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Abstract
Programming languages exist to enable people to create and maintain software as

effectively as possible. They are subject to two very different sets of requirements:
first, the need to provide strong safety guarantees to protect against bugs; and sec-
ond, the need for users to effectively and efficiently write software that meets their
functional and quality requirements. This thesis argues that fusing formal methods
for reasoning about programming languages with user-centered design methods is a
practical approach to designing languages that make programmers more effective. By
doing so, designers can create safer languages that are more effective for programmers
than existing languages. The thesis is substantiated by the introduction of PLIERS:
Programming Language Iterative Evaluation and Refinement System. PLIERS is a
process for designing programming languages that integrates formal methods with
user-centered design.

The hypothesis that PLIERS is beneficial is supported by two language design
projects. In these projects, I show how PLIERS benefits the programming language
design process. Glacier is an extension to Java that enforces transitive class im-
mutability, which is a much stronger property than that provided by languages that
are in use today. Although there are hundreds of possible ways of restricting changes
to state in programming languages, Glacier occupies a point in the design space that
was justified by interview studies with professional software engineers. I evaluated
Glacier in case studies, showing that it is expressive enough for some real-world
applications. I also evaluated Glacier in lab studies and compared it to Java’s final
keyword, finding both that Glacier is more effective at expressing immutability than
final and that Glacier detects bugs that users are likely to insert in code.

Blockchains are a distributed computing platform that aim to enable safe compu-
tation among users who do not necessarily trust each other. To improve safety relative
to existing languages, in which programmers have repeatedly deployed software
with serious bugs, I designed Obsidian, a new programming language for blockchain
application development. From observations about typical blockchain applications,
I derived two features that motivated the design of Obsidian. First, blockchain ap-
plications typically implement state machines, which support different operations in
different states. Obsidian uses typestate, which lifts dynamic state into static types,
to provide static guarantees regarding object state. Second, blockchain applications
frequently manipulate resources, such as virtual currency. Obsidian provides a notion
of ownership, which distinguishes one reference from all others. Obsidian supports
resources via linear types, which ensure that owning references to resources are not
accidentally lost.

The combination of resources and typestate results in a novel set of design
problems for the type system; although each idea has been explored individually,
combining them requires unifying different perspectives on linearity. Furthermore, no
language with either one of these features has been designed in a user-centered way



or evaluated with users. Typical typestate systems have a complex set of permissions
that provides safety properties, but these systems focused on expressiveness rather
than on usability. Obsidian integrates typestate and resources in a novel way, resulting
in a new type system design with a focus on simplicity and usability while retaining
the desired safety properties. Obsidian is based on a core calculus I designed, Silica,
for which I proved type soundness. In order to make Obsidian as usable as possible, I
based its design on the results of formative studies with programmers. I evaluated
Obsidian with two case studies, showing that Obsidian can be used to implement
relevant programs. I also conducted a randomized controlled trial comparing Obsidian
to Solidity, a popular language for writing smart contracts. I found that most of the
Obsidian participants learned Obsidian and completed programming tasks after only
a short training period; further, in one task, 70% of the participants who used Solidity
accidentally inserted bugs that Obsidian’s compiler would have detected. Finally,
Obsidian participants completed significantly more tasks correctly than did Solidity
participants.
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Chapter 1

Introduction

Programming languages are interfaces that empower people to be more effective at creating
software to achieve their goals than if they programmed in the language supported by hardware.
They interface between the thought processes of a user, who is trying to create software, and the
semantics of the machine on which the program will run. Programming languages form a medium
of expression for creating software systems. In this thesis, I take the position that the primary goal
of a programming language is to mediate between the needs of people and the needs of formal
systems, such as abstract machines or real hardware.

Programming languages exist primarily to make programmers more effective at achieving their
goals. Though much is known about how to analyze the theoretical properties of programming
languages, this research focuses on how to design languages and analyze the impact of design
decisions on programmers. When language designers make decisions about design questions that
may meaningfully impact programmers, there is little scientific evidence — either grounded in
cognitive science or in empirical data regarding programmer performance — on which to base
their decisions. The lack of empirical evidence has been described in terms of the language wars
[188]; Stefik and Hanenberg argue that without empirical data regarding programmer performance,
there is no way to know which of several options is best for users, even when assuming a particular
kind of programmer working in a known kind of project setting.

In some contexts, it would seem that most reasonable user needs can be fulfilled. Rarely, for
example, does a web developer conclude that it is impossible to implement a desired feature (even
though the implementation costs may be high). Programming languages, however, are different.
Many problems that one might like a compiler to solve are undecidable [115, 170], and there
is constant tension between providing strong guarantees and providing a simple language that
enables users to understand the limits and properties of their tools. It is this tension that makes
programming language design particularly interesting from a user-centered perspective: how can
we design languages that have the properties we want, but in which people can be as effective as
possible? Which properties are worth providing, given the complexity costs of providing them?
After all, programming languages are formal systems in addition to being tools for users, and as
such, it is beneficial for them to have strong, provable properties.

In this dissertation, I show methods I have developed to create and iterate on programming
languages based on empirical data from users. By adapting formative methods from HCI, I
collected data on which language design choices would be likely to be effective for users. By
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adapting summative methods, I compared the resulting languages to existing languages and
showed in what ways the new languages were more effective. By integrating techniques from the
theory of programming languages, I obtained strong safety guarantees. I sought languages that
were principled: which leveraged the theoretical principles of programming language design that
resulted in languages that have provable properties.

In the service of developing new language design methods, I designed and implemented two
programming languages. The first, Glacier, is an extension to Java for expressing and enforcing
immutability. I used interviews with experts to generate hypotheses regarding which kinds of
immutability would benefit software engineers; then I gathered qualitative data on use of an early
prototype of my immutability specification system. After appropriate improvements motivated
by those studies, I evaluated the final system in case studies and user studies to show that it is
applicable to real-world systems and that users can use it more effectively than standard Java.

I also designed and implemented Obsidian, a new programming language intended for devel-
oping blockchain programs (sometimes called smart contracts [199]). Blockchain programming is
a particularly compelling context in which to study language design. Although several languages
are in use, including Solidity [73] and Go [64], bugs in Solidity programs have been exploited by
hackers to steal money [81, 185]. Furthermore, blockchains are being proposed for use with high-
stakes applications, such as banking, in which incorrect behavior can have serious consequences.
Blockchains are designed to operate in situations where the users do not necessarily trust each
other, but instead rely on the correctness of the programs; programs that do not behave as the
users expect defeat the point of the platform.

In the design of Obsidian, I took the view that the language should provide safety guarantees
that are relevant and useful for programs that are appropriate on the blockchain platforms. To
reduce the training and high cost relative to formal verification, Obsidian uses type systems, which
are a well-understood approach for helping users catch large classes of bugs at compile time rather
than requiring them to catch these bugs through testing. In the future, a formal verification system
could be layered on top of Obsidian to allow programmers to verify domain-specific properties.

Although Obsidian detects many bugs statically, Obsidian sometimes trades early bug detection
for usability by moving some checks to runtime in order to improve flexibility and make the system
more practical for programmers. For example, where the programmer inserts a dynamic state
test, the Obsidian compiler inserts code to check to make sure any specifications on any owning
reference are maintained (or the program is terminated). By automatically inserting dynamic state
checks, Obsidian can allow more flexible aliasing configurations while maintaining soundness;
this makes more user designs pass the type checker compared to a more restrictive approach.
Obsidian only moves checks from compile time to runtime when this provides substantial usability
advantages.

Validation of methods that are intended for expert language designers to use over the course
of a long design process is challenging. One could imagine a study that recruited expert language
designers, gave them a set of language design projects, and taught some participants the methods
in this thesis. Then, one might try to run summative evaluations on the languages that they created.
Unfortunately, this approach is infeasible; designing and implementing programming languages
is typically an expensive, years-long effort with far too many independent variables to hope to be
able to control variance enough to get a significant result (indeed, the design, implementation and
evaluation of Obsidian itself has taken nearly four years). Rather than validate the methods in this
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way, the thesis will show how they have been applied to obtain useful language design insights in
specific cases — for Glacier and for Obsidian — and will show that these particular languages
are measurably better than existing languages. I hope that in the future, others will adopt these
methods and show how they are helpful in other use cases, as well as reveal limitations to their
applicability that cannot be identified in a small number of case studies.

In this introduction, Related Work, and in the conclusion, I use the singular first person, but in
other chapters I use we to acknowledge collaboration with others.

1.1 Thesis Statement

Combining theoretical and human-centered methods in the design and evaluation of programming
languages can lead to programming languages that make it easier for users to write demonstra-
bly safer, more-correct programs than if they wrote those programs in existing programming
languages.

The thesis is supported by a new process, PLIERS: Programming Language Iterative Evaluation
and Refinement System, for language design. PLIERS shows how theoretical and human-centered
methods can be combined into an integrated language design process. I developed and evaluated
PLIERS in the context of two language design projects, in which I show how using PLIERS can
benefit language designers.

1.2 Glacier

Glacier is an extension of Java that enforces transitive class immutability. I first studied the existing
space of immutability restrictions and found hundreds of different possible kinds of mutation
restrictions. I then conducted a study of expert software engineers and used their suggestions to
form a hypothesis: transitive class immutability, if provided by a programming language, would
express a commonly-used form of immutability that would be helpful in preventing bugs. Based
on this, I designed and implemented Glacier, which adds the @Immutable annotation to Java
and enforces transitive class immutability on @Immutable-annotated classes at compile time.

I evaluated Glacier with a two-part user study, which compared Glacier to Java final. I
randomly assigned participants to use either Glacier or final. First, I asked them to specify
immutability in a very small codebase with their given language. I found that although 90% of the
Glacier users were able to do so effectively, all of the final users made mistakes attempting to
specify immutability, a statistically significant difference. Next, I asked participants to complete
two programming tasks in a codebase in which immutability was already specified. In each
task, 70% of the Glacier users succeeded, but more than half of the final users accidentally
modified immutable structures even though almost all of them believed they had completed the
tasks successfully.

Although Glacier represents a small part of a complete language design, it shows that using
human-centered design approaches can be effective in developing language constructs that help
programmers avoid writing buggy code while facilitating writing correct code. In particular,
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Glacier provides strong safety guarantees that I was able to show using a lab study can be
leveraged effectively by programmers.

In addition to a lab study of Glacier, I also conducted a case study in which I used Glacier to
specify immutability in two real-world codebases: a spreadsheet implementation and an immutable
collections library. This showed that Glacier is expressive enough to reflect real-world use cases.

1.3 Obsidian

To show how user-centered design methods can be useful in the creation of new programming
languages, I created Obsidian, a new programming language for blockchain application devel-
opment. Blockchains are a distributed computing platform that aim to enable safe computation
among users who do not necessarily trust each other. Blockchain software carries particularly
high stakes due to these properties:

1. Immutability: blockchain transactions cannot be reversed, and on some blockchain plat-
forms, programs cannot be directly modified after deployment. This means that bugs can be
impossible to fix once deployed.

2. Applications: many of the proposed blockchain applications govern important transactions,
many of which govern resources such as money. Bugs or vulnerabilities in these programs
can result in loss or theft of money or other resources. Since blockchains are intended to
facilitate trust, it is crucial that the programs be correct so that users can rely on them.

The main objective of Obsidian is to provide relevant, static correctness guarantees in a
way that enables programmers to be more effective at writing safe programs. Rather than
providing guarantees that programs meet arbitrary specifications via a general-purpose verification
mechanism, which is so far too difficult and expensive to be practical for most programmers,
Obsidian is grounded in two observations:

1. Many blockchain programs are stateful at a high level: they implement state machines
in which the operations that are permitted depend on the state of the program. Existing
blockchain programming languages do not protect statically against calling transactions
that may be unavailable due to the current state of the program, instead requiring runtime
checks of state.

2. Many blockchain programs manipulate resources, such as virtual currency or votes in orga-
nizations. These resources must be tracked correctly, but existing blockchain programming
languages do not facilitate static reasoning about correct resource usage. In particular,
resources should never be accidentally lost.

Obsidian leverages these observations by incorporating typestate [5] and linear types [214]
to provide strong static guarantees that are relevant to blockchain programs. The goal is to use
human-centered design and evaluation methods to make it practical for programmers to obtain
these guarantees while still completing development efficiently and effectively. In addition,
the design of Obsidian is itself a novel combination of typestate and resources. The space of
permissions systems for managing this combination is particularly complicated; Obsidian shows
how to combine these ideas in a coherent, understandable way.
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In addition to informing the design with user-centered methods, I evaluated Obsidian in a
summative usability study (§ 8.3) and a randomized controlled trial (RCT) comparing it to Solidity
(chapter 11). Most of the Obsidian participants were able to use ownership effectively, and most
of the Solidity participants accidentally inserted bugs that the Obsidian type system can detect.
However, in a task that was more open-ended than the others, Obsidian participants spent longer
on their work than the Solidity participants and abused features of the type system to accidentally
lose assets. This corresponds with a traditional assumption that statically-typed languages may
have additional costs in prototype development, and suggests that more training of users or future
design research may be needed to help programmers use strong type systems effectively.

with two case studies

1.4 Technical contributions

1.4.1 Immutability
The space of immutability systems is complex. For example, if an object is immutable, does that
mean only that its fields cannot be reassigned, or that its fields must only refer to immutable data?
I used interviews with software engineers to identify a promising subspace within the large space
of immutability systems. I also created a prototype, IGJ-T, and identified usability problems that I
addressed in Glacier. Contributions include:

1. After reviewing the existing literature and implemented systems in this area, I developed a
classification system for mutability restrictions in programming languages, showed where
some existing systems fit in this classification, and discussed possible usability implications
of existing design choices.

2. I interviewed eight expert software engineers to identify hypotheses regarding existing
language features and tools, and what the perceived needs of software engineers are. I
showed that existing programming language features and research tools do not adequately
address the issues encountered by practitioners. I extracted design recommendations from
the results of the interviews.

3. I created IGJ-T, an extension to IGJ that enforces transitive immutability, which addresses
problems that our interview participants described. I iteratively evaluated IGJ-T with three
pilot users and refined the study based on the feedback.

1.4.2 Glacier
Glacier’s design shows it is possible to obtain both useful expressiveness and simplicity in one
design for an immutability system. Glacier provides strong, useful immutability properties that
users can actually use effectively. Contributions include:

1. A definition and formal model of transitive class immutability as an extension to Feather-
weight Java [100];

2. An implementation of that model in a tool called Glacier, which enforces transitive class
immutability in Java. By enforcing only the kind of immutability for which there is the
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strongest empirical support, I have achieved significant simplifications relative to existing
type system approaches.

3. Evaluations of Glacier in two case studies on real software projects that showed that Glacier
captures a kind of immutability appropriate for those projects.

4. The first formal user study of any immutability system. We compared Glacier to final
and found that all ten participants who used final wrote code that had bugs or security
vulnerabilities, even after having been trained on correct final usage, in a situation in
which Glacier statically detects those problems. Almost all the Glacier users were able to
complete the tasks successfully.

1.4.3 Obsidian

Obsidian reflects a novel set of language design features that have previously never been integrated:
an object-oriented language that supports both typestate and linear resources. The type system
provides strong safety guarantees for practical programs while remaining accessible for many
programmers. The design of the type system is particularly interesting in the presence of aliasing;
compromising between expressiveness and simplicity enables many important properties to
be verified by the compiler but also enables easy understanding. Obsidian is based on a core
formalism, Silica, for which I proved type soundness. I conducted two case studies showing that
Obsidian can be used to implement relevant blockchain programs. I also conducted a user study
showing that participants were able to use Obsidian to solve programming problems, and that
participants using Solidity (a popular language for blockchain programming) frequently inserted
bugs that Obsidian’s compiler detects.

Contributions pertaining to the formal design of Silica and Obsidian include:
1. I show how typestate and linear types can be combined in a user-facing programming

language, using a rich but simple permission system that captures the required restrictions
on aliases using a notion of ownership.

2. I show an integrated architecture for supporting both smart contracts and client programs.
By enabling both on-blockchain and off-blockchain programs to be created with the same
language, we ensure that the safety properties of the language are available for data structures
that must be transferred off-blockchain as well as for those stored in the blockchain.

3. I describe Silica, the core calculus that underlies Obsidian. I prove type soundness and asset
retention for Silica. Asset retention is the property that owning references to assets (objects
that the programmer has designated have value) cannot be lost accidentally. Silica is the
first typestate calculus (of which I am aware) that supports assets.

Contributions pertaining to the case study evaluation of Obsidian include:
4. The aliasing structure in the blockchain applications I implemented does allow use of own-

ership and typestate. However, it forces the programmer to carefully choose an ownership
structure, rather than using ad hoc aliases. This can be restrictive but can also result in a
simpler, cleaner design.

5. Implementing smart contracts in Solidity typically requires a couple of lines of assertions
for every function in smart contracts that are designed to use states. This makes the
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Obsidian code more concise, although some features that Obsidian currently lacks (such as
auto-generated getters) improve concision in Solidity.

6. I and my collaborators were able to successfully build nontrivial smart contracts in Obsidian
that reflected real-world use cases.

Contributions pertaining to the summative usability evaluation include:
7. Showing that Solidity participants (the control condition) in a lab setting frequently insert

bugs that lose assets in a small programming task that is representative of a real smart
contract programming problem.

8. Showing that most of the Obsidian participants in my study were able to use ownership to
solve a security problem, which participants had great difficulty with in earlier versions of
Obsidian.

9. Showing that although the participants were able to use ownership effectively, they were
less successful in using typestate to obtain static safety guarantees, and further work may
be required in this area.

1.5 Methodological Contributions
In addition to the concrete designs of Glacier and Obsidian, the thesis shows how methods from
human-computer interaction can be adapted for effective use in programming language design.
In particular, methods can be used in a way that gathers both formative data for hypothesis
generation as well as summative data for hypothesis evaluation. Integrating these methods with
a theoretical perspective that enables designing a language with well-defined properties yields
PLIERS, which is described in detail in chapter 3. Rather than relying only on one’s own insight
about programming and programmers, using human-centered methods enables the designer to
ground the design in the needs and performance of users. Furthermore, these methods can be used
in conjunction with traditional formal methods to arrive at a sound language that provides needed
safety properties.

One example method is back-porting language design decisions into a familiar language to
enable study of a particular language design decision in isolation. If participants were required
to learn an entire new language and were confused during tasks, it might be difficult to identify
which aspects of the design were confusing. By isolating aspects of interest, one can study design
decisions with fewer confounds. Like other methods, of course, this method has limitations.
The design decisions of interest may not be easily portable to a language in which one can find
participants, and furthermore, individual decisions may not be orthogonal. Nonetheless, because
features are typically designed to be as orthogonal as possible, I have found this approach to lead
to useful insights into user behavior and expectations (chapter 8).

The approach of designing a programming language based in part on user experiments is
fraught with confounds. Is it not likely that the best programming language for participants in a
short-term study is one that the participants already know? When evaluating language constructs,
one might expect that the constructs that seem most familiar may appear to be the best in a
short-term study even if this not the case long-term. Certainly, the results of a user study of a
particular language design will depend on the participants, including the kinds of programming
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with which they are most familiar (object-oriented, functional, etc.), their level of experience and
skill, and the particular languages they are skilled in. Any attempt to evaluate language designs
with people must address these confounds.

I address the problem of confounds with several techniques. First, showing benefit of a
language feature that prevents or detects bugs does not require that it be faster – only that it can
be used effectively – since preventing bugs may be worth some amount of development cost. Of
course, each study must define “effectively.” In my studies, I aimed to show that my tools resulted
in statistically fewer bugs (in a given class) than an existing, standard tool, and at the same time
saw no statistically significant difference in task times. Of course, the task times may be different
by an amount that was not statistically significant with the sample size I used. In other words, I
conducted experiments that focused on one particular research question of importance, rather than
trying to show that the tools I developed were better in all ways.

Second, task completion times and rates are most meaningful after an appropriate training
period has elapsed. This restricts the analysis to languages that can be taught effectively in a
short-enough time for a study. If a language requires more training, perhaps the recruitment
criteria can be adjusted to find participants who need less training time. Another approach is to
focus the study on a smaller portion of the language – one that can be taught in a short period of
time. In other words, the techniques I developed can show that some kinds of languages represent
improvements over existing ones, but the techniques do not need to be applicable in all possible
language design and evaluation scenarios in order to be useful in others.

Third, I triangulate among many different methods. For example, I used interviews to assess
the extent to which programmers believed an approach might be helpful and the extent to which
they encountered particular problems. Then, I did qualitative studies to obtain in-depth details
about the usability of particular designs, and finally I did quantitative studies to try to show
statistically significant benefits. If, as I found, the methods give consistent results, that provides
stronger evidence in support of the design. Inconsistent results among methods may serve to
identify useful hypotheses regarding explanations for the discrepancy, which can be evaluated
and addressed. Perhaps the users requested features that they would not, in fact benefit from,
or the problems the users face are different from the problems the users perceive. Perhaps a
feature similar to what the users requested might be effective, but usability problems would need
to be addressed first. Or perhaps although the benefit has not yet been quantified successfully
due to variance or some other problem, qualitative evidence of benefit suffices in certain cases to
motivate future development or deployment.

In summary:
1. I show by example how I have adapted several formative study techniques, such as natural

programming, Wizard of Oz, rapid prototyping, cognitive dimensions of notations analysis,
and interview studies to inform the design of Glacier and Obsidian. I informed the results
of these techniques with implications of the theory of programming languages to develop
languages that were effective for users and also achieved our safety objectives. I found that
the adapted methods were effective when used in the context of a design process, PLIERS.

2. I show how I conducted summative usability studies and randomized controlled trials on
new programming languages. By developing ways of teaching the languages efficiently,
effectively, and consistently, I was able to conduct usability studies of programmers using
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novel programming languages.

3. I integrate the above study techniques with a theoretically-grounded perspective on pro-
gramming language design into PLIERS.

1.6 Thesis Outline
Chapter 2 describes related work. In chapter 3, I describe PLIERS, which explains how to integrate
user-centered and theoretical methods together to design programming languages. Then, the
dissertation continues by showing how PLIERS was useful in the context of two language designs.
First, chapter 4 describes an analysis of the space of immutability features in programming
languages. It also reports on an interview study I conducted and a proposal for a specific
design for expressing immutability based on the interviews. In chapter 5, I describe Glacier, the
immutability language extension I developed, and a lab study showing its benefits.

The next part of the dissertation focuses on Obsidian. Chapter 6 introduces the requirements
I identified for the Obsidian language and summarizes the final language with an example.
Chapter 7 gives an analysis of the space of permissions systems, showing where Obsidian’s design
fits in the space. Chapter 8 describes the formative studies I conducted to inform the design of
Obsidian; chapter 9 describes Obsidian formally and presents soundness theorems for Silica, a
core formalism for Obsidian. Chapter 10 describes two case studies I conducted that evaluated
Obsidian. In chapter 11, I describe the empirical study I conducted to compare Obsidian to
Solidity.

In chapter 12, I describe challenges I faced when designing user studies of programming
languages, and the techniques I have developed to overcome those challenges and obtain useful
insights from user studies. I propose future work and conclude in chapter 13.
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Chapter 2

Related Work

Newell and Card argued for the use of HCI methods in programming language design in 1985:
“Millions for compilers but hardly a penny for understanding human programming language
use [134].” Morrisett reiterated this problem in 2009, arguing that a programming language is a
medium for communication among humans, but we lack principles for evaluating this aspect of
languages [153]. In this chapter, I first summarize the history of empirical methods for design
and evaluation of programming languages. Next, I describe approaches that other researchers
have taken to develop user-centered design methods in other domains. Then, I summarize the
related work for Glacier and Obsidian, including discussions of immutability and blockchain
programming languages. Finally, I describe work that relates to the technical approaches we use
in Obsidian, including aliasing, permissions, linear types, and typestate.

2.1 Human-centered programming language design

The Empirical Studies of Programmers workshops from the 1980s and 1990s focused in large part
on a cognitive science approach to studying programmers: can we build models of cognition that
explain programmer behavior? Key results include describing techniques used by programmers
when working with code, such as identifying key lines (beacons), relating program details to the
problem domain, and using both top-down and bottom-up understanding techniques. The ESP
literature provided insights into the problems that people have when using existing languages.

Some of the work in ESP workshops studied professional programmers. For example, Pen-
nington used theories of understanding of natural language text to model expert programmers’
comprehension of programs [149], finding that procedural knowledge (rather than knowledge of
functional units) dominated their understanding. The study was conducted on COBOL programs,
which were likely structured substantially differently from modern software. Furthermore, no
libraries or frameworks were used, so the fact that the programmers could see and consider all
relevant code may have resulted in a substantially different kind of programming task than the
ones that we consider today. However, the approach suggests that a cognitive modeling approach
may help derive a theory of programmers that is relevant for designing programming languages.
In this work, I rely on more recent, heuristic-based approaches, such as the Cognitive Dimensions
of Notations [85], which are applicable in more general domains, and which came out of the
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cognitive science-based approach that was central in the ESP work.
Visser described a four-week observational study of one professional programmer working

in a declarative, domain-specific language [212]. Visser noted that obtaining mental models
was challenging because the programmer found think-aloud very difficult while working on
problems, but made observations about the structure of the programmer’s work. For example, the
programmer used analogical reasoning and examples to help reason about the software; used both
top-down and bottom-up work styles; and sought consistency in the program. This work provides
an empirical foundation for some requirements of programming environments, such as allowing
creation of interfaces separately from implementations, and providing tools to standardize notation
(e.g. style linting tools).

Vans et al. conducted study of the comprehension process and information needs of program-
mers in industry doing maintenance tasks [208]. Some of the understanding techniques that the
programmers used were similar to methods that were observed in novices as well, including top-
down, bottom-up, and code-tracing methods, but the professionals used a much wider variety of
techniques than had been observed in novices, such as generating and abandoning large numbers
of hypotheses regarding the programs. This suggests that programming language design studies
conducted with students can give some guidance regarding languages intended for professionals,
but such studies may be limited in the kinds of techniques that the participants use. In many
of the studies presented in this work, I recruited experienced students, who in many cases had
several years of professional programming experience. This approach allowed me to broaden the
set of techniques my participants would use to accomplish their tasks and make my results more
generalizable relative to using only novice programmers.

Guindon et al. used protocol analysis [70] to analyze think-aloud protocols from three
experienced programmers who were asked to design software to solve an elevator-scheduling
problem [86]. Guindon et al. observed breakdowns in process that arose from lack of knowledge
(e.g., of the problem domain) and from cognitive limitations (e.g., capacity of short-term memory).
Because this work consisted of a think-aloud study of programmers, it shares several threats to
validity with the qualitative work I did: a task that may not reflect real-world tasks; short duration
of the task, which was concentrated in a lab-based two-hour session; and a sample of programmers
that may not be representative of programmers in general. My approaches to mitigating external
validity were similar to theirs. I recruited from students who were likely to have some professional
experience and do not claim that all programmers will encounter the same difficulties that they
did. I do not claim that I observed all possible problems that users might have when using the
tools I gave them. Instead, I argue that addressing the problems we observed is likely to help some
relevant users be more effective in achieving their goals. In my approach to think-aloud studies, I
conducted a form of protocol analysis by analyzing notes taken by the experimenter and screen
recordings of the participants doing the tasks.

Direct observations of work and interviews have both been used to understand how teams work
together to develop software. Walz et al. analyzed videos of teams conducting a requirements
analysis to study conflict patterns [215]; Krasner et al. interviewed members of 19 software
development teams to understand team communication [113]. Although my work focused on
individual developers, I used multiple methods where appropriate. This work shares threats to
external validity with other small-sample studies, including the ones I conducted. Krasner et al.
mitigated these risks by choosing diverse teams to study. Although Walz et al. only studied one

12



team, they studied the team over 43 meetings over four months.
A substantial amount of prior work on the usability of programming languages focuses on

novices. For example, HANDS [146], Helena [36], and Scratch [169] aimed to make it easier for
novices to write programs. HANDS, in particular, introduced the Natural Programming technique,
which I leveraged and adapted in this work. Stefik et al. also focused on novices, collecting
quantitative data on their error rates [192]. Designing languages for novices is substantially
different from designing languages for experienced programmers. For example, languages for
novices typically focus on learnability. In contrast, languages for professionals commonly include
additional complexity, in part resulting from the kinds of safety properties that are beneficial when
building real systems.

Other work has focused on programming tools for end-user programmers, whose primary
goal is not to write software but rather to accomplish goals in some particular domain [110]. For
example, Blackwell and Burnett developed the Attention Investment model and applied it to a
research spreadsheet tool, Forms/3 [21]. Peyton Jones et al. used Cognitive Dimensions [85] and
Attention Investment to provide a new kind of user-defined functions in Excel [101]. My work is
focused on methods that address the unique challenges of complexity that result from targeting
professional programmers and software engineers.

High-quality error messages are a key component of a usable compiler. Some work in this
area has produced guidelines for creating error messages that are effective for novices [12]. My
work focuses on professionals, but the guidelines given in that work (for example, show solutions
or hints) are relevant to languages for professionals as well.

RCTs (randomized controlled trials) have been used to compare different programming
language designs. For example, Uesbeck et al. investigated the impact of lambdas in C++ [204],
and Endrikat et al. looked at static typing [69]. That work is a useful complement to this work,
but the focus here is on using low-cost, practical qualitative methods to inform the entire language
design process. In contrast, quantitative summative studies require high-fidelity prototypes in
order to obtain measurements that can be expected to generalize to the final system. These
prototypes can be very expensive to build for complex programming languages.

Another approach to programming language evaluation is to compare designs via crowd-
sourcing methods. Chamberlain [35] compared functional-style to literal-style approaches for
specifying topology of streaming applications (i.e., pipes-and-filters style applications) using
Mechanical Turk, finding that users were more likely to prefer literal-style specifications, and
experienced programmers were more likely to understand the literal-style specifications than the
functional-style ones. Wilson et al. [217] investigated crowdsourcing more esoteric language
design decisions, finding low consistency (people did not give consistent answers when asked
similar questions repeatedly) and low consensus (people did not agree with each other on which
design choice was best). Crowdsourcing approaches can scale well, but typically require that
the studies be of relatively short duration. My work focuses on higher-bandwidth qualitative
methods and on evaluation approaches for languages for professionals, and serves to complement
crowdsourcing approaches.

The HCI literature includes many different language designs as well as other kinds of tools
for programmers. For example, Dog/Jabberwocky [3], Protovis [25], Reactive Vega [176], and
InterState [144] are all languages or APIs that make it easier for programmers to accomplish
their goals. Those papers describe only the final designs of those systems and summative
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usability studies. Here, I focus on methods that can be used during the design process and gives
recommendations that are useful in preparing a summative evaluation.

Finally, there is a variety of methodological guidance in SE and HCI that is applicable to
studies of programming languages. Ko et al. discussed techniques for doing empirical studies of
tools for software engineers [111]. Buse et al. conducted a systematic literature review, observing
increasing use of user evaluations in software engineering research [31]. Verner et al. gave
guidelines for industrial case studies in software engineering research [211]. Perry et al. gave
a tutorial on case study methodology for software engineers [151]. Likewise, Shneiderman and
Plaisant gave recommendations for using case studies for information visualization tools [184].

2.2 Design Methods1

In this work, I adapted existing formative and summative methods for obtaining insight about
user-facing systems. I divide the design work into two phases, between which the designer
alternates in a cyclic fashion; here, I summarize existing work on methods in the two phases.
Table 2.1 summarizes methods that can be used in user-centered programming language design.

1. In the requirements elicitation and creation phase, the designer studies the application
domain for the language. The designer creates a draft version of the language, likely
including a language specification and language implementation.

2. In the evaluation phase, the designer evaluates how well the language fulfills its require-
ments.

2.2.1 Methods for Requirements and Creation

Interviews can be a valuable source of information for areas in which researchers can find experts.
These can be a useful approach to quickly obtain knowledge about existing problems and their
existing solutions. For example, LaToza interviewed software engineers to develop hypotheses
regarding how developers established and maintained mental models of software systems [117].
Interviews are limited in external validity because it may be difficult or impossible to interview a
representative sample of any particular population. The results strongly depend on the participants
themselves as well as the skill of the interviewer in eliciting as much useful information as possible
with minimal bias.

Surveys are a useful way to assess opinions and experience among a large sample, for example
for assessing whether a proposed problem is one that a large fraction of practitioners face, or
assessing which problems are the most important to solve from a practitioner’s point of view. Some
researchers have also used surveys to get direct insight into programming language designs [203],
but the results have been inconclusive regarding specific design guidance. Most surveys ask
people what they believe, but in some cases people’s beliefs do not lead to designs that benefit
users in practice. Furthermore, survey results can be difficult to interpret or clouded with noise.
Sometimes, little verifiable information is known about participants, and there may be motives

1Portions of this section previously appeared in [43].
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Method Phases Key benefits Challenges and limitations

Interviews R, C Gathers open-ended quali-
tative data from experts

Depends on skill of interviewer and se-
lection of participants; results may not
generalize

Surveys R, C Assesses opinions among a
broad audience

Output is subjective; may not reflect
reality

Corpus
studies

R, C Assesses incidence of prob-
lems or applicability of so-
lutions in a large dataset

Depends on appropriate datasets and
efficient methods of analysis

Natural
programming

R, C Obtains insights from peo-
ple without biasing them to-
ward preferred solutions

Data may be biased toward participants’
prior experiences

Rapid
prototyping

R, C Facilitates efficient design
space exploration

Lack of fidelity in prototypes may hide
faults

Programming
language
theory

R, C, E Ensures sound designs High cost; formal work too early may
limit ability to iterate, but formal work
too late can waste time on unsound ap-
proaches

Software
engineering
theory

R, C, E Improves design practical-
ity

Unclear how to prioritize recommenda-
tions when they conflict

Qualitative
user studies

R, C, E High-bandwidth method to
obtain insight on user be-
havior when using systems

Results may not generalize; Results de-
pend on skills of experimenter and par-
ticipants

Case studies E Tests applicability to real-
world cases; allows in-
depth explorations of real-
world difficulties

Requires finding appropriate cases;
generalizability may be limited

Expert
evaluation

E Benefit from experience
acquired by experts

Biased by opinions of experts, which
may not reflect real-world implications
of the design

Performance
evaluation

E Reproducible way of as-
sessing performance

Results depend heavily on selection of
test suite

User
experiments

E Quantitative comparison of
human performance across
systems

Results may not generalize to non-
trivial tasks, other kinds of users, long-
term use, or use on large systems

Formalism
and proof

R, C, E Provides definitive evi-
dence of safety

Results are limited to the specific theo-
rems proven

Table 2.1: Summary of methods. Phrases are abbreviated: Requirements, Creation, Evaluation.
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that detract from data validity (e.g., Mechanical Turk workers may want to complete the survey as
fast as possible to maximize their hourly wage).

Corpus studies, which analyze existing corpora of code, can show the prevalence of particular
patterns in existing code, including patterns of bugs in bug databases. For example, Callaú et
al. [33] investigated the use of dynamic features in Smalltalk programs, Malayeri et al. [122]
investigated whether programs might benefit from a language that supported structural subtyping,
and Kery et al. studied how Java programmers used exception handling features [107]. Corpus
studies can show that a particular problem occurs often enough that it might be worth addressing;
they can also show how broadly a particular solution applies to real-world programs, as in Unkel
and Lam’s analysis of stationary fields in Java [206]. However, it can be difficult to obtain a
representative corpus. For example, although GitHub contains many open source projects, they
can be difficult to build; it can be difficult to sample in an unbiased way; and open source code
may not be representative of closed source code.

Natural programming [132] is a technique to elicit how people express solutions to problems
without any special training. It aims to find out how people might “naturally” write programs.
These approaches have been useful for HANDS [146], a programming environment for children.
However, the results are biased by participants’ prior experience and education, and results depend
on careful choice of prompts to avoid biasing the results.

Rapid prototyping is commonly used in many different areas of human-computer interaction
research, and can be used for language design as well [131]. Low-fidelity prototypes, such as paper
prototypes, can be used to obtain feedback from users on early-stage design ideas. For example,
LaToza used paper protypes to refine Reacher, a tool for helping developers answer reachability
questions about code [116]. Wizard-of-Oz testing involves an experimenter substituting for a
missing or insufficient implementation [84]. However, low fidelity prototypes may differ in
substantive ways from polished systems, misleading participants. The results depend on the skill
and perspectives of the experimenter and the participants, which threatens validity.

Participatory design [24, 145] invites domain experts to help explore the design space and
analyze tradeoffs. In the case of language design, the assumption is that the specific expertise is
likely to complement the general language design expertise of the language designer. The use
of participatory design arose as a theme in one symposium on end-user development [62]. For
example, Kanstrup described the benefits of participatory design in creating support tools for
people with diabetes [105]. Although many people without substantial programming language
design expertise have designed programming languages for themselves, here we are interested in
fusing the domain expertise of the users of the languages with the expertise of a programming
language designer.

Programming language and software engineering theory provide a useful guide when
considering the requirements for a programming language. For example, the guarantees that a
transitive immutability system can provide in the areas of both security and concurrency—which
have been well-established in the programming language theory literature—were key reasons
that I chose transitive immutability for the Glacier type system (chapter 4). Similarly, an under-
standing of how modularity affects modifiability from the software engineering literature [148]
motivates the module systems present in many languages, and more recent theories about how
software architecture [183] influences software development motivated the design of the ArchJava
language [4]. However, theoretical guarantees that pertain to optional language features will
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not be obtained if the features are misunderstood or not used. Furthermore, guarantees can be
compromised by bugs in unverified tool implementations.

2.2.2 Methods for Evaluation

In “The Programming Language Wars: Questions and Responsibilities for the Programming
Language Community,” Stefik and Hanenberg argued for empirical evaluation of programming
languages [188]. In a separate paper, Stefik at al. described a systematic literature review of PPIG,
PLATEAU, and ESP, finding that those papers rarely report on the impact of language design on
users [190]. This subsection describes approaches that designers and researchers have taken to
obtain evidence regarding the effectiveness of their programming language designs.

Qualitative user studies have been used to evaluate many different kinds of tools, including
programming languages [146], APIs [133], and development environments [112]. Some of these
consist of usability analyses, in which participants are given tasks to complete with a set of tools
and the experimenter collects data regarding obstacles the participants encounter while performing
the tasks. Unlike randomized controlled trials, these are usually not comparative; that analysis is
left to a future study. Instead, they focus on learning as much as possible in a short amount of
time in order to test feasibility of a particular approach and improve the tool for a future iteration
of the design process.

Qualitative user studies can also be used to understand a problem that a language design
is intended to solve, and help to guide other research methods used to evaluate the eventual
solution. Sunshine et al. studied programmers solving protocol-related programming problems
that were gleaned from real StackOverflow questions in order to understand the barriers developers
face when using stateful libraries [197]. The results of the study were useful in developing a
language and its associated tools, and produced a set of tasks that were used in a later user
experiment. Because of the qualitative user study, Sunshine et al. knew these tasks were the most
time-consuming component of real-world programming problems, mitigating the most significant
external threat to the validity of the user experiment.

Qualitative user studies are usually limited to short-duration tasks with participants that
researchers can find. In practice, this sometimes limits the sizes of the programs that the tasks
concern because larger programs typically require more sophisticated participants and more
participant time. Although a typical qualitative user study might only take an hour or two per
participant, even a small real-world programming task might take a day or more.

Case studies [221] show expressiveness: a solution to a particular programming problem can
be expressed in the language in question. Many case studies aim to show concision, observing
that the solution is expressible with a short program, particularly in comparison to the length
of a typical solution in a comparison language. Case studies are particularly helpful when the
language imposes restrictions that might cause a reader to wonder whether the restrictions prevent
application of the language to real problems.

Case studies can also be used to learn about how a programming language design works in
practice. For example, Aldrich et al. used exploratory case studies on ArchJava to learn about
the strengths and limitations of the language design and to generate hypotheses about how the
approach might affect the software engineering process [4].
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Case studies have limited external validity because they necessarily only consider a small set
of use cases (perhaps just one). As a result, the conclusions are biased by the selection of the cases.
Furthermore, the results may not generalize to typical users, since the case studies may be done by
expert users or even the creators of the system under evaluation. Verner et al. provided guidelines
for industrial case studies in software engineering research [211]. Perry et al. gave a tutorial on
case study methodology for software engineers at ICSE 2004 [151]. Likewise, Shneiderman and
Plaisant gave recommendations for using case studies for information visualization tools [184].

Expert evaluation methods, such as Cognitive Dimensions of Notations [85] and Nielsen’s
Heuristic Analysis [138], provide a vocabulary for discussing design tradeoffs. Although they
do not definitively specify what decision to make in any particular case because each option
may trade off with another, they provide a validated mechanism for identifying advantages and
disadvantages of various approaches. This approach has been widely used in the visual languages
community. However, expert evaluation requires access to experts and a validated and relevant
set of criteria. The traditional criteria, such as Cognitive Dimensions of Notations, have not yet
been validated to show that applying the criteria tends to result in measurable improvement in
programmer task performance.

Performance evaluation, typically via benchmarks, is well-accepted for comparing languages
and tools. Performance evaluation can be critical if it is relevant to the claims made about a
language, but many popular languages are not as fast as alternatives (consider Python vs. C), so it
is important to decide how much performance is required. SIGPLAN released a checklist [13]
for empirical evaluations of programming languages; although is title is “Empirical Evaluation
Checklist,” it describes only performance evaluations. The checklist describes limitations of
this approach, such as a mismatch between benchmark suite and real-world applications, an
insufficient number of trials, and unrealistic input.

User experiments, including randomized controlled trials (RCTs), have been used to address
a variety of programming language design questions. Endrikat et al. found that static typing
improves software maintainability [69]. Prechelt and Tichy investigated the benefits of type
checking [157]. Hanenberg et al. compared static and dynamic type systems [90], finding benefits
of static type systems in both documentation and compile-time checking. However, Uesbeck et
al. found that although C++ lambdas are a highly-touted feature of C++, they actually impose
costs to programmers [204]. Together, these results suggest that although static typechecking
can be beneficial, it is important to do usability studies to assess the impact of any proposed
language feature. Stefik et al. developed methodology to evaluate syntax choices for novice
programmers [191].

In some ways, RCTs represent the gold standard for summative evaluations. However, they do
not always lead to insights that can be used to design or improve systems, and unless they are
supplemented by theory (e.g., gleaned from qualitative studies), it can be difficult to be certain
that results on a narrow problem studied in the laboratory will apply to a more complex real-world
setting. For example, Uesbeck et al. discuss in what contexts their conclusions about C++ lambdas
might apply [204], but not how one might improve lambdas to retain possible advantages but
mitigate identified shortcomings.

RCTs for complete, novel programming languages (as opposed to ones that were already
familiar to the participants) are extremely rare. Quorum [191] and HANDS [146] were both
evaluated in user studies. Compared to Hanenberg et al. [90], we focus more on an experimental
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design that minimizes time required by participants and on reporting detailed data on errors made
by participants. Other work has focused on language extensions, such as for software transactional
memory [147], or APIs and libraries, such as Dog/Jabberwocky [3], Protovis [25], Reactive
Vega [176], and InterState [144].

Techniques for doing empirical studies of tools for software engineers [111] are also relevant to
studies of programmers. Buse et al. conducted a systematic literature review, observing increasing
use of user evaluations in software engineering research [31] in general.

Formalism and proof are traditional tools for showing that a specific language design has
particular properties, such as type soundness [152]. In many languages, a formal model provides
key insight that inspires a new language design; in these cases, the formal analysis might be the
first step in a language design. However, in other languages, a formalism serves primarily to
provide a specification and a safety guarantee, in which case this work might be done much later.

A typechecker provides some safety guarantees once a program typechecks, but one must
compare the difficulty of writing a type-correct program to the difficulty of obtaining safety some
other way (for example, with runtime checks, at the cost of deferring verification to runtime)
and to the option of not providing the guarantee at all. In some systems, safety guarantees are
not necessary; for example, the consequences of a bug in a video game may be smaller than the
consequences of a bug in avionics software. Recently, Misailovic et al. have argued that in many
cases, approximating the language semantics suffices [128].

Formal verification via tools such as Dafny [118] or Coq [15] can provide even stronger
guarantees, likely at greater implementation cost. However, if the tools are too difficult to use,
programmers may not obtain the guarantees because they may circumvent the tools (e.g., by
implementing difficult procedures in a lower-level language) or because they may fail to complete
their projects within their cost and time constraints.

In practice, there is typically a gap between what is actually specified in a formal specification
of correctness and what is desired by the programmer. For example, a programmer may specify
the correct output of a factorial function in a recursive way, implement the function iteratively to
avoid overflowing the stack for large input, and leave unwritten the specification that the program
shall not overflow the stack for input within the expressible range of machine-size integers.

2.3 Immutability Systems
Although there is a large collection of immutability-related systems proposed in the literature, we
have not found any usability studies of these systems. A more comprehensive review of these
can be found in prior work [156]. IGJ [223] implemented class- and object- immutability as well
as read-only references and supported polymorphism, but did not enforce transitivity; this work
included case studies but no user studies, so it is unknown whether other Java programmers can
use IGJ effectively. Haack and Poll [88] proposed a type system for object immutability, read-only
references, and class immutability that supported initialization outside constructors, but the only
evaluation of this system was theoretical. Skoglund and Wrigstad [186] proposed a type system
for read-only references in Java, but it only supported a subset of Java and it does not appear that
they implemented their system. Java final and C/C++ const do not express transitive class
immutability. .NET Freezable and JavaScript Object.freeze are enforced dynamically, not
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statically.
Pure4j is an annotation processor for Java that provides @ImmutableValue [129], and,

like Glacier (chapter 5), enforces that annotated classes are transitively immutable. However, it
provides no solution for arrays, assuming that all arrays are mutable. It requires that all fields be
declared final, which is redundant in Glacier. Unlike Glacier, it requires that public methods
of immutable classes take only immutable parameters and that instance methods that are not
inherited from a base class be pure. This is a stronger restriction than immutability and forbids
access to global state, whereas immutability in Glacier pertains only to state reachable specifically
via fields of objects. Although method purity can be helpful in certain cases, such as that of thread
safety, it also restricts applicability. For example, a pure method cannot read or write files or
the network. Our focus on immutability rather than purity reflects the evidence we have of what
developers need (see chapter 4).

Immutables is another annotation processor for Java [120], but rather than enforcing immutabil-
ity, it generates immutable classes from abstract value classes. It can also automatically generate
builders and factories. Kjolstad et al. proposed a tool, Immutator [108], to automatically make
immutable versions of classes and conducted an experiment showing that programmers make
errors when refactoring classes to be immutable; our focus here was on enforcing immutability,
not refactoring.

Some functional languages, such as Haskell, emphasize immutability. Isolating code that
has side effects is a core part of Haskell, so it is unclear what the usability impact of this design
decision is. Other functional languages, such as SML, promote immutable value types, but do not
prevent mutable state or provide any way of forbidding it inside modules.

2.4 Blockchain Programming Languages

2.4.1 Smart contract languages

Solidity [73], which targets the Ethereum platform [72], is the dominant domain-specific smart
contract language (some blockchain platforms support general-purpose languages; for example,
Hyperledger Fabric supports Go, Java, and JavaScript). Researchers have previously investigated
common causes of bugs in smart contracts [10, 59, 121], created static analyses for existing
languages [103], and worked on applying formal verification [17]. Delmolino et al. [59] described
a user study of Serpent, which was a precursor to Solidity, showing several classes of bugs that
occurred in the lab. Among these was asset loss, which motivated our study to see whether our
participants would avoid these bugs when using Obsidian (chapter 11). Our work focuses on
preventing bugs in the first place by designing a language in which many commonplace bugs can
be prevented as a result of properties of the type system. This enables programmers to reason
more effectively about relevant safety properties and enables the compiler to detect many relevant
bugs.

There is a large collection of proposals for new smart contract languages, cataloged by Harz
and Knottenbelt [92]. One of the languages most closely related to Obsidian is Flint [178]. Flint
supports a notion of typestate, but lacks a permission system that, in Obsidian, enables flexible,
static reasoning about aliases. Flint supports a trait called Asset, which enhances safety for
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resources to protect them from being duplicated or destroyed accidentally. However, Flint models
assets as traits rather than as linear types due to the aliasing issues that this would introduce [177].
This leads to significant limitations on assets in Flint. For example, in Flint, assets cannot be
returned from functions. Obsidian addresses these issues with a permission system, and thus
permits any non-primitive type to be an asset and treated as a first-class value. Another approach
is to trade expressiveness for safety. For example, Pact [102] is Turing-incomplete, avoiding
nonterminating behavior. Nomos [56] is a smart contract language based on session types that
supports reasoning about resource consumption. This approach could be helpful on platforms
(such as Solidity) that impose a cost semantics on computation, although the implementation does
not support any particular blockchain platform.

Scilla [181] is an intermediate language for smart contracts. Like Obsidian, Scilla is oriented
around state machines, but unlike Obsidian, it represents programs as communicating automata,
avoiding complex inter-contract transactions (instead requiring that these be implemented as
continuations). However, in contrast with Obsidian, Scilla is a functional language and is intended
as a target for compilers, not as a high-level language in which programmers can be effective.
Scilla offers restricted computation: no loops, no effectful recursion, and no calls to mutating
transactions. Although this may suffice for many smart contracts, Obsidian provides a richer,
Turing-complete environment. Scilla’s semantics were formalized in Coq. Likewise, IELE [106]
is an intermediate language with a compiler that translates from Solidity. IELE is intended to
facilitate automatic formal verification of properties that are specified in the K framework [173].

There are also proposals for blockchain languages that are more domain-specific. For example,
Hull et al. propose formalizing a notion of business artifacts for blockchains [98]. DAML [61] is
more schema-oriented, requiring users to write schemata for their data models. In DAML, which
was inspired by financial agreements, contracts specify who can conduct and observe various
operations and data. Likewise, Astigarraga et al. [9] proposes a rules-based language to enable
business users with less programming background to author smart contracts.

Xu et al. [219] gives a taxonomy of blockchain systems. There, the focus is on blockchain
platforms, i.e., systems that maintain blockchains and process transactions. The architecture of a
particular blockchain platform can have some implications on application architecture and design.

2.5 Aliasing, Permissions, and Linearity
The problem of aliasing in object-oriented languages has led to significant research on ways to
constrain and reason about aliases [39]. Unfortunately, these approaches can be very complex. For
example, fractional permissions [28] provide an algebra of permissions to memory cells. These
permissions can be split among multiple references so that if the references are combined, one can
recover the original (whole) permission. However, aside from the simple approach of reference
counting, general fractional permissions have not been adopted in practical languages, perhaps
because using them requires understanding a complex algebraic system.

A significant line of research has focused on ownership types [37]. Ownership types aim to
enforce encapsulation by ensuring that the implementation of an object cannot leak outside its
owner. Other approaches to ownership include owners-as-accessors [140], which views ownership
as restricting access but not necessarily heap topology. In Obsidian, we are less concerned with
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encapsulation or the heap and more focused on sound typestate semantics. This allows us to
avoid the strict nature of these encapsulation-based approaches while accepting their premise:
typically, good architecture results in an aliasing structure in which one “owner” of a particular
object controls the object’s lifetime and, likely, many of the changes to the object. Because of
this difference in meaning of ownership, we avoid using the term ownership type in relation to
Obsidian.

Gordon et al. [80] describes a type system that uses permissions to enable safe concurrency.
This work focuses on concurrency, but does not help with reasoning about object protocols (as
typestate does). Although the significant restrictions that are there in order to handle concurrency
are warranted in those contexts, because blockchain systems are now always sequential, this
complexity is not needed for Obsidian. For example, isolated references in Gordon et al. [80] do
not allow readonly (readable) aliases to mutable objects reachable from the isolated references;
owned references in Obsidian have no such restriction because Obsidian does not need to support
concurrency.

Linear types, which facilitate reasoning about resources, have been studied in depth since
Wadler’s 1990 paper [214], but have not been adopted in many programming languages. In
functional languages, linearity may take the form of session types [32]. This approach mirrors
typestate, since channel types (expressed as session types) change as messages are sent through
them.

Although most programming languages do not support linear types, Rust [164] is one excep-
tion, using a form of linearity to restrict aliases to mutable objects. This limited use of linearity
did not require the language to support as rich a permission system as Obsidian does; for example,
Rust types cannot directly express states of referenced objects. Alms [201] is an ML-like language
that supports linear types; unlike Obsidian, it is not object-oriented. Session types [32] are another
way of approaching linear types in programming languages, as in Concurrent C0 [216]. However,
session types are more directly suited for communicating, concurrent processes, which is very
different from a sequential, stateful setting as is the case with blockchains.

2.6 Typestate
Typestate was originally proposed by Strom and Yemini [194]. Drossopoulou et al. [65] introduced
typestate for object-oriented languages in Fickle. In Fickle, objects could dynamically change
class, but the static type did not reflect the changing classes. More recent work by DeLine, Aldrich,
Bierhoff, and others describes how object-oriented languages can be used with typestate [5, 18, 58].
DeLine investigated using typestate in the context of object-oriented systems [58], finding that
subclassing causes complicated issues of partial state changes; we avoid that problem by not
supporting subclassing.

Plaid [198] and Plural [19] are the most closely-related systems in terms of their type systems’
features. Both languages were complex, and the authors noted the complexity in certain cases,
e.g., fractional permissions make the language harder to use but were rarely used, and even
then primarily for concurrency [20]. Sunshine et al. [196] showed typestate to be helpful in
documentation when users need to understand object protocols; we used that conclusion as
motivation for our language design. Garcia et al. gave a formalization of typestate [78].
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Chapter 3

PLIERS: A User-Centered Process for
Programming Language Design1

3.1 Introduction
Programming languages serve as interfaces through which programmers and software engineers
can create software. The ability of these users to achieve their goals, as with other kinds of
interfaces, depends on the usability of the languages in which they do their work. For example,
the presence of null in Java results in a particular kind of error-proneness, since programmers
can easily accidentally write code that dereferences null [94]. These kinds of mistakes persist
despite the training and experience that professional software engineers have.

The high-level research question discussed in this dissertation, How can programming lan-
guage designers leverage data from users to improve language usability?, can be refined in terms
of three research questions:

Naturalness: How can we obtain insights as to what language designs will be natural for
programmers, given that we are trying to obtain particular static safety guarantees in the
language?

Iteration: How can we iterate on a particular design so it continually gets to be more effective
for users?

Comparison: How can we compare multiple language designs to see which are more effective
for users?

Some authors, such as Stefik and Hanenberg, have focused on using quantitative approaches [188,
189]. Others have focused on in-depth case studies to evaluate their languages [3]. Our approach is
to integrate a wide variety of both qualitative and quantitative user-focused methods with formal
theory-based methods [152] to design programming languages [131]. This approach allows us to
integrate user research into many different stages of the design process.

In order to address our three research questions, we adapted traditional HCI methods to the
context of the design of programming languages that target professional software engineers. Then,
we applied those adaptations to the design process of two new languages, Glacier and Obsidian,

1Portions of this chapter previously appeared in [45].
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which we used as testbeds for language design methods. Finally, we synthesized the methodology
into a process we call PLIERS: Programming Language Iterative Evaluation and Refinement
System. This chapter describes the methods and process we developed. Later, chapters 5, 8 and 11
will show we used PLIERS to develop and evaluate Glacier and Obsidian.

It is not enough to only use methods from HCI to design a programming language because,
if a designer wants programs to have well-defined meanings (semantics) and well-understood
safety properties (soundness), the programming language must also be subject to a collection of
semantic constraints from the theory of programming languages. We have integrated strategic
application of our adapted programming language design and evaluation methods into a process
that also incorporates formal methods so that the resulting languages can be both usable and sound.
Although the individual methods have been applied in the HCI literature in a variety of contexts,
this chapter shows how we have adapted the methods and combined them to obtain insights
regarding programming languages that target professional software engineers. PLIERS is not a
recipe for language design, just as agile is not a recipe for software engineering. Instead, PLIERS
provides a process for organizing language design work around human-centered methods. For
each step in the design process, PLIERS suggests ways of integrating human-centered methods to
inform the designers.

Designing programming languages requires expertise in type systems, compilers or inter-
preters, and language runtimes. As such, PLIERS is aimed at showing people with those technical
tools that it is feasible and effective to include user-centered methods. By doing so, the goal is
that the languages will be more effective for programmers than they might be otherwise.

In developing PLIERS, we focused on an engineering perspective on programming languages:
namely, that programming languages are engineered artifacts whose purpose is to benefit users.
There are other perspectives, however. Programming languages are means for exploring and
manifesting mathematical ideas. They are also media for creation of software artifacts, and as such,
they affect both the engineering properties of those artifacts and their aesthetics. Furthermore,
even when there is scientific or mathematical evidence for certain design decisions, other decisions
must be made on the basis of experience or even on the basis of beauty or aesthetics. PLIERS
does not say how to make these kinds of decisions, how to make languages that are beautiful, or
how to make languages in which programs will be beautiful. PLIERS can help lead to insights
regarding users, but the concrete language design proposals remain a creative process. Thus, the
role of creativity remains central to the language design process.

This chapter makes three main contributions:

1. We define the PLIERS programming language design process, which shows how user-
centered methods can contribute to many different phases of programming language creation.
We evaluated PLIERS by using it to develop two programming languages; we describe the
benefits and areas for improvement that we observed in the process (§ 3.2.1).

2. We show how we have adapted several formative study techniques, such as natural program-
ming, Wizard of Oz, rapid prototyping, cognitive dimensions of notations analysis, and
interview studies to inform the design of Glacier and Obsidian. We found that our adapted
methods were effective when used in the context of PLIERS.

3. We show how we conducted summative usability studies on new programming languages.
By developing ways of teaching the languages efficiently, effectively, and consistently, we
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were able to conduct usability studies of programmers using novel programming languages.

We designed PLIERS for use with language designs that require developers to learn challenging
programming concepts or think in a new way. The safety properties that motivated the two
languages we discuss in this dissertation provided opportunities for language constructs that could
potentially be confusing, which made them ideal testbeds for PLIERS. However, other contexts
provide other kinds of conceptual challenges for programmers, and PLIERS may be similarly
useful in those contexts. For example, multicore programming results in concurrency challenges;
distributed programming requires managing asynchronous requests that may fail; and domain-
specific languages (DSLs) may require mastery of domain concepts. We expect that PLIERS will
be useful for helping language designers with any language that requires programmers to master
difficult concepts.

In developing PLIERS, we initially intended to apply known HCI methods, such as natural
programming [132], Wizard of Oz [54], interviews, and rapid prototyping. However, we found
that the study design process was very challenging due to the nature of programming and the
complexity of the design space. For example, some of the challenges we faced included:
Recruiting: how could we recruit participants who have sufficient programming skill and whose

results would generalize beyond the population of students, despite having limited access to
professional software engineers?

Training: how could we train participants in a new programming language in a short enough
amount of time to make studies practical?

High prototyping cost: how could we conduct user studies on programming languages that
have only informal designs and no implementations, since the cost of building working
prototypes is high?

Variance and external validity: how would we mitigate high variance, which is typical in pro-
gramming tasks, without constraining the tasks so much that they were no longer represen-
tative of real-world programming tasks?

The problems of variance and external validity were particularly relevant for quantitative
studies, which needed to be practical in the context of our university setting. Programming tasks
that are not extremely constrained tend to produce results with high variance, making statistical
significance hard to obtain. On the other hand, tasks that are highly constrained suffer from low
external validity, since real-world programming tasks are typically long and complex.

Therefore, we had to modify existing methods to address these challenges. Our study design
contributions are summarized in Table 3.1. For example:

• By adapting the natural programming technique to allow progressive prompting, we were
able to obtain both unbiased responses as well as data that were relevant to the particular
designs we were considering.

• By back-porting language design questions to languages with which participants were
familiar and by using the Wizard of Oz evaluation technique, we were able to obtain
usability insights on incomplete designs, and isolate the design questions of interest from
confounding variables.

• By dividing large tasks into multiple, smaller tasks, and by using pilot studies to set task
time limits effectively in quantitative studies, we were able to reduce variance sufficiently
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Challenge Approaches

Training • Include knowledge assessments and practice problems in tutorial
• Divide tutorial into small pieces
• Answer questions during training phase of study
• Automatically provide feedback for wrong answers

Recruiting • In academic settings, recruit master’s students, who frequently have pro-
fessional experience that may be representative of many practitioners

• Recruit professionals, but only when their expertise is needed
• Appeal to professionals’ altruism for recruiting (they may not be incen-

tivized by typical study budgets)
• Screen participants carefully; set a high bar for student participation
• Evaluate language design research questions in the context of a language

with which many possible participants are familiar

High prototyping
cost

• Back-port language design questions to existing languages (also helps
isolate effects of independent variables)

• Use Wizard of Oz to simulate tools that do not exist yet: use a plain text
editor rather than a real IDE, and have an experimenter provide feedback
in lieu of a real compiler or interpreter

Interdependence
of features

• Isolate design questions by back-porting them to a familiar language
• Mitigate non-orthogonality risk with summative studies

Variance and
external validity

• Triangulate with multiple study types
• Break tasks into subtasks
• Recruit from populations with sufficient programming skills and knowl-

edge; pre-screen participants.

Time management • Pilot repeatedly to assess how long tasks usually take
• Set cutoff times so that most people will succeed at most tasks
• Allow participants extra time when possible, then report these successes

separately from the “within time limit” results

Bias toward
familiar
languages

• Staged natural programming approach: sequentially expose additional
constraints to participants

• Request that participants do tasks using specific language designs that are
being evaluated

Unsound proposals • Provide sound alternatives and ask participants to use them
• Provide participants with expert feedback on design ideas

Table 3.1: How PLIERS addresses common challenges in running user studies on programming
languages.
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to obtain meaningful results in complex programming tasks.
• By recruiting participants who were representative of at least some junior-level professional

developers, we were able to maximize external validity in our studies while still conducting
them practically at a university setting. We were also able to show usability impacts of the
language designs under consideration.

• By developing incremental tutorials with integrated practice opportunities, we were able
to teach the languages to participants in a short time (for Obsidian, about 90 minutes was
typical).

3.2 PLIERS
PLIERS is summarized in Figure 3.1. User-centered design methodology [87] seeks to leverage
data from users to improve the design of systems. PLIERS is a specialization of user-centered
design for programming languages to enable designers to incorporate ideas from user studies
as well as from the theory of programming languages. PLIERS consists of five phases: need
finding, design conception, risk analysis, design refinement, and assessment. In each phase, the
designer seeks and leverages input from or about the users that the designer is hoping will use
the programming language. If work in any phase calls into question the work done in a previous
phase, the designer may return to the previous phase and conduct more work according to the
difficulties that were identified.

Need finding: The process begins by assessing the user’s needs. What programming problems
does the user have, and how might a new programming language help the user achieve
their programming goals? Some have advocated that language designers should design
languages for their own use [82]. In contrast, PLIERS uses user-centered methods, such
as a corpus study, interview, or contextual inquiry to understand the target audience and
what their needs are. The designer chooses which particular user-centered methods to use
according to the available resources and the goals of the design project. These user needs
may be stated as hypotheses regarding what kinds of languages might benefit users, what
benefit means to those users, and how those benefits might be assessed.

Design conception: After assessing users’ needs, the designer must conceive of initial language
ideas that might satisfy those needs. As in other design situations, this process often requires
significant creativity. The designer iterates between two kinds of work: theoretical work, in
which the designer develops a theoretical foundation for the programming language (a core
calculus), and prototyping work, in which the programmer directly works on the language
that programmers will see (the surface language). The result of this work is expressed as a
low-fidelity prototype, such as a corpus of code samples (to demonstrate the surface syntax,
by which users will write and edit programs) and a core calculus.

Risk analysis: In the risk analysis phase, the designer assesses and prioritizes usability risks
in the proposed design. This step leverages theoretical models of cognition and usability
inspection techniques to identify the aspects of the language design that are most likely to
present difficulties to users. For example, cognitive dimensions of notations [85] can help
identify usability risks that are worthy of further study.
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Usability risk analysis 
 Cognitive Dimensions of Notations 
 Comparison with prior systems 
 User research

Theoretical refinement 
 Completing core calculus 
 Proofs of key properties

User-centered needs assessment 
 Interviews 
 Corpus studies 
 Contextual inquiry

Empirical methods 
 Usability studies 
 Natural programming 
 Performance testing 
 Case studies

Usability studies 
Quantitative comparisons 
Randomized controlled trial (RCT)

Preliminary theoretical analysis 
 Core calculus development 
 Statements of key properties 
 Proof sketches

Low-fidelity prototyping 
 Example programs 
 Interpreter/compiler for key constructs 
 Natural programming elicitation

Prototype refinement 
 Interpreter/compiler implementation 
 Programmer experience work

Need finding

Design conception

Risk analysis

Design refinement

Assessment

1

2

3

5

4

Figure 3.1: The phases of the PLIERS process, showing activities conducted in each phase.
Designers can return to previous phases if evaluation identifies opportunities for improvement.
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User research might be needed in this phase to better understand the target audience.
For example, if the designer is considering an approach that requires particular skills, then
risk analysis might include assessing to what extent the target audience has those skills or
whether those skills can be taught in an acceptable amount of time. If the language targets
professionals, substantial training may be acceptable. If the language targets end-user
programmers, the designer may want to limit the training that would be required.

The prototype design likely leverages some elements of existing languages, while creat-
ing new features that may be unfamiliar to users and have unknown usability characteristics.
These new features may be particularly worth evaluating. Each risk corresponds to a design
or research question, and provides an opportunity for learning more about how to make the
programming language as usable as possible.

Design refinement: Using empirical methods, the designer assesses the usability risks identified
in the prior phase. Then, the designer refines the prototype, successively increasing proto-
type fidelity as usability risks are addressed. The designer also considers other language
requirements, such as expressiveness (can the language be used to write a particular kind of
program?) and performance (does the program, when run, meet the designer’s performance
goals?). Then, the results are used to revise the theoretical model and the prototype. By
using theory, the designer can ensure that any changes retain any formal guarantees that the
language promises. Alternatively, the designer may choose to guarantee different properties
in order to allow the desired modifications.

Because the theoretical model and prototype are related, changes in one frequently
lead to changes in the other. Eventually, the theoretical analysis will include proofs of key
properties, and the prototype will be high-fidelity, typically including IDE support and a
compiler or interpreter.

Assessment: A summative usability study can assess whether the final design has achieved the
designers’ usability objectives. In contrast to the usability studies in the previous phase,
which assess specific aspects of the language design, a summative study is intended to
assess programmers’ abilities to complete realistic programming tasks.

In this thesis, we focus on usability-related objectives, but the designer may want to
conduct performance testing as well. For performance evaluation, we refer readers to the
SIGPLAN empirical evaluation checklist [13].

In developing the PLIERS process, we identified a collection of adaptations to traditional
HCI methods, which helped us obtain useful information, primarily in the design refinement
and assessment phases. Here, we describe some of the key ways in which we modified existing
methods, which are further discussed in chapter 12 as well as other chapters. The methods we
have found useful are summarized in Table 3.2.

Back-porting design questions to existing languages: To study the usability of a design deci-
sion in isolation, we start from an existing language with which participants would already
be familiar. For example, rather than asking participants in our early formative studies to
learn a whole programming language, we told them that we were adding certain features
to Java, and then asked them to complete programming tasks in the Java variant. This
substantially reduced the training time and allowed us to reason that any confusion was
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Design Task Method or
Component

Details

Need finding
and hypothesis
generation

Interviews • Interview practitioners (e.g., software engineers) to
identify problems and formulate hypotheses

Corpus analysis • Analyze corpora of applications and bugs to identify
common goals and obstacles

Formative
design
evaluation

Natural
programming
elicitation

• Ask participants to do programming problems with-
out giving them syntax or identifiers in order to help
design a syntax and vocabulary that matches their
expectations

Programming
tasks

• Back-port design components to an existing language
to isolate variables of interest

• Break larger tasks into subtasks to constrain unpro-
ductive exploration

• Include a range of task difficulties to obtain data from
both more- and less- successful participants

• Use low-fidelity prototypes to obtain early feedback
on designs

• Use Wizard of Oz to enable studies of incomplete
prototypes

Summative
design
evaluation

Usability studies • Assess what barriers users face when attempting to
complete relevant programming tasks

Randomized
controlled trials
(RCTs)

• Compare task times and success rates between dif-
ferent languages

Table 3.2: A summary of user-centered methods that we have found useful for studies in PLIERS.
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likely related to the new features, since our participants were already familiar with Java.
Selecting a target language for back-porting depends on several factors:

1. Availability of participants skilled in the target language

2. High-level similarity between the novel language and the target language (e.g., both
object-oriented, both functional, etc.)

3. For high-fidelity prototypes: development cost of modifications to target language

We also favored high-level design decisions that allowed us to attract participants who
had relevant background. If we had tried to teach participants a completely novel language
paradigm even though the basic assumptions of the language paradigm were not the targets
of our research, we would have needed to try to distinguish the relevant mistakes from all
the novice-level mistakes that the new programmers would be likely to make.

Wizard of Oz: Implementing a programming language is expensive. Rather than implementing
a full compiler for each language variant we wanted to test, we adapted the Wizard of
Oz technique [54]. In a classic Wizard of Oz study, an experimenter pretends a system is
working by remote-controlling it in order to obtain insights about potential designs without
having to actually build the system.

In early Obsidian studies, we gave participants a text editor, documentation, and pro-
gramming tasks to do. Then, an experimenter verbally simulated compiler errors. Like a
modern IDE, the experimenter could interject with errors, and could provide error messages
when participants asked whether the compiler would emit any errors on their current code.
For example, the experimenter might say “Suppose your compiler indicated that there was
asset loss that occurred on line 42.” If the error messages were unclear, the experimenter
could revise them with more detail, helping us understand how to write clear error messages
for the compiler. The technique we developed allowed efficient iteration on our design
ideas, since design changes only required updating the documentation, not a potentially
complex implementation. Unlike in a traditional Wizard of Oz study, participants were
aware that the feedback was being provided manually, but we observed that this did not
present an obstacle to the effectiveness of the technique.

Multi-part tutorials: In our studies, we needed to teach participants a new programming lan-
guage in a consistent and efficient way. A traditional course would not be effective, since
we could not recruit our participants into a semester-long course. Instead, we developed
multi-part language tutorials. By breaking the tutorial into sections (each about ten minutes
long), including practice problems for participants to do, and having an experimenter avail-
able to answer questions, we were able to convey the knowledge we needed in a relatively
short period of time. Our longest tutorial, for example, took participants an average of 1
hour, 35 minutes.

3.2.1 Evaluating PLIERS
To evaluate PLIERS, one might like to teach PLIERS to a collection of programming language
designers and conduct a qualitative study regarding the insights the designers obtained. Better
yet, one might like to recruit language designers and assign them to either use or not use PLIERS
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to design a language in a domain, and then conduct usability studies of the resulting languages.
Unfortunately, these approaches are impractical: language design and implementation is typically
a long process, taking months or years, and language designers cannot be recruited for such
studies.

Another approach might be to teach PLIERS to designers who have recently completed their
designs and observe what changes the designers make as a result. However, a main benefit of
PLIERS is that it provides a framework for the entire language creation process; many of the
methods can be applied to incomplete prototypes or design concepts. Such an analysis, though
useful, would only obtain insights on some of the components of PLIERS.

Because of these practical considerations, we evaluated PLIERS by using it ourselves to
create Glacier and Obsidian. In the process, we observed how the approach helped us create
and iterate on the language designs. This approach has significant limitations. Our evaluation
does not show that other designers can use the process effectively, that it works on a wide variety
of different programming languages, that languages produced with the method are necessarily
superior to languages produced without the method, or even that the process does not make
languages worse. However, using PLIERS ourselves was a necessary part of developing the
process; in this dissertation, we leverage our experience creating PLIERS in the hope that others
may benefit from it and iterate on its component methods. As this is the first work of which we
are aware that integrates HCI methods into the design of languages for professional software
engineers, we view this is the first step toward creating a design process that will aid designers in
making professional-level languages more usable.

Venable et al. provide a framework for evaluating design methodologies [209]. In that
framework, our approach to evaluating PLIERS would be considered ex ante (formative, evaluating
the design method before it is complete). The ex ante approach was appropriate for PLIERS since
the work was conducted in large part to create and iterate on PLIERS. The evaluation included
some aspects of naturalistic evaluations (it was evaluated in the context of real language design
projects) and some aspects of artificial evaluations (the designers of the method used the method
instead of third parties). This choice was driven by the impracticality of recruiting programming
language designers other than ourselves to use our process over the long period of time required
to conduct a language design and implementation project.

Blandford and Green have acknowledged the lack of an established path to acceptance for
new methods and the difficulty of conducting rigorous evaluations of design methods [22]. We
regard our work as the first step of many in evaluating PLIERS.
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Chapter 4

Exploring Immutability Features1

4.1 Introduction
Many designers of APIs and programming languages recommend using immutability in order
to prevent bugs and security flaws. For example, Bloch devoted a section of his book Effective
Java [23] to minimizing mutability. He cited the following benefits of immutability: simple state
management; thread-safety; and safe and efficient sharing. Oracle’s Secure Coding Guidelines for
Java SE [165] states that immutability aids security. Microsoft’s Framework Design Guidelines
recommends against defining mutable value types in part because they are passed by copy,
and programmers might write code that modifies copies but should instead modify the original
structure [163]. Some programming languages, such as Rust [164], take these recommendations
into account by carefully managing mutability. The functional programming language community
is particularly concerned with state management, producing languages such as Haskell, which
segregates code that manipulates state from code that does not. Proponents of functional languages
argue that avoiding mutable data structures facilitates reasoning about behavior of programs
because one can reason equationally about behavior rather than needing to know about the global
or even local program state [1].

There are questions, however, about what immutability should mean and how to express
immutability in programming languages, as evidenced by the myriad of different kinds of support
that tools provide and the lack of empirical data to justify specific design choices. Some languages
support programmer-provided specifications of immutability (expressing that certain data struc-
tures cannot be changed) or read-only restriction (expressing that certain references cannot be
used to change a data structure). For example, final in Java can express that a particular field
cannot be reassigned to refer to a different object, but the contents of the referenced object may
still change, and there may be non-final references to the same object. Furthermore, there is no
way to express class-level immutability directly.

In C++, const data can still refer to non-const data, which can then be changed. When
used on pointers, similar to final, const provides no guarantees regarding other references to
the same object. This means that in addition to not providing the expected benefits of immutability
to programmers, such as thread safety and simple state management, these annotations also do

1Portions of this chapter previously appeared as [49, 50].
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not provide the guarantees that would be needed for the many compiler optimizations that require
all of an object’s behavior to be guaranteed to be fixed.

This chapter makes the following contributions:

1. After reviewing the existing literature and implemented systems in this area, we develop a
classification system for mutability restrictions in programming languages (§ 4.2), show
where some existing systems fit in this classification (§ 4.3), and discuss possible usability
implications of existing design choices (§ 4.4).

2. We interviewed eight expert software engineers to find out how practitioners feel about
existing language features and tools, and what their perceived needs are. We show that
existing programming language features and research tools do not adequately address the
issues encountered by practitioners. We extract design recommendations from the results of
our interviews (§ 4.5).

3. IGJ is a Java extension that adds annotations specifying immutability and read-only restric-
tions [223]. We describe the design of IGJ-T, an extension to IGJ that enforces transitive
immutability, which addresses problems that our interview participants described. We itera-
tively evaluated IGJ-T with three pilot users and refined our study based on the feedback
(§ 4.6). The next chapter, chapter 5, describes Glacier, which addresses the problems we
identified in the user study.

4.2 Overview of Concepts
It is important to distinguish among the many different meanings given to the term immutability
and related concepts. In this section, we will give an overview of the various mechanisms
and issues. Up to this point, we have been using the term immutability informally; here we
synthesize definitions from existing literature to form a definition that will be used in the rest of
the dissertation. A summary of the concepts appears in Table 4.1.

We use object here to mean any kind of state, such as a C struct or a functional language
ref cell. State is data that is stored in memory. As an abbreviation, we will use function to refer to
both functions and methods.

4.2.1 Type of Restriction
Immutability restricts modification through all references to a given object (see § 4.2.5 for
exceptions). In contrast, read-only restrictions disallow modification through read-only references
to a given object, but not necessarily through all references. The distinction between read-only
restrictions and immutability is critical to the correctness of programs. For example, an immutable
object can be shared safely among threads without locks, but a function that has a read-only
reference to an object has no guarantee that the object cannot be modified, so that function must
assume the object may be mutable.

Assignability restrictions, such as final in Java, disallow assignment. In most imperative
languages, variables are backed by storage, so assignability restrictions represent non-transitive
immutability (see § 4.2.3). Java’s final keyword on fields is an assignability restriction.
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Although a final field can never point to a different object than the one it was initialized to point
to, the referenced object’s fields may themselves still be modified. In contrast, the C declaration
const int *x provides read-only restrictions: x is a pointer to int and might later refer
to some other address, but the reference x cannot be used to change the value at any memory
location to which x points.

Ownership systems define a system-specific notion of ownership and a way of specifying
which objects a given object owns. This enables enforcement of restrictions such as “an object
may only directly modify objects it owns”. Ownership types [38] use a notion of object context to
partition the object store. This partitioning allows the systems to ensure that aliases to objects do
not escape their owners, ensuring representation containment and defining a notion of abstract
state, since the abstract state (§ 4.2.5) of an object includes only data it owns. Ownership is also
useful for ensuring thread safety of mutable structures by ensuring that locks are acquired in a
correct order according to the ownership structure before accessing objects [27].

4.2.2 Scope

Object-based restrictions apply to a particular object. Class-based restrictions apply to all of a
class’s instances. For example, final is object-based: it only applies to a specific reference and
there is no way of specifying that all references to instances of a particular class are final.

Class restrictions, while commonly either only supported as syntactic sugar for object re-
strictions (e.g., IGJ) or unsupported entirely, are frequently needed in practice according to our
interview participants. By necessity, many programmers who want class immutability must
improvise (§ 4.3.2).

4.2.3 Transitivity

Transitive restrictions pertain to all objects reachable from a given object, including objects
captured by closures or methods. Non-transitive restrictions pertain only to the immediate fields
in a given object.

Non-transitive restrictions provide weak guarantees because they say little about the behavior
of the abstraction that the object’s interface provides. For example, if a list object is non-transitively
immutable, then the number of items in the list is fixed, and the list always refers to the same
objects, but the contents of those objects can still be changed. A function that needed to know that
a list of integers only contained positive integers would need to re-check all elements after every
possible opportunity for mutation of list elements. However, in order to ensure that an object is
immutable, one must verify that all objects in the transitive closure of references from that object
are immutable.

Though the assignability and read-only features provided in many popularly-used languages
are non-transitive, including Java’s final and C++’s const, researchers have proposed transi-
tive restrictions in a variety of different systems. Because of the important implications of this
design decision and the discrepancy between research and practice, we will focus on this question
in § 4.6.1.
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4.2.4 Initialization

Systems might relax restrictions during initialization in order to facilitate initialization. A common
method for creating a cyclic data structure involves modifying an element after it is created. The
cyclic data structure may be mutable during initialization but immutable afterward. Alternatively,
systems can enforce restrictions during initialization.

4.2.5 Abstract vs. Concrete State

The abstract state of an object refers to the portion of the state of an object that is conceptually a
part of that object. For example, in a splay tree, sometimes during a read operation the internal
tree structure will be rotated in order to move frequently accessed elements closer to the root.
Even though this is a change to the internal data structure, it is not exposed to the caller and
therefore read operations do not change the splay tree’s abstract state. In contrast, the concrete
state includes the object’s entire representation.

Caches are often excluded from the abstract state because the contents of the cache duplicate
information available elsewhere, and other than causing performance differences, the contents
of the cache are invisible to clients. The abstract state might also exclude state kept only for
debugging purposes. By excluding the cache from the abstract state of the object, writing to the
cache can be considered a benign operation and can therefore be done by clients without write
access. However, this allows the possibility of race conditions if the cache is not thread-safe but a
programmer assumes it is because the object appears to be immutable.

Logical restrictions pertain to an object’s abstract state. Bitwise restrictions govern an object’s
concrete state; this term arose in C, where programmers consider how structures are arranged
in memory. Some languages provide features that let programmers differentiate these: in C++,
for example, a mutable member variable can be modified even through a const reference.
Unfortunately, it may be tempting for a programmer to assume that if all references to an object are
const, the object is thread-safe, but the mutable members may be mutated in a thread-unsafe
way. Thus, an object that is only logically-immutable may not be thread-safe.

4.2.6 Backward Compatibility

When facilities for restrictions are added to a programming language after the language is created,
code that uses the extended features may need to interface with code that does not. If this is to be
permitted, then there is a question of what guarantees are made. For example, if a reference to an
immutable object is passed as input to an function whose interface does not specify restrictions,
then the called function might mutate the object, violating the guarantee. Systems that make
a closed world assumption assume that all code that uses code with restrictions itself has any
restrictions declared. In contrast, the open world assumption is that there may be interfaces
with un-restricted code and that the system must provide guarantees for this code too, either
by making conservative assumptions about these APIs or by checking conditions dynamically.
Open-world systems that support class immutability must ensure that instances of immutable
objects encapsulate their representations because otherwise clients may mutate the representation
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objects directly. Furthermore, open-world systems that support object immutability must ensure
that immutable objects are not exposed to unchecked clients [89].

The closed-world assumption can be a significant impediment to adoption for language
extensions, since in a system that makes a closed-world assumption, adoption in new code
requires that all clients of that code also adopt the system.

4.2.7 Enforcement
Static restrictions are enforced at compile time. Dynamic restrictions are enforced at runtime.

Static enforcement typically has a problem of virality: in order to call a method on an object
that has an immutability or read-only restriction, the method typically must guarantee that it
will not modify state, but if the method itself calls methods, then those methods must also be so
guaranteed, and so on for the transitive closure of methods called by the first method. This can be
burdensome if the guarantees must be annotated by programmers. In addition, the static analysis
must be conservative, and therefore may give errors on code that is actually safe. C++’s const is
viral, and programmers complain that “const-correctness” is therefore difficult to achieve.

Anders Hejlsberg, the lead C# architect, when asked to explain why C# did not offer C++’s
const feature, stated the problem quite bluntly:

We hear that complaint all the time too: “Why don’t you have const?” Implicit in the
question is, “Why don’t you have const that is enforced by the runtime?” . . .
The reason that const works in C++ is because you can cast it away . . . [210]

4.2.8 Polymorphism
Restriction polymorphism would mean that the same function can operate on inputs with different
restrictions. Parametric polymorphism in restrictions is the most relevant example: restrictions can
be specified in a parameter rather than explicitly so that one implementation can operate on inputs
with different restrictions, while still obeying those restrictions. Non-polymorphic restrictions
require programmers to write implementations that statically assume particular restrictions.

In C++, const is monomorphic: each method’s parameters and result are either const
or not. The result is a common pattern: the programmer must write const- and non-const
versions of many methods so that those methods can be invoked with both const and non-const
inputs. For example, in C++, it is impossible to write a single “identity” method that takes a
const or non-const array and returns the same array with the access restriction preserved; one
must instead write two (typically overloaded) different methods. In contrast, IGJ [223] supports
immutability parameters @I so that the restrictions can be expressed as a parameter of a type.

4.3 A Survey of Existing Systems
Table 4.2 summarizes some related systems. The table has a focus on object-oriented and
imperative systems; since mutation tends to be ubiquitous in these kinds of systems, these seemed
to offer the greatest opportunity for improvement by restricting mutation. In contrast, functional
languages tend to result in less common use of mutable state.

37



Dimension Possible choices

Type immutability, read-only restriction, assignability, ownership
Scope object-based, class-based
Transitivity transitive, non-transitive
Initialization relaxed, enforced
Abstraction abstract, concrete
Backward compat. open-world, closed-world
Enforcement static, dynamic
Polymorphism polymorphic, non-polymorphic

Table 4.1: Summary of Dimensions

System Type Scope Trans. Init. Abstr. Compat. Enforc. Poly.

Java final a o n e N/A c s n
C++ const r o n e a c s1 n
Obj-C immutable collections i o n e N/A c s1 n
.NET Freezable [126] i o n e N/A o d n
Java unmodifiableList r o n e N/A o d n
Guava ImmutableCollection i o n e N/A o s, d2 n
IGJ [223] i, r c, o n e a c s p
JAC [109] r o t e c c s n
Javari [202] r c, o t e a c s p
OIGJ [224] i, r, o c, o n r a c s p
immutable [89] i, r, o c, o t r a o s p
C# isolation extension [80] i, r, o c, o t r a c s p
JavaScript Object.freeze i o n e c o d n

Table 4.2: Summary of Some Existing Systems (abbreviations are from Table 4.1)
1 These approaches provide static enforcement to the extent possible in these languages.
2 Static deprecation warning, runtime exception
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4.3.1 Historical and Research Systems

The functional programming community was one of the first proponents of immutability. In 1984
Abelson and Sussman [1] promoted immutability on the grounds that it supports formal reasoning
and makes concurrent programming easier. Programs that use only immutable structures are
called pure. Functional languages have a variety of approaches to restricting mutability. For
example, Haskell uses monads to express changes in state rather than allowing any kind of direct
ref cell manipulation (as is permitted by SML). By doing so, operations that have effects must
specify those effects in their signatures. Another way to achieve the goal of exposing effects is
with type and effect systems [139], which extend type systems with information regarding side
effects, such as potential writes to regions of memory.

In contrast to functional languages, imperative languages emphasize mutation of program
state. By adding features that allowed restrictions on what data structures could be modified in
each context, language designers hoped to facilitate reasoning about programs. At first, languages
provided features restricting what functions could do to their parameters. In Pascal [8], var
parameters were passed in by reference, but non-var parameters were passed by value, preventing
modification of the passed parameter. Modula-3 [34] provided a READONLY parameter annotation,
which prevented a function from using the formal parameter in a context that would require an
l-value, such as the left-side of an assignment statement. In Ada [7] parameters to functions could
be declared in, out or in out to indicate whether the function could read but not modify,
modify but not read, or both read and modify each parameter.

Later, support for modularity led to features that controlled mutation in entire modules. In
Turing [96], a variable defined in module A could be imported non-var into module B which
would prevent the variable from being changed by B, although A could still mutate it. A common
attribute of these features was that data structure mutation would be permitted through some
references but not others, i.e., these represented read-only restrictions.

IGJ [223] provides Java annotations that implement immutability. For example, @Immutable
Date d is a reference to an immutable date. No fields can be modified on an @Immutable
object; IGJ verifies that no non-@Immutable references to an @Immutable object can be
obtained. @Immutable specifies non-transitive immutability: if an @Immutable object’s
fields are not @Immutable, then those objects’ fields may still be assigned to. @Mutable, the
default annotation for unannotated fields, also grants exceptions permitting modification of fields
in @Immutable objects.

@Readonly in IGJ specifies a read-only reference. The holder of a @Readonly reference
cannot use that reference to modify the referenced object, but there may be other non-@Readonly
references to the same object (aliases). IGJ also supports a form of class immutability, in which
specifying @Immutable on a class serves as syntactic sugar in place of adding annotations in a
variety of other places. Finally, IGJ supports an immutability parameter @I, which takes the value
of another annotation. For example, if @I is the immutability parameter for a class and a field in
that class is annotated with @I, then that field in a particular instance of the class will have an
immutablity annotation according to the annotation of that instance. This is the sense in which IGJ
supports transitive immutability: if all fields are annotated with the class’s immutability parameter
for all fields transitively included in that class, then immutability specified by a reference to an
object will be transitive.
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Unkel and Lam [206] generalized final to define stationary fields, for which all writes
occur before all reads, and provided an algorithm to find them. Of fields in their corpus, 44-59%
were stationary, but only 11-17% were final.

Haack et al. designed a Java-like language with a class modifier, immutable, which specifies
that all class instances are immutable, and uses ownership types (with ownership annotations) to
enforce encapsulation [89]. Later work by Haack and Poll [88] avoided the need for ownership
types and supported object immutability, read-only references, and class immutability. They also
permitted temporary modification of read-only structures after initialization by using stack-local
memory regions to isolate new immutable objects.

Skoglund and Wrigstad [186] proposed a transitive read-only restriction system for Java,
which includes the ability to check for read-only restrictions at runtime. Zibin et al. [223] argued
that allowing runtime checks of restrictions hampers program understanding but there are no user
studies confirming or refuting this claim. JAC [109] provides readonly (a transitive read-only
restriction) as well as readimmutable (a transitive read-only restriction that also disallows
reading of transitively mutable state) and readnothing (providing no access to state at all;
suitable for pure functions). JAC extracts a readonly portion of each class by restricting return
types: methods return read-only references when called on read-only objects. As a result, a
programmer need only provide one implementation of a class, and JAC can generate restricted
versions of the class. However, this approach has not been adopted by the Java community. In
contrast, Javari [202] provides a simpler access rights system (for example, JAC includes three
different levels of read-only access, but Javari only has one).

One impediment to understanding and reasoning about programs is the general alias problem
of determining what references exist to a given object. With a precise alias analysis, one could
find out whether a given object might be modified by a particular call. Unfortunately, a precise
may-alias analysis is undecidable [115]. Therefore, various approaches have been developed that
facilitate reasoning about aliases by restricting which aliases can exist.

Noble, Vitek, and Potter [141] presented a system for flexible alias protection that provides
several aliasing mode declarations that allow aliasing invariants to be checked statically. For
example, one mode ensures that “a container’s representation objects may be read and written, but
must not be exposed outside their enclosing container. . . ”. Other approaches for alias protection
include balloon types [6] and islands [95], which prevent external references to objects that are
encapsulated by other objects’ interfaces. Servetto et al. proposed placeholders as a technique for
safely initializing circular immutable structures in an extension to Featherweight Java [182].

Ownership types, introduced by Clarke [38], use a notion of object context to partition
the object store. Many of these, including Clarke’s original approach, restrict aliasing. Other
approaches, such as universe types [60], restrict mutation but not access to owned objects. In
contrast, Rust [164] expresses ownership without explicit object contexts; instead, it works at the
level of variable bindings to ensure that no more than one binding exists to a given resource. Rust
provides facilities for borrowing ownership at function call boundaries in order to make function
calls more convenient. The ownership system OIGJ [224] extends IGJ with a notion of ownership
so that objects cannot leak outside their owners. Potanin’s chapter on immutability [156] gives
more detail on ownership types and immutability in general.

Gordon et al. [80] focused on providing safe parallelism by combining immutable and iso-
lated types, with support for polymorphism over type qualifiers. They provided writable,
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readable, immutable, and isolated qualifiers. An isolated reference ensures unique-
ness: “all paths to non-immutable objects reachable from the isolated reference pass through the
isolated reference.”

Another approach is to use capabilities, which pair pointers with policy information that
specifies what access rights accompany those pointers [29]. This changes the default on references
from “no restrictions” to “all restrictions” but specifies all attributes positively, for example
permitting writing. This approach is in contrast to all of the approaches described above, which
use language features to express restrictions relative to a default of no restrictions.

4.3.2 Popular Languages and Libraries
We show through examples below that despite the fact that some popular languages offer read-only
restrictions, programmers still desire immutability guarantees and attempt to implement them
using the features that they have available. This often leads to misunderstandings, if not by the
original programmer, then by other programmers that have to read and maintain the code.

For example, the CERT C Secure Coding Standard [179] says “Immutable objects should
be const-qualified. Enforcing object immutability using const qualification helps ensure the
correctness and security of applications.” C does not have any features that guarantee immutability
in general, though const does provide some guarantees for fields. In particular, if one has a
pointer allowing const access to an object, there may be other non-const pointers to that
same object. For example, consider this C code, which uses const to express constraints in an
interface:

void threadUnsafePrintIfPositive(const int *x) {
if (*x > 0) {
printf("%d", *x);

}
}

Even though x is a pointer to a const int, this only means that
threadUnsafePrintIfPositive cannot modify the referenced int. This func-
tion is not thread safe because it dereferences x twice and *x may change between the
dereferences. If *x were immutable rather than just read-only, then the above code would be safe,
but such immutability cannot be expressed in C.

As we described in § 4.2.1, the requirements for making a Java class immutable are complex.
If a method returns a reference to an internal data structure and cannot ensure that it cannot be
modified by a caller, the structure must be copied before being returned to prevent a caller from
being able to mutate it. This is often easy for programmers to ignore or forget, and the results in
security-sensitive code can be serious. For example, Java’s “Magic Coat” security bug was caused
by the getSigners() method returning a reference to a mutable array holding the signers of a
class [124].

Rather than supporting immutability or read-only restrictions in programming languages,
some authors have added limited support in libraries. These typically convey these restrictions in
names and documentation, resulting in ad hoc (i.e., expressed informally, rather than formally in
language constructs) class-based restrictions. The result is that a client for whom immutability of
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a data structure is required cannot rely on the compiler to give an error if the data structure is later
made mutable.

For example, the Foundation framework [159] provided with Objective-C separates immutable
and mutable classes in many cases by making the mutable classes subclasses of the immutable
classes: the subclasses have additional methods that expose mutation. This ensures that mutating
methods cannot be invoked on immutable objects (except that Objective-C is not type-safe).
Likewise, the Java JDK provides a collection of immutable classes, such as String and Number,
but these are not specified as being immutable in any formal way. In Java, to make a class
immutable, Bloch [23] recommends doing all of the following: provide no methods that modify an
object’s state; prevent subclassing; make all fields final and private; and ensure exclusive access to
mutable components. If a programmer wants to know whether a class is immutable, complicated
manual (but mechanizable) verification is necessary, but even this does not guarantee that the
class will be immutable in the future, since a new version of the code can easily make the class
mutable in a way that does not cause the compiler to produce any error messages for clients.

The Java JDK provides Collections.unmodifiableList, which wraps a given col-
lection object with a wrapper that throws exceptions on modification. However, modifications
to the original list are still permitted, so this approach is an example of a read-only restriction,
not immutability. Furthermore, the objects in the list may still be modified, so the restriction is
non-transitive. In contrast, Google’s Guava library copies all the elements when constructing
an ImmutableCollection from a Collection. However, ImmutableCollection
retains the mutating methods from its superclass, so though the compiler gives a deprecation
warning, code that attempts to modify an ImmutableCollection compiles and raises excep-
tions at runtime. Furthermore, ImmutableCollection can contain mutable objects, so the
immutability is non-transitive.

Microsoft’s .NET framework provides a Freezable class [126], which is a superclass for
objects that can have a state in which they are immutable. The author of a class that descends
from Freezable must add calls to specific APIs before and after modifying state, so enforcement
is dynamic and semantics depend on the placement of those calls. Similarly, JavaScript includes
Object.freeze, which dynamically enforces shallow immutability [130].

4.3.3 Empirical Evaluations
Though empirical studies of the effects of mutability on programmer productivity and program
comprehension have been conducted, they have been quite limited. For example, Dolado et
al. [63] provided initial empirical data regarding the influence of side effects, which mutate
data structures, on program comprehension. They compared pre- and post-increment to explicit
assignment in C, finding that programmers answered questions about program behavior more
accurately with explicit assignment than with pre- and post-increment (e.g., x=y+1; y=y+1
vs. x=++y). However, this comparison was limited to properties of syntax and does not provide
recommendations for other design questions, such as on how to enforce encapsulation.

Stylos and Clarke [195] examined the process by which programmers write code that in-
stantiates objects in C++, C#, and VB.NET and found that users prefer and are more effective
at instantiating mutable classes. When instantiating immutable classes, the programmer must
supply all parameters to the constructor at initialization time (the required constructor pattern);
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in contrast, with mutable classes, it is possible to supply none or only some of the parameters at
initialization time and defer setting the rest until later (the create-set-call pattern). When figuring
out how to call the constructor of an immutable class, programmers must interrupt their work
to figure out how to instantiate the arguments, which may themselves have arguments, and so
on. The create-set-call pattern, in contrast to the required constructor pattern, lets participants
defer understanding how to create the required arguments until after they had finished calling
the first constructor. The authors concluded that in contrast with the common advice to prefer
immutability over mutability, immutability sometimes interferes with usability.

The paucity of empirical work in this area motivated us to conduct our own interviews with
programmers. Our aim was to find out how immutability-related language constructs affect
programmers (see § 4.5 below). However, significantly more work will be required in this area if
we are to base language design decisions on empirical data.

4.4 Usability of Features
The large collection of different possible language features supporting state change restrictions
presents an interesting design problem. Many of the features are compatible with each other and,
indeed, more recent systems have included a collection of different features so that programmers
can choose which features to use. However, including all of the possible features at the same
time makes a system more complex, and more complex systems are harder to use. For example,
one of our interview subjects mentioned that in C++, it is common practice to only use const
for pointers to const objects and never for const pointers to mutable objects because it’s too
hard to keep the distinction straight. const int * x, int const * x, int * const
x, and int const * const x are all legal C declarations; the first two denote pointers to
const integers, the third denotes a const pointer to a variable integer, and the fourth denotes a
constant pointer to a const integer.

It might seem that a more expressive language — one that allows the programmer to be more
precise about what invariants should be checked — would always be better than a less-expressive
language. However, this is not necessarily the case. The Cognitive Dimensions of Notations
framework [85] provides guidelines for evaluating and comparing usability of different notations.
The error-proneness dimension refers to the probability of making mistakes, particularly ones
where the consequences are hard to find. Language features for restricting state change exist
primarily to prevent bugs and clarify meanings. However, in many cases, using the wrong
restriction results in a weaker guarantee than intended but no obvious immediate problems. For
example, in a situation that requires object immutability, the programmer might specify a read-
only restriction instead by mistake. This may typecheck but not provide the needed guarantee.
Likewise, a programmer might annotate an interface as returning a read-only object when in fact
the returned object is immutable. This might lead clients of the interface to go to extra trouble
and degrade performance, such as by adding locks to ensure thread-safety, when the object was
already immutable.

In contrast to the disadvantages of complexity, the hidden dependencies dimension of Cognitive
Dimensions, which refers to problems that occur when dependencies are not obvious, confirms a
positive aspect of state change restrictions: when a reference to mutable state exists, a programmer
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may write code that mutates that state without being aware of the reference. This situation reflects
a hidden dependency, so this dimension suggests not only that immutability is likely to be helpful,
but also that transitive immutability is likely to be better than non-transitive immutability.

Nielsen’s heuristic evaluation technique [138] offers a collection of heuristics that can be
applied when evaluating user interface designs. These heuristics are particularly useful when user
studies with real users cannot be conducted, perhaps due to an incomplete implementation or cost
constraints. The “be consistent” heuristic, which is also included in the Cognitive Dimensions
framework, suggests that features that correspond with different concepts should have different
names. When different features are given similar names, users may be confused; this problem can
be seen in C’s const syntax, where the position of const is significant but it is not obvious
which position has which meaning. The differences between proposed features can be subtle
on the surface even though the features represent significantly different meanings. For example,
the system by Haack et al. includes qualifiers RdWr, Rd, and Any [88]. One might guess that
Any is equivalent to RdWr because read and write would seem to be the only available kinds of
access, but in fact RdWr corresponds to a mutable object, Rd corresponds to an immutable object,
and Any corresponds to a read-only restricted reference. Any means that the actual immutability
invariant is either RdWr or Rd and therefore a holder of a reference to an Any-object cannot write
to it because it might be immutable (Rd). It is easy to imagine users confusing these different
terms, based on the heuristic evaluation evidence; we lack stronger evidence since Haack and Poll
did not publish a usability study of their system.

This problem of features with potentially confusing names is not limited to just one system.
IGJ [223] supports an object annotation @Immutable. However, in order to make immutability
transitive, one must use the immutability parameter on fields in the transitive closure of objects
that are referenced by the @Immutable object. This means that when a programmer has a
reference to an @Immutable object, it is necessary to locate and read an arbitrary amount
of class implementation code to determine what immutability means for this particular object.
Furthermore, a future code edit may invalidate the programmer’s reasoning, resulting in the
programmer making an immutability assumption that is later violated by a programmer who was
unaware of the previous reasoning. This is a hidden dependency and may cause bugs. Systems
that support removing fields from the abstract state, such as C++’s mutable, have a similar
problem. However, the real-world implications of these design choices have not yet been tested.

JAC [109] provides a larger collection of features: writable, readonly,
readimmutable, and readnothing. Readimmutable methods can only read the parts
of an object’s state that are immutable after initialization. The authors say that readimmutable
may be useful for objects used as keys in hash tables, since the parts of those objects that contribute
to the hash code must not change while the objects are used as keys. However, it is unclear whether
this complexity is warranted; perhaps it would be better to simply require that the entire object
be immutable. We view this question as a tradeoff between flexibility and simplicity rather than
assuming that more flexibility is always better.
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4.5 Interviews with Developers

4.5.1 Methodology
Given the large collection of immutability- and read-only restriction-related design choices that
must be made in order to construct a concrete programming language or language extension, we
wanted to find out how practicing software engineers think about state when writing software.
We obtained IRB approval and conducted semi-structured interviews with a convenience sample
(N=8) of software engineers at several US- and Europe-based organizations. We focused on
software engineers who work on large software projects, with the assumption that these projects
would be the most likely (relative to smaller projects) to encounter interesting problems with state
management. Likewise, due to the participants’ expertise, any problems raised are likely to come
up in a wide variety of situations and be relevant problems for consideration in a language design.
Our participants had spent a long time as software engineers, with a mean professional experience
of fifteen years and a minimum of seven years. They typically had worked on projects with millions
of lines of code and hundreds of people. Participants reported significant usage of immutable and
access-restricted interfaces and they had a multitude of strong opinions about state management
in large software systems. Their experience was primarily in C++, Java, and Objective-C. Each
interview took between 45 minutes and an hour and a half. We recorded the interviews and took
notes of the participants’ answers to our questions; then, we informally aggregated the responses
to find common themes and interesting anecdotes. Because we conducted a small set of interviews,
our goal was to extract as much information as possible from the interviews rather than to gather
statistically significant quantitative data from the responses. We stopped recruiting participants
when we observed that most of the answers duplicated responses that we had already heard.

Interview Questions

1. How long have you been programming professionally?

2. Can you give an order of magnitude estimate of the size of the largest project you’ve made
significant contributions on? Number of people, lines of code?

3. In what programming languages do you consider yourself proficient?

4. How did you get into software development? Do you have a computer science background?

5. Let’s talk about changes that happen to state in software you’ve worked on. Many kinds of
software maintain state, such as object graphs, files, or databases, but there’s a possibility
of corruption during changes due to bugs. How do you make sure that state in running
programs remains valid?

(a) Are there specific techniques do you use? If so, what are they?

(b) Do you sometimes want to make sure that some operations don’t change any state or
don’t change certain state?

i. Tell me about a recent time you did this.

ii. How often does this come up?

iii. Do you use language features to help?
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(c) Do you sometimes want to make sure that some state never changes?

(d) Tell me about a recent time you did this.

i. How often does this come up?

ii. Do you use language features to help?

iii. Do you sometimes want to make certain kinds of modifications to state impossible
for some users of an API but not others? If so, how do you do that?

6. How often do you work on concurrent aspects of software? What mechanisms do you use
to control concurrency?

(a) Do you use immutability to help address or prevent concurrency issues?

7. How much work have you done on security-related aspects of your software? Have you
found or fixed any vulnerabilities?

(a) Do you use immutability to help address or prevent security issues?

8. Can you recall a recent situation in which you created an immutable class or other data? If
so, tell me about it.

9. Can you recall a recent situation where you changed a class from immutable to mutable? If
so, tell me about it.

10. Can you recall a recent situation in which you changed a class from mutable to immutable.
If so, tell me about it.

11. Can you think of a bug you investigated or fixed that was caused by a data structure changing
when it should not have? What was the problem and how did you solve it (if you solved it)?

(a) Would const have prevented the bug?

12. Have you ever tried using an immutable class and had it not work? Why not?

13. When you create a new class, how do you decide whether instances should be immutable?

14. Have you ever been in a situation where you wanted to use const or final but it didn’t say
what you wanted to say?

(a) or where you discovered you couldn’t use it? What was the situation and why couldn’t
you use it?

15. Have you been in a situation where you had to revise your plan because something you’d
assumed could mutate state was disallowed from doing so due to const?

16. Have you been involved in training new members of the team? What do you tell new
members about immutability or ensuring invariants are maintained?

17. Sometimes, though an object is mutable after creation, it only needs to be changed for a
short amount of time. For example, when creating a circular data structure, the cycle must
be created after allocating all the elements. After that, however, the data structure doesn’t
need to be changed. Have you encountered situations like that? Do you think it would help
if you could lock the object after all necessary changes were made?

18. Now, I’d like to move on to API design in general. Think of a recent API you designed.
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(a) Did you make any conscious design or implementation decisions, to make the API
easier or more manageable for these users?

(b) Are there any recurring issues / challenges that users have had with your API? How
did you handle those?

(c) How do you differentiate between users of your API? Are there parts of the API that
you expose some users but not others? How do you manage that?

(d) Did you make any conscious design or implementation decisions to protect key data
or data structures from modification (inadvertent or malicious) from your users?

19. Thanks! Is there anything else you’d like to say?

4.5.2 Results

Relevance. Asked about bugs caused by state changing when it should not have, one participant
exclaimed,

“Oh God, like, most of them!. . . my favorite is where you have data that is
supposed to be immutable and is only settable once in theory but that’s not well
enforced and so it ends up getting re-set later either because it gets re-initialized
or because someone is doing something clever and re-using objects or you have
aliasing where two objects reference the same other object by pointer and you make
changes. . . ”.

Another participant cited library boundaries as a problem: this engineer’s module depended
on data that got changed by a third-party library, resulting in half-updated or not-updated state.
This resulted in mistrust among the groups because it was frequently unclear which team was
responsible for any given bug. All the participants who worked on software with significant
amounts of state said that incorrect state change was a major source of bugs.

General techniques. All of the participants reported using various techniques to ensure that
state remained valid. Techniques included ensuring that lifecycle and ownership are well-defined
using conventions such as C++’s RAII; restricting access with private variables and interfaces;
using consistency checkers and writing repair code; unit and manual testing; and assertions.
According to one participant, good design is better than using const: “if you simply do not
depend on an object, there is no way you could possibly modify it directly.” Another participant
uses immutability as a key part of the architecture: “By design, we’ve made the key data structures
immutable. We never update or delete any data objects. This ensures that an error or problem can
never put the system into an undesirable state.”

C++ const. Several participants used const in C++ to make sure state does not change, but
it does not meet their needs. First, there is no way to make special cases for fields on a per-method
basis: either fields are part of an object’s abstract state or not. One participant reported removing
const from a collection of methods rather than making a particular field mutable. Second, the
viral nature of const makes using it a significant burden, since declaring a method const
requires transitively annotating all methods that the first method calls. One participant wished for
tools that automatically added const as needed in such cases; for Java, Vakilian et al. proposed
a tool that would help programmers add similar annotations [207].
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One participant complained that const applies to methods and fields but not to whole
classes. In contrast, another participant said that marking methods const is very helpful, as
is having two interfaces to every object: a mutable interface and a const interface. The former
approach corresponds to class immutability if all methods are marked const; the latter approach
implements read-only restrictions if all methods in one interface are const.

Participants said that there were many situations in which they wanted to use const but it
did not express the invariant they needed. One participant wanted to restrict access in a more
fine-grained way than just mutability: for example, by disallowing access to particular methods
even though those methods did not change state, or permitting some kinds of state changes but
not others. Another participant cited the discrepancy between abstract and concrete state: though
one can mark particular fields as mutable in C++, it would be preferable to be able to show that
the value of a field has no effect on views of the object.

Thread safety. We were particularly interested in how participants used immutability to
manage state that was shared across threads, since free sharing across threads is a frequently-cited
benefit of immutable data structures. We asked participants what techniques they use to ensure
state is safe when accessed concurrently. Two participants described architectural techniques that
hide concurrency from users, avoiding this problem. Immutability did not seem to be a commonly
used technique; participants cited traditional methods, such as serial queues and mutexes. One
participant, a framework designer, mentioned a focus on minimizing dependencies on mutable
state across threads. A major theme that arose was about reuse: when reusing existing structures,
participants had to assume that structures were mutable because they had no guarantees otherwise.
One participant mentioned taking advantage of immutability if it was already present. Another
participant pointed out that it is rare to be able to design a component from the ground up, so
there is usually some synchronization needed. This suggests that when designing components
for reuse, it is helpful to be able to specify to consumers of the components which aspects are
immutable. We conclude that existing techniques for specifying immutability in the languages
these participants used are insufficient for facilitating reuse in concurrent systems.

Immutable classes. We asked participants about their use of immutable classes and found that
immutable classes are used very frequently but that languages the participants use do not provide
any explicit support for them. In fact, one participant pointed out that some languages make
immutable classes difficult to write and use. In C++, copying objects is difficult and error-prone,
so one company’s style guide recommends disabling copy and assignment operations. As a result
of the difficulty of copying objects, objects tend to be mutable.

Participants mentioned using immutable classes for copy-on-write situations; for objects that
manage relationships between other objects; and for wrapping an existing mutable class in order
to enforce a particular invariant. One participant mentioned avoiding changing classes from
immutable to mutable because then anything holding a reference to the object would suddenly
depend on whatever could now cause mutations. This again is a notion of class immutability, not
object immutability. That is, instances of a class serve a particular role in an architecture, and
the class defines the role; making all instances mutable would violate invariants of many of the
clients of that class.

Security. Since many recommendations in favor of immutability come from the security
community [180] [165], we asked participants about their experiences with security considerations
in state management. One participant talked about a security-related object that the team wanted to
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make immutable but which needed to be modified as part of the teardown process, so it had to be
made mutable instead. None of our participants had a focus on security in their jobs, though most
of them worked on software that could potentially have security problems. Their perspective was
generally that security was important in security-related components, such as authentication, but
otherwise not a primary concern. One participant, who worked in part on cloud-based software,
mentioned that privacy is a more difficult issue than security because the requirements are less
clear and because privacy issues come up in more contexts.

4.5.3 Implications on language design

From the above interview findings, we extracted the following observations that are relevant for the
design of programming languages and tools. Since the interviews were of programmers working
on large, object-oriented systems, our interview findings are most applicable to object-oriented
languages that are intended to be used for large systems.

• Both read-only restrictions and immutability are used in practice for different purposes, but
the languages that our participants used do not reflect their needs.

• State management is a core issue that developers consider when designing architectures
and APIs, and developers do use read-only references and immutability (when available) to
enforce encapsulation.

• Existing mechanisms do not solve the problems that developers have when building con-
current systems, in part because they frequently re-use existing code that does not provide
immutability guarantees. Lack of transitivity of existing mechanisms results in guarantees
that are too weak to be useful.

• Incorrect state change is a frequent cause of bugs. As a result, programming language
features that help developers manage state have a good chance of preventing many bugs
and so research about such features is a worthwhile endeavor.

• Even limited read-only restriction mechanisms, such as const, can be too hard for pro-
grammers to use effectively. Designs must emphasize simplicity and usability, or the
features will not get used.

• Facilitating immutability is a core issue in programming language design; languages
that make copying objects onerous or expensive discourage programmers from using
immutability-related features.

4.5.4 Limitations

Our small sample size resulted in several limitations to our findings. We do not know whether
programming languages used for small projects or for short-lived projects would have the same
design considerations, since many of the justifications for the recommendations came from expe-
riences with large, long-lived projects. It is unclear to what extent the participants’ backgrounds
biased our findings, since nearly all of them had formal computer science training, whereas across
the industry, software engineers come from a variety of different backgrounds. Furthermore, our
participants were very experienced; novices may benefit from different language design choices
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than experts do.

4.6 A Pilot Study of Transitive Immutability Restrictions
Following techniques from the human-computer interaction community [136], we conducted a
user-centered, iterative design process to create language features with which users can express
state change constraints in a way that is both usable and useful. Rather than assuming that users
need all possible features, we are starting from the assumption that the language should be as
simple as possible while still providing what users need to address their problems. There is a
tradeoff between simplicity and completeness: adding keywords for all possible features that users
might need might make addressing more problems feasible but also make the system so complex
that users cannot successfully use those features correctly. By designing our system according to
the needs that practitioners have expressed and iteratively testing specific designs with users, we
hope to arrive at a practical solution that addresses many, but likely not all, of the problems that
practitioners face in this space.

We must distinguish between requests from practitioners and their actual needs. Users
frequently do not know what features would benefit them most [16], so asking them what features
they want is only the beginning of the process. We grounded our interviews by asking primarily
about their experiences and only secondarily about their feature requests; by basing our designs on
the requirements of the systems the users were building, we increase the chance that our system is
effective on real-life problems.

4.6.1 Transitivity
Based on our finding that some programmers want guarantees that can only be provided by
transitive immutability and the disparity in transitivity support between research languages and
commonly-used languages, we focused on the question of transitivity. We piloted a user study
comparing a non-transitive subset of IGJ [223] with a modified version that always enforces
transitivity, which we call IGJ-T. We started with IGJ due to its availability and practicality: it can
be used by experienced Java programmers and requires learning only how IGJ annotations are
processed, not a whole new programming language. Initially IGJ was an extension to Java using
generics [223], but we used a revised version based on the Java annotation system [167].

Because we wanted to compare always-non-transitive immutability to always-transitive im-
mutability in our study, we only told our participants about the @Immutable annotation, not
any of the others. This forced a non-transitive approach to immutability for the participants in
the control condition. For the transitive case, which we wanted to be identical to IGJ except for
transitivity, we created a version of IGJ, IGJ-T. In IGJ-T, if a class has a constructor that returns
an @Immutable result, then all fields of that class must be transitively @Immutable. The
implementation of IGJ-T works by visiting all methods when typechecking; for methods that are
constructors that are annotated @Immutable, it recursively visits the types of the class’s fields
and verifies that all of them are marked @Immutable.

The design of IGJ greatly facilitated verification of transitive immutability relative to writing
an analyzer from scratch. IGJ is implemented as part of the Checker framework [168], which
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Figure 4.1: Class diagram of starter code

provides a collection of related facilities for checking properties with annotations in Java. In
particular, the Checker framework made it very easy to extend IGJ with a new verification on
constructors.

IGJ-T gives error messages like the following example:

error: [transitivity.invalid] Cannot declare
Simple() with annotation @Immutable because Simple
transitively contains @Mutable Date d on path
@Immutable AContainer a -> @Mutable Date d

@Immutable Simple () {
ˆ

IGJ-T gives the full field path to the erroneous field so that programmers can easily find the
cause of the problem.

4.6.2 Study design and pilot results

We designed four tasks, intended to take 90 minutes total, in the context of a program to track
outcomes of chess games (Figure 4.1 summarizes the architecture). After obtaining IRB approval,
we recruited a convenience sample (N=3) of PhD students experienced in Java to pilot our study.
Two participants completed a pre-test regarding their programming experience and understanding
of final. Of these, one participant with over a year of Java experience, on hearing an explanation
of the fact that final only applies to assignment but not to the referenced objects, exclaimed,
“no one ever highlighted that key thing [before]!” The tasks are summarized below:

1. Suppose your language has a feature that lets you specify that once a Game has happened,
it should not be changed. Please make any changes necessary to the existing program to
express this using whatever language feature you think would be best.

2. Now, we will show you the feature we have designed, which we call @Immutable.
(Participants were then given a description of IGJ or IGJ-T depending on the experimental
condition to which they were assigned). For the following sample code, please write which
lines would give compile errors to test your understanding of @Immutable. (The sample
code included a Person class with fields for eye color and name; the eye color was supposed
to be fixed and the name could be changed. The instructions showed how @Immutable
could be used to make the eye color immutable and compared @Immutable with final,
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which would not suffice when used only on the eye color field because the eye color was a
reference to a Color object.)

3. Please implement the updatePlayerName() method to change the name of a player.

4. Please implement the changeGameOutcome() method to update the history for a cor-
rected game outcome. Game must remain @Immutable.

The first task was designed to elicit how the participants would want to express the immutability
concepts, if given free reign, using the natural programming elicitation approach. Note that the
prompt (and the instructions beforehand) did not use the word immutable in order to try to avoid
biasing the participants’ vocabulary choice.

The second task introduced the design of the immutability construct that participants would
be using and verified that they understood it in a small test. All of the participants understood
their version of @Immutable.

In the third task, we expected participants in the IGJ condition to erroneously mutate an
object that was used as a key in a hash table, resulting in a bug; we expected participants in the
IGJ-T condition to spend longer on the task but avoid the bug. In the fourth task, we expected
participants in the IGJ-T condition to spend extra time solving the problem but reap little benefit.

Though the user study was very small-scale (three participants, and the first was only given
the first two tasks), we have learned helpful insights about Java programmers’ expectations. In
the first task, one participant used immutable as a qualifier on the Game class declaration; the
other added a freeze qualifier on a Game parameter to one of the constructors of GameList
(neither participant used the Java annotation syntax).

The third task required participants in the IGJ-T case to essentially rewrite the entire game
history; in the IGJ case, a simpler rewriting was possible. In both cases, however, the participants
were surprised that they had to rewrite data structures rather than modifying them in place:
“It seems complicated because even if you want to change the name you have to reconstruct
everything.” Some Java programmers appear to find immutable data structures confusing, and
encountering them forces a difficult problem-solving process.

One participant in the non-transitive case had recently been doing more functional program-
ming, so we expected that this experience might make immutability more intuitive. However, this
participant modified Person in place, not realizing that this would break various aspects of the
data structures, in part because Person was being used as a hash table key. When this participant
discovered the problem while testing and debugging, the participant exclaimed, “this is what
happens when you mutate [stuff] in place!” and commented that maybe upon switching back to
an imperative programming context, it was hard to remember all the problems that are inherent in
imperative programming.

Due to the time spent on the third task, one participant did not start the fourth task; the other
two found it similar to the third task.

Though we restricted our study to a small subset of IGJ, some participants had difficulty
understanding its error messages while trying to fix their bugs. For example, one participant spent
over two minutes debugging this error message:
error: [method.invocation.invalid] call to
setBlackPlayer((@org.checkerframework.checker.igj.
qual.Immutable :: t_starter.Player)) not allowed
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on the given receiver.
game.setBlackPlayer(newPlayer);

ˆ
found : @Immutable Game
required: @Mutable Game

The participant kept checking the argument to setBlackPlayer, but the problem was that
game was @Immutable and the solution was to create a new Game object instead of modifying
the existing one. Note that this error was an existing part of IGJ. In our limited pilot, only one
user used IGJ-T, and that user did not encounter any transitivity error messages.

Threats to validity include the small set of tasks we used in comparison to the wide variety of
tasks that real software engineers perform; the small codebase and short timeframe of the study;
and the relative inexperience of our participants, who were mostly graduate students with small
amounts of professional experience.

4.7 Conclusion
Despite the vast design space for language features supporting immutability in programming
languages and plentiful advice regarding how programmers should use them, there is only
scarce empirical evidence supporting these recommendations. We presented a classification of
immutability features, an analysis of their tradeoffs, and a pilot user study, challenging the notion
that providing a very flexible feature set is best. In the next chapter, we will describe Glacier,
which arose from what we learned designing and evaluating IGJ-T. By focusing on a simple set of
features, we were able to achieve our usability objectives while maintaining the expressiveness
needed in many common cases. Chapter 5 continues the discussion of immutability by describing
Glacier, a system we designed to address some of the usability difficulties we observed in IGJ-T
while still meeting our design goals.
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Chapter 5

Glacier: Transitive Class Immutability for
Java1

5.1 Introduction

The space of immutability support in languages is complex; chapter 4 describes eight dimensions
along which a language can support immutability. If a programming language is to support the
specification and enforcement of immutability, what kinds of immutability should the language
support? Supporting as many different kinds of immutability as possible results in a complex
system; to date, there are no usability studies published of immutability specification systems.
Our studies of IGJ-T in chapter 4 showed how supporting different kinds of immutability at once
can result in a system that is very difficult to use effectively and correctly. Alternatively, a design
that supports a small set of immutability-related features might be easy to understand and apply
but fail to capture useful constraints. Such a system might fail to achieve the goals of immutability
systems: preventing bugs and documenting and enforcing specifications. This motivates the
research question for this chapter: can we select a subset of immutability features and design a
corresponding programming language such that:

1. Real users can use the immutability restrictions effectively with minimal training; and

2. Expressing immutability with the language actually prevents bugs in situations where
software engineers have already decided on an immutable design?

To address these questions, we designed, implemented, and evaluated Glacier, a type annota-
tion system for Java. Type annotations are an existing mechanism in Java that supports extending
the type system. Based on the observation that programmers would benefit from strong guarantees
(chapter 4), we focused on transitive class immutability. Transitivity ensures that immutable
objects can never refer to mutable objects; class immutability means that immutability of an object
is specified in its class’s declaration. Glacier, which stands for Great Languages Allow Class
Immutability Enforced Readily, enforces immutability statically, with no effect on the runtime and
therefore no performance cost on the compiled software, so that users can get strong guarantees at
compile time.

1Portions of this chapter previously appeared as [46].

55



We evaluated the practicality, applicability, usability, and usefulness of Glacier in two case
studies on existing code and in a user study with 20 participants. In the case studies, we success-
fully applied Glacier to a spreadsheet model component and to a reusable immutable container
class, observing that Glacier is applicable to these real-world, existing software systems. In
applying Glacier, we also found two previously-unknown bugs in the spreadsheet implementation.
In the user study, we compared Glacier with final, since final is the current state-of-the-
practice mechanism for specifying immutability in Java. When given programming tasks, users
in the condition where they only had final all made various errors that resulted in breaches of
immutability, even after receiving explicit training in how to use final correctly; in contrast,
although the participants who used Glacier had never seen it before, almost all of them succeeded
in using it to specify immutability correctly. We also asked participants to complete programming
tasks with immutable classes, and found that although most users were able to complete the tasks,
all users of final wrote code that had bugs or security vulnerabilities due to improper mutation;
Glacier prevented these problems at compile time.

This chapter makes the following contributions:
1. A definition and formal model of transitive class immutability as an extension to Feather-

weight Java [100];

2. An implementation of that model in a tool called Glacier, which enforces transitive class
immutability in Java. By enforcing only the kind of immutability for which there is the
strongest empirical support, we have achieved significant simplifications relative to existing
systems;

3. Evaluations of Glacier in two case studies on real software projects that showed that Glacier
captures a kind of immutability appropriate for those projects;

4. The first formal user study of any immutability system. We compared Glacier to final
and found that all ten participants who used final wrote code that had bugs or security
vulnerabilities, even after having been trained on correct final usage, in a situation in
which Glacier statically detects those problems. Almost all the Glacier users were able to
complete the tasks successfully.

Designing an enforcement system requires making a collection of design choices regarding
what immutability means and how it will be enforced. We identified eight distinct dimensions of
immutability chapter 4, resulting in at least 512 different combinations of features. As such, any
proposal should include a justification for its position in the design space.

Design recommendations. Chapter 4 described our interviews with professional software
engineers and our conclusion that the transitive immutability subspace seemed to reflect the
needs of our interviewees. Immutability can provide particularly useful guarantees: immutability
provides guarantees regarding state change, rather than guarantees regarding access (as in the case
of read-only restrictions). Relative to non-transitive immutability, transitive immutability is more
useful: the entire state of an immutable object is immutable, rather than just a part that depends
on the object’s implementation. For example, if a transitively immutable Person object has
a reference to an Address object, Address must be immutable as well. As a result, objects
that are transitively immutable can be shared safely among threads without synchronization, and
invariants that are established regarding objects’ state are always maintained. Our interviews also
found evidence in support of class immutability, with some engineers observing that most classes
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serve a particular architectural role, and that role typically either requires mutability or not.

5.2 The Design of Glacier

5.2.1 Evidence-based design
We designed Glacier using an evidence-based approach. Based on our prior findings showing that
transitive immutability provides particularly useful guarantees, we concluded that Glacier would
support transitive immutability. In order to facilitate practical usage of Glacier, since Witschey et
al. found that simplicity and ease of use are predictive of adoption [218], we designed Glacier
to be as simple as possible while still enforcing immutability. Glacier is a static typechecker, so
it provides strong, compile-time guarantees and imparts no runtime cost on programs. When
invoking the existing Java compiler on the command line, users can pass a command-line argument
that causes the compiler to invoke the Glacier annotation processor; users of a build system can
arrange to always pass this argument by default. This approach has practical advantages, since
teams can adopt Glacier without changing compilers and individual programmers can choose
when to invoke the checker, for example skipping checking to temporarily use unsafe debugging
code. However, it is possible to circumvent these checks by not running the annotation processor.
For example, from a class that is compiled without Glacier, one could modify a public field in an
@Immutable class defined in an external .jar file.

Favoring simplicity over expressiveness may limit adoption by limiting applicability. For
example, fields in immutable objects cannot be initialized lazily or include circular references.

Figure 5.1 shows several design alternatives, comparing Glacier to the earlier IGJ and IGJ-T.
#1 shows how in IGJ, immutability is a property of references, not of classes. Compared with IGJ,
IGJ-T (#2) also enforces that fields of classes for which there are immutable instances must have
all-immutable fields (enforcing transitivity). In Glacier (#3), immutability is a property of classes,
not of references. Variant #4 explores a possible extension of Glacier, in which the compiler
can automatically derive immutable versions of mutable classes. We elected not to pursue that
approach, since our interview had indicated that most classes are used either in an immutable or a
mutable way, but not both.

5.2.2 Syntax and context
We were interested in evaluating our tool in the context of an existing corpus of code and with
programmers who might be able to use it. As such, we implemented Glacier in the context of
Java, which has a large and active user base. Java is also representative of a broad class of object-
oriented languages. Implementing Glacier as a type annotation processor has several benefits
over a from-scratch approach: by using Java type annotations, Glacier uses only existing Java
syntax and can be parsed by the standard Java parser. Glacier is implemented within the Checker
Framework [168], which facilitated Glacier’s development. In Glacier, types can be annotated with
@Immutable to indicate that they are immutable. Types that are not annotated are not guaranteed
to be immutable. Glacier represents this with an implicit annotation of @MaybeMutable. Here
is an example of a simple @Immutable class:
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1: IGJ. Immutability is a property of references. Immutability is not transitive.
1 public class Game {
2 // No need for ’outcome’ to be immutable, since immutability is not transitive.
3 private Outcome outcome;
4
5 // Constructor returns a reference to an immutable object.
6 @Immutable Game (Outcome outcome) {
7 this.outcome = outcome;
8 }
9 }

2: IGJ-T. Immutability is a property of references. Immutability is transitive.
1 public class Game {
2 // @Immutable is required when declaring ’outcome’ because there is
3 // at least one constructor that returns an @Immutable reference.
4 private @Immutable Outcome outcome;
5
6 // Constructor returns a reference to an immutable object.
7 @Immutable Game (@Immutable Outcome outcome) {
8 this.outcome = outcome;
9 }

10 }

3: Glacier. Immutability is a property of classes. Immutability is transitive.
1 @Immutable public class Game {
2 private Outcome outcome; // OK because Outcome class was declared @Immutable
3
4 // Every instance of Game is immutable, so no need to specify immutability.
5 Game (Outcome outcome) {
6 this.outcome = outcome;
7 }
8 }

4: An variant of Glacier, in which the compiler can synthesize immutable subsets of
mutable classes.
1 // Assume Outcome is mutable, but the compiler can synthesize an
2 // immutable version by leaving out the mutating methods
3 @Immutable public class Game {
4 Outcome outcome; // error: Outcome is mutable
5 @Immutable private Outcome immutOutcome; // OK: use immutable subset
6
7 Game (Outcome outcome) {
8 // Assignment is always permitted in the constructor
9 this.outcome = outcome;

10 }
11
12 void test () {
13 this.immutOutcome.setOutcome(WON); // compile error: no such method
14 this.outcome = ... // compile error because Game is @Immutable
15 }
16 }

Figure 5.1: Alternatives we considered for immutability systems.
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@Immutable class Person { ... }

5.2.3 Class immutability
Some systems, such as IGJ [223], support both class immutability and object immutability. How-
ever, we seek to design a system that is as simple as possible and yet still reflects users’ needs. We
found, perhaps surprisingly, that supporting only class immutability and not object immutability
resulted in significant simplifications to the system. For example, suppose @Immutable could
be applied to objects and classes. Consider an identity method:

interface DateUtilities {
public Date identity(Date d);

}

The declaration of identity does not specify whether its argument is @Immutable. A
caller of identity may require that the annotation on the returned object is the same as the
annotation on the passed object, but the interface does not provide that guarantee. Polymorphism
addresses this problem:

interface PolymorphicDateUtilities {
public @I Date identity(@I Date d);

}

This notation means that the Date input to identity has some annotation, @I, and the
returned object has the same annotation. Though polymorphism increases flexibility, adding this
feature increases the complexity of the language.

Another problem with object immutability pertains to the subtyping relationship between mu-
table and immutable instances of a particular class. Consider a method that took an @Immutable
object as a parameter. Passing a @MaybeMutable object would be unsafe because the method
might assume that no state in the object will change in the future, perhaps sharing it among threads.
Likewise, a method that expects a mutable object cannot take an immutable object because the
immutable object lacks mutating methods. Therefore, in Glacier there is no direct subtyping
relationship between the mutable and immutable types. By supporting only class immutability,
the user can decide whether each class should be mutable or immutable, and then there is no
question of subtyping among objects of the same class. Alternatively, one could have a common
supertype of both the immutable and mutable subclasses. This requires introducing a third type,
again resulting in more complexity. Either the user has to manually implement all three classes,
or there must be a system by which the user may specify how to generate them.

Supporting only class immutability also simplifies error messages: on seeing an error message
pertaining to an annotated type, the user can always know that the annotation came from the
class’s declaration or a conflicting local annotation, rather than via type inference (which would
otherwise be important to avoid the proliferation of annotations on all types). When a user sees
a type name, the annotation is implicit; if there is a declaration of @MaybeMutable class
Date, then there is no need to annotate any other usage of the Date type because every Date
is @MaybeMutable. Likewise, an object is immutable if and only if its class is immutable,
simplifying reasoning. These semantics are formalized in § 5.2.9.
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5.2.4 Restrictions of immutability

Glacier enforces two restrictions on the fields of @Immutable classes: all fields must be
@Immutable, and fields cannot be assigned outside the class’s constructors. Note that the
former requirement implements transitive immutability: an @Immutable class’s fields must
all be @Immutable, so the referenced objects cannot have their fields reassigned or refer to
mutable objects, etc. final is permitted on fields but is redundant with @Immutable on the
containing class. For example:

@Immutable class Person {
String name; // OK; String is @Immutable
Date birthdate; // Error; Date is @MaybeMutable

void setName(String n) {
name = n; // Error; Person is @Immutable

}
}

When a reference to an object is of @Immutable type, Glacier guarantees that the referenced
object is immutable. However, if a reference type is not @Immutable, Glacier provides no
immutability guarantees. In particular, the referenced object may dynamically be @Immutable.
As a result, subclasses of @Immutable classes must be @Immutable, but subclasses of
@MaybeMutable classes can be either @MaybeMutable or @Immutable. Importantly, a
subclass of a @MaybeMutable class can only be @Immutable if no superclass has a non-final
field or field of @MaybeMutable type. Likewise, if an interface is declared @Immutable,
then all implementing classes must be @Immutable, but a @MaybeMutable interface can be
implemented by an @Immutable class. All subinterfaces of @Immutable interfaces must also
be @Immutable. This ensures that all subtypes of an @Immutable type are @Immutable.

It is not obvious that it should be permitted to declare an immutable subclass of a mutable
class. It might seem that if the superclass has a guarantee of mutability, the subclass should
adhere to that guarantee. However, that is precisely why the alternative to @Immutable is
@MaybeMutable: a @MaybeMutable class is not guaranteed to be mutable. A significant
disadvantage of this design decision is that adding a non-final or @MaybeMutable field to a
@MaybeMutable class is a breaking change for @Immutable subclasses; this disadvantage is
compounded by the fact that subclasses may not even be in the same package as the superclass
and the implementor of the superclass may not be aware of the existence of subclasses. However,
the problem of changes in superclasses unexpectedly breaking subclasses is long-standing in
object-oriented systems and is well-known as the fragile base class problem [127]. Enabling
immutable classes to subclass certain mutable classes enables existing, commonly-used design
patterns to be compatible with Glacier. For example, Google’s Guava libraries [162] provide
an ImmutableList class that (indirectly) extends java.util.AbstractCollection, which cannot be
@Immutable because it has mutable subclasses. However, ImmutableList itself does not support
mutation and can be annotated @Immutable. Because practicality is a design objective of
Glacier, we considered allowing @Immutable subclasses of @MaybeMutable classes a good
tradeoff to make. It might be possible to address the fragile base class problem by supporting
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an additional annotation for classes that must not refer to any mutable state but which may have
@MaybeMutable subclasses.

Java primitives, such as int, are @Immutable; assignment to a primitive-type variable
reflects binding the variable to a different primitive, not a mutation of an existing value. Glacier
includes a list of JDK classes, such as String and Integer, that are @Immutable, but that
list does not currently include all immutable classes in the JDK.

It is an error in Glacier to give an annotation to a type use that is different from annotation
given at the type’s declaration. If no annotation is provided in the type’s declaration, then the
annotation @MaybeMutable is implicit. As a special exception, both @Immutable Object
and @MaybeMutable Object are permitted, so that all @Immutable types have a common
supertype that specifies immutability. For example, one can specify a container that can hold
any immutable object. @Immutable Object is a subtype of @MaybeMutable Object: a
@MaybeMutable Object can refer to any object at all. For example:

@Immutable class ImmutableContainer
<T extends @Immutable Object> { ... }

class Container<T> { ... }

In the Checker framework, receiver annotations are contravariant with respect to overrides:
an overridden method must be called on an object with a supertype annotation of the original
method’s receiver. This ensures that if the method was invokable on an object of superclass
type, it will be invokable on an object of subclass type as well. Glacier overrides this to permit
covariant annotation overriding in the receiver. This allows methods of Object to be overridden
in @Immutable subclasses, and it is safe because dispatch to the method of an @Immutable
subclass implies that the @Immutable annotation on the receiver is correct.

5.2.5 Additional annotations for arrays

Arrays are an older Java feature and their design has various inconsistencies with other aspects
of Java, so they pose some special problems. For example, occasionally it is desirable to write
a method that can take both mutable and immutable arrays; this is safe if the method can be
statically guaranteed to never reassign any of the array elements. Note that this case does not
arise with other kinds of objects because with other objects, the types dictate the immutability
annotation. To address this case, Glacier includes an additional annotation, @ReadOnly, which
is used on array parameters to methods. A @ReadOnly array can also be referenced by a field
that has a @ReadOnly array type.

The empty array poses a special problem: is it mutable or immutable? It is fundamentally
immutable because it has no indices that can be modified, but it is also possible to declare a
mutable array and reference an empty array with it. One workaround might be to declare two
different empty arrays: one mutable and one immutable. Instead, the Glacier type hierarchy
includes a bottom element, so named because it is a subtype of all other types. The bottom element,
@GlacierBottom, applies to objects that have all properties of mutable and immutable objects,
and can therefore be used when one wants either kind of object. One can declare an empty array of
Object as follows: static final Object @GlacierBottom [] EMPTY ARRAY =
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new Object @GlacierBottom [0];. null also has annotation @GlacierBottom
because it can be assigned to references with any annotation.

When any new object is allocated, it is guaranteed to not be aliased directly. For example,
when the clone() method is called on an array, there are no aliases to that array (though there
may be aliases to its elements). As a result, the result of a clone() call may be assigned
to an @Immutable array or to a @MaybeMutable array; Glacier achieves this by annotat-
ing the return type of clone() with @GlacierBottom. Certain JDK methods also return
@GlacierBottom arrays, such as Arrays.copyOf.

Our experience is that most users do not use arrays regularly, instead preferring collection
classes, so the complexity of arrays may not be a significant burden to most users.

5.2.6 Typecasts
Normally, Java permits unsafe downcasts at compile time and checks for safety at runtime.
Glacier has no runtime component, so unsafe casts are forbidden. For example, if u is of
type @Immutable C, then Glacier reports a compile error on this cast: ((@MaybeMutable
C)u).

5.2.7 Type parameters
Suppose an @Immutable class has a type parameter:

@Immutable class Box<T> {
T obj;

}

If Box is instantiated with a mutable type for T, then Box contains a mutable object, which is
a violation of transitive immutability. As a result, Glacier restricts type parameter instantiations
on @Immutable classes to @Immutable types. This is a conservative approximation, since
the type parameter may never be used in a field. However, checking whether a type parameter
is used as a field depends on the implementation of the referenced class, which might result in
confusing errors and which would violate modularity: if an immutable class was changed from
not using its type parameter in a field to doing so, that would be a breaking change for clients that
instantiated the class with a mutable type parameter. Furthermore, it is our experience that most
generic classes use their type parameters in fields, so the conservative nature of this restriction is
unlikely to be important in many use cases.

5.2.8 Robustness to future changes
One of the problems with final is that although it restricts assignability on fields to which it is
applied, there is no way to specify that all fields of a class are final. When adding a new field
to an immutable class, the author may neglect to mark the field final. Likewise, final cannot
specify restrictions at the usage of a type, so clients of a class cannot ensure that it is final.
Glacier solves this problem by permitting users to annotate any type use with an annotation. If
that annotation is inconsistent with the annotation used in the type’s declaration, Glacier will
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Mod ::= assignable | final
CL ::= [@Immutable] class C extends C implements IF {Mod C f; K M}
IF ::= [@Immutable] interface I extends I {M-Decl}
K ::= C(C f) { super (f); this.f = f; }
M-Decl ::= C m(C x)
M ::= M-Decl { return e; }
e ::= x | e.f | e.m(e) | new C(e) | (C) e | e.f = e

Figure 5.2: Syntax of Glacier; gray boxes show differences with Featherweight Java.

report an error. This lets programmers specify that they depend on the immutability of a particular
class they are using so that the compiler will report an error if that class is ever edited to make it
mutable in the future. Although this offers an opportunity for authors of APIs to break clients, we
think of this as exposing an existing mechanism of client breakage, which cannot currently be
identified by the compiler.

5.2.9 Glacier formalization
The syntax of Glacier is shown in Figure 5.2. To help inform the design of Glacier, we also created
a formal model (shown in Figure 5.3). Our formalism is an extension of Featherweight Java [100],
which is a commonly-used minimal core calculus for Java. Gray boxes show changes in Glacier.
For conciseness, not all rules from Featherweight Java are presented; those not presented are still
part of the system. For example, casting is as in FJ.

5.3 Evaluation: case studies

5.3.1 Objectives
The restrictions that Glacier enforces were justified by the work described in chapter 4, our goals
of simplicity, and the recommendations of experts [23], but do those restrictions reflect situations
that arise in real software? Can Glacier work in software systems that are large and complex?
Through case studies, we explored how applicable Glacier is to some kinds of real-world software
systems. Though we cannot infer from case studies that Glacier is applicable to all systems
(indeed, it likely is not), the goal of case studies was to gain an understanding of situations to
which Glacier does apply and to refine the design of Glacier itself. For example, we found in
the second case study that some immutable classes derive from classes that also have mutable
subclasses; a previous formulation of Glacier did not reflect that use case. The case studies also
drew our attention to the problems of overriding methods defined in Object. Finally, the case
study systems provided a source of interesting test cases and helped us make Glacier more robust,
particularly in the area of type parameters.

We sought case studies that would help us explore two kinds of use cases for Glacier. First,
would Glacier be applicable to a large codebase corresponding to application software, given the
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Syntactic MUTABLE and IMMUTABLE judgments: If an @Immutable class includes mutable fields, it will
be judged IMMUTABLE but fail to typecheck.

class C extends D implements I {Mod C f,K M}MUTABLE

@Immutable class C extends D implements I {Mod C f,K M} IMMUTABLE

interface I extends I{M-Decl}MUTABLE

@Immutable interface I extends I{M-Decl} IMMUTABLE

MUT-FREE judgment: If a class’s fields, including all fields introduced by superclasses, are all final and immutable,
then the class may be used as a superclass of an immutable class. This is different from the IMMUTABLE judgment,
which requires a declaration of @Immutable. The MUT-FREE judgment is used only to specify the static semantics.

Object MUT-FREE @Immutable class C extends D implements I {. . .}MUT-FREE

D MUT-FREE ∀i.Ai = final ∧ Ci IMMUTABLE

class C extends D implements I {Mod C f,K M}MUT-FREE

Subtyping:

@Immutable Object <: Object

[@Immutable] interface I extends J{. . .}
I <: Ji

[@Immutable] class C extends D implements I{. . .}
C <: D

[@Immutable] class C extends D implements I{. . .}
C <: Ii

Static Semantics: To the FJ rule for classes, Glacier adds the condition that D is mutable. Mutable classes cannot
have immutable superclasses, since permitting that would allow a reference of immutable superclass type to refer to a
mutable object.

fields(D) = D g M OK inC K = C(D g,C f) {super(g); this.f = f; }
D MUT-FREE ∀i.Ci IMMUTABLE methods(I) ⊂ (decl(M) ∪methods(D))

@Immutable class C extends D implements I {Mod C f,K M}OK

fields(D) = D g MOK inC K = C(D g,C f) {super(g); this.f = f; }
DMUTABLE ∀i.Ii MUTABLE methods(I) ⊂ (decl(M) ∪methods(D))

class C extends D implements I {Mod C f,K M}OK

Γ ` t0 : C0 fields(C0) = Cf Γ ` t2 : C ′
i C ′

i <: Ci C0 MUTABLE

Γ ` t0.fi = t2 : Unit

Figure 5.3: Formalization of Glacier semantics.
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complex interactions among modules? Second, since generics pose special challenges, how would
Glacier work in a library that made extensive use of generics? We selected ZK Spreadsheet, a
Java-based spreadsheet implementation, to address the first question, and we selected the Guava
ImmutableList class to address the second question.

5.3.2 Case study: ZK Spreadsheet Model
ZK Spreadsheet is a commercial, partly open-source, Java spreadsheet implementation [166]. It
supports importing documents from Excel and provides a server-based spreadsheet component
that can be inserted into web pages via an Ajax client-side component. As a case study of Glacier,
we refactored the model portion of ZK Spreadsheet 3.8.3 (comprising about 36 KLOC) so that
cell styles were immutable (cell styles record information required for correct visual rendering
of cells, such as background color, font, etc.). We also updated the rest of the spreadsheet
implementation (comprising about 21 KLOC) to use the new model. We added annotations so that
Glacier could enforce immutability statically. The refactoring took me approximately 20 hours,
not counting time spent fixing bugs in Glacier; this would likely have been less if we had already
been familiar with the ZK codebase. In the process, we identified two previously unknown bugs
in the spreadsheet implementation, one of which was due to incorrect copying code; in our revised
version, no copying was necessary because immutable objects can be shared safely. The other bug
related to font cache misses when changing fonts in cells.

Before starting, we asked the authors of ZK Spreadsheet whether they used any immutable
structures, and they explained that they did not because they were wary of the performance cost
of copying that would be likely if objects were immutable. However, cell styles can be shared
among many cells, and ZK Spreadsheet has no data structure tracking which cells use a given
style. Thus, to modify a cell’s style, the system must make a fresh style, since modifying the
existing style might incorrectly affect other cells. As a result, though the cell class was mutable, it
was copied on nearly every modification. We believe the performance cost of using immutable
styles is minimal; in fact, immutable styles may increase performance by facilitating safe sharing.

Our refactoring primarily used three strategies to convert mutable classes to immutable ones.
In most cases, clients that mutated classes changed a small number of parameters at a time; in
these cases, we added a new constructor that took the previous instance and the new value of the
parameter. This approach was similar to that used by Kjolstad et al in their automatic refactoring
tool [108]. Other classes had many attributes that typically needed to be modified at once; if those
constituted most of the state of the object, the client called a constructor; otherwise, we used a
mutable Builder object [77] to represent the collection of changes. This approach prevented overly
verbose, inefficient implementations that would have resulted from using the first approach alone.

From our case study, we conclude that Glacier can be adopted to express and enforce transitive
class immutability in some complex, real-world systems with a practical amount of effort.

5.3.3 Case study: Guava ImmutableList
After our initial case study on application software, we wanted to see how Glacier might be
used on a very different system. Google’s Guava project includes several immutable collec-
tion classes, including ImmutableList; though relatively small, this library is designed
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to be used in a wide range of projects. We annotated ImmutableList and its superclass,
ImmutableCollection, with @Immutable and made the appropriate changes necessary
to make them compile. As a result of the use of generics in ImmutableList, when using
Glacier, it was necessary to specify annotations for the bounds of the type parameters. For ex-
ample, the original declaration of ImmutableList included: public abstract class
ImmutableList<E> extends ImmutableCollection<E>. With Glacier, however,
E is restricted to immutable objects, so the new declaration reads @Immutable public
abstract class ImmutableList<E extends @Immutable Object> extends
ImmutableCollection<E>. This constrains E to descending from @Immutable Object,
expressing an upper bound on the type parameter. One might expect to write @Immutable
E rather than E extends @Immutable Object, but Java specifies that @Immutable E
expresses a lower bound on E rather than an upper bound; that is, it specifies that E must be a
supertype of @Immutable Object, not a subtype.

ImmutableList included this method:
static Object[] checkElementsNotNull(Object... array).
checkElementsNotNull took and returned a mutable array, but callers passed an immutable
array to checkElementsNotNull, which was an error. Because Java methods cannot be
overloaded with different annotations, we were unable to provide an alternative method with the
same name that takes and returns an immutable array. This is one case in which polymorphism
might be desirable. However, because checkElementsNotNull never modifies the input
array, it is not actually necessary to return an array. We addressed this problem by refactoring this
method to only do the checking and not return the input array.

The only aspect of ImmutableList that we were unable to represent in Glacier is a cache in
ImmutableCollection, which caches an ImmutableList representation of the collection. Some lan-
guages, such as C++, permit exclusion of specific fields from enforcement of immutability. Glacier
has no provision for allowing mutable fields in immutable objects so that Glacier can provide
strong guarantees. A workaround would be to populate the cache inside the ImmutableCollection
constructor, but this would have a performance cost if the list representation is never needed.
Future work might explore extending Glacier to permit lazy initialization of fields in immutable
objects; such initialization could be done safely if it is based only on state that was available at
initialization time.

5.4 User study

Our user study of Glacier was designed to see whether Java programmers could use Glacier
effectively with little training. We found that they could; in contrast, Java programmers without
Glacier were unable to use final to express immutability correctly even after receiving appro-
priate training. We also found that Java programmers without Glacier wrote code that mutated
immutable state, creating bugs and security flaws; Glacier detects these errors statically. Though
there is a wide variety of proposals in the literature for systems that support immutability, we have
not found any others that have been evaluated in a formal user study.
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5.4.1 Methodology

We recruited 20 experienced Java programmers to participate in our study, which was approved
by our IRB. For each sequential pair of participants, we randomly assigned one to a control
condition, in which the participant used final, and the other to a treatment condition, in which
the participant used Glacier, resulting in ten participants in each condition. After obtaining
informed consent, we gave participants a pre-study questionnaire regarding their programming
experience, including an assessment of their prior understanding of final. Participants in the
final condition were asked to read three pages of documentation on final; participants in the
Glacier condition completed a two-page paper-based tutorial on using Glacier. Participants were
permitted to ask questions during this phase of the study. The remainder of the study consisted
of four programming tasks in three different Java packages. Participants used the IntelliJ IDEA
Community 2016.2 Integrated Development Environment (IDE) with Java 1.8 on a 15” MacBook
Pro; we recorded audio and a video of the screen for analysis. We helped participants as needed
with issues related to the computer system and IDE they were using, such as how to find a web
browser and how to copy/paste, but did not answer questions about Glacier or final.

A study replication package is available [47], including all materials that were used in the
study.

Task 1: making Person immutable. The Person package only included two classes: Person
and Address. We asked participants: “Please make any necessary changes so that ‘Person’ in the
‘person’ package is immutable. After you’re done, there should be no way to change an instance
of a class after it is created.” Participants had 22 minutes to complete this task.

public class Person {
String name;
Address address;
...

}

We expected that some participants in the final condition would neglect to mark Address as
final.

Task 2: making Accounts immutable. The Accounts package represents all of the user
accounts on a computer system. We asked participants: “Please make any necessary changes so
that ‘Accounts’ in the ‘useraccounts’ package is immutable. After you’re done, there should be no
way to change an instance of a class after it is created.” Participants had 20 minutes to complete
this task.

public class Accounts {
User [] users;
...

}

We expected that some participants in the final condition would neglect to modify the User
class; in addition, making this class immutable required defensively copying the users array
because there is no way in Java to make array elements final, and we expected that some
participants would forget.

67



Glacier participants who did not complete tasks 1 and 2 in the allotted time were told how to
finish because otherwise the resulting compiler errors would interfere with the next tasks.

Revision with advice. After they completed tasks 1 and 2, participants in the final condition
were given a copy of page 73 from Effective Java [23], which outlines how to make a class
immutable:

1. Don’t provide any methods that modify the object’s state.

2. Ensure that the class can’t be extended.

3. Make all fields final.

4. Make all fields private.

5. Ensure exclusive access to any mutable components.
Participants could ask any questions for clarification; then, they were told they could revise their
work from the previous tasks.

Task 3: FileRequest.execute(). We were interested in whether using Glacier would prevent
programmers from creating security vulnerabilities in their software. The Java getSigners() bug
[124] involved a private array being returned from an accessor, enabling any client to modify the
contents of the array. We replicated the structure of the getSigners() bug in the context of the
code from the previous task. Participants were told: “A FileRequest represents a request for a
particular file from a web server, represented by a WebServer object. Normally, third-party clients
implement their own types of requests, so it is important that the Accounts object that a Request
gets access to is secure. As a test of the Accounts system, please implement FileRequest.execute()
so that it does the appropriate access checks before granting access. In the process, you will need
to implement User.getAuthorizedFiles().” Participants had 20 minutes to complete this task.

Although implementing User.getAuthorizedFiles() was stated as an incidental task, we were
primarily interested in whether participants who used final remembered to copy the private
array, authorizedFiles. Neglecting to do so would result in a security vulnerability similar
to the getSigners() bug, since then any client of User could change which files a User was
authorized to access. In the Glacier condition, participants could either copy the private array
before returning it, or change the return type to return an @Immutable array; by enforcing
transitive immutability of User, Glacier would identify all unsafe handling of the array. Participants
in the final condition who did not copy the array but told the experimenter they were done with
the task were given a sample of exploit code and then given an opportunity to revise their solution.

Task 4: HashBucket.put(). We wanted to know whether Glacier could prevent users from
accidentally inserting mutation into existing immutable classes in real-world-like situations; is
this an error that many programmers make without Glacier? We based our task on bug #1297
[161] in BaseX, which is an open-source XML database [160]. In that bug, the delete method
on an implementation of an immutable hash map incorrectly modified the old hash map’s data
structures. In order to replicate this in a user study, we simplified the implementation to use a much
simpler data structure while leaving the external API and comments in place as much as possible.
The result was code that should be substantially easier to read and understand than the original
and included many hints that the class was immutable, such as the fact that all modification
methods returned a new object and the fact that the implementations of the provided methods
made extensive use of copying.
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final Glacier
Correctly enforced immutability in Person 0/101 10/10
Correctly enforced immutability in Accounts 0/101 9/102

FileRequest.execute() tasks without security vulnerabilities 4/8 7/7
HashBucket.put() tasks without bugs 3/10 7/7

Table 5.1: Summary of user study results

We gave participants our hash map, which was implemented with an array of buckets, each
of which contained lists of keys and values. The instructions to participants included: “Hash-
Bucket.put() is only partially implemented. Please finish the implementation by replacing the
placeholder ‘return this’ with the right code.” Since this task was last, we gave participants as
much time as they needed to complete this task except when the total study period was exhausted.
Users in the final condition who erroneously modified the old object’s data structures and
declared that they were done, if time allowed, were given an additional test case that exhibited the
problem and the opportunity to fix their implementations.

5.4.2 Participants

We solicited participation from several different degree program mailing lists at Carnegie Mellon
and from our acquaintances. Most of the participants were either Master’s or Ph.D. students. We
recruited 20 Java programmers (six of whom self-identified as female and 14 as male), and paid
them $15 after they completed our study, which took about an hour and a half. Their programming
experience ranged from four to nineteen years, with a mean of 9.5 years. Everyone had at least
a year of Java experience; the mean was three years. They had an average of two years of
professional experience writing software. We also asked participants to self-report their level of
Java expertise, selecting from “novice,” “intermediate,” and “expert.” Three participants identified
themselves as experts; the rest considered themselves intermediate-level. Fifteen (75%) had used
Java annotations before; eighteen (90%) had used final before.

We asked participants five questions about the behavior of final; the average score was
3.45/5. 11 participants knew what final meant when specified on a class, and 11 knew what
final meant when specified on a method declaration. 17 participants knew that final does
not forbid assignment in a constructor; 17 knew that it forbids assignment in setters; 13 knew that
it does not forbid calling setters on final fields. We found no relationship between experience
using Java and the number of these questions participants answered correctly.

5.4.3 Results

Results are summarized in Table 5.1. The denominators vary because some participants did not
complete all tasks.

1After participants made corrections.
2Including extra time and compensating for searching; see § 5.4.3.
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Error # users
Provided mutating methods 0
Person not final 6
Address not final 10
Accounts not final 2
User not final 9
Fields of Person not final 2
Fields of Address not final 6
Accounts.users not final 1
Fields of User not final 4
Fields of Person not private 4
Fields of Address not private 8
Accounts.users not private 2
Fields of User not private 7
Omitted copying users in Accounts constructor 4
Omitted copying users in Accounts.getUsers() 2
Omitted copying authorizedFiles in User constructor 8

Table 5.2: Errors made by participants using final for immutability that remained after revision.
Errors consist of failures to follow the advice in Effective Java [23].

After participants revised their code according to the advice from Effective Java, we counted
errors (shown in Table 5.2) participants made with respect to that advice. Despite having the
recommendations available while editing, every participant using final made mistakes. Two
users made no non-transitive mistakes (i.e., mistakes directly in the Person and Accounts
classes). No users remembered to make Address final, even though an instance of Address
was used in Person. We conclude that enforcing immutability with Java as it currently exists is
too complicated and error-prone for Java programmers to do effectively.

We stopped one user in each task at the time limits (22 minutes and 20 minutes, respectively).
The average initial (pre-revision) time for Person and Accounts were 4 and 6 minutes, respectively.
Participants spent an average of 6 minutes revising after receiving the Effective Java page. Among
participants who said they were done with both tasks, the total average time, including revisions,
was 15 minutes.

Making Person and Accounts immutable with Glacier. All of the Glacier participants
successfully annotated Person with Glacier. Three did not finish modifying Accounts within 20
minutes, though one was given additional time and succeeded after 6 extra minutes. A common
obstacle in the Accounts task was initializing an immutable array. The starter code included:

String[] files = {"RootUserBankAccounts.txt"};

Unfortunately, Java forbids annotations in an obvious place:

String @Immutable [] files =
@Immutable {"RootUserBankAccounts.txt"}; // ERROR

Participants needed to write instead:
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String @Immutable [] files =
new String @Immutable [] {"RootUserBankAccounts.txt"};

Most users solved this with an Internet search, but the time required to do this was very
variable. If we ignored this time, then two additional participants (9/10) would have succeeded
within 20 minutes.

Several of the earlier participants did not annotate one of the classes until the next task due to a
problem with the build system, in which it failed to rebuild all files that depended on the changed
files; we later revised the instructions to avoid this problem. Correcting for this and deducting the
time spent on array initialization resulted in an average total annotation time (across both tasks)
of 11 minutes; applying these corrections to final users results in an average of 14 minutes for
those users. The difference compared to the average time for final users is significant with
p < 0.1 (Wilcoxon rank sum test).

FileRequest.execute(). Seven of the Glacier users successfully completed this task. One
participant encountered an unrelated build system bug; two did not finish within 20 minutes. One of
these two misinterpreted the starter code and attempted to implement getAuthorizedFiles()
as a much more complex method than the accessor that was intended. Eight of the final users
said within 20 minutes that they were done. Though Glacier prevented any security problems for
the Glacier users, four of the final users (half of those who finished) did not copy the private
authorizedFiles array, causing a security vulnerability similar to the Java getSigners() bug.

HashBucket.put(). All of the final users said they completed the task within 27 minutes,
but they required up to an additional 11 minutes to fix their bugs after we showed them the
additional test case. The average total time for final users was 18 minutes; the average total
time for Glacier users who finished was 14 minutes. The difference in times was not significant.
Seven of the final users incorrectly modified the HashBucket’s internal data structures, resulting
in a bug. In addition, six final participants returned the existing HashBucket instance rather
than creating a new one. One Glacier user gave up after 29 minutes, having gotten an error from
Glacier after trying to modify an immutable array and could not figure out another way to solve the
problem. In addition, two Glacier users had already exhausted the overall study period and could
not be given enough time to finish. Overall, 3 of 10 final users completed the task correctly;
Glacier detected the problem statically, and 7 of 9 Glacier users who started the task completed it
successfully.

5.4.4 Discussion

We had hypothesized that participants would spend significantly less time specifying immutability
with Glacier than with final because using Glacier required only adding annotations, whereas
using final required making several kinds of changes, such as copying arrays in constructors.
Variance in time was high in both tasks, as is typical in studies of programmers [90]. For example,
some users (particularly in the final condition) wrote test code to see if they could cause data
to be mutated; others wrote no tests (time spent writing and executing tests was included in the
task times above). In addition, final users would have spent more time if they had completed
all of the work required to do the tasks correctly. However, even if Glacier did not save users any
time in specifying immutability relative to final, it likely took users the same amount of time to
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enforce a much stronger property while avoiding mistakes.
One might have expected final participants to make fewer errors than they did, since all of

the participants in that condition had used final before. However, some of the participants had
never attempted to use final to enforce immutability. One participant remarked when starting
to read the final documentation: “I’ve only used final on integers before, so this will be
instructive.” Some participants vocalized considering and rejecting Bloch’s advice, for example
reasoning that since a class had no setters, it was immutable, so other changes (such as making the
class final) were unnecessary. When using final for immutability, then, it is not sufficient to
say that a class should be immutable; one must say exactly what kinds of future changes the class
should be robust to.

In the final condition, the requirement to defensively copy arrays in constructors and acces-
sors was particularly problematic. For example, 80% of the participants omitted a defensive copy
of the authorizedFiles array in the User constructor. Some participants complained about
the performance impact of this strategy: after implementing defensive copying in getUsers(),
one participant remarked, “I’m not really happy. If there’s a lot of users and getUsers is called
frequently. . . that will slow down the performance.” Two participants, after reading the Effective
Java page, asked for an explanation of why defensive copies were necessary, but even after hearing
the explanation, one of these two users omitted required defensive copying. We conclude that
although following the advice would result in certain protections against mutation, few users
can successfully apply the advice to even a simple programming project, even when given the
advice immediately before needing to use it, and even with access to the recommendations while
programming; we believe the problem is one of complexity, lack of enforcement, and lack of
understanding that the recommendations are relevant.

Some Glacier users reported that the two annotations on arrays—one on the array itself and
one on the component type—were confusing. Though this a fundamental aspect of containers,
we believe that one of the reasons users faced difficulty is that the design of arrays (a relatively
old feature) is inconsistent with the approach used in generic classes, in which the component
type is specified in angle brackets rather than next to the container name. The user study did not
include tasks involving annotated type parameters; our experience suggests that using them is
straightforward, but writing parametrized classes can be difficult due to the need to specify type
parameter bounds.

Our impression from observing participants was that Glacier’s error messages tended to force
users to understand transitivity; final users who misunderstood our definition of immutability
received no such feedback. Future studies should distinguish between behavioral changes caused
by a clearer understanding of immutability (fostered by training or tooling) and behavioral changes
caused by compiler enforcement.

5.4.5 Limitations
The main threats to validity are of our study are due to the simplicity and limited nature of our
tasks and the relative inexperience of our participants. Likewise, our participants came from a
relatively narrow set of backgrounds. It is possible that more-expert Java programmers would
have been able to use final more successfully and that the training we provided for final
was insufficient. We think it is unlikely that programmers would be less likely to incorrectly
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mutate immutable structures in a more complex codebase than the one we provided, but perhaps
more-expert programmers would be better at identifying the implicit immutability requirements.
We selected our tasks to expose opportunities to mutate structures incorrectly; though we have
shown that these tasks do result in incorrect mutation, the fraction of real-world programming
tasks that are similar is unknown.

5.5 Conclusion
We have designed, formalized, and implemented Glacier, which enforces transitive class im-
mutability in a Java annotation processor. We conducted a user study and found that Java
programmers could generally specify immutability effectively with it; in contrast, Java program-
mers in our study could not use final to specify immutability even though they had advice
on how to do so. We also found that programmers incorrectly mutate immutable data structures
when they only have final, whereas Glacier detects those errors statically. Glacier represents
a promising approach to enforcing immutability in real-world Java software and implements a
model that could be extended to other languages as well.

Glacier’s development process serves to show the value of applying user-centered methods
to the design of programming language extensions. By basing the language design on formative
studies, we were able to focus the design on features that would be most useful; by evaluating the
language with users, we were able to show both that users could use the tool effectively and that it
addressed a problem that would likely arise frequently in real-world-style code.

In the next chapters, we will show how we extended the user-centered design approach to a
novel programming language, Obsidian, which is targeted at blockchain programming.
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Chapter 6

Introduction to Obsidian1

Developing Glacier (chapter 5) provided an opportunity for exploring using several HCI techniques
for designing and evaluating programming languages, such as interviews and summative usability
studies. However, Glacier was an extension to an existing programming language. For the next
project, we were interested in exploring a larger programming language design problem in a more
novel space in order to have more flexibility to introduce novel language design approaches.

In blockchains [93], a decentralized network of computers maintains system state and executes
transactions. Blockchains support deploying smart contracts, which are programs that can
maintain state. Blockchains have been proposed for high-stakes applications such as financial
transactions, health care [91], supply chain management [99], and others [67], and are an ideal
testbed for a new language design process. The need for a safer programming language is
motivated by the history of security vulnerabilities, through which over $80 million worth of
virtual currency has been stolen [81, 185]. However, ordinary programmers and software engineers
need to be able to write blockchain applications; it does not suffice to assume that the developers
will be experts in formal verification or that companies will invest the resources required to
formally verify that their programs are correct. Instead, we sought a more lightweight approach
that provides additional safety guarantees at low cost to developers.

Many techniques promote program correctness, but our focus is on programming language
design so that we can prevent bugs as early as possible — potentially by aiding the programmer’s
reasoning processes before code is even written. Because of our interest in developing a language
that would be effective for programmers, we designed a surface language, Obsidian, in addition
to a core calculus, Silica. Obsidian stands for Overhauling Blockchains with States to Improve
Development of Interactive Application Notation.

Obsidian is a programming language for smart contracts that provides strong compile-time
features to prevent bugs. Obsidian is based on a novel type system that uses typestate [194] to
statically ensure that objects are manipulated correctly according to their current states, and uses
linear types [214] to enable safe manipulation of assets, which must not be accidentally lost. We
prove key soundness theorems so that Silica can serve as a trustworthy foundation for Obsidian
and potentially other typestate-oriented languages.

This chapter contributes a requirements analysis for smart contract languages. It also summa-

1Portions of this chapter previously appeared in [48, 51].
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rizes the final design of Obsidian using an example. Chapter 8 describes the methods we used to
iterate on our initial design to arrive at the final design. Chapter 9 describes the language formally.
Chapter 10 describes case study evaluations of Obsidian, and chapter 11 describes the empirical
user evaluation.

6.1 Requirements for Smart Contract Languages

We began work on Obsidian by eliciting requirements for successful smart contract languages by
observing the application domain and the history of the community’s experience with existing
languages.

6.1.1 Strong static safety

Once a smart contract is deployed and users rely on the deployed contract, bugs in the deployed
contract can be impossible to fix, since the nature of some blockchains is such that the contract
cannot be modified after deployment. Furthermore, smart contracts may implement high-stakes
software governing valuable resources, such as cryptocurrencies, or maintaining important busi-
ness records. Bugs in smart contracts undermine the very purpose of the blockchain, which is to
facilitate transactions among parties that have not established trust.

Delmolino et al. found that novices typically make several serious errors when writing smart
contracts [59]; although the study was done with Serpent, which predated Solidity, popular
blockchain languages have not been designed to prevent the bugs that Delmolino et al. found,
such as errors in encoding state machines resulting in loss of money.

As a result, we argue for strong, compile-time mechanisms to eliminate as many classes of
bugs as is practical. Work on static smart contract checking, such as Oyente [121] and MadMax
[83], aims to find instances of particular classes of bugs. But these kinds of static analysis may not
have the same kinds of impact on programmer’s reasoning as deeper language design decisions.
Indeed, correctness by construction may be a more direct means of attaining safety, since it
demands that programmers structure their artifacts in a way that avoids classes of bugs. It is better,
then, to combine careful language design, which shapes how people think, with static analyses that
can detect other bugs that the language cannot prevent. For example, commonly-used languages
offer type systems that do not facilitate reasoning about assets, which can be owned and consumed.
This leads to bugs in which assets are accidentally either consumed more than once or lost forever,
as has been shown to occur [59]. Likewise, traditional languages do not facilitate compile-time
reasoning about the states that objects are in, even though smart contracts typically implement
state machines that support different transactions depending on the state. This can lead to bugs in
which transactions are invoked on contracts that are in inappropriate states. Prior work showed
that programmers benefit from typestate annotations when using object protocols [196]; since
these protocols are common in blockchain systems, we wanted to see whether typestate might
benefit programmers when writing implementations as well.
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6.1.2 User-centered design
Blockchain software development is fundamentally a human process, involving human developers
who must create applications to meet human needs [43]. A smart contract language, then, is an
interface by which people can specify behavior, and is subject to the principles of human-computer
interaction.

Many programming language designs and tools for software engineers aim to reduce the
difficulty of writing programs, but unfortunately, most of the tools in use today were not formally
evaluated with users. Instead, designers guessed what would be beneficial for users and provided
it. But the users of the tools may have different needs than the designers, so it does not suffice
for designers to create tools for themselves and hope that others will learn to use the tools
effectively. We argue that software engineers, being people too, are amenable to the methods of
human-computer interaction [131] and that designers of programming languages should use a
wide variety of techniques in order to make their tools more usable [43].

Many approaches developed in the programming language research community are not
adopted by developers because they are too hard to use or are impractical for real-world usage.
For example, Bhargavan et al. [17] proposed formal verification of smart contracts. Though many
researchers are working on this, formal verification is still impractical for most programmers to
use.

As a medium for our research on user-centered design of programming languages, we also
sought to use Obsidian to advance the science of programming language design. As a result, we
made high-level design choices that would enable direct comparison with existing approaches,
such as Solidity. For example, making Obsidian an object-oriented language with a similar
syntactic structure as Solidity meant that we could recruit from the same population in user studies
comparing both languages.

6.1.3 Blockchain-agnosticism
As of this writing, there were at least 28 different blockchain platforms [222]. An author of a
smart contract may need to deploy on one blockchain platform initially, and then migrate as the
blockchain market matures. Even Ethereum, which is the longest-running and most popular smart
contract platform, plans significant changes in Ethereum 2.0, which may cause some users to
migrate to or from Ethereum. Each platform supports a particular set of languages; currently-
supported languages include Java, Go, Kotlin, Solidity, C++, WebAssembly, Python, JavaScript,
Liquidity, and Rust (among others). A new smart contract language that only works on one
platform locks itself to an uncertain future. More importantly, programs last a long time, and
implementations need to be robust to changes in underlying infrastructure.

Instead of committing to a particular platform, designers should make a small number of
safe assumptions about the nature of blockchain platforms, allowing developers to create stable
software against a simple abstraction. By doing so, language designers might improve safety and
usability relative to general-purpose languages. Languages might rely on the following properties
that most blockchain systems have in common:
Sequential execution: Blockchain platforms typically support neither parallelism nor concur-

rency, simplifying reasoning relative to systems that do support either feature.
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Deterministic evaluation: Because all peers must obtain the same result when executing trans-
actions, smart contracts cannot depend on arbitrary external API invocations.

High cost of computation: Computation on the blockchain is substantially more expensive
than off-chain computation, so although transactions are typically small, they need to be
exceptionally cheap. Public blockchains require users to pay cryptocurrency according
to the computational cost of their transactions, providing additional motivation to keep
transactions cheap and also motivating a need to predict transaction costs in advance of
execution.

Unpredictable transaction ordering: Clients submit transaction requests to blockchains with-
out knowing what transactions will occur between their submission and the transactions’
executions. If an intervening transaction violates an implicit precondition of a transaction,
the results of the transaction might be surprising to the user who issued it. [121]

Cryptography needed to maintain secrecy: Blockchains permit a collection of nodes to see
all the data on the blockchain. Any data that should remain secret from some of these
nodes must be encrypted. This requires cryptographic techniques, such as cryptographic
commitments [10]. This difficulty comes up frequently; for example, a gambling application
might need to allow players to place secret bets, but if the bets are stored naı̈vely, the bets
will be public.

Off-chain interaction: Client software that executes off-blockchain needs to interact with de-
ployed smart contracts. Some existing approaches, such as that in Ethereum, limit the
APIs to those that only take primitive arguments, stifling the expressiveness of the APIs.
New languages should facilitate well-designed, expressive APIs by allowing arbitrary data
structures to be passed and returned. New languages should make it easy to develop client
software that interacts with blockchains.

Storage: Some blockchain platforms, such as Hyperledger Fabric, require users to manually save
and restore data from the ledger as key/value pairs. This allows fine-grained control but
also requires programmers to expend significant effort and offers the potential for bugs.
Languages should facilitate automatic, efficient storage of smart contract state.

6.2 Obsidian Language Summary
Detecting bugs was our initial objective, so we considered bugs, such as the DAO hack [55],
which resulted from a reentrant invocation in which a contract allowed itself to be invoked while
in an inconsistent state. We also analyzed characteristics of proposed blockchain applications. In
general, we observed that proposed blockchain applications typically maintain high-level state,
which governs which operations are safe.

Objects in smart contracts frequently maintain high-level state information [71], with the set
of permitted transactions depending on the current state. For example, an Auction might be
Open or Closed, and the bid transaction can only be invoked on an Open auction. Prior work
showed that including state information in documentation helped users understand how to use
object protocols [196], so we include first-class support for states in Obsidian. By using typestate
in Obsidian, the compiler can ensure that objects are manipulated correctly according to their
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states.
We selected an object-oriented approach because smart contracts inevitably implement state

that is mutated over time, and object-oriented programming is well-known to be a good match to
this kind of situation. This approach is also a good starting point for our users, who likely have
some object-oriented programming experience. However, in order to improve safety relative to
traditional designs, Obsidian omits inheritance, which is error-prone due to the fragile base class
problem [127]. We leveraged some features of the C-family syntax, such as blocks delimited with
curly braces, dots for separating references from members, etc., to improve learnability for some
of our target users. Following blockchain convention, Obsidian uses the keyword contract
rather than class. Because of the transactional semantics of invocations on blockchain platforms,
Obsidian uses the term transaction rather than method. Transactions can require that their
arguments, including the receiver, be in specific states in order for the transaction to be invoked.

Since smart contracts frequently manipulate assets, such as cryptocurrencies, we designed
Obsidian to support linear types [214], which allow the compiler to ensure that assets are neither
duplicated nor lost accidentally. These linear types integrate consistently with typestate, since
typestate-bearing references are affine (i.e., cannot be duplicated but can be dropped as needed;
for another example, see [201]). A particular innovation in this approach is the fusion of linear
references to assets with affine references to non-assets. Thus, references to non-assets can be
discarded as needed, but owning references to assets cannot be discarded without using disown.
Whether a reference is linear or affine depends on the declaration of the type to which the reference
refers. States and contracts can be defined with the asset keyword, in which case an instance of
the contract represents an asset that should not be lost whenever it is in that state (or any state).
For example, an insurance policy might own Money while the policy is active to ensure that
claims can be paid, but after the policy changes to an expired state, the policy no longer holds the
money.

References to objects have types according to both the contract of the referenced object
and a mode, which denotes information about ownership. Modes are separated from contract
names with an @ symbol. Exactly one reference to each asset contract instance must be Owned;
this reference must not go out of scope. For example, an owned reference to a Coin object can
be written Coin@Owned. Ownership can be transferred between references via assignment or
transaction invocation. The compiler outputs an error if a reference to an asset goes out of
scope while it is Owned. Ownership can be explicitly discarded with the disown operator.

Unowned is the complement to Owned: an object has at most one Owned reference but an
arbitrary number of Unowned references. Unowned references are not linear, as they do not
convey ownership. They are nonetheless useful. For example, a Wallet object might have
owning references to Money objects, but a Budget object might have Unowned aliases to those
objects so that the value of the Money can be tracked (even though only the Wallet is permitted
to transfer the objects to another owner). Alternatively, if there is no owner of a non-asset object,
it may have Shared and Unowned aliases. Examples of some of these scenarios are shown in
Figure 6.1 to provide some intuition. A summary of modes is shown in Table 6.1.

State is mutable; objects can transition from their current state to another state via
a transition operation. For example, ->Full(inventory = c) sets the state of a
TinyVendingMachine to the Full state, initializing the inventory field of the Full
state to c. This leads to a potential difficulty: what if a reference to a TinyVendingMachine
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Aliasing examples
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Object

Object@Owned

Object@Unowned

Object@Unowned

Object@Unowned

Object

Object@Shared

Object@Shared

Object@Shared

Object@Shared

(a) (b)

Figure 6.1: Some common aliasing scenarios. (a) shows an object with one owner; (b) shows a
shared object.

with mode Empty exists while the state transitions to Full? To prevent this problem, typestate
is only available with references that also have ownership. Because of this, there is no need
to separately denote ownership in the syntax; we simply observe that every typestate-bearing
reference is also owned. Then, Obsidian restricts the operations that can be performed through
a reference according to the reference’s mode. In particular, if an owned reference might exist,
then non-owning references cannot be used to mutate typestate. If no owned references exist, then
all references permit state mutation. In contrast, although an object may have multiple Shared
aliases, those references do not specify typestate, and an object that has an Owned reference
cannot also have a Shared reference, so the same soundness problem does not exist for Shared.

In order to leverage those observations, we became interested in a typestate-oriented approach
[5], in which states of objects are incorporated into types. For example, rather than merely having
a LightSwitch type, we can have LightSwitch@On be the type of a reference to an object
that is in the On state. Then, if the user attempts an invalid operation, such as turning on a switch
that is already on, the compiler can issue an error.

Featherweight Typestate [78] is a core calculus for a class of typestate languages. However,
we found in user studies that our early prototypes of Obsidian, which were based on a simplified
version of this calculus, led to significant user confusion chapter 8. The new language requirements
we identified motivated the design of a new formalism; we designed Silica (§ 9.4), a new typestate
calculus that, despite its simplicity, still allows users to express nearly all the properties that earlier
typestate calculi enabled. Silica also supports key features that we observed users expected to
have, such as dynamic state tests and field assignment.

Typestate-based types are in a class called linear types. Unlike traditional types, linear types
can change as operations are performed. For example, invoking turnOff() on a reference of
type LightSwitch@On changes the type of the reference to LightSwitch@Off. Conve-
niently, linear types are also what are needed to ensure that assets are never lost. Obsidian includes
owned objects: for each owned object, there is an object that owns it via an owning reference. If a
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local variable that owns an asset goes out of scope, the compiler emits an error message. Fields
that own assets can only exist in contracts that are themselves assets. This way, each asset always
has an owner.

Smart contracts commonly manipulate assets, such as virtual currencies. Some common smart
contract bugs pertain to accidental loss of assets [59]. If a contract in Obsidian is declared with the
asset keyword, then the type system requires that every instance of that contract have exactly
one owner. This enables the type checker to report an error if an owned reference goes out of
scope. For example, assuming that Coin was declared as an asset, if the author of the buy
transaction had accidentally omitted the deposit call, the type checker would have reported
the loss of the asset in the buy transaction. Any contract that has an Owned reference to another
asset must itself be an asset.

Mode Meaning Typestate
mutation

Owned This is the only reference to the object that is owned. There may
be many Unowned aliases but no Shared aliases.

Permitted

Unowned There may or may not be any owned aliases to this object, but
there may be many other Unowned or Shared aliases.

Forbidden

Shared This is one of potentially many Shared references to the object.
There are no owned aliases.

Permitted

state name(s) This is an owned reference and also conveys the fact that the
referenced object is in one of the specified states. There may be
Unowned aliases but no Shared or Owned aliases.

Permitted

Table 6.1: A summary of modes in Obsidian.

In Obsidian, the mode portion of a type can change due to operations on a reference, so
transaction signatures can specify modes both before and after execution. As in Java, a first
argument called this is optional; when present, it is used to specify initial and final modes
on the receiver. The � symbol separates the initial mode from the final one. In the example
of Figure 6.2, the signature of buy (lines 27-28) indicates that buy must be invoked on a
TinyVendingMachine that is statically known to be in state Full, passing a Coin object
that the caller owns. When buy returns, the receiver will be in state Empty and the caller will no
longer have ownership of the Coin argument.

Obsidian contracts can have constructors (line 11), which initialize fields as needed. If a
contract has any states declared, then every instance of the contract must be in one of those states
from the time each constructor exits.

A formal description of Obsidian is in chapter 9. However, Figure 6.2 shows some of the
key features of Obsidian using the example of a tiny vending machine (TVM). TVM is a main
contract, so it can be deployed independently to a blockchain. A TVM has a very small inventory:
just one candy bar. It is either Full, with one candy bar in inventory, or Empty. Clients may
invoke buy on a vending machine that is in Full state, passing a Coin as payment. When buy
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is invoked, the caller must initially own the Coin, but after buy returns, the caller no longer
owns it. buy returns a Candy to the caller, which the caller then owns. After buy returns, the
vending machine is in state Empty.

1 // This vending machine sells candy in exchange for coins.
2 main asset contract TinyVendingMachine {
3 // Fields defined at the top level are in scope in all states.
4 Coins @ Owned coinBin;
5
6 state Full {
7 // inventory is only in scope when the object is in Full state.
8 Candy @ Owned inventory;
9 }

10 state Empty; // No candy if the machine is empty.
11
12 TinyVendingMachine() {
13 coinBin = new Coins(); // Start with an empty coin bin.
14 ->Empty; // start in the Empty state
15 }
16
17 // this must be in the Empty state to call restock, and
18 // this transitions to Full state
19 // c references a Candy that is initially Owned by the caller, and ends up
20 // Unowned by the caller since it is owned by this
21 transaction restock(TinyVendingMachine @ Empty >> Full this,
22 Candy @ Owned >> Unowned c) {
23 // transition to the Full state with c as the inventory
24 ->Full(inventory = c);
25 }
26
27 transaction buy(TinyVendingMachine @ Full >> Empty this,
28 Coin @ Owned >> Unowned c) returns Candy @ Owned {
29 coinBin.deposit(c);
30 Candy result = inventory;
31 ->Empty;
32 return result;
33 }
34
35 transaction withdrawCoins() returns Coins @ Owned {
36 Coins result = coinBin;
37 coinBin = new Coins();
38 return result;
39 }
40 }

Figure 6.2: A tiny vending machine that shows key features of Obsidian.

The implementation leverages Dict, a polymorphic dictionary implementation. In practice,
the implementation of Dict might be replaced by a platform-native primitive, such as native
mappings on Ethereum or HashMap instances on Hyperledger Fabric.

As another example of the relevance of linearity in smart contracts, we wrote an Obsidian
implementation of the ERC-20 token standard [213], which is shown below. In our implementa-
tion, the basic arithmetic of token value is implemented in ExampleToken, which is trusted
code. In practice, this can be implemented in reusable library code. In contrast, the rest of
the implementation in ExampleTokenBank does not use arithmetic directly. As a result, the
compiler can ensure that no instances of ExampleToken are lost accidentally.

The example shows how linear assets are managed in Obsidian. In lines 84 and 92, the tokens
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owned by the from and to accounts are temporarily removed from the balances dictionary.
Then, the appropriate amount of tokens are split off in line 101 and merged with the to account’s
tokens on line 102. Finally, the tokens are restored to the balances dictionary. This style of
manipulation is common in Obsidian: rather than mutating the tokens inside a collection, they are
removed, tracked linearly, and then the new balance is restored. In each operation, the type system
tracks ownership of the tokens. Any arithmetic is encapsulated inside the token implementation.
This contrasts with a typical Solidity implementation, in which arithmetic is used directly and is
not checked by the compiler.

The example works within the framework of ERC-20. However, linearity allows another
possible way to design token economies. Instead of having a central tracking system (a bank)
on the blockchain recording who owns each number of tokens, we could regard token objects
as capabilities [29] that have value independent of a central bank. Then, no central contract on
the blockchain need track a mapping from identity to balance; instead, those who own tokens
will hold owning references to their tokens, and to transfer ownership, the owner can leverage the
ownership transfer semantics in Obsidian. Of course, when ownership passes from the blockchain
to outside the blockchain, or to contracts not written in Obsidian, there must be dynamic checks
at the interface to ensure that untrusted code does not duplicate tokens.

The implementation leverages Dict, a polymorphic dictionary implementation. In practice,
the implementation of Dict might be replaced by a platform-native primitive, such as native
mappings on Ethereum or HashMap instances on Hyperledger Fabric.
import "Dict.obs"
import "Integer.obs"

asset interface ObsidianToken {
transaction getValue() returns int;
transaction merge(ObsidianToken@Owned >> Unowned other);
transaction split(int val) returns ObsidianToken@Owned;

}

asset contract ExampleToken implements ObsidianToken {
int value;

ExampleToken@Owned(int v) {
value = v;

}

transaction getValue(ExampleToken@Unowned this) returns int {
return value;

}

transaction merge(ObsidianToken@Owned >> Unowned other) {
value = value + other.getValue();
disown other;

}

transaction split(ExampleToken@Owned this, int val) returns ExampleToken@Owned {
if (val > value) {

revert ("Can’t split off more than the existing value");
}
ExampleToken other = new ExampleToken(val);
value = value - val;
return other;

}
}

// ERC20 has been slightly adapted for Obsidian, since Obsidian does not have
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// a built-in authentication mechanism.
asset interface ERC20 {

transaction totalSupply() returns int;
transaction balanceOf(int ownerAddress) returns int;
transaction transfer(int fromAddress, int toAddress, int value) returns bool;

// - allow ownerAddress to withdraw from your account,
// multiple times, up to the value amount.
transaction approve(int ownerAddress, int fromAddress, int value) returns bool;

// Returns the amount of allowance still available.
transaction allowance(int ownerAddress, int fromAddress) returns int;

// Transfers tokens from an allowance that has already been granted.
transaction transferFrom(int senderAddr, int fromAddr, int toAddr, int value)

returns bool;
}

main asset contract ExampleTokenBank implements ERC20 {
int totalSupply;
Dict[Integer, ExampleToken]@Owned balances;

// map from fromAddress to (map from spender to amount)
Dict[Integer, Dict[Integer, Integer]@Owned]@Owned allowed;

ExampleTokenBank@Owned() {
totalSupply = 0;
balances = new Dict[Integer, ExampleToken@Owned](new IntegerComparator());
allowed = new Dict[Integer, Dict[Integer, Integer]@Owned](new IntegerComparator());

}

transaction totalSupply() returns int {
return totalSupply;

}

transaction balanceOf(int ownerAddress) returns int {
Option[ExampleToken@Unowned] balance = balances.peek(new Integer(ownerAddress));
if (balance in None) {

return 0;
}
else {

return balance.unpack().getValue();
}

}

transaction transfer(int fromAddress, int toAddress, int value) returns bool {
Integer fromIntegerAddress = new Integer(fromAddress);
Option[ExampleToken@Owned] fromBalance = balances.remove(fromIntegerAddress);
if (fromBalance in None) {

return false;
}
else {

ExampleToken fromTokens = fromBalance.unpack();
if (value <= fromTokens.getValue()) {

Integer toIntegerAddress = new Integer(toAddress);
Option[ExampleToken@Owned] toBalance = balances.remove(toIntegerAddress);
ExampleToken toTokens;
if (toBalance in Some) {
toTokens = toBalance.unpack();

}
else {

toTokens = new ExampleToken(0); // 0 value
}

ExampleToken tokensToMove = fromTokens.split(value);
toTokens.merge(tokensToMove);
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balances.insert(toIntegerAddress, toTokens);
balances.insert(fromIntegerAddress, fromTokens);

return true;
}
else {

// Insufficient funds available.
balances.insert(fromIntegerAddress, fromTokens);
return false;

}
}

}

// Records a new allowance. Replaces any previous allowance.
transaction approve(int ownerAddress, int fromAddress, int value) returns bool {

Integer ownerAddressInteger = new Integer(ownerAddress);
Option[Dict[Integer, Integer]@Owned] ownerAllowancesOption =

allowed.remove(ownerAddressInteger);

Dict[Integer, Integer] ownerAllowances;
if (ownerAllowancesOption in None) {
ownerAllowances = new Dict[Integer, Integer@Owned](new IntegerComparator());

}
else {

ownerAllowances = ownerAllowancesOption.unpack();
}

Option[Integer@Owned] oldAllowance = ownerAllowances.replace(
new Integer(fromAddress),
new Integer(value));

allowed.insert(ownerAddressInteger, ownerAllowances);

// Options are assets because they CAN hold assets,
// but this one doesn’t happen to do so.
disown oldAllowance;
return true;

}

transaction allowance(int ownerAddress, int fromAddress) returns int {
Option[Dict[Integer, Integer]@Unowned] ownerAllowancesOption =

allowed.peek(new Integer(ownerAddress));
switch (ownerAllowancesOption) {

case None {
return 0;

}
case Some {

Dict[Integer, Integer@Owned] ownerAllowances = ownerAllowancesOption.unpack();
Option[Integer@Unowned] spenderAllowance =

ownerAllowances.peek(new Integer(fromAddress));
if (spenderAllowance in None) {
return 0;

}
else {
return spenderAllowance.unpack().getValue();

}
}

}
}

// senderAddress wants to transfer value tokens from fromAddress to toAddress.
// This requires that an allowance have been set up in advance and that
// fromAddress has enough tokens.
transaction transferFrom(int senderAddr, int fromAddr, int toAddr, int value)

returns bool
{

int allowance = allowance(senderAddress, fromAddress);
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if (allowance >= value) {
int newAllowance = allowance - value;
bool transferSucceeded = transfer(fromAddress, toAddress, value);
if (!transferSucceeded) {

// Perhaps not enough tokens were available to transfer.
return false;

}
approve(senderAddress, fromAddress, newAllowance);

return true;
}
else {

return false;
}

}
}
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Chapter 7

Permission Taxonomy and Permission
System Design

7.1 Permission Taxonomy
In designing Obsidian, we conducted an analysis of the space of permission systems so that we
might understand the context in which we were designing Obsidian. This analysis helped us make
preliminary design decisions and identify questions that we could address in user studies.

After Boyland [28], a permission confers the ability to perform certain operations on or
with the referenced object, but that ability may be consumed when it is used. Our taxonomy
of permission systems is organized around user-visible concepts and focuses on different ideas
that the system allows the user to express. The taxonomy considers both static and dynamic
enforcement. There is also a question of what each permission pertains to: should a permission
apply to references or objects?

Permit What does the permission allow the holder to do? Possibilities include equality testing
the reference, equality testing the object, reading object fields, mutating the object, mutating
the reference (for example, reassigning it to refer to a different object), and calling methods.

Deny What does the permission deny, either to the holder or to others? Options are the same as
for Permit. For example, in Obsidian, a static typestate specification on a reference implies
that other aliases to that same object cannot mutate its state.

Apply To what does the permission apply: types (in which case it applies to every instance of
those types), individual objects or values, or references?

Require What requirements are imposed on the holder of the reference? For example, if the
reference represents ownership, which is linear, then holding the reference imposes a
requirement to transfer the reference somewhere else before it goes out of scope.

Know What knowledge does the permission imply? For example, it might specify typestate
statically or dynamically, or it might assure that the referenced object will not be modified
(immutability).

Extent What is the extent of a permission? What portion of the referenced object graph does the
permission pertain to: the entire transitively-referenced state, just one object, or even just a
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specific field?

Compose How can different permissions be composed? For example, fractional permissions can
be recombined into a full permission [28]. Can permissions to different components of an
object be combined?

Test How can a dynamic operation be used to establish more knowledge than is available
statically? For example, a dynamic state check could allow safe invocation of state-specific
operations even when the state cannot be determined statically.

Parameterize How can programmers reason generically about permissions, e.g., with parametric
polymorphism? Is it possible to have parameters that represent permissions?

Use What operations are permitted on permissions themselves? Can permissions be dropped,
duplicated, or exchanged for other permissions?

Transfer How is a permission on one reference to an object transferred to another reference?
When a permissioned reference is passed as a parameter, which permissions go with the
reference? Does it depend on the reference, formal parameter, or call? Is there a way to
pass the permission temporarily so the caller’s permission is restored when the call returns?

Our goal was to develop a system that is sufficiently expressive for real-world scenarios but
also simple enough that people can use it effectively. Though user studies could help evaluate
the usability of a particular design, it would be impractical to do enough user studies to cover all
possible designs. Instead, for each dimension, we show below the relevant design decisions as
well as questions for user study. We prioritized the most important questions to evaluate rather
than attempting to answer every question with a user study. We also describe the outcomes for
each question, which we arrived at after the design work in § 7.2 and after the various user studies
(chapter 8).

Permit Consistent with existing OO languages, Shared values can be mutated via any refer-
ence. Likewise, references whose types specify typestate permit invocation of appropriate
transactions.

Deny If a reference to an object specifies typestate, all other aliases must deny state mutation
(otherwise the system would be unsound). Transaction invocations do not type check if any
of the transaction arguments are not known to be in appropriate states, given the transaction
signature.

Apply Should a permission apply to contracts (so that every instance of the contract has the same
permission), to objects, or to instances? Permissions apply to references, since user studies
showed that explicit permission annotations were helpful (§ 8.2.3). The asset declaration
on a contract affects every instance of that contract, since our study of the application space
suggests that contracts typically have either all-linear instances or all-affine instances.

Require The holder of an owning reference to an asset must either transfer ownership before the
reference goes out of scope or explicitly discard the reference. This requirement is implied
by the definition of linearity.

Know Typestate-bearing references convey static knowledge that the referenced object is in a
given state; this approach gives the strongest safety properties, facilitating conservative
transaction invocation (transactions can only be invoked when they are statically known to
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be available). How should these be written? Should there be a permission annotation, or
does the typestate specification suffice? For concision and to reduce cognitive burden, we
decided that typestate-specifying references would not need to also specify a permission.

Extent Specifications and restrictions pertain only to the referenced objects because they specify
operations that are permitted or denied on those objects, consistent with the usual semantics
for type systems. Should non-owning aliases prohibit all mutation, or just prohibit changing
typestate? For soundness, only prohibiting changes to typestate is required, but perhaps it is
simpler and thus more usable to prohibit all mutation. We did not prioritize this question for
explicit investigation in a user study, but our participants did not experience any apparent
problems with this design.

Compose Because objects have independent state machines and are owned independently, per-
missions for different objects are orthogonal.

Test Static knowledge is insufficient in some cases because necessary guarantees cannot always
be obtained statically [115]. Therefore, Obsidian needs to support dynamic state checks.
What should the syntax be? Options include switch-like (a structured approach providing
warnings when cases are omitted) or if-like (providing a Boolean expression that tests
whether a contract is in a particular state). We added both approaches in the concrete
Obsidian language, but did not prioritize evaluating this particular choice.

Parameterize Adding parametric permissions would increase language complexity and poten-
tially decrease usability, but generic programming might be more concise. We added
contract and permission parameters to enable development of reusable containers, such as
linked lists, since that would otherwise be impossible.

Use Linear assets sometimes need to be discarded intentionally. For example, a holder of a
subway token object might choose to never use it. Thus, Obsidian allows explicit discarding
of owning references. But what should this operation be called, and what should the syntax
look like? We added disown to address this need.

Transfer Our initial design implicitly transferred ownership on invocation when the formal
parameter was of owning type. Would this be confusing? If so, would an explicit approach
be better? Indeed, we found in user studies that this approach was confusing (§ 8.2.3); we
changed to an explicit syntax in formal parameters for representing changes in permissions
and added a checked permission assertion.

7.2 Decomposition of permissions for Obsidian

Given our usability objectives, we sought the simplest permission system consistent with the
above decisions. First, we decomposed the space of permissions into primitive permissions
that could be combined to express the necessary concepts. This facilitated a principled analysis
of the space of permissions. Then, we enumerated all combinations to assess which of the
primitive permissions should be exposed individually, which combinations should be given easy-
to-understand names, and which combinations were nonsensical or not useful. We observed a
trade-off between providing a small number of cohesive concepts and providing a maximally
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expressive system.
The decomposition depends on whether permissions are properties of contracts, objects, or

references. If they are properties of contracts, this might lead to a simpler language because
there would be fewer combinations available. On the other hand, it may be too restrictive. For
example, is it really the case that every contract type will be always shared or always owned?
Furthermore, is it even the case that every object will be either shared for its whole lifetime? It
seemed that some useful cases would involve tracking typestate for some period of time, during
which ownership would be required, and then later making the object shared. To enable this use
case, as well as to avoid forcing developers to create shared and owned versions of contracts that
needed to be used in both ways in different situations, we selected the more expressive approach
in which sharing is a property of references. Also, based on our understanding of how objects
are likely to be used in smart contracts, we also decided that there would be asset and non-asset
contracts, and analyzed the interactions between permissions, assets, and non-assets.

Enforcing linearity for assets entails restricting construction and destruction. Existing ap-
proaches (such as runtime checks in constructors or requiring capabilities to be passed to enable
constructor execution) can restrict construction, so we focus here on mechanisms to prevent
destruction of objects.

Table 7.1 shows the resulting permission space. References are owning or unowning; durable
or non-durable; and stateful, state-readonly, or state-unrestricted.

These combine in interesting ways, especially since each kind of reference may refer to
assets and non-assets. This separation is particularly interesting because it shows new kinds of
restrictions that we might not have considered (and which would be interesting to explore in future
work). In principle, one could have a durable reference to an object that is not an asset, enforcing
part of linearity on arbitrary references. However, in Obsidian, to simplify the system, only a
durable reference may own an asset. Thus, in Obsidian, durable references are exactly those that
are owning references to contracts that were declared as assets.

Interpretations of the combinations are shown in Table 7.1. Table 7.2 shows the semantics of
the combinations that are meaningful and useful. Analysis of these combinations resulted in the
design for Obsidian shown in Table 7.3. Note that there is no keyword for stateful; instead, that is
indicated by presence of state in the type specification. For example, Bond@Sold represents a
reference to a Bond that is in the Sold state. Our initial language design supported borrowing
explicitly, but the final design uses ownership transfer syntax (Owned >> Owned) to represent
temporary ownership transfer instead.

An important property of Obsidian permissions is that if there is an owned reference to an
object, there are no other owned or shared aliases. This is an important condition for soundness of
the typestate specifications.

90



Owned Unowned

Durable Non-durable Durable Non-durable

Stateful Owned reference
to an asset (1)

Owned,
state-specifying
reference (2)

Unsound;
mutation through
one of several
aliases violates
the others’
guarantees

Unsound;
mutation through
one of several
aliases violates
the others’
guarantees

State-
readonly

Limited utility; an
owned reference
has no need to be
restricted from
modification

Limited utility; an
owned reference
has no need to be
restricted from
modification

Limited utility;
why would one
not want to lose a
non-owned
reference?

Counterpart of
(owned,
non-durable,
stateful) (3)

State-
unrestricted

Owned reference
to an asset that
has no states (4)

Simple exclusion
(5)

A reference that
cannot be
discarded. Would
imply an
unowned asset,
which is not
useful.

Shared reference
(traditional OOP
semantics) (6)

Table 7.1: Permission combinations when sharing is a property of references. Gray backgrounds
show unsound combinations. Numbers index into Table 7.2, which shows the properties of each
numbered combination.

Permissions Assets Non-
assets

Holder of permission can: Others can:

change
type-
state

drop
ref.

specify
type-
state

change
type-
state

drop
ref.

specify
type-
state

(1) stateful asset X X X X
(2) stateful X X X X X
(3) state-readonly X X X X X X
(4) owned asset X X X X
(5) owned X X X X X
(6) shared X X X X X

Table 7.2: Permission semantics of useful combinations. Numbers are references from Table 7.1.
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Keyword Specifies
typestate

Asset Non-asset

Permissions Meaning Permissions Meaning

Owned durable,
owned

Linear reference owned Affine reference

Shared N/A N/A shared Standard semantics
Unowned state-

readonly
Aliases object that
may be Owned

state-
readonly

Aliases object that
may be Owned

Owned X durable,
stateful,
owned

Owned asset refer-
ence

stateful,
owned

State-guaranteeing
affine reference

Table 7.3: Obsidian permission system
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Chapter 8

Formative Design in Obsidian1

8.1 Introduction
In this chapter, we describe techniques we used to triangulate data about individual language
changes. Then, we describe the final design of Obsidian and explain the methods that we used to
create and evaluate it.

We were interested in adapting traditional HCI methods to the context of the design of
programming languages that target professional software engineers. Our high-level research
question can be refined in terms of three research questions:
Naturalness: How can we obtain insights as to what language designs will be natural for

programmers, given that we are trying to obtain particular static safety guarantees in the
language?

Iteration: How can we iterate on a particular design to make it more effective for users?
Comparison: How can we compare two language designs to see which is more effective for

users?
We wanted to apply known HCI methods, such as natural programming [132], Wizard of Oz

[54], interviews, and rapid prototyping. However, we found that the study design process was
very challenging due to the nature of programming and the complexity of the design space. These
challenges included:
Training: How could we train participants in a new programming language in a short enough

amount of time to make studies practical?
Recruiting: How could we recruit participants who have sufficient programming skill and whose

results would generalize beyond the population of students, despite having limited access to
professional software engineers?

High prototyping cost: How could we conduct user studies on programming languages that have
only informal designs and no implementations, since cost of building working prototypes is
high?

Variance and external validity: How would we mitigate high variance, which is typical in
programming tasks, without constraining the tasks so much that they were no longer

1Portions of this chapter previously appeared in [45].
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representative of real-world programming tasks?
The problems of variance and external validity were particularly relevant for quantitative

studies, which needed to be practical in the context of our university setting. Programming tasks
that are not extremely constrained tend to produce results with high variance, making statistical
significance hard to obtain. On the other hand, tasks that are highly constrained suffer from low
external validity, since real-world programming tasks are typically long and complex.

• By adapting the natural programming technique to allow progressive prompting, we were
able to obtain both unbiased responses as well as data that were relevant to the particular
designs we were considering.

• By back-porting language design questions to languages with which participants were
familiar and by using the Wizard of Oz evaluation technique, we were able to obtain
usability insights on incomplete designs, and isolate the design questions of interest from
confounding variables.

• By dividing large tasks into multiple, smaller tasks, and by using pilot studies to set task
time limits effectively in quantitative studies, we were able to reduce variance sufficiently
to obtain meaningful results in complex programming tasks, which otherwise would have
had very high variance.

• By recruiting participants who were representative of at least some junior-level professional
developers, we were able to maximize external validity in our studies while still conducting
them practically at a university setting. We were also able to show usability impacts of the
language designs under consideration.

• By developing incremental tutorials with integrated practice opportunities, we were able to
teach the languages to participants in a short period of time (for Obsidian, about 90 minutes
was typical).

In this chapter, we describe how we integrated both formative and summative human-centered
methods into the design process for Obsidian. We have two main contributions:

1. We show by example how we have adapted several formative study techniques, such as
natural programming, Wizard of Oz, rapid prototyping, cognitive dimensions of notations
analysis, and interview studies to inform the design of Glacier and Obsidian. We informed
the results of these techniques with implications of the theory of programming languages to
develop languages that were effective for users and also achieved our safety objectives. We
found that our adapted methods were effective when used with particular kinds of study
designs, which we described in chapter 12.

2. We show how we conducted summative usability studies on new programming languages.
By developing ways of teaching the languages efficiently, effectively, and consistently, we
were able to conduct usability studies of programmers using novel programming languages.

We summarize recommendations for others who want to use these methods in their own
programming language design work. We believe that these recommendations may also be useful
in other domains. Some properties of programming distinguish it from many kinds of tasks, but
those same properties are shared with some other domains:
Problem-solving: Programming languages exist to facilitate problem-solving. However, problem-

solving can be unpredictable [119]; in user studies, some participants typically complete
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tasks almost instantly whereas others can spend hours working and still not finish. This
large variance makes running quantitative user studies very challenging.

Range of working styles: Bergström and Blackwell described a diverse collection different
approaches to programming problems [14], such as bricolage/tinkering and engineering.
These different styles may be used even by different people using the same language,
impeding a designer’s attempts to anticipate a user’s strategy or behavior.

High stakes: Errors when programming can contribute to serious real-world safety problems,
e.g., in avionics or health care systems.

For example, CAD tools affect their users’ creative processes [171]; likewise with process
engineering tools [30] and even drug design tools [193]. All of these domains involving expert
problem-solving by a variety of different people with high costs of failure.

8.2 Formative studies for Obsidian
In this section, we describe studies that helped us identify a suitable design and iterate on our
initial design ideas for Obsidian. For each study, we identify our research questions, methodology,
and results. We started by assuming that we would use typestate to achieve the desired safety
guarantees but that expressing typestate in a usable way would require substantial iteration with
users. The latter assumption was based on past work on typestate systems, such as Plural [19] and
Plaid [198], which researchers had found were difficult for users to use. All of the studies were
approved by our IRB. Because we needed skilled programmers, we recruited from appropriate
academic programs, by posting flyers, and by contacting our acquaintances. Except where noted
below, we paid participants $10/hour for participating. Materials used in the studies can be found
in the supplement.

Although chapter 6 uses the final version of the language, because the formative studies were
done earlier, they use code from earlier versions of the language. In this way, the reader can see
how we changed the language as a result of the user studies. For example, Figure 8.3 shows
different approaches that we considered for declaring local variables.

Table 8.1 summarizes all the Obsidian user studies.

8.2.1 Basic design of typestate
In order to minimize assumptions regarding how Obsidian should best represent typestate, we
conducted a natural programming study. We focus here on two of the research questions we had:

• Are states a natural way of approaching the challenges that arise in blockchain program-
ming?

• Which (if any) of our proposed ways of presenting states and state transitions is most
understandable and usable by programmers?

These are examples of the naturalness research question in chapter 1 (“How can we obtain
insights as to what language designs will be natural for programmers?”). We gave participants
a description of a voter registration system, in which we would investigate to what extent state
machines were a natural way to write smart contracts. The first task used a natural programming
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Topic Participants Methods

Basic design of typestate (§ 8.2.1) P1–P12 Natural programming
Fields in states (§ 8.2.2) P20, P66–P68 Natural programming; Usability

study
Permissions (§ 8.2.3) P14–P19 Natural programming; Usability

study
Typestate and ownership approaches
(§ 8.2.4)

P21–P25 Usability study

Summative usability study pilots P26–P34 Usability study
Summative usability study (§ 8.3) P35–P40 Usability study
RCT pilots P41–P44 RCT
RCT (chapter 11) P45–P65 RCT

Table 8.1: Summary of all Obsidian user studies described in this paper and their participants.
Participant P13 was in pilot studies. Participant numbering is consistent with prior distributed
drafts, e.g., [45].

methodology: we asked participants to implement the system using pseudocode using any
language features they wanted to solve the problem. Next, we gave participants a state diagram
that modeled the system, and asked them to modify their pseudocode to include states and state
transitions. In the third task, we gave participants a two-page Obsidian tutorial that described state
blocks. However, the tutorial omitted any description of how state transitions should be written;
we gave participants an Obsidian program that implemented the voter registration system but
which omitted state transitions. We asked participants to fill in the missing transitions by inventing
their own syntax to do so. In the fourth task, we gave participants three options for the syntax and
semantics of state transitions and asked them to use each option once in an example program we
provided. The first and third options are explained in Figure 8.1. An additional option involved a
constructor in each state that would be invoked on transitions to that state and a rule that no code
could follow a state transition.

Finally, in a fifth task, we asked participants to select one of the three options and use it to
complete the voter registration program they started earlier.

We recruited a convenience sample of seven participants, most of whom were computer
science undergraduates. Each participant was given a description of a program to implement and
one hour to complete the implementation. We paid participants $10/hour for their time.

Only two participants invented syntax denoting states and state transitions; the rest used
a conventional approach, such as an enumerated type. However, many of the approaches the
remaining five participants used were unsafe, helping to justify using typestate to improve safety.
For example, creating separate lists for unregistered and unregistered citizens results in the
possibility of citizens appearing on both lists.

We asked six of the participants to modify their pseudocode to use states. Two created explicit
state blocks with states and variables nested inside. The remaining four either maintained global
state for each citizen, or gave each citizen a state field, or created empty, immutable states at the
top of the program. Although the instructions forbid allowing duplicate registrations, several
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1 contract C {
2 state Start {
3 transaction t(int x) {
4 ->S1{x1 = x};
5 toS2();
6 }
7 }
8
9 state S1 {

10 int x1;
11 transaction toS2() {
12 ->S2{x2 = x1};
13 }
14 }
15
16 state S2 {
17 int x2;
18 }
19 }

(a) Option 1. The dynamic state (not the
lexical structure) governs which transactions
may be called. For example, line 5 calls
toS2() even though t is lexically in the
Start state and toS2() is defined in S1.

1 contract C {
2 state Start {
3 transaction t(int x) {
4 ->S1({x1 = x})
5 if in S1 {
6 ->S2({x2 = x1})
7 }
8 if in S2 {
9 ...

10 }
11 }
12 }
13
14 state S1 {
15 int x1;
16 }
17
18 state S2 {
19 int x2;
20 }
21 }

(b) Option 3. Fields can only be referenced
by code that lexically is in the state in which
those fields are defined. An if in block
can be used to enclose code that must refer-
ence fields of other states, as in line 6.

Figure 8.1: Two of the options given to participants in the basic design study.
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participants did not check for existing registrations before processing applications.
Regarding the syntactic choices we offered in the third task, three participants preferred state

constructors (part (a) in Figure 8.1), one preferred nested state blocks (part (b) in Figure 8.1), and
the remaining three either did not indicate a preference or did not complete this task.

Although most of this study focused on participant behavior, we took the opportunity to also
ask participants for their syntactic preferences. Five participants preferred a syntax where all the
actions of a state must be lexically encapsulated in that state, as in the first alternative in Figure 8.2.
Likewise, P4 felt it should not be permitted to call transactions from one state while lexically in
another state: “I’m calling S1’s transaction from code for Start.”

This preference led to a conflict in the design. We found through work with example programs
after the study that Obsidian needed to support transactions that could be executed in several
different states. For example, in the third example of Figure 8.2, line 5 may reference balance,
even though line 5 is lexically enclosed in the Empty state, in which balance is not in scope.
This represents a conflict between a syntactic preference and an expressivity concern.

Another difficulty with the constructor-based approach is that states might be entered for a
variety of different reasons, requiring different code to run after the transitions. This makes the
constructor-based approach likely too inflexible. These challenges underscore the importance of
sufficient example-based work before conducting user studies; it is easy to design a study that
provides plausible options that turn out to not support critical use cases.

This problem led us to run the study described in § 8.2.2. As a result of that study, we
addressed the conflict by requiring that transactions are lexically outside of state declarations,
like the second example in Figure 8.2. Future IDE tools could show all transactions that are
possible for an object in a given state, even though their declarations are lexically outside that
state’s declaration.

8.2.2 Fields in states
States in contracts can have different sets of fields, so transitioning can cause some fields to exit
scope and others to enter scope. For example, in Figure 6.2, the Full state has the inventory
field, but the Empty state has no fields. This study used natural programming and code under-
standing methods to investigate how users users specify cleanup of old fields and initialization of
new fields when invoking state transitions.

We recruited four participants, which was enough to provide substantial and useful feedback.
All were Ph.D. students studying software engineering. They had an average of seven years of
programming experience (ranging from three to fifteen years) and an average of 1.5 years of Java
experience.

In Part 1, we gave participants a state transition diagram for a Wallet object, which could
hold a license and money, and which had four states corresponding to the possible combinations
of contents. Participants were also given code partially implementing the Wallet, with several
TODO comments asking participants to invent code to add money to the Wallet, remove money
from the Wallet, etc. Participants were told that the money and license should be thought of as
assets, so they could not be duplicated, used more than once, or lost. The code they were given
was in a language similar to Obsidian but which used some keywords that would be more familiar
to a Java programmer, such as class instead of contract. As such, this was a staged natural
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Transaction lexically nested inside state declaration:
1 contract Wallet {
2 state Empty;
3 state Full {
4 int balance;
5
6 // spend() is nested inside the declaration of
7 // the state it belongs to.
8 transaction spend(Wallet@Full this) {
9 // use ’balance’...

10 }
11 }
12 }

Transaction lexically outside state declaration:
1 contract Wallet {
2 state Empty;
3 state Full {
4 int balance;
5 }
6 // spend() is not nested in Full, even though it can
7 // only be called in Full state
8 transaction spend(Wallet@Full this) {
9 // use ’balance’...

10 }
11 }

Transitions when inside a state could be confusing:
1 contract Wallet {
2 state Empty {
3 transaction fill(int amount) {
4 ->Full(balance = amount);
5 // Now balance should be in scope, since new state is Full
6 }
7 }
8
9 state Full {

10 int balance;
11 // ...
12 }
13 }

Figure 8.2: Although participants preferred to have transactions nested inside state declarations
(the first alternative), this desire conflicted with the need for transactions only reference fields that
were in lexical scope.
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programming study, since we progressively gave participants more detail about the language we
were designing.

All four participants prepared assets for a state transition before making the state transition
(corresponding to option (2) in Part 2 below, S::x = a1; ->S). Two participants felt they
need to write code to handle failures during the asset preparation stage, which might lead to an
improperly initialized state upon transition. One of them suggested a try-catch type wrapper for
the asset preparation and transition phases.

In Parts 2 through 4 of the study, participants were given several options. Then they were
asked to implement each of the options within a given partially-implemented transaction. Finally,
they were asked for their preferences.

Part 2 compared approaches for initializing fields in states during transitions. Options were:
1. Assets are assigned to fields in the transition, e.g., ->S(x = a1) assigns the value of a1

to field x of state S.
2. Assets are assigned to fields before the transition, e.g., S::x = a1; ->S.
3. Assets are assigned to fields before the transition, but the fields are in local scope even

though the state has not changed yet, e.g., x = a1; ->S.
4. Assets are assigned to fields after the transition, e.g., ->S; x = a1.
The participants successfully used all the approaches, but most of the participants preferred

assigning assets to fields before the transition with destination state scoping (option 2). Before the
study, Obsidian supported only atomic assignment (option 1, shown in Figure 6.2 on line 22). The
results of these two parts motivated a language change: Obsidian now also supports option 2.

Part 3 presented two options for handling assets when transitioning from a state with an asset
to a state without it:

1. The transition evaluates to a collection containing the old assets, e.g., x = ->S indicates
that x is assigned the leftover assets after the transition to state S. If the current state is
unknown statically, the contents of the collection are determined dynamically.

2. The transition evaluates to a tuple, e.g., (x = a1) = ->S indicates that x will be
assigned the asset a1 which is not present in state S.

There was consistent confusion about which leftover assets are assigned to option 1’s collection
after a transition. All participants understood the need for both options in certain cases, but would
choose the tuple-like collection for more control and explicitness when the use of either approach
is acceptable. We would like to implement this approach in the future but so far have not prioritized
it, since the existing approach (described in Part 4, option 1), which requires that ownership of
assets be surrendered before transitioning, has been effective for participants.

Part 4 focused on releasing assets owned by state fields when transitioning to states in which
those fields do not exist. In contrast to part 3, this approach added the option of releasing assets
before the transition. The choices were:

1. Assets must be released before the transition, e.g., release(a1); ->S.
2. The transition evaluates to a tuple of assets that are no longer owned, e.g., a1 = ->S.
All the participants understood the options and implemented them without mistakes. Imple-

menting using option 2 (evaluating to a tuple) enables both approaches, so participants were
asked to indicate scenarios where one option would be preferred over the other. The participants

100



consistently indicated that assets should be released before a transition if they are no longer
needed; otherwise, they should evaluate to a tuple. This helped us prioritize our features, since
releasing assets before the transition seemed to suffice.

8.2.3 Permissions: a qualitative study
Soundly enforcing typestate requires knowledge about all references to an object, which is afforded
by a permission system. [18]. Permissions systems allow the programmer to express what a
particular reference can be used for (and therefore also what it cannot be used for). Is there a
permission system that users can understand and use effectively (a question of naturalness)? If so,
what can we learn from users about how to design it (a question of iteration)? In this work, we
conducted the first studies (of which we are aware) in which people other than the designers of the
system were asked to use a permissions system to restrict references in a programming language.
We found that our initial system design was surprisingly difficult to use, and iterated the design
until it was more successful.

In order to study permissions while mitigating the interdependency of features, training
and recruiting challenges, we extracted the permission system from Obsidian and re-cast it in
Java as a set of annotation. We conducted a Wizard of Oz study where participants received
documentation on a Java extension and the experimenter gave simulated compiler error messages.
This approach minimized training time for participants, minimized implementation cost for
ourselves, and allowed us to isolate this design decision from many others that would have
otherwise distinguished the language from Java. At this point in the development of Obsidian, we
assumed that it would be best to separate the notions of permissions and typestate; this approach
was reflected in the study materials but may surprise a reader who has studied Figure 6.2, which
reflects the final Obsidian version, which combines the two. The training materials explained
the annotations: @Asset, which applied to classes; and @Owned, @Shared (no restrictions
but could not co-exist with typestate-specifying references), and @ReadOnlyState (restricting
state modification), which applied to references. We recruited six participants (P14–P19), which
was enough to provide substantial and useful feedback. They had a mean six years of programming
experience (ranging from three to nine years) and a mean two years of Java experience.

The study included five parts. Since our goal was to identify as many usability problems as
possible, we revised the design and instructions after each participant. The first three participants
were given 1.5 hours to do the first four parts; the last three were given two hours to fit in a fifth
part of the study. An experimenter was available to answer questions.

Part 1. To motivate the need for language features to prevent bugs, we gave participants a
163-line Java medical records system and asked the first two participants to find a bug in which a
patient could refill the prescription more times than specified. The first participant did not find
the bug within 30 minutes; the second did so just as time expired. To conserve time, we gave the
other participants five minutes to inspect the code and explained the problem to them.

We conclude that at least some programmers who use traditional languages would have
difficulty detecting the kind of bug that Obsidian prevents. This provides further evidence that if
users use Obsidian, the compiler will help them detect bugs that otherwise might go undetected.

Part 2. We told participants we would prevent the previous bug by distinguishing between
two kinds of references. “Considering an object o: Kind #1: There is only one reference of kind
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#1 to o at a time. Kind #2: There may be many references of kind #2 to o at a time.” We asked
participants to propose names for the two kinds of references. Note the careful language avoiding
bias toward specific vocabulary. Participants’ name suggestions included:

Kind #1: KeyReference, UniqueReference, Owned, Singleton reference, Resource handle, @de-
fault

Kind #2: DuplicateReference, ForeignKeyReference, Borrowed, Flyweight pattern reference,
const pointer

The results were too inconsistent to justify an particular choice in the language; all the
suggestions were distinct, and some of them were not appropriate in context (unsound proposals
challenge). Obsidian uses Owned, which is at least consistent with one suggestion, and Unowned.

Part 3. To evaluate the usability of ownership, we gave participants an ownership tutorial
and told them we had chosen [no annotation, @ReadOnly] (first participant) or [@Owned, no
annotation] (later participants) as keywords. We asked them to modify the code from Part 1 to fix
the bug. We hoped participants would require that Prescriptions deposited in a Pharmacy
be owned and that the Pharmacy take ownership; thus, a deposited Prescription could not
be deposited in a second Pharmacy. Completion times ranged from 3 minutes to 40 minutes
(variance challenge). Two participants did not finish, one of whom we stopped after 38 minutes
to prioritize other tasks.

We were surprised that many of the participants found this task very difficult. We expanded
the tutorial to include a practice section for later participants. In general, participants were not
prepared to use a type system to address a bug that they thought of in a dynamic way. For
example, P16 wrote if (@Owned prescription), attempting to indicate a dynamic check
of ownership. We asked participants who wanted to use dynamic approaches for enforcement
to use the language feature instead. P14 commented “I haven’t seen. . . types that complex in an
actual language . . . enforced at compile time.”

P17 had trouble guessing what the compiler could know, expecting an interprocedural analysis
(which would be non-modular). For example, in a case where an owned object was being
consumed twice, P17 expected the compiler to give an error on the second spend invocation.
Instead, because the second invocation was inside a helper method, the compiler reported the error
on the invocation to the helper method, which took an owned argument and invoked the second
spend.

P17, P18, and P19 had difficulty determining which variables should be annotated @Owned.
In one case, a lookup method took an object to search for, but P17 specified that it should take an
owned reference. Then he was stuck after invoking it: “How can I get the annotation back?” But
this was impossible except via adding another method, since he had already given away ownership.
Likewise P17 was confused by whether accessors should return owned references. Mistakes could
be costly. For example, P19 unnecessarily annotated as @Owned a class that was contained in a
collection, which caused a problem iterating through the collection. He made the reference to the
current list element @Owned, which would require removing each item from the collection when
iterating over it in code that was not supposed to modify the container at all.

Parameter-passing and assignment were common points of confusion. P18 asked what happens
when passing an @Owned object to a method with an unowned formal parameter (ownership
was not passed in this case). P19 said, “when I [annotate this constructor type @Owned], I’m
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not sure if I’m making a variable owned or I’m transferring ownership.” P17 was surprised that
assignment from an owned reference to an unowned-type variable did not transfer ownership. We
later addressed this confusion by making assignment always transfer ownership; participants in
later studies were generally not confused about which assignments transfer ownership.

From this portion of the study, we came to two general conclusions. First, the semantics of
ownership needed to be as explicit and as simple as possible. This likely generalizes to many
different kinds of complex language constructs: implicit behavior, although sometimes convenient
for experts, can be baffling to novices. When the behavior can be made explicit without making
the language inconvenient for experts, that should be done. Second, language design decisions that
have structural implications (as is the case for ownership) require substantial high-level training;
we refined the training materials in future studies to give more explanation and examples.

Part 4 introduced the notion of assets. After a tutorial explaining the properties of assets,
participants were asked to invent code that could indicate a particular owned reference was
intentionally going out of scope. Two participants suggested @Disown and free to abandon
owned references; the rest did not have time to answer or had no suggestions. We chose disown
for Obsidian, since free has additional memory management connotations that are not relevant
here.

Part 5 introduced typestate, starting with the fourth participant. Participants read 2.5 pages
on typestate in Obsidian (as it existed then), including @ReadOnlyState, @Shared, and
@Borrowed (which was for temporary ownership transfer in invocations). Ownership was the
default, so no @Owned was needed. The tutorial also explained available in and ends in,
which at the time specified state assumptions and guarantees for methods (before we changed to
using this parameters instead, e.g., as on lines 19 and 27 of Figure 6.2). Then, they were asked
to annotate uses of Bond in a 212-line Java program implementing a financial market. They were
told to use ownership and state specifications whenever possible.

Consistent with Part 3, some participants were more comfortable with a dynamic perspective
on ownership rather than a static one. P18 felt that ends in declarations were redundant with
the transition code already in the method implementations, but these declarations allow separation
of interface and implementation and modular checking. P19 wanted to use borrowing to represent
the notion that the BondMarket owns a Bond, but an Investor borrows it for a while. In fact,
borrowing was only appropriate for the duration of a method invocation. We later changed the
design of the formal parameter syntax to remove the need for @Borrowed; now, if no ownership
change is specified (via the >> operator), ownership remains unchanged.

P19 required significant prompting by the experimenter to make maximum use of typestate.
First, P19 added annotations on methods but not on any variables. After prompting, he added
dynamic checks in one place but required prompting to add static typestate specifications. This
suggests that tools may be needed to help users obtain the most benefits from the language. On the
other hand, P18 specified @Asset on Bond without being asked to do so, explaining “because
it’s something important and I don’t want to get it out of scope. . . ”

Overall, understanding the limitations of the type system and compiler may be an obstacle for
some people. Users will need training to reason about what typestate can do, but the observations
above motivated language changes that simplified the design without lowering the expressivity or
safety. Tools could mitigate the limitations of traditional type systems by providing sophisticated
static analyses rather than taking a traditional type checking approach (as Obsidian does), and by
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providing detailed, explanatory errors.

8.2.4 Comparing typestate and ownership approaches
We were interested in evaluating a new approach we invented, which was motivated by the
confusion we observed in the prior study (in part a question of naturalness and in part a challenge
of training). We invented a new approach: fuse the notions of ownership and typestate in
order to simplify the type system, and the next study refined this design. This design has the
benefit of eliminating Shared references that also specify typestate, which would then have
to be disallowed to preserve soundness. Thus, the type Bond@S is always implicitly an owned
reference for any state S, and users can write any permission instead of S, as in Bond@Unowned.

We were also interested in another usability concern. Consider Approach 1 in Figure 8.3. A
reader of line 1 might expect that the type of bond would always be Bond@Offered. In fact,
after line 2, the type is Bond@Sold due to the call to buy. A fundamental aspect of Obsidian is
that ownership can change, so if a variable declaration includes any ownership information, the
variable’s ownership status may later be inconsistent with its declaration.

We initially invented two possible solutions to address this problem. One idea for addressing
this involved incorporating types into variable names, shown in Approach 2. The annotations
pertain to the current type rather than the new type. The reader would have to look at only the
most recent operation to infer the new type of a variable rather than having to potentially read the
whole sequence since the declaration.

Approach 3 represents another idea: adding static assertions. Line 3 shows a static assertion
that bond references an object in state Sold, which serves as documentation. Unlike tradi-
tional assertions, however, the compiler checks correctness. The intent is to make it easier for
programmers to determine the types of variables.

We conducted studies with participants in the first three conditions. Inspired by observations
of those participants, we invented approach 4. This approach is like approach 3 except that it
removes state specifications from local variable declarations. The removal was not part of the
original design but was inspired by early results of this study.

Participants

We required that participants be familiar with Java and we administered a simple Java pre-test. We
recruited five students (P21–P25). Based on self-reports, they had an average of about four years
of Java experience (ranging from one to ten years) and an average of one year of professional
(paid) software development experience (ranging from zero to three years).

Procedure

Participants spent between 1 and 1.5 hours on the study. We used a Qualtrics survey to ask
participants a series of questions regarding Obsidian programs, but the study took place in a lab
and an experimenter was available to answer questions. The survey both taught aspects of the
language and provided an opportunity for assessment. Most of the questions were typical code
understanding questions, which gave snippets of code and asked whether the compiler would give
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Approach 1: traditional declarations

1 Bond@Offered bond = new Bond();
2 bond.buy(...);

Approach 2: types in variable names

1 Bond bond@Offered = new Bond();
2 bond@Offered.buy(...);

Approach 3: static assertions

1 Bond@Offered bond = new Bond();
2 bond.buy(...);
3 [bond@Sold];

Approach 4: no states in local variable declarations

1 Bond bond = new Bond();
2 bond.buy(...);
3 [bond@Sold];

Figure 8.3: Variable declaration approaches

an error or what the code meant. We assigned participants to one of the four conditions above
according to what we hoped to learn from each trial: approach 1 for P22, approach 2 for P21,
approach 3 for P23 and P24, and approach 4 for P25.

Results and Discussion

P22, who was given approach 1 (with permissions and states specified only in declarations), tried to
guess the compiler’s behavior, saying things like “If the compiler was smart. . . ”. For example, P22
expected that the language would infer an implicit @Off in the declaration LightSwitch s1
= new LightSwitch(). P22 also expected that although changes of state were permitted
via transactions, state-mismatching assignment to variables would be forbidden, even though
approach 1 assumes that states can be inconsistent with type declarations. This approach would
be inconsistent and P22’s confusion suggests that the type-declaration approach is problematic.

Including types in variables names seemed to be confusing as well. P21 expected that
ownership was not passed into method calls even when an owned reference was passed. P21 was
also surprised that no ownership annotation meant that there was no ownership, instead expecting
this to mean that ownership was unknown.

Participants in condition 3 seemed to do much better. For example, although the materials
did not use the word assertion, P23 observed that the annotations were assertions. P23 liked the
system, commenting “Perfect, I like this, this is very nice. I wish Java had this; it would have
saved me a lot of bugs.” As we obtained additional confidence in the value of approach #3, we
added additional material. For P24, we changed assertions to use @ rather than the initial >> so
that we could use >> to specify type changes in transaction parameters. With P25, we used ?
to indicate lack of static state knowledge. We later simplified the system because this approach

105



mm  has no annotation has no annotation

Ownership is transferred from m to q

Compiler error: q needs to acquire ownership, but this line does not transfer it

This line is correct by itself, but will cause an error at Location (B) because

q is not actually owned 

Something else (explain what)

Ow nership transfers fromOw nership transfers from qq  to the parameter of to the parameter of depositMoney()depositMoney()

qq  is passed to is passed to depositMoneydepositMoney , but ow nership is retained by, but ow nership is retained by qq

Compile error OTHER THAN a syntax error; w rite w hat error the compiler should give.Compile error OTHER THAN a syntax error; w rite w hat error the compiler should give. 

Syntax errorSyntax error

Q14.5.Q14.5. Timing

First Click: 21.979

Last Click: 34.664

Page Submit: 67.63

Click Count: 3

Q14.6.Q14.6. 
resource class Money {…}

resource class Bank {

 Money@Owned myMoney;

 void depositMoney(Money@Owned >> Unowned deposit) { … } 

 Money@Owned withdrawMoney() {…} // Withdraws all money

}

class Test {

 Bank b;

 void putMoneyInBank(Money@Owned >> Unowned m) { 

 // At the beginning, m owns an instance of Money.  

 Money q = m; [m @ Unowned] // Location (A)
b.depositMoney(q); [q @ Unowned] // Location (B)

 // Location (C)

b.depositMoney(b.withdrawMoney()) // Location (D)

  }

}

At location (A), w hat happens?

First Click: 16.711

Last Click: 139.478

Page Submit: 167.301

Click Count: 15

Q14.8.Q14.8.

resource class Money {…}

resource class Bank {

Money@Owned myMoney;

void depositMoney(Money@Owned >> Unowned deposit) { … } 

Money@Owned withdrawMoney() {…} // Withdraws all money

}

class Test {

Bank b;

void putMoneyInBank(Money@Owned >> Unowned m) { 

// At the beginning of this method, m owns an instance of Money.

Money q = m; [m @ Unowned] // Location (A)

b.depositMoney(q); [q @ Unowned] // Location (B)

// Location (C)

b.depositMoney(b.withdrawMoney()) // Location (D)

}

}

In the line at Location (B), what happens?

Q14.9.Q14.9. Timing

Figure 8.4: An example question assessing understanding of ownership transfer. The correct
answer is selected, since assignment transfers ownership.
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was ambiguous, leaving notations Owned, Unowned, Shared, and unions of specific states
(separated with |).

P24 was confused because state specifications on local variables were redundant. For exam-
ple, in LightSwitch@Off s = new LightSwitch(), the @Off portion is redundant
because the compiler already knows the state of the new object due to the constructor’s declara-
tion. To resolve this, we added approach 4, removing typestate and permission annotations from
local variable declarations; in contrast, permissions are always specified for fields and formal
parameters. In those cases, the annotations are important because they constrain types of variables
at the end and beginning of transactions.

In summary, this study motivated the removal of state specifications from local variable
declarations and provided initial evidence that static assertions are likely to be a convenient way
for programmers to specify states and permissions of local variables. We also obtained evidence
that with these other changes, static state assertions are understandable by current Java users with
little extra training.

8.2.5 Threats to validity

The studies share common threats to validity, many of which correspond to the external validity
challenge: our participants may not be representative of the population of blockchain programmers;
we had limited numbers of participants in each trial; and our tasks may not reflect the reality of
blockchain programming. We believe, however, that the population of likely language users is
more skilled than our participant population, which mostly consisted of students, so if the students
are successful in completing tasks, that aspect of the result is likely to generalize. We did not seek
to identify all possible usability problems, but rather to identify the most common and severe ones
associated with particular design decisions so that we could try to address them. Because there
were so many different design decisions, we focused on those for which we had prior evidence
that there might be usability problems.

8.3 First usability study of Obsidian

In order to assess whether our changes to Obsidian had resulted in a language in which pro-
grammers could be effective, we designed a summative usability study. We gave the participants
the complete Obsidian language, including its compiler, and asked them to complete three pro-
gramming tasks. We were interested in whether the participants experience the same usability
problems as the prior participants and whether there were sufficiently serious usability problems
left to prevent them from completing their tasks. We found that given enough time, most of the
participants were effective at completing the tasks we gave them.

The design of the study was informed by several of our methodological contributions (chap-
ter 12), and thus also served to assess their value. We trained the participants in Obsidian as part
of the study; we recruited local students to participate; we used multiple programming tasks,
rather than one long one; and we we managed task times according to our guidelines.
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8.3.1 Participants

We solicited experienced Java programmers to take a short screening test online, which took an
average of about 9 minutes to complete. We accepted into the three-hour study only those who
answered at least five of six basic Java questions correctly, including one question about aliasing.
Of 18 completed surveys, 11 people met our screening criteria. We got six participants (P35-P40),
whom we compensated with $50 Amazon gift cards. The participants had an average of 9 years
of programming experience, 2 years of professional experience, and 2 years of Java experience.
One self-identified as female; the rest identified as male.

8.3.2 Procedure

The previous studies focused on particular aspects of the design, in many cases by giving partici-
pants languages that were not precisely Obsidian. To evaluate our final design, we conducted a
usability evaluation. Because Obsidian provides stronger safety guarantees than existing languages
such as Solidity, and because of our prior experience showing that it would be very challenging
to develop a linear type system that would be usable at all, we focused our work on whether
people could effectively complete tasks, not on whether people could complete tasks faster than
in existing languages. We based our work on pilot studies that we previously conducted [104].

The experimenter gave low-level guidance, such as how to invoke the compiler. Further,
the experimenter provided assistance that simulated more mature tools. For example, when
a participant attempted to debug an error that was reported on line 38 by examining line 33,
the experimenter pointed out the discrepancy, since the IDE we provided did not highlight the
appropriate line.

After completing the tutorial, which included seven programming exercises, we gave par-
ticipants starter code for the three main tasks, described below. Although participants used the
compiler, they were not given tests or a runtime environment, since the focus of our usability
study was the type system (recall that Obsidian is designed to detect as many bugs as possible at
compile time, since runtime detection may be too late to ensure safety). Although the first two
tasks were short in order to reduce variance, we allowed the third task to be more open-ended to
see whether participants would be able to complete a more challenging task.

The first task, Auction, simulated an English auction, in which bids are public, and the bidder
who offers the highest price must pay that price for the item. We added the additional constraint
that bids were required to come with Money so that bids could be guaranteed to be viable (a bidder
could not issue a bid and then fail to pay for the item). As a starter task, we asked participants to
finish implementing createBid, requiring them to invoke a constructor. They also needed to
finish implementing makeBid, which records a new bid from a client. In makeBid, we were
interested in whether they initially wrote code that accidentally lost the previous bid, which held
the associated Money (before receiving a compiler error), indicating that Obsidian’s typechecker
had helped them avoid losing track of an asset.

The second task, Prescription, corresponded to the medical records system in the Permissions
study section (§ 8.2.3); we were interested in whether our improvements enabled participants to
reason more effectively about the code than we had observed in the previous studies. We asked par-
ticipants to fill in the type signature for the consumeRefill and depositPrescription
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Task completion times (hours:minutes)

Tutorial Auction Prescription Casino
P35 1:31 0:13 0:18 1:01
P36 2:12 0:28 N/A N/A
P37 1:03 0:33 0:46 0:36*
P38 2:18 0:46 N/A N/A
P39 1:14 0:22 0:27 0:51*
P40 1:11 0:12 0:22 0:58

Table 8.2: Usability test results. * indicates insufficient time to finish the task. N/A indicates
insufficient time to start the task.

transactions, as well as completing the implementation of fillPrescription.
The Casino task was more open-ended and included directions and requirements for what

operations should be supported, as well as low-level starter code, such as implementations
of Money and Bet. It asked participants to implement a Casino that takes bets on games.
When games are complete, the casino enables winners to collect their winnings. We were
primarily interested in participants’ abilities to reason about ownership and typestate and to design
architectures that could effectively use ownership.

8.3.3 Results and Discussion
Results for the tasks are summarized in Table 8.2. With P38, to assess to what extent the tutorial
materials stood alone, the experimenter declined to answer Obsidian-related and debugging-related
questions. However, this made the first task perhaps unrealistically difficult and lengthy, resulting
in insufficient time for the other tasks.

In the Auction exercise, two of the six participants accidentally introduced a bug in which an
asset was lost: they overwrote maxBid, which held money. The compiler gave an error message
and they corrected their mistake, but if they had been using Solidity, its compiler would not have
caught the bug. After P36, we slightly simplified the Auction exercise by removing a subtask
and refactoring to inline a TODO that had been put in a helper transaction. The above times
are adjusted to remove the extra time P35 and P36 spent on the removed task (1 and 8 minutes,
respectively).

Some participants seemed to think carefully about ownership and wrote the correct code
quickly. Others seemed to focus on satisfying the compiler, and their work took longer. For
example, P38 got an error message after overwriting the owned maxBid reference, and “fixed” it
with disown. This choice may be a result of weaker programming skills and lack of help in the
tutorial; P38 took the longest on the tutorial, and was surprised to not be given a design diagram
for the (< 300-line) Auction starter code. We changed the tutorial to emphasize that disown
should be used to throw away assets.

In the Prescription task, as with other tasks, variance was large. For example, one reason for
P38’s long completion time was that P38 had used Python most recently and, despite the tutorial,
sometimes wrote Python-like syntax, which did not parse (one example took four minutes to fix).
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At the time, we were hoping that participants would be able to complete the tasks entirely on their
own, but in retrospect, we may obtain more relevant results by carefully providing appropriate
help (which we provided to all the other participants).

We were interested in participants’ ability to reason effectively about ownership. All of the
participants who started Prescription were able to complete it. P37 encountered some difficulties
due to shortcomings in Obsidian’s support for dynamic state tests. Currently, Obsidian does not
allow dynamic state tests to be used as arbitrary Boolean expressions, e.g., if (x in S &&
e) where e is an arbitrary Boolean expression. Likewise, if (x not is Owned) is not
supported (perhaps this was inspired by Python’s is operator). In the latter case, P37 developed
some intuition: “Ownership doesn’t feel like something I should be using in this way. . . ” and
restructured the code to check if (maybeRecord in Full), which was correct. In another
case, the compiler found a bug in which the code assumed that a collection must contain an
element, a benefit of not allowing null in the language.

The Casino task was substantially more open-ended than the other tasks, requiring substantially
more time, but participants who had a full hour for the task were able to finish it. Some participants
defined states in the Casino contract (P35, P39), whereas others relied only on the states in the
Game contract (P37, P40). Both approaches led to a lot of dynamic state tests, since the Casino
object had to check to make sure the Game object was in an appropriate state. These checks could
have been avoided if the different states of Casino had different typestate specifications for their
references to the Game, an idea that occurred to P40 in retrospect. This observation represents
an opportunity for a future version of Obsidian in which states of owning objects are coupled to
states of owned objects, reducing the need for dynamic checks.

We noticed that participants who did better on the “advanced Java” portion of our screening
test seemed to complete tasks faster. We found that those test scores were negatively correlated
with completion times of the Auction task (r(4) = −.96, p < .01). We regard this result as
tentative because there were minor differences among the trials; we defer a definitive conclusion
to a future quantitative study. The correlation between the scores and the tutorial completion
times was not significant, likely an artifact of the small number of participants. This suggests
that much of the variance (91%) in Auction completion times is explained by prior programming
background. We hypothesize, then, that participants who have sufficient OOP understanding can
learn Obsidian and use the language effectively in only about 90 minutes.

8.4 Conclusion
Our initial prototype, which was based on prior typestate-based programming languages, presented
significant usability challenges when we evaluated it in formative studies with users, but we were
able to leverage those studies to improve the design. Most of the participants in a summative
usability study of our revised language were able to use the language effectively for small tasks.
This is surprising, considering that we did not have to weaken the safety properties that the
language provided. We regard this as evidence that usability methods can be used to develop
languages that help programmers be effective at obtaining stronger safety guarantees than they
might otherwise be able to obtain.
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Chapter 9

Detailed Design and Formal Aspects of
Obsidian of Obsidian1

9.1 Introduction

This chapter describes the Obsidian language formally. Obsidian rests on a formal foundation,
Silica; this chapter describes Silica, defines Obsidian by translation to Silica, and gives details
regarding Obsidian’s implementation and architecture.

This chapter makes the following contributions:

1. It shows how typestate and linear types can be combined in a user-facing programming
language, using a rich but simple permission system that captures the required restrictions
on aliases using a notion of ownership.

2. It shows an integrated architecture for supporting both smart contracts and client programs.
By enabling both on-blockchain and off-blockchain programs to be created with the same
language, we ensure that the safety properties of the language are available for data structures
that must be transferred off-blockchain as well as for those stored in the blockchain.

3. It describes Silica, the core calculus that underlies Obsidian. It proves type soundness and
asset retention for Silica. Asset retention is the property that owning references to assets
(objects that the programmer has designated have value) cannot be lost accidentally. Silica
is the first typestate calculus (of which we are aware) that supports assets.

§ 9.2 focuses on the design of particular aspects of the language and describes how qualitative
studies influenced our design. We describe how the language design fits into the Fabric blockchain
infrastructure in § 9.3. § 9.4 describes Silica, the core calculus underlying Obsidian, and its proof
of soundness (although the proof itself is in appendix A.3). The syntax of Obsidian is specified in
§ 9.5 as an extension and modification of the syntax of Silica, and the semantics are defined by
translation to Silica.

1Portions of this chapter previously appeared in [48].
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9.2 Obsidian language design

9.2.1 Type declarations, annotations, and static assertions

Obsidian requires type declarations of local variables, fields, and transaction parameters. In
addition to providing familiarity to programmers who have experience with other object-oriented
languages, there is a hypothesis that these declarations may aid in usability by providing doc-
umentation, particularly at interfaces [40]. Traditional declarations are also typical in prior
typestate-supporting languages, such as Plaid [198]. Unfortunately, typestate is incompatible
with the traditional semantics of type declarations: programmers normally expect that the type
of a variable always matches its declared type, but mutation can result in the typestate no longer
matching the initial type of an identifier. This violates the consistency usability heuristic [138]
and is a potential source of reduced code readability, since determining the type of an identifier
can require reading all the code from the declaration to the program point of interest.

Static assertions alleviate this problem. These have the syntax [e @ mode]. For example,
[account @ Open] statically asserts that the reference account is owned and refers to an
object that the compiler can prove is in Open state. Furthermore, to avoid confusion about the
meanings of local variable declarations, Obsidian forbids mode specifications on local variable
declarations.

Static assertions have no implications on the dynamic semantics (and therefore have no run
time cost); instead, they serve as checked documentation. The type checker verifies that the
given mode is valid for the expression in the place where the assertion is written. A reader of a
typechecked program can be assured, then, that the specified types are correct, and the author can
insert the assertions as needed to improve program understandability.

9.2.2 State transitions

Each state definition can include a list of fields, which are in scope only when the object is in the
corresponding state (see line 8 of Figure 6.2). What, then, should be the syntax for initializing
those fields when transitioning to a different state? Some design objectives included:

• When an object is in a particular state, the fields for that state should be initialized.
• When an object is not in a particular state, the fields for that state should be out of scope.
• According to the user control and freedom heuristic [138] and results by Stylos et al. [195],

programmers should be able to initialize the fields in any order, including by assignment.
Under this criterion, it does not suffice to only permit constructor-style simultaneous
initialization.

In order to allow maximum user flexibility without compromising the integrity of the type
system, we implemented a flexible approach. When a state transition occurs, all fields of the target
state must be initialized. However, they can be initialized either in the transition (e.g., ->S(x
= a) initializes the field x to a) or prior to the transition (e.g., S::x = a; ->S). In addition,
fields that are in scope in the current state but will not be in scope in the target state must not be
owned references to assets at the transition. Ownership of fields that will go out of scope in a
transition must first be transferred to another reference or disowned before the transition.
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9.2.3 Transaction scope
Transactions in Obsidian are invoked on a particular receiving object, and are only available when
the receiver is in a particular state. Correspondingly, other typestate-oriented languages support
defining methods inside states. For example, Plaid [198] allows users to define the read method
inside the OpenFile state to make clear that read can only be invoked when a File is in the
OpenFile state. However, this is problematic when methods can be invoked when the object is
in several states.

Barnaby et al. [11] considered this question for Obsidian and observed that study participants,
who were given a typestate-oriented language that included methods in states, asked many
questions about what could happen during and after state transitions. They were unsure what
this meant in that context and what variables were in scope at any given time. One participant
thought it should be disallowed to call transactions available in state S1 while writing a transaction
that was lexically in state Start. For this reason, we designed Obsidian so that transactions
are defined lexically outside states. Transaction signatures indicate (via type annotations on a
first argument called this) from which states each transaction can be invoked. This approach
is consistent with other languages, such as Java, which also allows type annotations on a first
argument this.

9.2.4 Field type consistency and private transactions
In traditional object-oriented languages, fields always refer either to null or to objects whose
types are subtypes of the fields’ declared types. This presents a difficulty for Obsidian, since the
mode is part of the type, and the mode can change with operations. For example, a Wallet
might have a reference of type Money@Owned. How should a programmer implement swap?
One way is shown in Figure 9.1.

1 contract Wallet {
2 Money@Owned money;
3
4 transaction swap (Money @ Owned m) returns Money @ Owned {
5 Money result = money;
6 money = m;
7 return result;
8 }
9 }

Figure 9.1: Obsidian’s approach for handling transitions.

The problem is that line 5 changes the type of the money field from Owned to Unowned by
transferring ownership to result. Should this be a type error, since it is inconsistent with the
declaration of money? If it is a type error, how is the programmer supposed to implement swap?
One possibility is to add another state, as shown in Figure 9.2.

Although this approach might seem like a reasonable consequence of the desire to keep field
values consistent with their types, it imposes a significant burden. First, the programmer is required
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1 contract Wallet {
2 state Empty;
3 state Full {
4 Money @ Owned money;
5 }
6
7 transaction swap (Wallet@Full this, Money @ Owned m)
8 returns Money @ Owned
9 {

10 // Suppose the transition returns the contents of the old field.
11 Money result = ->Empty;
12 ->Full(money = m);
13 return result;
14 }
15 }

Figure 9.2: An alternative approach for handling transitions.

to introduce additional states, which leaks implementation details into the interface (unless we
mitigate this problem by making the language more complex, e.g., with private states or via
abstraction over states). Second, this requires that transitions return the newly out-of-scope fields,
but it is not clear how: should the result be of record type? Should it be a tuple? What if the
programmer neglects to do something with the result? Plaid [198] addressed the problem by not
including type names in fields, but that approach may hamper code understandability [40].

In Obsidian, we permit fields to temporarily reference objects that are not consistent with the
fields’ declarations, but we require that at the end of transactions (and constructors), the fields
refer to appropriately-typed objects. This approach is consistent with the approach for local
variables, with the additional postcondition of type consistency. Both local variables and fields
of nonprimitive type, and transaction parameters must always refer to instances of appropriate
contracts; the only discrepancy permitted is of mode. Obsidian forbids re-assigning formal
parameters to refer to other objects to ensure soundness of this analysis.

This design decision introduces a problem with re-entrancy: re-entrant calls from the middle
of a transaction’s body, where the fields may not be consistent with their types, can be dangerous,
since the called transactions are supposed to be allowed to assume that the fields reference objects
consistent with the fields’ types. One way to address this would be by forbidding all re-entrant
calls at an object level of granularity (i.e., only one transaction with a given receiver can be on the
call stack at a given time). However, we regard this as too restrictive, as it precludes even writing
helper transactions.

Instead, Obsidian distinguishes between public and private transactions. In order to facilitate
refactoring code into appropriate transactions, Obsidian allows private transactions that can be
invoked when fields have types that are inconsistent with their declarations. To enable this,
private transactions declare the expected types of the fields before and after the invocation.
For example:
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1 contract AContract {
2 state S1;
3 state S2;
4
5 AContract@S1 c;
6 private (AContract@S2 >> S1 c) transaction t1() {...}
7 }

Transaction t1 may only be invoked by transactions of AContract, only on this, and
only when this.c temporarily has type AContract@S2. When t1 is invoked, the compiler
checks to make sure field c has type C@S2, and assumes that after t1 returns, c will have type
AContract@S1. Of course, the body of t1 is checked assuming that c has type C@S2 to make
sure that afterward, c has type C@S1.

This approach allows programmers to extract portions of their transactions into private trans-
actions, which have specified pre- and post- conditions regarding the field types. The restriction
that these transactions are private arises because the type checker only tracks the types of fields
of this individually (and assumes all other objects have fields of types consistent with their
declarations).

Avoiding unsafe re-entrancy has been shown to be important for real-world smart contract
security, as millions of dollars were stolen in the DAO hack via a re-entrant call exploit [55].

9.2.5 Dynamic State Checks

The Obsidian compiler enforces that transactions can only be invoked when it can prove statically
that the objects are in appropriate states according to the signature of the transaction to be invoked.
In some cases, however, it is impossible to determine this statically. For example, consider
redeem in Fig. 9.3. At the beginning of the transaction, the contract may be in either state
Active or state Expired. However, inside the dynamic state check block that starts on line 29,
the compiler assumes that this is in state Active. The compiler generates a dynamic check of
state according to the test. However, regarding the code in the block, there are two cases. If the
dynamic state check is of an Owned reference x, then it suffices for the type checker to check
the block under the assumption that the reference is of type according to the dynamic state check.
However, if the reference is Shared, there is a problem: what if code in the block changes the
state of the object referenced by x? This would violate the expectations of the code inside the
block, which is checked as if it had ownership of x. We consider the cases, since the compiler
always knows whether an expression is Owned, Unowned, or Shared:

• If the expression to be tested is a variable with Owned mode, the body of the if statement
can be checked assuming that the variable initially references an object in the specified
state, since that code will only execute if that is the case due to the dynamic check.

• If the expression to be tested is a variable with Unowned mode, there may be another
owner (and the variable cannot be used to change the state of the referenced object anyway).
In that case, typechecking of the body of the if proceeds as if there had been no state
test, since it would be unsafe to assume that the reference is owned. However, this kind
of test can be useful if the desired behavior does not statically require that the object is
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1 main asset contract GiftCertificate {
2 Date @ Unowned expirationDate;
3
4 state Active {
5 Money @ Owned balance;
6 }
7
8 state Expired;
9 state Redeemed;

10
11 GiftCertificate(Money @ Owned >> Unowned b, Date @ Unowned d)
12 {
13 expirationDate = d;
14 ->Active(balance = b);
15 }
16
17 transaction checkExpiration(GiftCertificate @ Active >> (Active | Expired) this)
18 {
19 if (getCurrentDate().greaterThan(expirationDate)) {
20 disown balance;
21 ->Expired;
22 }
23 }
24 transaction redeem(GiftCertificate @ Active >> (Expired | Redeemed) this)
25 returns Money@Owned
26 {
27 checkExpiration();
28
29 if (this in Active) {
30 Money result = balance;
31 ->Redeemed;
32 return result;
33 }
34 else {
35 revert "Can’t redeem expired certificate";
36 }
37 }
38 transaction getCurrentDate(GiftCertificate @ Unowned this)
39 returns Date @ Unowned
40 {
41 return new Date();
42 }
43 }

Figure 9.3: A dynamic state check example.

in the given state. For example, in a university accounting system, if a Student is in
Enrolled state, then their account should be debited by the cost of tuition this semester.
The debit operation does not directly depend on the student’s state; the state check is a
matter of policy regarding who gets charged tuition.

• If the expression to be tested is a variable with Shared mode, then the runtime maintains a
state lock that pertains to other shared references. The body is checked initially assuming
that the variable owns a reference to an object in the specified state. Then, the type checker
verifies that the variable still holds ownership at the end and that the variable has not been
re-assigned in the body. However, at run time, if any other Shared reference is used to
change the state of the referenced object (for example, via another alias used in a transaction
that is invoked by the body of the dynamic state check block), then the transaction is
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aborted (recall that the blockchain environment is sequential, so there is only one top-level
transaction in progress at a time). This approach enables safe code to complete but ensures
that the analysis of the type checker regarding the state of the referenced object remains
sound. This approach also bears low run time cost, since the cost of the check is borne
only in transitions via Shared references. An alternative design would require checks at
invocations to make sure that the referenced object was indeed in the state the type checker
expected, but we expect our approach has significantly lower run time cost. Furthermore,
our approach results in errors occurring immediately on transition. The alternative approach
would give errors only when the referenced object was used, which could be substantially
after the infringing transition, which would require the programmer to figure out which
transition caused the bug.

• If the expression to be tested is not a variable, the body of the if statement is checked in
the same static context as the if statement itself. It would be unsafe for the compiler to make
any assumptions about the type of future executions of the expression, since the type may
change. This case only occurs in Obsidian, not in the underlying Silica formalism, which is
in A-normal form [174].

The dynamic state check mechanism is related to the focusing mechanism of Fahndrich and
DeLine [75]. Dynamic state checks in Obsidian detect unsafe uses of aliases more precisely (less
conservatively) than focusing, enabling many more safe programs to typecheck. Furthermore,
Obsidian does not require the programmer to specify guards, which in focusing enable the
compiler to reason conservatively about which references may alias.

9.2.6 Parametric Polymorphism

Parametric polymorphism is particularly important for Obsidian in order to maintain safety of
collections and avoid needless code duplication. Requiring users to cast objects retrieved from
containers to the appropriate type would defeat the point of the language, which is to provide
strong static guarantees, since those casts would have to be checked dynamically. Furthermore,
there would have to be separate containers for different modes, since a container’s elements
would need to be either Unowned, Shared, or Owned. In Obsidian, a contract can have two
type parameters: one for a contract and one for a mode. For example, part of the polymorphic
LinkedList implementation is as follows:

1 contract LinkedList[T@s] {
2 state Empty;
3 state HasNext {
4 LinkedList[T@s]@Owned next;
5 T@s value;
6 }
7 transaction append(LinkedList@Owned this, T@s >> Unowned obj) {
8 ...
9 }

10 }

Line 1 shows that the contract type is parameterized by the contract variable T, and the mode is
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parameterized by the mode variable s. In line 4, the next field is an Owned reference to an object
of type LinkedList[T@s] – that is, a node whose type parameters are the same as the contain-
ing contract’s type parameters. An object of type LinkedList[Money@Owned] is a container
that holds a list of Money references, each of which the container owns. Using a separate parame-
ter for the mode allows parameterization over states, e.g., a LinkedList[LightSwitch@On]
owns references to LightSwitch objects that are each in the On state. In line 7, appending an
element to a LinkedList always takes any ownership that was given, and the parameter obj must
conform to the type specified by the type parameter T@s.

9.3 System design and implementation
Our current implementation of Obsidian supports Hyperledger Fabric [200], a permissioned
blockchain platform. In contrast to public platforms, such as Ethereum, Fabric permits orga-
nizations to decide who has access to the ledger, and which peers need to approve (endorse)
each transaction. This typically provides higher throughput and more convenient control over
confidential data than public blockchains, allowing operators to trade off distributed trust against
high performance. Fabric supports smart contracts implemented in Java, so the Obsidian compiler
translates Obsidian source code to Java for deployment on Fabric peer nodes. The Obsidian
compiler prepares appropriately-structured directories with Java code and a build file. Fabric
builds and executes the Java code inside purpose-build Docker containers that run on the peer
nodes. The overall Obsidian compiler architecture is shown in Fig. 9.4.

The type checker is syntax-directed and therefore relatively cheap to run. As is typical, the
type checker maintains a context mapping variables to types as it iterates through the body of each
transaction, and updates the context with the changes that result from executing each statement.
Since local variable declarations do not include modes, local variables start out with a specified
context and “inferred” mode; the mode is updated as soon as an assignment occurs. Otherwise,
variables always have a known mode; after branches, the output contexts of both branches are
merged as is specified in the Silica static semantics (AJ:33 in Appendix A). If the merge is not
possible, the compiler reports an error.

9.3.1 Storage in the ledger
Fabric provides a key/value store for persisting the state of smart contracts in the ledger. As a
result, Fabric requires that smart contracts serialize their state in terms of key/value pairs. In
other smart contract languages, programmers are required to manually write code to serialize and
deserialize their smart contract data. In contrast, Obsidian automatically generates serialization
code, leveraging protocol buffers [79] to map between message formats and sequences of bytes.
When a transaction is executed, the appropriate objects are lazily loaded from the key/value store
as required for the transaction’s execution. Lazy loading is shallow: the object’s fields are loaded,
but objects that fields reference are not loaded until their fields are needed. After executing the
transaction, Obsidian’s runtime environment automatically serializes the modified objects and
saves them in the ledger. This means that aborting a transaction and reverting any changes is very
cheap, since this entails not setting key/value pairs in the store, flushing the heap of objects that
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have been lazily loaded, and (shallowly) re-loading the root object from the ledger. This lazy
approach decreases execution cost and frees the programmer from needing to manually load and
unload key/value pairs from the ledger, as would normally be required on Fabric.

Although transactions can invoke other transactions, the transactional semantics do not nest.
For example, if T1 invokes T2, and T2 reverts, then any changes made by T1 are also reverted.

9.3.2 Obsidian client programs

The convention for most blockchain systems is that smart contracts are written in one language,
such as Solidity, and client programs are written in a different language, such as JavaScript.
Unfortunately, in Solidity, transaction arguments and outputs must be primitives, not objects;
arrays of bytes can be transferred, but the client and server must each implement corresponding
serialization and deserialization code. The interface for a given contract is specified in an
Application Binary Interface (ABI), documented in a schema written in JavaScript. If there are
any incompatibilities between the semantics of the JavaScript serialization code and the semantics
of the Solidity contract that interprets the serialized message, there can be bugs.

Obsidian addresses this problem by allowing users to write client programs in Obsidian. Client

119



programs can reference the same contract implementations that were instantiated on the server,
obviating the need for two different implementations of data structures. Clients use the same
automatically-generated serialization and deserialization code that the server does. As a result,
Obsidian permits arbitrary objects (encoded via protocol buffers) to be passed as arguments and
returned from transactions. Since the protocol buffer specifications are emitted by the Obsidian
compiler, any client (even non-Obsidian clients) can use these specifications to correctly serialize
and deserialize native Obsidian objects in order to invoke Obsidian transactions and interpret their
results.

The Obsidian client program has a main transaction, which takes a remote reference.
The keyword remote, which modifies types of object references, indicates that the type refers
to a remote object. The compiler implements remote references with stubs, via an RMI-like
mechanism. When a non-remote reference is passed as an argument to a remote transaction,
the referenced object is serialized and sent to the blockchain. Afterward, the reference becomes
a remote reference, so that only one copy of the object exists (otherwise mutations to the
referenced object on the client would not be reflected on the blockchain, resulting in potential
bugs). This change in type is similar to how reference modes change during execution. Fig.
9.5 shows a simple client program that uses the TinyVendingMachine above. The main
transaction takes a remote reference to the smart contract instance.

Every Obsidian object has a unique ID, and references to objects can be transmitted between
clients and the blockchain via object ID. There is some subtlety in the ID system in Obsidian:
all blockchain transactions must be deterministic so that all peers generate the same IDs, so it is
impossible to use traditional (e.g., timestamp-based or hardware-based) UUID generation. Instead,
Obsidian bases IDs on transaction identifiers, which Fabric provides, and on an index kept in an
ID factory. Since transaction IDs are unique, each transaction can have its own ID factory and still
avoid collisions. The initial index is reset to zero at the beginning of each transaction so that no
state pertaining to ID generation needs to be stored between transactions. Blockchains provide a
sequential execution environment, so there is no need to address race conditions in ID generation.
When clients instantiate contracts, they generate IDs with a traditional UUID algorithm, since
clients operate off the blockchain.

Blockchains allow clients to interleave their transactions arbitrarily. This does not suffice to
ensure safety in arbitrary Obsidian client programs. For example, suppose a client has code like
this, assuming that c is a reference to a remote (on-blockchain) object:

1 if (c in S1) {
2 // suppose t1 requires that c references an object in state S1
3 c.t1();
4 }

In the current implementation, because the test and the t1() invocation execute remotely, it
is possible that an intervening transaction could change the state of the referenced object so
that it is no longer in state S1. In the future, however, Obsidian will address this issue in a
platform-appropriate manner. Once the programmer identifies a critical section, one approach is
for the client to wrap the section in a lambda so that the server can execute it in one transaction.
This approach might work well on Ethereum, where clients must pay for the costs of executing
code on the blockchain. However, on Fabric, this approach is problematic because the security
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policy is such that clients should not force the blockchain to execute arbitrary code (for example,
including non-terminating code). An approach that may be more effective is to use optimistic
concurrency [114], in which smart contracts on the blockchain defer commitment of changes
from clients until the client’s critical section is done; then, either the transaction is committed, or
the changes are discarded because of intervening changes that occurred.

1 import "TinyVendingMachine.obs"
2
3 main contract TinyVendingMachineClient {
4 transaction main(remote TinyVendingMachine@Shared machine) {
5 restock(machine);
6
7 if (machine in Full) {
8 Coin c = new Coin();
9 remote Candy candy = machine.buy(c);

10 eat(candy);
11 }
12 }
13
14 private transaction restock(remote TinyVendingMachine@Shared machine) {
15 if (machine in Empty) {
16 Candy candy = new Candy();
17 machine.restock(candy);
18 }
19 }
20
21 private transaction eat(remote Candy @ Owned >> Unowned c) {
22 disown c;
23 }
24 }

Figure 9.5: A simple client program, showing how clients reference a smart contract on the
blockchain. Note that the blockchain-side smart contract has been modified (relative to Fig. 6.2)
to have Shared receivers, since top-level objects are never owned by clients.

9.3.3 Ensuring safety with untrusted clients
If a client program is written in a language other than Obsidian, it may not adhere to Obsidian’s
type system. For example, a client program may obtain an owned reference to an object and then
attempt to transfer ownership of that object to multiple references on the blockchain. This is
called the double-spend problem on blockchains: a program may attempt to consume a resource
more than once. To address this problem, the Obsidian runtime keeps a list of all objects for
which ownership has been passed outside the blockchain. When a transaction is invoked on an
argument that must be owned, the runtime aborts the transaction if that object is not owned outside
the blockchain, and otherwise removes the object from the list. Likewise, when a transaction
argument or result becomes owned by the client after the transaction (according to the transaction’s
signature), the runtime adds the object to the list. Of course, Obsidian has no way of ensuring safe
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manipulation of owned references in non-Obsidian clients, but this approach ensures that each
time an owned reference leaves the blockchain, it only returns once, preventing double-spending
attacks. Obsidian cannot ensure that non-Obsidian clients do not lose their owned references, so
we hope that most client code that manipulates assets will be written in Obsidian.

9.4 Silica

In this section, we describe Silica, the core calculus that forms a foundation for Obsidian. Silica is
so named because obsidian glass is composed in large part of silica (65 to 80 percent) [68]. Silica
is designed in the style of Featherweight Typestate [78], which is itself designed in the style of
Featherweight Java [100]. Silica leverages key concepts and notation, such as type splitting, from
Featherweight Typestate. However, Silica differs significantly from Featherweight Typestate (FT);
the differences are described in more detail in Table 9.1.

Fig. 9.6 shows the syntax of Silica. Silica uses A-normal form [174] as a simplification to
avoid nested expressions in most cases. Note that [] in typewriter typeface indicates a static
assertion, whereas Roman [] indicates an optional part of the syntax. Following Featherweight
Java [100], the syntax specification uses a horizontal line above a symbol to indicate that it is a
list. To distinguish these lines from the lines that denote judgments, sequences will be denoted
with a thick, orange line, whereas judgments will use a thin, black line.

T represents the type of a reference to an object. It is divided into two parts: TC represents the
contract (analogous to a class) and TST represents the mode. A contract is either a declared type
with some (possibly zero) type parameters, or a type variable. A mode reflects any ownership
held by the reference (a permission) and any state specification.

Contracts are defined in terms of type parameters TG, states ST , and transactions M . Con-
structors for a contract C return a reference with permission P . Each argument is passed with
initial type T , but because the constructor assigns parameters to fields, ownership of parameters
may be consumed, resulting in a new mode TST . Changes to types are denoted with T�TST .
States ST consist of a state name S and a collection of fields F . In this syntax, if a name is
re-used in different states, then the field is in scope in all of those states. In the implementation,
rather than re-using names, there is special syntax for this: T f available in S1, S1
declares field f that is in scope in states S1 and S2. This approach avoids duplicated code in user
programs.

Because Silica is an expression language, not a statement language, any sequencing must
occur via nested let-bindings. Here, s denotes a simple expression. For now, simple expressions
are merely variables; we will see in the dynamic semantics that sometimes simple expressions can
represent indirect references to memory locations.

Transaction signatures specify initial and final modes for this and for the parameters.
Signatures of private transactions also specify initial and final modes for the fields, which for
private transactions may differ from their declared modes.
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C ∈ CONTRACTNAMES m ∈ TRANSACTIONNAMES

I ∈ INTERFACENAMES S ∈ STATENAMES

D ∈ CONTRACTNAMES ∪ INTERFACENAMES p ∈ PERMISSIONVARIABLES

X ∈ DECLARATIONVARIABLES f ∈ FIELDNAMES

x ∈ IDENTIFIERNAMES

T ::= TC@TST (types of contract references)

| ()
TC ::= D〈T 〉 (types of contracts/interfaces)

| X (declaration variables)

TST ::= S (state disjunction)
| p (permission/state variables)
| P (concrete permission)

P ::= Owned | Unowned | Shared

TG ::= [asset] X@p implements I〈T 〉@TST (generic type parameter)

CON ::= contract C〈TG〉 implements I〈T 〉 {ST M}
IFACE ::= interface I〈TG〉 { ST MSIG }
ST ::= [asset] S F

F ::= T f

MSIG ::= T m〈TG〉 (T�TST x) TST�TST (transaction specifying types for
return, arguments, and receiver)

| private TST�TST f T m〈TG〉(T�TST x) (private transactions also
TST � TST specify field types)

M ::= MSIG { return e }
e ::= s

| s.f (field access)
| s.m〈T 〉(x)
| let x : T = e in e
| new C〈T 〉@S(s) (contract fields, then state fields)
| s→Owned|Shared S(s) (State transition initializing fields)
| s.f := s (field update, with 1-based indexing)
| s := s (variable assignment)
| [ s @ TST] (static assert)
| if s inP T ST then e else e (state test, owned or shared s)
| disown s (drop ownership of owned ref.)
| pack

s ::= x (simple expressions)

Figure 9.6: Abstract syntax of Silica.
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9.4.1 Silica Static Semantics

The static semantics make use of auxiliary judgments, which are defined in Appendix A. The
auxiliary judgments are numbered and referenced by number, as in AJ:22.

Preliminary judgments

Typing contexts ∆ and type bound contexts Γ

The typing context ∆ includes local variables as well as temporary field types, which allow
fields to temporarily have modes that differ from those in the fields’ declarations. Type bounds Γ
is a set of generic type variables TG as defined in the grammar in Figure 9.6. Γ is used to track the
typing constraints on type variables.

It is assumed that ∆ and Γ are permuted as needed in order to apply the rules, but when a
context is extended with a mapping, the new mapping replaces any previous mapping of the same
variable.

Γ ::= ·
| Γ, TG

∆ ::= ·
| ∆, x : T
| ∆, s.f : T

T1 V T2/T3 Type splitting
Type splitting specifies how ownership of objects can be shared among aliases. In T1 V T2/T3,

there is initially one reference of type T1; afterward, there are two references of type T2 and
T3. For example, an Owned reference can be split into an Owned reference and an Unowned
reference. The relation is defined such that if T1 V T2/T3, and one of the right-side types holds
ownership, then ownership is held by T2, not T3. The maybeOwned judgment (AJ:22) checks a
type to see if it could be owned; ownership is always known except when a type includes a type
variable, in which case the judgment conservatively assumes that the type might be owned. The
nonAsset judgment is defined in AJ:19. The contract function, defined in AJ:4, extracts contract
names from types.

TC = contract(T )

T V T/TC@Unowned
SPLIT-UNOWNED

TC@Shared V TC@Shared/TC@Shared
SPLIT-SHARED

Γ ` nonAsset (TC@TST ) maybeOwned (TC@TST )

TC@TST V TC@Shared/TC@Shared
SPLIT-OWNED-SHARED

unit V unit/unit
SPLIT-UNIT
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Main typing judgments

Γ; ∆ `s e : T a ∆′ Well-typed expressions
Unlike some traditional typing judgments, in addition to an input typing context ∆, Silica’s

typing judgment includes an output typing context ∆′. This is because an expression can change
the mode of object references. For example, using a variable that references an object may
consume ownership of the object.

Note that e : T is defined to mean a sequence e : T . Expressions are typechecked in the
context of a simple expression s, which represents this. Initial programs are written using this,
but evaluation of invocations will substitute indirect references for instances of this. The subscript
on the turnstile tracks the value of this in the current invocation.

T-lookup relies on the split judgment (T1 V T2/T3) (9.4.1), which describes how a permission
in T1 can be split between T2 and T3. If ownership is retained after the split, then T2 holds
ownership and T3 does not. Thus, T2 will be the type of the present usage of s′, whereas any
future uses are left with the permission in T3.

T1 V T2/T3

Γ; ∆, s′ : T1 `s s′ : T2 a ∆, s′ : T3

T-LOOKUP

In a let expression, the bound variable can be an owning reference to an asset, but if so, e2

must consume the ownership (as indicated by disposable, AJ:20).

Γ; ∆ `s e1 : T1 a ∆′ Γ; ∆′, x : T1 `s e2 : T2 a ∆′′, x : T ′1 Γ ` disposable (T ′1)

Γ; ∆ `s let x : T1 = e1 in e2 : T2 a ∆′′
T-LET

In assignment operations, any ownership is transferred to the variable that is being written.
This requires that the left-hand-side variable be of disposable type.

Ts′′ V T ∗/T ∗∗ Γ ` disposable (T ′s)

Γ; ∆, s′ : Ts′ , s
′′ : Ts′′ `s s′ := s′′ : unit a ∆′′, s′ : T ∗, s′′ : T ∗∗

T-ASSIGN

To check a new invocation, T-new checks that the types of the arguments are appropriate for
the field declarations in the contract, considering the state in which the object is being initialized.
The subsOk judgment (AJ:29), which is used in T-new, ensures that the given type parameters are
suitable according to the declaration of C. stateFields (AJ:1) is used to look up the types of the
fields to which the parameters will be assigned.

Γ; ∆ `s s′ : Ts′ a ∆′ Γ ` Ts′ <: stateFields(C〈T 〉, S) subsOkΓ (T, TG)
def (C) = contract C〈TG〉 implements I〈TI 〉 {. . .}

Γ; ∆ `s new C〈T 〉@S(s′) : C〈T 〉@S a ∆′
T-NEW

When accessing a field of this (note that the s in the expression is identical to the s subscript in
the judgement), there are two cases. In the first case (T-THIS-FIELD-DEF), the type of the field is
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consistent with the declared type of the field, in which case T-THIS-FIELD-DEF makes sure that the
field is in scope in all possible current states of the referenced object (via intersectFields , AJ:3).
In the second case (T-THIS-FIELD-CTXT), the field type has been updated due to an assignment,
so the field type comes from an override in the context. In both cases, any ownership that was
present is consumed from the field using type splitting.

s.f /∈ Dom(∆) T1 f ∈ intersectFields(T ) T1 V T2/T3

Γ; ∆, s : T `s s.f : T2 a ∆, s : T, s.f : T3

T-THIS-FIELD-DEF

T1 V T2/T3

Γ; ∆, s : T, s.f : T1 `s s.f : T2 a ∆, s : T, s.f : T3

T-THIS-FIELD-CTXT

A field can be overwritten only if the current reference is disposable, since otherwise assign-
ment might overwrite owning references to assets.

Γ; ∆ `s s.f : TC@TST a ∆′ Γ; ∆′ `s sf : TC@T ′ST a ∆′′

Γ ` disposable (TC@TST )

Γ; ∆ `s s.f := sf : unit a ∆′′, s.f : TC@T ′ST
T-FIELDUPDATE

T-INV defines typing when invoking a method m on an expression s1 (s1.m〈TM 〉(s2)). In
invocations (of both public and private transactions), if the type of an argument differs from the
declared type of the formal parameter, the final type of the argument may differ from the declared
final type of the parameter. For example, passing an Owned argument as input to a parameter
that expects an Unowned reference is allowed, but the caller retains ownership. The function
funcArg (AJ:34) computes the resulting final types of the arguments given the types of the input
arguments, since if an Owned reference is passed to an initially-Unowned formal parameter, the
caller retains ownership even though the declared final type in the formal parameter would be
Unowned.

To check an invocation, T-INV first looks up the bound on the type of the receiver, since the
receiver’s type may include type variables (Γ ` bound (TC@TST ) is defined in AJ:23). Next,
T-INV uses the bound and the declared type arguments in the invocation to specialize the types
of the method with specializeTransΓ

(
m〈TM 〉, D〈T 〉

)
(AJ:32). Then, T-INV checks to make

sure the receiver is of appropriate type. T-INV checks to make sure that all the arguments are of
appropriate type and that the fields are of types consistent with their declarations (∀f, s.f /∈ ∆).
The resulting types of the receiver and arguments are computed according to their initial types
and the declaration of the method.

Γ ` bound (TC@T ′STs1) = D〈T 〉@TSTs1
specializeTransΓ

(
m〈TM 〉, D〈T 〉

)
= T m〈T ′M 〉(TCx@Tx�TxST x) Tthis� T ′thise

Γ ` TSTs1 <:∗ Tthis Γ ` Ts2 <: TCx@Tx ∀f, s.f /∈ ∆

T ′s1 = funcArg (TC@TSTs1, TC@Tthis, TC@T ′this) T ′s2 = funcArg (Ts2, Tx, TCx@TxST )

Γ; ∆, s1 : TC@T ′STs1, s2 : Ts2 `s s1.m〈TM 〉(s2) : T a ∆, s1 : T ′s1, s2 : T ′s2
T-INV
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Private invocations differ from public invocations because the current types of the fields must
be checked against the transaction’s preconditions and the field types must be updated after
invocation.

Γ ` bound (TC@T ′STs1) = D〈T 〉@TSTs1
specializeTransΓ (m〈TM 〉, D〈T 〉) = TCf

@Tfdecl�TfST x T m(TCx@Tx�TxST x) Tthis� T
′
this e

Γ ` TSTs1 <:∗ Tthis Γ ` Ts2 <: TCx@Tx Γ ` Tf <: TCf
@Tfdecl

T ′s1 = funcArg (C@TSTs1, C@Tthis, C@T ′this) T ′s2 = funcArg (Ts2, Tx, TCx@TxST )

T ′f = funcArg
(
Tf , TCf

@Tfdecl, TCf
@TfST

)
Γ; ∆, s1 : TC@TSTs1, s2 : Ts2 , s.f : Tf `s1 s1.m〈TM 〉(s2) : T a ∆, s1 : T ′s1, s2 : T ′s2 , s.f : T ′f

T-PRIVINV

T-→p allows changing the nominal state of this. Unlike transitions in FT, T-→p does not
permit arbitrary changes of class; it restricts the change to states within the object’s current
contract.

The T-→p rule first checks that the current permission of this is compatible with p. Then, it
checks that the values to be assigned to the new fields are compatible with the declared types of
those fields. Finally, it ensures that all possible current fields of this that may reference assets do
not currently own those assets. StateFields (AJ:1) looks up the fields defined in a particular state.
The fieldTypes judgment (AJ:6) gives the current types of the input fields.

Γ ` TST <:∗ p p ∈ {Shared,Owned}] Γ; ∆ `s x : T a ∆′

Γ ` T <: stateF ields(C〈TA〉, S ′) unionFields(C〈TA〉, TST ) = Tfs fs

fieldTypess(∆; Tfs fs) = T ′fs Γ ` disposable
(
T ′fs

)
Γ; ∆, s : C〈TA〉@TST `s s→p S

′(x) : unit a ∆′, s : C〈TA〉@S ′
T-→p

Checking static assertions of specific states is straightforward; we check to make sure that all
possible states of the reference to be checked are among the permitted states.

S ⊆ S ′

Γ; ∆, x : TC@S `s [x@S ′] : unit a ∆, x : TC@S
T-ASSERTSTATES

When checking a static assertion of fixed permission, T-ASSERTPERMISSION checks for a
precise match of permission.

TST ∈ {Owned,Unowned,Shared}
Γ; ∆, x : TC@TST `s [x@TST] : unit a ∆, x : TC@TST

T-ASSERTPERMISSION

When asserting that a variable is in a state corresponding to a type variable, bound∗ is used to
compute the most specific mode for the variable. T-ASSERTINVAR applies only if the computed
bound is concrete (i.e., has no type variables), which is expressed by the nonVar judgment
(AJ:25). Otherwise, we require that the asserted mode be an exact match with the current type
(T-ASSERTINVARALREADY).
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Γ ` bound∗ (p) = TST nonVar (TST )
Γ; ∆, x : TC@TST `s [x@TST] : unit a ∆, x : TC@TST

Γ; ∆, x : TC@TST `s [x@p] : unit a ∆, x : TC@TST
T-ASSERTINVAR

Γ; ∆, x : TC@p `s [x@p] : unit a ∆, x : TC@p
T-ASSERTINVARALREADY

Dynamic state tests are typechecked according to the ownership of the variable to be checked.
T-ISIN-STATICOWNERSHIP can be used when a variable is an owning reference but does not
provide a particular state specification that the programmer wants. In contrast, IsIn-Dynamic
applies when there is no ownership.

In T-ISIN-STATICOWNERSHIP, TC@TST is the type of the expression to be checked. The rule
applies only when the reference to be checked is owned. T-ISIN-STATICOWNERSHIP ensures
that the dynamic states to be checked are valid states according to the declaration of TC . Then,
e1 is checked in a context that assumes that the test has passed; later, e2 is checked in a context
that assumes that the test failed. The resulting contexts of the two branches are merged together
to construct an output context ∆f . The merge judgment (AJ:33) merges two contexts. The
possibleStates judgment (AJ:16) extracts all possible states given a type; the states judgment
(AJ:8) extracts state definitions.

S ⊆ states (TC) Γ ` TST <:∗ Owned
Γ; ∆, x : TC@S `s e1 : T1 a ∆′ Sx = possibleStatesΓ (TC@TST )

Γ; ∆, x : TC@(Sx \ S ) `s e2 : T1 a ∆′′ ∆f = merge(∆′,∆′′)

Γ; ∆, x : TC@TST `s if x inowned S then e1 else e2 : T1 a ∆f

T-ISIN-STATICOWNERSHIP

In if x inshared S then e1 else e2, e1 is permitted to change the state of the object referenced
by x, but it is not permitted to allow another reference to obtain permanent ownership of the object.
While e1 is evaluating, all state changes to the object referenced by x that occur via Shared
aliases will cause program termination (due to a dynamic lock), so it is up to the programmer to
ensure that this is impossible.

T-ISIN-DYNAMIC first checks that the states to be checked are well-defined. It checks e1 in
a context in which x has type TC@S , since the test passed if e1 is evaluating. In contrast, the
context for e2 merely retains the Shared permission, since shared references cannot make any
assumptions about state.

S ⊆ states (TC) Γ; ∆, x : TC@S `s e1 : T1 a ∆′, x : TC@T ′ST
Γ ` bound∗ (T ′ST ) 6= Unowned

Γ; ∆, x : TC@Shared `s e2 : T1 a ∆′′, x : TC@Shared
∆f = merge(∆′,∆′′), x : TC@Shared

Γ; ∆, x : TC@Shared `s if x inshared S then e1 else e2 : T1 a ∆f

T-ISIN-DYNAMIC
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If the test is against a permission variable, T-ISIN-PERMVAR checks e1 in a context that gives
x the permission variable’s permission, which will result in relying on the bound on p in Γ.

Γ; ∆, x : TC@p `s e1 : T1 a ∆′ Γ; ∆, x : TC@TST `s e2 : T1 a ∆′′

∆f = merge(∆′,∆′′) Perm = toPermission (TST )

Γ; ∆, x : TC@TST `s if x inPerm p then e1 else e2 : T1 a ∆f

T-ISIN-PERMVAR
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In T-ISIN-PERM-THEN and T-ISIN-PERM-ELSE, the compiler knows which branch will be
taken: either TST satisfies the given condition or it does not. If TST is a variable, then it is treated
as if it were owned (via toPermission).

Perm ∈ {Owned,Unowned,Shared} P = toPermission (TST )
Γ ` P <:∗ Perm Γ; ∆, x : TC@TST `s e1 : T1 a ∆′

Γ; ∆, x : TC@TST `s if x inP Perm then e1 else e2 : T1 a ∆′
T-ISIN-PERM-THEN

Perm ∈ {Owned,Unowned,Shared} P = toPermission (TST )
Γ ` P 6<:∗ Perm Γ; ∆, x : TC@TST `s e2 : T1 a ∆′

Γ; ∆, x : TC@TST `s if x inP Perm then e1 else e2 : T1 a ∆′
T-ISIN-PERM-ELSE

The case where a program tests to see if an unowned reference is in a particular state is
included because it can arise via substitution.

Γ; ∆, x : TC@Unowned `s e2 : T1 a ∆′

Γ; ∆, x : TC@Unowned `s if x inUnowned S then e1 else e2 : T1 a ∆′
T-ISIN-UNOWNED

Disown discards ownership of its parameter. Existing ownership is split; in TC@TST V T/T ′,
T retains ownership and T ′ lacks it, so the output context uses T ′ as the new type of s′. Note that
the split is not a function; one can see by inspection of the definition of split that T ′ is not owned,
but may be either shared or unowned.

TC@TST V T/T ′ Γ ` TST <:∗ Owned
Γ; ∆, s′ : TC@TST `s disown s′ : unit a ∆, s′ : T ′

T-DISOWN

pack updates ∆, removing all type overrides of fields of this. It requires that the existing
overrides are consistent with the field declarations. There is no corresponding unpack; instead,
field assignment and field reading can cause a future need to invoke pack. pack is defined in
terms of ≈ (AJ:11), which ensures that either the two types are both owning or neither is owning.
The contractFields judgment (AJ:5) extracts the fields that are available in all states of a contract.

s.f /∈ dom(∆) contractF ields(T ) = Tdecl f Γ ` Tf <: Tdecl Γ ` Tf ≈ Tdecl

Γ; ∆, s : T, s.f : Tf `s pack : unit a ∆, s : T
T-PACK

M ok in C Well-typed transaction
To check a public transaction, PublicTransactionOK first extracts the type parameters TG

of the enclosing contract C, the type variables in those parameters T , and constructs a type
bounds context Γ from TG and TM (the type parameters of the transaction). Then, the body of the
transaction e is checked in a context that binds this and the parameters x to appropriate types.
Those initial types come from the signature of the transaction; the final types in the output type
context must match the specified types in the signature.
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Note that all fields of this must end the transaction with types consistent with their declarations;
otherwise, there would be occurrences of s.f in the output typing context after checking e. The
body e may need to use pack to make this the case.

The Var judgment (AJ:27) extracts the type variables from type parameters. The params
judgment (AJ:10) extracts the type parameters from declarations.

params(C) = TG Var (TG) = T Γ = TG , TM
Γ; this : C〈T 〉@Tthis, x : Cx@Tx `this e : T a this : C@T ′this, x : Cx@T

′
x

T m〈TM 〉(Cx@Tx�T ′x x) Tthis� T ′this {return e} ok in C
PUBLICTRANSACTIONOK

The difference between public and private transactions is that private transactions may begin
and end with fields inconsistent with their declarations. In both cases, inside e, it is possible to set
fields of this so that they do not match their declared types. However, until the fields are updated
so that their types match their declarations, additional public transactions cannot be invoked,
ensuring that only private transactions are exposed to the inconsistent state.

There may be aliases to this. However, if the fields of this are inconsistent with their types, no
public transactions can be invoked, so the inconsistency cannot be visible outside this transaction
or any private transactions that it invokes. Furthermore, the state of this can only be changed if
the permission on this allows that operation (see THIS-STATE-TRANSITION).

params(C) = TG Var (TG) = T contractF ields(C〈T 〉) = Tf f

∆ = s : C〈T 〉@TST , s.f : contract(Tf ).Sf1 , x : Cx@Tx
∆′ = s : C〈T 〉@T ′ST , s.f : contract(Tf ).Sf2 , x : Cx@T

′
x

Γ; ∆ `s e : T a ∆′ Γ = TG , TM

Sf1 >> Sf2f T m〈TM 〉(Cx@Tx�T ′xx) TST� T ′ST {return e} ok in C
PRIVATETRANSACTIONOK

ST ok Well-formed State
All fields must have distinct names, and if any field is an asset, then the state must be labeled

asset.

∀i, j i 6= j ⇒ fi 6= fj Γ ` nonAsset (T )

Γ ` S T f ok
∀i, j i 6= j ⇒ fi 6= fj

Γ ` asset S T f ok

CL ok Well-typed Contract
Contracts must contain only methods and states that are well-formed. Contracts must have

at least one state, and every transaction specified in the interface that the contract claims to
implement must have an implementation. Likewise, every state specified in the interface must be
present in the contract. The implementOk judgments (AJ:28) define the relationships that must
hold between interfaces, method signatures, and states. That is, all transactions and starts that are
specified in the interface must be defined accordingly in the contract. Finally, the type parameters
TG of the contract must be well-formed (genericsOk, defined in AJ:30), and the type arguments
given for the interface must be appropriate for the interface’s specification (subsOk, defined in
AJ:29).
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The isVar judgment (AJ:26) identifies the types that are type variables. The transactionName
function (AJ:7) extracts the name from a transaction declaration. The stateNames function (AJ:9)
extracts names from declarations.

M ok in C TG ` ST ok |ST | > 0
transactionNames (I) ⊆ transactionNames (C) stateNames (I) ⊆ stateNames (C)

∀T ∈ T , isVar (T ) =⇒ T ∈ Var (TG)
∀M ∈ M, transactionName (M) ∈ transactionNames (I) =⇒ implementOk

TG

(
I〈T 〉,M

)
∀S ∈ ST , stateName (S) ∈ stateNames (I) =⇒ implementOk

TG

(
I〈T 〉, S

)
genericsOk

TG
(TG) subsOk

TG
(T, params (I))

contract C〈TG〉 implements I〈T 〉 {ST F M } ok

IFACE ok Well-typed Interface
A well-typed interface must have well-formed type parameters (as defined by genericsOk in

AJ:30).

genericsOk
TG

(TG)

interface I〈TG〉{ST MSIG} ok

PG ok Well-typed Program
A well-typed program consists of well-typed contracts, well-typed interfaces, and a well-typed

expression.

CON ok IFACE ok ·; · `s e : T a ·
〈IFACE, CON , e〉 ok

9.4.2 Subtyping

The subtyping relation depends on a sub-permission relation <:∗, defined below. The top-level
subtyping relation mostly deals with type parameters, delegating the reasoning about permissions
to <:∗. The definition uses the definition of substitution for types, which is defined in AJ:31.

Γ ` T1 <: T2
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Γ ` unit <: unit
¡:-UNIT

Γ ` TST <:∗ T
′
ST

Γ ` TC@TST <: TC@T ′ST
¡:-MATCHING-DEFS

Γ ` TST <:∗ T
′
ST

Γ ` D〈T 〉@TST <: D〈T 〉@T ′ST
¡:-MATCHING-DECLS

Γ ` TST <:∗ T
′
ST

def (C) = contract C〈TG〉 implements I〈T ′〉{. . .}

Γ ` C〈T 〉@TST <: σ
(
T/TG

)(
I〈T ′〉@T ′ST

) ¡:-IMPLEMENTS-INTERFACE

Γ ` TST <:∗ T
′
ST Γ ` bound (X@TST ) = TC@T ′ST
Γ ` X@TST <: TC@T ′ST

¡:-BOUND

Γ ` TST1 <:∗ TST2 Subpermissions
The subpermission judgment is ancillary to the subtyping judgment, and specifies when an

expression with one mode can be used where one with the same contract but a potentially different
mode is expected.

Γ ` TST <:∗ TST
<:∗-REFL

Γ ` TST1 <:∗ TST2 Γ ` TST2 <:∗ TST3
Γ ` TST1 <: TST3

<:∗-TRANS

Γ ` bound∗ (p) = TST

Γ ` p <:∗ TST
<:∗-VAR

S ⊆ S ′

Γ ` S <:∗ S
′ <:∗-S-S’

S <:∗ Owned
<:∗-S-O

TST2 6= S

Γ ` Owned <:∗ TST2

<:∗-O-*
Γ ` TST <:∗ Unowned

<:∗-U-U

Γ ` TST 6<:∗ TST

Γ ` TST2 <:∗ TST1 TST2 6= TST1
Γ ` TST1 6<:∗ TST2

9.4.3 Silica Dynamic Semantics
In order to express the dynamic semantics, we must first slightly extend the syntax. Objects,
which reside in heaps µ, are referenced by object references o. We introduce a notion of indirect
references l, which are used only in the formal semantics, not in the implementation, as a tool
to prove soundness. Indirect references, introduced in FT [78], allow the formal model to track
permissions of individual aliases to shared objects. Intuitively, indirect references typically
correspond with local variables that reference objects; we record the permission each indirect
reference holds in a context ρ.
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o ∈ OBJECTREFS

l ∈ INDIRECTREFS

C〈T 〉@S(o) ∈ OBJECTS

ξ ∈ PERMISSIONVARIABLES ⇀ STATENAMES ∪ {Owned,Unowned,Shared}
µ ∈ OBJECTREFS ⇀ OBJECTS

ρ ∈ INDIRECTREFS ⇀ VALUES

e ::= . . . | o
| e o (state-locking mutation detection container)
| e o (reentrancy detection container)

s ::= . . . | l
v ::= ()| o (values)
φ ::= · | φ, o (Objects that are state-locked)
ψ ::= · | ψ, o (Objects that have transactions that are on the stack)
E ::= 2

| let x = E in e
| E o

| E
o

We extend the previous definition of static contexts so that programs can remain well-typed as
they execute:

b ∈ x | l | o
∆ ::= b : T

We extend the previous T-lookup rule to account for this extension:

T1 V T2/T3

Γ; ∆, b : T1 `s b : T2 a ∆, b : T3

T-LOOKUP

The abstract machine maintains state 〈µ, ρ, φ, ψ, ξ〉. For concision, we abbreviate that tuple
as Σ and refer to the components as Σµ, etc. µ is used as an abbreviation for Σµ when there is
only one Σ in scope. The syntax [X/µ] Σ denotes 〈X, ρ, φ, ψ, ξ〉; µ denotes Σµ if it occurs in X.
In addition, we use Σ[l 7→ o] to denote an extension of Σρ.

The dynamic semantics are similar to the dynamic semantics of FT. However, in addition to
heap µ and environment ρ, we keep a state-locking environment φ, which is a set of references to
objects that are state-locked. ψ is used for dynamic reentrancy detection; ξ keeps track of which
states and permissions are feasible for each permission variable.
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Σ, e→ Σ′, e′

Σ, l→ Σ, ρ(l)
E-LOOKUP

o = ρ(l′)

Σ, l := l′ → [ρ[l 7→ o]/ρ] Σ, ()
E-ASSIGN

l /∈ dom(ρ)

Σ, let x : T = v in e→ [ρ[l 7→ v]/ρ] Σ, [l/x]e
E-LET

Σ, e1 → Σ′, e′1
Σ, let x : T = e1 in e2 → Σ′, let x : T = e′1 in e2

E-LETCONGR

o /∈ dom(µ) def(C) = contract C〈TG〉 implements I〈T 〉{. . .}
Σ,new C〈T 〉@S(l)→ [µ[o 7→ C〈T 〉@S(ρ(l))]/µ] Σ, o

E-NEW

µ(ρ(l)) = C〈T 〉@S(s)

Σ, l.fi → Σ, si
E-FIELD

µ(ρ(l)) = C〈T 〉@S(l) fields(C@S) = T f

Σ, l.fi := l′ → [µ[ρ(l) 7→ C〈T 〉@S(o1, o2, . . . , oi−1, ρ(l′), oi+1, . . . , o|l|)]/µ] Σ, ()
E-FIELDUPDATE

The two invocation rules are complex. Reentrancy is checked dynamically at object granularity.
Object-level reentrancy aborts the current top-level transaction. However, as a special exception,
private transactions are not protected from reentrancy (otherwise they would be useless). Reen-
trancy is checked via the ψ context, which is a set of all objects that have transaction invocations
on the stack.

First, we look up the receiver in the heap to find its dynamic state. In invocations of public
methods, we also must check (by looking in ψ) that there is not already an invocation on the
receiver in progress. Then, we make fresh indirect references l′1 and l′2 , which will be used to pass
ownership to the transaction; residual ownership will remain in the original indirect references l1
and l2 . Then, since e may use type parameters according to the declarations of C and tdef (C,m),
we need to update ξ so that the variables are bound according to the invocation by resolving any
type variables to concrete permissions or states (via lookup). Then, we proceed by substitution in
an environment that tracks in ψ an in-progress invocation on the object indirectly referenced via
l1, which is directly referenced by ρ(l1). This object reference must be removed from ψ when
evaluation of the transaction body is complete. To arrange this, the rule steps to an expression in
a box. Afterward, evaluation will proceed inside the box until the contents of the box reaches a
value, at which point the invocation returns, the value is unboxed, and the reference is removed
from ψ.

We define lookupξ (TST ) so that it looks up TST in ξ if TST is a variable, and otherwise, simply
maps to TST . This definition ensures that each permission variable maps to a concrete permission
or state, rather than a permission variable, eliminating the need for recursive lookups.
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µ(ρ(l1)) = C〈T 〉@S(. . .) ρ(l1) /∈ ψ
tdef (C,m) = T m〈TM 〉(TCx@Tx�TxST x)Tthis � T ′this {return e}

l′1 /∈ dom(ρ) l′2 /∈ dom(ρ) params (C) = TD
ξ′ = ξ, PermV ar(TD) 7→ lookupξ (Perm(T )), P ermV ar(TM) 7→ lookupξ (Perm(M))

ρ′ = ρ, l′1 7→ ρ(l1), l′2 7→ ρ(l2)
Σ′ = 〈µ, ρ′, φ, (ψ, ρ(l1)), ξ′〉

Σ, l1.m〈M 〉(l2)→ Σ′, [l′2/x][l′1/this]e
ρ(l1)

E-INV

µ(ρ(l1)) = C〈T 〉@S(. . .)
tdef (C,m) = TCf

@Tfdecl�TfST T m〈TM 〉(TCx@Tx�TxST x) Tthis� T ′this {return e}
l′1 /∈ dom(ρ) l′2 /∈ dom(ρ) params (C) = TD

ξ′ = ξ, PermV ar(TD) 7→ lookupξ (Perm(T )), P ermV ar(TM) 7→ lookupξ (Perm(M))

ρ′ = ρ, l′1 7→ ρ(l1), l′2 7→ ρ(l2)
Σ′ = 〈µ, ρ′, φ, ψ, ξ′〉

Σ, l1.m〈M 〉(l2)→ Σ′, [l′2/x][l′1/this]e
E-PRIVINV

The two rules above use lookupξ:

lookupξ (TST ) = TST

lookupξ (p) = ξ(p)

nonVar (TST )

lookupξ (TST ) = TST

µ(ρ(l)) = C〈T 〉@S ′(. . .)
Σ, l→owned S(l′)→ [µ[ρ(l) 7→ C〈T 〉@S(ρ(l′))]/µ] Σ, ()

E-→owned

In E-→shared, a shared object can transition state if it is not statelocked (ρ(l) /∈ φ) or the
transition does not actually change which state the object is in.

µ(ρ(l)) = C〈T 〉@S ′(. . .) ρ(l) /∈ φ ∨ S = S ′

Σ, l→shared S(l′)→ [µ[ρ(l) 7→ C〈T 〉@S(ρ(l′))]/µ] Σ, ()
E-→shared

Σ,[s@TST]→ Σ, ()
E-ASSERT

In the scope of an if in block, we must ensure that other aliases cannot be used to violate
the state assumptions of the block. We only check for state modification, not for general field
writes, since the typestate mechanism is restricted to nominal states rather than pertaining to all
properties of objects. To do this, we track references to objects that are state-locked in φ. These
references are dynamically state-locked: modifications to the referenced objects’ state via other
references will result in an expression getting stuck.
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ξ(p) = TST

Σ, if l is inP p then e1 else e2 → Σ, if l is inP TST then e1 else e2

E-ISIN-PERMVAR

Perm ∈ {Owned,Unowned,Shared} · ` P <:∗ Perm
Σ, if l is inP Perm then e1 else e2 → Σ, e1

E-ISIN-PERM-THEN

Perm ∈ {Owned,Unowned,Shared} · ` Perm 6<:∗ P

Σ, if l is inP Perm then e1 else e2 → Σ, e2

E-ISIN-PERM-ELSE

Σ, if l is inUnowned S then e1 else e2 → Σ, e2

E-ISIN-UNOWNED

µ(ρ(l)) = C〈T 〉@S ′(. . .) S ′ ∈ S
Σ, if l is inowned S then e1 else e2 → Σ, e1

E-ISIN-OWNED-THEN

E-ISIN-SHARED-THEN checks ρ(l) /∈ φ because the static semantics that correspond generate
a temporary owning reference. If it did not check, or it allowed nested checks, that would generate
multiple distinct temporary owning references.

µ(ρ(l)) = C〈T 〉@S(. . .) ρ(l) /∈ φ
Σ, if l is inshared S then e1 else e2 → [φ, ρ(l)/φ] Σ, e1 ρ(l)

E-ISIN-SHARED-THEN

µ(ρ(l)) = C〈T 〉@S ′(. . .) S ′ /∈ S
Σ, if l is inp S then e1 else e2 → Σ, e2

E-ISIN-ELSE
Σ,disown s→ Σ, ()

E-DISOWN

Σ,pack→ Σ, ()
E-PACK

e o and e o permit the boxed expression to first evaluate to a value, and then afterward remove
the corresponding object reference from the appropriate context.

Γ; ∆ `s e : T a ∆′

Γ; ∆ `s e o : T a ∆′
T-STATE-MUTATION-DETECTION

Γ; ∆ `s e : T a ∆′

Γ; ∆ `s e o : T a ∆′
T-REENTRANCY-DETECTION

Σ, v o → [(φ \ o)/φ] Σ, v
E-BOX-φ

Σ, v o → [(ψ \ o)/ψ] Σ, v
E-BOX-ψ

Σ, e→ Σ′, e′

Σ, e o → Σ′, e′ o

E-BOX-φ-CONGR
Σ, e→ Σ′, e′

Σ, e o → Σ′, e′
o E-BOX-ψ-CONGR
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9.4.4 Silica Soundness and Asset Retention

In this section, we outline the proof of type soundness. We also state the asset retention theorem,
which formally states the property that owned references to assets can only be dropped with the
disown operation. Full proofs can be found in Appendix A.3. We focused on a paper-based
proof rather than a mechanized proof due to the high cost of mechanization. We derive additional
confidence in the soundness from the existing soundness proofs of related systems, including
FT [78].

Global consistency defines consistency among static and runtime environments. It requires
that every indirect reference to an object in ρ maps to a legitimate indirect reference in µ and
that ρ maps indirect references to appropriately-typed values. It also requires that every type in
the static context correspond with an indirect reference in the indirect reference context. The
permission variables must be available for lookup in ξ and map to concrete permissions or states.
Finally, every object in the heap must have only compatible aliases, as expressed by reference
consistency.

We will also need typing for ():

Γ; ∆ `s () : unit a ∆
T-()

Γ,Σ,∆ ok Global Consistency

range(ρ) ⊂ dom(µ) ∪ {()}
dom(∆) ⊂ dom(ρ) ∪ dom(µ)

{l | (l : unit) ∈ ∆} ⊂ {l | ρ(l) = ()}
{l | (l : boolean) ∈ ∆} ⊂ ({l | ρ(l) ∈ {true, false}}

{l | (l : T ) ∈ ∆} ⊂ {l | ρ(l) = o}
PermVar (Γ) ⊂ {p | ξ(p) = TST}

∀s : TC@TST ∈ ∆,∃C, T s.t. TC = C〈T 〉
Σ,∆ ` dom(µ) ok

Γ,Σ,∆ ok

Reference consistency expresses the requirement that all aliases to a given object must be
compatible with each other and consistent with the actual type of the object in the heap. It
also requires that objects in the heap have the right number of fields. The fact that the fields
must reference objects of appropriate type is implied by the requirement that all references must
reference objects of types consistent with the reference types.
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Σ,∆ ` o ok Reference Consistency

µ(o) = C〈T 〉@S(o′) |o′ | = |stateF ields(C, S)|
refTypes(Σ,∆, o) = D · ` C〈T 〉 <: D

∀T1, T2 ∈ D,T1 ↔ T2 or StateLockCompatible(T1, T2)

Σ,∆ ` o ok

where

StateLockCompatible(T1, T2) , o ∈ Σφ ∧ ((i 6= j) =⇒ owned(Ti) ∧ Tj = C〈T 〉@Shared)

StateLockCompatible is defined in order to allow the original Shared alias (via which the
state was checked) to co-exist with the state-specifying reference. This would not normally be
permitted, but is safe while o ∈ Σφ because the shared alias cannot be used to mutate typestate
while that is the case.

The relation↔ defines compatibility between pairs of aliases:

T1 ↔ T2 Alias Compatibility

T2 ↔ T1

T1 ↔ T2

SYMCOMPAT
C〈T 〉@TST ↔ C〈T 〉@T ′ST
C〈T 〉@TST ↔ I〈T 〉@TST

SUBTYPECOMPAT

C〈T 〉@TST ↔ C〈T 〉@T ′ST
C〈T 〉@TST ↔ C〈T ′〉@T ′ST

PARAMCOMPAT

TC@Unowned↔ TC@Unowned
UUCOMPAT

TC@Unowned↔ TC@Shared
USCOMPAT

TC@Unowned↔ TC@Owned
UOCOMPAT

TC@Unowned↔ TC@S
USTATESCOMPAT

TC@Shared↔ TC@Shared
SCOMPAT

refTypes computes the set of types of referencing aliases to a given object in a given static and
dynamic context. References may be from fields of objects in the heap; from indirect references;
and from variables in the static context. Fields of objects in the heap include both fields whose
types are specified in their declarations and fields whose types are overridden temporarily in the
static context ∆.
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refTypes(Σ,∆, o) = refF ieldTypes(µ, o) ++ envTypes(Σ, o) ++ ctxTypes(∆, o)

refF ieldTypes(µ, o) = ++
o′∈dom(µ)

[Ti | µ(o′) = C〈T 〉@S(o), ft(∆, C〈T 〉, S) = Tf and o ∈ o]

ft(∆, C, S) = [Tf | s.f : T ∈ ∆] ∪ (allF ields(C, S) \ [Tf | s.f ∈ dom(∆)])

envTypes(Σ,∆, o) = ++
l∈dom(ρ)

[T | Σρ(l) = o and (l : T ) ∈ ∆]

ctxTypes(∆, o) = [T | o : T ∈ ∆]

Definition 9.4.1 (<l). A context ∆ is l-stronger than a context ∆′ with respect to Γ and Σ (denoted
∆ <l

Γ,Σ ∆′) if and only if for all l′ : T ′ ∈ ∆′, there is some T and l such that Γ ` T <: T ′,
l : T ∈ ∆, T ≈ T ′, and Σ′ρ(l) = Σ′ρ(l

′).
Note that this differs from the definition of <l given in FT. Here, the indirect reference in

the two contexts need not match. This weakening is necessary because permissions are split in
invocations. After an invocation, the new expression typechecks in a context that may retain
some of the permissions from the original reference (whereas the remaining permissions were
transferred to the invocation, i.e., retained in a different indirect reference). This means that
although the permissions are still at least as strong in the new context, the strongest permission
may be held by a different indirect reference than in the original.
Corollary 9.4.0.1 (<l-reflexivity). For all ∆,Γ,Σ, ∆ <l

Γ,Σ′ ∆.

Proof. Trivial application of the definition because <: is reflexive.

Lemma 9.4.1 (Canonical forms). If Γ; ∆ `s v : T a ∆′, then:
1. If T = C〈T ′〉.S , then v = C〈T ′〉@S(s).
2. If T = unit, then v = ().

Proof. By inspection of the typing rules.

Lemma 9.4.2 (Memory consistency). If Γ,Σ,∆ ok, then:
1. If l : C〈T ′〉@S ∈ ∆, then ∃o.ρ(l) = o and µ(o) = C〈T ′〉@S(s).
2. If Γ; ∆ `s e : T a ∆′, and l is a free variable of e, then l ∈ dom(ρ).

Proof. The proof is shown in Appendix A.3.1.

Theorem 9.4.1 (Progress). If e is a closed expression and Γ; ∆ `s e : T a ∆′, then at least one
of the following holds:

1. e is a value
2. For any environment Σ such that Γ,Σ,∆ ok, Σ, e→ Σ′, e′ for some environment Σ′

3. e is stuck at a bad state transition — that is, e = E[l ↗Shared S(s)] where µ(ρ(l)) =
C〈T ′〉@S ′(. . .), S 6= S ′, ρ(l) ∈ φ, and Γ; ∆ `s l : C〈T ′〉@Shared a ∆′.

4. e is stuck at a reentrant invocation – that is, e = E[l.m(s)] where µ(ρ(l)) = C〈T ′〉@S(. . .),
ρ(l) ∈ ψ.
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5. e is stuck in a nested dynamic state check – that is, e = E[if s inshared T ST then e1 else e2]
where µ(ρ(l)) = C〈T 〉@S(. . .) and ρ(l) ∈ φ.

Proof. The proof, which proceeds by induction on the typing derivation, can be found in Appendix
A.3.

Theorem 9.4.2 (Preservation). If e is a closed expression, Γ; ∆ `s e : T a ∆′′, Γ,Σ,∆ ok, and
Σ, e→ Σ′, e′ then for some ∆′, Γ′; ∆′ `s e′ : T ′ a ∆′′′, Γ′,Σ′,∆′ ok, and ∆′′′ <l

Γ,Σ′ ∆′′.

Proof. The proof, which proceeds by induction on the dynamic semantics, can be found in
Appendix A.3.

Because invocation results in additional indirect references being added to the context, which
may be used in e′, we need to typecheck e′ in a new typing context. Informally, the guarantee is
that all indirect references in the resulting context are at least as specific as the ones that were
given in the initial typing judgment.

Informally, asset retention is the property that if a well-typed expression e takes a step in an
appropriate dynamic context, then owning references to assets are only dropped if e is a disown
operation.
Theorem 9.4.3 (Asset retention). Suppose:

1. Γ,Σ,∆ ok
2. o ∈ dom(µ)

3. refTypes(Σ,∆, o) = D

4. Γ; ∆ `s e : T a ∆′

5. e is closed
6. Σ, e→ Σ′, e′

7. refTypes(Σ′,∆′, o) = D′

8. ∃T ′ ∈ D such that Γ ` nonDisposable (T ′)

9. ∀T ′ ∈ D′ : Γ ` disposable (T ′)

Then in the context of a well-typed program, either Γ ` nonDisposable (T ) or e = E[disown s],
where ρ(s) = o.

Proof. The proof, which proceeds by induction on the typing derivation, can be found in Appendix
A.3.

9.5 Obsidian Language Definition

Unlike Silica, which is an expression language to facilitate writing proofs, we designed Obsidian
as a statement language in order to reflect the expectations of object-oriented programmers.

The high-level Obsidian language differs from the core Silica language in various ways
discussed in this section. We define the semantics of Obsidian by translation to Silica, so Table 9.1
shows the differences and how the translator handles them.
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Difference Translation

Obsidian supports sequences of state-
ments, not just expressions.

Sequences of statements are translated to a nested
let-bind expression.

Constructors can have arbitrary behavior,
not just initializing fields.

Constructors are translated to transactions that in-
voke new and return the result. Every use of new
in Obsidian is translated to a call to that transac-
tion.

A-normal form is not required. The translator let-binds nested translated expres-
sions to fresh variables and uses those variables in
the body as required.

State transitions are not labeled with the
type of this.

The translator locally infers types of this for
state transitions [154].

State transitions specify new values for an
arbitrary collection of fields.

The translator ensures that all new fields are ini-
tialized.

State tests are not labeled with the type of
the expression being tested.

The translator locally infers types [154].

There is no pack in Obsidian. pack is inserted automatically by the translator
before public invocations and at the ends of trans-
action bodies.

Obsidian uses S::f to denote a field in a
future state of this.

The translator defines local variables in a hidden
namespace and inserts them into transitions.

There is no switch in Silica. The translator translates each use of switch to a
tree of if in expressions.

Local variable declarations in Obsidian
specify contract types but may omit in-
tializations for the new variables. Silica
uses let.

A translation context tracks the declared contract
types of variables and checks that assignments
are consistent with the declarations. Translating
local variable declarations that lack initialization
mutates the context but does not emit any Silica
code.

Table 9.1: Differences between Obsidian and Silica
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9.5.1 Obsidian syntax

In addition to the syntactic features described in the grammar below, the implementation also
supports the following features:

• FFI contracts, which define interfaces that are implemented in trusted Java code rather than
in Obsidian code (used for exposing run time support in Fabric and JDK classes).

• Import statements, for using code defined in other files.
Also, note that in some cases the syntax is more permissive than strictly needed so that the

compiler can conveniently give good error messages. For example, e1 = e2 is only permitted
when e1 is a variable, S::f, or this.f.

Relative to Silica, Obsidian adds constructors and statements:
CTOR::= C@P (T�TST x) { STMT }
STMT::= e

| e = e (variable assignment and field update)
| → S(f = e) (State transition)
| C x = e (variable declaration with init)
| C x (variable declaration)
| [ e @ TST] (static assert)
| if (e) {STMT } else {STMT }
| if s in TST {STMT } else {STMT } (dynamic state test)
| return [e]
| revert e (revert state, providing an error message)
| switch e{case S{STMT }} (case analysis on dynamic state)

To expressions, Obsidian adds assignments e1 = e2 as well as S::f, which represents a field f
in a future state S. Obsidian also uses new to invoke constructors, rather than initializing fields
directly.

e ::= e = e
| new C(e)
| S::f (state field initialization expression)

Although not shown here, the Obsidian implementation also supports primitive types int,
string, and bool, constants of those types, and some primitive operators for expressions of
those types, such as + and -.

We briefly outline a translation from Obsidian to Silica in Appendix 9.6. The statement-
oriented reformulation generally only results in trivial extensions to the typing rules. The most
significant extension is for if, which, like dynamic state checks if in, merges the states from
the two branches to construct a result context. When return occurs, the type checker conducts
the same checks that run at the ends of transactions to ensure that no assets are lost. In addition,
branches that are guaranteed to return or revert do not affect the typing context after the if
statement. This optimization improves precision, since the code after the if only executes if the
non-exiting branch is the one that executed, and the two branches might change the typestate of
a variable divergently. Other than these small changes, we rely on Silica to show soundness of
Obsidian.
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Obsidian relaxes Silica’s requirement that every contract define at least one state. Obsidian
contracts that do not define states behave as if they were always in a particular state with a
user-inaccessible state name.

In Obsidian, private transactions need not specify types for all fields. Instead, fields whose
types are unspecified have types according to their declarations.

9.6 Translation from Obsidian to Silica
The implementation of Obsidian implements type checking directly on Obsidian programs rather
than first translating to Silica. However, we define the semantics of Obsidian by translation to
Silica. The; relation operates in a variable binding environment ∆ that maps variables to their
types, as well as the type bounds context Γ. Because Obsidian supports declaring local variables
with only contracts specified, not full types (whereas Silica has no variable declarations at all,
only let-bindings), we need an additional context, Θ, which maps local variable names to declared
contract names:

Θ ::= x : C

When translating assignments, the translator checks to make sure the assigned expression’s
contract is consistent with the contract that was specified in the variable’s declaration. This
contrasts with ∆, which tracks complete types (not just contract names) of variables. ∆ is
needed for inferring types in translated expressions. After declaring local variable x but before
an assignment to x, x is recorded in Θ but not ∆. After the assignment, the variable is in both
contexts.

The translation from Obsidian to Silica can be undefined due to type errors in the source
Obsidian program. For brevity, we only show a few example rules to summarize how the
translation works. The sequence operator is right-associative.

The variable name indicates that the translator chooses a fresh variable name, which has not
previously been used.

Γ; ∆; Θ `s stmt ; e a ∆′;

Γ; ∆; Θ `s  ; () a ∆;
EMPTY

When translating an assignment, because Silica requires A-normal form, we let-bind the right-
hand-side to a fresh variable, x′, so that we can translate the assignment to a Silica assignment.
Assignment requires that the left-hand-side variable has already been declared.

Γ; ∆; Θ `s e; e′ a ∆′; Γ; ∆ `s e′ : C@TST a ∆∗ x : C ∈ Θ
Γ′; ∆′, x : C@TST ; Θ `s stmts ; e′′ a ∆′′; x′ fresh

Γ; ∆; Θ `s x = e; stmts ; let x′ : C@TST = e′ in let : unit = x := x′ in e′′ a ∆′′;
ASSIGN
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In a declaration without an assignment, we need only record in Θ the declared contract name
for future checking.

x /∈ dom(Θ) Γ; ∆; Θ, x : C `s stmts ; e a ∆′;

Γ; ∆; Θ `s C x; stmts ; e a ∆′;
DECL

In a declaration with an assignment, we compute the type of e in order to prepare the appropri-
ate typing context for the rest of the statements.

x /∈ dom(Θ) Γ; ∆′; Θ, x : C `s e; e′ a ∆′′;
Γ; ∆ `s e′ : C@TST a ∆∗

Γ; ∆′, x : C@TST ; Θ, x : C `s stmts ; e′′ a ∆′′;

Γ; ∆; Θ `s C x = e; stmts ; let x : C@TST = e′ in e′′ a ∆′′;
DECLASSIGN

The overline in the premise of Switch indicates that each statement is translated to a Silica
expression e′′i . The ellipsis here represents nested generation of dynamic state checks according to
the same structure shown for the first one, each using the appropriate e′′i . The pattern concludes
with revert since switch requires that one of the cases matches.

Γ; ∆; Θ `s e; e′ a ∆′; Γ; ∆′; Θ `s stmt; e′′ a ∆′′;
Γ; ∆ `s e : C@TST a ∆∗ P = toPermission (TST ) x fresh

BR = if x inP S1 then e′′1 else . . . else revert
Γ; ∆′′; Θ `s stmts ; stmts′ a ∆′′′;
NL = let x : C@TST = e′ in BR

Γ; ∆; Θ `s switch e{case S{stmt}}; stmts ; let : unit = NL in stmts′ a ∆′′′;
SWITCH

Expressions of the form S::f are translated to bound variables. We use the convention that
no variable names in the source program may begin with to avoid collisions.

Γ; ∆; Θ `s S :: x; S x a ∆;
S::X

9.7 Conclusion
With Obsidian and Silica we have shown how:

• Typestate can be combined with assets using a permissions system that expresses ownership
to provide relevant safety properties for smart contracts, including asset retention.
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• A unified approach for smart contracts and client programs can provide safety properties
that cannot be provided using the approaches that are currently in use.

• A core calculus can encode key features of Obsidian and provide a sound foundation for the
language.

Obsidian represents a promising approach for smart contract programming, including sound
foundations and an implementation that enables real programs to execute on a blockchain platform.
By formalizing useful safety guarantees and providing them in a programming language that was
designed with user input, we hope to significantly improve safety of smart contracts that real
programmers write.
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Chapter 10

Obsidian Case Study Evaluation1

We wanted to ensure that Obsidian can be used to specify typical smart contracts in a concise and
reasonable way. Therefore, we undertook two case studies to assess the extent to which Obsidian
is suitable for implementing appropriate smart contracts.

Obsidian’s type system has significant implications for the design and implementation of
software relative to a traditional object-oriented language. We were interested in evaluating several
research questions using the case studies:

(RQ1) Does the aliasing structure in real blockchain applications allow use of ownership (and
therefore typestate)? If so, what are the implications on architecture? Or, alternatively, do
so many objects need to be Shared that the main benefit of typestate is that it helps ensure
that programmers insert dynamic tests when required?

(RQ2) To what extent does the use of typestate reduce the need for explicit state checks and
assertions, which would otherwise be necessary?

(RQ3) Can realistic systems be built with Obsidian?
(RQ4) To what extent do realistic systems have constructs that are naturally expressed as states

and assets?

To address the research questions above, we were interested in implementing blockchain
applications in Obsidian. To obtain realistic results, we looked for domains in which:

• Use of a blockchain platform for the application would provide significant advantages over
a traditional, centralized platform.

• We could engage with a real client to ensure that the requirements were driven by real needs,
not by convenience of the developer or by the appropriateness of language features.

• The application seemed likely to be representative in structure of a large class of blockchain
applications.

1Portions of this chapter previously appeared in [48].
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10.1 Case study 1: Parametric Insurance

10.1.1 Motivation

In parametric insurance, a buyer purchases a claim, specifying a parameter that governs when
the policy will pay out. The parameter is chosen so that whether conditions satisfy the parameter
can be determined objectively. For example, a farmer might buy drought insurance as parametric
insurance, specifying that if the soil moisture index (a property derived from weather conditions)
in a particular location drops below m in a particular time window, the policy should pay out.
The insurance is then priced according to the risk of the specified event. In contrast, traditional
insurance would require that the farmer summon a claims adjuster, who could exercise subjective
judgment regarding the extent of the crop damage. Parametric insurance is particularly compelling
in places where the potential policyholders do not trust potential insurers, who may send dishonest
or unfair adjusters. In that context, potential policyholders may also be concerned with the stability
and trustworthiness of the insurer: what if the insurer pockets the insurance premium and goes
bankrupt, or otherwise refuses to pay out legitimate claims?

In order to build a trustworthy insurance market for farmers in parts of the world without
trust between farmers and insurers, the World Bank became interested in deploying an insurance
marketplace on a blockchain platform. We partnered with the World Bank to use this application
as a case study for Obsidian. We used the case study both to evaluate Obsidian as well as to
improve Obsidian, and we describe below results in both categories.

The case study was conducted primarily by an undergraduate who was not involved in the
language design, with assistance and later extensions by the language designers. The choice to
have an undergraduate do the case study was motivated by the desire to learn about what aspects
of the language were easy or difficult to master. It was also motivated by the desire to reduce bias;
a language designer studying their own language might be less likely to observe interesting and
important problems with the language.

We met regularly with members of the World Bank team to ensure that our implementation
would be consistent with their requirements. We began by eliciting requirements, structured
according to their expectations of the workflow for participants.

10.1.2 Requirements

The main users of the insurance system are farmers, insurers, and banks. Banks are necessary
in order to mediate financial relationships among the parties. We assume that farmers have local
accounts with their banks, and that the banks can transfer money to the insurers through the
existing financial network. Basic assumptions of trust drove the design:

• Farmers trust their banks, with whom they already do business, but do not trust insurers,
who may attempt to pocket their premiums and disappear without paying out policies.

• Insurers do not trust farmers to accurately report on the weather; they require a trusted
weather service to do that. They do trust the implementation of the smart contracts to pay
out claims when appropriate and to otherwise refund payout funds to the insurers at policy
expiration.
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• There exists a mutually trusted weather service, which can provide signed evidence of
weather events.

10.1.3 Design
Because blockchains typically require all operations to be deterministic and all transactions to be
invoked externally, we derived the following design:

• Farmers are responsible for requesting claims and providing acceptable proof of a relevant
weather event in order to receive a payout.

• Insurers are responsible for requesting refunds when policies expire.
• A trusted, off-blockchain weather service is available that can, on request, provide signed

weather data relevant to a particular query.
An alternative approach would involve the weather service handling weather subscriptions. The
blockchain insurance service would emit events indicating that it subscribed to particular weather
data, and the weather service would invoke appropriate blockchain transactions when relevant
conditions occurred. However, this design is more complex and requires trusting the weather
service to push requests in a timely manner. Our design is simpler but requires that policyholders
invoke the claim transactions, passing appropriate signed weather records.

Our design of the application allows farmers to start the exchange by requesting bids from
insurers. Then, to offer a bid, insurers are required to specify a premium and put the potential
payout in escrow; this ensures that even if the insurer goes bankrupt later, the policy can pay out
if appropriate. If the farmer chooses to purchase a policy, the farmer submits the appropriate
payment.

Later, if a weather event occurs that would justify filing a claim, a farmer requests a signed
weather report from the weather service. The farmer submits a claim transaction to the insurance
service, which sends the virtual currency to the farmer. The farmer could then present the virtual
currency to their real-world bank to enact a deposit.

10.1.4 Results
The implementation consists of 545 non-comment, non-whitespace lines of Obsidian code. For
simplicity, the implementation is limited to one insurer, who can make one bid on a policy request.
An overview of the invocations that are sent and results that are received in a typical successful
bid and claim scenario is shown in Fig. 10.1. All of the objects reside in the blockchain except as
noted. The full code for this case study is in appendix C and online [41].

We made several observations about Obsidian. In some cases, we were able to leverage our
observations to improve the language. In others, we learned lessons about the implications of the
type system on application design and architecture.

First, in the version of the language that existed when the case study started, Obsidian included
an explicit ownership transfer operator <-. In that version of the language, passing an owned
reference as an argument would only transfer ownership to the callee if the argument was decorated
with <-. For example, deposit(<-m) would transfer ownership of the reference m to the
deposit transaction, but deposit(m) would be a type error because deposit requires an
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Figure 10.1: Invocations sent and results returned in a typical successful bid/claim scenario.

Owned reference. While redundant with type information, we had included the <- operator
because we thought it would reduce confusion, but we noticed while using the language (both in
the case study and in smaller examples) that its presence was onerous. We removed it, which was
a noticeable simplification.

Second, in that version of the language, asset could only be a property of contracts. We
noticed in the insurance case study that it is more appropriate to think of asset as a property
of states, since some states own assets and some do not. In the case study, an instance of the
PolicyRecord contract holds the insurer’s money (acting as an escrow) while a policy is active,
but after the policy is expired or paid, the contract no longer holds money (and therefore no longer
needs to itself be an asset). It is better to not mark extraneous objects as assets, since assets must
be explicitly discarded, and only assets can own assets. Each of those requirements imposes a
burden on the programmer. This burden can be helpful in detecting bugs, but should not be borne
when not required. We changed the language so that asset can apply to individual states as well
as entire contracts.

Third, the type system in Obsidian has significant implications on architecture. In a traditional
object-oriented language, it is feasible to have many aliases to an object, with informal conventions
regarding relationships between the object and the referencing objects. UML also distinguishes
between composition, which implies ownership, and aggregation, which does not, reinforcing
the idea that ownership in the sense in which Obsidian uses it is common and useful in typical
object-oriented designs. Because of the use of ownership in Obsidian, using typestate with a
design that does not express ownership sometimes requires refining the design so that it does. In
this case study, we found applying ownership useful in refining our design. For example, when
an insurance policy is purchased, the insurance service must hold the payout virtual currency
until either the policy expires or it is paid. While the insurance service holds the currency, it
must associate the currency for a policy with the policy itself. Does the policy, therefore, own
the Money? If so, what is the relationship between the client, who purchased the policy and has
certain kinds of control over it, and the Policy, which cannot be held by the (untrusted) client?
We resolved this question by adding a new object, the PolicyRecord. A PolicyRecord,
which is itself Owned by the insurance service, has an Unowned reference to the Policy
and an Owned reference to a Money object. This means that PolicyRecord is an asset
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when it is active (because it owns Money, which is itself an asset) but Policy does not
need to be an asset. We found that thinking about ownership according to the Obsidian type
system helped us refine and clarify our design. Without ownership, we might have chosen a less
carefully-considered design.

It is instructive to compare the Obsidian implementation to a partial Solidity implementation,
which we wrote for comparison purposes. Figure 10.2 shows an example of why parts of the
Obsidian implementation are substantially shorter. Note how the Solidity implementation requires
repeated run time tests to make sure each function only runs when the receiver is in the appropriate
state. Obsidian code only invokes those transactions when the Policy object is in appropriate
state; the runtime executes an equivalent dynamic check to ensure safety when the transactions
are invoked from outside Obsidian code. Also, the Solidity implementation has cost and
expirationTime fields in scope when inappropriate, so they need to be initialized repeatedly.
In the Obsidian implementation, they are only set when the object is in the Offered state.
Finally, the Solidity implementation must track the state manually via currentState and the
States type, whereas this is done automatically in the Obsidian implementation. However,
Solidity supports some features that are convenient and lead to more concise code: the Solidity
compiler automatically generates getters for public fields, whereas Obsidian requires the user to
write them manually, and built-in arrays can be convenient. However, the author of the Solidity
implementation must be very careful to manage money manually; any money that is received by
transactions must be accounted for, or the money will be stuck in the contract forever. Solidity
also lacks a math library; completing the implementation would require us to provide our own
square root function (which we use to compute distances between farms and weather events).

We showed our implementation to our World Bank collaborators, and they agreed that it
represents a promising design. There are various aspects of the full system that are not part of the
case study, such as properly verifying cryptographic signatures of weather data, communicating
with a real weather service and a real bank, and supporting multiple banks and insurers. However,
in only a cursory review, one of the World Bank economists noticed a bug in the Obsidian code:
the code always approved a claim requests even if the weather did not justify a claim according to
the policy’s parameters. This brings to light two important observations. First, Obsidian, despite
being a novel language, is readable enough to new users that they were able to understand the
code. Second, type system-based approaches find particular classes of bugs, but other classes of
bugs require either traditional approaches or formal verification to find.

10.2 Case study 2: Shipping

10.2.1 Motivation

Supply chain tracking is one of the commonly-proposed applications for blockchains [99]. As
such, we were interested in what implications Obsidian’s design would have on an application
that tracks shipments as they move through a supply chain. We collaborated with partners at IBM
Research to conduct a case study of a simple shipping application. Our collaborators wrote most
of the code, with occasional Obsidian help from us. We updated the implementation to use the
polymorphic LinkedList contract, which became available only after the original implementation
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contract Policy {
state Offered {
int cost;
int expirationTime;

}

state Active;
state Expired;
state Claimed;

Policy@Offered(int c, int expiration) {
->Offered(cost = c, expirationTime = expiration);

}

transaction activate(Policy@Offered >> Active this) {
->Active;

}

transaction expire(Policy@Offered >> Expired this) {
->Expired;

}
}

(a) Obsidian implementation of a Policy contract.

contract Policy {
enum States {Offered, Active, Expired}
States public currentState;
uint public cost;
uint public expirationTime;

constructor (uint _cost, uint _et) public {
cost = _cost;
expirationTime = _et;
currentState = States.Offered;

}

function activate() public {
require(currentState == States.Offered,
"Can’t activate Policy not in Offered state.");

currentState = States.Active;
cost = 0;
expirationTime = 0;

}

function expire() public {
require(currentState == States.Offered,
"Can’t expire Policy not in Offered state.");

currentState = States.Expired;
cost = 0;
expirationTime = 0;

}
}

(b) Solidity implementation of a Policy contract.

Figure 10.2: Comparison between Obsidian and Solidity implementations of a Policy contract
from the insurance case study.

was done.

10.2.2 Results

The final implementation, which is in appendix C, consists of 141 non-comment, non-whitespace,
non-printing lines of Obsidian code [41]. We found it very encouraging that our collaborators
were able to write the case study with relatively little input from us, especially considering that
Obsidian is a research prototype that had extremely limited documentation at the time the case
study was completed. Although this is smaller than the insurance case study, we noticed some
interesting relationships between the Obsidian type system and object-oriented design.

Fig. 10.3 summarizes an early design of the Shipping application2. Transactions can be
invoked when a package changes status. For example, depart in Transport changes the
state from Load to InTransport, creating a new Leg corresponding with the current step
in the package’s journey. However, the implementation does not compile; the compiler reports
three problems. First, LegList’s arrived transaction attempts to invoke setArrival via a
reference of type Leg@Unowned; this is disallowed because setArrival changes the state of its
receiver, which is unsafe through an Unowned reference. Second, append in LegList takes
an Unowned leg to append, but uses it to transition to the HasNext state, which requires an
Owned object. Third, Transport’s depart transaction attempts to append a new Leg to
its legList. It does so by calling the Leg constructor, which takes a Shared Transport.
But calling this constructor passing an owned reference (this) causes the caller’s reference to

2This version corresponds with git commit 8106e406e8ca005f8878dea5ac78e54b439fe509 in the Shipping
repository.
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become Shared, not Owned, which is inconsistent with the type of depart, which requires
that this be owned (and specifically in state InTransport).

Fig. 10.4 shows the final design of the application. This version passes the type checker.
Note how a LegList contains only Arrived references to Leg objects. In addition, when
a Transport is in InTransit state, it owns one Leg, which is also in InTransit state.
Each Leg has an Unowned reference to its Transport, allowing the TransportList to
own the Transport. A TransportList likewise only contains objects in Unload state;
one Transport in InTransport state is referenced at the Shipment level.

We argue that although the type checker forced the programmer to revise the design, the
revised design is better. In the first design, collections (TransportList and LegList)
contain objects of dissimilar types. In the revised design, these collections contain only objects in
the same state. This change is analogous to the difference between dynamically-typed languages,
such as LISP, in which collections may have objects of inconsistent type, and statically-typed
languages, such as Java, in which the programmer reaps benefits by making collections contain
objects of consistent type. The typical benefit is that when one retrieves an object from the
collection, there is no need to case-analyze on the element’s type, since all of the elements have
the same type. This means that there can be no bugs that arise from neglecting to case-analyze, as
can happen in the dynamically-typed approach.

The revised version also reflects a better division of responsibilities among the components.
For example, in the first version (Fig. 10.3), LegList is responsible for both maintaining the
list of legs as well as recording when the first leg arrived. This violates the single responsibility
principle [123]. In the revised version, LegList only maintains a list of Leg objects; updating
their states is implemented elsewhere.

One difficulty we noticed in this case study, however, is that sometimes there is a
conceptual gap between the relatively low-level error messages given by the compiler
and the high-level design changes needed in order to improve the design. For ex-
ample, the first error message in the initial version of the application shown in Fig.
10.3 is: Cannot invoke setArrival on a receiver of type Leg@Owned;
a receiver of type Leg@InTransit is required. The programmer is required
to figure out what changes need to be made; in this case, the arrived transaction should not
be on LegList; instead, LegList should only include legs that are already in state Arrived.
We hypothesize that more documentation and tooling may be helpful to encourage designers to
choose designs that will be suitable for the Obsidian type system.

We also implemented a version of the Shipping application in Solidity [41], which required
197 non-comment, non-whitespace lines, so the Obsidian version (141 lines) took 72% as many
lines as the Solidity version. The implementation is also included in appendix C. The translation
was straightforward; we translated each state precondition to a run time assertion, and we flattened
fields in states to the top (contract) level. Although the types no longer express the structural
constraints that exist in the Obsidian version, the general structure of the code and data structures
was identical except that we implemented containers with native Solidity arrays rather than linked
lists. As with the prior case study, the additional length required for Solidity was generally due to
run time checks of properties that were established statically in the Obsidian version.
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Shipment

TransportList@Owned transportList;

Transport

state Load;
state InTransport {
}
state Unload;
LegList@Owned legList;
LegList@Shared cLeg;

depart(Transport@Load >> InTransport this);

LegList

state Empty;
state HasNext {
   LegList@Owned next;
}
Leg@Unowned value;

arrived();
append(Leg@Unowned pLeg) 
    returns LegList@Shared;

Leg

state InTransit;
state Arrived;

Transport@Shared carrier;

Leg@InTransit(Transport@Shared t,? );
setArrival(Leg@InTransit  >> Arrived this, ? );

TransportList

state Empty;
state HasNext {
    TransportList@Owned next;
}
Transport@Unowned value;

transportList

value legList
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carrier
a has @Owned reference to b
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a has @Shared reference to b

b a

b a

b a

Figure 10.3: Initial design of the Shipping application (which does not compile).

Shipment

TransportList@Owned transportList;
Transport@InTransport inTsp;

Transport

    state Load;
    state InTransport {
        Leg@InTransit currentLeg;
    }
    state Unload;
    LegList@Owned legList;

depart(Transport@Load >> InTransport this);

LegList

state Empty;
state HasNext {
   LegList@Owned next;
}
Leg@Arrived value;

append(LegList@Owned this, 
             Leg@Arrived >> Unowned pLeg);

Leg

state InTransit;
state Arrived;

Transport@Unowned carrier;

Leg@InTransit(Transport@Unowned t,? );
setArrival(Leg@InTransit  >> Arrived this, ? );

TransportList

state Empty;
state HasNext {
    TransportList@Owned next;
}
Transport@Unload value;
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Figure 10.4: Revised design of the Shipping application.
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10.3 Case Study Summary
We asked four research questions above. We return to them now and summarize what we found.

1. RQ1: Does the aliasing structure in real blockchain applications allow use of ownership
(and therefore typestate)? The aliasing structure in the blockchain applications we imple-
mented does allow use of ownership and typestate. However, it forces the programmer
to carefully choose an ownership structure, rather than using ad hoc aliases. This can be
restrictive but can also result in a simpler, cleaner design.

2. RQ2: Does typestate prevent the need for state checks and assertions? Implementing smart
contracts in Solidity typically requires a couple of lines of assertions for every function
in smart contracts that are designed to use states. This makes the Obsidian code more
concise, although some features that Obsidian currently lacks (such as auto-generated
getters) improve concision in Solidity.

3. RQ3: Can realistic systems be built with Obsidian? We and our collaborators were able to
successfully build nontrivial smart contracts in Obsidian, despite the fact that Obsidian is a
research prototype without much documentation.

4. RQ4: Do realistic systems have constructs that are naturally expressed as states and assets?
The applications that we chose benefited from representation with assets and states, since
they represented objects of value and the transactions that were possible at any given time
depended on the state of the object. Of course, not every application of smart contracts has
this structure.
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Chapter 11

An Empirical Study of Ownership,
Typestate, and Assets in Obsidian1

11.1 Introduction
In our small usability study, described in § 8.3, most of our participants could complete particular
programming tasks, given enough time. However, we wanted to assess whether Obsidian was
an improvement over Solidity, since Solidity was the language that was most commonly used
for writing public smart contracts. Very few other languages (for example, HANDS [146] and
Quorum [191]) have been evaluated empirically in a summative evaluation, and those had relatively
conventional type systems. Could we train participants to use Obsidian in a short time, given
the unfamiliar aspects of its type system, and then show that they could use it more effectively
than Solidity? If so, the techniques used to teach Obsidian could potentially be applied in other
contexts to enable more people to obtain stronger safety guarantees through strong type systems.

This chapter includes the following contributions:
1. Showing how to conduct a quantitative user evaluation of a programming language with a

type system that is unfamiliar to most available participants.
2. Showing that Solidity participants in a lab setting frequently insert bugs that lose assets

in a small programming task that is representative of a real smart contract programming
problem.

3. Showing that most of the Obsidian participants in our study were able to use ownership to
solve a security problem, with which participants had great difficulty in earlier versions of
Obsidian.

4. Showing that although the participants were able to use ownership effectively, they were
less successful in using typestate to obtain static safety guarantees, and further work may
be required in this area.

Considering Obsidian’s design goal to improve safety with a novel type system, we identified
three high-level research questions for our study:

RQ1: Could we obtain actionable data about the usability of a novel programming language

1Portions of this chapter previously appeared as [44].
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asset contract Medicine {}
asset contract Pharmacy
{

Medicine@Owned med;
transaction getNewMedicine(Medicine@Owned >> Unowned m)
{

med = m;
}

}

Refer to the following code for the next two questions.

asset contract Medicine {

}

asset contract Pharmacy {
    Medicine@Owned med;

    transaction getNewMedicine(Medicine@Owned >> Unowned m) {
        med = m;
    }

    transaction throwAwayMedicine() {
        disown med;
    }
}

What is the error (if one exists) with the getNewMedicine transaction?

What is the error (if one exists) with the throwAwayMedicine transaction?

Click Count: 0 clicks

med becomes Unowned, although it should be Owned at the end of the transaction

m is stated as becoming an Unowned reference, but actually stays Owned

The owning reference to m is lost

The owning reference to the original Medicine object (med) is lost

There is no error

An Owned reference cannot be disowned

med is Unowned in the transaction, so it cannot be disowned

Figure 11.1: An example practice question on assets from the Obsidian tutorial (showing the
correct answer).

(that uses a type system that would be unfamiliar to our participants) in a short-duration
user study (less than one day), which would be representative of real-world smart contract
development?

RQ2: Do programmers using Solidity insert more of the kinds of bugs that Obsidian is designed
to catch?

RQ3: Strong type systems can impose a usability burden on programmers because the compiler
forces programmers to write code so that the compiler can verify various safety properties.
Can programmers who were previously familiar with object-oriented programming (but
not with Obsidian, typestate, ownership, or linear type systems in general) successfully use
Obsidian to complete relevant smart contract programming tasks? If so, is there a significant
impact on task completion times?

In RQ1, actionable data refers to data that inform programming language designers about
their designs in ways that have implications on language design or language training. We used
these three research questions to develop task criteria (§ 11.6). Then, we developed three tasks
according to the criteria: Auction (§ 11.7), Prescription (§ 11.8), and Casino (§ 11.9). In each
task, we refined these high-level research questions into task-relevant ones.

In summary, after the training period (about 90 minutes), seven of the ten Obsidian participants
were able to successfully use Obsidian to finish implementing the required small program in our
Auction task. In contrast, only two of the ten Solidity participants finished the task correctly. In
the Prescription task, seven of the ten Obsidian participants were able to fix a security vulnerability
in the program, whereas only two of the ten Solidity participants were able to do so. Six of the
Obsidian participants used ownership to do the task, suggesting that ownership is teachable in a
relatively short training period.

Five of the Obsidian participants had enough time remaining to do the Casino task (meaning
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that the other participants felt that their solutions were incomplete when their four-hour time
expired). Although four of these wrote solutions that compiled, all four abused the disown
operator, resulting in asset loss. Among the eight Solidity participants who had enough time for
this task, half inserted bugs that resulted in improper asset fabrication or loss, showing that it is
still important to pursue approaches to prevent asset abuse. Only one participant, who was in the
Solidity condition, finished the task correctly.

After the tasks had ended, we gave participants a post-study survey asking for their opinions
about the language they had used. We found that Obsidian participants felt that ownership was
useful. They also observed that the tutorial and exercises were effective tools for learning the
language.

We come to three conclusions in this chapter. First, the methodology we used, in which we
include practice-based training in a traditional quantitative study, is effective for evaluating a novel
programming language. Second, despite the strong, unfamiliar restrictions it imposes, Obsidian’s
ownership and permissions system can be taught to some kinds of programmers in a short period
of time in a way that results in many of them being able to use it effectively. That is, for some
tasks, Obsidian enables people to be more successful at writing code that is free of the serious
bugs that Obsidian detects. Third, without using techniques to detect or prevent asset-loss bugs,
when doing some kinds of smart contract programming tasks, programmers will accidentally
insert these kinds of bugs.

11.2 The Solidity Language
Solidity [73], which we used for the control condition of this study, is a class-based object-oriented
language like Obsidian. Solidity targets the Ethereum blockchain platform [72]. The function
keyword denotes methods, though methods have transactional semantics. It has no built-in notion
of states, but programs can declare enums and use them to represent states. Solidity supports a
built-in cryptocurrency called ether. Functions that are annotated payable can receive quantities
of ether; the ether is conceptually sent with the invocation, and the amount is stored in the variable
msg.value. Each contract instance can own a quantity of ether; this quantity is automatically
updated by the runtime when a function receives a payment. Every contract instance is stored
on the blockchain at a particular address. The language has a built-in type called address to
represent these addresses.

Restricting only functions annotated payable to receive ether may prevent some kinds of
lost-ether bugs, in which clients accidentally send ether to the wrong function. However, this
approach does not apply to other kinds of resources, and only covers whether the function can
receive ether, not whether the function body accounts for it correctly. Likewise, although Solidity
includes support for permission modifiers, such as private, to protect sensitive functions from
being called externally, these modifiers do not prevent the bodies of methods from abusing assets
or from being invoked when the receiving contract is in an inappropriate state.

Programs typically implement their own fine-grained accounting mechanism. For example,
the pendingReturns structure records how much money is owed to each of a number of
addresses. Without this mapping, although the contract would still record how much ether it held,
the implementation would not be able to track for whom it is being kept.
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The pendingReturnsmapping supports the withdrawal pattern [74], which is an Ethereum
coding convention that protects against re-entrancy attacks. The possibility of attacks arises be-
cause sending ether to a contract can cause the recipient to execute arbitrary code: the recipient
can invoke a function on the sender, to which there is already an invocation on the stack. This
is dangerous if the funds were sent while the sender was in an inconsistent state. Instead, it
is recommended that contracts merely record that they owe ether to the intended recipient and
provide a withdraw function that recipients can call to retrieve their money. The withdrawal
pattern is not used in Obsidian, since Obsidian targets Hyperledger Fabric, which does not have
this vulnerability. Because this was a summative study of the programming environments that
users would encounter when using each language, we expected participants to use the withdrawal
pattern with Solidity and not with Obsidian. This introduced the risk that the use of the withdrawal
pattern would cause additional complexity relative to Obsidian.

In Solidity, using the withdrawal pattern typically results in the programmer writing code
with arithmetic operations to update balances. In contrast, an Obsidian implementation of the
withdrawal pattern would be expected to use linear assets, which the compiler could check for
abuse — making the withdrawal pattern safer on Obsidian than Solidity. Although relevant to this
study, if Obsidian were used with Ethereum, we expect Obsidian’s asset-based approach would
guard against bugs in using the withdrawal pattern, regardless whether the opportunity for it arises
from the platform design or from the particular API being used.

As an example to illustrate how Solidity compares with Obsidian, Figure 11.2, which is taken
from the first task of this study, shows part of an Auction contract; the left column shows
Obsidian, and the right column shows Solidity.

11.3 Study Design
Our experimental protocol was approved by our university IRB. The experiment began with
obtaining informed consent. Participants (§ 11.4), whom we recruited from the university commu-
nity, were randomly assigned to use either Obsidian or Solidity and given a tutorial (§ 11.5) on
their assigned language, during which an experimenter answered any questions they had. Then,
the study proceeded with three tasks: Auction (§ 11.7), Prescription (§ 11.8), and Casino (§ 11.9).
After the tasks had ended, we gave participants a post-study survey (§ 11.10) asking for their
opinions about the language they had used. We compensated participants with a $75 Amazon gift
card.

Our participants had a variety of levels of programming skill and were new at programming in
Obsidian and mostly new at programming in Solidity. To make it more likely that they would
complete at least some tasks and to leverage the skills that participants would acquire by doing
the tasks, we gave the tasks to the participants in order of increasing difficulty (according to our
experience with pilot studies). All participants worked on the tasks in the same order.

Prior empirical work in programming language evaluation found that testing and debugging
programs in the context of empirical studies substantially increases variance. For example, as we
discussed in chapter 5, we found that different participants have different levels of thoroughness in
writing tests and different levels of debugging skill. When allowed to test and debug, participants
frequently spend large amounts of time debugging issues that are not relevant to the experiment.
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1 main asset contract Auction {
2 Participant@Unowned seller;
3
4 state Open;
5 state BidsMade {
6 // the bidder who made the highest bid so far
7 Participant@Unowned maxBidder;
8 Money@Owned maxBid;
9 }

10 state Closed;
11
12 ...
13
14
15
16
17 transaction bid(Auction@Shared this,
18 Money@Owned >> Unowned money,
19 Participant@Unowned bidder) {
20 if (this in Open) {
21 // Initialize destination state,
22 // and then transition to it.
23 BidsMade::maxBidder = bidder;
24 BidsMade::maxBid = money;
25 ->BidsMade;
26 }
27 else {
28 if (this in BidsMade) {
29 //if the new bid > current Bid
30 if (money.getAmt() > maxBid.getAmt()) {
31 //1. TODO: fill this in.
32 //Can call other transactions as needed.
33 maxBidder.receivePayment(maxBid);
34 maxBidder = bidder;
35 maxBid = money;
36 }
37 else {
38 //2. TODO: return money to the bidder,
39 // since the new bid was too low.
40 //Can call other transactions as needed.
41 bidder.receivePayment(money);
42 }
43 }
44 else {
45 revert("Can’t bid on closed auctions.");
46 }
47 }
48 }
49 }

Obsidian condition.

contract Auction {
// the bidder who made the highest bid so far
address maxBidder;
uint maxBidAmount;

// ’payable’ indicates we can transfer money
// to this address
address payable seller;

// Allow withdrawing previous money
// for bids that were outbid
mapping(address => uint) pendingReturns;

enum State { Open, BidsMade, Closed }
State state;
...
function bid() public payable {

if (state == State.Open) {
maxBidder = msg.sender;
maxBidAmount = msg.value;
state = State.BidsMade;

}

else {
if (state == State.BidsMade) {

//if the new bid > current Bid
if (msg.value > maxBidAmount) {

//1. TODO: fill this in.
//Can call other functions as needed.
pendingReturns[maxBidder] += maxBidAmount;
maxBidder = msg.sender;
maxBidAmount = msg.value;

}
else {

//2. TODO: return money to the bidder,
// since the new bid was too low.
//Can call other functions as needed.
pendingReturns[msg.sender] += msg.value;

}
}
else {

revert("Can’t bid on closed auctions.");
}

}
}

}

Solidity condition.

Figure 11.2: A side-by-side example comparing Obsidian code to Solidity code, taken from the two
conditions of the Auction task (with minor changes to fit on this page). Code highlighted in yellow
represents a correct solution; the rest was given to participants as starter code. In the Obsidian
code, line 33 transfers ownership of the object referenced by maxBid to the receivePayment
parameter. The new type of maxBid from then until line 35 is Money@Unowned. Line 35
re-establishes ownership in maxBid by transferring ownership from money to maxBid.
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To focus our participants’ time on work related to our research questions, we allowed them to
edit their code until they were satisfied, but did not give them an opportunity to test their code.
Then, instead of assessing programs on the basis of tests, we inspected their code. We looked both
for specific bugs that corresponded to the research questions we were interested in as well as for
unrelated bugs. To do this, we developed a rubric for each task, which listed particular bugs to
look for; we iterated on this rubric to add bugs that were present in the programs. This approach
was made feasible by the relatively small codebases (see Table 11.11). Although it is possible
that we missed particular bugs in the code, the same would be true even if we provided unit tests.
However, by evaluating by inspection rather than unit tests, we were able to assess code with
significant functional problems, similar to how one might grade a student exam by using a rubric
rather than by executing unit tests. By using a rubric, partial credit can be awarded and specific
mistakes can be identified even when the solution contains significant flaws.

Our decision to allow compilation but not testing was also motivated by our desire to evaluate
the ability of Obsidian’s type system to detect bugs that might otherwise be introduced. In many
cases, it is cheaper to find bugs earlier in the software development process than later, so we
focused on whether the kinds of bugs that Obsidian can detect at compile time are ones that are
introduced at all and how successfully Obsidian programmers can complete tasks. In Delmolino
et al. [59], the programmers had access to a blockchain and still finished their work with code
that lost assets; nonetheless, this does reflect a limitation in the study design. Because Obsidian’s
design is focused on identifying more bugs at compile time, allowing compilation but not testing
allowed us to focus on our research questions about the usability and effectiveness of the type
system while using our participants’ time as effectively as possible. However, this may have
introduced a kind of bias, since the Solidity participants might have found some of their bugs
through testing if that had been permitted.

Another approach that could improve external validity is adding code review to the process. We
did not include an explicit code review step in which peers inspected the code; although this might
more-realistically represent some settings, studies have found that code reviews only find bugs
infrequently [53]. Also, adding code reviews to the process would have substantially increased
time requirements as well as variance, since the quality of the feedback would necessarily have
varied.

11.4 Participants
We recruited participants to our four-hour study with posters at our university, with emails to lists
of appropriate degree programs (such as the Master of Software Engineering program), and by
advertising to students in relevant courses (e.g., a software engineering course).

Because we advertised the study broadly (the posters were visible to anyone on campus),
and because the study assumed that participants already knew an object-oriented programming
language, we wanted to make sure that all participants had appropriate preparation. Therefore, we
pre-screened participants with an online survey that asked them basic Java questions; we invited
respondents who answered five of six questions correctly to participate in the study. The complete
pre-screening instrument is in the replication package [42]. The six questions concerned: Java
constructor syntax; the definition of encapsulation; whether changes to a list through a reference
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Solidity (N = 10) Obsidian (N = 10)

Median programming experience, years (range) 9.2 (3.3 - 13) 5.0 (2.3 - 8.5)
Median professional experience, years (range) 1 (0.5-9.0) 0.92 (0.0 - 5.0)
Median Java experience, years (range) 2.0 (0.67 - 4.2) 1.5 (0.25 - 6.0)

Table 11.1: Participant experience (self-reported).

would be visible through another reference; whether methods in interfaces may include bodies;
whether abstract classes may be instantiated; and whether concrete subclasses of abstract classes
must implement methods that were abstract in the superclass.

Table 11.1 summarizes the previous experience of the experiment participants in each condi-
tion. We excluded an additional participant who took so long on the training phase that not enough
time was available for more than one programming task2. This left 20 participants; 14 of them
identified as male, and six as female. Only two participants, both in the Obsidian condition, had no
professional experience. Blockchains are targeted at enabling general software engineers in a wide
variety of industries to build applications in contexts that lack mutual trust. Since our participants
had substantial programming experience and 18 of them had some professional experience, we
argue that our participants were representative of at least some kinds of programmers in industry
who might be interested in writing smart contracts.

11.5 Training

We provided a web-based tutorial (implemented with Qualtrics, and included in the replication
package), which stepped participants through web-based documentation and exercises for their
assigned language. Some of the exercises were to be completed in Visual Studio Code, which
was configured with a compiler. Some of the questions were multiple-choice; for these, the tool
automatically showed participants if they had entered an incorrect answer. An experimenter
was available to answer questions. Participants were told that they should try to get all of their
questions addressed during the training phase, since no questions could be answered after training
was completed.

We included practice questions in the tutorial to ensure that participants absorbed the material
(we had found that without practice questions, participants skimmed the material without mastering
the concepts; see § 11.5). Figure 11.1 shows an example practice question. Figure 11.3 shows a
sample from the Obsidian documentation.

To make the two experimental conditions as similar as possible, even though Solidity in-
cludes no support for ownership, typestate, or assets, Solidity participants received a tutorial that
explained these concepts and recommended using comment-based annotations. If participants
asked about the utility of these annotations, we argued that this was similar to how one might
write preconditions or postconditions in comments. Table 11.2 summarizes the distribution of

2That participant spent 3 hours and 11 minutes on the tutorial, which was three standard deviations above the
mean.
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Figure 11.3: An example from the web-based Obsidian tutorial.

Solidity (N = 10) Obsidian (N = 10)

Average (standard deviation) 86 (28) min. 98 (31) min.
Range 39 to 138 min. 50 to 148 min.

Table 11.2: Training times in Solidity and Obsidian conditions.

times participants spent on the tutorial in the two conditions. If we had trained only the Obsidian
participants in ownership, for example, any differences in behavior could have been attributed to
the training and not to the language they were using.

Solidity participants received training on the withdrawal pattern and its necessity for security
reasons, as well as language-specific details such as the payable keyword and the concept of
ether.

11.6 Task Selection
Based on our research questions, we sought a collection of tasks for our study that met several
criteria. We selected criteria, shown in Table 11.3, to help us identify tasks that would address our
research questions. Because these criteria were similar to those we used in developing the earlier
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Name Criterion RQs Tasks

C1 All tasks should reflect smart contract use cases that have received
some attention in the blockchain community.

RQ1 Auction,
Prescription,
Casino

C2 At least one open-ended task that could be used to evaluate
whether Obsidian participants could create their own typestate-
oriented interfaces (rather than only implementing according to a
well-defined specification).

RQ3 Casino

C3 At least one task should put Solidity participants in a position
where they might accidentally lose an asset. For Obsidian par-
ticipants, the corresponding question is whether they are able to
complete the task in spite of the strictures of ownership.

RQ2,
RQ3

Auction,
Casino

C4 In the previous qualitative study of an early version of Obsidian,
participants found it very challenging to use ownership (§ 8.3).
Therefore, at least one task should assess whether the changes to
Obsidian since its original design have addressed the difficulty of
using ownership to restrict the use of assets.

RQ3 Prescription,
Casino

Table 11.3: Alignment between task design criteria and the tasks we designed.

studies, we were able to adapt the previous tasks for this purpose.
The tasks and their results are described in detail in the following sections. Complete task

materials are available [42]. Although we told participants that we might interrupt them eventually
if they needed to move on to the next task, we reduced time pressure by not telling them specific
per-task time limits.

11.7 Auction Task
In the Auction task, we asked participants to fill in missing code in an implementation of an
English auction, in which bids are made openly and the highest bidder wins. To increase external
validity (criterion C1 in Table 11.3), we modeled the task after an example from a Solidity tutorial
[76]. We required that all bids be accompanied by funds to ensure that the winning bidder will
pay for the item. When a bid is exceeded, the original bidder should receive a refund of their bid.
We gave the participants 30 minutes to complete the task.

Figure 11.2 shows the bid transaction that was provided to participants as well as a sample
solution. In the first subtask, marked by // 1. TODO, participants needed to write code to
refund the existing bid to the previous bidder, whose address was stored in maxBidder, and
record the new bid (money). In the second subtask (// 2. TODO), participants needed to
refund the bid to the bidder. The code in yellow shows a correct answer. In both cases, there
was an opportunity for asset loss: if participants overwrote the old Money reference (stored in
maxBid), then the old bid would be lost. In Obsidian, the compiler would report an error if this
happened; in Solidity, there was no protection against that mistake. This opportunity for error

165



reflected task criterion C3.
We refine the high-level research questions for this task (using numbering that reflects the

original research questions in § 11.1):

RQ 2.1: How frequently do Solidity participants accidentally lose assets in the Auction task?
RQ 3.1: Overall, do completion times differ across conditions?
RQ 3.2: Overall, are participants more likely to finish Auction (and do so correctly) if they use

Obsidian rather than Solidity?

11.7.1 Auction Results and Discussion

Table 11.4 summarizes the results of the Auction task; errors are shown in Table 11.5. Nine
Solidity participants said they were done with the task before the 30 minutes expired; among these
nine, the average time was 12 minutes (95% CI: [6.8, 17.4]). Eight Obsidian participants said they
were done with the task before running out of time; among these eight, the average time was also
12 minutes (95% CI: [6.4, 18.3]). Thus, for RQ 3.1, the difference in times was not significant.
Two participants completed the task correctly in the Solidity condition; seven completed the task
correctly in the Obsidian condition. The difference in success rates (summarized in the first two
rows of Table 11.4) is statistically significant, with p ≈ .015 (Fisher’s exact test; odds ratio 0.053).
We conclude for RQ 3.2 that participants who finished were more likely to finish correctly if they
used Obsidian than if they used Solidity.

Of the two Obsidian participants who did not finish the Auction task in time, one (P45)
was confused about the semantics of the :: field initialization operator, attempting to use
BidsMade::maxBid to refer to the current value of the maxBid field rather than the future
value after a state transition. This misconception led to a compiler error message that the
participant did not find helpful. The other participant also received a confusing error message:
although the code invoked a transaction that did not exist, the error message pertained to ownership
of the transaction’s parameter. A more mature compiler with better error messages might have
helped the participants finish the task.

In subtask 1 (starting at line 31 in Figure 11.2), participants needed to record the new bid and
refund the old bid. We found the following errors among the Solidity participants who said they
were done:

1. Loss of previous refunds: the correct implementation added the new refund to any prior
refund. Four participants used = instead of +=, overwriting any old refund (in line 33).

Solidity Obsidian

Completed task correctly 2 7
Completed task with bugs 7 1
Time in min., completed tasks only; 95% CI 12; [6.8, 17.4] 12; [6.4, 18.3]
Did not complete the task 1 2

Table 11.4: Auction task results. N=10 in each condition.
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Solidity Obsidian

Ran out of time 1 2
Lost an asset in either subtask 7 0
Subtask 1

omitted refund of old bid 3 0
overwrote old refund 4 0
refunded to wrong bidder 0 1

Subtask 2
overwrote old refund 4 0
refunded via transfer() instead of pendingReturns 4 N/A

Table 11.5: Errors in Auction task. N=10 in each condition.

2. Omission of refund: three participants neglected to refund the previous bid (e.g., omitting
line 33).

All eight of the Obsidian participants who said they were done did so without losing any
assets, since otherwise the compiler would have given an error. However, one participant refunded
the old money to the new bidder instead of to the previous bidder.

While doing the task, two of the Obsidian participants received a compiler error indicating
that they had lost an asset. For example:

auction.obs 37.28: Variable 'maxBid' is an owning reference
to an asset, so it cannot be overwritten.

Both of these participants successfully fixed the error.
In subtask 2 (starting at line 41 of Figure 11.2), participants needed to refund the new

bid, since it was not larger than the previous bid. Among the nine Solidity participants who
said they finished the task, two refunded the bid properly (using pendingReturns). Four
refunded via transfer, which would not have resulted in asset loss but was inconsistent with
the documentation we gave them. The documentation specified to use the withdrawal pattern to
be consistent with the typical recommendation when using Solidity. Four attempted to refund via
pendingReturns but, as in the first subtask, overwrote any previous refund, potentially losing
money.

One might argue that the potential for asset loss due to improper use of pendingReturns
was due to the need to use the withdrawal pattern [74], as discussed above. However, the particular
bug we observed was due to participants overwriting an integer rather than adding to it, and we
infer that arithmetic errors are likely common when manipulating assets manually. Obsidian
protects against these bugs by encouraging programmers to design APIs that use assets to represent
money rather than raw integers.

Of the seven Obsidian participants who completed the Auction task successfully, while they
were working, two received compiler errors indicating that they had lost assets. One additional
participant, P45, got an error about a lost asset, but did not finish the task because they were
confused about the use of the :: operator.
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We conclude (RQ 2.1) that asset loss was frequent among Solidity users, and more frequent
than among Obsidian users, who did not lose any assets (p ≈ .002, Fisher’s exact test). This dif-
ference may have been caused by a combination of differences in language design and differences
in API design, but the different API designs were related to different language design choices.

11.8 Prescription Task
To address task criterion C4, we gave participants a short Pharmacy contract (43 lines in
Obsidian or 46 lines in Solidity including whitespace). The code included an example to show
how the contract was vulnerable to attack. Although a Prescription was specified to only
permit a fixed number of refills, a Patient could invoke depositPrescription on more
than one Pharmacy object, resulting in the patient being able to refill the prescription the given
number of times at each pharmacy. We asked participants to fix the bug, avoiding runtime checks
if possible. In Solidity, for example, depositPrescription had the signature below:

function deposit(Prescription p) public returns (int);

In Obsidian, the starter code provided this signature:

transaction deposit(Prescription@Shared p) returns int;

In Obsidian, it sufficed for participants to change the signature so that the Pharmacy acquired
ownership of the prescription object:

transaction deposit(Prescription@Owned >> Unowned p) returns int;

In Solidity, in contrast, since there is no static feature that would make the above safe,
participants had to implement a global tracking mechanism across all Pharmacy objects.

The task was based on a task from the usability study, which found that users of an earlier
version of Obsidian had great difficulty using ownership to fix this problem (§ 8.3). For example,
some participants in that study thought about ownership in a dynamic way (for example, writing
if statements to test ownership) or were confused about when ownership was transferred between
references. The version of the language used in the present study includes changes that resulted
from that work, such as fusing typestate and ownership in the language syntax, making ownership
transfer explicit in transaction signatures, and removing local variable ownership annotations. Our
research questions were centered around evaluating the revised language:

RQ 3.3: What fraction of Obsidian participants could use ownership to fix the multiple-deposit
vulnerability?

RQ 3.4: Does using ownership to prevent the multiple-deposit vulnerability take less time than
using a traditional dynamic approach?

We gave participants 35 minutes to complete the task. Because ownership-based approaches
are not checked by the Solidity compiler, we wanted to allow Solidity participants who proposed
ownership approaches to try again. Therefore, when participants informed the experimenter that
they were done, the experimenter inspected their code. If they had used static notions of ownership
instead of a dynamic approach, participants were permitted to try again in the rest of their 35
minutes.
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Solidity Obsidian

Attempted a static solution 5 participants 6 participants
Correct static solution N/A 6
Attempted a dynamic solution 6 3
Correct dynamic solution 2 1
Made Prescription mutable 2 1
Completed within time limit 3 9
Mean time among successful participants; [95% CI] 20 min.; [0, 45] 22 min. [12, 33]
Mean time among successful participants
after removing Solidity time spent on
static attempts

18 min. 22 min.

Table 11.6: Summary of Prescription task results. Times are shown as mean (standard deviation).
N=10 in each condition. Two Solidity participants tried both static and dynamic approaches, and
one Solidity participant made no changes, resulting in 11 Solidity attempts.

11.8.1 Prescription Results

Table 11.6 summarizes the results. Regarding RQ 3.3, six of the ten Obsidian participants
successfully used ownership to solve the problem. The dynamic Obsidian solution that we judged
to be correct tracked global state by making Prescription mutable, despite a comment
indicating that Prescription should be immutable.

Five of the ten Solidity participants tried to use ownership, even though Solidity does not
check ownership. Only three of the Solidity participants said that they were done within the time
limit, and of those, only two had a correct solution. The incorrect Solidity solution attempted to
solve the problem by making Prescription mutable to track remaining refills globally, but in
addition, although the participant tried to track the number of refills across all pharmacies, the
code did not update the global number of refills when refilling a prescription.

We separated time Solidity participants spent on static solutions from the time spent on
dynamic solutions, since these attempts were likely prompted by the training materials; Table 11.6
shows both sets of times. However, we included all time spent by Obsidian participants on correct
solutions because it is realistic that some Obsidian users would have tried each approach.

Regarding RQ 3.4, we did not observe a significant difference in completion times. However,
a large fraction of Solidity participants spent significant portions of their time attempting static
solutions. In retrospect, it might have been more informative to have told Solidity participants
explicitly that they needed to use a dynamic solution, and this approach might have led to a
more interesting comparison. However, due to the small amount of code required for the static
solution, we suspect that there is a significant learning effect to be leveraged here in Obsidian,
and the participants who succeeded could likely do so again in a similar situation much faster.
Furthermore, the fact that only two of three Solidity participants who finished this task did so
correctly underscores the benefit of static enforcement of these kinds of safety properties.

169



11.8.2 Prescription Discussion

One might have expected that applying ownership would be challenging, since the concept was
new to the participants, but since only half of those who said they had completed a dynamic
solution had correct solutions, it would appear that using the new static construct may not be
harder than writing global state tracking code. In fact, using ownership to solve programming
problems is teachable: six of nine Obsidian participants who completed the task used ownership
to do so. We expect that the remaining three could be taught to do so with additional practice.

In the earlier study (§ 8.3), which used a very similar task, four of six participants were able to
solve the problem, but all of them received significant help from the experimenter. The remaining
two did not solve the problem even with help. Although those numbers cannot be compared with
the results of this study directly, the fact that six of our participants were able to complete the task
without any help suggests that the changes since then have improved usability.

Security experts have long argued in favor of immutable data structures [165, 180], which
is one reason why we specified that Prescription was immutable. However, these results
point out that this approach may not be tenable: specifications of immutability may be ignored
or removed, and attempts to maintain immutability require substantial work, which may itself
be bug-prone. Indeed, when language-based mechanisms do not provide the required safety
properties (chapter 4), it may be safer and cheaper to use a mutable design than to bear the cost
of immutability. In this case, making Prescription mutable would have obviated the need
to implement separate data structures keeping track of how many refills each prescription had
left, since that information could be kept in the Prescription object directly. That approach
appeared to be more natural for the participants, and certainly required less code.

The benefits of Obsidian’s ownership system in the Prescription task contrast with the benefits
of other kinds of ownership. For example, ownership in Rust [164], which is understood to be
one of the more challenging aspects of learning Rust [220], introduces constraints on mutation.
However, in Rust, only owning references can mutate objects. In Obsidian, mutation is restricted
only as much as is needed to provide sound typestate specifications, since concurrency is not a
concern. Therefore, in Obsidian, only changing which named state an object is in is restricted,
and then only through Unowned references. This contrasts with Rust, in which all modifications
to fields of objects are restricted. Six of 10 participants were able to use the linear aspects of
ownership alone in the Prescription task, suggesting that languages that adopt just linearity (and
not mutability restrictions) may be usable. Perhaps by integrating a more flexible permissions
system, languages such as Rust could be made more convenient for common cases, and thus have
a more gradual learning curve. Alternatively, making these changes in Rust might come at the
expense of expert efficacy, so the impact of these changes in the long term would need to be
evaluated.

Although six of the Obsidian participants used ownership successfully, four participants did
not. One of the four participants did not complete any of the three tasks. Another “fixed” the issue
by modifying code in Patient that we had provided as an example of how a nefarious patient
might exploit the bug; perhaps this participant did not really understand the task. The other two
seemed to need more time studying ownership in order to use it effectively.

The instructions included: “Please use what you have learned today to fix this problem
(avoiding runtime checks if possible).” Perhaps as a result, a similar fraction of participants tried
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to use ownership in both conditions. We wanted to encourage the Obsidian participants to use
ownership so that we could assess to what extent they could use it effectively, but the instructions
persuaded some of the Solidity participants to use it even though doing so was not checked by the
compiler.

11.9 Casino Task
The casino task was more open-ended than the other tasks, addressing criterion C2. We gave par-
ticipants a web page with a diagram showing invocations that needed to be supported (Figure 11.4).
The web page included a list of requirements:

1. If a Bettor predicts the outcome correctly, the Bettor gets twice the Money they put
down. For example, if Bettor b puts down 5 tokens on the correct outcome, they should
receive 10 tokens after the Game is played.

2. If the Bettor predicted incorrectly, the Casino keeps their tokens.
3. Bets can only be made before the Game starts.
4. Winnings can only be distributed after the Game is finished.
5. Bettors must collect winnings themselves from the Casino after a Game by calling

code, which you need to write. Until winnings are collected, the Casino keeps track of
them.

6. A Bettor can have one active bet per game. If a Bettor bets more than once, their
original bet should be replaced by the new one and any previous bet should be refunded.

7. A Bettor MUST put down tokens at the same time that they’re making a Bet.
8. If the Casino does not have enough tokens available to pay out winnings, the invocation

to collect winnings can fail.

We provided starter code for Casino, Game, and Bet. Obsidian participants also received
implementations of appropriate containers (Solidity has suitable built-in containers).

We used the Casino task to investigate five research questions:

RQ 2.2: How frequently do Solidity participants lose assets in the Casino task?
RQ 3.5: To what extent do Obsidian participants leverage typestate in transaction signatures to

avoid dynamic checks (criterion C2)?
RQ 3.6: In both versions, programs represented funds with Token objects. Does Obsidian’s

type system help participants avoid losing Token objects compared with Solidity (criterion
C3)?

RQ 3.7: Do Obsidian participants view Token objects as resources that should not be created or
destroyed, or as data, which could be created and destroyed as needed (criterion C4)?

RQ 3.8: How do task completion times compare between Solidity and Obsidian participants
(criterion C4)?

Of the original ten participants in each condition, we excluded one Obsidian participant who
should have received an error from the compiler but, due to a bug, did not. We also excluded one
Solidity participant and four Obsidian participants who did not have enough of their four hours
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Figure 11.4: Sequence diagram given to participants to show what operations the Casino contract
should support.
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remaining, and in the time available, were not satisfied with their solution. This left nine Solidity
participants and five Obsidian participants whose results we analyzed. The results below pertain
to these 14 participants. The discrepancy between the number of participants who had enough
time across the two conditions was due to two factors: the faster task completion times by Solidity
participants, and the high variance among Obsidian participants for time required for tasks that
occurred before Casino.

Of the 14 participants whose results we analyzed, one participant in the Obsidian condition
gave up after 1 hour, 15 minutes. That participant had chosen an unnecessarily difficult im-
plementation strategy, requiring implementing a new container (implemented as a linked list).
Also, the participant delayed trying to compile until after writing a lot of code, resulting in a
large collection of compiler errors. The remaining four Obsidian participants all wrote code that
compiled successfully. One participant in the Solidity condition gave up after 39 minutes, having
received a parser error that they were not sure how to fix.

The Casino task results should be interpreted in the context of some additional limitations
relative to the other tasks. The results of a comparison between conditions on this task may be
biased because the Obsidian participants who were included for analysis in this task are those who
completed the earlier tasks fastest. As a result, the Obsidian participants may have been stronger
programmers on average than those in the Solidity condition (in which almost all the participants
had time to try the task).

Casino was more open-ended than the other tasks, resulting in more variance, as participants
made varying implementation choices. Given this, the small numbers, and the potential bias, we
use this primarily as an opportunity to develop hypotheses, design insights, and identify future
opportunities for improvement.

11.9.1 Casino Results and Discussion

We analyzed the code participants wrote, comparing the code to the requirements we gave them.
As with the other tasks, in order to isolate the bugs from each other, our analysis was manual; the
source code produced by each participant is included in the replication package [42]. Results are
summarized in Tables 11.7 and 11.8. Before discussing the results for the four research questions,
we discuss the errors that participants made while working on Casino.

Except for the one Solidity participant who completed the task correctly, all of the other
participants across both conditions inserted various bugs. For example, three participants in each
condition failed to emit an error when attempting to collect winnings from the Casino when the
Casino lacked enough resources to distribute them.

The most common bug among Solidity participants was some kind of token loss or improper
fabrication; four of the eight made this mistake, addressing RQ 2.2. For example, one participant,
when accepting a new bet, first credited the bettor’s account for any prior bet, and then returned
if the bet amount exceeded the bettor’s balance. This meant that a second bet, when disallowed,
would incorrectly fabricate tokens out of thin air, since the code that debited the bettor’s balance
occurred after the early return. Another participant neglected to debit accounts for extra
wagers, also fabricating tokens out of thin air. This shows that protection against incorrect asset
manipulation is important.
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Solidity Obsidian

Had enough time to try Casino 9 5
Completed Casino with a program that compiled 8 4

Table 11.7: Summary of Casino task completions.

Solidity (N = 8) Obsidian (N = 4)

Completed task correctly (no identified bugs) 12.5% 0%
Winnings collection emits error if Casino is out of tokens 62.5% 25%
Casino keeps tokens when a bet is lost 100% 50%
Bettor’s extra bets result in refunds 100% 75%
Only used disown safely N/A 0%
Managed tokens correctly (not fabricating or losing them) 50% 0%
Mean completion time 37 min. 64 min.

Table 11.8: Summary of Casino task results among completed programs that compiled, showing
correct solution rates among errors made by more than one participant.

All four Obsidian participants who finished the Casino task used disown improperly to throw
away assets. We found this surprising, since we had warned the participants against improper
use of disown. The tutorial included an example of how disown might be needed inside the
implementation of a Money contract, and wrote below the example:

IMPORTANT: disown should be used only when you really want to throw some-
thing out. Above, disown is required because of the manual arithmetic used to
manipulate amount inside the implementation of Money, but it is not needed in
most normal code.

It would not have sufficed to remove disown from the language; in addition to the fact that it
is needed in certain (rare) cases, programmers could build a Trash contract to hold discarded
objects, thus suppressing any errors the compiler would emit. We have several hypotheses
regarding why disown was abused:

• Some participants may have used disown to silence the compiler when they felt they had
a correct solution. One participant discarded the old wager, using money from the casino’s
pot to pay out bets. The participant also disowned the bet when a losing bettor tried to
retrieve their winnings (a correct solution would have put the tokens in the casino’s pot).

• Some participants may not have read or understood the tutorial’s warning about disown;
in retrospect, we should have assessed understanding explicitly.

• Some participants did not sufficiently understand the notion of assets. For example, when
disbursing winnings, one solution disowned the previous wager and created new Tokens
when needed, rather than reusing the tokens from the wager.

• Some participants may have used disown as a workaround for an unsolved problem. In
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code to accept a new bet, one participant disowned any previous bet by that bettor, and
then wrote: // Currently just throws the bettor’s money away and
hopes they find it eventually.

This motivates a question for future research to characterize the use of these escape hatch
constructs, which can be used in both safe and dangerous ways. Some languages include warnings
in the names of such constructs, as in unsafePerformIO in Haskell [142], but such approaches
may not be effective in explaining the danger.

Risk compensation refers to the idea that people compensate for safety features by taking
additional risks. For example, drivers may drive faster when wearing seat belts because the seat
belts may mitigate the risk caused by higher speeds. However, in many cases (such as in the seat
belt example), overall risk is reduced despite potential compensating behavior [97]. Further study
is needed to consider the question of whether risk compensation occurs with strong type systems.
Perhaps some participants who used disown assumed that if there were a bug, the compiler
would report it.

Regarding RQ 3.5, the Game contract that we provided defined states for Game (BeforePlay,
Playing, FinishedPlaying). When implementing Casino, participants wrote code in
their Casino transactions (to implement requirements 3 and 4) to dynamically check the state of
the Game. An alternative approach, which we had expected some participants to use, would have
involved observing that the state of Game was related to the state of Casino. If a Casino was
in a state that permitted bets, then the Game must not have started. Likewise, collecting winnings
was only possible from a Casino whose Game had ended. Our starter code defined states
in Game. Therefore, participants could have avoided dynamic checks in Casino by defining
multiple states in Casino, each of which corresponded to a particular state of Game. All of the
participants added the dynamic checks. The participant who gave up tried to check the state with
a static assertion, evidently not understanding that the assertion was static, not dynamic.

The lack of usage of static state information is unfortunate because it represents a missed
opportunity to rule out bugs in calling code. Perhaps more-experienced programmers would be
more interested in leveraging this language feature; alternatively, it might require more training
or a more-convenient language design. The design the participants chose may have been best
given their incentives; the typestate-based approach would have required adding more structure to
reflect the typestate relationships between Casino and Game. However, motivated by the results
of this study, we hope to consider future language design changes that make typestate coupling of
different objects convenient.

Perhaps creating new interfaces that use novel verification-related features (such as typestate)
is harder than consuming them, in which case further research should consider novel ways of
scaffolding interface design and creation. In Obsidian, it is possible to use states to define different
fields (each with its own typestate specification) for each possible state of referenced objects. This
approach would couple the states of the two objects, letting the programmer avoid runtime checks
that would be otherwise required, but we did not train participants in this approach. Perhaps this
technique is sufficiently subtle that we should have provided training directly.

Surprisingly, in RQ 3.6, we observe that in fact, Solidity participants were probably more
likely to correctly have the casino keep tokens when a bet is lost (Table 11.8, p ≈ 0.09, Fisher’s
exact test). Likewise, Solidity participants may be more likely to successfully issue refunds
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for bets after the first bet (p ≈ 0.33, Fisher’s exact test). We believe this is related to abuse of
disown by Obsidian participants.

Regarding RQ 3.7, all four of the Obsidian participants who wrote solutions that compiled
treated tokens as data rather than assets, i.e., at some point in their code, they either created new
tokens or disowned tokens. The Obsidian participant who gave up did not do either of those things,
likely viewing tokens more as assets, but became mired in a list of type errors. We conclude
that use of assets was likely not natural for our participants. This interpretation is consistent
with the post-study survey results (§ 11.10), in which we observed that participants said they felt
ownership and states were more useful than assets.

For RQ 3.8, Obsidian participants spent significantly longer on the Casino task than Solidity
participants did (p ≈ 0.02, Mann-Whitney U test, d ≈ 1.9). Therefore, the stronger type system
provided by Obsidian likely had a significant cost in development time for our participants. We
hypothesize that this cost is greater with more open-ended tasks, which would explain why we did
not observe this difference in the two prior tasks. Of course, the additional cost may be worthwhile
since Obsidian would rule out some classes of bugs statically, particularly when used by skilled
programmers who do not abuse disown. The time to task completion in this experiment might
relate in practice to the time required to complete a prototype version of software rather than the
time required to create a production-quality version.

11.10 Post-study Survey Results
We conducted a post-study survey asking participants about their opinions. We asked participants
(on a 5-point scale) how well they understood particular concepts and how useful they thought
those concepts were. The results from participants who completed the survey before being de-
briefed from the study are summarized in Table 11.9. Although the Obsidian participants said they
thought ownership was significantly more useful than the Solidity participants did (p ≈ 0.002,
d ≈ 2.5), the Solidity participants indicated that they felt they understood states better than the
Obsidian participants did (p ≈ 0.04, d ≈ 1.3). Perhaps the existence of an unfamiliar state
construct in Obsidian, or the unfamiliarity of the relationship between states and types, led to less
confidence. There was no significant difference in views of the utility of states. This may be due
to the tasks we gave, which did not particularly rely on the static aspects of states.

We also compared across questions. Obsidian participants said that they felt both ownership
and states were more useful than assets (p ≈ .0027, d ≈ 2.1 and p ≈ .037, d ≈ 1.2, respectively,
according to a Mann-Whitney U test and Cohen’s d). The differences between perceptions of
understanding between ownership and assets and between states and assets were not significant at
p < .05. Of course, perceptions of understand and utility were influenced by the particular tasks
the participants did and their perceived success at doing those tasks, but these results correspond
with the Obsidian participants’ failure to regard tokens as assets in the Casino task.

The survey also included a free-form box in which participants could respond to the question
“Please use this space to write any additional comments you have about the language or the study.”
We reviewed the free-form comments, and describe the most interesting ones here. Due to the
sparse and brief nature of the data, we did not conduct a more formal analysis. The complete data
are included in the replication package.
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Several of the Solidity participants expected that the language would have included constructs
for states or ownership. For example, one participant wrote in the post-study survey:

It also seemed like there should be some syntactic sugar for writing things like:

enum State { Foo, Bar, Buzz }
State s

since they are so common.
Three Solidity participants expected that the compiler would check ownership. For example:

On [semantics] — I was hoping ownership / assets / states would be statically verified.
When I wrote code during the 2nd phase of the study, I found that I didn’t really
document ownerships / asset status.

Similarly, from another Solidity participant:
I think it would be nice to have some static analysis to check ownership informa-
tion rather than relying on the programmer to have good comments documenting
ownership because in practice documentation is never perfect and often overlooked.

Thus, the Solidity participants asked for features in Obsidian.
Participants using Obsidian had differing opinions regarding how easy it was to learn. One

wrote:
The tutorial and the exercises are well-written and they helped me a lot in understand-
ing the concepts of new language!

Another Obsidian participant wrote:
The smaller coding exercises were nice to follow and complete. The open-ended
part was a little overwhelming to finish, for somebody that just got introduced to new
concepts of ownership, states and assets.

One Obsidian participant commented on how ownership seemed natural after some practice:
. . . the general concepts of ownership [were] a little unintuitive but after working with
the language they started to make more sense and seem more natural. . . .

11.11 Summary of Results
In order to summarize the overall results across the three tasks, we computed the fraction of
successfully completed tasks for each participant, taking into consideration the tasks that were not
included in the analysis above (only nine Solidity participants and five Obsidian participants in
the Casino task). The median fraction of tasks completed by Solidity participants was 0%; the
median fraction of tasks completed by Obsidian participants was 67% (since these are ratios, we
do not take their mean). We compared these fractions using a Mann-Whitney U test, observing a
significant difference with p < 0.008. Table 11.10 summarizes successful task completions: tasks
that were completed correctly within time limits.

We now return to the initial research questions.

RQ1: Could we obtain actionable data about the usability of a novel programming
language (that uses a type system that would be unfamiliar to our participants) in
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a short-duration user study (less than one day), which would be representative of
real-world smart contract development?

Our results regarding the other research questions show that we were able to identify both
strengths and weaknesses of Obsidian relative to Solidity in the context of smart contract program-
ming tasks that were drawn from real-world scenarios. Perhaps more importantly, the study led to
insights about the type system and its potential risks that can be used to refine future language
designs. For example, strong type systems can be learned and used to significant benefit in short
periods of time, but escape hatches can be frequently abused.

RQ2: Do programmers using Solidity insert more of the kinds of bugs that Obsidian
is designed to catch?

In Auction, we observed that Solidity participants lost assets frequently (seven of nine Solidity
participants who finished lost assets) (RQ 2.1). Similarly, four of eight Solidity participants lost
assets in the Casino task (RQ 2.2). We conclude that linear type systems likely have value in
helping programmers of smart contracts detect bugs earlier. However, the abuse of disown in
Casino shows that training or language refinement may be needed to help users of linear type
systems obtain these guarantees effectively.

RQ3: Can programmers who were previously familiar with object-oriented program-
ming (but not with Obsidian, typestate, ownership, or linear type systems in general)
successfully use Obsidian to complete relevant smart contract programming tasks? If
so, is there a significant impact on task completion times?

In Auction, we observed no significant difference in completion times, which is promising
for strong type systems (RQ 3.1). Furthermore, participants who used Obsidian were more likely
to finish Auction correctly (RQ 3.2). In Prescription, 60% of Obsidian users were able to use
ownership to fix the vulnerability we gave them, suggesting that earlier work iterating on the
language design using user-centered methods may have been effective in making the language
more usable than it had been initially (RQ 3.3). Using ownership does not necessarily take less time
than using a dynamic approach, but seven of the ten Obsidian participants successfully completed
the Prescription task, suggesting that enabling use of ownership can empower programmers
to be more effective (compared to two of ten Solidity participants who succeeded) (RQ 3.4).
In Casino, we observed that all of the Obsidian participants who finished the task abused the
disown keyword, which serves as a caution that escape hatches from safety features are easily
misused; this misuse can significantly hamper a language’s ability to achieve its safety goals (RQ
3.5). Likely due to this misuse, Solidity participants were more likely than Obsidian participants
to have the Casino keep funds from losing bets and to issue refunds correctly for revised bets.
Likewise, the Obsidian participants appeared to create and destroy tokens at will, rather than
treating them as assets; more training is likely required if we want programmers to achieve the
safety benefits of adopting this perspective, which may not be a particularly natural one for them.
Finally, Obsidian participants spent significantly longer on the task than the Solidity participants
did, confirming that in some more complicated tasks, a stronger type system likely increases the
cost of an initial implementation.

There has been long-standing debate about a hypothesis that dynamically-typed languages
may be better for prototyping work than statically-typed languages [90, 125]. Our results provide
a limited form of support for this hypothesis, since the Solidity participants were able to finish the
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Casino task faster than the Obsidian participants. Of course, since there were many differences
other than type system between the two languages, the study does not address this hypothesis
directly.

11.12 Limitations and threats to validity

The pre-screening instrument may have introduced bias, either by being unrepresentative of
common content knowledge among typical object-oriented programmers or by discouraging some
people from participating. The student participants may not be representative of the population of
smart contract programmers. However, since most of the students had some professional experi-
ence, they were likely representative of entry-level programmers in industry [187]. Also, other
studies have found no significant differences in code correctness in programming studies between
students and non-students [2]. The tasks were more constrained than real-world programming
tasks, although smart contracts tend to be small in practice, averaging 322 lines [155]. Table 11.11
describes solution lengths in our study.

The participants were new to the programming languages and to smart contract development
in general, so it is possible that experienced programmers would have behaved differently. Al-
though we tried to infer how particular aspects of the languages and their type systems affected
participants’ behavior and performance, because this was a summative study, the results may have
been influenced other aspects of the experience, such as the way in which different aspects of the
type systems interacted or the details of the particular tasks we gave participants.

The order of the tasks was consistent among all the participants, so the results of the tasks
cannot be regarded as being independent of each other due to learning effects. Because of the
way we allocated time, only five Obsidian participants completed the Casino task, so those results
should be considered exploratory.

We assessed results by manually analyzing code for correctness rather than by test cases.
It is possible that using unit tests would have revealed additional bugs that we did not identify.
Furthermore, disallowing execution might have biased the results to favor Obsidian, since without
testing, writing correct code may be easier with the stronger type system that Obsidian provides.

Providing unit tests to participants (and allowing them to be run) might have allowed the
participants to identify minor bugs that had gone undetected without incurring the time and
variance cost of having participants write their own tests. This approach would also likely have
increased external validity, although it adds a concern that participants might simply iterate until
the tests pass rather than ensuring that they really understand how to write the code correctly.
Furthermore, given our research focus on static correctness techniques, it is not clear which unit
tests should have been included.

Our study was potentially subject to the Hawthorne effect, in which participants may change
their behavior when they know they are being observed [175]. However, this effect would have
been equally present in both conditions. To minimize this effect, although the experimenter
remained in the room, the experimenter minimized direct observation by recording screen videos
and source code rather than continuously watching participants.
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11.13 Implications on PLIERS
The randomized controlled trial comparing Obsidian and Solidity served in part to evaluate
Obsidian and in part to evaluate the PLIERS process (chapter 3). In this RCT, we were able
to show a safety benefit of Obsidian in the Auction task, and were able to show that most of
the Obsidian participants were able to use ownership successfully in the Prescription task. This
shows that the tutorial method was mostly successful (though more success could likely have been
obtained with more practice) and that the language design was effective overall (modulo the abuse
of disown that we observed). Every study design involves making tradeoffs. The results here
may show a tradeoff between training time and success rates; users of PLIERS will need to decide,
based on their own design and research goals, how to balance the risks when designing their
studies. However, the overall PLIERS design process did result in a language that had significant
benefits relative to the status quo, which we were able to measure in a relatively low-cost study.

In retrospect, since only one of 20 participants completed the Casino task successfully (across
both conditions), that task was too hard for the amount of time we allowed. We recommend that
users of PLIERS carefully select success criteria in pilot studies in order to set appropriate task
time limits and difficulties.

Designing and executing an effective RCT is extremely challenging and labor-intensive. The
tutorial and tasks were initially drafted much earlier than the RCT, but even with a six-participant
usability study (which had nine pilots) and four pilots for the RCT, we were still surprised at
how difficult the Casino task was for some participants. In addition, executing the RCT was a
lengthy effort; we estimate that recruiting participants, managing 21 participants plus four pilots,
analyzing the data, etc. took about two months.

11.14 Conclusion
As programming languages are tools for empowering programmers, empirical methods offer an
opportunity for designers to provide evidence of the benefits of their work. In this study, we
showed that programmers who used Obsidian were able to complete more of the tasks correctly
than those using Solidity (§ 11.11). We also showed that ownership alone can be used effectively
with a short training period and that assets can be used to detect bugs that would otherwise likely
be inserted. However, we also identified areas of risk relating to language features that weaken
the checks that the compiler provides. Although few language designs have been evaluated in this
way, our work shows that it is possible to empirically evaluate a novel language, to both support
hypotheses of usability as well as identify areas for potential improvement. We also hope that
our findings of usability for the less-common type system features we analyzed will lead to more
adoption of safer, more sophisticated type systems in future languages.
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Solidity
(N=6)

Obsidian
(N=8)

How much did you like the language you used? 3.7 (0.82) 4.0 (0.53)
How well do you feel you understand the concept of ownership? 3.8 (0.98) 3.75 (0.99)
*How useful do you think ownership is? 3.0 (1.1) 4.88 (0.36)
*How well do you feel you understand the concept of states? 4.8 (0.41) 4.1 (0.64)
How useful do you think states are? 4.3 (0.81) 4.1 (0.64)
How well do you feel you understand the concept of assets? 3.2 (0.98) 3.4 (1.3)
How useful do you think assets are? 2.7 (0.52) 3 (1.2)

Table 11.9: Perceptions of ownership, states, and assets on a 1–5 scale (5 is best). Cells show
average (standard deviation). * indicates that a Mann-Whitney U test shows a significant difference
at p < 0.05.

Tasks completed
correctly

Solidity
participants

Obsidian
participants

0 7 1
1 2 3
2 0 6
3 1 0

Table 11.10: Numbers of participants completing different numbers of tasks correctly in the two
conditions.

Solidity Obsidian
Min Max Min Max

Auction 291 355 352 395
Prescription 455 570 457 518
Casino 257 425 135 416

Table 11.11: Ranges of all (whether correct or not) solution lengths in lines of code.
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Chapter 12

Study Design Challenges and Solutions1

In this chapter, we re-visit the PLIERS process, which was introduced in chapter 3, and consider
what we learned by applying it to Glacier and Obsidian. Table 3.1 summarizes the challenges that
PLIERS addresses. Our primary interest is in programmers’ abilities to achieve their goals after
they have become proficient in the programming language, not on how easy it is for novices to
learn the language. Thus, our evaluation approach requires first teaching people a language and
then observing their performance on tasks.

When we initially tried to apply HCI methods in our language design work, we were thwarted
by several challenges, described in § 3.1: training, recruiting, high prototyping cost, and variance.
We also encountered additional challenges, such as interdependence of features, time management
in studies, participant bias toward familiar languages, and unsound proposals by participants.
In this chapter, we describe techniques we used when designing the user studies described in
previous chapters in order to address each challenge.

12.1 Training

Evaluating a programming language requires first teaching the programming language. Many
universities offer term-length courses in specific programming languages or techniques; requiring
this kind of time commitment would make it extremely difficult to recruit participants. Further-
more, most courses ensure a consistent experience for all students by having all students learn the
material in parallel (for example, with one session per topic, where all students participate at the
same time). In contrast, our design approach was iterative, consistent with design methods used
in other areas of HCI [66]. We were interested in addressing a variant of our training challenge
that asks: what would be an effective way to teach a programming language in a consistent way
to many participants in sequence?

Initially, we created a textual guide to the new programming language, and asked participants
to read it before doing the tasks relevant to each study. The guide was relatively short; it could be
read thoroughly in under an hour. Unfortunately, this approach had very significant limitations.
Although it was effective for some participants, others only skimmed the material and were then

1Portions of this chapter previously appeared in [45].
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unable to complete the programming tasks. Because the guide was not structured as reference
material and it included substantial conceptual information, skimming the guide was insufficient.

We were able to solve the problem with two adaptations: (1) break the guide into much smaller
pieces; (2) ask participants to answer questions or complete small tasks to assure they had absorbed
the material of each piece. For example, we broke the Obsidian tutorial into ten parts, and still
the average participant completed it in under 90 minutes. We found that we were able to design
tasks that checked understanding that were brief and did not require substantial experimenter
intervention (helpful for ensuring consistency). We used a web survey tool (Qualtrics [158]) to
guide participants through the tutorial and ask questions to check understanding. The tool also
offered automatic feedback on participants’ answers to multiple-choice questions. For example,
Figure 12.1 shows a question about a code fragment with the correct answer selected. For another
example question, see Figure 11.1. The relevant language details are explained in §6.2.

contract Money {
int amount;
transaction getAmount() returns int {
return amount;

}
}
contract Wallet {
Money@Owned m;
Wallet@Owned() {
m = new Money();

}

transaction spendMoney() {
...

}

transaction receiveMoney(Money@Owned >> Unowned mon) returns Money@Owned
Money temp = m;
m = mon;
return temp;

}

transaction checkMoney() returns Money@Owned {
return m;

}
}

Yes, you cannot return a field of a contract in a transactionYes, you cannot return a field of a contract in a transaction

No, the return type matches the type of mNo, the return type matches the type of m

Yes, returning m makes it Unowned, which doesn't match the ownership status of m's declarationYes, returning m makes it Unowned, which doesn't match the ownership status of m's declaration

No, m is of type Owned, which matches the ownership status of m's declarationNo, m is of type Owned, which matches the ownership status of m's declaration

None of the aboveNone of the above

Q15.Q15. Would we get a compiler error with the checkMoney function?

Q69.Q69. Timing

First Click: 0
 Last Click: 0
 Page Submit: 694.779

 Click Count: 0
 

Q73.Q73. Write a constructor for the  Write a constructor for the MoneyMoney object so that it accepts an integer as a parameter and sets "amount" object so that it accepts an integer as a parameter and sets "amount"
to that integer value.  to that integer value.  

  Note: you will have to change the instantiation of m in Wallet for your code to compile. Note: you will have to change the instantiation of m in Wallet for your code to compile. 
Please write your answer in the VSCode window (code3.obs). You may compile your code to check yourPlease write your answer in the VSCode window (code3.obs). You may compile your code to check your
answer.answer.

Q88.Q88. Timing

First Click: 0
 Last Click: 0
 Page Submit: 387.351

 Click Count: 0
 

Q70.Q70. Read the document "Ownership -- Miscellaneous". Once you are finished, answer the following Read the document "Ownership -- Miscellaneous". Once you are finished, answer the following
questions. You may refer to the document as needed (and any previous ones).questions. You may refer to the document as needed (and any previous ones).

Q74.Q74. Timing

First Click: 109.079
 Last Click: 109.079
 Page Submit: 213.296

 Click Count: 1
 

Q71.Q71. Definitions of Money and Wallet contracts for the following questions. Definitions of Money and Wallet contracts for the following questions.
  
  
contract Money {contract Money {  
    int amount;    int amount;  
  
    transaction getAmount() returns int {    transaction getAmount() returns int {  
        return amount;        return amount;  
    }    }  
}}  
  
contract Wallet {contract Wallet {  
    Money@Owned m;    Money@Owned m;  

Figure 12.1: One question from the Obsidian tutorial (another is shown in Figure 11.1). The
question assesses whether the participant has understood that at the ends of transactions, fields
must be have types that match their declarations, and that returning a variable consumes any
ownership in the variable. If a participant submits an incorrect answer, the survey tool informs
them of their error so they can fix their misunderstanding.
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Although we originally wanted to make the tutorial stand alone so that every participant would
have the same experience, we found that to be impractical; participants inevitably had questions
about the materials. To see what would happen, we tried refusing to answer questions from one
participant, but forcing them to continue without having their questions answered resulted in them
being unable to complete the tasks. However, we found that if an experimenter was available
to answer questions, most participants asked only a small number of questions, which could be
addressed rapidly. This approach is arguably more similar to a real-world language learning
experience than an approach in which no questions are answered; normally, learners can search
the Internet for answers to their questions, ask friends for help, etc.

In summary, although our initial tutorial was not an effective way of teaching the language,
and the final tutorial was not sufficient by itself, dividing the tutorial into small pieces, providing
tasks to help participants check and reinforce their understanding, and having an expert who could
answer questions allowed most of our participants to learn the needed material in a short period of
time. Figure 11.3 shows how the tutorial was broken into 11 different sections, each of which was
followed by exercises for participants to complete.

12.2 Recruiting
Evaluation requires participants who are sufficiently skilled that they can rapidly learn a new
programming language and then complete tasks using the new language. This would seem to
require lengthy user studies with skilled participants, who can be challenging to recruit and
retain for the required period of time. Iterative evaluation requires a large number of participants,
since participants who learned an earlier version of the language can no longer provide fresh
perspectives on new ideas. Although some user interfaces for experts in other domains require
recruiting members of a small population, many of those interfaces are for short-term, focused
tasks rather than lengthy problem-solving tasks. Furthermore, although it is typical to conduct
studies with students, this relates to our external validity challenge: to what extent do results from
students apply to the professional software engineers that are the target of our language?

We found in our work on Glacier and Obsidian that we were able to usefully combine
results from different populations. Rather than trying to exclusively obtain professional software
engineers, we found that we could design studies that yield meaningful results from students; for
other aspects of the research, we recruited limited numbers of professionals. For example, when
we wanted to interview software engineers to find out their experiences of using immutability
constructs in the Glacier work, we recruited senior-level professional software engineers. However,
for the other studies, we made three observations that enabled us to do our studies with various
kinds of students.

First, about 41% of professional developers have been programming professionally for less
than five years [187]. Many graduate students have some professional experience. For example,
students at the Professional Master’s program in Computer Science & Engineering at the University
of Washington were reported to have an average of five years of professional experience [143].
Similarly, the Carnegie Mellon Master of Software Engineering program requires all students to
have at least two years of experience [205]. By recruiting from graduate students, we were able
to attract a population that is similar to a significant fraction of professional programmers and
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software engineers.

Second, in usability studies, it is typical to assume that usability problems encountered by
even one user may be experienced by many others. Not every usability problem can be addressed
without risking introducing new usability problems, but our experience is that many can be. For
example, error messages, documentation, and keywords can be interpreted in ways that were not
intended by the author; clarifying the text can prevent others from being confused in the same way.
Syntax borrowed from other languages can be evocative in useful ways, but when the semantics
do not match precisely, confusion can result; this can be addressed by choosing distinct syntax.
On the other hand, semantic or structural changes can have consequences on users that are hard to
predict, especially since one high-level change may necessitate a series of lower-level changes,
which each have their own impact. For example, in Obsidian, moving transactions so that they
were no longer lexically scoped in states necessitated adding special syntax for specifying the
initial type of the receiver, this. To address this, we used a special parameter to specify the
type of this based on consistency with Java, which already uses that design. Unfortunately, that
approach was surprising to some of our participants.

By addressing problems that student participants encounter, we prevent professionals from
encountering those problems as well. Of course, some of the problems may not be ones that
professionals would encounter, but nonetheless, addressing them may improve learnability, making
the system better overall. When changes that would improve the system for the participants might
degrade performance for experienced users, then the designer can make an informed tradeoff,
potentially addressing the problem in training materials rather than in a design change.

Third, for Obsidian studies, we developed a screening instrument so that we could include
only participants who had appropriate programming skills. Designing a screening instrument (or
deciding not to use one) depends on an assessment of what knowledge and skills are required
of participants, and of how honest the prospective participants will be in their self-assessment.
If prospective participants can reliably self-assess preparedness for the study, and they can be
assumed to be honest, then screening may be unnecessary. On the other hand, even in this case,
assessing programming knowledge and skills can be useful for understanding how these relate to
task performance. In the Obsidian studies, we invited participants based on a “basic Java” portion
of the screening instrument and observed that performance on one of the tasks was correlated with
performance on the “advanced Java” portion of the instrument, suggesting that Java programming
knowledge was a significant influence on task performance. This is somewhat surprising, since the
screening test examined language-specific knowledge, but did not give any actual programming
tasks. We would encourage others to consider using this kind of screening instrument, since it is
low-cost (generally under 10 minutes per participant), resulted in participants who were generally
capable Java programmers, and portions of it correlated with task performance.

We found that relatively small incentives were sufficient to motivate students to participate in
our studies. For three-hour studies, we offered a $50 Amazon gift card; for four-hour studies, we
offered a $75 Amazon gift card. For shorter studies, we paid $10/hour. We recruited professionals
from among our personal networks and did not offer them a specific incentive to participate.
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12.3 High prototyping cost
Programming language designers are accustomed to creating high-cost implementations, not
low-cost prototypes, but traditional HCI methods assume that low-cost prototypes can be created.
Traditional ways of evaluating programming languages typically require a compiler or interpreter
as well as theoretical work to create a sound design (informally, one in which programs mean
what they are supposed to mean and the safety guarantees that the type system claims to provide
can actually be provided). If one insists on creating a sound, formal model of the language before
evaluating it with users, iteration can require so much time that it is impractical. Furthermore, the
cost is increased by the expectation of sophisticated language-dependent tooling in IDEs: syntax
highlighting, autocomplete, high-quality error messages, and the like.

Instead, we do not insist on doing this work at the beginning. We outline a potentially sound
underlying formalism without proving all the relevant properties. Then, we design a surface
language and evaluate it with users so that we can obtain feedback early. In doing so, we accept
the risk that the formal system cannot be made sound without invalidating the data we gathered
from users, but in practice, we found that usually any mistakes are minor and can be corrected
without having to redo the user studies.

Late in the project, we found that designing and running user studies of low-level features
typically required much more time than implementing the features; for those, it make sense to
implement the alternatives rather than simulating them. On other other hand, early in the project,
many high-level design decisions would have required substantial design and implementation
work. Among those, we carefully selected questions for which user input would be the most
impactful. A key approach in minimizing cost of language changes was to re-use training materials
across phases of the studies to the extent possible, allowing us to amortize the cost of their
development across multiple studies. The training materials co-evolved with the implementation
and represented a significant investment.

12.4 Interdependence of features
Suppose a comparison between two languages showed that one allowed participants to complete
tasks faster or more successfully. If the two languages were very different from each other, it
would be unclear which aspects of the new language were actually helpful. For example, a
comparison between a particular functional language and a particular object-oriented language
would not result in fine-grained, actionable design guidance for a new language. Furthermore, if
the study was done in the context of a language that was new to participants, confusion might be
due to unfamiliar aspects of the language that are unrelated to the design question of interest.

By using the back-porting approach described in § 3.2, we isolated particular design questions
in the context of an existing language. Although this does not enable us to address very high-level
design questions, such as whether the language should be object-oriented or functional, it allowed
us to obtain actionable data about particular design decisions.

Theoretical refinement is another approach that helps address feature interactions, since
frequently, key theoretical issues relate to interactions between language features. Likewise, case
studies, natural programming, and usability studies with appropriate tasks can lead to insight
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regarding cross-cutting concerns.
Of course, it is still the case that the design choices are not orthogonal. To address this,

we integrate the results into a new language and conduct summative studies on the completed
language as a whole as well.

12.5 High variance and external validity
The nature of programming is that there is huge variance in performance on tasks among different
programmers [135]. When asking participants to complete programming tasks to help a designer
iterate on a language design, participants frequently get stuck on problems that are not of interest
to the designer. For example, in one Obsidian study, a participant spent significant time writing
code to recurse through a data structure, even though code had been provided to do exactly that.
Issues involving the details of the data structure were intended to be out of scope for the study. On
the other hand, constraining tasks too much may result in artificial tasks that do not represent the
complexity of real-world programming problems, which limits the external validity of the studies.

We used three techniques to address these problems. First, we combined the results of different
kinds of studies (triangulation [172]). Qualitative studies of varied tasks with varied participants,
in which timing is not an important dependent variable, can identify usability problems, and an
experimenter can guide participants away from problems that are not intended to be part of the
study. Quantitative studies typically involve fairly constrained tasks, but we could hope to obtain
statistical significance in a comparison between two different designs. Finally, we also used case
studies to address questions of expressiveness: elucidating what happens when the language is
used to solve a larger programming problem, which cannot be completed in a single-session user
study; for more information, see chapter 5 and chapter 10.

Second, particularly in RCTs (in which the experimenter cannot provide any guidance), we
gave several independent tasks rather than one long task. Then, we analyzed the tasks separately,
although of course the performance on the tasks is not independent because the same participant
completed all of the tasks. Furthermore, dividing tasks into multiple pieces enabled separate
analysis of complete vs. incomplete tasks. For example, in the Glacier studies, we gave both simple
and complex immutability specification tasks rather than one combined task. In the Obsidian
studies, we separated a complex task, Casino, from simpler tasks, Auction and Prescription, even
though the research questions overlapped. This allowed participants to succeed in the simpler
task even if the more complex task was too difficult for them. It also offered an opportunity for
participants to apply knowledge gained in the simpler task when working on the more complex
task.

Third, recruiting from a constrained population reduced the impact of uninteresting noise.
The primary technique we used was a screening survey, which participants must complete before
being selected to participate in the study. This allowed us to ensure that programmers have
sufficient programming skills and knowledge. Of course, one must be careful to avoid screening
out participants that may, in fact, be representative of the population to which the results should
generalize.

In qualitative studies, it is sometimes unclear how many participants to recruit. Nielsen and
Landauer found that the best benefit/cost ratio occurred at 3.2 participants in a set of their usability
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studies, which were of a medium-large software project [137]. We found it was effective to
consider the following factors in assessing when to stop recruiting more participants:

• To what extent new data (from the most recent participants) duplicates existing data
• To what extent the researcher is willing to tolerate risk of missing usability problems
• Fidelity of the current prototype (it may not be worth exhaustively testing low-fidelity

prototypes)
• Specific research objectives: have the primary research questions been addressed yet?

12.6 Time management
As a practical matter, one needs to keep each participant’s commitment brief in order to be able
to recruit and retain enough participants and to minimize study cost. However, the experiment
designer needs to allow enough time for most participants to finish the given programming tasks
(at least in some of the experimental conditions). To address this problem, we conducted enough
pilot studies that we could estimate the range of times that most participants would spend on
each task. However, longer tasks involve more risk, as we saw with the Casino task in the
Obsidian RCT. We found that we could usually allow participants enough time such that when the
participant did not finish in the allotted time, the experimenter usually believed that even given
substantial additional time, the participant would not have completed the task. This belief was
driven by observing the difficulties that participants were facing at the end of the time window.
Sometimes the problem was a design choice by the participant that made the problem much more
challenging than anticipated; other times we believe it was due to lack of programming skill, since
we observed some participants making basic programming errors. For example, some participants
waited until writing a complete solution before compiling even once; these participants had a lot
of errors, which were challenging to fix. Of course, it is difficult to generalize about participants
who do not finish particular tasks when we expected them to have enough time, but we found that
the above approach resulted in studies that were practical to run and which yielded useful results.

The choice of study pre-screening method introduces a tradeoff. A lax pre-screening procedure
makes it easier to obtain enough participants from a population that generalizes to a broader
community. A strict pre-screening procedure that admits only the most expert participants may
reduce times as well as variance, but may make it difficult to recruit participants and harder to
generalize the findings. In university settings, with many novices, we advise erring on the stricter
end of the spectrum, since most real practitioners will be more skilled than most students.

Rather than giving fixed limits for each task in advance, we aimed to maximize effective use
of participants’ time. When participants had additional time remaining in their commitment (for
example, in the Obsidian RCT, we told participants that the study would take four hours), we
could let the participants spend longer than budgeted on the later tasks if their earlier tasks took
less time than expected. Then, when reporting results, we could consider what the success rate
would have been if everyone had had only the time available of the participant with the minimum
time window for that task. In addition, we could report which participants succeeded given the
additional time. This allowed us to make the best use of our participants’ time while maintaining
experimental validity.
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12.7 Bias toward familiar languages
In a user study of a new programming language in which the participants are experienced
programmers, one might expect that the language that performs “best” might be one with which
participants are already familiar. Furthermore, when asked to join in participatory design exercises,
perhaps participants might be likely to guide the design toward languages with which they are
already familiar.

We used three techniques to address this problem. First, to find out what approaches might
be easily learnable and would make immediate sense to participants, we adapted the natural
programming elicitation technique [132]. In it, participants are given blank paper or a text editor
and asked to write programs without being given a specific language to use. As a form of
participatory design, the goal is to elicit from participants the way they would naturally express
the ideas in question. Although traditional natural programming studies give the programmer no
training at all, we took a staged approach. First, we asked participants to write programs on a
blank screen with no training. Then, we told them information about the language design, and
asked them to do additional programming tasks with the new (but still underspecified) design.
For example, we gave participants a state transition diagram and asked them to write a program
that expresses the state transitions. By scaffolding the participants’ work in stages, we were
able to answer both questions about participants’ initial expectations as well as identifying what
approaches might be most natural given our preliminary language design assumptions.

Second, in most of the studies, we constrained the participants’ work according to our design
ideas. Because the languages were designed to provide particular formal safety guarantees, we
were interested in the impact of the language features related to those properties. In general,
providing stronger guarantees requires that programmers enable the compiler to prove safety
properties, which may require additional work from programmers. We were interested, then,
in whether participants could complete tasks in the language even though they were obtaining
stronger safety guarantees.

Third, we focused on observing and understanding behavior rather than preferences. By doing
so, participants’ prior experience was not an obstacle to overcome, but instead background we
could leverage in teaching participants our language.

To encourage innovative responses (rather than ones that merely reflected prior training), we
used natural programming for situations in which commonly-used languages could not directly
represent the requirements we gave participants. We also used natural programming for low-level
syntactic choices (e.g., keyword selection). We also instructed participants explicitly to be creative
and not write in any particular existing language. Finally, we were careful to interpret the results
in the context of participants’ prior knowledge. For example, when participants use curly braces
to denote blocks, the content of the blocks may be interesting even though the choice of curly
braces is not.

12.8 Unsound proposals by participants
Another common limitation of natural programming is that participants lack expertise in language
design, resulting in unsound proposals. This problem occurs with participatory design in other
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domains as well, and the usual solution is to use participant ideas as input to an expert-led design
process [150], which applies here as well.

Our language design process typically involves writing multiple example programs, each
of which assumes a particular language design and explores a particular kind of programming
problem. The examples typically expose tradeoffs in language design; choosing which tradeoff to
make can be informed with user input. We were able to use some of these prototypes to develop
user studies, in which we presented participants with several options rather than expecting them
to compose designs from scratch. In some cases, we tried to generate all feasible options in a
particular design space (due to various technical constraints, this might result in three or four
options), and then narrowed this down to the most promising approaches based on the tradeoffs
that were apparent. We asked participants to complete tasks using the best candidates so that we
could come to an informed conclusion about which of the options were best, rather than merely
asking participants for their opinions. This allowed us to focus the process on designs that would
fulfill the technical requirements while still obtaining relevant design insights.
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Chapter 13

Future Work and Conclusion

13.1 Future Work

There are three main directions in which I would like to proceed with this research. First, methods
(§ 13.1.1): how can we further develop user-centered language design techniques so that they are
more easily applied, give more externally-valid results, apply to more kinds of situations, and can
be applied by more kinds of language designers? In the course of doing this work, I developed
both language design and usability expertise myself, and was therefore able to do both parts of
the process. However, the methodology would be more useful if it could be applied with only
one of those two kinds of expertise (and more useful still if domain-specific languages could be
developed with only domain expertise). Second, applications (§ 13.1.2): the language design
methodology should be broadly applicable in domain-specific language and general-purpose
languages; in languages for novices and in languages for experts. Finally, technology (§§ 13.1.3
and 13.1.4): develop type and verification systems that provide strong safety guarantees, guided
by insights from user research. For example, how can we make domain-specific specifications
more easily verifiable?

Novel type system designs have, in the past, taken many years to achieve adoption. I hope
that with PLIERS, safer languages can be designed in a way that helps people be as effective as
possible at achieving their goals. These successes will hopefully motivate faster adoption of safer
programming techniques, improving the quality of software across all contexts in which people
create software.

Although this dissertation shows particular language designs that are helpful for users, much
work remains to develop techniques that help show the impact of language designs in the real
world. For example, although specifying which classes are immutable avoids bugs in which
programmers accidentally mutate immutable structures, are there other costs of the additional
language complexity? Perhaps more importantly, given that immutability may have other costs
(e.g., performance, API complexity), should developers use immutability in the first place?

It is not practical for researchers to randomly assign real engineering teams to use a design or
not (immutable data structures or interfaces, for example). Instead, one could try to find natural
experiments in which external events drove adoption of particular designs. Natural experiments
[52] have been used in other fields, such as economics, in which researchers leveraged changes
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that the researchers did not control to make causative inferences regarding effects. Researchers in
HCI have used these techniques on programming languages for novices [57]; I would like to try
to find natural experiments that inform professional software engineering practice as well.

13.1.1 Methods
I evaluated PLIERS by applying it to two different language designs. This approach greatly
facilitated developing and iterating on the PLIERS process. However, in the future, I would like
to show that these methods can be used by language designers with a variety of backgrounds and
goals. As a practical matter, recruiting language designers to participate in a language study is
a challenging and heavyweight endeavor, but future work may identify promising contexts in
which to evaluate PLIERS more broadly. I have begun by teaching PLIERS to students in an
undergraduate programming language design class, and found that the students were able to use
some of the methods to help them iterate on their language designs.

Currently, there is a gulf separating programming language designers from usability experts.
Typically, language designers and usability experts have different skills and interests. Although
I have learned and applied both kinds of expertise in my work, many people prefer to focus
on either the theory of programming languages or the methods of software engineering or HCI
research. What I have found in my work is that programming language design benefits from all of
these perspectives. I encourage the community to consider two models of addressing this problem.
First, it could become standard that all new languages for people are the results of collaboration
between usability experts and programming language experts. Or, we could enable those who
have expertise in one area to use tools that aid them in the other area:

• The theoretical aspects of the design work require substantial background. Perhaps in the
future, mechanized tools could help those who are not programming language experts design
safe languages in their own application domains. By using program synthesis techniques, a
language synthesis tool might be able to search the space of languages that have particular
formal properties to help users identify safe design candidates. Creating Obsidian required
spending months developing the underlying core calculus and proving it sound; if some
of this effort could be mechanized, language iteration would be much faster, and could be
feasible for those without formal programming language training. Although I spent several
months working on mechanizing a soundness proof of Silica in Agda [26], the process was
extremely slow, and I only finished a proof of soundness for a tiny fragment of the language.
Part of this time was spent learning Agda, but nonetheless, this is suggestive of a need for
better tool support.

• Running experiments is challenging and high-cost. What if some of the usability methods
needed for developing languages could be packaged in a re-usable way for convenient appli-
cation? A mechanism for running experiments with appropriate participants at appropriate
scale might make it feasible for designers to study the usability implications of different
designs without having to become expert in experimental design methodology.

The Wizard of Oz approach that I proposed relies on an experimenter who can accurately
simulate the kinds of error messages that a compiler might generate. I envision a utility that
would help promote consistency and improve reliability. Such a tool would accept error messages
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entered by experimenters in real time during experiments and deliver them to participants in a
realistic way. By recording the errors that were delivered, the experimenter could re-use existing
error messages as well as record participants’ reactions. Although this would not obviate the need
for a well-informed experimenter, the approach might lead toward refined error messages that are
clearer for users to understand.

The tradeoff between internal and external validity seems fundamental to programming studies.
Above, I suggested increasing external validity, but doing so might compromise internal validity
further, since the tasks would include more kinds of work. Another approach to study design
might trade external validity for additional internal validity. Asking participants to write nontrivial
programs, such as in the Casino task, may reflect real-world programming tasks, but the task
complexity results in high variance and significant amounts of time spent on programming issues
that are not necessarily directly related to the research questions. In future studies, it might
be worthwhile to consider more restricted tasks that only investigate a small portion of the
development workflow. For example, if the research question pertains to creation of interfaces
or architectures, then the task might isolate that part of the programming process rather than
integrating it into a complete programming problem. Another approach to increasing external
validity would be to investigate whether the results generalize to other languages or contexts. For
example, do Java programmers who write auction programs also tend to accidentally lose assets?
How does task performance compare between Obsidian and other linearly-typed languages, such
as Nomos [56]?

Another limitation of the methods of PLIERS is that although one can do studies that assess
the usability of particular language design choices, in some cases design choices interact with
each other. As a result, it is not clear that designers can combine the results of different studies
and expect that the resulting language will be usable. In this work, I mitigate this threat in two
ways. Summative studies address the integrated language and can reveal problems that arise from
combinations of design choices. Likewise, by triangulating design through multiple kinds of
studies, some of which crosscut multiple language design choices, I obtain different perspectives
on various combinations of features. However, future method development work may be able to
address this problem more directly.

13.1.2 Applications

In the future, I hope to explore how PLIERS could be used to develop tools for other problem-
solving contexts beyond programming, and for other kinds of programming languages. For
example, robotics engineers frequently develop software that implements state machines, but they
do so in general-purpose languages. Languages for teaching programming offer a particularly
convenient opportunity, since programming courses may offer large groups of potential participants
in studies, and learnability is particularly easy to measure. In contrast, when the end goal is to
improve long-term performance of professionals, one must either conduct longitudinal studies or
extrapolate from short-term studies.

Attributes of programming that are shared with other kinds of problem-solving activities
include:

High variance: Problem-solving can be unpredictable [119]; in user studies, some participants
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typically complete tasks almost instantly whereas others can spend hours working and still
not finish. This large variance makes running quantitative user studies very challenging.

Range of working styles: Bergström and Blackwell described a diverse collection of different
approaches to programming problems [14], such as bricolage/tinkering and engineering.
These different styles may be used even by different people using the same language,
impeding a designer’s attempts to anticipate a user’s strategy or behavior.

High stakes: Errors when programming can contribute to serious real-world safety problems,
e.g., in avionics or health care systems.

For example, CAD tools affect their users’ creative processes [171]; likewise with process
engineering tools [30] and even drug design tools [193]. All of these domains involve expert
problem-solving by a variety of different people with high costs of failure. As such, they might
be amenable to use the PLIERS process to help designers in those domains create tools that are
effective for their target users.

13.1.3 Glacier
Future work on Glacier should expand the range of situations to which Glacier applies by adding
support for delayed initialization of fields (for example, caches) in immutable objects and support
for initialization of circular data structures. In addition, Glacier does not consider external sources
of mutability, such as the filesystem or network; future work should analyze to what extent these
kinds of hidden mutability compromise the guarantees that Glacier provides. A future corpus study
could analyze to what extent the system applies to existing code. A refactoring tool could help
software engineers adopt Glacier more easily and also be used in a corpus study of applicability.

I have not found data regarding to what extent (and in what situations) designing components
to be immutable is beneficial. Understanding when to make components immutable is a critical
step in using immutability systems effectively.

13.1.4 Obsidian
The Casino task of the RCT (chapter 11) , which included significant use of nominal states (i.e.,
statically-defined states with their own names), resulted in Obsidian participants writing dynamic
checks. Future work should investigate the extent to which typestate, as provided in Obsidian and
other typestate-oriented languages, can be made more compelling for programmers. For example,
when pairs of objects have states that are coupled, the language could provide features to make
representing and using this relationship convenient. Likewise, the existence of risk compensation
among programmers should be investigated in future studies.

Although the study showed that Solidity programmers insert bugs that Obsidian detects, a
corpus study could show how prevalent these kinds of bugs are in real-world Solidity code. Bugs
involving asset loss can occur in any language in which programs may manipulate assets; a corpus
study involving a larger corpus of programs might be fruitful and still generalize to smart contract
development. Indeed, it may be that the kinds of safety properties needed in smart contract
development are generally applicable to many kinds of programs, regardless of whether they are
hosted on blockchains.
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A study that included testing, debugging, and code review would be more representative of
real-world use. Also, the participants were new to the language they used in the study, and the
Casino task may have been too difficult for the amount of time I allocated. A longer-duration
study would likely have increased validity — both by allowing enough time for difficult tasks and
by allowing participants to become more comfortable with the language they were using. In a
study of experienced Obsidian and Solidity programmers, I hypothesize that the task completion
time difference would diminish significantly but Obsidian users would continue to take longer on
complex development projects. On the other hand, there would likely be fewer serious bugs in the
completed Obsidian projects, since Obsidian rules out classes of important bugs.

Some of the usability results for Obsidian may generalize to other languages that use ownership,
such as Rust. Future work should investigate whether the usability tradeoffs I observed here occur
in other languages.

I observed many Obsidian programmers making unsafe use of disown. Future research
should investigate how to more safely provide features that are safe in unusual situations
but unsafe in situations that arise commonly. Some languages use naming conventions,
such as “unsafe,” to denote features that defeat the language’s type system (e.g., Haskell’s
System.IO.Unsafe.unsafePerformIO), but here, the feature is a required part of the
type system rather than a way of escaping from it, so giving it a dangerous-sounding name may
not be a good solution.

13.2 Conclusion
In this dissertation, I have shown through the PLIERS process and its application to two different
language designs how user-centered design methods are useful in the design of programming
languages. They can be used to address a host of design and research questions, such as:

• What challenges do users of existing languages face, and how common are they?
• How do users naturally express solutions to particular problems, given particular constraints

on the solution space?
• What names do users give to particular concepts?
• What barriers to success face particular kinds of users when they try to do specific tasks?
• Which aspects of a language design do users find confusing?
• Which aspects of a language design are error-prone?
• Can particular kinds of users complete specific tasks without getting stuck?
• How long does it take for users to do specific tasks?
• In which language (of several concrete options) can users who complete tasks typically

complete tasks faster?
• How likely are users (in a lab study) to insert particular bugs when using tools that do not

guard against them?
• How long does it take for users to learn to use particular new language features?
These methods can be used at practical cost (even in a university environment, without ready

access to large numbers of professional software engineers) to obtain language design insights
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and evidence of language design success that are relevant to at least some professional software
engineers. PLIERS couples use of the above methods with a theoretical perspective, which
enables development of languages that have well-understood semantics and safety properties. It
also enables drawing inspiration for language design from the theory of programming languages,
which has long been a source for interesting language design ideas. At the same time, the creativity
of the language designer is preserved; input from users serves to guide language refinements and
identify challenges, but not to actually determine the final design.

A key form of leverage that user-centered methods provide is the ability to help the designer
focus on design choices that result in a simple language that is as effective as possible for users,
rather than the most expressive language possible. Although it may be tempting for a designer to
develop a very expressive language, feedback from users can help identify usability challenges in
parts of the language that may not be necessary for the most important use cases for the language.
Then, the designer can apply their own insight and expertise to modify the language to address
those challenges.

In Glacier, I showed how interview studies can be used to narrow the design space to a small
subspace that shows promise. Then, I showed how qualitative user studies can be used to identify
usability problems in a preliminary design. Finally, I showed how quantitative studies can be
used to show in a lab setting that (a) a novel language feature is easier to use effectively than the
existing language features; (b) for a particular kind of task, users of the existing language tend
to frequently insert bugs that the type system I designed rules out. It is important to show both
of these facts together; showing only usability of a feature intended to improve safety might not
lead to real benefits, since users might not actually write code that violates the safety constraints.
Likewise, showing only that people tend to insert bugs that the language rules out does not imply
that people can use the language feature successfully.

Glacier shows that choosing a simple design can in many cases be much more beneficial for
users than choosing a very expressive design. Expressivity typically has a complexity cost, and
the increased complexity can lead to increased learning costs. Although the studies I did did not
try to compare error rates between Glacier and IGJ-T, I expect that more complex designs would
lead to higher error rates, as the additional complexity leads to higher cognitive load. This kind of
comparison would be valuable future work, as it might lead toward a theoretical framework for
analyzing usability implications for design decisions.

In Obsidian, I showed how a wider variety of formative methods can be adapted for effective
use in the design of programming languages, and how the process of applying formative methods
to programming language design can lead to insights regarding the methods. Then, I showed how
summative studies can show situations in which the new language can be used effectively as well
as potential challenges for effective use. For example, back-porting proposed designs to existing
languages makes recruitment easier and removes confounding variables, allowing researchers to
focus the study on the particular language construct in question. Likewise, Wizard of Oz studies
can be applied to programming languages that do not have tools built yet so that researchers can
obtain early feedback. Finally, a quantitative lab study showed that Obsidian addresses bugs that
can occur frequently in typical development tasks. In the lab study, most participants were able to
use Obsidian’s ownership system to statically rule out classes of bugs in their tasks.

At the same time, I showed how to combine typestate with linear assets in a language. I proved
a type soundness theorem for Silica, which forms a foundation for Obsidian. As a corollary,
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among all references to a given object that exist at once, at most one is an owning reference.
Likewise, I proved an asset retention theorem, showing that if evaluation takes a step and a
previously-owned object no longer has an owner, the only possible statement that was evaluated
was disown.

It is important to consider the cost/benefit tradeoff in using user-centered methods to design
programming languages. Although I wrote about the benefits of user-centered methods in the
design of Obsidian and Glacier, these benefits came at a significant cost in time and participant-
recruiting expenses. Because my research question was about how to use user-centered design
methods to design programming languages, I applied the methods to address a wide variety of
questions. For some of those questions, in retrospect, it might have been more expedient to either
obtain the insight by personal experimentation or to make an arbitrary choice, since the impact of
the user study was not very large. For example, I found that the natural programming approach did
not typically yield good keyword suggestions; many suggestions already had other meanings that
did not match the needed one, and in many cases, all of the participants had different suggestions.
Likewise, although conducting a natural programming study regarding use of state machines
showed that some people did use them, it is not clear that naturalness implies usability or that lack
of naturalness implies lack of usability. This relationship is worthy of further investigation, but as
a practical matter, it may be more worthwhile to focus more on usability and less on naturalness.

Designing and running user studies is very time-intensive; it can take a month or more to design
even a short user study to answer a narrow question. If the same question can be answered by the
designer by doing prototyping or case study work, that is likely more cost-effective. Of course, if
a study is to be done, it is best done early, while significant design changes are still possible. This
consideration motivated much of my work on user studies with incomplete prototypes.

On the other hand, user studies can reveal serious usability problems that need to be addressed.
The permissions user study (§ 8.2.3) identified several serious problems, such as with ownership
transfer, which I was able to address with both changes to the language and changes to the learning
materials. It can be hard to distinguish between the impact due to materials changes and the
impact due to language design changes. However, a language design change can enable a clearer
or simpler explanation, so the two are intimately intertwined. This limitation may be fundamental
to the method; it is not clear how one would design a study whose results do not depend on the
training materials.

My advice for those looking to use user-centered design methods is to be judicious. User
studies can be helpful when:

• The design involves new concepts and there is a risk of users not being able to use or
understand them effectively

• Several design alternatives seem equally attractive, and the decision is a significant one in
the overall design

• Only limited data exist regarding the usability implications of key design choices

To what extent do user-centered methods result in high-level design changes to the language,
as opposed to low level changes such as keyword choice? The answer depends on where the
user-centered methods are deployed. If one does a usability study of low-level questions, then
one can expect low-level answers. But a user study of high-level design choices can reveal major
problems, which can prompt re-visiting high-level design choices. Usability studies generally do
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not themselves propose solutions; they identify problems. From there, it is up to the designer to
decide how to address the problems. Some problems can be addressed with low-level changes, in
which case those are likely the best solution. But if the problems are more fundamental, and the
designer is not able to address them via low-level changes, then higher-level changes may be the
best solution.

It is traditional for researchers to explore how to create more powerful, expressive designs.
This can certainly be useful for expanding the boundaries of what languages can be created.
However, in this research, I have shown how starting from a user perspective rather than a
technical perspective can also result in technical innovation. In many cases, designing a system
that is simple from a user’s perspective can present challenging technical problems. However,
when these are solved, the result can be very effective for users. I hope that other researchers
will take this perspective, since it facilitates development of tools that are better-matched with the
needs of users.
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Appendix A

Auxiliary Judgements for Silica

A.1 Program structure

We assume that the contracts and interfaces defined in a program are ambiently available via
the def function, which retrieves the definition of a contract or interface (definition) by name.
Likewise, the definition of a state S of contract or interface D can be retrieved via sdef (D,S),
and the definition of a transaction can be retrieved via tdef (D,m). Note that for declaration
variables def (X) is the interface bound on X; similarly, sdef (X,S) is the state in the bound on
X . That is sdef (X,S) = sdef (def (X), S).

Auxiliary Judgment 1: stateF ields(D,S)

On individual states, stateFields gives only the fields defined directly in those states:

def (C) = contract C〈TG〉 implements I〈T 〉 {ST M }
S F ∈ ST

stateFields(C, S) = F stateFields(I, S) = ·

Auxiliary Judgment 2: unionFields(T )

The unionFields function looks up the fields that are defined in ANY of the states in a set of
states. Note that the syntax guarantees that any field has consistent types in all states in which it is
defined. This is useful when it is known that one of two different types captures the state of an
object, but it is not known which one.

F = ∪
S∈S

stateFields(D,S)

unionFields(D@S ) = F

TST ∈ {Shared,Owned,Unowned}
cdef (C) = contract C{[asset]S FS M }

F = ∪
S∈FS

stateFields(C, S)

unionFields(D@TST ) = F

Auxiliary Judgment 3: intersectFields(T )
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The intersectF ields function looks up the fields that are defined in ALL of the states in a set
of states. Note that the syntax guarantees that any field has consistent types in all states in which
it is defined.

F = ∩
S∈S

stateFields(D,S)

intersectF ields(D@S ) = F

TST ∈ {Shared,Owned,Unowned}
cdef (C) = contract C{[asset]S FS M }

F = ∩
S∈FS

stateFields(D,S)

intersectF ields(C@TST ) = F

Auxiliary Judgment 4: contract(TC)
The contract function relates types with their contracts.

contract(TC@TST ) = TC

Auxiliary Judgment 5: contractF ields(C)

On contracts, contractFields gives the set of field declarations defined in all of a contract’s
states.

contractF ields(C) , intersectF ields(C@Unowned)

Auxiliary Judgment 6: fieldTypess(∆; Tfs fs)

fieldTypes gives the current types of the fields, given that some of them may be overridden
in the current context.

fieldTypess(·; Tfs fs) = Tfs

f ∈ fs fieldTypess(∆; Tfs fs) = T ′

fieldTypess(∆, s.f : T ; Tfs fs) = T, T ′

fieldTypess(∆, b : T ; Tfs fs) = fieldTypess(∆; Tfs fs)

Auxiliary Judgment 7: transactionName (M), transactionName (MSIG), transactionNames
(
M

)
transactionName

(
Tm〈TM 〉(T�TSTx)TST� TST

)
, m

transactionName
(
Tm〈TM 〉(T�TSTx)TST� TST e

)
, m

transactionName
(
TST >> TSTf Tm〈TM 〉(T�TSTx)TST� TST

)
, m

transactionName
(
TST >> TSTf Tm〈TM 〉(T�TSTx)TST� TST e

)
, m

transactionNames
(
M

)
, transactionName (M)
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Auxiliary Judgment 8: states (D)

The states function extracts the state definitions from contracts and interfaces.

contract C〈TG〉 implements I〈T 〉{ST M }
states (C) = ST

interface I〈TG〉{ST MSIG}
states (I) = ST

Auxiliary Judgment 9: stateName (S), stateNames (D),

The stateNames function extracts the names of states from declarations by iteratively applying
stateName to individual states.

stateName
(
[asset] S F

)
= S

states (D) = S

stateNames (D) = stateName (S)

Auxiliary Judgment 10: params (D), params (M)

The params function extracts the type parameters from declarations.

def (C) = contract C〈TG〉 implements I〈T 〉{ST M }
params (C) = TG

def (I) = interface I〈TG〉{ST MSIG}
params (I) = TG

params
(
T m〈TM 〉(T�TST x) TSTi� TSTf e

)
= TM

params
(
TSTs1 >> TSTs2f T m〈TM 〉(T�TST x) TSTi� TSTf e

)
= TM

Auxiliary Judgment 11: T1 ≈ T2 Ownership equality

T1 ≈ T1

≈-REFL
T1 ≈ T2

T2 ≈ T1

≈-SYM
T1 ≈ T2 T2 ≈ T3

T1 ≈ T3

≈-TRANS

maybeOwned (T1) maybeOwned (T2)

T1 ≈ T2

≈-O-O

notOwned (T1) notOwned (T2)

T1 ≈ T2

≈-U-U

Auxiliary Judgment 12: S ok Well-formed state sequence
Well-formed states cannot have conflicts regarding ownership, and if any states are specified, then
Owned would be redundant. There must be no duplicates in the list.
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S statename-list
S ok

Auxiliary Judgment 13: S statename-list Well-formed statename sequence

S statename-list
S statename-list S ′ /∈ S

S, S ′ statename-list

Auxiliary Judgment 14: T ok Well-formed type

S ok

TC@S ok TC@p ok unit ok

A.2 Reasoning about types

Auxiliary Judgment 15: toPermission (TST )

The judgment toPermission provides a conservative approximation of ownership to ensure
that if toPermission indicates non-ownership, the type is definitely disposable.

toPermission
(
S
)
, Owned toPermission (Unowned) , Unowned

toPermission (p) , Owned toPermission (Shared) , Shared

toPermission (Owned) , Owned

Auxiliary Judgment 16: possibleStatesΓ (TC@TST ) = TST

possibleStatesΓ

(
TC@S

)
= S

P ∈ {Owned,Shared,Unowned}
possibleStatesΓ (TC@P ) = stateNames (def (TC))

[asset] X@p implements I〈T 〉@TST ∈ Γ

possibleStatesΓ (TC@p) = possibleStatesΓ (TC@TST )

Auxiliary Judgment 17: Γ ` isAsset (T)

asset S F ∈ possibleStatesΓ

(
D〈T 〉@TST

)
Γ ` isAsset

(
D〈T 〉@TST

) asset X@p implements I〈T 〉@TSTi ∈ Γ

Γ ` isAsset (X@TST )
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Auxiliary Judgment 18: Γ ` nonAssetState (ST)

Γ ` nonAssetState
(
S F

)
Auxiliary Judgment 19: Γ ` nonAsset (T)

Γ ` nonAssetState
(
possibleStatesΓ

(
D〈T 〉@TST

))
Γ ` nonAsset

(
D〈T 〉@TST

) X@p implements I〈T 〉@TSTi ∈ Γ

Γ ` nonAsset (X@TST )

Auxiliary Judgment 20: Γ ` disposable (T)

The disposable judgement describes reference types that are NOT owning references to assets.
When applied to a set of states, all states must be disposable in order for the set to be disposable.

notOwned (T )

Γ ` disposable (TC@TST )

maybeOwned (TC@TST ) Γ ` nonAsset (TC@TST )

Γ ` disposable (TC@TST )

Auxiliary Judgment 21: notOwned (T)

notOwned (TC@Unowned) notOwned (TC@Shared) notOwned (unit)

Auxiliary Judgment 22: maybeOwned (T)

TST <:∗ Owned
maybeOwned (TC@TST ) maybeOwned (TC@p)

Note that all permission variables could be owned, because we only have upper bounds on
permissions. Therefore, we must treat all permission variables as though they may be owned.

Auxiliary Judgment 23: Γ ` bound (T )

The bound of a type T or permission is the most specific concrete (i.e., non-parametric) type
that is a supertype of T . Likewise, the bound of a state TST is the most specific state that is
a supertype of TST . For example, if we know from a type parameter that the type variable X
must implement an interface I〈T 〉 and p must be a subpermission of Owned, then the bound
of X@p is I〈T 〉.Owned. However, a concrete type such as C〈T 〉@S is already as specific as
possible—therefore, its bound is itself.

Γ ` bound (unit) = unit
Γ ` bound∗ (TST ) = T ′ST

Γ ` bound
(
D〈T 〉@TST

)
= D〈T 〉@T ′ST

[asset] X@p implements I〈T 〉@T ′ST ∈ Γ Γ ` bound∗ (TST ) = T ′ST

Γ ` bound (X@TST ) = I〈T 〉@T ′ST
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Auxiliary Judgment 24: Γ ` bound∗ (TST )

P ∈ {Owned,Shared,Unowned}
Γ ` bound∗ (P ) = P Γ ` bound∗

(
S
)

= S

[asset] X@p implements I〈T 〉@TST ∈ Γ

Γ ` bound∗ (p) = TST

Auxiliary Judgment 25: nonVar (T ), nonVar (TC), nonVar (TST )

nonVar
(
D〈T 〉@TST

)
nonVar (unit) nonVar

(
D〈T 〉

)
TST ∈ {Owned,Shared,Unowned}

nonVar (TST ) nonVar
(
S
)

Auxiliary Judgment 26: isVar (T ), isVar (TC), isVar (TST )

isVar (X@TST ) isVar (X) isVar (p)

Auxiliary Judgment 27: Var (TG), PermV ar(TG), Perm(T )

Var
(
[asset] X@p implements I〈T 〉@TST

)
, X

PermV ar([asset] X@p implements I〈T 〉@TST ) , p

Perm(TC@TST ) , TST

Perm(unit) , Unowned

Auxiliary Judgment 28: implementOkΓ

(
I〈T 〉,MSIG

)
, implementOkΓ

(
I〈T 〉, ST

)
specializeTransΓ

(
m, I〈T 〉

)
= T ′ret m〈T ′M 〉(T ′�T ′ST x) T ′STi� T ′STf

Γ ` T ′ <: T Γ ` TST <:∗ T
′
ST Γ ` T ′STi <:∗ TSTi

Γ ` TSTf <:∗ T
′
STf

Γ ` Tret <: T ′ret

implementOkΓ

(
I〈T 〉, Tret m〈TM 〉(T�TST x) TSTi� TSTf

)
sdef (S, I〈T 〉) = asset S

implementOkΓ

(
I〈T 〉, [asset] S F

) sdef (S, I〈T 〉) = S

implementOkΓ

(
I〈T 〉, S F

)
To check implementOkΓ

(
I〈T 〉, S

)
, we only need to ensure that if our state is an asset, then

the state we are implementing is also an asset.
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Auxiliary Judgment 29: subsOkΓ (T, TG)

Γ ` D〈T1〉@TST <: I〈T2〉@T ′ST
subsOkΓ

(
D〈T1〉@TST ,asset X@p implements I〈T2〉@T ′ST

)
Γ ` D〈T1〉@TST <: I〈T2〉@T ′ST Γ ` nonAsset

(
D〈T1〉.Owned

)
subsOkΓ

(
D〈T1〉@TST , X@p implements I〈T2〉@T ′ST

)
We can substitute a non-asset for an asset generic parameter, but not vice versa. Note that,

as we can use type variables without their corresponding permission variable (e.g., we can write
X@Owned, not just X@p), we must check whether the generic parameter is an asset in any state,
not just its bound. Similarly, we must check if the type we pass is an asset in any state, not just
the one we pass.

Auxiliary Judgment 30: genericsOkΓ (TG)

genericsOkΓ (TG) expresses whether a use of a type parameter is suitable when the parameter
must implement a particular interface.

∀T ∈ T , isVar (T ) =⇒ T ∈ Var (Γ) subsOkΓ (T, params (I)) Γ ` nonAsset
(
I〈T 〉.Owned

)
∀TG ∈ Γ, (Var (TG) = X or PermV ar(TG) = p) =⇒ TG = X@p implements I〈T 〉@TST

TST = S =⇒ ∀S ∈ S, S ∈ stateNames (I)

genericsOkΓ

(
X@p implements I〈T 〉@TST

)
∀T ∈ T , isVar (T ) =⇒ T ∈ Var (Γ) subsOkΓ (T, params (I))

∀TG ∈ Γ, (Var (TG) = X or PermV ar(TG) = p) =⇒ TG = X@p implements I〈T 〉@TST
TST = S =⇒ ∀S ∈ S, S ∈ stateNames (I)

genericsOkΓ

(
asset X@p implements I〈T 〉@TST

)
Auxiliary Judgment 31: σ (T/TG) (e)

σ (T/TG) (e) defines how to substitute a concrete type for a type parameter.

TG = [asset] X@p implements I〈T2〉@T ′ST
σ
(
D〈T 〉@TST/TG

)
(e) = [D〈T 〉/X][TST/p]e

T = T1, T2, . . . , Tn TG = TG1 , TG2 , . . . , TGn

σ
(
T/TG

)
(e) =

(
σ (Tn/TGn) ◦ σ

(
Tn−1/TGn−1

)
◦ · · · ◦ σ (T1/TG1)

)
(e)

Auxiliary Judgment 32: specializeTransΓ

(
m〈TM 〉, D〈T 〉)

)
specializeTransΓ

(
m〈TM 〉, D〈T 〉)

)
defines how to specialize a transaction definition by sub-

stituting concrete types for the transaction’s type parameters TM as well as for the type parameters
on the receiver’s contract TG .
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tdef (D,m) = M TM = params (M) TG = params (D)

subsOkΓ (T, TG) subsOkΓ (T2, TM)

specializeTransΓ

(
m〈T2〉, D〈T 〉

)
= σ

(
T2/TM

)(
σ
(
T/TG

)
(M)

)
Auxiliary Judgment 33: merge(∆,∆′) = ∆′′

The merge function computes a new context from contexts that resulted from branching. It
ensures that ownership is consistent across both branches and takes the union of state sets for each
variable.

For brevity, let d ::= x | x.f .

merge(∆; ∆′) = ∆′′

merge(∆′; ∆) = ∆′′
SYM

merge(∆; ∆′) = ∆′′

merge(∆, d : T ; ∆′, d : T ′) = ∆′′, d : (T ⊕ T ′)
⊕

x /∈ Dom(∆′) merge(∆,∆′) = ∆′′ Γ ` disposable (T )

merge(∆, x : T ; ∆′) = ∆′′
DISPOSE-DISPOSABLE

T ⊕ T , T

TC@Owned⊕ TC@S , TC@Owned

TC@Shared⊕ TC@Unowned , TC@Unowned

TC@S ⊕ TC@S ′ , TC@(S ∪ S ′)
C〈T 〉@TST ⊕ I〈T 〉@T ′ST , I〈T 〉.(TST ⊕ T ′ST ) if def (C) = contract C〈TG〉 implements I〈T 〉{. . .}
D〈T 〉@TST ⊕D〈T 〉@T ′ST , D〈T 〉.(TST ⊕ T ′ST )

Auxiliary Judgment 34: funcArg (TC@TSTpassed , TC@TSTinput−decl , TC@TSToutput−decl)

This function specifies the output permission for a function argument that started with a
particular permission and was passed to a formal parameter with given initial and final permission
specifications. The function is only defined for inputs that correspond with well-typed invocations.

maybeOwned (TC@TSTpassed)

funcArg (TC@TSTpassed , TC@Unowned, TC@TSToutput−decl) = TC@TSTpassed

FUNCARG-OWNED-UNOWNED

funcArg (TC@Shared, TC@Unowned, TC@TSToutput−decl) = TC@TShared
FUNCARG-SHARED-UNOWNED

TC@TSTinput−decl 6= Unowned
funcArg (TC@TSTpassed , TC@TSTinput−decl , TC@TSToutput−decl) = TC@TSToutput−decl

FUNCARG-OTHER
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Auxiliary Judgment 35: funcArgResidual (TC@TSTpassed , TC@TSTinput−decl , TC@TSToutput−decl)

This function specifies the type of the reference that remains after an argument is passed to a
function.

maybeOwned (TC@TSTpassed)

funcArgResidual (TC@TSTpassed , TC@Unowned, TC@TSToutput−decl) = TC@TSTpassed

FAR-OU

funcArgResidual (TC@Shared, TC@Unowned, TC@TSToutput−decl) = TC@TShared
FAR-SU

TC@TSTinput−decl 6= Unowned
funcArgResidual (TC@TSTpassed , TC@TSTinput−decl , TC@TSToutput−decl) = TC@Unowned

FAR-*

A.3 Soundness Theorems
Theorem A.3.1 (Progress). If e is a closed expression and Γ; ∆ `s e : T a ∆′, then at least one
of the following holds:

1. e is a value.
2. For any environment Σ such that Γ,Σ,∆ ok, Σ, e→ Σ′, e′ for some environment Σ′.
3. e is stuck at a bad state transition — that is, e = E[l →Shared S(s)] where µ(ρ(l)) =
C〈T ′〉@S ′(. . .), S 6= S ′, ρ(l) ∈ φ, and Γ; ∆ `s l : C〈T ′〉@Shared a ∆′.

4. e is stuck at a reentrant invocation – that is, e = E[l.m(s)] where µ(ρ(l)) = C〈T ′〉@S(. . .),
ρ(l) ∈ ψ.

5. e is stuck in a nested dynamic state check – that is, e = E[if s inshared T ST then e1 else e2]
where µ(ρ(l)) = C〈T 〉@S(. . .) and ρ(l) ∈ φ.

Proof. By induction on the derivation of Γ; ∆ `s e : T a ∆′.

Case: T-lookup. e = b. We case-analyze on b.
Subcase: b = x . Then b is not closed. Contradiction.
Subcase: b = l . Suppose Γ,Σ,∆ ok. By global consistency, l ∈ dom(Σρ). Then b →

Σρ(l) by rule E-lookup.
Subcase: b = o . Then b is a value.

Case: T-let. Because e is closed, e = let x : T = e1 in e2. Otherwise, since e is closed, e1 is
closed, and the induction hypothesis applies to e1. This leaves several cases:
Case: e1 is a value v The properties of the context permit creating a fresh indirect refer-

ence l that is not in ρ. By E-let, Σ, let x : T = v in e→ [ρ[l 7→ v]/ρ] Σ, [l/x]e.
Case: Σ, e1 → Σ′, e′1. Then E-letCongr applies, and Σ, e→ Σ′, let x : T = e′1 in e2.
Case: e1 is stuck with e1 = E[l→Shared S(s)]. Then

e = let x : T = E[l→Shared S(s)] in e2

e = E′[l→Shared S(s)]
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Case: e1 is stuck with e1 = E[E[l.m(s)]. Then

e = let x : T = E[E[l.m(s)] in e2

e = E′[E[l.m(s)]

Case: T-assign. Because e is closed, e = l′ := l′′. By memory consistency, l′ ∈ dom(ρ). By
E-assign, Σ, l := l′ → [ρ[l 7→ o]/ρ] Σ, ().

Case: T-new. Because e is closed, e = new C〈T 〉@S(l) (any variables x would be free, so all
parameters must be locations). The properties of the context permit creating a fresh object
reference o that is not in µ. l are a free locations of e, so by memory consistency (9.4.2),
l ∈ dom(ρ), and ρ(l) is well-defined. By E-new:

Σ,new C〈T 〉@S(l)→ [µ[o 7→ C〈T 〉@S(ρ(l))]/µ] Σ, o

.
Case: T-this-field-def. Because e is closed, e = l.fi. By assumption:

1. Γ; ∆ `l l.fi : T a ∆′.
2. Γ,Σ,∆ ok

By memory consistency, ρ(l) = o for some o and µ(o) = C〈T ′〉@S(s′). Note that 1 ≤ i ≤
|s′ | by well-typedness of s.fi and global consistency. By rule E-field, Σ, s.fi → Σ, s′i.

Case: T-this-field-ctxt. Identical to the This-field-def case.
Case: T-field-update. Because e is closed, e = l.fi := l′. By memory consistency, µ(ρ(l)) =

C〈T ′〉@S(l′′). fields(C〈T ′〉@S) is ambiently available. By E-fieldUpdate, Σ, l.fi :=
l′ → [µ[ρ(l) 7→ C〈T ′〉@S(l′′1 , l

′′
2 , . . . , l

′′
i−1, l

′, l′′i+1, . . . , l
′′
|l′′|)]/µ] Σ, ().

Case: T-inv. Because e is closed, e = l1.m〈T 〉(l2). By memory consistency, µ(ρ(l)) =
C〈T ′〉@S(. . .). The transaction is ambiently available. We generate fresh l′1 and l′2 so
that they are not in dom(ρ). If rho(l1) ∈ ψ, then e is stuck at a reentrant invocation.
Otherwise, let

1. Σ′ = Σ[l′1 7→ ρ(l1)][l′2 7→ ρ(l2)]

2. ξ′ = PermV ar(TD) 7→ Perm(T ), P ermV ar(TG) 7→ Perm(TM)
3. Σ′′ = [ξ′/ξ] [ψ, ρ(l1)/ψ] Σ′

4. e′ = tdef (C,m)

Then by E-Inv, Σ, e→ Σ′′, [l′1/x][l′2/this]e′
ρ(l1)

Case: T-privInv. Analogous to the Public-Invoke case, using rule E-Inv-Private, except that the
invocation is never stuck (E-Inv-Private does not check that rho(l1) /∈ ψ).

Case: T-→p. Because e is closed, e = l→p S(l′). By assumption, l : C〈T ′〉@TST . By memory
consistency, l ∈ dom(ρ) and µ(ρ(l)) = C〈T ′〉@S(. . .). We case-analyze on TST .

Subcase: TST = S or TST = Owned.
By E-→owned, Σ, l→owned S(l′)→ [µ[ρ(l) 7→ C〈T ′〉@S(l′)]/µ] Σ, ()

Subcase: TST = Shared.
Case: ρ(l) /∈ φ. Then by E-→shared,

Σ, l→shared S(l′)→ [µ[ρ(l) 7→ C〈T ′〉@S(l′)]/µ] Σ, ().
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Case: µ(ρ(l)) = C〈T ′〉@S(. . .). Then by E-→shared,
Σ, l→shared S(l′)→ [µ[ρ(l) 7→ C〈T ′〉@S(l′)]/µ] Σ, ().

Case: e is stuck at a bad state transition. In that case, we have
e = E[l →Shared S(l′)] where µ(ρ(l)) = C∗〈T ∗〉@S ′(. . .), S 6= S ′, ρ(l) ∈ φ,
and Γ; ∆ `s l : C〈T ′〉.Shared a ∆′. C = C∗ due to memory consistency.

Subcase: TST = Unowned. This case is impossible because it contradicts the antecedent
TST 6= Unowned of T-→p.

Case: T-assertStates. Because e is closed, e = [l@S]. By rule E-assert, Σ, assert l in S →
Σ, ().

Case: T-assertPermission. Because e is closed, e = [l@TST]. By rule E-assert, Σ, assert l in TST →
Σ, ().

Case: T-assertInVar. Because e is closed, e = [l@TST]. By rule E-assert, Σ, assert l in TST →
Σ, ().

Case: T-assertInVarAlready. Because e is closed, e = [l@TST]. By rule E-assert,
Σ, assert l in TST → Σ, ().

Case: T-IsIn-StaticOwnership. Because e is closed, e = if l inowned S then e1 else e2. By
memory consistency, there exists S’ such that µ(ρ(l)) = C〈T ′〉@S ′(. . .).
Subcase: S ′ = S. Then by E-IsIn-Dynamic-Match-Owned, Σ, e→ Σ, e1.
Subcase: S ′ 6= S. By IsIn-Dynamic-Else, Σ, e→ Σ, e2.

Case: T-isInDynamic. Because e is closed, e = if l inshared S then e1 else e2. By memory
consistency, l ∈ dom(ρ) and there exists S’ such that µ(ρ(l)) = C〈T ′〉@S ′(. . .).
By inversion, we have l : C〈T ′〉.Shared.

Subcase: S ′ = S. Then if ρ(l) ∈ φ then we are stuck in a nested dynamic state check.
Otherwise, by E-IsIn-Dynamic-Match-Shared, Σ, e→ [φ, ρ(l)/φ] Σ, e1 ρ(l)

.

Subcase: S ′ 6= S. By IsIn-Dynamic-Else, Σ, e→ Σ, e2.

Case: T-IsIn-PermVar. Because e is closed, e = if l inP p then e1 else e2. By assump-
tion Γ,Σ,∆ ok, so ξ(p) = TST for some TST . Then Σ, if l inP p then e1 else e2 →
Σ, if l inP TST then e1 else e2.

Case: T-IsIn-Perm-Then. Because e is closed, e = if l inp Perm then e1 else e2. By inversion,
Γ ` P <:∗ Perm. As both P and Perm are permissions, not variables, we have · ` P <:∗
Perm, so by E-IsIn-Permission-Else Σ, e→ Σ, e1.

Case: T-IsIn-Perm-Else. Because e is closed, e = if l inp Perm then e1 else e2. By inversion,
Γ ` Perm <:∗ P , and P 6= Perm. As both P and Perm are permissions, not variables, we
have · ` Perm <:∗ P , so by E-IsIn-Permission-Else Σ, e→ Σ, e2.

Case: T-IsIn-Unowned. Because e is closed, e = if l inp Perm then e1 else e2. In this case, by
E-IsIn-Unowned Σ, e→ e2.

Case: T-disown. Because e is closed, e = disown l. By rule disown, Σ,disown l→ Σ, ().
Case: T-pack. By pack, Σ,pack→ Σ, ().
Case: T-state-mutation-detection. Because e is closed, e = e′ o, where e′ is also closed. If

e′ is a value v, then by E-Box-φ, Σ, v
o
→ [(φ \ o)/φ] Σ, v. Otherwise, by the induction

hypothesis, either Σ, e′ → Σ′, e′′, or e′ is stuck with an appropriate evaluation context. In
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the former case, by E-box-φ-congr, Σ, e′ o → Σ′, e′′ o. In the latter case, e is stuck with an
appropriate evaluation context.

Case: T-reentrancy-detection. Because e is closed, e = e′
o
, where e′ is also closed. If e′

is a value v, then by E-Box-ψ, Σ, v o → [(ψ \ o)/ψ] Σ, v. Otherwise, by the induction
hypothesis, either Σ, e′ → Σ′, e′′, or e′ is stuck with an appropriate evaluation context. In
the former case, by E-box-ψ-congr, Σ, e’

o
→ Σ′, e”

o
. In the latter case, e is stuck with

an appropriate evaluation context.

Theorem A.3.2 (Preservation). If e is a closed expression, Γ; ∆ `s e : T a ∆′′, Γ,Σ,∆ ok, and
Σ, e→ Σ′, e′ then for some ∆′, Γ′; ∆′ `s e′ : T ′ a ∆′′′, Γ′,Σ′,∆′ ok, and ∆′′′ <l

Γ,Σ′ ∆′′.

Proof. Proof proceeds by induction on the dynamic semantics.

Case: E-lookup. e = l. We case-analyze on T .
Subcase: T = unit

By assumption, Γ,Σ,∆ ok, and Γ; ∆ `s l : T a ∆′′. By assumption and E-Lookup,
Σ, l → Σ,Σρ(l). The fact that Σρ(l) = () follows directly from global consistency.
Then by T-(), Γ; ∆ `s () : unit a ∆. Global consistency is immediate because the
contexts are unchanged, and ∆′′′ <l

Γ,Σ′ ∆′′ by <l-reflexivity.
Subcase: T = C〈T ′〉@TST

By inversion, ∆ = ∆0, l : T0, T0 V T/T2, and ∆′′ = ∆0, l : T2. By rule E-
lookup, e′ = Σρ(l). The fact that Σρ(l) = o for some o follows directly from
global consistency. l 6= o by construction and if o occurs in ∆0, then we apply
the strengthening lemma to generate a new proof of Γ; ∆ `s e : T a ∆′ in which
o does not occur. Thus, ∆′ = ∆′′, o : T2 is a valid typing context. Then by Var,
Γ; ∆′′, o : T 2 `s o : T 2 a ∆′′, o : T ′ for some T ′. Now, ∆′ is the same as ∆ except
that some instances of T0 have been replaced with T2. The required consistency is
obtained from the Split Compatibility lemma (A.3.12). We have ∆′′′ <l

Γ,Σ′ ∆′′ because
the two contexts differ only on o, which is not relevant to the <l relation.

Subcase: T = I〈T ′〉@TST or T = X@TST
By memory consistency, this case is impossible.

Case: E-assign. e = l := l′. By assumption:
1. Σ, l := l′ → [ρ[l 7→ o]/ρ] Σ, ()
2. Γ; ∆∗, l : Tl, l

′ : Tl′ `s l := l′ : unit a ∆∗∗, l : T ∗, l′ : T ∗∗

By inversion:
1. Tl′ V T ∗/T ∗∗

2. Γ ` disposable (Tl)

Let ∆′ = ∆∗∗, l : T ∗, l′ : T ∗∗. By rule T-(), Γ; ∆′ `s () : unit a ∆′. We obtain consistency
as a corollary of the split compatibility lemma. Finally, ∆′′′ <l

Γ,Σ′ ∆′′ due to reflexivity of
<l.

Case: E-new. e = new C〈T ′〉@S(l) because e is closed (any variables would be free, so they
must not exist).
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By assumption, Γ; ∆ `s new C〈T ′〉@S(l) : C〈T ′〉@S a ∆′′; also, e′ = o, and
o /∈ dom(µ). Let ∆′ = ∆′′, o : C〈T ′〉@S. By T-lookup, Γ; ∆′′, o : C〈T ′〉@S `s o :
C〈T ′〉@S a ∆′′, o : C〈T ′〉@Unowned. Since o is fresh and Γ,Σ,∆ ok, there are no refer
ences to o in the previous contexts, so all of the aliases are trivially consistent. We also
have Γ ` T <: stateF ields(C〈T ′〉, S), where l : T ∈ ∆, which implies the required field
property for reference consistency. By the split compatibility lemma, we have Γ,Σ,∆′ ok.
We have ∆′′′ <l

Γ,Σ′ ∆′′ because the two contexts differ only on o, which is not relevant to
the <l relation.

Case: E-let. e = let x : T1 = v in e2 By assumption:
1. Σ, let x : T1 = v in e2 → [ρ[l 7→ v]/ρ] Σ, [l/x]e
2. Γ,Σ,∆ ok
3. Γ; ∆ `s let x : T1 = v in e2 : T a ∆′′

Subcase: v = o.
1. By inversion:

(a) Γ; ∆ `s o : T1 a ∆∗

(b) Γ; ∆∗, x : T1 `s e2 : T a ∆∗∗, x : T ′1
(c) Γ ` disposable (T ′1)
(d) l /∈ dom(ρ)

2. Let ∆′ = ∆∗, l : T1. By the substitution lemma (A.3.13) applied to 1b,
Γ; ∆′ `s [l/x]e2 : T a ∆∗∗, l : T ′1.

3. By global consistency and 1a, T1 is consistent with all other references in
refTypes(Σ,∆, o).
Now, note that by global consistency, all references were previously compatible
with T1. Σ′ now includes a reference to the same object with indirect reference l,
which corresponds with l : T1 ∈ ∆′. The only rule that could have been used in
1a is T-lookup, which split T1 V T ′1/T3 and replaced o : T1 ∈ ∆ with o : T3 ∈ ∆′.
By the split compatibility lemma (A.3.12), T3 is compatible with all other aliases
to o, and in particular with T ′1.

4. ∆∗∗, l : T ′1 <
l
Γ,Σ′ ∆∗∗, x : T ′1 because l /∈ dom(∆∗∗, x : T ′1).

Subcase: v = (). By inversion:
1. Γ; ∆ `s () : unit a ∆
2. Γ; ∆, x : unit `s e2 : T a ∆∗, x : T ′1
3. Γ ` disposable (unit)
4. l /∈ dom(ρ)

Let ∆′ = ∆∗, l : unit. By the substitution lemma (A.3.13) Γ; ∆∗, l : unit `s [l/x]e2 :
T a ∆∗∗, l : T ′1. Then the extensions to the contexts do not affect permissions, so
they must be compatible, and Γ,Σ′,∆′ ok. ∆∗∗, l : T ′1 <

l
Γ,Σ′ ∆∗∗, x : T ′1 because

l /∈ dom(∆∗∗, x : T ′1).

Case: E-letCongr. e = let x : T1 = e1 in e2.
1. By assumption:

(a) Γ,Σ,∆ ok
(b) Γ; ∆ `s let x : T1 = e1 in e2 : T a ∆′′
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2. By inversion:
(a) Σ, e1 → Σ∗, e′1.
(b) Γ; ∆ `s e1 : T1 a ∆∗

(c) Γ; ∆∗, x : T1 `s e2 : T2 a ∆∗∗, x : T ′1
(d) Γ ` disposable (T ′1)

3. By the induction hypothesis:
(a) Γ′∗; ∆′∗ `s e′1 : T1 a ∆′′∗ for some Γ′∗,∆′∗, and ∆′′∗

(b) Γ′∗,Σ∗,∆′∗ ok
(c) ∆′′∗ <l

Γ,Σ′ ∆∗

4. By A.3.3.2 with 3c and 2c, we have Γ; ∆′′∗, x : T1 `s e2 : T2 a ∆∗∗∗, x : T ′1, with
∆∗∗∗ <l

Σ∗ ∆∗∗.
5. Let ∆′ = ∆′∗ and let Γ∗∗ = Γ,Γ′∗.

Then, by rule Let with 3a, 4, and 2d, Γ∗∗; ∆′ `s let x : T1 = e′1 in e2 : T a ∆∗∗∗,
where ∆∗∗∗ <l

Σ′ ∆′′.
6. By A.3.15, Γ∗∗,Σ′,∆′ ok.

Case: E-Inv. e = l1.m〈M 〉(l2) because e is closed.
1. By assumption, and because e is closed:

(a) Σ, l1.m〈M 〉(l2)→ [ψ, ρ(l1)/ψ] Σ′′, [l′2/x][l′1/this]e
ρ(l1)

(b) Γ,Σ,∆ ok
(c) Γ; ∆0, l1 : C〈T 〉@TST l1, l2 : Tl2 `s l1.m〈M 〉(l2) : T a ∆0, l1 : T ′l1, l2 : T ′l2

2. By inversion:
(a) l′1 /∈ dom(ρ)
(b) l′2 /∈ dom(ρ)

(c) params (C) = TD
(d) Σ′′ = Σ[l′1 7→ ρ(l1)][l′2 7→ ρ(l2)]

(e) ξ′ = ξ, PermV ar(TD) 7→ Perm(T ), P ermV ar(TM) 7→ Perm(M)
(f) Σ′′′ = [ξ′/ξ] [ψ, ρ(l1)/ψ] Σ′

(g) µ(ρ(l1)) = C〈T 〉@S(. . .)
(h) ρ(l1) /∈ ψ
(i) tdef (C,m) = m〈TM 〉(Tx�TxST x) Tthis� T ′this e

′

(j) Γ ` C〈T 〉@TST l1 <: C〈T 〉@Tthis
(k) Γ ` Tl2 <: Cx@Tx
(l) T ′l1 = funcArg

(
C〈T 〉@TST l1, C〈T 〉@Tthis, C〈T 〉@T ′this

)
(m) T ′l2 = funcArg (Tl2, Tx, Cx@TxST )

3. We assume that the transaction is well-typed in its contract:
T m〈M 〉(Cx@Tx�TxST x)Tthis� T ′this e ok in C. As a result, we additionally have
(by inversion):
(a) TD , TG ; this : C〈T 〉@Tthis, x : Cx@Tx `s1 e : T a this : C〈T 〉@T ′this, x : Cx@TxST

Then by the substitution lemma for interfaces (A.3.9), we also have
(a) TD , TG ; this : C〈T 〉@Tthis, x : C ′〈T ′〉@Tx `s1 e : T a this : C〈T 〉@T ′this, x : C ′〈T ′〉@TxST

where l2 : C ′〈T ′〉@T ′ST , by global consistency.
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4. Let Γ′ = Γ, TD , TM . By the substitution lemma (A.3.13) on 3a, we have:
Γ′; l′1 : C〈T 〉@Tthis, l′2 : C ′〈T ′〉@Tx `s1 [l′2/x][l′1/this]e : T a l′1 : C〈T 〉@T ′this, l′2 : C ′〈T ′〉@TxST

5. funcArgResidual is defined in AJ:35. Let:

Tl1R = funcArgResidual
(
C〈T 〉@TST l1, C〈T 〉@Tthis, C〈T 〉@T ′this

)
Tl2R = funcArgResidual (Tl2, Tx, Cx@TxST )

∆′ = ∆, l1 : Tl1R, l2 : Tl2R , l
′
1 : C〈T 〉@Tthis, l′2 : C ′〈T ′〉@T ′l2

Note that l1 and l2 do not occur free in [l′2/x][l′1/this]e because otherwise (3a) would
not have been the case. Then we have (by weakening 4): Γ′; ∆′ `s [l′2/x][l′1/this]e :

T a ∆, l1 : Tl1R, l2 : Tl2R , l
′
1 : C〈T 〉@T ′this, l′2 : C ′〈T ′〉@TxST

6. By rule Reentrancy-detection:

Γ′; ∆′ `s [l′2/x][l′1/this]e
ρ(l)

: T a ∆, l1 : Tl1R, l2 : Tl2R , l
′
1 : C〈T 〉@T ′this, l′2 : C ′〈T ′〉@TxST

which corresponds to the evaluation step in 1a. This also gives us that every indirect
reference has a contract type, as required by global consistency.

7. Consider:

Tl1R = funcArgResidual
(
C〈T 〉@TST l1, C〈T 〉@Tthis, C〈T 〉@T ′this

)
T ′l1 = funcArg

(
C〈T 〉@TST l1, C〈T 〉@Tthis, C〈T 〉@T ′this

)
If T ′l1 6= C〈T 〉@T ′this, there are two possibilities, both with C〈T 〉@Tthis = Unowned.
IfC〈T 〉@TST l1 = TC@Shared, then Tl1R = TC@Shared; otherwise, maybeOwned (Tl1R).
In both cases, Tl1R ≈ T ′l1 and Γ ` Tl1R <: T ′l1. The same argument holds for l2 and its
type. Therefore:

∆, l1 : Tl1R, l2 : Tl2R , l
′
1 : C〈T 〉@T ′this, l′2 : C ′〈T ′〉@TxST <l

Γ,Σ′ ∆0, l1 : T ′l1, l2 : T ′l2
8. By assumption of Γ,Σ,∆ ok, ξ contains mappings for each p ∈ PermVar (Γ). Note

that ξ′ additionally contains mappings for each TG and TD , so PermVar (Γ′) ⊂
{p | ξ(p) = TST}, as required by global consistency. Finally, to show Γ′,Σ′,∆′ ok,
we need to show that the new types for l1 and l2 are compatible with the aliases in ∆′.
First consider Tl1R and C〈T 〉@Tthis, which alias the object originally referenced with
type C〈T 〉@TST l1. By assumption (1c and 1b), C〈T 〉@TST l1 is compatible with all ex-
isting aliases in Σ. Note that Tl1R = funcArgResidual

(
C〈T 〉@TST l1, C〈T 〉@Tthis, C〈T 〉@T ′this

)
.

Consider the cases for Tl1R:
Case: FuncArg-owned-unowned. Previously, l1 : C〈T 〉@TST l1 was in ∆, and

Γ′,Σ,∆ ok. Now, ∆′ includes both C〈T 〉@Tthis and C〈T 〉@TST l1. But Tthis =
Unowned, which is compatible with all other references.

Case: FuncArg-shared-unowned. Previously, l1 : C〈T 〉@Shared was in ∆, and
Γ′,Σ,∆ ok. Now, ∆′ includes both C〈T 〉@Tthis and C〈T 〉.Shared. But Tthis =
Unowned, which is compatible with Shared.

Case: FuncArg-other. Previously, l1 : C〈T 〉@TST l1 was in ∆, and Γ′,Σ,∆ ok.
Now, ∆′ includes both C〈T 〉@Tthis and C〈T 〉.Unowned. But Unowned is
compatible with all other references.
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The corresponding argument applies to l′2.
Case: E-Inv-Private. e = l1.m〈M 〉(l2) because e is closed.

This case is similar to the E-Inv case, except that the fields are treated in a manner analogous
to arguments: the field states are part of the initial context; they are transformed via
funcArg; and the resulting types are in the output context.

Case: E-IsIn-Dynamic-Match-Owned. e = if x inowned TST then e1 else e2 because e is
closed.

1. By assumption, and because e is closed:
(a) Γ,Σ,∆ ok
(b) Γ; ∆0, l : C〈T 〉@TST `s if l is inowned S then e1 else e2 : T1 a ∆′′

(c) Σ, if l is inowned S then e1 else e2 → Σ, e1

2. By inversion:
(a) µ(ρ(l)) = C〈T 〉@S(. . .)
(b) Γ; ∆0, l : C〈T 〉@S `s e1 : T1 a ∆∗

(c) S ∈ states(C〈T 〉)
(d) Sx = possibleStatesΓ

(
C〈T 〉@TST

)
(e) Γ ` TST <:∗ Owned
(f) Γ; ∆0, x : C〈T 〉.(Sx \ S) `s e2 : T1 a ∆∗∗

(g) ∆′′ = merge(∆∗,∆∗∗)

3. Let ∆′ = ∆0, l : C〈T 〉@S. By 2b, Γ; ∆′ `s e1 : T1 a ∆∗.
4. The difference between ∆ and ∆′ is that in ∆′, the type of l is C〈T 〉@S. To show that

Γ,Σ′,∆′ ok, we need to show that µ(ρ(l)) = C〈T 〉@S(. . .). But this is given by (2a).
5. By the merge subtyping lemma A.3.19, if l : T ∈ merge(∆∗,∆∗∗), then l : T ′ ∈ ∆∗

with Γ ` T ′ <: T and T ′ ≈ T . Thus, ∆∗ <l
Γ;Σ ∆′′.

Case: E-IsIn-Dynamic-Match-Shared. e = if l is inshared S then e1 else e2

1. By assumption, and because e is closed:
(a) Γ,Σ,∆0, l : C〈T 〉@Shared ok
(b) Γ; ∆0, l : C〈T 〉@Shared `s if l is inshared S then e1 else e2 : T1 a ∆′′

(c) Σ, if l is inshared S then e1 else e2 → [φ, ρ(l)/φ] Σ, e1 ρ(l)

2. By inversion:
(a) Γ; ∆0, l : C〈T 〉@S `s e1 : T1 a ∆∗, l : C〈T 〉@TST
(b) Γ ` bound (TST ) 6= Unowned
(c) S ∈ stateNames (C)
(d) Γ; ∆0, l : C〈T 〉@Shared `s e2 : T1 a ∆∗∗, l : C〈T 〉@Shared
(e) ∆′′ = merge(∆∗,∆∗∗), l : C〈T 〉@Shared
(f) µ(ρ(l)) = C〈T 〉@S(. . .)
(g) ρ(l) /∈ φ

3. Let ∆′ = ∆0, l : C〈T 〉@S. By State-mutation-detection and 2a, Γ; ∆′ `s e1 ρ(l)
:

T1 a ∆′′′.
4. The difference between ∆ and ∆′ is that in ∆′, the type of l is C〈T 〉@S. By (2f),

we know that µ(ρ(l)) = C〈T 〉@S(. . .). However, there may be other aliases to
ρ(l) that have Shared permission. Since ρ(l) is in the φ context of Σ′, any other
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references to ρ(l) must be compatible with C〈T 〉@Shared, so we have Γ,Σ′,∆′ ok
via StateLockCompatible.

5. By the merge subtyping lemma A.3.19, if l : T ∈ merge(∆∗,∆∗∗), then l : T ′ ∈ ∆∗

with Γ ` T ′ <: T . Thus, ∆∗ <l
Γ;Σ ∆′′.

Case: E–IsIn-Dynamic-Else. e = if l is inp S then e1 else e2

1. By assumption, and because e is closed:
(a) Γ,Σ,∆ ok
(b) Σ, if l is inp S then e1 else e2 → Σ, e2

(c) Γ; ∆ `s if l is inp S then e1 else e2 : T1 a ∆′′

2. By inversion:
(a) µ(ρ(l)) = C〈T 〉@S ′(. . .)
(b) S ′ /∈ S

3. By inversion, either:
(a) Γ; ∆0, l : C〈T 〉@Shared `s e2 : T1 a ∆∗; or:
(b) Γ; ∆0, l : C〈T 〉.Sx \ S `s e2 : T1 a ∆∗∗

4. If we are in case (3a), let ∆′ = ∆. Then by 3a, Γ; ∆′ `s e2 : T1 a ∆∗. By assumption,
Γ,Σ,∆′ ok. By the merge subtyping lemma A.3.19, if l : T ∈ merge(∆∗,∆∗∗), then
l : T ′ ∈ ∆∗ with Γ ` T ′ <: T . Thus, ∆∗ <l

Γ;Σ ∆′′.
5. Otherwise, let ∆′ = ∆0, l : C〈T 〉.Sx \ S . Then by 3b, Γ; ∆′ `s e2 : T1 a ∆∗∗. By

inversion, we had Γ; ∆0, l : C〈T 〉@TST `s e2 : T1 a ∆∗∗. As a result, there are no
other owning references to the object referenced by l, and the referenced object is in
state S ′ by (2a). Since S ′ /∈ S , C〈T 〉.Sx \ S is a consistent type for the reference,
and Γ,Σ,∆′ ok. By the merge subtyping lemma A.3.19, if l : T ∈ merge(∆∗,∆∗∗),
then l : T ′ ∈ ∆∗∗ with Γ ` T ′ <: T . Thus, ∆∗∗ <l

Γ;Σ ∆′′.
Case: E-IsIn-PermVar

1. By assumption, and because e is closed:
(a) Γ,Σ,∆ ok
(b) Γ; ∆ `s if l is inPerm p then e1 else e2 : T1 a ∆′′

(c) Σ, if l is inPerm p then e1 else e2 → Σ, if l is inPerm TST then e1 else e2

2. By inversion:
(a) ξ(p) = TST
(b) Γ; ∆, l : TC@p `s e1 : T1 a ∆′

(c) Γ; ∆, l : TC@T ′ST `s e2 : T1 a ∆′′

(d) ∆f = merge(∆′,∆′′)

(e) Perm = toPermission (T ′ST )

3. In order to perform substitution for type parameters, we must have proved subsOkΓ (T, TG),
so we must have Γ ` TST <:∗ p. Then by 2b and the permission variable substitution
lemma A.3.10, we have Γ; ∆, l : TC@TST `s e1 : T1 a ∆′.

4. We proceed by case analysis on TST .

Subcase: TST = S
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If P = Unowned, then T ′ST = Unowned, and by 2c we can apply T-IsIn-
Unowned to show Γ; ∆, l : TC@Unowned `s if l is inUnowned S then e1 else e2 :
T1 a ∆′f .
If P = Shared, then T ′ST = Shared, and by 2c we can apply T-IsIn-Dynamic to
show Γ; ∆, l : TC@Shared `s if l is inshared S then e1 else e2 : T1 a ∆′f .
If P = Owned, then Γ ` T ′ST <: Owned, so maybeOwned (TC@T ′ST ), and
Γ ` Sx <:∗ T

′
ST , where Sx = possibleStatesΓ (TC@TST ). Then by the subtype

substitution lemma lemma A.3.3.1 and by 2c we have Γ; ∆, l : TC@
(
Sx \ S

)
`s

e2 : T1 a ∆′′. Now we can apply T-IsIn-StaticOwnership to get Γ; ∆, l :
TC@T ′ST `s if l is inowned S then e1 else e2 : T1 a ∆′f .

Subcase: TST = P
If Γ ` Perm <:∗ P , then by IsIn-Permission-Then,
Γ; ∆, l : TC@TST `s if l is inPerm P then e1 else e2 : T1 a ∆′f .
Otherwise, Γ ` Perm 6<:∗ P , so by 2c and IsIn-Permission-Else, Γ; ∆, l :
TC@TST `s if l is inP Perm then e1 else e2 : T1 a ∆′f .

Subcase: TST = q This case is impossible, because ξ only maps to nonvariable states
and permissions.

5. In all cases, global consistency is maintained because the environment does not change,
∆′f <

l
Γ,Σ′ ∆′ by reflexivity.

Case: E-IsIn-Permission-Then By assumption, and because e is closed:
1. Γ,Σ,∆ ok
2. Γ; ∆ `s if l is inP Perm then e1 else e2 : T1 a ∆′′

3. Σ, if l is inP Perm then e1 else e2 → Σ, e1

By inversion:
1. Perm ∈ {Owned,Unowned,Shared}
2. · ` P <:∗ Perm

To prove that e is well-typed, we must have used either IsIn-Permission-Then or IsIn-
Permission-Else. However, we know that · ` P <:∗ Perm, so we must have used
IsIn-Permission-Else. Then by inversion of IsIn-Permission-Then, we have Γ; ∆0, x :
TC@TST `s e1 : T1 a ∆′′′.
Let ∆′ = ∆0, x : TC@TST . Global consistency is maintained because the environment has
not changed, and ∆′′′ <l

Γ,Σ′ ∆′′ by <l-reflexivity.
Case: E-IsIn-Permission-Else By assumption, and because e is closed:

1. Γ,Σ,∆ ok
2. Γ; ∆ `s if l is inP Perm then e1 else e2 : T1 a ∆′′

3. Σ, if l is inP Perm then e1 else e2 → Σ, e2

By inversion:
1. Perm ∈ {Owned,Unowned,Shared}
2. · ` Perm <:∗ P
3. P 6= Perm

To prove that e is well-typed, we must have used either IsIn-Permission-Then or IsIn-
Permission-Else. However, we know that · ` Perm <:∗ P and P 6= Perm, so we must
have used IsIn-Permission-Else. Then by inversion of IsIn-Permission-Else, we have
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Γ; ∆, x : TC@TST `s e2 : T1 a ∆′. Global consistency is maintained because the
environment has not changed, and ∆′′′ <l

Γ,Σ′ ∆′′ by <l-reflexivity.
Case: E-IsIn-Unowned By assumption, and because e is closed:

1. Γ,Σ,∆ ok
2. Γ; ∆ `s if l is inUnowned S then e1 else e2 : T1 a ∆′′

3. Σ, if l is inUnowned S then e1 else e2 → Σ, e2

By inversion:
1. Γ; ∆, x : TC@TST `s e2 : T1 a ∆′′

e2 is well typed by 1. Global consistency is maintained because the environment has not
changed, and ∆′′′ <l

Γ,Σ′ ∆′′ by <l-reflexivity.
Case: E-Box-φ. e = v o.

1. By assumption, and because e is closed:
(a) Γ,Σ,∆ ok
(b) Γ; ∆ `s v o : T a ∆′′

(c) Σ, v
o
→ [(φ \ o)/φ] Σ, v

2. By inversion:
(a) Γ; ∆ `s v : T a ∆′′

3. Note that e o can only arise in the context of a shared-mode dynamic state test.
Therefore, ∆ must be of the form ∆0, l : C〈T 〉@Shared and ∆′′ must be of the form
∆′′0, l : C〈T 〉@Shared.

4. Since v is a value, either v = () or there exists o′ such that v = o′. If v = (), then
let ∆′ = ·. By T-(), Γ; · `() unit : · a . Otherwise, v = o′ and by Var, there exists
o′ : T1 ∈ ∆ with T1 V T2/T3. In that case, let ∆′ = ∆, o′ : T1. The proof proceeds as
in the E-lookup rule: by Var, there exists ∆′′′ = o′ : T3 such Γ; ∆′ `s o′ : T a ∆′′′.

5. ∆′′′ differs from ∆′′ only on bindings for o′, which is not relevant to the <l relation,
so ∆′′′ <l

Γ,Σ′ ∆′′ by <l-reflexivity.
6. Γ,Σ,∆′ ok by the split compatibility lemma.

Case: E-Box-φ-congr. e = e o.
1. By assumption, and because e is closed:

(a) Γ,Σ,∆ ok
(b) Γ; ∆ `s e o : T a ∆′′

(c) Σ, e
o
→ Σ′, e’

o

2. By inversion:
(a) Σ, e→ Σ′, e′

(b) Γ; ∆ `s e : T a ∆′′

3. Let ∆′ = ∆. By 1a, Γ,Σ,∆′ ok. Note that ∆′′′ = ∆′′. ∆′′′ <l
Γ,Σ′ ∆′′ by <l-reflexivity.

By State-mutation-detection, Γ; ∆′ `s e′ o : T a ∆′′.
Case: E-Box-ψ. e = v o.

1. By assumption, and because e is closed:
(a) Γ,Σ,∆ ok
(b) Γ; ∆ `s v o : T a ∆′′

(c) Σ, v o → [(ψ \ o)/ψ] Σ, v
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2. By inversion:
(a) Γ; ∆ `s v : T a ∆′′

3. Let ∆′ = ∆. By 2a, Γ; ∆′ `s v : T a ∆′′. Σ′ = [(ψ \ o)/ψ] Σ. Note that the definition
of consistency does not depend on Σψ. With 1a, we conclude that Γ,Σ′,∆′ ok. Note
that ∆′′′ = ∆′′. ∆′′′ <l

Γ,Σ′ ∆′′ by <l-reflexivity.
Case: E-Box-ψ-congr. e = e o.

1. By assumption, and because e is closed:
(a) Γ,Σ,∆ ok
(b) Γ; ∆ `s e o : T a ∆′′

(c) Σ, e o → Σ′, e’
o

2. By inversion:
(a) Γ; ∆ `s e : T a ∆′′

(b) Σ, e→ Σ′, e′

3. Let ∆′ = ∆. By 1a, Γ,Σ,∆′ ok. Note that ∆′′′ = ∆′′. ∆′′′ <l
Γ,Σ′ ∆′′ by <l-reflexivity.

By Reentrancy-detection, Γ; ∆′ `s e′
o

: T a ∆′′.
Case: E-State-Transition-Static-Ownership. e = l→owned S(l′)

1. By assumption, and because e is closed:
(a) Γ,Σ,∆ ok
(b) Σ, l→owned S(l′)→ [µ[ρ(l) 7→ C〈T 〉@S(ρ(l′))]/µ] Σ, ()

(c) Γ; ∆0, l : C〈T 〉@TST `l l→owned S(x) : unit a ∆∗, l : C〈T 〉@S
2. By inversion:

(a) Γ ` TST <:∗ Owned
(b) Γ; ∆0 `l x : T a ∆∗

(c) Γ ` T <: type(stateF ields(C〈T 〉, S ′))
(d) unionFields(C〈T 〉, TST ) = Tfl fl

(e) fieldTypesl(∆∗; Tfl fl) = T ′fl

(f) Γ ` disposable
(
T ′fl

)
3. Let ∆′ = ∆, l : C〈T 〉@S. By T-(), Γ; ∆ `l () : unit a ∆. To show that Γ,Σ′,∆′ ok,

it suffices to show that any T ∈ refTypes(Σ′,∆′, ρ(l)) that specifies state specifies
type C〈T 〉@S ′. But note that by 1c, l is in the original typing context with an owning
type. Since Γ,Σ,∆ ok, and C〈T 〉@TST ∈ refTypes(Σ,∆, ρ(l)), the only owning
alias to the object referenced by l is l itself. Replacing l : C〈T 〉@TST in ∆ with
l : C〈T 〉@S replaces the type of the only owning alias with C〈T 〉@S, which is
consistent with µ(ρ(l)) = C〈T 〉@S(l). ∆′′′ <l

Γ,Σ′ ∆′′ by <l-reflexivity.
Case: E-State-Transition-Shared. e = l→shared S(l′)

1. By assumption, and because e is closed:
(a) Γ,Σ,∆ ok
(b) Σ, l→shared S(l′)→ [µ[ρ(l) 7→ C〈T 〉@S(ρ(l′))]/µ] Σ, ()

2. Now, assume typing rule→shared applied, since if→owned applied, then the argument
for case E-State-Transition-Static-Ownership (above) applies. Then:
(a) Γ; ∆0, l : C〈T 〉@TST `l l→shared S(x) : unit a ∆∗, l : C〈T 〉@S
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3. By inversion:
(a) Γ ` TST <:∗ Shared. By 2, we assume therefore TST = Shared.
(b) Γ; ∆0 `l x : T a ∆∗

(c) Γ ` T <: type(stateF ields(C〈T 〉, S ′))
(d) unionFields(C〈T 〉, TST ) = Tfl fl

(e) fieldTypesl(∆∗; Tfl fl) = T ′fl

(f) Γ ` disposable
(
T ′fl

)
(g) ρ(l) /∈ φ ∨ µ(ρ(l)) = C〈T 〉@S(. . .)

4. There are two subcases.
Subcase: ρ(l) /∈ φ. Let ∆′ = ∆. By T-(), Γ; ∆ `l () : unit a ∆. Now, all existing

aliases to the object referenced by ρ(l) were compatible with the previous refer-
ence, which was of type C〈T 〉@Shared. As a result, none of those references
restricted the state of the object, and the new state (in Σ′) is consistent with ∆.

Subcase: µ(ρ(l)) = C〈T 〉@S(. . .). Let ∆′ = ∆. By T-(), Γ; ∆ `l () : unit a ∆. All
references to the object referenced by ρ(l) have the same type in Σ′ as they did in
Σ because neither the contract nor the state of the object have changed, and we
have Γ,Σ′,∆′ ok.

5. In both cases, ∆′′′ <l
Γ,Σ′ ∆′′ by <l-reflexivity.

Case: E-Field. e = l.fi.
1. By assumption, and because e is closed:

(a) Γ,Σ,∆ ok
(b) Σ, l.fi → Σ, oi

2. By inversion:
(a) µ(ρ(l)) = C〈T 〉@S(s)

3. Now, there are two subcases because there are two possible type judgments for e.
Subcase: this-field-def

(a) By assumption: Γ; ∆0, l : T `l l.f : T2 a ∆0, l : T, l.f : T3

(b) By inversion:
i. l.f /∈ Dom(∆)

ii. T1 f ∈ intersectF ields(T )

iii. T1 V T2/T3

(c) Let ∆′ = ∆0, l : T, l.f : T3, oi : T2. Then by Var, Γ; ∆′ `s oi : T2 a ∆′′′ for
some ∆′′′. Γ,Σ,∆′ ok because T2 is a consistent permission for oi per the
split compatibility lemma (as in the E-lookup case). ∆′′′ agrees with ∆′′ on
all l, so ∆′′′ <l

Γ,Σ′ ∆′′ by <l-reflexivity.
Subcase: this-field-ctxt

(a) By assumption: Γ; ∆0, l : T, l.f : T1 `l l.f : T2 a ∆0, l : T, l.f : T3

(b) By inversion: T1 V T2/T3

Let ∆′ = ∆0, l : T, l.f : T3, oi : T2. Then by Var, Γ; ∆′ `s oi : T3 a ∆′′′

for some ∆′′′. Γ,Σ,∆′ ok because T2 is a consistent permission for oi per the
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split compatibility lemma. ∆′′′ agrees with ∆′′ on all l, so ∆′′′ <l
Γ,Σ′ ∆′′ by

<l-reflexivity.
Case: E-FieldUpdate. e = l.fi := l′.

1. By assumption, and because e is closed:
(a) Γ,Σ,∆ ok
(b) Σ, l.fi := l′ → [µ[ρ(l) 7→ C〈T 〉@S(o1, o2, . . . , oi−1, ρ(l′), oi+1, . . . , o|l.f |

)]/µ] Σ, ()

(c) Γ; ∆ `l l.fi := l′ : unit a ∆∗∗, l.fi : TC@TST
2. By inversion:

(a) µ(ρ(l)) = C〈T 〉@S(o)
(b) fields(C〈T 〉@S) = T f
(c) Γ; ∆ `l l.fi : TC@TST a ∆∗

(d) Γ; ∆∗ `l l.fi : TC@T ′ST a ∆∗∗

(e) Γ ` disposable (TC@TST )

3. Let ∆′ = ∆∗, l.fi : TC@TST . By T-(), Γ; ∆′ `l () : unit a ∆′.
4. Note that Σ′ = [µ[ρ(l) 7→ C〈T 〉@S(o1, o2, . . . , oi−1, ρ(l′), oi+1, . . . , o|l|)]/µ] Σ. By

the same argument used in the proof of preservation for the E-lookup case, Γ,Σ,∆∗ ok
and likewise Γ,Σ,∆∗∗ ok. To show Γ,Σ′,∆′ ok, we note that the only change relative
to Σ and ∆∗∗ is regarding the type of l.fi. ρ(l) has the same number of fields in
Σ′ as in Σ. Although ρ(l) may now have an additional reference to ρ(l′) that did
not exist before, this reference is compatible with all of the other references in
refTypes(Σ′,∆∗, ρ(l′)) because if the new reference is owned, this is only because
TC@TST was owned, which was previously accounted for in refTypes(Σ′,∆∗, ρ(l′)),
and that ownership has been removed in ∆∗∗.

5. ∆′′′ agrees with ∆′′ on all l, so ∆′′′ <l
Γ,Σ′ ∆′′ by <l-reflexivity.

Case: E-Assert. e = [x@TST].
1. By assumption, and because e is closed:

(a) Γ,Σ,∆ ok
(b) Σ, assert l in TST → Σ, ()

2. There are two subcases:
Subcase: TST = S . By assumption, Γ; ∆0, l : C〈T 〉.S `s [l@S ′] : unit a ∆0, l :

C〈T 〉.S . Let ∆′ = ∆. By T-(), Γ; ∆′ `l () : unit a ∆′. Since Σ′ = Σ, ∆′ = ∆,
and Γ,Σ,∆ ok, we have Γ,Σ′,∆′ ok.

Subcase: TST 6= S . By assumption, Γ; ∆0, l : C〈T 〉@TST `s [l@TST] : unit a
∆0, l : C〈T 〉@TST . Let ∆′ = ∆. By T-(), Γ; ∆′ `l () : unit a ∆′. Since Σ′ = Σ,
∆′ = ∆, and Γ,Σ,∆ ok, we have Γ,Σ′,∆′ ok.

Case: E-Disown. e = disown l.
1. By assumption, and because e is closed:

(a) Γ,Σ,∆ ok
(b) Σ,disown l→ Σ, l

2. There are two subcases:
Subcase: Γ; ∆0, l : C〈T 〉.S `s disown l : unit a ∆0, l : T ′. By inversion,

C〈T 〉.S V T/T ′. Let ∆′ = ∆′′. By T-(), Γ; ∆′ `s () : unit a ∆′. Although the
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split compatibility lemma does not precisely apply here, an analogous argument
does: any other alias to the object referenced by l was previously compatible with
C〈T 〉.S , so we can see by case analysis of the definitions of compatibility and
splitting that such aliases are also compatible with T ′.

Subcase: Γ; ∆0, l : C〈T 〉@Owned `s disown l : unit a ∆0, l : T ′. By inversion,
C〈T 〉@Owned V T/T ′. By T-(), Γ; ∆′ `l () : unit a ∆′. Although the split
compatibility lemma does not precisely apply here, an analogous argument does:
any other alias to the object referenced by l was previously compatible with
C〈T 〉@Owned, so we can see by case analysis of the definitions of compatibility
and splitting that such aliases are also compatible with T ′.

3. In both subcases, ∆′′′ = ∆′′, so ∆′′′ <l
Γ,Σ′ ∆′′ by <l-reflexivity.

Case: E-Pack. e = pack.
1. By assumption, and because e is closed:

(a) Γ,Σ,∆ ok
(b) Σ,pack s→ Σ, ()

(c) Γ; ∆0, l : T, l.f : Tf `l pack : unit a ∆, l : T . (Note that l.f : Tf can be any
subset of the declared fields, including the empty subset.)

2. By inversion:
(a) l.f /∈ dom(∆0)

(b) contractF ields(T ) = Tdecl f

(c) Γ ` Tf <: Tdecl
3. Let ∆′ = ∆. By T-(), Γ; ∆′ `l () : unit a ∆′. Note that every Tf is a subtype of Tdecl.

The impact on refTypes(Σ′,∆′, o) is that types defined for fields will replace types
defined in ∆. But because every replacement is a supertype of the type that it replaces,
we have Γ,Σ′,∆′ ok by the subtype compatibility lemma (A.3.3).

Theorem A.3.3 (Asset retention). Suppose:
1. Γ,Σ,∆ ok
2. o ∈ dom(µ)

3. refTypes(Σ,∆, o) = D

4. Γ; ∆ `s e : T a ∆′

5. e is closed
6. Σ, e→ Σ′, e′

7. refTypes(Σ′,∆′, o) = D′

8. ∃T ′ ∈ D such that Γ ` nonDisposable (T ′)

9. ∀T ′ ∈ D′ : Γ ` disposable (T ′)

Then in the context of a well-typed program, either Γ ` nonDisposable (T ) or e = E[disown s],
where ρ(s) = o.

Proof. By induction on the typing derivation.
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Case: T-lookup. In (6), the only rule that could have applied is E-lookup, which leaves Σ
unchanged. ∆′ is the same as ∆ except that some instances of T1 have been replaced by
T3. If Γ ` nonDisposable (T ), it is proved. Otherwise, Γ ` disposable (T ), and by the
definition of split, Γ ` disposable (T1) and Γ ` disposable (T3), so there was no change in
disposability in ∆′, contradicting the conjunction of (8) and (9).

Case: T-Assign. By assumption, Γ; ∆, s′ : Ts′ , s
′′ : Ts′′ `s s′ := s′′ : unit a ∆′′, s′ : T ∗, s′′ : T ∗∗.

By inversion, Γ ` disposable (T ′s), so no owned references to assets were lost by replacing
T ′s. As in the case for T-lookup, the definition of split (by inversion, Ts′′ V T ∗/T ∗∗) ensures
that either (8) or (9) is contradicted.

Case: T-Let. e = let x : T = e1 in e2. There are two subcases, depending on the rule that was
used for Σ, e→ Σ′, e′:
Subcase: E-let. Σ′ has a new mapping for a new indirect reference l, which may cause an

additional alias to an object, but all previous aliases are preserved, so it cannot be the
case that all non-disposable references are gone.

Subcase: E-letCongr. The induction hypothesis applies to e1 because Σ, e1 → Σ′, e′1. This
suffices to prove the case because there are no changes to ∆.

Case: T-new. By rule E-New, Σ, new C〈T ′〉@S(l) → [µ[o 7→ C〈T ′〉@S(ρ(l))]/µ] Σ, o. By
inversion, Γ; ∆ `s s′ : T a ∆′. By the induction hypothesis, any nondisposable references
in ∆ are preserved in ∆′. The new Σ′ also preserves any existing nondisposable references.

Case: T-this-field-def. Rule E-field leaves Σ unchanged. By the split non-disposability lemma
(A.3.2), if Γ ` disposable (T1), then Γ ` disposable (T3). No other types are changed in
the typing context.

Case: T-this-field-ctxt. Same argument as for This-field-def.
Case: T-fieldUpdate. Although Σ′ replaces a field, which may reference an object, the reference

that was overwritten was disposable (by inversion).
Case: T-inv. The changes in ∆ consist of replacing types with the results of funcArg. Σ′ has

additional aliases to objects, but additional aliases cannot cause loss of owning references.
We consider the cases for funcArg:
FuncArg-owned-unowned. This case preserves ownership in the output type.
FuncArg-shared-unowned. The input type here is not owned.
FuncArg-other. If owned(TC@TSTinput−decl), then in ∆, the corresponding variable is an

owning type. By substitution, ownership of the object will be maintained in the next
context.

This represents a contradiction with the assumption that ownership was lost.
Case: T-privInv. This case is analogous to the case for Public-Invoke, but with additional aliases

changed due to fields.
Case: T-→p. e = s→p S

′(x). A rule E− →p applied, replacing an object that previously had a
type consistent with C〈TA〉@TST in µ with one that references an object in state S ′. The
new static context contains an owning reference to the new object, so ownership of s was
not lost. For the dynamic context Σ′, it suffices to examine the references from fields of the
old object (µ(ρ(l))). It remains to consider the fields that were overwritten, but these all
had types that were disposable (by inversion of T-→p).

Case: T-assertStates. This rule causes no change in either ∆ or Σ, which is a contradiction.
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Case: T-assertPermission. This rule causes no change in either ∆ or Σ, which is a contradiction.
Case: T-assertInVar. This rule causes no change in either ∆ or Σ, which is a contradiction.
Case: T-assertInVarAlready. This rule causes no change in either ∆ or Σ, which is a contradic-

tion.
Case: T-IsIn-StaticOwnership. e = if x inowned S then e1 else e2.

1. If E-IsIn-Owned-Then applies, Σ, e → Σ, e1 (and by the preservation lemma, e1

is well-typed). By the same argument as for T-lookup, no ownership was lost in
∆′ and ∆′′; any consumed ownership is now in T1. From the merging preserves
nondisposability lemma (A.3.21), we find a contradiction with the assumption that a
type has changed from nondisposable to disposable in this step.

2. Otherwise, E-IsIn-Else applies, and the same argument applies to e2.
Case: T-isInDynamic. e = if x inshared S then e1 else e2. The same argument as in the T-IsIn-

StaticOwnership case applies, except that the situation is even simpler because ∆ and ∆′

agree that x : TC@Shared.
Case: T-IsIn-PermVar. The argument is the same as for T-isInDynamic.
Case: T-IsIn-Perm-Then. E-IsIn-Perm-Then applies, and, Σ′ = Σ. By the same argument as in

the T-Lookup case, no ownership was lost in ∆′, which contradicts the assumption.
Case: T-IsIn-Perm-Else. The argument is the same as for T-IsIn-Perm-Then, but with E-IsIn-

Perm-Else.
Case: T-IsIn-Unowned. The argument is the same as for T-IsIn-Perm-Then, but with E-IsIn-

Unowned.
Case: T-disown. Then e = disown s.
Case: T-pack. Note that pack leaves Σ unchanged; the only change is removing s.f : Tf from

∆. But by inversion, Tf ≈ Tdecl . As a result, no ownership can change from ∆ to ∆′,
contradicting the assumptions.

Case: T-state-mutation-detection. e = e′ o. The step must have been either via E-Box-φ or
via E-Box-φ-congr.

Case: E-Box-φ. The change in E-Box-φ and state-mutation-detection has no impact on
ownership, so this contradicts the assumptions.

Case: E-Box-φ-congr. We have the required property by the induction hypothesis, since
the present rules make no changes themselves to ∆′ and Σ′, which were provided
inductively.

Case: T-reentrancy-detection. e = e′
o
. The step must have been either via E-Box-ψ or via

E-Box-ψ-congr.

Case: E-Box-ψ. The change in E-Box-ψ and state-mutation-detection has no impact on
ownership, so this contradicts the assumptions.

Case: E-Box-ψ-congr. We have the required property by the induction hypothesis, since
the present rules make no changes themselves to ∆′ and Σ′, which were provided
inductively.
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A.3.1 Supporting Lemmas
Lemma A.3.1 (Memory consistency). If Γ,Σ,∆ ok, then:

1. If l : C〈T ′〉@S ∈ ∆, then ∃o.ρ(l) = o and µ(o) = C〈T ′〉@S(s).
2. If Γ; ∆ `s e : T a ∆′, and l is a free variable of e, then l ∈ dom(ρ).

Proof.

1. Assume l : C〈T ′〉@S ∈ ∆. Then ρ(l) = o follows by inversion of global consis-
tency. µ(o) = C∗〈T ∗〉@S ′(o′) follows by inversion of reference consistency (which
itself follows by inversion of global consistency). By inversion of reference consistency,
· ` C∗〈T ∗〉@S ′ <: D . By definition of refTypes, C〈T ′〉@S ∈ D , so · ` C∗〈T ∗〉@S ′ <:
C〈T ′〉@S. This implies that C = C∗, S = S ′, and · ` T ∗ <: T ′ (by definition of
subtyping).

2. By induction on the typing derivation, we prove that if l is a free variable of e, then
l ∈ dom(∆). Then the conclusion follows immediately from the definition of global
consistency. We consider some example cases:
Case: T-lookup. s′ is a free variable, but s′ : T1 ∈ ∆.
Case: T-let. Any free variables in e must be in e1 or e2. The result is obtained by induction

on e1 and e2.
Case: s→p S

′(x). s is a free variable, but s : C〈TA〉@TST ∈ ∆.
Case: T-assertStates. x is a free variable, but x ∈ dom(∆).
The remaining cases are similar to the above.

Lemma A.3.2 (Split Non-disposability). If T1 V T2/T3, and T1 is not disposable, then T2 is not
disposable.

Proof. By inspection of the definition of T1 V T2/T3 and owned. Note that in the Split-owned-
shared and Split-states-shared cases, although owned(T1), C is not an asset, which makes T1

disposable.

Lemma A.3.3 (Subtype Compatibility). If T ↔ T ′, and Γ ` T ′ <: T ′′, then T ↔ T ′′.

Proof. By straightforward case analysis of the subtyping relation.

Lemma A.3.4 (Subtyping reflexivity). For all types T , Γ ` T <: T .

Proof. Case: unit. Rule Unit applies.
Case: TC@TST . By rule Refl in the definition of the subpermission relation, rule Matching-

definitions applies.

Lemma A.3.5 (Exclusivity of isAsset/nonAsset). For all types T :
1. If Γ ` isAsset (T ) is provable, then Γ ` nonAsset (T ) is not provable.
2. If Γ ` nonAsset (T ) is provable, then Γ ` isAsset (T ) is not provable.

Proof. By straightforward case analysis of the isAsset and nonAsset rules.

226



Lemma A.3.6 (Exclusivity of isVar/nonVar). For all types T :
1. If isVar (T ) is provable, then nonVar (T ) is not provable.
2. If nonVar (T ) is provable, then isVar (T ) is not provable.
For all declaration types TC:

1. If isVar (TC) is provable, then nonVar (TC) is not provable.
2. If nonVar (TC) is provable, then isVar (TC) is not provable.
For all permissions/states TST :

1. If isVar (TST ) is provable, then nonVar (TST ) is not provable.
2. If nonVar (TST ) is provable, then isVar (TST ) is not provable.

Proof. By straightforward case analysis of the isVar and nonVar rules.

Lemma A.3.7 (Exclusivity of maybeOwned/notOwned). For all types T :
1. If maybeOwned (T ) is provable, then notOwned (T ) is not provable.
2. If notOwned (T ) is provable, then maybeOwned (T ) is not provable.

Proof. By straightforward case analysis of the ownedState and notOwned rules.

Definition A.3.1 (Non-disposability).

maybeOwned (TC@TST ) Γ ` isAsset (TC@TST )

Γ ` nonDisposable (TC@TST )
ND-OWNED

Lemma A.3.8 (Exclusivity of disposability and non-disposability). For all types T :
1. If Γ ` disposable (T ) is provable, then Γ ` nonDisposable (T ) is not provable.
2. If Γ ` nonDisposable (T ) is provable, then Γ ` disposable (T ) is not provable.

Proof. 1. Consider the cases for Γ ` disposable (T ).
Case: D-Owned. Let T = TC@TST . By inversion, maybeOwned (TC@TST ) and Γ `

nonAsset (TC@TST ). Then we cannot prove nonDisposable, which requires Γ `
isAsset (TC@TST ).

Case: D-not-owned. There is no rule by which to prove Γ ` nonDisposable (T ).
Case: D-Unit. There is no rule by which to prove Γ ` nonDisposable (T ).

2. To prove Γ ` nonDisposable (T ), we must use ND-Owned; so T = TC@TST , and we
must show that maybeOwned (TC@TST ) and Γ ` isAsset (TC@TST ). But this directly
contradicts the premises of D-not-owned and D-owned, and D-unit does not apply. So there
is no rule by which to prove Γ ` disposable (T ).

Lemma A.3.9 (Interface substitution). If
1. Γ; ∆, s′ : I〈T 〉@TST `s e : T a ∆′

2. Γ ` C〈T ′〉 <: I〈T 〉
3. C ok

then Γ; ∆, s′ : C〈T ′〉@TST `s e : T a ∆′′, where
1. if s′ : I〈T 〉@T ′ST ∈ ∆′, then ∆′′ = ∆′, s′ : C〈T ′〉@T ′ST
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2. otherwise ∆′′ = ∆′.

Proof. By induction on the typing derivation. The relevant cases are Inv and P-Inv; all other cases
will be identical, because x has the same permission or state. Because interfaces don’t have fields,
there must not be any field assignments or access involving x, so we don’t need to consider those.

Case: Inv In this case, e = s1.m〈TM 〉(s2).
If s′ = s1, with the assumption that m ok in C, we have:

1. specializeTransΓ

(
m〈TM 〉, I〈T 〉

)
= T m〈T ′M 〉(TCx@Tx�TxST x) Tthis� T ′this

2. C ok
3. Γ ` TST <:∗ Tthis
4. Γ ` Ts2 <: TCx@Tx
5. T ′s1 = funcArg(TC@TSTs1, TC@Tthis, TC@T ′this)
6. T ′s2 = funcArg(Ts2, Tx, TCx@TxST )

So then
1. transactionName (m) ∈ transactionNames (C)
2. def (m,C) = M = T ′ m〈T ′M 〉(T ′Cx

.T ′x�T
′
xST x) T ∗this� T ∗∗this

3. implementOkΓ

(
I〈T 〉,M

)
.

By definition of implementOk, this implies that the invocation is still well-typed.
If s′ ∈ s2 , then Γ ` I〈T 〉@T ∗ST <: T for some argument of type T . But then because
subtyping is transitive, C ′〈T ′〉@T ∗ST is also a subtype of T , so the invocation is still safe.

Case: P-Inv Identical to the Inv case, except that we cannot invoke a private transaction on s′, as
interfaces do not have private transactions, so s′ must be one of the arguments.

Lemma A.3.10 (Permission Variable Substitution). Suppose
1. Γ ` TST <:∗ p
2. Γ; ∆, x : TC@p `s e : T a ∆′

Then Γ; ∆, x : TC@TST `s e : T a ∆′.

Proof. Follows from A.3.3.1

Lemma A.3.11 (Exclusivity of subpermission). For any permissions P and P ′:
1. If · ` P <:∗ P

′ is provable, then · ` P 6<:∗ P
′ is not provable.

2. If · ` P 6<:∗ P
′ is provable, then · ` P <:∗ P

′ is not provable.

Proof. By case analysis of the subpermission rules, we can see that every pair of permissions is
related. The only way that · ` P <:∗ P

′ and · ` P ′ <:∗ P can be true is if P = P ′, but then we
cannot prove · ` P 6<:∗ P

′.

Lemma A.3.12 (Split compatibility). If Γ; ∆ `s s′ : T a ∆′ and Γ,Σ,∆ ok then Γ,Σ,∆′ ok.

Proof. For one expression, it suffices to show that replacing T with T3 in ∆ leaves the re-
maining context consistent with Σ. The proof of this is by cases of splitting; this is theorem
splittingRespectsHeap in heapLemmasforSplitting.agda in the supplement of the earlier
paper [48]. For multiple expressions, simply iterate the argument.
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Lemma A.3.13 (Substitution). If Γ; ∆, x : Tx `s e : T ′ a ∆′, x : T ′x, then Γ; ∆, l : Tx `s [l/x]e :
T ′ a ∆′, l : T ′x

Proof. Substitute l for x throughout the previous proof.

Lemma A.3.14 (Subtype replacement). If
• Γ; ∆, x : Tx `s e : T ′ a ∆′, x : T ′x
• Γ ` T ′′x <: Tx
• T ′′x ≈ Tx

then Γ; ∆, x : T ′′x `s e : T ′ a ∆′, x : T ′′′x where Γ ` T ′′′x <: T ′x.

Proof. By induction on the typing derivation and the subtyping derivation. Relevant cases include:

Case: T-lookup.
1. By assumption:

(a) Γ ` T ′′x <: Tx
2. By inversion of T-lookup:

(a) Tx V T ′/T ′x
3. Note that it suffices to show that T ′′x V T ′/T ′′′x . Consider the cases for 2a:

Case: Split-unowned T ′x = TC@Unowned. Split-Unowned applies to T ′′x , resulting
in T ′′′x = TC@Unowned.

Case: Split-shared By assumption, Tx = TC@Shared. If T ′′x = TC@Shared, then
the result follows by Split-Shared. Otherwise, maybeOwned (T ′′x ), but this contra-
dicts the assumption that T ′′x ≈ Tx.

Case: Split-owned-shared By inversion of maybeOwned, we have the following
cases:
Subcase: Tx = TC@p All subtypes of TC@p are themselves maybeOwned and

nonAsset, so Split-owned-shared applies.
Subcase: Tx = TC@Owned All subtypes of TC@Owned are themselves may-

beOwned and nonAsset, so Split-owned-shared applies.
Subcase: Tx = TC@S All subtypes of TC@S are themselves maybeOwned and

nonAsset, so Split-owned-shared applies.
Case: Split-unit Tx = T ′x = unit. Split-unit applies for T ′′x , since the only subtype

of unit is unit. Then T ′′′x = unit, which is a subtype of T ′x.
Case: T-IsIn-StaticOwnership. Γ ` T ′′x <: Tx results in a smaller set of initial possible states

for x, resulting in a potentially smaller set of possible states for x in the resulting context.
This explains why it is not necessarily the case that T ′′′x = T ′′x .

Corollary A.3.3.1 (Subtype substitution). If
• Γ; ∆, x : Tx `s e : T ′ a ∆′, x : T ′x and
• Γ ` T ′′x <: Tx

then Γ; ∆, l : T ′′x `s [l/x]e : T ′ a ∆′, l : T ′′′x where Γ ` T ′′′x <: T ′x.

Proof. Follows by applying both A.3.14 and A.3.13.
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Corollary A.3.3.2 (l-stronger substitution). If Γ; ∆ `s e : T a ∆′ and ∆′′ <l
Γ,Σ′ ∆, then

Γ; ∆′′ `s e : T a ∆′′′ with ∆′′′ <l
Γ,Σ′ ∆′.

Proof. By induction on ∆′, applying A.3.3.1 and the definition of ∆′′ <l
Γ,Σ′ ∆.

Lemma A.3.15 (l-stronger consistency). If ∆′ <l
Γ,Σ′ ∆ and Γ,Σ,∆ ok then Γ,Σ,∆′ ok.

Proof. By induction on ∆ and application of subtype compatibility (A.3.3).

Lemma A.3.16 (Strengthening). If Γ; ∆, s′ : T0 `s e : T a ∆′, s′ : T1, and s′ does not occur free
in e, then Γ; ∆ `s e : T a ∆′.

Proof. By induction on the typing derivation. Since s′ does not occur free in e, s′ must not be
needed in either proof.

Lemma A.3.17 (Weakening). If Γ; ∆ `s e : T a ∆′, and s′ does not occur free in e, then
Γ; ∆, s′ : T0 `s e : T a ∆′, s′ : T1.

Proof. By induction on the typing derivation. Since s′ does not occur free in e, s′ must not be
needed in either proof.

Lemma A.3.18 (Merge consistency). If Γ,Σ,∆ ok and Γ,Σ,∆′ ok, then Γ,Σ,merge(∆,∆′) ok.

Proof. By induction on merge(∆,∆′).

Case: Sym. By the induction hypothesis, Γ,Σ,merge(∆′,∆) ok, andmerge(∆′,∆) = merge(∆,∆′).
Case: ⊕. By inversion, ∆ = ∆′′, x : T and ∆′ = ∆′′′, x : T ′. Because ∆′′ is a subset of

∆′′, x : (T ⊕ T ′), by the induction hypothesis, Γ,Σ,merge(∆′′,∆′′′) ok (the induction
hypothesis applies because dom(∆′′) ⊂ dom(∆′′, x : (T ⊕ T ′)) and ∆′′(x′) = ∆(x′) for
all x 6= x′). Therefore, by the definition of consistency, it suffices to show that T ⊕ T ′ is
compatible with all T ′′ ∈ refTypes(Σ,∆′′). We assume that either T ′′ ↔ T or T ′′ ↔ T ′.
Subcase: T ⊕ T = T . Anything compatible with T is trivially compatible with T.
Subcase: TC@Owned⊕ TC@S = TC@Owned. If T ′′ is compatible with TC@Owned,

then it is proved. Otherwise, T ′′ is compatible with TC@S (by inspection of the
definition of↔). In particular, T ′′ must be TC@Unowned, in which case rule Un-
ownedOwnedCompat applies.

Subcase: TC@Shared⊕ TC@Unowned = TC@Unowned .
If T ′′ is compatible with TC@Unowned, then it is proved. Otherwise, T ′′ is com-
patible with TC@Shared, and by definition of ↔, either T ′′ = TC@Shared or
T ′′ = TC@Unowned. The later case was already addressed, and in the former
case, SharedCompat gives T ′′ ↔ TC@Shared.

Subcase: TC@S ⊕ TC@S ′ = TC@(S ∪ S ′). The only compatibility rule that could have
applied was UnownedStatesCompat, and it still applies to TC@(S ∪ S ′).

Subcase: C〈T 〉@TST ⊕ I〈T ′〉@T ′ST = I〈T ⊕ T ′〉@TST ⊕ I〈T ⊕ T ′〉@T ′ST = I〈T ∗〉@T ∗ST .
If T ′′ is compatible with C〈T 〉@TST , then it will also be compatible with I〈T ∗〉@T ∗ST
by SubtypeCompat, ParamCompat, and application of one of the other subcases
for T ∗ST . If T ′′ is compatible with I〈T ′〉@T ′ST , then it will also be compatible with
I〈T ∗〉@T ∗ST by ParamCompat and application of one of the other subcases for T ∗ST .
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Subcase: D〈T 〉@TST ⊕D〈T ′〉@T ′ST = D〈T ⊕ T ′〉@TST ⊕D〈T ⊕ T ′〉@T ′ST = D〈T ∗〉@T ∗ST .
If T ′′ is compatible withD〈T 〉@TST , then it will also be compatible withD〈T ∗〉@T ∗ST
by ParamCompat, and application of one of the other subcases for T ∗ST . If T ′′ is
compatible with D〈T ′〉@TST , then it will also be compatible with D〈T ∗〉@T ∗ST by
ParamCompat, and application of one of the other subcases for T ∗ST .

Case: Dispose-disposable. Eliminating a variable from a context that is already consistent with
Σ leaves a context that is still consistent with Σ. Note that this rule does not allow removing
bindings of the form x.f : T because removing those bindings could result in inconsisten-
cies, since then the types of those fields would (incorrectly) be assumed to be according to
their declarations.

Lemma A.3.19 (Merge Subtyping). If l : T ∈ merge(∆∗,∆∗∗), then l : T1 ∈ ∆∗ and l : T2 ∈
∆∗∗ with Γ ` T1 <: T , Γ ` T2 <: T , T1 ≈ T , and T2 ≈ T .

Proof. By induction on the merge judgment.

Case: Sym. The conclusion follows immediately from the induction hypothesis.
Case: ⊕. In each subcase, the conclusion follows from the induction hypothesis and the ⊕

subtyping lemma (A.3.20).
Case: Dispose-disposable. d /∈ merge(∆∗,∆∗∗), so the conclusion follows immediately from

the induction hypothesis.

Lemma A.3.20 (⊕ subtyping). If T1 ⊕ T2 = T , then Γ ` T1 <: T and Γ ` T2 <: T .

Proof. Case: T ⊕ T . It is proved by reflexivity of <:.
Case: TC@Owned⊕ TC@S . Γ ` TC@Owned <: TC@Owned and Γ ` TC@S <: TC@Owned.
Case: TC@Shared⊕ TC@Unowned. Γ ` TC@Shared <: TC@Unowned and Γ ` TC@Unowned <:

TC@Unowned.
Case: TC@S ⊕ TC@S ′ . Γ ` TC@S <: TC@(S ∪ S ′) and Γ ` TC@S ′ <: TC@(S ∪ S ′).
Case: C〈T 〉@TST ⊕ I〈T 〉@T ′ST . Γ ` C〈T 〉@TST <: I〈T 〉.(TST⊕T ′ST ) and Γ ` I〈T 〉@T ′ST <:

I〈T 〉.(TST ⊕ T ′ST ) by rule implements-interface and the induction hypothesis.
Case: D〈T 〉@TST ⊕D〈T 〉@T ′ST . Γ ` D〈T 〉@TST <: D〈T 〉.(TST⊕T ′ST ) and Γ ` D〈T 〉@T ′ST <:

D〈T 〉.(TST ⊕ T ′ST ) by rule Matching-Declarations and the induction hypothesis.
Note that in each of the above cases, T1 ≈ T2.

Theorem A.3.4 (Unicity of ownership). If Γ,Σ,∆ ok, and o 7→ C〈T 〉@S(. . .) ∈ µ, and
refTypes(Σ,∆, o) = D , then at most one T ∈ D is either C〈T 〉.S or C〈T 〉@Owned.

Proof. By inversion of reference consistency, ∀T1, T2 ∈ D,T1 ↔ T2 or (o ∈ Σφ and Ti =
C〈T 〉@S and Tj = C〈T 〉@Shared(i 6= j)). Note that C〈T 〉@Owned is not compatible with
either C〈T 〉@Owned or C〈T 〉.S , and C〈T 〉.S is not compatible with C〈T 〉.S . If there were
more than one alias of type C〈T 〉@Owned or C〈T 〉.S , they would be incompatible, which would
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be a contradiction. Even if o ∈ Σφ, the aliases are restricted to shared and state-specifying aliases,
and never more than one state-specifying alias exists.

Lemma A.3.21 (Merging preserves nondisposability). Suppose ∆1,∆2 are static contexts. If
(s : T ∈ ∆1 or s : T ∈ ∆2), Γ ` nonDisposable (T ), and merge(∆1,∆2) = ∆, then s : T ′ ∈ ∆
such that Γ ` nonDisposable (T ′).

Proof. By case analysis on merge(∆1,∆2).

Case: Sym . The induction hypothesis applies to merge(∆,∆′) since the lemma was stated
symmetrically.

Case: ⊕. Note that in all cases of the definition of T1 ⊕ T2 = T3, if either owned(T1) or
owned(T2), then owned(T3)as well.

Case: Dispose-disposable. Without loss of generality, suppose s : T ∈ ∆1. By inversion,
x /∈ ∆2. By assumption, Γ ` nonDisposable (T ). But by inversion, Γ ` disposable (T ).
This is a contradiction (A.3.8).
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Appendix B

Java Prescreen (used in user studies for
Obsidian)

The prescreening survey was presented to potential participants in the form of a Qualitrics survey.
It obtained informed consent, and then asked the following questions:

1. Which of the following might be a valid Java constructor invocation?

a. Square.new(5)
b. malloc(sizeof(Square))
c. square(5)
d. new Square(5)

2. In Java, encapsulation refers to:

a. Serializing data correctly so that it is transmitted properly between systems
b. Preventing clients from improperly depending on implementation details
c. Using the capsule keyword to protect secret data

3. Consider the code below:

void test() {
ArrayList list1 = new ArrayList();
list1.add(1);
ArrayList list2 = list1;
list2.add(2);
System.out.println(list1.size());

}

If test() is run, what is the output?

a. 1
b. 2

4. Which statements are true of interfaces in standard Java?

a. Methods in interfaces (except for default methods) lack bodies.
b. Methods in interfaces are public by default.
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c. A class can implement no more than one interface.
d. Interfaces have no field declarations unless they are public static final.

5. Which statements are true of static methods in standard Java?

a. They are not implemented where they are defined, but must be overridden in a subclass.
b. They cannot be overridden.
c. They can be invoked without having an instance of the class.

6. Consider the code below:
public abstract class Customer {
private String name;
public Customer (String name) {
this.name = name;

}
public String getName() { return name; }
public abstract void buy();

}

Which statements are true about Customer?

a. The Customer class cannot be extended.
b. The Customer class cannot be instantiated.
c. Concrete subclasses must implement the buy() method.
d. Subclasses must implement the buy() method.

7. Consider Figure B.1. A software engineer is choosing between designs A and B for
a component in which consumers need to find out when certain events occur. Which
consideration would best justify choosing Design A over Design B?

a. The event source should be decoupled from the list of event consumers so that the
source need not be aware of the consumers.

b. None; Design B is better because it is simpler.
c. Many different sources may need to send the event to different sets of consumers.
d. Event sources may be implemented by third parties.

8. Again considering the diagram in Figure B.1, what is Design A typically called?

a. Manage-events
b. Publish-subscribe
c. Source-consume

9. A pattern in which there can be only one instance of a given class is called:

a. Flyweight pattern
b. Singleton pattern
c. Unique pattern
d. Builder pattern
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A software engineer is choosing between designs A and B for a component in which
consumers need to find out when certain events occur. Which consideration would
best justify choosing Design A over Design B?

Figure B.1: Two design alternatives.

235



236



Appendix C

Case Studies of Obsidian

C.1 Shipping
Obsidian Implementation

Leg.obs
1 contract Leg {
2
3 state InTransit;
4 state Arrived {
5 string arrivalDate;
6 string destinationPort;
7 }
8
9 string departureDate;

10 string originPort;
11 Transport@Unowned carrier;
12
13 Leg@InTransit(Transport@Unowned t, string ddepartureDate, string doriginPort) {
14 ->InTransit(departureDate = ddepartureDate, originPort = doriginPort, carrier = t);
15 }
16
17 transaction getDepartureDate(Leg@Owned this) returns string {
18 return departureDate;
19 }
20
21 transaction getOriginPort(Leg@Owned this) returns string {
22 return originPort;
23 }
24
25 transaction getCarrier(Leg@Owned this) returns Transport@Unowned {
26 return carrier;
27 }
28
29
30 transaction setArrival(Leg@InTransit >> Arrived this, string date, string port) {
31 ->Arrived(arrivalDate = date, destinationPort = port);
32 }
33 }

Shipment.obs
1 import "IO.obs"
2 import "Transport.obs"
3 import "LinkedList.obs"
4
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5
6 main contract ShippingDriver {
7
8 int totalShipments;
9 int nextID;

10
11 ShippingDriver@Owned() {
12 totalShipments = 0;
13 nextID = 1;
14 }
15
16 transaction createAgreement(string pseller,
17 string pshipper,
18 string pbuyer,
19 string psource,
20 string pdest,
21 int pload,
22 string pdescription,
23 string pplannedDate) returns Shipment@Contract {
24 Shipment s = new Shipment(nextID,
25 pseller,
26 pshipper,
27 pbuyer,
28 psource,
29 pdest,
30 pload,
31 pdescription,
32 pplannedDate);
33 totalShipments = totalShipments + 1;
34 nextID = nextID + 1;
35 return s;
36 }
37 }
38
39
40 contract Shipment {
41 int id;
42 string seller;
43 string shipper;
44 string buyer;
45 string source;
46 string dest;
47 int load;
48 string description;
49 string plannedDate;
50
51 LinkedList@Owned transportList;
52
53 state Contract;
54 state Release {
55 string releasedDate;
56 }
57 state Sailing;
58 state InTransit {
59 Transport@InTransport inTsp;
60 }
61 state Delivered;
62
63 Shipment@Contract(int nid,
64 string pseller,
65 string pshipper,
66 string pbuyer,
67 string psource,
68 string pdest,
69 int pload,
70 string pdescription,
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71 string pplannedDate) {
72 id = nid;
73 seller = pseller;
74 shipper = pshipper;
75 buyer = pbuyer;
76 seller = pseller;
77 source = psource;
78 dest = pdest;
79 load = pload;
80 description = pdescription;
81 plannedDate = pplannedDate;
82 transportList = new LinkedList[Transport@Owned]();
83 ->Contract;
84
85 IO io = new IO();
86 io.println("");
87 io.print("* ");
88 io.print(pplannedDate);
89 io.print(" - shipment ");
90 io.printInt(id);
91 io.println(" [Contract]");
92 io.print(" seller: ");
93 io.println(seller);
94 io.print(" buyer: ");
95 io.println(buyer);
96 io.print(" shipper: ");
97 io.println(shipper);
98 io.print(" source port: ");
99 io.println(source);

100 io.print(" destination port: ");
101 io.println(dest);
102 io.print(" shipment description: ");
103 io.println(description);
104 io.println("");
105 }
106
107
108 transaction release(Shipment@Contract >> Release this, string date) {
109 ->Release(releasedDate = date);
110
111 IO io = new IO();
112 io.println("");
113 io.print("* ");
114 io.print(date);
115 io.print(" - shipment ");
116 io.printInt(id);
117 io.println(" [Release]");
118 io.println("");
119 }
120
121
122 transaction setSail(Shipment@Release >> Sailing this, string date) {
123 ->Sailing;
124
125 IO io = new IO();
126 io.println("");
127 io.print("* ");
128 io.print(date);
129 io.print(" - shipment ");
130 io.printInt(id);
131 io.println(" [InTransit]");
132 io.println("");
133 }
134
135
136 transaction depart(Shipment@Sailing >> InTransit this,
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137 string transportName,
138 string transportType,
139 string date,
140 string port) {
141 Transport newTransport = new Transport(transportName, transportType, source, date);
142 [newTransport @ Load];
143 newTransport.depart(date, port);
144 [newTransport @ InTransport];
145 ->InTransit(inTsp = newTransport);
146 }
147
148
149 transaction layover(Shipment@InTransit this, string date, string port) {
150 inTsp.stopOver(date, port);
151 }
152
153
154 transaction layoverDepart(Shipment@InTransit this, string date, string port) {
155 inTsp.layoverDepart(date, port);
156 }
157
158
159 transaction transfer(Shipment@InTransit this,
160 string transportName,
161 string transportType,
162 string date,
163 string port) {
164 inTsp.arrive(date, port);
165 transportList.append[Transport](inTsp);
166
167 Transport newTransport = new Transport(transportName, transportType, source, date);
168 [newTransport @ Load];
169 newTransport.depart(date, port);
170 [newTransport @ InTransport];
171 inTsp = newTransport;
172
173 IO io = new IO();
174 io.print("* ");
175 io.print(date);
176 io.print(" - transfer at port [");
177 io.print(port);
178 io.println("]");
179 io.println("");
180 }
181
182 transaction deliver(Shipment@InTransit >> Delivered this, string date, string port) {
183 inTsp.arrive(date, port);
184 transportList.append[Transport](inTsp);
185 ->Delivered;
186
187 IO io = new IO();
188 io.print("* ");
189 io.print(date);
190 io.print(" - shipment ");
191 io.printInt(id);
192 io.print(" [Delivered] at port [");
193 io.print(port);
194 io.println("]");
195 io.println("");
196 }
197
198 transaction getID(Shipment this) returns int {
199 return id;
200 }
201
202 }
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ShipmentClient.obs
1 import "Shipment.obs"
2
3 main contract ShippingDriverClient {
4
5 transaction main(remote ShippingDriver@Shared sh) {
6
7 remote Shipment s = sh.createAgreement("Dole",
8 "TruckMyShipment",
9 "ShopRite",

10 "Sunnyvale, California",
11 "Bronx, New York",
12 50,
13 "Strawberries",
14 "12/01/2018");
15 s.release("12/02/2018");
16 s.setSail("12/02/2018");
17
18 // transport 1
19 s.depart("Truck5000", "truck", "12/03/2018", "Sunnyvale, California");
20 s.layover("12/06/2018", "Salt Lake City, Utah");
21 s.layoverDepart("12/06/2018", "Salt Lake City, Utah");
22
23 // transport 2
24 s.transfer("Fedex", "Cargo", "12/07/2018", "Chicago, Illinois");
25 s.deliver("12/09/2018", "Bronx, New York");
26 }
27 }

Transport.obs
1 import "Leg.obs"
2 import "LinkedList.obs"
3
4 contract Transport {
5
6 state Load;
7 state InTransport {
8 Leg@InTransit currentLeg;
9 }

10 state Unload {
11 string destinationPort;
12 };
13
14
15 string transportName;
16 string transportType;
17 string originPort;
18 LinkedList[Leg@Owned]@Owned legList;
19
20
21 Transport@Load(string pTransportName, string pTransportType, string pOriginPort, string date) {
22 transportName = pTransportName;
23 transportType = pTransportType;
24 originPort = pOriginPort;
25 legList = new LinkedList[Leg@Owned]();
26 ->Load;
27
28 IO io = new IO();
29 io.println("");
30 io.print("* ");
31 io.print(date);
32 io.print(" - transport [Load] on [");
33 io.print(pTransportName);
34 io.print("], type [");
35 io.print(pTransportType);
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36 io.print("] at port [");
37 io.print(pOriginPort);
38 io.println("]");
39 }
40
41
42 transaction getTransportName(Transport this) returns string {
43 return transportName;
44 }
45
46
47 transaction getTransportType(Transport this) returns string {
48 return transportType;
49 }
50
51
52 transaction getOriginPort(Transport this) returns string {
53 return originPort;
54 }
55
56 transaction getDestinationPort(Transport@Unload this) returns string {
57 return destinationPort;
58 }
59
60 transaction depart(Transport@Load >> InTransport this, string pdepartureDate, string port) {
61 Leg newLeg = new Leg(this, pdepartureDate, port);
62 [newLeg @ InTransit];
63 ->InTransport(currentLeg = newLeg);
64
65 IO io = new IO();
66 io.println("");
67 io.print("* ");
68 io.print(pdepartureDate);
69 io.print(" - leg [InTransit]. port [");
70 io.print(port);
71 io.println("]");
72 io.print("* ");
73 io.print(pdepartureDate);
74 io.print(" - transport [InTransport]. port [");
75 io.print(port);
76 io.println("]");
77
78 }
79
80 transaction stopOver(Transport@InTransport this, string parrivalDate, string port) {
81 currentLeg.setArrival(parrivalDate, port);
82 [currentLeg @ Arrived];
83 legList.append(currentLeg);
84 [currentLeg @ Unowned];
85 currentLeg = new Leg(this, "", "");
86
87 IO io = new IO();
88 io.println("");
89 io.print("* ");
90 io.print(parrivalDate);
91 io.print(" - leg [Arrived]. port [");
92 io.print(port);
93 io.println("]");
94 io.println("");
95 }
96
97
98 transaction layoverDepart(Transport@ InTransport this, string date, string port) {
99 Leg newLeg = new Leg(this, date, port);

100 ->InTransport(currentLeg = newLeg);
101
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102 IO io = new IO();
103 io.println("");
104 io.print("* ");
105 io.print(date);
106 io.print(" - leg [InTransit]. port [");
107 io.print(port);
108 io.println("]");
109 io.println("");
110 }
111
112
113 transaction arrive(Transport@InTransport >> Unload this, string date, string port) {
114 currentLeg.setArrival(date, port);
115 [currentLeg @ Arrived];
116 legList.append(currentLeg);
117 [currentLeg @ Unowned];
118 ->Unload(destinationPort = port);
119
120 IO io = new IO();
121 io.println("");
122 io.print("* ");
123 io.print(date);
124 io.print(" - leg [Arrived]. port [");
125 io.print(port);
126 io.println("]");
127
128 io.print("* ");
129 io.print(date);
130 io.print(" - transport [Unload]. port [");
131 io.print(port);
132 io.println("]");
133 }
134
135 }

Solidity Implementation

Migrations.sol
1 pragma solidity ˆ0.5.8;
2
3 contract Migrations {
4 address public owner;
5
6 // A function with the signature ‘last_completed_migration()‘, returning a uint, is required.
7 uint public last_completed_migration;
8
9 modifier restricted() {

10 if (msg.sender == owner) _;
11 }
12
13 constructor () public {
14 owner = msg.sender;
15 }
16
17 // A function with the signature ‘setCompleted(uint)‘ is required.
18 function setCompleted(uint completed) public restricted {
19 last_completed_migration = completed;
20 }
21
22 function upgrade(address new_address) public restricted {
23 Migrations upgraded = Migrations(new_address);
24 upgraded.setCompleted(last_completed_migration);
25 }
26 }
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Shipment.sol
1 pragma solidity ˆ0.5.8;
2
3 import "./Transport.sol";
4 import "./Utils.sol";
5
6 contract ShippingDriver {
7 int totalShipments;
8 int nextID;
9

10 constructor() public {
11 totalShipments = 0;
12 nextID = 1;
13 }
14
15 event NewShipment(Shipment);
16
17 function createAgreement(string memory pseller,
18 string memory pshipper,
19 string memory pbuyer,
20 string memory psource,
21 string memory pdest,
22 int pload,
23 string memory pdescription,
24 string memory pplannedDate)
25 public returns (Shipment) {
26 Shipment s = new Shipment(nextID,
27 pseller,
28 pshipper,
29 pbuyer,
30 psource,
31 pdest,
32 pload,
33 pdescription);
34 s.setPlannedDate(pplannedDate);
35 totalShipments = totalShipments + 1;
36 nextID = nextID + 1;
37
38 emit NewShipment(s);
39 return s;
40 }
41 }
42
43 contract Shipment {
44 enum ShipmentState {Contract, Release, Sailing, InTransit, Delivered}
45
46 ShipmentState public state;
47
48 int id;
49 string seller;
50 string shipper;
51 string buyer;
52 string source;
53 string dest;
54 int load;
55 string description;
56 string plannedDate;
57 string releasedDate;
58 Transport inTsp;
59
60 TransportList transportList;
61
62 event DeliveryComplete(string date);
63
64 constructor (int nid,
65 string memory pseller,
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66 string memory pshipper,
67 string memory pbuyer,
68 string memory psource,
69 string memory pdest,
70 int pload,
71 string memory pdescription) public {
72 id = nid;
73 seller = pseller;
74 shipper = pshipper;
75 buyer = pbuyer;
76 seller = pseller;
77 source = psource;
78 dest = pdest;
79 load = pload;
80 description = pdescription;
81 transportList = new TransportList();
82 state = ShipmentState.Contract;
83 }
84
85 function setPlannedDate (string memory pplannedDate) public {
86 plannedDate = pplannedDate;
87 }
88
89
90 function release(string memory date) public {
91 assert(state == ShipmentState.Contract);
92 releasedDate = date;
93 state = ShipmentState.Release;
94 }
95
96
97 function setSail() public {
98 assert(state == ShipmentState.Release);
99 state = ShipmentState.Sailing;

100 }
101
102
103 function depart(string memory transportName,
104 string memory transportType,
105 string memory date,
106 string memory port) public {
107 assert(state == ShipmentState.Sailing);
108 Transport newTransport = new Transport(transportName, transportType, source);
109 newTransport.depart(date, port);
110 inTsp = newTransport;
111 state = ShipmentState.InTransit;
112 }
113
114
115 function layover(string memory date, string memory port) public {
116 assert(state == ShipmentState.InTransit);
117 inTsp.stopOver(date, port);
118 }
119
120 function layoverDepart(string memory date, string memory port) public {
121 assert(state == ShipmentState.InTransit);
122
123 inTsp.layoverDepart(date, port);
124 }
125
126
127 function transfer(string memory transportName,
128 string memory transportType,
129 string memory date,
130 string memory port) public {
131 assert(state == ShipmentState.InTransit);
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132
133 inTsp.arrive(date, port);
134 transportList.append(inTsp);
135
136 Transport newTransport = new Transport(transportName, transportType, source);
137 newTransport.depart(date, port);
138 inTsp = newTransport;
139 }
140
141 function deliver(string memory date, string memory port) public {
142 assert(state == ShipmentState.InTransit);
143
144 inTsp.arrive(date, port);
145 transportList.append(inTsp);
146 state = ShipmentState.Delivered;
147
148 emit DeliveryComplete(date);
149 }
150
151 function getID() public view returns (int) {
152 return id;
153 }
154
155 }

Transport.sol
1 pragma solidity ˆ0.5.8;
2
3 contract Transport {
4 enum LoadState {Load, InTransport, Unload}
5
6 LoadState state;
7
8 Leg currentLeg;
9 string destinationPort;

10 string transportName;
11 string transportType;
12 string originPort;
13 LegList legList;
14
15 constructor (string memory pTransportName,
16 string memory pTransportType,
17 string memory pOriginPort) public {
18 transportName = pTransportName;
19 transportType = pTransportType;
20 originPort = pOriginPort;
21 state = LoadState.Load;
22
23 legList = new LegList();
24 }
25
26 function depart(string memory pdepartureDate, string memory port) public {
27 assert(state == LoadState.Load);
28 Leg newLeg = new Leg(this, pdepartureDate, port);
29 currentLeg = newLeg;
30
31 state = LoadState.InTransport;
32 }
33
34 function stopOver(string memory parrivalDate, string memory port) public {
35 assert(state == LoadState.InTransport);
36 currentLeg.setArrival(parrivalDate, port);
37 legList.append(currentLeg);
38 currentLeg = new Leg(this, "", "");
39 }
40
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41 function layoverDepart(string memory date, string memory port) public {
42 assert(state == LoadState.InTransport);
43 currentLeg = new Leg(this, date, port);
44 }
45
46 function arrive(string memory date, string memory port) public {
47 assert(state == LoadState.InTransport);
48 currentLeg.setArrival(date, port);
49 legList.append(currentLeg);
50 destinationPort = port;
51 state = LoadState.Unload;
52 }
53 }
54
55 contract TransportList {
56 Transport[] transports;
57
58 constructor() public {
59 transports = new Transport[](0);
60 }
61
62 function append (Transport pTransport) public {
63 transports.push(pTransport);
64 }
65
66 function length () public view returns (uint) {
67 return transports.length;
68 }
69
70 function nth (uint n) public view returns (Transport) {
71 assert (n < transports.length);
72 return transports[n];
73 }
74 }
75
76 contract Leg {
77 enum LegState {InTransit, Arrived}
78
79 LegState state;
80 string arrivalDate;
81 string destinationPort;
82 string departureDate;
83 string originPort;
84 Transport carrier;
85
86 constructor (Transport t, string memory ddepartureDate, string memory doriginPort) public {
87 departureDate = ddepartureDate;
88 originPort = doriginPort;
89 carrier = t;
90
91 state = LegState.InTransit;
92 }
93
94 function getDepartureDate() public view returns (string memory s) {
95 return departureDate;
96 }
97
98 function setArrival(string memory date, string memory port) public {
99 assert(state == LegState.InTransit);

100 state = LegState.Arrived;
101
102 arrivalDate = date;
103 destinationPort = port;
104 }
105 }
106
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107 contract LegList {
108 Leg[] legs;
109
110 constructor() public {
111 legs = new Leg[](0);
112 }
113
114 function append (Leg pLeg) public {
115 legs.push(pLeg);
116 }
117
118 function length () public view returns (uint) {
119 return legs.length;
120 }
121
122 function nth (uint n) public view returns (Leg) {
123 assert (n < legs.length);
124 return legs[n];
125 }
126 }

Utils.sol
1 pragma solidity ˆ0.5.8;
2
3 contract Utils {
4 function equalStrings(string memory a, string memory b) public pure returns (bool) {
5 if(bytes(a).length != bytes(b).length) {
6 return false;
7 } else {
8 return keccak256(abi.encodePacked(a)) == keccak256(abi.encodePacked(b));
9 }

10 }
11 }

C.2 Insurance
Obsidian Implementation

ActivePolicyMap.obs
1 import "PolicyRecord.obs"
2
3
4 // This implements a mutable linked list of Active policies.
5 contract ActivePolicyList {
6 asset state HasNext {
7 ActivePolicyList@Owned next;
8 }
9

10 asset state NoNext;
11 state Empty;
12
13 Policy@Unowned key available in HasNext, NoNext;
14 PolicyRecord@Active val available in HasNext, NoNext;
15
16
17 ActivePolicyList@Empty() {
18 ->Empty;
19 }
20
21 transaction getKey(ActivePolicyList@HasNext this) returns Policy@Unowned {
22 return key;
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23 }
24
25 transaction getValue(ActivePolicyList@HasNext this) returns PolicyRecord@Unowned {
26 return val;
27 }
28
29 transaction disconnectNext(ActivePolicyList@HasNext >> NoNext this)
30 returns ActivePolicyList@Owned {
31 ActivePolicyList removedNext = next;
32 ->NoNext;
33 return removedNext;
34 }
35
36 transaction reconnectNext(ActivePolicyList@NoNext >> HasNext this,
37 ActivePolicyList@Owned >> Unowned newNext) {
38 ->HasNext(next = newNext);
39 }
40
41 private transaction removeValue(ActivePolicyList@NoNext >> Empty this)
42 returns PolicyRecord@Active {
43 PolicyRecord valCopy = val;
44 ->Empty;
45 return valCopy;
46 }
47
48
49 transaction append(ActivePolicyList@Owned this, Policy@Unowned k,
50 PolicyRecord@Active >> Unowned v) {
51 switch this {
52 case HasNext {
53 next.append(k, v);
54 }
55 case Empty {
56 ->HasNext(key = k, val = v, next = new ActivePolicyList());
57 }
58 }
59 }
60
61
62
63 // Removes prevNode.next, returning the PolicyRecord that was previously owned by prevNode.next.
64 // Precondition: this is not the last node of the linked list.
65 transaction removeNext(ActivePolicyList@HasNext this) returns PolicyRecord@Active {
66 ActivePolicyList removedNode = this.next;
67 [removedNode@Owned];
68
69 switch removedNode {
70 case Empty {
71 revert; // this case doesn’t make any sense.
72 }
73 case HasNext {
74 this.next = removedNode.disconnectNext();
75 [removedNode@NoNext];
76 return removedNode.removeValue();
77 }
78 }
79 }
80
81 // Assumes "this" is not a match.
82 transaction removeInRest(ActivePolicyList@Owned this, Policy@Unowned policy)
83 returns PolicyRecord@Active {
84 switch this {
85 case Empty {
86 revert; // We didn’t find the policy in the list.
87 }
88 case HasNext {
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89 switch next {
90 case Empty {
91 revert;
92 }
93 case HasNext {
94 if(next.getKey().equals(policy)) {
95 return this.removeNext();
96 }
97 else {
98 return next.removeInRest(policy);
99 }

100 }
101 }
102 }
103 }
104 }
105 }
106
107
108 main asset contract ActivePolicyMap {
109 ActivePolicyList@Owned list;
110
111 ActivePolicyMap@Owned() {
112 list = new ActivePolicyList(); // Start with an empty list.
113 }
114
115 transaction set(ActivePolicyMap@Owned this,
116 Policy@Unowned key,
117 PolicyRecord@Active >> Unowned val) {
118 list.append(key, val);
119 }
120
121
122
123
124 // remove and return value of the pair with the given policy as a key
125 transaction get(ActivePolicyMap@Owned this,
126 Policy@Unowned policy) returns PolicyRecord@Active {
127 PolicyRecord removed;
128
129 switch list {
130 case Empty {
131 revert; // Element not in map.
132 }
133 case HasNext {
134 if(list.getKey().equals(policy)) {
135 ActivePolicyList secondNode = list.disconnectNext();
136 [list@NoNext];
137 removed = list.removeValue();
138 list = secondNode;
139 } else {
140 removed = list.removeInRest(policy);
141 }
142 }
143 }
144
145 return removed;
146
147 }
148
149
150 }

Bank.obs
1 import "Money.obs"
2
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3 main asset contract Bank {
4 Money@Owned mon;
5 // the bank’s private key for making tokens
6 int key;
7
8 Bank@Owned() {
9 // TODO: generate key

10 mon = new Money(1000000);
11 key = 35;
12 }
13
14 transaction withdrawMoney(int amount) returns Money@Owned{
15 return mon.getAmountOfMoney(amount);
16 }
17
18 transaction depositMoney(Money@Owned >> Unowned m) {
19 mon.addMoney(m);
20 }
21
22 }

InsuranceBid.obs
1 import "Money.obs"
2
3 main contract InsuranceBid {
4 int cost;
5 int expirationTime;
6
7 asset state HoldingPayout {
8 Money@Owned payout;
9 }

10 state NoPayout;
11
12 InsuranceBid@HoldingPayout(int c, int expiration, Money@Owned >> Unowned m) {
13 cost = c;
14 expirationTime = expiration;
15 ->HoldingPayout(payout = m);
16 }
17
18 transaction getCost(InsuranceBid@Unowned this) returns int {
19 return cost;
20 }
21
22 transaction getExpirationTime(InsuranceBid@Unowned this) returns int {
23 return expirationTime;
24 }
25
26 transaction getPayout(InsuranceBid@HoldingPayout >> NoPayout this) returns Money@Owned {
27 Money p = payout;
28 ->NoPayout;
29 return p;
30 }
31
32
33 }

InsuranceClient.obs
1 import "InsuranceService.obs"
2 import "IO.obs"
3
4 main contract InsuranceClient {
5 transaction main(remote InsuranceService@Shared insService) {
6 TimeService@Shared timeService = new TimeService();
7 Bank@Shared bank = new Bank();
8 // should be requesting money from bank, but can’t call transactions from constructor
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9 Money@Owned money = new Money(25);
10 Insurer@Owned insurers = new Insurer(timeService, bank, money);
11
12 insService.addInsurer(insurers);
13
14 Policy@Offered policy = insService.requestBids(3);
15
16 // test
17 new IO().println(policy.getCost());
18
19 // now buy the policy
20 Money@Owned refund = insService.buyPolicy(policy, new Money(10));
21
22 new IO().println(refund.getAmount());
23
24 }
25 }

InsuranceService.obs
1 import "Insurer.obs"
2 import "WeatherRecord.obs"
3 import "Signature.obs"
4 import "PolicyRecord.obs"
5 import "PendingPolicyMap.obs"
6 import "ActivePolicyMap.obs"
7
8
9 main asset contract InsuranceService {

10 // TODO: Collection of Insurer
11 // TODO: Keys of trusted banks
12 state Ready {
13 Insurer@Shared insurer;
14 TimeService@Shared timeService;
15 // for now have to have a reference to bank
16 Bank@Shared bank;
17 }
18
19
20 state New {
21 }
22
23 // pending and active policies
24 PendingPolicyMap@Owned pendingPolicies;
25 ActivePolicyMap@Owned activePolicies;
26
27
28 InsuranceService@Owned() {
29 pendingPolicies = new PendingPolicyMap();
30 activePolicies = new ActivePolicyMap();
31 ->New();
32 }
33
34 transaction setup(InsuranceService@New >> Ready this,
35 TimeService@Shared ts,
36 Bank@Shared b,
37 Insurer@Shared ins) {
38 ->Ready(insurer = ins, timeService = ts, bank = b);
39 }
40
41 transaction testSetup(InsuranceService@New >> Ready this) {
42 // Convenience transaction for testing.
43 TimeService ts = new TimeService();
44 Bank b = new Bank();
45 Money m = b.withdrawMoney(10000);
46 Insurer ins = new Insurer(ts, b, m);
47 ->Ready(insurer = ins, timeService = ts, bank = b);
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48 }
49
50 transaction getTimeService(InsuranceService@Ready this) returns TimeService@Shared {
51 return timeService;
52 }
53
54 transaction getBank(InsuranceService@Ready this) returns Bank@Shared {
55 return bank;
56 }
57
58 // All bids (for now) are for one-month periods. They insure within
59 // "radius" of the given coordinate:
60 // if the moisture content ever drops below the threshold, then the policy pays out.
61 transaction requestBid(InsuranceService@Ready this,
62 int longitude,
63 int latitude,
64 int radius,
65 int moistureContent,
66 int payout) returns Policy@Offered {
67 InsuranceBid insBid = insurer.requestBid(longitude, latitude, radius, moistureContent, payout);
68
69 int cost = insBid.getCost();
70 int expiration = insBid.getExpirationTime();
71 Money m = insBid.getPayout();
72
73 Policy policy = new Policy(cost, expiration, longitude, latitude, radius, moistureContent);
74 PolicyRecord pendingPolicy = new PolicyRecord(policy, m);
75
76 pendingPolicies.set(policy, pendingPolicy);
77
78 return policy;
79 }
80
81 transaction buyPolicy(InsuranceService@Ready this,
82 Policy@Offered >> (Active | Expired) policy,
83 Money@Owned >> Unowned money) returns Money@Owned {
84
85 if (timeService.getTime() > policy.getExpirationTime()) {
86 PolicyRecord pendingPolicy = pendingPolicies.get(policy); [pendingPolicy @ Pending];
87
88 // refund insurer’s payout
89 Money insurerRefund = pendingPolicy.refund();
90 [pendingPolicy @ Expired];
91
92 insurer.receiveRefund(insurerRefund);
93
94 // expire policy and return money
95 disown pendingPolicy;
96 policy.expire();
97 return money;
98 } else {
99 PolicyRecord pendingPolicy = pendingPolicies.get(policy);

100 // get payment
101 int cost = policy.getCost();
102 Money payment = money.getAmountOfMoney(cost);
103
104 // activate policy record with payment
105 pendingPolicy.activate(payment);
106 activePolicies.set(policy, pendingPolicy);
107
108 // activate policy and return any change
109 policy.activate();
110 return money;
111 }
112 }
113
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114 // Returns a payment.
115 transaction claim(InsuranceService@Ready this,
116 Policy@Active >> Claimed policy,
117 WeatherRecord@Shared weatherRecord,
118 Signature s) returns Money@Owned {
119 if (!s.verify(weatherRecord)) {
120 // Invalid signature; can’t pay a claim with it.
121 revert "Unable to verify weather record signature.";
122 }
123
124 if (policy.isClaimableWithWeather(weatherRecord)) {
125
126 // get will revert if the policy isn’t found.
127 PolicyRecord record = activePolicies.get(policy);
128 Money payment = record.claim();
129
130 policy.claim();
131
132 return payment;
133 }
134 else {
135 revert "The policy cannot be claimed because it does not apply to the given weather record.";
136 }
137 }
138
139 }

Insurer.obs
1 import "InsuranceBid.obs"
2 import "Bank.obs"
3 import "TimeService.obs"
4
5 // TODO : Collections
6
7 main asset contract Insurer {
8 Money@Owned money;
9 Bank@Unowned bank;

10 TimeService@Shared timeService;
11
12 Insurer@Owned(TimeService@Shared ts, Bank@Unowned b, Money@Owned >> Unowned m) {
13 timeService = ts;
14 bank = b;
15 money = m;
16 }
17
18 // TODO : Calculate Bid using some needed information, for now just int
19 transaction requestBid(int longitude,
20 int latitude,
21 int radius,
22 int moistureContent,
23 int payout) returns InsuranceBid@HoldingPayout {
24 // For now, assume 10% of policies will have to pay out, and we’re keeping a $10 profit.
25 // Obviously this is oversimplified.
26 int costOfBid = payout / 10 + 10;
27
28
29 // available for 24 hours
30 int twentyFourHours = timeService.hoursToMillis(24);
31 int expirationTime = timeService.getTime() + twentyFourHours;
32
33 int insurerEscrowAmount = payout - costOfBid;
34
35 if (money.getAmount() < insurerEscrowAmount) {
36 revert "Insurer does not have sufficient funds to offer another bid.";
37 }
38

254



39 // get correct amount of money from owned money
40 Money escrowMoney = money.getAmountOfMoney(insurerEscrowAmount);
41
42 InsuranceBid b = new InsuranceBid(costOfBid, expirationTime, escrowMoney);
43
44 return b;
45 }
46
47 transaction receiveRefund(Money@Owned >> Unowned m) {
48 money.addMoney(m);
49 }
50
51 transaction getRemainingBalance() returns int {
52 return money.getAmount();
53 }
54
55 }

Money.obs
1 asset contract Money {
2 int amount;
3
4 Money@Owned(int amt) {
5 // TODO: confirm that bank can only make money
6 if (1 + 2 == 3) {
7 amount = amt;
8 } else {
9 revert;

10 }
11 }
12
13 transaction addMoney(Money this, Money@Owned >> Unowned m) {
14 amount = amount + m.getAmount();
15 disown m;
16 }
17
18 transaction getAmount(Money this) returns int {
19 return amount;
20 }
21
22 transaction getAmountOfMoney(Money this, int amt) returns Money@Owned {
23 if (amt > amount) {
24 // TODO: or should this return as much as they have (amount)
25 revert "Can’t split out more money than is available in a given Money object.";
26 } else {
27 amount = amount - amt;
28 return new Money(amt);
29 }
30 }
31
32 }

PendingPolicyMap.obs
1 import "PolicyRecord.obs"
2
3
4 // This implements a mutable linked list of Pending policies.
5 contract PendingPolicyList {
6 asset state HasNext {
7 PendingPolicyList@Owned next;
8 }
9

10 asset state NoNext;
11 state Empty;
12
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13 Policy@Unowned key available in HasNext, NoNext;
14 PolicyRecord@Pending val available in HasNext, NoNext;
15
16
17 PendingPolicyList@Empty() {
18 ->Empty;
19 }
20
21 transaction getKey(PendingPolicyList@HasNext this) returns Policy@Unowned {
22 return key;
23 }
24
25 transaction getValue(PendingPolicyList@HasNext this) returns PolicyRecord@Unowned {
26 return val;
27 }
28
29 transaction disconnectNext(PendingPolicyList@HasNext >> NoNext this)
30 returns PendingPolicyList@Owned {
31 PendingPolicyList removedNext = next;
32 ->NoNext;
33 return removedNext;
34 }
35
36 transaction reconnectNext(PendingPolicyList@NoNext >> HasNext this,
37 PendingPolicyList@Owned >> Unowned newNext) {
38 ->HasNext(next = newNext);
39 }
40
41 private transaction removeValue(PendingPolicyList@NoNext >> Empty this)
42 returns PolicyRecord@Pending {
43 PolicyRecord valCopy = val;
44 ->Empty;
45 return valCopy;
46 }
47
48
49 transaction append(PendingPolicyList@Owned this,
50 Policy@Unowned k,
51 PolicyRecord@Pending >> Unowned v) {
52 switch this {
53 case HasNext {
54 next.append(k, v);
55 }
56 case Empty {
57 ->HasNext(key = k, val = v, next = new PendingPolicyList());
58 }
59 }
60 }
61
62
63
64 // Removes prevNode.next, returning the PolicyRecord that was previously owned by prevNode.next.
65 // Precondition: this is not the last node of the linked list.
66 transaction removeNext(PendingPolicyList@HasNext this) returns PolicyRecord@Pending {
67 PendingPolicyList removedNode = this.next;
68 [removedNode@Owned];
69
70 switch removedNode {
71 case Empty {
72 revert; // this case doesn’t make any sense.
73 }
74 case HasNext {
75 this.next = removedNode.disconnectNext();
76 [removedNode@NoNext];
77 return removedNode.removeValue();
78 }
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79 }
80 }
81
82 // Assumes "this" is not a match.
83 transaction removeInRest(PendingPolicyList@Owned this,
84 Policy@Unowned policy) returns PolicyRecord@Pending {
85 switch this {
86 case Empty {
87 revert; // We didn’t find the policy in the list.
88 }
89 case HasNext {
90 switch next {
91 case Empty {
92 revert;
93 }
94 case HasNext {
95 if(next.getKey().equals(policy)) {
96 return this.removeNext();
97 }
98 else {
99 return next.removeInRest(policy);

100 }
101 }
102 }
103 }
104 }
105 }
106 }
107
108
109 main asset contract PendingPolicyMap {
110 PendingPolicyList@Owned list;
111
112 PendingPolicyMap@Owned() {
113 list = new PendingPolicyList(); // Start with an empty list.
114 }
115
116 transaction set(PendingPolicyMap@Owned this,
117 Policy@Unowned key,
118 PolicyRecord@Pending >> Unowned val) {
119 list.append(key, val);
120 }
121
122
123
124
125 // remove and return value of the pair with the given policy as a key
126 transaction get(PendingPolicyMap@Owned this,
127 Policy@Unowned policy) returns PolicyRecord@Pending {
128 PolicyRecord removed;
129
130 switch list {
131 case Empty {
132 revert; // Element not in map.
133 }
134 case HasNext {
135 if(list.getKey().equals(policy)) {
136 PendingPolicyList secondNode = list.disconnectNext();
137 [list@NoNext];
138 removed = list.removeValue();
139 list = secondNode;
140 } else {
141 removed = list.removeInRest(policy);
142 }
143 }
144 }
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145
146 return removed;
147
148 }
149 }

PolicyRecord.obs
1 import "Policy.obs"
2 import "Money.obs"
3
4
5 main contract PolicyRecord {
6 Policy@Unowned policy;
7
8 asset state Pending {
9 Money@Owned payout;

10 }
11
12 asset state Active {
13 Money@Owned claim;
14 }
15
16 state Expired {}
17 state Claimed {}
18
19 PolicyRecord@Pending(Policy@Unowned p, Money@Owned >> Unowned m) {
20 policy = p;
21 Pending::payout = m;
22 ->Pending;
23 }
24
25 transaction getPolicy(PolicyRecord this) returns Policy@Unowned {
26 return policy;
27 }
28
29 transaction refund(PolicyRecord@Pending >> Expired this) returns Money@Owned {
30 Money refund = payout;
31 ->Expired;
32 return refund;
33 }
34
35 transaction activate(PolicyRecord@Pending >> Active this, Money@Owned >> Unowned policyCost) {
36 payout.addMoney(policyCost);
37 Active::claim = payout;
38 ->Active;
39 }
40
41 transaction claim(PolicyRecord@Active >> Claimed this) returns Money@Owned {
42 Money m = claim;
43 ->Claimed;
44 return m;
45 }
46
47 }

Signature.obs
1 import "WeatherRecord.obs"
2
3 contract Signature {
4 string signature; // If we had arrays of bytes, we’d use those, but we don’t.
5
6 // Constructor makes a Signature object that corresponds to a particular object.
7 Signature@Owned (WeatherRecord c) {
8 signature = ""; // TODO
9 }
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10
11 // verify takes a contract and returns true iff the receiver is a signature of that contract.
12 transaction verify(Signature@Unowned this, WeatherRecord c) returns bool {
13 return true; // TODO
14 }
15 }

TimeService.obs
1 main contract TimeService {
2 int currentTimeInMillis;
3
4 TimeService@Shared() {
5 currentTimeInMillis = 0;
6 }
7
8 transaction getTime() returns int {
9 return currentTimeInMillis;

10 }
11
12 transaction incrTime() {
13 currentTimeInMillis = currentTimeInMillis + 1;
14 }
15
16 transaction hoursToMillis(int hours) returns int {
17 return hours * 3600000;
18 }
19
20 transaction setTime(int newMillis) {
21 if (newMillis >= currentTimeInMillis) {
22 currentTimeInMillis = newMillis;
23 }
24 else {
25 revert "Can’t move time backwards.";
26 }
27 }
28 }

WeatherRecord.obs
1 // A WeatherRecord represents a report from an external weather service.
2 // It records a soil moisture measurement at a particular location and time.
3
4 contract WeatherRecord {
5 int longitude;
6 int latitude;
7 int moisture;
8 int timestamp;
9

10 WeatherRecord@Shared(int lo, int la, int m, int t) {
11 longitude = lo;
12 latitude = la;
13 moisture = m;
14 timestamp = t;
15 }
16
17 transaction getLongitude(WeatherRecord@Unowned this) returns int {
18 return longitude;
19 }
20
21 transaction getLatitude(WeatherRecord@Unowned this) returns int {
22 return latitude;
23 }
24
25 transaction getMoisture(WeatherRecord@Unowned this) returns int {
26 return moisture;
27 }
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28
29 transaction getTimestamp(WeatherRecord@Unowned this) returns int {
30 return timestamp;
31 }
32 }

Solidity Implementation

bank.sol
1 pragma solidity ˆ0.4.0;
2 import "./money.sol";
3
4 contract Bank {
5 Money mon;
6 address owner;
7 mapping (address => uint) public balances;
8
9

10 constructor() public {
11 mon = new Money(0);
12 owner = msg.sender;
13 }
14
15 function addMoney(uint amount) public {
16 mon.addMoney(new Money(amount));
17 }
18
19
20 function send(address receiver, uint amount) public {
21 require(balances[msg.sender] >= amount, "Not enough money to send.");
22 balances[msg.sender] -= amount;
23 balances[receiver] += amount;
24 }
25
26 }

insurancebid.sol
1 pragma solidity ˆ0.4.0;
2 import "./money.sol";
3
4
5 contract InsuranceBid {
6 uint public expirationTime;
7 uint public cost;
8 Money public payout;
9 address public insurer;

10
11 constructor (uint _expirationTime, uint _cost, Money _payout) public {
12 insurer = msg.sender;
13 expirationTime = _expirationTime;
14 cost = _cost;
15 payout = _payout;
16 }
17
18 }

insuranceservice.sol
1 pragma solidity ˆ0.4.0;
2 import "./insurer.sol";
3 import "./policyrecord.sol";
4
5
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6 contract InsuranceService {
7 Insurer[] public insurers;
8 address public owner;
9 mapping (address => PolicyRecord[]) public pendingPolicies;

10 mapping (address => PolicyRecord) public activePolicies;
11
12 constructor() public {
13 owner = msg.sender;
14 }
15
16 function requestBids(uint info) public returns (Policy[]){
17 Policy[] memory policies = new Policy[](insurers.length);
18 PolicyRecord[] memory pending = new PolicyRecord[](insurers.length);
19
20 for (uint i = 0; i < insurers.length; i++) {
21 InsuranceBid insBid = insurers[i].requestBid(info); //info for now is just int
22 uint cost = insBid.cost();
23 uint expirationTime = insBid.expirationTime();
24 Money payout = insBid.payout();
25
26 Policy policy = new Policy(cost, expirationTime);
27 PolicyRecord record = new PolicyRecord(policy, payout);
28
29 policies[i] = policy;
30 pending[i] = record;
31 }
32
33 pendingPolicies[msg.sender] = pending;
34
35 return policies;
36 }
37
38 function buyPolicy(Policy policy, Money money, uint i) public returns (Money){
39 require(policy.cost() == money.amount(), "Not enough money to buy policy.");
40 require(policy.currentState() == Policy.States.Offered,
41 "Policy must be Offered in order to purchase.");
42
43 // assuming i is index of the Policy...
44 PolicyRecord pendingPolicy = pendingPolicies[msg.sender][i];
45
46
47 if (now > policy.expirationTime()) {
48 Money refund = pendingPolicy.refund();
49 // have to find insurer from insurers and give refund...
50 policy.expire();
51 return money;
52 } else {
53 uint cost = policy.cost();
54 Money payment = money.getAmountOfMoney(cost);
55 pendingPolicy.activate(payment);
56 activePolicies[msg.sender] = pendingPolicy;
57 policy.activate;
58 return money;
59 }
60
61 }
62
63 function addInsurer(Insurer insurer) public {
64 insurers.push(insurer);
65 }
66 }

insurer.sol
1 pragma solidity ˆ0.4.0;
2 import "./money.sol";
3 import "./insurancebid.sol";
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4 import "./bank.sol";
5
6
7 contract Insurer {
8 Money public mon;
9 Bank public bank;

10 address public owner;
11
12 constructor(Bank _bank, Money _money) public {
13 bank = _bank;
14 mon = _money;
15 owner = msg.sender;
16 }
17
18 // TODO: Calculate bids using some needed information, for now just int
19 function requestBid(uint i) public returns (InsuranceBid) {
20 uint costOfBid = i + 4;
21 uint costOfPayout = i + 6;
22
23 // available for 24 hours
24 uint twentyFourHours = 24 * 3600000;
25 uint expirationTime = now + twentyFourHours;
26
27 // buy token (to ensure money has been given)
28 Money m = mon.getAmountOfMoney(costOfPayout);
29
30 InsuranceBid bid = new InsuranceBid(expirationTime, costOfBid, m);
31
32 return bid;
33 }
34
35
36 function receiveRefund(Money m) public {
37 mon.addMoney(m);
38 }
39 }

money.sol
1 pragma solidity ˆ0.4.0;
2 contract Money {
3 uint public amount;
4 address public owner;
5
6 constructor(uint _amount) public {
7 owner = msg.sender;
8 amount = _amount;
9 }

10
11 function addMoney(Money m) public {
12 // validate m’s owner somehow?
13 // here we can ensure that the owner of the money isn’t
14 // continuously sending money to themselves
15 require(owner != m.owner(), "Can’t add the same money to current money.");
16 amount += m.amount(); // have to make amounts public for this
17 delete(m);
18 }
19
20 function getAmountOfMoney(uint _amount) public returns (Money) {
21 require(_amount <= amount, "Requesting too much money.");
22 amount -= _amount;
23 return Money(_amount);
24 }
25
26 }

policy.sol
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1 pragma solidity ˆ0.4.0;
2 contract Policy {
3 enum States {Offered, Active, Expired}
4 States public currentState;
5 uint public cost;
6 uint public expirationTime;
7
8 constructor (uint _cost, uint _expirationTime) public {
9 cost = _cost;

10 expirationTime = _expirationTime;
11 currentState = States.Offered;
12 }
13
14 function activate() public {
15 require(currentState == States.Offered,
16 "Can’t call activate() on Policy not in Offered state.");
17 currentState = States.Active;
18 cost = 0;
19 expirationTime = 0;
20 }
21
22 function expire() public {
23 require(currentState == States.Offered,
24 "Can’t call expire() on Policy not in Offered state.");
25 currentState = States.Expired;
26 cost = 0;
27 expirationTime = 0;
28 }
29 }

policyrecord.sol
1 pragma solidity ˆ0.4.0;
2 import "./policy.sol";
3 import "./money.sol";
4
5
6 contract PolicyRecord {
7 Policy public policy;
8 enum States {Pending, Active, Expired}
9 States public currentState;

10 Money money;
11
12
13 constructor (Policy _policy, Money _money) public {
14 policy = _policy;
15 money = _money;
16 currentState = States.Pending;
17 }
18
19 function refund() public returns (Money) {
20 require(currentState == States.Pending, "PolicyRecord must be Pending to give refund.");
21 currentState = States.Expired;
22 Money returnMoney = money;
23 delete(money);
24 return returnMoney;
25 }
26
27 function activate(Money policyCost) public {
28 require(currentState == States.Pending, "PolicyRecord must be Pending to activate.");
29 money.addMoney(policyCost);
30 currentState = States.Active;
31 }
32 }
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[89] C. Haack, E. Poll, J. Schäfer, and A. Schubert. 2007. Immutable objects for a java-like
language. In European Symposium on Programming.

[90] Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Éric Tanter, and Andreas
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