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Abstract

Cyber-physical systems (CPS), such as airplanes, operate based on sensor and communication data,
i.e. on potentially noisy or erroneous beliefs about the world. Realistic CPS models must therefore
incorporate the notion of beliefs if they are to provide safety guarantees in practice as well as in
theory. To fundamentally address this challenge, this paper introduces a first-principles framework
for reasoning about CPS models where control decisions are explicitly driven by controller beliefs
arrived at through observation and reasoning. We extend the differential dynamic logic dL for CPS
dynamics with belief modalities, and a learning operator for belief change. This new dynamic
doxastic differential dynamic logic d4L does due justice to the challenges of CPS verification by
having 1) real arithmetic for describing the world and beliefs about the world; 2) continuous and
discrete world change; 3) discrete belief change by means of the learning operator. We develop a
sound sequent calculus for d4L, which enables us to illustrate the applicability of d4L by proving
the safety of a simplified belief-triggered controller for an airplane.





1 Introduction
Cyber-physical systems (CPS) mix discrete cyber change and continuous physical change. Exam-
ples of CPS include self-driving cars, airplane autopilots, and industrial machines. With widespread
espousal of automation in transportation, it is imperative that we develop methods capable of veri-
fying the safety of the algorithms driving the CPSs on which human lives will increasingly depend.

However, because CPSs rely on sensors and partial human operation, both of which are im-
perfect, they face a possible discrepancy between reality, and the perception, understanding and
beliefs thereof. Critical system components are engineered to be exceptionally reliable, so safety
incidents often originate from just such a discrepancy between what is believed to be true versus
what is actually true. This can be highlighted by three (of many) tragedies, some now known to
be preventable, e.g., through neutral control inputs [5, 1, 12]. However, non-critical sensor failures
led to erroneous pilot beliefs. These beliefs resulted in the pilots’ inability to perform informed,
safe control decisions, leading to 574 fatalities in these three incidents alone.

Verification efforts for practical system designs must therefore augment initial analyses which
assume perfect information with an awareness of factors such as sensor errors, actuator distur-
bances, and, crucially, incomplete or incorrect perceptions of the world. Ideally, such factors
ought to become an explicit part of the model so that CPS design and verification engineers can
confront this challenge of uncertainty head on at design time, before safety violations occur.

We argue that the notion of beliefs (doxastics) about the state of the world, which has been
extensively studied, can succinctly capture such phenomena. We develop a first-principles lan-
guage and verification method for reasoning about changing beliefs in a changing world. Using
this language, CPS designers may create more realistic controllers whose decisions are explicitly
driven by their beliefs. The consequences of such decisions are borne out in the continuous-time
and continuous-space evolution of these belief-aware CPS.

In this new paradigm, control decisions are grounded only in what can be observed and rea-
soned. By providing the tools to develop such belief-triggered controllers, we help bridge the gap
between the theoretical safety of CPS models, and the practical safety of the CPS vehicles that will
soon be driving and flying us to our destinations.

2 Technical Approach
Our approach is to integrate a framework for specifying and verifying real-world CPS with a suit-
able notion of dynamic beliefs. The result should be a single cohesive framework capable of
complex reasoning about changing beliefs in a changing world, as required by belief-aware CPSs.

Work on control-theoretic robust solutions for CPS models seem promising, since they entail
asymptotical steering towards a desired target domain despite perturbations in the system [11]:
sensor and actuator noise could be modeled as perturbations rather than beliefs. However, pertur-
bation analysis does not capture the complex causal relationship from observation, to reasoning,
to actuation in an explicit way that can lead to e.g. malfunction checklists or pilot best practices.
Accurate analyses for safety incidents such as [5, 1, 12] require the power to 1) model agents with
reasoning capabilities, and 2) leverage complex logical arguments about perception versus fact in
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the pursuit of safety guarantees.
The differential dynamic logic dL [16, 17, 19] is a successful tool for designing and verifying

belief-unaware CPS, i.e. a “changing world” in a real-valued domain. Dynamic epistemic logics
(DELs), on the other hand, deal with changing knowledge (which is tightly connected to beliefs1)
in a propositional static world that never changes [3, 4, 10, 7], again through the lens of modal
logic. Some previous work exists at the intersection of these two. However, belief-aware CPS
requires unobservable world change under the real numbers, which is in conflict with the public
propositional world-change in [6]; and a more comprehensive and less restrictive treatment of
belief that goes beyond using the underlying dynamic modalities of world-change to emulate noise
as in [14].

Since both dL and DELs are dynamic modal logics, they are prime candidates for inspiration in
the pursuit of a unified dynamic modal logic that can reason about changing beliefs in a changing
world. We develop the dynamic doxastic differential dynamic logic d4L, as an extension of dL with
1) belief modalities, and 2) a learning operator for describing belief-change, inspired by DELs.

This new framework requires a fundamental conceptual shift in the design of CPS. Let ctrl
be a program describing control decisions (e.g. a pilot pressing a button), and plant be a
program for continuous evolution (e.g. an airplane flying). In the current, belief-unaware dL
paradigm, the primary mode of establishing the safety of CPS is by the validity of a formula
pre → [(ctrl; plant)∗] safe. It states that, starting from precondition pre, every possible ex-
ecution of the program (ctrl; plant)∗ ends with the safety property safe being true, with the
star ∗ operator repeating ctrl followed by plant any number of times.

Example 1. As a running example, suppose an airplane is controlled by directly setting its vertical
velocity to 1 or -1 in thousands of feet per second. The safety goal of the controller is to keep the
airplane above ground:

1. pre ≡ safe ≡ (alt > 0), i.e., the airplane is above ground.

2. ctrl ≡ (?alt > 1; yv := −1) ∪ yv := 1, in which two things may happen, on either side of
∪. If the airplane is above 1000ft (?alt > 1), it may descend by setting vertical velocity yv
to -1000 feet per second. Alternatively, it can climb with yv := 1, which may always happen
since this action has no ? test.

3. plant ≡ t := 0; t′ = 1, alt′ = yv & t ≤ 1 describes, using differential equations, that
altitude changes with vertical velocity (alt′ = yv) for a maximum of 1 unit of time using time
counter t′ = 1. The evolution domain constraint t ≤ 1 bounds how much time may pass
before the pilot reassesses this choice.

Intuitively, this CPS is safe because the controller can only decide to descend if it is high
enough above ground such that descending for 1 second at a velocity of -1000 feet per second,
traveling a total of 1000 feet, keeps it above ground. This condition is based on ontic (real world,
or factual) truth and does not capture the reality that altitude is read from a noisy altimeter, and
that pilot beliefs trigger actions, not ontics.

1Beliefs may be erroneous, knowledge may not.
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In contrast, in belief-aware CPS, control decisions are triggered by some belief Ba (φ), not
ontic truth φ. This minor syntactic change belies the complexity of the underlying paradigm shift.
The CPS model must now explicitly describe how an agent learns about the world and acquires
such beliefs Ba (φ). In d4L, this process of observation and reasoning is specified by means of a
learning operator.

A dL program α, describing ontic change, does not alter beliefs. In contrast, a learning operator
program La(α) changes only agent a’s beliefs, with the change described by α becoming doxastic
rather than ontic. The pattern α;La(α) describes observed ontic change, which also affects beliefs.
This learning operator may be used in a program obs to describe the agent’s learning processes
of observation and reasoning. This leads to the addition of the belief-changing obs to the safety
formula pre→ [(obs; ctrl; plant)∗] safe used for belief-aware CPS.

Example 2. Consider a belief-triggered controller for the airplane of Example 1. The model now
incorporates the fact that observation is imperfect, and that the altimeter, while operating properly,
has some noise bounded by ε > 0.

1. obs ≡ La(?alt− alta < ε). The pilot a learns, by observing the altimeter with known error
bounds ε, that the perceived altitude alta can be lower than the true altitude alt by at most ε.
Thus, the belief Ba (alt− alta < ε) comes to be.

2. ctrl ≡ (?Ba (alta − ε > 1) ; yv := −1) ∪ yv := 1). Climbing, being safe, remains an al-
ways acceptable choice. However, the trigger for descending is that the pilot believes that
the perceived altitude with worst-case noise is still high enough for the airplane to descend
for one second, i.e. Ba (alta − ε > 1).

We must add ε > 0 to pre, but plant does not change since beliefs do not directly affect the
behavior of the real world: they do so only through agent actions.

More generally, d4L allows for arbitrary combinations of ontic dL actions and the learning
operator, representing any interleaving of physical and doxastic change, the former potentially
unobservable, and the latter potentially imperfect, e.g. through noisy sensors.

3 Syntax of d4L
In this section, we will describe d4L terms, formulas and programs. As in dL, real arithmetic is
used to accurately model CPSs. Thus, terms are real-valued.

The safety of well-functioning belief-aware CPS is often predicated on beliefs being grounded
in reality so that informed decisions can be made, cf. formula Ba (alt− alta < ε) of Example
2, where perceived altitude can underestimate factual altitude by at most ε. This relation between
belief and truth is at the core of many safety arguments, and should be describable within the logic.
We must therefore be able to refer to both ontic (factual) and doxastic (belief) states in the same
context, as in Ba (alt− alta < ε).
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3.1 d4L Terms and Formulas
State variables describe ontic truth, e.g. alt is the airplane’s real altitude. Doxastic variable alta is
agent a’s perception of alt. Basic arithmetic is also in the language, e.g. x − y. Constants c ∈ Q
allow for digitally representable numbers in the syntax, e.g. 2.5 but not π, though the semantics
can give variables any value in R. Logical variables X are introduced by quantifiers over R to e.g.
discharge reasoning about continuous time, or to find witnesses for existential modalities.

Let A be a finite set of agents, Σ be a countable set of logical variables, V be a countable
set of state variables, and Va = {xa : x ∈ V} the set of doxastic variables for agent a ∈ A.
The following definition distinguishes between terms with and without doxastic variables. The
distinction is crucial when assigning to state or doxastic variables, as we will see in Definition 3.

Definition 1. The doxastic terms θ and non-doxastic terms ζ of d4L, with ⊗ ∈ {+,−,×,÷},
X ∈ Σ, x ∈ V, xa ∈ Va, a ∈ A, c ∈ Q, are given by the grammar:

θ ::= θ ⊗ θ | X | c | x | xa
ζ ::= ζ ⊗ ζ | X | c | x

The formulas of d4L are a superset of dL’s [17], which are a superset of those of first-order logic
for real arithmetic. Alongside logical connectives, we may write propositions such as θ1 ≤ θ2 and
logical quantifiers ∀X φ. To this, d4L adds the belief modality Ba (φ), meaning agent a believes
φ. The dynamic modality formula [α]φ (after all executions of program α, φ is true), and its dual
〈α〉φ (after some execution of α, φ is true) capture belief-aware CPS behavior. The language of
the programs α will be specified later in Definition 3.

Since d4L beliefs are only about the state of the world, it is useful to distinguish between
formulas ξ which may appear inside belief modalities, and those φ which may not. We still allow
doxastic terms θ in φ, since safety proofs may generate such formulas.

Definition 2. The formulas φ, ξ of d4L are given by the grammar:

φ ::= φ ∨ φ | ¬φ | θ ≤ θ | ∀X φ(X) | [α]φ | Ba (ξ)

ξ ::= ξ ∨ ξ | ¬ξ | θ ≤ θ

The remaining logical connectives, ∧,→ and duals 〈α〉φ, ∃X φ(X), Pa (ξ) are defined as
usual, e.g. 〈α〉φ ≡ ¬ [α]¬φ, and Pa (ξ) ≡ ¬Ba (¬ξ) when a considers ξ possible. We may now
generalize the noisy but accurate sensors of Example 2.

Example 3 (Noisy sensors). Sensors often come with known error bounds ε. A pilot reading from
the altimeter should thus come to believe the indicated value to be within ε of the real alt, as cap-
tured by Ba ((alta − alt)2 ≤ ε2), with integer exponentiation being definable from multiplication.

Belief modalities with both state and doxastic variables are meta-properties of belief, e.g., how
far doxastic truth is from ontic truth. Thus, their truth value indeed changes as either the world
or beliefs change. Section 6 will show such formulas are part of the core argument for some
belief-aware CPS safety proofs. When formulas such as Ba ((alta − alt)2 ≤ ε2) are not true, it
can become impossible for a to make informed decisions. Safety may then instead rely on very
conservative actions, e.g. bringing a car to a stop, or flying straight and level.
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3.2 Doxastic Hybrid Programs
The hybrid programs (HPs) of dL [17] are able to describe both discrete and continuous ontic
change. They are the starting point for the doxastic hybrid programs (DHPs) of d4L. We introduce
a learning operator La(γ) for doxastic change, where γ encodes an agent observing the world,
reading from a sensor, or suspecting some change to have happened. In this paper, the language of
the learned program γ is nearly identical to that of hybrid programs, and to the epistemic actions
of the epistemic action logic EAL [7].

3.2.1 Changing Physical State

Assignment x := ζ performs instantaneous ontic change, e.g. pushing the autopilot button,
autopilot := 1, or resetting a time counter with t := 0, as in Examples 1 and 2. No doxastic
variables are allowed in ζ , since ontic truth is not directly a function of belief!

Differential equations x′ = ζ & χ describe continuous motion over a nondeterministic duration,
so long as the evolution domain constraint formula χ is true throughout. For example, alt′ =
yv, t′ = 1 & t ≤ 10 describes linear change of altitude for up to 10 seconds according to vertical
velocity yv. Nondeterministic ontic assignment x := ∗ is definable as x′ = 1;x′ = −1, which
assigns any value in R to x by increasing then decreasing it arbitrarily.

The test ?φ transitions if and only if d4L formula φ is true. It was used in Example 1 as an ontic
trigger ?(alt > 1) determining whether an airplane could descend, and similarly as a belief trigger
?Ba (alta − ε > 1) in Example 2, where a pilot can only descend if they believe the airplane is
safely above 1000 feet while taking worst-case noise into account.

Sequential composition α; β is self-explanatory. The choice α ∪ β nondeterministically
executes either α or β. It may be used to encode multiple possible outcomes or actions, e.g.
(?alt > 1; yv := −1) ∪ yv := 1 from Example 2.

Nondeterministic repetition α∗ lets α be iterated arbitrarily many times. It was used in the
program (obs;ctrl;plant)∗ to ensure the safety proof applies to a system that can run for a
long time, not just to a one-time control decision.

3.2.2 Changing Belief State

Agent beliefs are updated by means of the learning operator La(γ), where γ is a program de-
scribing belief change. Notably, to interleave ontic and belief change, the learning operator is a
program itself rather than a modality as in [8, 6]. Under d4L’s possible world semantics, each agent
a considers multiple worlds possible. The intuitive behavior of La(γ) is to execute program γ at
each such world, and consider all outcomes of such executions as possible worlds.

The language of γ is a slightly modified subset of that of hybrid programs. Inside a learning
operator, ontic assignment x := ζ becomes doxastic assignment xa := θ. Since doxastic change
(unlike ontic change) may depend on previous beliefs, the assigned term θ allows doxastic vari-
ables. The language also includes test ?φ, choice γ1 ∪ γ2 and sequential composition γ1; γ2.

This language of doxastic change captures the bulk of observation and reasoning phenomena
found in belief-aware CPS, which tend to occur at distinct and discrete intervals, e.g. looking at a
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sensor periodically. The literature [20, 6] suggests that learned differential equations and repetition
pose a very significant additional challenge, which is useful only in more specialized scenarios.

Learned programs may contain nondeterminism, as in La(γ1 ∪ γ2). Intuitively, this says that
agent a is aware that either γ1 or γ2 happened, but cannot ascertain which: agent a must consider
possible all outcomes of γ1 and of γ2. Thus, in d4L, learned nondeterminism is unobservable, and
leads to the indistinguishability of outcomes, as in action models and epistemic actions [3, 7]. This
is in contrast to program La(γ1) ∪ La(γ2), in which agent a either learns γ1, or learns γ2, but in
both case knows precisely which one happened.

Learned test La(?ξ) eliminates those possible worlds for which ?ξ does not succeed, i.e. in
which ξ is false. In this way, [La(?φ)]ψ is analogous to public announcements and the tests of
epistemic actions [7].

So far, the set of possible worlds may contract through learned tests and finitely expand with
learned choice. The nondeterministic doxastic assignment xa := ∗ further enables uncountable
expansion of possibilities by assigning any value in R to xa. To let xa take any value satisfying
some property φ(xa), the program La(xa := ∗; ?φ(xa)) first “resets” the values xa can take using
nondeterministic assignment, and then contracts the set of possible worlds with ?φ(xa).

The grammar of programs divides programs into two categories. The first, denoted α, describes
the language of ontic change, or the ontic fact La(γ) that program γ was learned. The second,
denoted γ, describes the language of doxastic change, and, as we have seen, is a subset of the first
with minor modifications.

Definition 3. Let x ∈ V, a ∈ A, xa ∈ Va φ, ξ be formulas per Def. 2, θ, ζ be terms per Def. 1.
Doxastic hybrid programs (DHP) α and learnable programs γ are defined thus:

α ::= x := ζ | x′ = ζ&χ | ?φ | α;α | α ∪ α | α∗ | La(γ)

γ ::= xa := θ | xa := ∗ | ?ξ | γ; γ | γ ∪ γ

With a better understanding of d4L programs, we may now describe exactly how the belief of
Example 3, Ba ((alta − alt)2 ≤ ε2), is acquired.

Example 4 (Noisy sensors, cont’d). By observing a trusted altimeter, the pilot decides to forget
previous beliefs about altitude and trust the current reading. Then, because the altimeter has a
known error bound of ε, the pilot must now consider possible all altitude values at most ε away
from the true value of alt.

La
(
alta := ∗; ?(alta − alt)2 ≤ ε2

)
4 Semantics of d4L
The d4L semantics are designed to allow agents to hold potentially erroneous beliefs (proper belief,
not knowledge) about a world which may undergo unobserved change. We are inspired by the
modal Kripke semantics, but diverge from it by completely decoupling the valuation describing
ontic truth, denoted r in d4L, from agent beliefs, since unobservable actions must change ontic
truth only.
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Because beliefs are exclusively about the world and not about other beliefs, different agents’
worlds need not interact with one another. Therefore, each agent a has their own set of worlds
Wa, which they consider possible. Each agent a’s valuation Va(t) function holds the values of
all doxastic variables at every world t ∈ Wa, e.g. agent a’s perception of altitude at t ∈ Wa is
Va(t)(alta).

In these sets of possible worlds, every world t1 ∈ Wa is indistinguishable from any other
world t2 ∈ Wa. Under the usual Kripke semantics, this means that the accessibility relation ∼a,
determining indistinguishability between worlds, is an equivalence relation, i.e. an S5 system.
Equivalence relations traditionally encode knowledge, and belief is usually obtained by waiving
the reflexivity requirement. In such belief systems, a distinguished world s ∈ Wa determines ontic
truth, and yet may not be accessible through ∼a.

In d4L, we achieve belief by allowing discrepancies between the valuations of the possible
worlds, including the distinguished one, and the separate ontic valuation r. Thus, a pilot could
believe the airplane to be high with Va(t)(alta) > 1000 for every t ∈ Wa, while it could be low in
reality, with r(alt) ≤ 1000.

This allows us to omit the accessibility relations entirely. It also simplifies learned program
semantics since the learning operator can never inadvertently change ontic truth by altering the
valuation of the distinguished world. We keep the distinguished world in Definition 4 as a means
by which we may interpret every formula in every context, as we will see in Definitions 5 and 6.

This gives us the models of d4L, called physical-doxastic models, or PD-models for short. For
simplicity, we consider only one agent a from now on, and we omit the subscript where it can be
easily inferred, e.g. V instead of Va.

Definition 4 (Physical/doxastic model). A physical/doxastic model or PD-model ω = 〈r,W, V, s〉
consists of 1) r : V → R, the state of the physical world; 2) W , a set of worlds called the
possible worlds; 3) V : W → (Va → R), a valuation function in which V (t)(xa) returns agent a’s
perceived value of the doxastic variable xa at world t ∈ W ; and 4) s ∈ W , a distinguished world.

PD-models are sufficient to give meaning to all terms, formulas and programs. We use ω, ν, µ
to denote PD-models, and sub- and super-scripts are applied everywhere, e.g. ω′ = 〈r′,W ′, V ′, s′〉.
The shortcut t ∈ ω means t ∈ W ; ω(t)(xa) means V (t)(xa); and ω(x) means r(x). The distin-
guished world of ω is DW(ω) and its distinguished valuation DV(ω) = ω(DW(ω)) = ω(s) = V (s).
The real world is R(ω) = r. Finally, let 〈r,W, V, s〉 ⊕ t = 〈r,W, V, t〉 for any t ∈ ω.

4.1 Interpretation of Terms, Formulas, and Programs
The interpretation of terms and formulas is standard, with logical variables X given meaning by a
variable assignment η : Σ→ R, state variables x by the physical state R(ω), and doxastic variables
xa by the distinguished valuation DV(ω). Terms and formulas such as alta and alta > 1000 may
appear outside doxastic modalities during calculus proofs. The distinguished valuation (for the
distinguished world) ensures that they have a well-defined meaning and can thus be used as part of
the proof.
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Definition 5 (Term interpretation). Let ω = 〈r,W, V, s〉 be a PD-model, and η : Σ → R be
a logical variable assignment. Then, the interpretation of terms is defined inductively as fol-
lows: valη (ω, x) = r(x) for state variable x; valη (ω,X) = η(X) for logical variable X;
valη (ω, xa) = DV(ω) (xa) for doxastic variable xa; valη (ω, θ1 ⊗ θ2) = valη (ω, θ1)⊗ valη (ω, θ2)
for ⊗ ∈ {+,−,×,÷}.

Formula interpretation is derived directly from dL, first-order logic for real arithmetic, and
simplified Kripke semantics for beliefs. Definitions 6 and 7 are mutually recursive due to the box
modality formula [α]φ and test program ?φ.

Definition 6 (Interpretation of formulas). Let ω = 〈r,W, V, s〉 be a PD-model, η be a variable
assignment, and 〈r,W, V, s〉 ⊕ t = 〈r,W, V, t〉. Then, the valuation of a formula φ as 1 (true) or 0
(false) is defined inductively as follows.

valη (ω, θ1 ≤ θ2) = 1 iff valη (ω, θ1) ≤ valη (ω, θ2)

valη (ω, φ1 ∨ φ2) = 1 iff valη (ω, φ1) = 1 or valη (ω, φ2) = 1

valη (ω,¬φ) = 1 iff valη (ω, φ) = 0

valη (ω,∀X φ) = 1 iff for all v ∈ R, valη[X 7→v] (ω, φ) = 1

valη (ω,Ba (ξ)) = 1 iff for all t ∈ ω, valη (ω ⊕ t, ξ) = 1

valη (ω, [α]φ) = 1 iff for all (ω, ω′) ∈ ρη (α) , valη (ω′, φ) = 1

Under these semantics, Ba (x = 0) is equivalent to x = 0 since state variable x is independent
of the choice of distinguished world, unlike xa. CPS designers have no reason to write such
formulas, but when they do appear in calculus proofs, the doxastic modality is eliminated using
the equivalence Ba (x = 0)↔ x = 0.

4.2 Program Semantics
The program semantics is given as a reachability relation over PD-models, with (ω, ω′) ∈ ρη (α)
meaning that PD-model ω′ is reachable from ω using program α. The semantics of DHPs starts
with that of dL’s hybrid programs. Most cases are intuitive. Differential equations use their solu-
tion y to evolve R(ω) for a nondeterministic duration, and ensure the evolution domain constraint
χ is satisfied throughout. For a more in-depth treatment, see [17].

To this we add doxastic assignment, which affects the distinguished valuation DV(ω), and the
learning operator, which represents the “execute γ at each possible world” semantics from DELs,
as illustrated in Figure 1.

In Figure 1, let (ω, ω′) ∈ ρη (La(γ)). Then, each world ν ∈ ω′ after learning has an “origin”
world t ∈ ω from before learning, e.g. t1 is the origin world for ν1 and ν2. Every PD-model ν that γ
can reach from each origin world t ∈ ω (i.e. (ω ⊕ t, ν) ∈ ρη (γ)) becomes a possible world ν ∈ ω′
after La(γ). The valuation ω′(ν) reflects the effects of γ, which can be found in the distinguished
valuation of ν, and thus, we let ω′(ν) = DV(ν).

Finally, the distinguished world of ω′ is chosen as any t′ ∈ ω′ whose origin world is DW(ω).
This applies the principle of learned nondeterminism as indistinguishability of outcomes to the
distinguished world.
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t1

t2

ω
ν1

ν2

ν3

ω′

La(γ)

γ
γ

γ

Figure 1: The double-circled t1 = DW(ω) creates, through γ’s nondeterminism, two post-learning
worlds ν1, ν2 ∈ ω′ worlds, either of which can be nondeterministically chosen as DW(ω′). The
world t2 ∈ ω leads to ν3 ∈ ω′, which cannot be chosen as DW(ω′).

Definition 7 (Transition semantics). Let ω = 〈r,W, V, s〉 be a PD-model, and η be a variable
assignment. The transition relation for doxastic dynamic programs is inductively defined by:

• (ω, ω′) ∈ ρη (x := ζ) iff ω′ = ω except R(ω′) (x) = valη (ω, ζ)

• (ω, ω′) ∈ ρη (xa := θ) iff ω′ = ω except DV(ω′) (xa) = valη (ω, θ)

• (ω, ω′) ∈ ρη (xa := ∗) iff ω′ = ω except DV(ω′) (xa) = v for some v ∈ R

• (ω, ω′) ∈ ρη (x′ = ζ & χ) iff ω′ = 〈r[x 7→ y(τ)],W, V, s〉 for the solution y : [0,T] → R
of the diff. eq., with τ ∈ [0,T] for some T ≥ 0. Furthermore, for all ti ∈ [0, τ ], and
valη (〈r[x 7→ y(ti)],W, V, s〉, χ) = 1.

• (ω, ω) ∈ ρη (?φ) iff valη (ω, φ) = 1

• ρη (α; β) = ρη (α) ◦ ρη (β)

= {ω3 : there is ω2 s.t. (ω1, ω2) ∈ ρη (α) and (ω2, ω3) ∈ ρη (β)}

• ρη (α ∪ β) = ρη (α) ∪ ρη (β)

• (ω, ω′) ∈ ρη (α∗) iff there is n ∈ N such that (ω, ω′) ∈ ρη (αn), where αn is α sequentially
composed n times.

• (ω, ω′) ∈ ρη (L (γ)) if: r′ = r, W ′ = {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (γ)},
ω′(ν) = DV(ν) for all ν ∈ ω′, and DW(DW(ω′)) = DW(ω).

Figure 1 and Definition 7 show that d4L’s learning operator applies the DEL semantics to any
language of change, so long as it has a transition semantics, as in (ω ⊕ t, ν) ∈ ρη (γ). It is possible
to extend this operator to traditional multi-agent Kripke structures by letting two after-learning
worlds be indistinguishable in ω′ iff their origin worlds were indistinguishable in ω, as is standard
in DELs.
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5 Sound Sequent Calculus
Our main contribution towards the verification of belief-aware CPS is a sound proof calculus for
d4L. The meaning of a sequent Γ ` φ with a d4L formula φ and a set of d4L formulas Γ is captured
with the following definition of validity.

Definition 8 (Validity). A sequent Γ ` φ is valid iff for all ω and η,

valη
(
ω,
∧
ψ∈Γ ψ → φ

)
= 1

For simplicity’s sake, we use a single definition of soundness for proof rules.

Definition 9 (Global Soundness). A proof rule PR, as in Γ1 ` φ1
PR

Γ2 ` φ2

, is globally sound when, if

Γ1 ` φ1 is valid then Γ2 ` φ2 is valid.

5.1 Overview of the Calculus
Figure 2 contains the fragment of the calculus that pertains to the learning operator. The dL
calculus [16] is omitted as it is easily adaptable to d4L. Single-modality agent rationality axioms
can be adopted for belief, i.e. Ba (φ1 → φ2)→ (Ba (φ1)→ Ba (φ2)) and, if φ is valid, thenBa (φ)
is too. The proof for the following theorem can be found Appendix B.

Theorem 1. The proof rules in Figure 2 are globally sound.

Sequent contexts Γ are partitioned into ΓR; ΓB; ΓP ; ΓO. The set ΓR is the set of formu-
las with only state and logical variables and no doxastic modalities, e.g. alt > 0. ΓB and
ΓP are the sets of belief and possibility formulas respectively, e.g. Ba ((alta − alt)2 ≤ ε2) and
Pa ((alta − alt)2 ≤ ε2). ΓO is the set of formulas with doxastic variables but no modalities, e.g.
alta > 0. The rules in Figure 2 are only applicable once this partitioning has been achieved.
Finally, let Γ\xa = {φ ∈ Γ : xa does not occur in φ}, and e.g. Γ\ΓO

= ΓR; ΓB; ΓP ; ∅.
Proof rules for learned programs that change doxastic state, like assignment or test, work by

altering the contexts in suitable ways. Each learned program has two rules, for the � and ♦
dynamic modalities, which deal with the nondeterminism in the choice of the distinguished world.
The exception is La(α ∪ β), where doxastic and dynamic modalities interact much more subtly.

The proof rules for assignment La(xa := θ) capture the intuition that, since xa now has the
value of θ at each possible world, syntactically substituting all occurrences of xa with θ ought to
mean the same thing.

Since nondeterministic assignment La(xa := ∗) gives xa any possible value, then anything
previously possible about xa remains possible. However, beliefs about xa, which must hold for
all worlds, do not survive the assignment (unless they are tautologies). The proof rules [L:=∗] and
〈L:=∗〉 eliminate the formulas which may no longer hold after assignment from the context.

Formulas describing the distinguished world, i.e. in ΓO, are retained or removed, respectively,
depending on whether the dynamic modality allows us pick our distinguished world to suit our
goals, as with ♦, or not, as with �.
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[L:=]
Γ ` φ(θ)

Γ ` [La(xa := θ)]φ(xa)
1

[L:=∗]
ΓR; ΓB\xa ; ΓP ; ΓO\xa ` φ

Γ ` [La(xa := ∗)]φ

[L?]
Γ\ΓP

` Ba (ξ)→ ψ

Γ ` [La(?ξ)]ψ

[L;]
Γ ` [La(γ1);La(γ2)]φ

Γ ` [La(γ1; γ2)]φ

[LB∪]
Γ\ΓO

` [La(γ1)]Ba (ξ) ∧ [La(γ2)]Ba (ξ)

Γ ` [La(γ1 ∪ γ2)]Ba (ξ)

[LP∪]
Γ\ΓO

` [La(γ1)]Pa (ξ) ∧ [La(γ2)]Pa (ξ)

Γ ` [La(γ1 ∪ γ2)]Pa (ξ)

[L∪]
Γ\ΓO

` [La(γ1)]φ ∧ [La(γ2)]φ

Γ ` [La(γ1 ∪ γ2)]φ
2

〈L:=〉
Γ ` φ(θ)

Γ ` 〈La(xa := θ)〉φ(xa)
1

〈L:=∗〉
ΓR; ΓB\xa ; ΓP ; ΓO ` φ
Γ ` 〈La(xa := ∗)〉φ

〈L?〉
Γ\ΓP

` Ba (ξ) ∧ ψ
Γ ` 〈La(?ξ)〉ψ

〈L;〉
Γ ` 〈La(γ1);La(γ2)〉φ

Γ ` 〈La(γ1; γ2)〉φ

〈LB∪〉 Γ ` 〈La(γ1)〉Ba (ξ) ∧ 〈La(γ2)〉Ba (ξ)

Γ ` 〈La(γ1 ∪ γ2)〉Ba (ξ)

〈LP∪〉 Γ ` 〈La(γ1)〉Pa (ξ) ∨ 〈La(γ2)〉Pa (ξ)

Γ ` 〈La(γ1 ∪ γ2)〉Pa (ξ)

〈L∪〉
Γ\ΓO

` 〈La(γ1)〉φ ∨ 〈La(γ2)〉φ
Γ ` 〈La(γ1 ∪ γ2)〉φ

2

1 The substitution of xa by θ must be admissible in φ, see Doxastic Assignment
2 Formula φ does not contain doxastic modalities or variables, or learning operators

Figure 2: Dynamic doxastic fragment of the d4L calculus, with Γ being ΓR; ΓB; ΓP ; ΓO

Learned test results in the belief about the test result, as in public announcements. The test
contracts the set of possible worlds, so we must remove the set of possibility formulas from the
context, as they may no longer hold. The underlying dynamic modality determines whether this
belief is a precondition for ψ or a necessity (♦ implies at least one transition, � does not).

Learned sequential composition is merely reduced to regular sequential composition. Doxastic
assignment and choice deserve further attention below.

5.1.1 Doxastic Assignment

The rule for doxastic assignments relies on its syntactic substitution being equivalent to the seman-
tic substitution effected by learned assignment. This nontrival result can be captured succinctly by
Lemma 1, whose full proof is found in Appendix C. This result only holds when the substitution is
admissible with respect to a given formula φ, i.e. that syntactic conditions are in place ensuring the
substitution will not change the meaning of the substituted variables, and therefore, of the formula.

Lemma 1 (Doxastic Substitution Lemma). Let φ be a formula. Let σ be an admissible substitu-
tion for φ which replaces only doxastic variable xa. Then, for every η and ω = 〈r,W, V, s〉, we
have valη (ω, σ (φ)) = valη (σ (ω), φ), where σ (φ) is syntactic substitution, and σ (ω) is seman-
tic substitution, defined as σ (ω) = 〈r,W, σ (V ), s〉, with σ (V )(t)(xa) = valη (ω ⊕ t, σ (xa)) and
σ (V )(t)(ya) = V (t)(ya) = ω(t)(ya) for ya 6= xa, for all t ∈ ω.
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5.2 Nondeterministic Choice
Learned choice influences doxastic modalities, and the choice of distinguished world is influenced
by dynamic modalities. This makes for some subtlety in the rules for learned choice. Consider the
potential rule below, which assumes La(γ1 ∪ γ2) is equivalent to La(γ1) ∪ La(γ2).

Pa (¬ξ) ; ξ ` 〈La(?ξ)〉Ba (ξ) ∨ 〈La(?True)〉Ba (ξ)

Pa (¬ξ) ; ξ ` 〈La(?ξ ∪ ?True)〉Ba (ξ)

[LB∪]
Pa (¬ξ) ; ξ ` 〈La(?ξ)〉Ba (ξ) ∨ 〈La(?True)〉Ba (ξ)

Pa (¬ξ) ; ξ ` 〈La(?ξ ∪ ?True)〉Ba (ξ)

The sequent contexts tell us that ξ holds in the distinguished world DW(ω), but not in some
other t ∈ ω. The disjunction holds, since 〈La(?ξ)〉Ba (ξ) is trivially true. The learning program
La(?ξ ∪ ?True) preserves all worlds, including t, because of ?True. Since ξ is not true in t, agent a
cannot therefore believe ξ. But if the top is valid and the bottom is not, this rule would be unsound.

This phenomenon occurs because the conclusion of the rule requires us to prove Ba (ξ) for
worlds originated through both ?ξ and ?True. However, the premise of the rule implies we need
only check those from either ?ξ or ?True, as if the ♦ dynamic modality had control over learned
nondeterminism. It does not: outcomes of learned nondeterminism are always considered indis-
tinguishable.

Proof rules for La(γ1 ∪ γ2) must therefore be as conservative as the most conservative of their
dynamic and doxastic modalities: the only proof rule that allows disjunction in the premise is
〈LP∪〉 since both modalities ♦ and Pa (·) are existential. This realization informs the soundness
proofs for learned choice.

Soundness sketch for 〈LB∪〉. Let ω be an arbitrary PD-model.
We must show that valη (ω, 〈La(γ1 ∪ γ2)〉Ba (ξ)) = 1, i.e. that ξ is true at every world ν

reachable by either (t, ν) ∈ ρη (γ1) or (t, ν) ∈ ρη (γ2) for t ∈ ω.
Let (t, ν) ∈ ρη (γ1). By hypothesis, valη (ω, 〈La(γ1)〉Ba (ξ)) = 1, i.e. ξ is true at every world

reachable by γ1, and ν in particular. The argument is symmetrical for (t, ν) ∈ ρη (γ2), but only
because the premise is a conjunction. Thus, for any world ν created by La(γ1 ∪ γ2), ξ is true at
that world. Therefore, Ba (ξ).

The proof rules for the � modality require us to abdicate of any facts about the distinguished
world. The reason is that the � modality is vacuously true if there are no transitions. For this to
happen, it is enough that the distinguished world does not transition with, e.g., La(γ1). However,
other, not-distinguished worlds may still transition have transitions with γ1, and thus contribute
possible worlds in the La(γ1 ∪ γ2) transition. The soundness proof for the � rules in Appendix
B.4 addresses this issue in detail, but we present a brief counter-example here. In the following
rule, we neglect to remove facts about the distinguished world from the hypothesis.

Pa (xa = 1) ; xa = 0 ` [La(xa := 0)]Ba (xa ≤ 0) ∧ [La(?xa > 0)]Ba (xa ≤ 0)

Pa (xa = 1) ; xa = 0 ` [La(xa := 0 ∪ ?xa > 0)]Ba (xa ≤ 0)

12



The premise of the proof rule is valid: the left conjunct is valid because the assignment ensures
the post-condition is true; the right conjunct is valid because the distinguished world does not pass
the test, and therefore there are no transitions, making the � modality vacuously true.

The conclusion of the proof rule not valid. We know that La(xa := 0 ∪ ?xa > 0) has a transi-
tion because La(xa := 0) has a transition. But now, the pre-existing world where xa = 1 survives
the test ?xa > 0, and thus remains after La(xa := 0 ∪ ?xa > 0). It can therefore not be the case
that Ba (xa ≤ 0), and the conclusion is false. If the premise is valid but the conclusion is not,
the rule is unsound. This proof rule cannot rely on properties of the distinguished world for its
soundness.

The same does not happen in the rules for the ♦ modality because ♦ requires a transition, mean-
ing that, by hypothesis, the distinguished world must transition, eliminating the exact phenomenon
that allowed the above rule to be unsound.

6 Validation and Application
We will now use d4L to illustrate how to prove the safety of a small belief-aware CPS. The scenario
is similar to that of Example 2, and it is useful to have a reference for some of the most used dL
proof rules that d4L inherits [16].

Γ ` [α] [β]φ
[; ]

Γ ` [α; β]φ

Γ ` φ→ ψ
[?]

Γ ` [?φ]ψ

Γ, φ ` ψ
→R

Γ ` φ→ ψ

We let the pilot observe the altimeter with O ≡ La(alta := ∗; ?Noise), with Noise ≡ (alta −
alt < ε). The control program C climbs or descends by setting vertical velocity depending on
whether descent is believed to be safe, CB ∪ CP ≡ (?Ba (alta − T − ε > 0) ; yv := −1) ∪
(?Pa (alta − T − ε ≤ 0) ; yv := 1). The two tests are mutually exclusive, leading to dual belief
operators: descending requires the strong condition of belief, whereas the mere possibility of be-
ing too low triggers a climb. We use F ≡ t := 0; t′ = 1, alt′ = yv & t < T as very simplified flight
dynamics, and an invariant inv ≡ (alt > 0 ∧ T > 0) to handle repetition.

We will prove the validity of the formula alt > 0, T > 0 ` [(O;C;F)∗] alt > 0 by successively
applying sound proof rules from dL and Figure 2 to it. The leaves of the proof tree will be formulas
that can be easily discharged using only dL rules or real arithmetic. Once the proof tree is complete,
we will know this safety formula is valid, and thus that the modeled system is safe.

*
alt > 0, T > 0 ` inv

inv ` [O] [C] [F] inv
[;] [;]

inv ` [O;C;F] inv
*

inv ` alt > 0
loop

alt > 0, T > 0 ` [(O;C;F)∗] alt > 0

The middle branch continues in:
inv;Ba (Noise) ` [CB] [F] inv inv;Ba (Noise) ` [CP] [F] inv

[∪]
inv;Ba (Noise) ` [C] [F] inv

[L?]→R
inv ` [La(?Noise)] [C] [F] inv

[L:=∗]
inv ` [La(alta := ∗)] [La(?Noise)] [C] [F] inv

[L;] [;]
inv ` [La(alta := ∗; ?Noise)] [C] [F] inv
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The branch on the right closes using dL proof rules and standard dL reasoning independent of
beliefs: if the airplane is above ground and climbs, it remains above ground. The left branch
requires some doxastic reasoning.

inv;Ba (Noise) , Ba (alta − T − ε > 0) ` alt > T inv; alt > T ` [F(−1)] inv
cut

inv;Ba (Noise) , Ba (alta − T − ε > 0) ` [F(−1)] inv
[:=]

inv;Ba (Noise) , Ba (alta − T − ε > 0) ` [yv := −1] [F(yv)] inv
[; ] [?]→R

inv;Ba (Noise) ` [?Ba (alta − T − ε > 0) ; yv := −1] [F(yv)] inv

The left side of the cut rule must show that alt > T , and for that we will use the S5 ra-
tionality axioms that allow for reasoning about arithmetic. Thus, the agent may conclude (1)
Ba (alt > alta − ε) from Ba (Noise), and (2) Ba (alta > T + ε) from Ba (alta − T − ε > 0). But
(1) and (2) together lead to Ba (alt > T ), which no longer contains any doxastic variables. It is
therefore equivalent to alt > T . We have thus used the belief meta-property (1), relating ontic and
doxastic truth, to obtain an important fact about the world which we may now use in the right side
of the proof.

This right side is a standard dL proof without doxastics: the rules for differential equations
show that, after evolving for at most T time at a speed of −1, the airplane cannot end up below
ground, since it started above T altitude.

This completes the sequent proof. It leveraged a mix of ontic, doxastic and meta-doxastic
statements in order to make the argument for the safety of this controller. When working with
trusted sensors, we also see an intuitive partitioning of the proof: first, doxastic formulas such as
(Ba (alta − T − ε > 0)) and meta-doxastic formulas (Ba (Noise)) are used to derive ontic formulas
like (alt > T ). Second, such ontic statements form the basis for arguments made in dL-exclusive
proof branches that ensure post-control actuation results in safe behavior. This clear separation
of concerns allows CPS engineers to work more intuitively and compositionally during the design
and verification stages of belief-aware CPS.

The ways in which agents learn and reason influence the ontic facts that can be deduced, but
those facts must in turn be informed by safety requirements of the CPS’s physical evolution. Dox-
astics and ontics clearly play off each and have, in the past, contributed to safety incidents. By
making this explicit in the model, d4L ensures adequate attention is given to such dynamics so that
hopefully, ontic/doxastic concerns can be identified before they lead to tragedy.

7 Related Work
The logic d4L takes heavy inspiration from two bodies of work: one for reasoning about a changing
world, and one for reasoning about changing beliefs.

7.1 Changing world
The logic dL for reasoning about the ontic dynamics of CPS [16, 17, 19] has shown itself to be
capable of verifying interesting and relevant real world systems [18, 17]. However, it requires
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manual modeling discipline to express noise [14], rather than having noise or beliefs thereof as
built-in primitives.

The example used in this paper is so simple that it can still be converted to dL using modeling
tricks [14]. The trick is to transform alta into a state variable and remove the learning operator
from the observation program, i.e. alta := ∗; ?Noise rather than La(alta := ∗; ?Noise). The agent’s
control would then be (?alta − T − ε > 0; yv := −1) ∪ (?alta − T − ε ≤ 0; yv := 1).

However, this conversion relies fundamentally on the box dynamic modality [α]φ, which
checks safety for all executions of alta := ∗; ?Noise. With liveness formulas using the diamond
dynamic modality 〈α〉φ, safety need only be checked for one execution. Thus, in liveness formu-
las, this method would fail to capture the intended behavior of both the learning operator and the
belief modality, which should still apply to all possible worlds, or, in dL terms, all executions.

This conversion can also quickly become complex. A more detailed controller for a pilot
trying to remain around or above cruising altitude A could be (?Ba (alta − T − ε > A) ; yv :=
−1)∪ (?Pa (alta − T − ε > A) ; yv := −0.5)∪ (?Ba (alta − T − ε ≤ 0) ; yv := 1). This is similar
to previous controllers, but allows for a more gentle descent when the pilot considers the possibility
of being close toA. The equivalent dL controller is (?alta−T−ε > A; yv := −1)∪(?alta−T+ε >
A; yv := −0.5) ∪ (?alta − T − ε ≤ 0; yv := 1). However, this elimination of doxastic modalities
requires a change in the arithmetic itself, e.g. (?Pa (alta − T − ε > A) turns into (?alta−T + ε >
A). Belief must consider worst case noise, whereas possibility can consider the best case. This can
quickly become complex when going beyond simpler interval-based noise scenarios.

Both dL and d4L controllers allow tests for deciding which action to take, but represent ac-
tion triggers in first-order logic or doxastic logic, respectively, e.g. alta − T + ε > A and
Pa (alta − T − ε > A). Decisions in real CPS are based on belief, and as the conversion from
doxastic to non-doxastic action triggers quickly becomes non-trivial, it is best to avoid subtle mod-
eling mistakes by working with belief during design and verification. With d4L, safety engineers
can rely on doxastic intuitions during verification, rather than having to infer them from formulas
such as alta − T + ε > A, which does not clearly convey the concept of possibility that is so clear
in Pa (alta − T − ε > A).

The notion of robustness in hybrid systems control can capture complex notions of sensor and
actuator noise [11], but is ultimately restrictive for the purpose of belief-aware CPS, as discussed
at the beginning of Section 2. Adaptive control, where no a priori constraints are known, often
depends on neural networks [15], and safety guarantees for systems relying on learning are known
to add significant complexity to such efforts [9].

7.2 Changing belief
On the other side, we have dynamic epistemic logics (DELs) [6, 3, 4, 10, 7], of which a good
overview can be found in the literature [8]. They provide several notions of learning for differ-
ent languages, some similar to our programs [6]. Public propositional world-change [6] would
make ontic change implicitly observable, which is in direct conflict with the unobservability re-
quirements of belief-aware CPS. Furthermore, relevant DEL axiomatizations rely on creating a
conjunction out of properties of each accessible possible world [4, 8], which is incompatible with
the uncountably many worlds that CPS demand.
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Belief revision through the AGM postulates [2] is an axiomatic, declarative approach to belief
change. Because it is such a different approach, it presents many challenges in its integration with
model-theoretic work such as dL.

In order to begin addressing safety concerns around ontic/doxastic interactions at design time,
CPS engineers and agents must make complex logical arguments from both ontic facts and beliefs,
as in Section 6. Despite their many successes, the works described in this section do not address
this particular challenge directly in a principled way.

8 Conclusions
This paper considers interactions between belief and fact, which have significant safety implica-
tions. We proposed belief-aware CPSs as a first-principles paradigm under which safety concerns
with such ontic/doxastic dynamics are expressly dealt with at design time, before safety violations
occur. Our contribution is the logic d4L for modeling and verifying belief-aware CPSs, requir-
ing simultaneous, complex belief- and world-change. Its formulas can describe ontic, doxastic
and meta-doxastic statements, and its programs can model belief-aware CPS with belief-triggered
controllers that make decisions based only on what they can observe and reason. We proposed a
learning operator for belief-change, which is capable of transforming any transition-based seman-
tics of change into a semantics of belief -change. We presented a sequent calculus for d4L, which
is proven to be sound, and used it to show the safety of a simple belief-aware CPS. This is, to the
best of our knowledge, the first calculus for a dynamic logic of belief/knowledge change that can
handle an uncountable domain, as in CPS.
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A Semantic Equivalence of PD-models
Semantic subsumption and equivalence of PD-model is useful for soundness proofs, for instance
in that the worlds from La(α) will be contained in La(α ∪ β).

Definition 10 (Semantic subsumption). Let ω and ν be two PD-models. We say that ω semantically
subsumes ν, or just subsumes ν, denoted ν v ω, if R(ω) = R(ν) and for all t ∈ ν, there is u ∈ ω
such that ν(t) = ω(u).

Definition 11 (Semantic equivalence). Let ω and ν. We say that ω and ν are semantically equiva-
lent, denoted ω ∼ ν, if ν v ω and ω v ν.

The reader more familiar with epistemic or doxastic logics may already have an intuition for
the use of these notions, and be aware of the following results.

Proposition 1. Let ω, ν be two PD-models such that ν v ω. Then, valη (ν, Pa (ξ)) implies
valη (ω, Pa (ξ)) and valη (ω,Ba (ξ)) implies valη (ν,Ba (ξ)).

B Soundness of Sequent Calculus
The following sections address the soundness of the rules for different operators.

B.1 Nondeterministic doxastic assignment
The proof rule for nondeterministic assignment [L:=∗] is based on the insight that when a doxastic
variable xa is assigned any possible value, the doxastic universe expands. Therefore, any beliefs
about that variable need no longer hold, and must be removed from the context. Possibilities,
however, remain unaffected: any witnesses prior to nondeterministic doxastic assignment remain
after the assignment.

Global soundness of [L:=∗]. Let ω, ω′ be PD-models such that valη (ω,Γ) = 1, or valη (ω,Γ) for
short, and (ω, ω′) ∈ ρη (La(xa := ∗)). We must show that valη (ω′, φ). Because we are using
global soundness, it will suffice to show that valη

(
ω′,ΓR; ΓB\xa ; ΓP ; ΓO\xa

)
, at which point we

may directly apply the rule’s premise.
The semantics of learned nondeterministic doxastic assignment state that ω′ differs from ω

only about xa. Thus, since xa does not occur in ΓR, ΓB\xa and ΓO\xa , we may immediately
claim valη (ω′,ΓR), valη

(
ω′,ΓB\xa

)
, and valη

(
ω′,ΓO\xa

)
from the assumption that valη (ω,ΓR),

valη
(
ω,ΓB\xa

)
, and valη

(
ω,ΓO\xa

)
.

We now prove valη (ω′,ΓP ). We know by assumption that valη (ω,ΓP ), and thus for each
Pa (ψ) ∈ ΓP , there is t ∈ ω such that valη (ω ⊕ t, ψ). Let v = ω(t)(xa) be the value that contributes
to satisfying ψ. By the semantics of learned nondeterministic doxastic assignment, there will be
t′ ∈ ω′, with DW(t′) = t, such that ω′(t′)(xa) = v′ for all v′ ∈ R. In particular, there will be one
world u′ ∈ ω′ where v′ = v. Since only xa has changed from ω to ω′ and valη (ω ⊕ t, ψ), then
valη (ω′ ⊕ u, ψ). Thus, the world u′ ∈ ω′ serves as the witness for valη (ω′, Pa (ψ)).

Thus, valη
(
ω′,ΓR; ΓB\xa ; ΓP ; ΓO\xa

)
, and by the rule’s premise, valη (ω′, φ).
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It is interesting that in the soundness proof for 〈L:=∗〉, we need not remove any formulas from
ΓO: the ♦ modality allows us to pick the distinguished world that satisfies the formulas in ΓO, not
unlike what we did for possibilities in [L:=∗].

B.2 Test rules
Global soundness of [L?] and 〈L?〉. Let ω be a PD-model. Assume valη (ω,ΓR; ΓB; ΓP ; ΓO).

We must show valη (ω, [La(?ξ)]ψ), which is true iff for all ω′ such that (ω, ω′) ∈ ρη (La(?ξ)),
valη (ω′, ψ).

If there are no transitions the formula is trivially true, so assume there is (ω, ω′) ∈ ρη (La(?ξ)).
By the semantics of the learning operator

W (ω′) = {t′ : there is t ∈ ω s.t. (ω ⊕ t, t′) ∈ ρη (?ξ)}
ω′(t′) = DV(t′) for all t′ ∈ ω′

DW(DW(ω′)) = DW(ω)

Thus, for each t′ ∈ ω′, there is some t ∈ ω such that (ω ⊕ t, t′) ∈ ρη (?ξ), t′ = (ω ⊕ t), and
ω′(t′) = DV(t′). We know that test does not alter valuations, and therefore, ω′(t′) = DV(t′) =
DV(ω ⊕ t) = ω ⊕ t(t) = ω(t).

The formula ξ, being inside a learning operator, cannot contain other learning operators or
doxastic modalities. It follows from this and ω′(t′) = ω(t) that for all t′ ∈ ω′, valη (ω′ ⊕ t′, ξ) =
valη (ω ⊕ t, ξ) = 1. We have thus established valη (ω′, Ba (ξ)).

We need only show that valη (ω′,ΓR; ΓB; ∅; ΓO) in order to apply the implication in the rule’s
premise. Since valη (ω,ΓR) and R(ω′) = R(ω), valη (ω′,ΓR). Since ω v ω′, by Proposition 1,
valη (ω′,ΓB). Finally, since DV(ω′) = DV(ω), valη (ω′,ΓO). Thus, valη (ω′,ΓR; ΓB; ∅; ΓO).

The proof for 〈L?〉 differs only in that the hypothesis guarantees that valη (ω,Ba (ξ)), and thus
that there is a transition for La(?ξ). The rest of the proof follows the same lines as [L?].

B.3 Sequential composition rules
To reduce subscripts and increase readability, let α = γ1 and β = γ2.

Local soundness of [L;]. Let ω be a PD-model. Let ω′′ be an arbitrary PD-model such that (ω, ω′′) ∈
ρη (La(α; β)). We must show valη (ω′′, φ). The first step is to examine the transitions for La(α; β)
and La(α);La(β), as illustrated in Figure 3. We begin with (ω, ω′′) ∈ ρη (L (α; β)).

W (ω′′) = {ν ′′ : there is t ∈ ω s.t. (ω ⊕ t, ν ′′) ∈ ρη (α; β)}
= {ν ′′ : there is t ∈ ω and µ s.t. (ω ⊕ t, µ) ∈ ρη (α) and (µ, ν ′′) ∈ ρη (β)} (1)

We draw attention to the PD-models µ, which we will call the intermediate PD-models of ω′′.
For every ν ′′ ∈ ω′′, there is a t ∈ ω and an intermediate PD-model µ such that (ω ⊕ t, µ) ∈ ρη (α)
and (µ, ν ′′) ∈ ρη (β).
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Let us now look at (ω, ω′′2) ∈ ρη (L (α) ;L (β)). By the dL semantics of sequential composition,
there exists ω′2 such that (ω, ω′2) ∈ ρη (La(α)) and (ω′2, ω

′′
2) ∈ ρη (La(β)).

W (ω′2) = {ν ′2 : there is t ∈ ω s.t. (ω ⊕ t, ν ′2) ∈ ρη (α)} (2)
W (ω′′2) = {ν ′′2 : there is ν ′2 ∈ ω′2 s.t. (ω′2 ⊕ ν ′2, ν ′′2 ) ∈ ρη (β)} (3)

We will now establish a semantic correspondence between the intermediate worlds µ ofLa(α; β)
and the worlds ν ′2 ∈ ω′2. This will allow us to prove that ω′′ and ω′′2 are semantically equivalent,
and therefore that valη (ω′′, φ) = valη (ω′′2 , φ) = 1 by the rule’s hypothesis.

ω

µ

µ

µ

α

α

α

ν ′′

ν ′′

ω′′

β

β

β

La(α; β)

ω

ν ′

ν ′

ν ′

ω′

α

α

α

ν ′′2

ν ′′2

ω′′2

β

β

β

La(α) La(β)

Figure 3: The transitions of La(α; β) and La(α);La(β)

Claim 1: R(ω′′) = R(ω′′2). Trivial: learning operator does not change ontic state.

Claim 2: For every intermediate world µ of ν ′′ ∈ ω′′, there is ν ′2 ∈ ω′2 such that ω′2(ν ′2) = DV(µ).

Let ν ′′ ∈ ω′′. We already know there is t ∈ ω and µ such that (ω⊕ t, µ) ∈ ρη (α). But these are
exactly the conditions (2) of belonging to W (ω′2), and thus µ ∈ ω′2. This is an equivalent statement
to there being ν ′2 ∈ ω′2 such that µ = ν ′2. We will therefore use µ and ν ′2 interchangeably from now
on: ω′2(µ) = ω′2(ν ′2) and DV(ν ′2) = DV(µ).

Claim 3: ω′′2 subsumes ω′′, or ω′′ v ω′′2 .

For every ν ′′ ∈ ω′′ we must show there is ν ′′2 ∈ ω′′2 such that ω′′(ν ′′) = ω′′2(ν ′′2 ). We already
know there are transitions from ω using t ∈ ω and an intermediate PD-model µ.
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But Claim 2 shows that there is ν ′2 ∈ ω′2 with exactly the same relevant valuations as µ: R(µ) =
R(ν ′2) = R(ω′2) and ω′2(ν ′2) = DV(ν ′2) = DV(µ). These are precisely those (and, since β is in a
learning operator, only those) that β can use in the transitions of (ω′2 ⊕ ν ′2, ν ′′2 ) ∈ ρη (β).

Thus, for each transition (µ, ν ′′) ∈ ρη (β), there is an equivalent transition (ω′2 ⊕ ν ′2, ν
′′
2 ) ∈

ρη (β), as in (3), where µ = ν ′2, DV(µ) = DV(ν ′2) and, more importantly, DV(ν ′′) = DV(ν ′′2 ). By
the semantics of the learning operator, ω′′(ν ′′) = ω′′2(ν ′′2 ).

Claim 4: ω′′ subsumes ω′′2 , or ω′′2 v ω′′

Claim 2 already established a correspondence between each µ and some world ν ′2 ∈ ω′2. How-
ever, there may be some ν ′2 ∈ ω′2 that does not correspond to any µ, since the existence µ requires
a successful transition (µ, ν ′′) ∈ ρη (β), with ν ′′ ∈ ω′′. In contrast, there is no such restriction on
ν ′2 ∈ ω′2. There could be some transition (ω′2 ⊕ ν ′2, ν ′′2 ) ∈ ρη (β) for a world ν ′2 ∈ ω′2 that does not
exist as an intermediate world µ, leading to a world ν ′′2 ∈ ω′′2 without a corresponding ν ′′ ∈ ω′′.

Let ν ′′2 ∈ ω′′2 . So, from (3) there exists some transition (ω′2 ⊕ ν ′2, ν ′′2 ) ∈ ρη (β) and furthermore,
from (2), there is t ∈ ω such that (ω ⊕ t, ν ′2) ∈ ρη (α).

Let µ = ν ′2 so that, in particular, R(µ) = R(ν ′2) and DV(µ) = DV(ν ′2). Then, firstly, since there
is a transition (ω⊕t, ν ′2) ∈ ρη (α) and µ = ν ′2, trivially there must be (ω⊕t, µ) ∈ ρη (α). Secondly,
because α and β are both learned programs, the statement (ω′2 ⊕ ν ′2, ν ′′2 ) ∈ ρη (β) is equivalent to
(µ, ν ′′) ∈ ρη (β) where DV(ν ′′) = DV(ν ′′2 ) and R(ν ′′) = R(ν ′′2 ). This is because learned programs
can read only from ontic state and the distinguished valuation, and both concur in ω′2 ⊕ ν ′2 and µ.

But then, µ is in the conditions of (1), and thus ν ′′ ∈ ω′′ and from the semantics of the learning
operator, ω′′(ν ′′) = ω′′2(ν ′′2 ).

Claims 3 and 4 together state ω′′ ∼ ω′′2 . We may let DW(ω′′2) = DW(ω′′). From these two
statements and the premise of the rule, we may then conclude valη (ω′′, φ).

B.4 Nondeterministic choice rules
First, let us define three sets of worlds which are not necessarily connected to any transitions.

Wα = {να : there is t ∈ ω s.t. (ω ⊕ t, να) ∈ ρη (α)}
Wβ = {νβ : there is t ∈ ω s.t. (ω ⊕ t, νβ) ∈ ρη (β)}
W∪ = {ν∪ : there is t ∈ ω s.t. (ω ⊕ t, ν∪) ∈ ρη (α ∪ β)} = Wα ∪Wβ

We make a distinction between the sets Wα and W (ωα) from (ω, ωα) ∈ ρη (La(α)) because
the latter does not exist if La(α) has no transitions.

Global soundness [LB∪]. Let ω be an arbitrary PD-model.
We must show that valη (ω, [La(α ∪ β)]Ba (ξ)). We will split the proof into multiple claims

that cover all possible cases.
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Claim 1: If there are no transitions (ω, να) ∈ ρη (α) or (ω, νβ) ∈ ρη (β), the rule is sound.

If there are no such transitions, then there can be no transition (ω, ω∪) ∈ ρη (La(α ∪ β)), and
therefore the rule is trivially satisfied.

Claim 2: If there are transitions (ω, να) ∈ ρη (α) and (ω, νβ) ∈ ρη (β), the rule is sound.

If there is a transition (ω, να) ∈ ρη (α), then there must be (ω, ωα) ∈ ρη (La(α)). Therefore,
W (ωα) = Wα and W (ωα) ⊆ W (ω∪).

By the left conjunct of the hypothesis, valη (ωα, Ba (ξ)), and so for every να ∈ ωα, we have
valη (ωα ⊕ να, ξ). Using the same argument, W (ωβ) ⊆ W (ω∪) and so for every νβ ∈ ωβ ,
valη (ωα ⊕ να, ξ).

However, W (ω∪) = W (ωα) ∪ W (ωβ), and therefore for every ν∪ ∈ ω∪, valη (ω∪ ⊕ ν∪, ξ).
Thus, valη (ω∪, Ba (ξ)). This is exactly the statement for the conclusion of the proof rule.

The specific nondeterministic choice of the distinguished world for ω∪ is irrelevant sinceBa (ξ)
effectively overwrites it with every world of ω∪.

Claim 3: If there is only one of the following two transitions, (ω, να) ∈ ρη (α) and (ω, νβ) ∈
ρη (β), the rule is sound.

Without loss of generality, let (ω, να) ∈ ρη (α) but not (ω, νβ) ∈ ρη (β).
If Wβ = ∅, then β contributes no worlds to W (ω∪), thus W∪ = Wα. Because (ω, να) ∈ ρη (α),

then there is a transition (ω, ωα) ∈ ρη (La(α)), and ω∪ = ωα. Thus, the program in the conclusion
of the rule is reduced to the program in the left conjunct of the hypothesis, [La(α)]Ba (ξ), and the
rule is sound.

However, it is possible that Wβ 6= ∅. If there is no transition (ω, ωβ) ∈ ρη (La(β)), that only
means the distinguished world failed to transition using β. There may be other worlds t ∈ ω such
that (ω ⊕ t, νβ) ∈ ρη (β), and thus νβ ∈ ω∪. Thus, W (ω∪) = W (ωα) ∪Wβ .

Claim 2 already shows that for all να ∈ ωα, valη (ω∪ ⊕ να, ξ). Unfortunately, we cannot use
the hypothesis to show the same for νβ ∈ ωβ , since [La(β)]Ba (ξ) is trivially satisfied due to there
being no transitions for La(β).

Global soundness helps here. We will construct a PD-model that is semantically equivalent to
ω, whose choice of distinguished world allows a transition, and thus the hypothesis to be applied.
Because we are picking a new distinguished world, we must lose any information which we had
from the previous choice, i.e. we must remove the formulas in ΓO.

SinceWβ 6= ∅, let µ ∈ Wβ be one of those worlds which transitioned, and let u = DW(µ). Now
consider the PD-model ωµ = ω ⊕ u, which is equivalent to ω except we now know (ω ⊕ u, µ) ∈
ρη (β). Therefore, there is now (ωµ, ωβ) ∈ ρη (La(β)). To apply the hypothesis, we can no longer
satisfy ΓO because u 6= DW(ω), which is why it is no present in the antecedent of the premise’s
sequent. We may thus conclude that for all νβ ∈ ωβ , valη (ω∪ ⊕ νβ, ξ).

Thus, since for all να ∈ ωα, valη (ω∪ ⊕ να, ξ), νβ ∈ ωβ , valη (ω∪ ⊕ νβ, ξ), and W (ω∪) =
W (ωα) ∪W (ωβ), then for all ν∪ ∈ ω∪, valη (ω∪ ⊕ ν∪, ξ).
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Therefore, valη (ω∪, Ba (ξ)).

B.5 Doxastic assignment
The proof rules for doxastic assignment are sound, and are based on syntactic substitution. They
follow directly from admissibility and the substitution lemmas proved in Appendix C below.

C Substitution Lemma
The substitution lemma means that the learned doxastic assignment proof rules are sound rather
directly.

C.1 Admissibility
Definition 12 (Substitution). A substitution is a function σ from

• state variables into terms that do not contain doxastic variables, e.g. σ (x) = θ, where θ
does not contain doxastic variables, and

• doxastic variables to any term, σ (xa) = θ.

Furthermore, substitutions can be lifted to formulas and PD-models:

• σ (φ) = ψ, where ψ concurs with ψ except every occurrence of substituted variable x has
been replaced with σ (x).

• σ (〈r,W, V, s〉) = 〈r,W, σ (V ), s〉, with σ (V )(t)(xa) = valη (ω ⊕ t, σ (xa)) for substituted
variables xa, and σ (V )(t)(ya) = ω(t)(ya) for unsubstituted variables ya.

Definition 13 (Admissibility). A substitution σ (x) = θ of state, logical or doxastic variable x is
admissible for formula φ if no occurrence of x in φ appears within the scope of a binding quantifier
or modality and no variable in the expression θ becomes bounded.

Thus far, the definition does not differ from what we find in dL, though now we must address
doxastic variables. Intuitively, the learning operator works on doxastic state, and therefore it will
bind doxastic instead of physical variables.

Definition 14 (Bound variables). The following constructs bind variables.

• Quantifiers ∀X and ∃X bind logical variable X .

• x := θ and x′ = f(x) bind state variable x.

• xa := θ, inside or outside a learning operator, binds doxastic variable xa.

• ?φ inside a learning operator binds any doxastic variable that appears within φ.
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C.2 Proofs of substitution lemmas
Substitutions lemmas allow us to handle assignment as syntactic substitution, e.g. replacing
[x := θ]φ(x) with φ(θ) during a sequent proof. In this, they serve to eliminate dynamic modalities
and bring us closer to a pure first-order logic formula which can be addressed with quantifier-
elimination procedures.

The first lemma is directly copied from dL.

Lemma 2 (Substitution Lemma). Let σ be an admissible substitution for the formula φ, and let σ
replace only logical or state variables. Then, for each η and ω = 〈r,W, V, s〉

valη (ω, σ (φ)) = valσ(η) (〈σ (r),W, V, s〉, φ)

where σ (η) concurs with η except σ (η)(X) = valη (ω, σ (X)) for substituted variable logical
X and σ (r) concurs with r except σ (r)(x) = valη (ω, σ (x)) for substituted state variable x.

The lemma of interest to us is, in some sense, an application of the above at each possible world
t ∈ ω.

Lemma 3 (Doxastic Substitution Lemma). Let φ be a formula. Let σ be an admissible substitution
for φ which replaces only doxastic variable xa. Then, for every η and ω = 〈r,W, V, s〉,

valη (ω, σ (φ)) = valη (σ (ω), φ)

where σ (ω) = 〈r,W, σ (V ), s〉, and for all t ∈ ω

1. σ (V )(t)(xa) = valη (ω ⊕ t, σ (xa))

2. σ (V )(t)(ya) = V (t)(ya) = ω(t)(ya)

Thus, the substituted valuation σ (V ) only alters the interpretation of the substituted variable
xa, leaving every other interpretation unchanged. Using our shortcut notation, we may rewrite
these two conditions more simply as, for all t ∈ ω,

1. σ (ω)(t)(xa) = valη (ω ⊕ t, σ (xa))

2. σ (ω)(t)(ya) = ω(t)(ya)

This lemma will be proven by structural induction on φ, meaning that we will need the lemma
for terms, formulas and programs.

Lemma 4. Let θ be a term. Let σ be an admissible substitution for φ which replaces only one
doxastic variable, xa. Then, for every η, and ω = 〈r,W, V, s〉,

valη (ω, σ (θ)) = valη (σ (ω), θ)

Proof. By structural induction on θ.
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• x: valη (ω, σ (x)) = valη (ω, x) = R(ω) (x) = R(σ (ω)) (x) = valη (σ (ω), x)

• X: valη (ω, σ (X)) = valη (ω,X) = η(X) = valη (σ (ω), X)

• xa: valη (ω, σ (xa)) = valη (ω ⊕ s, σ (xa)), which, by Lemma 3’s hypothesis 1) applied with
t = s, means valη (ω ⊕ s, σ (xa)) = σ (ω)(s)(xa) = valη (σ (ω), xa)

• ya 6= xa: valη (ω, σ (ya)) = valη (ω, ya) = ω(s)(ya), which, by Lemma 3’s hypothesis 2),
ω(s)(ya) = σ (ω)(s)(ya) = valη (σ (ω), ya)

• θ1⊕θ2: valη (ω, σ (θ1 ⊕ θ2)) = valη (ω, σ (θ1)⊕ σ (θ2)) = valη (ω, σ (θ1))⊕valη (ω, σ (θ2))
which, by induction hypothesis, valη (σ (ω), θ1)⊕ valη (σ (ω), θ2) = valη (σ (ω), θ1 ⊕ θ2)

Proposition 2. Let Ω be the set of PD-models and σ be a substitution. Now let σ (Ω) = {σ (ω) :
ω ∈ Ω}. Then, σ (Ω) ⊆ Ω.

Lemma 5. Let φ be a formula. Let σ be an admissible substitution for φ which replaces only
doxastic variables. Then, for every η, and ω = 〈r,W, V, s〉,

valη (ω, σ (φ)) = valη (σ (ω), φ)

Proof. By structural induction on φ.

• θ1 < θ2. For propositions,

valη (ω, σ (θ1 < θ2)) = valη (ω, σ (θ1) < σ (θ2))

= valη (ω, σ (θ1)) < valη (ω, σ (θ2))

lem.4
= valη (σ (ω), θ1) < valη (σ (ω), θ2)

= valη (σ (ω), θ1 < θ2)

• ¬φ. For negation,

valη (ω, σ (¬φ)) = valη (ω,¬σ (φ)) = 1− valη (ω, σ (φ))
IH
=

IH
= 1− valη (σ (ω), φ)) = valη (σ (ω),¬φ))

• φ1 ∧ φ2. For conjunction,

valη (ω, σ (φ1 ∧ φ2)) = valη (ω, σ (φ1) ∧ σ (φ2)) = min(valη (ω, σ (φ1)) , valη (ω, σ (φ2)))
IH
=

min(valη (σ (ω), φ1)), valη (σ (ω), φ2))) = valη (σ (ω), φ1 ∧ φ2))

• ∀X.φ. For logical quantifiers, valη (ω, σ (∀X.φ)) = valη (ω,∀X.σ (φ)).

Now, valη (ω,∀X.σ (φ)) iff for all v ∈ R, valη[X 7→v] (ω, σ (φ)). We apply the induction
hypothesis for each variable assignment η[X 7→ v]. We may do this because the variable
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assignment is universally quantified in the statement of Lemma 5. Thus, for all v ∈ R,
valη[X 7→v]

(
ση[X 7→v](ω), φ

)
, where ση[X 7→v](ω)(t)(xa) = valη[X 7→v] (ω, σ (xa)).

Notice that the application of the induction hypothesis results in a different substitution
ση[X 7→v](ω) for each v ∈ R, which means we cannot reintroduce the quantifier ∀X .

Crucially, however, because the substitution is admissible, X cannot occur in σ (xa), and
its interpretation is independent of the variable assignment of X . Thus, for each v ∈ R,
valη[X 7→v] (ω, σ (xa)) = valη (ω, σ (xa)), and thus ση[X 7→v](ω)(t)(xa) = σ (ω)(t)(xa) for all
t ∈ ω. More generally and succinctly, ση[X 7→v](ω) = σ (ω). We find, then, that for all v ∈ R,
valη[X 7→v]

(
ση[X 7→v](ω), φ

)
is equivalent to for all v ∈ R, valη[X 7→v] (σ (ω), φ), from which we

may directly conclude valη (σ (ω), ∀X.φ).

• B (φ). For the doxastic belief modality,
valη (ω, σ (B (φ))) = valη (ω,B (σ (φ))) iff
for all t ∈ ω, valη (ω ⊕ t, σ (φ)) iff, by induction hypothesis on each ω ⊕ t,
for all t ∈ ω, valη (σ (ω ⊕ t), φ) iff
for all t ∈ ω, valη (σ (ω)⊕ t, φ) iff
valη (σ (ω), B (φ)).

• [α]φ. For the dynamic box modality, we must show valη (ω, σ ([α]φ)) iff valη (σ (ω), [α]φ).

⇒ direction

We must prove valη (σ (ω), [α]φ), for which it suffices to show that:

for all ν, if (σ (ω), ν) ∈ ρη (α), then valη (ν, φ)

Thus, let ν be any PD-model such that (σ (ω), ν) ∈ ρη (α). We must show valη (ν, φ).

By Lemma 6.2, there is ω′ such that (ω, ω′) ∈ ρη (σ (α)) and ν = σ (ω′). It thus suffices to
show that valη (σ (ω′), φ) to conclude the proof.

By the hypothesis valη (ω, σ ([α]φ)), for all ω′′, if (ω, ω′′) ∈ ρη (σ (α)), then valη (ω′′, σ (φ)).
By taking ω′′ = ω′, we obtain valη (ω′, σ (φ)).

By Lemma 5, we conclude valη (σ (ω′), φ).

⇐ direction

We must prove valη (ω, [σ (α)]σ (φ)), for which it suffices to show that:

for all ω′, if (ω, ω′) ∈ ρη (σ (α)), then valη (ω′, σ (φ))
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Thus, let ω′ ∈ Ω be an arbitrary PD-model such that (ω, ω′) ∈ ρη (σ (α)). We must show
valη (ω′, σ (φ)).

By Lemma 6.1, (σ (ω), σ (ω′)) ∈ ρη (α). By hypothesis, valη (σ (ω), [α]φ), and thus, for all
ν, if (σ (ω), ν) ∈ ρη (α) then valη (ν, φ). Choosing ν = σ (ω′), we get valη (σ (ω′), φ), to
which we may apply Lemma 5 to obtain valη (ω′, σ (φ)).

Lemma 6. Let γ be a program. Let σ be an admissible substitution for α which replaces only
doxastic variable xa. Then, for every η, ω,

1. If (ω, ω′) ∈ ρη (σ (α)) then (σ (ω), σ (ω′)) ∈ ρη (α)

2. If (σ (ω), ν) ∈ ρη (α) then there is ω′ such that (ω, ω′) ∈ ρη (σ (α)) and ν = σ (ω′)

Proof. By structural induction on α.

• y := θ.

⇒ direction.

Let (ω, ω′) ∈ ρη (y := σ (θ)). We will apply the substitution to ω and ω′, and show that σ (ω)
and σ (ω′) conforms to the behavior of the program y := θ, i.e. (σ (ω), σ (ω′)) ∈ ρη (y := θ).

All unassigned physical variables are unchanged:
By the semantics of assignment, ω′ = ω except ω′(y) = valη (ω, σ (θ)). Thus, for all z 6= y,
ω′(z) = ω(z). Because doxastic substitution does not affect physical variables,

σ (ω′)(z) = σ (ω)(z)

The variable y changes according to assignment:
We must show valη (σ (ω′), y) = valη (σ (ω), θ).

The substitution σ does not affect physical variables, so valη (σ (ω′), y) = valη (ω′, y). By
the definition of assignment, valη (ω′, y) = valη (ω, σ (θ)). Because doxastic variables can-
not show up in regular assignment, and the substitution only affects doxastic variables,
valη (ω, σ (θ)) = valη (ω, θ) = valη (σ (ω), θ). Thus,

valη (σ (ω′), y) = valη (σ (ω), θ)

All unsubstituted doxastic variables are unchanged:

By the semantics of assignment, for all doxastic variables za and all t ∈ ω, ω′(t)(za) =
ω(t)(za). For all unsubstituted doxastic variables za 6= xa, and t ∈ ω,

σ (ω′)(t)(za) = σ (ω)(t)(za)
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The substituted variable is unchanged:

Assignment does not change the number of possible worlds, and therefore in the following,
t ∈ ω and t ∈ ω′ are interchangeable statements.

Because the substitution σ is admissible for the assignment, σ (xa) cannot contain occur-
rences of the bound variable y. This is the only change from ω to ω′. Therefore, for all
t ∈ ω, valη (ω′ ⊕ t, σ (xa)) = valη (ω ⊕ t, σ (xa)).

But then, by the definition of substitution, σ (ω) = ω and σ (ω′) = ω′, except for all t ∈ ω,
σ (ω)(t)(xa) = valη (ω ⊕ t, σ (xa)), and σ (ω′)(t)(xa) = valη (ω′ ⊕ t, σ (xa)).

This, along with valη (ω′ ⊕ t, σ (xa)) = valη (ω ⊕ t, σ (xa)), means that for all t ∈ ω,

σ (ω′)(t)(xa) = σ (ω)(t)(xa)

Conclusion
We have shown that σ (ω′) and σ (ω) concur in everything except the differences explained
precisely by the assignment y := θ. As such, (σ (ω), σ (ω′)) ∈ ρη (α).

⇐ direction.

Since the program y := σ (θ) is deterministic, we can choose ω′ as the unique PD-model such
that (ω, ω′) ∈ ρη (y := σ (θ)). We are then in the exact same situation as the ⇒ direction,
for which we already have a proof.

• ?φ.

⇒ direction.

Assume (ω, ω′) ∈ ρη (?σ (φ)). By the semantics of test, this is equivalent to (ω, ω) ∈
ρη (?σ (φ)), which is true iff valη (ω, σ (φ)). By Lemma 5, it is true iff valη (σ (ω), φ), which,
again by the semantics of test, is true iff (σ (ω), σ (ω)) ∈ ρη (?φ).

⇐ direction.

Same as previous case, by taking ω′ = ω, and thus ν = σ (ω).

• α ∪ β.

⇒ direction.

Assume (ω, ω′) ∈ ρη (σ (α) ∪ σ (β)). Then, (ω, ω′) ∈ ρη (σ (α)) or (ω, ω′) ∈ ρη (σ (β)).
Without loss of generality, assume the former. By induction hypothesis, (σ (ω), σ (ω′)) ∈
ρη (α), and therefore, (σ (ω), σ (ω′)) ∈ ρη (α ∪ β).

28



⇐ direction.

Assume (σ (ω), ν) ∈ ρη (α ∪ β). Without loss of generality, assume (σ (ω), ν) ∈ ρη (α). By
induction hypothesis, there is ω′ such that ν = σ (ω′) and (ω, ω′) ∈ ρη (σ (α)). Therefore,
(ω, ω′) ∈ ρη (σ (α) ∪ σ (β)).

• α; β.

⇒ direction.

Assume (ω, ω′′) ∈ ρη (σ (α);σ (β)). Then, there is ω′ such that (ω, ω′) ∈ ρη (σ (α)) and
(ω′, ω′′) ∈ ρη (σ (β)). By induction hypothesis, (σ (ω), σ (ω′)) ∈ ρη (α). Because the
statement of this theorem quantifies over all PD-models, we can again use the induction
hypothesis to obtain (σ (ω′), σ (ω′′)) ∈ ρη (β). Thus, (σ (ω), σ (ω′′)) ∈ ρη (α; β).

⇐ direction.

Assume (σ (ω), ν ′) ∈ ρη (α; β). Then, there is ν such that (σ (ω), ν) ∈ ρη (α) and (ν, ν ′) ∈
ρη (β). By induction hypothesis, there is ω′ such that ν = σ (ω′) and (ω, ω′) ∈ ρη (σ (α)).

Since ν = σ (ω′), then (ν, ν ′) ∈ ρη (β) is equivalent to (σ (ω′), ν ′) ∈ ρη (β). We may
therefore apply the induction hypothesis to ascertain that there is ω′′ such that ν ′ = σ (ω′′)
and (ω′, ω′′) ∈ ρη (σ (β)).

From (ω, ω′) ∈ ρη (σ (α)) and (ω′, ω′′) ∈ ρη (σ (β)) we conclude (ω, ω′′) ∈ ρη (σ (α);σ (β)).

• α∗

⇒ direction.

Assume (ω, ω′) ∈ ρη (σ (α)∗). Then, there is i ≥ 0, (ω, ω′) ∈ ρη
(
σ (α)i

)
, with αi being α

sequentially composed i times, α; ...;α. We start with the base cases.

When i = 0. Then α0 =?True. (ω, ω′) ∈ ρη (σ (?True)) iff (ω, ω) ∈ ρη (?True) iff
(σ (ω), σ (ω)) ∈ ρη (?True).

When i = 1. Then α1 = α. Assume (ω, ω′) ∈ ρη (σ (α)). By structural induction hypothe-
sis, (σ (ω), σ (ω′)) ∈ ρη (α).

When i > 1, let ω0 = ω and ωi = ω′, and assume (ω0, ωi) ∈ ρη

(
σ (α)i

)
. Then, by the

definition of sequential composition, there are ωj with 0 ≤ j < i such that (ωj, ωj+1) ∈
ρη (σ (α)). Applying the induction hypothesis for all 0 ≤ j < i, then (σ (ωj), σ (ωj+1)) ∈
ρη (α), and thus, (σ (ω0), σ (ωi)) ∈ ρη (αi).

⇐ direction.
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Assume (σ (ω), ν) ∈ ρη (α∗). Then, there is i ≥ 0, (σ (ω), ν) ∈ ρη (αi), with αi being α
sequentially composed i times, α; ...;α. We start with the base cases.

When i = 0. Then α0 =?True. (σ (ω), ν) ∈ ρη (?True) iff ν = σ (ω) and (σ (ω), σ (ω)) ∈
ρη (?True) iff (ω, ω) ∈ ρη (?True) iff (ω, ω) ∈ ρη (σ (?True)).

When i = 1. Then α1 = α. Assume (σ (ω), ν) ∈ ρη (α). By structural induction hypothesis,
there is ω′ such that ν = σ (ω′) and (ω, ω′) ∈ ρη (σ (α)).

When i > 1, let ω0 = ω and νi = ν, and assume (σ (ω0), νi) ∈ ρη (αi). Then, there for all
1 ≤ j < i there are νj such that (νj, νj+1) ∈ ρη (αi), and also (σ (ω0), ν1) ∈ ρη (α).

Now, for j = 0, 1, ..., i − 1, in this order, we make the following argument. We know
(σ (ωj), νj+1) ∈ ρη (α). By structural induction hypothesis, there is ωj+1 such that νj+1 =
σ (ωj+1), and (ωj, ωj+1) ∈ ρη (σ (α)). But since νj+1 = σ (ωj+1), then (σ (ωj + 1), νj+2) ∈
ρη (α), so that we may apply this argument again. Finally, in the last step, (ωi−1, ωi) ∈
ρη (σ (α)) with ν = νi = σ (ωi). Then, there is indeed ω′ = ωi such that ν = σ (ω′), and

(ω, ω′) ∈ ρη
(
σ (α)i

)
.

• La(γ)

By Lemma 7.

As a reminder, the semantics of learning are as follows. (ω, ω′) ∈ ρη (L (γ)) iff all of the
following:

1. r′ = r

2. W ′ = {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (γ)}

3. ω′(ν) = DV(ν) for all ν ∈ ω′

4. DW(DW(ω′)) = DW(ω)

Proposition 3. If (ω ⊕ t, ν) ∈ ρη (γ), then DW(ν) = t.

Lemma 7. Let γ be a program. Let σ be an admissible substitution for La(γ) which replaces only
doxastic variable xa. Then, for every η, ω,

1. If (ω, ω′) ∈ ρη (La(σ (γ))) then (σ (ω), σ (ω′)) ∈ ρη (La(γ))

2. If (σ (ω), ν) ∈ ρη (La(γ)) then there is ω′ such that (ω, ω′) ∈ ρη (La(σ (γ))) and ν = σ (ω′)

Proof. By structural induction on γ. Many of the following cases are proven by analyzing the
effect of the substitution on the PD-models ω and ω′ from the transition (ω, ω′) ∈ ρη (σ (γ)), i.e.
by analyzing σ (ω) and σ (ω′). Then, the proof checks that those substituted PD-models satisfy the
transition for γ, i.e. (σ (ω), σ (ω′)) ∈ ρη (γ).
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• ya := θ.

⇒ direction

(ω, ω′) ∈ ρη (La(ya := σ (θ))) then (σ (ω), σ (ω′)) ∈ ρη (La(ya := θ))

Let (ω, ω′) ∈ ρη (La(ya := σ (θ))). We must show (σ (ω), σ (ω′)) ∈ ρη (La(ya := θ)).

We begin by analyzing the component parts of ω′ using the semantics of the learning opera-
tor.

– R(ω′) = R(ω)

– W (ω′) = {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (ya := σ (θ))}
– DW(DW(ω′)) = DW(ω)

We will look at V (ω′) in terms of xa, the substituted variable; ya, the assigned variable; and
of za, any other variable distinct from xa and ya. By the admissibility of substitution and
because the assignment binds ya, xa 6= ya.

By the semantics of learned assignment, for all ν ∈ ω′, let t = DW(ν), and

ω′(ν)(xa) = ω(t)(xa) (4)
ω′(ν)(ya) = valη (ω ⊕ t, σ (θ)) (5)
ω′(ν)(za) = ω(t)(za) (6)

We may now apply the substitution σ to ω and ω′. Since it only affects V (ω) and V (ω′)
respectively, this is our focus.

For all t ∈ ω,

σ (ω)(t)(xa) = valη (ω ⊕ t, σ (xa)) (7)
σ (ω)(t)(ya) = ω(t)(ya)

σ (ω)(t)(za) = ω(t)(za) (8)

For all ν ∈ ω′,

σ (ω′)(ν)(xa) = valη (ω′ ⊕ ν, σ (xa))

σ (ω′)(ν)(ya) = ω′(ν)(ya) (9)
σ (ω′)(ν)(za) = ω′(ν)(za) (10)

We must now show that (σ (ω), σ (ω′)) ∈ ρη (La(ya := θ)).

We note immediately that R(σ (ω′)) = R(ω′) = R(ω) = R(σ (ω)), and, with a similar
argument, W (σ (ω′)) = W (σ (ω)) and DW(σ (ω′)) = DW(σ (ω)).

To satisfy the semantics of learned assignment, all that is left is to show that, for all ν ∈
σ (ω′), with t = DW(ν),
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i σ (ω′)(ν)(xa) = σ (ω)(t)(xa)

By the definition of substitution, σ (ω′)(ν)(xa) = valη (ω′ ⊕ ν, σ (xa)). By the admis-
sibility condition that one may not substitute in a bound variable, then ya cannot occur
in σ (xa). But, by (4)-(6), this is the only difference between ω′ and ω.

Therefore, σ (ω′)(ν)(xa) = valη (ω′ ⊕ ν, σ (xa)) = valη (ω ⊕ t, σ (xa))
(7)
= σ (ω)(t)(xa).

ii σ (ω′)(ν)(ya) = valη (σ (ω)⊕ t, θ)

As follows: σ (ω′)(ν)(ya)
(9)
= ω′(ν)(ya)

(5)
= valη (ω ⊕ t, σ (θ))

Lem.4
= valη (σ (ω ⊕ t), θ) =

valη (σ (ω)⊕ t, θ)
iii σ (ω′)(ν)(za) = σ (ω)(t)(za)

As follows: σ (ω′)(ν)(za)
(10)
= ω′(ν)(za)

(6)
= ω(t)(za)

(8)
= σ (ω′)(ν)(za)

⇐ direction

If (σ (ω), ν) ∈ ρη (La(ya := θ)) then there is ω′ such that (ω, ω′) ∈ ρη (La(ya := σ (θ))) and
ν = σ (ω′)

It is not hard to see from the definition of the learning operator and of doxastic assignment
that the program La(ya := σ (θ)) is deterministic. Therefore, we may choose ω′ exactly as
in the ⇒ direction, and all of the equalities established for that directions apply here too,
concluding the proof.

• ?ψ.

⇒ direction

(ω, ω′) ∈ ρη (La(?σ (ψ))) then (σ (ω), σ (ω′)) ∈ ρη (La(?ψ))

Let (ω, ω′) ∈ ρη (La(?σ (ψ))).

We begin by analyzing the component parts of ω′ using the semantics of the learning opera-
tor.

– R(ω′) = R(ω)

– W (ω′) = {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (?σ (ψ))}
– DW(DW(ω′)) = DW(ω)

Furthermore, according to the semantics of learned test, no variables change value. Thus, for
all ν ∈ ω′ with t = DW(ν), and any doxastic variable ya, including the substituted variable
xa,

ω′(ν)(ya) = ω(t)(ya) (11)
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Let us now apply the substitution σ to ω and ω′. Since it only affects V (ω) and V (ω′) respec-
tively, this is our focus. As usual xa is the substituted variable, and ya is any unsubstituted
variable, whether it shows up in ψ or not.

For all t ∈ ω,

σ (ω)(t)(xa) = valη (ω ⊕ t, σ (xa))

σ (ω)(t)(ya) = ω(t)(ya) (12)

For all ν ∈ ω′,

σ (ω′)(ν)(xa) = valη (ω′ ⊕ ν, σ (xa))

σ (ω′)(ν)(ya) = ω′(ν)(ya) (13)

To show that (σ (ω), σ (ω′)) ∈ ρη (La(?ψ)), by the semantics of learned test, it suffices to
show that:

1. W (σ (ω′)) = {ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (?ψ)}
By the definition of substitution, we know

W (σ (ω′)) = W (ω′)

W (σ (ω)) = W (ω) (14)

Thus,

W (σ (ω′)) = W (ω′)

= {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (?σ (ψ))}
(14)
= {ν : there is t ∈ σ (ω) s.t. (ω ⊕ t, ν) ∈ ρη (?σ (ψ))}
= {ν : there is t ∈ σ (ω) s.t. ν = ω ⊕ t and valη (ω ⊕ t, σ (ψ))}
Lem.5

= {ν : there is t ∈ σ (ω) s.t. ν = ω ⊕ t and valη (σ (ω)⊕ t, ψ)}
= {ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (?ψ)}

2. For substituted variable xa, and all ν ∈ σ (ω′) with t = DW(ω′)

σ (ω′)(ν)(xa) = σ (ω)(t)(xa)

By the definition of substitution,

(a) σ (ω′)(ν)(xa) = valη (ω′ ⊕ ν, σ (xa))

(b) σ (ω)(t)(xa) = valη (ω ⊕ t, σ (xa))

But, by (11), DV(ω′ ⊕ ν) = DV(ω ⊕ t), and we know R(ω′ ⊕ ν) = R(ω ⊕ t). It follows
that

valη (ω′ ⊕ ν, σ (xa)) = valη (ω ⊕ t, σ (xa))

and thus
σ (ω′)(ν)(xa) = σ (ω)(t)(xa)
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3. For any unsubstituted variable ya, and all ν ∈ σ (ω′) with t = DW(ω′),

σ (ω′)(ν)(ya) = σ (ω)(t)(ya)

By the following equalities: σ (ω′)(ν)(ya)
(13)
= ω′(ν)(ya)

(11)
= ω(t)(ya)

(12)
= σ (ω)(t)(ya)

⇐ direction

If (σ (ω), ν) ∈ ρη (La(?ψ)) then there is ω′ such that (ω, ω′) ∈ ρη (La(?σ (ψ))) and
ν = σ (ω′)

Learned test is deterministic. Like the case for assignment, it is sufficient to let ν be defined
as σ (ω′), where ω′ is the unique transition of La(?σ (ψ)).

However, it is possible that a learned test does not transition at all if the distinguished world
does not pass the test, i.e. if valη (ω, σ (ψ)) = 0. Thus, while we may assume, by hypothesis,
that (σ (ω), ν) ∈ ρη (La(?ψ)), we must ensure that (ω, ω′) ∈ ρη (La(?σ (ψ))).

Since (σ (ω), ν) ∈ ρη (La(?ψ)), then the distinguished world passes the test ?ψ, that is,
valη (σ (ω), ψ). By Lemma 5, valη (ω, σ (ψ)). Thus, there is also some transition (ω, ω′) ∈
ρη (La(?σ (ψ))), which, learned test being deterministic, is exactly the same as for the ⇒
direction.

• γ1 ∪ γ2.

⇒ direction

If (ω, ω′) ∈ ρη (La(σ (γ1) ∪ σ (γ2))) then (σ (ω), σ (ω′)) ∈ ρη (La(γ1 ∪ γ2))

Let (ω, ω′) ∈ ρη (La(σ (γ1) ∪ σ (γ2))). By the semantics of the learning operator,

W (ω′) = {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (σ (γ1) ∪ σ (γ2))}
= {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (σ (γ1)) or (ω ⊕ t, ν) ∈ ρη (σ (γ2))}
= {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (σ (γ1))} ∪
{ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (σ (γ2))} (15)

ω′(ν) = DV(ν) for all ν ∈ ω′ (16)
DW(DW(ω′)) = DW(ω) (17)

By applying the substitution to ω′,

W (σ (ω′)) = W (ω′) (18)
DW(DW(σ (ω′))) = DW(ω′)

σ (ω′)(ν)(xa) = valη (ω′ ⊕ ν, σ (x)) for substituted variable xa (19)
σ (ω′)(ν)(ya) = ω′(ν)(ya) for unsubstituted variable ya (20)
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We must show that σ (ω) and σ (ω′) conform to the transition relation as expected, i.e.
(σ (ω), σ (ω′)) ∈ ρη (La(γ1 ∪ γ2)). To do this, we will apply the induction hypothesis to
transitions for La(γ1) and La(γ2). Some of these transitions may not exist due to the distin-
guished world not passing some test in γ1 or γ2. However, the programs may still contribute
possible worlds in (σ (ω), σ (ω′)) ∈ ρη (La(γ1 ∪ γ2)). We dealt with this issue in the sound-
ness proof in Appendix B.4, and use the same method here: we may pick a distinguished
world that does not fail to transition with the subprograms γ1 and γ2 in order to obtain the
desired properties for all possible worlds.

Let (ω, ω′1) ∈ ρη (La(σ (γ1))). Then,

W (ω′1) = {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (σ (γ1))} (21)
ω′1(ν) = DV(ν) for all ν ∈ ω′1

DW(DW(ω′1)) = DW(ω)

By applying the substitution σ to ω′1,

W (σ (ω′1)) = W (ω′1) (22)
σ (ω′1)(ν)(xa) = valη (ω′1 ⊕ ν, σ (x)) for substituted variable xa (23)
σ (ω′1)(ν)(ya) = ω′1(ν)(ya) for unsubstituted variable ya

By induction hypothesis, (σ (ω), σ (ω′1)) ∈ ρη (La(γ1)), with

W (σ (ω′1)) = {ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (γ1)} (24)
σ (ω′1)(ν) = DV(ν) (25)

We may conclude the equivalent results for (σ (ω), σ (ω′2)) ∈ ρη (La(γ2)).

To prove (σ (ω), σ (ω′)) ∈ ρη (La(γ1 ∪ γ2)), we must show all of the following:

1. W (σ (ω′)) = {ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (γ1 ∪ γ2)}
We use following reasoning:

W (σ (ω′))
(18)
= W (ω′)

(15)
= {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (σ (γ1))} ∪
{ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (σ (γ2))}

(21)
= W (ω′1) ∪W (ω′2)

(22)
= W (σ (ω′1)) ∪W (σ (ω′2))

(24)
= {ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (γ1)} ∪
{ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (γ2)}

= {ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (γ1 ∪ γ2)}
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2. σ (ω′)(ν) = DV(ν) for all ν ∈ σ (ω′)

We will need to analyze the behavior of both the substituted variable xa, and unsubsti-
tuted variables ya. Let ν ∈ σ (ω′). Then, ν ∈ σ (ω′1) or ν ∈ σ (ω′2). Without loss of
generality, let us assume ν ∈ σ (ω′1).
For the substituted variable xa,

σ (ω′)(ν)(xa)
(19)
= valη (ω′ ⊕ ν, σ (x))

(∗)
= valη (ω′1 ⊕ ν, σ (x))
(23)
= σ (ω′1)(ν)(xa)

(25)
= DV(ν) (xa)

The (*) equality is valid because σ (xa) is a term, and terms are interpreted only over
the distinguished valuation and the ontic state, which are the same in both PD-models:
DV(ω′1 ⊕ ν) = DV(ω′ ⊕ ν) = DV(ν), and R(ω′1 ⊕ ν) = R(ω′ ⊕ ν) since learning can
never affect ontic state.
For the unsubstituted variables ya,

σ (ω′)(ν)(ya)
(20)
= ω′(ν)(ya)

(16)
= DV(ν) (ya)

3. DW(DW(σ (ω′))) = DW(σ (ω))

This is trivial since distinguished worlds are not affected by substitution, and therefore
DW(DW(σ (ω′))) = DW(DW(ω′))

(17)
= DW(ω) = DW(σ (ω)).

⇐ direction

If (σ (ω), ν) ∈ ρη (La(γ1 ∪ γ2)) then there is ω′ such that (ω, ω′) ∈ ρη (La(σ (γ1) ∪ σ (γ2)))
and ν = σ (ω′).

Let (σ (ω), µ) ∈ ρη (La(γ1 ∪ γ2)).

The proof is going to follow similar steps to the⇒ direction.

W (µ) = {ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (γ1 ∪ γ2)}
= {ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (γ1)} ∪
{ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (γ2)} (26)

µ(ν) = DV(ν)

DW(DW(µ)) = DW(σ (ω)) (27)
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Now let (σ (ω), µ1) ∈ ρη (La(γ1)) (we may use the same trick of picking a helpful distin-
guished for σ (ω) to ensure there is a transition). Then,

W (µ1) = {ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (γ1)} (28)
µ1(ν) = DV(ν)

DW(DW(µ1)) = DW(σ (ω)) (29)

By induction hypothesis, there is ω′1 such that (ω, ω′1) ∈ ρη (La(σ (γ1))) and µ1 = σ (ω′1).
Thus,

W (ω′1) = {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (σ (γ1))}
ω′1(ν) = DV(ν) (30)

DW(DW(ω′1)) = DW(ω) (31)

And, by applying the substitution,

W (µ1) = W (σ (ω′1)) = W (ω′1) (32)
µ1(ν)(xa) = σ (ω′1)(ν)(xa) = valη (ω′1 ⊕ ν, σ (xa)) (33)
µ1(ν)(ya) = σ (ω′1)(ν)(ya) = ω′1(ν)(ya) (34)

DW(µ1) = DW(σ (ω′1)) = DW(ω′1) (35)

Similar results can be obtained for (σ (ω), µ2) ∈ ρη (La(γ2)).

We must now show that there is ω′ such that (ω, ω′) ∈ ρη (La(σ (γ1) ∪ σ (γ2))) and µ =
σ (ω′).

Let ω′ be as follows:

W (ω′) = W (ω′1) ∪W (ω′2) (36)
ω′(ν) = DV(ν) (37)

DW(DW(ω′)) = DW(ω) (38)

and thus, by applying the substitution to ω′,

W (σ (ω′)) = W (ω′)

σ (ω′)(ν)(xa) = valη (ω′ ⊕ ν, σ (xa))

σ (ω′)(ν)(ya) = ω′(ν)(ya) (39)
DW(σ (ω′)) = DW(ω′) (40)

Since this choice of ω′ is precisely the one which conforms to the transition (ω, ω′) ∈
ρη (La(σ (γ1) ∪ σ (γ2))), we need only show µ = σ (ω′). To do so, we prove the follow-
ing statements.
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1. W (µ) = W (σ (ω′))

W (µ)
(26)
= {ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (γ1)} ∪

{ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (γ2)}
(28)
= W (µ1) ∪W (µ2)

(32)
= W (ω′1) ∪W (ω′2)

(36)
= W (ω′)

= W (σ (ω′))

The last step is borne out from the fact that substitution does not affect the possible
worlds of a PD-model.

2. µ(ν)(xa) = σ (ω′)(ν)(xa) for all ν ∈ µ and substituted variable xa
Since W (µ) = W (µ1) ∪W (µ2), let ν ∈ W (µ1) without loss of generality.

µ(ν)(xa) = µ1(ν)(xa)
(33)
= σ (ω′1)(ν)(xa)

(33)
= valη (ω′1 ⊕ ν, σ (xa))

(∗)
= valη (ω′ ⊕ ν, σ (xa))

= σ (ω′)(ν)(xa)

The (*) equality is valid because σ (xa) is a term, and terms are interpreted only over
the distinguished valuation and the ontic state, which are the same in both PD-models:
DV(ω′1 ⊕ ν) = DV(ω′ ⊕ ν) = DV(ν), and R(ω′1 ⊕ ν) = R(ω′ ⊕ ν) since learning can
never affect ontic state.
The last step is by the definition of substitution.

3. µ(ν)(ya) = σ (ω′)(ν)(ya) for all ν ∈ µ and unsubstituted variable ya
As for xa, since W (µ) = W (µ1) ∪W (µ2), let ν ∈ W (µ1) without loss of generality.

µ(ν)(ya) = µ1(ν)(ya)
(34)
= σ (ω′1)(ν)(ya)

(34)
= ω′1(ν)(ya)

(30)
= DV(ν) (ya)

(37)
= ω′(ν)(ya)

(39)
= σ (ω′)(ν)(ya)
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4. DW(µ) = DW(σ (ω′))

All we currently know about DW(µ) is that, by (27), DW(DW(µ)) = DW(σ (ω)).
However,W (µ) = W (µ1)∪W (µ2). Without loss of generality, let us assume DW(µ) ∈
W (µ1).

Because DW(DW(µ1))
(29)
= DW(σ (ω)) = DW(DW(µ)), then we may make a choice of

µ1 such that (σ (ω), µ1) ∈ ρη (La(γ1)) and more importantly, DW(µ) = DW(µ1)
(35)
=

DW(ω′1).

Because W (ω′1) ⊆ W (ω′) (36), then DW(ω′1) ∈ W (ω′). However, DW(DW(ω′1))
(31)
=

DW(ω)
(38)
= DW(DW(ω′)). In particular, because we choose ω′ and the conditions for

choosing its distinguished world are equivalent to those of ω′1, we may pick DW(ω′) =
DW(ω′1).

Because substitution does not affect the choice of distinguished world, DW(ω′)
(40)
=

DW(σ (ω′)). Thus, DW(µ) = DW(µ1)
(35)
= DW(ω′1) = DW(ω′)

(40)
= DW(σ (ω′)).

• γ1; γ2.

⇒ direction

If (ω, ω′) ∈ ρη (La(σ (γ1);σ (γ2))), then (σ (ω), σ (ω′)) ∈ ρη (La(γ1; γ2))

Let (ω, ω′) ∈ ρη (La(σ (γ1);σ (γ2))). Thus,

W (ω′) = {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (σ (γ1);σ (γ2))}
= {ν : there is t ∈ ω and ν1 s.t. (ω ⊕ t, ν1) ∈ ρη (σ (γ1))

and (ν1, ν) ∈ ρη (σ (γ2))} (41)
ω′(ν) = DV(ν) for all ν ∈ ω′ (42)

DW(DW(ω′)) = DW(ω) (43)

Applying substitution to ω and ω′,

W (σ (ω)) = W (ω) W (σ (ω′)) = W (ω′) (44)
σ (ω)(t)(xa) = valη (ω ⊕ t, σ (xa)) σ (ω′)(ν)(xa) = valη (ω′ ⊕ ν, σ (xa)) (45)
σ (ω)(t)(ya) = ω(t)(ya) σ (ω′)(ν)(ya) = ω′(ν)(ya) (46)

DW(σ (ω)) = DW(ω) DW(σ (ω′)) = DW(ω′) (47)

Let (ω, ω1) ∈ ρη (La(σ (γ1))). Thus,

W (ω1) = {ν1 : there is t ∈ ω s.t. (ω ⊕ t, ν1) ∈ ρη (σ (γ1))} (48)
ω1(ν1) = DV(ν1) (49)

DW(DW(ω1)) = DW(ω)
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Let (ω1, ω2) ∈ ρη (La(σ (γ2))). Thus,

W (ω2) = {ν2 : there is ν1 ∈ ω1 s.t. (ω1 ⊕ ν1, ν2) ∈ ρη (σ (γ2))} (50)
ω2(ν2) = DV(ν)

DW(DW(ω2)) = DW(ω1)

By applying the substitution to ω1 and ω2,

W (σ (ω1)) = W (ω1) W (σ (ω2)) = W (ω2) (51)
σ (ω1)(ν1)(xa) = valη (ω1 ⊕ ν1, σ (xa)) σ (ω2)(ν2)(xa) = valη (ω2 ⊕ ν2, σ (xa)) (52)
σ (ω1)(ν1)(ya) = ω1(ν1)(ya) σ (ω2)(ν2)(ya) = ω2(ν2)(ya)

DW(σ (ω1)) = DW(ω1) DW(σ (ω2)) = DW(ω2)

But, by induction hypothesis, we have (σ (ω), σ (ω1)) ∈ ρη (La(γ1)) and (σ (ω1), σ (ω2)) ∈
ρη (La(γ2)). By the semantics of the learning operator,

W (σ (ω1)) = {ν1 : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν1) ∈ ρη (γ1)} (53)
σ (ω1)(ν1) = DV(ν1)

DW(DW(σ (ω1))) = DW(σ (ω))

W (σ (ω2)) = {ν2 : there is ν1 ∈ σ (ω1) s.t. (σ (ω1)⊕ ν1, ν2) ∈ ρη (γ2)} (54)
σ (ω2)(ν2) = DV(ν2) (55)

DW(DW(σ (ω2))) = DW(σ (ω1))

We must show (σ (ω), σ (ω′)) ∈ ρη (La(γ1; γ2)), for which it suffices to show the following
properties:

1. W (σ (ω′)) = {ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (γ1; γ2)}
Let µ ∈ σ (ω′). We must show that there is t ∈ σ (ω) such that (σ (ω) ⊕ t, µ) ∈
ρη (γ1; γ2).
Since µ ∈ σ (ω′), by (44), µ ∈ ω′. Thus, by (41), there exists t ∈ ω and ν1 such that

(ω ⊕ t, ν1) ∈ ρη (σ (γ1)) (56)
(ν1, µ) ∈ ρη (σ (γ2)) (57)

From (56) and (48), then ν1 ∈ ω1. We now wish to show that µ ∈ ω2, but what we
know from (57) differs from what we need, which, according to (50) is that there exists
ν1 ∈ ω1 such that (ω1 ⊕ ν1, µ) ∈ ρη (σ (γ2)).
However, σ (γ2) originally appeared inside a learning operator and, as such, it can-
not contain other learning operators or doxastic modalities. Thus, in (ω1 ⊕ ν1, µ) ∈
ρη (σ (γ2)), program σ (γ2) only makes use of the ontic state R(ω1 ⊕ ν1), and the dis-
tinguished valuation of DV(ω1 ⊕ ν1).
But,
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– R(ω1 ⊕ ν1) = R(ω) = R(ν1) since neither learning operators nor learned programs
alter ontic state.

– DV(ω1 ⊕ ν1) = ω1(ν1)
(49)
= DV(ν1).

These are precisely the valuations that program σ (γ2) can use in (57). Thus, (57) is an
equivalent statement to (ω1 ⊕ ν1, µ) ∈ ρη (σ (γ2)), and by (50) we may finally claim

µ ∈ ω2 (58)

Since ν1 ∈ ω1 and µ ∈ ω2, by (51), ν1 ∈ σ (ω1) and µ ∈ σ (ω2), and thus, by (53) and
(54),

(σ (ω)⊕ t, ν1) ∈ ρη (γ1) (59)
(σ (ω1)⊕ ν1, µ) ∈ ρη (γ2) (60)

Again using the argument that γ2 can only use the ontic state and distinguished valua-
tion of σ (ω1)⊕ ν1, (60) is equivalent to

(ν1, µ) ∈ ρη (γ2) (61)

But, if (59) and (61), then there is a t ∈ σ (ω) such that (σ (ω) ⊕ t, µ) ∈ ρη (γ1; γ2),
which is precisely the condition for inclusion in W (σ (ω′)) that we wanted to show.

2. σ (ω′)(ν) = DV(ν) for all ν ∈ ω′

We will handle the substituted variable xa differently from the unsubstituted ya.
Let ν ∈ σ (ω′), equivalently, ν ∈ ω′. From (45) and (46) we know that σ (ω′)(ν)(xa) =
valη (ω′ ⊕ ν, σ (xa)) and σ (ω′)(ν)(ya) = ω′(ν)(ya).

We already know ν ∈ ω2 (58), equivalently ν ∈ σ (ω2). Therefore, DV(ν) (xa)
(55)
=

σ (ω2)(ν)(xa)
(52)
= valη (ω2 ⊕ ν, σ (xa)). But, because σ (xa) is a term, then it can read

only from the distinguished valuation and ontic state, and thus, valη (ω2 ⊕ ν, σ (xa)) =
valη (ν, σ (xa)). By the same argument, valη (ν, σ (xa)) = valη (ω′ ⊕ ν, σ (xa)) =
σ (ω′)(ν)(xa). Thus, DV(ν) (xa) = σ (ω′)(ν)(xa).

The case of ya is much simpler: σ (ω′)(ν)(ya)
(46)
= ω′(ν)(ya)

(42)
= DV(ν) (ya).

3. DW(DW(σ (ω′))) = DW(σ (ω))

We already know DW(DW(ω′)) = DW(ω) from (43). We may directly obtain what we
want by applying (47).

⇐ direction

If (σ (ω), µ) ∈ ρη (La(γ1; γ2)), then there is ω′ such that (ω, ω′) ∈ ρη (La(σ (γ1);σ (γ2)))
and µ = σ (ω′).
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Let (σ (ω), µ) ∈ ρη (La(γ1; γ2)).

We must show that there is ω′ such that (ω, ω′) ∈ ρη (La(σ (γ1);σ (γ2))) and µ = σ (ω′).

By the semantics of the learning operator,

W (µ) = {ν : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν) ∈ ρη (γ1; γ2)}
= {ν : there is t ∈ σ (ω) and ν1 s.t. (σ (ω)⊕ t, ν1) ∈ ρη (γ1)

and (ν1, ν) ∈ ρη (γ2)} (62)
µ(ν) = DV(ν) for all ν ∈ µ (63)

DW(DW(µ)) = DW(σ (ω))

Now let (σ (ω), µ1) ∈ ρη (La(γ1)). Then,

W (µ1) = {ν1 : there is t ∈ σ (ω) s.t. (σ (ω)⊕ t, ν1) ∈ ρη (γ1)} (64)
µ1(ν1) = DV(ν1) for all ν1 ∈ µ1 (65)

DW(DW(µ1)) = DW(σ (ω))

But, by induction hypothesis, there is ω1 such that (ω, ω1) ∈ ρη (La(σ (γ1))) and µ1 =
σ (ω1).

W (ω1) = {ν1 : there is t ∈ ω s.t. (ω ⊕ t, ν1) ∈ ρη (σ (γ1))} (66)
ω1(ν1) = DV(ν1) for all ν1 ∈ ω1 (67)

DW(DW(ω1)) = DW(ω) (68)

We may now let (σ (ω1), µ2) ∈ ρη (La(γ2)).

W (µ2) = {ν2 : there is ν1 ∈ σ (ω1) s.t. (σ (ω1)⊕ ν1, ν2) ∈ ρη (γ2)} (69)
µ2(ν2) = DV(ν2) for all ν2 ∈ µ2

DW(DW(µ2)) = DW(σ (ω1))

But, again by induction hypothesis, there is ω2 such that (ω1, ω2) ∈ ρη (La(σ (γ2))) and

µ2 = σ (ω2) (70)

By the definition of the learning operator,

W (ω2) = {ν2 : there is ν1 ∈ ω1 s.t. (ω1 ⊕ ν1, ν2) ∈ ρη (σ (γ2))} (71)
ω2(ν2) = DV(ν2) for all ν2 ∈ ω2 (72)

DW(DW(ω2)) = DW(ω1) (73)
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We wish to show that there is ω′ such that (ω, ω′) ∈ ρη (La(σ (γ1);σ (γ2))), meaning:

W (ω′) = {ν : there is t ∈ ω s.t. (ω ⊕ t, ν) ∈ ρη (σ (γ1);σ (γ2))} (74)
ω′(ν) = DV(ν) for all ν ∈ ω′ (75)

DW(DW(ω′)) = DW(ω) (76)

To show the existence of ω′, we first note that µ1, µ2, ω1 and ω2 must all exist given our
hypothesis that there exists a transition (σ (ω), µ) ∈ ρη (La(γ1; γ2)). We will now show that
W (ω′) = W (ω2) thus ensuring the existence of ω′. We will then show that µ = σ (ω′).

Let ν ′ ∈ ω′. Then by (74) there is t ∈ ω such that (ω⊕t, ν ′) ∈ ρη (σ (γ1);σ (γ2)). Therefore,
there must be some ν1 such that (ω ⊕ t, ν1) ∈ ρη (σ (γ1)) and (ν1, ν

′) ∈ ρη (σ (γ2)). But, by
(66), ν1 ∈ ω1 and by (67), ω1(ν1) = DV(ν1).

Because of this, and because σ (γ2) appears within a learning operator, (ν1, ν
′) ∈ ρη (σ (γ2))

is equivalent to (ω1 ⊕ ν1, ν
′) ∈ ρη (σ (γ2)) and, by (71), ν ′ ∈ ω2.

Similarly, we can show that if ν2 ∈ ω2, then ν2 ∈ ω′. Thus,

W (ω′) = W (ω2) (77)

This ensures that ω′ exists. We may then let ω′(ν) = DV(ν), as in (74), and choose some
distinguished world such that DW(DW(ω′)) = DW(ω), as per (76).

Now we need only prove that µ = σ (ω′), for which it is sufficient to show the following
properties, per the definition of substitution:

1. W (µ) = W (σ (ω′))

Let ν ∈ µ. Then, by (62), there are t ∈ σ (ω) and ν1 such that (σ (ω)⊕ t, ν1) ∈ ρη (γ1)
and (ν1, ν) ∈ ρη (γ2).
From (σ (ω)⊕t, ν1) ∈ ρη (γ1) and (64), ν1 ∈ µ1, and because of (65), µ1(ν1) = DV(ν1).
Because of this, and because γ1 appears inside a learning operator, then (ν1, ν) ∈
ρη (γ2) is equivalent to (σ (ω1)⊕ ν1, ν) ∈ ρη (γ2), and thus, by (69),

ν ∈ µ2 (78)

Again, an easy argument can be made that if ν ∈ µ2, then ν ∈ µ, and therefore,

W (µ) = W (µ2)
(70)
= W (ω2)

(77)
= W (ω′)

= W (σ (ω′))

2. µ(ν)(xa) = σ (ω′)(ν)(xa) for all ν ∈ µ and substituted variable xa
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By (63), µ(ν)(xa) = DV(ν) (xa). However, by (78) ν ∈ µ2, and therefore,

µ(ν)(xa) = DV(ν) (xa)
(72)
= µ2(ν)(xa)

(70)
= σ (ω2)(ν)(xa)

= valη (ω2 ⊕ ν, σ (xa))

(∗)
= valη (ω′ ⊕ ν, σ (xa))

= σ (ω′)(ν)(xa)

The step marked with (*) is possible because σ (xa) is a term, and therefore relies only
on the distinguished valuation of ω2 ⊕ ν, which, given (77), is precisely the same as
that of ω′ ⊕ ν, and on the ontic state, which is not affected by learning operators.

3. µ(ν)(ya) = σ (ω′)(ν)(ya) for all ν ∈ µ and unsubstituted variable ya
By (63), µ(ν)(ya) = DV(ν) (ya). However, by (78) ν ∈ µ2, and therefore,

µ(ν)(ya) = DV(ν) (ya)
(72)
= µ2(ν)(ya)

(70)
= σ (ω2)(ν)(ya)

= ω2(ν)(ya)

(∗)
= ω′(ν)(ya)

= σ (ω′)(ν)(ya)

The step marked by (*) is possible because W (ω′) = W (ω2), and both use ω2(ν)
(72)
=

DV(ν)
(76)
= ω′(ν).

4. DW(µ) = DW(σ (ω′)).
Recall that by (76) we have a choice of the particular distinguished world we wish to
use. We must show that the condition DW(DW(ω′)) = DW(ω) governing that choice is
compatible with this DW(µ) = DW(σ (ω′)) requirement.
Thus, let DW(µ) = DW(σ (ω′)). Since substitution does not affect distinguished worlds,
DW(µ) = DW(ω′).
Because DW(ω′) ∈ ω′, then by (74) there must be some world s ∈ ω such that (ω ⊕
s, DW(ω′)) ∈ ρη (σ (γ1);σ (γ2))}. In order to satisfy (76), we must show that s =
DW(ω).
Since (ω ⊕ s, DW(ω′)) ∈ ρη (σ (γ1);σ (γ2))}, there must be some ν such that (ω ⊕
s, ν) ∈ ρη (σ (γ1)) and (ν, DW(ω′)) ∈ ρη (σ (γ2)).
Since (ω ⊕ s, ν) ∈ ρη (σ (γ1)), then by (66) ν ∈ ω1. By (72), ω1(ν) = DV(ν).
Because of this and the fact that σ (γ2) is inside a learning operator, then (ν, DW(ω′)) ∈
ρη (σ (γ2)) is equivalent to (ω1 ⊕ ν, DW(ω′)) ∈ ρη (σ (γ2)).
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But, by (73), it must then be the case that ν = DW(ω1). Thus, it follows from (ω ⊕
s, ν) ∈ ρη (σ (γ1)) that (ω ⊕ s, DW(ω1)) ∈ ρη (σ (γ1)). We may now use (68) to
conclude that s = DW(ω).
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