Automatic Differentiation of Sketched
Regression

Hang Liao

CMU-CS-20-119
August 2020

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
David P. Woodruff, Chair
Zico Kolter

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright (©) 2020 Hang Liao

Keywords: Theory, Deep Learning, Automatic Differentiation, Sketching, Least Squares
Regression

Abstract

In this work, we explore the possibility of applying sketching, or dimensional-
ity reduction, in the least squares regression (LLS) problem in differentiable pro-
gramming settings. To motivate automatic differentiation (AD) for systems with a
sketched regression component, we need to answer the following questions: do we
yield similar derivatives (AD transformations) in differentiable programming sys-
tems with LLS and sketched LLS? In practice, does a system containing sketched
LLS converge faster than the same system with LLS in training? How close are the
results after convergence? To answer them, we first provide a bound on the operator
norm of a sketched pseudoinverse matrix product, which is useful when analyzing
the derivatives of sketched regression. We then give analysis on the approximation
errors of derivatives in two proposed ways of sketched regression. Finally, we run
experiments on both synthetic and real-world datasets to test the performance of our
sketching methods.

v

Acknowledgments

I would like to give very special thanks to my advisor, Dr. David Woodruff, for
introducing me to the research area of sketching and streaming algorithms, and for
his advice, guidance and encouragement. It was very fortunate to work with him.

I would like to thank Dr. Vamsi Potluru for his guidance and patience while
working on the subject of sketched regression in differentiable programming setting.
I would like to thank both Dr. Vamsi Potluru and Dr. Barak Pearlmutter for their
advice and suggestions on the AISTATS paper’s video talk. I would also like to thank
Dr. Zico Kolter for his helpful lectures and assignments on automatic differentiation.

Special thanks to Dr. Anupam Gupta, Dr. William Hrusa, Dr. Vamsi Potluru,
Dr. Wilfried Sieg, and Dr. David Woodruff for supporting my graduate school appli-
cations. Special thanks to Dr. David Woodruff and Dr. Zico Kolter for being part of
my thesis committee and for their invaluable advice on this document.

Last but foremost, I would not have the opportunity to study at CMU without
the care and support from my parents. I am very grateful to my family for their
continuous support and encouragement during my studies.

vi

Contents

(L__Introduction|

P Preliminacics
2.1 Sketching in Least Squares Regression|

[3 A bound on the Opertor Norm of Sketched Pseudoinverse|

[4 Forward and Reverse Mode AD of Sketched Regression|

4.1 AD Transformationsl
4.1.1 Forward m ADl .

422 Reverse Mode AD| o Lo

[Experiments|

6 i . IF Work

Bibliography

vil

10
10
14
16
17
19

23

27

29

viil

List of Figures

4.1 Computation Graph of Least Squares Regression| 11
4.2 Computation Graph of “Regular Sketch™ 13
[5.1 Numerical Observations in Synthetic Experiment| 23
[5.2 Training loss 1n linear and regression layers on MNIST and CIFAR10 datasets |

with 04; 128 and 256 rank features run on a NVIDIA GTX980 GPU.|. 24
[5.3 Training loss in linear and regression layers on CIFAR10 dataset with 64, 128 |

and 256 rank features on multicore settings (CPU).| 25

ix

List of Tables

4.1 Forward M AD Transtormations.
4.2 Reverse M AD Transtormations.

[0.1 Testloss onthe MNIST and CIFAR10 datasets after convergence of the sketching

algorithms using random Gaussian (RG) and CountSketch matrices (CS) with

“Partial Sketch” oips, and “Regular Sketch”"ars. 25

Xi

Xii

Chapter 1

Introduction

1 A sketch is a sub-linear space data structure that can answer certain types of queries in the
original data with approximation guarantees. Since the space usage of the sketch is sub-linear to
the input size, a lot of times we bene t from a small sketch size and therefore achieve run time
acceleration. The method to convert the original data into a sketch is called sketching.

Consider the well-known linear least squares regression (LLS) problem. A least squares
regression takes in a matri of sizen d (n d) and a vectob of sizen 1, and aims
to nd argmin kAy bk,. For a sketched least squares regression g}l 8e convert LLS to
argmin, kSAy Skk, by multiplying a sketching matri$?. Suppose has sizen nwithm <
n. The original problem takes in a matrix of size d and a vector of size, whereas the sketched
problem involves a matrix of siz@ d and a vector of sizen. Note the problem size becomes
a lot smaller giverSA can be calculated fastamad n. Moreover, for sketching matrices that
form (1), subspace embeddings, it is guaranteedkigt, bk, = (1)kAy bk, 3,
wherey is the solution to the unsketched problem ggds the solution to the sketched problem.
There has been extensive research on the type and size of the sketching matrix that can be used
as the sketching matrix of LLsS See [15] for a survey.

In this paper, however, we are not going to design new sketching matrices. Instead, we
mainly use the sketching matrix property as a black box and try to answer the question that
whether LLS can replace LLS in a differentiable programming system which internally uses
LLS. Although LLSs provides a good approximation to argmlAy bk, the derivatives are
not necessarily close to those of LLS. As a result, after training with gradient descent method, a
neural network containing LLSmight converge differently and yield higher test loss compared
with the same neural network with LLS.

To address these concerns, we rst provide necessary background on sketching and automatic
differentiation. After exploring a novel bound on a sketched pseudoinverse matrix product, we
analyze the two proposed ways of sketched regression, namely the “Regular Sketch” and the
“Partial Sketch”, how the forward and reverse AD transformations ofd ¢&h be expressed, and
the approximation error bound on the transformations. Finally, we test the actual loss and running

1This work is based on [8].

2Informally, we say a matrix is a sketching matrix if we apply the matrix and the input with certain operations to
get the sketch.

3We usekSxk3 = (1)kxk3 todenotel)kxk3 k Sxk3 (1+)kxK3.

1

speed of our sketched regression in the diffentiable programming context on both synthetic and
real-world datasets to see if the sketching methods enjoy the favorable accuracy and complexity.

Chapter 2

Preliminaries

2.1 Sketching in Least Squares Regression

We usek k; as the operator norm for matricéskr as the Frobenius norm for matrices. dnkl,
k k, interchangeably as the norm for vectors.
De nition 2.1.1. (Least Squares Regression, or Linear RegressioRgegression) Givenam d
matrix A withn d,ann 1vectorb, output a vectox that minimizekAx bko.

Throughout the document, we assume d with rankA) = d. We can view each row of
the matrixA as a data point and each column as a feature. For real world data, typically there are
far more number of data points than the number of features. This motivates us to only consider
the case when > d.

Itis well-known that for a matriXA, argmin kAx bk, = A*bwhereA™ is the pseudoinverse
of A. If A has full column rankA* = (ATA) AT,
De nition 2.1.2. (",-Subspace Embedding) L¥tbe a xedd-dimensional subspace R". A
matrix Sisa(l) "»-subspace embedding fot if for all x 2 V, kSxk3 = (1)kxka.
Equivalently, xA to be ann d matrix with column spac¥, anm nmatrixSisa(l)
*,-subspace embedding furif for all x 2 RY, kSAxk3 = (1)kAxKk3.

Since we are working in the norm throughout the document, we sometimes omit tHer
simplicity. When we say a matri$ is a subspace embedding for a ma#ixwe mearsS is a
(1) 2-subspace embedding for the column spaca.of

A limitation with the subspace embedding is that we need to know the subspace we are trying
to embed beforehand. This motivates the following de nition.
De nition 2.1.3. (Oblivious ",-Subspace Embedding) A mati$is a (d; ;) oblivious ",-
subspace embedding if for any xeedimensional subspadé 2 R", for all x 2 V, kSxk3 =
(1)kxkZ with probability at leastl . Equivalently, a matrixS is a(d; ;) oblivious",-
subspace embedding if for any d matrix A, for all x 2 RY, kSAxk3 = (1 YkAx k2 with
probability at leastl

Let U be a matrix with orthonormal columns amdbe a unit vectorkSUW3 = (1)kUvk3
implies(SUVW)T(SUV) (UV)T(UV) and can be further simpli ed thUTSTSU | k; <
This also implies the singular valuesdf STSU are in[1 ; 1+], and the singular values of
SUarein[l ;1+]forsmall . These properties are useful in later chapters.

3

We use OSE to denote the oblivioyssubspace embedding for short. In literature (and this
document), sometimes “oblivious” are dropped for convenience, and “subspace embedding” is
used interchangeably with “oblivioug-subspace embedding”.

De nition 2.1.4. (Singular Value Decomposition) Amy d matrix A can be decomposed as
U VT, whereU is ann d matrix with orthonormal columns, is ad d diagonal matrix
with singular values on its diagon&V, isad d orthogonal matrix.

2.2 Notations for Automatic Differentiation

Automatic Differentiation, or AD for short, refers to the derivative evaluation algorithms.
Forward and reverse mode AD transformations refer to the actual derivative(s).

Standard notation from AD community is used. Consider an independent variahtka
dependent variable We usex for an in nitesimal perturbation o, andy for %)y((notation
used in forward mode AD). We usefor %)y((notation used in reverse mode AD). See [1]
for a thorough survey on automatic differentiation.

We can write a computation process as a directed acyclic graph with circles representing
variables and squares representing operators. Say we cog{guyg = f (x) + y where
f (z) = cosz. Then the computation aj(a; b) for valuesa; b can be represented by the

following graph:
T
Computation graphs can be helpful in the computation of forward and reverse mode AD

transformations.

2.3 The Problem

Formally, givenam dmatrixA (withn d),ann 1vectorband anm n sketching matrix
S, we want to show a tight bound on the sketched regression's approximation error of forward
and reverse mode AD transformations.

2.4 Motivation

Sketching is a useful technique to accelerate linear regression. However, to our best knowledge,
the relationship between the derivatives of the sketched and unsketched linear regression is yet

4

unknown. At the same time, there is burgeoning interest in extending deep learning (aka differ-
entiable programming) to allow more complicated building boxes to appear inside the computa-
tional process being differentiated. This includes optimization of various sorts (learning-to-learn,
bi-level optimization), AD of xed point computations [2] recently rediscovered in the ML com-
munity [7] and even AD of discrete optimization processes [10]. In a nutshell, if a subroutine is
useful, people will want to use it in programs they write, and it is increasingly desired that we
are able to differentiate the programs we write. This has resulted in a systematic effort to explore
how to ef ciently calculate appropriate derivatives of a variety of numerical processes. Here, we
consider differentiating a linear regression subroutine—in particular, linear regression computed
using sketching methods.

2.5 Related Work

There is a recent work on sketching for speeding up distributed communication of gradients [6].
More speci cally, the work focuses on shortening the run time of distributed stochastic gradient
descent methods using CountSketch matrices.

In addition to gradient sketching, Hessian sketching has also been considered since second-
order methods have better convergence rate compared with rst-order methods. For instance, [5]
is a recent work on Hessian sketching for serverless systems.

Instead of designing a general scheme of solving various kinds of problems with the tradi-
tional “sketch and solve” approach, our work focuses on the least squares regression, explicitly
reveals the derivative computation steps, and studies the errors resulted from sketching in deriva-
tives and the overall network.

Chapter 3

A bound on the Opertor Norm of Sketched
Pseudoinverse

We need theorem 3.0.1 for proving theorem 3.0.2.

Theorem 3.0.1.(By Cohen et al. [3]) LeA 2 R" 9andB 2 R" Pwithn d;n p. For
sketching matrixd drawn from(; ; 2k)-OSE,

q
KATSTSB ATBk, (KAK3 + KAKZ =K)(kBk3 + kB k2 =Kk)

holds with probabilityl

Theorem 3.0.2 says the pseudoinverse and sketched pseudoinverse terms cannot differ by
much in terms of the opertor norm, and the difference is small compared to the norm of the
pseudoinverse itself. Since we apply sketching on the least squares regression problem, we
will encounter pseudoinverse and sketched pseudoinverse terms in derivative computations. In
particular, terms lik SA)* (SB), whereB is not a vector, come into the picture. Under these
circumstances, the bound in theorem 3.0.2 becomes useful as we need to bound the difference
between the unsketched and sketched pseudoinverse terms. This result also extends previous
results in whichB is considered as a vector [12] [4].

The intuition for proving the bound is that after singular value decomposit®i)* SB and
A*B have similar structurés For the parts of the structures that differ between the two terms,
there are enough tools to bound them. The former term Ha§S SU factor and the latter
term has a corresponding factar It is easy to bound the difference kg"STSU |k,

Also note the former term consists oftld ST SB factor, and in the latter term the corresponding
factor isUTB. These two terms are exactly in the form of the left-hand side of theorem 3.0.1.

Theorem 3.0.2.LetA 2 R" 9andB 2 R" Pwithn d;n p. LetS be a matrix drawn
from a distributionD with (; ; 2k)-OSE property for some d. With probabilityl

q
K(SA)*SBk, k A"Bk,+ O() (1+ d=k)(kBK2+ kBk2=K)= min(A)

YSA)*SB=V UTSTSU) UTSTSBandA*B =V UTB.

7

Proof. LetU VT be the SVD ofA. By Triangle Inequality,

K(SA)* SBk, = k(SA)*SB A'B + A*Bk;

k A*Bk, + k(SA)*SB A*Bk,

= kKA*Bk,+ kv }(UTSTSU) 'UTS'sB VvV 'U'Bk,

= KA*Bk, + kV 'kk(UTSTSU) 'UTSTSB U'Bk,

k A*Bk,+ k kok(UTSTSU) 'UTSTSB (UTSTSU) U™B
+(UTSTSU) 'U™B U'Bk,

kK A*Bk,+ k kp(k(UTSTSU) k,kUTSTSB U'Bk;
+ k(UTSTSU) ! I4kkUTBKy)

Recall the singular values &f'STSU arein[L ; 1+]whenS is an OSE. Therefore the
singular values ofU"STSU) ! are also roughly ifl ; 1+] for small , and the singular
ﬁalues ofUTSTSU) ' | arein[;]. Alsobytheorem3.0.1, we hak&)/TSTSB UTBk,

(1 + d=K)(kBk3 + kBkZ =k). Now we can continue the proof as follows:

K(SA)*SBk, k A*Bk.+ k ko(k(U"STSU) 'k.kUTSTSB UTBk,
+ k(UTSTsu) ! IdkkurTBkz)

KB K2

" Y+ k kkUTBks

K A*Bko+ k ko(1+) (1+E)(kBk§+
r

k A*Bk,+2 k 'k, (1+E)(kBk§+
r

k A*Bk,+3 k k, (1+E)(kBk§+
r

KB K2
Kk
KB K2
Kk
KB K2
Kk

)+ k kokBky

k A*Bk, +

3 d
(e

]

Notice that ifk= 2 d, we have P 1+ d=k 1, and the ternkBk,= min (A) roughly
equals tkA* Bk,, which translates tk(SA)* SBk, (1+ c)kA* Bk, wherecis a constant de-
pends ork; d; and is smallwhek= 2 > d. In words, we have shown thiatSA)* SBk,=kA* Bk,
1in practice.

We simultaneously get a lower bound k{8A)* SBk, as well. If we interchangéSA)* SB
andA* B in the proof, as every term is in norm, we would get

q
KA*Bk, k (SA)*SBk,+ O() (1+ d=K)(kBK2+ kBKZ=K)= min(A):

Chapter 4

Forward and Reverse Mode AD of
Sketched Regression

Regular Sketch: We de ne the “Regular Sketch” to be the scheme that approximates
argmin kAx bk with argminkSAx Skk = (ATSTSA) 'ATSTSband computes the

AD transformations accordingly for both the forward and reverse mode.

Partial Sketch: We de ne the “Partial Sketch” to be the scheme that (#€sS" SA) ATb

as primal, and for both forward and reverse mode, sketchegha) ! term only. We

call it “Partial Sketch” because the derivatives yielded by this method is an approximation
of the real derivative if the sketched solution is given(By STSA) ATh. This sketch

is desirable because theoretically it still accelerates the computation, as (i) *

is the most expensive operation in calculating the AD transformations. More importantly,
this sketch makes it easier to analyze the AD transformations. Sket&hiagnly is rst
considered by Pilanci et al. [9].

We summarize the results for the forward and reverse AD transformations.

Type Primal Forward Transform
Regular y=(ATA) ATb y=(ATA) }(ATb+ ATh (ATA+ ATA)y)

“Regular Sketch” ys = (ATSTSA) 'ATSTSb ys =(ATSTSA) Y(ATSTSb+ ATSTSh
(ATSTSA+ ATSTSA)ys)

“Partial Sketch” yp = (ATSTSA) ATb vo =(ATSTSA) {(ATb+ ATh
(ATA+ ATA)Yp)

Table 4.1: Forward Mode AD Transformations.

The computation details can be found in the following section.

9

Type Primal Reverse Transform

Regular y=(ATA) *ATb A= A(ATA) yy'
AyyT(ATA) *
+ by"(ATA) ¢
b= AATA) ly

“Regular Sketch” ys = (ATSTSA) ATSTSTh As= STSA(ATSTSA) lysys'
STSAysys' (ATSTSA) 1!
+ STShys"(ATSTSA) !
bs = STSA(ATSTSA) lys
“Partial Sketch” yp = (ATSTSA) ATh Ap = A(ATSTSA) YyoypT
AYDYDT(ATSTSA) !
+ byp '(ATSTSA) !
b = A(ATSTSA) 1y

Table 4.2: Reverse Mode AD Transformations.

4.1 AD Transformations

For completeness, we include the computations of AD transformations for the least squares re-
gression and two ways of the sketched regression.

4.1.1 Forward mode AD
Least Squares Regression

First we create a computation graph for computiig; b) = (ATA) ATbas shown in gure
1. Then with matrix derivative rules, we have the following:

w; = A w; = A

w, = b W, = b

ws= AT = w' Wi = wy"

ws = ATA = waw, =) Wy = WaWg + WaW;
ws = (ATA) *=w,*! Ws = W, ‘waw, !
We = ATh= waw, Wg = W3Wp + W3Wp
w; = (ATA) 'ATb= wsws W7z = W5Wg + W5Ws

10

trans

/@

mul

?

mul

(&

mul

(-

Figure 4.1: Computation Graph of Least Squares Regression

11

Expandy:

=
|

= Ws5Wg + WsWps

= Wa TWaWs e + W, H(WaWo + WaW)
(ATA) 'wy(ATA) ATb+(ATA) Y(ATb+ ATh
(ATA) H(waw; + wawi)(ATA) *ATb+(ATA) Y(ATb+ ATh
(ATA) [(ATA+ ATA)ATA) 'ATb (ATb+ ATD)]

(ATA) Y[(ATb+ AT (ATA+ ATA)w/]

=(ATA) '[(ATb+ AT (ATA+ ATA)y]

Regular Sketch

With computation graph gure 2 and matrix derivative rules, we have the following:

w; = A wp = A

W, =b W, = h

W3 = Swy Wz = Swy

Wy = SW, Wy = Sw,

Ws = Wa' =) Ws= ws' = w,'ST
Wg = AT STSA = WsWj3 Wg = W5W3 + W5W3
w; = (ATSTSA) *= Wel Wy = Wg 'WeWe
Wg = ATSTSb= wsw, Wg = WsWj + W5Wy

Wy = W7Wg Wg = W7Wg + W7Ws

Expandys:
Wg = W7Wg + W7Wg
= We 'WeWs 'Wg+ We 1(WsWa+ WsWa)
= We Y(WsWs+ WsW3)We "Wg + Wg “(Wy ' STwy + WsSwy)

= W Y(W;"STwz+ WsSwi)Ws ‘wg+ we (W' STw, + WsSW,)

We “(Wi'STWs+ WsSW, (Wy' STWs + WsSwi)Ws ‘We)
= (ATSTSA) ! ATSTSh+ ATS"Sh (ATSTSA+ ATSTSA)w,wg
=(ATSTSA) ! ATSTSh+ ATSTSh (ATSTSA+ ATSTSA)ys

Partial Sketch

The actualyp corresponds to the primgihy = (ATSTSA) 'ATbis (ATSTSA) Y(ATb+ ATh
(ATSTSA + ATSTSA)yp). However, as we discussed how the “Partial Sketch” works, we
simply sketch anyATA) !terminy to approximatey,. Recally = (ATA) Y[(ATb+ ATh

(ATA + ATA)y]. We only sketch théT A term to geATSTSA) [(ATb+ ATh (ATA+
ATA)y] and use it agp . See the previous discussion for more details.

12

mUlS

mulg trans

/®

mul

@

mul

(-

mul

(&

Figure 4.2: Computation Graph of “Regular Sketch”

13

4.1.2 Reverse Mode AD

We include the computation of AD transformations in the reverse mode for the linear regression
and two ways of the sketched regression. The same computation graph for forward mode is used.
For reverse mode AD transformations, we want to nd batandb.

Least Squares Regression

See gure 1 for the computation graph of the least squares regression.

w; = A W7 = Wy

W, = b Wg = Ws' Wy

wy= AT = w,' Ws = WoWg'

ws = ATA = waw; =) Ws = WgWsWs
ws=(ATA) t=w,! W3 = WeWso' + Wawy '
W = ATb= wsw, Wy = Wa' We

wy = (ATA) ATb= wswe Wi = W3 + W' Wy

ExpandA andhb:

A=w
= ws' + ws'wy
= (WewWo" + Wawy)T + A(WsWsWs)
= WoWg' + WiW,' AWsWsWs
= Wa(Ws"W7)T + Wi WsWsWs)"T AWsWsWs
= WoW7 W5 WiWsWs' W AWsWsWs
=by"(ATA) 1 AATA) wsT(ATA) 1 A(ATA) ws(ATA)
=byT(ATA) 1 AATA) ‘wegw; (ATA) 1 AATA) 'wowg"(ATA) 1
= by"(ATA) 1 AATA) 'AToy"(ATA) ¥ A(ATA) yb'A(ATA) !
= by"(ATA) ' Ayy"(ATA) 1 A(ATA) tyy'

b= w,
= W3' We
= Aws'w;
= AATA) wy;
= AATA) 1y

14

Regular Sketch
See gure 2 for the computation graph of the “Regular Sketch”.

w; = A Wg = Ys

W, = b Wg = W7 Wy

W3 = Swy W7 = WoWg'

W; = SW, Wg = W7W7W7

Ws = Wa' =) W5 = WgW,' + WeWs'
Ws = ATSTSA = wsws Wi = Ws' Wg

w; = (ATSTSA) 1= w! W3 = Ws' + Ws' Weg
wg = ATSTSh= wsw, W, = STwy,

Wy = W7Wg Wy = STW3

ExpandAs andbs:
Ag = Wy
= STws
= ST(Ws' + W5 We)
=s' ((W8W4T + W6W3T)T W5TW7W7W7)
= ST((Wawg" + WaWe') W5 W7WoWg' W)
= ST((wa(w7"Wg)™ + wa(wow7w7)T) s Wrwews' W+)
= ST((WaWo w7 Waw7 w7 W7T) WsT woweWs ' wy)
= ST(WaWo' W7 WaW7' (WoWg')TW7') Ws' WyWowg' W)
= ST((Shys" (ATSTSA) ! SA(ATSTSA) 'ATSTShys"(ATSTSA) !
SA(ATSTSA) ysb"'STSAATSTSA) 1)
= STShys"(ATSTSA) 1 STSAysys'(ATSTSA) 1 STSAATSTSA) lysys’

bs = w,
= STw,
= STws' wg
= STSAW; wq
= STSA(ATSTSA) lwe
= STSA(ATSTSA) lyg

Partial Sketch

We simply sketch everyATA) ! term inA; bto approximateédp ; by respectively. Recal\ =
byT(ATA) 1 AyyT(ATA) 1 A(ATA) lyy" b= A(ATA) ly. WesetA®= by, "(ATSTSA) 1

15

AypYp T(ATSTSA) 1 A(ATSTSA) lypyp ' and use it ad\p, = A(ATSTSA) 1y, and
use it ady . Check the previous discussion for more details.

4.2 Bounds on Sketched Regression AD Transformations

For concision, we uskl, Mg as the shorthanded expressionsAdrA; AT ST SA respectively.
We also make the assumption tyat ys = yp to simplify the analysis.
Lemma 4.2.1.1f S is drawn from a subspace embedding, with probability , we have

kAM lk2: k 1k2
KAMc'ko = (1)k 'k
kM 1 Mgk, kK3
kM 1 Milke ko lkok ke
kM 1+ Mk, 2+)k 2
KAM ' AM 'k, Kk 'k
KAM ' AM ke k ke
Proof. Consider the SVD of matrbA = U V'. We haveM = ATA =V U'U VT =
V VT andM =V 2vT Additionally, AM = U VTV 2vT = U VT yielding
kAM 1k2: k 1k2.
We can simplify the expressioiM ;= U VT(V UTSTSU VT) t=
u viv HuTsTsu) ' vT=yUTs'su) ' VT and bound its norm
kKU(UTSTSU) ' VTk,=(1)k Ik, with probability at least
The remaining bounds follow:
kM 1 Mglko=kv (I (UTSTSU) B VTk,
k kokl (UTSTSU) kok ks
k K2

kM 1 Mgtke = kv (1 (UTSTSU) 1) VTke
k kokl (UTSTSU) kok ke
k kok ke

kM '+ Mgk, = kv (1 +(UTSTSU) 1) vk,
k kokl +(UTSTSU) *kok ks,
@2+)k '

KAM ' AM 'k, = kU(l (UTSTSU)) VTk,
k1 (UTSTSU) kok VTk,
k ky

16

KAM ' AM 'ke = kU(I (UTSTSU) 1) VTke
k1 (U'STSU) kk VTke
k ke

Lemma 4.2.2.(By Sarlos and others [12] [11]) With our previous notations, we have

ky yskz O()mln kAX U(zkA+ k2 = O() minkAXx U(z
X min (A) x
4.2.1 Forward mode AD
Regular Sketch

Lemma 4.2.3.Given a matrixS thatis an(; ;d)-OSE, we can bourkly ysk, with probability
1 as follows.

Proof.

ky ysk=kM (ATb+ ATh (ATA+ ATA)y)
Ms (ATSTShb+ ATSTSh (ATSTSA+ ATSTSA)ys)k
kM 'ATb Mg 'ATSTSKk+ kM 'ATh Mg 'ATSTSKk
+ kM 'ATAy M 'ATSTSAysk+ kM 'ATAy M 'ATSTSAysk
We use the triangle inequality of versie®hB CDk, k A Ck,kB + Dk, + kA +

Ck,kB DKk; for arbitrary matrices in the following equations.
The rst difference term can be written as

kM 'ATb Mg'ATSTSIKk k M ' Mg'kkATb+ ATSTSkk
+ kM '+ Mg'kkATh ATSTSHK
k k3kATh+ ATSTSKk
+(2+)k 'k3kATb ATSTSK

Following up with the second difference term, where we use lemma 4.2.2.

kM 'ATh Mg 'ATSTSkk O() minkAx kKA ™ ko

17

The third difference term can be bounded as follows:

kM ATAy M !'ATSTSAysk k M 1 Mg tkokATAy + ATSTSAysk
+ kM 1+ MglkkATAy ATSTSAysk
k k3kATAy + ATSTSAysk
+(2+)k 'kkATAy ATSTSAysk
k k2kATAy + ATSTSAysk
+(2+)k KS(KATAkxky ysk
+ kKATA ATSTSAKkysks)
Note that the second term of the bound vanishes véenthe identity matrix. We can further
apply theorem 3.0.1 okATA ATSTSAk..

The last difference term can be bounded using the result in theorem 3.0.2 and lemma 4.2.2 as
follows:

kM 'ATAy M 'ATSTSAysk k M ATAy M 'ATSTSAyk
+ kM 'ATSTSAYy M 'ATSTSAysk
minykAX Ayk,
min(A)
+ O()k(SA)* SAk,

o()

min,KAX bks
min(A)
wherek(SA)* SAk, k 'k, kAk, + O() (1+ d=K)(kAkZ + kAkZ=k)

Combining all four terms gives us an approximation bound. Il
Partial Sketch
Lemma 4.2.4.For any matrixS that is an(; ;d)-OSE, we have with probability

ky ypk k k3(kATb+ AThk+ k(ATA + ATA)yk + kMg H(ATA + ATA)kKATK)
Proof. LetG = ATA+ ATA.

ky ypk=kM ' McH(ATb+ AT+ Mg (ATA+ ATA)yp M HATA+ ATA)Y)K
k 'kkATb+ ATkk+ k(M ' M Y)Gyk+ kMg 'G(y yp)k

k 'k3kATb+ ATkk+ k 'K3kGyk+ kM 'G(M 'ATb M 'ATbhk

k KKATb+ ATkk+ k 'k3kGyk+ kM¢'Gkok 'k2kATbk

k KE(KATb+ ATk + k(ATA + ATA)yk + kMg H(ATA + ATA)k,KAT k)

]

18

4.2.2 Reverse Mode AD
Regular Sketch

Lemma 4.2.5. With probabilityl , the approximation error for the teriAs can be bounded
as follows.

Proof. Since the terms i andAs have one to one correspondence, we bound the approxima-
tion error with three partkA Askr P;+ Py + Ps:

P.=khy'™M ' STShys"Mg ke
k1 STSkykby™Mg ke + kby™(M 1 Mghke
k1 STSkokby"™Mg'ke + k 'kok *kekby ks,

P, = kAM 'yyT STSAM'yysTke
k AM 'yyT AM'yy ke + KAMlyyT STSAM lyys ke
k 'kokykkyk + k(I STS)AM ¢ lyyTke
k 'kokykkyk + kI STSk,kAM ¢ 'yy'ke

P;= kAyy'M ! STSAysys"Mg ke
k AyyTM 1 Aysy"Mg'ke + kAysys'Mgt STSAysys Mg ke
k Ayy'™M 1 Aysy'M 'k + kI STSkokAysy' Mg ke
k A(y Yys)kkykk kok ke + kI STSkokAysy Mg *ke

NoteP;; P,; P; can be large because of tke ST Sk term. O

Lemma 4.2.6. With probabilityl , the approximation error for the terins can be bounded
as follows:

kb bsks k 1k2kyk2(+(1+)KI STSkz)
Proof.

kb bsk, = KAM Ty STSAMg Tysk,
= kAM 1y AM'y+ AM 'y STSAM vk,
k AM 1AM 'kokyk, + kI ST SkoKAM ¢ tkokyk
k 'kokyk, + kI STSk,kAM ¢ tkokyk
k kokyko(+(L+)kl STSky)

Note the bound is tight whe® = | . Howeverkl ST Sk, can be large.

19

Partial Sketch

Lemma 4.2.7. With probability at leastl , the approximation error for the terrA can be
bounded by poly(KAKg; KA ke ; kbks; kyky).

Proof. The approximation error can be split ildderms such thastA Apkr Q1+ Qo+ Q3
where:

Qi=kby™™ ' byp Mg ke
klﬁkapk 1k2k lk,:

= kAM lyyT AMlyyp Tke
KAMM 1 Mghyy™ + AMy(y" yo T)ke
k AM ' MgYyy'ke + KAMS'Y(Yy Yp) ke
kK 'kokyy ke + KAM ¢ 'koky(y yp) kf
k 'kokykkyk + KAM ¢ 'kokykkAM 1 AM ¢ kokbk
k tkokykkyk + KAM ¢ *kokyk k kokbk
kykk Tka(kyk + KAM ¢ Tkokbk)
kykk Tko(kyk+ (1 +)k kokbk)

Q
|

Qs = kKAYY'™ * Aypy"Mg ke
= kKAyy' (M 1 Mg+ Ayy"Mgt Aypy Mg ke
KAyyTkok kok ke + KA(Yy yp)y Mg ke
KAYYTkok kok ke + KAkok kokbkky™ Mgk
KAkok ko(kyyTkok ke + kbkky™ Mg k)

Note thatQq; Q»; Qs areO(). H
Lemma 4.2.8. With probability 1 , the reverse mode approximation error for the telam
satis es

kb ok, k 1k2kyk2
Proof.

kb bhk,=kAM 'y AMglysk,
=kU(I (UTSTsu) H vTyk,
kKUkok tkokyks
k Tkokyky

20

In summary, we provide theoretical bounds on the approximation errors of forward and re-
verse mode AD transformations. For forward mode AD transformations, the errors for both the
“Regular Sketch” and the “Partial Sketch” areQ). However, for reverse mode AD transfor-
mations, the errors for the “Regular Sketch” consist of the term ST Sk, which can be large
under certain circumstances. Sayifs a CountSketch matrixl ST Sk, can be inO(n). In
reverse mode, the bound for AD transformations of the “Partial Sketch” is straightforward and
allinO().

An intuitive explanation about the tight derivative bounds of the “Partial Sketch” is that, when
combining the terms, we can factor out all the terms that aré/AbA) * or (ATSTSA) ! as
they are common terms. We can then use SV avith the inequalittk(UTSTSU) * 1k,
to factor out a constant term For the “Regular Sketch” however, because of how derivative
rules work, we end up getting S'S term if we factor out common terms. We cannot simply
bound the operator norm of a term with &an STS factor by adding the norm operator on
| STS as its norm grows with its dimension for certain sketching matrices. At the same time,
the approximation errors of the ADs of the “Regular Sketch” do not have fietor.

Thus, we expect a better performance of the “Partial Sketch” than the “Regular Sketch” in
terms of approximating derivatives when replacing the least squares regression. We also expect
the “Partial Sketch” outperforms the “Regular Sketch” when incorporated in a larger deep learn-
ing system as reverse mode ADs are used in back-propagation and the “Partial Sketch” has lower
approximation errors in ADs.

21

22

Chapter 5

Experiments

We consider both synthetic and deep learning experiments to highlight the performance of our
proposed sketching methods in approximating derivatives and speeding up training time.
For the synthetic experiment, we plot the approximation error of AD transformations of the

two proposed approaches for obtaining forward and reverse mode AD in gure 5.1.

We generaté 2 R100000 100 gngh 2 R100000 1 with entries to be drawn uniformly random

in [0; 1).

We sety[i] =1 if y[i] > Oandy[i] = 1if y[i] < O (use sign as cost function).

We setA_andlds each entry to be to be drawn in i.i..(0; 1) then multiplied with10 4.

For the forward mode, we pléty ysks in yellow andky yp ks in blue.

For the reverse mode, we pkib bsk; in yellow andkb In k; in blue.

Three families of sketching matrices: Gaussian, CountSketch and subsampled randomized
Hadamard transform (SRHT) are applied.
We observe that the “Partial Sketch” is more accurate, which is consistent with our previous
results.

Figure 5.1: Numerical Observations in Synthetic Experiment

In gure 5.1 we use old terminology “diff+sketch” and “sketch+diff” in place of the “Par-

23

Figure 5.2: Training loss in linear and regression layers on MNIST and CIFAR10 datasets with
64; 128and256rank features run on a NVIDIA GTX980 GPU.

tial Sketch” and the “Regular Sketch”. Note we adapt the latter terminology throughout this
document for less confusion caused by naming. In gure 5.2 wedss:ndsd as shorthanded
notation for “diff+sketch” and “sketch+diff” respectively, which should be replaceddgndrs
that stand for the “Partial Sketch” and the “Regular Sketch” respectively.

For the deep learning experiments, we consider the following real-world datasets:
MNIST: 60, 000handwritten digits of shap28 28for training andLl0; 000for testing.

CIFAR10: 60, 000images inl0classes of whici0; 000are for testing.
We use an autoencoder for showcasing our sketched regression layer. We consider the standard
encoder decoder framework with the encoder consisting of a linear layer mapidglitmen-
sions followed by a ReLu layer. The decoder is built with a linear layer mapping ébtm 128
dimensions followed by a ReLU and a second linear layer mapping I28alimensions to the
input dimension, followed by &éanh layer. In our experiments, we replace the linear layer of
the encoder by the linear least squares regression modules, both unsketched and sketched, which
have been considered in this work.

The linear layer takes in input datg then applies a linear transformation xowith the
formulay = Ax + bin which A; b will be learned. The regression layer takes in input data
outputsy = (ATA) *ATx in which A will be learned throughout the training.

24

MNIST CIFAR10
128 256 64 128 256

rg PS 0.16 0.08 0.08 0.21 0.09 0.08
rs 0.11 0.07r 0.08 0.11 0.08 0.08

cs Ps 0.15 0.10 0.09 0.14 0.09 0.09
rs 0.10 0.09 0.08 0.09 0.08 0.08

Sketching 64

Table 5.1: Test loss on the MNIST and CIFAR10 datasets after convergence of the sketching
algorithms using random Gaussian (RG) and CountSketch matrices (CS) with “Partial Sketch”
or ps, and “Regular Sketch” ars.

Figure 5.3: Training loss in linear and regression layers on CIFAR10 dataset with 64, 128 and
256 rank features on multicore settings (CPU).

The result running on GPU is shown in gure 5.2. Notice that the regression layer tends
to result in a higher loss and running time compared with the linear layer, and the sketched
regression layer hardly get any speedup over the plain regression layer. This is probably due to
the fact that we have not taken advantage of GPU capabilities for implementing the sketching
operations. We will discuss this oddity in the last chapter. Also, surprisingly the “Regular
Sketch” seems to result in better performance in terms of training loss than the “Partial Sketch”
approach, as shown numerically in table 5. And with higher rank features (for example 128,
256), the sketched regression model achieves a lower loss.

We note that sketching methods provide a signi cant speedup over the plain regression layer
in the CPU setting as shown in gure 5.3. Here we only consider the “Partial Sketch” version
though it should also apply to the “Regular Sketch”.

25

	1 Introduction
	2 Preliminaries
	2.1 Sketching in Least Squares Regression
	2.2 Notations for Automatic Differentiation
	2.3 The Problem
	2.4 Motivation
	2.5 Related Work

	3 A bound on the Opertor Norm of Sketched Pseudoinverse
	4 Forward and Reverse Mode AD of Sketched Regression
	4.1 AD Transformations
	4.1.1 Forward mode AD
	4.1.2 Reverse Mode AD

	4.2 Bounds on Sketched Regression AD Transformations
	4.2.1 Forward mode AD
	4.2.2 Reverse Mode AD

	5 Experiments
	6 Discussions and Future Work
	Bibliography

