
Towards a Low-Memory-Footprint,
Container-Based IoT Security Gateway

Sanjay Chandrasekaran

CMU-CS-19-117

August 2019

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Vyas Sekar, Chair
David A. Eckhardt

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science.

Copyright c© 2019 Sanjay Chandrasekaran

This research was supported by the National Science Foundation under grant number CNS-1564009. This
work was also supported in part by the CONIX Research Center (SRC-JUMP 2779.009), one of the six
centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.



Keywords: IoT, Containers, Software Defined Networks, Network Function Virtual-
ization, Docker, Snort



Abstract

Securing IoT devices is a challenge, as some devices have long deploy-
ment lives and lack an intrinsic method for updating their firmware. Vulner-
abilities in IoT devices’ software continue to be found, and patching each
individual device’s firmware is unscalable, as the number of deployed IoT de-
vices is steadily rising. Rather than directly securing the software shipped on
the device, we adopt an alternative approach by securing these devices at the
network layer. Our goal is to enable an IoT Security Gateway that can provide
the fine-grained, device-specific security policies that are currently missing
in IoT network security, using virtualized Network Functions (vNFs). We
envision (1) separate vNFs for each device to allow us to implement device-
specific functionality, as well as (2) isolation between each of these vNFs.
However, naively deploying separate vNFs for each device will come at the
cost of additional computing resources. We analyze the memory footprint of
running different vNFs and develop specific optimizations for an open-source
memory-intensive vNF, Snort. We observe that significant memory goes to-
ward large socket buffers as well as processing unnecessary rules for detecting
malicious activity. We proceed by exploring both Snort-specific solutions that
take advantage of Snort’s open-source codebase, and generic solutions that
can be applied to other types of NFs. Combining these solutions, we ulti-
mately demonstrate the ability to increase the number of Snort instances that
can simultaneously run on a low-cost gateway by at least ten-fold.
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Chapter 1

Introduction

In this thesis, we help enable a security gateway that uses virtualized Network Functions
(vNFs) to secure IoT devices. We analyze the memory footprint and bottlenecks to running
different vNFs on a low-cost hardware, and develop specific optimizations for a memory-
intensive vNF, Snort (Roesch et al. [1999]).

1.1 The Internet of Things (IoT)

The world is moving towards IoT, as evidenced by the rapid industrialization and de-
velopment for new smart homes and cities (Helal and Bull [2019], Bibri [2018], Silva
et al. [2018]). The sheer number of network-connected devices available in these lo-
cations makes them an ideal target for security attacks, as they provide both significant
computing power and bandwidth to an adversary. Attacks like Mirai (Antonakakis et al.
[2017]), caused by default or unchangeable passwords, reveal a clear lack of forethought
with respect to security when these devices were manufactured. Additionally, many of
these devices have planned long term deployments, during which future bugs and vulner-
abilities can be discovered and exploited. For example, NAS hard drives using the Samba
file sharing protocol fell victim to the SambaCry attack (CVE [2017-7494]), a Linux vari-
ant of the well-known WannaCry attack (CVE [2017-0144]). Despite public disclosure
of the vulnerability, prompting firmware patches released by manufacturers, unpatched
devices still continued to be sold by third party vendors. Network scans using Shodan
(Matherly [2015]), also expose several devices still running vulnerable Samba protocols.
With the world becoming increasingly IoT dependent, we need to find a way to address
the vulnerabilities within these IoT devices that surround us everyday.
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1.2 Problems with Current Deployment

IoT device deployments suffer from numerous security flaws which the network is too
coarse-grained to deal with (Yu et al. [2015b]). Home routers simply serve as gateways
to the external network and contain one large set of firewall rules that are applied to the
whole network. These firewall rules mostly address traffic between internal and external
networks, and are rarely used for traffic between devices on the internal network. This
broadly increases the attack surface, since an attacker would need to compromise only
one device on the internal network to maneuver past the firewall and compromise more
devices. It is generally difficult to rely on manufacturers’ long-term support to release
firmware updates for these devices, as support for the device may die off or they may be
focusing their efforts on future products and streams of revenue. Additionally, patching the
device immediately may not always be feasible for every end user. For example, a smart
water heater may be performing critical functions for a house and its tenants, and therefore
must remain online and functional until a time can be coordinated for the device to be taken
offline and updated. This results in publicly documented exploits for unpatched devices,
otherwise known as “one-day” exploits. These exploits can be blocked at the network
level, based on a signature of the exploit. However, these rules must be manually added
to each individual router by a knowledgeable end user, which can be difficult to automate
and does not realistically scale. Due to these issues, we lack a reliable method to deal with
vulnerabilities in IoT devices, even after they become public knowledge.

1.3 Potential Solutions

There have been a number of approaches taken to try and fix the issues with IoT device
deployments. A common theme among some of these solutions is an IoT-specific gateway
that uses virtualized Network Functions (vNFs) (Guerzoni et al. [2012]) to provide extra
functionality for devices on the network.

• Ko and Mickens [2018] propose DeadBolt, a specialized access point that requires
IoT devices to remotely attest that they are running up-to-date and trusted software;
the AP uses virtual device drivers, similar to vNFs, for IoT devices that are unable
to attest.

• Yu et al. [2017] present Precise Security Instrumentation (PSI), which aims to pro-
vide the network with more context through the ability to customize dynamic poli-
cies for different devices. These policies can trigger events such as spawning a
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Intrusion Prevention System (IPS) as a vNF.

• Cziva [2018] proposes Glasgow Network Functions (GNF), a container-based NFV
framework for dynamically allocating vNFs at the edge of the network, and can be
used for IoT devices and more.

The similarities between these works are summarized in Figure 1.1. Both Yu et al. [2017]
and Cziva [2018] enforce isolation between the vNFs for devices on the network. This
is mainly to ensure that there is no interference among policies for different devices that
could potentially leave the network vulnerable. We aim to provide isolation between IoT
devices, and run a separate instance of each NF, for every device connected to the gateway.

Figure 1.1: This figure shows the similarities and difference between network security
solutions that apply to IoT devices.
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1.4 A Low-Cost Solution

Datacenters and enterprises have already attempted to use a vNF-per-device model, how-
ever these settings are not usually resource constrained. Given the increasing number
of IoT attacks targeting home users, we want this model to be feasible for use in the
common household as well, with respect to both cost and usability. We envision an IoT
Security Gateway that provides the fine-grained, device-specific security policies that are
currently missing in IoT network security. We incorporate isolation as a design constraint,
by spawning a separate instance of each vNF, for each device, rather than a single instance
of each vNF, for the entire network. We run each vNF inside a container, as containers are
a lightweight solution for isolating multiple vNFs on a single device compared to Virtual
Machines (VMs). We believe that the cost of this gateway should be at a comparable price
to the IoT devices being protected to promote adoption.

Unfortunately, we find that we are limited on the number of vNFs we can run on a
low-cost gateway, due to the amount of memory (RAM) on the device. In this thesis,
we analyze the memory footprint of running different vNFs on a low-cost gateway, and
determine memory bottlenecks to scaling to more IoT devices. We develop specific opti-
mizations for an Intrusion Detection System/Intrusion Prevention System (IDS/IPS), Snort
(Roesch et al. [1999]), and are able to increase the number of Snort instances that can
simultaneously run on a low-cost gateway by at least ten-fold, with no reduction to per-
formance. In Chapter 2 we provide some background on the components of our security
gateway along with the related work from which we drew our motivation. In Chapter 3 we
analyze the memory footprint of multiple vNFs and develop optimizations for a specific
memory-intensive vNF, Snort. In Chapter 4 we evaluate our optimizations to Snort with
respect to memory and performance. Finally, in Chapter 5 we conclude and present future
research directions that could further reduce the memory footprint of Snort.
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Chapter 2

Background & Related Work

2.1 Network Function Virtualization

Advances in Network Function Virtualization (NFV) allow us to use virtualized network
functions (vNFs) where we would normally deploy separate middleboxes. There are a
number of advantages to using vNFs over middleboxes, explained in Yu et al. [2015a].
One important benefit of vNFs is that software can be flexibly reconfigured at a trivial
cost to the user when compared to middleboxes, which normally require updates from
their manufacturers to change their behavior. This is very useful for IoT devices, which
tend to have varying needs. For example, an IoT device that is shipped with a hard-coded
password can be reconfigured at the network level so that it can be accessed only through
a securely authenticated proxy. vNFs provide necessary functionality to enable a secure
and efficient network.

2.2 Software Defined Networks

Routing traffic for a device through its respective vNFs can be simplified using software
defined networks (SDNs). SDNs (McKeown [2009]) are growing technologies that sep-
arate the data plane and the control plane of the network. In an SDN there is a central
controller that takes care of all the control and routing logic, and thus the software de-
fines the network. Cloud services allow us to run an SDN controller remotely, reducing
the resource constraints on the network while still providing flexible and dynamic route
management.
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2.3 Virtual Machines (VMs)

VMs (Popek and Goldberg [1974]) are one way of emulating an OS and provide isolation
from other VMs as well as the host they are running on. VMs can be very useful for
simulating an architecture that differs from the host’s architecture. Since VMs virtualize
the hardware necessary to emulate an OS, they are a resource-heavy solution for running
a single isolated application per VM.

2.4 Containers

Containers (Lezcano et al. [2008]) are a lightweight solution to providing isolation be-
tween applications. Containers provide the abstraction of a separate OS from the host,
using namespaces and sharing libraries with the kernel. Unlike VMs, containers do not
reimplement hardware functionality, and simply isolate groups of processes running on
the host OS. This provides us with a lightweight and efficient way of running isolated
Linux processes on a Linux host.

2.4.1 Docker

Docker (Docker Inc. [2013]) is a well-documented and widely-available container solu-
tion. Using a Dockerfile, similar to a Makefile, for the build process, we are able to create
Docker images containing newly built libraries and applications. We use Docker as a
benchmark environment, as it provides us with a convenient way to build, deploy, and in-
teract with containers. However, Docker may not be right choice, with respect to security,
for our IoT gateway. There has been research that discusses potential security risks asso-
ciated with using Docker containers to achieve secure isolation (Bui [2015], Combe et al.
[2016]). Arnautov et al. [2016] proposes a method for secure isolation of Linux contain-
ers using Intel Software Guard Extensions (SGX) (Intel Corporation [2013], Costan and
Devadas [2016]), and a similar method will likely need to be implemented for our security
gateway.

2.5 Snort

Snort (Roesch et al. [1999]) is an open source Intrusion Detection System/Intrusion Pre-
vention System (IDS/IPS) with a number of packet analysis features to generate alerts
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or drop packets. Snort can be used to detect a variety of network attacks and probes in
real-time based on a signature or regular expression match. For example, consider a Linux
network attached storage device (NAS) that is publicly accessible to the internet and serves
files to its users. A exploit for the NAS, such as the SambaCry attack (CVE [2017-7494]),
may be publicly released, leaving the device vulnerable to attackers. Snort can be used
to match on the signature of the exploit and drop the relevant packets. This can provide
a temporary patch for the device until a patch release by the manufacturer, limiting the
amount of time that the IoT device is vulnerable to the public, while still allowing users to
access their files.

2.5.1 Community Ruleset

Snort offers a community ruleset that is comprised of rules that have been submitted by
members of the open-source community as well as vendors that bundle and distribute Snort
or Snort rules in their products. Snort maintains a community ruleset that is available to
the public and updated daily. Snort also offers a ruleset for registered users which contains
a snapshot of rules for a specific version of Snort. Finally, for commercial applications,
Snort offers a subscriber ruleset containing rules developed, tested, and approved by the
Talos Security Intelligence and Research Team (Talos), as well as the community ruleset
that is updated daily.

Snort rules are classified under one of five states, to indicate their relevancy under
different network policies:

• Connectivity over Security - designed to favor device performance over security

• Balanced - balance of security needs and performance

• Security over Connectivity - designed for protected networks with low bandwidth
and high security requirements

• Maximum Detection - not optimized for performance, may raise false positives

• No Policy - case by case basis, added based on product name, type, or relevant CVEs

In the rest of this paper, we use the Snort community ruleset for registered users (snapshot-
29120) (The Snort Project [2019a]) for our benchmark analysis, as well as to demonstrate
our memory optimizations to Snort.
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2.5.2 Deterministic Finite Automata

We can use a state machine to represent a single Snort rule that contains a regular-expression
matching, explained in Ficara et al. [2008]. A simplified example, using an alphabet of
{0,1} and matching on consecutive 1 bits, is shown in Figure 2.1. For any input stream,
we start at state a, the initial state, and process a set of bits. For example, if we see the bit
sequence <1,0,1>, then we will start at state a, and follow the state transitions

a -> b -> a -> b

Therefore, we end up at state b and will not generate an alert.

However, if we see a bit sequence with consecutive 1 bits, such as <0,1,1>, then we
follow the state transitions

a -> a -> b -> c

We end up at state c and an alert will be generated.

Figure 2.1: An example of a simple state machine with an alphabet of {0,1}. This state
machine represent a single rule, and will raise an alert when given an input containing
consecutive 1 bits.

Similarly, Figure 2.2 shows a complementary state machine which raises alerts on
inputs with consecutive 0 bits. These rules can be combined into a single state machine,
shown in Figure 2.3, that raises alerts for consecutive 1 bits and for consecutive 0 bits.
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Figure 2.2: An example of a simple state machine with an alphabet of {0,1}. This state
machine represents a single rule, and will raise an alert when given an input containing
consecutive 0 bits.

These three state machines are Deterministic Finite Automata (DFA), because at each
state, there exists a transition to a new state, for every input symbol in the alphabet, which
is only {0,1} in these simplified examples. Snort combines state machines for multiple
rules to create DFAs for different protocols, each with an alphabet of byte values {0-255},
and can process packets in O(n) time, where n is the number of bytes in the packet. For
each packet, we start at the initial state in a state machine and transition to each subsequent
state, raising an alert or generating a drop in O(n) time, based on the bytes in the packet.
This is noteworthy because the per-packet latency is unaffected by the size of the Snort
ruleset, which can grow to be very large. Snort uses the Aho-Corasick algorithm, described
in Norton [2004], to combine multiple state machines into a single DFA.

Figure 2.3: An example of a simple state machine with an alphabet of {0,1}. This state
machine will match on consecutive 1 bits as well as consecutive 0 bits.
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2.6 Related Work

2.6.1 DeadBolt

DeadBolt is a security framework, by Ko and Mickens [2018], for managing IoT devices.
The system uses a specialized access point that requires IoT devices to remotely attest that
they are running up-to-date and trusted software. The DeadBolt AP uses virtual device
drivers for IoT devices that are unable to attest. These virtual device drivers are similar to
vNFs, and provide functionality such as intrusion detection or encryption, that is needed
by IoT devices.

2.6.2 Precise Security Instrumentation (PSI)

PSI is an enterprise security architecture, by Yu et al. [2017], that aims to provide the
network with more context through the ability to customize dynamic policies for different
devices. PSI aims to provide the network with more precision with respect to (1) isolation
to ensure we do not have interference among network policies; (2) context to customize
policies for different devices; and (3) agility to dynamically act in response to network
events. Combined with a detection mechanism, PSI can provide us with the ability to
dynamically spawn vNFs within the network, to provide necessary functionality, needed
to secure the network.

2.6.3 Glasgow Network Functions (GNF)

GNF is a comprehensive framework, proposed by Cziva [2018], that manages lightweight,
container-based vNFs for devices on the network. GNF provides a latency-optimal vNF-
placement solution that can be used dynamically over the network. This system manages
a number of simultaneously running vNFs and demonstrates multiple use cases, such as
IoT DDoS mitigation and on-demand trouble shooting for providers.
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Chapter 3

Overview

Our goal is to lower the memory footprint of vNFs so that they can be run on low-cost hard-
ware. We use a Raspberry Pi 3B+ (Raspberry Pi [2018]) with 1 GB RAM and 1 GB swap
space as the hardware for our security gateway, as it is both a low-cost and widely avail-
able solution. In Section 3.1 we explain issues we encounter when running vNFs in a
per-device configuration on low-cost hardware. In Section 3.2 we explain generic meth-
ods for measuring the memory footprint of a vNF using open-source tools. In Section 3.3
we explain our approach to creating a more scalable version of a specific memory-intensive
vNF, Snort. In Chapter 4 we present our results on how much memory is saved using each
of these optimizations.

3.1 Understanding the Problem

The average US household currently has around eight IoT devices according to Cisco
[2019], and we can expect this number to grow in the future. To enable our security gate-
way, we must be able to support a vNF-per-device model, for each of these IoT devices.
Without any optimizations, we can run only three instances of our containerized version
of Snort on a Raspberry Pi, which is not enough to support one vNF per device for the
average US home’s IoT deployments. The main issue we encounter when spawning mul-
tiple Snort instances is an inadequate amount of memory (RAM) on the device. We mea-
sured the memory footprints for a single instance of four commonly used vNFs: snort,
squid, iptables, and openvpn using the Linux free tool (further described in Sec-
tion 3.2.1). We also measure the memory footprints, for a single instance of each of these
vNFs, within a Docker container, to achieve isolation between vNFs. The memory foot-
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Figure 3.1: The amount of memory used by a single instance of a few common vNFs,
each running inside a Docker container. These memory footprints were measured using
the Linux free utility. We notice that the memory footprint of Snort is significantly larger
than the other applications given a Raspberry Pi 3B+ only has 1 GB RAM.

print for each of the vNFs is shown in Figure 3.1. We observe that Snort uses a significant
amount of memory compared to other vNFs. Snort, described in Section 2.5, is an In-
trusion Detection System/Intrusion Prevention System (IDS/IPS) with a variety of packet
analysis features to generate alerts or drop packets based on a signature. Specific rules
can be added to Snort to drop packets that are part of an exploit, based on a signature, to
secure an unpatched IoT device. Therefore we focus our efforts on reducing the memory
footprint of Snort, to allow us to run an isolated instance of Snort for each IoT device on
the network, on our security gateway.

3.2 Methodology

In this section, we analyze the memory footprint of Snort (v2.9.12), using the Snort com-
munity ruleset for registered users (snapshot-29120). We ran Snort using the afpacket
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packet acquisition model with the default DAQ buffer size of 128 MB. We ran each Snort
instance within a Docker container (v18.09.0), and connected the container to two Docker
networks for inbound and outbound traffic. We used multiple tools, described later in this
section, to measure the memory footprint of spawning Snort instances within Docker con-
tainers. These methods can be generalized to determine the memory bottleneck for scaling
any vNF.

3.2.1 Linux Memory tools

We use existing Linux tools to profile the memory footprint of Snort. We mainly use
the Linux free tool which parses information from the file /proc/meminfo. We also
parse the information in /proc/$pid/smaps, where $pid is the process identity num-
ber of the running application. Finally, we use Intel VTune Amplifier (Intel [2017]) to
examine the source code of the application and assess the room for optimization.

The Linux free tool

Linux’s free tool is the simplest tool for measuring the memory footprint of an appli-
cation. It provides a summary of the information in /proc/meminfo for RAM as de-
scribed in Section 1 of the man page for free (Linux [2018]):

total Total installed memory
used Used memory
free Unused memory
shared Memory used (mostly) by tmpfs
buffers Memory used by kernel buffers
cache Memory used by the page cache and slabs
available Estimation of memory available for new applications

Linux’s free tool also provides us with the total, used, and free values for swap
memory as well. We can verify total as:

total memory = used+ free+ (buffers+ cache)

We calculate the memory footprint as follows:

memory footprint = used+ swap used
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We notice that shared is not accounted for in total memory and is distributed be-
tween used, swap used, buffers and cache. Therefore for applications that allo-
cate shared memory we calculate the memory footprint as follows:

memory footprintshared = used+ swap used+ shared

It is not appropriate to add the entire buffers and cache to the footprint because it may
not all be associated with the application being measured.

/proc/meminfo

Linux provides a memory breakdown for the system in /proc/meminfo. This output
provides more detailed information about the used and free memory, based on the ker-
nel’s paging system and memory allocations. The memory information provided is based
on the number of physical pages allocated by the system. This means that a C program
that allocates an 8 GB buffer, but only writes to 1 byte of that buffer, will only indicate a
memory footprint of 1 physical page size. This is because most OSes often implement an
allocate-on-write optimization, where pages will not be allocated to a process until they
are actually used for a read or write action. The relevant fields to measure the memory
footprint of an application using /proc/meminfo are already parsed and summarized
by Linux’s free tool.

/proc/$pid/smaps

Linux allows us to get the virtual memory breakdown for a single process, as well as
which segments of memory are shared with other processes. This output is especially
useful because it further indicates the library or process that allocated each segment in
memory. For example, buffers allocated for a socket connection, or virtual pages allocated
for a shared library, are indicated in the output. This breakdown also indicates which pages
are shared and which are private to a process.

When measuring Snort, we see memory segments allocated for Snort code, shared
libraries, stack space, heap space, and socket buffers. There are also memory segments
allocated anonymously that we have not attributed to a single part of an application. Our
results for the memory breakdown of Snort are shown in Figure 3.2.
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Figure 3.2: This figure shows the memory breakdown for the components of Snort
based on the information in /proc/$pid/smaps. The anonymously mapped pages
are allocated from calls to mmap, using the MAP ANONYMOUS flag and have not been
attributed to any single component of Snort.

3.2.2 Intel VTune

Intel VTune Amplifier is a great tool that analyzes performance and memory bottlenecks
for programs compiled with debug information. This approach requires source code for the
application being analyzed. Fortunately, we have access to this information for Snort be-
cause it is open source. We analyze the memory consumption of Snort using this tool and
the results are shown in Figure 3.3. This tool allows us to trace back through each mem-
ory allocation to determine the context of its usage. This allows us to design application-
specific solutions to lower the memory footprint of each instance, and make the application
more scalable.
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Figure 3.3: This figure shows the results of running Intel VTune Amplifier’s mem-
ory consumption analysis on Snort. We can see the amount of memory allocated by
each function in the code. In the right-most column is the function traceback of the
Convert NFA To DFA function (selected), which allocates a majority of the memory
(335 MB) in the default configuration of Snort.

3.3 Design Space of Options

Our goal is to investigate solutions to reduce the memory footprint of Snort. Specifically,
we try to look for solutions that could be easily applied to other vNFs used by our security
gateway. We looked at 4 specific areas for optimization:

• Sharing application-level shared libraries and binaries across containers (Section 3.3.1)

• Using device-specific rulesets (Section 3.3.2)

• Reducing the size of socket buffers (Section 3.3.3)

• Sharing common resources across containers (Section 3.3.4)

In this section, we describe our approach for each of these optimizations, and evaluate the
memory footprint of Snort using each of these optimizations in Section 4.1.
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Figure 3.4: This figure shows the amount of memory allocated by Snort using different-
sized rulesets, generated as a subset of Snort’s community ruleset. The amount of memory
used appears to be linearly correlated to the size of the ruleset, therefore we can estimate
the memory per rule to be 27.5 KB.

3.3.1 Shared Libraries

Initially, we hypothesized that shared libraries may contribute heavily to the memory foot-
print, and could be a potential area for optimization. The same shared libraries would
be built and loaded into memory redundantly across separate Docker containers, because
the OS is unaware that these libraries are identical. We hypothesized that mounting all
shared libraries and binaries onto a shared volume would be one way to signal to the OS
that they are the same object, and prevent the shared library from being loaded into mem-
ory multiple times. We evaluate the amount of memory saved using this optimization in
Section 4.1.1.
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3.3.2 Device-Specific Rulesets

Next, we looked at the rulesets deployed with Snort. We see that a significant amount
of memory is allocated on the heap according to Figure 3.2. We measured the amount of
memory allocated on the heap for Snort configurations with different sized rulesets, shown
in Figure 3.4. We find that the memory allocated on the heap is correlated to the size of the
ruleset that Snort is deployed with. We are running Snort with the community ruleset for
registered Snort users (The Snort Project [2017]), which is originally meant to deployed
for one instance of Snort at the edge of a network. This ruleset is meant for devices of all
types; therefore, it contains a laundry list of rules. However, all of these rules cannot be
applicable to a single device, since the relevance of a rule varies based on OS, device type,
and even manufacturer of that device. Therefore, we can build and deploy our per-device
Snort instances with rules that are applicable only to the device it is protecting, reducing
the size of each ruleset, thus lowering the total memory footprint of each Snort instance.
To facilitate deployment, we need a way to query relevant rules based on a set of criteria.
We use a sqlite3 database to keep track of each attribute for all the community rules.
We can automatically tag these rules based on keywords, as well as scrape websites for
information about what the rule is matching on. Using these tags, we can create trimmed
rulesets based on the type and functionality of an IoT device. We evaluate the utility of
our tagging system in Section 4.1.2.

3.3.3 Socket Buffers

The other main contribution to the memory footprint of Snort comes from memory al-
located for socket buffers, as shown in Figure 3.2. The default buffer size is 128 MB,
however we observe that 163 MB of memory is allocated for socket buffers. This is due
to the overhead for the “afpacket header” (66 bytes) that gets added to the allocated buffer
size, explained in Section 1.5.3 of the Snort manual (The Snort Project [2019b]). This
accounts for the 163 MB allocated for socket buffers, shown in Figure 3.2, even though
the default buffer size is only 128 MB. We can calculate the size of the memory allocated
for a buffer of size s, given a frame size of e bytes, as follows:

new frame size = e+ 66

num frames =
s

new frame size
=

s

e+ 66

Memory is allocated for a process in blocks, where each block has a size that is a multiple
of the system’s page size. The smallest block size that can fit at least one frame is 4 KB
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(4096 bytes), which can fit 2 frames (with size = new frame size) per block.

mem allocatedKB = num frames ∗ block

2 frames
∗ 4KB

block

mem allocatedKB = 2 ∗ s

e+ 66

Therefore with a frame size of 1518 bytes, a 128 MB buffer would have an overhead of
∼ 35 MB.

The default buffer size of 128 MB for Snort is significantly larger than one second of
peak bandwidth for any IoT device. The socket buffers allocated by Snort are normally
meant to buffer all the packets entering the network, and are unnecessarily large for a
single IoT device. For example, the peak bandwidth measured for a Smart Light Bulb is
24 Kbps and occurs for only milliseconds at a time. We will allocate a separate buffer for
each Snort instance, and determine the appropriate size depending on the respective IoT
device’s traffic patterns. In Section 4.1.3, we show the average and peak throughput for a
few IoT devices to determine a reasonable size for a socket buffer that only holds traffic
for a single IoT device.

3.3.4 Sharing Common Resources

We looked into the source code of Snort based on the results in Figure 3.3, and we find that
a large amount of memory is consumed to create Deterministic Finite Automata (DFA).
Snort uses a DFA to process packets, as explained in Section 2.5.2. This results in a packet
processing time that is proportional to the length of the packet. Unfortunately, this comes
at a tradeoff because a large amount of memory is used to store a lookup table containing
state transitions for the DFA. This DFA is used in a read-only manner, however it is not
inherently shareable across Snort instances. The goal of this solution is to create a single
DFA in read-only memory for all Snort instances to access and use through inter-process
communication (IPC). Snort creates its DFA using the list of rules provided in the Snort
configuration. Most of these rules match only on the payload of the packet, and have no
constraints on the source or destination IP address. If we naively take the union of all
of the devices’ Snort configurations to create a single shared DFA, then any rule without
source or destination IP address constraints will match on traffic for all the devices on
the network. This would result in a Snort instance raising an alert or dropping a packet
for a rule that is irrelevant to the IoT device it is processing packets for. Since all the
IoT devices will be using our gateway as an access point, we will know the IP address
of each IoT device on the network. Therefore, we can reflect this in the union of the
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Snort configuration files, where each rule will match on the IP addresses of the devices for
which that rule is applicable to. While this will create a slightly more complex DFA, we
hypothesize that this method of sharing a single DFA consumes less memory as we run
more instances, as opposed to creating a separate DFA for each Snort instance, some of
which may be matching on a common subset of rules.

Snort is implemented in C, which means there is no native deepcopy implementation
for the DFA data structure, which is comprised of a number of pointers. We found that the
most efficient way to get this data structure into shared memory is to allocate it into shared
memory when it is initially created, rather than deepcopy the data structure after it is allo-
cated. We can change the relevant malloc calls in the Snort code to shared malloc
calls, that allocate the DFA on a shared heap. We build our shared malloc on top of
an existing glibc malloc implementation (Lea [2011]). We allocate an area in shared
memory that we can use as a new heap to be shared between processes. In the implemen-
tation of malloc, we replace calls to the sbrk function, which allocates new memory
to a process, with a new function that simply returns a pointer to an area in the shared
memory we initially allocated. Each Snort instance will then map this shared memory into
its own virtual address space and use the DFA data structure in a read-only manner. The
code for our implementation of Snort using shared malloc calls to allocate a DFA on
a shared heap can be found at

https://github.com/speeeday/shared-dfa-snort

This method can also be generalized to any vNF with costly read-only data that does not
need to be duplicated for every instance of the vNF. We evaluate the memory saved using
this implementation of Snort in Section 4.1.4.

3.3.5 Combined Optimization

Each of these optimizations attempts to reduce the amount of memory used by a certain
component of Snort. We look to optimize the memory footprint of the shared libraries,
socket buffers, as well as memory allocated on the heap. These optimizations can also
be combined to achieve a further-reduced memory footprint. We evaluate each of these
optimizations as well as their combined memory footprint in Sections 4.1 and 4.2 respec-
tively.
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Chapter 4

Implementation & Evaluation

The following are our findings from investigating potential solutions to lower the memory
footprint of Snort. We hope that these optimizations allow us to support a separate Snort
instance for at least the average number of IoT devices per U.S. household. In addition
to memory, we test our optimizations with respect to performance to ensure we have not
induced extra latency in Snort’s packet processing. All of these experiments were run on
a Raspberry Pi 3B+ with 1 GB RAM and 1 GB swap space and each instance of Snort
running within a Docker container. The memory measurements were taken using Linux’s
free tool, described in Section 3.2.1.

4.1 Specific Optimizations

In this section we evaluate the memory footprint of Snort using each of the four optimiza-
tions explained in Section 3.3:

• Sharing application-level shared libraries and binaries across containers (Section 4.1.1)

• Using device-specific rulesets (Section 4.1.2)

• Reducing the size of socket buffers (Section 4.1.3)

• Sharing common resources across containers (Section 4.1.4)

We implemented each of these optimizations over Snort (v2.9.12) and the Snort commu-
nity ruleset for registered users (snapshot-29120). We ran Snort using the afpacket
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packet acquisition model and compare our optimizations to Snort’s default DAQ buffer
size of 128 MB. We ran each Snort instance within a Docker container (v18.09.0), and
connected the container to two Docker networks for inbound and outbound traffic.

4.1.1 Shared Libraries

In this section we follow our intuition from Section 3.3.1 and evaluate amount of mem-
ory shared between application-level shared libraries and binaries across Docker contain-
ers. We measured the amount of shared memory between multiple instances of the same
Docker image (labeled as same image), multiple instances of different Docker images that
use identical libraries and binaries built in separate containers (labeled as diff image), and
multiple instances of a Docker image that use the same libraries and binaries mounted on
a single shared volume (labeled as shared volume).

The results for these experiments are shown in Figure 4.1. In two different images of
the same Snort application, diff image (snort), we see that none of the pages are shared
for the Snort application. We also notice that in all three cases, the most shared memory
is when there is one instance running. We suspect this is due to an OS-level optimization

Figure 4.1: This figure shows the amount of shared memory used by shared libraries and
Snort code for n instances in three cases: 1) The same Docker image of default Snort,
2) Different Docker images containing the same default Snort, 3) Docker image with all
Snort files/libraries placed in a shared volume.
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that causes the kernel to mark an area as shared memory until it recognizes a need for dis-
tinct copies of those physical pages, after which it proceeds to duplicate them. According
to Figure 3.2, the shared libraries make up a less than 2% of Snort’s memory footprint.
Therefore, by Amdahl’s Law, there is little potential gain to optimizing such a negligi-
ble portion of the footprint, and we focus our efforts towards more memory consuming
portions of the application.

4.1.2 Device-Specific Rulesets

In this section we evaluate the effectiveness of creating device-specific rulesets from the
rule-tagging system described in Section 3.3.2. We can see the breakdown of the com-

Figure 4.2: This image shows the breakdown of Snort’s community ruleset which contains
10,918 rules.

munity ruleset distributed by Snort, in Figure 4.2. We further classify these rules based
on OS, device type, and manufacturer by scraping any relevant reference URLs provided
by rule authors. For example, VirusTotal (VirusTotal [2012]) provides us with the sand-
box behavior of different malware samples which we can use to determine which OS the
malware is targeting. Additionally, websites such as helpx.adobe.com/security
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contain explanations and applicability of security vulnerabilities found within their soft-
ware. We use 140 tags to classify each of the 10,918 Snort community rules. The tagged
ruleset and code for tagging is available at

https://github.com/speeeday/custom-snort-rulesets

The top ten most common tags are shown in Table 4.1.2.

Table 4.1: This table shows the top 10 most common tags from our tagging scheme for the
Snort community ruleset for registered users, which contains 10,918 rules.

Tag Name Description # Applicable Rules
windows for Windows-based devices 5624

malicious indicator indicates malicious activity 3699
outbound connections detects suspicious outbound connections 2102

adobe flash for devices that use Adobe Flash 1582
malicious file detects potentially malicious file attachments 983

adobe acrobat reader for devices that use Adobe Acrobat Reader 539
osx for macOS-based devices 517

office tools for devices that use Microsoft Office tools 511
file attachment detected log file attachment type 1144

file magic detected detect and log file magic numbers 250

We utilize network scanning to automatically determine the applicability of each tag.
Using nmap (Lyon [2009]), a network scanning tool, we attempt to identify the OS, port
services, and manufacturer of each IoT device. When nmap is unable to provide us with
this information, we attempt to look up the device vendor based on the existing MAC
address using a community maintained database such as Stiller [2019], which is able to
correctly identify the vendor of IoT devices in our lab. We then use this information to
determine which tags are inapplicable to each IoT device on the network. We can then
generate a custom ruleset using a SQL query that negates each of the inapplicable tags,
removing those rules from the ruleset. The size of the rulesets for a few types of IoT
devices, generated using our tagging scheme, are shown in Table 4.1.2. A bulk of the rules
are meant for Windows, an OS that is not commonly used for IoT devices. Therefore, for
most IoT devices, which run a Linux-based OS, we can achieve a five-fold reduction on
the number of rules deployed with Snort.
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Table 4.2: This table shows the number of rules present in the Snort configuration for a few
different type of IoT devices. Each of these configurations is a subset of Snort’s default
community ruleset containing 10,918 rules.

IoT Device Type # Relevant Rules % of Community Rules
Linux NAS 2199 20.1

D-Link Camera 1697 15.5
Windows IoT Controller 7173 65.7
Android Smart Device 1614 14.8

4.1.3 Socket Buffers

In this section, we follow our intuition from Section 3.3.3 to reduce the size of Snort’s
socket buffer to a reasonable size for IoT devices. We estimate a reasonable size to use
for IoT devices based on measuring the packet throughput and peak packet rates for a few
IoT devices in our lab, shown in Figure 4.1.3. The minimal size for the packet buffer
allowed by Snort is 1 MB which will suffice for most IoT devices. This buffer is easily
configurable at runtime, and can be altered for devices with higher average throughput.

Table 4.3: This table shows the average and peak throughput for a few IoT Devices, mea-
sured in our lab using Wireshark (The Wireshark Team [2019]), from packet captures that
were generated from normal use of each IoT device.

IoT Device Avg Throughput (bps) Peak Throughput (bps)
Nest Thermostat 759 368K
D-Link Camera 182K 1.3M
Amazon Alexa 669K 17.5M

Hue Light 6.3K 24K
Smart Plug 8.2K 78K
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4.1.4 Sharing Common Resources

In the section we evaluate our approach described in Section 3.3.4 of sharing a single
DFA across all Snort instances on a device. The results of sharing a DFA across all Snort
instances is shown in Figure 4.3. We are able to determine the overhead per shared Snort
container to be 188 MB. Each container is run with the default 128 MB buffer, as well
as mutable data structures that are derived from the DFA. Additionally, the Shared DFA
requires close to 80 MB more of memory to create, than the DFA for the default Snort.
This is due to the extra source IP address constraints added to the Snort configuration,
explained in Section 3.3.4, as well as the difference in implementation between the default
malloc calls and the shared malloc calls that we used. Overall, the Shared DFA
provides us with a way to amortize the cost of the DFA over multiple instances, since it is
used only as a read-only lookup table.

Figure 4.3: This graph shows the effectiveness of sharing the DFA data structure across
all Snort instances. The first Snort instance incurs the overhead of the shared DFA, while
the rest of the snort instances use a reduced amount of memory.
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4.2 Combined Optimization

We implemented each of these optimizations to run on a Raspberry Pi 3B+ with 1 GB RAM
and 1 GB swap memory. We analyze the combined optimization using the device-specific
rulesets, reduced socket buffers, and the shared DFA data structure with respect to mem-
ory and performance. We use a C executable that invokes system calls to start and stop
containerized Snort instances, as well as log measurements. While measuring the memory
footprint of Snort, we use iperf to simulate network traffic and mimic the normal be-
havior of Snort. We use a Snort configuration with 1697 rules, according to a Linux-based
IoT device, when evaluating the combined optimization.

4.2.1 Memory Footprint

We can see the memory footprint of Snort using each optimization, as well as the combined
optimizations’ footprint, in Figure 4.4. Combining all three optimizations allows us to run
a maximum of 47 Snort instances simultaneously, at least ten-fold gain compared to using
Snort with the community ruleset for registered users (snapshot-29120) and a default DAQ
buffer size of 128 MB. We observe an increased startup time as we spawn more Snort
instances. Therefore, we constrain the time for the containerized Snort instance to start
up, to within three minutes, after which we consider the system unusable. The maximum
number of simultaneously running instances for each individual optimization, as well as
their combined gain, are shown in Table 4.4.

Optimization Max # Snort Instances Running
none (default) 3
reduced-buffer 4

shared-DFA 5
custom-ruleset 6

combined-optimizations 47

Table 4.4: This table shows the maximum number of Snort instances that can be run using
each optimization, as well as all of them combined.
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Figure 4.4: This graph shows the amount of memory used by multiple Snort instances for
each optimization, as well as the combined footprint.

4.2.2 Performance

We measure the performance of each optimization, as well as the combined optimizations’
performance by measuring the latency of packets processed by the Snort. Our results are
shown in Figure 4.5 as a CDF plot that shows the percentage of packets that arrive under
a certain latency. We exclude the latency of the first packet to reduce noise from ARP
and other startup-induced costs. Based on the plot, the performance of the combined
optimizations is even better than the default Snort, however this is slightly misleading. We
hypothesize that this is due to the DFA being placed in shared memory, where it will not
be evicted from the cache during a context switch. During a context switch in a process,
the translation lookaside buffer (TLB) is flushed, causing memory private to that process
to be flushed from the cache. The shared DFA is allocated in shared memory, therefore
we believe that it remains in the cache through a context switch, resulting in faster lookup
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times, and a reduced latency.

Figure 4.5: This graph shows the percentage of packets that arrive under a certain latency
for each optimization, as well as all of them combined. We exclude the latency of the first
packet to reduce noise from ARP and other startup-induced costs.
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Chapter 5

Conclusions & Future Work

5.1 Conclusion

Through a few simple optimizations, we are able to increase the increase the number of
Snort instances running on a Raspberry Pi 3B+ by at least ten-fold, helping move towards
an easily-adoptable IoT security gateway for the common household. We identify the
major memory contributors to the memory footprint of Snort, which are the heap memory
used to match on the Snort rules, and the socket buffers used to store packet data. Snort’s
community rules are normally meant for a network-wide deployment and cannot all be
applicable to a single IoT device. We are able to get at least a five-fold reduction on the size
of the ruleset, for a majority of IoT devices, by removing unnecessary rules. The default
buffer size (128 MB) is unnecessarily large for a single IoT device and can be reduced
using runtime options. Finally, we share the DFA data structure as read-only data between
Snort instances to amortize its cost over all instances. With these optimizations, we are
able to increase the number of Snort instances running simultaneously on a Raspberry Pi
3B+ by ten-fold.

5.2 Contributions

This thesis’s key contributions are the following:

• A set of tags for Snort’s community ruleset for registered users (snapshot-29120)
that are loaded into a sqlite3 database and can be used with information about
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the OS, device type, and manufacturer to create a reduced ruleset containing only
rules that are applicable to a specific IoT device.

• A procedure for deploying Snort as a vNF instead of a single protector for the entire
network.

• A modified implementation of Snort version 2.9.12 that allocates the DFA data struc-
ture on a shared heap, and can be accessed as read-only data by other instances of
this modified Snort application.

5.3 Future Work

There are still a few more optimizations, with respect to memory, that could be explored
to reduce the memory footprint of Snort and other vNFs. We explain our intuition on how
they could be implemented and leave them for future work.

5.3.1 Specialized malloc Implementation

When sharing common resources in Snort, we dynamically allocate the DFA data structure
in shared memory. We modify the snort source code by changing relevant malloc calls to
shared malloc calls, that place the data structure on the shared heap. Unfortunately, when
creating the data structure there are many deallocations on the shared heap as well, which
leads to fragmentation of the heap. This is when a contiguous block of memory contains
a mixture of allocated and unallocated segments. Once we grow the heap for memory
allocations, it becomes difficult to shrink the heap because we are unable to easily deter-
mine which virtual pages are unused, if any. Therefore, using a malloc implementation
that attempts to minimize the total heap size among the memory allocations/deallocations
could further lower the memory footprint.

5.3.2 Anonymously Mapped Pages

The virtual memory breakdown shown in Figure 3.2, indicates around 8% of the memory
footprint of Snort comes from anonymously mapped pages. These are allocations made
from calls to mmap, using the MAP ANONYMOUS flag, and could come from any part of
the Snort application or its libraries. We were unable to easily determine where exactly
these allocations are made and what they are used for. Further analysis methods may be
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necessary to identify and optimize the allocation of these anonymously mapped pages,
which contribute a non-trivial amount to the total memory footprint of Snort.

5.3.3 Automated Generation of Snort Rulesets

When creating device-specific rulesets, we utilize tags, described in Section 4.1.2, that
characterize the applicability of each Snort rule. To utilize these tags and automatically
create device-specific rulesets, we need to be able to automatically determine whether
a tag is applicable to a certain device. A more detailed network discovery process will
likely yield trimmer rulesets containing only relevant rules to that specific device. This
automated scanning could also utilize Common Vulnerabilities and Exposures (CVEs) to
create rules that are specific to an IoT device and the software running on it.

5.3.4 Descheduling Idle vNFs

IoT devices often have bursty traffic patterns rather than a constant flow of packets. This
means that when there is no inbound/outbound traffic for an IoT device, its respective Snort
instance may be waiting for packets and using RAM unnecessarily. An interesting idea
posed in Zhang et al. [2016] is that we can use a hybrid of interrupt vectors and polling the
network interface card to schedule an NF only when there are incoming/outgoing packets
waiting to be processed. Instead of waiting for packets, the NF can deschedule itself,
waiting to be signaled for when traffic needs to be processed. We can then suspend the
state of any vNF, using a feature such as Docker checkpointing, and migrate the vNF
to disk space to free up RAM when necessary. The main intuition is that we can take
advantage of this hybrid polling process to run vNFs only with packets waiting to be
processed, and save memory by suspending vNFs which have no packets to process. This
memory optimization could induce additional latency, based on the time needed to migrate
and resume a vNF from disk, and this tradeoff would need to be further analyzed.

5.3.5 Automated Stress Testing

Snort rulesets can grow to be very large and contain rules for many different protocols.
When running experiments with live traffic, we test only a small subset of these rules
to automatically determine if proper alerts are generated. Ideally, we would use a set of
stress tests to determine that alerts are properly generated for every Snort rule. This would
require a program to generate traffic that would be matched on by a given Snort rule. We
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can then test the correctness of these optimizations, to ensure that we have not introduced
any new bugs.

5.4 Final Thoughts

We aim to generalize the methods and solutions from this work, and apply them to other
vNFs needed to secure IoT devices. Although not necessarily due to memory, datacenters
also suffer from resource constraints when running many vNFs, specifically due to Snort
and other IDS/IPS systems. The solutions posed in this work could be a step in the right
direction to solving these resource constraints within datacenters as well. As technology
advances, we may also notice that memory is not the bottleneck of the system anymore,
requiring new methods for analysis and optimization.

All in all, we hope that the ideas posed in this paper help enable the use of vNFs to
secure IoT devices, and make a positive impact towards an emerging, IoT-driven world.
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