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Abstract
In this thesis, I develop, test, and understand neural network models of recurrent

circuits for V1 and early visual areas in general in a series of three studies. In the first
study, I trained a Boltzmann machine using 3D natural scene data and established
the consistency of the learned connections of such a recurrent network to the func-
tional connectivity of neurons measured in neurophysiological experiments, and thus
showing that the recurrent connectivity of the brain reflects statistical priors of the
natural scenes. In the second study, I compared feed-forward convolutional neural
networks (CNNs) with other popular models for predicting V1 neural responses and
isolated the key components underlying the superior performance of CNN models.
In the third study, I introduced recurrent circuits to the CNN and showed that re-
current models provided better predictive performance and were more data efficient
compared to feed-forward models of comparable configurations. The learned re-
current models could reproduce a variety of contextual modulation effects observed
in the visual cortex. To understand the computational advantage of the recurrent
models, I proposed a new conceptualization of the recurrent network as a multi-path
ensemble model and I established that compared to feed-forward models, multi-path
ensembles as implemented by recurrent models can be more flexible and data effi-
cient in learning and approximating complex computations as those in the brain.
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3.10 Convolution seemed more important than diverse filters. a-f Comparison of
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single- vs. multi-channel CNN models, and comparison of models with and with-
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ters (top) and fitting results (bottom). Simple cell components are shown with
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multi-component model, we also show the weights of different components at the
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weights of its complex components. h Performance vs. number of hidden units
for MLP models. Vertical dashed lines denote the MLP model (MLP 40) in
panels a-c,f, and horizontal dashed lines show performance metrics of the CNN
R avg. Only results for monkey A are shown and monkey B gave similar results. 55

3.11 Transfer learning (goal-driven) approach for modeling V1 neurons using a pre-
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Chapter 1

Introduction

1.1 Motivation

The early visual cortex [97, 118, 170], which consists of primary visual cortex (V1), secondary
visual cortex (V2), and sometimes V3 as well, participates in the first stages of visual processing
in the brain.

Receiving visual sensory input ultimately from the retina, V1 neurons are sensitive to various
stimulus attributes such as orientation, spatial frequency, and direction; they are traditionally
classified as simple and complex cells based on their responses to drifting visual gratings [63,
64, 65]. Traditionally, simple and complex V1 neurons are modeled by linear-nonlinear (LN)
models [52] and energy models [1], respectively. By construction, these standard V1 models
(LN models and energy models) only respond to stimulus change with in neurons’ classical
receptive fields or CRFs [49], which are classically defined as regions in the visual space where
the presence or absence of small, impulse like stimuli (bright or dark dots) can cause change in
neural response.

Anatomically adjacent to V1, V2 receives strong feed-forward inputs from V1 neurons [165]
and contains many orientation selective neurons, resembling its V1 input [37, 66]. On the other
hand, many V2 neurons respond well to complex stimuli such as angles and curves [4, 53, 68].
Existing V2 computational studies mostly model V2 neurons as linear combinations of V1 neu-
rons [96, 120, 176], based on existing V1 models.

The standard V1 models described above have been successful in explaining V1 response
to relatively simple stimuli, such as bars, edges and gratings [142]. However, they cannot ex-
plain satisfactorily neural responses to more complex stimuli such as complex shapes and natural
images [13, 25, 54, 87, 160, 171], under which V1 neurons exhibit complex nonlinear response
properties; these properties not predicted by standard models are collectively called non-classical
receptive field (nCRF) effects [185] in this document. When natural stimuli are used, V1’s nCRF
effects result in a significant portion (no less than 50 %) of variance in neural responses left un-
explained by most existing models, including those state-of-the-art ones based on feed-forward
neural networks for predicting V1 data [13, 25, 81, 87]. Given the inadequacy of its component
V1 models, existing V2 models leave a higher portion of neural responses unexplained compared
to V1 models [176].
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One possible reason for the failure of existing models in terms of explaining neural responses
to natural stimuli is the lack of recurrent connections in these models. In the brain, it is well
known that there are local horizontal recurrent connections between neurons in the same area
[73] and long-range feedback recurrent connections between neurons in different areas [32]. By
some count [27], more than 90% of the excitatory synapses and virtually all of the inhibitory ones
in V1 come from recurrent connections. These connections greatly contribute to the complexity
of the visual system, and may be essential for the success of the visual systems in reality; for
example, there are evidences that recurrent connections are crucial for object recognition under
noise, clutter, and occlusion [121, 133, 154].

One possible way to study the potential role of recurrent connections in nCRF effects and
other phenomena in V1 is to model them using neural networks. In recent years, neural network
models have been used to study various visual areas with great success [13, 78, 81, 89, 179, 184].
As a consequence of their current success and biological realism relative to other computational
models, neural network models provide a viable tool for exploring computational (and, to a lesser
extent, mechanistic) mechanisms of V1 and early visual areas in general. Furthermore, as neural
network models in general allow end-to-end training more easily than other computational mod-
els, V1 models based on neural networks can be trained on data sets containing large numbers
of neurons and complex, natural stimuli to test the validity of these models in a more realistic
setting. Recent studies have begun to explore the benefits of recurrent connections in many ma-
chine learning settings [23, 106, 108, 116]; however, the role recurrent connections play in the
primary visual cortex and early visual areas in general remains unexplained. While there have
been many studies on modeling various neural response properties (surround suppression, end-
stopping, etc.) thought to related to recurrent circuits [18, 19, 20, 134, 156, 157, 158, 180, 185],
these models’ predictive power on arbitrary input stimuli are either unknown or worse compared
to deep feed-forward networks that have recently become popular in the visual neuroscience
community for predicting neural responses to arbitrary stimuli [13, 78, 81, 89, 105, 179].

1.2 Summary of the work

This thesis tries to develop, test, and understand neural network models of recurrent circuits
for V1 and early visual areas in general. To achieve the goal, I’ve conducted three studies as
summarized as follows.

1.2.1 Relating recurrent connections to natural scene statistics

In the first study (Chapter 2) [182], I have demonstrated that the Boltzmann machine, which is
inspired by neuroscience but often dismissed to be too abstract and different from the real brain,
is in fact a useful and viable model for conceptualizing certain recurrent computations in the pri-
mary visual cortex. In particular, I attempted to learn horizontal recurrent connections between
V1 disparity-tuned neurons by learning from 3D natural scene data using a Boltzmann machine;
the learned connectivity patterns were consistent with connectivity constraints in stereopsis mod-
els [110, 147], and simulated neurophysiological experiments on the model were consistent with
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neurophysiological data in terms of functional connectivities among disparity-tuned neurons in
V1 [145].

1.2.2 Feed-forward circuit characterization of V1 neurons using convolu-
tional neural networks

In the second study (Chapter 3) [184], I systematically evaluated the relative merits of different
(feedforward) CNN components in the context of modeling V1 neurons. The study demon-
strated that key components of the CNN (convolution, thresholding nonlinearity, and pooling)
contributed to its superior performance in explaining V1 responses to complex stimuli [160]
and these key components are consistent with previous V1 modeling and neurophysiology stud-
ies. While not directly related to recurrent circuits, it has demonstrated that predicting neural
responses to natural and complex stimuli accurately is a useful objective metric for identify-
ing neural network models with high correspondence with biological reality; in addition, it has
shown the usefulness of various ablation, dissection, and visualization methods for comparing
and understanding neural network models of different architectures. The infrastructure and anal-
ysis tools developed in the study to train and analyze tens of thousands of models with different
parameters will be heavily used in the third and final study.

1.2.3 Modeling neural responses of early visual areas using recurrent con-
volutional neural networks

In the third study (Chapter 4), I tried to answer two questions regarding recurrent network models
in modeling early visual areas. Experimentally, I wanted to know whether deep neural networks
with recurrent circuits can provide a better model for predicting neural responses in the early
visual areas; theoretically, I wanted to know why recurrent models perform better from either a
computational or a biological perspective, if the answer to the first question is positive.

To answer the first question, I trained tens of thousands of recurrent models with different
hyperparameters and under different amounts of training data using different data sets. I found
that recurrent models could explain neural responses of early visual areas better than typical
feed-forward models with matched hyperparameters and model sizes, especially when there was
less training data.

To answer the second question, I developed a novel method to reformulate a recurrent model
as an ensemble of feed-forward models. Our novel method is based on the hypothesis that the
advantage of the recurrent model rests on the ensemble of multiple feed-forward paths embedded
in the recurrent computation and such multitude of paths makes the recurrent model more flexible
compared to the feed-forward model. By studying recurrent models and feed-forward models
via their corresponding multi-path ensembles, we found that the recurrent model outperformed
the feed-forward one due to the former’s compact and implicit multi-path ensemble that allows
approximating the complex function underlying recurrent biological circuits with efficiency. In
addition, we found that the performance differences among the recurrent models we explored
were highly correlated with the differences in their multi-path ensembles; in particular, models
with more relative weights on shorter paths tended to perform better than models with more
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relative weights on longer paths.
This study establishes that the recurrent model performs better than the purely feed-forward

model for predicting neural responses in the early visual areas, complementing previous studies
on feed-forward models [13, 78, 81, 179] and consistent with very recent studies on recurrent
ones [77, 155]. The most interesting contribution of this study is to establish that the superiority
of the recurrent model for neural prediction can be attributed to the implicit and compact multi-
path ensemble inside the model, and that a balance of different paths in the ensemble is necessary
for the model to achieve the best performance. This work provides new understanding on the
computational rationales and advantages of recurrent circuits that are ubiquitous in biological
systems [32].
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Chapter 2

Relating functional connectivity in V1
neural circuits and 3D natural scenes using
Boltzmann machines

Bayesian theory has provided a compelling conceptualization for perceptual inference in the
brain. Central to Bayesian inference is the notion of statistical priors. To understand the neural
mechanisms of Bayesian inference, we need to understand the neural representation of statistical
regularities in the natural environment. In this study, we investigated empirically how statistical
regularities in natural 3D scenes are represented in the functional connectivity of disparity-tuned
neurons in the primary visual cortex of primates. We applied a Boltzmann machine model to
learn from 3D natural scenes, and found that the units in the model exhibited cooperative and
competitive interactions, forming a “disparity association field”, analogous to the contour asso-
ciation field. The cooperative and competitive interactions in the disparity association field are
consistent with constraints of computational models for stereo matching. In addition, we simu-
lated neurophysiological experiments on the model, and found the results to be consistent with
neurophysiological data in terms of the functional connectivity measurements between disparity-
tuned neurons in the macaque primary visual cortex. These findings demonstrate that there is a
relationship between the functional connectivity observed in the visual cortex and the statistics
of natural scenes. They also suggest that the Boltzmann machine can be a viable model for con-
ceptualizing computations in the visual cortex and, as such, can be used to predict neural circuits
in the visual cortex from natural scene statistics.

2.1 Introduction

Natural scenes contain significant ambiguity. To resolve ambiguities and obtain a stable 3D
percept of the world, the visual system (as well as the whole brain) must perform inference,
integrating current sensory data with prior knowledge of the world formulated from past experi-
ence. Therefore, (Bayesian) inference has long been proposed as a fundamental computational
principle of the brain [82, 173]. In this work, we attempt to address one of the key questions for
understanding Bayesian inference in the brain, in the context of the primary visual cortex (V1):
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how might an internal model of natural scenes—the Bayesian prior—be encoded in the brain?
To support visual inference, an internal representation of the visual scenes requires encoding

both the statistical regularities of the boundaries and of the surfaces themselves. There have been
studies suggesting that the neural circuits in the primary visual cortex (V1) encode contour priors
in the form of the contour association field [8, 31, 33, 42, 71, 103, 114, 145, 147]. Recent neuro-
physiological evidence suggests that disparity-tuned neurons in the primary visual cortex might
form a recurrent network for stereo processing [145, 147]. This network encodes the statistical
correlation of disparity signals in natural scenes, complementing the contour association field,
and is referred to as the disparity association field. However, the neural mechanisms by which
statistical priors of boundaries and surfaces from the environment can be learned are not well
understood.

We hypothesize that the empirically observed neural connectivity between disparity-tuned
neurons in V1 can be predicted from 3D natural scenes using a Boltzmann machine. To test
this hypothesis, we fitted a Boltzmann machine neural network model [56] to disparity signals
derived from 3D natural scene data, and found that 1) learned parameters in the model were con-
sistent with connectivity constraints in stereopsis models [110, 147]; 2) the model was consistent
with neurophysiological data in terms of functional connectivities among disparity-tuned neu-
rons in V1 [145]. The results provide further evidence in support of the notion of the disparity
association field, and demonstrate that the Boltzmann machine is a viable model for describing
cortical computation in the sense that they can be used to predict functional neural circuitry in
the visual cortex.

The study is organized as follows. In Section 2.2, we describe the 3D natural scene data
and the Boltzmann machine model, as well as the neurophysiological experiments for measur-
ing functional connectivities between pairs of neurons. In Section 2.3, we compare the trained
Boltzmann machine with computational models and neurophysiological data. In Section 2.4, we
discuss the potential implications of this model and its limitations.

2.2 Methods

2.2.1 3D scene data

We trained a Boltzmann machine to model the disparity signals over a small visual field. These
signals were derived from the Brown Range Image Database [62]. A total of 200K disparity
image patches with a 2° half-width were extracted from 172 images (54 forest, 49 interior, 69
residential). The images in the Brown data set were captured by a scanner with range at 2 m to
200 m, and image resolutions were approximately 5 pixels per degree of visual angle.

Disparity image patches were generated from each range image as follows (Figure 2.1b). A
random point in the range image was chosen as the fixation point. Given the fixation point, the
disparities at its surrounding pixels were computed using the method in Liu et al. [107] (see
Section 2.2.1.1 for detail). Finally, a disparity image patch with a 2° half-width was extracted 3°
away from the fixation point. This eccentricity was chosen to roughly match the typical receptive
field locations of recorded V1 neurons in our earlier neurophysiological experiments.
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Figure 2.1: (a) Diagram for calculating disparity. Adapted from Liu et al. [107]. See Eqs. (2.1)-
(2.3) for detail. (b) One sample range image from the Brown data set (upper) with disparity
values along one line in it (lower left), and two extracted disparity patches (lower right). In the
upper image: red crosses, fixations points for two patches; yellow crosses, center of patches;
red long rectangle, the row shown disparities. Patches were 3° away from fixation and had a
half-width of 2°.

2.2.1.1 Disparity computation

We used an optical model of the primate eye following Liu et al. [107] to compute disparity.
In this model (Figure 2.1a), each eye is approximated as a perfect sphere centered at its nodal
point, and inter-pupillary distance is assumed to be 0.038 m with nodal points at (−0.019, 0, 0)
and (0.019, 0, 0) as in monkey physiology.

Consider some fixation point F = (xf , yf , zf ). Let Oc = (0, 0, 0) be the midpoint between
the two eyes. We assume all observations are directed along the −z axis, or xf = yf = 0.
The distance from Oc to F is then just zf . The horizontal disparity, d, of an arbitrary point
P = (xp, yp, zp), is given by

d = βr − βl = α− φ, (2.1)
α = 2 atan(−0.019/zf ), (2.2)

φ = atan

(−xp − 0.019

zp

)
− atan

(−xp + 0.019

zp

)
. (2.3)

We made the simplifying assumption that fixations occur at any point in the scene with uniform
probability. This assumption is supported by Liu et al. [107], which shows that random fixations
roughly emulate the statistics of fixation, at least in natural scenes. This assumption should not
affect the basic conclusion of our results.
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2.2.2 Boltzmann machines
2.2.2.1 Interaction among neurons modeled by Boltzmann machines

The extracted disparity image patches reflect the prior of disparity signals in the natural scene,
and we modeled this prior by fitting a Boltzmann machine to the patches. Boltzmann machines
[56] are a class of stochastic recurrent neural network models that can learn internal represen-
tations to explain or generate the distribution of the input data, using pairwise connectivity be-
tween units to encode the structures of the input data. Boltzmann machines are also a type of
Markov random fields, which are widely used in computer vision for solving a variety of early
vision problems such as surface interpolation and stereo inference [6, 43, 85, 162]. We hypoth-
esize that Boltzmann machines are a viable computational model for understanding the circuitry
of the visual cortex, and we will examine if they can explain interactions among neurons in
other computational and neurophysiological studies [110, 145, 147]. Specifically, the interaction
terms ~β (Eq. (2.4)) in our Boltzmann machine model were compared with existing computa-
tional models in Section 2.3.2, and neurophysiological experiments were simulated on the model
(Section 2.2.2.2) to compare it with neural data in Section 2.3.3.

The units in our Boltzmann machine model (Figure 2.2a) are organized into a hidden layer
and a visible layer, arranged in a spatial 5 by 5 grid of “hypercolumns” (in totalC = 25 columns).
Each hypercolumn has a bank ofM = 16 visible units that encode the disparity input, and a bank
of 16 corresponding hidden units ~h, all sharing the same spatial receptive field location. The
N = MC = 400 hidden units are fully connected, each of them driven by its corresponding input
visible unit. The collective spiking activity at each bank of visible units encodes the disparity
signal at the corresponding hypercolumn.

This model is formally expressed as a probability distribution over hidden and visible units:

P (~h, ~v; ~α, ~β, ~γ, ~λ) =
1

Z
exp

(
N∑

i=1

αihi +
∑

i<j

βi,jhihj +
N∑

i=1

λihivi +
N∑

i=1

γivi

)
. (2.4)

In Eq. (2.4), ~h and ~v are binary vectors whose distributions are to be captured by the model, rep-
resenting spiking activities of hidden and visible units. The other model parameters capture the
distributions of ~h and ~v, as well as their interactions. Specifically, ~α and ~γ capture the baseline
firing rates of hidden and visible units, ~β models the pairwise lateral interactions among hid-
den units, and ~λ models the interactions between hidden and visible units. Z is a normalization
constant.

This Boltzmann machine was fitted by finding parameters ~α, ~β, ~γ, and ~λ that maximize
the probability of the model for generating the spike patterns ~v, corresponding to the disparity
signals in the extracted patches. Formally, the following log likelihood was maximized:

L(~α, ~β, ~γ, ~λ) =
T∑

i=1

logP (~v(i); ~α, ~β, ~γ, ~λ) =
T∑

i=1

log
2N∑

j=1

P (~h(j), ~v(i); ~α, ~β, ~γ, ~λ). (2.5)

In Eq. (2.5), ~v(i)’s are T binary spike patterns of the visible units converted from the disparity
signals based on the tuning curves of the visible units (see Figure 2.3 and Section 2.2.2.1.1). The
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likelihood of observing ~v(i) is computed as the sum of P (~h(j), ~v(i)) over all possible 2N hidden
unit patterns, which is the marginal probability for the model to generate ~v(i), regardless of the
hidden units. Finally, the log probability for the model to generate all the input spike patterns due
to the disparity signals is computed as the sum of log probabilities for generating each particular
spike pattern ~v(i). The model was trained using contrastive divergence mean field learning [175].
See Section 2.2.2.3 and Welling and Hinton [175] for more detail.

2.2.2.1.1 Conversion of disparity signals into binary spike patterns From each disparity
image patch i, disparity values si1, s

i
2, . . . , s

i
C=25 corresponding to the locations of the 25 hy-

percolumns were extracted, and the model was fitted to explain these disparity values across
all patches. Disparity signals are real-valued, and must be converted into binary spike patterns,
which can be considered as the spiking activities of the bottom-up input to V1 neurons. Follow-
ing the approach of Ganguli and Simoncelli [41], we derived a set of M = 16 tuning curves for
visible units (same for all the hypercolumns, Figure 2.2c) according to the distribution P (s) of
extracted disparity values from all patches (Figure 2.2b). Each disparity value was converted to
the mean firing rates of M = 16 visible units based on their tuning curves.

Given the above derived tuning curves, for each patch, we first converted the C = 25 dis-
parity values into the mean firing rates of the N = 400 visible units. Then for each of these N
units, a spike train of 200 ms was generated based on its mean firing rate using an independent
homogeneous Poisson process, and the whole spike train was partitioned into 20 bins of 10 ms1.
A “1” was assigned to a bin of a unit if there were one or more spikes for that unit within that
time bin; otherwise, a “0” was assigned. The whole generation process (for one disparity value)
is schematically shown in Figure 2.3.

2.2.2.2 Simulation of neurophysiological experiments on the model

With the trained Boltzmann machine, we can simulate the neurophysiological experiments by
providing the visible units ~v with specific experimental stimuli (Section 2.2.3.1), and collecting
the model response as binary spiking patterns of hidden units ~h. Because a Boltzmann machine
models the joint distribution of all hidden and visible units, we can compute the model response
by sampling from the conditional distribution of hidden units given the visible units:

P (~h | ~v; ~α, ~β, ~γ, ~λ) =
1

Z
exp

(
N∑

i=1

(αi + λivi)hi +
∑

i<j

βi,jhihj

)
. (2.6)

After generating hidden unit activities ~h by drawing samples from Eq. (2.6) (see Section 2.2.2.2.1
for detail), we compared ~h with neural data (Section 2.3.3), in terms of functional connectivity
using methods described in Section 2.2.3.2.

1Our implementation was written in terms of bins, with no notion of the physical duration of each bin. We
arbitrarily assumed each bin to be of 10ms, for easier comparison with neurophysiological data and other studies
based on Ising models (a type of Boltzmann machines).

9



2.2.2.2.1 Sampling of hidden unit activities given disparity stimulus Given the (real-valued)
disparity values of the stimulus at C = 25 hypercolumns, we first converted them into mean fir-
ing rates for all input visible units according to the tuning curves. Then we obtained each sample
of ~h (a N -dimensional binary vector) in the following MCMC fashion [86].

1. generate a ~v from the Poisson process described in Section 2.2.2.1.1, based on mean firing
rates of visible units.

2. initialize ~h randomly, run Gibbs sampling for one step2 based on Eq. (2.6).

3. collect the current ~h as a sample.

4. start over from 1), but when in 2), initialize ~h with the previous sample.

20 000 samples were generated for each stimulus, and every contiguous 100 samples were re-
garded as the model response in a trial, with 100 samples between trials, resulting in 100 trials
of 100 samples per stimulus3. In addition, before collecting the first sample, we performed an
additional 100 Gibbs sampling steps, as “burn-in”.

2.2.2.3 More implementation details

For results shown in Section 2.3, 48 960 disparity patches4 were extracted from the Brown data
set to train the Boltzmann machine model, with distance between nearby hypercolumns set to 1°
(Figure 2.2a). Data was taken in mini-batches of size 1000, and training took 1000 epochs. A
learning rate of 1× 10−2 was used for learning bias terms ~α and ~γ, and half of that for learning
lateral connections ~β. Multiplicative weight decay of 1× 10−2 for ~β multiplied by the learning
rate was used, and a momentum factor of 0.5 for first five epochs and one of 0.9 for the rest were
employed. Five iterations of mean field updates were used per iteration, with damping parameter
set to 0.2. Because ~α, ~γ, and ~λ offer too many degrees of freedom for the model fitting, we fixed
~λ to be positive, all elements equal to 0.5 during training. This encouraged the resulting ~α and ~γ
to be negative, and the hidden units to share the same preferred disparities as their visible input
units. If we did not constrain ~λ, we found that the learned ~α and ~γ were positive, and the tuning
curves of hidden units would be inverted from those of visible units, both counter-intuitive.

2Here one step of Gibbs sampling is defined as in Koller and Friedman [86], that is, given the initial state of all
hidden units h1, h2, . . . , hN , we randomly choose one unit hi, update it based on P (hi | ~h−i) (where −i means all
but i), and do this update sequentially for all N units. These N updates are collectively referred to as one step.

3Given all 20 000 samples, samples 1–100, 201–300, 401–500, . . . , 19 801–19 900 were collected as trials, and
samples between them (samples 101–200, 301–400, 501–600, . . . ) were discarded. This yielded 100 samples per
trial, and 100 trials per stimulus.

4These patches were from 49 interior images in the Brown data set, with 1000 patches per image. A total of 40
patches were dropped because they had missing range data (thus disparity signals) for some hypercolumns. Other
patches from different parts of the data set such as forest scenes were also tried, with empirically similar results,
also shown in the Results section.
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2.2.3 Neurophysiological experiments
2.2.3.1 Neurophysiological data

We compared the predictions from the trained Boltzmann machine with observations about the
neural circuitry that we have reported in previous studies, based on direct pairwise measurements
of neuronal spiking activities [145], and a recurrent neural circuit model that predicts neural
responses better than the feed-forward energy model [147].

In these earlier experiments, we analyzed neural data recorded using multi-electrode record-
ing techniques from neurons in the primary visual cortex of three awake behaving macaque
monkeys. For monkeys D and F, we used 4-8 tungsten in epoxy or glass microelectrodes [145],
while for monkey I we recorded from neurons using a chronically implanted multielectrode array
with 96 channels [146, 147]. The experimental protocols for these studies were approved by the
Institutional Animal Care and Use Committee of Carnegie Mellon University and in accordance
with Public Health Service guidelines for the care and use of laboratory animals.

Stimuli were dynamic random dot stereograms (DRDS) presented for one second per trial
while the monkey performed a fixation task. Each DRDS defines a uniform fronto-parallel depth
plane (i.e. uniform disparity) inside a 3.5° visual angle aperture window over the receptive fields
of the neurons being recorded. These stimuli were standard stimuli used to assess disparity
tuning of the neurons and were effective in driving disparity-tuned neurons. The dynamic ran-
dom dot stereogram (DRDS) was composed of 25-percent black and white dots on a mean gray
background with a refresh rate of 12 Hz for dot patterns (monitor refresh rate was 120 Hz) at 11
disparities (±0.94°; ±0.658°; ±282°; ±0.188°; ±0.094°; 0°). Further details about the neuro-
physiological experimental procedures are described in our previous works [145, 146, 147].

2.2.3.2 Neurophysiological measures of interaction

We measured the functional connectivity between pairs of neurons using a cross-correlation his-
togram (CCH) measure based on standard methods [2, 145]. The probabilities of joint spike
occurrences beyond chance at all possible lag times and all times from stimulus onset were com-
puted by measuring the observed probability of joint occurrences and subtracting the expected
joint occurrences, which was the outer product of the peristimulus time histograms:

Cxy(t1, t2) = 〈x(t1), y(t2)〉 − 〈x(t1)〉〈y(t2)〉, (2.7)

where x(t), y(t) were the spike trains of the two neurons respectively.
The expected joint occurrences 〈x(t1)〉〈y(t2)〉 account for the stimulus-related response cor-

relation assuming neurons are independent. They were corrected for trial-to-trial changes in the
firing rate to remove potential slow sources of correlation that can lead to apparent fast sources
of correlation sometimes referred to as an excitability correction [10, 44, 145, 169]. This two-
dimensional cross covariance histogram was then normalized by the square root of the product
of the auto-covariance histograms for the two neurons:

Dxy(t1, t2) =
Cxy(t1, t2)√

Cxx(t1, t1)Cyy(t2, t2)
. (2.8)
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This produced a two-dimensional histogram of Pearson’s correlation coefficients referred
to as the normalized cross-covariance histogram or the normalized joint poststimulus histogram.
We average this histogram across diagonals to produce a cross-correlation histogram with respect
to lag times between pairs of neurons. We then computed the variance of our estimates by
bootstrapping with respect to trials [30, 145, 168]. The correlation measurements were the areas
under the half-height of the peaks of these cross-correlation histograms for pairs of neurons
with a central peak (within 10 ms of 0 lag time) more than three standard deviations above or
below the cross-correlation histogram from 175 ms to 375 ms lag time and for pairs of neurons
where both neurons had significant disparity tuning (1-way ANOVA, p < 0.01) [145]. For the
neurophysiological results shown in this work (Figures 2.8b,d,f), the input stimulus for each pair
of neurons was set to the the disparity at which the point-wise product of two neurons’ tuning
curves was at its maximum [145].

We also computed CCH measures for hidden unit activities generated from the simulation of
the trained Boltzmann machine model (Section 2.2.2.2). To compute CCH for each pair of hidden
units in the model, we set the input stimulus (equi-disparity stimulus, with the same disparity
value at all hypercolumns) to be at the mean of the preferred disparities of their corresponding
visible units5. After collecting the samples (see Section 2.2.2.2.1 for detail), we computed the
CCH measure following the method described above6, but using only the peak of CCH as the
CCH measure of this pair of units, since there was no synaptic delay issue in our Boltzmann
machine model, given our simulation method.

5We did this because the preferred disparities of hidden units were actually those of their input visible units. See
Figure 2.4a for detail.

6Since our model had N = 400 hidden units, we initially computed the CCH for all 400 × 399/2 = 79 800
pairs. Then we kept pairs whose CCH’s peak within 50ms (±5 bins) of 0 lag time was more than 1.5 standard
deviations above or below the CCH from 300ms to 600ms (±30 to ±60 bins). We further removed pairs where
at least one unit responded to the input stimulus with firing rate less than half of its peak response relative to its
minimum response over all tested stimuli, resulting in 23 048 pairs shown in Figure 2.8.
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Figure 2.2: Schematic of our Boltzmann machine model (a), distribution of extracted disparity
values P (s) (b), and derived tuning curves of input visible units, with one curve highlighted (c).
(a) 25 “hypercolumns” laid in a 5 by 5 grid covering a 4° by 4° patch, with hidden units (~h,
black outline) in the same column grouped in dashed box. Each hidden unit has connections
(black) to all other ones, and one connection (red) to its own visible unit (~v, white outline). At
most two hidden units and one visible unit drawn per column, with many connections missing
for clarity. Columns are numbered for reference in Section 2.3. (b) The distribution of extracted
disparity values was sharp, and peaked at zero. (c) Tuning curves of ~v were derived based on
Ganguli and Simoncelli [41] with the following details: “baseline” curve was a t distribution
with d.o.f. ν = 2, total expected firing rate (R in Ganguli and Simoncelli [41]) was unity, and
“infomax” optimization criterion was used. Only tuning curves between −1° and 1° are shown
for clarity. Given the sharp distribution of disparity values, the theory in Ganguli and Simoncelli
[41] made the tuning curves at large disparities different from those close to zero. Instead of
Gaussian-like (see Figure 2.3a for a zoom-in view of tuning curves close to zero), the tuning
curves at the two ends of the input distribution were relatively flat at large (positive/negative)
disparities, and dropped to zero near zero disparity. Interestingly, these were very similar to the
near-tuned and far-tuned neurons in Poggio and Fischer [129] and Poggio et al. [130]. We also
tried Gaussian distribution as the “baseline” curve, but that gave much sharper tuning curves and
less co-activation between dissimilar units, which resulted in a less biologically realistic training
result.
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Figure 2.3: Generation of training data for one disparity value. Given one disparity value (a)
(in this case s = 0), we transformed it into M = 16 mean firing rates (b) using tuning curves
(between (a) and (b)), generated spike trains (c), and binned it into a binary matrix (d) as training
data to the Boltzmann machine.
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2.3 Results
We mainly compared the model with existing computational models in terms of connectivity
constraints (Section 2.3.2), and neurophysiological data in terms of functional connectivities
(Section 2.3.3). The model showed qualitative agreement in both aspects. In the following com-
parisons, the hidden units correspond to the disparity-tuned V1 neurons, likely realized in terms
of the complex cells in the superficial layer of V1 where there are extensive horizontal axonal
collaterals forming a recurrent network. The visible units provide the bottom-up input to these
V1 complex cells, and they encode disparity signals which in the brain are computed by combin-
ing monocular left and right eye simple cells based on phase-shift or position-shift mechanisms
[36]. The input from visible units, or the corresponding signals in the brain, are assumed to be
“decorrelated” across space when stimulus correlation is factored out [28]. The prior of natural
scenes is assumed to be captured by the lateral connectivity among hidden units in the model or
among disparity-tuned V1 neurons in the brain. These intrinsic horizontal connections can give
rise to noise correlation and other correlated activities among neurons [21, 76, 153].

2.3.1 First order properties of learned hidden units
Figure 2.4 shows typical tuning curves of the hidden units obtained from the model simulation
of neurophysiological experiments (Section 2.2.2.2), and the distribution of bias terms ~α, ~γ.
Hidden units shared the same preferred disparity and the general shape as their corresponding
input visible units. The bias terms are negative, indicating that the hidden units tend to fire
sparsely.

2.3.2 Comparison with computational models in terms of connectivity con-
straints

The learned lateral connections ~β among hidden units form what we call the disparity associ-
ation field, analogous to the well-known contour association field for orientation-tuned neurons
[33]. The lateral connectivity, or the disparity association field, observed in the trained Boltz-
mann machine model is qualitatively in agreement with the cooperative and competitive circuits
predicted by Marr and Poggio [110], and with the recent model of Samonds et al. [147] which
has been successful in more accurately accounting for neurophysiological data of disparity-tuned
neurons in V1.

We define the disparity association field of a hidden unit as the set of lateral connections
between it and other hidden units. Figure 2.5a illustrates the disparity association field of one unit
tuned near zero disparity in the center column of the 5 × 5 grid, showing its lateral connections
~β to all other units in the network along a particular direction in the grid. The x-axis indicates
different hypercolumns or spatial locations, and the y-axis indicates units with different disparity
tunings.

The disparity association field learned by the Boltzmann machine has a number of notewor-
thy features. First, in terms of inter-columnar connections, i.e. connections between a unit
with units in other hypercolumns, units with the same or similar disparity tunings tended to form
positive connections across hypercolumns (spatial receptive field locations) and units with very
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Figure 2.4: Some first order properties of the trained Boltzmann machine model. (a) tuning
curves of hidden units 4, 8, 12 in column 1 of the model (inset on top right), shown as solid
curves, with corresponding tuning curves of their input units shown as dashed curves. Tuning
curves for hidden units were computed using the mean firing rates during simulation at different
testing stimuli (dots on curves). (b) Histogram of bias terms for hidden units. (c) Histogram of
bias terms for visible units. The cluster of values around -0.8 for hidden units and that around
-3.6 for visible units mostly came from units tuned to two ends of the disparity distribution (large
negative / positive disparities), which was due to a border effect of the theory in Ganguli and
Simoncelli [41].

different disparity tunings formed negative connections. Figures 2.5b and 2.5c show in greater
detail how each unit in one hypercolumn was connected to units of various disparity tunings in
other hypercolumns. The dark bold line highlights that unit 8 in one hypercolumn formed posi-
tive (excitatory) connections to similarly tuned units (units 6, 7, 8, 9) in the other hypercolumns,
and negative (inhibitory) connections to units tuned to very different disparities. Second, in terms
of intra-columnar connections, i.e. connections between units in the same hypercolumn, units
exhibited excitation for very similarly tuned units in the same hypercolumn, but exerted a sup-
pressive effect on units of dissimilar tuning properties, as shown in Figure 2.5d. These properties
of inter- and intra-columnar connections are roughly consistent with the cooperation between
neurons of similar disparities across space (the so-called continuity constraint), and the competi-
tion among neurons of different disparities at the same spatial location (the so-called uniqueness
constraint) in Marr and Poggio [110]’s classical stereopsis model for solving the correspondence
problem.

However, the lateral connectivity exhibited by the Boltzmann machine model was richer than
that in Marr and Poggio [110]’s model. First, in terms of intra-columnar connections, in addi-
tion to the negative (competitive) intra-columnar connections in Marr and Poggio [110]’s model
(Figure 2.7a, blue), our model also learned positive intra-columnar connections among units of
similar tunings (Figure 2.7b). In this aspect, our model is more consistent with the model in
Samonds et al. [147], which assumes that the intra-columnar interaction has a center excitatory
(cooperation between similar neurons) surround inhibitory (competition between dissimilar neu-
rons) profile. This profile is more biologically realistic than that of Marr and Poggio [110], taking
into account the overlapping nature of tuning curves within a hypercolumn, and the model in Sa-
monds et al. [147] has been shown to explain well the temporal evolution of a number of tuning
properties of V1 disparity-tuned neurons.
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Second, in terms of inter-columnar connections, Marr and Poggio [110]’s model only speci-
fies positive inter-columnar connections between neurons of the same tuning (Figure 2.7a, red),
implicitly making the strong assumption that the surfaces of the world are all fronto-parallel.
However, surfaces in natural scenes are more diverse, characterized with a variety of surfaces
such as slants and tilts, convexities and concavities. This richness in natural scene surface struc-
tures likely induced the greater variety of inter-columnar connectivity observed in our model
(Figure 2.7c) that captures the 3D surface priors to a higher degree than connectivity constraints
made in the works of Marr and Poggio [110] and Samonds et al. [147]. Our model is likely more
consistent with more advanced computational models for stereopsis that take into account slant,
tilt, and curvature [6, 101, 131].

The learned disparity association fields obviously depend on training natural scene data. Fig-
ure 2.6 shows the association field obtained by training with data from forest scenes in the Brown
data set, with all other parameters unchanged. While the association field along the horizontal
direction was symmetrical (Figure 2.6a), the one along the the vertical direction (Figure 2.6b)
was skewed, which was not the case for the model trained with interior scenes discussed above
(data not shown). This was because the lower parts of forest images are nearer to the viewer
than the upper parts, due to the receding ground plane toward the horizon in the forest depth
images. This asymmetry along different directions is an interesting prediction that can be tested
experimentally.

2.3.3 Comparison with neurophysiological data in terms of functional con-
nectivity

We also compared our model with neurophysiological data in terms of functional connectivities
derived from CCH measures (Sections 2.2.2.2 and 2.2.3.2), and they match qualitatively in three
aspects.

First, neurophysiological data in our earlier studies [145] suggested that functional connec-
tivity between a pair of disparity-tuned neurons varied as a function of tuning similarity and the
distance between the neuronal pair. Functional connectivity is often measured in terms of the
peak of the cross-correlogram (CCH peak) and alternatively the area under the CCH peak within
a certain (e.g. ±10 ms) window (CCH measure). CCH peak tends to reflect mono-synaptic con-
nections, and CCH measure tends to reflect effective connectivity between a pair of neurons
via many possible direct monosynaptic and indirect polysynaptic horizontal or even recurrent
feedback connections. Samonds et al. [145] found that CCH peak and CCH measure were both
positively correlated with tuning similarity (measured as the Pearson correlation between the
tuning curves), with CCH measure data shown in Figure 2.8b. On the other hand, the CCH
peak was found to drop with the distance between the centers of the receptive fields, i.e. neg-
atively correlated with RF distance within a visual angle of 1.5°. However, the CCH measure
remained relatively constant, i.e. uncorrelated with RF distance within 1.5° (Figure 2.8d). This
suggested that while the monosynaptic connections between neurons might be fairly local, the
effective connections between disparity-tuned neurons are relatively extensive. Last, while func-
tional connectivities existed between neurons of a variety of tuning similarities at close proximity,
significant CCH measures could be observed mostly between similarly tuned neurons with RF
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distance > 1°, shown in Figure 2.8f.
For comparison, Figures 2.8a,c,e show the corresponding results from the Boltzmann ma-

chine model. Since there was no synaptic delay in our simulation method, the correlation mea-
sures (labeled as CCH measure in Figures 2.8a,c,e for consistency) we obtained from the model
were more comparable to the CCH measure, rather than the temporally precise CCH peak in the
physiological data. Indeed, we found that the CCH measure positively correlated with tuning
similarity (Figure 2.8a) but did not change with RF distance within 1.5° though it did drop grad-
ually over a larger distance (Figure 2.8c, pairs with positive CCH measures). This is consistent
with the lack of drop in the CCH measure with RF distance in the neural data within 1.5° as
shown in Figure 2.8d. The model predicted a drop in the CCH measure over a larger RF distance
but currently data on long-range CCH measures between disparity-tuned neurons are not avail-
able. However, similar studies by Smith and Kohn [153] on orientation-tuned neurons did show
that the CCH measure dropped only beyond 2 mm in cortical distance between neurons while
the CCH peak dropped even at 0.5 mm. Thus, we anticipate that the CCH measure between
disparity-tuned neurons will drop beyond 1.5° as our model predicted, but this remains to be
tested experimentally. For RF distance vs. tuning similarity (Figure 2.8e), units of similar tuning
properties exhibited stronger positive functional connectivities than units of dissimilar tunings
when the distance between units became larger.

While all these are in general agreement with the neurophysiological data, there were some
differences. Most notably, the model exhibited negative functional connectivities between pairs
of units of all distances and similarities (Figure 2.8a,c), whereas the neural data only showed
positive connectivities. These differences were largely due to the limitation of the more abstract
Boltzmann machine in approximating real neural circuits in both architecture and dynamics as
discussed in Section 2.4.2.
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Figure 2.5: Disparity association field. (a) disparity association field from unit 8 in the central
hypercolumn (column 1) to all other units in 5 hypercolumns (inset on top right; black for column
1, and gray for all 5 but column 1), shown in a contour map of lateral connections. The shapes
of contour lines resemble those in the contour association field [33]. The horizontal axis has two
rows, first column index, and second distance to column 1; the vertical axis has two columns,
from left to right being the preferred disparity of units, and index of the unit in its hypercolumn
(1 to 16). (b) Inter-columnar connections from column 1 to 8 nearby columns. Each curve
shows the average connections between one unit in column 1 to unit of a certain index in other
8 columns (inset on right; black for column 1, and gray for other 8). The curve for unit 8
in the central column is highlighted for clarity. Its value at, say, index = 9 is the average of
connections from unit 8 in the central column to every unit 9 in surrounding 8 columns, and so
on. (c) Inter-columnar connections from column 1 to 16 columns further away (inset on right).
The connections were generally weaker than those in the panel above, due to longer distances
between columns. (d) Intra-columnar connections within column 1 (inset on right), with the
curve for unit 8 highlighted for clarity. Units of very similar tunings tended to facilitate and help
each other, but units of different tunings would inhibit each other.
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Figure 2.7: Comparison of connectivity in Marr and Poggio [110]’s model and in our Boltzmann
machine model, in terms of scatter plot of connection vs. tuning similarity between neurons.
(a) Schematic of Marr and Poggio [110]’s model, with negative intra-columnar connections
between all neurons of different tunings (blue), and positive inter-columnar connections only
between neurons of the same tuning (red). (b) Intra-columnar connections of our model. (c)
Inter-columnar connections of our model. The tuning similarity between pairs of hidden units is
defined as the Pearson’s correlation coefficient between their tuning curves measured from the
model simulation (Section 2.2.2.2).

20



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

r = 0.50, p < 0.001
n = 63 pairs

0.0

0.1

0.2

0.3

0.4

−1.0 −0.5 0.0 0.5 1.0
tuning similarity

C
C

H
 m

ea
su

rer = 0.66
n = 23048 pairs

−0.1

0.0

0.1

0.2

−1.0 −0.5 0.0 0.5 1.0
tuning similarity

C
C

H
 m

ea
su

re

r = 0.46
n = 18225 pairs

r = 0.08
n = 4823 pairs

r = 0.01
n = 5028 pairs

−0.1

0.0

0.1

0.2

0 1 2 3 4 5
RF distance (deg)

C
C

H
 m

ea
su

re

(c)

(a) (b)

●
●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

0.0

0.8

0 2 4

distance

co
rr

positive CCH
18225 pairs

0

1

2

3

4

5

−0.5 0.0 0.5 1.0
tuning similarity

R
F 

di
st

an
ce

 (d
eg

)

CCH measure
●

●

●

[0.02,0.07)
[0.07,0.12)
[0.12,0.25]

(e)

CCH=0.12

10

15

20

25

−1 0 1
disparity (deg)

FR
 (s

pi
ke

 / 
se

c)CCH=−0.02

20
40
60
80

100

−1 0 1
disparity (deg)

FR
 (s

pi
ke

 / 
se

c)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

r = 0.14, p = 0.31
n = 57 pairs

0.0

0.1

0.2

0.3

0.4

0.0 0.5 1.0 1.5
RF distance (deg)C

C
H

 m
ea

su
re

(d)

●
● ●

●

●
●

● ●
●

●
●
●

●

●

●
●

●

●

●
● ●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

r = 0.52, p < 0.001
n = 57 pairs

0.00
0.01
0.02
0.03
0.04
0.05

0.0 0.5 1.0 1.5
RF distance (deg)

C
C

H
 p

ea
k

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●
●

●●

●
●

● ●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●
●

●

●●

● ●

●
●● ●

●
●

●

●
●

r = 0.32, p = 0.01
n = 57 pairs

0.0

0.5

1.0

1.5

−1.0 −0.5 0.0 0.5 1.0
tuning similarityR
F 

di
st

an
ce

 (d
eg

)

(f)

Figure 2.8: Comparison of model and neurophysiological data in terms of CCH measures. (a)-(b)
CCH measure vs. tuning similarity for model (a) and neural data (b). CCH measure and tuning
similarity were positively correlated for both cases. The tuning similarity for a pair of neurons (as
well as units) is defined as the Pearson’s correlation coefficient of their tuning curves, with two
examples shown here in the lower part of (b). The right pair of neurons has a larger similarity
than the left one, yielding a larger Pearson’s correlation. The more similar pair exhibited a
stronger CCH measure (0.12 vs. −0.02). (c)-(d) CCH measure vs. distance between neurons for
model (c) and neural data (d, upper). In (c), linear fits for pairs with positive (red) and negative
(blue) CCH measures are shown separately, and the scatter plot of correlation vs. distance for raw
disparity signals is shown in the inset. In addition, a linear fit for positive CCH pairs within 1.5°
is shown separately (green) to match the range of distance available in the neural data. The CCH
measure of the neural data remained constant within this range of RF distance, i.e. uncorrelated
with distance, consistent with the model prediction. In (d), CCH peak vs. distance is also shown
in the lower panel. (e)-(f) distance between neurons vs. tuning similarity for model (e) and neural
data (f). For the model, pairs with positive CCH measures were divided into three groups of the
same size, and shown in three different colors. Negative CCH pairs were ignored because they
were small in magnitude and uniform across different tuning similarities and distances. (b,f) and
the lower panel of (d) are adapted from Samonds et al. [145] with permission of authors.

21



2.4 Discussion

2.4.1 Linking 3D natural scenes and functional connectivity

By training a Boltzmann machine with 3D scene data and simulating neurophysiological ex-
periments on it, this work provides a link between the statistical structure of 3D natural scenes
and the measured functional connectivity among disparity-tuned neurons in the primary visual
cortex.

We show that certain characteristics of the observed functional connectivity, such as its pos-
itive correlation with tuning similarity (Figure 2.8b), its decay over receptive field distance be-
tween neurons (Figure 2.8d), and the prevalence of long range excitatory connections between
similarly tuned neurons (Figure 2.8f), can be predicted by a Boltzmann machine model trained
with natural scene data. The cooperative and competitive connectivity among hidden units in the
model is in general agreement with the connectivity constraints in the classical computational
model for stereopsis [110] and those in the recent neural circuit model of Samonds et al. [147].

In previous studies on natural scenes, the learning of cooperation between neurons usually
relies on co-occurrence [31, 33, 42, 92, 151], with or without additional supervision signals.
Hebbian learning can be used to wire up neurons whose encoded patterns co-occur frequently.
Competition is often specified manually or by some hypothetical “anti-Hebbian learning rule”.
Our work demonstrates that Boltzmann machines can provide a coherent computational frame-
work to learn facilitatory connections between disparity-tuned neurons based on co-occurrence
statistics of disparity signals, as well as the intra-columnar inhibitory connections that imple-
ment the uniqueness constraint in earlier computational models [110], implemented with “hand-
crafted” negative connections. Here, we show that if the visual cortex functions mathematically
in the manner of a Boltzmann machine or a Markov random field in general, it can acquire these
computational constraints—both cooperative and competitive connections—in a unified frame-
work by learning an internal model to explain the input data it experiences during development.
The fact that the simulated functional connectivity of the trained Boltzmann machine matches
qualitatively with the observed functional connectivity between disparity-tuned neurons (Sec-
tion 2.3.3) suggests that the interactions among disparity-tuned neurons might form a network,
which we call the disparity association field, that encodes the statistics of 3D natural scenes and
serves as a prior for solving 3D perception problems. It provides some support to the tantalizing
hypothesis that the visual cortex might be functioning like a generative model, e.g. a Boltzmann
machine or Markov random field, for statistical inference [98, 99, 100]

There is compelling neurophysiological evidence that V1 disparity-tuned neurons are en-
gaged in horizontal recurrent interactions for disambiguation and surface filling-in [148]. How-
ever, the precise biological mechanisms for implementing the Boltzmann machine are not com-
pletely clear currently. For the facilitatory connections, Hebbian learning of neurons driven by
correlated stimulus signals has been demonstrated in recent in vivo rodent experiments [83, 84].
Inhibitory connections may be learned by long term depression or hemostatic synaptic scaling
mechanisms, and the fairly spatially extensive inhibitory interactions in the model may be im-
plemented through global inhibitory neurons (see Section 2.4.2 for more discussion).

As an aside and clarification, we want to point out the differences between the functional
connectivity (CCH) in neurophysiology [2, 145] and the lateral connection (~β in Eq. (2.4)) in
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the Boltzmann machine, or other computational models in general [110, 147]. While they are
visually comparable in our study (e.g. Figures 2.8a vs. 2.7c), they are mathematically different
in nature: CCH reflects correlation whereas ~β reflects partial correlation or inverse covariance,
one (approximately) being the inverse of the other [38]. The precise relationship between them
requires further investigation.

2.4.2 Limitations of the model
One notable discrepancy between the trained Boltzmann machine model and the neural data
mentioned in Section 2.3.3 is that the model had many short-range and long-range negative func-
tional connectivities between hidden units, while the functional connectivity measured between
neurons tend to be positive (Figures 2.8a,c vs. Figures 2.8b,d). There are two possible causes for
the discrepancy.

First, the input stimuli in the neurophysiological experiments were 8 Hz dynamic random
dot stereograms, and the refresh of the stimulus pattern every 125 ms drove the neurons syn-
chronously which could induce a bottom-up positive correlation which might cancel out or over-
shadow the pairwise negative interaction between neurons.

Second, and possibly more significantly, the brain is not likely to implement extensive local
and long-range pairwise negative connections between neurons. Inhibition in the cortical cir-
cuitry tends to be mediated by local mechanisms, typically within a hypercolumn. Thus long
range inhibition is likely mediated by a cooperation between long-range excitatory connections
and local inhibitory neurons. There are numerous types of inhibitory neurons in each hyper-
column, mediating a variety of physiological phenomena such as normalization and surround
suppression. The Boltzmann machine offers an interesting proposal, among others, on what
mathematical model the cortical connections might be implementing. It would be interesting to
explore to what extent the neurons in the visual cortex can implement all the short- and long-
range excitations and inhibitions suggested by the Boltzmann machine. In the Boltzmann ma-
chine, as in any typical neural network, units can exert both excitation and inhibition on one
another. This clearly violates the Dale’s law under which a neuron can only be excitatory or
inhibitory but not both. There are, however, many examples of recent neural circuit models with
excitatory and inhibitory pools of neurons that could be extended to implement neural network
models with greater biological realism [79]. We are currently investigating an implementation of
the model that obeys Dale’s law, as well as other realistic biological constraints.

Our Boltzmann machine model was designed to learn only the pairwise connectivity to cap-
ture pairwise correlation structures between disparity-tuned neurons across space. It is thus lim-
ited in the types of priors that can be encoded. It encodes 3D scene priors in the form of as-
sociation fields between disparity values across spatial locations, not association fields between
3D surface elements and shapes. Therefore, it cannot, for example, explicitly encode priors on
surface structures such as surface slopes (slants and tilts) or surface curvatures. Another layer
of hidden units (presumably corresponding to V2 neurons) receiving feedforward connections
from disparity-tuned units corresponding to V1 would be required to encode surface priors in the
form of the spatial activation patterns in the V1 population. The disparity association field can
perform a certain degree of filling-in and surface interpolation as the association field network
model showed in Samonds et al. [147]. An association field for completing curved or slant-tilt
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surfaces could be implemented in V2 as conjectured in Li and Zucker [101] and Zucker [186].
In addition, neurophysiological experiments on our Boltzmann machine model were simu-

lated with Gibbs sampling, which does not strictly follow or exhibit the dynamics of integrate-
and-fire neurons in typical neuronal circuit models. However, there have been recent proposals
showing that the temporal variability of neuronal spiking activity could potentially be interpreted
as Monte Carlo sampling [35, 59]. In addition, there have been rigorous mathematical and com-
putational studies on the implementation of sampling algorithms in integrate-and-fire neuronal
circuits [11, 117]. It is intriguing to contemplate to what extent spike neural networks could
actually be implementing the mathematics of the Boltzmann machine.

The comparison between the Boltzmann machine and the neural data we made could only
be qualitative for several reasons. We assumed the data set matches the natural experience of
the monkeys, and the fixation distribution is uniform. We assumed the distribution of tuning
curves for visible units can be derived from the approach in Ganguli and Simoncelli [41] and
that spike trains can be modeled as independent Poisson processes. There are a number of “hy-
perparameters” in our model, such as the number of units per hypercolumn, and the mean firing
rate of units. There is no guarantee that our assumptions are correct, all of which would affect
the model’s quantitative predictions.

The neural data used were noisy, subject to measurement errors, sampling errors, and are
amenable mostly to qualitative comparison. Therefore, we seek mostly to demonstrate that Boltz-
mann machines can be used to predict qualitatively the functional circuitry of the disparity-tuned
neurons in the primary visual cortex, and that natural scenes can predict a general pattern of
cooperative and competitive connectivity that we call the “disparity association field”. While
the learned disparity association field can vary with the assumptions and hyperparameters used
quantitatively, the qualitative result in terms of cooperation between similarly tuned units and
competition between dissimilarly tuned ones would still hold.

2.4.3 Summary
The key findings of this study are as follows. First, certain aspects of cortical circuits can be
predicted from Boltzmann machines trained on natural scene data. Second, the cortical circuit
among disparity-tuned neurons, by virtue of encoding structures in 3D natural scenes, appears to
form a disparity association field that could be useful for stereo processing such as removing am-
biguity in solving the correspondence problem or performing surface filling-in or interpolation,
as some of our recent experiments indicated [148]. Third, the structures of the intra-columnar
and inter-columnar inhibitory interactions learned by our model suggest that Boltzmann ma-
chines might provide an alternative perspective on some prevalent neurophysiological phenom-
ena such as normalization and surround suppression [14]; additional studies will be required to
confirm this conjecture. Finally, this work suggests that Boltzmann machines are a viable model
for understanding how the Bayesian prior of natural scenes is encoded in the visual cortex. By
demonstrating the potential relevance of Boltzmann machines for understanding neural circuitry,
this work suggests that a broader class of computational models, called Markov random fields,
which are popular and widely used in computer vision and have enjoyed considerable success
in solving real early vision problems, might be a viable model of the visual cortex. This work
points to the exciting possibility that insights from computer vision on this class of models can be
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leveraged to understand what problems the visual cortex could be solving and the computational
architecture and algorithms underlying the solutions of these problems.
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Chapter 3

Convolutional neural network models of
V1 responses to complex patterns

In this study, we evaluated the convolutional neural network (CNN) method for modeling V1
neurons of awake macaque monkeys in response to a large set of complex pattern stimuli. CNN
models outperformed all the other baseline models, such as Gabor-based standard models for
V1 cells and various variants of generalized linear models. We then systematically dissected
different components of the CNN and found two key factors that made CNNs outperform other
models: thresholding nonlinearity and convolution. In addition, we fitted our data using a pre-
trained deep CNN via transfer learning. The deep CNN’s higher layers, which encode more
complex patterns, outperformed lower ones, and this result was consistent with our earlier work
on the complexity of V1 neural code. Our study systematically evaluates the relative merits of
different CNN components in the context of V1 neuron modeling.

3.1 Introduction

There has been great interest in the primary visual cortex (V1) since pioneering studies decades
ago [63, 64, 65]. V1 neurons are traditionally classified as simple and complex cells, which are
modeled by linear-nonlinear (LN) models [52] and energy models [1], respectively. However, a
considerable gap between the standard theory of V1 neurons and reality has been demonstrated
repeatedly, at least from two aspects. First, although standard models explain neural responses
to simple stimuli such as gratings well, they cannot explain satisfactorily neural responses to
more complex stimuli, such as natural images and complex shapes [25, 54, 87, 171]. Second,
more sophisticated analysis techniques have revealed richer structures in V1 neurons than those
dictated by standard models [15, 143]. As an additional yet novel demonstration of this gap,
using large-scale calcium imaging techniques, we [102, 160] have recently discovered that a
large percentage of neurons in the superficial layers of V1 of awake macaque monkeys respond
strongly to highly specific complex features; this finding suggests that some V1 neurons act as
complex pattern detectors rather than Gabor-based edge detectors as dictated by classical studies
[26, 70].

While our previous work [160] has shown the existence of complex pattern detector neurons
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in V1, a quantitative understanding of the relationship between input stimuli and neural responses
for those neurons has been lacking. One way to better understand these neurons quantitatively is
to build computational models that predict their responses given input stimuli [177]. If we can
find a model that accurately predicts neural responses to (testing) stimuli not used during training,
a careful analysis of that model should give us insights into the computational mechanisms of the
modeled neuron(s). For example, we can directly examine different components of the model
[112, 113, 132], find stimuli that maximize the model output [78, 119], and decompose model
parameters into simpler, interpretable parts [125, 139].

A large number of methods have been applied to model V1 neural responses, such as ordinary
least squares [25, 163], spike-triggered average [163], spike-triggered covariance [143, 164],
generalized linear models (GLMs) [75, 128], nested GLMs [112], subunit models [172], and
artificial neural networks [132]. Compared to more classical methods, convolutional neural net-
works (CNNs) have recently been found to be more effective for modeling retinal neurons [78]
and V1 neurons in two studies concurrent to ours [13, 113]. In addition, CNNs have been used
for explaining inferotemporal cortex and some other areas [89, 178, 179]. Nevertheless, existing
studies mostly treat the CNN as a black box without analyzing much the reasons underlying its
success relative to other models, and we are trying to fill that knowledge gap explicitly in this
study.

To understand the CNN’s success better, we first evaluated the performance of CNN models,
Gabor-based standard models for simple and complex cells, and various variants of GLMs on
modeling V1 neurons of awake macaque monkeys in response to a large set of complex pattern
stimuli [160]. We found that CNN models outperformed all the other models, especially for
neurons that acted more like complex pattern detectors than Gabor-based edge detectors. We then
systematically explored different variants of CNN models in terms of their nonlinear structural
components, and found that thresholding nonlinearity and max pooling, especially the former,
were important for the CNN’s performance. We also found that convolution (spatially shifted
filters with shared weights) in the CNN was effective for increasing model performance. Finally,
we used a pre-trained deep CNN [152] to model our neurons via transfer learning [13], and
found that the deep CNN’s higher layers, which encode more complex patterns, outperformed
lower ones; the result was consistent with our earlier work [160] on the complexity of V1 neural
code. While some of our observations have been stated in alternative forms in the literature,
we believe that this is the first study that systematically evaluates the relative merits of different
CNN components in the context of V1 neuron modeling.

3.2 Stimuli and neural recordings

3.2.1 Stimuli

Using two-photon calcium imaging techniques, we collected neural population data in response
to a large set of complex artificial “pattern” stimuli. The “pattern” stimulus set contains 9500
binary (black and white) images of about 90 px by 90 px from five major categories: orientation
stimuli (OT; bars and gratings), curvature stimuli (CV; curves, solid disks, and concentric rings),
corner stimuli (CN; line or solid corners), cross stimuli (CX; lines crossing one another), and
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composition stimuli (CO; patterns created by combining multiple elements from the first four
categories). The last four categories are also collectively called non-orientation stimuli (nonOT).
See Figure 3.1 for some example stimuli. In this study, the central 40 px by 40 px parts of
the stimuli were used as model input as 40 pixels translated to 1.33 degrees in visual angle for
our experiments and all recorded neurons had classical receptive fields of diameters well below
one degree in visual angle around the stimulus center [160]. The cropped stimuli were further
downsampled to 20 px by 20 px for computational efficiency. Later, we use xt to represent the
t-th stimulus as a 20 by 20 matrix, with 0 for background and 1 for foreground (there can be
intermediate values due to downsampling), and ~xt to denote the vectorized version of xt as a
400-dimensional vector.

3.2.1.0.1 Stimulus type Previous work modeling V1 neurons mostly used natural images or
natural movies [13, 25, 78], while we used artificial pattern images [160]. While neural responses
to natural stimuli arguably reflect neurons’ true nature better, it has the following problems in
our current study: 1) public data sets [20] of V1 neurons typically have much fewer images
and neurons than our data set, and limited data may introduce bias on the results; 2) artificially
generated images can be easily classified and parameterized, and this convenience allows us to
classify neurons and compare models over different neuron classes separately (Section 3.2.2.0.1).
While white noise stimuli [113, 143] are another option, we empirically found that white noise
stimuli (when limited) would not be feasible for finding the correct model parameters (assuming
CNN models are correct); see Supplementary Materials.

3.2.2 Neural recordings

The neural data were collected from V1 superficial layers 2 and 3 of two macaque monkeys A
and B. For monkey A, responses of 1142 neurons in response to all 9500 (1600 OT and 7900
nonOT) stimuli were collected. For monkey B, responses of 979 neurons in response to a subset
of 4605 (800 OT and 3805 nonOT) stimuli were collected due to time constraints. Each stimulus
was presented for 5 repetitions for both monkeys. During each repetition, all recorded neurons’
responses in terms of ∆F/F were collected. Later, we use rnt,i to denote the neural response of
the n-th neuron for the t-th stimulus in the i-th trial (i = 1, . . . , 5), rnt to denote the average neural
response over trials, and ~rn to denote all the average neural responses for this neuron as a vector.
Specifically, we have n = 1, . . . , 1142, t = 1, . . . , 9500 for monkey A and n = 1, . . . , 979, t =
1, . . . , 4605 for monkey B.

3.2.2.0.1 Cell classification The recorded neurons in the neural data had mixed tuning prop-
erties [160]: some acted more like complex pattern detectors, some acted more like simple ori-
ented edge detectors, and some had weak responses to all the presented stimuli. To allow cleaner
and more interpretable model comparisons, we evaluated model performance for different types
of neurons separately (Section 3.5). For example, when comparing a CNN model and a GLM, we
computed their performance metrics over neurons that were like complex pattern detectors and
those more like simple edge detectors separately, as it is possible that neurons of different types
are modeled best by different model classes. To make such per-neuron-type comparison possi-
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ble, a classification of neurons is required. Here we use the neuron classification scheme in Tang
et al. [160]. First, neurons whose maximum mean responses were not above 0.5 (max rnt ≤ 0.5)
were discarded as their responses were too weak and might be unreliable; then, among all the
remaining neurons that passed the reliability test, neurons whose maximum mean responses over
nonOT stimuli were more than twice of those over OT stimuli (

max rnt1
max rnt2

> 2, where t1 and t2 go
over all nonOT and OT stimuli respectively) were classified as HO (higher-order) neurons and
the others were classified (conservatively) as OT neurons; finally, all the HO and OT neurons
were further classified into subtypes, such as curvature neurons and corner neurons, based on
ratio tests similar to the one above—for example, an HO neuron was additionally considered as
a curvature neuron if its maximum response over curvature stimuli was more than twice of that
over non-curvature stimuli. Overall, ignoring the unreliable ones, at the top level, there were
OT neurons and HO neurons; OT neurons were further classified as classical and end-stopping
(neurons that responded well to short bars but poorly to long ones) neurons; HO neurons were
further classified as curvature, corner, cross, composition, and mixed (neurons that failed ratio
tests for all the four types of nonOT stimuli) neurons. Figure 3.7 shows example neurons of
different classes.

3.2.2.0.2 Recording technique While most other studies use spiking data collected using
multi-electrode array (MEA) technologies, we use calcium imaging data [102, 160]. Although
MEA-based spiking data are in theory more accurate, calcium imaging techniques can record
many more neurons and do not suffer from spike sorting errors. In addition, Li et al. [102]
have shown that the calcium imaging technique we used exhibits linear behavior with MEA
technologies across a wide range of spiking activities.

3.3 Methods
Here, we describe three classes of models for modeling V1 neurons in our data set. All the
models explored in this study can be considered variants of one-hidden-layer neural networks
with different constraints and components. By considering them in the framework of one-hidden-
layer neural networks (Section 3.3.4), we can easily identify key components that make CNNs
perform better. In addition, all the methods here model each neuron separately (no parameter
sharing among models fitted to different neurons) and the numbers of parameters of different
models are kept to be roughly the same if possible; the parameter separation and equality in
model size ensure a fairer comparison among models. For each neuron n from some monkey, all
our models take image xt of size 20 by 20 as input and try to predict the neuron’s mean response
rnt of image t as output. See Section 3.2 for an explanation of the notation.

3.3.1 CNN models

A CNN model passes the input image through a series of linear-nonlinear (LN) operations—
each of which consists of convolution, ReLU nonlinearity [91], and (optionally) max pooling.
Finally, outputs of the final LN operation are linearly combined as the predicted response of the
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Figure 3.1: Top “Pattern” stimulus set. Stimuli are arranged in rows, each row showing 10
randomly drawn stimuli for each of the five categories (see the bottom right corner of each row).
Only the central 40 px by 40 px parts of stimuli are shown. Refer to Tang et al. [160] for details.
Bottom A subset of curvature and line stimuli in the stimulus set, ordered by stimulus parameters
(curvature, length, and orientation). Only the central 40 px by 40 px parts are shown.

neuron being modeled. Our baseline CNN model for V1 neurons is shown in Figure 3.2, with
one (convolutional) layer and 9 filters. Given a 20 by 20 input, it first convolves and rectifies
(“convolve + threshold” in the figure) the input with 9 filters of size 9, yielding 9 feature maps
(channels) of size 12 by 12, one for each filter. Then max pooling operation (“max pool” in the
figure) is performed for each feature map separately to produce 9 pooled feature maps of size
4 by 4. Finally, all the individual output units across all the pooled feature maps are linearly
combined (“linear combination” in the figure), plus some bias, to generate the predicted neural
response.

As shown in Table 3.2 of Section 3.4.1, apart from the baseline model with 9 channels (B.9
in the table), we also explored other CNN models with the same overall architecture but different
numbers of channels.

3.3.2 “Standard” Gabor-based models

Gabor filters are widely used in theoretical models of V1 neurons [24, 26, 70]. Therefore, we
tried to fit (relatively speaking) standard Gabor-based V1 models to our data as control. We
tried Gabor simple cell models, Gabor complex cell models, as well as their linear combinations
(Figure 3.3). Interestingly, to the best of our knowledge, such models were not examined in the
existing V1 data fitting literature in terms of their performance compared to more popular ones
such as GLMs.
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Figure 3.2: The architecture of our baseline CNN model (or B.9 in Table 3.2). Given a 20
by 20 input image (40 by 40 downsampled to half; see Section 3.2), the model computes the
predicted neural response in three steps. In Step 1 (“convolve + threshold”), the model convolves
and rectifies the input to generate an intermediate output of size 12 by 12 by 9 (height, width,
channel; 3D block in the middle); concretely, for each of the model’s 9 filters of size 9 by 9
(kernel size), the model computes the dot product (with some bias) between the filter and every
9 by 9 subregion in the input (red square being one example), rectifies (x 7→ max(0, x)) all the
dot products, and arranges the rectified results as a 12 by 12 feature map; the process is repeated
for each of the 9 filters (channels) and all the 9 feature maps are stacked to generate the 12 by
12 by 9 intermediate output. In Step 2 (“max pool”), max pooling operation is performed for
each feature map separately to produce 9 pooled feature maps of size 4 by 4; concretely, for
each of the 12 feature maps obtained in Step 1, maximum values over 6 by 6 subregions are
computed every 2 data points (stride) and arranged as a 4 by 4 pooled feature map; the process
is repeated for each of the 9 feature maps to generate the 4 by 4 by 9 pooled output. In Step
3 (“linear combination”), all the individual output units across all the pooled feature maps are
linearly combined plus some bias to generate the predicted neural response. See Section 3.3.1 as
well.

3.3.2.1 Gabor simple cell models

A Gabor simple cell model [15, 52, 143] takes the following form:

r̂ = a[〈~x, ~g(x, y, ω, θ, σx, σy, φ)〉+ c]2+ + b, (3.1)

where ~x is the input stimulus in raw pixel space reshaped as a vector (Section 3.2.1), ~g(x, y, ω, θ, σx, σy, φ)
is the Gabor filter (reshaped as a vector) in the raw pixel space with locations x, y, frequency ω,
orientation θ, phase φ, and standard deviations of the Gaussian envelope σx, σy, and a, b, c are
scale and bias parameters. In such formulation, given some input, the model computes the dot
product between the input and its Gabor filter (plus some bias), and passes the output through
a half-wave squaring nonlinearity [·]2+. In the existing literature, some simple cell models use
threshold nonlinearity (also called over-rectification) [· + c]+ while some others use half-wave
squaring nonlinearity [·]2+; according to Heeger [52], these two nonlinearities are approximately
the same in some sense and therefore we include them both in our models for more flexibility.
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Figure 3.3: The architecture of Gabor-based models. A simple cell model (left) takes the dot
product of a Gabor filter and the input, and passes through the output through a half-wave squar-
ing nonlinearity. A complex cell model (middle) takes the dot products of two Gabor filters with
quadrature phase relationship, squares and sums the outputs. A linear combination of simple and
complex cell models (right) takes some linear combination of some simple cell models (S) and
some complex cell models (C). This figure is partially inspired by Figure 1 in Rust et al. [143]
and Figure 1 in Carandini et al. [15].

3.3.2.2 Gabor complex cell models

A Gabor complex cell model [1, 15, 52, 143] takes the following form:

r̂ = a[〈~x, ~g(x, y, ω, θ, σx, σy, 0)〉2
+ 〈~x, ~g(x, y, ω, θ, σx, σy, π/2)〉2] + b,

(3.2)

where ~x is defined as before, ~g(x, y, ω, θ, σx, σy, 0) and ~g(x, y, ω, θ, σx, σy, π/2) are a pair of
Gabor filters (reshaped as vectors) in the raw pixel space with the same parameters (check Sec-
tion 3.3.2.1 for details) except for phases differing by π/2, and a, b are scale and bias parameters.
In such formulation, given some input, the model computes the outputs of two linear Gabor filters
with quadrature phase relationship and sums their squares together to achieve phase invariance.
As an aside, while we set phases of the Gabor filter pair to be φ and φ + π/2 with φ = 0, any
other φ will also work; empirically we found Eq. (3.2) has no or little dependence on φ.

3.3.2.3 Linear combinations of complex and simple cell models

While simple and complex cell models are the canonical ones in most neuroscience textbooks,
detailed analyses on monkey V1 neurons have revealed more than one (simple) or two (com-
plex) linear components [15, 143]. Rust et al. [143] call such extensions to “standard” simple
and complex cell models “generalized LNP response models” (Figure 1C of Rust et al. [143]).
One simple realization of generalized LNP response models is to take linear combinations of
“standard” Gabor-based models that are defined above.
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Figure 3.4: The architecture of generalized linear models. The raw input stimulus x is first trans-
formed into φ(x), where different φ(·) are used for different GLM variants (inside the box). For
vanilla GLMs, we use the identity transformation φI(·); for Fourier power models, we use the
Fourier power transformation φFP(·) (Section 3.3.3.2); for generalized quadratic models, we use
the localized quadratic transformation φQ(·, τ) (Section 3.4.3.2 and Section 3.3.3.3). The trans-
formed input φ(x) is passed into a linear function 〈·, ~w〉 + b and the output is exponentiated to
give the predicted neural response. For details on the localized quadratic transformation (φQ(·, τ)
in the figure), see Section 3.4.3.2 and Figure 3.5.

3.3.3 Generalized linear models
We consider the following set of Poisson generalized linear models [111, 123] with possibly
nonlinear input transformations (Figure 3.4). We also tried Gaussian GLMs and they performed
consistently worse than Poisson ones in our experiments. Note that the term “GLM” has been
used pretty loosely in the literature, and many models with similar structural components to
those in the CNN are considered GLMs by many. We want to emphasize that the purpose of
including GLMs in this study is not to compare CNNs and (all the variations of) GLMs in terms
of performance but to find key components that make CNN models outperform commonly used
models for V1 modeling. We call these models GLMs mainly because they are often formu-
lated as GLMs in the literature. See Section 3.3.4 for the connection between CNNs and GLMs
considered in this study.

3.3.3.1 Vanilla generalized linear models

A vanilla (linear) GLM takes the following form:

r̂ = exp(〈~x, ~w〉+ b), (3.3)

where ~x is the input stimulus in raw pixel space reshaped as a vector, ~w is the linear spatial
filter in the raw pixel space, and b is the bias parameter for adjusting the firing threshold. The
formulation of this vanilla GLM is standard for modeling V1 simple cells [15, 25, 69], which
respond to stimuli having appropriate orientation, spatial frequency, and spatial phase [63].

3.3.3.2 Fourier power models

A Fourier power model [25] takes the following form:

r̂ = exp(〈−→FP(x), ~w〉+ b), (3.4a)
FP(x)(ωx, ωy) = |X(ωx, ωy)|2, (3.4b)
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where FP(x) computes the Fourier power spectrum of the input stimulus (FP(x) is 2D in
Eq. (3.4b) and reshaped to a vector

−→
FP(x) in Eq. (3.4a)),X denotes the 2D Fourier transform of

the input stimulus, ~w is the linear filter in the Fourier power domain, and b is the bias parameter
for adjusting the firing threshold. In practice, Fourier power models provide performance close
to the state of the art [15, 87].

3.3.3.3 Generalized quadratic models

A generalized quadratic model (GQM) [124, 125] takes the following form:

r̂ = exp(Q(~x)), (3.5a)

Q(~x) = ~xTW ~x+ ~aT ~x+ b, (3.5b)

where Q(~x) computes a quadratic feature transformation of the (vectorized) input stimulus,
W , ~a, b are the second-order parameters, first order parameters, and bias parameter respec-
tively in the transformation. A GQM can be formulated as a GLM with quadratic feature
transformation [125], which introduces additional nonlinearity components and flexibility for
neuron modeling. In addition, there is a connection between GQMs and spike-triggered based
methods under certain conditions [124] and GQMs are statistically more efficient. Note that
Fourier power models (Section 3.3.3.2) can be also formulated as GQMs, as |X(ωx, ωy)|2 =
(~xTU(ωx, ωy))(~x

TU(ωx, ωy)) in Eq. (3.4b) , where U(ωx, ωy) denotes the Fourier transform
vector for frequency pair (ωx, ωy) and U(ωx, ωy) denotes its complex conjugate.

3.3.4 Connections among CNNs, Gabor models, and GLMs
As mentioned in the beginning of Section 3.3, the three classes of models considered in this
study are connected and form a continuum as they all can be roughly formulated as vanilla one-
hidden-layer neural networks [7], or one-hidden-layer multilayer perceptrons (MLPs):

r̂(~x) =
C∑

i=1

cizi(~x) + b, (3.6a)

zi(~x) = f(ai(~x)), (3.6b)

ai(~x) = 〈~x, ~w(i)〉+ bi. (3.6c)

A one-hidden-layer neural network computes the output r̂ given (vectorized) input stimulus
~x according to Eqs. (3.6). Overall, the output is a linear combination of C hidden units’ output
values zi as shown in Eq. (3.6a). Each hidden unit’s output is computed by applying some
nonlinearity (also called activation function) f on the pre-activation value of the hidden unit
ai as shown in Eq. (3.6b), and pre-activation value ai is a linear function of input specified by
weights ~w(i) and bias bi as shown in Eq. (3.6c).

Gabor models can be formulated as MLPs with constraints that weights ~w(i) must be Gabor
functions. A simple cell model is a MLP with one hidden unit and half-wave squaring nonlinear-
ity; a complex cell model is a MLP with two hidden units in quadrature phase relationship and
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squaring nonlinearity; a linear combination of simple and complex cell models is a MLP with
multiple hidden units and mixed nonlinearities.

GLMs can be formulated as MLPs with an additional exponential nonlinearity on output. A
vanilla GLM is a MLP with one hidden unit and no nonlinearity (linear); a Fourier power GLM
is a MLP with multiple hidden units of fixed weights (Fourier basis functions) and squaring
nonlinearity; A GQM is a MLP with multiple hidden units and squaring nonlinearity—the linear
term in Eq. (3.5b) can be absorbed into the quadratic one as long as the quadraic coefficient
matrix is full rank. Empirically, we found the additional accelerating exponential nonlinearity to
be unimportant for the modeling of our data, as Poisson GLMs with the additional accelerating
nonlinearity performed similarly or marginally better, compared to Gaussian and softplus GLMs
without such nonlinearity (Supplementary Materials).

A CNN can be formulated as a MLP with ReLU (x 7→ max(0, x)) nonlinearity and an
additional max pooling operation before the final output computation of Eq. (3.6b). Compared
to other models, a CNN has additional constraints among the weights of hidden units—shared
and spatially shifted in groups. For example, our baseline CNN can be considered as a MLP
with 12 × 12 × 9 = 1296 hidden units, as each 9 by 9 filter in the CNN yields a feature map of
12 × 12 = 144 hidden units, and there are 9 filters in the CNN. For MLP hidden units derived
from a common feature map, filter weights are shared and spatially shifted; for MLP hidden units
derived from different feature maps, filter weights are independent. This group-wise sharing of
hidden unit weights in CNN models is not present in GLMs, which we will compare in detail with
CNNs in Section 3.5 as GLMs were the best-performing non-CNN models in our experiments.

Table 3.1 gives a summary of different models in terms of their structures, under the frame-
work of one-hidden-layer neural network (or MLP). We classify nonlinearities into thresholding
(half-wave squaring and ReLU) and non-thresholding (squaring) ones, because we found all the
thresholding activation functions behaved essentially the same in our experiments (Section 3.5.2)
and we think that being thresholding or not may be the most important aspect for a nonlinearity.

3.3.5 Pre-trained CNNs

There are at least two different ways to model V1 neurons and neural data in general using CNNs:
data-driven and transfer learning. In the data-driven approach, CNNs are trained from scratch
to fit the neural data. This is the approach taken in this study and many other very recent ones
[78, 113]. In the transfer learning (also called goal-driven) approach [89, 179], CNN models are
first trained on some other tasks such as image classification, and then neural data are fitted by
(linearly) combining outputs of fitted units in the trained models. As shown in Cadena et al. [13],
two approaches work similarly for V1 neurons in response to natural images.

As an additional experiment, we tried to model neurons in our data set using a transfer-
learning approach similar to that in Cadena et al. [13]. Specifically, we fed all images1 to the
CNN model VGG19 [152] and extracted intermediate feature representations of the images
across all the CNN layers (except fully-connected ones). The intermediate representations of

1the images were rescaled to 2/3 of their original sizes; we used this scale because in another study [183] we
found that this scale gave the highest representational similarity [90] between the CNN and neural data among all
scales explored; we also tried using raw images without rescaling in the current study and got worse results.
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Table 3.1: Comparison of model structures for Gabor models, GLMs, and CNNs in the frame-
work of one-hidden-layer MLP. First two columns specify the model class and subclass. The
third column shows whether the models’ corresponding MLPs have multiple hidden units or
not. The fourth column shows the constraints among hidden units imposed by the models; “in-
dependent” means weights for different hidden units can vary independently, “shared” means
weights for different hidden units are tied together (via convolution), “quadrature phase” means
weights of the hidden unit pair are in quadrature phase relationship (specific to Gabor models),
and “fixed” means weights are not learned but specified before training. The fifth column speci-
fies the nonlinearity (activation function), with “none” meaning no nonlinearity (identity or linear
activation function), and “mixed” meaning both thresholding and non-thresholding nonlineari-
ties. The last column specifies additional structures imposed by the models.

Class Subclass Multiple units constraints among units nonlinearity additional structures

Gabor
simple No — thresholding weights are Gabor
complex Yes quadrature phase non-thresholding weights are Gabor
combination Yes independent mixed weights are Gabor

GLM
vanilla No — none exponential output
Fourier power Yes fixed (not learned) non-thresholding exponential output
GQM Yes independent non-thresholding exponential output

CNN — Yes independent + shared thresholding max pooling

each layer were used as inputs to train (a set of) GLMs to model all the neurons. All the other
implementation details were the same as those for GLMs (Section 3.4.3).

3.3.6 Model evaluation

Given some model f~θ with trainable parameters ~θ, we evaluate its performance s(f~θ, D) on
a single neuron n based on its input stimuli and responses D = {(~xt, r

n
t )}, where {rnt } are

the across-trial average responses computed from {rnt,i} (Section 3.2.2), by squared normalized
correlation coefficient CC2

norm [60, 150].

To evaluate a model, we first partition D into training set Dtrain and testing set Dtest using
80 % and 20 % of the whole data set, respectively. For those models involving model selection in
the training (all but Gabor models), 20 % of the training data is reserved for validation purpose.
We use Dtrain to obtain the trained model f~θ∗ , and compute the model performance s(f~θ, D) as
follows (neuron index n is omitted as there is only one neuron being considered):
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s(f~θ, D) = CC2
norm(f~θ∗ , D), (3.7)

CCnorm(f~θ∗ , D) =
CCabs(~rtest, ~̂rtest)

CCmax({rt,i})
, (3.8)

~̂rtest = (. . . , f~θ∗(~xj), . . .), (3.9)
~rtest = (. . . , rj, . . .) (~xj, rj) ∈ Dtest, (3.10)

CCabs(~x, ~y) =

∑
i(xi − x)(yi − y)√∑

i(xi − x)2
√∑

i(yi − y)2
, (3.11)

CCmax({rt,i}) =

√
Var({∑j rt,j})−

∑
j Var({rt,j})

5(5− 1)Var({rt})
. (3.12)

Concretely, we first compute the raw Pearson correlation CCabs between the set of neural re-
sponses ~r(k) and the set of model responses ~̂rtest using Eq. (3.11) (x and y denote mean values of
the two inputs), then divide this CCabs by CCmax, which is defined in Eq. (3.12) (adapted from
Schoppe et al. [150], with 5 in the denominator being the number of trials) and estimates the
maximal Pearson correlation coefficient an ideal model can achieve given the noise in the neural
data [60, 150] , to get the normalized Pearson correlation coefficient using Eq. (3.8), and finally
square CCnorm to get the model performance s(f~θ, D) using Eq. (3.7). As squared CCabs gives
the fraction of variance in neural responses explained by the model in a simple linear regression,
squared CCnorm gives the normalized explained variance that accounts for noise in the neural
data. Notice that CCmax is computed over all the data instead of testing data for more accurate
estimation.

Our definition of model performance depends on how D is partitioned. To make our re-
sults less susceptible to the randomness of data partitioning, we report results averaged over two
partitions.

3.4 Implementation Details

3.4.1 CNN models
3.4.1.1 Detailed model architecture

Table 3.2 shows all the three CNN model architectures we evaluated against other models (Sec-
tion 3.5), with the baseline CNN model (Figure 3.2) denoted B.9 in the table. For a fair com-
parison between CNNs and other models (primarily GLMs; Gabor models inherently have too
few parameters), in addition to the baseline CNN model B.9, we also evaluated two variants of
the baseline model by changing its number of channels. Overall, the three CNN models match
the three classes of GLMs (Section 3.4.3) in terms of model size. For vanilla GLMs (401 param-
eters), we picked the 4-channel CNN architecture (393 parameters); for Fourier power GLMs
(around 200 parameters due to the symmetry of Fourier power for real-valued input), we picked
the 2-channel one (197 parameters). For GQMs, whose original numbers of parameters are too
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large, we decided to perform PCA on their input data to reduce the dimensionality. We set the re-
duced dimensionality to 882 (therefore 883 parameters for GQMs), and evaluated GQMs against
the baseline 9-channel CNN architecture (883 parameters). While we could keep more or fewer
input dimensions for GQMs and use CNN models with more or fewer channels accordingly, we
found that (1) the CNN’s performance relatively plateaued for having more than 9 channels (see
Supplementary Materials) and (2) keeping fewer input dimensions could potentially affect the
performance of GQMs (see Section 3.4.3.2). The 2- and 4-channel CNNs were used mainly for a
fair comparison of CNNs and other models, and the baseline 9-channel one was further analyzed.

Table 3.2: CNN model architectures explored in this work. Each row describes one CNN model
architecture, with the first column showing its name (B.n where n is the number of channels),
middle columns describing its computational components, and the last showing its number of pa-
rameters. Each CNN model first passes the input image through three computational components
shown in the table—convolution (conv), nonlinearity, and pooling—and then linearly combine
(“fully connected” in CNN jargon) output values of the pooling operation to give the model out-
put. The baseline CNN (B.9) has its number of parameters shown in boldface. The number of
parameters is computed by adding the number of parameters in the convolutional layer and that
in the fully connected layer. For example, the baseline model B.9 has 9 × (9 × 9 + 1) = 738
parameters (9 for number of channels, 9 for kernel size, and 1 for bias) for the convolutional
layer, and 9× 4× 4 + 1 = 145 parameters (9 for number of channels, 4 for pooled feature map’s
size, and 1 for bias) for the fully connected layer, resulting in 738 + 145 = 883 parameters.

Name conv nonlinearity pooling # of params

B.2
(kernel 9,
channel n)

ReLU
(max pool,
kernel 6,
stride 2)

197
B.4 393
B.9 883

3.4.1.2 Optimization

The models were implemented in PyTorch [126], version 0.3.1. Model parameters were opti-
mized to minimize the mean squared error between model outputs and recorded neural responses.
Of all the training data, 80 % of them were used for actual training, and the remaining 20 % were
kept as validation data for early stopping [46] and model selection. For each combination of
neuron and model architecture, we trained the model four times using four sets of optimization
hyperparameters (Table 3.3), which were selected from more than 10 configurations in our pilot
experiments (Supplementary Materials) conducted on about 10 neurons2. Of all the four models
trained using different optimization hyperparameters, the one with the highest performance on
validation data in terms of Pearson correlation coefficient was selected.

2in theory we should exclude these neurons for model evaluation, we did not do it as doing it or not has negligible
effects with hundreds of neurons in our data set.
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Table 3.3: Optimization hyperparameters for CNN models. Minibatch size was set to 128 in all
cases, momentum (for SGD) was set to 0.9, and other hyperparameters, such as β in Adam [80],
took default values in PyTorch. LR, learning rate; L2 conv, L2 weight decay on the convolutional
layer; L2 fc, L2 weight decay on the fully connected layer; SGD, vanilla stochastic gradient
descent with momentum.

Name Optimizer LR L2 conv L2 fc

1e-3 1e-3 a002 Adam 0.002 0.001 0.001
1e-4 1e-3 a002 Adam 0.002 0.0001 0.001
1e-3 1e-3 s1 SGD 0.1 0.001 0.001
1e-4 1e-3 s1 SGD 0.1 0.0001 0.001

3.4.2 “Standard” Gabor-based models

The models were implemented in PyTorch [126]. Input stimuli were preprocessed to have zero
mean for each stimulus. Model parameters were optimized to minimize the mean squared error
between model outputs and recorded neural responses using Adam [80] without weight decay
and with full batch learning (so gradients were computed using the full data set). To (partially)
avoid getting trapped in local optima, for each fitted model, we repeated optimization proce-
dures over hundreds of random initializations and took the set of optimized parameters with
the smallest error as the final set of optimized parameters. Empirically, such nested optimiza-
tion procedure converged to ground-truth model parameters almost all the time. Unlike CNNs
(Section 3.4.1.2) or GLMs (Section 3.4.3.3), here all the training data were used in the actual
training and no model selection was performed, as Gabor models have very few parameters and
overfitting should not be a problem.

3.4.2.1 Linear combinations of “standard” Gabor-based models

The implementation details are essentially the same as those in Section 3.4.2. We tried the
following combinations of simple cell and complex cell models: one simple plus one complex;
one simple plus two complex; two simple plus one complex.

3.4.3 Generalized linear models

3.4.3.1 Vanilla GLMs and Fourier power models

For vanilla GLMs (Section 3.3.3.1), raw stimuli were vectorized into 400-dimensional vectors as
model input; for Fourier power models (Section 3.3.3.2), we first applied a Hann window to each
raw stimulus as done in David and Gallant [25] to reduce edge artifacts, and then computed 2D
Fourier power spectra individually for windowed stimuli as model input.
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3.4.3.2 GQMs

GQMs (Section 3.3.3.3) are simply standard GLMs with quadratic transformation on input. A
full quadratic transformation over a 400-dimensional raw input vector would result in a vector
of more than 80 000 dimensions. To make the number of parameters manageable, we performed
the following two optimizations for the model input of GQMs.

• Instead of the full quadratic transformation, we performed local quadratic transformations
with different “localities” (Figure 3.5). Local quadratic transformations only compute
quadratic terms over stimulus pixels that are close enough. For example, a local trans-
formation with locality 2 will only compute quadratic terms over pixels that are at most 2
pixels apart in both horizontal and vertical axes. For this study, we tried localities 2, 4, and
8.

• Even with local quadratic transformations, the input dimensionality is still too high for
efficient optimization of model parameters. Therefore, we performed principal component
analysis (PCA) on the outputs of local quadratic transformations to reduce their dimen-
sionalities. For a fair comparison of GQM models and our CNN models, 882 dimensions
3 were kept as this would make our GQMs have the same number of parameters as our
9-channel CNN (see Section 3.4.1.1; the 9-channel CNN has 883 parameters, and a GLM
with a 882-dimensional input has 883 parameters due to the bias parameter). The dimen-
sionality reduction procedure kept over 95 % of the variance; if the input dimensionality
had been made to align with CNN models with fewer channels, less than 95 % of the vari-
ance would have been kept and the performance of GQMs might have been affected much.

3.4.3.3 Optimization

All the models were implemented using glmnet [39] as Poisson GLMs. Similar to CNNs (Sec-
tion 3.4.1.2), 80 % of the training data were used for actual training and the remaining 20 %
were kept as validation data for model selection. L1 regularization was used and the best regu-
larization parameter was selected (out of 100 candidates) by computing model performance on
the validation data in terms of Pearson correlation coefficient. For all the three GLM variants,
the (transformed) input stimuli have highly correlated dimensions, due to high correlations be-
tween adjacent pixels in the original stimuli, and such high correlations in the input made glmnet
converge extremely slowly in practice. We worked around this issue by performing full PCA
(without reducing the dimensionality) on input stimuli before feeding them to glmnet. Empir-
ically we found this speedup trick made little or no difference to model performance. We also
tried Gaussian and softplus GLMs; they performed similarly to or worse than Poisson ones in
our experiments (Supplementary Materials).

3In practice, we performed PCA only on the pure quadratic terms to reduce their dimensionalities to 432 and
concatenated the PCAed 432-dimensional pure quadratic terms with the 400-dimensional linear terms to generate
the final 882-dimensional input vectors; such method would guarantee that the information from linear terms, which
are heavily used in most V1 models, is preserved. We also tried performing PCA on both linear and pure quadratic
terms together and two methods made little difference in our experiments.
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Figure 3.5: Quadratic feature transformation φQ(x, τ) transforms original stimulus x, whose
elements are indexed by pixel locations i, j, into quadratic features with “locality” τ . The output
vector contains the union of first order terms {xi,j} and second order terms involving pixels
differing by at most τ pixels in all directions, as shown by the equation above. The diagram
below shows how to compute the second order terms (shaded box in the equation) of some pixel
(denoted in red) in a 10 px by 10 px stimulus for different τ ’s. When τ = 0, only the second
order interaction between the red pixel and itself is included; when τ = 1, additional interactions
between the red pixel and each green one are included, and so on.

3.5 Results

3.5.1 CNN models outperformed others especially for higher-order neu-
rons

Figure 3.6 shows the performance of CNN models vs. others (except pre-trained CNN models;
see Section 3.5.4) on explaining our V1 neural data. Because the full stimulus set consists of
different types of stimuli (OT, CN, CV, etc.; see Section 3.2.1), and the full population of neurons
for each monkey consists of two subsets (OT neurons and HO neurons, which can be divided
into finer subsets as well; see Section 3.2.2) that responded very differently to different types of
stimuli, we trained all models using different stimulus subsets (“OT” stimuli and all stimuli; we
also tried training only on “nonOT” stimuli, and that gave similar results to using all stimuli), and
evaluated each model in terms of its average CC2

norm (Section 3.3.6) averaged over OT neurons
and HO neurons (for results on finer subsets, see Section 3.5.2 and later). We do not show results
of HO neurons trained on OT stimuli, as HO neurons by definition did not respond to OT stimuli
well and the results might be unreliable.

We compare CNN models and other models at two different levels. At the individual model
architecture level (solid bars in Figure 3.6), we compare specific CNN architectures (models with
different numbers of channels) with Gabor models and GLMs. In this case, CNN models with
more channels worked better and they outperformed their GLM counterparts (B.2 vs. Fourier
power GLMs, B.4 vs. linear GLMs, and B.9 vs. GQMs; see Section 3.4.1.1) across the board;
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GQMs had in general better performance than other GLMs, but still fell behind CNNs by a large
margin. Gabor models performed similarly to GLMs or worse, and were outperformed by CNNs
as well.

At the overall model category level (dashed lines in Figure 3.6), we compare CNN models
as a whole to Gabor models as a whole as well as GLMs as a whole. To do this, for each model
category, we constructed an “all” model for that category by choosing the best performing model
architecture (in terms of performance on validation data for CNNs and GLMs, and in terms of
performance on training data for Gabor models; testing data was never used during the model
selection) for each individual neuron. By comparing the dashed lines, we have the following
empirical observations about the three model classes.

3.5.1.0.1 CNNs outperformed other models especially for HO neurons with complex stim-
uli When stimuli were the same, the relative performance gap between CNN and other models
was larger for HO neurons than OT neurons (middle and right columns of panels of Figure 3.6).
For example, on Monkey A, the relative performance increase of the CNN over the GLM in-
creased from 34.2 % for OT neurons to 52.2 % for HO neurons. When neurons to model were
the same, the relative performance gap was larger for complex stimuli than simple stimuli (left
and middle columns of panels of Figure 3.6). For example, on Monkey A, the relative perfor-
mance increase of the CNN over the Gabor model increased from 27.3 % for “OT” stimuli to
48.5 % for all stimuli.

3.5.1.0.2 Priors on Gabor models helped especially with limited data When the stimuli
were limited and simple, Gabor models outperformed GLMs, possibly due to the strong and
neurophysiologically reasonable prior on Gabor models that filter weights can be described well
by Gabor functions [70], and vice versa when the stimuli were relatively sufficient and rich
(leftmost column of panels vs. other panels of Figure 3.6). One may hypothesize that multi-
component Gabor models (multi ones) outperformed standard ones (complex and simple)
mostly due to having multiple orientations; this was not true as shown in Section 3.5.3.

Finally, Figure 3.7 shows the fitting results of some neurons in different classes (see Sec-
tion 3.2.2); for CNN models, we also show the learned filters and visualization results obtained
by activation maximization [119]; these visualization results are images that activate fitted CNNs
most. In most cases, Gabor models and GLMs failed to predict the high-responding parts of the
tuning curves compared to CNNs.

In Supplementary Materials, we show that CNN models outperformed others even with less
amount of data; we also show additional results on CNN models, such as comparison of different
optimization configurations and comparison of different architectures (different numbers of lay-
ers, different kernel sizes, and so on). We will focus on the one-convolutional-layer CNN model
B.9 with 883 parameters for the rest of this study, because its performance was close to the
best among all the CNN models we tried (Supplementary Materials) without having too many
parameters, and its one-layer architecture is easier to analyze than those of similarly performing
models.
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3.5.2 What made CNNs outperform other models
As shown in Figure 3.6, the baseline CNN architecture alone (B.9) outperformed GLMs, which
were the best non-CNN models in this study, by a large amount, especially for HO neurons.
By comparing the row for the CNN and the rows for GLMs (particular the row for the GQM,
as GQMs overall performed better than other GLM variants) in Table 3.1 (Section 3.3.4), we
hypothesize that this performance gap was primarily due to the structural components present
in the CNN but not in GLMs we studied: thresholding nonlinearity (ReLU), max pooling, and
shared weights of hidden units (convolution). To test our hypothesis, we explored different
variants of our baseline CNN architecture B.9 in terms of its structural components. The results
on thresholding nonlinearity and max pooling are given in this part, and those on convolution
are given in the next part. While our GLMs possess an exponentiation nonlinearity which is
not present in our CNNs, we found that the exponentiation gave little performance increase than
without (Supplementary Materials).

To better understand the utilities of thresholding nonlinearity and max pooling, we explored
various variants of the baseline CNN architecture in terms of nonlinearity and pooling scheme.
Specifically, we tried all combinations of five different nonlinearities—ReLU (R), ReLU fol-
lowed by squaring (half-squaring, HS), squaring (S), absolute value (A), linear (no nonlinearity,
L)—and two different pooling schemes—max pooling (max), average (mean) pooling (avg)—
with other structural components unchanged. Thus, we obtained ten different CNN variants
(including the original one) and compared them with the “all” model for GLMs (picking the best
model architecture for each neuron), or GLM all as reference. Results are shown in Figure 3.8
and Figure 3.9, which have the same organization: panels a-c show the performance of all ex-
plored models as before, but with CC2

norm over OT and HO neurons decomposed into average
CC2

norm for finer subsets inside OT and HO neurons (Section 3.2.2) to examine model perfor-
mance in more detail; panels d-f show the neuron-by-neuron comparison of different pairs of
models for highlighting. Overall, we have the following observations (letters in the parentheses
denote the panels used for highlighting among d-f, if any).

• Thresholding nonlinearities outperformed non-thresholding ones (d,e).
• Thresholding nonlinearities performed similarly (f).
• No consistently better pooling type, but max pooling was more powerful in isolation.
• High correlation between per-neuron and average model performance (almost all panels).

3.5.2.0.1 Thresholding nonlinearities outperformed non-thresholding ones Compared to
GLMs we explored in this work, one nonlinear structural component unique to CNNs is ReLU,
a thresholding nonlinearity. To understand the usefulness of thresholding nonlinearities in gen-
eral, we compared four CNN variants with thresholding nonlinearities (R max, R avg, HS max,
HS avg) with four without (A max, A avg, S max, S avg) and found that thresholding (R, HS)
in general helped. This can be seen at two levels. At the level of individual architectures, those
with thresholding generally performed better than those without (d, e, and rows 5-8 from the top
vs. 1-4 in a-c of Figures 3.8 and 3.9). At the level of model categories, we combined all four
thresholding models into one “all” model (T all) and all four non-thresholding ones as well
(NT all), using the same method as we constructed “all” models in Figure 3.6; we found that
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thresholding helped as well. Our results suggest that the recorded V1 neurons actually take some
thresholded versions of the raw input stimuli as their own inputs. There are at least two ways to
implement this input thresholding. First, neurons may have some other upstream neurons as their
inputs, each upstream neuron with its own thresholding nonlinearity as modeled in McFarland
et al. [112], Vintch et al. [172]. Second, the thresholding may happen at the dendritic tree level,
as suggested by Gollisch and Meister [45].

3.5.2.0.2 Thresholding nonlinearities performed similarly While the two thresholding non-
linearities (R and HS) showed better performance overall, we did not see much difference be-
tween the two (f, and HS max vs. R max, HS avg vs. R avg in a-c of Figures 3.8 and 3.9).
This observation was consistent with Heeger [52], where the author claimed that these two types
of thresholding nonlinearities are both consistent with physiological data and the brain might be
using one as an approximation to implement the other.

3.5.2.0.3 No consistently better pooling type, but max pooling was more powerful in iso-
lation While thresholding nonlinearities showed better performance consistently than non-
thresholding ones as shown above, the results were mixed for two pooling schemes and depended
on nonlinearities, combinations of neurons and stimuli, and monkeys (rows 1-8 from the top, as
well as MAX all vs. AVG all that were constructed like T all and NT all above, in a-c of
Figures 3.8 and 3.9). We suspect such mixed results were due to the complicated interaction be-
tween nonlinearity and pooling. In other words, the contributions of nonlinearity and pooling to
model performance do not add linearly. Still, we think max pooling is a powerful computational
component per se for modeling neural responses, as max pooling alone without any nonlinearity
performed comparably with many other models with pooling and nonlinearity (L max vs. others
in a-c of Figures 3.8 and 3.9).

3.5.2.0.4 High correlation between per-neuron and average model performance Figures 3.8
and 3.9 show that different models performed differently. We found that the performance in-
crease/decrease of one model over another one seemed to be universal, rather than class- or
neuron-specific. We can see this universality from several aspects when two models are com-
pared neuron by neuron (d-f of Figures 3.8 and 3.9). First, there was a high correlation between
the performance metrics of individual neurons (high Pearson correlation coefficients r). Second,
we performed linear regression on each neuron subclass as well as on all neurons (colored solid
lines and black dashed line in the lower right corner of each panel), and found all regression lines
were very close.

3.5.3 Convolution was more effective than diverse filters
Apart from thresholding nonlinearity and max pooling explored in Section 3.5.2, CNN mod-
els have another unique structural component compared to other models in our study—shared
weights among hidden units via convolution—as shown in Table 3.1. In contrast, other models
with multiple hidden units (when these models are considered as MLPs; see Section 3.3.4) of-
ten have hidden units with independent and diverse weights without sharing (“independent” in
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Table 3.1). In this section, we explore the relative merits of these strategies for relating weights
of different hidden units—shared weights via convolution vs. independent weights—in terms of
model performance, not only for the CNN, but also for other model classes. The results are shown
in Figure 3.10, with similar layout to Figures 3.8 and 3.9. We have the following observations
(letters in the parentheses denote the panels used for highlighting).

• Multiple diverse filters alone did not help much (d vs. e).
• Convolution helped achieve better performance with the same number of parameters (f).

3.5.3.0.1 Multiple diverse filters alone did not help much To examine the impact of hav-
ing multiple filters with diverse shapes, we explored two classes of models: Gabor models
and CNN models. For Gabor models, we examined three single-filter variants—simple cell
model (Gabor s), complex cell model (Gabor c), and the “single-component” Gabor model
(Gabor single) constructed from simple and complex cell models similarly to “all” models in
Figure 3.6—and one multi-filter variant—one simple two complex (Gabor 1s2c; other multi-
filter models performed worse as shown in Figure 3.6). For CNN models, we varied the number
of channels of the baseline CNN B.9 from 1 (B.1) through 18 (B.18).

While the multi-filter Gabor model outperformed both simple and complex cell models by a
large margin (a-c,d of Figure 3.10), we found that the single-component model (Gabor single),
which takes the better one of simple cell and complex cell models for each neuron, worked al-
most as well as the multi-filter one (a-c,e of Figure 3.10). While there was still some performance
gap between Gabor single and the Gabor 1s2c, the gap was relatively small and there was
strong correlation between the two models in terms of per-neuron performance (Figure 3.10e).
For each neuron, we further compared the learned filters of simple, complex, and multi-filter
Gabor models, and found that in some extreme cases, the learned multi-filter Gabor model was
degenerate in the sense that it had its simple component dominate its complex components or
vice versa (Figure 3.10g; check the caption).

The results for one-channel CNN and the baseline 9-channel CNN are shown in the top two
rows of Figure 3.10a-c, and we found that the performance increase (around 20 % to 50 %) was
not proportional to the increase in the number of parameters (around 800 %, or 99 vs. 883 param-
eters). See Figure 3.6 and Supplementary Materials for more results on the model performance
of CNN as we change the number of channels.

3.5.3.0.2 Convolution helped achieve better performance with the same number of pa-
rameters As shown in the previous part, having multiple independent filters of diverse shapes
was not effective for increasing performance relative to the increase in model size it involved.
However, we found that convolution was much more effective, achieving better model perfor-
mance without increasing the number of parameters. To illustrate this, we compared the baseline
CNN’s average pooling (R avg) variant, which linearly combines ReLU units, with a multilayer
perceptron consisting of one hidden layer of 40 ReLU units (MLP 40). To make the two models
match in the number of parameters, we performed principal component analysis to reduce the
input dimensionality for the MLP to 20; therefore the MLP has 40 × (20 + 1) + 40 + 1 = 881
parameters, roughly matching the CNN (883 parameters). The CNN outperformed the MLP by
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a relatively large margin (a-c,f of Figure 3.10). We also explored the trade-off between input di-
mensionality and number of hidden units for MLP, with the number of parameters roughly fixed
(Figure 3.10h); given roughly the same number of parameters, the CNN, which has convolution,
consistently outperformed MLPs of various configurations.

One may argue that the (average) pooling, which was difficult to avoid in our experiments
as CNNs would otherwise have too many parameters, helped model performance as well; while
such interpretation is possible, it is also helpful to simply consider convolution and pooling
collectively as a modeling prior that helps neural response prediction with limited number of
parameters and training data. The effectiveness of convolution and pooling could also be due
to eye movements during neural data recording; as shown in our previous work [160], the eye
movement was in general very small (the standard deviation of the distribution of eye positions
during stimulus presentation was in general less than 0.05° in visual angle, or 0.75 px in the 20 px
by 20 px input space of the CNN) for our data, and such interpretation was less likely.

3.5.4 Data-driven vs. pre-trained CNNs and the complexity of V1 neural
code

The results are shown in Figure 3.11. When different CNN layers are compared (Figure 3.11g),
overall layer conv3 1 performed the best (conv4 1 performed similarly but we prefer layers
that are lower and thus easier to analyze). The result was largely consistent with that in Cadena
et al. [13]; however, we also observed performance decreases in layers conv3 2 through pool3
which were not present in Cadena et al. [13], and we will investigate this in the future. When the
best VGG layer and our baseline CNN B.9 are compared, the VGG layer performed simiarly to
the CNN (Figure 3.11a-c), and there was a relatively high correlation between the performance
metrics of individual neurons for two models (Figure 3.11d-f). We have also tried other variants
of VGG and they performed similarly to or worse than VGG19 (Supplementary Materials).

While our results show that pre-trained CNNs were on par with CNNs trained from stratch,
it is possible that pre-trained CNNs would perform much better if they were trained on artificial
stimuli as well due to the large difference between the image set used to train VGG19 (natural
images) and from our artificial stimulus set. However, such possibility might be not very likely:
(1) in our preliminary efforts to apply the state-of-the-art 3-layer CNN architecture in Cadena
et al. [13] to model our V1 neurons all together (Supplementary Materials), we found that the
3-layer CNN, within the limit of our hyperparameter tuning, performed similarly to our baseline
CNN; (2) Cadena et al. [13] have already established (somewhat) that the 3-layer CNN architec-
ture and pre-trained CNNs perform similarly when all are trained with stimuli of similar nature.
On the other hand, we found it interesting that CNNs trained on natural images could be used to
effectively predict neural responses on artificial stimuli.

We also visualized units across various layers of the VGG19 network by activation maxi-
mization [119] implemented in keras-vis [88], and found that these units from layers that
matched neural data well (conv3 1 and conv4 1) are tuned to relatively complex image fea-
tures rather than oriented edges (Figure 3.11h); the visualization results were consistent with our
earlier work [160] on the complexity of V1 neural code.
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3.6 Discussion

3.6.1 Key components for the success of CNN

In this study, we evaluated a variety of Gabor-based models, generalized linear models, and CNN
models for modeling V1 neurons of awake macaque monkeys. These models can be considered
as a continuum of regression models in statistics or system identification models in sensory
neuroscience [177]; specifically, they can be considered as one-hidden-layer neural networks
with different structural components and different degrees of model flexibility (Section 3.3.4).
This comparative study allows us to empirically identify some key components that are important
for modeling V1 neurons, particularly those neurons with selectivity to higher-order features as
identified in Tang et al. [160].

In Section 3.5.2, we evaluated CNN models under different combinations of nonlinearity
(ReLU, half-squaring, squaring, and linear) and pooling scheme (max and average), and we
found that thresholding nonlinearity and max pooling, which are absent in the best-performing
non-CNN models (GLMs) in this study (Table 3.1), were important for the CNN’s superior per-
formance relative to other models. In particular, we found that models with thresholding non-
linearities (ReLU and half-squaring) consistently performed better than those without. Interest-
ingly, thresholding nonlinearities such as ReLU and half-squaring are already in classical models
of simple cells [3, 52], and pooling (average pooling or max-pooling) of simple cells’ responses
are also in some models of complex cells [34, 135]. In fact, these models of simple and complex
cells were the inspiration to the development of the convolutional neural network architecture
[40] in the first place. The Gabor-based models did not perform well mostly because their fil-
ters were restricted to Gabor functions whereas filters in GLMs and CNNs could take arbitrary
shapes. The CNN provides an elegant way of integrating nonlinearities in models of simple
and complex cells with more flexible filters in GLMs; in addition, the CNN allows the linear
combination of multiple filters, and such linear combination increases model expressiveness.

When all the models are considered as one-hidden-layer neural networks (Section 3.3.4),
there are two strategies for relating weights learned for different hidden units—shared and spa-
tially shifted weights (convolution) and independently learned weights for different units (Ta-
ble 3.1, “constraints among units”). We evaluated the relative merits of these two strategies in
Section 3.5.3 and found that convolution was more effective than having multiple independently
learned units both for better performance and fewer model parameters. Our CNN models are
similar to subunit models in the literature [64, 112, 143, 172], where V1 neurons take (thresh-
olded) responses of upstream intracortical neurons (with approximately spatially shifted recep-
tive fields) as their inputs and exhibit local spatial invariance, particularly for complex cells. Our
CNN models are also consistent with previous V1 modeling work using spike-triggered meth-
ods [124, 143] where the subspace spanned by recovered subunits can be approximated by the
subspace spanned by one single set of spatially shifted subunits with shared weights. Despite the
similarity between our CNN models and subunit models in the literature, our systematic and com-
prehensive exploration of the contribution of various structural components in the CNN helps to
illuminate which nonlinear components are more important to the subunit models (Section 3.5.2)
and what strategies for relating subunits were more effective (Section 3.5.3).

Overall, we believe this study is the first one that systematically evaluates the relative merits
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of different CNN components in the context of modeling V1 neurons. We demonstrated that key
components of the CNN (convolution, thresholding nonlinearity, and pooling) contributed to its
superior performance in explaining V1 responses. Our results suggests that that there is a high
degree of correspondence between the CNN and biological reality.

3.6.2 Complexity of V1 neural code
Using our neural dataset (Section 3.2), we have found earlier [160] that a large proportion of
V1 neurons in superficial layers are selective to higher-order complex features rather than sim-
ple oriented edges. We classified these neurons selective to higher-order complex features as
“higher-order” (HO) neurons and others as “orientation-tuned” (OT) neurons (Section 3.2), some
of which also exhibited complex feature selectivities due to the strictness of our classification
criterion [160]. In this study, we showed that the performance gap between CNN models and
non-CNN models (Gabor-based models and GLMs) was more pronounced in HO neurons than in
OT neurons, and we took this as an additional evidence supporting the complexity of V1 neural
code in HO neurons.

In addition, by fitting intermediate features from a pre-trained, goal-driven CNN (VGG19)
to our neural data, we found that a relatively high layer (conv3 1), which encodes relatively
complex image features (Figure 3.11h), explained our neural data the best among all the VGG19
layers. This finding further reinforced the claim that V1 neurons in superficial layers might have
a great degree of complex selectivity and was largely consistent with Cadena et al. [13] where the
same layer (conv3 1) in VGG19 provides the best model of V1 responses to natural images in
their study. Furthermore, the fact that such pre-trained, goal-driven neural networks performed
well for explaining neural responses both in V1 (our study and Cadena et al. [13]) and in IT
[89, 178, 179] is another piece of evidence that there is a high degree of correspondence between
the CNN and biological reality.

3.6.3 Limitations and varieties of the CNN
While CNN models, especially those goal-driven ones pre-trained on computer vision tasks,
performed very well in our study and some other studies [13] for V1 neuron modeling, we should
point out that even the best-performing CNN in our study only explained about 50 % of the
explainable variance in our neural data, consistent with Cadena et al. [13]. The failure of CNN
models for explaining the other half of the variance in V1 data can be due to a number of reasons.
First, V1 neurons are subject to network interaction and their neural responses are known to be
mediated by strong long-range contextual modulation. Second, it is possible that there are some
basic structural components missing in the current deep CNN methodology for fully capturing
V1 neural code.

An important design issue with CNN modeling is the depth of the network. Here, we used
a very basic one-convolutional-layer CNN because we can then formulate all models as one-
hidden-layer neural networks (Section 3.3.4) and directly evaluate the relative contributions of
different model components (Sections 3.5.2 and 3.5.3). We found that, at least for our data,
adding an additional convolutional layer did not produce significant performance benefit (Sup-
plementary Materials), and the performance difference between our baseline one-convolutional-
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layer CNN and the pre-trained CNN was relatively small (Figure 3.11). Our findings suggest that
the true nature of V1 neurons does not need to be modeled by a very deep network. However,
other studies typically use deeper CNNs. McIntosh et al. [113] used a 2-convolutional-layer
CNN with to model retinal ganglion cells; Kindel et al. [78] and Cadena et al. [13] used 2- and
3-convolutional-layer CNNs to model V1 neurons respectively. It is possible that 2 or 3-layer
networks are needed for modeling V1 neural responses to natural images that are richer than our
artificial stimuli; in addition, higher layers in those models might be functionally equivalent to
the max pooling layer in our CNN, as those multi-layer CNNs typically do not use pooling. Given
there are multiple layers of neurons on the pathway between the photoreceptors in the retina and
superficial layer cells in V1, biologically speaking, a much deeper CNN should provide a more
accurate model in a more general setting.

Most CNN-based work models all the neurons in a data set with a single network, with shared
parameters in lower layers and separate sets of parameters for different neurons in higher layers
[13, 78, 81, 113]. Instead, we model each neuron separately to allow a more fair comparison
between CNN models and other models (GLMs, etc.) that typically model neurons separately
without parameter sharing, and a fair comparison allows us to understand the CNN’s success
compared to other models more conveniently. We also tried modeling all neurons using a single
CNN (Supplementary Materials) with an architecture similar to that in Cadena et al. [13]; to our
surprise, large single CNNs that model all neurons together performed similarly to our baseline
CNNs that model each neuron separately, given roughly the same number of parameters; for
example, a 3-layer single CNN with around 300k parameters trained on some (around 350) HO
neurons performed similarly to separately trained CNNs, which together take around 300k pa-
rameters (883 parameters per model) as well. More investigation (better hyperparameter tuning,
better network architecture, etc.) is needed to improve the performance of modeling using a
single CNN on our V1 data.
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Figure 3.6: CNN models vs. others on explaining V1 neural data. Two rows of panels show
results for monkey A and monkey B respectively, and three columns of panels show how mod-
els performed on different neuron subsets (“OT” and “HO”), evaluated on different subsets of
stimuli (“OT” and “all”). For each panel, the model performance is shown in CC2

norm averaged
over neurons in the neuron subset. For each category of models (cnn, glm, etc.), solid bars
show model performance of different specific model architectures, and dashed lines (suffixed by
all) show the category’s overall “best” performance by taking the best model architecture for

each individual neuron (in terms of validation performance for CNNs and GLMs and training
performance for Gabor models). Boldface numbers are the relative performance increases of the
CNN classes over non-CNN classes (computed as ratios between dashed lines minus one). For
CNN models (red), check Table 3.2 for their meanings. For Gabor models (blue), complex and
simple mean complex cell and simple cell models; multi.MsNc means linear combinations
of M simple and N complex model(s). For generalized linear models (green), linear means
vanilla GLM; fpower means Fourier power GLM; gqm.x (x being one of 0,2,4,8) means the
quadratic GLM with locality x.
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Figure 3.7: Example neurons and their fitting results. For each of the five stimulus classes shown
in different columns, we show the following four pieces of information regarding the fitting
of a neuron that responded better to this class than the others (a-d). a The top 20 responding
stimuli of the neuron; b the fitted CNN fully connected output layer’s visualization results (over
5 random initalizations) obtained by activation maximization [119] implemented in keras-vis
[88]; c the fitted CNN’s four 9 by 9 convolutional filters (each scaled by the sum of squares of
its associated weights in the fully connected layer); d the neuron’s fitting results (over testing
data) on three categories of models: CNN, Gabor and GLM, with model performance in terms of
CC2

norm given in the legends. As each category of models has multiple variants or architectures,
we roughly speaking picked the overall best one for each category. We picked the 4-channel
architecture B.4 for CNN, as it performed almost the same as the baseline B.9 (Figure 3.6) and
allows easier visualization and interpretation; we picked multi.1s2c for Gabor, and gqm.4
for GLM as they performed overall better than other variants. Check Figure 3.6 for the meanings
of model names.
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Figure 3.8: Detailed comparison of CNN variants, monkey A. a-c ten variants of the baseline
CNN (B.9), along with the “all” model for GLMs GLM all (Figure 3.6) for reference. In addi-
tion, four “all” CNNs, each of which constructed from CNN models with some shared structural
component (thresholding nonlinearity T, non-thresholding nonlinearity NT, max pooling MAX,
or average pooling AVG), are shown as well. CNN variants are named X Y where X and Y de-
note nonlinearity and pooling type, respectively (Section 3.5.2). The organization of panels is
the same as that in Figure 3.6, except that only results for Monkey A are shown (see Figure 3.9
for Monkey B). Rows show different models, whose performance metrics (mean CC2

norm) are
decomposed into components of neuron subclasses, denoted by different colors (legend on the
right). For each model in some panel, the length of each colored bar is equal to the average
performance over that neuron subclass multiplied by the percentage of neurons in that subclass,
and the length of all bars concatenated is equal to the average performance over all neurons. The
baseline model has its name in bold, and “all” models in italics. d,e Neuron-by-neuron compari-
son of the a CNN variant with thresholding nonlinearity (HS max) vs. one without (S max) for
OT neurons, all stimuli (d) and HO neurons, all stimuli (e). For d, e, and f, performance metrics
(mean CC2

norm) are shown at corners, Pearson correlation coefficients between models are shown
at the top left, and regression lines for different neuron subclasses (colored solid) together with
the regression line over all neurons (black dashed) are shown at the bottom right (scaled and
shifted to the corner for clarity; otherwise these regression lines will clutter the dots that repre-
sent individual neurons). f Comparison of two thresholding nonlinearities, for HO neurons, all
stimuli. Results with max pooling are shown, and average pooling gave similar results.
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Figure 3.9: Detailed comparison of CNN variants, monkey B. Check Figure 3.8.
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Figure 3.10: Convolution seemed more important than diverse filters. a-f Comparison of single-
vs. multi-component Gabor models (highlighted in d,e), comparison of single- vs. multi-channel
CNN models, and comparison of models with and without convolution (highlighted in f). See
Section 3.5.3 for details. These panels have similar formats to those in Figure 3.8. g Learned
single- (simple and complex) and multi-component (1s2c) Gabor models fitted to a partic-
ular neuron’s data. This neuron was tuned to corners as shown in the top right part of the panel.
For the three models (left, middle, right), we show the learned filters (top) and fitting results
(bottom). Simple cell components are shown with red borders, and complex cell components are
shown with blue borders. For the multi-component model, we also show the weights of different
components at the top of filters. In this case, the multi-component model was dominated by its
simple component with weight 0.531, which was orders of magnitude larger than the weights of
its complex components. h Performance vs. number of hidden units for MLP models. Vertical
dashed lines denote the MLP model (MLP 40) in panels a-c,f, and horizontal dashed lines show
performance metrics of the CNN R avg. Only results for monkey A are shown and monkey B
gave similar results.
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conv3_1

conv4_1

Figure 3.11: Transfer learning (goal-driven) approach for modeling V1 neurons using a pre-
trained CNN (VGG19). a-f the best performing VGG19 layer (conv3 1) vs. the baseline
CNN (B.9). These panels have similar formats to those in Figure 3.8. g Model performance
across different VGG19 layers, for different combinations of neuron subsets and stimuli. Only
results for monkey A are shown, and monkey B gave similar results (Supplementary Materials).
h Visualization of some conv2 1 (left), conv3 1 (bottom), and conv4 1 (right) units by
activation maximization [88, 119]. Each unit was visualized by the image (cropped to 50 px by
50 px) that maximizes the unit’s activation. See Supplementary Materials for more results.
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Chapter 4

Modeling neural responses of early visual
areas using recurrent convolutional neural
networks

Feed-forward deep neural networks are prevalent in modeling early visual areas of the brain,
without accounting for the abundant recurrent connections in the visual system. We found that
deep neural networks with recurrent circuits outperformed feed-forward models with matched
model sizes and hyperparameters, in predicting neural responses of early visual areas to large
sets of stimuli. By using a novel method that reformulates recurrent models as multi-path en-
semble models, we found that the recurrent model outperformed the feed-forward model by
implicitly summing over multiple feed-forward paths during inference; the multi-path ensemble
inside the recurrent model allows approximating the complex function underlying recurrent bi-
ological circuits efficiently with shared parameters across paths. In addition, we found that the
performance of a recurrent model was highly correlated with the the balance of short and long
paths in its multi-path ensemble. Our work establishes the superiority of recurrent models in
modeling neural responses of early visual areas and proposes a novel approach to understand re-
current models using multi-path ensembles, providing new understanding on the computational
rationales and advantages of recurrent circuits that are so ubiquitous for biological systems.

4.1 Introduction

Feed-forward deep neural networks have been shown to be an effective model for predicting
neural responses of early visual areas [13, 78, 81, 89, 179, 184]. However, abundant recurrent
connections exist within each visual area and between visual areas [32, 109]. In this paper,
we tried to investigate two questions. Experimentally, we’d like to know whether deep neural
networks with recurrent circuits can provide a better model for predicting neural responses in
the early visual areas; theoretically, we’d like to understand why recurrent models perform better
from either a computational or a biological perspective, if the answer to the first question is
positive.

To answer the first question, we trained a multitude of recurrent models and feed-forward
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models under different hyperparameters and data sets; experimental results showed that recurrent
models could explain neural responses of early visual areas better than typical feed-forward
models with matched hyperparameters and model sizes, especially when there was less training
data.

To answer the second question, we developed a novel method to reformulate a recurrent
model as an ensemble of feed-forward models. Our novel method is based on the hypothesis
that the advantage of the recurrent model rests on the ensemble of multiple feed-forward paths
embedded in the recurrent computation and such multitude of paths makes the recurrent model
more flexible compared to a feed-forward model. By reformulating the recurrent model as a
multi-path model and analyzing the recurrent model through its multi-path ensemble, we can (1)
compare recurrent models and feed-forward models in a unified framework where feed-forward
models are degenerate multi-path models with one path; (2) understand why recurrent models
can outperform feed-forward models by comparing their multi-path ensembles; (3) understand
the conditions under which recurrent models performed better by comparing the multi-path en-
sembles of different recurrent models and by performing ablation studies on the ensembles; (4)
connect recurrent models to the existing literature on ensemble models in the machine learning
community.

By studying recurrent models and feed-forward models via their corresponding multi-path
ensembles, we found that the recurrent model outperformed the feed-forward one due to the
former’s compact and implicit multi-path ensemble that allows approximating the complex func-
tion underlying recurrent biological circuits with efficiency. In addition, we found that the per-
formance differences among the recurrent models we explored were highly correlated with the
differences in their multi-path ensembles; in particular, models with more relative weights on
shorter paths tended to perform better than models with more relative weights on longer paths.

Our work establishes that the recurrent model than the purely feed-forward model for predict-
ing neural responses in the early visual areas, complementing previous studies on feed-forward
models [13, 78, 81, 179] and consistent with very recent studies on recurrent ones [77, 155]. Our
most interesting contribution is to establish that the superiority of the recurrent model for neural
prediction can be attributed to the implicit and compact multi-path ensemble inside the model,
and that a balance of different paths in the ensemble is necessary for the model to achieve the
best performance. This work provides new understanding on the computational rationales and
advantages of recurrent circuits that are ubiquitous in biological systems [32].

4.2 Related work

4.2.1 Modeling visual areas of the brain using neural network models with
recurrent circuits

In the brain, it is well known that there are local horizontal recurrent connections between neu-
rons in the same area [73] and long-range feedback recurrent connections between neurons in
different areas [32]. There are at least three types of studies on recurrent circuits in visual areas.

The first type of studies focuses on modeling various neural response properties (surround
suppression, end-stopping, etc.) thought be to related to recurrent circuits [18, 19, 20, 134,
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156, 157, 158, 180, 185] but these models’ predictive power on arbitrary input stimuli are either
unknown or worse than deep feed-forward networks that have recently become popular in the
visual neuroscience community for predicting neural responses to arbitrary stimuli [13, 78, 81,
89, 179].

The second type of studies focuses on showing the advantage of recurrent circuits in modeling
temporal dynamics of visual neurons [77, 93, 116] or human behaviors in visual tasks [155]. Our
work differs from these studies by training recurrent models to predict average firing rates instead
of temporal dynamics of visual neurons. In some sense, the baseline feed-forward models in the
previous neural modeling studies were bound to perform worse because feed-forward models
inherently cannot model temporal dynamics; instead, our study demonstrated the superiority of
recurrent models in a setting where feed-forward models are more likely to perform well.

The third type of studies uses recurrent circuits in the brain as a motivation to compare re-
current models and feed-forward models for solving traditional computer vision tasks such as
image classification [93, 116, 155]. Our work complements these studies by studying the advan-
tage of recurrent models over feed-forward models in neural modeling tasks [13, 78, 81] instead
of computer vision ones.

4.2.2 Multi-path ensemble models and their relationships with recurrent
models

Multi-path models have been widely studied in the computer vision community; highway net-
works [159], ResNet [50, 51], FractalNet [94], and DenseNet [61] are among the most repre-
sentative ones. Many multi-path models can be conceptually understood as ensembles summing
over smaller networks [167].

There have been relatively few studies connecting recurrent models to multi-path ensemble
models in the deep learning context. For ResNets, Liao and Poggio [104] have pointed out the
equivalence between a specific type of recurrent networks with weight-tied ResNets, and Chen
et al. [16] formulate deep weight-tied ResNets as approximating the dynamics of continuous
recurrent models specified in ordinary differential equations. To the best of our knowledge, there
is no work explicitly connecting recurrent models to multi-path ensemble models in general. The
most similar work to ours is probably Zhang et al. [181], which characterizes recurrent models
in terms of some architectural complexity measures (feed-forward depth, recurrent depth, and
recurrent skip coeffcient) motivated by graph theory and quantified the relationship between
performance and these complexity measures.

In the deep learning community, certain types of recurrent models have been analyzed in
other ways. Bai et al. [5] have found that weight-tied deep recurrent networks converge to a fixed
point of the recurrent dynamics, and Hinton et al. [57] have proved that an infinite logistic belief
net with tied weights is equivalent to a restricted Boltzmann machine [55].

4.3 Methods
As stated in Section 4.1, there are two questions we try to answer in this study. Experimentally,
we’d like to know whether deep neural networks with recurrent circuits can provide a better
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model for predicting neural responses in early visual areas; theoretically, we’d like to understand
why recurrent models perform better from either a computational or a biological perspective,
if the answer to the first question is positive. To answer the first question, we trained tens of
thousands of recurrent models and feed-forward models with different hyperparameters using
different data sets; the architectures of our recurrent and feed-forward models are described in
Section 4.3.1, the data sets in Section 4.3.2, and other details in Section 4.3.3. To answer the
second question, we developed a novel method to reformulate a recurrent model as an ensemble
of feed-forward models, with details given in Section 4.3.4.

4.3.1 Models
4.3.1.1 Baseline feed-forward models

Our baseline feed-forward models are based on those in Cadena et al. [13], Klindt et al. [81]
(Figure 4.1a) which are state of the art in predicting neural responses in early visual areas to
our knowledge. We trained many baseline feed-forward models of different model sizes and
other hyperparameters (Section 4.3.3.2), and each baseline model is a feed-forward model with
some convolutional layers (Figure 4.1a). During inference, the information about the static input
stimulus flows from one layer to the next layer in sequence. In particular, input image pixels are
first passed through a batch-normalization (BN) layer [67] and then a number of convolutional
processing blocks (CPBs) each of which implements the ubiquitously observed linear-nonlinear
operation [15, 136] using convolution, BN, and activation layers (Figure 4.1d). Afterwards, the
output feature map of the last processing block is passed into an average-pooling layer whose
output is passed into a factorized fully-connected (or linear) layer [81]. Finally, the output of
the linear layer is passed through an activation layer to generate the predicted neural responses.
Following previous studies [13, 81] and as well as based on our pilot experiments, the first
convolutional layer has a relatively large kernel size (9) and subsequent layers have a small
kernel size of 3. More details on the explored hyperparameters (number of channels, type of
activation function, etc.) can be found in Section 4.3.3.2, and a more detailed description of
model inference can be found in Appendix B.2.1.
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a. feed-forward model

b. recurrent model (no-avg readout)

Intermediate output @ t = T

convolutional phase readout phase

c. Convolutional Processing 
Block

d. Recurrent Convolutional 
Processing Block

T iterations

convolutional phase readout phase

Figure 4.1: Models explored in this study. (a) shows the architecture of an example baseline feed-
forward model. (b) show the architecture of an example recurrent model under no-avg readout
mode (Section 4.3.1.2.2). For both feed-forward and recurrent models, the model inference can
be divided into two phases as shown at the top of (a) and (b): the convolutional phase and the
readout phase. The concept of inference phases will be used in Section 4.3.1.2. (c), (d) show the
internal architectures of a convolutional processing block (CPB) and a recurrent convolutional
processing block (RCPB), respectively. The kernel size of a (R)CPB is denoted by k in (a),(b).
In this figure, we have in total three convolutional blocks for the feed-forward model (a) but only
two blocks for the recurrent one (b) because a RCPB equals two CPBs in terms of model size.
See Sections 4.3.1.1, 4.3.1.2 for details.
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Figure 4.2: Information flow in the first half of the model inference process for a recurrent
model. The example model has one CPB, two RCPBs, and three iterations in total. In the first
iteration t = 1, the information flow is the same as that in a baseline feed-forward model. In later
iterations, the output of a RCPB depends on both the layer below at the current iteration as well
as the RCPB’s own output at the previous iteration. The extra information flow of a recurrent
model relative to a feed-forward one is shown in shaded blocks and dashed lines.

4.3.1.2 Recurrent models

We explored the simplest possible recurrent variants [155] of our baseline feed-forward models.
As shown in Figure 4.1b, the general architecture of a recurrent model is similar to that of a
baseline feed-forward model, with two differences. First, all but the first CPBs are replaced
by recurrent convolutional processing blocks (RCPBs) which generate different intermediate
outputs across different iterations; second, the intermediate outputs of the highest convolutional
block across different iterations can be combined in different ways to generate the final output.
These two changes take place in the first phase (“convolutional phase” on top of Figures 4.1a,b)
and the second phase (“readout phase”) of the model inference process, respectively.

4.3.1.2.1 RCPB instead of CPB In the first phase of the inference process (“convolutional
phase” on top of Figures 4.1a,b), a recurrent model replaces all but the first CPBs in a baseline
feed-forward models with recurrent convolutional processing blocks (RCPBs). During model
inference, information flows over each CPB only once whereas it flows over each RCPBs for
multiple iterations. The detailed information flow for a recurrent model across iterations are
illustrated in Figure 4.2. The total number of iterations is a model hyperparameter. When the
total number of iterations is 1, a recurrent model is equivalent to a feed-forward model.

The general architecture of Recurrent Convolutional Processing Blocks (RCPBs) is the same
as that of the recurrent processing blocks in Spoerer et al. [155]. A regular convolutional process-
ing block (CPB) passes its input in sequence through a convolutional layer, a batch normalization
layer, and an activation layer (Figure 4.1c). A recurrent convolutional processing block (RCPB)
extends a CPB by having two inputs in the convolutional stage, one from the output from the
previous stage of the model in the current iteration and the other from the output of the current
RCPB in the previous iteration. As shown in Figure 4.1d, the two inputs are passed through
separate convolutional layers (Conv Feed-forward and Conv Lateral) and the two lay-
ers’ outputs are summed together element-wise as the input to the batch normalization layer.
Note that while the convolutional layers (Conv Feed-forward and Conv Lateral) stay
the same across different iterations during inference, the batch normalization layers are learned
separately for each inference iteration, following Spoerer et al. [155]. Separately learning batch
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normalization layers makes the learning much easier and introduces negligible increase in model
size (Sections B.2.2,4.5.3.1).

4.3.1.2.2 Combination of intermediate outputs for the final output For a model with
T iterations in total, the first phase of model inference yields T intermediate outputs (Fig-
ures 4.1b,4.2) from the highest convolutional block. In the second phase (“readout phase”) of
model inference, a recurrent model in general can make use of these intermediate outputs in
different ways to generate (read out) the final model output. There are multiple possibilities to
combine these outputs to generate the final predicted neural responses, and different possibili-
ties combine and utilize the different information flows across iterations (Figure 4.2) differently.
We explored four different ways to generate neural response prediction from the intermediate
outputs, or four different readout modes, as shown in Figures 4.3,4.1b and described as follows.
The readout modes are named based on how they average the intermediate outputs across itera-
tions. As we will show later in Section 4.4, the performance differences among recurrent models
with different readout modes (Section 4.4.1) can be explained by the readout modes’ different
weighting schemes on intermediate outputs (Sections 4.4.2,4.4.3).

1. no-avg (Figure 4.1b) No averaging. The intermediate output at the last iteration is passed
through the remaining layers of the model to get the final output.

2. early-avg (Figure 4.3a) Early averaging only. It’s similar to no-avg except that the
average of intermediate outputs across iterations is passed through the remaining layers of
the model.

3. late-avg (Figure 4.3b) Late averaging only. The neural response predictions based on
the individual intermediate outputs across iterations are averaged as the final output.

4. 2-avg (Figure 4.3c) Both early and late averaging. First the cumulative averages of in-
termediate outputs across iterations are computed and then the neural response predictions
based on these cumulative averages are further averaged as the final output.

Based our pilot experiments and for simplicity in matching the model size between recurrent
and feed-forward models (Section 4.3.3.2.2), a recurrent model does not involve recurrent com-
putation in its first CPB, which has a large kernel size (Section 4.3.1.1), and only adds recurrent
computation to subsequent CPBs. To match the model size between a feed-forward model and a
recurrent one, every two CPBs of kernel size 3 in a feed-forward model is replaced by one RCPB
of kernel size 3 in corresponding recurrent models. For a more detailed description of model
inference, see Appendix B.2.2.

4.3.2 Data sets

We collected neural responses of early visual areas (V1, V2) to two sets of static images, under
two different stimulus presentation paradigms (Figure 4.4) that have been commonly used in the
literature [13, 20]. In the ImageNet 8K data set, each stimulus was presented for a very short
period (47 ms), and in the NS 2250 data set, each stimulus was presented for a longer period
(500 ms). More details can be found in Appendix B.1.
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4.3.2.1 ImageNet 8K

This data set contains responses of 79 neurons to 8000 images from ImageNet [141], following
a stimulus presentation paradigm similar to that in Cadena et al. [13]. In each trial (Figure 4.4a),
we showed a random sequence of 16 images and each image lasted for about 47 ms. Overall six
trials were collected for each image per neuron.

4.3.2.2 NS 2250

This data set contains responses of 34 neurons to the 2250 images used in Tang et al. [161]. In
each trial (Figure 4.4b), we presented each image separately for 500 ms. Overall, 8 to 10 trials
were collected for each image per neuron.
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Figure 4.3: Readout modes early-avg (a), late-avg (b), and 2-avg (c) explored for re-
current models in this study. We explored four readout modes in total, with the simplest one
(no-avg) shown earlier in Figure 4.1b. The style of the figure follows that in Figure 4.1. Same
as Figure 4.1b, the inference for a recurrent model can be divided into two phases, the convolu-
tional phase and the readout phase are denoted at the top of the whole figure. All models shown
in this figure have the same convolutional phase but different readout phases.
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Figure 4.4: Stimulus presentation paradigms of a single trial, for ImageNet 8K (a) and NS 2250
(b). The style of the figure is adapted from Cadena et al. [13].

66



4.3.3 Implementation details
4.3.3.1 Data preprocessing

Following practices in the literature [13, 81], for each data set, we used cropped and downsam-
pled images as the input and normalized average neural responses as the output for modeling
purposes. See Appendix B.3 for full details.

4.3.3.2 Hyperparameters

To comprehensively evaluate recurrent models vs. feed-forward models, we trained and tested
multiple variants of recurrent and feed-forward models with different hyperparameters. Note that
while hyperparameters typically only refer to configurations that affect model architecture, here
we use the word more generally to denote all configurations that can affect model performance,
including amount of training data, random seed, loss function, and activation layer.

Table 4.1: Hyperparameters explored for feed-forward models. k denotes the kernel size for a
convolutional block

category name values explored

training data
hyperparameters amount of training data

25%, 50%, 100%
(1280, 2560, 5120 for ImageNet 8K,
350, 700, 1400 for NS 2250)

model size-related
model hyperparameters # of convolutional blocks

3 (1 CPB @ k=9 + 2 CPBs @ k=3),
5 (1 CPB @ k=9 + 4 CPBs @ k=3)

# of channels per
convolutional layer

8, 16, 32, 48, 64 for ImageNet 8K,
8, 16, 32 for NS 2250

model size-independent
model hyperparameters
and loss functions

loss function mean squared error, mean Poisson loss

activation layer ReLU, softplus

order of BN and activation
in the first convolutional block BN before act, BN after act

randomness hyperparameters model initialization seed 0, 1

4.3.3.2.1 Feed-forward models We explored feedforward models under all combinations of
hyperparameters listed in Table 4.1. In total, on the ImageNet 8K data we trained in total 480
feed-forward models with different hyperparameters, and on the NS 2250 data we trained in total
288 models. These hyperparameters are classified into four categories.

• Training data and model size-related model hyperparameters. we explored hyperpa-
rameters in these two categories because we feel training data amount and model size
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affect the relative performance difference between feedforward and recurrent models. In
particular, we hypothesized that the additional circuit priors from recurrent models would
be more useful when there was less training data and the model size was larger.

• Model size-independent model hyperparameters and loss functions We explored hy-
perparameters in this category because we wanted to know if the advantage of recurrent
models over feed-forward models is limited to certain choices of model size-independent
model hyperparameters and loss functions, or if such advantage is universal across choices
of model size-independent hyperparameters and loss functions.

• Randomness hyperparameters We explored different model initialization seeds because
we wanted to obtain robust metric numbers for our models by averaging results over dif-
ferent seeds. Ideally we should also explore over other randomness hyperparameters, such
as the seed used to split data into training, validation, and testing sets. We did not do so
due to computation resource constraints.

4.3.3.2.2 Recurrent models For each feed-forward model, we trained 24 corresponding re-
current models of the same size. To keep the comparison as fair as possible, each of the 24
recurrent models have the same hyperparameters as the feed-forward one on those hyperparam-
eters listed in Table 4.1, except with a decreased number of convolutional layers to match the
model size because a recurrent convolutional processing block has roughly twice as many pa-
rameters as a convolutional processing block with the same number of channels; therefore, when
the feed-forward model has three layers (1 CPB of kernel size 9 + 2 CPBs of kernel size 3), the
corresponding recurrent models have two layers (1 CPB of kernel size 9 + 1 RCPB of kernel size
3, with one RCPB equal to two CPBs in model size); when the feed-forward model has five lay-
ers (1 CPB of kernel size 9 + 4 CPBs of kernel size 3), the corresponding recurrent models have
three layers (1 CPB of kernel size 9 + 2 RCPBs of kernel size 3). In addition, the 24 recurrent
models differ in their recurrence-related model hyperparameters listed as follows.

• Number of iterations, with six possible values 2 to 7. This hyperparameter affects the
amount of recurrent computation during model training and inference. We wanted to ex-
plore this hyperparameter because obviously amount of recurrence may affect model per-
formance. Note that we always use the same number of iterations during training and
testing; e.g. a recurrent model with T iterations during training is always evaluated with T
iterations during testing.

• Readout mode, with four possible values (no-avg, early-avg, late-avg, 2-avg;
Section 4.3.1.2.2). We want to explore this hyperparameter because we wanted to know
if some readout modes perform better than others and if there exists some optimal way to
make use of intermediate outputs generated by a recurrent model.

In total, for the ImageNet 8K data set, we traind 480 feed-forward models and 11 520 recur-
rent models; for the NS 2250 data set, we trained 288 feed-forward models and 6912 recurrent
models; we trained fewer models for the NS 2250 data set because the NS 2250 data set is much
smaller than the ImageNet 8K.
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4.3.3.2.3 Other hyperparameters As mentioned in the end of Section 4.3.1.1, In either of a
feed-forward model or a recurrent model, the first convolutional layer has a kernel size of 9 and
later convolutional layers all have a kernel size of 3. The pooling layer always has a kernel size
of 3 and a stride of 3.

4.3.3.3 Model optimization

We trained all models using PyTorch [126] and followed Klindt et al. [81] for model optimization.

4.3.3.3.1 Objective function For each model, the objective function to be minimized was the
sum of two parts.

Neural prediction loss Depending on the choice of hyperparameters (Section 4.3.3.2), the loss
can be either mean squared loss or mean Possion loss between between the predicted neural
response and recorded ground truth averaged across neurons and images. Note that for
recurrent models with late-avg or 2-avg readout modes, following the practice in
Spoerer et al. [155], we computed the neural prediction loss by averaging the losses over
individual iterations.

Regularization terms We applied L1 sparsity penalties as regularization; in addition, for the
first convolutional layer of the model, we applied smoothness regularization as in Sec-
tion 5.2 of Klindt et al. [81].

4.3.3.3.2 Optimization algorithm Given the objective function, we used the same optimiza-
tion algorithm as in the public code of Klindt et al. [81]; in particular model parameters were
optimized sequentially in three phases, by three Adam optimizers with decreasing learning rates.
Early stopping was applied in each phase, guided by the neural prediction loss evaluated on the
validation set. For each data set, roughly 64 %,16 %,and 20 % of images were used for training,
validation, and testing, respectively. Due to computation resource constraints, we only created
one particular split of training, validation, and testing sets for each of ImageNet 8K and NS 2250.
To make sure our conclusions were not dependent on particular data splits, we retrained a subset
of models using another data split and found similar results (Appendix B.10).

4.3.3.4 Model performance evaluation

Given a trained model, we use average CC2
norm [149, 184] over all neurons to quantify its perfor-

mance on a data set. For each neuron, we compute its CC2
norm based on Eqs. (4.1).

CC2
norm =

CC2
raw

CC2
max

(4.1a)

CCraw = Pearson(~r, ~̂r) (4.1b)

Conceptually, CC2
norm measures the amount of fraction of explained variance, with trial-to-

trial variance in neural responses discounted. To get the CC2
norm for a neuron, we first compute
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the raw Pearson correlation CCraw between the ground truth trial-averaged neural responses ~r
and the model responses ~̂r, then we divide CCraw by CCmax, which is defined in Eq. (B.3c)
of Appendix B.4 and estimates the maximal Pearson correlation coefficient an ideal model can
achieve given the noise in the neural data [60, 149]. See Appendix B.4 for details. While the
derivation of CCmax is technically complicated, it’s positively related with the Pearson correlation
between mean responses computed over half of trials and those computed over the other half
[60, 149]. We use CC2

norm instead of raw CC2
raw to quantify model performance because the

former is more robust to trial to trial response fluctuations. Our main results in Section 4.4.1
still held if we measure the performance in CC2

raw. Note that the trial-to-trial neural response
data from the ImageNet 8K data were less stable compared to those from the NS 2250 data,
resulting in a lower CCmax for ImageNet 8K. In turn, due to the normalization effects of CC2

max
on the raw squared Pearson correlation CC2

raw, the model performance metrics to be presented
in Section 4.4 were generally higher on ImageNet 8K than NS 2250, although the performance
metrics on ImageNet 8K were lower than NS 2250 if measured in CC2

raw.

4.3.3.5 Code and data

The data and code to reproduce the results can be found at https://github.com/leelabcnbc/
thesis-yimeng-v2.

4.3.4 Reformulation of recurrent models as multi-path ensembles
To better understand why recurrent models outperformed feed-forward ones, and to better un-
derstand the relationships among different recurrent models of different readout modes, we tried
to reformulate each recurrent model as a multi-path model that is easier to analyze, inspired
by Veit et al. [167]. In particular, the reformulation converts the recurrent model’s recurrent
processing blocks (RCPBs) into a approximately equivalent multi-path ensemble with multiple
feed-forward paths. Figure 4.5 illustrates the reformulation process. During model inference, re-
current blocks compute responses in an iterative fashion, resulting in multiple information flow
paths of different lengths with shared components such as convolutional and batch normalization
layers (Figure 4.5a,b). To make the analysis of recurrent computation easier, we can approxi-
mate the actual information flow as summations of simpler feed-forward paths (Figure 4.5c,d),
separating shared components into separate individual paths. The resulting multi-path ensemble
is a summation of multiple feed-forward paths with shared parameters.

While the reformulation is approximate in nature as we ignored the effects of activation func-
tions and bias parameters in the derivation, in practice we found that the reformulation largely
held as to be shown in Section 4.4.2.

In short, through the above multi-path reformulation, we can convert each recurrent model
into a corresponding model that contains a multi-path ensemble with shared parameters across
the feed-forward paths; the conversion can help to deepen our understanding of recurrent net-
works in the following ways as mentioned in Section 4.1.

1. Comparing all feed-forward and recurrent models we trained in a unified framework, as
feed-forward models can be thought of as having a degenerate multi-path ensemble with a
single path.
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2. Understanding why recurrent models can outperform feed-forward models under different
hyperparameters and amounts of training data by comparing their multi-path ensembles.

3. Understanding the conditions under which recurrent models performed better by compar-
ing the multi-path ensembles of different recurrent models and by performing ablation
studies on the ensembles.

4. Connecting recurrent models to the existing literature on ensemble models in the machine
learning community.
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Figure 4.5: Recurrent computation approximately understood as summation of feed-forward
chains of different depths. (a) shows the information flows of a 1-layer RCPB at iterations 1, 2,
and 3 during model inference, and (b) shows the information flows of a 2-layer RCPB stack at
iterations 1 and 2; the width of black lines is proportional to the number of information flows
passing between adjacent components and the width of a component’s boarder is proportional to
the the number of information flows passing through it. (c) and (d) show the information flows
of corresponding multi-path models and each flow sums over feed-forward chains of different
depths.
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4.4 Results

4.4.1 Recurrent models outperformed similarly-sized feed-forward mod-
els

In this section, we present the performance metrics of recurrent models vs. feed-forward ones.
As described in Section 4.3.3.2, we trained a huge number of models with different architectures,
hyperparameters, and amounts of training data. To systematically compare recurrent and feed-
forward models, we will present the results at different aggregation levels.

• First in Section 4.4.1.1 we directly compare individual recurrent and feed-forward models
without any aggregation, except for model initialization seed (Section 4.3.3.2, “random-
ness hyperparameters”). We performed the aggregation to obtain more robust and reliable
model performance metrics

• Then in Section 4.4.1.2 present results under every combination of model size and amount
of training data, aggregating over hyperparameters that do not affect model size such as
loss function and activation layer (Section 4.3.3.2, “model size-independent hyperparam-
eters and loss functions”). We decided to aggregate over these hyperparameters because
empirically the relative performance change of recurrent over feed-forward ones did not
change much w.r.t. these hyperparameters.

• Finally in Section 4.4.1.3 we summarize the results by additionally aggregating over num-
ber of channels, or aggregating over number of channels as well as number of layers (Sec-
tion 4.3.3.2, “model size-related hyperparameters”), to get a high level summary of recur-
rent vs. feed-forward models, as recurrent models consistently outperformed feed-forward
models under different model sizes.

4.4.1.1 Individual recurrent models outperformed feed-forward models with same hyper-
parameters and matched size

Figure 4.6 compares individual feed-forward models with recurrent ones, under each combina-
tion of readout mode and number of iterations (Section 4.3.3.2.2), on the ImageNet 8K data set.
Recurrent models consistently outperformed feed-forward ones, except for a few cases, such as
no-avg readout mode combined with a high number of iterations. Similar results held on the
NS 2250 data set (Figure 4.7).
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Figure 4.6: Recurrence models vs. similarly-sized feed-forward models under 24 combinations
of readout mode and number of iterations, for ImageNet 8K data. Panels in the same row have
the same readout mode as indicated on the left of the whole figure, and panels in the same col-
umn have the same number of iterations as indicated on the top of the whole figure. While we
trained 160 feed-forward models and their corresponding recurrent models under 24 conditions
(Section 4.3.3.2) for each explored training data size, each panel only shows n = 80 pairs of (ag-
gregated) recurrent vs. feed-forward models per training data size, as we averaged the results over
the two explored model parameter initialization seeds for more robust metrics (Section 4.3.3.2).
In each panel, model pairs trained under different amounts of training data (25%, 50%, 100%)
are shown in different colors, with 80 (aggregated) model pairs for each explored training data
size.
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Figure 4.7: Recurrence models vs. similarly-sized feed-forward models under 24 combinations
of readout mode and number of iterations, for NS 2250 data. The style of the figure follows that
of Figure 4.6.
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4.4.1.2 Recurrent models outperformed feed-forward models more under larger model
size and less training data

As described in Section 4.3.3.2, we trained a huge number of models with different model size-
independent hyperparameters and loss functions, to understand whether the advantage of recur-
rent models over feed-forward models is dependent on these details in model design. To quantify
the advantage of the recurrent models over a feed-forward one, we computed the relative perfor-
mance change of the best-performing recurrent model over the feed-forward one, for each one of
the explored four readout modes.

For every model size-independent hyperparameter and loss function listed in Section 4.3.3.2,
we tested whether the advantage of recurrent models over feed-forward models as defined above
was dependent on the choice of model size-independent hyperparameters or loss functions by
performing paired t-tests for all combinations of readout modes and amounts of training data.
We did not find any model size-independent hyperparameter or loss function that consistently
affected the advantage of recurrent models over feed-forward models, with almost all p values in
tests larger than 0.05 (Figure 4.8, as well as Figures B.1,B.2,B.3,B.4,B.5 in Appendix B.8.1).
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Figure 4.8: The relative performance metric changes of recurrent models over feed-forward mod-
els under different loss functions on the ImageNet 8K data set. Results for the four different
readout modes are shown in different panels. For each panel associated with a particular readout
mode, we first averaged model performance metrics over model initialization seeds for all 480
feed-forward models and the corresponding 2880 recurrent models of this readout mode, result-
ing in 240 feed-forward model metrics and 1440 recurrent model metrics; we then computed the
relative performance change of the best-performing (aggregated) recurrent model over the feed-
forward one for every (aggregated) feed-forward model, resulting in 240 relative metric changes;
afterwards we grouped the metric changes into 120 pairs with the same hyperparameters except
the loss function as shown in the scatter plot, with models using mean squared loss on the hori-
zontal axis and those using mean Poisson loss on the vertical axis; finally, we grouped the pairs
by amount of training data and performed the standard two-tailed t-test for each explored train-
ing data size, with numbers of pairs n and p values shown in the legend of each panel. Results
for other hyper parameters and data sets were similar and are included in Appendix B.8.1.

As we did not find the relative performance change of recurrent models over feed-forward
ones to change much w.r.t. model size-independent hyperparameters or loss functions, we felt it
was reasonable to aggregate model performance metrics over these hyperparameters and check
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whether the advantage of recurrent models over feed-forward ones could change with amount of
training data and model size.

Figure 4.9 shows the relative performance change of recurrent models over feed-forward
ones, under different amounts of training data and model sizes, on the ImageNet 8K data set. We
found that generally speaking the recurrent model’s performance advantage was larger when the
model had more parameters or the amount of training data was less. The only outlier was the
no-avg readout mode, which exhibited no clear relationship between model size and relative
performance change. Similar results held on the NS 2250 data set (Figure 4.10).

The figures discussed above show relative performance gains of recurrent models over feed-
forward ones; Appendix B.8.2 shows absolute performance metrics of models grouped by model
size (Figures B.6,B.7,B.8 for the ImageNet 8K data set; Figures B.9,B.10,B.11 for the NS 2250
data set).
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Figure 4.9: The relative performance changes of recurrent models over feed-forward models un-
der different model sizes and amounts of training data on the ImageNet 8K data set. Each panel
shows the results for recurrent models of a particular readout mode as indicated in the panel’s
title. For each readout mode, we first averaged model performance metrics over model initializa-
tion seeds for all 480 feed-forward models and the corresponding 2880 recurrent models of this
readout mode, resulting in 240 feed-forward model metrics and 1440 recurrent model metrics; for
each of the 240 (aggregated) feed-forward models, there were six (aggregated) recurrent models
with matched hyperparameters and model size as the feed-forward one but different numbers of
iterations; we computed the relative performance change of the best-performing (aggregated) re-
current model over the feed-forward one among the six, resulting in 240 relative metric changes
in total; afterwards we aggregated the results over all three explored model size-independent hy-
perparameters and loss functions to obtain the the bar chart grouped by model size and amount
of training data. Each bar’s height denoting the average relative performance change under a
particular combination of model size and amount of training data over n = 8 combinations of
model size-independent hyperparameters and loss functions; error bars denote s.e.m. over model
size-independent hyperparameters; legend shows the number of channels (ch), number of re-
current layers (Rl), and model size for every bar; under each amount of training data, bars are
ordered by the model size.
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Figure 4.10: The relative performance changes of recurrent models over feed-forward models
under different model sizes and amounts of training data on the NS 2250 data set.
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4.4.1.3 Overall comparison of recurrent and feed-forward models

To get a summary overview of recurrent vs. feed-forward models, we further aggregated results
over number of channels as well as number of layers. Figure 4.11 shows the recurrent models vs.
feed-forward models on the ImageNet 8K data aggregated under different numbers of layers us-
ing all the available training data and Figure 4.12 show the corresponding results on the NS 2250
data. While we did not find the best-performing recurrent models’ performance advantage over
feed-forward ones to be dependent on the number of layers consistently (Figures B.12,B.13),
we did find that 1-recurrent-layer models had some readout modes (late-avg and 2-avg)
perform worse than the feed-forward baseline when the number of iterations was small (1 or
2); in addition, models with no-avg readout mode tended to no offer much less performance
gain compared to models with other readout modes. Similar results held with models trained
under less training data as shown in Appendix B.8.3 (Figures B.14,B.15 for ImageNet 8k; Fig-
ures B.16,B.17 for NS 2250).
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Figure 4.11: Recurrent models vs. feed-forward models on the ImageNet 8K data. (a) shows
the results averaged over all explored recurrent models trained using all available training data,
corresponding to rows with 100% training data in Table 4.2; the two panels in (b) show the
results averaged over models with one recurrent layer and two recurrent layers, respectively.
In each panel, colored lines show the performance metrics of recurrent models with different
numbers of iterations and readout modes; error bars show s.e.m. Black solid lines and dashed
lines denote feed-forward models’ metrics and s.e.m., respectively. n (160 for (a) and 80 for
(b)) gives the number of models used to compute every line and error bar. All models shown
here were trained using all available training data. The performance advantage of recurrent over
feed-forward models held with other amounts of training data as shown in Appendix B.8.3.

Finally, we further aggregated model metrics over number of layers to get a summary of the
performance gain of recurrent models as shown in in Table 4.2 and Figure 4.11a for the ImageNet
8K data; the summary for the NS 2250 data is shown in Table 4.3 and Figure 4.12a. With
appropriate choices on readout mode and number of iterations, recurrent models outperformed
feed-forward ones on the ImageNet 8K data set by around 6 % with 25 % training data and by
around 2 % with all training data; on the NS 2250 data set, recurrent models outperformed feed-
forward ones by around 10 % with 25 % training data and by around 4 % with all training data.
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Figure 4.12: The NS 2250 version of Figure 4.11. Data shown in (a) correspond to those rows
with 100% training data in Table 4.3.

4.4.1.4 Summary

In summary, we have the following observations comparing recurrent models with feed-forward
ones of matched size and hyperparameters.

• Recurrent models almost always outperformed feed-forward ones of matched size and
hyperparameters, at the level of individual models (Section 4.4.1.1).

• We did not find much difference in the relative advantage of recurrent models over feed-
forward ones regarding the choice of model size-independent hyperparameters or loss
functions (Section 4.4.1.2).

• The relative advantage of recurrent models over feed-forward ones was consistent but gen-
erally became larger with larger model size and less training data (Sections 4.4.1.2). On
average, recurrent models outperformed feed-forward ones by 2 % to 6 % on ImageNet 8K,
and 4 % to 10 % on NS 2250, depending the amount of training data used (Section 4.4.1.3).

• When comparing recurrent models of different choices on number of layers, number of
iterations, and readout modes, we found that 1) one-recurrent-layer models of late-avg
or 2-avg readout modes underperformed feed-forward ones when the number of itera-
tion was small (one, two); 2) readout mode no-avg underperformed other ones. (Sec-
tion 4.4.1.3).

Among all the hyperparameters, loss functions, and amounts of training data we explored
(Section 4.3.3.2), we only found qualitative differences for the performance gain of recurrent
models over feed-forward ones when we change the number of layers, number of iterations, or
readout mode. Therefore, we will in the rest of this study mostly present results for models
trained on 100% of training data, and group results by number of layers, number of iterations,
and readout modes, with all other hyperparameters averaged out. Results for models trained for
other amounts of training data can be found in Appendix B.8 and Appendix B.9 with similar
conclusions.
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Table 4.2: Recurrent-forward models vs. feed-forward models on ImageNet 8K data. Each model
performance metric in the table is the average over 160 trained models with different hyperpa-
rameters. For each row, the performance metric of the best performing model over iterations
T = 2, . . . 7 is shown in bold. The last column gives the relative performance difference of the
best-performing (aggregated) recurrent model over the feed-forward one (column 2, FF).

training data FF readout # of iter T=2 T=3 T=4 T=5 T=6 T=7 max % ∆

25% (1280) 0.4872 no-avg 0.5021 0.4961 0.4918 0.4812 0.4736 0.4669 3.0716
early-avg 0.5107 0.5153 0.5137 0.5096 0.5056 0.5047 5.7691
late-avg 0.4948 0.5092 0.5118 0.5140 0.5132 0.5111 5.5101
2-avg 0.4887 0.5010 0.5099 0.5148 0.5158 0.5189 6.5039

50% (2560) 0.5896 no-avg 0.5949 0.5974 0.5929 0.5866 0.5803 0.5793 1.3237
early-avg 0.6017 0.6076 0.6057 0.6036 0.6047 0.6042 3.0558
late-avg 0.5907 0.6011 0.6057 0.6091 0.6101 0.6104 3.5247
2-avg 0.5854 0.5975 0.6043 0.6052 0.6078 0.6101 3.4786

100% (5120) 0.6434 no-avg 0.6439 0.6486 0.6472 0.6438 0.6415 0.6403 0.8162
early-avg 0.6456 0.6518 0.6524 0.6532 0.6529 0.6516 1.5324
late-avg 0.6352 0.6462 0.6519 0.6557 0.6572 0.6576 2.2090
2-avg 0.6307 0.6400 0.6459 0.6495 0.6529 0.6555 1.8787

Table 4.3: Recurrent models vs. feed-forward models on the NS 2250 data set. Each model
performance metric in the table is the average over 96 trained models with different hyperparam-
eters. It is the NS 2250 version of Table 4.2.

training data FF readout # of iter T=2 T=3 T=4 T=5 T=6 T=7 max % ∆

25% (350) 0.3322 no-avg 0.3421 0.3484 0.3430 0.3329 0.3252 0.3186 4.8866
early-avg 0.3491 0.3620 0.3639 0.3637 0.3593 0.3518 9.5596
late-avg 0.3316 0.3526 0.3599 0.3657 0.3646 0.3619 10.0854
2-avg 0.3230 0.3396 0.3542 0.3603 0.3666 0.3685 10.9439

50% (700) 0.4053 no-avg 0.4116 0.4083 0.4051 0.3985 0.3904 0.3842 1.5580
early-avg 0.4147 0.4195 0.4192 0.4158 0.4177 0.4153 3.5044
late-avg 0.4043 0.4204 0.4247 0.4271 0.4288 0.4274 5.8053
2-avg 0.3978 0.4130 0.4198 0.4240 0.4269 0.4266 5.3230

100% (1400) 0.4558 no-avg 0.4575 0.4593 0.4587 0.4547 0.4516 0.4477 0.7682
early-avg 0.4592 0.4634 0.4666 0.4663 0.4682 0.4663 2.7355
late-avg 0.4523 0.4649 0.4706 0.4734 0.4758 0.4785 4.9779
2-avg 0.4480 0.4579 0.4634 0.4690 0.4719 0.4736 3.9046
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4.4.2 Approximation of recurrent blocks as multi-path ensembles
While recurrent models in general outperformed feed-forward models (Section 4.4.1), the reason
behind the recurrent model’s superiority was not immediately clear. In addition, the relationships
among recurrent models trained with different readout modes and different numbers of layers
were not clear either, as their performance metric curves differed a lot when the number iterations
changed (Figures 4.11,4.12); in particular, one-recurrent-layer models of late-avg or 2-avg
readout modes underperformed feed-forward ones when the number of iteration was small and
models of readout mode no-avg in general underperformed other ones (Section 4.4.1.4)

To better understand why recurrent models outperformed feed-forward ones, and to better
understand the relationships among different recurrent models of different readout modes, we
tried to reformulate each recurrent model as a multi-path model that is easier to analyze, as
described in Section 4.3.4.

While the reformulation is approximate in nature as we ignored the effects of activation func-
tions and bias parameters in the derivation, in practice we found that the reformulation largely
held in the sense that the corresponding multi-path model trained from scratch and the original
recurrent model were matched from multiple aspects. First, the retrained model and the original
model matched in their performance metrics, especially when the amount of training data was
large (Figure 4.13); second, the two matched in their multi-path ensembles’ key characteristics,
such as average path length as defined and used later in Section 4.4.3 to explain the differences
among recurrent and feed-forward models (Figures 4.14,4.15). The correlation between recurrent
and retrained multi-path models was lower when the amount of training data was small (results
for 25% training data in Figures 4.13,4.14,4.15), most likely because retrained multi-path models
had additional BN layers as described in Appendix B.5, which explains in detail the construction
and training of multi-path models to approximate the original recurrent models.

In short, through the above multi-path reformulation, we can convert each recurrent model
into a corresponding model that contains a multi-path ensemble with shared parameters across
individual feed-forward paths; the conversion allows us to compare all feed-forward and recur-
rent models we trained in a unified framework (feed-forward models can be thought as having a
degenerate multi-path ensemble with a single path).
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Figure 4.13: Performance metrics of multi-path vs. original recurrent models, with (a) showing
results for ImageNet 8K and (b) for the NS 2250. For each dot, the horizontal axis indicates
the performance of a recurrent model, which contains RCPB(s) with information flow shown in
Figures 4.5a,4.5b, and vertical axis the performance of the corresponding retrained multi-path
model where RCPBs are replaced by a multi-path ensemble as shown in Figures 4.5c,4.5d. See
Appendix B.5 for details. To quantify the correlation of performance metrics between multi-path
and original recurrent models, results are grouped according to the amount of training data; for
each training data size, the number of model pairs n and the Pearson correlation r are shown in
the legend.
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Figure 4.14: Multi-path vs. original recurrent models in terms of their multi-path ensembles’ av-
erage path lengths, on the ImageNet 8K data set. For a multi-path model containing a multi-path
ensemble similar to those in Figures 4.5c,4.5d, the average path length can be computed follow-
ing Section 4.4.3; for a recurrent model containing RPCB(s) similar to those in Figures 4.5a,4.5b,
first its RPCB(s) are reformulated as a multi-path ensemble and then the average path length can
be computed from the multi-path ensemble that contains the same trained parameters as the orig-
inal RPCB(s), as shown in Figure 4.16. The three panels from left the right show results for
models trained with 25%, 50%, and 100% of available training data, respectively. The correla-
tions between models are shown in the legend, in the same style as that of Figure 4.13.
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Figure 4.15: The NS 2250 version of Figure 4.14.
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4.4.3 Understanding differences among models via path length and diver-
sity

After establishing the approximate equivalence between recurrent models and models with multi-
path ensembles, we then analyzed each original recurrent model’s recurrent block(s) as a multi-
path ensemble with shared parameters. Each multi-path ensemble has multiple paths of different
lengths (Figures 4.5c,4.5d) and we found that differences among models could be mostly ex-
plained by the following two characteristics of the ensemble.

1. Average path length, weighted by the strength of each path. Conceptually the average path
length can be considered the effective depth of an ensemble.

2. Path diversity. Models with similar average path lengths can be very different in terms
of the contributions of individual paths. For example, an average path length of 3 can be
either created by having a single path of length 3 or having five paths of lengths 1 through
5. Intuitively, the latter model has higher diversity than the former. In this study, we use
the path length distribution as a measure of diversity.

Figure 4.16 demonstrates the computation of average path length and path diversity for an
example recurrent model. Apart from the formulation of the recurrent information flow as a
multi-path ensemble as described in Section 4.4.2, another key element essential to the com-
putation of length and diversity is the concept of strength score for each component on a path.
Roughly speaking, the strength score is a scalar that measures the ratio of the magnitude of the
component’s output over that of its input. In particular, we define the strength score of each
component as follows.

1. The strength score of a BN layer is the average of the absolute values of the scaling factors
used during inference, over all output channels.

2. The strength score of a convolutional layer is the average of the 2-norms of 3-D convolu-
tional kernels flatten into vectors, over all output channels.

3. The strength score of an activation layer (ReLU or softplus in this study) is 1, as the
activation layer outputs the input itself when the input is a large enough positive number.

The full definition of average path length and path diversity for a recurrent model is given in
Appendix B.6.

In the following, we will compare the multi-path ensembles of recurrent and feed-forward
models in terms of average path length and path diversity, to answer the questions posted in the
beginning of Section 4.4.2 as reiterated below.

• In general, why did recurrent models outperform feed-forward ones?
• Comparing recurrent models trained with different readout modes and different numbers

of layers, why did one-recurrent-layer models of readout modes late-avg and 2-avg
underperform feed-forward ones when the number of iteration was small?

• Comparing recurrent models trained with different readout modes and different numbers
of layers, why did models with readout mode no-avg underperform other ones and what
caused the differences among different readout modes in general?

Of the three questions listed above, the first two will be addressed in Section 4.4.3.1 and the
third will be addressed in Section 4.4.3.2.
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Figure 4.16: Computation of average path length and path diversity for an example recurrent
model. The model here has 3 iterations, one recurrent block (RCPB) and uses the no-avg
readout mode. In (a), the relevant information flow is shown, with a strength score assigned to
each component. In (b), the original information flow is reformulated as a simple multi-path
ensemble with three paths, and the unnormalized strength of each path s̃1, s̃2, s̃3 is computed as
the product of strength scores along that path. In (c), the average path length of the model is
defined by the average path length weighted by the normalized strengths s1, s2, s3, and the path
diversity of the model is the probability distribution implied by normalized strengths s1, s2, s3.
The length of each path is defined as the number of convolutional layers in that path. Activation
layers are omitted in (a) and (b) for brevity and they do not affect the calculation due to having
a strength score of 1.

4.4.3.1 Recurrent models outperformed feed-forward ones of similar depths via implicit
and compact multi-path ensembles

By comparing all models in terms of their multi-path ensembles, we can now easily see the that
the performance differences between recurrent and feed-forward models could be attributed to
the differences in their multi-path ensembles. Feed-forward models only contain a single path
in their degenerate multi-path ensembles, whereas recurrent models contain diverse paths of
different lengths in their implicitly implemented multi-path ensembles.

We hypothesize that the advantage of the recurrent model rests on the ensemble of multiple
feed-forward paths embedded in the recurrent computation and such multitude of paths makes
the recurrent model more flexible compared to a feed-forward model; a stronger and general
version of our hypothesis is that recurrent models with more diverse sets of feed-forward paths
outperform those with less diverse ones, with the least diverse recurrent model being a feed-
forward model.

Figures 4.17,4.18 plot all models’ performance vs. average path length, with recurrent models
shown in lines and feed-forward models shown in black stars. We have the following observa-
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tions consistent with our hypothesis.

1. When recurrent models have similar average path lengths as feed-forward ones (around
dashed lines in the figures), recurrent models performed similarly as or better than feed-
forward ones. The result was consistent with our hypothesis, because recurrent models
achieved a similar average path using a more diverse set of paths compared to feed-forward
models each of which only contains a single path.

2. The advantage of recurrent models relative to similar-path-length feed-forward models was
larger when the average path length was around 4 (Figures 4.11b,4.12b, around dashed
lines), compared to when the average path length was around 2 (Figures 4.11a,4.12a,
around dashed lines). The result was consistent with the more general version of our
hypothesis because the former set of recurrent models have more diverse sets of paths due
to having more layers and more model iterations.

3. When recurrent models have higher average path lengths than feed-forward ones (right of
dashed lines in the figures), recurrent models typically outperformed feed-forward ones
more, probably because the multi-path ensembles were more diverse and complex.
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Figure 4.17: Performance vs. average path length for recurrent models on the ImageNet 8K
data. It’s the same as Figure 4.11 except that the horizontal axis is the calculated average path
length instead of the number of iteration hyperparameter. In addition, error bars are omitted for
clarity, and vertical dashed lines denote average path lengths of feed-forward models which are
shown as stars. (a) shows the results averaged over all explored recurrent models trained using
all available training data; the two panels in (b) show the results averaged over models with one
recurrent layer and two recurrent layers, respectively. Black circles in (b) denote a set of models
with similar average path lengths but different readout modes; they will be further analyzed in
Figure 4.20a. Models here were trained on all available training data. Additional results for
models trained with less data can be found in Appendix B.9.

Understandably, our hypothesis that recurrent models perform better due to diverse paths will
not necessarily work when the recurrent model has a much lower average path length compared
to the feed-forward one. For one-recurrent-layer models with late-avg or 2-avg readout
modes, models with lower average path lengths (left of dashed lines in the figures) performed

88



2 3 4 5 6
average path length

0.450

0.455

0.460

0.465

0.470

0.475

0.480
av

er
ag

e 
CC

2 no
rm

All, n=96
no-avg early-avg late-avg 2-avg

(a)

2 3 4 5

0.43

0.44

0.45

0.46

0.47

1 R layer, n=48
no-avg early-avg late-avg 2-avg

3 4 5 6 7
0.45

0.46

0.47

0.48

0.49

2 R layers, n=48
no-avg early-avg late-avg 2-avg

average path length

av
er

ag
e 

CC
2 no

rm

(b)

Figure 4.18: NS 2250 version of Figure 4.17.

much worse than feed-forward models whereas we did not find similar issues for two-recurrent-
layer models. By treating recurrent models as multi-path ones, we hypothesized the differences
could be explained by the performance differences of feed-forward models of different path
lengths. To verify our hypothesis, in addition to the 3- and 5-layer feed-forward models (or
equivalently feed-forward models with average path lengths 2 and 4, respectively; we always
compute average path length without counting the first convolutional layer) trained to match the
model size with recurrent models, we trained feed-forward models with 2, 4, and 6 layers (or
equivalently with average path lengths 1, 3, and 5). As shown in Figure 4.19, the performance
metrics of feed-forward models increased a lot when the average path length changed from 1 to 2,
but the increase became much smaller and incremental with higher average path lengths. Given
the results of feed-forward models, we believe one-recurrent-layer models of lower average path
lengths performed worse because lower-performing paths of length 1 contributed to much of
these models’ responses; two-recurrent-layer models of lower average path lengths performed
similarly as size-matched feed-forward models because the multi-path ensembles of these models
only contain paths longer than one and these paths all performed relatively similarly and much
higher than a path of length 1.

The recurrent computation information flow in a recurrent model implicitly defines a compact
multi-path ensemble with shared parameters across paths (Figure 4.5); we propose that such
compact multi-path ensemble allows approximating the complex function underlying recurrent
biological circuits with more flexibility compared to feed-forward model matched in model size
and hyperparameters.
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Figure 4.19: Performance metrics of feed-forward models with different average path lengths,
trained on ImageNet 8K (a) and NS 2250 (b) using 100% of training data. In each panel, results
are grouped by average path length and number of channels. Each cluster of bars along the
horizontal axis show results for models with the same average path length and different bars in a
cluster show results for models with the same number of layers and the same number of channels.
The height of each bar denotes the model performance averaged over 16 models, and error bars
denote s.e.m. In addition, the line plot on top of bars shows the average performance metrics for
each explored number of channels, averaged over 80 models for ImageNet 8K (a) and 48 models
for NS 2250 (b). The depth of a feed-forward model is measured in its average path length, to
match the horizontal axis of Figures 4.17,4.18. Alternatively, a feed-forward model’s depth can
be measured in number of layers. A feed-forward model with x layers has an average path length
of x−1 because we always omit the initial convolutional layer for the calculation of average path
length; a feed-forward model with 3 layers, or an average path length of 2, is of matched size
with a recurrent model with one recurrent layer (1R); a feed-forward model with 5 layers, or an
average path length of 4, is of matched size with a recurrent model with two recurrent layers
(2R). Results for models trained using less training data are given in Appendix B.9.

4.4.3.2 Differences in path length and diversity could explain performance differences
across readout modes

While the previous section demonstrates that recurrent models outperformed feed-forward ones
due to the former’s diverse multi-path ensembles, the differences among different readout modes
at different numbers of iterations are still be to accounted for. In Figures 4.11,4.12, performance
vs. number of iteration curves for different readout modes were not well aligned, crossing each
other at different vertical axis locations (especially Figures 4.11b,4.12b). In other words, no
obvious connections and similarities among readout modes could be found from the curves. By
reformulating recurrent models as multi-path models, (Section 4.4.2), we found that performance
differences among readout modes and iterations were highly correlated with differences in the
path length and diversity of the corresponding multi-path ensembles.
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4.4.3.2.1 Path length aligned different readout modes better than number of iteration
As shown in Figures 4.17,4.18, the curves of performance vs. average path length were much
better aligned across different readout types, compared to Figures 4.11,4.12. In particular, when
the average path length was relatively short (say, ≤ 2.5), all readout modes’ curves were roughly
the same; and when the path length was higher, curves began shooting in different directions
depending on the mode, due to differences in the path diversity, as explained in the following.

4.4.3.2.2 Shorter paths played more important roles than longer ones While average path
length could help unify different recurrent readout modes when the length was short, readout
modes did behave differently as the length increased. In general, under similar average path
lengths, late-avg/2-avg modes performed the best, the early-avg performed slightly
worse, and the no-avg performed much worse. (Figures 4.17,4.18).

Just as recurrent models outperformed feed-forward ones due to having more diverse multi-
path ensembles (Section 4.4.3.1), we hypothesized that performance differences between readout
modes were related to path diversity, when the average path length was similar. Figure 4.20
shows the path length distributions for different readout modes when their average path lengths
were similar as denoted by black circles in Figures 4.17b,4.18b.

Under similar average path lengths, different readout performed differently, with different
path length distributions. In general, as the shorter paths contributed relatively more in the over-
all distribution, the performance increased. The no-avg readout mode performed the worse,
with the path length distribution dominated by longest paths (blue distributions in Figure 4.20);
the early-avg readout mode performed better, with shorter paths contributing more to the dis-
tribution (orange distributions in Figure 4.20); the late-avg and 2-avg modes performed the
best, with even more contributions from shorter paths (green and red distributions in Figure 4.20).

With the above observations, we hypothesized that shorter paths contributed more to the
model performance compared to longer ones. To verify the hypothesis, we performed ablation
studies on 7-iteration models by removing paths of certain lengths from the full models that have
all paths. Consistent with our hypothesis, models with shorter paths ablated outperformed those
with longer paths ablated, across readout modes (Figures 4.21,4.22): when three paths were re-
moved (right panel in each sub figure), removing shorter paths (1 to 3, 2 to 4, highlighted in black
circles) gave larger performance decrease compared to removing longer paths which sometimes
even gave performance boost. Note that there might be some interchangeability between paths
of adjacent lengths, as removing a single path (left panel in each sub figure) had little impact on
performance.
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Figure 4.20: Path length distribution of example models with similar average path lengths across
different readout modes, for models trained on ImageNet 8K (a) and NS 2250 (b). For each data
set, results for models with one recurrent layer are shown on the left, and those for models with
two recurrent layers are shown on the right. For each data set and number of recurrent layer,
results for the four different readout modes are shown in four smaller panels, with different
readout modes shown in bars of different colors. In each of these smaller panels for a specific
readout mode with a specific number of recurrent layer and a certain data set, the bar plot shows
the path length distribution as defined in Section B.9, averaged over n models, with error bars
showing s.e.m. The title given on top of each of these smaller panels show the readout mode’s
name, the number of iterations of the examined as circled in Figures 4.17,4.18, and the average
path length of the (aggregated) model at that number of iterations. Models here were trained on
all available training data. Additional results for models trained with less data can be found in
Appendix B.9.
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Figure 4.21: Performance metrics of ablated 2-layer, 7-iteration models of 16 and 32 channels on
ImageNet 8K data, with 1, 2, or 3 paths removed at a time. Different panels (a) through (d) show
results under different readout modes as denoted on the top left corner of each panel, and each
panels shows results of models with 1, 2, 3 paths removed from left to right. Dotted lines show the
performance metrics of full models that have all paths. Each circle denotes the worst performing
ablation configuration with 3 paths removed. For each readout mode, on top of each of the four
sub panels, the n in the title denotes the number of underlying models used to compute each
data point. All models shown here were trained using all the available training data as the multi-
path ensemble framework worked better with more data (Section 4.4.2). Models with 3-layers or
more channels were not studied due to GPU memory limits as explained in Appendix B.7.
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Figure 4.22: NS 2250 version of Figure 4.21.

93



4.5 Discussion

4.5.1 Key contributions of the study

By training tens of thousands of models on multiple neural data sets and employing a novel
method that reformulates recurrent models as multi-path ensemble models, we have made the
following contributions to the research of early visual areas and recurrent models.

Recurrent models could explain neural responses of early visual areas better than typical
feed-forward models with matched hyperparameters and model sizes, especially when training
data were less and the model size was larger. We show the relevant experimental results in detail
in Section 4.4.1 with a comprehensive comparison between recurrent models and feed-forward
models trained under tens of thousands of settings, with different data sets, different amounts of
training data, and different model hyperparameters (Section 4.3.3.2). Overall, recurrent models
outperformed feed-forward ones of matched size and hyperparameters almost consistently re-
gardless of the setting, with some small differences for models with different numbers of layers
and different readout modes (Section 4.4.1.4). While the performance advantage of recurrent
models over feed-forward ones was consistent, the magnitude of the advantage was larger un-
der larger model size and less training data (Section 4.4.1.2); in other words, recurrent models
showed more advantage over feed-forward ones when the amount of training data per model
parameter was less. While it will be certainly too speculative to claim that the architecture of
our recurrent models can be mapped to neural circuitry of the brain faithfully, it’s likely that our
recurrent models captured some of the fundamental computational principles of the visual areas
as a model prior that helps neural data prediction under less data.

The performance advantage of the recurrent model over the feed-forward one can be at-
tributed to the former’s compact and implicit multi-path ensemble that allows approximating the
complex function underlying recurrent biological circuits with efficiency. We established the
observation in two steps. First, we reformulated recurrent models as models with multiple feed-
forward paths with shared parameters (Section 4.4.2); thus we were able to compare recurrent
models and feed-forward models in a unified framework, with feed-forward models being de-
generate multi-path models. Second, we compared feed-forward models and recurrent models
using two key characteristics of their multi-path ensembles—average path length and path di-
versity (Section 4.4.3)—and found there was arguably a positive correlation between the path
diversity of recurrent models and their performance advantage over feed-forward models (Sec-
tion 4.4.3.1). The recurrent computation information flow in a recurrent model implicitly defines
a compact multi-path ensemble with shared parameters across paths (Figure 4.5); we propose
that such compact multi-path ensemble allows approximating the complex function underlying
recurrent biological circuits with more flexibility compared to feed-forward model matched in
model size and hyperparameters. The usefulness of multi-path ensemble in neural data predic-
tion could be due to the inherent advantage of ensemble models for machine learning [7], or due
to some similarity between multi-path architectures and neural circuits, or due to a bit of both.

A balance of short and long paths in the ensemble is necessary for the recurrent model to
achieve the best performance; on our data sets, models with more relative weights on shorter
paths tended to perform better than models with more relative weights on longer paths. We es-
tablished the observations by comparing different readout modes (Section 4.3.1.2.2) in terms of
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their multi-path ensembles. In particular, we found that better performing readout modes have
their path length distribution more concentrated at shorter paths (Figure 4.20) and removing
shorter paths had more impact on the performance than removing longer paths in an ablation
study (Figures 4.21,4.22). The relative importance of shorter paths over longer ones might be
data set- and task-dependent and requires further investigation. For recurrent models, different
readout modes essentially represent different weight assignments to intermediate outputs at dif-
ferent iterations (Section 4.3.1.2.2); our exploration of different readout modes show that the
“vanilla” weight assignment, or no-avg readout mode, performed much worse compared to
other readout modes; the comparison of different readout modes in terms of performance metrics
and multi-path ensembles shows that a balance of early and late information across iterations, or
equivalently a balance of short and paths in the corresponding multi-path ensemble, is necessary
for the recurrent model to achieve the best performance.

The novel method that reformulates recurrent models as multi-path ensemble models pro-
vides a new perspective to understand recurrent models and connect recurrent models to the
existing literature on ensemble models in the machine learning community. The key idea be-
hind the reformulation method is that the complex information flow in recurrent computation
can be approximated as a summation of multiple feed-forward paths with shared parameters
(Sections 4.3.4). While the reformulation method is approximate by nature, the approximation
was accurate enough in practice (Section 4.4.2) and we successfully explained the differences
between recurrent models and feed-forward models as well as the differences among recurrent
models by comparing the models’ multi-path ensembles. It will be interesting to check the ac-
curacy of our reformulation method in other machine learning tasks involving recurrent models
or multi-path models with shared information flow among paths; understanding these complex
models as simpler models summing over multiple paths can enable alternative model dissection
and ablation methods for better understanding the merits of those complex models. For exam-
ple, in many architecture search studies for recurrent networks [22, 47], authors mostly try to
justify some architectures over others using performance metrics alone; it will be interesting to
apply our reformulation methods to those different architectures and see if different architectures
also yield different multi-path ensembles. In addition, our reformulation method and analysis
techniques can be applied to those recurrent models performing well in computer vision tasks
[48, 93, 116]; these studies typically have little or no explanation on the performance advan-
tage of recurrent models from a computational perspective and the authors often justify recurrent
models by the abundance of recurrent connections in the brain [32]; our reformulation method
might reveal additional insights on the performance advantage of recurrent models.

4.5.2 Differences and relationships with relevant studies

4.5.2.1 Modeling temporal dynamics versus mean firing rates

Most studies on visual areas involving recurrent models have tried to model temporal dynamics
of neural data [77, 93, 116, 155], whereas our study trained recurrent models to predict aver-
age firing rates instead of temporal dynamics of visual neurons. We chose to model average
firing rates because we wanted to know in addition to modeling temporal dynamics, whether
there is additional benefit of using recurrent models for neural data modeling; after all, by con-
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struction feed-forward models are bound to perform worse for modeling temporal dynamics.
Our study demonstrated the superiority of recurrent models in a more competitive setting where
feed-forward models are more likely to perform well compared to modeling temporal dynamics.
Our results on neural prediction are conceptually consistent with many computer vision-oriented
studies [48, 93, 115, 116] who have demonstrated that recurrent models can outperform feed-
forward ones in static image classification tasks which do not involve explicit temporal dynam-
ics. In many of these studies as well as ours, the internal dynamics of these models trained on
tasks without explicit temporal dynamics could be useful for modeling neurophysiological data
or effects involving temporal dynamics; in Kubilius et al. [93], Nayebi et al. [116], the internal
model dynamics have been reported to resemble actual monkey IT population dynamics; in our
study (to be described later in Section 4.5.2.2), the internal model dynamics exhibited longitu-
dinal facilitation and lateral suppression of oriented bars [72] as well as reduction in orientation
bandwidths and spatial frequency bandwidths over time [9, 137]. The above results of using in-
ternal dynamics learned from static tasks to model temporal dynamics of neurophysiological data
and effects suggest that there might be some general benefit about recurrent modeling regardless
of tasks.

4.5.2.2 Existing work on modeling early visual areas

Neural network-like models have long been used to model neural responses of early visual areas.
Before the wide adoption of deep learning techniques, David and Gallant [25] tried to predict V1
neural responses using a fully connected layer followed by ReLU activation layer; Prenger et al.
[132] modeled V1 neural data using more traditional multi-layer fully connected neural networks
with sigmoid activation layers; Lau et al. [95] used neural networks to model and understand
complex cells of V1; generalized linear models (GLMs) [75, 128], subunit models [172], nested
GLMs [112], sparse deep belief nets for V2 [96], and boosting-based linear combinations of V1
models [176] can all be formulated as neural networks with specific network architecture designs
and/or optimization techniques. In recent years, convolutional neural networks (CNNs) and its
extensions have achieved great success for modeling early visual areas [13, 29, 81, 184]. Our
study extends the above CNN work by applying recurrent CNNs to neural modeling tasks; more
important, our novel reformulation method based on multi-path ensembles provides insights into
the performance advantage of recurrent models.

While our study is one of the earliest ones to introduce lateral recurrent connections into
CNNs for predicting mean firing rates of neurons in early visual areas, alternative mechanisms
can introduce lateral connections to the model. Notable alternative mechanisms include divisive
normalization [15] and dynamical system implementations of sparse coding [79, 140, 185]. All
of these mechanisms might be implementing similar underlying computational principles of the
brain, as all these models are able to reproduce many neurophysiological phenomena associated
with recurrent circuits. Preliminary results in Rockwell et al. [138] showed that the internal
model dynamics of our recurrent models exhibited longitudinal facilitation and lateral suppres-
sion of oriented bars [72] as well as reduction in orientation bandwidths and spatial frequency
bandwidths over time [9, 137]; models incorporating divisive normalization and sparse coding
mechanisms are able to explain many non-classical receptive field effects of V1 neurons as well
[15, 185]; in addition, divisive normalization mechanims can be incorporated into CNNs, with
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improved model interpretability and little loss in performance [12].

4.5.2.3 Existing work connecting recurrent models and ensemble models

There have been relatively few studies connecting recurrent models to multi-path ensemble mod-
els in the deep learning context. For ResNets, Liao and Poggio [104] have pointed out the equiv-
alence between a specific type of recurrent networks with weight-tied ResNets, and Chen et al.
[16] formulate deep weight-tied ResNets as approximating the dynamics of continuous recur-
rent models specified in ordinary differential equations. To the best of our knowledge, there is
no work explicitly connecting recurrent models to multi-path ensemble models in general. The
most similar work to ours is probably Zhang et al. [181], which characterizes recurrent models
in terms of some architectural complexity measures (feed-forward depth, recurrent depth, and
recurrent skip coeffcient) motivated by graph theory and quantified the relationship between per-
formance and these complexity measures. While conceptually similar, our work differs from
Zhang et al. [181] in two important aspects. First, complexity measures in Zhang et al. [181]
are entirely based on model architecture hyperparameters, whereas our measures of the recurrent
model’s multi-path ensemble depend on both model hyperparameters as well as learned model
parameters; second, Zhang et al. [181] have developed their measures in the context of sequence
modeling where both inputs and outputs of the task are variable-sized sequences, whereas we
developed our measures of the multi-path ensemble for tasks with fixed-sized input and output.

4.5.2.4 Alternative methods to deeply understand recurrent networks

In the deep learning community, recurrent networks have often been analyzed in a less rigorous
fashion. For example, the practical performance advantage of gated recurrent networks, such as
LSTM [58] and GRU [17], over vanilla RNNs have often been attributed to the gate units’ ability
to alleviate gradient vanishing [46]; in addition, various kinds of recurrent model hyperparameter
grid search have been performed for recurrent networks to find and justify the best architectures
for certain tasks [22, 47]. Certain types of recurrent models have been deeply analyzed in alter-
native ways. Hinton et al. [57] have proved that an infinite logistic belief net with tied weights is
equivalent to a restricted Boltzmann machine [55]; in a more relevant study, Bai et al. [5] have
found that modern weight-tied deep recurrent networks in NLP tasks converge to a fixed point of
the recurrent dynamics.

While our approach to understand recurrent models as multi-path ensembles succeeded in
explaining the differences among recurrent and feed-forward models (Section 4.4.3), we also ex-
plored whether the empirical observations about the convergence of recurrent models made in Bai
et al. [5] were applicable to our models. It turned out we failed to find any convergence to a fixed
point for the internal dynamics of our models. The failure might be due to two reasons. First, the
empirical observations about convergence in Bai et al. [5] probably only apply when the model
dynamics is strictly recurrent, whereas our models actually follows a semi-recurrent dynamics
with shared convolutional layers and independent normalization layers (Sections 4.5.3.1,B.2.2).
Second, following the practice in the neural modeling literature [13, 81], we used activation
layers without bound in the output (ReLU, softplus) whereas the models explored in Bai et al.
[5] mostly use activation layers with bounded output (tanh, sigmoid); we tried training some of
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our models using tanh or sigmoid activation layers and obtained much worse results in terms of
neural prediction metrics.

4.5.2.5 Alternative mechanisms of efficiently increasing the receptive field size

From a computational perspective, among other things, our recurrent models increase the effec-
tive receptive field size of output units via lateral recurrent connections. In the machine learning
community, alternative approaches such as non-local neural networks [174] and self-attention
[166] can also effectively increase the receptive field size of output units with efficiency in model
size. It will be interesting to compare recurrent networks with these alternative approaches in the
neural data modeling domain.

4.5.3 Limitations and future work
4.5.3.1 True recurrent dynamics versus semi-recurrent dynamics with shared convolu-

tional layers and independent normalization layers

As noted in Sections 4.3.1.2,B.2.2, For our recurrent models, batch normalization is applied
independently across time, following Spoerer et al. [155]. While this means that our models
are not truly recurrent due to the independent normalization layer at each time step, our main
conclusion that (semi-) recurrent models outperformed feed-forward models of matched size
and hyperparameters still held (Section 4.4.1), as independent batch normalization layers add
less than 1% to the overall model size, whereas increasing the number of channel or any other
hyparparameter (kernel size, number of layers, etc.) by one generally induces an increase of
model size of greater than or equal to 5%; in other words, model size increase cannot explain the
performance advantage of our recurrent models over feed-forward ones. In addition, many other
studies [48, 93, 155] that apply recurrent models to neural modeling or computer vision tasks
have used independent normalization layers across time as well, potentially in order to address
stability issues in model optimization.

4.5.3.2 Relative versus absolute performance gain of recurrent models

While recurrent models consistently outperformed feed-forward models matched in model size
and hyperparameters, the absolute performance increase was still modest, compared to the amount
of variance yet to be explained in the neural data. Adding feedback recurrent connections to our
models that only contain lateral recurrent connections, exploring alternative readout modes (Sec-
tion 4.3.1.2.2), and exploring other basic network components rather than convolution might help
to fully capture the neural computation of early visual areas.

4.5.3.3 Connection of our work to the brain

We did not try to map the recurrent circuits in our best-performing models to the biological
recurrent circuits in the brain. In general, given the nonconvex nature of neural networks, all
recurrent neural network architectures in general might be equivalent in terms of performance
given sufficient hyparparameter tuning [22]. However, it’s likely that recurrent circuits benefit
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the brain in the same way as they benefit our models; in particular, biological recurrent circuits
form compact and implicit multi-path ensembles that allow the brain to learn complex neural
responses to visual stimuli with data efficiency. Given that we demonstrated the advantage of
recurrent models consistently in two data sets with different stimulus presentation paradigms
(Section 4.3.2) in modeling mean firing rates instead of temporal dynamics (Section 4.5.2.1), it’s
likely that our recurrent circuits capture some general aspects about neural computation in the
early visual areas rather than any specific circuits of the brain.

To better map the recurrent circuits in the model to those in the brain, additional metrics other
than neural data prediction under natural stimuli can be used for model comparison. For example,
Kubilius et al. [93] leveraged existing knowledge about brain anatomy to constrain the number
of layers in their recurrent models, and Rajaei et al. [133], Spoerer et al. [154] justified the valid-
ity their recurrent models by comparing model prediction and neural data under occluded object
recognition tasks; in addition, neurophysiological experiments can be performed on models to
see if they can produce various neural response properties (surround suppression, end-stopping,
etc.) thought to be related to recurrent circuits [185]. Preliminary results in Rockwell et al. [138]
showed that the internal model dynamics of our recurrent models exhibited longitudinal facilita-
tion and lateral suppression of oriented bars [72] as well as reduction in orientation bandwidths
and spatial frequency bandwidths over time [9, 137].

Regarding the connection between the brain and neural network-based methods as a whole,
there have been numerous studies comparing CNNs with biological data at the neural level, at
the behavior level, and from many other aspects [105]; while there are still many inconsisten-
cies between CNNs and the biogloical visual system, generally speaking for now CNNs can be
considered a viable model for the brain.

4.5.3.4 Testing the reformulation method in other machine learning contexts

Our novel reformulation method provides a new perspective to understand recurrent models and
connect recurrent models to the existing literature on ensemble models. As discussed in the end
of Section 4.5.1, applying our reformulation method and analysis techniques to other recurrent
model-related studies, such as architecture search studies [22, 47] for recurrent models as well as
computer vision studies [48, 93, 116] involving recurrent models, might yield additional insights
on the advantage of recurrent computation for machine learning tasks in general.
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Appendix A

Supplementary information for the second
study

A.1 Results

A.1.1 More results on CNNs vs. other models

Figure A.1 shows how model performance changed with amount of training data. CNN models
outperformed GLMs all the time. Figure A.2 shows the performance of CNN models with dif-
ferent numbers of parameters. Figures A.3 and A.4 show additional results on transfer learning
using VGG networks. VGG19 overall worked similarly to or better than other ones.

A.1.2 Pilot experiments for selecting CNN architecture and optimization
parameters

We performed the following pilot experiments to determine the architecture and optimization
hyperparameters of our CNN models.

First, we made an relatively exhaustive list of candidate one-convolutional-layer architectures
and candidate optimization hyperparameters for them. We focused on CNNs with only one
convolutional layer as they are easier to analyze and also easier to compare with other models
(Gabor models and GLMs, Section 3.3.4 and Table 3.1).

We tried two kernel sizes for convolutional layer hyperparmeters: 9 and 13. For each con-
volutional layer kernel size, we tried two basic readout layer architectures: pooling following by
a vanilla fully connected layer, or a factored readout layer without pooling as in [13, 81]. For
kernel size 9, we tried four pooling strategies k8s4, k6s6, k6s2, and k3s3, where k and s
denote kernel size and stride of the pooling layer respectively. For kernel size 13, we tried three
pooling strategies k4s4, k6s2, and k2s2. In addition, when a vanilla fully connected layer
was used, we tried two versions: one with dropout and one without.

For optimization hyperparameters, we optimized them over four aspects: weight decay on
convolutional layer, weight decay on readout layer, base optimizer, and learning rate. For (L2)
weight decay on convolutional layer, we tried two configurations: 0.001 and 0.0001. For weight
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decay on readout layer, we tried four configurations: 0.001 L1, 0.001 L2, 0.0001 L1, and 0.0001
L2. For base optimizer, we tried Adam and vanilla SGD with momentum. For learning rate,
we tried 0.001, 0.002, 0.005 for Adam, and 0.1 for SGD. We optimized the set of optimization
hyperparameters over all combinations of candidate configurations of the these four aspects.

Then we evaluated the performance of each combination of these architectures and sets of
optimization hyperparameters on 14 neurons chosen from monkey A based on CCmax (Sec-
tion 3.3.6); in particular, from each of the seven neuron subclasses (Section 3.2.2.0.1), we picked
the top two neurons in terms of CCmax, whose high value indicates high recording stability. We
have the following empirical observations about different architecture hyperparameters and op-
timization hyperparameters for their performance.

• For any given model architecture, the best model performance over the four sets of opti-
mization hyperparameters in Table 3.3 was very close to the best model performance over
all sets of optimization hyperparameters explored. Therefore, we chose to use those four
in our other experiments.

• Architectures with kernel size 9 in the convolutional layer overall outperformed those with
kernel size 13. Among those with kernel size 9 in the convolutional layer, those with
a pooling layer of configuration k6s2 worked better than other schemes (other pooling
configurations or factorized readout layer). Accordingly, we chose the baseline CNN ar-
chitecture (Figure 3.2). Note that the main motivation of pooling was to make model
size manageable, not to add additional expressiveness to the CNN over non-CNN models
(Gabor models, GLMs); while pooling could possibly introduce some artifacts into our
analysis, we thought it was better use it, given that alternative architectures with manage-
able model size and without pooling—those with a factorized readout layer—performed
worse in our pilot experiments.

• Of all the architectures we tried, top-performing ones typically do not have dropout.
We also similarly performed a search over two-convolutional-layer architectures with similar

numbers of parameters to that of our baseline 9-channel CNN. The best two-convolutional-layer
architecture in our experiments outperformed our one-convolutional-layer baseline marginally
(Figure A.5); we chose to focus on one-convolutional-layer CNNs for their simplicity and simi-
larity to non-CNN models (Gabor models, GLMs).

A.1.3 Modeling V1 population using a single CNN
Most CNN-based work models all the neurons in a data set with a single network, with shared
parameters in lower layers and separate sets of parameters for different neurons in higher layers
[13, 78, 81, 113]. As a preliminary attempt in this direction, we tried modeling monkey A’s
neurons using a single CNN. The architecture of our CNN is the the same as that in Cadena et al.
[13], Klindt et al. [81], with only kernel sizes (kernel size 9 for the first layer and 3 for higher
layers) and numbers of channels adapted to our data set. To make the modeling task easier due
to the great diversity in our neural data set, we trained two separate CNNs to separately model
OT neurons and HO neurons. For each CNN to model a particular neuron subset, we adjusted its
numbers of channels so that it has roughly the same number of parameters as all baseline CNN
models for that neuron subset collectively; for example, for monkey A’s 338 HO neurons, our
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baseline CNN models have in total 338×883 = 298 454 parameters, and our single CNN for HO
neurons has correspondingly 296 308 parameters with 106 channels for every layer. We ran the
training procedure with around 10 sets of regularization hyperparameters for each neuron subset
and picked the one with highest testing performance.

To our surprise, given roughly the same number of parameters and within the limit of our
hyperparameter tuning, large single CNNs that model all neurons all together performed simi-
larly to our baseline CNNs that model each neuron separately (Figure A.6, top). Our results were
in contrast with the intuition that using a single CNN with parameters shared between neurons
should increase learning efficiency and model compactness compared to using separate CNNs for
different neurons. We also tried turning down model size by changing numbers of channels and
found that single CNNs performed worse (Figure A.6, bottom). We also tried other combinations
of kernel sizes and numbers of channels, with similar or worse results.

A.1.4 Other output nonlinearities of GLMs

In the main text (Section 3.3.3), we used Poisson GLMs as they are standard in the existing
V1 modeling work; in practice Poisson GLMs do not have negative responses which are easier
to interpret. We also tried Gaussian and (partially) softplus [46] GLMs (both optimized with
mean squared error); we found that the additional exponential nonlinearity in Poisson GLMs
was marginally beneficial compared to Gaussian GLMs and softplus GLMs (Figure A.7); using
Gaussian or softplus GLMs instead would not change our results in the main text qualitatively.

A.1.5 Other possible stimulus types

Much previous work modeling V1 neurons used natural images or natural movies [13, 25, 78],
while we used artificial pattern images [160]. While neural responses to natural stimuli ar-
guably reflect neurons’ true nature better, it has the following problems in our current study:
1) public data sets [20] of V1 neurons typically have much fewer images and neurons than our
data set, and limited data may introduce bias on the results; 2) artificially generated images can
be easily classified and parameterized, and this convenience allows us to classify neurons and
compare models over different neuron classes separately (Section 3.2.2.0.1). While white noise
stimuli [113, 143] are another option, we empirically found that white noise stimuli (when lim-
ited) would not be feasible for finding the correct model parameters (assuming CNN models are
correct). We demonstrate this through the following sanity-check experiment: using standard
response-triggered (also called spike-triggered for spiking data) methods [122, 144] on a fitted
CNN model to recover its ground-truth filters. As shown in Figure A.8, white noise stimuli could
not recover ground-truth filters without hundreds of thousands of stimuli, because the neuron,
which behaved as a complex pattern detector, was highly nonlinear and highly specific in pattern
selectivity, and white noise stimuli would be very inefficient in driving such neurons. The ineffi-
ciency of white noise stimuli for identifying convolutional models using was also mentioned in
Vintch et al. [172].
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A.1.6 More results on pre-trained CNNs
Figure A.9 shows detailed fitting results of the pre-trained VGG19 for the example neurons in
Figure 3.7, in a similar format.

Comparing this figure with Figure 3.7, we have two empirical observations as follows.
• pre-trained CNNs (especially their higher layers) had comparable performance as our base-

line CNN models for V1 fitting (Figure A.9e vs. Figure 3.7d).
• visualization of these model neurons fitted using pre-trained CNNs is in general difficult.

In particular, the complexity of visualized patterns was mostly related to the complex-
ity of the corresponding VGG19 layers where features were extracted, instead of predic-
tion accuracy. For example, while conv3 1 and conv4 1 had better performance than
conv2 1, the visualization of the former two was less intuitive than the latter (c,d vs. b
of Figure A.9). We explored different hyperparameters for the visualization and obtained
qualitatively similar results.

104



Figure A.1: CNN models vs. others with different amounts of training data. The organization
of panels is the same as that in Figure 3.6. For each panel, the model performance is shown in
CC2

norm averaged over neurons in the neuron subset, as a function of the amount of data used for
training and validation. CNN models are shown in solid lines and GLMs are shown in dashed
lines; models of similar numbers of parameters share the same color. For GQMs, only the gqm.4
variant is shown and others gave similar or worse results. Gabor models were not explored due
to limited time.
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Figure A.2: Performance vs. number of parameters for CNN models. The organization of panels
is the same as that in Figure 3.6. For each panel, the model performance is shown in CC2

norm
averaged over neurons in the neuron subset, as a function of the number of parameters in the
model; the vertical line denotes the number of parameters for the baseline CNN model in the
main text.
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Figure A.3: Transfer learning (goal-driven) approach for modeling V1 neurons using pre-trained
VGG networks, monkey A. These panels have similar formats to those in Figure 3.11. a-c VGG
networks’ best performing layers (conv3 1 for all) vs. the baseline CNN (B.9). d-f Model
performance across layers for different VGG networks (d for VGG16 with batch normalization,
e for VGG16, f for VGG19 with batch normalization).
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Figure A.4: Transfer learning (goal-driven) approach for modeling V1 neurons using pre-trained
VGG networks, monkey B. Compared to Figure A.3, additional VGG19 results (g) are shown.
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Figure A.5: Neuron-by-neuron comparison of our best candidate two-convolutional-layer CNN
(2L.7) vs. the baseline CNN (B.9). The organization of panels is the same as that in Fig-
ure 3.6. For each panel, we show the scatter plot of the two models’ performance on individual
neurons in terms of CC2

norm (Section 3.3.6) with performance metrics averaged across neurons
at corners and the Pearson correlation coefficient between the two models in the middle. The
two-convolutional-layer CNN has 743 parameters with four layers: a convolutional layer with
7 channels and configuration k4d2, a convolutional layer with 7 and configuration k3d1p1,
a max pooling layer with configuration k6s2, and finally a fully connected layer; d denotes
dilation (set to 1 if omitted) and p denotes padding (set to 0 if omitted).
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Figure A.6: Performance of modeling multiple neurons using a single CNN, Monkey A. The
comparison of our single CNN (population CNN) and our baseline CNN (B.9) are shown
in the top. Only cases for OT neurons, all stimuli and HO neurons, all stimuli were explored
due to limited time. For either HO or OT neuron subset, the single CNN has its numbers of
channels adjusted to match the set of baseline CNNs for that neuron subset in terms of model
size (Section A.1.3). Performance vs. number of parameters for our single CNN are shown in the
bottom. Here, number of parameters was changed by reducing the numbers of channels (across
all three convolutional layers) of the model to different percentages. Horizontal dashed lines
show performance metrics of the baseline CNN.
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Figure A.7: Neuron-by-neuron comparison of Gaussian, Poisson, and softplus GLMs. The Gaus-
sian and Poisson versions of the GQM with locality 4 (gqm.4) were shown in the top, and the
Poisson and softplus versions of the vanilla GLM were shown in the bottom. The organization
of panels is the same as that in Figure 3.6, except that only results for Monkey A are shown.
For each panel, we show the scatter plot of the two models’ performance on individual neurons
in terms of CC2

norm (Section 3.3.6) with performance metrics averaged across neurons at corners
and the Pearson correlation coefficient between the two models in the middle. For Gaussian vs.
Poisson, results were similar for other GLM variants and Monkey B. For Poisson vs. softplus,
we were only able to obtain results for the vanilla GLM on Monkey A due to the slowness of
our GLM implementation in MATLAB (lassoglm); nevertheless, we believe that the results
should generalize to other cases.
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Figure A.8: Failure to recover CNN model parameters using a reasonable amount of white noise
stimuli. Left: neuron 554 of monkey A was first fitted by a CNN model with one convolutional
layer of four filters (architecture B.4 in Figure 3.6). Right: standard response-triggered average
and covariance methods were applied to the model’s responses to different number of Gaussian
white noise stimuli to recover its four filters. Apparently, the filters could not be recovered
accurately without fewer than 50 000 stimuli, which greatly exceeds the limitation of traditional
neurophysiology experiments.
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Figure A.9: Example neurons and their fitting results using VGG19. The example neurons
are the same as those in Figure 3.7 and two figures have similar formats. For each of the five
columns, we show the following information (a-e). a The top 20 responding stimuli of the
neuron; b-d visualization results for conv2 1, conv3 1, and conv4 1, respectively; e the
neuron’s fitting results (over testing data) on models fitted using three different VGG19 layers
conv2 1, conv3 1, and conv4 1.
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Appendix B

Supplementary information for the third
study

B.1 Details on neural data sets

B.1.1 Monkey task and recording technique

Data from two series of experiments performed on an awake behaving macaque monkey were
used in this study. In both experiments, the monkey performed a fixation task, fixating at a red
dot on the screen during a 753 ms (ImageNet 8K) or 500 ms (NS 2250) trial. Eye position was
monitored continuously with an infrared optical eye tracking system sampling at 120 Hz (IS-
CAN). A trial was aborted without reward if, at any point prior to delivery of reward the monkey
failed to maintain fixation within a central window spanning 0.6° to 0.8°. We monitored neu-
ronal activity through an SC96 array, a modular, replaceable micromanipulator system allowing
independent bidirectional control of 32 microelectrodes arranged in a square array with 1.5 mm
inter-electrode spacing (Gray Matter Research, MT). The array was implanted over the intact
dura above the occipital operculum with its center over areas V1 and V2. A screw-driven mech-
anism allowed independent bi-directional control of the depth of each electrode over a range
of 16 mm with an accuracy of approximately 15 µm. This provided sufficient control to isolate
the spiking activity of individual neurons. The location of the tip of each electrode remained
relatively stable across multiple days as evidenced by consistency in the pattern of neuronal se-
lectivity for familiar images. We used the same sampling and filtering hardware, software, and
settings that we used for the Utah Intracortical Array in our earlier experiments with the Black-
rock Cerebus multi-channel Neural Data Acquisition System. We used the same spike sorting
procedures to isolate single or multi-unit waveforms [74]. The only selection criterion that we
applied was that the unit had to have to exhibit significant average PSTH relative to baseline
averaged across all stimuli. In total, we collected 79 neurons for ImageNet 8k experiment and 34
for NS 2250.
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B.1.2 Stimulus preparation and presentation
B.1.2.1 Stimulus presentation details

We displayed stimuli on a calibrated CRT monitor (85 Hz frame rate, around 40 cd m−2 mean lu-
minance) placed 100 cm from the animal, using NIH CORTEX software. Two different stimulus
presentation paradigms were used. In the ImageNet 8K experiment, 8000 stimuli were presented
in 16 stimuli per trial while the monkey fixated. Each trial lasted for 753 ms, and thus each im-
age was presented for 47 ms (4 frames at 85 Hz). The 8000 stimuli were presented once each in
a 500-trial run. Each day, 3000 trials were typically acquired from the monkey, resulting in 6
repetitions per stimulus. Each image would appear in different image sequences and at different
position in the sequence in different runs. Three recording sessions were performed across six
days. In the NS2250 experiment, a total of 2250 stimuli were tested. Each image was presented
for 500 ms, and repeated 8 to 10 times randomly interleaved with other stimuli. Each day, 500
images were tested in 4000 trials. Each day 25 calibration images were also tested to track neu-
rons across days based on their stimulus response finger-print. The recording of response to 2250
stimuli were obtained in five consecutive days.

B.1.2.2 Stimulus preparation details

B.1.2.2.1 ImageNet 8K We used natural images from ImageNet [141]. We converted color
images to gray scale ones, and extracted 25 000 patches of 256 px by 256 px. Each degree visual
angle corresponds to around 25 px on the monitor. Out of the 25 000, 8000 image patches were
selected for which the average pixel values were in the range 40–200 out of 0-255 and we ex-
cluded images of low RMS contrast (≤ 0.25) at the central 3° visual angle region of the images
which covered the receptive fields of most of the neurons monitored by the array. The stimuli
were presented in a 10° diameter circular aperture within a gray surround. The central 200 px by
200 px part used for modeling (Section B.3.1.1) has an average RMS contrast of 0.3.

B.1.2.2.2 NS 2250 We used the 2250 stimuli extracted from images used in Tang et al. [161].
We converted color images to gray scale values. Each image was presented within a 8° aperture
(200 px). The central 148 px by 200 148 part used for modeling (Section B.3.2.1) has an average
RMS contrast of 0.27.

B.1.3 Extraction of responses to the ImageNet 8K stimuli
While the extraction of the responses to stimuli in the NS2250 stimuli was straightforward and
standard, the extraction of the responses to the ImageNet 8K stimuli was more challenging for
two difficulties: first, each stimulus was presented for 47 ms and thus the responses to the 16
consecutive distinct stimuli presented in a trial were superimposed onto each other; second,
there was a delay between stimulus onset and the response onset of V1 and V2 neurons, and the
delay was slightly different for each neuron (30 ms to 50 ms). The first problem turned out to be
not severe because neural responses to natural stimuli tended to be sparse, typically yielding 0
to 3 spikes for each stimulus’ 47 ms presentation and neurons typically did not respond well to
consecutive stimuli, mitigating the potential response superposition issue. To resolve the second
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problem, for each neuron, we selected a different offset for response calculation so that the
pairwise correlations of neural responses across different recording sessions were maximized
and thus there was a different offset for each neuron.

B.2 Detailed description of models explored in this study

B.2.1 Baseline models

During inference, a baseline model takes an image x ∈ RH×W of heightH and widthW as input
and generates an prediction ~̂r ∈ RN of the neural responses ~r ∈ RN to the image. Mathemati-
cally, the model inference process is defined by Eqs. (B.1).

~̂r = Act(FC(Pool(y(M)))) (B.1a)

y(m) = CPB(m)(y(m−1)) m = 2, . . . ,M (B.1b)

y(1) = CPB(1)(BatchNorm(x)) (B.1c)

CPB(m)(y) = Act(BatchNorm(m)(Conv(m)(y))) (B.1d)

For a model of M convolutional processing blocks (CPBs), the model inference starts with
Eq. (B.1c) to normalize the input image and obtain the initial CPB’s output y(1), followed by a
few applications of Eq. (B.1b) to get outputs of later CPBs y(2), . . .y(M). Finally, Eq. (B.1c) is
applied to obtain the predicted neural responses ~̂r. Conv, BatchNorm, Act, Pool, FC represent
convolution, batch normalization, nonlinear activation, average pooling, and factorized fully con-
nected layers [81], respectively. Different convolutional processing blocks have different hyper
parameters and learned parameters, as denoted by superscripts (m) in Eq. (B.1d).
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B.2.2 Recurrent models

The model inference process is defined by Eqs. (B.2).

~̂rno-avg = Act(FC(Pool(y(M,T )))) (B.2a)
~̂rearly-avg = Act(FC(Pool(y(M,T )))) (B.2b)

~̂rlate-avg =
1

T

T∑

t=1

Act(FC(Pool(y(M,t)))) (B.2c)

~̂r2-avg =
1

T

T∑

t=1

Act(FC(Pool(y(M,t)))) (B.2d)

y(M,t) =
1

t

t∑

t′=1

y(M,t′) (B.2e)

y(m,t) = RCPB(m,t)(y(m−1,t),y(m,t−1)) m = 2, . . .M ; t = 1, . . . T (B.2f)

y(1,t) = RCPB(1,t)(BatchNorm(x),y(1,t−1)) t = 1, . . . T (B.2g)

y(m,0) = 0 (B.2h)

RCPB(m,t)(y,y′) = Act(BatchNorm(m,t)(Conv
(m)
feed-forward(y) + Conv

(m)
lateral(y

′))) (B.2i)

For a model of M recurrent convolutional blocks (CPBs) and T iterations in total, the model
inference starts with T cycles of Eqs. (B.2g),(B.2f) to obtain the responses of allM RCPBs across
T iterations y(m,t),m = 1 . . .M, t = 1 . . . T . Finally, one of Eqs. (B.2a),(B.2b),(B.2c),(B.2d) is
used to obtain the final model output depending on the readout mode used (Section 4.3.1.2.2).

There are two details worth noting about our implementation of the recurrent model. First,
RCPBs are technically not fully recurrent. As indicated by the notations in Eq. (B.2i), for a
given RCPB, the convolution layers are fixed across iterations but different batch normaliza-
tion layers are used for different iterations t. We use different batch normalization layers to
accommodate different mean and variance statistics of responses across different iterations, with
minimal increase in model size (≤ 1%). Second, a RCPB might have fewer iterations T ′ than
the overall model iteration T . For example, a CPB is a RCPB with T ′ = 1 iteration; there
is no lateral convolutional layer or additional batch normalization layer to define model output
y(t), t > 1. In such cases, we use the output at iteration T ′ as the output for later iterations,
or y(t) = y(T ′), t = T ′ + 1, . . . , T ; with such definition, Eq. (B.2) are applicable to recurrent
models explored in this study, where each recurrent model has one CPB followed by a number
of RCPBs.
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B.3 Details an data preprocessing

B.3.1 ImageNet 8K
B.3.1.1 Input

Each original image was of size 400 px x 400 px with an aperture of around 256 px in diameter.
We cropped out the central 200 px x 200 px portions and downsampled them to 50 px x 50 px
(4x) as the input. The reason we used 200 px x 200 px portions was that these portions contained
actual image pixels only and without apertures, which are standard in neurophysiological experi-
ments and may have undesirable effects in data-fitting due to the sharp difference between pixels
inside and outside the aperture. We downsampled the images to reduce model size and follow
similar practices in recent related studies [13, 78].

B.3.1.2 Output

Given a neuron, for each image in a recorded trial, we computed the spike count during the time
window of around 47 ms when the image was presented on the screen, with some offset (B.1.3)
to account for the delay between stimulus onset and the neural response. We then averaged the
spike counts over all trials to obtain the average spike count for this neuron for this image. We
repeated the above procedure for every neuron and image to obtain 8000 average spike counts
for each of the 79 neurons. Finally, for each of the 79 neurons, we scaled its responses so that
the average over all 8000 images was 0.5, following practices in the literature [78]. The scaled
average spike counts were used as the ground truth output.

B.3.2 NS 2250
B.3.2.1 Input

Each original image was of size 252 px x 252 px with an aperture of around 200 px in diameter.
As in the data preprocessing of ImageNet 8K data, we cropped out the central 148 px x 148 px
portions and downsampled them to 37 px x 37 px (4x).

B.3.2.2 Output

As in the data preprocessing of ImageNet 8K data, we obtained 2250 average spike counts for
each of the 34 neurons, by collecting spike counts during the 500 ms window of stimulus presen-
tation with some offset. For each of the 34 neurons, we scaled its responses so that the average
over all 2250 images was 0.5. The scaled average spike counts were used as the ground truth
output.

While results shown in this study for this data set used spike counts during the full 500 ms
window, we also tried using shorter windows (first 100 ms, last 100 ms, etc.); recurrent models
outperformed baseline feed-forward ones regardless of the choice. We chose to present results
based on the full 500 ms window because the the average spike counts from the full window
could be used to decode the input images with an accuracy higher than other shorter windows.
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Following Tang et al. [161], we used the NearestCentroid classifier implemented in
scikit-learn [127] to compute the decoding accuracy. For a given time window (say, the full
500 ms one), we computed the cross-validated classification accuracy based on the neural re-
sponses to all 2250 images with 8 trials per image (for images with 9 or 10 trials, we only kept
the first eight trials in this experiment for simplicity, as all images had at least eight trials). We
performed the cross validation over trials for eight times, each time using data over seven trials
for training and those over one trial for testing; during training, the decoder simply computed
the average response over seven trials for each image; during testing, the decoder classified the
input neural response vector to the image whose average neural response stored in the decoder
was closest to the input neural response vector. Table B.1 gives the performance of the decoder
when different time windows were chosen.

Table B.1: Image decoding accuracies of neural responses using different time windows.

time window cross-validated decoding accuracy

0 ms to 500 ms 71.8%
0 ms to 400 ms 70.4%
100 ms to 500 ms 61.3%
0 ms to 100 ms 55.2%
100 ms to 200 ms 40.6%
200 ms to 300 ms 28.1%
300 ms to 400 ms 19.4%
400 ms to 500 ms 14.6%

B.4 Model performance evaluation in detail
Given a trained model, we use average CC2

norm over all neurons to quantify its performance on a
data set. For each neuron, we compute its CC2

norm based on Eqs. (B.3).

CC2
norm =

CC2
raw

CC2
max

(B.3a)

CCraw = Pearson(~r, ~̂r) (B.3b)

CCmax =

√
Var({∑k rm,k})−

∑
k Var({rm,k})

K(K − 1)Var({rm})
. (B.3c)

~r = (r1, r2, . . . , rM) (B.3d)

rm =

∑K
k=1 rm,k

K
(B.3e)

Concretely, we first compute the raw Pearson correlation CCraw between the ground truth
trial-averaged neural responses ~r as defined by Eqs. (B.3d),(B.3e) and the model responses ~̂r
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using Eq. (B.3b). We then divide CCraw by CCmax, which is defined in Eq. (B.3c) and estimates
the maximal Pearson correlation coefficient an ideal model can achieve given the noise in the
neural data [60, 149]; inside the square root, the numerator is the difference between variance of
response sums per stimulus

∑
k rm,k and sum of response variances per trial Var({rm,k}), and the

denominator is the variance of the trial-average neural responses scaled by a factor related to the
number of trialsK. Finally, we get the square of normalized Pearson correlation coefficient using
Eq. (B.3a). As squared CCraw gives the fraction of variance in neural responses explained by the
model in a simple linear regression, squared CCnorm gives the normalized explained variance that
accounts for noise in the neural data. Note that we used neural responses on all stimuli instead of
on testing set stimuli to compute CCmax in Eq. (B.3c) for more accurate estimation. In addition,
because the NS2250 data set has a variable number of trials per image (8 to 10), we only used
the first eight trials for simplicity.

B.5 Multi-path models as approximations of recurrent mod-
els

In Section 4.4.2, to demonstrate the validity of multi-path reformulation (Section 4.3.4), we
converted each recurrent model into a corresponding multi-path model following the procedure
illustrated in Figure 4.5 and then retrained the multi-path model from scratch under the same
hyperparameters as the original recurrent model. Unlike the recurrent model which combines
multiple information flow paths using shared components (Figure 4.5a,b), the multi-path model
has separate feed-forward paths (Figure 4.5c,d) with shared convolutional weights. Results are
shown in Figure 4.13. Note that the total number of multi-path models (sum of all n’s in the
figure) was lower than the total number of recurrent models we had, because multi-path models
took more GPU memory and resulted in out of memory for larger models like those with three
layers and more than 32 channels.

In addition, note that the retrained multi-path models has shared parameters across paths for
convolutional layers but separate parameters for batch normalization layers. While sharing batch
normalization layers results in a more faithful reformulation of the original recurrent model, in
practice we found that separate BN parameters gave much better performance at a cost of small
model size increase and sharing BN parameters made multi-path models perform much worse as
each BN layer has to learn the statistics over multiple paths in this setting.

In addition to neural data prediction performance (Figure 4.13), we also found that recurrent
models and the corresponding multi-path ones were similar in terms of other statistics, such as
average path length (Figures 4.14,4.15; Section 4.4.3).

B.6 Computation of average path length and path diversity of
a recurrent model

Given a trained recurrent model, we define its average path length and path diversity based on
its recurrent block(s) and readout mode. For a model with T iterations, there are T ensembles

119



(Figure 4.5c,Figure 4.5d), each corresponding to the information flow of recurrent block(s) at
a particular iteration (Figure 4.5a,Figure 4.5b). We then perform the following steps to get the
average path length and path diversity for the recurrent model of a particular readout mode.

1. Determine the strength score of every component in every path for every ensemble (Fig-
ure 4.16a). The definition of the score is designed so that the strength score of every
component is the ratio of the magnitude of the component’s output over that of its input,
when the input is a single scalar (thus, the convolutional layer’s kernel size is 1 by 1, and
there is only one channel per layer). This corresponds to Figure 4.16a.

(a) The strength score of a BN layer is the average of the absolute values of the scaling
factors used during inference, over all output channels.

(b) The strength score of a convolutional layer is the average of the 2-norms of 3-D
convolutional kernels flatten into vectors, over all output channels.

(c) The strength score of an activation layer (ReLU or softplus in this study) is 1, as
the activation layer outputs the input itself when the input is a large enough positive
number.

2. Compute the unnormalized strength of each path (Figure 4.16b). The unnormalized strength
of each path is the product of strength scores of all its components, further multiplied by
a weight factor determined by the readout mode. The extra weight factor is needed be-
cause different readout types by definition utilize paths in different iterations differently
(Section 4.3.1.2.2). For example, the no-avg readout mode only uses paths in the last iter-
ation, whereas early-avg uses all paths over all iterations equally. The (relative) value the
weight factor can be easily calculated based on the definition of different readout modes
(Section 4.3.1.2.2).

3. Compute the normalized strength of each path and compute average path length and path
diversity (Figure 4.16c). The normalized strength of each path is proportional to its unnor-
malized strength so that all normalized strengths over all paths sum to 1.

(a) The average path length is the weighted average of all paths’ lengths, weighted by
the paths normalized strengths. The length of a path is defined as the number of
convolutional layers in the path. Equivalently, it can be also defined as the number of
BN or activation layers in the path, as a path has the same number of convolutional
layers as that of BN layers and as that of activation layers.

(b) The path diversity is the path length distribution, where the probability of each path
length is the sum of normalized strengths of paths of that length. Note that multiple
paths may have the same length, as demonstrated in Figures 4.5b,4.5d.

B.7 Ablation study
To compute the baseline shown as horizontal dashed lines in Figures 4.21,4.22, we trained the
multi-path models corresponding to the original recurrent models with 2 layers, 7 iterations, and
16 or 32 channels using 100% of training data. The construction of multi-path models and their
subtle differences from the original recurrent models are described in Appendix B.5. We used
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all the training data because the reformulation of recurrent models as multi-path models worked
better with more training data (Figures 4.13,4.14,4.15); we did not train recurrent models with
other numbers of layers or channels because models with 3 layers or more than 32 channels
exceeded GPU memory limits during training and 8-channel recurrent models did not outperform
feed-forward models much (Figures B.6,B.9). In addition, for the ImageNet 8K data, eight multi-
path models exceeded GPU memory limits during training, causing n, the number of models per
data point to be 24 in Figures 4.21 instead of 32 in Figures 4.22.

To compute the performance metrics of ablated models in the figures, we trained additional
multi-path models like those for getting the baseline, but with paths of certain lengths removed.
In each of the figures, the left panel shows the performance metric change when paths of a
particular length (1,2,3,4,5,6) were removed; the middle panel shows the performance metrics
change when paths of two adjacent lengths (1-2, 2-3, 3-4, 4-5, 5-6) were removed; the right panel
shows the performance metric change when paths of three adjacent lengths (1-3, 2-4, 3-5, 4-6,
5-7) were removed.

B.8 Additional results on recurrent vs. feed-forward models

B.8.1 Results under different model size-independent hyperparameters
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Figure B.1: The relative performance metric changes of recurrent models over feed-forward
models under different activation layers, on the ImageNet 8K data set. See Figure 4.8 for details.
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Figure B.2: The relative performance metric changes of recurrent models over feed-forward
models under different orders of BN and activation in the first convolutional block, on the Ima-
geNet 8K data set. See Figure 4.8 for details.
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Figure B.3: NS 2250 version of Figure 4.8.
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Figure B.4: NS 2250 version of Figure B.1.
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Figure B.5: NS 2250 version of Figure B.2.
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B.8.2 Results grouped by model size and amount of training data
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Figure B.6: Recurrent models vs. feed-forward models on the ImageNet 8K data, using 100% of
available training data, under different model sizes by changing number of channels and number
of layers. It’s a more detailed version of Figure 4.11. For each panel, its title denotes the number
channels (ch) and the number of recurrent layers.
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Figure B.7: Same as Figure B.6, using 50% of available training data.
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Figure B.8: Same as Figure B.6, using 25% of available training data.
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Figure B.9: The NS 2250 version of Figure B.6.
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Figure B.10: The NS 2250 version of Figure B.7.
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Figure B.11: The NS 2250 version of Figure B.8.
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B.8.3 Overall results
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Figure B.12: The relative performance metric changes of recurrent models over feed-forward
models under different numbers of recurrent layers on the ImageNet 8K data set. The results are
presented in the same style as those in Figure 4.8.
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Figure B.13: The NS 2250 version of Figure B.12.
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Figure B.14: Same as Figure 4.11, with 50% of available training data.
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Figure B.15: Same as Figure 4.11, with 25% of available training data.

2 3 4 5 6 7
# of iterations

0.39

0.40

0.41

0.42

0.43

av
er

ag
e 

CC
2 no

rm

All, n=96
no-avg early-avg late-avg 2-avg

(a)

2 3 4 5 6 7
# of iterations

0.38

0.39

0.40

0.41

0.42

0.43

av
er

ag
e 

CC
2 no

rm

1 R layer, n=48
no-avg early-avg late-avg 2-avg

2 3 4 5 6 7
# of iterations

0.39

0.40

0.41

0.42

0.43

0.44

av
er

ag
e 

CC
2 no

rm

2 R layers, n=48
no-avg early-avg late-avg 2-avg

(b)

Figure B.16: Same as Figure 4.12, with 50% of available training data.
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Figure B.17: Same as Figure 4.12, with 25% of available training data.
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B.9 Additional results on path length and diversity
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Figure B.18: Same as Figure 4.19, for models trained using 50% of training data.
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Figure B.19: Same as Figure 4.19, for models trained using 25% of training data.
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Figure B.20: Same as Figure 4.17, with models trained using 50% of training data.
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Figure B.21: Same as Figure 4.18, with models trained using 50% of training data.

1 R layer, n=80

1 2 3
0.0

0.5

no-avg, 3, 2.53

1 2 3 4

early-avg, 4, 2.47

1 2 3 4 5
0.0

0.5

late-avg, 5, 2.56

1 2 3 4 5 6 7

2-avg, 7, 2.29

2 R layers, n=80

2 3 4
0.0

0.5

no-avg, 3, 3.60

2 3 4 5

early-avg, 4, 3.52

2 3 4 5 6
0.0

0.5

late-avg, 5, 3.70

2 3 4 5 6 7 8

2-avg, 7, 3.55

path length

no
rm

al
ize

d 
st

re
ng

th

(a)

1 R layer, n=48

1 2 3
0.0

0.5

no-avg, 3, 2.64

1 2 3 4

early-avg, 4, 2.69

1 2 3 4
0.0

0.5

late-avg, 4, 2.53

1 2 3 4 5 6

2-avg, 6, 2.60

2 R layers, n=48

2 3 4
0.0

0.5

no-avg, 3, 3.67

2 3 4 5

early-avg, 4, 3.78

2 3 4 5 6
0.0

0.5

late-avg, 5, 4.05

2 3 4 5 6 7 8

2-avg, 7, 3.96

path length

no
rm

al
ize

d 
st

re
ng

th

(b)

Figure B.22: Same as Figure 4.20, with models trained using 50% of training data.
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Figure B.23: Same as Figure 4.17, with models trained using 25% of training data.
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Figure B.24: Same as Figure 4.18, with models trained using 25% of training data.
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Figure B.25: Same as Figure 4.20, with models trained using 25% of training data.
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B.10 Additional results using a different random seed for split-
ting 8K data into training, validation, and testing sets

Due to resource limits, for each data set, we’ve presented all the results in this study using a
single random seed for splitting data into training, validation, and testing sets (Section 4.3.3.2).
As a sanity check, we trained additional models with a different random seed for data splitting, in
order to make sure that our main results that recurrent models outperformed feed-forward ones
would still hold regardless of data splitting. Due to resource limits we only retrained the subset
of models using 100% of training data on ImageNet 8K; results on these retrained models were
consistent with the results on the original models as shown below.
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Figure B.26: Same as Figure 4.6, using another data splitting seed and only using 100% of
training data.
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Figure B.27: Same as Figure B.6, with another data splitting seed.
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Figure B.28: Same as Figure 4.11, using another data splitting seed.
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