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Abstract

The relational schema of a table in a database management system (DBMS)
describes its logical attribute information and constraints. Despite the aim of
separation between logical schema and physical data storage, in practice, the
schema often dictates how a DBMS organizes data on disk or in memory.
This tight coupling is because the database’s physical schema must match its
logical schema. The problem with this is that applications that incur frequent
schema changes (e.g., add a column, change column type) may become slower
or even unavailable during a change due to data migration. A better approach
is to support non-blocking schema changes by storing multiple versions of
tables and allow data migration happens lazily.

In this thesis, we introduce multi-version schemas that are based on multi-
version concurrency control policies (MVCC) to support fast online schema
changes. This approach maintains multiple tables of different schemas and al-
lows transactions to see the correct versions of tuples. It migrates tuples from
old schema to new schema lazily on demand. We show that multi-version
schemas achieve non-blocking schema changes. We also show that the over-
head of maintaining multiple schemas is small and the system can recover
from performance degeneration caused by schema change fast when there is
hotspot in the database.
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Chapter 1

Introduction

A database is an organized collection of data, generally stored and accessed electroni-
cally from a computer system. The database schema of a database system is its structure
described in a formal language supported by the database management system (DBMS).
The term “schema” refers to the organization of data as a blueprint of how the database
is constructed. A database can be divided into database tables in the case of relational
databases. A table has rows and columns, where rows represents records and columns
represent the attributes. A tuple is a single row of a table, which contains a single record
for that relation. A relation schema, also known as table schema, is the logical definition
of a table. It defines what the name of the table is, a set of column names, the data types,
and constraints associated with each column.

A schema change is an alteration made to a collection of logical structures in a database.
Schema changes are generally made using structured query language (SQL) and DBMSs
typically implement schema changes during maintenance windows. Application devel-
opers design the schemas in DBMSs to suit applications’ use cases. The schema design
may be optimized for the intended usage during the development phase. However, soft-
ware evolves, and applications are updated frequently. Application developers are under
pressure to change their database schemas and code to fix bugs and add new features.

1.1 Motivation

Many DBMSs (PostgreSQL [33], SQLite [40], and RocksDB[38]) block the table when
they change the table schema. At the same time, they block transactions accessing the
table until it finishes installing the schema change. A transaction is a logical unit that is
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Figure 1.1: Unavailability of the table caused by a non-blocking schema change

independently executed by a DBMS for data retrieval or updates. In relational databases,
transactions must be atomic, consistent, isolated and durable – summarized as the ACID
acronym [15]. Therefore, transaction throughput is reduced when schema change occurs.
During the installation of a schema change, those systems create a new table with the
new schema and copy tuples in the old table into the new table. To show how this affects
availability, Figure 1.1 shows that a blocking schema change blocks transactions updating
the table in one of the systems, Terrier [10]. The table schema consists of two columns
of 8-byte integers, and there are 10 million tuples in the table. The red line shows the
number of writing transactions the table can process. The black line shows the change in
throughput when a blocking schema change occurs at 10 seconds. It takes 17 seconds for
the system to copy 10 million tuples to a new location and bring the throughput back to
a normal level. As another example, MediaWiki (the wiki platform used by Wikipedia)
has seen more than 170 database schema versions [9] in its 55 possible upgrades, and only
5 of out of 55 can be performed online. One notable example was the MediaWiki 1.5
upgrade that caused 22 hours of Wikipedia downtime because the core table schema has
changed significantly [12, 24]. In a workload that consists of many read and write trans-
actions, blocking schema changes reduce transaction throughput significantly. Because
of this, many applications apply schema changes in software updates during maintenance
windows at off-peak times so that they do not affect running transactions.

However, schema changes happen at a high cadence, with a recent study showing that
some cloud applications change schemas more than once a week [25]. Unfortunately, the
requirement that schema is changed often and applied quickly is at odds with providing a
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seamless, uninterrupted service. In particular, Software-as-a-Service (SaaS) and Platform-
as-a-Service (PaaS) providers are bound by Service Level Agreements (SLA) to provide
high-availability services, and stopping service to update a database schema might lead
to long periods of unavailability which violates the SLA. For example, the G Suite SLA
stipulates that G Suite Covered Services web interface must be available 99.9% of the
time; otherwise, Google is liable to compensate users for unavailability [11].

We have shown that schemas continue to change after the application development pe-
riod has ended. Hence, there is a tension between the need to frequently update schemas
and high-availability. For high-availability applications, such as web applications and on-
line services, such as SaaS and PaaS providers, stopping and restarting service to update
a database schema is unacceptable. It indicates the need for non-blocking schema trans-
formations. For a DBMS to achieve high availability without sacrificing consistency, we
believe the system should have the following properties:

• A transaction sees one schema of a table when it starts and can only view and modify
data in this schema.

• When the transaction changes a schema, the system verifies that other transactions
are not updating that schema.

• Other transactions can still retrieve and update data in the old schema during the
installation of a new schema.

• The new schema becomes visible to other transactions only when and if the schema
change transaction commits successfully.

Tuples in a DBMS that implements multi-version concurrency control (MVCC) [3] have
similar properties as described above. In MVCC, a transaction sees one version of a tuple.
It can read the tuple in the old version when another transaction is modifying the tu-
ple. The updated tuple becomes visible to other transactions when the writing transaction
commits. MVCC achieves these properties for tuples by maintaining multiple versions of
a single logical tuple. In this thesis, we extend the idea of multi-versioning to schemas.
We introduce non-blocking schema changes by maintaining multiple versions of logical
schemas based on MVCC. The existence of multiple schemas of a table allows transac-
tions to access the table while the table is performing schema update. We introduce three
multi-version schema approaches built upon MVCC. Then, we also provide a specific
implementation of how to support multi-version schemas in a multi-version DBMS, by
maintaining multiple versions of data tables and determines which version a transaction
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is allowed to see without latches. In the end, we evaluate our approach under differ-
ent schema changes and database usage scenarios. We evaluate the overhead of keeping
multiple data tables, the cost of version translation, and the change in transaction through-
put overtime caused by schema changes. We also compare our results against blocking
schema changes. We show that we make schema changes non-blocking, and achieve high
throughput and availability with when schema changes are frequent.

1.2 Contribution

We present multi-version relation schemas and non-blocking lazy schema changes for the
system. The main contributions of this research are as follows:

1. We discuss three design choices for non-blocking relation schema changes with
multi-version schemas.

2. We provide an implementation of non-blocking relation schema changes for a multi-
version in-memory DBMS.

3. We compare against blocking schema update to show that our approach improves
throughput and availability of the system.

4. We discuss fast recovery from performance degeneration caused by schema updates
in a database with hotspot.

4



Chapter 2

Background

This chapter describes multi-version concurrency control protocol (MVCC) and different
components related to multi-version schemas in a relational database system. Section 2.1
explains MVCC and isolation levels. Section 2.2 describes an in-memory MVCC DBMS,
Terrier, including the storage engine, the concurrency control system, the catalog, and
indexes.

The relational schema of a table in a database management system (DBMS) describes
its logical attribute information and constraints. Despite the aim of separation between
logical schema and physical data storage from Codd’s original relational model [6], in
practice, the schema often dictates how a DBMS organizes data on disk or in memory. For
example, a disk-oriented DBMS may store tuples in disk pages. The schema determines
the size of a tuple, which in turn determines the number of tuples that can be stored in a
page. The system may also decide the layout of a page based on the existence of variable-
length columns in the schema. Therefore, changing the schema implies changing the
physical layout of data.

Schema changes are generally made using ALTER TABLE commands. One can write
ALTER TABLE commands to add or delete columns, create or drop indexes, change the
type of existing columns, add or drop constraints on columns, or rename columns or the
table itself. Due to time constraints, our research mainly focuses on schema changes that
add columns and constraints. We defer the study of other types of schema changes as
future work. Many existing systems (PostgreSQL [33], SQLite [40], and RocksDB[38])
implement schema changes by locking tables affected by this change, creating new tables
with the new schema, and migrating data over to the new tables. The drawback of this
approach is that transactions are blocked during the entire modification. Even though
some systems (MariaDB) allow reads to the table during the migration, transactions that
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involve writes are blocked. Blocking user transactions is not an viable option in systems
with high availability requirements.

Research in this area has proposed several alternative solutions such as query rewrit-
ing [8], schema versioning, and temporal querying [20, 29], schema leases [35], schema
mapping[41, 45], or schema matching[36]. However, the flexibility offered by these solu-
tions must be weighed against their potential cost and operating constraints. For example,
rewritten queries run with a permanent overhead and are on average 4.5 times slower than
original queries [8] in some system. Such solutions might have limited applicability for
online applications that are performance critical.

Our approach provides non-blocking schema changes by maintaining multiple ver-
sions of logical schemas. The idea of multi-versioning has been explored in multi-version
concurrency control protocols (MVCC) to maintain multiple versions of tuples in a table.
Although many DBMSs (SQL Server, Oracle, PostgreSQL, MySQL with InnoDB) im-
plement MVCC, they either do not have full support for non-blocking schema change or
do not utilize the existing multi-version infrastructure already built for tuples to support
multi-version schemas. The purpose of this research is to provide a high-performance im-
plementation of non-blocking schema changes by storing multiple versions of data tables
for multi-version database systems.

2.1 Multi-Version Concurrency Control

Most of the modern DBMSs implement multi-version concurrency control (MVCC) to
achieve higher levels of concurrency. The first mention of MVCC appeared in Reeds
1979 dissertation [37]. We discuss three aspects in the DBMS related to MVCC, namely,
concurrency control protocol, isolation levels, and index management.

2.1.1 Concurrency Control

Concurrency control is the procedure in DBMS for managing simultaneous operations
without conflicting with each another. Without concurrency control, if a transaction is
reading from a database at the same time as another transaction is writing to it, it is possible
that the reader sees a half-written or inconsistent piece of data. For instance, when making
a wire transfer between two bank accounts, if a reader reads the balance at the bank when
the money has been withdrawn from the original account, and before it has deposited in
the destination account, it would seem that money has disappeared from the bank.
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Among these four properties (Atomicity, Consistency, Isolation and Durability) of
transactions, Isolation determines how transaction integrity is visible to other users and
systems, and it is implemented using a concurrency control protocol. The simplest way is
to make all readers wait until the writer is done, which is known as a logical read-write
lock. Locks are known to create contention especially between long read transactions and
update transactions.

2.1.2 Isolation Levels

Isolation levels define the anomalies that could occur during concurrent transaction ex-
ecution. A lower isolation level increases the number of different types of anomalies,
such as dirty reads, non-repeatable reads, and phantom reads, that users might encounter.
Conversely, a higher isolation level reduces the types of concurrency anomalies that users
might encounter, but requires more system resources and increases the chances that one
transaction blocks another. Choosing the appropriate isolation level depends on balancing
the data integrity requirements of the application against the overhead of each isolation
level.

The highest isolation level, serializable, only allows execution of the operations of
concurrently executing transactions that produce the same effect as some serial execution
of those same transactions. A serial execution is one in which each transaction executes
to completion before the next transaction begins. The lowest isolation level, read uncom-
mitted, can retrieve data that has been modified but not committed by other transactions.
All concurrency side effects can happen in read uncommitted, but there is no read locking
or versioning, so overhead is minimized. Snapshot isolation (SI) [2] is an isolation level
that guarantees all reads made in a transaction sees a consistent snapshot of the database
and the transaction itself successfully commits only if no updates it has made conflict with
any concurrent updates made since that snapshot. In a DBMS using SI for concurrency
control, reads are never blocked because of concurrent transactions’ writes, nor do reads
cause delays in a writing transaction. Several major DBMSs, such as Oracle, MySQL,
PostgreSQL, MongoDB, and Microsoft SQL Server, have adopted SI. Despite the nice
properties of SI Snapshot isolation, it has been known that SI allows non-serializable exe-
cutions. This occurs when concurrent transactions modify different items that are related
by a constraint, and it is called the Write Skew anomaly [2].

It a DBMS enforces that all executions are serializable, the the developers do not need
to worry that inconsistencies in the data might appear as artifacts of concurrency. It is well-
known how to use strict two-phase locking to control concurrency to produce serializable
execution [14]. Serializable Snapshot Isolation (SSI) [4] is a serializable concurrency
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control algorithm that makes SI serializable. Under a range of conditions, the overall
transaction throughput is close to that allowed by SI, and much better than that of strict
two-phase locking [4]. PostgreSQL’s new serializable isolation level is based on the SSI
technique [30, 32].

2.1.3 MVCC with Snapshot Isolation

Multi-version concurrency control (MVCC), is a concurrency control method commonly
used by DBMS to provide concurrent access to the database [3]. MVCC aims at providing
concurrent access by keeping multiple copies of each data item. In this way, each user
connected to the database sees a snapshot of the database at a particular instant in time.
Any changes made by a writer is not visible to other users until the transaction has been
committed.

When a MVCC database needs to update a piece of data, it does not overwrite the
original data item with new data but instead creates a newer version of the data item.
Thus, there are multiple versions stored. The version that each transaction sees depends
on the isolation level implemented. The most common isolation level implemented with
MVCC is snapshot isolation [2]. A transaction in MVCC with Snapshot Isolation keeps a
snapshot view of the database. Read transactions under MVCC typically use a timestamp
or transaction ID to determine what state of the database to read, and read these versions
of the data. Read and write transactions are thus isolated from each other without any need
for locking. Writes create a newer version, while concurrent reads access an older version.

2.1.4 Indexing in MVCC

All MVCC DBMSs keep the databases versioning information separate from its indexes
[44]. That is, the existence of a key in an index means that some version exists with that
key, but the index entry does not contain information about which versions of the tuple
match. We define an index entry as a key/value pair, where the key is a tuples indexed
attribute(s) and the value is a pointer to that tuple. The DBMS follows this pointer to
a tuples version chain and then scans the chain to locate the version that is visible for a
transaction.

Primary key indexes always point to the current version of a tuple. However, how
often the DBMS updates a primary key index depends on whether or not its version stor-
age scheme creates new versions when a tuple is updated. For secondary indexes, it is
more complicated because an index entrys keys and pointers can both change. The two
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management schemes for secondary indexes in an MVCC DBMS differ on the contents of
these pointers. The first approach uses logical pointers that use indirection to map to the
location of the physical version. Contrast this with the physical pointers approach where
the value is the location of an exact version of the tuple.

The main idea of using logical pointers is that the DBMS uses a fixed identifier that
does not change for each tuple in its index entry. This avoids the problem of having
to update all of a tables indexes to point to a new physical location whenever a tuple is
modified, but since the index does not point to the exact version, the DBMS traverses the
version chain from the HEAD to find the visible version.

With this second scheme, the DBMS stores the physical address of versions in the
index entries. When updating any tuple in a table, the DBMS inserts the newly created
version into all the secondary indexes. In this manner, the DBMS can search for a tuple
from a secondary index without comparing the secondary key with all of the indexed
versions.

2.2 System Overview

This section describes the physical storage of tuples in a database, MVCC, schema infor-
mation contained in the catalog, and addresses stored in indexes in a multi-version DBMS.
We use Terrier [10] as our example. Terrier is an in-memory DBMS developed at Carnegie
Mellon University. Terrier implements lock-free MVCC to support real-time analytics. It
uses high-performance, latch-free Bw-Tree for indexing [19, 42].

2.2.1 Storage Engine

The storage engine is separated from execution engine in Terrier so that it is pluggable.
The default storage engine is designed to be an in-memory column store, organized in
blocks. The system integrates the storage layer with a concurrency control system and a
garbage collection mechanism. It implements in-memory MVCC [27], with delta storage,
newest-to-oldest and in-place updates [44].

Under MVCC, the DBMS always constructs a new physical version of a tuple when a
transaction updates it. The DBMSs version storage scheme specifies how the system stores
these versions and what information each version contains [44]. In delta storage schema,
the DBMS maintains the master versions of tuples in the main table and a sequence of
delta versions in separate delta storage. This storage is referred to as the rollback segment
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Figure 2.1: The default storage engine in Terrier

in MySQL and Oracle and is also used in HyPer. Newest-to-oldest means that the DBMS
stores the current version of a tuple in the main table. To update an existing tuple, the
DBMS acquires a continuous space from the delta storage for creating a new delta version.
This delta version contains the original values of modified attributes rather than the entire
tuple. The DBMS then directly performs in-place update to the master version in the main
table.

We introduce two storage concepts in Terrier, DataTables and SqlTables. Figure 2.1
shows a DataTable and a SqlTable in the storage engine. The DataTable implements
MVCC, and it consists of blocks of memory. The SqlTable is a wrapper around DataTable
that supports SQL operations.

DataTables

Tuples are stored in 1 MB blocks in Terrier by default. Terrier internally organizes blocks
with a data organization model called PAX[1]. More specifically, each block has a fixed
layout that corresponds to the relational schema of a table and starts with a block header
which contains metadata of its layout. A DataTable in Terrier is a chain of blocks of the
same layout, and represents a physical table in the system. It returns the tuple values given
a tuple address. When a transaction creates a table by giving a relation schema, the system
creates a DataTable, and all the blocks in this DataTable are used only for store tuples
with that schema. DataTables implement MVCC and support transactions, so transactions
can potentially see different values of the same tuple. Given a tuple in a DataTable and a
transaction, the DataTable can check if the tuple is visible to the transaction.

The storage layer accesses a tuple using a physical pointer as a key for stored objects
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Figure 2.2: An illustration of the structure of a block. The higher 44 bits of a tuple address
is the block header address.

in blocks, which always corresponds directly with a physical memory location. Since all
blocks are 1 MB in size, it is guaranteed that the heads of two blocks are always 1 MB
apart at least, and the system can tell which block any given physical pointer might be in,
provided we know the possible starts of blocks. Then, the significant 44 bits inside a 64-bit
pointer are sufficient to locate the head of the block as shown in Figure 2.2. The remaining
20 bits are guaranteed to be large enough to hold the possible offset values within a block,
assuming any tuple has to be at least 1 byte in size, so there can at most be 220 tuples and
unique offsets within a block. Figure 2.2 also shows the information stored in the block
header. Terrier stores a version number that is preserved for multi-version schemas in the
block header. It also stores a pointer to the DataTable to which the block belongs. The
system uses the rest metadata to interpret the layout of the block.

SqlTables

A SqlTable in Terrier is a wrapper around a DataTable that provides SQL-operation in-
terface. It is the entry point for a transaction to access data stored in a table, and it is
responsible for communication between the transaction and the DataTable. It serves as a
logical table existing in the database. SqlTables support the following SQL operations:

• Select: Given an address to a tuple and a set of columns, the SqlTable returns the
tuple values for these columns.

• Insert: Given a vector of values, the SqlTable inserts a tuple with given values to
the logical table.
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• Update: Given an address to a tuple and a vector of new values, the SqlTable up-
dates the existing tuple with new values.

• Delete: Given an address to a tuple, the SqlTable removes a tuple from the logical
table.

• Scan: Given an iterator to the logical table and a size k, the SqlTable return a vector
of tuples of size k after the iterator. If there are not enough tuples available, slots in
the vector remain empty.

A SqlTable contains only one DataTable in the current implementation. An update on
the schema would require locking the whole table and swapping the underlying DataTable
with the new schema. We discuss how to change the current design to maintain multi-
ple DataTables in a SqlTable in Chapter 3, so that the system can support multi-version
schemas and non-blocking schema changes.

2.2.2 Concurrency Control

DataTables implement in-memory multi-version concurrency control protocols in a way
that is similar to HyPer [27]. The concurrency control system is delta based, and updates
records in place. The concurrency control system is generally latch-free, except transac-
tion begins and ends, where the system has to update global data structures atomically.
For every tuple, the system maintains a singly linked list of undo records, which is the
version chain, in a latch-free manner. Every version chain node or an undo record, stores
a physical “before image” of the tuple modified, as well as the timestamp of the transac-
tion that modified it. The timestamp is either the transaction’s id or the commit timestamp
for committed transactions. When the system starts a transaction, the transaction sees a
specific version of the tuple based on its timestamp.

On a tuple update, the updating transaction first copies the current version of the tuple
into an undo record and then attempts to prepend the record to the version chain atomically.
The version chain prepending serves as an implicit “write latch” The transaction aborts if
the head of the version chain is not visible to it, so DataTables do not allow write-write
conflict.

2.2.3 Catalog

The database catalog of a database instance consists of metadata in which definitions of
database objects such as base tables, views (virtual tables), synonyms, value ranges, in-
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dexes, users, and user groups are stored. More specifically, it includes schemas of tables,
information about columns, constraints on attributes.

The catalog in Terrier is similar to the system catalog in PostgreSQL [31]. The catalog
tables in Terrier are SqlTables themselves and hence transnational. Transactions can drop
and recreate the tables, add columns, insert and update values into the catalog. While it
stores all this information in tables like any other application would, the system fully man-
age the data in the tables so the data cannot be modified unless an absolute emergency.
Some catalog tables are “system-wide” tables, where the data represents the whole sys-
tems, no singular database. They store system information such as databases in the system,
transaction information, memory and disk usage, timestamps, and statistics. Other catalog
tables contain database specific metadata, such as table schemas and index metadata.

Since catalog tables support transactions, transactions see different versions of tuples
in the catalog. We discuss how to exploit the transnational property of the catalog to store
schema version information in the catalog in Chapter 3.1.2.

2.2.4 Transaction Manager

A transaction is a logical unit that is independently executed by a DBMS for data retrieval
or updates. After a transaction begins, it either commits or aborts at the end. Commit phase
a coordinating process that takes the necessary steps for either committing or aborting the
transaction. A transaction manager is part of the system that is responsible for coordinating
transactions across one or more resources. The responsibilities of the transaction manager
are as follows:

• Starting and ending transactions using begin, commit, and rollback methods.

• Managing the transaction context. A transaction context contains the information
that a transaction manager needs to keep track of a transaction. The transaction
manager is responsible for creating transaction contexts and attaching them to the
current thread.

• Coordinating the transaction across multiple resources.

• Recovery from failure. Transaction managers are responsible for ensuring that re-
sources are not left in an inconsistent state if there is a system failure.
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2.2.5 Indexes

Terrier uses latch-free Bw-Tree [19, 42] for indexing and values are physical addresses
to tuples in SqlTables. If columns are indexed, a transaction can ask indexes for the tu-
ple addresses and then pass them to SqlTable to access tuples efficiently. Terrier keeps
the databases versioning information separate from its indexes like many other MVCC
DBMSs [44]. The existence of a key in an index means that some version exists with that
key, but the index entry does not contain information about which versions of the tuple
match. We discuss how indexes interact with tables that have multiple schemas in Chapter
3.1.3.

2.2.6 Garbage Collection

While multi-version concurrency control (MVCC) supports fast and robust performance
in in-memory, relational databases, it has the potential problem of a growing number of
versions over time due to old versions. Although a few TB of main memory is available
for enterprise machines, the memory resource should be used carefully for economic and
practical reasons. Thus, to maintain the necessary number of versions in MVCC, the sys-
tem needs to delete versions which will no longer be used. This process is called garbage
collection. MVCC uses the concept of visibility to define garbage. A set of versions for
each record is identified as candidates if their version timestamps are lower than the mini-
mum value of snapshot timestamps of active snapshots in the system. Garbage collection
can safely reclaim all such candidates.

In Terrier, all of the data to clean up resides within the transaction context themselves.
The transaction manager essentially keeps a back queue of all the transactions that are
finished. In the absence of long-running transactions [18], the garbage collector is then a
background thread that periodically polls from the transaction manager’s queue and pro-
cesses the finished transactions.
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Chapter 3

Non-Blocking Schema Change

This chapter discusses the behavior of non-blocking schema changes. It focuses on one
specific design of non-blocking schema changes in detail and includes a complete imple-
mentation of SqlTable operations such as Select, Insert, Delete, Update, and Scan. At the
end of this chapter, we also discuss different storage designs and analyze their advantages
and disadvantages.

3.1 Design

In this section, we discuss how to achieve non-blocking schema changes in terms of DataT-
ables and SqlTables in multi-version DBMSs. We call our design the lazy schema change
method.

The lazy schema change method does not copy all tuples from the old schema to a
new schema. When a schema change occurs, it only creates an empty chunk of blocks
for storing tuples with the new schema and returns without populating them. Hence, the
whole schema change operation is cheap. Tuple migration is carried out by subsequent
operations as lazily as possible.

We describe how the system executes Select operations after a lazy schema change.
Suppose the system has a physical table studentwith two columns id and name. There
are two tuples initially in the table, (1, abc) and (2, xyz). At time T1 in Figure 3.1,
a schema-change transaction adds a third column age with default value 0. The system
then creates an empty physical table with all three columns. At time T2, a transaction tries
to read id and name of the tuple with id=1. The system detects that id and name are
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Figure 3.1: Select operation after a lazy schema change

attributes in the previous schema, so it retrieves the values from the old table and returns.
At time T3, a transaction tries to read all columns in student table. The system knows
the third column has a default value 0, so it first retrieves the values of the first two column
from the old table, appends 0 on the fly, and returns. The second physical table remains
empty and untouched.

Now we describe how the system executes Update operations after a lazy schema
change. Again, suppose the system has a physical table student with two columns
id and name. There are two tuples initially in the table, (1, abc) and (2, xyz). At
time T1 in Figure 3.2, a schema change transaction adds a third column age with default
value 0. The system creates an empty physical table with all three columns. At time T2

in Figure 3.2, a transaction updates the age of the tuple with id=2 to be 21. The system
detects that age is a column that only exists in the new schema, so it adds the tuple (2,
xyz, 21) to the new physical table. At the same time, it removes the old tuple from the
old physical table. At time T3 in Figure 3.2, a transaction tries to change the name of the
tuple with id=1 to be bcd. The system checks and realizes that it can perform the update
in the old physical table because the column exist in both schemas. Therefore, the system
updates the data in the old physical table.
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Figure 3.2: Update operation after a lazy schema change

In general, lazy schema change requires the ability to store tuples in the same logical
table in different physical locations. Note that the application drives the data migration
because the system only migrates tuples touched by transactions.

3.1.1 Multiple DataTables in SqlTable

Most systems (PostgreSQL [33], SQLite [40], and RocksDB[38]) implement blocking
schema changes by creating a new table with the new schema, and moving tuples from the
old table to the new table. During the migration, these two physical tables with different
schemas coexist, but neither can be accessed or is ready to be modified by transactions.
The lazy schema change is a relaxation of this migration process. It allows transactions to
access multiple physical tables of different schemas at the same time.

Figure 3.3 shows the design in the storage engine. We make DataTables correspond
to different versions of physical tables. The SqlTable acts as the unique logical table in
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Figure 3.3: Multiple DataTables in a SqlTable. DataTables are the physical student tables,
and the SqlTable is the logical student table.

the database. Suppose we have a student table with two columns, as shown in Figure
3.3, and change the schema by adding a third column age. Then, the system has two
versions of physical tables (DataTables) with two complete schemas, but only one logical
student table (SqlTable).

3.1.2 Version Table in Catalog

In MVCC, different transactions see different versions of a tuple based on their times-
tamps. Correspondingly, in multi-version schemas, the next step is to develop a mecha-
nism for SqlTables to expose the appropriate version(s) of DataTables to transactions.

The system maintains a new version table in the catalog that stores tables and their
version numbers. One of the reasons that the version table is in the catalog is that the
catalog is meant to store metadata of the database, and the number of schema versions of
a table is metadata that is not exposed to the client. Another reason is that catalog tables
are transactional SqlTables that implement MVCC so the system can exploit the existing
implementation to make transactions see different version numbers for each table. Our de-
sign requires a transaction to obtain its version number for each table it accesses from the
version table, and pass it along with every SQL operation to the corresponding SqlTable.
However, the version number of a SqlTable does not change for non-schema-change trans-
actions under snapshot isolation. Therefore, transactions can cache their version numbers
for future queries.

Figure 3.4 shows the process of obtaining a version number for a table before accessing
the table. In Figure 3.4, a transaction tries to execute a Select query on the student
SqlTable. First, it talks to the version table in the catalog to get its version number for
the student table, which is v2 in this example. Then it asks the SqlTable to execute a
Select operation and provides its version number. The SqlTable then retrieves the tuple in
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Figure 3.4: An example of a transaction interacting with the catalog and a SqlTable

the schema v1, transforms it into the schema v2 that is expected by the transaction, and
returns (1, abc, 0). We call the process of transforming a tuple from one schema
version into another schema version version translation.

3.1.3 Physical Addresses in Indexes

We next explain how indexes work with multi-version schemas. For online transaction
processing (OLTP) [28] systems, most of the time transactions access tuples efficiently
via indexing. Some systems, such as Terrier, store physical memory addresses in indexes.
To invoke SQL operations like Select, Update in SqlTables, transactions need to provide
addresses of the tuples. They obtain these addresses from indexes.

Let R be a table and T be a transaction. We introduce two definitions of versions:

txn version: We define txn version to be the version T receives from the
version table in the catalog for R.

addr version: For all addresses in a DataTable, we define addr version of
these addresses to be the schema version of the DataTable.

By definition, addresses from the same DataTable have the same addr version. The
two types of versions do not need to be the same. A version mismatch is the case where a
transaction provides an address whose addr version does not match the txn version.
We discuss when version mismatch could occur and how SqlTables detect it in the follow-
ing.
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Version Mismatch: addr version less than txn version

We first discuss the case where addr version is less than txn version. It occurs
when a tuple is an old version of DataTable.

Figure 3.5: A version mismatch between addr version and txn version.
addr version is less than txn version in this case.

Figure 3.5 shows an example of this type of version mismatch. In Figure 3.5, we have
a student SqlTable that have two DataTables and it has an index built on the column
id. A Select transaction first asks for its txn version for this table, which is v2.
Then it asks the index for the address of the tuple with id=1. The index returns the
address 0x123, which is an address in the old DataTable. Then transaction then calls
Select method along with its version number and the address. This is a version mismatch
because txn version is v2 and addr version is v1.

Version Mismatch: addr version greater than txn version

We next discuss the case where addr version is greater than txn version. This
case cannot happen because our design requires the indexes not to return an address with
addr version greater than txn version by checking the visibility of the tuple.

Figure 3.6 shows how the index avoids the case where addr version is greater than
txn version. Blue fonts and arrows indicate the steps that happen in transaction B and
red fonts and arrows indicates the steps that happen in transaction A. The index initially
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Figure 3.6: An example of how indexes avoid return addresses with addr version
greater than txn version. Blue fonts and arrows indicate steps occur in Transaction B
and red fonts and arrows indicate steps occur in Transaction A.

stores the address, 0x123 to the tuple with id=1. In this example, transaction B is a
transaction that starts after the schema change, so it sees the second schema. Transaction
A is a transaction that starts before the schema change, so it still sees the first schema.
Then, transaction B tries to update the tuple with id=1. It first asks the index for the
address of the tuple. The index returns 0x123. Next, transaction B updates the tuple
and it causes the SqlTable to migrate the tuple from v1 to v2 by logically deleting the
tuple in v1 and inserting a tuple to v2. The SqlTable returns the new address 0x456
to transaction B and transaction B updates the index with the new address. The index
marks the old key-value pair to be logically deleted by transaction B and inserts a new
key-value pair. Next, transaction A asks the address to the tuple with id=1. The index
detects that the old address is still visible to transaction A and the new address is not
visible to transaction A, so it returns the old address 0x123 with addr version v1
to transaction A. Then, the transaction A can still access the old tuple even though it
is marked deleted by transaction B. Therefore, an index never returns an address with
addr version greater than txn version.

Indexes perform visibility checks that happen in step 2 and 7 in Figure 3.6 by asking
DataTables. As described in Section 2.2.1, one can obtain the starting address of the
block, given a physical address to a tuple in a block, by extracting out the first 44 bits in
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Figure 3.7: An illustration of how indexes retrieve the DataTable pointer from a tuple
address

the address because each block is of size 1 MB by default in Terrier. Because the block
header contains a pointer to the DataTable, the index jumps to the block header, as shown
in Figure 3.7, retrieves the pointer to the DataTable, and asks the DataTable if the address
is visible to a transaction.

Version Mismatch Detection

The SqlTable detects a version mismatch by exploiting the fact that the block header con-
tains the version number of DataTable, as described in Section 2.2.1. By definition, the
version number is the addr version for all addresses in this block. Given a physical
address to a tuple in a block, the SqlTable can jump to the block header, and retrieves the
version number in a similar way as indexes retrieve the DataTable pointers in the block
header. Next, the SqlTable compares addr version with txn version and detects a
version mismatch. Finally, depending on the operation type, the SqlTable may perform a
version translation to transform the tuple to the new version before it returns the tuple for
Select operations, or migrate the tuple to the latest DataTable for Update operations.

3.2 Implementation

In this section, we describe a specific implementation of various operations of a SqlTable
with multi-version schemas. A SqlTable internally maintains a map from schema version
numbers to DataTables. A transaction can access a tuple by a physical address obtained
from an index. As indicated in the previous section, the address has a addr version
and the transaction has a txn version, and indexes guarantee that the addr version
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is not greater than txn version. Based on if the two versions match or not, operations
go to different code paths. If txn version is equal to addr version, then it indicates
that the tuple is stored in a form that is consistent with the transaction’s view of the schema.
On the other hand, if txn version is greater than addr version, tuples are located
in a DataTable with an old schema. The SqlTable performs version translation and moves
the tuple to the newer DataTable if necessary.

3.2.1 Methods in SqlTable

SqlTables provide access methods like Select, Insert, Update, Delete and Scan for transac-
tions to store, modify, retrieve, delete and update data in a table. We discuss how SqlTables
with multiple DataTables execute these methods.

Select

If txn version is equal to addr version, the SqlTable knows that the address be-
longs the DataTable that has the expected schema, so it directly retrieves the tuple from that
DataTable and returns it to the transaction. If txn version is greater than addr version,
then it means that the wanted tuple resides in a DataTable with an old schema. After re-
trieving the tuple from the old DataTable, the SqlTable performs version translation to
transform the tuple into the expected schema before returning to the transaction by filling
out values for columns that exist in the new schema, removing values for columns that do
not exist in the new schema, and appending default values if necessary.

Update

A transaction updates a tuple by providing the physical address to the tuple and the new
values for a subset of the columns. If txn version is equal to addr version, then
the SqlTable directly follows the address and updates the tuple in the corresponding DataT-
able. If txn version is greater than addr version, then it determines whether the
set of attributes the transactions modifies is a subset of both the old schema and the new
schema. If the transaction only modifies the attributes that are in the intersection of two
schemas, then the SqlTable updates the tuple in place in the old DataTable. Otherwise,
it deletes the tuple in the old DataTable, copies the tuple over to the new DataTable, and
updates the tuple directly in the new DataTable. After the migration, the tuple stays in the
DataTable with the correct schema version for the rest of the transaction.
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It is important to delete the tuple from the old DataTable before inserting a new version
of the tuple into the new DataTable. It is because if two in-flight transactions are updating
the same tuple and both insert a new tuple to the new DataTable before deletion, the new
DataTable would have two copies of the tuple. On the other hand, if they delete before
inserting the tuple, one of them would abort due to deletion failure since the system avoids
write-write conflict. Having deletion before insertion avoids inserting duplicates of the
tuple to the new DataTable and allows conflicting transactions to abort early.

If the SqlTable migrates a tuple into a new DataTable in an Update operation, it changes
the location where the tuple is physically stored. Thus, the SqlTable also returns a new
physical pointer, and the transaction is responsible for updating the index with the new
address.

Insert

Insertions do not require physical addresses. Given a new tuple, the SqlTable always in-
serts new tuples into the newest DataTable with the correct schema version (i.e., txn version).
Storing the tuple in some old DataTable has no benefits.

Delete

The SqlTable deletes a tuple in an address provided by the transaction. The SqlTable
identifies the DataTable with schema version equal to addr version and deletes the
tuple from the DataTable. In this case, the SqlTable does not check if txn version is
equal to addr version. Whether the tuple was in an old schema or the new schema
does not change the behavior.

Scan

Scan is different from Select because it returns a vector of tuples instead of a single tuple.
Scan takes an iterator to the logical table, which is internally a physical address in some
DataTable. It populates the buffer vector as it iterates through the tuples that are visible
to the calling transaction. After scanning all the tuples in a DataTable, it goes to next
DataTable and continues until it scans all DataTables.
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3.2.2 SELECT Migration Policies

When a SqlTable has multiple versions of schemas (DataTables), if a Select operation
with a version mismatch only accesses a subset of the attributes that is in the intersection
of the new schema and the old schema, then the SqlTable can retrieve the data from the
old DataTable. On the other hand, when it accesses columns only contained in the new
schema, there are two migration policies, depending on if the SqlTable move tuple into the
newer version DataTable after version translation:

Migration on Reads: The SqlTable moves a tuple to a newer DataTable after it
performs version translation on this tuple.

Migration on Writes: The SqlTable only moves a tuple to a newer DataTable if it
performs version translation and it is an Update operation.

If the SqlTable moves a tuple to a new location, the transaction must update the index
with a new address, which incurs extra performance cost for the transaction. Although
Migration on Reads policy requires the transaction to update the index, subsequent Select
operations on the tuple do not need to perform version translations. In contrast, with
the Migration on Writes policy, the transaction does not need to update the index for
Select operations but the SqlTable needs to translate between versions for all future Select
queries. These two policies perform differently on varying workloads, and our design
implements the first policy. We defer the investigation on the two policies as future work.

3.2.3 Single-Version Cache

A SqlTable internally maintains a map from version numbers to DataTables. It adds an
indirection layer to find the correct DataTable. Depending on the implementation of the
data structure, this additional layer incurs extra CPU overhead if the map involves hash-
ing. Since the SqlTable performs a lookup in the map for every SQL operation in the
transaction, the aggregated cost is nontrivial even when the SqlTable has only one schema
version. To avoid performance penalty for tables that have only one schema, the system
caches the DataTable in the SqlTable when there is only one DataTable so that it bypasses
the map lookup.
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3.3 Unsafe Schema Changes

The schema changes we have discussed so far (i.e., ADD COLUMN) can be performed
safely without interaction with other concurrent transaction. The other type of schema
changes we address in this thesis is ADD CONSTRAINT. Unlike adding a column, adding
a constraint to a column can be unsafe to perform concurrently. For example, if a trans-
action adds a constraint to a column while there are in-flight transactions inserting values
into the same column, inserting transactions do not know the constraint and may violate
it. Then the system is likely to end up in an inconsistent state.

3.3.1 Serializable Isolation Level

If transactions run in serializable isolation level, such as Serializable Snapshot Isolation
[4], the database does not result in an inconsistent state described previously. Serializ-
able isolation requires serializability among any transactions. However, to avoid poten-
tial inconsistent states of the database created by schema-change transactions, the system
only needs serializability between the schema-change transaction and any other concur-
rent transaction. Non-schema-change transactions can still execute under a lower isolation
level previously defined by the system, such as Snapshot Isolation, with respect to each
other.

Because the serializable isolation level limits concurrency, our approach implements
its own consistency checks to prevent from data inconsistency caused by schema-change
transactions. These checks only forces serializability between the schema-change trans-
action and any other concurrent transaction. Furthermore, these checks only exist when
there are running schema-change transactions. Therefore, they preserve high concurrency
allowed by Snapshot Isolation with low overhead.

3.3.2 Invariant and Consistency

We discuss how to avoid data inconsistency caused by schema-change transactions. It is
necessary for the transaction that installs the constraint to make sure that no existing tuples
violate the constraint to preserve data consistency. Suppose T1 is a transaction that adds
a NOT NULL constraint to column age in table student. It has to scan all the existing
tuples in age and make sure that they already satisfy the constraint to be installed. If not,
T1 has to abort to avoid inconsistency. Nevertheless, even if all existing tuples satisfy the
constraint, there can be another concurrent transaction T2 inserting a tuple to that table
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Figure 3.8: Conflicts between a schema update transaction and a concurrent transaction

with the value of that column being NULL. As long as T2 begins before T1 commits, T2

does not see the constraint so T2 can insert NULL values to the column under snapshot
isolation.

We introduce three steps to resolve inconsistency issue. Each of these three steps
resolves a specific inconsistent case and, if combined, they guarantee consistency in the
database. In the following discussion, we assume T1 is a transaction adding a NOT NULL
constraint on column age, and T2 is a transaction inserting (2, andy, null) into the
table student, as shown in Figure 3.8.

Step I: T1 Refreshes Its Timestamp

The left side of Table 3.1 shows the inconsistent state where NULL value is inserted and
constraint is installed. In this example, T1 begins first. Before T1 adds NOT NULL con-
straint to the catalog, another transaction T2 inserts a NULL entry into the column and
commits. Then T1 modifies the catalog and scans the table to check if existing tuples
violate the constraint. However, T1 cannot see T2’s modifications since it has newer times-
tamp under snapshot isolation. It indicates that T1 needs to catch all the transactions that
have begun and committed before the modification to the catalog was completed since
they might have violated the constraint.

To solve this problem, T1 refreshes its timestamp so that it can see those modifications
happened before it installed the constraint in the catalog. The right side of Table 3.1
describes the procedure that avoids the problem. After T1 begins, T2 inserts a null entry
and commits. Then T1 add a NOT NULL constraint to the catalog. Next, T1 refreshes its
timestamp so that now it can see the modification made by T2. When T1 scans the table,
it sees the null entry inserted by T2 and aborts because it finds an existing record that
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Before After
T1 T2 T1 T2

BEGIN BEGIN
BEGIN BEGIN
Insert null Insert null
COMMIT COMMIT

Add NOT NULL Add NOT NULL
Scan & check Refresh Timestamp
COMMIT Scan & check

ABORT

Table 3.1: A potential inconsistent state. Step I solves the issue by having T1 refresh
timestamp to see commits happened before it installs the constraint.

violates the NOT NULL constraint.

Step II: T2 Check Pending Constraints During Commit

Having T1 capture committed modifications before constraint installation is not enough
to guarantee consistency. Even though the constraint has been installed, T1 has not com-
mitted. A concurrent transaction T2 can violate the constraint and safely commit under
snapshot isolation as long as T1 has not committed. The left side of Table 3.2 shows how
this can also end up in an inconsistent state. First, T1 begins and adds the constraint to the
catalog. Then, T2 begins. Next, T1 refreshes its timestamp, scan the table, and do not find
any existing tuple violating the constraint. Before T1 enters its commit phase, T2 inserts a
null entry and commits. Finally, T1 commits and the database is in a inconsistent state.

It is clear that communication between two transactions is unavoidable to achieve con-
sistency. An obvious solution is to make the “Scan & check” step and Commit phase
atomic in T1. However, the “Scan & check” step requires an entire scan of columns, which
drastically increases the duration of the critical section. We should make the critical sec-
tion as short as possible because acquiring a latch to make these two steps atomic blocks
other transactions from updating the table for a long time.

Instead, we propose adding a separate data structure, the pending constraint list, to
the system as shown in Figure 3.9. The transaction manager described in Section 2.2.4
maintains the pending list that is visible to all transactions. Each entry in the pending list
is a pair of a constraint and a boolean flag. We call the flag the violation flag. With the
pending list, T1 not only adds constraint to the catalog, but also adds the constraint to a
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Before After
T1 T2 T1 T2

BEGIN BEGIN
Add NOT NULL Add NOT NULL

BEGIN BEGIN
Add to pending list

Refresh Timestamp Refresh Timestamp
Scan & check Scan & check

Insert null Insert null
COMMIT Check constraint

Set violation flag
COMMIT

COMMIT Check Flag
ABORT

Table 3.2: A potential inconsistent state. Step II solves the issue by having T2 atomically
check constraints in the pending list. T2 sets flags on the constraints if T2 violates them at
the commit phase. T2 uses the flags to inform T1 to abort. T1 sees the flags at the commit
phase and aborts. Operations in red-font sections are performed atomically.

pending list. When T2 enters its commit phase, it atomically

1. checks the pending constraints list

2. sets the violation flag for each constraint it violates

3. commits

On the other hand, when T1 enters commit phase, it atomically

1. checks the violation flag for its constraint

2. if the violation flag is set, aborts

3. else commits

Now when T2 commits, as shown in the right side of Table 3.2, it sets the violation flag that
is checked by T1 when T1 enters its commit phase. T1 sees the violation flag and aborts.
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Figure 3.9: The pending constraint list

This design uses first-commiter-wins policy. Since T2 commits before T1 finishes, our
approach requires T1 to abort. In this example, T2 sends a signal to T1 by setting the
violation flag on the constraint in the pending list. The flag indicates that the constraint T1

is installing will be violated, and hence T1 should abort.

Step III: T1 Enforces Constraints During Commit

Step III resolves the inconsistency as a result of T1 committing before T2. The left side of
Table 3.3 shows the case where T1 first installs the constraint, both in the catalog and the
pending list, and commits before T2 commits. When T2 enters its commit phase, it looks
at the constraint in the pending list and sets the violation flag as described in step II. In this
case, T2 commits and hopes the schema-change transaction would see the flag and abort,
whereas T1 has already committed.

This scenario occurs because the committed constraint is not enforced on the in-flight
transaction. To address the issue that concurrent transactions always try to abort T1, we add
another enforcing flag in the pending list. Now each entry in the pending list is a
tuple (constraint, violation flag, enforcing flag). The philosophy
is that, when T1 commits, the constraint is no longer pending and should be enforced for
all new transactions and concurrent transactions. During its commit phase, T1 atomically

1. checks the violation flag for its constraint

2. if the violation flag is set, aborts

3. else sets the enforcing flag on the constraint and commits

By enforcing the constraint, T1 forces concurrent transactions to check against the con-
straints and abort if they violate the installed constraint. During T2’s commit phase, it

30



Before After
T1 T2 T1 T2

BEGIN BEGIN
Add NOT NULL Add NOT NULL

BEGIN BEGIN
Add to pending list Add to pending list
Refresh Timestamp Refresh Timestamp
Scan & check Scan & check

Insert null Insert null
Check violation flag Check violation flag
COMMIT Set enforcing flag

COMMIT
Check enforcing flag
ABORT

Check Constraint
Set Violation Flag
COMMIT

Table 3.3: A potential inconsistent state. Step III solves the issue by having T1 enforces
the constraint when it commits to abort concurrent invalid modifications. Operations in
red-font sections are performed atomically.

atomically

1. checks the pending constraints list

2. aborts if it violates an enforced constraint

3. else sets the violation flag for each pending constraint it violates

4. commits

The right side of Table 3.3 shows how this approach solves the problem. T1 first begins
and adds a NOT NULL constraint to the catalog. Then, T2 begins. T1 continues to add its
constraint to the pending list, refreshes its timestamp, and does not find any existing tuple
violating the constraint. Before T1 enters commit phase, T2 inserts a null entry. Then,
T1 enters its commit phase and does not see a violation flag for its constraint, so it sets the
enforcing flag and commits. When T2 enters its commit phase, it sees the enforcing flag
and aborts.
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3.3.3 Execution Steps

When a schema-change transaction begins, it increments the schema version of the table
in the version table in the catalog. Then it modifies the constraints in the catalog. Since
write-write conflicts are not allowed, other transactions that update the schema of the same
table would fail to increment the number in the version table and abort. Therefore, there
exists at most one schema-change transaction for each table at any point in the system.
We summarize the execution steps of a schema-change transaction and other concurrent
transactions in Table 3.4.

Txn Installing Constraints (T1) Concurrent Txn (T2)
1. BEGIN 1. BEGIN
2. Increment version in version table 2. Violate constraints
3. Modify constraints in the catalog 3. Atomically:
4. Add constraints to pending list a. Check enforcing flag; ABORT if set
5. Refresh timestamp b. Set violation flags
6. Scan and check constraint violation c. COMMIT
7. Atomically:

a. Check violation flags; ABORT if set
b. Set enforcing flags
c. COMMIT

Table 3.4: Execution steps of unsafe schema-update transactions and concurrent transac-
tions

We prove that the three steps established above are sufficient to avoid data inconsis-
tency caused by schema-change transactions. Firstly, such inconsistency can only happen
when there are concurrent transaction violating the constraints being installed. Next, a
concurrent transaction can enter its commit phase in one of the following cases:

• before step 4 in T1

• after step 4 but before step 7 in T1

• after step 7 in T1

If T2 commits before step 4 in T1, T1 would see T2’s modification after T1 refreshes its
timestamp and abort. If T2 commits after step 4 but before step 7, then T2 would set the
violation flag that causes T1 to abort. Finally, if T2 commits after step 7, then T2 would see
the enforcing flag and abort.
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3.3.4 Pending Constraint List

When an unsafe schema-update transaction aborts, modifications to the version table and
constraints in the catalog are rolled back automatically because catalog tables are SqlTa-
bles themselves, which implement rollback semantics. In contrast, changes made to the
pending list should be rolled back manually since it is a separate data structure.

When a schema-change transaction aborts, it removes its constraints in the pending
list so that new transactions do not need to check against them. When a schema-change
transaction commits, it receives a commit timestamp in MVCC, and writes the timestamp
on the constraints as the enforcing flag in the pending list. It does not remove constraints
from the pending list since current transactions need to check if they violate an enforcing
constraint. A concurrent transaction only checks constraints in the pending list with no
enforcing flag or with commit timestamps after its start timestamp. Therefore, new trans-
actions that begin after the schema-change transaction that has committed do no need to
check its constraints. When there are no running transactions with start timestamps be-
fore the commit timestamp, the system returns to the normal state and is ready for next
schema update. These enforcing constraints become obsolete and the garbage collection
eventually cleans them up.

3.4 Alternative Designs

We discuss two alternative designs of the lazy schema change. We analyze their advan-
tages and disadvantages compared to the current approach. The two designs differ in the
storage layer. Both of them require a pending list to resolve data inconsistency caused by
unsafe schema changes.

3.4.1 Global DataTable Approach

Figure 3.10 shows the storage design of the Global DataTable approach. Since DataTables
in Terrier provide a snapshot of tables for each transaction, this approach maintains a
global internal DataTable which has two columns: table and dt address, which is
pointers to DataTables. Given a transaction, the SqlTable can look up this global table and
retrieve the pointer to the DataTable with the correct schema version. To retrieve tuples
stored the previous DataTables, it traverses the version chain to find the pointers to old
DataTables since DataTables in Terrier is implemented with newest-to-oldest delta chain
as described in Section 2.2.1. This global table does not need to be durable. If the system
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Figure 3.10: The Global DataTable design

reboots, all the address information is invalid, and the system needs to populate it with the
new addresses.

Pros

This approach uses DataTables as the abstraction of physical tables and SqlTables as the
abstraction of logical tables. Instead of getting the version numbers from the version table
in the catalog, transactions directly receive pointers to DataTables.

Cons

Because a single transaction can potentially need more than one DataTable pointers if
some tuples are stored in old schemas, the design requires that transactions can see mul-
tiple versions and traverse the version chain. MVCC with snapshot isolation does not
support this functionality. Even if the SqlTable can walk through the chain, it can incur
performance overhead when the version chain is long.

Another drawback of this approach is that a delta record is collected and freed by
garbage collection when no transaction needs to access it. Once the record is recycled, the
system loses the address to the old DataTable that may still contain valid tuples. It requires
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Figure 3.11: The Multi-Block design

the system to mark a special bit in the delta record and inform the garbage collector to treat
this bit as a special case.

3.4.2 Multi-Block Approach

A second design option, as shown in Figure 3.11, allows a DataTable to have multiple
blocks of different schema headers. Originally, a DataTable maintains a list of blocks used
to store tuples in the same schema. Contrast with this design where a DataTable maintains
several lists of blocks each of which stores tuples in separate schemas. As in our approach,
the system assigns a transaction a version number for each table so that the DataTable can
identify the correct set of blocks.

Pros

This approach pushes the logic of multi-versioning down to the physical table level, so the
SqlTable does not need to maintain a map. Also, it is more space-efficient since the system
only creates a block instead of a new table for a schema change.

Cons

It breaks the assumption that each DataTable represents a physical table of one schema.
Pushing all the logic down to block-level may potentially slow the system down since
much optimization can be placed in the DataTable when there is only one type of blocks.
For example, if there is only one list of blocks, a DataTable can use the compare-and-swap
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instruction to append a block at the beginning. Otherwise, the DataTable needs a latch to
protect multiple lists of blocks, which can result in performance penalty.
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Chapter 4

Evaluation

We next evaluate our approach for performing online schema changes. This chapter eval-
uates the lazy schema change method in Terrier. We use microbenchmarks with a set of
mixed types of transactions. We compare against blocking schema changes.

4.1 Experimental Framework

The experimental framework focuses on isolating external factors from the system to high-
light differences in performances caused by workloads and implementation. The machine
used for the experiment contains 6 cores from Intel Xeon CPU E5-2420 v2 @ 2.20GHz
with 32 GB of memory and hyper-threading. We run transactions as stored procedures
in the system. All experiments and benchmarks run on the Terrier system. The systems
uses a concurrent map from Intel Threading Building Blocks library [17], and all experi-
ments and benchmarks use Google Benchmark library [13]. We run all microbenchmarks
multiple iterations and report the average results.

4.2 Workloads

4.2.1 SQL Operation Performance

We measure the performance of a SqlTable by running 6 different types of operations on a
table. The table is initially empty and contains two columns of 8-byte long integers.
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Figure 4.1: Performance of SQL operations under different states of the system

Random Select: It inserts 10 million tuples into the table. Then it starts the bench-
mark, randomly chooses a valid physical address of a tuple, and Selects all attributes
of this tuple.

Insert: It continuously inserts a pre-generated tuple into the table 10 million times.

Delete: It inserts 10 million tuples into the table. Then it starts the benchmark and
sequentially deletes all 10 million tuples from the beginning.

Update: It inserts a tuple in the table. Then it starts the benchmark and updates the
tuple using pre-generated values 10 million times.

Sequential Select: It inserts 10 million tuples into the table. Then it starts the
benchmark and sequentially Selects all attributes of a tuple from the beginning.

Scan: It inserts 10 million tuples into the table. Then it starts the benchmark and
scan blocks of 1000 tuples sequentially from the beginning.

For each type of operations except for Insert and Delete, we report four results. Figure
4.1 shows the performance of six types of operations under four different states of the
system.
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No Multi-Version: This is the performance when the system does not have the lazy
schema change implementation.

Single Version Fast Path: The is the performance when the system implements
the lazy schema change and the table has only one schema version.

Multi-Version: This is the performance when the table has two schema versions,
and all the tuples have been migrated to the newest version. The table still contains
two columns of 8-byte long integers in the second schema.

Version Translation: This is the performance when the table has two schema
versions, and all the tuples are still in the old DataTable. The table still contains two
columns of 8-byte long integers in the second schema. Both Selecting and Updating
a tuple require version translation in this scenario. We do not report numbers for
Insert and Delete since they do not require version translation.

Figure 4.1 shows that the lazy schema change implementation added to the system pro-
duces little overhead for most of the SQL operations except for Sequential Select. When
schema updates are rare, our lazy schema change implementation has little overhead on
tables whose schemas are never changed. However, comparing performance on the single
version table and the multi-version table, we observe that going through the concurrent
map in the SqlTable introduces 14-28% overhead for each operation. It indicates that a
schema update on a table permanently slows down operations by more than 20% if the
system does not clean up the chain of different versions of DataTables. Figure 4.1 also
shows that the primary cost of the lazy schema change occurs when a transaction access
tuples in the new schema that do not exist in the new DataTable. Those tuples are still in
the old table with the old schema. Reading and writing to such tuples can potentially cause
version translation between two schemas. However, these costs occur only once for each
tuple if the system migrates the tuple when a transaction accesses it. The migration cost is
unavoidable. In our lazy schema change design, the migration is driven by the workload.

4.2.2 Performance Overhead

This experiment measures the impact on the throughput of Update transactions when a
schema change occurs. The table is initially populated with 10 million tuples containing
ten columns of 8-byte long integers. An Update transaction performs one Update opera-
tion on a tuple, which updates all ten columns. The transaction allocates memory space
and generates new data on-the-fly. A schema update occurs 10 seconds after the experi-
ment begins. The new schema still contains ten columns of 8-byte long integers. When
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Figure 4.2: Change in throughput for Update transactions overtime after one schema
change

the experiment begins, a single thread executes Update transactions in a closed loop for
5 minutes. We measure the performance in four different cases. Figure 4.2 shows the
throughput of Update transactions under the four scenarios.

No Schema Update: No schema update occurs in the experiment in this case.

Uniform Data Access: Each Update transaction uniformly updates a tuple among
10 million tuples.

Hotspot: Each Update transaction has 80% chance to pick a random tuple in the
hotspot and 20% chance to update a random cold tuple. The hotspot is 5% of tuples
in the table in a contiguous range.

Blocking: The system performs a blocking schema update in this case. When the
schema update occurs, it locks the table blocks all running transactions. It copies
tuples from the old table to a new table and releases the lock.

The blue and green lines in Figure 4.2 show that our implementation supports non-
blocking schema changes. Moreover, a schema update initially drops the throughput since
Update operations on tuples in old DataTable require version translation. As more and
more tuples are moved to the latest DataTable, we observe that the throughput gradually
increases. It shows that tables with hotspot recover from performance degeneration at a
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much faster speed. After 5 minutes, the system has moved approximately 94% tuples to
the new DataTable in the Uniform Data Access case, and 52% tuples in the Hotspot case.

This experiment also shows the problem that the table suffers from permanent perfor-
mance penalty after a schema update because of the loss of single version cache, which is
a disadvantage of the current implementation of the lazy schema change. Comparing the
throughput against the blocking schema change mechanism, we believe that tuples should
be moved to a new DataTable in a background thread to make the multi-version penalty
transient and under the system’s control. We defer this problem as future work.
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Figure 4.3: Average throughput under high-frequency schema changes workload

4.2.3 High-Frequency Schema Change

In this benchmark, we measure the transaction throughput under frequent schema changes.
The table is initially populated with 10 million tuples of two columns of 8-byte long inte-
gers, with 5% hotspot. The workload consists of three types of transaction, Select transac-
tions, Insert transactions, and Update transactions. We only report committed transactions.
The benchmark triggers a schema change every 10/50/100 milliseconds and measures the
average throughput over 120 seconds. It compares lazy schema changes with blocking
schema changes.
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Select Transactions: Select transactions make up 70% of all transactions. Each
transaction performs one Select operation. It has 80% chance to pick a random
tuple in the hotspot and 20% chance to select a random cold tuple.

Insert Transactions: Insert transactions make up 20% of all transactions. Each
transaction inserts one tuple into the table with no null values.

Update Transactions: Update transactions make up 10% of all transactions. Each
transaction performs one Update operation. The transactions generate new data on-
the-fly. It has an 80% chance to update a random tuple in the hotspot and 20%
chance to update a random cold tuple.

The results in Figure 4.3 show that our implementation of lazy schema change can
handle highly frequent schema changes compared to the blocking schema change. The
frequency of schema changes has a significant impact on the transaction throughput of the
blocking schema changes, while the performance of lazy schema changes is relatively im-
mune to the frequency of schema changes. We achieve approximately 40x higher average
throughput compared to the blocking schema change when a schema change is triggered
every 10 milliseconds.
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Chapter 5

Related Work

This section describes how existing commercial, open source DBMSs support schema
changes and relevant research on non-blocking schema changes.

5.1 Existing Systems

MySQL 8.0

Dictionary tables in MySQL 8.0 contain metadata required to execute SQL queries [23].
MySQL 8.0 stores all dictionary information in transactional storage in InnoDB storage
engine. It implements catalog as views on dictionary tables, allowing optimization of
catalog queries [22]. It eliminates costs such as the creation of temporary tables for each
catalog query during execution on-the-fly and scanning file-system directories. MySQL
with InnoDB engine supports non-blocking schema changes for ADD COLUMN, Change
index option, Rename table, SET/DROP DEFAULT, MODIFY COLUMN, and Add/drop
virtual columns by specifying INSTANT algorithm in the queries [21]. Non-blocking
schema changes are made in the data dictionary, so they do not require acquiring locks as
there is no change to the underlying data. Each record has a flag that is stored in info bits.
It uses the info bits to track if the record was created after first instant ADD COLUMN
or not. With this extra information, it is now possible for the ADD COLUMN operation
to be executed instantly, without modifying any of the rows in the table. After an instant
ADD COLUMN is issued, any update to the table writes rows in the new format along.
The default values are looked up from the data dictionary. Contrast this approach with our
approach where updates go to the new format only when they update some attribute in the
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new schema; otherwise, the table still writes updates in the old schema.

Non-blocking operations are limited in MySQL 8.0. It only supports adding columns
in one statement, that is if there are other non-INSTANT operations in the same statement,
it cannot be done instantly. Also, it only supports adding columns at last, not in the mid-
dle of existing columns, whereas our approach allows adding columns in the middle or
rearranging columns since it creates a new table with a new schema.

PostgreSQL 11

PostgreSQL 11 stores schema information in pg tables in the catalog. In PostgreSQL, all
schema changes are blocking. PostgreSQL uses table-level locks stored in the pg locks
table [33]. There are various types of locks in PostgreSQL, including ACCESS SHARE,
ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE
ROW EXCLUSIVE, EXCLUSIVE, ACCESS EXCLUSIVE. Depending on the type of
schema updates, schema updates acquire different types of locks. Most of Data Definition
Language (DDL) operations, which define the structures in a database, require an exclusive
lock, which blocks other data manipulation language (DML) operations, which modify
data in a database. There is no concurrency among DDL and DML operations. The table
is not available while the DDL operations are carried out and it causes downtime. The use
of explicit locking can increase the likelihood of deadlocks. PostgreSQL 11 automatically
detects deadlock situations and resolves them by aborting one of the transactions involved,
allowing the other(s) to complete.

MemSQL 6.7

MemSQL is a distributed, in-memory, relational DBMS. Schema information is stored at
every node. MemSQL 6.7 supports online ALTER TABLE as it does not require doubling
the disk or memory use of the table while executing, does not lock the table or prevent
querying it for long periods, and does not use excessive system resources [34]. It changes
only the metadata of the table on every node in the cluster with a short-lived table lock.
The distributed lock is required to synchronize all nodes in the cluster so they can start
displaying the new column at the same time. New memory space is set up at the time of
the metadata change to allocate rows for the new table schema. It serves SELECT queries
by generating the default values on the fly. Write queries insert new rows into the new
table and the old table. In addition, a separate thread begins transferring the row data from
the old format to the new format. MemSQL’s approach is similar to our approach as both
create a separate space with a new schema. One difference is that our approach can write
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updates in the old memory space. The other difference is that the transferring process in
our approach is driven by workloads, not by a separate thread.

MemSQL does not support for rollbacks once ALTER TABLE starts. Because it re-
quires distributed locks to change metadata, it may need to wait for long running queries
to finish to acquire locks.

5.2 Research

Schema Evolution Benchmarks

Prior work has developed schema evolution benchmarks for both soft and hard schema
change [39] to demonstrate its importance and challenges. The paper aims to introduce two
benchmarks. The first benchmark is for systems that support soft schema change, which
allow new transactions and old transactions (i.e., transactions based on an old schema
version) to access the same database concurrently [9]. The benchmark is derived from
real database schemas across different versions of MediaWiki, which is widely used for
web information systems like Wikipedia. It also contains real and synthetic queries that
access the database using any schema version. The second benchmark is for systems that
support hard schema change, which abort any old transactions after the schema change
transaction commits [43]. It is based on the TPC-C [7] workload implemented as stored
procedures. The goal of the second benchmark is to run Data Definition Language (DDL)
and Data Manipulation Language (DML) operations concurrently while minimizing the
performance impact of schema changes on TPC-C transactions. Each schema change
transaction includes DDL operations that modify the schema as well as updates to stored
procedures to adapt TPC-C transactions to the new schema.

Online Schema Evolution Through Query Rewriting

PRISM: The PRISM workbench [8] automatically rewrites the legacy query that ac-
cesses an old version of the schema to adapt to the latest version of the schema. It does
not keep old data from the previous schema version. In other words, every time the user
updates the schema, there is data migration, but it does keep all schema changes in a sep-
arate metadata DB. However, it does not support read history records or a temporal query,
and rewritten queries run with a permanent overhead and are on average 4.5 times slower
than original queries.
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PRIMA: Moon et al. [20] describes the PRIMA system, which is a transaction-time
DBMS that supports schema evolution. It has a different architecture than that of PRISM.
It stores historical data and historical schema info in a separate document-oriented database
to support temporal query and maintains a current or snapshot database in the relational
model at the same time to support regular query. A user expresses their query based only
on the current schema version. Then PRIMA automatically translates this input query into
equivalent queries against all applicable schema versions and executes them against the
databases underlying such schemas. The system uses the same technique for query rewrit-
ing in PRISM, including schema mapping with changes. One drawback of this approach
is that the system can exhibit response lags of up to 30 seconds per schema change while
computing mappings between schema versions [20, 26].

Updateable Views: InVerDa creates schema versions as views and uses triggers to
allow queries to update using any schema version [16]. Like PRISM and PRIMA, the
system also allows accesses to data any valid schema. InVerDa does not need to copy data
when it creates a new schema version (only creates view and triggers). Instead, a new
table is created, if necessary, to contain newly created columns in the new schema version,
whereas the old data do not need to be moved or copied.

Online Schema Evolution Through Copying

Lazy Copying: Neamtiu et al. [26] allows schema change transactions to commit be-
fore actual schema change has completed. Although the system may not have moved the
data to the new schema, queries that access the data are not blocked. These queries trans-
form the data into the new format on the fly. The system generates a thread that transforms
tuples from the old schema to the new schema in the background. One disadvantage of this
approach is that each schema update causes migration of the entire table in the background.
This is too inefficient when the schema of a table frequently changes.

External Tools: Ronstrom [39] creates a tool that operates on top of DBMSs that cre-
ates new tables and copies all data from the old tables in a single transaction when mi-
grating to a new schema version. It adds triggers on the old table to avoid missing any
concurrent updates to the data. Callaghan [5] developed a tool on top of MySQL to allow
online schema changes.
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Chapter 6

Conclusion and Future Work

In this thesis, we have presented an implementation of non-blocking schema change, the
lazy schema change approach, via schema multi-versioning. This approach migrates tuples
lazily on demand from an old table to a new table, and it relies on maintaining multiple
DataTables in a SqlTable and keeping a version table in the catalog. Furthermore, we study
isolation levels regarding schema-change transactions. We show that the system needs
serializability between schema change transactions and any other concurrent transactions
to avoid inconsistency cased by unsafe schema changes, but it allows concurrent non-
schema-change transactions continue to run under a lower isolation level previously set
in the system. Moreover, we show that lazy schema changes can handle frequent schema
changes. The performance penalty after a schema change can reduce fast on tables that
have hot tuples. We learn that, although we desire non-blocking schema changes via
multi-versioning, we should be careful that they need to maintain the performance for the
single-version common case.

In the future, we would like to integrate the lazy schema change with other existing
table migration techniques. We want to implement version compaction that migrates tuples
from old DataTables to the newest DataTable and shrink the schema version chain so
that a multi-version table can be cleaned up and return to a single version state. Then,
operations on the table can remain efficient. Version compaction can happen concurrently
in the background like in most other systems, or it can manually start and block concurrent
transactions until it finishes. Another interesting direction is to use Machine Learning to
determine when to conduct version compaction intelligently. Also, when the workloads
drive data migration, we would like to evaluate different migration policies.
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