
Generalized Byzantine Agreement
with Incomplete Views

Hanjun Li

CMU-CS-19-134
December, 2019

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Vipul Goyal (Chair)

Bryan Parno

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright c© 2019 Hanjun Li

Keywords: Distributed Algorithm, Byzantine Agreement

Abstract
Byzantine agreement is the problem where a set of participants, each holding an

input value, try to reach agreement on an output in the presence of corrupted parties.
This problem is well studied in the standard model, where each participant has a
complete view of the whole network. This thesis solves the byzantine agreement
problem in a relaxed model where every participant only knows and communicates
with a subset (its “view”) of other parties. We parameterize our model by α, the
maximum fraction of corruption in each honest “view”, and δ, the minimum fraction
of overlapping between any pair of honest “views”. We present a protocol that runs
in expected polynomial round assuming δ > 2α. If we further assume α ≤ 1/2− ε
for any constant ε, the protocol runs in expected constant round. We also show the
tightness of our assumptions by proving impossibility results for α ≥ 1/2 and for
δ ≤ 2α.

iv

Acknowledgments
I would like to thank my advisor, Prof. Vipul Goyal, for his guidance and advice,

and my collaborator, Justin Raizes, for his interesting ideas and perspectives during
our discussions.

I would also like to thank Prof. Bryan Parno for serving as a member of my
thesis committee, Prof. Dave Eckhardt for his general advice on my thesis, and
Tracy Farbacher for arranging and advertising my thesis defense.

vi

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Notations . 3
2.2 Unique Digital Signature and PKI . 3
2.3 Verifiable Random Function . 4
2.4 Our Model and Main Results . 6

3 Positive Result 9
3.1 Graded Broadcast . 9
3.2 Leader Selection . 10
3.3 Main protocol . 12

4 Negative Result 15
4.1 Broadcast from Byzantine Agreement . 15
4.2 Negative Result for Broadcast . 16

5 Conclusions 21

Bibliography 24

vii

viii

Chapter 1

Introduction

Byzantine Agreement is a very important and well studied problem in distributed computing and
cryptography. At a high level, it is the problem where a set of N participants, each holding an
input value, try to reach agreement on an output in the presence of corrupted participants. The
number of corrupted participants is usually denoted t. The problem is first introduced and studied
by [LSP], [PSL80], in which both an upper bound and a lower bound on the size of tolerable
corruption is proven: Byzantine Agreement is achievable if and only if less than 1/3 of the
participants are corrupted. In these results, the adversary may be computationally unbounded, as
no cryptography tools are used. In [FL82], [GM98], both a lower bound on the round complexity,
t + 1, and a fully polynomial protocol achieving this bound is shown. In the case of a sparse
network, [Dol82], showed that Byzantine Agreement is achievable if and only if t is less than
1/2 of the connectivity of the underlying communication network.

To circumvent the upper bound on 1/3 tolerable corruption, a popular additional assumption
is a public-key infrastructure (PKI) setup, in which participants are assigned public keys of the
others before entering the protocol. This setting is often referred to as authenticated. The results
in [LSP], [PSL80], showed that authenticated Byzantine Agreement is achievable if and only if
less than 1/2 of the participants are corrupted. In these results, the adversary is assumed to be
polynomial time algorithms, as digital signatures are only computationally secure. In [DS83],
the same lower bound t+ 1 on the round complexity, and a fully polynomial protocol achieving
this bound is shown.

Finally, to circumvent the lower bound on t + 1 round, randomization is introduced to solve
the Byzantine Agreement problem. Randomization was first considered in [BO83], [Rab83].
In the plain setting (without PKI), [FM97] first showed a protocol tolerating the optimal 1/3
corruption that runs in expected constant round. In the authenticated setting, [FG03] showed a
protocol tolerating the optimal 1/2 corruption that runs in expected constant round with specific
number theoretic assumptions. [KK06], showed a protocol tolerating 1/2 corruption that also
runs in expected constant round while only assuming the PKI setup. [Mic17], and [MV17]
showed an alternative construction also tolerating 1/2 corruption and runs in expected constant
round.

Our Contribution: This thesis considers a generalization of the authenticated setting. It is
motivated by the real world peer-to-peer networks, where not every pair of participants are con-

1

nected directly. In our setting, every participant only knows and communicates with a subset (its
“view”) of other participants, and during the PKI setup is only assigned the public keys of those
in its view. We parameterize our model by α, the maximum fraction of corruption in each honest
“view”, and δ, the minimum fraction of overlapping between any pair of honest “views”. Note
that when δ = 1, our model becomes the standard model where the set of participants form a
complete graph. We present a protocol that runs in expected polynomial round assuming δ > 2α.
If we further assume α ≤ 1/2−ε for any constant ε, the protocol runs in expected constant round.
We also show the tightness of our assumptions by proving impossibility results for α ≥ 1/2 and
for δ ≤ 2α.

Related Works: Motivated by peer-to-peer networks that exist in the real world, a line of work
considers solving the Byzantine Agreement problem in networks of bounded degree. However,
a trivially impossible case is when an honest participant is surrounded by corrupted ones. To
circumvent this impossibility, [DPPU88] first introduced the concept of “almost everywhere”
agreement, that only requires agreement among all but a linear (of the size of corruption) num-
ber of honest participants, and gave some positive results. Later works followed this paradigm
and aimed to improve the expected round and communication complexity [BG89], [BG93],
[KSSV06], to improve the size of tolerable corruption [Upf94], [BOR96], and to minimize the
fraction of honest participants “given up” [CGO10].

Although this thesis also considers the Byzantine Agreement problem in a sparse (i.e. incom-
plete) network, our setting differs from the above line of work (referred to as “bounded degree”
setting) in several aspects. First, in the bounded degree setting, every participant is assumed to
know the whole network topology, and their general strategy is to simulate a complete network
on specific families of bounded degree graph. In our setting, honest participants are not assumed
such knowledge, and our results hold for any network. Second, in the bounded degree setting, the
adversary is assumed to corrupt participants randomly while in our setting, the adversary corrupts
adaptively. Finally, the bounded degree setting only considers “almost everywhere” agreement,
while our result achieves agreement for all honest participants. Additionally, as will be shown
in later sections, our setting defends certain sybil attack because only corrupted participants that
are connected to some honest participant have an effect in the protocol. An adversary can spawn
any number of corrupted participants while having no real effect. This is not true for the bounded
degree setting.

2

Chapter 2

Preliminaries

2.1 Notations

We use {0, 1}∗ to denote the set of finite binary strings. When describing a probabilistic algo-
rithm F (·), F (x) refers to the probability space that assigns any string y the probability that F on
input x outputs y. We write y R←− F (x) to describe assigning to y an element randomly selected
according to F (x). In contrast, for a deterministic algorithm G(·), we simply write y = G(x) to
describe the output of G on input x being y.

We call a function f(k) negligible if for every polynomial p(·), we have f(k) < 1/p(k) for
large enough k. Usually, the function f(k) calculates some probability, and k is the security
parameter. We call a function g(k) overwhelming if 1− g(k) is negligible.

When describing some algorithm T , we write T F (·) if T is given oracle access to some func-
tionality F (·). That is, T can get the result of F (x) for any query x, but T doesn’t know the code
(e.g. some hard-coded information) of F (·).

We will use the usual notation G = (V,E) to represent the communication graph among the
participants. V is the set of nodes in the graph. Each node Pi represents the participant Pi. E is
the set of edges. Each edge (Pj, Pk) represents the fact that Pk is in the view of Pj (see Section
2.2). Our model assumes only bi-directional edges. That is, if Pk is in the view of Pj then Pj is
also in the view of Pk. We write Γi as the inclusive neighbor of Pi in G (i.e. all participants in
the view of Pi including itself).

2.2 Unique Digital Signature and PKI

Similar to other authenticated Byzantine Agreement protocols, we will use a Digital Signature
scheme to ensure that a corrupted participant can either choose to forward or ignore a signed
message, but can never forge a signed message. In addition, we also require that for any public
key and any message m, the there is a unique valid signature. The additional uniqueness con-
straint is introduced in [GO92], and a construction based on the RSA assumption is provided in
[MRVil]. Briefly, we summarize the notion of Unique Digital Signature below.

3

Notation: A Unique Digital Signature scheme is a triple of polynomial time computable algo-
rithms (Gen, Sign, Verify) as described below.
• Gen(·) is a probabilistic algorithm that takes a unary string of length k, the security param-

eter, as input, and outputs two binary strings, a public key Pk and a secret key Sk.
We write this as (Sk, Pk)

R←− Gen(1k).
• Sign(·, ·) is a deterministic algorithm that takes in the secret key Sk and a message x, and

produces a signature SigPk
(x).

We write this as Sig = Sign(Sk, x).
• Verify(·, ·, ·) is a probabilistic algorithm that takes a public key Pk, a message x and a

signature Sig as input, and outputs a bit b ∈ {0, 1}.
We write this as b R←− Verify(Pk, x, Sig).

We now briefly describe the correctness and the security of a Unique Digital Signature scheme.

Correctness:
• Verify accepts (i.e. outputs 1) a valid signature produced by Sign with overwhelming

probability over (Pk, Sk)
R←− Gen(1k)

• There do not exist values (Pk, x, Sig1, Sig2) such that Sig1 6= Sig2, and Verify(Pk, x, Sig1) =
Verify(Pk, x, Sig2) = 1.

Security: Let T be any polynomial time algorithm. The probability that T wins the following
game must be negligible:
• Run (Pk, Sk)

R←− Gen(1k):

• Run (x, Sig)
R←− T Sign(Sk,·)(1k, Pk)

• T wins if 1
R←− Verify(Pk, x, Sig)

This security definition is also called existentially unforgeable.

Public-key Infrastructure: Before using a Digital Signature scheme for authenticating mes-
sages, a trusted setup phase is required to first assign each participant Pi its key pair (Pki , Ski),
and next distribute public keys of the participants. This setup phase is generally referred to as a
Public-key infrastructure (PKI) setup. In our relaxed model, the setup phase only assigns to each
participants a subset of the public keys. If the public key of Pj is assigned to Pi, we say Pi trusts
Pj . The set of trusted participants by Pi is called the view of Pi. In the later sections, we will use
the player id to identity its public key. For example a signature by Pi on some message mi will
be written as Sigi(mi).

2.3 Verifiable Random Function
When describing and analyzing our protocols, we will assume that every participant has access
to a public random function H , mapping {0, 1}∗ to {0, 1}k for any k. In this idealized model,
whenH receives a query string x, it selects a k bit string uniformly at random as its outputH(x).

4

All further query of x all result in the same output H(x).
Note that the random oracle H is only introduced to simplify our analysis. The usage of H
can be replaced by a verifiable random function (VRF) scheme which can be constructed under
the RSA assumption [MRVil]. At a high level, an VRF scheme lets a participant to calculate a
pseudo-random string v based on a seed x, and also a proof that this v was correctly calculated.
Another participant cannot distinguish v from a truly random string in polynomial time, but can
verify that v is correctly calculated based on x. We now briefly summarize the notion of VRF
below.

Notation: A Verifiable Random Function scheme is a triple of polynomial time computable
algorithms (G,F, V) as described below.
• G(·) is a probabilistic algorithm that takes a unary string of length k, the security parameter,

as input, and outputs two binary strings, a public key PK and a secret key SK.
We write this as (PK, SK)

R←− G(1k)

• F (·, ·) is a deterministic algorithm that takes two binary strings, the secrete key SK and a
seed x, and outputs two binary strings, the value v and its corresponding proof proof .
We write this as (v, proof) = F (SK, x). For convenience, we sometimes write F =
(F1, F2) where v = F1(SK, x) and proof = F2(SK, x).

• V (·, ·, ·, ·) is a probabilistic algorithm that takes four binary strings, the public key PK,
the seed x, the value v, and the proof proof , as input, and output a bit b ∈ {1, 0}. We write
this as b R←− V (PK, x, v, proof)

At a high level, we can think of G as the function generator, F as the function evaluator, and V
as the function verifier. We now describe the correctness and the security of a VRF scheme.

Correctness: The following must hold with overwhelming probability over (PK, SK)
R←−

G(1k):
• For all x in its domain, F1(SK, x) produces a string in its correct range.

• For all x in its domain, if (v, proof) = F (SK, v), then 1
R←− V (PK, x, v, proof).

• For every x, v1, v2, proof1, proof2 such that v1 6= v2, either 0
R←− V (PK, x, v1, proof1) or

0
R←− V (PK, x, v2, proof2).

At a high level, the correctness requires that the proof produced by F2 can be uniquely verified
by V .

Security: Let T = (TE, Tj) be any pair of polynomial time algorithm (in the security parameter
k). The advantage that T has in succeeding the following game over 1/2 (i.e. random guessing)
must be negligible.
• Run (PK, SK)

R←− G(1k)

• Run (x, state)
R←− T

F (SK,·)
E (1k, PK)

• Randomly choose a bit r R←− {0, 1}:

5

if r = 0, run v = F1(SK, x)

if r = 1, sample v at random from the range of F1.

• Run b R←− T
F (SK,·)
J (1k, v, state) where b is the guess of T . T succeeds if x is in the domain

of F1, x is not asked as a query to F (SK, ·) by TE or TJ , and b = r.
At a high level, the security requires that the output of F1 is indistinguishable from a random
string.

Using VRF in place of H(·): We now describe how to use a VRF scheme to simulate the ran-
dom oracleH used in our protocol. In the trusted PKI setup phase, each participant Pi is assigned
its own key pair (PKi, SKi), and also the set of public keys in its view. In our protocol, whenever
a participant Pi receives a value vj originated from Pj , and needs to evaluate H(vj), we instead
ask Pj to attach the evaluation (rj, proofj) = F (SKj, vj) and its public key PKj to vj . That is,
Pi will actually receive v′j = (vj, rj, proofj, PKj), and can simply run V (PKj, vj, rj, proofj)
to verify that rj is the correct result. Each message is additionally signed by Pj so that no one
can forge an evaluation of H(vj).

In the case where Pj is not trusted by Pi, (hence all messages of vj is forwarded by some
other participant) our protocol always guarantees that at least one forwarding is from an hon-
est participant, who has verified its signature and the included public key PKi. Whenever Pj
receives two contradicting PKi and PK ′i, Pj discards all messages from Pi since it must have
been corrupted.

2.4 Our Model and Main Results

Our model is a relaxation from the standard one assumed in most authenticated Byzantine Agree-
ment protocols (e.g. [Mic17], [KK06]). The PKI setup in our model is described in Section 2.2.
The communication and adversary model are described below.

Communication: All participants communicate in synchronized rounds, over authenticated
and private point-to-point channels. Note that such authenticated channels only exists between
two parties who trusts each other, so our communication network is sparse. Messages are sent at
the start of a round, and received by the end of the round.

The Adversary: The adversary is a polynomial time algorithm, that can adaptively corrupt
honest participants during the protocol. Corrupted participants can deviate from the protocol in
arbitrary ways. At the start of any round, the adversary may corrupt additional players before
receiving messages from all honest participants, and then decide what to send from all corrupted
participants. The adversary knows the public keys from all participants at the beginning.

Results: We first state the standard definition of a Byzantine Agreement protocol. For simplic-
ity, we only consider the binary version.

6

Definition 1. (Byzantine Agreement) For a set of participants P1, ..., PN , where each Pi holds
an initial input vi ∈ {0, 1}, when the protocol terminates, the following conditions must hold for
any adversary:
• (Validity) If all honest participants begin with the same input v, they also output v.
• (Agreement) All honest participants output the same value
Let αi be the fraction of corrupted participants in the view of an honest participant Pi. We

define α ≡ maxi{αi}. Let δij be the fraction of overlapping between the views of two honest
participants Pi, Pj (i.e. δij = |Γi ∩ Γj|/|Γi|). We similarly define δ ≡ mini,j{δij}. Now we are
ready to state our results as the following theorems:
Theorem 1. If δ > 2α, there exists an expected O(n) round Byzantine Agreement protocol in our
model, assuming a unique digital signature scheme and a verifiable random function scheme.
Further if α = 1/2 − ε for any constant ε, there exists an expected constant round Byzantine
Agreement protocol in our model.
Theorem 2. If α ≥ 1/2 or δ ≤ 2α, there does not exist a Byzantine Agreement protocol in
our model, even assuming a unique digital signature scheme and a verifiable random function
scheme.

7

8

Chapter 3

Positive Result

This section first introduces several subprotocols as building blocks, and in the end uses them
in our main protocol. For simplicity, in the following discussion we will assume that all honest
participants have a view of the same size n. However, we note that all of our results hold without
this restriction. Intuitively, since every pair of honest participants has at least a δ overlapping in
their views, the size of their views can not differ by too much.

3.1 Graded Broadcast

A Graded Broadcast protocol is a similar but weaker notion to broadcast. At a high level, it sim-
ulates a broadcast in which some participants fail to receive the message. It, however, guarantees
that all participants that successfully receive a message indeed receive the same message. In ad-
dition, if the sender is an honest participant, the broadcast always succeeds. The name “Graded
Broadcast” comes from the way a participant decide whether to accept a message: a successful
message is assigned a positive grade, while a failed message is assigned grade 0. This idea is
first introduced in [FM97] in the standard model. We now give a formal definition in our model.

Definition 2. (Graded Broadcast) For a set of participants S = {P1, ..., PN}, and a distinguished
dealer Pd ∈ S holding an initial message m, when the protocol terminates, the following condi-
tions must hold for any adversary:

• Each honest participant Pi in the view of Pd (i.e. Pi ∈ Γd) outputs (mi, gi), where gi ∈
{0, 1}.

• (Validity) If Pd is honest, then mi = m, and gi = 1 for all honest Pi ∈ Γd.

• (Agreement) If two honest participants Pi, Pj ∈ Γd outputs (mi, 1), and (mj, 1), then
mi = mj .

Next we give our protocol (Algorithm 1) that achieves Graded Broadcast assuming δ > α.

9

Algorithm 1 Graded Broadcast
1: The dealer Pd signs message m, and sends (m,Sigd(m)) to all participants in its view.
2: Every honest participant Pi in the view of Pd verifies the received signature, and forwards

the received messages. If the signature is not valid, it follows through Step 3, but always
outputs (φ, 0) in Step 4.

3: Every honest participant Pi in the view of Pd again forwards the received messages.
4: Every honest participant Pi in the view of Pd verifies received messages:

• If there are only valid signatures of message m, then Pi outputs (m, 1).
• Else: there are contradicting valid signatures ofm 6= m′ or there are no valid signatures.
Pi outputs (φ, 0).

We now show the following claims about Algorithm 1.
Claim 3. (Validity) If the dealer Pd is honest with message m and if δ > α, then all honest
participants Pi in the view of Pd output (m, 1) at the end of the Graded Broadcast protocol in
Algorithm 1.

Proof. Since Pd is honest, only signatures of the message m is ever sent out by Pd. By the
security of a Digital Signature scheme, no contradicting signatures (on a different message m′ 6=
m) can be forged.
By our model assumption, there are at least (δ − α)n > 1 honest participants in the overlapping
between any honest Pi and Pd. Therefore, Pi always receives at least 1 valid signature of m.
Hence Pi outputs (m, 1).

Claim 4. (Agreement) If two honest participants Pi, Pj in the view of Pd outputs (mi, 1) and
(mj, 1), and if δ > α, then mi = mj .

Proof. Since Pi is honest, he must have seen a valid (mi, Sigd(mi)) in Step 2. By our model
assumption, there are at least (δ − α)n > 1 honest participants in the overlapping between any
honest Pj and Pi. Therefore, Pi always receives at least 1 valid signature of mi. Hence Pj never
outputs (mj, 1) for any mj 6= mi.

The above claims lead to the following lemma that we will use as a building block to prove
Theorem 1.
Lemma 5. If δ > α, there exists a three round Graded Broadcast protocol.

Proof. By Algorithm 1, Claim 3, and Claim 4.

3.2 Leader Selection
A Leader Selection protocol is used for electing an honest leader that is agreed on by all honest
participants. However, we only need this to happen with some probability, to which we refer as
the fairness of the protocol. If the fairness is a constant, then running the protocol repeatedly
will give us an honest leader in expected constant round. If the fairness is Ω(1/n), then running
the protocol repeatedly will give us an honest leader in expected O(n) round. Our definition is

10

similar to the one present in [KK06]. Our protocol construction is inspired by the ConcreteCoin
protocol present in [Mic17]. We now give a formal definition in our model:
Definition 3. (Leader Selection) For a set of participants P1, ..., PN and fairness γ, when the
protocol terminates, the following conditions must hold with probability at least γ:
• Every honest participant Pi outputs Pl and Pl is honest by the end of the protocol.

When such an event happens, we say that an honest leader Pl is elected.
Next, we give our protocol (Algorithm 2) that achieves Leader Selection assuming δ > 2α.

Its fairness is analyzed below.

Algorithm 2 Leader Selection
Input: r

1: Let r be given (representing the current iteration number in the outer protocol). Every honest
participant Pi sends mi = (i, Sigi(r)) to all other participants in its view.

2: Every honest participant Pi forwards messages with valid signatures to all other participants
in the view of Pi.

3: Every honest participant Pi receives at most n forwarded messages from each Pj in its view
(and ignore the messages after the first n). Pi computes a set Si of messages that are for-
warded by at least (δ − α)n participants in its view, and send Si to all participants in its
view.

4: Every honest participant Pi receives a set Sj from every participant Pj in its view.
• Pi computes a set S∗i of messages that appear in at least (1− α)n received sets.
• For every mk ∈ S∗i , Pi computes H(mk) and outputs Pl where l is the smallest id such

that for all mk ∈ S∗i H(ml) ≤ H(mk).
Output: Pl

We now show the following claims about Algorithm 2.
Claim 6. In any iteration r, if Pi, Pj are any two honest participants, then mj = (j, Sigj(r)) ∈
S∗i in Step 4.

Proof. Consider any honest participant Pk. By our model assumption, there are at least (1−α)n
honest participants in the view of Pj , and at least ((1− α)− (1− δ))n = (δ − α)n of them are
also in the view of Pk. Therefore, in Step 3 Pk receives mj forwarded by least (δ − α)n honest
participants. Hence mj ∈ Sk.
By the argument above, every honest Pk in the view of Pi sends Sk with mj ∈ Sk in Step 3.
Since there are at least (1− α)n of them, we have mj ∈ S∗i in Step 4.

Claim 7. In any iteration r, if Pi is honest, and if δ > 2α, then Si contains at most 2n messages
from corrupted participants.

Proof. We first calculate the total number of times any message from a corrupted participants
gets forwarded to Pi. By our model assumption, there are at most αn corrupted participants in
the view of Pi that can each forward n corrupted messages. The rest (1−α)n honest participants
will each forward at most αn corrupted messages. In total, we get

αn2 + (1− α)αn2 = α(2− α)n2

11

For a corrupted message to be accepted into Si, it must be forwarded at least (δ − α)n times.
Therefore, the number of accepted corrupted messages is at most

α(2− α)n2

(δ − α)n
≤ α

δ − α
2n < 2n

The above claims lead to the following lemma that we will use as a building block to prove
Theorem 1.
Lemma 8. If δ > 2α, there exists a three round Leader Selection protocol with fairness 1/(5n).
Further if α < 1/2 − ε for some positive constant ε, then there exists a three round Leader
Selection protocol with constant fairness.

Proof. We show that Algorithm 2 is such a protocol. Let C be the set of all honest participants.
Consider the union of all honest S∗i : S = ∪Pi∈CS

∗
i . If Pl is an honest participant and l is the

smallest id such that for all mk ∈ S∗ H(ml) ≤ H(mk), then by Claim 6, Pl ∈ S∗i for all
honest Pi. Hence all honest Pi will output Pl in Step 4 (i.e. an honest leader Pl is elected).
Furthermore, by the definition of Random Oracle, H(mk) are uniform random and independent
for all mk ∈ S∗. Therefore, the probability that an honest leader Pl is elected is exactly |C|/|S∗|.
We now calculate the total number corrupted messages in S∗. In Step 4, any corrupted message
ever accepted into an honest S∗i must appears in at least (1−α)n sets, of which at least (1−2α)n
are from an honest participant. By Claim 7, the total number of corrupted messages in all honest
Si in Step 3 is 2nC. Therefore, the number of corrupted messages in S∗ is at most

2n|C|
(1− 2α)n

=
2

1− 2α
|C|

And we have |S∗| ≤ |C| + 2
1−2α |C|. Since the number of corrupted participants in the view of

any honest party is an integral number, we have 1/2 − α ≥ 1/(2n). The probability that an
honest leader is elected is given by

|C|
|S∗|
≥ |C|
|C|+ 2

1/(2n)
|C|

=
1

1 + 4n
≥ 1

5n

In the case of α < 1/2− ε for some constant ε, we get

|C|
|S∗|
≥ |C|
|C|+ 2

2ε
|C|

=
1

1 + 1/ε

Which is a constant.

3.3 Main protocol
The main protocol is inspired by the one present in [Mic17]. At a high level the protocol ensures
that if one honest participant decides to terminate with some output v ∈ {0, 1}, it is sure that no

12

other honest participant terminates with a different v′ 6= v in the same round, and that all honest
participants will be able to terminate in the next round. When all honest participants hold the
same value, they terminates immediately. When an honest leader is elected, they terminates with
probability 1/2. Overall, if an honest leader is elected with constant probability, then our main
protocol terminates with expected constant round. Similarly, if an honest leader is elected with
probability Ω(1/n), then our main protocol terminates with expected O(n) rounds. The main
protocol is shown in Algorithm 3.

Algorithm 3 Byzantine Agreement
Input: vi ∈ {0, 1}: the initial value; r ← 0: the current iteration; hi ← 0: whether to halt.

1: Every honest Pi runs a Graded Broadcast protocol as the dealer with message vi. In the end,
Pi outputs (vj, gj) for every participant Pj in its view, and accepts only values with grade 1.
• If hi > 0, do nothing.
• If at least (1− α)n 0s are accepted, then set vi ← 0 and hi ← 1.
• If more than (1− α)n 1s are accepted, then set vi ← 1.
• Otherwise, set vi ← 0.

2: Every honest Pi runs a Graded Broadcast protocol as the dealer with message vi. In the end,
Pi outputs (vj, gj) for every participant Pj in its view, and accepts only values with grade 1.
• If hi > 0, do nothing.
• If at least (1− α)n 1s are accepted, then set vi ← 1 and hi ← 1.
• If more than (1− α)n 0s are accepted, then set vi ← 0.
• Otherwise, set vi ← 1.

3: Every honest Pi sends a random bit b R←− {0, 1} to every participants in its view. In the end,
Pi receives bj from every participant Pj in its view.

4: Every honest Pi runs a Leader Selection protocol with input r and outputs Pli .
5: Every honest Pi runs a Graded Broadcast protocol as the dealer with message vi. In the end,
Pi outputs (vj, gj) for every participant Pj in its view, and accepts only values with grade 1.
• If hi > 0, do nothing.
• If more than (1− α)n 1s are accepted, then set vi ← 1.
• If more than (1− α)n 0s are accepted, then set vi ← 0.
• If Pli is in the view of Pi, then set vi ← bli .

6: Set r ← r + 1.
• If hi = 2 halts with v∗ = vi.
• If hi = 1, sets hi ← 2.

Go back to Step 1.
Output: v∗i ∈ {0, 1}

We now show the following claims about Algorithm 3.
Claim 9. (Validity) If every honest participant Pi has the same initial value v, then they all
terminate in the second iteration.

Proof. By our model assumption and the correctness of Graded Broadcast, every honest partici-
pant Pi in Step 1 will output (v, 1) from at least (1− α)n honest Graded Broadcast.

13

If v = 0, Pi sets hi ← 1 in Step 1 If v = 1, since α < 1/2, there cannot be more than (1−α)n 1s
in step 1, Pi keeps vi unchanged and sets hi ← 1 in Step 2 by the same argument. Once hi = 1,
vi never changes and Pi halts in the next iteration with v∗ = vi.

Claim 10. If some honest participant Pi sets hi ← 1 in iteration r with vi = v, and if δ > 2α,
then every other honest participant Pj will have set hj ← 1 with vj = v by the end of iteration
r + 1, and all of them halts by the end of iteration r + 2.

Proof. It suffice to consider the first honest Pi that sets hi ← 1.

• Suppose this happened in Step 1, consider a different honest participant Pj , who didn’t set
hj ← 1 in Step 1 (otherwise, we are done). By our model assumption, of at least (1−α)n
participants who Graded Broadcasted messages 0 to Pi, at least ((1 − α) − (1 − δ))n =
(δ − α)n > αn of them are also in the view of Pj . By correctness of Graded Broadcast,
Pj cannot accept more than (1 − α)n values of 1 in Step 1. Hence Pj sets vj ← 0. That
is, by the end of Step 1, every honest party Pj holds vj = 0. Repeating the argument from
Claim 9, Pj keeps vj unchanged in this iteration. If Pj didn’t set hj ← 1 in Step 1, it will
in the next iteration.

• Suppose this happened in Step 2. By assumption, Pi is the first honest party who sets
hi ← 1, and no other honest Pj have set hj ← 1 in Step 1. The rest follows from exactly
the argument in the previous case.

Note that by Claim 10, honest participants always halt with the same value. It now suffice to
only consider the case when no honest participant Pi has set hi ← 1:
Claim 11. Suppose no honest participant has set hi ← 1 in some iteration r. If an honest leader
Pl is elected in iteration r, and if δ > 2α then with probability 1/2 Pl will set Pi in iteration
r + 1.

Proof. Suppose some honest Pi in the view of Pl in Step 5 accepted at least (1 − α)n values
of some value v. By the argument from Claim 10, no other honest Pj have accepted more than
(1−α)n values of the different value vc. That is, in Step 5 the honest participants in the view of
Pl either set their values to the same v, or to bl, the random bit from Pl.
With probability 1/2, bl = v, and all honest participants in the view of Pl hold the same value
in the next iteration. Since there are at least (1 − α)n of them, Pl will set hl ← 1 in the next
iteration.

Theorem 1 now follows directly from Lemma 5, Lemma 8, Algorithm 3, Claim 9, Claim 10,
and Claim 11.

14

Chapter 4

Negative Result

Closely related to the Byzantine Agreement problem is the Broadcast problem. We give the
standard definition below:

Definition 4. (Broadcast) For a set of participants S = {P1, ..., PN}, and a distinguished dealer
Pd ∈ S holding a message m, when the protocol terminates, the following conditions must hold
for any adversary:

• (Agreement) Every honest participant Pi outputs the same m∗, for some m∗.

• (Validity) If the Pd is honest, then m∗ = m.

In the standard model, it’s clear how to use a Byzantine Agreement protocol to implement
Broadcast: the dealer simply send its message to every other participant, and then all participants
ran a Byzantine Agreement protocol to decide on an output message. With some extra steps, we
can also achieve the same in our relaxed model. Note that for some Pi not in the view of Pd, it
enters the protocol with the player id Pd, but not its public key Pkd .

In the standard model assuming a PKI setup, while Byzantine Agreement is not possible in
the presence of more than 1/2 corruption, Broadcast is possible for any number of corruption
[DS83]. As will be shown in this section, Broadcast in our relaxed model is equivalent to Byzan-
tine Agreement. We first show how to use Byzantine Agreement to implement Broadcast, and
then show impossibility results for Broadcast assuming α ≥ 1/2, or δ ≤ 2α.

4.1 Broadcast from Byzantine Agreement

We now show our protocol (Algorithm 4) to achieve Broadcast in our relaxed model, assuming
δ > 2α. For simplicity, we only consider the binary version.

15

Algorithm 4 Broadcast
1: The dealer Pd runs a Graded Broadcast protocol with message m ∈ {0, 1}. In the end, every

honest Pi in the view of Pd (i.e. Pi ∈ Γd) outputs (mi, gi).
2: For every honest Pi ∈ Γd:

• If gi = 1, then send mi to all other participants in the view of Pi, and sets vi ← mi.
• Else, sets vi ← 0

3: For every honest Pi 6∈ Γd:
• If Pi receives at least (δ − α)n messages of a unique message m, then set vi ← mi

• Otherwise, set vi ← 0.
4: Every honest participant Pi runs a Byzantine Agreement protocol with input vi, and use its

output v∗ as the broadcast output.

We now show the following claims about Algorithm 4.
Claim 12. (Agreement) If δ > 2α, the output of every honest Pi is the same.

Proof. This follows directly from the correctness of Byzantine Agreement (Theorem 1).

Claim 13. (Validity) If Pd is honest with message m ∈ {0, 1}, and if δ > 2α, then every honest
Pi outputs m.

Proof. By the correctness of Graded Broadcast (Lemma 5), if Pd is honest, then every honest
Pi ∈ Γd outputs (m, 1) in Step 1, and sets vi ← m in Step 2.
For every Pi 6∈ Γd, by our model assumption, at least (δ − α)n honest participants are in the
overlapping of the views of Pd and Pi. Hence Pi receives m at least (δ − α)n times.
Note that any honest Pj participant either sends out m (in case of Pj ∈ Γd), or nothing in Step 2.
Pi can only receive some m′ 6= m corrupted participants in its view in Step 3. By assumption,
there are at most αn < (δ − α)n corrupted participants in the view of Pi. Hence Pi also sets
vi ← m in Step 4.
By the correctness of Byzantine Agreement (Theorem 1), all honest participants output m.

The above claims lead to the following lemma that we will use as a building block to prove
Theorem 2.
Lemma 14. Assuming δ > 2α, there exists a Broadcast protocol.

Proof. By Algorithm 4, Claim 12, and Claim 13.

4.2 Negative Result for Broadcast

The case of α ≥ 1/2 We start with the case where α ≥ 1/2. Let p, r be positive integers.
Without loss of generality, assume p > r. Figure 4.1a shows a configuration C1 where a total
of N = r + 2p participants are divided into 4 groups, A,B,C and F with sizes |A| = r, |B| =
p − r, |C| = r, and |F | = p. Groups A,B,C are honest participants, while F are corrupted.
Group A sees A,B, F in its view, group C sees C,B, F in its view, and group B sees A,C, and
only p− r corrupted participants of F in its view.

16

(a) A configuration C1 with α = 1/2, and
δ = (2p− r)/2p.

(b) An adversarial strategy for configura-
tion C1.

Figure 4.1: A counter example for the case of α ≥ 1/2.

We now show the following claims:
Claim 15. C1 represents a valid configuration with α = 1/2 and any δ = (2p− r)/(2p).

Proof. We first verify each of A,B,C’s view:

|Γa| = |Γb| = |Γc| = 2p

Within each view, we verify that the corruption in Γa,Γc are exactly 1/2, and the corruption in
Γb is (p− r)/2p < 1/2.
We finally verify that the overlapping between A and C is exactly (2p − r)/(2p). The overlap-
pings between B and A and between B and C are also both (2p− r)/(2p).

Let Pd ∈ C be some honest participant in group C with message m ∈ {0, 1}. We now claim
that broadcast is impossible for Pd in C1.
Claim 16. Broadcast is impossible for Pd in configuration C1.

Proof. Suppose there is a protocol Π that achieves Broadcast with dealer Pd in configuration C1.
We consider an adversary with the following strategy, as illustrated in Figure 4.1b.
The adversary locally simulate a group C ′ of size r, with the same ids as C by with newly
assigned keypairs for their digital signatures. Group C ′ runs the protocol Π honestly, with the
corresponding P ′d ∈ C ′ start with message m′ 6= m. When Π requires participants in C ′ to send
messages to B, they pretend that B have ignored their messages.
The corrupted group F disables r of them, and let the rest run the protocol Π honestly, except
they ignore all messages from B and C. When Π requires them to send messages to B and C,

17

they pretend that B and C have ignored its message.
By symmetry, it’s clear that group A cannot distinguish C from C ′, hence Pd from P ′d. Hence
broadcast is impossible for Pd.

The above claims lead to the following lemma that we will use as a building block to prove
Theorem 2.
Lemma 17. Assuming α ≥ 1/2, for any 0 < δ < 1, there does not exist a Broadcast protocol in
our model

Proof. It’s clear that for any positive integer N ≥ 5 and valid 0 < δ < 1, we can choose
positive p, r such that (2p − r)/(2p) = δ, and 2p + r = N . By Claim 15 and Claim 16, we
can construct a valid configuration C1 with α = 1/2, in which Broadcast is impossible for some
honest participant.

The case of δ ≤ 2α Now it suffice to assume α < 1/2. We similarly show an impossibility
result for Broadcast in the case of α < 1/2 and δ ≤ 2α. Let p, r be positive integers, and assume
p > r. Figure 4.2a shows a configuration C2, where a total of N = 2p + 2r participants are
divided into 4 groups, A,B,C and F , with sizes |A| = r, |B| = p, |C| = r, and |F | = p. Groups
A,B,C are honest participants, while F are corrupted. Group A sees A,B, F in its view; group
C sees C,B, F in its view; and group B sees A,C, and only p− r corrupted participants of F in
its view.

(a) A configuration C2 with α = p/(2p +
r) < 1/2, and δ = 2α.

(b) An adversarial strategy for configura-
tion C2.

Figure 4.2: A counter example for the case of α < 1/2, δ ≤ 2α.

We now show the following claims:

18

Claim 18. C2 represents a valid configuration with α = p/(2p+ r) < 1/2 and δ = 2α.

Proof. We first verify each of A,B,C’s view:

|Γa| = |Γb| = |Γc| = 2p+ r

Within each view, we verify that the corruption in Γa,Γc are exactly p/(2p+r), and the corruption
in Γb is (p− r)/(2p+ r) < p/(2p+ r).
We finally verify that the overlapping between A and C is exactly 2p/(2p + r) = 2α. The
overlappings between B and A and between B and C are both 2p/(2p+ r) = 2α.

Let Pd ∈ C be some honest participant in group C, with message m ∈ {0, 1}, we similarly
claim that broadcast is impossible for Pd in C2.
Claim 19. Broadcast is impossible for Pd in configuration C2.

Proof. The proof is analogous to the proof of Claim 16. The adversarial strategy is illustrated
by Figure 4.2b, with the only difference being that the adversary no longer disables r of the
corrupted participants in F .

The above claims lead to the following lemma that we will use as a building block to prove
Theorem 2.
Lemma 20. Assuming α < 1/2 and δ ≤ 2α, there does not exist a Broadcast protocol in our
model

Proof. Similar to Lemma 17, it follows from Claim 18 and Claim 19.

Theorem 2 now follows directly from, Lemma 14, Lemma 17 and Lemma 20.

19

20

Chapter 5

Conclusions

This thesis presents a generalization of the standard Byzantine Agreement problem, where every
honest participant knows and communicates with only a subset of all participants. This gener-
alization is motivated by real world peer-to-peer networks, where not every pair of participants
are directly connected. Our setting is parameterized by α, the maximum fraction of corruption
in each honest “view”, and δ, the minimum fraction of overlapping between any pair of honest
“views”.

In Chapter 3, We present a protocol that runs in expected polynomial round assuming δ > 2α.
If we further assume α ≤ 1/2−ε for any constant ε, the protocol runs in expected constant round.
In Chapter 4, We show that it’s impossible to achieve Byzantine Agreement assuming α ≥ 1/2
or δ ≤ 2α. Together, they show that our assumption for the positive result is tight. However,
whether there is an expected constant round protocol assuming only δ > 2α is still open.

One future direction to extend this thesis is to consider single direction edges in our commu-
nication graph. That is, if some honest participant Pi is in the view of another, Pj , it’s possible
that Pj is not in the view of Pi. Some of our idea in Chapter 3 still work with stronger parame-
ter assumptions. However, we don’t have matching positive results and negative results for this
setting yet.

21

22

Bibliography

[BG89] Piotr Berman and Juan A. Garay. Asymptotically optimal distributed consensus,
pages 80–94. Automata, Languages and Programming. Springer Berlin Heidelberg,
1989. 1

[BG93] Piotr Berman and Juan A. Garay. Fast consensus in networks of bounded degree.
Distributed Computing, 7(2):67–73, 1993. 1

[BO83] Michael Ben-Or. Another Advantage of Free Choice (Extended Abstract): Com-
pletely Asynchronous Agreement Protocols. In Proceedings of the Second Annual
ACM Symposium on Principles of Distributed Computing, PODC ’83, pages 27–30,
New York, NY, USA, 1983. ACM. event-place: Montreal, Quebec, Canada. 1

[BOR96] Michael Ben-Or and Dana Ron. Agreement in the presence of faults, on networks of
bounded degree. Information Processing Letters, 57(6):329–334, 1996. 1

[CGO10] Nishanth Chandran, Juan Garay, and Rafail Ostrovsky. Improved Fault Tolerance and
Secure Computation on Sparse Networks. In David Hutchison, Takeo Kanade, Josef
Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar
Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos,
Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Samson Abramsky, Cyril Gavoille,
Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors,
Automata, Languages and Programming, volume 6199, pages 249–260. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010. 1

[Dol82] Danny Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1):14–
30, March 1982. 1

[DPPU88] Cynthia Dwork, David Peleg, Nicholas Pippenger, and Eli Upfal. Fault tolerance in
networks of bounded degree. SIAM Journal on Computing, 17(5):975–988, 1988. 1

[DS83] D. Dolev and H. R. Strong. Authenticated Algorithms for Byzantine Agreement.
SIAM Journal on Computing, 12(4):656–666, November 1983. 1, 4

[FG03] Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong and
differential consensus. In Proceedings of the twenty-second annual symposium on
Principles of distributed computing - PODC ’03, page nil, - 2003. 1

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure in-
teractive consistency. Information Processing Letters, 14(4):183–186, June 1982.
1

23

[FM97] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for syn-
chronous byzantine agreement. SIAM Journal on Computing, 26(4):873–933, 1997.
1, 3.1

[GM98] Juan A. Garay and Yoram Moses. Fully Polynomial Byzantine Agreement for Pro-
cessors in Rounds. SIAM J. Comput., 27(1):247–290, February 1998. 1

[GO92] Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-interactive
zero-knowledge proofs are equivalent. In Annual International Cryptology Confer-
ence, pages 228–245. Springer, 1992. 2.2

[KK06] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzan-
tine agreement. In Advances in Cryptology - CRYPTO, Lecture Notes in Computer
Science, pages 445–462. Springer Berlin Heidelberg, 2006. 1, 2.4, 3.2

[KSSV06] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards Secure and Scal-
able Computation in Peer-to-Peer Networks. In 2006 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’06), pages 87–98, Berkeley, CA, USA,
2006. IEEE. 1

[LSP] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Prob-
lem. ACM Transactions on Programming Languages and Systems, 4(3):20. 1

[Mic17] Silvio Micali. Byzantine agreement, made trivial. 2017. 1, 2.4, 3.2, 3.3

[MRVil] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In 40th Annual
Symposium on Foundations of Computer Science (Cat. No.99CB37039), page nil, -
nil. 2.2, 2.3

[MV17] Silvio Micali and Vinod Vaikuntanathan. Optimal and player-replaceable consensus
with an honest majority. 2017. 1

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228–234, April 1980. 1

[Rab83] Michael O. Rabin. Randomized byzantine generals. In 24th Annual Symposium
on Foundations of Computer Science (sfcs 1983), pages 403–409, November 1983.
ISSN: 0272-5428. 1

[Upf94] E. Upfal. Tolerating a linear number of faults in networks of bounded degree. Infor-
mation and Computation, 115(2):312–320, 1994. 1

24

	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Unique Digital Signature and PKI
	2.3 Verifiable Random Function
	2.4 Our Model and Main Results

	3 Positive Result
	3.1 Graded Broadcast
	3.2 Leader Selection
	3.3 Main protocol

	4 Negative Result
	4.1 Broadcast from Byzantine Agreement
	4.2 Negative Result for Broadcast

	5 Conclusions
	Bibliography

