
Supporting Hybrid Workloads for In-Memory
Database Management Systems via a Universal

Columnar Storage Format
Tianyu Li

CMU-CS-19-112

May 2019

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Andrew Pavlo, Chair
David G. Andersen

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright © 2019 Tianyu Li

This work was supported (in part) by the National Science Foundation (IIS-1846158, SPX-1822933) and an
Alfred P. Sloan Research Fellowship.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1846158
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1822933
https://sloan.org/grant-detail/8638


Keywords: Database Systems, Apache Arrow



Abstract

The proliferation of modern data processing ecosystems has given rise to
open-source columnar data formats. The key advantage of these formats is
that they allow organizations to load data from database management systems
(DBMSs) once instead of having to convert it to a new format for each usage.
These formats, however, are read-only. This means that organizations must
still use a heavy-weight transformation process to load data from their original
format into the desired columnar format. We aim to reduce or even eliminate
this process by developing an in-memory storage management architecture
for transactional DBMSs that is aware of the eventual usage of its data and
operates directly on columnar storage blocks. We introduce relaxations to
common analytical format requirements to efficiently update data, and rely
on a lightweight in-memory transformation process to convert blocks back to
analytical forms when they are cold. We also describe how to directly access
data from third-party analytical tools with minimal serialization overhead. To
evaluate our work, we implemented our storage engine based on the Apache
Arrow format and integrated it into the CMDB DBMS. Our experiments show
that our approach achieves comparable performance with dedicated OLTP
DBMSs while also enabling orders of magnitude faster data exports to external
data science and machine learning libraries than existing approaches.



iv



Acknowledgments

I would like to thank my advisor, Professor Andy Pavlo for help and guidance in this work.
He introduced me to research and taught me many lessons, both in databases and other
things that do not belong in an official document. I would also like to thank other students
and staff in the CMU Database Group that helped in this project: Matt Butrovich, Wan
Shen Lim, Amadou Ngom and Pervaze Akhtar. Thanks to Yuxiang Zhu and Tan Li of CMU
for their help in setting up experiments, and to Professor Dave Andersen for his guidance
and feedback in the network portion of this work. Special thanks to Wes McKinney of
Ursa Labs for his input in the formulation of this work. I would also like the thank other
professors and staff of Carnegie Mellon’s School of Computer Science for providing me
with the awesome platform to learn and do research. Last but not least, thanks to Yifei Li
for her support and understanding during this project.

v



vi



Contents

1 Introduction 1

1.1 Motivation for This Research . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 5

2.1 Data Movement and Transformation . . . . . . . . . . . . . . . . . . . . 5

2.2 Column-Stores and Apache Arrow . . . . . . . . . . . . . . . . . . . . . 7

2.3 Hybrid Storage Considered Harmful . . . . . . . . . . . . . . . . . . . . 9

3 Related Work 11

3.1 Universal Storage Formats . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 OLTP on Column-Stores . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Optimized DBMS Networking . . . . . . . . . . . . . . . . . . . . . . . 13

4 System Overview 15

4.1 Transactions on a Column Store . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Blocks and Physiological Identifiers . . . . . . . . . . . . . . . . . . . . 17

4.3 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Logging and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Block Transformation 25

5.1 Relaxed Columnar Format . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



5.2 Identifying a Cold Block . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Transformation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.1 Phase #1: Compaction . . . . . . . . . . . . . . . . . . . . . . . 29

5.3.2 Phase #2: Gathering . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Additional Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4.1 Dictionary Encoding . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4.2 Memory Management . . . . . . . . . . . . . . . . . . . . . . . 35

6 Data Export 37
6.1 Improved Wire Protocol for SQL . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Alternative Query Interface . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 Client-Side RDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.4 Server-Side RDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.5 External Tool Execution on the DBMS . . . . . . . . . . . . . . . . . . . 40

7 Evaluation 43
7.1 OLTP Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Transformation to Arrow . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2.1 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2.2 Write Amplification . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2.3 Sensitivity on Compaction Group Size . . . . . . . . . . . . . . . 50

7.3 Data Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Conclusion and Future Work 55

Bibliography 57

viii



List of Figures

2.1 Data Transformation Costs – Time taken to load a TPC-H table into
Pandas with different approaches. . . . . . . . . . . . . . . . . . . . . . 7

2.2 SQL Table to Arrow – An example of using Arrow’s API to describe a
SQL table’s schema in a high-level language like Python. . . . . . . . . 7

2.3 Variable Length Values in Arrow – Arrow represents variable length
values as an offsets array into an array of bytes, which trades off efficient
mutability for read performance. . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Vectorized PostgreSQL Wire Protocol – Instead of transmitting row-at-
a-time, a vectorized protocol would transmit column batches. . . . . . . 14

4.1 System Architecture – CMDB’s transactional engine is minimally intru-
sive to the underlying storage to maintain compatibility with the Arrow
storage format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 TupleSlot – By aligning blocks to start at 1 MB boundaries, the DBMS
packs the pointer to the block and the offset in a single 64-bit word. . . . 20

5.1 Variable-Length Value Storage – The system uses 16 bytes to track
variable-length values as a fixed-size column in a block. . . . . . . . . . 25

5.2 Relaxed Columnar Format – The system briefly allows non-contiguous
memory to support efficient mutation of Arrow blocks. . . . . . . . . . . 27

5.3 Transformation to Arrow – CMDB implements a pipeline for lightweight
in-memory transformation of cold data to Arrow. . . . . . . . . . . . . . 31

5.4 Check-and-Miss on Block Status – A naïve implementation results in a
race within the critical section of the gathering phase. . . . . . . . . . . 34

ix



6.1 Client-Side RDMA – An illustration of the message flow between DBMS
and client if the DBMS implements client-side RDMA . . . . . . . . . . 39

6.2 Server-Side RDMA – An illustration of the message flow between DBMS
and client if the DBMS implements server-side RDMA. As shown, the
message flow involved is much more complex than client-side RDMA. . 41

7.1 OLTP Performance: Throughput – Throughput measurements of the
DBMS for the TPC-C workload when varying the number of worker threads. 44

7.2 OLTP Performance: Block State Coverage – Block state coverage of
the DBMS at the end of a TPC-C run when varying the number of worker
threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.3 Transformation Throughput – Measurements of the DBMS’s transfor-
mation algorithm throughput and movement cost when migrating blocks
from the relaxed format to the canonical Arrow format. . . . . . . . . . . 47

7.4 Transformation Throughput on Alternative Layouts – Measurements
of the DBMS’s transformation algorithm throughput and when varying the
layout of the blocks being transformed. . . . . . . . . . . . . . . . . . . 49

7.5 Write Amplification – Total write amplification is number of tuple move-
ment times a constant for each table, decided by the layout and number of
indexes on that table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.6 Sensitivity on Compaction Group Size – Efficacy measurements of the
transformation algorithm when varying the number of blocks per com-
paction group while processing 500 blocks. The percentage of empty slots
is what portion of each block is empty (i.e., does not contain a tuple). We
measure the number of blocks freed during one round. . . . . . . . . . . 52

7.7 Sensitivity on Compaction Group Size – Efficacy measurements of the
transformation algorithm when varying the number of blocks per com-
paction group while processing 500 blocks. The percentage of empty slots
is what portion of each block is empty (i.e., does not contain a tuple). We
measure the average write-set size of transactions in the transformation
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.8 Data Export – Measurements of data export speed of CMDB using differ-
ent export mechanisms, with varying percentage of blocks treated as hot.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

x



List of Tables

xi



xii



Chapter 1

Introduction

1.1 Motivation for This Research

Data analysis pipelines allow organizations to extrapolate new insights from data residing in
their on-line transactional processing (OLTP) systems. Tools that make up these pipelines
often use standard binary formats that grew out of the open-source community, such as
Apache Parquet [par], Apache ORC [apa [c]] and Apache Arrow [apa [a]]. These formats
are popular because they allow disparate systems to exchange data through a common
interface without repeated conversion between proprietary formats. They are designed to
be read-only, however, which means that a data scientists needs to use a heavy-weight
process to export data from the OLTP DBMS into the desired format. This process wastes
computing power and limits both the immediacy and frequency of analytics.

Enabling analysis of data as soon as it arrives in a database is an important goal in
DBMS implementation. Over the past decade, several companies and research groups have
developed hybrid transactional analytical processing (HTAP) DBMSs in attempts to address
this issue [Pezzini et al. [2014]]. These systems, however, are not one-size-fits-all solutions
to the problem. Modern data science workloads often involve specialized frameworks, such
as TensorFlow, PyTorch, and Pandas. Legacy DBMSs cannot hope to outperform these
tools for workloads such as machine learning. Additionally, the data science community has

1



increasingly standardized around Python as a platform for its tools. As such, organizations
are heavily invested in personnel, tooling, and infrastructure for the Python ecosystem. It
is unlikely HTAP DBMSs will overcome these barriers and replace external tools. We
contend that these tools will co-exist with relational databases for the foreseeable future.
To deliver performance gains across the entire data analysis pipeline, our focus should be
to improve a DBMS’s interoperability with external tools.

To address this challenge, we present a multi-versioned DBMS architecture that supports
OLTP workloads directly on an open-source columnar storage format used by external
analytical frameworks. We target Apache Arrow, although our approach is applicable to
any columnar format. In this paper, we describe how to build a transaction engine with
in-memory MVCC delta version chains [Neumann et al. [2015], Wu et al. [2017]] on Arrow
without intrusive changes to the format. We relax Arrow specification constraints to achieve
good OLTP performance, and propose a lightweight transformation process to convert cold
data back into the canonical Arrow format. We show that our system facilitates fast exports
to external tools by providing direct access to data through a bulk-export RPC layer with
no serialization overhead.

1.2 Overview of This Thesis

We implemented our storage and concurrency control architecture in CMDB [cmu] and
evaluated its OLTP performance. Our results show that we achieve good performance
on OLTP workloads operating on the Arrow format. We also implemented new data
export protocols assuming Arrow storage, and demonstrate that we are able to reduce data
serialization overhead compared to existing DBMS wire protocols.

The remainder of this paper is organized as follows. We first present in 2 the motivation
for this work and introduce the Arrow storage format. We then discuss the system’s overall
architecture in 4, followed by a detailed discussion of the transformation process and how
we modify existing system components to detect cold blocks and perform the transformation

2



with little overhead in 5. The mechanism for data export to analytics is discussed in 6. We
present our experimental evaluation in 7 and discuss related work in 3.

3



4



Chapter 2

Background

We now discuss challenges in using data stored in a transactional DBMS for external data
analysis. We begin by describing how transformation and movement of data to analytics
tools are bottlenecks in modern data processing. We then present a popular open-source
format used by these tools, Apache Arrow, and show that the requirements of analytical
data formats are not incompatible with good OLTP performance. Lastly, we argue that
previous hybrid storage approaches are not optimal in this setting, and that storing data in a
format close to its eventual use is more efficient.

2.1 Data Movement and Transformation

A data processing pipeline consists of (1) a front-end OLTP layer, and (2) multiple analytical
layers. OLTP engines employ the n-ary storage model (i.e., row store) to support efficient
operations on single tuples. In contrast, the analytical layers use the decomposition storage
model (i.e., column store) to speed up large scans [Abadi et al. [2008], Boncz et al. [2005],
Menon et al. [2017], Kersten et al. [2018]]. Because of disparate optimization strategies
for these two use cases, organizations often implement the pipeline using a combination of
specialized tools and systems.

5



The most salient issue with this bifurcated approach is data transformation between
layers. The complexity of modern analytical pipelines have increased with the introduction
of new machine learning (ML) workloads. ML tools are data-intensive and not interoperable
with the OLTP system’s format, making loading and preparation of the data from a DBMS
expensive. For example, a data scientist will (1) execute SQL queries to bulk-export the
data from PostgreSQL, (2) load it into a Jupyter notebook on a local machine and prepare it
with Pandas, and (3) train models on cleaned data with TensorFlow. Each step in such a
pipeline transforms data into a format native to the target framework: a disk-optimized row
store for PostgreSQL, Pandas Dataframes for Pandas, and finally tensors for TensorFlow.
The slowest by far is from the DBMS to Pandas. The data scientist first retrieves the data
over the DBMS’s network protocol, and then decomposes the data into the desired columnar
format. This process is not optimal for high-bandwidth data movement [Raasveldt and
Mühleisen [2017]].

To better understand this issue, we measured the time it takes to extract data from
PostgreSQL (v10.6) and load it into an external Pandas program. We use the LINEITEM

table from TPC-H with scale factor 10 (60M tuples, 8 GB as a CSV file, 11 GB as a
PostgreSQL table). We compare three approaches for loading the table into the Python
program: (1) SQL over a Python ODBC connection, (2) using PostgreSQL’s COPY command
to export a CSV file to disk and then loading it into Pandas, and (3) loading data directly
from a buffer already in the Python runtime’s memory. The last method represents the
theoretical best-case scenario to provide us with an upper bound for data export speed. We
pre-load the entire table into PostgreSQL’s buffer pool using the pg_warm extension. To
simplify our setup, we run the Python program on the same machine as the DBMS. We
use a machine with 132 GB of memory, of which 15 GB are reserved for PostgreSQL’s
shared buffers so that there is more than enough space to store a copy of the table both
in the DBMS’s buffer pool and in the Python script. We provide a full description of our
operating environment for this experiment in 7.

The results in 2.1 show that Python ODBC and CSV are orders of magnitude slower
than localized access. This is because of the overhead of transforming to a different format,
as well as excessive serialization in the PostgreSQL wire protocol, where query processing

6



In-Memory CSV PostgreSQL
0

200

400

600

800

1000

1200

1400
Lo

ad
 T

im
e 

(s
ec

on
ds

)

8.38

284.46

1380.3
In-Memory
CSV Export
CSV Load
PostgreSQL Query Processing
PostgreSQL Export

Figure 2.1: Data Transformation Costs – Time taken to load a TPC-H table into Pandas with

different approaches.

CREATE TABLE item (
    i_id INT NOT NULL,
    i_name VARCHAR(24) NOT NULL,
    i_price DECIMAL(5,2) NOT NULL,
    i_data VARCHAR(50) NOT NULL,
    i_im_id INT NOT NULL,
    PRIMARY KEY (i_id)
);

 

import pyarrow as pa 
 
item = pa.schema([('i_id', pa.int32()), 
                  ('i_name', pa.string()), 
                  ('i_price', pa.decimal(5, 2)), 
                  ('i_data', pa.string()), 
                  ('i_im_id', pa.int32())])
 

Figure 2.2: SQL Table to Arrow – An example of using Arrow’s API to describe a SQL table’s

schema in a high-level language like Python.

itself takes 0.004% of the total export time. The rest of time is spent in the serialization
layer and in transforming the data. Optimizing this data export process can greatly speed
up the entire analytics pipeline.

2.2 Column-Stores and Apache Arrow

The inefficiency of loading data through a SQL interface requires us to rethink the data
export process. If the OLTP DBMS and these external tools operate on the same format,

7



the data export cost is reduced to just the cost of network transmission. But as discussed
previously, OLTP DBMSs are row-stores because the conventional wisdom is that column-
stores are inferior for OLTP workloads. Recent work [Neumann et al. [2015], Sikka et al.
[2012]], however, has shown that column-stores can support high-performance transactional
processing. We therefore propose to implement a high-performance OLTP DBMS directly
on top of a format used by analytics tools. To do so, we identify a representative format,
Apache Arrow, and analyze its strengths and weaknesses on OLTP workloads.

Apache Arrow is a cross-language development platform for in-memory data. It
was conceived when groups of developers from Apache Drill, Apache Impala, Apache
Kudu, Pandas, and others independently explored universal in-memory columnar data
formats. These groups then joined together in 2015 to develop a shared format based
on their overlapping requirements. Arrow was introduced in 2016 and has since become
the standard for columnar in-memory analytics as a high-performance interface between
heterogeneous systems. There is a growing ecosystem of tools built for Arrow, including
bindings for several programming languages, computational libraries, and IPC frameworks.

At the core of Arrow is a columnar memory format for flat and hierarchical data.
This format enables (1) fast analytical data processing by optimizing for data locality
and vectorized execution and (2) zero-deserialization data interchange between disparate
software systems. To achieve the former, Arrow organizes data contiguously in 8-byte
aligned buffers and uses separate bitmaps to track nulls. For the latter, Arrow specifies a
standard in-memory representation and provides a C-like data definition language (DDL)
for communicating metadata about a data schema. Arrow uses separate metadata data
structures to impose table-like structure on collections of buffers. The language is expressive
enough to describe data layouts of existing systems. An example of an Arrow equivalent
definition for the ITEM table in TPC-C is shown in 2.2.

Although Arrow is designed for read-only analytical applications, one can use it as an
in-memory data structure for other workloads. Arrow’s alignment requirement and use of
null bitmaps benefit write-heavy workloads as well as data sets with fixed-length values.
Problems emerge, however, in Arrow’s support for variable-length values. Arrow stores
variable-length values, such as VARCHARs, as an array of offsets indexing into a contiguous

8



J
O
E
M
A
R
K

0

3

3

101

102

103

ID (int)  Name (string)

Offsets (int)  Values (char)

ID Name

101 "JOE"

102 null

103 "MARK"

Column
Buffer

Metadata
Buffer

Logical
Table

Figure 2.3: Variable Length Values in Arrow – Arrow represents variable length values as an

offsets array into an array of bytes, which trades off efficient mutability for read performance.

byte buffer. As shown in 2.3, the length of the individual entry is computed as the difference
between the starting offset of itself and the next entry, or the size of the character array if the
entry is the last entry. This approach is not ideal for updates because of write amplifications.
Suppose a program needs to update “JOE” from the example to “ANDY” in 2.3, it must copy
the entire values buffer for the buffer to stay contiguous.

The reason behind this is that it is difficult in a single data format to simultaneously
provide (1) data locality and value adjacency, (2) constant-time random access, and (3)
mutability. Arrow trades off (3) in favor of the first two for read-only workloads. As we
discuss in 5, however, it is possible to efficiently convert between designs that optimize for
(1) and (3). Our system can leverage this to achieve (1) for read-heavy blocks and (3) for
update-heavy blocks.

2.3 Hybrid Storage Considered Harmful

Researchers have proposed hybrid storage schemes to unify row-store and column-store
within one system. Two notable examples are Peloton [Arulraj et al. [2016]] and H2O [Ala-
giannis et al. [2014]]. Peloton uses an abstraction layer above the storage engine that
transforms cold row-oriented data to columnar format. In contrast, H2O proposes an
abstraction layer at the physical operator level that materializes data into the optimal format

9



and generates code for it on a per-query basis. We contend here that neither approach is
ideal and that the columnar format is good enough for most use cases.

There is a trade-off between flexibility and performance in such hybrid storage systems.
Our previous system, Peloton, attempted to optimize for performance by installing the ab-
straction boundary at the storage level. This increases the complexity of the implementation.
We had to develop mechanisms to explicitly deal with hybrid storage in the concurrency
control and garbage collection (GC) components of the system, and think carefully about
edge cases where a transaction spans both formats. The performance gain from a hybrid
storage was lost in these other components. For example, the benefit of Peloton’s row-store
on updates is negated by its use of append-only multi-versioned storage to overcome the
complexity of GC for its hybrid storage. H2O, on the other hand, maintains a higher-level
operator abstraction and generates code dynamically for each operator to handle different
layouts. This approach reduces complexity for query processing, but the overhead of
dynamic layout adaptation and operator creation is large and must be amortized over large
scans, making it unsuitable for OLTP workloads.

The benefit of using hybrid storage is also limited. Peloton organizes tuples in rows
to speed up transactions on hot data. For an in-memory DBMS like Peloton, however,
contention on tuples, and the serial write-ahead-log dominates transactional throughput
compared to data copying costs. In contrast, H2O uses its hybrid storage to speed up
analytical queries exclusively, as the authors observe that certain analytical queries perform
better under row-store instead of column-store. Due to its lack of support for transactional
workloads, however, H2O needs to load data from a separate OLTP system. As we have
discussed, this movement is expensive and can take away the performance gain from using
hybrid storage.

Overall, hybrid storage systems introduce more complexity to the DBMS and provide
only minor performance improvements. They also do not speed up external analytics. As
these external tools become more prominent in data processing pipelines, the benefits of
a hybrid storage DBMS diminishes. Hence, we argue that the these gains do not justify
the engineering cost. A well-written conventional system is good enough as the bottleneck
shifts to data movement between layers of the data analytics pipeline.

10



Chapter 3

Related Work

We presented our system for high transaction throughput on a storage format optimized for
analytics, and now discuss three key facets of related work. In particular, we provide an
overview of other universal storage formats, additional systems that implemented OLTP
workloads on column-stores, and efforts to accelerate data export by optimizing the network
layer of DBMSs.

3.1 Universal Storage Formats

The idea of building a data processing system on top of universal storage formats has
been explored in other implementations. Systems such as Apache Hive [hiv], Apache
Impala [imp], Dremio [dre], and OmniSci [omn] support data ingestion from universal
storage formats to lower the data transformation cost. These are analytical systems that
ingest data already generated in the format from an OLTP system, whereas our DBMS
natively generates data in the storage format as a data source for these systems.

Among the storage formats other than Arrow, Apache ORC [apa [c]] is the most similar
to our DBMS in its support for ACID transactions. ORC is a self-describing type-aware
columnar file format designed for Hadoop. It divides data into stripes that are similar to our
concept of blocks. Related to ORC is Databricks’ Delta Lake engine [del] that acts as a

11



ACID transactional engine on top of cloud storage. These solutions are different from our
system because they are intended for incremental maintenance of read-only data sets and
not high-throughput OLTP. Transactions in these systems are infrequent, not performance
critical, and have large write-sets. Apache Kudu [kud [a]] is an analytical system that is
similar in architecture to our system, and integrates natively with the Hadoop ecosystem.
Transactional semantics in Kudu is restricted to single-table updates or multi-table scans
and does not support general-purpose SQL transactions [kud [b]].

3.2 OLTP on Column-Stores

Since Ailamaki et al. first introduced the PAX model [Ailamaki et al. [2002]], the com-
munity has implemented several systems that supports transactional workloads on column
stores. PAX stores data in columnar format, but keeps all attributes of a single tuple within
a disk page to reduce I/O cost for single tuple accesses. HYRISE [Grund et al. [2010]]
improved upon this scheme by vertically partitioning each table based on access patterns.
SAP HANA [Sikka et al. [2012]] implemented migration from row-store to column-store
in addition to partitioning. Peloton [Arulraj et al. [2016]] introduced the logical tile abstrac-
tion to be able to achieve this migration without a need for disparate execution engines.
Our system is most similar to HyPer [Kemper and Neumann [2011], Funke et al. [2012],
Neumann et al. [2015]] and L-Store [Sadoghi et al. [2018]]. HyPer runs exclusively on
columnar format and guarantees ACID properties through a multi-versioned delta-based
concurrency control mechanism similar to our system; it also implements a compression for
cold data chunks by instrumenting the OS for access observation. Our system is different
from HyPer in that it is built around the open-source Arrow format and provides native
access to it. HyPer’s hot-cold transformation also assumes heavy-weight compression
operations, whereas our transformation process is designed to be fast and computationally
inexpensive, allowing more fluid changes in a block’s state. L-Store also leverages the
hot-cold separation of tuple access to allow updates to be written to tail-pages instead
of more expensive cold storage. In contrast to our system, L-Store achieves this through
tracing data lineage and an append-only storage within the table itself.

12



3.3 Optimized DBMS Networking

There has been considerable work on using RDMA to speed up DBMS workloads. IBM’s
DB2 pureScale [pur] and Oracle Real Application Cluster (RAC) [rac] use RDMA to
exchange database pages and achieve shared-storage between nodes. Microsoft Analytics
Platform Systems [msa] and Microsoft SQL Server with SMB Direct [smb] utilize RDMA
to bring data from a separate storage layer to the execution layer. Binnig et al. [Binnig
et al. [2016]] and Dragojević et al. [Dragojević et al. [2015]] proposed using RDMA
for distributed transaction processing. Li et al. [Li et al. [2016]] proposed a method for
using RDMA to speed up analytics with remote memory. All of these work attempts to
improve the performance of distributed DBMS through using RDMA within the cluster.
This thesis looks to improve efficiency across the data processing pipeline through better
interoperability with external tools.

Raasveldt and Mühleisen [Raasveldt and Mühleisen [2017]] demonstrated that trans-
ferring large amounts of data from the DBMS to a client is expensive over existing wire
row-oriented protocols (e.g., JDBC/ODBC). They then explored how to improve server-side
result set serialization to increase transmission performance. Specifically, they proposed to
use a vector-based protocol, transmitting column batches at a time, instead of only rows.
An example of this technique applied to the PostgreSQL wire protocol is shown in 3.1. A
similar technique was proposed in the olap4j extension for JDBC in the early 2000s [ola].
These works, however, optimize the DBMS’s network layer, whereas this thesis tackles
the challenge more broadly through changes in both the network layer and the underlying
DBMS storage.

13



'T' int32	len int16	num_fields

DBMS
Client

Query

str	col_name int32	table_oid

int32	type_oid

int16	typelen

int32	type_modifer

int16	format

For	each	column:

Row	Description

'D' int32	len int16	num_fields

char[fieldlen]	dataint32	fieldlen

For	each	field:

Data	Row
For
each
Row

Ready	For
Query

int16	colno

For
Each
Batch 'D' int32	len int32	row_count

col_type[row_count]	data

int32	column_len

For	each	column:

Row	Batch

null_bitmap

Replace

Figure 3.1: Vectorized PostgreSQL Wire Protocol – Instead of transmitting row-at-a-time, a

vectorized protocol would transmit column batches.

14



Chapter 4

System Overview

We now present the system architecture for CMDB that runs natively on Arrow. We first
discuss how we designed our transaction engine to be minimally intrusive to Arrow’s
byte-level layout. We then describe how the system organizes tables into blocks and uses
an efficient scheme to uniquely identify tuples. Finally, we describe the system’s garbage
collection and recovery components, and provide insights that aid the transformation
algorithm in 5. An overview of our system architecture is shown in 4.1. To simplify our
discussion, we assume that all data is fixed length, and describe how to handle variable-
length data in the next section.

4.1 Transactions on a Column Store

The key requirement for our system is that it stores transactional metadata and version
information separately from the actual data; external tools are oblivious to transactions
and should not see versioning information when scanning through Arrow blocks. To meet
this requirement, the DBMS’s transaction engine uses a multi-versioned [Bernstein and
Goodman [1983]] delta-storage where the version chain is stored as an extra Arrow column
invisible to external readers. The system stores physical pointers to the head of the version
chain in the column, or null if there is no version. The version chain is newest-to-oldest

15



with delta records, which are physical before-images of the modified tuple attributes. Rather
than storing these deltas in the Arrow blocks, the system assigns each transaction an undo
buffer as an append-only row-store for deltas. To install an update, the transaction first
reserves space for a delta record at the end of its buffer, copies the current image of the
attributes to modify into the record, appends the record onto the version chain, and finally
updates in-place. Deletes and inserts are handled analogously, but their undo records pertain
to an allocation bitmap rather than the content of the tuple.

The undo buffer needs to grow in size dynamically as transactions can have arbitrarily
large write sets. Because the version chain points directly into the undo buffer, however,
the delta record cannot be moved during the lifetime of the transaction’s version. This rules
out the use of a naïve resizing algorithms that doubles the size of the buffer and copies the
content. Instead, the system implements undo buffers as a linked list of fixed-sized buffer
segments (4096 bytes in our system). When there is not enough space left in the buffer
for a delta record, the system grows the undo buffer by one segment. A centralized object
pool distributes buffer segments to transactions, and is responsible for preallocation and
recycling.

The system assigns each transaction two timestamps, (start, commit), generated from
the same counter. The commit timestamp is the start timestamp with its sign bit flipped if
the transaction is uncommitted. Each update on the version chain stores the transaction’s
commit timestamp. Readers reconstruct their respective versions by copying the latest
version, and then traversing the version chain and applying before-images until it sees a
timestamp less than its start timestamp. Because the system uses unsigned comparison
for timestamps, uncommitted versions are never visible. The system disallows write-write
conflicts to avoid cascading rollbacks.

On aborts, the system uses the transaction’s undo records to roll back the in-place
updates and unlinks the records from the version chain. This introduces a race where a
concurrent reader copies the aborted version, the aborting transaction performs the rollback,
and the reader traverses the version chain with the undo record already unlinked. To handle
this, the reader checks that the version pointer does not change while it is copying the in-
place version, and retries otherwise. When a transaction commits, the DBMS uses a small

16



critical section to obtain a commit timestamp, update delta records’ commit timestamps,
and add them to the log manager’s queue. One can replace this critical section with an
additional validation phase for full serializability [Neumann et al. [2015]]. Our system
instead aims for snapshot isolation, as the isolation level of transactions has little impact on
our mechanisms for interoperability with Arrow.

Through this design, the transaction engine reasons only about delta records and the
version column, and not the underlying physical storage. Maintaining the Arrow abstraction
comes at the cost of data locality and forces readers to materialize early, which degrades
range-scan performance. Fortunately, due to the effectiveness of our garbage collector
(4.3), only a small fraction of the database is versioned at any point in time. As a result,
the DBMS can ignore checking the version column for every tuple and scan large portions
of the database in-place. Blocks are natural units for keeping track of this information,
and we use block-level locks to coordinate access to blocks that are not versioned and not
frequently updated (i.e., cold). This is discussed in detail in 5.

We do not keep versioned indexes but instead model udpates as inserts and deletes into
the index, which stores tuple slots as values. We clean up any stale entries in the index at
the end of each transaction. Updates that change an indexed attribute on a tuple are treated
as a delete and an insert, similar to Neumann et al. [2015].

4.2 Blocks and Physiological Identifiers

Storing tuple data and transaction information separately introduces another challenge: as
the two are no longer co-located, the system requires global tuple identifiers to associate
the two. Physical identifiers, such as pointers, are ideal for performance, but work poorly
with column-stores because a tuple does not physically exist at a single location. Logical
identifiers, on the other hand, must be translated into a memory location through a lookup
(e.g., hash table). Such lookups are a serious bottleneck because every transactional
operation in our system performs at least one lookup. To overcome this problem, the system
organizes storage in blocks, and uses a physiological scheme for identifying tuples.

17



Transaction
Context

Undos

Redos

Data Block
Data Block

Data Block
Data Block

Redo
Records

Undo
Records

Log File

Serialize

Data Table API
Txn

Engine

Data Blocks

Version
Pointer
Column

Prune

Read/WriteVersion
Maintenance

Garbage
Collector

Log
Manager

Figure 4.1: System Architecture – CMDB’s transactional engine is minimally intrusive to the

underlying storage to maintain compatibility with the Arrow storage format.

Each block in our system is 1 MB and stores attributes in a PAX-style layout [Ailamaki
et al. [2002]]. This means data is organized in each block in columnar format, but all
columns of a tuple are located within the same block. Every block has a layout structure
associated with it that consists of (1) the number of slots within a block, (2) a list of the
attributes and their sizes, and (3) the location offset for each column from the starting
address of a block. Each column and its associated bitmap are aligned at 8-byte boundaries.
The system calculates layout once for a table when the application creates it, and uses it
to initialize and interpret every block in the table. In PAX, having an entire tuple located
within a single block reduces the number of disk accesses on a write operations. Such

18



benefits are less significant in an in-memory system; instead our system uses blocks as a
useful logical grouping for tuples that are inserted close to each other chronologically that
the system can use as a unit for transformation. Having all attributes of a tuple located
within a single block also ensures that tuple will never be partially available in Arrow
format.

Every tuple in the system is identified by a TupleSlot, which is a combination of (1)
physical memory address of the block the tuple resides in, and (2) a logical offset in the
block. Combining these with the pre-calculated block layout, the system can compute the
physical pointer to each attribute in constant time. To pack both values into a single 64-bit
value, the system aligns all blocks to start at 1 MB boundaries within the address space of
the process. A pointer to the start of a block will then always have its lower 20 bits set to
zero, which the system uses to store the offset. There can never be a situation where the 20
bits is not enough because they are sufficient to address every single byte within the block.

We implement this using the C++11 keyword alignas as a hint to the DBMS’s memory
allocator when creating new blocks. It is possible to further optimize this process by using
a custom allocator specialized for handing out 1 MB chunks. The system can also store
extra information in the address in a similar fashion; because it reserve space within each
block for headers and version information, and because x86 machines currently do not
utilize the full 64 bits in a pointer, there are many bits to spare in a tuple slot. This allows
the system to pack much information into the tuple identifier while keeping it in register for
good performance when passing one around.

4.3 Garbage Collection

The garbage collector (GC) in our system is responsible for pruning the version chain and
freeing any associated memory [Larson et al. [2011], Tu et al. [2013], Yu et al. [2014],
Lee et al. [2016]]; recycling of deleted slots is handled in the transformation to Arrow
described in 5.3. Because all versioning information is stored within a transaction’s buffers,
the GC only needs to process transaction objects to free used memory. The GC maintains a

19



0x000000010DB

TupleSlot
Object

0x000000010DB00000 0x0000000000000001

Physical Pointer to Block Offset in Block

64 bits

44 bits 20 bits

00001

Figure 4.2: TupleSlot – By aligning blocks to start at 1 MB boundaries, the DBMS packs the

pointer to the block and the offset in a single 64-bit word.

queue of completed transactions, and wakes up periodically to iterate through the queue.
At the start of each run, it first checks the transaction engine’s transactions table for the
oldest active transaction’s start timestamp; changes of any transaction committed before
this timestamp are no longer visible and are safe for removal. For each such transaction, the
GC first inspects its undo records for any variable length values to clean up, and computes
a set of TupleSlots with invisible delta records on their version chains. The GC then
truncates the version chain for each TupleSlot exactly once, so as to avoid the potentially
quadratic operation of finding and unlinking each individual record. It is unsafe, however,
to deallocate objects at this point. Transactions in our system stop traversing the version
chain only after seeing a record that is invisible to it. Active transactions can therefore still
be accessing the record GC truncated. To address this, GC obtains a timestamp from the
transaction engine that represents the time of unlink. Any transaction starting after this
time cannot possibly access the unlinked record; the records are safe for deallocation when
the oldest running transaction in the system has a larger start timestamp than the unlink
time. This is similar to an epoch-protection mechanism [Chandramouli et al. [2018]], and
can be generalized to ensure thread-safety for other aspects of the DBMS as well.

The GC process traverses every single update installed in the system exactly once and
requires no additional full table scans and easily keeps up with high throughput. The
combination of these two facts gives us leeway to incorporate additional checks on each

20



garbage collector run without significant performance impact. We take advantage of this to
compute statistics and determine if a block is becoming cold, as we will describe in detail
in 5.2.

4.4 Logging and Recovery

Our system achieves durability through write-ahead logging and checkpoints [Mohan et al.
[1992], DeWitt et al. [1984]]. The steps to logging a transaction in our system is analogous
to GC. Each transaction has a redo buffer for physical after-images of writes. At commit
time, the transaction appends a commit record to the redo buffer and adds itself to the log
manager’s flush queue. The log manager runs in the background and serializes the changes
into an on-disk format before flushing to persistent storage. The system relies on an implicit
ordering of the records instead of explicit sequence numbers to recover. Each transaction
writes changes to its local buffer in the order that they occur. Among transactions, the
system orders the records according to their globally unique commit timestamp, written in
the commit record on disk.

Our system implements redo and undo buffers in the same way, using the same pool
of buffer segments for both. As an optimization, instead of holding on to all records
for a transaction’s duration, the system flushes out redo records incrementally; when a
transaction’s redo buffer reaches a certain size, the system flushes partial changes to the log.
This is safe because in the case of an abort or crash the transaction’s commit record is not
written, and thus the recovery process ignores these changes. In our implementation, we
limit the size of a transaction’s redo buffer to a single buffer segment.

One caveat worth pointing out is that the entries in the redo buffer are not marshalled
bytes, but direct memory images of the updates, with paddings and swizzled pointers.
The logging thread therefore has to serialize the records into their on-disk formats before
flushing. This process happens off the critical path, however, and we have not found it to be
a significant overhead in our evaluations.

21



The system performs group commit and only invokes fsync after some threshold in log
size or in wait time is reached. A transaction is considered committed by the rest of the
system as soon as its redo buffer is added to the flush queue. All future operations on the
transaction’s write-set are speculative until its log records are on disk. To address this, the
system assigns a callback to each committed transaction for the log manager to notify when
the transaction’s records are persistent. The system refrains from sending a transaction’s
result to the client until the callback is invoked. In this scheme, changes of transactions
that speculatively read or update the write-set of another transaction are not public until
the log manager processes their commit record, which happens after the transaction they
speculated on is persistent. We implement callbacks by embedding a function pointer in the
commit record on the redo record; when the logging thread serializes the commit record,
it adds that pointer to a list of callbacks to invoke after the next fsync. Because the log
manager guards against the anomaly above, the DBMS requires read-only transactions to
also obtain a commit record and wait on the log manager, but the log manager can skip
writing this record to disk after processing the callback.

Log records identify tuples on disk using TupleSlots, even though the physical pointers
are invalid on reboot. The system maintains a mapping table between old tuple slots to their
new physical locations in recovery mode. This table adds no additional overhead. Even if
the system uses logical identifiers on disk, it still needs to map logical identifiers to physical
locations. It is possible to integrate some storage layout optimizations in this remapping
phase, performing an implicit compaction run and possibly rearranging tuples based on
access frequency.

A checkpoint in the system is a consistent snapshot of all blocks that have changed since
the last checkpoint; because of multi-versioning, it suffices to scan blocks in a transaction
to produce a consistent checkpoint. The system records the timestamp of the scanning
transaction after the checkpoint is finished as a record in the write-ahead log. Upon recovery,
the system is guaranteed to recover to a consistent snapshot of our database, from which it
can apply all changes where the commit timestamp is after the latest recorded checkpoint. It
is also possible to permit semi-fuzzy checkpoints [Ren et al. [2016]] where all checkpointed
tuples are committed, but not necessarily from the same snapshot. Because recovery in our

22



system has no undo phase, the system is still guaranteed to recover to a consistent snapshot
under this scheme. As a further optimization, the checkpoint records the oldest committed
version for each block, so some entries in the log can be safely skipped in the recovery pass.

23



24



"Tran"

8 bytes4 bytes 4 bytes

1

One bit for
buffer 

ownership

21

Size of
varlen

"Transactions on Arrow"

Outofline buffer
for varlen values

Prefix for
fast filtering

8byte
boundary

Pointer to
actual varlen

"Data" "base@CMU"0 12

Use the pointer field to
write the suffix if the entire
varlen fits within 12 bytes

Figure 5.1: Variable-Length Value Storage – The system uses 16 bytes to track variable-length

values as a fixed-size column in a block.

Chapter 5

Block Transformation

As discussed in 2.2, the primary obstacle to running transactions on Arrow is write amplifi-
cation. Our system uses a relaxed Arrow format to achieve good write performance, and
then uses a lightweight transformation step to put a block into the full Arrow format once it
is cold. In this section, we describe this modified Arrow format, introduce a mechanism to
detect cold blocks, and present our algorithm for transforming cold blocks to full Arrow.

25



5.1 Relaxed Columnar Format

Typical OLTP workloads modify only a small portion of a database at any given time, while
the other parts of the database are cold and mostly accessed by read-only queries. Thus, to
reduce write amplification, the DBMS delays writes until a block is cold. We therefore relax
the Arrow format for the hot portion of the database to improve update performance. This
forces all readers, both internal and external, to access data via the transactional slow path
that materializes versions. We contend that the cost is acceptable as this materialization
happens only for a small portion of the database.

There are two sources of write amplifications in Arrow: (1) it disallows gaps in a
column and (2) it stores variable-length values consecutively in a single buffer. Our relaxed
format overcomes these issues by adding a validity bitmap in the block header for deletions,
and metadata for each variable-length value in the system. As shown in 5.1, within a
VarlenEntry field, the system maintains a 4-byte integer size field and an 8-byte pointer
that points to the underlying string. Each VarlenEntry is padded to 16 bytes for alignment,
and the system uses the four additional bytes to store a prefix of the string to enable quick
filtering in a query. If a string is shorter than 12 bytes, the system stores it entirely within the
object using the pointer field. Transactions only access the VarlenEntry and do not reason
about Arrow storage. This allows the system to write updates to VarlenEntry instead of
the underlying Arrow storage, turning a variable-length update into fixed-length, which is
constant-time. This process is demonstrated in 5.2.

Any readers accessing Arrow storage will be oblivious to the update in VarlenEntry.
The system uses a status flag and a counter in the block header to coordinate access in this
case. For a cold block, the status flag is set to frozen and readers add one to the counter
when starting a scan and subtract one when they are done. When a transaction needs to
update a cold block, it first sets the flag in the block header indicating that the block is hot,
forcing any future readers to materialize instead of reading in-place. It then spins on the
counter and wait for lingering readers to leave the block before proceeding with the update.
There is no transformation process required for a transaction to modify a cold block because
our relaxed format is a superset of the original Arrow format. This concurrency control

26



Arrow Columns
Transactional

Metadata 

J

O

E

M

A

R

K

VarlenEntry Valid?

  1

 Null 1

  1

ID Varlen Offset

101 0

102 3

103 3

{1, "JOE"} --> {1, "ANDY"}; 
Delete {2, null} 

Frozen

0

A counter acts as
readerwriter lock
for frozen blocks

J

O

E

M

A

R

K

0
A N D Y

Hot

VarlenEntry Valid?

  1

X 0

  1

ID Varlen Offset

101 0

X X

103 3

1

VarlenEntry Valid?

  1

 1

X 0

ID Varlen Offset

101 0

103 4

X X

A

N

D

Y

 M

A

R

K

Frozen

Arrow Reader

1. Transaction changes block
status to hot and updates
only the metadata column

2. Background
transformation
process builds
new Arrow
columns and
marks as
frozen

3. Once the block is frozen again,
readers can access Arrow inplace by
taking a read lock on the block

Figure 5.2: Relaxed Columnar Format – The system briefly allows non-contiguous memory to

support efficient mutation of Arrow blocks.

method is similar to a reader-writer latch. The difference is that multiple writers are allowed
to coexist, and that readers are not allowed to reacquire the latch; once a block is hot it
stays hot until a background process transforms the block back to full Arrow compliance.
We will discuss this process next.

5.2 Identifying a Cold Block

The system keeps access statistics about each block to determine if it is cooling down.
Collecting them as transactions operate on the database adds overhead to the critical
path [Funke et al. [2012]], which is unacceptable for OLTP workloads. Our system trades

27



off the quality of such statistics for better scalability and performance, and accounts for
potential mistakes from this in our transformation algorithm.

A simple heuristic is to mark blocks that have not been modified for some threshold
time as cold for each table. Instead of measuring this on the transaction’s critical path,
our system takes advantage of GC’s pass through all undo records (4.3). From each
undo record, the system infers the modification type (i.e., delete, insert, update) and the
TupleSlot it pertains to. Time measurement, however, is difficult because the system
cannot measure how much time has elapsed between the modification and invocation of the
GC. To address this, the system notes the time of each GC invocation and use that time as
an approximation for all modifications processed in this GC run. If transactions have life
time shorter than the frequency of GC (10 ms), this approximated time is never earlier than
the actual modification and is late by at most one GC period. This “GC epoch” is a good
enough substitute for real time for OLTP workloads, because most write transactions are
short-lived [Stonebraker et al. [2007]]. Once the system identifies a cold block, it adds the
block to a queue for a background transformation thread to process later.

The user can modify the threshold time value based on how aggressively they want the
system to transform blocks. The optimal value of the threshold is workload-dependent. A
value too low reduces transactional performance because of wasted resources from frequent
transformations. A value too high results in reduced efficiency for Arrow readers. The
policy used can be more sophisticated and even learned on-the-fly [Pavlo et al. [2017]], but
this is not central to the arguments of this thesis and is thus left for future work.

This observation scheme misses changes from aborted transactions because GC does
not unlink their records. Additionally, accesses are not immediately observed because of
latency introduced by the GC queue. As a result, the observer may identify a block as
cold by mistake when they are still being updated. The DBMS reduces this impact by
ensuring that the transformation algorithm is fast and lightweight. There are two failure
cases here: (1) a user transaction aborts due to conflicts with the transformation process
or (2) the user transaction stalls. There is no way to prevent both cases, and eliminating
one requires heavy-weight changes that make the other more severe. Our solution is a
two-phase algorithm. The first phase is transactional and operates on a microsecond scale,

28



minimizing the possibility of aborts. The second phase eventually takes a block-level lock,
but allows preemption from user transactions as much as possible, and has a short critical
section.

5.3 Transformation Algorithm

Once the system identifies cooling blocks, it performs a transformation pass to prepare the
block for readers expecting Arrow. As mentioned in 5.1, the DBMS needs to first compact
each block to eliminate any gaps and then copy variable-length values into a new contiguous
buffer. There are three approaches to ensure safety: (1) copying the block, (2) performing
operations transactionally, or (3) taking a block-level lock to prevent races with potential
user transactions. None of these is ideal. The first approach is expensive, especially when
most of the block data is not changed. Making the transformation process transactional adds
additional overhead and results in user transaction aborts. A block-level lock stalls user
transactions and limits concurrency in the common case even without transformation. As
shown in 5.3, our system uses a hybrid two-phase approach that combines transactions for
tuple movement, but elides transactional protection and locking the block when constructing
variable-length buffers for Arrow. We now discuss these phases in more detail.

5.3.1 Phase #1: Compaction

The access observer identifies a compaction group as a collection of blocks with the same
layout to transform. Within a group, the system uses tuples from less-than-full blocks to fill
gaps in others and recycle blocks when they become empty. The DBMS uses a transaction
in this phase to perform all the reads and subsequent operations.

The DBMS starts by scanning the allocation bitmap of every block to identify empty
slots that need to be filled. The goal of this phase is for all tuples in the compaction group
to be “logically contiguous”. Consider a compaction group consisting of t tuples and there
are b many blocks with each block having s many slots, after compaction, there should

29



be
⌊
t
s

⌋
many blocks completely filled, one block with slots in [0, t mod s) filled, and the

others empty.

The system performs shuffling of tuples between blocks as a delete followed by an
insert using the transformation transaction. This operation is potentially expensive if the
transaction needs to update indexes. The goal of our algorithm, therefore, is to minimize
the number of such delete-insert pairs. We now present our algorithm. Observe first that
the problem can be decomposed into two parts:

1. Select a block set F to be the
⌊
t
s

⌋
blocks that are filled in the final state. Also select a

block p to be partially filled and hold t mod s tuples. The rest of the blocks, E, are
left empty.

2. Fill all the gaps within F ∪ {p} using tuples from E ∪ {p}, and reorder tuples within
p to make them laid out contiguously.

Define Gapf to be the set of unfilled slots in a block f , Gap′f to be the set of unfilled
slots in the first t mod s slots in a block f , Filledf to be the set of filled slots in f , and
Filled′f to be the set of filled slots not in the first t mod s slots in f . Then, for any legal
selection of F , p, and E,

|Gap′p|+ Σf∈F |Gapf | = |Filled′p|+ Σe∈E|Fillede|

because there are only t tuples in total. Therefore, given F , p, and E, an optimal movement
is any one-to-one movement between Filled′p ∪

⋃
e∈E Fillede and Gap′p ∪

⋃
f∈F Gapf .

The problem is now reduced to finding the optimal F , p and E.

1. Scan through each block’s allocation bitmap for empty slots.

2. Sort the blocks by number of empty slots in ascending order.

3. Pick out the first
⌊
t
s

⌋
blocks to be F .

4. Pick an arbitrary block as p and the rest as E.

This choice bounds our algorithm to within t mod s of the optimal number of move-
ments, and can be used as an approximate solution. Every gap in F needs to be filled with
one movement, and our selection of F results in fewer movements than any other choice.

30



Compaction

Access
Statistics

Varlen Gather

Arrow Blocks

Garbage
Collector

Block
Transformer

Transform Queue

(1) Identify blocks that
have not been modified
for some time threshold

(2) Add block to
transform queue 

(3) Pull from transform
queue and inspect block

state flag

(4b) Build contiguous
buffer for varlen
values for Arrow

(4a) Transactionally shuffle
tuples between blocks to
eliminate gaps in blocks

Hot
Block

Cooling
Block

Frozen
Block

. 

. 

. 

. 

. 

. 

User
Transaction

GC Queue

Completed
Transactions

Figure 5.3: Transformation to Arrow – CMDB implements a pipeline for lightweight in-memory

transformation of cold data to Arrow.

In the worst case, the chosen p is empty in the first t mod s slots, and the optimal one is
filled, resulting in at most t mod s movements more than the optimal choice. In practice,
the system chooses the block with fewest unfilled slots not in F to be p, and the worst
case scenario is unlikely to happen. The system then sequentially fills all empty slots from
F ∪ {p} using tuples from E ∪ {p}.

For the optimal solution, the algorithm needs to additionally find the best value of p,
which it achieves by trying every block. Given p, the algorithm picks the next best |F |
blocks for F , and calculates |Gap′p|+ Σf∈F |Gapf | as the total number of movements. An
additional scan of the block header is required, however, to obtain the values of Gap′p

for each p. The marginal reduction in number of movements does not always justify this
additional scan. We evaluate this algorithm experimentally in 7.

31



5.3.2 Phase #2: Gathering

The system now moves variable-length values with the transformed block into a contiguous
buffer in compliance with Arrow. As we have discussed previously, neither transactional
updates nor block locks are efficient enough by themselves. Therefore, we present a novel
scheme of multi-stage locking that relies on the garbage collector to guard against races
that otherwise cannot be prevented without explicit locking for every operation. In the
naïve implementation, it suffices to continue updating the table in the same transaction used
by the compaction phase. The system allocates a buffer, copies scattered variable length
values into it, and updates the tuple’s VarlenEntry columns to point to the new buffer.
Eventually, either the transformation transaction is aborted due to conflicts, or it succeeds
in updating every tuple in the blocks being transformed. Because our system is no-wait,
any other transaction that attempt to update values in those blocks will be aborted, and the
correctness of the operation is guaranteed.

Unfortunately, as we will demonstrate in 7, this naïve approach has suboptimal per-
formance. This is because transactional updates do additional work to ensure isolation;
transactional updates have irregular memory access patterns compared to sequential in-place
updates, and uses the expensive compare-and-swap instruction for every tuple. Because
we already assume the blocks being processed here are no longer transactionally updated,
transactions incur much overhead to guard against contention that rarely happens. There-
fore, to speed up the gathering phase further, it is necessary to elide transactional protection
and use locking for the duration of the operation. That said, introducing a shared lock at
the block level may slow down the common case scenario as well. To achieve the best of
both worlds,

We extend the block status flag with two additional values: cooling and freezing. The
former indicates intent of the transformation thread to lock, while the latter serves as an
exclusive lock that blocks user transactions. User transactions are allowed to preempt
the cooling status using a compare-and-swap and set the flag back to hot. When the
transformation algorithm has finished compaction, it sets the flag to cooling and scans
through the block to check for any version pointers indicating concurrent modification

32



of the block. If there are no versions, and the cooling status has not been preempted, the
transformation algorithm can change the block’s status to freezing and obtain the exclusive
lock. The cooling flag acts as a sentinel value that detects any concurrent transactions that
could have modified the block while the algorithm is scanning.

This scheme of access coordination introduces a race as shown in 5.4. A thread could
have finished checking the status flag and was scheduled out. Meanwhile the transformation
algorithm runs and sets the block to freezing. When the thread wakes up again, it proceeds
to update, which is unsafe. Normally, there is no way to prevent this without locks, because
the checking of block status and the update form a critical section but cannot otherwise be
atomic.

To address this, the system relies on the visibility guarantees made by GC. Recall from
4.3 that GC does not prune any versions that is still visible to running transactions. If
the algorithm sets the status flag to cooling after all the movement of tuples but before
the compaction transaction commits, the only transactions that could incur the race in 5.4
must overlap with the compaction transaction. Therefore, as long as such transactions
are alive, the garbage collector cannot unlink records of the compaction transaction. The
algorithm can commit the compaction transaction and wait for the block to reappear in
the processing queue for transformation. The status flag of cooling guards against any
transactions modifying the block after the compaction transaction committed. If the
transformation algorithm scans the version pointer column and find no active version, then
any transaction that was active at the same time as the compaction transaction must have
ended. It is therefore safe to change the flag of the transformed block into freezing.

After the transformation algorithm has obtained exclusive access to the block, it scans
each variable-length column and performs the gathering process in-place. In the same
pass, the algorithm also gathers metadata information such as null count for Arrow. When
the process is complete, the system can safely mark the block as frozen and allow access
from in-place readers. Throughout the process, transactional reads of the tuples within the
block can still proceed regardless of the block status. The gathering phase changes only the
physical location of values and not the logical content of the table. Because a write to any

33



Transaction 1

if (flag != HOT) ...

set flag = COOLING

...

set flag = FREEZING

critical sectionUpdate

Transformation
Thread

Time

Text

Figure 5.4: Check-and-Miss on Block Status – A naïve implementation results in a race within

the critical section of the gathering phase.

aligned 8-byte address is atomic on a modern architecture [int], reads can never be unsafe
as all attributes within a block are aligned.

5.4 Additional Considerations

We have presented our algorithm for transforming cold blocks into the Arrow format.
We now demonstrate its flexibility by discussing an alternative backend of dictionary
compression using the same algorithm. We also give a more detailed description of memory
management within the algorithm for thread and memory safety.

5.4.1 Dictionary Encoding

Dictionary encoding is a common compression technique used in read-optimized databases,
where each attribute value is replaced with an index into a value table [Holloway and DeWitt
[2008]]. Arrow supports dictionary encoded columns natively in its DDL and RPC protocol.
It is possible to implement an alternative gathering phase where instead of building a
contiguous variable-length buffer, the system builds a dictionary and an array of dictionary
codes. Much of the algorithm remains the same; the only difference is that within the critical
section of the gathering phase, the algorithm now scans through the block twice. On the
first scan, the algorithm builds a sorted set of values for use as a dictionary. On the second

34



scan, the algorithm replaces pointers within VarlenEntrys to point to the corresponding
dictionary word and builds the array of dictionary codes. Although the algorithm remains
the same, dictionary compression is an order of magnitude more expensive than a simple
variable-length gather. This difference calls for a more conservative transformation strategy
to minimize potential interference with running transactions.

5.4.2 Memory Management

Since the algorithm never blocks readers, the system cannot deallocate memory that can
be visible to a transaction running concurrently with the transformation process. In the
compaction phase, because the system performs writes using transactions, the GC can
handle memory management. The only caveat here is that when moving tuples, the system
needs to make a copy of any variable-length value being pointed to rather than simply
copying the pointer. This is because the garbage collector does not reason about the transfer
of ownership of variable-length values between two versions, and will deallocate them after
seeing the deleted tuple. We do not observe this to be a performance bottleneck.

In the gathering phase, because the system elides transactional protection, memory
management is more difficult. Fortunately, as discussed in 4.3, our system’s GC im-
plements timestamp-based protection that is similar to Microsoft’s Faster epoch-based
framework [Chandramouli et al. [2018]]. We extend our GC to accept arbitrary actions
associated with a timestamp in the form of a callback, which it promises to invoke only
after the oldest alive transaction in the system is younger than the given timestamp. The
system utilizes this framework to register an action that reclaims memory for this gathering
phase, which will be run by the GC only after no running transaction can possibly access it.

35



36



Chapter 6

Data Export

Now that we have described how the DBMS converts data blocks into the Arrow format,
we discuss how to enable external applications to access these blocks. In this section,
we present five approaches for enabling applications to access the DBMS’s native Arrow
storage to speed up analytical pipelines. We discuss these alternatives in the order of the
engineering effort required to change an existing system (from easiest to hardest).

6.1 Improved Wire Protocol for SQL

There are still good reasons for applications to interact with the DBMS exclusively through
a SQL interface (e.g., developer familiarity, existing ecosystems). If the DBMS provides
other access methods as an alternative to SQL, then developers have to reason about their
interactions with the transactional workload. In this case, Arrow improves the performance
of network protocols used in SQL interfaces. As Raasveldt and Mühleisen [2017] pointed
out, row-major wire protocols are slow, and network performance can be improved by
using a vectorized protocol. The DBMS can adopt Arrow as the format in such a protocol
and leave other components of the system unchanged, such as the query engine. This
approach effectively reduces the overhead of the wire protocol in data movement. It does
not, however, achieve the full potential speed-up from our storage scheme. This is because

37



the DBMS still copies data and assembles it into packets, and then the client must parse
these packets. Although Arrow reduces the cost for both, it is possible to eliminate these
two steps altogether.

6.2 Alternative Query Interface

As mentioned in 2.1, workloads that extract data in bulk for external processing do not
require the full power of a transactional DBMS. Such workloads often execute read-only
queries at a lower isolation level, and use little of the vast feature set of a DBMS. Much of
the DBMS wire protocol, such as settings configurations and transactional status, is useless
for such workloads. It is therefore possible to introduce a specialized interface that is simpler
than SQL and optimize it for the purpose of data export. Arrow provides a native RPC
framework based on gRPC called Flight [apa [b]] that avoids expensive serialization when
transmitting data through low-level extensions to gRPC’s internal memory management.
This allows a DBMS using this framework to expose an RPC service to applications to
retrieve entire blocks.

Although the RPC model can be used to support all of SQL, we observe most significant
speed-up for queries that do not generate new attributes in its result set. If the query only
filters data and does not compute or derive new attributes (e.g., aggregations, window
functions), Arrow Flight can take full advantage of the existing Arrow blocks and achieve
zero-copy communication. The DBMS can specialize query handling logic for these cases
and compute only a selection vector over data blocks. The data is then directly streamed to
the client using Arrow Flight. To handle hot blocks, the system starts a transaction to read
the block and constructs the Arrow buffer on-the-fly. The cost of handling hot blocks is no
worse than the current approach of materializing and serializing the result set. Compared
to the previous approach, this approach eliminates the deserialization cost entirely for the
client, but still requires the DBMS to assemble packets over TCP/IP.

38



Figure 6.1: Client-Side RDMA – An illustration of the message flow between DBMS and client if

the DBMS implements client-side RDMA

6.3 Client-Side RDMA

To eliminate the serialization step altogether, one can consider Remote Direct Memory
Access (RDMA) technologies. RDMA bypasses the OS’s network stack for both sides of
the connection and permits high-throughput, low-latency networking. With this approach,
the client sends a query to the DBMS through the RPC protocol described above. Instead
of returning data blocks directly, the DBMS returns metadata about the result size and
its schema. The client responds with instructions for the server about where to write the
result in the client’s memory over RDMA. The DBMS then notifies the client through a
RPC response when the transfer is complete. Aside from increased data export throughput,
another benefit of using a client-side approach is that the client’s CPU is idle during
RDMA operations. Thus, the client can start working on partially available data, effectively

39



pipelining the data processing. To achieve this, the DBMS can send messages for partial
availability of data periodically to communicate if some given chunk of data has already
been written. This approach reduces the network traffic close to its theoretical lower-bound,
but still requires additional processing power on the server to handle and service the RPC
request. An illustration of this is shown 6.1.

6.4 Server-Side RDMA

Allowing clients to read the DBMS’s memory over RDMA bypasses the CPU when
satisfying bulk export requests. This is beneficial to an OLTP DBMS because the system
no longer needs to divide its CPU resources between serving transactional workloads
and bulk-export jobs. Achieving server-side RDMA, however, requires major changes to
the DBMS. Firstly, RDMA is a single-sided communication paradigm, and the server is
unaware the completion of a client request. This makes it difficult to lock the Arrow block
and guard against updates into them. If the system waits for a separate client completion
message, the round-trip time introduces latency to any updating transactions. To avoid
this, the DBMS has to implement some form of a lease system to invalidate readers for
transactional workloads that have stricter latency requirements. In addition to introducing
complexity in the concurrency control protocol of the DBMS, this approach also requires
that the client knows beforehand the address of the blocks it needs to access, which must
be conveyed through a separate RPC service or some external directory maintained by the
DBMS. We envision these challenges to be significant in achieving server-side RDMA for
data export. An illustration of this is shown in 6.2.

6.5 External Tool Execution on the DBMS

Server-side and client-side RDMA allows external tools to run with data export overhead
that is close to its theoretical lower bound. The major issue, however, is that RDMA
requires specialized hardware and is only viable when the application is co-located in the

40



Figure 6.2: Server-Side RDMA – An illustration of the message flow between DBMS and client

if the DBMS implements server-side RDMA. As shown, the message flow involved is much more

complex than client-side RDMA.

same data center as the DBMS. This is unlikely for a data scientist working on a personal
work station. To improve availability, we can leverage Arrow as an API between the DBMS
and external tools. Because Arrow is a standardized memory representation of data, if
external tools accept Arrow as input, it is possible to run the program on the DBMS by
replacing its Arrow pointers with mapped memory images from the DBMS process. his
brings a set of problems involving security, resource allocation, and software engineering.
By making an analytical job portable across machines, it also allows dynamic migration of

41



a task to a different server. In combination with RDMA, this leads to true serverless HTAP
processing where the client specifies a set of tasks, and the DBMS dynamically assembles
a heterogeneous pipeline to efficiently execute it with low data movement cost.

42



Chapter 7

Evaluation

We now present an analysis of our system architecture and design choices. For this
evaluation, we implemented our storage engine in the CMDB DBMS [cmu]. We performed
our evaluation on a machine with a dual-socket 10-core Intel Xeon E5-2630v4 CPU,
128 GB of DRAM, and a 500 GB Samsung 970 EVO Plus SSD. For each experiment, we
use numactl to load the database into the same NUMA region to eliminate interference from
cross-socket communication. All transactions execute as JIT-compiled stored procedures
with logging enabled. We run each experiment ten times and report the average result over
all runs.

We first evaluate our OLTP performance and interference from the transformation pro-
cess. We then provide a set of micro-benchmarks to study the performance characteristics
of the transformation algorithm. Next, we compare data export methods in our system
against the common methods used in practice.

7.1 OLTP Performance

In this first experiment, we measure the DBMS’s OLTP performance to demonstrate
the viability of our storage architecture and that our proposed transformation process
is lightweight. We use TPC-C [The Transaction Processing Council [2007]] with one

43



2 4 6 8 10
#Worker Threads

0

40

80

120

160
Th

ro
ug

hp
ut

 (K
 T

xn
/s

)
No Transformation
With Transformation

Figure 7.1: OLTP Performance: Throughput – Throughput measurements of the DBMS for the

TPC-C workload when varying the number of worker threads.

warehouse per client to minimize contention. CMDB uses the OpenBw-Tree for primary
and secondary indexes for each table [Wang et al. [2018]].

We report the DBMS’s throughput and the state of blocks at the end of each run. We
use taskset to limit the number of CPU cores available to be number of worker threads
per trial plus logging and GC threads to account for the additional resource required by the
transformation process. We deploy the DBMS with three transformation configurations:
(1) disabled, (2) variable-length gather, and (3) dictionary compression. For trials with
CMDB’s block transformation enabled, we use an aggressive threshold time of 10 ms and
only target the tables that generate cold data: ORDER, ORDER_LINE, HISTORY, and ITEM. In
each run, the compactor attempts to process all blocks from the same table in the same
compaction group.

The results in 7.1 show that the DBMS achieves good scalability and incurs little
overhead from the transformation process (1.8–15%). The interference becomes more
prominent as the amount of work increases for the transformation thread due to more
workers executing transactions. At 10 worker threads, there is reduced scaling or even
a slight drop when transformation is enabled. This is because our machine has 10 CPU
cores, and thus the GC and logging threads do not have dedicated cores. The problem of

44



2 4 6 8 10
#Worker Threads

0

20

40

60

80

100
%

Bl
oc

ks

Varlen Gather Frozen
Varlen Gather Cooling
Dictionary Compression Frozen
Dictionary Compression Cooling

Figure 7.2: OLTP Performance: Block State Coverage – Block state coverage of the DBMS at

the end of a TPC-C run when varying the number of worker threads.

threads swapping is made worse with the additional transformation thread. As expected,
using dictionary compression as the gathering step increases the performance impact of our
transformation process, as it is computationally more intensive.

To better understand this issue, we measured the abort rate of transactions and the
number of transactions that was stalled due to the transformation process. We did not
observe a statistically significant amount of change in abort rates and a negligible number
of stalled transactions (<0.01%) for all trials.

In 7.2, we report the percentage of blocks in the cooling and frozen state at the end of
each run. We omit results for the ITEM table because it is a read-only table and its blocks
are always frozen. Because the DBMS does not transform any blocks that have empty
slots and can be inserted into, these blocks remain in the hot state and thus we do not
achieve 100% block coverage. These results show that the DBMS achieves nearly complete
coverage up to 6 workers, but starts to lag behind for higher numbers of worker threads.
This is because of increased work and more contention on limited CPU resources when
approaching the number of physical cores available. In accordance with our design goal,
the transformation process yields resources to user transactions in this situation, and does
not result in a significant drop in transactional throughput.

45



7.2 Transformation to Arrow

We next evaluate our transformation algorithm and analyze the effectiveness of each sub-
component. We use micro-benchmarks to demonstrate the DBMS’s performance when
migrating blocks from the relaxed Arrow format to their canonical form. Each trial of this
experiment simulates one transformation pass in a system to process data that has become
cold since the last invocation.

The database for this experiment has a single table of ∼16M tuples with two columns:
(1) a 8-byte fixed-length column and (2) a variable-length column with values between
12–24 bytes. Under this layout, each block holds ∼32K tuples. We also ran these same
experiments on a table with more columns but did not observe a major difference in trends.
We use a synthetic workload to prevent interference from transactions. Each transaction
selects a tuple slot at random (uniform distribution) and chooses whether to insert an empty
tuple to simulate deletion or to populate it with random data.

7.2.1 Throughput

Recall from 5.3 that our transformation algorithm is a hybrid two-phase implementation.
For this experiment, we assume there is no thread contention and run the two phases
consecutively without waiting. We benchmark both versions of our algorithm: (1) gathering
variable-length values and copying them into a contiguous buffer (Hybrid-Gather) and
(2) using dictionary compression on variable-length values (Hybrid-Compress). We also
implemented two baseline approaches for comparison purposes: (1) read a snapshot of the
block in a transaction and copy into a new Arrow buffer using the Arrow API (Snapshot)
and (2) perform the transformation in-place in a transaction (In-Place). We use each
algorithm to process 500 blocks (1 MB each) and vary the percentage of empty slots in
each run.

The results in 7.3a show that our transformation algorithm with variable-length gather
(Hybrid-Gather) outperforms the alternatives, achieving sub-millisecond performance when
blocks are mostly full (i.e., the number of empty slots is less than 5%). The DBMS’s

46



Transformation Algorithm
Hybrid-Gather Snapshot Transactional In-Place Hybrid-Compress

0 1 5 10 20 40 60 80
%Empty Slots

0

200

400

600

800

1000

Pr
oc

es
sin

g 
Ra

te
 (b

lo
ck

/s
)

(a) Throughput (50% Variable-Length Columns)

0 1 5 10 20 40 60 80
%Empty Slots

102

103

104

Pr
oc

es
sin

g 
Ra

te
 (b

lo
ck

/s
)

Compaction
Varlen-Gather
Dictionary Compression

(b) Performance Breakdown (50% Variable-Length Columns)

Figure 7.3: Transformation Throughput – Measurements of the DBMS’s transformation algo-

rithm throughput and movement cost when migrating blocks from the relaxed format to the canonical

Arrow format.

47



performance using approach drops, however, as this number increases. This is because
more empty slots requires the DBMS to move more tuples. Such movement is random
and is an order of magnitude more expensive than the sequential access pattern of the
copying implementation (Snapshot). As the blocks become more than half empty in
these experiments, the number of tuples that the DBMS moves decreases and thus the
throughput increases. This trend is also evident for all other versions of the algorithm.
The transactional approach (In-Place) performs poorly because the DBMS copies values
for version maintenance and then updates each tuple’s version chain one-by-one, which
is an order of magnitude slower than a sequential memory copy. Hybrid-Compress is
also an order of magnitude slower than Hybrid-Gather and Snapshot because building the
dictionary is a computationally expensive procedure.

To understand the behavior of these algorithms better, we provide breakdown of the
throughput for each phase in 7.3b. The graph is shown in log-scale due to the large
range of change in performance. When the number of empty slots in a block is low (i.e.,
<5%), the DBMS completes the compaction phase in microseconds because it is reduced
to a simple bitmap scan. In this best case scenario, the cost of variable-length gather
dominates. Because transactional modification is several orders of magnitude slower than
raw memory access, the performance of the compaction phase drops as the number of empty
slots increase, and starts to dominate the cost of Hybrid-Gather at 5% empty. Dictionary
compression is always the bottleneck in the Hybrid-Compress approach.

We next measure how the column types affect the performance of the four transformation
algorithms. We run the same micro-benchmark workload but make the database’s columns
either all fixed-length (7.4a) or variable-length (7.4b). These results show that our hybrid
algorithm’s performance does not change compared to 7.3a based on the data layouts.
Hybrid-Compress is equivalent to Hybrid-Gather when all the columns are fixed-length
because there are no variable-length data to compress. Snapshot performs better when there
are more variable-length values in a block because it does not update nor copy the metadata
associated with each value. Given this, we show only 50% variable-length columns in the
table for other experiments.

48



Transformation Algorithm
Hybrid-Gather Snapshot Transactional In-Place Hybrid-Compress

0 1 5 10 20 40 60 80
%Empty Slots

0

500

1000

1500

2000

2500

3000

3500

Pr
oc

es
sin

g 
Ra

te
 (b

lo
ck

/s
)

(a) Throughput (Fixed-Length Columns)

0 1 5 10 20 40 60 80
%Empty Slots

0

100

200

300

400

500

600

700

Pr
oc

es
sin

g 
Ra

te
 (b

lo
ck

/s
)

(b) Throughput (Variable-Length Columns)

Figure 7.4: Transformation Throughput on Alternative Layouts – Measurements of the

DBMS’s transformation algorithm throughput and when varying the layout of the blocks being

transformed.

49



7.2.2 Write Amplification

The throughput results in the previous experiment shows that the Snapshot approach
outperforms our hybrid algorithm when blocks are around 20% empty. These measurements,
however, fail to capture the overhead of the DBMS updating the index entries for any tuples
that have their physical location in memory change [Wu et al. [2017]]. The effect of this
write amplification depends on the type and number of indexes on the table, but the cost for
each tuple movement is constant given a table. We can therefore approximate this overhead
through the total number of tuple movements that trigger index updates. The Snapshot

algorithm always moves every tuple in the compacted blocks. We compare its performance
against the approximate and optimal algorithm presented in 5.3.

As shown in 7.5, our algorithm is several orders of magnitudes more efficient than
Snapshot in the best case, and twice as efficient when the blocks are half empty. The
gap narrows as the number of empty slots per block increases. There is little difference
in the result of the approximate algorithm versus the optimal algorithm. That is, the
approximate approach generates almost the same physical configuration for blocks as the
optimal approach. Given this, combined with the fact that the optimal algorithm requires
one more scan across the blocks than the approximate one, we conclude that the marginal
improvement does not justify the cost. Thus, we use the approximate algorithm for all other
experiments in this thesis.

7.2.3 Sensitivity on Compaction Group Size

For the next experiment, we evaluate the effect of the compaction group size on performance.
The DBMS groups blocks together when compacting and frees up any blocks that are empty
after the transformation process. This grouping enables the DBMS to reclaim memory
from deleted slots. The size of each compaction group is a tunable parameter in the system.
Larger group sizes results in the DBMS freeing more blocks, but increases the size of the
write-set for compacting transactions, which increases the likelihood that they will abort
due to a conflict. We use the same setup from the previous experiment, performing a single
transformation pass through 500 blocks while varying group sizes to evaluate the trade-offs.

50



0 1 5 10 20 40 60 80
%Empty Slots

0

2

4

6

8

10

12

14

16
M

 T
up

le
s M

ov
ed

snapshot
approximate algorithm
optimal algorithm

Figure 7.5: Write Amplification – Total write amplification is number of tuple movement times a

constant for each table, decided by the layout and number of indexes on that table.

Numbers of blocks freed with different compaction group sizes is shown in 7.6. When
blocks are only 1% empty, larger group sizes are required to free any memory. As blocks
become more empty, smaller group sizes perform increasingly well, and larger values bring
only marginal benefit. The cost of larger transactions is shown in 7.7 as the size of their
write-sets. Size of the write-set increases almost linearly relative to compaction group size,
which suggests that the total number of tuple movements decreases only slowly across
possible values. For smaller compaction group sizes, the total number of movements is
divided up into more transactions, leading to smaller write-sets. The best fixed group
size is between 10 and 50, which balances good memory reclamation and relatively small
write-sets. To achieve better performance, an intelligent policy needs to dynamically form
groups of different sizes based on the blocks it is compacting.

7.3 Data Export

For this experiment, we evaluate the DBMS’s ability to export data and how our Arrow-
based storage approach affects this process. We compare four of the data export methods
that we described in sec:export: (1) RDMA over Ethernet with Arrow storage, (2) the

51



Compaction Group Size
1 10 50 100 250 500

1 5 10 20 40 60 80
%Empty Slots

0

50

100

150

200

250

300

350

400

#B
lo

ck
s F

re
ed

(a) Number of Blocks Freed

Figure 7.6: Sensitivity on Compaction Group Size – Efficacy measurements of the transformation

algorithm when varying the number of blocks per compaction group while processing 500 blocks.

The percentage of empty slots is what portion of each block is empty (i.e., does not contain a tuple).

We measure the number of blocks freed during one round.

Arrow Flight RPC, (3) vectorized wire protocol from Raasveldt and Mühleisen [2017], and
(4) row-based PostgreSQL wire protocol. We use two servers with eight-core Intel Xeon
D-1548 CPUs, 64 GB of DRAM, and Dual-port Mellanox ConnectX-3 10 GB NIC (PCIe
v3.0, 8 lanes).

We use the ORDER_LINE table from TPC-C as the table to export. We load the table
with 6000 blocks (∼7 GB total size, including variable-length values) on the server, and
use the different export methods to send the entire table over to the client side. For the
DBMS wire protocols, the client then transforms the data into Arrow blocks. To simulate
the interference of transactions updating the database during an export session, we force the

52



Compaction Group Size
1 10 50 100 250 500

1 5 10 20 40 60 80
%Empty Slots

103

104

105

106

107

Tx
n 

W
rit

e-
Se

t S
ize

 (#
 o

ps
)

(a) Write-Set Size of Transactions

Figure 7.7: Sensitivity on Compaction Group Size – Efficacy measurements of the transformation

algorithm when varying the number of blocks per compaction group while processing 500 blocks.

The percentage of empty slots is what portion of each block is empty (i.e., does not contain a tuple).

We measure the average write-set size of transactions in the transformation algorithm.

algorithm to treat some portion of the blocks in the table with the hot status. This causes
the DBMS to transactionally read and materialize the blocks before transmitting them to
the client.

The results in fig:export shows that our system export data orders-of-magnitude faster
than the base-line implementations with Arrow Flight. When all blocks are frozen, RDMA
is close to saturating the full bandwidth, and Arrow Flight saturates up to 80% of the
available network bandwidth. The performance benefit of using Arrow Flight and RDMA
diminishes as more blocks are hot and the DBMS has to materialize them. Interestingly,
the performance of RDMA drops faster than Arrow Flight, most likely because the buffer

53



0 1 5 10 20 40 60 80 100
%Hot Blocks

0

200

400

600

800

1000
Da

ta
 E

xp
or

t S
pe

ed
 (M

B 
/ s

) RDMA over Ethernet
PostgreSQL Wire Protocol
Vectorized Protocol
Arrow-Flight RPC

Figure 7.8: Data Export – Measurements of data export speed of CMDB using different export

mechanisms, with varying percentage of blocks treated as hot.

used for materializing hot blocks is still in CPU cache at time of export, making it faster for
the CPU (Arrow Flight) to access it compared to the NIC (RDMA). When the system has
to materialize every block, the performance of these two methods drops to be equivalent
to the vectorized wire protocol, as expected. Both the PostgreSQL wire protocol and
the vectorized protocol benefit little from eliding transactions on cold, read-only data.
This demonstrates that the primary bottleneck of the data export process in a DBMS is
serialization and deserialization to and from a wire format, not network bandwidth. Using
Arrow as a drop-in replacement wire protocol in the current architecture does not achieve its
full potential. Instead, storing data in a common format reduces this serialization cost and
improves data export performance. In a modern setting, the DBMS wire protocol should
prioritize elimination of serialization/deserialization step over compression.

54



Chapter 8

Conclusion and Future Work

We presented CMDB’s Arrow-native storage architecture for in-memory OLTP workloads.
The system implements a multi-versioned, delta-store transactional engine directly on top
of Arrow. To ensure OLTP performance, the system allows transactions to work with a
relaxed Arrow format and employs a lightweight in-memory transformation process to
convert cold data into full Arrow in milliseconds. This allows the DBMS to support bulk
data export to external analytical tools at zero serialization overhead. We evaluated our
implementation and show good OLTP performance, while achieving orders-of-magnitudes
faster data export compared to current approaches.

We implemented three out of the five proposed methods of utilizing native Arrow
storage. The remaining two, server-side RDMA and external tool execution on DBMS
requires major changes to the existing DBMS architecture. On the other hand, these two
methods will blur the application/DBMS boundary and unlock new ways of assembling
data processing pipelines in a cloud setting. We plan to extend our work to explore and
implement these two methods in the future.

55



56



Bibliography

Apache Arrow. https://arrow.apache.org/, a. 1.1

Apache Arrow Source Code. https://github.com/apache/arrow, b. 6.2

Apache ORC. https://orc.apache.org/, c. 1.1, 3.1

Carnegie Mellon’s New DBMS. https://github.com/cmu-db/terrier. 1.2, 7

Databricks delta lake. 3.1

Dremio. https://docs.dremio.com/. 3.1

Apache Hive. https://hive.apache.org/. 3.1

Apache Impala. https://hive.apache.org/. 3.1

Guaranteed atomic operations on intel processors. https://www.intel.com/content/

dam/www/public/us/en/documents/manuals/64-ia-32-architectures-

software-developer-system-programming-manual-325384.pdf##page=258.
5.3.2

Apache Kudu. https://kudu.apache.org/overview.html, a. 3.1

Transaction semantics in apache kudu. https://kudu.apache.org/docs/

transaction_semantics.html, b. 3.1

Microsoft analytics platform system. 3.3

57

https://arrow.apache.org/
https://github.com/apache/arrow
https://orc.apache.org/
https://github.com/cmu-db/terrier
https://docs.dremio.com/
https://hive.apache.org/
https://hive.apache.org/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf##page=258
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf##page=258
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf##page=258
https://kudu.apache.org/overview.html
https://kudu.apache.org/docs/transaction_semantics.html
https://kudu.apache.org/docs/transaction_semantics.html


olap4j: Open Java API for OLAP. http://www.olap4j.org. 3.3

Omnisci gpu-accelerated analytics. https://www.omnisci.com/. 3.1

Apache Parquet. https://parquet.apache.org/. 1.1

Ibm db2 pure scale. https://www.ibm.com/support/knowledgecenter/en/

SSEPGG_10.5.0/com.ibm.db2.luw.licensing.doc/doc/c0057442.html. 3.3

Oracle real application cluster. 3.3

Microsoft sql server with smb direct. 3.3

Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-stores vs. row-stores:
How different are they really? In SIGMOD, pages 967–980, 2008. 2.1

Anastassia Ailamaki, David J. DeWitt, and Mark D. Hill. Data page layouts for relational
databases on deep memory hierarchies. The VLDB Journal, 11(3):198–215, November
2002. ISSN 1066-8888. 3.2, 4.2

Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. H2o: A hands-free adaptive
store. In Proceedings of the 2014 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’14, pages 1103–1114, 2014. ISBN 978-1-4503-2376-5.
2.3

Joy Arulraj, Andrew Pavlo, and Prashanth Menon. Bridging the archipelago between row-
stores and column-stores for hybrid workloads. In Proceedings of the 2016 International

Conference on Management of Data, SIGMOD ’16, pages 583–598, 2016. 2.3, 3.2

Philip A. Bernstein and Nathan Goodman. Multiversion concurrency control&mdash;theory
and algorithms. ACM Trans. Database Syst., 8(4):465–483, December 1983. ISSN
0362-5915. doi: 10.1145/319996.319998. URL http://doi.acm.org/10.1145/

319996.319998. 4.1

Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian. The end
of slow networks: It’s time for a redesign. Proc. VLDB Endow., 9(7):528–539, March
2016. ISSN 2150-8097. 3.3

58

http://www.olap4j.org
https://www.omnisci.com/
https://parquet.apache.org/
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.5.0/com.ibm.db2.luw.licensing.doc/doc/c0057442.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_10.5.0/com.ibm.db2.luw.licensing.doc/doc/c0057442.html
http://doi.acm.org/10.1145/319996.319998
http://doi.acm.org/10.1145/319996.319998


Peter Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-pipelining query
execution. In CIDR, 2005. 2.1

Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski, James Hunter,
and Mike Barnett. Faster: A concurrent key-value store with in-place updates. In
Proceedings of the 2018 International Conference on Management of Data, SIGMOD
’18, pages 275–290, 2018. ISBN 978-1-4503-4703-7. 4.3, 5.4.2

David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R Stonebraker,
and David A. Wood. Implementation techniques for main memory database systems. In
Proceedings of the 1984 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’84, pages 1–8, New York, NY, USA, 1984. ACM. ISBN 0-89791-128-
8. doi: 10.1145/602259.602261. URL http://doi.acm.org/10.1145/602259.602261.
4.4

Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzel-
mann, Alex Shamis, Anirudh Badam, and Miguel Castro. No compromises: Distributed
transactions with consistency, availability, and performance. In Proceedings of the 25th

Symposium on Operating Systems Principles, SOSP ’15, pages 54–70, 2015. ISBN
978-1-4503-3834-9. 3.3

Florian Funke, Alfons Kemper, and Thomas Neumann. Compacting transactional data in
hybrid oltp & olap databases. Proc. VLDB Endow., 5(11):1424–1435, July 2012. ISSN
2150-8097. 3.2, 5.2

Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudre-Mauroux, and
Samuel Madden. Hyrise: A main memory hybrid storage engine. Proc. VLDB Endow., 4
(2):105–116, November 2010. ISSN 2150-8097. 3.2

Allison L. Holloway and David J. DeWitt. Read-optimized databases, in depth. Proc.

VLDB Endow., 1(1):502–513, August 2008. ISSN 2150-8097. 5.4.1

Alfons Kemper and Thomas Neumann. Hyper: A hybrid oltp&olap main memory database
system based on virtual memory snapshots. In Proceedings of the 2011 IEEE 27th

59

http://doi.acm.org/10.1145/602259.602261


International Conference on Data Engineering, ICDE ’11, pages 195–206, Washington,
DC, USA, 2011. IEEE Computer Society. ISBN 978-1-4244-8959-6. doi: 10.1109/
ICDE.2011.5767867. URL http://dx.doi.org/10.1109/ICDE.2011.5767867. 3.2

Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and Peter
Boncz. Everything you always wanted to know about compiled and vectorized queries
but were afraid to ask. Proc. VLDB Endow., 11:2209–2222, September 2018. 2.1

Per-Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M. Patel, and
Mike Zwilling. High-performance concurrency control mechanisms for main-memory
databases. Proc. VLDB Endow., 5(4):298–309, December 2011. ISSN 2150-8097. doi:
10.14778/2095686.2095689. URL http://dx.doi.org/10.14778/2095686.2095689.
4.3

Juchang Lee, Hyungyu Shin, Chang Gyoo Park, Seongyun Ko, Jaeyun Noh, Yongjae
Chuh, Wolfgang Stephan, and Wook-Shin Han. Hybrid garbage collection for multi-
version concurrency control in sap hana. In Proceedings of the 2016 International

Conference on Management of Data, SIGMOD ’16, pages 1307–1318, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-3531-7. doi: 10.1145/2882903.2903734. URL
http://doi.acm.org/10.1145/2882903.2903734. 4.3

Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya. Accelerating relational
databases by leveraging remote memory and rdma. In Proceedings of the 2016 Inter-

national Conference on Management of Data, SIGMOD ’16, pages 355–370, 2016.
3.3

Prashanth Menon, Todd C. Mowry, and Andrew Pavlo. Relaxed operator fusion for in-
memory databases: Making compilation, vectorization, and prefetching work together at
last. Proc. VLDB Endow., 11(1):1–13, September 2017. 2.1

C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. Aries: A
transaction recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst., 17(1):94–162, March 1992.

60

http://dx.doi.org/10.1109/ICDE.2011.5767867
http://dx.doi.org/10.14778/2095686.2095689
http://doi.acm.org/10.1145/2882903.2903734


ISSN 0362-5915. doi: 10.1145/128765.128770. URL http://doi.acm.org/10.1145/

128765.128770. 4.4

Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. Fast serializable multi-version
concurrency control for main-memory database systems. In Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, pages
677–689, 2015. 1.1, 2.2, 3.2, 4.1, 4.1

Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma, Prashanth
Menon, Todd Mowry, Matthew Perron, Ian Quah, Siddharth Santurkar, Anthony Tomasic,
Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu, Ran Xian, and Tieying Zhang.
Self-driving database management systems. In CIDR 2017, Conference on Innova-

tive Data Systems Research, 2017. URL https://db.cs.cmu.edu/papers/2017/p42-

pavlo-cidr17.pdf. 5.2

Massimo Pezzini, Donald Feinberg, Nigel Rayner, and Roxane Edjlali. Hybrid transac-
tion/analytical processing will foster opportunities for dramatic business innovation.
https://www.gartner.com/doc/2657815/, 2014. 1.1

Mark Raasveldt and Hannes Mühleisen. Don’t hold my data hostage: A case for client
protocol redesign. Proc. VLDB Endow., 10(10):1022–1033, June 2017. ISSN 2150-8097.
2.1, 3.3, 6.1, 7.3

Kun Ren, Thaddeus Diamond, Daniel J. Abadi, and Alexander Thomson. Low-overhead
asynchronous checkpointing in main-memory database systems. In Proceedings of the

2016 International Conference on Management of Data, SIGMOD ’16, pages 1539–
1551, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3531-7. doi: 10.1145/
2882903.2915966. URL http://doi.acm.org/10.1145/2882903.2915966. 4.4

Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan Bhattacharjee, and Mustafa
Canim. L-store: A real-time OLTP and OLAP system. In Extending Database Technol-

ogy, pages 540–551, 2018. 3.2

61

http://doi.acm.org/10.1145/128765.128770
http://doi.acm.org/10.1145/128765.128770
https://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf
https://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf
https://www.gartner.com/doc/2657815/
http://doi.acm.org/10.1145/2882903.2915966


Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh, and Christof
Bornhövd. Efficient transaction processing in SAP HANA database: the end of a column
store myth. In SIGMOD, pages 731–742, 2012. 2.2, 3.2

Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil
Hachem, and Pat Helland. The end of an architectural era: (it’s time for a complete
rewrite). In VLDB ’07: Proceedings of the 33rd international conference on Very large

data bases, pages 1150–1160, 2007. 5.2

The Transaction Processing Council. TPC-C Benchmark (Revision 5.9.0). http://

www.tpc.org/tpcc/spec/tpcc_current.pdf, June 2007. 7.1

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. Speedy
transactions in multicore in-memory databases. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles, SOSP ’13, pages 18–32, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2388-8. doi: 10.1145/2517349.2522713.
URL http://doi.acm.org/10.1145/2517349.2522713. 4.3

Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang, Michael Kamin-
sky, and David G. Andersen. Building a bw-tree takes more than just buzz words.
In Proceedings of the 2018 ACM International Conference on Management of Data,
SIGMOD ’18, pages 473–488, 2018. 7.1

Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An empirical evaluation
of in-memory multi-version concurrency control. Proc. VLDB Endow., 10(7):781–792,
March 2017. 1.1, 7.2.2

Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael Stonebraker.
Staring into the abyss: An evaluation of concurrency control with one thousand cores.
Proc. VLDB Endow., 8(3):209–220, November 2014. ISSN 2150-8097. doi: 10.14778/
2735508.2735511. URL http://dx.doi.org/10.14778/2735508.2735511. 4.3

62

http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://doi.acm.org/10.1145/2517349.2522713
http://dx.doi.org/10.14778/2735508.2735511

	1 Introduction
	1.1 Motivation for This Research
	1.2 Overview of This Thesis

	2 Background
	2.1 Data Movement and Transformation
	2.2 Column-Stores and Apache Arrow
	2.3 Hybrid Storage Considered Harmful

	3 Related Work
	3.1 Universal Storage Formats
	3.2 OLTP on Column-Stores
	3.3 Optimized DBMS Networking

	4 System Overview
	4.1 Transactions on a Column Store
	4.2 Blocks and Physiological Identifiers
	4.3 Garbage Collection
	4.4 Logging and Recovery

	5 Block Transformation
	5.1 Relaxed Columnar Format
	5.2 Identifying a Cold Block
	5.3 Transformation Algorithm
	5.3.1 Phase #1: Compaction
	5.3.2 Phase #2: Gathering

	5.4 Additional Considerations
	5.4.1 Dictionary Encoding
	5.4.2 Memory Management


	6 Data Export
	6.1 Improved Wire Protocol for SQL
	6.2 Alternative Query Interface
	6.3 Client-Side RDMA
	6.4 Server-Side RDMA
	6.5 External Tool Execution on the DBMS

	7 Evaluation
	7.1 OLTP Performance
	7.2 Transformation to Arrow
	7.2.1 Throughput
	7.2.2 Write Amplification
	7.2.3 Sensitivity on Compaction Group Size

	7.3 Data Export

	8 Conclusion and Future Work
	Bibliography

