
Learning Generative Models from Incomplete Data

Yao Chong Lim

CMU-CS-19-120

August 2019

School of Computer Science

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Louis-Philippe Morency, chair

Alexander Hauptmann

Submitted in partial fulfillment of the requirements

for the Degree of Master of Science.

Copyright c© 2019 Yao Chong Lim



Keywords: machine learning, generative models, imputation, missing data, varia-

tional autoencoders



Abstract

Real-world machine learning systems must handle missing data well in order to build robust

and reliable systems. One way to tackle this problem is to build a generative model that

can learn from incomplete data. Such models can then be used in applications such as

image restoration and missing value imputation. To achieve this, this thesis introduces a

deep generative model, the Variational Auto-decoder (VAD), a variant of the stochastic

gradient variational Bayes (SGVB) estimator first introduced by Kingma and Welling in

2013. To improve the robustness of the model to varying rates of missing data during

training and testing, the VAD framework directly optimizes parameters of the approximate

posterior of the latent variables. Compared to the common variational autoencoder (VAE)

implementation of SGVB, no encoder network is used to approximate the parameters of the

approximate posterior. Through empirical evaluation on six datasets, including datasets on

image classification, facial landmark detection, and multimodal language, we show that the

VAD framework is more robust to different rates of missing data than previous generative

models for incomplete data.
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Chapter 1

Motivation and Introduction

Dealing with missing data is an important part of any real-world machine learning system [29].

Incomplete or unreliable data due to non-responses, faulty sensors, corrupted data, censorship,

or other causes present distinct challenges to the training of such systems [10, 16]. Modern

machine learning systems are largely trained on complete data only. However, ignoring

incomplete data when training our models potentially throws away a lot of useful information

contained in the incomplete data. Furthermore, generative models that are learned from

incomplete data can be easily used to generate plausible replacements for missing values in

the incomplete data [29, 12]. This can be used in applications such as image restoration or

inpainting by replacing occluded areas or imperfections, or imputation of incomplete datasets.

While there are existing models that model and can learn from incomplete data [29, 12],

we show that these models perform poorly when trained and tested on different rates of

missingness.

To tackle this problem, this thesis presents the Variational Autodecoder (VAD), a

framework that learns a generative model of possibly incomplete data by optimizing latent

variables to maximize the likelihood of the observed values. In contrast to related approaches

which make an approximate prediction of the latent variables from observed values [12], the
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VAD framework avoids the use of such an encoder, which makes the model more robust to

different patterns and rates of missing data [13]. We evaluate and compare the models on a

wide range of datasets in cases where missingness during train and test time are similar and

different to support this claim.

In this thesis, we aim to answer the following research questions:

1. What are the limitations of the existing variational autoencoder-based and generative

adversarial network-based approaches to modeling incomplete data [13, 29, 12]?

2. How sensitive are generative models for incomplete data to the pattern of missingness

during training and testing?

3. How does an encoder-less parameterization of the stochastic gradient variational Bayes

(SGVB) framework perform in comparison to existing encoder-based models with

regards to robustness to missing data during test time despite not being explicitly

trained on missing data?

4. How does the generative model learned by an encoder-less parameterization of the

SGVB framework compare to existing generative models that deal with incomplete

data?

1.1 Contributions

To that end, this thesis makes the following contributions:

1. We show that two existing neural approaches to generative modeling of incomplete data,

Generative Adversarial Imputation Networks (GAIN) [29] and Variational Autoencoders

with Arbitrary Conditioning (VAEAC) [12] are sensitive to the rates of missingness in

train and test sets.
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2. To address these shortcomings of existing approaches, we present an adaptation of

the SGVB framework, which we call the Variational Auto-decoder (VAD), which

directly optimizes the parameters of the approximate latent posterior by maximizing

the likelihood of the training data.

3. We conduct empirical comparisons of VAD with both existing approaches on a wide

range of datasets, varying the rate of missing data in both the training and testing

datasets, and show that the VAD framework more accurately predicts missing values,

even when not explicitly trained to do so.

1.2 Other Research Projects

While this thesis focuses on the contributions mentioned in the previous subsection, I also

performed research on simple but strong baselines for multimodal utterance embeddings

during my program [15]. Here, we extended previous work on simple but strong sentence

embeddings to the multimodal utterances [1], which are trimodal sequences of acoustic,

visual, and language modalities. The model assumes unimodal, bimodal, and trimodal

factorizations of the utterance conditioned on the utterance embedding, and further assumes

that the features follow a Gaussian distribution. The resulting model can be efficiently

optimized using coordinate ascent, and displays competitive results with many neural models

on downstream tasks involving multimodal embeddings, while showing speedup of at least an

order of magnitude.

1.3 Thesis Outline

Chapter 2 discusses related work on deep generative models and recent attempts to learn

generative models over incomplete data, as well as related work in imputation and inpainting
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applications. Chapter 3 presents the general formulation of the imputation problem, as

well as the VAE framework that the VAD framework is based on. Chapter 4 presents and

discusses the VAD framework in detail, describes the experimental setup of datasets and

experimental procedures employed to evaluate the performance of the VAD framework, and

presents and analyzes the results of these experiments. Finally, Chapter 5 concludes the

thesis and discusses possible directions for future work.
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Chapter 2

Related Work

In this chapter, we provide an overview of generative models, with a focus on deep generative

models designed to learn from incomplete data and relate them to the VAD framework. We

also discuss classic approaches to data imputation, as well as application-specific approaches

from inpainting.

2.1 Deep generative models

Generative models describe a distribution over the space of all possible data (for example,

images of faces), which allows for sampling of datapoints, often from a random variable that

represents the latent space. Deep generative models parameterize the data distribution using

deep neural networks, and have obtained impressive results in image generation [3]. Two

main types of deep generative models are in use today: variational autoencoders (VAEs) and

generative adversarial networks (GANs).

VAEs are a variant of the stochastic gradient variational Bayes (SGVB) algorithm

[13]. In its basic form, it consists of an encoder network, which approximates a posterior
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distribution over the latent space given input data, and a decoder that generates the datapoint

from the randomly sampled latent variables. The framework is explained in more detail in

Section 3.2.

One approach to adapting the VAE framework to tackle imputation introduces arbitrary

conditioning to the model [12]. The use of an encoder network to determine a distribution

of latent variables from the incomplete input allows the model to compute fast imputations

using a single forward pass of the trained model. However, because the model still uses an

encoder, it is still susceptible to drops in performance when the training and testing data

follow different patterns of missingness.

GANs contain two networks: a generator network, which learns to generate datapoints

from random latent variables, and a discriminator network, which learns to differentiate

between random outputs from the generator and the true datapoints in the training set [11].

As the two networks have opposing goals, the generator eventually learns to generate outputs

that are similar to the true datapoints to better fool the discriminator. The generator then

defines a distribution over the data, which can be sampled from.

Generative Adversarial Imputation Networks (GAIN) [29] adapt the Generative Ad-

versarial Network (GAN) framework [11] for the problem of imputation. In GAIN, the

generator additionally takes as input an incomplete datapoint, and imputes the missing

values. The completed datapoints are given to the discriminator to identify the observed

values and imputed values, with the help of a hint vector that provides some information

about the identity of the imputed variables. While the use of a discriminator encourages

the generator to generate plausible imputations, both the discriminator and generator only

learn to handle datapoints with rates of missingness seen during training. This weakens the

generative model’s ability to generalize beyond rates of missingness seen during training. Our

results in Section 4.3.2 support this observation.
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2.2 Imputing missing data

One application of a generative model trained on incomplete data is to impute values for

missing data. A large number of approaches exist to tackle the problem of imputing missing

data. We discuss some of the common statistical approaches are discussed here.

A simple approach to handling missing data is to just ignore datapoints with missing

values, known as complete-case analysis [10]. However, if missing values are common in

the dataset, doing so greatly reduces the amount of available data, which can hurt the

performance of trained models. Furthermore, biases could arise if datapoints with missing

values are systematically different from datapoints with complete data.

One simple imputation method is to replace missing values with the mean value across

observed values of the same variable [10]. However, this method can also easily bias the

dataset if the missing values are different from the observed values, as in complete-case

analysis. Furthermore, this method affects the summary statistics of the dataset, such as

underestimating the variance of the missing variable, since values are now more concentrated

about the mean [16]. Other simple methods include imputation based on logical rules or

information from related observations, but this requires knowledge about the domain and

dataset and must be hand-written for each variable, which does not generalize to an approach

that works for any dataset. For example, if trying to obtain household income estimates,

and the income of only one parent is known, a reasonable imputation of the total household

income might be just the single income, or twice the single income.

When a single variable has missing values, two simple approaches are imputing the

missing value using a trained regression model, and hot-deck imputation or matching [10].

In the regression method, a regression model is trained over the fully observed variables to

predict the values of the missing variable, using datapoints with complete information. The

predictions for the datapoints with missing values are then used as the imputed values. In

hot-deck imputation, given the datapoint for which we are trying to impute a missing value,
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we find the datapoint that is the most similar and has an observed value for the missing

variable, and simply use that observed value as the imputation. While hot-deck imputation

is potentially a non-parametric imputation method depending on the similarity metric used,

its effectiveness depends on the presence of complete datapoints that are similar enough to

the incomplete datapoint to give a good imputation [9].

In general, these approaches for imputing a single variable do not scale well to imputing

multiple missing variables [24]. If multiple variables are missing, regression models have

to be trained for each missing variable, and the pool of candidate datapoints for hot-deck

imputation shrinks.

To impute multiple missing variables, regression-based methods are often used. One

simple method is to simply fit a multivariate regression model, where the predicted values are

the variables with missing values. Another method is iterative regression imputation, which

involves progressively repeatedly imputing each missing value individually, using the newly

imputed values, until convergence is reached [25].

Most of the approaches listed above produce a single imputed value per missing value,

which ignores the inherent uncertainty in trying to predict these values. Multiple imputation

attempts to encode this uncertainty by simply running the previous methods multiple times

to obtain multiple imputed values for each missing value, giving multiple completed datasets

(datasets where the missing values have been imputed). The desired tasks are then performed

on all completed datasets, and uncertainty estimates of the final results can be obtained from

the results over each completed dataset.

To impute multiple missing variables, most modern statistical methods use iterative

imputation, which involves progressively repeatedly imputing each missing value individually,

using the newly imputed values, until convergence is reached. One general approach is

multivariate imputation by chained equations (MICE), which involves sampling imputed

values from conditional distributions, conditioned on the remaining variables [5]. While the
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model has seen much practical success, particularly in medical applications (van Buuren

and Groothuis-Oudshoorn [4] give a large list of applications of MICE in various fields),

the conditional distributions learned in the process are not theoretically guaranteed to be

consistent with an overall joint distribution [2]. Furthermore, the success of the method

depends on the choice of parameterization of the conditional distributions, which may require

expert fine-tuning based on relationships between the variables [18], while the VAD framework

described in this thesis does not require this. Another related approach is missForest, which

also performs iterative imputation, but instead uses a random forest to predict missing values

[24].

2.3 Inpainting

Another application of generative models learned from incomplete data is in image restoration

or inpainting. Here, the input is an image with missing pixels, denoted using a binary mask.

The goal is then to reconstruct the missing pixels as best as possible. We discuss some

inpainting-specific approaches below.

One approach is the deep image prior [26] finds the best network parameters that

minimizes reconstruction error, while keeping the latent variables fixed. This means that

during testing, gradient descent must still be conducted to find the set of network parameters

that best reconstruct this image, like in the VAD framework. One drawback of this method

is that since the model is non-trainable, shared information between datapoints cannot be

used to improve the model’s performance. Another drawback is that the method does not

scale well, since different network parameters must be found for each image. In contrast, in

the VAD framework, the generator network parameters are shared across all datapoints, and

the latent variables that minimize reconstruction loss for each datapoint are learned.

Most autoencoders that use convolutional neural networks in their encoders and
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decoders use fully-connected layers to obtain a common latent representation for the encoder

and decoder, to allow information to propagate across the whole image. Context encoders

modify this by replacing the fully-connected layers with a channel-wise fully-connected layer,

which propagates information spatially but not across channels, and a 1 × 1 convolution,

which propagates information across channels but not spatially [20]. This greatly reduces

the number of parameters in the model, allowing for larger latent representations that seem

to improve performance. The model also uses adversarial loss during training to tackle the

phenomenon that L2 and L1 loss functions commonly used in image reconstruction tend to

lead to blurry solutions, giving them a small gain in performance. However, without data

augmentation, the model is still dependent on the quality of the encoder and its ability to

handle general patterns of missingness when only trained on certain patterns [29].
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Chapter 3

Technical Background

In this chapter, we provide a background on related work in data imputation and variational

auto-encoders, and provide a mathematical formulation of the problem.

3.1 Data imputation

Our task is to model the distribution of some d-dimensional random variable x ∼ p(x), where

x ∈ Rd. Unfortunately, x is not fully observable. To model the distribution of missing

values, we introduce a random variable α ∼ p(α);α ∈ {0, 1}d that is a binary mask indicating

whether each dimension of x is observed. If αi = 1, then xi is observed, otherwise xi is

missing. The final observed datapoints x̂ are then assumed to be generated by first generating

the ground-truth x and mask α, and then removing the missing values from x to generate x̂:

x̂ = x� α + ∗ � (1− α) (3.1)

Here, ∗ can be any value, such as zero, or values drawn from a uniform random distribution.

Hence, the dataset consists of both the observed values as well as the corresponding

masks D = {x̂(i), α(i)}Ni=1. We do not have access to the ground-truth X = {x1}Ni=1 since it is
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strictly unknown.

We assume that the identities of the missing values are given to us via the mask α.

This is consistent with many real-world applications involving missing data, such as where

study participants withhold data, or where readings are not available due to faulty sensors or

data corruption.

Patterns of missingness in data can be categorized into three categories: 1) missing

completely at random (MCAR), where missingness probabilities are the same for all variables,

2) missing at random (MAR), where missingness depends only on the observed variables,

and 3) missing not at random (MNAR), where missingness depends on both observed and

unobserved variables (including the missing values themselves) [10]. In this thesis, we

primarily experiment with MCAR for simplicity, as generating data missing at random

requires knowledge of the dataset and interactions between the variables. However, we present

some results on other patterns of missingness (see Figure 4.8).

3.2 Stochastic gradient variational Bayes

The variational auto-decoder framework is largely based on the stochastic gradient variational

Bayes (SGVB) framework proposed by Kingma and Welling [13]. We provide a review of the

relevant background before describing the VAD formulation.

Consider a continuous random variable x ∈ Rd, and a dataset containing N i.i.d.

samples X = {x1, ...,xN}, where xi ∼ p(x). We assume that each sample is generated from

a corresponding latent variable zi that follows some prior distribution p(z), and that this

generation is parameterized using some parameters θ. This is illustrated in the plate diagram

in Figure 3.1. To estimate θ during training, we optimize θ to maximize the (log-)likelihood
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xz

θ

N

Figure 3.1: Latent variable diagram for the problem in plate notation. zi ∈ Rk are the latent

variables for each corresponding datapoint xi ∈ Rd, and the distribution of x is parameterized

using z and some parameters θ, e.g. using a feedforward neural network.

of the dataset:

log p(X) =
n∑
i=1

log p(xi) =
n∑
i=1

log

(∫
p(zi)pθ(xi | zi) dzi

)

However, in general, integrating over the latent variable z is intractable. Hence,

most approaches approximate the prior p(z) using some approximate distribution q(z) to

make training and inference tractable. In the common variational auto-encoder (VAE)

formulation, this approximation is obtained using a recognition/encoder network that predicts

the parameters of q(z) from xi. Hence the encoder parameterizes a posterior distribution

qφ(z | xi). During training, the parameters of the encoder network are then optimized as well.

More concretely, the training objective is to maximize the log-likelihood of the training

dataset:

max log p(X) = max
n∑
i=1

log p(xi)

With our encoder network that parameterizes the conditional distribution qφ(z | xi), we can
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rewrite the log-likelihood for a single datapoint:

log p(xi) = KL
[
qφ(z | xi) ‖ pθ(z | xi)

]
+ E

z∼qφ(z|xi)

[
log pθ(x, z)− log qφ(z | x)

]
=

∫
qφ(z | xi)

(
log

qφ(z | xi)
pθ(z | xi)

+ log
pθ(xi, z)

qφ(z | xi)

)
dz

=

∫
qφ(z | xi) log

pθ(xi, z)

pθ(z | xi)
dz

=

∫
qφ(z | xi) log p(xi) dz

= log p(xi) (since p(xi) does not depend on qφ(z | xi))

Since the KL divergence is non-negative, the second term above (which we will call

the loss L(θ, φ,xi)) is a lower bound for the log-likelihood:

L(θ, φ,xi) = E
z∼qφ(z|xi)

[
log pθ(x, z)− log qφ(z | x)

]
= log p(xi)−KL

[
qφ(z | xi) ‖ pθ(z | xi)

]
≤ log p(xi)

Under this VAE formulation, we can then indirectly maximize the dataset log-likelihood

by maximizing the lower bound L(θ, φ,xi) (called the evidence lower bound [ELBO]):

L(θ, φ,xi) = E
z∼qφ(z|xi)

[
log pθ(xi, z)− log qφ(z | xi)

]
=

∫
qφ(z | xi) log

pθ(xi, z)

qφ(z | xi)
dz

=

∫
qφ(z | xi) log

pθ(z)

qφ(z | xi)
dz +

∫
qφ(z | xi) log pθ(xi | z)dz

= −KL
[
qφ(z | xi)‖pθ(z)

]
+ E

z∼qφ(z|xi)
[log pθ(xi | z)] (3.2)

However, this formulation requires the full dataset to be observed during training and

testing. Recent work has proposed methods to handle missing values in VAEs. Conditional

VAEs [23] can be adapted to handle missing values, albeit only in cases where the pattern of

missingness is always the same, while VAEs with arbitary conditioning (VAEAC) [12] extend

CVAEs to deal with arbitary and varying patterns of missingness.
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Chapter 4

The variational auto-decoder

This chapter describes the formulation of the variational auto-decoder (VAD) framework and

provides algorithms for optimization and inference of the model. We also present experimental

comparisons of the VAD with VAE on a range of datasets and discuss the results.

4.1 Formulation

In the VAD formulation, we directly optimize the parameters of the approximate distribution

q. In our experiments, we draw q from the family of multivariate Gaussian distributions.

However, any distribution where random variables drawn from the distribution can be

expressed as a deterministic function of an auxiliary noise variable can also be used, as this

gives a differentiable expectation of the ELBO, which can be used to optimize the parameters

of the decoder network and the parameters of q. This is known as the reparameterization

trick in the literature [13].

As before, we maximize the ELBO, a lower bound on the log-likelihood of the training
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data:

L(θ, φ,xi) = −KL
[
qφ(z | xi)‖pθ(z)

]
+ E

z∼qφ(z|xi)
[log pθ(xi | z)] ≤ log p(xi) (4.1)

However, unlike the VAE formulation, the approximate posterior q(z | xi) is not parameterized

by an encoder network. Instead, the posterior is parameterized by learnable parameters

that are optimized during both training and testing, removing the direct dependence of z

on x. Each datapoint xi has a corresponding set of parameters φi for the posterior q(zi).

For example, if qφi(zi) is defined as a multivariate diagonal Gaussian, then the learnable

parameters of q are the mean and covariance of the distribution:

qφ(z | xi) = qφ(zi) ∝
1

σ
exp

[
−(x− µ)2

2σ2

]
where φi = {µ, σ}.

So the ELBO in 4.1 now becomes:

L(θ, φ,xi) = −KL
[
qφ(z)‖pθ(z)

]
+ E

z∼qφ(z)
[log pθ(xi | z)] ≤ log p(xi) (4.2)

L(θ, φ,xi) = −KL
[
qφi(zi)‖pθ(zi)

]
+ E

z∼qφi (zi)
[log pθ(xi | z)] ≤ log p(xi) (4.3)

For a minibatch consisting of datapoints x1, ...,xn, we maximize the sum of the ELBO

for each datapoint:

n∑
i=1

L(θ, φi,xi) =
n∑
i=1

(
−KL

[
qφi(zi)‖pθ(z)

]
+ E

z∼qφi (zi)
[log pθ(xi | z)]

)

The training and inference procedures for the VAD framework are largely the same,

except that during testing, the parameters of the decoder network are not updated. The

algorithm is summarized in Algorithm 1 for the case of a multivariate Gaussian as the

approximate posterior. During training, we randomly initialize the decoder parameters

θ(0), and the parameters of the approximate distribution q. For example, for a multivariate

Gaussian, we randomly initialize separate means µ
(0)
i and covariances Σ

(0)
i for each datapoint

xi. Then, at epoch t, we sample from the approximate posterior q using the appropriate
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Algorithm 1 Training (and inference) process for the VAD models with multivariate Gaussian

distribution as approximate posterior.

1: F : {θ(0)} ← Initialization . Only for training

2: q : {µ(0)
i ,Σ

(0)
i } ← Initialization

3: repeat:

4: [z] ∼ q(z;µ
(t)
i ,Σ

(t)
i ) . Sampling approximate posterior

5: [p(x|z; θ(t))] = N (F([z], θ(t));xi,Λi)

6: {θ, µi,Σi}(t+1) ← grad step
θ,µi,Σi

(
L
(
θ, φ,xi

))
. No grad step w.r.t θ during inference

7: t← t+ 1

8: until maximization convergence on L

parameters µ
(t)
i and Σ

(t)
i and obtain a Monte Carlo estimate of the distribution over the

input using the decoder network. We find that using a single Monte Carlo sample as the

estimate is sufficient to obtain reasonable results. Gradient descent with respect to the

network parameters (only during training time) and parameters of the approximate posterior

is used to optimize the likelihood of the observed values. This repeats until convergence.

One drawback of this algorithm is the need for gradient descent optimization during

test time. However, since the model takes no input to obtain the approximate posterior, it is

robust to unseen missingness patterns during train and test time.
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4.2 Experiments

Empirical evaluation of the VAD framework was conducted on a wide range of datasets.

Results of the VAD model were compared to some of baseline models mentioned in Section 2.

Below, we describe these baseline models in further detail, and describe the datasets and

experiments used.

4.2.1 Baseline models

We compare the VAD with four alternative approaches: a variational autoencoder (VAE),

the Generative Adversarial Imputation Network (GAIN) proposed by Yoon et al. [29], and

the MICE and MissForest algorithms.

The VAE implementation is a simplified version of the model presented in Ivanov et

al. [12]. The posterior distribution p(z | x) is parameterized by an encoder network, which

in the experiments here is a 2-layer feedforward neural network. The prior is a standard

multivariate diagonal Gaussian, and the decoder network that parameterizes p(x | z) is a

2-layer feedforward neural network. During training, the model receives incomplete data with

missing values zeroed out, and the model is trained to maximize the ELBO (Equation 4.1),

where the likelihood of the datapoint is only calculated using the observed values, to mimic

real settings where missing features may not be available during training.

The GAIN framework adapts generative adversarial networks (GANs) for imputation

[11], and consists of two models. The first is a generator, which takes the partial data, a

mask indicating the locations of missing values, and a random noise variable, and generates

an imputation for the datapoints. The second model is a discriminator which takes an

imputation obtained from the generator, and attempts to predict which values were imputed

by the generator, and which were originally observed. To theoretically guarantee that the

discriminator can learn to distinguish between imputed and observed values, the discriminator

27



is additionally provided with a hint vector that is a random portion of the mask that indicates

the location of missing values, to provide the discriminator with some information on the

location of observed and imputed values [29].

In addition, some experiments were conducted with multivariate imputation by chained

equations (MICE) and missForest where feasible. Both use iterative imputation methods,

which involve progressively repeatedly imputing each missing value using newly imputed

values, until convergence is reached. We use the R implementation of MICE by van Buuren [4],

which randomly initializes starting imputations for the missing values, and repeatedly learns

conditional distributions of each missing variable in terms of all other variables. We learn

these conditional distributions [4] using linear regressions. missForest is a similar approach

to MICE, but uses random forests to predict missing values instead. We use the missingpy

Python package in our experiments, based on the original missForest implementation by

Stekhoven [24].

4.2.2 Missingness patterns

As noted in Section 3.1, we primarily ran experiments where the generated missingness was

completely at random (MCAR). This was done for simplicity, as generating data missing at

random requires knowledge of the dataset and interactions between the variables. However,

we did run some experiments on other patterns of missingness (see Figure 4.8). We also note

that the VAD framework makes no assumptions about the missingness pattern of the data.

4.2.3 Datasets

Following previous literature, we first evaluated the VAD model on two small datasets from

the UCI repository. Further experiments were conducted on three types of larger, more

complex datasets: image datasets, facial landmark datasets, as well as multimodal datasets
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Subset Dataset # of samples # of variables

UCI
Breast [8] 569 30

Spam [8] 4601 57

Images

MNIST [14] 70000 784

Fashion-MNIST [28] 70000 784

CelebA [17] 202599 12288

Facial Landmarks Menpo [31] 12208 168

Multimodal CMU-MOSEI [30] 20001 409

Table 4.1: Size and number of variables of each datasets used in our experiments, described

in Section 4.2.3.

which contain information from heterogeneous sources of data. More details about the

datasets follow below. A summary of the number of samples and number of variables in each

dataset is given in Table 4.1.

UCI datasets

Initial experiments were run on two datasets from the UCI Machine Learning Repository: the

Breast Cancer Diagnosis (Wisconsin) Data Set, and Spambase Data Set [8]. These are small

datasets used in previous literature to empirically evaluate imputation approaches [29, 12].

The Breast Cancer dataset contains real-valued features for each cell nucleus from samples

of a breast mass. These features include the radius, texture, perimeter, and area of each

nucleus. The Spambase dataset contains features extracted from a collection of emails, such

as the frequency of the word “money”, or the length of the longest sequence of capital letters.

All features are again continuous.
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Images

The first large-scale dataset we experimented with was the MNIST dataset of handwritten

digits [14]. This is a common baseline for many machine learning and computer vision models.

The dataset consists of 28× 28 8-bit grayscale images of handwritten single digits, split into

a train/test set of 50000 and 10000 images.

Experiments were also conducted on the slightly more challenging Fashion-MNIST

dataset [28]. Like MNIST, the dataset contains 28 × 28 8-bit grayscale images, but of 10

different types of clothing items instead of handwritten digits. This makes modelling the

data more challenging since more variability is present in each datapoint, such as the pattern

on the clothing, their shape, size, and the presence of text or special features on the clothing.

Thirdly, we conducted experiments on the Large-Scale CelebFaces Attributes (CelebA)

dataset [17]. The dataset contains over 200000 color images of celebrity faces in a large range

of lightings, backgrounds, and facial expressions. For the experiments conducted, we resized

the images from (original size) to 64× 64 images, with bicubic interpolation.

For all three datasets, we introduced missingness completely at random at rates from

10% to 90%. Missing values were zeroed out. For CelebA, we additionally experimented

with missingness at test time as a single missing block from the center, following work from

Pathak et al. [20].

Facial Landmarks

The facial landmark detection task involves detecting the locations of landmarks from 2D

images of faces. These landmarks are predefined locations on the outline of the face, as well

as outlines of facial features such as eyes, lips, and nose. We run experiments on the Menpo

Facial Landmark dataset [31], containing 13, 391 sets of facial landmarks obtained from real

facial images of various subjects, poses and expressions. As such, there is a wide variety in
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the range of possible sets of landmarks, and modelling them is a complex problem. Each set

of landmarks contains 84 points, regardless of self-occlusions in the original image due to

factors such as a sideways pose, or obstruction by hair.

Multimodal datasets

We experimented with datasets involving multimodal language. The CMU Multimodal

Sentiment and Emotion Intensity (CMU-MOSEI) [30] dataset is an in-the-wild dataset of

utterances from Youtube monologue videos, and is used for multimodal sentiment and emotion

recognition tasks. The dataset contains 23, 500 utterances (single sentences) from Youtube

monologues of three modalities: text, visual, and acoustic. For the text modality, the dataset

contains GloVe word embeddings [21]. For the visual modality, the dataset contains facial

action units, facial landmarks, and head pose information. For the acoustic modality, the

dataset uses the COVAREP feature set of both high-level and low-level descriptors such as

pitch tracking and glottal source parameters [7].

4.2.4 Experiments conducted

To answer the research questions set out in Chapter 1, three different experiments were

conducted:

Experiment 1: To evaluate the VAD framework’s ability to learn a generative model

from incomplete data and compare it to other generative models, we first train and test the

models on data with similar rates of missingness during train and test time, and compare the

quality of the imputed values in terms of their error on the missing values.

Experiment 2: To evaluate whether existing generative models are sensitive to the

missingness patterns observed during training time, we evaluated GAIN, VAE, and VAD

models on data with different rates of missingness during train and test time.
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Experiment 3: Finally, to qualitatively evaluate the quality of the generative model

learnt, we generate completed samples from partial data on a few image datasets and observe

the results.

4.2.5 Evaluation metric

On all datasets, we report the mean squared error (MSE) obtained on the test set over only

the missing values, as the datasets we use contain only continuous variables. We ignore the

mean squared error over observed values since they are already known and can be used in

place of the predicted values of the models, if any.

4.3 Results and Discussion

Below, we present the results for each experiment described in Section 4.2.4.

4.3.1 Experiment 1: Similar rates of missingness between train

and test

A summary of the results for Experiment is shown in Figure 4.1. For each dataset, we plot

the MSE obtained on only the unobserved values of the test set. The VAD model largely

outperformed other approaches across all datasets at all rates of missingness in reconstructing

the missing values. However, VAD was outperformed by MissForest on the UCI datasets

(Figures 4.1b and 4.1a). This might have been due to the small sizes of both datasets, causing

the VAD model to overfit. We also note that the GAIN and VAE models worsen more quickly

than VAD as the rate of missingness increases, leading to a greater gap in performance. This

suggests that the encoder in the VAE is unable to accurately learn an approximate posterior
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Figure 4.1: MSE values on unobserved values in the test set for Experiment 1 on 6 datasets

described in Section 4.2.3: the Breast Cancer (a) and Spambase (b) UCI datasets, the MNIST

(c) and Fashion-MNIST (d) image datasets, the Menpo facial landmarks dataset (e), and

the MOSEI multimodal language dataset (f). VAD frequently outperforms other models in

reconstructing missing values across all rates of missingness.
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as the rate of missingness increases, and the generator in GAIN is unable to learn a good

imputation model.

4.3.2 Experiment 2: Missingness rate sensitivity

To further investigate the limitations of the VAE model with incomplete data, we trained a

denoising VAE [27], which, given an input with missing values, tries to predict the complete

version. The training objective is then to minimize the reconstruction loss between the

predicted output and the complete datapoint. We first experimented with having a fixed

ratio of missing values during training. For example, some models would be trained only

on data where 50% of the training data is missing. Figure 4.2 shows the mean-squared

error on the missing values on the Fashion-MNIST test set with various rates of missing

values, using models trained using different rates of missing values. The results show that

when trained on only a single rate of missing values, the model does not perform well when

given test data with different rates of missing values, showing that it is unable to generalize

the imputation procedure for different rates of missing values. This aligns with the results

obtained in Section 4.3 in Scenario 2, where the performance of the VAE trained only on

complete data dramatically worsened on the test set as the rate of missingness increased.

We also trained GAIN and VAD for comparison. The results are shown in Figure

4.3 for GAIN, and Figure 4.4 for VAD. Similar to VAE, GAIN is sensitive to differences in

the rate of missingness between train and test time. GAIN’s performance degrades if the

rate of missingness during test time is higher than during train time, like VAE, but does not

worsen as much if the rate during test time is lower than during train time. This suggests

that the generator in GAIN mainly learns to impute a specific rate of missingness and cannot

generalize well to different rates of missing values.

On the other hand, VAD remains consistent regardless of the rate of missingness

during train and test time, greatly outperforming GAIN and VAE. This is likely due to the
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Figure 4.2: MSE loss on the Fashion-MNIST test set of VAE trained on training data with a

single rate of missing data (x-axis) and tested on different rates of missing data during testing

(y-axis). Models trained on only a single rate of missing data are unable to handle drastically

different rates of missing data well, as shown by the increased error at the off-diagonal squares

of the grid.
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Figure 4.3: MSE loss on the Fashion-MNIST test set of GAIN trained on training data with a

single rate of missing data (x-axis) and tested on different rates of missing data during testing

(y-axis). Models trained on only a single rate of missing data are unable to handle drastically

different rates of missing data well, as shown by the increased error at the off-diagonal squares

of the grid. Compared to VAE, GAIN is slightly better at imputing missing values when the

rate of missingness is lower during test time than at train time.
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Figure 4.4: MSE loss on the Fashion-MNIST test set of VAD trained on training data with

a single rate of missing data (x-axis) and tested on different rates of missing data during

testing (y-axis). Unlike GAIN and VAE, VAD remains robust to various rates of missingness

regardless of the rate of missingness seen during training.
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lack of an encoder that creates a dependence between the parameters of the approximate

posterior and the input, so the model is trained to be robust to different rates of missingness.

4.3.3 Experiment 3: Samples from image datasets

In addition to the numerical results presented above, we also inspect some of the imputations

generated by the GAIN, VAE, and VAD models on the image datasets. This is equivalent to

the task of inpainting, since inpainting involves filling in the values of missing pixels. We

inspect imputations on both the MNIST and Fashion-MNIST datasets. On both datasets,

pixels were randomly dropped and used as inputs for the models during test time.

We additionally inspect imputations on the CelebA dataset under two scenarios: first,

where central block is missing, and secondly, where a region of the image is missing.

MNIST

Sample inpaintings on the MNIST dataset are shown in Figure 4.5. When trained on complete

data, the VAD is still able to reconstruct the original image quite well even when only given

partial data (Figure 4.5a). GAIN performs slightly worse than VAD visually, while the VAE

only reconstructs the original input. This suggests that the VAD is more robust to increasing

rates of missing values compared to the other two models, although this may also be partly

due to the training objective of the VAE when given complete data during train time, which

then trains it to reconstruct the input, and not impute the missing pixels.

When training is done on data with a similar missingness rate as test time (in Figure

4.5b), both VAE and VAD seem to perform equally well with GAIN performing slightly worse.

All the models have poor performance in both models when 90% of the image is missing,

likely due to the small amount of observed data given to the models. The relatively equal

performance is likely due to the simplicity of the MNIST dataset.
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Figure 4.5: Visualization of inpainting for experiments on a MNIST datapoint. The top row

(Data) shows the incomplete data given to the models. Ground Truth is the complete 28× 28

8-bit grayscale image. For (a), training is done on complete data and testing is done on

incomplete data. For (b) training and testing is done on incomplete data with similar missing

rate. In both cases, VAD sees to outperform both VAE and GAIN visually, particularly in

(a), although all models start to fail at 90% missingness.
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Fashion-MNIST

On Fashion-MNIST, we additionally experimented with random 4× 4 blocks missing during

test time. Visualizations of some results are shown in Figure 4.6. When training is done on

complete data (in Figure 4.6a), the VAE model performs poorly on test data with missing

values, and ends up only producing a blurred version of the input and does not impute the

missing pixels. In contrast, the VAD model is able to reconstruct the ground truth image

relatively well, even when the rate of missing data is high, only producing visible failure when

the missingness rate r = 0.9. This suggests that the VAD framework is indeed more robust

to missingness introduced during test time when trained on complete data, as the encoder

in the VAE model is not able to obtain a good approximate posterior when presented with

missing values during test time. Like in the MNIST results, GAIN performs slightly worse

than VAD but better than VAE, up to about 50% missingness.

When training is done on data with a similar missingness rate as test time (in Figure

4.6b), the VAE model produces better inpaintings than in a), but visually still seems to

perform worse than VAD. In particular, in Figure 4.6b) the VAE model is able to reconstruct

the shape of the original image, but seems unable to recreate textures, while VAD is able to.

This again suggests that the encoder in VAE is unable to learn a good approximation of the

posterior when given missing data, even if it is trained on incomplete data. GAIN performs

similarly to both VAE and VAD on MCAR missingness, but performs poorly when blocks

are missing.

CelebA

To investigate the generative utility of the VAD framework, we generated multiple inpaintings

on the CelebA test set. Figure 4.7 shows some inpainted samples, obtained by randomly

initializing the latent variables multiple times and fitting the latent variables to the incomplete

image. The images show that the VAD model is able to produce a range of plausible inpaintings
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Figure 4.6: Visualization of inpainting for experiments on a Fashion-MNIST datapoint. The

top row (Data) shows the incomplete data given as input to the models. Ground-truth is the

complete 28× 28 8-bit grayscale image. For (a), training is done on ground-truth data and

testing is done on incomplete data. For (b) training and testing is done on similar missing

rate. In both cases, VAD seems to outperform both VAE and GAIN visually, especially in

(a), where the models are trained and tested on different rates of missingness.
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for the same image, although the blockiness of the images could be attributed to the use

of the DCGAN architecture as the generator network, which has been known to produce

checkerboard-like artifacts in generated images [19]. These results suggest that the VAD

model is indeed learning a distribution over the data space and is able to generate a variety

of images conditioned on the observed values.

We also test the model on an instance of missing not at random (MNAR) missingness,

by removing a region of the face, such as part of the hair, or face. Some inpaintings are shown

in Figure 4.8. The images show that VAD is able to generate relatively plausible inpaintings,

showing that it can handle other patterns of missingness as well.
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Figure 4.7: Samples generated by the VAD model on the CelebA dataset, when inpainting

a central block. The first column is the ground truth, the second is the input given to the

VAD model, and the remaining columns are sample inpaintings produced by the model. The

VAD model is able to produce a range of plausible inpaintings for the same image.
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Figure 4.8: Samples generated by the VAD model on the CelebA dataset, when inpainting a

region, as a case of MNAR missingness. The first column is the ground truth, the second is

the input given to the VAD model, and the last column is a sample inpainting produced by

the model. The VAD model is able to produce plausible inpaintings for each image.
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Chapter 5

Conclusion and Future Work

This thesis presented the variational autodecoder (VAD) framework, a generative model based

on the variational autoencoder that tackles the problem of modeling posterior distributions

from incomplete data by directly optimizing the parameters of the approximate posterior

during both train and test time. By avoiding an encoder that approximates the posterior

using the (incomplete) input, we obtain a generative model that is more robust to various

patterns and rates of missingness during both training and testing without the need for

data augmentation or domain-specific tricks. This provides a simple framework that can

be adapted for different domains and extended to many applications of imputation such as

inpainting.

Experiments on a diverse range of datasets show superior performance to GAIN and

VAE models in the presence of missing data, in situations where either similar or different

rates of missingness were seen during training or testing. VAD particularly outperforms

both models when the rates of missingness between train and test time are different, as the

encoder in VAE and generator in GAIN only learn to impute rates of missingness seen during

training, while the lack of such an encoder in VAD gives a generative model that is robust to

unseen rates of missingness.
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5.1 Future Work

Possible areas of further study include:

• Increased inference speed : One major drawback of the VAD framework is the need for

gradient descent to find the optimal latent posterior distribution for the given (partial)

input, even during test time. Exploring methods to improve this inference speed,

especially during test time, would improve the practicality of using the framework in

real systems. One possible solution could be to ensure that the decoder is invertible

by using normalizing flows in the decoder network [22], and adapting it for the case of

partial inputs.

• Detecting missing/noisy values: Currently, the VAD framework assumes that the

location of the missing values is known, through the provided mask. However, in some

cases, such a mask might not be available, such as in the case of noisy data. For

example, a sensor that is faulty but is still reporting values would appear in the dataset,

but would ideally be ignored by any predictive system trained on it [6]. Since VAD

models are optimized by maximizing the likelihood of the datapoints, noisy values

could potentially be detected by comparing the final output of the VAD model, and

the actual values in the dataset, to find consistent discrepancies that could indicate a

faulty/unreliable feature.
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