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Abstract

Keystroke dynamics is a behavioral biometric, typically used to identify people based on their typ-
ing rhythms, and to distinguish between legitimate and fraudulent users/behaviors. Two common
sources of typing data are: controlled laboratory environments; and real-world, field environments.
Because keystroke researchers tend to use lab and field data interchangeably, it is conjectured that
any differences between lab and field data are nil or trivial, the effects of which can be ignored at no
cost to an automated decision-making procedure that distinguishes between legitimacy and fraudu-
lence. We test this conjecture by conducting a lab-based typing experiment, and replicating it under
field conditions, each with 100 participants. The lab environment used a single hardware/software
platform and keyboard with high-resolution keystroke timing, whereas the field environment relied
on whatever hardware and keyboard a volunteer participant happened to have. An analysis of both
sets of typing data revealed that USB keyboards, used in the field, injected artifacts into the data,
causing the data to lack fidelity to the actual keystroke signal. These artifacts were observed to
change an algorithm’s decision by nearly 20 percentage points, wrongly reversing a distinction
between legitimacy and fraudulence. This paper chronicles the methods by which these artifacts
and their damaging effects were discovered.





1 Introduction

Keystroke biometrics (or keystroke dynamics) is the term given to the procedure of measuring and
assessing a user’s typing style, the characteristics of which are thought to be unique to a person’s
physiology, behavior and habits. Ascertaining the unique typing style attributed to a given user
through their typing rhythms is an idea whose origin lies in the observation (published in 1897)
that telegraph operators have distinctive patterns of keying messages over telegraph lines [4]. These
patterns came to be known as the “fist” of the sender, due to the interaction between the operator’s
fist and the knob on the telegraph key.

One crucial aspect of fists is that they emerge naturally, as noted over a hundred years ago by
Bryan and Harter [4], who showed that operators are distinctive due to the automatic and uncon-
scious way their personalities express themselves, such that they could be identified on the basis
of having telegraphed only a few words. Hence both keying styles and typing styles are natural
behavioral biometrics, so called because they’re based on behavior unique to an individual.

Keystroke dynamics relies on the timing of key-presses and key-releases as text is typed on
a keyboard. The fundamental measurements are the moments in time of key-down and key-up
behaviors. These measurements are the basis for deriving features for analysis: hold time (how
long a key is held down), down-down (dd) latency (from one key-down event to the next key-down
event), up-down (ud) latency (from one key-up to the next key-down), and other features that arise
similarly from combinations of the basic key-down and key-up signals.

These measured features are compared to a user profile as part of a classification procedure. A
match or a non-match can be used to decide whether or not the user is authenticated, the user is
legitimate or fraudulent, or the user is the true author of a typed sequence. Keystroke dynamics, as
a technology for facilitating this match/non-match process, has recently been endorsed for strong
customer authentication by the European Banking Authority, covering the European Union [11].

For research purposes, keystroke data can be gathered in laboratory or field (real-world) con-
ditions. Lab data can be more difficult to obtain, because participants need to be recruited and
scheduled for lab time; field data, on the other hand, can be gathered over the Internet, either in
custom web deployments or through crowd-sourcing systems such as Amazon’s Mechanical Turk.
When the same experimental protocol is used in both lab and field situations, there should be no
difference in the data collected. If it’s true that there is no difference, then it makes sense to con-
duct such studies in the easiest and simplest way possible. So, which data set, if either, would be
better – lab or field, and why? The answer is surprising and distinctly unintuitive.

2 Problem and approach

The problem addressed in this paper is to characterize the differences, if any, between a lab-based
data set and a field-based data set, each collected under the same experimental regime, other than
the data-collection venue – lab vs field.

• Research Question 1: What distinguishes lab vs field data?
• Research Question 2: If distinctions exist, do they matter?
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Our approach began with what many fields would regard as a very standard methodology: ex-
ploratory data analysis (EDA), comprising the ordinary application of descriptive statistics, com-
bined with graphical analysis in a way that, as Tukey said, “forces us to notice what we never
expected to see” [32, pp. vi].

We first explain how we acquired our lab and field data. We engage exploratory data analysis
and descriptive statistics to get a sense for the data, which reveals an unexpected discrepancy
that bears a deeper look. Then we examine the data graphically, and see that there are striking
differences between lab and field data for which there is no obvious explanation. We examine
carefully the critical differences between lab and field operations. This leads to scrutinizing the
mechanisms intrinsic to keyboards, and a detailed statistical and graphical confirmation that some
keyboards play a critical role in data integrity. Finally, we show that artifacts injected into the data
by certain keyboards make a difference when using the data for making decisions about fraudulent
vs legitimate user behavior. Finally, we discuss the results, followed by a note about the limitations
of this study, and the consequences of the discoveries made here.

This paper chronicles our journey of exploration, culminating in a surprising discovery, which
may change how people think about data-gathering instrumentation in keystroke dynamics.

3 Related work

Two kinds of related work are relevant here: keystroke dynamics in general, and keystroke dynam-
ics data quality/integrity. We review these in turn.

General keystroke dynamics. We have already described the basic tenets of keystroke bio-
metrics/dynamics in Section 1, and won’t repeat those details here. For readers seeking a general
currency in keystroke dynamics, a number of surveys and reviews are available. Although the
ones cited here appear dated, they are still quite relevant; perhaps there are no very recent surveys
because the ones noted here (in chronological order) have served the community well.

• Peacock et al. [28] provide a general and very accessible overview of keystroke dynamics; for
those unfamiliar with the technology, it’s a good place to start. The authors presented results for
23 different keystroke systems; however, some of the more impressive systems may have achieved
their results due to small sample sizes and methodological aberrations.

• Banerjee and Woodard [1] wrote one of the more thorough surveys available in the literature,
citing 162 references. The survey covers a range of pertinent issues such as the typing environment,
biometric features, metrics, five publicly-available databases, statistical and pattern-recognition
algorithms, performance-shaping factors, and commercial applications. The paper also addresses
related issues such as the underlying psychology of typing, data-acquisition environments, and
several nice tables comparing a range of keystroke studies on the basis of the algorithms used:
statistical, neural networks, pattern recognition and learning, and heuristics. The paper compares
systems from 77 studies; however, almost none of these systems were evaluated on the same data
set, so some of the results could have been due to the particular constituency of the typists.

• Teh at al. [31] provide an insightful survey of keystroke dynamics covering nearly three
decades of research. They note the basic aspects of the field, experimental protocols, data acqui-
sition, features, feature selection, classification approaches (which are covered particularly well),
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and comparisons amongst keystroke studies based on various inputs.
• Zhong and Deng [33] provide a broad-ranging survey of keystroke dynamics aspects includ-

ing features, classification techniques, distance metrics, keystrokes on mobile devices, emotion
detection, and eleven benchmark data bases. They commented on a lack of a common evaluation
framework for keystroke dynamics (which continues to be true, even now).

• Obaidat et al. [25] wrote a terse, but competent survey that covers most of the important
aspects of keystroke dynamics: basic mechanisms and metrics, comparisons with other biometrics,
evaluation measures, applications, features (for analysis), feature selection, classification methods,
and a compendium of benchmarking data sets.

The progression of research on keystroke biometrics/dynamics is sadly lacking in scientific
advancement. While there has been progress in terms of applying new (and relevant) classification,
anomaly-detection and clustering algorithms, these have largely been applied to single (and often
inadequate) data sets without a sound basis for many of the claims made. The discipline’s story
certainly leads to a greater variety of approaches and techniques, but seldom to a better fundamental
understanding. The same can be said about the quality or integrity aspects of the field.

Data quality. The following papers treated, chronologically, various aspects of data quality in
keystroke biometrics. This issue is of particular concern in the present paper because data quality,
or rather data integrity – the faithfulness of the data to the original signal – lies at the heart of
our investigation and our results. In the extant literature there is no mention of such a concept;
most of the cited papers here refer to data quality, but never define the term. Because the earliest
keystroke papers were written in the 1970s, it’s surprising that scant attention has been paid to
a topic presumably so important. Nonetheless, we note some of the papers that at least mention
quality.

• Kang et al. [15] addressed data quality in terms of uniqueness and consistency of typing.
They opined that data are of higher quality when a user’s typing is more unique (more distinct
from others’ typing), and when a user’s typing is self-consistent (less variability within a user).
They introduced a scheme of artificial pauses and cues (e.g., metronome) that typists could follow
– like providing different rhythms to different users, thereby ensuring a greater variability between
users and a lesser variability (uniformity of typing) within users. It is easy to see how this could
improve classification performance; however, their results did not report classification accuracies,
so the practical outcomes of such schemes are unknown.

• Rybnik et al. [29], in a paper entitled “The Practical Impact of Database Quality,” discuss the
quality aspects of two keystroke data sets that they examined across several dimensions, including
consistency and accuracy; one data set was a laboratory benchmark (from CMU), and the other data
set was collected over the Internet, using Javascript and a web browser. No specific definitions of
quality were offered, although aspects such as accurate timing were hinted at.

• Giot et al. [12] evaluated and ranked a set of benchmark data sets for keystroke dynamics.
Although their paper wasn’t intended as a missive on data quality, it gives substantial attention
to the concept, including a number of criteria that affect data quality, such as the type (shape) of
the keyboard used, the operating system, clock resolution, acquisition environment (e.g., lab vs
field) and the data-gathering protocol itself. Electrical or communication characteristics were not
mentioned.
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• Sun et al. [30] concentrate on shared data sets and their quality, although quality is not
explicitly defined, nor are there clear criteria for assessing data quality. They note that “there
are only a few benchmark data sets of high quality,” citing [12, pp 2], whose data are examined
later in this paper. They observe a number of data-collection practices that are certainly worthy of
attention, but without much explanation. They develop and evaluate a new data set of their own,
but without specifics, so it’s hard to learn what’s important in terms of quality.

• Pavaday et al. [27] noted that different operating systems can have different effects on the
timing accuracy of keystrokes. They did a detailed investigation of timing mechanisms, concluding
that not all timers produce the same (or even repeatable) results. However, they did not look at the
effect of the keyboard itself, nor its method of communication with the operating system.

In closing we note that there is really no work that we know of that bears on data integrity or
quality, other than to give these terms a fleeting mention. Given the longevity of the field, this is a
pity, as surely the matter of quality or integrity would be of some interest. In the following sections
we show how detrimental it can be to ignore these matters.

4 Methods

This section provides the details of how our investigation was conducted, so that readers can judge
(a) whether or not our methods were appropriate, and (b) whether or not our procedures and results
are reproducible.

4.1 Data acquisition

4.1.1 Task

Subjects typed a 10-character password-like string 50 times in each of 8 sessions. The 8 sessions
were separated by at least one day, for a total of 400 typed repetitions of the password over 8 days.

4.1.2 Materials

The password-like string typed by the subjects was .tie5Roanl followed by a carriage return,
which was also recorded. This string was meant to resemble a strong password (documented in
[17, section 4.1]).

4.1.3 Subjects
Our goal was to have 100 lab and 100 field subjects. Subject recruitment was over-subscribed in
anticipation of drop-outs due to not finishing the task, not following instructions, data corruption,
etc. After data pruning, 200 subjects participated: 100 in the lab condition (45 female, 55 male)
and 100 in the field condition (46 female, 54 male); all signed an IRB-approved consent form. Lab
subjects were recruited from university environs by poster, recruiting service, and word of mouth;
field subjects were recruited similarly, but from around the world, anywhere on the Internet. No
compensation was provided. Subjects were required to be at least 18 years old, be fluent in English,
have at least three years of experience typing on a computer, and type at least 30 words per minute.
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4.1.4 Instructions to subjects

Subjects were instructed to type normally. They were informed that the task was neither a speed
nor an accuracy test (this was necessary because in pilot studies we discovered that many subjects
believed they were being tested for speed or for accuracy or for both, under which conditions their
typing would not be normal).

4.1.5 Environment

Our experiments were carried out, in accordance with the exact same protocol, in two environ-
ments: lab and field. The laboratory environment was tightly controlled in nearly every regard:
lighting, temperature, computer, keyboard, timers, furniture (e.g., ergonomically adjustable chair
and table), ambient noise, etc. The field environment was “out there” anywhere on the Internet,
using whatever Windows machine (and operating system version) was available to a subject, along
with that person’s preferred keyboard, monitor, ergonomic conditions, etc.

4.1.6 Data features and measurements

The measurements taken were only keystroke timing: the moment in time when a key was pressed,
and a somewhat later moment in time when the same key was released. From these press and
release times we can derive the primary keystroke-dynamics features: (a) hold time – the amount
of time a key was held down, typically ~90-100 milliseconds; (b) down-down (dd) latency time
– the amount of time between a key-down event and the immediately following key-down event,
typically ~220-230 milliseconds; (c) up-down (ud) latency time – the amount of time between a
key-up event and the immediately following key-down event, typically ~130 milliseconds.

4.1.7 Apparatus & instrumentation

The equipment differed slightly between lab and field conditions. In the lab we used an IBM
ThinkPad X60s notebook computer (type-model 1702-4EU, 1.5 Gb RAM, operating system Win-
dows XP Professional, Service Pack 2); a Dell UltraSharp 1907FP 19-inch external monitor, and an
Apple M9034LL/A external keyboard. The Apple keyboard was modified internally; its keyboard
encoder was completely bypassed, and the key matrix was scanned by a custom encoder which
tagged key events with values from an on-board timer whose worst-case, calibrated resolution was
100 microseconds. Networking was turned off to minimize load on the XP machine. Details of the
equipment, the timer and how the timer was calibrated are in [21]. The equipment used in the field
condition was whatever Windows machine (OS version 7 or above) and keyboard the volunteer
subject happened to have.1 Details of field apparatus (e.g., OS, version number, hardware, CPU,
etc.) were logged automatically.

A custom user-interface presented the string to be typed (.tie5Roanl) in a small dialog
box; the typing was entered into an accompanying text input box. Typing errors were detected and

1Restricting the experiment to Windows machines was not an impediment, because – according to Statistica –
Windows had 77.61% of the operating system market as of November 2019; see: https://www.statista.
com/statistics/218089/global-market-share-of-windows-7/.
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discarded; subjects were asked to repeat a mistyped entry so that every subject would complete
50 error-free repetitions of the “password”. This same user interface collected the keystroke tim-
ing data via the Microsoft QPC timer. The user interface was exactly the same in both lab and
field conditions, except that the keystroke timing data for the lab condition was collected from an
external, custom timer, as noted above.

4.1.8 Procedure

The procedure for lab subjects and field subjects was exactly the same. Subjects started by signing
an IRB-approved consent form, filling out a demographic questionnaire, and reading instructions.
The typing task started, the subjects typed 50 repetitions of the “password,” read a debriefing
statement, and departed. Lab subjects returned for the remaining 7 (of the 8) sessions, usually
skipping a day between sessions. Field subjects were instructed to do the same, although some
people had intervals longer or shorter than every two days. No one participated in more than one
session in the course of one day, and no subject in one data set was in the other data set; no overlap.

4.2 Exploratory data analysis (EDA) / descriptive statistics

Here we begin our description of how the typing data were analyzed to discover any differences
(or lack thereof) between lab and field data. A typical way to begin exploring a data set is with a
statistical summary, which provides a concise view of the location, spread and range of the data.

Table 1 shows descriptive statistics for hold times in lab and field data sets. Note that many of
the numbers are in rough agreement from one data set to the other, except for kurtosis; here the
field data depart significantly from the lab data, an observation that suggests a big difference in
outlier behavior, begging further investigation.

Lab Field
Mean 92.289 99.985
Std 30.436 42.842
Median 88.400 95.900
Mode 80.500 80.000
Kurtosis 42.388 7997.751
Skewness 1.693 51.278
Range 2033.900 8687.900
Max 2035.300 8688.200
Min 1.400 0.300
Inter-Quartile Range 38.600 37.900
Upper Quartile 109.300 116.900
Lower Quartile 70.700 79.000

Table 1: Descriptive statistics: hold times, in milliseconds: 11 features (keys), 50 repetitions per
key, 8 sessions per subject, 100 subjects; 440,000 data points for each data set, lab and field. The
mean is the average time that a key was held down; the difference between the lab and field means
is significant (p < .001, two-tailed t-test). Note the huge lab/field difference in kurtosis.
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Figure 1: Lab hold times (left); field hold times (right). Field-data spikes are 8 ms apart.

4.3 Graphical exploration; plotting the data

One important tenet of exploratory data analysis [32] is “plot the data.” We plotted the number
of instances in which a keystroke hold-time occurs at a given time interval in milliseconds – e.g.,
how many times did an 80-msec hold time occur? Figure 1 shows the results. As we can see in the
figure, the field data contain a number of tall spikes. These spikes, which demand explanation, are
8 milliseconds apart. There are no such spikes in the lab data. Why?

4.4 Comparative frequency counts of selected events from EDA

Figure 1 shows that some field-data hold times are much more prevalent than others, and not
apparent at all in the lab data; see the tall spikes in the right panel. Although neither data set
should exhibit these spikes, we’d at least expect them to be roughly equally distributed across lab
and field data. Table 2 helps explore these discrepancies between lab/field hold-time prevalences,
where we see that the top 10 most frequently occurring counts of field-data hold times (in ms) are
far higher than those for lab data, but again one wonders why. To explore further we turn again to
exploratory data analysis – scattergrams.

Lab Field
Holds Counts Holds Counts
80.5 1656 80.0 15250
81.3 1654 96.0 15094
78.4 1653 88.0 12630
77.6 1627 104.0 10239
75.5 1613 112.0 8371
71.8 1608 72.0 8061
84.2 1600 64.0 7628
76.0 1592 120.0 6669
76.8 1587 128.0 5216
85.5 1585 79.9 4949

Table 2: Top 10 hold-time frequency counts (ms) for 100 lab and field subjects. Field-data fre-
quencies are larger; they occur at 8-millisecond intervals (except 79.9), while lab data do not.

7



0 50 100 150 200 250 300 350 400

Repetition Number

0

50

100

150

200

250

M
il
li
s
e
c
o
n
d
s

s144 All Hold Features

0 50 100 150 200 250 300 350 400

Repetition Number

0

50

100

150

200

250

M
il
li
s
e
c
o
n
d
s

P1154 All Hold Features

Figure 2: Comparison of lab hold-time data (subject 144, left) and field hold-time data (subject
1154, right). The lab scattergram on the left is to be expected, with points scattered roughly
evenly throughout the plot. The field scattergram on the right is comprised of horizontal striations,
vertically separated by 8 ms. Each plot shows 8 sessions of 50 repetitions each, for 400 typed
repetitions total; session boundaries are indicated by the ticks on the x-axis.

4.5 Graphical analysis
Figure 2 shows plots for two subjects – one typical lab and one typical field – where the lab
subject’s hold-time scattergram is what one might expect to see, but the field scattergram has sur-
prising, and unexplained, horizontal striations across it2. The striations appear to be 8 milliseconds
apart on the y-axis (later confirmed). The field subject depicted in the figure was typical of about
90% of field subjects, although not all of them had striations separated by 8 milliseconds; others
appeared to have striation separations of 2, 4, 16, etc. milliseconds, as well as other separations
that were not definitively on power-of-two boundaries. Some of the field data seemingly contained
no striations at all, and some subjects showed striations in some, but not all, of their 8 sessions.
The lab data, however, were completely devoid of striations.

4.6 Explaining the graphical striations in the data
There were no striations in the lab-data plots, but most of the field data did contain striations (cf.
Figure 2). Since both lab and field protocols were exactly the same, including the same application
software, we look to what was otherwise different between the two environments. The differences
lay in the hardware and software platforms, the timing regimes in the two environments, and the
keyboards used. We examine each of these in turn.
• Hardware platform. Our field app logged a user’s machine type, operating system and version,
and processor type and speed. Machine types had a wide range, including Dell, HP, Lenovo, Asus,

2We use hold times because they are said to be more discriminative than latency times: [ 9, 26]. Latency plots show
similar behavior, but would be redundant here.
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Mac3, Sony, etc. The processors also varied (Intel, Pentium, AMD) and reflected a broad range of
CPU speeds and clock frequencies. Because the phenomenon of striations persisted across all of
these hardware platforms, it seems reasonable to conclude that the hardware was not causative.
• Software platform. Two elements comprised the software platform: the keystroke acquisition
software, which was exactly the same for both lab and field; and the subjects’ operating systems.
The field operating systems spanned several versions of Windows, with a range of service packs.
The operating system in the lab was also Windows. Because the same kinds of striated plots were
observed irrespective of operating system/service pack, it is concluded that the particulars of the
operating system couldn’t be responsible for the striated plots. Some subjects, e.g., field subject
1106 in Figure 3-a (cf. page 12), used the same operating system for all experiment sessions, but
only some of those sessions were striated, or quantized, while others were not. Some subjects
showed no quantization at all. The software platform appears not to have been a factor in whether
quantizations appeared or not.
• Timing regime. As previously noted, the lab system used a custom, out-of-band timing device
with 100 microsecond resolution. The field timing system relied on the Microsoft Query Perfor-
mance Counter. The QueryPerformanceCounter (QPC) value, when scaled with the value from
QueryPerformanceFrequency, provides high-resolution time-interval measurements, independent
of the speed of the CPU clock [22]. It is this QPC mechanism on which we base the duration of
hold and latency times. While the difference in resolution between the lab and field timing regimes
can influence classification accuracy [16], there’s no reason to think that either of these timing
mechanisms would induce striations in the data. Consequently, even though different hardware
platforms used different CPUs running at different speeds, the effect of CPU differences on QPC-
based time stamps would be negligible, and certainly would not induce the striated behavior seen
in the plots in Figure 2.
• Keyboard. Subjects in the lab used only a single keyboard (cf. Section 4.1.7), so there was
no keyboard variability at all in the lab. In the field, subjects used whatever keyboards they had at
hand, as noted in our demographic logs: standard US keyboard, natural or Kinesis ergonomic, Mac,
etc. Unfortunately, we had no definitive way to determine keyboard make and model, although
some users reported make/model out of band. We examined the critical aspects of keyboards
(scan matrix, switches, keyboard encoder (sometimes termed microcontroller), debouncing, etc.),
but could find no differences that would explain the quantizations in the field data. While there
are minor distinctions amongst keyboards, none of them are likely to make any difference to the
keystroke monitoring software; these distinctions are ergonomic preferences, with some people
favoring a particular keyboard layout, key type, key travel, haptic feedback, function keys, etc.

While the physical keyboard itself may matter little, what might matter more is the way that the
keyboard communicates with the host. There are two predominant communication protocols, USB
(Universal Serial Bus) and PS/2 (Personal System/2), that specify both the electrical signals and
data format from keyboard to host. For the lab data we used an Apple keyboard (cf. Section 4.1.7)
whose internal electronics were removed and replaced with a custom circuit for scanning the key
matrix and capturing timing at a resolution of 100-microseconds. In the field, people used whatever

3Mac users ran the Windows-based typing software via Bootcamp, a Mac utility that allows switching between
MacOS and Windows.
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keyboard they happened to have, most of which (but not all) were USB-based.
Exploring the above-noted differences in lab/field apparatus, it is instructive to look ahead, to

our exposition on “unruly” data – data that didn’t conform to expectations – as shown in Figure 3-a
(page 12). Field subject 1106 used a Lenovo laptop (model Y510p, Windows 7, Professional Ser-
vice Pack 1 (Build 7601)) for every one of his eight daily typing sessions. Striations are evident
in sessions 1-4 and 6, but sessions 5, 7 and 8 resemble the lab data shown in Figure 2, left panel.
Whatever might be causing the striations, it apparently wasn’t the computer, the operating system,
or the monitoring software, because we observe behavioral changes in the data without changing
any of those factors. However, this subject did not use the same keyboard for all sessions; he
used the laptop’s internal keyboard when he was traveling (sessions 5, 7, 8), and a wired Logitech
“Wave” keyboard when in his office. Other than ergonomics and convenience, the only differ-
ence between these two keyboards was the way they communicated with the host computer: USB
(external) or PS/2 (internal). This observation led to a comparison of the USB and PS/2 protocols.

The USB specification explains how the USB stack works [5]. At a very high level, when
a USB device is plugged into a computer, the operating system initiates a conversation with the
device to determine what kind of device it is, how fast the device is, what its data rate is, and how
often the operating system should request data from the device. This last aspect, requesting data
from the device, is called polling. A keyboard is a slow human interface device (HID in the USB
specification). Since a keyboard is a slow device (compared to a disk or a streaming device), and
not much data are transferred at any one time (i.e., a few keystrokes), it doesn’t need to be polled
very often; once every eight milliseconds is typical. Coincidentally, an 8-millisecond polling rate
corresponds to the 8-ms spikes we observed in Figure 1, suggesting that USB keyboards could
somehow be associated with the striations.

PS/2 is a fast, hardware-based, interrupt-driven, serial communication protocol designed by
IBM [14]. Due to the keyboard initiating communication within the PS/2 protocol, rather than
having the host machine periodically poll it, every key-press (make) and key-release (break) trig-
gers an immediate interrupt to the CPU.

Based on the operational details of PS/2 and USB, it seems reasonable to conclude that the USB
stack is responsible for the quantization that we’ve seen in the field data. To firm up that conjecture,
we should verify the polling rates for each of the field subjects, confirming that subjects who used
USB keyboards showed corresponding quantization patterns in their data. To do that we need a
tool to assess the polling rate for each subject.

5 Polling discovery
Based on the scattergrams we saw, it seemed sensible to think that much of the field data had been
influenced by USB polling. To test this notion, we need to know two things: (1) do all subjects’
data exhibit striations; and (2) what is the interval (milliseconds) between the striations? That
interval should correspond to a USB polling rate. Since we couldn’t examine all 800 field sessions
manually, we built an ensemble polling discovery tool to extract the information automatically.
The results of our tool are presented in Table 3.

Across all 100 field subjects, we constructed a tally of how many subjects had what polling
rate. Table 3 shows that the most prevalent polling rate (54%) was 8 milliseconds, followed by 4
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Polling
Count

Polling
Count

Interval Interval
PS/2 11 5.2 2
2.0 1 5.3 2
2.5 1 5.35 2
2.7 1 5.5 1
2.75 1 7.8 1
2.8 2 8.0 54
3.5 1 10.0 3
4.0 7 16.0 7
5.0 2 22.0 1

Table 3: Polling intervals (msec) for 100 field subjects. 54% polled at 8 msec.

milliseconds and 16 milliseconds, all powers of two; these would be expected, based on the USB
protocol. These three polling rates accounted for 68% of the subjects; 11% of the subjects used
PS/2 keyboards, based on direct confirmations from 7 subjects, and 4 augmented by discovery-tool
results; 6% had an integer polling interval that was not a power of two; the remaining 15% had
fractional (e.g., 2.75) polling rates, the cause of which was not ascertained. We speculate that
the fractional polling rates arose either from shortcomings in a machine’s USB implementation
or from particularly inexpensive (hence poorly designed and constructed) keyboards, or both. In
applying the polling discovery ensemble to the lab data, no USB polling indications were found.

5.1 Graphical analysis – unruly data

So far, we’ve seen quantized field data that’s been relatively consistent over the course of the eight
sessions in which subjects typed; there were no obvious changes or shifts in behavior, as depicted
by the scattergrams. However, not all subjects exhibited such regular behavior. Figure 3 shows the
scattergrams for four such unruly subjects.

• Figure 3-a shows sessions 1-4 and 6 with the usual striations from field subject 1106, but also
shows sessions 5, 7 and 8 with no striations. This subject used the same laptop when working from
home during sessions 1-4 and 6; and when working remotely for sessions 5, 7 and 8. During the
home sessions he used a Logitech “Wave” external USB wired keyboard; for the remote sessions
during travel he used a Lenovo laptop whose internal keyboard was PS/2. The operating system
was Windows 7 throughout the course of the 8 days, with no changes. This strongly suggests
that the USB keyboard is what caused the striations in the data. In fact, his Logitech keyboard
requested 16 msec polling, which corresponds perfectly with his plotted data in the figure; his
laptop’s internal keyboard was interrupt-driven PS/2 (no polling); hence the disappearance of the
striations for sessions 5, 7 and 8.4

4Some of these details were ascertained through out-of-band communication with the subject.
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(a) 3 sessions on PS/2 laptop keyboard; others external
keyboard.
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(b) Last three sessions may have employed keyboard
macro.

0 50 100 150 200 250 300 350 400

Repetition Number

0

50

100

150

200

250

M
il
li
s
e
c
o
n
d
s

P1170 All Hold Features

(c) 37 ms polling; odd structures may be from insuffi-
cient resources.
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(d) Old/slow/memory-deprived HP laptop; ramps are
‘return’ holds.

Figure 3: Four examples of unruly field data; eight sessions, 50 typing repetitions per session.
Session boundaries are indicated by ticks on the x-axis. Note the different kinds of irregularities in
each panel, as compared to the normal behavior shown in the left panel of Figure 2.

• Figure 3-b shows field subject 1125 polling at 8 milliseconds for his first five typing sessions,
and then something changed. It appears that his polling rate dropped to near zero, with the excep-
tion of some scattered points in sessions 6-8. The scattered points in the last three sessions depict
the subject’s return key. We don’t know what happened in the last three sessions, although
we speculate that the subject crafted a keyboard macro that automated his typing, except for the
return key. Note that the machine in this example was a Mac running Bootcamp.

• Figure 3-c shows field subject 1170, who used a Dell Studio 1749 laptop machine and its
internal keyboard; the operating system was Windows 7 Home Premium, 64-bit, with 4 GB of
RAM and a 2.13 GHz processor. The polling interval was 37 milliseconds, which we cannot
explain. The strange, right-downward-slanting “ramps” in the data are unexplained as well. This
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subject reported using streaming music and (occasionally) GoToMeeting, a streaming video and
audio application, coincident with typing. Because of these things, we speculate that the machine
was starved for resources, perhaps engaged in excessive swapping, which might explain the plot’s
bizarre appearance.

• Figure 3-d shows field subject 1217, who also exhibits rather odd (and unexplained) behavior,
particularly the upward-slanting “ramp” that occurred in each of the 8 typing sessions. This subject
ran Windows 10 Home Edition, with a 1.44 GHz CPU, 4 GB of RAM, and an average of 575
MB of free memory at the beginning of each session (the subject reported that the machine got
increasingly slow throughout each session), suggesting that this system, too, may have been starved
for resources – a probable explanation for the odd-looking plot.

Figure 3’s four “unruly” plots illustrate a lesson learned: that not everything goes as expected
when conducting keystroke experiments in the field (or maybe even in the lab), and therefore, one
should be careful about using all collected data without screening the data first. Plot 3-a showed
that different keyboards can produce different data; plot 3-b showed that people may not engage
the typing exercise as instructed; plot 3-c showed possible interference from competing processes;
and plot 3-d showed that resource starvation may affect the data in ways that don’t reflect normal
typing behavior. None of the unruly subjects were included in the 100-subject data set.

• Figure 4 shows the typing scattergrams for the same person using two different keyboards
in the field experiment (dropped from the study, but used here for illustration purposes). Subject
1172 and subject 1104 are the same person. When the subject identified as 1104, he was typing on
a Dell laptop’s internal keyboard; the polling rate was 8 milliseconds. When the subject identified
as 1172, he was typing on a Windows workstation using a mechanical gaming keyboard (Das
Professional Mechanical Keyboard). The gaming keyboard doesn’t avoid USB polling, but it polls
at one-millisecond intervals. The small interval between polls, combined with jitter5 from the
operating system, makes striations impossible to observe in the scattergram for 1172. Note how
different the two plots are, and how much difference the data could make in any classification
procedure, as will be seen in Section 8.

In concluding this section we observe that many unanticipated things have the potential to ruin
or dramatically affect a data set. There are many varieties of unusual circumstances, including
system resources that are available for the typing application, or consumed by other processes,
and that users will do unexpected things (e.g., switch keyboards, which sometimes matters and
sometimes may not; or employ privacy protection (see footnote 6), which can change the timing of
keystrokes), often innocently, and not inform the investigator, because they regard one keyboard to
be functionally equivalent to another (and from a user perspective, they’re right). The bottom line
is: always, inspect/validate the data to ensure that it conforms to expectations.

5Jitter can arise from multiple sources; a USB keyboard may not send data exactly on bInterval (a USB polling
parameter) periods, or USB hosts may not send polling requests exactly on bInterval periods (causing early or late key
events); or polling rates may be altered slightly, depending on bus traffic.
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Figure 4: Field experiment, same subject, different keyboards: gaming (left) and USB (right).

6 Other people’s data

It’s possible that the striations seen in our field data are peculiar to our experiment, our typing
application, and our instrumentation. To check this, we looked for similar artifacts in a range of
data sets from other researchers. We found USB-induced quantization in all of them; it wasn’t just
us. Due to space limitations, only two examples are shown in Figure 5.

Giot et al. [12], in a paper that reviewed public benchmark databases for static keystroke dy-
namics, noted 16 public data sets, some of which were from their own laboratory, and all of which
can be freely downloaded. We examined all of the data sets they discussed, except for the CMU
data set (which we knew was comprised of data similar to the lab data in the present paper). All
of the data that we examined displayed the same characteristics of USB polling that we have seen
in earlier figures in this paper. A separate public data set known as BeiHang [18, 19], noted in an
international keystroke competition [24], showed similar characteristics. Figure 5 shows subjects
from two of the reviewed data sets: BeiHang B and Web GREYC. We also examined data from a
much earlier paper by Bergadano et al. [2], and found the same phenomenon of striations across
44 users. The USB quantization/striation phenomenon stretches far back in time, suggesting that
many data sets over the years contain USB-induced artifacts.

The BeiHang B data set (Figure 5 left) contains 68 subjects in their Data Base 1, with the data
for each subject split into training and testing sets. Each subject typed a password unique to the
subject five times for the training set, and a variable number of times for the testing set. In order
to maintain a consistent number of typing repetitions from each subject, we present results derived
from only the training data. Subjects used their own computer and keyboard to type into an online
form. The data were collected online. The polling intervals for data set B vary from subject to
subject, which might be expected of data recorded from many different computers and keyboards.
The data show the striations that are now recognized as being induced by the USB stack.

There are 5 repetitions per subject, with 68 total subjects, so the plot shows 68 * 5 = 340 total
repetitions. All subjects are concatenated across the horizontal axis of the plot. Notice that there
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are some clearly defined breaks in typing pattern, but not as many as the 68 breaks one might
expect. This is probably because some subjects who contributed to the data set shared computer
and keyboard with the subject that preceded them (e.g., repetitions 255-275 have similar striations).
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Figure 5: Other people’s data – left, 68 subjects, many different keyboards and quantizations, from
the Beihang B data set [18]; right, user 006, 35 sessions from the Web GREYC project – change
in quantization at about repetition 100, due to change of computer (Windows to Linux, based on
log data); possible keyboard change at about repetition 200 [13].

The Web GREYC data (Figure 5 right) were gathered via a web-based application written in
JavaScript, HTML, and CSS. Users were allowed to use any browser, though the majority (54.4%)
used some version of Firefox for all sessions; 75.4% used Firefox in at least one session.6 Subject
006, depicted in the figure, was chosen arbitrarily as a representative subject from the data set. Sub-
jects were asked to complete one session per week, with each session comprised of 10 repetitions
of a login and password that are the same for all subjects, 10 repetitions of a login and password
chosen by each subject, and 5 repetitions each of the login and password that were chosen by two
other subjects (10 repetitions total). Note the changes in polling intervals at approximately repeti-
tion 100; this is caused by the subject having changed from a Windows to a Linux machine (while
still using the same version of Firefox) mid-way through the data collection. This information was
obtained from the Web GREYC log files.

In addition to the aforementioned data sets, we also examined a data set from the Coursera
authentication sequence, provided by Dehaye [6, 7], as well as data from Dhakal et al’s [8] paper
describing observations on typing 136 million keystrokes. Although we don’t present the corre-
sponding scattergrams, they contain the same USB-induced artifacts that we have described so far.
It appears, then, that the striations we observe in our field data are by far not unique to our own
data, our own application, or our own instrumentation; they are endemic to situations in which
USB keyboards have been used.

6To help protect user privacy, Firefox reduces timer precision by default. Users can also optionally enable fin-
gerprint resistance, which can reduce timer precision to 100ms – obviously problematic for keystroke biometrics:
https://developer.mozilla.org/en-US/docs/Web/API/Event/timeStamp.
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7 Do the USB artifacts matter?

If the USB stack is injecting artifacts into typing data, does it matter? Clearly, from a typist’s
perspective, it doesn’t; the pressed keys still appear on the screen in a timely manner. But when
using typing times for biometric authentication purposes, or for distinguishing between legitimate
and fraudulent behavior, maybe it does matter. In this section we test the idea that USB artifacts
can change outcomes in an authentication regimen.

Biometric typing/keystroke data are typically used to make decisions in authentication regimes;
if a user’s typing rhythm matches the user’s profile (which would have been obtained during an
enrollment process), then the decision to authenticate the user would be made; otherwise, not. To
make the authentication decision we typically use a process based on classification, matching, or
similarity-based techniques to answer the question: is this person’s current typing rhythm similar
enough to the person’s profile that we can judge the person and the profile to have arisen from
the same individual? If the answer is “yes” then the user is granted permission to access system
resources; otherwise, permission is denied.

To achieve this, researchers and practitioners use statistical or machine-learning techniques
(e.g., classifiers) such as support vector machines, decision trees, random forests (a powerful vari-
ant of a decision tree), etc. – see, for example: [3, 10, 23]. Random forests are one of the most
widely used methods in machine learning, whose predictive performance can compete with any
other supervised learning algorithm. We use a random forest in this work, partly because of the
aforementioned, and partly for consistency, since we have used the technique in prior work (e.g.,
[17]) with similar data.

To determine the extent to which USB-induced artifacts can influence programs that use keystroke
data, we ask these questions:

1. does a standard classifier (e.g., random forest) get results on the USB-influenced field data
that differ from its results on the lab data; and

2. when comparing artifact-free data with artifact-laden data, are there any differences in deci-
sion making outcomes?

7.1 Determining the effects of USB-induced artifacts

To demonstrate whether or not the USB-induced artifacts have any effect on decision outcomes
we need to compare two data sets – one that’s artifact free and one that’s contaminated with arti-
facts. While our artifact-free lab data could be contrasted with our artifact-adulterated field data, a
confounding factor would make such a comparison invalid. A confound exists when there is more
than one explanation for an outcome; in this case, a change in outcome could be due to the USB
quantizations, or it could be due to there being different people in the lab data than in the field
data, with different typing behaviors across the data sets. To avoid this confound, we find a way
to compare a single, unadulterated data set against a modified version of itself by transforming lab
data into USB-quantized “field-similar” data.

In a procedure that we call “quantization” we resample the lab data (all features), and transform
it so that it reflects the striated characteristics of the field data. This is implemented by the following
function where thigh is a feature time in the high-resolution lab data set (hold time, up-down latency,
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or down-down latency), tquant is a feature time in the quantized lab data set, p is the polling interval,
and the round function implements a banker’s round-half-to-even policy:

tquant = round
(thigh

p

)
× p

This rounding policy (see [20]) was used to avoid biasing the transformed data as would occur
when rounding in the same direction, up or down, all the time; rounding in the same direction can
result in a bias that grows larger and larger as more rounding operations are performed. Banker’s
rounding avoids this bias. As an example, 3.5 will round up to 4 and 4.5 will round down to 4.
Thus we avoid biasing the mean, which can be central to some classification algorithms.

7.1.1 Establish baselines
The first step in determining the effects of USB-induced artifacts is to establish baselines for com-
parisons between lab and quantized, field-similar data. Using the lab data we determine the overall
baseline classification accuracy of a random forest, and we create the baseline misclassification ma-
trix of the classification outcomes. The misclassification matrix is a 100-by-100 matrix in which
the element in row i, column j is the percentage of times the subject with true ID i was predicted to
have ID j by the random forest. These will be compared against accuracies and misclassification
matrices obtained in the experiments described below.

7.1.2 Quantize all 100 subjects
In this experiment we quantized all 100 subjects in the lab data set, in two phases: (1) quantize
to 8 milliseconds; (2) quantize to 16 milliseconds. These two quantization intervals were chosen
because they were the most prevalent in the field data (see Table 3, page 11).

For a given quantization level (e.g., 8 ms) we generated a misclassification matrix. That matrix
was compared, cell by cell, against the cells in the aforementioned baseline matrix, seeking the cell
with the greatest difference between baseline and quantized data – this cell represents the largest
change across subjects’ classification outcomes. We report the overall classification accuracy,
the corresponding subject number, the quantization level, and the maximum cell difference in
Section 8, Results.

7.1.3 Quantize just one subject – one-shot

In this experiment we determined what happens when just a single subject, out of 100, is USB-
quantized; that’s 1% of the data. The purpose of this experiment is to examine the changes in clas-
sification outcomes when data from only one subject are contaminated by USB artifacts. Again,
this was done at both 8 and 16 millisecond intervals. Each subject was quantized, in turn, resulting
in 100 classification accuracies and 100 misclassification matrices for each quantization level. For
each of the two quantization levels we found the subject with the maximum difference in any cell
of the misclassification matrix. As above, we report the overall classification accuracies, subject
number, and the maximum cell differences in Section 8, Results.
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7.1.4 Quantize two subjects – two-shot

This experiment reveals what happens when two subjects are quantized simultaneously at either 8
or 16 millisecond intervals. The purpose of this experiment is to examine the changes in classifi-
cation outcomes when data from only two subjects are contaminated by USB artifacts. We could
carry on, with experiments that quantize 3 or 4 or n subjects at a time, but we limit our explorations
to two subjects for the sake of concision. Comparisons against the baseline were made similarly to
the one-subject condition above, and similarly reported in Section 8, Results.

7.1.5 Quantize in proportion to the field data

This experiment deviates from the others in that the quantization was done in proportion to the
polling rates in the original field data (see Table 3, page 11). So, one subject was quantized at
2 milliseconds, seven subjects at 4 milliseconds, 54 subjects at 8 milliseconds, and the rest in
accordance with the table. To avoid obtaining a particular result by coincidental assignment of
subjects to quantization levels, the assignments were done by random draw, and repeated ten times,
with the results averaged.

In the next section we will present the results regarding the several overall accuracies and
misclassification matrices that were produced from these experiments.

8 Results

In the previous section we described our experiments in quantization and the concomitant gener-
ation of their overall classification accuracies and misclassification matrices. In this section we
report those results.

In addition to (modest) changes in overall classification accuracies due to USB-induced arti-
facts, there were changes in the misclassification matrices generated in every experiment. Here
we show the major changes on the diagonal of the misclassification matrix – that’s the cell whose
value shows the number of (or the percentage of) times that a subject was classified as him/herself.
We follow the same structure as we did earlier in Section 7.

8.0.1 Establish baselines

The average overall classification accuracy for unquantized lab data was 90.57% (std = 0.0007),
based on ten runs of the random forest classifier. Because the differences among the ten runs were
so small, we decided to use the first run for our baseline; for that run the overall classification
accuracy was 90.55%. The baseline misclassification matrix isn’t shown here because of its 100 x
100 size, although excerpts will be shown later in this section. This is the baseline against which
classification results for the quantized, field-similar data will be compared.
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8.0.2 Quantize all 100 subjects

The classification accuracy of data – following the same procedure as above – quantized at 8
milliseconds was 90.37%; at 16 milliseconds it was 89.46%. These compare with 90.55% for the
unquantized lab data, differences of meager consequence.

8.0.3 Quantize just one subject – one-shot

In this experiment we determined what happens when just a single subject (we call this a one-shot
quantization), out of 100, is USB-quantized; that’s 1% of the data. Again, this was done at both
8 millisecond and 16 millisecond intervals. The overall classification accuracies were 90.69% and
90.85% for 8 and 16 milliseconds, respectively. The differences between these and the baseline of
90.55% are of practically no consequence.

At this juncture it is appropriate to draw attention to changes in the misclassification matrix
generated by the random forest. Table 4 shows excerpts from two misclassification matrices, one
from the baseline (top) and the other from the 16 millisecond one-shot quantization just reported.
Comparing the two matrices, there are 1030 matrix cells that differ. The largest of these differences
is reflected in the behavior of subject 032, whose diagonal value is 0.62 (in red) in the baseline con-
dition, and 0.78 in the one-shot condition – a difference of 16 percentage points. That’s enough
of a difference to cause a change in a decision, from legitimate to fraudulent, or vice versa, de-
pending on what the decision threshold is. This is a serious difference, caused by the artifacts
induced by the USB stack. We will see more such digressions in the two cases below, two-shot
and proportional.

s029 s030 s032 s034 s035
s029 0.805 0 0 0 0
s030 0 0.975 0 0 0
s032 0 0.005 0.62 0.005 0
s034 0 0 0 0.825 0
s035 0 0 0 0 0.895

Misclassification matrix excerpt, baseline, raw lab data.

s029 s030 s032 s034 s035
s029 0.805 0 0 0 0
s030 0 0.965 0 0 0
s032 0 0.01 0.78 0.01 0
s034 0 0 0 0.81 0
s035 0 0 0 0 0.895

Misclassification matrix excerpt, one-shot, s032, 16ms quantized data

Table 4: Misclassification matrices, excerpts. Upper: baseline. Lower: 1-shot experiment. Red
cells, 16 point difference.
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Quant Classif Cells Most Diagonal Percentage
level accuracy changed Egregious Change Points

(a) All data
– 90.55 — — — —
8 90.37 1073 s079 .785/.830 4.5
16 89.46 1190 s034 .825/.765 6

(b) One-shot (8ms: s079 / 16ms: s032)
8 90.69 1038 s079 .785/.875 9
16 90.85 1030 s032 .620/.780 16

(c) Two-shot (8ms: s007 & s111 / 16ms: s018 & s032)
8 90.52 1038 s007 .755/.870 11.5
16 90.87 1058 s032 .620/.810 19

(d) Proportional (averages among 10 runs)
– 91.48 1084 Various .802/.883 8.15

Table 5: Effects of quantization; 4 cases. Example, Section b: when one subject (out of 100, hence one-
shot) was quantized at 16 ms, there was a 16 percentage point change on subject s032’s diagonal.

Table 5-b shows the same result: a 16-millisecond quantization of a single subject (s032) cor-
responds to a shift of 16 percentage points (from 62% correct classification before quantization to
78% after) in the value of the s032 diagonal. Similarly, an 8-millisecond quantization of a single
subject (s079) corresponds to a 9-point shift.

8.0.4 Quantize two subjects – two shot

The overall classification accuracies were 90.52% and 90.87% for 8 and 16 milliseconds, respec-
tively. Again, the differences between these and the baseline of 90.57% are of practically no
consequence; and neither do these accuracies vary significantly from the accuracies revealed in the
experiments described above. More concerning, as Table 5-c shows, is that when two subjects are
quantized at 16 milliseconds, the shift on the diagonal for subject s032 is 19 percentage points, a
shift that’s even worse than for the one-shot case.

8.0.5 Quantize in proportion to the field data

This experiment deviates from the others in that the quantization was done in proportion to the
polling rates in the original field data (see Table 3, page 11). To illustrate, one subject was quan-
tized at 2 milliseconds, seven subjects at 4 milliseconds, 54 subjects at 8 milliseconds, and the
rest in accordance with the table. To avoid obtaining a particular result by coincidental assign-
ment of subjects to quantization levels, the assignments were done by random draw, and this was
repeated ten times, with the results averaged. The overall average classification accuracy was
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91.48%, again not significantly different from the other overall classification accuracies in this
suite of experiments.

Table 5-d shows that on average there were 1084 cell-value changes, and on average 8.15
percentage point shifts in values on the diagonal; still enough to change decision outcomes.

9 Discussion and summary

9.1 Research questions

The study addressed these questions: (1) What distinguishes lab vs field data? (2) If distinctions
exist, do they matter?

9.1.1 What distinguishes lab vs field data?

We explored two data sets (lab and field) to discover and elucidate any differences between them.
We used standard techniques from exploratory data analysis [32]. We discovered that in the field
data the recorded keystroke timestamps were not faithful to the original signals from the key-
board because of the way that USB keyboards work (e.g., polling) in conjunction with a computer
operating system. (It is worth noting that this would be true for any operating system, not just
Windows.) The consequence of this infidelity was that keystroke timings in the field data, rather
than reflecting genuine keystroke timings, were centered around USB polling intervals, the most
common of which was 8 milliseconds (cf. Table 3). Keystroke timings in the lab data showed no
such distortions; see Figure 2, comparing USB-based striations vs distortion-free lab data.

9.1.2 Do the lab/field differences matter?

The effect of the USB-induced timing distortions was shown in changes to classification results.
We ran each data set, lab and field, through a random-forest classifier and got different results for
each data set; but those differences, unfortunately confounded, were due to each data set having
originated from a different subject pool, not from timing artifacts.

To determine the impact of the timing artifacts we compared the lab data against field-similar
(quantized) lab data. Field-similar data are lab data transformed to resemble the artifact-ridden
field data. Therefore, we are comparing the exact same subject pool with itself, but with USB
timing characteristics. We did this in several stages, and at different quantization levels: 8 ms, 16
ms, and proportional to the polling in the original field data (cf. Table 3). We found that even
if only 1 or 2 percent of the data are infected with USB-induced artifacts, decision outcomes can
change by as much as 19 percentage points, which is unacceptable in most situations. We also
tested other classifiers (KNN and SVM), obtaining similar results; hence the particulars of any
individual classifiers were not at issue.
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9.2 Why this happened

We reported only a few examples out of a vast collection of other people’s data, all of which
contained USB-induced artifacts. Why have so many data sets been collected with USB tim-
ing disparities in them? Perhaps it’s due to architectural naı̈veté. Although most practitioners in
keystroke biometrics are computer scientists or machine learning specialists, perhaps their knowl-
edge of computer architecture was too limited to anticipate timing issues. In our own work, we
knew about extant timing difficulties, but didn’t know their cause; hence, in our lab-based studies,
we used a custom timer to avoid them. When we moved to the real world, we were forced to
understand their origins and consequences.

9.3 Now what?

The dominant modern keyboard type is USB. All USB keyboards follow a polling protocol, so
there is no way to avoid the quantization shown in this work, and exemplified in Figures 2 and 3.
Maybe the quantization problem itself could be mitigated by a workaround if all keyboards polled
at the same rate, but they don’t. Moreover, as shown in Section 5.1 on unruly data, distortions
in the data go beyond what can be explained by USB polling protocols. All such artifacts can
influence outcomes in statistically-based decision algorithms.

It might seem that there are no solutions, but that depends on how keystroke biometrics are
being used. In a closed environment, such as a corporation or a government department, keyboards
can be modified to avoid or compensate for the USB problem. We did this in our own lab; the parts
cost less than five dollars (for one device), so in quantity the modification would be cheap. On
a broader scale, we can hardly expect everybody to modify their keyboards, at least in the short
term. However, because the USB protocol’s inherent flexibility (as evidenced by its backwards-
compatible evolution from 1.1 to USB 3.0) allows for additions such as biometrics into HID data
without disruption or change to existing equipment (e.g., keyboards or PCs), it’s possible that the
keyboard industry could respond to demand for a faster-polling biometric device.

For today’s researchers, the USB problem might seem insurmountable unless data are gathered
in a controlled environment, or unless a future innovation is found to overcome the unpredictable
effects of USB polling artifacts. Of course there are applications other than authentication where
the signal rises so far above the noise that USB polling will have only negligible effects.

To some, our paper may suggest a bleak future for keystroke biometrics. However, we see
the issues identified here as challenges to researchers: to adapt to the demands of the field and to
produce high-quality data regardless of source.

A key recommendation is that researchers should screen their data, preferably as it comes in,
but at least before engaging in any analysis. As we showed in Section 6, other people’s data, all
kinds of things can go wrong, and it’s best to discover them before putting the data to use.
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10 Limitations

We only used the Windows operating system for data collection, but the operating system likely
doesn’t matter; what matters is the keyboard. A real-time computer system might do better, cou-
pled with a fast keyboard, but we are addressing commodity systems, not specialized systems.

11 Lessons learned

The complexity of modern operating systems and communication protocols makes it hard (impos-
sible?) to obtain reliable and consistently timed data. Given that, and the issues discussed in this
paper, it would seem imperative to screen data before using it. This is not merely to check for USB
polling, but also to check for what we called “unruly” data – data that are so outside expectations
that they are almost sure to be deleterious for the data application.

12 Conclusion

We discovered that USB keyboards inject timing artifacts into keystroke biometric data that are un-
predictable and detrimental to a statistical decision algorithm (e.g., random forest). In a systematic
exploration of other people’s data, we found a range of damaging and unexplained artifacts, with
the appearance of being USB-induced, in every single data set that we examined. Such artifacts
can change the basis of a decision by nearly 20 percentage points, possibly reversing a claim of
legitimacy into an accusation of fraudulence, or denying a claim of identity and preventing the
admission of a legitimate user to sensitive resources. Researchers and practitioners would do well
to screen their data before employing them in decision-making algorithms, especially in critical
applications like international banking and finance, noting the European Banking Authority’s en-
dorsement of keystroke biometrics as a strong authentication mechanism.
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Appendix: Reproducibility

Information for those wishing to reproduce our study.

• Hardware platform (lab data collection)

– IBM ThinkPad X60s (model 1702-4EU); 1.5 GB RAM
– Apple M9034LL/A USB external keyboard

• Software platform (lab data acquisition)

– Windows XP Professional (Service Pack 2)
– All services and networking disabled

• Hardware platform (all data analysis)

– Model Name: MacBook Air
– Model Identifier: MacBookAir6,2
– Processor Name: Intel Core i5
– Processor Speed: 1.4 GHz
– Number of Processors: 1
– Total Number of Cores: 2
– L2 Cache (per Core): 256 KB
– L3 Cache: 3 MB
– Memory: 4 GB RAM
– Boot ROM Version: MBA61.0099.B53
– SMC Version (system): 2.13f15

• Software platform (data analysis)

– Operating System: macOS Sierra version number 10.12.6 (Build number: 16G29)
– Python: Version 3.7.1, 20 October 2018
– matplotlib version 3.0.2 (for plotting)
– numpy version 1.18.4 (for random seeds)
– pandas version 0.23.4 (for working with csv data)
– scikit-learn version 0.21.3 (for the random forest)
– scipy version 1.4.1 (for stats like iqr and mode)
– Random forest classifier (Scikit-learn)

* The training data were split from the testing data by taking a random draw of 25
repetitions from each session. The random draw was initialized using a seed of 0.

* The random forest was run with the random state parameter set to 0.

• Script: regenerates all results

• Data: Contact authors.
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