0 with good probability. Clearly, we must scale down the large coordinates

446

xi for i ∈ S. However, one cannot scale too low, otherwise the negative contribution of the rows
i ∈ S would become too small. The correct scaling is then a careful balancing act between the
contributions of the different portions of AT×T . Informally, since the xi’s for i ∈ S make up a
|S|/n fraction of all coordinates, they can be as large as x2

i ≥ (n/|S|) · (1/n). However, inside
of the smaller submatrix AT×T , then conditioned on i ∈ T , since |T | is small xi now makes up a
larger 1/|T | fraction of the submatrix, thus we should scale down xi to only be x2

i ≈ |T |/n. With
this scaling in mind, we (very roughly) set y2

i = (|S|/n) · (|T |/n) if i ∈ S, and set yi = xi oth-
erwise. The remaining argument then requires a careful analysis of the contribution of entries of
A outside of S to show that the target vector y indeed satisfiesQT (y) < 0 with good probability
conditioned on T intersecting S.

PSD Testing with `2 Gap

Recall in the `2 gap problem, our task is to distinguish between A being PSD, and A being ε-
far in `2

2 distance from any PSD matrix, namely that
∑
i:λi(A)<0 λ

2
i (A) > εn2. In what follows,

we refer to the quantity
∑
i:λi(A)<0 λ

2
i (A) as the negative mass of A. First observe that in the

special case that we had a “large” negative eigenvalue, say λmin(A) = −
√
εn, then by applying

our testing algorithm for `∞-gap, we could find a non-PSD submatrix with only Õ(1/ε) queries.
However, in general the negative mass of A may be spread out over many smaller eigenvalues.
Thus, we cannot hope to apply our earlier approach for the `∞-gap, which preserved the quadratic
form QT (x) = x>TAT×TxT with respects to a fixed direction x. Instead, our approach will be
to show that if A is ε-far from PSD in `2

2, then the singular values of A must be “far” from
PSD, in some other notion of distance, allowing us to indirectly infer the existence of negative
eigenvalues in submatrices.

PSD matrices are top-heavy, and a reduction to estimating the tail. Our first step is to show
that if A ∈ Rn×n is PSD, then the t-“tail” of A, defined as

∑
i>t σ

2
i (A), cannot be too large.

This can be derived from the following fact: if A is PSD then we can bound the Schatten-1 norm
of A by ‖A‖S1 = ∑

i σi(A) = Tr(A), which is at most n if ‖A‖∞ ≤ 1. This simple fact will
prove highly useful, since whenever we can demonstrate that the Schatten-1 norm of a submatrix
AT×T is larger than |T |, we may immediately conclude the that AT×T is not PSD. In addition, it
implies:

Proposition 9.4.2 (PSD matrices are top-heavy) Fix any n ∈ N, 1 ≤ t ≤ n, and D ∈ Rn×n.

447

Then if D is PSD, we have ∑
i>t

σi(D)2 ≤ 1
t

(Tr(D))2

In particular, if D has bounded entries ‖D‖∞ ≤ 1, we have
∑
i>t σi(D)2 ≤ 1

t
n2.

On the other hand, suppose that A is ε-far from PSD, and let t > 10/ε. Then if no eigenvalue
is smaller than−εn/100, a condition which can be checked with Õ(1/ε2) queries by first running
our `∞-gap tester, then the negative mass must be spread out, and it must be the case that a
substantial fraction of the negative mass of A is contained in the bottom n − t singular values.
Specifically, we must have

∑
i>t σi(A)2 > (ε/2)n2, whereas any PSD matrix D would have to

satisfy
∑
i>t σ

2
i (D) ≤ (ε/10)n2 by the above Proposition. Thus, after first running our `∞ tester,

it will suffices to estimate the tail
∑
i>t σ

2
i (A). Equivelantly, since ‖A‖2

F = ∑
i σ

2
i (A) can be

efficiently estimated, it also suffices to estimate the “head”
∑
i≤t σ

2
i (A) to additive O(εn2).

In order to accomplish this, one could utilize the tools from random matrix concentration,
such as Matrix Bernstein’s inequality [Tro15], which allows one to estimate each σ2

i to error ηn2

by taking a random rectangular O(1/η2) × O(1/η2) sized submatrix. The error in estimating∑
i≤t σ

2
i (A) is then tηn2, thus one needs to set η = O(ε/t), giving a O(1/ε8) tester with two-

sided error. Using a careful bucketing analysis on the error, along with the more powerful Interior
Matrix Chernoff bounds of Gittens and Tropp [GT11], one can improve this to O(t2/ε4) =
O(1/ε6). However, substantial improvements on unconditional estimation of

∑
i≤t σ

2
i (A) seem

unlikely. In fact, we demonstrate that event for t = 1 (spectral norm estimation), tools such as
matrix concentration inequalities which sample submatrices of A, must make Ω(1/ε4) queries
(Lemma 9.5.15), which rules out, for instance, a o(t2/ε4) upper bound for general t. Thus,
instead of unconditional estimation, our main insight is to demonstrate conditions under which∑
i≤t σ

2
i (A) can be efficiently estimated. When these conditions do not hold, we show that it is

because the Schatten-1 norm of our sampled submatrix must be too large, from which we can
deduce the existence of negative eigenvalues in our query.

In the first case, if the t-th singular value is not too large, say σt+1(A) ≤ 10n/t, we show
that the (re-scaled) tail n2

k2
∑
i>t σ

2
i (AS×T) of a random rectangular matrix, where |S| = |T | =

k = O(1/ε2), approximates the tail of A to error O(εn2). Our argument relies on splitting A
into head and tail pieces A = At + A−t, where At is A projected onto the top-t eigenvectors
of A. We demonstrate that the spectral mass of each is preserved after passing to a random row
submatrix, and additionally demonstrate that σmax(A−t) = σt+1(A) does not grow too much
using spectral decay inequalities for random submatrices [RV07]. This forces the spectrum of
(A−t)S×[n] to be well spread out, allowing us to apply interlacing inequalities to demonstrate

448

that after adding (At)S×[n] back in, the resulting tail is still sufficiently large, and then iterate the
argument when sampling columns to obtain AS×T .

On the other hand, if σt+1(A) is too large, then after moving to a random row submatrix the
spectral norm of A−t can concentrate highly in its top eigenvalues, which can then be absorbed by
the top t eigenvalues of At, stealing too much mass from the tail. Instead, note that if σt+1(A) ≥
10n/t, then the Schatten norm of A must be large, namely

∑
i σi(A) > 10n, which cannot occur

if A is PSD. We show that by applying Interior Eigenvalue Matrix Chernoff bounds (mentioned
above), we can preserve this fact, obtaining n

k
σt+1(AS×T) > 10n/t with good probability when

k = Ω(1/ε2). If this is the case, then the Schatten norm of the submatrix will be too large:
‖AS×T‖S1 ≥ t(10k/t) > 10k. To obtain a certificate from this fact, we move to the larger
principal submatrix A(S∪T)×(S∪T), which we show must still have large Schatten norm, from
which we can infer the existence of negative eigenvalues. Similarly, in the earlier case, we show
that the large tail of AS×T implies that the principal submatrix A(S∪T)×(S∪T) also has too large
of a tail, meaning it must not be PSD.

Lower Bounds

As seen above, the distribution of negative mass in the matrix A plays an important role in the
complexity of testing if A is PSD. Specifically, the problem becomes easier the more concen-
trated the negative mass is within a few eigenvalues. So in order to avoid a o(1/ε2) upper bound
from the `∞-testing algorithm, our hard instance must have |λmin(A)| = O(εn) in the ε-far case.
On the other hand, we cannot allow the negative mass to be extremely spread out, otherwise
we would have to add many more positive eigenvalues to avoid violating the trace constraint
|Tr(A)| = |∑i λi(A)| ≤ n implied by the boundedness, creating further spectral differences be-
tween the instances. With this in mind, our hard distribution will have 1/ε negative eigenvalues,
each roughly equal to λi(A) = −εn.

The Hard Instance. Our first insight is to construct a discrete instance, with the property
that the distribution induced by observing a small sample of the “meaningful” entries of A is
identical in both cases. Specifically, we construct two distribtuions: DYES and DNO over n × n
matrices. In both cases, A will be block diagonal, with k disjoint blocks B1, B2, . . . , Bk ⊂ [n],
each of size |Bi| = n/k, for some parameter k; we will later set k = Θ(1/ε), so our target
lower bound is Ω(k2). In DYES, each block ABi×Bi will be PSD, whereas in DNO we will have
λmin(ABi×Bi) = −Θ̃(n/k) ≈ −εn. The partition B1 ∪B2 ∪ · · · ∪Bk = [n] is chosen randomly,
so that for any fixed set of samples, only a small fraction them will be contained inside any block

449

ABi×Bi . The diagonal entries will always be fixed to 1, and all off-diagonal entries are either
{0, 1,−1}. The samples a1, a2, . . . , as ∈ [n] × [n] of any algorithm can then be interpreted as
a graph H (possibly with self-loops), where for each edge ar = (i, j) ∈ E(H), the algorithm
learns the value Ai,j ∈ {0, 1,−1}.

Now consider the algorithm which just samples a t × t principal submatrix T ⊂ [n], so that
H is a t-clique. Now in expectation E [|T ∩Bi|] = t

k
for each i, however, by a balls and bins

argument, as t approaches k we will obtain some blocks i with |T ∩ Bi| = Ω(log k/ log log k).
Thus, to fool this query, we must be able to “fool” cliques of size roughly log k within a blockBi.
On the other hand, an algorithm could find many more entries in a block by lop-sided sampling:
for instance, it could sample k2 entries in a single column of A (H is a k2-star), getting k entries
inside a column of a block ABi×Bi . Thus we must also fool large star queries. It turns out that
the right property to consider is the matching number ν(H) of the query graph H , i.e. the size
of a maximum matching. Notice for a star H , we have ν(H) = 1. We prove (roughly) that if
within each block Bi, one can “fool” every query graph H inside ABi×Bi with matching number
ν(H) < `, one would obtain a lower bound of Ω(k

2(`−1)
`). Thus, it will suffice to fool all query

graphs H within a block Bi with ν(H) ≤ log k.

For a first step towards this, suppose that in DYES, we set each block independently to
ABi×Bi = vv>, where v ∈ {1,−1}|Bi| is a random sign vector, and in DNO, we set ABi×Bi =
−vv> (except we fix the diagonal to be 1 in both cases). Now notice that the distribution of any
individual entry (ABi×Bi)a,b is symmetric, and identical in bothDYES andDNO. Furthermore, it is
not difficult to check that the distribution of a path or star query H inside of ABi×Bi is also iden-
tical in both cases. On the other hand, if H contained a triangle, then this would not be the case,
since in DYES one could never have a negative cycle (x, y, z) where vxvy = vyvz = vzvx = −1,
whereas this could occur in DNO, since we could have that −vxvy = −vyvz = −vzvx = −1.
Thus, roughly, to distinguish between these distributions DYES from DNO, an algorithm must
sample a triangle within one of the blocks ABi×Bi , which one can show requires Ω(k4/3) queries,
yielding a first lower bound.7

Boosting to Ω(k2). Given the above example, we would now like to construct instances which
fool H with larger and larger ν(H). In fact, our next insight is to have an even simpler structure
on DYES and DNO: each of them will be a random permutation of one of two fixed matrices
D1,D2 respectively. We now formalize the “fooling” condition we need. For a matrix B and a
query graph H , let (B)H denote the result of setting all entries of B not in H equal to zero. Then
the matrices D1,D2 must have the property that for any graphH with ν(H) ≤ log k, if σ : [m]→

7Note that ν(H) = 1 for a triangle H , so the Ω(k2(`−1)/`) lower bound when ν(H) < ` is actually loose here.

450

[m] is a random permutation and Pσ ∈ Rm×m is the row permutation matrix corresponding to
σ, then the distribution of (PσD1P>σ)H is identical to the distribution (PσD2P>σ)H . We call this
propertyH-subgraph equivalence. This implies that any algorithm which queries the edges inH
inside of PσD1P>σ or PσD2P>σ will be unable to distinguish between them with any advantage.
To obtain a lower bound, we must also have a gap between λmin(D1) and λmin(D2), so that their
spectrum can be shifted to make one PSD and the other far. Furthermore, neither λmin(D1) or
λmin(D2) can be too negative, otherwise by shifting we would lose boundedness of the entries.

A priori, it is not even clear that such matrices D1,D2 exist, even for fixed values of ν(H),
such as ν(H) = 5. Our main contribution now is to demonstrate their existence for every ν(H).
Our construction is simple, but perhaps surprisingly so. Both D1,D2 will be adjacency matrices;
in the PSD case, we set D1 to be the cycle graph C2m+1 on 2m + 1 = Θ(log k) vertices, and
in the ε-far case we set D2 to be the disjoint union of two cycles Cm+1 ⊕ Cm. Since one of
m and m + 1 is even, while 2m + 1 is odd, we will have that λmin(Cm+1 ⊕ Cm) = −2, but
λmin(C2m+1) > −2.8 To show subgraph equivalence, it suffices to show a slightly more general
version of the following: for any graph H with ν(H) < m/4, the number of subgraphs of C2m+1

isomorphic to H is the same as the number of subgraphs of Cm+1⊕Cm isomorphic to H .9 Note
that if ν(H) < m/4, then H is just a disjoint collection of paths.

Our proof of this fact is by a construction of a bijection from arrangements of H in C2m+1 to
H in Cm+1 ⊕ Cm. While a seemingly simple property, some care must be taken when designing
a bijection. Our mapping involves first “swapping” two paths (whose length depends on H) in
C2m+1, before “splitting” C2m+1 into two cycles of length m and m+ 1. We direct the reader to
Section 9.5.2 for further details.

Amplifying the Gap. The subgraph equivalence between C2m+1 and Cm+1⊕Cm prevents any
algorithm from distinguishing between them with a small number of samples, however the gap in
the minimum eigenvalue shrinks at the rate of Θ(1/m2). Meaning, if we set γ = λmin(C2m+1) =
2−Θ(1/m2), while the matrix γI + C2m+1 is PSD and has constant sized entries, we only have
λmin(γI + Cm+1 ⊕ Cm) = −Θ(1/m2), which is not far enough from PSD. Instead, recall that
we only need m = Ω(log k) to fool all H with ν(H) ≤ log k, but the block size which we must
fill is much larger: ABi×Bi has size |Bi| = n/k. Thus, instead of setting m = Θ(n/k) and filling
all of ABi×Bi with the cycles, we set m = Θ(log k), and we amplify the spectral gap by taking
the tensor product of the small graphs C2m+1 and Cm+1 ⊕ Cm with a large, fixed matrix M, so

8To intuitively see why this is true, note that if m is even and v ∈ {−1, 1}m is the vector that assigns opposite
signs to adjacent vertices of Cm, then we have Cmv = −2v. However, if m is odd, this assignment v is no longer
possible.

9A more general statement is needed since H can also query for edges which do not exist in C2m+1.

451

that (γI + C2m+1) ⊗M has |Bi| rows and columns. We prove that taking the tensor product
with any fixed M preserves the subgraph equivalence properties of the original matrices. From
here, our lower bounds for testing PSD with `2 gap, Schatten norms, Ky fan, and the cost of the
best rank-k approximation, all follow by a proper choice of M. For PSD testing, we can choose
M = 1 to be the all 1’s matrix, and to amplify the gap in Schatten 1 norm, we can choose M
to be a random Rademacher matrix. Since M = 1 is PSD and ‖M‖2 = Ω̃(n/k), the gap is
amplified to the desired −Ω̃(n/k). Finally, we remark that to obtain a lower bound for another
norm, any matrix M which is large in that norm may be suitable, so long as the original sub-
graph equivalent matrices also have a gap in that norm. We pose it as an interesting open problem
to design other pairs of matrices D1,D2 with different spectral gaps which have good sub-graph
equivalence properties.

9.3 PSD Testing with `∞ Gap

In this section, we introduce our algorithm for the PSD testing problem with `∞-gap. As dis-
cussed earlier, we consider a more general version of the `∞ gap than the definition presented
in Problem 1, which allows one to test a notion of positive semi-definitness which applies to
non-symmetric matrices as well. Specifically, we define the PSD case as when x>Ax ≥ 0 for
all x ∈ Rn, and the far case as when x>Ax < −εn for a unit vector x. We note that if A is
symmetric, this definition is equivalent to Problem 1. In fact, as we will see shortly, one can
always reduce the non-symmetric case to the symmetric case, so this distinction will not matter
algorithmically. Formally, we solve the following problem:

Definition 9.3.1 (General PSD Testing with `∞-Gap.). Fix, ε ∈ (0, 1] and let A ∈ Rn×n be any

matrix satisfying ‖A‖∞ ≤ 1. The goal is to distinguish between the following two cases:

• YES Instance: A satisfies x>Ax ≥ 0, for all x ∈ Rn.

• NO Instance: There exists a unit vector x ∈ Rn such that x>Ax < −εn.

with probability at least 2/3.

Reducing to the symmetric case In the case where A is symmetric, as in Problem 1, the
above gap instance can be restated in terms of the minimum eigenvalue of A. Specifically, we
are promised that either λmin(A) ≥ 0 or λmin(A) ≤ −εn. However, we now observe that one
can reduce to the symmetric case with only a factor of 2 loss in the query complexity, by simply

452

querying the symmetrization (A + A>)/2. First note, that for any x ∈ Rn and any matrix
A ∈ Rn×n, we have x>Ax = x>A>x, thus for any x we have x>Ax = x>A+A>

2 x. Thus
x>Ax ≥ 0 for all x if and only if x>A+A>

2 x ≥ 0 for all x, which occurs if and only if the
matrix A+A>

2 is PSD. Similarlly, we have that x>Ax ≤ −εn for some unit vector x if and only if
x>A+A>

2 x ≤ −εn for some unit vector x, which occurs if and only if λmin(A+A>
2) ≤ −εn. Note

also that the matrix A+A>
2 has bounded entries ‖A+A>

2 ‖∞ ≤ 1 if ‖A‖∞ ≤ 1. Moreover, query
access to A+A>

2 can be simulated via query access to A+A>
2 with a loss of at most a factor of 2

in the query complexity, by symmetrizing the queries. In fact, our algorithms will not even incur
this factor of 2 loss, since all queries our algorithms make will belong to principal submatrices
of A. Thus, in what follows, we can restrict ourselves to the original formulation as specified in
Problem 1, and assume our input A is symmetric.

The goal of this section is now to prove the following theorem, which demonstrate the ex-
istence of a Õ(1/ε2) query one-sided error tester for the above problem. In Section 9.5, we
demonstrate that this complexity is optimal (up to log(1/ε) factors), even for testers with two
sided error (Theorem 120).

Theorem 113 (Query Optimal One-Sided Tester for `∞ Gap (see Theorem 116)). There is an

algorithm which, given A with ‖A‖∞ ≤ 1 such that either x>Ax ≥ 0 for all x (YES case), or

such that x>Ax ≤ −εn for some x ∈ Rn with ‖x‖2 ≤ 1 (NO case), distinguishes the two cases

with probability at least 3/4, while making at most Õ(1
ε2

) queries to the entries of A, and runs

in time Õ(1/εω), where ω < 2.373 is the exponent of matrix multiplication. Moreover, in the first

case when x>Ax ≥ 0 for all x, is PSD, the algorithm always correctly outputs YES.

Algorithmic Setup First recall that if A is PSD, then then every principal submatrix AT×T of
A for T ⊆ [n] is also PSD. Thus, it will suffice to query a collection of principal submatrices
AT1×T1 ,AT2×T2 , . . . ,ATt×Tt of A, and return Not PSD if any one of them fails to be PSD. Such
a algorithm then naturally has one-sided error, since if A is PSD it will always return PSD. Thus,
in the remainder of the section, it suffices to consider only the NO case, and demonstrate that, if
A satisfies x>Ax ≤ −εn for some unit vector x ∈ Rn, then with good probability at least one
of the sampled principal submatrices will fail to be PSD.

Moreover, as shown above, it suffices to consider the case where A is symmetric. In this case,
we will fix x to be the eigenvector associated with the smallest eigenvalue of A. Thus, in what
follows, we can fix x so that minz∈Rn:‖z‖2=1 z

>Az = x>Ax = λmin(A) = −εn. Notice here we
define ε to satisfy the equality λmin(A) = −εn, however our algorithm need only know a lower
bound ε0 < ε on ε. The reason for this is that the input parameter ε0 will only effect the sizes

453

of the random submatrices being sampled (smaller ε0 increases the size). Thus, an algorithm run
with parameter ε0 can be simulated by first running the algorithm with parameter ε > ε0, and
then randomly adding rows and columns to the sampled submatrices from the correct marginal
distribution. Thus, there is a coupling such that the submatrices chosen by an algorithm with any
input ε0 < ε will always contain the submatrices sampled by an algorithm given the input exactly
ε, so if the latter algorithm sampled a non-PSD submatrix, so would the former. Thus, for the
sake of analysis, we can assume that the value ε is known.

Throughout the following section, we will assume 1/ε < c · n for some sufficiently small
constant c. Notice that if this was not the case, we would have 1/ε2 = Ω(n2), and we would be
permitted to read the entire matrix A, as this is within our target budget of Õ(1/ε2).

9.3.1 Warm-up: a O(1/ε3) algorithm

We first describe a O(1/ε3) query algorithm for the problem of PSD testing with `∞-gap. The
general approach and results of this algorithm will be needed for the more involved Õ(1/ε2)
query algorithm which we shall develop in the sequel. As noted above, it suffices to analyze the
NO case, where we have x>Ax = λmin(A) = −εn for a unit vector x ∈ Rn. Our goal will be
to analyze the random variable Z = x>TAT×TxT , where T ⊂ [n] is a random subset, where each
i ∈ [n] is selected independently with some probability δ. Notice that if δi ∈ {0, 1} is an indicator
variable indicating that we sample i ∈ T , then we have Z = x>TAT×TxT = ∑

i,j xiAi,jxjδiδj .

Now, algorithmically, we do not know the vector x. However, if we can demonstrate con-
centration of Z, and show that Z < 0 for our sampled set S, then we can immediately conclude
that AT×T is not PSD, a fact which can be tested. Thus, the analysis will proceed by pretending
that we did know x, and analyzing the concentration of x>TAT×TxT . In the following section,
however, we will ultimately analyze the concentration of this random variable with respects a
slightly different vector than x.

We first remark that we can assume, up to a loss in a constant factor in the value of ε, that the
diagonal of A is equal to the identity.

Proposition 9.3.2. We can assume Ai,i = 1, for all i ∈ [n]. Specifically, by modifying A so that

Ai,i = 1, for all i ∈ [n], the completeness (PSD) case is preserved and the soundness (not PSD)

case is preserved up to a factor of 1/2 in the parameter ε.

Proof. Every time we observe an entry Ai,i we set it equal to 1. In this new matrix, if A was

454

PSD to begin with, then A will still be PSD, since this modification corresponds to adding a
non-negative diagonal matrix to A. If xAx ≤ −εn originally for some x ∈ Rn, then x>Ax ≤
−εn + 1 after this change, since the diagonal contributes at most

∑
i Ai,ix

2
i ≤ ‖x‖2

2 ≤ 1 to
the overall quadratic form. Note this additive term of 1 is at most (εn)/2 since we can assume
ε = Ω(1/n).

We now notice that if x is the eigenvector associated with a a large enough eigenvalue, the `2

mass of x cannot be too concentrated.

Proposition 9.3.3. Let A ∈ Rn×n be a symmetric matrix with λmin(A) = −εn, and let x ∈ Rn

be the (unit) eigenvector associated with λmin(A). Then we have that ‖x‖∞ ≤ 1
ε
√
n

.

Proof. By Cauchy-Schwartz, for any i ∈ [n]:

|λmin| · |xi| = |〈Ai,∗, x〉| ≤ ‖Ai,∗‖2 ≤
√
n

from which the proposition follows using λmin(A) = −εn.

Recall that our goal is to analyze the random variable Z = x>TAT×TxT = ∑
i,j xiAi,jxjδiδj .

To proceed, we bound the moments of Z. Our bound on these moments can be tightened as a
function of the row and column contributions of the target vector x, which we now define.

Definition 9.3.4. Fix any y ∈ Rn. Then for any i ∈ [n], define the total row and column

contributions of i asRi(y) = ∑
j∈[n]\i yiAi,jyj and Ci(y) = ∑

j∈[n]\i yjAj,iyi respectively.

Notice from the above definition, we have
∑
iRi(y) + Ci(y) = 2

(
y>Ay −∑i Ai,iy

2
i

)
.

Fact 9.3.5. Let x ∈ Rn be the eigenvector associated with λmin(A). Then we have Ri(x) +
Ci(x) ≤ 0 for all i ∈ [n].

Proof. Suppose there was an i with Ri(x) + Ci(x) > 0. Then setting z = x[n]\i we have
z>Az = 〈x,Ax〉 − (Ri(x) + Ci(x)) − Ai,i(xi)2. Recall from Proposition 9.3.2 that we can
assume Ai,i = 1 for all i, thus it follows that z>Az < 〈x,Ax〉, which contradicts the optimality
of x.

We now bound the expectation of the random quadratic form.

455

Proposition 9.3.6 (Expectation Bound). Let A ∈ Rn×n be a matrix with ‖A‖∞ ≤ 1, and let

y ∈ Rn be any vector with ‖y‖2 ≤ 1 and y>Ay < −εn. Let Z = ∑
i,j yiAi,jyjδiδj , where

δ1, . . . , δn ∼ Bernoulli(k
n
). Then if k ≥ 8/ε, we have E [Z] ≤ − εk2

4n .

Proof. Let ci,j = Ai,jyiyj . First note, for any i ∈ [n], the term ci,j is included in T with
probability k/n if i = j, and with probability k2/n2 if i 6= j. So

E [Z] =
∑
i 6=j

k2

n2 ci,j +
∑
i∈[n]

k

n
ci,i

= k2

n2

〈y,Ay〉 − ∑
i∈[n]

Ai,iy
2
i

+ k

n

∑
i∈[n]

Ai,iy
2
i

≤ −εk
2

2n +
(
k

n
+ k2

n2

) ∑
i∈[n]

y2
i

≤ −εk
2

2n + 2k
n
≤ −εk

2

4n

(9.2)

Where in the last inequality, we assume k ≥ 8/ε.

Next, we bound the variance of Z. We defer the proof of the following Lemma to Section 9.3.2.

Lemma 9.3.7 (Variance Bound). Let δ1, . . . , δn ∼ Bernoulli(k
n
). Let y ∈ Rn be any vector such

that ‖y‖2 ≤ 1, ‖y‖∞ ≤ 1
ε
√
n

, and y>Ay = −εn, where A ∈ Rn×n satisfies ‖A‖∞ ≤ 1. Further

suppose thatRi(y) + Ci(y) ≤ 0 for each i ∈ [n]. Then, assuming k ≥ 6/ε, we have

Var

∑
i,j

yiAi,jyjδiδj

 ≤ O

(
k3

n2

)

Moreover, if the tighter bound ‖y‖∞ ≤ α
ε
√
n

holds for some α ≤ 1, we have

Var

∑
i,j

yiAi,jyjδiδj

 ≤ O

(
k2

n2 + αk3

n2

)

We note that the variance of the random quadratic form can be improved if we have tighter
bounds on certain properties of the target vector y. We demonstrate this fact in the following
Corollary, which we will use in Section 9.3.3. Note that the assumptions of Corollary 9.3.8
differ in several minor ways from those of Lemma 9.3.7. For instance, we do not require k ≥ 6/ε
(we note that this assumption was required only to simply the expression in Lemma 9.3.7). Also

456

notice that we do not bound the diagonal terms in Corollary 9.3.8. We defer the proof of Corollary
9.3.8 to Section 9.3.2.

Corollary 9.3.8 (Tighter Variance Bound). Let δ1, . . . , δn ∼ Bernoulli(k
n
). Let A ∈ Rn×n with

‖A‖∞ ≤ 1 be any matrix and y a vector such that |y>Ay| ≤ c1εn for some value c1 > 0, and

such that ‖y‖∞ ≤ α
ε
√
n

for some α > 0. Let Z ∈ Rn be defined by Zi = Ri(y)+Ci(y) for i ∈ [n],
and suppose we have ‖Z‖2

2 ≤ c2εn. Then we have

Var

∑
i 6=j

yiAi,jyjδiδj

 ≤ O

(
k2

n2 + c2
1k

4ε2

n2 + (c1 + c2)εk3

n2 + α2k3

n2

)

We now observe that the variance computations from Lemma 9.3.7 immediately gives rise to
a O(1/ε3) algorithm.

Theorem 114. There is a non-adaptive sampling algorithm which queries O(ε−3) entries of A,

and distinguishes the case that A is PSD from the case that λmin(A) < −εn with probability

2/3.

Proof. Let x ∈ Rn be the eigenvector associated with λmin(A) = −εn (recall that we can assume
equality), and let Z1, . . . , Zd be independent repetitions of the above process, with k = 10/ε and
d = 3840/ε. Let Z = 1

d

∑d
i=1 Zi. Then Var (Z) ≤ 6

d
k3

n2 by Lemma 9.3.7, where we used the
bounds on ‖x‖∞ from Proposition 9.3.3 and the property that Ri(x) + Ci(x) ≤ 0 for all i from
Fact 9.3.5 to satisfies the assumptions of Lemma 9.3.7. By Chebysev’s inequality:

Pr
[
Z ≥ −εk

2

4n + εk2

8n

]
≤
(

64n2

ε2k4

)(
6k3

dn2

)

≤ 1
10εk

≤ 1
100

(9.3)

It follows that with probability 99/100, the average of the Zi’s will be negative. Thus at least one
of the Zi’s must be negative, thus the submatrix corresponding to this Zi will not be PSD. The
total query complexity is O(k2d) = O(ε−3).

457

9.3.2 Variance Bounds

In this section, we provide the proofs of the variance bounds in Lemma 9.3.7 and Corollary 9.3.8.
For convenience, we restate the Lemma and Corollary here before the proofs.

Lemma 9.3.7 Let δ1, . . . , δn ∼ Bernoulli(k
n
). Let y ∈ Rn be any vector such that ‖y‖2 ≤

1, ‖y‖∞ ≤ 1
ε
√
n

, and y>Ay = −εn, where A ∈ Rn×n satisfies ‖A‖∞ ≤ 1. Further suppose that

Ri(y) + Ci(y) ≤ 0 for each i ∈ [n]. Then, assuming k ≥ 6/ε, we have

Var

∑
i,j

yiAi,jyjδiδj

 ≤ O

(
k3

n2

)

Moreover, if the tighter bound ‖y‖∞ ≤ α
ε
√
n

holds for some α ≤ 1, we have

Var

∑
i,j

yiAi,jyjδiδj

 ≤ O

(
k2

n2 + αk3

n2

)

Proof. Let ci,j = Ai,jyiyj . We have

Var

∑
i,j

yiAi,jyjδiδj

 ≤ k

n

∑
i

c2
i,i + k2

n2

∑
i 6=j

c2
i,j + k2

n2

∑
i 6=j

ci,jcj,i + k2

n2

∑
i 6=j

ci,icj,j + k2

n2

∑
i 6=j

ci,ici,j

+k2

n2

∑
i 6=j

ci,icj,i + k3

n3

∑
i 6=j 6=u

ci,jcu,j + k3

n3

∑
j 6=i 6=u

ci,jci,u + k3

n3

∑
i 6=j 6=u

ci,jcj,u + k3

n3

∑
j 6=i 6=u

ci,jcu,i

+ 2k3

n3

∑
i 6=j 6=u

ci,icj,u + k4

n4

∑
i 6=j 6=v 6=u

ci,jcu,v −

k2

n2

∑
i 6=j

yiAi,jyj −
k

n

∑
i

Ai,iy
2
i

2

(9.4)

We first consider the last term k4

n4
∑
i 6=j 6=v 6=u ci,jcu,v = ∑

i 6=j yiAi,jyj
∑
u6=v 6=i 6=j yuAu,vyv. Here

i 6= j 6= v 6= u means all 4 indices are distinct. Note that this term is canceled by a subset of
the terms within

(
k2

n2
∑
i 6=j yiAi,jyj − k

n

∑
i Ai,iy

2
i

)2
. Similarly, the term k2

n2
∑
i 6=j ci,icj,j cancels.

Moreover, after expanding
(
k2

n2
∑
i 6=j yiAi,jyj − k

n

∑
i Ai,iy

2
i

)2
, every remaining term which does

not cancel with another term exactly is equal to another term in the variance above, but with
an additional one (or two) factors of k

n
attached. Thus, if we can bound the remaining terms in

Equation 9.4 by some value B, then an overall variance bound of 2 ·B will follow.

458

We now consider T =
(∑

j 6=i 6=u ci,jci,u +∑
i 6=j 6=u ci,jcu,j +∑

j 6=i 6=u ci,jcu,i +∑
i 6=j 6=u ci,jcj,u

)
.

We have ∑
i 6=j 6=u

ci,jci,u =
∑
i

∑
j 6=i

yiAi,jyj
∑
u6=i 6=j

yiAi,uyu

∑
i 6=j 6=u

ci,jcu,j =
∑
j

∑
i 6=j

yiAi,jyj
∑
u6=i 6=j

yuAu,jyj

∑
j 6=i 6=u

ci,jcu,i =
∑
i

∑
j 6=i

yiAi,jyj
∑
u6=i 6=j

yuAu,iyi

∑
i 6=j 6=u

ci,jcj,u =
∑
j

∑
i 6=j

yiAi,jyj
∑
u6=i 6=j

yjAj,uyu

Now for simplicity, we write Ri = Ri(y) and Ci = Ci(y) for i ∈ [n]. Then by assumption,
we have Ri + Ci ≤ 0 for each i, thus |∑i(Ri + Ci)| = ∑

i |(Ri + Ci)|. Also note that we have
|∑i(Ri + Ci)| = |2y>Ay − 2∑i Ai,iy

2
i | ≤ 4εn. Now observe

∣∣∣∣∣∣
∑

i

∑
j 6=i

yiAi,jyj
∑
u6=i 6=j

yiAi,uyu

−∑
i

R2
i

∣∣∣∣∣∣ =
∑
i

∑
u∈[n]\i

y2
iA2

i,uy
2
u ≤

∑
i

y2
i ≤ 1

And similarly∣∣∣∣∣∣
∑

j

∑
i 6=j

yiAi,jyj
∑
u6=i 6=j

yuAu,jyj

−∑
j

C2
i

∣∣∣∣∣∣ =
∑
j

∑
u∈[n]\j

y2
uA2

u,jy
2
j ≤

∑
j

y2
j ≤ 1

∣∣∣∣∣∣
∑

i

∑
j 6=i

yiAi,jyj
∑
u6=i 6=j

yuAu,iyi

−∑
i

RiCi

∣∣∣∣∣∣ =
∑
i

∑
u∈[n]\i

y2
iAi,uAu,iy

2
u ≤

∑
i

y2
i ≤ 1

∣∣∣∣∣∣
∑

j

∑
i 6=j

yiAi,jyj
∑
u6=i 6=j

yjAj,uyu

−∑
j

RjCj

∣∣∣∣∣∣ =
∑
j

∑
u∈[n]\j

y2
uAu,jAj,uy

2
j ≤

∑
j

y2
j ≤ 1

Taking these four equations together, we obtain |T −∑i(Ri + Ci)2| ≤ 4, so it will suffice to
upper bound the value

∑
i(Ri + Ci)2 instead. First note that since |yi| ≤ 1

ε
√
n

for all i, so for any
i ∈ [n] we have

|(Ri + Ci)| ≤ |
∑
j 6=i

yiAi,jyj|+ |
∑
j 6=i

yjAj,iyi| ≤
1

ε
√
n

(
∑
j

2yj) ≤
2

ε
√
n
‖y‖1 ≤

2
ε

Combining this bound with the fact that
∑
i |(Ri+Ci)| ≤ 4εn from earlier, it follows that the sum∑

i(Ri + Ci)2 is maximized by setting 2ε2n of the terms (Ri + Ci) equal to the largest possible
value of (2/ε), so that

∑
i(Ri + Ci)2 ≤ 2ε2n(2/ε)2 = O(n). This yields an upper bound of

459

k3

n3T = O(k3

n2). Note, that in general, given the bound ‖y‖∞ ≤ α
ε
√
n

for some value α ≤ 1,
then each term |(Ri + Ci)| ≤ 2α

ε
. On the other hand,

∑
i |(Ri + Ci)| ≤ 4εn. Thus, once again,∑

i |(Ri + Ci)|2 is maximized by setting Θ(ε2n/α) inner terms equal to Θ((α
ε
)2), giving T ≤ αn

for general α < 1. Thus, for general α ≤ 1, we have k3

n3T = O(αk3

n2).

Next, we bound k2

n2
∑
i 6=j ci,ici,j + k2

n2
∑
i 6=j ci,icj,i by k2

n2
∑
i y

2
i (Ri + Ci). As shown above,

|Ri + Ci| ≤ 2yi
√
n, thus altogether we have

k2

n2

∑
i 6=j

ci,ici,j +
∑
i 6=j

ci,icj,i

 ≤ k2

n2

∑
i

y3
i

√
n (9.5)

Using that ‖y‖∞ ≤ α
ε
√
n

for α ≤ 1, and the fact that ‖y‖2
2 ≤ 1, it follows that ‖y‖3

3 is maximized
by having nε2

α2 terms equal to ‖y‖∞ ≤ α
ε
√
n

, which gives an upper bound of ‖y‖3
3 ≤ α

ε
√
n

. Thus,
we can bound the right hand side of Equation 9.5 by k2α

n2ε
, which is O(k3/n2) when α = 1 using

that k = Ω(1/ε).

Now, we bound k3

n3
∑
i 6=j 6=u ci,icj,u by

k3

n3

∑
i 6=j 6=u

ci,icj,u ≤
k3

n3

∑
i

y2
iAi,i

∑
j 6=u6=i

yjAj,uyu

≤ k3

n3

∑
i

y2
iAi,i

∑
j 6=u6=i

yjAj,uyu

≤ k3

n3

∑
i

y2
iAi,i (εn+O(1))

≤ εk3

n2

= O(k
2

n2)

(9.6)

Also observe that
∑
i,j c

2
i,j ≤

∑
i,j y

2
i y

2
j = ‖y|42 ≤ 1, so

∑
i 6=j c

2
i,j ≤

∑
i,j c

2
i,j ≤ 1, and

also
∑
i 6=j ci,jcj,i ≤

∑
i,j y

2
i y

2
j ≤ 1, which bounds their corresponding terms in the variance by

O(k2/n2). Finally, we must bound the last term k
n

∑
i c

2
i,i = k

n

∑
i y

4
iA2

i,i ≤ k
n

∑
i y

4
i . Note that

|yi| ≤ 1/(ε
√
n) for each i, and ‖y‖2 ≤ 1. Thus

∑
i y

4
i is maximized when one has ε2n terms

equal to 1/(ε
√
n) , and the rest set to 0. So

∑
i y

4
i ≤ ε2n(1

ε
√
n
)4 ≤ 1

ε2n
. In general, if ‖y‖∞ ≤ α

ε
√
n

,
we have

∑
i y

4
i ≤ ε2n

α2 (α
ε
√
n
)4 ≤ α2

ε2n
. Thus we can bound k

n

∑
i c

2
i,i by O(k3α2

n2)

Altogether, this gives

460

Var

∑
i,j

yiAi,jyjδiδj

 ≤ O(k
2

n2 + αk3

n2 + αk2

n2ε
+ α2k3

n2)

= O(k
2

n2 + αk3

n2 + α2k3

n2)

(9.7)

which is O(k3/n2) in general (where α ≤ 1), where we assume k ≥ 6/ε throughout.

Corollary 9.3.8 Let δi ∈ {0, 1} be an indicator random variable with E [δi] = k/n. Let

A ∈ Rn×n with ‖A‖∞ ≤ 1 be any matrix and y a vector such that |y>Ay| ≤ c1εn for some value

c1 > 0, and such that ‖y‖∞ ≤ α
ε
√
n

for some α > 0. Let Z ∈ Rn be defined by Zi = Ri(y)+Ci(y)
for i ∈ [n], and suppose we have ‖Z‖2

2 ≤ c2εn. Then we have

Var

∑
i 6=j

yiAi,jyjδiδj

 ≤ O

(
k2

n2 + c2
1k

4ε2

n2 + (c1 + c2)εk3

n2 + α2k3

n2

)

Proof. We proceed as in Lemma 9.3.7, except that we may remove the terms with ci,j for i = j,
yielding

Var

∑
i 6=j

yiAi,jyjδiδj

 ≤ k2

n2

∑
i 6=j

c2
i,j + k2

n2

∑
i 6=j

ci,jcj,i + k3

n3

∑
i 6=j 6=u

ci,jcu,j

+ k3

n3

∑
j 6=i 6=u

ci,jci,u + k3

n3

∑
i 6=j 6=u

ci,jcj,u + k3

n3

∑
j 6=i 6=u

ci,jcu,i

+ k3

n3

∑
i 6=j 6=u

ci,icj,u + k4

n4

∑
i 6=j 6=v 6=u

ci,jcu,v −

k2

n2

∑
i 6=j

yiAi,jyj

2

(9.8)

As in Lemma 9.3.7, we can cancel the term k4

n4
∑
i 6=j 6=v 6=u ci,jcu,v with a subterm of−

(
k2

n2
∑
i 6=j yiAi,jyj

)2
,

and bound the remaining contribution of −
(
k2

n2
∑
i 6=j yiAi,jyj

)2
by individually bounding the

other terms in the sum.

First, we can similarly bound the last term by c2
1ε

2k4/n2 as needed. Now when bounding

T =
 ∑
j 6=i 6=u

ci,jci,u +
∑
i 6=j 6=u

ci,jcu,j +
∑
j 6=i 6=u

ci,jcu,i +
∑
i 6=j 6=u

ci,jcj,u

461

we first observe that in the proof of Lemma 9.3.7, we only needed a bound on ‖Z‖2
2 to give the

bound on T . So by assumption, ‖Z‖2
2 ≤ c2εn, which gives a total bound of c2k3ε

n2 on k3

n3T .

Also, we bound we bound k3

n3
∑
i 6=j 6=u ci,icj,u by

k3

n3

∑
i 6=j 6=u

ci,icj,u ≤
k3

n3

∑
i

y2
iAi,i

∑
j 6=u6=i

yjAj,uyu

≤ k3

n3

∑
i

y2
iAi,i

∑
j 6=u6=i

yjAj,uyu

≤ k3

n3

∑
i

y2
iAi,i (c1εn+O(1))

≤ εc1k
3

n2

(9.9)

which is within our desired upper bound. Finally observe that
∑
i,j c

2
i,j ≤

∑
i,j y

2
i y

2
j = ‖y|42 ≤

1, so
∑
i 6=j c

2
i,j ≤

∑
i,j c

2
i,j ≤ 1, and also

∑
i 6=j ci,jcj,i ≤

∑
i,j y

2
i y

2
j ≤ 1, which bounds their

corresponding terms in the variance by O(k2/n2), which completes the proof.

9.3.3 Improving the complexity to Õ(1/ε2)

We now demonstrate how to obtain an improved sample complexity of Õ(1/ε2) using different
scales of sub-sampling, as well as a careful “eigenvector switching” argument. As before, we
can assume that A is symmetric, and x = arg minv∈Rn,‖v‖2≤1 v

>Av is the smallest eigenvector
of A, so that that 〈x,Ax〉 = λmin(A) = −εn. Also recall that our algorithms will not need to
explicitly know the value ε = minv∈Rn,‖v‖2≤1 v

>Av/n, only a lower bound on it, since when
run on smaller ε our algorithm only samplers larger submatrices. By Proposition 9.3.3, we have
‖x‖∞ ≤ 1

ε
√
n

. We now partition the coordinates of x into level-sets, such that all the coordinates
x2
i within a level set have magnitudes that are close to each other.

Definition 9.3.9. Given (A, x), where x is as defined above, define the base level set S as S =
{i ∈ [n] : |xi|2 ≤ 100

εn
}, and let Ta = {i ∈ [n] : 100·2a−1

εn
≤ |xi|2 ≤ 100·2a

εn
} for an integer a ≥ 1.

We now break the analysis into two possible cases. In the first case, the coordinates in one of
the sets Ta contributed a substantial fraction of the “negativeness” of the quadratic form x>TAx,

462

for some a sufficiently large. Since the sets Ta can become smaller as a increases while still
contributing a large fraction of the negative mass, this case can be understood as the negativeness
of x>Ax being highly concentrated in a small fraction of the matrix, which we must then find to
determine that A is not PSD. In the second case, no such contributing Ta exists, and the negative
mass is spread out more evenly across the terms in the quadratic form x>Ax. If this is the case,
we will show that our variance bounds from the prior section can be made to obtain a proof that
a single, large sampled principal submatrix T ⊂ [n] will satisfies x>TAT×TxT will be negative
with non-negigible probability.

Formally, we define the two cases as follows:

Case 1: We have xSAxTa + xTaAxS ≤ − εn
10 log(1/ε) for some a such that 2a ≥ 106ζ3, for some

ζ = Θ(log2(1/ε)) with a large enough constant.

Case 2: The above does not hold; namely, we have xSAxTa + xTaAxS > − εn
10 log(1/ε) for every

2a ≥ 106ζ3.

Case 1: Varied Subsampling and Eigenvector Switching

In this section, we analyze the Case 1, which specifies that xSAxTa + xTaAxS ≤ − εn
10 log(1/ε)

for some Ta such that 2a ≥ 106ζ3, where ζ = Θ(log2(1/ε)) is chosen with a sufficiently large
constant. Recall here that x ∈ Rn is the (unit) eigenvector associated with λmin(A) = −εn. We
now fix this value a associated with Ta. In order to find a principal submatrix AT×T that is not
PSD for some sampled subset T ⊂ [n], we will need to show that T ∩ Ta intersects in at least
one coordinate.

As discussed in Section 9.2, we will need to switch our analysis from x to a different vector
y, in order to have y>T AT×TyT < 0 with non-negligible probability conditioned on |T ∩ Ta| ≥ 1.
To construct the appropriate vector y, we will first proceed by proving several propositions which
bound how the quadratic form x>Ax changes as we modify or remove some of the coordinates
of x. For the following propositions, notice that by definition of Tb, using the fact that ‖x‖2

2 ≤ 1,
we have that |Tb| ≤ εn

1002b−1 for any b ≥ 1, which in particular holds for b = a.

Proposition 9.3.10. Let A ∈ Rn×n satisfy ‖A‖∞ ≤ 1. Let S, T ⊂ [n], and let v ∈ Rn be any

vector such that ‖v‖2 ≤ 1. Then |v>S AvT | ≤
√
|S| · |T |

Proof. We have |v>S AvT | = |∑i∈S
∑
j∈T viAi,jvj| ≤

∑
i∈S |vi|

∑
j∈T |vj| ≤

∑
i∈S |vi|‖vT‖1 ≤

463

‖vS‖1‖vT‖1 ≤
√
|S||T | as needed.

Proposition 9.3.11. Let A ∈ Rn×m satisfy ‖A‖∞ ≤ 1 for any n,m. and let v ∈ Rn, u ∈ Rm

satisfy ‖u‖2
2, ‖v‖2

2 ≤ 1. Then
m∑
j=1

(
n∑
i=1

viAi,juj

)2

≤ n

Proof. We have (∑n
i=1 viAi,juj)2 ≤ u2

j (∑n
i=1 |vi|)

2 ≤ u2
j‖v‖2

1, so the sum can be bounded by∑m
j=1 u

2
j‖v‖2

1 = ‖v‖2
1‖u‖2

2 ≤ ‖v‖2
1 ≤ n as needed.

Proposition 9.3.12. Let x be as defined above. Then we have |〈xS,AxS〉| ≤ 10εn.

Proof. Suppose 〈xS,AxS〉 = Cεn for a value C with |C| > 10. Note that |〈x[n]\S,Ax[n]\S〉| ≤
εn
100 by Proposition 9.3.10, using that |[n]\S| = |∪b≥1Tb| ≤ εn

100 (here we use the fact that at most
εn
100 coordinates of a unit vector can have squared value larger than 100

εn
). If C > 0, then we must

have that (〈xS,Ax[n]\S〉+〈x[n]\S,AxS〉) ≤ −(C+99/100)εn for us to have that 〈x,Ax〉 = −εn
exactly. Thus ifC is positive and larger than 10, it would follow that by setting v = xS/2+x[n]\S ,
we would obtain a vector v with ‖v‖2 ≤ 1 such that v has smaller quadratic form with A than
x, namely with v>Av ≤ −(C + 99/100)εn/2 + εCn/4 + nε/100 < −εn using that C > 10,
which contradicts the optimality of x as the eigenvector for λmin(A). Furthermore, if C < −10,
then x>SAxS < −10ε, which again contradicts the optimality of x.

Now recall that the total row and column contributions of i are defined asRi(x) = ∑
j∈[n]\i xiAi,jxj

and Ci(x) = ∑
j∈[n]\i xjAj,ixi respectively. In the remainder of the section, we simply write

Ri = Ri(x) and Ci = Ci(x). We now define the contribution of i within the set S ⊂ [n].

Definition 9.3.13. Let S ⊂ [n] be as defined above. Then for any i ∈ [n], define the row

and column contributions of i within S as RS
i = ∑

j∈S\i xiAi,jxj and CSi = ∑
j∈S\i xjAj,ixi

respectively.

Observe from the above definition, we have
∑
i∈Ta(RS

i + CSi) = (xSAxTa + xTaAxS) ≤
− εn

10 log(1/ε) , where the inequality holds by definition of Case 1.

Proposition 9.3.14. We have
∑
i∈S(RS

i + CSi)2 ≤ 1601εn.

464

Proof. Let zS, z, z− ∈ R|S| be vectors defined for i ∈ S as zSi = RS
i + CSi , zi = Ri + Ci,

and z− = z − zS . Notice that our goal is to bound ‖zS‖2
2, which by triangle inequality satisfies

‖zS‖2
2 ≤ 2 (‖z‖2

2 + ‖z−‖2
2). First note that

‖z−‖2
2 =

∑
i∈S

∑
j /∈S

xiAi,jxj +
∑
j /∈S

xjAj,ixi

2

≤ 2
∑
i∈S

∑
j /∈S

xiAi,jxj

2

+ 2
∑
i∈S

∑
j /∈S

xjAj,ixi

2 (9.10)

Using that [n] \ S < εn/100, we have by Proposition 9.3.11 that
∑
i∈S

(∑
j /∈S xiAi,jxj

)2
≤

εn/100, so ‖z−‖2
2 ≤ εn/25.

We now bound ‖z‖1 = ∑
i∈S |Ri + Ci|. By Fact 9.3.5, we have Ri + Ci ≤ 0 for all i ∈ [n],

which means that ‖z‖1 ≤
∑
i∈[n] |Ri + Ci| = |2〈x,Ax〉 − 2∑i∈[n] Ai,i(xi)2| ≤ 2εn. Next, we

bound ‖z‖∞. Notice that |Ri + Ci| = 2|xi〈Ai,∗, x〉 − Ai,i(xi)2| ≤ 2εn(xi)2 + 2Ai,i(xi)2 <

4εn(xi)2, using that Ax = −εnx, since x is an eigenvector of A. Since for i ∈ S, it also follows
that (xi)2 ≤ 100

εn
, thus ‖z‖∞ ≤ 400 as needed. It follows that ‖z‖2

2 is maximized by having
2εn/400 coordinates equal to 400, giving ‖z‖2

2 ≤ 2εn/400(400)2 = 800εn. It follows then that
‖zS‖2

2 ≤ 1601εn as needed.

Eigenvector Setup: We now define the “target” direction y ∈ Rn which we will use in our
analysis for Case 1. First, we will need the following definitions. Let

Dp
a =

{
t ∈ Ta : − 2p+12a

log(1/ε) ≤ R
S
t + CSt ≤ −

2p2a
log(1/ε)

}

Define the fill β of Ta as the value such that β = 2−p where p ≥ 1 is the smallest value of p
such that −|Dp

a|(2p2a
log(1/ε)) ≤ −

εn
40 log2(1/ε) . Note that at least one such p for 1 ≤ p ≤ log(1/ε) must

exist. let T ∗a = Dp
a where β = 2−p. Observe that xSAxT ∗a + xT ∗aAxS ≤ − εn

40 log2(1/ε) . Finally, we
define our target “eigenvector” y as

y = xS + ζβ
(
2−a · xTa

)
(9.11)

where ζ = Θ(log2(1/ε)) is as above, and we also define our target submatrix subsampling size
as λ = 2000β2ζ2 log(1/ε)

2aε . First, we prove that for a random submatrix AT×T , where i ∈ [n] is
sampled and added to T with probability λ/n, we have that y>AT×Ty is negative in expectation
conditioned on |T ∩ T ∗a | ≥ 1.

465

Lemma 9.3.15. Suppose we are in case 1 with Ta contributing such that 2a ≥ 106ζ3. Let δi be

an indicator variable that we sample coordinate i, with E [δi] = λ
n

and λ = 2000β2ζ2 log(1/ε)
2aε . Then

if y = xS + ζβ(2−axTa) where ζ ≥ 100 log2(1/ε), and if t ∈ T ∗a , then

E

 ∑
i,j∈S∪{t}

yiAi,jyjδiδj
∣∣∣ δt = 1

 ≤ −50ζλ
n

Proof. First observe E [∑i∈S y
2
iAi,iδi] ≤ λ

n
‖x‖2

2 ≤ λ
n

since x is a unit vector. Note that yS = xS

by construction, so we can use Proposition 9.3.12 to bound |〈yS,AyS〉| by 10εn, which gives

E

 ∑
i,j∈S∪{t}

yiAi,jyjδiδj
∣∣∣ δt = 1

 ≤ λ2

n2

(
〈yS,AyS〉 −

∑
i∈S

y2
iAi,iδi

)
+ λ

n
+ λ

n

∑
i∈S

(At,i + Ai,t)yiyt + y2
t

≤ 20λ2ε

n
+ λ

n

(
1 + ζβ

2a
(
RS
t + CSt

))
+ (ζβ2a)2(1002a

εn
)

≤ 20λ2ε

n
+ λ

n

(
1 + ζβ

2a
(
RS
t + CSt

))
+ 100ζ2β2

2aεn
(9.12)

Now by definition of i ∈ T ∗a , we have
(
RS
t + CSt

)
≤ − 2a

β log(1/ε) . Thus

E

 ∑
i,j∈S∪{t}

yiAi,jyjδiδj
∣∣∣ δt = 1

 ≤ 20λ2ε

n
+ λ

n

(
1− ζ

log(1/ε)

)
+ 100ζ2β2

2aεn (9.13)

Setting ζ > 100 log2(1/ε), we first note that λ
n

(
1− ζ

log(1/ε)

)
≤ − 99λζ

100n log(1/ε) . Since

λ = 2000β2ζ2 log(1/ε)
2aε ≤ 2000β2

26ζε
≤ 1

ζε

it follows that 20λ2ε
n
≤ 20λ

nζ
≤ 20λ

n
< λζ

5 log(1/ε)n . Thus 10λ2ε
n
− 99λζ

100n log(1/ε) ≤ −
3λζ

4n log(1/ε) . So we can

466

simply and write

E

 ∑
i,j∈S∪{t}

yiAi,jyjδiδj
∣∣∣ δt = 1

 ≤ − 3λζ
4n log(1/ε) + 100ζ2β2

2aεn

= −1500β2ζ3

2aεn + 100ζ2β2

2aεn

≤ −1400β2ζ3

2aεn
≤ −50ζλ

n

(9.14)

as desired.

Lemma 9.3.16. Let δi be an indicator variable with E [δi] = λ/n. Then

Pr

∣∣∣∣∣∣
∑
i,j∈S

yiAi,jyjδiδj − E

∑
i,j∈S

yiAi,jyjδiδj

∣∣∣∣∣∣ ≥ C
λ

n

 ≤ 49
50

Where C > 0 is some constant.

Proof. We can apply Corollary 9.3.8, where we can set the values of c1, c2 to be bounded by
constants by the results of Proposition 9.3.12 and 9.3.14, and by definition of the set S we can
set α ≤

√
ε for the α in Corollary 9.3.8, and using that λ ≤ O(1/ε), we obtain:

Var

 ∑
i 6=j∈S

yiAi,jyjδiδj

 ≤ Cλ2

n2

for some constant C. Now note that E
[∑

i 6=j∈S yiAi,jyjδiδj
]
≤ 30λ2ε

n
≤ O(λ

n
), thus by Cheby-

shev’s, with probability 99/100, we have |∑i 6=j∈S yiAi,jyjδiδj| ≤ O(λ
n
). Moreover, note that∑

i Ai,iy
2
i δi can be assumed to be a positive random variable using that Ai,i = 1, and note

the expectation of this variable is λ
n

, and is at most 100λ/n with probability 99/100. Thus
|∑i∈S y

2
iAi,iδi − E [∑i∈S y

2
iAi,i] | ≤ 100λ/n. By a union bound, we have:

Pr

∣∣∣∣∣∣
∑
i,j∈S

yiAi,jyjδiδj

∣∣∣∣∣∣ ≥ C
λ

n

 ≤ 49
50

Where C = 150.

467

Lemma 9.3.17. Fix any t ∈ T ∗a . Then

Pr
[∣∣∣∣∣∑
i∈S

yt(yiAi,t + At,iyi)δi − E
[∑
i∈S

yt(yiAi,t + At,iyi)δi
]∣∣∣∣∣ ≥ 10λ

n

]
≤ 1

100

Proof. By independence of the δi’s

Var
(∑
i∈S

(yiAi,tyt + ytAt,iyi)δi
)
≤ λ

n

∑
i

(yiAi,tyt + ytAt,iyi)2

≤ λ

n

∑
i

2y2
t y

2
i

≤ 2λ
n

(ζβ2−a)2 1002a
εn

≤ 2λ
n

(
100ζ2β2

2aεn

)

≤ 2λ2

5n2

(9.15)

Now since E [∑i∈S(yiAi,tyt + ytAt,iyi)δi] ≤ −λ
n

ζ
log(1/ε) ≤ −

100λ
n

, the desired result follows
by Chebyshev’s inequality.

Lemma 9.3.18. Fix any t ∈ T ∗a . Then

Pr

 ∑
i,j∈S∪{t}

yiAi,jyjδiδj ≤
−25ζλ
n

∣∣∣ δt = 1
 ≥ 24/25

Proof. Conditioned on δt = 1, we have∣∣∣∣∣∣
 ∑
i,j∈S∪{t}

yiAi,jyjδiδj

− E

 ∑
i,j∈S∪{t}

yiAi,jyjδiδj
∣∣∣ δt = 1|

∣∣∣∣∣∣
≤
∣∣∣∣∣∑
i∈S

yt(yiAi,t + At,iyi)δi − E
[∑
i∈S

yt(yiAi,t + At,iyi)δi
]∣∣∣∣∣

+

∣∣∣∣∣∣
∑
i,j∈S

yiAi,jyjδiδj − E

∑
i,j∈S

yiAi,jyjδiδj

∣∣∣∣∣∣
≤ C

λ

n

(9.16)

for some constant C ≤ 200, where the last fact follows from Lemmas 9.3.16 and 9.3.17 with
probability 24/25. Since E

[∑
i,j∈S∪{t} yiAi,jyjδiδj

∣∣∣ δt = 1|
]
≤ −50ζλ

n
by Lemma 9.3.15, by

468

scaling ζ by a sufficiently large constant, the result follows.

Theorem 115. Suppose we are in case 1 with Ta contributing such that 2a ≥ 106ζ3. Then there

is an algorithm that queries at most O(log7(1/ε)
ε2

) entries of A, and finds a principal submatrix of

A which is not PSD with probability at least 9/10 in the NO case. The algorithm always returns

YES on a YES instance.

Proof. By the above, we just need to sample a expected size O(λ2) submatrix from the condi-
tional distribution of having sampled at least one entry from T ∗a . Since |T ∗a | ≥ β/10 εn

2a log(1/ε) ,

and since λ = Θ(β
2ζ2 log(1/ε)

2aε), we see that this requires a total of k samples of expected size
O(λ2) , where

k = (n/|T ∗a |)/λ ≤ (2a10 log(1/ε)
βε

)(2aε
β2ζ2 log(1/ε))

≤ 10 22a

β3ζ2

(9.17)

Thus the total complexity is O(kλ2), and we have

kλ2 ≤ 10 22a

β3ζ2 (β
4ζ4 log2(1/ε)

22aε2
)

≤ 10βζ
2 log2(1/ε)
ε2

= O(ζ
2 log2(1/ε)

ε2
)

(9.18)

we use the fact that we can set ζ = O(log2(1/ε)). Finally, note that we do not know β or 2a, but
we can guess the value of λ in powers of 2, which is at most O(ζ2

ε2
), and then set k to be the value

such that kλ2 is within the above allowance. This blows up the complexity by a log(1/ε) factor
to do the guessing.

Case 2: Spread Negative Mass and Main Theorem

In the prior section, we saw that if the quadratic form xTAx satisfies the condition for being in
Case 1, we could obtain a Õ(1/ε2) query algorithm for finding a principal submatrix AT×T such
that y>AT×Ty < 0 for some vector y. Now recall that S = {i ∈ [n] : |xi|2 ≤ 1

εn
}, and let

469

Ta = {i ∈ [n] : 1002a−1

εn
≤ |xi|2 ≤ 1002a

εn
} for a ≥ 1. Recall that the definition of Case 1 was that

x>SAxTa + x>TaAxS ≤ −εn/(10 log(1/ε)) for some 2a ≥ 106ζ3. In this section, we demonstrate
that if this condition does not hold, then we will also obtain a Õ(1/ε2) query algorithm for the
problem.

Thus, suppose now that we are in Case 2; namely that xSAxTa+xTaAxS > −εn/(10 log(1/ε))
for all 2a ≥ 106ζ3. Now let T+ = ∪2a>106ζ3Ta and let T− = ∪2a≤106ζ3Ta. Let S∗ = S ∪ T−. We
now observe an important fact, which sates that if we are not in Case 1, then xS∗AxS∗ contributes
a substantial fraction of the negativeness in the quadratic form.

Fact 9.3.19. Suppose we are in Case 2: meaning that x>SAxTa + xTaAxS > −εn/(10 log(1/ε))
for all 2a ≥ 106ζ3. Then we have x>S∗AxS∗ ≤ −εn/2.

Proof. Notice that this implies that x>SAxT+ + xT+AxS ≥ −εn/10, since there are at most
log(1/ε) level sets included in T+ by Proposition 9.3.3. Note since the contribution of |x>T+AxT+ | ≤
−εn10−6/ζ3 and |xT−AxT+ + xT+AxT− | ≤

√
|T−||T+| ≤ εn/100 by Proposition 9.3.10. Thus

if x>Ax ≤ −εn to begin with, it follows that we must have

x>S∗AxS∗ ≤ x>Ax−
(
(x>SAxT+ + xT+AxS)− (x>T+AxT+)− (xT−AxT+ + xT+AxT−)

)
≤ −εn+ εn/10 + +εn10−6/ζ3εn/100

< −εn/2
(9.19)

We now proceed by analyzing the result of sampling a principal submatrix from the quadratic
form x>S∗AxS∗ , which by the prior fact is already sufficently negative. Specifically, we will
demonstrate that the variance of the standard estimator from Lemma 9.3.7, and specifically
Corollary 9.3.8, is already sufficiently small to allow for a single randomly chosen O(1/ε) ×
O(1/ε) principal submatrix of A to have negative quadratic form with xS∗ with good probabil-
ity. In order to place a bound on the variance of this estimator and apply Corollary 9.3.8, we will
need to bound the row and column contributions of the quadratic form x>S∗AS∗×S∗xS∗ , which we
now formally define.

Definition 9.3.20. For i ∈ [n], define the row and column contributions of i within S∗ as R∗i =∑
j∈S∗\i xiAi,jxj and C∗i = ∑

j∈S∗\i xjAj,ixi respectively.

470

Recall that the total row and column contributions of i are defined via Ri = ∑
j∈[n]\i xiAi,jxj

and Ci = ∑
j∈[n]\i xjAj,ixi respectively, and recall that we have Ri + Ci ≤ 0 for all i ∈ [n] by

Fact 9.3.5

Proposition 9.3.21. We have
∑
i∈S∗(R∗i + C∗i)2 ≤ 109 · ζ3εn.

Proof. The proof proceeds similarly to Proposition 9.3.14. Let z∗, z, z− ∈ R|S∗| be defined for
i ∈ S∗ via z∗i = R∗i + C∗i , zi = Ri +Ri, and z− = z− z. Notice that our goal is to bound ‖z∗‖2

2,
which by triangle inequality satisfies ‖z∗‖2

2 ≤ 2 (‖z‖2
2 + ‖z−‖2

2). First note that

‖z−‖2
2 =

∑
i∈S∗

∑
j /∈S∗

xiAi,jxj +
∑
j /∈S∗

xjAj,ixi

2

≤ 2
∑
i∈S∗

∑
j /∈S∗

xiAi,jxj

2

+ 2
∑
i∈S∗

∑
j /∈S∗

xjAj,ixi

2 (9.20)

Using that |[n] \ S∗| < εn/100, we have by Proposition 9.3.11 that
∑
i∈S∗

(∑
j /∈S xiAi,jxj

)2
≤

εn/100, so ‖z−‖2
2 ≤ εn/25.

We now bound ‖z‖1 = ∑
i∈S |Ri + Ri|. Recall that we have Ri + Ri ≤ 0 for all i ∈ [n],

which means that ‖z‖1 ≤
∑
i∈[n] |Ri + Ri| = |2〈x,Ax〉 − 2∑i∈[n] Ai,i(xi)2| ≤ 2εn. Next,

we bound ‖z‖∞. Notice that |Ri + Ri| = 2|xiAi,∗x| = 2εn(xi)2 − 2Ai,i(xi)2 < 4εn(xi)2,
using that Ax = −εnx, since x is an eigenvectror of A. Since i ∈ S∗, by definition we have
(xi)2 ≤ 100·106·ζ3

εn
, thus ‖z‖∞ ≤ 100 · 106 · ζ3. It follows that ‖z‖2

2 is maximized by having
2εn/(108 ·ζ3) coordinates equal to 108 ·ζ3, giving ‖z‖2

2 ≤ 2εn/(108 ·ζ3)(108 ·ζ3)2 = 2·108 ·ζ3εn.
It follows then that ‖z‖2

2 ≤ ·109 · ζ3εn as needed.

Theorem 116. There is an algorithm which, given A with ‖A‖∞ ≤ 1 such that either x>Ax ≥ 0
for all x ∈ Rn (YES Case), or x>Ax ≤ −εn for some x ∈ Rn with ‖x‖2 ≤ 1 (NO Case),

distinguishes the two cases with probability 3/4 using at most Õ(1
ε2

) queries, and running in

time Õ(1/εω), where ω < 2.373 is the exponent of fast matrix multiplication. Moreover, in the

YES case the, the algorithm always outputs YES (with probability 1), and in the NO case, the

algorithm returns a certificate in the form of a principal submatrix which is not PSD.

Proof. By Theorem 115 which handles Case 1, we can restrict ourselves to Case 2. Using Fact
9.3.19 as well as Proposition 9.3.21, can apply Corollary 9.3.8 with the vector y = xS∗ , setting

471

c1 = Θ(1) and c2 = Θ(ζ3), and α = O(
√
εζ3) = O(

√
ε log6(1/ε)), to obtain that

Var[
∑
i 6=j

yiAi,jyjδiδj] ≤ O(log12(1/ε)k
2

n2)

where k = Θ̃(1/ε). Since by Proposition 9.3.6 and Fact 9.3.19 , we have E
[∑

i 6=j yiAi,jyjδiδj
]
≤

k2

4n2 〈xS∗ ,AxS∗〉 ≤ − εk2

8n , it follows that by repeating the sampling procedure O(log12(1/ε)),
by Chebyshev’s we will have that at least one sample satisfies

∑
i 6=j yiAi,jyjδiδj ≤ − εk2

4n with
probability 99/100.

Now note that this random variable does not take into account the diagonal. Thus, it will
suffice to bound the contribution of the random variable

∑
i∈[n] δiAi,i(yi)2 Õ((1/ε)/n). First ob-

serve that E
[∑

i∈[n] δiAi,i(yi)2
]

= k
n

. The proof proceeds by a simple bucketing argument;
let Λi = {i ∈ S∗ | 2i

n
≤ (yi)2 ≤ 2i+1

n
}, and for a single k × k sampled submatrix, let

T ⊂ [n] be the rows and columns that are sample. Note that E [|T ∩ Λi|] ≤ k2−i, since
|Λi| ≤ 2−i. Note also that |Λi| = 0 for every i such that 2i ≥ 1008ζ3

ε
by definition of S∗ and

the fact that y is zero outisde of S∗. Then by Chernoff bounds we have that with probability
Pr [|T ∩ Λi| > log(1/ε) max{k2−i, 1}] ≤ 1− ε10

C
for some constant C for our choosing. We can

then union bound over all O(log(1/ε)) sets Λi, to obtain

∑
i∈[n]

δiAi,i(yi)2 ≤
∑

i:2i≤ 1008ζ3
ε

2i+1

n
|T ∩ Λi| ≤

∑
i:2i≤ 1008ζ3

ε

2
n

log(1/ε) max{k, 2i}

with probability at least 1 − ε9

C
. Setting k = Θ(log6(1/ε)/ε), we have that

∑
i∈[n] δiAi,i(yi)2 ≤∑

i:2i≤ 1008ζ3
ε

(2/n) log(1/ε)k = O(log2(1/ε)k/n) . Thus we can condition on
∑
i∈[n] δiAi,i(yi)2 =

O(log2(1/ε)k/n) for all Õ(1) repetitions of sampling a submatrix. Since at least one sampled
submatrix satisfied

∑
i 6=j yiAi,jyjδiδj ≤ − εk2

4n , and since k = Θ(log6(1/ε)/ε), this demonstrates
that at least one sampled submatrix will satisfy

∑
i,j yiAi,jyjδiδj < − εk2

8n as needed in the NO
instance. The resulting query complexity is then O(log2(1/ε)k2) = O(log24(1/ε)

ε2
) = Õ(1

ε2
) as

desired. Finally, for runtime, notice that the main computation is computing the eigenvalues
of a k × k principal submatirx, for k = Õ(1/ε), which can be carried out in time Õ(1/εω)
[DDHK07, BVKS19].

472

9.4 PSD Testing with `2
2 Gap

Let A ∈ Rn×n be a symmetric matrix with eigenvalues λmax = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin.

In this section, we consider the problem of testing positive semi-definiteness with an `2
2 gap.

Formally, the problem statement is as follows.

Definition 9.4.1 (PSD Testing with `2
2-Gap.). Fix, ε ∈ (0, 1] and let A ∈ Rn×n be a symmetric

matrix satisfying ‖A‖∞ ≤ 1, with the promise that either

• YES Instance: A is PSD.

• NO Instance: A is ε-far from PSD in `2
2, meaning that minB�0 ‖A−B‖2

F = ∑
i:λi<0 λ

2
i =

εn2.

The PSD Testing problem with `2
2-gap is to design an algorithm which distinguish these two cases

with probability at least 2/3, using the minimum number of queries possible to the entires of A.

Our algorithm for this problem will query a principal submatrix AS×S and return PSD if
AS×S is PSD, otherwise it will return not PSD. Since all principal submatrices of PSD matrices
are PSD, we only need show that if A is ε-far from PSD, then we can find a non-PSD principal
submatrix with small size. Note again that this implies that our algorithm will be one-sided.
Thus, in the following, we can focus on the case where A is ε-far from PSD. We begin by stating
two fundamental observations, which, along with an application of our algorithm from Section
9.3, will allow us to reduce the problem of PSD testing with `2 gap to the problem of testing
certain functions of the singular values of A.

Proposition 9.4.2 (PSD matrices are top heavy). Fix any n ∈ N, 1 ≤ k ≤ n, and D ∈ Rn×n.

Then if D is PSD, we have ∑
i>k

σi(D)2 ≤ 1
k

(Tr(D))2

In particular, if D has bounded entries ‖D‖∞ ≤ 1, we have
∑
i>k σi(D)2 ≤ 1

k
n2.

Proof. We first show that σk(D) ≤ k−1Tr(D). To see this, suppose σk(D) > k−1Tr(D). Then
because D is PSD, we would have

∑
i σi = ∑

i λi = Tr(A) > k · k−1Tr(D), a contradiction.
Thus, σi(D) ≤ k−1Tr(D) for all i ≥ k. Using this and the bound

∑
i>k σi(D) ≤ Tr(D),

it follows that the quantity
∑
i>k σi(D)2 is maximimized by having k singular values equal to

Tr(D)/k, yielding
∑
i>t σi(D)2 ≤ k · (Tr(D)/k)2 = k−1(Tr(D))2 as needed.

473

Proposition 9.4.3. Let D ∈ Rn×n be a symmetric matrix such that ‖D‖∞ ≤ 1, and let σ1 ≥
σ2 ≥ · · · ≥ σn be its singular values. Suppose D is at least ε-far in L2 from PSD, so that∑
i:λi(D)<0 λ

2
i (D) ≥ εn2, and suppose further that mini λi(D) > − 1

2kn for any k ≥ 2
ε
. Then we

have ∑
i>k

σ2
i (D) > ε

2n
2

Proof. Let W ⊆ [n] be the set of values i ∈ [n] such that λi < 0. Let W ′ ⊆ [n] be the set
of values i ∈ [n] such that σi < 1

2kn. By assumption:
∑
i∈W ′ σ

2
i ≥

∑
i∈W λ2

i ≥ εn2. Now∑
i∈W ′ σ

2
i = ∑

i∈W ′,i≤k σ
2
i + ∑

i∈W ′,i>k σ
2
i , so the fact that |σi| ≤ (1/2k)n for every i ∈ W ′, we

have that
∑
i∈W ′,i≤k σ

2
i ≤ k(n/(2k))2 = n2/4k < εn2/2. Thus we must have

∑
i∈W,i>t σ

2
i >

εn2/2, giving

∑
i>k

σ2
i ≥

∑
i∈W ′,i>k

σ2
i

> εn2/2
(9.21)

as required.

9.4.1 Analysis of the Algorithm

Our analysis will require several tools, beginning with the following interlacing lemma.

Lemma 9.4.4 (Dual Lidskii Inequality, [Tao11] Chapter 1.3). Let M1,M2 be t × t symmetric

Matrices, and fix 1 ≤ i1 < i2 < · · · < ik ≤ n. Then we have

k∑
j=1

λij(M1 + M2) ≥
k∑
j=1

λij(M1) +
k∑
j=1

λn−j+1(M2)

We will also need the following result of Rudelson and Vershynin [RV07] on the decay of spectral
norms of random submatrices.

Proposition 9.4.5 ([RV07]). Let A ∈ Rn×m be a rank r matrix with maximum Euclidean row

norm bounded by M , in other words maxi |(AA>)i,i| ≤ M . Let Q ⊂ [n] be a random subset of

rows of A with expected cardinality q. Then there is a fixed constant κ ≥ 1 such that

474

E
[
‖AQ×[m]‖2

]
≤ κ(

√
δ‖A‖2 +

√
log qM)

Finally, we will need a generalized Matrix Chernoff bound for the interior eigenvalues of sums
of random matrices, which was derived by Gittens and Tropp [GT11].

Theorem 117 (Interior Eigenvalue Matrix Chernoff, Theorem 4.1 of [GT11]). Consider a finite

sequence {Xj} of independent, random, positive-semidefinite matrices with dimension m, and

assume that ‖Xj‖2 ≤ L for some value L almost surely. Given an integer k ≤ n, define

µk = λk

∑
j

E [Xj]

then we have the tail inequalities

Pr

[
λk(

∑
j Xj) ≥ (1 + δ)µk

]
≤ (n− k + 1) ·

[
eδ

(1+δ)1+δ

]µk/L
for δ > 0

Pr
[
λk(

∑
j Xj) ≤ (1− δ)µk

]
≤ k ·

[
e−δ

(1−δ)1−δ

]µk/L
for δ ∈ [0, 1)

(9.22)

The Algorithm. Our first step is to run the `∞-gap algorithm of Section 9.3 with ε0 = 2
k
, where

we set k = 2·4002κ4

ε
, where κ ≥ 1 is the constant in Proposition 9.4.5. This allows us to assume

that λi ≥ −ε0n/1000 ≥ − 1
2kn for all i, otherwise we have a Õ(1/ε2)-query algorithm from

the Section 9.3, and since our target complexity is Õ(1/ε4), we can safely disregard the cost of
running this algorithm in parallel. We begin by demonstrating that the Frobenius norm of SA is
preserved (up to scaling), where S is a random row sampling matrix with sufficiently many rows.

Proposition 9.4.6. Let M ∈ Rm×m. Fix t ≥ 1 and let S be a row sampling matrix which samples

each row of M with probability p = t
m

, and let S ∈ Rt0×m be a row sampling matrix drawn from

this distribution, where E [t0] = t. Then we have

E
[

1
p

Tr(SMS>)
]

=
∑
i

λi(M) = Tr(M)

and

Var
(

1
p

Tr(SMS>)
)
≤ m

t

∑
i

M2
i,i

475

Proof. For i ∈ [m], let δi ∈ {0, 1} indicate that we sample row i. We have E
[
Tr(SMS>)

]
=

1
p
E [∑n

i=1 δiMi,i] = Tr(M). Moreover,

Var
(

1
p

Tr(SMS>)
)
≤ 1
p2

n∑
i=1

δiMi,i − (Tr(M))2

≤
∑
i 6=j

Mi,iMj,j + 1
p

∑
i

M2
i,i − (Tr(M))2

≤ 1
p

∑
i

M2
i,i

(9.23)

as stated.

We now fix t = Θ(log(1/ε)/ε2), and draw row independent sampling matrices S,T with an
expected t rows. Let S, T ⊂ [n] be the rows and columns sampled by S,T> respectively. We then
compute Z = SAT> with an expected O(t2) queries. Finally, we query the principal submatrix
A(S∪T)×(S∪T), and test whether A(S∪T)×(S∪T) is PSD. Clearly if A is PSD, so is A(S∪T)×(S∪T),
so it suffices to anaylzie the NO case, which we do in the remainder.

Lemma 9.4.7. Let A ∈ Rn×n be ε-far from PSD with ‖A‖∞ ≤ 1. Then let Z = SAT> be

samples as described above, so that Z has an expected t = Θ(log(1/ε)/ε2) rows and columns,

where t is scaled by a larger enough constant, and let k = 2·4002κ4

ε
, where κ ≥ 1 is the constant

in Proposition 9.4.5. Suppose further that σk+1(A) ≤ 10n/k. Then with probability 19/20, we

have
n2

t2
∑
i>k

σ2
i (Z) > εn2/16

Proof. Now write A = UΛV>, Ak = UΛkV>,A−k = UΛ−kV>. Then A = Ak + A−k,
and the rows of Ak are orthogonal to the rows of A−k. Note that this implies that ‖Ai,∗‖2

2 =
‖(Ak)i,∗‖2

2 + ‖(A−k)i,∗‖2
2 for each i ∈ [n] by the Pythagorean theorem, and since ‖A‖∞ ≤ 1 we

have ‖(A−k)i,∗‖2
2 ≤ n.

Now set M1 = SAkA>k S>, and M2 = SA−kA>−kS>. Notice that M1 + M2 = S(AkA>k +
A−kA>−k)S> = SAA>S>, using the fact that the rows and columns of Ak are orthogonal to
the rows and columns (respectively) of A−k. Let p = t

n
be the row sampling probability. Now

suppose ‖(A−k)‖2
F = αn2. Note that we have shown that α > ε/2. By Proposition 9.4.6, we

have E [Tr(M2)/p] = ∑
i>k = αn2 > εn2/2 for some α ≥ ε/2, where the last inequality follows

from Proposition 9.4.3. Moreover, we have

476

Var
(

1
p

Tr(M2)
)
≤ 1
p

∑
i

(M2)2
i,i

= 1
p

∑
i

‖(A−k)i,∗‖4
2

(9.24)

It follows that since each row satisfies ‖(A−k)i,∗‖2
2 ≤ n and ‖(A−k)‖2

F = αn2., the quantity∑
i ‖(A−k)i,∗‖4

2 is maximized having αn rows with squared norm equal to n. This yields

Var
(

1
p

Tr(M2)
)
≤ 1
p

∑
i

2αn · n2

≤ 2αn
4

t

≤ α2

1002n
4

(9.25)

Where in the last line, we used that t > 4·1002

ε0
≥ 2·1002

α
. Then by Chebyshev’s inequality, with

probability 99/100, we have 1
p
Tr(M2) > αn2 − (α/10)n2 = (9/10)αn2 ≥ (9/20)εn2. Call

this event E1, and condition on it now. Next, by Proposition 9.4.5, since σk+1(A) ≤ 10n/k we
have E [‖SA−k‖2] ≤ κ(10

√
tn/k +

√
2 log(1/ε)

√
n) < 20κ

√
tn/k. Then by Markovs, we have

‖SA−k‖2
2 = ‖M2‖2 ≤ 2002κ2tn/k2 with probability 99/100, which we condition on now, and

call this event E2. Then by the Dual Lidskii inequality 9.4.4, we have

1
p

∑
j>k

λj(M1 + M2) ≥ 1
p

∑
j>k

λj(M2)

≥ 1
p

(Tr(M2)− k‖M2‖2)

≥ (9/20)εn2 − 2002κ2n2/k

≥ εn2/4

(9.26)

using that k > 2·4002κ4

ε
. Now let W = 1√

p
(SA)>, and note that we took the transpose, so

W has n rows and t1 columns, where E [t1] = t. Now by Chernoff bounds, with probability
99/100 we have t2 ≤ 2t; call this event E3 and condition on it now. The above demonstrates that
1
p

∑
j>k λj(M1 + M2) = ∑

j>k λ
2
j(W) ≤ εn2/4. Now note that σk+1(W) = 1√

p
(σk+1(SAk +

SA−k) < 1√
p
‖SA−k‖2 ≤ 200κn/k, where we used the Weyl inequality for singular values:

namely that for any two matrices A,B and value i, |σi(A+B)−σi(A)| ≤ ‖B‖2, and using that

477

SAk is rank at most k, so σk+1(SAk) = 0.

Now draw a random row sampling matrix T with an expected t rows, and write N1 =
TWkW>

k T and N2 = TW−kW>
−kT, and note again that N1 + N2 = TWW>T. Moreover,

the rows of Wk live in a subspace orthogonal to the rows of W−k, so again by the Pythagorean
theorem and boundedness of the entries in A, we have ‖(W−k)i,∗‖2

2 ≤ 1
p
t1 ≤ 2n for all i ∈ [n].

Then by Proposition 9.4.6, we have E [Tr(N2)/p] = ‖W−k‖2
F = αn2 ≥ εn2/4, and

Var
(

1
p

Tr(N2)
)
≤ 1
p

n∑
i=1
‖(W−k)i,∗‖4

2

≤ 1
p
n3

≤ 1
t
n4

≤ ε2

1002n
4

(9.27)

Then by Chebyshev’s inequality, with probability 99/100, we have 1
p
Tr(N2) > εn2/4−(ε/10)n2 =

εn2/8. Call this event E4, and condition on it now. Now as shown above, we have ‖W−k‖2 ≤
200κn/k, thus by Proposition 9.4.5 we have E [‖TW−k‖2] ≤ κ(200κ

√
tn/k+4

√
log(1/ε)

√
n) ≤

400κ2√tn, again where we take t = Θ(log(1/ε)
ε2

) with a large enough constant. Then by Markov’s
inequality, with probability 99/100 we have ‖N2‖2 ≤ 4002κ4n2/k2, and again by the Dual
Lidskii inequality 9.4.4, we have

1
p

∑
j>k

λj(N1 + N2) ≥ 1
p

∑
j>k

λj(N2)

≥ 1
p

(Tr(N2)− k‖N2‖2)

≥ εn2/8− 4002κ4n2/k

≥ εn2/16

(9.28)

Using that k ≥ 2·4002κ4

ε
. Note moreover that

1
p

∑
j>k

λj(N1 + N2) = 1
p

∑
j>k

σ2
j (TW) = 1

p2

∑
j>k

σ2
j (SA>T>)

Using that A = A> so that Z = SA>T> we conclude that 1
p2
∑
i>k σ

2
i (Z) = n2

t2
∑
i>k σ

2
i (Z) >

εn2/16 as desired. Note that we conditioned on Ei for i = 1, 2, 3, 4, 5, each of which held with
probability 99/100, thus the result holds with probability 19/20 by a union bound.

478

We will now address the case where σk(A) > 10n/k.

Lemma 9.4.8. Let A ∈ Rn×n be ε-far from PSD with ‖A‖∞ ≤ 1. Then let Z = SAT> be

samples as described above, so that Z has an expected t = Θ(log(1/ε)/ε2) rows and columns,

where t is scaled by a larger enough constant, and let k = 2·4002κ4

ε
, where κ ≥ 1 is the constant

in Proposition 9.4.5. Suppose further that σk(A) > 10n/k. Then with probability 49/50, we

have
n

t
σk(Z) ≥ 8n/k

Proof. The proof is by application of Theorem 117 twice. We first generate a random row
sampling matrix S with an expected t rows, and bound λk((SA)>SA) = σ2

k(SA). Let Xj ∈
R
n×n be a random variable such that Xj = A>(j)A(j), where A(j) is the j-th row of A that was

sampled in S. Then
∑
j Xj = (SA)>SA, and E [Xj] = t

n

∑n
j=1 A>j Aj = t

n
AA>, where Aj is

the j-th row of A. Moreover, note that ‖Xj‖2 ≤ maxi ‖Ai,∗‖2
2 ≤ n for all j, by the boundedness

of A. Thus note that µk = λk((t/n)A>A) ≥ (t/n)100n2/k2 = 100tn
k2 . Thus by the Interior

Matrix Chernoff Bound 117, we have that for some constant c:

Pr
[
λk((SA)>SA) ≤ .9µk

]
≤ k · cµk/L

≤ k · c
100tn
k2 ·

1
n

≤ k · e−100 log(k)

≤ 1/1000

(9.29)

Where we use t = Θ(log(1/ε)
ε2

) with a large enough constant. Also condition on the fact that
S has at most 2t rows, which holds with probability 999/1000. Call the union of the above
two event E1, which holds with probability 99/100, and condition on it now. Given this, we
have σ2

k(SA) ≥ 90tn
k2 . Now again, let Yj = (SA)(j)(SA)>(j), where (SA)(j) is the j-th column

of SA sampled by the column sampling matrix T. Let M = (SA)>. Then again we have
‖Yj‖2 ≤ 2t, using that SA has at most 2t rows, and each entry is bounded by 1. Moreover,∑
j Yj = TMM>T> We also have λk(E

[∑
j Yj

]
) = λk(tnMM>) > 90t2

k2 . Applying the
Interior Matrix Chernoff Bound again, we have that for some constant c:

479

Pr
[
λk(T(SA)>(SA)T>) ≤ .9µk

]
≤ k · cµk/L

≤ k · c
90t2
k2 ·

1
2t

≤ k · e−100 log(k)

≤ 1/1000

(9.30)

Call the above event E2. Conditioned on E∞ ∪ E2, which hold together with probability 49/50,
we have that σk(SAT>) ≤ .9

√
90t2
k2 > 8t/k. Since Z = SAT>, we have n

t
σk(Z) > 8n/k as

needed.

Theorem 118. Let A ∈ Rn×n be ε-far from PSD with ‖A‖∞ ≤ 1. Then if S, T ⊂ [n] are

random subsets with expected each size t = O(log(1/ε)/ε2), then with probability 9/10 the

principal submatrixx A(S∪T)×(S∪T) is not PSD.

Proof. First, by Chernoff bounds, with probability 99/100 we have |S ∪ T | ≤ |S| + |T | ≤ 4t,
which we call E1 and condition on now. First, consider the case that σk(A) ≤ 10n/k, where k =
2·4002κ4

ε
. Then by Lemma 9.4.7, with probability 19/20, we have that

∑
i>k σ

2
i (AS×T) > εt2/16.

Now we first prove the following claim:

Claim 9.4.9. Let Z ∈ Rn×m be any matrix, and let Z̃ be a rectangular submatrix of Z. for any

Let Zk, Z̃k be the truncated SVD of Z, Z̃ respectively, for any 1 ≤ k ≤ min{n,m}. Then we

have

‖Z− Zk‖2
F ≥ ‖Z̃− Z̃k‖2

F

Proof. Note that ‖Z−Zk‖2
F ≥ ‖Z̃k−Z′k‖2

F , where Z′k is the matrix Zk restricted to the submatrix
containing Z̃. But Z̃k is the best rank-k approximation to Z̃, so ‖Z̃ − Z̃k‖2

F = minBrank-k ‖Z̃ −
B‖2

F ≤ ‖Z̃k − Z′k‖2
F , using the fact that a submatrix of a rank-k matrix is at most rank k.

It follows that ‖A(S∪T)×(S∪T)−(A(S∪T)×(S∪T))k‖2
F = ∑

j>k σ
2
j (A(S∪T)×(S∪T)) ≥

∑
j>k σ

2
j (AS×T) >

εt2/16 > ε|S∪T |2/256. But note that if A(S∪T)×(S∪T) was PSD, then we would have
∑
j>k σ

2
j (AS×T) <≤

16
k
t2, which is a contradiction since k = 2·4002κ4

ε
> 1002

ε
.

Now consider the case that σk(A) > 10n/k. Then by Lemma 9.4.8, we have σk((AS×T) ≥
8t/k with probability at least 49/50. Then ‖AS×T‖S1 ≥

∑k
i=1 σi((AS×T) ≥ 8t. Using the fact

480

that the Schatten norm of a matrix is always at least as large as the Schatten norm of any subma-
trix (this follows from the fact that the singular values of the submatrix are point-wise dominated
by the larger matrix, see Theorem 1 [Tho72]), we have ‖A(S∪T)×(S∪T)‖S1 ≥ 8t. But note that if
A(S∪T)×(S∪T) was PSD, then we would have ‖A(S∪T)×(S∪T)‖S1 = Tr(A(S∪T)×(S∪T)) ≤ |S∪T | ≤
4t, which is a contradiction. This completes the proof of the theorem.

Theorem 119. Fix A ∈ Rn×n with ‖A‖∞ ≤ 1. There is a non-adaptive sampling algorithm

that, with probability 9/10, correctly distinguishes the case that A is PSD from the case that

A is ε-far from PSD in `2, namely that
∑
i:λi(A)<0

λ2
i (A)
n2 ≥ ε. The algorithm queries a total of

O(log2(1/ε)
ε4

) entries of A, and always correctly classifies A as PSD if A is indeed PSD. Moreover,

the algorithm runs in time Õ(1/ε2ω), where ω < 2.373 is the exponent of fast matrix multiplica-

tion.

Proof. We first apply the algorithm of Section 9.3 with ε0 = 2
k
, which as discussed allows us to

assume that λi ≥ −ε0n/1000 ≥ − 1
2kn for all i. The cost of doing so is Θ̃(1/ε2) queries, and this

algorithm also yields one-sided error as desired. The remainder of the theorem follows directly
from Theorem 118, using that all principal submatrices of PSD matrices are PSD. Finally, for
runtime, notice that the main computation is computing the eigenvalues of a k × k principal
submatirx, for k = Õ(1/ε2), which can be carried out in time Õ(1/ε2ω) [DDHK07, BVKS19].

9.5 Lower Bounds

9.5.1 Lower Bound for PSD Testing with `∞ Gap

We begin by demonstrating a O(1/ε2) lower bound for the problem of testing postive semi-
definiteness with an `∞ gap. Our lower bound holds even when the algorithm is allowed to
adaptively sample entryies of A.

Theorem 120. Any adaptive or non-adaptive algorithm which receives query access to A ∈
R
n×n with ‖A‖∞ ≤ 1, and distinguishes with probability at least 2/3 whether

• A is PSD.

• xTAx < −εn for some unit vector x ∈ Rn and ε ∈ (0, 1)

must make Ω(1/ε2) queries to A.

481

Proof. We construct two distributions D1,D2 over matrices, and draw the input A from the
mixture (D1 +D2)/2. D1 is supported on one matrix: the zero matrix 0n×n, which is PSD. Now
set t = 2ε2n and let B ∈ Rn×n be the matrix given by

B =
 0 −1n−t×t

−1t×n−t −1t×t

Where −1n×m is the n × m matrix consisting of a −1 in each entry. Now let x ∈ Rn×n be
defined by xi = 1 for i = 1, 2, . . . , n − t, and let xj = 1/ε for j > n − t. Then note that
xTBx < −1

ε
· 2ε2n2 < −εn‖x‖2

2, thus B is ε-far from PSD in `∞ gap. To sample A ∼ D1,
we set A = PΣBPT

σ , where Pσ is a randomly drawn permutation matrix, namely σ ∼ Sn

uniformly at random. Notice that to distinguish A ∼ D1 from A ∼ D2, the algorithm must
read a non-zero entry. By Yao’s min-max principle, we can assume that there is a deterministic
algorithm that solves the problem with probability 2/3 over the randomness of the distribution.
Fix any k < 1/(100ε2), and let s1, s2, . . . sk be the adaptive sequence of entries it would sample
if Asi = 0 for each i = 1, 2, . . . , k. Then then the probability that any of the the si’s land in a
row or a column of A = PΣBPT

σ with non-zero entries is at most 1/50. Thus with probability
49/50 under input from A ∼ D2, the algorithm will output the same value had A been the all
zero matrix. Thus the algorithm succeeds with probability at most 51/100 whenA is drawn from
the mixture, demonstrating that Ω(1/ε2) samples are required for probability 2/3 of success.

9.5.2 Lower Bound for PSD Testing with `2 Gap

We now present our main lower bound for PSD testing. Our result relies on the construction of
explicit graphs with gaps in their spectrum, which have the property that they are indistinguish-
able given only a small number of queries to their adjacency matrices. Our lower bound is in fact
a general construction, which will also result in lower bounds for testing the Schatten 1 norm,
Ky-Fan norm, and cost of the best rank k approximation.

Roadmap In the following, we will first introduce the notation and theory required for the sec-
tion, beginning with the notion of subgraph equivalence of matrices. We then construct our hard
distributions D1,D2, and prove our main conditional results, Lemma 9.5.5, which demonstrates
a lower bound for these hard distributions conditioned on the existence of certain pairs of sub-
graph equivalent matrices. Finally, we prove the existence of such matrices, which is carried out
in the following Section 9.5.2. Putting these pieces together, we obtain our main lower bound in
Theorem 123.

482

Preliminaries and Notation In the following, it will be useful to consider signed graphs. A
signed graph Σ is a pair (|Σ|, s), where |Σ| = (V,E) is a simple graph, called the underlying

graph, and s : E → {1,−1} is the sign function. We will sometimes abbreviate the signs
equivalently as {+,−}. We will write E+, E− to denote the set of positive and negative edges.
If Σ is a signed graph, we will often write Σ = (V (Σ), E(Σ)), where E(Σ) is a set of signed

edges, so E(Σ) ⊂
(
|V (Σ)|

2

)
× {+,−} with the property that for each e ∈

(
|V (Σ)|

2

)
, at most one of

(e,+,), (e,−) is contained in E(Σ). For a signed graphG on n vertices, let AG ∈ {1, 0,−1}n×n

be its adjacency matrix, where (AG)i,j is the sign of the edge e = (vi, vj) if e ∈ E(G), and is 0
otherwise.

For a graph H , let ‖H‖ denote the number of vertices in H . For any simple (unsigned) graph
G, letG be the signed graph obtained by havingE+(G) = E(G), andE−(G) =

(
|V |
2

)
\E(G). In

other words, G is the complete signed graph obtained by adding all the edges in the complement
ofGwith a negative sign, and giving a positive sign the edges originally inG. We remark that the
negation of the adjacency matrix of G is known as the Seidel matrix of G. In what follows, we
will often not differentiate between a signed graph G and its signed adjacency matrix AG. For
graphs G,H , let G⊕H denote the disjoint union of two graphs G,H We will assume familiarity
with basic group theory. For groups G,H , we write H ≤ G if H is a subgroup of G. For a set T ,
let 2T denote the power set of T . Throughout, let Sn denote the symmetric group on n letters. For
two signed graphs Σ, H , let FH(Σ) = {G = (V (Σ), E(G)) | E(G) ⊆ E(Σ), G ∼= H} be the set
of signed subgraphs of Σ isomorphic to H . For a permutation σ ∈ Sn, we write Pσ ∈ Rn×n to
denote the row permutation matrix associated with σ. For k ≥ 3, let Ck denote the cycle graph
on k vertices.

For signed graphsG,H , a signed graph isomorphism (or just isomorphism) is a graph isomor-
phism that preserve the signs of the edges. For any set U ⊂ [n]× [n] and matrix A ∈ Rn×n, we
write AU to denote the matrix obtained by setting the entries (AU)i,j = Ai,j for (i, j) ∈ U , and
(AU)i,j = 0 otherwise. A set U ⊂ [n] × [n] is called symmetric if (i, j) ∈ U ⇐⇒ (j, i) ∈ U .
We call U simple if it does not contain any elements of the form (i, i). We will sometimes refer
to a simple symmetric U by the underlying simple undirected graph induced U .

Subgraph Equivalence We now formalize the indistinguishably property which we will re-
quire. For matrices A,B, when thought of as adjacency matrices of graphs, this property can be
thought of as a more general version of “locally indistinguishability”, in the sense that, for any
small subgraph H of A, there is a unique subgraph of B that is isomorphic to H . The following
definition is more general, in the sense that a subgraph can also have “zero valued edges”, cor-
responding to the fact that an algorithm can learn of the non-existence of edges, as well as their

483

existence.

Definition 9.5.1 (Sub-graph Equivalence). Fix any family U of symmetric subsets U = {Ui}i ∈
2[n]×[n], and let Γ ≤ Sn be a subgroup of the symmetric group on n letters. Let A,B ∈ Rn×n.

Then we say that A is (U ,Γ)-subgraph isomorphic to B, and write A ∼=U ,Γ B, if for every

Ui ∈ U there is a bijection ψi : Γ→ Γ such that

(
PσAPT

σ

)
Ui

=
(
Pψi(σ)BPT

ψi(σ)

)
Ui

for all σ ∈ Γ. If G,H are two signed graphs on n vertices with adjacency matrices AG,AH ,

then we say that G is (U ,Γ)-subgraph equivalent to H , and write G ∼=U ,Γ H , if AG
∼=U ,Γ AH .

Note we do not require the Ui’s to be simple in the above definition. At times, if Γ = Sn, then
we may omit Γ and just write G ∼=U H or A ∼=U B.

Example 121. Let G,H be arbitrary graphs on n vertices, and let each U = {Ui} be a simple
graph consisting of a single edge. Then G ∼=U ,Sn H if and only if |E(G)| = |E(H)|.

Example 122. Let G,H be arbitrary graphs on n vertices, and let U = {Ui} be a single graph,
where Ui is a triangle on any three vertices. Then G ∼=U ,Sn H if and only if the number of
induced subgraphs on three vertices that are triangles, wedges, and single edges, are each the the
same in G as in H .

In what follows, we will consider graphs that are U subgraph isomorphic, for a certain family
of classes U , which we now define. In what follows, recall that the matching number ν(G) of
a graph G is the size of a maximum matching in G, or equivalently the maximum size of any
subset of pairwise vertex disjoint edges in G.

Definition 9.5.2. For 1 ≤ t ≤ n, let U tn be the set of all undirected, possibly non-simple graphs

Ui on n vertices, with the property that after removing all self-loops, Ui does not contains any

set of t vertex disjoint edges. Equivalently, after removing all self-loops from Ui, the matching

number ν(Ui) of Ui is less than t.

In other words, U tn is the set of graphs with no set of t pair-wise non-adjacent edges e1, . . . , et

such that each ei is not a self loop. Notice by the above definition that U tn ⊂ U t+1
n . We will also

need the following definition.

Definition 9.5.3. For any n,m ≤ 1, let Γn,m ≤ Snm be the subgroup defined Γn,m = {σ ∈

484

Snm | σ(i, j) = (π(i), j), π ∈ Sn}, where the tuple (i, j) ∈ [n] × [m] indexes into [nm] in the

natural way.

Notice in particular, if A ∈ Rn×n and D ∈ Rm×m, then we have

{Pσ(A⊗D)PT
σ | σ ∈ Γn,m} = {(Pπ ⊗ IIm)(A⊗D)(Pπ ⊗ IIm)T | π ∈ Sn}

Note also by elementary properties of Kronecker products, we have (Pπ ⊗ IIm)(A ⊗D)(Pπ ⊗
IIm)T = (PπAPT

π)⊗D. For such a σ ∈ Γn,m, we write σ = π ⊗ id, where π ∈ Sn

Lemma 9.5.4. Fix any t,m ≥ 1, and let A,B ∈ Rn×n be matrices with A ∼=Utn,Sn B, where U tn
is defined as above, and let T ∈ Rm×m be any matrix. Then A ⊗ T ∼=Utnm,Γn,m B ⊗ T, where

Γ ≤ Snm is as defined above.10

Proof. Fix any U ′i ∈ U tnm. Note that every edge of U ′i corresponds to a unique edge of a graph
on n vertices. This can be seen as every edge of U ′i is of the form ((i1, j1), (i2, j2)) where
i1, i2 ∈ [n], j1, j2 ∈ [m], which corresponds to the edge (i1, i2) ∈ [n]× [n]. So let Ui ⊂ [n]× [n]
be the set of all such edges induced by the edges of U ′i . Observe, of course, that many distinct
edges of U ′i could result in the same edge of Ui. We claim that Ui ∈ U tn. Suppose this was not the
case, and let e1, . . . , et ∈ Ui be vertex disjoint non-self loop edges, where e` = (i`, j`), i` 6= j`.
Then for each ` ∈ [t], there must be at least one edge e′` ∈ U ′i such that e′` = ((i`, a`)(j`, b`)) ∈ U ′i ,
and we can fix e′` to be any such edge. Then since each vertex i` ∈ [n] occured in at most one
edge of e1, . . . , et by assumption, it follows that each vertex (i`, j`) ∈ [n] × [m] occurs at most
once in e′1, . . . , e

′
t, which contradictts the fact that the U ′i ∈ U tnm.

Now that we have Ui ∈ U tn, since A ∼=Utn,Sn B we have a bijection function ψi : Sn → Sn

such that
(
PπAPT

π

)
Ui

=
(
Pψi(π)BPT

ψi(π)

)
Ui

. We now define the mapping ψ̂i : Γn,m → Γn,m by

ψ̂i(π ⊗ id) = ψi(π)⊗ id, and show that it satisfies the conditions of Definition 9.5.1. Now note
that each σ = π ⊗ id ∈ Γn,m satisfies Pσ = Pπ ⊗ II, and so Pσ(A⊗T)PT

σ = PπAPT
π ⊗T.

We now claim that for any U ′i ∈ U tnm, if we construct Ui ∈ U tn as above, we have that for any
matrix Z ∈ Rn×n the non-zero entries of (Z)Ui ⊗ T contain the non-zero entries of (Z ⊗ T)U ′i .
As a consequence, if (Z)Ui ⊗ T = (Y)Ui ⊗ T for some other matrix Y ∈ Rn×n, we also have
(Z ⊗ T)U ′i = (Y ⊗ T)U ′i . But the claim in question just follows from the construction of U ′i ,
since for every entry ((i1, j1), (i2, j2)) ∈ U ′i we added the entry (i1, i2) ∈ Ui. Now since we have

10Note that this fact extends naturally to tensoring with rectangular matrices T.

485

that
(
PπAPT

π

)
Ui

=
(
Pψi(π)BPT

ψi(π)

)
Ui

, we also obtain

(
PπAPT

π

)
Ui
⊗T =

(
Pψi(π)BPT

ψi(π)

)
Ui
⊗T

which as just argued implies that

(
PπAPT

π ⊗T
)
U ′i

=
(
Pψi(π)BPT

ψi(π) ⊗T
)
U ′i

Since
(
PπAPT

π ⊗T
)
U ′i

=
(
Pσ(A⊗T)PT

σ

)
U ′i

and (Pψi(π)BPT
ψi(π) ⊗ T)U ′i = (Pψ̂(σ)(B ⊗

T)PT
ψ̂(σ))U ′i , it follows that A⊗T ∼=Utnm,Γn,m B⊗T as required.

The Hard Instance. We now describe now distributions, D1,D2, supported on n× n matrices
A and paramterized by a value k ≥ 1, such that distinguishing D1 from D2 requires Ω(k2)
samples. The distributions are parameterized by three matrices, (B,D,Z), which are promised
to satisfy the properties that B,D ∈ Rd×d with B ∼=Ut

d
,Sd D for some t ≤ d, and Z ∈ Rm×m,

where m = n/(dk). Also define B̃ = B ⊗ Z, D̃ = D ⊗ Z. We now define the distribution.
We first define D1. In D1, we select a random partition of [n] into L1, . . . , Lk, where each
|Li| = n/k exactly. Then for each i ∈ [k], we select a uniformly random σi ∈ Γd,m and set
ALi×Li = PσiB̃PT

σi
, and the remaining elements of A are set to 0. In D2, we perform the

same procedure, but set ALi×Li = PσiD̃PT
σi

. So if A ∼ D1+D2
2 , then A is block-diagonal, with

each block having size n/k. We first demonstrate that for any matrices (B,D,Z) satisfying the
above properties, distinguishing these distributions requires Ω(k2) samples. We assume in the
following that dk divides n, which will be without loss of generality since we can always embed
a small instance of the lower bound with size n′ such that n/2 < n− dk ≤ n′ ≤ n, and such that
dk divides n.

Lemma 9.5.5. Fix any 1 ≤ k, d ≤ n. Let (B,D,Z) be any three matrices such that B,D ∈
R
d×d, B ∼=Ut

d
,Sd D where t = log k, and Z ∈ Rm×m, wherem = n/(dk). Then any non-adaptive

sampling algorithm which receives A ∼ D1+D2
2 where the distributions are defined by the tuple

(B,D,Z) as above, and distinguishes with probability at least 2/3 whether A was drawn from

D1 or D2 must sample Ω(k2) entries of A.

Proof. We show that any algorithm cannot distinguish D1 from D2 with probability greater than
2/3 unless it makes at least ` > C ·k2 queries, for some constantC > 0. So suppose the algorithm

486

makes at most C · k2/100 queries in expectation and is correct with probability 2/3. Then by
Markov’s there is a algorithm that always makes at most ` = Ck2 queries which is correct with
probability 3/5. By Yao’s min-max principle, there is a determinstic algorithm making this many
queries which is correct with probability 3/5 over the distribution D1+D2

2 . So fix this algorithm,
which consists of a single subset U ⊂ [n]× [n] with |U | = `.

We now generate the randomness used to choose the partition L1, . . . , Lk of [n]. Let Ui =
U ∩ Li × Li = {(i, j) ∈ U | i, j ∈ Li}. Let Ei be the event that Ui ∈ U tmd. We first bound
Pr [¬Ei], where the probability is over the choice of the partition {Li}i∈[k]. For ¬Ei, there must
be t pairwise vertex disjoint non-self loop edges e1, . . . , et ∈ U such that ej = (aj, bj) and
aj, bj ∈ Li. In other words, we must have 2t distinct vertices a1, b1, . . . , at, bt ∈ Li. For a fixed
vertex v ∈ [n], this occurs with probability 1/k, and the probability that another u ∈ [n] ∩ Li
conditioned on v ∈ [n] is strictly less than 1/k as have have |Li| = n/k exactly. Thus, the
probability that all 2t vertices are contained in Li can then be bounded 1

k2t . Now there are(
|U |
t

)
≤ `t possible choices of vertex disjoint edges e1, . . . , et ∈ U which could result in Ei

failing to hold, thus Pr [Ei] ≥ 1− `t

k2t and by a union bound

Pr
[
∩ki=1Ei

]
≥ 1− `t

k2t−1

≥ 1− Ctk2t

k2t−1

≥ 1− Ctk

≥ 99
100

(9.31)

Where in the last line, we took C ≤ 1/10 and used the fact that t = log(k). Then if E = ∩ki=1Ei,
we have Pr [E] > 99/100, which we condition on now, along with any fixing of the Li’s that
satisfies E . Conditioned on this, it follows thatUi ∈ Umd for each i ∈ [k]. Using thatB ∼=Ut

d
,Sn D,

we can and apply Lemma 9.5.4 to obtain B⊗Z ∼=Ut
dm
,Γd,m D⊗Z. Thus, for each i ∈ [k] we can

obtain a bijection function ψi : Γd,m → Γd,m such that (PσiB̃PT
σi

)Ui = (Pψi(σi)D̃PT
ψ(σi))Ui for

each σi ∈ Γd,m. Thus we can create a coupling of draws fromD1 with those fromD2 conditioned
on E , so for any possible draw from the remaining randomness of D1, which consists only of
drawing some (σ1, . . . , σk) ∈ Skd generating a matrix A1, we have a unique corresponding draw
(ψ1(σ1), . . . , ψk(σk)) ∈ Skd of the randomness in D2 which generates a matrix A2, such that
(A1)U = (A2)U . Thus conditioned on E , any algorithm is correct on D1+D2

2 with probability
exactly 1/2. Since E occured with probability 99/100, it follows than the algorithm is correct
with probability 51/100 < 3/5, which is a contradiction. Thus we must have ` ≥ Ck2 = Ω(k2)

487

as needed.

We are now ready to introduce our construction of the matrices as required in the prior lemma.
Recall that k ≥ 3, let Ck denote the cycle graph on k vertices.

Fact 9.5.6. Fix any n ≥ 3. We have λmin(C2n+1) = −2 + Θ(1/n2) and λmin(Cn⊕Cn+1) = −2.

Proof. The eigenvalues of the cycle C` are given by 2 cos(2πt
`

) [Chu96] for t = 0, . . . , ` − 1,
which yields the result using the fact that cos(π(1 + ε)) = 1 + Θ(ε2) for small ε

Proposition 9.5.7. Fix any n = n1 + n2. For any t ≤ min{n1, n2}/4, we have Cn ∼=Utn,Sn
Cn1 ⊕ Cn2

Proof. We begin by fixing any set Ui ∈ U tn. For any signed graph Σ and graph G on n vertices
such that the maximum set of vertex disjoint edges in Σ is t ≤ min{n1, n2}/4, let HΣ(G) =
{σ ∈ Sn | PσAΣPT

σ = AH , H ⊂ G} and let H−1
Σ (G) = {σ ∈ Sn | AΣ = PσAHPT

σ , H ⊂ G}.
By Corollary 9.5.11, we have |HΣ(Cn)| = |HΣ(Cn1 ⊕ Cn2)| whenever |Σ| has no set of at
least min{n1, n2}/4 vertex disjoint edges. Since Sn is a group and has unique inverses, we also
have|H−1

Σ (Cn)| = |HΣ(Cn)| = |HΣ(Cn1 ⊕ Cn2)| = |H−1
Σ (Cn1 ⊕ Cn2)|.

We now define a functionψi : Sn → Sn such that (PσACn
PT
σ)Ui = (Pψi(σ)ACn1⊕cn2

PT
ψi(σ))Ui

for every σ ∈ Sn. Now fix any signed graph Σ such that Σ = (PσACn
PT
σ)Ui for some

σ ∈ Sn. Note that the set of π ∈ Sn such that Σ = (PπACnP
T
π)Ui is precisely H−1

Σ (Cn).
Similarly, the set π ∈ Sn such that Σ = (PπACn1⊕Cn2

PT
π)Ui is precisely H−1

Σ (Cn1 ⊕ Cn2).
Also, by construction of U tn, we know that the maximum set of vertex disjoint edges in Ui,
and therefore in Σ is t ≤ min{n1, n2}/4, So by the above, we know there is a bijection
ψΣ
i : H−1

Σ (Cn) → H−1
Σ (Cn1 ⊕ Cn2) for every such realizable matrix Σ. Taking ψi(σ) =

ψ
(PσA

Cn
PTσ)Ui

i (σ) satisfies the desired properties for Cn ∼=Utn,Sn Cn1 ⊕ Cn2 . Notice that this
implies that Cn ∼=Utn,Sn Cn1 ⊕ Cn2 , since Cn and Cn1 ⊕ Cn2 are both obtained from obtained Cn
and Cn1 ⊕ Cn2 by changing every entry with the value −1 to 0.

Proposition 9.5.8. Fix any t > 1, and set either d0 = 4t, and d = 2d0 + 1. Set B = 1/2(ACd +
λIId) and D = 1/2(ACd0⊕Cd0+1 + λIId), where λ = −2 cos(2πd0

2d0+1). Then we have that B is PSD,

λmin(D) < −δ where δ = Θ(1/d2), ‖B‖∞, ‖D‖∞ ≤ 1, and B ∼=Ut
d
,Sd D.

488

Proof. By Proposition 9.5.7, we know C2d0+1 ∼=Ut2d0+1,S2d0+1 Cd0 ⊕ Cd0+1, so to show subgraph
equivalence suffices to show that adding λII2d0+1 to both C2d0+1 and Cd0 ⊕Cd0+1 does not effect
the fact that they are U td0 , Sd0 subgraph-equivalent. But note that this fact is clear, since we have
only changed the diagonal which is still equal to λ everywhere for both B,D. Namely, for any
σ, π ∈ S2d0+1 and i ∈ [2d0 + 1] we have

(
PσBPT

σ

)
(i,i)

=
(
PπDPT

π

)
(i,i)

= λ, thus the subgraph
equivalence between C2d0+1 and Cd0 ⊕ Cd0+1 still holds using the same functions ψi as required
for C2d0+1 ∼=Ut2d0+1,S2d0+1 Cd0 ⊕ Cd0+1. Note that the L∞ bound on the entries follows from the
fact that adjacency matrices are bounded by 1 and zero on the diagonal, λ ≤ 2, and we scale
each matrix down by 1/2. Next, by Fact 9.5.6, we know that B is PSD and λmin(D) = −Θ(1

d2),
which holds still after scaling by 1/2, and completes the proof.

We now state our main theorem, which is direct result of instantiating the general lower
bound of Lemma 9.5.5 with the matrices as described above in Proposition 9.5.8.

Theorem 123. Any non-adaptive sampling algorithm which solves with probability at least 2/3
the PSD testing problem with ε-`2

2 gap must query at least Ω̃(1
ε2

) entries of the input matrix.

Proof. Set k = C 1
ε log6(1/ε) for a small enough constant C > 0. Also set t = log k, d0 = 4t.

d = 2d0 + 1, and as before set m = n/(dk). We first apply Lemma 9.5.5 with Z = 1m×m, and
the matrices B = 1/2(ACd + λIId) and D = 1/2(ACd0⊕Cd0+1 + λIId) from Proposition 9.5.8,
where λ = −2 cos(2πd0

2d0+1). Then by Lemma 9.5.5, using that B ∼=Ut2d0+1,S2d0+1 D via Proposition
9.5.8, it follows that any non-adaptive sampling algorithm that distinguishesD1 fromD2 requires
Ω(k2) samples.

We now demonstrate every instance of D1 and D2 satisfy the desired `2
2-gap as defined in

Problem 2. First, since the eigenvalues of the Kronecker product Y ⊗ Z of any matrices Y,Z
are all pairwise eigenvalues of the matrices Y,Z, it follows that B̃ is PSD as B is PSD by
Proposition 9.5.8 and and 1m×m = 1m(1m)T is PSD. By the same fact and Proposition 9.5.8,
since λ1(1m×m) = m, we have that λmin(D̃) = −Θ(m/(d2)) = −Θ(n

d3k
). Now note that if

A1 ∼ D1, then A1 is a block-diagonal matrix where each block is PSD, thus A1 is PSD. Note
also that if A2 ∼ D2, then A2 is a block-diagonal matrix where each block is has an eigenvalue
smaller than−C ′ n

d3k
for some constant C ′ > 0. Since the eigenvalues of a block diagonal matrix

are the union of the eigenvalues of the blocks, it follows that

489

∑
i:λi(A2)<0

(λi(A2))2 =
k∑
i=1

λmin(D̃)2

≥ k(C ′ n
d3k

)2

=
 (C ′)2 log6(1/ε)
C(8 log(C

ε log6(1/ε)) + 1)6

 · εn2

≥ εn2

(9.32)

Where the last inequality follows from setting the constant C = (C′)2

1006 so that

(C ′)2 log6(1/ε)
C
(
8 log(C

ε log6(1/ε)) + 1
)6 = 1006 log6(1/ε)(

8 log((C′)2

1006ε log6(1/ε)) + 1
)6

≥ 1006 log6(1/ε)(
16 log(1

ε
)
)6

> 1

(9.33)

and using that the first inequality above holds whenever
(

1
ε

)16
≤
(

(C′)2

3·1006ε log6(1/ε)

)8
, which is

true so long as ε < C0 for some constant C0. Note that if ε > C0, then a lower bound of
Ω(1) = Ω(1/ε2) follows from the one heavy eigenvalue `∞ gap lower bound. Thus A1,A2

satisfies the ε-L2 gap property as needed, which completes the proof.

Cn1+n2 is Subgraph Equivalent to Cn1 ⊕ Cn2

In this section, we demonstrate the subgraph equivalence of the the cycle Cn1+n2 and union of
cycles Cn1 ⊕ Cn2 . In order to refer to edges which are not in the cycles Cn1+n2 and Cn1 ⊕ Cn2 ,
it will actually be convenient to show that Cn1+n2 is subgraph equivelant to Cn1 ⊕ Cn2 , where
recall that G for a simple graph G is the result of adding negative edges to G for each edge
e = (u, v) /∈ E(G). Equivalently, the adjacency matrix of G is the result of replacing the 0’s on
the off-diagonal of AG with −1’s. Notice that, by the definition of subgraph equivalence, it does
not matter whether these values are set to 0 or to −1.

490

Figure 9.2: An illustration of the bijection in Lemma 9.5.9, whenH only contains positive edges.
The three colored paths represent the graph H , which must be mapped from C2n to Cn ⊕ Cn.
Since the paths intersect the edges (2n, 1) and (n, n + 1) to be cut, we must first swap the last
four vertices {n − 4, . . . , n} and {2n − 4, . . . , 2n} of C2n before the two splitting points n, 2n,
and then cut the cycle. Note that four is the smallest number of vertices which can be swapped,
without swapping in the middle of a path of H .

Overview of the bijection. We now intuitively describe the bijection of Lemma 9.5.9, which
demonstrates that for any singed graph Σ such that any set of pairwise vertex disjoint edges
{e1, . . . , ek} (i.e. any matching) in Σ has size at most k ≤ min{n1, n2}/4, the number of
subgraphs of Cn1+n2 isomorphic to Σ is the same as the number of subgraphs of Cn1 ⊕ Cn2

isomorphic to Σ. So let H be any subgraph of Cn1+n2 that is isomorphic to Σ. For simplicity,
let n1 = n2, and suppose H contains only positive edges, so that H is actually a subgraph of
the unsigned cycle C2n. Since Σ has at most n/4 edges, Σ ∼= H must be a collection of disjoint
paths. So the problem can be described as an arrangement problem: for each arrangement H of
Σ in C2n, map it to a unique arrangement H ′ of Σ in Cn ⊕ Cn.

We would like to construct such a mapping by “splitting” the big cycle C2n into two smaller
cycles, see Figure 9.2 for an example. Specifically, we could split the cycle C2n down the middle,
cutting the edges (n, n + 1), and (n, 1), and instead connecting the first vertex to the n-th and
the n + 1-st to the 2n-th. Now if H does not contain either of the cut edges, then the resulting
collection of paths will be an isomorphic copy of H living inside of Cn ⊕ Cn. However, if H
does contain such an edge, we cannot cut the cycle here, as the resulting paths inside of Cn⊕Cn
would not be isomorphic. For example see Figure 9.2, where if we just cut the edge between
(n, n+ 1) and rerouted it to (n, 1), then the red cycle with 4 vertices would be disconnected into
a cycle of length three, and an isolated vertex. To handle this, before cutting and rerouting the
edges (n, n + 1) and (2n, 1), we first swap the last i vertices before the cutting points, for some

491

i. Namely, we swap the vertices (n− i, n− i+ 1, . . . , n) with (2n− i, 2n− i+ 1, . . . , 2n) and
then split the graph at the edges (n, n+1) and (2n, 1). For the resulting graphs to be isomorphic,
we cannot swap in the middle of a path, thus the value i is chosen as the smallest i ≥ 0 such that
the edges (n − i − 1, n − i) and (2n − i − 1, 2n − i) do not exist in any path of H . Moreover,
such an i must exist, so long as H has fewer than min{n1, n2} edges (the stronger bound of
min{n1, n2}/4 is only needed for the more general case, where negative edges are included).

One can show that this mapping is actually an involution; namely, given the collection of
paths H ′ in Cn⊕Cn which are obtained from applying the function on H , one can similarly find
the smallest i ≥ 0 such that the edges (n − i − 1, n − i) and (2n − i − 1, 2n − i) are not in
H ′, which must in fact be the same value of i used when mapping H! Then, by swapping the
last i vertices before n and 2n, and then reconnecting Cn ⊕ Cn into a single cycle, one obtains
the original graph H . From this, demonstrating bijectivity becomes relatively straightforward.
Extending this to the case where H is allowed to contain negative edges of C2n follows similar
steps, albiet with a stronger condition on the choice of i. The full proof is now presented below.

Lemma 9.5.9. Fix any n = n1 + n2. Fix any simple graph |Σ|, such that any set of vertex

disjoint edges {e1, . . . , ek} in |Σ| has size at most k ≤ min{n1, n2}/4, and let Σ = (|Σ|, σ)
be any signing of |Σ|. Let FΣ(Cn) denote the set of subgraphs of Cn isomorphic to |Σ|, and

similarly define FΣ(Cn1 ⊕ Cn2). Then we have

∣∣∣FΣ(Cn)
∣∣∣ =

∣∣∣FΣ(Cn1 ⊕ Cn2)
∣∣∣

Proof. Order the vertices’s of the cycle Cn = {1, 2, . . . , n}, which we will describe as the
same vertex set for Cn1 ⊕ Cn2 , where {1, . . . , n1} are the vertices of the first cycle Cn1 and
{n1 + 1, . . . , n} are the vertices of Cn2 . We derive a bijection ϕ : FΣ(Cn) → FΣ(Cn1 ⊕ Cn2).
We describe a point X ∈ FH(Cn) ∪ FΣ(Cn1 ⊕ Cn2) by its (signed) adjacency matrix X ∈
{−1, 0, 1}n×n. Namely, X ∈ {−1, 0, 1}n×n is any matrix obtained by setting a subset of the
entries of ACn1+n2

or ACn1⊕Cn2
equal to 0, such that the signed graph represented by X is iso-

morphic to Σ. In this following, we will always modularly interpret the vertex vn+i = vi for
i ≥ 1.

Thus, we can now think of ϕ as being defined on the subset of the matrices {−1, 0, 1}n×n

given by the adjacency matrices of signed graphs in FΣ(Cn). In fact, it will useful to define
ϕ on a larger domain. Let D ⊂ {−1, 0, 1}n×n be the set of all adjacency matrices for signed
graphs G with the property that any set of vertex disjoint edges {e1, . . . , ek} in G size at most
k ≤ min{n1, n2}/4. Notice that D contains both FΣ(Cn) and FΣ(Cn1 ⊕ Cn2). For a given

492

X ∈ D, we will define ϕ(X) = PσXXPT
σX

for some permutation σX. Since the graph of
PσXXPT

σX
is by definition isomorphic to X, it follows that PσXXPT

σX
∈ D, thus ϕ maps D into

D. So in order to define the mapping ϕ(X), it suffices to define a function φ : D → Sn mapping
into the symmetric group so that ϕ(X) = Pφ(X)XPT

φ(X).

For i = 0, 1, 2, . . . ,minn1,n2 −1, define the permutation σi ∈ Sn as follows. For j ∈
{0, 1, . . . , n1 − i} ∪ {n1 + 1, . . . , n − i}, we set σi(j) = j. If i > 0, then for each 0 ≤ j < i,
we set σi(n1 − j) = n − j and σi(n − j) = n1 − j. In other words, the function σi swaps
the last max{0, i − 1} vertices before the spliting points n1, n of the cycle. Notice that σi is an
involution, so σi(σi) = id and σi = σ−1

i .

We now define our bijection ϕ. For X ∈ D, let i(X) be the smallest value of i ≥ 0 such that
Xn1−i,n1−i+1 = Xn−i,n−i+1 = Xn−i,n1−i+1 = Xn1−i,n−i+1 = 0. Equivalently, i(X) is the small-
est value of i ≥ 0 such that none of the four edges of the cycle ci = (vn1−i, vn1−i+1, vn−i, vn−i+1)
exist in X. We then define ϕ(X) = σi(X) = σX, so that ϕ(X) = Pσi(X)XPT

σi(X)
. Note that

if the maximum number of vertex disjoint edges in X is at most min{n1, n2}/4, then i(X)
must always exist and is at most min{n1, n2}/2 + 1. This can be seen by the fact that for
each i such that i(X) > i + 1, there must be at least one edge with endpoints in the set
{vn1−i, vn1−i+1, vn−i, vn−i+1}, thus for each i ≥ 0 with i < i(X) we can assign an edge ei,
such that e0, e2, e4, . . . , ei(X)−1 are vertex disjoint.

We must first argue that if X ∈ FΣ(Cn), then ϕ(X) ∈ FΣ(Cn1 ⊕ Cn2), namely that the
function maps into the desired co-domain. To do this, we must show that for every (i, j) with
(PσXXPT

σX
)i,j 6= 0, we have (PσXXPT

σX
)i,j = (ACn1⊕Cn2

)i,j . This is equivalent to showing that
for any signed edge e = (vi, vj) ∈ X, vi, vj are connected in Cn if and only if vσX(i), vσX(j) are
connected in Cn1 ⊕ Cn2 . In the proof of this fact, we will only use that X ∈ D.

So suppose vi, vj were connected in Cn, and wlog j > i. First suppose that i /∈ {n, n1}.
Then we have j = i + 1. Since e = (vi, vj) ∈ X is an edge of the subgraph, we know i /∈
{n − i(X), n1 − i(X)} by construction of i(X). Thus (vσX(i), vσX(j)) = (vi′ , vi′+1) for some
i′ /∈ {n1, n}, which is always an edge of Cn1 ⊕Cn2 . If i = n, then j = 1, and we have i(X) > 0,
so σ(i) = n1 and σ(j) = 1, and (vn1 , v1) is an edge of Cn1 ⊕ Cn2 . Similarly, if i = n1, then
j = n1 + 1, and since again necessarily i(X) > 0 we have σ(i) = n, σ(j) = n1 + 1, and
(vn, vn1+1) is an edge of Cn1 ⊕ Cn2 . We now consider the case where (vi, vj) ∈ X is not an
edge in Cn. Suppose for the sake of contradiction that (vσX(i), vσX(j)) is an edge in Cn1 ⊕ Cn2 .
WLOG, i, j are in the first cycle Cn1 . We can write σX(i) = i′, σX(j) = i′ + 1 for some
i′ ∈ {1, 2, . . . , n1}, where i′ + 1 is interpreted as 1 if i′ = n1. If i′ ≤ i(X) − 1, then both i′ = i

and i′ + 1 = i + 1 = j, but (vi, vi+1) is also connected in Cn. If i′ ≥ i(X) + 1, then i′ = i + n2

493

and i′ + 1 = i + n2 + 1 (where i + n2 + 1 is interpreted modularly as 1 if i = n1), and again
vi+n2 and vi+n2+1 are connected in Cn. Finally, if i′ = i(X), then i = i′ and j = i + n2 + 1, but
then we cannot have (vi, vj) ∈ X by construction of i(X), which completes the of the claim that
ϕ maps FΣ(Cn) into FΣ(Cn1 ⊕ Cn2).

We now show that ϕ is injective. To do this, we show that ϕ(ϕ(X)) = X for any X ∈ D
– namely that ϕ is an involution on D. This can be seen by showing that we always have
i(X) = i(ϕ(X)). To see this, observe that i(X) is defined as the first i ≥ 0 such that none
of the four edges of the cycle ci = (vn1−i, vn1−i+1, vn−i, vn−i+1) exist in X. Thus it suffices
to show that for each min{n1, n2} − 1 > i ≥ 0, the number of edges in ci is preserved after
permuting the vertices by σi(X). To see this, note that if i(x) > i, then

(σi(X)(vn1−i), σi(X)(vn1−i+1), σi(X)(vn−i), σi(X)(vn−i+1)) = (vn−i, vn−i+1, vn1−i, vn1−i+1)

which is the same cycle. If i(X) < i, then σi(X) does not move any of the vertices in ci. Finally,
if i(X) = i, then

(σi(X)(vn1−i), σi(X)(vn1−i+1), σi(X)(vn−i), σi(X)(vn−i+1)) = (vn1−i, vn−i+1, vn−i, vn1−i+1)

which again is the same cycle ci (just with the ordering of the vertices reversed). So ϕ(ϕ(X)) =
X for any X ∈ D, so in particular ϕ : FΣ(Cn)→ FΣ(Cn1 ⊕ Cn2) is injective.

To show surjectivity, it suffices to show that if X ∈ FΣ(Cn1 ⊕ Cn2) then ϕ(X) ∈ FΣ(Cn).
Namely, that ϕ can also be defined as a valid function ϕ : FΣ(Cn1 ⊕ Cn2) → FΣ(Cn). Again,
this is equivalent to showing that for any signed edge e = (vi, vj) ∈ X, vi, vj are connected in
Cn1 ⊕ Cn2 if and only if vσX(i), vσX(j) are connected in Cn. Since σX is an involution, this is the
same as asking that for any signed edge e = (vi, vj) ∈ X, vσX(σX(i)), vσX(σX(j)) are connected
in Cn1 ⊕ Cn2 if and only if vσX(i), vσX(j) are connected in Cn. Setting i′ = σX(i), j′ = σX(j),
this states that for all signed edges (vi′ , vj′) ∈ PσXXPσX = Y ∈ D, we have that vi′ , vj′ are
connected in Cn if and only if vσX(i′), vσX(j′) are connected in Cn1 ⊕ Cn2 . But as shown above,
we have that i(X) = i(ϕ(X)), so σX = σY , and then this fact was already proven above for any
Y ∈ D, which completes the proof.

Now for any signed graph Σ on n vertices, let AΣ be its adjacency matrix. Note that we can
equivalently define via FΣ(Cn) = {H ⊆ Cn, | PσAΣPT

σ = AH , σ ∈ Sn}. Here H ⊆ Cn

means H is a subgraph of Cn. On the other hand, we may be interested in the potentially much

494

larger set of all possible permutations σ such that PσAΣPT
σ = AH for some H ⊂ Cn. So

define HΣ(Cn) = {σ | PσAΣPT
σ = AH , H ⊂ Cn, σ ∈ Sn}. It is not difficult to show that

|HΣ(Cn)| = |Aut(Σ)||FΣ(Cn)|, where Aut(Σ) is the set of (signed) graph automorphisms of Σ.

Fact 9.5.10. We have |HΣ(Cn)| = |Aut(Σ)||FΣ(Cn)|.

Proof. Fix any H ⊂ Cn such that PσAΣPT
σ = AH for some σ ∈ Sn. We show that there are ex-

actly |Aut(Σ)| elements σ′ ∈ Sn such that Pσ′AΣPT
σ′ = AH . By definition, Aut(Σ) is the set of

permutations π ∈ Sn with PσAΣPT
σ = AΣ. For every π ∈ Aut(Σ), we have PσPπAΣPπPT

σ =
Pσ◦πAΣPT

σ◦π = AH , and moreover the set of elements |{σ ◦ π | π ∈ Aut(Σ)}| = |Aut(Σ)|
since Sn is a group. Now suppose we have some λ ∈ Sn such that PλAΣPT

λ = AH and
λ /∈ {σ ◦ π | π ∈ Aut(Σ)}. Then PσAΣPT

σ = PλAΣPT
λ , so Pσ−1◦λAΣPT

σ−1◦λ = AΣ, which by
definition implies that σ−1◦λ = x for some x ∈ Aut(Σ). Thus λ = σ◦x ∈ {σ◦π | π ∈ Aut(Σ)},
which is a contradiction.

Corollary 9.5.11. Fix any n = n1 + n2. Fix any simple graph |Σ|, such that any set of vertex

disjoint edges {e1, . . . , ek} in |Σ| has size at most k ≤ min{n1, n2}/4, and let Σ = (|Σ|, σ)
be any signing of |Σ|. Let FΣ(Cn) denote the set of subgraphs of Cn isomorphic to |Σ|, and

similarly define FΣ(Cn1 ⊕ Cn2). Then we have

∣∣∣HΣ(Cn)
∣∣∣ =

∣∣∣HΣ(Cn1 ⊕ Cn2)
∣∣∣

9.5.3 Lower Bounds for Schatten, Ky-Fan, and Tail Error Testing

In this section, we demonstrate how our construction of subgraph equivalent matrices with gaps
in their spectrum result in lower bounds for a number of other spectral testing problems via
Lemma 9.5.5. We begin by proving a lower bound for testing Schatten norms. To do this, we
must first demonstrate that there is a gap in the Schatten 1 norm between a cycle and the union
of two disjoint cycles.

Fact 9.5.12 (Theorem 1 of [Kna09]). Fix any a, b, n ∈ R with sin(b/2) 6= 0. Then we have

n−1∑
k=0

cos(a+ kb) =
sin(nb2)
sin(b2)

cos
(
a+ (n− 1)b

2

)

495

Proposition 9.5.13. Fix any d ≥ 6 be any integer divisible by 4. Then

‖Cd‖S1 = 4 · cos (π/d)
sin(π/d)

Proof. By [Chu96], for any d ≥ 3 the eigenvalues of Cd are given by 2 · cos(2πj
d

) for j =
0, 1, . . . , d− 1. Let a1 = bd/4c, a2 = b3d/4c, a3 = d− a2 − 1.

‖Cd‖1 = 2
d−1∑
j=0

∣∣∣∣cos
(2πj
d

)∣∣∣∣
= 2

 a1∑
j=0

cos
(2πj
d

)
−

a2∑
j=a1+1

cos
(2πj
d

)
+

d−1∑
j=a2+1

cos
(2πj
d

)
= 2

 a1∑
j=−a3

cos
(2πj
d

)
−

a2∑
j=a1+1

cos
(2πj
d

)
(9.34)

We analyze each term in the above via Fact 9.5.12. Firstly:

a1∑
j=−a3

cos
(2πj
d

)
=

a1+a3∑
j=0

cos
(2πj
d
− 2πa3

d

)

= sin((a1 + a3 + 1)π/d)
sin(π/d) cos

(
(a1 + a3)π

d
− 2πa3

d

) (9.35)

Note that if d is divisible by 4, the above becomes 2 cos(π/d)/ sin(π/d). Next, for the second
term, we have

a2∑
j=a1+1

cos
(2πj
d

)
=

a2−a1−1∑
j=0

cos
(

2πj
d
− 2π(a1 + 1)

d

)

= sin((a2 − a1)π/d)
sin(π/d) cos

(
(a2 − a1 − 1)π

d
− 2π(a1 + 1)

d

) (9.36)

Again, note that if d is divisible by 4, the above becomes 2 cos(π/d)/ sin(π/d). Putting these
two equations together, we have that

‖Cd‖1 = 4 · cos (π/d)
sin(π/d)

496

Proposition 9.5.14. Fix any d larger than some constant. Then we have

|‖C8d‖S1 − ‖C4d ⊕C4d‖S1| &
1
d3

Proof. By the prior Lemma, we have ‖Cd‖S1 = 4 cot(π/d) for any d divisible by 4. Thus using
the Taylor expansion of cotangent, we have

‖C8d‖S1 = 4
(

8d
π

+ π

24d + π3

45 · 512 · d3 +O(1/d5)
)

(9.37)

and

‖‖C4d ⊕C4d‖S1 = 2‖C4d‖S1

= 4
(

8d
π

+ π

24d + π3

45 · 128 · d3 +O(1/d5)
) (9.38)

Thus

|‖C8d‖S1 − ‖C4d ⊕C4d‖S1| &
1
d3 (9.39)

Theorem 124. Fix any 1√
n
≤ ε ≤ 1. Then given A ∈ Rn×n with ‖A‖∞ ≤ 1, any non-adaptive

sampling algorithm which distinguishes between the cases

1. ‖A‖S1 > ε0n
1.5

2. ‖A‖S1 < ε0n
1.5 − εn1.5

with probability at least 3/4, where ε0 = Θ̃(ε), must query at least Ω̃(1/ε4) entries of A.

Proof. We use the hard instance D1,D2 as earlier. Set k = C 1
ε2 log9(1/ε) , t = log k, and d = 4k,

and m = n/(dk). We instantiate the matrices (B,D,Z) in the hard instance via B = C2d,D =
Cd ⊕ Cd, and let Z = δi,j for i ≤ j, where δi,j ∈ {−1, 1} are i.i.d. Bernoulli random variables,
so that Z ∈ Rm×m is a symmetric random Bernoulli matrix. Using the fact that ‖Z‖2 ≤ O(

√
n)

with high probability [Ver10], along with the fact that ‖Z‖2
F = n2 deterministically, we have

497

that ‖Z‖S1 > C1m
1.5 with non-zero probability for some constant C1 > 0, as the former two

facts imply that Z has Ω(n) eigenvalues with magnitude Θ(
√
n). Thus, we can deterministically

fix Z to be such a matrix with {1,−1} entries such that ‖Z‖S1 ≥ C1m
1.5. Given this, we have

‖B̃‖S1 = ‖B⊗ Z‖S1 = ‖B‖S1 · ‖Z‖S1 , and so by Proposition 9.5.14, we have

∣∣∣‖B̃‖S1 − ‖D̃‖S1

∣∣∣ ≥ C0
m1.5

d3

for some absolute constant C0 ≥ 0. Note also that we have ‖B‖S1 > Ω(d), where we use the
fact that a constant fraction of the eigenvalues 2 · cos(2πj

d
) for j = 0, 1, . . . , d− 1 of B are Ω(1).

Thus we have ‖B̃‖S1 = dm1.5.

Now by Proposition 9.5.7, we obtain that B ∼=Ut2d,S2d D, and thus B̃ = B ⊗ Z ∼=Ut2d,Γ2d,2dm

D ⊗ Z = D̃ by Lemma 9.5.4. Thus by Lemma 9.5.5, we have that distinguishing D1 from D1

requires Ω(k2) = Õ(1/ε4) samples for any non-adaptive algorithm. It suffices then to show that
if A1 ∼ D1 and A2 ∼ D2, then we have the desired gap in Schatten norms. We have

|‖A1‖S1 − ‖A2‖S1| ≥
k∑
i=1

C0
m1.5

d3

≥ C0
n1.5

d4.5k1/2

≥ εn1.5

(9.40)

Where the last inequality follows setting C large enough, and assuming that 1/ε is larger than
some constant as in Theorem 123. Again, if 1/ε is not larger than some constant, a Ω(1) lower
bound always applies, since an algorithm must read at least one entry of the matrix to have any
advantage. Now note that we also have ‖A1‖S1 = k‖B̃‖S1 = kdm1.5 = n1.5/

√
dk = Θ̃(εn1.5)

as desired. To complete the proof, we can scale down all the entries of the input matrix by 1/2,
which results in the required bounded entry property, and only changes the gap by a constant
factor.

We now present our lower bound for testing Ky-Fan norms. Recall that for a matrix A ∈
R
n×n and 1 ≤ s ≥ n, the Ky-Fan s norm is defined as ‖A‖KF (s) = ∑k

i=1 σi(A), where σi(A) is
the i-th singular value of A.

Theorem 125. Fix any 1 ≤ s ≤ n/(poly log n). Then there exists a fixed constant c > 0 such

that given A ∈ Rn×n with ‖A‖∞ ≤ 1, any non-adaptive sampling algorithm which distinguishes

498

between the cases

1. ‖A‖KF (s) >
c

log(s)n

2. ‖A‖KF (s) < (1− ε0) c
log(s)n

with probability at least 3/4, where ε0 = Θ(1/ log2(s)), must query at least Ω̃(s2) entries of A.11

Proof. The proof is nearly the same as the usage of the hard instance in Theorem 123. Set
k = s, and let d0 = Θ(log s) and d = 2d0 + 1. We apply Lemma 9.5.5 with the hard instance as
instantiated with Z = 1m×m, and the matrices B = 1/4(ACd−2IId) and D = 1/4(ACd0⊕Cd0+1−
2IId). Notice that since the eigenvalues of Cd are given by 2 · cos(2πj

d
) for j = 0, 1, . . . , d − 1

[Chu96], we have λmin(ACd) = −2 cos(2πd0
2d0+1) = −2 + Θ(1/ log2(1/ε)), λmin(ACd0⊕Cd0+1) =

−2, and λmax(ACd) = λmax(ACd0⊕Cd0+1) = 2. Thus ‖D‖2 = 4 and ‖B‖2 = 4 − Θ(1/d2), and
moreover ‖D⊗ Z‖2 = 4m ‖B⊗ Z‖2 = 4m(1− Θ(1/ log2(1/ε))). Thus if A1 ∼ D1, we have
‖A1‖KF (s) >

∑k
i=1 4m = 4km, and ‖A2‖KF (s) < 4km(1 − Θ(1/ log2(1/ε))). The proof then

follows from the Ω(k2) lower bound for this hard instance via Lemma 9.5.5.

We now present our lower bound for testing the magnitude of the s-tail ‖A −As‖2
F , where

As = UΣsVT is the truncated SVD (the best rank-s approximation to A). Note that ‖A −
As‖2

F = ∑
j>s σ

2
j (A).

Theorem 126. Fix any 1 ≤ s ≤ n/(poly log n). Then there exists a fixed constant c > 0
(independent of ε), such that given A ∈ Rn×n with ‖A‖∞ ≤ 1, any non-adaptive sampling

algorithm which distinguishes between the cases

1. ‖A−As‖2
F >

c
log(s) ·

n2

s

2. ‖A−As‖2
F < (1− ε0) · c

log(s) ·
n2

s

with probability at least 3/4, where ε0 = Θ̃(1), must query at least Ω̃(s2) entries of A.

Proof. We set s = k, and use the same hard instance as in Theorem 125 above. Note that
if D1,D2 are defined as in Theorem 125, if A1 ∼ D1, As ∼ Ds, we have

∑s
i=1 λi(A1) =

s(4m)2 = 16n2/(sd2) and
∑s
i=1 λi(A2) = 16n2/(sd2)(1 − Θ(1/ log2 s)). Now note that

‖A1‖2
F = ‖A2‖2

F = kdm2 = n2/(dk) = n2/(ds), using that each of the single cycle and union
of two smaller cycles has d edges, so the Frobenius norm of each block is dm2 in both cases.

11Ω̃ hides log(s) factors here.

499

Using that d = Θ(log s), we have that if ‖(A1) − (A1)s‖2
F > n2/(ds) − 16n2/(sd2) = c n2

s log(s)

for some constant c > 0, and ‖(A2) − (A2)s‖2
F > n2/(ds) − 16n2/(sd2)(1 − Θ(1/ log2 s)) =

c n2

s log(s) + Θ̃(n2

s
), which completes the proof after applying Lemma 9.5.5.

9.5.4 Lower Bound For Estimating Ky-Fan of AAT via Submatrices

In this section, we demonstrate a Ω(1/ε4) query lower bound for algorithms which estimate
the quantity

∑k
i=1 σ

2
i (A) = ‖AAT‖KF (k) for any k ≥ 1 by querying a sub-matrix. The fol-

lowing lemma as a special case states that for ε = Θ(1/
√
n), additive εn2 approximation of

‖AAT‖KF (k) requires one to read the entire matrix A.

Lemma 9.5.15. Fix any 1 ≤ k ≤ n, and fix any 100√
n
≤ ε ≤ 1/4. Any algorithm that queries a

submatrix AS×T of A ∈ Rn×n with ‖A‖∞ ≤ 1 and distinguishes with probability at least 4/5
between the case that either:

•
∑k
i=1 σ

2
i (A) > n2/2 + εn2.

•
∑k
i=1 σ

2
i (A) ≤ n2/2

must make |S| · |T | = Ω(1/ε4) queries to the matrix A.

Proof. We design two distributions D1,D2. If A1 ∼ D1, we independently set each row of A1

equal to the all 1′s vector with probability p1 = 1/2 + 2ε, and then return either A = A1 or
A = AT

1 with equal probability. If A2 ∼ D2, we independently set each row of A2 equal to the
all 1′s vector with probability p2 = 1/2 − 2ε, and then return either A = A2 or A = AT

2 with
equal probability. Our hard instance then draws A ∼ D1+D2

2 from the mixture. First note that in
both cases, we have ‖A‖2

2 = ‖A‖2
F = ∑k

i=1 σ
2
i (A), since the matrix is rank 1. Since 100√

n
≥ ε,

by Chernoff bounds, we have that if A1 ∼ D1 then
∑k
i=1 σ

2
i (A) > n2/2 + εn2 with probability

at least 99/100. Similarly, we have that if A2 ∼ D2 then
∑k
i=1 σ

2
i (A) ≤ n2 with probability at

least 99/100.

Now suppose that such an algorithm sampling |S| · |T | < c2

ε4
entries exists, for some constant

c > 0. Then by Yao’s min-max principle, there is a fixed submatrix S, T ⊂ [n] such that, with
probability 9/10 over the distribution D1+D2

2 , the algorithm correctly distinguishes D1 from D2

given only AS×T . Suppose WLOG that |S| ≤ c
ε2

. Then consider the case only when A1 or A2 is
returned by either of the distributions, and not their transpose, which occurs with probability at
least 1/2. ThenAS×T is just a set of |S| rows, each of which are either all 0’s or all 1’s. Moreover,
each row is set to being the all 1’s row independently with probability p1 in the case of D2, and

500

p2 in the case of D2. Thus, by Independence across rows, the behavior of the algorithm can be
assumed to depend only on the number of rows which are set to 1. Thus, in the case of D1 the
algorithm receives X1 ∼ Bin(|S|, p1) and in D2 the algorithm receives X2 ∼ Bin(|S|, p2).
Then if dTV (X1, X2) is the total variational distance between X1, X2, then by Equation 2.15 of
[AJ06], assuming that ε

√
|S| is smaller than some constant (which can be obtained by setting c

small enough), we have
dTV (X1, X2) ≤ O(ε

√
|S|)

Which is at most 1/100 for c a small enough constant. Thus any algorithm can correctly distin-
guish these two distributions with advantage at most 1/100. Since we restricted our attention to
the event when rows were set and not columns, and since we conditioned on the gap between the
norms which held with probability 99/100, it follows that the algorithm distinguishes D1 from
D2 with probability at most 1/2 + 1/4 + (2/100) < 4/5, which completes the proof.

9.6 Proof of Eigenvalue Identity

Proposition 9.6.1. Let A ∈ Rn×n be any real symmetric matrix. Then minB�0 ‖A − B‖2
F =∑

i:λi(A)<0 λ
2
i (A).

Proof. Let gi be the eigenvector associated with λi = λi(A). First, setting B = ∑
i:λi(A)≥0 λigig

>
i ,

which is a PSD matrix, we have ‖A − B‖2
F = ‖∑i:λi(A)<0 λi(gig>i A)‖2

2 = ∑
i:λi(A)<0 λ

2
i (A),

where the second equality follows from the Pythagorean Theorem, which proves that minB�0 ‖A−
B‖2

F ≤
∑
i:λi(A)<0 λ

2
i (A). To see the other direction, fix any PSD matrix B, and let Z = B−A.

Then Z + A � 0, where � is the Lowner ordering, thus Z � −A, which by definition implies
that x>Zx ≥ −x>Ax for all x ∈ Rn. Then by the Courant-Fischer variational characterization
of eigenvalues, we have that λi(Z) ≥ −λi(A) for all i. In particular, |λi(Z)| ≥ |λi(A)| for all
i such that λi(A) < 0. Thus ‖Z‖2

F = ∑
i λ

2
i (Z) ≥ ∑

i:λi(A)<0 λ
2
i (Z) ≥ ∑

i:λi(A)<0 λ
2
i (A), which

completes the proof.

501

502

Chapter 10

Kronecker Product Regression and
Low-Rank Approximation

We now shift our perspective from the property testing framework to a more traditional compu-
tational model, where instead of minimizing the number of queries we make to the matrix, our
goal is to solve some numerical linear algebra task as quickly as possible. For the remainder of
Part II, we will focus on two fundamental linear algebraic problems: regression and low-rank

approximation. In this section, we study the problem of solving `p regression and low rank ap-
proximation when the design matrix is a Kronecker product of several smaller matrices. The
materials in this chapter are based on our paper [DJS+19].

In the traditional setting for over-constrained `p regression, we are given a matrix A ∈ Rn×d

with n � d, and a vector b ∈ Rd, and are tasked with finding a x solution to the optimization
problem:

min
x∈Rd
‖Ax− b‖p

While in general this problem requires Ω(nnz(A)) time [W+14]1, in recent years a prolific
line of work has applied sketching to solve regression and low rank approximation in sublinear

time when the design matrix A admits nice structural properties [SWZ16, LHW17, DSSW18,
SWZ19, SW19, BW18, BCW20, AKK+20a]. Common examples include when A is a PSD or
Vandermonde matrix, or is given as a tensor product of several smaller matrices.

This focus of this chapter falls under the umbrella of the above line of work. Specifically,
we study the Kronecker product regression problem, in which the design matrix is a Kronecker

1recall nnz(A) is the number of non-zero entries in A, i.e., the input sparsity.

503

product of two or more matrices. Namely, A = A1⊗A2⊗· · ·⊗Aq, and one is given as input the
matrices Ai ∈ Rni×di . Note that for such a product, we have A ∈ Rn×d where n = n1 · · ·nq and
d = d1 · · · dq, so the design matrix grows exponentially in the number of factors. Even computing
such a product, let alone solving regression with it, is extremely expensive computationally.

The study of fast regression on such matrices was initiated by Diao, Song, Sun, and Woodruff
[DSSW18], who gave an algorithm which runs in time faster than forming the Kronecker product
A ∈ Rn1···nq×d1···dq . Specifically, for p = 2 they achieve a running time of O(∑q

i=1 nnz(Ai) +
nnz(b)), which is sublinear in the sparsity of A, but may still require Ω(n) time due to the
depenedency on nnz(b). For 1 ≤ p < 2, their runtime is suffers additional polynomial factors;
for instance, for p = 1, q = 2 and n1 = n2, their runtime is O(n3/2

1 poly(d1d2) + nnz(b)).

In this chapter, we provide significantly faster algorithms for Kronecker product regression.
For p = 2, our running time is O(∑q

i=1 nnz(Ai)), which has no dependence on nnz(b). For
1 ≤ p < 2, our running time is O(∑q

i=1 nnz(Ai) + nnz(b)), which matches the prior best
running time for p = 2. Additionally, we study the related all-pairs regression problem, where
given A ∈ Rn×d, b ∈ Rn, one wants to solve minx∈Rd ‖Āx − b̄‖p, where Ā ∈ Rn2×d and
b̄ ∈ Rn2 consist of all pairwise differences of the rows of A and b, respectively. We give an
O(nnz(A)) time algorithm for p ∈ [1, 2], improving the Ω(n2) time required to form Ā. Finally,
we initiate the study of Kronecker product low rank where the goal is to output a low rank
approximation to a Kronecker product matrix A = A1 ⊗ · · · ⊗Aq. We give algorithms which
run in O(∑q

i=1 nnz(Ai)) time, significantly faster than computing A.

Highlighted Contributions

The main contributions of this chapter as as follows:

• We design the first input-sparsity runtime algorithms for Kronecker product `p regression
for 1 ≤ p < 2, and low-rank approximation (Section 10.2)

• We improve the state of the art runtime for Kronecker product `2 regression by removing
the dependency on nnz(b) from the runtime (Section 10.2.2)

• We initiate the study of Kronecker product low rank approximation, and give input sparsity
O(∑q

i=1 nnz(Ai)) time algorithms for this problem (Section 10.4).

504

10.1 Background

In the q-th order Kronecker product regression problem, one is given matrices A1,A2, . . . ,Aq,
where Ai ∈ Rni×di , as well as a vector b ∈ Rn1n2···nq , and the goal is to obtain a solution to the
optimization problem:

min
x∈Rd1d2···dq

‖(A1 ⊗A2 · · · ⊗Aq)x− b‖p

Kronecker product regression is a special case of ordinary regression in which the design ma-
trix is highly structured. Such matrices naturally arise in applications such as spline regression,
signal processing, and multivariate data fitting. We direct the reader to [VL92, VLP93, GVL13,
DSSW18] for further background and applications of Kronecker product regression. Our focus
is on the over-constrained regression setting, when ni � di for each i, and so the goal is to have
a small running time dependence on the ni’s. This is the primary setting in which such Kronecker
products arise, and is the standard setting for the application of sketching techniques to big-data
NLA tasks (we direct the reader to[Mah11, W+14] for surveys)

The results of Diao, Song, Sun, and Woodruff [DSSW18] utilized sketching techniques to
output an x ∈ Rd1d2···dq with objective function at most (1+ε)-times larger than optimal, for both
least squares (i.e., p = 2) and least absolute deviation (i.e., p = 1) Kronecker product regression.
For least squares regression, the algorithm of [DSSW18] achieves O(∑q

i=1 nnz(Ai) + nnz(b) +
poly(d/ε)) time.

Observe that explicitly forming the matrix A1 ⊗ · · · ⊗ Aq would take
∏q
i=1 nnz(Ai) time,

which can be as large as
∏q
i=1 nidi, and so the results of [DSSW18] offer a large computational

advantage. Unfortunately, since b ∈ Rn1n2···nq , we can have nnz(b) = ∏q
i=1 ni, and therefore

nnz(b) is likely to be the dominant term in the running time. This leaves open the question of
whether it is possible to solve this problem in time sub-linear in nnz(b), with a dominant term of
O(∑q

i=1 nnz(Ai)).

For least absolute deviation regression, the bounds of [DSSW18] achieved are still an im-
provement over computing A1 ⊗ · · · ⊗ Aq, though worse than the bounds for least squares
regression. The authors focus on q = 2 and the special case n = n1 = n2. Here, they obtain
a running time of O(n3/2poly(d1d2/ε) + nnz(b))2. This leaves open the question of whether an
input-sparsity O(nnz(A1) + nnz(A2) + nnz(b) + poly(d1d2/ε)) time algorithm exists.

2We remark that while the nnz(b) term is not written in the Theorem of [DSSW18], their approach of leverage
score sampling from a well-conditioned basis requires one to sample from a well conditioned basis of [A1 ⊗A2, b]
for a subspace embedding. As stated, their algorithm only sampled from [A1 ⊗ A2]. To fix this omission, their
algorithm would require an additional nnz(b) time to leverage score sample from the augmented matrix.

505

All-Pairs Regression. In addition to `p regression we also study the related all-pairs regression
problem. Given A ∈ Rn×d, b ∈ Rn, the goal is to approximately solve the `p regression problem

min
x
‖Āx− b̄‖p

where Ā ∈ Rn2×d is the matrix formed by taking all pairwise differences of the rows of A
(and b̄ is defined similarly). Note that one can write Ā as the difference of Kronecker products:
Ā = A ⊗ 1n − 1n ⊗ A, where 1n ∈ Rn is the all ones vector. For p = 1, this is known as
the rank regression estimator, which has a long history in statistics. It is closely related to the
Wilconxon rank test [WL09] in statistics, and enjoys the desirable property of being robust with
substantial efficiency gain with respect to heavy-tailed random errors, while maintaining high
efficiency for Gaussian errors [WKL09, WL09, WPB+18, Wan19]. Recently, the all-pairs loss
function was also used by [WPB+18] as an alternative approach to overcoming the challenges of
tuning parameter selection for the Lasso algorithm. Unfortunately, the rank regression estima-
tor is computationally intensive to compute, even for moderately sized data, since the standard
procedure (for p = 1) is to solve a linear program with O(n2) constraints. In this work, we
demonstrate the first highly efficient algorithm for this estimator.

Low-Rank Approximation. Lastly, we extend our techniques to the Low Rank Approximation
(LRA) problem for Kronecker product matrices.. Here, given a large data matrix A, the goal is to
find a low rank matrix B which well-approximates A. LRA is useful in numerous applications,
such as compressing massive datasets to their primary components for storage, denoising, and
fast matrix-vector products. Thus, designing fast algorithms for approximate LRA has become a
large and highly active area of research; see [W+14] for a survey.

Given q matrices A1, · · · ,Aq where Ai ∈ Rni×di , ni � di, A = ⊗qi=1Ai, the goal is to
output a rank-k matrix B ∈ Rn×d such that ‖B−A‖2

F ≤ (1 + ε) OPTk, where OPTk is the cost
of the best rank-k approximation, n = n1 · · ·nq, and d = d1 · · · dq. Note that the fastest general
purpose algorithms for this problem run in time O(nnz(A) + poly(dk/ε)) [CW17]. However,
as in regression, if A = ⊗qi=1Ai, we have nnz(A) = ∏q

i=1 nnz(Ai), which grows very quickly.
Instead, one might also hope to obtain a running time of O(∑q

i=1 nnz(Ai) + poly(dk/ε)).

10.1.1 Contributions

Our main contribution is an input sparsity time (1 + ε)-approximation algorithm to Kronecker
product regression for every p ∈ [1, 2], and q ≥ 2. Given Ai ∈ Rni×di , i = 1, . . . , q, and b ∈ Rn

506

where n = ∏q
i=1 ni, together with accuracy parameter ε ∈ (0, 1/2) and failure probability δ > 0,

the goal is to output a vector x′ ∈ Rd where d = ∏q
i=1 di such that

‖(A1 ⊗ · · · ⊗Aq)x′ − b‖p ≤ (1 + ε) min
x
‖(A1 ⊗ · · · ⊗Aq)x− b‖p

holds with probability at least 1− δ. In this chapter, we prove the following two Theorems:

Theorem 127 (Restatement of Theorem 131, Kronecker product `2 regression). Let D ∈ Rn×n

be the diagonal row sampling matrix generated via Proposition 10.2.4, with m = Θ(1/(δε2))
non-zero entries, and let A = ⊗qi=1Ai, where Ai ∈ Rni×di , and b ∈ Rn, where n = ∏q

i=1 ni and

d = ∏q
i=1 di. Then we have let x̂ = arg minx∈Rd ‖DAx−Db‖2, and let x∗ = arg minx′∈Rd ‖Ax−

b‖2. Then with probability 1− δ, we have

‖Ax̂− b‖2 ≤ (1 + ε)‖Ax∗ − b‖2

Moreover, the total runtime requires to compute x̂ is

Õ

(q∑
i=1

nnz(Ai) + poly(dq/(δε))
)
.

Theorem 128 (Restatement of Theorem 132, Kronecker product `p regression). Fix 1 ≤ p < 2.

Then for any constant q = O(1), given matrices A1,A2, · · · ,Aq, where Ai ∈ Rni×di , let

n = ∏q
i=1 ni, d = ∏q

i=1 di. Let x̂ ∈ Rd be the output of Algorithm 8. Then

‖(A1 ⊗A2 ⊗ · · · ⊗Aq)x̂− b‖p ≤ (1 + ε) min
x∈Rn

‖(A1 ⊗A2 ⊗ · · · ⊗Aq)x− b‖p

holds with probability at least 1− δ. In addition, our algorithm takes

Õ

((q∑
i=1

nnz(Ai) + nnz(b) + poly(d log(1/δ)/ε)
)

log(1/δ)
)

time to output x̂ ∈ Rd.

Observe that in both cases, this running time is significantly faster than the time to write
down A1 ⊗ · · · ⊗Aq. For p = 2, up to logarithmic factors, the running time is the same as the
time required to simply read each of the Ai. Notice further that this is sub-linear in the input
size, since it does not depend on nnz(b). Moreover, in the setting p < 2, q = 2 and n1 = n2

considered in [DSSW18], our algorithm offers a substantial improvement over their running time
of O(n3/2poly(d1d2/ε)). In addition, we empirically evaluate our Kronecker product regression

507

algorithm on exactly the same datasets as those used in [DSSW18]. For p ∈ {1, 2}, the accuracy
of our algorithm is nearly the same as that of [DSSW18], while the running time is significantly
faster.

For the all-pairs (or rank) regression problem, we first note that for A ∈ Rn×d, one can
rewrite Ā ∈ Rn2×d as the difference of Kronecker products Ā = A ⊗ 1n − 1n ⊗ A where
1n ∈ Rn is the all ones vector. Since Ā is not a Kronecker product itself, our earlier techniques
for Kronecker product regression are not directly applicable. Therefore, we utilize new ideas, in
addition to careful sketching techniques, to obtain an Õ(nnz(A) + poly(d/ε)) time algorithm for
p ∈ [1, 2], which improves substantially on the O(n2d) time required to even compute Ā, by a
factor of at least n. Formally, our result for all-pairs regression is as follows:

Theorem 129 (Restatement of Theorem 133). Given A ∈ Rn×d and b ∈ Rn, for p ∈ [1, 2]
there is an algorithm for the All-Pairs Regression problem that outputs x̂ ∈ Rd such that with

probability 1− δ we have

‖Āx̂− b̄‖p ≤ (1 + ε) min
x∈Rd
‖Āx− b̄‖p

Where Ā = A⊗ 1− 1⊗A ∈ Rn2×d and b̄ = b⊗ 1− 1⊗ b ∈ Rn2
. For p < 2, the running time

is Õ(nd+ poly(d/(εδ))), and for p = 2 the running time is O(nnz(A) + poly(d/(εδ))).

Our main technical contribution for both our `p regression algorithm and the rank regres-
sion problem is a novel and highly efficient `p sampling algorithm. Specifically, for the rank-
regression problem we demonstrate, for a given x ∈ Rd, how to independently sample s en-
tries of a vector Āx = y ∈ R

n2 from the `p distribution (|y1|p/‖y‖pp, . . . , |yn2 |p/‖y‖pp) in
Õ(nd + poly(ds)) time. For the `p regression problem, we demonstrate the same result when
y = (A1 ⊗ · · · ⊗Aq)x− b ∈ Rn1···nq , and in time Õ(∑q

i=1 nnz(Ai) + nnz(b) + poly(ds)). This
result allows us to sample a small number of rows of the input to use in our sketch. Our algo-
rithm draws from a large number of disparate sketching techniques, such as the dyadic trick for
quickly finding heavy hitters [CM05, KNPW11b, LNNT16, NS19], and the precision sampling
framework from the streaming literature [AKO11].

For the Kronecker Product Low-Rank Approximation (LRA) problem, we give an input spar-
sityO(∑q

i=1 nnz(Ai)+poly(dk/ε))-time algorithm which computes a rank-k matrix B such that
‖B − ⊗qi=1Ai‖2

F ≤ (1 + ε) minrank−k B′ ‖B′ − ⊗qi=1Ai‖2
F . Note again that the dominant term∑q

i=1 nnz(Ai) is substantially smaller than the nnz(A) = ∏q
i=1 nnz(Ai) time required to write

down the Kronecker ProductA, which is also the running time of state-of-the-art general purpose

508

LRA algorithms [CW17, MM13, NN13]. Thus, our results demonstrate that substantially faster
algorithms for approximate LRA are possible for inputs with a Kronecker product structure.

Theorem 130 (Restatement of Theorem 134). For any constant q ≥ 2, there is an algorithm

which runs in time O(∑q
i=1 nnz(Ai) + dpoly(k/ε)) and outputs a rank k-matrix B in factored

form such that ‖B−A‖F ≤ (1 + ε) OPTk with probability 9/10.

Our technical contributions employed towards the proof of Theorem 134 involve demon-
strating that useful properties of known sketching matrices hold also for the Kronecker prod-
uct of these matrices. Specifically, we demonstrate the Kronecker products of the well-known
count-sketch matrices satisfy the property of being Projection Cost Preserving Sketches (PCP).
By properties of the Kronecker product, we can quickly apply such a sketching matrix to the
input matrix A, and the PCP property will allow us to bound the cost of the best low rank ap-
proximation obtained via the sketch.

10.1.2 Useful Sketches and Well Conditioned Bases

In this section, we introduce several useful sketching primitives which will be used throughout
this chapter.

Stable Transformations As we did in Part I, we will make substantial use of the p-stable
distribution Dp in this chapter (see background on p-stables in Section 2.2.2). Recall that Dp
has the property that if z1, . . . , zn ∼ Dp are i.i.d., and a ∈ Rn, then

∑n
i=1 ziai ∼ z‖a‖p where

‖a‖p = (∑n
i=1 |ai|p)1/p, and z ∼ Dp.

Definition 10.1.1 (Dense p-stable Transform, [CDMI+13, SW11]). Let p ∈ [1, 2]. Let S =
σ ·C ∈ Rm×n, where σ is a scalar, and each entry of C ∈ Rm×n is chosen independently from

Dp.

We will also need a sparse version of the above.

Definition 10.1.2 (Sparse p-Stable Transform, [MM13, CDMI+13]). Let p ∈ [1, 2]. Let Π =
σ · SC ∈ Rm×n, where σ is a scalar, S ∈ Rm×n has each column chosen independently and

uniformly from the m standard basis vectors of Rm, and C ∈ Rn×n is a diagonal matrix with

diagonals chosen independently from the standard p-stable distribution. For any matrix A ∈
Rn×d, ΠA can be computed in O(nnz(A)) time.

509

One nice property of p-stable transformations is that they provide low-distortion `p embed-

dings.

Lemma 10.1.3 (Theorem 1.4 of [WW19]; see also Theorem 2 and 4 of [MM13] for earlier
work3). Fix A ∈ Rn×d, and let S ∈ Rk×n be a sparse or dense p-stable transform for p ∈ [1, 2),

with k = Θ(d2/δ). Then with probability 1− δ, for all x ∈ Rd:

‖Ax‖p ≤ ‖SAx‖p ≤ O(d log d)‖Ax‖p

We simply call a matrix S ∈ Rk×n a low distortion `p embedding for A ∈ Rn×d if it satisfies
the above inequality for all x ∈ Rd.

Leverage Scores & Well Condition Bases. We first recall the definition of `2 leverage scores
from Chapter 2.

Definition 2.4.1 (Leverage Scores). Given a matrix A ∈ Rn×d, let A = UΣV> be its

singular value decomposition. For each i ∈ [n], we define the i-th leverage score of A, denoted

τi, by τi = ‖Ui,∗‖2
2. Equivalently, of A = QR is the QR-decomposition of A, we have AR−1 =

U, thus τi = ‖(AR−1)i,∗‖2
2.

We now introduce the notion of a well-conditioned basis for a matrix A ∈ Rn×d.

Definition 10.1.4 ((`p, α, β) Well-Conditioned Basis, [Cla05]). Given a matrix A ∈ Rn×d, we

say U ∈ Rn×d is an (`p, α, β) well-conditioned basis for the column span of A if the columns

of U span the columns of A, and if for any x ∈ Rd, we have α‖x‖p ≤ ‖Ux‖p ≤ β‖x‖p, where

α ≤ 1 ≤ β. If β/α = dO(1), then we simply say that U is an `p well conditioned basis for A.

The following fact demonstrates that the left singular vectors of A yield a `p well-conditioned
basis for A.

Fact 10.1.5 ([WW19, MM13]). Let A ∈ Rn×d, and let SA ∈ Rk×d be a low distortion `p

embedding for A (see Lemma 10.1.3), where k = O(d2/δ). Let SA = QR be the QR decompo-

sition of SA. Then AR−1 is an `p well-conditioned basis with probability 1− δ.

3In discussion with the authors of these works, the original O((d log d)1/p) distortion factors stated in these
papers should be replaced with O(d log d); as we do not optimize the poly(d) factors in our analysis, this does not
affect our bounds.

510

10.2 Kronecker Product Regression

We first introduce our algorithm for p = 2. Our algorithm for 1 ≤ p < 2 is given in Section
10.2.2. Our regression algorithm for p = 2 is formally stated in Algorithm 7. Recall that our
input design matrix is A = ⊗qi=1Ai, where Ai ∈ Rni×di , and we are also given b ∈ Rn1···nq . Let
n = ∏q

i=1 ni and d = ∏q
i=1 di. The crucial insight of the algorithm is that one can approximately

compute the leverage scores of A given only good approximations to the leverage scores of each
Ai. Applying this fact gives a efficient algorithm for sampling rows of A with probability pro-
portional to the leverage scores. Following standard arguments, we will show that by restricting
the regression problem to the sampled rows, we can obtain our desired (1 ± ε)-approximate
solution efficiently.

Our main theorem for this section is stated below. A full proof of the theorem can be found
Section 10.2.1.

Theorem 131 (Kronecker product `2 regression). Let D ∈ Rn×n be the diagonal row sampling

matrix generated via Proposition 10.2.4, with m = Θ(d/(δε2)) non-zero entries, and let A =
⊗qi=1Ai, where Ai ∈ Rni×di , and b ∈ Rn, where n = ∏q

i=1 ni and d = ∏q
i=1 di. Then let

x̂ = arg minx∈Rd ‖DAx −Db‖2, and let x∗ = arg minx′∈Rd ‖Ax − b‖2. Then with probability

1− δ, we have

‖Ax̂− b‖2 ≤ (1 + ε)‖Ax∗ − b‖2.

Moreover, the total running time required to compute x̂ is Õ(∑q
i=1 nnz(Ai) + (dq/(δε))O(1)).4.

10.2.1 Kronecker Product `2 Regression

We now prove the correctness of our `2 Kronecker product regression algorithm. Specifically, we
prove Theorem 131. To prove correctness, we need to establish several facts about the leverage
scores of a Kronecker product.

Proposition 10.2.1. Let Ui ∈ Rni×di be an orthonormal basis for Ai ∈ Rni×di . Then U =
⊗qi=1Ui is an orthonormal basis for A = ⊗qi=1Ai.

4We remark that the exponent of d in the runtime can be bounded by 3. To see this, first note that the main
computation taking place is the leverage score computation from Proposition 10.2.3. For a q input matrices, we
need to generate the leverage scores to precision Θ(1/q), and thus the complexity from running Proposition 10.2.3
to approximate leverage scores is O(d3/q4) by the results of [CW17]. The remaining computation is to compute
the pseudo-inverse of a d/ε2 × d matrix, which requires O(d3/ε2) time, so the additive term in the Theorem can be
replaced with O(d3/ε2 + d3/q4).

511

Algorithm 7: Our `2 Kronecker Product Regression Algorithm
1 `2 Kronecker Regression({Ai, ni, di}i∈[q], b) //Theorem 131
2 d← ∏q

i=1 di, n←
∏q
i=1 ni, m← Θ(d/(δε2)).

3 Compute approximate leverage scores τ̃i(Aj) for all j ∈ [q], i ∈ [nj].
4 //Proposition 10.2.3
5 Construct diagonal leverage score sampling matrix D ∈ Rn×n, with m non-zero entries
6 //Proposition 10.2.4
7 Compute (via the psuedo-inverse)
8 x̂ = arg minx∈Rd ‖D(A1 ⊗A2 ⊗ · · · ⊗Aq)x−Db‖2
9 Return x̂

Proof. Note that the column norm of each column of U is the product of column norms of the
Ui’s, which are all 1. Thus U has unit norm columns. It suffices then to show that all the
singular values of U are 1 or −1, but this follows from the fact that the singular values of U are
the product of singular values of the Ui’s, which completes the proof.

Corollary 10.2.2. Let A = ⊗qi=1Ai, where Ai ∈ Rni×di . Fix any~i = (i1, . . . , iq) ∈ [n1]× [n2]×
· · · × [nq], and let~i index into a row of A in the natural way. Then the~i-th leverage score of A
is equal to

∏q
j=1 τij(Aj), where τt(B) is the t-th leverage score of a matrix B.

Proof. Note U = ⊗qi=1Ui is an orthonormal basis for A = ⊗qi=1Ai by the prior Proposition.
Now if U~i,∗ is the~i-th row of U, then by fundamental properties of Kronecker products [VL00],
we have ‖U~i,∗‖2 = ∏q

j=1 ‖(Uj)ij ,∗‖2, which completes the proof. Note here that we used the
fact that leverage scores are independent of the choice of orthonormal basis [W+14].

Proposition 10.2.3 (Theorem 29 of [CW17]). Given a matrix A ∈ Rn×d, let τ ∈ Rn be the `2

leverage scores of A. Then there is an algorithm which computes values τ̃1, τ̃2, . . . , τ̃n such that

τ̃i = (1 ± ε)τi simultaneously for all i ∈ [n] with probability 1 − 1/nc for any constant c ≥ 1.

The runtime is Õ(nnz(A) + d3/ε2).

Proposition 10.2.4. Given A = ⊗qi=1Ai, where Ai ∈ Rni×di , set pi = τi(A)∑
j
τj(A) . Then there

is an algorithm which, with probability 1 − 1/nc for any constant c ≥ 1, outputs a diagonal

matrix D ∈ Rn×n with m non-zeros entries, such that Di,i = 1/(mp̃i) with probability p̃i, and

Di,i is zero otherwise, for some p̃i ∈ (1± 1/10)pi(A). The time required is Õ(∑q
i=1 nnz(Ai) +

poly(dq/ε) +mq).

Proof. By Proposition 10.2.3, we can compute approximate leverage scores of each Ai up to

512

error Θ(1/q) in time Õ(nnz(Ai) + poly(d/ε)) with high probability. To sample a leverage score
from A, it suffices to sample one leverage score from each of the Ai’s by Corollary 10.2.2.
The probability that a given row ~i = (i1, . . . , iq) ∈ [n1] × [n2] × · · · × [nq] of A is chosen is∏q
j=1 τ̃(Aj)ij = (1 ± Θ(1/q))qτ~i(A) = (1 ± 1/10)τ~i(A) as needed. Obtaining a sample takes

Õ(1) time per Ai (since a random number needs to be generated toO(log(n))-bits of precision in
expectation and with high probability to obtain this sample), thus O(q) time overall, so repeating
the sampling M times gives the desired additive mq runtime.

The q = 1 version of the following result can be found in [CW17, SWZ19].

Proposition 10.2.5. Let D ∈ Rn×n be the diagonal row sampling matrix generated via Propo-

sition 10.2.4, with m = Θ(1/(δε2)) non-zero entries. Let A = ⊗qi=1Ai as above, and let

U ∈ Rn×r be an orthonormal basis for the column span of A, where r = rank(A). Then

for any matrix B with n rows, we have

Pr
[
‖U>D>DB−U>B‖F ≤ ε‖U‖F‖B‖F

]
≥ 1− δ

Proof. By definition of leverage scores and Proposition 10.2.4, D is a matrix which sample each
row Ui,∗ of U with probability at least (9/10)‖Ui,∗‖2/‖U‖F . Taking the average of m such
rows, we obtain the approximate matrix product result with error O(1/

√
δm) with probability

1− δ by Theorem 2.1 of [KV17].

We now ready to prove the main theorem of this section, Theorem 131
Theorem 131 (Kronecker product `2 regression). Let D ∈ Rn×n be the diagonal row sampling

matrix generated via Proposition 10.2.4, with m = Θ(1/(δε2)) non-zero entries, and let A =
⊗qi=1Ai, where Ai ∈ Rni×di , and b ∈ Rn, where n = ∏q

i=1 ni and d = ∏q
i=1 di. Then we have let

x̂ = arg minx∈Rd ‖DAx −Db‖2, and let x∗ = arg minx′∈Rd ‖Ax − b‖2. Then with probability

1− δ, we have

‖Ax̂− b‖2 ≤ (1 + ε)‖Ax∗ − b‖2

Moreover, the total runtime requires to compute x̂ is

Õ

(q∑
i=1

nnz(Ai) + poly(dq/(δε))
)
.

Proof. Let U be an orthonormal basis for the column span of A. By Lemma 3.3 of [CW09],

513

we have ‖A(x̂ − x∗)‖2 ≤ 2
√
ε‖Ax∗ − b‖2. Note that while Lemma 3.3 of [CW09] uses a dif-

ferent sketching matrix D than us, the only property required for the proof of Lemma 3.3 is that
|U>D>DB −U>B‖F ≤

√
ε/d‖A‖F‖B‖F with probability at least 1 − δ for any fixed matrix

B, which we obtain by Proposition 10.2.5 by having O(d/(δε2)) non-zeros on the diagonal of
D). By the normal equations, we have A>(Ax∗− b) = 0, thus 〈A(x̂− x∗), (Ax∗− b)〉 = 0, and
so by the Pythagorean theorem we have

‖Ax̂− b‖2
2 = ‖Ax∗ − b‖2

2 + ‖A(x̂− x∗)‖2
2 ≤ (1 + 4ε)‖Ax∗ − b‖2

2

Which completes the proof after rescaling of ε. The runtime required to obtain the matrix D is
Õ(∑q

i=1 nnz(Ai) + poly(dq/ε)) by Proposition 10.2.4, where we set D to have m = Θ(d/(δε2))
non-zero entries on the diagonal. Once D is obtained, one can compute D(A + b) in time
O(md), thus the required time is O(δ−1(d/ε)2). Finally, computing x̂ once DA,Db are com-
puted requires a single pseudo-inverse computation, which can be carried out in O(δ−1d3/ε2)
time (since DA now has only O(δ−1(d/ε)2) rows).

10.2.2 Kronecker Product `p Regression

We now consider `p regression for 1 ≤ p < 2. Our algorithm is stated formally in Algorithm
8. Our high level approach follows that of [DDH+09]. Namely, we first obtain a vector x′

which is an O(1)-approximate solution to the optimal solution. This is done by first constructing
(implicitly) a matrix U ∈ Rn×d that is a well-conditioned basis for the design matrix A1 ⊗
· · · ⊗ Aq. We then efficiently sample rows of U with probability proportional to their `p norm
(which must be done without even explicitly computing most of U). We then use the results
of [DDH+09] to demonstrate that solving the regression problem constrained to these sampled
rows gives a solution x′ ∈ Rd such that

‖(A1 ⊗ · · · ⊗Aq)x′ − b‖p ≤ 8 min
x∈Rd
‖(A1 ⊗ · · · ⊗Aq)x′ − b‖p

We define the residual error ρ = (A1 ⊗ · · · ⊗Aq)x′ − b ∈ Rn of x′. Our goal is to sample
additional rows i ∈ [n] with probability proportional to their residual error |ρi|p/‖ρ‖pp, and solve
the regression problem restricted to the sampled rows. However, we cannot afford to compute
even a small fraction of the entries in ρ (even when b is dense, and certainly not when b is
sparse). So to carry out this sampling efficiently, we design an involved, multi-part sketching

514

and sampling routine (described in Section 19). This sampling technique is the main technical
contribution of this section, and relies on a number of techniques, such as the Dyadic trick for
quickly finding heavy hitters from the streaming literature, and a careful pre-processing step to
avoid a poly(d)-blow up in the runtime. Given these samples, we can obtain the solution x̂

after solving the regression problem on the sampled rows, and the fact that this gives a (1 + ε)
approximate solution will follow from Theorem 6 of [DDH+09].

Algorithm 8: Our `p Kronecker Product Regression Algorithm, 1 ≤ p < 2
1 O(1)-approximate `p Regression({Ai, ni, di}i∈[q]) //Theorem 132
2 d← ∏q

i=1 di, n←
∏q
i=1 ni.

3 for i = 1, . . . , q do
4 si ← O(qd2

i)
5 Generate sparse p-stable transform Si ∈ Rsi×n (def 10.1.2) //Lemma 10.1.3
6 Take the QR factorization of SiAi = QiRi to obtain Ri ∈ Rdi×di //Fact 10.1.5
7 Let Z ∈ Rd×τ be a dense p-stable transform for τ = Θ(log(n)) //Definition 10.1.1
8 for j = 1, . . . , ni do
9 Set

ai,j ← medianη∈[τ]

{(
|(AiR−1

i Z)j,η|
θp

)p}
where θp is the median of Dp.

10 Define a distribution D = {q′1, q′1, . . . , q′n} by q′∑q

i=1 ji
∏j−1
l=1 nl

= ∏q
i=1 ai,ji .

11 Let Π ∈ Rn×n denote a diagonal sampling matrix, where Πi,i = 1/q1/p
i with probability

qi = min{1, r1q
′
i} and 0 otherwise, where r1 = Θ(d3/ε2). [DDH+09]

12 Let x′ ∈ Rd denote the solution of
13 minx∈Rd ‖Π(A1 ⊗A2 ⊗ · · · ⊗Aq)x−Πb‖p
14 Return x′ //x′ is an O(1) approx: Lemma 10.2.10
15 (1 + ε)-approximate `p Regression: x′ ∈ Rd

16 Implicitly define ρ = (A1 ⊗A2 ⊗ · · · ⊗Aq)x′ − b ∈ Rn

17 Via Lemma 10.2.14, compute a diagonal sampling matrix Σ ∈ Rn×n such that
Σi,i = 1/α1/p

i with probability αi = min{1,max{qi, r2|ρi|p/‖ρ‖pp}} where
r2 = Θ(d3/ε3).

18 Compute x̂ = arg minx∈Rd ‖Σ(A1 ⊗A2 ⊗ · · · ⊗Aq)−Σb‖p (via convex optimization
methods, e.g., [BCLL18, AKPS19, LSZ19])

19 Return x̂

The `p Regression Algorithm

We now give a complete proof of Theorem 132. Our high level approach follows that of
[DDH+09]. Namely, we first obtain a vector x′ which is a O(1) approximate solution to the

515

optimal, and then use the residual error ρ ∈ Rd of x′ to refine x′ to a (1 ± ε) approximation x̂.
The fact that x′ is a constant factor approximation follows from our Lemma 10.2.10. Given x′,
by Lemma 10.2.14 we can efficiently compute the matrix Σ which samples from the coordinates
of the residual error ρ = (A1 ⊗ · · · ⊗ Aq)x′ − b in the desired runtime. The sampling lemma
is the main technical lemma, and requires a careful multi-part sketching and sampling routine.
Given this Σ, the fact that x̂ is a (1 + ε) approximate solution follows directly from Theorem 6
of [DDH+09]. Our main theorem and its proof is stated below. The proof will utilize the lemmas
and sampling algorithm developed in the secitons which follow.

Theorem 132 (Main result, `p (1 + ε)-approximate regression). Fix 1 ≤ p < 2. Then for any

constant q = O(1), given matrices A1,A2, · · · ,Aq, where Ai ∈ Rni×di , let n = ∏q
i=1 ni,

d = ∏q
i=1 di. Let x̂ ∈ Rd be the output of Algorithm 8. Then

‖(A1 ⊗A2 ⊗ · · · ⊗Aq)x̂− b‖p ≤ (1 + ε) min
x∈Rn

‖(A1 ⊗A2 ⊗ · · · ⊗Aq)x− b‖p

holds with probability at least 1− δ. In addition, our algorithm takes

Õ

((q∑
i=1

nnz(Ai) + nnz(b) + poly(d log(1/δ)/ε)
)

log(1/δ)
)

time to output x̂ ∈ Rd.

Proof. By Lemma 10.2.10, the output x′ in line 16 of Algorithm 8 is an 8 approximation of
the optimal solution, and x′ is obtained in time Õ(∑q

i=1 nnz(Ai) + (dq/ε)O(1)). We then ob-
tain the residual error ρ = (A1 ⊗ · · · ⊗ Aq)x′ − b (implicitly). By Theorem 6 of [DDH+09],
if we let Σ ∈ Rn×n be a row sampling matrix where Σi,i = 1/α1/p

i with probability αi =
min{1,max{qi, r2

|ρi|p
‖ρ‖pp
}, where qi is the row sampling probability used in the sketch Π from

which x′ was obtained, and r2 = O(d3/ε2 log(1/ε)), then the solution to minx ‖Σ(A1 ⊗ · · · ⊗
Aq)x − Σb‖p will be a (1 + ε) approximately optimal solution. By Lemma 10.2.14, we can
obtain such a matrix Σ in time Õ(∑q

i=1 nnz(Ai) + q nnz(b) + (d log(n)/(εδ)O(q2)), which com-
pletes the proof of correctness. Finally, note that we can solve the sketched regression problem
minx ‖Σ(A1 ⊗ · · · ⊗Aq)x−Σb‖p which has O((d log(n)/ε)O(q2)(1/δ)) constraints and d vari-
ables in time O((d log(n)/ε)O(q2)(1/δ)) using linear programming for p = 1, or more generally
interior point methods for convex programming for p > 1 (see [BCLL18, AKPS19, LSZ19] for

516

the recent development of `p solvers).

Now to boost the failure probability from a O(1/δ) to log(1/δ) dependency, we do the fol-
lowing. We run the above algorithm with δ = 1/10, so that our output x̂ ∈ Rd is a (1 + ε)
approximation with probability 9/10, and we repeat this r times with r = O(log(1/δ)) time
to obtain x̂1, x̂2, . . . , x̂r,, and then we repeat another r times to obtain distinct sampling matri-
ces Σ1, . . . ,Σr (note that Σi is not the sampling matrix associated to x̂i in this notation, and
comes from a distinct repetition of the above algorithm). This blows up the overall runtime by
O(log(1/δ)). Now for any vector x ∈ Rd, define the random variable

Xi = |Σi,i(A1 ⊗ · · · ⊗Aq)i,∗x− bi|p

Clearly E [∑i Xi] = ‖(A1 ⊗ · · · ⊗Aq)x− b‖pp. Moreover, we can bound

E
[∑

i

X2
i

]
. poly(d)

(
E
[∑

i

Xi

])2

/r2

which can be seen from the proof of Lemma 9 in [DDH+09], which contains a computation.
Setting r2 = poly(d) large enough, by Chebyshev’s we have that each Σi preserves the cost of
a fixed vector xj with probability 99/100. so with probability 1− δ, after a union bound, for all
i ∈ [r] we have that

medianj‖Σj(A1 ⊗ · · · ⊗Aq)x̂i −Σjb‖p = (1± ε)‖(A1 ⊗ · · · ⊗Aq)x̂i − b‖p

Thus we now have (1 + ε)-error approximations of the cost of each x̂i, and we can output the
x̂i with minimal cost. By Chernoff bounds, at least one x̂i will be a (1 + ε) optimal solution, so
by a union bound we obtain the desired result with probability 1− 2δ as needed.

We start by defining a tensor operation which will be useful for our analysis.

Definition 10.2.6 (((·, . . . , ·), ·) operator for tensors and matrices). Given tensor A ∈ Rd1×d2×···×dq

and matrices Bi ∈ Rni×di for i ∈ [q], we define the tensor ((B1,B2, . . . ,Bq), A) ∈ Rn1×n2×···×nq :

((B1,B2, . . . ,Bq), A)i1,...,iq =
d1∑
i′1=1

d2∑
i′2=1
· · ·

dq∑
i′q=1

Ai′1,i
′
2,...,i

′
q

q∏
`=1

(B`)i`,i′`

517

Observe for the case of q = 2, we just have ((B1,B2),A) = B1AB>2 ∈ Rn1×n2 .

Using the above notation, we first prove a result about reshaping tensors.

Lemma 10.2.7 (Reshaping). Given matrices A1,A2, · · · ,Aq ∈ R
ni×di and a tensor B ∈

R
n1×n2×···×nq , let n = ∏q

i=1 ni and let d = ∏d
i=1 di. Let b denote the vectorization of B. For

any tensor X ∈ Rd1×d2×···×dq , we have ‖((A1,A2, · · · ,Aq),X)−B‖ξ is equal to ‖(A1⊗A2⊗
· · ·⊗Aq)x− b‖ξ where ξ is any entry-wise norm (such as an `p-norm) and x is the vectorization

of X . See Definition 10.2.6 of the ((·, . . . , ·), ·) tensor operator.

Observe, for the case of q = 2, this is equivalent to the statement that

‖A1XA>2 −B‖ξ = ‖(A1 ⊗A2)x− b‖ξ

Proof. For the pair x ∈ Rd, X ∈ Rd1×d2×···×dq , the connection is the following: ∀i1 ∈ [d1], . . . , iq ∈
[dq],

x
i1+
∑q

l=2(il−1)·
∏l−1
t=1 dt

= Xi1,··· ,iq .

Similarly, for b ∈ Rn, B ∈ Rn1×n2×···×nq , for any j1,∈ [n1], . . . , jq ∈ [nq],

b
j1+
∑q

l=2(jl−1)·
∏l−1
t=1 nt

= Bj1,j2,··· ,jq .

For simplicity, for any (i1, . . . , iq) ∈ [d1]× · · · × [dq] and (j1, . . . , jq) ∈ [n1]× · · · × [nq] we
define~i = i1 + ∑q

l=2(il − 1) · ∏l−1
t=1 dt and similarly ~j = j1 + ∑q

l=2(jl − 1) · ∏l−1
t=1 nt. Then we

can simplify the above relation and write x~i = Xi1,i2,··· ,iq , and b~j = Bj1,j2,··· ,jq .

For a matrix Z, let Zi,∗ denote the i-th row of Z. We consider the ~j-th entry of (A1 ⊗A2 ⊗
· · · ⊗Aq)x,

((A1 ⊗A2 ⊗ · · · ⊗Aq)x)~j =
〈
(A1 ⊗A2 ⊗ · · · ⊗Aq)~j,∗ · x

〉
=

d1∑
i1=1

d2∑
i2=1
· · ·

dq∑
iq=1

(q∏
l=1

(Al)jl,il
)
· x~i

=
d1∑
i1=1

d2∑
i2=1
· · ·

dq∑
iq=1

(q∏
l=1

(Al)jl,il
)
·Xi1,i2,··· ,iq

= ((A1,A2, · · · ,Aq), X)j1,...,jq .

518

Where the last equality is by Definition (10.2.6). Since we also have b~j = Bj1,...,jq , this completes
the proof of the Lemma.

Sampling From an `p-Well-Conditioned Base

In this Section, we discuss the first half of Algorithm 8 which computes x′ ∈ Rd, which we will
show is a O(1)-approximate solution to the optimal. First note that by Lemma 10.1.3 together
with fact 10.1.5, we know that AiR−1

i is an `p well conditioned basis for Ai (recall this means
that AiR−1

i is a (α, β, p) well conditioned basis for A, and β/α = d
O(1)
i) with probability

1−O(1/q), and we can then union bound over this occurring for all i ∈ [q]. Given this, we now
prove that (A1R−1

1 ⊗A2R−1
2 ⊗· · ·⊗AqR−1

q) is a well conditioned basis for (A1⊗A2⊗· · ·⊗Aq).

Lemma 10.2.8. Let Ai ∈ R
ni×di and Ri ∈ R

di×di . Then if AiR−1
i is a (αi, βi, p) well-

conditioned basis for Ai for i = 1, 2, . . . , q, we have for all x ∈ Rd1···dq :

q∏
i=1

αi‖x‖p ≤ ‖(A1R−1
1 ⊗A2R−1

2 ⊗ · · · ⊗AqR−1
q)x‖p ≤

q∏
i=1

βi‖x‖p

Proof. We first consider the case of q = 2. We would like to prove

α1α2‖x‖p ≤ ‖(A1R−1
1 ⊗A2R−1

2)x‖p ≤ β1β2‖x‖p,

First note, by the reshaping Lemma 10.2.7, this is equivalent to

α1α2‖X‖p ≤ ‖A1R−1
1 X(R−1

2 A2)>‖p ≤ β1β2‖X‖p.

Where X ∈ Rd1×d2 is the tensorization of x. We first prove one direction. Let U1 = A1R−1
1 and

U2 = A2R−1
2 . We have

‖U1XU>2 ‖pp =
n2∑
i2=1
‖U1(XU>2)i2‖pp

≤
n2∑
i2=1

βp1‖(XU>2)i2‖pp

= βp1‖XU>2 ‖pp
≤ βp1β

p
2‖X‖pp,

where the first step follows from rearranging, the second step follows from the well-conditioned

519

property of U1, the third step follows from rearranging again, the last step follows from the
well-conditioned property of U2. Similarly, we have

‖U1XU>2 ‖pp =
n2∑
i2=1
‖U1(XU>2)i2‖pp

≥
n2∑
i2=1

αp1‖(XU>2)i2‖pp

= αp1‖XU>2 ‖pp
≥ αp1α

p
2‖X‖pp,

where again the first step follows from rearranging, the second step follows from the well-
conditioned property of U1, the third step follows from rearranging again, the last step follows
from the well-conditioned property of U2.

In general, for arbitrary q ≥ 2, similarly using our reshaping lemma, we have

‖(⊗qi=1(AiR−1
i))x‖p ≥

q∏
i=1

αi‖x‖p,

‖(⊗qi=1(AiR−1
i))x‖p ≤

q∏
i=1

βi‖x‖p.

Putting this together with fact 10.1.5, and noting d = d1 · · · dq, we have

Corollary 10.2.9. Let AiR−1
i be as in algorithm 8. Then we have for all x ∈ Rd1···dq :

(1/d)O(1)‖x‖p ≤ ‖(A1R−1
1 ⊗ · · · ⊗AqR−1

q)x‖p ≤ dO(1)‖x‖p,

In other words, (A1R−1
1 ⊗ · · · ⊗AqR−1

q) is a well conditioned `p basis for (A1 ⊗ · · · ⊗Aq)

From this, we can obtain the following result.

Lemma 10.2.10. Let x′ ∈ Rd be the output of the O(1)-Approximate `p Regression Procedure

in Algorithm 8. Then with probability 99/100 we have

‖(A1 ⊗ · · · ⊗Aq)x′ − b‖p ≤ 8 min
x
‖(A1 ⊗ · · · ⊗Aq)x− b‖p.

Moreover, the time required to compute x′ is Õ(∑q
i=1 nnz(Ai) + poly(dq/ε)).

520

Proof. By Theorem 6 of [DDH+09], if we let Π be a diagonal row sampling matrix such that
Πi,i = 1/q1/p

i with probability qi ≥ min{1, r1
‖Ui,∗‖pp
‖U‖pp

}, where U is a `p well-conditioned basis
for (A1 ⊗ · · · ⊗Aq) and r1 = O(d3), then the solution x′ to

min
x
‖Π((A1 ⊗ · · · ⊗Aq)x− b‖

will be a 8-approximation. Note that we can solve the sketched regression problem minx ‖Π((A1⊗
· · · ⊗ Aq)x′ − b‖ which has O(poly(d/ε)) constraints and d variables in time poly(d/ε) using
linear programming for p = 1, or more generally interior point methods for convex programming
for p > 1 (see [BCLL18, AKPS19, LSZ19] for the recent development of `p solvers).

Then by Corollary 10.2.9, we know that setting U = (A1R−1
1 ⊗ · · · ⊗AqR−1

q) suffices, so
now we must sample rows of U. To do this, we must approximately compute the norms of the
rows of U. Here, we use the fact that ‖ · ‖pp norm of a row of (A1R−1

1 ⊗ · · · ⊗ AqR−1
q) is the

product of the row norms of the AiR−1
i that correspond to that row. Thus it suffices to sample a

row ji from each of the AiR−1
i ’s with probability at least min{1, r1‖(AiR−1

i)ji,∗‖pp/‖AiR−1
i ‖pp}

for each i ∈ [q].

To do this, we must estimate all the row norms ‖(AiR−1
i)ji,∗‖pp to (1 ± 1/10) error. This

is done in steps 7 − 10 of Algorithm 8, which uses dense p-stable sketches Z ∈ Rd×τ , and
computes (AiR−1

i Z), where τ = Θ(log(n)). Note that computing R−1
i Z ∈ Rd×τ requires

Õ(d2). Once computed, Ai(R−1
i Z) can be computed in Õ(nnz(Ai)) time. We then take the

median of the coordinates of (AiR−1
i Z) (normalized by the median of the p-stable distribution

Dp, which can be efficiently approximated to (1 ± ε) in O(poly(1/ε)) time, see Appendix A.2
of [KNW10a] for details) as our estimates for the row norms. This is simply the Indyk median
estimator [Ind06] given in Theorem 8, and gives a (1± 1/10) estimate ai,j of all the row norms
‖(AiR−1

i)j,∗‖pp with probability 1−1/poly(n). Then it follows by Theorem 6 of [DDH+09] that
x′ is a 8-approximation of the optimal solution with probability 99/100 (note that we amplified
the probability by increasing the sketch sizes Si by a constant factor), which completes the proof.

`p Sampling From the Residual of a O(1)-factor Approximation

By Lemma 10.2.10 in the prior section, we know that the x′ first returned by the in algorithm 8
is a 8-approximation. We now demonstrate how we can use this O(1) approximation to obtain a
(1 + ε) approximation. The approach is again to sample rows of (A1 ⊗ · · · ⊗Aq). But instead

521

of sampling rows with the well-conditioned leverage scores qi, we now sample the i-th row
with probability αi = min{1,max{qi, r2|ρi|p/‖ρ‖pp}} , where ρ = (A1 ⊗ · · · ⊗ Aq)x′ − b ∈
R
n is the residual error of the O(1)-approximation x′. Thus we must now determine how to

sample quickly from the residuals |ρi|p/‖ρ‖pp. Our sampling algorithm will need a tool originally
developed in the streaming literature.

Count-sketch for heavy hitters with the Dyadic Trick. We now introduce a sketch S which
finds the `2 heavy hitters in a vector x efficently. This sketch S is known as count-sketch for
heavy hitters with the Dyadic Trick. To build S we first stack Θ(log(n)) copies of the count

sketch matrix Si ∈ Rk′×n [CW17]. The matrix Si is precisely a single “repetition” of the sketch
from Section 2.3.2, and is constructed as follows. Si has exactly one non-zero entry per column,
which is placed in a uniformly random row, and given the value 1 or −1 uniformly at random.
For Si, let hi : [n]→ [k′] be such that hi(t) is the row with the non-zero entry in the t-th column
of Si, and let gi : [n] → {1,−1} be such that the value of that non-zero entry is gi(t). Note that
the hi, gi can be implemented as 4-wise independent hash functions.

Fix any x ∈ Rn. Then given S1x,S2x, · · · ,SΘ(log(n))x, we can estimate the value of any
coordinate xj by

mediani∈Θlog(n){gi(j)(Six)hi(j)}

By Theorem 9, this gives an estimate of xj with additive error Θ(1/
√
k′)‖x‖2 with probability

1 − 1/poly(n) for all j ∈ [n]. However, naively, to find the heaviest coordinates in x, that is
all coordinates xj with |xj| ≥ Θ(1/

√
k′)‖x‖2, one would need to query O(n) estimates. This is

where the Dyadic trick comes in [CM05]. We repeat the above process Θ(log(n)) times, with
matrices S(i,j), for i, j ∈ Θ(log(n)). Importantly, however, in S(i,j), for all t, t′ ∈ [n] such
that the first j most significant bits in their binary identity representation are the same, we set
h(i,j)(t) = h(i,j)(t′), effectively collapsing these identities to one. To find a heavy item, we can
then query the values of the *two* identities from S(1,1),S(2,1), · · · ,S(Θ(log(n)),1), and recurse into
all the portions which have size at least Θ(1/

√
k′)‖x‖2. It is easy to see that we recurse into at

most O(k′) such pieces in each of the Θ(log(n)) levels, and it takes O(log(n)) time to query
a single estimate, from which the desired runtime of O(k′ log2(n)) is obtained. For a further
improvement on size k of the overall sketched required to quickly compute Q, see [LNNT16].
We summarize this construction below in definition 10.2.11.

Definition 10.2.11 (Count-sketch for heavy hitters with Dyadic Trick [CCFC02b, LNNT16]).
There is a randomized sketch S ∈ Rk×n with k = O(log2(n)/ε2) such that, for a fixed vector

x ∈ Rn, given Sx ∈ Rk, one can compute a set Q ⊂ [n] with |Q| = O(1/ε2) such that

522

{i ∈ [n] | |xi| ≥ ε‖x‖2} ⊆ Q with probability 1− 1/poly(n). Moreover, Sx can be computed in

O(log2(n) nnz(x)) time. Given Sx, the set Q can be computed in time O(k).

We begin with some notation. For a vector y ∈ Rn, where n = n1 · · ·nq, one can index
any entry of yi via~i = (i1, i2, · · · , iq) ∈ [n1] × · · · × [nq] via i = i1 + ∑q

j=2(ij − 1)∏ij−1
l=1 nl.

It will useful to index into such a vector y interchangably via a vector y~i and an index yj with
j ∈ [n]. For any set of subsets Ti ⊂ [ni], we can define yT1×···Tq ∈ Rn as y restricted to the
~i ∈ T1 × · · · × Tq. Here, by restricted, we mean the coordinates in y that are not in this set are
set equal to 0. Similarly, for a y ∈ Rni and S ⊂ [ni], we can define yS as y restricted to the
coordinates in S. Note that in Algorithm 9, IIn denotes the n× n identity matrix for any integer
n. We first prove a proposition on the behavior of Kronecker products of p-stable vectors, which
we will need in our analysis.

Proposition 10.2.12. Let Z1,Z2, · · · ,Zq be independent vectors with entries drawn i.i.d. from

the p-stable distribution, with Zi ∈ Rni . Now fix any i ∈ [q], and any x ∈ Rn, where n =
n1n2 · · ·nq. Let ej ∈ Rni be the j-th standard basis column vector for any j ∈ [ni]. Let

Γ(i, j) = [n1]× [n2]× · · · × [ni−1]× {j} × [ni+1]× · · · × [nq]. Define the random variable

Xi,j(x) = |(Z1 ⊗ Z1 ⊗ · · · ⊗ Zi−1 ⊗ e>j ⊗ Zi+1 ⊗ · · · ⊗ Zq)x|p.

Then for any λ > 1, with probability at least 1−O(q/λ) we have

‖xΓ(i,j)‖pp/λq ≤ Xi,j(x) ≤ (λ log(n))q‖xΓ(i,j)‖pp

Proof. First observe that we can reshape y = xΓ ∈ Rm where m = n/ni, and re-write this
random variable as Xi,j(x) = |(Z1 ⊗ Z2 ⊗ · · · ⊗ Zq−1)y|p. By reshaping Lemma 10.2.7, we can
write this as |(Z1⊗Z2⊗· · ·⊗Zq−2)YZ>q−1|p, where Y ∈ Rm/nq−1×nq−1 . We first prove a claim.
In the remainder of the proof, for a matrix A, let ‖A‖pp = ∑

i,j |Ai,j|p.

Claim 10.2.13. Let Z be any p-stable vector and X a matrix. Then for any λ > 1, with proba-

bility 1−O(1/λ), we have

λ−1‖X‖pp ≤ ‖XZ‖pp ≤ log(n)λ‖X‖pp.

Proof. By p-stability, each entry of |(X‘Z)i|p is distributed as |zi|p‖Xi,∗‖pp, where zi is again
p-stable (but the z′is are not independent). By Fact 2.2.8 (see also Chapter 1.5 of [Nol]), p-stables
have tails that decay at the rate Θ(1/xp) thus Pr [|zi|p > x] = O(1/x) for any x > 0. We can

523

condition on the fact that zi < λ · n10 for all i, which occurs with probability at least 1− n−9/λ

by a union bound. Conditioned on this, we have E [|zi|p] = O(log(n)) (this can be seen by
integrating over the truncated tail O(1/x)), and the upper bound then follows from a application
of Markov’s inequality.

For the lower bound Let Yi be an indicator random variable indicating the event that |zi|p <
2/λ. Now p-stables are anti-concentrated, namely, their pdf is upper bounded by a constant
everywhere. It follows that Pr [Yi] < c/λ for some constant c. By Markov’s inequality

Pr
[∑

i

Yi‖Xi,∗‖pp > ‖X‖pp/2
]
< O(1/λ)

Conditioned on this, the remaining ‖X‖pp/2 of the `p mass shrinks by less than a 2/λ factor, thus
‖XZ‖pp > (‖X‖pp/2)(2/λ) = ‖X‖pp/λ as needed.

By the above claim, we have ‖Y‖p/λ1/p ≤ ‖YZ>q−1‖p ≤ (log(n)λ)1/p‖Y‖p with probability
1 − O(1/λ). Given this, we have Xi,j(x) = |(Z1 ⊗ Z2 ⊗ · · · ⊗ Zq−2)y′|p, where ‖Y‖p/λ1/p ≤
‖y′‖p ≤ (log(n)λ)1/p‖Y‖p. We can inductively apply the above argument, each time getting
a blow up of (log(n)λ)1/p in the upper bound and (1/λ)p in the lower bound, and a failure
probability of (1/λ). Union bounding over all q steps of the induction, the proposition follows.

Lemma 10.2.14. Fix any r2 ≥ 1, and suppose that x′ = minx ‖Π(A1 ⊗ · · · ⊗ Aq)x − Πb‖p
and Π ∈ Rn×n is a row sampling matrix such that Πi,i = 1/q1/p

i with probability qi. Define

the residual error ρ = (A1 ⊗ · · · ⊗ Aq)x′ − b ∈ Rn. Then Algorithm 9, with probability

1 − δ, succeeds in outputting a row sampling matrix Σ ∈ Rn×n such that Σi,i = 1/α1/p
i with

probability αi = min{1,max{qi, r3|ρi|p/‖ρ‖pp}} for some r3 ≥ r2, and otherwise Σi,i = 0. The

algorithm runs in time

Õ

(q∑
i=1

nnz(Ai) + q nnz(b) + (r2 log(n)/δ)O(q2)
)
.

Proof. The algorithm is given formally in Figure 9. We analyze the runtime and correctness
here.

Proof of Correctness. The approach of the sampling algorithm is as follows. Recall that we
can index into the coordinates of ρ ∈ Rn via ~a = (a1, . . . , aq) where ai ∈ [ni]. We build the

524

Algorithm 9: Algorithm to `p sample Θ(r2) entires of ρ = (A1 ⊗ · · · ⊗Aq)x′ − b
1 ρ, r2 T ← ∅ //T is the sample set to return
2 r3 ← Θ(r2 logq2(n)/δ)
3 Generate i.i.d. p-stable vectors Z1,j, Z2,j, . . . , Zq,j ∈ Rn for j ∈ [τ] where τ = Θ(log n)
4 Pre-compute and store Zi,jAi ∈ R1×di for all i ∈ [q] and j ∈ [τ]
5 For each i ∈ [q], generate an independent copy Si ∈ Rk×ni of count-sketch for heavy

hitters from Definition 10.2.11, where k = O(log2(n)rO(1)
3).

6 for t = 1, 2, . . . , r3 do
7 s = (s1, . . . , sq)← (∅, . . . , ∅) //next sample to return
8 wj ←

(
(IIn1)⊗ (⊗q

k=2 Z
k,j)ρ

)
∈ Rn1 //IIn ∈ Rn×n is the identity matrix

9 Define w ∈ Rn1 by wl = medianj∈[τ]{|wjl |} for l ∈ [n1]
10 Sample j∗ ∈ [n1] from the distribution

(
|w1|p
‖w‖pp

, |w2|p
‖w‖pp

, . . . ,
|wn1 |

p

‖w‖pp

)
, and set s1 ← j∗

11 for i = 2, . . . , q do
12 for j ∈ [τ] do
13 Write e>ak ∈ R

1×nk as the standard basis vector
14 vji ← Si

(
(⊗i−1

k=1 e
>
ak

)⊗ (IIni)⊗ (⊗q
k=i+1 Z

k,j)ρ
)
∈ Rk

15 Compute heavy hitters Hi,j ⊂ [ni] from vji //Definition 10.2.11
16 βji ←

(
(⊗i−1

k=1 e
>
ak

)⊗ (⊗q
k=i Z

k,j)ρ
)
∈ R

17 Define βi ∈ Rk′ by βi = medianj∈[τ]{|βji |p}, and Hi = ∪τj=1Hi,j

18 γi ← medianj∈[τ]
(
(⊗i−1

k=1 e
>
ak

)⊗ Zi,j
[ni]\Hi ⊗ (⊗q

k=i+1 Z
k,j)ρ

)
∈ R

19 if with probability 1− γi/βi then
20 Draw ξ ∈ Hi with probability:

λξ =
medianj∈τ

∣∣∣((⊗i−1
k=1 e

>
ak

)⊗ (e>ξ)⊗ (⊗q
k=i+1 Z

k,j)ρ
)∣∣∣p∑

ξ′∈Hi medianj∈τ
∣∣∣((⊗i−1

k=1 e
>
ak

)⊗ (e>ξ′)⊗ (⊗q
k=i+1 Z

k,j)ρ
)∣∣∣p

Set si ← ξ //else, si is sampled as a heavy hitter
21 else
22 //si was not sampled as a heavy hitter
23 Randomly partition [ni] into Ωi

1,Ωi
2, . . . ,Ωi

η with η = Θ(r2
3).

24 Sample t ∼ [η] uniformly at random.
25 for j ∈ Ωt \Hi do
26 Set θj = medianl∈[τ]

(
|(⊗i−1

k=1 e
>
ak

)⊗ (e>j)⊗ (⊗q
k=i+1 Z

k,l)ρ|p
)

27 Sample si ← j∗ from the distribution
{

θj∑
j′∈Ωt\Hi

θj′

}
j∈Ωt\Hi

28 T ← S ∪ s where s = (s1, . . . , sq)
29 Return sample set T

525

coordinates of ~a one by one. To sample a ~a ∈ ∏q
i=1[ni], we can first sample a1 ∈ [n1] from the

distribution Pr [a1 = j] = ∑
~u:u1=j |ρ~u|p/(

∑
~u |ρ~u|p). Once we fix a1, we can sample a2 from the

conditional distribution distribution Pr [a2 = j] = ∑
~u:u2=j,u1=a1 |ρ~u|p/(

∑
~u:u1=a1 |ρ~u|p), and so

on. For notation, given a vector ~a = (a1, . . . , ai−1), let ∆(~a) = {~u ∈ [n1] × · · · × [nq] | aj =
yj for all j = 1, 2, . . . , i − 1}. Then in general, when we have sampled ~a = (a1, . . . , ai−1) for
some i ≤ q, we need to sample ai ← j ∈ [nk] with probability

Pr [ai = j] =
∑

~u∈∆(~a):ui=j
|ρ~u|p/

 ∑
~u∈∆(~a)

|ρ~u|p
 .

We repeat this process to obtain the desired samples. Note that to sample efficiently, we will have
to compute these aforementioned sampling probabilities approximately. Because of the error in
approximating, instead of returning r2 samples, we over-sample and return r3 = Θ(r2 logq2(n))
samples.

The first step is of the algorithm is to generate the p-stable vectors Zi,j ∈ Rni for i ∈ [q]
and j = 1, 2, . . . ,Θ(log(n)). We can pre-compute and store Zi,jAi for i ∈ [q], which takes
Õ(∑q

i=1 nnz(Ai)) time. We set wj ←
(
(IIn1)⊗ (⊗q

k=2 Z
k,j)ρ

)
∈ Rn1 and define w ∈ Rn1

by wl = medianj∈[τ]{|wjl |} for l ∈ [n1]. Observe that wjl is an estimate of
∑
~u:u1=l |ρ~u|p. By

Proposition 10.2.12, it is a (c log(n))q approximation with probability at least 3/4 for some
constant c. Taking the median of Θ(log(n)) repetitions, we have that

c−q ·
∑

~u:u1=l
|ρ~u|p ≤ |wl|p ≤ (c log(n))q ·

∑
~u:u1=l

|ρ~u|p

with probability 1 − 1/poly(n), and we can then union bound over all such estimates every
conducted over the course of the algorithm. We call the above estimate |wl|p a O((c log(n))q)-
error estimate of

∑
~u:u1=l |ρ~u|p. Given this, we can correctly and independently sample the first

coordinate of each of the Θ(r3) samples. We now describe how to sample the i-th coordinate. So
in general, suppose we have sampled (a1, ..., ai−1) so far, and we need to now sample ai ∈ [ni]
conditioned on (a1, ..., ai−1). We first consider

W i,k =
(

i−1⊗
k=1

e>ak)⊗ (IIni)⊗ (
q⊗

k=i+1
Zk,j)ρ

 ∈ Rni

Note that the j-th coordinate W i,k
j for W i,k is an estimate of

∑
~u∈∆(~a):ui=j |ρ~u|p. Again by By

Proposition 10.2.12, with probability 1 − 1/poly(n), we will have |W i,k
j |p is a O((c log(n))q)-

526

error estimate of
∑
~u∈∆(~a):ui=j |ρ~u|p or at least one k ∈ [τ]. Our goal will now be to find all

j ∈ [ni] such that
∑
~u∈∆(~a):ui=j |ρ~u|p ≥ Θ((c log(n))q/r8

3)∑~u∈∆(~a) |ρ~u|p. We call such a j a
heavy hitter.

LetQi ⊂ [ni] be the set of heavy hitters. To find all the heavy hitters, we use the count-sketch
for heavy hitters with the Dyadic trick of definition 10.2.11. We construct this count-sketch of def
10.2.11 Si ∈ Rk′×ni where k′ = O(log2(n)r16

3). We then compute SiW i,k, for k = 1, 2, . . . , τ ,
and obtain the set of heavy hitters h ∈ Hi,k ⊂ [ni] which satisfy |W i,k

j |p ≥ Θ(1/r8
3)‖W i,k‖pp. By

the above discussion, we know that for each j ∈ Qi, we will have |W i,k
j |p ≥ Θ(1/r16

3)‖W i,k‖pp
for at least one k ∈ [τ] with high probability. Thus Hi = ∪τk=1Hi,k ⊇ Qi.

We now will decide to either sample a heavy hitter ξ ∈ Hi, or a non-heavy hitter ξ ∈ [ni]\Hi.
By Proposition 10.2.12, we can compute a O((c log(n))−q)-error estimate

βi = medianj∈[τ]

∣∣∣∣∣
(

(
i−1⊗
k=1

e>ak)⊗ (
q⊗
k=i

Zk,j)ρ
)∣∣∣∣∣

p

of
∑
~u∈∆(~a) |ρ~u|p, meaning:

O(c−q)
∑

~u∈∆(~a)
|ρ~u|p ≤ βi ≤ O((c log n)q)

∑
~u∈∆(~a)

|ρ~u|p.

Again, by Proposition 10.2.12, we can compute a O((c log(n))−q)-error estimate

γi = medianj∈[τ]

(
i−1⊗
k=1

e>ak)⊗ Z
i,j
[ni]\Hi ⊗ (

q⊗
k=i+1

Zk,j)ρ

of
∑
h∈[ni]\Hi

∑
~u∈∆(~a):ui=j |ρ~u|p. It follows that

O(c−2q)
∑
h∈[ni]\Hi

∑
~u∈∆(~a):ui=j |ρ~u|p∑

~u∈∆(~a) |ρ~u|p
≤ γi
βi
≤ O((c log n)2q)

∑
h∈[ni]\Hi

∑
~u∈∆(~a):ui=j |ρ~u|p∑

~u∈∆(~a) |ρ~u|p

In other words, γi/βi is a O((c log(n))2q)-error approximation of the true probability that we
should sample a non-heavy item. Thus with probability 1− γi/βi, we choose to sample a heavy
item.

To sample a heavy item, for each ξ ∈ Hi, by Proposition 10.2.12, we can compute an

527

O((c log(n))−q)-error estimate

medianj∈τ

∣∣∣∣∣∣
(

i−1⊗
k=1

e>ak)⊗ (e>ξ)⊗ (
q⊗

k=i+1
Zk,j)ρ

∣∣∣∣∣∣
p

of
∑
~u∈∆(~a):ui=ξ |ρ~u|p, meaning

O(c−q)
∑

~u∈∆(~a):ui=ξ
|ρ~u|p ≤ medianj∈τ

∣∣∣∣∣∣
(

i−1⊗
k=1

e>ak)⊗ (e>ξ)⊗ (
q⊗

k=i+1
Zk,j)ρ

∣∣∣∣∣∣
p

≤ O((c log n)q)
∑

~u∈∆(~a):ui=ξ
|ρ~u|p

Thus we can choose to sample a heavy item ξ ∈ Hi from the distribution given by

Pr [sample ai ← ξ] =
medianj∈τ

∣∣∣((⊗i−1
k=1 e

>
ak

)⊗ (e>ξ)⊗ (⊗q
k=i+1 Z

k,j)ρ
)∣∣∣p∑

ξ′∈Hi medianj∈τ
∣∣∣((⊗i−1

k=1 e
>
ak

)⊗ (e>ξ′)⊗ (⊗q
k=i+1 Z

k,j)ρ
)∣∣∣p

Which gives a O((c log(n))2q)-error approximation to the correct sampling probability for a
heavy item.

In the second case, with probability γi/βi, we choose to not sample a heavy item. In this
case, we must now sample a item from [ni] \ Hi. To do this, we partition [ni] randomly into
Ω1, . . . ,Ωη for η = 1/r2

3. Now there are two cases. First suppose that we have

∑
j∈[ni]\Hi

∑
~u∈∆(~a):ui=j |ρ~u|p∑

~u∈∆(~a) |ρ~u|p
≤ Θ(1/r3

3)

Now recall that γi/βi was a O((c log(n))2q)-error estimate of the ratio on the left hand side of
the above equation, and γi/βi was the probability with which we choose to sample a non-heavy
hitter. Since we only repeat the sampling process r3 times, the probability that we ever sample
a non-heavy item in this case is at most Θ(q(c log(n))2q/r2

3) < Θ(q/r3), taken over all possible
repetitions of this sampling in the algorithm. Thus we can safely ignore this case, and condition
on the fact that we never sample a non-heavy item in this case.

528

Otherwise,

∑
j∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p > Θ(1/r3
3)

∑
~u∈∆(~a)

|ρ~u|p,

and it follows that

∑
~u∈∆(~a):ui=j′

|ρ~u|p ≤ r−5
3 ·

∑
j∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p

for all j′ ∈ [ni] \ Hi, since we removed all Θ(1/r8
3) heavy hitters from [ni] originally. Thus by

Chernoff bounds, with high probability we have that

∑
j∈Ωi\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p = Θ
η−1 ·

∑
j∈[ni]\Hi

∑
~u∈∆(~a):ui=j

|ρ~u|p
 ,

which we can union bound over all repetitions.

Given this, by choosing t ∼ [η] uniformly at random, and then choosing j ∈ Ωt \ Hi with
probability proportional to its mass in Ωt \Hi, we get a Θ(1) approximation of the true sampling
probability. Since we do not know its exact mass, we instead sample from the distribution

{
θj∑

j′∈Ωt\Hi θj′

}
j∈Ωt\Hi

,

where

θj = medianl∈[τ]

∣∣∣∣∣∣(
i−1⊗
k=1

e>ak)⊗ (e>j)⊗ (
q⊗

k=i+1
Zk,l)ρ

∣∣∣∣∣∣
p

Again by Proposition 10.2.12, this gives a O((c log(n))2q)-error approximation to the correct
sampling probability. Note that at each step of sampling a coorindate of ~a we obtained at most
O((c log(n))2q)-error in the sampling probability. Thus, by oversampling by a O((c log(n))2q2)
factor, we can obtain the desired sampling probabilities. This completes the proof of correctness.
Note that to improve the failure probability to 1− δ, we can simply scale r3 by a factor of 1/δ.

Proof of Runtime. We now analyze the runtime. At every step i = 1, 2, . . . , q of the sampling,
we compute vji ← Si

(
(⊗i−1

k=1 e
>
ak

)⊗ (IIni)⊗ (⊗q
k=i+1 Z

k,j)ρ
)
∈ Rni for j = 1, 2, . . .Θ(log(n)).

529

This is equal to

Si
(

i−1⊗
k=1

(Ak)ak,∗)⊗ (Ai)⊗ (
q⊗

k=i+1
Zk,jAk)x′ − (

i−1⊗
k=1

e>ak)⊗ (IIni)⊗ (
q⊗

k=i+1
Zk,j)b

We first consider the term inside of the parenthesis (excluding Si). Note that the term (⊗q

k=i+1 Z
k,jAk)

was already pre-computed, and is a vector of length at most d, this this requires a total of
Õ(∑q

i=1 nnz(Ai)+d) time. Note that these same values are used for every sample. Given this pre-
computation, we can rearrage the first term to write (⊗i−1

k=1(Ak)ak,∗)⊗(Ai)X′(
⊗q
k=i+1 Z

k,jAk)>

where X′ is a matrix formed from x′ so that x′ is the vectorization of X′ (this is done via reshap-
ing Lemma 10.2.7). The term y = X′(⊗q

k=i+1 Z
k,jAk)> can now be computed inO(d) time, and

then we reshape again to write this as (⊗i−1
k=1(Ak)ak,∗)YA>i where Y again is a matrix formed

from y. Observe that ζ = vec(⊗i−1
k=1(Ak)ak,∗Y) ∈ Rdi can be computed in time O(qd), since

each entry is a dot product of a column Y∗,j ∈ Rd1·d2···di−1 of Y with the d1 · d2 · · · di−1 dimen-
sional vector

⊗i−1
k=1(Ak)ak,∗, which can be formed in O(d1 · d2 · · · di−1q) time, and there are a

total of di columns of Y .

Given this, The first entire term Si(⊗i−1
k=1(Ak)ak,∗)⊗(Ai)⊗(⊗q

k=i+1 Z
k,jAk)x′ can be rewrit-

ten as SiAiζ , where ζ = ζ~a ∈ Rdi can be computed in O(dq) time for each sample ~a. Thus if we
recompute the value SiAi ∈ Rk×n, where k = Õ(r16

3), which can be done in time Õ(nnz Ai),
then every time we are sampling the i-th coordinate of some ~a, computing the value of SiAiζ~a

can be done in time O(kd2
i) = r

O(1)
3 .

We now consider the second term. We perform similar trick, reshaping b ∈ Rn into B ∈
R

(n1···ni)×(ni···nq) and writing this term as ((⊗i−1
k=1 e

>
ak

) ⊗ (IIni))B(⊗q
k=i+1 Z

k,j)> and comput-
ing b′ = B(⊗q

k=i+1 Z
k,j)> ∈ R(n1···ni) in nnz(B) = nnz(b) time. Let B′ ∈ R(n1···ni−1)×ni be

such that vec(B′) = b′, and we reshape again to obtain (⊗i−1
k=1 e

>
ak

)B′(IIni) = (⊗i−1
k=1 e

>
ak

)B′

Now note that so far, the value B′ did not depend on the sample ~a at all. Thus for each
i = 1, 2, . . . , q, B′ (which depends only on i) can be pre-computed in nnz(b) time. Given
this, the value (⊗i−1

k=1 e
>
ak

)B′ is just a row B′(a1,...,ak),∗ of B′ (or a column of (B′)>). We first
claim that nnz(B′) ≤ nnz(b) = nnz(B). To see this, note that each entry of B′ is a dot prod-
uct Bj,∗(

⊗q
k=i+1 Z

k,j)> for some row Bj,∗ of B, and moreover there is a bijection between
these dot products and entries of B′. Thus for every non-zero entry of B′, there must be a
unique non-zero row (and thus non-zero entry) of B. This gives a bijection from the support
of B′ to the support of B (and thus b) which completes the claim. Since Si(B′(a1,...,ak),∗)>

can be computed in Õ(nnz(B′(a1,...,ak),∗)) time, it follows that Si(B′(a1,...,ak),∗)> can be com-
puted for all rows (B′(a1,...,ak),∗) of B in Õ(nnz(b)) time. Given this precomputation, we note

530

that (IIni) ⊗ (⊗q
k=i+1 Z

k,j)b is just Si(B′(a1,...,ak),∗)> for some (a1, . . . , ak), which has already
been pre-computed, and thus requires no addition time per sample. Thus, given a total of
Õ(∑q

i=1 nnz(Ai) + q nnz(b) + r
O(1)
3) pre-processing time, for each sample we can compute vji

for all i ∈ [q] and j ∈ [τ] in Õ(rO(1)
3) time, and thus Õ(rO(1)

3) time over all r3 samples.

Given this, the procedure to compute the heavy hitters Hi,j takes Õ(r16
3) time by Definition

10.2.11 for each sample and i ∈ [q], j ∈ [τ]. By a identical pre-computation and rearrangement
argument as above, each βji (and thus βi) can be computed in Õ(rO(1)

3) time per sample after
pre-computation. Now note that γi is simply equal to

medianj∈[τ]

βji − (
i−1⊗
k=1

e>ak)⊗ (Zk,j
Hi

)⊗ (
q⊗

k=i+1
Zk,j)ρ

 .
Since Zk,j

Hi
is sparse, the above can similar be computed in O(d|Hi|) = Õ(rO(1)

3) time per sample
after pre-computation. To see this, note that the b term of (⊗i−1

k=1 e
>
ak

)⊗ (Zk,j
Hi

)⊗ (⊗q
k=i+1 Z

k,j)ρ
can be written as (⊗i−1

k=1 e
>
ak

)B′′′(Zk,j
Hi

)>, where B′′′ ∈ Rn1···ni−1×ni is a matrix that has already
been pre-computed and does not depend on the given sample. Then this quantity is just the dot
product of a row of B′′′ with (Zk,j

Hi
)>, but since (Zk,j

Hi
) is |Hi|-sparse, so the claim for the b term

follows. For the (A1⊗· · ·⊗Aq) term, just as we demonstrated in the discussion of computing vji ,
note that this can be written as (⊗i−1

k=1(Ak)ak,∗)Y ((Ai)Hi,∗)> for some matrix Y ∈ Rd1···di×di−1

that has already been precomputed. Since (Ai)Hi,∗ only has O(|Hi|) non-zero rows, this whole
product can be computed in time O(d|Hi|) as needed.

Similarly, we can compute the sampling probabilities

Pr [sample ai ← j] =
medianj∈τ

∣∣∣((⊗i−1
k=1 e

>
ak

)⊗ (e>ξ)⊗ (⊗q
k=i+1 Z

k,j)ρ
)∣∣∣p∑

ξ′∈Hi medianj∈τ
∣∣∣((⊗i−1

k=1 e
>
ak

)⊗ (e>ξ′)⊗ (⊗q
k=i+1 Z

k,j)ρ
)∣∣∣p

for each every item ζ ∈ Hi in Õ(rO(1)
3) time after pre-computation, and note |Hi| = Õ(rO(1)

3) by
definition 10.2.11. Thus the total time to sample a heavy hitter in a given coordinate i ∈ [q] for
each sample Õ(rO(1)

3) per sample, for an overall time of Õ(qrO(1)
3) over all samples and i ∈ [q].

Finally, we consider the runtime for sampling a non-heavy item. Note that |Ωt| = O(ni/η)
with high probability for all t ∈ [η] by chernoff bounds. Computing each

θj = medianl∈[τ]

∣∣∣∣∣∣(
i−1⊗
k=1

e>ak)⊗ (e>j)⊗ (
q⊗

k=i+1
Zk,l)ρ

∣∣∣∣∣∣
p

531

takes O(qd) time after pre-computation, and so we spend a total of O(qdni/η) time sampling
an item from Ωt \ Hi. Since we only ever sample a total of r3 samples, and η = Θ(r2

3), the
total time for sampling non-heavy hitters over the course of the algorithm in coordinate i is
o(ni) = o(nnz(Ai)) as needed, which completes the proof of the runtime.

Computing the Sampling Probabilities αi The above arguments demonstrate how to sample
efficiently from the desired distribution. We now must describe how the sampling probabilities
αi can be computed. First note, for each sample that is sampled in the above way, at every
step we compute exactly the probability with which we decide to sample a coordinate to that
sample. Thus we know exactly the probability that we choose a sample, and moreover we can
compute each qi in O(d) time as in Lemma 10.2.10. Thus we can compute the maximum of qi
and this probability exactly. For each item sampled as a result of the leverage score sampling
probabilities qi as in Lemma 10.2.10, we can also compute the probability that this item was
sampled in the above procedure, by using the same sketching vectors Zi,k and count-sketches Si.
This completes the proof of the Lemma.

10.3 All-Pairs Regression

Given a matrix A ∈ Rn×d and b ∈ Rn, let Ā ∈ Rn2×d be the matrix such that Āi+(j−1)n,∗ =
Ai,∗ −Aj,∗, and let b̄ ∈ Rn2 be defined by b̄i+(j−1)n = bi − bj . Thus, Ā consists of all pairwise
differences of rows of A, and b̄ consists of all pairwise differences of rows of b. The `p all pairs
regression problem on the inputs A, b is to solve minx∈Rd ‖Āx− b̄‖p.

First note that this problem has a close connection to Kronecker product regression. Namely,
the matrix Ā can be written Ā = A⊗1n−1n⊗A, where 1n ∈ Rn is the all 1’s vector. Similarly,
b̄ = b⊗ 1n − 1n ⊗ b. For simplicity, we now drop the superscript and write 1 = 1n.

Our algorithm is given formally in Figure 10. We generate sparse p-stable sketches S1,S2 ∈
R
k×n (Definition 10.1.2), where k = (d/(εδ))O(1). We compute M = (S1⊗S2)(F⊗1−1⊗F) =

S1F ⊗ S21 − S11 ⊗ S2F, where F = [A, b]. We then take the QR decomposition M = QR.
Finally, we sample rows of (F⊗ 1− 1⊗F)R−1 with probability proportional to their `p norms.
This is done by an involved sampling procedure described in Lemma 10.3.1, which is similar
to the sampling procedure used in the proof of Theorem 132. Finally, we solve the regression
problem minx ‖Π(Āx− b̄)‖p, where Π is the diagonal row-sampling matrix constructed by the

532

sampling procedure. We summarize the guarantee of our algorithm in the following theorem.

Theorem 133. Given A ∈ Rn×d and b ∈ Rn, for p ∈ [1, 2], let Ā = A ⊗ 1 − 1 ⊗ A ∈ Rn2×d

and b̄ = b ⊗ 1 − 1 ⊗ b ∈ Rn2
. Then there is an algorithm for that outputs x̂ ∈ Rd such that

with probability 1 − δ we have ‖Āx̂ − b̄‖p ≤ (1 + ε) minx∈Rd ‖Āx − b̄‖p. The running time is

Õ(nnz(A) + (d/(εδ))O(1)).

Algorithm 10: Our All-Pairs Regression Algorithm
1 All-Pairs Regression:A, b
2 F = [A, b] ∈ Rn×d+1. r ← poly(d/ε)
3 Generate S1,S2 ∈ Rk×n sparse p-stable transforms for k = poly(d/(εδ)).
4 Sketch (S1 ⊗ S2)(F⊗ 1− 1⊗ F).
5 Compute QR decomposition: (S1 ⊗ S2)(F⊗ 1− 1⊗ F) = QR.
6 Let M = (F⊗ 1− 1⊗ F)R−1, and σi = ‖Mi,∗‖pp/‖M‖pp.
7 Obtain row sampling diagonal matrix Π ∈ Rn×n such that Πi,i = 1/q̃i1/p independently

with probability qi ≥ min{1, rσi}, where q̃i = (1± ε2)qi.
8 //Lemma 10.3.1 Return x̂ , where x̂ = arg minx∈Rd ‖Π(Āx− b̄)‖p.

The theorem crucially utilizes our fast `p sampling routine, which is described in Figure 15 in
the supplementary. A full discussion and proof of the lemma can be found in the supplementary
material 10.3.2.

Lemma 10.3.1 (Fast `p sampling). Given R ∈ Rd+1×d+1 and F = [A, b] ∈ Rn×d+1, there

is an algorithm that, with probability 1 − n−c for any constant c, produces a diagonal matrix

Π ∈ Rn2×n2
such that Πi,i = 1/q̃i1/p with probability qi ≥ min{1, r‖Mi,∗‖pp/‖M‖pp} and

Πi,i = 0 otherwise, where r = poly(d/ε) and M = (F ⊗ 1 − 1 ⊗ F)R−1, and q̃i = (1 ± ε2)qi
for all i ∈ [n2]. The total time required is Õ(nnzA+ poly(d/ε)).

10.3.1 Analysis of All-Pairs Regression Algorithm

In this section, we prove the correctness of our all-pairs regression algorithm 10. Our main
theorem, Theorem 133, relies crucially on the sample routine developed in Section 10.3.2. We
first prove the theorem which utilizes this routine, and defer the description and proof of the
routine to Section 10.3.2.

Recall first the high level description of our algorithm (given formally in Figure 10). We pick
S1,S2 ∈ Rk×nand S are sparse p-stable sketches. We then compute M = (S1 ⊗ S2)(F ⊗ 1 −
1 ⊗ F) = S1F ⊗ S21 − S11 ⊗ S2F, where F = [A, b]. We then take the QR decomposition

533

M = QR. Finally, we sample rows of (F ⊗ 1 − 1 ⊗ F)R−1 with probability proportional to
their `p norms. This is done by the sampling procedure described in Section 10.3.2. Finally, we
solve the regression problem minx ‖Π(Āx− b̄)‖p, where Π is the diagonal row-sampling matrix
constructed by the sampling procedure.

We begin by demonstrating that S1 ⊗ S2 is a poly(d) distortion embedding for the column
span of [Ā, b̄].

Lemma 10.3.2. Let S1,S2 ∈ Rk×n be sparse p-stable transforms, where k = poly(d/(εδ)).

Then for all x ∈ Rd+1, with probability 1− δ we have

1/O(d4 log4 d) · ‖[Ā, b̄]x‖p ≤ ‖(S1 ⊗ S2)[Ā, b̄]x‖p ≤ O(d2 log2 d) · ‖[Ā, b̄]x‖p.

Proof. Let F = [A, b]. Then a basis for the columns of [Ā, b̄] is given by F ⊗ 1 − 1 ⊗ F.
We first condition on both S1,S2 being a low-distortion embedding for the d + 2 dimensional
column-span of [F,1]. Note that this holds with large constant probability by 10.1.3.

So for any x ∈ Rd+1, we first show the upper bound

‖(S1 ⊗ S2)(F⊗ 1− 1⊗ F)x‖p = ‖(S1F ⊗ S21)x− (S11⊗ S2F)‖p
= ‖S1Fx1>S>2 − S11x>F>S>2 ‖p
= ‖S1(Fx1> − 1x>F>)S>2 ‖p
≤ O(d log d) · ‖(Fx1> − 1x>F>)S>2 ‖p
≤ O(d2 log2 d) · ‖Fx1> − 1x>F>‖p
= O(d2 log2 d) · ‖(F⊗ 1− 1⊗ F)x‖p,

where the first equality follows by properties of the Kronecker product [VL00], the second by
reshaping Lemma 10.2.7. The first inequality follows from the fact that each column of (Fx1>−
1x>F>)S>2 is a vector in the column span of [F,1], and then using that S1 is a low distortion
embedding. The second inequality follows from the fact that each row of (Fx1> − 1x>F>) is
a vector in the column span of [F,1], and similarly using that S2 is a low distortion embedding.
The final inequality follows from reshaping. Using a similar sequence of inequalities, we get the
matching lower bound as desired.

We now prove our main theorem.

534

Theorem 133 Given A ∈ Rn×d and b ∈ Rn, for p ∈ [1, 2] there is an algorithm for the

All-Pairs Regression problem that outputs x̂ ∈ Rd such that with probability 1− δ we have

‖Āx̂− b̄‖p ≤ (1 + ε) min
x∈Rd
‖Āx− b̄‖p

Where Ā = A⊗ 1− 1⊗A ∈ Rn2×d and b̄ = b⊗ 1− 1⊗ b ∈ Rn2
. For p < 2, the running time

is Õ(nd+ (d/(εδ))O(1)), and for p = 2 the running time is O(nnz(A) + (d/(εδ))O(1)).

Proof. We first consider the case of p = 2. Here, we can use the fact that the TENSORS-
KETCH random matirx S ∈ Rk×n is a subspace embedding for the column span of [Ā, b̄] when
k = Θ(d/ε2) [DSSW18], meaning that ‖S[Ā, b̄]‖2 = (1 ± ε)‖[Ā, b̄]x‖2 for all x ∈ Rd+1 with
probability 9/10. Moreover, SĀ and Sb̄ can be computed in O(nnz(A)+nnz(b)) = O(nnz(A))
by [DSSW18] since they are the difference of Kronecker products. As a result, we can simply
solve the regression problem x̂ = arg minx ‖SĀx− Sb̄‖2 in poly(kd) time to obtain the desired
x̂.

For p < 2, we use the algorithm in Figure 10, where the crucial leverage score sampling
procedure to obtain Π in step 7 of Figure 10 is described in Lemma 10.3.1. Our high level
approach follows the general `p sub-space embedding approach of [DDH+09]. Namely, we first
compute a low-distortion embedding (S1 ⊗ S2)(F ⊗ 1 − 1 ⊗ F). By Lemma 10.3.2, using
sparse-p stable transformations S1,S2, we obtain the desired poly(d) distortion embedding into
R
k2 , where k = poly(d/ε). Note that computing (S1 ⊗ S2)(F ⊗ 1 − 1 ⊗ F) can be done in

O(nnz(A) + nnz(b) + n) time using the fact that (S1 ⊗ S2)(F ⊗ 1) = S1F ⊗ S21. As shown
in [DDH+09], it follows that M = (F⊗ 1− 1⊗ F)R−1 is an `p well-conditioned basis for the
column span of (F ⊗ 1 − 1 ⊗ F) (see definition 10.1.4). Then by Theorem 5 of [DDH+09], if
we let Π̂ be the diagonal row sampling matrix such that Π̂i,i = 1/q1/p

i for each i with probability
qi ≥ min{1, r‖Mi,∗‖pp/‖M‖pp} (and Π̂i,i = 0 otherwise) for r = poly(d log(1/δ)/ε), then with
probability 1− δ we have

‖Π̂(F⊗ 1− 1⊗ F)x‖p = (1± ε)‖(F⊗ 1− 1⊗ F)x‖p

for all x ∈ Rd+1. First assume that we had such a matrix.

Since (Āx− b̄) is in the column span of (F⊗ 1− 1⊗ F) for any x ∈ Rd+1, it follows that
‖Π̂(Āx− b̄)‖p = (1± ε)‖(Āx− b̄)‖p for all x ∈ Rd, which completes the proof of correctness.
By Lemma 10.3.1, we can obtain a row sampling matrix Π in time Õ(nd + poly(d/ε)), except
that the entries of Π are instead equal to either 0 or 1/q̃1/p

i where q̃i = (1 ± ε2)qi. Now let Π̂

535

be the idealized row sampling matrices from above, with entries either 0 or 1/q1/p
i as needed for

Theorem 5 of [DDH+09]. Note that for any matrix Z each row of Π̂Zx is equal to ΠZx times
some constant 1 − ε2 < c < 1 + ε2. It follows that ‖Π(Āx − b̄)‖p = (1 ± ε2)‖Π̂(Āx − b̄)‖p
for all x ∈ Rd, and thus the objective function is changed by at most a (1 ± ε2) term, which is
simply handled by a constant factor rescaling of ε.

Finally, we can solve the sketched regression problem ‖Π(Āx − b̄)‖p which has poly(d/ε)
constraints and d variables in time poly(d/ε) using linear programming for p = 1, or more
generally interior point methods for convex programming for p > 1 (see [BCLL18, AKPS19,
LSZ19] for the recent development of `p solver. Finally, the failure probability bound holds by
union bounding over all the aforementioned results, and noting that the lowest probability event
was the even that S1 ⊗ S2 was a low distortion embedding via Lemma 10.3.2. This completes
the proof of the theorem.

10.3.2 Proof of Fast Sampling Lemma 10.3.1

We now provide a full proof of the main technical lemma of Section 10.3. The sampling algo-
rithm is given formally in Algorithm 15. The following proof of Lemma 10.3.1 analyzes each
step in the process, demonstrating both correctness and the desired runtime bounds.

Lemma 10.3.1 Given R ∈ R(d+1)×(d+1) and F = [A, b] ∈ Rn×(d+1), there is an algorithm

that, with probability 1 − δ for any δ > n−c for any constant c, produces a diagonal matrix

Π ∈ Rn2×n2
such that Πi,i = 1/q̃i1/p with probability qi ≥ min{1, r‖Mi,∗‖pp/‖M‖pp} and

Πi,i = 0 otherwise, where r = poly(d/ε) and M = (F ⊗ 1 − 1 ⊗ F)R−1, and q̃i = (1 ± ε2)qi
for all i ∈ [n2]. The total time required is Õ(nnzA+ poly(d/ε)).

Proof. Our proof proceeds in several steps. We analyze the runtime concurrently with out anal-
ysis of correctness.

Reducing the number of Columns of R−1. We begin by generating a matrix G ∈ R(d+1)×ξ

of i.i.d. N (0, 1/
√
ξ) Gaussian random variables. We then compute Y ← R−1G in Õ(d2)

time. We first claim that it suffices to instead `p sample rows of C = (F ⊗ 1 − 1 ⊗ F)Y =
MG. Note that each entry |Ci,j|p is distributed as gp‖Mi,∗‖p2 where G N (0, 1/

√
ξ) Gaussian,

which holds by the 2-stability of Gaussian random variables. Note that E [|g|p] = Θ(1/ξ), so

536

Algorithm 11: Algorithm to `p sample Θ(r) rows of M = (F⊗ 1− 1⊗ F)R−1

1 `p sample: F = [A, b] ∈ Rn×d,R−1 ∈ Rd+1×d+1, r
2 Generate a matrix G ∈ Rd+1×ξ of i.i.d. N (0, 1/

√
ξ) Gaussian random variables, with

ξ = Θ(log(n)). Set Y← R−1G ∈ Rd+1×ξ, and C← (F⊗ 1− 1⊗ F)Y
3 Reshape i-th column C∗,i into (FY∗,i1> − 1(Y∗,i)>F>) ∈ Rn×n

4 Generate Z ∈ Rt×n i.i.d. p-stable for t = Θ(log(n)) //Definition 10.1.1
5 For all (i, l) ∈ [ξ]× [n], set

σi,l ← medianτ∈[t]

∣∣∣(Z(FY∗,i1> − 1(Y∗,i)>F>)τ,l

∣∣∣p
(median(Dp))p

6 Set W (i,l) ← (FY∗,i1> − 1Y>∗,iF>)∗,l = FY∗,i − 1(FY)l,i ∈ Rn

7 for j = 1, . . . ,Θ(r) do
8 Sample (i, l) from distribution σi,l/

(∑
i′,l′ σi′,l′

)
9 T ← multi-set of samples (i, l)

10 Generate S0 ∈ Rk×n S ∈ Rk′×n count-sketches for heavy hitters with
k = rO(1), k′ = kO(1) and Generate u1, . . . , un i.i.d. exponential variables. //Definition
10.2.11

11 D← Diag(1/u1/p
1 , . . . , 1/u1/p

n) ∈ Rn×n.
12 for each sample (i, l) ∈ T do
13 Compute S0W

(i,l) and obtain set of heavy hitters Q(i,l)
0 ⊂ [n]. Then compute W (i,l)

j

exactly for all j ∈ Q(i,l)
0 , to obtain true heavy hitters H(i,l). Next, compute the value

αi,l ← medianτ∈[t]

∣∣∣Zτ,∗W (i,l) −∑ζ∈H(i,l) Zτ,ζW

(i,l)
ζ

∣∣∣p
(median(Dp))p

if With prob 1− α(i,l)/σ(i,l), sample a heavy item j∗ ← j then

14 Sample a heavy item j∗ ← j from the distribution |W (i,l)
j |p/∑j∈H(i,l)

|W (i,l)
j |p.

15 Return The row ((l − 1)n+ j∗) //Note that C(l−1)n+j∗,∗ contains W (i,l)
j∗

16 else
17 Randomly partition [n] into Ω1,Ω2, . . . ,Ωη with η = Θ(r4/ε4), and sample

t ∼ [η] uniformly at random.
18 Compute S(DW (i,l))Ωt\H(i,l) , and set Q(i,l) ⊂ Ωt \H(i,l) of heavy hitters.
19 j∗ ← arg maxj∈Q(i,l)(DW (i,l))j
20 Return The row ((l − 1)n+ j∗) //Note that C(l−1)n+j∗,∗ contains W (i,l)

j∗

537

E
[
‖Ci,∗‖pp

]
= ‖Mi,∗‖p2, and by sub-exponential concentration (see Chapter 2 of [Wai19]), we

have that ‖Ci,∗‖pp = (1±1/10)‖Mi,∗‖p2 with probability 1−1/poly(n), and we can union bound
over this holding for all i ∈ [n2]. By relationships between the p norms, we have ‖Mi,∗‖pp/d <
‖Mi,∗‖p2 < ‖Mi,∗‖pp, thus this changes the overall sampling probabilities by a factor between
Θ(1/d2) and Θ(d2). Thus, we can safely oversample by this factor (absorbing it into the value
of r) to compensate for this change in sampling probabilities.

Sampling a row from C. To sample a row from C, the approach will be to sample an entry
Ci,j of C with probability proportional to ‖Ci,j‖pp/‖C‖pp. For every (i, j) sampled, we sample
the entire i-th row of j, so that the j-th row is indeed sampled with probability proportional to its
norm. Thus, it suffices to sample entries of C such that each Ci,j is chosen with probability at
least min{1, r‖Ci,j‖pp/‖C‖pp}. First note that the i-th column of C = (F⊗ 1− 1⊗ F)Y can be
rearranged into a n×n matrix via Lemma 10.2.7, given by (FY∗,i1>−1Y>∗,iF>). To `p sample
a coordinate from C, it suffices to first `p sample a column of one of the above matrices, and then
`p sample an entry from that column.

To do this, we first compute FY ∈ Rn×ξ, which can be done in time Õ(nnz(A)) because
Y only has ξ = Θ(log(n)) columns. We then compute Z(FY∗,i1> − 1Y >∗,iF>) ∈ R1×n for all
i ∈ [d], where Z ∈ R1×n is a fixed vector of i.i.d. p-stable random variables. Once FY has
been computed, for each i ∈ [ξ] it takes O(n) time to compute this n-dimensional vector, thus
the total time required to compute all ξ vectors is Õ(n). We repeat this process t = O(log(n))
times with different p-stable vectors Z1, . . . , Z>, and take the median of each coordinate of
Zj(FY∗,i1> − 1Y>∗,iF>) ∈ Rn, j ∈ [t], divided by the median of the p-stable distribution
(which can be approximated to (1± ε) error in poly(1/ε) time, see Appendix A.2 of [KNW10a]
for details of this). This is done in Step 7 of Algorithm 15. It is standard this this gives a
(1± 1/10) approximation the the norm ‖(FY∗,i1> − 1Y >∗,iF>)∗,l‖p for each i ∈ [d], l ∈ [n] with
probability 1− 1/poly(n) (See the Indyk median estimator of Theorem 8).

Now let σi,l be our estimate of the norm ‖(FY∗,i1> − 1Y >∗,iF>)∗,l‖p, for all i ∈ [ξ] and
l ∈ [n]. We now sample a columns (i, l) ∈ [ξ]× [n], where each (i, l) is chosen with probability
σi,l/(

∑
i′,l′ σi′,l′). We repeat this process Θ(r) times, to obtain a multi-set T ⊂ [ξ] × [n] of

sampled columns (i, l). We stress that T is a multi-set, because the same column (i, l) may have
been chosen for multiple samples, and each time it is chosen we must independently sample one
of the entries of that column. For any (i, l) ∈ T , we define W (i,l) = (FY∗,i1> − 1Y >∗,iF>)∗,l =
(FY∗,i − 1(FY)l,i).

538

`p Sampling an entry fromW (i,l). Now fix any (i, l) ∈ T . We show how to `p sample an entry
from the vector W (i,l) ∈ Rn. In other words, for a given j ∈ [n], we want to sample W (i,l)

j ∈ [n]
with probability at least r|W (i,l)

j |p/‖W (i,l)‖pp. We do this in two steps. First, let S0 ∈ Rk×n be
the count-sketch for heavy hitters of definition 10.2.11, where k = poly(r). Note that we can
compute S0FY and S01 in time Õ(n), since FY ∈ Rn×ξ. Once this is done, for each (i, l) ∈ T
we can compute S0W

(i,l) in O(k) time by computing (S01(FY)l,i) (note that FY and S01 are
already computed), and subtracting it off from the i-th column of S0FY , so the total time is
Õ(n+ poly(d/ε)) to compute S0W

(i,l) for all (i, l) ∈ |T |. Now we can obtain the set Q(i,l)
0 ⊂ [n]

containing all the Ω̃(1/
√
k) heavy hitters in W (i,l) with high probability. We can then explicitly

compute the value of W (i,l)
j for all j ∈ Q(i,l)

0 , and exactly compute the set

H(i,l) =
{
j ∈ [n]

∣∣∣∣ |W (i,l)
j |p > β/r16‖W (i,l)‖pp

}
,

all in Õ(k) time via definition 10.2.11, where β > 0 is a sufficiently small constant (here we use
the fact that |x|p ≥ |x|2 for p ≤ 2). Note that we use the same sketch S0 to compute all sets
Q

(i,l)
0 , and union bound the event that we get the heavy hitters over all poly(d/ε) trails.

We are now ready to show how we sample an index from W (i,l). First, we estimate the total
`p norm of the items in [ni] \ H(i,l) (again with the Indyk median estimator), and call this α(i,l)

as in Algorithm 15, which can be computed in O(|H(i,l)|) additional time (by subtracting off the
|H(i,l)| coordinates ZW (i,l)

ζ for all heavy hitters ζ ∈ H(i,l) from our estimate σ(i,l)), and with
probability α(i,l)/σ(i,l), we choose to sample one of the items of H(i,l), which we can then sample
from the distribution |W (i,l)

j |p/(∑j∈H(i,l) |W (i,l)
j |p). Since all the σ(i,l), α(i,l)’s were constant factor

approximations, it follows that we sampled such an item with probability Ω(r|W (i,l)
j′ |p/‖C‖pp) as

needed. Otherwise, we must sample an entry from [n] \ H(i,l). To do this, we first randomly
partition [n] into η = Θ(r4/ε4) subsets Ω1,Ω2, . . . ,Ωη.

We now make the same argument made in the proof of Lemma 10.2.14, considering two
cases. In the first case, the `p mass of [n] \ H(i,l) drops by a 1/r2 factor after removing the
heavy hitters. In this case, α(i,l)/σ(i,l) = O(1/r2), thus we will never not sample a heavy hitter
with probability 1−O(1/r), which we can safely ignore. Otherwise, the `p drops by less than a
1/r2 factor, and it follows that all remaining items must be at most a β/r14 heavy hitter over the
remaining coordinates [n]\H(i,l) (since if they were any larger, they would be β/r16 heavy hitters
in [n], and would have been removed in H(i,l)). Thus we can assume we are in the second case.
So by Chernoff bounds, we have

∑
j∈Ωt |W

(i,l)
j |p = Θ(1

η

∑
j∈[n]\H(i,l) |W (i,l)

j |p) with probability
greater than 1− exp(−Ω(r)). We can then union bound over this event occurring for all t ∈ [η]

539

and all (i, l) ∈ T . Given this, if we uniformly sample a t ∼ [η], and then `p sample a coordinate
j ∈ Ωt, we will have sampled this coordinate with the correct probability up to a constant factor.
We now sample such a t uniformly from η.

To do this, we generate a diagonal matrix D ∈ Rn×n, where Di,i = 1/u1/p
i , where u1, . . . , un

are i.i.d. exponential random variables. For any set Γ ⊂ [n], let DΓ beD with all diagonal entries
(j, j) such that j /∈ Γ set equal to 0. Now let S ∈ Rk′×n be a second instance of count-sketch
for heavy hitters of definition 10.2.11, where we set k′ = poly(k) from above. It is known that
returning j∗ = arg maxj∈Ωt\H(i,l) |(DW (i,l))j| is a perfect `p sample from Ωt \ H(i,l) [JW18b].
Namely, Pr [j∗ = j] = |W (i,l)

j |p/‖WΩt\H(i,`)‖pp for any j ∈ Ωt \H(i,`) . Thus it will suffice to find
this j∗. To find j∗, we compute S(DW)Ωt\H(i,`) . Note that since FY has already been computed,
to do this we need only compute SDΩt\H(i,`)FY∗,i and SDΩt\H(i,`)1(FY)`,i, which takes total
time Õ(|Ωt \ H(i,`)|) = Õ(n/η). We then obtain a set Q(i,l) ⊂ Ωt \ H(i,`) which contains all j
with |(DW (i,l))j| ≥ Ω̃(1/

√
k′)‖(DW)Ωt\H(i,`)‖2.

As noted in [JW18b], the value maxj∈Ωt\H(i,l) |(DW (i,l))j| is distributed identically to

‖WΩt\H(i,`)‖p/u1/p

where u is again an exponential random variable. Since exponential random variables have tails
that decay like e−Ω(x), it follows that with probability 1− exp(−Ω(r)) that we have

max
j∈Ωt\H(i,l)

|(DW (i,l))j| = Ω(‖WΩt\H(i,`)‖p/r),

and we can then union bound over the event that this occurs for all (i, l) ∈ T and Ωt. Given
this it follows that (DW (i,l))j∗ = Ω(‖WΩt\H(i,`)‖p/r). Next, for any constant c ≥ 2, by Propo-
sition 1 of [JW18b], we have ‖((DW)Ωt\H(i,`))tail(c log(n))‖2 = Õ(‖W (i,l)

Ωt\H(i,`)‖p) with probability
1 − n−c, where for a vector x, xtail(t) is x but with the top t largest (in absolute value) en-
tries set equal to 0. Since there are at most c log(n) coordinates in (DW)Ωt\H(i,`) not counted in
((DW)Ωt\H(i,`))tail(c log(n)), and since (DW)j∗ is the largest coordinate in all of (DW)Ωt\H(i,`) , by
putting together all of the above it follows that (DW)j∗ is a Ω̃(1/r)-heavy hitter in (DW)Ωt\H(i,`) .
Namely, that |(DW)j∗| ≥ Ω̃(‖(DW)Ωt\H(i,`)‖2/r). Thus, we conclude that j∗ ∈ Q(i,l).

Given that j∗ ∈ Q(i,l), we can then compute the value (DW(i,l))j = Dj,j(FYj,i − FYl,i) in
O(1) time to find the maximum coordinate j∗. Since |Q(i,l)| = O(k′) = O(poly(d/ε)), it follows
that the total time required to do this is Õ(n/η + poly(d/ε)). Since we repeat this process for
each (i, l) ∈ T , and |T | = Θ(r) whereas η = Θ(r4), it follows that the total runtime for this

540

step is Õ(n/r3 + poly(d/ε)). By [JW18b], the result is a perfect `p sample from (DW)Ωt\H(i,`) ,
which is the desired result. To complete the proof, we note that the only complication that
remains is that we utilize the same scaling matrix D to compute the sampled used in each of
the columns W (i,l) for each (i, l) ∈ T . However, note that for t 6= t′, we have that DΩt and
DΩt are independent random variables. Thus it suffices to condition on the fact that the t ∈ [η]
that is sampled for each of the |T | repetitions of sampling a Ωt are distinct. But this occurs with
probability at least 1/r, since |T | = Θ(r) and η = Θ(r4). Conditioned on this, all |T | samples
are independent, and each sample is an entry Ci,j of C such that the probability that a given (i, j)
is chosen is |Ci,j|p/‖C‖pp. Repeating this sampling Θ(r) times, we get that each Ci,j is sampled
with probability at least min{1, r|Ci,j|p/‖C‖pp}, which completes the proof of correctness. Note
that the dominant runtime of the entire procedure was Õ(nnz(A) + poly(d/ε)) as stated, and the
probability of success was 1 − exp(−r) + 1/poly(n), which we can be amplified to any 1 − δ
for δ > 1/nc for some constant c by increasing the value of r by log(1/δ) and the number of
columns of the sketch G to log(1/δ), which does not effect the Õ(nnz(A)+poly(d/ε)) runtime.

Computing approximations q̃i for qi. It remains now how to compute the approximate sam-
pling probabilities q̃i for Θ(r) rows of C that were sampled. Note that to sample an entry, in
C, we first sampled the n × 1 submatrix W (i,l) of C which contained it, where the probabil-
ity that we sample this submatrix is known to us. Next, if the entry of C was a heavy hitter
in W (i,l), we exactly compute the probability that we sample this entry, and sample it with this
probability. If the entry j of W (i,l) is not a heavy hitter, we first sample an Ωt uniformly with
probability exactly 1/η. The last step is sampling a coordinate from W

(i,l)
Ωt\H(i,l) via exponential

scaling. However, we do not know the exact probability of this sampling, since this will be equal
to |W (i,l)

j |p/‖W (i,l)
Ωt\H(i,l)‖pp, and we do not know ‖W (i,l)

Ωt\H(i,l)‖pp exactly. Instead, we compute it
approximately to error (1 ± ε2) as follows. For each (i, l) ∈ T and α = 1, 2, . . . ,Θ(log(n)/ε4),
we compute Z(α)W

(i,l)
Ωt\H(i,l) , where Z ∈ R1×|Ωt\H(i,l)| is a vector of p-stable random variables.

Again, we use the Indyk median estimator, taking the median of these Θ(log(n)/ε4) repetitions,
to obtain an estimate of ‖W (i,l)

Ωt\H(i,l)‖pp with high probability to (1± ε2) relative error. Each repe-
tition requires O(|Ωt \H(i,l)|) additional time, and since |Ωt \H(i,l)||T | = o(ε4n/r3), it follows
that the total computational time is at most an additive o(n), thus computing the q̃i’s to error
(1± ε2) does not effect the overall runtime.

541

10.4 Low Rank Approximation of Kronecker Product Matri-
ces

We now consider low rank approximation of Kronecker product matrices. Given q matrices
A1,A2, . . . , Aq, where Ai ∈ Rni×di , the goal is to output a rank-k matrix B ∈ Rn×d, where
n = ∏q

i=1 ni and d = ∏q
i=1 di, such that ‖B − A‖F ≤ (1 + ε) OPTk, where OPTk =

minrank−k A′ ‖A′ − A‖F , and A = ⊗qi=1Ai. Our approach employs the Count-Sketch distri-
bution of matrices [CW17]. A count-sketch matrix S is generated as follows. Each column of
S contains exactly one non-zero entry. The non-zero entry is placed in a uniformly random row,
and the value of the non-zero entry is either 1 or −1 chosen uniformly at random.

Our algorithm is as follows. We sample q independent Count-Sketch matrices S1, . . .Sq, with
Si ∈ Rki×ni , where k1 = · · · = kq = Θ(qk2/ε2). We then compute M = (⊗qi=1Si)A, and let
U ∈ Rk×d be the top k right singular vectors of M . Finally, we output B = AU>U in factored
form (as q+ 1 separate matrices, A1,A2, . . . ,Aq,U), as the desired rank-k approximation to A.
The following theorem demosntrates the correctness of this algorithm.

Theorem 134. For any constant q ≥ 2, there is an algorithm which runs in timeO(∑q
i=1 nnz(Ai)+

dpoly(k/ε)) and outputs a rank k-matrix B in factored form such that

‖B−A‖F ≤ (1 + ε) OPTk

with probability 9/10. 5

Proof. By Lemma 10.4.4, we have (1−ε)‖A−AP‖2
F ≤ ‖M−MP‖2

F +c ≤ (1+ε)‖A−AP‖2
F

for all rank k projection matrices P. In particular, we have

min
P

(1 + ε)‖A−AP‖2
F + c = (1 + ε) OPT2

k

where the minimum is taken over all rank k projection matrices. The minimizer P on the LHS is
given by the projection onto the top k singular space of M. Namely, MP = MU>U where
U is the top k singular row vectors of M. Thus ‖M − MU>U‖2

F + c ≤ (1 + ε) OPT2
k.

Moreover, we have ‖A − AU>U‖2
F ≤ (1 + 2ε)(‖M −MU>U‖2

F + c) ≤ (1 + 4ε) OPT2
k.

Thus ‖A−AU>U‖F ≤ (1 +O(ε)) OPTk as needed.

5To amplify the probability, we can sketch A and AU>U with a sparse JL matrix (e.g., Lemma 10.4.3 with
ki = Θ(qk2/(δε2)) for each i) in input sparsity time to estimate the cost of a given solution. We can then repeat
log(1/δ) times and take the minimum to get failure probability 1− δ.

542

For runtime, note that we first must compute M = (⊗qi=1Si)(A1⊗A2) = S1A1⊗· · ·⊗SqAq.
Now SiAi can be computed in O(nnz(Ai)) time for each i [CW17]. One all SiAi are computed,
their Kronecker product can be computed in time O(qk1k2 · · · kqd) = poly(kd/ε). Given M ∈
R
k1···kq×d, the top k singular vectors U can be computed by computing the SVD of M, which is

also done in time poly(kd/ε). Once U is obtained, the algorithm can terminate, which yields the
desired runtime.

To complete the proof of the main theorem, we will need to prove Lemma 10.4.4. To do this,
we begin by recalling the definition of a subspace embedding, and introducing the approximate
matrix product property:

Definition 10.4.1 (Subspace embedding). A random matrix S is called a ε-subspace embedding

for a rank k subspace V we have simultaneously for all x ∈ V that

‖Sx‖2 = (1± ε)‖x‖2.

Definition 10.4.2 (Approximate matrix product). A random matrix S satisfies the ε-approximate

matrix product property if, for any fixed matrices A,B, of the appropriate dimensions, we have

Pr
[
‖A>S>SB−A>B‖F ≤ ε‖A‖F‖B‖F

]
≥ 9/10.

We now show that S is both a subspace embedding and satisfies approximate matrix product,
where S = ⊗qi=1Si and Si ∈ Rki×ni are count-sketch matrices.

Lemma 10.4.3. If S = (⊗qi=1Si) with Si ∈ Rki×ni , k1 = k2 = · · · = kq = Θ(qk2/ε2), then S is

an ε-subspace embedding for any fixed k dimensional subspace V ⊂ Rn with probability 9/10,

and also satisfies the (ε/k)-approximate matrix product property.

Proof. We first show that S satisfies the O(ε/k, 1/10, 2)-JL moment property. Here, the (ε, δ, `)-
JL moment property means that for any fixed x ∈ Rn with ‖x‖2 = 1, we have E [(‖Sx‖2

2 − 1)2] ≤
ε`δ, which will imply approximate matrix product by the results of [KN14].

We prove this by induction on q. Let k̄ = k1. First suppose S = (Q⊗T), where Q ∈ Rk1×n1

is a count-sketch, and T ∈ Rk′×n′ is any random matrix which satisfies E [‖Tx‖2
2] = ‖x‖2

2

(T ∈ Rk′×n′ is unbiased), and E [(‖Tx‖2 − 1)2] ≤ 1 + c/k̄ for some value c < k̄. Note that both
of these properties are satisfied with c = 4 if T ∈ Rk2×n2 is itself a count-sketch matrix [CW17].
Moreover, these are the only properties we will need about T , so we will. We now prove that

543

E [‖(S⊗T)x‖2
2] = 1 and E [‖(S⊗T)x‖4

2] ≤ 1 + (c+ 4)/k̄ for any unit vector x.

Fix any unit x ∈ Rn now (here n = n1n
′), and let xj ∈ Rn′ be the vector obtained by

restricted x to the coordinates jn1+1 to (j+1)n1. For any i ∈ [k1], j ∈ [k′], let ij = (i−1)k′+j.
Let hQ(i) ∈ [k1] denote the row where the non-zero entry in the i-th column is placed in Q.
Let σQ(i) ∈ {1,−1} denote the sign of the entry QhQ(i),i. Let δQ(i, j) indicate the event that
hQ(i) = j. First note that

E

∑
i,j

((Q⊗T)x)2
ij

 = E

 k1∑
i=1

k′∑
j=1

(
n1∑
τ=1

δQ(τ, i)σQ(τ)(Txτ)j
)2

= E

 k1∑
i=1

k′∑
j=1

n1∑
τ=1

δQ(τ, i)(Txτ)2
j

= E

 n1∑
τ=1

k1∑
i=1

k′∑
j=1

δQ(τ, i)(Txτ)2
j

= E

[
n1∑
τ=1
‖Txτ‖2

2

]

= ‖x‖2
2

Where the last equality follows because count-sketch T is unbiased for the base case, namely
that E [‖Tx‖2

2] = ‖x‖2
2 for any x [W+14], or by induction. We now compute the second moment,

E

∑

i,j

((Q⊗T)x)2
ij

2
 = E

∑

i,j

(
n1∑
τ=1

δQ(τ, i)σQ(τ)(Txτ)j
)2
2

= E

∑

i,j

n1∑
τ1,τ2

δQ(τ1, i)σQ(τ1)(Txτ1)jδQ(τ2, i)σQ(τ2)(Txτ2)j

2

=
n1∑

τ1,τ2,τ3,τ4

E

∑
i,j

δQ(τ1, i)σQ(τ1)(Txτ1)jδQ(τ2, i)σQ(τ2)(Txτ2)j

·

∑
i,j

δQ(τ3, i)σQ(τ3)(Txτ3)jδQ(τ4, i)σQ(τ4)(Txτ4)j

 .
We now analyze the above expectation. There are several cases for the expectation of each term.

544

First, we bound the sum of the expectations when t1 = t2 = t3 = t4 by

n1∑
τ=1

E

∑
i,j

δQ(τ, i)σQ(τ)(Txτ)jδQ(τ, i)σQ(τ)(Txτ)j

·

∑
i,j

δQ(τ, i)σQ(τ)(Txτ)jδQ(τ, i)σQ(τ)(Txτ)j

≤

n1∑
τ=1

E
[
‖Txτ‖4

2

]
= 1 + c/k̄

Where the last equation follows from the variance of count-sketch [CW17] for the base case, or
by induction for q ≥ 3. We now bound the sum of the expectations when t1 = t2 6= t3 = t4 by

∑
τ1 6=τ2

E

∑
i,j

δQ(τ1, i)σQ(τ1)(Txτ1)jδQ(τ1, i)σQ(τ1)(Txτ1)j

·

∑
i,j

δQ(τ2, i)σQ(τ2)(Txτ2)jδQ(τ2, i)σQ(τ2)(Txτ2)j

≤

∑
τ1 6=τ2

E
[
‖Txτ1‖2

2‖Txτ2‖2
2/k1

]
≤ E

[
‖Tx‖4

2/k1
]
≤ (1 + c/k̄)/k1.

We can similarly bound the sum of the terms with t1 = t3 6= t2 = t4 and t1 = t4 6= t3 = t2 by
(1 + c/k̄)/k1, giving a total bound on the second moment of

E
[
‖(Q⊗T)x‖4

2

]
≤ 1 + c/k̄ + 3(1 + c/k̄)/k1) ≤ 1 + (4 + c)/k̄

since any term with a ti /∈ {t1, t2, t3, t4} \ {ti} immediately has expectation 0. By induction, it
follows that E [(⊗qi=1Si)x‖2

2] = 1 for any unit x, and E [(⊗qi=1Si)x‖4
2] ≤ 1+(4q+c)/k̄, where c is

the constant from the original variance of count-sketch. Setting k̄ = k1 = · · · = kq = Θ(qk2/ε2)
with a large enough constant, this completes the proof that S = (⊗qi=1Si) has theO(ε/k, 1/10, 2)-
JL moment property. Then by Theorem 21 of [KN14], we obtain the approximate matrix product
property:

Pr
[
‖A>S>SB−A>B‖F ≤ O(ε/k)‖A‖F‖B‖F

]
≥ 9/10

for any two matrices A,B. Letting A = B> = U where U ∈ Rn×k is a orthogonal basis for
any k-dimensional subspace V ⊂ Rn, it follows that

‖U>S>SU− IIk‖F ≤ O(ε/k)‖U‖2
F ≤ O(ε),

545

where the last step follows because U is orthonormal, so ‖U‖2
F = k. Since the Frobenius norm

upper bounds the spectral norm ‖·‖2, we have ‖U>S>SU− IIk‖2 ≤ O(ε), from which it follows
that all the eigenvalues of U>S>SU are in (1 − O(ε), 1 + O(ε)), which implies ‖SUx‖2 =
(1±O(ε))‖x‖2 for all x ∈ Rn, so for any y ∈ V , let xy be such that y = Uxy, and then

‖Sy‖2 = ‖SUxy‖2 = (1±O(ε))‖xy‖2 = (1±O(ε))‖Uxy‖2 = (1±O(ε))‖y‖2,

which proves that S is a subspace embedding for V (not the second to last inequality holds
because U is orthonormal).

Finally, we are ready to prove Lemma 10.4.4.

Lemma 10.4.4. Let S = (⊗qi=1Si) with Si ∈ Rki×ni , k1 = k2 = · · · = kq = Θ(qk2/ε2). Then

with probability 9/10 SA is a Projection Cost Preserving Sketch (PCPSKETCH) for A, namely

for all rank k orthogonal projection matrix P ∈ Rd×d,

(1− ε)‖A−AP‖2
F ≤ ‖SA− SAP‖2

F + c ≤ (1 + ε)‖A−AP‖2
F

where c ≥ 0 is some fixed constant independent of P (but may depend on A and SA).

Proof. To demonstrate that SA is a PCPSKETCH, we show that the conditions of Lemma 10
of [CEM+15] hold, which imply this result. Our result follows directly from Theorem 12 of
[CEM+15]. Note that all that is needed (as discussed below the theorem) for the proof is that S
is an ε-subspace embedding for a fixed k-dimensional subspaces, and that S satisfies the (ε/

√
k)

approximate matrix product property. By Lemma 10.4.3, we have both ε-subspace embedding
for S as well as a stronger (ε/k) approximate matrix product property. Thus Theorem 12 holds
for the random matrix S when k1 = k2 = · · · = kq = Θ(qk2/ε2), which completes the proof.

10.5 Evaluation

In our numerical simulations, we compare our algorithms to two baselines: (1) brute force, i.e.,
directly solving regression without sketching, and (2) the methods based sketching developed in
[DSSW18]. All methods were implemented in Matlab on a Linux machine. We remark that in
our implementation, we simplified some of the steps of our theoretical algorithm, such as the

546

residual sampling algorithm (Alg. 9). We found that in practice, even with these simplifications,
our algorithms already demonstrated substantial improvements over prior work.

Following the experimental setup in [DSSW18], we generate matrices A1 ∈ R300×15, A2 ∈
R300×15, and b ∈ R3002 , such that all entries of A1,A2, b are sampled i.i.d. from a normal
distribution. Note that A1 ⊗ A2 ∈ R90000×225. We define Tbf to be the time of the brute force
algorithm, Told to be the time of the algorithms from [DSSW18], and Tours to be the time of our
algorithms. We are interested in the time ratio with respect to the brute force algorithm and the
algorithms from [DSSW18], defined as, rt = Tours/Tbf , and r′t = Tours/Told. The goal is to show
that our methods are significantly faster than both baselines, i.e., both rt and r′t are significantly
less than 1.

We are also interested in the quality of the solutions computed from our algorithms, compared
to the brute force method and the method from [DSSW18]. Denote the solution from our method
as xour, the solution from the brute force method as xbf , and the solution from the method in
[DSSW18] as xold. We define the relative residual percentage reand r′e to be:

re = 100 |‖Axours − b‖ − ‖Axbf − b‖|
‖Axbf − b‖

, r′e = 100 |‖Axold − b‖ − ‖Axbf − b‖|
‖Axbf − b‖

Where A = A1 ⊗A2. The goal is to show that re is close zero, i.e., our approximate solution is
comparable to the optimal solution in terms of minimizing the error ‖Ax− b‖.

Throughout the simulations, we use a moderate input matrix size so that we can accommodate
the brute force algorithm and to compare to the exact solution. We consider varying values of
m, where , denotes the size of the sketch (number of rows) used in either the algorithms of
[DSSW18] or the algorithms in this paper. We also include a column m/n in the table, which is
the ratio between the size of the sketch and the original matrix A1 ⊗A2. Note in this case that
n = 90000.

Simulation Results for `2 We first compare our algorithm, Alg. 7, to baselines under the `2

norm. In our implementation, minx ‖Ax − b‖2 is solved by Matlab backslash A\b. Table 10.1
summarizes the comparison between our approach and the two baselines. The numbers are
averaged over 5 random trials. First of all, we notice that our method in general provides slightly
less accurate solutions than the method in [DSSW18], i.e., re > r′e in this case. However,
comparing to the brute force algorithm, our method still generates relatively accurate solutions,
especially when m is large, e.g., the relative residual percentage w.r.t. the optimal solution is
around 1% when m ≈ 16000. On the other hand, as suggested by our theoretical improvements

547

Table 10.1: Results for `2 and `1-regression with respect to different sketch sizes m.

m m/n re r′e rt r′t

`2

8100 .09 2.48% 1.51% 0.05 0.22
12100 .13 1.55% 0.98% 0.06 0.24
16129 .18 1.20% 0.71% 0.07 0.08

`1

2000 .02 7.72% 9.10% 0.02 0.59
4000 .04 4.26% 4.00% 0.03 0.75
8000 .09 1.85% 1.6% 0.07 0.83
12000 .13 1.29% 0.99% 0.09 0.79
16000 .18 1.01% 0.70% 0.14 0.90

for `2, our method is significantly faster than the method from [DSSW18], consistently across
all sketch sizes m. Note that when m ≈ 16000, our method is around 10 times faster than the
method in [DSSW18]. For small m, our approach is around 5 times faster than the method in
[DSSW18].

Simulation Results for `1 We compare our algorithm, Alg. 8, to two baselines under the `1-
norm. The first is a brute-force solution, and the second is the algorithm for [DSSW18]. For
minx ‖Ax − b‖1, the brute for solution is obtained via a Linear Programming solver in Gurobi
[GO16]. Table 10.1 summarizes the comparison of our approach to the two baselines under
the `1-norm. The statistics are averaged over 5 random trials. Compared to the Brute Force
algorithm, our method is consistently around 10 times faster, while in general we have relative
residual percentage around 1%. Compared to the method from [DSSW18], our approach is
consistently faster (around 1.3 times faster). Note our method has slightly higher accuracy than
the one from [DSSW18] when the sketch size is small, but slightly worse accuracy when the
sketch size increases.

548

Chapter 11

In-Database Regression

In the previous chapter, we demonstrated the power of sketching as a tool for accelerating nu-
merical linear algebra algorithms when the design matix A admits nice structural properties. In
Chapter 10, we studied the case where A was a Kronecker product of several smaller matrices,
and designed algorithms for optimization tasks such as regression and low rank approximation.
In this Chapter, we will study algorithms for regression when A has a more constrained struc-
ture; namely, when A is a database join of several smaller tables. Specifically, we study design
matrices A = J which are an arbitrary database join on tables T1, . . . ,Tm, with Ti ∈ Rni×di ,
written as J = T1 1 T2 1 · · · 1 Tm. The materials in this chapter are based on our work
[JSWY21].

While join queries share many similarities to Kronecker products, they are structurally more
complicated. Specifically, join queries do not admit many of the nice algebraic properties enjoyed
by Kronecker products. On the other hand, like Kronecker products, the size of the join J can
be exponentially large in the number of component tables Ti. Specifically, J itself can have as
many as O(n1n2 · · ·nm) rows, and at most

∑
i di columns.

Given the results of Chapter 10, a natural question is whether one can perform common
linear algebraic tasks, such as regression, on database joins without explicitly computing J. As
we have seen, a crucial ingredient for such tasks is the design of a subspace embedding (SE)
for J (Definition 2.4.2), which significantly reduces the number of rows in J while preserving
lengths of vectors in the span. Recall that subspace embeddings are the primary tool for obtaining
extremely efficient solutions for many linear-algebraic tasks, such as least squares regression and
low rank approximation (see Section 2.4 for further background on subspace embeddings). The
gold standard for obtaining such an embedding, as in Chapter 10, would be to design input-

549

sparsity runtime algorithms, where the sparsity is that of the component tables Ti: namely a
runtime of O(∑i nnz(Ti)). Specifically, we ask:

Is it possible to apply a subspace embedding to a join, without having to explicitly form the

join?

In this work, we accomplish precely this, by giving input-sparsity algorithms for computing
subspace embeddings on joins of two-tables, J = T1 1 T2 , with running time bounded by
O(nnz(T1) + nnz(T2)). We show that our SEs result in input sparsity time algorithms for high
accuracy regression, significantly improving upon the running time of prior FAQ-based methods
for regression. We also extend our results to arbitrary joins for the ridge regression problem,
considerably improving the running time of prior methods for database joins. Empirically, we
apply our method to real datasets and show that it is significantly faster than existing algorithms.

Highlighted Contributions

The main contributions of this chapter as as follows:

• We design the first algorithms for subspace embeddings and regression on database joins
J = T1 1 T2 of two joins, which moreover run in input sparsity time (Section 11.3).

• We give a framework to extend our algorithms to more general join queries, considerably
improving the running time of prior state of the art methods (Section 11.4).

• We empirically evaluate both of our algorithms several important datasets, including the
LastFM [CBK11] and MovieLens [HK15] datasets. Both our methods outperform prior
state of the art FAQ based algorithms (developed in [AKNR16]) which compute exact
solutions for regression, while maintaining extremely low relative error rates at or below
1% (Section 11.5).

11.1 Background

A canonical and important example of structured matrices is the database join. The prevalence
of such joins in modern algorithmic tasks has motivated companies and teams such as Relation-

550

alAI [Rel] and Google’s Bigquery ML [Big] to design databases that are capable of handling
machine learning queries. Unfortunately, as noted earlier, in general the size of database joins
grows exponentially with the number of component tables. Moreover, for many fundamental
linear algebraic tasks such as regression, there are still no theoretically efficient algorithms for
handling large database joins. Here, an efficient algorithm would produce good solutions without
running the computationally intractable task of computing the join J itself. The design of such
algorithms is the focus of this chapter.

Recall that in the database join setting, we have m tables T1,T2, . . . ,Tm, where Ti ∈
R
ni×di , and the database join J over a specified set of columns is denoted

J = T1 1 T2 1 · · · 1 Tm ∈ RN×d

Notice that the actual set of columns, namely the structure of the join query, is not specified in
the above notation, and must therefore be specified contextually. In this notation, we point out
that the number N of rows of the join J can be as large as n1n2 · · ·nm.

We do note that it is possible to perform various operations on a join in sublinear (in the size of
the join) time, using database algorithms that are developed for Functional Aggregation Queries

(FAQ) [AKNR16, AKNN+18]. Specifically, using FAQ-based techniques, one can compute
the covariance matrix JTJ in time O(d4mn log(n)) for an acyclic join,1 where n = max(n1,

. . . , nm), after which one can solving least squares regression can be accomplished in poly(d)
time. While this can be significantly faster than the Ω(Nd) time required to compute the actual
join, it is still significantly larger than the input description size

∑
i nnz(Ti), which even if the

tables are dense, is at most dmn. When the tables are sparse, e.g., O(n) non-zero entries in each
table, one could even hope for a running time close to O(mn).

We note that the lack of input-sparsity time algorithms for regression on joins is further
exacerbated in the presence of categorical features. Indeed, it is a common practice to convert
categorical data to their so-called one-hot encoding before optimizing any statistical model. Such
an encoding creates one column for each possible value of the categorical feature and only a
single column is non-zero for each row. Thus, in the presence of categorical features, the tables
in the join are extremely high dimensional and extremely sparse, and would benefit even more
greatly from input sparsity algorithms.

In addition, since the data is high-dimensional, a common technique in regression is to regu-
larize to avoid overfitting. A particularly popular form of regularized is ridge regression. Thus,

1See definition in Section 11.4.

551

in addition to ordinary regression, one could also ask if it is possible to efficently implement
ridge regression on joins. Specifically, one could ask if it is possible to design input-sparsity
time algorithms on joins for regression or ridge regression.

Can one design input-sparsity time algorithms on joins for both regression and ridge

regression?

11.1.1 Our Contributions

We start by describing our results for least squares regression in the important case when the
join is on two tables. We note that the two-table case is a very well-studied case, see, e.g.,
[AMS96, AGMS99, GWWZ15]. Moreover, one can always reduce to the case of a two-table
join by precomputing part of a general join. The following two theorems state our results for
computing a subspace embedding and for solving regression on the join J = T1 1 T2 of
two tables. Our results demonstrate a substantial improvement over all prior algorithms for
this problem. In particular, they answer the two questions above, showing that it is possible to
compute a subspace embedding in input-sparsity time, and that regression can also be solved in
input-sparsity time.

Previous to our work, the fastest algorithm for linear regression on two tables has a worst-
case time complexity of Õ(nd + nD2), where n = max(n1, n2), d is the number of columns
of the (non-encoded) join, and D is the dimensionality of the data after encoding the categorical
data. Note that in the case of numerical (non-categorical) data, we have D = d since there is no
one-hot encoding and the time complexity is O(nd2). This complexity can be further improved
to O(ndω−1) where ω < 2.373 is the exponent of fast matrix multiplication; note that this is the
same as the fastest known time complexity for exact linear regression on a single table. In the
case of categorical features (sparse data), using sparse tensors, the D2 factor in the complexity
can be replaced by Ω(d2) [AKNN+18].

We state two results with differing leading terms and low-order additive terms, as one may
be more useful than the other depending on whether the input tables are dense or sparse.

Theorem 135 (In-Database Subspace Embedding). Suppose J = T1 1 T2 ∈ RN×d is a join of

two tables, where T1 ∈ Rn1×d1 ,T2 ∈ Rn2×d2 . Then Algorithm 12 outputs a sketching matrix

S∗ ∈ Rk×N such that with probability 9/10 we have that S∗ is an ε-subspace embedding for J.

In other words, we have

‖S∗Jx‖2
2 = (1± ε)‖Jx‖2

2

552

simultaneously for all x ∈ Rd with probability2 at least 9/10. The running time to return S∗J is

the minimum of Õ((n1+n2)d/ε2+d3/ε2) and Õ((nnz(T1)+nnz(T2))/ε2+(n1+n2)/ε2+d5/ε2).3

In the former case, we have k = Õ(d2/ε2), and in the latter case we have k = Õ(d4/ε2).

Next, by following a standard reduction from a subspace embedding to an algorithm for
regression, we obtain extremely efficient machine precision regression algorithms for two-table
database joins.

Theorem 136 (Machine Precision Regression). Suppose J = T1 1 T2 ∈ RN×d is a join of

two tables, where T1 ∈ Rn1×d1 ,T2 ∈ Rn2×d2 . Let U ⊆ [d] be any subset, and let JU ∈ RN×|U |

be J restricted to the columns in U , and let b ∈ RN be any column of the join J. Then there is

an algorithm which outputs x̂ ∈ R|U | such that with probability 9/104 we have

‖JU x̂− b‖2 ≤ (1 + ε) min
x∈R|U|

‖JUx− b‖2

The running time required to compute x̂ is the minimum of Õ(((n1 + n2)d + d3) log(1/ε)) and

Õ((nnz(T1) + nnz(T2) + d5) log(1/ε)).

General Joins We next consider arbitrary joins on more than two tables. In this case, we
primarily focus on the ridge regression problem minx ‖Jx − b‖2

2 + λ‖x‖2
2, for a regularization

parameter λ. This problem is a popular regularized variant of regression and was considered
in the context of database joins in [AKNN+18]. We introduce a general framework to apply
sketching methods over arbitrary joins in Section 11.4; our method is able to take a sketch with
certain properties as a black box, and can be applied both to TensorSketch [ANW14, Pag13,
PP13], as well as recent improvements to this sketch [AKK+20b, WZ20a] for certain joins.
Unlike previous work, which required computing JTJ exactly, we show how to use sketching to
approximate this up to high accuracy, where the number of entries of JTJ computed depends on
the so-called statistical dimension of J, which can be much smaller than the data dimension D.

2We remark that using standard techniques for amplifying the success probability of an SE (see Section 2.3
of [W+14]) one can boost the success probability to 1 − δ by repeating the entire algorithm O(log δ−1) times,
increasing the running time by a multiplicative O(log δ−1) factor. One must then compute the SVD of each of the
O(log δ−1) sketches, which results in an additive O(kdω−1 log δ−1) term in the running time, where ω ≈ 2.376 is
the exponent of matrix multiplication. Note that this additive dependence on d is only slightly (≈ d.376) larger than
the dependence required for constant probability as stated in the theorem.

3We use Õ notation to omit factors of log(N).
4The probability of success here is the same as the probability of success of constructing a subspace embedding;

see earlier footnote about amplifying this success probability.

553

Evaluation Empirically, we compare our algorithms on various databases to the previous best
FAQ-based algorithm of [AKNN+18], which computes each entry of the covariance matrix JTJ.
For two-table joins, we focus on the standard regression problem. We use the algorithm de-
scribed in Section 11.3, replacing the Fast Tensor-Sketch with Tensor-Sketch for better practical
performance. For general joins, we focus on the ridge regression problem; such joins can be
very high dimensional and ridge regression helps to prevent overfitting. We apply our sketching
approach to the entire join and obtain an approximation to it, where our complexity is in terms of
the statistical dimension rather than the actual dimension D. Our results demonstrate significant
speedups over the previous best algorithm, with only a small sacrifice in accuracy. For example,
for the join of two tables in the MovieLens data set, which has 23 features, we obtain a 10-fold
speedup over the FAQ-based algorithm, while maintaining a 0.66% relative error. For the natural
join of three tables in the real MovieLens data set, which is a join with 24 features, we obtain
a 3-fold speedup over the FAQ-based algorithm with only 0.28% MSE relative error. Further
details can be found in Section 11.5.

11.1.2 Related In-Database Machine Learning Work

The work of [AKNR16] introduced Inside-out, a polynomial time algorithm for calculating func-
tional aggregation queries (FAQs) over joins without performing the joins themselves, which can
be utilized to train various types of machine learning models. The Inside-Out algorithm builds
on several earlier papers, including [AM00, Dec96, KW08, GM06]. Relational linear regression,
singular value decomposition, and factorization machines are studied extensively in multiple
prior works [Ren13, KNP15, SOC16, KNN+18, AKNN+18, KNPZ16, ELB+17, KJY+15]. The
best known time complexity for training linear regression when the features are continuous, is
O(d4mnfhtw log(n)) where fhtw is the fractional hypertree width of the join query. Note that fhtw
is 1 for acyclic joins. For categorical features, the time complexity isO(d2mnfhtw+2) in the worst-
case; however, [AKNN+18] uses sparse computation of the results to reduce this time depending
on the join instance. In the case of polynomial regression, the calculation of pairwise interac-
tions among the features can be time-consuming and it is addressed in [AKNN+18, LCK19].
Relational support vector machines with Gaussian kernels are studied in [YGL+]. In [CK19], a
relational algorithm is introduced for Independent Gaussian Mixture Models, which can be used
for kernel density estimation by estimating the underlying distribution of the data.

554

11.2 Preliminaries on Database Joins and Relevant Sketches

We first introduce the notion of a block of a join, which will be important in our analysis. Let
T1, . . . ,Tm be tables, with Ti ∈ Rni×di . Let J = T1 1 T2 1 · · · 1 Tm ∈ RN×d be an
arbitrary join on the tables Ti. Let Q be the subset of columns which are contained in at least
two tables, e.g., the columns which are joined upon. For any subset U of columns and any table
T containing a set of columns U ′, let T |U be the projection of T onto the columns in U ∩ U ′.
Similarly define r|U for a row r. Let C be the set of columns in J, and let Cj ⊂ C be the columns
contained in Tj . Define the set of blocks B = B(J) ⊂ R|Q| of the join to be the set of distinct
rows in the projection of J onto Q. In other words, B is the set of distinct rows which occur in
the restriction of J to the columns being joined on. For any j ∈ [m], let T̂j ∈ Rnj×d be the
embedding of the rows of Tj into the join J, obtained by padding Tj with zero-valued columns
for each column not contained in Tj , and such that for any column c contained in more than one
Tj , we define the matrices T̂j so that exactly one of the T̂j contains c (it does not matter which
of the tables containing the column c has c assigned to it in the definition of T̂j). More formally,
we fix any partition {Ĉj}j∈[m] of C, such that C = ∪jĈj and Ĉj ⊆ Cj for all j.

For simplicity, given a block~i ∈ B, which was defined as a row in R|Q|, we drop the vector
notation and write~i = i ∈ B. For a given i = (i1, . . . , i|Q|) ∈ B, let s(i) denote the size of the
block, meaning the number of rows r of the join J such that ij is in the j-th column of r for all
j ∈ Q. For i ∈ B, let T(i)

j be the subset of rows r in Tj such that r|Q = i|Cj , and similarly define
T̂(i)
j ,J(i) to be the subset of rows r in T̂j (respectively J) such that r|Q = i|Ĉj (respectively

r|Q = i). For a row r such that r|Q = i we say that r “belongs” to the block i ∈ B. Let s(i),j

denote the number of rows of T(i)
j , so that s(i) = ∏m

j=1 s(i),j .

As an example, considering the join T1(A,B) 1 T2(B,C), we have one block for each
distinct value of B that is present in both T1 and T2, and for a given block B = b, the size of the
block can be computed as the number of rows in T1, with B = b, multiplied by the number of
rows in T2, with B = b.

Using the above notion of blocks of a join, we can construct J as a stacking of matrices J(i) for
i ∈ B. For the case of two table joins J = T1 1 T2, we have J(i) =

(
T̂(i)

1 ⊗ 1s(i),2 + 1s(i),1 ⊗ T̂(i)
2

)
∈

R
s(i)×d. In other words, J(i) is the subset of rows of J contained in block i. Observe that the entire

join J is the result of stacking the matrices J(i) on top of each other, for all i ∈ B. In other words,
ifB = {i1, i2, . . . , i|B|}, the join J = T1 1 T2 is given by J =

[
(J(i1))T , (J(i2))T , . . . , (J(i|B|))T

]T
.

Figure 11.1 illustrates an example of blocks in a two table join. In this example column f2 is

555

Table 11.1: Table of Notation

Ti , a ni × di sized table
J , join of all tables, i.e., J = T1 1 T2 1 · · · 1 Tm
C , set of columns of J
Ci , set of columns of Ti
Ĉi , Partition of C such that Ĉi ⊆ Ci for i ∈ [m].
T |U , projection of T onto columns U ∩ U ′, where U ′ are the columns of T
T̂i , Result of padding Ti|Ĉi with zero-valued columns in C \ Ĉi
B , set of blocks, i.e., distinct rows of J|Q
s(i) , size of block i, i.e., number of rows r of J with r|q = i ∈ B
T

(i)
j , subset of rows r in Tj such that r|Q = i|Cj
T̂

(i)
j , subset of rows r in T̂j such that r|Q = i|Ĉj

J(i)
j , subset of rows r in J such that r|Q = i

Figure 11.1: Example of two table join blocks

T
(1)
1

f1 f2
1 1
2 1

T
(2)
1

f1 f2
3 2

T
(1)
2

f2 f3
1 1
1 2

T
(2)
2

f2 f3
2 3

Figure 11.2: Examples of T (j)
i

the column that we are joining the two tables on, and there are two values for f2 that are present
in both tables, namely the values{1, 2}. Thus B = {B1, B2}, whereB1 = 1 andB2 = 2. In other
words, Block B1 is the block for value 1, and its size is s1 = 4, and similarly B2 has size s2 = 4.
Figure 11.1 illustrates how the join J can be written as stacking together the block-matrices J(1)

and J(2). Figure 11.2 shows the tables T (j)
i for different values of i and j in the same example.

Finally, for any subset U ⊆ [N], let JU denote the set of rows of J belonging to U . If L is a
set of blocks of J , meaning L ⊆ B(J), then let JL denote the set of rows of J belonging to some
block i ∈ L (recall that a row r “belongs” to a block i ∈ L ⊆ B if r|Q = i).

556

11.2.1 Some Useful Sketches

We now introduce several sketches which will be useful for our main regression algorithms. We
begin by defining the notion of the statistical dimension of a matrix.

Definition 11.2.1 (Statistical Dimension). For a matrix A ∈ Rn×d, and a non-negative scalar

λ, the λ-statistical dimension is defined to be dλ = ∑
i

λi(ATA)
λi(ATA)+λ , where λi(ATA) is the i-th

eigenvalue of ATA.

We also recall the definition of a subspace embedding from Chapter 2. For the purposes of
this chapter only, it will be useful to change our terminology slightly, and refer to the embedded
matrix itself SA as being an ε-subspace embedding for A, as opposed to calling the sketching
matrix S a subspace embedding for A. Note that the latter is the terminology used in the rest
of the thesis (as introduced in Section 2.4.1), although both conventions are common in the
literature. Specifically, we will use the following terminology for subspace embeddings in this
chapter.

Definition 11.2.2 (Subspace Embedding). For an ε ≥ 0, we say that Ã ∈ Rm×d is an ε-subspace

embedding for A ∈ Rn×d if for all x ∈ Rd we have

(1− ε)‖Ax‖2 ≤ ‖Ãx‖2 ≤ (1 + ε)‖Ax‖2.

Note that if Ã ∈ Rm×d is an ε-subspace embedding for A ∈ Rn×d, in particular this implies
that Σi(A) = (1± ε)Σi(Ã) for all i ∈ [d].

Generalized Leverage Scores In this section, we introduce the notion of generalized leverage

scores, which extend the Definition 2.4.1 from Chapter 2. First, recall that the leverage score of
the i-th row Ai,∗ of A ∈ Rn×d is defined to be τi(A) = Ai,∗(ATA)+AT

i,∗. Let τ(A) ∈ Rn be
the vector such that (τ(A))i = τi(A). Then τ(A) is the diagonal of A(ATA)+AT , which is a
projection matrix. Thus τi(A) ≤ 1 for all i ∈ [n]. It is also easy to see that

∑n
i=1 τi(A) ≤ d

[CLM+15]. Given matrices A ∈ Rn×d and B ∈ Rn1×d, the generalized leverage scores of A
with respect to B are defined as

τB
i (A) =

Ai,∗(BTB)+AT
i,∗ if Ai,∗⊥ker(B)

1 otherwise

557

We remark that in the case were Ai,∗ has a component in the kernel (null space) ofB, denoted by
ker(B), τB

i (A) is defined to be∞ in [CLM+15]. However, as stated in that paper, this definition
was simply for notational convenience, and the results would equivalently hold setting τB

i (A) =
1 in this case. Note that for a matrix A ∈ Rn×d with SVD B = UΣVT , we have (BTB)+ =
VΣ−2VT . Thus, for any x ∈ Rd, we have xT (BTB)+x = ‖xTVΣ−1‖2

2, and in particular
τB
i (A) = ‖AT

i,∗VΣ−1‖2
2 if Ai,∗⊥ker(B), where Ai,∗⊥ker(B) means Ai,∗ is perpendicular to the

kernel of B.

Proposition 11.2.3. If B′ ∈ Rn′1×d is an ε-subspace embedding for B ∈ Rn1×d, and A ∈ Rn×d

is any matrix, then τB′
i (A) = (1±O(ε))τB

i (A)

Proof. If B′ is an ε-subspace embedding for B, then the spectrum of (B′(B′)T)+ is a (1 ± ε)−2

approximation to the spectrum of (BBT)+, so xT (B′(B′)T)+x = (1 ± ε)−2xT (BBT)+x for all
x ∈ Rd, which completes the proof.

Our algorithm will employ a mixture of several known oblivious subspace embeddings as
tools to construct our overall database join SE. The first result we will need is an improved variant
of Tensor-Sketch, which is an SE that can be applied quickly to tensor products of matrices.

Lemma 11.2.4 (Fast Tensor-Sketch, Theorem 3 of [AKK+20b]). Fix any matrices A1,A2, . . . ,Am,

where Ai ∈ R
ni×di , fix ε > 0 and λ ≥ 0. Let n = n1 · · ·nm and d = d1 · · · dm. Let

A = A1 ⊗ A2 ⊗ · · · ⊗ Am have statistical dimension dλ. Then there is an oblivious ran-

domized sketching algorithm which produces a matrix S ∈ Rk×n, where k = O(dλm4/ε2), such

that with probability 1− 1/poly(n), we have that for all x ∈ Rd

‖SAx‖2
2 + λ‖x‖2

2 = (1± ε)(‖Ax‖2
2 + λ‖x‖2

2).

Note for the case of λ = 0, this implies that SA is an ε-subspace embedding for A. Moreover,

SA can be computed in time Õ(∑m
i=1 nnz(Ai)/ε2 ·m5 + kdm).5

For the special case of λ = 0 in Lemma 11.2.4, the statistical dimension is d, and Tensor-
Sketch is just a standard SE.

Lemma 11.2.5 (OSNAP Transform [NN13]). Given any A ∈ RN×d, there is a randomized

oblivious sketching algorithm that produces a matrix W ∈ Rt×N with t = Õ(d/ε2), such that

5Theorem 3 of [AKK+20b] is written to be applied to the special case of the polynomial kernel, where A1 =
A2 = · · · = Am. However, the algorithm itself does not use this fact, nor does it require the factors in the tensor
product to be non-distinct.

558

WA can be computed in time Õ(nnz(A)/ε2), and such that WA is an ε-subspace embedding

for A with probability at least 99/100. Moreover, each column of W has at most Õ(1) non-zero

entries.

Lemma 11.2.6 (Count-Sketch [CW17]). For any fixed matrix A ∈ Rn×d, and any ε > 0, there

exists an algorithm which produces a matrix S ∈ Rk×n, where k = O(d2/ε2), such that SA is

an ε-subspace embedding for A with probability at least 99/100. Moreover, each column of S
contains exactly one non-zero entry, and therefore SA can be computed in O(nnz(A)) time.

11.3 Subspace Embeddings for Two-Table Database Joins

In this section, we will describe our algorithms for fast computation of in-database subspace
embeddings for joins of two tables J = T1 1 T2, where Ti ∈ Rni×di , and J ∈ RN×d. As a
consequence of our subspace embeddings, we obtain an input sparsity time algorithm for ma-
chine precision in-database regression. Here, machine precision refers to a convergence rate of
log(1/ε) to the optimal solution. In what follows, we first present a high-level discussion of the
algorithm and intuition.

Our subspace embedding algorithm can be run with two separate hyper-parameterizations,
one of which we refer to as the dense case where the tables T1,T2 have many non-zero entries,
and the other is referred to as the sparse case, where we exploit the sparsity of the tables T1,T2.
In the former, we will obtain Õ(1

ε2
((n1 + n2)d + d3)) runtime for construction of our subspace

embedding, and in the latter we will obtain Õ(1
ε2

(nnz(T1) + nnz(T2) + d5)) time. Thus, when
the matrices T1,T2 are dense, we have (n1 + n2)d = Θ(nnz(T1) + nnz(T2)), in which case
the former algorithm has a strictly better runtime dependence on n1, n2, and d. However, for the
many applications where T1,T2 are sparse, the latter algorithm will yield substantial improve-
ments in runtime. By first reading off the sparsity of T1,T2 and choosing the hyperparameters
which minimize the runtime, the final runtime of the algorithm is the minimum of the two afore-
mentioned runtimes.

Our main subspace embedding is given in Algorithm 12. As noted in Section 11.2, we
can describe the join J as the result of stacking several “blocks” J(i), where the rows of J(i)

consist of all pairs of concatenations of a row of T(i)
1 and T(i)

2 , where the T(i)
j ’s partition Tj . We

deal separately with blocks i for which J(i) contains a very large number of rows, and smaller
blocks. Formally, we split the set of blocks B(J) into Bbig and Bsmall. For each block J(i) from
Bbig, we apply a fast tensor sketch transform to obtain a subspace embedding for that block. By

559

construction, there can only be a small number, namely at most (n1+n2)/(γd), big blocks, where
γ = 1 in the dense case and γ = d in the sparse case. Thus, the additive O(d) term required for
running tensor sketch on each block results in a runtime which is within our required bounds.

For the smaller blocks, however, we need a much more involved routine. This is because
there can be many more than (n1 + n2)/(γd) small blocks, so we cannot afford to run a tensor-
sketch on each. Instead, our algorithm computes a random sample of the rows of the blocks J(i)

from Bsmall, denoted J̃small. Using the results of [CLM+15], it follows that sampling sufficiently
many rows from the distribution induced by the generalized leverage scores τ J̃small

i (Jsmall) of Jsmall

with respect to J̃small yields a subspace embedding of Jsmall. However, it is not possible to write
down (let alone compute) all the values τ J̃small

i (Jsmall), since there can be more rows i in Jsmall than
our entire allowable running time.

To handle this issue, we first note that by Proposition 11.2.3 and the discussion prior to
it, the value τ J̃small

i (Jsmall) is well-approximated by ‖(Jsmall)i,∗VΣ−1‖2
2, which in turn is well-

approximated by ‖(Jsmall)i,∗VΣ−1G‖2
2 if G is a Gaussian matrix with only a small Θ(logN)

number of columns. Thus, sampling from the generalized leverage scores τ J̃small
i (Jsmall) can be

approximately reduced to the problem of sampling a row i from JsmallY with probability propor-
tional to ‖(Jsmall)i,∗Y‖2

2, where Y is any matrix given as input. We then design a fast algorithm
which accomplishes precisely this task: namely, for any join J′ and input matrix Y with a small
number of columns, it samples rows from J′Y with probability proportional to the squared row
norms of J′Y. Since Jsmall = J′ is itself a database join, this is the desired sampler. This pro-
cedure is given in Algorithms 13 (pre-processing step) and 14 (sampling step). We can apply
this sampling primitive to efficiently sample from the generalized leverage scores in time sub-
stantially less than constructing Jsmall, which ultimately allows for our final subspace embedding
guarantee of Theorem 135.

Finally, to obtain our input sparsity runtime machine precision regression algorithm, we apply
our subspace embedding with constant ε to precondition the join J, after which the regression
problem can be solved quickly via gradient descent. While a general gradient step is not always
possible to compute efficiently with respect to the join J, we demonstrate that when the products
used in the gradient step arise from vectors in the column span of J, the updates can be computed
efficiently, which will yield our main regression result (Theorem 136).

560

11.3.1 Analysis of the Two-Table Algorithm

In this section, we formally prove the correctness of our algorithm for the fast computation of
in-database subspace embeddings for the join of two tables J = T1 1 T2, where Ti ∈ Rni×di ,
and J ∈ RN×d. These algorithms yield input-sparsity runtime solvers for in-database machine
precision regression. Our full algorithm is given formally below in Algorithm 12. It uses two
crucial subroutines, Algorithms 13 and 14, which efficiently sample rows of a portion Jsmall of
the design matrix J.

Algorithm 12: Subspace embedding for join J = T1 1 T2.
1 In the dense case set γ = 1. In the sparse case, case γ = d.
2 Compute block sizes s(i), and let Bbig = {i ∈ B | maxj{s(i),j} ≥ d · γ}. Set
Bsmall = B \ Bbig, nsmall = |Bsmall|.

3 For each i ∈ Bbig, generate a Fast Tensor-Sketch matrix Si ∈ Rt×s(i) (Lemma 11.2.4)
and compute SiJ(i).

4 Let J̃big be the matrix from stacking the matrices {SiJ(i)}i∈Bbig . Generate a
Count-Sketch matrix S′ (Lemma 11.2.6) and compute S′J̃big.

5 Let Jsmall = JBsmall , and sample uniformly a subset U of m = Θ((n1 + n2)/γ) rows of
JBsmall ∈ Rnsmall×d and form the matrix J̃small = (Jsmall)U ∈ Rm×d.

6 Generate OSNAP transform W (Lemma 11.2.5) and compute WJ̃small and the SVD
W · J̃small = UΣVT .

7 Generate Gaussian matrix G ∈ Rd×t with entries drawn i.i.d. from N (0, 1/t2),
t = Θ(logN), and Gaussian vector g ∼ N (0, IId).

8 For all rows i of Jsmall, set ‖(Jsmall)i,∗
(
IId −VVT

)
g‖2

2 = αi, and

τ̃i =

1 if αi > 0
‖(Jsmall)i,∗VΣ−1G‖2

2 otherwise
.

9 Using Algorithms 13 and 14, construct diagonal row sampling matrix S ∈ Rnsmall×nsmall

such that Si,i = 1√
pi

with probability pi, and Si,i = 0 otherwise, where

pi ≥ min
{

1, log d
ε2
· τ̃i
}

10 Return J̃, where J̃ is the result of stacking the matrices S′J̃big with SJsmall.

We will begin by proving our main technical sampling result, which proceeds in a series of
lemmas, and demonstrates that the construct of the diagonal sampling matrix Ssmall in Algorithm
12 can be carried out extremely quickly. We first prove a simple proposition.

Proposition 11.3.1. Let Jsmall ∈ Rnsmall×d be the matrix constructed as in Algorithm 12. Then we

have nsmall ≤ (n1 + n2)d · γ, where γ = 1 in the dense case and γ = d in the sparse case.

561

Proof. Recall that Jsmall consists of all blocks i of J with max{s(i),1, s(i),2} < d·γ, and thus s(i) ≤
d2γ2. The total number nsmall of rows in Jsmall is then

∑
i∈Bsmall

s(i),1 · s(i),2 ≤ ‖s1
small‖2‖s2

small‖2 by
the Cauchy-Schwarz inequality, where sjsmall is the vector with coordinates given by the values
s(i),j for i ∈ Bsmall. Observe that these vectors admit the `1 bound of ‖sjsmall‖1 ≤ nj since
each table Tj has only nj rows. Moreover, they admit the `∞ bound of ‖sjsmall‖∞ ≤ dγ.
With these two constraints, it is standard that the `2 norm is maximized by placing all of the
`1 mass on coordinates with value given by the `∞ bound. It follows that ‖sjsmall‖2 is max-
imized by having ni/(dγ) coordinates equal to dγ, giving ‖sjsmall‖2

2 ≤ njdγ for j ∈ [2], so
nsmall ≤ ‖s1

small‖2‖s2
small‖2 ≤ (n1 + n2)dγ as required.

We now demonstrate how we can quickly `2 sample rows from a join-vector or join-matrix
product after input sparsity time pre-processing. This procedure is split into two algorithms,
Algorithm 13 and 14. Algorithm 13 is an input sparsity time pre-processing step, which given
J ∈ Rn×d and Y ∈ Rd×t, constructs several binary tree data structures. Algorithm 14 then uses
these date structures to sample a row of the product JY with probability proportional to its `2

norm, in time O(logN).

The following lemma shows we can compute SJsmall in input sparsity time using Algorithm
13 and 14. We defer the proof of the Lemma to Section 11.3.2, and first show how our main
results follow given Lemma 11.3.2.

Lemma 11.3.2. Set the value γ = 1 in the dense case, and γ = d in the sparse case. Let

Jsmall ∈ Rnsmall×d and let J̃small ∈ Rm×d be the subset of rows of Jsmall constructed in Algorithm

12, where m = Θ((n1 + n2)/γ). Let S be the diagonal sampling matrix as constructed in

Algorithm 12. Then with probability 1 − 1/d, we have that SJsmall is an ε-subspace embedding

for Jsmall. Moreover, S has at most Õ(d2γ2/ε2) non-zero entries, and SJsmall can be computed in

time Õ(nnz(T1) + nnz(T2) + d3γ2/ε2).

We now prove our main theorem for in-database subspace embeddings, given Lemma 11.3.2.

Theorem 135 [In-Database Subspace Embedding] Suppose J = T1 1 T2 ∈ Rn×d is a join

of two tables, where T1 ∈ Rn1×d1 ,T2 ∈ Rn2×d2 . Then Algorithm 12 outputs a sketching matrix

S∗ ∈ Rk×n with k = Õ(d2γ2/ε2) (where γ is chosen as in Lemma 11.3.2) such that J̃ = S∗J is

an ε-subspace embedding for J, meaning

‖S∗Jx‖2
2 = (1± ε)‖Jx‖2

2

for all x ∈ Rd with probability at least 9/10. The runtime to return S∗J is the minimum of

562

Õ((n1 + n2)d/ε2 + d3/ε2) and Õ((nnz(T1) + nnz(T2))/ε2 + d5/ε2).

Proof. Our algorithm partitions the rows of J into those from Bsmall and Bbig, and outputs the
result of stacking sketches for Jsmall and J(i) for each i ∈ Bbig. Thus it suffices to show that each
sketch SiJ(i) is a subspace embedding for J(i), and SJsmall is a subspace embedding for Jsmall.
The latter holds by Lemma 11.3.2, and the former follows directly from applying Lemma 11.2.4
and a union bound over the at most O(n) such i. Since each such J(i) can be written as Ji =(
T̂(i)

1 ⊗ 1s(i),2 + 1s(i),1 ⊗ T̂(i)
2

)
∈ Rs(i)×d, the Fast Tensor-sketch lemma can be applied to J(i) in

time Õ((nnz(T(i)
1)+nnz(T(i)

2)+d2)/ε2). Note that |Bbig| ≤ 2(n1+n2)/(dγ), since there can be at
most this many values of s1

(i) + s2
(i) > dγ. Thus the total running time is Õ(∑i∈Bbig

(nnz(T(i)
1) +

nnz(T(i)
2) + d2)/ε2) = Õ((nnz(T1) + nnz(T2))/ε2 + (n1 + n2)d/(γε2)). Finally, applying

CountSketch will cost Õ((n1 +n2)/(dγ) ·d/ε2 ·d), which is Õ((n1 +n2)d/ε2) for the dense case
and Õ((n1 + n2)/ε2) for the sparse case. The remaining runtime analysis follows from Lemma
11.3.2, setting γ to be either 1 or d.

We now demonstrate how our subspace embeddings can be easily applied to obtain fast algo-
rithms for regression. To do this, we will first need the following proposition, which shows that
wTJTJ can be computed in input sparsity time for any w ∈ Rd.

Proposition 11.3.3. Suppose J = T1 1 T2 ∈ Rn×d is a join of two tables, where T1 ∈
R
n1×d1 ,T2 ∈ Rn2×d2 . Let b ∈ Rn be any column of the join J. Let U ⊆ [d] be any subset, and

let JU ∈ Rn×|U | be the subset of the columns of J contained in U. Let w ∈ Rd be any vector,

and let x = Jw ∈ Rn. Then given w, the vector xTJU = wTJTJU ∈ R|U | can be computed in

time O(nnz(T1) + nnz(T2)).

Proof. Fix any i ∈ B(J), and similarly let J(i)
U , T̂

(i)
1,U , T̂

(i)
2,U be J(i), T̂(i)

1 , T̂
(i)
2 respectively, re-

stricted to the columns of U . Note that we have J(i)
U = (T̂(i)

1,U ⊗1s(i),2 + 1s(i),2 ⊗ T̂(i)
2,U) ∈ Rsi×|U |.

Let x(i) ∈ Rs(i) be x restricted to the rows inside of block i ∈ B(J). Since x = Jw for some

563

w ∈ Rd, we have x(i) = J(i)w = (T̂(i)
1 ⊗ 1s(i),2 + 1s(i),1 ⊗ T̂(i)

2)w. Then we have

xTJU =
∑
i∈B

(x(i))TJ(i)
U

=
∑
i∈B

wT
(
T̂(i)

1 ⊗ 1s(i),2 + 1s(i),1 ⊗ T̂(i)
2

)T
·
(
T̂(i)

1,U ⊗ 1s(i),2 + 1s(i),1 ⊗ T̂(i)
2,U

)
=
∑
i∈B

wT
(
s(i),2(T̂(i)

1)T T̂(i)
1,U + ((T̂(i)

1)T1s(i),1)

⊗ ((1s(i),2)T T̂(i)
2,U) + (1s(i),1)T T̂(i)

1,U ⊗ ((T̂(i)
2)T1s(i),2)

+ s(i),1(T̂(i)
2)T T̂(i)

2,U

)

(11.1)

where the last equality follows from the mixed product property of Kronecker products (see
e.g., [VL00]). First note that the products wT s(i),2(T̂(i)

1)T T̂(i)
1,U and wT s(i),1(T̂(i)

2)T T̂(i)
2,U can be

computed in O(nnz(T(i)
1) + nnz(T(i)

2)) time by computing the vector matrix product first. Thus,
it suffices to show how to compute wT ((1s(i),1)T T̂(i)

1,U)⊗ ((T̂(i)
2)T1s(i),2) and wT ((T̂(i)

1)T1s(i),1)⊗
((1s(i),2)T T̂(i)

2,U) quickly. By reshaping the Kronecker products [VL00], we have

wT (1s(i),1)T T̂(i)
1 ⊗ ((T̂(i)

2,U)T1s(i),2) = ((T̂(i)
2,U)T1s(i),2wT (T̂(i)

1)T1s(i),1)T

Now wT (T̂(i)
1)T can be computed in O(nnz(T(i)

1)) time, at which point wT (T̂(i)
1)T1s(i),1 can be

computed in O(s(i),1) = O(nnz(T(i)
1)) time. Next, we can compute 1s(i),2(wT (T̂(i)

1)T1s(i),1) in

O(s(i),2) = O(nnz(T(i)
2)) time. Finally, (T̂(i)

2,U)T (1s(i),2wT · (T̂(i)
1)T1s(i),1) can be computed in

O(nnz(T(i)
2)) time. A similar argument holds for computing wT (1s(i),1)T T̂(i)

1,U ⊗ ((T̂(i)
2)T1s(i),2),

which completes the proof, noting that

∑
i∈B

nnz(T(i)
1) + nnz(T(i)

2) = nnz(T1) + nnz(T2)

We now state our main theorem for machine precision regression. We remark again that the
success probability can be boosted to 1−δ by boosting the success probability of the correspond-
ing subspace embedding to 1− δ, as described earlier.

Theorem 136 [In-Database Regression (Theorem 136)] Suppose J = T1 1 T2 ∈ Rn×d

564

is a join of two tables, where T1 ∈ Rn1×d1 , T2 ∈ Rn2×d2 . Let U ⊂ [d] be any subset, and let

JU ∈ RN×|U | be J restricted to the columns in U , and let b ∈ Rn be any column of the join J.

Then there is an algorithm which returns x̂ ∈ R|U | such that with probability 9/10 we have

‖JU x̂− b‖2 ≤ (1 + ε) min
x∈R|U|

‖JUx− b‖2

The runtime required to compute x̂ is the minimum of

Õ
(
((n1 + n2)d+ d3) + (nnz(T1) + nnz(T2) + d2) log(1/ε)

)
and

Õ
(
d5 + (nnz(T1) + nnz(T2) + d2) log(1/ε)

)

Proof. The following argument follows a standard reduction from having a subspace embedding
to obtaining high precision regression (see, e.g., Section 2.6 of [W+14]). We first compute a
subspace embedding J̃=S∗J for J via Theorem 135 with precision parameter ε0 = Θ(1), so that
S∗J has k = Õ(d2γ2) rows. Note that in particular this implies that S∗JU is an ε0-subspace
embedding for JU . We then generate an OSNAP matrix W ∈ RΘ̃(d)×k via Lemma 11.2.5 with
precision ε0, and condition on the fact that WS∗JU is an ε0-subpsace embedding for S∗JU , which
holds with large constant probability, from which it follows that WS∗JU is an O(ε0)-subspace
embedding for JU . We then compute the QR factorization WS∗JU = QR−1, which can be
done in O(dω) time via fast matrix multiplication [DDH07]. By standard arguments [W+14], the
matrix JUR is now O(1)-well conditioned – namely, we have σmax(JUR)/σmin(JUR) = O(1).
Given this, we can apply the gradient descent update xt+1 ← xt + RTJTU(b − JURxt), which
can be computed in O(nnz(T1) + nnz(T2) + d2) time via Proposition 11.3.3 (note we compute
Rxt in O(d2) time first, and then compute (JURxt). Here we use the fact that b− JURxt = Jw
for some w is a vector in the column span of J, and moreover we can determine the value of
w from computing Rxt and noting that b = Jej∗ , where j∗ ∈ [d] is the index of b in J. Since
RTJTU is now well -conditioned, gradient descent now converges in O(log 1/ε) iterations given
that we have a constant factor approximation x0 [W+14]. Specifically, it suffices to have an
x0 ∈ Rd such that ‖JUx0 − b‖2 ≤ (1 + ε0) minx∈Rd ‖JUx− b‖2. But recall that such an x0 can
be obtained by simply solving x0 = arg minx ‖S∗JUx − S∗b‖2, using the fact that S∗ is an ε0-
subspace embedding for the span of J, which completes the proof of the theorem.

565

Algorithm 13: Pre-processing step for fast `2 sampling from rows of J · Y, where
J = T1 1 T2 and Y ∈ Rd×r.

1 For each block i ∈ B, compute a(i) = T̂
(i)
1 Y and b(i) = T̂

(i)
2

2 For each block i ∈ B, construct a binary tree τ(i)(T1), τ(i)(T2) as follows:
3 Each node v ∈ τ(i)(Tj) is a vector v ∈ R3r

4 If v is not a leaf, then v = vlchild + vrchild with vlchild, vrchild the left and right children of v.
5 The leaves of τ(i)(Tj) are given by the set

{v(i),j
l =

(
v

(i),j
l,1 , v

(i),j
l,2 , . . . , v

(i),j
l,r

)
∈ R3r | l ∈ [s(i),j]}

where v(i),1
l,q = (1, 2(a(i))l,q, (a(i))2

l,q) ∈ R3 and v(i),2
l,q = ((b(i))2

l,q, (b(i))l,q, 1) ∈ R3.
6 Compute the values 〈root(τi(T1)), root(τi(T2))〉 for all i ∈ B, and also compute the sum∑

i〈root(τi(T1)), root(τi(T2))〉.

Algorithm 14: Sampling step for fast `2 sampling from rows of J ·Y.
1 Sample a block i ∈ B with probability

〈root(τi(T1)), root(τi(T2))〉∑
j 〈root(τj(T1)), root(τj(T2))〉

2 Sample l1 ∈ [s(i),1] with probability

pl1 =

〈
v

(i),1
l1 , root(τi(T2))

〉
∑
l

〈
v

(i),1
l , root(τj(T2))

〉
3 Sample l2 ∈ [s(i),2] with probability

pl2 | l1 =

〈
v

(i),1
l1 , v

(i),2
l2

〉
∑
l

〈
v

(i),1
l1 , v

(i),2
l

〉
4 Return: the row corresponding to (l1, l2) in block i.

566

11.3.2 Proof of Lemma 11.3.2

We start our proof by showing Algorithm 14 can sample one row with probability according to
the `2 norm quickly after running the pre-processing Algorithm 13.

Lemma 11.3.4. Let J = T1 1 T2 ∈ RN×d be any arbitrary join on two tables, with Ti ∈
R
ni×di , and fix any Y ∈ Rd×t. Then Algorithms 13 and 14, after a O((nnz(T1) + nnz(T2))(t+

logN))-time pre-processing step (Algorithm 13), can produce samples i∗ ∼ DY (Algorithm 14)

from the distribution DY over [N] given by

Pri∗∼DY [i∗ = j] = ‖(J ·Y)j,∗‖2
2

‖J ·Y‖2
F

such that each sample is produced in O(logN) time.

Proof. We begin by arguing the correctness of Algorithms 13 and 14. Let j∗ be any row of
J · Y. Note that the row j∗ corresponds to a unique block i ∈ B = B(J), and two rows
l1 ∈ [s(i),1], l2 ∈ [s(i),2], such that Jj∗,∗ = (T̂1)l′1,∗ + (T̂2)l′2,∗, where l′1 ∈ [n1], l′2 ∈ [n2] are the
indices which correspond to l1, l2. For l ∈ [s(i),j], let vjl , v

j
l,q be defined as in Algorithm 13. We

first observe that if j∗ corresponds to the block i ∈ B, then 〈v(i),1
l1 , v

(i),2
l2 〉 = ‖(JY)j∗,∗‖2

2, since

〈v(i),1
l1 , v

(i),2
l2 〉 =

r∑
q=1

v
(i),1
l1,q · v

(i),2
l2,q

=
r∑
q=1

(a(i))2
l1,q + 2(a(i))l1,q(b(i))l2,q + (b(i))2

l2,q

=
r∑
q=1

(
(a(i))l1,q + (b(i))l2,q

)2

= ‖(JY)j∗,∗‖2
2

(11.2)

where for each block i ∈ B, we compute a(i) = T̂
(i)
1 Y and b(i) = T̂

(i)
2 as defined in Algorithm 13.

Thus it suffices to sample a row j∗, indexed by the tuple (i, l1, l2) where i ∈ B, l1 ∈ [s(i),1], l2 ∈
[s(i),2], such that the probability we sample j∗ is given by pj∗ = 〈v(i),1

l1 , v
(i),2
l2 〉/(

∑
i′,l′1,l

′
2
〈v(i′),1
l′1

, v
(i′),2
l′2
〉).

We argue that Algorithm 14 does precisely this. First note that for any i ∈ B, we have

〈v(i),1
l1 , root(τi(T2))〉 =

∑
l1∈[s(i),1],l2∈[s(i),2]

〈v(i),1
l1 , v

(i),2
l2 〉

567

Thus we first partition the set of all rows j∗ by sampling a block i with probability

〈root(τi(T1)), root(τi(T2))〉∑
j 〈root(τj(T1)), root(τj(T2))〉

which is exactly the distribution over blocks induced by the `2 mass of the blocks. Conditioned
on sampling i ∈ B, it suffices now to sample l1, l2 from that block. To do this, we first sample
l1 with probability 〈v(i),1

l1 , root(τi(T2))〉/(∑l〈v
(i),1
l , root(τj(T2))〉), which is precisely the distri-

bution over indices l1 ∈ [s(i),1] induced by the contribution of l1 to the total `2 mass of block i.
Similarly, once conditioned on l1, we sample l2 with probability 〈v(i),1

l1 , v
(i),2
l2 〉/(

∑
l〈v

(i),1
l1 , v

(i),2
l 〉),

which is the distribution over indices l2 ∈ [s(i),2] induced by the contribution of the row (l1, l2),
taken over all l2 with l1 fixed. Taken together, the resulting sample j∗ ∼= (i, l1, l2) is drawn from
precisely the desired distribution.

Finally, we bound the runtime of this procedure. First note that computing a(i) = T̂
(i)
1 Y and

b(i) = T̂
(i)
2 for all blocks i can be done in O(t(nnz(T1) + nnz(T2))) time, since each row of the

tables T1,T2 is in exactly one of the blocks, and each row is multiplied by exactly t columns
of Y. Once the a(i), b(i) are computed, each tree τ(i)(Tj) can be computed bottom up in time
O(logN), giving a total time of O(logN(nnz(T1) + nnz(T2))) for all trees. Given this, the
values 〈root(τi(T1)), root(τi(T2))〉 can be computed in less than the above runtime. Thus the
total pre-processing time is bounded by O((t+ logN)(nnz(T1) + nnz(T2))) as needed. For the
sampling time, it then suffices to show that we can carry out Lines 2 and 3 in O(logN) time.
But these samples can be samples from the root down, by first computing 〈rootlchild(τi(T1)),
root(τi(T2))〉 and 〈rootrchild(τi(T1)), root(τi(T2))〉, sampling one of the left or right children with
probability proportional to its size, and recursing into that subtree. Similarly, l2 can be sampled
by first computing 〈v(i),1

l1 , rootlchild(τi(T2))〉 and 〈v(i),1
l1 , rootrchild(τi(T2))〉 sampling one of the

left or right children with probability proportional to its size, and recursing into that subtree.
This completes the proof of the O(logN) runtime for sampling after pre-processing has been
completed.

Then we show how we can construct S by invoking Algorithm 13 and 14.

Lemma 11.3.5. Let Jsmall ∈ Rnsmall×d be the matrix constructed as in Algorithm 12 in the dense

case. Then the diagonal sampling matrix S, as defined within lines 5 through 9 of Algorithm 12,

can be constructed in time Õ(nnz(T1) + nnz(T2) + d2γ2/ε2).

Proof. We first show how we can quickly construct the matrix J̃small, which consists of m =
Θ((n1 + n2)/γ) uniform samples from the rows of Jsmall. First, to sample the rows uniformly,

568

since we already know the sizes of each block s(i), we can first sample a block i ∈ Bsmall with
probability proportional to its size, which can be done in O(log(|Bsmall|)) = O(logN) time after
the s(i)’s are computed. Next, we can sample a row uniformly from T ji for each j ∈ [2], and
output the join of the two chosen rows, the result of which is a truly uniform row from Jsmall.
Since we need m samples, and each sample has d columns, the overall runtime is Õ((n1 +
n2)d/γ) to construct J̃small, which is O(nnz(T1) + nnz(T2)) in the sparse case.

Once we have J̃small, we compute in line 6 of Algorithm 12 the sketch W · J̃small, where
W ∈ Rt×d is the OSNAP Transformation of Lemma 11.2.5 with ε = 1/100, where t = Õ(d),
which we can compute in Õ(md) = Õ((n1 + n2)d/γ) time by Lemma 11.2.5. Given this sketch
W · J̃small ∈ Rt×d, the SVD of the sketch can be computed in time O(dω) [DDH07], where ω <
2.373 is the exponent of fast matrix multiplication. Since WJ̃small is a 1/100 subspace embedding
for J̃ with probability 99/100 by Lemma 11.2.5, by Proposition 11.2.3 we have τWJ̃small(A) =
(1±1/100)τ J̃small(A) for any matrix A. Next, we can compute VΣG in the sameO(dω) runtime,
where G ∈ Rd×t is a Gaussian matrix with t = Θ(logN) and with entries drawn independently
from N (0, 1/t2). By standard arguments for Johnson Lindenstrauss random projections (see
e.g., Lemma 4.5 of [LMP13]), we have that ‖(xTG)‖2

2 = (1 ± 1/100)‖x‖2
2 for any fixed vector

x ∈ Rd with probability at least 1− n−c for any constant c ≥ 1 (depending on t).

We now claim that τ̃i as defined in Algorithm 12 satisfiesC−1τ J̃small
i (Jsmall) ≤ τ̃i ≤ Cτ J̃small

i (Jsmall)
for some fixed constantC ≥ 1. As noted above, τ J̃small

i (Jsmall) = (1±1/100)τWJ̃small(A), so it suf-
fices to show C−1τWJ̃small

i (Jsmall) ≤ τ̃i ≤ CτWJ̃small
i (Jsmall). To see this, first note that if (Jsmall)i,∗

is contained within the row span of J̃small, then

τ J̃small
i (Jsmall) = ‖(Jsmall)i,∗VΣ−1‖2

2

= (1± 1/100)‖(Jsmall)i,∗VΣ−1G‖2
2

= (1± 1/100)τ̃i

(11.3)

Thus it suffices to show that if (Jsmall)i,∗ has a component outside of the span of J̃small, then we
have ‖(Jsmall)i,∗(IId −VVT)g‖2

2 > 0. To see this, note that
(
IId −VVT

)
is the projection onto

the orthogonal space to the span of J̃small. Thus
(
IId −VVT

)
g is a random non-zero vector in

the orthogonal space of J̃small, thus (Jsmall)i,∗
(
IId −VVT

)
g 6= 0 almost surely if (Jsmall)i,∗ has a

component outside of the span of J̃small, which completes the proof of the claim.

Finally, and most significantly, we show how to implement line 9 of Algorithm 12, which
carries out the the construction of S. Given that 1/Cτ J̃small

i (Jsmall) ≤ τ̃i ≤ Cτ J̃small
i (Jsmall), we can

apply Theorem 1 of [CLM+15], using that nsmall ≤ (n1 + n2)d · γ via Proposition 11.3.1, which

569

yields that
∑
i τ̃i = O(nsmall

d
m

) = O(d2γ2). Thus to construct the sampling matrix S, it suffices
to sample α = O(d2γ2 log d/ε2) samples from the distribution over the rows i of Jsmall given by
qi = τ̃i∑

i
τ̃i

. We now describe how to accomplish this.

We first show how to sample the rows iwith (Jsmall)i,∗(IId−VVT)g = 0. To do this, it suffices
to sample rows from the distribution induced by the `2 norm of the rows of (Jsmall)VΣ−1G. To
do this, we can simply apply Algorithms 13 and 14 to the product Jsmall · (VΣ−1G). First note
that we can do this because Jsmall itself is a join of (T1)small and (T2)small, which are just T1,T2

with all the rows contained in blocks i ∈ Bbig removed. Since VΣ−1G ∈ Rd×t for t = Õ(1), by
Lemma 11.3.4 after Õ(nnz(T1)+nnz(T2)), for any s ≥ 1 we can sample s times independently
from this induced `2 distribution over rows in time Õ(s). Altogether, we obtain the required α =
O(d2γ2 log d/ε2) samples from the distribution over the rows i of Jsmall given by qi = τ̃i∑

i
τ̃i

in the

case that (Jsmall)i,∗
(
IId −VVT

)
g = 0, with total runtime Õ(nnz(T1) + nnz(T2) + d2γ2/ε2).

Finally, for the case that (Jsmall)i,∗
(
IId −VVT

)
g > 0, we can apply the same Algorithms

13 and 14 to sample from the rows of Jsmall ·
(
IId −VVT

)
g. First observe, using the fact that∑

i τ̃i ≤ O(d2γ2) by Theorem 1 of [CLM+15], it follows that there are at most O(d2γ2) indices i
such that Jsmall ·

(
IId −VVT

)
g > 0. Thus, when applying Algorithm 14 after the pre-processing

step is completed, instead of sampling independently from the distribution induced by the norms
of the rows, we can deterministically find all rows with Jsmall ·

(
IId −VVT

)
g > 0 in Õ(d2γ2)

time, by simply enumerating over all computation paths of Algorithm 14 that occur with non-zero
probability. Since there are O(d2γ2) such paths, and each one is carried out in O(logN) time by
Lemma 11.3.4, the resulting runtime is the same as the case where (Jsmall)i,∗

(
IId −VVT

)
g = 0.

Finally, we argue that we can compute exactly the probabilities pj with which we sampled a
row j of Jsmall, for each i that was sampled, which will be needed to determine the scalings of the
rows of Jsmall that are sampled. For all the rows sampled with (Jsmall)j,∗

(
IId −VVT

)
g > 0, the

corresponding value of pj is by definition 1. Note that if a row was sampled in both of the above
cases, then it should in fact have been sampled in the case that (Jsmall)j,∗

(
IId −VVT

)
g > 0, so

we set pj = 1. For every row j sampled via Algorithm 14 when (Jsmall)j,∗
(
IId −VVT

)
g = 0,

such that j corresponds to the tuple (i, l1, l2) where i ∈ Bsmall and l1 ∈ [s(i),1], l2 ∈ [s(i),2], we can
compute the probability it was sampled exactly via

pj = p(i,l1,l2) =
〈v(i),1
l1 , v

(i),2
l2 〉∑

c∈B〈root(τc(T1)), root(τc(T2))〉

using the notation in Algorithm 14. Then setting Sj,j = 1√
pj

for each sampled row j between

570

both processes yields the desired construction of S.

With the above lemma in hand, we can give the proof of Lemma 11.3.2.

Proof of lemma 11.3.2. As argued in the proof of Lemma 11.3.5, we have that (1/C)τ J̃small
i (Jsmall) ≤

τ̃i ≤ Cτ J̃small
i (Jsmall) for some fixed constant C ≥ 1 and all i ∈ Bsmall. The result then follows

immediately from Theorem 4 of [CLM+15], using the fact that nsmall/m = Õ(dγ2), where m is
the number of rows subsampled in J̃small from Jsmall.

11.4 General Join Queries

Below we introduce DB-Sketch as a class of algorithms, and show how any oblivious sketching
algorithm that has the properties of DB-Sketch can be implemented efficiently for data coming
from a join query. Since the required properties are very similar to the properties of linear
sketches for Kronecker products, we will be able to implement them inside of a database. Given
that the statistical dimension can be much smaller than the actual dimensions of the input data,
our time complexity for ridge regression can be significantly smaller than that for ordinary least
squares regression, which is important in the context of joins of many tables. We first begin with
a primer on useful database concepts.

11.4.1 Database Background

We begin with some fundamental definitions relating to database joins.

Definition 11.4.1 (Join Hypergraph). Given a join J = T1 1 · · · 1 Tm, the hypergraph asso-

ciated with the join is H = (V,E) where V is the set of vertices and for every column ci in J ,

there is a vertex vi in V , and for every table Ti there is a hyper-edge ei in E that has the vertices

associated with the columns of Ti.

Definition 11.4.2 (Acyclic Join). We call a join query acyclic if one can repeatedly apply one of

the two operations and convert the query to an empty query:

1. remove a column that is only in one table.

2. remove a table for which its columns are fully contained in another table.

571

Definition 11.4.3 (Hypergraph Tree Decomposition). Let H = (V,E) be a hypergraph and

T = (V ′, E ′) be a tree on a set of vertices, where each vertex v′ ∈ V ′ called the bag of v′,

denoted by b(v′), and corresponds to a subset of vertices of V . Then T is called a hypergraph
tree decomposition of H if the following holds:

1. for each hyperedge e ∈ E, there exists v′ ∈ V ′ such that e ⊆ b(v′), and

2. for each vertex v ∈ V , the set of vertices in V ′ that have v in their bag is non-empty and

they form a connected subtree of T .

Definition 11.4.4. Let H = (V,E) be a join hypergraph and T = (V ′, E ′) be its tree decompo-

sition. For each v′ ∈ V ′, let Xv′ = (xv′1 , xv
′

2 , . . . , x
v′
m) be the optimal solution to the following

linear program: min
∑t
j=1 xj , subject to

∑
j:vi∈ej xj ≥ 1,∀vi ∈ b(v′) where 0 ≤ xj ≤ 1 for

each j ∈ [t]. Then the width of v′ is
∑
i x

v′
i , denoted by w(v′), and the fractional width of T is

maxv′∈V ′ w(v′).

Definition 11.4.5 (fhtw). Given a join hypergraph H = (V,E), the fractional hypertree width
of H , denoted by fhtw, is the minimum fractional width of its hypergraph tree decomposition.

Here the minimum is taken over all possible hypertree decompositions.

Observation 137. The fractional hypertree width of an acyclic join is 1, and each bag in its
hypergraph tree decomposition is a subset of the columns in some input table.

Definition 11.4.6 (FAQ). Let J = T1 1 · · · 1 Tm be a join of m input tables. For each table

Ti, let Fi : Ti → S be a function mapping the rows of Ti to a set S. For every row X ∈ J , let

Xi be the projection of X onto the columns of Ti. Then the following is a SumProd Functional

Aggregation Query (FAQ):

⊕
X∈J

⊗
i

Fi(Xi) (11.4)

where (S,⊕,⊗) is a commutative semiring.

Theorem 138 ([AKNR16]). Inside-out is an algorithm which computes the result of a FAQ in

time O(Tmd2nfhtw log(n)) where m is the number of tables, d is the number of columns in J , n

is the maximum number of rows in any input table, T is the time to compute the operators ⊕ and

⊗ on a pair of operands, and fhtw is the fractional hypertree width of the query.

In [AKNN+18], given a join J = T1 1 · · · 1 Tm, it is shown that the entries of JTJ can be

572

expressed as a FAQ and computed using the inside-out algorithm.

11.4.2 The General Algorithm

In the following we assume the join query is acyclic; nevertheless, for cyclic queries it is possible
to obtain the hypergraph tree decomposition of the join and create a table for each vertex in
the tree decomposition by joining the input tables that are a subset of the vertex’s bag in the
hypergraph tree decomposition. One can then replace the cyclic join query with an acyclic query
using the new tables.

In our algorithm, we use FAQ and inside-out algorithm as a subroutine. The definition of
FAQ is given in Section 11.4.1. Let J′ = T1 1 T2 1 · · · 1 Tm be an acyclic join. Let ρ be
a binary expression tree that shows in what order the algorithm inside-out [AKNR16] multiplies
the factors for an arbitrary single-semiring FAQ; meaning, ρ has a leaf for each factor (each table)
and (m − 1) internal nodes such that if two nodes have the same parent then their values are
multiplied together during the execution of inside-out. We number the tables based on the order
that a depth-first-search visits them in this expression tree. We let ρ denote the multiplication
order of J′.

Now that the ordering of the tables is fixed, we reformulate the Join table J′ so that it can be
expressed as a summation of tensor products. Assign each column c to one of the input tables
that has c, and then let Ei denote the columns assigned to table Ti, Xi be the projection of X
onto Ei, and Di be the domain of the tuples Xi (projection of Ti onto Ei).

Letting N = |D1||D2| . . . |Dm|, we can reformulate J′ as J ∈ RN×d to have a row for any
possible tuple X ∈ D1× · · ·×Dm. If a tuple X is present in the join, we put its value in the row
corresponding to it, and if it is not present we put 0 in that row. Note that J has all the rows in
J′ and also may have many zero rows; however, we do not need to present J explicitly, and the
sparsity of J does not cause a problem. One key property of this formulation is that by knowing
the values of a tuple x, the location of x in J is well-defined. Also note that since we have only
added rows that are 0, any subspace embedding of J would be a subspace embedding of J′, and
for all vectors x, ‖Jx‖2

2 = ‖J′x‖2
2.

Given a join query J with m tables and its multiplication order ρ, an oblivious sketching
algorithm is an (m, ρ)-DB-Sketch if there exists a function F : Rn×d → RF where RF is the
range of F and F (A) represents the sketch of A in some form and has the following properties:

1. F (A1 + A2) = F (A1)⊕ F (A2) where ⊕ is a commutative and associative operator.

573

2. For any V resulting from a Kronecker product of matrices A = A1 ⊗A2 ⊗ · · · ⊗Am ∈
Rn1...nm , F (A) = F1(A1) � F2(A2) � · · · � Fm(Am) where � is applied based on the
ordering in ρ, and for all i, Fi has the same range as F , and Fi(X1 + X2) = Fi(X1) ⊕
Fi(X2). Furthermore, it should be possible to evaluate Fi(vi) in time O(Tf nnz(vi)).

3. For any values A,B,C in the range of F , A� (B ⊕ C) = (A�B)⊕ (A� C)

Theorem 139. Given a join query J′ = T1 1 T2 1 · · · 1 Tm and a DB-Sketch algorithm, there

exists an algorithm to evaluate F (J′) in time O(m(T� + T⊕)TFAQ + Tfmnd) where n is the size

of the largest table and TFAQ is the time complexity of running a single semiring FAQ, while T�
and T⊕ are the time complexities of � and ⊗, respectively.

Corollary 11.4.7. For any join query J with multiplication order ρ of depth m − 1 and any

scalar λ, let dλ be the λ-statistical dimension of J. Then there exists an algorithm that produces

S ∈ Rk×n where k = O(dλm4/ε2) in time O((mkd)TFAQ +m6nd/ε2) such that with probability

1− 1
poly(n) simultaneously for all x ∈ Rd

‖SJx‖2
2 + λ‖x‖2

2 = (1± ε)(‖Jx‖2
2 + λ‖x‖2

2).

Proof. The proof follows by showing that the algorithm in Lemma 11.2.4 is a DB-Sketch. We
demonstrate this by introducing the functions Fi and the operators ⊕ and �. The function Fi(vi)
is an OSNAP transform (Lemma 11.2.5) of vi, A�B is S(A⊗B) where S is the Tensor Subsam-
pled Randomized Hadamard Transform as defined in [AKK+20b], and A ⊕ B is a summation
of tensors A and B. Then it is easy to see that all the properties hold since Kronecker product
distributes over summation.

Since Fi needs to be calculated for all rows in each table Ti, which takesO(Tfmnd) time, the
operator ⊕ takes O(kd) time to apply since the size of the sketch is k × d. The operator ⊗ takes
at most O(kd) time to apply using the Fast Fourier Transform (FFT) [AKK+20b]. Therefore, the
total time complexity can be bounded by O((mkd)TFAQ +m6nd/ε2).

Lastly, we remark that the algorithm in [AKK+20b] requires that the � operator be applied
to the input tensors in a binary fashion; however, it is shown in a separate version [AK19] of the
paper [AKK+20b] that the sketching construction and results of [AKK+20b] continue to hold
when the tensor sketch is applied linearly. See Lemma 6 and 7 in [AK19] and Lemma 10 in
[AKK+20b].

Corollary 11.4.7 gives an algorithm for all join queries when the corresponding hypertree

574

decomposition is a path, or has a vertex for which all other vertices are connected to it. Although
the time complexity for obtaining an ε-subspace embedding (λ = 0) is not better compared to the
exact algorithm for ordinary least squares regression, for ridge regression it is possible to create
sketches with many fewer rows and still obtain a reasonable approximation.

In the following we explain the algorithm for DB-Sketch using the FAQ formulation and
inside-out algorithm [AKNR16]. Let Ji denote the matrix resulting from keeping the column i
of J and replacing all other columns with 0. Then we have J = ∑

i Ji. Using Ji we can define the
proposed algorithm as finding F (Ji) for all tables Ti and then calculating ⊕iF (Ji). Therefore,
all we need to do is to calculate F (Ji) for all values of i. In the following we introduce an
algorithm for the calculation of F (Ji) and then F (J) is just the summation of the results for the
different tables.

Let e(Xk) be the Dk-dimensional unit vector that is 1 in the row corresponding to Xk, and
let v(Xk) be the Dk× d dimensional matrix that agrees with Xk in the row corresponding to Xk,
and is 0 everywhere else.

Lemma 11.4.8. For all tables, Ji = ∑
X∈J′ e(X1)⊗ · · · ⊗ e(Xi−1)⊗ v(Xi)⊗ e(Xi+1)⊗ · · · ⊗

e(Xm), where ⊗ is the Kronecker product.

Proof. For each tuple X , the term inside the summation has N = |D1||D2| . . . |Dm| rows and
only 1 non-zero row because all of the tensors have only one non-zero row. The non-zero row is
the row corresponding to X , and its value is the value of the same row in Ji; therefore, Ji can be
obtained by summing over all the tuples of J.

Lemma 11.4.9. Let F be a DB-Sketch. Then F (Ji) can be computed in timeO((T�+T⊕)TFAQ +
Tfndm)

Proof. We define a FAQ for F (Ji) and then show how to calculate the result. Let gj(Xj) =
Fj(e(Xj)) for all j 6= i and gi(Xi) = Fi(v(Xi)). Note that the number of non-zeros entries in
e(Xi) is at most d. Therefore, it is possible to find all values of Fi(v(Xi)) in time O(Tfnd). The
claim is it is possible to use the inside-out [AKNR16] algorithm for the following query and find
SJi:

⊕
X∈J′

⊙
j

gj(Xj)

The mentioned query would be a FAQ if
⊙

were commutative and associative. However, since

575

we defined the ordering of the tables based on the multiplication order ρ, the inside-out algorithm
multiplies the factors exactly in the same order needed for the DB-sketch algorithm. Therefore,
we do not need the commutative and associative property of the � operator to run inside-out.

Now we need to show that the query truly calculates F (Ji). Based on Lemma 11.4.8 and the
properties of F we have:

F (Ji) =F
(∑
X∈J′

e(X1)⊗ · · · ⊗ e(Xi−1)⊗ v(Xi)⊗ e(Xi+1)⊗ · · · ⊗ e(Xm)
)

=
⊕
X∈J′

F (e(X1)⊗ · · · ⊗ e(Xi−1)⊗ v(Xi)⊗ e(Xi+1)⊗ · · · ⊗ e(Xm))

=
⊕
X∈J′

(
F1(e(X1))� · · · � Fi−1(e(Xi−1))� Fi(v(Xi))� Fi+1(e(Xi+1))� · · · � Fm(e(Xm))

)
=
⊕
X∈J′

⊙
j

gj(Xj)

as needed.

Proof of Theorem 139. Finding the values ofFi(Xi) for all i and all tuples ofXi takesO(Tfndm)
time because Fi can be calculated in time O(Tf nnz(Ti)), and the total number of non-zero en-
tries can be bounded by O(ndm). The calculation of F (Ji) can be done in time O(m(T� +
T⊕)TFAQ+Tfndm) usingm rounds of the inside-out algorithm where TFAQ = O(md2nfhtw log(n))
[AKNR16]. After this step, we need to aggregate the results using the ⊕ operator to obtain the
final result which takes O(mT⊕) time.

11.5 Evaluation

We study the performance of our sketching method on several real datasets, both for two-table
joins and general joins.6 We first introduce the datasets we use in the experiments. We consider
two datasets: LastFM [CBK11] and MovieLens [HK15]. Both of them contain several relational
tables. We will compare our algorithm with the FAQ-based algorithm on the joins of some
relations.

The LastFM dataset has three relations: Userfriends (the friend relations between users),
Userartists (the artists listened by each user) and Usertaggedartiststimestamps (the tag as-

6Code available at https://github.com/AnonymousFireman/ICML_code

576

https://github.com/AnonymousFireman/ICML_code

signments of artists provided by each particular user along with the timestamps).

The MovieLens dataset also has three relations: Ratings (the ratings of movies given by the
users and the timestamps), Users (gender, age, occupation, and zip code information of each
user), Movies (release year and the category of each movie).

11.5.1 Two-Table Joins

In the experiments for two-table joins, we solve the regression problem minx ‖JUx− b‖2
2, where

J = T1 1 T2 ∈ RN×d is a join of two tables, U ⊂ [d] and b is one of the columns of J. In our
experiments, suppose column p is the column we want to predict. We will set U = [d] \ {p} and
b to be the p-th column of J.

To solve the regression problem, the FAQ-based algorithm computes the covariance matrix
JTJ by running the FAQ algorithm for every two columns, and then solves the normal equations
JTJx = JT b. Our algorithm will compute a subspace embedding J̃, and then solve the regression
problem minx ‖J̃Ux− b̃‖2

2, i.e., solve J̃T J̃x = J̃T b̃.

We compare our algorithm to the FAQ-based algorithm on the LastFM and MovieLens
datasets. The FAQ-based algorithm employs the FAQ-based algorithm to calculate each entry
in JTJ.

For the LastFM dataset, we consider the join of Userartists and Usertaggedartiststimes-
tamps: J1 = UA 1UA.user=UTA.user UTA. Our regression task is to predict how often a user
listens to an artist based on the tags. For the MovieLens dataset, we consider the join of Ratings
and Movies: J2 = R 1R.movie=M.movie M. Our regression task is to predict the rating that a user
gives to a movie.

In our experiments, we do the dataset preparation mentioned in [SOC16], to normalize the
values in each column to range [0, 1]. For each column, let vmax and vmin denote the maximum
value and minimum value in this column. We normalize each value v to (v−vmin)/(vmax−vmin).

11.5.2 General Joins

For general joins, we consider the ridge regression problem. Specifically, our goal is to find
a vector x that minimizes ‖Jx − b‖2

2 + λ‖x‖2
2, where J = T1 1 · · · 1 Tm ∈ RN×d is an

arbitrary join, b is one of the columns of J and λ > 0 is the regularization parameter. The

577

Table 11.2: Experimental Results for Two-Table Joins

n1 n2 d Tbf Tours Err
J1 92834 186479 6 .034 .011 0.70%
J2 1000209 3883 23 .820 .088 0.66%

0 1 2 3 4 5
·105

0.766

0.768

0.77

0.772

0.774

λ

M
SE

Figure 11.3: MSE vs. λ for our algorithm

optimal solution to the ridge regression problem can be found by solving the normal equations
(JTJ + λIId)x = JT b.

The FAQ-based algorithm is the same as in the experiment for two-table joins. It directly
runs the FAQ algorithm a total of d(d+ 1)/2 times to compute every entry of JTJ.

We run our algorithm, discussed in Section 11.4, and the FAQ-based algorithm on the MovieLens-
25m dataset, which is the largest of the MovieLens [HK15] datasets. We consider the join of
Ratings, Users and Movies: J3 = R 1R.user=U.user U 1U.movie=M.movie M. Our regression task
is to predict the rating that a user gives to a movie.

11.5.3 Results

‘

We run the FAQ-based algorithm and our algorithm on those joins and compare their running
times. To measure accuracy, we compute the relative mean-squared error, given by:

Err = ‖JUxours − b‖2
2 − ‖JUxbf − b‖2

2
‖JUxbf − b‖2

2

in the experiments for two-table joins, where xbf is the solution given by the FAQ-based al-

578

0 200 400 600 800 1,000
0.764214

0.764216

0.764218

0.76422

0.764222

0.764224

0.764226

λ

M
SE

Figure 11.4: MSE vs. λ for the FAQ-based algorithm

0 0.5 1 1.5 2 2.5 3
·105

0

0.2

0.4

0.6

0.8

1

·10−2

λ

re
la

tiv
e

er
ro

r

Figure 11.5: Relative Error vs. λ

579

gorithm, and xours is the solution given by our algorithm. All results (runtime, accuracy) are
averaged over 5 runs of each algorithm.

In our implementation, we adjust the target dimension in our sketching algorithm for each
experiment, as in practice it appears unnecessary to parameterize according to the worst-case
theoretical bounds when the number of features is small, as in our experiments. Additionally, for
two-table joins, we replace the Fast Tensor-Sketch with Tensor-Sketch ([AKK+20b, Pag13]) for
the same reason. The implementation is written in MATLAB and run on an Intel Core i7-7500U
CPU with 8GB of memory.

We let Tbf be the running time of the FAQ-based algorithm and Tours be the running time of
our approach, measured in seconds. Tables 11.2 shows the results of our experiments for two-
table joins. From that we can see our approach can give a solution with relative error less than
1%, and its running time is significantly less than that of the FAQ-based algorithm.

For general joins, due to the size of the dataset, we implement our algorithm in Taichi
[HLA+19, HAL+20] and run it on an Nvidia GTX1080Ti GPU. We split the dataset into a train-
ing set and a validation set, run the regression on the training set and measure the MSE (mean
squared error) on the validation set. We fix the target dimension and try different values of λ to
see which value achieves the best MSE.

Our algorithm runs in 0.303s while FAQ-based algorithm runs in 0.988s. The relative error
of MSE (namely, MSEours−MSEbf

MSEbf
, both measured under the optimal λ) is only 0.28%.

We plot the MSE vs. λ curve for the FAQ-based algorithm and our algorithm in Figure 11.3
and 11.4. We observe that the optimal choice of λ is much larger in the sketched problem than
in the original problem. This is because the statistical dimension dλ decreases as λ increases.
Since we fix the target dimension, ε thus decreases. So a larger λ can give a better approximate
solution, yielding a better MSE even if it is not the best choice in the unsketched problem.

We also plot the relative error of the objective function in Figure 11.5. For ridge regression it
becomes

(‖Jxours − b‖2
2 + λ‖xours‖2

2)− (‖Jxbf − b‖2
2 + λ‖xbf‖2

2)
‖Jxbf − b‖2

2 + λ‖xbf‖2
2

.

We can see that the relative error decreases as λ increases in accordance with our theoretical
analysis. sub

580

Table 11.3: General Algorithm on Two-Table Joins

k running time relative error

J1

40 0.086 42.3%
80 0.10 9.79%

120 0.14 3.67%
160 0.16 0.87%
200 0.19 1.05%

J2

400 1.25 5.79%
800 2.02 2.32%

1200 2.93 1.85%
1600 3.74 1.19%
2000 4.50 0.96%

11.5.4 Comparing the Algorithms for Two-Table Joins

In this chapter, we have presented two algorithms for regression on database joins: one specif-
ically for two-table joins, and one for more general join queries. A natural question is whether
it is always advantageous to use the two-table join algorithm when the input is, in fact, a join of
two tables. Thus, we now compared the two algorithms in the context of two-table joins, both
theoretically and empirically.

Theoretical Comparison

By Theorem 135, the total running time to obtain a subspace embedding is the minimum of
Õ((n1+n2)d/ε2+d3/ε2) and Õ((nnz(T1)+nnz(T2))/ε2+(n1+n2)/ε2+d5/ε2) using Algorithm
12.

Now we consider the algorithm stated in Corollary 11.4.7. When running on the join of
two tables, the algorithm is equivalent to applying the Fast Tensor-Sketch to each block and
summing them up. Thus, the running time is Õ(∑i∈B(nnz(T(i)

1)/ε2 + nnz(T(i)
2)/ε2 + d2/ε2)) =

Õ((nnz(T1) + nnz(T2))/ε2 + (n1 + n2)d2/ε2).

The running time of the algorithm in Corollary 11.4.7 is greater than the running time of
Algorithm 12. In the extreme case the number of blocks can be really large, and even if each
block has only a few rows we still need to pay an extra Õ(d2/ε2) time for it. This is the reason
why we split the blocks into two sets (Bbig andBsmall) and use a different approach when designing
the algorithm for two-table joins.

581

Experimental Comparison

In our experiments we replace the Fast Tensor-Sketch with Tensor-Sketch. The theoretical anal-
ysis is similar since we still need to pay an extra O(kd log k) time to sketch a block for target
dimension k.

We run the algorithm for the general case on joins J1 and J2 for different target dimensions.
As shown in Table 11.3, in order to achieve the same relative error as Algorithm 12, we need
to set a large target dimension and the running time would be significantly greater than it is in
Table 11.2, even compared with FAQ-based algorithm. This experimental result agrees with our
theoretical analysis.

582

Part III

Database Query Evaluation

583

Chapter 12

Approximate Counting and Uniform
Sampling from Database Queries

Part III of this thesis concerns the problems of approximate counting of and uniform sampling

from a database query. Informally, given as input a relational database D = {R1, . . . ,Rm},
where each Ri is a relation, and a queryQ, one can define the setQ(D) of “answers” to the query
Q over the databse D. One would then like to estimate the size |Q(D)|, or uniformly sample
from the set Q(D). These two tasks are of fundamental importance for query optimization
[RGG03, PS13b], data mining, and statistical inference [AD20]. Drawing an example from
Chapter 11, the query Q(D) could be a database join on the relations R1, . . . ,Rm. Importantly,
and as seen in Chapter 11, the size of the query Q(D) can grow exponentially in the size of the
database D. Consequentially, counting and uniform sampling are inherently non-trivial.

We consider the class of conjunctive queries (CQ), which are one of the most common class
of queries used in database systems, and the best studied in the literature. Since the relationQ(D)
is often a high-dimensional object, expressed by the lower dimensional representation (Q,D),
one may hope to apply sketching techniques on Q,D so as to compress Q(D) into, for instance,
a uniform sample of answers. However, in general, even checking if Q(D) is empty (known as
the decision problem) is NP-Hard [CM77b], thus polynomial time algorithms for approximating
|Q(D)|, or generating sub-sampled sketches, are unlikely to exist.

A seminal result of Grohe, Schwentick, and Segoufin [GSS01] characterized the classes of
conjunctive queries for which the decision problem is in P . In this chapter, we describe a line
of work set out in the papers [ACJR19, ACJR21] which characterizes the classes of conjunctive
queries for which polynomial time algorithms exist for approximate counting and sampling.

585

Roughly, our main result is the first fully polynomial time randomized approximation scheme
(FPRAS) for counting answers to CQs with bounded tree-width (definition in Section 12.3.2),
as well as a polynomial time uniform sampler for such answers. By a lower bound of [GSS01],
the decision problem, and therefore approximate counting, is hard for classes with unbounded
treewidth, demonstrating that our result is the best possible.

The main ingredient in our result is the resolution of a fundamental counting problem from
automata theory. Specifically, the answers to a class of CQs can be modeled by the accepting
inputs to families of finite automata. In [ACJR19], we demonstrate the first FPRAS for count-
ing the number of words of length n accepted by a non-deterministic finite automton (NFA). In
[ACJR21], we extend this algorithm, by demonstrating the first FPRAS and polynomial time
sampler for the set of trees of size n accepted by a tree automaton, which significantly gener-
alize NFAs, and can express the answers to CQs with bounded tree-width. Previously, the best
known algorithm for either task was a quasi-polynomial time randomized approximation scheme
(QPRAS) of Gore, Jerrum, Kannan, Sweedyk, and Mahaney [GJK+97].

In contrast to the QPRAS of [GJK+97], the algorithm presented in this chapter is based on
sketching techniques. Specifically, if Ln is the language of accepting words (or trees) of an NFA
N (or tree automata T), one can write down a natural dynamic program (DP) to generate the
entire set Ln. The intermediate states of this DP consist of sets of substrings (or subtrees) which
can be composed together to ultimately form Ln. Since |Ln| is exponential in the input (n, |N |)
to the problem, the intermediate states are exponentially large. Our approach is to compress these
states, replacing each with a sketch of the corresponding set consisting of i.i.d. uniform samples.
The main challenge is how to generate these sketches bottom up through the DP – the majority
of this chapter consists of addressing this challenge.

This chapter is based on joint works with Marcelo Arenas, Luis Alberto Croquevielle, and
Cristian Riveros [ACJR19, ACJR21]. The first paper [ACJR19] appeared in PODS 2019, where
it won the Best Paper Award, received a ACM SIGMOD Research Highlight Award (2020), an
invitation the the Journal of the ACM, and an invitation as a highlighted plenary talk at STOC
2021. The second paper [ACJR21] appeared in STOC 2021.

Highlighted Contributions

The main contributions of this chapter as as follows:

586

• We give the first FPRAS and polynomial time uniform sampler the set of answers to CQs
with bounded hypertree-width (Section 12.3).

• Given a integer n and a non-deterministic finite automata (NFA) N , we give the first
FPRAS for approximating the number of strings of length n accepted by N . Further-
more, we give a the first FPRAS for the more general task of approximating the number of
trees of size n accepted by a tree automata T (Sections 12.5 and 12.6).

• We demonstrate how our results can be applied to obtain an FPRAS for many open prob-
lems, such as counting solutions to constraint satisfaction problems (CSP) with bounded
hypertree-width, counting the number of error threads in programs with nested call sub-
routines, and counting valid assignments to structured DNNF circuits (Section 12.7).

12.1 Background

Let C and V be two disjoint sets of constants and variables, respectively. Then a conjunctive
query (CQ) is an expression of the form:

Q(x̄) ← R1(ū1), . . . , Rn(ūn), (12.1)

where for every i ∈ [n], Ri is a ki-ary relation symbol (ki ≥ 1), ūi ∈ (C ∪V)ki is a ki-ary tuple
of variables and constants, and x̄ = (x1, . . . , xm) is a tuple of variables such that each variable
xi in x̄ occurs in at least one ūi. A database D is an instantiation D = {RD

1 , R
D
2 , . . . , R

D
n } of

the relations, so that each RD
i ⊂ Cki is a finite subset of ki-ary tuples ā of constants (known as

facts). A homomorphism from Q to D is a function h : V → C such that for every i ∈ [n], we
have h(ūi) ∈ RD

i , where h(ūi) is applied coordinate-wise and acts as the identity on C. Given
such a homomorphism h, the tuple h(x̄) is called an answer to Q over D, and the set of all such
answers is denoted Q(D).

Conjunctive queries are the most common class of queries used in database systems. They
correspond to select-project-join queries in relational algebra and select-from-where queries in
SQL, and are closely related to constraint satisfaction problems (CSPs). Therefore, the com-
putational complexity of tasks related to the evaluation of conjunctive queries is a fundamental
object of study.

Given as input a database instance D and a conjunctive query Q(x̄), the query evaluation

587

problem is defined as the problem of computing Q(D).The corresponding query decision prob-

lem is to verify whether or not Q(D) is empty. It is well known that even the query decision
problem is NP-complete for conjunctive queries [CM77b]. Thus, a major focus of investigation
in the area has been to find tractable special cases [Yan81, CR97, GLS98, GSS01, GLS02, FG06,
GGLS16].

In addition to evaluation, two fundamental problems for conjunctive queries are counting the
number of answers to a query and uniformly sampling such answers. The counting problem
for CQ is of fundamental importance for query optimization [RGG03, PS13b]. Specifically, the
optimization process of a relational query engine requires, as input, an estimate of the number
of answers to a query (without evaluating the query). Furthermore, uniform sampling is used
to efficiently generate representative subsets of the data, instead of computing the entire query,
which are often sufficient for data mining and statistical tasks [AD20]. Starting with the work of
Chaudhuri, Motwani and Narasayya [CMN99b], the study of random sampling from queries has
attracted significant attention from the database community [ZCL+18, CY20].

Beginning with the work in [Yan81], a fruitful line of research for finding tractable cases
for CQs has been to study the degree of acyclicity of a CQ. In particular, the treewidth tw(Q)
of Q [CR97, GSS01], and more generally the hypertree width hw(Q) of Q [GLS02], are two
primary measurements of the degree of acyclicity. It is known that the query decision problem
can be solved in polynomial time for every class C of CQs with bounded treewidth [CR97,
GSS01] or bounded hypertree width [GLS02].1 A seminal result of Grohe, Schwentick, and
Segoufin [GSS01] demonstrates that for every class G of graphs, the evaluation of all conjunctive
queries whose underlying graph is in G is tractable if, and only if, G has bounded treewidth.
Hence, the property of bounded treewidth provides a characterization of tractability of the query
decision problem.

Unfortunately, uniform generation and exact counting are more challenging than query eval-
uation for CQs. Specifically, given as input a conjunctive query Q and database D, com-
puting |Q(D)| is #P-complete even when tw(Q) = 1 [PS13b] (that is, for so called acyclic

CQs [Yan81]). Moreover, even approximate counting is intractable for queries with unbounded
treewidth, since any multiplicative approximation clearly solves the decision problem. On the
other hand, these facts do not preclude the existence of efficient approximation algorithms for
classes of CQs with bounded treewidth, as the associated query decision problem is in P. Despite
this possibility, to date no efficient approximation algorithms for these classes are known.

1C has bounded treewidth (hypertree width) if tw(Q) ≤ k (hw(Q) ≤ k) for every Q ∈ C, for a fixed constant k.

588

In this paper, we fill this gap by demonstrating the existence of a fully polynomial-time ran-
domized approximation scheme (FPRAS) and a fully polynomial-time almost uniform sampler
(FPAUS) for every class of CQs with bounded hypertree width. Since hw(Q) ≤ tw(Q) for every
CQ Q [GLS02], our result also includes every class of CQs with bounded treewidth, as well as
classes of CQs with bounded hypertree width but unbounded treewidth [GLS02]. Specifically,
we show the following.

Theorem 140 (Theorem 144 informal). Let C be a class of CQs with bounded hypertree width.

Then there exists a fully polynomial-time randomized approximation scheme (FPRAS) that, given

Q ∈ C and a database D, estimates |Q(D)| to multiplicative error (1± ε). Moreover, there is a

fully polynomial-time almost uniform sampler (FPAUS) that generates samples from Q(D).

Our algorithm of Theorem 140 in fact holds for a larger class of queries, including unions of
conjunctive queries with bounded hypertree width (Proposition 12.3.3). Note that, as defined in
[JVV86a], an FPAUS samples from a distribution with variational distance δ from uniform (see
Section 12.2.2 for a formal definition).

An interesting question is whether there exists a larger class of queries C that admits an
FPRAS. Since the decision problem for C is in BPP whenever C admits an FPRAS, as a corol-
lary of Theorem 140 and the characterization of [GSS01], we obtain the following answer to
this question (see Section 12.3.3 for a precise statement of this result, and for the necessary
terminology for this statement):

Corollary 12.1.1 (Corollary 12.3.1 informal). Let G be a class of (undirected) graphs and C be

the class of all CQs whose underlying graph is in G. Then assuming W[1] 6= FPT and BPP = P,

the following are equivalent: (1) the problems of computing |Q(D)| and of sampling from Q(D),

given as input Q ∈ C and a database D, admit an FPRAS and an FPAUS, respectively; and (2)

G has bounded treewidth.

Corollary 12.1.1 shows that the results of [GSS01] can be extended to the approximate counting
problem for CQs. Perhaps surprisingly, this demonstrates that the classes of CQs for which the
decision problem is tractable, in the sense studied in [GSS01], are precisely the same as the
classes which admit an FPRAS. Besides, this gives a positive answer to the line of research
started in [CMN99b], by providing a characterization of the class of queries that admit an almost
uniform sampler.

589

12.1.1 An FPRAS for tree automata

The key to our results is the resolution of a fundamental counting problem from automata the-
ory; namely, the counting problem for tree automata. Specifically, we first demonstrate that the
solution space Q(D) of a conjunctive query with bounded hypertree-width can be efficiently ex-
pressed as the language accepted by a tree automaton T . We then demonstrate the first FPRAS
for the problem of counting the number of trees accepted by a tree automaton T .

Tree automata are the natural extension of non-deterministic finite automata (NFA) from
words to trees. This extension is a widely studied topic, since they have a remarkable capacity to
model problems, while retaining many of the desirable computational properties of NFAs [Sei90,
Tho97]. Beginning with the strong decidability result established by Rabin [Rab69], many im-
portant problems have been shown to be decidable via tree automata. Moreover, the fact that tree
automata are equivalent to monadic second order-logic [TW68] is a basic component of the proof
of Courcelle’s theorem [Cou90]. Further applications of tree automata, among others, include
model checking [EJ91, Var95], program analysis [AEM04, AM04, AM09], databases [Nev02,
Sch07], and knowledge representation [Ter99, CDGL99, BCM+03] (see also [Tho97, CDG+07]
for a survey).

The counting problem of tree automata. Similarly to how a non-deterministic finite automaton
N accepts a language L(N) of words, a tree automaton T accepts a language L(T) of labeled
trees. Given T and an integer n, define the n-slice of L(T) as:

Ln(T) = {t ∈ L(T) | |t| = n}

where |t| is the number of vertices in t. We consider the counting problem #TA, which is the
main counting problem studied in this paper regarding tree automata:

Problem: #TA
Input: A tree automaton T and a string 0n

Output: |Ln(T)|

While exactly computing the size of the n-slice for deterministic finite automata and de-
terministic tree automata is tractable [Mai94, BGS00, KSM95], this is not the case for their
non-deterministic counterparts. In fact, given as input an NFA A and a number n in unary, the
problem of computing |Ln(A)| is #P-hard [ÀJ93], which implies #P-hardness for tree automata.
Naturally, this does not rule out the possibility of efficient approximation algorithms. This obser-

590

vation was first exploited by Kannan, Sweedyk, and Mahaney, who gave a quasi polynomial-time

approximation scheme (QPRAS) for NFAs [KSM95], which was later extended by the aforemen-
tioned authors, along with Gore and Jerrum [GJK+97], to the case of tree automata.2 Specifi-
cally, the algorithm of [GJK+97] runs in time ε−2(nm)O(log(n)), where m = |T | is the size of
the description of T , and ε is the error parameter. Improving the complexity of this algorithm to
polynomial time has been an open problem.

The algorithms of [GJK+97] and [KSM95] are based on a recursive form of Karp-Luby
sampling [KLM89], which is a type of rejection sampling. This approach has the drawback that
the probability a sample is chosen is exponentially small in the depth of the recursion. Recently,
using a different sampling scheme, it was shown that an FPRAS and an FPAUS exist for NFAs
[ACJR19]. However, the techniques in [ACJR19] break down fundamentally (discussed in the
following) when applied to tree automata. The main technical contribution of this work is to
address the failing points of [ACJR19] for tree automata, and design an FPRAS for this case.

Theorem 141. Given a tree automaton T and n ≥ 1, there is an algorithm which runs in time

poly(|T |, n, ε−1, log(δ−1)) and with probability 1− δ, outputs an estimate Ñ with:

(1− ε)|Ln(T)| ≤ Ñ ≤ (1 + ε)|Ln(T)|

Conditioned on the success of this event, there is a sampling algorithm where each call runs

in time poly(|T |, n, log(δ−1)), and either outputs a uniformly random tree t ∈ Ln(T), or ⊥.

Moreover, it outputs ⊥ with probability at most 1/2.

Note that conditioned on the success of the above FPRAS (run once), every subsequent call
to the sampler generates a truly uniform sample (or ⊥). Observe that this notion of sampling is
stronger than the standard notion of FPAUS (see Section 12.2.2). We note that the existence of
an FPAUS is in fact a corollary of the existence of an FPRAS for the above [JVV86a].

Succinct NFAs. A key step in the proof of Theorem 141 is a reduction to counting and sampling
from a succinct NFA N , which is an NFA with succinctly encoded alphabet and transitions.
Formally, a succinct NFA N is a 5-tuple (S,Σ,∆, sinit, sfinal), where S is a set of states, Σ is
an alphabet, sinit, sfinal ∈ S are the initial and final states, and ∆ ⊆ S × 2Σ × S is the transition
relation, where each transition is labeled by a setA ⊆ Σ. We assume that Σ is succinctly encoded
via some representation (e.g. a DNF formula), and likewise for each setA such that e = (s, A, s′)
is a transition in ∆. Therefore, the size of the alphabet Σ and the size of each such set A can be

2The QPRAS of [GJK+97] holds more generally for context free grammars (CFG).

591

exponentially large in the representation of N . A word w = w1w2 . . . wn ∈ Σ∗ is accepted by
N if there is a sequence sinit = s0, s1, . . . , sn = sfinal of states such that there exists a transition
(si−1, A, si) ∈ ∆ with wi ∈ A for each i = 1, 2, . . . , n. Note that the special case where each
transition (s, A, s′) ∈ ∆ satisfies |A| = 1 is precisely the standard definition of an NFA. To solve
the aforementioned problems for succinct NFA, we must assume that the encodings of the label
sets satisfy some basic conditions. Specifically, we require that for each transition (s, A, s′), we
are given an oracle which can (1) test membership in A, (2) produce an estimate of the size of
|A|, and (3) generate almost-uniform samples from A.

Theorem 142. LetN = (S,Σ,∆, sinit, sfinal) be a succinct NFA and n ≥ 1. Suppose that the sets

A in each transition (s, A, s′) ∈ ∆ satisfy the properties (1), (2) and (3) described above. Then

there is an FPRAS and an FPAUS for Ln(N).

While standard (non-succinct) NFAs are known to admit an FPRAS by the results of [ACJR19],
Theorem 142 is a strong generalization of the main result of [ACJR19], and requires many non-
trivial additional insights and techniques.

12.1.2 Additional applications of the FPRAS

We demonstrate that the FPRAS of Theorem 141 results in the first polynomial-time random-
ized approximation algorithms for many previously open problems in the fields of constraint
satisfaction problems, verification of correctness of programs with nested calls to subroutines,
and knowledge compilation. We give a brief overview of these results in what follows. Further
details are deferred to the full version.

Constraint satisfaction problems. Constraint satisfaction problems (CSPs) offer a general and
natural setting to represent a large number of problems where solutions must satisfy some con-
straints, and which can be found in different areas [Var00, CKS01, RVBW06, HN04, BHvMW09,
RN16]. The most basic task associated to a CSP is the problem of verifying whether it has a so-
lution, which corresponds to an assignment of values to the variables of the CSP that satisfies
all the constraints of the problem. Tightly related with this task is the problem of counting the
number of solutions to a CSP. In this work, we consider this counting problem in the usual set-
ting where a projection operator for CSPs is allowed, so that it is possible to indicate the output
variables of the problem. We denote this setting as ECSP.

As counting the number of solutions of an ECSP is #P-complete and cannot admit an FPRAS

592

(unless NP = RP), we focus on two well known notions of acyclicity that ensure that solutions
can be found in polynomial time [GLS00, GLS02]. More precisely, we define #AECSP as the
problem of counting, given an acyclic ECSP E , the number of solutions to E . Moreover, given
a fixed k ≥ 0, we define #k-HW-ECSP as the problem of counting, given an ECSP E whose
hypertree-width is at most k, the number of solutions for E . Although both problems are known
to be #P-complete [PS13b], we obtain as a consequence of Theorem 141 that both #AECSP and
#k-HW-ECSP admit FPRAS.

Software verification. Nested words have been proposed as a model for the formal verifica-
tion of correctness of structured programs that can contain nested calls to subroutines [AEM04,
AM04, AM09]. In particular, the execution of a program is viewed as a linear sequence of states,
where a matching relation is used to specify the correspondence between each point during the
execution at which a procedure is called with the point when we return from that procedure call.
This idea gives rise to the notion of nested word, which is defined as a regular word accompanied
by a matching relation. Moreover, properties of programs to be formally verified are specified
by using nested word automata (NWA). The emptiness problem for nested word automata ask
whether, given a NWA N , there exists a nested word accepted by N . This is a fundamental
problem when looking for faulty executions of a program with nested calls to subroutines; if N
is used to encode the complement of a property we expect to be satisfied by a program, then a
nested word accepted by N encodes a bug of this program. In this sense, the following is also a
very relevant problem for understanding how faulty a program is. Define #NWA as the problem
of counting, given a nested word automaton N and a string 0n, the number of nested words of
length n accepted by N . As expected, #NWA is a #P-complete problem. Interestingly, from
Theorem 141 and the results in [AM09] showing how nested word automata can be represented
by using tree automata over binary trees, it is possible to prove that #NWA admits an FPRAS.

Knowledge compilation. Model counting is the problem of counting the number of satisfying
assignments given a propositional formula. Although this problem is #P-complete [Val79],
there have been several approaches to tackle it [GSS09]. One of them comes from the field
of knowledge compilation, a subarea in artificial intelligence [DM02]. Roughly speaking, this
approach consists in dividing the reasoning process in two phases. The first phase is to compile
the formula into a target language (e.g. Horn formulae, BDDs, circuits) that has good algorithmic
properties. The second phase is to use the new representation to solve the problem efficiently.
The main goal then is to find a target language that is expressive enough to encode a rich set
of propositional formulae and, at the same time, that allows for efficient algorithms to solve the
counting problem.

593

A target language for knowledge compilation that has attracted a lot of attention is the class
of DNNF circuits [Dar01a]. DNNF has good algorithmic properties in terms of satisfiability
and logical operations. Furthermore, DNNF can be seen as a generalization of DNF formulae,
ordered binary decision diagrams (OBDDs) [Bry92] and free binary decision diagrams (FB-
DDs) [DM02], in the sense that every expression in these formalisms can be transformed into a
DNNF circuit in polynomial time. Moreover, DNNF is exponentially more succinct than DNF,
OBDD and FBDD [DM02], and hence it is a more appealing language for knowledge compila-
tion. Regarding model counting, DNNF circuits can easily encode #P-complete problems (e.g.
#DNF) and, therefore, researchers have look into subclasses of DNNF where counting can be
done more efficiently. One such a class that has recently received a lot of attention is the class of
structured DNNF [PD08], which has been used for efficient enumeration [ABJM17, ABMN19],
and has proved to be appropriate to compile propositional CNF formulae with bounded width
(e.g. CV-width) [OD14]. Unfortunately, the problem of computing the number of propositional
variable assignments that satisfy a structured DNNF circuit is a #P-complete problem, as these
circuits include the class of DNF formulae. However, and in line with the idea that structured
DNNF circuits allow for more efficient counting algorithms, we can prove that the counting
problem of structured DNNF circuits admits a fully-polynomial time randomized approximation
scheme as a consequence of Theorem 141.

12.1.3 Outline of the Chapter

In Section 12.2, we introduce the relevant automata theory background needed for this chapter.
Section 12.3 formalizes the connection between conjunctive queries and tree automata. Sec-
tion 12.4 gives a general overview of the main FPRAS for tree automata, which is formally
described and proven in Sections 12.5 and 12.6. In Section 12.7, we describe the various addi-
tional applications and corollaries of our main result. Finally, in Section 12.8, we discuss open
problems and future work.

12.2 Primer on Automata Theory

In this section, we introduce several fundamental concepts related to finite automata, which will
be central to our results.

594

12.2.1 Intervals, strings, trees and tree automata

Basic notation. Given m ≤ n with n,m ∈ N, we use notation [m,n] for the set {m,m +
1, . . . , n}, and notation [n] for the set [1, n]. Moreover, given u, ε ∈ R with ε ≥ 0, let (u ± ε)
denote the real interval [u−ε, u+ε]. In general, we consider real intervals of the form (1±ε), and
we use x(1± ε) to denote the range [x−xε, x+xε], and x = (1± ε)y to denote the containment
x ∈ [y − εy, y + εy].

Strings and Sequences. Given a finite alphabet Σ, a finite string over Σ is a sequence w =
w1 . . . wn such that n ≥ 0 and wi ∈ Σ for every i ∈ [n]. Notice that if n = 0, then w is the empty
word, which is denoted by λ. We write |w| = n for the length of w. As usual, we denote by Σ∗

all strings over Σ. For two sets A,B ⊆ Σ∗ we denote by A ·B = {u · v | u ∈ A, v ∈ B}, where
u · v is the concatenation of two strings u and w, and by Ai the concatenation of A with itself i
times, that is, A0 = {λ} and Ai+1 = A · Ai for every i ∈ N.

Ordered Trees. Fix k ∈ N with k ≥ 1. A finite ordered k-tree (or just a k-tree) is a prefix-
closed non-empty finite subset t ⊆ [k]∗, namely, if w · i ∈ t with w ∈ [k]∗ and i ∈ [k], then
w ∈ t and w · j ∈ t for every j ∈ [i]. For a k-tree t, λ ∈ t is the called the root of t and every
maximal element in t (under prefix order) is called a leaf. We denote by leaves(t) the set of all
leaves of t. For every u, v ∈ t, we say that u is a child of v, or that v is the parent of u, if u = v · i
for some i ∈ [k]. We say that v has n children if v · 1, . . . , v · n ∈ t with n = maxv·i∈t{i}. We
denote by v = parent(u) when v is the parent of u (if u is the root, then parent(u) is undefined).
Furthermore, we say that v is an ancestor of u, or u is a descendant of v, if v is a prefix of u. The
size of t, i.e. the number of nodes, is denoted by |t|.

Let Σ be a finite alphabet and t be a k-tree. Slightly abusing notation, we also use t to denote
a k-tree labeled over Σ. That is, we also consider t as a function such that for every u ∈ t, it
holds that t(u) ∈ Σ is the label assigned to node u. For a ∈ Σ, we denote just by a the tree
consisting of one node labeled with a. For labeled k-trees t and t′, and a leaf ` ∈ t, we define
t[`→ t′] the labeled k-tree resulting from “hanging” t′ on the node ` in t. Formally, we have that
t[`→ t′] = t ∪ ({`} · t′), t[`→ t′](u) = t(u) whenever u ∈ (tr{`}) and t[`→ t′](` ·u) = t′(u)
whenever u ∈ t′. Note that the leaf ` takes in t[` → t′] the label on t′ instead of its initial label
on t. When t consists of just one node with label a and with two children, we write a(t1, t2)
for the tree defined as t[1 → t1][2 → t2], namely, the tree consisting of a root a with t1 and t2
hanging to the left and right, respectively. In particular, t = a(b, c) is the tree with three nodes
such that t(λ) = a, t(1) = b, and t(2) = c. Finally, we denote by Treesk[Σ] the set of all k-trees
labeled over Σ (or just k-trees over Σ).

595

Tree Automata. A (top-down) tree automaton T over Treesk[Σ] is a tuple (S,Σ,∆, sinit) where
S is a finite set of states, Σ is the finite alphabet, ∆ ⊆ S×Σ× (∪ki=0S

i) is the transition relation,
and sinit ∈ S is the initial state. We will usually use s, q, and r to denote states in S. A run ρ of T
over a k-tree t is a function ρ : t → S that assigns states to nodes of t such that for every u ∈ t,
if u · 1, . . . , u · n are the children of u in t, then (ρ(u), t(u), ρ(u · 1)ρ(u · 2) . . . ρ(u · n)) ∈ ∆.
In particular, if u is a leaf, then it holds that (ρ(u), t(u), λ) ∈ ∆. We say that T accepts t if
there exists a run of T over t with ρ(λ) = sinit, and we define L(T) ⊆ Treesk[Σ] as the set of all
k-trees over Σ accepted by T . We write Ln(T) to denote the n-slice of L(T), namely Ln(T) is
the set {t ∈ L(T) | |t| = n} of all k-trees of size n in L(T).

Give a state s ∈ S, we will usually parameterize T by the initial state s, specifically, we write
T [s] = (S,Σ,∆, s) for the modification of T where s is the new initial state. Furthermore, let
τ = (s, a, w) ∈ ∆ be any transition. We denote by T [τ] = (S,Σ,∆ ∪ {(s?, a, w)}, s?) where s?

is a fresh state not in Q. In other words, T [τ] is the extension T that recognizes trees where runs
are forced to start with transition τ .

A binary labeled tree t is a labeled 2-tree such that every node has two children or is a leaf.
Notice that 2-trees are different from binary trees, as in the former a node can have a single child,
while in the latter this is not allowed. For every non-leaf u ∈ t, we denote by u · 1 and u · 2
the left and right child of u, respectively. Similar than for k-trees, we denote by TreesB[Σ] the
set of all binary trees. We say that a tree automaton T = (S,Σ,∆, sinit) is over TreesB[Σ] if
∆ ⊆ S × Σ× ({λ} ∪ S2).

12.2.2 Approximate Counting, Almost Uniform Sampling, and
Parsimonious Reductions

Definition of FPRAS. Given an input alphabet Σ, a randomized approximation scheme (RAS)
for a function f : Σ∗ → R is a randomized algorithm A : Σ∗ × (0, 1) → R such that for every
w ∈ Σ∗ and ε ∈ (0, 1):

Pr [|A(w, ε)− f(w)| ≤ ε · f(w)] ≥ 3
4 .

A randomized algorithm A : Σ∗ × (0, 1) → R is a fully polynomial-time randomized approxi-

mation scheme (FPRAS) [JVV86a] for f , if it is a randomized approximation scheme for f and,
for every w ∈ Σ∗ and ε ∈ (0, 1), A(w, ε) runs in polynomial time over |w| and ε−1. Thus, if A is
an FPRAS for f , then A(w, ε) approximates the value f(w) with a relative error of (1± ε), and

596

it can be computed in polynomial time in the size w and ε−1.

Definition of FPAUS. In addition to polynomial time approximation algorithms, we also con-
sider polynomial time (almost) uniform samplers. Given an alphabet Σ and a finite universe
Ω, let g : Σ∗ → 2Ω. We say that g admits a fully polynomial-time almost uniform sampler

(FPAUS) [JVV86a] if there is a randomized algorithm A : Σ∗ × (0, 1)→ Ω ∪ {⊥} such that for
every w ∈ Σ∗ with g(w) 6= ∅, and δ ∈ (0, 1), A(w, δ) outputs a value x∗ ∈ g(w) ∪ {⊥} with

Pr [x∗ = x] = (1± δ) 1
|g(w)| for all x ∈ g(w)

and, moreover, A(w, δ) runs in polynomial time over |w| and log 1
δ
. If g(w) = ∅, a FPAUS must

output a symbol ⊥ with probability 1. The symbol ⊥ can be thought of as a “failure” symbol,
where the algorithm produces no output. Notice that whenever g(w) admits a deterministic
polynomial time membership testing algorithm (i.e. to test if x ∈ g(w)), it is easy to ensure that
a sampler only outputs either a element x ∈ g(w) or ⊥. Also notice that the conditions imply
that if g(w) 6= ∅, we have Pr [x∗ = ⊥] ≤ δ. Given a set S = g(w), when the function g and the
input w is clear from context, we will say that the set S admits an FPAUS to denote the fact that
g admits an FPAUS.

For an example of an FPAUS, w could be the encoding of a non-deterministic finite automata
N and a number n ∈ N given in unary, and g(w) could be the set of strings of length n accepted
by N . A poly-time almost uniform sampler must then generate a string from Ln(N) from a
distribution which is pointwise a (1± δ) approximation of the uniform distribution over Ln(N),
output ⊥ with probability at most δ, and run in time poly(|N |, n, log 1

δ
). Notice that an FPAUS

must run in time poly(log 1
δ
), whereas an FPRAS may run in time poly(1

ε
).

Parsimonious Reduction. Finally, given functions f, g : Σ∗ → N, a polynomial-time parsi-
monious reduction from f to g is a polynomial-time computable function h : Σ∗ → Σ∗ such that,
for every w ∈ Σ∗, it holds that f(w) = g(h(w)). If such a function h exists, then we use notation
f ≤PAR g. Notice that if f ≤PAR g and g admits an FPRAS, then f admits an FPRAS.

12.2.3 The counting problems for tree automata

The following is the main counting problem studied in this paper regarding tree automata:

597

Problem: #TA
Input: A tree automaton T over Treesk[Σ] and a string 0n

Output: |Ln(T)|

By the results in [CDG+07] about encoding k-trees as binary trees using an extension operator
@, it is possible to conclude the following:

Lemma 12.2.1. Let Σ be a finite alphabet and @ /∈ Σ. Then there exists a polynomial-time

algorithm that, given a tree automata T over Treesk[Σ], produces a tree automaton T ′ over

TreesB[Σ ∪ {@}] such that, for every n ≥ 1:

∣∣∣{t | t ∈ L(T) and |t| = n}
∣∣∣ =

∣∣∣{t′ | t′ ∈ L(T ′) and |t′| = 2n− 1}
∣∣∣

Therefore, we also consider in this paper the following problem:

Problem: #BTA
Input: A tree automaton T over TreesB[Σ] and a string 0n

Output: |Ln(T)|

As we know from Lemma 12.2.1 that there exists a polynomial-time parsimonious reduction
from #TA to #BTA, we can show that #TA admits an FPRAS by proving that #BTA admits an
FPRAS.

12.3 From Conjunctive Queries to Tree Automata

In this section, we provide the formal link between Conjunctive Queries (CQ) and tree automata,
and formalize our results for the former. In particular, we show that it is possible to reduce
#ACQ to #TA, where #ACQ is the problem of counting the number of solutions to an acyclic
CQ. Hence, the existence of an FPRAS for #ACQ is inferred from the existence of an FPRAS
for #TA. In fact, we will prove the more general statement that one can reduce the problem of
counting solutions to CQ’s with bounded-hypertree width, and unions of such queries, to the
problem of #TA.

We start by formally introducing conjunctive queries. We first fix two disjoint (countably)
infinite sets C and V of constants and variables, respectively. Then a conjunctive query (CQ) is

598

an expression of the form:

Q(x̄) ← R1(ū1), . . . , Rn(ūn), (12.2)

where for every i ∈ {1, . . . , n}, Ri is a ki-ary relation symbol (ki ≥ 1) and ūi is a ki-ary tuple
of variables and constants (that is, elements from V and C), and x̄ = (x1, . . . , xm) is a tuple of
variables such that each variable xi in x̄ occurs in some ūi. The symbol Q is used as the name
of the query, and var(Ri) is used to denote the set of variables in relation symbol Ri. Moreover,
var(Q) denotes the set of all variables appearing in the query (i.e., left- and right-hand sides).

Intuitively, the right-hand side R1(ū1), . . . , Rn(ūn) of Q is used to specify a pattern over a
database, while the tuple x̄ is used to store the answer to the query when such a pattern is found.
More precisely, a database D is a set of facts of the form T (ā) where ā is a tuple of constants
(elements from C), which indicates that ā is in the table T in D. Then a homomorphism from
Q to D is a function h from the set of variables occurring in Q to the constants in D such that
for every i ∈ {1, . . . , n}, it holds that Ri(h(ūi)) is a fact in D, where h(ūi) is obtained by
applying h to each component of ūi leaving the constants unchanged. Moreover, given such a
homomorphism h, the tuple of constants h(x̄) is said to be an answer to Q over the database D,
and Q(D) is defined as the set of answers of Q over D.

12.3.1 High-level overview of the reduction to #TA

We now give a high-level overview of our reduction to #TA from a simple class of acyclic con-
junctive queries. This overview will be sufficient to provide intuition for why tree automata are
the correct tool for representing the number of solutions to such conjunctive queries. Consider a
CQ:

Q1(x)← G(x),E(x, y),E(x, z),C(y),M(z)

This query is said to be acyclic, because it can be encoded by a join tree, that is, by a tree t where
each node is labeled by the relations occurring in the query, and which satisfies the following
connectedness property: each variable in the query induces a connected subtree of t [Yan81]. In
particular, a join tree for Q1(x) is depicted in Figure 12.1a, where the connected subtree induced
by variable x is marked in green. An acyclic conjunctive query Q can be efficiently evaluated
by using a join tree t encoding it [Yan81]; in fact, a tree witnessing the fact that ā ∈ Q(D) can
be constructed in polynomial time. For example, if D1 = {G(a), G(b), E(a,c1), E(b,c1),
E(b,c2), E(b,c3), C(c1), C(c2), M(c3)}, then b is an answer to Q1 over D1. In fact, two

599

G(x)

E(x, y) E(x, z)

C(y) M(z)

(a) A join tree.

G(b)

E(b,c1) E(b,c3)

C(c1) M(c3)

G(b)

E(b,c2) E(b,c3)

C(c2) M(c3)

(b) Two witness trees for the answer b.

G(b)

E(b, ?) E(b, ?)

C(?) M(?)

(c) An anonymous tree
for b.

Figure 12.1: Join, witness and anonymous trees for a CQ.

witness trees for this answer are shown in Figure 12.1b. Notice that the assignments to variable
y that distinguish these two trees are marked in blue.

In this work, we consider the following problem:

Problem: #ACQ
Input: An acyclic CQ Q and a database D
Output: |Q(D)|

One might think that #ACQ can also be solved in polynomial time given that the number of wit-
ness trees can be counted in polynomial time. However, there is no one-to-one correspondence
between the answers to an acyclic CQ and their witness trees; as shown in Figure 12.1b, two
trees may witness the same answer. In fact, #ACQ is #P-complete [PS13b].

However, we first observe that in a witness tree t, if only output variables are given actual
values and non-output variables are assigned an anonymous symbol ?, then there will be a one-to-
one correspondence between answers to a query and witnesses. Let’s us denote such structures
as anonymous trees, an example of which is given in Figure 12.1c. But how can we specify when
an anonymous tree is valid? For example, if t′ is the anonymous tree obtained by replacing b

by a in Figure 12.1c, then t′ is not a valid anonymous tree, because a is not an answer to Q1

over D1. We demonstrate that tree automata provide the right level of abstraction to specify the
validity of such anonymous trees, so that #ACQ can be reduced to a counting problem over tree
automata.

12.3.2 A more general notion of acyclicity

In the high level overview above, we considered a CQ to be cyclic if it could be encoded by a
join tree. This corresponds to the notion of the tree-width of a CQ. However, our results apply
to a more general notion of acyclicity, known as the hypertree width of a CQ. We now formalize

600

this more general notion of acyclicity. Let Q be a CQ of the form Q(x̄)← R1(ū1), . . . , Rn(ūn).
A hypertree for Q is a triple 〈T, χ, ξ〉 such that T = (N,E) is a rooted tree, and χ and ξ are
node-labeling functions such that for every p ∈ N , it holds that χ(p) ⊆ var(Q) and ξ(p) ⊆
{R1, . . . , Rn}. Moreover, 〈T, χ, ξ〉 is said to be a hypertree decomposition for Q [GLS02] if the
following conditions hold:

• for each atom i ∈ {1, . . . , n}, there exists p ∈ N s.t. var(Ri) ⊆ χ(p);

• for each variable x ∈ var(Q), the set {p ∈ N | x ∈ χ(p)} induces a (connected) subtree
of T ;

• for each p ∈ N , it holds that

χ(p) ⊆
⋃

R∈ξ(p)
var(R)

• for each p ∈ N , it holds that(⋃
R∈ξ(p)

var(R)
)
∩
(⋃
p′ : p′ is a descendant of p in T

χ(p′)
)
⊆ χ(p)

The width of the hypertree decomposition 〈T, χ, ξ〉 is defined as the maximum value of |ξ(p)|
over all vertices p ∈ N . Finally, the hypertree width hw(Q) of CQ Q is defined as the minimum
width over all its hypertree decompositions [GLS02].

Example 143. Consider the CQ Q(x, y, z) ← R(x, y), S(y, z), T (z, x). It is easy to see that Q
is a non-acyclic query (it cannot be represented by a join tree as defined in Section 12.3.1), but
we can still study its degree of acyclicity using the idea of hypertree width. In particular, the
following is a hypertree decomposition for Q, where the values of χ(p) and ξ(p) are shown on
the left- and right-hand sides of the rectangle for node p:

{x, y, z}, {R, S}

{x, z}, {T}

Notice that the width of this hypertree decomposition is 2, as |ξ(p)| = 2 for the root. And in fact,
no hypertree decomposition of width 1 can be constructed for Q, so that hw(Q) = 2 (otherwise,
Q would be acyclic). In some way, we are forced to bundle two of the atoms (R and S) together
and in the process increase the width, in order to create a join tree-like structure.

601

It was shown in [GLS02] that a CQQ is acyclic if and only if hw(Q) = 1. Thus, the notion of
hypertree width generalizes the notion of acyclicity given before. We are interested in classes of
queries with bounded hypertree width, for which it has been shown that the evaluation problem
can be solved efficiently [GLS02]. More precisely, for every k ≥ 1 define the following counting
problem.

Problem: #k-HW
Input: A CQ Q such that hw(Q) ≤ k and a database D
Output: |Q(D)|

It is important to notice that #ACQ = #1-HW. However, we will keep both languages
for historical reasons, as acyclic conjunctive queries were defined two decades earlier, and are
widely used in databases. Both #ACQ and #k-HW, for a fixed k ≥ 1, are known to be #P-
complete [PS13b]. On the positive side, based on the relationship with tree automata that we
show below, we can conclude that these problems admit FPRAS and a FPAUS, as formalized in
Section 12.2.2.

Theorem 144. #ACQ admits an FPRAS and a FPAUS, and for every constant k ≥ 1, #k-HW
admits an FPRAS and a FPAUS.

Proof. Fix k ≥ 1. We provide a polynomial-time parsimonious reduction from #k-HW to #TA.
In Section 12.5, we will show that #TA admits an FPRAS (see Corollary 12.5.5), which proves
that #k-HW admits an FPRAS as well. Moreover, the reduction will be performed in such a
way that given a tree accepted by the constructed tree automata T , one can uniquely construct a
corresponding x ∈ Q(D) in polynomial time. As a result, an FPAUS for tree automata implies
an FPAUS for CQ’s with bounded hypertree width.

Let D be a database and Q(x̄) a CQ over D such that its atoms are of the form R(t̄) and
hw(Q) ≤ k. We have from [GLS02] that there exists a polynomial-time algorithm that, given Q,
produces a hypertree decomposition 〈T, χ, ξ〉 for Q of width k, where T = (N,E). Moreover,
atoms(Q) is used to denote the set of atoms occurring in the right-hand side of Q, and for every
R ∈ atoms(Q), notation t̄R is used to indicate the tuple of variables in atom R. Whenever we
have atoms indexed like Ri, we shall refer to t̄Ri as t̄i for the sake of clarity. Also, for every tuple
x̄ of variables, we use var(x̄) to denote its set of variables, i.e., var((x1, . . . , xr)) = {x1, . . . , xr}.
Finally, we can assume that 〈T, χ, ξ〉 is a complete hypertree decomposition in the sense that for
every R ∈ atoms(Q), there exists p ∈ N such that var(t̄R) ⊆ χ(p) and R ∈ ξ(p) [GLS02].
Finally, let n = |N |.

602

In what follows, we define a tree automaton T = (S,Σ,∆, S0) such that

|Q(D)| = |{t ∈ L(T) | |t| = n}|.

Notice that for the sake of presentation, we are assuming that T has a set S0 of initial states,
instead of a single initial state. Such an automaton can be translated in polynomial time into
a tree automaton with a single initial state. Given a tuple of variables x̄ = (x1, . . . , xr) and
a tuple of constants ā = (a1, . . . , ar), we use notation x̄ 7→ ā to indicate that variable xi is
assigned value ai for every i ∈ [r]. Notice that x̄ can contain repeated variables, and if this is
the case then each occurrence of a repeated variable is assigned the same value. For example,
(x, y, x, y)→ (a, b, a, b) is an assignment, while (x, y, x, y)→ (a, b, a, c) is not an assignment if
b 6= c. Besides, notice that ∅ 7→ ∅ is an assignment. Moreover, two such assignments x̄ 7→ ā and
ȳ 7→ b̄ are said to be consistent if for every variable z that occurs both in x̄ and ȳ, it holds that
the same value is assigned to z in x̄ 7→ ā and in ȳ 7→ b̄. Then for every p ∈ N such that:

χ(p) = {y1, . . . , yr} (12.3)

ξ(p) = {R1, . . . , Rs}, (12.4)

and assuming that χ(p)∩var(x̄) = {z1, . . . , zo}, ȳ = (y1, . . . , yr) and z̄ = (z1, . . . , zo), we define

S(p) =
{[
p, ȳ 7→ ā, z̄ 7→ b̄, t̄1 7→ c̄1, . . . , t̄s 7→ c̄s

] ∣∣∣
R̄i(c̄i) is a fact in D for every i ∈ [s],

ȳ 7→ ā is consistent with z̄ 7→ b̄,

ȳ 7→ ā is consistent with t̄i 7→ c̄i for every i ∈ [s],

and t̄i 7→ c̄i is consistent with t̄j 7→ c̄j for every i, j ∈ [s]},

and

Σ(p) =
{[
p, z̄ 7→ b̄

]
| ∃ā∃c̄1 · · · ∃c̄s :

[
p, ȳ 7→ ā, z̄ 7→ b̄, t̄1 7→ c̄1, . . . , t̄s 7→ c̄s

]
∈ S(p)

}
With this terminology, we define S0 = S(p0), where p0 is the root of the hypertree decomposition
〈T, χ, ξ〉, and we define:

S =
⋃
p∈N

S(p)

Σ =
⋃
p∈N

Σ(p)

603

Finally, the transition relation ∆ is defined as follows. Assume again that p ∈ N satisfies (12.3)
and (12.4). If p has children p1, . . ., p` in T , where ` ≥ 1 and for every i ∈ [`]:

χ(pi) = {ui,1, . . . , ui,ri}

ξ(pi) = {Ri,1, . . . , Ri,si},

with si ≤ k. Then assuming that χ(pi) ∩ var(x̄) = {wi,1, . . . , wi,oi}, ūi = (ui,1, . . . , ui,ri) and
w̄i = (wi,1, . . . , wi,oi) for each i ∈ [`], the following tuple is included in ∆

([
p, ȳ 7→ ā, z̄ → b̄, t̄1 7→ c̄1, . . . , t̄s 7→ c̄s

]
,
[
p, z̄ 7→ b̄

]
,[

p1, ū1 7→ d̄1, w̄1 7→ ē1, t̄1,1 7→ f̄1,1, . . . , t̄1,s1 7→ f̄1,s1

]
· · ·[

p`, ū` 7→ d̄`, w̄` 7→ ē`, t̄`,1 7→ f̄`,1, . . . , t̄`,s` 7→ f̄`,s`
])

whenever the following conditions are satisfied: (a)
[
p, ȳ 7→ ā, z̄ 7→ b̄, t̄1 7→ c̄1, . . . , t̄s 7→ c̄s

]
∈

S(p); (b)
[
pi, ūi 7→ d̄i, w̄i 7→ ēi, t̄i,1 7→ f̄i,1, . . . , t̄i,si 7→ f̄i,si

]
∈ S(pi) for each i ∈ [`]; (c)

t̄i 7→ c̄i is consistent with t̄j1,j2 7→ f̄j1,j2 for every i ∈ [s], j1 ∈ [`] and j2 ∈ [sj1]; and (d)
t̄j1,j2 7→ f̄j1,j2 is consistent with t̄j3,j3 7→ f̄j3,j4 for every j1 ∈ [`], j2 ∈ [sj1], j3 ∈ [`], j4 ∈ [sj3].
On the other hand, if p has no children in T , then the following tuple is included in ∆

([
p, ȳ 7→ ā, z̄ 7→ b̄, t̄1 7→ c̄1, . . . , t̄s 7→ c̄s

]
,
[
p, z̄ 7→ b̄

]
, λ
)

whenever
[
p, ȳ 7→ ā, z̄ 7→ b̄, t̄1 7→ c̄1, . . . , t̄s 7→ c̄s

]
∈ S(p).

It is straightforward to see that there exists a polynomial-time algorithm that generates S,
S0, Σ and ∆ from Q, D and the hypertree decomposition 〈T, χ, ξ〉 for Q. In particular, we have
that |S(p)| is O(‖D‖k), where |S(p)| is the number of elements in S(p) and ‖D‖ is the size
of the database D, by definition of S(p) and the fact that χ(p) ⊆ ⋃

R∈ξ(p) var(t̄R). Notice that
this implies that each S(p) is of polynomial size given that k is fixed and each tuple in S is
of polynomial size in ‖D‖. Moreover, observe that as n = |N |, we can construct the (unary)
input 0n for the problem #TA in polynomial time in the size of Q, given that the hypertree
decomposition 〈T, χ, ξ〉 is of polynomial size in the size of Q.

Finally, we need to prove that |Q(D)| = |{t ∈ L(T) | |t| = n}|. To see this, for every
ā ∈ Q(D), define a labeled tree tā as follows. Tree tā has the same structure as T , but every
node p ∈ N is assigned the following label in Σ. Assume that χ(p) ∩ var(x̄) = {z1, . . . , zr} and
z̄ = (z1, . . . , zr). Moreover, assume that zi receives the value ai in ā for every i ∈ [r]. Then

604

the label of p in tā is [p, z̄ 7→ ā], where ā = (a1, . . . , ar). By definition of T , we have that
L(T) = {tā | ā ∈ Q(D)}. Therefore, given that tā 6= tā′ for every ā, ā′ ∈ Q(D) such that
ā 6= ā′, we conclude that |Q(D)| = |{t ∈ L(T) | |t| = n}|, as every tree accepted by T has n
nodes. Moreover, given any tā ∈ L(T), one can read off the labels of the nodes in the tree tā and
uniquely reconstruct the corresponding ā ∈ Q(D) in polynomial time, which verifies the second
claim that a sample from L(T) yields in polynomial time a unique sample from Q(D).

12.3.3 A characterization of classes of conjunctive queries admitting FPRAS

In this section, we describe how Theorem 144 and the results in [GSS01] can be combined to
obtain a characterization of the classes of conjunctive queries which admit an FPRAS. We con-
sider the slightly different notion of conjunctive query used in [GSS01], which explicitly includes
equality atoms and does not contain constants. More precisely, in this section a conjunctive query
(CQ) is an expression of the form:

Q(x̄) ← α1(ȳ1), . . . , αn(ȳn), (‡)

where for every i ∈ {1, . . . , n}, αi(ȳi) is either Ri(ȳi) with Ri a ki-ary relation symbol (ki ≥ 1)
and ȳi a ki-ary tuple of variables from V, or αi(ȳi) is yi,1 = yi,2 with yi,1, yi,2 variables from V.
Moreover, x̄ = (x1, . . . , xm) is a tuple of variables such that each variable xi in x̄ occurs in some
ȳi.

As before, the symbol Q is used as the name of the query, and var(Q) denotes the set of all
variables appearing in Q.

Given a CQ Q(x̄) of the form (‡), define a graph GQ representing Q as follows. The set of
vertices of GQ is var(Q), and there exists an edge between two distinct variables x and y if, and
only if, there exists i ∈ {1, . . . , n} such that both x and y occur in αi(ȳi). We consider here
the standard notion of tree-width of a graph G and of a conjunctive query Q [GSS01, FG06],
which are denoted by tw(G) and tw(Q), respectively. Notice that although tw(Q) is not defined
by using GQ, it holds that tw(Q) = tw(GQ) [FG06]. Then a class G of graphs is said to have
bounded treewidth if there exists a constant k such that tw(G) ≤ k for every G ∈ G. Moreover,
define CQ(G) as the class of all conjunctive queries Q of the form (‡) whose representing graph
GQ is in G.

Let G be a class of graphs, and assume that there exists a constant k such that tw(G) ≤ k for

605

every G ∈ G. Then for every Q ∈ CQ(G), we have that hw(Q) ≤ tw(Q) ≤ k. Moreover, given
Q ∈ CQ(G), ifQ′ is a query obtained fromQ by replacing each equality atom x = y by EQ(x, y),
where EQ is a fresh predicate, then we have thatQ(D) = Q′(D′) withD′ = D∪{EQ(a, a) | a is
an element of D}, and we also have that tw(Q′) = tw(Q) and hw(Q′) = hw(Q). Therefore, by
considering Theorem 144, we conclude that the problems of computing |Q(D)| and of sampling
from Q(D), given as input Q ∈ CQ(G) and a database D, admit an FPRAS and an FPAUS.

Given a class G of graphs, the query decision problem for CQ(G) is the problem of verifying,
given a CQ Q ∈ CQ(G) and a database D, whether Q(D) 6= ∅. By the results of [GSS01],
assuming that W[1] 6= FPT, for every class G of (undirected) graphs, the query decision problem
for CQ(G) is tractable if, and only if, G has bounded treewidth. Since the existence of an FPRAS
or an FPAUS for the set Q(D) of answers of a conjunctive query results in a BPP algorithm for
the query decision problem, it follows that if BPP = P, it is not possible to obtain an FPRAS
or an FPAUS for any class of CQs of the form CQ(G) for a class of graphs G with unbounded
treewidth. As a corollary of this and the discussion in the previous paragraph, we obtain the
following characterization of classes of conjunctive queries admitting FPRAS and FPAUS:

Corollary 12.3.1. Let G be a class of (undirected) graphs. Then assuming W[1] 6= FPT and

BPP = P, the following are equivalent:

1. The problems of computing |Q(D)| and of sampling fromQ(D), given as inputQ ∈ CQ(G)
and a database D, admit an FPRAS and an FPAUS, respectively.

2. G has bounded treewidth.

It should be mentioned that a refinement of the result of [GSS01] is given in [Gro07], which
can be applied over any recursively enumerable class of conjunctive queries of fixed arity. We
do not know whether the results of this paper can be extended to this case, which in particular
means proving there exists an FPRAS for each class of CQs whose cores [HN92] have bounded
treewidth. We believe this to be an interesting problem for future work.

12.3.4 Union of conjunctive queries

An important and well-studied extension of the class of conjunctive queries is obtained by adding
the union operator. A union of conjunctive queries (UCQ) is an expression of the form:

Q(x̄) ← Q1(x̄) ∨ · · · ∨Qm(x̄), (12.5)

606

where Qi(x̄) is a conjunctive query of the form (12.2) for each i ∈ {1, . . . ,m}, and the same
tuple x̄ of output variables is used in the CQs Q1(x̄), . . ., Qm(x̄). As for the case of CQs, the
symbol Q is used as the name of the query. A tuple ā is said to be an answer of UCQ Q in (12.5)
over a database D if and only if ā is an answer to Qi over D for some i ∈ {1, . . . ,m}. Thus, we
have that:

Q(D) =
m⋃
i=1

Qi(D)

As expected, the problem of verifying, given a UCQ Q, a database D and a tuple of constants ā,
whether ā is an answer to Q over D is an NP-complete problem [CM77b]. Also as expected, the
evaluation problem for union of acyclic conjunctive queries can be solved in polynomial time,
given that the evaluation problem for acyclic CQs can be solved in polynomial time. Concerning
to our investigation, we are interested in the following problem associated to the evaluation
problem for union of acyclic conjunctive queries:

Problem: #UACQ
Input: A union of acyclic CQ Q and a database D
Output: |Q(D)|

As expected from the result for conjunctive queries, #UACQ is #P-complete [PS13b]. How-
ever, #UACQ remains #P-hard even if we focus on the case of UCQs without existentially quan-
tified variables, that is, UCQs of the form (12.5) where x̄ consists of all the variables occurring
in CQ Qi(x̄) for each i ∈ {1, . . . ,m}. Notice that this is in sharp contrast with the case of CQs,
where #ACQ can be solved in polynomial time if we focus on the case of CQs without existen-
tially quantified variables [PS13b]. However, by using Theorem 144, we are able to provide a
positive result about the possibility of efficiently approximating #UACQ.

Proposition 12.3.2. #UACQ admits an FPRAS and an FPAUS.

As a final fundamental problem, we consider the problem of counting the number of solutions
of a union of conjunctive queries of bounded hypertree width.

607

Problem: #k-UHW
Input: A database D and a union of CQ

Q(x̄)← Q1(x̄) ∨ · · · ∨Qm(x̄)
such that hw(Qi) ≤ k for all i ∈ {1, . . . ,m}

Output: |Q(D)|

By using the same ideas as in the proof of Proposition 12.3.2, we obtain from Theorem 144
that:

Proposition 12.3.3. For every k ≥ 1, it holds that #k-UHW admits an FPRAS and an FPAUS.

12.3.5 Some related work on conjunctive queries

Several works have looked into the counting problem for CQs (and the related problems we listed
above, like CSPs). In order to clarify the discussion, we will give a rough characterization of the
research in this area. This will better illustrate how our results relate to previous work. So as a
first idea, when counting solutions to CQs, an important source of difficulty is the presence of
existentially quantified variables. Consider the query we used in Section 12.3.1:

Q1(x) ← G(x),E(x, y),E(x, z),C(y),M(z).

Notice that there are three variables x, y and z in the right-hand side, while only x is present
in the left-hand side. Thus, x is an output variable, while y and z are existentially quantified
variables. An alternative notation for CQs makes the quantification even more explicit:

Q1(x) ← ∃y∃z (G(x) ∧ E(x, y) ∧ E(x, z) ∧ C(y) ∧M(z)).

As we mention later in Section 12.3, when variables are existentially quantified, there is no one-
to-one correspondence between the answers to a CQ and their witness trees. This introduces
a level of ambiguity (i.e. potentially several witness trees for each answer) into the counting
problem, which makes it more difficult, even though it does not make the evaluation problem any
harder. In fact, it is proved in Theorem 4 in [PS13b] that the counting problem is #P-complete
for acyclic CQs over graphs (i.e. bounded arity), even if queries are allowed a single existentially
quantified variable (and an arbitrary number of output variables). In contrast, it is known (e.g.
[DJ04]) that for each class of CQs with bounded treewidth and without existentially quantified
variables, the counting problem can be solved exactly in polynomial time.

608

It was open what happens with the counting problem when CQs are considered with all their
features, that is, when output and existentially quantified variables are combined. In particular,
it was open whether the counting problem admits an approximation in that case. Our paper aims
to study precisely that case, in contrast with previous work that does not consider such output
variables combined with existentially quantified variables [Bv20, DJ04].

As a second idea, approaches to make the counting or evaluation problem for CQs tractable
usually revolve around imposing some structural constraint on the query, in order to restrict its
degree of cyclicity. Most well-known is the result in [Yan81], which proves that the evalua-
tion problem is tractable for acyclic queries. In generalizations of this result (e.g. [GSS01]),
the acyclicity is usually measured as the width of some query decomposition. Specific to the
counting problem, this type of notion is used in [DM15] to characterize tractable cases. Notice,
however, that they rely not only on the width of different query decompositions, but also on a
measure of how free variables are spread in the query, which they call quantified star size. In
contrast, we rely only on the structural width of the hypertree decomposition.

12.4 Technical Overview of the Tree Automata FPRAS

Given the results of Section 12.3, we will now focus on the problem of designing an FPRAS for
#TA, which has as input a tree automata T and an integer n ≥ 1 (given in unary), and asks to
output |Ln(T)|. In this section, we give an overview of the main components of our algorithm,
their relation to prior techniques, and the technical challenges involved in designing such an
FPRAS.

Binary tree automata

To capture the essence of the problem, in the following discussion we consider a simplified
version of tree automata. Specifically, we restrict the discussion to unlabeled binary ordered
trees, which are sufficient to present the main ideas of the algorithm. A binary ordered tree t (or
just tree) is a rooted binary tree where the children of each node are ordered; namely, one can
distinguish between the left and right child of each non-leaf node. For a non-leaf node u of t, we
write u1 and u2 to denote the left and right children of u, respectively, and we denote the root
of any tree t by λ, which representes the empty string. We will write u ∈ t to denote that u is a
node of t, and |t| to denote the number of nodes of t. For example, Figure 12.2 depicts a binary

609

t1 :T := s → sq
s → qs
s → rr
r → qq
q → qq
q → ·

sinit = s

t2 : s

q

q q

s

s q

r

q q

r

q q

Run :

Figure 12.2: A tree automata T , binary ordered trees t1 and t2, and a run of T over t2.

ordered tree t1 with |t1| = 9, and another tree t2 with |t2| = 13, where the children are ordered
from left to right.

A tree automaton T over a binary ordered tree is defined as a tuple (S,∆, sinit) where S is
a finite set of states, ∆ ⊆ (S × S × S) ∪ S is the transition relation, and sinit ∈ S is the initial
state. A run ρ of T over a tree t is a function ρ : t→ S mapping nodes to states that respects the
transition relation. Namely, for every node u of t we have ρ(u) ∈ ∆ whenever u is a leaf, and
(ρ(u), ρ(u1), ρ(u2)) ∈ ∆, otherwise. We say that T accepts t if there exists a run ρ of T over
t such that ρ(λ) = sinit, and such a run ρ is called an accepting run of T over t. The set of all
trees accepted by T is denoted by L(T), and the n-slice of L(T), denoted by Ln(T), is the set
of trees t ∈ L(T) with size n (that is, |t| = n). For the sake of presentation, in the following we
write s → qr to represent the transition (s, q, r) ∈ ∆ and s → · to represent s ∈ ∆. Note that
transitions of the form s → · correspond to leaves that have no children, and can be thought as
“final states” of a run.

Figure 12.2 gives an example of a tree automaton T with states {s, r, q}. The right-hand side
of Figure 12.2 shows an example of an accepting run of T over t2. One can easily check from the
transitions of T in this example that a tree t is in L(T) if, and only if, there exists a node v ∈ t
such that both children of v are internal (non-leaf) nodes. For example, t2 satisfies this property
and t2 ∈ L(T). On the other hand, all nodes v ∈ t1 have at least one child that is a leaf, and thus
there is no accepting run of T over t1, so t1 /∈ L(T).

Unrolling the automaton

Fix n ≥ 1 and a tree automaton T = (S,∆, sinit) as defined above. Our first step will be to unroll

the automaton, so that each state is restricted to only producing trees of a fixed size. Specifically,
we construct an automaton T = (S,∆, sninit), where each state s ∈ S is duplicated n times into

610

s1, s2, . . . , sn ∈ S, and where si is only allowed to derive trees of size i. To enforce this, each
transition s→ rq in ∆ is replaced with si → rjqk ∈ ∆ for all j, k > 0 such that i = j + k + 1,
and each transition s → · in ∆ is replaced with s1 → · ∈ ∆. Now for every s ∈ S, let T (si)
be set of trees that can be derived beginning from the state si (all of which have size i). When
i > 1, we can define T (si) via the relation

T (si) =
⋃

(si→rjqk)∈∆

(
T (rj)⊗ T (qk)

)
(12.6)

where T (rj) ⊗ T (qk) is a shorthand to denote the set of all trees that can be created by taking
every t1 ∈ T (rj) and t2 ∈ T (qk) and forming the tree:

•
t1 t2

This fact allows us to define each set T (si) recursively as a union of “products” of other such
sets. Our goal is then to estimate |T (sninit)| and sample from T (sninit).

It should be mentioned that for so-called “bottom-up deterministic” automata T [CDG+07],
the sets T (rj)⊗ T (qk) in the union in Equation (12.6) are disjoint, so

|T (si)| =
∑

(si→rjqk)∈∆

|T (rj)| · |T (qk)|

and one can then compute the values |T (si)| exactly via dynamic programming. Thus, the core
challenge is the ambiguity of the problem: namely, the fact that trees t ∈ T (sninit) may admit
exponentially many runs in the automaton. For example, the tree automaton T from Figure 12.2
can accept t2 by two different runs. In what follows, we will focus on the problem of uniform
sampling from such a set T (si), since given a uniform sampler the problem of size estimation is
routine.

A QPRAS via Karp-Luby sampling

To handle the problem of sampling with ambiguous derivations Gore et al. [GJK+97] used a
technique known as Karp-Luby sampling. This technique is a form of rejection sampling, where
given sets T1, . . . , Tk and T = ∪iTi, one can sample from T via the following procedure:

(1) Sample a set Ti with probability proportional to |Ti|.

(2) Sample an element t uniformly from Ti.

611

(3) Accept t with probability 1/m(t), where m(t) is the total number of sets Tj which contain
t.

The QPRAS of [GJK+97] applied this procedure recursively, using approximations Ñ(Ti)
in the place of |Ti|, where the union T = ∪iTi in question is just the union in Equation (12.6),
and each Ti is a product of smaller sets Ti = Ti,1 ⊗ Ti,2 which are themselves unions of sets at
a lower depth. So to carry out (2), one must recursively sample from Ti,1 and Ti,2. The overall
probability of acceptance in (3) is now exponentially small in the sampling depth. Using a classic
depth reduction technique [VSBR83], they can reduce the depth to log(n), but sincem(t) can still
be as large as Ω(n|T |) at each step, the resulting acceptance probability is quasi-polynomially
small.

A partition based approach

The difficult with Karp-Luby sampling is that it relies on a rejection step to compensate for
the fact that some elements can be sampled in multiple ways. Instead, our approach will be to
partition the sets in question, so that no element can be sampled in more than one way. Simply
put, to sample from T , we will first partition T into disjoint subsets T ′1, . . . , T

′
` . Next, we sample

a set T ′i with probability (approximately) proportional to |T ′i |, and lastly we set T ← T ′i and
now recursively sample from the new T . The recursion ends when the current set T has just
one element. Clearly no rejection procedure is needed now for the sample to be approximately
uniform. To implement this template, however, there are two main implementation issues which
we must address. Firstly, how to partition the set T , and secondly, how to efficiently estimate the
size of each part T ′i . In the remainder, we will consider these two issues in detail.

Our High-Level Sampling Template
Input: Arbitrary set T .

1. If |T | = 1, return T . Otherwise, find some partition

T = ∪`i=1T
′
i

2. Call subroutine to obtain estimates Ñ(T ′i) ≈ |T ′i |

3. Set T ← T ′i with probability Ñ(T ′i)/
∑
j Ñ(T ′j),

and recursively sample from T .

For the rest of this section, fix some state si. It will suffice to show how to generate a uniform

612

sample from the set T (si). To implement the above template, we will rely on having inductively
pre-computed estimates of |T (rj)| for every r ∈ S and j < i. Specifically, our algorithm
proceeds in rounds, where on the j-th round we compute an approximation Ñ(rj) ≈ |T (rj)|
for each state r ∈ S. In addition to these estimates, a key component of our algorithm is that,
on the i-th round, we also store sketches T̃ (rj) of each set T (rj) for j < i, which consist of
polynomially many uniform samples from T (rj). One can uses these sketches T̃ (rj) to aid in
the generation of uniform samples for the larger sets T (si) on the i-th round. For instance, given
a set of trees T = ∪kj=1Tj for some sets T1, . . . , Tk where we have estimates Ñ(Tj) ≈ |Tj| and
sketches T̃j ⊆ Tj , one could estimate |T | by the value

k∑
j=1

Ñ(Tj)

∣∣∣T̃j \ ⋃j′<j Tj′ ∣∣∣∣∣∣T̃j∣∣∣

 (12.7)

Here, the term in parenthesis in 12.7 estimates the fraction of the set T̃j which is not already
contained in the earlier sets Tj′ .

The partition scheme for NFA

The above insight of sketching the intermediate subproblems T (rj) of the dynamic program and
applying 12.7 was first made in our paper [ACJR19], where we developed an FPRAS for non-
deterministic finite automata (NFA). Given an NFA N with states S, Σ = {0, 1}, and any state
s ∈ S of N , one can similarly define the intermediate subproblem W (si)3 as the set of words

of length i that can be derived starting at the state s. The FPRAS of [ACJR19] similarly pre-
computes sketches for these sets in a bottom-up fashion. To sample a string w = w1 · · ·wi ∈
W (si), they sampled the symbols in w bit by bit, effectively “growing” a prefix of w. First,
W (si) is partitioned into W (si, 0) ∪W (si, 1), where W (si, b) ⊆ W (si) is the subset of strings
x = x1 · · ·xi ∈ W (si) with first bit x1 equal to b. If for any prefix w′, we define Rw′ ⊆ S to be
the set of states r such that there is a path of transitions from s to r labeled by w′, then observe
that W (si, b) = {b} · ∪r∈RbW (ri−1), where · is the concatenation operation for sets of words.
Thus |W (si, b)| can be estimated directly by Equation 12.7 in polynomial time. After the first bit
w1 = b is sampled, they move on to sample the second bit w2 conditioned on the prefix w1 = b.
By partitioning the strings again into those with prefix equal to either b0 or b1, each of which is
described compactly as {bb′} · ∪r∈Rbb′W (ri−2) for b′ ∈ {0, 1}, one can use Equation 12.7 again
to sample w2 from the correct distribution, and so on.

3We use W to denote sets of words, and T for sets of trees.

613

The key “victory” in the above approach is that for NFAs, one can compactly condition
on a prefix w′ of a word w ∈ W (si) as a union ∪r∈Rw′W (ri−|w′|) taken over some easy to
compute subset of states Rw′ ⊆ S. In other words, to condition on a partial derivation of a
word, one need only remember a subset of states. This is possible because, for NFAs, the overall
configuration of the automata at any given time is specified only by a single current state of the
automata. However, this fact breaks down fundamentally for tree automata. Namely, at any
intermediate point in the derivation of a tree, the configuration of a tree automata is described not
by a single state, but rather by the combination of states (rj1t1 , . . . , r

jk
tk) assigned to the (possibly

many) leaves of the partially derived tree. So the number of possible configurations is exponential
in the number of leaves of the partial tree. Consequentially, the number of sets in the union of
Equation 12.7 is exponentially large.4 Handling this lack of a compact representation is the main
challenge for tree automata, and will require a substantially different approach to sampling.

The partition scheme for tree languages

Similarly at a high level to the word case, our approach to sampling will be to “grow” a tree t
from the root down. However, unlike in the word case, there is no longer any obvious method to
partition the ways to grow a tree (for words, one just partitions by the next bit in the prefix). Our
solution to this first challenge is to partition based on the sizes of the subtrees of all the leaves of
t. Namely, at each step we expand one of the leaves ` of t, and choose what the final sizes of the
left and right subtrees of ` will be. By irrevocably conditioning on the final sizes of the left and
right subtrees of a leaf `, we partition the set of possibles trees which t can grow into based on
the sizes that we choose. Importantly, we do not condition on the states which will be assigned
to any of the vertices in t, since doing so would no longer result in a partition of T (si).

More formally, we grow a partial tree τ , which is an ordered tree with the additional property
that some of its leaves are labeled with positive integers, and these leaves are referred to as holes.
For an example, see the leftmost tree in Figure 12.3. A partial tree τ is called complete if it has
no holes. For a hole H of τ , we denote its integral label by τ(H) ≥ 1, and call τ(H) the final

size of H , since τ(H) will indeed be the final size of the subtree rooted at H once τ is complete.
Intuitively, to complete τ we must replace each hole H of τ with a subtree of size exactly τ(H).
Because no states are involved in this definition, a partial tree τ is by itself totally independent
of the automata.

4By being slightly clever about the order in which one derives the tree, one can reduce the number of “active”
leafs to O(logn), which would result in a quasi-polynomial |S|O(logn) time algorithm following the approach of
[ACJR19], which in fact is a slight improvement on the (|S|n)O(logn) obtained from [GJK+97].

614

5

7

3

3

H1

H2

H4

H3

Figure 12.3: Two examples of partial trees. The left-hand side tree shows the label of each
hole written inside the node. The right-hand side tree illustrates the main path, where non-white
(green) nodes and thick arcs are used to highlight the vertices and edges on the main path.

We can now define the set T (si, τ) ⊆ T (si) of completions of τ as the set of trees t ∈ T (si)
such that τ is a subtree of t sharing the same root, and such that for every hole H ∈ τ the subtree
rooted at the corresponding nodeH ∈ t has size τ(H). Equivalently, t can be obtained from τ by
replacing each hole H ∈ τ with a subtree tH of size τ(H). If i is the partial tree consisting of a
single hole with final size i, then we have T (si, i) = T (si). So at each step in the construction
of τ , beginning with τ = i , we will attempt to sample a tree t uniformly from T (si, τ). To do
so, we can pick any hole H ∈ τ , and expand it by adding left and right children and fixing the
final sizes of the subtrees rooted at those children. There are τ(H) ways of doing this: namely,
we can fix the final size of the left and right subtrees to be j and τ(H) − j − 1 respectively, for
each j ∈ {0, 1, . . . , τ(H)− 1}. So let τj be the partial tree resulting from fixing these final sizes
to be j and τ(H)− j − 1, and notice that T (si, τ0), . . . , T (si, ττ(H)−1) partitions the set T (si, τ).
Thus it will now suffice to efficiently estimate the sizes |T (si, τj)| of each piece in the partition.

Estimating the number of completions via the main path

The remaining challenge can now be rephrased in following way: given any partial tree τ , design
a subroutine to estimate the number of completions |T (si, τ)|. The key tool in our approach to
this is a reduction which allows us to represent the set T (si, τ) as the language generated by
a succinct NFA, whose transitions are labeled by large sets which are succinctly encoded (see
earlier definition Theorem 142). In our reduction, on round i ≤ n, the alphabet Σ of the succinct
NFA will be the set of all ordered trees of size at most i. Note that this results in Σ and the label
sets A being exponentially large in n, preventing one from applying the algorithm of [ACJR19].

Our first observation is that by always choosing the hole H at the lowest depth to expand in
the partitioning scheme, the resulting holes H1, . . . , Hk ∈ τ will be nested within each other.

615

Namely, for each i > 1, Hi will be contained in the subtree rooted at the sibling of Hi−1. Using
this fact, we can define a distinguished path P between the parent of H1 and the parent of Hk.
Observe that each hole Hj must be a child of some node in P . We call P the main path of τ
(see Figure 12.3). For simplicity, assume that each vertex v ∈ P has exactly one child that is
a hole of τ ,5 and label the vertices of the path P = {v1, v2, . . . , vk}, so that Hj is the child of
vj . Notice by the above nestedness property, the holes Hj, Hj+1, . . . , Hk are all contained in the
subtree rooted at vj .

Observe that any completed tree t ∈ T (si, τ) can be uniquely represented by the trees
(t1, . . . , tk), such that t is obtained from τ by replacing each hole Hi ∈ τ by the tree ti. Thinking
of each tree ti as a symbol in the alphabet Σ of all ordered trees, we can thus specify the tree t
by a word t1t2 · · · tk ∈ Σ∗. So our goal is to show that the set of words T (si, τ) = {t1 · · · tk ∈
Σ∗ | t1 · · · tk ∈ T (si, τ)} is the language accepted by an succinct NFA N over the alphabet of
ordered trees Σ with polynomially many states and set-labeled transitions.

Now NFAs can only express labeled paths (i.e., words) and not trees. However, the key
observation is that if we restrict ourselves to the main path P , then the sequences of states from
T which can occur along P can indeed be expressed by an NFA. Informally, for every vertex
vj ∈ P with (wlog) left child Hj , and for every transition s→ rs′ in the tree automata T which
could occur at vj , we create a unique transition s→ s′ in the succinct NFA. Here, the two states
s, s′ are assigned to the vertices vj, vj+1 on the main path P , and the state r is placed inside of
the hole Hj . Now the set of trees tj which could be placed in Hj by this transition only depends
on the state r. Specifically, this set of trees is exactly T (rτ(Hj)). Thus, if we label this transition
s → s′ in the succinct NFA by the set T (rτ(Hj)), the language accepted by the NFA will be
precisely T (si, τ). The full details can be found in the full version.

The crucial fact about this construction is that the transition labels of the succinct NFA are
all sets of the form T (rj) for some r ∈ S and j < i. Since j < i, our algorithm has already
pre-computed the sketches T̃ (rj) and estimates Ñ(T j) of the label sets T (rj) at this point. We
will use these sketches and estimate to satisfy the “oracle” assumptions of Theorem 142.

An FPRAS for Succinct NFAs

Now that we have constructed the succinct NFAN which recognizes the language T (si, τ) as its
k-slice, we must devise a subroutine to approximate the size of the k-slice ofN . Let S ′,∆′ be the

5Extra care should be taken when this is not the case.

616

states and transitions of N . In order to estimate |Lk(N)|, we mimic the inductive, dynamic pro-
gramming approach of our “outside” algorithm.6 Namely, we define partial states of a dynamic
program on N , by setting W (x`) to be the set of words of length ` accepted by N starting from
the state x ∈ S ′. We then similarly divide the computation of our algorithm into rounds, where
on round ` of the subroutine, we inductively pre-compute new NFA sketches W̃ (x`) of W (x`)
and estimates Ñ(x`) of |W (x`)| for each state x ∈ S ′. Given these estimates and sketches, our
procedure for obtaining the size estimates Ñ(x`) is straightforward. Thus, similar to the outside
algorithm, the central challenge is to design a polynomial time algorithm to sample from the set
W (x`), allowing us to construct the sketch W̃ (x`).

For a string u ∈ Σ∗, define W (x`, u) to be the set of strings w ∈ W (x`) with prefix equal
to u. Recall the approach of [ACJR19] to this problem for standard NFAs began by partitioning
W (x`) into

⋃
α∈Σ W (x`, α) and estimating the size |W (x`, α)| for each α ∈ Σ. Then one chooses

α with probability (approximately)

Pr [α] = |W (x`, α)|∑
β∈Σ |W (x`, β)|

and recurses into the set W (x`, α). Clearly we can no longer follow this strategy, as |Σ| is
of exponential size with respect to N . Specifically, we cannot estimate |W (x`, α)| for each
α ∈ Σ. Instead, our approach is to approximate the behavior of the “idealistic” algorithm which
does estimate all these sizes, by sampling from Σ without explicitly estimating the sampling
probabilities Pr [α]. Namely, for a prefix u we must sample a string v ∼ W (x`, u), by first
sampling the next symbol α ∼ Σ from a distribution D̃(u) which is close to the true distribution
D(u) over Σ given by Pr [α] = |W (x`, u · α)|/|W (x`, u)| for each α ∈ Σ.

To do this, first note that we can write

W
(
x`, u

)
= {u} ·

⋃
y∈R(x,u)

W
(
y`−|u|

)

where R(x, u) ⊆ S ′ is the set of states y such that there is a a path of transitions from x to y
labeled by sets A1 . . . A|u| with uj ∈ Aj for each j ∈ {1, . . . , |u|}. Thus the set of possible
symbols α that we can append to u is captured by the sets of labels of the transitions out of
some state y ∈ R(x, u). Now consider the set of transitions {(y, A, z) ∈ ∆′ | y ∈ R(x, u)},
namely, all transitions out of some state in R(x, u). Furthermore, suppose for the moment that
we were given an oracle which generates uniform samples from each label set A of a transition

6We think of this subroutine to estimate |T (si, τ)| as being the “inner loop” of the FPRAS.

617

(y, A, z), and also provided estimates Ñ(A) of the size of that set |A|. Given such an oracle, we
design a multi-step rejection procedure to sample a symbol α approximately from D(u), based
on drawing samples from the external oracle and then rejecting them based on intersection ratios
of our pre-computed internal NFA sketches W̃ (y`−|u|).

Since α is generated by a transition out of R(x, u), we first sample such a transitions with
probability proportional to the number of remaining suffixes which could be derived by taking
that transition. More specifically, the number of suffixes that can be produced by following
a transition (y, A, z) is given by |A| · |W (z`−|u|−1)|, which can be approximated by Ñ(A) ·
Ñ(z`−|u|−1) using the oracle and our internal estimates. Then if Z is the sum of the estimates
Ñ(A) · Ñ(z`−|u|−1) taken over all transitions {(y, A, z) ∈ ∆′ | y ∈ R(x, u)}, we choose a
transition (y, A, z) with probability Ñ(A) · Ñ(z`−|u|−1)/Z and then call the oracle to obtain a
sample α ∼ A. The sample α now defines a piece W (x`, u · α) of the partition of W (x`, u)
which the idealistic algorithm would have estimated and potentially chosen. However, at this
point α is not drawn approximately from the correct distributionD(u), since the sample from the
oracle does not taken into account any information about the other transitions which could also
produce α. To remedy this, we show that it suffices to accept the symbol α with probability:∣∣∣W̃ (z`−|u|−1) \ ⋃ζ∈B(α) : ζ≺zW (ζ`−|u|−1)

∣∣∣∣∣∣W̃ (z`−|u|−1)
∣∣∣ (†)

where ≺ is an ordering over S ′ and B(α) is the set of all states that can be reached from R(x, u)
by reading α, namely, all states ζ such that there exists a transition (η,B, ζ) ∈ ∆′ with η ∈
R(x, u) and α ∈ B. Otherwise, we reject α. Intuitively, probability (†) is small when the sets of
suffixes which could be derived following transitions B(α) that could also produce α intersect
heavily. If this is the case, we have “overcounted” the contribution of the set W (x`, u · α)
in the partition, and so the purpose of the probability (†) is to compensate for this fact. We
show that this procedure results in samples α drawn from a distribution D̃(u) which is close in
statistical distance to the exact distribution D(u). Furthermore, one can bound the acceptance
probability by (†) ≥ 1/poly(n) in expectation over the choice of α, so after repeating the oracle
call polynomially many times, we will accept a sample α. Once α is accepted, we condition on
it and move to the next symbol, avoiding any recursive rejection sampling.

We now return to the assumption of having a oracle to sample from and approximate the size
of the label sets A. By construction, A is a set of trees T (sj) for which we have pre-computed
sketches and estimates T̃ (sj), Ñ(sj) from the external algorithm. To simulate this oracle, we
reuse the samples within the sketches T̃ (sj) for each call to the succinct NFA sub-routine, pre-

618

tending that they are being generated fresh and on the fly. However, since the same sketches
must be reused on each call to the subroutine, we lose independence between the samples gener-
ated within subsequent calls. Ultimately, though, all that matters is that the estimate of |T (si, τ)|
produced by the subroutine is correct. So to handle this, we show that one can condition on a
deterministic property of the sketches {T̃ (sj)}s∈S,j<i, so that every possible run of the succinct
NFA subroutine will yield a good approximation, allowing us to ignore these dependencies.

Lastly, we handle the propagation of error resulting from the statistical distance between
D̃(u) and D(u). This statistical error feeds into the error for the estimates Ñ(x`+1) on the next
step, both of which feed back into the statistical error when sampling from W (x`+1), doubling
the error at each step. We handle this by introducing an approximate rejection sampling step,
inspired by an exact rejection sampling technique due to [JVV86b] (the exact version was also
used in [ACJR19]). This approximately corrects the distribution of each sample w, causing the
error to increases linearly in the rounds instead of geometrically, which will be acceptable for
our purposes.

12.5 An FPRAS and Uniform Sampler for Tree Automata

In this section, we provide an FPRAS for #BTA. Thus, we obtain as well that #TA admits an
FPRAS, since by Lemma 12.2.1 there exists a polynomial-time parsimonious reduction from
#TA to #BTA.

Fix a tree automaton T = (S,Σ,∆, sinit) over binary trees and let n ≥ 1 be a natural number
given in unary. We assume that every state in S is mentioned in ∆, and that every symbol in
Σ is mentioned in ∆ (if that is not the case, then the elements that are not mentioned in ∆ can
just be removed from the tree automaton). Let m be the size of the tree automaton T , defined
as m = ‖∆‖, where ‖∆‖ is the size of the transition relation ∆ (represented as a string over an
appropriate alphabet). In the following, fix an error parameter ε > 0. Since our algorithm will
run in time poly(n,m, 1/ε), we can assume ε < 1

(4nm)18 without loss of generality. Note that if
we are only interested in uniform sampling, we can just fix ε = 1/poly(nm). Finally, recall that
Ln(T) = {t | t ∈ L(T) and |t| = n}.

Remark 145. We can assume thatm,n = ω(1), since if n = O(1), then the number of unlabeled
trees is constant, so the number of labeled trees is a polynomial in m, and we can check whether
each such a tree is in L(T) to compute |Ln(T)| in polynomial time. If m = O(1), then we can

619

transform T into a constant sized deterministic bottom-up tree automaton,7 and then |Ln(T)|
can be computed in polynomial time by dynamic programming. Thus, for the remainder we can
now assume that n ≥ 2 and m ≥ 3.

Unfolding of the tree automaton T . We begin by making a number of copies of the states
in T in order to “unfold” T into n levels. For this, let the new set of states be S = {si | i ∈
[n], s ∈ S}. Intuitively, from si we only want to accept trees of size i. This will allow us to define
a natural partition scheme for the sampling procedure. To enforce this constraint, we build a new
tree automaton T = (S,Σ,∆, sninit) such that for every transition (s, a, q · r) ∈ ∆ and i ∈ [2, n],
we add the transition (si, a, qj · ri−j−1) to ∆ for every j ∈ [1, i − 2]. Also, for every transition
(s, a, λ) ∈ ∆ we add (s1, a, λ) to ∆. We say that i is the level of si. Note that one can construct
the set S and the automaton T in polynomial time in the size of T [CDG+07].

Given the definition of T , one can easily check that L(T [si]) = {t ∈ L(T [s]) | |t| = i} for
every si ∈ S. In particular, we have that |L(T)| = |{t ∈ L(T) | |t| = n}| and, thus, the goal
becomes to estimate |L(T)| = |L(T [sninit])|. For clarity of notation, we write T (si) for L(T [si])
and N(si) for |T (si)|. Note that the goal becomes to estimate N(sninit).

Remark 146 (Proviso on the sizes of trees). Every binary tree has an odd number of nodes. Thus,
we will have that T (s2i) = ∅ and N(s2i) = 0 for each i ≥ 1. However, to make the notation
simpler, we do not limit ourselves to the trees of odd sizes. On the contrary, the algorithms
provided in this article are able to compute N(s2i) = 0, and also to realize that no sample has to
be produced from T (s2i).

Two basic properties, and the estimation of N(si). Our algorithm simultaneously computes
estimates Ñ(si) for the set sizes N(si), as well as sketches T̃ (si) of T (si) which consist of
polynomially many uniform samples from T (si). Specifically, at each level i and for every
s ∈ S, our algorithm will store an estimate which satisfies Ñ(si) = (1± iε)N(si). At step i, for
each j < i, our algorithm will also store i distinct independent uniformly sampled subsets sets
T̃1(sj), T̃2(sj), . . . , T̃i(sj) of T (sj) which satisfy certain deterministic criteria that will result in
the correctness of our sampling algorithm on states si (see Lemma 12.5.3). Using these estimates
Ñ(sj) and sketches T̃i(sj) for j < i as input, we will construct a procedure that allows us to
obtain fresh, independent samples from the sets T (si) for all s ∈ S. Formally, the properties we
need to inductively condition on are as follows:

7A tree automaton is bottom-up if it assigns states to a labeled tree t starting from the leaves, and moving toward
the root [CDG+07]. In particular, if t is a binary tree, then the transition function is of the form ∆ : S×S×Σ→ S,
that is, a state is assigned to a node depending on the states of its two children and its label.

620

Property 1: For a fixed i ∈ [n], we have Ñ(si) = (1± iε)N(si) for all s ∈ S.

Property 2: For a fixed i ∈ [n], we have an oracle which returns uniform, independent samples
t ∼ T (sj) for every j ≤ i and s ∈ S, and runs in poly(n,m, 1/ε, γ) time, for some fixed
parameter γ which we will later choose. The oracle is allowed to fail with probability at most
3/4, in which case it outputs no sample.

We remark that the parameter γ will later be set to log(1/δ) + n, where δ is the failure
probability. Fix an arbitrary i ∈ [n], and suppose we have computed Ñ(qj) and T̃k(qj) for all
q ∈ S, j < i and k ∈ [i]. Fix now a state s. We first show how to compute the estimate Ñ(si).

Proposition 12.5.1. Fix δ ∈ (0, 1). If Property 1 and 2 hold for all levels j < i, then with

probability 1 − δ and time poly(n,m, 1/ε, log(1/δ)) we can compute a value Ñ(si) such that

Ñ(si) = (1± iε)N(si). In other words, Property 1 holds for level i.

Proof. If i = 1, we can compute N(si) exactly in time O(m), and we make Ñ(si) = N(si).
Thus, assume that i ≥ 2. For each transition τ = (si, a, qj · ri−j−1) ∈ ∆, recall the definition of
the extension T [τ] (see Section 12.2), which recognizes trees where runs are forced to start with
transition τ . We now define N(τ) = |L(T [τ])|, and observe that N(τ) = |T (qj)×T (ri−j−1)| =
N(qj) ·N(ri−j−1). Thus, we obtain an estimate Ñ(τ) of N(τ) via:

Ñ(τ) = Ñ(qj) · Ñ(ri−j−1)

= (1± jε)(1± (i− j − 1)ε) ·N(qj) ·N(ri−j−1)

= (1± (jε+ (i− j − 1)ε) + j(i− j − 1)ε2) ·N(τ)

= (1± ((i− 1)ε) + j(i− j − 1)ε2) ·N(τ)

=
(

1±
(
i− 1 + 1

n

)
ε
)
·N(τ)

Where in the last equation, we used our assumption that ε < 1/(4nm)18 < 1/n3 and then
applied the fact that j(i − j − 1)ε2 ≤ n2ε2 ≤ ε/n. Also, notice that we are using the fact that
Property 1 holds for all sizes j < i. Now let τ1, τ2, . . . , τ` ∈ ∆ be all the transitions of the form
τj = (si, aj, qj · rj) with qj, rj ∈ S and aj ∈ Σ. Observe that N(si) = |⋃`j=1 L(T [τj])|. Now
for each j ∈ [`], let pj be the probability that a uniform sample t ∼ L(T [τj]) is not contained in
L(T [τj′]) for all j′ < j. Then N(si) = ∑`

j=1N(τj)pj , so in order to estimate N(si) it suffices
to estimate the values pj . Since Property 2 holds for all levels less than i, by making calls to
oracles tq ∼ L(T [qj]) and tr ∼ L(T [rj]) we can obtain an i.i.d. sample aj(tq, tr) from L(T [τj])
(recall the notation for trees introduced in Section 12.2). By repeating this process, we can obtain

621

i.i.d. samples t1, t2, . . . , th ∼ L(T [τj]) uniformly at random, where h = O(log(4m/δ)m2/ε2).
Now let p̃j be the fraction of the samples tk such that tk 6∈ L(T [τj′]) for each j′ < j. Note
that checking if tk 6∈ L(T [τj′]) can be done in poly(n,m) time via a membership query for tree
automata. Thus if we let

Xk =

1 if tk 6∈ L(T [τj′]) for each j′ < j

0 otherwise.

then we have p̃j = h−1∑h
k=1Xk. Then setting pj = E [Xk], by Hoeffding’s inequality we have

|p̃j − pj| ≤ ε
4m with probability at least 1− δ/(2m),

so we can union bound over all j ∈ [`] and obtain |p̃j − pj| ≤ ε
4m for all j ∈ [`] with

probability at least 1 − δ. Putting all together, we can derive an estimate Ñ(si) for N(si) by
using the estimates Ñ(τj) and p̃j of N(τj) and pj , respectively, as follows:

Ñ(si) =
∑̀
j=1

Ñ(τj)p̃j

=
(

1±
(
i− 1 + 1

n

)
ε
)∑̀
j=1

N(τj)p̃j

=
(

1±
(
i− 1 + 1

n

)
ε
)(∑̀

j=1
N(τj)pj ±

ε

4m
∑̀
j=1

N(τj)
)

=
(

1±
(
i− 1 + 1

n

)
ε
)(

N(si)
(

1± ε

4

))
= (1± iε)N(si).

Where we use that
∑`
j=1N(τj) ≤

∑`
j=1N(si) = `N(si) ≤ mN(si) in the second to last

step, and the fact that n ≥ i ≥ 2 in the last step. For runtime, notice that the key result
Pr [|p̃j − pj| ≤ ε/(4m)] ≥ 1 − δ/(2m) is conditioned on the event that we were able to obtain
h samples tk using the oracle. Recall that the sampling oracle can fail with probability at most
3/4. Then, the required number of calls h′ to the poly-time sampling oracle is at most 4h/3 in
expectation. For our purposes, h′ = O(h) will also be enough, as we now show. For j ∈ [`] call
Gj the event that we obtain h samples from L(T [τj]) and Hj the event that |p̃j − pj| ≤ ε/(4m).

622

Then, as we showed above:

Pr
[
Ñ(si) = (1± iε)N(si)

]
≥ Pr

⋂̀
j=1

(Hj ∩Gj)

= 1−Pr

⋃̀
j=1

(Hj ∪Gj)

≥ 1−mPr
[
Hj0 ∪Gj0

]

where the last inequality is due to a union bound obtained considering j0 = argmaxj∈[`] Pr
[
Hj ∪Gj

]
.

Recall that we want Pr
[
Ñ(si) = (1± iε)N(si)

]
≥ 1− δ, hence it suffices to show

1−mPr
[
Hj0 ∪Gj0

]
≥ 1− δ ⇐⇒ δ

m
≥ Pr

[
Hj0 ∪Gj0

]
⇐⇒ Pr [Hj0 ∩Gj0] ≥ 1− δ

m
(12.8)

By Hoeffding’s inequality, as we showed before, Pr [Hj0 | Gj0] ≥ 1− δ/(2m). Suppose that we
also have that Pr [Gj0] ≥ 1− δ/(2m). Then,

Pr [Hj0 ∩Gj0] = Pr [Hj0 |Gj0] ·Pr [Gj0] ≥
(

1− δ

2m

)2

≥ 1− 2 · δ2m = 1− δ

m

as required by equation (12.8). Thus, it suffices to show Pr [Gj0] ≥ 1 − δ/(2m). Letting
Xi be the random variable that indicates whether the i-th call to the sampling procedure was
successful, then the total number of samples obtained is X = ∑h′

i=1Xi, where E [X] ≥ h′/4, so
by a Chernoff bound we have

Pr [Gj0] = 1−Pr
[
Gj0

]
= 1−Pr [X < h] ≥ 1−exp

(
−h

′

8

(
1− 4h

h′

)2
)
≥ 1−exp

(
−h

′

8

(
1− 4h

h′

))

assuming that 4h < h′. Hence,

1−exp
(
−h

′

8

(
1−4h

h′

))
≥ 1− δ

2m ⇐⇒ δ

2m ≥ exp
(
−h

′

8

(
1−4h

h′

))
⇐⇒ h′ ≥ 4h+8 ln

(2m
δ

)
.

so by definition of h, it is sufficient to set h′ = 5h, which completes the proof.

The notion of a partial tree. We need to demonstrate how to obtain uniform samples from
T (si) to build the sets T̃j(si). To do this, we will provide an algorithm that recursively samples
a tree t ∈ T (si) from the top down. But before showing this procedure, we need to introduce the

623

a

5 b

9a

a

a bfsize = 1 fsize = 1

fsize = 9fsize = 5

fsize = 3

fsize = 15fsize = 5

fsize = 21

1fsize = 1

Figure 12.4: An example of a partial tree. White nodes corresponds to holes, which are labeled
by integers. Nodes that are not holes are labeled with symbols from Σ = {a, b}.

notion of a partial tree. In the following, recall that Σ is a finite alphabet and assume, without
loss of generality, that Σ ∩ [n] = ∅.

Definition 12.5.2. A partial tree is a binary labeled tree t over Σ ∪ [n]. A node u labeled by

t(u) ∈ [n] is called a hole of t, and we assume that holes can appear only at the leaves of t. The

full size of t, denoted by fsize(t), is defined as |{u | t(u) ∈ Σ}| + ∑
u : t(u)∈[n] t(u). Moreover, a

partial tree t is said to be complete if t contains no holes.

Intuitively, in a partial tree t, a hole u represents a placeholder where a subtree of size t(u) is
going to be hanged. That is, partial tree t is representing all trees over Σ that have the same trunk
as t and, for each hole u, the subtree rooted at u is of size t(u). Notice that all trees represented
by t will have the same size |{u | t(u) ∈ Σ}|+∑

u : t(u)∈[n] t(u) and, therefore, we define the full
size of t as this quantity. Finally, observe that if a partial tree t is complete, then t contains no
holes and, hence, no extension is needed. For an example of a partial tree, see Figure 12.4.

For every partial tree t and node x ∈ t, write tx to denote the partial subtree of t rooted at x.
For each hole u ∈ t with size t(u) = i, we say that t′ is an immediate extension of t over u if
t′ = t[u → a(j, i − j − 1)] for some a ∈ Σ and j ∈ [i − 2]. That is, t is extended by replacing
the label of u with a and hanging from u two new holes whose sizes sum to i − 1 (note that the
resulting partial subtree t′u has full size i). In case that i = 1, then it must hold that t′ = t[u→ a]
for some a ∈ Σ. We define the set of all immediate extensions of t over u as ext(t, u). Note
that |ext(t, u)| = (i − 2)|Σ|. Finally, given two partial trees t and t′, we write t ↪→u t

′ if t′ is

624

an immediate extension of t over u, and t ↪→ t′ if t′ is an immediate extension of t over some
hole u ∈ t. We then define the reflexive and transitive closure ↪→∗ of ↪→, and say that t′ is an
extension of t if t ↪→∗ t′. In other words, t ↪→∗ t′ if either t′ = t or t′ can be obtained from t via
a non-empty sequence of immediate extensions t ↪→ t1 ↪→ t2 ↪→ · · · ↪→ t′. We say that t′ is a
completion of t when t ↪→∗ t′ and t′ is complete.

Obtaining uniform samples from T (si). Given a partial tree t with fsize(t) = i, consider now
the set T (si, t) of all completions t′ of t derivable with si as the state in the root node, namely,
T (si, t) = {t′ ∈ T (si) | t′ is a completion of t}. Further, define N(si, t) = |T (si, t)|. To obtain
a uniform sample from T (si), we start with a partial tree t = i (i.e. t is a partial tree with one
node, which is a hole of size i). At each step, we choose the hole u ∈ twith the smallest size t(u),
and consider an immediate extension of t over u. Note that the set T (si, t) can be partitioned by
the sets {T (si, t′)}t↪→ut′ of such immediate extensions. The fact that T (si, t′) ∩ T (si, t′′) = ∅,
whenever t ↪→u t

′, t ↪→u t
′′ and t′ 6= t′′, follows immediately from the fact that t′ and t′′ have

different labels from Σ in the place of u or unequal sizes of the left and right subtrees of u. We
then will sample each partition T (si, t′) with probability approximately proportional to its size
N(si, t′), set t′ ← t, and continue like that recursively. Formally, the procedure to sample a tree
in T (si) is shown in Algorithm 15.

Algorithm 15: SAMPLE
(
si, {T̃i(rj)}r∈S,j<i, {Ñ(rj)}r∈S,j≤i, ε, δ

)
1 Initialize a partial tree t = i, and set ϕ = 1
2 while t is not complete do
3 Let u be the hole of t with the minimum size t(u). If more than one node reaches

this minimum value, choose the first such a node according to a prespecified order
on the holes of t.

4 Let ext(t, u) = {t1, . . . , t`} be the set of immediate extensions of t over u.
5 For each k ∈ [`], call

ESTIMATEPARTITION(tk, si, {T̃i(rj)}r∈S,j<i, {Ñ(rj)}r∈S,j≤i, ε, δ) to obtain
an estimate Ñ(si, tk) of N(si, tk). // Recall that T = (S,Σ,∆, sinit)

6 Sample partition k ∈ [`] with probability Ñ(si,tk)∑`

k′=1 Ñ(si,tk′)
.

7 Set ϕ← ϕ · Ñ(si,tk)∑`

k′=1 Ñ(si,tk′)
.

8 Set t← tk.

9 return t with probability 1
2ϕÑ(si)

, otherwise output FAIL.

Notice that SAMPLE
(
si, {T̃i(rj)}r∈S,j<i, {Ñ(rj)}r∈S,j≤i, ε, δ

)
uses the precomputed values

625

T̃i(rj) for every r ∈ S and j ∈ [i − 1], and the precomputed values Ñ(rj) for every r ∈ S

and j ∈ [i]. This procedure first selects a hole u with the minimum size t(u), and then calls a
procedure ESTIMATEPARTITION to obtain an estimate Ñ(si, tk) ofN(si, tk) for every immediate
extensions tk of t over u. Thus, to prove our main theorem about the procedure SAMPLE, we
first need the following lemma about the correctness of the partition size estimates. The proof of
Lemma 12.5.3 is the main focus of Section 12.6.

Lemma 12.5.3. Let δ ∈ (0, 1/2), and fix independent and uniform samples sets T̃i(sj) of T (sj)
each of size O(log2(δ−1)(nm)13/ε5), for every s ∈ S and j < i. Suppose further that we have

values Ñ(sj) = (1 ± jε)N(sj) for every s ∈ S and j ≤ i Then with probability 1 − δnm, the

following holds: for every state s ∈ S and for every partial tree t with fsize(t) = i, the procedure

ESTIMATEPARTITION

(
t, si,

{
T̃i(rj)

}
r∈S,j<i

,
{
Ñ(rj)

}
r∈S,j≤i

, ε, δ
)

runs in poly(n,m, ε−1, log δ−1)-time and returns a value Ñ(si, t) such that

Ñ(si, t) =
(
1± (4nm)17ε

)
N
(
si, t

)

Notice that the guarantee of Lemma 12.5.3 is that ESTIMATEPARTITIONalways runs in
polynomial time. Conditioned on the success of Lemma 12.5.3, lines 1 − 9 of the algorithm
SAMPLEalways run in polynomial time (i.e, with probability 1). Thus, conditioned on Lemma
12.5.3, only on line 10 of SAMPLEis it possible for the algorithm to output FAIL. In the follow-
ing Lemma, we demonstrate that, given the success of Lemma 12.5.3, the SAMPLE algorithm
produces truly uniform samples, and moreover the probability of outputting FAIL is at most
a constant. Notice that this implies that, after running the inner loop of SAMPLE a total of
O(log δ−1) times, we will obtain a sample with probability at least 1− δ.

Lemma 12.5.4. Given δ ∈ (0, 1/2), {T̃i(rj)}r∈S,j<i and {Ñ(rj)}r∈S,j≤i, suppose that the pro-

cedure

ESTIMATEPARTITION

(
t, si,

{
T̃i(rj)

}
r∈S,j<i

,
{
Ñ(rj)

}
r∈S,j≤i

, ε, δ
)

produces an estimate Ñ(si, t) with Ñ(si, t) = (1± (4nm)17ε)N(si, t) for every partial tree t of

size i and state si.

Further suppose that Property 1 holds for all j ≤ i (see page 621), and n ≥ 2. Then

626

conditioned on not outputting FAIL, each call to the procedure

SAMPLE

(
si,

{
T̃i(rj)

}
r∈S,j<i

,
{
Ñ(rj)

}
r∈S,j≤i

, ε, δ
)

produces an independent, uniform sample t ∼ T (si). Moreover, the probability that a given call

outputs FAIL is at most 3/4, and the number of times ESTIMATEPARTITION is called in each

iteration of the loop is at most nm.

Proof. Fix a tree t ∈ T (si). Then there is a unique sequence of partial trees i = t0, t1, t2, . . . , ti =
t such that T (si) = T (si, t0) ⊇ T (si, t1) ⊇ T (si, t2) ⊇ · · · ⊇ T (si, ti) = {t}, which gives a se-
quence of nested partitions which could have been considered in the call SAMPLE(si, {T̃i(rj)}r∈S,j<i,
{Ñ(rj)}r∈S,j≤i, ε, δ). For j ∈ [i], let pj be the true ratio of N(si,tj)

N(si,tj−1) , which is the probability
that we should have chosen partition T (si, tj) conditioned on being in partition T (si, tj−1). Note
that

∏i
j=1 pj = 1

|T (si)| = 1
N(si) . Now assuming ESTIMATEPARTITION always returns an esti-

mate with at most (1± (4nm)17ε)-relative error, it follows that conditioned on being in partition
T (si, tj−1), we chose the partition T (si, tj) with probability p̃j = (1 ± (4nm)17ε)pj . Thus the
probability that we choose t at the end of the loop in step 2 of the SAMPLE procedure is:

ϕ =
i∏

j=1
p̃j = (1± (4nm)17ε)i

i∏
j=1

pj = (1± 1/n)
i∏

j=1
pj = (1± 1/n) 1

N(si) =

(1± 1/n)(1± iε) 1
Ñ(si)

= (1± 1/n)(1± 1/(4n)) 1
Ñ(si)

= (1± 2/n) 1
Ñ(si)

.

Notice that we use the fact that ε < (4nm)−18 and that Property 1 holds for all j ≤ i. The
probability that we do not output FAIL can be bounded by

1
2ϕÑ(si)

= 1
2Ñ(si)

i∏
j=1

1
p̃j
≥ 1

2Ñ(si)
Ñ(si)

(1 + 2/n) ≥
1

2(1 + 2/n) ≥ 1/4

since n ≥ 2, which completes the proof that the probability that the call SAMPLE(si, {T̃i(rj)}r∈S,j<i,
{Ñ(rj)}r∈S,j≤i, ε, δ) outputs FAIL is at most 3/4. For the uniformity claim, note that we accept
t at the end with probability ϕ · 1

2ϕÑ(si)
= 1

2Ñ(si)
, which is indeed uniform conditioned on not

outputting FAIL, as it does not depend on t. Finally, notice that ESTIMATEPARTITION is called
at most (t(u)− 2) · |Σ| ≤ nm times in each iteration of the loop.

An FPRAS for #BTA and #TA. We show in Algorithm 16 a fully polynomial-time approxima-
tion schema for #BTA, which puts together the different components mentioned in this section.

627

The correctness of this algorithm is shown in the following theorem.

Algorithm 16: FPRASBTA(T , 0n, ε, δ)
1 Set m← |T |
2 if n < 2 or m < 3 then
3 Edge case, |Ln(T)| can be exactly computed (Remark 145)
4 Construct the tree automaton T
5 Set ε← min{ε, 1/(4mn)18 − 1}
6 Set γ = log(1/δ) + 2n
7 Set α← O(log2(1/δ)(nm)13/ε5), total← O(α)
8 For each s ∈ S, compute N(s1) exactly and set Ñ(s1)← N(s1)
9 For each s ∈ S, create set T̃2(s1) with α uniform, independent samples from T (s1)

10 for i = 2, . . . , n do
11 For each s ∈ S, compute Ñ(si) such that

Pr
[
Ñ(si) = (1± iε)N(si)

]
≥ 1− exp(−γn20)

12 if i < n then
13 for each s ∈ S and j = 1, . . . , i do
14 Set T̃i+1(sj)← ∅, counter← 1
15 while |T̃i+1(sj)| < α and counter ≤ total do
16 Call the procedure

SAMPLE
(
sj, {T̃i(rk)}r∈S,k<j, {Ñ(rk)}r∈S,k≤j, ε, 2−2nδ

)
17 If this procedure returns a tree t, then set T̃i+1(sj)← T̃i+1(sj) ∪ {t}
18 Set counter← counter + 1

19 if |T̃i+1(sj)| < α then
20 return FAIL

21 return Ñ(sninit).

Theorem 147. Let ε, δ ∈ (0, 1/2), n ≥ 1, T = (S,Σ,∆, sinit) be a tree automaton, and m =
‖∆‖ be the size of T . Then the call FPRASBTA(T , 0n, ε, δ)8 returns, with probability at least

8Here we write 0n as the unary representation of n. Since our algorithms are polynomial in n, the algorithm is
polynomial in the size of the input.

628

1 − δ, a value Ñ such that Ñ = (1 ± ε)|Ln(T)|. Moreover, the runtime of the algorithm

FPRASBTA is poly(n,m, 1/ε, log(1/δ)).

Proof. Set α = O(log2(1/δ)(nm)13/ε5). For every j ∈ [n], let E1
j denote the event that Prop-

erty 1 holds for level j, and similarly define E2
j for Property 2. Set γ = log(1/δ). We prove

inductively that

Pr

∧
j≤i

(
E1
j ∧ E2

j

) ≥ 1− 2−γ+2i

for each i ∈ [n]. Since N(s1) is computed exactly in step 8 of FPRASBTA(T , 0n, ε, δ) and the
size of each tree in T (s1) is 1, the base case i = 1 trivially holds. Now at an arbitrary step i ≥ 2,
suppose E1

j ∧E2
j holds for all j < i. By considering exp(−γn20) as the value for the parameter δ

in Proposition 12.5.1, it follows that E1
i holds with probability at least 1 − exp(−γn20), and the

runtime to obtain Property 1 is poly(n,m, 1
ε
, γ). Thus,

Pr

E1
i

∣∣∣ ∧
j<i

(
E1
j ∧ E2

j

) ≥ 1− exp(−γn20).

We now must show that E2
i holds – namely, that we can obtain uniform samples from all sets

T (si). By Lemma 12.5.3, if we can obtain fresh uniform sample sets T̃i(sj) of T (sj) for each s ∈
S and j < i, each of size α, then with probability at least 1−2−γnm, we have that for every partial
tree t′ of size i (that is, fsize(t′) = i) and state s ∈ S, the procedure ESTIMATEPARTITION(t′, si,
{T̃i(sj)}s∈S,j<i, {Ñ(sj)}s∈S,j≤i, ε, δ) produces an estimate Ñ(si, t′) such that Ñ(si, t′) = (1 ±
(4nm)17ε)N(si, t′). Since we have to call ESTIMATEPARTITION at most inm times (see Lemma
12.5.4), after a union bound we get that the conditions of Theorem 12.5.4 are satisfied with
probability at least 1 − 2−γ , and it follows that we can sample uniformly from the set T (si) for
each s ∈ S in polynomial time.

It remains to show that we can obtain these fresh sample sets T̃i(sj) of T (sj) for each s ∈
S and j < i in order to condition on the above. But the event E2

i−1 states precisely that can
indeed obtain such samples in poly(n,m, 1

ε
, γ) time per sample. Thus the conditions of the

above paragraph are satisfied, so we have

Pr

E2
i

∣∣∣ E1
i ∧

∧
j<i

(
E1
j ∧ E2

j

) ≥ 1− 2−γ.

629

Therefore, we conclude that

Pr

E1
i ∧ E2

i

∣∣∣ ∧
j<i

(
E1
j ∧ E2

j

) ≥ 1− 2−γ − exp(−γn20) + 2−γ exp(−γn20) ≥ 1− 2−γ+1

Hence, by induction hypothesis:

Pr

∧
j≤i

(
E1
j ∧ E2

j

) = Pr

E1
i ∧ E2

i

∣∣∣ ∧
j<i

(
E1
j ∧ E2

j

) ·Pr

∧
j<i

(
E1
j ∧ E2

j

)
≥ (1− 2−γ+1)(1− 2−γ+2(i−1))

= 1− 2−γ+1 − 2−γ+2i−2 + 2−2γ+2i−1

≥ 1− 2−γ+1 − 2−γ+2i−1

≥ 1− 2−γ+2i−1 − 2−γ+2i−1

= 1− 2−γ+2i

which completes the inductive proof. Redefining γ = log(1/δ) + 2n (see Line 6 of Algorithm
16) and considering 2−2nδ when using Lemma 12.5.3 (see Line 16 of Algorithm 16), we obtain
that the success probability of the overall algorithm is 1− δ as needed.

For runtime, note that by Lemma 12.5.4, the expected number of trials to obtain α samples
T̃i(sj) for each sj ∈ S and i ∈ [n] isO(α), and thus isO(α) with probability 1−2−α > 1−2−mnγ

by Chernoff bounds. That is, withO(α) trials, we have probability at least 1−2−mnγ of not failing
in step 20 of Algorithm 16. Since we go through that step at mostO(n2m) times during the whole
run of the algorithm, that means that the overall probability of returning FAIL can be bounded
by 1 − 2γ = 1 − δ, which is a loose bound but enough for our purposes. Moreover, by Lemma
12.5.4, the runtime of each sampling trial in step 16 of Algorithm 16 is polynomial in n, m, 1/ε
and log(1/(2−2nδ)) = γ. It follows that the entire algorithm runs in poly(n,m, 1/ε, log(1/δ))
time, which completes the proof.

We now provide our main theorem for uniformly sampling from tree automata. The notion
of sampling we get is in fact stronger than the definition of a FPAUS as defined in Section 12.2.
Specif

Theorem 148. Let δ ∈ (0, 1/2), n ≥ 1, T = (S,Σ,∆, sinit) be a tree automaton, and m = ‖∆‖
be the size of T . Then there is a sampling algorithm A and a pre-processing step with the

following property. The preprocessing step runs in poly(n,m, log δ−1) time, and with probability

630

1−δ over the randomness used in this pre-processing step,9 each subsequent call to the algorithm

A runs in time poly(n,m, log δ−1) time, and returns either a uniform sample t ∼ Ln(T) or

FAIL. Moreover, if Ln(T) 6= ∅, the probability that the sampler returns FAIL is at most 1/2.

Additionally, this implies that there is an FPAUS for Ln(T) as defined in Section 12.2.

Proof. The preprocessing step here is just the computation of the estimates Ñ(si) and sketches
T̃ (si) for all i ≤ n, which are obtained by a single to the FPRAS of Theorem 147 using a fixed
ε = (nm)−C for a sufficiently large constant C. The sampling algorithm is then just a call to

SAMPLE

(
sninit,

{
T̃i(rj)

}
r∈S,j<n

,
{
Ñ(rj)

}
r∈S,j≤n

, ε, δ
)

Then the first result follows from Lemmas 12.5.4 and 12.5.3, as well as Theorem 147. In par-
ticular, if we condition on the success of Theorem 147, which hold with probability 1−δ, then by
the definition of Property 2, and the fact that Property 2 holds for the size n conditioned on Theo-
rem 147, this is sufficient to guarantee that the samples produced by our sampling procedure are
uniform. Furthermore, by Lemma 12.5.4, the probability that a call to SAMPLE outputs FAIL is
at most 3/4, so repeating the algorithm three times, the probability that a sample is not output is at
most (3/4)3 < 1/2. Finally, by Lemma 12.5.3 the runtime of each call to ESTIMATEPARTITION

is at most poly(n,m, log δ−1), and by Lemma 12.5.4, the procedure ESTIMATEPARTITION is
called at most nm times per call to SAMPLE, which completes the proof of the runtime.

We now verify that the above implies that Ln(T) admits an FPAUS. First, if Ln(T) 6= ∅, note
that the probability δ of failure of the pre-processing algorithm induces an additive δ difference
in total variational distance from the uniform sampler. Moreover, by testing deterministically
whether the tree t obtained by the algorithm is contained in Ln(T), we can ensure that, condi-
tioned on not outputting FAIL, the output of the algorithm is supported on Ln(T). We can then
run the algorithm with δ0 = δ|Ln(T)|−1 = δ exp(−poly(n,m)), which does not affect the stated
polynomial runtime. This results in

D(t) = 1
|Ln(T)| ± δ0

= 1
|Ln(T)| ± δ|Ln(T)|−1

= (1± δ)
|Ln(T)|

(12.9)

9Note that we cannot detect if the event within the preprocessing step that we condition on here fails, which
occurs with probability δ.

631

for every t ∈ Ln(T), as desired. To deal with the 1/2 probability that the output of our sampler
is FAIL, we can run the sampler for a total of Θ(log(δ−1|Ln(T)|)) = poly(n,m, log δ−1) trials,
and return the first sample obtained from an instance that did not return FAIL. If all trails output
FAIL, then we can also output ⊥ as per the specification of an FPAUS. By doing so, this causes
another additive δ|Ln(T)|−1 error in the sampler, which is dealt with in the same way as shown
in Equation (12.9) above. Finally, if Ln(T) = ∅, the algorithm must always output ⊥, since
given any potential output t 6= ⊥, we can always test if t ∈ Ln(T) in polynomial time, which
completes the proof that the algorithm yields an FPAUS.

We conclude this section by pointing out that from Theorem 147 and the existence of a
polynomial-time parsimonious reduction from #TA to #BTA, and the fact that given a binary
tree t′ ∈ Ln(T ′) after the reduction from a tree automata T to a binary tree automata T ′, the
corresponding original tree t ∈ Ln(T) can be reconstructed in polynomial time, we obtain the
following corollary:

Corollary 12.5.5. Both #BTA and #TA admit an FPRAUS and an FPAUS.

12.6 Estimating Partition Sizes via Succinct NFAs

The goal of this section is to prove Lemma 12.5.3, namely, to show how to implement the pro-
cedure ESTIMATEPARTITION. To this end, we first show how ESTIMATEPARTITION can be im-
plemented by reducing it to the problem of counting words accepted by a succinct NFA, which
we introduced in Section 12.4 and formally define here. Next, we demonstrate an FPRAS for
counting words accepted by a succinct NFA, which will complete the proof of Lemma 12.5.3.

Succinct NFAs. Let Γ be a finite set of labels. A succinct NFA over Γ is a 5-tuple
N = (S,Γ,∆, sinit, sfinal) where S is the set of states and each transition is labeled by a sub-
set of Γ, namely ∆ ⊆ S × 2Γ × S. Thus each transition is of the form (s, A, s′), where A ⊆ Γ.
For each transition (s, A, s′) ∈ ∆, the set A ⊆ Γ is given in some representation (e.g. a tree
automaton, a DNF formula, or an explicit list of elements), and we write ‖A‖ to denote the size
of the representation. Note that while the whole set A is a valid representation of itself, generally
the number of elements of A, denoted by |A|, will be exponential in the size of the representation
‖A‖. We define the size of the succinct NFA N as |N | = |S| + |∆| + ∑

(s,A,s′)∈∆ ‖A‖. For
notational simplicity, we will sometimes write r = |N |.

632

Given a succinct NFA N as defined above and elements w1, . . . , wn ∈ Γ, we say that N
accepts the word w1w2 . . . wn if there exist states s0, s1, . . . , sn ∈ S and sets A1, . . . , An ⊆ Γ
such that:

• s0 = sinit and sn = sfinal

• wi ∈ Ai for all i = 1 . . . n
• (si−1, Ai, si) ∈ ∆ for all i = 1 . . . n

We denote by Lk(N) the set of all words of length k accepted by N . We consider the
following general counting problem:

Problem: #SuccinctNFA
Input: k ≥ 1 given in unary and a succinct NFA N
Output: |Lk(N)|

Reduction to Unrolled Succinct NFAs Our algorithm for approximating |Lk(N)| first in-
volves unrolling k times the NFA N = (S,Γ,∆, sinit, sfinal), to generate an unrolled NFA N k

unroll.
Specifically, for every state p ∈ S create k − 1 copies p1, p2, . . . , pk−1 of p, and include them
as states of the unrolled NFA N k

unroll. Moreover, for every transition (p,A, q) in ∆, create the
edge (pα, A, qα+1) in N k

unroll, for every α ∈ {1, . . . , k − 2}. Finally, if (sinit, A, q) is a transition
in ∆, then (sinit, A, q

1) is a transition in N k
unroll, while if (p,A, sfinal) is a transition in ∆, then

(pk−1, A, sfinal) is a transition in N k
unroll. In this way, we keep sinit and sfinal as the initial and fi-

nal states of N k
unroll, respectively. Since k is given in unary, it is easy to see that N k

unroll can be
constructed in polynomial time from N . Thus, for the remainder of the section, we will assume
that the input succinct NFAN has been unrolled according to the value k. Thus, we consider the
following problem.

Problem: #UnrolledSuccinctNFA
Input: k ≥ 1 given in unary and an unrolled succinct NFA N k

unroll

Output: |Lk(N k
unroll)|

Clearly in the general case, without any assumptions on our representation ‖A‖ of |A|, it will
be impossible to obtain polynomial in |N | time algorithms for the problem above. In order to
obtain polynomial time algorithms, we require the following four properties of the label sets A
to be satisfied. The properties state that the sizes |A| are at most singly exponential in |N |, we
can efficiently test whether an element a ∈ Γ is a member of A, we can obtain approximations
of |A|, and that we can generate almost uniform samples from A.

633

Definition 12.6.1 (Required properties for a succinct NFA). Fix ε0 > 0. Then for every label set

A present in ∆, we have:

1. Size bound: There is a polynomial g(x) such that |A| ≤ 2g(|N |).

2. Membership: There is an algorithm that given any a ∈ Γ, verifies in time T = poly(|N |)
whether a ∈ A.

3. Size approximations: We have an estimate Ñ(A) = (1± ε0)|A|.

4. Almost uniform samples: We have an oracle which returns independent samples a ∼ A

from a distribution D over A, such that for every a ∈ A:

D(a) = (1± ε0) 1
|A|

The reason for the first condition is that our algorithms will be polynomial in log(N), where
N is an upper bound on the size of |Lk(N)|. We remark that for the purpose of our main
algorithm, we actually have truly uniform samples from each set A that is a label in a transition.
However, our results may be applicable in other settings where this is not the case. In fact, along
with the first two conditions from Definition 12.6.1, a sufficient condition for our algorithm to
work is that the representations of each set A allows for an FPRAS and a polynomial time almost
uniform sampler.

The Main Path of a Partial Tree Next we show that if we can approximate the number of
words of a given length accepted by a succinct NFA, then we can implement the procedure
ESTIMATEPARTITION. But first we need to introduce the notion of main path of a partial tree.
Let t be a partial tree constructed via the partitioning procedure of Algorithm 15 (see page 625).
Given that we always choose the hole with the minimal size in Line 3, one can order the holes of
t as u1, u2, . . . , uk, such that for each i, parent(ui) is an ancestor of ui+1, namely, ui+1, . . . , uk

are contained in the subtree rooted at the parent of ui. Note that by definition of the loop of
Algorithm 15, it could be the case that two holes u and v share the same parent (e.g. the last step
produced a subtree of the form a(i, j)). If this is the case, we order u and v arbitrarily. Then we
define the main path π of t considering two cases. If no two holes share the same parent, then π is
the path parent(u1), parent(u2), . . . , parent(uk) (from the most shallow node u1 to the deepest
node uk). On the other hand, if two holes share the same parent, then by definitions of Algo-
rithm 15 and sequence u1, . . ., uk, these two nodes must be uk−1 and uk. In this case, we define

634

a

H1 b

H2a

c

H4 a

H3

a

c b

H ′1a

c

H ′3 H ′4

H ′2

Figure 12.5: Two examples of a partial tree. The holes are indicated by the letters H and H ′,
while the nodes that are not holes have labels a, b, c ∈ Σ. Non-white nodes and thick arcs are
used to highlight the main paths.

π as the path parent(u1), parent(u2), . . . , parent(uk−1), uk, (again, from the most shallow node
u1 to the deepest node uk).10 Observe that by definition of Algorithm 15, every hole is a child of
some node in π. We illustrate the notion of main path in Figure 12.5. For the partial tree in the
left-hand side, we have that the main path is parent(H1), parent(H2), parent(H3), parent(H4)
as no two holes share the same parent. On the other hand, the main path for the partial tree in
the right-hand side is parent(H ′1), parent(H ′2), parent(H ′3), H ′4, as in this case holes H ′3 and H ′4
share the same parent.

Lemma 12.6.2. There exists a polynomial-time algorithm that, given a tree automaton T , a

partial tree t with k holes constructed via the partitioning procedure of Algorithm 15 with i =
fsize(t) and state s of T , returns a succinct NFA N such that

|T (si, t)| = |Lk(N)|.

Moreover, |N | ≤ 3(im)4, where m is the size of T .

Proof. Let u1, . . . , uk be the holes of t. Assume first that no two holes of t share the same parent,
so that π = p1, p2, . . . , pk is the main path of t with pi = parent(ui). Counting the number of

10Strictly speaking, parent(u1), . . . ,parent(uk) is a sequence and is not necessarily a path in the tree, because
there could be missing nodes between the elements of the sequence. However, for the purpose of the proof the
missing nodes do not play any role and will be omitted.

635

elements of T (si, t) is the same as counting all sequences of trees t1, . . . , tk over Σ such that
there exists a run ρ of T over the tree t[u1 → t1] · · · [uk → tk] with ρ(λ) = si. In other words,
we hang t1 on u1, . . . , tk on uk to form a tree that is accepted by T when si is the initial state.
Then the plan of the reduction is to produce a succinct NFA N such that all words accepted by
N are of the form t1 · · · tk with t[u1 → t1] · · · [uk → tk] ∈ T (si, t).

For the construction of N it will be useful to consider the following extension of T over
partial trees. Recall the definition of T = (S,Σ,∆, sinit) from Section 12.5, but assuming here
that the unfolding is done for i levels. Then define T ∗ = (S,Σ ∪ [i],∆∗, siinit) such that ∆∗ =
∆ ∪ {(sj, j, λ) | sj ∈ S}, namely we add to T special transitions over holes when the level j of
sj coincides with the value of the hole. Intuitively, if we have a run ρ of T ∗ over t with ρ(λ) = si

and T (ρ(u`)) 6= ∅ for every ` ∈ [k], then t can be completed with trees t1 ∈ T (ρ(u1)), . . . , tk ∈
T (ρ(uk)) such that t[u1 → t1] · · · [uk → tk] ∈ T (si, t).

Let i1, . . . , ik be the sizes t(u1), . . . , t(uk) on the holes u1, . . . , uk, respectively. Furthermore,
let j1, . . . , jk be the final sizes of the subtrees of t hanging from nodes p1, . . . , pk, respectively.
That is, if t1 is the subtree hanging from p1 in t, then j1 = fsize(t1), and so on. Note that by the
definition of the main path π, we have that j1 > j2 > . . . > jk (since each pi is the parent of
pi+1). We now have the ingredients to define the succinct NFA N = (SN ,Γ,∆N , s0, se). The
set SN of states will be a subset of the states of S, plus two additional states s0 and se, formally,
SN = ⋃k

`=1{qj` ∈ S | q ∈ S} ∪ {s0, se}. The set ∆N of transitions is defined as follows: for
every states q1, q2, r ∈ S and ` ∈ [k − 1], we add a transition (qj`1 , T (ri`), qj`+1

2) ∈ ∆N if there
exists a run ρ of T ∗ over t such that ρ(p`) = qj`1 , ρ(p`+1) = qj`+1

2 , and ρ(u`) = ri` . Moreover,
assuming that & is a fresh symbol, we add transition (u0, {&}, qj1) to ∆N if there exists a run ρ
of T ∗ over t such that ρ(p1) = qj1 , and ρ(λ) = si. Finally, we add transition (qjk , T (rik), ue) to
∆N .

Note that all transitions in the succinct NFA are directed from level j`−1 to level j` with
j`−1 > j`, for some ` ∈ {1, 2, . . . , k − 1}, which implies that N is unrolled. Here, the level j`
is defined as the set of states {qj` ∈ S | q ∈ S}. Furthermore, note that transitions are labeled
by sets T (ri`) where i` < i, which are represented by tree automaton T [ri`] for i` < i. Thus,
the conditions required by Definition 12.6.1 are satisfied since for each transition label T (ri`),
it holds that |T (ri`)| is at most exponential in the size of T [ri`], and by Algorithm 15, we have
already precomputed values such that we can check membership, approximate its size, and obtain
an almost uniform sample from T (ri`). Finally, the existence of the run ρ for the definition of
each transition in ∆N can be checked in polynomial time in the size of t [CDG+07] and, thus,
N can be constructed from t and T in polynomial time.

636

It’s only left to show that |Lk(N)| = |T (si, t)|. For this, note that every word accepted by
N is of length k + 1 and of the form &t1t2 · · · tk. Then consider the function that maps words
&t1t2 . . . tk to the tree t[u1 → t1] · · · [uk → tk]. One can show that each such a tree is in T (si, t),
and then the function goes from Lk(N) to T (si, t). Furthermore, the function is a bijection.
Clearly, if we take two different words, we will produce different trees in T (si, t), and then the
function is injective. To show that the function is surjective, from a tree t′ ∈ T (si, t) and a run
ρ of T over t′, we can build the word &t1t2 . . . tk where each ti is the subtree hanging from the
node ui in t′. Also, this word is realized by the following sequence of transitions in N :

(s0, {&}, ρ(p1)), (ρ(p1), T (ρ(u1)), ρ(p2)), . . . , (ρ(pk−1), T (ρ(uk−1)), ρ(pk)), (ρ(pk), T (ρ(uk)), se).

Thus, the function is surjective. Hence, from the existence of a bijection from Lk(N) to T (si, t),
we conclude that |Lk(N)| = |T (si, t)|.

Recall that the size of succinct NFAN is defined as |N | = |SN |+ |∆N |+
∑

(s,A,s′)∈∆N ‖A‖.
Thus, given that |SN | = im, each set label A = T (ρ(ui)) is represented by the tree automaton
T [ρ(ui)] and the size of T [ρ(ui)] is bounded by (im)2, we conclude that |∆N | ≤ (im)3 and∑

(s,A,s′)∈∆N ‖A‖ ≤ (im)4. Putting everything together, we conclude that |N | ≤ 3(im)4, which
was to be shown.

To finish with the proof, we need to consider the sequence u1, . . . , uk of holes of t, and
assume that two holes of t share the same parent, so that π = p1, p2, . . . , pk is the main path of t,
with pi = parent(ui) for each i ∈ [k − 1] and pk = uk. The proof for this case can be done in a
completely analogous way.

In the following theorem, we show how to estimate |Lk(N)| for a given unrolled succinct NFA
N and integer k ≥ 1 given in unary (recall the definition of unrolled succinct NFA from the
beginning of this section).

Theorem 149. Let N be an unrolled succinct NFA, k ≥ 1 ε ∈ (100|N |4ε0, 1), where ε0 is as

in Definition 12.6.1. Moreover, fix δ ∈ (0, 1/2) and assume that N satisfies that |Lk(N)| ≤ N .

Then there exists an algorithm that with probability at least 1 − δ outputs a value Ñ such that

Ñ = (1± ε)|Lk(N)|. The algorithm runs in time

O

(
T · log(N/ε) log2(1/δ)|N |18

ε4

)
,

637

where T is as in Definition 12.6.1, and makes at most

O

(
log2(1/δ) log(N/ε)|N |18

ε4

)

queries to the sampling oracle. Furthermore, there is an almost uniform sampler which returns

elements of Lk(N) such that

Pr [outputs π] = (1± ε) 1
|Lk(N)|

for every π ∈ Lk(N), and has the same runtime and oracle complexity as above.

As a corollary based on the reduction described earlier, we obtain the following.

Corollary 12.6.3. Let N be a succinct NFA, k ≥ 1, u, v ∈ V , ε ∈ (100((k + 1)|G|)4ε0, 1),

where ε0 is as in Definition 12.6.1. Moreover, fix δ ∈ (0, 1/2) and assume that N satisfies that

|Lk(N)| ≤ N . Then there exists an algorithm that, with probability at least 1−δ outputs a value

Ñ such that Ñ = (1± ε)|Lk(N)| ≤ N . The algorithm runs in time

O

(
T · log(N/ε) log2(1/δ)(k|N |)18

ε4

)
,

where T is as in Definition 12.6.1, and makes at most

O

(
log2(1/δ) log(N/ε)(k|N |)18

ε4

)

queries to the sampling oracle. Furthermore, there is an almost uniform sampler which returns

elements of Lk(N) such that

Pr [outputs π] = (1± ε) 1
|Lk(N)|

for every π ∈ Lk(N), and has the same runtime and oracle complexity as above.

Proof. The result follows from Theorem 149, as well as the reduction described earlier from
arbitrary succinct NFAs to unrolled succinct NFAs. Notice that in this reduction the size of N
increases by a factor of O(k), which completes the proof.

Using Theorem 149, we can prove Lemma 12.5.3.

638

Proof of Lemma 12.5.3. Recall that we assume given a tree automaton T = (S,Σ,∆, sinit) over
binary trees, a natural number n ≥ 1 given in unary, the relative error ε ∈ (0, 1) and a value
δ ∈ (0, 1/2). Moreover, we assume that m ≥ 3 is the size of T , which we define as m = ‖∆‖.

Let s ∈ S and t be a partial tree such that fsize(t) = i. By using Lemma 12.6.2, we can
construct in polynomial-time a succinct NFA N such that N(si, t) = |T (si, t)| = |Lk(N)|.
Moreover, by the reduction of Lemma 12.6.2, each label set A of a transition inN is of the form
A = T (sj) for some state s and some j < i in the graph. Thus, if we assume ε0 = ε4nm, then
this gives us Ñ(sj) = (1±ε0)N(sj) asN is required to satisfy the properties of Definition 12.6.1.
Moreover, define ε1 = ε0(4nm)16, where ε1 is the precision parameter from Theorem 149. Then
we have that ε1 > 300(nm)16ε0 ≥ 100|N |4ε0 as required by Theorem 149, where here we used
the fact that |N | ≤ 3(nm)4 in the reduction of Lemma 12.6.2. Moreover, ε1 = (4nm)17ε < 1,
as also required by Theorem 149, since we assume that ε < 1/(4nm)18. Finally, we also set
δ0 = δ(nm)3 to be the failure probability as in Theorem 149. Thus, by Theorem 149, using at most
O(log2(1/δ0) log(N/ε1)(nm)4·18/ε41) = O(log2(1/δ) log(N/ε)(nm)10/ε4) samples, we obtain a
(1± ε1)-estimate of the size of the number of labeled paths with probability 1− δ0 = 1− δ(nm)3 .
By Lemma 12.6.2, we therefore obtain the same estimate of the partition t, for a given partial
tree t.

We now bound the number of ordered, rooted, labeled trees of size n. By Cayley’s formula,
we can bound the number of unlabeled, unordered, undirected trees by nn−2. The number of
rooted, unordered, undirected, unlabeled trees can then be bounded by nn−1. For each tree,
every vertex has |Σ| ≤ m choices of a labeling, thus there are mnnn−1 < (nm)nm labeled
unordered, undirected rooted trees (recall that m ≥ 3). Finally, for each such a tree, we can
bound the number of ways to transform it into an ordered and directed tree by (2n)!, which gives
a bound of (2n)! · (nm)nm ≤ (nm)(nm)2 (recall again that m ≥ 3). Note that this also implies
that N ≤ (nm)(nm)2 , which gives a total sample complexity bound of O(log2(1/δ)(nm)13/ε5).
Observe that the number of partial trees t such that fsize(t) = i is bounded by n(nm)(nm)2 . In
particular, this bound is obtained by considering that m ≥ 3 and the fact that the number of
labels for partial trees is at most |Σ| + n ≤ m + n. Now by a union bound and considering that
δ < 1/2, with probability

1− (nm)(nm)(nm)2
δ(nm)3 ≥ 1− δ(nm)3−((nm)2+1) log(nm) ≥ 1− δnm,

ESTIMATEPARTITION(t, si, {T̃i(sj)}s∈S,j<i, {Ñ(sj)}s∈S,j≤i, ε, δ) returns a (1 ± ε1) = (1 ±
(4nm)17ε) estimate for all trees t such that fsize(t) = i and for all states si such that s ∈ S.
Finally, note that the runtime is poly(n,m, 1/ε, log(1/δ)) since it is bounded by a polynomial

639

in the sample complexity, which is polynomial in n, m, 1/ε and log(1/δ) by Lemma 12.6.6 and
Theorem 149.

12.6.1 Approximate Counting of Accepted Words in Succinct NFAs

The goal of this section is to prove Theorem 149. In what follows, fix a succinct NFA N =
(S,Γ,∆, sinit, sfinal) over a finite set of labels Γ and recall that the label sets of ∆ have to satisfy
the conditions of Definition 12.6.1. Besides, assume that N is unrolled, and recall the definition
of unrolled succinct NFA from the beginning of this section. Without loss of generality, assume
that S only contains states which lie on a path from sinit to sfinal. Furthermore, let s0, . . . , sn be
a topological order of the states in S such that s0 = sinit and sn = sfinal, where |S| = n + 1.
In other words, every path from s0 to sn can be written in the form s0, si1 , si2 , . . . , sn, where
1 ≤ i1 ≤ i2 ≤ · · · ≤ n. Finally, for brevity, we write r = |N |.

For the sake of presentation, for every state si, let W (si) = L(Nsi) and N(si) = |L(Nsi)|,
where Nsi is an exact copy of N only with the final state changed to si. Then our goal is to
estimateN(sn). Similar than for the previous section, we will simultaneously compute estimates
Ñ(si) of the set sizes N(si), as well as multi-set sketches W̃ (si) filled with i.i.d. nearly-uniform
samples from W (si). We do this iteratively for i = 0, 1, 2, . . . , n. For the remainder of the
section, fix ε, ε0, δ as in Theorem 149, and assume that N satisfies the conditions of Definition
12.6.1, from which we know that |W (si)| ≤ N for each node si, for some N ≤ 2poly(r). Set γ =
log(1/δ). Finally, since the FPRAS must run in time poly(r, 1/ε), we can assume ε < 1/(300r)
without loss of generality.

We first observe that membership in W (si) is polynomial-time testable given polynomial-
time membership tests for each label A.

Proposition 12.6.4. Suppose that given a sequence a1 . . . at ∈ Γt, we can test in time T whether

ai ∈ A for each transition label A (T is the membership time in Definition 12.6.1). Then given

any state sj , we can test whether a1 . . . at ∈ W (sj) in time O(|∆|T)

Proof. We can first remove all transitions not contained in a run of length exactly t from s to sj
in time O(|∆|) by a BFS. Then for each transition e = (s′, A, s′′) remaining which is on the i-th
step from s to sj , with i ≤ t, we keep e if and only if ai ∈ A. Note that i is unique for e as
N is unrolled. It is now straightforward to check that sj is reachable from s with the remaining
transitions if and only if a1 . . . at ∈ W (sj). It is easy to check that the time needed by the entire
procedure is O(|∆|T).

640

Now, analogous to the prior section, we define the following properties for each state si. Recall
that we use r = |N | to denote the size of N for brevity.

Property 3: We say that si satisfies Property 3 if Ñ(si) = (1± iε/r)N(si).

Property 4: We say that si satisfies Property 4 if for every subset L ⊆ {0, 1, 2, . . . , i− 1} , we
have that

∣∣∣∣∣
∣∣∣W̃ (si) \

(⋃
j∈LW (uj)

)∣∣∣
|W̃ (si)|

−

∣∣∣W (si) \
(⋃

j∈LW (uj)
)∣∣∣

|W (si)|

∣∣∣∣∣ ≤ ε

r

Moreover, we have that the subsets W̃ (si) are of size |W̃ (si)| = O(r3γ
ε2

).

Property 5: We say that si satisfies Property 5 if we have a polynomial-time algorithm which
returns independent samples from W (si), such that for all w ∈ W (si):

Pr [outputs w | ¬FAIL] =
(

1± ε

3r2

)
1

N(si)

The algorithm is allowed to fail with probability at most 1/4, in which case it returns FAIL (and
returns no element). Finally, each run of the algorithm is allowed to use at most O(log(N/ε)γr11

ε2
)

oracle calls to the sampling oracle of Definition 12.6.1.

Lemma 12.6.5. Suppose that Properties 3, 4 and 5 hold for all sj with j < i. Then with

probability at least 1−2−γr we can return an estimate Ñ(si) = (1± iε/r)N(si). In other words,

under these assumptions it follows that Property 3 holds for si. Moreover, the total number of

calls to the sampling oracle of Definition 12.6.1 is O(log(N/ε)γ2r17

ε4
), and the total runtime can be

bounded by O(T log(N/ε)γ2r17

ε4
), where T is the membership test time in Definition 12.6.1.

Proof. First note that for i = 0, Property 3 trivially holds since W (s0) = ∅. Otherwise, let
i ≥ 1 and (v1, A1, si), . . . , (vk, Ak, si) ∈ ∆ be the set of all transitions going into si (recall that
we sorted the {si}i∈[0,n] by a topological ordering, so v1, . . . , vk ∈ {s0, . . . , si−1}). Observe
W (si) = ⋃k

j=1 (W (vj) · Aj). Fix a transition (vj, Aj, si) and assume that ε0 = ε/(100r4) in
Definition 12.6.1, so that we are given estimates Ñ(Aj) = (1 ± ε0)|Aj| since N satisfies the
conditions in this definition. Then the number of words reaching si through (vj, Aj, si) is given

641

by N(vj)|Aj|, and it can be estimated as follows assuming that vj = sk with k < i:

Ñ(vj) · Ñ(Aj) = (1± kε/r)(1± ε0)N(vj)|Aj|

= (1± (i− 1)ε/r)(1± ε/(100r4))N(vj)|Aj|

= (1± (i− 1 + 1/r2)(ε/r))N(vj)|Aj|.

Notice that in this deduction we use the fact that i− 1 ≤ r. Let pj denote be the probability that
a uniformly drawn s ∼ (W (vj) · Aj) is not contained in

⋃
j′<j (W (vj′) · Aj′). Then we can write

W (si) = ∑k
j=1N(vj)|Aj|pj . We now estimate pj via p̃j . By Property 5 and the assumptions

from Definition 12.6.1, we can obtain nearly uniform samples w ∼ W (vj) and a ∈ Aj in
polynomial time, such that the probability of sampling a given w and a are (1± ε/(3r2))N(vj)−1

and (1± ε0)|Aj|−1, respectively. Moreover, w · a is a sample from W (vj) ·Aj , such that for any
w′ · a′ ∈ W (vj) · Aj:

Pr [w · a = w′ · a′] =
(

1± ε

3r2

) 1± ε0
N(vj)|Aj|

(12.10)

Note that the relative error (1 ± ε/(3r2))(1 ± ε0) can be bounded in the range (1 ± 2ε/(5r2))
using the fact that ε0 = ε/(100r4). We repeat this sampling process d = O(γr5/ε2) times,
obtaining samples w1a1, . . . , wdad ∼ W (vj) · Aj and set p̃j to be the fraction of these samples
not contained in

⋃
j′<j (W (vj′) · Aj′). Then by Hoeffding’s inequality, with probability 1− 2−γr

we have that p̃j = pj ± 2ε/(3r2) (here we use (12.10), which tell us that the expectation of p̃j is
at most 2ε/(5r2) far from the correct expectation pj). We then set:

Ñ(si) =
k∑
j=1

Ñ(vj) · Ñ(Aj) · p̃j

= (1± (i− 1 + 1/r2)(ε/r))
k∑
j=1

N(vj) · |Aj| ·
(
pj ±

2ε
3r2

)

= (1± (i− 1 + 1/r2)(ε/r))
 k∑
j=1

N(vj)|Aj|pj ±
2ε
3r2

k∑
j=1

N(vj)|Aj|

= (1± (i− 1 + 1/r2)(ε/r))
N(si)±

2ε
3r2

k∑
j=1

N(si)

= (1± (i− 1 + 1/r2)(ε/r)) [N(si)± 2ε/(3r)N(si)]

= (1± iε/r)N(si)

as desired. Note that we need only compute p̃j for at most r values of vj , thus the total number

642

of samples required is O(γr6/ε2). By Property 5, each sample required O(log(N/ε)γr11

ε2
) oracle

calls, thus the total oracle complexity is O(log(N/ε)γ2r17

ε4
) as needed. By Proposition 12.6.4, each

membership test required while computing the probabilities p̃j required O(Tr) time, thus the
total runtime can be bounded by O(T log(N/ε)γ2r17

ε4
), which was to be shown.

Algorithm 17: SAMPLEFROMSTATE(si, Ñ(si))
1 if Ñ(si) = 0 then
2 return ⊥ // ⊥ indicates that W (si) is empty

3 Initialize w ← λ, q ← 1. // λ is the empty string

4 for β = 1, 2, . . . , d(s0, si) do
5 while |w| < β do
6 Let F(si, w) = {(x1, A1, y1), . . . , (xk, Ak, yk)}, set Zj = Ñ(xj)Ñ(Aj) for each

j ∈ [k], and Z = ∑k
j=1 Zj .

7 Order the Zi’s so that Z1 ≥ Z2 ≥ · · · ≥ Zk.
8 Sample j ∼ [k] with probability Zj

Z
.

9 Obtain an almost uniform sample a ∼ Aj . // via Definition 12.6.1

10 Let B(a) = {j′ ∈ [k] | a ∈ Aj′} and accept a with probability:

qa,j =

∣∣∣W̃ (xj) \
(⋃

j′∈B(a) : j′<jW (xj′)
)∣∣∣∣∣∣W̃ (xj)

∣∣∣
11 if a is accepted then
12 ρ← 0, M ← Θ(log(N/ε)γr10

ε2
).

// ρ approximates the probability that a trial

fails to accept some a

13 for h = 1, 2, . . . ,M do
14 Sample j ∼ [k] with probability Zj

Z
, then sample ah ∼ Aj .

15 With probability 1− qah,j increment ρ← ρ+ 1.

16 ρ← ρ
M

, and update: q ← q ·

∑j′∈B(a)
Ñ(xj′)
Z

qa,j′

1−ρ

17 w ← aw

// q approximates the probability w was sampled so far

18 With probability 1
2qÑ(si)

return w, otherwise return FAIL.

643

We now describe our sampling procedure. To do so, we will first develop some notation. We
extend our previous notation and use Ns,s′ to denote an exact copy of N but with s as the initial
state and s′ as the final state. Let si be a vertex and w ∈ Γ∗ a sequence of symbols. If w contains
at least one symbol, then let F(si, w) = {(sa, A, sb) ∈ ∆ | w ∈ Lk(Nsb,si), namely, F(si, w)
is the set of all transitions (sa, A, sb) incident to a state sb from which we can reach si by a path
labeled by w. Otherwise, we have that w = λ, where λ is the empty string, and F(si, λ) is
defined as {(sa, A, sb) ∈ ∆ | sb = si}. Moreover, let |w| be the length of w and d : S × S → N
be the distance metric between states ofN when considered as a graph, i.e. d(s, s′) is the number
of transitions that we need to make to get from s to s′. Without loss of generality (by unrolling
the succinct NFA if needed), we can make sure that d is well defined.

We now present our main sampling algorithm of this section: Algorithm 17. For ease of
presentation, Algorithm 17 is written as a Las Vegas randomized algorithm, which could poten-
tially have unbounded runtime. However, by simply terminating the execution of the algorithm
after a fixed polynomial runtime and outputting an arbitrary string of bits, the desired correctness
properties of the sampler will hold. The analysis of Algorithm 17, along with the finite-time
termination procedure, is carried out in the proof of Lemma 12.6.6 below.

Lemma 12.6.6. Suppose Property 3 holds for all levels j ≤ i, and Property 4 holds for all

levels j < i. If W (si) = ∅, then SAMPLEFROMSTATE(si, Ñ(si)) return ⊥ with probability 1.

Otherwise, conditioned on not outputting FAIL, SAMPLEFROMSTATE(si, Ñ(si)) returns w ∼
W (si) from a distribution D over W (si) such that

D(w) =
(

1± ε

3r2

)
1

|W (si)|

for all w ∈ W (si). Moreover, the algorithm uses at most O(log(N/ε)γr11

ε2
) calls to the uniform

sampling oracle of Definition 12.6.1, runs in time O(T log(N/ε)γ2r15

ε4
), and outputs FAIL with

probability at most 3/4.

Proof. Assume first W (si) = ∅, so that N(si) = 0. Then given that Ñ(si) = (1 ± ε)N(si) by
Property 3, we conclude that Ñ(si) = 0 and the algorithm returns ⊥ in line 2. Notice that if
W (si) 6= ∅, then N(si) > 0 and, therefore, Ñ(si) > 0 by Property 3. Thus, if W (si) 6= ∅, then
the algorithm does not return ⊥.

Assume that W (si) 6= ∅, and notice that this implies r ≥ 4. Consider an element w sam-
pled so far at any intermediate state of the execution of SAMPLEFROMSTATE(si, Ñ(si)). Let
W (si, w) = {t ∈ W (si) | t = w′ ·w}. In other words, W (si, w) ⊆ W (si) is the subset of words

644

with suffix equal to w. We now want to sample the next symbol a ∈ Γ conditioned on having
sampled the suffix w of a path so far. In other words, we want to sample a with probability
proportional to the number of words in W (si, w) which have the suffix aw, meaning we want to
choose a with probability:

|W (si, aw)|
|W (si, w)| .

However, we do not know these sizes exactly, so we must approximately sample from this dis-
tribution. Let us consider the probability that our algorithm samples a on this step (given w).
For the algorithm to sample a, it must first choose to sample a transition (xj, Aj, yj) from the
set F(si, w) = {(x1, A1, y1), (x2, A2, y2), . . . , (xk, Ak, yk)} such that a ∈ Ai, which occurs with
probability Zj/Z with Z = ∑k

j′=1 Zj′ and Zj′ = Ñ(xj′)Ñ(Aj′). Then, on the call to the oracle
on line 9, it must obtain a ∼ Aj as the almost uniform sample, which occurs with probability
(1 ± ε0)|Aj|−1 by Definition 12.6.1. Finally, it must choose to keep a on line 10, which oc-

curs with probability

∣∣∣W̃ (xj)\
(⋃

j′∈B(a) : j′<jW (xj′)
)∣∣∣∣∣∣W̃ (xj)

∣∣∣ , where B(a) = {j′ ∈ [k] | a ∈ Aj′}. Thus,

altogether, the probability that we choose a ∈ Γ on this step is

∑
j∈B(a)

Ñ(xj)Ñ(Aj)
Z

· 1± ε0
|Aj|

·

∣∣∣W̃ (xj) \
(⋃

j′∈B(a) : j′<jW (xj′)
)∣∣∣∣∣∣W̃ (xj)

∣∣∣
= (1± 3ε0)

∑
j∈B(a)

Ñ(xj)
Z
·

∣∣∣W̃ (xj) \
(⋃

j′∈B(a) : j′<jW (xj′)
)∣∣∣∣∣∣W̃ (xj)

∣∣∣ (12.11)

= (1± 3ε0)
∑

j∈B(a)

(1± ε)|W (xj)|
Z

·

∣∣∣W̃ (xj) \
(⋃

j′∈B(a) : j′<jW (xj′)
)∣∣∣∣∣∣W̃ (xj)

∣∣∣
= (1± 2ε)

∑
j∈B(a)

|W (xj)|
Z

·

∣∣∣W̃ (xj) \
(⋃

j′∈B(a) : j′<jW (xj′)
)∣∣∣∣∣∣W̃ (xj)

∣∣∣
= (1± 2ε)

∑
j∈B(a)

|W (xj)|
Z

[∣∣∣W (xj) \
(⋃

j′∈B(a) : j′<jW (xj′)
)∣∣∣∣∣∣W (xj)

∣∣∣ ± ε

r

]

= (1± 2ε) 1
Z

∑
j∈B(a)

[∣∣∣∣∣W (xj) \
(⋃
j′∈B(a) : j′<j

W (xj′)
)∣∣∣∣∣± |W (xj)|

ε

r

]

= (1± 2ε) 1
Z

(∑
j∈B(a)

∣∣∣∣∣W (xj) \
(⋃
j′∈B(a) : j′<j

W (xj′)
)∣∣∣∣∣± ∑

j∈B(a)
|W (xj)|

ε

r

)

= (1± 2ε) 1
Z

(|W (si, aw)| ± |W (si, aw)|ε) (12.12)

= (1± 4ε) 1
Z
|W (si, aw)|

645

Where equation (12.11) uses the fact that Ñ(Aj) = (1 ± ε0)|Aj|, and equation (12.12) uses the
fact that W (si, aw) = (⋃j∈B(a) W (xj)) · {aw}. The above demonstrates that on a single trial of
the inner while loop in lines 5 to 17, conditioned on having chosen the sample w so far, for each
a ∈ W (si, w) we choose a with probability (1± 4ε) |W (si,aw)|

Z
. However, we do not break out of

the while loop on line 17 and move to the next step in the outer for loop in line 4 until we have
chosen an a ∈ W (si, w) to append to w. If on a given trial of the loop in line 5, the algorithm
does not choose some element to append to w, we say that it outputs no sample. Call the event
that we output some sample Ei, and let Ei(a) denote the event that we specifically output a ∈ Γ.
Then

Pr [Ei] =
∑

a∈W (si,w)
Pr [Ei(a)]

= (1± 4ε)
∑

a∈W (si,w)

|W (si, aw)|
Z

= (1± 4ε) |W (si, w)|
Z

.

Therefore,

Pr [Ei(a) | Ei] = Pr [Ei(a)]
Pr [Ei]

= (1± 4ε)
(1± 4ε)

(
Z

|W (si, w)|

)
|W (si, aw)|

Z

= (1± 10ε) |W (si, aw)|
|W (si, w)| .

Thus, conditioned on outputting a sample at this step, we choose a ∈ Γ with probability

(1± 10ε) |W (si, aw)|
|W (si, w)| (12.13)

Observe the above is within (1± 10ε) of the correct sampling probability.

Estimating the probability that we sample a givenw ∈ W (si). We now analyize the quantity
q in the algorithm, and argue that at the point where line 18 is executed, q is a good approximation
of the probability that our algorithm sample w at this point. Now let ρ∗β be the probability that,
within step β ∈ {1, 2, . . . , d(s0, si)} of the outer for loop on line 4, a given run of the inner while
loop between lines 5 to 17 fails to append a new sample a to w. Let ρβ be the value that we assign
to the variable ρ at the end of the for loop in line 13 (note that this loop is executed at most once

646

within step β of the outer loop 4). The variable ρβ will be our estimate of ρ∗β .

Note that each trial of the inner while loop is independent, so ρ∗β only depends on the β from
the outer loop, and the value of w sampled so far. Let D′β(aw) be the exactly probability that
entry a is chosen on step β of the outer loop of our algorithm, conditioned on having chosen
w so far. Being in step β of the outer loop then implies that |aw| = β. Now fix any w =
w1w2 . . . wd(s0,si) ∈ W (si). Let D′(w) be the exact probability that w is sampled at this point
right before the execution of line 18. By definition we have

D′(w) = D′0(wd(s0,si)) ·
d(s0,si)−1∏

j=1
D′j

(
wd(s0,si)−j . . . wd(s0,si)

)
so via (12.13) we obtain:

D′(w) = 1
|W (si)|

d(s0,si)∏
j=1

(1± 10ε) = (1± 10ε)r
|W (si)|

= (1± 20rε)
|W (si)|

(12.14)

Claim 12.6.7. If q is the value the variable q takes at the point where line 18 is executed, given

that w = w1 . . . wd(s0,si) is the value of e at this point, then

D′(w) =
(

1± ε

50r2

)
q

with probability at least 1− r(ε/N)2γ .

Proof. To see this, consider step β ∈ {1, 2, . . . , d(s0, si)} of the for outer loop in line 4. We
first claim that ρ∗β ≤ 1 − 1

r
. To see this, note that the probability that Z1 is chosen is at least

1
k
≥ 1

r
, since we ordered Z1 ≥ Z2 ≥ · · · ≥ Zk, and if Z1 is chosen the sample a ∼ A1 is

never rejected, which completes the claim. Now each iteration of the for loop in line 13 defines
a random variable Z which indicates if a random trial of the inner loop in line 5 would result
in a failure. Here, if Z = 1 (a trials fails), then we increment ρ = ρ + 1, otherwise we do not.
Thus E [Z] = ρ∗β , and by Hoeffding’s inequality, after repeating M = Θ(log(N/ε)γr10

ε2
) times, it

follows that with probability (1 − (ε/N)2γ) that we have ρβ = ρ∗β ± ε/(400r5) and, therefore,
1− ρβ = (1± ε/(400r4))(1− ρ∗β) since 1/r ≤ 1− ρ∗β . Thus, it holds that

1
1− ρ∗β

=
(

1± ε

200r4

)
1

1− ρβ
(12.15)

Let τ = d(s0, si) − β + 1, so that on step β of the for outer loop in line 4 we are consid-

647

ering the probability that we sample a wτ ∈ Γ given that we have already sampled w−τ =
wτ+1 . . . wd(s0,si). Now as shown above, the probability that wτ is accepted on one trial of the
while loop is precisely:

q∗(wτ) =
∑

j∈B(wτ)

Ñ(xj)Ñ(Aj)
Z

· ε′

|Aj|
·

∣∣∣W̃ (xj) \
(⋃

j′∈B(wτ) : j′<jW (xj′)
)∣∣∣∣∣∣W̃ (xj)

∣∣∣ .

Notice that we are not trying to bound q∗(wτ) in this expression, we are computing the exact
value of q∗(wτ), but based on an unknown value ε′. However, we know by Definition 12.6.1 that
1 − ε0 ≤ ε′ ≤ 1 + ε0. Thus, although we do not know the exact value of q∗(wτ), we do know
that 1− 3ε0 ≤ Ñ(Aj) · ε′/|Aj| ≤ 1 + 3ε0 by the assumptions of Definition 12.6.1. Thus, we can
estimate q∗(wτ) by

q̂(wτ) =
∑

j∈B(wτ)

Ñ(xj)
Z

∣∣∣W̃ (xj) \
(⋃

j′∈B(wτ) : j′<jW (xj′)
)∣∣∣∣∣∣W̃ (xj)

∣∣∣
so that q∗(wτ) = (1 ± 3ε0)q̂(wτ). The probability that wτ is accepted overall before moving to
the next step of the loop is

∑∞
j=1 q

∗(wτ)(ρ∗β)j−1 = q∗(wτ)(1
1−ρ∗

β
), for which by equation (12.15)

we have a (1± ε/(200r4))(1± 3ε0) = (1± ε/(100r3)) estimate of via the value q̂(wτ)/(1− ρβ)
(recall that r ≥ 4). Note that this is precisely the value which we scale the variable q by after
an iteration of the inner loop that appends a new sample a to w in line 17 of the algorithm. It
follows that at the end of the main loop, we have:

D′(w) =
(

1± ε

100r3

)d(s0,si)

· q =
(

1± ε

50r2

)
· q

as needed. Notice that this equality holds under the condition that for every β = 1, . . . , d(s0, si),
it holds that ρβ = ρ∗β ± ε/(400r5), which occurs with probability 1 − (ε/N)2γ for each β. By a
union bound, we obtain the desired success probability of at least 1− r(ε/N)2γ .

Thus, by rejecting with probability 1
2qÑ(si)

, it follows from Claim 12.6.7 that the true proba-
bility D?(w) that we output a given w ∈ W (si) is

D?(w) = D′(w)
2qÑ(si)

=
(

1± ε

50r2

)
1

2Ñ(si)
(12.16)

Note that for the above fact to be true, we need that 1
2q ≤ Ñ(si), else the above rejection proba-

648

bility could be larger than 1. But again by Claim 12.6.7 we have that

1
2qÑ(si)

≤
(

1 + ε

50r2

)
1

2Ñ(si)D′(w)

≤ (1 + 2ε) 1
2|W (si)|D′(w)

≤ (1 + 122rε)1
2

≤ 3/4

where the second to last inequality holds applying (12.14), and the last inequality holds give that
ε < 1/(300r). Therefore, the rejection probability is always a valid probability. Similarly:

1
2qÑ(si)

≥
(

1− ε

50r2

)
1

2Ñ(si)D′(w)

≥ (1− 2ε) 1
2|W (si)|D′(w)

≥ (1− 42rε)1
2

≥ 1/4

Thus, by the above, we can bound the probability that we output FAIL on this last step by 3/4
as required. Now, we are ready to analyize the true output distribution D over W (si), which is
given by the distribution D? conditioned on not outputting FAIL. Now for any w ∈ W (si), we

649

can apply equation (12.16) to compute D(w) via:

D(w) = Pr [output w ∈ W (si) | ¬FAIL]

= Pr [output w ∈ W (si) ∧ ¬FAIL]
Pr [not output FAIL]

= Pr [output w ∈ W (si)]
Pr [¬FAIL]

= D?(w)∑
w∈W (si) D

?(w)

= (1± ε/(50r2))
2Ñ(si)(

∑
w∈W (si)

1∓ε/(50r2)
2Ñ(si)

)

= (1± ε/(50r2))∑
w∈W (si)(1∓ ε/(50r2))

= (1± ε/(50r2))
|W (si)|(1∓ ε/(50r2))

=
(

1± 3ε
50r2

)
1

|W (si)|

=
(

1± ε

10r2

)
1

|W (si)|

which is the desired result.

Oracle complexity and runtime For the complexity of the sample procedure, note that each
iteration to sample a a ∈ Γ has failure probability at most 1

r
independently, thus with probability

1 − (ε/(rN))22−10rγ it requires at most 10r3 log(Nr/ε)γ iterations. Thus with probability 1 −
(ε/(N))22−10rγ , the total number of iterations required to produce a single sample (or output
FAIL at the end) is 10r4 log(Nr/ε)γ. Note that each iteration that fails to accept an a ∈ Γ
produces one call to the unit oracle. Once an a is accepted, we run an experiment M times,
which produces M = O(log(N/ε)γr10

ε2
) oracle calls. Since this occurs at most r times, the total

number of oracle calls is O(log(N/ε)γr11

ε2
). Note that the runtime is dominant by the cost of the ρ

estimation procedure, wherein the probability qah,j is computed at each step of line 13. Note that
to compute qah,j , we must test for each sample in s ∈ W̃ (xj) if s is contained in the union of at
most r sets, which requires at most Tr runtime by the assumptions of Definition 12.6.1. Note that
each set has size at most O(γr3

ε2
). Thus the total runtime can be bounded by O(T log(N/ε)γ2r15

ε4
).

In summary, with probability 1 − (ε/(N))22−10rγ , the total number of samples (unit oracle
calls) required isO(log(N/ε)γr11

ε2
) (and the runtime is as stated above). Now if the sample complex-

ity becomes too large we can safely output anything we would like (specifically, we can output

650

FAIL, or even an arbitrary sequence of bits). The probability that this occurs, or that any of our
O(r) estimate of the inner failure probabilities ρ fails to be within our desired bounds, is at most
(ε/(N))22−10rγ + r(ε/N)22−γ ≤ (ε/N)2−γ . Call the event that the sample complexity becomes
too largeQ, and let P be the event that any of our O(r) estimate of ρ fail to be within our desired
bounds. We have just proven that

Pr [we output w ∈ W (si) | ¬P] = (1± ε/(10r2)) 1
|W (si)|

.

Now since Pr [P ∪Q] ≤ (ε/N)2−γ , we have

Pr [we output w ∈ W (si) | ¬Q] = Pr [we output w ∈ W (si) | ¬Q,¬P]± (ε/N)2−γ

= Pr [we output w ∈ W (si) | ¬P]± 3(ε/N)2−γ,
(12.17)

so it follows that for each w ∈ W (si), we have

Pr [we output w ∈ W (si) | ¬Q] = (1± ε/(10r2)) 1
|W (si)|

± 3(ε/N)2−γ

= (1± ε/(10r2)) 1
ui
± ε 3
|W (si)|

2−γ

= (1± ε/(3r2)) 1
|W (si)|

,

(12.18)

which shows that our sampler is still correct even if we output random bits whenever Q fails to
hold, which is the desired result taking γ = Ω(log(r/ε)).

We can use the above sampling regime to now show that having properties 3, 4, 5 for sj with
j < i will imply them for si.

Lemma 12.6.8. Fix any γ > 0. Suppose Properties 3, 4, 5 hold for all sj with j < i. Then with

probability 1 − 2−10γ , properties 3, 4 and 5 hold for si. Moreover, the total number of oracle

calls is at most O(γ2 log(N/ε)r17/ε4), and the total runtime is O(T log(N/ε)γ2r17

ε4
).

Proof. We obtain property 3 with probability 1−2−γr by Lemma 12.6.5, which usesO(log(N/ε)γ2r17

ε4
)

sampling oracle calls. By Lemma 12.6.6, conditioned on property 4 holding for all levels j < i

and property 3 holding for all j ≤ i, we now have a procedure which can sample eachw ∼ W (si)
with probability in the range (1 ± ε/(3r2)) 1

|W (si)| , and such that the sampler satisfies the other

651

conditions of Property 5. Thus property 5 for level i now holds deterministically conditioned on
property 3 holding for i and all j < i.

Now for property 4, we can take s′ = Θ(γr3/ε2) samples to build W̃ (si). By Lemma 12.6.6,
each run of the algorithm requires O(γr11 log(N/ε)/ε2) oracle calls, and fails to return a sample
with probability at most 3/4. Applying Hoeffding’s inequality on the required number of trials
of the sampling algorithm to obtain s′ independent samples, this requires O(γ2r15 log(N/ε)/ε4)
oracle calls with probability 1 − 2−100γ . Given this, we have that each sample in W̃ (si) is a
(1 ± ε/(3r2))-relative error almost uniform sample. Applying Hoeffding’s inequality again, it
follows that for a fixed set L ⊂ {s0, . . . , si−1}, we have

∣∣∣∣∣∣
|W̃ (si) \

(
∪sj∈LW (sj)

)
|

|W̃ (si)|
−
|W (si) \

(
∪sj∈LW (sj)

)
|

|W (si)|

∣∣∣∣∣∣ ≤ ε

3r2 + ε

2r ≤
ε

r

with probability 1 − 2−100γr, and since there are only at most 2r such subsets L, by a union
bound this holds for all such subsets with probability 1− 2−100γr−r. Thus the overall probability
of success is 1− 2−100γr−r − 2−γr > 1− 2−10γ . Note that the runtime is dominated by the time
required to obtain Property 3 via Lemma 12.6.5, which is O(T log(N/ε)γ2r17

ε4
).

We are now ready the prove the main theorem.

Proof of Theorem 149. By Lemma 12.6.8, conditioned on having Properties 3, 4, and 5 for a
level i, we get it for i + 1 with probability 1 − 2−10γ with at most O(γ2 log(N/ε)r17/ε4) oracle
calls. It follows inductively that with probability 1 − r2−10γ , we have Property 3 and 5 for all
levels with at most O(γ2 log(N/ε)r18/ε4) oracle calls, which completes the proof after recalling
that γ := log(1/δ). The runtime for each level is O(T log(N/ε)γ2r17

ε4
) by Lemma 12.6.8, thus the

total runtime is O(T log(N/ε)γ2r18

ε4
).

12.7 Applications of the FPRAS

12.7.1 Constraint satisfaction problems

Constraint satisfaction problems offer a general and natural setting to represent a large number
of problems where solutions must satisfy some constraints, and which can be found in different
areas such as artificial intelligence, satisfiability, programming languages, temporal reasoning,

652

scheduling, graph theory, and databases [Var00, CKS01, RVBW06, HN04, BHvMW09, RN16].
Formally, a constraint satisfaction problem (CSP) is a triple P = (V,D,C) such that V =
{x1, . . . , xm} is a set of variables, D is a set of values and C = {C1, . . . , Cn} is a set of con-
straints, where each constraint Ci is a pair (t̄i, Ri) such that t̄i is a tuple of variables from V of
arity k, for some k ≥ 1, and Ri ⊆ Dk. Moreover, an assignment ν : V → D is said to be a
solution for P if for every i ∈ [n], it holds that ν(t̄i) ∈ Ri [RN16], where ν(t̄i) is obtained by
replacing each variable xj occurring in t̄i by ν(xj). The set of solutions for CSP P is denoted by
sol(P).

The two most basic tasks associated to a CSP are the evaluation and the satisfiability prob-
lems. In the evaluation problem, we are given a CSP P and an assignment ν, and the question
to answer is whether ν ∈ sol(P). In the satisfiability problem, we are given a CSP P , and the
question to answer is whether sol(P) 6= ∅. Clearly, these two problems have very different com-
plexities, as in the former we only need to verify the simple condition that ν(t) ∈ R for every
constraint (t, R) in P , while in the latter we need to search in the space of all possible assign-
ments for one that satisfies all the constraints. In fact, these two problems also look different
in terms of our interest in the specific values for the variables of the CSP; in the former we are
interested in the value of each one of them that is given in the assignment ν, while in the latter the
variables of P are considered as existential quantifiers, as we are interested in knowing whether
there exists a solution for P even if we do not know how to construct it. As a way to unify these
two problems, and to indicate for which variables we are interested in their values, a projection
operator has been used in the definition of CSPs [CJ06, Wil10]. Notice that the definition of this
operator has also played an important role when classifying the complexity of CSPs in terms of
algebraic properties of relations [CJ06]. Formally, an existential CSP (ECSP) is defined as a pair
E = (U,P), where P = (V,D,C) is a CSP and U ⊆ V . Moreover, the set of solution for E is
defined as

sol(E) = {ν|U | ν ∈ sol(P)},

where ν|U is the restriction of function ν to the domain U . Notice that both the evaluation and the
satisfiability problems for a CSPP can be reduced to the evaluation problem for an ECSP. In fact,
the satisfiability problem for P corresponds to the problem of verifying whether the assignment
with empty domain belongs to sol(E), where E is the ECSP (∅,P). Moreover, the evaluation and
satisfiability problems are polynomially interreducible for ECSPs, so ECSPs provide a uniform
framework for these two problems allowing us to focus only on the evaluation problem.

Clearly the satisfiability problem for CSPs, as well as the evaluation problem for ECSPs,

653

is NP-complete; in particular, NP-hardness is a consequence that the satisfiability of 3-CNF
propositional formulae can be easily encoded as a constraint satisfaction problem. Thus, a large
body of research has been devoted to understanding the complexity of the evaluation problem for
ECSPs, and finding tractable cases. In particular, two prominent approaches in this investigation
have been based on the idea of viewing an ECSP as a homomorphism problem where the target
structure is fixed [FV98, Bul17, Zhu17] or on the use of decomposition methods that require of
some acyclicity conditions on an ECSP to be satisfied [GLS00, GLS02]. In this section, we focus
on the latter class of methods, and show how the main results of this article can be used to deal
with the fundamental problem of counting the number of solutions to an ECSP.

The evaluation problem for ECSPs is equivalent to the evaluation problem for CQs [KV00].
To see why this is the case, take an existential CSP E = (U,P), where P = (V,D,C) is a CSP
with U = {y1, . . . , ym} ⊆ V and C = {C1, . . . , Cn} where each constraint Ci is a pair (t̄i, Ri)
such that t̄i is a tuple of variables from V of arity k, for some k ≥ 1, and Ri ⊆ Dk. For each Ri,
let R̄i be a k-ary relational symbol. Then define the CQ:

QE(ȳ) ← R̄1(t̄i), . . . , R̄n(t̄n), (12.19)

with ȳ = (y1, . . . , ym) and the database DE such that R̄i(ā) ∈ DE if, and only if, ā ∈ Ri for each
i ≤ n. Then it is easy to see that for every assignment ν it holds that:

ν ∈ sol(E) if and only if ν(ȳ) ∈ QE(DE)

This tight connection can be used to extend the notions of acyclicity given in Section 12.3 to
the case of ECSPs. More precisely, E is said to be acyclic if and only if QE is acyclic [Yan81,
GLS98], and hw(E) is defined as hw(QE) [GLS02].

The notion of acyclic CSP coincides with the notion of α-acyclicity for hypergraphs [Fag83,
BFMY83], and it has played an important role in finding tractable cases for ECSPs [GLS00]. In
fact, if AECSP = {(E , ν) | E is an acyclic ECSP and ν ∈ sol(E)}, then it holds that AECSP
is LOGCFL-complete under many-to-one logspace reductions [GLS98]. Recall that LOGCFL
consists of all decision problems that are logspace reducible to a context-free language, and it
holds that NL ⊆ LOGCFL ⊆ AC1. Thus, we have that all problems in LOGCFL can be solved
in polynomial time and are highly parallelizable.

Concerning to our investigation, we are interested in the fundamental problem of counting
the number of solution of a ECSP. In general, this problem is #P-complete and cannot admit an
FPRAS (unless NP = RP, given that the evaluation problem for CSP is NP-complete). Thus, we

654

focus on the following fundamental problems where the degree of cyclicity of ECSP is bounded.

Problem: #AECSP
Input: An acyclic ECSP E
Output: |sol(E)|

Problem: #k-HW-ECSP
Input: An ECSP E such that hw(E) ≤ k

Output: |sol(E)|

From the characterization of the evaluation problem for ECSPs in terms of the evaluation problem
of CQs and Theorem 144, we conclude that these problems admit FPRAS.

Theorem 150. #AECSP and #k-HW-ECSP admit an FPRAS for every k ≥ 1.

12.7.2 Nested words

Nested words have been proposed as a model for the formal verification of correctness of struc-
tured programs that can contain nested calls to subroutines [AEM04, AM04, AM09]. In partic-
ular, the execution of a program is viewed as a linear sequence of states, but where a matching
relation is used to specify the correspondence between each point during the execution at which
a procedure is called with the point when we return from that procedure call.

Formally, a binary relation µ on an interval [n] is a matching if the following conditions hold:
(a) if µ(i, j) holds then i < j; (b) if µ(i, j) and µ(i, j′) hold then j = j′, and if µ(i, j) and
µ(i′, j) hold then i = i′; (c) if µ(i, j) and µ(i′, j′) hold, where i 6= i′ and j 6= j′, then either
[i, j]∩ [i′, j′] = ∅ or [i, j] ⊆ [i′, j′] or [i′, j′] ⊆ [i, j]. Moreover, given a finite alphabet Σ, a nested

word of length n over Σ is a tuple w̄ = (w, µ), where w ∈ Σ∗ is a string of length n, and µ is a
matching on [n].

A position i in a nested word w̄ is a call (resp., return) position if there exists j such that
µ(i, j) (resp., µ(j, i)) holds. If i is neither a call nor a return position in w̄, then i is said to be
an internal position in w̄. Figure 12.6 shows a nested word (without the labeling with alphabet
symbols). Solid lines are used to draw the linear edges that define a standard word, while nesting
edges are drawn using dashed lines. Thus, the relation µ is {(2, 4), (5, 6), (1, 7)}, the set of
call positions is {1, 2, 5}, the set of return positions is {4, 6, 7} and the set of internal positions
is {3, 8}.

655

Properties to be formally verified are specified by using nested word automata. Such au-
tomata have the same expressiveness as monadic second order logic over nested words [AM09],
so they are expressive enough to allow the specification and automatic verification of a large va-
riety of properties over programs with nested calls to subroutines. Formally, a (nondeterministic)
nested word automaton (NWA) N is a tuple (S,Σ, S0, F, P,∆C ,∆I ,∆R) consisting of a finite
set of states S, an alphabet Σ, a set of initial states S0 ⊆ S, a set of final states F ⊆ S, a finite set
of hierarchical symbols P , a call-transition relation ∆C ⊆ S ×Σ×S ×P , an internal-transition
relation ∆I ⊆ S × Σ× S, and a return-transition relation ∆R ⊆ S × P × Σ× S.

An NWA N = (S,Σ, S0, F, P,∆C ,∆I ,∆R) works as follows with input a nested word w̄.
N starts in an initial state in S0 and reads w̄ from left to right. The state is propagated along
the linear edges of w̄ as in case of a standard word automaton. However, at a call position in w̄,
the nested word automaton propagates a state along the linear edge together with a hierarchical
symbol along the nesting edge of w̄. At a return position in w̄, the new state is determined based
on the state propagated along the linear edge as well as the symbol along the incoming nesting
edge. Formally, a run ρ of the automaton N over a nested word w̄ = (a1 · · · an, µ) is a sequence
s0, s1, . . . , sn of states along the linear edges, and a sequence pi, for every call position i, of
hierarchical symbols along the nesting edges, such that: (a) s0 ∈ S0; (b) for each call position i, it
holds that (si−1, ai, si, pi) ∈ ∆C ; (c) for each internal position i, it holds that (si−1, ai, si) ∈ ∆I ;
and (d) for each return position i such that µ(j, i) holds, we have that (si−1, pj, ai, si) ∈ ∆R.
Moreover, the run ρ is accepting if sn ∈ F , and

L(N) = {w̄ | w̄ is a nested word over Σ∗ and there exists an accepting run of N with input w̄}.

The emptiness problem for nested word automata ask whether, given a NWA N , there exists a
nested word w̄ accepted byN . This is a fundamental problem when looking for faulty executions
of a program with nested calls to subroutines; if N is used to encode the complement of a
property we expect to be satisfied by a program, then a nested word w̄ ∈ L(N) encodes a bug of
this program. In this sense, the following is also a very relevant problem for understanding how
faulty a program is:

Problem: #NWA
Input: A nested word automaton N and a string 0n

Output: |{w̄ ∈ L(N) | |w̄| = n}|

As there exists a trivial polynomial-time parsimonious reduction from #NFA to #NWA, we have
that #NWA is #P-complete. Interestingly, from the existence of an FPRAS for #BTA (see Corol-

656

1 2 3 4 5 6 7 8

Figure 12.6: A nested word

lary 12.5.5) and the results in [AM09] showing how nested word automata can be represented by
using tree automata over binary trees, it is possible to prove that:

Theorem 151. #NWA admits an FPRAS.

12.7.3 Knowledge compilation

Model counting is the problem of counting the number of satisfying assignments given a propo-
sitional formula. Although this problem is #P-complete [Val79], there have been several ap-
proaches to tackle it [GSS09]. One of them comes from the field of knowledge compilation, a
subarea in artificial intelligence [DM02]. Roughly speaking, this approach consists in dividing
the reasoning process in two phases. The first phase is to compile the formula into a target lan-
guage (e.g. Horn formulae, BDDs, circuits) that has good algorithmic properties. The second
phase is to use the new representation to solve the problem efficiently. The main goal then is to
find a target language that is expressive enough to encode a rich set of propositional formulae
and, at the same time, that allows for efficient algorithms to solve the counting problem.

One of the most used formalism in knowledge compilation are circuits in Negation Normal
Form (NNF for short). An NNF circuit C = (V,E, g0, µ) is a directed acyclic graph (V,E)
where V are called gates, edges E are called wires, and g0 ∈ V is a distinguished gate called
the output gate. The function µ assigns a type to each gate that can be ∧ (AND), ∨ (OR), or a
literal (i.e. a variable or the negation of a variable). We assume that all literals have in-degree 0
and we call them input gates. Without loss of generality, we assume that all ∧-gate and ∨-gate
have in-degree two (if not, we can convert any NNF circuit in poly-time to binary gates). For a
gate g we define the set Vars(g) of all variables whose value can alter the value of g, formally,
v ∈ Vars(g) if and only if there exists an input gate g′ with variable v (i.e. µ(g) = v or µ(g) = v̄)
and there is a path from g′ to g in (V,E). A valuation for C is a mapping ν from the variables

657

∧

∨

∧ ∨

x ∧ ∧

y z x u

∨

v w

x u y z

v w

Figure 12.7: A structured DNNF circuit and its corresponding v-tree.

of C to {0, 1}. The valuation of C with ν, denoted by ν(C), is the value (i.e. 0 or 1) taken by g0

when C is evaluated in a bottom up fashion.

A target language for knowledge compilation that has attracted a lot of attention is the class
of DNNF circuits. An NNF circuit C is called decomposable [Dar01a] if and only if for every
∧-gate g with incident gates g1, g2 it holds that Vars(g1) ∩ Vars(g2) = ∅. In other words, if
the incident gates of every ∧-gate share no variables. For example, one can easily check that the
NNF circuit of Figure 12.7 is decomposable. DNNF is the set of all NNF circuits that are decom-
posable. DNNF has good algorithmic properties in terms of satisfiability and logical operations.
Furthermore, DNNF can be seen as a generalization of DNF formulae and, in particular, of binary
decision diagrams (BDD), in the sense that every BDD can be transformed into a DNNF circuit
in polynomial time. Nevertheless, DNNF is exponentially more succint than DNF or BDD, and
then it is a more appealing language for knowledge compilation.

Regarding model counting, DNNF circuits can easily encode #P-complete problems (e.g.
#DNF) and, therefore, researchers have look into subclasses of DNNF with efficient counting
properties. Deterministic DNNF (d-DNNF for short) is a subclass of DNNF where the counting
problem can be solved in polynomial time (see [Dar01b] for a definition of d-DNNF). Indeed,
several problems can be compiled into d-DNNF circuits, finding applications in probabilistic
reasoning [CDJ06], query evaluation [BLRS17], planning [BG06], among others.

However, as pointed out in [PD08] the compilation into d-DNNF circuits usually satisfies
a structural property between variables, which naturally brings the class of structured DNNF
circuits. A v-tree is a binary tree t whose leaves are in one-to-one correspondence with a set of
variables. Similar than for circuits, for a node u in a v-tree, we denote by Vars(u) the set of all
variables in the leaves of the subtree rooted at u. Then we say that a DNNF circuit C respects a

658

v-tree t if for every ∧-gate g and the two incident gates g1 and g2 of g, there exists a node u in t
such that Vars(g1) ⊆ Vars(u1) and Vars(g2) ⊆ Vars(u2), where u1 and u2 are the left and right
child of u in t, respectively. We say that a DNNF circuit C is structured if and only if there exists
a v-tree t such that C respects t. For example, in the right-hand side of Figure 12.7, we show a
v-tree for variables {x, y, z, u, v, w}. The red dashed lines show how ∧-gates have to be assigned
to the nodes in the v-tree in order for the circuit to respect this v-tree. Structured DNNF is the
class of all DNNF circuits that are structured. As it was already mentioned, the compilation into
d-DNNF circuits usually produces circuits that are also structured [PD08]. Structured DNNF
have been recently used for efficient enumeration [ABJM17, ABMN19] and in [OD14] it was
shown that CNF formulae with bounded width (e.g. CV-width) can be efficiently compiled into
structured DNNF circuits. Since structured DNNF circuits includes the class of DNF formulae,
its underlying counting problem is #P-complete. We now prove a positive approximation result.
Specifically, consider the problem:

Problem: #StructuredDNNF
Input: A DNNF circuit C and a v-tree t such that C respects t.
Output: |{ν | ν(C) = 1}|

By using the existence of an FPRAS for #TA, we can show that #StructuredDNNF also admits
an FPRAS.

Theorem 152. #StructuredDNNF admits an FPRAS.

Proof. The connection between structured DNNF and tree automata was already used in [ABJM17,
ABMN19], so this connection is not new. Here, we show that there exists a parsimonious reduc-
tion from #StructuredDNNF into #TA, which proves the FPRAS for structured DNNF.

Let t be a v-tree and C = (V,E, g0, µ) be a DNNF circuit such that C respects t. Let V∧ be
all gates in V that are ∧-gates or input gates. Furthermore, let f : V∧ → t be the function that
realizes that C respects t, namely, for every ∧-gate g and gates g1 and g2 incident to g it holds
that Vars(g1) ⊆ Vars(f(g) · 1) and Vars(g2) ⊆ Vars(f(g) · 2). We also assume that if g ∈ V∧ is
a literal, then f(g) is the leaf in t that has the same variable as g in C. One can easily check that
for two gates g1, g2 ∈ V∧ in C, if there is a path from g2 to g1 in C, then f(g2) is a descendant of
f(g1) in t. Without loss of generality, we assume that g0 is a ∧-gate in C and f(g0) = ε. Finally,
for any ∧-gate g we define the set D(g) of all gates g′ ∈ V∧ such that there exists a path from g′

to g in (V,E) passing only through ∨-gates. Intuitively, if g′ ∈ D(g) then g′ is directly affecting
the value of g in the sense that if g′ is true, then at least one of the incident wires to g is true.

659

The idea for the parsimonious reduction is to construct a tree automaton TC that will accept
trees that encode valuations that makes C true. To encode a valuation, TC will only accept binary
trees having exactly the same tree-shape as t, but its leaves are labeled with 0 or 1 (internal node
will have any symbol, e.g. @). Given that leaves of t are in one-to-one correspondence with
the variables in C, then these encodings are in one-to-one correspondence with valuations in
C. So, for a valuation ν let tν be the tree that has the same tree-shape as t and whose leaves
encode ν. Furthermore, suppose that tν is an input tree for the tree automaton TC . For checking
that ν(C) = 1, the states of TC will be either nodes u ∈ t or pairs of the form (u, g) where u ∈ t,
g ∈ V∧, and f(g) is a descendant of u in t. A node u in a state (e.g. in the pair (u, g)) will take
care of checking that the tree-shape of tν is the same as t. On the other hand, the gate g in the pair
(u, g) will be use to navigate C and find whether g is evaluated to 1 given the valuation encoded
by tν . When f(g) is a strict descendant of u (i.e. f(g) 6= u) we will continue down tν trying
to find a node u′ such that f(g) = u′. When a node u with f(g) = u is found, then to evaluate
g to 1 we need to find two gates g1, g2 ∈ D(g) that are also evaluated to 1 with ν. Given that
C respects t we know that f(g1) and f(g2) must be descendants of f(g) in tν , and then TC will
recurse into the states (u1, g1) and (u2, g2) continuing into g1 and g2. If the non-deterministic
decisions of TC are taken correctly, TC will reach the leaves u of tν that has the same variable as
the gate g and it will check if the value tν(u) is correct with respect to g.

Let TC = (Q,Σ,∆, sinit) be the tree automaton constructed from C and t such that Σ =
{@, 0, 1}, Q = t ∪ {(u, g) ∈ t × V∧ | f(g) is a descendant of u in t}, and sinit = (λ, g0) (recall
that we assume that g0 is a ∧-gate and f(g0) = λ). We define the transition relation ∆ by case
analysis:

• For u ∈ t and u is not a leaf, then (u,@, u1 · u2) ∈ ∆.

• For u ∈ t and u is a leaf, then (u, a, λ) ∈ ∆ for every a ∈ {0, 1}.

• For (u, g) ∈ Q such that f(g) 6= u, if f(g) is a descendant of u1, then ((u, g),@, (u1, g) ·
u2) ∈ ∆. Otherwise, if f(g) is a descendant of u2, then ((u, g),@, u1 · (u2, g)) ∈ ∆.

• For (u, g) ∈ Q such that f(g) = u and u is not a leaf in t, then ((u, g),@, (u1, g1) ·
(u2, g2)) ∈ ∆ for every g1, g2 ∈ D(g) with f(g1) is a descendant of u1 and f(g2) is a
descendant of u2.

• For (u, g) ∈ Q such that f(g) = u and u is a leaf in t, then ((u, g), 1, λ) ∈ ∆ iff µ(g) =
t(u), that is, if g is a positive literal and its variable coincide with the variable assign to u
in t. Similarly, ((u, g), 0, λ) ∈ ∆ iff µ(g) = ¬t(u).

660

Finally, given a circuit C the reduction produces the tree automaton TC and the value 0|t|. From
the construction, it is straightforward to check that TC will accept trees that have the same tree-
shape as t and whose leaves encode a valuation of C. Furthermore, for a valuation ν and its
tree tν one can check that ν(C) = 1 if, and only if, tν ∈ L(TC). Therefore, the reduction is
parsimonious. Finally, the number of states and transitions of TC is polynomial in the size of C
and t, and thus the reduction can be computed in polynomial time.

12.8 Open Problems and Future Work

In this chapter, we proved the existence of a fully polynomial-time randomized approximation
scheme (FPRAS) for counting solutions to a large class of conjunctive queries, as well as the
existence of a fully polynomial-time almost uniform sampler (FPAUS) for these solutions. In
particular, our algorithm applies to all conjunctive queries with bounded hypertree width (as
defined in Section 12.3.2).

In Section 12.3.3, and based on Theorem 144 and the results in [GSS01], we provide a
characterization of the classes of conjunctive queries that admit an FPRAS, when such classes
are of the form CQ(G) for a family G of graphs (see Corollary 12.3.1). It remains as an open
problem how to extend this characterization to any class of conjunctive queries and, in particular,
to identify the right restriction on conjunctive queries that is equivalent to the existence of an
FPRAS. It should be mentioned that recently, in a follow-up work by Focke, Goldberg, Roth
and Živnỳ [FGRŽ21], it was proved that our results can be extended to the case of conjunctive
queries with bounded fractional hypertree width.

An important component of the line of work developed in our papers [ACJR19, ACJR21]
is the study of approximate counting problems in automata theory. As demonstrating in this
chapter, finite automata have strong expressive potential to model the solution space of many
problems in computer science. Thus, resolving the counting problem for a class of automata can
result in an FPRAS for many additional problems. So far, we know that the counting problem
for non-deterministic finite automata (NFA), and now tree automata, admit polynomial time
randomized approximations. However, there are still many classes of automata for which it
is unknown if an FPRAS exists.

An additional natural case to consider is the class of context free grammars (CFG), which
generate the class of context free languages (CFL). Context free grammars are more expressive
than tree-automata, although they are closely related (for instance, the set of all derivation trees

661

of a CFG can be expressed by a tree automata). There are several barriers to generalizing the
approach in this chapter to the case of context free grammars. Mainly, in order to carry out our
high-level sampling template described in Section 12.4, we need to partition the current set T
into a collection of disjoint subsets T ′1, . . . , T

′
` . We accomplish this for the case of tree automata

by splitting based on the final sizes of the left and right subtrees. However, such a partition does
not work for the case of CFG’s, since a single word in a CFL can have multiple derivations whose
subtrees have different sizes, thus this word would be contained in multiple such sets T ′i causing
the scheme to fail to be a partition. Thus, the key barrier to extending our algorithmic framework
to the case of CFG’s is the design of an efficient partition scheme which avoids this issue.

662

Bibliography

[ABC09a] Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti. Functional mon-
itoring without monotonicity. In International Colloquium on Automata, Lan-

guages, and Programming, pages 95–106. Springer, 2009.

[ABC09b] Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti. Functional moni-
toring without monotonicity. In ICALP, pages 95–106, 2009.

[ABFS02] Miklos Ajtai, Randal Chilton Burns, Ronald Fagin, and Larry Joseph Stockmeyer.
System and method for differential compression of data from a plurality of binary
sources, April 16 2002. US Patent 6,374,250.

[Abi95] Serge Abiteboul. Foundations of databases, volume 8. Addison-Wesley Reading,
1995.

[ABIW09] Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David Woodruff. Efficient
sketches for earth-mover distance, with applications. 2009.

[ABJM17] Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-
based approach to efficient enumeration. In 44th International Colloquium on

Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, War-

saw, Poland, pages 111:1–111:15, 2017.

[ABMN19] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enu-
meration on trees with tractable combined complexity and efficient updates. In
Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Princi-

ples of Database Systems, PODS 2019, pages 89–103, 2019.

[ABRS] Aditya Akella, Ashwin Bharambe, Mike Reiter, and Srinivasan Seshan. Detecting
ddos attacks on isp networks.

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative
adversarial networks. In Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pages 214–223, 2017.

663

[ACJR19] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian
Riveros. Efficient logspace classes for enumeration, counting, and uniform gener-
ation. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems, PODS ’19, pages 59–73, New York, NY, USA,
2019. ACM.

[ACJR21] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian
Riveros. When is approximate counting for conjunctive queries tractable? Pro-

ceedings of the Fifty-third Annual ACM Symposium on Theory of Computing

(STOC)), 2021.

[ACK+16] Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P Woodruff,
and Qin Zhang. On sketching quadratic forms. In Proceedings of the 2016

ACM Conference on Innovations in Theoretical Computer Science, pages 311–
319, 2016.

[ACL07] Reid Andersen, Fan Chung, and Kevin Lang. Using pagerank to locally partition
a graph. Internet Mathematics, 4(1):35–64, 2007.

[AD20] Serge Abiteboul and Gilles Dowek. The Age of Algorithms. Cambridge Univer-
sity Press, 2020.

[AD21] Sepehr Assadi and Aditi Dudeja. A simple semi-streaming algorithm for global
minimum cuts. In Symposium on Simplicity in Algorithms (SOSA), pages 172–
180. SIAM, 2021.

[AEM04] Rajeev Alur, Kousha Etessami, and P. Madhusudan. A temporal logic of nested
calls and returns. In Tools and Algorithms for the Construction and Analysis of

Systems, 10th International Conference, TACAS 2004, Proceedings, pages 467–
481, 2004.

[AGM12a] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure
via linear measurements. In Proceedings of the twenty-third annual ACM-SIAM

symposium on Discrete Algorithms, pages 459–467. Society for Industrial and
Applied Mathematics, 2012.

[AGM12b] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure
via linear measurements. In Proceedings of the Twenty-third Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA ’12, pages 459–467, Philadelphia,
PA, USA, 2012. Society for Industrial and Applied Mathematics.

[AGM12c] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: spar-

664

sification, spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-

SIGACT-SIGAI symposium on Principles of Database Systems, pages 5–14, 2012.

[AGMS99] Noga Alon, Phillip B Gibbons, Yossi Matias, and Mario Szegedy. Tracking join
and self-join sizes in limited storage. In Proceedings of the eighteenth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
10–20. ACM, 1999.

[AGPR99] Swarup Acharya, Phillip B Gibbons, Viswanath Poosala, and Sridhar Ra-
maswamy. The aqua approximate query answering system. In ACM Sigmod

Record, volume 28, pages 574–576. ACM, 1999.

[AHK05] Sanjeev Arora, Elad Hazan, and Satyen Kale. Fast algorithms for approximate
semidefinite programming using the multiplicative weights update method. In
46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05),
pages 339–348. IEEE, 2005.

[AHLW16] Yuqing Ai, Wei Hu, Yi Li, and David P Woodruff. New characterizations in turn-
stile streams with applications. In 31st Conference on Computational Complexity

(CCC 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[AIK08a] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance
over high-dimensional spaces. In Proceedings of the nineteenth annual ACM-

SIAM symposium on Discrete algorithms, pages 343–352, 2008.

[AIK08b] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance
over high-dimensional spaces. pages 343–352, 2008.

[ÀJ93] Carme Àlvarez and Birgit Jenner. A very hard log-space counting class. Theor.

Comput. Sci., 107(1):3–30, 1993.

[AJ06] José A Adell and Pedro Jodrá. Exact kolmogorov and total variation distances
between some familiar discrete distributions. Journal of Inequalities and Appli-

cations, 2006(1):64307, 2006.

[AK19] Thomas D Ahle and Jakob BT Knudsen. Almost optimal tensor sketch. arXiv

preprint arXiv:1909.01821, 2019.

[AKK+20a] Thomas D. Ahle, Michael Kapralov, Jakob B. T. Knudsen, Rasmus Pagh,
Ameya Velingker, David P. Woodruff, and Amir Zandieh. Oblivious sketching
of high-degree polynomial kernels. In SODA. Merger version of https://
arxiv.org/pdf/1909.01410.pdf and https://arxiv.org/pdf/

1909.01821.pdf, 2020.

665

https://arxiv.org/pdf/1909.01410.pdf
https://arxiv.org/pdf/1909.01410.pdf
https://arxiv.org/pdf/1909.01821.pdf
https://arxiv.org/pdf/1909.01821.pdf

[AKK+20b] Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya
Velingker, David P Woodruff, and Amir Zandieh. Oblivious sketching of high-
degree polynomial kernels. In Proceedings of the Fourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 141–160. SIAM, 2020.

[AKNN+18] Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and
Maximilian Schleich. In-database learning with sparse tensors. In Proceed-

ings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems, SIGMOD/PODS ’18, pages 325–340, New York, NY, USA,
2018. ACM.

[AKNR16] Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. Faq: questions asked fre-
quently. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium

on Principles of Database Systems, pages 13–28. ACM, 2016.

[AKO10] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic
approximation for edit distance and the asymmetric query complexity. In 2010

IEEE 51st Annual Symposium on Foundations of Computer Science, pages 377–
386. IEEE, 2010.

[AKO11] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algo-
rithms via precision sampling. In 2011 IEEE 52nd Annual Symposium on Foun-

dations of Computer Science, pages 363–372. IEEE, 2011.

[AKPS19] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative
refinement for `p-norm regression. In Proceedings of the Thirtieth Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 1405–1424. SIAM,
2019.

[AM00] Srinivas M Aji and Robert J McEliece. The generalized distributive law. IEEE

transactions on Information Theory, 46(2):325–343, 2000.

[AM04] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings

of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,

June 13-16, 2004, pages 202–211, 2004.

[AM09] Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM,
56(3):16:1–16:43, 2009.

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:

Theory, Algorithms, and Applications. Prentice Hall, 1993.

[AMP+13] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Mad-

666

den, and Ion Stoica. Blinkdb: Queries with bounded errors and bounded response
times on very large data. In ACM EuroSys, pages 29–42, 2013.

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approxi-
mating the frequency moments. In Proceedings of the twenty-eighth annual ACM

symposium on Theory of computing, pages 20–29. ACM, 1996.

[ANOY14] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavt-
sev. Parallel algorithms for geometric graph problems. 2014.

[ANW14] Haim Avron, Huy Nguyen, and David Woodruff. Subspace embeddings for the
polynomial kernel. In Advances in neural information processing systems, pages
2258–2266, 2014.

[AP09] Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets.
In Proceedings of the forty-first annual ACM symposium on Theory of computing,
pages 235–244, 2009.

[Aro98] Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling
salesman and other geometric problems. Journal of the ACM (JACM), 45(5):753–
782, 1998.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric em-
beddings and graph partitioning. Journal of the ACM (JACM), 56(2):1–37, 2009.

[AS14] Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite
matching with metric and geometric costs. pages 555–564, 2014.

[AWR17] Jason Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time approx-
imation algorithms for optimal transport via sinkhorn iteration. 2017.

[Bar96] Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic
applications. 1996.

[Bar98] Yair Bartal. On approximating arbitrary metrices by tree metrics. 1998.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. In Proceedings of the twenty-

first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-

tems, pages 1–16. ACM, 2002.

[BBG18] Siddharth Barman, Arnab Bhattacharyya, and Suprovat Ghoshal. Testing spar-
sity over known and unknown bases. In International Conference on Machine

Learning, pages 491–500, 2018.

667

[BCI+16] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu
Wang, and David P Woodruff. Bptree: an l2 heavy hitters algorithm using con-
stant memory. arXiv preprint arXiv:1603.00759, 2016.

[BCI+17] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu
Wang, and David P. Woodruff. Bptree: An `2 heavy hitters algorithm using con-
stant memory. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Sym-

posium on Principles of Database Systems (PODS), pages 361–376. ACM, 2017.

[BCJ20] Ainesh Bakshi, Nadiia Chepurko, and Rajesh Jayaram. Testing positive semi-
definiteness via random submatrices. In 61st Annual IEEE Symposium on Foun-

dations of Computer Science (FOCS). IEEE, 2020.

[BCK+14] Joshua Brody, Amit Chakrabarti, Ranganath Kondapally, David P Woodruff, and
Grigory Yaroslavtsev. Certifying equality with limited interaction. In Approxi-

mation, Randomization, and Combinatorial Optimization. Algorithms and Tech-

niques (APPROX/RANDOM 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2014.

[BCLL18] Sébastien Bubeck, Michael B Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy
method for `p regression provably beyond self-concordance and in input-sparsity
time. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of

Computing (STOC), pages 1130–1137. ACM, 2018.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Im-

plementation, and Applications. Cambridge University Press, 2003.

[BCW20] Ainesh Bakshi, Nadiia Chepurko, and David P Woodruff. Robust and sample
optimal algorithms for psd low-rank approximation. In 61st Annual IEEE Sym-

posium on Foundations of Computer Science (FOCS). IEEE, 2020.

[BCWY16] Vladimir Braverman, Stephen R Chestnut, David P Woodruff, and Lin F Yang.
Streaming space complexity of nearly all functions of one variable on frequency
vectors. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium

on Principles of Database Systems, pages 261–276, 2016.

[BDI+20] Arturs Backurs, Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Scal-
able nearest neighbor search for optimal transport. 2020.

[BDM02] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a moving
window over streaming data. In Proceedings of the thirteenth annual ACM-SIAM

668

symposium on Discrete algorithms, pages 633–634. Society for Industrial and
Applied Mathematics, 2002.

[BDN17] Jarosław Błasiok, Jian Ding, and Jelani Nelson. Continuous monitoring of lp
norms in data streams. arXiv preprint arXiv:1704.06710, 2017.

[BDW16] Arnab Bhattacharyya, Palash Dey, and David P Woodruff. An optimal algorithm
for l1-heavy hitters in insertion streams and related problems. In Proceedings of

the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems, pages 385–400. ACM, 2016.

[BEO+13] Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod
Vaikuntanathan. A tight bound for set disjointness in the message-passing model.
In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
pages 668–677. IEEE, 2013.

[BFMY83] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the desir-
ability of acyclic database schemes. J. ACM, 30(3):479–513, 1983.

[BG06] Blai Bonet and Hector Geffner. Heuristics for planning with penalties and rewards
using compiled knowledge. In KR, pages 452–462, 2006.

[BGS00] Alberto Bertoni, Massimiliano Goldwurm, and Massimo Santini. Random gen-
eration and approximate counting of ambiguously described combinatorial struc-
tures. In Annual Symposium on Theoretical Aspects of Computer Science, pages
567–580. Springer, 2000.

[BGW20] Mark Braverman, Sumegha Garg, and David Woodruff. The coin problem with
applications to data streams. In 2020 IEEE 61th Annual Symposium on Founda-

tions of Computer Science (FOCS), 2020.

[BHvMW09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Hand-

book of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Ap-

plications. IOS Press, 2009.

[BI14] Arturs Bačkurs and Piotr Indyk. Better embeddings for planar earth-mover dis-
tance over sparse sets. 2014.

[BICS09] Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss. Space-
optimal heavy hitters with strong error bounds. 2009.

[Big] https://cloud.google.com/bigquery-ml/docs/

bigqueryml-intro.

[BIPW10] Khanh Do Ba, Piotr Indyk, Eric Price, and David P Woodruff. Lower bounds for

669

https://cloud.google.com/bigquery-ml/docs/bigqueryml-intro
https://cloud.google.com/bigquery-ml/docs/bigqueryml-intro

sparse recovery. In Proceedings of the twenty-first annual ACM-SIAM symposium

on Discrete Algorithms, pages 1190–1197. SIAM, 2010.

[BJS15] Srinadh Bhojanapalli, Prateek Jain, and Sujay Sanghavi. Tighter low-rank ap-
proximation via sampling the leveraged element. In Proceedings of the twenty-

sixth annual ACM-SIAM symposium on Discrete algorithms, pages 902–920. So-
ciety for Industrial and Applied Mathematics, 2015.

[BJWY20] Omri Ben-Eliezer, Rajesh Jayaram, David P Woodruff, and Eylon Yogev. A
framework for adversarially robust streaming algorithms. In Proceedings of the

39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Sys-

tems, pages 63–80, 2020.

[BKP+14] Karl Bringmann, Fabian Kuhn, Konstantinos Panagiotou, Ueli Peter, and Hen-
ning Thomas. Internal dla: Efficient simulation of a physical growth model.
In International Colloquium on Automata, Languages, and Programming, pages
247–258. Springer, 2014.

[BKSV14] Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vor-
sanger. An optimal algorithm for large frequency moments using o (nˆ(1-2/k))
bits. In Approximation, Randomization, and Combinatorial Optimization. Al-

gorithms and Techniques (APPROX/RANDOM 2014). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2014.

[Bła18] Jarosław Błasiok. Optimal streaming and tracking distinct elements with high
probability. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 2432–2448. SIAM, 2018.

[BLRS17] Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. Exact model counting of
query expressions: Limitations of propositional methods. ACM Trans. Database

Syst., 42(1):1:1–1:46, 2017.

[BLS+16] Maria Florina Balcan, Yingyu Liang, Le Song, David Woodruff, and Bo Xie.
Communication efficient distributed kernel principal component analysis. In Pro-

ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 725–734. ACM, 2016.

[BLSS20] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall
dense linear programs in nearly linear time. arXiv preprint arXiv:2002.02304,
2020.

[BLWZ19] Maria-Florina Balcan, Yi Li, David P Woodruff, and Hongyang Zhang. Test-

670

ing matrix rank, optimally. In Proceedings of the Thirtieth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 727–746. SIAM, 2019.

[BMRT20] Florent Becker, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. The impact
of locality in the broadcast congested clique model. SIAM Journal on Discrete

Mathematics, 34(1):682–700, 2020.

[BO03] Brian Babcock and Chris Olston. Distributed top-k monitoring. In ACM SIG-

MOD, pages 28–39, 2003.

[BO10] Vladimir Braverman and Rafail Ostrovsky. Recursive sketching for frequency
moments. arXiv preprint arXiv:1011.2571, 2010.

[Bou85] Jean Bourgain. On lipschitz embedding of finite metric spaces in hilbert space.
Israel Journal of Mathematics, 52(1-2):46–52, 1985.

[BOV15] Vladimir Braverman, Rafail Ostrovsky, and Gregory Vorsanger. Weighted sam-
pling without replacement from data streams. IPL, 115(12):923–926, 2015.

[BOZ12] Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling
from sliding windows. Journal of Computer and System Sciences, 78(1):260–
272, 2012.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Comput. Surv., 24(3):293–318, 1992.

[Bul17] Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In 58th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,

CA, USA, October 15-17, 2017, pages 319–330, 2017.

[Bv20] Andrei A. Bulatov and Stanislav Živný. Approximate counting CSP seen from
the other side. ACM Trans. Comput. Theory, 12(2), May 2020.

[BVDPPH11] Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich.
Displacement interpolation using lagrangian mass transport. In Proceedings of

the 2011 SIGGRAPH Asia Conference, pages 1–12, 2011.

[BVKS19] Jess Banks, Jorge Garza Vargas, Archit Kulkarni, and Nikhil Srivastava. Pseu-
dospectral shattering, the sign function, and diagonalization in nearly matrix mul-
tiplication time. arXiv preprint arXiv:1912.08805, 2019.

[BVWY18] Vladimir Braverman, Emanuele Viola, David Woodruff, and Lin F Yang. Re-
visiting frequency moment estimation in random order streams. arXiv preprint

arXiv:1803.02270, 2018.

671

[BW18] Ainesh Bakshi and David Woodruff. Sublinear time low-rank approximation of
distance matrices. In Advances in Neural Information Processing Systems, pages
3782–3792, 2018.

[BWZ16] Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal com-
ponent analysis in distributed and streaming models. In Proceedings of the forty-

eighth annual ACM symposium on Theory of Computing, pages 236–249. ACM,
2016.

[BY20] Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling.
pages 49–62, 2020.

[BYJK+02] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan.
Counting distinct elements in a data stream. In International Workshop on Ran-

domization and Approximation Techniques in Computer Science, pages 1–10.
Springer, 2002.

[BYJKS04] Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. An infor-
mation statistics approach to data stream and communication complexity. Journal

of Computer and System Sciences, 68(4):702–732, 2004.

[CBK11] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2nd workshop on information
heterogeneity and fusion in recommender systems (hetrec 2011). In Proceedings

of the 5th ACM conference on Recommender systems, RecSys 2011, New York,
NY, USA, 2011. ACM.

[CBW99] R. Calinger, J.E. Brown, and T.R. West. A Contextual History of Mathematics:

To Euler. A Contextual History of Mathematics: To Euler. Prentice Hall, 1999.

[CC13] Peter Clifford and Ioana Cosma. A simple sketching algorithm for entropy esti-
mation over streaming data. In Artificial Intelligence and Statistics, pages 196–
206, 2013.

[CCD11] Edith Cohen, Graham Cormode, and Nick G. Duffield. Structure-aware sampling:
Flexible and accurate summarization. PVLDB, 4(11):819–830, 2011.

[CCD12] Edith Cohen, Graham Cormode, and Nick Duffield. Don’t let the negatives bring
you down: sampling from streams of signed updates. ACM SIGMETRICS Per-

formance Evaluation Review, 40(1):343–354, 2012.

[CCFC02a] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items
in data streams. In Proceedings of the 29th International Colloquium on Au-

tomata, Languages and Programming, ICALP ’02, pages 693–703, London, UK,

672

UK, 2002. Springer-Verlag.

[CCFC02b] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items
in data streams. Automata, languages and programming, pages 784–784, 2002.

[CCG+98] Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge
Plotkin. Approximating a finite metric by a small number of tree metrics. 1998.

[CCM10] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal al-
gorithm for estimating the entropy of a stream. ACM Transactions on Algorithms

(TALG), 6(3):1–21, 2010.

[CCM16] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower
bounds for communication and stream computation. Theory of Computing,
12(1):1–35, 2016.

[CD21] Xue Chen and Michał Dereziński. Query complexity of least absolute deviation
regression via robust uniform convergence. arXiv preprint arXiv:2102.02322,
2021.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://tata.gforge.inria.fr/, 2007. release October, 12th 2007.

[CDGL99] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Reasoning in
expressive description logics with fixpoints based on automata on infinite trees.
In IJCAI, volume 99, pages 84–89, 1999.

[CDJ06] Mark Chavira, Adnan Darwiche, and Manfred Jaeger. Compiling relational
bayesian networks for exact inference. International Journal of Approximate

Reasoning, 42(1-2):4–20, 2006.

[CDK+09] Edith Cohen, Nick Duffield, Haim Kaplan, Carsten Lund, and Mikkel Thorup.
Stream sampling for variance-optimal estimation of subset sums. In Proceedings

of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1255–1264. Society for Industrial and Applied Mathematics, 2009.

[CDK+14] Edith Cohen, Nick G. Duffield, Haim Kaplan, Carsten Lund, and Mikkel Thorup.
Algorithms and estimators for summarization of unaggregated data streams. J.

Comput. Syst. Sci., 80(7):1214–1244, 2014.

[CDMI+13] Kenneth L Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W Ma-
honey, Xiangrui Meng, and David P Woodruff. The fast cauchy transform and
faster robust linear regression. In Proceedings of the Twenty-Fourth Annual

673

http://tata.gforge.inria.fr/

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 466–477. Society
for Industrial and Applied Mathematics, https://arxiv.org/pdf/1207.
4684, 2013.

[CEM+15] Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and
Madalina Persu. Dimensionality reduction for k-means clustering and low rank
approximation. In Proceedings of the Forty-Seventh Annual ACM on Symposium

on Theory of Computing (STOC), pages 163–172. ACM, https://arxiv.
org/pdf/1410.6801, 2015.

[CFCHT20] Yi-Jun Chang, Martín Farach-Colton, Tsan-Sheng Hsu, and Meng-Tsung Tsai.
Streaming complexity of spanning tree computation. In 37th International Sym-

posium on Theoretical Aspects of Computer Science (STACS 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[CG05] Graham Cormode and Minos Garofalakis. Sketching streams through the net:
Distributed approximate query tracking. In VLDB, pages 13–24. VLDB Endow-
ment, 2005.

[CGP20] Edith Cohen, Ofir Geri, and Rasmus Pagh. Composable sketches for functions
of frequencies: Beyond the worst case. In International Conference on Machine

Learning, pages 2057–2067. PMLR, 2020.

[CGSS20] Edith Cohen, Ofir Geri, Tamas Sarlos, and Uri Stemmer. Differentially private
weighted sampling. arXiv preprint arXiv:2010.13048, 2020.

[Cha02] Moses Charikar. Similarity estimation techniques from rounding algorithms.
pages 380–388, 2002.

[Chu96] Fan RK Chung. Lectures on spectral graph theory. Lecture Notes, 1996.

[CIKM02] Graham Cormode, Piotr Indyk, Nick Koudas, and S Muthukrishnan. Fast mining
of massive tabular data via approximate distance computations. In Proceedings

18th International Conference on Data Engineering, pages 605–614. IEEE, 2002.

[CJ06] David A. Cohen and Peter Jeavons. The complexity of constraint languages. In
Handbook of Constraint Programming, pages 245–280. Elsevier, 2006.

[CJ19] Graham Cormode and Hossein Jowhari. L p samplers and their applications: A
survey. ACM Computing Surveys (CSUR), 52(1):1–31, 2019.

[CJK+04] Graham Cormode, Theodore Johnson, Flip Korn, Shan Muthukrishnan, Oliver
Spatscheck, and Divesh Srivastava. Holistic udafs at streaming speeds. In Pro-

ceedings of the 2004 ACM SIGMOD international conference on Management of

674

https://arxiv.org/pdf/1207.4684
https://arxiv.org/pdf/1207.4684
https://arxiv.org/pdf/1410.6801
https://arxiv.org/pdf/1410.6801

data, pages 35–46. ACM, 2004.

[CJLW20a] Xi Chen, Rajesh Jayaram, Amit Levi, and Erik Waingarten. An improved analysis
of the quadtree for high dimensional emd. 2020.

[CJLW20b] Xi Chen, Rajesh Jayaram, Amit Levi, and Erik Waingarten. An improved analysis
of the quadtree for high-dimensional emd. 2020.

[CJMM16] Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S Muthukrish-
nan. The sparse awakens: Streaming algorithms for matching size estimation in
sparse graphs. arXiv preprint arXiv:1608.03118, 2016.

[CK16] Amit Chakrabarti and Sagar Kale. Strong fooling sets for multi-player communi-
cation with applications to deterministic estimation of stream statistics. In IEEE

57th Annual Symposium on Foundations of Computer Science (FOCS), pages 41–
50, 2016.

[CK19] Zhaoyue Cheng and Nick Koudas. Nonlinear models over normalized data. In
2019 IEEE 35th International Conference on Data Engineering (ICDE), pages
1574–1577. IEEE, 2019.

[CKP+21] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh Saxena, Zhao Song, and
Huacheng Yu. Near-optimal two-pass streaming algorithm for sampling random
walks over directed graphs. arXiv preprint arXiv:2102.11251, 2021.

[CKS01] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifications

of Boolean constraint satisfaction problems, volume 7 of SIAM monographs on

discrete mathematics and applications. SIAM, 2001.

[CKS03] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds
on the multi-party communication complexity of set disjointness. In 18th IEEE

Annual Conference on Computational Complexity, 2003. Proceedings., pages
107–117. IEEE, 2003.

[Cla05] Kenneth L Clarkson. Subgradient and sampling algorithms for `1 regression. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algo-

rithms (SODA), pages 257–266, 2005.

[CLM+15] Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard
Peng, and Aaron Sidford. Uniform sampling for matrix approximation. In Pro-

ceedings of the 2015 Conference on Innovations in Theoretical Computer Sci-

ence, pages 181–190, 2015.

[CLP18] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (δ+ 1)-

675

coloring algorithm? In Proceedings of the 50th Annual ACM SIGACT Symposium

on Theory of Computing, pages 445–456, 2018.

[CLS19] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in
the current matrix multiplication time. In Proceedings of the 51st annual ACM

SIGACT symposium on theory of computing, pages 938–942, 2019.

[CM77a] Ashok K Chandra and Philip M Merlin. Optimal implementation of conjunc-
tive queries in relational data bases. In Proceedings of the ninth annual ACM

symposium on Theory of computing, pages 77–90, 1977.

[CM77b] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In Proceedings of the 9th Annual ACM Sympo-

sium on Theory of Computing, STOC’77, pages 77–90, 1977.

[CM05] Graham Cormode and Shan Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms, 55(1):58–75,
2005.

[CM21] David P. Woodruff Cameron Musco, Christopher Musco. Active sampling for
linear regression beyond the `2 norm. Manuscript, 2021.

[CMN99a] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. On random sampling
over joins. ACM SIGMOD Record, 28(2):263–274, 1999.

[CMN99b] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. On random sam-
pling over joins. In SIGMOD, pages 263–274, 1999.

[CMR05] Graham Cormode, S Muthukrishnan, and Irina Rozenbaum. Summarizing and
mining inverse distributions on data streams via dynamic inverse sampling. In
Proceedings of the 31st international conference on Very large data bases, pages
25–36. VLDB Endowment, 2005.

[CMS76] John M Chambers, Colin L Mallows, and BW Stuck. A method for simulat-
ing stable random variables. Journal of the american statistical association,
71(354):340–344, 1976.

[CMY11] Graham Cormode, S Muthukrishnan, and Ke Yi. Algorithms for distributed func-
tional monitoring. ACM Transactions on Algorithms (TALG), 7(2):21, 2011.

[CMYZ10] Graham Cormode, S Muthukrishnan, Ke Yi, and Qin Zhang. Optimal sampling
from distributed streams. In Proceedings of the twenty-ninth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems, pages 77–86.
ACM, 2010.

676

[CMYZ12] Graham Cormode, S Muthukrishnan, Ke Yi, and Qin Zhang. Continuous sam-
pling from distributed streams. Journal of the ACM (JACM), 59(2):10, 2012.

[Coh13] Edith Cohen. Tau cs 0368.3239, leveraging big data lecture notes, Fall 2013.

[Coh15] Edith Cohen. Stream sampling for frequency cap statistics. In Proceedings of

the 21th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 159–168. ACM, 2015.

[COP03] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming al-
gorithms for clustering problems. In Proceedings of the thirty-fifth annual ACM

symposium on Theory of computing, pages 30–39, 2003.

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets
of finite graphs. Information and computation, 85(1):12–75, 1990.

[CPW20] Edith Cohen, Rasmus Pagh, and David Woodruff. Wor and p’s: Sketches for ell_p
-sampling without replacement. Advances in Neural Information Processing Sys-

tems, 33, 2020.

[CR97] Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revis-
ited. In Database Theory - ICDT ’97, 6th International Conference, Delphi,

Greece, January 8-10, 1997, Proceedings, pages 56–70, 1997.

[CR12] Amit Chakrabarti and Oded Regev. An optimal lower bound on the commu-
nication complexity of gap-hamming-distance. SIAM Journal on Computing,
41(5):1299–1317, 2012.

[CRR14] Arkadev Chattopadhyay, Jaikumar Radhakrishnan, and Atri Rudra. Topology
matters in communication. In 2014 IEEE 55th Annual Symposium on Founda-

tions of Computer Science, pages 631–640. IEEE, 2014.

[CSWZ16] Jiecao Chen, He Sun, David Woodruff, and Qin Zhang. Communication-optimal
distributed clustering. In Advances in Neural Information Processing Systems,
pages 3727–3735, 2016.

[CT12] Thomas M Cover and Joy A Thomas. Elements of information theory. John
Wiley & Sons, 2012.

[CT15] Yung-Yu Chung and Srikanta Tirthapura. Distinct random sampling from a dis-
tributed stream. In IPDPS, pages 532–541, 2015.

[CTW16] Yung-Yu Chung, Srikanta Tirthapura, and David P Woodruff. A simple message-
optimal algorithm for random sampling from a distributed stream. IEEE Trans-

actions on Knowledge and Data Engineering, 28(6):1356–1368, 2016.

677

[Cut13] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport.
2013.

[CW79] J Lawrence Carter and Mark N Wegman. Universal classes of hash functions.
Journal of computer and system sciences, 18(2):143–154, 1979.

[CW09] Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the
streaming model. In Proceedings of the forty-first annual ACM symposium on

Theory of computing, pages 205–214, 2009.

[CW17] Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regres-
sion in input sparsity time. Journal of the ACM (JACM), 63(6):54, 2017.

[CY20] Yu Chen and Ke Yi. Random sampling and size estimation over cyclic joins. In
ICDT, pages 7:1–7:18, 2020.

[CZ17] Jiecao Chen and Qin Zhang. Improved algorithms for distributed entropy moni-
toring. Algorithmica, 78(3):1041–1066, 2017.

[Dar01a] Adnan Darwiche. Decomposable negation normal form. Journal of the ACM

(JACM), 48(4):608–647, 2001.

[Dar01b] Adnan Darwiche. On the tractable counting of theory models and its applica-
tion to truth maintenance and belief revision. Journal of Applied Non-Classical

Logics, 11(1-2):11–34, 2001.

[Dat10] Jon Dattorro. Convex optimization & Euclidean distance geometry. Lulu. com,
2010.

[DDH07] James Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear algebra is stable.
Numerische Mathematik, 108(1):59–91, 2007.

[DDH+09] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W
Mahoney. Sampling algorithms and coresets for `p regression. SIAM Journal on

Computing, 38(5):2060–2078, 2009.

[DDHK07] James Demmel, Ioana Dumitriu, Olga Holtz, and Robert Kleinberg. Fast matrix
multiplication is stable. Numerische Mathematik, 106(2):199–224, 2007.

[Dec96] Rina Dechter. Bucket elimination: A unifying framework for probabilistic infer-
ence. In Proceedings of the Twelfth International Conference on Uncertainty in

Artificial Intelligence, 1996.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

678

[DJ04] Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms
seen from the other side. Theoretical Computer Science, 329(1):315 – 323, 2004.

[DJS+19] Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff. Opti-
mal sketching for kronecker product regression and low rank approximation. In
Advances in Neural Information Processing Systems, pages 4737–4748, 2019.

[DK19] Ilias Diakonikolas and Daniel M Kane. Recent advances in algorithmic high-
dimensional robust statistics. arXiv preprint arXiv:1911.05911, 2019.

[DL09] Michel Marie Deza and Monique Laurent. Geometry of cuts and metrics, vol-
ume 15. Springer, 2009.

[DLT03a] Nick Duffield, Carsten Lund, and Mikkel Thorup. Estimating flow distributions
from sampled flow statistics. In Proceedings of the 2003 conference on Applica-

tions, technologies, architectures, and protocols for computer communications,
pages 325–336, 2003.

[DLT03b] Nick G. Duffield, Carsten Lund, and Mikkel Thorup. Estimating flow distribu-
tions from sampled flow statistics. In SIGCOMM, pages 325–336, 2003.

[DLT04] Nick G. Duffield, Carsten Lund, and Mikkel Thorup. Flow sampling under hard
resource constraints. In SIGMETRICS, pages 85–96, 2004.

[DLT07] Nick G. Duffield, Carsten Lund, and Mikkel Thorup. Priority sampling for esti-
mation of arbitrary subset sums. J. ACM, 54(6):32, 2007.

[DM02] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of

Artificial Intelligence Research, 17:229–264, 2002.

[DM15] Arnaud Durand and Stefan Mengel. Structural Tractability of Counting of Solu-
tions to Conjunctive Queries. Theory Comput. Syst., 57(4):1202–1249, 2015.

[DNPR10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential
privacy under continual observation. In Proceedings of the Forty-Second ACM

Symposium on Theory of Computing, STOC, page 715–724. ACM, 2010.

[DNSS92] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri.
Practical skew handling in parallel joins. In Proceedings of the 18th International

Conference on Very Large Data Bases (VLDB), pages 27–40, 1992.

[Don06] David L Donoho. Compressed sensing. IEEE Transactions on information the-

ory, 52(4):1289–1306, 2006.

[DSSW18] Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. Sketching for kro-

679

necker product regression and p-splines. In International Conference on Artificial

Intelligence and Statistics, pages 1299–1308. PMLR, 2018.

[Duf04] Nick Duffield. Sampling for passive internet measurement: A review. Statistical

Science, pages 472–498, 2004.

[DV06] Amit Deshpande and Santosh Vempala. Adaptive sampling and fast low-rank
matrix approximation. In Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques, pages 292–303. Springer, 2006.

[EJ91] E Allen Emerson and Charanjit S Jutla. Tree automata, mu-calculus and de-
terminacy. In [1991] Proceedings 32nd Annual Symposium of Foundations of

Computer Science, pages 368–377. IEEE, 1991.

[EK72] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM, 19(2):248–264, 1972.

[ELB+17] Tarek Elgamal, Shangyu Luo, Matthias Boehm, Alexandre V Evfimievski,
Shirish Tatikonda, Berthold Reinwald, and Prithviraj Sen. Spoof: Sum-product
optimization and operator fusion for large-scale machine learning. In CIDR,
2017.

[ES06] Pavlos S. Efraimidis and Paul G. Spirakis. Weighted random sampling with a
reservoir. IPL, 97(5):181 – 185, 2006.

[EV03] Cristian Estan and George Varghese. New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice. ACM Trans. Comput.

Syst., 21(3):270–313, 2003.

[EVF03] Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for counting
active flows on high speed links. In Proceedings of the 3rd ACM SIGCOMM

conference on Internet measurement, pages 153–166. ACM, 2003.

[fac16] Facebook’s top open data problems. https://research.fb.com/blog/
2014/10/facebook-s-top-open-data-problems/, 2016. Ac-
cessed: 2021-05-04.

[Fag83] Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database
schemes. J. ACM, 30(3):514–550, 1983.

[FCCR18] Rémi Flamary, Marco Cuturi, Nicolas Courty, and Alain Rakotomamonjy.
Wasserstein discriminant analysis. Machine Learning, 107(12):1923–1945, 2018.

[FCT15] Martín Farach-Colton and Meng-Tsung Tsai. Exact sublinear binomial sampling.
Algorithmica, 73(4):637–651, 2015.

680

https://research.fb.com/blog/2014/10/facebook-s-top-open-data-problems/
https://research.fb.com/blog/2014/10/facebook-s-top-open-data-problems/

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 2006.

[FGRŽ21] Jacob Focke, Leslie Ann Goldberg, Marc Roth, and Stanislav Živnỳ. Approxi-
mately counting answers to conjunctive queries with disequalities and negations.
arXiv preprint arXiv:2103.12468, 2021.

[FIM+01] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J Strauss, and
Rebecca N Wright. Secure multiparty computation of approximations. In Interna-

tional Colloquium on Automata, Languages, and Programming, pages 927–938.
Springer, 2001.

[FIS08] Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data
streams and applications. International Journal of Computational Geometry &

Applications, 18(01n02):3–28, 2008.

[FKN21] Arnold Filtser, Michael Kapralov, and Navid Nouri. Graph spanners by sketching
in dynamic streams and the simultaneous communication model. In Proceedings

of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1894–
1913. SIAM, 2021.

[FKV04] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms
for finding low-rank approximations. Journal of the ACM (JACM), 51(6):1025–
1041, 2004.

[Fla85] Philippe Flajolet. Approximate counting: a detailed analysis. BIT Numerical

Mathematics, 25(1):113–134, 1985.

[FM85] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data
base applications. Journal of computer and system sciences, 31(2):182–209,
1985.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approx-
imating arbitrary metrics by tree metrics. Journal of Computer and System Sci-

ences, 69(3):485–497, 2004.

[FSS13] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny
data: Constant-size coresets for k-means, pca and projective clustering. In Pro-

ceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algo-

rithms, pages 1434–1453. Society for Industrial and Applied Mathematics, 2013.

[FST88] Schkolnick Finkelstein, Mario Schkolnick, and Paolo Tiberio. Physical database
design for relational databases. ACM Transactions on Database Systems (TODS),

681

13(1):91–128, 1988.

[FV98] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone
monadic SNP and constraint satisfaction: A study through datalog and group
theory. SIAM J. Comput., 28(1):57–104, 1998.

[Gan09] Sumit Ganguly. Deterministically estimating data stream frequencies. In Inter-

national Conference on Combinatorial Optimization and Applications, COCOA,
pages 301–312. Springer, 2009.

[GCPB16] Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic opti-
mization for large-scale optimal transport. 2016.

[GGLS16] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. Hyper-
tree decompositions: Questions and answers. In Proceedings of the 35th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS

2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 57–74, 2016.

[GGMW20] Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff.
Pseudo-deterministic streaming. In 11th Innovations in Theoretical Computer

Science Conference (ITCS), pages 79:1–79:25. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

[GGR98] Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its con-
nection to learning and approximation. Journal of the ACM (JACM), 45(4):653–
750, 1998.

[GGR16a] M. Garofalakis, J. Gehrke, and R. Rastogi. Data Stream Management: Process-

ing High-Speed Data Streams. Data-Centric Systems and Applications. Springer
Berlin Heidelberg, 2016.

[GGR16b] Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Data stream manage-
ment: A brave new world. pages 1–9, 01 2016.

[GHR+12] Anna C Gilbert, Brett Hemenway, Atri Rudra, Martin J Strauss, and Mary Woot-
ters. Recovering simple signals. In 2012 Information Theory and Applications

Workshop, pages 382–391. IEEE, 2012.

[GHS+12] Anna C Gilbert, Brett Hemenway, Martin J Strauss, David P. Woodruff, and Mary
Wootters. Reusable low-error compressive sampling schemes through privacy. In
2012 IEEE Statistical Signal Processing Workshop (SSP), pages 536–539. IEEE,
2012.

[Gib01] Phillip B. Gibbons. Distinct sampling for highly-accurate answers to distinct

682

values queries and event reports. In VLDB, pages 541–550, 2001.

[GJK+97] Vivek Gore, Mark Jerrum, Sampath Kannan, Z Sweedyk, and Steve Mahaney.
A quasi-polynomial-time algorithm for sampling words from a context-free lan-
guage. Information and Computation, 134(1):59–74, 1997.

[GKM18] Parikshit Gopalan, Daniel M Kane, and Raghu Meka. Pseudorandomness via the
discrete fourier transform. volume 47, pages 2451–2487. SIAM, 2018.

[GKMS01] Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin Strauss. Quick-
sand: Quick summary and analysis of network data. Technical report, 2001.

[GKMS02] Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin J Strauss. How to
summarize the universe: Dynamic maintenance of quantiles. In VLDB’02: Pro-

ceedings of the 28th International Conference on Very Large Databases, pages
454–465. Elsevier, 2002.

[GL08] Rainer Gemulla and Wolfgang Lehner. Sampling time-based sliding windows in
bounded space. In ACM SIGMOD, pages 379–392, 2008.

[GLH06] Rainer Gemulla, Wolfgang Lehner, and Peter J. Haas. A dip in the reservoir:
Maintaining sample synopses of evolving datasets. In Proceedings of the 32nd

International Conference on Very Large Data Bases, Seoul, Korea, September

12-15, 2006, pages 595–606, 2006.

[GLH07] Rainer Gemulla, Wolfgang Lehner, and Peter J. Haas. Maintaining bernoulli sam-
ples over evolving multisets. In Proceedings of the Twenty-Sixth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, June 11-13,

2007, Beijing, China, pages 93–102, 2007.

[GLH08] Rainer Gemulla, Wolfgang Lehner, and Peter J. Haas. Maintaining bounded-size
sample synopses of evolving datasets. VLDB J., 17(2):173–202, 2008.

[GLS98] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of
acyclic conjunctive queries. In 39th Annual Symposium on Foundations of Com-

puter Science, FOCS’98, November 8-11, 1998, Palo Alto, California, USA,
pages 706–715, 1998.

[GLS00] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of struc-
tural CSP decomposition methods. Artif. Intell., 124(2):243–282, 2000.

[GLS02] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decomposi-
tions and tractable queries. J. Comput. Syst. Sci., 64(3):579–627, 2002.

[GM98a] Phillip B. Gibbons and Yossi Matias. New sampling-based summary statistics

683

for improving approximate query answers. In SIGMOD 1998, Proceedings ACM

SIGMOD International Conference on Management of Data, June 2-4, 1998,

Seattle, Washington, USA., pages 331–342, 1998.

[GM98b] Phillip B Gibbons and Yossi Matias. New sampling-based summary statistics for
improving approximate query answers. In ACM SIGMOD Record, volume 27,
pages 331–342. ACM, 1998.

[GM06] Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. In
SODA, pages 289–298, 2006.

[GMP] Phillip B Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental main-
tenance of approximate histograms.

[GMT15] Sudipto Guha, Andrew McGregor, and David Tench. Vertex and hyperedge con-
nectivity in dynamic graph streams. In Proceedings of the 34th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, pages 241–247.
ACM, 2015.

[GMUW09] Hector Garcia-Molina, Jeffrey D Ullman, and Jennifer Widom. Database sys-
tems: the complete book. 2009.

[GO16] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2016.

[Gol05] Oded Goldreich. Foundations of cryptography - A primer. Foundations and

Trends in Theoretical Computer Science, 1(1), 2005.

[Gol10] Oded Goldreich. Introduction to testing graph properties. In Property testing,
pages 105–141. Springer, 2010.

[Gol17] Oded Goldreich. Introduction to property testing. Cambridge University Press,
2017.

[Goo89] I. J. Good. C332. surprise indexes and p-values. Journal of Statistical Computa-

tion and Simulation, 32(1–2):90–92, 1989.

[GP14] Mina Ghashami and Jeff M Phillips. Relative errors for deterministic low-rank
matrix approximations. In Proceedings of the twenty-fifth annual ACM-SIAM

symposium on Discrete algorithms, pages 707–717. SIAM, 2014.

[Gro07] Martin Grohe. The complexity of homomorphism and constraint satisfaction
problems seen from the other side. J. ACM, 54(1):1:1–1:24, 2007.

[Gro09] Andre Gronemeier. Asymptotically optimal lower bounds on the nih-multi-party
information. arXiv preprint arXiv:0902.1609, 2009.

684

[GSS01] Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evaluation of
conjunctive queries tractable? In Proceedings on 33rd Annual ACM Symposium

on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, STOC’01,
pages 657–666, 2001.

[GSS09] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model counting. In Hand-

book of Satisfiability, pages 633–654. 2009.

[GT01] Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions on the
union of data streams. In ACM SPAA, pages 281–291, 2001.

[GT02] Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for
sliding windows. In ACM SPAA, pages 63–72, 2002.

[GT11] Alex Gittens and Joel A Tropp. Tail bounds for all eigenvalues of a sum of random
matrices. arXiv preprint arXiv:1104.4513, 2011.

[GVL13] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, Balti-
more, MD, 2013.

[GW95] Michel X Goemans and David P Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite program-
ming. Journal of the ACM (JACM), 42(6):1115–1145, 1995.

[GW18] Sumit Ganguly and David P. Woodruff. High probability frequency moment
sketches. In 45th International Colloquium on Automata, Languages, and Pro-

gramming (ICALP), pages 58:1–58:15, 2018.

[GWWZ15] Dirk Van Gucht, Ryan Williams, David P. Woodruff, and Qin Zhang. The com-
munication complexity of distributed set-joins with applications to matrix multi-
plication. In Proceedings of the 34th ACM Symposium on Principles of Database

Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 - June 4, 2015,
pages 199–212, 2015.

[Haa81] Uffe Haagerup. The best constants in the khintchine inequality. Studia Mathe-

matica, 70(3):231–283, 1981.

[Haa16] Peter J. Haas. Data-stream sampling: Basic techniques and results. In Data

Stream Management - Processing High-Speed Data Streams, pages 13–44. 2016.

[had] http://hadoop.apache.org/.

[HAL+20] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan
Ragan-Kelley, and Frédo Durand. Difftaichi: Differentiable programming for

685

http://hadoop.apache.org/

physical simulation. ICLR, 2020.

[Haz16] Elad Hazan. Introduction to online convex optimization. Foundations and Trends

in Optimization, 2(3-4):157–325, 2016.

[HK15] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 5(4), December 2015.

[HKM+20a] Avinatan Hasidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stem-
mer. Adversarially robust streaming algorithms via differential privacy. Advances

in Neural Information Processing Systems, 33, 2020.

[HKM+20b] Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stem-
mer. Adversarially robust streaming algorithms via differential privacy. arXiv

preprint arXiv:2004.05975, 2020.

[HLA+19] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo
Durand. Taichi: a language for high-performance computation on spatially sparse
data structures. ACM Transactions on Graphics (TOG), 38(6):201, 2019.

[HN92] Pavol Hell and Jaroslav Nesetril. The core of a graph. Discret. Math., 109(1-
3):117–126, 1992.

[HN04] Pavol Hell and Jaroslav Nesetril. Graphs and homomorphisms, volume 28 of
Oxford lecture series in mathematics and its applications. Oxford University
Press, 2004.

[HNG+07] Ling Huang, XuanLong Nguyen, Minos Garofalakis, Joseph M Hellerstein,
Michael I Jordan, Anthony D Joseph, and Nina Taft. Communication-efficient
online detection of network-wide anomalies. In INFOCOM 2007. 26th IEEE

International Conference on Computer Communications. IEEE, pages 134–142.
IEEE, 2007.

[HNO08a] Nicholas JA Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming
entropy via approximation theory. In 2008 49th Annual IEEE Symposium on

Foundations of Computer Science, pages 489–498. IEEE, 2008.

[HNO08b] Nicholas JA Harvey, Jelani Nelson, and Krzysztof Onak. Streaming algorithms
for estimating entropy. In 2008 IEEE Information Theory Workshop, pages 227–
231. IEEE, 2008.

[HNSS96] Peter J Haas, Jeffrey F Naughton, S Seshadri, and Arun N Swami. Selectivity and
cost estimation for joins based on random sampling. Journal of Computer and

System Sciences, 52(3):550–569, 1996.

686

[Hoe94] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. In The Collected Works of Wassily Hoeffding, pages 409–426. Springer,
1994.

[HPIS13] Sariel Har-Peled, Piotr Indyk, and Anastasios Sidiropoulos. Euclidean spanners
in high dimensions. 2013.

[HS92] Peter J Haas and Arun N Swami. Sequential sampling procedures for query size

estimation, volume 21. ACM, 1992.

[HW13] Moritz Hardt and David P Woodruff. How robust are linear sketches to adaptive
inputs? In Proceedings of the forty-fifth annual ACM symposium on Theory of

computing, pages 121–130. ACM, 2013.

[HYZ12] Zengfeng Huang, Ke Yi, and Qin Zhang. Randomized algorithms for tracking dis-
tributed count, frequencies, and ranks. In Proceedings of the 31st ACM SIGMOD-

SIGACT-SIGAI symposium on Principles of Database Systems, pages 295–306.
ACM, 2012.

[Ind04] Piotr Indyk. Algorithms for dynamic geometric problems over data streams. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,
pages 373–380. ACM, 2004.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and
data stream computation. Journal of the ACM (JACM), 53(3):307–323, 2006.

[Ind07] Piotr Indyk. A near linear time constant factor approximation for euclidean
bichromatic matching (cost). 2007.

[IT03] Piotr Indyk and Nitin Thaper. Fast color image retrieval via embeddings. In
Workshop on Statistical and Computational Theories of Vision (at ICCV), 2003.

[IVWW19] Piotr Indyk, Ali Vakilian, Tal Wagner, and David Woodruff. Sample-optimal
low-rank approximation of distance matrices. arXiv preprint arXiv:1906.00339,
2019.

[IW03] Piotr Indyk and David Woodruff. Tight lower bounds for the distinct elements
problem. In 44th Annual IEEE Symposium on Foundations of Computer Science,

2003. Proceedings., pages 283–288. IEEE, 2003.

[IW05] Piotr Indyk and David Woodruff. Optimal approximations of the frequency mo-
ments of data streams. In Proceedings of the thirty-seventh annual ACM sympo-

sium on Theory of computing, pages 202–208. ACM, 2005.

[Jay09] TS Jayram. Hellinger strikes back: A note on the multi-party information com-

687

plexity of and. In Approximation, Randomization, and Combinatorial Optimiza-

tion. Algorithms and Techniques, pages 562–573. Springer, 2009.

[Jin18] Ce Jin. Simulating random walks on graphs in the streaming model. In 10th

Innovations in Theoretical Computer Science Conference (ITCS 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[JKS08] Thathachar S Jayram, Ravi Kumar, and D Sivakumar. The one-way communi-
cation complexity of hamming distance. Theory of Computing, 4(1):129–135,
2008.

[JL84] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings
into a hilbert space. 1984.

[JOW+02] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan Peh,
and Daniel Rubenstein. Energy-efficient computing for wildlife tracking: De-
sign tradeoffs and early experiences with zebranet. ACM SIGARCH Computer

Architecture News, 30(5):96–107, 2002.

[JS89] Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM journal

on computing, 18(6):1149–1178, 1989.

[JST11] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers,
finding duplicates in streams, and related problems. In Proceedings of the Thirti-

eth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-

tems, PODS ’11, pages 49–58, New York, NY, USA, 2011. ACM.

[JSTW19] Rajesh Jayaram, Gokarna Sharma, Srikanta Tirthapura, and David P Woodruff.
Weighted reservoir sampling from distributed streams. In Proceedings of the 38th

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
pages 218–235, 2019.

[JSWY21] Rajesh Jayaram, Alireza Samadian, David P. Woodruff, and Peng Ye. In-database
regression in input sparsity time. In Proceedings of the 38th International Con-

ference on Machine Learning, ICML 2021, Proceedings of Machine Learning
Research. PMLR, 2021.

[JVV86a] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation
of combinatorial structures from a uniform distribution. Theor. Comput. Sci.,
43:169–188, 1986.

[JVV86b] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation
of combinatorial structures from a uniform distribution. Theoretical computer

688

science, 43:169–188, 1986.

[JW09] Thathachar S Jayram and David P Woodruff. The data stream space complexity
of cascaded norms. In 2009 50th Annual IEEE Symposium on Foundations of

Computer Science, pages 765–774. IEEE, 2009.

[JW13] Thathachar S Jayram and David P Woodruff. Optimal bounds for johnson-
lindenstrauss transforms and streaming problems with subconstant error. ACM

Transactions on Algorithms (TALG), 9(3):26, 2013.

[JW18a] Rajesh Jayaram and David P Woodruff. Data streams with bounded deletions. In
Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles

of Database Systems, pages 341–354, 2018.

[JW18b] Rajesh Jayaram and David P Woodruff. Perfect lp sampling in a data stream.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science

(FOCS), pages 544–555. IEEE, 2018.

[JW19] Rajesh Jayaram and David P Woodruff. Towards optimal moment estimation in
streaming and distributed models. In Approximation, Randomization, and Com-

binatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[JWZ21] Rajesh Jayaram, David P. Woodruff, and Samson Zhou. Truly perfect samplers
for data streams and sliding windows. 2021.

[KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8):30–37, 2009.

[KCR06] Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham.
Communication-efficient distributed monitoring of thresholded counts. In
ACM SIGMOD, pages 289–300, 2006.

[KIDP16] Ramakrishnan Kannan, Mariya Ishteva, Barry Drake, and Haesun Park. Bounded
matrix low rank approximation. In Non-negative Matrix Factorization Tech-

niques, pages 89–118. Springer, 2016.

[KJY+15] Arun Kumar, Mona Jalal, Boqun Yan, Jeffrey Naughton, and Jignesh M Patel.
Demonstration of santoku: optimizing machine learning over normalized data.
Proceedings of the VLDB Endowment, 8(12):1864–1867, 2015.

[KKP18] John Kallaugher, Michael Kapralov, and Eric Price. The sketching complexity
of graph and hypergraph counting. In 2018 IEEE 59th Annual Symposium on

Foundations of Computer Science (FOCS), pages 556–567. IEEE, 2018.

689

[KLM89] Richard M Karp, Michael Luby, and Neal Madras. Monte-carlo approximation
algorithms for enumeration problems. Journal of algorithms, 10(3):429–448,
1989.

[KMM+20] Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid
Nouri, Aaron Sidford, and Jakab Tardos. Fast and space efficient spectral sparsifi-
cation in dynamic streams. In Proceedings of the Fourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 1814–1833. SIAM, 2020.

[KMNS21] Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating
adaptive streaming from oblivious streaming. arXiv preprint arXiv:2101.10836,
2021.

[KN14] Daniel M Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms.
Journal of the ACM (JACM), 61(1):4, 2014.

[Kna09] Michael P Knapp. Sines and cosines of angles in arithmetic progression. Mathe-

matics Magazine, 82(5):371–372, 2009.

[KNN+18] Mahmoud Abo Khamis, Hung Q Ngo, XuanLong Nguyen, Dan Olteanu, and
Maximilian Schleich. Ac/dc: in-database learning thunderstruck. In Proceedings

of the Second Workshop on Data Management for End-To-End Machine Learn-

ing, page 8. ACM, 2018.

[KNP15] Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel. Learning generalized linear
models over normalized data. In ACM SIGMOD International Conference on

Management of Data, pages 1969–1984, 2015.

[KNP+17] Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P
Woodruff, and Mobin Yahyazadeh. Optimal lower bounds for universal re-
lation, and for samplers and finding duplicates in streams. arXiv preprint

arXiv:1704.00633, 2017.

[KNP19] Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov. Precondi-
tioning for the geometric transportation problem. 2019.

[KNPW11a] Daniel M Kane, Jelani Nelson, Ely Porat, and David P Woodruff. Fast moment
estimation in data streams in optimal space. In Proceedings of the forty-third

annual ACM symposium on Theory of computing, pages 745–754. ACM, 2011.

[KNPW11b] Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment
estimation in data streams in optimal space. In Proceedings of the Forty-third

Annual ACM Symposium on Theory of Computing, STOC ’11, pages 745–754,

690

New York, NY, USA, 2011. ACM.

[KNPZ16] Arun Kumar, Jeffrey Naughton, Jignesh M. Patel, and Xiaojin Zhu. To join or
not to join?: Thinking twice about joins before feature selection. In International

Conference on Management of Data, pages 19–34, 2016.

[Knu97a] D. Knuth. The art of computer programming: sorting and searching, volume 3.
1997.

[Knu97b] D. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumeri-

cal Algorithms. 1997.

[Knu98] Donald Ervin Knuth. The art of computer programming, Volume II: Seminumer-

ical Algorithms, 3rd Edition. Addison-Wesley, 1998.

[KNW10a] Daniel M Kane, Jelani Nelson, and David P Woodruff. On the exact space com-
plexity of sketching and streaming small norms. In Proceedings of the twenty-first

annual ACM-SIAM symposium on Discrete Algorithms, pages 1161–1178. SIAM,
2010.

[KNW10b] Daniel M Kane, Jelani Nelson, and David P Woodruff. An optimal algorithm for
the distinct elements problem. In Proceedings of the twenty-ninth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems, pages 41–52.
ACM, 2010.

[Kon15] Christian Konrad. Maximum matching in turnstile streams. In Algorithms-ESA

2015, pages 840–852. Springer, 2015.

[Kop13] Swastik Kopparty. Lecture 7: eps-biased and almost k-wise independent
spaces. http://sites.math.rutgers.edu/~sk1233/courses/

topics-S13/lec7.pdf, 2013.

[KOSZ13] Jonathan A Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A
simple, combinatorial algorithm for solving sdd systems in nearly-linear time. In
Proceedings of the forty-fifth annual ACM symposium on Theory of computing,
pages 911–920, 2013.

[KP20] John Kallaugher and Eric Price. Separations and equivalences between turnstile
streaming and linear sketching. In Proceedings of the 52nd Annual ACM SIGACT

Symposium on Theory of Computing, pages 1223–1236, 2020.

[KPW20] Akshay Kamath, Eric Price, and David P. Woodruff. A simple proof of a new set
disjointness with applications to data streams, 2020.

[KS03] Robert Krauthgamer and Ori Sasson. Property testing of data dimensionality. In

691

http://sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec7.pdf
http://sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec7.pdf

Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algo-

rithms, pages 18–27. Society for Industrial and Applied Mathematics, 2003.

[KSKW15a] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word em-
beddings to document distances. In International conference on machine learn-

ing, pages 957–966, 2015.

[KSKW15b] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word em-
beddings to document distances. 2015.

[KSM95] Sampath Kannan, Z Sweedyk, and Steve Mahaney. Counting and random gen-
eration of strings in regular languages. In Proceedings of the sixth annual ACM-

SIAM symposium on Discrete algorithms, pages 551–557. Society for Industrial
and Applied Mathematics, 1995.

[Kuh55] Harold W. Kuhn. The hungarian method for the assignment problem. Naval

Research Logistics Quarterly, 2(1–2):83–97, 1955.

[KV00] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and
constraint satisfaction. J. Comput. Syst. Sci., 61(2):302–332, 2000.

[KV17] Ravindran Kannan and Santosh Vempala. Randomized algorithms in numerical
linear algebra. Acta Numerica, 26:95–135, 2017.

[KVW14] Ravi Kannan, Santosh Vempala, and David Woodruff. Principal component anal-
ysis and higher correlations for distributed data. In Conference on Learning The-

ory, pages 1040–1057, 2014.

[KW08] J. Kohlas and N. Wilson. Semiring induced valuation algebras: Exact and ap-
proximate local computation algorithms. Artif. Intell., 172(11):1360–1399, 2008.

[LBKW14] Yingyu Liang, Maria-Florina F Balcan, Vandana Kanchanapally, and David
Woodruff. Improved distributed principal component analysis. In Advances in

Neural Information Processing Systems, pages 3113–3121, 2014.

[LCD05] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies us-
ing traffic feature distributions. In ACM SIGCOMM Computer Communication

Review, volume 35, pages 217–228. ACM, 2005.

[LCK19] Side Li, Lingjiao Chen, and Arun Kumar. Enabling and optimizing non-linear
feature interactions in factorized linear algebra. In Proceedings of the 2019 Inter-

national Conference on Management of Data, pages 1571–1588, 2019.

[LHW17] Xingguo Li, Jarvis Haupt, and David Woodruff. Near optimal sketching of low-
rank tensor regression. In Advances in Neural Information Processing Systems,

692

pages 3466–3476, 2017.

[Li09] Ping Li. Compressed counting. In Proceedings of the twentieth annual ACM-

SIAM symposium on Discrete algorithms, pages 412–421. SIAM, 2009.

[Lib13] Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the

19th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 581–588. ACM, 2013.

[LMP13] Mu Li, Gary L Miller, and Richard Peng. Iterative row sampling. In 2013 IEEE

54th Annual Symposium on Foundations of Computer Science, pages 127–136.
IEEE, 2013.

[LMPL18] Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic ban-
dits robust to adversarial corruptions. In Proceedings of the 50th Annual ACM

SIGACT Symposium on Theory of Computing, pages 114–122, 2018.

[LN95] Richard J Lipton and Jeffrey F Naughton. Query size estimation by adaptive
sampling. Journal of Computer and System Sciences, 51(1):18–25, 1995.

[LNNT16] Kasper Green Larsen, Jelani Nelson, Huy L Nguyên, and Mikkel Thorup. Heavy
hitters via cluster-preserving clustering. In Foundations of Computer Science

(FOCS), 2016 IEEE 57th Annual Symposium on, pages 61–70. IEEE, 2016.

[LNS90] Richard J Lipton, Jeffrey F Naughton, and Donovan A Schneider. Practical se-

lectivity estimation through adaptive sampling, volume 19. ACM, 1990.

[LNW14a] Yi Li, Huy L. Nguyen, and David Woodruff. Turnstile streaming algorithms
might as well be linear sketches. 2014.

[LNW14b] Yi Li, Huy L Nguyen, and David P Woodruff. Turnstile streaming algorithms
might as well be linear sketches. In Proceedings of the forty-sixth annual ACM

symposium on Theory of computing, pages 174–183. ACM, 2014.

[LNW19] Yi Li, Huy L Nguyen, and David P Woodruff. On approximating matrix norms
in data streams. SIAM Journal on Computing, 48(6):1643–1697, 2019.

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization
in the current matrix multiplication time. In COLT. https://arxiv.org/
pdf/1905.04447.pdf, 2019.

[LW13] Yi Li and David P Woodruff. A tight lower bound for high frequency moment es-
timation with small error. In Approximation, Randomization, and Combinatorial

Optimization. Algorithms and Techniques, pages 623–638. Springer, 2013.

693

https://arxiv.org/pdf/1905.04447.pdf
https://arxiv.org/pdf/1905.04447.pdf

[LW16] Yi Li and David P Woodruff. Tight bounds for sketching the operator norm, schat-
ten norms, and subspace embeddings. In Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM

2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[LWW14] Yi Li, Zhengyu Wang, and David P Woodruff. Improved testing of low rank
matrices. In Proceedings of the 20th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 691–700, 2014.

[LYFC19] Tam Le, Makoto Yamada, Kenji Fukumizu, and Marco Cuturi. Tree-sliced vari-
ants of wasserstein distances. 2019.

[LZ11] Ping Li and Cun-Hui Zhang. A new algorithm for compressed counting with
applications in shannon entropy estimation in dynamic data. In Proceedings of

the 24th Annual Conference on Learning Theory, pages 477–496, 2011.

[M+05] Shanmugavelayutham Muthukrishnan et al. Data streams: Algorithms and appli-
cations. Foundations and Trends® in Theoretical Computer Science, 1(2):117–
236, 2005.

[Mah11] Michael W Mahoney. Randomized algorithms for matrices and data. Foundations

and Trends® in Machine Learning, 3(2):123–224, 2011.

[Mai94] Harry G Mairson. Generating words in a context-free language uniformly at
random. Information Processing Letters, 49(2):95–99, 1994.

[McC90] Kevin S McCurley. The discrete logarithm problem. In Proceedings of Symposia

in Applied Mathematics, volume 42, pages 49–74, 1990.

[McD89] Colin McDiarmid. On the method of bounded differences, page 148–188. London
Mathematical Society Lecture Note Series. Cambridge University Press, 1989.

[MCS+06] Jianning Mai, Chen-Nee Chuah, Ashwin Sridharan, Tao Ye, and Hui Zang. Is
sampled data sufficient for anomaly detection? In Proceedings of the 6th ACM

SIGCOMM conference on Internet measurement, pages 165–176. ACM, 2006.

[MFHH05] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong.
Tinydb: an acquisitional query processing system for sensor networks. ACM

Transactions on database systems (TODS), 30(1):122–173, 2005.

[MG82] Jayadev Misra and David Gries. Finding repeated elements. Science of Computer

Programming, 2(2):143–152, 1982.

[MHS19] Omar Montasser, Steve Hanneke, and Nathan Srebro. Vc classes are adversarially
robustly learnable, but only improperly. In Conference on Learning Theory, pages

694

2512–2530. PMLR, 2019.

[MI10] Malik Magdon-Ismail. Row sampling for matrix algorithms via a non-
commutative bernstein bound. arXiv preprint arXiv:1008.0587, 2010.

[MJ15] Jonas W Mueller and Tommi Jaakkola. Principal differences analysis: Inter-
pretable characterization of differences between distributions. In Advances in

Neural Information Processing Systems, pages 1702–1710, 2015.

[MM12] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over
data streams. PVLDB, 5(12):1699, 2012.

[MM13] Xiangrui Meng and Michael W Mahoney. Low-distortion subspace embeddings
in input-sparsity time and applications to robust linear regression. In Proceedings

of the forty-fifth annual ACM symposium on Theory of computing (STOC), pages
91–100. ACM, https://arxiv.org/pdf/1210.3135, 2013.

[MNS11] Ilya Mironov, Moni Naor, and Gil Segev. Sketching in adversarial environments.
SIAM Journal on Computing, 40(6):1845–1870, 2011.

[MNSW95] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data
structures and asymmetric communication complexity. In Proceedings of the

twenty-seventh annual ACM symposium on Theory of computing, pages 103–111.
ACM, 1995.

[Moo01] David Moore, 2001.

[Mor78] Robert Morris. Counting large numbers of events in small registers. Communi-

cations of the ACM, 21(10):840–842, 1978.

[MP80] J.I. Munro and M.S. Paterson. Selection and sorting with limited storage. Theo-

retical Computer Science, 12(3):315–323, 1980.

[MP14] Gregory T Minton and Eric Price. Improved concentration bounds for count-
sketch. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Dis-

crete algorithms, pages 669–686. Society for Industrial and Applied Mathemat-
ics, 2014.

[MPTW16] Andrew McGregor, A Pavan, Srikanta Tirthapura, and David P Woodruff.
Space-efficient estimation of statistics over sub-sampled streams. Algorithmica,
74(2):787–811, 2016.

[MRWZ20a] Sepideh Mahabadi, Ilya Razenshteyn, David P Woodruff, and Samson Zhou.
Non-adaptive adaptive sampling on turnstile streams. In Proceedings of the 52nd

Annual ACM SIGACT Symposium on Theory of Computing, pages 1251–1264,

695

https://arxiv.org/pdf/1210.3135

2020.

[MRWZ20b] Sepideh Mahabadi, Ilya P. Razenshteyn, David P. Woodruff, and Samson Zhou.
Non-adaptive adaptive sampling on turnstile streams. In Proccedings of the 52nd

Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 1251–
1264, 2020.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. pages
3111–3119, 2013.

[MSDO05] Amit Manjhi, Vladislav Shkapenyuk, Kedar Dhamdhere, and Christopher Olston.
Finding (recently) frequent items in distributed data streams. In IEEE ICDE,
pages 767–778, 2005.

[MSW20] Debmalya Mandal, Nisarg Shah, and David P Woodruff. Optimal
communication-distortion tradeoff in voting. In Proceedings of the 21st ACM

Conference on Economics and Computation, pages 795–813, 2020.

[Mun57] James Munkres. Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[MV20] Andrew McGregor and Sofya Vorotnikova. Triangle and four cycle counting in
the data stream model. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems, pages 445–456, 2020.

[MW10] Morteza Monemizadeh and David P Woodruff. 1-pass relative-error lp-sampling
with applications. In Proceedings of the twenty-first annual ACM-SIAM sympo-

sium on Discrete Algorithms, pages 1143–1160. SIAM, 2010.

[MW17] Cameron Musco and David P Woodruff. Sublinear time low-rank approxima-
tion of positive semidefinite matrices. In 2017 IEEE 58th Annual Symposium on

Foundations of Computer Science (FOCS), pages 672–683. IEEE, 2017.

[Nag06] HN Nagaraja. Order statistics from independent exponential random variables
and the sum of the top order statistics. Advances in Distribution Theory, Order

Statistics, and Inference, pages 173–185, 2006.

[Nev02] Frank Neven. Automata theory for XML researchers. SIGMOD Record,
31(3):39–46, 2002.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Com-

binatorica, 12(4):449–461, 1992.

[NN13] Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra al-

696

gorithms via sparser subspace embeddings. In 2013 IEEE 54th Annual Sym-

posium on Foundations of Computer Science (FOCS), pages 117–126. IEEE,
https://arxiv.org/pdf/1211.1002, 2013.

[Nol] John P Nolan. Stable distributions.

[NS19] Vasileios Nakos and Zhao Song. Stronger L2/L2 compressed sensing; without
iterating. In Proceedings of the 51st Annual ACM Symposium on Theory of Com-

puting (STOC), 2019.

[NW70] Saul B Needleman and Christian D Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of

molecular biology, 48(3):443–453, 1970.

[NY15a] Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. In An-

nual Cryptology Conference, pages 565–584. Springer, 2015.

[NY15b] Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. In Ad-

vances in Cryptology - CRYPTO - 35th Annual Cryptology Conference, pages
565–584, 2015.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of

Computer and System Sciences, 52(1):43–52, 1996.

[OD14] Umut Oztok and Adnan Darwiche. Cv-width: A new complexity parameter for
cnfs. In ECAI, pages 675–680, 2014.

[Olk93] Frank Olken. Random sampling from databases. PhD thesis, University of Cali-
fornia, Berkeley, 1993.

[Pag13] Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Compu-

tation Theory (TOCT), 5(3):1–17, 2013.

[PC19] Gabriel Peyré and Marco Cuturi. Computational optimal transport: With appli-
cations to data science. 11(5–6):355–607, 2019.

[PD08] Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on
structured decomposability. In AAAI, volume 8, pages 517–522, 2008.

[PDGQ05] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the
data: Parallel analysis with sawzall. Scientific Programming, 13(4):277–298,
2005.

[PP13] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit
feature maps. In Proceedings of the 19th ACM SIGKDD international conference

697

https://arxiv.org/pdf/1211.1002

on Knowledge discovery and data mining, pages 239–247, 2013.

[PPP21] Aditya Parulekar, Advait Parulekar, and Eric Price. L1 regression with lewis
weights subsampling. arXiv preprint arXiv:2105.09433, 2021.

[PR03] Michal Parnas and Dana Ron. Testing metric properties. Information and Com-

putation, 187(2):155–195, 2003.

[Pri18] Eric Price. Personal communication. November, 2018.

[PS13a] Reinhard Pichler and Sebastian Skritek. Tractable counting of the answers to
conjunctive queries. Journal of Computer and System Sciences, 79(6):984–1001,
2013.

[PS13b] Reinhard Pichler and Sebastian Skritek. Tractable counting of the answers to
conjunctive queries. J. Comput. Syst. Sci., 79(6):984–1001, 2013.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global
vectors for word representation. pages 1532–1543, 2014.

[PV20] Richard Peng and Santosh Vempala. Solving sparse linear systems faster than
matrix multiplication. arXiv preprint arXiv:2007.10254, 2020.

[PVZ12] Jeff M Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-
hand multiparty communication complexity, made easy. In Proceedings of the

twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 486–
501. SIAM, 2012.

[Rab69] Michael O Rabin. Decidability of second-order theories and automata on infinite
trees. Transactions of the american Mathematical Society, 141:1–35, 1969.

[RD07] Florin Rusu and Alin Dobra. Pseudo-random number generation for sketch-based
estimations. ACM Transactions on Database Systems (TODS), 32(2):11, 2007.

[RD08] Florin Rusu and Alin Dobra. Sketches for size of join estimation. ACM Transac-

tions on Database Systems (TODS), 33(3):15, 2008.

[Rei08] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM

(JACM), 55(4):1–24, 2008.

[Rel] https://www.relational.ai/.

[Ren13] Steffen Rendle. Scaling factorization machines to relational data. In Proceedings

of the VLDB Endowment, volume 6, pages 337–348. VLDB Endowment, 2013.

[RGG03] Raghu Ramakrishnan, Johannes Gehrke, and Johannes Gehrke. Database man-

agement systems, volume 3. McGraw-Hill New York, 2003.

698

https://www.relational.ai/

[RN16] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited„ 2016.

[Roh19] Dhruv Rohatgi. Conditional hardness of earth mover distance. arXiv preprint

arXiv:1909.11068, 2019.

[RTG00a] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s dis-
tance as a metric for image retrieval. International journal of computer vision,
40(2):99–121, 2000.

[RTG00b] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The Earth Mover’s Distance
as a metric for image retrieval. 40(2):99–121, 2000.

[RV07] Mark Rudelson and Roman Vershynin. Sampling from large matrices: An ap-
proach through geometric functional analysis. Journal of the ACM (JACM),
54(4):21–es, 2007.

[RVBW06] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint pro-

gramming. Elsevier, 2006.

[Sam84] Hanan Samet. The quadtree and related hierarchical data structures. ACM Com-

puting Surveys (CSUR), 12(2):187–260, 1984.

[Sar06] Tamas Sarlos. Improved approximation algorithms for large matrices via random
projections. In 2006 47th Annual IEEE Symposium on Foundations of Computer

Science (FOCS’06), pages 143–152. IEEE, 2006.

[SBM+18] Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Mung Chiang, and
Prateek Mittal. Darts: Deceiving autonomous cars with toxic signs. arXiv

preprint arXiv:1802.06430, 2018.

[Sch35] Isaac J Schoenberg. Remarks to maurice frechet’s article“sur la definition ax-
iomatique d’une classe d’espace distances vectoriellement applicable sur l’espace
de hilbert. Annals of Mathematics, pages 724–732, 1935.

[Sch07] Thomas Schwentick. Automata for xml?a survey. Journal of Computer and

System Sciences, 73(3):289–315, 2007.

[Sch18] Aaron Schild. An almost-linear time algorithm for uniform random spanning
tree generation. In Proceedings of the 50th Annual ACM SIGACT Symposium on

Theory of Computing, pages 214–227, 2018.

[SD] Amit Shukla and Prasad Deshpande. Storage estimation for multidimensional
aggregates in the presence of hierarchies.

699

[SDGP+15] Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian
Butscher, Andy Nguyen, Tao Du, and Leonidas Guibas. Convolutional wasser-
stein distances: Efficient optimal transportation on geometric domains. ACM

Transactions on Graphics (TOG), 34(4):1–11, 2015.

[Seg13] Luc Segoufin. Enumerating with constant delay the answers to a query. In Pro-

ceedings of the 16th International Conference on Database Theory, pages 10–20,
2013.

[Seg14] Luc Segoufin. A glimpse on constant delay enumeration. In 31st International

Symposium on Theoretical Aspects of Computer Science (STACS 2014), STACS

2014, March 5-8, 2014, Lyon, France, pages 13–27, 2014.

[Seg15] Luc Segoufin. Constant delay enumeration for conjunctive queries. SIGMOD

Rec., 44(1):10–17, May 2015.

[Sei90] Helmut Seidl. Deciding equivalence of finite tree automata. SIAM J. Comput.,
19(3):424–437, 1990.

[She17] Jonah Sherman. Generalized preconditioning and undirected minimum cost flow.
2017.

[SL+91] Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume 199.
Prentice hall Englewood Cliffs, NJ, 1991.

[SOC16] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning linear regres-
sion models over factorized joins. In Proceedings of the 2016 International Con-

ference on Management of Data, SIGMOD ’16, pages 3–18. ACM, 2016.

[spa] https://spark.apache.org/.

[SS+11] Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foun-

dations and trends in Machine Learning, 4(2):107–194, 2011.

[SS17] Ohad Shamir and Liran Szlak. Online learning with local permutations and de-
layed feedback. In International Conference on Machine Learning, pages 3086–
3094. PMLR, 2017.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–Hoeffding
bounds for applications with limited independence. SIAM Journal on Discrete

Mathematics, 8(2):223–250, 1995.

[ST04] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In Proceedings of

the thirty-sixth annual ACM symposium on Theory of computing, pages 81–90,

700

https://spark.apache.org/

2004.

[ST13] Daniel A Spielman and Shang-Hua Teng. A local clustering algorithm for mas-
sive graphs and its application to nearly linear time graph partitioning. SIAM

Journal on computing, 42(1):1–26, 2013.

[Ste10] David Steurer. Fast sdp algorithms for constraint satisfaction problems. In
Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Al-

gorithms, pages 684–697. SIAM, 2010.

[SW11] Christian Sohler and David P Woodruff. Subspace embeddings for the `1-norm
with applications. In Proceedings of the forty-third annual ACM symposium on

Theory of computing, pages 755–764. ACM, 2011.

[SW19] Xiaofei Shi and David P Woodruff. Sublinear time numerical linear algebra for
structured matrices. In Proceedings of the AAAI Conference on Artificial Intelli-

gence, volume 33, pages 4918–4925, 2019.

[SWYZ19] Xiaoming Sun, David P Woodruff, Guang Yang, and Jialin Zhang. Querying a
matrix through matrix-vector products. arXiv preprint arXiv:1906.05736, 2019.

[SWZ16] Zhao Song, David P. Woodruff, and Huan Zhang. Sublinear time orthogonal
tensor decomposition. In Advances in Neural Information Processing Systems

29: Annual Conference on Neural Information Processing Systems (NIPS) 2016,

December 5-10, 2016, Barcelona, Spain, pages 793–801, 2016.

[SWZ19] Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank
approximation. In SODA 2019. https://arxiv.org/pdf/1704.08246,
2019.

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
In International Conference on Learning Representations, 2014.

[Tao11] Terence Tao. Topics in random matrix theory. Lecture Notes, 2011.

[TBG+06] Dan Teodosiu, Nikolaj Bjorner, Yuri Gurevich, Mark Manasse, and Joe Porkka.
Optimizing file replication over limited-bandwidth networks using remote differ-
ential compression. 2006.

[Ter99] Eugenia Ternovskaia. Automata theory for reasoning about actions. In Proceed-

ings of the Sixteenth International Joint Conference on Artificial Intelligence, IJ-

CAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages,
pages 153–159, 1999.

701

https://arxiv.org/pdf/1704.08246

[Tho72] Robert C Thompson. Principal submatrices ix: Interlacing inequalities for singu-
lar values of submatrices. Linear Algebra and its Applications, 5(1):1–12, 1972.

[Tho97] Wolfgang Thomas. Languages, automata, and logic. In Handbook of formal

languages, pages 389–455. Springer, 1997.

[TLJ10] Marina Thottan, Guanglei Liu, and Chuanyi Ji. Anomaly detection approaches
for communication networks. In Algorithms for Next Generation Networks, pages
239–261. Springer, 2010.

[Tro08] Joel A Tropp. Norms of random submatrices and sparse approximation. Comptes

Rendus Mathematique, 346(23-24):1271–1274, 2008.

[Tro15] Joel Tropp. An introduction to matrix concentration inequalities. Foundations

and Trends® in Machine Learning, 8(1-2):1–230, 2015.

[Tur48] Alan M Turing. Rounding-off errors in matrix processes. The Quarterly Journal

of Mechanics and Applied Mathematics, 1(1):287–308, 1948.

[TW68] James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with
an application to a decision problem of second-order logic. Mathematical systems

theory, 2(1):57–81, 1968.

[TW11] Srikanta Tirthapura and David P Woodruff. Optimal random sampling from dis-
tributed streams revisited. In International Symposium on Distributed Computing,
pages 283–297. Springer, 2011.

[TZ] Mikkel Thorup and Yin Zhang. Tabulation based 4-universal hashing with appli-
cations to second moment estimation.

[UZ11] Vladimir V Uchaikin and Vladimir M Zolotarev. Chance and stability: stable

distributions and their applications. Walter de Gruyter, 2011.

[Val79] Leslie G Valiant. The complexity of enumeration and reliability problems. SIAM

Journal on Computing, 8(3):410–421, 1979.

[Var95] Moshe Y Vardi. Alternating automata and program verification. In Computer

Science Today, pages 471–485. Springer, 1995.

[Var00] Moshe Y. Vardi. Constraint satisfaction and database theory: a tutorial. In Pro-

ceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-

ciples of Database Systems, May 15-17, 2000, Dallas, Texas, USA, pages 76–85,
2000.

[VB96] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM re-

702

view, 38(1):49–95, 1996.

[Ver10] Roman Vershynin. Introduction to the non-asymptotic analysis of random matri-
ces. arXiv preprint arXiv:1011.3027, 2010.

[Vit85a] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Math-

ematical Software (TOMS), 11(1):37–57, 1985.

[Vit85b] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw.,
11(1):37–57, 1985.

[VL92] Charles F Van Loan. Computational frameworks for the fast Fourier transform,
volume 10 of Frontiers in Applied Mathematics. Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, PA, 1992.

[VL00] Charles F Van Loan. The ubiquitous kronecker product. Journal of computational

and applied mathematics, 123(1-2):85–100, 2000.

[VLP93] Charles F Van Loan and N. Pitsianis. Approximation with Kronecker products. In
Linear algebra for large scale and real-time applications (Leuven, 1992), volume
232 of NATO Adv. Sci. Inst. Ser. E Appl. Sci., pages 293–314. Kluwer Acad. Publ.,
Dordrecht, 1993.

[VNG47] John Von Neumann and Herman H Goldstine. Numerical inverting of matrices of
high order. Bulletin of the American Mathematical Society, 53(11):1021–1099,
1947.

[VSBR83] LG Valiant, S Skyum, S Berkowitz, and C Rackoff. Fast parallel computation of
polynomials using few processors. SIAM Journal on Computing, 12(4):641–644,
1983.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, 3 edition, 2013.

[W+14] David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foun-

dations and Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014.

[Wai19] M.J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Uni-
versity Press, 2019.

[Wan19] Lan Wang. A new tuning-free approach to high-dimensional regression. ., 2019.

[WDL+09] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh At-
tenberg. Feature hashing for large scale multitask learning. In Proceedings of the

703

26th annual international conference on machine learning, pages 1113–1120,
2009.

[Wil10] Ross Willard. Testing expressibility is hard. In Principles and Practice of Con-

straint Programming - CP 2010 - 16th International Conference, CP 2010, St.

Andrews, Scotland, UK, September 6-10, 2010. Proceedings, pages 9–23, 2010.

[WKL09] Lan Wang, Bo Kai, and Runze Li. Local rank inference for varying coefficient
models. Journal of the American Statistical Association, 104(488):1631–1645,
2009.

[WL09] Lan Wang and Runze Li. Weighted wilcoxon-type smoothly clipped absolute
deviation method. Biometrics, 65(2):564–571, 2009.

[Woo04] David Woodruff. Optimal space lower bounds for all frequency moments. In Pro-

ceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 167–175. Society for Industrial and Applied Mathematics, 2004.

[Woo07] David Paul Woodruff. Efficient and private distance approximation in the com-

munication and streaming models. PhD thesis, Massachusetts Institute of Tech-
nology, 2007.

[Woo09] David P Woodruff. The average-case complexity of counting distinct elements.
In Proceedings of the 12th International Conference on Database Theory, pages
284–295. ACM, 2009.

[Woo11] David P. Woodruff. Near-optimal private approximation protocols via a black
box transformation. In Proceedings of the 43rd ACM Symposium on Theory of

Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 735–744,
2011.

[WP05] Arno Wagner and Bernhard Plattner. Entropy based worm and anomaly detection
in fast ip networks. In Enabling Technologies: Infrastructure for Collaborative

Enterprise, 2005. 14th IEEE International Workshops on, pages 172–177. IEEE,
2005.

[WPB+18] Lan Wang, Bo Peng, Jelena Bradic, Runze Li, and Yunan Wu. A tuning-free
robust and efficient approach to high-dimensional regression. Technical report,
School of Statistics, University of Minnesota, 2018.

[WSV12] Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe. Handbook of

semidefinite programming: theory, algorithms, and applications, volume 27.
Springer Science & Business Media, 2012.

704

[WW15] Omri Weinstein and David P Woodruff. The simultaneous communication of
disjointness with applications to data streams. In International Colloquium on

Automata, Languages, and Programming, pages 1082–1093. Springer, 2015.

[WW19] Ruosong Wang and David P Woodruff. Tight bounds for `p oblivious subspace
embeddings. In SODA, 2019.

[WZ12] David P Woodruff and Qin Zhang. Tight bounds for distributed functional mon-
itoring. In Proceedings of the forty-fourth annual ACM symposium on Theory of

computing, pages 941–960. ACM, 2012.

[WZ13] David P. Woodruff and Qin Zhang. Subspace embeddings and lp-regression using
exponential random variables. CoRR, abs/1305.5580, 2013.

[WZ16] David P Woodruff and Peilin Zhong. Distributed low rank approximation of
implicit functions of a matrix. In Data Engineering (ICDE), 2016 IEEE 32nd

International Conference on, pages 847–858. IEEE, 2016.

[WZ17] David P. Woodruff and Qin Zhang. When distributed computation is communi-
cation expensive. Distributed Computing, 30(5):309–323, 2017.

[WZ18] David P Woodruff and Qin Zhang. Distributed statistical estimation of matrix
products with applications. In Proceedings of the 37th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems, pages 383–394, 2018.

[WZ20a] David P. Woodruff and Amir Zandieh. Near input sparsity time kernel embed-
dings via adaptive sampling. In International Conference on Machine Learning

(ICML), 2020.

[WZ20b] David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust
streams and sliding windows via difference estimators. CoRR, abs/2011.07471,
2020.

[XTB08] Bojian Xu, Srikanta Tirthapura, and Costas Busch. Sketching asynchronous data
streams over sliding windows. Distributed Computing, 20(5):359–374, 2008.

[Yan81] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Very Large

Data Bases, 7th International Conference, September 9-11, 1981, Cannes,

France, Proceedings, pages 82–94, 1981.

[YGL+] Keyu Yang, Yunjun Gao, Lei Liang, Bin Yao, Shiting Wen, and Gang Chen.
Towards factorized svm with gaussian kernels over normalized data.

[YO14] Arman Yousefi and Rafail Ostrovsky. Improved approximation algorithms for
earth-mover distance in data streams. 1404.6287, 2014.

705

[YZ13] Ke Yi and Qin Zhang. Optimal tracking of distributed heavy hitters and quantiles.
Algorithmica, 65(1):206–223, 2013.

[ZCL+18] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. Random
sampling over joins revisited. In SIGMOD, pages 1525–1539, 2018.

[Zhu17] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In 58th IEEE Annual Sym-

posium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,

October 15-17, 2017, pages 331–342, 2017.

[ZMW+21] Fuheng Zhao, Sujaya Maiyya, Ryan Wiener, Divyakant Agrawal, and Amr El
Abbadi. Kll±approximate quantile sketches over dynamic datasets. Proceedings

of the VLDB Endowment, 14(7):1215–1227, 2021.

706

	Introduction
	Streaming Algorithms
	Numerical Linear Algebra
	Query Evaluation and Automata Theory
	Roadmap of the Thesis

	Background and Preliminaries
	Notation and Basic Preliminaries
	Probability Background for Sketching
	Streaming Background
	Numerical Linear Algebra

	I Streaming and Distributed Algorithms
	Perfect Lp Sampling in Data Streams
	Background
	Primer on Precision Sampling and Overview
	The Sampling Algorithm
	Time and Space Complexity
	Approximating the Sampled Coordinate
	Truly Perfect Sampling for General Measures
	Lower Bounds

	Moment Estimation in Streaming and Distributed Models
	Background
	Communication Complexity and the Message Passing Model
	Message Passing Fp Estimation for p > 1
	Fp Estimation for p<1
	Entropy Estimation
	Approximate Matrix Product in the Message Passing Model
	Lower Bounds

	Sampling from Distributed Streams
	Background
	Overview of the Sampling Algorithm and Techniques
	Basic Results on Distributed Sampling
	Weighted SWOR via Precision Sampling
	Tracking Heavy Hitters with Residual Error
	L1 tracking

	Data Streams with Bounded Deletions
	Background
	Frequency Estimation via Sampling
	L1 Heavy Hitters
	L1 Sampling
	L1 estimation
	L0 Estimation
	Support Sampling
	Lower Bounds

	Adversarially Robust Streaming
	Background
	Tools for Robustness
	Robust Fp-Estimation
	Robust Distinct Elements Estimation
	Robust Heavy Hitters
	Robust Entropy Estimation
	Adversarial Robustness in the Bounded Deletion Model
	Adversarial Attack Against the AMS Sketch
	Optimal Distinct Elements via Cryptographic Assumptions

	Streaming Algorithms for Earth Movers Distance
	Background
	Technical Overview
	Quadtrees and Compressed Quadtrees
	Analysis of Compressed Quadtrees
	Two-Round Linear Sketch
	One-Round Linear Sketch
	Analysis of ComputeEMD via Tree Embeddings
	Tightness of ComputeEMD
	Lower Bound for Quadtree Approximation via Tree Embeddings
	Sampling with Meta-data
	Embedding pd into {0,1}d'
	Relationship between Linear Sketching, Distributed Communication Protocols, and Streaming

	II Numerical Linear Algebra
	Testing Positive Semi-Definiteness
	Background
	Overview of the Testing Algorithms
	PSD Testing with L-inf Gap
	PSD Testing with L-2-square Gap
	Lower Bounds
	Proof of Eigenvalue Identity

	Kronecker Product Regression and Low-Rank Approximation
	Background
	Kronecker Product Regression
	All-Pairs Regression
	Low Rank Approximation of Kronecker Product Matrices
	Evaluation

	In-Database Regression
	Background
	Preliminaries on Database Joins and Relevant Sketches
	Subspace Embeddings for Two-Table Database Joins
	General Join Queries
	Evaluation

	III Database Query Evaluation
	Approximate Counting and Uniform Sampling from Database Queries
	Background
	Primer on Automata Theory
	From Conjunctive Queries to Tree Automata
	Technical Overview of the Tree Automata FPRAS
	An FPRAS and Uniform Sampler for Tree Automata
	Estimating Partition Sizes via Succinct NFAs
	Applications of the FPRAS
	Open Problems and Future Work

	Bibliography

