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Abstract
In this work, we explore the possibility of applying sketching, or dimensional-

ity reduction, in the least squares regression (LLS) problem in differentiable pro-
gramming settings. To motivate automatic differentiation (AD) for systems with a
sketched regression component, we need to answer the following questions: do we
yield similar derivatives (AD transformations) in differentiable programming sys-
tems with LLS and sketched LLS? In practice, does a system containing sketched
LLS converge faster than the same system with LLS in training? How close are the
results after convergence? To answer them, we first provide a bound on the operator
norm of a sketched pseudoinverse matrix product, which is useful when analyzing
the derivatives of sketched regression. We then give analysis on the approximation
errors of derivatives in two proposed ways of sketched regression. Finally, we run
experiments on both synthetic and real-world datasets to test the performance of our
sketching methods.
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Chapter 1

Introduction

1 A sketch is a sub-linear space data structure that can answer certain types of queries in the
original data with approximation guarantees. Since the space usage of the sketch is sub-linear to
the input size, a lot of times we bene�t from a small sketch size and therefore achieve run time
acceleration. The method to convert the original data into a sketch is called sketching.

Consider the well-known linear least squares regression (LLS) problem. A least squares
regression takes in a matrixA of sizen � d (n � d) and a vectorb of sizen � 1, and aims
to �nd argminy kAy � bk2. For a sketched least squares regression (LLSS), we convert LLS to
argminy kSAy � Sbk2 by multiplying a sketching matrixS2. SupposeS has sizem� n with m <
n. The original problem takes in a matrix of sizen� d and a vector of sizen, whereas the sketched
problem involves a matrix of sizem � d and a vector of sizem. Note the problem size becomes
a lot smaller givenSA can be calculated fast andm � n. Moreover, for sketching matrices that
form (1 � � ) `2 subspace embeddings, it is guaranteed thatkAy �

S � bk2 = (1 � � )kAy � � bk2
3,

wherey� is the solution to the unsketched problem andy�
S is the solution to the sketched problem.

There has been extensive research on the type and size of the sketching matrix that can be used
as the sketching matrix of LLSS. See [15] for a survey.

In this paper, however, we are not going to design new sketching matrices. Instead, we
mainly use the sketching matrix property as a black box and try to answer the question that
whether LLSS can replace LLS in a differentiable programming system which internally uses
LLS. Although LLSS provides a good approximation to argminy kAy � bk2, the derivatives are
not necessarily close to those of LLS. As a result, after training with gradient descent method, a
neural network containing LLSS might converge differently and yield higher test loss compared
with the same neural network with LLS.

To address these concerns, we �rst provide necessary background on sketching and automatic
differentiation. After exploring a novel bound on a sketched pseudoinverse matrix product, we
analyze the two proposed ways of sketched regression, namely the “Regular Sketch” and the
“Partial Sketch”, how the forward and reverse AD transformations of LLSS can be expressed, and
the approximation error bound on the transformations. Finally, we test the actual loss and running

1This work is based on [8].
2Informally, we say a matrix is a sketching matrix if we apply the matrix and the input with certain operations to

get the sketch.
3We usekSxk2

2 = (1 � � )kxk2
2 to denote(1 � � )kxk2

2 � k Sxk2
2 � (1 + � )kxk2

2.

1



speed of our sketched regression in the diffentiable programming context on both synthetic and
real-world datasets to see if the sketching methods enjoy the favorable accuracy and complexity.
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Chapter 2

Preliminaries

2.1 Sketching in Least Squares Regression

We usek�k2 as the operator norm for matrices,k�kF as the Frobenius norm for matrices. andk�k,
k�k2 interchangeably as the`2 norm for vectors.
De�nition 2.1.1. (Least Squares Regression, or Linear Regression,`2 Regression) Given ann� d
matrixA with n � d, ann � 1 vectorb, output a vectorx that minimizeskAx � bk2.

Throughout the document, we assumen � d with rank(A) = d. We can view each row of
the matrixA as a data point and each column as a feature. For real world data, typically there are
far more number of data points than the number of features. This motivates us to only consider
the case whenn > d .

It is well-known that for a matrixA, argminxkAx � bk2 = A+ bwhereA+ is the pseudoinverse
of A. If A has full column rank,A+ = ( AT A)� 1AT .
De�nition 2.1.2. (`2-Subspace Embedding) LetV be a �xedd-dimensional subspace inRn . A
matrix S is a (1 � � ) `2-subspace embedding forV if for all x 2 V, kSxk2

2 = (1 � � )kxk2
2.

Equivalently, �xA to be ann � d matrix with column spaceV, anm � n matrix S is a (1 � � )
`2-subspace embedding forV if for all x 2 Rd, kSAxk2

2 = (1 � � )kAxk2
2.

Since we are working in thè2 norm throughout the document, we sometimes omit the`2 for
simplicity. When we say a matrixS is a subspace embedding for a matrixA, we meanS is a
(1 � � ) `2-subspace embedding for the column space ofA.

A limitation with the subspace embedding is that we need to know the subspace we are trying
to embed beforehand. This motivates the following de�nition.
De�nition 2.1.3. (Oblivious `2-Subspace Embedding) A matrixS is a (d; �; � ) oblivious `2-
subspace embedding if for any �xedd-dimensional subspaceV 2 Rn , for all x 2 V, kSxk2

2 =
(1 � � )kxk2

2 with probability at least1 � � . Equivalently, a matrixS is a (d; �; � ) oblivious`2-
subspace embedding if for anyn � d matrix A, for all x 2 Rd, kSAxk2

2 = (1 � � )kAxk2
2 with

probability at least1 � � .
Let U be a matrix with orthonormal columns andv be a unit vector.kSUvk2

2 = (1 � � )kUvk2
2

implies(SUv)T (SUv) � (Uv)T (Uv) � � and can be further simpli�ed tokUT ST SU� I k2 < � .
This also implies the singular values ofUT ST SU are in[1 � �; 1 + � ], and the singular values of
SU are in[1 � �; 1 + � ] for small� . These properties are useful in later chapters.

3



We use OSE to denote the oblivious`2-subspace embedding for short. In literature (and this
document), sometimes “oblivious” are dropped for convenience, and “subspace embedding” is
used interchangeably with “oblivious`2-subspace embedding”.
De�nition 2.1.4. (Singular Value Decomposition) Anyn � d matrix A can be decomposed as
U� V T , whereU is an n � d matrix with orthonormal columns,� is a d � d diagonal matrix
with singular values on its diagonal,V is ad � d orthogonal matrix.

2.2 Notations for Automatic Differentiation

� Automatic Differentiation, or AD for short, refers to the derivative evaluation algorithms.
Forward and reverse mode AD transformations refer to the actual derivative(s).

� Standard notation from AD community is used. Consider an independent variablex and a
dependent variabley. We use_x for an in�nitesimal perturbation ofx, and_y for @y

@x(notation
used in forward mode AD). We use�x for @y

@x (notation used in reverse mode AD). See [1]
for a thorough survey on automatic differentiation.

� We can write a computation process as a directed acyclic graph with circles representing
variables and squares representing operators. Say we computeg(x; y) = f (x) + y where
f (z) = cos z. Then the computation ofg(a; b) for valuesa; bcan be represented by the
following graph:

w2w1 = a cos

w3 = b

+ w4

Computation graphs can be helpful in the computation of forward and reverse mode AD
transformations.

2.3 The Problem

Formally, given ann � d matrixA (with n � d), ann � 1 vectorband anm� n sketching matrix
S, we want to show a tight bound on the sketched regression's approximation error of forward
and reverse mode AD transformations.

2.4 Motivation

Sketching is a useful technique to accelerate linear regression. However, to our best knowledge,
the relationship between the derivatives of the sketched and unsketched linear regression is yet

4



unknown. At the same time, there is burgeoning interest in extending deep learning (aka differ-
entiable programming) to allow more complicated building boxes to appear inside the computa-
tional process being differentiated. This includes optimization of various sorts (learning-to-learn,
bi-level optimization), AD of �xed point computations [2] recently rediscovered in the ML com-
munity [7] and even AD of discrete optimization processes [10]. In a nutshell, if a subroutine is
useful, people will want to use it in programs they write, and it is increasingly desired that we
are able to differentiate the programs we write. This has resulted in a systematic effort to explore
how to ef�ciently calculate appropriate derivatives of a variety of numerical processes. Here, we
consider differentiating a linear regression subroutine—in particular, linear regression computed
using sketching methods.

2.5 Related Work

There is a recent work on sketching for speeding up distributed communication of gradients [6].
More speci�cally, the work focuses on shortening the run time of distributed stochastic gradient
descent methods using CountSketch matrices.

In addition to gradient sketching, Hessian sketching has also been considered since second-
order methods have better convergence rate compared with �rst-order methods. For instance, [5]
is a recent work on Hessian sketching for serverless systems.

Instead of designing a general scheme of solving various kinds of problems with the tradi-
tional “sketch and solve” approach, our work focuses on the least squares regression, explicitly
reveals the derivative computation steps, and studies the errors resulted from sketching in deriva-
tives and the overall network.

5
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Chapter 3

A bound on the Opertor Norm of Sketched
Pseudoinverse

We need theorem 3.0.1 for proving theorem 3.0.2.
Theorem 3.0.1.(By Cohen et al. [3]) LetA 2 Rn� d andB 2 Rn� p with n � d; n � p. For
sketching matrixS drawn from(�; �; 2k)-OSE,

kAT ST SB � AT Bk2 � �
q

(kAk2
2 + kAk2

F =k)(kBk2
2 + kBk2

F =k)

holds with probability1 � � .
Theorem 3.0.2 says the pseudoinverse and sketched pseudoinverse terms cannot differ by

much in terms of the opertor norm, and the difference is small compared to the norm of the
pseudoinverse itself. Since we apply sketching on the least squares regression problem, we
will encounter pseudoinverse and sketched pseudoinverse terms in derivative computations. In
particular, terms like(SA)+ (SB), whereB is not a vector, come into the picture. Under these
circumstances, the bound in theorem 3.0.2 becomes useful as we need to bound the difference
between the unsketched and sketched pseudoinverse terms. This result also extends previous
results in whichB is considered as a vector [12] [4].

The intuition for proving the bound is that after singular value decomposition,(SA)+ SB and
A+ B have similar structures1. For the parts of the structures that differ between the two terms,
there are enough tools to bound them. The former term has aUT ST SU factor and the latter
term has a corresponding factorI . It is easy to bound the difference askUT ST SU � I k2 � � .
Also note the former term consists of aUT ST SB factor, and in the latter term the corresponding
factor isUT B. These two terms are exactly in the form of the left-hand side of theorem 3.0.1.
Theorem 3.0.2.Let A 2 Rn� d andB 2 Rn� p with n � d; n � p. Let S be a matrix drawn
from a distributionD with (�; �; 2k)-OSE property for somek � d. With probability1 � � ,

k(SA)+ SBk2 � k A+ Bk2 + O(� )
q

(1 + d=k)(kBk2
2 + kBk2

F =k)=� min(A)

1(SA)+ SB = V � � 1(UT ST SU) � 1UT ST SB andA+ B = V � � 1UT B .

7



Proof. Let U� V T be the SVD ofA. By Triangle Inequality,

k(SA)+ SBk2 = k(SA)+ SB � A+ B + A+ Bk2

� k A+ Bk2 + k(SA)+ SB � A+ Bk2

= kA+ Bk2 + kV� � 1(UT ST SU)� 1UT ST SB � V� � 1UT Bk2

= kA+ Bk2 + kV� � 1k2k(UT ST SU)� 1UT ST SB � UT Bk2

� k A+ Bk2 + k� � 1k2k(UT ST SU)� 1UT ST SB � (UT ST SU)� 1UT B

+ ( UT ST SU)� 1UT B � UT Bk2

� k A+ Bk2 + k� � 1k2(k(UT ST SU)� 1k2kUT ST SB � UT Bk2

+ k(UT ST SU)� 1 � I dk2kUT Bk2)

Recall the singular values ofUT ST SU are in[1 � �; 1 + � ] whenS is an OSE. Therefore the
singular values of(UT ST SU)� 1 are also roughly in[1 � �; 1 + � ] for small � , and the singular
values of(UT ST SU)� 1� I are in[� �; � ]. Also by theorem 3.0.1, we havekUT ST SB� UT Bk2 �p

(1 + d=k)(kBk2
2 + kBk2

F =k). Now we can continue the proof as follows:

k(SA)+ SBk2 � k A+ Bk2 + k� � 1k2(k(UT ST SU)� 1k2kUT ST SB � UT Bk2

+ k(UT ST SU)� 1 � I dk2kUT Bk2)

� k A+ Bk2 + k� � 1k2(1 + � )�

r

(1 +
d
k

)(kBk2
2 +

kBk2
F

k
) + � k� � 1k2kUT Bk2

� k A+ Bk2 + 2� k� � 1k2

r

(1 +
d
k

)(kBk2
2 +

kBk2
F

k
) + � k� � 1k2kBk2

� k A+ Bk2 + 3� k� � 1k2

r

(1 +
d
k

)(kBk2
2 +

kBk2
F

k
)

� k A+ Bk2 +
3�

� min (A)

r

(1 +
d
k

)(kBk2
2 +

kBk2
F

k
)

Notice that if k=�2 � d, we have�
p

1 + d=k � 1, and the termkBk2=�min (A) roughly
equals tokA+ Bk2, which translates tok(SA)+ SBk2 � (1+ c)kA+ Bk2 wherec is a constant de-
pends onk; d; � and is small whenk=�2 > d . In words, we have shown thatk(SA)+ SBk2=kA+ Bk2 �
1 in practice.

We simultaneously get a lower bound onk(SA)+ SBk2 as well. If we interchange(SA)+ SB
andA+ B in the proof, as every term is in norm, we would get

kA+ Bk2 � k (SA)+ SBk2 + O(� )
q

(1 + d=k)(kBk2
2 + kBk2

F =k)=� min(A):

8



Chapter 4

Forward and Reverse Mode AD of
Sketched Regression

� Regular Sketch: We de�ne the “Regular Sketch” to be the scheme that approximates
argminxkAx � bk with argminxkSAx � Sbk = ( AT ST SA)� 1AT ST Sband computes the
AD transformations accordingly for both the forward and reverse mode.

� Partial Sketch: We de�ne the “Partial Sketch” to be the scheme that uses(AT ST SA)� 1AT b
as primal, and for both forward and reverse mode, sketches the(AT A)� 1 term only. We
call it “Partial Sketch” because the derivatives yielded by this method is an approximation
of the real derivative if the sketched solution is given by(AT ST SA)� 1AT b. This sketch
is desirable because theoretically it still accelerates the computation, as �nding(AT A)� 1

is the most expensive operation in calculating the AD transformations. More importantly,
this sketch makes it easier to analyze the AD transformations. SketchingAT A only is �rst
considered by Pilanci et al. [9].

We summarize the results for the forward and reverse AD transformations.

Type Primal Forward Transform

Regular y = ( AT A)� 1AT b _y = ( AT A)� 1( _AT b+ AT _b� ( _AT A + AT _A)y)

“Regular Sketch” yS = ( AT ST SA)� 1AT ST Sb _yS = ( AT ST SA)� 1( _AT ST Sb+ AT ST S_b

� ( _AT ST SA + AT ST S _A)yS)

“Partial Sketch” yD = ( AT ST SA)� 1AT b _yD = ( AT ST SA)� 1( _AT b+ AT _b

� ( _AT A + AT _A)yD )

Table 4.1: Forward Mode AD Transformations.

The computation details can be found in the following section.

9



Type Primal Reverse Transform

Regular y = ( AT A)� 1AT b �A = � A(AT A)� 1 �yyT

� Ay �yT (AT A)� 1

+ b�yT (AT A)� 1

�b= A(AT A)� 1 �y
“Regular Sketch” yS = ( AT ST SA)� 1AT ST ST b �AS = � ST SA(AT ST SA)� 1 �ySyS

T

� ST SAyS �yS
T (AT ST SA)� 1

+ ST Sb�yS
T (AT ST SA)� 1

�bS = ST SA(AT ST SA)� 1 �yS

“Partial Sketch” yD = ( AT ST SA)� 1AT b �AD = � A(AT ST SA)� 1 �yD yD
T

� AyD �yD
T (AT ST SA)� 1

+ b�yD
T (AT ST SA)� 1

�bD = A(AT ST SA)� 1 �yD

Table 4.2: Reverse Mode AD Transformations.

4.1 AD Transformations

For completeness, we include the computations of AD transformations for the least squares re-
gression and two ways of the sketched regression.

4.1.1 Forward mode AD

Least Squares Regression

First we create a computation graph for computingy(A; b) = ( AT A)� 1AT b as shown in �gure
1. Then with matrix derivative rules, we have the following:

w1 = A

w2 = b

w3 = AT = w1
T

w4 = AT A = w3w1

w5 = ( AT A)� 1 = w� 1
4

w6 = AT b= w3w2

w7 = ( AT A)� 1AT b= w5w6

=)

_w1 = _A

_w2 = _b

_w3 = _w1
T

_w4 = _w3w1 + w3 _w1

_w5 = � w4
� 1 _w4w4

� 1

_w6 = _w3w2 + w3 _w2

_w7 = _w5w6 + w5 _w6

10



w2

w1

w3 mul

trans

w4mul

w6 inv

w5mul

w7

Figure 4.1: Computation Graph of Least Squares Regression
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Expand_y:

_w7 = _w5w6 + w5 _w6

= � w4
� 1 _w4w4

� 1w6 + w� 1
4 ( _w3w2 + w3 _w2)

= � (AT A)� 1 _w4(AT A)� 1AT b+ ( AT A)� 1( _AT b+ AT _b)

= � (AT A)� 1( _w3w1 + w3 _w1)(AT A)� 1AT b+ ( AT A)� 1( _AT b+ AT _b)

= � (AT A)� 1[( _AT A + AT _A)(AT A)� 1AT b� ( _AT b+ AT _b)]

= ( AT A)� 1[( _AT b+ AT _b) � ( _AT A + AT _A)w7]

= ( AT A)� 1[( _AT b+ AT _b) � ( _AT A + AT _A)y]

Regular Sketch

With computation graph �gure 2 and matrix derivative rules, we have the following:

w1 = A

w2 = b

w3 = Sw1

w4 = Sw2

w5 = w3
T

w6 = AT ST SA = w5w3

w7 = ( AT ST SA)� 1 = w� 1
6

w8 = AT ST Sb= w5w4

w9 = w7w8

=)

_w1 = _A

_w2 = _b

_w3 = S _w1

_w4 = S _w2

_w5 = _w3
T = _w1

T ST

_w6 = _w5w3 + w5 _w3

_w7 = � w6
� 1 _w6w6

� 1

_w8 = _w5w4 + w5 _w4

_w9 = _w7w8 + w7 _w8

Expand_yS:

_w9 = _w7w8 + w7 _w8

= � w6
� 1 _w6w6

� 1w8 + w6
� 1( _w5w4 + w5 _w4)

= � w6
� 1( _w5w3 + w5 _w3)w6

� 1w8 + w6
� 1( _w1

T ST w4 + w5S _w2)

= � w6
� 1( _w1

T ST w3 + w5S _w1)w6
� 1w8 + w6

� 1( _w1
T ST w4 + w5S _w2)

= w6
� 1( _w1

T ST w4 + w5S _w2 � ( _w1
T ST w3 + w5S _w1)w6

� 1w8)

= ( AT ST SA)� 1
� _AT ST Sb+ AT ST S_b� ( _AT ST SA + AT ST S _A)w7w8

�

= ( AT ST SA)� 1
� _AT ST Sb+ AT ST S_b� ( _AT ST SA + AT ST S _A)yS

�

Partial Sketch

The actual_yD corresponds to the primalyD = ( AT ST SA)� 1AT bis (AT ST SA)� 1( _AT b+ AT _b�
( _AT ST SA + AT ST S _A)yD ). However, as we discussed how the “Partial Sketch” works, we
simply sketch any(AT A)� 1 term in _y to approximate_yD . Recall _y = ( AT A)� 1[( _AT b+ AT _b) �
( _AT A + AT _A)y]. We only sketch theAT A term to get(AT ST SA)� 1[( _AT b+ AT _b) � ( _AT A +
AT _A)y] and use it as_yD . See the previous discussion for more details.
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w2

mulS

w4

w3

w1

mulS

w5 mul

trans

w6mul

w8 inv

w7mul

w9

Figure 4.2: Computation Graph of “Regular Sketch”

13



4.1.2 Reverse Mode AD

We include the computation of AD transformations in the reverse mode for the linear regression
and two ways of the sketched regression. The same computation graph for forward mode is used.
For reverse mode AD transformations, we want to �nd both�A and�b.

Least Squares Regression

See �gure 1 for the computation graph of the least squares regression.

w1 = A

w2 = b

w3 = AT = w1
T

w4 = AT A = w3w1

w5 = ( AT A)� 1 = w� 1
4

w6 = AT b= w3w2

w7 = ( AT A)� 1AT b= w5w6

=)

�w7 = �w7

�w6 = w5
T �w7

�w5 = �w7w6
T

�w4 = � w5 �w5w5

�w3 = �w6w2
T + �w4w1

T

�w2 = w3
T �w6

�w1 = �w3
T + w3

T �w4

Expand �A and�b:

�A = �w1

= �w3
T + w3

T �w4

= ( �w6w2
T + �w4w1

T )T + A(� w5 �w5w5)

= w2 �w6
T + w1 �w4

T � Aw5 �w5w5

= w2(w5
T �w7)T + w1(� w5 �w5w5)T � Aw5 �w5w5

= w2 �w7
T w5 � w1w5 �w5

T w5 � Aw5 �w5w5

= b�yT (AT A)� 1 � A(AT A)� 1 �w5
T (AT A)� 1 � A(AT A)� 1 �w5(AT A)� 1

= b�yT (AT A)� 1 � A(AT A)� 1w6 �w7
T (AT A)� 1 � A(AT A)� 1 �w7w6

T (AT A)� 1

= b�yT (AT A)� 1 � A(AT A)� 1AT b�yT (AT A)� 1 � A(AT A)� 1 �ybT A(AT A)� 1

= b�yT (AT A)� 1 � Ay �yT (AT A)� 1 � A(AT A)� 1 �yyT

�b= �w2

= w3
T �w6

= Aw5
T �w7

= A(AT A)� 1 �w7

= A(AT A)� 1 �y
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Regular Sketch

See �gure 2 for the computation graph of the “Regular Sketch”.

w1 = A

w2 = b

w3 = Sw1

w4 = Sw2

w5 = w3
T

w6 = AT ST SA = w5w3

w7 = ( AT ST SA)� 1 = w� 1
6

w8 = AT ST Sb= w5w4

w9 = w7w8

=)

�w9 = �yS

�w8 = w7
T �w9

�w7 = �w9w8
T

�w6 = � w7 �w7w7

�w5 = �w8w4
T + �w6w3

T

�w4 = w5
T �w8

�w3 = �w5
T + w5

T �w6

�w2 = ST �w4

�w1 = ST �w3

Expand �AS and�bS:

�AS = �w1

= ST �w3

= ST ( �w5
T + w5

T �w6)

= ST (( �w8w4
T + �w6w3

T )T � w5
T w7 �w7w7)

= ST ((w4 �w8
T + w3 �w6

T ) � w5
T w7 �w9w8

T w7)

= ST ((w4(w7
T �w9)T + w3(� w7 �w7w7)T ) � w5

T w7 �w9w8
T w7)

= ST ((w4 �w9
T w7 � w3w7

T �w7
T w7

T ) � w5
T w7 �w9w8

T w7)

= ST (w4 �w9
T w7 � w3w7

T ( �w9w8
T )T w7

T ) � w5
T w7 �w9w8

T w7)

= ST ((Sb�yS
T (AT ST SA)� 1 � SA(AT ST SA)� 1AT ST Sb�yS

T (AT ST SA)� 1

� SA(AT ST SA)� 1 �ySbT ST SA(AT ST SA)� 1)

= ST Sb�yS
T (AT ST SA)� 1 � ST SAyS �yS

T (AT ST SA)� 1 � ST SA(AT ST SA)� 1 �ySyS
T

�bS = �w2

= ST �w4

= ST w5
T �w8

= ST SAw7
T �w9

= ST SA(AT ST SA)� 1 �w9

= ST SA(AT ST SA)� 1 �yS

Partial Sketch

We simply sketch every(AT A)� 1 term in �A; �b to approximate�AD ; �bD respectively. Recall�A =
b�yT (AT A)� 1� Ay �yT (AT A)� 1� A(AT A)� 1 �yyT , �b= A(AT A)� 1 �y. We set�A0 = b�yD

T (AT ST SA)� 1�
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AyD �yD
T (AT ST SA)� 1 � A(AT ST SA)� 1 �yD yD

T and use it as�AD , �b0 = A(AT ST SA)� 1 �yD and
use it as�bD . Check the previous discussion for more details.

4.2 Bounds on Sketched Regression AD Transformations

For concision, we useM , MS as the shorthanded expressions forAT A; A T ST SA respectively.
We also make the assumption that�y = �yS = �yD to simplify the analysis.
Lemma 4.2.1. If S is drawn from a subspace embedding, with probability1 � � , we have

kAM � 1k2 = k� � 1k2

kAM � 1
S k2 = (1 � � )k� � 1k2

kM � 1 � M � 1
S k2 � � k� � 1k2

2

kM � 1 � M � 1
S kF � � k� � 1k2k� � 1kF

kM � 1 + M � 1
S k2 � (2 + � )k� � 1k2

2

kAM � 1 � AM � 1
S k2 � � k� � 1k2

kAM � 1 � AM � 1
S kF � � k� � 1kF

Proof. Consider the SVD of matrixA = U� V T . We haveM = AT A = V� UT U� V T =
V� 2V T andM � 1 = V� � 2V T . Additionally, AM � 1 = U� V T V� � 2V T = U� � 1V T yielding
kAM � 1k2 = k� � 1k2.

We can simplify the expressionAM � 1
S = U� V T (V � UT ST SU� V T )� 1 =

U� V T V� � 1(UT ST SU)� 1� � 1V T = U(UT ST SU)� 1� � 1V T and bound its norm
kU(UT ST SU)� 1� � 1V T k2 = (1 � � )k� � 1k2 with probability at least1 � � .

The remaining bounds follow:

kM � 1 � M � 1
S k2 = kV� � 1(I � (UT ST SU)� 1)� � 1V T k2

� k � � 1k2kI � (UT ST SU)� 1k2k� � 1k2

� � k� � 1k2
2

kM � 1 � M � 1
S kF = kV� � 1(I � (UT ST SU)� 1)� � 1V T kF

� k � � 1k2kI � (UT ST SU)� 1k2k� � 1kF

� � k� � 1k2k� � 1kF

kM � 1 + M � 1
S k2 = kV� � 1(I + ( UT ST SU)� 1)� � 1V T k2

� k � � 1k2kI + ( UT ST SU)� 1k2k� � 1k2

� (2 + � )k� � 1k2
2

kAM � 1 � AM � 1
S k2 = kU(I � (UT ST SU)� 1)� � 1V T k2

� k I � (UT ST SU)� 1k2k� � 1V T k2

� � k� � 1k2
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kAM � 1 � AM � 1
S kF = kU(I � (UT ST SU)� 1)� � 1V T kF

� k I � (UT ST SU)� 1k2k� � 1V T kF

� � k� � 1kF

Lemma 4.2.2. (By Sarlos and others [12] [11]) With our previous notations, we have

ky � ySk2 � O(� ) min
x

kAx � bk2kA+ k2 =
O(� )

� min (A)
min

x
kAx � bk2

4.2.1 Forward mode AD

Regular Sketch

Lemma 4.2.3.Given a matrixS that is an(�; �; d )-OSE, we can boundk _y� _ySk2 with probability
1 � � as follows.

Proof.

k _y � _ySk = kM � 1( _AT b+ AT _b� ( _AT A + AT _A)y)

� M � 1
S ( _AT ST Sb+ AT ST S_b� ( _AT ST SA + AT ST S _A)yS)k

� k M � 1 _AT b� M � 1
S

_AT ST Sbk + kM � 1AT _b� M � 1
S AT ST S_bk

+ kM � 1 _AT Ay � M � 1
S

_AT ST SAySk + kM � 1AT _Ay � M � 1
S AT ST S _AySk

We use the triangle inequality of versionkAB � CDk2 � k A � Ck2kB + Dk2 + kA +
Ck2kB � Dk2 for arbitrary matrices in the following equations.

The �rst difference term can be written as

kM � 1 _AT b� M � 1
S

_AT ST Sbk � k M � 1 � M � 1
S k2k _AT b+ _AT ST Sbk

+ kM � 1 + M � 1
S k2k _AT b� _AT ST Sbk

� � k� � 1k2
2k _AT b+ _AT ST Sbk

+ (2 + � )k� � 1k2
2k _AT b� _AT ST Sbk

Following up with the second difference term, where we use lemma 4.2.2.

kM � 1AT _b� M � 1
S AT ST S_bk � O(� ) min

x
kAx � _bk2kA+ k2
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The third difference term can be bounded as follows:

kM � 1 _AT Ay � M � 1
S

_AT ST SAySk � k M � 1 � M � 1
S k2k _AT Ay + _AT ST SAySk

+ kM � 1 + M � 1
S k2k _AT Ay � _AT ST SAySk

� � k� � 1k2
2k _AT Ay + _AT ST SAySk

+ (2 + � )k� � 1k2
2k _AT Ay � _AT ST SAySk

� � k� � 1k2
2k _AT Ay + _AT ST SAySk

+ (2 + � )k� � 1k2
2(k _AT Ak2ky � ySk

+ k _AT A � _AT ST SAk2kySk2)

Note that the second term of the bound vanishes whenS is the identity matrix. We can further
apply theorem 3.0.1 onk _AT A � _AT ST SAk2.

The last difference term can be bounded using the result in theorem 3.0.2 and lemma 4.2.2 as
follows:

kM � 1AT _Ay � M � 1
S AT ST S _AySk � k M � 1AT _Ay � M � 1

S AT ST S _Ayk

+ kM � 1
S AT ST S _Ay � M � 1

S AT ST S _AySk

� O(� )
minxkAx � _Ayk2

� min(A)

+ O(� )k(SA)+ S _Ak2
minxkAx � bk2

� min(A)

wherek(SA)+ S _Ak2 � k � � 1k2

�
k _Ak2 + O(� )

q
(1 + d=k)(k _Ak2

2 + k _Ak2
F =k)

�

Combining all four terms gives us an approximation bound.

Partial Sketch

Lemma 4.2.4.For any matrixS that is an(�; �; d )-OSE, we have with probability1 � � ,

k _y � _yD k � � k� � 1k2
2(k _AT b+ AT _bk + k( _AT A + AT _A)yk + kM � 1

S ( _AT A + AT _A)k2kAT bk)

Proof. Let G = _AT A + AT _A.

k _y � _yD k = k(M � 1 � M � 1
S )( _AT b+ AT _b) + M � 1

S ( _AT A + AT _A)yD � M � 1( _AT A + AT _A)y)k

� � k� � 1k2
2k _AT b+ AT _bk + k(M � 1 � M � 1

S )Gyk + kM � 1
S G(y � yD )k

� � k� � 1k2
2k _AT b+ AT _bk + � k� � 1k2

2kGyk + kM � 1
S G(M � 1AT b� M � 1

S AT b)k

� � k� � 1k2
2k _AT b+ AT _bk + � k� � 1k2

2kGyk + � kM � 1
S Gk2k� � 1k2

2kAT bk

= � k� � 1k2
2(k _AT b+ AT _bk + k( _AT A + AT _A)yk + kM � 1

S ( _AT A + AT _A)k2kAT bk)
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4.2.2 Reverse Mode AD

Regular Sketch

Lemma 4.2.5.With probability1 � � , the approximation error for the term�AS can be bounded
as follows.

Proof. Since the terms in�A and �AS have one to one correspondence, we bound the approxima-
tion error with three partsk �A � �ASkF � P1 + P2 + P3:

P1 = kb�yT M � 1 � ST Sb�yS
T M � 1

S kF

� k I � ST Sk2kb�yT M � 1
S kF + kb�yT (M � 1 � M � 1

S )kF

� k I � ST Sk2kb�yT M � 1
S kF + � k� � 1k2k� � 1kF kb�yT k2

P2 = kAM � 1 �yyT � ST SAM � 1
S �yyS

T kF

� k AM � 1 �yyT � AM � 1
S �yyT kF + kAM � 1

S �yyT � ST SAM � 1
S �yyS

T kF

� � k� � 1k2k�ykkyk + k(I � ST S)AM � 1
S �yyT kF

� � k� � 1k2k�ykkyk + kI � ST Sk2kAM � 1
S �yyT kF

P3 = kAy �yT M � 1 � ST SAyS �yS
T M � 1

S kF

� k Ay �yT M � 1 � AyS �yT M � 1
S kF + kAyS �yS

T M � 1
S � ST SAyS �yS

T M � 1
S kF

� k Ay �yT M � 1 � AyS �yT M � 1
S kF + kI � ST Sk2kAyS �yT M � 1

S kF

� k A(y � yS)kk�ykk� � 1k2k� � 1kF + kI � ST Sk2kAyS �yT M � 1
S kF

NoteP1; P2; P3 can be large because of thekI � ST Sk term.

Lemma 4.2.6.With probability1 � � , the approximation error for the term�bS can be bounded
as follows:

k�b� �bSk2 � k � � 1k2k�yk2(� + (1 + � )kI � ST Sk2)

Proof.

k�b� �bSk2 = kAM � T �y � ST SAM S
� T �ySk2

= kAM � 1 �y � AM � 1
S �y + AM � 1

S �y � ST SAM � 1
S �yk2

� k AM � 1 � AM � 1
S k2k�yk2 + kI � ST Sk2kAM � 1

S k2k�yk2

� � k� � 1k2k�yk2 + kI � ST Sk2kAM � 1
S k2k�yk2

� k � � 1k2k�yk2(� + (1 + � )kI � ST Sk2)

Note the bound is tight whenS = I . However,kI � ST Sk2 can be large.
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Partial Sketch

Lemma 4.2.7. With probability at least1 � � , the approximation error for the term�A can be
bounded by� � poly(kAkF ; kA � 1kF ; kbk2; k�yk2).

Proof. The approximation error can be split into3 terms such thatk �A � �AD kF � Q1 + Q2 + Q3

where:

Q1 = kb�yT M � 1 � b�yD
T M � 1

S kF

� � kb�yT kF k� � 1k2k� � 1kF

Q2 = kAM � 1 �yyT � AM � 1
S �yyD

T kF

= kA(M � 1 � M � 1
S )�yyT + AM � 1

S �y(yT � yD
T )kF

� k A(M � 1 � M � 1
S )�yyT kF + kAM � 1

S �y(y � yD )T kF

� � k� � 1k2k�yyT kF + kAM � 1
S k2k�y(y � yD )T kF

� � k� � 1k2k�ykkyk + kAM � 1
S k2k�ykkAM � 1 � AM � 1

S k2kbk

� � k� � 1k2k�ykkyk + kAM � 1
S k2k�yk� k� � 1k2kbk

� � k�ykk� � 1k2(kyk + kAM � 1
S k2kbk)

� � k�ykk� � 1k2(kyk + (1 + � )k� � 1k2kbk)

Q3 = kAy �yT M � 1 � AyD �yT M � 1
S kF

= kAy �yT (M � 1 � M � 1
S ) + Ay �yT M � 1

S � AyD �yT M � 1
S kF

� � kAy �yT k2k� � 1k2k� � 1kF + kA(y � yD )�yT M � 1
S kF

� � kAy �yT k2k� � 1k2k� � 1kF + � kAk2k� � 1k2kbkk�yT M � 1
S k

� � kAk2k� � 1k2(ky�yT k2k� � 1kF + kbkk�yT M � 1
S k)

Note thatQ1; Q2; Q3 areO(� ).

Lemma 4.2.8. With probability1 � � , the reverse mode approximation error for the term�bD

satis�es
k�b� �bD k2 � � k� � 1k2k�yk2

Proof.

k�b� �bD k2 = kAM � 1 �y � AM � 1
S �ySk2

= kU(I � (UT ST SU)� 1)� � 1V T �yk2

� � kUk2k� � 1k2k�yk2

� � k� � 1k2k�yk2
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In summary, we provide theoretical bounds on the approximation errors of forward and re-
verse mode AD transformations. For forward mode AD transformations, the errors for both the
“Regular Sketch” and the “Partial Sketch” are inO(� ). However, for reverse mode AD transfor-
mations, the errors for the “Regular Sketch” consist of the termkI � ST Sk2 which can be large
under certain circumstances. Say ifS is a CountSketch matrix,kI � ST Sk2 can be inO(n). In
reverse mode, the bound for AD transformations of the “Partial Sketch” is straightforward and
all in O(� ).

An intuitive explanation about the tight derivative bounds of the “Partial Sketch” is that, when
combining the terms, we can factor out all the terms that are not(AT A)� 1 or (AT ST SA)� 1 as
they are common terms. We can then use SVD onA with the inequalityk(UT ST SU)� 1� I k2 � �
to factor out a constant term� . For the “Regular Sketch” however, because of how derivative
rules work, we end up gettingI � ST S term if we factor out common terms. We cannot simply
bound the operator norm of a term with anI � ST S factor by adding the norm operator on
I � ST S as its norm grows with its dimension for certain sketching matrices. At the same time,
the approximation errors of the ADs of the “Regular Sketch” do not have the� factor.

Thus, we expect a better performance of the “Partial Sketch” than the “Regular Sketch” in
terms of approximating derivatives when replacing the least squares regression. We also expect
the “Partial Sketch” outperforms the “Regular Sketch” when incorporated in a larger deep learn-
ing system as reverse mode ADs are used in back-propagation and the “Partial Sketch” has lower
approximation errors in ADs.
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Chapter 5

Experiments

We consider both synthetic and deep learning experiments to highlight the performance of our
proposed sketching methods in approximating derivatives and speeding up training time.

For the synthetic experiment, we plot the approximation error of AD transformations of the
two proposed approaches for obtaining forward and reverse mode AD in �gure 5.1.

� We generateA 2 R100000� 100 andb2 R100000� 1 with entries to be drawn uniformly random
in [0; 1).

� We set�y[i ] = 1 if y[i ] > 0 and�y[i ] = � 1 if y[i ] < 0 (use sign as cost function).
� We set _A and_b's each entry to be to be drawn in i.i.d.N (0; 1) then multiplied with10� 4.
� For the forward mode, we plotk _y � _ySk2 in yellow andk _y � _yD k2 in blue.
� For the reverse mode, we plotk�b� �bSk2 in yellow andk�b� �bD k2 in blue.
� Three families of sketching matrices: Gaussian, CountSketch and subsampled randomized

Hadamard transform (SRHT) are applied.
We observe that the “Partial Sketch” is more accurate, which is consistent with our previous
results.

Figure 5.1: Numerical Observations in Synthetic Experiment

In �gure 5.1 we use old terminology “diff+sketch” and “sketch+diff” in place of the “Par-
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Figure 5.2: Training loss in linear and regression layers on MNIST and CIFAR10 datasets with
64; 128and256rank features run on a NVIDIA GTX980 GPU.

tial Sketch” and the “Regular Sketch”. Note we adapt the latter terminology throughout this
document for less confusion caused by naming. In �gure 5.2 we useds andsd as shorthanded
notation for “diff+sketch” and “sketch+diff” respectively, which should be replaced bypsandrs
that stand for the “Partial Sketch” and the “Regular Sketch” respectively.

For the deep learning experiments, we consider the following real-world datasets:
MNIST: 60; 000handwritten digits of shape28� 28for training and10; 000for testing.

CIFAR10: 60; 000images in10classes of which10; 000are for testing.
We use an autoencoder for showcasing our sketched regression layer. We consider the standard
encoder decoder framework with the encoder consisting of a linear layer mapping to64 dimen-
sions followed by a ReLu layer. The decoder is built with a linear layer mapping from64to 128
dimensions followed by a ReLU and a second linear layer mapping from128dimensions to the
input dimension, followed by atanh layer. In our experiments, we replace the linear layer of
the encoder by the linear least squares regression modules, both unsketched and sketched, which
have been considered in this work.

The linear layer takes in input datax, then applies a linear transformation tox with the
formulay = Ax + b in which A; b will be learned. The regression layer takes in input datax,
outputsy = ( AT A)� 1AT x in whichA will be learned throughout the training.
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Sketching
MNIST CIFAR10

64 128 256 64 128 256

RG
ps 0.16 0.08 0.08 0.21 0.09 0.08
rs 0.11 0.07 0.08 0.11 0.08 0.08

CS
ps 0.15 0.10 0.09 0.14 0.09 0.09
rs 0.10 0.09 0.08 0.09 0.08 0.08

Table 5.1: Test loss on the MNIST and CIFAR10 datasets after convergence of the sketching
algorithms using random Gaussian (RG) and CountSketch matrices (CS) with “Partial Sketch”
or ps, and “Regular Sketch” orrs.

Figure 5.3: Training loss in linear and regression layers on CIFAR10 dataset with 64, 128 and
256 rank features on multicore settings (CPU).

The result running on GPU is shown in �gure 5.2. Notice that the regression layer tends
to result in a higher loss and running time compared with the linear layer, and the sketched
regression layer hardly get any speedup over the plain regression layer. This is probably due to
the fact that we have not taken advantage of GPU capabilities for implementing the sketching
operations. We will discuss this oddity in the last chapter. Also, surprisingly the “Regular
Sketch” seems to result in better performance in terms of training loss than the “Partial Sketch”
approach, as shown numerically in table 5. And with higher rank features (for example 128,
256), the sketched regression model achieves a lower loss.

We note that sketching methods provide a signi�cant speedup over the plain regression layer
in the CPU setting as shown in �gure 5.3. Here we only consider the “Partial Sketch” version
though it should also apply to the “Regular Sketch”.
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