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Abstract
Modern computing clusters support a mixture of diverse activities, ranging from

customer-facing internet services, software development and test, scientific research,
and exploratory data analytics. Many schedulers exploit knowledge of pending jobs’
runtimes and resource usages as a powerful building block but suffer significant
performance penalty if such knowledge is imperfect. This dissertation demonstrates
that schedulers that rely on information about job runtimes and resource usages can
more robustly address imperfect predictions by looking at likelihoods of possible
outcomes rather than single point expected outcomes.

This dissertation presents a workload analysis and two case studies of scheduling
systems: 3Sigma and DistSched. Characterization of real workloads revealed that
there exists inherent variability in the job runtimes and resource usage that cannot
be captured by single point estimates. An evaluation of a history-based runtime
predictor with four different traces demonstrates it is not trivial to obtain perfect
runtime predictions in real workloads, especially if the predictor is provided with
insufficient information. 3Sigma is a scheduler that leverages distributions of the
relevant runtime histories rather than just a point estimate derived from it. By
leveraging distribution and mis-estimate mitigation mechanisms, 3Sigma is able to
make more robust scheduling decisions and outperform state-of-the-art scheduling
systems that only rely on limited or no runtime knowledge. DistSched is a scheduler
that leverages distribution of the resource usage (cpu, memory, and cpu-time) and
account for the risk of contention to make robust scheduling decisions. The evaluation
of DistSched demonstrates that leveraging full history and mitigation mechanisms
allows the scheduler to more robustly address the imperfect predictions and perform
almost as good as the hypothetical system equipped with perfect knowledge of
runtime and resource usage.
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Chapter 1

Introduction

Modern computing clusters support a mixture of diverse activities, ranging from customer-
facing internet services, software development and test, scientific research, and exploratory data
analytics [8, 72]. The role of the cluster schedulers is to map these tasks to the heterogeneous
resources available in the cluster. They face a daunting task of efficiently matching the pending
job according to their scheduling preferences (in terms of the resource and deadlines) while
minimizing the completion latency and maximizing the cluster efficiency.

Many recent schedulers exploit knowledge of pending jobs’ runtimes and resource usages as a
powerful building block [24, 54, 88]. Using estimates of runtime and resource usage, a scheduler
can pack jobs aggressively into its resource plan [24, 54, 88, 92], such as allowing a latency
sensitive job to start before a high-priority batch job as long as the batch job will meet its deadline.
The knowledge enables the scheduler to consider whether it is better to wait for a job’s preferred
resources to be freed or to start the job right away on sub-optimal resources [13, 88]. Knowledge
of job runtime and resource usage leads to more robust scheduling decisions than using simple
scheduling algorithms that cannot leverage this information.

In most cases, estimates come from the observation of similar jobs (e.g., from the same user
or past instances from the same periodic job script) run in the past. A point runtime estimate (e.g.,
mean or median) is derived from the relevant subset of the history and used by the scheduler. If
such estimates are accurate, schedulers relying on them outperform those using other approaches.
Previous research [40, 88] suggests that these schedulers are robust to a reasonable degree of
estimation error (e.g., up to 50%).

However, analyses of workloads from real clusters show that the actual estimate errors span
much larger ranges than those previously explored. Analyses of user-provided resource requests
in the Google cluster trace [72] show only 20% of the estimates are within a factor of two of the
actual average resource usage, and a significant portion (74%) of jobs are over-estimated with the
majority being off by more than an order of magnitude. Applying a state-of-the-art ML-based
predictor [87] to three real-world traces shows good estimates in general (77%-92% are within a
factor of two of the actual runtime and most much closer), but a significant percentage (8%-23%)
of estimates are not within that range, and some are off by more than an order of magnitude
(Chapters 4 and 5). Even very effective predictors suffer from inaccuracies and outliers because
there is significant inherent variability in multi-purpose cluster workloads.

The impact of inaccurate point estimates on scheduler performance is significant. Testing with
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real estimate profiles reveals that a scheduler relying on such estimates performs much worse with
real estimate error profiles as compared to having perfect estimates. The point-estimate based
scheduler makes less informed decisions and struggles to handle difficult-to-estimate runtimes
and resource usages.

The scheduler is often too optimistic and starts jobs with under-estimated runtimes later than it
should, and it is often too conservative and neglects to schedule jobs that are predicted to not finish
on time, even if the cluster resources are available. Effects of inaccurate resource usage estimates
are more severe. The scheduler often packs too many tasks in the same machine, triggering
resource contention in the machine, and it is often too hesitant in scheduling tasks resulting in low
cluster utilization. Knowing only the point estimate, e.g. an average of a job runtime or resource
usage, the scheduler cannot reason about the outcomes that may be significantly different from
the average.

Instead, this dissertation proposes and evaluates systems that can leverage full distributions
(e.g., the histogram of observed runtimes or resource usages) rather than single point estimates. A
distribution provides much more information (e.g., variance, possible multi-modal behaviors, etc.)
and enables the scheduler to make more robust decisions. By considering the range of possible
runtimes or resource usages for a job, and their likelihoods, the scheduler can explicitly consider
various potential outcomes from each possible scheduling option and select an option based on
optimizing the expected outcome.

1.1 Thesis Statement
This dissertation explores the following thesis statement.

Schedulers that rely on information about job runtimes and resource usages can ad-
dress imperfect predictions with up to 75% fewer deadline misses and 36% greater SLO
goodput by looking at likelihoods of possible outcomes rather than single point expected
outcomes.

The dissertation will provide the following evidence to support the thesis statement.
• Diversity of cluster workloads [8] (Chapter 3)

This chapter presents an analysis of the private and HPC cluster traces that spans job
characteristics, workload heterogeneity, resource utilization, and failure rates and contrast
findings with the Google cluster trace characteristics. The analysis shows that the private
cluster workloads, consisting of data analytics jobs expected to be more closely related to
the Google workload, display more similarity to the HPC cluster workloads, suggesting
that additional traces should be considered when evaluating the generality of new research.
Characterization of real workloads also revealed that there exists inherent variability in
the job runtimes and resource usage that cannot be captured by single point estimates. An
evaluation of a history-based runtime predictor with four different traces demonstrates it is
not trivial to obtain perfect runtime predictions in real workloads, especially if the predictor
is provided with insufficient information.

• 3Sigma: a runtime distribution based scheduler [69] (Chapter 4)
Knowing how long each job will execute enables a scheduler to more effectively pack
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jobs with diverse time concerns (e.g., deadline vs. the-sooner-the-better) and placement
preferences on heterogeneous cluster resources. But, existing schedulers use single-point
estimates, and this chapter shows that they are fragile in the face of real-world estimate
error profiles. Instead of reducing relevant history to a single point, 3Sigma schedules jobs
based on full distributions of relevant runtime histories and explicitly creates plans that
mitigate the effects of anticipated runtime uncertainty. Experiments with workloads show
that 3Sigma achieves 75% fewer deadline misses and 36% greater SLO goodput compared
to a state-of-the-art scheduler that uses point estimates from a state-of-the-art predictor; in
fact, the performance of 3Sigma approaches the end-to-end performance of a scheduler
based on a hypothetical, perfect runtime predictor.

• DistSched: a resource-runtime distribution based scheduler (Chapter 5)
An accurate knowledge of each job’s resource usage benefits schedulers as the knowledge
allows schedulers to safely pack jobs more tightly, increasing the cluster utilization while
minimizing performance jitter due to resource contention. Most systems rely on user-
provided estimates as a source of the knowledge, but an analysis of the Google cluster
trace shows only a few jobs have an accurate estimate. Cluster administrators use various
heuristics to tackle issues arising from the mis-estimates, but these are only a partial
solution. This chapter describes DistSched, a resource-runtime distribution based scheduler
and explores how lessons learned from 3Sigma apply to the problem of imperfect estimates
arising from resource usage uncertainty. By leveraging distributions of resource usage from
the relevant history, taking advantage of much richer information, and utilizing mitigation
mechanisms, the resource-runtime distribution based scheduler can make robust decisions
to mitigate the effects of resource uncertainty. Experiments with a subset of the Google
cluster trace show that the resource-runtime distribution based scheduler achieves 49%
fewer deadline misses and 5% greater SLO goodput compared to point-estimate based
schedulers that depend on point estimates from a history-based predictor or user-provided
resource requests and approaches the performance of a hypothetical system that uses a
perfect runtime predictor.

1.2 Contributions

This dissertation makes the following contributions:
Diversity of cluster workloads [8]:
• It presents an analysis of the private and HPC cluster traces that spans job characteristics,

workload heterogeneity, resource utilization, and failure rates and contrast findings with the
Google cluster trace characteristics.

• It characterizes real workloads from three different environments revealing that there exists
inherent variability in the job runtimes and resource usages that cannot be captured by
single point estimates.

• It reports on an evaluation of a history-based runtime predictor with four different traces
demonstrating that it is not trivial to obtain perfect runtime predictions in real workloads,
especially if the predictor is provided with insufficient information.
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3Sigma [69]:
• It describes a scheduler, called 3Sigma, that looks at runtime distributions instead of a point

runtime estimate and can much more robustly address imperfect runtime predictions.
• It demonstrates that a runtime distribution of a job can be estimated from the history of

jobs run in the past and shows that estimated distributions are effective for the workloads
studied.

• It reports on large-scale experiments showing that 3Sigma is viable in practice, outperforms
point-estimate based schedulers, and approaches the performance of a hypothetical system
that has perfect knowledge of job runtimes.

DistSched:
• It describes a scheduler that looks at resource usage distributions instead of point estimates,

as well as its mitigation mechanisms, demonstrating that such a scheduler can much more
robustly address imperfect predictions.

• It demonstrates that a distribution of the resource usage of a job can be estimated from the
relevant part of the job history and shows that estimated distributions are effective for the
workloads studied.
• It reports on the results of experiments with the Google cluster trace demonstrating the

efficacy of the distribution-based scheduling approach in coping with resource usage
uncertainty.

1.3 Outline
The remainder of the dissertation is organized as follows. Chapter 2 motivates our work with more
background on resource consolidation, cluster scheduling with job information, predicting job
information, and the workloads discussed in the dissertation. Chapter 3 describes the workload
analysis [8] comparing the Google trace with the private and HPC cluster traces. Chapter 4
describes 3Sigma [69], my scheduler that leverages distributions of the relevant runtime histories
rather than just a point estimate derived from it. Chapter 5 describes DistSched, my scheduler
that can leverage distribution of the resource usage (cpu, memory, and cpu-time) and account the
risk of contention to make robust scheduling decisions. Chapter 6 concludes the dissertation and
discusses future research directions.
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Chapter 2

Background

Cluster schedulers are typically a component of the cluster orchestration system (e.g. YARN [89],
Kubernetes [14], etc.) that manages the lifecycle of the cluster resources and jobs running in the
system. In this model, users submit job specifications consisting of one or more tasks to the cluster
manager, often times with the resource requirements (e.g. how much cpu and memory is needed
and how long will it use these resources). The scheduler decides when and which machine to run
each task of the job. Each task will execute within a container for resource isolation and security.

Cluster scheduling enjoys a long history of research, but increasing cluster consolidation and
the emergence of a diverse mix of workload types stimulates a continuous stream of new innova-
tions. This chapter describes the additional background and research related to the dissertation.

2.1 Resource consolidation
Increasing amount of applications are now hosted on data-centers, both in public clouds [4, 5, 6]
and private in-house data-centers with frameworks [3, 14, 46, 89]. By consolidating different
types of workloads to the same shared data-centers, cluster administrators expect a lower total
cost of ownership through economies of scale. It also offers flexibility for the users as they can
leverage the same environment to launch different types of jobs ranging from batch analytics to
long running services.

However, resource consolidation also presents a set of new challenges to cluster schedulers.
1) To support diverse types of workloads, data-centers are increasingly becoming heteroge-

neous. Even if a data-center is newly constructed, it may consist of machines with different
hardware configurations. The variety will only increase over time as new types of machines are
introduced to the clusters [12, 72]. Hardware accelerators such as FGPAs [1, 2] or TPUs [53]
are now commonplace. Schedulers need to efficiently map pending work to the heterogeneous
resources so as to satisfy their diverse scheduling concerns.

2) Low utilization is a major challenge for cloud facilities [17, 28, 60, 61, 72], even for
clusters that encourage sharing of the resources across different workloads. This is mainly due to
a disparity between user resource requests and actual resource usage, which recent research efforts
try to alleviate through workload characterization and aggressive consolidation [28, 57, 58].

3) Aggressive packing to achieve high utilization does not work well with latency-critical
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services due to interference [57]. To ensure minimal interference, applications are typically
profiled and classified according to historical data [28, 57].

As a result, existing scheduling systems for traditional compute clusters fail to perform
well [88, 92] and rely on more sophisticated scheduling algorithms.

2.2 Cluster scheduling with job information
Modern schedulers use the knowledge of pending jobs’ runtime and resource usage as a pow-
erful building block. Accurate job runtime and resource usage information can be exploited to
significant benefit in at least four ways at schedule-time.

1) Cluster workloads are increasingly a mixture of business-critical production jobs and best-
effort engineering/analysis jobs. The production jobs, often submitted by automated systems [50,
83], tend to be resource-heavy and to have strict completion deadlines [24, 54]. The best-effort
jobs, such as exploratory data analytics and software development/debugging, while lower priority,
are often latency-sensitive. Given runtime estimates, schedulers can more effectively pack jobs,
simultaneously meets more deadlines for production jobs and reducing average latency for best-
effort jobs [24, 54, 88].

2) Datacenter resources are increasingly heterogeneous, and some jobs behave differently
(e.g., complete faster) depending upon which machine(s) they are assigned to. Maximizing cluster
effectiveness in the presence of jobs with such considerations can be more effective when job
runtimes are known [13, 88, 101].

3) Many parallel computations can only run when all tasks comprising them are initiated
and executed simultaneously (gang-scheduling) [65, 68]. Maximizing resource utilization while
arranging for such bulk resource assignments is easier when job runtimes are known.

4) Resource under-utilization can be alleviated through workload characterization and aggres-
sive consolidation [28, 57, 58]. Given accurate knowledge of job resource usage, schedulers can
control performance variation due to resource contention to meet jobs’ performance service-level
objectives [28, 33].

2.3 Predicting job information
Most systems [14, 46, 89] now expect users to provide resource requirements when a job is
submitted to the system. In some environments, especially HPC and grid computing environments,
users are expected to provide runtime information explicitly. Naturally, the quality of such
user-provided information varies widely, and automated approaches to generating predictions is
desirable. Different strategies for the prediction can be used based on the amount of assumption
or knowledge about the workload.

Some techniques [24, 25, 52, 54, 56, 91] are designed for explicitly repeating jobs, such as in
a scripted simulation parameter sweep or regular post-processing of an output file. In this scenario,
each such job is a recurrence of a nearly identical job with known historical information.

Performance modeling based white-box techniques can be used if the structure of each job
is known in advance. For example, Jockey [33] and Perforator [70] leverage job structure and
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combine it with profiling for accurate predictions. MapReduce’s map-shuffle-reduce structure
is well-understood and lends itself to analytical performance models, such as ARIA [94] and
Parallax [64]. Similarly, Apollo [13], Ernest [90], SLAOrchestrator [67], and Islam et al. [51] rely
on leveraging job structure knowledge to estimate job runtimes and resource usage.

Lastly, some predictors use black-box techinques to address jobs that do not arrive with explicit
recurrence nor performance models. In the absence of any other information, Harchol-Balter and
Downey [43] or Kairos [27] assumes the job is half-way completed. Other predictors [23, 81, 87]
assume, even in multi-purpose clusters for a diverse array of activities, most jobs will be similar
to some subset of previous jobs. These systems identify and determine an estimate (e.g., mean or
median) from the relevant part of the history. The assumptions made by the systems discussed in
this dissertation (Chapters 4 and 5) fall in this category.

2.4 Workloads used in this dissertation
Despite the intense activity in the areas of cloud and job scheduling research, publicly available
cluster workload datasets remain scarce. The three major dataset sources today are: the Google
cluster trace [72] collected in 2011, the Parallel Workload Archive [32] of High Performance
Computing (HPC) traces collected since 1993, and the SWIM traces released in 2011 [21]. Of
these, the Google trace has been used in more than 450 publications making it the most popular
trace by far.

This dissertation introduces four new traces: two from the private cloud of Two Sigma, a
hedge fund, and two from HPC clusters located at the Los Alamos National Laboratory (LANL)1.
The Two Sigma traces are the longest, non-academic private cluster traces to date, spanning 9
months and more than 3 million jobs. The two HPC traces I introduce are also unique. The first
trace, LANL Mustang, spans the entire 5-year lifetime of a general-purpose HPC cluster, making
it the longest public trace to date, while also exhibiting shorter jobs than existing public HPC
traces. The second trace, LANL OpenTrinity, originates from the 300,000-core current flagship
supercomputer at LANL, making it the largest cluster with a public trace, to my knowledge.

I evaluate the systems in the dissertation using some of the workloads as appropriate. Specif-
ically, 3Sigma is evaluated using the Google, Two Sigma, and Mustang cluster traces. The
OpenTrinity cluster trace is not used for evaluation as it has demonstrated low predictability
(Sec. 3.6.2), potentially caused by the shorter duration of the trace or inconsistency in the work-
load during the OpenScience configuration period. DistSched is only evaluated using the Google
cluster workload, because the other traces do not contain resource utilization information that is
crucial for simulating the workload for experiments.

The hardware configuration of each cluster is shown in Table 2.1. Rest of this section discusses
each cluster is in more detail.

2.4.1 Google cluster
In 2012, Google released a trace of jobs that ran in one of their compute clusters [72]. It is
a 29-day trace consisting of 672074 jobs and 48 million tasks, some of which were issued

1The LANL traces were released and are available to the public at http://www.pdl.cmu.edu/ATLAS
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Platform Nodes CPUs RAM Length

LANL
OpenTrinity 9408 32 128GB 3 months

LANL
Mustang 1600 24 64GB 5 years

TwoSigma A 872 24 256GB
9 months

TwoSigma B 441 24 256GB

Google B 6732 0.50* 0.50*

29 days

Google B 3863 0.50* 0.25*
Google B 1001 0.50* 0.75*
Google C 795 1.00* 1.00*
Google A 126 0.25* 0.25*
Google B 52 0.50* 0.12*
Google B 5 0.50* 0.03*
Google B 5 0.50* 0.97*
Google C 3 1.00* 0.50*
Google B 1 0.50* 0.06*

Table 2.1: Hardware characteristics of the clusters analyzed in this chapter. For the Google trace [72], (*)
signifies a resource has been normalized to the largest node.

through the MapReduce framework, and ran on 12583 heterogeneous nodes in May 2011. The
workload consists of both long-running services and batch jobs [95]. Google has not released
the exact hardware specifications of each cluster node. Instead, as shown in Table 2.1, nodes are
presented through anonymized platform names representing machines with different combinations
of microarchitectures and chipsets [98]. Note that the number of CPU cores and RAM for each
node in the trace have been normalized to the most powerful node in the cluster. In the analysis,
I estimate the total number of cores in the Google cluster to be 106544. I derive this number
by assuming that the most popular node type (Google B with 0.5 CPU cores) is a dual-socket
server, carrying quad-core AMD Opteron Barchelona CPUs that Google allegedly used in their
data-centers at the time [44]. Unlike previous workloads, jobs can be allocated fractions of a CPU
core [78].

2.4.2 Two Sigma clusters

The private workload traces I introduce originate from two datacenters of Two Sigma, a hedge
fund firm. The workload consists of data analytics jobs processing financial data. A fraction of
these jobs are handled by a Spark [84] installation, while the rest are serviced by home-grown
data analytics frameworks. The dataset spans 9 months of the two data-centers’ operation starting
in January 2016, covering a total of 1313 identical compute nodes with 31512 CPU cores and
328TB RAM. The logs contain 3.2 million jobs and 78.5 million tasks, collected by an internally-
developed job scheduler running on top of Mesos [46]. Because both datacenters experience the
same workload and consist of homogeneous nodes, I collectively refer to both data sources as the
TwoSigma trace and analyze them together.
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2.4.3 LANL Mustang cluster
Mustang was an HPC cluster used for capacity computing at LANL from 2011 to 2016. Capacity
clusters such as Mustang are architected as cost-effective, general-purpose resources for a large
number of users. Mustang was largely used by scientists, engineers, and software developers
at LANL and it was allocated to these users at the granularity of physical nodes. The cluster
consisted of 1600 identical compute nodes, with a total of 38400 AMD Opteron 6176 2.3GHz
cores and 102TB RAM.

The Mustang dataset covers the entire 61 months of the machine’s operation from October
2011 to November 2016, which makes this the longest publicly available cluster trace to date. The
Mustang trace is also unique because its jobs are shorter than those in existing HPC traces. Overall,
it consists of 2.1 million multi-node jobs submitted by 565 users and collected by SLURM [76],
an open-source cluster resource manager. The fields available in the trace are similar to those in
the TwoSigma trace, with the addition of a time budget field per job, that if exceeded causes the
job to be killed.

2.4.4 LANL OpenTrinity supercomputer
In 2018, OpenTrinity is the largest supercomputer at LANL and it is used for capability com-
puting. Capability clusters are a large-scale, high-demand resource introducing novel hardware
technologies that aid in achieving crucial computing milestones, such as higher-resolution climate
and astrophysics models. OpenTrinity’s hardware was stood up in two pre-production phases
before being put into full production use and the trace was collected before the second phase
completed. At the time of data collection, OpenTrinity consisted of 9408 identical compute nodes,
a total of 301056 Intel Xeon E5-2698v3 2.3GHz cores and 1.2PB RAM, making this the largest
cluster with a publicly available trace by number of CPU cores.

The OpenTrinity dataset covers 3 months from February to April 2017. During that time,
OpenTrinity was operating in OpenScience mode, i.e., the machine was undergoing beta testing
and was available to a wider number of users than after it receives its final security classification. I
note that OpenScience workloads are representative of a capability supercomputer’s workload, as
they occur roughly every 18 months when a new machine is introduced, or before an older one is
decommissioned. The dataset, which I will henceforth refer to as OpenTrinity, consists of 25237
multi-node jobs issued by 88 users and collected by MOAB [7], an open-source cluster scheduling
system. The information available in the trace is the same as that in the Mustang trace.
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Chapter 3

Diversity of cluster workloads

Despite intense activity in the areas of cloud and job scheduling research, publicly available
cluster workload datasets remain scarce. The three major dataset sources today are: the Google
cluster trace [72] collected in 2011, the Parallel Workload Archive [32] of High Performance
Computing (HPC) traces collected since 1993, and the SWIM traces released in 2011 [21]. Of
these, the Google trace has been used in more than 450 publications making it the most popular
trace by far. Unfortunately, this 29-day trace is often the only one used to evaluate new research.
By contrasting its characteristics with newer traces from different environments, I have found that
the Google trace alone is insufficient to accurately prove the generality of a new technique.

The goal is to uncover overfitting of prior work to the characteristics of the Google trace. To
achieve this, my first contribution is an analysis examining the generality of workload characteris-
tics derived from the Google trace, when four new traces are considered. Overall, I find that the
private Two Sigma cluster workloads display similar characteristics to HPC, despite consisting of
data analytics jobs that more closely resemble the Google workload. Table 3.1 summarizes all
my findings. For those characteristics where the Google workload is an outlier, I have surveyed
the literature and list affected prior work. In total, I surveyed 450 papers that reference the
Google trace study [72] to identify popular workload assumptions, and I constrast them to the Two
Sigma and LANL workloads to detect violations. I group the findings into four categories: job
characteristics (Section 3.2), workload heterogeneity (Section 3.3), resource utilization (Section
3.4), and failure analysis (Section 3.5).

The findings suggest that evaluating new research using the Google trace alone is insufficient
to guarantee generality. I further present a case study on the importance of dataset plurality and
diversity when evaluating new research. For demonstration I use JVuPredict, the job runtime
predictor of the JamaisVu scheduling system [87]. Originally, JVuPredict was evaluated using only
the Google trace [87]. Evaluating its performance with the four new traces, however, helped us
identify features that make it easier to detect related and recurring jobs with predictable behavior.
This enabled us to quantify the importance of individual trace fields in runtime prediction. I
describe the findings in Section 3.6.

Finally, I briefly discuss the importance of trace length in accurately representing a clus-
ter’s workload in Section 3.7. I list related work studying cluster traces in Section 3.8, before
concluding.
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Section Characteristic Google TwoSigma Mustang OpenTrinity

Job Characteristics (§3.2)
Majority of jobs are small 4 8 8 8

Majority of jobs are short 4 8 8 8

Workload Heterogeneity (§3.3)
Diurnal patterns in job submissions 8 4 4 4

High job submission rate 4 4 8 8

Resource Utilization (§3.4)
Resource over-commitment 4 8 8 8

Sub-second job inter-arrival periods 4 4 4 4

User request variability 8 4 4 4

Failure Analysis (§3.5)

High fraction of unsuccessful job
outcomes 4 4 8 4

Jobs with unsuccessful outcomes
consume significant fraction of
resources

4 4 8 8

Longer/larger jobs often terminate
unsuccessfully 4 8 8 8

Table 3.1: Summary of the characteristics of each trace. Note that the Google workload appears to be an
outlier.

3.1 Dataset information
As discussed in Sec. 2.4, I introduce four sets of job scheduler logs that were collected from a
general-purpose cluster and a cutting-edge supercomputer at LANL, and across two clusters of
Two Sigma, a hedge fund.

Users typically interact with the cluster scheduler by submitting commands that spawn multiple
processes, or tasks, distributed across cluster nodes to perform a specific computation. Each such
command is considered to be a job and users often compose scripts that generate more complex,
multi-job schedules. In HPC clusters, where resources are allocated at the granularity of physical
nodes similar to Emulab [15, 29, 45, 97], tasks from different jobs are never scheduled on the
same node. This is not necessarily true in private clusters like Two Sigma.

3.2 Job characteristics
Many instances of prior work in the literature rely on the assumption of heavy-tailed distributions
to describe the size and duration of individual jobs [9, 19, 25, 26, 71, 85]. In the LANL and
TwoSigma workloads these tails appear significantly lighter.

Observation 1: On average, jobs in the TwoSigma and LANL traces request 3 - 406 times
more CPU cores than jobs in the Google trace. Job sizes in the LANL traces are more uniformly
distributed.

Figure 3.1 shows the Cumulative Distribution Functions (CDFs) of job requests for CPU cores
across all traces, with the x-axis in logarithmic scale. I find that the 90% of smallest jobs in
the Google trace request 16 CPU cores or fewer. The same fraction of TwoSigma jobs request
108 cores, and 1-16K cores in the LANL traces. Very large jobs are also more common outside
Google. This is unsurprising for the LANL HPC clusters, where allocating thousands of CPU
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Figure 3.1: CDF of job sizes based on allocated CPU cores.

cores to a single job is not uncommon, as the clusters’ primary use is to run massively parallel
scientific applications. It is interesting to note, however, that while the TwoSigma clusters contain
fewer cores than the other clusters I examine (3 times fewer than the Google cluster), its median
job is more than an order of magnitude larger than a job in the Google trace. An analysis of
allocated memory yields similar trends.

Observation 2: The median job in the Google trace is 4-5 times shorter than in the LANL or
TwoSigma traces. The longest 1% of jobs in the Google trace, however, are 2-6 times longer than
the same fraction of jobs in the LANL and TwoSigma traces.

Figure 3.2 shows the CDFs of job durations for all traces. I find that in the Google trace, 80%
of jobs last less than 12 minutes each. In the LANL and TwoSigma traces jobs are at least an order
of magnitude longer. In TwoSigma, the same fraction of jobs last up to 2 hours and in LANL,
they last up to 3 hours for Mustang and 6 hours for OpenTrinity. Surprisingly, the tail end of the
distribution is slightly shorter for the LANL clusters than for the Google and TwoSigma clusters.
The longest job is 16 hours on Mustang, 32 hours in OpenTrinity, 200 hours in TwoSigma, and at
least 29 days in Google (the duration of the trace). For LANL, this is due to hard limits causing
jobs to be indiscriminately killed. For Google, the distribution’s long tail is likely attributed to
long-running services.

Implications. These observations impact the immediate applicability of job scheduling
approaches whose efficiency relies on the assumption that the vast majority of jobs’ durations are
in the order of minutes, and job sizes are insignificant compared to the size of the cluster. For
example, Ananthanarayanan et al. [9] propose to mitigate the effect of stragglers by duplicating
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Figure 3.2: CDF of the durations of individual jobs.

tasks of smaller jobs. This is an effective approach for Internet service workloads (Microsoft
and Facebook are represented in the paper) because the vast majority of jobs can benefit from it,
without significantly increasing the overall cluster utilization. For the Google trace, for example,
90% of jobs request less than 0.01% of the cluster each, so duplicating them only slightly increases
cluster utilization. At the same time, 25-55% of jobs in the LANL and TwoSigma traces each
request more than 0.1% of the cluster’s cores, decreasing the efficiency of the approach and
suggesting replication should be used judiciously. This does not consider that LANL tasks are
also tightly-coupled and the entire job has to be duplicated.

Another example is the work by Delgado et al. [25], which improves the efficiency of
distributed schedulers for short jobs by dedicating them a fraction of the cluster. This partition
ranges from 2% for Yahoo and Facebook traces, to 17% for the Google trace where jobs are
significantly longer, to avoid increasing job service times. For the TwoSigma and LANL traces I
have shown that jobs are even longer than for the Google trace (Figure 3.2), so larger partitions
will likely be necessary to achieve similar efficiency. At the same time, jobs running in the
TwoSigma and LANL clusters are also larger (Figure 3.1), so service times for long jobs are
expected to increase unless the partition is shrunk. Other examples of work that is likely affected
include task migration of short and small jobs [85] and hybrid scheduling aimed on improving
head-of-line blocking for short jobs [26].
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Figure 3.3: Hourly job submission rates for a given day. The lines represent the median, while the shaded
region shows the distance between the 25th and 75th percentiles.

3.3 Workload heterogeneity
Another common assumption about cloud workloads is that they are characterized by heterogeneity
in terms of resources available to jobs, and job interarrival times [18, 37, 49, 78, 96]. The private
and HPC clusters I study, however, consist of homogeneous hardware (see Table 2.1) and user
activity follows well-defined diurnal patterns, even though the rate of scheduling requests varies
significantly across clusters.

Observation 3: Diurnal patterns are universal. Clusters received more scheduling requests
and smaller jobs at daytime, with minor deviations for the Google trace.

In Figure 3.3 I show the number of job scheduling requests for every hour of the day. I
choose to show metrics for the median day surrounded by the other two quartiles because the
high variation across days causes the averages to be unrepresentative of the majority of days (see
Section 3.7). Overall, diurnal patterns are evident in every trace and user activity is concentrated
at daytime (7AM to 7PM), similar to prior work [63]. An exception to this is the Google trace,
which is most active from midnight to 4AM, presumably due to batch jobs leveraging the available
resources.

Sizes of submitted jobs are also correlated with the time of day. I find that longer, larger
jobs in the LANL traces are typically scheduled during the night, while shorter, smaller jobs
tend to be scheduled during the day. The reverse is true for the Google trace, which prompts my
earlier assumption on nightly batch jobs. Long, large jobs are also scheduled at daytime in the
TwoSigma clusters, despite having a diurnal pattern similar to LANL clusters. This is likely due
to TwoSigma’s workload consisting of financial data analysis, which bears a dependence on stock
market hours.

Observation 4: Scheduling request rates differ by up to 3 orders of magnitude across clusters.
Sub-second scheduling decisions seem necessary in order to keep up with the workload.

One more thing to take away from Figure 3.3 is that the rate of scheduling requests can differ
significantly across clusters. For the Google and TwoSigma traces, hundreds to thousands of
jobs are submitted every hour. On the other hand, LANL schedulers never receive more than 40
requests on any given hour. This could be related to the workload or the number of users in the
system, as the Google cluster serves 2 times as many user IDs as the Mustang cluster and 9 times
as many as OpenTrinity.

Implications: Previous work such as Omega [78] and ClusterFQ [96] propose distributed
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Figure 3.4: Hourly task placement requests for a given day. The lines represent the median, while the
shaded region shows the distance between the 25th and 75th percentiles.

scheduling designs especially applicable to heterogeneous clusters. This does not seem to be an
issue for environments such as LANL and TwoSigma, which intentionally architect homogeneous
clusters to lower performance optimization and administration costs.

As cluster sizes increase, so does the rate of scheduling requests, urging us to reexamine
prior work. Quincy [49] represents scheduling as a Min-Cost Max-Flow (MCMF) optimization
problem over a task-node graph and continuously refines task placement. The complexity of this
approach, however, becomes a drawback for large-scale clusters such as the ones I study. Gog et
al. [37] find that Quincy requires 66 seconds (on average) to converge to a placement decision in
a 10,000-node cluster. The Google and LANL clusters I study already operate on that scale (Table
2.1). I have shown in Figure 3.3 that the average frequency of job submissions in the LANL traces
is one job every 90 seconds, which implies that this scheduling latency may work, but this will
not be the case for long. OpenTrinity is currently operating with 19,000 nodes and, under the
DoE’s Exascale Computing Project [66], 25 times larger machines are planned within the next 5
years. Note that when discussing scheduling so far I refer to jobs, since HPC jobs have a gang
scheduling requirement. Placement algorithms such as Quincy, however, focus on task placement.

An improvement to Quincy is Firmament [37], a centralized scheduler employing a generalized
approach based on a combination of MCMF optimization techniques to achieve sub-second task
placement latency on average. As Figure 3.4 shows, sub-second latency is paramount, since
the rate of task placement requests in the Google and TwoSigma traces can be as high as 100K
requests per hour, i.e. one task every 36ms. Firmament’s placement latency, however, increases to
several seconds as cluster utilization increases. For the TwoSigma and Google traces this can be
problematic.
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3.4 Resource utilization

A well-known motivation for the cloud has been resource consolidation, with the intention of
reducing equipment ownership costs. An equally well-known property of the cloud, however,
is that its resources remain underutilized [17, 28, 60, 61, 72]. This is mainly due to a disparity
between user resource requests and actual resource usage, which recent research efforts try
to alleviate through workload characterization and aggressive consolidation [28, 57, 58]. The
analysis finds that user resource requests in the LANL and TwoSigma traces are characterized by
higher variability than in the Google trace. I also look into job inter-arrival times and how they
are approximated when evaluating new research.

Observation 5: Unlike the Google cluster, none of the other clusters I examine overcommit
resources.

Overall, I find that the fraction of CPU cores allocated to jobs is stable over time across all the
clusters I study. For Google, CPU cores are over provisioned by 10%, while for other clusters
unallocated cores range between 2-12%, even though resource overprovisioning is supported
by their schedulers. Memory allocation numbers follow a similar trend. Unfortunately, the
LANL and TwoSigma traces do not contain information on actual resource utilization. As a
result, I can neither confirm, nor contradict results from earlier studies on the imbalance between
resource allocation and utilization. What differs between organizations is the motivation for
keeping resources utilized or available. For Google [72], Facebook [21], and Twitter [28], there
is a tension between the financial incentive of maintaining only the necessary hardware to keep
operational costs low and the need to provision for peak demand, which leads to low overall
utilization. For LANL, clusters are designed to accommodate a predefined set of applications for
a predetermined time period and high utilization is planned as part of efficiently utilizing federal
funding. For the TwoSigma clusters, provisioning for peak demand is more important, even if
it leads to low overall utilization, since business revenue is heavily tied to the response times of
their analytics jobs.

Observation 6: The majority of job interarrivals periods are sub-second in length.

Interarrival periods are a crucial parameter of an experimental setup, as they dictate the load
on the system under test. Two common configurations are second-granularity [28] or Poisson-
distributed interarrivals [47], and I find that neither characterizes interarrivals accurately. In
Figure 3.5 I show the CDFs for job interarrival period lengths. I observe that 44-62% of interar-
rival periods are sub-second, implying that jobs arrive at a faster rate than previously assumed.
Furthermore, my attempts to fit a Poisson distribution on this data have been unsuccessful, as
Kolmogorov-Smirnov tests [62] reject the null hypothesis with p-values < 2.2×10−16. This result
does not account for a scenario where there is an underlying Poisson process with a rate parameter
changing over time, but it suggests that caution should be used when a Poisson distribution is
assumed.

Another common assumption is that jobs are very rarely big, i.e., made up of multiple tasks
[47, 96]. In Figure 3.6 I show the CDFs for the number of tasks per job across organizations.
I observe that 77% of Google jobs are single-task jobs, but the rest of the clusters carry many
more multi-task jobs. I note that the TwoSigma distribution approaches that of Google only for
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Figure 3.5: CDF of job interarrival times.

larger jobs. This suggests that task placement may be a harder problem outside Google, where
single-task jobs are common, exacerbating the evaluation issues I outlined in Section 3.3 for
existing task placement algorithms.

Observation 7: User resource requests are more variable in the LANL and TwoSigma traces
than in the Google trace.

Resource under-utilization can be alleviated through workload consolidation. To ensure
minimal interference, applications are typically profiled and classified according to historical data
[28, 57]. The analysis suggests that this approach is likely to be less successful outside the Internet
services world. To quantify variability in user behavior I examine the Coefficient of Variation1

(CoV) across all requests of individual users. For the Google trace I find that the majority of users
issue jobs within 2x of their average request in CPU cores. For the LANL and TwoSigma traces,
on the other hand, 60-80% of users can deviate by 2-10x of their average request.

Implications: A number of earlier studies of Google [72], Twitter [28], and Facebook [21]
data have highlighted the imbalance between resource allocation and utilization. Google tackles
this issue by over-committing resources, but this is not the case for LANL and TwoSigma. Another
proposed solution is Quasar [28], a system that consolidates workloads while guaranteeing a
predefined level of QoS. This is achieved by profiling jobs at submission time and classifying
them as one of the previously encountered workloads; misclassifications are detected by inserting
probes in the running application. For LANL, this approach would be infeasible. First, jobs
cannot be scaled down for profiling, as submitted codes are often carefully configured for the
requested allocation size. Second, submitted codes are too complex to be accurately profiled
in seconds, and probing them at runtime to detect misclassifications can introduce performance
jitter that is prohibitive in tightly-coupled HPC applications. Third, in the LANL traces I often

1The Coefficient of Variation is a unit-less measure of spread, derived by dividing a sample’s standard deviation
by its mean.
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Figure 3.6: CDF of the number of tasks per job.

find that users tweak jobs before resubmitting them, as they re-calibrate simulation parameters
to achieve a successful run, which is likely to affect classification accuracy. Fourth, resources
are carefully reserved for workloads and utilization is high, which makes it hard to provision
resources for profiling. For the TwoSigma and Google traces Quasar may be a better fit, however,
at the rate of 2.7 jobs per second (Figure 3.3), 15 seconds of profiling [28] at submission time
would result in an expected load of 6 jobs being profiled together. Since Quasar requires 4 parallel
and isolated runs to collect sufficient profiling data, we would need resources to run at least 360
VMs concurrently, with guaranteed performance isolation between tham to keep up with the
average load. This further assumes the profiling time does not need to be increased beyond 15
seconds. Finally, Quasar [28] was evaluated using multi-second inter-arrival periods, so testing
would be necessary to ensure that one order of magnitude more load can be handled (Figure 3.5),
and that it will not increase the profiling cost further.

Another related approach to workload consolidation is provided by TSF [96], a scheduling
algorithm that attempts to maximize the number of task slots allocated to each job, without
favoring bigger jobs. This ensures that the algorithm remains starvation-free, however it results
in significant slowdowns in the runtime of jobs with 100+ tasks, which the authors define as
big. This would be prohibitive for LANL, where jobs must be scheduled as a whole, and such
“big” jobs are much more prevalent and longer in duration. Other approaches for scheduling and
placement assume the availability of resources that may be unavailable in the clusters I study here,
and their performance is shown to be reduced in highly-utilized clusters [41, 47].

3.5 Failure analysis

Job scheduler logs are often analyzed to gain an understanding of job failure characteristics in
different environments [20, 30, 34, 35, 74]. This knowledge allows for building more robust
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Figure 3.7: Breakdown of the total number of jobs, as well as CPU time, by job outcome.

systems, which is especially important as we transition to exascale computing systems where
failures are expected every few minutes [82], and cloud computing environments built on complex
software stacks that increase failure rates [20, 75].

Definitions. An important starting point for any failure analysis is defining what constitutes
a failure event. Across all traces I consider, I define as failed jobs all those that end due to
events whose occurrence was not intended by users or system administrators. I do not distinguish
failed jobs by their root cause, e.g., software and hardware issues, because this information is not
reliably available. There are other job termination states in the traces, in addition to success and
failure. For the Google trace, jobs can be killed by users, tasks can be evicted in order to schedule
higher-priority ones, or have an unknown exit status. For the LANL traces, jobs can be cancelled
intentionally. I group all these job outcomes as aborted jobs and collectively refer to failed and
aborted jobs as unsuccessful jobs.

There is another job outcome category. At LANL, users are required to specify a runtime
estimate for each job. This estimate is treated as a time limit, similar to an SLO, and the scheduler
kills the job if the limit is exceeded. I refer to these killings as timeout jobs and present them
separately because they can produce useful work in three cases: (a) when HPC jobs use the time
limit as a stopping criterion, (b) when job state is periodically checkpointed to disk, and (c) when
a job completes its work before the time limit but fails to terminate cleanly.

Observation 8: Unsuccessful job terminations in the Google trace are 1.4-6.8x higher than
in other traces. Unsuccessful jobs at LANL use 34-80% less CPU time.

In Figure 3.7, I break down the total number of jobs (left), as well as the total CPU time
consumed by all jobs by job outcome (right). First, I observe that the fraction of unsuccessful jobs
is significantly higher (1.4-6.8x) for the Google trace than for the other traces. This comparison
ignores jobs that timeout for Mustang, because as I explained above, it is unlikely they represent
wasted resources. I also note that almost all unsuccessful jobs in the Google trace were aborted.
According to the trace documentation [98] these jobs could have been aborted by a user or the
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Figure 3.8: CDFs of job sizes (in CPU cores) for unsuccessful and successful jobs.

scheduler, or by dependent jobs that failed. As a result, we cannot rule out the possibility that
these jobs were linked to a failure. For this reason, prior work groups all unsuccessful jobs under
the “failed” label [30], which I choose to avoid for clarity. Another fact that further highlights
how blurred the line between failed and aborted jobs can be, is that all unsuccessful jobs in the
TwoSigma trace are assigned a failure status. In short, my classification of jobs as “unsuccesful”
may seem broad, but it is consistent with the liberal use of the term “failure” in the literature.

I also find that unsuccessful jobs are not equally detrimental to the overall efficiency of
all clusters. While the rate of unsuccessful jobs for the TwoSigma trace is similar to the rate
of unsuccessful jobs in the OpenTrinity trace, each unsuccessful job lasts longer. Specifically,
unsuccessful jobs in the LANL traces waste 34-80% less CPU time than in the Google and
TwoSigma traces. It is worth noting that 49-55% of CPU time at LANL is allocated to jobs that
time out, which suggests that at least a small fraction of that time may become available through
the use of better checkpoint strategies.

Observation 9: For the Google trace, unsuccessful jobs tend to request more resources than
successful ones. This is untrue for all other traces.

In Figure 3.8, I show the CDFs of job sizes (in CPU cores) of individual jobs. For each trace,
I show separate CDFs for unsuccessful and successful jobs. By separating jobs based on their
outcome I observe that successful jobs in the Google trace request fewer resources, overall, than
unsuccessful jobs. This observation has also been made in earlier work [30, 34], but it does not
hold for the other traces. CPU requests for successful jobs in the TwoSigma and LANL traces
are similar to requests made by unsuccessful jobs. This trend is opposite to what is seen in older
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Figure 3.9: Success rates for jobs grouped by CPU hours.

HPC job logs [100], and since these traces were also collected through SLURM and MOAB I do
not expect this discrepancy to be due to semantic differences in the way failure is defined across
traces.

Observation 10: For the Google and TwoSigma traces, success rates drop for jobs consuming
more CPU hours. The opposite is true for LANL traces.

For the traces I analyze, the root cause behind unsuccessful outcomes is not reliably recorded.
Without this information, it is difficult to interpret and validate the results. For example, I expect
that hardware failures are random events whose occurrence roughly approximates some frequency
based on the components’ Mean Time Between Failure ratings. As a result, jobs that are larger
and/or longer, would be more likely to fail. In Figure 3.9 I have grouped jobs based on the CPU
hours they consume (a measure of both size and length), and I show the success rate for each
group. The trend that stands out is that success rates decrease for jobs consuming more CPU
hours in the Google and TwoSigma traces, but they increase and remain high for both LANL
clusters. This could be attributed to larger, longer jobs at LANL being more carefully planned and
tested, but it could also be due to semantic differences in the way success and failure are defined
across traces.

Implications. The majority of papers analyzing the characteristics of job failures in the
Google trace build failure prediction models that assume the existence of the trends I have shown
on success rates and resource consumption of unsuccessful jobs. Chen et al. [20] highlight the
difference in resource consumption between unsuccessful and successful jobs, and El-Sayed et
al. [30] note that this is the second most influential predictor (next to early task failures) for
their failure prediction models. As I have shown in Figure 3.9, unsuccessful jobs are not linked
to resource consumption in other traces. Another predictor highlighted in both studies is job
re-submissions, with successful jobs being re-submitted fewer times. I confirm that this trend
is consistent across all traces, even though the majority of jobs (83-93%) are submitted exactly
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once. A final observation that does not hold true for LANL is that CPU time of unsuccessful jobs
increases with job runtime [30, 35].

3.6 A case study on plurality and diversity
Evaluating systems against multiple traces enables researchers to identify practical sensitivities
of new research and prove its generality. I demonstrate this through a case study on JVuPredict,
the job runtime2 predictor module of the JamaisVu [87] cluster scheduler. The evaluation of
JVuPredict with all the traces I have introduced revealed the predictive power of logical job names
and consistent user behavior in workload traces. Conversely, I found it difficult to obtain accurate
runtime predictions in systems that provide insufficient information to identify job re-runs. This
section briefly describes the architecture of JVuPredict (Section 3.6.1) and the evaluation results
(Section 3.6.2).

3.6.1 JVuPredict background

Recent schedulers [24, 40, 54, 87, 88] use information on job runtimes to make better scheduling
decisions. Accurate knowledge of job runtimes allows a scheduler to pack jobs more aggressively
in a cluster [24, 31, 92], or to delay a high-priority batch job to schedule a latency-sensitive job
without exceeding the deadline of the batch job. In heterogeneous clusters, knowledge of a job’s
runtime can also be used to decide whether it is better to immediately start a job on hardware
that is sub-optimal for it, let it wait until preferred hardware is available, or simply preempt other
jobs to let it run [13, 88]. Such schedulers assume most of the provided runtime information is
accurate. The accuracy of the provided runtime is important as these schedulers are only robust to
a reasonable degree of error [88].

Traditional approaches for obtaining runtime knowledge are often as trivial as expecting the
user to provide an estimate, an approach used in HPC environments such as LANL. As we have
seen in Section 3.5, however, users often use these estimates as a stopping criterion (jobs get
killed when they exceed them), specify a value that is too high, or simply fix them to a default
value. Another option is to detect jobs with a known structure that are easy to profile as a means of
ensuring accurate predictions, an approach followed by systems such as Dryad [48], Jockey [33],
and ARIA [94]. For periodic jobs, simple history-based predictions can also work well [24, 54].
But these approaches are still inadequate for consolidated clusters without a known structure or
history.

JVuPredict, the runtime prediction module of JamaisVu [87], aims to predict a job’s runtime
when it is submitted, using historical data on past job characteristics and runtimes. It differs from
traditional approaches by attempting to detect jobs that repeat, even when successive runs are not
declared as repeats. It is more effective, as only part of the history relevant to the newly submitted
job is used to generate the estimate. To do this, it uses features of submitted jobs, such as user
IDs and job names, to build multiple independent predictors. These predictors are then evaluated
based on the accuracy achieved on historic data, and the most accurate one is selected for future

2The terms runtime and duration are used interchangeably here.
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Figure 3.10: Accuracy of JVuPredict predictions of runtime estimates, for all four traces.

predictions. Once a prediction is made, the new job is added to the history and the accuracy scores
of each model are recalculated. Based on the updated scores a new predictor is selected and the
process is repeated.

3.6.2 Evaluation results

JVuPredict had originally been evaluated using only the Google trace. Although predictions
are not expected to be perfect, performance under the Google trace was reasonably good, with
86% of predictions falling within a factor of two of the actual runtime. This level of accuracy is
sufficient for the JamaisVu scheduler, which further applies techniques to mitigate the effects of
such mispredictions. In the end, the performance of JamaisVu with the Google trace is sufficient
to closely match that of a hypothetical scheduler with perfect job runtime information and to
outperform runtime-unaware scheduling [87]. This section repeats the evaluation of JVuPredict
using the new TwoSigma and LANL traces. The criterion for success is meeting or surpassing the
prediction accuracy achieved with the Google trace.

A feature expected to effectively predict job repeats is the job’s name. This field is typically
anonymized by hashing the program’s name and arguments, or simply by hashing the user-defined
human-readable job name provided to the scheduler. For the Google trace, predictors using the
logical job name field are selected most frequently by JVuPredict due to their high accuracy.

Figure 3.10 shows the evaluation results. On the x-axis I plot the prediction error for JVuPre-
dict’s runtime estimates, as a percentage of the actual runtime of the job. Each data point in the plot
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Figure 3.11: Is a month representative of the overall workload? The boxplots show distributions of the
average job inter-arrival period (left) and duration (right) per month, normalized by the trace’s overall
average. Boxplot whiskers are defined at 1.5 times the distribution’s Inter-Quartile Range (standard Tukey
boxplots).

is a bucket representing values within 5% of the nearest decile. The y-axis shows the percentage
of jobs whose predictions fall within each bucket. Overestimations of a job’s runtime are easier to
tolerate than underestimations, because they cause the scheduler to be more conservative when
scheduling the job. Thus, the uptick at the right end of the graph is not alarming. For the Google
trace, the total percentage of jobs whose runtimes are under-estimated is 32%, with 11.7% of
underestimations being lower than half the actual runtime. I mark these numbers as acceptable,
since performance of JVuPredict in the Google trace has been proven exceptional in simulation.

Although the logical job name is a feature that performs well for the Google trace, I find it is
either unavailable, or unusable in the other traces. This is because of the difficulty inherent in
producing an anonymized version of it, while maintaining enough information to distinguish job
repeats. Instead, this field is either assigned a unique value for every job, or entirely omitted from
the trace. All traces I introduce in this dissertation suffer from this limitation. The absence of the
field, however, seems to not affect the performance of JVuPredict significantly. The fields selected
by JVuPredict as the most effective predictors of job runtime for the Mustang and TwoSigma
traces are: the ID of the user who submitted the job, the number of CPU cores requested by
the job, or a combination of the two. I find that the TwoSigma workload achieves identical
performance to Google: 31% of job runtimes are underestimated and 15% are predicted to be
less than 50% of the actual runtime. The Mustang workload is much more predictable, though,
with 38% of predictions falling within 5% of the actual runtime. Still, 16% of job runtimes were
underestimated by more than half of the actual runtime. The similarity between the TwoSigma
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and Mustang results suggests that JamaisVu would also perform well under these workloads. Note
that these results extend to the Google trace when the job name is omitted.

OpenTrinity performs worse than every other trace. Even though the preferred predictors
are, again, the user ID and the number of CPU cores in the job, 55% of predictions have been
underestimations. Even worse, 24% of predictions are underestimated by more than 95% of the
actual runtime. A likely cause for this result is the variability present in the trace. I am unsure
whether this variability is due to the short duration of the trace, or due to the workload being more
inconsistent during the OpenScience configuration period.

In conclusion, two insights were obtained by evaluating JVuPredict with multiple traces. First,
I find that although logical job names work well for the Google trace, they are hard to produce in
anonymized form for other traces, so they may often be unavailable. Second, I find that in the
absence of job names, there are other fields that can substitute for them and provide comparable
accuracy for all but the OpenTrinity trace. Specifically, the user ID and CPU core count for every
job seem to perform best for both TwoSigma and the Mustang trace.

3.7 On the importance of trace length
Working with traces often forces researchers to make key assumptions as they interpret the data,
in order to cope with missing information. A common (unwritten) assumption when using or
analyzing a trace, is that it sufficiently represents the workload of the environment wherein it was
collected. At the same time the Google trace spans only 29 days, while other traces I study in this
dissertation are 3-60 times longer, even covering the entire lifetime of the cluster in the case of
Mustang. Being unsure whether 29 days are sufficient to accurately describe a cluster’s workload,
I decided to examine how representative individual 29-day periods are of the overall workload in
the TwoSigma and Mustang traces.

The experiment consisted of dividing the traces in 29-day periods. For each such month I then
compared the distributions of individual metrics against the overall distribution for the full trace.
The metrics I considered were: job sizes, durations, and interarrival periods. Overall I found
consecutive months’ distributions to vary wildly for all these metrics. One distinguishable trend,
however, is that during the third year the Mustang cluster is dominated by short jobs arriving in
bursts.

Figure 3.11 summarizes the results by comparing the averages of different metrics for each
month against the overall average across the entire trace. The boxplots show the distributions of
average job interarrivals (left) and durations (right) per month, when normalized by the overall
average for the trace. The boxplots are standard Tukey boxplots, where the box is framed by the
25th and 75th percentiles, the dark line represents the median, and the whiskers are defined at 1.5
times the distribution’s Inter-Quartile Range (IQR), or the furthest data point if no outliers exist
(shown in circles here). I see that individual months vary significantly for the Mustang trace, and
they differ somewhat less across months in the TwoSigma trace. More specifically, the average
job interarrival of a given month can be 0.7-2.0x the value of the overall average in the TwoSigma
trace, or 0.2-24x the value of the overall average in the Mustang trace. Average job durations can
fluctuate between 0.7-1.9x of the average job duration in the TwoSigma trace, and 0.1-6.9x of the
average in the Mustang trace. Overall, the results conclusively show that the cluster workloads
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display significant differences from month to month.

3.8 Related work
The Parallel Workloads Archive (PWA) [32] hosts the largest collection of public HPC traces. At
the time of this writing, 38 HPC traces have been collected between 1993 and 2015. The HPC
traces complement this collection. The Mustang trace is unique in a number of ways: it is almost
two times longer in duration than the longest publicly available trace, contains four times as many
jobs, and covers the entire lifetime of the cluster enabling longitudinal analyses. It is also similar
in size to the largest clusters in PWA and its distribution of job duration is shorter than all other
HPC traces. The OpenTrinity trace is also complementary to existing traces, as it is collected on a
machine almost two times bigger than the largest supercomputer with a publicly available trace
(Argonne National Lab’s Intrepid) as far as CPU core count is concerned.

Prior studies have looked at private cluster traces, specifically with the aim of characterizing
MapReduce workloads. Ren et al. [73] examine three traces from academic Hadoop clusters in
an attempt to identify popular application styles and characterize the input/output file sizes, the
duration, and the frequency of individual MapReduce stages. These clusters handle significantly
less traffic than the Google and TwoSigma clusters I examine. Interestingly, a sizable fraction of
interarrival periods for individual jobs are longer than 100 seconds, which resembles my HPC
workloads. At the same time, the majority of jobs last less than 8 minutes, which approximates
the behavior in the Google trace. Chen et al. [21] look at both private clusters from Cloudera
customers and Internet services clusters from Facebook. On the one hand, their private traces
cover less than two months, while on the other hand their Facebook traces are much longer than
the Google trace. Still, there are similarities in traffic, as measured in job submissions per hour.
Specifically, Cloudera customers’ private clusters deal with hundreds of job submissions per hour,
a traffic pattern similar to the Two Sigma clusters, while Facebook handles upwards of a thousand
submissions per hour, which is more related to traffic in the Google cluster. The diversity across
these workloads further emphasizes the need for researchers to focus on evaluating new research
using a diverse set of traces.

Other studies that look at private clusters focus on Virtual Machine workloads. Shen et al.
[80] analyze datasets of monitoring data from individual VMs in two private clusters. They report
high variability in resource consumption across VMs, but low overall cluster utilization. Cano
et al. [16] examine telemetry data from 2000 clusters of Nutanix customers. The frequency of
telemetry collection varies from minutes to days and includes storage, CPU measurements, and
maintenance events. The authors report fewer hardware failures in these systems than previously
reported in the literature. Cortez et al. [23] characterize the VM workload on Azure, Microsoft’s
cloud computing platform. They also report low cluster utilization and low variability in tenant
job sizes.

3.9 Conclusion
I have introduced and analyzed job scheduler traces from two private and two HPC clusters.
The analysis showed that the private clusters resemble the HPC workloads studied, rather than
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the popular Google trace workload, which is surprising. This observation holds across many
aspects of the workload: job sizes and duration, resource allocation, user behavior variability, and
unsuccessful job characteristics. I also listed prior work that relies too heavily on the Google
trace’s characteristics and may be affected.

Finally, I demonstrated the importance of dataset plurality and diversity in the evaluation of
new research. For job runtime predictions, I show that using multiple traces allowed us to reliably
rank data features by predictive power. I hope that by publishing the traces I will enable researchers
to better understand the sensitivity of new research to different workload characteristics.
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Chapter 4

3Sigma: a runtime distribution based
scheduler

Knowledge of pending jobs’ runtimes has been identified as a powerful building block for
modern cluster schedulers [24, 54, 88]. With it, a scheduler can pack jobs more aggressively
in a cluster’s resource assignment plan [24, 54, 88, 92], such as by allowing a latency-sensitive
best-effort job to run before a high-priority batch job provided that the priority job will still meet
its deadline. Runtime knowledge allows a scheduler to determine whether it is better to start a job
immediately on suboptimal machine types with worse expected performance, wait for the jobs
currently occupying the preferred machines to finish, or to preempt them [13, 88]. Exploiting job
runtime knowledge leads to better, more robust scheduler decisions than relying on hard-coded
assumptions.

In most cases, the job runtime estimates are based on previous runtimes observed for similar
jobs (e.g., from the same user or by the same periodic job script)—a point estimate (e.g., mean or
median) is determined from the relevant history. When such estimates are accurate, schedulers
relying on them outperform those using other approaches. Further, previous research [88] has
shown that these schedulers can be robust to a reasonable degree of runtime variation (e.g., up to
50%).

However, I find that the estimate errors, while expected in large, multi-use clusters, cover an
unexpectedly larger range. Applying a state-of-the-art ML-based predictor [87] to the Google,
TwoSigma, and Mustang (Chapter 2) shows good estimates in general (e.g., 77–92% within a
factor of two of the actual runtime and most much closer). Unfortunately, 8–23% are not within
that range, and some are off by an order of magnitude or more. Thus, a significant percentage of
runtime estimates will be well outside the error ranges previously reported.

Worse, I find that schedulers relying on runtime estimates cope poorly with such error profiles.
Comparing the middle two bars of Fig. 4.1 shows one example of how much worse a state-of-the-
art scheduler does with real estimate error profiles as compared to having perfect estimates.

This chapter describes the 3Sigma cluster scheduling system, which uses all of the relevant
runtime history for each job rather than just a point estimate derived from it. Instead, it uses
expected runtime distributions (e.g., the histogram of observed runtimes), taking advantage of
the much richer information (e.g., variance, possible multi-modal behaviors, etc.) to make more
robust decisions. The first bar of Fig. 4.1 illustrates 3Sigma’s efficacy, showing that it approaches
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Figure 4.1: Comparison of 3Sigma with three other scheduling approaches w.r.t. SLO (deadline) miss
rate, for a mix of SLO and best effort jobs derived from the Google cluster trace [72] on a 256-node cluster.
(Details in §4.4.1) 3Sigma, despite estimating runtime distributions online with imperfect knowledge of
job classification, approaches the performance of a hypothetical scheduler using perfect runtime estimates
(PointPerfEst). Full historical runtime distributions and mis-estimation handling helps 3Sigma
outperform PointRealEst, a state-of-the-art point-estimate-based scheduler (detailed in §4.1.2 ). The
value of exploiting runtime information, when done well, is confirmed by comparison to a conventional
priority-based approach (Prio).

the hypothetical case of a scheduler with perfect point estimates.

By considering the range of possible runtimes for a job, and their likelihoods, 3Sigma can
explicitly consider the various potential outcomes from each possible plan and select a plan based
on optimizing the expected outcome. For example, the predicted distribution for one job might
have low variance, indicating that the scheduler can be aggressive in packing it in, whereas another
job’s high variance might suggest that it should be scheduled early (relative to its deadline).
3Sigma similarly exploits the runtime distribution to adaptively address a significant problem with
point over-estimates, which may suggest that the scheduler avoid scheduling a job based on the
likelihood of missing its deadline.

Full system and simulation experiments with production-derived workloads demonstrate
3Sigma’s effectiveness. Using its imperfect but automatically-generated history-based runtime
distributions, 3Sigma outperforms both a state-of-the-art point-estimate-based scheduler and a
priority-based (runtime-unaware) scheduler, especially for mixes of deadline-oriented jobs and
latency-sensitive jobs on heterogeneous resources. 3Sigma simultaneously provides higher (1)
SLO attainment for deadline-oriented jobs and (2) cluster goodput (utilization). In most cases,
3Sigma performs nearly as well as the hypothetical system with perfect estimates.

This chapter makes four primary contributions. First, it exposes a major problem with applying
recent runtime-estimate-guided schedulers to large, multi-use clusters: significant numbers of
bad estimates including some large outliers. Second, it describes an approach, which leverages
full runtime distributions, that solves this problem as well as an implemented scheduling system
(3Sigma) based on this solution. Third, it describes new core scheduler mechanisms, also
implemented in 3Sigma, needed to make distribution-based scheduling efficient and scalable—as
well as to mitigate the effects of outliers falling outside the observed history. Fourth, it reports on
end-to-end experiments on a real 256-node cluster, showing that 3Sigma robustly exploits runtime
distributions to improve SLO attainment and best-effort performance, dealing gracefully with the
complex runtime variations seen in real cluster environments.
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4.1 Background and related work

Cluster consolidation in modern datacenters forces cluster schedulers to handle a diverse mix
of workload types, resource capabilities, and user concerns [72, 79, 92]. One result of this has
been a resurgence in cluster scheduling research. This section focuses on work related to using
information about job runtimes to make better scheduling decisions.

Accurate job runtime information can be exploited to significant benefit in at least three ways
at schedule-time.

1) Cluster workloads are increasingly a mixture of business-critical production jobs and best-
effort engineering/analysis jobs. The production jobs, often submitted by automated systems [50,
83], tend to be resource-heavy and to have strict completion deadlines [24, 54]. The best-effort
jobs, such as exploratory data analytics and software development/debugging, while lower priority,
are often latency-sensitive. Given runtime estimates, schedulers can more effectively pack jobs,
simultaneously increasing SLO attainment for production jobs and reducing average latency for
best-effort jobs [24, 54, 88].

2) Datacenter resources are increasingly heterogeneous, and some jobs behave differently
(e.g., complete faster) depending upon which machine(s) they are assigned to. Maximizing cluster
effectiveness in the presence of jobs with such considerations can be more effective when job
runtimes are known [13, 88, 101].

3) Many parallel computations can only run when all tasks comprising them are initiated
and executed simultaneously (gang-scheduling) [65, 68]. Maximizing resource utilization while
arranging for such bulk resource assignments is easier when job runtimes are known.

Thus, many recent systems [24, 38, 40, 54, 88] make use of job runtime estimates provided by
users or predicted from previous runs of similar jobs. Such systems assume that the predictions
are accurate, and they may face severe performance penalties if a significant percentage of runtime
estimates is outside a relatively small error range. Worse, I find that this is to be expected in many
environments.

4.1.1 Runtime variation and uncertainty

Analysis of job runtime predictability in production environments reveals that consistently accurate
predictions should not be expected. Specifically, this section discusses observations from the
analysis of job traces from three environments (details in Sec. 2.4). I observe the following:

First, job runtimes are heavy-tailed (longest jobs are much longer than others), suggesting
that at least a degree of un-predictability should be expected. Heavy tails can be seen in the
distribution of runtimes for each workload (Fig. 4.2(a)).

Second, job runtimes within related subsets of jobs exhibit high variability. I illustrate this
with distributions of the Coefficient of Variation (CoV; ratio of standard deviation to mean), within
each subset clustered by a meaningful feature, such as user id (Fig. 4.2(b)) or quantity of resources
requested (Fig. 4.2(c)). CoV values larger than one (the CoV of an exponential distribution) is
typically considered high variability. Large percentages of subsets in each of the workloads have
high variability, with more occurring in the TwoSigma and Mustang workloads than in the Google
workload.
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Figure 4.2: Analyses of cluster workloads from three different environments: (a) Distribution of job
runtimes (b) Distribution of Coefficient of Variation for each subset grouped by user id (c) Distribution
of Coefficient of Variation for each subset grouped by amount of resources requested (d) Histogram of
Estimate Errors comparing runtime estimates from the state-of-the-art JVuPredict predictor and actual job
runtimes. Estimate Error values computed by estimate−actual

actual ×100. Each datapoint is a bucket representing
values within 5% of the nearest decile. The “tail” datapoint includes all estimate errors > 95%. Cluster:SC.
Workload:Google E2E, TwoSigma E2E, MUSTANG E2E

Third, I evaluate the quality of the estimates from a state-of-the-art predictor and confirm
that a significant percentage of estimates are off by factor of two or more. For this evaluation, I
generated a runtime estimate for each job and compared with the actual observed runtime in the
trace. I use JVuPredict, the runtime predictor module from the recent JamaisVu [87] project to
generate runtime estimates. JVuPredict produces an estimate for each job by categorizing jobs
(historical and new) using common attributes, such as submitting user or resources requested, and
choosing the estimate from the category that has produced the best estimates in the past. Smith et
al. [81] describe a similar scheme and its effectiveness for parallel computations.

Fig. 4.2(d) is the histogram of percent estimate error. For all workloads, most job runtimes
are estimated reasonably (e.g., ±25% error), but few are perfect. Worse, in each workload, a
substantial fraction of jobs are over- or under-estimated by a large margin, well outside the range
of errors considered in previous works [40, 88]. Even for the Mustang workload, which has large
proportion of jobs with very accurate (±5% error) estimates, at least 23% jobs have estimate
error larger than 95% and substantial amount of jobs have estimate error less than -55%. The
TwoSigma trace has the fewest jobs with very accurate estimates and many jobs in both tails of
the distribution. The Google cluster trace has fewer jobs in the tails of the distribution, but still
has 8% of jobs mis-estimated by a factor of two or more.

Overall, I conclude that multi-purpose cluster workloads exhibit enough variability that even
very effective predictors will have more and larger mis-estimates than has been assumed in
previous research on schedulers that use information about job runtimes.

4.1.2 Mis-estimate mitigation strategies
The scheduling research community has explored techniques to mitigate the effects of job runtime
mis-estimates, which can significantly hamper a scheduler’s performance.

Some environments (e.g. [54, 95]) use conservative over-provisioning to tolerate mis-estimates
by providing the scheduler more flexibility. Naturally, this results in lower cluster utilization, but
does reduce problems. Morpheus [54] re-assigns resources to jobs that require more resources at
runtime. Not all applications are designed to be elastic, though, and some cannot make use of
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additional resources.
Preemption can be applied to address some issues arising from mis-estimates, like it is used

in many systems to re-assign resources to new high-priority jobs, either by killing (e.g., in
container-based clusters [95]) or migrating (e.g., in VM-based systems [99]) jobs.

Various other heuristics have been used to mitigate the effects of mis-estimates. [86] addresses
mis-estimations of runtimes for HPC workloads by exponentially increasing under-estimated
runtimes and then reconsidering scheduling decisions. Other systems [22, 59] use the full runtime
distribution to compare the expected benefits of scheduling jobs. The “stochastic scheduler” [77]
uses a conservative runtime estimate by padding the observed mean by one or more standard
deviations. Such heuristics help (3Sigma borrows the first two), but do not eliminate the problem.

4.1.3 Distribution-based scheduling

Are estimates of job runtime distributions more valuable than point estimates (e.g., estimates of
the average job runtime) for cluster scheduling? Intuitively, the distribution provides strictly
more information to the scheduler than the point estimate. A simple example below illustrates the
point. Suppose two jobs arrive to be scheduled on a toy cluster, and the resources are sufficient to
execute only one job at a time. Further, one job is an SLO job with a 15 minute deadline, and
the other is a best-effort (BE) job. The objective of the scheduler is to minimize SLO violations,
while also minimizing BE job latency. The key question is which job should be executed first?

To answer that question, the scheduler naturally needs more information. Let’s start by
assuming a point-estimate based scheduler. In our example, imagine that the average runtime of
jobs like each of these is known to be 5 minutes. Because the deadline window of 15 minutes is
50% longer the sum of the two point estimates (10 minutes), one might assume that scheduling
the BE job first would be relatively safe, which would allow the BE job to start early while still
respecting the deadline of the SLO job.

Consider, instead, a distribution-based scheduler, and let’s imagine two cases: A and B. In
case A, the runtime distribution of each job (SLO and BE) is uniform over the interval 0 to 10
minutes. The average runtime is still 5 minutes, but the scheduler is able to calculate that the
probability of the SLO job missing its deadline would be 12.5% if the BE job were scheduled
first. Hence, scheduling the SLO job first may be desirable. For case B, in contrast, imagine that
the distributions are uniform over the interval 2.5 to 7.5 minutes. Again, the average runtime is 5
minutes, but now the scheduler may safely schedule the BE job first, because even if both jobs
execute with worst-case runtimes, the SLO job will finish in the allotted 15 minute window.

The key observation is that the distributions enable the scheduler to make better-informed
decisions; knowing just the average job runtime is not nearly as valuable as knowing whether jobs
are drawn from distribution A or B. Two caveats should be mentioned here. First, we implied in
this discussion that the SLO deadline is strict; in some environments, this may not be true, and
some weighting between BE job start time and SLO miss rate may be desirable. Second, the
discussion assumed that the distribution supplied to the scheduler is accurate. In practice, the
distribution will have to be estimated in some way—likely from historical job runtime data—and
may differ from observed behavior. I address both of these topics later and show that estimated
distributions are effective for the workloads studied.
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4.2 Distribution-based Scheduling
In this section, I describe the mechanisms that enable schedulers to use the full runtime distribution,
as opposed to point estimates. Any scheduler wanting to take advantage of runtime information
can use the following generic scheduling algorithm. The scheduler first generates all possible
placement options (resource type, start time), each of which has an associated utility. The
scheduler chooses to run the set of jobs which both maximize overall sum of utility and fit within
the available resources.

Using point runtime estimates, we can find the best schedule using basic optimization tech-
niques, e.g., mixed integer linear programming(MILP). However, with runtime distributions,
we have a much larger state-space to consider. For each running job, there are many possible
outcomes. Naively considering all scenarios easily makes this problem intractable. Instead of
considering each option, I use the expected utility per job and expected resource consumption over
time. This section describes how both of these values are calculated.

4.2.1 Valuation of scheduling options
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Figure 4.3: Example curves for estimating utility for a given job. Each job is associated with a utility
function (a) describing its value as a function of completion time. 3σPredict produces a PDF (b) describing
potential runtimes for the job. 3σSched combines them to compute expected utility (c) for the job as
a function of its start time. [Note the different x-axes for (a), (b), and (c).] As described in §4.3.2, the
overestimate handling technique involves modifying the utility function (a) associated with the job with an
extended version illustrated in (d).

For each job, there is a set of possible placement options. The placement of the job dictates
the job’s final completion time, and consequently, it’s usefulness or utility. A scheduler needs to
place jobs in a way that maximizes overall utility. This section describes how to associate job
placement options with the utility of the job.

Utility. To make informed placement decisions, a scheduler must quantify its options relative
to the success metric the job cares about. I use utility functions to represent a mapping from the
domain of possible job placement options and completion times to the potential utility of the job.
I assume that a cluster administrator or an expert user will be able to define the utility function
on a job-by-job basis. However, in this work, I model the utility of SLO and latency sensitive
jobs separately. The utility curve used for SLO jobs is shown in Fig. 4.3(a). This curve models a
job with constant utility if completed within the deadline, and zero utility if completed after the
deadline. On the other hand, I represent latency sensitive jobs as having a linearly decreasing
function over time to declare preference to complete faster.
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Expected utility. For each placement option (resource type, start time), a scheduler com-
putes the expected utility of a job using the runtime distribution. The expected utility is calculated
as the sum of utilities for each runtime t, weighted by the probability that the job runs for t:

E[U(startTime)] =
∫ max(runtime)

0
U(startTime+ t)PDF(t)dt (4.1)

where U(t) is utility function for placement in terms of completion time, and PDF is the probability
density function for the job runtime. Fig. 4.3 provides a simple example.

4.2.2 Expected resource consumption
To calculate the set of available resources over time, we need to estimate the resource usage
of currently running jobs over time. The use of point estimates for runtimes makes an implicit
assumption that resource consumption is deterministic. In contrast, using full distributions
acknowledges that resource consumption is, in fact, probabilistic for jobs with uncertain duration.
Thus, I calculate the expected resource consumption, similarly to expected utility (§4.2.1).

The expected resource consumption of a job at time-slice t is dependent on the probability
that the job still uses those resources at (i.e., hasn’t completed by) time t. Given PDF(t)—the
probability density function of a job’s runtime, CDF(t) captures the probability with which the
job will complete in at most t time units. The inverse CDF, or 1−CDF(t) then captures the
probability with which the job will complete in at least t time units, which is also the probability
the job still uses the resources at time t. Thus, expected resource consumption at time t equals to
the job’s resource demand multiplied by 1−CDF(t).

For running jobs, 3σSched updates the runtime distribution, as it has additional informa-
tion, namely the fact that the job has been running for some elapsed time. This enables us to
dynamically compute a conditional probability density function for the job’s expected runtime
P(t|t ≥ elapsed time). This probability update simply renormalizes the original CDForiginal(t)
and computes the updated probability distribution as follows:

1−CDFupdated(t) =
1−CDForiginal(t)

1−CDForiginal(elapsed time)
(4.2)

The amount of available resources in the cluster at time t is then computed by subtracting the
aggregate expected resource consumption at time t from the full cluster capacity.

4.3 Design and implementation
This section describes the architecture of 3Sigma (Fig. 4.4). 3Sigma replaces the scheduling
component of a cluster manager (e.g. YARN). The cluster manager remains responsible for job
and resource life-cycle management.

Job requests are received asynchronously by 3Sigma from the cluster manager (Step 1 of
Fig. 4.4). As is typical for such systems, the specification of the request includes a number of
attributes, such as (1) the name of the job to be run, (2) the type of job to be run (e.g. MapReduce),
(3) the user submitting the job, and (4) a specification of the resources requested.
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The role of the predictor component, 3σPredict, is to provide the core scheduler with a
probability distribution of the execution time of the submitted job. 3σPredict (§4.3.1) does this by
maintaining a history of previously executed jobs, identifying a set of jobs that, based on their
attributes, are similar to the current job and deriving the runtime distribution the selected jobs’
historical runtimes (Step 2 of Fig. 4.4).

Given a distribution of expected job runtimes and request specifications, the core scheduler,
3σSched decides which jobs to place on which resources and when. The scheduler evaluates the
expected utility of each option (§4.2.1) and the expected resource consumption and availability
over the scheduling horizon (§4.2.2). Valuations and computed resource capacity are then compiled
into an optimization problem (§4.3.3), which is solved by an external solver. 3σSched translates
the solution into an updated schedule and submits the schedule to the cluster manager (Step 3
of Fig. 4.4). On completion, the job’s actual runtime is recorded by 3σPredict (along with the
attribute information from the job) and incorporated into the job history for future predictions
(Step 4 of Fig. 4.4).

In this section, I detail how 3σPredict estimates runtime distributions (§4.3.1), how 3σSched
handles mis-estimation (§4.3.2), and the details of the core scheduling algorithm (§4.3.3).

4.3.1 Generating runtime distributions
For each incoming job, 3σPredict provides 3σSched with an estimated runtime distribution.
3σPredict generates this distribution using a black-box approach for prediction. It does not
require user-provided runtime estimates, knowledge of job structures, or explicit declarations of
similarity to specific previous jobs. However, it does assume that, even in multi-purpose clusters
used for a diverse array of activities, most jobs will be similar to some subset of previous jobs.

3σPredict associates each job with set of features. A feature corresponds to an attribute of the
job (e.g., user, program name, submission time, priority, resources requested, etc.). Attributes
can be combined to form a single feature as well (e.g., user and submission time). 3σPredict
tracks job runtime history for each of multiple features, because no single feature is sufficiently
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predictive for all jobs.
3σPredict associates the new job with historical job runtimes with the same features. Because

no single feature is always predictive, 3σPredict generates multiple candidate distributions for
each job. For example, one candidate distribution may consist of runtimes of jobs submitted by a
single user. A second candidate distribution may consist of runtimes of jobs submitted with the
same job name.

3σPredict selects one candidate distribution to send to 3σSched. To make this decision,
3σPredict compares each distribution’s ability to make accurate point estimates. For a given
candidate distribution, 3σPredict makes point estimates in multiple ways as different estimation
techniques will be more predictive for different distributions. Specifically, 3σPredict uses four
estimation techniques: (a) average, (b) median, (c) rolling (exponentially weighted decay with
α = 0.6), (d) average of X recent job runtimes. 3σPredict tracks the accuracy of each feature-
value:estimator pair, which I refer to as an “expert”, using the normalized mean absolute error
(NMAE) of past estimates. It designates the runtime distribution from the expert with the lowest
NMAE as the distribution estimate of the job.

3σPredict does not make any assumption about the shape of the distribution. Instead, I use
empirical distributions, stored as a histogram of the runtimes for each group. Runtimes often
exhibit uneven distributions (e.g. heavy-tailed, multi-modal), so I use varying bucket widths to
ensure that the shape of the distribution is accurately modeled. I dynamically configure bin sizes
using a stream histogram algorithm [11] with a maximum of 80 bins.

Scalability. Storing and querying the entire history of runtimes of a datacenter is not scalable.
3σPredict employs several sketching techniques to greatly reduce the memory footprint. 3σPredict
1) uses a stream histogram algorithm [11] to maintain an approximate histogram of runtimes, 2)
computes the average and rolling estimates and NMAE metric for each expert in a streaming
manner, and 3) computes the median using recent values as a proxy for the actual median. Using
these techniques, 3σPredict provides effective runtime distributions using constant memory, per
feature-value.

4.3.2 Handling imperfect distributions
3σPredict estimates the empirical distribution of a job using the history of previously executed
jobs. In practice, the estimated runtime distribution is imperfect. Not all jobs have sufficient
history to produce a representative distribution. The runtimes of recurring jobs will also evolve
over time (e.g. different input data, program updates). 3σSched uses the following mitigation
strategies to tolerate error in the estimated runtime distribution.

Under-estimate handling

Distribution schedulers encounter under-estimates when a job runs longer than all historical job
runtimes provided in the distribution. An under-estimate can cause a queued job waiting for the
busy resource to starve or miss its deadline. To mitigate this, when the elapsed time of the job
reaches the maximum observed runtime from the distribution, 3σSched exponentially increments
the estimated finish time by 2t cycles, starting with t = 0 in similar fashion to [86]. Exponential
incrementing (exp-inc) avoids over-correcting for minor mis-predictions. As 3σSched learns that
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the under-estimate is more significant, it updates the runtime estimate by progressively longer
increments. Note that under-estimates in 3σSched are much more rare compared to using a single
point estimate. Point estimate schedulers encounter under-estimates when a job runs longer than
the point estimate, whereas 3σSched encounters under-estimates when a job runs longer than all
historical job runtimes.

Over-estimate handling

3σSched encounters over-estimates when all historical runtimes are greater than the time to
deadline. In this case, the expected utility is zero, leading the scheduler to not see any benefit
from spending resources on the job. 3σSched would prefer to keep resources idle, rather than
scheduling a job with zero utility. To mitigate the effects of over-estimates, 3σSched proactively
changes the utility functions of SLO jobs to degrade gracefully. Instead of a sharp drop to zero
utility (Fig. 4.3(a)), 3σSched uses a linearly decaying slope past the deadline (Fig. 4.3(d)). This
way, the estimated utility of the job will be non-zero, even if all possible completion times exceed
the deadline. The post-deadline utility will be lower than other SLO jobs submitted with the same
initial utility. 3σSched will therefore only schedule seemingly impossible jobs when there are
available resources in the cluster.

Adaptive over-estimate handling

Enabling 3σSched’s over-estimate handling comes at a cost. It increases the number of SLO
jobs being tried in favor of completing lower priority jobs. For jobs that were not over-estimated,
resources are wasted. Ideally, we should only enable over-estimate handling for jobs which have a
reasonable probability of being over-estimates.

3σSched leverages the user provided deadline for SLO jobs in predicting the probability that a
job is over-estimated. The deadlines for high priority SLO jobs in production systems are known
to be correlated with its actual runtime, since they are usually the result of profiled test runs or
previous executions of the same jobs. Thus, 3σSched treats the time from submission to deadline
as a reasonable proxy for the upper-bound of the runtime. It compares this upper-bound with the
runtime distribution and enables over-estimate handling only if the likelihood of running for less
than the upper-bound is below a configured threshold. If the historical runtime distribution implies
that the job has no chance of meeting its deadline, even if started immediately upon submission, it
is likely that the runtime distribution is skewed toward over-estimation.

4.3.3 Scheduling algorithm

This section describes the details of the core scheduling algorithm used by 3σSched. The discus-
sion includes how I adapt the generalized scheduling algorithm (§4.2) to cope with approximate
runtime distributions, the formulation of the optimization problem, and algorithm extensions
to support preemption. I conclude the section by examining scalability issues arising from the
complexity of solving MILP.
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Intuition.

The high level intuition behind the scheduling algorithm is to bin-pack jobs, each represented as
a space-time rectangle in cluster resource space-time, where the x-axis represents time and the
y-axis enumerates the resources available. Current time is represented as a point on the x-axis.
Placing a job further along the x-axis, away from current time, is equivalent to deferring it for
future execution. This is useful when a job’s preferred resources are busy, but are expected to
free up in time to meet the job’s deadline. Placing a job on different types of resources (moving
its position along the y-axis) changes the shape of the rectangles, as the resource type affects its
required resources and completion time. Each job can then be thought of as an enumeration of
candidate space-time rectangles, each corresponding to a utility value. The job of the scheduler is
to maximize the overall utility of the placement decision by making an instantaneous decision on
(a) which jobs to execute and which to defer, and (b) which placement options to pick for those
jobs. To achieve this, the scheduler must have a way to formulate all jobs’ resource requests so
that all pending requests may be considered in aggregate. 3σSched achieves this by formulating
jobs’ resource requests as Mixed Integer Linear Programming instances.

The scheduler operates on a periodic cycle (at the granularity of seconds, e.g., 1-2s), making
a placement decision at each cycle for all pending jobs. The schedule for all pending jobs is
re-evaluated every cycle to provide a basic level of robustness to runtime mis-estimation [88].
The sketch of the scheduling algorithm is as follows.
(1) Translate each job’s resource request to its MILP representation.
(2) Aggregate jobs’ demand constraints.
(3) Construct resource capacity constraints.
(4) Construct the aggregate objective function as the sum of jobs’ individual objective functions,
modulated by binary indicator variables.
(5) Solve the MILP (using an external MILP solver).
(6) Extract job placement results from MILP solution.
(7) Report the scheduling decision to the resource manager.
(8) Dequeue scheduled jobs from the pending queue.

Example

Fig. 4.5 illustrates the example introduced in §4.1.3, where two jobs simultaneously arrive to a
single-node cluster: an SLO job (D) with a 15min deadline and a best effort (BE) job. Here, I
highlight the mechanics of leveraging the distribution information to achieve the best job schedule.
In the left column of Fig. 4.5, I focus on a first scenario, in which both jobs’ expected runtimes
are drawn from a uniform distribution U(0,10). The right column focuses on a second scenario,
where the jobs’ expected runtimes are drawn from a uniform distribution U(2.5,7.5). In scenario
1, the scheduler picks a schedule that schedules the SLO job, because it recognizes the risk of it
not completing in time otherwise, while in scenario 2, it schedules the BE job first since the SLO
job is expected to finish in time regardless of where the runtimes fall within the full distribution.
In both cases, it realizes the right decision by maximizing the overall expected utility offered by
the two pending jobs.

As sketched in §4.3.3, 3σSched first constructs and aggregates the jobs’ expected demand.
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Figure 4.5: Job D is an SLO job with a 15min deadline. Job BE is a BE job. Left column: job runtimes
∼U(0,10) (scenario1). Right column: job runtimes ∼U(2.5,7.5) with the same µ = 5 (scenario 2). (a)
and (b): The final order that yields maximal utility. The intensity of the black represents the expected
resource consumption at the start of each slot (from 100% certainty (darkest) to 25% certainty (lightest),
in 25% decrements for the scenario 1 and a 50% decrement for the scenario 2. (c) and (d): Inverse
CDF (1−CDF(t)), the probability of D (blue) and BE (red) jobs completing before t, which is also
the probability of still using the resource at that time. (e) and (f): SLO job’s expected utility, set to the
probability of the job’s completion by the deadline at each start time in this example (note: x-axis is
different from other subfigs).

The key insight is that this draw on resources over time is probabilistic (Figs. 4.5(a) and 4.5(b)).
E.g., with the SLO job scheduled to start at t = 0, it is expected to consume the cluster node
with 100% probability in the first time slice, and monotonically decreasing probability < 1 in
subsequent time slices. Fig. 4.5 plots these probabilities on gray scale from 0 (white: resource not
used) to 1 (black: resource expected to be used with 100% probability). I use this grayscale to
illustrate the best job schedule in each of the two scenarios in Fig. 4.5. Note that the SLO job
meets its 15min deadline in both cases, but is scheduled first in scenario 1 and second in scenario
2. Expected resource consumption is calculated by referring to the inverse CDF (Figs. 4.5(c)
and 4.5(d)) of each job’s conditional runtime distribution (§4.2.2).

As the scheduler constructs and aggregates resource demands from both jobs, it ensures that
their sum does not exceed the expected resource capacity at any given time t in the plan-ahead
window ∈ [0;20). These declarative constraints are automatically generated and added to the
MILP problem instance (as described below). The aggregate utility for each job, derived from the
expected utility curves, forms the overall objective function to maximize. Figs. 4.5(e) and 4.5(f)
show the expected utility curves for the SLO job (”D”) in the two scenarios, respectively, and
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the BE job’s utility curves (not shown) are a linearly decaying function with a significantly
lower maximum value. Figs. 4.5(a) and 4.5(b) show the best outcome for each of the scenarios.
Concretely, I observe that awareness of the runtime distribution allows the scheduler to determine
the likelihood of it being safe to delay an SLO job (Fig. 4.5(b)) to minimize the BE job’s latency
while still meeting the SLO job’s deadline.

MILP Formulation

The first step of the algorithm is to convert all jobs to their MILP representation. This is done
by generating all possible placement options, both over different types of resources (space) and
over time. 3σSched minimizes the set of possibilities by adopting the notion of equivalence sets,
introduced in [88]. Equivalence sets are sets of resources equivalent from the perspective of a
given job, e.g. all nodes with a GPU. 3σSched reasons about these sets of resources instead of
enumerating all possible node combinations. As a result, the complexity of MILP depends on the
number of equivalence sets rather than the cluster size. Thus, equivalence sets help manage the
size of generated MILP in the space dimension. MILP size in the time dimension is controlled by
the plan-ahead window sched.

A given placement option includes a specification of the equivalence set, the starting time
s ∈ [now;now+ sched], the estimated runtime distribution, and how many nodes are requested
k. The estimated runtime distribution for a running job is reconsidered at every scheduling
event, based on how long the job has run so far as described in Eq. 4.2. Updates to the runtime
distribution changes the scheduler’s expectation of the jobs’ future resource consumption. This
allows 3σSched to react to mis-estimates, e.g., by re-planning pending jobs waiting for preferred
resources to a different set of nodes, or preempting lower priority jobs.

Each placement option is associated with a const utility value obtained by using Eq. 4.1. The
corresponding objective function for this job becomes a sum of these values modulated by binary
indicator decision variables. Namely, given job j and placement option o, the MILP generator
associates an indicator variable I jo, adding a constraint that at most one option is selected for
each job: ∀ j ∑o I jo ≤ 1. Thus, the aggregate objective function to maximize is ∑ j ∑oU joI jo. A
solution that maximizes this function effectively selects (a) which jobs to run now, and (b) which
placement option o to pick for selected job j.

This objective function is maximized subject to a set of auto-generated constraints: capacity
and demand constraints. Demand constraints ensure that (a) the sum of allocations from different
resource partitions [88] is equal to the requested quantity of resources k, and (b) at most one
placement option is selected: ∀ j ∑o I jo ≤ 1. Capacity constraints provide the invariant that

∀t ∈ [now;now+ sched]∑
jo

k ·RC j(t− s)I jo ≤C(t), (4.3)

where RC j(t) is the expected resource consumption of job j at time t (§4.2.2). This ensures that
aggregate allocations do not exceed the expected available capacity C(t) at time t.

MILP Example

Let’s examine 3σSched’s MILP formulation in detail on the same two job example (Fig. 4.5).
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Scenario 1 (U(0,10)). First, for each job j, the scheduler generates indicator variables, I jt
where t ∈ {0,2.5, ...,17.5}, that represent whether the job should be scheduled or deferred to each
t. The expected utilities of each placement option is also computed. For the SLO job, the expected
utility is 1 for all placement options with start times t ≤ 5. The options that start later will have
gradually decreasing values, 0.75, 0.5, 0.25, and 0, as the probability of missing the deadline
increases as a function of time. The expected utilities for the BE job will be linearly decreasing
values over time.

Second, demand and capacity constraints are generated. A demand constraint ∑t I jt ≤ 1 is
constructed to ensure at most one option is selected for each job j. Capacity constraints are
generated by calculating expected resource consumption for each job. For a job that starts at t = s,
the expected resource consumption at elapsed time = 0,2.5,5,7.5 is the probability of the job
still running and equals 1.0, 0.75, 0.5, 0.25 respectively, zero thereafter.

Third, 3σSched constructs the overall MILP problem by aggregating per-job MILP contribu-
tions. Demand constraints are aggregated into the constraints of the problem. Resource capacity
constraints are constructed by aggregating the expected resource consumption of placement
options across all jobs for each time slot. For example, it is 0.75ISLO;0 +1.0ISLO;2.5 +0.75IBE;0 +
1.0IBE;2.5 ≤ 1 for t = 2.5.

The aggregate objective function is constructed by adding all U jtI jt terms, where U jt is the
expected utility of the placement option for job j that starts at t. Examining the objective function
while satisfying the demand and capacity constraints, 3σSched decides to schedule the SLO job
first. Starting the SLO job at t = 10 would only yield an expected utility of 0.5, which corresponds
to a 50% probability of meeting the deadline. The BE job utility gain would be insufficient to
offset the SLO utility loss.

Scenario 2 (U(2.5,7.5)). First, all the decision variables are generated similarly to the
scenario 1. The expected utility is calculated for both jobs. For the SLO job, the expected utility
is 1 for all placement options with start times t ≤ 7.5. The expected utility of the BE job and the
demand constraints are same as before.

For a job that starts at t = s, the expected resource consumption at elapsed time = 0,2.5,5 is
1.0,1.0,0.5 respectively, and zero otherwise.

The aggregate MILP problem is constructed, aggregating demand constraints, objective
functions, and generating capacity constraints that ensure the sum of aggregate resource demand
does not exceed total resource capacity. This ensures the second job is deferred to start at t = 7.5.

Examining the objective function while satisfying the demand and capacity constraints,
3σSched decides to schedule the BE job first and postpones the SLO job, as it is possible to
complete both jobs before the deadline. The aggregate expected utility reflects that, as it yields
the SLO job utility of 1 when started by t = 7.5 and the highest value for the BE job when started
at t = 0.

Preemption

In rare cases, 3σSched needs to re-consider scheduling decisions for currently running jobs. For
example, due to under-estimates, the scheduler may incorrectly choose to aggressively postpone
SLO jobs to complete more BE jobs. The scheduler might be able to reschedule if there are enough
resources. However, sometimes the only way to meet the deadline is to preempt lower-priority
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jobs running in the cluster.
Preemption is naturally supported in the existing MILP generation framework, as it is able to

simultaneously consider pending jobs for placement and running jobs for preemption. Thus, the
goal of the scheduler is to maximize the aggregate value of placed jobs, while incurring a cost
for preempting jobs. The latter is a ∑r PrI

p
r , where Ip

r is an indicator variable tracking whether to
preempt a running job r. Pr is the preemption cost for the running job r and is configured by the
preemption policy. The overall objective function then becomes ∑ j,oU joI jo−∑r PrI

p
r .

The capacity constraint extension, intuitively, credits back resources associated with preempted
jobs: ∑ jo koRC j(t− s)I jo ≤ C(t)+∑r krRCr(t− e)Ip

r . RCr is the up-to-date expected resource
consumption of the running job r, and e is the elapsed time of r.

Scalability

Solving MILP is known to be an NP-hard problem. To minimize the excessive latency caused by
the solver, I apply a number of optimizations. The primary optimization I perform is seeding each
new cycle’s MILP problem with the solution from the previous cycle. Intuitively, the previous
cycle’s solution corresponds to leaving the cluster state unchanged. As such, it represents a feasible
solution. Second, I have empirically found that the solver spends most of the time validating
optimality for the solution it otherwise quickly finds. Thus, I get near-optimal performance by
querying the solver for the best solution found within a configurable fraction of its scheduling
interval. Third, the plan-ahead window bounds the complexity of the MILP problem by adjusting
the range of time over which job placements are considered. Fourth, 3σSched performs some
internal pruning of generated MILP expressions, which include eliminating terms with zero
constant.

4.4 Evaluation
This section evaluates 3Sigma, yielding five key takeaways. First, 3Sigma achieves significant
improvement over the state-of-the-art in SLO miss rate, best-effort job goodput, and best-effort
latency in a fully-integrated real cluster deployment, approaching the performance of the unrealis-
tic PointPerfEst in SLO miss rate and BE latency. Second, all of the 3σSched component
features are important, as seen via a piecewise benefit attribution. Third, estimated distributions
are beneficial in scheduling even if they are somewhat inaccurate, and such inaccuracies are
better handled by distribution-based scheduling than point-estimate-based scheduling. Fourth,
3Sigma performs well (i.e., comparably to PointPerfEst) under a variety of conditions, such
as varying cluster load, relative SLO job deadlines, and prediction inaccuracy. Fifth, I show that
the 3Sigma components (3σPredict and 3σSched) can scale to >10000 nodes.

4.4.1 Experimental setup
I conduct a series of end-to-end experiments and microbenchmarks to evaluate 3Sigma, integrated
with Hadoop YARN [89]–a popular open source cluster scheduling framework. I find YARN’s
support for time-aware reservations and placement decisions and its popularity in enterprise a good
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System Runtime Overestimate
Estimation Handling

3Sigma Real Distributions ADAPTIVE
PointPerfEst Perfect Point Estimates NO
PointRealEst Real Point Estimates NO
Prio N/A N/A

Table 4.1: Scheduler approaches compared.

fit for my needs. I implement a proxy scheduler wrapper that plugs into YARN’s ResourceManager
and forwards job resource requests asynchronously to 3Sigma. Jobs are modeled as Mapper-only
jobs. I use a synthetic generator based on Gridmix 3 to generate Mapper-only jobs that respect
the runtime parameters for arrival time, job count, size, deadline, and task runtime from the
pre-generated trace.

Cluster configurations. I conduct experiments on two cluster configurations: a 256-node real
cluster (RC256) and a simulated 256-node cluster (SC256). RC256 consists of 257 physical nodes
(1 master + 256 slaves in 8 equal racks), each equipped with 16GB of RAM and a quad-core
processor. The simulations complete in 1

5
th

the time on a single node, allowing us to evaluate more
configurations and longer workloads. I also conduct an experiment with a simulated 12,583-node
cluster (GOOGLE) to evaluate 3Sigma’s scalability.

Systems compared. I compare the four scheduler approaches in Table 4.1. 3Sigma is my
system in which 3σSched is given real runtime distributions provided by 3σPredict and uses
adaptive overestimate handling. Both PointPerfEst and PointRealEst use an enhanced
version of [88] with under-estimate handling (§4.3.2) and preemption (§4.3.3). It represents the
state-of-the-art in schedulers that rely on point estimates. This includes Rayon, Morpheus, and
TetriSched [24, 54, 88], enhanced with the state-of-the-art in techniques for handling imperfect
estimates. PointPerfEst is a hypothetical system in which the scheduler is given a correct
runtime for every incoming job. PointRealEst uses point runtime estimates from 3σPredict.
Prio is a priority scheduler, giving SLO jobs strict priority over BE jobs rather than leveraging
runtime information, which represent schedulers like Borg [95].

Workloads. The bulk of the experiments use workloads derived from the Google trace [72]. I
use a Google trace-derived workload (termed ”E2E”) for overall comparisons among schedulers
as well as workloads that vary individual workload characteristics (e.g., runtime variation or
cluster load) to explore sensitivities. All workloads are 5 hours in length (˜1500 jobs) except
for the 2hr E2E (˜600 jobs), used to expedite the experiment in RC256. The E2E workload is
synthetically generated from Google trace characteristics. I evaluated the quality of estimates (as
in §4.1.1) and confirmed that the runtime predictability of the generated workload was similar
to the original Google trace. In simulation, I have also obtained similar experimental results by
drawing random trace samples from the original instead of using the E2E workload. To generate a
workload, all jobs larger than 256 nodes were filtered out. The remaining jobs — clustered using
k-means clustering on their runtimes. I derive parameters for the distributions of the job attributes
(e.g., runtime and number of tasks) and the probability mass function of features in each job class.
The arrival process used was exponential with a coefficient of variance of 4 (c2

a=4). I draw jobs
from each job class proportionally to the empirical job-class distribution. I also pick job attributes
and features for each job according to the empirical distribution of attributes and features from
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the job-class. Each workload consists of an even mixture of SLO jobs with deadlines and latency
sensitive best effort (BE) jobs. SLO jobs have soft placement constraints (preferred resources set
to a random 75% of the cluster, as observed in the original trace). SLO jobs run 1.5x longer if
scheduled on non-preferred resources.

For the experiment in §4.4.2, I also use workload TwoSigma E2E and MUSTANG E2E
derived from the TwoSigma and Mustang traces, respectively. For these workloads I filtered out
jobs larger than 256 nodes, but took a 5 hour segment of the original workload instead of deriving
parameters and regenerating based on the distribution. The segment was randomly selected among
many segments that have a similar load to the E2E workload.

Estimates. Because the experiments are 5-hour windows, I pre-train 3σPredict before run-
ning them to produce steady-state estimates for 3Sigma and PointRealEst. For the Google
workload, I use a subset of the generated trace for pre-training and use the rest for the experi-
ments. Only the features present in the original trace were used to generate point and distribution
estimates (e.g., job class, the runtime class membership feature not present in the original trace,
was never used in order to maintain a fair experimental setup). For other workloads, I pre-train on
jobs completed before the selected 5 hour segment begins.

Workload configurations. For SLO jobs, the deadline slack is an important consider-
ation. Since the original workloads do not include deadline information, I generate dead-
lines for each SLO job as follows. Deadline slack is defined as (deadline− submissiontime−
runtime)/runtime ∗ 100 (i.e., a slack of 60% indicates that the scheduler has a window 60%
longer than the runtime in which to complete the job). Tighter deadlines are more challenging
for schedulers. By default, I select each job’s deadline slack randomly from a set of 4 options:
20%, 40%, 60%, and 80%. These default values are much smaller than experimented in [88]
(which used slacks of 250% and 300%), matching the finding in [54] that tighter deadlines are
also possible.

Load is a measure of offered work (machine×hours) submitted to the cluster scheduler as a
proportion of cluster capacity. The nominal offered load is 1.4 (unless specified otherwise). I first
chose the load for SLO jobs as 0.7, approximating the load offered by production jobs in [72]. I
added equal proportion of BE jobs as to not unfairly bias the scheduling problem towards SLO
jobs and to demonstrate the behavior of system under stressful conditions.

Note my definition of load is different from effective load, a ratio of actual resources allocated
for all jobs (successful and not successful) to the cluster capacity. Effective load is different for
each scheduling approach as they make different allocation decisions, even if the same jobs are
injected to the system. In all experiments and for all scheduling approaches, the cluster was run
close to its space-time capacity.

Success metrics. I use the following goodness metrics when comparing schedulers. The
primary goal is to minimize SLO miss rate: the percentage of SLO jobs that miss their deadline. I
also want to measure the total work completed in machine-hours (goodput), showing how much
aggregate work is completed, since BE goodput and the goodput of incomplete SLO jobs is not
represented by the SLO miss rate. Finally, I measure mean BE latency—the mean response time
for BE jobs.
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Figure 4.6: Compares the performance of 3Sigma with other systems in the real cluster. 3Sigma
constantly outperforms PointRealEst and Prio on SLO miss-rate and Goodput while nearly matching
PointPerfEst. Cluster:RC256. Workload:E2E

4.4.2 End-to-end performance

Fig. 4.6 shows performance results for the four scheduling systems running on the real cluster
(RC256).

3Sigma is particularly adept at minimizing SLO misses, my primary objective, and com-
pleting more useful work, approaching PointPerfEst and significantly outperforming the
non-hypothetical systems. 3Sigma performs well, despite not having the luxury of perfect job
runtime knowledge afforded to PointPerfEst. It uses historical runtime distributions to make
informed decisions, such as whether to start a job early to give ample time for it to complete before
its deadline, or to be optimistic and schedule the job closer to the deadline. However, 3Sigma
is not perfect. It misses a few more SLO job deadlines than PointPerfEst, and it completes
fewer best-effort jobs because 3σSched preempts more best-effort jobs to make additional room
for SLO jobs for which the distribution indicates a wider range of possible runtimes for a job . BE
latency is similar across all system.

PointRealEst exhibits much higher SLO miss rates (18%, or 4.0X higher than 3Sigma),
and lower goodput (5.4% lower than 3Sigma), because previous approaches struggle with realistic
prediction error profiles. Because PointRealEst schedules based on only point estimates
(instead of complete runtime distributions) and lacks an explicit overestimate handling policy, it
makes less informed decisions and struggles to handle difficult-to-estimate runtimes (e.g., due
to greater variance for a job type). For underestimated SLO jobs (that ran shorter in the past
on average), PointRealEst is often too optimistic and starts the job later than it should. For
overestimated SLO jobs, PointRealEst is often too conservative, neglecting to schedule SLO
jobs which are predicted to not finish in time, even if cluster resources are available.

Prio misses 12% of SLO job deadlines (2.3x more than 3Sigma). It does not take advantage
of any runtime information, thereby missing opportunities to wait for preferred resources or
exploit one job’s large deadline slack to start a tighter deadline job sooner. Prio is better than
PointRealEst in terms of SLO misses but much worse in BE goodput, as it always prioritizes
SLO jobs at the expense of increased preemption of BE jobs, even when deadline slack makes
preemption unnecessary. When the runtime is over-estimated, PointRealEst may not even
attempt to run a job thinking that it would not complete in time, while Prio will always attempt
to schedule any SLO jobs if there are enough resources.

46



Google TwoSigma Mustang0

5

10

15

20

SL
O 

M
iss

(%
)

3Sigma
Point - PerfEst

Point - RealEst
Prio

(a) SLO Miss rate

Google TwoSigma Mustang0

200

400

600

800

1000

1200

Go
od

pu
t(M

-H
r)

3Sigma
SLO

Point - PerfEst
BE

Point - RealEst Prio

(b) Goodput

Google TwoSigma Mustang0

250

500

750

1000

1250

1500

BE
 L

at
en

cy
(s

)

3Sigma
Point - PerfEst

Point - RealEst
Prio

(c) BE latency
Figure 4.7: Compares the performance of 3Sigma with other systems under workloads from different
environments in simulated cluster. 3Sigma constantly outperforms PointRealEst and Prio on SLO
miss rate and Goodput while nearly matching PointPerfEst. The Google workload is 5hr variant of
E2E. Cluster:SC256. Workload:E2E, TwoSigma E2E, MUSTANG E2E

Simulator experiments. I validate the simulation setup (SC256) by running the identical
workload to that in experiment in Fig. 4.6. Similar trends are observed across all my systems and
success metrics. Table 4.2 shows the small differences observed for the 12 bars shown in Fig. 4.6.

Performance comparison varying workload. Fig. 4.7 summarizes the performance of
the scheduling systems under three different workloads. I observe that the overall behav-
ior of the schedulers is similar to my observations in §4.4.2. For all workloads, 3Sigma
outperforms PointRealEst and Prio, while approximately matching the performance of
PointPerfEst. Surprisingly, for the TwoSigma and Mustang workloads, 3Sigma slightly
outperforms PointPerfEst. This is possible because, while PointPerfEst does receive
perfect runtime knowledge as jobs arrive, it does not possess knowledge of future job arrivals
(nor do any of the other systems). Consequently, it may make sub-optimal scheduling decisions,
such as starting a SLO job late and not leaving sufficient resources for future arrivals. 3Sigma
also does not possess knowledge of future job arrivals, but it tends to start SLO jobs earlier than
PointPerfEst when the distribution suggests likelihood of a runtime longer than the actual
runtime.

I also observe that PointRealEst performs poorly on SLO miss rate across different
workloads. Further, miss-rate is only slightly better for Mustang. This is surprising, as a much
larger portion (compared to other workloads) of jobs in Mustang have very accurate point estimates
(Fig. 4.2(a)). I believe PointRealEst still performs poorly as a small number of the estimates
are off by a large margin, adversely affecting the ability of the scheduler to make informed decision.
But, many of the mis-estimates are associated with small jobs; consequently, PointRealEst
and Prio are able to provide high goodput despite having high SLO miss-rates.

Metric(unit) ∆ SLO miss(%) ∆ goodput(M-Hr) ∆ BE latency(s)
3Sigma 0.2875 27.10 11.08

PointPerfEst 0.6784 25.27 7.282
PointRealEst 2.025 22.83 2.383

Prio 1.853 19.83 12.07

Table 4.2: Absolute performance difference between real and simulation experiments. Workload:E2E.
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Figure 4.8: Attribution of Benefit. The lines representing 3Sigma with individual techniques disabled—
demonstrating that all are needed to achieve the best performance. The workload is E2E with a constant
deadline slack. Cluster:SC256 Workload:DEADLINE-n where n ∈ [20,40,60,80,100,120,140,160,180]

4.4.3 Attribution of benefit
3σSched introduces distribution-based scheduling and adaptive overestimate handling to robustly
address the effects of runtime uncertainty. This section evaluates the individual contributions
of these techniques. Fig. 4.8 shows performance as a function of deadline slack for 3Sigma,
PointPerfEst, PointRealEst, and three versions of 3Sigma, each with a single technique
disabled: 3SigmaNoDist uses point estimates instead of distributions, 3SigmaNoOE turns off
the overestimate handling policy, and 3SigmaNoAdapt turns off just the adaptive aspect of the
policy and uses maximum overestimate handling for every job.

When the scheduler explicitly handles overestimates (compare 3SigmaNoDist to
PointRealEst), SLO miss rate decreases because over-estimated SLO jobs are optimistically
allowed to run, rather than discarding them as soon as they appear to not have enough time to
finish before the deadline. However, SLO miss rate for 3SigmaNoDist is still high, because the
lack of distribution awareness obscures which jobs are more likely to succeed if tried; therefore,
3SigmaNoDist wastes resources on SLO jobs that won’t finish in time.

Simply using distribution-based scheduling (see, e.g., 3SigmaNoOE) drops SLO miss rate to
the level of PointPerfEst for most deadline slacks. By considering the variance of job run-
times, the scheduler can conservatively schedule jobs with uncertain runtimes and optimistically
attempt jobs that are estimated to have a non-zero probability of completion.

Blindly turning on overestimate handling decreases SLO miss rates at the lowest deadline
slacks (3SigmaNoAdapt). However, 3SigmaNoAdapt is overly optimistic— even attempting
jobs that would seem impossible given their historical runtimes— provided there are enough
resources for SLO jobs in the cluster. This over-optimism results in lower BE goodput relative to
3Sigma’s adaptive approach of enabling overestimate handling only for a small proportion of the
jobs whose distributions indicate likely success.

4.4.4 Distribution-based scheduling benefits
This section explores the robustness of 3Sigma to perturbations of the runtime distribution. In
this study, for each job drawn from the E2E workload, I provide 3σSched with a synthetically
generated distribution instead of the distribution produced by 3σPredict.

I adjust the synthetic distributions in two dimensions, corresponding to an off-center mean
and different variances. The former is realized by artificially shifting the entire distribution by an
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Figure 4.9: 3Sigma’s performance when artificially varying runtime distribution shift (x-axis) and
width (Coefficient of Variation curves). The runtime distribution provided to the scheduler is ∼N (µ =
job runtime∗ (1+ x

100),σ = job runtime∗CoV ). Each trace consists of jobs that are either within 10%
accuracy or under- or over-estimates jobs. The group of jobs achieves a target average artifical shift. (c)
shows the breakdown of these job types for each artificial shift value. Distribution-based schedulers always
outperforms the point estimate-based scheduler. Tighter distributions perform better than wider distribution
with a smaller artificial shift, but wider distributions are better with a larger artificial shift. The workload is
2 hrs in length. Cluster:SC256. Workload:E2E

amount equal to a selected percent difference between the mean of the distribution and the actual
runtime. The latter is represented by the CoV, which refers to the ratio of standard deviation to the
actual runtime of the job. For each job, the artificial distribution is ∼N (µ = job runtime∗ (1+
shi f t), σ = job runtime∗CoV ), where the shift itself is ∼N (µ = shi f t, σ = 0.1).

Fig. 4.9 shows the results. Comparing point estimates (point) and distribution estimates,
I observe that it is strictly better to use distribution estimates (CoV=x%) than to use point esti-
mates (point) for scheduling jobs. Even at an artificial shift= 0.0, where ≈ 70% of estimates
are generally accurate (within ±10% error), using a distribution yields 2X fewer SLO misses
compared to the point estimates. Hence, even a small proportion of jobs with inaccurate estimates
can cause the scheduler to make mistakes and miss the opportunity to finish more jobs on time.
Comprehending entire distributions enables the scheduler to reason about uncertainty in runtimes.

Furthermore, for small artificial shifts (within±20%), it is better to have narrower distributions
with a smaller CoV. This is because a wider distribution indicates greater likelihood of runtimes
that are much shorter and much larger than the actual runtime. The scheduler is more likely to
incorrectly make risky decision to start some jobs later than it should and make overly conservative
decisions for other jobs.

However, if the actual runtime is far away from the center of the runtime distribution (larger
artificial shift), wider distributions provide a benefit. As the distribution widens, the scheduler
correctly assigns higher expected utility to scenarios that hedge the risk of runtimes being farther
away from the mean. On the other hand, narrower distributions suffer more as the artificial shift
deviates further from zero. The likelihood of the job running for the actual runtime decreases
significantly, and causes the scheduler to discount the placement options that hedge the associated
risks.

4.4.5 Sensitivity analyses
Sensitivity to deadline slack. Fig. 4.8 shows performance as a function of deadline slack. I
make two additional observations. First, smaller slack makes it harder to meet SLOs across all
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policies, due to increased contention for cluster space-time, leading to higher SLO miss rates.
Second, best effort goodput decreases for all systems, but for different reasons. As slack increases,
PointPerfEst sees more wiggle room for placement and tries (and completes) more difficult
larger SLO jobs. Since the schedule is optimally packed, it needs to bump best effort jobs
in order to schedule more SLO jobs. BE goodput of PointRealEst shows similar trends;
PointRealEst tries more over-estimated jobs, since increasing slack reduces the number of
seemingly impossible jobs. 3Sigma, on the other hand, was already trying most completable
overestimated jobs, so it sees the smallest decrease in BE goodput. More of the SLO jobs succeed
though.

1.0 1.2 1.4 1.6
Load

0

10

20

30

SL
O 

M
iss

(%
)

Point - PerfEst
3Sigma

Point - RealEst
Prio

(a) SLO Miss-rate

1.0 1.2 1.4 1.6
Load

0

100

200

300

400

500

600

BE
 G

oo
dp

ut
(M

-H
r) Point - PerfEst

3Sigma
Point - RealEst
Prio

(b) BE Goodput

1.0 1.2 1.4 1.6
Load

0

100

200

300

400

500

600

BE
 L

at
en

cy
(s

)

Point - PerfEst
3Sigma

Point - RealEst
Prio

(c) Best Effort latency

Figure 4.10: 3Sigma outperforms others on SLO misses for a range of loads, matching PointPerfEst
closely. All systems prioritize SLO jobs by sacrificing BE jobs when load spikes. Cluster:SC256, Workload:
E2E-LOAD-` where ` ∈ [1.0,1.2,1.4,1.6]

Sensitivity to load. Fig. 4.10 shows performance as a function of load. As load increases, I
observe an increase in all systems’ SLO miss rates due to increased contention for cluster resources.
The relative effectiveness of PointPerfEstand the three realistic scheduling approaches is
consistent across the range. I observe that as the load increases, all systems increasingly prioritize
SLO jobs, decreasing BE goodput. The gap between the BE goodputs of PointPerfEst and
3Sigma widens as 3Sigma makes more room for each incoming SLO job to address its uncertainty
about runtimes.
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Figure 4.11: 3Sigma outperforms others on SLO Misses for a range of runtime variability. 3Sigma
matches PointPerfEst in terms of SLO misses at the sacrifice of Best Effort goodput. Cluster:SC256.
Workload:E2E-SAMPLE-n where n ∈ [5,10,25,50,75,100]

Sensitivity to sample size. Another concern may be: how is the performance of the scheduler
affected by the number of samples observed per feature (user, job names, etc.)? To answer this
question, I used another modified version of the E2E workload where I controlled the number of
samples comprising the distributions used by 3Sigma, drawing those samples from the original
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distributions. I also created a version of PointRealEst where the point estimates were derived
from the observed samples. In Fig. 4.11, I vary the number of samples used from 5 to 100. I
observe that increasing the number of samples from 5 to 25 significantly improved performance
(for both schedulers), but by 25 samples, the performance of 3Sigma converges to the performance
of PointPerfEst. 3Sigma outperforms PointRealEstat each point and benefits more
from additional instances, since it uses the distribution rather than just the mean. Naturally,
PointPerfEst and Prio are not affected.

4.4.6 Scalability

This section shows that 3Sigma can handle the additional complexity from distribution-based
scheduling even while managing more than 12500 nodes and a job submission rate comparable to
the heaviest load observed in the Google cluster trace (3668 jobs per hour).

3Sigma requires more CPU time to make decisions than not using runtime estimates (e.g.,
Prio), which can affect scheduler scalability. Although previous work [24, 88] has shown that
packing cluster space-time using runtime estimates can be sufficiently efficient for 100s to 1000s
of nodes, 3Sigma adds sources of overhead not evaluated in such previous work: (1) latency of
3σPredict at Job Submission (I/O and computation for looking up the correct group of jobs in the
runtime history database and generating distribution), (2) latency from additional computation
(e.g. computing expected utility and expected resource consumption) to formulate the bin-packing
problem, and (3) increased solver runtime due to increased complexity of the bin-packing problem
at 3σSched.

In this experiment, 3Sigma schedules microbenchmark workloads, SCALABILITY-n. Each
workload consists of n jobs per hour for 5 hours. The ratio of tasks to job matches those observed
in the Google cluster trace. The load is set to 0.95. Even under these conditions, the latency of
producing distributions at 3σPredict is negligible (maximum=14ms) compared to the job runtimes
in the trace. 3σPredict maintains minimal state for each group of jobs, so the cost of data retrieval
is low. Similar latency is observed for producing point estimates, since most of the work is the
same (accessing histories and choosing among them).

I also compare the performance of PointRealEst and 3Sigma in Fig. 4.12. Fig. 4.12(a)
depicts the runtime of each scheduling cycle, including generation of scheduling options, evalua-
tion, formulation of the optimization problem, and execution of the solver. Fig. 4.12(b) reports
the runtime of the solver. For both systems, the solver execution is a non-trivial fraction of the
scheduling cycle runtime. I observe that distribution-based scheduling also results in a moderate
increase in worst-case solver time. As noted in §4.3.3, distribution-based scheduling induces a
moderate increase in the number of constraint terms but does not change the number of decision
variables. Also note that the actual impact on the solver runtime is upper-bounded by a solver
timeout parameter, so the impact of solving on scheduling latency is bounded.

4.5 Summary

3Sigma’s use of distributions instead of point estimates allows it to exploit job runtime history
robustly. Experiments with trace-derived workloads both on a real 256-node cluster and in
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Figure 4.12: 3Sigma scalability as a function of job submission per hour. Cluster: GOOGLE, Workload:
SCALABILITY-n where n ∈ [2000,3000,4000]

simulation demonstrate that 3Sigma’s distribution-based scheduling greatly outperforms a state-
of-the-art point-estimate scheduler, approaching the performance of a hypothetical scheduler
operating with perfect runtime estimates.
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Chapter 5

DistSched: a resource-runtime distribution
based scheduler

Applications running on modern computing clusters have highly diverse resource requirements.
For example, data analytics jobs are CPU-intensive while distributed in-memory databases are
memory-intensive, and others may be constrained on both resources at the same time. In addition,
many cluster operators collocate tasks on a machine to improve cluster utilization and throughput.
Consequently, cluster schedulers face the challenge of packing tasks onto machines while being
respectful of all dimensions of resources available in the machine.

Recent schedulers exploit knowledge of job resource usage to resolve this challenge. Using
such knowledge, schedulers are able to pack tasks more tightly onto the same machine and
increase cluster utilization [49, 101], to satisfy the operator’s desire to maximize the return over
investment. Having accurate information about the resource usage also allows schedulers to
control performance fluctuation and meet service-level objectives (SLO) of the business-critical
jobs [33, 54].

Most systems require a user to specify the resource requirements (e.g., CPU and memory) of
the job at submission time. Usually, estimates are an educated guess from the user or predicted
based on the relevant history based on previous resource usage observed for similar jobs. However,
analyses of the well-studied Google cluster trace [72] reveal that most user estimates are inaccurate,
as they have incentives to deliberately provide over-estimates to prevent adverse effects of the
under-prediction. A predictor that relies on the job history, such as 3σPredict, shows better
prediction accuracy, but the estimates are not always perfect.

Some cluster administrators rely on heuristics, such as over-committing resources, allocating
tasks beyond the capacity of the machines [8, 10], to deal with inaccurate estimates. Both over-
estimates and under-estimates are undesirable, as over-estimates naturally lead to under-utilization
of the cluster and under-estimates can cause resource contention affecting the performance of all
tasks running in the machine. However, often times, heuristics are only a partial solution; e.g., too
much over-commitment leads to resource contention.

This chapter describes DistSched, a scheduling system that leverages the distributions of
resource usage derived from the history of the jobs run in the past to cope with resource usage
uncertainty. It explores whether the lessons learned from 3Sigma (Chapter 4) can be applied to
the problem of imperfect estimates due to resource usage uncertainty. I find that the distribution-
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based scheduling ideas from the previous chapter, such as leveraging the distribution, taking
advantage of the much richer information, and mis-estimate mitigation mechanisms to make more
robust decisions, translate well to the case of resource usage uncertainty. By using more detailed
information about resource usage, DistSched can make more robust scheduling decisions that
cope well with resource usage uncertainty.

This chapter describes how I apply the distribution-based scheduling approach to a greedy
scheduling algorithm, since our analyses show complexities arising from the resource usage
uncertainty renders my earlier MILP optimization-based scheduling approach intractable. The
environment that DistSched operates in, where more than one task can be scheduled in a machine
and resource contention due to resource usage uncertainty is possible, changes the structure of
the optimization problem significantly and inflates the number of variables exponentially. Some
of the mechanisms for tackling the scalability challenges in 3Sigma did not translate to the new
scheduling problem.

Simulation experiments driven by the Google trace confirm the scheduler’s effectiveness.
DistSched performs nearly as well as the hypothetical system with perfect estimates, even though
distribution estimates from the history-based predictor are imperfect. The system outperforms
state-of-the-art point-estimate-based schedulers that use the point prediction derived from the
history or from user-provided estimates. The system provides higher SLO attainment for deadline-
oriented SLO jobs and increased overall work completed by the system.

This chapter makes four primary contributions. First, it identifies a major problem with recent
systems that leverage user-provided resource usage predictions: the majority of the estimates are
terrible estimates, and a significant portion of them have very large over-estimate errors. Second,
it describes a scheduling algorithm that leverages distribution estimates derived from the relevant
part of the job history while reflecting the risk of contention arising from the placement to solve
this problem. Third, it describes new scheduler mechanisms to mitigate the effects of outliers that
deviate from the observed history. Fourth, it reports on end-to-end experiments on a simulated
700-node cluster, showing the system’s effectiveness in robustly exploiting runtime distributions
and mitigation techniques to improve SLO attainment and goodput.

5.1 Background
As noted in Sec. 2.2, accurate knowledge of resource usage can be exploited to significant
benefit at schedule-time. Such knowledge allows schedulers to pack tasks more tightly onto
machines, increasing the cluster utilization [49, 101], and controling performance variation to
meet their performance service-level agreements [33]. Some systems use the information to
enforce fairness [36, 38] in resource allocation across multiple resource types. This leads to more
efficient use of cluster resources, higher service-level objectives attainment for business-critical
production jobs with completion deadlines and reduced latency for latency-sensitive best-effort
jobs [24, 33, 54, 88].

Thus, many recent systems [14, 38, 40, 54] make use of resource requirement estimates
provided by users or predicted from previous runs of similar jobs. However, the effectiveness of
such systems rely on the accuracy of the information; otherwise, they may face severe performance
penalties.
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Figure 5.1: Compares the user provided CPU request amount to the actual average CPU usage of the jobs
in the Google trace. (a) Only 20% of jobs are within 2X error range and 74% of jobs are over-estimated.
(b) Further examination of over-estimates shows that a significant portion is significantly over-estimated.

5.1.1 Predictability

Analysis of resource usage estimates suggests that, to obtain more accurate runtime prediction,
the predictor needs to reflect the placement of the task and its impact on the resource usage rather
than just relying on a priori information from the history. This section discusses our analyses of
the Google trace. I report four primary observations:

First, only 20% of the jobs are submitted with a CPU-need etimate that is within 2X error range
and the majority (74%) of the jobs were provided with an over-estimate (Fig. 5.1(a)). Further
breakdown (Fig. 5.1(b)) of the jobs with an over-estimate shows that most of the over-estimates are
very large over-estimates. I believe this is a direct consequence of a popular mitigation technique,
padding the estimates, as the under-prediction results in dire consequences, e.g. slowdowns and
higher chance of eviction, rather than low predictability of the resource usage.

Second, the resource usage for most jobs can be accurately predicted from the history of jobs
run in the past. The error profile of the resource usage estimates (CPU, memory, CPU-time, and
memory-time) from the modified version of 3σPredict (“the predictor”) show that most resource
usage estimates except memory-time are more predictable (more fraction of jobs lies within 2X
error range) than the runtime accuracy (Fig. 5.2). Low predictability of memory-time, despite
high predictability of memory, suggests that job’s runtime is mostly dependent on CPU-time and
CPU, in other words, the task will run as long as it needs to finish the work (CPU-time) for a
given amount of compute (CPU) allocated regardless of the memory it needs.

Third, lengthy historical data is not needed to achieve a good level of accuracy. To illustrate
this point, I compare the error profile of the estimates for the jobs submitted in week 1 to week 4,
starting from zero data in the database and gradually updating the database as the jobs finish in
the trace in Fig. 5.3. I note that, for all values, the error profile quickly converges to similar levels
after week 1.

Fourth, more interestingly, CPU-time and memory are much more predictable than the runtime
or CPU. This suggests CPU-time and memory more consistent across different instances of similar
jobs regardless of the placement, while CPU and runtime are more affected by the particular
allocation made by the scheduler for each instance.
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Figure 5.2: Histogram of Precent Estimate Errors comparing estimates from the 3σPredict modified
to provide estimates for CPU, Memory, CPU-time, Memory-time. Estimate Error values computed by
estimate−actual

actual . Each datapoint is a bucket representing values within 5% of the nearest decile. The ”tail”
datapoint inclues all estimate errors > 95%.

To confirm this, I ran the following experiment. Fig. 5.4 compares the performance of
3σPredict to the runtime predictors derived from the CPU-time. More precisely, these derived
predictors produce a runtime estimate by dividing the CPU-time estimate by (1) the CPU estimate
(PredictedCpu), (2) the actual average CPU (ActualCpu), (3) the CPU request from the
user (Requested), and (4) the initial CPU usage of the task (InitialActualCpu). I observe
that ActualCpu, a predictor that reflects the actual CPU usage, which is a quantity that reflects
its placement, gives the best runtime estimates, outperforming all other predictors including
3σPredict.

Our conclusion is that, while quantities like CPU-time and memory can be safely predicted
by the history-based predictors, the CPU usage and the runtime is actually a function of job
characteristics AND the allocation. In order to get an accurate estimate, the predictor must also
consider the placement and its impact on the resource usage, rather than attempting to predict
purely using a priori information from the history.

5.1.2 Mitigation strategies
The research community has explored techniques to mitigate the effects of mis-estimates, which
can significantly hamper a scheduler’s performance.

Intentional over-estimation, padding an additional buffer to an estimate, is frequently used to
reduce under-estimation. Under-estimates are problematic, as they trigger resource contention
when jobs are packed tightly to maximize cluster utilization. Resource contention adversely
affects the performance of running jobs and may cause an SLO violation. Under-estimated jobs
are considered to be primary targets of eviction in some systems [14].

However, over-estimation naturally leads to under-utilization of the cluster. Cluster schedulers
can tackle this by over-committing resources [8, 10], allocating tasks beyond the capacity of the
machine. However, over-committing too much can also cause resource contention.
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Figure 5.3: Compares the estimate accuracy of jobs in first week and last week of the Google trace for
Runtime, CPU, Memory, and CPU-time. Estimate accuracy is improved over time for all metrics, except
for CPU-time.
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Figure 5.4: Histogram of Percent Estimate Errors comparing runtime estimates computed from different
predictors. ”Runtime” estimates are the runtime estimate from 3σPredict, while other estimates are
computed by dividing CPU-time estimate from 3σPredict by the respective CPU values.

Morpheus [54] re-assigns resources to jobs that require more resources at runtime. Note that
not all applications are designed to be elastic and able to make use of additional resources.

Preemption and migration can be applied to address some issues arising from mis-estimates.
It can be used to re-assign resources to new high-priority jobs, either by killing or migrating jobs.

These heuristics help to some degree and DistSched makes use of some of them, but these by
itself do not eliminate the problem.

5.1.3 Assumptions

This chapter makes a number of assumptions about the cluster, the workload, and resource con-
tention behavior. Some of the assumptions are derived from the behavior of existing operating
systems (e.g., Linux) and cluster management systems (e.g., Hadoop YARN [89], and Kuber-
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netes [14]), and some are caused by the limited information available in the Google cluster trace
on which DistSched is evaluated.

Each job consists of one or more tasks, where each task represents a Linux program to be run
on a single machine. Each task is accompanied by its resource requirement, such as how much
CPU (in terms of fractions of a core) and memory is needed. During the course of execution, the
task will consume a varying amount of CPU cycles and memory. The task runtime is determined
by the amount of work in terms of CPU-time and amount of CPU-time it is allocated for. In other
words, a task will finish execution if it acquires enough CPU-time to complete its amount of work.

Users submit jobs to the cluster scheduler that manages a collection of machines in the cluster
connected by a high-bandwidth network. This chapter assumes all machines are homogenous
apart from the amount of resource available in the machine, e.g., a task’s runtime given X% of a
core will be the same on any machines in the cluster.

This chapter considers only two types of resources available to be used by jobs: CPU and
memory. CPU and memory are distinguished by the system’s behavior when the sets of tasks
executing in a machine attempt to use more resources than available in the machine: CPU resource
is time-shared while memory is considered to be inflexible as most systems consider thrashing a
failure condition.

Contention for CPU resources, when running tasks attempt to use more CPU than is available,
is considered to be a soft failure. The OS task scheduler (Completely Fair Scheduler for Linux)
will time-share available CPU in the machine. It allocates available CPU cycles to tasks according
to a proportionate share of their resource request (# of cores of CPU * CPU request of a task /
aggregate task request of all tasks in the machine).

Memory contention is considered to be a hard failure for most systems. The cluster scheduler
evicts running tasks (in the order of importance and amount of resource over-usage) as necessary,
if the aggregate memory consumption exceeds the pre-defined threshold. The threshold is set to
be less than the actual machine capacity to preclude invocation of the OS level Out-of-Memory
manager, which may evict running processes in an undesirable order, including crucial processes
running in individual worker machines on behalf of the cluster scheduler.

Other types of resources, such as IO (memory and disk) or network bandwidth are not
considered in this chapter due to limitations of the information available in the trace. However, I
expect bandwidth resources to be time-shared similar to CPU resources. This chapter also does
not consider cache hierarchy, NUMA-ness, or the network topology.

5.2 Resource distribution-based scheduling
This section discusses mechanisms that enable schedulers to leverage resource distributions, as
opposed to point estimates.

The runtime behavior of the task, its resource usage and runtime, will depend on the allocation
decisions. However, a fundamental departure from the previous chapter is that not only the static
properties of the machine (such as “GPU is present”), but the resource usage of the other tasks
currently running in the machine also affects the performance of the task being scheduled.

Nevertheless, the general framework for the scheduling algorithm is similar. The scheduler
produces all possible placement options, associates each with an expected utility value according
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to the distribution, then chooses to run the set of jobs that both maximize the overall sum of utility
and fit within the available resources. This section describes how the expected utility is calculated
and the mechanism to choose a set of jobs to schedule.

5.2.1 Valuation of scheduling options

For each incoming job, there will be a set of possible scheduling options. The placement of the
job dictates the completion time and its usefulness or utility. The scheduler needs to place the job
in a way that maximizes the overall utility. This section describes how to associate a utility value
to a scheduling option of the job.

Utility. The scheduler uses utility functions to map job completion times to the utilities of job
placements. The utility function of the job will be provided by a cluster administrator or an expert
user, such as the utility functions defined for SLO and latency sensitive jobs in Chapter 4.

Runtime. The runtime of the job is defined as the maximal runtime of its tasks.
The runtime of each task is computed as the CPU-time (the amount of work), divided by the

actual CPU usage of the task. The actual CPU usage can be different from the task’s intrinsic
CPU (CPU usage if there isn’t any resource contention). If there is a contention, i.e. when the
aggregate CPU demand of the running tasks is greater than the available in the machine, the
process scheduler will allocate cycles according to the share (CPU request of the task divided by
the total CPU request in the machine) of the running tasks.

Thus, the CPU usage of the pending task is calculated as follows:
1. If the intrinsic CPU is smaller than or equal to the task’s share of the machine CPU (machine

CPU capacity × CPU share of the task), the CPU usage will be the intrinsic CPU.
2. If the usage of the running tasks in the machine is more than their share of the machine

CPU, the CPU usage will be task’s share of the machine CPU.
3. Otherwise, the task will be able to use idle CPU capped at the intrinsic CPU of the task.
Probability of the over-allocation. The job will not reach its completion and attain any

utility if any of its tasks is evicted during its execution. Thus, the scheduler needs to calculate
the probability of the task eviction, the probability that aggregate memory usage of the task and
the running tasks will exceed the machine capacity. Assuming the intrinsic memory usage of the
tasks is independent, the probability of a task eviction can be calculated as the probability that
allocation will result in the memory overuse:

P(task eviction)=∑ I(n×Memtask+Memrunning >Machine capacity)P(Memtask)P(Memrunning)
(5.1)

where n is the number of tasks allocated to the machine, Memrunning is a random variable rep-
resenting aggregate memory usage of the running task on the machine, and I is an indicator
function.

Assuming task eviction events are independent, the probability of not having any of the task
for a job evicted is P(no-eviction) = ∏m 1−P(task evictionm).

Aggregate resource usage. Computing the aggregate resource usage of the running tasks on
a machine can be tricky. Even though current usage levels are observable, there is still a risk that
the resource usage will change in the future. Therefore, the resource usage of the running task is
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also assumed to be an uncertain value that follows the distribution. The aggregate of resource
usages will also be an uncertain value that follows its own distribution.

If I assume the distribution of resource usage for different jobs are independent, the distribution
of aggregate resource capacity can be calculated as if I am adding independent random variables.
For example, if there are two tasks with uncertain resource usage RC1 and RC2 running in the
machine, the probability of the aggregate usage being x is the probability that addition of RC1 and
RC2 yields x:

P(Aggregate = x) =
∞

∑
0

P(RC1 = k)P(RC2 = x− k)dk (5.2)

Expected Utility. For each placement option, the scheduler computes the expected utility of
a job using the distributions of resource usage. The expected utility is calculated as the sum of the
utilities for each possible runtime T , weighted by the probability that the job runs for T and the
probability that no task will be evicted.

E[Utility] = P(no-eviction)E[U(T )] (5.3)

To compute the second term of the expression, I note that the job runtime is the runtime of its
longest task and each of task runtimes is dependent on the random variables, the task’s intrinsic
CPU usage and the aggregate intrinsic CPU usage for the running task on the machine. Thus, the
term needs to be calculated by enumerating all possible combinations of the task’s intrinsic CPU
usage, and the aggregate intrinsic CPU usage of the running tasks:

E[U(T )] = ∑
Cpu,Cpum1,...,Cpumn

max(
Work

Actual Cpui
)P(Cpu)P(Cpum1), ...,P(Cpumn)

where the actual CPU usage of the task is computed as described previously and the work is the
point prediction of the CPU-time values of the task.

Although the estimate of the work can also be considered as a variable quantity with its
distribution, above uses a point prediction to simplify the calculation instead of enumerating on
possible CPU-time value as well and maintaining joint distributions of CPU usage and CPU-time,
as two quantities are obviously correlated to each other and cannot be separated. I believe this is
safe as CPU-time estimates and actual CPU usage have shown high estimate accuracy compared
to runtime or CPU usage.

5.2.2 Scheduling challenges
Given the evaluation of the scheduling options, the scheduler needs to choose the optimal combi-
nation of scheduling options to maximize the overall expected utility. The high-level intuition is
to bin-pack jobs, each represented as a three-dimensional resource-time rectangle, into a cluster
resource-time, where one dimension represents time and the other two dimensions represent Cpu
and memory respectively. One approach is to cast the problem as a classical optimization problem,
in the form of Mixed Integer Linear Programming (MILP).

This section describes the MILP representation for the simplest case, where resource usage of
all tasks are precisely known in advance and discuss why the formulation becomes intractable if I
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consider a resource usage as an uncertain quantity that follows some distribution. Our conclusion
is that the MILP representation for the scheduler that can consider resource distribution and cope
with resource contention is significantly more complex compared to previous systems (Chapter 4,
[88]), and the scheduler must resort to a greedy algorithm in order to make scheduling decisions
in an acceptable amount of time.

Precise estimate scenario. I first describe the scheduling problem for the simplest case
where resource usage is precisely known.

The scheduler starts by enumerating all possible scheduling options for each job. A scheduling
option o for a particular job j is a function that maps each machine m in the cluster to the number
of tasks of the job j allocated to the machine. Each placement option o for a given job j is
associated with a binary decision variable I jo and the number of tasks for job j allocated to
machine m is represented by an integer-valued machine allocation variable M jm. A constraint
kI jo = ∑m M jm binds the decision variable I jo and machine allocation variable M jm to ensure all k
pending tasks are allocated when the job j is chosen.

For each scheduling option for job j and option o, a constant utility value U jo calculated by
evaluating the utility curve (Fig. 4.3) at the expected completion time of the job. The objective
of the scheduling problem is to find the combination of scheduling options such that the overall
expected utility of options is maximized. Then, the objective function to maximize is the sum
of objective values modulated with respective decision variable: ∑ j ∑oU joI jo. Constraints are
introduced to ensure only one scheduling option is selected for each job (∀ j ∑o I jo ≤ 1).

The optimization problem also needs to ensure the tasks are allocated with each machine’s
resource limits. The scheduler auto-generates a set of constraints that provide invariant that

∀m∑
j

Cpu jM jm ≤ Cpumachine capacity−Cpum
running (5.4)

∀m∑
j

Mem jM jm ≤Memmachine capacity−Memm
running (5.5)

where Cpu j is the task CPU usage of job j and Cpum
running is the aggregate CPU usage of running

tasks in machine m. This provides the desired guarantee that no tasks are allocated beyond the
capacity of a machine.

The solution that maximizes this problem will effectively select which jobs to run and which
placement option among the options for the picked job needs to be chosen, while making sure no
machine is over-allocated.

Discussion. Even for the simplest case, the number of available scheduling options for a
job is the number of possible combinations of machines in the cluster. Previous works, 3Sigma
(Chapter 4) and TetriSched [88], avoided such explosion by only considering equivalent sets of
machines, sets of resources equivalent from the perspective of a given job, such as all nodes
with a GPU. However, the notion of an equivalent set does not improve the complexity of the
scheduling problem where more than one task can be scheduled on the same machine. In this
case, the machines are only equivalent from the perspective of a given task if an identical amount
of resources are available. Due to the diversity of task sizes in real workloads, the number
of equivalent sets quickly spans all possible pairs of CPU and memory, even after values are
discretized to a reasonable number of buckets (e.g., 20 buckets for each resource yields 400
possible pairs).
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The problem only gets worse if resource usage is assumed to be not precisely known and
resource contention is possible. In this setting, machines are equivalent from the perspective of a
task, only if a placement will yield an identical task execution, in terms of resource usage and the
runtime. If the resource usage is a variable quantity, the equivalence sets need to be defined by the
distribution of aggregate resource usage of all running tasks in the machine, meaning machines
within the same equivalent set must be running the same set of tasks (in terms of their resource
usage). Otherwise, the resource usage and the rate of progress of the task under contention will be
different.

The more fundamental problem is incorporating the task malleability into the MILP formu-
lation. In the current setting, the runtime of the task is not fixed but determined by the actual
amount of allocated CPU of the task, which is affected by the amount of CPU that will be used by
the other tasks being scheduled to the same machine, as well as the amount of CPU used by the
tasks already running in the machine.

First implication is that the scheduler must consider all possible combinations of scheduling
options for each job separately, e.g. a combination of scheduling option o1,1 of the job j1 and o2,1
of the job j2, a combination of scheduling option o1,2 of the job j1 and o2,1 of the job j2, and so
on. This is because a placement option can yield different expected utility value depending on the
placements of the other jobs, as they affect the runtime behavior of the job. To incorporate this
in MILP, I must introduce a decision variable for each combination of the possible scheduling
options for each job and evaluate aggregate expected utility for each combination separately.

Furthermore, the impact of the task placement on the performance of the running jobs must
be incorporated as well. Similar to how a placement option affects the performance of the other
task being scheduled, a placement may have an impact on the performance of the running tasks.
For example, scheduling one additional task onto the machine may create CPU contention, which
may slow down a task running on the machine and ultimately cause it to miss the deadline. Worse,
a new task may create memory contention and trigger eviction of an already running task in the
machine. This implies the aggregate expected utility for each combination of scheduling options
must consider the change in the expected utility of the running jobs as well.

In conclusion, unlike previous work (3Sigma Chapter 4 and TetriSched [88]), I believe the
MILP formulation for the scheduling problem that DistSched deals with, where multiple tasks
can be placed onto the machine especially when the resource usage of the task is uncertain and
can cause resource contention, is more difficult compared to the one faced by 3Sigma. This is
also demonstrated through a preliminary evaluation using the MILP formulation of the scheduling
problem, which fails to solve the problem in reasonable amount of time (minutes) for a realistic
cluster size and number of jobs in the system. Thus, we conclude that additional innovations are
needed to address the scheduling problem in a scalable way. Therefore, DistSched relies on a
greedy scheduling algorithm that is similar to the algorithms used by the schedulers deployed in
practice.

5.2.3 Greedy scheduling algorithm
This section describes the greedy scheduling algorithm used by the scheduler, which places newly
arriving jobs and their tasks onto the available machines in the cluster. The discussion includes
how the scheduler constructs a feasible placement option for each job and chooses a set of jobs to
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schedule in a greedy manner. I conclude the section by examining scalability issues arising from
the complexity of the algorithm.

Setup. Scheduler operates on a periodic cycle, making placement decisions for all pending
jobs in the queue in an online scheduling setting. The primary objective of the scheduler is to
maximize the overall utility of the jobs being scheduled.

The inputs to the scheduler are:
(1) Queue of pending job requests: Each request contains the number of tasks being requested,

the amount of resource requested by the user, the estimated task resource distribution (CPU and
memory), the estimated distribution for the amount of work for each task, the job’s priority, and a
deadline if it is an SLO job.

(2) Status of the cluster: The scheduler also keeps track of the running jobs in the cluster, the
amount of work completed so far by each task, and the amount of resource currently being used.

To make the scheduling problem tractable, I elect the following simplifications:
1. The algorithm will select a feasible placement option for a job by greedily choosing a

machine to schedule a task, instead of considering all possible combination of machine placement
available regardless of its feasibility.

2. The scheduler will construct the list of jobs to schedule, one job at a time, instead of
considering all possible combination of jobs to schedule.

The scheduler will repeat the selection process with an updated state of the cluster until no
job can be scheduled onto the cluster. The jobs that are not yet schedulable in the cycle will be
considered in the next scheduling cycle.

Construction of scheduling option. At the beginning of the scheduling cycle, the scheduler
first constructs a feasible placement option for each job in the pending queue.

For each job, the scheduler will consider machines in the cluster where a task allocation is
feasible. A machine is considered to be feasible if the probability of resource over-allocation
is less than the user-specified threshold. This practice of optimistic over-packing will prevent
the scheduler from being too conservative in the task placement because of infrequent outliers
observed in the past.

The scheduler creates a sorted list of the feasible machines in the cluster in ascending order of
the following metrics: (1) probability of memory over-allocation, (2) probability of CPU over-
allocation, (3) amount of available memory, (4) amount of available CPU, (5) a random number to
break the tie. The probabilities of resource over-allocation are considered first, as over-allocation
has a detrimental effect on the runtime of the pending job, as well as the performance of the
already running jobs. Given a similar risk of resource over-allocation, the scheduler would prefer
machines that have a smaller amount of resource available. This will have the desired effect
of packing task onto machines that already occupied first while leaving more machines idle to
accommodate larger tasks later on. Finally, a random number is introduced so that machines will
be selected randomly rather than in a particular order.

Given a list of a machine to choose, the scheduler will greedily select the machine at the top
of the list to schedule a task. After a machine is chosen, the scheduler simulates a task allocation
by adding the task’s resource usage distribution (using Eq. (5.2)) to the aggregate resource usage
distribution and decrementing the expected resource usage to the available resource of the machine.
If the machine is still feasible after the allocation, the machine is placed back on the sorted list
according to the updated metrics after allocation. This will allow the scheduler to schedule more
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than one task onto the same machine. The scheduler repeats this process until enough machines
have been chosen to schedule the job or if no feasible machine is available. The job is considered
to be schedulable if the scheduler was able to find enough feasible machines to schedule all of its
tasks.

Selection. Given a list of schedulable jobs, the scheduler will choose the job with the highest
expected utility (Eq. (5.3)) to schedule. The scheduler makes note of the decision, updates the
status of the cluster accordingly, and repeats the process of scheduling option construction and
job selection until no job is schedulable.

Scalability. Even after making the above simplifications, there are some parts of the scheduling
algorithm that are computationally expensive. I apply a number of optimizations. First, the
scheduler maintains the distribution of the aggregate resource usage for each machine and
recomputes only if it is necessary (e.g., when a new task is started or a running task is finished). The
re-computation is expensive, because the scheduler needs to enumerate all possible combinations
of resource usage for each of the task running in the machine in order to compute the aggregate
distribution. Even if a discrete distribution with a limited number of possible outcome is assumed
(as in Chapter 4), the runtime is exponential to the number of tasks running in the machine.
Second, the scheduler prunes possible values of the aggregate resource usage when computing
the expected utility. Instead of enumerating all possible outcomes, the scheduler will consider
outcomes that will lead to over-allocation and merge outcomes that do not over-allocate as a
single outcome during computation. In tandem with the user-specified resource over-allocation
threshold, this optimization bounds the number of combinations to consider to a tractable number.

5.3 Implementation
This section describes the architecture of DistSched. The system will replace the scheduling
component of a cluster manager (e.g. YARN or Kubernetes). The cluster manager will remain as
an orchestrator that is responsible for the life cycle of the cluster.

The user submits the job request to the cluster manager. The requests include a number of
attributes, such as the name of the job, the user submitting the job, and the specification of the
resources requested. The cluster manager forwards the request to DSPredict.

The role of DSPredict (Sec. 5.3.1) is to provide an estimate of a probability distribution of
the resource usage of the submitted job. DSPredict achieves this by maintaining a history of
previously executed jobs, identifying several candidate groups of similar jobs, and constructing
the distributions for the submitted job. DSPredict forwards the predicted distributions along
with the job request to DSSched.

DSSched makes the scheduling decision using the distribution of resource usage and request
specifications. The scheduler is invoked in regular interval (every 15 seconds) to consider all
jobs that were not scheduled or arrived after the previous invocation. DSSched comes up with a
possible placement option for the job and computes the expected utility of the job (Sec. 5.2.3). It
will decide which jobs should run first and where to schedule the tasks of the job and notify the
cluster manager to actually start the job.

The cluster manager is responsible for the actual execution of the job in the cluster. The
system expects the operating system on the machines is running its own CPU scheduler (e.g. CFS
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scheduler for Linux) and out-of-memory (OOM) killer in case the resource demand exceeds the
resource available on the machine.

At the end of the job’s execution, the job’s actual runtime is passed to DSPredict and
incorporated into the job history for future predictions.

This section details how DSPredict estimates resource usage distributions and how the
scheduler handles mis-estimation of the resource usage.

5.3.1 DSPredict

DSPredict is the component that provides distribution for resource usage, namely CPU, mem-
ory, and CPU-time. There has been a plethora of previous literature on the history-based predictor
of resource usage, and this dissertation does not attempt to innovate on that front.

Instead, I use a modified version of 3σPredict (Chapter 4) to produce the distribution estimates
of CPU and memory usage, as well as the amount of work, CPU-time. To come up with the
estimate of an incoming job, 3σPredict first identifies the several candidate groups of similar
jobs observed from the history (e.g., jobs submitted by same user, jobs with similar job name,
etc.), chooses the group that has shown the lowest point prediction error, and sends the empirical
distribution constructed from the group to the scheduler as the distribution estimate of the job.

DSPredict does not make any assumption about the shape of the distributions. The system
uses an empirical distribution, represented as a histogram of numeric values (e.g. CPU, memory,
CPU-time). The predictor constructs and maintains the distribution of each possible candidate
group using a streaming histogram algorithm [11]. This allows the predictor to maintain an
approximate empirical distribution of each candidate groups in streaming fashion without needing
to iterate through the job history every time.

5.3.2 Mis-estimate mitigation strategies
DSPredict provides the distribution of a job’s resource usage using the history of previously
executed jobs. However, the distribution may not be perfect in practice. It is possible for the job
to have an insufficient history or the distribution to evolve over time (e.g., code changes, different
input data). The scheduler uses the following mitigation techniques.

Runtime over-estimate handling. While DSSched does not use the distribution of the
runtime directly, there are still cases where DSSched may believe the job is impossible to finish
on time. In DistSched, the task completion time is considered to be the predicted amount of CPU-
time divided by the CPU usage. If CPU-time is over-estimated or CPU usage is under-estimated,
possible task completion times can be greater than the time to deadline. In this case, the expected
utility is zero, and the scheduler will not see any benefit from spending resources on the job even if
there are idle resources available. To mitigate the effect, the scheduler employs the over-estimate
handling technique from the previous chapter, wherein the scheduler uses a utility function with
a linearly decaying slope past the deadline (Fig. 4.3(d)). This allows the job to have non-zero
utility while being lower than other SLO jobs submitted with the same initial utility, allowing the
scheduler to schedule seemingly impossible jobs only if there are idle resources.

CPU-time distribution under-estimate handling. For restarted tasks (e.g., after preemption
or eviction), the scheduler updates the CPU-time distribution, as it has additional information,
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namely the amount of work completed in its previous execution, which is a lower bound of the
actual CPU-time that needs to be completed by the task. The scheduler updates the distribution
by using a conditional probability density P(CPU-time|CPU-time > elapsed), rather than the
original distribution for the CPU-time. This is especially useful, when the distribution is multi-
modal as this process will quickly ignore the part of the history that is irrelevant. When the actual
amount of work exceeds all historical data points for the CPU-time distribution, the scheduler
uses the amount of work completed by the task so far as an indication of the remaining amount of
work for the task, which is the best estimate of remaining work absent any other information [42].

Distribution from the observed resource usage. During the job’s execution, the cluster
manager can observe the actual resource usage of the job. For most cases, the resource usage lies
within the range of the predicted distribution, but some jobs’ resource usage can be drastically
different from the prediction. This is especially problematic if the predicted distribution is
under-estimated, where the actual usage is constantly above the maximal possible value from
the distribution. This may cause resource contention when more jobs are scheduled to the same
machine. When the scheduler notices an under-estimated task, it will assume the predicted
distribution is inaccurate, and use the distribution of resource usage constructed using the actual
resource usage of the task instead from now on. The new distribution will have possible resource
usage values ranging from the minimum and maximum resource usage observed in the current
execution of the task, where the density of each value will be the proportion of time that the
specific usage value has been reported divided by the elapsed time of the job.

Preemption. Even with other mitigation techniques, resource contention may be inevitable.
This may happen if the scheduler fails to update the mis-predicted resource usage on time, or
the scheduler was simply unlucky, e.g. all tasks scheduled on the machine started to consume
resources at the higher end of their distributions. If there is a contention in the cluster, the scheduler
will preempt lower priority best-effort jobs to free up resources on a contended node in order
to allow more important SLO jobs to complete on time. The jobs that use more resources than
asked for, use more resources than the predicted resource distribution, create contention in more
machines, and use a larger amount of resources will be the primary candidates for the preemption.
The scheduler will preempt tasks until the machine utilization falls below the predefined threshold.

5.4 Evaluation
This section evaluates the new scheduling system in a simulated environment, yielding three key
takeaways. First, the system outperforms the state-of-the-art system in SLO miss rate and goodput,
approaching the performance of the unrealistic Actual. Second, the components of the system
are all important as demonstrated through a piece-wise benefit attribution. Third, I show that the
system can scale even with additional features that add computational overhead.

5.4.1 Experimental setup
I conduct a series of experiments to evaluate the system in a simulated setting.

Simulator. To evaluate the system, I designed a simulator that can read a workload trace and
faithfully simulate jobs in the trace in the simulated 700-node cluster.
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The workload trace contains the runtime parameters of the jobs, such as arrival time, the
number of tasks in a job, deadline, the amount of resource being requested by the user, and job
attributes used by DSPredict when coming up with estimates of resource usage. The trace also
contains a time series of the resource usage (tuples of duration, CPU, and memory) of each task,
which represent the transition of resource usage during their execution.

The simulation is in the form of discrete event simulation. The simulator maintains a state
of the cluster, machines, and running jobs and their tasks. The state is mutated as the events are
simulated in chronological order.

Events consist of job life cycle events, task resource usage change events, and scheduling
events. Job life cycle events include job submissions and task terminations. Resource usage
change events adjust the resource usage of the running tasks. Regularly-invoked scheduling events
invoke the scheduler to consider jobs pending in the queue for scheduling.

The simulator maintains a priority queue of events ordered by timestamps of the events. At
the beginning of the simulation, the queue contains job submission events for all jobs from
the workload trace, as well as periodic scheduling events (invoked every 15 seconds for the
experiments). When a job is submitted, the simulator inserts the job request into the pending job
queue. At each scheduler event, the scheduler only considers jobs in the pending job queue. When
a job is scheduled, the simulator creates a resource usage change event for each resource usage
transitions for each task, as well as the task termination event, and inserts them into the queue.
During a resource usage change event, the simulator attempts to adjust the resource usage of the
task. If there is not enough idle resource on the machine, a separate event to relieve resource
contention is inserted into the event queue (with identical timestamp). The event is simulated after
all resource usage change events for the machines are simulated.

The simulator simulates and relieves resource contention in a manner similar to the behavior of
Kubenetes [14]. Memory contention is handled using task evictions, as the amount of memory in
the system cannot be gracefully shared like CPU cgroups. When the aggregate memory usage of a
machine reaches the threshold, the simulator sorts the tasks running in the machine by ascending
order of priority (SLO jobs have higher priority over BE jobs), then by descending order of the
amount of memory used above the entitled share and by descending order of the total memory
used. The simulator evicts the task from the top of the list until the contention is resolved. When
a task is evicted, the simulator removes all future resource usage change events associated with
the task from the event queue and terminates the task right away.

For CPU contention, the simulator emulates the CPU sharing behavior of Linux cgroups. Each
task will be entitled to its allocated share computed by dividing its CPU request by the aggregate
CPU request of all task running on the machine. If there are remaining resources on the machine
(e.g., a task is not using all of its allocated share), the remaining tasks will split the idle CPU
according to the ratio of the requests. This process is repeated until all tasks have enough or no
more CPU is available in the machine.

When a task’s CPU usage is throttled due to a CPU contention, the simulator adjusts the
resource usage time series of the task to account for the slowdown, as well as the corresponding
resource usage change events and the task termination event. For example, the series includes
a tuple (15s, 4 CPU, x memory), which means the task will use 4 CPUs and x memory for the
next 15 seconds; but, throttled to 2 CPUs, the tuple will be modified to (30s, 2 CPU, x memory),
meaning the next resource usage transition will take place in 30 seconds rather than 15 seconds.
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Accordingly, the simulator modifies the corresponding resource usage change event to fire in 30
seconds.

At the end of the simulation, the simulator outputs a log of all events that occurred during the
simulation for post-processing.

Systems compared. In the end-to-end evaluation, I compare four different scheduling systems.
Dist is our system in which the scheduler is given resource distribution provided by the scheduler
equipped with mis-estimate handling mechanisms. Other systems use the state-of-the-art point-
estimate scheduling approach. Actual is a hypothetical system where the scheduler is given
an average actual resource usage for each incoming job. Point uses a point prediction of the
average resource usage from the predictor. Request uses a user-provided estimate of resource
usage provided from the original trace.

I also compare Distwith an alternative way of generating the point estimates. Instead of using
average resource usage as a basis for prediction, DistMax, ActualMax, and PointMax use
maximal task resource usage observed. ActualMax use the actual maximal resource usage for
each incoming job, DistMax use the distribution estimate from DSPredict, and PointMax
use the point estimate from the predictor based on the maximal resource usage of the jobs run in
the past.

To evaluate the benefits of the each of the mechanisms used by Dist, I also compare
Dist against itself running with different configurations, where each would disable one of the
features: (a) distribution-based scheduling (NoDist), (b) optimistic over-packing (NoPack),
(c) runtime over-estimate handling (NoOver), (d) using distribution from the observed resource
usage (NoObs), and (e) preemption (NoPreempt).

Workload. The experiments use the workload derived from the Google trace [72]. Recall that
the amount of resources has been obfuscated to have a value between 0 and 1 in each dimension
in the original trace. From the trace, I filtered out jobs that were not successful and randomly
selected a segment from the workload that had desired load of 0.8. The selected workload is 2
hours in length and contains approximately 700 jobs.

Workload configuration. As the original trace lacks a deadline for the jobs, I randomly
selected jobs, designated them as SLO jobs and assigned generated deadlines. The final workload
has approximately even composition of SLO jobs with a deadline and lower priority latency
sensitive BE jobs. For SLO jobs, the deadline slack, the amount of time between the arrival time
and deadline, is an important consideration. The deadline slack is computed by the time between
deadline and arrival time divided by the job’s runtime (e.g., deadline slack of 1.2 means a 100s
job will have 120s from the job arrival to finish). I select each SLO job’s deadline slack randomly
from a set of 4 options: 1.2, 1.4, 1.6, 1.8. To measure the experimental variation arising from a
random selection of SLO jobs and their deadline slacks, I generate 10 different workloads each
with a different selection and repeat each evaluation with these workloads.

Success metrics and metrics of contention. I report the following success metrics for the
experiments. The scheduler’s primary goal is to minimize the SLO miss rate: the percentage of
jobs that miss their deadline. I also measure the total work completed in core-hours (goodput),
showing how much aggregate work is completed. Finally, I measure average BE latency – the
mean response time for BE jobs.

I also report the following metrics to analyze the amount of contention during the experiment.
To measure the amount of CPU contention, I report the total number of times the simulator had to
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throttle CPU usage of the tasks divided by the number of nodes and the experiment duration. As
a measure of memory contention, I report the number of tasks evicted because of the memory
over-allocation.

5.4.2 End-to-end performance
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Figure 5.5: Compares the performance of Dist with other systems in the simulated cluster. Dist
outperforms Point on SLO miss-rate and SLO Goodput while nearly matching Point and Request
on BE Goodput and BE Latency.

Figs. 5.5 and 5.6 show performance results for the four scheduling systems, as well as their
maximal task resource usage variants.

Dist outperforms Point and Request in minimizing SLO misses, our primary objective,
and approaches closely to Actual while completing similar or more work compared to Point
or Request. Dist performs well even if it does not have knowledge of actual resource usage
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Figure 5.6: Compares the amount of resource contention as Dist and other systems schedule jobs in the
cluster. Dist outperforms Point on SLO miss-rate and SLO Goodput while nearly matching Point on
BE Goodput and BE Latency.

allowed to Actual, as it leverages the resource usage distribution to make an informed decision,
such as whether the task will fit into the machine and whether the job will complete on time.
However, Dist is not perfect. A part of Dist’s success stems from its aggressiveness in starting
jobs compared to Actual. As a result, Dist cause more jobs to be evicted due to memory
over-allocation (Fig. 5.6(b)). BE latency is similar across all systems compared.

Point incurs much higher SLO miss-rate (2.15x-2.2x) and lower SLO goodput compared to
Dist, as it struggles with realistic prediction error profiles from a history-based predictor. Most
of the SLO misses come from not starting enough jobs, implying that Point is too conservative
in starting jobs. Because Point lacks a resource under-estimate handling mechanism, it can
neglect to schedule SLO jobs that are not predicted to complete on time, even if cluster resources
are available. As a result, Point will complete more BE jobs compared to Actual or Dist.

Request reports similar levels of SLO miss-rate to Point, but much lower goodput com-
pleted for both SLO and BE jobs. Request also struggles with realistic error profiles, but coming
from the user estimates, which tend to grossly over-estimate the resource usage (Fig. 5.1). For
jobs with resource over-estimates, Request finds it difficult to find a machine that can fit the
seemingly larger task, fails to start jobs on time, causing the job to miss its deadline. Thus, unlike
Point (which has mostly even composition of under-estimates and over-estimates), Request
fails to fill the cluster resources with suitable BE jobs and completes less amount of work overall.

Comparison with max predictors. I also compare the performance of Dist with the
system variants that run the predictor based on the maximal resource usage of the job.

ActualMax improves SLO miss-rate slightly compared to Actual, and PointMax im-
proves the miss-rate significantly compared to Point. Using maximal resource usage estimates
naturally inflates the resource usage estimates and leads to a significant reduction in resource
contention caused by the resource under-estimates (Fig. 5.6). Thus, ActualMax and PointMax
are able to execute jobs without resource contention, which leads to higher performance.
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However, using maximal resource usage is not always an optimal solution. Namely, PointMax
still completes fewer best effort workload compared to Dist. This is because some jobs will have
a very large over-estimate error, especially if predicted with maximal resource usage. PointMax
find it difficult to find a machine that can fit the job and fails to start the job on time, and the job
will miss the deadline.

Finally, DistMax completes fewer overall workload, as constructing the distribution using
the maximal resource usage distorts the distribution estimates without providing any clear benefits.

5.4.3 Benefit attribution
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Figure 5.7: Compares the performance of Dist with the systems with individual features disabled in the
simulated cluster.

This section evaluates the performance of Dist running in different configurations to eval-
uate the benefits from (a) distribution-based scheduling (NoDist), (b) optimistic over-packing
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Figure 5.8: Compares the amount of resource contention as Distwith the systems with individual features
disabled.

(NoPack), (c) runtime over-estimate handling (NoOver), (d) using distribution from the ob-
served resource usage (NoObs), and (e) preemption (NoPreempt) by having each of the features
individually disabled. Figs. 5.7 and 5.8 compares the performance of these five configurations.

Disabling distribution-based scheduling results in 18% increase in the SLO miss-rate and
15% reduction in the SLO Goodput, even though NoDist has access to the other mitigation
techniques available in the Dist. This clearly shows that having more detailed information of
resource usage is beneficial to the scheduler in making informed scheduling decisions.

On the other hand, disabling optimistic over-packing showed mixed results. It showed slightly
better SLO miss-rate compared to Dist, as the scheduler is more conservative in the placement –
it will never schedule a task if there is any possibility of over-allocation – but 7% reduction in the
SLO goodput. Dist’s optimistic over-packing allows the scheduler to get more work done, as it
admitted larger jobs into the system, but at the same time increases a resource contention that may
cause some smaller jobs to miss the deadline.

Runtime over-estimate handling is the part of the Dist that contributes most to its success.
Disabling the feature NoOver dramatically increased the SLO miss-rate beyond the levels of
Point, as the scheduler became too conservative in starting the jobs that are not predicted to
finish on time. This clearly shows that just scheduling with the distribution is enough. There
needss to be mechanisms that can deal with the potential mis-estimates in the prediction.

Disabling the feature that allowed scheduler to use the distribution from the observed resource
usage did not result in any performance degradation, as I had expected. I suspect two possible
reasons. First, the tasks that would have benefited using observed resource usage distribution
may have been preempted or evicted before the cluster manager could collect enough execution
history to trigger the update. Second, in the case of CPU usage distribution, the task could have
been throttled already. Thus, the updated distribution may not be an accurate representation of the
task’s intrinsic CPU usage.

Looking at the rate of the CPU throttling and number of task being evicted, it is clear that
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the preemption feature works as intended, reducing the level of CPU contention in the cluster.
However, it has not improved any of the core success metrics like the SLO miss-rate or goodput. I
suspect the speed up from the relieving resource contention was not enough to make enough room
in the cluster to run more jobs. Preemption also does not improve the memory contention much
as tasks will be killed instantly upon a memory contention.

5.4.4 Sensitivity to the cluster size
Fig. 5.9 shows performance as a function of the cluster size as I inject the identical workload into
the system. Note, the workload has an offered load of 0.8 on a 700-machine cluster. This means
all datapoints smaller than 700 machines are overloaded clusters, and there is not enough resource
to schedule all submitted jobs. As the cluster size increases beyond 700 machines, utilization
decreases.

The SLO miss rate decreases for all systems as the cluster size grows, because the scheduling
problem is easier when more resource is available to schedule jobs. Interestingly, the relative
gap between Point and other systems widens as the cluster size increases. Point cannot fully
make use of additional resource, because it is too often conservative and does not start as many
jobs as other system as it still does not consider seemingly impossible jobs. This is confirmed
by looking at the number of jobs that missed the deadline due to the scheduler not giving any
chance for the jobs to run at all (Fig. 5.9(b)). On the other hand, Dist makes use of distributions
to more robustly evaluate the likelihood of completing on time and the runtime over-estimate
handling technique to try more jobs when idle resource is available. The gap continues to increase
beyond the 700 machines datapoint, albeit marginally, as Dist and Actual can continue to use
additional capacity more efficiently during a transient overload to meet deadlines.

Likewise, SLO goodput and BE goodput increase rapidly for all schedulers until the cluster
size reaches 700 machines, because the schedulers can easily fill the newly available capacity
with jobs that could not be scheduled before. The increase in goodput gradually levels off after
700 machines as the schedulers can only benefit from additional capacity in the case of transient
overloads.

Latencies for BE jobs for all systems increase as the cluster size increases (except for an
outlier at the 50 machines datapoint), as additional cluster capacity allows systems to run more BE
jobs, especially those jobs that waited longer in the queue. BE latency spikes at the 50 machines
datapoint, as it is the only cluster that does not have the capacity to even run just SLO jobs, and
BE jobs are only scheduled when there is a transient underload.

5.4.5 Scheduler scalability
This section demonstrates that Dist can handle additional complexity from distribution-based
scheduling with marginal computational overhead. Fig. 5.10 compares the distribution of schedul-
ing cycle runtime for the four systems that use the average CPU usage as a basis for prediction.
Dist requires more computation time to make decisions than the point prediction based sys-
tems, as it needs to consider possible outcomes of the distribution for the computation of (1)
the aggregate resource usage of each node (Fig. 5.10(a)) and (2) the expected utility of each job
(Fig. 5.10(b)). I observe that distribution-based scheduling only results in a moderate increase in
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the runtime for both operations. Although distribution-based scheduling requires the scheduler to
consider more possible outcomes, a set of optimizations introduced in Sec. 5.2.3 has successfully
brought down the computation overhead to a tractable level. I also note that overall runtime (Part
1 + Part 2) is much less than the frequency of the scheduling cycles (15s).

5.5 Summary
The resource-runtime distribution based scheduler DistSched uses resource usage distribution and
mitigation mechanisms to exploit job history robustly. Experiments with 700 node simulation
cluster demonstrate that the scheduler outperforms a state-of-the-art point-estimate scheduler,
approaching the performance of a hypothetical scheduler operating with actual resource usage.
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Figure 5.9: Compares the performance of Dist with other systems in the simulated cluster. Dist
consistently outperforms Point on SLO miss-rate and SLO Goodput while nearly matching Point and
Request on BE Goodput and BE Latency.
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Figure 5.10: Compares the amount of resource contention as Dist and other systems schedule jobs in the
cluster. Dist outperforms Point on SLO miss-rate and SLO Goodput while nearly matching Point on
BE Goodput and BE Latency.
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Chapter 6

Conclusion

This dissertation demonstrates that schedulers that rely on information about job runtimes and
resource usages can more robustly address imperfect predictions by looking at likelihoods of
possible outcomes rather than single point expected outcomes and the allocation decision. To
support this thesis statement, I did a workload analysis case study and designed two case study
scheduling systems.

First, I did an analysis of four different traces from two different environments (a hedge fund
and a national laboratory), contrasting their job characteristics, workload heterogeneity, resource
utilization, and failure rates to the Google trace. The characterization suggests that there exists
an inherent variability in the job runtimes and resource usage that is difficult to be captured by
the point estimates. This result is highlighted through an evaluation of a history-based runtime
predictor, JVuPredict, as it struggles to provide perfect runtime estimates, especially provided
with insufficient information about the job.

Second, I designed 3Sigma, a scheduler that looks at runtime distributions instead of point-
estimates to robustly cope with runtime mis-predictions. Extensive experiments on a real 256-
node YARN cluster and in simulation demonstrate that 3Sigma’s distribution-based scheduling
greatly outperforms a state-of-the-art point estimate scheduler, approaching the performance of a
hypothetical scheduler operating with perfect runtime estimates.

Third, I designed a resource-runtime distribution scheduler that looks at distributions of
resource usage instead of user-provided point-estimates to robustly cope with resource usage
uncertainty. Experiments in a 700 node simulation show that the scheduler, equipped with mis-
estimation mitigation techniques, outperforms point-estimate based systems and approaches the
performance of a hypothetical system with perfect resource usage estimates.

6.1 Future work

This section discusses potential future research directions for extending the thesis work.
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6.1.1 Making better use of current resource observation
The resource-runtime based scheduler only uses the observation of resource usage of the running
tasks in limited ways. Namely, it lacks a mechanism to apply the information to update the
resource usage distribution estimate from the predictor, unlike runtime distribution where an
observation (elapsed time) can be used to query the relevant subset of the distribution. An
interesting research direction is to explore other ways to make use of the current resource usage
to improve the current distribution of resource usage. For example, if a predicted distribution is
multi-modal, an observation may be used to select a peak amongst the candidate peaks.

6.1.2 Exploiting patterns of resource usage
Currently, the resource usage distribution predictor only constructs a distribution based on a
statistic (average or maximum) of the job resource usage for each job, instead of leveraging the
entire time series of resource usage during the course of jobs’ runtime. It would be interesting to
study how much more information beyond a statistic can be feasibly captured and predicted by
the predictor, as well as how can the scheduler leverage this information robustly.

6.1.3 Dependency-aware scheduling
Workflows, collection of jobs associated by input-output dependencies, are increasingly common
in data-centers. For example, MapReduce jobs can be viewed as two-stage workflows and Spark
applications can be viewed as multiple stage workflows. Systems such as [39, 40] designed
for workflows exist, but they only rely on point-estimates and are expected to cope poorly
with realistic estimate error profiles. It would be interesting to evaluate the distribution-based
scheduling approach for scheduling workflows, especially if some workflows have a completion
deadline.

6.1.4 Public Cloud or Hybrid Cloud environments
This dissertation assumes a traditional data-center setting, where the owners are operating a data-
center in-house. More organizations, especially smaller enterprises, make use of the public cloud,
where more computing resource can be acquired on-demand, or operate in a hybrid cloud setting,
a mixture of both worlds. It would be interesting to evaluate the efficacy of the distribution-based
scheduling approaches in Public Cloud or Hybrid Cloud settings.

6.1.5 Greedy scheduling algorithms
DistSched applies distribution-based scheduling ideas to one particular greedy algorithm: one
that schedules one job at a time in the order of highest expected utility. However, in the past, the
cluster scheduling research community has explored a wide variety of metrics and heuristics to
schedule jobs in a greedy manner, namely EDF, SJF, etc. It would be interesting to explore and
evaluate potential ways to choose the order in which pending jobs are considered for scheduling
in the context of distribution-based scheduling systems.
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6.1.6 Utility functions
This dissertation assumes a particular type of workload, namely a mixture of service level objective
(SLO) jobs with deadlines and latency sensitive best-effort jobs, and their corresponding utility
functions. However, it does not explore other interesting aspects related to the utility function.
One area for continuing research is exploring different forms of utility functions that may be
applicable to jobs with different requirements and whether there exists a general way of coming
up with a utility function. Another promising research area is to explore ways to incentivize the
users to provide their true utility function. If the system naively allows users to submit their utility
functions, it is entirely possible for the users to deliberately provide false information to their
advantage (e.g., schedule their jobs before everyone else). For example, associating a monetary
value (dollar cost) may be a solution, but it may be difficult for users to evaluate the potential
monetary benefits of running a particular job.

6.1.7 Adapting to drift and trend in the history
3σPredict and DSPredict assume a newly arriving job will be similar in terms of resource
usage and runtime to at least some subset of jobs run in the past. However, in reality, even
explicitly recurring jobs can evolve over time. For example, more users may use a system over
time and increase the runtime of a job analyzing the log data coming from the system. 3σPredict
and DSPredict use recency-based experts that use only a few recent datapoints. This addresses
the issue to some degree but is not a perfect solution. For example, it may take an arbitrarily long
time for an expert to converge if the job is infrequently executed or there is a drastic change in the
job behavior (e.g., major version update). It is interesting to explore other mechanisms, such as
explicitly clearing a part of the history, that a predictor may use to adapt to rapid shifts in jobs’
behavior.
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